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Supervisor’s Foreword

Since 2001, it has been known that a universal quantum computer can be built using
single photon sources, single photon detectors, and an adaptive interferometer.
There has since been a great deal of interest in practical implementations of such a
machine. Early experiments were performed using bulk-optical elements: macro-
scopic beamsplitters, lenses and filters bolted to an optical bench. However, a
useful, universal device will require many thousands of components, and can only
be realised in an integrated, lithographically fabricated platform. Over the past
decade, the capability of integrated photonics has grown to meet the needs of the
classical telecommunications and computing industries, to the extent that lasers,
filters, switches, and optical interconnects can all now be implemented in planar
waveguide chips using standard semiconductor fabrication techniques.

Proof-of principle experiments, performed over the last few years, have
demonstrated that this hardware is suitable for applications in quantum photonics.
Although the overarching goal is the development of practical quantum technolo-
gies, these experiments also provide tangential benefits, enabling tests of founda-
tional quantum mechanics with a degree of complexity and control which would be
extremely challenging—if not impossible—using bulk-optical apparatus.

Pete Shadbolt’s thesis captures both sides of this coin. His work showcases the
utility of integrated photonics for optical quantum computing, demonstrating novel
on-chip implementations of quantum state preparation, logic gates, quantum
algorithms, and state characterization methods. Meanwhile, he has used the same
reconfigurable hardware to explore foundational quantum physics, including
complementarity and nonlocal quantum correlations.

A large fraction of Pete’s thesis makes use of a reconfigurable two-qubit
silica-on-silicon chip. Pete has shown how this device can be used to generate and
characterise Bell states, perform quantum process tomography, and violate Bell
tests. While these experiments have previously been performed in bulk optics, these
were the first on-chip demonstrations of these essential protocols. Pete went on to
use this chip to test a new method which guarantees Bell violation in the absence of
a shared reference frame, a situation which can occur due to polarization rotations
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in optical fiber, for instance. He describes an extension of this scheme which greatly
facilitates the characterisation of entangled photon sources in the presence of
realistic experimental noise.

The same device was used to implement a novel twist on Wheeler’s classic
delayed choice experiment, testing the counterintuitive wave-particle duality of the
photon. In this new experiment, Wheeler’s binary “choice” was replaced by a qubit,
allowing wave and particle behaviours to be simultaneously observed in coherent
superposition.

With respect to applications, Chap. 5 of Pete’s thesis describes the experimental
implementation of a new and unorthodox algorithm for quantum chemistry on a
quantum computer. This algorithm has potential benefits in terms of the depth and
complexity of the quantum circuit required to solve the electronic structure problem
using a quantum computer.

In Chap. 6 of this thesis, the experimental complexity is significantly increased.
Pete describes the development of a 16-channel multiphoton detection system, used
in a series of experiments which examine quantum interference in waveguide
arrays. These devices include continuously coupled quantum walks, and a
Haar-random unitary circuit. Using up to 5 photons in 21 waveguides these
experiments access a Hilbert space of around 50,000 dimensions, providing insight
into the challenges associated with state characterization and algorithmic verifica-
tion in large-scale quantum devices.

This thesis is characterised by the breadth of topics covered, from practical
time-correlated single photon counting through to quantum algorithms and foun-
dational quantum theory. It describes a large number of new results from an
experimental standpoint, with extensive, practically relevant detail. As such, I
believe that it will be an invaluable addition to the library of any student of
experimental integrated quantum photonics.

Bristol, UK Prof. Mark Thompson
September 2015
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Abstract

Quantum mechanics predicts phenomena which have no classical analogue. This
modifies our understanding of the capability of physical machines. Single photons,
together with simple interferometers and single photon detection have been shown
to be universal for the construction of many such machines. The nascent field of
integrated quantum photonics addresses the scalability and practicality of such
machines, and their integration in miniaturized monolithic chips.

In this work, we explore the scope and flexibility afforded by integrated quantum
photonics, both in terms of practical problem-solving, and for the pursuit of fun-
damental science. We demonstrate and fully characterize a two-qubit quantum
photonic chip, capable of arbitrary two-qubit state preparation. We make use of the
unprecedented degree of reconfigurablility afforded by this device to implement a
novel variation on Wheeler’s delayed choice experiment, and test a new technique
to obtain nonlocal statistics without a shared reference frame. We demonstrate a
new algorithm for quantum chemistry, simulating the helium hydride ion. Finally,
we demonstrate multiphoton quantum interference in a large Hilbert space, and
discuss implications for computational complexity.
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Chapter 1
Introduction and Essential Physics

Krazy:“Why is Lenguage, Ignatz?”
Ignatz: “Language is that we may understand one another.”
Krazy: “Can you unda-stend a Finn, or a Leplender, or a
Oshkosher, huh?”
Ignatz: “No,”
Krazy: “Can a Finn, or a Leplender, or a Oshkosher unda-stend
you?”
Ignatz: “No,”
Krazy: “Then I would say lenguage is that that we may
mis-unda-stend each udda.”

George Herriman, Krazy Kat

1.1 Introduction

Over the past century, it has become increasingly apparent that Nature, at its most
fundamental level, resists analogy with human experience. Quantum theory predicts
behaviour which is not explained by any classical model. As a result, we have come
to understand that certain intuitive beliefs concerning the potential capability of
machines do not hold. Given the ability to prepare, manipulate, and measure single
quanta, there is very good evidence to suggest that we should be able to measure,
communicate and compute using techniques which have no classical analogue. This
new mode of operation promises enormous potential benefits in terms of speed,
precision, and security.

Historically, light has played a central role both in creating and answering funda-
mental questions in physics. The question of the fundamental makeup of light was
crucial to the development of quantum theory, and many experimental tests of the
most surprising predictions of quantum mechanics were first performed using vis-
ible photons. Moreover, many of the most significant modern technologies depend
entirely on the ability to manipulate and measure visible or near-visible electromag-
netic radiation.

In order to implement new quantum technologies, we must choose a quantum
system in which to encode information. Single photons can be readily generated
and detected, and generally do not suffer from the detrimental effects of noise to the
© Springer International Publishing Switzerland 2016
P. Shadbolt, Complexity and Control in Quantum Photonics,
Springer Theses, DOI 10.1007/978-3-319-21518-1_1
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2 1 Introduction and Essential Physics

same extent as other quantum particles. As such, quantum optics represents a leading
approach to the implementation of almost all proposed quantum technologies.

Recently, it has been suggested that efficient and universal control over photonic
quantum states could be implemented in a monolithic chip, enabling the technolo-
gies previously described. Some experimental evidence already exists to support this
claim. However, in order to reach the ultimate goal of a tangible quantum advantage
over classical machines, we must overcome a number of crucial challenges in pho-
tonics engineering. It is reasonable to expect that in the course of this technological
development, we will, as a by-product, obtain tools which enable new science, and
new understanding of quantum mechanics itself.

1.2 Thesis Outline

This chapter begins with a brief overview of quantum mechanics, entanglement,
nonlocality, and prospective quantum technologies. We discuss the standard optical
tool-kit in the context of quantumphenomena andquantummachines.Wealsodiscuss
integrated quantum photonics. In Chap.2, we a reconfigurable integrated photonic
chip incorporating two path-encoded qubits, and show that it performs with high
fidelity across a large parameter space. In the course of this work we demonstrate
two-qubit quantum state and process tomography, and violate a Bell inequality on-
chip. In Chap.3, we use this device to implement a variation on Wheeler’s delayed-
choice experiment, showing continuous morphing between wave-like and particle-
like behaviour. In Chap. 4, we consider the problem of obtaining nonlocal statistics,
or certifying entanglement, without a shared reference frame. We introduce new
techniqueswhich facilitate this task, and experimentally demonstrate their feasibility.
Chapter 5 introduces a new algorithm for quantum chemistry on a quantum computer,
andweuse this algorithm to simulate the heliumhydride ion. InChap. 6,we describe a
multiphoton counting system using 16 detectors, and its application to the imaging of
multiphoton quantum interference in Hilbert spaces of dimension ∼50,000. Chapter
7 concludes this thesis, with an outlook to future work.

1.3 Quantum Mechanics

Classical physics provides a description of the world which can be pictured in the
mind’s eye. The behaviour of classical objects, fields, fluids, and machines can
be explained either in terms of effects which we as human beings experience and
observe, or by direct and satisfactory analogy to our experience.

Over the course of the 20th century, it became increasingly evident that classical
physics does not provide a complete picture of the world. In particular, two macro-
scopic physical effects—black body radiation and the photoelectric effect—cannot
be adequately explained by a classical model. Throughout more than 100years of

http://dx.doi.org/10.1007/978-3-319-21518-1_2
http://dx.doi.org/10.1007/978-3-319-21518-1_3
http://dx.doi.org/10.1007/978-3-319-21518-1_4
http://dx.doi.org/10.1007/978-3-319-21518-1_5
http://dx.doi.org/10.1007/978-3-319-21518-1_6
http://dx.doi.org/10.1007/978-3-319-21518-1_7


1.3 Quantum Mechanics 3

discovery, Planck, Bohr, Einstein, de Broglie, Schrödinger, Dirac, and many others
developed the theory of quantummechanics, which accommodates these phenomena
and predicts a great deal more. Quantum mechanics remains the most complete and
accurate model of physics ever developed.

In order to construct this theory, it has been necessary to accept the existence
of phenomena which resist any meaningful analogy with everyday human experi-
ence. In particular, quantum mechanics dispenses with the idea that the attributes of
physical (Fig. 1.1) systems are well-defined prior to the act of measurement, as well
as the notion that physics is at heart governed by deterministic processes. Quantum
mechanics predicts new phenomena, such as entanglement and nonlocality, which
are extreme in their departure from a common-sense understanding of the world.
These effects have since been widely observed in experiments, where they are most
regularly seen in nanoscale systems such as single atoms, electrons, and photons.

Very early on in the development of quantum theory, it was recognised that the
surprising new effects it predicts might be used to build machines which would not
be feasible in a classical model. Perhaps the most dramatic example of this was the
immediate application of the new theory to the development of the atomic bomb,
leading to the deaths ofmore than ten thousand people at Hiroshima. Quantum theory
was also instrumental in the development of field-effect transistors, atomic clocks,
hard disk drives, and the laser, which led to a revolution in information processing,
communication, and measurement. Later on, it was suggested—by Feynman, Lloyd,
Deutsch, Kitaev, and others—that coherent quantum machines, directly manipulat-
ing pure quantum states at the lowest level, might possess a fundamental advantage
over their classical or semi-classical counterparts for certain tasks, including secure
communication, measurement, computation, and simulation of quantum systems
themselves. In contrast with the transistor, whose functionality can be reproduced by
a solenoid, the capability offered by these quantum technologieswould be fundamen-
tally inaccessible to classical machines. These applications are discussed throughout
this thesis.

(a) (b) (c) (d) (e)

Fig. 1.1 Models of physics. a A square-based model elegantly captures the properties of many
things: skyscrapers, chess boards, salt crystals. b However, we need only find one example—which
might only be seen in a challenging or contrived experiment—to detect the incompleteness of the
model. c �-physics does not elegantly account for the existence of triangles. d The new theory of
�-physics is radical and unfamiliar, but it accommodates the new phenomenon well. It is arguably
more elegant than the old model, and provides a more complete understanding of the world. Impor-
tantly, this new model is largely compatible with the previous understanding. e �-physics allows
the construction of machines which are difficult to build in a �-based model
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In this section I draw on notes from Nielsen and Chuang [1], Preskill [2], Dirac
[3], Hannabuss [4], and Aaronson [5].

1.3.1 States

Classically, an event with n possible outcomes is described by a probability distrib-
ution P , corresponding to a vector of n real scalars

P = (p1, p2 . . . pn) ; pi ∈ R; 0 ≤ pi ≤ 1 ∀ i. (1.1)

Since we always obtain some outcome, these numbers sum to 1, i.e. the 1-norm is
conserved,

∑

i

|pi | = 1. (1.2)

Quantum mechanics is the theory which naturally emerges if one attempts to replace
these probabilities by complex amplitudes, with the condition that the 2-norm, rather
than the 1-norm, is conserved

|ψ〉 = (a1, a2, . . . an) ; ai ∈ C; ||ψ||2 =
∑

i

|ai |2 = 1. (1.3)

The state of the system is completely encoded in the state vector |ψ〉, which is defined
on the complex Hilbert space, H . Any ray in H corresponds to a physical state,
and two vectors represent the same state iff one is a multiple of the other. This allows
construction of superposition states

|ψ〉 = a1|ψ1〉 + a2|ψ2〉; |a1|2 + |a2|2 = 1. (1.4)

The Hilbert space has an inner product 〈ϕ|ψ〉, which associates each pair of vectors
|ϕ〉, |ψ〉 with a complex number, and is positive, linear, and skew symmetric

〈ϕ|ψ〉 ≥ 0; 〈ϕ| (a|ψ1〉 + b|ψ1〉) = a〈ϕ|ψ1〉+b〈ϕ|ψ2〉; 〈ϕ|ψ〉 = 〈ψ|ϕ〉∗. (1.5)

Normalization (1.3) can then be re-expressed as 〈ψ|ψ〉 = 1. Volume in Hilbert space
is measured by the Haar measure d|ψ〉, which defines a notion of uniform sampling
or integration over H . In order to describe a composite system of two or more
objects, Hilbert spaces are joined by means of the tensor product

HAB = HA ⊗ HB; |�AB〉 = |ψA〉 ⊗ |ψB〉 (1.6)
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We will often make reference to the Hilbert space dimension d pertaining to some
physical system of interest. By this, we will usually mean the dimension of the
smallest Hilbert space required to capture the full dynamics of the system, all things
being equal. When we model a classical coin as a two-state system, we ignore many
degrees of freedom—position in space, temperature etc.—which are not pertinent to
the problem. Similarly, a quantum coin can be modelled as a two-state system (|H〉,
|T 〉) with Hilbert space dimension d = 2.

1.3.2 Measurements

An observable is a property of a physical systemwhich can in principle be measured.
Observables in quantum mechanics are described by Hermitian operators Â defined
onH , which map states to states:

Â : |ψ〉 → Â|ψ〉; Â = Â†. (1.7)

Any observable has a spectral decomposition

Â =
∑

i

λi�̂λi , (1.8)

with eigenvalues λi . Here, �̂λi are orthonormal projectors onH , with

�̂i�̂ j = δi j ; �̂i = �̂
†
i . (1.9)

If λi is nondegenerate, then �̂i = |λi 〉〈λi |, with 〈λi |λ j 〉 = δi j , and {|λi 〉} form an
orthonormal basis forH .

When the observable Â is experimentally measured, the outcome is always an
eigenvalue of Â. The outcome of any given measurement is in general probabilistic,
returning λi with probability

p(λi ) = 〈ψ|�̂i |ψ〉 (1.10)

At the time of measurement, the system is projected into an eigenstate of Â corre-
sponding to the measured eigenvalue λi .

|ψ〉 Detect λi−−−−−→ �̂i |ψ〉
(〈ψ|�̂i |ψ〉)1/2 = |λi 〉 . (1.11)

This is the “collapse” of the wavefunction, whose interpretation remains contentious.
It implies that repeated furthermeasurements of the sameoperator on the same system
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will always yield the same eigenvalue. The expectation value of Â for a state |ψ〉 is
given by

〈A〉 =
∑

i

p(λi )λi = 〈ψ| Â|ψ〉 (1.12)

The Born rule connects amplitudes to probabilities. It gives the probability that a
system prepared in a state |ψ〉 will be detected in state |ϕ〉, as

p(ϕ|ψ) = |〈ϕ|ψ〉|2. (1.13)

1.3.3 Time Evolution

Time-evolution of a classical probability distribution can be described in terms of
a stochastic matrix—a matrix of real numbers whose columns each add up to one,
preserving the 1-norm. Time evolution of a quantum state must preserve the 2-norm
(1.3). The most general class of operators which always conserve the 2-norm of a
vector on H are the unitary matrices Û ,

ÛÛ † = 1;
∑

i

|Ûi j |2 = 1. (1.14)

Time-evolution of a closed quantum system can always be described by a unitary
matrix. In the Schrödinger picture of quantum mechanics, we say that Û evolves an
input state |ψ〉in to an output state |ψ〉out, as

|ψ〉out = |ψ(t)〉 = Û |ψ〉in = Û |ψ(0)〉, (1.15)

and observables Â do not change as a function of time.
How is the unitary operator Û connected to the physical properties of the system

at hand? In general, Û is generated by a Hamiltonian Ĥ , according to the time-
dependent Schrödinger equation

i�
∂

∂t
|ψ〉 = Ĥ |ψ〉, (1.16)

where � is Planck’s constant. Ĥ is defined on the Hilbert spaceH , and has a spectral
decomposition in terms of energy eigenstates and eigenvalues, Ĥ =∑i Ei |Ei 〉〈Ei |.
When the Hamiltonian is fixed in time, the time-independent component of solutions
of (1.16) satisfy the time-independent Schrödinger equation Ĥ |ψ〉 = E |ψ〉, where
E is the energy of the state |ψ〉. The Schrödinger equation then has solutions of the
form
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|ψ〉out = |ψ(t)〉 = exp

[
−i Ĥ(t2 − t1)

�

]
|ψ(0)〉 = Û (t2, t1)|ψ〉in. (1.17)

The Hamiltonian Ĥ thus completely determines the continuous-time dynamics of
the system, and can be related to the discrete-time unitary description of evolution
by (1.17).

As well as the Schrödinger picture of quantum mechanics, we can equivalently
adopt the Heisenberg picture, in which the state is thought of as remaining fixed,
with observables evolving under Û ,

Âout = Û † ÂinÛ . (1.18)

This picture can sometimes provide a simpler analysis, especially for systems of few
particles in many modes. The correspondence between these pictures can be seen as

|ψ〉out = V̂t
†
Û |ψ〉in; Âout = V̂ †

t Âin V̂t (1.19)

where V̂t = 1 and V̂t = Û yield the Schrödinger and Heisenberg pictures respec-
tively. In the Heisenberg picture, unitary evolution of the observable is related to Ĥ
by the Heisenberg equation,

i
d Â

dt
=
[

Â, Ĥ
]
. (1.20)

1.3.4 No-Cloning and Heisenberg Uncertainty

There exist a number of operations which are trivial to perform for classical systems,
but which are not allowed for quantum states. For example, perfect duplication of
an arbitrary unknown quantum state is impossible. To see this, consider a cloning
machine Û which copies an unknown state |ψ〉 onto an ancilla system, initially
prepared in |a〉:

Û |ψ〉 ⊗ |a〉 = |ψ〉 ⊗ |ψ〉. (1.21)

If we use the machine to copy two particular quantum states, |ψ〉 and |ϕ〉, we have

Û |ψ〉 ⊗ |a〉 = |ψ〉 ⊗ |ψ〉; Û |ϕ〉 ⊗ |a〉 = |ϕ〉 ⊗ |ϕ〉. (1.22)

Taking the inner product of these two equations, we have 〈ψ|ϕ〉 = (〈ψ|ϕ〉)2, imme-
diately implying that such a cloning machine cannot be universal. Note that this does
not preclude the preparation of an ensemble of identical states by repeated application
of a trusted state preparation procedure.
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Quantum mechanics also places fundamental limits on the extent to which the
properties of a given ensemble of quantum states can be measured and known.
Heisenberg’s uncertainty principle states that: given as a resource an ensemble of
identical unknown states |ψ〉, the standard deviation �(Ĉ), �(D̂) in measurements
of two observables Ĉ , D̂ is bounded below by

�(Ĉ)�(D̂) ≥ |〈ψ|
[
Ĉ, D̂

]
|ψ〉|/2. (1.23)

That is, when Ĉ and D̂ do not commute, the better our knowledge of C , the less
information we have on D. The related (but distinct) principle of complementarity
further limits our ability to measure noncommuting observables of quantum states,
and is described in Sect. 3.2.2.

1.3.5 Qubits

The basic unit of classical information is the bit, b ∈ {0, 1}. The quantum analogue
is the qubit, a two-level quantum system with Hilbert space dimension d = 2. By
analogy with classical bits, the states |0〉, |1〉 form a basis forH , and a single qubit
can occupy any normalized superposition state

|ψ〉 = α|0〉 + β|1〉; |α|2 + |β|2 = 1. (1.24)

Neglecting a global phase, this can be re-written as

|ψ〉 = cos
θ

2
|0〉 + eiϕ sin

θ

2
|1〉, (1.25)

leading to a natural geometrical representation of the state spaceH of the qubit as the
surface of a unit sphere, often referred to as the Bloch sphere (Fig. 1.2). Throughout
this thesis we will make use of the quadrant points of the Bloch sphere

|0〉 ≡
[
1
0

]
, |+〉 ≡ 1√

2
(|0〉 + |1〉) , | + i〉 ≡ 1√

2
(|0〉 + i |1〉) (1.26)

|1〉 ≡
[
0
1

]
, |−〉 ≡ 1√

2
(|0〉 − |1〉) , | − i〉 ≡ 1√

2
(|0〉 − i |1〉) , (1.27)

which are eigenstates of the Pauli matrices σ̂z , σ̂x , σ̂y respectively.
Almost any two-level quantum system can be used to encode a qubit. Specific

conditions for a qubit to be useful for quantum computation are given in Sect. 1.4.1.
Qubit encodings for linear optics are discussed in Sects. 1.6.1 and 2.2.5.

http://dx.doi.org/10.1007/978-3-319-21518-1_3
http://dx.doi.org/10.1007/978-3-319-21518-1_2
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Fig. 1.2 The Bloch sphere provides a geometrical representation of the state space of a two-
level quantum system—a qubit. Points on the surface of the sphere are pure (|ψ〉 = α|0〉 + β|1〉,
α2 + β2 = 1), and include the quadrant points |0〉, |1〉, |+〉, |−〉, | + i〉, | − i〉. These points are
eigenstates of the Pauli matrices σ̂x , σ̂y , σ̂z , and the axes are labelled correspondingly. The point at
the centre of the sphere is the maximally mixed state, 1

1.3.6 Mixture

So far we have only been concerned with closed quantum systems, where there is no
uncontrolled outside influence, and all components of the system are accounted for.
In practice, we often encounter situations in which some part of the quantum system
is inaccessible to the experimentalist, often due to coupling to the environment.
Under such circumstances, many of the assumptions of the previous discussion do
not hold: namely, time evolution is no longer necessarily unitary, measurements are
not guaranteed to be orthogonal projectors, and it is no longer satisfactory to represent
states as rays in H .

In order to represent the state of a quantum system subject to unknown external
influence, we can consider a black-box device. We send into this device a quantum
state, for example |0〉. Inside the box, a demon flips a fair coin. Depending on the
outcome of the coin flip, the demon then outputs either the state |0〉, or the state
|1〉. Now, we should not write the state of the ensemble generated by this box as a
coherent superposition |+〉 = 1√

2
(|0〉 + |1〉), as the two states are chosen according

to a classical probabilistic process. We instead describe the state using a density
matrix ρ̂, defined as

ρ̂ ≡
∑

i

pi |ψi 〉〈ψi |. (1.28)
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For the simple example cited here, the output of the box can be written as

ρ̂ = 1

2
|0〉〈0| + 1

2
|1〉〈1| = 1

2

[
1 0
0 1

]
= 1/2, (1.29)

which is in contrast with the density matrix of the superposition state |+〉

ρ̂+ = |+〉〈+| = 1

2

[
1 1
1 1

]
. (1.30)

All physical density matrices are semidefinite positive (ρ̂ ≥ 0), Hermitian (ρ̂ = ρ̂†),
and have trace one (Tr(ρ̂) = 1): Time evolution of a density matrix ρ̂ by a unitary
process Û proceeds as

ρ̂ =
∑

i

pi |ψi 〉〈ψi | Û−→ ρ̂ =
∑

i

pi Û |ψi 〉〈ψi |Û † = Û ρ̂Û †, (1.31)

and the expectation value of an observable Â given a state ρ̂ is given by 〈 Â〉 = Tr( Âρ̂).
Density matrices provide the most general description of quantum states. In the limit
of zero coherence, the language of density operators reproduces classical probability
theory. A standard approach for the description and characterization of open quantum
processes is given in Sect. 2.7, and a method for the generation of mixed states from
entangled two-qubit states is discussed in Sect. 2.9.

1.3.6.1 Purity

Uncertainty in a discrete classical random variable X is captured by the Shannon
entropy,

H(X) ≡ −
∑

i

p(xi ) log p(xi ). (1.32)

H(X) = 1 when X is the output of a single toss of a fair coin, and H(X) = 0 when,
for example, X ∈ x0, x1 and p(x0) = 1, p(x1) = 0.

Mixed states can be thought of as possessing greater uncertainty than pure states,
since for a maximally mixed state there exists no measurement basis {|τ 〉} in which
measurement outcomes are deterministic. In order to quantify uncertainty for a quan-
tum state we might try to apply the Shannon entropy to measurement outcomes—
however, this does not give the desired behaviour. If ρ̂ is a pure state |ψ〉〈ψ|, then
there is a conjugate measurement basis {|ψ〉∗, |ψ⊥〉∗} in which the measurement out-
come is deterministic. If we assign eigenvalues ±1 to each basis state respectively
we will always register +1, giving a Shannon entropy over measurement outcomes

http://dx.doi.org/10.1007/978-3-319-21518-1_2
http://dx.doi.org/10.1007/978-3-319-21518-1_2
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of H(X) = 0. However, we could equally choose to measure in a diagonal basis,
giving uniformly distributed random measurement outcomes and thus H(X) = 1.

So, we cannot use the Shannon entropy to quantify uncertainty for a particular
state, as a goodmeasure of states should be independent of any choice ofmeasurement
basis. The von Neumann entropy is an entropic measure which solves this problem.
It is defined in a very similar way to the Shannon entropy: the von Neumann entropy
of a state ρ̂ with a spectral decomposition {λi }, {|λi 〉} is

S(ρ̂) ≡ −T r
(
ρ̂ log

(
ρ̂
)) = −

∑

i

λi log (λi ) = −〈log ρ̂〉 (1.33)

which evaluates to 0 for all pure states, is maximal and equal to log d for all max-
imally mixed states (where d is the dimension of the Hilbert space), and increases
monotonically with all sensible measures of mixture. Further useful measures of the
degree of mixture of a quantum state are given by two related quantities, the purity

γ(ρ̂) ≡ T r(ρ̂2) (1.34)

and the linear entropy SL(ρ̂) ≡ 1 − γ(ρ̂2). The purity of a pure state |ψ〉 is
T r(|ψ〉〈ψ||ψ〉〈ψ|) = 1, and for a maximally mixed state γ (1) = 1/d.

1.3.7 Entanglement

Superposition states of a single particle, permitted by quantum mechanics as pre-
viously described, have powerful and counterintuitive implications. Single-particle
experiments such as Young’s double slit (Sect. 3.2) show qualitative differences in
physical behaviour with respect to classical mechanics, and quantum algorithms
such as Grover search (Sect. 1.4.1) can provide a polynomial speedup for certain
computational tasks.

However, in order to fully appreciate the extent to which quantum mechanics is
profoundly distinct from classical physics, it is important to consider multi-particle
experiments involving the related phenomena of entanglement and nonlocality.
Using these phenomena we can construct games which can provably only be be won
by quantum players, and experimentally falsify the extremely natural and widely-
held notion of a local-realistic universe. Entanglement is the resource which drives
most quantum technologies, including quantum computing, metrology, simulation,
and some schemes for quantum communication. Throughout this thesis, we make
use of entangled quantum states both as a resource for computation (Chap.5 and
Sect. 6.3.2) and as a basic physical phenomenon of fundamental interest (Chaps. 3,
4, and Sect. 6.3).

Einstein, whose celebrated theory of relativity restored locality to macroscopic
physics, was intimately involved in the discovery [6], along with Podolsky, Rosen,

http://dx.doi.org/10.1007/978-3-319-21518-1_3
http://dx.doi.org/10.1007/978-3-319-21518-1_5
http://dx.doi.org/10.1007/978-3-319-21518-1_6
http://dx.doi.org/10.1007/978-3-319-21518-1_3
http://dx.doi.org/10.1007/978-3-319-21518-1_4
http://dx.doi.org/10.1007/978-3-319-21518-1_6
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Schrödinger, and von Neumann, that quantum mechanics permits multipartite sys-
tems to exist in states which cannot be written as a product of their subsytems, i.e.

ρ̂A,B,C ... �=
∑

i

pi ρ̂A ⊗ ρ̂B ⊗ ρ̂C . . . (1.35)

Quantum stateswhich cannot bewritten in this form are said to be entangled. For such
states, full knowledge of the individual subsystems does not imply full knowledge of
the true, holistic state, and vice-versa. To see the physical effect of this phenomenon,
we can consider the example of a bipartite entangled state of two qubits, shared
between distant parties, Alice and Bob:

|�+〉 = 1√
2

(|0A0B〉 + |1A1B〉) . (1.36)

This state cannot be written as the product of two separate objects, as in (1.35).
When both parties measure their system in the {|0〉, |1〉} (logical) basis, we see that
Alice and Bob each have 50% probability of detecting 0 or 1, and their measurement
outcomes are also strongly correlated—Alice’s outcome is always the same asBob’s.

P00 = |〈00|�+〉|2 = 1

2
; P11 = |〈11|�+〉|2 = 1

2
; P01 = P10 = 0 (1.37)

Correlated, probabilistic behaviour indistinguishable from that generated by this
state when measuring in the logical basis can easily be simulated classically. Flip
a coin, and if it outputs heads, give to Alice and Bob the state |00〉, otherwise pro-
vide |11〉, i.e. generate the mixed state (|00〉〈00| + |11〉〈11|) /2 = 1. The troubling
observation that led Einstein, Podolsky and Rosen (EPR) to conclude that quantum
mechanics was “incomplete” becomes apparent when Alice measures in an arbitrary
basis {|λ0〉, |λ1〉}.

Depending on Alice’s measurement outcome, she will remotely project Bob’s
state onto one of the conjugate basis states {|λ0〉∗, |λ1〉∗}, leaving the entire system
in |λ0Aλ0B 〉∗ or |λ1Aλ1B 〉∗ (see Sect. 1.3.2). The implication of this effect, named
steering by Schrödinger, is that either (i) the physical state of Bob’s particle was
somehow remotely and instantaneously modified by Alice’s choice, or (ii) Bob’s
state was never well-defined in the first place. Put another way, either the universe
is nonlocal—meaning that the relationship between two separate objects cannot be
completely accounted for by a set of factors that previously acted on those objects—
or it is not realistic—the physical properties of objects do not have real, pre-existing
values, until a measurement is made—or both.

Entanglement can be measured in myriad different ways, and a full discussion of
the diverse variety of entanglement measures and associated partitionings of Hilbert
space is beyond the scope of this thesis. A comprehensive reviewwas given by Plenio
[7]. We provide here a minimal set of examples, as reference points which will be
used throughout this thesis.
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We can assert some simple and reasonable conditions for a measure of entangle-
ment:

• Separable states of the form (1.35) contain no entanglement.
• Entanglement cannot be increased through local operations and classical com-
munication (LOCC) alone. Experimentalists in separate labs, connected only by
classical channels and each having access to one subsystem of a larger quantum
state, cannot increase the extent to which they are entangled.1 This implies that
entanglement is invariant under local unitaries. A state ρ̂ can be said to be at least
as entangled than another ρ̂′ if ρ̂ can be converted to ρ̂′ through LOCC operations
alone.

• Maximally entangled states exist. The Bell states

|�±〉 ≡ 1√
2

(|01〉 ± |10〉) ; |�±〉 ≡ 1√
2

(|00〉 ± |11〉) (1.38)

form an orthonormal basis set for two-qubit states, and are the canonical example
of two-qubit maximally entangled states. Any pure or mixed state of two qubits
can be prepared from a Bell state using only LOCC operations, and one can easily
convert between Bell states using only local unitary operations ÛA ⊗ ÛB . For
multipartite systems, a satisfactory definition of maximally entangled states has
proved elusive—see, for example, results by Greenberger et al. [8].

Two entanglement measures of particular relevance to experimental quantum
optics are the entropy of entanglement and the concurrence. Aswe have already seen,
individual subsystems of an entangled state are strongly dependent on one another.
If Alice and Bob share the separable pure state ρ̂AB = |0A0B〉〈0A0B |, the reduced
density matrix of Alice, tracing over Bob’s state, is ρ̂A = TrB ρ̂AB = |0〉〈0|—that
is, her state is pure and independent of Bob’s system. However, when Alice and
Bob share a maximally entangled state (for example |�+〉〈�+|), although the state
of the whole system is pure, Alice’s reduced density matrix is maximally mixed,
ρ̂A = 1

2 (|0〉〈0| + |1〉〈1|) = 1. We can use this behaviour to devise an entanglement
measure for pure states based on the generalized quantum uncertainty of the state of
one subsystem, tracing over the other, where uncertainty is characterized by the von
Neumann entropy.

The entropy of entanglement is defined [9] as

E(ρ̂AB) = S(ρ̂B) = S(ρ̂A) = S
[
T rB

(
ρ̂AB

)]
. (1.39)

In this example of two qubits, it is natural to choose a base-2 logarithm, in which case
E ranges from zero, when ρ̂AB is separable, to log2 d = 1 for a maximally entangled
two-qubit state. A nice property of E(ρ̂AB) is that for two qubits, in the asymptotic

1Experimentalists can use LOCC operations to selectively throw away states coming from some
partially entangled source, thus producing a postselected state with greater entanglement than the
source itself. However, the entanglement of the system as a whole, including those systems that
were thrown away, does not increase under LOCC operations.
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limit of many experiments, E is equal to the ratio m/n, where m is the number of
perfect, maximally entangled singlet states that can be reversibly generated by LOCC
operations from a source producing n copies of ρ̂AB .

The entropy of entanglement is defined only for pure states. A useful entanglement
measure which also works for mixed states is the concurrence, defined for a mixed
state of two qubits ρ̂ as

C(ρ̂) ≡ max(0,λ1,λ2,λ3,λ4) (1.40)

where {λi } are eigenvalues of the matrix R =
√√

ρ̂ρ̃
√

ρ̂ and ˜̂ρ = (σ̂y ⊗ σ̂y)ρ̂(σ̂y ⊗
σ̂y). C ranges from 0 for a separable state and 1 for a maximally entangled state,
and is monotonically related to E . We make use of the concurrence in Sect. 4.5 and
Chap.5 of this thesis.

1.3.8 Bell Nonlocality

In our discussion so far, it has been necessary to use the formalism of state vectors,
operators, measurements and so on in order to provide an intuitive picture of the
character and effects of entanglement. Although we will see later on that machines
which use entanglement as a resource have the potential to dramatically affect the
real classical world, it is hard to give a good picture of the fundamental properties
of entanglement without appealing to the quantum mechanical formalism. However,
it turns out that we can construct experiments which reveal—without fully char-
acterising entanglement itself—the sharp separation between allowed behaviour of
entangled vs separable states, without the need to first choose an in-depth physi-
cal model of the world, and which rely only on simple statements about space and
probability.

Classical physics is local. Consider two parties, Alice and Bob, who are sep-
arated in space by many light-years. They each possess (Fig. 1.3) a single object.
Their objects may have originated from a common source. Alice and Bob now inde-
pendently and freely choose to measure their respective objects in some way. We
do not need to use the quantum mechanical description of measurement—we sim-
ply imagine switches allowing Alice to measure in a ∈ {a0, a1 . . .} and Bob in
b ∈ {b0, b1 . . .}, yielding measurement outcomes A and B respectively. When this
experiment is repeated many times, these measurement outcomes are governed by a
probability distribution p(AB|ab).

Alice and Bob’s systems may have met in space at some point in their history,
and may have been prepared or choreographed in a particular way, giving rise to
correlations or dependencies in p.We denote this prior knowledge by a local (hidden)
variable λ, which accounts for any local information or “hidden pre-programming”
which these objects might possess. Having done so, we define a local theory as

http://dx.doi.org/10.1007/978-3-319-21518-1_4
http://dx.doi.org/10.1007/978-3-319-21518-1_5
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Fig. 1.3 A Bell-CHSH test. Alice and Bob receive devices from a common source or factory. Each
device has a binary input (heads, H or tails, T ) and a binary output (0, 1). The internal machinery
of the devices, as well as the pre-arranged strategy of Alice and Bob, are left unspecified—the only
condition is that the devices are separated in space and cannot communicate. Having received their
devices, Alice and Bob each flip a coin, obtaining H or T . Their task is then to satisfy the rules
illustrated in the central schematic. Namely, if one or more coins shows heads, the output of Alice
and Bob’s devices should Agree, yielding 0a0b or 1a1b. Only when both parties flip tails should
they Disagree, outputting 0a1b or 1a0b. It is easily confirmed that all local strategies are limited to
a probability of success of 3/4. However, when Alice and Bob share an entangled state, this bound
can be violated

one in which we can factorize the probability distribution [10] over measurement
outcomes as

p(AB|ab) =
∫

�

dλ q(λ)p(A|a,λ)p(B|b,λ), (1.41)

where q is a random variable over all possible λ ∈ �, which takes into account the
possibility that λ may change between measurement runs. The outcome of Alice’s
measurement thus does not depend on Bob’s choice of measurement operator, and
is fully described by local effects. Note that we arrive at this definition without any
particular choice of physical model.

In 1964, John Bell proved [11] that the predictions of quantum theory are incom-
patible with the notion of locality captured in (1.41). Since 1964, many variations
on Bell’s proof have been developed, some of which are simpler to derive, or exper-
imentally test, than others. Here we consider a Bell test due to Clauser et al. [12],
in which we assume only two measurement settings a ∈ {a0, a1}, b ∈ {b0, b1}, and
two measurement outcomes A, B ∈ {−1,+1} per party.

Consider the quantity

S = 〈A0B0〉 + 〈A0B1〉 + 〈A1B0〉 − 〈A1B1〉 (1.42)

where 〈Aa Bb〉 = ∑
A,B ABp(AB|ab) is the expectation value of the product

A · B, given measurement settings a, b. Assuming a local model, we re-write these
expectation values using (1.41),
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〈Aa Bb〉 =
∫

dλq(λ)〈Aa〉λ〈Bb〉λ (1.43)

where 〈Aa〉λ = ∑
A Ap(A|a,λ) ∈ [−1, 1] is Alice’s local expectation value and

〈Bb〉λ =∑B Bp(B|b,λ) ∈ [−1, 1] is Bob’s. Now, (1.42) becomes

S =
∫

dλSλ =
∫

dλ〈A0〉λ〈B0〉λ + 〈A0〉λ〈B1〉λ + 〈A1〉λ〈B0〉λ − 〈A1〉λ〈B1〉λ.

(1.44)
Since 〈A〉, 〈B〉 ∈ [−1, 1], we see that |S| ≤ |〈B0〉λ + 〈B1〉λ + 〈B0〉λ − 〈B1〉λ| and
therefore

|S| ≤ 2. (1.45)

This is the Bell-CHSH inequality, which holds for all local realistic models. Now
consider a scenario in which Alice and Bob share the Bell state |ψAB〉 = |�−〉. Their
local measurement settings are now described by qubit measurement operators, Âi ,
B̂i . It is helpful to express each measurement operator as a Bloch vector, which maps
a single-qubit measurement operator to R

3.

Âi = ai1 σ̂x + ai2 σ̂y + ai3 σ̂z = �ai · �σ, (1.46)

B̂i = bi1 σ̂x + bi2 σ̂y + bi3 σ̂z = �bi · �σ. (1.47)

Single-qubit measurement operators can thus be visualized in the Bloch sphere
(Fig. 1.2). Setting q(λ) = 1, it is then easy to show that the expectation value of
AB is simply related to the overlap of �a and �b,

〈 Âi B̂i 〉ψ =
∫

dλq(λ)〈ψ| Âi ⊗ B̂i |ψ〉 = −�ai · �bi = − cos(θ), (1.48)

where θ is the angle between �ai and �bi . If they choose the following measurement
operators

Â0 = σ̂z; Â1 = σ̂x ; B̂0 = − σ̂z + σ̂x√
2

; B̂1 = σ̂z − σ̂x√
2

(1.49)

it is easy to show that S = 2
√
2 > 2, violating (1.45). The maximum value of S

which can be obtained, using any quantum state, is 2
√
2. Moreover, this value is only

obtained for maximally entangled states. Considerable insight into the fundamental
nature of quantummechanics has been gained [10, 13, 14] through the construction of
unphysical models or objects which violate Clauser-Horne-Shimony-Holt (CHSH)
beyond 2

√
2.

Since the discovery of Bell’s theorem and its later development by CHSH, this
inequality has been experimentally violated many times. Arguably the first robust
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experimental demonstration was made in 1982 by Aspect et al. [15], using entangled
photon pairs from a calcium cascade source. More recent experimental implemen-
tations have focussed either on closing the loopholes which leave such experiments
open to local-realistic interpretation [16, 17], or on the potential communication
applications of nonlocal correlations, in the form of device independent quantum key
distribution (see Sect. 1.4.2).

1.3.8.1 Obtaining Nonlocality

Not all entangled states exhibit nonlocal statistics. Pure states with any nonzero value
of the entropy of entanglement (1.39), for instance states of the form

√
1 − p|�−〉 +√(p)|00〉 (1.50)

violate Bell-CHSH (although not maximally) for all p > 0. In contrast, Werner [18]
described mixed, entangled two-qubit states, showing EPR correlations and which
cannot be written as (1.35), which do not exhibit nonlocal correlations. The Werner
state with visibility V

ρ̂V ≡ V |�−〉〈�−| + (1 − V )
1
4

(1.51)

cannot violate Bell-CHSH for V < 1/
√
2.

Even if Alice and Bob share a maximally entangled state, nonlocal statistics
are not always revealed—for instance, if they choose their measurements from a
single orthogonal basis set. Therefore in order for Alice and Bob to guarantee that
they will see nonlocal correlations, they must somehow co-ordinate their choice of
measurement settings. This point is discussed in detail in Chap.4 of this thesis.

1.4 Quantum Technologies

Information is physical.

Rolf Landauer

Information must necessarily be encoded in the state a physical system. In order
to encode classical information, almost any physical system will do: human beings
have cut giant figures into the chalky substrate of the Chiltern hills, hewn laws into
stone tablets, and currently store exabytes of data in the magnetic domains of hard
disk drives. Over the past century, with the advent of quantum mechanics, it came
to be understood that information stored in the state of a quantum system—quantum
information—is very distinct from its classical counterpart.

Quantum information is encoded in the probability amplitudes of a quantum state,
and can therefore exist in an arbitrary coherent superposition. It follows that quantum

http://dx.doi.org/10.1007/978-3-319-21518-1_4
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information can be encoded in an entangled state, and can thus exhibit correlations
which are classically forbidden.Moreover, as has already been discussed, the fact that
quantum states cannot be cloned places restrictions on the extent to which quantum
information can be reliably “read out” in a single shot.

These fundamental differences between allowed representations and operations
on classical and quantum information lead to new applications, devices, and tech-
nologies, which cannot be accomplished by classical means. Specifically, quantum
information science has revealed fundamentally new modes of information process-
ing, measurement, communication, and simulation, which we detail below.

1.4.1 Quantum Computing

Quantum systems exhibit classically forbidden phenomena. As a result, quantum
information can be processed using operations which are forbidden for classical
machines. In particular, unitary evolution of quantum information can lead to inter-
ference effects which do not occur under stochastic evolution of classical informa-
tion. This leads to the possibility of a quantum computer: an entangled, quantum,
problem-solvingmachine. It has been shown that by exploiting these new operations,
a quantum computer could in principle solve certain computational tasks using expo-
nentially fewer resources than any classical machine.

To see that quantum information can be advantageously processed using classi-
cally forbidden operations, we look to a simple and concrete example due to Deutsch
and Jozsa [19]. Given an unknown Boolean function f , the task is to determine
whether f is constant, f (0) = f (1), or balanced, f (0) �= f (1) (i.e. we want the
parity of f ). To answer this question classically, we must make two calls to f :

f (0) ⊕ f (1) =
{
0 if f is constant

1 if f is balanced
(1.52)

where⊕ denotes additionmod 2. However, implementing f using a two-qubit entan-
gling gate Û f |x〉|a〉 = |x〉| f (x) ⊕ a〉, we can effectively make a single call to f with
a superposition of both arguments at once

Û f |+〉 ⊗ |−〉 = |0〉 ⊗ | f (0) ⊕ 0〉 − |0〉 ⊗ | f (0) ⊕ 1〉 (1.53)

+ |1〉 ⊗ | f (1) ⊕ 0〉 − |1〉 ⊗ | f (1) ⊕ 1〉. (1.54)

Applying a Hadamard operation to the first qubit, complex amplitudes in (1.54)
destructively interfere to give

(Ĥ ⊗ 1)Û f |+〉 ⊗ |−〉 =
{

±|0〉 ⊗ |−〉 if f is constant

±|1〉 ⊗ |−〉 if f is balanced
(1.55)
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Measurement of the first qubit in the logical basis then immediately reveals the
nature of f . Note that we only obtain a global property of f , not full information
on the mapping (see Sect. 6.3.5). This algorithm is easily generalized to systems of
n qubits, where it requires exponentially fewer calls to f with respect to all classical
algorithms.

The Deutsch-Josza algorithm provides an attractive illustration of the characteris-
tic properties of many quantum algorithms—dependence on interference of complex
amplitudes, qubits, entangling gates, and ultimately an exponential speedup over
classical machines. Unfortunately, the problem of Deutsch-Josza is rather contrived,
and this algorithm has no known useful application.2 Moreover, at the cost of deter-
ministic operation, randomized classical algorithms perform very well at this task,
classifying f in polynomial time, and furthermore the leap from f to the oracular
Û f arguably renders the quantum-classical comparison somewhat unrealistic. As
a result, the main utility of Deutsch-Josza is pedagogical. A similar role is played
by Grover search, an algorithm first described in 1995 by Lov Grover. Grover’s
algorithm uses a single quantum system, together with a specific class of oracle,
to accomplish a polynomial speedup over classical machines for a task resembling
database search.

Long before Deutsch-Josza and Grover search, Feynman [20, 21] laid out the
first strong argument as to why one might build a quantum computer. Feynman
argued that since the state of a quantum system can exist in a coherent superposition
over all allowed eigenstates, and since a system of n particles has exponentially
many eigenstates in general, it is likely exponentially hard to simulate such systems
using a classical computer. Feynman went on to propose that a quantum computer
or quantum simulator should be capable of reproducing the dynamics of a system
of interest, in a controlled way, using only polynomial resources. We can imagine
that much as aircraft wings are numerically simulated prior to construction, drugs,
materials and other atomic-scale systems might be designed on a quantum computer
prior to synthesis in the laboratory. This application is potentially economically very
significant, and would have a dramatic effect on science, medicine, and engineering.
Quantum simulation is discussed in further detail in Chap.5 and Sect. 6.3 of this
thesis.

Quantum simulation has almost the opposite problem to Grover search and
Deutsch-Josza. Quantum simulators constitute arguably the most practically use-
ful known application of a quantum computer, but it remains very hard to prove
either (i) that atomic/molecular systems of interest cannot be efficiently simulated
by a classical machine or (ii) that all physical systems can be efficiently simulated
by a quantum computer!

In 1994, Peter Shor first described an algorithm [22] which has since become the
best-known proposed application for quantum computation. Shor showed that a uni-

2In terms of computational complexity, Deutsch-Josza provides an oracle relative to which EQP
(the class of problems exactly soluble by a quantum computer in polynomial time) is distinguishable
fromP (decision problems soluble in poly-time by a deterministic Turingmachine). However, we do
not expect that aDeutsch-Joszamachinewould have direct “economically significant” implications!

http://dx.doi.org/10.1007/978-3-319-21518-1_6
http://dx.doi.org/10.1007/978-3-319-21518-1_5
http://dx.doi.org/10.1007/978-3-319-21518-1_6
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versal quantum computer, capable of manipulating, entangling andmeasuring a large
number of qubits, could be used to solve the prime factoring and discrete logarithm
problems in polynomial time. This was an extremely powerful result, as the problem
of prime factoring is strongly believed to be computationally intractable for classical
machines, and is also useful for real-world practical tasks. Specifically, prime factor-
ing is the task of identifying the prime factors a, b of a (large) composite L-bit number
N = ab. The best-known classical algorithms run in time exponential in L , while
Shor’s algorithm runs in O(L3) time. A scalable implementation of Shor’s factoring
algorithm would break most (but not all) existing classical encryption algorithms,
including Rivest-Shamir-Adleman (RSA) and elliptic-curve cryptography.

We have outlined above a few quantum algorithms most relevant to this discus-
sion. A great many quantum algorithms have since been developed, most of which
are outside the scope of this thesis. In Chap.5, we introduce a new algorithm for
simulation of quantum chemistry. In Sect. 6.3.2, we experimentally demonstrate a
relatively new quantum algorithm,BosonSampling, which has particular relevance
for the photonic platform addressed here.

1.4.1.1 The DiVincenzo Criteria

Although the quantum algorithms described above could in principle be implemented
using special-purpose machines, one of the principal goals of quantum information
science is the design and construction of general-purpose, universal quantum com-
puters. Such a machine could be reconfigured, or programmed, to implement any
conceivable quantum algorithm, and is arguably the most ambitious and potentially
rewarding goal of the entire field of quantum information. The fact that a univer-
sal quantum computer could in principle be constructed under the known laws of
quantum mechanics has been proven in works by Barenco, Bennett, Cleve, Deutsch,
Ekert, DiVincenzo, Lloyd, Shor, Smolin, and many others. See, for example, Refs.
[23–26].

In order to build such a machine we must first select a physical architecture,
amenable to experimental implementation, in which to encode, manipulate and mea-
sure quantum information. Although we can construct quantum algorithms which
provably cannot be efficiently performed by any known machine [1], any successful
platform for quantum computing will require experimental resources which grow at
most polynomially with the size of the quantum circuit, or the number of elementary
operations required. In order to evaluate the suitability of proposed architectures
and technologies for quantum computing, we make use of the DiVincenzo criteria
[27]—the basic experimental criteria for any scalable platform for quantum comput-
ing. Here we list the five criteria most pertinent to our discussion:

• A scalable system with well-characterized qubits Single qubits, supporting
coherent quantum superposition states, upon which quantum information can be
encoded. A single qubit should not be prohibitively experimentally demanding to
implement, and experimental resources should scale at most polynomially with
the total number of qubits.

http://dx.doi.org/10.1007/978-3-319-21518-1_5
http://dx.doi.org/10.1007/978-3-319-21518-1_6
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• The ability to prepare a simple fiducial state Wemust be sure of the initial state
of the system. This fiducial state need not be entangled.

• Evolution under a universal set of quantum gates Lloyd [25], DiVincenzo [23]
and many others have described small, discrete sets of elementary operations on
qubits, which can be combined to implement any quantum algorithm.One example
of such a universal gate set is formed by the (maximally entangling) two-qubit
controlled-not (CNOT) gate, together with generic single-qubit operations. All
such universal gate sets include at least one entangling operation.

• Decoherence times much longer than the gate operation time As has already
been discussed (Sect. 1.3.6), interaction with the environment leads drives the state
of the system towards a mixed state, in a process referred to as decoherence. Since
a maximally-mixed state can be modelled by a classical probability distribution,
decoherence almost always leads to failure of quantum algorithms. The charac-
teristic rate at which the purity of the qubit state degrades, which is related to the
strength of coupling to the environment, must therefore be slow with respect to
the time taken to perform a gate operation.

• Qubit measurement The architecture must allow single-qubit quantum measure-
ments, as described in Sect. 1.3.2. Measurement in the z-basis can be combined
with a universal gate set to evaluate any possible observable on the system of
qubits.

Quantum computation is widely believed to be the most technically challenging
of all proposed quantum technologies, and it is likely that any platform satisfying
the DiVincenzo criteria would also be capable of implementing other applications,
described in Sects. 1.4.2 and 1.4.3.

1.4.1.2 Fault Tolerance

No useful machine exists in a vacuum. All practical machines are subject to the
influence of noise, error, and loss, due to both interaction with the environment
and imperfect fabrication or operation of the machine itself. Classical computers
overcome noise by two complementary methods. First, the reliability of individual
components in modern classical computers is extremely good: typical error rates are
on the order of 1 in 10 × 1017 operations. The overwhelming majority of these few
errors are then detected and corrected bymeans of redundancy-based error-correcting
codes. The simplest example is to encode the bit state 0 on n bits, 0000 . . ., and
similarly for 1, in which case error can be exponentially suppressed by means of a
simple majority-voting system.

Error correction is similarly essential for quantum computers. Without it, the
probability of success of any realistic quantum computation falls off exponentially
as the system evolves in time. Fortunately, a number quantum ECCs [1, 28–30] have
been developed which effectively protect quantum states against noise. Owing in
part to the no-cloning theorem, these codes are necessarily distinct from the simplest
classical techniques, however they are still largely based on redundancy, in that a
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single logical qubit is represented by a number of system qubits, whose state is
monitored and adjusted to correct errors. As with classical ECCs, quantum ECCs
therefore demand an overhead, in terms of both qubit and gate count, with respect
to the naïve implementation. In practise, this overhead can be extremely large [31].
The overhead for a given choice of ECCs is guaranteed to be polynomial in problem
size only when the intrinsic error rate is below a certain threshold value. This is the
threshold theorem [32], without which scalable quantum computing would likely not
be a realistic prospect.

1.4.2 Quantum Communication

Prime factoring can be seen as a one-way function, which is hard to compute, but easy
to check. The security of almost all digital communication is currently guaranteed
by the difficulty of the forward problem, which is the basis of the RSA algorithm for
public-key cryptography. RSA provides a method by which two parties can securely
communicate, without having to first share a large one-time pad. While RSA has
been enormously successful, it is by no means perfect. First, it is not known whether
factoring is fundamentally classically intractable: at any time, an efficient classical
factoring algorithm could suddenly be discovered, breaking the security of RSA.
Secondly, an eavesdropper with access to a scalable quantum computer could use
Shor’s algorithm to silently decrypt and listen-in on this communication.

While quantum information science enables a realistic attack on RSA, it also pro-
vides a new technique for secure communication, based on quantum theory itself. In
1984, Bennett and Brassard [33] (BB84) described a method allowing two distant
parties to communicate securely over an untrusted channel, using quantum states as
the information carrier. This technique, together with its many derivatives, is referred
to as quantum key distribution (QKD). The security of QKD is guaranteed by the
axioms of quantum mechanics, in particular the no-cloning theorem (Sect. 1.3.4).
In the event that an eavesdropper successfully reads private information from the
channel, the state of the quantum system carrying that information is measurably
disturbed, in which case the honest parties cease communication. In order to eaves-
drop on a channel secured by QKD,3 an attacker would need to discover physical
effects which contradict no-cloning, which would be considerably more surprising
than the discovery of a polynomial-time classical factoring algorithm.

At the time of writing, QKD is one of the few quantum technologies to have
reached the market. This reflects the relative experimental accessibility of the task.
All commercial QKD systems use photons as the information carrier, owing to the
many advantages described in Sect. 1.6.1. Most QKD systems either time-bin or
polarization encoding, carrying single photons or weak coherent pulses over optical
fibre or in free-space.

3Assuming a perfect experimental implementation, see Ref. [34].



1.4 Quantum Technologies 23

Recently, Lydersen et al. reported a functional attack on commercialQKDsystems
[34], which exploits details of the technical implementation to gain control over
the measurement apparatus and steal information. Device-independent quantum key
distribution DI-QKD [35], which necessarily depends on entanglement and nonlocal
correlations, has been proposed as a solution to this class of attack. In Chap. 4, we
introduce a number of theoretical and experimental techniques which may facilitate
DI-QKD in real-world scenarios.

1.4.3 Quantum Metrology

Wehave argued that since computation is a physical process, quantummechanics can
be used to compute. Moreover, an advantage in computation can be gained by using
a quantum machine. Similarly, measurement is physical. It turns out that by using a
quantum apparatus to probe a system of interest, a number of tangible advantages
can be gained with respect to classical methods [36, 37].

Classical measurements are fundamentally limited by what is known as the shot
noise, or the standard quantum limit. Averaging over n measurements of a given
observable A, by the central limit theorem the statistical uncertainty in the measured
value of A scales as

�A ∝ 1/
√

n. (1.56)

However, by probing the sample using entangled quantum states such as those
described in Sect. 1.5.3, followed by quantum measurement of the resulting state,
this uncertainty can in principle be reduced to a reciprocal scaling �A ∝ 1/n, vio-
lating the standard quantum limit. This method, known as quantum metrology, is
particularly advantageous when the sample is extremely fragile and prone to damage
by the measurement process itself, as it allows the same amount of information to
be obtained using fewer discrete measurements.

We recently performed an experimental implementation [38] of a new scheme
for loss-tolerant quantum metrology [39], which makes use of the photon counting
capability developed in Sect. 6.2. Unfortunately, this work was not completed in time
for inclusion in this thesis.

1.5 Light

Throughout this thesis we will examine the use of quantum states of light as a testbed
for fundamental quantum mechanical phenomena, as well as the basic substrate
upon which quantum-photonic technologies are built. We now lay out a theoretical
framework to describe both classical and quantum states of light, in particular the
quantization of the electromagnetic field, following the approach ofVenkataram [40].
The following analysis is presented in Gaussian units.

http://dx.doi.org/10.1007/978-3-319-21518-1_4
http://dx.doi.org/10.1007/978-3-319-21518-1_6
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1.5.1 Light as a Wave

Classical electromagnetic effects are governed by Maxwell’s equations:

∇ × H = 1

c

(
∂D
∂t

+ 4πJ f

)
(1.57)

∇ × E = − 1

c

∂B
∂t

(1.58)

∇ · B = 0 ∇ · D = 4πρ f (1.59)

where H is the magnetic field, D = εE is the electric flux density, J f is the free
current density, E is the electric field, and B = μH is the magnetic flux density. ρ f

is the free charge density or charge per unit volume, and c is the speed of light. The
dielectric permittivity ε and the magnetic permeability μ are related to the dielectric
and magnetic susceptibilities χe, χm by

ε(E) = ε0 [1 + χe (E)] (1.60)

μ(H) = μ0 [1 + χm (H)] (1.61)

where ε0 and μ0 are the permittivity and permeability of the vacuum, respectively.
In the absence of charges (ρ f = 0) and currents (J f = 0), Maxwell’s equations

reduce to

∇ × E = −1

c

∂B
∂t

; ∇ × B = +1

c

∂E
∂t

; ∇ · E = 0; ∇ · B = 0. (1.62)

For convenience we have taken c = 1/
√

με to be the phase velocity of light in the
medium. The refractive index n of the material

n =
√

με

μ0ε0
= c0

c
(1.63)

relates c to the speed of light in the vacuum c0. Taking the curl (∇×) of the first two
expressions in (1.62) we arrive at the electromagnetic wave equations

∇2E = 1

c2
∂2E
∂t2

; ∇2B = 1

c2
∂2B
∂t2

. (1.64)

The solutions E (r, t) and B (r, t) to these equations represent time-dependent elec-
tric andmagnetic fields—light—propagating through themedium at c ∼ 3×108 m/s.
These solutions are subject to the constraints that B and E should be perpendicular
both to each other and the axis of propagation, and in phase, but may otherwise be
very varied in form.
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One solution to (1.64) for an inhomogeneous dielectric is a linearly polarized
monochromatic field with wavelength λ,

E(r, t) = A(r) ei(ωt−φ(r)) (1.65)

where ω = 2πc/λ is the angular frequency and A is the amplitude vector which
determines the polarization. When the medium is homogeneous, or in free space, an
even simpler solution is given by a plane wave travelling in the ẑ direction

E(r, t) = Aei(ωt−kz) (1.66)

where k = ω/c is the wavenumber.
We will now consider a single eigenmode of the electromagnetic field with wave

vector k = kk̂, where k̂ is a unit vector in the direction of propagation. For a mode k,
solutions of (1.64) can be separated into a time-dependent complex function αk(t)
and a spatial function E0(r), where by convention the electric field Ek is taken to be
the real part of the product of αk and E0

Ek(r, t) ≡ Re(αk(t)E0(r)) = α∗
k(t)E∗

0(r) + αk(t)E0(r). (1.67)

For Ek and αk to be consistent with the wave equation (1.64), they must satisfy

αk(t) = αk(0)eickt ; ∇2Ek + k2Ek = 0. (1.68)

The second of these two expressions is the Helmholtz equation. The magnetic field
must be perpendicular to both E and the direction of propagation, Bk (r, t) = k̂ ×
Ek (r, t) and is thus related to α(t) and E0(r) by

B(r, t) = i

k

[
α∗

k(t)∇ × E∗
0(r) − αk(t)∇ × E0(r)

]
. (1.69)

In order to find the Hamiltonian of the electromagnetic field, we must integrate the
energy density of the electric and magnetic fields over all space,

H =
∫

Hd3r =
∫

1

8π

(
E2 + B2

)
dr. (1.70)

Combining (1.67) and (1.69), together with careful choice of normalization of α(t)
and E0(r), we arrive at a Hamiltonian for the electromagnetic field in a mode k, in
terms of the ansatz αk(t)

Hk = �ck

2

(
α∗

kαk + αkα∗
k
) = �ck|αk|2. (1.71)

Here, � is simply a constant with units of action. As we will see in Sect. 1.5.2, this
notation is chosen for a reason!
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1.5.1.1 Interference

When two light fields occupy the same region of space, interference effects occur.
The frequency of light is generally speaking too high (5 × 1014 Hz) for the elec-
tric field to be observed directly, and most measuring devices are only sensitive to
the time-averaged intensity I = 〈|E(r, t)|2〉. The net electric field is the sum over
modes,E(r, t) =∑i Ei (r, t). For the simple example of interference of two linearly
polarized monochromatic fields (1.65) E1, E2, the intensity observed at a point r is
then given by

I (r, t) = 〈|E1(r, t)|2〉 + 〈|E2(r, t)|2〉 + 〈E1 · E∗
2〉 + 〈E∗

1 · E2〉 (1.72)

= I1 + I2 + 2(A1 · A2) cos [(ω1 − ω2)t − (φ1(r) − φ2(r))] . (1.73)

We thus observe sinusoidal interference patterns in themeasured intensity, depending
on the relative phase and frequency of the two sources. Note that the strength or
contrast of the observed interference fringe

C ≡ Imax − Imin

Imax + Imin
∝ A1 · A2 (1.74)

depends on the polarization of the two sources: if they have orthogonal polarization
the (A1 · A2) term vanishes and C → 0.

1.5.1.2 Guided Modes

So far, our analysis has been focussed on light in a vacuum or homogeneous medium.
Under these conditions, the propagation of laser light is well-approximated by
Gaussian beam optics, in which the time-independent component of the electric
field is normally distributed about the beam centre,

E0(r) = EA · e−||r||2/ω2
0 . (1.75)

Throughout this thesis, as well as Gaussian beam optics in free space, we will make
use of optical fibres and waveguides to confine and direct monochromatic light and
single photons on-chip. These structures are constructed from twodifferentmaterials:
a core with refractive index n1, in which the majority of the propagating electric
field is confined, and a cladding constituting the substrate or surroundings of the
waveguide, with index n2. In this discussion we will describe the confinement and
guiding of light in an idealized 1D rectangular waveguide, as shown in Fig. 1.4.
All waveguides used in this thesis are rectangular. Further technical discussion of
waveguide geometries and material systems is given in Sect. 1.6.5.
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Core

Cladding

(a) (b) (c)

Tail

Fig. 1.4 Optical waveguides a Rectangular waveguide showing core and cladding, in a bend struc-
ture. b In the ray-optics picture, light is confined in the waveguide by total internal reflection when
n1 sin(π/2−φ) ≥ n2. c 1D refractive index profile of a rectangular waveguide, and a single spatial
mode

A working understanding of the confinement of light in an optical waveguide
can be obtained from the ray-optics picture, in which a ray of light propagates in a
straight line in the waveguide structure. At the interface between core and cladding,
the ray is completely internally reflected if and only if the angle of incidence φ is
less than the critical angle θc, which can be derived from Snell’s law

n1 sin θi = n2 sin θc; θc = arcsin
n2

n1
. (1.76)

If this condition is not satisfied, the ray is no longer confined in the waveguide and
radiates into the cladding, where it is lost. Note that when the waveguide is curved
or has a rough interface between core and cladding, there is a greater chance that the
ray will meet the interface at an obtuse angle and be lost. Hence in order to achieve
low-loss waveguides, we should engineer smooth interfaces and gentle curves. From
this intuitive picture we can also see that a greater refractive-index contrast

�n = n2
1 − n2

2

2n2
1

(1.77)

between core and cladding leads to a larger critical angle, allowing tighter bends and
thus smaller, more compact structures.

Given a specific device geometry, the Helmholtz Eq.1.68 is only satisfied only
for a discrete subset of spatial distributions E0, referred to as waveguide modes.
Owing to the complexity and breadth of possible device geometries, the form of these
modesmust in general be calculated using numericalmode solvers (FIMMWave [41],
Phoenix [42] etc.), but for a simple one-dimensional model we can find an analytic
solution.

Consider for example the refractive index profile shown in Fig. 1.4 for awaveguide
of width 2a

n = n1 |x | < a (1.78)

n = n2 |x | ≥ a. (1.79)
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Taking electric field propagation to be in the transverse electric (T E) mode, which
for a particular choice of coordinate system is equivalent to saying that Ey is the
only nonzero component of E0, (1.68) becomes

∂Ey

∂x2
= γ2Ey |x | < a; ∂Ey

∂x2
= −κ2Ey |x | ≥ a (1.80)

in the core and cladding respectively, where γ2 and κ2 are real parameters which
dependonbothon the structure andmaterial of thewaveguides, andon thewavelength
of incident light. These equations have solutions of the form

Ey = G1eγx x ≤ −a (1.81)

Ey = G2eiκx G3e−iκx − a < x < a (1.82)

Ey = G4e−γx x ≥ a (1.83)

where Gi are constants which depend on the waveguide parameters and the optical
wavelength. This captures an important property of optical waveguides which is
not described by the ray-optics model: Fig. 1.4b suggests that under total internal
reflection the optical field is always fully confined within the core and does not
impinge on the cladding, whereas in practise this is not the case. We see from (1.81)
and (1.83) that outside the waveguide core the electromagnetic field is not zero,
instead falling off exponentially with distance. This is the evanescent field of the
waveguide mode, which permits two waveguides to be coupled together without
bringing the cores into contact. This is discussed in further detail in Sect. 2.2.2.

We have already seen (1.73) that the contrast of optical interference is reduced
when the two sources have differing polarization. By a similar argument, in order
to see high-contrast interference between light sources in guided modes, we should
engineer the waveguide, through control of the geometry, size, and refractive index,
so as to support only a single guided mode—a single solution of (1.68)—for a
target wavelength λ. These are known as single-mode (as opposed to multimode)
waveguides, and are used throughout this thesis.

1.5.2 Light as a Photon

Before examining the quantum-mechanical description of light, it will helpful to
revise the properties of the classical and quantum harmonic oscillators. In a classical
simple harmonic oscillator (SHO), such as a spring or pendulumwith spring constant
k, the force acting on a particle is proportional to its displacement, F = −kx . The
dynamics are described by the classical SHO Hamiltonian

http://dx.doi.org/10.1007/978-3-319-21518-1_2
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K E =
∫

F · v dt = 1

2
mv2 = p2

2m
; P E =

∫
k · x dx = 1

2
kx2 = mω2

2
(1.84)

H = K E + P E = p2

2m
+ mω2x2

2
(1.85)

where ω = √
k/m = 2π f is the angular frequency. From the Hamilton equations

ṗ = −∂H
∂x , ẋ = +∂H

∂ p , we arrive at the SHO equation of motion

d2x

dt2
= −ω2x (1.86)

In close analogy with the general solution of Maxwell’s equations (1.67), a general
solution to (1.86) is α(t) = α(0)e−iωt , an unphysical (complex) ansatz. Just as E,
B are related to the real and imaginary parts of αk for the electromagnetic field,
the complex components of α(t) are mapped by convention to the position and
momentum of the SHO, respectively:

x(t) =
√

�

2mω

[
α + α∗] ∝ Re [α(t)] ; p(t) = i

√
�mω

2

[
α∗ − α

] ∝ I m [α(t)] (1.87)

α(t) = 1√
2�

[√
mωx(t) + i√

mω
p(t)

]
. (1.88)

Hence α can be thought of as providing a compact phase-space representation of the
state of the SHO, (x, p). Here we have assumed that α(t) is dimensionless, allowing
us to rescale by �, a constant with units of action. The SHO Hamiltonian (1.85) can
then be re-written in terms of α(t) as

H = �ω

2

[
α∗(t)α(t) + α(t)α∗(t)

]
. (1.89)

We now turn to the quantum harmonic oscillator (QHO). The state of a quantum
particle is represented by a state vector |ψ(x)〉 in Hilbert space, and the position and
momentum observables become non-commuting Hermitian operators acting on this
space

x̂ = x; p̂ = −i�
∂

∂x
(1.90)

with
[
x̂, p̂

] = i� (see Sect. 1.3.4). As with the SHO (1.85), the QHO Hamiltonian
is then given by

Ĥ = p̂2

2m
+ mω2 x̂2

2
(1.91)
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and |ψ〉 satisfies the time-independent Schrödinger equation, Ĥ |ψ〉 = E |ψ〉. The
QHO has an analogous solution to that of the SHO (1.85), where α,α† are replaced
by their quantized counterparts

â =
√

mω

2�

(
x̂ + i

mω
p̂

)
; â† =

√
mω

2�

(
x̂ − i

mω
p̂

)
(1.92)

leading to

x̂ =
√

�

2mω

(
â + â†

)
; p̂ = i

√
�mω

2

(
â† − â

)
. (1.93)

The operators â† and â are known as the creation and annihilation operators for the
QHO, respectively. â, â† are not real observables, and are therefore not Hermitian.
In contrast with the classical case, however, they do not commute, with

[
â, â†

] = 1.
They are jointly named the ladder operators, since their actiononan energy eigenstate
is to raise or lower the energy by a single quantum �ω,

â†|n〉 = √
n + 1|n + 1〉; â|n〉 = √

n|n − 1〉; â|0〉 = 0. (1.94)

We can also define the number operator N̂ ≡ â†â, which “counts” the number of
quanta in an energy eigenstate, N̂ |n〉 = n|n〉.

Using (1.93) together with the commutation relation ââ† = â†â + 1, the QHO
Hamiltonian (1.91) can be re-written as

Ĥ = �ω

2

(
â†â + ââ†

)
= �ω

(
â†â + 1

2

)
, (1.95)

which has eigenstates |n〉 of energy En = �ω
(
n + 1

2

)
, n ∈ {Z : n ≥ 0}. Note that

the energy of the QHO ground state |0〉 is not zero, E0 = 1
2�ω > 0.

We now proceed to quantization of the electromagnetic field. We first note the
similarity between the Hamiltonian of the linear electromagnetic field in a mode k
(1.71) in terms of an ansatz αk(t), and the QHO Hamiltonian (1.95) in terms of the
annihilation operator â. Similarly, there is a corresponence between the position and
momentum operators x̂, p̂ and the electric and magnetic fields, E, B. This allows
us to take an analogous approach to the SHO, replacing αk and α∗

k by the ladder

operators â†
k, âk acting on a mode k, and choosing a dispersion relation ω = ck:

H E M F
k = �ck

2

(
α∗

kαk + αkα∗
k
) ; Ĥ Q H O = �ω

2

(
â†â + 1

2

)
(1.96)

→ Ĥk = �ω

(
â†

kâk + 1

2

)
(1.97)



1.5 Light 31

Now, the state of the electromagnetic field is represented by a vector |ψ〉 in Hilbert
space H , and â†

k, âk are ladder operators acting on H which create or destroy a
photon of energy �ω, respectively:

â†
k|n〉k = √

n + 1|n + 1〉k; âk|n〉k = √
n|n − 1〉k; âk|0〉k = 0. (1.98)

The eigenstates |n〉k of the quantized electromagnetic Hamiltonian (1.97) are called
the number or Fock states,4 and form an orthonormal basis forH . A mode k in Fock
state |n〉k is interpreted as literally containing 〈n|â†

kâk|n〉 = n photons, n ∈ Z. Note
that a mode containing zero photons still has nonzero energy, E0 = �ω/2: this is the
vacuum energy of the electromagnetic field. Any Fock state can be written in terms
of the vacuum state |0〉k,

|n〉k = 1√
n! (â

†
k)n|0〉k. (1.99)

and a general superposition state in mode k can be written in the Fock basis

|ψ〉k =
N∑

n=0

bn|n〉k. (1.100)

To summarize, we have seen that quantization of the electromagnetic field in a sin-
gle mode k leads to solutions which are strongly analogous to the energy eigenstates
of the quantum harmonic oscillator, corresponding to the Fock states |n〉 of n pho-
tons, each with energy �ω. All of the experiments described in this thesis, together
with most quantum photonic technologies, depend on the use of many photons in
many modes, In the next section we outline basic notation and methods used to deal
with such states, as well as some associated physical phenomena.

1.5.2.1 Photons in Modes

Our discussion so far has been limited to the creation and annihilation of photons
in a single spatial mode k. The experimental work presented in this thesis, however,
deals with 2 ≤ p ≤ 6 photons in 2 ≤ m ≤ 21modes, andmakes use of both time and
polarization degrees of freedom. In order to provide a more complete framework,
we map (â†

k, âk) → (â†
j , â j ) where j indexes any allowed field mode of the system,

including modes in time, space, frequency and polarization. We will principally be
concernedwith photonswhich are indistinguishable in the sense that any two photons
can be swapped in any experimental degree of freedom without changing the state

4After V.A. Fock, whose name is also given to the Hartree-Fock method described in Sect. 5.3.2.

http://dx.doi.org/10.1007/978-3-319-21518-1_5
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of the overall system. Indistinguishable bosons in modes i , j obey the canonical
commutation relations

[
âi , â†

j

]
= δi j 1;

[
âi , â j

]
=
[
â†

i , â†
j

]
= 0, (1.101)

which capture many important properties of the photonic ladder operators, and will
be useful throughout this discussion.

The Hilbert spaceH p
m for the state of p indistinguishable photons in m modes is

generated by the tensor product (see Sect. 1.3.1), and we write the eigenstates of an
arbitrary number of photons p =∑ j n j occupying m modes in Fock notation as

|n〉1 ⊗ |n〉2 . . . |n〉m = |n1, n2, . . . nm〉 =
⎡

⎣
m∏

j=1

1√
n j !
(

â†
j

)n j

⎤

⎦ |0〉 (1.102)

where |0〉 ≡ |0〉0 ⊗ |0〉1 . . . |0〉n = |00 . . . 0〉 is the m-mode vacuum. These states
form an orthonormal basis for the Hilbert spaceH p

m of p photons in m modes, and
an arbitrary pure superposition state can therefore be written as

|ψ〉 =
d∑

i

bi |n1,i , n2,i . . . nm,i 〉 =
⎡

⎣
d∑

i

bi

m∏

j=1

1√
ni j !

(
â†

j

)ni j

⎤

⎦ |0〉 , (1.103)

where d is the Hilbert space dimension and
∑

i |bi |2 = 1. Many experiments in
quantumoptics dealwith a large number ofmodes and a fixed number of photons. The
Hilbert spacedimensiond ofH p

m corresponds to the number of unique configurations
of p indistinguishable photons in m modes, given by the binomial coefficient

d =
(

m + p − 1

p

)
; D =

(
m

p

)
, (1.104)

where D < d is the dimension of the collision-free subspace inwhich no two photons
occupy the same mode.

1.5.2.2 The Coherent State

The coherent state |α〉 is the state of the quantized electromagnetic field whose
dynamics most resemble a classical harmonic oscillator. It provides a good approx-
imation to the state generated by a continuous-wave laser—an essentially classical
state of light. It will be important to contrast the behaviour of the coherent state
against that of Fock states, in order to motivate the use of single-photon sources
throughout this thesis. Here we follow Glauber [43].
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The coherent state is defined as an eigenstate of the annihilation operator â with
eigenvalue α,

â|α〉 = α|α〉. (1.105)

Expressing |α〉 in the Fock basis (1.100), |α〉 =∑∞
n=0 bn|n〉, we can re-write (1.105)

∞∑

n=1

bn
√

n|n − 1〉 = α

∞∑

n=0

bn|n〉 (1.106)

and by re-indexing the left hand side,

∞∑

n=0

bn+1
√

n + 1|n〉 = α

∞∑

n=0

bn|n〉 → bn+1 = α√
n + 1

bn for n ≥ 0.

(1.107)
This recursive expression provides the superposition coefficients bn = αn√

n!b0. Since
the state must be normalized 〈α|α〉 = 1, we have 1/|b0|2 = e|α|2 . Choosing the
phase of b0 so as to make it real, we arrive at a Fock-basis form for the coherent
state,

|α〉 = e− |α|2
2

∞∑

n=0

αn

√
n! |n〉 = eαâ†−α∗â |0〉. (1.108)

The coherent state |α〉 has average photon number 〈n〉 = |α|2, but in contrast with
the Fock state |n〉 there is a nonzero probability of detecting more than n photons
simultaneously. In general, the probability P(n) of detecting photon number n from
|α〉 has a Poissonian distribution:

P(n) = |〈n|α〉|2 = e−|α|2 |α|2n

n! . (1.109)

The normalized second-order correlation function for photons generated in a sin-
gle spatial mode at times t = 0, t + τ

g(2)(τ ) = 〈â†
0 â†

τ âτ â0〉
〈â†

0 â0〉〈â†
τ âτ 〉

; g(2)(0) = 〈(â†)2â2〉
〈â†â〉2 = var(n) − 〈n〉

〈n〉2 + 1, (1.110)

characterises the relationship between the mean and variance of the photon num-
ber distribution, and is similar but not equivalent to the classical cross-correlation
function (6.2). For the coherent state,

g(2)(0) = 〈(â†)2â2〉
〈â†â〉2 = 〈α|α∗ N̂α|α〉

〈α|α∗α|α〉 = |α|4
|α|4 = 1 (1.111)

http://dx.doi.org/10.1007/978-3-319-21518-1_6
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However, for a Fock state |n〉, g(2)(0) is less than unity

g(2)(0) = 〈(â†)2â2〉
〈â†â〉2 = 〈n|(N̂ − 1)N̂ |n〉

〈n|N̂ |n〉2 = 1 − 1

n
≤ 1. (1.112)

For a given light source, if g(2)(0) < 1 then the photon-number distribution P(n)

has a smaller variance than the equivalent Poisson distribution, and the source is
said to be sub-Poissonian and nonclassical. This effect is referred to as photon
antibunching, in the sense that it is unlikely or impossible for many photons to
arrive simultaneously at the detector. For incoherent (chaotic) light the opposite is
true, and the twofold detection probability is instead enhanced with respect to that of
statistically independent particles, giving g(2) > 1. This is theHanbury-Brown-Twiss
[44] effect, and is referred to as bunching, since photons appear to clump together
upon arrival.

1.5.2.3 Time Evolution of Photons

General methods for time evolution of quantum states are discussed in Sect. 1.3.3. In
this thesis, time evolution is almost always due to a linear-optical circuit—a static,
discrete network of waveguides and/or bulk optical elements, which takes an input
state |ψ〉in to an output state |ψ〉out. A lossless, time-independent circuit can always
be completely described by unitary matrix Û which maps between the input and
output modes of the device, labelled ai and b j respectively.

Starting from a general pure input state in the form of (1.103), we can study
time-evolution in the Heisenberg picture, writing

|ψ〉out = Û |ψ〉in = Û

⎡

⎢⎣
∑

i

bi

m∏

j=1

(
â†

a j

)ni j

√
ni j !

⎤

⎥⎦ Û†Û |0〉 =
⎡

⎢⎣
∑

i

bi

m∏

j=1

(
Û â†

a j Û
†
)ni j

√
ni j !

⎤

⎥⎦ |0〉

(1.113)

where we have used the fact that Û |0〉 = eiφ|0〉 → |0〉 (optical circuits described
by unitary operators do not create or destroy photons, and the global phase is unob-
servable) and ÛÛ † = Û †Û = 1. Now, the output-mode creation operators can be
written in terms of the input fields

â†
b j

= Û â†
b j

Û †. (1.114)

The time-evolution of general multiphoton states can thus be computed based on
a model of the single-particle statistics, Û . Since single-photon solutions of the
Heisenberg equation have identical solutions to the classical field, this allows us to
model general multiphoton behaviour starting from a classical understanding of the
system. The unitary Û , which completely and uniquely characterizes the circuit, can
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Fig. 1.5 a A bulk-optical beamsplitter is modelled as having two single-mode input ports a1, a2
and two output ports b1, b2. If bright light is injected into input port a1, a fraction r of the total
light intensity will be reflected into output port b2, while t = 1 − r is transmitted to b1. b In a
Hong-Ou-Mandel interference experiment, two indistinguishable photons are sent into ports a1, a2
of a BS. There are four possible outcomes of the experiment: both photons can be transmitted,
both reflected, one transmitted and one reflected, and vice-versa. c When the photons are perfectly
indistinguishable, the first two measurement outcomes destructively interfere and the probability
of coincidental detection at b1, b2 vanishes. By tuning the distinguishability of the photons, we can
map out the Hong-Ou-Mandel dip in the coincidence rate. Experimental data is used here only for
illustration purposes, and is shown complete with error bars and accidental coincidence count-rates
in Fig. 2.10

always be represented as an m × m matrix, where in general m is much smaller than
the Hilbert space dimension ofH p

m .
Note that although these calculations can be performed based on a classical

starting-point, that is not to say that all of the resulting multiphoton behaviour can be
explained by a classical model, as we will see in the next section. Furthermore, there
is strong evidence to suggest that not all states and probabilities generated by (1.113)
can be efficiently calculated on a classical computer—in many cases the number of
terms in the expansion is exponentially large in p. See Sects. 1.5.3.2 and 6.3.2 for
further discussion of this point.

It will often be convenient to re-write (1.114) for the input field operators in terms
of the output fields and a unitarymatrix�, which is analogous to the classical transfer
matrix

â†
ai

=
m∑

j

�i j â†
b j

; �†� = 1. (1.115)

1.5.2.4 The Beamsplitter

The beamsplitter (BS), shown schematically in Fig. 1.5a, is a basic component of
optical circuits. The most common design of a bulk-optical BS consists of two tri-
angular prisms of BK-7 borosilicate glass, glued together with the resin of a fir tree5

so as to form a cube with a plane interface across the main diagonal. Half-silvered

5The Canada balsam fir, Abies balsamea.

http://dx.doi.org/10.1007/978-3-319-21518-1_2
http://dx.doi.org/10.1007/978-3-319-21518-1_6
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mirrors, microscope slides, and integrated optics (Sect. 1.6), amongst others, can all
be used to construct effective beamsplitters. A light beam incident at 45◦ to the inter-
face is split into two orthogonal output modes, with a fraction r = Ir/I of the input
intensity reflected at 90◦ to the incident beam, and t = It/I = 1−r transmitted. The
BS is thus completely characterized by the reflectivity r and transmissivity t , also
referred to as the coupling ratio η = t . A 50:50 BS is designed to have r = t = 1

2 .
If a classical light field is injected into one of the two input modes a1, a2, the

effect of the BS is to split the complex amplitude α of the input field across the two
output modes, conserving energy and momentum, as

αb1 = αa1

√
t + iαa2

√
r , αb2 = iαa1

√
r + αa2

√
t, (1.116)

→ αa1 = αb1

√
t − iαb2

√
r , αa2 = −iαb1

√
r + αb2

√
t . (1.117)

Here the factor i arises on reflection, and is necessary for energy to be conserved.
The details of this kōan of experimental optics, “the photon picks up a phase on
reflection”, are not often discussed, and the effect is less obvious than it might seem.
Certainly, we could build an optical element, resembling a beamsplitter, whose effect
is characterised exactly by a Hadamard matrix—in which case it is not always the
case that the photon picks up a phase on reflection. Full analysis, given for example
in [45], is outside the scope of this thesis. The relations (1.117) lead directly to the
quantum beamsplitter transformation for ladder operators in the Heisenberg picture

â†
a1

BS−→ â†
b1

√
t + i â†

b2

√
r , â†

a2
BS−→ i â†

b1

√
r + â†

b2

√
t . (1.118)

The beamsplitter has an associated unitary operator ÛBS as well as a �-matrix,

�BS(r) =
[ √

t i
√

r
i
√

r
√

t

]
(1.119)

allowing (1.118) to be re-written as

[
â†

a1

â†
a2

]
=
[ √

t i
√

r
i
√

r
√

t

][
â†

b1
â†

b2

]
=
[

â†
b1

√
t + i â†

b2

√
r

i â†
b1

√
r + â†

b2

√
t

]
. (1.120)

Let’s compare the behaviour of single photons incident on a 50:50 BS with that
of the coherent state. If we inject a single photon into mode a1, the system evolves
as

â†
a1 |0〉 BS−→ ÛBSâ†

a1Û
†
BS|0〉 = 1√

2
(â†

b1
+ i â†

b2
)|0〉 = 1√

2

(|1b10b2〉 + i |0b11b2〉
)
.

(1.121)
Note that the photon is only ever detected in one or other of the output ports, never
both at the same time (〈ψ|11〉 = 0). This is the effect of photon antibunching (1.112)
whichwas first experimentally confirmed in 1986 byGrangier et al. [46], constituting
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arguably the first strong evidence for fully particle-like behaviour of the photon. It is
interesting to note thatwhenwritten in theFockbasis, (1.121) is locally equivalent to a
Bell state (1.38). See Ref. [47] for further discussion of entanglement and nonlocality
of a single photon.

If we instead inject a single coherent state |α〉a1 at input port a1, the output state is

ÛBS|α〉a1 = exp

[
(αâ†

b1
− α∗âb1) + i(αâ†

b2
+ α∗âb2)√

2

]
|0〉 = i√

2
|α〉b1 ⊗ |α〉b2

(1.122)
which does have nonzero |11〉 terms (〈ψ|11〉 �= 0), allowing two photons to be
coincidentally detected at both output ports and leading to g(2)(0) > 1 (1.111).

Although the single photon and the coherent state are distinguished by correlated
detection statistics (i.e. antibunching), in non-correlated measurements they give
essentially identical measurement outcomes. For example, the probability that a
single detector will fire at either output port of a beamsplitter is the same for both a
single- photon source and a coherent state |α = 1〉,

P(nb1 ≥ 1) = P(nb2 ≥ 1) = 1

2
. (1.123)

1.5.3 Quantum Interference

To see a stronger distinction between quantum and classical behaviour of photons,
we now consider a situation in which multiple light sources are used, rather than
one. Dirac famously addressed experiments of this type, arguing that since interfer-
ence between different sources would seem to involve the creation or destruction of
photons, violating conservation of energy, it should not occur:

Each photon then interferes only with itself. Interference between two different photons
never occurs.

P.A.M. Dirac, The Principles of Quantum Mechanics [3]

We will now show that this intuition, which is supported by our everyday experi-
ence of the behaviour of light, does not always hold. Specifically, we will see that two
indistinguishable photons launched into different ports of a 50:50 BS interfere with
one another, precluding simultaneous detection of photons at two output ports—an
effect which has no classical analogue.

Quantum interference, as this effect is known, is thus the basic mechanism that
we will use to allow one photon to “talk” to another. It is used throughout this thesis
to implement entangling gate operations on path-encoded photonic qubits, and is
essential for linear-optical quantum computing (discussed in Sect. 1.6.2) as well as
the “boson computer” (Sect. 6.3.2). In Sect. 6.3, we observe generalized quantum
interference between up to 5 photons in 21 spatial modes.

http://dx.doi.org/10.1007/978-3-319-21518-1_6
http://dx.doi.org/10.1007/978-3-319-21518-1_6
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1.5.3.1 Two-Photon Interference

Consider the situation shown in Fig. 1.5b, in which two single photons are sent into
the input ports of a 50:50 BS (a1, a2 respectively). We assume that the photons
are indistinguishable in all degrees of freedom apart from path, having the same
polarization,wavelength etc., For classical particles, this experiment has four possible
outcomes: both particles can be transmitted, both reflected, one transmitted and one
reflected, and vice versa. Since there are no interference effects for classical particles,
the detection probability at output ports (i, j) is simply given by the product of the
corresponding single-particle probabilities, P(i ∩ j) = P(i j) = P(i) · P( j),

P(2b10b2 ) = P(b1b1) = P(b1) · P(b1) = 1

2
· 1
2

= 1

4
; P(0b12b2 ) = P(b2b2) = 1

4
(1.124)

P(1b11b2 ) = P(b1b2 ∪ b2b1) = P(b1b2) + P(b2b1) = 1

4
+ 1

4
= 1

2
. (1.125)

For photons, the output state of the BS is given by

|1a11a2〉 = â†
a1 â†

a2 |0〉 BS−→ 1

2

(
â†

b1
+ i â†

b2

) (
i â†

b1
+ â†

b2

)
|0〉 (1.126)

= i

2

(
(â†

b1
)2 − â†

b1
â†

b2
+ â†

b2
â†

b1
+ (â†

b2
)2
)

|0〉. (1.127)

Using the canonical commutation relations (1.101) this becomes

|ψ〉out = 1

2

(
(â†

b1
)2 + (â†

b2
)2
)

|0〉 = 1√
2

(|2b10b2〉 + |0b12b2〉
)
, (1.128)

where we have ignored the global phase i (which cannot be measured). We then have

P(2b10b2) = |〈2b10b2 |ψ〉|2 = 1

2
; P(0b12b2) = 1

2
; P(1b11b2) = 0. (1.129)

Thus the probability that two photons are simultaneously detected at different out-
put ports, the probability of coincidental detection, vanishes, This is in strong con-
trast with the behaviour of classical particles (1.125), and can only be explained by
interference between the two sources. This is the famous Hong-Ou-Mandel (HOM)
interference effect, also known as two-photon quantum interference, first proposed
and experimentally demonstrated in 1987 by Hong et al. [48].

Note that the state (1.128) is not separable—it cannot be written as a product state
of the two systems as (1.35), and is therefore entangled. This a NOON state, which
can be used to achieve quantum-enhanced precision in measurements, as discussed
in Sect. 1.4.3.
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For distinguishable photons, the situation is comparable to that of classical par-
ticles. To see this, let each mode ai now be associated with two modes (ai , a′

i ),
which are distinguishable (orthogonal) in, for instance, polarization or time. Now,
the system evolves as

|1a10a′
1
0a21a′

2
〉 = â†

a1 â†
a′
2
|0〉 BS−→ i

2

(
â†

b1
â†

b′
1
+ â†

b1
â†

b′
2
− â†

b2
â†

b′
1
+ â†

b2
â†

b′
2

)
|0〉.

(1.130)

Since the two photons can in principle be distinguished by this extra degree of
freedom, the creation operators no longer commute â†

b1
â†

b′
2

�= â†
b2

â†
b′
1
and the output

state is then

|ψ〉out = i

2

(
|1b11b′

1
0b20b′

2
〉 + |1b10b′

1
0b21b′

2
〉 − |0b11b′

1
1b20b′

2
〉 + |0b10b′

1
1b21b′

2
〉
)
.

(1.131)
Then, tracing over the orthogonal modes, we recover classical particle statistics
(1.125), with nonzero probability of coincidental detection at separate output ports:

P(2b10b2) = |〈1b11b′
2
|ψ〉|2 = 1

4
; P(0b12b2) = 1

4
; (1.132)

P(1b11b2) = |〈1b11b′
2
|ψ〉|2 + |〈1b′

1
1b2 |ψ〉|2 = 1

2
. (1.133)

In experimental demonstrations of quantum interference, the average coincidence
count-rate c(1b11b2) = C · P(1b11b2) is very oftenmeasured as a continuous function
of the distinguishability of the photon pair, where C is the total count-rate across
all detection patterns. By controlling the arrival time (as in [48] and in this thesis)
or polarization of one photon with respect to the other, a so-called HOM dip in
coincidences can be mapped out. Figure1.5c shows a HOM dip measured using an
integrated beamsplitter (Sect. 2.2.2), in which the pair distinguishability is tuned by
delaying the arrival time of one photon with respect to the other, on the order of the
coherence time of the photon (picoseconds).When the delay is much greater than the
coherence time, the photons are fully distinguishable and P(1b11b2) = 1/2, while
for zero delay, the photons are maximally indistinguishable and P(1b11b2) → 0. The
shape of the dip depends on various properties of the photons themselves, including
their coherence time and spectral properties. An experimental example is given in
Sect. 2.4.

In practice, various experimental imperfections including but not limited to uncon-
trolled polarization rotations, spectral correlation, imperfect matching of spatial
modes at the beamsplitter, and timing errors mean that real photon pairs are never
truly indistinguishable, and P(1b11b2) does not go exactly to zero. See Sect. 2.3.1 for
further discussion. The visibility of two-photon quantum interference is defined as

V = Cc − Cq

Cc
, (1.134)

http://dx.doi.org/10.1007/978-3-319-21518-1_2
http://dx.doi.org/10.1007/978-3-319-21518-1_2
http://dx.doi.org/10.1007/978-3-319-21518-1_1
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where Cc, Cq are average coincidence count-rates c(1b11b2) for the case of distin-
guishable (classical) and indistinguishable (quantum) input pairs, respectively. The
visibility gives a useful metric of the utility of photons generated by a given source,
and will be used throughout this thesis. When the only source of experimental imper-
fection is photon pair distinguishability, the visibility can be found from the density
matrices of the two photons in a similar way to the purity (1.34), V ∝ T r(ρ̂1ρ̂2).

For practical purposes, it would save a lot of time andmoney ifwe could reproduce
the Hong-Ou-Mandel dip using attenuated laser pulses rather than expensive single-
photon sources. Taking, for example, a coherent state with α = √

0.1,

|α = √
0.1〉 = √

0.90|0〉 + √
0.09|1〉 + √

0.002|2〉 . . . (1.135)

any single-photon detection event is very likely to have originated from the |1〉 term.
Naïvely, a coherent state thus appears to somehow approximate the single-photon
Fock state. However, a difficulty arises in the use of many such sources—since
detection is necessarily probabilistic, we cannot synchronise effective single-photon
generation across all sources. In otherwords,we cannot be sure thatn single-detection
events corresponded to the generation of n photons in n modes, leading to temporal
distinguishability and thus limited visibility of quantum interference.

Rarity et al. [49], showed that two classical beams |α〉a1 , |α〉a2 , incident on a BS
with randomly varying phase, will produce a dip in coincidences as a function of
temporal delay with visibility

V = 2
〈Ia1〉/〈Ia2〉

(〈Ia1〉/〈Ia2〉 + 1)2
, (1.136)

where Ia1 , Ia2 are the intensities of the two input beams. For 〈Ia1〉 = 〈Ia2〉, V = 1/2.
Hence no coherent state (indeed, no classical state of light) will produce a Hong-Ou-
Mandel dip with visibility > 1/2.

As a result, in order to see multiphoton quantum interference—which is a pre-
requisite for many photonic quantum technologies—we need alternative photon
sources, with improved synchronicity. Ideally, we would have access to a “push-
button” deterministic source of single-photon Fock states, however such devices do
not currently exist. The experimental implementation of single-photon sources (SPS)
providing a good approximation to this ultimate goal are discussed in Sect. 1.6.3.

1.5.3.2 Calculating States and Probabilities in Linear Optics

Throughout this thesiswewill dealwith circuits constructed frommany linear-optical
components (beamsplitters and phase-shifters) acting on a fixed, small number of
photons in as many as 21 path or polarization modes. We will now outline a general
method bywhich detection probabilities and output state vectors can be calculated for
arbitrary numbers of photons, both distinguishable and indistinguishable, in generic
linear-optical networks. Here we largely follow the detailed analysis of Scheel [50].
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Recall that any pure superposition state can be written in the many-mode Fock
basis (1.103). The input and output states for a p-photon, m-mode experiment

|ψ〉in =
d∑

i=1

gi |na
1, na

2 . . . na
m〉i ; |ψ〉out =

d∑

i=1

hi |nb
1, nb

2 . . . nb
m〉i (1.137)

are completely characterized by the complex probability amplitudes gi , hi , respec-
tively. As before, modes a and b label the input and output ports of the circuit,
although our notation has changed slightly. The states |na

1, na
2 . . . na

m〉i correspond to
the i th unique permutation of n photons in m modes, and together form a basis for
the Hilbert space H p

m .
In Fock notation, we count the number of photons in each mode. Equivalently,

for each photon j we can write the index z j of the mode it occupies: For example,
for two photons in three modes:

|n1 = 2, n2 = 0, n3 = 0〉 = |z1 = 1, z2 = 1〉
|n1 = 1, n2 = 1, n3 = 0〉 = |z1 = 1, z2 = 2〉

. . .

|n1 = 0, n2 = 0, n3 = 2〉 = |z1 = 3, z2 = 3〉.

Note that the second representation can be significantly more efficient for small
numbers of photons in large circuits.

Let’s consider the evolution of Fock states in an arbitrary two-mode circuit
described by the matrix

� =
[

s11 s12
s21 s22

]
. (1.138)

A single photon injected into input port a1 evolves as

� â†
a1 |0〉 =

(
s11â†

b1
+ s12â†

b2

)
|0〉 = s11|1b

10
b
2〉 + s12|0b

11
b
2〉. (1.139)

Since no photons are injected into mode a2, the second row of � has no effect, and
the output probability amplitudes are simply h1 = s11, h2 = s12. When two photons
injected into modes a1 and a2 respectively, both columns and rows of the matrix are
significant:

�â†
a1 â†

a2 |0〉 = 1√
2

s11s21|2b
10

b
2〉 + 1√

2
s12s22|0b

12
b
2〉 + (s11s22 + s12s21)|1b

21
b
2〉.

(1.140)
For s11 = s22 = √

t , s12 = s21 = i
√

r we obtain the two-photon output state of a
general beamsplitter, and for r = 1

2 we recover the HOM dip (1.128). For the input
state |1112〉, the output probability amplitudes hi therefore depend on � as
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h1 = 1√
2

s11s21; h2 = s11s22 + s12s21; h3 = 1√
2

s12s22.

We can re-write these relations as

h1 = 1

2
√
2
per

[
s11 s11
s21 s21

]
; h2 = per

[
s11 s12
s21 s22

]
; h1 = 1

2
√
2
per

[
s12 s12
s22 s22

]
,

(1.141)

where per(M) is the permanent of a matrix. The permanent of an n × n matrix M is
defined in much the same way as the determinant det(M), but without the alternating
sign:

det(M) =
∑

σ∈Sn

sgn(σi )

n∏

i=1

Miσi ; per(M) =
∑

σ∈Sn

n∏

i=1

Miσi , (1.142)

where σi is a single permutation in the group Sn of all possible permutations of M .
The advantage of representing hi in the form of (1.141) is this: Consider an

arbitrary m-mode linear-optical circuit described by m ×m matrices Û and�. When
a given Fock state |na

1na
2 . . . na

m〉 is sent into the circuit, the probability amplitude hi

corresponding to detection of the state |nb
1nb

2 . . . nb
mi at the output is in general given

by

hi = 〈nb
1nb

2 . . . nb
m |i Û |na

1na
2 . . . na

m〉 =
⎛

⎝
m∏

j=1

na
j !
⎞

⎠
− 1

2 ( m∏

k=1

nb
k !
)− 1

2

per
(
�[za |zb]

)
,

(1.143)
where the expression �[za |zb] constructs a new matrix from the columns and rows
of �, corresponding to the chosen input (za) and output (zb) ports respectively [50].
To see how this works, consider again the example of p = 2, m = 3. If photons are
injected at ports a1 and a2, the probability amplitude corresponding to coincidental
detection at output ports b2 and b3 is proportional to the permanent of a matrix
constructed from rows (1, 2) and columns (2, 3) of �:

� =
⎡

⎣
s11 s12 s13
s21 s22 s23
s31 s32 s33

⎤

⎦→ �[za |zb] =
[

s12 s13
s22 s23

]
; hi = per

[
s12 s13
s22 s23

]
(1.144)

Note that when more than one photon occupies the same mode in the input or output
state, rows and columns of � will be repeated in �[za |zb].

Equation (1.143) computes the probability amplitude for detection of one Fock
state given another as input to the circuit. For an arbitrary superposition of input
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states (1.137), each output probability amplitude is simply given by a linear sum
over the Hilbert space

hi = 〈nb
1nb

2 . . . nb
m |Û |ψi n〉 =

d∑

j

〈na
1na

2 . . . na
m |i Û |na

1na
2 . . . na

m〉 j . (1.145)

Probabilities, corresponding to experimentally detected count rates, can then be com-
puted by the Born rule,

P Q([nb
1nb

2 . . . nb
m]i ) = |hi |2. (1.146)

By taking the absolute-square before calculating the permanent, we destroy inter-
ference between different terms in � and hence obtain detection probabilities corre-
sponding to distinguishable photons—classical statistics:

PC ([nb
1nb

2 . . . nb
m]i ) =

(
m∏

k=1

nb
k !
)−1

per
(
|�[za |zb]|2

)
. (1.147)

Note that the normalization constant is modified, since these are now distinguishable
particles.

This method provides a very convenient route to the calculation of state vec-
tors and detection probabilities in linear optics for arbitrary interferometers, and is
used throughout this thesis. Since the technique is based almost entirely around the
calculation of permanents, we canmake use of the best known generic classical algo-
rithms for per(M), rather than having to tailor our numerical methods to the physics
in question.

The relationship between bosonic statistics and the permanent was first noted by
Caianiello [51], and was mentioned in Valiant’s 1979 proof [52] that the permanent
is in general exponentially hard to compute. As such this method does not scale,
and we are currently limited to problem sizes of approximately 7 photons in ∼50
modes. The computational complexity of the permanent and associated linear optics
experiments are discussed in depth in Sect. 6.3.2 of this thesis.

1.5.4 Interferometers

Throughout this thesis we will make use of path and polarization interferometers to
manipulate and interfere quantum states of light. It will be useful to briefly examine
the components and behaviour of two specific examples: the Mach-Zehnder inter-
ferometer (MZI) and the Reck-Zeilinger scheme. In Chaps. 2–5 we use MZIs to
encode and manipulate qubits in a small-scale circuit model quantum processor, and
the Reck-Zeilinger scheme is used in Sect. 6.3.2 to implement m × m Haar-random
unitary matrices.

http://dx.doi.org/10.1007/978-3-319-21518-1_6
http://dx.doi.org/10.1007/978-3-319-21518-1_2
http://dx.doi.org/10.1007/978-3-319-21518-1_5
http://dx.doi.org/10.1007/978-3-319-21518-1_6


44 1 Introduction and Essential Physics

(a) (b)

Fig. 1.6 The Mach-Zehnder interferometer. a A light beam is divided into two paths by a beam-
splitter, and one path is phase-shifted with respect to the other by by a relative phase ϕ. The two
beams are then mixed on a second beamsplitter, giving rise to b interference fringes in the measured
intensity at detectors D1, D2

1.5.4.1 The Mach-Zehnder Interferometer

A typical bulk-optical MZI is shown in Fig. 1.6. The MZI has two input ports corre-
sponding to (a1, a2) of a 50:50 beamsplitter, which splits a beam injected into either
port into two paths. A relative phase-shift ϕ, equivalent to a path-length difference
dz = ϕλ/2π, is introduced into one arm. The two paths are then mixed at a sec-
ond 50:50 BS, the output ports of which are monitored by single-photon detectors
or photodiodes, D0 and D1. A phase shift acting, for example, on arm b2 of the
interferometer transforms â†

b2
→ eiϕâ†

b2
and can be written as a unitary matrix

ÛPH(ϕ) =
[
1 0
0 eiϕ

]
= e−iϕ/2

[
eiϕ/2 0
0 e−iϕ/2

]
→
[

eiϕ/2 0
0 e−iϕ/2

]
, (1.148)

where we have chosen to ignore the global phase −ϕ/2 as it cannot be measured in
the two-mode system considered here. We can then write the matrix corresponding
to the entire MZI,

ÛMZI(ϕ) = ÛBS2ÛPH(ϕ)ÛBS1 (1.149)

= 1√
2

[
1 i
i 1

] [
eiϕ/2 0
0 e−iϕ/2

]
1√
2

[
1 i
i 1

]
= i

[
sin(ϕ/2) cos(ϕ/2)
cos(ϕ/2) − sin(ϕ/2)

]
,

(1.150)

where the global phase i can again be neglected. If light is injected into port a1 of
the MZI, the intensity at (D1, D2) therefore depends on the phase ϕ as

ID1 = I0 sin
2(ϕ/2); ID2 = I1 cos

2(ϕ/2). (1.151)

These are the interference fringes as shown in Fig. 1.6b.
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Note that ÛMZI strongly resembles a variable-reflectivity beamsplitter (1.119)
ÛBS(r). In fact, by applying phase shifts before and after the MZI the circuit can be
made identical to a beamsplitter with arbitrary reflectivity r :

ÛBS =
[√

t i
√

r
i
√

r
√

t

]
=
[
sin(ϕ/2) i cos(ϕ/2)

i cos(ϕ/2) sin(ϕ/2)

]
= −i

[
1 0
0 i

]
ÛMZI(ϕ)

[
1 0
0 i

]
,

(1.152)
where ϕ = 2 cos−1(

√
r). The MZI structure therefore allows us to convert a passive

device with fixed beamsplitter reflectivities into a reconfigurable device by adding
controlled phase-shifts. Experimentally it is often considerably easier to dynami-
cally control a phase shift than a beamsplitter reflectivity, and this technique is used
extensively throughout this thesis.

We can further extend this result to show that an MZI with external phase shifts
can implement any unitary operator in the group SU (2), i.e. any lossless two-mode
operation. To see this, note that ÛMZI with external phaseshifts (1.152) is identical
to rotation by an angle θ = ϕ + π about the x-axis of the Bloch sphere (Fig. 1.2),

R̂x (θ) = eiθσ̂x /2 = −i

[
1 0
0 i

]
ÛMZI(ϕ)

[
1 0
0 i

]
, (1.153)

and that a phase shifter (1.148) corresponds to a rotation about the z-axis, ÛPH(ϕ) =
R̂z(ϕ) = eiϕσz/2. A simple geometric argument leads to the observation that these
two rotations are sufficient to take any point on the Bloch sphere to any other point,
including a global phase—that is, to map any pure state to any other pure state of a
two-level system. Any unitary operator in SU (2) can therefore be realised using an
MZI with phaseshifters at the input and output:

Û = R̂zγ R̂xβ R̂zα = eiγσ̂z eiβσ̂x eiασ̂z = ÛPH(γ′)ÛMZI(β
′)ÛPH(α′), (1.154)

where α, β, γ are real numbers—the Euler angles [53]. A single photon in an MZI
thus provides a convenient encoding for the two level system of a qubit—this is
discussed in further detail in Sect. 1.6.1.1.

Note that the interferometer is sensitive to phase shifts on the order of the wave-
length dz ∼ λ. This sensitivity allows the MZI to be used for extremely precise
interferometric measurements of distance, refractive index, and other optical prop-
erties of interest. However, this sensitivity is a double-edged sword—in order to
construct a stable MZI we must ensure that the relative positions of the beamsplitters
and mirrors are static to within a small fraction of the optical wavelength, i.e. ∼nm.
In a bulk optical setup, this is extremely difficult to achieve due to thermal expan-
sion/contraction and acoustic vibration of the apparatus. Although intrinsically stable
bulk optical interferometers can be built, for instance using beam displacers [54] or
a Sagnac architecture [55], these schemes introduce further complexity and are not
scalable. As a result, many experiments in quantum optics use polarization encoding
in free-space, which is intrinsically stable—as only a single spatial mode is used.
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With the recent advent of integrated quantum photonics (IQP) it has become
possible to build complex, multi-mode interferometers on-chip. By embedding the
interferometer in a monolithic substrate, stable path-interferometry can be scaled to
devices with thousands of optical modes, while simultaneously being miniaturized
by a factor of a million [56] with respect to equivalent bulk-optical apparatus. Path-
encoding then becomes a very natural choice, particularly since on-chip polarization-
encoding is currently problematic. This topic is discussed in detail in Sect. 1.6.5.

1.5.4.2 Linear-Optical Implementation of Any Unitary Operator

As we have already seen, an MZI surrounded by two phase-shifters can implement
an arbitrary unitary operation on two modes (Û ∈ SU (2)). How does this generalize
to circuits with more than two modes? What is the class of operations that we can
implement on m modes, using only linear-optical elements?

As shown by Reck and Zeilinger [57], any m ×m unitary operator Û corresponds
to a linear-optical circuit on m modes, constructed from beamsplitters and phase-
shifters only. That is, any Û has a decomposition as a product

Û = ÛT · ÛT −1 . . . Û1, (1.155)

where each ÛT acts nontrivially on at most two modes and does not affect the
remaining m-2 modes. A simple proof has been given by Aaronson and Arkhipov
[58].We have already seen that each two-mode ÛT can always be implemented using
an MZI with a total of three phase shifters. Given a target unitary Û , the task is then
to perform the decomposition (1.155). In fact, this decomposition is equivalent to a
standard technique for QR decomposition6 of amatrix usingGivens rotations—2×2
matrices corresponding to ÛT . The circuit for Û in terms of optical elements ÛT can
thus be found for any discrete Û .

In their paper, Reck and Zeilinger go on to show how this decomposition can be
implemented using a single linear optical network, which is reconfigured bymeans of
phase shifters and variable beamsplitters to implement any Û . In general, the circuit
uses O(m2) elements. In this design, the network is local in the sense that each
ÛT acts on pairs of adjacent waveguides, considerably simplifying the experimental
implementation. The general form of the circuit is shown in Fig. 1.7a. The design
lends itself to an implementation in using integrated optics, where interferometric
stability is simple to achieve. Equivalent waveguide circuits are shown in Fig. 1.7b, d.

Although the scheme is perhapsmore easily visualized in path, it should be empha-
sised that the modes m can in principle correspond to any degree of freedom of the
photon, so long as the corresponding beamsplitter and phase-shifter operations can

6This implies that numerical methods identical to the Reck-Zeilinger decomposition are provided in
almost any numerical linear-algebra package capable of QR decomposition (e.g. LAPACK). Your
home router probably knowns how to build Reck schemes.
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Mirror
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m-1
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m

Fig. 1.7 Any unitary operator Û on m optical modes can be implemented using 2 × 2 optical
elements—beamsplitters and phase-shifters. a Original figure, reproduced from [57]. Blue lines
represent phase-shifters, short black lines are beamsplitterswith arbitrary reflectivity.bStabilization
of the interferometer in a would be practically very challenging in a bulk-optical architecture.
The same circuit can instead be implemented using integrated photonics (Sect. 1.6), providing
interferometric stability and miniaturization. This circuit is implemented, without phase-shifters, in
Sect. 6.3.2 of this thesis. cBeamsplitters drawn in a,bmust have variable reflectivity. In an integrated
circuit, we replace each variable beamsplitter by an MZI, allowing the effective reflectivity of each
splitter to be controlled by a phase-shifter, leading to the circuit shown in d

be constructed. A recent example [59] uses a combination of path and polarization
modes in a bulk-optical setup.

If we can use Reck-Zeilinger to implement any unitarymatrix, does that mean that
we can build a universal gate-set for a quantumcomputer using only beamsplitters and
phase-shifters? To answer this question, it should be emphasised that Reck-Zeilinger
allows us implement an arbitrary unitary on modes, whereas ÛCNOT acts on qubits.
Using a Reck scheme we can implement any m ×m matrix dictating the dynamics of
a single photon in an m-mode circuit, i.e. acting on the single-photon Hilbert space
H 1

m . Following the method outlined in Sect. 1.5.3.2, this then generates the d × d
matrix U acting on the full Hilbert space of p photons in m modes, H p

m , which is
in general exponentially larger (d = (m+1−p

p

)
). Since this is the space onto which

our qubits are mapped, by a simple parameter-counting argument we cannot always
use Reck-Zeilinger to deterministically implement arbitrary unitary operations on
photonic qubits. In principle, we could map n qubits to the state of a single photon
in 2n modes, in which case Û = U and Reck-Zeilinger can be used to implement
universal quantum computing—but the necessary experimental resources clearly
scale exponentially in n. The latter scheme, which cannot provide an exponential
speedup over classical machines, has recently been suggested for superconducting
qubits [60].

1.5.5 Nonlinear Optics

The majority of optical effects observed in nature are linear, in the sense that the
properties of thematerial ormedium are independent of the incident light field. Under
these conditions, the wavelength of light is not changed when passing through the
medium, and a light source will never have control over the behaviour of another.

http://dx.doi.org/10.1007/978-3-319-21518-1_6
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In linear media, the dielectric perimittivity ε is a constant function of the dielectric
susceptibility of the material χe (1.60), and does not depend on the electric field

ε(E) = ε0 [1 + χe] . (1.156)

However, with the advent of light sources such as the laser, it has become possible
to engineer situations inwhich the passage of an intense light beam through an optical
medium temporarily modifies the properties of the material itself to a significant
extent. This can generate new optical fields or cause self-modulation of the incident
beam, allowing “light to control light” where that control is mediated by the optical
material.

The effect of a strong optical field incident on a nonlinearmediumcan be described
in terms of the dielectric polarization vectorP, which is introduced into the expression
for the electric flux density D in Gauss’ law (1.59) as

D(E) = εE = ε0 [1 + χe]E → D (E) = ε0E + P (E) (1.157)

where

P (E) = ε0(χ
(1)
e E + χ(2)

e E2 + χ(3)
e E3 + · · · ) (1.158)

Here χe ≡ χ
(1)
e is the standard (linear) dielectric susceptibility, while χ

(2)
e etc.

characterise the higher-order nonlinear response of the material. In most nonlinear
media the magnitude of these terms decreases rapidly with order, i.e.

χ(1)
e � χ(2)

e � χ(3)
e . . . (1.159)

and in order for χ
(2)
e to be nonzero, the material must be birefringent.

This nonlinear response allows nonlinearmaterials tomediate an effective interac-
tion between photon pairs. However, since χ

(1)
e � χ

(2)
e , any such effect is typically

very weak. As a result it is technically very difficult to use such media to entan-
gle two photons initially prepared in a separable state, for example. This difficulty,
together with a potential solution to effective photon interaction which does not
directly depend on intrinsic optical nonlinearity, is discussed further in Sect. 1.6.2.

1.6 Quantum Photonics

In order to implement any of the quantum technologies described in Sect. 1.4, we
must first choose a physical system in which to encode quantum information. As
already discussed, this system should support the preparation, controlled coher-
ent manipulation, and readout of single quanta. This leads to a challenging set of
near-incompatible requirements: In order to avoid decoherence and the unwanted
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introduction of mixture, the system must be carefully protected from interaction
with the environment, while, at the same time—in order to achieve the entangling
operations required for most quantum technologies—amenable to strong, controlled
pairwise interaction. Moreover, the experimentalist should have access to a number
of control parameters with direct influence on the system’s state.

Over the past few decades, a range of physical systems have emerged as leading
solutions to this problem. Cold atoms [61] and charged ions [62], held in a variety of
electromagnetic traps, satisfy many of the desired criteria, in particular the availabil-
ity of strong pairwise interaction. Superconducting qubits [63], based on Josephson
junctions, aswell as nitrogen vacancy (NV) centers in diamond [64] and phosphorous
impurities in silicon [65], are more immediately amenable to monolithic integration,
and have recently seen considerable industrial interest [66]. However, ions, atoms,
and spins all readily interact with both light and matter and the major limiting factor
of many of thesematter-based platforms is environment-induced decoherence.Much
of the experimental challenge therefore involves the careful isolation of the system
of interest from environmental effects, often requiring ultrahigh vacuum and/or cryo-
genic temperatures.

These difficulties lend favour to the prospect of an all-optical photonic quan-
tum computer, where qubits are encoded in the quantum state of single photons.
In general, photons interact only very weakly with their environment, and single
photons propagating in free space or optical fibre at room temperature and pres-
sure (RTP) suffer negligible decoherence. Over the past half-century, single pho-
ton sources (Sect. 1.6.3), and high-efficiency single photon detectors (Sect. 1.6.4)
have become widely available. Deterministic single-qubit operations are very easily
implemented using passive linear optics, as described in Sect. 1.5.4. Many classical
imaging and measurement techniques are optical, and photons are a natural choice
for many applications of quantum metrology. Owing to their speed, photons are
also natural candidates when quantum information must be moved over an apprecia-
ble distance, either between registers in a quantum computer, or over long-distance
communication channels [67].

High-fidelity quantum states of single photons are now routinely generated,
manipulated and measured at RTP, and many early demonstrations of quantum
effects, including superposition [68], nonlocality [15], large-scale entanglement [69],
two-qubit gates [55], QKD [70], quantum metrology [71], quantum algorithms [72–
74], ECCs [75], etc. have used single photons at near-visible wavelengths.

1.6.1 Photons as Qubits

A single photon is associated with a number of continuous variables, including posi-
tion and frequency, and in general occupies an infinite-dimensional Hilbert space.
In order to encode a photonic qubit, we must therefore restrict the dynamics to an
effective two-level system. In principle this can be achieved using a single cavity
mode, mapping logical qubit states |0〉 and |1〉 to the vacuum and single-photon
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Fock state respectively. However, this simple encoding has obvious drawbacks: for
instance, rotation of a single qubit from |0〉 to |1〉 becomes experimentally challeng-
ing, requiring a photon source.

Instead, it is experimentally much more convenient to use two modes and one
photon per qubit. Modes in frequency, time, and orbital angular momentum [76] are
routinely used to encode quantum information, however, in this thesis we will only
consider path encoding and polarization encoding.

1.6.1.1 Path Encoding

Path encoding, otherwise knownasdual-rail encoding, stores a qubit as a propagating
photon in a superposition of two optical spatial modes a0 and a1. The two logical-
basis states of the qubit, |0〉 and |1〉, correspond to states of the photon occupying each
spatial mode respectively. Mapping from qubits to the Fock-state representation,

α|0〉 + β|1〉 ≡ α|1a00a1〉 + β|0a01a1〉. (1.160)

As described in Sect. 1.5.4, deterministic, arbitrary unitary operations on two spatial
modes are easily accomplished using an MZI. Any path-encoded state can thus
be mapped to another using beamsplitters and phaseshifters. Techniques for state
preparation and measurement of path-encoded qubits are shown in Sects. 2.25 and
2.26.

Path encoding has the advantage of easily scaling to higher-dimensional qudit
encodings, where a d-level system is encoded using a single photon together with
d spatial modes. The result of Reck-Zeilinger (Sect. 1.5.4.2) allows arbitrary deter-
ministic rotations of path-encoded qudits using beamsplitters and phaseshifters only.
This possibility is discussed further in Sect. 6.3.

As long as we can engineer single-mode optics, path-encoding is relatively easy
to implement. However, when realised using bulk optics, thermal instability and
mechanical vibration of the experimental setup will give rise to uncontrolled time-
varying phase shifts in the interferometer. This has the effect of adding mixture to the
state, and is largely indistinguishable fromdecoherence.Although active stabilization
or Sagnac architectures can be used to overcome this difficulty, these techniques are
expensive and complicated and, for bulk optical setups, path-encoding has largely
been avoided in favour of polarization-encoded qubits.

More recently, IQP (Sect. 1.6.5), which provides inherent interferometric stability,
has enabled path-encoding on a large scale.

1.6.1.2 Polarization Encoding

Path-encoding suffers from the difficulty of nm path-length matching, and as such
is very challenging to implement in bulk-optics, or when communicating over long
distances. Polarization encoding, in which the logical basis states of the qubit are

http://dx.doi.org/10.1007/978-3-319-21518-1_2
http://dx.doi.org/10.1007/978-3-319-21518-1_2
http://dx.doi.org/10.1007/978-3-319-21518-1_6
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mapped to the horizontal |H〉 and vertical |V 〉 polarization states of the photon,
overcomes these problems. Since both polarizations propagate in the same spatial
mode, there is no difficulty of path-length matching. Deterministic arbitrary single-
qubit rotations on polarization-encoded qubits can easily be accomplished using a
system of birefringent quarter-wave and half-wave plates, following a decomposition
of Û which is analogous to that of the MZI. Polarization-encoding has the further
advantage that polarization-entangled states are naturally generated by spontaneous
parametric downconversion (SPDC), as described in Sect. 1.6.3.1.

Polarization encoding is not amenable to qudit encodings.Moreover, the ability to
faithfully transport andmanipulate polarization-encoded states in optical waveguides
is not currently well-developed, as described in Sect. 2.2.1.

In general, we can deterministically convert between path and polarization encod-
ings using a polarising beamsplitter (PBS), which transits and reflects horizontally
and vertically polarized light, respectively. Using a similar notation to Fig. 1.5,

ÛPBS = |Ha1〉〈Hb1 | + |Ha2〉〈Hb2 | + i |Va1〉〈Vb2 | + i |Va2〉〈Vb1 |. (1.161)

1.6.2 Linear-Optical Quantum Computing

In Sect. 1.6,we argued that photonics offers an advantage overmanyother approaches
to the implementation of quantum technologies, owing to the inherent reluctance
of photons to interact with their environment. However, this comes at a cost, in
that photons are also very reluctant to interact with one another. This presents a
serious challenge to the implementation of entangling operations required by many
quantum technologies. Direct photon-photon interaction is so weak as to never be
seen outside a particle accelerator. Although nonlinear Kerr media (Sect. 1.5.5) can
be used to mediate an effective interaction between photons, this effect is many
orders of magnitude too weak (χ(3) ≈ 1 × 1−22 m2 V−2) to be feasible. Extremely
strong optical non-linearities can be obtained when photons interact with a solid-
state atom-like system, such as a charged ion or a quantum dot, however, the current
performance of these technologies, particularly with respect to loss and coupling
strength, is far from sufficient for quantum computation [77, 78].

As a result, it may then appear that photonic quantum computing is forbidden by
strong technological constraints. In 2001, Knill, Laflamme and Milburn (KLM) set
out to formalize this reasoning, in order to show that without a strongly nonlinear
optical medium or component, scalable photonic quantum computing should be
impossible. To the surprise of many, they found [79] the converse: that full-scale,
universal quantum computation can be scalably achieved using only single-photon
sources, single photon detectors, and a linear-optical network, together with adaptive
measurement, a.k.a. feed-forward.

At the heart of the Knill, Laflamme and Milburn (KLM) quantum computer is
HOM interference, as described in Sect. 1.5.3. As has already been discussed, indis-
tinguishable bosons in linear-optical circuits exhibit highly non-classical interference

http://dx.doi.org/10.1007/978-3-319-21518-1_2
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effects, and generate correlations which cannot be classically reproduced. However,
as was shown byKok and Braunstein [80], these phenomena cannot be used to imple-
ment deterministic entangling gates on photonic qubits. For example, the 2-photon
NOON state (1.128) generated by a BS is entangled, but it is not obvious how to
convert this state to a Bell state (1.38) using linear optics alone. The first insight of
KLMwas to show that quantum interference of Fock states in a simple linear-optical
network could probabilistically implement a maximally entangling operation on two
qubits. A construction and experimental implementation of a two-qubit gate derived
from the original proposal of KLM is given in Sect. 2.2.4.

A fundamentally probabilistic gate is problematic for scalable quantum compu-
tation, as the success probability of composite circuits built from such gates will
in general fall off exponentially with circuit size. The second, extremely significant
result of KLM was to show that such probabilistic gates can be bootstrapped into a
scalable architecture, using ancillary photons together with measurement and feed-
forward. Sending extra photons into the circuit, which are not used to encode logical
qubits, detection events registered at the output can then be used to obtain classi-
cal information on the success or failure of the gate. This information is then used
to reconfigure the circuit downstream of the gate, essentially correcting for failure.
KLM showed that this feed-forward technique can be used to render linear-optical
entangling gates asymptotically deterministic, with only a polynomial resource over-
head. Specifically,KLMgive a linear-optical construction for amaximally entangling
controlled-Z (CZ) gate with success probability scaling as p2/(p+1)2 in the number
of ancilla photons p.

By removing the need for strong natural optical non-linearities, the result of KLM
significantly reduces the experimental difficulty of photonic quantum computation,
and as a result has attracted considerable experimental interest [81, 82]. However,
the resource overhead necessary for scalable operation, while polynomial, is pro-
hibitively large for real-world implementations. Fortunately, a number of recent pro-
posals [83, 84] have significantly improved on the original result. Using a one-way
model of quantum computation based on the generation and measurement of clus-
ter states, these schemes dramatically reduce the resource overhead required for
scalability, to the extent that realization of linear-optical quantum computation is
now arguably more of an engineering challenge than an open theoretical question.
A number of experimental implementations have since been reported [85–87].

1.6.3 Sources

We have already seen that the coherent state generated by a laser (Sect. 1.5.2) is not
appropriate for experiments which depend on multiphoton quantum interference.
Most photonic quantum technologies depend on light sources which do not admit
a classical description. Arguably the most technically demanding is the on-demand
single-photon source. Thiswould be a devicewhichdeterministically generates indis-
tinguishable single-photon Fock states |0〉 in a singlemode, on demand. Currently, no

http://dx.doi.org/10.1007/978-3-319-21518-1_2
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such device exists, and the development of scalable SPSs remains a very significant
challenge for the realization of quantum technologies. A scalable on-demand SPS
would have immediate applications for QKD [88], and metrology [38], and would
represent a very significant step towards tangible quantum speedup in information
processing tasks (Sect. 6.3.2).

Leading candidates for deterministic single-photon sources include artificial-atom
systems [89] such as NV centres in diamond, quantum dots, and various atomic sys-
tems. There is no fundamental limit to the probability of success of such SPSs.
However, these techniques currently do not achieve sufficient performance—in par-
ticular, with respect to out-coupling efficiency and photon indistinguishability—to
be immediately applicable to the demanding multiphoton experiments described in
this thesis.

Historically, a great many proof-of-principle demonstrations of quantum informa-
tion tasks have been accomplished using non-deterministic SPSs based on parametric
nonlinear optical processes. We will focus our discussion on these sources, which
are used throughout the experiments described in this thesis.

Non-deterministic, spontaneous photon sources do not directly provide a route to
scalable quantum technologies, as the probability of generating p indistinguishable
photons falls off exponentially with p. However, it has recently been suggested [90,
91] that by multiplexing many nondeterministic sources in parallel, together with
single-photon detection and a fast switching network, it should be possible to con-
struct an asymptotically deterministic on-demand source with polynomial resource
overhead. This provides an alternative route to a scalable single-photon source, which
is particularly amenable to monolithic integration (Sect. 1.6.5).

1.6.3.1 Spontaneous Parametric Down-Conversion

Nonlinear optics (Sect. 1.5.5), when combined with single photon detection (Sect.
1.6.4), provides a convenient and historically very successful route to approximate,
non-deterministic single-photon sources.

The result of the χ(2) nonlinearity introduced in (1.158) is to allow so-called
3-wave mixing effects. These include sum-frequency generation in which two pump
beams with frequencies (ω1, ω2) generate a new optical field with ω1 ± ω2, and
spontaneous parametric downconversion (SPDC), in which a single pump beam ω0
generates two daughter fields with frequencies ω1 and ω2. SPDC allows a light
beam to be arbitrarily down-converted to a longer wavelength, and as such has many
classical applications. In this thesis we are principally concerned with SPDC as a
source of quantum states of light—single photons.

In the quantumpicture of SPDC, a high-energy pump photon in a singlemodewith
wavevector k0 is incident on a nonlinear birefringent crystal with a χ(2) nonlinearity.
The pump photon splits into two daughter photons in modes k1, k2, referred to as
the signal and idler for historical reasons. This process must of course preserve
conservation of energy and momentum, having

http://dx.doi.org/10.1007/978-3-319-21518-1_6
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ω1 + ω2 = ω0; k1 + k2 = k0. (1.162)

Throughout this thesis we will optimize our sources to generate indistinguishable
photon pairs with ω1 = ω2.

Adding the interaction terms generated by (1.158) to the quantized Hamiltonian
of the free electromagnetic field (1.97) and summing over all modes, we can write
the SPDC Hamiltonian [92]

Ĥ =
2∑

i=0

�ωi

(
n̂i + 1

2

)
+ �g

[
â†
1 â†

2 â0 + h.c.
]
, (1.163)

where â†
1 , â†

2 are creation operators for photons in the signal and idler modes respec-
tively, â0 corresponds to annihilation of the pump photon, and g ∝ χ(2) is a coupling
constant which ensures that the conditions of (1.162) are met.

Usually the applied pump is an intense laser beam, modelled by the coherent state
|α〉 with 〈n̂1(t)〉, 〈n̂2(t)〉 � |α|2. Since the pump field is then effectively classical,
we can re-write the interacting part of Ĥ as

ĤI = iξ�

(
â†
1 â†

2 + h. c.
)

, (1.164)

where the classical properties of the pump, including the fast modulation e−iω0t ,
have been lumped together with g into ξ. Assuming that the signal and idler modes
are initially prepared in the vacuum state |0102〉, time evolution of the system is then

governed by the unitary operator Û = e−i ĤI t/�, leading to an output state

|�SPDC〉 = Û |0102〉 (1.165)

≈ eξ�t â†1 â†2 |0102〉 (1.166)

=
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j !
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â†
1

) j (
â†
2

) j |0102〉 =
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j=0

γ j | j1 j2〉 (1.167)

= |0102〉 + γ|1112〉 + γ2|2122〉 + γ3|3132〉 . . . (1.168)

where γ = tξ and we have assumed that |γ| � 1.
The importance of the SPDC state (1.168) for applications in quantum photonics

is this: when γ is small such that γ � γ2 � γ3 . . ., the state |�SPDC〉 is well-
approximated by a superposition of the vacuum and a two-photon state |1112〉:

|�SPDC〉 ≈ |0〉 + γ|1112〉. (1.169)

A single-photon detection event in the idler arm therefore heralds a single-photon
Fock state in the signal armwith high probability, and vice-versa.Moreover, by using
two detectors and counting in the coincidence basis (i.e. only registering events in
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which both signal and idler detectors clicked) we post-select on the |1112〉 term,
allowing |�SPDC〉 to be used as an approximate source of indistinguishable photon
pairs.

Most experiments in quantum optics are performed using non-number resolving
(“bucket”) detectors, which cannot distinguish between Fock states |n〉. If a coinci-
dence click is registered across the signal and idler modes, there is a small probability
|γ|4 that this event came from the |2122〉 term in (1.168), leading to partial mixture of
the effective experimental state. Increased pump power, while increasing the overall
downconversion rate, leads to a greater value of γ and an increased relative probabil-
ity of detection events due to higher-order terms. If the desired state is |1112〉, as is
the case throughout this thesis, this effect degrades the quality of the measured state.

The allowed signal and idler modes are those which meet the conditions energy
conservation and phase-matching (1.162). This depends on the experimental geom-
etry, the nonlinear material, the pump, signal and idler wavelengths, and a variety
of other experimental parameters. In type-I phase-matching, photon pairs with iden-
tical polarization are generated at diametrically opposed points on a cone centred
about the pump axis (Fig. 1.8a). The opening angle of the cone depends on the pump
wavelength and the properties of nonlinear material—in particular, the orientation
of the crystal lattice with respect to the pump beam. Photons generated by type-I
SPDC are entangled in wavelength, time, and space, but not in polarization, and we
therefore collect the state |V1V2〉. In type-II phase-matching, photons are generated
in two overlapping cones with orthogonal polarization [93] as illustrated in Fig. 1.8b.
At the points where the cones overlap, since we cannot distinguish one photon from
another nor from which cone either photon was collected, the state is entangled in
polarization across four modes (paths 1, 2 and polarizations H , V ),

|�SPDC-II〉 ∝
∞∑

n=0

γn

[
n∑

m=0

(−1)m |n − m H1, mV 1, m H2, n − mV 2〉
]

(1.170)

= |0〉 + γ|1H1, 0V 1, 0H2, 1V 2〉 − γ|0H1, 1V 1, 1H2, 0V 2〉 + h.f.
(1.171)

Pump
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Crystal Cones(a) (b) (c) (d)

Fig. 1.8 a Type-I SPDC cone structure. Downconverted photon pairs are generated at diametrically
oppposed points about the pump axis, on a cone with a typical opening angle of ∼3◦. b Type-II
cones. Entangled photon pairs lie at the intersection of the two cones (green spheres). cConservation
of energy. d Conservation of momentum: the phase-matching condition (color online)
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After post-selection on detection of one photon in each spatial mode and re-
normalization this is equivalent to

|�−〉 = 1√
2

(|H1V2〉 − |V1H2〉) , (1.172)

which is a maximally entangled Bell state (Sect. 1.3.7).
Most of the experimental work in this thesis makes use of type-I SPDC to generate

indistinguishable photon pairs, both in the CW and pulsed regimes. The exception
is Sect. 4.5, in which type-II SPDC is used to generate polarization-entangled states
in the form of (1.172).

1.6.4 Detectors

In order to read-out quantum information from a photonic system, we must almost
always use single-photondetectors.Classical detectors, sensitive only tomacroscopic
light intensity, are usually not sufficient to obtain a quantumadvantage.When a single
photon, (typically with energy �ω ≈ 10× 10−21 J) is incident on the active area of a
single-photon detector, we would like to raise a macroscopic, classically accessible
flag or signal. Ideally, this processwould be deterministic and fast, allowing detection
events to be correlated in time. Such an idealised single-photon detector, acting on a
mode k, is described in the Fock basis by the projector �d = |1k〉〈1k |, with

Tr (�d |0〉〈0|) = 0; Tr (�d |1〉〈1|) = 1. (1.173)

All practical single-photon detectors face the difficulty of amplifying the small
change in energy imparted by a single photon to the macroscopic level. As a result,
real-world single-photon detectors suffer from a number of imperfections, the most
significant of which is limited detection (quantum) efficiency. Strong amplification
also leads to electrical noise, which manifests as so-called dark counts—signals
which positively indicate single-photon detection, when no photon was incident on
the detector. Moreover, all electronic signals suffer from timing uncertainty or jit-
ter, limiting the timing resolution of the device. The amplification process is often
based on an avalanche or breakdown from an initial fragile state, leading to a finite
dead-time, during which the detector is unresponsive. Finally, the majority of exist-
ing single-photon detectors generate the same output signal for all Fock states other
than the vacuum—that is, they are not sensitive to the photon number. In Sect. 6.3.3,
we experimentally test pseudo-number resolving detectors constructed from many
non-number-resolving parts.

The detectors used throughout this thesis were Perkin-Elmer silicon avalanche
photodiodes (APDs), operating in Geiger (free-running) mode. A strong reverse bias
is applied to a silicon P-N junction, such that a single incident photon is sufficient
to raise an electron from the valence band into the conducting band, triggering an

http://dx.doi.org/10.1007/978-3-319-21518-1_4
http://dx.doi.org/10.1007/978-3-319-21518-1_6
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avalanche of electric current amplification, and leading to a voltage pulse across the
diode. This pulse is detected and conditioned by a digital microprocessor, which
ultimately outputs a clean TTL pulse for time-correlated counting. Silicon APDs
typically achieve a quantum efficiency of ∼60 % at 808nm, although this can vary
significantly between devices, and exhibit typical dark-count rates on the order of
100Hz. While the diode itself is maintained significantly below room temperature
by a Peltier cooling system, Si APDs do not require cryogenic cooling, facilitating
our experiments.

1.6.5 Integrated Quantum Photonics

Bulk optics has historically been very successful as a platform for proof-of-principle
tests of quantum physics, as well as rapid prototyping of quantum technologies.
However, this approach—in which cm-scale optical elements are bolted to a∼3m×
1.5m optical bench weighing∼1 t—is not expected to scale to experiments demand-
ing large numbers of photons or qubits. First, there is simply not enough physical
space in a typical laboratory. Secondly, as the complexity of the optical apparatus is
increased, the demand on the experimentalist in terms of alignment and stabilization
grows rapidly.

In recent years, as optical networking, energy efficiency, and parallelism have
become increasingly important for general-purpose computing, there has been
renewed interest in the all-optical transport, switching, and processing of large vol-
umes of classical information. In the course of development of these technologies,
which include optical interconnects and fast fiber-optic network switches, there has
been considerable investment in the field of integrated photonics: monolithic, minia-
turized chips which generate, guide, manipulate and measure light.

In 2008, Politi et al. reported [94] the first demonstration of an integrated quan-
tum photonic chip. The authors used established commercial fabrication techniques
to construct complex linear-optical networks of beamsplitters on a cm-scale optical
chip. These devices were shown to support high-fidelity [95] classical and quantum
interference of single photons generated by SPDC, with a reported HOM-dip visi-
bility of 1.001± 0.004%. These were the first results in what is now a broad field of
integrated quantum photonics. Other early demonstrations include on-chip quantum
metrology [96] and a compiled implementation of Shor’s factoring algorithm [74].

IQP provides a reduction in the scale of optical circuits, by at least an order of
magnitude with respect to bulk optics. Moreover, monolithic integration provides
operational advantages, one of the most significant of which is intrinsic stability of
optical phase andmode-matching. This inherent stability has since allowed a number
of demonstrations using path-encoded qubits, which in bulk optics are extremely sus-
ceptible to mechanical vibration and thermal drift. Moreover, owing to the degree of
control and precision afforded bymodern lithographic fabrication techniques, mode-
matching at integrated beamsplitters can be very well-engineered, further improving
the visibility of quantum and classical interference. These advantages in scale and
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stability immediately enabled the demonstration of quantum effects in circuits which
would be unmanageably complex in a bulk-optical setup. Peruzzo [97] reported quan-
tum walks of photon pairs in an array of 21 sites (see Sect. 6.3), as well as quantum
interference in a 4-mode coupler [98]. Since the on-chip propagation distance can
be much smaller than that of the equivalent bulk setup, integrated quantum pho-
tonic chips can also serve to reduce net photon loss, accelerating the speed at which
experiments can be performed.

The first demonstrations of IQP used a lithographically-fabricated glass (silica)-
based material system (Sect. 2.2.1). More recent demonstrations have highlighted
the potential benefits of various alternative materials and fabrication techniques.
Of particular interest is the prospect of integrated SPSs and single-photon detectors,
togetherwith classical digital electronics, potentially enabling a full quantum system-
on-a-chip. Integrated spontaneous sources have been reported in silicon [56, 99] and
lithium niobate [100]. Integration of optical waveguides with high-efficiency super-
conducting single-photon detectors was reported by Calkins et al. [101]. Increasingly
sophisticated devices [102–104] have recently been fabricated using a direct-write
technique [105], which also allows for three-dimensional waveguide structures [106,
107].

In the following section, we describe the design and implementation of a novel
quantum photonic chip, incorporating two path-encoded qubits. We then go on to
show the utility and flexibility of this chip inChaps. 3–5. This device, if constructed in
bulk, would occupy a full optical bench—clearly illustrating the significant practical
advantage already afforded by IQP.
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Chapter 2
A Reconfigurable Two-Qubit Chip

Machines take me by surprise with great frequency.
Alan Turing

2.1 Introduction

The discovery and development of universal computing machines is one of the great-
est scientific accomplishments of the 20th century. The Church-Turing thesis—that
all calculable functions can be computed by a particularly simple type ofmachine—is
generally expressed as a statement about mathematical functions, and the evaluation
of numbers. However, the influence of universal computing machines has stretched
much further than the academic mathematical context in which they were first con-
ceived, having profound effects on social, economic and artistic life.

The prospective benefits of quantum computing enjoy a similar promise of univer-
sality. Specifically, we believe [1] that a scalable machine satisfying the DiVincenzo
criteria (Sect. 1.4.1) would be universal for quantum computing, and could run any
quantum algorithm, prepare any quantum state or operator,1 and would also be uni-
versal for classical computation. This promise allows us to progress with the devel-
opment of the basic building blocks of quantum information technologies, without
complete information on the potential applications of quantum computing: although
we have a small number of specific examples of quantum algorithms which provide
an exponential speedup over classical machines, it is reasonable to think that, as with
classical computation, the scope of useful applications will ultimately prove to be
much broader.

The results of KLM (Sect. 1.6.2), together with more recent developments in
cluster-state theories [2–5], show that in principle LOQC can provide a scalable route

1Note that this does not imply any particular scaling: arbitrary N -qubit state preparation is expo-
nentially hard even for quantum computers. See Chap. 5 for further discussion.
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to universal quantum computation. More recently, integrated quantum photonics
(Sect. 1.6.5) has been shown to offer an experimentally scalable approach to the
construction of LOQC machines, potentially allowing millions [6] of components
to be lithographically fabricated on a single monolithic chip. Early results in the
field include the demonstration of quantum interference in passive linear optical
interferometers [7–10], as well as active devices with reconfigurable phase shifters
[11–13]. Notably, most of these reconfigurable devices used a single phase shifter,
giving the device a single classical control parameter. This was sufficient for novel
demonstrations of quantum metrology [11] and switching of entangled photonic
states [13]. However,much of the utility and interest of a universal quantum computer
arises from the fact that a single machine can be arbitrarily reconfigured to perform a
broad variety of tasks. This degree of reconfigurability requires a large (polynomial)
number of classical control parameters, and is the main focus of work described in
this section.

We describe a waveguide linear-optical circuit which can encode and manipu-
late the state of two photonic qubits using two indistinguishable photons from an
SPDC source. This device features eight voltage-controlled phase shifters, which
can be arbitrarily reconfigured to prepare any two-qubit state. The architecture of the
device includes four reconfigurable single-qubit operations, together with a passive
two-qubit entangling gate. As such, the gate operations implemented in this device
comprise a universal quantum gate set (Sect. 1.4.1).

In close analogy with classical computers, we find that the degree of reconfig-
urability afforded by this device has allowed a surprisingly rich variety of physical
phenomena and quantum information techniques to be studied, above and beyond the
original intent of the device. Indeed, Chaps. 3, 4, and 5 all make use of the two-qubit
chip described here. This work highlights the fact that nontrivial experiments can be
performed using even a very small number of qubits, in contrast with the classical
case—where the scope of worthwhile experiments using only two classical bits is
limited.

To our knowledge, this work includes the first experimental implementation of
photonic two-qubit quantum state and process tomography (where state prepara-
tion and measurement were performed on-chip), and the first photonic on-chip Bell
inequality violation.

2.2 CNOT-MZ

The CNOT-MZ is a reconfigurable quantum photonic chip, shown schematically
in Fig. 2.1b. Two qubits are encoded in path, using indistinguishable photon pairs
at 808 nm, generated by type-I SPDC. The chip uses a total of 6 waveguides, 13
directional couplers and 8 voltage-controlled thermal phaseshifters to implement the
circuit model diagram shown in Fig. 2.1a.

http://dx.doi.org/10.1007/978-3-319-21518-1_1
http://dx.doi.org/10.1007/978-3-319-21518-1_1
http://dx.doi.org/10.1007/978-3-319-21518-1_3
http://dx.doi.org/10.1007/978-3-319-21518-1_4
http://dx.doi.org/10.1007/978-3-319-21518-1_5


2.2 CNOT-MZ 65

1

2

3

4

5

6

7

8

c1

c2

c3

c4 c5

c6

c7

c8

c9

c10

c11

c12

c13

w1

w2

w3

w4

w5

w6

w1

w2

w3

w4

w5

w6

C0

C1

T0

T1

(a)

(b)

C

T

C0

C1

T0

T1

C

T

Fig. 2.1 CNOT-MZ chip. a Circuit-model diagram. Two qubits are prepared in the |00〉 state.
H ′ is a Hadamard-like gate corresponding to a directional coupler, with the same unitary matrix
representation as a beamsplitter (1.119). Rz(φ) correspond to voltage-controlled phase shifts, and
implement single-qubit rotations about the z-axis of the Bloch sphere (1.148). At the centre of the
chip is a two-qubit CNOT-P entangling gate, locally equivalent to the maximally entangling CNOT
gate. Each qubit can be effectively measured in an arbitrary basis, by combining single-photon
rotations with measurement in the z-basis. b Waveguide architecture. All DCs have coupling ratio
η = 1/2, apart from c6, c7 and c8, which are engineered to transmit a fraction η = t = 2/3 of
incident light. Two indistinguishable photons generated by type-I SPDC are coupled into the chip,
and encode two qubits in path. Waveguides w2,3 and w4,5 correspond to the |0〉 and |1〉 states of
the control and target qubit respectively. Waveguides w1 and w6 do not correspond to logical basis
states. The first stage of the chip uses two MZIs and four phaseshifters to implement arbitrary
two-qubit separable state preparation. The central section implements the CNOT-P gate. The final
section of the chip uses two MZIs, together with off-chip single-photon detection, to implement
arbitrary separable two-qubit measurements

The architecture of the chip is based around a passive postselected linear-optical
CNOT(CNOT-P) gate, which implements a maximally entangling CNOT-like oper-
ation on the two qubits. This gate is discussed in detail in Sect. 2.2.4. The control
qubit is encoded using waveguides w2 and w3, corresponding to the |0〉 and |1〉
states respectively, and the target qubit is similarly encoded across w4 and w5. Each
qubit is initially prepared in the |0〉 state, with photon pairs coupled directly from
the source into waveguides w2 and w4. Arbitrary state preparation of each qubit is
then accomplished using an MZI with two phaseshifters, as described in Sect. 2.2.5.
At the output of the CNOT-P gate, each qubit is measured in a local basis using an
MZI together with two single-photon detectors, as described in Sect. 2.2.6.

The device was fabricated by CIP technologies [14] in a silica-based material
system, described in Sect. 2.2.1. The chip die is 3mm wide and 70mm long. Full
details of the photon source, control system and supporting experimental setup are
given in Sect. 2.3.

http://dx.doi.org/10.1007/978-3-319-21518-1_1
http://dx.doi.org/10.1007/978-3-319-21518-1_1


66 2 A Reconfigurable Two-Qubit Chip

2.2.1 Silica-on-Silicon

Glass (silica) waveguides are particularly well-suited for quantum applications. In
particular, they exhibit very low propagation loss (<0.1 dB cm−1), couple well to
single-mode optical fibre (typically ∼70% coupling efficiency), and are transparent
to the band around∼800nmwhereSPDCsources and room-temperatureAPDsingle-
photon detectors are most efficient. Propagation/coupling loss and detection effi-
ciency are particularly important in multiphoton experiments, where the N -photon
detection rate typically falls off exponentially with overall loss η as 1/ηN . The main
disadvantage of this material system is the limited refractive index contrast, typi-
cally on the order of � = 0.5%. This imposes a large minimum waveguide bend
radius of ∼15 mm (see Sect. 1.5.1), leading to 200 µm-wide directional couplers on
the order of ∼6 mm in length. Recently, more compact devices have been achieved
using alternative material systems, at the cost of greater loss (see Sects. 6.3.3, 6.3.4
and 2.10).

The CNOT-MZ device was fabricated using silica-on-silicon planar lightwave
circuit technology, shown in Fig. 2.2. A 16 µm buffer layer of undoped silica was
grown on a silicon substrate, forming the lower cladding of the waveguides. A
3.5 µm layer of silica doped with germanium and boron oxides was overgrown, and
was then lithographically etched to form the square 3.5 µm × 3.5 µm waveguide
core, with a refractive index contrast between core and cladding of � = 0.5%. A
16 µm-thick upper cladding of silica, doped with phosphorous and boron to match
the lower cladding, was then overgrown. Finally, a metallic layer was deposited and
lithographically etched to form resistive heaters, electrical connections, and probe
contact pads on the top surface of the chip.

Silicon substrate

Silica lower cladding

P/Bo-doped silica cladding

P/Bo-doped silica cladding

Ti/Pt/Au contacts

Ge/Bo-doped silica core

Ti/Pt resistive heater

Au wire to PCB

Fig. 2.2 Silica-on-silicon material system and waveguide geometry. Square 2.5 µm × 2.5 µm
waveguides were fabricated in germanium/boron-doped silica, on a silicon substrate. The
waveguide cladding is a combination of undoped silica and phosphorous/boron-doped silica. Tita-
nium/platinum/gold traces connect to titanium/platinum resistive heaters, allowing a reconfigurable
voltage-controlled phase shift to be applied. Contact pads were gold-wire-bonded to a standard
PCB

http://dx.doi.org/10.1007/978-3-319-21518-1_1
http://dx.doi.org/10.1007/978-3-319-21518-1_6
http://dx.doi.org/10.1007/978-3-319-21518-1_6
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The waveguides used here have a symmetric (square) profile, which together with
the amorphous, isotropic nature of silica leads to negligible birefringence. As a result,
in principle these waveguides will support any single polarization of light. Although
on-chip polarization encoding has been demonstrated in a number of material sys-
tems [13, 15, 16], it remains challenging—in particular due to unwanted rotations
introduced by waveguide bends—and in this work we operate in vertical polarization
only.

2.2.2 Directional Coupler

Leading approaches to the implementation of two-mode beamsplitter operations in
integrated photonics include multimode interference (MMI) couplers and DCs. Here
we consider the latter, illustrated in Fig. 2.3, in which two waveguides are brought
close together so as to couple the guided modes via the evanescent field (Sect. 1.5.1).
Any DC is characterised by its coupling ratio η, corresponding to the fraction of
optical power transmitted from one waveguide to the other, which is equivalent to
the BS transmissivity (Sect. 1.5.2) and is controlled by the separation distance s and
length L of the coupling region.

Mode coupling theory [17] gives the relationship between the field amplitude
(1.66) in two coupled waveguides A, B as a system of coupled differential equations

d A(z)

dz
= −iκ B(z); d B(z)

dz
= −iκ A(z), (2.1)

Fig. 2.3 Geometry of a directional coupler. Two waveguides are adiabatically brought into close
proximity, such that the evanescent fields overlap. Light periodically couples from one waveguide
to the other as a function of the propagation distance L and the coupling constant κ , which depends
in part on the spatial separation s and refractive index n

http://dx.doi.org/10.1007/978-3-319-21518-1_1
http://dx.doi.org/10.1007/978-3-319-21518-1_1
http://dx.doi.org/10.1007/978-3-319-21518-1_1
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where κ is a coupling constant which depends on the spatial overlap of the two guided
modes. This leads to solutions of the form

A(z) = A0 cos(κz) − B0i sin(κz); B(z) = B0 cos(κz) − A0i sin(κz), (2.2)

where A0, B0 are the initial field amplitudes at the input ports. As a result, in the
coupling region of the DC, optical power oscillates sinusoidally between the two
waveguides as a function of the interaction length L . By tuning this length, the DC
can be designed to implement an arbitrary BS operation (1.119)

[
A(L)

B(L)

]
=

[
cos(κL) −i sin(κL)

−i sin(κL) cos(κL)

] [
A0
B0

]
= �DC(κ, L)

[
A0
B0

]
=

[ √
t i

√
r

i
√

r
√

t

]
.

(2.3)

In order to obtain a 50:50 DC with t = r = 1
2 , we must therefore have L = π/4κ ,

which for the silica-on-siliconmaterial systemusedhere,with s = 3µm,corresponds
to an interaction length of ∼4 mm.

The quality of fabrication of directional couplers is critical to the performance of
the reconfigurable two-qubit chip (CONTZ-MZ) and other linear-optical quantum
circuits described in this thesis. Deviation from the designed coupling ratio leads to
unitary errors in qubit state preparation andmeasurement, and reduces the contrast of
classical interference. Moreover, errors in both coupling ratio and imperfect mode-
matching at the interaction region of the coupler lead to reduced visibility of HOM
interference, and thus contribute to the observed sub-unit quantum state/process
fidelities reported in Sects. 2.6 and 2.7 of this thesis.

2.2.3 Thermal Phaseshifter

The general-purpose flexibility of the CNOT-MZ is achieved through the inclusion of
eight reconfigurable phase shifters, as shown inFig. 2.1. In silica-on-silicon, reconfig-
urable phase shifts aremost easily implemented using the thermo-optic effect. Here, a
metallic (titanium/platinum) resistive heater of length L is lithographically patterned
on the top surface of the upper waveguide cladding, directly above the waveguide
core, as shown in Fig. 2.2. This heater is connected via Ti/Pt/Au electrodes to a current
source, allowing the temperature of a local region of the waveguide to be precisely
controlled via Ohmic heating. This gives rise to a to a change in the refractive index
of the local core and cladding, with dn/dT ∼ 10−5/K, increasing the effective path
length and leading to a phase shift ϕ with respect to the unperturbed waveguide.

The maximum temperature difference supported by the silica-on-silicon material
system is ∼30 ◦C, and in order to achieve a range in phase of 2π the resistive heater
must therefore have a length on the order of 4 mm. The heaters are rated for a
maximum voltage of 5 V, however in order to achieve a full 2π phaseshift in all
MZIs we had to exceed this limit, running most phaseshifters between 0 and 7V,

http://dx.doi.org/10.1007/978-3-319-21518-1_1
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leading to a total of∼1Wper heater atmaximumvoltage. I-V curves for each resistive
heater on the CNOT-MZ are shown in Fig. 2.8d, showing a typical resistance of R
∼ 60	. Further details of phaseshifter calibration are given in Sect. 2.3.3.

The main drawback of thermal phase shifting is switching speed: in the silica-
on-silicon platform used here, heating/cooling of a phaseshifter for a differential
phaseshift of π takes at least ∼100 ms (Fig. 2.8c, inset). This limits the scope of
applications—for instance, active feed-forward is not possible using this technology.
However, in the majority of experiments described in this thesis, the time taken to
acquire a sufficient number of single-photon detection events, corresponding to a
single measurement of an expectation value, is typically at least 1 s, and in practice
therewas not any need to switch phases faster than 1Hz. Alternativematerial systems
for integrated quantum photonics support an electro-optic effect, where phase can
switched electrically up to GHz frequencies. See [13] for an example in lithium
niobate.

2.2.4 Linear-Optical CNOT-P Gate

It was shown by Lloyd [18] that almost any two-qubit entangling gate is universal for
quantum computing, and by DiVincenzo that a universal gate set can always be con-
structed from a two-qubit entangling gate together with single-qubit rotations [19].
We have seen in Sect. 1.5.4 that deterministic, arbitrary single-qubit rotations are very
easily constructed using linear optics. However, since photons do not interact, the
greatest challenge (and the greatest accomplishment of KLM), is to find a scalable
two-qubit entangling gate. All scalable approaches to linear optical quantum comput-
ing (LOQC), including KLM and more recent cluster-state techniques (Sects. 1.6.2
and 1.4.1), depend on active feed-forward. At the time of writing, although fast
switching, low propagation loss, high refractive-index contrast, integrated GHz logic
and single-photon detectors, etc. have all been demonstrated in separate photonic
devices, no existing technology or material system satisfies all necessary conditions
for a full demonstration of scalable LOQC with active feed-forward. Certainly, the
thermal phase-shifters previously described are too slow for such applications.

In 2002, two groups [20, 21] proposed a scheme bywhich a two-qubit maximally-
entangling gate can be implemented using linear-optics and postselection, without
any need for feed-forward. It has already been stated (Sect. 1.6.2) that LOQS is
not scalable without feed-forward, and indeed this gate does not scale—successful
operation of the gate is postselected with probability 1/9, leading to exponentially
decreasing success probability for composite circuits. However, the scheme is exper-
imentally much more accessible, and an experimental demonstration was almost
immediately reported by a number of groups [22–25]. An important property of the
design of this postselected gate is that it possesses many of the same experimental
prerequisites—indistinguishable photons, high visibility classical and quantum inter-
ference, stable interferometers—as the scalable CZ gate of KLM, and experimental
implementations of the former thus constitute real progress towards the latter.

http://dx.doi.org/10.1007/978-3-319-21518-1_1
http://dx.doi.org/10.1007/978-3-319-21518-1_1
http://dx.doi.org/10.1007/978-3-319-21518-1_1
http://dx.doi.org/10.1007/978-3-319-21518-1_1
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We will now sketch the basic mechanism of the postselected two-qubit gate,
starting from an implementation of the CZ gate. CZ is a maximally entangling gate,
which flips the sign of the target qubit when both input qubits are in the state |1〉:

|0C0T 〉in → |0C0T 〉out, |0C1T 〉in → |0C1T 〉out,
|1C0T 〉in → |1C0T 〉out, |1C1T 〉in → −|1C1T 〉out, (2.4)

and is therefore described by a unitary operator

ÛCZ =

⎡

⎢⎢⎣

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1

⎤

⎥⎥⎦ . (2.5)

In order to see how this gate can be implemented in linear optics, it will be instruc-
tive to first consider the circuit shown in Fig. 2.4a. If two photons are injected into
modes C0 and T0, encoding the logical input state |0C0T 〉in, the resulting evolution
is trivial

|0C0T 〉in = â†
C0

â†
T0

|0〉 → (i â†
C′
0
)(i â†

T′
0
)|0〉 = −|1C′

0
0C′

1
1T′

0
1T′

1
〉 = −|0C0T 〉out,

(2.6)
where the phase i arises from reflection at the mirrors. Similarly, for input states
|0C1T 〉in and |1C0T 〉in the two photons never meet, and the system evolves as

C

T

C

T

C0

T1

C1

T0
1/2

1/3

1/3

1/3

1/2

C0

T1

C1

T0
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T

C0

T0

C1

T1

C

T

C0

T0

C1

T1

1/3

(a) (b)

'

'

'

'

CZCNOT-P

Dump

Dump

Fig. 2.4 CNOT-P gate construction. a Postselected linear-optical CZ gate, without dump modes.
Control and target qubits are encoded in path, using indistinguishable single photon pairs. Postse-
lecting on detection events in the two-qubit subspace, quantum interference at the 1/3-reflectivity
beamsplitter gives rise to a relative phase shift of−1 for the |11〉 input state. Note that as shown, the
effective gate operation after postselection is not unitary. b Waveguide implementation of a linear-
optical CNOP-T gate. 1/3-reflectivity DCs in the central region of the device implement a CZ gate,
where the top and bottom couplers “dump” probability amplitude, avoiding the non-unitarity of the
device shown in (a). By adding two 1/2-reflectivity DCs to the target qubit, the CZ gate is converted
to a CNOT-like gate, acting on the logical basis. This gate forms the basis for the CNOT-MZ circuit,
Fig. 2.1
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|0C1T 〉in = â†
C0

â†
T1

|0〉 → (i â†
C′
0
)(i

√
r â†

T′
1
+ √

t â†
C′
1
)|0〉

= −
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1
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1
〉 + √
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1
〉
)
, (2.7)

|1C0T 〉in = â†
C1

â†
T0

|0〉 → (i
√

r â†
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1
+ √

t â†
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1
)(i â†
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= −
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1
〉 + √
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0
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, (2.8)

where further phases i arise from reflection at the BS. Now, the Fock states
|1C′

0
1C′

1
0T′

0
0T′

1
〉 and |0C′

0
0C′

1
1T′

0
1T′

1
〉 have both photons occupying the same qubit,

and do not have a representation in the two-qubit encoding. We must therefore post-
select on the two-qubit subspace, resulting in the effective evolution

|0C1T 〉in → −√
r |0C1T 〉out; |1C0T 〉in → −√

r |1C0T 〉out. (2.9)

When the input state is |1C1T 〉in, the two photons meet at the beamsplitter and
undergo quantum interference as described in Sect. 1.5.3. The system then evolves
as

|1C1T 〉in = â†
C1

â†
T1

|0〉 →
(

i
√

r â†
C1

+ √
t â†

T1

) (
i
√

r â†
T1

+ √
t â†

C1

)
|0〉, (2.10)

|ψ〉out =
(
(t − r)â†

C1
â†
T1

+ i
√

r
√

t â†
C1

â†
C1

+ i
√

t
√

r â†
T1

â†
T1

)
|0〉, (2.11)

where we have used the relation
[
â†
C1

, â†
T1

] = 0, since the two photons are indistin-
guishable. Postselecting on the C1T1 term, which is the only component correspond-
ing to a two-qubit state, we find

|1C1T 〉in → (t − r)|1C1T 〉out (2.12)

Setting r = 1 − t = 1/3, we arrive at

|0C0T 〉in → −|0C0T 〉out, |0C1T 〉in → −1√
3
|0C1T 〉out,

|1C0T 〉in → −1√
3
|1C0T 〉out, |1C1T 〉in → 1

3
|1C1T 〉out. (2.13)

Neglecting the global phase of−1, we have then accomplished the essential function
of the CZ gate: a conditional phaseshift by −1 of the |1C1T 〉 term only. However,
this postselected operation does not correspond to a unitary operator on the qubit
subspace, and is clearly biased towards the |0C0T 〉 state. To overcome this issue, we
simply replace the mirrors shown in Fig. 2.4a with 1/3-reflectivity beamsplitters. It
is easy to see that this has the effect of multiplying the amplitudes of the |0C0T 〉,
|0C1T 〉 and |1C0T 〉 terms by factors of 1/3, 1/

√
3 and 1/

√
3 respectively, balancing

the gate, and restoring unitarity. The circuit then exactly reproduces the behaviour of
the CZ gate, conditional on detection of one photon in C0 or C1 and one photon T0

http://dx.doi.org/10.1007/978-3-319-21518-1_1
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or T1. By the Born rule, this occurs with probability 1/9. It has been shown that this
success probability is optimal for linear-optical two-qubit gates of this type [26]. A
waveguide implementation is shown in the center of Fig. 2.4b.

The CZ gate together with local rotations is universal for quantum computing.
However, the CNOT gate, which is the quantum equivalent of a classical reversible
reversible exclusive-OR (XOR) gate, is often conceptually easier to handle than CZ.
The CNOT gate flips the state of the target qubit, conditional on the state of the
control

|0C0T 〉 → |0C0T 〉, |0C1T 〉 → |0C1T 〉, |1C0T 〉 → |1C1T 〉, |1C1T 〉 → |1C0T 〉.
(2.14)

Starting from theCZgate, this is easily constructed by the addition of two single-qubit
Hadamard operations

ÛCNOT =

⎡

⎢⎢⎣

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

⎤

⎥⎥⎦ =
(

1 ⊗ Ĥ
)

ÛCZ

(
1 ⊗ Ĥ

)
. (2.15)

Since the single-qubitHadamard gate is almost equivalent to a beamsplitter operation,
this leads to a natural construction of the linear-optical CNOT gate by the addition of
two 1/2-reflectivity beamsplitters or DCs, as shown in Fig. 2.4b. Note that this gate
does not exactly reproduce the two-qubit unitary ÛCNOT, instead implementing the
locally equivalent operation

ÛCNOT−P =
(

1 ⊗ ÛBS

)
ÛCZ

(
1 ⊗ ÛBS

)
=

⎡

⎢⎢⎣

0 i 0 0
i 0 0 0
0 0 1 0
0 0 0 −1

⎤

⎥⎥⎦ . (2.16)

As such we will refer to this postselected gate operation generated by the circuit in
Fig. 2.4b as CNOT-P, to distinguish from the canonical CNOT gate. This gate was
demonstrated in bulk optics by a number of groups [22–24, 27]. More recently, the
CNOT-P was implemented in a silica-on-silicon integrated platform [7], and formed
the basis for a linear-optical implementation of Shor’s factoring algorithm [28].

It is important to emphasize that the basicmechanism of theCNOT-P gate depends
necessarily on two-photon quantum interference, and that the gate fails if the input
photon pair is made distinguishable.

2.2.5 State Preparation

The first stage of the CNOT-MZ is used to prepare two qubits in an arbitrary separable
state. Two photons from the source are always injected into waveguides i2 and i4
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(a) (b)

Fig. 2.5 State preparation and measurement of a single path-encoded qubit in linear optics

respectively, encoding the state |00〉. Each qubit is then acted upon by an MZI with
two phaseshifters φ1, φ2 (Fig. 2.5a). We have already seen that an MZI with three
phaseshifters is adequate for arbitrary single-qubit SU (2) rotations.With the |0〉 state
as input, two phaseshifters are sufficient for arbitrary state preparation:

Ûprep(φ1, φ2)|0〉 =
[

eiφ2/2 0
0 e−iφ2/2

]
i

[
sin(φ1/2) cos(φ1/2)
cos(φ1/2) − sin(φ1/2)

] [
1
0

]

= i
(

eiφ2/2 sin(φ1/2)|0〉 + e−iφ2/2 cos(φ1/2)|1〉
)

(2.17)

→ |ψ(φ1, φ2)〉out = sin(φ1/2)|0〉 + e−iφ2 cos(φ1/2)|1〉, (2.18)

where we have neglected the phase ie−iφ2/2. Equation (2.18) thus parametrizes an
arbitrary single-qubit state, up to a global phase. Phase settings to prepare commonly-
used single-qubit states are given in the table below.

|0〉 |1〉 |+〉 |−〉 |+i〉 |−i〉
φ1 π 0 π/2 3π/2 π/2 π/2
sφ2 0 0 0 0 3π/2 π/2

2.2.6 Measurement

By a similar argument, arbitrary single-qubit projective measurements can be per-
formed using an MZI with two phaseshifters φ1, φ2, together with two singl-photon
detectors D0, D1 (Fig. 2.5b). Each detector projects onto a logical basis state

�̂D0 = |0〉〈0|; �̂D1 = |1〉〈1|; P(0|ψ) = |〈0|ψ〉|2 = Tr
[
ρ̂ �̂D0

]
= 1 − P(1|ψ).

(2.19)
Assigning eigenvalues of ±1, the effect of the two detectors together can be written
as a projective measurement M̂ with spectral decomposition

M̂ =
∑

i

λi |λi 〉〈λi | = |0〉〈0| − |1〉〈1|, (2.20)
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which is equivalent tomeasurement in the z-basis (M̂ = σ̂z). Tomeasure in a different
basis, we apply a unitary rotation Ûmeas to each qubit prior to detection using the
MZI shown in Fig. 2.5b. This evolves an input state |ψ〉in as

|ψ〉out = Ûmeas(φ1, φ2)|ψ〉in = −i

[
sin(φ2/2) cos(φ2/2)
cos(φ2/2) − sin(φ2/2)

] [
eiφ1/2 0

0 e−iφ1/2

]
|ψ〉in
(2.21)

and the overlap between the |ψ〉in and each eigenstate |λi 〉 of σ̂z becomes 〈λi |ψin〉 =
〈λi |Ûmeas|ψout〉. To find the effectivemeasurement operator M̂ ′(φ1, φ2), we therefore
propagate the projectors (2.19) backwards through the unitary

|λ′
i 〉 = Û †

meas(φ1, φ2)|λi 〉; (2.22)

M̂ ′(φ1, φ2) =
∑

i

λi |λ′
i 〉〈λ′

i | = Û †
meas(φ1, φ2) σ̂z Ûmeas(φ1, φ2). (2.23)

By a similar argument to that used in Sect. 2.2.5, Û †
meas can map |0〉 and |1〉 to any

desired eigenstate |λ〉, and M̂ ′ can therefore bemade to implement any desired single-
qubit projective measurement. Phase settings to measure in the Pauli basis are given
in the table below.

σ̂x σ̂y σ̂z

φ1 0 π/2 0
φ2 π/2 3π/2 π

2.2.7 CNOT-MZ Is Universal

The CNOT-MZ can prepare any entangled or separable pure two-qubit state, up to
a global phase. To see this, first note that by the Schmidt decomposition [29], any
pure two-qubit state can be expressed as an arbitrary superposition of two orthogonal
separable states

|�CT 〉 = α|0C0T 〉 + β|0C1T 〉 + γ |1C0T 〉 + δ|1C1T 〉 (2.24)

= √
λ |λC 〉 ⊗ |λT 〉 + √

1 − λ |λ⊥
C 〉 ⊗ |λ⊥

T 〉. (2.25)

where λ is a real nonnegative number. This immediately implies that the state has
six independent real parameters

|�CT 〉 = √
λ

(
cos θC |0〉 + eiφC sin θC |1〉

) (
cos θT |0〉 + eiφT sin θT |1〉

)
(2.26)

+ eiφr
√
1 − λ

(
e−iφC sin θC |0〉 − cos θC |1〉

) (
e−iφT sin θT |0〉 − cos θT |1〉

)
,

(2.27)
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up to a global phase. To show that this arbitrary state can be prepared by the CNOT-
MZwith |00〉 as input, wewill propagate (2.25) backwards through the circuit. By the
same argument given in Sect. 2.2.5, the MZI comprising DCs c10 and c12, together
with phaseshifters φ5 and φ7, can be configured to map the control qubit into the |0〉,
|1〉 basis

|� ′〉 =
(

Û †
meas(φ5, φ7) ⊗ 1

)
|�CT 〉 = √

λ |0〉 ⊗ |λT 〉 + eiφr
√
1 − λ |1〉 ⊗ |λ⊥

T 〉.
(2.28)

Propagating backwards through the CNOT-P gate, the target qubit is flipped condi-
tional on the control:

|� ′′〉 = Û †
CNOT−P|� ′〉 = √

λ |0〉 ⊗ |λT 〉 + eiφr
√
1 − λ |1〉 ⊗ |λT 〉. (2.29)

We then use the MZI formed by DCs c2 and c4, together with φ2 and φ4, to rotate
the target qubit:

|� ′′′〉 =
(

1 ⊗ Û †
prep(φ2, φ4)

)
|� ′′〉 =

(√
λ |0〉 + eiφr

√
1 − λ |1〉

)
⊗ |0〉, (2.30)

and finally rotate the control, using c1 and c3 together with φ1 and φ3

|�〉in =
(

Û †
prep(φ1, φ3) ⊗ 1

)
|� ′′′〉 = |00〉. (2.31)

This capability is used to the fullest extent in Chap.5 of this thesis.

2.3 Experimental Setup

The full experimental setup is shown schematically in Fig. 2.6. The input and output
ports of the CNOT-MZwere butt-coupled to two V-groove fiber arrays, each holding
six single-mode optical fibres with 250 µm pitch, to match that of the waveguides.
Using an oil-based index-matching fluid at the chip-fibre interface, a fibre-to-fibre
coupling efficiency of ∼60% was typically achieved. PMF fibre was used at the
input of the chip, so as to preserve indistinguishability of the incoming photon pair,
while SMF was employed at the output. The chip die was mounted on a standard
PCB, to which the electrodes of each resistive heater were gold-wire bonded. This
PCB provides a pinout via two standard 8-pin headers to an 8-channel DC current
source.

http://dx.doi.org/10.1007/978-3-319-21518-1_5
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Fig. 2.6 CNOT-MZ experimental setup. A Toptica iBeam 404 nm CW laser pumps a BIBO non-
linear crystal, cut and phase-matched to generate degenerate 808 nm photon pairs by type-I SPDC.
Spectral indistinguishability is optimized using tilted Semrock Maxline 3 nm notch interference
filters (IF). The pump is absorbed by a beam dump (BD). Photon pairs are coupled in and out of
the CNOT-MZ through optical fibre and V-groove fiber arrays (VG). PMF is used at the input, as
HOM interference is sensitive to the polarization of incoming photons, while SMF can be used
at the output, as the detectors are not strongly polarization-sensitive. A current source connects to
resistive heaters onboard the chip via a custom PCB. Four Si-APD single-photon detectors, together
with an FPGA, are used to count coincidences at the output of the chip

2.3.1 Photon Pair Source

The CNOT-MZ requires two indistinguishable photons as input. Arguably (see Ref.
[30]), the CNOT-P gate does not depend on entanglement from the source—certainly,
the Fock state needed to run the gate and encode the control and target qubits,
|1V 11V 2〉 = |V V 〉 will not violate a Bell inequality as-is, and is not entangled
in polarization. This state is naturally generated by postselection on coincidental
detection of two photons from the type-I SPDC state (1.168).

The two-photon source used throughout this thesis is shown in Fig. 2.6. A I404
nm CW laser (Toptica iBeam) pumps a 2 mm-thick BiBO crystal, cut and phase-
matched for type-I SPDC, with a 3◦ opening angle. Downconverted photon pairs,
both of which are vertically polarized, were filtered using 3 nm full-width half-
maximum (FWHM) notch interference filters (IFs), and then coupled into PMF using
an arrangement of prisms together with 11 mm aspheric lenses. One collection stage
was mounted on a motorized linear actuator with micron resolution, allowing the
relative arrival time—and thus the temporal distinguishability—of the photon pair
to be precisely controlled. Using Perkin-Elmer silicon APD single-photon detectors
with a quantum efficiency of ∼60%, we measured a typical single-photon count-
rate S of ∼1 × 106 Hz, and a coincidence count-rate C of ∼1 × 105 Hz, implying a
collection efficiency of C/S ≈ 10%.

Photon indistinguishability is a crucial factor for high-fidelity operation of the
CNOT-P gate. We first ensured temporal overlap of the downconverted photon pair
by matching optical path lengths of the two arms of the source to within the photon
coherence length (∼500µm) using the linear actuator, measuring two-photon HOM
interference in a fiber-coupled 50:50 BS. In order to optimize the spectral indis-
tinguishability of the photon pair, we measured spectra of down-converted photons

http://dx.doi.org/10.1007/978-3-319-21518-1_1
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(a) (b)

Fig. 2.7 The visibility of the HOM dip is a crucial factor for the performance of the CNOT-P
gate. A number of measures were taken to optimize the visibility of quantum interference between
photon pairs generated by the type-I source. a Experimental data showing the spectra of single
photons generated in the two arms of the source (red, blue respectively). (i) Spectra measured prior
to optimization of the source. By tilting interference filters placed in each beam, we ensured that
photon pairs sent to the CNOT-MZ were maximally spectrally indistinguishable. (ii) The small
peaks are due to stray light from an LCD computer monitor. b HOM visibility measured as a
function of BiBO crystal orientation, which affects the polarization and spectral distinguishability
of downconverted photon pairs (color online)

in each arm while tilting interference filters, shifting the wavelength of the trans-
mitted band (Fig. 2.7a) and leading to a measurable increase in the visibility of the
HOM dip. Finally, we scanned the orientation of the BiBO crystal which affects both
pair collection efficiency and polarization distinguishability, further optimizing the
visibility of quantum interference (Fig. 2.7b).

2.3.2 Control, Automation and Readout

Many of the experiments presented throughout this thesis depend on the ability to
perform hundreds or thousands of consecutive measurements, each with different
phase settings. As such, it was important that the experimental setup be fully auto-
mated. The eight heaters of the CNOT-MZ were driven by a National Instruments
digital-to-analog converter (DAC), providing eight computer-controlled voltages in
the range [0, 7] V. An eight-channel current amplifier was necessary to satisfy the
power draw of the heaters, a total of ∼1 W per heater at maximum voltage.

Under typical conditions, when all eight heaters are active, the chip dissipates
around ∼1 W of heat energy. An experimental difficulty is then presented by the
fact that the top surface of the chip, where the heaters and waveguides are located, is
raised to a higher temperature than the substrate, leading to thermal expansion and
distortion of the chip itself. This leads to movement of the chip facets and decoupling
of the waveguides from the V-groove arrays (VGs), as shown in Fig. 2.8c. To solve
this issue, we found that the best compromise between coupling efficiency, stability
and repeatability was achieved by pulsing current to the heaters, with a duty cycle
tmeasure/tcool ∼ 5%. Current was first supplied to the chip for 1 s, allowing the
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(a) (b) (c)

(d)

Fig. 2.8 Calibrating the CNOT-MZ. a Single-photon interference fringes, measured using heralded
single photons from the SPDC source, as a function of resistive heater control voltage. Black dots
show the experimental data, up to a maximum rated voltage of 7 V. Blue lines show a fit to the
data, whose parameters completely characterise the phase-voltage relation of each heater. b Phase-
voltage relations for each thermal phase shifter, based on fit parameters from (a). The dominant
component is quadratic, φ ∝ �T ∝ P = I V ∝ V 2. c Optical intensity measured at the output of
the CNOt-MZ, as heaters are switched on and off. The chip deforms under load, resulting in optical
decoupling of the V-groove arrays, seen as an immediate dip in intensity as the heater is switched
and held on (red line). In order to minimize the extent of decoupling we pulse current to each heater,
only measuring coincidence events while the heater is switched on (blue line). Inset zoom showing
the response time of the phaseshifter, ∼100 ms. d Superimposed I-V curves of all eight heaters.
The characteristic nonlinearity at high voltage is due to increased resistance of the heating element
at high temperatures (color online)

phaseshifter to warm up and stabilize, and was then held on for a further 1 s, while
single-photon detection events weremeasured. The current source was then switched
off, allowing the chip to cool for 15 s, after which the cycle was repeated for the next
measurement setting.

This decoupling effect was exacerbated by the fact that the fiberglass PCB
material, upon which the chip was directly mounted, is a thermal insulator. Ide-
ally, the chip would instead be mounted on a conducting heat sink, or a Peltier-
effect thermoelectric cooling system. We expect that this difficulty could be further
mitigated using standard chip packaging techniques, in which the VGs are glued
directly to the chip facets. Dispensing with the need to periodically cool the chip
would lead to an overall improvement in efficiency by a factor of ∼20. This would
facilitate experiments demanding large numbers of measurements, such as those
described in Chap.5. Aswith classical classical central processing units (CPUs), heat

http://dx.doi.org/10.1007/978-3-319-21518-1_5
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dissipation will likely remain a significant experimental consideration as the scale
and complexity of reconfigurable integrated quantum photonic chips is increased.

The coincidence-counting system was based around a Xilinx Virtex-5 FPGA.
This system was configured to count a specified subset of single detection events and
coincidences, with a fixed coincidence window of 5 ns. In all coincidence-counting
experiments there is a nonzero probability of detection of temporally distinguish-
able photons generated in separate downconversion events. These accidental coin-
cidences lead to a constant background coincidence rate (5% of the true count-rate),
reducing the apparent visibility (1.134) of quantum interference. In order to cor-
rect for this background and obtain a more accurate measure of the performance of
the device, during all single-photon measurements presented in this thesis (except
those described in Chap. 6 and Sect. 4.5), the background rate of accidental coinci-
dences for each detection pattern was constantly measured and subtracted from the
experimental data. This measurement was performed by inserting an electronic delay
 5 ns between pairs of detectors, and measuring the resulting coincidence count-
rate. SeeSect. 6.2 for further discussion of correlated single-photon counting systems.

Scripting and control of the experimental setup was performed using the Python
programming language together with a custom library, qy. More recently, access to
the CNOT-MZ has been made available to other researchers and the general public
via an open web interface. Further detail regarding scripting and remote automation
of theCNOT-MZ is given in Appendix A.

2.3.3 Calibration

Applying a voltage V to the resistive heater of a particular MZI, we obtain a phase
shift φ. In order to choose the voltage required to apply a desired phase shift at a
particular MZI, we must find and invert the phase-voltage relation φ(V ). Since the
phaseshift is proportional to the change in temperature of the waveguide material,
the phase-voltage relation is approximately quadratic

φ(V, �a) = a0 + a2V 2 + a3V 3 + h.c; a3 � a2, (2.32)

where �a are calibration parameters depending on the geometry and fabrication of the
heater and surroundingwaveguides.Here,a3 accounts for higher-order effects such as
those shown in Fig. 2.8d, and a0 is the phase in the interferometer at V = 0, i.e. when
the resistive heater is switched off. Imperfect waveguide geometry, together with
imperfections introduced during lithographic fabrication of the heaters themselves,
lead to each MZI having a small nonzero value of a0, which must be individually
calibrated. Moreover, small inconsistencies in heater fabrication lead to variance in
the values of a2 and a3, which also must be individually characterised.

This calibration procedure was accomplished using simple single photon mea-
surements. If bright light or single photons are injected into one port of an MZI, the
measured intensity at a given output port is a sinusoidal function of φ(V, �a),

http://dx.doi.org/10.1007/978-3-319-21518-1_1
http://dx.doi.org/10.1007/978-3-319-21518-1_6
http://dx.doi.org/10.1007/978-3-319-21518-1_4
http://dx.doi.org/10.1007/978-3-319-21518-1_6


80 2 A Reconfigurable Two-Qubit Chip

ID0 = I0 sin
2 (φ(V, �a)/2) ; ID1 = I0 cos

2 (φ(V, �a)/2) . (2.33)

Using single photon detectors, we measured fringes of this type for each phaseshifter
of the CNOT-MZ, as shown in Fig. 2.8. We fit curves of the form (2.33) to this data
with �a and I0 as free parameters, thus recovering the unique phase-voltage relation
of each heater (Fig. 2.8). By numerically inverting this function, we can find the
voltage required to set any desired phase in the interval [0, 2π ] to any heater on the
CNOT-MZ.

Owing to the geometry of the device, it is not always possible to directly inject
light into a single input port of a particular MZI under test. Moreover, the contrast of
the measured fringe is sometimes dependent on the (initially unknown) phase inside
another interferometer: an example of such an interdependence is seen between
phaseshifters φ2 and φ4. As a result, the full calibration procedure had to be com-
pleted in two stages. We first measured “rough” fringes with only a single resistive
heater active at any given time. Approximate information obtained from these mea-
surements was then used to take full-contrast fringes (Fig. 2.9) in a second pass, acti-
vating multiple phaseshifters at once to optimize contrast and signal-to-noise ratio.
We expect that such techniques will need to be considerably refined as the scale
and complexity of reconfigurable quantum photonic chips is increased. Progress on
automatic calibration and characterization of such devices was recently described by
Li et al. [31].

Fig. 2.9 Single-photon interference fringe, measured at the two outputs of a single MZI on the
CNOT-MZ. Experimental data are presented as black circles, solid lines show fits to the theory.
Error bars, which assume Poissonian statistics, are too small to draw (color online)



2.3 Experimental Setup 81

As shown in Sect. 1.5.1, uncontrolled polarization rotations in the waveguide, or
coupling to higher-order spatial guided modes, would give rise to reduced contrast
in these single-photon fringes, as would thermal or electric fluctuations (e.g. DAC
noise) in the phase shifter. These effects would reduce the fidelity with which single-
qubit states and measurements can be implemented, and would to all intents and
purposes resemble decoherence of the photonic qubit,2 adding unwanted mixture to
the state. High-contrast single-photon fringes are therefore a good indicator of the
quality and single-mode operation of the waveguides, and are a prerequisite for high-
fidelity quantum operations. We measured an average contrast over all eight fringes
of C̄ = 0.988 ± 0.008. From these fringes, we estimated the average experimental
accuracy in phase to be δφ ∼ 0.05 rad. We did not find any significant evidence of
thermal cross-talk between phaseshifters.

2.4 On-Chip Quantum Interference

In addition to high-fidelity classical interference, as demonstrated in Fig. 2.9, the
basic mechanism of the CNOT-P gate relies on high-fidelity quantum interference.
The sameeffects thatwouldgive rise to reduced contrast of single-photon interference
would also render photon pairs distinguishable, reducing the visibility of the HOM
dip and thus having a detrimental effect on the performance of the entangling gate.

In order to accurately assess the visibility of HOM interference supported by the
CNOT-MZ, we first set φ1 = π/2, rendering the interferometer formed by DCs
c1 and c3 (Fig. 2.1) equivalent to a 50:50 BS. Injecting single photon pairs from the
source intowaveguidesw2 andw3, wemeasured the coincidence count-rateC(�t) at
output ports w1 and w4, as a function of the linear actuator position—corresponding
to a difference �t in the relative arrival time of the photon pair. The resulting HOM
dip is shown in Fig. 2.10.

The shape of the HOM dip is given by a convolution of the wavepacket of down-
converted photons and the top-hat profile of the interference filters. It it therefore
well-approximated by a function consisting of Gaussian and sinc terms, together
with a linear term to account for decoupling of the source as the actuator is moved:

C(�t) ≈ (a1�t + a2)

[
1 − V exp

(
− (�t − a3)2

2a2
4

)
sinc (a5�t + a6)

]
(2.34)

where �a are free parameters, and V is the visibility of quantum interference (1.134).
Fitting this curve to the data shown in Fig. 2.10, we found V = 0.978 ± 0.007,
taking into account the measured rate of accidental coincidences. Here uncertainty
was estimated using a Monte-Carlo technique, assuming Poissonian statistics.

2See Sect. 1.6.1.

http://dx.doi.org/10.1007/978-3-319-21518-1_1
http://dx.doi.org/10.1007/978-3-319-21518-1_1
http://dx.doi.org/10.1007/978-3-319-21518-1_1
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Fig. 2.10 AHOMdip, measured using a singleMZI on the CNOT-MZ as a 50:50 BS, as a function
of a relative delay between photon pair arrival times, controlled using the linear actuator shown in
Fig. 2.6. Measured two-photon coincidence count-rates are shown as black dots. The red line shows
a fit to this data comprising Gaussian, sinc, and linear terms (2.34). The blue line shows a fit to the
measured rate of accidental coincidences, with Gaussian and linear components. Error bars assume
Poissonian statistics (color online)

2.5 Randomized Benchmarking

Having calibrated each phaseshifter and observed high-visibility quantum interfer-
ence in the CNOT-MZ, we then used a randomized benchmarking technique to to
characterise the operational real-world performance of the device, across the full
parameter space. We cannot expect to test every possible configuration of all eight
phase shifters. Instead, we checked performance for a large number of configura-
tions sampled uniformly at random from the full 8-dimensional parameter space of
the chip. A somewhat similar randomized approach to global characterization of
quantum gate operations has been proposed by Knill [32].

We first chose 1000 random vectors �φ j representing possible configurations of
the device

�φ j = [
φ1, j , φ2, j , ..., φ8, j

] ; 0 ≤ φi j ≤ 2π. (2.35)

Injecting indistinguishable photon pairs into waveguides w2 and w4, we encoded
the logical qubit state |00〉 at the input of the device. For each configuration �φ j , we
then measured coincidence count rates at the output, postselecting on the 2-qubit
subspace of detection patterns
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Fig. 2.11 Randomized benchmarking of the CNOT-MZ. The histogram shows the distribution
of statistical fidelity F( �P, �P ′) between measured coincidence count-rates �C ≈ C0 �P and those
predicted by an ideal theoretical model �P ′, over 995 randomly-chosen phase settings �φ j . 96 %
of phase settings produced statistics corresponding with theory to F > 0.97. The red line shows
the expected distribution for a device whose output is completely uncorrelated with the desired
behaviour, i.e. a white noise source (color online)

�C j = [
C00, j , C01, j , C10, j , C11, j

] ≈
(

∑

i

Ci j

)
�Pj . (2.36)

Using an idealized numerical model of the device, assuming unit visibility of quan-
tum interference and perfect fabrication, we then calculated the ideal probability
distribution �P ′

j for each configuration of phases. The experimental setup would ide-

ally exactly reproduce the theoretical prediction, �P ′
j = �Pj . We characterised the

discrepancy between the performance of the CNOT-MZ and theoretical predictions

using the statistical fidelity F(P, P ′) = ∑
i

√
Pi · P ′

i . The measured statistical dis-

tribution of these fidelities over 995 random configurations3 is shown in Fig. 2.11.
The average fidelity across all configurations was measured to be 0.990±0.009 with
96% of configurations producing photon statistics with F > 0.97.

This result depends on simultaneous high fidelity quantum and classical interfer-
ence, as well as accurate joint control of all eight phase controllers. Poor performance
of any of these component parts would result in lower fidelity output for some subset
of configurations. The fact that we see good fidelity over many random trials allows
us to progress to more rigorous and sophisticated tests, described in the remainder
of this chapter.

3Five measurement outcomes were deemed to be spurious due to detectable experimental error.
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2.6 Quantum State Tomography

In order to characterize states generated by the experimental apparatus, we will often
make use of simple witnesses and metrics such as Bell-CHSH, concurrence, etc.
(see, for example, Sect. 1.3.8). However, the most complete information is encoded
in the density matrix ρ̂ of the experimental state itself. We performed quantum state
tomography (QST) on a variety of states generated by the CNOT-MZ, using on-
chip MZIs to implement the requisite measurements and reconstruct ρ̂. Previous
demonstrations of quantum state tomography in integrated photonics have not used
reconfigurable on-chip components to implement the different settings required for
QST. In this analysis we largely follow James et al. [33].

Imagine that we are given a three-dimensional object with some complex shape.
We are interested in completely learning the 3-D geometry of this object. It is natural
to first take a fixed viewpoint, projecting the 3-D structure of the object in question
onto the 2-D retina of the eye. With this information in mind, we then rotate the
object, and make a second projective measurement. Again we rotate, and project,
and rotate and so on, until after some sufficient number of measurements we can
completely reconstruct the object in the abstract 3-D space of the mind’s eye. Med-
ical imaging techniques such as X-ray computed tomography (CT) and magnetic
resonance imaging (MRI) make use of this method.

An analogous task exists for quantum states. In experiments, we are often pre-
sented with a device or source which generates a quantum state ρ̂ which is partially
or entirely unknown or untrusted. Using QST [29, 33], the full density matrix can be
approximately (and in some cases exactly) reconstructed, by making an appropriate
set of projectivemeasurements on a number of copies of the state ρ̂. The origins of the
technique arguably lie with Stokes [34], who described a method to fully reconstruct
the polarization of a beam of light based on simple measurements.

QST, while closely analogous to classical tomography, is distinguished by the fact
that, for quantum systems, measurement necessarily changes the state of the object
under test. Therefore, we cannot always perform consecutive measurements τ̂i on a
single copy of a quantum state ρ̂ and expect to accurately recover the expectation
values 〈τ̂i 〉 = T r [τ̂i ρ̂]. This notion is captured in Heisenberg’s uncertainty principle
and is a direct result of the No-Cloning theorem (see Sect. 1.3.4). Since the observer
cannot clone the system without prior knowledge of ρ̂, we usually consider tomo-
graphic situations where a “black box” device repeatedly outputs ρ̂ on-demand, and
consecutive measurements are evaluated on copies of the state generated in this way.

In this discussion we will consider a system of n qubits, however the analysis
easily extends to higher-dimensional systems [35]. A general n-qubit mixed state
can be written as

ρ̂ = 1

2n

3∑

i1,i2...in=0

Si1,i2...in σ̂i1 ⊗ σ̂i2 ⊗ · · · ⊗ σ̂in (2.37)

http://dx.doi.org/10.1007/978-3-319-21518-1_1
http://dx.doi.org/10.1007/978-3-319-21518-1_1
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where σ̂i are the Pauli matrices and {Si1,i2...in } ≡ �S are the Stokes parameters,
4n real numbers which together completely and uniquely characterise ρ̂. Complete
knowledge of �S amounts to complete knowledge of the physical state of the system.
Normalization imposes the condition that S0,0...0 = 1, leaving 4n −1 real parameters
to be estimated.

The set of n-qubit measurement operators {τ̂i } used for QST is referred to as the
quorum. A remarkable property of QST is that regardless of the degree of entan-
glement of ρ̂, there is no need to measure in entangled bases. Although entangled
measurements have advantages for certain tomographic applications [36], experi-
mentally it is often dramatically more convenient to measure in a separable basis.
4n − 1 local measurement operators of the form τ̂i = τ̂i1 ⊗ τ̂i2 ⊗ · · · ⊗ τ̂in therefore
suffice for the reconstruction of any ρ̂, where τ̂i j is a 2 × 2 single-qubit measure-
ment operator on the j th qubit. When examining a classical 3D object, if we always
observe the object from one angle, changing only our distance from the sample, we
will not obtain full information of its shape. Similarly, for complete reconstruction of
an unknown ρ̂ each measurement in the quorum must be linearly independent from
all others, i.e. a given τ̂i cannot be written as a linear sum over the remaining {τ̂i ′ �=i}.

Experimentally, we measure the expectation values

�T ≡ {Ti }; Ti =
∑

j

λi j ci j

Ci
Tr

(
ρ̂ |λi j 〉〈λi j |

) ≈ 〈τ̂i 〉 = Tr
[
ρ̂τ̂i

]
(2.38)

over the quorum {τ̂i }. where {|λi j 〉, λi j} are the eigenstates and eigenvalues of the
experimental measurement measurement operator τ̃i j ≈ τ̂i j , ci j is the count-rate
corresponding to detection of |λi j 〉, and Ci = ∑

j ci j is the total number of detection

events for a particular measurement setting. Having obtained �T , the experimental
densitymatrix is typically reconstructed using one of two standard approaches: linear
or maximum-likelihood reconstruction.

2.6.1 Linear Reconstruction

Consider the choice of quorum

τ̂i = σ̂i1 ⊗ σ̂i2 ⊗ · · · ⊗ σ̂in , (2.39)

where σi are the usual Pauli matrices. It is easy to see from (2.37) that for this
quorum, under ideal experimental conditions, �T = �S—inwhich case ρ̂ can be simply
reconstructed by evaluation of the sum in (2.37). The simplicity of this reconstruction
motivates (2.39) as the quorum of choice in many experimental implementations
of QST. However, it is not necessary to choose (2.39) and there are sometimes
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experimental reasons4 to make a different choice. In particular it is not necessary for
the eigenstates of τ̂i to be orthogonal. In order to accommodate more general quora
in this analysis, we can write the system of simultaneous equations relating �T and �S
as �T = Q �S where Q is a change-of-basis matrix with entries

Qi, j = 1

2n
Tr

[
τ̂i σ̂ j

]
. (2.40)

This allows �T—the experimental data—to be converted to �S by linear inversion of Q,
which is guaranteed to be possible because τ̂i and σ̂ j are both linearly independent.
Once this is done, reconstruction of ρ̂ is a simple matter of evaluating (2.37).

2.6.2 Maximum Likelihood Quantum State Tomography

Linear reconstruction as described above is attractive because of its simplicity. How-
ever in real experiments, finite statistics, errors in the implementation of τ̂ [37], and
detection errors, for example dark counts (Sect. 1.6.4), all give rise to imperfection
and noise in �T , resulting in a discrepancy between the true state of the system ρ̂ and
the reconstructed image ρ̂r . Importantly, linear reconstruction can yield instances of
ρ̂r which are not physical, i.e. where one or more of the conditions that ρ̂r should be
trace-one, positive-semidefinite, and Hermitian (see Sect. 1.3.6) are not met.

When ρ̂r is not physical, we cannot confidently apply standard measures to esti-
mate its properties—for example by computing the quantumstate fidelitywith respect
to an ideal state. As a result, maximum-likelihood quantum state tomography [33]
was developed to guarantee physicality in reconstructed density matrices. This is
accomplished by use of numerical optimization to maximize, over the space of all
physical density matrices, a likelihood function describing the probability that a par-
ticular ρ̂r gave rise to the experimental data. The parametrization of this space can
be achieved using the following form, which is positive-semidefinite Hermitian and
normalized by construction:

ρ̂p
(�t) = ĝ(�t)ĝ(�t)†

Tr
[
ĝ(�t)ĝ(�t)†] . (2.41)

where �t is a vector of 4n real parameters and ĝ is a 2n × 2n complex matrix.5

Rather than maximising the likelihood, we can instead minimize the least-squares
cost function

4See for example Ref. [37], where this problem is addressed for polarization-encoded qubits.
5There are many ways to parametrize ĝ in terms of �t . The only condition is that ρ̂p(�t) spans the
entire Hilbert space. See [33] for one example.

http://dx.doi.org/10.1007/978-3-319-21518-1_1
http://dx.doi.org/10.1007/978-3-319-21518-1_1
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�
(�t) =

∑

i

(
Tr

[
ρ̂p

(�t) τ̂i
] − Ti

)2

2Tr
[
ρ̂p

(�t) τ̂i
] , (2.42)

with respect to �t . This minimization thus yields a description of the state, ρ̂p(�tmax),
most likely to have generated the experimental data.

In (2.42) it is sufficient to iterate over a minimal set of 4n − 1 projective mea-
surements. Although this is experimentally the least costly option, it can be advan-
tageous to include an over-complete quorum. Depending on the particulars of the
experiment, we can use an arbitrary number of measurement outcomes, over and
above the minimal set, without any modification of (2.42). This has the advantage
of improved resilience to measurement error and spurious measurement outcomes,
with the result that ρ̂r gives a better approximation to the true state of the system ρ̂

(see [37]).
The numerical optimization task of finding themaximum-likelihood state is unsur-

prisingly computationally demanding, working as it must over 4n − 1 parameters.
This is compounded by the problem of estimating error bars on quantities computed
from the reconstructed state, which—due to the nonlinear, algorithmic nature of
the reconstruction process—is typically achieved through a Monte-Carlo approach,
requiring on the order of 100 repeated trials of the optimization process. For single-
qubit states this can be achieved in an acceptable time using high-level interfaces
to general-purpose Nelder-Mead simplex algorithms such as fminsearch in Mat-
lab and scipy.optimize.fmin in Python. However, for larger systems these
functions become unacceptably slow.

It turns out that maximum-likelihood estimation can instead be written as a semi-
definite programme, a particular class of optimization problems dealing with lin-
ear functions of positive semidefinite Hermitian matrices: i.e. density operators. By
exploiting this knowledge along with the fact that the function (2.42) is convex—it
has at most one minimum point—we can solve the optimization problem in much
less time with respect to general-purpose methods.

It should be emphasised that although general-purpose QST can bemade tractable
for small systems (on the order of tens of qubits) [38], it is intrinsically exponentially
hard to learn or even represent an unknown n-qubit state. When we come to build
large-scale quantum computers with thousands or millions of physical qubits, it will
not be possible to learn the full state of the system at any point. Various methods
have been developed in order to mitigate this problem, many of which make use of
prior knowledge or reasonable assumptions on the state to make the representation
and tomography efficient. Significant examples include QST by compressed sensing
[39], which provides a logarithmic speedupwith respect to full QST by assuming that
the state is relatively pure and therefore sparse in some basis, andmatrix product state
methods [40], which also provide a logarithmic speedup by assuming that the state
is constructed by means of a particular sequence of entangling operations between
small numbers of adjacent qubits. However, it remains to be seen how well these
techniques perform when applied to the diagnosis of imperfection in a real quantum
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computer, and scalable validation and verification of quantum states remains a topic
of considerable interest and urgency. See Sect. 6.3.5 for a discussion of these topics
outside the qubit encoding.

2.6.3 On-Chip Quantum State Tomography

Throughout this thesis, we make use of QST to characterize the quality of states
generated by the CNOT-MZ. As a first demonstration, we prepared and measured
each of the four canonical Bell states (1.38). These states, beingmaximally entangled,
provide a particularly rigorous test of the performance of the CNOT-P gate.

Setting appropriate voltages to phaseshifters φ1−4 as described in Sect. 2.2.5, we
prepared the separable superposition states

|+〉C ⊗ |0〉T , |+〉C ⊗ |1〉T , |−〉C ⊗ |0〉T , |−〉C ⊗ |1〉T (2.43)

at the input of the CNOT-P gate. The corresponding Bell states (|�±〉 and |�±〉
respectively) are then ideally produced at the output.

For each input state, phase shifters φ5−8 were then used to implement the quorum
of 16 measurement settings required to reconstruct the density operator of the state.
Since we collect statistics for all four logical outputs of the device simultaneously,
is straightforward to implement an over-complete quorum

τ̂i = |Ci 〉〈Ci | ⊗ |Ti 〉〈Ti | (2.44)

over all combinations of |Ci 〉, |Ti 〉 ∈ {|0〉, |1〉, |+〉, |−〉, | + i〉, | − i〉}. Themeasured
density matrices of all four Bell states are shown in Fig. 2.12, with quantum state
fidelities [29]

F =
(

T r
√√

ρthρexp
√

ρth

)2

(2.45)

of 0.947 ± 0.002, 0.945 ± 0.002, 0.933 ± 0.002, and 0.885 ± 0.002 respectively.

Fig. 2.12 On-chip quantum state tomography. Density matrices of the Bell states a |�+〉, b |�−〉,
c |�+〉 and d |�−〉, generated and characterized on-chip. Imaginary parts are not shown

http://dx.doi.org/10.1007/978-3-319-21518-1_6
http://dx.doi.org/10.1007/978-3-319-21518-1_1
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A discussion of sources of error in the CNOT-MZ, to which we attribute the
infidelity seen here, is given in Sect. 2.10.

2.7 Quantum Process Tomography

QST allows us to obtain complete information about the output of a black-box source
of quantum states. Often, we are also interested in devices which transform an arbi-
trary input state, where we would like to learn the a priori unknown relationship
between input and output states of the device [41].

Whilemanyof the errorswhich arise inLOQCare described byunitary operators,6

in order to completely describe an arbitrary black-boxdevice it is necessary to account
for processes which do not preserve the purity or orthogonality of their input states.
This can occur if the system couples to unknown environmental degrees of freedom,
which are traced over in the final measurement. Any black box of this type can be
completely and uniquely characterised by a completely positivemap E . This operator
describes the effect of the device on an input state ρ̂in ,

ρ̂out = E (
ρ̂in

) =
∑

i

Âi ρ̂in Â†
i (2.46)

where Âi are a set of operators acting on the Hilbert space of ρ̂. In order to connect
this theoretical description with experiment it is helpful to re-write

Âi =
∑

j

ai, j Ā j (2.47)

where Ā j are the Kraus operators, which are fixed and independent of E . Ā j satisfy
T r( Ā†

j Āk) ∼ δ j,k and
∑

j Ā†
j Ā j = I . For qubit systems the Kraus operators are

typically chosen as tensor products of Pauli matrices, Ā j = σ̂ j0 ⊗ σ̂ j1 ⊗ · · · ⊗ σ̂ jn .
The quantum operation can then be completely and uniquely characterised by the
process matrix χm,n ≡ ∑

i ai,ma∗
i,n , a matrix of 22n complex numbers with 24n −22n

free parameters, which relates ρ̂out to ρ̂in as

ρ̂out = E (
ρ̂in

) =
∑

m,n

χm,n Ām ρ̂in Ā†
n . (2.48)

The task of quantum process tomography (QPT) is then to estimate χ . For an input
state ρ̂in, the probability that the output state of the device is detected in a state τ̂k is
given by

Pjk = Tr
[
τ̂k ρ̂

j
out

]
= Tr

[
τ̂k E

(
ρ̂

j
in

)]
. (2.49)

6For example, errors in BS reflectivity.
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In order to obtain sufficient information to fully reconstruct E for an arbitrary device,
we follow a procedure which is equivalent to full QST of ρ̂

j
out, for a complete or

over-complete set of linearly independent ρ̂
j
in—that is, ρ̂

j
in should at least form a

basis for the Hilbert space upon which E acts. Experimentally, we measure count
rates

n jk ≈ Pjk

∑

j

n j = PjkN ; P̃jk ≡ n jk

N (2.50)

for every possible combination over a quorum of at least 4n − 1 input states ρ̂
j
in and

4n − 1 measurement settings τ̂k .
Having acquired this data,wemust then reconstructχ .Although linear reconstruc-

tion techniques exist, they suffer the same issues as linear QST: namely, experimental
imperfection and finite statistics can lead to a reconstructed process matrix which is
unphysical, precluding comparison with standard metrics. As a result, experimental
QST is usually performed using a maximum-likelihood reconstruction technique.
As with maximum-likelihood QST, we first choose a parametrization of χ which
enforces physicality. Since the process matrix is subject to the same physical con-
straints as a density matrix (both are normalized, Hermitian, positive-semidefinite
square matrices), we use a similar parametrization:

E(�t) ↔ χ̃
(�t) = ĝ

(�t) ĝ
(�t)†

Tr
[
ĝ

(�t) ĝ
(�t)†

] . (2.51)

We then minimize the cost function [41], constituting a least-squares difference
between the observed data and that predicted by theory, with respect to �t :

�(�t) =
∑

jk

(
P̃jk − Tr

[
τ̂k E(�t ρ̂ j

in)
])2

2Tr
[
τ̂k E(�t ρ̂ j

in)
] . (2.52)

Fortunately, this problem can be converted into a semidefinite program [37, 42],
allowing the used of convex optimization algorithms which can greatly accelerate
the numerical optimization procedure.

2.7.1 On-Chip Quantum Process Tomography

We used the state preparation and measurement stages of the CNOT-MZ to perform
full QPT of the CNOT-P gate. This test completely and uniquely characterizes the
CNOT-P gate itself, providing full information on the quality of our implementation.
In addition, the QPT protocol places stringent demands on the performance of the
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reconfigurable components of the chip: even if the CNOT-P were perfect, errors in
state preparation andmeasurementwould lead to recovery of a flawed processmatrix.
Moreover, QPT of a 2-qubit gate requires 256 measurements, and is particularly
demanding in terms of repeatability and stability of the experimental setup.

Setting appropriate voltages to phase shifters φ1−4 as described in Sect. 2.2.5, we
prepared 16 separable, linearly independent input states

ρ
j
in = |� j 〉〈� j | ; |� j 〉 = |C j 〉 ⊗ |Tj 〉 ; |ψ〉 ∈ {|0〉, |1〉, |+〉, | + i〉| − i〉}.

(2.53)
For each ρ

j
in, the output state of the CNOT-P gate was measured and reconstructed by

QST as before, using phase shifters φ5−8 to perform each of the 16 measurements.
These density matrices are shown together with ideal states in Fig. 2.13a.

The process matrix χ was then reconstructed according to the maximum likeli-
hood technique previously described. The experimentally measured process matrix
is shown together with the theoretical ideal matrix χideal in Fig. 2.13b–d. For clarity,
the experimental matrix has been rotated through a local two-qubit unitary which
maps CNOT-P to CNOT (see Sect. 2.2.4). The process fidelity [29]

FP = Tr(χidealχexp) (2.54)

RE IM RE IM RE IM RE IM RE IM RE IM RE IM RE IM

RE IM RE IM RE IM RE IM RE IM RE IM

IM

RE IM RE IM

RE IM RE IM RE IM RE IM RE IM RE RE IM RE IM

RE IM RE IM RE IM RE IM RE IM RE IM RE IM RE IM

(b) (c) (d)

(a)

Fig. 2.13 Quantum process tomography of a maximally entangling gate. a Ideal and experimental
output states of the CNOT-P gate, for a complete set of linearly independent input states. b Ideal
process matrix of the CNOT gate. The imaginary part is zero everywhere. c Real and d imagi-
nary parts of the measured process matrix of the CNOT-P device, after a local rotation to permit
comparison with the canonical CNOT gate
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between the reconstructed process and the ideal CNOT operation was found to be
0.841± 0.002. This is comparable with the process fidelity of 0.87 previously mea-
sured using an equivalent bulk-optical circuit [27]. The average fidelity [43], defined
as the state fidelity between actual and ideal output states averaged over all possible
input states, is 0.873±0.001. Here error was determined by aMonte-Carlo approach,
assuming Poissonian photon statistics. Sources of error contributing to this sub-unit
process fidelity are discussed in Sect. 2.10.

2.8 Bell Inequality Manifold

Having shown that the CNOT-MZ can prepare maximally entangled states, we now
demonstrate that these states are nonlocal. As previously discussed, the Bell-CHSH
test (Sect. 1.3.8) provides a particularly rigorous criterion for a source of entangle-
ment. In particular, only a subset of the most strongly entangled states can generate
nonlocal statistics in a CHSH test. As such, CHSH is important not only as a funda-
mental test of foundational quantum theory, but also as a measure of the operational
performance of quantum technologies and devices.

In the context of the CNOT-MZ, all local realistic models demand that

|S| = |〈Ĉ1T̂1〉 + 〈Ĉ1T̂2〉 + 〈Ĉ2T̂1〉 − 〈Ĉ2T̂2〉| ≤ 2 (2.55)

where Ĉi , T̂ j aremeasurement operators on the control and target qubits respectively.
If these qubits are entangled, this inequality can be violated up to a maximum value
of |S| = 2

√
2—in which case we say that we detect nonlocal statistics, or that we

“obtain nonlocality”.
In order to further test the reconfigurability of the CNOT-MZ, wemeasured S over

a range of partially entangled states, using a variety of measurement settings. Even if
the state |�(φ1−4)〉 generated by the CNOT-P is maximally entangled, (2.55) is only
violated for a subset of measurement settings. See Sect. 4.2 for further discussion of
this point.

We used φ1−4, together with the CNOT-P gate, to prepare the state

|ψout 〉 = 1

2
√
2
[(1 − eiα)|00〉 + (1 + eiα)|11〉], (2.56)

where α = φ1 tunes continuously between two orthogonal states: for α = 0, π ,
|ψout 〉 is a product state, and with α = π/2, 3π/2, |ψout 〉 is the maximally entangled
state 1√

2
(|00〉 ± i |11〉) (up to a global phase). Scanning α in the interval [0, 2π ], we

pass through a continuum of partially entangled states. In order to evaluate S, we used
phaseshifters φ5−8 to implement four two-qubit measurements on the state emerging
from the CNOT-P gate. While Alice’s measurement settings (φ6 ∈ {π/4,−π/4})
were fixed, Bob’s measurement operators were continuously rotated in the real plane
of the Bloch sphere, with φ8 ∈ {β, β + π/2}. We measured S(α, β) for α ∈ [0, 2π ]

http://dx.doi.org/10.1007/978-3-319-21518-1_1
http://dx.doi.org/10.1007/978-3-319-21518-1_4
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Fig. 2.14 CHSH manifold. a The Bell-CHSH sum S, plotted as a function of phases α and β. In
the α axis, the state shared between Alice and Bob is tuned continuously between product states
at α = 0, π and maximally entangled states at α = π/2, 3π/2. The β axis shows S as a function
of Bob’s variable measurements, which can be thought of as two operator-axes in the real plane of
the Bloch sphere, fixed with respect to each other at an angle of π/2 but otherwise free to rotate
with angle β between 0 and 2π . The blue curves show a projection of the manifold onto each axis.
Yellow contours mark the edges of regions of the manifold which violate−2 ≤ S ≤ 2. Red lines on
the axes also show this limit. b Experimentally measured manifold. Data points are drawn as black
circles. Data points which violate the CHSH inequality are drawn as yellow circles. The surface
shows a fit to the experimental data (color online)

and β ∈ [0, 2π ], with step size 2π/15, producing the “Bell manifold” shown in
Fig. 2.14. We measured maximum and minimum values of S of 2.49 ± 0.03 and
−2.54 ± 0.03 respectively. Errors were again determined by a Monte-Carlo tech-
nique, assuming Poissonian statistics.

In order to quantitatively compare the theoretical manifold with experimental
data, we used the quantity

R2 = 1 −
∑

i (Si − Ti )
2

∑
i (Si − S̄)2

, (2.57)

where Si are experimentallymeasured values of the Bell-CHSH sum, S̄ is the average
over Si , and Ti are the theoretical values of S shown in Fig. 2.14a. In the ideal case,
R2 = 1. For the data shown in Fig. 2.14b, R2 = 0.935.

2.9 Generating and Characterising Mixture

Mixture, introduced in Sect. 1.3.6, is a basic property of quantum mechanical states,
equivalent to classical randomness. The effect of decoherence, which is the major
source of errors in many proposed architectures for quantum computing, is to intro-
duce mixture to the computer’s state, and the study and modelling of mixed states

http://dx.doi.org/10.1007/978-3-319-21518-1_1
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will be important in future studies of decoherence mechanisms. Despite this broad
association of mixture with error, mixed states can actually be used for universal
quantum computing [44], and are believed to play an important role in biological
processes [45, 46] including photosynthesis.

One approach to generating mixed states is to build a source which randomly
samples from an ensemble of pure states: for example, to generate the maximally-
mixed single-qubit state 1/2, we can use a source which generates each of the logical
basis states with equal probability

ρ̂ =
∑

i

pi |i〉〈i | = 1

2
|0〉〈0| + 1

2
|1〉〈1| = 1/2. (2.58)

Note that in this approach, it is important that the random sampling technique, which
chooses between |0〉 and |1〉, must not “leak” information to the observer—otherwise
the state can be written in a pure form:

|0t11t21t30t40t51t6 . . .〉 (2.59)

An alternative approach7 begins with a maximally entangled, pure, two-qubit state,
and traces over one qubit:

ρ̂A = TrB

[
1√
2

(|0A0B〉 + |1A1B〉)
]

= 1

2
|0〉〈0| + 1

2
|1〉〈1| = 1/2. (2.60)

The CNOT-MZ can prepare an arbitrary two-qubit state (Sect. 2.2.7), and by tracing
over one qubit can thus prepare arbitrary single-qubit mixed states. Starting from
the parametrization (2.25) of an arbitrary two qubit state, and tracing over the target
qubit

|�CT 〉 = √
λ |λC 〉 ⊗ |λT 〉 + √

1 − λ |λ⊥
C 〉 ⊗ |λ⊥

T 〉 (2.61)
trace−−→ ρ̂C = TrT (|�〉〈�|) = λ|λC 〉〈λC | + (1 − λ)|λ⊥

C 〉〈λ⊥
C | (2.62)

Since |λC 〉 is an arbitrary single-qubit pure state, ρ̂C is an arbitrary mixed state. Note
that there is a one-to-one correspondence between the degree of entanglement of the
initial two-qubit state and the purity of the reduced density matrix, dictated by the
choice of λ.

What does it mean to “trace over the target qubit” in the context of the CNOT-MZ?
Ideally, we would measure the control qubit independent of the target qubit, which
in principle need not be measured at all. However, since the CNOT-P is a nondeter-
ministic gate, we must count in the coincidence basis to postselect on successful gate
operation. Therefore, in practice we count coincidences across both qubits and then

7Note: these two forms of mixture are sometimes distinguished as improper (using entangled states)
and proper (using a random number generator). However, they are formally indistinguishable [47].
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combine two-photon count-rates to generate effective single-qubit data, independent
of the measurement outcome on the target:

c̃0C = c0C0T + c0C1T ; c̃1C = c1C0T + c1C1T . (2.63)

Wechose 119 single-qubitmixed states of varying purity, at randomby theHilbert-
Schmidt measure [48], which samples uniformly from the full volume of the Bloch
sphere. For each mixed state, we generated an appropriate two-qubit pure state,
traced out the target qubit, and performed full single-qubit QST on the control,
reconstructing the reduced density matrix based on c̃0C , c̃1C . Figure2.15 shows the
distribution of quantum state fidelity (2.45) between reconstructed states and their
corresponding ideal mixed states. The average fidelity across all 119 states was found
to be 0.98± 0.02,with 91%of states havingfidelity>0.95.We then chose 63 specific
mixed states that mapped out the symbol ‘�’ inside the Bloch sphere, and generated
them with high fidelity (Fig. 2.15, inset). This picture gives a visual impression of
the typical fidelity with which mixed states (and, by implication, entangled states)
can be prepared and measured using the CNOT-MZ.

Fig. 2.15 Histogram showing the statistical distribution of quantum state fidelity between 119
randomly chosen single-qubit target states and the corresponding mixed states generated and char-
acterized on-chip. Inset � drawn in the Bloch sphere using 63 mixed states, again generated and
characterized on-chip. These states are chosen from the real plane of the sphere for clarity. The point
at the centre of the sphere is maximally mixed, and was traced out from a two-qubit maximally
entangled state. Points on the surface of the sphere are pure, and were traced out from separable
states
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2.9.1 Errors in the CNOT-MZ

The imperfect performance of the CNOT-MZ seen in the previous experiments can
be attributed to a number of different sources of error. First, we do not achieve perfect
HOM interference, due to residual distinguishability of the photon pair—this is likely
due to small polarization rotations, temporal distinguishability, and imperfect mode-
matching at the DCs. A larger fraction of error is due to imperfect calibration and
operation of the thermal phaseshifters, which contributes significantly to imperfec-
tion in reconstructed states and processes. Figure2.16 shows the effect of inaccuracy
in the control of phases in the CNOT-MZ: the fidelity of states reconstructed by QST
is reduced by ∼4% given 0.05 rad of variance at each phaseshifter. We expect that
imperfect fabrication of passive waveguide structures in the CNOT-MZ, which leads
to time-invariant unitary errors and is reflected in the results of Sect. 2.7.1, accounts
for the remaining discrepancy between our experiment and the ideal performance of
the device.

Fig. 2.16 Errors in the CNOT-MZ. Solid lines show a numerical simulation, plotting quantum
state fidelity of states reconstructed by maximum-likelihood QST against the visibility of HOM
interference. The grey line assumes perfect phaseshifters and infinite statistics, while the black line
models the effect of 0.05 rad variance in phase on each phaseshifter, as well as the effects of finite
statistics for a realistic experimental count-rate. The red line shows the experimentally measured
visibility of HOM interference, and red crosses show measured quantum state fidelities of the four
Bell states (color online)
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2.10 Discussion

In this chapter, we have not shown any new ability to manipulate quantum states
which could not be duplicated in practice using bulk optics. The CNOT-P gate [24],
experimental state and process tomography [27], and mixed-state preparation have
all previously been shown in bulk. The main result of work presented in this chapter
is instead to show that the complexity and flexibility of bulk optics for quantum
information can be reproduced to equivalent or better fidelity in a waveguide chip.
This represents a significant step forward with respect to previous experiments in
integrated quantum photonics, where devices were either completely passive [7, 9,
10, 12, 28] or insufficiently complex/reconfigurable to perform multiple distinct
tasks [7, 11].

A side-effect of photonic integration is the ease with which the circuit can be fully
automated, enabling experiments which depend on a large number of measurements
(Chaps. 3 and 4), or feedback and optimization over a large number of experimental
parameters (Chap.5). Automation to this extent can be experimentally demanding
or expensive in bulk-optics.

There remains considerable scope for improvement of the experimental setup and
device fabrication. First, the silica-on-silicon material system used here is intrin-
sically limited by the available refractive index contrast, which leads to relatively
large devices. A competitive quantum information processor built in silica-on-silicon
would likely be prohibitively large. Recently, there has been great progress in inte-
grated quantum optics usingmaterial systems which allow for a much higher compo-
nent density: in particular, silicon nanowire waveguides [49–55], can provide up to
six orders of magnitude decrease in component size.

As discussed in Sect. 2.9.1, inaccuracy in phaseshifter calibration is significantly
detrimental to the performance of the device. Recently, Li et al. [31] have shown
a new method for calibration of the CNOT-MZ, using a Bayesian learning method
to automatically find the optimal calibration settings. The authors report significant
improvements in the performance of the device, with respect to those reported here.

To summarize, we have shown an integrated quantum photonic chip with a con-
siderably greater degree of reconfigurability than previous devices. We have demon-
strated the ability of this chip to generate arbitrary two-qubit entangled states and
single-qubit mixed states. We have confirmed the entangling capability of the device
through violation of a Bell inequality across a large fraction of the parameter space.
Finally, we have completely characterised the quantum process implemented by the
CNOT-P gate by QPT. To our knowledge, in the field of integrated quantum pho-
tonics, this work constitutes the first demonstration of quantum state and process
tomography where state preparation and measurement were both implemented on-
chip, as well as the first on-chip Bell violation. The general-purpose utility of the
CNOT-MZ is borne out in the following chapters.

http://dx.doi.org/10.1007/978-3-319-21518-1_3
http://dx.doi.org/10.1007/978-3-319-21518-1_4
http://dx.doi.org/10.1007/978-3-319-21518-1_5
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Statement of Work

I optimized the photon source, and found and optimized the Hong-Ou-Mandel dip.
I built, optimized and programmed a large fraction of the supporting electronics.
I calibrated the resistive heaters, and designed and optimized the pulse sequence
described in Sect. 2.3.2. I measured all of the experimental data, and performed all of
the simulations shown in this section. I conceived the randomized characterization
protocol.
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Chapter 3
A Quantum Delayed-Choice Experiment

Any other situation in quantum mechanics, it turns out, can be
explained afterwards by saying, “you remember the case of the
experiment with the two holes? It’s the same thing.”

Feyman

3.1 Introduction

This chapter concerns the fundamental concept of wave-particle duality. We begin
with an introduction to the topic, and an overview of key results from the literature.
We then demonstrate a variation on Wheeler’s celebrated delayed-choice exper-
iment, in which the choice of the classical observer is replaced by the state of an
ancillary quantum system. This allows twomutually exclusive measurement settings
to be simultaneously entertained in coherent superposition, giving rise to continuous
morphing between wave-like and particle-like behaviour. Our experimental results
support the understanding that the photon is neither particle nor wave, and that it
does not “choose in advance” to behave as one or the other.

In this discussion I have attempted to follow closely the approach of Richard
Feynman [1], and I draw on some insight due to Albert [2].

3.2 Young’s Double Slit

Young’s double slit is a thought experiment to do with waves and particles. Bymeans
of a simple apparatus, it reveals the one true mystery of quantum mechanics. Young’s
double slit is a “triangle” (Sect. 1.3), in the sense that it is a contrived experiment
whose results cannot be elegantly explained by classical laws. Attempts are often
made to shoehorn this experiment into a classical framework, but none achieve the
elegance and generality of the quantum mechanical formalism. In the course of this
discussion, wewill see that quantum systems are neither particles nor waves, and that
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(a) (b)

Fig. 3.1 Wave-particle duality. a Young’s double slit experiment. Single quanta, for instance elec-
trons or photons, are sent one-by-one towards a mask into which two holes (A, B) have been cut. On
the far side of the shield thewavefunction of the particle interfereswith itself, giving rise to a complex
interference pattern in the distribution of detection events at an imaging screen. Wave interference
drawing taken from T. Young, Course of Lectures on Natural Philosophy and the Mechanical Arts,
1807. b Similar interference effects are seen in the Mach-Zehnder interferometer. The intensity of
light and the probability of detection, in either detector varies as a sinusoidal function of the path
length difference ϕ in the interferometer

they are neither here, nor there, nor in two places at once, nor nowhere at all! Thus
Young’s double slit exposes in a very simple way the inadequacy of our everyday
classical language when dealing with quantum phenomena.

Consider a machine gun, pointed at a mask in which two holes (A, B) have been
made. The holes can be opened or closed at will. The gun sprays bullets across some
solid angle, and from time to time a bullet will go through one or other of the holes. At
a screen on the far side of the mask, a bullet detector registers the arrival of the bullet
and its position on the x-axis (Fig. 3.1a). Bullets are corpuscular, indistinguishable
particles, which for the purpose of this discussion are assumed to be indestructible
and pass through one hole only, never both at the same time. The number of bullets
arriving at the detector in a single shot is either zero or one—simultaneous detection
of two bullets never occurs.

Having fired many times and detected N bullets, we can estimate the probability
of detection at a particular point on the x-axis as pAB(x) = n AB(x)/N , where n(x)

is the total number of bullets detected at position x , and the subscript AB denotes
the case where both holes are open. The full probability distribution over x consists
of two overlapping lobes, corresponding to photons passing through holes A and
B respectively (Fig. 3.1a, curve (ii)). If we block hole A we observe a single-lobed
distribution pB(x) corresponding to photons passing through hole B only, and vice-
versa. The probability distribution observed when both holes are open is equal the
sum of the single-hole distributions, pAB = pA + pB . This is a direct implication of
the fact that bullets, being solid and lumpy, do not interfere with themselves.

Now we replace the machine gun with a source of waves. Perhaps stones are
thrown into a lake at an appropriate distance, such that sinusoidal plane waves are
incident upon the mask. These waves pass through the holes A and B, and finally
arrive at a detection screen at the far side. The depth d(t) of the water rises and falls
continuously in peaks and troughs, and is not discrete or countable. The detection
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screen is sensitive only to the average disturbance, energy dissipation at a point, or
intensity, a continuous variable IAB(x) ∝ ∫

d(x, t)2dt at position x on the screen.
If we perform this experiment using water, or light, or any other kind of wave, we

see a complex distribution of intensity as shown in Fig. 3.1a, curve (i). Part of this
complexity is due to wave interference. A single wavefront from the source passes
through both holes at once, giving rise to wave components originating from each
of the two holes, whose peaks arrive at a given point on the screen with differing
phase by virtue of the geometrical difference in path length. Two peaks together give
a large intensity, while a peak and a trough cancel out. The function describing IAB

is thus composed of a sinc term, corresponding to diffraction through a single hole,
and a sinusoidal term due to wave interference between the two holes. If we block
hole B, IA(x) reduces to a sinc function only, and all interference effects disappear.
As a result, IAB �= IA + IB , in strong contrast with bullets.

What happens if we repeat this experiment using a source of quantum particles?
Here we will discuss photons, but essentially identical results are observed for elec-
trons, atoms, and even large molecules such as C60 (buckminsterfullerene) [3]. We
take a source which, upon pressing a button, generates a single photon—the Fock
state |1〉 = a†|0〉. A single-photon detector (see Sect. 1.6.4) is arranged at a position
x on the far side of the mask, in the plane of the screen. A photon is sent towards
the holes, and with some probability pAB(x) the detector will click, generating an
electrical pulse. This output is binary—either the detector clicks, absorbing �ω of
energy, or it does not. Using a true single-photon (Fock-state) source, simultaneous
detection of a photon at two separate detectors is never observed (see Sect. 1.5.2). In
this sense, photons behave very much like particles. They arrive at the detector as
corpuscular, indivisible lumps, and it is natural to think that they might also travel
as such, physically passing through one hole or the other.

Having fired many photons and registered N detection events, as with bullets, we
begin to saturate the probability distribution pAB(x) = n AB(x)/N . If photons are
entirely particle-like, we expect to see two lobes, as in curve (ii). Instead, wemeasure
probability distributions with the exact form of curve (i)! If we block one or other of
the holes, we recover single-lobed sinc-like probability distributions, as with water
waves. Thus the photonic probability distribution does not obey pAB = pA + pB ,
and can only be described in terms of wave interference between components arising
simultaneously from holes A and B. Now we encounter a serious philosophical
problem.

It is natural to ask: where was the photon when it passed through the holes? Did it
travel through a single hole, as a particle, or both, as a wave? If we take two detectors
and place them inside holes A and B, we only ever detect the photon at one hole or
the other, never registering a detection event in both holes simultaneously. This must
be true for energy to be conserved. Now,

• If the photon passed through one hole only, and did not pass through the other, we
cannot explain the wave interference effects observed.

http://dx.doi.org/10.1007/978-3-319-21518-1_1
http://dx.doi.org/10.1007/978-3-319-21518-1_1
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• If the photon passed through both holes simultaneously, as if it were a wave, then it
stands to reason that we could detect it at both holes simultaneously, which never
occurs.

• If the photon does not pass through either hole, then we would never detect it at
all—but we do.

So, the photon does not pass through hole A nor hole B alone, and it does not pass
through both holes simultaneously, and it does not pass through neither hole—but
it nevertheless arrives at the screen! In this experiment, the photon exhibits wave-
particle duality, seemingly travelling and arriving as a lump, as if it were a particle,
but simultaneously exhibiting wave interference—phenomena which are classically
mutually exclusive. Contained in this experiment is the full mystery of quantum
mechanics.

An optical implementation of Young’s double slit experiment was performed in
1909 by Sir Geoffrey Taylor, who used a gas flame together with smoked glass1 to
generate “feeble light”, and observed interference fringes in the shadow cast by a
sewing needle [4]. In 1961, the experiment was first performed using electrons [5].
More recent experimental results include double-slit interference of Buckminster-
fullerene [3], and an electron interference experiment using micromachined slits [6]
which could be opened and closed at will.

3.2.1 Wave-Particle Duality in the MZI

Throughout the rest of this chapter, it will be convenient to modify the experimen-
tal arrangement somewhat with respect to Feynman’s original proposal. Figure3.1b
shows a Mach-Zehnder interferometer (MZI, Sect. 1.5.4), which exhibits all of the
essential behaviour of Young’s double slit, but is somewhat easier to analyse. Single
photons are sent into one input port of BS1, pass through the two paths of the inter-
ferometer and interfere with themselves at BS2. The two arms of the interferometer
have a path length difference ϕ. BS1 assumes the role of the shield and holes, and
BS2 provides an interface at which the two beams may interfere, in a similar role
to the screen. Two detectors, D0 and D1, record single-photon detection events at
each output port of BS2. The probability of detecting a photon at a given detector is
a sinusoidal function of ϕ:

p(D0) = cos2
(ϕ

2

)
; p(D1) = sin2

(ϕ

2

)
. (3.1)

In this interference pattern we clearly see the wavelike properties of the photon.

1The intensity of light in Taylor’s experiment was roughly equivalent to a candle burning at a
distance of one mile. J.J. Thompson’s expectation, which turned out to be incorrect, was that the
diffraction pattern should be modified in the limit of very low light levels, as the corpuscular nature
of the photon appeared.

http://dx.doi.org/10.1007/978-3-319-21518-1_1
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In the double-slit scenario discussed previously, the screen is deliberately placed
at a considerable distance from the shield such that diffraction patterns from the
two slits overlap at the screen. Detection of a photon at a point x therefore does not
yield any information about which path (hole) was taken. It is easy to see that if the
screen is placed in the near-field, without any overlap, full which-way information is
obtained upon detection—but no interference (wave-like) effects are seen. An anal-
ogous choice of measurement setting can be performed in the MZI. When BS2 is
removed from the interferometer, every detection event tells the observer whether the
photon took the upper or lower path—full which-way information—but the interfer-
ence pattern necessarily cannot be observed. In this case the detection probabilities
no longer depend on ϕ:

p(D0) = 1

2
; p(D1) = 1

2
(3.2)

If we define this mode of operation as fully particle-like behaviour, then we can
view the removal of BS2 as switching from wave-like to particle-like measurement
apparatus, where each configuration reveals a complementary aspect of the photon.

3.2.2 Complementarity

Niels Bohr’s complementarity is the fundamental physical principle at the heart of the
Copenhagen interpretation of quantum theory, and enforces limitations on the inter-
face between quantum systems and the classical data available to an experimentalist.
It states that in order to observe complementary properties of a quantum system, an
experimentalist must necessarily employ mutually incompatible arrangements of the
measurement apparatus. Complementarity was characterized by Bohr as follows:

“…it is only the mutual exclusion of any two experimental procedures, permitting the unam-
biguous definition of complementary physical quantities, which provides room for new
physical laws” [7]

In Young’s double slit, as we have already seen, we can arrange the apparatus so as
to measure particle-like behaviour of the photon, watching it take one path or the
other. However, in order to see wavelike interference effects from which the phase ϕ

can be inferred, we must adopt an experimentally incompatible measurement setup,
obscuring allwhich-way information. Thatwe cannot use bothmeasurement setups at
once is not merely a consequence of inadequate apparatus, or lack of imagination on
behalf of the experimentalist. It is simply a consequence of the fact that experimental
data is by definition classical—pencilmarks on a piece of paper, ormagnetic domains
on a hard disk—and cannot therefore exist in quantum superposition. Thus, as was
emphasized byBohr, a single configuration of any givenmeasurement apparatusmay
only reveal part of the quantum mechanical phenomenon. Only by use of multiple
configurations or instances of the classical measurement apparatus is the fullness of
wave-particle duality, or any other quantum effect, revealed.
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Bohr’s principle has only very recently been successfully quantified in universal
complementarity relations, such as those due to Ozawa and Hall [8, 9]. It was shown
that if two incompatible observables Â and B̂, [ Â, B̂] �= 0 are approximated by
Âest and B̂est , [ Âest , B̂est ] = 0, then the rms error ε(Ĝest ) ≡ 〈(Ĝest − Ĝ)2〉1/2 in
measurements of these observables must satisfy

ε( Âest )ε(B̂est ) + ε( Âest )�B̂ + � Âε(B̂est ) ≥ c

2
(3.3)

where ε(Ĝest ) ≡ (〈Ĝ2〉 − 〈Ĝ〉2)1/2 is the spread in the quantity G. This formalizes
the notion that although the inaccuracy in either observable can individually be made
arbitrarily small, one cannot simultaneously measure both to an arbitrary degree of
accuracy. This relationwas recently experimentally tested byWeston et al. [10] under
conditions in which previously discovered, non-universal complementarity relations
fail.

Complementarity lies at the heart of the Copenhagen interpretation of quantum
mechanics. In contrast with de Broglie-Bohm carrier-wave theory [11] (in which the
photon has a literal particle-like trajectory even when unobserved) and the many-
worlds interpretation due to Everett [12] (in which wavefunction collapse does not
occur at all), complementarity states that the photon is neither particle-like nor wave-
like until it is measured, at which point the wavefunction collapses in accordance
with the choice of measurement apparatus.

3.3 Wheeler’s Delayed Choice Experiment

Upon first encountering Young’s double slit experiment, many physicists are dis-
turbed by its implications. This discomfort does not typically reduce as a function
of time—with greater understanding it should increase! It is nonetheless natural to
attempt to find comfort in a classical understanding of the experiment, where mean-
ingful comparison can be drawn between the behaviour of the photon and that of
everyday objects in the macroscopic world.

One such classical explanation is very simple to imagine, if somewhat extrava-
gant in conception. Let us allow that the photon is sentient, or is otherwise able to
examine and assess the experimental apparatus prior to measurement. If the pho-
ton determines that the measurement device is arranged so as to reveal particle-like
behaviour—that is, BS2 is removed from the interferometer—then before it reaches
BS1, the decision is made to become fully particle-like, throwing away all wave-like
properties. Upon arrival at BS1 the photon chooses one path or the other, exactly as
though it were a particle. It then propagates through the apparatus with impunity,
ultimately reproducing exact particle-like statistics: p(D0) = p(D1) = 1/2. If BS2
is instead present, corresponding to a wave-like measurement, the photon decides in
advance to adopt a fully wave-like nature. Wave interference is then observed at the
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(a) (b)

Fig. 3.2 a Wheeler’s delayed choice experiment. A photon is sent into a Mach-Zehnder inter-
ferometer. Upon arrival at the first beamsplitter BS1, it is split into quantum superposition across
both paths. A space-like separated random number generator (RNG) then toggles a fast optical
switch, closing or opening the interferometer by insertion or removal of BS2, leading to wave-like
or particle-likemeasurement of the photon respectively. Two detectors, D0 and D1, reveal wave-like
behaviour in the event that the interferometer is closed, otherwise particle-like statistics are seen.
b Quantum delayed choice. The optical switch is replaced by a quantum-controlled beamsplitter:
a controlled-Hadamard gate. An ancilla photon controls this gate: ancilla states |0〉 and |1〉 lead to
presence and absence of BS2 respectively. By preparing the ancilla in a superposition state, BS2 is
effectively placed into a superposition of present and absent, leading to a superposition of wave-like
and particle-like measurement

detectors, from whose output the phase ϕ may be inferred, without any need for the
photon to choose a particular path upon arrival at BS1.

Complementarity and the necessity of incompatible measurement devices make it
difficult to distinguish this pseudo-classical hidden-variablemodel from the quantum
mechanical reality. A particularly elegant approach, which makes life very hard
for the sentient photon, was proposed by Wheeler in 1978 [13, 14]. The trick in
Wheeler’s delayed-choice experiment, shown in Fig. 3.2a, is to postpone the choice
of measurement apparatus until such time as the photon is inside the interferometer.
Once the photon has passed BS1, a fast classical switch is used to remove or insert
BS2 at will. Now, upon arrival at BS1, the photonmust choose to behave as particle or
wave without prior knowledge of the measurement apparatus. Hence, if it is true that
the photon adopts the pathological classical behaviour described above, we expect
to see a deviation from the quantum predictions.

Delayed-choice experiments have been performed in a variety of physical systems
[15–19], all of which confirm the quantum predictions. Of particular significance is a
recent result [19] of Jacques et al., in which relativistic space-like separation between
the random choice of measurement setting and the entry point of the interferome-
ter (BS1) was achieved for the first time. Here, a nitrogen vacancy colour centre in
diamond was used as the source of single photons, ensuring extremely close approx-
imation to the Fock state |1〉. An electro-optic phaseshifter, controlled by a quantum
random number generator at 4.2MHz, was used to implement the choice of mea-
surement setting.
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3.4 Quantum Delayed Choice

In delayed-choice experiments, the choice of the observer is generally implemented
using a classical optical switch, fast enough to effectively insert or remove BS2 while
the photon is still in flight. This classical-controlled beamsplitter is driven by a single
bit from a random number generator, or the free and independent choice of the exper-
imentalist. The main distinguishing feature in our work is that the classical random
bit is replaced by an ancilla qubit |ψ〉a , which drives a quantum-controlled beam-
splitter, as shown in Fig. 3.2b. This configuration was first proposed in a theoretical
work due to Ionicioiu and Terno [20],

It is helpful in this analysis to note that Wheeler’s interferometer and pho-
ton together form a path-encoded qubit (see Sect. 1.6.1), where the |1〉s and |0〉s
states correspond to a photon in the upper and lower arms of the interferometer
respectively. In our experiment the ancilla qubit is also path-encoded, and is imple-
mented using a second photon. We will refer to these as the system and ancilla
photon/qubit/interferometer respectively.

Upon arrival at BS1, the system photon splits into a coherent superposition over
the upper and lower spatial modes of Wheeler’s interferometer,

|ψ〉s = ˆBS1|0〉s = 1√
2

(|0〉s + |1〉s
)
, (3.4)

and is then phase-shifted due to the path-length difference ϕ

|ψ〉s
ϕ−→ |ψparticle〉s = 1√

2
(|0〉s + eiϕ |1〉s). (3.5)

If the ancilla qubit is prepared in the state |0〉a , the quantum-controlled beamsplitter
does not act, and BS2 is effectively absent. The interferometer is thus left open, and
the final state of the system is simply given by (3.5). In this case, the probability of
detecting the systemphoton in either detector is p(D0) = p(D1) = |〈0|ψ〉s |2 = 1/2.
Every detection event yields full which-way information, and no wave interference
is observed.

If the ancilla is instead prepared in |1〉 the quantum-controlled beamsplitter always
acts on the system qubit, closing the interferometer. This gives rise to wave interfer-
ence such that

|ψ〉s
BS2−−→ |ψwave〉s = cos

ϕ

2
|0〉s + sin

ϕ

2
|1〉s . (3.6)

The probability that the system photon is detected at D0 is now a sinusoidal function
of the phase, p(D0) = cos2

(
ϕ
2

)
, and p(D1) = sin2

(
ϕ
2

)
. Formally, the quantum-

controlled beamsplitter is then equivalent to the controlled-Hadamard operation
C H— a maximally-entangling two-qubit gate—acting on the system qubit, with
the ancilla as the control:

http://dx.doi.org/10.1007/978-3-319-21518-1_1
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UC H = |0a0s〉〈0a0s | + |0a1s〉〈0a1s | + |1a+s〉〈1a0s | + |1a−s〉〈1a1s |

=

⎛

⎜⎜⎜⎝

1 0 0 0
0 1 0 0
0 0 1√

2
1√
2

0 0 1√
2

−1√
2

⎞

⎟⎟⎟⎠ . (3.7)

When the ancilla qubit is prepared in a generalized superposition state

|ψ〉a = cos(α)|0〉a + sin α|1〉a, (3.8)

the second beamsplitter BS2 is effectively placed in a coherent superposition of
present and absent. The global state of the two qubits then evolves to

|� f (α, ϕ)〉 = cosα |0〉a ⊗ |ψparticle(ϕ)〉s (3.9)

+ sin α |1〉a ⊗ |ψwave(ϕ)〉s

which is entangled for 0 < α < π/2—maximally so for α = π/4 and φ = π/2.
The detection probability at D0 is given by

p(D0)(ϕ, α) = p(D0)particle cos
2 α + p(D1)wave sin

2 α

= 1

2
cos2 α + cos2(

ϕ

2
) sin2 α (3.10)

and p(D1) = 1 − p(D0). Hence, in contrast with traditional implementations of
Wheeler’s delayed choice experiment, we are able to tune coherently and continu-
ously between particle-like (α = 0) and wave-like (α = π ) statistics.

An important distinguishing feature of thequantumdelayed-choice setup concerns
the ordering of events. Note that since the dynamic classical switch of Wheeler’s
traditional experiment is replaced by a static controlled-unitary operation, there is no
longer any “delayed choice” in this delayed-choice experiment, and there is no need
for fast switching. If the ancilla is (for example) prepared in an equal superposition,
it travels balistically through the device without any explicit choice of measurement
setting ever being made. Before either photon is detected, the choice of measurement
setting remains in coherent superposition, encoded in the entangled state of system
and ancilla. Only when the ancilla is detected does the wavefunction collapse to
one or other measurement setting. As a result, the specific timing of the choice
measurement setting is inconsequential, and can even be performed after the system
photon has been detected.
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3.4.1 Experimental Setup

As we have already noted, the quantum delayed-choice arrangement of [20] can be
seen as a system of two path-encoded qubits, where the quantum-controlled beam-
splitter is implemented by aC H gate. It turns out that theCNOT-MZdevice described
in Chap.2 provides all the necessary hardware and a sufficient degree of reconfig-
urability to implement the experiment, as outlined in Fig. 3.3.

As in Chap.2, two photons from an SPDC source are used to encode two qubits
in pairs of waveguides. Wheeler’s interferometer is implemented using the state
preparation stage of the target qubit. The system photon is coupled into the chip,
whereupon it is split across two paths by dc2, a 50/50 directional coupler. Wheeler’s
phase, ϕ, is controlled by a thermal phaseshifter (φ2). The ancilla photon is injected
into the upper two waveguides on the device (previously referred to as the control
qubit). State preparation of the |ψ〉a is accomplished using the MZI formed by
directional couplers dc1 and dc3, where phase shifter φ1 controls the α parameter.

The C H gate is implemented using the non-deterministic postselected linear-
optical C Z gate previously described (couplers 6, 7, 8, Sect. 2.2.4). The C H gate is
equivalent to C Z up to local rotations. Specifically,

UC H = (I ⊗ W )UC Z (I ⊗ W ) (3.11)

where

W =
(
cos π

8 sin π
8

sin π
8 − cos π

8

)
. (3.12)

Fig. 3.3 The CNOT-MZ provides all the necessary hardware and a sufficient degree of reconfig-
urability to implement a quantum delayed-choice experiment. Wheeler’s interferometer is mapped
to the target qubit of the CNOT-MZ, with dc2 and φ2 in the roles of BS1 and the internal phase shift
ϕ respectively. The ancilla qubit is prepared using dc1 and dc3 together with phase shifter φ1. The
quantum-controlled beamsplitter is constructed from the linear optical C Z gate—three directional
couplers (dc6, dc7 and dc8) with coupling ratio 1/3—and single-qubit W gates implemented using
dc4, dc5, dc9, and dc11 together with φ4 and φ6. For certain values of α and ϕ, the output state
of the C H gate is entangled. By measuring each qubit in a particular set of measurement bases
controlled using UAlice and UBob, we are able to violate a Bell inequality on |� f 〉as , thus ruling
out local hidden variable models in which the photon decides in advance to behave as a particle or
wave

http://dx.doi.org/10.1007/978-3-319-21518-1_2
http://dx.doi.org/10.1007/978-3-319-21518-1_2
http://dx.doi.org/10.1007/978-3-319-21518-1_2
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Implementing W gates using directional couplers dc4, dc5, dc9 and dc11 together
with phaseshifters φ4 and φ6, we can thus implement a controlled-Hadamard gate
on the system qubit, effectively closing or opening the interferometer containing
φ2 depending on the state of the ancilla. As with linear-optical C Z and CNOT-P
gates, this gates succeeds with 1/9 probability and its operation depends on high
visibility quantum interference, requiring that the ancilla and system photons are
indistinguishable in all degrees of freedom.

Four silicon APDs are used to detect single photons at the output of the chip. As
before, we only register a subset of two-photon coincidence events (D0D2, D0D3,
D1D2, D1D3) so as to post-select on successful operation of the entangling gate.

3.4.2 Results

When sweeping the phase ϕ inWheeler’s interferometer, we should see qualitatively
different behaviour of the system photon depending on the ancilla phase α. Specifi-
cally, when α = π/2 we expect to see a sinusoidal wave interference pattern in the
probability of detection at D0 and D1, while for α = 0 we should see no interference.
For intermediate values of α, we expect continuous morphing between wave-like and
particle-like behaviour, as the effective probability amplitude for the presence of BS2
is gradually reduced. Experimental data exhibiting this effect is shown in Fig. 3.4.
We measured p(D0) and p(D1) for 21 values of ϕ in the interval [π/2, 5π/2] and
11 values of α in the interval [0, π/2].

Fig. 3.4 Continuousmorphing betweenwave-like and particle-like behaviour of the systemphoton,
as a function of the state of the ancilla qubit |ψ(α)〉a . a Experimentally measured probability of
detection at D0, conditional on detection of a second photon at either D2 or D3 (white dots). The
surface is a fit to the data, using Eq.3.10 with an additional prefactor to account for limited visibility
of quantum interference. b Ideal (simulated) behaviour
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A similar experiment was carried out at the same time [21] by Kaiser et al. in
the group of Sébastien Tanzilli (Nice). In contrast with our work, the authors make
use of polarization entanglement directly from the SPDC source, rather than imple-
menting a non-deterministic linear-optical entangling gate, and do not make use of
path-encoding. The authors measure morphing between particle and wave behav-
iour qualitatively identical to the result shown in Fig. 3.4, again with extremely good
agreement between experiment and theory. The decision to use polarization encoding
in this implementation is largelymotivated by the fact that stableMach-Zehnder inter-
ferometers are difficult to construct in a bulk architecture. This perhaps highlights
the fact that the technological advances of integrated quantum photonics, although
intended primarily as a route to scalable quantum computation and practical quantum
technologies, also provide advantages formore fundamental scientific investigations.

3.5 Device-Independent Tests of Wave-Particle Duality

The principal goal of delayed-choice experiments is to test the classical, hidden-
variable hypothesis that the photon decides in advance to behave as a particle or
a wave. Although as experimentalists we place a certain amount of trust in the
notion that the behaviour of our experimental apparatus is repeatable and consistent,
we must concede that the result shown in Fig. 3.4 does not absolutely rule out the
hidden-variable model. Even though we have good reason to believe that the ancilla
qubit is truly placed in the coherent superposition (3.8), the morphing behaviour in
Fig. 3.4 could also be explained if it is instead prepared in the mixed state

ρ̂a = cos2(α)|0〉〈0|a + sin2(α)|1〉〈1|a . (3.13)

Under these circumstances the ancilla qubit can be equally replaced by a classical
random bit with p(0) = cos2(α), whose state is decided before the system photon
passes the first beamsplitter. The system photon is thus free to play the old trick
of examining the experimental apparatus—including this random bit—in order to
choose particle or wave behaviour in advance, and the result of Fig. 3.4 thus admits
a classical, hidden-variable model.

In order to show that the choice of measurement apparatus could not have been
known in advance,wemust ensure that theC H gate exhibits unambiguously quantum
behaviour under the circumstances of the quantum delayed-choice experiment. As
we have already seen, the output of the C H gate is ideally pure and entangled for
almost all values of ϕ and α. As a result, we can test for quantum behaviour in a
device independent way—that is, without having to place any trust in the measuring
apparatus—by attempting to violate a Bell inequality (Sect. 1.3.8) using the bipartite
state of the system and ancilla photon.

http://dx.doi.org/10.1007/978-3-319-21518-1_1
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3.5.1 Results

Experimentally, we give the ancilla qubit toAlice, who chooses from one of twomea-
surement bases using the interferometer UAlice formed by dc10 and dc12, together
with phaseshiftersφ5 andφ7 and detectors D2 and D3. The system photon is assigned
to Bob, who performs local measurements using UBob: dc13 together with φ8 and
detectors D0 and D1. The choice of measurement operators Â0,1, B̂0,1 was tailored
for the specific class of states generated in the quantum delayed-choice scenario—the
operators usually chosen for Bell-CHSH with the singlet state do not lead to viola-
tion here. We measured the Bell-CHSH parameter S(ϕ, α) over the same parameter
space used in Fig. 3.4, measuring a maximal violation S(π/2, π/4) = 2.45 ± 0.03.
Experimental data is shown together with a simulation in Fig. 3.5.

Had we been able to perform the Bell test without succumbing to any loopholes,
we could now conclude decisively that the photon does not choose in advance to
behave as a particle or a wave. However, a loophole-free Bell inequality remains
experimentally out of reach—although progress continues to be made [22, 23]—and
our experiment does not in fact close any of the standard loopholes. For instance, we
make the standard fair-sampling assumption, which allows us to discard inconclu-
sive results and post-select on successful operation of the C H gate. The detection
loophole remains open due to limited detection efficiency, and we must also assume
independence between the operation of the photon source and the choice of mea-
surement setting used in the Bell inequality test. As usual, if the photons could know
in advance the choice of measurement setting in the Bell test, then a local model can
mimic Bell inequality violations.

Fig. 3.5 CHSH parameter S as a function of the phase ϕ inWheeler’s interferometer and the ancilla
parameter α. All local hidden variable models satisfy |S| ≤ 2. a Experimental data (white points),
with a 2D sinusoidal fit. Points marked in yellow exhibit nonlocal statistics, violating Bell-CHSH.
b Numerical simulation of ideal behaviour
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3.5.2 Discussion

The Greek philosopher Democritus (c. 460 BC)—proponent of atomistic theory,
scourge of Plato, and staunch advocate of cheerfulness—is quoted by Schrödinger
as having said, with respect to the fundamental makeup of the universe,

“By convention there is sweetness, by convention bitterness, by convention colour, in reality
only atoms and the void.” [24]

Democritus goes on to emphasize the importance of measurement, and the difficulty
with which experimental results are reconciled with our internal understanding of
the world:

“Foolish intellect! Do you seek to overthrow [the senses], while it is from [them] that you
take your evidence?”

Even earlier, Lucretius (c. 99 BC) assigned a particle-like character to light:

“The light and heat of the sun; these are composed of minute atoms which, when they are
shoved off, lose no time in shooting right across the interspace of air in the direction imparted
by the shove.”

The history of science has since been marked by intense debate between particle and
wave theories of physics, in particular with respect to the nature of light. In Opticks
[25], Isaac Newton describes a great many experiments exploring the “reflections,
refractions, inflections and colours of light”. Despite the emphasis of this work on
optical wave phenomena, a central hypothesis is the corpuscular nature of light, in
whose defence Newton cites the tendency to travel in straight lines and cast stark
shadows—“light does not bend into the shadow”. This understanding was later con-
tested by the wave theories of Huygens, Young, and Maxwell in particular, whose
theory of electromagnetic waves proved so powerful as to render the corpuscular
theory untenable. In the first decade of the 20th century, new explanations for the
troublesome behaviour of of black-body radiation and the photoelectric effect, due to
Planck and Einstein respectively, gave new legs to the idea of an indivisible particle
of light with energy �ω, the photon, and ultimately lead to the quantum theory of
light used throughout this thesis.

So, does the quantum delayed-choice experiment described here add anything
to our scientific understanding of the nature of light? Certainly, all of our experi-
mental results are consistent with known quantum theory, and this is of course true
for the “traditional” delayed-choice and double-slit experiments. Since we do not
close all possible loopholes, our Bell-CHSH inspired test does not achieve device-
independence, although it certainly strengthens the argument that the C H gate func-
tions as advertised. It would be interesting to perform a more refined version of our
experiment, with space-like separation of Alice and Bob and with loopholes closed,
although it seems unlikely that this will be technologically feasible very soon. I think
that it is important to ask whether the quantum delayed-choice setup teaches us any-
thing about the photon over and above that which can be inferred from photonic
Bell-CHSH tests. Can we construct self-consistent theories of quantum mechanics,
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in which the photon decides in advance to behave as a particle or a wave (in some
meaningful sense), but which nonetheless permit Bell-CHSH violation? If not, then
my impression is that this work provides a useful and attractive pedagogical tool, but
nothing more.

Statement of work

All of the experimental data presented here was measured jointly by Alberto Peruzzo
and myself.
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Chapter 4
Entanglement and Nonlocality
Without a Shared Frame

4.1 Introduction

In many quantum information tasks, the basic scenario is one of two parties, Alice
and Bob, who share an entangled state |ψAB〉 originating from a source. Alice and
Bob may wish to use this state to communicate securely (Sect. 1.4.2), violate a Bell
inequality (Sect. 1.3.8), perform teleportation, tomography (Sect. 2.6), or to evaluate
the degree of entanglement of the state (Sect. 1.3.7). Perhaps they are space-like
separated, maybe they are in the same lab, perhaps |ψAB〉 is a resource state in a
quantum computer—we have already discussed many such scenarios.

One assumption that is very often made in theoretical works is that Alice and Bob
share a reference frame. That is, they agree on a coordinate system in which Bob’s
“up” is the same as Alice’s, and they can, for example, measure qubits in the σ̂x,y,z

bases. This assumption is often valid—in proof-of-principle experiments we usually
operate within the frame of the laboratory, and have classical tools at our disposal
to precisely calibrate and align Alice and Bob with respect to one another. However,
there are many real-world scenarios in which full calibration and alignment is not
possible.

In single-mode optical fiber, natural and unavoidable fluctuations in temperature
and stress give rise to unknown, random, unitary rotations of the polarization of trans-
mitted light [1]. These rotations roughly span the entire space of SU (2)—although
not in any uniform way—and largely preclude the use of polarization encoding in
classical telecommunications. Optical satellite links, proposed as a real-world tar-
get for photonic quantum communication [2–4], suffer from continuous rotation
of the satellite with respect to earth, as well as timing drift, necessitating complex
tracking and correction systems (Fig. 4.1). Path encoded qubits in bulk suffer from
thermal/acoustic phase instability, which gives rise to unknown random unitary rota-
tions of the qubit reference frame. Even if the setup is perfectly stable, we sometimes
just do not have the time or tools to calibrate phaseshifters, waveplates, and polar-
ization controllers. As quantum technologies become increasingly complex, these
issues will not disappear.

© Springer International Publishing Switzerland 2016
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Fig. 4.1 Bell violations with random measurements. a A source generates entangled pairs, and
photons are sent to Alice and Bob respectively. We consider a scenario in which Alice and Bob do
not share a frame of reference—that is, they cannot choose a common measurement basis—and are
therefore forced to measure in randomly oriented bases. b We use the CNOT-MZ to experimentally
test a scheme which guarantees Bell inequality violation even in the absence of a shared reference
frame. Path-entangled photon pairs are generated by the CNOT-P gate and measured in a qubit basis
by Alice and Bob, who are implemented using the readout stage of the CNOT-MZ. The choice of
measurement setting is accomplished using thermal phase shifters φ5−8

In all such scenarios, unknown rotations decouple Alice’s reference frame from
Bob, effectively breaking most tomographic protocols, entanglement witnesses, Bell
tests, and QKD. Sometimes we can use active stabilization or further classical com-
munication to establish a shared frame, but it is interesting to ask—how well can we
perform these QI tasks in the absence of any shared reference frame?

In this chapter we show how detection of Bell nonlocality can be guaranteed—
preserving device independence—without a shared frame, even in the absence of
well-calibrated devices. We experimentally demonstrate that by randomizing volt-
ages on theCNOT-MZ,we can violate aBell inequalitywith high probability. Finally,
we describe a practical method to accurately measure the degree of entanglement of
a two-qubit state despite time-dependent unitary noise on the local channel between
source and observer. This method makes direct use of Haar-random noise to improve
performance, and allows an experimentalist to detect entanglement by simply shak-
ing, bending and twisting non-polarization maintaining optical fiber. We discuss
possible applications of this scheme to measurement and secure communication.

4.2 Bell Tests Without a Shared Frame

In Sects. 1.3.8, 1.4.2, and 2.8 of this thesis we have seen the significance of non-
locality as a fundamental quantum mechanical phenomenon, as well the utility of
nonlocal correlations as a tool for device-independent quantum communication and
state characterization. Bell tests such as Bell-CHSH, described in detail in Sect. 1.3.8,
provide an experimental prescription for rigorous certification of nonlocal statistics.

http://dx.doi.org/10.1007/978-3-319-21518-1_1
http://dx.doi.org/10.1007/978-3-319-21518-1_1
http://dx.doi.org/10.1007/978-3-319-21518-1_2
http://dx.doi.org/10.1007/978-3-319-21518-1_1
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It will be convenient to first re-write the Bell-CHSH inequality (1.42) using a
slightly different notation. We assume that Alice and Bob measure a two-qubit state
|ψ〉 using m local measurement settings per party, Â j , B̂ j , i, j ∈ [0, m − 1] respec-
tively. Form = 2, all local hiddenvariable (LHV)modelsmust satisfy theBell-CHSH
inequality

|S| = |〈 Â0 B̂0〉 + 〈 Â0 B̂1〉 + 〈 Â1 B̂0〉 − 〈 Â1 B̂1〉| ≤ 2. (4.1)

Since the indexing of eachmeasurement setting Âi , B̂ j is arbitrary, terms in (1.42) can
be possibly permuted, moving the minus sign and creating a number of equally valid
Bell inequalities. Local-realistic models satisfy all such permutations. For instance,
|〈 Â1 B̂0〉 + 〈 Â1 B̂1〉 + 〈 Â0 B̂0〉 − 〈 Â0 B̂1〉| ≤ 2 holds for all LHV theories. Violation
of any of the 36 allowed inequalities witnesses nonlocal behaviour.

For two qubits, although entanglement is necessary in order to obtain nonlocal
statistics, it is not sufficient.1 Even if Alice and Bob share a maximally entangled
state, they will not necessarily violate CHSH if they do not measure in appropriate
bases. To see this, first assume that Alice and Bob share the maximally entangled
Bell state |�−〉. Letting Â0 = σ̂x , Â1 = σ̂z, B̂0 = σ̂x , B̂1 = σ̂z , it is simple to
show that S = 0, yielding no violation, and no nonlocal correlations. However, if we
rotate B̂ j ,

B̂0 = σ̂x + σ̂z√
2

, B̂1 = σ̂x − σ̂z√
2

(4.2)

we recover maximal violation of CHSH, |S| = 2
√
2. In the theoretical discussion

of such scenarios it is often implicitly assumed that Alice and Bob share a reference
frame. How does CHSH perform when there is no common frame?

4.2.1 Theory

Let us assume thatAlice andBob share the singlet state |�−〉, but have no information
that would allow them to establish a shared reference frame, and that they are inter-
ested in violating Bell-CHSH with the greatest possible efficiency. In this discussion
it will be useful to consider the measurement settings of Alice and Bob in terms of
their Bloch vectors (1.47) �ai , �b j ∈ R

3. Alice and Bob each choose two vectors �a0,1
and �b0,1, independently from a uniform distribution over the 2-sphere (equivalent
to the Haar measure for SU (2), see Sect. 1.3.1), and measure in all combinations of
Âi B̂ j . In 2010, Liang et al. showed [6] that Bell violation is achieved in this scenario
with a probability of ∼28%. If Alice and Bob are each able to choose mutually
unbiased vectors, orthonormal in the Bloch sphere and obeying �ai · �a j = δi j , this
probability increases to∼42%. This analysis has been generalized to themultipartite
case [6, 7], as well as to schemes involving decoherence-free subspaces [8]. These

1Note that the picture is more complex for multi-particle scenarios, where nonlocality can be seen
without entanglement. See for example [5].

http://dx.doi.org/10.1007/978-3-319-21518-1_1
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results show that it is more probable to detect nonlocality than one might naïvely
expect. However, can it be guaranteed?

So far we have allowed only two measurement settings per party. Consider now a
scenario in which each party chooses three settings, Â0,1,2 and B̂0,1,2 where we again
demand that these measurements are mutually unbiased, thus forming randomly-
oriented orthogonal triads in the Bloch spheres of Alice and Bob respectively. It
turns out that in this situation, we can always find a valid Bell inequality of the form
(4.1) which is violated. In other words, by adding one measurement setting per party,
detection of nonlocality can be guaranteed.

Proof Assume that �ai∈{0,1,2} and �bi∈{0,1,2} aremutually unbiased vectors correspond-
ing to qubit measurement operators Âi and B̂ j . Alice and Bob evaluate these expec-
tation values for the singlet state |�−〉 over all combinations of i, j and can then
write them in matrix form,

E =
⎛

⎝
E00 E01 E02
E10 E11 E12
E20 E21 E22

⎞

⎠ . (4.3)

It is straightforward to show that these expectation values are given by the scalar
product Ei j = 〈 Âi B̂ j 〉 = −�ai · �b j . The columns of E are therefore equivalent to the
coordinates b′

k of the Bloch vectors �b j in the basis �ai . By re-labelling measurement
settings and outcomes we are free to permute rows and/or columns of this matrix
as well as possibly change their sign. We can therefore assume, without loss of
generality, that E00,11,22 > 0, and that E22 is the largest element by absolute value
in E . �b j are orthonormal, giving �b2 = ±�b0 × �b1 and therefore |E22| = |E00E11 −
E01E10|. Now, E22 = E00E11 − E01E10 ≥ E00, E11, |E01|, |E10| and E01E10 ≤ 0.
We assume that E01 ≤ 0 and E10 ≥ 0, if this is not the case then we are free to
multiply the second row and column by −1. Now we have that

(E00 + E10)max[−E01, E11] ≥ E00E11 − E01E10 = E22 ≥ max[−E01, E11].
(4.4)

Dividing by max[−E01, E11] > 0, we find E00 + E10 ≥ 0. Using a similar method,
we can show −E01 + E11 ≥ 0. Adding these inequalities, we obtain

E00 + E10 − E01 + E11 ≥ 1 . (4.5)

By construction, E is an orthogonal matrix. Therefore, this inequality is satisfied if
and only if E00 + E10 = 0, −E01 + E11 = 0 and �a0 = �b0, �a1 = �b1 and �a2 = �b2.
That is, so long as Alice’s measurements are not perfectly aligned with respect to
Bob’s, CHSH is violated. �

An independent proof of this result was obtained by Wallman and Bartlett [9],
and published shortly after our manuscript appeared in Scientific Reports.

We have shown that CHSH can be violated with certainty without a shared refer-
ence frame, whenAlice andBob share a perfect maximally entangled state. However,
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Fig. 4.2 a Bell tests using random measurement triads. Numerically computed distribution of
maximum CHSH violation for uniformly random, mutually unbiased measurement triads on a
singlet state. b Bell tests using completely random measurements, without calibration. Numerical
calculation of the probability of Bell violation as a function ofWerner state visibility V , for different
numbers m of uniformly random measurements per party

in order for this scheme to be practically relevant, we must consider its performance
under realistic experimental imperfections.

ExperimentalBell tests are necessarily limited tomeasuringfinite statistics, result-
ing in uncertainty in measured expectation values. This gives rise to error in S, and
we must therefore examine the distribution of CHSH over all allowed measurement
settings to ensure that the probability of violation remains high despite such uncer-
tainty. Figure4.2a shows a numerical calculation of the distribution of |S| when �ai ,�b j are constructed around a random vector chosen by the Haar measure. The distri-
bution is perhaps surprisingly weighted towards large violation, with a mean value
S̄ ∼ 2.6. In order to take into account experimental uncertainty δ in S we can shift
the local bound L, modifying Bell-CHSH as

|S| ≤ L = 2 + δ. (4.6)

Even with δ = 0.2, corresponding to only a few hundred detection events, the
probability of violation for a perfect singlet state remains at ∼99.7%.

Of course, entangled states in prepared in the lab are never perfect. We use a
partially mixed Werner state (1.51), whose purity is characterised by the visibility
V , to model this imperfection. Note that this is not equivalent to the visibility of
quantum interference (1.134). Figure4.2(a, inset) shows the probability of violation
as a function of V , demonstrating the robustness of generic nonlocality to imper-
fect experimental state preparation. For example, with V = 0.9 and δ = 0.1, the
probability of violation remains greater than 98.2%.

http://dx.doi.org/10.1007/978-3-319-21518-1_1
http://dx.doi.org/10.1007/978-3-319-21518-1_1
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4.2.2 Experiment

The scheme described here is immediately applicable to a broad variety of scenarios,
physical systems, and qubit encodings, including polarization states of entangled
photons in optical fiber and free space, and path-encoding in photonic chips. We
chose to perform our experimental implementation using the cnot-mz chip previ-
ously described, providing two path-encoded qubits with arbitrary state preparation
and measurement capabilities. The scheme for reference-frame independent Bell
violation described here is not absolutely necessary in order to violate CHSH on the
cnot-mz, as alignment of reference frames is relatively straightforward. However,
as we show in the Sect. 4.3, an extension to this scheme allows Bell violation with the
CNOT-MZ in a “black-box” scenario, using completely uncalibrated phaseshifters.

We experimentally tested the situation in which Alice and Bob measure the sin-
glet using orthogonal measurement triads.We prepare the singlet state using indistin-
guishable photons from a type-I SPDC source, together with the cnot’ gate and local
rotations as described in Sect. 2.6.3.We then generate randomly chosenmeasurement
triads �ai , �b j using a pseudo-random number generator [11]. Having calibrated the
phase/voltage relationship of the phase shifters as described in Sect. 2.3.3, we then
apply appropriate voltages to phaseshifters φ5−8 in order to perform the nine mea-
surements, evaluating Ei j . For each measurement setting, two-photon coincidence
counts between all 4 combinations of APDs (C00, C01, C10, C11) are then measured
for a fixed amount of time. The typical rate of simultaneous photon detection coinci-
dences was∼1 kHz. From this data we compute themaximal CHSHvalue as detailed
above, and the entire procedure is repeated 100 times. The results are presented in
Fig. 4.3a, where accidental coincidences, arising primarily from photons originating
from different down-conversion events, which are measured throughout the experi-
ment, have been subtracted from the data. Remarkably, all 100 trials lead to a clear
CHSH violation; the average CHSH value we observe is ∼2.45, while the smallest
measured value is ∼2.10.

The visibility of the highest-fidelity experimental state was 0.913 ± 0.004, mea-
sured by maximum-likelihood quantum state tomography. Experimental imper-
fection in the photon source, cnot-mz device, and phaseshifter calibration all
account for reduced visibility of the state, as described in Sect. 2.9.1. In order to
further test the robustness of the reference-frame-independent scheme described
here, we deliberately introduced a temporal delay between the two photons at
the SPDC source, increasing their distinguishability. The effect is as though the
cnot’ gate implements an incoherent mixture of the cnot’ and identity operations
[12]. Note that this does not reproduce the Werner state ρ̂V , instead approximating
ρ̂ = p|�−〉〈�−| + (1− p)|01〉〈01|, where p depends non-trivially on the temporal
delay.

We repeat the protocol described above for a range of visibilities, estimating the
visibility of the state through tomographic reconstruction of the experimental den-
sity matrix. Figure4.3b clearly demonstrates the robustness of our scheme, in good
agreement with theoretical predictions: a considerable amount of mixture must be

http://dx.doi.org/10.1007/978-3-319-21518-1_2
http://dx.doi.org/10.1007/978-3-319-21518-1_2
http://dx.doi.org/10.1007/978-3-319-21518-1_2
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(a) (b)

Fig. 4.3 Bell tests requiring no shared reference frame. a 100 successive Bell tests. In each itera-
tion, both Alice and Bob use a randomly-chosen measurement triad. For each iteration, the maximal
CHSH value is plotted (black points). We observe CHSH violation in all trials; the red line indi-
cates the local bound (S = 2). The smallest CHSH value is ∼2.1, while the mean CHSH value
(dashed line) is ∼2.45. This leads to an estimate of the visibility of V = 2.45

2.6 � 0.942, to be com-
pared with 0.913 ± 0.004 obtained by maximum likelihood quantum state tomography [10]. This
slight discrepancy is due to the fact that our entangled state is not exactly of the form of a Werner
state. Error bars are too small to draw. b The experiment of (a) is repeated with reduced visibility of
quantum interference, illustrating the robustness of the scheme. Each point shows the probability of
CHSH violation estimated using 100 trials. Uncertainty in probability is estimated as the standard
error. Visibility for each point is estimated by state tomography, where the error bar is calculated
using a Monte Carlo approach. Red points show data corrected for accidental coincidences. The
black line shows the theoretical curve from Fig. 4.2

introduced in order to significantly reduce the probability of obtaining a CHSH vio-
lation. The discrepancy between experiment and theory is largely due to tomographic
errors and the fact that we do not exactly prepare the Werner state (1.51). Together
these results show that large Bell violations can be obtained without a shared refer-
ence frame, even with realistic experimental imperfections.

4.3 Bell Tests Without Calibrated Devices

Although Alice and Bob do not need to share a reference frame in order to implement
the scheme described above, they nonetheless require well-calibrated measurement
devices in order to construct mutually unbiased measurement triads. Calibration of
measurement devices, such as wave-plates, phaseshifters, etc. is a routine task, but
may be challenging or even impossible in certain scenarios, forcing Alice and Bob
to measure in completely random, non-orthogonal bases, which are unlikely to be
uniformly distributed on the 2-sphere.

It was shown in [6] that if Alice and Bob choosemeasurements entirely at random,
the probability of violation is p ∼ 28%. If they make n repeated measurements of S
using random settings, they will asymptotically approach unit probability of eventual
violation as Pn ∼ 0.72n . Can they do better than this?

http://dx.doi.org/10.1007/978-3-319-21518-1_1
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4.3.1 Theory

Assume that Alice and Bob measure all possible expectation values Ei j over m ran-
dom measurement settings per party �ai and �b j . We can again write these expectation
values in matrix form,

E =

⎛

⎜⎜⎜⎜⎜⎝

E00 E01 E02 E03 . . .

E10 E11 E12 E13 . . .

E20 E21 E22 E23 . . .

E30 E31 E32 E33 . . .

. . . . . . . . . . . .
. . .

⎞

⎟⎟⎟⎟⎟⎠
(4.7)

Now, there are an enormous number of ways in which groups of four expectation
values from E can be combined to form valid CHSH inequalities in the form of (4.1).
As a result, although it is no longer guaranteed that we will obtain nonlocal statistics,
the probability of violation increases rapidly with m to the extent that for m = 5,
assuming a perfect singlet state, p ∼ 99.5%. This approach is similarly robust to
limited visibility of the state, yielding ∼97% probability of violation when V = 0.9
and m = 5. Figure4.2 shows the results of numerical simulations of this scenario
for m ∈ [2, 8].

4.3.2 Experiment

Although the phaseshifters in the cnot-mz device had been well calibrated prior to
this experiment, we emphasise the time-consuming nature of the calibration proce-
dure, and the fact that the phase-voltage relationship is not consistent across heaters.
To further complicate calibration, the phase-voltage response of an individual heater
will drift with use over time. In order to demonstrate the robustness of the above
scheme to non-uniform randomness in the choice of measurement settings, we per-
formed Bell-CHSH tests without making use of the available phase-voltage infor-
mation for phaseshifters φ5−8.

Having prepared the singlet state using the cnot’ gate, we chose themeasurement
operators �ai and �b j by randomly picking voltages in the interval [0, 7] V for phase-
shifters φ5,6 and φ7,8 respectively, where 7V is simply a hardware limitation of the
heaters. Since the phase-voltage response of each heater is nonlinear (see Sect. 2.3.3),
this gives rise to phases which are not uniformly distributed in the interval [0, 2π],
and therefore measurement bases Âi , B̂ j which are certainly not chosen by the Haar
measure.

We implemented this protocol for m ∈ {2, 3, 4, 5}, observing a rapid increase in
the probability of violation with m, as shown in Fig. 4.4. For m = 5, we find 95
out of 100 trials lead to a CHSH violation, even when the choice of measurement
is not uniformly random. The visibility V of the state used for this experiment was
measured using state tomography to be 0.869 ± 0.003.

http://dx.doi.org/10.1007/978-3-319-21518-1_2
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Fig. 4.4 Experimental Bell tests using uncalibrated devices. We perform Bell tests on a two-qubit
Bell state using uncalibrated measurement interferometers, choosing voltages uniformly from the
interval [0, 7] V . For m = 2, 3, 4, 5 local measurement settings, we perform 100 trials (for each
value of m). As the number of measurement settings m increases, the probability of obtaining a
Bell violation rapidly approaches one. For m ≥ 3, the average CHSH value (dashed line) is above
the local bound of CHSH=2 (red line). Error bars were estimated by a Monte Carlo technique,
assuming Poissonian statistics. This data has been corrected for accidental coincidences (color
online)

4.4 Discussion

Often, entanglement and nonlocality are seen as rare and fragile phenomena,
extremely sensitive to experimental noise and imperfection. By showing that nonlo-
cality can be robustly detected without the need to calibrate or align measurement
devices, even with limited visibility of state preparation, we have provided a new
fundamental insight into the generic nature of nonlocality.

The schemes described here potentially have practical applications. First, Bell
tests provide an unambiguous and device-independent test for the presence of
entanglement—a powerful tool for the future development of quantum
technologies—and the ability to perform such tests without calibration or align-
ment will likely facilitate such tests in some scenarios. The necessary criteria for a
loophole-free reference-frame independent Bell test using the scheme described in
Sect. 4.2 are discussed in further detail by Gómez et al. [13], paying particular atten-
tion to detection efficiencies. A further experimental implementation of Bell tests
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using orthogonal triads has been performed by Palsson et al. [14]. It has recently
been proposed [15] that this scheme might also facilitate the detection of nonlocality
of a single photon (see, for example, Ref. [16]).

We also expect that this work will find applications in quantum communication
protocols. Previous work by Laing et al. [17] describes a technique for reference-
frame independent QKD in which the parties share in advance a single common
measurement basis, and this theory has recently been implemented in collaboration
with Nokia [4, 18]. Our work extends this capability to the case where no knowl-
edge of the reference-frame is shared. More recent interest in the general topic of
alignment-free quantum communication has been reviewed by D’Ambrosio et al.
[19], and an experimental implementation of device-independent QKD without a
shared reference frame, using our theoretical framework, was recently described
in [20].

4.5 A Noise-Powered Entanglement Detector

In the previous discussion, although the relative orientation ofAlice andBob’s frames
is unknown, it was assumed that this orientation does not change between consecutive
measurements, i.e. every element of (4.3) can be estimated before �ai , �b j change by
any appreciable amount. However, for realistic unstable reference frames—including
polarization in fiber and bulk path interferometers—the rate of change is often so
high that this assumption does not hold.

We now consider the situation in which each reference frame changes, uniformly
and at random, every time Alice and Bob measure an expectation value. Naïvely, it
might appear that there is then very little that Alice and Bob can say about the state,
as they are forced to make observations through a “fog” of random, uncorrelated
local unitary rotations. However, we will introduce a simple protocol which exploits
this noise, allowing Alice and Bob to distinguish between entangled and separable
sources, and estimate certain physical properties of the state. We discuss immediate
practical applications of this scheme with respect to state characterization and secure
communication.

The experimental scenario is illustrated in Fig. 4.5. Charlie has a source, which
generates qubit pairs in the state ρ̂C . He claims that ρ̂C is entangled, but this claim is
not trusted. Charlie sends qubit pairs to two observers, Alice and Bob, who measure
their respective systems in a local basis before comparing measurement outcomes.
The channels between Charlie and Alice/Bob, corresponding to unitary operators
ÛA(t), ÛB(t), are assumed to be lossless but unstable. At some time t , the two-qubit
channel Û is described by a unitary operator

Û(t) = ÛA(t) ⊗ ÛB(t), (4.8)

where ÛA(t), ÛB(t) are chosen independently and at random from the Haar measure
on SU (2). After some interval�t , instability in the channel leads to new instances of
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(a) (b)

(c)

Fig. 4.5 a Charlie has an untrusted source of two-qubit states ρ̂C , which he claims is entangled.
Alice and Bob want to reliably estimate some measure of entanglement generated at the source, but
their view is obscured by an unstable unitary channel. b Photonic experimental implementation.
Charlie has a type-2 SPDC source of photon pairs, which can be switched between entangled and
separable operation. He sends photon pairs to Alice and Bob through non-polarization-maintaining
optical fiber,which is continuouslymoved, bent, and twisted throughout the experiment. cNumerical
simulation, showing the distribution of T = 1

N

∑
i |〈Z Z〉i |, when Charlie prepares any separable

state (red lines) versus any maximally entangled state (blue lines). Alice and Bob are thus able to
distinguish entangled and separable sources

ÛA, ÛB , drawn again from theHaarmeasure. During a single timestep t j = t0+ j�t ,
Alice and Bob receive n copies of the state

ρ̂i
AB = Û(t j ) ρ̂C Û(t j )

† = Û j ρ̂C Û†
j (4.9)

where n is sufficiently large to give a good estimate of the expectation value

E j = 〈 Â j ⊗ B̂ j 〉 = Tr (ρ̂ j
AB Â j ⊗ B̂ j ), (4.10)

where Â, B̂ are Alice and Bob’s single-qubit measurement operators respectively.
Alice and Bob would now like to determine whether Charlie’s state is entangled.

Note that Charlie is not held accountable for the behaviour of the channel—Alice
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and Bob care about the degree of entanglement of ρ̂C , which is independent of Û .
Averaging over all time (t → ∞), the state seen by Alice and Bob is

ρ̂∞
AB =

∫ ∞

0
dt (Û(t) ρ̂C Û(t)†) =

∫

SU (2)⊗SU (2)
d Û (Û ρ̂C Û†). (4.11)

Since the defining representation of SU (2)⊗SU (2) is irreducible (all local two qubit
operations leave no nontrivial subspaces invariant), Schur’s lemma implies that ρ̂∞

AB
is proportional to the identity regardless of ρ̂C , and due to normalization, ρ̂∞

AB = 1/4,
i.e. Alice and Bob sees a maximally mixed state.

What happens if Alice and Bob attempt to perform quantum state tomography
(Sect. 2.6), ignoring fluctuations in the channel? Since tomography depends on a
finite number of measured expectation values (t < ∞), the reconstructed density
matrix is not necessarily maximally mixed, but nevertheless provides an unfaithful
representation of ρ̂C , and is not guaranteed to contain information on the degree
of entanglement. If Alice and Bob attempt to evaluate CHSH, the situation is even
worse: a basic condition for CHSH is that the state should not change between
measurements, and when this condition is broken Alice and Bob can erroneously
detect a Bell violation even when Charlie’s state is separable. In fact, numerical
simulations indicate that separable and entangled sources both violate CHSH with
equal probability, ∼1%.

Assuming that ÛA, ÛB are Haar-random, Alice and Bob know that no particular
choice of local measurement basis can givemore information than any other.Without
loss of generality, we can therefore assume that they always measure the σ̂z basis,
obtaining expectation values

E j = 〈σ̂z ⊗ σ̂z〉 = Tr
(
(σ̂z ⊗ σ̂z)(Û j ρ̂C Û†

j )
)

. (4.12)

It can easily be shown that the average value of E j over all Û j is always 0, regardless
of ρ̂C . However, if we take the absolute value of E j before averaging, we will show
that the quantity

T ≡ 〈|E |〉 =
N∑

i=0

|E j |
N

, (4.13)

distinguishes entangled states from separable states, and can be used to infer the
degree of entanglement of ρ̂C . Figure4.5c is result of a numerical simulation, showing
the distribution of T for a separable state |00〉 and a maximally entangled state
|�−〉, averaging over N measurements. All separable pure states give a mean value
T = 1/4, while all maximally entangled two-qubit states give T = 1/2. Partially
entangled states give intermediate values. Maximally mixed states give T = 0.
As the number of averages N is increased, each probability distribution converges
towards a Gaussian profile with FWHMproportional to 1/

√
N , following the central

limit theorem. By taking an increasing number of measurements, Alice and Bob

http://dx.doi.org/10.1007/978-3-319-21518-1_2
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can therefore distinguish a separable state from an entangled state to an arbitrary
confidence level.

Proof Given that Û = ÛA ⊗ ÛB where ÛA,B are chosen by the Haar measure on
SU (2), we can assumewithout loss of generality that, after the channel, any separable
state is equivalent to the state |00〉 and any maximally entangled state is equivalent
to the singlet |�−〉. Unitary rotation of a qubit followed by measurement in the σ̂z

basis is equivalent to measurement in the effective basis M̂e f f = Û †σ̂zÛ . Rather
than integrating ÛA,B over the Haar measure on SU (2), it is simpler to consider the
Bloch vectors �a j , �b j ∈ R

(3), which depend on ÛA,B and map to Alice and Bob’s
effective measurement operators

Âeff
j = �a j · �σ = ax

j σ̂x + ay
j σ̂y + az

j σ̂z (4.14)

B̂eff
j = �b j · �σ = bx

j σ̂x + by
j σ̂y + bz

j σ̂z, (4.15)

which correspond to points on the 2-sphere S(2). For the singlet, the expectation value
(4.12) is simply given by the dot product, E j = −�a j · �b j . For |00〉, the expectation
value is E j = az

j az
j .

In order to compute the average value of T in the asymptotic limit of infinite
statistics, we must now integrate |E | over SU (2) × SU (2). This is equivalent to
integrating each Bloch vector over the 2-sphere,

〈|E |〉∞ =
∫

S(2)
d�a

∫

S(2)
d �b |E |. (4.16)

First, consider the singlet state. The absolute expectation value |E | = |�a · �b| =
| cos(φ)| depends only on the angle φ between �a and �b. To emphasise, it depends only
on the relationship between the two channel unitaries. Without loss of generality,
we can therefore fix �a such that Â1 = σ̂z . Then, we integrate |E | over �b using a
single parameter, φ, which rotates �b about the x-axis of the Bloch sphere. In order
to integrate this angle uniformly over S(2), we must take φ = cos−1(2v − 1), where
v is uniformly distributed in the interval [0, 1]. Now,

〈|E |〉∞ =
∫ 2π

0
dφ| cosφ| =

∫ 1

0
dv|2v − 1| = 1

2
. (4.17)

Now consider the separable state. The absolute expectation value |E | = |az · bz |
depends on both the relationship and the individual directions of �a, �b. Writing this
expression in terms of the angles φ1, φ2 between ẑ and �a, �b respectively, we have
|E | = | cosφ1 cosφ2|. Using the same parametrization to uniformly integrate over
S

(2) in (4.16), this becomes
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〈|E |〉∞ =
∫ 2π

0
dφ1

∫ 2π

0
dφ2| cosφ1 · cosφ2| (4.18)

=
∫ 1

0
dv1

∫ 1

0
dv2|(2v − 1)(2v − 1)| = 1

4
. (4.19)

So, all maximally entangled two-qubit states have T̄ = 1/2 and all separable states
have T̄ = 1/4. �

To see how this scheme performs for states other than |00〉 and |�−〉, we consider
the state

ρ̂C (v,μ) = v|φ(μ)〉〈φ(μ)| + (1 − v)1/4, (4.20)

where |φ(μ)〉 = √
μ|�−〉 + √

1 − μ|00〉, which can be continuously tuned between
a maximally entangled pure state, a separable pure state, and the maximally mixed
state. Figure4.6a shows the results of a numerical calculation of the mean value of
T , as a function of the purity and concurrence of ρ̂C (v,μ) for various values of
v and μ. As we would expect of a sensible entanglement measure, T is maximal
for a maximally entangled state (T = 1

2 ) and minimal for the maximally mixed
state (T = 0). As the concurrence or purity of the state is reduced, the strength of
correlations is naturally reduced and T falls offmonotonically.Note that for separable
states, T also gives a measure of purity.

(a) (b)

Fig. 4.6 a Numerical simulation of average T values for states of varying purity and concurrence.
The heatmap shows the mean value of T as a function of the purity T r(ρ̂2C ) and concurrence C(ρ̂C ),
over states parametrized as ρ̂C (v,μ) = v|φ(μ)〉〈φ(μ)| + (1 − v)1/4, with |φ(μ)〉 = √

μ|�−〉 +√
1 − μ|00〉. Thewhite area of thefigure is unphysical:maximallymixed states cannot bemaximally

entangled. Wavelike features in the figure are an artefact of the numerical interpolation method.
b Numerical simulation, showing the behaviour of 〈|E |〉when the channel fluctuates on a timescale
shorter than that required to measure a single expectation value
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4.5.1 Experiment

We experimentally tested this scheme using polarization-entangled photon pairs,
with both artificial and environmental sources of instability.

4.5.1.1 Experimental Setup

The experimental setup is shown in Fig. 4.5. We used a type-II spontaneous para-
metric downconversion source, as described in Sect. 1.6.3 of this thesis, to generate
entangled photon pairs at 808nm. A 404nm Toptica iBeam laser at 60mW was
focussed to a waist of ∼40µm on a 2mm-thick BIBO crystal. We collected down-
converted photons at the intersection of the two cones as shown in Fig. 1.8, using two
prisms. Each photonwas sent through an arrangement of quarter-wave and half-wave
plates, allowing arbitrary SU (2) polarization rotations to be applied. A 1mm-thick
uniaxial BIBO crystal was used to compensate for temporal walk-off between hori-
zontal and vertical polarizations. Each arm of the source was then coupled into ∼4m
of SMF (OZ optics, 808nm). The measurement setup consisted of two fibre-coupled
PBS and four Perkin Elmer APD single-photon detectors, and allows polarization
readout in the {|H〉, |V 〉} basis. A linear polarizer was optionally inserted into each
arm, before the fiber, allowing projective measurements to be performed without the
influence of uncontrolled polarization rotations due to the fiber.

4.5.1.2 Source Characterization

The source was optimized to prepare the Bell state

|�+〉 = 1√
2

(|01〉 + |10〉) = 1√
2

(|H V 〉 + |V H〉) , (4.21)

where the phase between |H V 〉 and |V H〉 terms is determined by the orientation of
the compensation crystals. The experimental state was characterized by full quan-
tum state tomography. The waveplates and polarizers shown in Fig. 4.5 were used to
implement 36 linearly independent, mutually unbiased measurements, as described
for path encoding in Sect. 2.6, and the state was then reconstructed using the same
standard maximum-likelihood technique. Real and imaginary parts of the recon-
structed density matrix are shown in Fig. 4.7(c, inset). The quantum state fidelity
with respect to |�−〉 was found to be 0.965 ± 0.002. After losses due to optical
elements, fiber coupling, and detector inefficiency, the twofold count-rate registered
at the detectors was typically ∼1000 counts per second.

http://dx.doi.org/10.1007/978-3-319-21518-1_1
http://dx.doi.org/10.1007/978-3-319-21518-1_1
http://dx.doi.org/10.1007/978-3-319-21518-1_2
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(a)

(b) (c)

Fig. 4.7 Experimental data. a Expectation values E j = (C00 − C01 − C10)/C, measured as a
function of time for a Bell state (blue lines) and a separable state (red lines), with optical fiber
subject to constant bending and twisting. b Values of T computed from the data shown in (a), with
N ∈ [1, 20]. The entangled distributions (red lines) are clearly distinguishable from the separable
state data (blue lines). By encoding bits of information in the choice of entangled/separable state, an
image can be sent through the noisy polarization channel. Inset (i) source image sent by Charlie, (ii)
image recovered by Alice and Bob. c Twisting optical fiber does not sample uniformly from SU (2).
This data was measured using waveplates to experimentally implement ∼100 unitaries sampled
numerically from SU (2)× SU (2). Blue and red dots show the quantum and classical experimental
distributions of T respectively, for N = 4. Solid lines show the theoretical prediction. Inset real and
imaginary parts of |�−〉 as generated by the source, characterized by quantum state tomography

4.5.1.3 Environmental Noise

As already discussed, the polarization of light is not maintained by SMF. The bire-
fringence of the fiber is affected by mechanical stress, and a piece of uniformly
stressed fiber has an equivalent effect to a wave-plate, whose characteristic phase-
shift depends on the strain, fiber length, core diameter, temperature, and wavelength
of light. In fact, arbitrary SU (2) polarization rotations can be accomplished using a
single piece of SMF, by applying controlled stress to three different regions—these
devices are typically marketed as “fiber polarization controllers”. A section of fiber
exposed to uncontrolled temperature variation and mechanical vibration in the ambi-
ent environment of the laboratory will therefore tend to effect a slowly time-varying,
arbitrary, random polarization rotation upon the light it carries. The fact that telecom
optical fiber networks do not typically use polarization encoding is partly due to cost
involved in overcoming this effect.

In our first experiment, we investigated the performance of our technique using
random unitary rotations generated in this way. Removing both polarizers, we con-
nected each arm of the source to a fibre-coupled PBS which, together with two
detectors, projects onto the |H〉, |V 〉 states—i.e. measurement in the σ̂z basis. We
then recorded coincidence count-rates cH H , cH V , cV H , cV V , corresponding to the
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|H H〉, |H V 〉, |V H〉, |V V 〉 basis states respectively, whilemanually straining, bend-
ing and shaking both optical fibers. We accumulated ∼250 expectation values

E j = cH H − cH V − cV H + cV V

cH H + cH V + cV H + cV V
. (4.22)

Inserting a linear polarizer at 0◦ into one arm of the source, we then filtered out the
|H V 〉 term of (4.21)—rendering Charlie’s state separable—and took a second set of
data, manipulating the fibers as before. Raw data for both states is shown in Fig. 4.7.
Although the average expectation value 〈E j 〉 is equal to zero for both states, the
entangled state is clearly more likely to yield strongly correlated or anticorrelated
statistics. Figure4.7 shows the distribution of the absolute expectation value, when
averaging over N measurements, for N ∈ [1, 20]. As predicted, we see a clear
distinction between distributions generated by the entangled and separable states,
becoming increasingly pronounced with larger values of N . When Charlie prepares
|�+〉, the average value of T (4.13) was found to be 〈T 〉 ∼ 0.399. For the separable
state |V H〉, we found 〈T 〉 ∼ 0.163.

The distribution of random unitaries generated by manual manipulation of SMF
is not perfectly uniform. Moreover, it is inevitable that the fiber will move somewhat
during each measurement step, in which case the measured expectation value is
averaged over a continuum of states. This leads to an overall reduction in the absolute
expectation value, and explainswhymeasured values of 〈T 〉were not closer to 1/2 and
1/4 respectively. Experimentally, it will often be the case that the channel unitary will
change by a significant amount during themeasurement of a single expectation value.
A numerical analysis of the performance of this scheme under such conditions is
shown in Fig. 4.6b. Although 〈T 〉 does indeed reduce as the maximum rate of change
of the channel is increased, we note a consistent separation between entangled and
separable states, suggesting that they might still be distinguished even when the
channel fluctuates much faster than a measurement can be made.

In order to illustrate a possible practical application of this scheme, we consider
a situation in which Charlie must send a message to Alice and Bob. By switching
between entangled and separable state preparation, Charlie can encode the zero and
one states of a classical bit, which can then be read out by Alice and Bob—despite
noise on the channel. We used this approach to send 100 bits of data, comprising an
image of the character π, from source to observer with a statistical fidelity of 85%.
Results are shown in Fig. 4.7(b, inset).

4.5.1.4 Haar-Random Noise

Stressed optical fibre provides a practical example of an unstable environmental
channel, but does not typically sample uniformly from SU (2). In order to perform a
more controlled test of the theoretical results outlined above, we took measurements
using an arrangement of waveplates to implement each qubit channel. Polarizers
were inserted into each beam, allowing each qubit to be projected into the {|H〉, |V 〉}
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basis without any influence from the fibre. By setting the fast-axis angles of three
consecutive waveplates (QWP, HWP, QWP in that order), any unitary polarization
rotation in SU (2) can be realized. Following the approach of Mezzadri [11], we
sampled ∼40 pseudo-random separable two-qubit unitaries from the Haar measure
and solved for the requisite waveplate angles. Setting these angles to Alice and
Bob’s waveplates, we measured expectation values for both the separable state and
the singlet, as before. The distribution of experimentallymeasured expectation values
is shown, for each state, in Fig. 4.7c. We measured mean values of 〈T 〉 of 0.5 ± 0.1
and 0.18±0.07 for the entangled and separable state respectively, compared to ideal
theoretical values of 0.5 and 0.25.

4.6 Discussion

The results presented here allow us to formalize a commonly-held, natural and acces-
sible notion of entanglement. Taking two separate systems, a random local opera-
tion is applied to each system. Each system is then measured in a local basis. Our
main result simply formalizes the fact that, on average, entangled systems yield
more strongly correlated measurement outcomes than separable systems. Since our
scheme is completely reference-frame independent,we cangive this descriptionwith-
out speaking of any explicit choice of measurement operators, waveplate angles, or
even specific states.

A compelling property of this scheme is the beneficial function of Haar-random,
or “white” noise. We see the greatest statistical separation between entangled and
separable states, and thus obtain themost information, when instability in the channel
is Haar-random. Consider the situation illustrated in Fig. 4.8. Alice and Bob must
assess the degree of entanglement of Charlie’s state. They are forced to receive qubits

Device under
test

Untrusted, noisy
local channel

Trusted Haar-random 
local measurement

?

?

?

Verification

Fig. 4.8 Alice and Bob are tasked with assessing the entangling capability of Charlie’s apparatus,
but are forced to communicate with him over an untrusted, noisy local channel. By measuring in
a controlled Haar-random local basis, they effectively override any fluctuation in the channel, and
are able to reliably confirm or deny that Charlie’s state is entangled. Even if Charlie has control of
the channel, he would need to gain information on Alice and Bob’s measurement settings in order
to cheat in this scenario
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from Charlie over an unstable channel, which is untrusted but guaranteed to be local
(i.e. Û ∈ SU (2) ⊗ SU (2)). In this scenario, there is no guarantee that the channel is
Haar-random—it may even be the case that Charlie is deliberately manipulating the
channel. However, Alice and Bob can effectively “cancel out” any local operations
that may occur on the channel, by deliberately measuring in a Haar-random basis.
It is then vanishingly unlikely that Alice and Bob will register a large value of T
(i.e. T ∼ 0.5), unless Bob truly has access to an entangled source, or is able to learn
Alice and Bob’s choice of measurement setting. This ability to override unknown
noise on a channel using controlled “white noise”, while still obtaining meaningful
information on the source, has obvious practical implications for the characteriza-
tion of quantum states and processes. It would be interesting to consider possible
applications outside photonics, where an entangled state must be observed through
a noisy local channel.

4.7 Statement of Work

All of the experimental data presented herewasmeasured bymyself, and J.Meinecke
except for the density matrix in Sect. 4.5. I conceived the original idea in Sect. 4.5.
The proof of measurement triads, and Fig. 4.2 are due to my co-authors.
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Chapter 5
Quantum Chemistry on a Photonic Chip

5.1 Introduction

In previous chapters we have seen that quantum mechanics permits strong nonlocal
correlations which are classically forbidden. It turns out that this makes it very
difficult to engineer a classical digital computer to mimic the behaviour of quantum
systems—it seems very likely that the general problem is classically intractable.
However, we have good reason to believe that a quantum computer should be able
to efficiently simulate most quantum systems of interest.

In this chapter we provide a proof-of-principle demonstration of a new algorithm
for quantum computers that would give precise calculations of chemical energies
and configurations in regimes where classical techniques either fail to give good
answers or require exponential computing power. We first examine existing methods
for the simulation of quantum systems on classical and quantum computers, with
particular focus on quantum chemistry. We then describe our algorithm, and discuss
its distinguishing features with respect to existing techniques. Finally, we use this
algorithm in a two-photon experiment, simulating the Helium Hydride molecule on
the CNOT-MZ chip previously described.

5.2 Simulating Quantum Mechanics

In a large laboratory in Washington DC, a robot arm originally designed to spot-
weld car bodies has been installed. Stacked around the walls of the lab are 450,000
micro-test tubes, each containing a different chemical primitive. 24h a day, seven
days a week, this arm, together with a computer vision system, tests prospective
drugs for toxicity and efficacy against human-borne diseases [1]. Drug discovery
currently has a 99.9% failure rate, accounting for a significant proportion of the
billion dollars it takes to bring a new drug to market. The process of discovery of new
high-temperature superconductors, catalysts, and photovoltaics is not far removed
from this trial-and-error approach.

© Springer International Publishing Switzerland 2016
P. Shadbolt, Complexity and Control in Quantum Photonics,
Springer Theses, DOI 10.1007/978-3-319-21518-1_5

137



138 5 Quantum Chemistry on a Photonic Chip

In such fields as mechanical engineering, architecture, microelectronics and
aerospace, the design process can be made almost entirely deterministic owing to the
power of computer models to predict the success or failure of a given design, without
the need for real-world testing. In many cases the computer can itself become the
designer, rapidly searching through a large parameter space for optimal geometries
or structures. Why is it that many drugs and new materials are not designed in this
way?

In Simulating physics with computers [2], Feynman describes the intrinsic diffi-
culty of simulating nature, as well as a radical new approach to the problem:

Nature isn’t classical, dammit, and if you want to make a simulation of nature, you’d better
make it quantum mechanical, and by golly it’s a wonderful problem, because it doesn’t look
so easy.

Here I will attempt to paraphrase Feynmans argument. Let us define a computer
simulation of some physical system as being efficient when the number of computer
components required (gate operations, memory units and so on) is a polynomial
function of the space-time volume of the physical system of interest. If, on the other
hand, the necessary computational resources scale exponentially with the problem
size, we say that the simulation is inefficient and—if we have any ambition to tackle
progressively larger problems—useless. There is generally speaking a one-way cor-
respondence between the space ormemory required by an algorithm and its execution
time: roughly speaking, if an algorithm really needs an exponential amount of mem-
ory, it will not be able to even address all that data in polynomial time, let alone solve
the problem at hand.

Consider for example the problem of simulating a system of n coins, each of
which can be found in the state H or T. The system has 2n possible states:

H0H1H2H3 . . . Hn

T0H1H2H3 . . . Hn

. . .

T0T1T2T3 . . . Tn

an exponentially large state space. However, the system only ever occupies one of
these states at a time. Thus the instantaneous state of a system of n coins can always
be efficiently represented by n bits of memory, with a simple one-to-one mapping
H → 0, T → 1.

Coins flips are often used as a source of randomness. Assuming each flip produces
a random output, the expectation value of some function f (X) of n coin flips depends
on the probability distribution over all possible outcomes:

〈 f (X)〉 = 〈 f (x0x1 . . . xn)〉 =
2n∑

j=1

f (x j )p(x j ) (5.1)
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where x j is the j th possible outcome of the classical random variable X correspond-
ing to n coin flips. It may appear at first that in order to simulate such a probabilistic
system of coins, we must represent the full probability distribution P(X) in the
computer’s memory, and compute the behaviour of the system by directly evaluating
expectation values of the form (5.1). This would again render the problem intractable,
since P(X) has exponentially many entries. However, if we allow that the evolution
of the computer from state to state can itself be random, then we can efficiently
simulate the physics of coins—simply by exposing bits in memory to a set of proba-
bilistic operations equivalent to those experienced by the coins themselves. In some
sense, we generate the probability distribution P(X) without explicitly writing it
down. Since the evolution of bits in a deterministic classical computer can be made
approximately random with a polynomial overhead in resources, all experiments
which depend on random coin flips can be efficiently simulated on a computer.

Now let us consider the problem of simulating a system of n quantum coins,
equivalent to spin- 12 particles or qubits. Each coin individually may be in an arbitrary
superposition state |ψ〉 = α|H〉 + β|T 〉. The state of the full system is in general
entangled:

|�〉 = a0|H0H1H2H3 . . . Hn〉 (5.2)

+ a1|T0H1H2H3 . . . Hn〉 (5.3)

. . . (5.4)

+ a2n |T0T1T2T3 . . . Tn〉, (5.5)

where ai are complex probability amplitudes with
∑

i |a2
i | = 1. How should we

represent this state on a classical computer? Naïvely, we can write down the real and
imaginary parts of each ai using 2× 2n floating-point variables, an approach which
is exponentially costly in time and space. Immediately this representation problem
appears hard, but we have previously prevailed in simulating random phenomena,
achieving an exponential advantage over the naïve approach through a simple mod-
ification of the computer. Can we accomplish a similar trick for quantum coins, and
use a classical computer to efficiently represent and evolve the quantum state?1

The first piece of evidence to the contrary is the nonlocal behaviour of quantum
states, described and experimentally tested in Sects. 1.3.8 and 2.8 and Chap.4 of
this thesis. Since quantum states can exhibit correlations which provably cannot be
reproduced by any local classical system, wemight expect that it would be difficult to
persuade classical bits in a CPU to accurately mimic the evolution and measurement
of the quantum state. However, this argument does not say anything about scaling—
perhaps such correlations can be emulated, in a completely local way, with a small
(polynomial) overhead?

At this point we head into the territory of (quantum) computational complexity
theory, where a great deal of beautiful work has been done, but much remains to

1Note that this question is related to the Extended Church-Turing Thesis, discussed in Sect. 6.3.2 of
this thesis.

http://dx.doi.org/10.1007/978-3-319-21518-1_1
http://dx.doi.org/10.1007/978-3-319-21518-1_2
http://dx.doi.org/10.1007/978-3-319-21518-1_4
http://dx.doi.org/10.1007/978-3-319-21518-1_6
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be proved. In 1995, Peter Shor described [3] a polynomial-time quantum algorithm
for prime factorization. No polynomial-time classical algorithm for prime factoring
exists, and the problem is generally believed to be exponentially hard for classical
computers, although there is no proof. If factoring is indeed outside of P, then a
universal full-scale quantum computer running Shor’s algorithm would constitute a
“physical system of interest”, albeit contrived, which cannot be efficiently simulated
by any classical machine. Further evidence has recently been provided by Aaron-
son and Arkhipov, in their resent proposal for the BosonSampling linear optical
quantum computer, discussed in detail in Sect. 6.3.2. The authors provide very strong
evidence that efficient simulation of the quantum behaviour of single photons in cer-
tain classes of linear optical network is classically intractable. This result arguably
has stronger implications for the complexity of quantum simulation, as the implica-
tions of a polynomial-time classical algorithm for BosonSampling would be much
more dramatic than the discovery of a fast classical factoring algorithm.

So we end up with a reasonable hunch that the simulation of small things—
molecules, drugs, materials—is sometimes classically intractable, and we can see a
number of bright lights in the darkness which support this understanding. This is not
to say that all quantum systems are intrinsically difficult to simulate classically, for
instance, an n-body system whose state remains separable throughout its evolution
is simulated using the same method as for probabilistic classical systems. Only a
subset of natural phenomena exhibit sufficiently strong quantum correlations as to
be classically intractable. Certain regimes of organic [4] and inorganic chemistry [5],
superconducting materials [6, 7] and quantum magnetism [8], and microbiology, for
instance photosynthesis [9], all fall into this regime. Here we will focus our attention
on problems in the field of quantum chemistry.

5.3 Quantum Chemistry

The underlying physical laws necessary for themathematical theory of a large part of physics
and the whole of chemistry are thus completely known, and the difficulty is only that the
exact application of these laws leads to equations much too complicated to be soluble. [10]

Paul Dirac, 1929

Quantumchemistry is the experimental and theoretical study of the quantummechan-
ical behaviour of chemicals. The fundamental goal is the ability to compute and com-
prehend the properties and dynamics of large molecules, without the need to directly
synthesise and test them in the lab. Owing to the complexity of these calculations, a
considerable fraction of this research is dedicated to numerical studies. The roots of
the field lie in the early observations of quantum electronic behaviour due to Faraday,
Kirchhoff, Boltzmann and Planck. Later developments were made by Linus Pauling,
in his famous work on the quantum mechanical nature of the chemical bond [11], as
well as Llewellyn Thomas and Enrico Fermi, to name but a few.

http://dx.doi.org/10.1007/978-3-319-21518-1_6
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5.3.1 Definition of the Problem

Let’s assume thatwe know the chemical composition of amolecule of interest, having
some information on its geometry, the relative positions, masses and charges of the
nuclei, etc. For most chemical systems of interest, the full molecular wavefunction�

can be factorized into electronic and nuclear components via the Born-Oppenheimer
approximation [12]

� = ψe × ψn, (5.6)

after which we assume that the nuclei are stationary and effectively classical, since
they are so much more massive than the electron. The problem then is to solve the
time-independent Schrödinger equation for a system of N nuclei and n electrons

i�
∂

∂t
ψe = Ĥeψe, (5.7)

where Ĥe is the Hamiltonian for the electronic structure problem, which can be
written [13] in second-quantized form as

Ĥe =
∑

i j

hi j â
†
i â j +

∑

i jab

hi jabâ†
i â†

j âa âb. (5.8)

Here â†
j and â j are the fermionic ladder operators, which create and destroy electrons

in a molecular spin orbital (“energy level”) j . The first term in (5.8) is due to
the electronic kinetic energy, the second is a result of electron-electron (Coulomb)
interaction.

Analytic solutions to the electronic structure problem exist for small molecules
such as the Hydrogen atom, but in general we must take a numerical approach. The
basic quantity of interest for chemists is usually an energy E = 〈λ0|Ĥe|λ0〉 or energy
difference �E , where |λ0〉 is an eigenstate of Ĥ . Frequently we are interested in the
dependence of this energy on some molecular or external degree of freedom:

• Howmuch effort must we exert in order to pull this atom away from the rest of the
molecule? What is the complete form of the interaction potential energy surface
of the molecule as a function of its own configuration?

• How high is the energy barrier that we must overcome in order to persuade two
molecules of interest to react?

• How stable is this compound? How much energy would it take to pull it apart?

An example of a very simple approximate solution to such questions is the Lennard-
Jones potential,

VL J = ε

[(rm

r

)12 − 2
(rm

r

)6]
(5.9)



142 5 Quantum Chemistry on a Photonic Chip

which approximates the dependence of the interaction potential on the distance r
between two atoms, where ε is the depth of the potential well at r = rm , the equilib-
rium bond length of themolecule. Lennard-Jones gives a simple and computationally
frugal estimate of the interaction energy, but its approximation breaks down for a
broad variety of chemical systems. For larger, more complex molecules, quantum
chemists depend on more sophisticated models, or ansätze.

5.3.2 Ansätze

The first task in solving problems of the form of (5.7) is to choose a representation,
parametrization or ansatz for the electronic wavefunction �e. The molecular orbital
approximation gives a simple ansatz for the molecular electronic structure, in which
the full electronic wavefunction� is written as a separable product of single-electron
molecular wavefunctions ψi :

�( �r1, �r2, . . . �rn) =
N∏

i=1

ψi (�ri ). (5.10)

known as a Hartree product. Any single-electron molecular wavefunction can be
expressed as a linear combination over a basis set of nbasis atomic orbitals (single-
electron, single-atom wavefunctions) φ j ,

ψi (�r) =
nbasis∑

j=1

ci jφ j (�r). (5.11)

In general, the Hartree product (5.10) violates Pauli exclusion, since it is not antisym-
metric: the expressions ψ( �r1, �r2) = ψ(�r1) × ψ(�r1) and ψ( �r2, �r1) = ψ(�r2) × ψ(�r1)
are not the same, and

ψ( �r1, �r2) �= −ψ( �r2, �r1), (5.12)

i.e. the electronicwavefunction does not change sign upon exchange of two electrons.
The solution is to antisymmetrize thewavefunction, writing it as a linear combination
of Hartree products

ψ(�r1 �r2) = 1√
2

(ψ1(�r1)ψ2(�r2) − ψ2(�r2)ψ1(�r1)) . (5.13)

Using a method due to Slater [14], we can generalize this ansatz to the n-electron
case, including the electron spin, by writing the full electron wavefunction as an
antisymmetrised (A) product of spin orbitals χi (�ri , ω) ∈ [

ψi (�ri )α(↑), ψi (�ri )β(↓)
]
,
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�(�r , ω) ≡ �(x) = A{
n∏

i=1

χi (xi )}, (5.14)

which can be neatly written as a Slater determinant

�(x1, x2 . . . xn) = |χ1χ2 . . . χn〉 = 1√
n!

∣∣∣∣∣∣∣∣∣

χ1(x1) χ2(x1) . . . χn(x1)
χ1(x2) χ2(x2) . . . χn(x2)

...
...

. . .
...

χ1(xn) χ2(xn) . . . χn(xn)

∣∣∣∣∣∣∣∣∣

. (5.15)

The Slater determinant provides an elegant ansatz for separable molecular spin
orbitals, which is physical by construction. Note that this is the fermionic equiv-
alent of the method described in Sect. 1.5.3 to compute bosonic states and statistics
using the permanent per(M). Owing to the fact that states described in this way do
not include any entanglement, every state in the ansatz can be parametrized with a
polynomial number of parameters, the single-electron atomic orbital coefficients ci j

in (5.11). We will herein label the real parameters used to address such a subspace
of states as �φ ≡ ci j .

5.3.2.1 Hartree-Fock

Having chosen an ansatz for the state, the task is then to find the parameter values
�φ which best satisfy the Schrödinger equation. The variational principle states that
any trial wavefunction (a “guess” at �φ) will not have an energy less than the ground
state energy E0 of the Hamiltonian. Therefore we can find a good, approximate solu-
tion to the Schrödinger equation—the ground state itself—simply by varying these
parameters so as to minimize the energy, in what is known as the variational method.
This technique lends itself to a numerical approach, in which an iterative nonlinear
optimization algorithm is used to minimize the energy of a trial wavefunction,

E0 = min
�φ

〈�( �φ)|Ĥ |�( �φ)〉. (5.16)

From �φ, we can then reconstruct full (approximate) information of the electronic
configuration, as well as the ground state energy E0.

The Hartree-Fock-Roothan (HF) method is an iterative, polynomial-time algo-
rithm which computes an approximate solution to (5.16), yielding the HF ground
state |�0〉. Key to the efficiency of this technique are two related assumptions: (i) that
� is separable, allowing it to be expressed as a single Slater determinant, and (ii) that
the Coulomb interaction term in Ĥe is well-described by a mean-field approximation
in which all two-electron contributions are approximated “as well as possible” by
single-electron terms in the same Slater determinant.

http://dx.doi.org/10.1007/978-3-319-21518-1_1
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Fig. 5.1 Schematic of the configuration interaction ansatz—a linear combination of possible mole-
cular spin orbital configurations. When the series is not truncated, we obtain the full configuration
interaction ansatz, which is exact up to the choice of atomic orbital basis set. However, given the
number of orbitals and electrons in a typical molecule of interest, and the number of permutations
thereof, this encoding is classically intractable for systems of more than � 3 atoms

HF provides a polynomial ansatz which has been very successful in describing
a broad range of chemical systems, but does not account for electron correlations
or nonseparability. As such this method fails for many physical systems of interest,
including those described in the introduction to this chapter. In an attempt to remedy
this situation, correlated electronic behaviour has been re-introduced to the ansatz
by a number of “post-Hartree-Fock” methods.

5.3.2.2 Post Hartree-Fock

In the Hartree-Fock method, the electronic configuration wavefunction is approxi-
mately parametrized in terms of a single Slater determinant. A numerically exact,
unscalable, completely general ansatz is given by the fully configuration interac-
tion(FCI) method, illustrated in Fig. 5.1, in which the entire space of physical elec-
tronic wavefunctions is fully and exactly parametrized using a linear combination
of exponentially many Slater determinants, accounting for all possible (entangled,
correlated) electronic configurations

�0 = |χ1χ2χ3 . . . χn〉 (5.17)

�C I = g0�
0 +

∑

a,i

gi
a�i

a +
∑

a,b,i, j

gst
ab�

i j
ab . . . (5.18)

where the spin-orbital subscripts (a, b . . .) and superscripts (i, j . . .)markdifferences
with respect to the Hartree-Fock ground state. FCI calculations give numerically
exact, optimal solutions, but the number of Slater determinants, and thus the number
of parameters required to describe the state, scales factorially with the number of
electrons. As such, FCI calculations are currently limited to diatomic or triatomic
molecules.
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Strongly related to CI methods is the coupled-cluster (CC) ansatz [15]. Config-
uration-interaction methods can be made tractable by truncation of the series (5.18).
CC methods provide an improved approach to this truncation, grouping electronic
excitations together in the exponential ansatz,

|�〉 = eT̂ |�0〉. (5.19)

Here, |�0〉 is the Hartree-Fock ground state, which can be efficiently computed as
we have already seen, and T̂ is the so-called cluster operator. The basic technique
is to group k-fold electronic excitations, choosing a cut-off at k = kmax :

T = T1 + T2 + T3 . . . Tnmax (5.20)

where T1 is the single-excitation term, a linear combination of all possible excitations
which raise or lower a single electron from spin orbital a to i ,

T1 =
∑

i

∑

a

gi
aâaâ†

i . (5.21)

The pair excitation term is more complex, simultaneously raising two electrons from
spin orbitals (a, b) to (i, j)

T2 = 1

4

∑

i j

∑

ab

gi j
abâaâbâ†

i â†
j (5.22)

and so on. In practice, this series is usually truncated at the level of two-particle or
three-particle excitations. By this approximation, the number of parameters used to
describe the state remains polynomial in the system size. Even so, the CC ansatz is
currently classically intractable for kmax � 3.

We will skip discussion of density functional theory (DFT), an alternative mean-
field theory for quantum chemistry (see [16]). Suffice to say that despite the success
of DFT, as with the HF, CC and truncated CI methods, the approximation that it uses
to achieve scalability leads to incorrect results for a large class of chemical systems.

5.4 Quantum Simulators

We have arrived a situation in which all known exact methods for the simulation of
quantumchemistry are intractable formoleculeswithmore than∼3 atoms.Moreover,
the approximatemethods that do scale are only precise for certain classes ofmolecule.
Hartree-Fock, coupled-cluster, DFT and truncated CI models all break down at some
point. There are examples of surprisingly simple molecules for which all known
approximate methods fail, including the lowly nitrogen N2 molecule, whose triple
bond gives rise to strongly correlated electronic behaviour at high bond separations,
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ozone, and many others. How should we go about simulating these systems and their
larger, more interesting cousins?

If we are serious about efficient simulation of quantummechanical phenomena in
the lab, then the computer ormachine thatwe usemust also be quantummechanical—
this was Feynman’s insight. Throughout his work, Feynman acknowledged the pos-
sibility that the device might not necessarily constitute a universal full-scale quantum
computer. We can imagine a broad variety of special purpose devices, which perhaps
do not even depend on digital quantum logic or gate operations, but nonetheless
emulate or mimic the physics of a classically intractable system of interest in a scal-
able way. The potential for dramatic relaxation of hardware requirements (in terms of
coherence time, gate fidelity etc.) in this regime, whilemaintaining a quantum advan-
tage, has led many to predict that non-universal quantum simulation may constitute
the first practical application of large-scale artificial quantum entanglement.

In this chapter we will only discuss schemes for quantum chemistry which do
make use of a full-scale universal digital quantum computer, and we do not address
special-purpose, non-universal devices. See the discussion of BosonSampling in
Sect. 6.3.2 of this thesis for an experimental and theoretical examination of special-
purpose quantum simulators, as well as recent experimental progress in [8, 17].

5.4.1 Quantum Simulation on a Digital Quantum Computer

We will now give a picture of the standard approach to quantum simulation on a
universal digital quantum computer. An enormous diversity ofmethods exist, and this
description will necessarily be approximate and incomplete. We will later compare
and contrast this standard method with the technique used in our experiment, which
is quite distinct.

In any computer simulation, we must choose a mapping between the degrees
of freedom of the physical system of interest and the computational hardware. We
have already seen the approach taken in classical quantum chemistry, in which an
ansatz for the electronic wavefunction is expressed in terms of atomic spin orbitals,
the coefficients of which are stored as floating-point numbers in a digital register.
In a quantum computer, quantum information is written into registers of qubits—
distinguishable spin-1/2 systems. Onto this register we wish to encode the state of a
system of n electrons—indistinguishable, antisymmetric fermions, with half-integer
spin. In his original discussion of universal quantum simulators, Feynman expressed
concern over the discrepancy between the fundamental physical properties of these
two systems [2]. How should we reconcile the two?

5.4.1.1 The Jordan-Wigner Transform

Suppose that we have register of N qubits, onto which we would like to map the state
of n electrons. We can dream up many possible encodings, but most of them will

http://dx.doi.org/10.1007/978-3-319-21518-1_6
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allow us to create or destroy simulated electrons in unphysical ways. For example,
we should not be able create two electrons occupying the same spin orbital, and
annihilation on the vacuum should produce no effect. The essential rules for the
fermionic creation and annihilation operators acting on a mode j are completely
captured by the (fermionic) canonical anticommutation relations (fCCRs):

{â j , â†
k } = δ jk I (5.23)

{â j , âk} = 0 (5.24)

where {A, B} = AB + B A is the anticommutator [18]. These equations, which
are the fermionic counterpart to the bosonic CCRs (1.101) immediately imply that
{â†

j , â†
k } = 0, and (â†

j )
2 = (â j )

2 = 0, the â†â are positiveHermitianwith eigenvalues

0 and 1 and are mutually commuting â†
j â j â

†
k âk = â†

k âk â†
j â j , and annihilation on the

vacuum behaves as desired (â|0〉 = 0).
The Jordan-Wigner transform [19, 20] provides exactly such a mapping from

qubits to fermions in the form of a definition for â†, â in terms of spin operators
acting on qubits which always satisfies the fCCRs. The Jordan-Wigner transform
allows any physical system to be represented on a quantum computer, and thus
forms the basic ingredient for the encodings used in most digital quantum simulation
algorithms [21, 22].

In terms of the Pauli spin operators σ̂i , the fermionic creation and annihilation
operators acting on mode j are defined by Jordan-Wigner as

â j ≡ I ⊗ j−1 ⊗ σ̂+ ⊗ σ̂
⊗N− j
z (5.25)

â†
j ≡ I ⊗ j−1 ⊗ σ̂− ⊗ σ̂

⊗N− j
z (5.26)

where σ+ = |0〉〈1| and σ− = |1〉〈0|. The tall stack of z-rotations (σ̂⊗n− j
z , sometimes

referred to as Jordan-Wigner ladder) has has the effect of keeping track of the sign
of the fermionic wavefunction and thus enforcing antisymmetry:

â j |α1, α2, . . . αl〉 = −(−1)sα
j |α1, α2, . . . αl , with α j → 0〉, (5.27)

where |α1, α2 . . . αn〉 is the occupation number representation of the fermionic state
and sα

j ≡ ∑ j−1
k=1 αk . It is interesting to note that when we make a local change to the

electronic system—creating, annihilating or moving an electron—the corresponding
qubit operator, i.e. the necessary gate operation, is highly nonlocal.

5.4.1.2 Quantum Phase Estimation

Having mapped the physics of the chemical system into a digital register of qubits,
the task is then to design a quantum circuit—a sequence of gate operations—which

http://dx.doi.org/10.1007/978-3-319-21518-1_1
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computes the eigenenergies of the electronic structure Hamiltonian of interest. Here
we provide an approximate picture of the traditional framework, which is based on
the quantum phase-estimation algorithm (PEA) [23, 24].

The PEA takes as input an eigenstate |λ0〉 of a unitary operator Û , and computes a
t-bit approximation to the unknown phase ϕλ0 of the eigenvalue λ0 = e2π iϕλ0 . PEA

is an oracle-based algorithm, and starts from the assumption that the controlled-Û 2 j

operation can be implemented by a black-box, for arbitrary j , at a constant cost. The
controlled-unitary gates act as

C(Û 2k
) |+〉 ⊗ |λ0〉 = 1√

2

(
|0〉 + e2π i ·2kϕ |1〉

)
⊗ |λ0〉. (5.28)

The system register is first initialized in the eigenstate |λ0〉, which is provided
as input to the algorithm. A secondary control register of t qubits is prepared in the
separable equal superposition state |+〉⊗t .We then apply the circuit of controlled-Û 2t

operations shown in Fig. 5.2. The system register stays in the state |λ0〉 throughout
the computation, with the full system evolving as

|+〉⊗t ⊗ |λ0〉 PEA1−−−→ 1√
20

(
|0〉 + e2π i ·2t−1ϕ |1〉

)

⊗
(
|0〉 + e2π i ·2t−2ϕ |1〉

)

. . . (5.29)

⊗
(
|0〉 + e2π i ·20ϕ |1〉

)
⊗ |λ0〉.

Control
register

System
register

R
ea

do
ut

Fig. 5.2 The PEA computes an t-bit approximation to the phase ϕλ0 of the eigenvalue λ0 = e2π iϕλ0

of a unitary operator, U , assuming that the eigenstate |λ0〉 is given. If arbitrary exponentiation U2 j

up to U2t
is provided as a black-box oracle, then the PEA can achieve an exponential speedup over

classical methods. The eigenstate is prepared in the system register, and the control register of t
qubits is prepared in the superposition state |+〉⊗t . The system evolves under repeated application
of the oracle unitary, quantum-controlled by qubits in the control register. Finally, readout of ϕλ0

is performed by means of the inverse quantum Fourier transform followed by measurement in the
computational basis
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The final state of the control register can then be written independently of the system,

1√
2t

[
|00 . . . 0〉 + e2π iϕ·1|00 . . . 1〉 + . . . e2π iϕ·2t−1 |11 . . . 1〉

]
(5.30)

= 1√
2t

2t−1∑

k=0

e2π i ·ϕk |k〉 (5.31)

where |k〉 is the state corresponding to the binary representation of k. In the event that
the phase can be exactly written as a binary fraction of t bits ϕ = 0.ϕ1ϕ2 . . . ϕt ≡
ϕ1
2 + ϕ2

4 + ϕ3
8 . . .

ϕt
2t , the output state of the first stage of PEA (5.29) can be rewritten

as

1√
2t

(
|0〉 + e2π i 0.ϕt |1〉

)
⊗

(
|0〉 + e2π i 0.ϕt−1 |1〉

)
. . . ⊗

(
|0〉 + e2π i 0.ϕ1ϕ2...ϕt |1〉

)

(5.32)
It is then straightforward to show that the quantum Fourier transform of (5.32) is a
logical basis state corresponding to the digits of ϕ, |ϕ1ϕ2 . . . ϕt 〉. The final stage of
the PEA implements this quantum Fourier transform on the control register, followed
by measurement in the logical basis. From these measurement outcomes the exper-
imentalist reads out the exact digits of ϕ, thereby obtaining the eigenvalue λ0 of Û
in a single shot. Even when ϕ cannot be exactly expressed as a t-bit binary fraction,
the PEA returns the phase to a good approximation, with a success probability 1− ε.
The choice of t determines the output precision as well as the probability of success
of the PEA.

5.4.1.3 Quantum Chemistry Using the PEA

We will now describe a polynomial-time algorithm which makes use of the PEA to
compute exact ground-state energies under the full configuration-interaction ansatz,
following [25, 26]. Starting from the FCI electronic structureHamiltonian Ĥ (5.8) for

our molecule of interest, we generate the unitary time evolution operator Û = ei Ĥτ ,
where the energy E = 2πϕ/τ of an eigenstate |λ0〉 is mapped to the phase of its
eigenvalue λ0 = e2π iϕ

Û |ψ〉 = ei Ĥτ |ψ〉 = e2π iϕ |ψ〉. (5.33)

The task is then to estimate ϕ, and thus E , by means of the PEA. We must first
be able to implement the controlled-Û (τ ) operations at the heart of the PEA as
gate sequences in a digital quantum computer. The Trotter decomposition provides a
general prescription for approximate time evolution of arbitrary unitary operators in
the gate model. The technique bears a strong resemblance to stop-frame animation
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[27]. For a Hamiltonian Ĥ = ∑
k hk , the full time-evolution exp(i Ĥτ) is divided

into M short, time-independent unitary slices of length �τ = τ/M ,

Û = eiτ
∑

k hk =
∏

k

[
ei�τ hk

]
+ O(�τ ), (5.34)

a process known as Trotterization. The number of gate operations is at least linear in
t , and the procedure introduces a discretization error polynomial in t . Larger values
of M and higher-order decompositions both give rise to a smoother “animation” and
less error, at the cost of further gate operations. This error must be within chemi-
cal accuracy (roughly one part in a million) for the computation to be useful. Even
for small molecules, Trotterization to chemical accuracy demands very large num-
bers of gates. A conservative implementation of FCI-PEA for the water molecule
using ∼30 qubits in the system register requires O(104) gate operations per Trotter
step, and M = O(106) steps in the full time evolution, leading to a total of O(1010)
serial gate operations [26]—a formidable challenge.

The PEA provides an efficient method to compute the eigenvalue of a given
eigenstate of Û . However, in the context of quantum chemistry we do not initially
know the eigenstate—in fact, |λ0〉 should be regarded as encoding the answer to our
problem. Efficient classical methods provide an approximate ground state, but the
error in this approximation is the entire motivation to seek a quantum algorithm in
the first place! What happens if we use the approximate Hartree-Fock ground state
|ψH F 〉 instead of the exact eigenstate? Using |ψH F 〉 = ∑

i λi |λi 〉 ≈ |λ0〉 as input
to the system register, we find [24] that the PEA outputs the exact phase ϕ of |λ0〉
with probability proportional to |〈λ0|ψH F 〉|2. Thus in some cases, an approximate
eigenstate can be used to find the exact energy of the ground state, at the cost of a
lower probability of success.

This method has been used for ground state estimation in numerical simulations
of H2O [26, 28] and LiH [28], as well as a recent experimental demonstration for
H2 using photonic qubits [29]. Unfortunately, for many chemical systems of interest,
the Hartree-Fock approximation performs so badly that the probability of success
vanishes. As a result, the state preparation problem in quantum simulation of quan-
tum chemistry can become very involved. Methods to overcome this issue largely
depend on adiabatic eigenstate preparation algorithms [28, 30] in which the Hamil-
tonian is slowly transformed from an “easy” Hartree-Fock Hamiltonian Ĥ H F to
the exact, full-configuration interaction Hamiltonian Ĥ FC I . These methods again
depend on Trotterization for the implementation of time-evolution under a time-
dependent Hamiltonian, incurring a similar or greater cost in the number of required
gate operations.

We thus arrive at a ballistic picture of quantum algorithms for quantum chemistry
resembling that shown in Fig. 5.3, in which the process is broadly subdivided into
(i) preparation of qubits in a simple fiducial state |0〉⊗N (ii) adiabatic or iterative
PEA state preparation and (iii) PEA readout of the energy. A key property of this
approach is that while the number of qubits N can be relatively small—PEA is
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State preparation Phase estimation

Trotterization Trotterization

Fig. 5.3 Ballistic quantum chemistry on a quantum computer. A fiducial state |0⊗N 〉 is adiabatically
time-evolved to an eigenstate |λ0〉 of the Hamiltonian of interest. The energy is then read out by
means of the quantum phase estimation algorithm. A significant property of this approach is that
although the necessary number of qubits can be relatively low, the number of fundamental gate
operations which must be consecutively and coherently performed is typically very large due to the
heavy dependence on Trotterization for time-evolution of the state

amenable to a recursive modification which allows chemically relevant calculations
to be performed using ∼10 control qubits and ∼30 system qubits—the number of
basic gate operations required is typically enormous.

5.4.2 Limitations of Quantum Simulators

Arguably themost important task for in any scalable algorithm for quantumchemistry
is the choice of ansatz. The most general ansatz, which captures the full space of
possible states of the system and maps to the full Hilbert space H upon which the
quantum state is defined has dimension O(2n) and can only be parametrized by an
exponential number of real parameters. Efficient classical algorithms must therefore
throw away an exponentially large subspace of H . The most successful ansätze do
this in a targeted way, discarding highly entangled or extremely strongly correlated
states—which do not often appear in nature—while preserving the most chemically
relevant regions of H .

The Hilbert space dimension of n qubits and that of n electrons occupying a
system of spin orbitals are both exponential in n and are of the same order. We
have seen from the Jordan-Wigner transform that the physics of these two systems
can be made isomorphic, and from this it might be natural to infer that a quantum
computer should be able to implement a complete ansatz, addressing the entirety
of H . The counter-argument to this reasoning is simple: we need to be able to
drive the quantum computer. That is, any machine which allows us to prepare or
represent states throughout the entirety of H must by definition have a number of
classical control parameters—knobs—exponential in n, and is therefore not scalable.
Quantum computers must have a polynomial number of knobs on top, and as such
can only access a polynomially small subset of efficiently preparable Hilbert space.
Arbitrary n-qubit state preparation does not scale.

Ground-state quantum chemistry problems are a subset of the k-local Hamiltonian
problem, i.e. the problem of finding the ground state of a Hamiltonian on n qubits,
Ĥ = ∑

i = 1r ĥi where r = poly(n) and each ĥi acts on at most k qubits. The
general k-local Hamiltonian problem has been proven [31] by Kempe, Kitaev and
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Regev to be QMA-complete for k ≥ 2. QMA-completeness means that problem is
at least as hard as any in QMA, and since QMA contains BQP, the complexity class
accessible in polynomial time by quantum circuits, the (k ≥ 2)-local Hamiltonian
problem is exponentially hard for quantum computers. This implies that there exist
polynomial-size ground state problems in quantum chemistry that are intractable
even on a quantum computer.

If all of the above is true, why should we bother to build a quantum computer
for quantum chemistry? Despite the apparent difficulty of building a digital quantum
simulator, a small fraction of which we have outlined outlined above, we nonethe-
less expect that such devices should provide an exponential speedup over classical
machines for large classes of interesting physical and chemical systems, enabling
FCI quantum chemistry in polynomial time. That said, it would be nice if we could
do it without the need for quite so many gate operations. The next section presents
our work in this direction.

5.5 Quantum Simulation Without Quantum Evolution

We will now describe an alternative approach by which quantum chemistry cal-
culations can be performed on a hybrid quantum-classical processor without time
evolution or quantum phase estimation. This approach introduces a number of new
unknowns, but significantly reduces the number of required gate operations bymeans
of a variational approach with a strong resemblance to certain classical methods in
quantum chemistry.

5.5.1 Scheme

Any Hamiltonian can be written as a sum of tensor products of Pauli matrices

Ĥ =
∑

iα

hi
a σ̂ i

a +
∑

i jab

hi j
abσ̂

i
a ⊗ σ̂

j
b + · · · (5.35)

for real h, where (a, b . . .) index the three Pauli operators {σ̂x , σ̂y, σ̂z} and (i, j . . .)

index the subspace of qubits upon which they act. In general this expansion has
exponentially many terms, but for all physical Hamiltonians (including electronic
structure Hamiltonians (5.8), the Ising model, Heisenberg model etc.) it can be trun-
cated to a number of terms which is polynomial in the size of the system. The basic
intuition for this fact is that arbitrarily strong, arbitrarily long-range interactions do
not appear in nature.
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Calculations in quantum chemistry are generally concerned with the energy E =
〈Ĥ〉 = 〈ψ |Ĥ |ψ〉 of a state |ψ〉 under theHamiltonian Ĥ . By linearity, this is given by

E = 〈ψ |Ĥ |ψ〉 =
∑

iα

hi
a〈ψ |σ̂ i

a |ψ〉 +
∑

i jab

hi j
ab〈ψ |σ̂ i

a ⊗ σ̂
j

b |ψ〉 + · · · (5.36)

Thus the energy reduces to a weighted sum over a polynomial number of expectation
values of local Pauli observables, and can be precisely estimated bymeans of repeated
local single-qubit measurements together with classical floating-point addition. For
an N -qubit state, we can thus efficiently evaluate the expectation value of a 2N ×2N

Hamiltonian.
In classical methods for quantum chemistry, as we have already seen, the ground

state energy of the chemical Hamiltonian is generally found by an iterative varia-
tional method, in which a nonlinear optimization algorithm is used to minimize the
energy with respect to the parameters |φ〉 of a scalable ansatz for the state. The elec-
tronic configuration of the molecule is approximately represented in the digital logic
of the central processing unit (CPU) by means of an approximate, scalable ansatz
f ( �φ) = |ψ( �φ)〉. This restricts the CPU to a small subspace ofH . The ansatz para-
meters �φ are initialized according to a guess or approximate method, and the energy
〈ψ( �φ)|Ĥ |ψ( �φ)〉 is evaluated by a numerical method. The optimization algorithm
then attempts to iteratively drive towards the ground state.

We propose a hybrid quantum-classical analogue to this approach, illustrated
schematically in Fig. 5.4. Rather than a CPU, we make use of a small quantum
processor (QPU), constructed from the universal gate set, to implement the ansatz
and evaluate the energy of candidate ground states. The QPU takes as input some real
parameters �φ, and prepares a state | �φ〉 in a qubit register of the device. Copies of this

Evaluate energy
under

Optimize

Ansatz

CPU

CPU/QPU(a) (b) (c)

Fig. 5.4 Quantum simulation without time-evolution. (a) Classical approaches to quantum chem-
istry often make use of the variational method. An approximate ansatz is chosen for |ψ〉, allowing
a subspace of H to be represented in the CPU. The ansatz parameters �φ are initialized according
to some approximate method, and a nonlinear optimization algorithm then iteratively minimizes
the energy of the state under the chemical Hamiltonian. We propose a hybrid quantum-classical
analog to this approach, in which a small quantum processor (QPU), likely constructed from a
universal gate set, is used in place of the CPU to implement the ansatz and compute energies (red
box) while the optimization algorithm still runs on a classical processor (blue box). (b, c) Various
classical ansätze exist to efficiently parametrize small subspaces of the electronic configuration
Hilbert space. A QPU cannot scalably address the full Hilbert space, but should nonetheless give
access classically intractable ansätze (color online)
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state are then measured in a number of local Pauli bases—corresponding to terms in
(5.36)—from which the energy is recovered by classical floating-point addition. The
optimization process, which updates the ansatz parameters �φ based on the current
energy, is then performed classically on the CPU.

Wehave already seen that existing efficient classical ansätze are limited to describ-
ing certain classes of chemical systems. By representing the trial wavefunction on
a quantum device, although we can still only parametrize a polynomial subspace of
H , the expectation is that we should nonetheless be able to efficiently implement dif-
ferent class of ansätze for which no efficient classical algorithm exists. In particular,
there is reason to believe that efficient parametrization of highly correlated, entan-
gled electronic configurations should be more efficient using a QPU than a CPU. A
simplistic argument for the existence of such ansätze is as follows: Consider a quan-
tum circuit, parametrized by a number of classical control phases and constructed
somehow at random from a universal gate set. It is then reasonable to believe that
the chance of finding an efficient classical parametrization of the output state |ψ( �φ)〉
should be vanishingly small. Hence it is likely that there exist a large number of
classically intractable ansätze which can be implemented using exponentially fewer
resources on a QPU. The development of such ansätze remains an open problem in
quantum simulation.

5.5.2 Advantages

Quantum chemistry using the PEA promises full-configuration-interaction calcula-
tions using relatively few qubits but requires an imposing number of gate operations,
due in part to the Trotterization overhead required for time evolution. Our approach,
although limited to an approximate ansatz, provides variationally optimal solutions
without dependence on Trotterization, time-evolution, or the PEA. The number of
gate operations, and hence the necessary qubit coherence time or the physical size
of the device, is thus dramatically reduced with respect to PEA. Note that in our
algorithm, the QPU repeatedly prepares a state under the ansatz and immediately
measures it in a local basis, destroying all quantum coherence—this is the entirety
of the “quantum” stage of computation. In contrast, the PEA must remain coherent
throughout. A recent numerical investigation [26] into FCI-PEA computation of the
ground state energy of iron sulfide Fe2S2 estimated the required calculation time—
which, for a ballistic computation, is equivalent to the required coherence time—to
be 1.5 years.

By implementing a large fraction of the total computation on a classical processor,
we ensure that the use of quantum resources is limited to the operations where they
give the greatest advantage, i.e. in the representation of quantum states. The trade-off
with respect to the PEA is that we no longer have ballistic, single-shot computation,
since the classical optimization algorithm must make a large number of calls to the
QPU before convergence to the ground state is achieved.
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5.5.3 Scaling

A single call to an n-qubit QPU prepares |ψ( �φ)〉 and returns the expectation value
of a tensor product of Pauli operators. The gate cost of the state preparation stage is
dictated by our choice of ansatz, which is not predetermined—we assume that we
will always choose an ansatz with a known decomposition into a polynomial number
of gate operations, without explicitly defining this choice.

The measurement stage can be parallelized, giving an estimate of a single term in
(5.36) with precision p in after O(|h|2/p2) repeated measurements of copies of the
state. This leads to a total readout cost O(|hmax |2M/p2) to evaluate the energy of
a trial state |ψ〉 under the full Hamiltonian, where M is the number of terms in the
expansion (5.36).

5.5.4 Open Questions

In an ideal world, having chosen a classically intractable class of chemical systems
of interest, we would then design a QPU which addresses the subspace of H in
which they live. While PEA-based methods provide an explicit prescription for the
necessary gate-model circuit, much less is known when it comes to the deterministic
design of circuits which efficiently parametrize the approximate ansätze required for
our algorithm. This currently limits the scope of our method, and restricts our ability
to assess its asymptotic performance.

Further uncertainty arises as a result of the use of nonlinear numerical optimiza-
tion. How many calls to the QPU will it take for the classical minimization to tra-
verse the quantum energy landscape and converge to the ground state? How will
the choice of optimization algorithm affect the precision in E? These questions
depend in turn on the choice of ansatz and the nature of the chemical Hamiltonian.
In our experimental demonstration (Sect. 5.6) we use a general-purpose optimiza-
tion algorithm (Nelder-Mead simplex, fminsearch in Matlab / scipy.fmin
in Python). Despite experimental imperfections this algorithm performed well on a
realistic chemical Hamiltonian, converging to the ground state to acceptable accuracy
after a few hundred iterations. There is scope for considerable optimization in the
choice of this optimization algorithm, and we expect that existing techniques from
“classical” quantum chemistry should be directly applicable to our scheme. This is
not to say that the optimization will always run in polynomial time, and thus the
scalability of our approach remains an open question.

An interesting problem for all quantum simulation algorithms is raised by the
intractability of full quantum state tomography. Although our algorithm and PEA-
based methods both prepare the approximate ground state, from which the ground-
state energy can be efficiently obtained, we cannot recover full information on the
eigenstate vector—in order to do so we would need an efficient classical parame-
trization of the state, which presumably does not exist for those chemical problems
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which demand quantum simulation. Similarly, we cannot obtain the full spectrum
of the Hamiltonian, since in general it has exponentially many eigenvalues. There-
fore, through quantum simulation we can at best hope to obtain partial information
on the eigenstates of classically intractable Hamiltonians, for instance measuring
expectation values of some operator of interest other than the Hamiltonian, or partial
information on the spatial configuration of a molecule. The design and optimization
of such readout methods will be an important problem for future implementations
of our algorithm.

5.6 Experiment

We have performed a proof-of principle experimental demonstration of this method,
using the CNOT-MZ device previously described. Since the CNOT-MZ permits arbi-
trary 2-qubit state preparation as well as arbitrary measurement in a local Pauli basis,
it is an ideal test-bed for our algorithm. The fact that the chip is fully computer-
controlled allows the optimization feedback loop to be performed without human
intervention, which is important when a single run of the experiment can involve
thousands of unique measurement settings.

The ability to prepare two-qubit states (Sect. 2.2.7) allows us to investigate 4× 4
Hamiltonians. It is interesting to draw comparison with the recent experimental
demonstration by Lanyon et al. [29], in which two photonic qubits were implemented
in a bulk optical setup. In this work the authors make use of a more orthodox PEA-
based algorithm and as such are forced to use one qubit as the control register which
leaves room for a 2 × 2 Hamiltonian only.

We chose the helium hydride ion HeH+ as the chemical system of interest for
this demonstration. Helium hydride is the strongest known acid, and was likely
the first molecule to form in the universe after the big bang. The second-quantized
Hamiltonian for the two-electron system ofHe-H+ can be expressed as a 4×4matrix
using a minimal atomic basis set (STO-3G). The coefficients hi

α . . . in the expansion
of the Hamiltonian were calculated by means of an FCI method in the PSI3 ab-initio
computational chemistry package [32]. Note that this approach is not scalable in
general, and is used here for convenience only. The mapping from qubits to fermions
is performed using the Jordan-Wigner transform, as described in Sect. 5.4.1.

In our experimental implementation, owing to the small size of the circuit used,
we choose as an ansatz the full-two qubit Hilbert space, which has 6 free parameters.
This provides a robust test for the performance of the optimization algorithm, but is
not at all scalable. Future demonstrations will need to implement a scalable ansatz,
the design of which remains an open problem.

Figure5.5a shows experimental data from a typical optimization run, with the
energy converging to the ground state after ∼100 iterations of the algorithm. We
studied the degree of entanglement of the two-qubit state as a function of time dur-
ing the optimization run, using as ametric the tangle T = C2, where C is concurrence
(1.40). For the case of HeH+ we found that while the algorithm does pass through

http://dx.doi.org/10.1007/978-3-319-21518-1_2
http://dx.doi.org/10.1007/978-3-319-21518-1_1
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Fig. 5.5 a A single optimization run, finding the ground state energy of HeH+ for a specific
molecular separation, R = 90pm. Coloured points show the experimentally computed energy as a
function of the optimization step, where the colour corresponds to the tangle of the 2-qubit state,
estimated directly from |φ〉. Red lines show the four eigenenergies of the FCI Hamiltonian of HeH+
in a minimal basis. Crosses correspond to a theoretical ideal value of the energy, computed at each
optimization step. b Experimentally measured bond dissociation curve of HeH+, analogous to the
approximate Lennard-Jones potential. Each point corresponds to the ground state energy of the
Hamiltonian Ĥ(R) for a particular value of the atomic separation R, and is obtained from a single
optimization run as shown in (a). The red line shows the theoretical curve, and grey points show
experimental data prior to correction for a small systematic error. c is a magnified region of (b),
demonstrating that our experimental setup can resolve the dip in the curve, corresponding to the
equilibrium bond length of the molecule

regions of strongly entangled Hilbert space during the optimization run, the qubit
representation of the final electronic ground state was generally only very weakly
entangled. The nature of the Jordan-Wigner transform is such that there is not nec-
essarily a correspondence between the degree of entanglement of the fermionic state
and that of its qubit representation.

Writing the HeH+ Hamiltonian as a function of the atomic separation R,

Ĥ =
∑

iα

hi
a(R) σ̂ i

a +
∑

i jab

hi j
ab(R) σ̂ i

a ⊗ σ̂
j

b + · · · (5.37)

we repeated the optimization process for several values of R, thus obtaining the bond
dissociation curve shown in Fig. 5.5b, c. This curve is analogous to the Lennard-Jones
potential previously described. The equilibrium bond length—the atomic separation
of the molecule in its relaxed state—was measured to be R = 92.3 ± 0.1 pm, with
a corresponding ground-state electronic energy of E = −2.865 ± 0.008 MJ/mol.
Here the error bar is due only to Poissonian finite statistics, and does not take into
account error introduced by other experimental imperfections or the convergence of
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the optimization algorithm. The experimental data in Fig. 5.5 correspond to tens of
thousands of unique measurements on two-photon states generated by the CNOT-
MZ, and as such represent the most demanding application of the device to date.

5.7 Discussion

In this work we have simulated the HeH+ molecule using a single two-qubit gate
together with a handful of single-qubit rotations. By comparison, the PEA-based FCI
method for an equivalent Hamiltonian, without adiabatic state preparation, would
require at least 12 CNOT operations. By dispensing with the need for PEA, Trotter-
ization and time evolution, our algorithm enables much more chemistry to be done
with much less quantum hardware, and dramatically reduces the necessary coher-
ence time. In doing so, however, we introduce new unknowns. In particular, it is not
clear whether the optimization algorithm will necessarily converge in polynomial
time. Furthermore, we have not provided a deterministic technique by which a given
polynomially-sized ansatz may be parametrized in terms of a quantum circuit—a
fundamental requirement for both theoretical analysis and practical implementation
of our algorithm.

5.8 Statement of Work

Mymain contribution in this section was in the optimization and maintenance of the
CMOZ-MZ chip, together with theoretical analysis of the work. Figure5.5 is due to
Alberto Peruzzo, who also measured the data.
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Chapter 6
Increased Complexity

Actually, if we wanted to, although it’s expensive, we could
put detectors all over [. . . ] and build up the whole curve
simultaneously. . .

Feynman

6.1 Introduction

A survey of the literature reveals a rich history of experiments in which p photons are
sent through an optical circuit with m modes. The experimentalist looks to see where
the photons went, examining spatio-temporal correlations using an array of single-
photon detectors, in an effort to determine whether the experiment is (i) working
properly and/or (ii) doing anything interesting.

In general, the number of possible detection patterns across m modes grows as(m
p

)
, and can be extremely large even for modest values of m and p. It is therefore

often convenient or even essential to use a greater number of detectors d ≤ m
than photons, allowing

(d
p

)
patterns to be monitored simultaneously. True number-

resolving single photon detectors (Sect. 1.6.4) are not currently widely available.
However, number-resolving detection can instead be achieved using multiplexed
non-number-resolving detectors, again demanding the ability to operate and monitor
many detectors in parallel.

In this chapter we describe experiments using ≤5 photons in ≤21 modes, leading
to tens of thousands of possible events. In order to efficiently assess the physics
and performance of these experiments we need a detection system akin to a camera,
capable of recording and correlating events across many detectors in parallel. To
this end, we have constructed a novel detection system using 16 Si APD single
photon detectors, supported by electronics and hardware capable of simultaneously
monitoring all possible p-fold detection events up to p = 16 in real-time. Owing to
the capacity of this machine to efficiently photograph quantum states with very large
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Hilbert space dimension, we euphemistically refer to it as a Hilbert space telescope.
This system has so far enabled at least three experiments which otherwise would not
have been possible, two of which are described in this section.1

In Sect. 6.3 we describe experiments using up to five photons in structured and
unstructured interferometers, designed to implement both quantum walks and the
so-called BosonSampling problem. We reconstruct time-correlated images of the
multiphoton output state of these devices, observing a clear signature of generalized
bosonic bunching inHilbert spaces of up to∼50,000 dimensions.Wemake use of this
capability to test two unique approaches to efficient verification of BosonSampling.

6.2 Time-Correlated Single Photon Counting

In multiphoton experiments we are frequently presented with the problem ofmeasur-
ing correlation functions in space or time, based on detection events over d detectors.
Very often, this problem reduces to the counting of coincidences. By postselecting
on events in which p detectors firedwithin some small coincidence time-window�t ,
we record only those events in which all p photons were generated in the same down-
conversion event or femtosecond pulse, preserving temporal indistinguishability and
thus high-visibility quantum interference.

Certain experiments require more precise timing information. For example, the
pulse envelope of a laser or the delay introduced by a coaxial cable can be mea-
sured using the closely related techniques of temporal autocorrelation and cross-
correlation. Here, the exact time of each detection event is measured and recorded
with very high (fs) precision by a fast clock. The recorded arrival time of a single
detection event is referred to as a time-tag. The autocorrelation function G(τ ) of
continuous time-varying signal I (t)

G(τ ) = lim
T →∞

1

2T

∫ T

−T
I (t) · I (t + τ)dt (6.1)

provides information about similarity of the signal with a delayed version of itself,
while the cross-correlation function between two signals I1,2(t)

G12(τ ) = lim
T →∞

1

2T

∫ T

−T
I1(t) · I2(t + τ)dt (6.2)

measures the similarity between these signals as a function of the delay between
them. When counting discrete photon detection events with finite timing resolution,
the signal is no longer analog and we instead compute the discretized quantities

1The third, completed very recently, is described in a pre-print [1] due to Matthews et al.
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G(t) =
∑

t

N (t) · N (t + τ) ; G12(τ ) =
∑

t

N1(t) · N2(t + τ) (6.3)

where Ni (t) is the number of photons detected in channel i and timebin t . These
functions can be easily computed from measured timetags.

6.2.1 TCSPC Hardware

In all of the multi-photon experiments described here, silicon-based avalanche pho-
todiode single photon detectors (APDs) have been used for detection. A number of
alternative single photon detector technologies are described in detail in Sect. 1.6.4
of this thesis. Upon absorbing a single photon within the frequency band to which
the APD is sensitive (∼500 to ∼900nm), a 3.3V trigger/timing logic (TTL) volt-
age pulse is generated with finite probability—typically ∼60% for the Perkin-Elmer
APDs used here.

The task of TCSPC is then to count and correlate these TTL pulses in time. The
rate of single-photon detection is typically on the order of MHz, and many stan-
dard data acquisition systems do not have sufficient bandwidth, channel count, or
timing resolution to capture and correlate events at this rate. As a result, TCPSC
largely depends on dedicated high-speed electronics falling into one of two cate-
gories. pure coincidence-counting systems, often based on nuclear instrumentation
module (NIM) logic or field programmable gate arrays (FPGAs), and time-to-digital
converters, which convert incoming TTL pulses into high-resolution digital timetags
to be processed downstream.

The counting systems used in Chaps. 2, 3, 4 and 5 of this thesis are custom-built
aroundXilinxVirtex 5 or Spartan 6 FPGAs. These devices provide a lithographically-
fabricated array of∼105 logic units (gates), which can be reconfigured to implement
dedicated coincidence counting logic with much greater bandwidth and timing sta-
bility than can be achieved using general-purpose ICs. These systems are built to
count instances of O(10) possible coincidence patterns over ≤8 independent chan-
nels, with a fixed coincidence window of 5ns, and do not provide high-resolution
timing information—instead simply reporting the number of events for each pattern
over a fixed integration time of 1 s.

6.2.2 DPC-230

The DPC-230 is a 16-channel photon correlator, produced by Becker and Hickl
GmbH. It is principally designed for multiphoton fluorescence spectroscopy and
biological imaging, however we have adapted it for applications in quantum photon-
ics. The principal functionality of interest is the capability of the DPC-230 to time-
tag incoming TTL pulses on 16 independent channels simultaneously with ∼80ps

http://dx.doi.org/10.1007/978-3-319-21518-1_1
http://dx.doi.org/10.1007/978-3-319-21518-1_2
http://dx.doi.org/10.1007/978-3-319-21518-1_3
http://dx.doi.org/10.1007/978-3-319-21518-1_4
http://dx.doi.org/10.1007/978-3-319-21518-1_5
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resolution, allowing coincidence counting using an array of 16 Si APDs. The instru-
ment, which is packaged as a PCI card for installation in a standard PC, uses 16
CMOS time-to-digital converters (TDCs) to record the absolute arrival time of TTL
pulses.

The design and interface of the DPC-230 are focussed on multiphoton spec-
troscopy and biological imaging, and the device is largely configured for off-line
analysis of small samples—a few seconds of photon time-tag data. It is not intended
for real-time use, and does not provide coincidence counting as built-in functional-
ity. For instance, all time-tag data must be written to a hard disk and post-processed
before it can be used, and all of the documentation and bundled software are written
with this mode of operation in mind. However, in the context of quantum photonics
the experimentalist needs both real-time operation, providing immediate feedback
when working in the lab, as well as the ability to integrate for days or weeks at a
time in multiphoton experiments where the n-fold detection rate is extremely low.
We therefore built a custom hardware/software stack which addresses these issues,
providing coincidence counting functionality and allowing the DPC-230 to be oper-
ated in realtime, accumulating up to ten million photon time-tags per second, for
months at a time.

The internal architecture of the DPC-230, together with the custom PC hard-
ware/software stack, is shown in Fig. 6.1. TwoTDC chips, each having 8 independent
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Fig. 6.1 Two groups of eight Perkin-Elmer Si APDs send TTL pulses via MCX coaxial cable to
the DPC-230 TCSPC (time-tagging) board. The DPC-230 uses two 8-channel TDC chips, which
time-tag the rising edge of incoming pulses with ps resolution. These timetags are stored in one
of two FIFO buffers, each of which can store 2 million photons at a time. Coincidence counting
and control is managed by three processes running in parallel on a quad-core desktop computer.
The first, highest-priority process sequences time-tagging and periodically reads timetags from the
PCI bus into one of two RAMDisks, operating in a double-buffered arrangement. This process
also communicates via RS-232 with other high-priority hardware such as the Ti:Sapphire laser
and SMC100 motor controllers. While this process is acquiring timetags, coincidence counting is
performed on older data in a parallel process. Optimized C code merges data from TDC1 and TDC2
and then counts/stores all 216 possible N -fold coincidence events, up to N = 16, with a variable top-
hat coincidence window (typically 5ns). This stage also implements 16 arbitrary software-defined
delays, allowing path length differences and APD idiosyncrasies to be accounted for. Finally the
count rates are filtered and summed according to the users request, and plotted in a real-time GUI
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TDC channels, are synchronized by a stable clock. These convert TTL pulses gen-
erated by single photon detectors into 24-bit timetags, encoding the channel number
and absolute time of arrival of each pulse, down to a bin width of 82.3ps. These
timetags are temporarily stored in first-in-first-out (FIFO) buffers, each of which is
capable of storing∼2×106 photons. This data is read into RAM in the host PC over
a standard PCI bus.

At high photon count rates (up to 1 × 107 photons/s), around 30MB of timetag
data is acquired per second. Since for multiphoton experiments we must often con-
tinuously integrate for a number of days, it is essential that this data is processed
in real-time so that unmanageably large volumes of timetags do not accumulate.
In order to achieve maximum throughput we use two high-priority processes, writ-
ten in optimized C and running on separate cores of a Pentium Core i7 CPU to
implement data acquisition and post-processing/coincidence counting in parallel.
Timetags are acquired to the DPC-230’s internal FIFOs for one second, and are then
read into one of two RAMDisk buffers by the data-acquisition process. This data is
passed to the post-processing thread, whichmerges data from the two TDC chips and
then counts and stores instances of all possible p-fold coincidences up to p = 16,
with a user-specified coincidence window. Above a net detection rate of ∼1 × 106

photons per second, this process takes slightly longer than one second to process
one-second’s worth of timetag data. The data acquisition thread must therefore wait
for the post-processing thread to “catch up”, resulting in a reduced duty cycle and a
linear decrease in the effective n-fold detection efficiency. The system is routinely
used at a throughput of ∼5 × 106 photons/s (Fig. 6.2).

In order to avoid storing integrated count-rates for all 216 possible events, we
exploit the sparsity of the data—fivefold events and above are very rate—and write
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Fig. 6.2 The sheer amount of information generated by the DPC-230 demands new approaches to
data processing and analysis. a An array of 16 Perkin-Elmer Si APDs. b 36 cross-correlation curves,
acquired in a single 2-s measurement. The red curve shows a typical cross-correlation function.
The time between peaks corresponds to the repetition rate of the Ti:Saph, i.e. ∼12.5ns. Detector
jitter is the predominant source of broadening of the peaks, giving a FWHM of ∼1ns. c 105 Hong-
Ou-Mandel dips measured in parallel over a single actuator scan, using a type-II pulsed SPDC
source and the DPC-230 (colour online)
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only nonzero countrates to disk. Despite the significant saving in disk space provided
by this sparse format, it was necessary to further optimize the representation of post-
processed data by means of a custom binary file format, which stores coincidence
data together with information pertaining to the motor controllers, laser, and other
metadata. This file format is described in detail in Appendix A. Finally, this data is
sent to a graphical user interface, running in a third process, where it can be graphed,
filtered and analysed by the experimentalist.

6.2.2.1 User Interface

A bad craftsman blames her tools, but correlation is not causation—we may not
infer that a person who blames their tools is unskilled. With the rapid increase in the
complexity of experimental apparatus and the volume of data generated by tools such
as theDPC-230,wemust take greater care over the interface between the humanbeing
and their experimental setup. When actively developing and optimizing apparatus
in the lab, the importance of responsive control and immediate, intuitive feedback
cannot be understated.

We have built a graphical user interface (GUI), shown in Fig. 6.3a, which enables
experimental control, real-time analysis, post-processing, and management of coin-
cidence data from the DPC-230. This GUI also interfaces with SMC100 motor con-
trollers and the Coherent Chameleon Ti:Sapphire laser. The user can choose an
arbitrary subset of detection events of interest, including number-resolved patterns
under a variety of pseudo-number-resolving schemes, to be displayed and graphed
in real-time. This interface also controls the integration time, coincidence window
and software delays, and allows arbitrary sequences of measurement and automation
to be scripted.

Fig. 6.3 a Realtime interface, showing motor controller and laser status, and coincidence count-
rates. Inset—delay control. b Delay solver. The left-hand panel shows 16 cross-correlation curves,
measured in parallel across 16 detectors. The peak at the center of each curve corresponds to twofold
coincidences due to photon pairs generated by the source. The right-hand panel visualizes the
relationship between these cross-correlation curves and solves for the optimal delay configuration
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6.2.2.2 Delays

Synchronization of delays is an important consideration when coincidence-counting
with large numbers of detectors. For example, digital pulse-conditioning logic inside
the Perkin-Elmer APD assembly, together with variation in cable and free-space
path lengths, can introduce up to ∼20ns of delay between detection of a photon
and arrival of the corresponding TTL pulse at the TDC. We must therefore introduce
artificial delays into “early” channels, ensuring that timetags due to photons generated
within the same downconversion event or laser pulse fall within the coincidence
window of the counting logic. Traditionally, this has been accomplished using rack-
mounted delay boxes, which simply switch between fixed lengths of coaxial cable.
The optimization of these delays has typically been performed by a process of trial
and error on behalf of the experimentalist. With many more detectors to deal with,
this optimization process becomes very time consuming.

These issues can bemitigated bymaking direct use of timing information provided
by the DPC-230. First, physical electronic delay boxes are no longer required, since
all delays can be implemented in software—simply by shifting timetags from each
channel by some user-specified time �t . Secondly, the task of finding optimal delay
configurations has been almost entirely automated. Switching out of coincidence-
counting mode, we acquire timetags for ∼10 s and then compute cross-correlation
functions (6.2) between all possible pairwise combinations of channels. These G12
curves are analyzed by a physically-inspired optimization process which automat-
ically finds the optimal delay configuration with minimal input from the user—
see Fig. 6.3b. This capability has been essential for the multiphoton experiments
described in Sect. 6.3, where frequent changes in the detection setup required regular
re-calibration of delays.

6.3 Multiphoton Quantum Interference

All experimental work in this thesis has so far been performed in a qubit encoding.
Although we have studied two photons in up to 6 modes—a system with 21 unique
configurations—we have only been interested the four two-qubit states |00〉 . . . |11〉,
and we have postselected on detection events which fall in that subspace. This has
allowed us to directly exploit the majority of the established language and theory of
quantum computation, much of which is written in terms of qubits i.e. in the circuit
model. In particular, we have made use of proofs of universality and scaling such as
those of KLM (1.6.2) to guide our experimental design. The fact that the literature
should be so focussed on qubits is not surprising—as with a classical computer, any
finite d-dimensional qudit encoding can be efficiently and exactly represented in

http://dx.doi.org/10.1007/978-3-319-21518-1_1
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terms of two-level systems, which often have advantages in terms of simplicity of
analysis and hardware efficiency.2

At present, the major bottlenecks for the development of universal LOQC are the
lack of deterministic, scalable sources of indistinguishable photons, and the difficulty
of optical-frequency adaptivemeasurements. Althoughwork is under way to develop
deterministic sources in a variety of architectures (see Sect. 1.6.3), current technol-
ogy is very much “pre-threshold”, and experiments which go beyond four photons
remain challenging.On the other hand,with the advent of integrated quantumphoton-
ics, modes are comparatively cheap—reconfigurable silicon photonic devices with
hundreds of waveguides are readily available [4].

Perhaps we can obtain a greater computational return per photon, at least in
the short term, by dispensing with the circuit model and making direct use of a
larger number of optical modes? Taking a simple example, if our basic resource
is 5 photons, then using the 2p modes that are minimally required to encode p
independent qubits, we generate a Hilbert space on qubits of dimension 25 = 32.
If on the other hand we inject the same 5 photons into a device with 25 modes,
we generate a Hilbert space with dimension 118,775. Naïvely, we might expect that
it is in general hard to classically compute the effects of quantum interference in
such scenarios. Moreover, it is not obvious that this computational advantage should
depend on adaptive measurements, and the associated problem of GHz feed-forward,
required for universal LOQC. The price we pay for this experimental convenience
is the guarantee of universality provided by KLM and others—see Sect. 1.5.4—but
it is nonetheless conceivable that we might retain an exponential quantum speedup
for specific tasks.

As well as an alternative approach to photonic quantum computation, this section
also introduces a new attitude towards quantum interference. Even when studying
fundamental physical phenomena such as entanglement and nonlocality (for exam-
ple in Chaps. 4 and 5), we have so far treated photonic quantum interference as a
resource which powers the CNOT-P gate, rather than a basic physical phenomenon
of interest. In this section we will demonstrate complex multiphoton quantum inter-
ference effects which have not previously been observed and are of basic scientific
interest in their own right, irrespective of potential practical applications.

Large-scale experiments of this form can currently only be implemented in a
controlled way using the technology previously described: first, the ability to build
intrinsically stable multi-path interferometers on a monolithic chip, and second, a
detection system capable of efficiently acquiring a detailed picture of the full output
state. The theoretical framework described in Sect. 1.5.3 will also be indispensable
for the numerical simulation and verification of experimental results.

The variety of possible linear optical networks which can be constructed from
beamsplitters and phase-shifters is infinite. Here we will consider two extrema: the
most structured and least unstructured nontrivial interferometers. In the first case,

2In a circuit model architecture, replacing qubits with d-level systems has been shown to give a
modestmultiplicative log2 d advantage in the number of gate operations [2] and facilitate controlled-
Û operations [3].

http://dx.doi.org/10.1007/978-3-319-21518-1_1
http://dx.doi.org/10.1007/978-3-319-21518-1_1
http://dx.doi.org/10.1007/978-3-319-21518-1_4
http://dx.doi.org/10.1007/978-3-319-21518-1_5
http://dx.doi.org/10.1007/978-3-319-21518-1_1
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we construct linear, symmetric arrays of uniformly coupled waveguides. Using these
devices, we implement quantum walks of up to five photons, which continuously
tunnel back and forth between neighbouring waveguides in the array. In the unstruc-
tured case, we useHaar random circuits, chosen uniformly at random from the space
of all possible interferometers. A recent result by Aaronson and Arkhipov [5] has
shown that multiphoton experiments using randomized interferometers of this type
are very likely to be classically intractable, even without feed-forward. We experi-
mentally test various aspects of this scheme, referred to as BosonSampling, using
up to 3 photons. Finally we discuss the problem of verification and validation of
BosonSampling machines, and experimentally demonstrate the potential utility of
quantum walks in this context.

6.3.1 Quantum Random Walks

6.3.1.1 Galton’s Board

A Galton board is constructed by hammering nails into a board so as to form a
regular lattice, as shown in Fig. 6.4. The board is mounted vertically, and a ball is
dropped from above. Upon striking each pin the ball bounces at random, either to
the left or the right. Each row of the lattice corresponds to a discrete timestep, and
we are usually only interested in the ball’s lattice site k on the current row, rather
than its exact position in space. The ball is said to take a random walk through the
lattice, and is referred to as a walker. Random-walk dynamics appear throughout
nature, from Brownian motion and neuroscience to the hunting tactics of sharks [6]
and humans [7]. Moreover, randomwalks form the basis for a number of randomized
classical algorithms, including graph connectivity [8] and machine learning.3 Inter-
estingly, the best-known approximate polynomial-time algorithm for the permanent
(see Sect. 1.5.3) of a nonnegative real matrix, due to Jerrum et al. [10], makes use of
a random walk. A random walk is a Markov chain, as the instantaneous stochastic
dynamics of the walker do not depend on the past trajectory or history.4

The time evolution of the ball in a Galton board is discretized. At a given timestep,
corresponding to one row of the board, the walker bounces to a neighbouring lattice
site—either to the left or the right, with equal probability. After nt timesteps, there
are

(nt
k

)
possible routes that the walker might have taken to arrive at a site k. The

probability that the walker arrives at the kth site is therefore binomially distributed,

P(k) = 1

2n

(
nt

k

)
(6.4)

3In fact, a classical random walk was used as part of a machine learning algorithm to optimize the
performance of the CNOT-MZ chip [9].
4Note that the momentum of the ball in the Galton board gives the system some memory of past
states, and the system is therefore only approximately Markovian.

http://dx.doi.org/10.1007/978-3-319-21518-1_1
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Fig. 6.4 Classical and quantum random walks. a A ball takes a classical random walk through
the pins of a Galton board. The probability that the ball lands at a given lattice site is binomially
distributed. b The state space of a walker can be represented as a graph, whose vertices and edges
correspond to lattice sites and allowed trajectories of the walker, respectively. c A single quantum
walker injected into a discrete array of continuously-coupled lattice sites undergoes a quantumwalk,
continuously tunnelling to neighbouring sites. Thewavefunction spreads ballistically, and interferes
with itself to create wavelike patterns in the probability distribution. This numerical simulation also
shows reflection of the wavefunction at the edge of the lattice. d The dynamics of a single walker
can be reproduced classically, for instance using water waves. However, if two indistinguishable
walkers are simultaneously injected into adjacent modes we obtain quantum interference, leading
to generalized bosonic bunching which has no classical analog. Photon pairs are more likely to
be detected at nearby sites, i.e. on the main diagonal of the correlation matrix. e Injecting three
photons into adjacent sites, we observe the higher-order equivalent of (d), where photons are again
clustered on the main diagonal. In general, the correlation matrix of p photons can be represented
as a p-dimensional hypercube

where the centre of the distribution corresponds to the starting site k0. This behaviour
is shown in Fig. 6.4a.

6.3.1.2 Quantum Walks

At any given time, a classical random walker occupies a single site k in the lattice.
What happens if we instead use a quantum walker, able to occupy a coherent super-
position state |ψ〉 = ∑m

k=1 dk |k〉 over many lattice sites k? There are many ways to
construct such quantum-mechanical analogues of Galton’s board, all of which fall
under the banner of quantum walks. All quantum walks have in common the fact
that the walker is a quantum particle, and that the stochastic evolution is described
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by a lossless (unitary) process. Most quantum walks are characterised by a time-
independent or periodic Hamiltonian with a regular, local, graph-like structure.

A number of basic phenomena distinguish quantumwalks of a single particle from
classical random walks. First, the probability distribution over sites, an example of
which is shown in Fig. 6.4c, is qualitatively more complex than that of classical par-
ticles, owing to interference of the wavefunction with itself. This interference pattern
often features two prominent ballistic lobes of high probability, whose distance from
the origin is a linear function of the evolution time. A quantum walker thus traverses
the lattice faster than a classical particle, in the sense that after fixed amount of time
we aremore likely to detect the quantum particle at a greater distance from the origin.

Quantum walks provide a generic, simple model of quantum dynamics, and as
such have found a broad range of practical applications. Quantum walks have been
used tomodel natural quantumphenomena including photosynthesis [11] and exciton
dynamics [12], and form the basis of a variety of quantum algorithms for problems
including search [13–15], verification ofmatrix products [16], evaluation of balanced
binary game trees [17], and computation of a broad class of general formulas [18].
Moreover, quantumwalks have been shown to provide a basic primitive for universal
quantum computation [19, 20]—an idea which can be traced back to Feynman, who
describes a computer with a time-independent Hamiltonian in Simulating physics
with computers [21].

6.3.1.3 Continuous-Time Quantum Walks of Photons

All quantum walks can be categorized as being either continuous time or discrete-
time. The discrete-time quantumwalk [22–24] is perhaps the closest quantum ances-
tor of a Galton board. The system evolves in discrete timesteps, during which the
evolution of the state of the walker is described by a fixed unitary operator Ŵ . By
analogy with Galton’s nail, Ŵ places the walker into a coherent superposition of
leftward and rightward motion, resulting in a superposition (usually balanced) over
lattice sites at the next timestep. The time evolution of a discrete quantumwalk is then
generated by repeated application of Ŵ , with |ψ〉out = Ŵ nt |ψ〉in after nt timesteps.

In this work we are instead concerned with continuous-time quantum walks [25,
26], which do not share such a strong analogy with Galton’s board. Discrete and
continuous-time quantum walks have been shown to be equivalent in the limit of an
infinitely small timestep [27]. Rather than using instantaneous splitting operations, a
continuous-time walk creates a constant opportunity for a walker at a particular site
to leak or tunnel into some subset of other sites in the lattice. This opportunity, or
coupling, has an associated strength which is related to the rate at which probability
amplitude moves between a particular pair of connected sites.

More formally: the state of a single walker in a lattice withm sites k = {1, 2 . . . m}
can always be written in a basis {|1〉, |2〉 . . . |m〉}
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|ψ〉(t) =
m∑

k=1

bk |k〉 =
m∑

k=1

bkâ†
k |0〉 (6.5)

where |k〉 is the state of awalker in the kth site, with a corresponding creation operator
â†

k . Following Childs et al. [25], the connectivity of the lattice can be represented
as a graph G, whose vertices and edges correspond to lattice sites and site-to-site
couplings respectively. For the simple example of the Galton board, G is a 1-D
linear graph with nearest-neighbour couplings, as shown in Fig. 6.4b. Any G—and
therefore any lattice—can be written as an m × m generator matrix M , where an
element Mi j corresponds to the coupling strength between sites i and j of the lattice.

To see the physical meaning of these couplings, we first examine a classical
continuous-time random walk. Let Pi (t) be the probability of finding the walker at
site i and time t . If two sites i , j , are coupled with a strength Mi j , then it is reasonable
to think that the rate of change of probability at a site should be proportional to both
the coupling strength and the probability distribution over all adjacent sites:

d Pi (t)

dt
=

m∑

j=1

Mi j Pj (t). (6.6)

To a first approximation, this reproduces the results of Galton’s board—in particular,
since Pi are positive real numbers, no interference effects are seen.

For quantum states, time evolution is governed by the Heisenberg equation (1.20),
and a quantum walker prepared at site i evolves according to

i
dâ†

i (t)

dt
=

[
â†

i (t), Ĥ
]
. (6.7)

We can then model analogous dynamics to (6.6) for a single quantum walker by
choosing a Hamiltonian in the interaction picture

Ĥ =
m∑

i, j=1

Mi j â
†
i â j . (6.8)

where we have set �=1, leading to

i
dâ†

i (t)

dt
= −

m∑

j=1

Mi j â
†
j (t). (6.9)

Terms on the diagonal of M can be interpreted as coupling a site to itself, encouraging
the walker to stay at a particular site.

Integrated photonics provides a particularly simple route to the implementation of
continuous-time quantum walks. Arrays of straight, parallel, evanescently coupled
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waveguides can be lithographically fabricated in a variety of material systems, pro-
viding a compact, interferometrically stable lattice upon which a walker, in the form
of coherent laser light or single photons, can move. Each waveguide then represents
a site in the lattice, and the time parameter corresponds to longitudinal distance z
in the array, with t = z/(nc) where n is the refractive index of the material. The
Mi �= j correspond to the strength of evanescent coupling between adjacent pairs of
waveguides, which can be precisely controlled as described in Sect. 2.2.2. Since the
evanescent field of a single mode waveguide falls off exponentially with distance
(Sect. 1.5.1), the coupling strength between next nearest-neighbour waveguides is
exponentially weaker than that of nearest-neighbours, and can usually be neglected.

A number of experiments report the use of laser-written waveguides in 3-D archi-
tectures to implement walks on highly-connected graphs [28, 29]. Moreover, the
Reck-Zeilinger scheme described in Sect. 1.5.4 of this thesis allows graphs with any
connectivity to be experimentally implemented in a 2-D waveguide structure. How-
ever the majority of implementations, including those reported in this thesis, use a
2-D nearest-neighbour array, leading to a 1-D lattice such as that shown in Fig. 6.4b.
Each site is then coupled to at most two nearest neighbours, giving a simple tridiag-
onal form for the generator:

Mi j =

⎧
⎪⎨

⎪⎩

γi j , if |i − j | = 1 ,

βi , if i = j,

0, otherwise.

→

⎡

⎢⎢⎢⎢⎣

β1 γ12 0 0 0 0 0
γ12 β2 γ23 0 0 0 0
0 γ23 β3 γ34 0 0 0

. . .

0 0 0 0 0 γm−1,m βm

⎤

⎥⎥⎥⎥⎦
, (6.10)

where γi j are evanescent couplings with γi j = γ j i and βi are waveguide propagation
constants. The Hamiltonian for a single particle on a 1-D lattice is then

Ĥ =
N∑

j=1

β j â
†
j â j + γ( j, j−1)â

†
j−1â j + γ( j, j+1)â

†
j+1â j1 . (6.11)

A waveguide array with a fixed length z is then described by an m × m unitary
operator Û , which acts on the single-particle Hilbert spaceH 1

m and is equivalent to
the transfer matrix �

� ↔ Û = e−i Ĥ z/nc ; |ψ〉out = Û |ψ〉in (6.12)

which under the assumption of zero loss completely characterises the device.
Quantumwalks of a single particle have now been reported in a variety of physical

systems including cold atoms [30], ions [31, 32], and nuclear magnetic resonance
[33], as well as a large number of optical implementations [34–36]. Single-photon
quantum walks have been used to simulate the band structure of strained graphene
[28] and the relationship between decoherence and the quantum/classical bound-
ary [37].

http://dx.doi.org/10.1007/978-3-319-21518-1_2
http://dx.doi.org/10.1007/978-3-319-21518-1_1
http://dx.doi.org/10.1007/978-3-319-21518-1_1
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In optical single-particle quantum walks, the walker is either implemented using
a single photon or a single beam of coherent laser light. In the absence of two-photon
quantum interference, the dynamics are thus described by a classical wave theory
(see Sect. 1.5) and both classical and quantum light sources give identical detec-
tion probabilities. In other words, the interference pattern in Fig. 6.4c can be exactly
reproduced using water waves. This implies that these experiments and associated
algorithms can be simulated on a digital computer with an overhead at most polyno-
mial in the system size [38]. Thus no quantum algorithm based on a single-particle
quantum walk provides any more than a polynomial (likely quadratic [22]) speedup
over a classical computer, and all such algorithms can be simulated with a constant
O(1) scaling using classical wave computers. The only exceptions to this rule are
oracle-based algorithms, for example the result of [39].

In order to see quantum walk behaviour which is not explained by a classical
wave model, we must introduce multiple contiguous walkers to the lattice [40]. The
first experimental demonstration [41] used photon pairs generated by SPDC together
with an array of 21 uniformly coupled SiOxNy waveguides. This work has since been
extended, using entangled photons to simulate fermionic statistics [42], as well as
observation of two-photon time evolution [29]. A number of recent demonstrations
have used laser-written waveguides to implement discrete-time walks of two to three
indistinguishable photons [43–45], including walks in 3-D structures [46]. Quantum
walks of two interactingmagnons have also recently been observed, using cold atoms
trapped in a linear lattice [47].

Let’s consider a 1-D array of uniformly coupled waveguides, such as that used by
Peruzzo et al. [41]. Measuring the twofold coincidence count-rate between single-
photon detectors at output ports i and j , we can plot a correlation matrix (Fig. 6.4d),
showing the probability of coincidental detection of photons in any given pair of
waveguides (i , j).Wefind that indistinguishable photons are very likely to be detected
either at the same site, or at adjacent waveguides. Specifically, we observe two clouds
of probability density, centred about the main diagonal (i = j) of the correlation
matrix, corresponding to events in which both photons are detected in the same half
of the array. Events in which the photon pair is split across the array (off-diagonal
terms in the correlation matrix) are suppressed.

This effect is a generalized form of two-photon quantum interference (Sect. 1.5.3),
and has no classical analogue. For the case of m = p = 2, for example, we recover
exactly the situation of Hong, Ou and Mandel. Intuitively, this effect can be thought
of as a consequence of the known tendency of photons to bunch together. It should
be noted that in a two-photon quantum walk, in contrast with HOM interference at a
50:50 BS, it is not always the case that both photons are detected at exactly the same
site. The observed increase in probability of coincidental detection at nearby but not
identical sites will be referred to here as clouding, to distinguish from HBT-style
bunching—it is not clear that the two are equivalent.

In order to calculate states andprobabilities inmulti-particlewalks,wemakedirect
use of the method outlined in Sect. 1.5.3. To re-iterate, any p-photon amplitude or
probability can be expressed as the permanent of a p × p submatrix of the m × m
transfer matrix �. As we have already seen, � is equivalent to the single-particle

http://dx.doi.org/10.1007/978-3-319-21518-1_1
http://dx.doi.org/10.1007/978-3-319-21518-1_1
http://dx.doi.org/10.1007/978-3-319-21518-1_1
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unitary time evolution operator Û (6.12), which is a direct function of the single-
particleHamiltonian (6.11). This is the origin of the nomenclature of M as a generator,
since it is a relatively small m ×m matrix operating onH 1

m which is used to generate
Ĥ and Û on the much larger multi-particle Hilbert spaceH p

m , which has dimension(m+p−1
p

)
.

How hard is it to simulate such highly-ordered quantum walks of many indis-
tinguishable photons? Looking at figures such as those shown in Eq.6.4, we might
expect that by exploiting the apparent structure of the probability distribution we
should be able to efficiently predict the outcome of such experiments using a classi-
cal algorithm. Indeed, there have been tentative theoretical efforts to approximately
model such distributions in terms of Bessel functions [48]. However, our best known
exact methods depend on the calculating the permanent, which in general is expo-
nentially hard. Detailed discussion of these issues, in a slightly different context, is
given in the next section.

6.3.2 BOSONSAMPLING

Imagine a computer which can be built in the real world. The ECT says that any such
apparatus can be efficiently simulated by a probabilistic Turing machine — “Time
on all reasonable machine models is related by a polynomial.” [49]. While the stan-
dard Church-Turing thesis (Sect. 2.1) has been all but proven for practical purposes
[50], the ECT has been significantly weakened by the prospect of quantum comput-
ing. The idea that some machines might be fundamentally classically intractable is
uncomfortable, and the veracity of the ECT remains the subject of intense debate
[51]. It is reasonable that this debate should be serious: before making any large
financial investment in quantum computing research, we should first ensure that the
problems of interest cannot be efficiently solved using classical computers.5

Shor’s algorithm constitutes the best-known challenge to the ECT.Amachine run-
ning Shor’s algorithm could not currently be simulated in polynomial time. However,
Shor’s algorithm does not yet render the ECT untenable, as it has not been proven that
factoring is classically intractable, i.e. outside P. Moreover, even if Factoring �⊂ P,
it may still be the case that undiscovered new physics or decoherence phenomena
render the construction of a scalable quantum factoring machine fundamentally (as
opposed to practically) impossible (see, for example [52]).

Can we find experimental evidence against the ECT? It would arguably be very
convincing if we could build a universal, fault-tolerant quantum computer capable
of significantly out-performing a classical computer at problems such as prime fac-
toring. Although great progress has been made, the largest number factored so far
using a quantum computer is 21 [53].6 In contrast, the current recommended RSA
key length (i.e. the size in bits of a composite number whose prime factorization is

5The ECT is not sufficiently well-posed to ever be formally disproved, only weakened.
6or 143, depending on how you define “quantum computer” [54].

http://dx.doi.org/10.1007/978-3-319-21518-1_2
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considered classically intractable in the near-term) is L = 2048. To run Shor’s algo-
rithm on this key would require O(L2) logical qubits, which after error-correction
would likely correspond to billions of coherent components [55]. Even if we could
build such a machine,7 we would also need to prove that factoring is hard in order
to strike a blow against the ECT.

Asdiscussed inChap. 5, exact simulationof quantumchemistry and superconduct-
ing materials is currently classically intractable. Non-universal quantum simulation,
which is likely to be technologically less demanding than universal quantum comput-
ing [56], is believed to provide an exponential quantum speedup in some instances
and would represent a challenge to the ECT. However, this approach suffers from
the same burden of proof as Shor’s algorithm: it is even harder to formally prove that
such problems are classically intractable.

BosonSampling, proposed in 2010 by Aaronson and Arkhipov [5], attempts to
solve the problems of theoretical proof and experimental difficulty outlined above.
Although BosonSampling holds for any noninteracting boson, for simplicity we
will only consider photons. We can then define the problem:

Build an m-mode interferometer A, whose transfer matrix � is chosen uniformly at random
from the space of all possible interferometers (i.e. by the Haar measure, Sect. 1.3.1). Place a
detector at the output of eachmode, and inject p � √

m indistinguishable photons to different
input ports of the circuit. BosonSampling is the problem of generating a single detection
event, sampled from the probability distribution B over all possible p-fold detection events.

The device, consisting of an interferometer together with p photons and m detectors,
is referred to as a boson computer. We have already shown in Sect. 1.5.3 of this thesis
that each element of the probability distribution B can be computed as a permanent
of a p × p submatrix of �. The core result of [5] is to show that, given certain
very reasonable conjectures, fast approximate classical algorithms for BosonSam-
pling would have very dramatic and unlikely consequences for existing models of
computation:

Suppose there exists a classical algorithm which takes as input a description of a boson
computer A and an error bound ε, and samples from an approximate distribution B′ such
that ||B − B′|| ≤ ε, in poly(|�|, 1/ε) time. Then G P E×, which is a #P-hard problem, is
solvable in BPPNP. [5]

Here G P E× is the problem of estimating the permanent of a matrix of complex
Gaussian random numbers X ∼ N p×p

C
to multiplicative ±ε · p! error, with high

probability. In 1979 it was proven by Valiant [57] that calculation of the permanent
is #P-complete, and an exact fast algorithm would imply P = NP. Here, #P is the
class of problemswhich count the solutions of decision problems inNP. Polynomial-
time approximate randomized algorithms for the permanent of certain classes of
matrix exist—for example those due to Jerrum et al. [10] (real, positive matrices)
and Gurvitz [58] (complex matrices with atypically large permanents), but no known
algorithm achieves the generality, precision and success probability demanded by

7A CPU containing in excess of a billion nanoscale transistors can be bought for less than £10.

http://dx.doi.org/10.1007/978-3-319-21518-1_5
http://dx.doi.org/10.1007/978-3-319-21518-1_1
http://dx.doi.org/10.1007/978-3-319-21518-1_1
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BosonSampling. Much of the work of [5] is to provide evidence that G P E×—
i.e. approximate estimation of the permanent of a random complex matrix—is #P-
hard, and to prove that if so, a fast classical BosonSamplingmachine would imply
P#P = BPPNP, collapsing the polynomial hierarchy (P, NP, coNP etc.) to an extent
that would have far-reaching implications, not least rendering postselected8 classical
computers as powerful as postselected quantum computers (BPPpath = PostBQP).

Arguably,BosonSampling provides even stronger evidence against theECT than
Shor’s algorithm. If Factoring turns out to be in P, although existing public-key
cryptography would be broken, we would not have to modify our existing models
of computation. If on the other hand BosonSampling has an efficient classical
algorithm, then a generic, foundational assumption of basic computation complexity
theory would fall.

At the same time, in practical terms BosonSampling is a weaker than Shor’s
result. Factoring is a problem with known real-world applications, while Boson-
Sampling does not have any such known use. It is important to emphasize that a
BosonSampling machine does not allow one to compute the permanent, only to
sample from B. A necessary condition for the proof is that m � p2, in which case
each element of B is exponentially small in p. We therefore cannot simply run the
machine many times in order to well-estimate a particular entry in B.

From an experimental point of view, the most compelling feature of BosonSam-
pling is the relative ease with which an advantage over existing classical machines
can be achieved. Rapid scaling in p, together with a number of experimentally con-
venient properties, renders BosonSampling a leading candidate for the first exper-
imental quantum speedup over classical computers. Specifically:

• The exponential difficulty of classical BosonSampling scales particularly fast.
In numerical simulations, using an optimized implementation of the fastest known
exact algorithm9 for the permanent [59], we find that for p > 6 (with m = p2)
full calculation of B becomes practically impossible on a single GHz CPU. It
is reasonable to think that experiments with �20 indistinguishable photons in
�400 modes will begin to challenge even for existing supercomputers. 8-photon
experiments have been reported using photons generated by SPDC [60].

• BosonSampling depends on high-visibility quantum interference, but, in contrast
with KLM, does not require adaptive measurement or feed-forward—techniques
which, at optical frequencies, remain experimentally very challenging.

• Given the fidelity with which linear-optical networks and single-photon detectors
can be constructed, it is not necessarily the case that BosonSampling machines
require error correction (Sect. 1.4.1), although this remains an open question (see,
for example, Ref. [61]).

8Allowing postselection on exponentially unlikely outcomes for both quantum and classical
machines.
9Benchmarks and optimized Cython code for the permanent are given in Appendix A.

http://dx.doi.org/10.1007/978-3-319-21518-1_1
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Let’s assume that we have a BosonSampling machine with p > 20. How can
we verify that the machine is truly implementing BosonSampling, and that exper-
imental imperfection has not caused it to output a classically tractable distribution?
The success or failure of Shor’s algorithm can be easily checked in polynomial time
by simply multiplying the prime factors. All problems in NP have this promise,
however, the output of problems in P#P cannot necessarily be checked in polyno-
mial time. Indeed, the original proposal of BosonSampling suggests that efficient
verification might be fundamentally impossible.

An intuitive argument was recently given by Gogolin et al. [62], who consider
the problem of distinguishing a BosonSampling machine, which samples from B,
from a fake, classical uniform-sampler, which samples p-fold clicks from the flat
distributionF : Pi = 1/d ∀ i . Since� is Haar-random, B is roughly uniform. More-
over, whenm � p2,B is spread roughly uniformly over exponentially many possible
detection patterns. It might therefore appear that B should be well-approximated by
F . Indeed, the authors show that without knowledge of�, the experimentalist would
need to obtain an exponential number of samples from a machine under test before
they could distinguish B—generated by a “real” BosonSampling machine—from
F . If the purpose of BosonSampling is to provide experimental evidence against
the ECT, this is a serious problem.

Previous experimental implementations of BosonSampling have used up to four
indistinguishable photons, together with randomized interferometers constructed
using optical fibre [63], lithographically fabricated waveguide chips [64] and laser-
written waveguides [65, 66]. These early demonstrations have largely focussed on
verification of the relationship between measured statistics and permanents of �. In
our experimental work we have instead attempted to address the more recent ques-
tions of verification and validation of BosonSampling, including the potential role
of quantum walks in this problem.

6.3.3 Experiment

We have performed three and four-photon experiments, using photonic chips to
implement both quantum walks (QW) and Haar-random BosonSampling unitaries
(RU). Throughout our experimental work, we have focussed on characterisation of
the bosonic clouding effects described in Sect. 6.3, the problems of BosonSampling
verification outlined in Sect. 6.3.2, and the potential relationship between the two.

A full schematic of the experimental setup is shown in Fig. 6.5. A multi-photon
type-I SPDC source (Sect. 6.3.3) is coupled into PMF fibre. These fibres are butt-
coupled to the input ports of either the QW (Sect. 6.3.3) or RU (Sect. 6.3.3) chip.
Photons are then coupled out of the chip and detected/correlated using the counting
system previously described, together with an array of fibre splitters for pseudo-
number resolving detection (Sect. 6.3.3).
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6.3.3.1 Multiphoton Source

The photon source used in this experiment, illustrated in Figs. 6.5 and 6.6a, is based
on type-I down-conversion (Sect. 1.6.3) in the pulsed regime. A Ti:Sapphire pulsed
laser (Coherent Chameleon Ultra II) generates 144 fs FWHM pulses at 780nm, with
a repetition rate of 80MHz. The average output power is ∼3.7W, with peak power
in excess of 300kW. This light is attenuated using a zero-order HWP together with a

Ti:Saph

Random unitary

Quantum walk TCSPC

Fibre splitters

16 SPADs

Downconversion

Photon source  Detection system

Attenuator
Upconversion

Lens PBS BBO HWP PR IF DM

PMF
(a) (c)

(b)

(d)

Fig. 6.5 Experimental setup to generate (a), interfere (b, c) and detect (d) single photons. a 780nm
laser light from a 140 fs pulsed Titanium:Sapphire laser was attenuated with a HWP and a PBS,
before frequency doubling with a type-I BBO nonlinear crystal. The subsequent 390nm light was
reflected from four DMs and focused onto a type-I BiBO nonlinear crystal to generate double pairs
of photons through spontaneous parametric down conversion. After passing through an IF, photons
are reflected off a prism (PR) and collected into polarisation maintaining fibres which are butt-
coupled, via a V-groove fibre array, to either (b) the QW chip, or (c) the RU chip. Outgoing photons
are coupled from the chip using a second fibre array, either directly to 16 APD detectors (d), or via
a network of fibre splitters. Detection events are time-correlated and counted using a 16-channel
TCSPC

N

S

E
W

SPDC1 SPDC2

N

S W

E

(a) (b)Q H Q

Fig. 6.6 a By coupling to the four compass points of the SPDC cone (N, S, E, W ) we can well-
approximate states of three degenerate photons in three modes, heralded on detection of a fourth
photon. b This approach can be modelled as two independent SPDC processes at different crystals

http://dx.doi.org/10.1007/978-3-319-21518-1_1
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Glan Taylor high-power PBS, and is upconverted to 390nm using a 2mm-thick BBO,
phase-matched for colinear SHG. This pump beam is cleaned of 780nm light using
four DMs and is then focussed to a waist of ∼40µm on a 2mm-thick BiBO crystal
phase-matched for type-I downconversion, generating photon pairs at 780nm on a
cone with 3◦ opening angle. The pump is then removed using a DM together with
a band-pass IF (Semrock MaxLine, λ0 =780nm, �λ =3nm, transmission ∼95%).
Four prisms, together with precision alignment stages and aspheric lenses, are used
to couple downconverted light from the four compass points of the downconversion
cone (0◦ N, 90◦E , 180◦ S, 270◦ W) into PMF.

Our goal is to use this source to generate states of three and four photons where
no two photons share the same mode—i.e. the Fock states |111〉 and |1111〉. This is
motivated by the fact that, for quantumwalks, the observeddynamics aremore diverse
when photons are injected into separate modes, as photons injected at the samemode
tend to stick together. Similarly, for BosonSampling, detection probabilities due to
state components with more than one photon per mode (either at the input or output
of the device) have repeated rows and columns in the corresponding submatrix of �,
making classical estimation of the permanent less computationally demanding.

This source simultaneously generates the SPDC state (1.168) at both the N/S
and E/W compass points of the cone. This can be modelled as two independent
downconversion processes, and is more easily visualized as simultaneous SPDC
at two independent crystals as shown in Fig. 6.6b. Assuming the filters, collection
optics, and geometry are symmetric across all four modes, we can write the output
state as

|
〉 = |ψ〉ns
S P DC ⊗ |ψ〉ew

S P DC (6.13)

= [|0n0s〉 + ei(φn+φs )γ |1n1s〉 + e2i(φn+φs )γ 2|2n2s〉]
⊗ [|0n0s〉 + ei(φe+φw)γ |1e1w〉 + e2i(φe+φw)γ 2|2e2w〉] + h.c. (6.14)

where the phases �φ arise due to differences in path length between the each collection
stage and the BiBO crystal. These free-space optical paths are not phase-stabilized,
and therefore fluctuate randomly with temperature and acoustic noise in the lab. In
this work we are principally concerned with the four-photon subspace of (6.14),

|
( �φ)〉4 = 1√
3

[
ei(φn+φs+φe+φw)|1n1s1e1w〉

+ e2i(φe+φw)|0n0s2e2w〉 + e2i(φn+φs )|2n2s0e0w〉]. (6.15)

With high pump power there is a chance that one photon will be detected in each of
the four modes, in which case the state is projected onto |1111〉 term only, and the
global phase can be ignored. However, if the modes are mixed by an interferometer
prior to measurement, we can no longer be sure that a given fourfold detection event
did not arise from one of the |2200〉 or |0022〉 terms. Since the phases �φ fluctuate

http://dx.doi.org/10.1007/978-3-319-21518-1_1
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in time, the average state will in general be partially mixed, and will not produce
high-visibility quantum interference.

We take a number of measures to overcome these problems. First, we can easily
perform three-photon experiments in which modes N , S, E are sent into the interfer-
ometer, while mode W is connected directly to a heralding single-photon detector.
Postselection on detection of three photons at the output of the interferometer together
with detection at the herald then isolates an effective input state of three degenerate
single photons in three modes, |111〉.

In order to study four-photon statistics arising from the |1111〉 term, we must
currently take a less satisfactory approach. Connecting all four modes to the interfer-
ometer, we first acquire fourfold coincidence countrates cm

i using the full four-mode
four-photon SPDC state (6.14). During this measurement, we continuously rotate the
polarization of one arm of the source using an arrangement of waveplates (Fig. 6.6),
forcing the average state into a maximal mixture10

ρ̂4 =
∫

(R̂(t)n ⊗ Is ⊗ Ie ⊗ Iw)|
(t)〉4〈
(t)|4dt

= |1111〉〈1111| + |2200〉〈2200| + |0022〉〈0022|. (6.16)

We would then like to treat detection events due to the |2200〉 and |0022〉 terms as
noise. Fortunately, these countrates can be experimentallymeasured:making two fur-
ther measurements with modes E/W and N/S disconnected from the interferometer
respectively, we obtain two new sets of experimental countrates (cns

i , cew
i ). Subtract-

ing these countrates from the mixed state data cm
i , we recover statistics which model

the behaviour of the desired |1111〉 state. This approach is problematic, quantum
interference is to a certain extent artificially constructed using measurements on a
maximally mixed state. As a result, this is not a scalable route to high photon-number
experiments. However, short of post-selecting from higher-photon number terms in
the state with exponentially low probability, or waiting for a scalable single-photon
source, it nonetheless provides an immediate route to experimental tests of the |1111〉
state.

6.3.3.2 Quantum Walk Chip

All of the quantum walk data presented in this section was measured using a 2-D
waveguide array (Fig. 6.5), fabricated in silicon oxynitride (SiOxNy). The coupled
region of the array, which is 700 µm long, consists of 21 waveguides with a cross-
section of 2.2µm × 0.85µm, and a uniform pitch of 1.3µm. Curved fan-in and fan-
out waveguides connect each mode to input and output ports at the chip facets, which

10By introducing a strong, controlled, uniform source of noise, we “override” any effects from the
uncontrolled, non-uniform thermal/acoustic phase fluctuation. In this sense, the method described
here shares some similarity with the techniques for precise characterization under environmental
noise described in Sect. 4.5.

http://dx.doi.org/10.1007/978-3-319-21518-1_4
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are butt-coupled to PMF V-groove arrays with a pitch of 127 µm. The waveguides
are tapered to a width of 0.7 µm to improve coupling to the fibre mode. An oil-based
index-matching fluid was used to further improve coupling efficiency. The lumped
fibre-to-fibre coupling was typically ∼30%.

SiOxNy is a ceramicmaterial, whose refractive index can be tuned between∼1.45
and∼2 by controlling the nitrogen/oxygen ratio (x/y). Compared to silica-on-silicon
waveguides (Sect. 2.2.1), SiOxNy can achieve amuch higher refractive index contrast
of � = (n2

2 − n2
1)/2n2

1 = 4.4% between the waveguide core (n2) and cladding (n1),
allowing a significantly smaller bend radius (Sect. 1.5.1) and more compact fan-
in/fan-out regions.

6.3.3.3 BOSONSAMPLING Chip

Following the prescription of Aaronson and Arkhipov [5], the BosonSampling
device used here implements a random unitary operation on 9 modes, chosen by the
Haar measure (Sect. 1.3.1) on U (9). In order to implement this operator in linear
optics, we make use of the Reck-Zeilinger scheme described in Sect. 1.5.4 of this
thesis. The layout of directional couplers is shown in Fig. 6.5.

The chip is fabricated in silicon nitride (Si2N3), with a refractive index contrast
of 27%. The device consists of a total of 36 directional couplers. The high index-
contrast afforded by Si2N3 was essential in order to achieve a compact circuit and
suppress losses. Eachwaveguide has a cross-sectional width of 1.5µm , and the pitch
between parallel waveguides was designed tomatch that of the fibre arrays (127µm).
At each directional coupler, the separation between waveguides is 2.5 µm, with
an interaction length, depending on the desired coupling ratio, of ∼400µm. This
device is not reconfigurable—each coupling ratio and internal phaseshift was written
directly into the device, based on a single randomly chosen Û . Although this device
provides a much higher refractive index contrast than SiOxNy , the lumped fibre-
to-fibre coupling efficiency was typically much lower—on the order of ∼5%. We
attribute much of this loss to poor mode-matching between fibre and waveguide,
rather than propagation loss, and expect that this can be considerably improved.

6.3.3.4 Pseudo-number-Resolving Detection

BosonSampling only requires that measurements are performed in the collision-
free subspace where no two photons occupy the same mode. It is therefore sufficient
to use non-number resolving detectors, such as the siliconAPDs used throughout this
thesis. For quantumwalks, however, themost interesting features occurwhenphotons
bunch together i.e. on the main diagonal of the correlation matrix (i ≈ j ≈ k . . .).
In order to observe these effects, we must be able to count up to four photons in
single mode. While number-resolving detectors have recently been reported both at
room temperature and using superconducting nanowires (see Sect. 1.6.4), they are
currently not widely available.

http://dx.doi.org/10.1007/978-3-319-21518-1_2
http://dx.doi.org/10.1007/978-3-319-21518-1_1
http://dx.doi.org/10.1007/978-3-319-21518-1_1
http://dx.doi.org/10.1007/978-3-319-21518-1_1
http://dx.doi.org/10.1007/978-3-319-21518-1_1
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(a) (b) 1 21

Fig. 6.7 a Numerical simulation of pseudo-number-resolving detection efficiency using fibre split-
ters and multiplexed non-number-resolving detectors. The simulation assumes an average single-
detector quantum efficiency of 60 ± 10%, and a variance in splitting ratio of ∼10%—realistic
experimental values. Inset: an example with p = 3, d = 4. b Eight detection schemes used to
image three-photon data in a quantum walk

In order to examine the collision subspace of probability distributions generated
by the quantum walk chip, we instead multiplex silicon APDs using fibre split-
ters, thus approximating non-deterministic number-resolving detectors.Using d unit-
efficiency detectors, together with a balanced 1-to-d fibre splitter, we ideally detect
p photons in a single mode with probability

P(p, d) =
(

d

p

)
/

[(
d + p − 1

p

)
p p

]
. (6.17)

P(d, p) is polynomial in p if d ≥ p2, and this scheme is in principle scalable.
Numerical simulations of realistic detection efficiencies, taking into account various
experimental imperfections, are shown in Fig. 6.7.

6.3.4 Characterization and Numerical Simulation

In order to compare our experimental results with theory, we implemented detailed
numerical simulations of each setup, incorporating various measured experimental
parameters.

The visibility of quantum interference of the photon source was characterized
by measurement of Hong-Ou-Mandel dips. Fitting curves to measured count rates
as described in Sect. 2.4, we estimated the HOM dip visibility between photons
generated in separate downconversion events (“off-pair” photons) to be ∼88%. The

http://dx.doi.org/10.1007/978-3-319-21518-1_2
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visibility of off-pair quantum interference is reduced with respect to an on-pair dip
by the possibility that two photons are generated at different times within a single
pulse, leading to temporal distinguishability. Our laser was therefore optimized for
generation of short pulses.

Fabrication of both QW and RU chips is subject to imperfection in coupling ratios
and phase shifts, and the unitary Ûd describing each device will differ slightly from
the Û originally designed. Owing to the ordered structure of the QW chip, we were
able to characterize ÛQW bymeans of single photonmeasurements only, using bright
laser light injected at the centre of the array.Assuming that deviation from the original
design is most prominent in the nearest-neighbour coupling ratios γi j (which depend
exponentially on distance) and time parameter t , a nonlinear optimization algorithm
was used to find values of these (20+1) free parameters which best reproduce the
experimentally measured single-photon distribution. We found a standard deviation
in the reconstructed coupling ratio of σβ ∼ 5%.

For the RU chip, since fabrication error could potentially lead to any m-mode
unitary, we use the more rigorous approach of Laing [67], which allows full recon-
struction of the device unitary by means of a single-photon and two-photon measure-
ments only. This method, which does not require interferometric stability between
the chip and probes, is scalable: since Ûd is described by a number of parameters
polynomial in m, it can be completely reconstructed using a polynomial number of
measurements.

Our numerical simulations also make use of a full audit of individual detector
efficiencies, fibre splitter coupling ratios, and losses, together with a model of each
pseudo-number-resolving detection scheme.

6.3.5 Experimental Results

6.3.5.1 Bunching and Clouding in Quantum Walks

In our first experiment, we injected the three-photon state |111〉 into the central
waveguides (k =10, 11, 12) of the QW chip, using the fourth output mode of the
source as a herald as previously described. Using 1-to-2 and 1-to-3 fibre splitters
in a total of eight configurations (Fig. 6.7), we measured 524 of the 1771 possible
three-photon detection events over 21 modes, obtaining a total of 3870 threefold
events. Delaying the arrival time of photons from modes E and S of the source on
the order of the photon coherence time (∼1ps), we repeated this measurement with
mutually distinguishable photons, obtaining 5588 threefold events.

We found a statistical fidelity between normalized theoretical P th
i and experimen-

tal Pexp
i probability distributions of FQ = 0.930 ± 0.003 and FC = 0.961 ± 0.002

for indistinguishable and distinguishable input states respectively. Error bars are cal-
culated using a Monte-Carlo technique, assuming Poissonian statistics. We attribute
the observed discrepancy between experiment and theory to imperfect character-
ization of the QW device, non-uniform facet/coupling loss, limited visibility of



6.3 Multiphoton Quantum Interference 185

quantum interference due to photon distinguishability introduced by propagation
through device itself, and higher-order terms in the SPDC state.

Experimental QW data is compared with numerical simulations in Fig. 6.8c, d, g
and h. Using indistinguishable photons, bosonic bunching is immediately apparent
along the main diagonal of the correlation cube, with three-photon detection events
strongly suppressed in off-diagonal regions. Two “clouds” are clearly visible, centred
onwaveguides 6 and 16. If one photon is detected at waveguide 16 (for example), it is
much more likely that the remaining two photons will also be detected in the vicinity
of that waveguide. In contrast, using distinguishable photons we are equally likely
to detect photons at opposite sides of the array as to find them grouped together, and
the clouds are seen to dissipate.

We can compare this behaviour with three-photon data obtained from the unstruc-
tured RU chip, shown together with numerical simulations in Fig. 6.8a, b, e and f. For
the QW chip, it is meaningful for two waveguides to be nearest neighbours, while
for the RU chip this is not the case. No clouding behaviour is observed, and the dis-
tinction between distinguishable and indistinguishable photons is qualitatively not
as strong.
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Fig. 6.8 Absence and emergence of correlated bosonic clouds. Three-photon data for a nine mode
random unitary (RU, a, b, e, f) and a 21 mode quantum walk (QW, c, d, g, h). The radii of spheres
centred at coordinates (i, j, k) are proportional to the probability of detecting three photons in out-
put modes i , j and k respectively. We tune between indistinguishable (blue) and distinguishable
(red) photons by introducing a large path-length difference at the source. a Experimental RU with
indistinguishable and (b) distinguishable photons. (c, d) Bosonic clouds from experimental QW
using indistinguishable and distinguishable photons respectively. e, f Simulated RU with indistin-
guishable and distinguishable photons respectively. g, h Theoretical bosonic clouds from QW with
indistinguishable and distinguishable photons respectively. Experimental data has been corrected
for measured detection efficiency. Numerics have been filtered to show only those detection patterns
which were experimentally measured—this is the main reason for the apparent asymmetry between
boson clouds (colour online)
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Fig. 6.9 Quantum-walk-specific verification. a Experimental data (black points) for four indis-
tinguishable photons in a 21 mode quantum walk, over 1820 fourfold detection patterns, ordered
by descending theoretical probability (red points). Number-resolved data is highlighted with blue
circles. Error bars assume Poissonian statistics. b Reconstructed pure-state four-photon data, after
subtraction of experimentally-measured contributions due to |2200〉 and |0022〉 terms. In (c–e) we
perform a quantum-walk-specific test for p = 3, 4, 5 photons, measuring the fraction of events C
in the principal quadrants (see inset). We plot experimental results for indistinguishable (blue) and
distinguishable (red) photons, along with a corresponding theoretical distribution with the same
number of samples drawn. In all cases, we see a statistically significant increase in C for indistin-
guishable photons. In (f) we perform the same test for three photons in a 9-mode random unitary,
where our quantum-walk-specific test does not reveal statistically significant quantum-classical
separation, as expected

In order to quantify this bosonic clouding effect, we construct a simple metric.
For a general experiment of p photons in m modes, the correlation matrix forms a
p-dimensional hypercube with 2p quadrants.11 We define the clouding parameter
C to be the fraction of events which occupy the two principal quadrants, i.e. those
which intersect the main diagonal i = j = k = l . . .. We obtained experimental
values of Cexp

Q = 0.288 ± 0.015 and Cexp
C = 0.20 ± 0.01 for indistinguishable

and distinguishable photons respectively, compared to theoretical values of C th
Q =

0.332 ± 0.007 and C th
C = 0.202 ± 0.005, indicating significantly stronger clouding

under the influence of quantum interference.
Isolating the |1111〉 term from |
SPDC〉 as previously described, we measured

four-photon correlations at the output of the QW device, with modes N , S, E and
W of the source connected to waveguides (k = 9, 10, 11, 12) respectively. Using
1-by-4 splitters in two different configurations, we measured coincidence countrates
for 1016 out of a possible 10,626 fourfold patterns, collecting ∼50, 000 events over
the course of ∼1week. Experimental data is plotted together with numerical simula-
tions in Fig. 6.9a, b. We found statistical fidelities between normalized experimental
and theoretical distributions of FQ = 0.971 ± 0.001 and FC = 0.978 ± 0.004

11Higher-dimensional quadrants of hypercubes are referred to as octants or hyper-octants.
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respectively. Experimental and theoretical clouding parameters were measured to
be Cex

Q = 0.175 ± 0.007 and C th
Q = 0.144 ± 0.002 respectively. In contrast, we

measured significantly smaller values of C when all four photons were made dis-
tinguishable, finding experimental and theoretical values of Cex

C = 0.09 ± 0.003
and Cth

C = 0.078 ± 0.001 respectively. These values are compared graphically in
Fig. 6.9d.

While acquiring this four-photon data, the counting system also recorded 217 five-
fold detection events. These events arise from extremely low-probability six-photon
terms in |
SPDC〉, where one photon is lost. The Hilbert space dimension of 5 pho-
tons in 21 modes—the number of possible detection patterns—is 53,130. As a result,
with so few detection events registered in total, no unique detection pattern appears
more than twice in our data. In this regime it is no longer helpful to plot individual
countrates in a bar chart, or compute statistical fidelities. However, the clouding met-
ric, which boils the full dataset down to a single global property of the probability
distribution, appears to detect evidence of bosonic clouding, and therefore quantum
interference, in our experimental data. We measured values of CQ = 0.079± 0.019
and CC = 0.058 ± 0.016 for indistinguishable and distinguishable photons respec-
tively. These values are compared graphically in Fig. 6.9e.

6.3.5.2 Quantum Verification in Large Hilbert Spaces

Full quantum state tomography (Sect. 2.6) of the three-photon, 21-mode state shown
in Fig. 6.8 would require O(1 × 106) measurements to reconstruct the d2 − 1 free
parameters of the density matrix ρ̂. Without exploiting known structure in the state,
full reconstruction of the 5-photon state measured in Fig. 6.9e would require O(1×
109) linearly independent measurement settings. Even estimating the expectation
value of a single measurement setting is likely to be prohibitively time-consuming,
as the probability of any given event is so small.

We can compare this situation to that of Shor’s algorithm, which is designed
in such a way that, for a sufficiently large problem size, the experimentalist cannot
accurately measure the probability of detecting any given n-qubit state in polynomial
time. Specifically, when factoring an L-bit number N , Shor’s algorithm generates
a periodic probability distribution characterized by O(N ) ∝ O(2L) equally spaced
peaks. Although it is exponentially more likely that the machine will output a result
corresponding to a peak than a trough, since each peak is exponentially small, the
probability of registering the same outcome twice is negligible. Despite this, the
period—a global property of the probability distribution, which is a function of
its highly structured nature—can be extracted (using the inverse quantum Fourier
transform QFT) after only polynomially many trials, yielding the prime factors and
thus a simple means of verifying the output.

As experiments in quantum computation and quantum information continue to
scale in complexity and Hilbert space dimension, the available experimental data
will necessarily be increasingly sparse, to the extent that standard methods of

http://dx.doi.org/10.1007/978-3-319-21518-1_2
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comparison with theory will break down. Moreover, we are already approaching
the point at which both full numerical simulation of the experimental setup, as well
as full characterization by quantum state tomography, become classically intractable.
Our results begin to encroach on this regime of extremely sparse data and challeng-
ing classical simulation. However, as we have shown, using global measures which
exploit known structure in the probability distribution or experimental setup, we are
nonetheless able to verify that the machine operates as desired.

This global, structured approach is possible for the QW chip, as the device is
specifically designed to generate highly structured probability distributions. How
can we confirm successful operation of the RU chip, which is nominally completely
unstructured?

6.3.5.3 Experimental Verification of BOSONSAMPLING

Injecting three photons into the first three modes of the RU chip, we measured 434
threefold coincidences, distributed over all 84 detection patterns in the collision-
free subspace. Experimental results from both indistinguishable and distinguishable
photons are compared with numerical simulations (based on the reconstructed exper-
imental device unitary Ûd ) in Fig. 6.8a, b, e and f respectively. Statistical fidelities
between the experimental data and numerical model were FQ = 0.939± 0.010 and
FC = 0.970±0.007, for indistinguishable and distinguishable photons respectively.

The principal claim of Ref. [62] is that without knowledge of Ûd , the experi-
mentalist cannot discriminate between an untrusted BosonSampling machine and
a classical uniform-sampler F , without first measuring an exponential number of
samples. In our first approach to verification of the RU device, we assert that in
the context of realistic experiments it seems unreasonable to enforce the condition
that Ûd should be unavailable to the experimentalist: as we have already described,
it can always be efficiently measured [67]. Indeed, Aaronson and Arkhipov have
shown [68] that given Ûd , a BosonSampling machine can be distinguished from a
uniform-sampling machine in polynomial time using the so-called row-norm or R∗
discriminator, prompting experimental interest [69].

Sending p photons into modes za
i of a device with a known transfer matrix � ↔

Ûd , we sample a single detection event, registering a coincidence-click at output
modes zb

j . We isolate the p × p submatrix M of �, choosing columns and rows

according to za
i and zb

j respectively, and then compute the normalized product R∗ of
row-norms of M ,

R∗ = 1

p p

p∏

i=1

⎛

⎝
p∑

j=1

|Mi j |2
⎞

⎠ . (6.18)

Note that this quantity can be computed in classical polynomial time. While R∗ does
not give a good approximation to | per(M)|2, it is nonetheless sufficiently correlated
with B—which does depend on | per(M)|2—to discriminate between BosonSam-
pling devices and uniform-samplers.
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In order to confirm that B as generated by our experiment can rapidly be distin-
guished from F , we use Bayesian inference to update our knowledge in real time,
based on the data shown in Fig. 6.8. Bayes’ theorem gives the probability that we are
sampling from B, given our experimental values of R∗

P(B|R∗) = P(R∗|B)P(B)

P(R∗)
. (6.19)

In order to obtain P(R∗|B), we numerically estimate the probability that R∗ is above
a threshold value of 1, finding P((R∗ > 1)|B) = 0.631, P((R∗ < 1)|B) = 0.369.
Starting from an unbiased prior, P(B) = P(F) = 1/2, after only 12 detection events
we obtain a confidence level greater than 90% that the experimental data was drawn
from B. Using all 434 detection events, this rises to P(B|R∗) = 1 − 10−35.

In F , Goglin et al. consider a somewhat artificial failure mode of a BosonSam-
pling device—in reality, the experimentalist is likely to know a priori that the device
in the lab is not a uniform sampler. A more realistic possibility is that photons sent
into the device are partially or completely mutually distinguishable, a legitimate
experimental concern. In this case no quantum interference is observed in the output
probability distribution C, and the behaviour of the device can be classically pre-
dicted in polynomial time. Here, the R∗ test fails to distinguish B from a classical
machine generating C. As we have already seen, the clouding metric C also fails to
detect a signature of quantum interference in BosonSampling data, owing to the
lack of structure in B.

An alternative test, which succeeds in this task, measures the net probability that
a p-fold click is detected in the collision-free subspace, when p photons are sent
into the device. Intuitively, since indistinguishable photons tend to bunch together,
this probability should increase when input photons are made distinguishable. The
fraction of trials N to p-fold detection events P was estimated to be Pex

Q (p −
fold) = 0.450±0.028 and Pex

C (p− fold) = 0.680±0.002 for indistinguishable and
distinguishable photons respectively, compared to theoretical values of Pth

Q = 0.509

and Pth
C = 0.691. Here we used the method of [69] to estimate N .

6.3.6 Postselected Multiphoton Quantum Walks

One of the most powerful features of BosonSampling is that it demands neither
postselection nor adaptive measurement. It is remarkable that BosonSampling pro-
vides a quantum speedup in the absence of any nonlinear coupling between photons,
either in the sense of nonlinear optics (Sect. 1.5.5) or the measurement-induced non-
linearity of KLM (Sect. 1.6.2). It is nonetheless interesting to ask whether anything
might be accomplished by minimal postselection and/or feed-forward on quantum
walks or BosonSampling machines.

http://dx.doi.org/10.1007/978-3-319-21518-1_1
http://dx.doi.org/10.1007/978-3-319-21518-1_1
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The probability distribution generated by a quantum walk of a single photon in
a linear, uniformly coupled array is symmetric about the input waveguide (Fig. 6.4).
For multiphoton walks, if the choice of input waveguides is symmetric, the multi-
photon distribution will also be symmetric, as seen in our three-photon experimental
data (Fig. 6.8). However, by postselecting on detection of one photon in a particular
waveguide, we find that interesting asymmetric effects can be seen in the resulting
(p − 1)-photon statistics.

Figure6.10a–f show numerical simulations of the time evolution of a four-photon
quantum walk, after postselection on detection of one photon in a particular off-
centre mode. The resulting three-photon statistics show an asymmetric distribution,
with a single ballistic lobe propagating on the main diagonal. We expect that this
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Fig. 6.10 Asymmetry in postselected on quantum walks. a–f Numerical simulation of quantum
walk time evolution under postselection. Beginningwith a four-photon quantumwalk, we postselect
on detection of one photon in a specific waveguide. Figures (a–f) show successive steps in the time
evolution of the resulting three photon state as correlation cubes. Each axis of the cube denotes the
position of a photon in the array, where the hue and radius of each sphere are proportional to the
probability of detecting three photons, after postselection, at waveguides i, j, k. f A two-photon
quantumwalk, postselected from three-photon data. The radius of each red circle corresponds to the
experimental count rate inwaveguides i, j , after postselection and correction formeasured detection
efficiencies. Black circles show a numerical simulation. The asymmetry seen in the numerics (a–f)
is clearly reproduced. h Experimental data using distinguishable photons. The apparent asymmetry
is an artefact of our measurement setup
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effect would be difficult to achieve without postselection, assuming a uniform, pla-
nar waveguide array.12 We used the QW chip to test this behaviour, sending three
indistinguishable photons into the device as before and postselecting on detection at
waveguide 15. Experimental two-photon correlations are shown in Fig. 6.10g, where
a single asymmetric lobe can be clearly seen. Using distinguishable photons, we do
not see the same effect (Fig. 6.10h).

6.3.7 Discussion

The experimental progress described in this section is characterized by an increase
in complexity. Each optical chip has more than twice as many spatial modes as those
previously described in this thesis, and the RU device has 36 directional couplers,
compared to 13 for the CNOT-MZ. We have described a four-photon source which,
although not entirely novel, has been used in a previously unexplored capacity. To
our knowledge, ours is the first demonstration of correlated coincidence counting
using 16 single photon detectors where all possible detection events are registered.13

This system has allowed us to take detailed images of the complex three-photon
interference effects shown in Fig. 6.8, which have not previously been observed.

In [68], Aaronson and Arkhipov describe an efficient classical algorithm due to
Fernando Brandao, based on work of Trevisan et al. [70], which generates a “mock-
up” probability distribution M which provably cannot be distinguished from B by
circuits of any fixed polynomial size. This distribution is carefully designed , and it is
not currently knownwhether anymachine—classical or quantum—could distinguish
M from B in polynomial time. Although it is hard to say at this stage, it would
not be surprising if the deliberate lack of structure in B renders BosonSampling
machines fundamentally indistinguishable from certain adversarial classical “fakes”.
Nonetheless, we have shown that a specific small class of experimentally relevant
BosonSampling failuremodes can be efficiently detected in experiments.We expect
that the scope of suchmethodswill grow, to encompass themajority of realistic errors
that might render BosonSampling machines classically tractable.

Moreover, we have found circumstantial evidence to suggest that by deliberately
imposing structure on the interferometer and resulting probability distribution, the
difficulty of experimental verification can be significantly reduced. To this end, we
have shown that by exploiting known qualitative properties of the probability distri-
bution generated by a quantum walk, we are able to detect a signature of quantum
interference even in extremely large and non-separable Hilbert spaces, where it is
no longer practical to measure probabilities. We do not expect that the scheme used
in Sect. 6.3.5, as described, will always return a definitive answer after a polynomial

12Careful control of the phase of input photons, following the classical approach of beam steering
using a phased array, might conceivably reproduce this effect.
1316 detectors are used in Ref. [60], but only a subset of possible detection events are recorded.
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number of events.14 However, we expect that future scalable techniques will follow
our basic method, and that probability distributions with tailored structure will be
essential to light the way, as we drive out into the darkness of classical computational
intractability.

6.4 Statement of Work

The majority of my contribution to work described in this section has been in the
construction and programming of the counting system (Sect. 6.2), as well as analysis
ofmultiphoton data. I also performedmany of the numerical simulations, andworked
on data acquisition in the lab.
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Chapter 7
Discussion

Finally, I was let down and joined the others at the window,
to watch the sleet fall.

Ivor Cutler

We have described a broad spectrum of experiments in quantum photonics, many of
which make use of the control and complexity afforded by monolithic integration. In
our work with the CNOT-MZ, we have shown the value of reconfigurability in such
devices, and the surprising diversity of experiments which can be performed with
just two qubits. In doing so, we have confirmed that integrated quantum photonics
can reproduce the performance and flexibility of bulk optics.

Using this devicewehave implemented a newvariant onWheeler’s delayed choice
experiment, observing continuous tuning between wave and particle phenomena for
the first time. While we do not contend that this result provides new physical under-
standing over and above Bell’s theorem, for example, we suggest that it nonetheless
provides a useful pedagogical tool to think about wave-particle duality.

In Chap.4, we introduced three new protocols, which allow the presence of entan-
glement to be certified under suboptimal experimental conditions. It is reasonable to
think that these techniques will be useful for the characterization of quantum states in
the laboratory, where calibration and alignment can sometimes be problematic. We
believe that these methods might also find applications in quantum key distribution
and related quantum communication protocols, when two distant parties do not share
a common frame.

Chapter5 introduced a new algorithm for quantum chemistry. Although the analy-
sis is not complete, we believe that this technique potentially offers very significant
benefits over the current status quo for quantum simulation, particularly with respect
to the number of gate operations required. Even if this algorithm is not used in the
exact form described here, we anticipate that realistic implementations of quantum
simulators will need to adopt the pragmatic approach described here. We ran our
algorithm using the CNOT-MZ, demonstrating both the ability of the algorithm to
simulate larger systems with fewer resources, as well as further testing the perfor-
mance and repeatability of the integrated quantum chip.
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Finally, Chap. 6 describes a number of technical advances in both state preparation
andmeasurement.Aswith theCNOT-MZ,we again see that by increasing the number
of experimental degrees of freedom by a relatively small amount, we expand the
diversity and power of experimental quantum phenomena very significantly. We
expect that successful verification techniques for BosonSampling-like problems,
if not following exactly the method outlined in Chap.6, will at least depend on the
fundamental ideas described therein: namely, deliberate introduction and exploitation
of structure in the device and resulting probability distribution.

http://dx.doi.org/10.1007/978-3-319-21518-1_6
http://dx.doi.org/10.1007/978-3-319-21518-1_6


Appendix A
QY

In the course of the experimental work described in this thesis we have developed a
broad general-purpose base of computer code (qy), which is maintained and docu-
mented as a library to encourage re-use. The majority of this code is written in the
Python programming language,1 with some compiled extensions written in C or
Cython for speed. Both of these languages are free and open source.
qy includes modules for data acquisition (DAQ) and hardware control, data log-

ging and analysis, and numerical simulation, with a specific emphasis on tasks which
often occur in experimental quantum photonics. The code is currently open source,
and can be obtained via git:

https://github.com/peteshadbolt/qy

The top-level structure of the library is as follows:

• qy.analysis: Various standard metrics and tools for data analysis.
• qy.formats: File formats, in particular an efficient format to represent multi-
photon coincidence-counting data.

• qy.graphics: Utility functions for graphics and plotting.
• qy.hardware: Interfaces to various pieces of standard laboratory apparatus,
including FPGA counting systems, the DPC-230 described in Sect. 6.2, Toptica
diode lasers, Coherent Ti:Saph lasers, custom powermeters, Thor labs SMC100
power meters, silica-on-silicon thermal phase shifters, etc.

• qy.settings: Utility functions to read, write and persist global settings.
• qy.simulation: Provides general quantum information primitives, including
single-qubit states and operators, frequently used two-qubit states and gate oper-
ations, measures such as quantum state fidelity and concurrence, a circuit-model
simulator, and an optimized linear-optics simulator, capable of calculating multi-
photon states and statistics in arbitrary linear optical networks.

1http://www.python.org/.
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• qy.util: Utility functions.
• qy.wx: Extends the functionality of the wx GUI library.

Here we will discuss two components in particular: the linear_optics simula-
tion package and the .counted file format.

A.1 Universal Linear Optics Simulator

The module qy.simulation.linear_optics provides a simple means to
simulate multiphoton states and statistics in arbitrary linear optical circuits. This
work draws upon ideas and code kindly provided by JasminMeinecke, Nick Russell,
Jacques Carolan. The numerical method is exactly that described in Sect. 1.5.3, and
as such depends almost entirely on the calculation of permanents.We have developed
optimized code to compute the permanent of complex matrices, using a number of
different algorithms and implementations.We implemented the core algorithm using
Cython, a compiled language which can typically achievemuch better performance
than standard Python, which is interpreted rather than compiled. Typical real-world
performance of these methods is summarized in Fig.A.1. The library is very easy to
use:

import numpy as np
from qy.simulation import linear_optics as lo

# Load up a device from a JSON definition file:
device=lo.beamsplitter_network(json=’devices/cnot_mz.json’)
print device
print device.get_unitary (). round (2)
print device.nmodes

# Draw the waveguide structure as a PDF file
device.draw(’devices/cnot_mz.pdf’)

# Make a simulator , and link it to the device
simulator=lo.simulator(device , nphotons =2)

# Print out the basis
print simulator.basis

# Set the input state to two photons in the top mode , and look at
# the output probabilities and output state
simulator.set_input_state ([0, 0])
print simulator.input_state
print simulator.get_probabilities (). round (2)
print simulator.get_output_state ()

# Superposition input states , and classical statistics
state=simulator.basis.get_state ()
state [0 ,1]=1/np.sqrt (2)
state [3 ,4]=1/np.sqrt (2)
print state
simulator.set_input_state(state)
simulator.set_visibility (0.5)
print simulator.get_probabilities ()

http://dx.doi.org/10.1007/978-3-319-21518-1_1
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Fig. A.1 Estimated performance of various implementations of algorithms to compute the perma-
nent, tested against 1000 Haar-random N × N matrices. Red and blue lines show average execution
times for Ryser’s algorithm, implemented in Python and Cython respectively, as a function of N .
Green and black lines correspond to execution times for hard-coded implementations up to N =4,
again in Python and Cython respectively (color online)

# Performance test: 4 photons in 16 modes of a Haar -random U
# Hilbert space dimension is now 3876
device=lo.random_unitary (16)
simulator=lo.simulator(device , nphotons =4)
simulator.set_input_state(range (4)) # Photons go in the top 4 modes
probs=simulator.get_probabilities (label=True)

When computing the permanent, it was noticed (by Nick Russell) that hard-coded
routines can give a significant advantage in speed for small matrices, as the overhead
associated with loops and conditional statements can be completely avoided. For
completeness we include code up to N = 4, beyond which the advantage with
respect to Ryser’s algorithm is negligible.

def perm_2x2(a):
""" An explicit 2x2 permanent """
return a[0 ,0]*a[1,1]

+ a[1 ,0]*a[0,1]

def perm_3x3(a):
""" An explicit 3x3 permanent """
return a[0 ,0]*a[1 ,1]*a[2,2]

+ a[0 ,0]*a[2 ,1]*a[1,2]
+ a[1 ,0]*a[0 ,1]*a[2,2]
+ a[1 ,0]*a[2 ,1]*a[0,2]
+ a[2 ,0]*a[0 ,1]*a[1,2]
+ a[2 ,0]*a[1 ,1]*a[0,2]
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def perm_4x4(a):
""" An explicit 4x4 permanent """
return a[0 ,0]*a[1 ,1]*a[2,2]*a[3,3] + a[0,0]*a[1 ,1]*a[3,2]*a[2,3]

+ a[0 ,0]*a[2 ,1]*a[1,2]*a[3,3] + a[0,0]*a[2 ,1]*a[3,2]*a[1,3]
+ a[0 ,0]*a[3 ,1]*a[1,2]*a[2,3] + a[0,0]*a[3 ,1]*a[2,2]*a[1,3]
+ a[1 ,0]*a[0 ,1]*a[2,2]*a[3,3] + a[1,0]*a[0 ,1]*a[3,2]*a[2,3]
+ a[1 ,0]*a[2 ,1]*a[0,2]*a[3,3] + a[1,0]*a[2 ,1]*a[3,2]*a[0,3]
+ a[1 ,0]*a[3 ,1]*a[0,2]*a[2,3] + a[1,0]*a[3 ,1]*a[2,2]*a[0,3]
+ a[2 ,0]*a[0 ,1]*a[1,2]*a[3,3] + a[2,0]*a[0 ,1]*a[3,2]*a[1,3]
+ a[2 ,0]*a[1 ,1]*a[0,2]*a[3,3] + a[2,0]*a[1 ,1]*a[3,2]*a[0,3]
+ a[2 ,0]*a[3 ,1]*a[0,2]*a[1,3] + a[2,0]*a[3 ,1]*a[1,2]*a[0,3]
+ a[3 ,0]*a[0 ,1]*a[1,2]*a[2,3] + a[3,0]*a[0 ,1]*a[2,2]*a[1,3]
+ a[3 ,0]*a[1 ,1]*a[0,2]*a[2,3] + a[3,0]*a[1 ,1]*a[2,2]*a[0,3]
+ a[3 ,0]*a[2 ,1]*a[0,2]*a[1,3] + a[3,0]*a[2 ,1]*a[1,2]*a[0,3]

def perm_5x5(a):
""" An explicit 5x5 permanent """
return a[0 ,0]*a[1 ,1]*a[2,2]*a[3 ,3]*a[4,4] + a[0 ,0]*a[1,1]*a[2 ,2]*a[4 ,3]*a[3,4]

+ a[0 ,0]*a[1 ,1]*a[3,2]*a[2 ,3]*a[4,4] + a[0 ,0]*a[1,1]*a[3 ,2]*a[4 ,3]*a[2,4]
+ a[0 ,0]*a[1 ,1]*a[4,2]*a[2 ,3]*a[3,4] + a[0 ,0]*a[1,1]*a[4 ,2]*a[3 ,3]*a[2,4]
+ a[0 ,0]*a[2 ,1]*a[1,2]*a[3 ,3]*a[4,4] + a[0 ,0]*a[2,1]*a[1 ,2]*a[4 ,3]*a[3,4]
+ a[0 ,0]*a[2 ,1]*a[3,2]*a[1 ,3]*a[4,4] + a[0 ,0]*a[2,1]*a[3 ,2]*a[4 ,3]*a[1,4]
+ a[0 ,0]*a[2 ,1]*a[4,2]*a[1 ,3]*a[3,4] + a[0 ,0]*a[2,1]*a[4 ,2]*a[3 ,3]*a[1,4]
+ a[0 ,0]*a[3 ,1]*a[1,2]*a[2 ,3]*a[4,4] + a[0 ,0]*a[3,1]*a[1 ,2]*a[4 ,3]*a[2,4]
+ a[0 ,0]*a[3 ,1]*a[2,2]*a[1 ,3]*a[4,4] + a[0 ,0]*a[3,1]*a[2 ,2]*a[4 ,3]*a[1,4]
+ a[0 ,0]*a[3 ,1]*a[4,2]*a[1 ,3]*a[2,4] + a[0 ,0]*a[3,1]*a[4 ,2]*a[2 ,3]*a[1,4]
+ a[0 ,0]*a[4 ,1]*a[1,2]*a[2 ,3]*a[3,4] + a[0 ,0]*a[4,1]*a[1 ,2]*a[3 ,3]*a[2,4]
+ a[0 ,0]*a[4 ,1]*a[2,2]*a[1 ,3]*a[3,4] + a[0 ,0]*a[4,1]*a[2 ,2]*a[3 ,3]*a[1,4]
+ a[0 ,0]*a[4 ,1]*a[3,2]*a[1 ,3]*a[2,4] + a[0 ,0]*a[4,1]*a[3 ,2]*a[2 ,3]*a[1,4]
+ a[1 ,0]*a[0 ,1]*a[2,2]*a[3 ,3]*a[4,4] + a[1 ,0]*a[0,1]*a[2 ,2]*a[4 ,3]*a[3,4]
+ a[1 ,0]*a[0 ,1]*a[3,2]*a[2 ,3]*a[4,4] + a[1 ,0]*a[0,1]*a[3 ,2]*a[4 ,3]*a[2,4]
+ a[1 ,0]*a[0 ,1]*a[4,2]*a[2 ,3]*a[3,4] + a[1 ,0]*a[0,1]*a[4 ,2]*a[3 ,3]*a[2,4]
+ a[1 ,0]*a[2 ,1]*a[0,2]*a[3 ,3]*a[4,4] + a[1 ,0]*a[2,1]*a[0 ,2]*a[4 ,3]*a[3,4]
+ a[1 ,0]*a[2 ,1]*a[3,2]*a[0 ,3]*a[4,4] + a[1 ,0]*a[2,1]*a[3 ,2]*a[4 ,3]*a[0,4]
+ a[1 ,0]*a[2 ,1]*a[4,2]*a[0 ,3]*a[3,4] + a[1 ,0]*a[2,1]*a[4 ,2]*a[3 ,3]*a[0,4]
+ a[1 ,0]*a[3 ,1]*a[0,2]*a[2 ,3]*a[4,4] + a[1 ,0]*a[3,1]*a[0 ,2]*a[4 ,3]*a[2,4]
+ a[1 ,0]*a[3 ,1]*a[2,2]*a[0 ,3]*a[4,4] + a[1 ,0]*a[3,1]*a[2 ,2]*a[4 ,3]*a[0,4]
+ a[1 ,0]*a[3 ,1]*a[4,2]*a[0 ,3]*a[2,4] + a[1 ,0]*a[3,1]*a[4 ,2]*a[2 ,3]*a[0,4]
+ a[1 ,0]*a[4 ,1]*a[0,2]*a[2 ,3]*a[3,4] + a[1 ,0]*a[4,1]*a[0 ,2]*a[3 ,3]*a[2,4]
+ a[1 ,0]*a[4 ,1]*a[2,2]*a[0 ,3]*a[3,4] + a[1 ,0]*a[4,1]*a[2 ,2]*a[3 ,3]*a[0,4]
+ a[1 ,0]*a[4 ,1]*a[3,2]*a[0 ,3]*a[2,4] + a[1 ,0]*a[4,1]*a[3 ,2]*a[2 ,3]*a[0,4]
+ a[2 ,0]*a[0 ,1]*a[1,2]*a[3 ,3]*a[4,4] + a[2 ,0]*a[0,1]*a[1 ,2]*a[4 ,3]*a[3,4]
+ a[2 ,0]*a[0 ,1]*a[3,2]*a[1 ,3]*a[4,4] + a[2 ,0]*a[0,1]*a[3 ,2]*a[4 ,3]*a[1,4]
+ a[2 ,0]*a[0 ,1]*a[4,2]*a[1 ,3]*a[3,4] + a[2 ,0]*a[0,1]*a[4 ,2]*a[3 ,3]*a[1,4]
+ a[2 ,0]*a[1 ,1]*a[0,2]*a[3 ,3]*a[4,4] + a[2 ,0]*a[1,1]*a[0 ,2]*a[4 ,3]*a[3,4]
+ a[2 ,0]*a[1 ,1]*a[3,2]*a[0 ,3]*a[4,4] + a[2 ,0]*a[1,1]*a[3 ,2]*a[4 ,3]*a[0,4]
+ a[2 ,0]*a[1 ,1]*a[4,2]*a[0 ,3]*a[3,4] + a[2 ,0]*a[1,1]*a[4 ,2]*a[3 ,3]*a[0,4]
+ a[2 ,0]*a[3 ,1]*a[0,2]*a[1 ,3]*a[4,4] + a[2 ,0]*a[3,1]*a[0 ,2]*a[4 ,3]*a[1,4]
+ a[2 ,0]*a[3 ,1]*a[1,2]*a[0 ,3]*a[4,4] + a[2 ,0]*a[3,1]*a[1 ,2]*a[4 ,3]*a[0,4]
+ a[2 ,0]*a[3 ,1]*a[4,2]*a[0 ,3]*a[1,4] + a[2 ,0]*a[3,1]*a[4 ,2]*a[1 ,3]*a[0,4]
+ a[2 ,0]*a[4 ,1]*a[0,2]*a[1 ,3]*a[3,4] + a[2 ,0]*a[4,1]*a[0 ,2]*a[3 ,3]*a[1,4]
+ a[2 ,0]*a[4 ,1]*a[1,2]*a[0 ,3]*a[3,4] + a[2 ,0]*a[4,1]*a[1 ,2]*a[3 ,3]*a[0,4]
+ a[2 ,0]*a[4 ,1]*a[3,2]*a[0 ,3]*a[1,4] + a[2 ,0]*a[4,1]*a[3 ,2]*a[1 ,3]*a[0,4]
+ a[3 ,0]*a[0 ,1]*a[1,2]*a[2 ,3]*a[4,4] + a[3 ,0]*a[0,1]*a[1 ,2]*a[4 ,3]*a[2,4]
+ a[3 ,0]*a[0 ,1]*a[2,2]*a[1 ,3]*a[4,4] + a[3 ,0]*a[0,1]*a[2 ,2]*a[4 ,3]*a[1,4]
+ a[3 ,0]*a[0 ,1]*a[4,2]*a[1 ,3]*a[2,4] + a[3 ,0]*a[0,1]*a[4 ,2]*a[2 ,3]*a[1,4]
+ a[3 ,0]*a[1 ,1]*a[0,2]*a[2 ,3]*a[4,4] + a[3 ,0]*a[1,1]*a[0 ,2]*a[4 ,3]*a[2,4]
+ a[3 ,0]*a[1 ,1]*a[2,2]*a[0 ,3]*a[4,4] + a[3 ,0]*a[1,1]*a[2 ,2]*a[4 ,3]*a[0,4]
+ a[3 ,0]*a[1 ,1]*a[4,2]*a[0 ,3]*a[2,4] + a[3 ,0]*a[1,1]*a[4 ,2]*a[2 ,3]*a[0,4]
+ a[3 ,0]*a[2 ,1]*a[0,2]*a[1 ,3]*a[4,4] + a[3 ,0]*a[2,1]*a[0 ,2]*a[4 ,3]*a[1,4]
+ a[3 ,0]*a[2 ,1]*a[1,2]*a[0 ,3]*a[4,4] + a[3 ,0]*a[2,1]*a[1 ,2]*a[4 ,3]*a[0,4]
+ a[3 ,0]*a[2 ,1]*a[4,2]*a[0 ,3]*a[1,4] + a[3 ,0]*a[2,1]*a[4 ,2]*a[1 ,3]*a[0,4]
+ a[3 ,0]*a[4 ,1]*a[0,2]*a[1 ,3]*a[2,4] + a[3 ,0]*a[4,1]*a[0 ,2]*a[2 ,3]*a[1,4]
+ a[3 ,0]*a[4 ,1]*a[1,2]*a[0 ,3]*a[2,4] + a[3 ,0]*a[4,1]*a[1 ,2]*a[2 ,3]*a[0,4]
+ a[3 ,0]*a[4 ,1]*a[2,2]*a[0 ,3]*a[1,4] + a[3 ,0]*a[4,1]*a[2 ,2]*a[1 ,3]*a[0,4]
+ a[4 ,0]*a[0 ,1]*a[1,2]*a[2 ,3]*a[3,4] + a[4 ,0]*a[0,1]*a[1 ,2]*a[3 ,3]*a[2,4]
+ a[4 ,0]*a[0 ,1]*a[2,2]*a[1 ,3]*a[3,4] + a[4 ,0]*a[0,1]*a[2 ,2]*a[3 ,3]*a[1,4]
+ a[4 ,0]*a[0 ,1]*a[3,2]*a[1 ,3]*a[2,4] + a[4 ,0]*a[0,1]*a[3 ,2]*a[2 ,3]*a[1,4]
+ a[4 ,0]*a[1 ,1]*a[0,2]*a[2 ,3]*a[3,4] + a[4 ,0]*a[1,1]*a[0 ,2]*a[3 ,3]*a[2,4]
+ a[4 ,0]*a[1 ,1]*a[2,2]*a[0 ,3]*a[3,4] + a[4 ,0]*a[1,1]*a[2 ,2]*a[3 ,3]*a[0,4]
+ a[4 ,0]*a[1 ,1]*a[3,2]*a[0 ,3]*a[2,4] + a[4 ,0]*a[1,1]*a[3 ,2]*a[2 ,3]*a[0,4]
+ a[4 ,0]*a[2 ,1]*a[0,2]*a[1 ,3]*a[3,4] + a[4 ,0]*a[2,1]*a[0 ,2]*a[3 ,3]*a[1,4]
+ a[4 ,0]*a[2 ,1]*a[1,2]*a[0 ,3]*a[3,4] + a[4 ,0]*a[2,1]*a[1 ,2]*a[3 ,3]*a[0,4]
+ a[4 ,0]*a[2 ,1]*a[3,2]*a[0 ,3]*a[1,4] + a[4 ,0]*a[2,1]*a[3 ,2]*a[1 ,3]*a[0,4]
+ a[4 ,0]*a[3 ,1]*a[0,2]*a[1 ,3]*a[2,4] + a[4 ,0]*a[3,1]*a[0 ,2]*a[2 ,3]*a[1,4]
+ a[4 ,0]*a[3 ,1]*a[1,2]*a[0 ,3]*a[2,4] + a[4 ,0]*a[3,1]*a[1 ,2]*a[2 ,3]*a[0,4]
+ a[4 ,0]*a[3 ,1]*a[2,2]*a[0 ,3]*a[1,4] + a[4 ,0]*a[3,1]*a[2 ,2]*a[1 ,3]*a[0,4]
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A.2 Data File Format: .counted

In order to efficiently store coincidence-counting data generated by the DPC-230, we
designed a custombinary file format. These files, assigned the extension.counted,
are structured in records of three 4-byte words. The first word denotes the type of
data in the record, and the following two words encode that data, as follows:
First word Value Meaning

MAGIC 1337 Identifies the file as being .COUNTED format.

TEMPORARY_FILE 101 Marks the file up as being temporary

STOP_METADATA 102 Marks the end of the metadata header

SCAN_TYPE 103 101: Dip/fringe , 102: Static sample , 103: Scripted scan

SCAN_NSTEPS 201 Number of steps per loop

SCAN_NLOOPS 202 Number of repeated loops in total scan

SCAN_INTEGRATION_TIME 203 Integration time per measurement , ms

SCAN_CLOSE_SHUTTER 204 Whether or not the laser shutter was closed at the end of the scan

SCAN_DONT_MOVE 205 If true , motors were disabled during the scan

SCAN_MOTOR_CONTROLLER 206 Index number of the motor controller used.

SCAN_START_POSITION 207 Motor controller position at start of scan , mm / degrees

SCAN_STOP_POSITION 208 Motor controller position at end of scan , mm / degrees

SCAN_LABEL_NBYTES 250 Length in bytes of a text label , which follows this record

Measurement data

MOTOR_CONTROLLER_UPDATE 301 Records motor controller index and position.

SCAN_LOOP 302 Loop index

SCAN_STEP 303 Step index

INTEGRATION_STEP 304 Integration step number

STOP_INTEGRATING 305 Written when integration has finished

START_COUNT_RATES 401 Start a list of measured countrates

COUNT_RATE 402 Detection pattern as a binary string , and number of events

STOP_COUNT_RATES 403 End the list of countrates

START_PAUSE 404 Experimentalist paused the measurement

STOP_PAUSE 405 Experimentalist resumed the measurement

Now that the counting system is a little more mature, this format should really be
retired in favour of a less opaque standard.

Fig. A.2 Accessible multiphoton simulation of the CNOT-MZ, running in a web browser
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A.3 CNOT-MZ API

Much is made in the popular press of the potential impact and power of quantum
computing, however the subject is still treated with a certain amount of trepidation,
owing to the percieved difficutly of the field, creating barriers to entry for engi-
neers and scientists from other disciplines. In an effort to make quantum computing
somewhat more tangible, we built an open-access interface to the CNOT-MZ, acces-
sible through a web browser. Users can run simulations of multiphoton experiments
(Fig.A.2), either through a graphical user interface (GUI), or using an hypertext
transfer protocol (HTTP) JSON application protocol interface (API). Once granted
permission, they can then acquire data from the lab in real-time.

For further detail, see

https://cnotmz.appspot.com
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