
Undergraduate Lecture Notes in Physics

Todd Keene Timberlake
J. Wilson Mixon, Jr.

Classical
Mechanics
with
Maxima

Undergraduate Lecture Notes in Physics

More information about this series at http://www.springer.com/series/8917

http://www.springer.com/series/8917

Undergraduate Lecture Notes in Physics (ULNP) publishes authoritative texts
covering topics throughout pure and applied physics. Each title in the series
is suitable as a basis for undergraduate instruction, typically containing prac-
tice problems, worked examples, chapter summaries, and suggestions for further
reading.

ULNP titles must provide at least one of the following:

� An exceptionally clear and concise treatment of a standard undergraduate subject.
� A solid undergraduate-level introduction to a graduate, advanced, or nonstandard

subject.
� A novel perspective or an unusual approach to teaching a subject.

ULNP especially encourages new, original, and idiosyncratic approaches to physics
teaching at the undergraduate level.

The purpose of ULNP is to provide intriguing, absorbing books that will continue
to be the reader’s preferred reference throughout their academic career.

Series editors

Neil Ashby
Professor Emeritus, University of Colorado Boulder, CO, USA

William Brantley
Professor, Furman University, Greenville, SC, USA

Matthew Deady
Professor, Bard College, Annandale, NY, USA

Michael Fowler
Professor, University of Virginia, Charlottesville, VA, USA

Morton Hjorth-Jensen
Professor, University of Oslo, Norway

Michael Inglis
Professor, SUNY Suffolk County Community College, Selden, NY, USA

Heinz Klose
Professor Emeritus, Humboldt University Berlin, Germany

Helmy Sherif
Professor, University of Alberta, Edmonton, AB, Canada

Todd Keene Timberlake • J. Wilson Mixon, Jr.

Classical Mechanics
with Maxima

123

Todd Keene Timberlake
Berry College
Mount Berry, GA, USA

J. Wilson Mixon, Jr.
Berry College
Mount Berry, GA, USA

ISSN 2192-4791 ISSN 2192-4805 (electronic)
Undergraduate Lecture Notes in Physics
ISBN 978-1-4939-3206-1 ISBN 978-1-4939-3207-8 (eBook)
DOI 10.1007/978-1-4939-3207-8

Library of Congress Control Number: 2015950472

Springer New York Heidelberg Dordrecht London
© Todd Keene Timberlake & J. Wilson Mixon, Jr. 2016
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or
the editors give a warranty, express or implied, with respect to the material contained herein or for any
errors or omissions that may have been made.

Printed on acid-free paper

Springer Science+Business Media LLC New York is part of Springer Science+Business Media (www.
springer.com)

www.springer.com
www.springer.com

Preface

Why Did We Write Classical Mechanics with Maxima? Computational tools
have become a vital part of doing physics in the twenty-first century. However, the
college physics curriculum has been slow to include instruction in computation.
Some departments may not include computation in the physics curriculum because
they do not have the staffing, or the space in their curriculum, to add an additional
course in computational physics. This problem is quite common for small physics
departments. One way around the problem is to incorporate computational instruc-
tion into an existing, standard physics course. However, faculty teaching those
courses may not feel that they have the resources to guide them in carrying out this
task. Classical Mechanics with Maxima is intended to help solve this problem. It is
meant to supplement a standard textbook for an undergraduate classical mechanics
course. The aim of this book is to provide an opportunity for students to learn
computation, using the Maxima computer algebra system, while they are also
learning the standard topics of classical mechanics.

Why Did We Write Classical Mechanics with Maxima? One reason we chose to
focus on classical mechanics is that the study of classical mechanics does not require
knowledge of physics beyond what most students obtain in their first semester
of introductory physics. Because of these minimal prerequisites, computation can
be incorporated into a classical mechanics course that students take early in their
undergraduate careers, which allows those students to use computation throughout
their undergraduate education. Also, classical mechanics is more intuitive and
provides more opportunities for visualization (particle trajectories, etc.) than other
areas of physics. Finally, introducing computation into classical mechanics allows
students to see the limitations of an analytical approach to the subject. Specifically,
computation allows students to explore the exciting field of chaotic dynamics.

Why Did We Write Classical Mechanics with Maxima? Why did we choose to
use a computer algebra system (CAS) rather than a standard programming language
like Java or a scripting language like Python? The main reason for this choice
is that computer algebra systems offer both symbolic and numerical computing
capabilities. Thus, computer algebra systems can be useful for students even when

v

vi Preface

they are solving a problem analytically. Most CASs have built-in visualization tools
(for plots, etc.). In addition, the learning curve for a CAS is not as steep as for a
traditional programming language and CASs are generally easier to use. Therefore,
the time from conception to finished calculation is often smaller when using a CAS
versus a programming language. Computer algebra systems have become a standard
part of the physicist’s toolkit, in part because they allow the user to focus on physics
rather than on programming.

Many powerful CASs are available. Perhaps, the most popular are Mathemat-
icaTM and MapleTM.1 So why did we choose to use Maxima for this book? By far
the most important reason was cost. Maxima is free for everyone, which means that
students can easily install a copy on their own computer. They are not restricted to
using the software in a computer lab. Likewise, students will always have access
to Maxima no matter where their career takes them. While MathematicaTM and
MapleTM offer reasonably priced student licenses, those licenses are not trans-
portable once students graduate and the standard licenses for those programs are
quite expensive. We also like Maxima because it is open-source and is maintained
by an active community of developers. It is easy to install and use on any operating
system, and its feature set, while not as extensive as that of MathematicaTM, is more
than sufficient for undergraduate physics instruction. Most CASs are similar enough
that users who learn Maxima should have an easy time transitioning to another CAS
should they need or want to do so.

Why Did We Write Classical Mechanics with Maxima? It all began when
Wilson discovered Maxima and began using it as a tool for teaching Economics.
Meanwhile, Todd had been teaching classical mechanics using a different CAS.
Todd became frustrated with the high cost of the CAS license and was looking
to move to a cheaper (preferably free and open-source) alternative for a new
course he was developing on computational physics. Todd had just about settled
on a combination of Maxima and Easy Java Simulations for his new course when
he was approached by Wilson about writing a book similar to Ronald Greene’s
Classical Mechanics with MapleTM but using Maxima instead. Todd had been
teaching classical mechanics using a CAS for years, and Wilson had the expertise
to help Todd with the transition to Maxima, so writing the book seemed like a
no-brainer. Although we were originally inspired by Greene’s book, we took our
book in a different direction, with much more emphasis on numerical computation
and algorithms and how these methods can be used to illustrate important ideas in
physics. The result, we hope, is a book that blends both physics and computation
together in ways that are mutually complementary.

1MATLABTM is also very popular, especially with engineers, but it is not a true CAS, although it
now includes some symbolic computing capability.

Preface vii

How Should You Read Classical Mechanics with Maxima? This book should not
be read like a regular physics textbook (much less like a novel!). The Maxima code
to accompany each chapter can be obtained from our website:

sites.berry.edu/ttimberlake/cm_maxima/.

The website also has links to a variety of other resources for using Maxima. We
strongly recommend that you read the book while also having a computer available
to run the corresponding Maxima code. Evaluate the code within Maxima as you
read about it in the book. Modify the code and play around with it to get a feel for
what it does. Work the exercises at the end of the chapter (this goes for ANY physics
textbook!). Many standard classical mechanics textbooks include computational
problems, and Maxima can be used to help solve analytical problems as well, so
you can apply your Maxima skills to problems from these books as well.2 We have
included a larger number of exercises on those topics (such as Chaps. 5 and 6) that
are not typically included in the standard textbooks. Once you have worked your
way through this book, you can apply the computational tools you have learned
to more advanced topics in classical mechanics and other areas of physics. You
can even extend your knowledge of Maxima using the built-in Help feature or
various online resources, or expand your computational toolkit by learning new
computational tools, many of which are free and open-source just like Maxima.3

We close this preface by acknowledging those who have helped this book come
to life. Todd thanks the former professors and collaborators who taught him how
to do computational physics, particularly Matthew Choptuik, Mario Belloni, and
Wolfgang Christian. Todd also thanks the students from his classical mechanics and
computational physics courses who gave him valuable feedback on much of the
content of this book. Wilson thanks his wife Barbara for suggesting that he learn
the use of a computer algebra system, for reading all of Microeconomic Theory and
Computation which he coauthored, and for drawing on her knowledge of physical
chemistry in helping him with his work on this volume.

Mount Berry, GA, USA Todd Keene Timberlake
J. Wilson Mixon, Jr.

2Some examples of standard textbooks for an undergraduate classical mechanics course are
Classical Mechanics by Taylor, Classical Dynamics of Particles and Systems by Thornton and
Marion, and Analytical Mechanics by Fowles and Cassiday.
3We particularly recommend Easy Java Simulations for building interactive computer simulations.

http://sites.berry.edu/ttimberlake/cm_maxima/.

Contents

1 Basic Newtonian Physics with Maxima . 1
1.1 Introduction to Maxima . 1

1.1.1 Computer Algebra Systems . 1
1.1.2 Installing Maxima . 2

1.2 Interacting with Maxima . 3
1.2.1 The wxMaxima Screen . 5

1.3 Maxima as a Calculator. 6
1.3.1 Data Types . 7
1.3.2 Mathematical Functions . 7

1.4 1D Kinematics: Variables and Functions . 9
1.5 2D Kinematics: Vectors . 11
1.6 Projectile Motion: Solving Equations . 12
1.7 Position, Velocity, and Acceleration: Calculus . 13
1.8 Newton’s Second Law: Solving ODEs . 15
1.9 Range of a Projectile: Root Finding . 16
1.10 Visualizing Motion in Maxima . 19
1.11 Exercises . 21

2 Newtonian Mechanics . 25
2.1 Statics . 25
2.2 Constant Forces: Block on a Wedge . 29
2.3 Velocity-Dependent Forces: Air Resistance . 32

2.3.1 Models of Air Resistance. 32
2.3.2 Falling with Linear Resistance . 34
2.3.3 Projectile Motion with Linear Resistance 37
2.3.4 Falling with Quadratic Resistance . 39
2.3.5 Projectile Motion with Quadratic Resistance. 43

2.4 Charged Particles in an Electromagnetic Field . 48
2.5 Exercises . 54

3 Momentum and Energy . 57
3.1 Collisions: Conservation of Momentum . 57

ix

x Contents

3.2 Rockets . 62
3.3 Center of Mass . 67
3.4 Torque and Angular Momentum . 70
3.5 Products and Moments of Inertia . 72
3.6 Work and Potential Energy . 75
3.7 Fall from a Great Height: Conservation of Energy. 78
3.8 Exercises . 83

4 Oscillations . 85
4.1 Stable and Unstable Equilibrium Points . 85
4.2 Simple Harmonic Motion . 89
4.3 Two-Dimensional Harmonic Oscillator . 92
4.4 Damped Harmonic Oscillator . 97

4.4.1 Underdamped Oscillators . 98
4.4.2 Overdamped Oscillators . 99
4.4.3 Critical Damping. 101

4.5 Driven Damped Harmonic Oscillator . 102
4.6 Non-sinusoidal Driving Forces. 108
4.7 The Pendulum. 115
4.8 Exercises . 122

5 Physics and Computation . 125
5.1 Programming: Loops and Decision Structures . 125

5.1.1 Loops . 126
5.1.2 Decision Structures . 129

5.2 Random Numbers and Random Walks . 130
5.2.1 Approximating � . 131
5.2.2 Evolution of an Ensemble . 132
5.2.3 A Random Walk . 134
5.2.4 Nonuniform Distributions . 137

5.3 Iterated Maps and the Newton–Raphson Method . 138
5.3.1 Iterated Functions and Attractors . 140
5.3.2 The Newton–Raphson Method . 142

5.4 Liouville’s Theorem and Ordinary Differential Equation Solvers . . 146
5.4.1 The Euler Algorithm. 147
5.4.2 The Euler–Cromer Algorithm . 155
5.4.3 Comparing Algorithms . 159

5.5 Exercises . 160

6 Nonlinearity and Chaos . 165
6.1 Nonlinear Dynamics . 165
6.2 The van der Pol Oscillator. 166

6.2.1 The Undriven Case . 166
6.2.2 The Driven Case . 170

6.3 The Driven Damped Pendulum . 175
6.3.1 Solving the Driven Damped Pendulum . 175

Contents xi

6.3.2 Period Doubling . 178
6.3.3 Rolling Motion . 182
6.3.4 Chaos . 186

6.4 Maps and Chaos . 192
6.4.1 The Logistic Map . 192
6.4.2 Bifurcation Diagrams . 199
6.4.3 Diverging Trajectories . 201
6.4.4 Lyapunov Exponents . 203

6.5 Fixed Points, Stability, and Chaos . 207
6.5.1 Stability of Fixed Points . 207
6.5.2 Fixed Points of the Logistic Map . 209
6.5.3 Stability of Periodic Points . 211
6.5.4 Graphical Analysis of Fixed Points . 213

6.6 Exercises . 218

Erratum . E1

A Numerical Methods . 221
A.1 The Bisection Method . 221
A.2 Numerical Integration . 223

A.2.1 Rectangular Approximation .. 225
A.2.2 Trapezoidal Approximation and Simpson’s Rule 228
A.2.3 Monte Carlo Methods . 230
A.2.4 Built-in Routines . 232

A.3 Runge–Kutta Algorithms .. 235
A.4 Modeling Data . 243

A.4.1 Interpolation.. 244
A.4.2 Curve Fitting . 248

A.5 Exercises . 250

Index . 255

Chapter 1
Basic Newtonian Physics with Maxima

1.1 Introduction to Maxima

Classical mechanics is the branch of physics that deals with the motion of objects
subject to forces and constraints. Classical mechanics has existed as a well-defined
subject since the publication of Newton’s Principia Mathematica Philosophiae
Naturalis in 1687. Since Newton, a few important new concepts have been
introduced into the subject (such as energy and its conservation), but most of the
developments in classical mechanics since the seventeenth century have consisted
of new mathematical techniques for solving classical mechanics problems. The
twentieth century saw the creation of an entirely new tool for addressing these kinds
of problems: the digital computer.

Computers have affected many areas of physics, and classical mechanics is no
exception. Computers have enabled physicists to study areas of classical mechanics
that are entirely new, as well as some that lay long-neglected. These areas involve
problems that are too difficult, or even impossible, to solve by hand. Computers
offer the possibility of generating numerical solutions to these problems, thus
breaking down a long-standing barrier. Computers also provide for the graphical
representations of mathematical expressions and numerical data, helping physicists
gain an intuitive visual understanding of classical mechanics problems and their
solutions.

1.1.1 Computer Algebra Systems

With the development of computer algebra systems (CASs) that can perform
symbolic mathematical manipulations, computers make it easier to solve the
problems that can be solved by hand. Computer programs that can perform symbolic

© Todd Keene Timberlake & J. Wilson Mixon, Jr. 2016
T.K. Timberlake, J.W. Mixon, Classical Mechanics with Maxima, Undergraduate
Lecture Notes in Physics, DOI 10.1007/978-1-4939-3207-8_1

1

2 1 Basic Newtonian Physics with Maxima

mathematical operations, carry out numerical computations, and generate graphical
displays of formulas are now an indispensable tool in the study of classical
mechanics. The open-source CAS Maxima can perform all of these operations.

This book focuses on Maxima as it applies to the study of classical mechanics.
Much of the material that is developed here, however, applies beyond this context.1

One of the attractions of software like Maxima is that one need not become an instant
expert. Rather, learning a few basics and then applying them to a set of problems
facilitates expanding the range of inquiry and the associated range of Maxima’s
capabilities.

This chapter introduces Maxima as it applies to symbolic analysis. The material
introduced in this chapter is used and extended throughout the remainder of the text.
It is important to work through this material, trying out the examples in Maxima,
before moving on to the rest of the material. This practice provides the background
for understanding the examples that appear throughout the text.

This text does not detail the use of Maxima on any particular computer operating
system. Maxima was developed to operate on a Linux platform, but is easily installed
and used on both Windows and Macintosh operating systems, and versions exist for
the Android and iOS operating systems as well.2 The material developed here can
be applied in any of these environments.

The remainder of this chapter introduces Maxima and the user interface wxMax-
ima.3 It provides an overview of how Maxima can serve as a powerful calculator.
This chapter also illustrates how Maxima can be used to review basic physics topics.
This review includes an introduction to Maxima’s treatment of vectors, the solution
of equations, calculus, the solution of ordinary differential equations (ODEs), root
finding, and plotting.

1.1.2 Installing Maxima

Maxima can be installed on Windows, Mac, or Linux systems. To install Maxima
you can visit the official Maxima site, http://maxima.sourceforge.net/. In this book
we present wxMaxima, which provides a convenient user interface for the Maxima
computer algebra system. You can download wxMaxima from http://wxmaxima.
sourceforge.net/. Click the Download tab at the top of the page and then follow

1Also, Maxima’s similarity to other, proprietary software ensures that lessons learned in using this
CAS will be useful even if the analyst’s career involves the use of other software.
2Limited versions of Maxima are available on Android through the Maxima on Android app, and
on iOS through the Sage Math app.
3This interface is not the only one available to Maxima users, but it is the one used throughout this
text.

http://maxima.sourceforge.net/
http://wxmaxima.sourceforge.net/
http://wxmaxima.sourceforge.net/

1.2 Interacting with Maxima 3

the instructions to download and install wxMaxima for your system. The wxMaxima
package includes the complete Maxima installation, as well as required plotting
software and fonts. Maxima and wxMaxima are updated frequently, so it is a good
idea to check back regularly for new versions.

1.2 Interacting with Maxima

Maxima is primarily an interactive tool into which the user types and enters
commands, causing the computer to respond to those commands immediately,
though commands may be entered in a batch mode. Maxima displays a prompt,
usually a -> sign or an input prompt like this: %i1, when it awaits input. Maxima
commands are typically algebraic expressions, assignments, or function definitions.
Maxima is case-sensitive; it is important to pay attention to this fact when issuing
Maxima commands.

Each piece of input must be terminated by a semicolon (;) or a dollar sign ($)
to let Maxima know that it has reached the end of the command. A semicolon
causes Maxima to print the result of executing the command, whereas a dollar sign
suppresses that output but keeps the result in Maxima’s memory. A long command
can be extended over several lines by hitting the Enter key to start a new line.
Maxima tries to execute the command only when it encounters a ; or a $, not at
a line’s end. In the wxMaxima interface, an input cell may contain any number of
commands. These batches of commands are implemented when the cursor is placed
anywhere within the cell and either a Shift Enter or a Control Enter
combination is typed.

The following are simple examples of inputs and Maxima responses. Note the
use of * for multiplication, ^ for raising to a power, and ! for the factorial. Also,
notice the numbering convention for input and output. The prompt for the first input
is (%i1), and the output that results from executing the first command is output
(%o1). Until this session is ended, the output (%o1) remains in Maxima’s memory
and can be recalled for use in further analysis.4

Observe that the second input spans two lines. Maxima input ignores lines. A
single command can span any number of lines. Likewise, a single line can hold
any number of commands. Three different inputs appear on the line labeled (%i4).
Each of these inputs is given its own separate input number: %i4 for the first, %i5 for
the second, and %i6 for the third. Observe also that input %i7 recalls two quantities

4The user can remove any or all of the entries that are stored by using the explicit kill command,
which is used and discussed below.

4 1 Basic Newtonian Physics with Maxima

that have been stored in Maxima’s memory with assigned names %i1 and %i6. (The
default is for wxMaxima to produce input and input labels in typewriter font and
output and output labels in Roman font.)

(%i1) 4*5
(%o1) 20

(%i2) 1 + 2 + 3 + 4 + 5 +
6 + 7 + 8 ;
(%o2) 36

(%i3) 2*x - 5 + 3.5*x;
(%o3) 5:5 x � 5

(%i4) -2ˆ4; (-2)ˆ4; 5!;
(%o4) �16
(%o5) 16
(%o6) 120

(%i7) %o1 + %o6;
(%o7) 140

Maxima does simple arithmetic both numerically, as in 4*5 returning 20, and
symbolically, as in adding 2x and 3:5x to get 5:5x. In addition to the four primary
arithmetic operations C, �, � and =, Maxima can exponentiate (^) and take
factorials (Š). Other operations can be performed with function calls.

If a command is one that Maxima does not recognize (e.g., a misspelling of a
command name or a capital letter that should have been lowercase, or a function not
yet defined), Maxima usually returns the input as it was entered, with no explanation.

Maxima uses the mathematically correct order of arithmetic operations to
evaluate an expression. Parentheses can be used to arrange a different order of
operations, as in input %i5 above.

Often we need to refer to the result of the most recently completed operation.
Maxima allows us to refer to the result of the last evaluated expression with a
percentage sign (%). Expressions resulting in syntax errors do not count. The %
reference in Maxima is to the most recently executed command, not necessarily
the one that appears directly above the command being executed.5 Thus, the user
must keep track of the command sequence when using this feature. An example that
makes use of the previous output is shown below.

(%i8) (x + 3)ˆ2; % - 5;
(%o8) .x C 3/2

(%o9) .x C 3/2 � 5

5This is an important feature of Maxima. Although commands may be organized spatially within
a wxMaxima notebook, information is stored in Maxima’s memory chronologically. We will see
several examples of this throughout the book.

1.2 Interacting with Maxima 5

1.2.1 The wxMaxima Screen

The basic input of Maxima commands is the same for any Maxima user interface. In
this book we assume that the reader is using the wxMaxima interface and therefore
it will be useful to introduce some features that are particular to that interface. The
wxMaxima screen shown in Fig. 1.1 consists of five parts. First, the title bar identifies
the file being used, if a session has been saved as a named file. Next, a series of
menus provides a relatively easy way of implementing most of Maxima’s important
commands. A set of tutorials that provide an overview of how to use the interface,
while demonstrating much about Maxima’s capabilities is at http://andrejv.github.
io/wxmaxima/help.html.

The third row in the wxMaxima screen contains a set of commonly used icons.
The first opens a new wxMaxima session. The second icon opens a previously
created wxMaxima session. The third icon saves the current session. The fourth icon
prints the current session, showing both input and output. The fifth icon allows for
configuration of wxMaxima. The next two icons copy or cut a selection. The eighth
icon pastes material from the clipboard. The ninth icon interrupts the execution of
a command, which is useful if an infinite loop has been entered inadvertently. The
next two icons control animation (not addressed in this text).

The fourth part of the screen is a window that contains input and output.
Figure 1.1 shows two commands in an input group and the output that results from
executing them. Also, a comment is included. All comments must be bracketed as
indicated: /* ...text ...*/. A comment cannot be the last entry in an input
group.

Fig. 1.1 wxMaxima screen

http://andrejv.github.io/ wxmaxima/help.html
http://andrejv.github.io/ wxmaxima/help.html

6 1 Basic Newtonian Physics with Maxima

Clicking above or below the cell that contains those commands causes a
horizontal line to appear. This is the wxMaxima cursor. Once the cursor appears, one
can type input. Once the input group is complete, typing a combination of either the
Shift key or the Control key and the Enter key submits the input to Maxima
and the resulting output is returned. The result of one series of entries appears below.

(%i10) 3*4; 1 + 2 + 3 + 4 + 5;
3*(x - 5)ˆ2;
w : (x + 3)ˆ2; % - 5; w;

(%o10) 12
(%o11) 15
(%o12) 3 .x � 5/2

(%o13) .x C 3/2

(%o14) .x C 3/2 � 5
(%o15) .x C 3/2

The use of input groups has a number of advantages, but it can cause some
difficulty in matching input and output. Therefore, the number of commands entered
into an input group should be chosen judiciously.

Most of the Maxima input and output discussed in this book will be presented
in the form shown above. However, there are situations in which it is more
convenient to present input or output within a paragraph of text. For example,
the command 1 + 2 + 3 + 4 + 5 produces the output 15. Input is repre-
sented in typewriter text. Output is presented in bold, using the standard
font. When Maxima commands are displayed separately from the text, input is
indicated by (%i), and output is indicated by (%o). Input and output numbers
are suppressed. Either input or output can consist of more than one item. All inputs
and outputs are gathered in cells in the wxMaxima workbook that accompanies the
relevant text material, so you can see how the material in the text is produced and
experiment with the commands.

To insert text cells between any two input/output cells, place the cursor on the
horizontal line and do any of the following: select ctrl-1, select Cell/Insert
Text Cell, or right-click and select Insert Text Cell. The text cells can
be used to keep track of variables and relationships. The wxMaxima text editor is
basic. It allows for searching and cutting and pasting but does not provide a spell
check feature.

1.3 Maxima as a Calculator

The preceding section introduces basic features that Maxima offers for symbolic
and numerical analysis. This section extends that introduction.

1.3 Maxima as a Calculator 7

1.3.1 Data Types

Maxima deals with several kinds of numbers. Integers, rational numbers, irrational
numbers, and floating-point numbers are fundamental. In addition, the program can
manipulate complex numbers, whose real and imaginary parts can be any of the
fundamental types. Except for floating-point numbers (i.e., numbers containing a
decimal point), numbers are stored in Maxima as exact values. The Maxima default
is to store floating-point values with an accuracy of 16 decimal points. This default
can be changed, using the floating-point precision (fprec) command.

Whenever possible, Maxima tries to return exact answers for all calculations.
Consider the evaluation of the natural logarithm of 10 and of the fraction 352/1200
using the list of commands below. The result is a list of values.

(%i) [log(10), 352/1200]; .%o/Œlog .10/ ; 22
75 �.

Embedding this list of commands within a float command instructs Maxima
to output floating-point representations of the values, which it does to the default 16
decimal places.

(%i) float([log(10),352/1200]);
(%o)[2.302585092994046, 0.29333333333333]

The fpprintprec (floating-point precision) command can be used to reduce the
default number of decimal places. The command fpprintprec : 5$, placed
before the preceding command, would result in the list [2.3026,0.29333].
Maxima retains these values at the default 16-place accuracy. To reset the num-
ber of digits reported, use the command fpprintprec:0$. The value of
fpprintprec cannot be 1.

1.3.2 Mathematical Functions

Maxima knows about many mathematical functions, including how to evaluate
them for specific argument values and how to manipulate them symbolically, to
differentiate and integrate, to apply identities, etc. Some of the functions that
are commonly used in physics are illustrated below. In addition, the inverse
trigonometric and hyperbolic functions are available with the corresponding names
appended by the character a: asin, asech, etc.

First consider these four built-in functions: finding an absolute value, extracting
a square root, raising e (� 2:718) to a power, and extracting the natural logarithm
of a number. These operations are illustrated below using the number �44 as the
argument. The first input below binds the name a to the number �44. The second
input consists of a list of commands that generates the output list. In the first two

8 1 Basic Newtonian Physics with Maxima

listed items, Maxima reports exact answers. In the third, it reports a floating-point
representation, as instructed. The fourth output item is an exact representation. In the
fifth item Maxima evaluates log(�44) as a floating-point number (the result is a
complex number, because we are taking the logarithm of a negative number).

(%i) a:-44$ [abs(a),sqrt(a),float(exp(a)),
log(a), float(log(a))];

(%o) Œ44; 2
p

11 i; 7:78113 10�20; log .�44/ ; 3:1416 i C 3:7842�.

Maxima offers the expected complement of trigonometric functions, such as the
three shown below. Maxima reports sin.�/, cos.�/, and tan.�/ for � D �=3. Note
that the letter � is indicated by %pi; “pi” alone would result in the letter but no
value.

(%i) theta : %pi/3$
[x1,x2,x3]:[sin(theta),cos(theta),tan(theta)];

(%o) Œ
p

3
2 ; 1

2 ;
p

3�.

The list below reports the arcsin, arccos, and arctan for the results above. These
inverse trigonometric functions should just return the original argument used to
evaluate the corresponding trigonometric function, so the result in each case should
be the original angle (�=3). The Maxima calculations give the expected results.

(%i) [asin(x1), acos(x2), atan(x3)];
(%o) Œ �

3
; �

3
; �

3
�

Commands can be embedded inside other commands. The first command below
is equivalent to the two commands that comprise the second input line. Maxima
works from the inside outward.

(%i) asin(sin(5*%pi/3));
sin(5*%pi/3); asin(%);

(%o) � �
3

�
p

3
2 � �

3

Maxima can also evaluate hyperbolic functions. For example, the commands
below yield the list of values for the hyperbolic sine, cosine, and tangent of 0.5.
Note that Maxima returns floating-point (decimal) output when it is given floating-
point input.

(%i) b:0.5$ [y1,y2,y3]:[sinh(b),cosh(b),tanh(b)];
[asinh(y1),acosh(y2),atanh(y3)];

(%o) Œ0:5211; 1:1276; 0:46212� Œ0:5; 0:5; 0:5�

Maxima can evaluate a variety of special functions. One example, the “Bessel
function of the first kind,” is illustrated with the two commands below. The first
command controls the nature of the output. The second command results in the
output in the second line.

(%i) besselexpand:true$ bessel_j(3/2, z);

(%o)
p

2
p

z
�

sin.z/

z2 �

cos.z/
z

�
p

�

1.4 1D Kinematics: Variables and Functions 9

The list of commands below returns values of the Gaussian Error Function.
Maxima can also report the Complementary Error Function, the Imaginary Error
Function, and the Generalized Error Function.

(%i) [erf(0),erf(0.5),erf(2.0)]; (%o) Œ0; 0:5205; 0:99532�

Maxima can also evaluate the Gamma Function, � , which extends the factorial
function to the real and complex values of n.

(%i) [gamma(4), gamma(4.5), gamma(1.0 + %i)];
(%o) Œ6; 11:632; 0:49802 � 0:15495 � %i�

Maxima contains many other mathematical functions, as well as commands
that allow us to manipulate expressions. Some appear later in this chapter. The
wxMaxima menus provide a well-organized listing of commands, and working
through these menus is a valuable exercise. For a complete listing of commands,
refer to the Maxima Manual.

1.4 1D Kinematics: Variables and Functions

We now apply Maxima to some real physics. We begin with a review of basic
Newtonian physics that is typically covered in an introductory course. Our first topic
is one-dimensional kinematics. For example, we know that the position of an object
moving with constant acceleration a is given by

x.t/ D x0 C v0t C 1

2
at2; (1.1)

where x0 is the object’s position at t D 0 and v0 is the object’s velocity at t D 0.
To use this result in Maxima we define a function that gives us x as a function

of t. There are two ways we might choose to define this function. The first way is
to assign an expression for calculating x to a variable. A variable in Maxima is just
a symbol that can be assigned a particular value. The value of a variable can be a
number, but it can also be an expression (or a list, or a matrix, etc.). If we want
the variable pos to represent the position of our object at time t, then we can assign
the appropriate expression to that variable. Maxima returns the expression that is
assigned we name pos unless the command ends with a dollar sign.

(%i) pos:x0+v0*t+(1/2)*a*tˆ2; (%o) x0 C t v0 C a t2

2

Note the use of the colon for assigning a value to a variable. Now if we want to
evaluate the position of the object at a certain time, we can ask Maxima to evaluate
the variable pos while substituting a particular value for t. For example, the position
at t D 5 s is shown below. The subst (substitute) command replaces t with the
value 5.

(%i) subst(t=5, pos); (%o) x0 C 5 v0 C 25 a
2

10 1 Basic Newtonian Physics with Maxima

Note that pos is not a function. It does not have an argument. All we have done
above is to evaluate the expression that is assigned to pos using a particular value
of t. We could just as easily evaluate it for a particular value of a, or v0, etc. If we
wish to know the position of the object at t D 5 s when a D �9:8 m/s2, x0 D 0,
and v0 D 32 m/s, we can make the necessary substitutions. When more than one
substitution is to be made, a list of the substitutions is required.

(%i) subst([t=5, a=-9.8, x0=0, v0=32],pos);
(%o) 37:5

So the answer is 37.5 m. The substitutions for a, x0, and v0 are not permanently
stored. They are used only to evaluate the expression in this particular instance. If we
ask Maxima to display the value of pos, it will just return to the original expression
that we assigned to that variable.

(%i) pos; (%o) x0 C t v0 C a t2

2

A different way to handle this situation is to define a function. A function always
has an argument that is a variable, although there may be other variables in the
function that are not part of the argument. For example, we can define a function
that gives the position of our object as a function of time.

(%i) x(t):=x0+v0*t+(1/2)*a*tˆ2;
(%o) x .t/ WD x0 C v0 t C 1

2 a t2

Note the use of the “colon-equals” for defining a function. It is now easy to
evaluate this function at a particular time, say t D 5 s.

(%i) x(5) (%o) x0 C 5 v0 C 25 a
2

We can use the subst command as before to substitute specific values for a, x0

and v0.

(%i) subst([x0=0, a=-9.8, v0=32], x(5));
(%o) 37:5

If those values for a, x0, and v0 are only going to be used for a single calculation,
then the substitution method shown above is probably the best way to proceed
because we don’t want those values permanently stored in those variables. However,
if we intend to do many calculations that all use the same set of values for a, x0, and
v0, then it may be more convenient to assign values to those variables permanently.

(%i) x0:0$ v0:32$ a:-9.8$

Now when we evaluate our function x.t/, or our variable pos, Maxima will
replace the variables a, x0, and v0 with their assigned values. For example, the code
below shows that the position of our object at t D 2:6 s is 50.076 m. Note the use of
the quote–quote operator (’ ’) in the third command to force subst to evaluate the
arguments of pos.

(%i) [x(2.6), subst(t=2.6, pos), subst(t=2.6,”pos)];
(%o) Œ50:076; x0 C 2:6 v0 C 3:38 a; 50:076�

1.5 2D Kinematics: Vectors 11

1.5 2D Kinematics: Vectors

To move beyond one-dimensional motion we will need to deal with vectors. In
Maxima, vectors are represented as lists. A list is just an ordered collection of
numbers (or variables, etc.). In Maxima lists are always enclosed within square
brackets. For example, the code below shows how to define the vector EV with
components Vx D 2 and Vy D �4 and how to multiply this vector by the scalar q.

(%i) V: [2, -4]; q*V; (%o) Œ2; �4� (%o) Œ2 q; �4 q�

If we know the magnitude and direction of a vector, we can use Maxima to find
the vector components. For example, we can find components for a vector EA with
magnitude jEAj D 5:3 and direction angle �A D 27ı and a vector EB with jEBj D 8:1

and �B D 230ı. (Note that in the code below we define a constant to convert from
degrees to radians, because Maxima expects arguments of trigonometric functions
to be in radians.)6

(%i) kill(all)$ deg:%pi/180$
A:5.3*[cos(27*deg), sin(27*deg)];
B:8.1*[cos(230*deg),sin(230*deg)];

(%o) Œ5:3 cos
�

3�
20

�
; 5:3 sin

�
3�
20

�
� Œ8:1 cos

�
23�
18

�
; 8:1 sin

�
23�
18

�
�

Once our vectors are defined it is easy to carry out vector calculations such
as adding the two vectors, or taking the scalar (dot) product of the two vectors.
Note that Maxima always gives an exact answer when possible, so if we want an
(approximate) decimal answer, we must use the float command to convert the
exact value into a floating-point (decimal) value.

(%i) A+B;
(%o) Œ8:1 cos

�
23�
18

�C 5:3 cos
�

3�
20

�
; 8:1 sin

�
23�
18

�C 5:3 sin
�

3�
20

�
�

(%i) float(A+B);
(%o) Œ�0:48425; � 3:7988�

(%i) float(A.B); (%o) �39:517

We can also combine vectors to create new vector expressions. For example,
the code below illustrates one way of defining a vector that gives the position of
a projectile as a function of time. First we define vectors for the initial velocity,
initial position, and acceleration. Then we can use our knowledge of motion with
constant acceleration to combine these vectors into an expression that gives the
position vector at time t.

6We often begin a new example with the kill(all) command. This command breaks all
connections–assignments of values to name and function calls in particular. Doing this keeps for-
gotten assignments from contaminating the current analysis. In some settings kill(all) appears
to affect Maxima’s behavior. If you encounter such a situation, replace kill(all) with
kill(values, functions, arrays). Actually, you can be quite specific with kill. For
example, kill(y) would unbind the name y from whatever expression it is currently assigned,
but would leave other values, functions, etc. intact.

12 1 Basic Newtonian Physics with Maxima

(%i) v0:v0*[cos(�),sin(�)];
(%o) Œcos .�/ v0; sin .�/ v0�

(%i) x0:[x0,y0]; (%o) Œx0; y0�

(%i) a:[0,-g]; (%o) Œ0; �g�

(%i) x:x0+v0*t+(1/2)*a*tˆ2;

(%o) Œx0 C t cos .�/ v0; y0 C t sin .�/ v0 � g t2

2 �

To select a particular component of a vector we can use square brackets and an
argument that specifies the position of the component we wish to select.

(%i) x[2]; (%o) y0 C t sin .�/ v0 � g t2

2

1.6 Projectile Motion: Solving Equations

To investigate the motion of a projectile in detail it will be convenient to define two
separate functions that give the x- and y-coordinates of the projectile as a function
of time.

(%i) kill(all)$ x(t):=x0+t*cos(theta)*v0;
y(t) := y0 + t*sin(theta)*(v0)-g*tˆ2/2;

(%o) x .t/ WD x0 C t cos .�/ v0 y .t/ WD y0 C t sin .�/ v0 C .
�g/ t2

2

We can now use one of Maxima’s equation solvers to solve for the time when the
projectile hits the ground. To obtain an analytical solution for an algebraic equation
we can use the solve command.

(%i) solnt:solve(y(t)=0,t);

(%o) Œt D �
p

2 g y0Csin.�/2 v02
�sin.�/ v0

g ; t D
p

2 g y0Csin.�/2 v02
Csin.�/ v0

g �

Two solutions are given. Maxima provides the mathematical solution to the
equation, not the solution to the physical problem. The equation is quadratic in
time, so there are two solutions for t. However, only the t > 0 solution is physically
sensible. This problem provides a simple illustration for a general rule about using
Maxima to solve physics problems: Maxima provides a solution to a mathematical
problem, but the user must interpret that solution to determine how it applies to the
physics problem being solved. The output list is assigned the name solnt, which
we use below.

Once we have selected the correct (positive) solution, we can assign this value to
a name in Maxima. That way we can use the solution whenever we need to. Note
that we can copy the expression from the solution output above and paste it into
the expression for defining our new constant. Alternatively, we can make use of the
fact that the expression is stored in Maxima’s memory. The input below selects the
right-hand side of the second item of solnt. It assigns the name expr_ti to this
solution.

(%i) expr_ti:rhs(solnt[2]); (%o)
p

2 g y0Csin.�/2 v02
Csin.�/ v0

g

1.7 Position, Velocity, and Acceleration: Calculus 13

Now we can evaluate x.t/ at the time of impact to determine the range of the
projectile.

(%i) x(expr_ti); (%o)
cos.�/ v0

�p
2 g y0Csin.�/2 v02

Csin.�/ v0
�

g C x0

Now suppose we want to know the time of impact and the range of the projectile
for a particular set of initial conditions. We want to re-evaluate the results we found
above, but this time using specific values for the constants (x0, v0, etc.). If we plan to
explore many different launch conditions, we might wish to assign values to initial
conditions in a temporary way, but we may want to assign permanent values to other
constants like g. The code below shows one way of calculating the time of impact
for a projectile launched from x0 D 0 and y0 D 12 m, with initial speed v0 D 22

m/s and launch angle � D 55ı. Note the use of the quote–quote operator to force
Maxima to evaluate the expression.

(%i) deg:%pi/180$ g:9.8$ calc_ti: subst([x0=0,
y0=12, v0=22, theta=55*deg], ”expr_ti);

(%o) :10204
�q

484 sin
�

11 �
36

�2 C 235:2 C 22 sin
�

11 �
36

��

(%i) float(%); (%o) 4:2536

In the last step above we have used the special symbol “%”, which always refers
to the output of the last command (chronologically, not spatially) that was entered.
We find that the projectile is in the air for about 4.25 s.

Finally, we can determine the range of our projectile.

(%i) subst([x0=0,y0=12,v0=22,theta=55*deg],x(calc_ti));

(%o) 2:2449 cos
�

11 �
36

� �q
484 sin

�
11 �
36

�2 C 235:2 C 22 sin
�

11 �
36

��

(%i) float(%); (%o) 53:674

The projectile travels almost 54 m before landing.

1.7 Position, Velocity, and Acceleration: Calculus

Maxima can perform symbolic calculus operations. For example, we can define a
function in Maxima and then evaluate derivatives and integrals of that function. As
an example, consider the function that gives the y-coordinate of our projectile.

(%i) kill(all)$ y(t):= y0+vy0*t-(1/2)*g*tˆ2;
(%o) y .t/ WD y0 C vy0 t C �� 1

2

�
g t2

We can evaluate the y-component of the projectile’s velocity by finding the
derivative of y.t/ with respect to time using Maxima’s diff command. The
arguments of the diff command include a function and the variable with respect
to which we are differentiating.

(%i) diff(y(t),t); (%o) vy0 � g t
(%i) vy(t):= ”(diff(y(t),t)); (%o) vy .t/ WD vy0 � g t

14 1 Basic Newtonian Physics with Maxima

In the second line of code above we define a new function, vy.t/, which gives
the y-component of the projectile’s velocity. We define the function as the derivative
of y.t/, but we must use the quote–quote operator and enclose the diff command
in parentheses in order to force Maxima to evaluate the derivative and then use the
result to define vy.t/. Without the quotes and parentheses Maxima would just define
vy.t/ as an abstract derivative of y.t/ without actually evaluating that derivative. We
can now use this new function to solve for the time when the projectile reaches its
peak height (when vy D 0), and then evaluate y.t/ at this time to determine the peak
height for the projectile.

(%i) solve(vy(t)=0,t); (%o) Œt D vy0
g �

(%i) y(vy0/g); (%o) y0 C vy02

2 g

If we wish to evaluate the y-component of the projectile’s acceleration, we can
do so in two ways: we can take the second derivative of y.t/ with respect to t or we
can take the first derivative of vy.t/ with respect to t. To take higher order derivatives
we just insert an additional argument that specifies the order.

(%i) diff(y(t),t,2); (%o) �g
(%i) diff(vy(t),t); (%o) �g

Maxima can integrate as well. Integrating the acceleration of our projectile should
tell us the change in the projectile’s velocity. The y-component of acceleration
is �g so we can find the change in the y-component of velocity by integrating
�g with respect to time. For example, we could determine the change in the
projectile’s y-component of velocity from t D 2 s to t D 5 s by evaluating
the corresponding definite integral using Maxima’s integrate command. The
arguments of integrate are a function, the variable of integration, and the lower
and upper limits of integration, respectively.

(%i) integrate(-g,t,2,5); (%o) �3 g

In looking at the result above it is important to remember that the “3” has units
of seconds, so �3g has units of velocity (m/s if g is measured in m/s2). If we want a
general expression for the y-component of velocity, we could evaluate an indefinite
integral of the acceleration. To evaluate an indefinite integral we just leave out the
limits of integration in the arguments of integrate.

(%i) integrate(-g,t); (%o) �g t

Here we must be careful because Maxima gives the result without a constant of
integration. We must remember to add the constant of integration ourselves, using
our knowledge of the initial velocity of the projectile. Likewise, we can perform two
integrations (by nesting one integrate command within another) to determine
the y-coordinate of the projectile as a function of time from its acceleration. The
code below shows how this can be done both with and without attention paid to
the constants of integration. Only when the appropriate constants of integration are
added do we get the correct result.

1.8 Newton’s Second Law: Solving ODEs 15

(%i) integrate(integrate(-g,t),t); (%o) � g t2

2
(%i) integrate(integrate(-g,t)+vy0,t)+x0;

(%o) x0 C t vy0 � g t2

2

1.8 Newton’s Second Law: Solving ODEs

So far we have looked at projectile motion from a kinematic perspective. We know
that the projectile will experience a constant acceleration of magnitude g directed
downward. By why is this so? The fundamental principles that govern the motion
of objects in Newtonian physics are known as Newton’s Laws of Motion. The first
law states that objects will maintain a constant velocity unless they are subject to a
nonzero net force. The third law states that forces always come in interaction pairs
in which two objects exert forces of equal magnitude and opposite direction on one
another. But if an object is subject to a nonzero net force, how will that object move?
This question is answered by Newton’s Second Law.

Newton’s Second Law is often written in the form of an ODE. For the moment let
us consider motion in only one dimension. The position of an object can be thought
of as a function of time, x.t/. If an object is subject to a net force Fnet, with the sign
of Fnet indicating the direction of the force (in the Cx direction if positive, etc.), then
Newton’s Second Law states that

m
d2x

dt2
D Fnet: (1.2)

Note that this equation involves the derivative of x with respect to t. Because x
is a function of t only, this derivative is an ordinary derivative rather than a partial
derivative. That makes Newton’s Second Law an ODE: it is an equation that involves
ordinary derivatives of the function x.t/. If we know the net force, then we can
attempt to solve this ODE. Not all cases will have an analytical solution, but some
do and Maxima can help us to find solutions in some of these cases. For example,
if we are considering projectile motion near the surface of the Earth, then the force
on the projectile has magnitude mg (where m is the mass of the projectile) and it is
directed downward (which we will take to be the �y direction). If we consider only
the y-component of the projectile’s motion, then we can represent Newton’s Second
Law in Maxima as shown below. Note that the single quote instructs Maxima to
recognize the derivative but not to evaluate it.7

(%i) kill(all)$ N2: m*’diff(y(t),t,2) = -m*g;

(%o) m
�

d2

d t2 y .t/
�

D �g m

7Thus the single-quote operation is, in a sense, the opposite of the quote–quote operation, which
forces evaluation.

16 1 Basic Newtonian Physics with Maxima

Maxima has several tools for solving ODEs. In some cases we must solve the
ODE numerically, but in our projectile motion case we can solve it analytically.
The easiest way to solve the ODE is with Maxima’s desolve command. The code
below illustrates the use of this command. Note that the arguments of desolve are
the ODE and the function for which we want a solution. Also, observe that y(t)
must be entered, not just y.

(%i) sol1: desolve(N2,y(t));

(%o) y .t/ D t
�

d
d t y .t/

ˇ̌
tD0

�
� g t2

2 C y .0/

The solution is given as a function of t, but also in terms of the initial values
of y and dy=dt. We can use the atvalue command to define different, or more
convenient, constants to be used in the solution. In an atvalue command we
specify a quantity (such as y or dy=dt), a specified time, and the value of that quantity
at that time. The example below shows how to set the initial y-coordinate to y0 and
the initial y-velocity to vy0. Then the desolve command generates a solution using
these new constants.

(%i) atvalue(diff(y(t),t),t=0,vy0)$
atvalue(y(t),t=0,y0)$ sol1:desolve(N2,y(t));

(%o) y .t/ D y0 C t vy0 � g t2

2

1.9 Range of a Projectile: Root Finding

Above we found an expression for the x-coordinate of our projectile at the time of
impact (t D ti when y D 0). We can use this result to define an expression for the
range of the projectile as a function of the launch angle � : r.�/ D x.ti/ � x0, or

r.�/ D v2
0

g
cos �

 s
2gy0

v2
0

C sin2 � C sin �

!
: (1.3)

We can rewrite this function as r.�/ D 2hmaxh.�; k/, where hmax D v2
0=.2g/ is how

high the projectile would rise if it was fired straight up, k D y0=hmax and h.�; k/ is
defined in the code below.

(%i) kill(all)$ deg:%pi/180$
h(theta,k):=(cos(theta)*(sqrt(k+sin(theta)ˆ2)+sin(theta)));

(%o) h .�; k/ WD cos .�/

�q
k C sin .�/2 C sin .�/

�

The function h.�; k/ is a dimensionless quantity that depends on the dimension-
less parameter k. It is often useful to use dimensionless quantities in computational
work (and particularly numerical work) because it is unnecessary to keep track of
the units for these quantities, since they have none. Note that to find the angle that
maximizes the range of our projectile we only need to maximize h.�/, with the
value of k set by initial conditions. We can determine the approximate value of �

1.9 Range of a Projectile: Root Finding 17

that maximizes h.�/ by plotting h.�/. To create a plot we can use Maxima’s draw
package. First, we load the draw package.

(%i) load(draw);
(%o) =usr=share=maxima=5:29:1=share=draw=draw:lisp"

To generate a 2d plot within our wxMaxima notebook we can use wxdraw2d.
We wish to plot h.�; k/ as an explicit function of � for a given value of k, so we
use the explicit command within wxdraw2d. The arguments of the explicit
command are the function to be plotted, the independent variable, and the minimum
and maximum values of the independent variable to be used. The code below
produces a plot of h.�; k/ for k D 2 (recall that k is a dimensionless parameter
and h is a dimensionless function) for launch angles ranging from 0ı to 90ı. Note
the optional arguments within wxdraw2d that specify labels for the axes. These
can be placed anywhere within the command. The output from this command is
shown in Fig. 1.2.

(%i) wxdraw2d(explicit(h(theta*deg,2),theta,0,90),
xlabel="{/Symbol q} (deg)", ylabel="h")$

Inspection of the plot in Fig. 1.2 shows that for k D 2 the launch angle that
maximizes the range is close to 30ı. However, we can determine a precise value by
solving for the value of � for which the derivative of h with respect to � is zero. First
we define a new function dh, which is the derivative of h.�; k/ with respect to � .

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 0 10 20 30 40 50 60 70 80 90

h

θ (deg)

Fig. 1.2 Plot of the dimensionless function h.�; k/, for k D 2. The value of � that maximizes this
function will also maximize the range of the projectile

18 1 Basic Newtonian Physics with Maxima

(%i) dh(theta,k):=”(diff(h(theta,k),theta));

(%o) dh .�; k/ WD cos .�/

�
cos.�/ sin.�/p

sin.�/2
Ck

C cos .�/

�
�

sin .�/

�q
sin .�/2 C k C sin .�/

�

To find the value of � that maximizes the range we want to solve the equation
dh D 0 for a given value of k. Unfortunately this equation is transcendental and
therefore no analytical solution is possible. We must solve the equation numerically.
For this purpose we can use Maxima’s find_root command. The arguments of
find_root are a function whose roots are to be found, the independent variable,
and maximum and minimum values of the variable to be considered. Ideally we
want to specify the maximum and minimum values such that one, and only one,
root of the function lies between them. For example, to find the value of � such that
dh D 0 for k D 2 we can search for the root between 20ı and 40ı.

(%i) find_root(dh(theta*deg,2),theta,0,90); (%o) 30:0

For k D 2 the angle that maximizes the range is � D 30ı. For k D 5 we get a
different optimal angle.

(%i) find_root(dh(theta*deg,5),theta,0,90);
(%o) 22:208

A larger value of k results in a smaller optimal launch angle. How do we interpret
this physically? Recall that k D y0=hmax. So a larger value of k means the projectile
starts from a launch point that is higher, relative to how far up the projectile would
travel if fired straight up. When the projectile is launched from a higher point it
makes sense that a smaller (more horizontal) launch angle will maximize the range.

To get a better idea of how the optimal angle changes as k changes we define a
new function, �max.k/, that uses find_root to calculate the optimal angle given a
value for k. Once this function is defined we can plot the function and examine the
behavior of �max as k changes. The resulting plot is shown in Fig. 1.3. (Note that we
begin the plot at � D 0:01ı rather than at 0ı in order to avoid problems with the
find_root command.)

(%i) theta_max(k):=”find_root(dh(theta*deg,k),
theta,0,90);

(%o) theta_max .k/ WD find_root .dh .� deg; k/ ; �; 0; 90/

(%i) wxdraw2d(explicit(theta_max(k),k,0.01,50),
xlabel="k",ylabel="{/Symbol q}_max(deg)");

Figure 1.3 makes it clear that the optimal angle for k D 0 (launch from the
ground) is 45ı, but as k increases the optimal launch angle decreases, approaching
horizontal (� D 0) in the limit k ! 1.

Now suppose we want to know the maximum range for a projectile fired at a
launch speed of 22 m/s from a height of 15 m above ground level. We can calculate
the corresponding value of k (using g D 9:8 m/s2), and then find �max for this value
of k. Once we have found the optimal angle we can calculate the maximum range by

1.10 Visualizing Motion in Maxima 19

 10

 15

 20

 25

 30

 35

 40

 45

 0 10 20 30 40 50

θ m
ax

 (
de

g)

k

Fig. 1.3 Optimal launch angle versus k D y0=hmax

evaluating 2hmaxh.�max/ D .v2
0=g/h.�max/. The code below shows that the optimal

launch angle for this projectile is approximately 38.3ı, and the maximum range for
the projectile is about 62.6 m.

(%i) y0:15$ g:9.8$ v0:22$ k:2*g*y0/v0ˆ2$
ang:theta_max(k); (%o) 38:264

(%i) deg:%pi/180$ (v0ˆ2/g)*h(ang*deg, k);

(%o) 49:388 cos .0:21258 �/

�q
sin .0:21258 �/2 C 0:60744 C sin .0:21258 �/

�

(%i) float((v0ˆ2/g)*h(ang*deg, k));
(%o) 62:616

1.10 Visualizing Motion in Maxima

In studying the motion of objects we often want a visual picture of how the object
moves. We can use Maxima to construct plots of motion in a variety of ways.
For example, in the case of our projectile we could plot x versus t, y versus t,
or y versus x. Each of these plots will help us to visualize different aspects of
the projectile’s motion. To construct these plots we first define functions for x.t/
and y.t/.

(%i) x(t):= ”(x0+t*cos(theta)*v0);
y(t) := ”(y0 + t*sin(theta)*(v0)-g*tˆ2/2);

(%o) x .t/ WD x0 C t cos .�/ v0 (%o2) y .t/ WD y0 C t sin .�/ v0 � g t2

2

20 1 Basic Newtonian Physics with Maxima

Next we define our initial conditions. For a launch height of y0 D 15 m and
launch speed of v0 D 22 m/s we found that the optimal launch angle was �max D
38:264ı. Using these initial conditions (along with x0 D 0) we construct plots of x
versus t (Fig. 1.4), y versus t (Fig. 1.5), and y versus x (Fig. 1.6) below. To keep the
output on a single line fpprintprec is set to 5.

 0

 10

 20

 30

 40

 50

 60

 0 0.5 1 1.5 2 2.5 3 3.5

x
(m

)

t (s)

Fig. 1.4 Plot of x versus t

 0

 5

 10

 15

 20

 0 0.5 1 1.5 2 2.5 3 3.5

y
(m

)

t (s)

Fig. 1.5 Plot of y versus t

1.11 Exercises 21

 0

 5

 10

 15

 20

 0 10 20 30 40 50 60

y
(m

)

x (m)

Fig. 1.6 Plot of y versus x

(%i) x0:0$ y0:15$ v0:22$ g:9.8$ deg:%pi/180$
theta:38.26419432241701*deg$
ti:(sqrt(2*g*y0+sin(theta)ˆ2*v0ˆ2)+sin(theta)*v0)/g; float(%);

(%o) :10204
�q

484 sin .:21258 �/2 C 294:0 C 22 sin .:21258 �/

�

(%o) 3:625
(%i) wxdraw2d(explicit(x(t),t,0,ti),xlabel="t (s)",

ylabel="x (m)")$
(%i) wxdraw2d(explicit(y(t),t,0,ti),xlabel="t (s)",

ylabel="y (m)")$

(%i) wxdraw2d(parametric(x(t),y(t),t,0,ti),
xlabel="x (m)", ylabel="y (m)");

1.11 Exercises

1. Consider the fall of an object from the height of the International Space Station.
The ISS orbits 370 km above Earth’s surface. The Earth is roughly spherical
with a radius of 6371 km. Assume that the object falls from rest straight down

22 1 Basic Newtonian Physics with Maxima

onto Earth’s surface.8 When objects fall near Earth’s surface (in the absence of
any resistance), they fall with a constant acceleration of g D 9:79 m/s2. Use this
constant acceleration model to examine the motion of the falling object.

(a) The object is moving in just one dimension, along a straight line toward
the center of Earth. Let its initial height above ground be h. It falls with a
constant acceleration g, so if y.t/ represents the height as a function of time
we have

d2

dt2
y.t/ D �g;

where we are defining our y-coordinate so that the positive y-direction is up.
Use Maxima’s desolve to solve this differential equation. Use atvalue
to set the initial height to h and the initial velocity to zero. Note: the result
should look familiar.

(b) Define a new function y1.t/ using the solution you just obtained. Use
solve to find the time of fall before the object hits Earth. Note that you
get more than one solution. Which solution is the physically sensible one?

(c) Use diff to define a new function v1.t/ that gives the object’s velocity as
a function of time.

(d) Assign appropriate values to the constants g and h. Be careful with units!
Compute a numerical value for the time of fall. Determine the speed of the
object when it hits the ground.

(e) Plot the height of the object as a function of time. Give appropriate labels to
your axes (with units). Use a sensible domain of time values for your plot.

2. Again, consider the fall of an object from the height of the ISS as discussed in
the previous question. This time, assume that the force on the object is deter-
mined by Newton’s Universal Law of Gravitation. So the object experiences a
downward force of

F D GMm

r2
;

where G D 6:674�10�11 N(m/kg)2 is Newton’s constant, M D 5:972�1024 kg
is the mass of Earth, m is the mass of the object, and r is the distance of
the object from Earth’s center. Since we usually measure height from Earth’s
surface, we will define a new variable y such that r D R C y, where R is the
radius of Earth.

8This is not the same as dropping an object from the ISS. An object dropped from the ISS would
be orbiting the Earth at the same speed as the ISS, and so it would simply continue to orbit rather
than fall to Earth’s surface.

1.11 Exercises 23

(a) Define a function a.y/ that gives the acceleration of the object as a function
of y (with constants G, M, and R).

(b) It turns out to be pretty complicated to use this expression for the
acceleration. However, you can use an approximate expression and still
obtain results that are more accurate than assuming constant acceler-
ation. Use the taylor command to find the Taylor series for a.y/

about y D 0 to fifth order. The syntax for the taylor command
is: taylor(f(x),x,a,n), which returns the nth order Taylor series
expansion of f .x/ about x D a. Note that there is a constant term in
the Taylor series result. How does this constant relate to the model we
considered earlier?

(c) Use desolve to solve the differential equation that we get by keeping
only the two lowest power terms (the constant term and the y term) in this
Taylor series, using initial height y0 D h and initial velocity zero. Define a
new function y2.t/ using this solution.

(d) Use diff to define a function v2.t/ that gives the velocity as a function of
time.

(e) Assign appropriate values to the constants G, M, R, and h. Make a plot of
y2.t/. Use a sensible domain of time values. Label your axes (with units).
Try to estimate when the object hits the Earth.

(f) Use find_root to determine the precise time at which the object hits
Earth.

(g) Determine how fast the object is moving when it hits. Compare the results
from this model to those from the previous model. Are they very different?
Which model do you think is better, and why?

3. Consider an object of mass m moving through a resistive medium in one
dimension. The object is subject to a resistive force F D �bv, where b is a
constant. The initial speed of the object is v0.

(a) Use desolve to find x.t/ for this object. Then use diff to find v.t/.
(b) Use the limit command to determine the maximum distance the object

can travel. The syntax for the limit command is limit(f(x),x,a)
to compute the limit of f .x/ as x ! a. In Maxima the symbol inf is used
to represent positive infinity (and minf is used for negative infinity).

(c) Determine the time (in terms of b and m) at which the object has traveled
exactly half of its maximum distance. How fast is the object moving (in
terms of v0) at that time?

(d) Construct plots of x (in units of mv0=b) and v (in units of v0) as a function
of t (in units of m=b).

Chapter 2
Newtonian Mechanics

This chapter addresses Newtonian mechanics. We begin by examining an object
that is in static equilibrium, where the body, though subject to a set of forces, does
not move. We then investigate the motion of an object subject to different types of
forces: constant forces, air resistance, and electromagnetic forces.

2.1 Statics

Consider an object that is subject to various forces and torques, but the object does
not move in any way. A system of this type is said to be in static equilibrium.
The branch of mechanics that deals with such systems is known as statics. Let’s
examine a typical problem from statics, using Maxima to help us solve the resulting
equations.

Consider the situation shown in Fig. 2.1. This diagram shows a 32-kg sign that
hangs by a wire from the end of a 20-kg rigid horizontal rod. The other end of the
rod is attached to a vertical wall. A second wire connects the end of the rod where
the sign is attached to a point higher on the wall. This wire makes an angle � D 35ı
with the rod. Assume that both wires are taut and treat them as massless. What force
is exerted on the rod by the wall? What is the tension in the wire that runs from the
rod to the wall?

To analyze this situation we take advantage of the fact that the rod is not moving
and, therefore, is not accelerating (linearly or rotationally). Newton’s second law,
and its rotational equivalent, tell us that the net force and net torque on the rod must
both be zero. We know that the vertical wire exerts a downward force on the rod that
is equal in magnitude to the weight of the sign (because the other end of that wire
must be pulling up on the sign with a force equal to the sign’s weight). Of course,
the rod’s own weight also pulls it downward. Denote the tension in the angled wire
T and the x- and y-components of the force on the rod by the wall Fwx and Fwy.

© Todd Keene Timberlake & J. Wilson Mixon, Jr. 2016
T.K. Timberlake, J.W. Mixon, Classical Mechanics with Maxima, Undergraduate
Lecture Notes in Physics, DOI 10.1007/978-1-4939-3207-8_2

25

26 2 Newtonian Mechanics

Fig. 2.1 A statics problem: a
sign hangs from a rigid
horizontal rod which has one
end attached to a wall and the
other end connected to the
wall by a wire

The net force on the rod is zero, so

X
Fx D T cos.35ı/ C Fwx D 0 (2.1)

X
Fy D T sin.35ı/ � .32 kg/.9:8 m=s2/ C Fwy � .20 kg/.9:8 m=s2/ D 0: (2.2)

Also, the sum of the torques about any point on the rod must be zero. For
convenience we choose our origin at the point where the rod touches the wall, as
this will eliminate both Fwx and Fwy from our torque equation (since they act at
the origin and therefore do not exert any torque about that point). We can treat the
weight of the rod as though it acts at the center of the rod, 1 m from the origin.
The weight of the sign acts at the far end of the rod, 2 m from our chosen origin.
Recalling that counterclockwise torques are considered positive, we have

X
� D �T sin.35ı/.2 m/C.32 kg/.9:8 m=s2/.2 m/C.20 kg/.9:8 m=s2/.1 m/ D 0:

(2.3)

Solving this system of three equations is not hard, but it is a bit tedious. Maxima
can help. First we enter the equations, assigning each equation to a variable.

(%i) deg: %pi/180$ g:9.8$ phi:35*deg$
eq1: T*cos(phi)+Fwx=0$
eq2: T*sin(phi)-32*g+Fwy-20*g=0$
eq3: 32*g*2+20*g*1-T*sin(phi)*2=0$

2.1 Statics 27

Now we use solve to solve the system of equations. Maxima always tries to
give us an exact answer, so whenever possible it will convert decimal values into
fractions and it will leave trig functions unevaluated rather than giving a decimal
representation. In most cases we desire a decimal value, so we use float to have
Maxima convert the result.

(%i) sol:solve([eq1,eq2,eq3],[Fwx,Fwy,T]);

(%o) ŒŒFwx D � 2058 cos. 7 �
36 /

5 sin. 7 �
36 /

; Fwy D 98; T D 2058
5 sin. 7 �

36 /
��

(%i) float(%); (%o) ŒŒFwx D �587:83; Fwy D 98:0; T D 717:6��

The tension in the angled wire is 717.6 N. The force on the rod by the wall has
an x-component of �587.8 N and a y-component of 98 N. To test that this purported
solution does solve our system of equations, we instruct Maxima to substitute our
solution back into each equation. For example, the code below verifies our solution
for the first equation.1

(%i) subst(sol[1],eq1); (%o) 0 D 0

In order to set up our torque equation, we had to choose an origin about which
the torques would be calculated. However, the solution to our problem should not
depend on the choice of origin, because the net torque should be zero about any
point on the rod. To verify this we can replace our torque equation from above with
a new torque equation that uses the left end of the rod as the origin. This eliminates
the variable T from the equation (since the tension acts at that end of the rod and thus
produces no torque), but it also eliminates Fwx because the horizontal component of
any force on the rod must act through our origin and therefore produce no torque.
The resulting torque equation is

X
� D Fwy.2 m/ � .20 kg/.9:8 m=s2/.1 m/ D 0: (2.4)

We can now use Maxima to solve the new system of equations consisting of
Eqs. 2.2 and 2.4.

(%i) eq4: Fwy*2-20*g*1=0$
solve([eq1,eq2,eq4],[Fwx,Fwy,T]);

(%o) ŒŒFwx D � 2058 cos. 7 �
36 /

5 sin. 7 �
36 /

; Fwy D 98; T D 2058
5 sin. 7 �

36 /
��

(%i) float(%); (%o) ŒŒFwx D �587:83; Fwy D 98:0; T D 717:6��

The solution is identical to the one we obtained earlier, as expected. Now we
can put a new twist on our problem. Suppose the second wire had a tensile strength
of only 1000 N. In order to leave plenty of room for error (or perching birds!) we
decide we do not want to exceed a tension of 500 N on this wire, so the tension
of 717.6 N with � D 35ı is too large. What angle � will give us a tension of 500

1Observe that sol consists of a list embedded in another list. The command uses the notation
sol[1] to extract the list of solutions that is to be placed into eq1.

28 2 Newtonian Mechanics

N in the wire? To solve this problem we introduce two variables Tx and Ty which
represent the x- and y-components of the tension in the second wire. We choose
our origin at the left end of the rod in order to eliminate Tx, Ty and Fwx from our
torque equation. The resulting equations for zero net force and torque are entered
into Maxima and solved as shown below. Note that the final equation (eq8) ensures
that the magnitude of the tension will be 500 N.

(%i) kill(phi)$ g:9.8$ eq5:Tx+Fwx=0$
eq6:Ty-32*g+Fwy-20*g=0$ eq7:Fwy*2-20*g*1=0$
eq8:Txˆ2+Tyˆ2=500ˆ2$
sol2:solve([eq5,eq6,eq7,eq8],[Fwx,Fwy,Tx,Ty]);

(%o) ŒFwx D � 2
p

503659
5 ; Fwy D 98; Tx D 2

p

13
p

17
p

43
p

53
5 ; Ty D 2058

5 �

ŒFwx D 2
p

503659
5 ; Fwy D 98; Tx D � 2

p

13
p

17
p

43
p

53
5 ; Ty D 2058

5 �

Note that two different solutions are given, but the difference between the two
solutions is just a change in sign of the x-components of the tension and the force
from the wall. In this problem it makes no physical sense for the tension to have a
negative x-component (the wire can pull, but it cannot push) so we can ignore the
second solution. Now we can find the angle for � with simple trigonometry. We
know that the tension must point along the wire, so

� D tan�1

�
Ty

Tx

�
: (2.5)

We use Maxima to evaluate the inverse tangent function.

(%i) subst(sol2[1],atan(Ty/Tx)); (%o) atan
�

1029
p

13
p

17
p

43
p

53

�

(%i) float(%*180/%pi); (%o) 55:406

The wire has a tension of 500 N when � � 55:4ı. Thus, in order to reduce the
tension we needed to increase �. We might wonder what is the minimum possible
tension in this wire? To achieve the minimum tension we would need to maximize
the angle, so the wire would need to be vertical (or as close to vertical as possible
so that it can still connect to the wall). If we assume � D 90ı we can use Maxima
to find Ty (Tx D 0 since the wire is going straight up). If we calculate torque about
the left end of the rod then our equations are

X
Fy D Ty � .32 kg/.9:8 m=s2/ C Fwy � .20 kg/.9:8 m=s2/ D 0; (2.6)

X
� D Fwy.2 m/ � .20 kg/.9:8 m=s2/.1 m/ D 0: (2.7)

We use Maxima to solve this system below.

(%i) g:9.8$ eq9:Ty-32*g+Fy-20*g=0$
eq10: Fy*2-20*g*1=0$
sol3:solve([eq9,eq10],[Fy,Ty]);

(%o) ŒŒFy D 98; Ty D 2058
5 ��

2.2 Constant Forces: Block on a Wedge 29

The minimum tension (for a vertical wire) is 2058/5 N, or 411.6 N. Note that this
result is just the weight of the sign plus half the weight of the rod. If the wire pulls
up vertically on the end of the rod then it must support the weight of the sign and
also cancel the torque caused by the weight of the rod. If we use the contact point
with the wall as the origin, it is not hard to see that the wire must pull up with half
the weight of the rod in order to offset the torque due to the rod’s weight.

2.2 Constant Forces: Block on a Wedge

In our statics example, the forces on the rod were constant but they all canceled
out resulting in no acceleration. Now we examine a case where the forces are
still constant, but they do not necessarily cancel out. Here we must allow for the
objects involved to accelerate, and one of our main goals will be to determine the
acceleration of the objects.

Consider a rectangular block of mass m placed on a triangular wedge that has a
mass M and an incline angle � . The wedge, in turn, sits upon a horizontal surface.
The arrangement is shown in Fig. 2.2. There is no friction between the block and the
wedge, or between the wedge and the horizontal surface. The block and the wedge
are both subject to constant gravitational forces, and they can also exert constant
normal forces on each other. These normal forces must be equal in magnitude and
opposite in direction according to Newton’s Third Law.

We start by defining coordinates. We can ignore the vertical position of the
wedge because that will never change. However, we need a coordinate to specify
the horizontal position of the wedge. Let X measure the horizontal distance from
the origin O to the corner of the wedge as shown in Fig. 2.2. We will require two
coordinates, x and y, to represent the position of the bottom edge of the block relative
to the origin as shown in Fig. 2.2.

Fig. 2.2 A block sitting on a moveable wedge

30 2 Newtonian Mechanics

The block is subject to two forces: its own weight and a normal force from the
wedge. The weight has magnitude mg and is in the negative y-direction. Let N
represent the magnitude of the normal force, which must point perpendicular to the
surface of the wedge. This force has a negative x-component of magnitude N sin �

and a positive y-component of magnitude N cos � . If ax and ay represent the x- and
y-components of the block’s acceleration, then by Newton’s Second Law we have

� N sin � D max;

N cos � � mg D may: (2.8)

The forces on the wedge include both its weight, which is in the negative
y-direction, and the normal force from the block which has both x- and y-
components (opposite those of the normal force on the block by the wedge). We have
already seen that we can ignore the y-motion of the wedge (since there isn’t any),
so we need only consider the x-components of the forces on the wedge. Newton’s
Second Law then gives

N sin � D MAX; (2.9)

where AX is the acceleration of the wedge.
Examining Eqs. 2.8 and 2.9 we see that we have three equations, but four

unknowns (ax, ay, Ax, and N). We need a fourth equation in order to solve the system.
The fourth equation comes from the relationship between the coordinates x, y, and
X. The motion of the block is constrained to be along the surface of the wedge,
and we must account for this constraint. From basic trigonometry we see that if the
block is on the wedge then we must have

.x � X/ tan � D y: (2.10)

Equation 2.10 is called the equation of constraint. We can differentiate equation 2.10
twice with respect to time to get

.ax � AX/ tan � D ay: (2.11)

Now we can use Maxima to solve the system of equations in Eqs. 2.8, 2.9,
and 2.11.

(%i) kill(all)$ eq1:-N*sin(theta)=m*ax$
eq2:N*cos(theta)-m*g=m*ay$ eq3:N*sin(theta)=M*Ax$
eq4:tan(theta)*(ax-Ax)=ay$
sol:solve([eq1,eq2,eq3,eq4],[N,ax,ay,Ax]);

(%o) N D g m M
sin.�/ .tan.�/ MCm tan.�//

Ccos.�/ M

ax D � g sin.�/ M
sin.�/ .tan.�/ MCm tan.�//

Ccos.�/ M

ay D � sin.�/ .g tan.�/ MCg m tan.�//

sin.�/ .tan.�/ MCm tan.�//
Ccos.�/ M

Ax D g m sin.�/

sin.�/ .tan.�/ MCm tan.�//
Ccos.�/ M

2.2 Constant Forces: Block on a Wedge 31

The result looks quite complicated. However, we can get Maxima to simplify
the result using trigsimp, which will take advantage of some basic trigonometric
identities to rewrite the solution in simpler form.

(%i) nsol:trigsimp(sol);

(%o) N D g m cos.�/ M
MCm sin.�/2 ax D � g cos.�/ sin.�/ M

MCm sin.�/2

ay D � g sin.�/2 MCg m sin.�/2

MCm sin.�/2 Ax D g m cos.�/ sin.�/

MCm sin.�/2

Any time we obtain an analytical solution for a physics problem it is a good
idea to test the solution in certain limits where we know, or can easily determine,
the answer. For example, if the wedge were flat (� D 0) then we know that neither
the block nor the wedge would accelerate and the normal force would simply
equal the weight of the block. We can test this limit in Maxima by evaluating our
solution when � D 0.

(%i) subst(theta=0,nsol);
(%o) ŒŒN D g m; ax D 0; ay D 0; Ax D 0��

The results fit with our expectations. Likewise we could evaluate the solution for
� D �=2, in which case the wedge is vertical and the block will be in freefall.

(%i) subst(theta=%pi/2,nsol);
(%o) ŒŒN D 0; ax D 0; ay D � g MCg m

MCm ; Ax D 0��

It is easy to see that this result simplifies to ay D �g with all other quantities zero
as expected. We can also evaluate our solution in some more interesting limits. For
example, if the mass of the wedge is much greater than the mass of the block, what
will happen? We can use Maxima’s limit command to evaluate our solution in
the limit M ! 1. The arguments of limit are the expression to be evaluated,
the variable whose limit we are taking, and the limiting value of that variable,
respectively. Note that positive infinity is represented as inf in Maxima.

(%i) limit(nsol,M,inf);
(%o) ŒŒN D g m cos .�/ ; ax D �g cos .�/ sin .�/ ; ay D �g sin .�/2

; Ax D 0��

These results require some interpretation, but if we use these values for ax and
ay to evaluate the magnitude and direction of the block’s acceleration we will find
that jEaj D g sin � with the acceleration directed down the slope of the wedge. The
wedge itself remains stationary (assuming it started from rest). This is exactly the
result for a block sliding down a frictionless inclined plane, as we should expect in
this case.

Finally, consider the case in which the block is much more massive than the
wedge. We evaluate our solution in the limit m ! 1.

(%i) limit(nsol,M,inf);

(%o) ŒŒN D g cos.�/ M
sin.�/2 ; ax D 0; ay D �g; Ax D g cos.�/

sin.�/ ��

Here we see that the wedge supplies no resistance to the block, so the block is in
freefall. However, the block pushes the wedge horizontally, giving it an acceleration
AX D g cot � . In effect, the block falls and as it does so it shoots the wedge out
sideways.

32 2 Newtonian Mechanics

2.3 Velocity-Dependent Forces: Air Resistance

Introductory physics courses generally ignore the effects of air resistance. This
section examines a simple model for air resistance and explores how air resistance
can affect the motion of a falling particle or a projectile.

Air resistance is a force that opposes the motion of an object through air. This
force exists because the object moving through the air collides with air molecules.
These collisions tend to slow the object down, so this force is sometimes referred
to as a drag. The force of air resistance always points in a direction opposite to the
object’s velocity. The magnitude of the force depends on the object’s speed and its
shape.

2.3.1 Models of Air Resistance

One simple, but useful, model for air resistance is represented by the equation

EF D �f .v/ Ov (2.12)

where v is the speed of the object and Ov is a unit vector in the direction of the object’s
velocity. The function f .v/ is defined by

f .v/ D bv C cv2 (2.13)

where b and c are constants. For a spherical object, b D ˇD and c D �D2 where
D is the diameter of the object. For motion through air at standard temperature and
pressure we will use ˇ D 1:6 � 10�4 N s/m2, and � D 0:25 N s2/m4.

The function f .v/ has a linear term and a quadratic term. The ratio of these two
terms,

fquad

flin
D �Dv

ˇ
� .1:6 � 103 s=m2/Dv; (2.14)

reveals that the quadratic term tends to be larger for large diameter objects moving
at high velocities, and the linear term dominates for small diameter objects moving
at low velocities.

To get some idea of how these terms affect drag at different speeds, consider a 10
cm sphere. Here D D 0:1 m, so b D 1:6 � 10�5 N s/m and c D 2:5 � 10�3 N s2/m2.
We can plot f .v/, bv, and cv2 against v over the range 0 < v < 0:001 m/s in order
to compare the magnitudes of the linear and quadratic terms. Note the use of various
options within the wxdraw2d command in the code below. These options set the
width of the plotted line, the color of that line, the labels to be used in the key, and the

2.3 Velocity-Dependent Forces: Air Resistance 33

 0

 2e-09

 4e-09

 6e-09

 8e-09

 1e-08

 1.2e-08

 1.4e-08

 1.6e-08

 1.8e-08

 0 0.0005 0.001

fo
rc

e
(N

)

v (m/s)

Both
Linear

Quadratic

Fig. 2.3 Linear versus quadratic air resistance as a function of speed for a 10 cm sphere

location of the key, as well as the x- and y-axis labels we have encountered before.
For more details about these options consult the Maxima manual. The resulting plot
is shown in Fig. 2.3.

(%i) f(v, b, c) := b*v + c*vˆ2$ b1:1.6e-5$ c1:2.5e-3$
wxdraw2d(line_width=1,key="Both",
explicit(f(v,b1,c1),v,0,0.001),line_width=2,
key="Linear",explicit(f(v,b1,0),v,0,0.001),
color=gray50,key="Quadratic",explicit(f(v,0,c1),
v,0,0.001), xlabel="v (m/s)",ylabel="force (N)",
user_preamble="set key left")$

In the range of speeds shown, the air resistance force is dominated by the linear
term with the quadratic term making only a small addition at the high end of the
range.

If we modify the code above to generate a plot over the range 0 < v < 0:1 we get
a very different picture. Figure 2.4 shows that at higher speeds (say, v > 0:05 m/s)
the quadratic term dominates. So for low speeds we can obtain an accurate picture of
the motion while ignoring the quadratic term. At high speeds we get accurate results
while ignoring the linear term. Below we will examine cases of motion with linear
resistance only, and motion with quadratic resistance only. In some situations we
must use both the linear and quadratic terms. Examining the effects of the combined
linear and quadratic forces is left as an exercise for the reader.

34 2 Newtonian Mechanics

 0

 5e-06

 1e-05

 1.5e-05

 2e-05

 2.5e-05

 0 0.02 0.04 0.06 0.08 0.1

fo
rc

e
(N

)

v (m/s)

Both
Linear

Quadratic

Fig. 2.4 Linear and quadratic resistance, extended range

2.3.2 Falling with Linear Resistance

We first consider an object that is falling in Earth’s gravitational field and that is
subject to linear air resistance. As we have seen, a linear model for air resistance
is appropriate for small objects moving at relatively slow speeds. Newton’s second
law for this object is:

mRy D �mg � bPy; (2.15)

where Ry D d2y=dt2 is the acceleration, Py D dy=dt is the velocity, and y is the object’s
distance above the Earth’s surface.

We can break this second order differential equation up into two first order
ordinary differential equations (ODEs):

m Pv D �mg � bv;

Py D v: (2.16)

We can then use desolve to solve the first ODE.

(%i) kill(values, functions, arrays)$
eq1:m*’diff(v(t),t)=-m*g-b*v(t)$
sol:desolve(eq1,v(t));

(%o) v .t/ D .g m2
Cv.0/ b m/ e�

b t
m

b m � g m
b

2.3 Velocity-Dependent Forces: Air Resistance 35

We assume that the object is dropped from rest, so v.0/ D 0. We then simplify
the solution to the ODE and define a new function for v.t/.

(%i) v(t):=(g*m/b)*(%eˆ(-(b*t)/m)-1);

(%o) v .t/ WD g m
b

�
e

�b t
m � 1

�

Note that v.0/ D 0 as it should. It is easy to show that limt!1 v.t/ D �gm=b.
This result indicates that our dropped object has a terminal speed of gm=b. When
the object is released, gravity is pulling it downward and there is no air resistance,
so the object will fall. As the object falls, it speeds up. As it speeds up, however, the
magnitude of the air resistance force increases. Eventually the object will be falling
so fast that the magnitude of the air resistance will equal the object’s weight. At this
point the two forces will cancel each other and the object will be in equilibrium, so
it no longer accelerates. From this point onward the object will fall with a constant
speed, which is just the terminal speed we found above. Another way to determine
this terminal speed is to set the force of air resistance equal to the object’s weight
and solve for the speed:

bjvj D mg ! jvj D mg

b
: (2.17)

The terminal speed obtained in this way is identical to the speed we obtained from
the infinite time limit of v.t/.

Now we can determine y.t/. To obtain y.t/ we integrate v.t/ with respect to time.
Remember, though, that an undetermined constant must be added to this integral to
yield the correct solution for y.t/. We can determine the value of this constant once
we know the initial conditions, but first let’s perform the integration. We will also
use the expand command to expand the expression by multiplying out all of the
terms.

(%i) integrate(v(t),t); (%o)
g m

�

m e�

b t
m

b �t

!

b

(%i) expand(%); (%o) � g m2 e�

b t
m

b2 � g m t
b

Integration yields �gm2=b2 at t D 0. If we let h be the initial height of the object
then y.0/ D h and we must add gm2=b2 C h to the result of the above integral in
order to get the correct expression for y.t/. Now we can define the function for y.t/.

(%i) y(t):= -(g*mˆ2*%eˆ(-(b*t)/m))/bˆ2-
(g*m*t)/b + h;

(%o) y .t/ WD �g m2 e
�b t

m

b2 � g m t
b C g m2

b2 C h

Consider a specific example. Suppose a rain drop falls from rest from a cloud
that is 2 km above Earth’s surface. The diameter of the drop is 2 mm and its mass is
4:2�10�6 kg. Recall that b D ˇD, where D is the diameter of a spherical object and
ˇ D 1:6 � 10�4 N s/m2. We can use the code below to calculate b for the rain drop
and then construct a plot of y versus t to determine the approximate time that the

36 2 Newtonian Mechanics

-1500

-1000

-500

 0

 500

 1000

 1500

 2000

 0 5 10 15 20 25 30 35 40

y
(m

)

t (s)

Fig. 2.5 The height of a raindrop (falling with linear resistance) as a function of time

drop will hit the ground. The resulting plot is shown in Fig. 2.5. The xaxis=true
option produces a dotted line along the x-axis in the plot.

(%i) D:2e-3$ m:4.2e-6$ beta:1.6e-4$ b:beta*D$
g:9.8$ h:2000$

wxdraw2d(xaxis=true, xlabel="t (s)",
ylabel = "y (m)", explicit(y(t),t,0,40))$

The drop hits the ground (y D 0) somewhere between t D 25 and t D 30 s. We
can use find_root to determine precisely when the drop hits the ground.

(%i) tend:find_root(y(t),t,25,30); (%o) 26:996

Thus, the drop strikes the ground at t � 27 s. We can also plot the velocity of the
drop as it falls, using the code below. Figure 2.6 shows the resulting plot.

(%i) wxdraw2d(ylabel="v (m/s)",
xlabel = "t (s)", explicit(v(t),t,0,tend))$

The effects of air resistance are clear in this case. The rain drop’s speed is
increasing as it falls, but the speed does not increase linearly. The speed is beginning
to level off (approach a maximum negative value) as the drop approaches the ground.
We can determine the object’s velocity upon impact.

(%i) v(tend); (%o) �112:18

The rain drop is moving downward at 112.2 m/s when it hits the ground. Let’s
compare that speed to the terminal speed of the drop. Recall that the terminal speed
is gm=b. (Note: using the single quote operator to preclude computation on the

2.3 Velocity-Dependent Forces: Air Resistance 37

-100

-80

-60

-40

-20

 0

 0 5 10 15 20 25

v
(m

/s
)

t (s)

Fig. 2.6 The velocity of a raindrop (falling with linear resistance) as a function of time

left-hand side in the code below is required. The command g*m/b would yield
the result, 128.63. Of course, the expression on the left-hand side is not required,
but it does provide context.)

(%i) ’(g*m/b) = g*m/b; (%o) g m
b D 128:63

The terminal speed in this case is 128.6 m/s. In our example above the rain drop
reaches an appreciable fraction of its terminal speed before hitting the ground. The
only reason it doesn’t make it all the way to terminal speed is that it hits the ground
before it can do so. If we were to let the drop fall for a longer period of time we
would find that it reaches its terminal speed (or very close to it). To verify this fact
we can evaluate the rain drop’s velocity at t D 100 s.

(%i) v(100); (%o) �128:56

The speed of the rain drop after 100 s of fall is very nearly equal to the drop’s
terminal speed.

2.3.3 Projectile Motion with Linear Resistance

We now consider a projectile near Earth’s surface and subject to linear air resistance.
The equations of motion for projectile are:

38 2 Newtonian Mechanics

Px D vx;

Py D vy;

Pvx D �bvx;

Pvy D �mg � bvy: (2.18)

We apply desolve to this system of four ODEs, with atvalue used to specify
the initial conditions for an object launched from the origin with speed v0 at a launch
angle � .

(%i) eq1:vx(t)=’diff(x(t),t)$
eq2:vy(t)=’diff(y(t),t)$
eq3:m*’diff(vx(t),t)=-b*vx(t)$
eq4:m*’diff(vy(t),t)=-m*g-b*vy(t)$
atvalue(x(t),t=0,0)$
atvalue(vx(t),t=0,v0*cos(%theta))$
atvalue(y(t),t=0,0)$
atvalue(vy(t),t=0,v0*sin(%theta))$ sol2:
desolve([eq1,eq2,eq3,eq4],[x(t),vx(t),y(t),vy(t)]);

(%o) x .t/ D cos.�/ m v0
b � cos.�/ m e�

b t
m v0

b vx .t/ D cos .�/ e�

b t
m v0

y .t/ D � e�

b t
m .sin.�/ b m2 v0Cg m3/

b2 m C sin.�/ b m v0Cg m2

b2 � g m t
b

vy .t/ D e�

b t
m .sin.�/ b m v0Cg m2/

b m � g m
b

We can copy and paste these solutions into new functions so that they can be
manipulated within Maxima.

(%i) xs(t):=(m*cos(%theta)*v0)/
b-(m*%eˆ(-(b*t)/m)*cos(%theta)*v0)/b$
vxs(t):=%eˆ(-(b*t)/m)*cos(%theta)*v0$
ys(t):=-(%eˆ(-(b*t)/m)*(b*mˆ2*sin(
%theta)*v0+g*mˆ3))/ (bˆ2*m)+(b*m*sin(%theta)*
v0+g*mˆ2)/bˆ2-(g*m*t)/b$

vys(t):=(%eˆ(-(b*t)/m)*(b*m*sin(%theta)*
v0+g*mˆ2))/ (b*m)-(g*m)/b$

Consider the specific case of the motion of the rain drop that we analyzed in the
previous example. This time, however, imagine the water drop is fired from a squirt
gun at a 45ı angle. The strongest water guns can fire water at speeds upward of 15
m/s, so we take 15 m/s as our initial velocity. To begin, we plot y versus t in order
to see when the water drop lands.

(%i) D:2e-3$ m:4.2e-6$ beta:1.6e-4$
b:beta*D$ g:9.8$ v0:15$ deg:%pi/180.0$ %theta:45*deg$
wxdraw2d(xlabel = "t (s)", ylabel = "y (m)",
xaxis = true, explicit(ys(t),t,0,3))$

Figure 2.7 shows that the plot of ys(t) crosses the horizontal axis between
t D 2 and t D 2:5 s. We can use find_root to more precisely estimate the
landing time.

(%i) tend:find_root(ys(t)=0,t,2,2.5); (%o) 2:1082

2.3 Velocity-Dependent Forces: Air Resistance 39

-12

-10

-8

-6

-4

-2

 0

 2

 4

 0 0.5 1 1.5 2 2.5 3

y
(m

)

t (s)

Fig. 2.7 Height as a function of time for a water drop fired from a squirt gun

So this water drop hits the ground at approximately t D 2:11 s. With this
information, we can plot the trajectory (y versus x) over its entire flight. We also
show the trajectory of the water drop without air resistance for comparison. The
commands are essentially the same as above, so they are not repeated.

Figure 2.8 shows the effect that air resistance has on the drop’s trajectory. Instead
of a symmetric parabola, the drop moves along an asymmetric arc and the range of
the projectile is reduced. We can find the range for our water drop by evaluating x.t/
at the landing time.

(%i) float(xs(tend)); (%o) 20:657

This drop lands 20.7 m from where it was launched. Without air resistance the
range would be almost 23 m, so air resistance reduces the range by just over 2 m.

2.3.4 Falling with Quadratic Resistance

Now we examine motion with quadratic air resistance. If an object is falling
vertically in a medium with quadratic resistance, the equations of motion are

m Pv D �mg C cv2;

Py D v: (2.19)

40 2 Newtonian Mechanics

 0

 1

 2

 3

 4

 5

 0 5 10 15 20

y(
m

)

x (m)

Linear Resistance
No Resistance

Fig. 2.8 Water drop trajectory with and without air resistance

Note that the resistance term in the first equation is positive because the object is
falling (moving in the negative y-direction) and thus the drag force points upward (in
the positive y-direction). The first ODE above is nonlinear because of the v2 term.
Since desolve only solves linear ODEs we cannot use desolve to solve this
problem. However, Maxima has other tools for solving ODEs. For this problem we
will use ode2. The ode2 command takes three arguments: the ODE to be solved
(which must be first or second order), the dependent variable, and the independent
variable, respectively. The code below solves our first ODE using ode2.

(%i) kill(c,g,m,v)$ assume(c>0,g>0,m>0)$
sol:ode2(m*’diff(v,t)=-m*g+c*vˆ2,v,t);

(%o)

p

m log

�
�

p

c
p

g
p

m�c v
c vC

p

c
p

g
p

m

�

2
p

c
p

g D t C %c

There are a few things to note about this example. First, the syntax for writing
the ODE differs from that used for desolve. Specifically, v.t/ is just written as v

and the diff command is preceded by an apostrophe to suppress evaluation of the
derivative (because otherwise dv=dt would evaluate to zero since Maxima will treat
v as a constant with respect to t). Note also that we use the assume command to
indicate that all of the constants are positive. If this command is left out then Maxima
will inquire about certain quantities being positive or negative before determining
the solution. Finally, the solution includes an undetermined constant denoted by
\%c.

We can use another command, ic1, to specify the initial conditions for our
solution.

2.3 Velocity-Dependent Forces: Air Resistance 41

(%i) ic1(sol,t=0,v=0);

(%o)

p

m log

�
�

p

c
p

g
p

m�c v
c vC

p

c
p

g
p

m

�

2
p

c
p

g D 2
p

c
p

g tClog.
�1/

p

m

2
p

c
p

g

The equation above is not yet solved for v as a function of t. We can copy and
paste the equation into solve and let Maxima do the algebra.

(%i) solve((m*log(-(sqrt(c*g*m)-c*v)/
(c*v+sqrt(c*g*m))))/(2*sqrt(c*g*m))=
(2*sqrt(c*g*m)*t+log(-1)*m)/(2*sqrt(c*g*m)),v);

(%o) ŒŒv D �
p

g
p

m

0
@e

2
p

c
p

g t
p

m
�1

1
A

p

c

0
@e

2
p

c
p

g t
p

m
C1

1
A

�

Recall that

ex � e�x

ex C e�x
D tanh.x/; (2.20)

and we can see from the above result that our velocity function can be written as

v.t/ D �
r

gm

c
tanh

�r
cg

m
t

�
: (2.21)

We define this v.t/ function in Maxima and then use the integrate command
to find y.t/. We must be careful to add the appropriate constant to the result of the
integral in order to satisfy our initial conditions.

(%i) v(t):=-sqrt(g*m/c)*tanh(sqrt(c*g/m)*t)$

integrate(v(t),t); (%o) � m log

�
cosh

�
p

c
p

g t
p

m

��

c

This result evaluates to zero when t D 0, so if we want y.0/ D h, we must add
h to the above expression to get the correct y.t/. We can then define a new function
using this result.

(%i) y(t):=-(m*log(cosh((sqrt(c)*sqrt(g)*t)/
sqrt(m))))/c+h;

(%o) y .t/ WD �m log

�
cosh

�
p

c
p

g t
p

m

��

c C h

We now use our results to examine the motion of the falling raindrop we
considered above, but this time with quadratic resistance. Recall that for quadratic
resistance c D �D2, where � D 0:25 N s2/m4. We can define our parameters and
plot y.t/ to find the time when the drop hits the ground. Figure 2.9 shows the plot.

(%i) D:2e-3$ m:4.2e-6$ gamma:0.25$ c:gamma*Dˆ2$
g:9.8$ h:2000$
wxdraw2d(xaxis=true, xlabel="t(s)", ylabel= "y(m)",
explicit(y(t),t,0,400))$

42 2 Newtonian Mechanics

-500

 0

 500

 1000

 1500

 2000

 0 50 100 150 200 250 300 350 400

y(
m

)

t(s)

Fig. 2.9 Height of a raindrop (falling with quadratic resistance) as a function of time

Note the linear nature of this graph, suggesting that the drop is falling at a
constant velocity. The drop appears to hit the ground between t D 300 and
t D 350 s. We can more precisely determine the landing time using find_root.

(%i) tend:find_root(y(t),t,300,350); (%o) 312:19

So the drop hits at t D 312:2 s. This is a much longer time than we found with
linear resistance. This already indicates that the quadratic resistance has a greater
effect on the drop’s motion than did linear resistance, which suggests that quadratic
resistance is the better model to use in this case. Now we can plot the velocity of the
raindrop during its fall, using the expression for v.t/ from above. However, rather
than plotting the velocity until the drop hits the ground we will plot the velocity of
the drop during the first 10 s of its fall.

(%i) wxdraw2d(xlabel="t(s)",ylabel="v(m/s)",
explicit(v(t),t,0,10))$

Figure 2.10 shows that the raindrop speeds up as it begins to fall, but after only
2 s its speed levels out around 6 m/s. This suggests that the drop has rapidly reached
its terminal speed and that the drop will fall with a constant speed from that point
onward. This is consistent with what we saw earlier in the graph of y versus t. Now
let’s calculate the speed at impact.

(%i) v(tend); (%o) �6:4156

The drop has a speed of just under 6.42 m/s when it hits the ground. Is that speed
the drop’s terminal speed? To find the terminal speed we set the magnitude of the air

2.3 Velocity-Dependent Forces: Air Resistance 43

-6

-5

-4

-3

-2

-1

 0

 0 2 4 6 8 10

v(
m

/s
)

t(s)

Fig. 2.10 Velocity of the falling raindrop (with quadratic resistance) as a function of time

resistance force equal to the drop’s weight: mg D cv2, which gives vt D p
mg=c.

We evaluate this expression and compare it to the velocity on impact.

(%i) sqrt(m*g/c); (%o) 6:4156

We see that the raindrop was indeed moving at its terminal speed of 6.42 m/s
when it hit the ground. Note that the terminal speed for our water drop with quadratic
resistance is much smaller than the terminal speed with linear resistance (128.6 m/s).
Again, this suggests that the effects of quadratic resistance are much greater in this
case than the effects of linear resistance. Using a quadratic model for air resistance
gives more accurate results for the fall of our raindrop.

2.3.5 Projectile Motion with Quadratic Resistance

Now we examine projectile motion subject to quadratic resistance. This case is much
more difficult, because the equations of motion are not separable, meaning they do
not separate into equations that involve only x quantities and other equations that
involve only y quantities. The reason for this is that the force of the air resistance is
given by:

EFar D �cv2 Ov D �cvEv D �c
q

v2
x C v2

y Ev: (2.22)

The x-component of this force involves both the x and y components of the object’s
velocity, etc. This is what prevents us from separating the equations.

44 2 Newtonian Mechanics

The equations of motion are:

Px D vx;

Py D vy;

Pvx D �cvx

m

q
v2

x C v2
y ;

Pvy D �g � cvy

m

q
v2

x C v2
y : (2.23)

We cannot derive an analytical solution for this set of non-separable equations.
We can, however, examine the system’s behavior by using numerical methods. The
rk command uses a fourth order Runge–Kutta method for solving the system of
ODEs. For more information about ODE algorithms and the Runge–Kutta method
see Sects. 5.4 and A.3. To use rk we must first write the system of ODEs in the
form

dy1

dx
D f .x; y1; y2; : : :/;

dy2

dx
D g.x; y1; y2; : : :/;

(2.24)

and so on. Fortunately, the system of ODEs in Eq. 2.23 is already in this form.
The basic rk command has four arguments, the first three of which are: a list

of expressions for calculating the derivatives, a list of the functions for which we
want to solve, and a list of initial values for each function. The final argument
is a list that includes the integration variable, the initial and final values of the
integration variable, and the step size. The rk command uses a fixed step size,2

and it is important to keep this step size small so as to prevent significant error in
the solution. The best way to ensure that you are using a sufficiently small step size
is to run the calculation with smaller and smaller step sizes until you don’t see any
change in the solution. The output from rk is a list in which each element contains
a value for the independent variable as well as the corresponding values for the
functions for which we solved.

In the code below we apply rk to our example of a water drop fired from a water
gun, but this time with quadratic resistance. Recall that the launch angle is 45ı and
the initial speed is 15 m/s. The code below generates a numerical solution to the
ODEs in Eq. 2.23 using the appropriate parameters and initial conditions. We will
try a step size of 0.1 s and find the solution from t D 0 to 3 s.

(%i) v0:15$ deg:%pi/180.0$ theta:45.0*deg$
D:2e-3$ m:4.2e-6$ gamma:0.25$ c:gamma*Dˆ2$ g:9.8$
vx0:float(v0*cos(theta))$

vy0:float(v0*sin(theta))$

2Some of the more sophisticated numerical ODE tools in Maxima, such as rkf45, use a variable
step size. See Sect. A.3.

2.3 Velocity-Dependent Forces: Air Resistance 45

data:rk([vx,vy,-c*sqrt(vxˆ2+vyˆ2)*vx/m,-g-c*
sqrt(vxˆ2+vyˆ2)*vy/m], [x,y,vx,vy],
[0,0,vx0,vy0],[t,0,3,0.1])$

The list of output from rk has been stored in an object named data. This object
is, in fact, a list that consists of embedded lists. To get an idea of what the output
looks like, look at one of the elements (the fifth) of this list.

(%i) data[5]; (%o) Œ0:4; 2:693; 2:0795; 4:6921; 1:8126�

As noted, this element is itself a list. The first element of this list is the value of
the independent variable, t D 0:4 s. Recall that our step size is 0.1 s, so it makes
sense that the fifth time in our list would be 0.4 s (the first time is 0, the second is
0.1 s, and so on). The next four values in this list are the values for x, y, vx, and vy,
respectively, at t D 0:4 s. The data list contains one such list for each discrete time,
starting at t D 0 and moving in steps of 0.1 s to t D 3 s. Therefore, data should
have a total of 31 elements, as we can verify using Maxima’s length command.

(%i) length(data); (%o) 31

We can now manipulate the data list to display our solution in various ways.
For example, we can construct a list of ordered pairs .t; y/ in order to make a plot of
y versus t. To do this we can use makelist. The arguments of makelist are: an
expression to calculate an element of the list, an index variable, the starting value of
the index, and the ending value of the index.

We can generate our list of ordered pairs of t and y with makelist by selecting
appropriate elements of data and organizing them into ordered pairs, with the
index running from 1 to the number of elements in data. Then we can plot this
list of points. Figure 2.11 shows the resulting plot.

(%i) yvt:makelist([data[i][1],data[i][3]],
i,1,length(data))$ wxdraw2d(xlabel="t(s)",
ylabel="y(m)", xaxis=true, point_size=0,
points_joined=true,points(yvt))$

The plot indicates that the water drop hits the ground somewhere between t D 1

and 1.5 s. We would like to use find_root to find the precise time of impact,
but to use find_root we must have a function, not a list of data points. We can
obtain a function for this purpose by generating an interpolating function for our
data points. One command for generating an interpolating function is cspline,
which takes as its argument a list of ordered pairs and outputs an interpolating
function. To use cspline we must first load the interpol package.

The code below shows how to load this package, use cspline to generate
the interpolating function for our y versus t data, and then load the result into a
new function ys.t/. Note: the output of cspline is in terms of “characteristic
functions” which are not easy to interpret, so we do not display the output here.
It is easier to load the result into a named function for later use. See Sect. A.4 for
more information about cspline and other interpolation commands.

(%i) load(interpol)$ cspline(yvt)$ ys(x):=”%$

46 2 Newtonian Mechanics

-10

-8

-6

-4

-2

 0

 2

 0 0.5 1 1.5 2 2.5 3

y
(m

)

t (s)

Fig. 2.11 The height of a water drop projectile (with quadratic resistance) as a function of time

-10

-8

-6

-4

-2

 0

 2

 0 0.5 1 1.5 2 2.5 3

y
(m

)

t (s)

Fig. 2.12 Interpolating function for the height of a water drop projectile as a function of time

Now that we have our interpolating function, we can plot the function to compare
it with our previous y versus t plot. Figure 2.12 shows the plot.

(%i) wxdraw2d(xlabel="t (s)",ylabel="y (m)",
xaxis=true,explicit(ys(t),t,0,3))$

2.3 Velocity-Dependent Forces: Air Resistance 47

The plot looks identical to our previous one, as it should. Now we can use our
interpolating function to find the time of impact.

(%i) tend:find_root(ys(t)=0,t,1,2); (%o) 1:3291

Our numerical solution indicates that the water drop hits the ground at t D 1:3291

s. It is instructive to redo the above analysis, but this time with a step size of 0.01
s. Try it! The new time of impact is t D 1:3294 s. Comparing these two values for
the impact time shows us that our results for a step size of 0.1 s were very accurate,
although the accuracy improves when the step size is reduced. Further reduction
in step size will generate even more accurate results, but if we are satisfied with
knowing the time of impact to the nearest millisecond then a step size of 0.1 s is
sufficient.

To plot the trajectory, we need an interpolating function for x.t/ as well as y.t/.
We proceed as before. We generate the list of x versus t points from the rk-generated
list, data. Then we apply cspline to create the associated interpolating function
and load the result into a new function xs.t/. Then we can create a parametric plot
of y versus x, for both quadratic resistance and no air resistance. The resulting plot
is shown in Fig. 2.13.

(%i) xvt:makelist([data[i][1],data[i][2]],i,1,
length(data))$ cspline(xvt)$ xs(x):=”%$

wxdraw2d(xlabel="x (m)", ylabel="y (m)",
user_preamble="set key center",key="Quadratic
Resistance", parametric(xs(t),ys(t),t,0,tend),
line_width=2, key="No Resistance",
parametric(v0*cos(theta)*t,v0*sin(theta)*
t-0.5*g*tˆ2,t,0,2*v0*sin(theta)/g))$

 0

 1

 2

 3

 4

 5

 0 5 10 15 20

y
(m

)

x (m)

Quadratic Resistance
No Resistance

Fig. 2.13 Trajectory of the water drop with and without resistance

48 2 Newtonian Mechanics

Quadratic resistance has a much greater effect on the drop than linear resistance
did. While linear resistance reduced the range of the drop by a few meters, here we
see that the range is reduced from about 23 m with no resistance to just over 5 m
with quadratic resistance. We can determine the projectile’s range with quadratic air
resistance by evaluating the interpolating function xs.t/ at the landing time.

(%i) xs(tend); (%o) 5:5455

The water drop travels only 5.5 m before landing.

2.4 Charged Particles in an Electromagnetic Field

Another scenario we can explore is that of a charged particle moving through a static
electromagnetic field. First we consider the case of the static electric field, with no
magnetic field present. In this case we are free to choose our z-axis to align with the
direction of the electric field, so EE D EOz. Since the force on a charged particle in
an electric field is given by EFE D qEE, where q is the particle’s electric charge, the
particle will accelerate along the z-axis. Newton’s Second Law gives us

Rz D qE

m
; (2.25)

where m is the mass of the particle.
This differential equation is easy to solve by hand, but we can let Maxima do it

for us.

(%i) atvalue(z(t),t=0,z0)$
atvalue(’diff(z(t),t),t=0,vz0)$
soln:desolve(diff(z(t),t,2)=(q/m)*E,z(t));

(%o) z .t/ D q t2 E
2 m C z0 C t vz0

The solution for z.t/ is quadratic in t with the linear term proportional to the
initial z-component of velocity and the quadratic term proportional to the particle’s
charge and the strength of the electric field. The x- and y-components of the net
force are both zero, so the charged particle will move with constant velocity along
these axes.

Things get more interesting if we add in a magnetic field. This time we will
assume that the magnetic field points in the z-direction (so EB D BOz and the electric
field can point in any direction (so EE D Ex Ox C Ey Oy C EzOz). The magnetic force on
the charged particle is

EFB D qEv � EB; (2.26)

where Ev is the particle’s velocity. We can use Maxima to evaluate the cross product.
First we must load the vect package, and then use ~ to indicate a cross product.

2.4 Charged Particles in an Electromagnetic Field 49

(%i) load("vect")$ cross:[vx,vy,vz] ˜ [0,0,B];
(%o) �Œ0; 0; B�QŒvx; vy; vz�

Note that Maxima does not fully evaluate the cross product. To get Maxima to
evaluate the cross product we must use express.

(%i) express(cross); (%o) Œvy B; �vx B; 0�

Including both electric and magnetic forces in Newton’s Second Law we find

Rx D .q=m/.BPy C Ex/;

Ry D .q=m/.�BPx C Ey/;

Rz D .q=m/ C Ez: (2.27)

We can solve this system of ODEs using desolve, after specifying the initial
position (at the origin) and initial velocity components.

(%i) eq1:diff(x(t),t,2)=(q/m)*(B*diff(y(t),t)+Ex)$
eq2:diff(y(t),t,2)=(q/m)*(-B*diff(x(t),t)+Ey)$
eq3:diff(z(t),t,2)=(q/m)*Ez$
atvalue(x(t),t=0,0)$
atvalue(y(t),t=0,0)$
atvalue(z(t),t=0,0)$
atvalue(’diff(x(t),t),t=0,vx0)$
atvalue(’diff(y(t),t),t=0,vy0)$
atvalue(’diff(z(t),t),t=0,vz0)$

soln:desolve([eq1,eq2,eq3],[x(t),y(t),z(t)]);
(%o)

x .t/ D .m vx0 B�Ey m/ sin
�

q t B
m

�
C

.
�m vy0 B�Ex m/ cos

�
q t B

m

�
C

.m vy0CEy q t/ BCEx m

q B2

y .t/ D .m vy0 BCEx m/ sin
�

q t B
m

�
C

.m vx0 B�Ey m/ cos
�

q t B
m

�
C

.
�m vx0�Ex q t/ BCEy m

q B2

z .t/ D t vz0 C Ez q t2

2 m

Maxima asks us whether the quantity Bmq is zero or nonzero. The result shown
above is only valid for nonzero magnetic field. We can rewrite this result in much
simpler form by defining a few constants.

! D Bq

m
;

˛ D m.Bvx0 � Ey/

B2q
;

ˇ D m.Bvy0 C Ex/

B2q
:

(2.28)

Then

x.t/ D ˛ sin.!t/ C ˇ.1 � cos.!t// C .Ey=B/t;

y.t/ D ˇ sin.!t/ � ˛.1 � cos.!t// � .Ex=B/t;

z.t/ D vz0t C Ezqt2=.2m/:

(2.29)

50 2 Newtonian Mechanics

Fig. 2.14 Trajectory of a
particle moving in a static
magnetic field. Units are Bohr
radii, a0

-1
 0

 1
 2

 3

 0

 1

 2

 3

 4

 0

 40

 80

x

y

z

We examine this solution for the case where there is no electric field. Suppose that
an electron moves through a magnetic field. In atomic units the mass the electron
is 1, its charge is �1 and distances are measured in units of the Bohr radius a0 �
5:3 � 10�11 m. Velocity is measured in units of the speed of light times the fine
structure constant, or about 2:2 � 106 m/s. The atomic unit for magnetic field is
approximately 2:35 � 109 G. The code below defines the solution for this case (with
specific values for the magnetic field and initial velocity components) and generates
the 3D parametric plot of the motion shown in Fig. 2.14.

(%i) q:-1$ m:1$ B:1$ Ex:0$ Ey:0$ Ez:0$
vx0:2$ vy0:-1$ vz0:2$ omega:B*q/m$
alpha:m*(B*vx0-Ey)/(Bˆ2*q)$
beta:m*(B*vy0+Ex)/(Bˆ2*q)$
x(t):=alpha*sin(omega*t)+beta*(1-cos(omega*t))+
(Ey/B)*t$

y(t):=beta*sin(omega*t)-alpha*(1-cos(omega*t))-
(Ex/B)*t$

z(t):=vz0*t+Ez*q*tˆ2/(2*m)$
wxdraw3d(nticks=200,parametric(x(t),y(t),
z(t),t,0,50), xlabel="x",ylabel="y",zlabel="z",
view=[45,340], xtics=1,ytics=1,ztics=40)$

Note the use of the nticks option within wxdraw3d. This option sets the
number of sampling points used to generate the plot. Higher values lead to a
smoother plot. The motion of the charged particle is along a helical path, with the
axis of the helix aligned with the direction of the magnetic field (the z-direction, in
this case). But what, we might wonder, determines the radius of the helix?

To answer that question we can consider the case of a particle moving in a
static magnetic field, with no electric field. If the particle’s initial velocity is in
the x–y plane, then the magnetic force on the particle will also be in the x–y plane
and thus there will be no motion in the z-direction. We can show that the motion
of the particle will be in a circle within the x–y plane. We can simplify Eq. 2.29 for
this case by setting the electric field components to zero. We can then use Maxima

2.4 Charged Particles in an Electromagnetic Field 51

to show that x.t/ and y.t/ satisfy the equation for a circle of radius R centered at
.ˇ; �˛/:

.x.t/ � ˇ/2 C .y.t/ � ˛/2 D R2: (2.30)

The code below defines x.t/ and y.t/ according to Eq. 2.29 (with no electric field),
evaluates the left side of Eq. 2.30, and then simplifies the result using factor and
trigreduce.

(%i) kill(functions, values)$
omega:B*q/m$ alpha:m*vx0/(B*q)$
beta:m*vy0/(B*q)$
x(t):=alpha*sin(omega*t)+beta*(1-cos(omega*t))$
y(t):=beta*sin(omega*t)-alpha*(1-cos(omega*t))$
lhs:(x(t)-beta)ˆ2+(y(t)+alpha)ˆ2;

(%o)

m vy0 sin

�
q t B

m

�

q B � m vx0
�

1�cos
�

q t B
m

��

q B C m vx0
q B

!2

C

m vx0 sin

�
q t B

m

�

q B C m vy0
�

1�cos
�

q t B
m

��

q B � m vy0
q B

!2

(%i) trigreduce(factor(lhs)); (%o) m2 vy02

q2 B2 C m2 vx02

q2 B2

The result is a constant, showing that Eq. 2.30 is satisfied if

R D mv0=.Bq/; (2.31)

where v0 D
q

v2
x0 C v2

y0 is the initial speed of the particle. So the radius is

determined by the speed of the particle, the strength of the magnetic field, and the
charge-to-mass ratio of the particle. The code below generates a plot of the path of
a particle with q D 2, m D 5, B D 1, v0 D 5 in atomic units. The plot is shown in
Fig. 2.15. (Note the use of proportional_axes=xy to force the plot to have a
square aspect ratio.) It is easy to see that the particle follows a circular path with a
radius of R D 12:5, centered on .�7:5; �10/ in Bohr radii.

(%i) q:2$ m:5$ B:1$ vx0:4$ vy0:-3$
wxdraw2d(nticks=50,proportional_axes=xy,
parametric(x(t),y(t),t,0,20),
xlabel="x",ylabel="y")$

If both magnetic and electric fields are present, we can arrange a situation where
the magnetic and electric forces exactly cancel each other. For this situation to occur
we must have

EFB D �EFE ! qEv � EB D �qEE ! Ev � EB D �EE: (2.32)

The electric field must be perpendicular to both the magnetic field and the
particle’s velocity. For example, suppose the magnetic field is in the Oz direction,
while the electric field is in the Ox direction. The magnetic and electric forces will

52 2 Newtonian Mechanics

Fig. 2.15 Circular trajectory
of a charged particle in a
static magnetic field. Units
are Bohr radii, a0

-20

-15

-10

-5

 0

-20 -15 -10 -5 0 5

y

x

-120

-100

-80

-60

-40

-20

 0

-0.01 -0.005 0 0.005 0.01

y

x

Fig. 2.16 Trajectory illustrating the cancelation of electric and magnetic forces. Units are Bohr
radii, a0

cancel if the particle’s initial velocity is in the y-z plane with vy0 D �E=B (the value
of vz0 does not affect the cancellation of forces). This behavior is illustrated below
for the case q D 2, m D 4, B D 2, E D 5, vy0 D �2:5 and vz0 D 0 in atomic units.
The plot in Fig. 2.16 shows the trajectory of this particle, which is simply a straight
line.

2.4 Charged Particles in an Electromagnetic Field 53

(%i) q:2$ m:4$ B:2$ Ex:5$ Ey:0$ Ez:0$ vx0:0$
vy0:-2.5$ vz0:0$ omega:B*q/m$
alpha:m*(B*vx0-Ey)/(Bˆ2*q)$
beta:m*(B*vy0+Ex)/(Bˆ2*q)$
x(t):=alpha*sin(omega*t)+beta*(1-cos(omega*t))+
(Ey/B)*t$

y(t):=beta*sin(omega* t)-alpha*(1-cos(omega*t))-
(Ex/B)*t$

wxdraw2d(parametric(x(t),y(t),t,0,50),
xlabel="x",ylabel="y")$

Finally, we consider a more general case of motion in combined electric and
magnetic fields. The path shown in Fig. 2.17, which is generated by the code below,
illustrates a case where the electric and magnetic forces do not cancel. The path is
helical, but with the helix curving downward (in the �Oz direction) and spreading
out.

(%i) q:2$ m:5$ B:4$ Ex:2$ Ey:-1$ Ez:-1$
vx0:1$ vy0:-1$ vz0:2$
omega:B*q/m$ alpha:m*(B*vx0-Ey)/(Bˆ2*q)$
beta:m*(B*vy0+Ex)/(Bˆ2*q)$
x(t):=alpha*sin(omega*t)+
beta*(1-cos(omega*t))+(Ey/B)*t$

y(t):=beta*sin(omega*t)-alpha*(1-cos(omega*t))-
(Ex/B)*t$

z(t):=vz0*t+Ez*q*tˆ2/(2*m)$
wxdraw3d(view=[20,160],nticks=100,
parametric(x(t),y(t),z(t),t,0,20),xlabel="x",
ylabel="y",zlabel="z",xtics=1,ytics=2,ztics=20);

Fig. 2.17 Trajectory of a
charged particle in static
electric and magnetic fields.
Units are Bohr radii, a0

-5
-4

-3
-2

-1
 0

-10

-8

-6

-4

-2

 0

-40
-20

 0

x

y

z

54 2 Newtonian Mechanics

2.5 Exercises

1. Consider the arrangement shown in Fig. 2.18, which consists of a mass m
hanging from a (massless) wire. The wire is attached to the end of a uniform,
rigid rod of mass M and length L. That end of the rod is also attached to another
wire with tension T that attaches at an angle � to a horizontal surface. The
opposite end of the rod attaches at an angle � to a hinge on the same horizontal
surface. Determine the tension T in the angled wire, as well as the x- and y-
components of the force that the hinge exerts on the rod, as functions of � and
�. Evaluate the solution in the limit � ! �=2. Also evaluate the solution in the
limit � ! �=2. Do your answers for the two limiting cases make sense?

2. Consider two blocks stacked on top of each other and sitting on an inclined
plane, as shown in Fig. 2.19. A force of magnitude F is applied to the top block
in a direction perpendicular to the surface of the plane and up the slope. There
is friction between the plane and block 1, resulting in a force of magnitude fk D
	kN1, where N1 is the normal force exerted on block 1 by the plane and 	k is
the coefficient of kinetic friction. There is also a force of static friction, with
magnitude fs, between the two blocks. If the blocks are pulled up the slope at
constant speed, determine the applied force F and the force of static friction fs,
as well as the normal forces on the two blocks. Recall that fs=N2 � 	s, where N2

is the normal force exerted on the top block by the bottom block and 	s is the
coefficient of static friction between the blocks. What is the minimum value of 	s

such that the blocks can be pulled up the slope without the top block slipping off?

Fig. 2.18 Diagram for
Exercise 1

Fig. 2.19 Diagram for
Exercise 2

2.5 Exercises 55

3. According to a later account by his student Viviani, Galileo performed a
demonstration in which he dropped two metal balls from the top of the Leaning
Tower of Pisa. This demonstration, performed sometime around 1590 according
to Viviani, was intended to show that bodies composed of the same material will
fall at the same rate regardless of their mass. This idea of Galileo’s was in direct
contradiction to Aristotle’s physics, which stated that falling bodies fall at a rate
that is proportional to their mass.
Suppose Galileo dropped two balls of solid lead, one with a diameter of 20 cm
and another with a diameter of 10 cm, from the top of the 56 m high tower. The
density of lead is 11,342 kg/m3. Determine the mass of each ball. Should you
assume that air resistance is linear in this case? Quadratic? Explain the reasons
for your choice. Use the solution for falling motion, with the appropriate model
of air resistance, to determine the time at which each of the two balls hits the
ground. Is there a difference? Which ball hits first? When the first ball hits, how
far is the other ball above the ground?

4. Later investigators carried out a new version of the falling balls experiment (see
previous question) using spheres of the same size, but composed of different
materials. Repeat parts the previous question for the case where both spheres
have a diameter of 10 cm, but one is made of lead and the other of oak wood
(density: 740 kg/m3). In which case (two lead spheres, or one lead and one wood
sphere) is the difference in time of fall, which is due solely to air resistance, more
noticeable?

5. Consider the case of an object falling from the height of the International Space
Station (see Exercises 1. and 2. from Chap. 1). Assume the object is a bowling
ball with a mass of 6.8 kg and a diameter of 21.6 cm. Determine how much time
passes between the moment the ball is dropped (from rest) and the moment it hits
the Earth, as well as the speed with which the ball hits the Earth. This time use
a model in which there is no air resistance at all above the troposphere (which
extends from Earth’s surface up to a height of 17 km). Within the troposphere
the ball will be subject to air resistance according to the models of air resistance
we have been considering. You may wish to break the problem into two parts
(one for the ball falling to the top of the troposphere, and then another for the
ball falling from the top of the troposphere to the surface of Earth). Be careful
with initial conditions for the second part. Think carefully about which model
of air resistance you want to use (linear, quadratic, or both together). Make sure
you justify your choice.

6. Recent research from the National Baseball Hall of Fame suggests that the
longest home run ever hit in a Major League Baseball game was belted by none
other than Babe Ruth, on 18 July 1921 at Briggs Stadium in Detroit, MI. The ball
apparently traveled 575 ft (175.3 m) in the air before landing. We will assume
that Ruth hit the ball at a height of 1 m above ground. The mass of a baseball is
0.145 kg and the diameter of the baseball is 7.4 cm. Can we determine how fast
the ball was going when it came off of Ruth’s bat?
The following questions will guide you through the process of determining how
hard Ruth hit that historic home run.

56 2 Newtonian Mechanics

(a) To begin with, assume that Ruth hit the ball at the perfect angle. This would
be the angle that maximizes the distance the ball travels before landing. If
there were no air resistance, then this would be 45ı above horizontal. But
with air resistance this result no longer holds, so you must first determine
this optimal angle. Use rk to solve the equations of motion for the baseball,
assuming it was launched with a speed of 100 mph (44.7 m/s). Find the
distance (d) the ball travels using several different launch angles (�). You
may want to focus on angles between 30ı and 50ı. Compile your results into
a list of ordered pairs (� , d). Use an interpolating function to find the launch
angle that maximizes the distance (see Sect. A.4).

(b) Once you have determined the optimal launch angle, use rk to solve the
equations of motion for various launch speeds. Experiment with the value
for the initial speed until you find a speed that makes the ball travel 175.3 m
before it lands. Report your result in both m/s and mph.

7. In Sect. 2.4 we found that a charged particle moving through perpendicular
electric and magnetic fields (EB D BOz and EE D EOx) will experience no net
electromagnetic force if that particle’s velocity is Ev D �.E=B/Oy. Create a plot
illustrating the paths of three particles moving through this electromagnetic field.
All three particles start at the origin and have initial velocities in the �Oy direction.
One has initial speed E=B, another has a somewhat greater initial speed, and the
third has a somewhat smaller initial speed. Explain how this setup could be used
as a “velocity selector” that separates out particles of a specific velocity, from a
beam of particles traveling at a variety of different velocities.

8. In Sect. 2.4 we found that a charged particle moving perpendicular to a static
magnetic field (EB D BOz) will move in a circle of radius R D mv0=.Bq/, where
v0 is the particle’s speed and m=q is the particle’s mass-to-charge ratio. Create a
plot illustrating the paths of three particles moving through this magnetic field.
All three particles start at the origin and have the same initial velocity in the Ox
direction (perhaps as a result of passing through the velocity selector discussed
in the previous problem), but each particle has a different mass-to-charge ratio.
Explain how this setup could be used with particle detectors to analyze the
chemical composition of a beam of singly ionized atoms.

Chapter 3
Momentum and Energy

Although Newton’s Laws of Motion form the fundamental basis of Newtonian
Mechanics, there are several other important concepts that are an integral part of
that subject. In this chapter we use Maxima to examine some of these concepts,
including linear and angular momentum, center of mass, work, and energy.

3.1 Collisions: Conservation of Momentum

The momentum Ep of an object is defined as the product of the object’s mass and its
velocity:

Ep D mEv: (3.1)

We can write Newton’s Second Law as

EFnet D dEp
dt

: (3.2)

If the mass of the object is constant then Eq. 3.2 reduces to the more familiar
EFnet D mEa. Equation 3.2 shows us that what forces do, ultimately, is change the
momentum of objects.

Newton’s Third Law tells us that forces are interactions between two objects.
Forces involve an exchange of momentum between the two bodies. Any momentum
gained by one body must be lost by the other.1 Therefore, the total momentum of
any isolated system of bodies (bodies that interact with each other, but not with
anything else) must remain constant.

1Here we are ignoring electric and magnetic fields, which can also exchange momentum with
bodies and other fields.

© Todd Keene Timberlake & J. Wilson Mixon, Jr. 2016
T.K. Timberlake, J.W. Mixon, Classical Mechanics with Maxima, Undergraduate
Lecture Notes in Physics, DOI 10.1007/978-1-4939-3207-8_3

57

58 3 Momentum and Energy

As a specific example, consider a head-on collision between two particles with
masses m1 and m2. The motion before and after the collision must take place
along the line of initial approach. We need not worry about the vector nature of
momentum and velocity except to pay attention to the signs of these quantities. The
total momentum of the system before the collision is m1v10 C m2v20, where v10 is
the initial velocity of the particle with mass m1 and v20 is the initial velocity of the
particle with mass m2. The total momentum after the collision is m1v1 Cm2v2 where
v1 and v2 are the final velocities of the two particles. Conservation of momentum
tells us that

m1v10 C m2v20 D m1v1 C m2v2: (3.3)

If we know the velocities before the collision, then Eq. 3.3 can help us to
determine the velocities after the collision. But Eq. 3.3 is not enough, because it is
only a single equation with two unknowns. We need more information. Conservation
of momentum alone is not sufficient to determine the outcome of this collision.
Further information comes from the nature of the collision that is being examined.

Let us focus on some special cases of this head-on collision. First, we consider a
totally inelastic collision in which the two particles stick together after the collision.
In that case, v1 D v2 D v, so Eq. 3.3 has only one unknown. We can solve the
equation using Maxima.

(%i) eq1:m1*v10+m2*v20 = m1*v + m2*v$
solnI : solve(eq1, v);

(%o) Œv D m2 v20Cm1 v10
m2Cm1 �

This result for v tells us the velocity of both particles after the collision. This
collision is inelastic, which means that some of the kinetic energy in the system is
lost in the collision.2 The kinetic energy of a particle is given by K D .1=2/mv2

where m is the particle’s mass and v is its speed. We can calculate how much kinetic
energy is lost in this collision by subtracting the final kinetic energy from the initial
kinetic energy. The code below shows how to calculate the kinetic energy lost and
then use factor to simplify the result.

(%i) KElost:(1/2)*(m1*v10ˆ2+m2*v20ˆ2-(m1+m2)*
((m2*v20+m1*v10)/(m2+m1))ˆ2);

(%o)
.
�m2�m1/ .m2 v20Cm1 v10/2

.m2Cm1/2
Cm2 v202

Cm1 v102

2

(%i) factor(KElost); (%o) m1 m2 .v20�v10/2

2 .m2Cm1/

We can rewrite this result as

Klost D 1

2
	v2

r0; (3.4)

2In fact, this kind of collision loses the maximum amount of kinetic energy consistent with
conservation of momentum.

3.1 Collisions: Conservation of Momentum 59

where 	 is the reduced mass of the system,

	 D m1m2

m1 C m2

; (3.5)

and vr0 D v10 � v20 is the relative velocity of the two particles before the collision.
The relative velocity of the two particles is zero after the collision, since they are
stuck together. The greater the initial relative speed, and thus the greater the change
in the relative speed during the collision, the more kinetic energy will be lost.

What if no kinetic energy is lost in the collision? This type of collision is called
elastic, and in this case the equality of the initial and final kinetic energies gives us
a second equation to go along with Eq. 3.3:

1

2
m1v2

10 C 1

2
m2v2

20 D 1

2
m1v2

1 C 1

2
m2v2

2: (3.6)

We now have a system of two equations with two unknowns, which we can solve.

(%i) eq1:m1*v10 + m2*v20 = m1*v1 + m2*v2$
eq2:(1/2)*m1*v10ˆ2+(1/2)*m2*v20ˆ2=(1/2)*m1*v1ˆ2+
(1/2)*m2*v2ˆ2$

soln : solve([eq1, eq2], [v1,v2]);
(%o) ŒŒv1 D v10; v2 D v20�;

Œv1 D 2 m2 v20C
.m1�m2/ v10

m2Cm1 ; v2 D .m2�m1/ v20C2 m1 v10
m2Cm1 ��

There are two different solutions. The first solution is the trivial case in which the
particles do not interact and thus their velocities do not change. We are interested
in the second solution, in which the particles actually collide and change their
velocities. Let’s examine the relative velocity of the particles after the collision.
We can load the right-hand sides of the nontrivial solutions into new variables,
calculate the difference between those two variables, and then simplify the result
using factor.

(%i) [v1,v2]:[rhs(soln[2][1]), rhs(soln[2][2])];
(%o) Œ

2 m2 v20C
.m1�m2/ v10

m2Cm1 ;
.m2�m1/ v20C2 m1 v10

m2Cm1 �

(%i) factor(v1-v2); (%o) v20 � v10

The relative velocity before the collision is v10 � v20, and the relative velocity
after the collision is v20 � v10. The magnitude of the relative velocity is unchanged
by this collision, only the sign changes. This is consistent with the result for the
totally inelastic collision, in which the amount of kinetic energy lost depends on
how much the relative speed changes. In an elastic collision the relative speed does
not change at all and no kinetic energy is lost.

We now examine elastic collisions further by addressing some limiting cases.
What happens if one of the masses is at rest before the collision? We can compute
the limit of our solutions as v20 ! 0.

(%i) [v1s,v2s]:limit([v1,v2],v20,0);
(%o) Œ� .m2�m1/ v10

m2Cm1 ; 2 m1 v10
m2Cm1 �

60 3 Momentum and Energy

This solution implies that the sign of v2 is always positive, so the particle that
was stationary before the collision will end up moving in the same direction that
the incident particle was moving before the collision. However, the sign v1 depends
on the relative masses of the two particles. If m1 > m2 then the incident particle
will continue moving in the same direction after the collision. If m1 < m2 then the
incident particle will change its direction of motion.

We can take a look at some further limiting cases. What if one particle is
stationary but it has a very large mass? We can examine this case by finding the
limit as the mass of the stationary particle becomes infinite, or by finding the limit
as the mass of the initially moving particle goes to zero.

(%i) [limit([v1s,v2s],m2,inf),limit([v1s,v2s],m1,0)];
(%o) ŒŒ�v10; 0�; Œ�v10; 0��

We see that both limits produce the same result. In this case the incident particle
bounces off of the massive stationary particle and ends up going back the way it
came at the same speed. What if the stationary particle has a very small mass? We
can examine the limit as m1 ! 1 or the limit as m2 ! 0 to find out what happens
in this case.

(%i) [limit([v1s,v2s],m1,inf),limit([v1s,v2s],m2,0)];
(%o) ŒŒv10; 2 v10�; Œv10; 2 v10��

Again, both limits give the same result. In this case the speed of the incident
particle is unchanged, while the initially stationary particle moves off in the same
direction at twice the speed of the incident particle. To examine the more general
case of a collision where one mass is initially stationary we can plot the final
velocities of the two particles (stated as fractions of the initial speed of the incident
particle) as a function of the mass ratio m1=m2.

The code to produce such a plot is shown below. Figure 3.1 shows the resulting
plot, which illustrates how the velocity of each particle after the collision (in units of
the incident particle’s initial speed) depends on the mass ratio for the two particles.

(%i) x_max:50$
[v1s(x):=(x-1)/(1+x), v2s(x):=2*x/(1+x)]$
wxdraw2d(xaxis = true,xlabel="m1/m2",
ylabel="velocity/v0", key="v1",
explicit(v1s(x), x, 0, x_max), line_width=3,
key = "v2", explicit(v2s(x), x, 0, x_max),
yrange=[-1,2.5],user_preamble="set key left")$

Figure 3.1 matches the results for m1=m2 ! 0 and m1=m2 ! 1 that we
found earlier. It also graphically illustrates the fact that the relative velocity does not
change, because the curves remain separated by one unit (i.e., by v0) for all mass
ratios. We can zoom in on the region of small mass ratios by changing the value of
xmax in the code above. Figure 3.2 shows the resulting plot for xmax equal to 5.
A close inspection of this plot will show that when m1 D m2 the incident particle
stops (v1 D 0) while the initially stationary particle moves forward at a velocity
equal to the incident particle’s velocity before the collision (v2 D v0).

3.1 Collisions: Conservation of Momentum 61

-1

-0.5

 0

 0.5

 1

 1.5

 2

 2.5

 0 10 20 30 40 50

ve
lo

ci
ty

/v
0

m1/m2

v1
v2

Fig. 3.1 Velocities of the particles after a head-on collision in which particle 2 was initially
stationary. The two curves show the velocity for each particle (relative to the initial speed of the
moving particle) as a function of the mass ration m1=m2

-1

-0.5

 0

 0.5

 1

 1.5

 2

 0 1 2 3 4 5

ve
lo

ci
ty

/v
0

m1/m2

v1
v2

Fig. 3.2 Detail of Fig. 3.1 over a smaller range of mass ratios

62 3 Momentum and Energy

3.2 Rockets

A rocket is a vehicle that burns fuel and expels the exhaust. The expelled exhaust
gains momentum in one direction, so in order to conserve the total momentum of the
rocket–exhaust system the rocket must gain momentum in the opposite direction.
We can work out the details of this process to better understand how rockets are
propelled. To simplify our analysis, we assume that the rocket is moving in one
dimension only.

Suppose that at time t the rocket (and its fuel) has mass m and velocity v, and
thus its momentum is p.t/ D mv. At some (infinitesimally) later time t C dt the
rocket will have a new mass m C dm, where dm < 0 because some of the fuel that
composed the rocket’s initial mass has now been expelled as exhaust, and a new
velocity v C dv. The rocket’s new momentum is

pr.t C dt/ D .m C dm/.v C dv/ � mv C v dm C m dv; (3.7)

where we have ignored the very small dm dv term. However, to compute the total
momentum of the system we must include the momentum of the expelled exhaust.
The mass of this exhaust will be �dm and the velocity will be v � vex, where vex is
the velocity at which the exhaust is expelled relative to the rocket. So the momentum
of the exhaust is

pe.t C dt/ D �v dm C vex dm: (3.8)

The total change in momentum of the system from time t to time t C dt is thus

dp D pr.t C dt/ C pe.t C dt/ � p.t/ D m dv C vex dm: (3.9)

If the net external force on the system is Fext then Newton’s Second Law tells us
that the change in momentum must be dp D Fextdt, and therefore

m dv C vex dm D Fext dt: (3.10)

We will refer to Eq. 3.10 as the rocket equation.
We first consider a rocket moving in deep space, not subject to any external

forces. In this case Eq. 3.10 simplifies to

m dv C vex dm D 0; (3.11)

and we can rearrange the equation in order to separate the variables:

dv D �vex dm

m
: (3.12)

3.2 Rockets 63

We can rewrite this equation as an integral equation,

vf � v0 D �
Z mf

m0

vex

m
dm: (3.13)

Now we use Maxima to evaluate this integral, keeping in mind that mf � m0 < 0

since the rocket burns fuel and thus loses mass as it moves.

(%i) assume(mf>0,m0>0,mf-m0>0)$
integrate (-vex/m,m,m0,mf);

(%o) � .log .mf/ � log .m0// vex

Properties of logarithms allow us to rewrite this result as

vf � v0 D vex ln.m0=mf /: (3.14)

Suppose our rocket is a Saturn V that is floating at rest in deep space with an initial
mass of 2:8 � 106 kg. The rocket’s S-IC engine expels exhaust at a speed of 2500
m/s. If the engine fires for 2 min and 40 s, burning 2:2 � 106 kg of fuel, how fast
will rocket be going at the end of the burn? We can compute the final mass, mf D
2:8 � 106 � 2:2 � 106 D 6 � 105 kg, and then substitute values into Eq. 3.14.

(%i) v1i:0$ v1ex:2500$ m0:2.8e6$ mf:6e5$
v1f:v1i+v1ex*log(m0/mf);

(%o) 3851:1

This rocket will be moving at a speed of over 3850 m/s by the end of the burn.
What if the rocket was on Earth and was being launched upward against gravity
(but with no air resistance)? In that case we have an external force, Fext D mg
(assuming that the rocket stays close enough to Earth to treat the gravitational field
as constant in magnitude). Inserting this external force into the rocket equation
(Eq. 3.10), dividing by dt and rearranging the terms gives us

dv

dt
D �g � vex

m

dm

dt
: (3.15)

If the rocket engine burns fuel at a constant rate k, then dm=dt D �k (which is
negative because the rocket is losing mass) and m D m0 � kt. Our equation then
becomes

dv

dt
D �g C vexk

m0 � kt
: (3.16)

We can integrate both sides of this equation. The left side obviously gives v.t/ � v0.
We can use Maxima to integrate the right side.

(%i) kill(values)$ integrate(-g+vex*k/(m0-k*t),t);
(%o) �log .m0 � k t/ vex � g t

64 3 Momentum and Energy

If we add the constant vex In m0 to this result to ensure that v.0/ D v0 we find

v.t/ D v0 � vex ln.
m0

m0 � kt
/ � gt D dy

dt
; (3.17)

where y represents the height of the rocket above ground. Integrating once again
yields y.t/, up to an additive constant.

(%i) v(t):=v0 + vex*log(m0/(m0 - k*t)) - g*t$
integrate(v(t),t)$ ys(t):=”%;

(%o) ys .t/ WD
�

t log
�

m0
m0�k t

�� k
�
� m0 log.k t�m0/

k2 � t
k

��
vex C t v0 � g t2

2

The additive constant is determined by the fact that we want y.0/ D y0, so y.t/ D
ys.t/ � ys.0/ C y0. We can construct the correct y.t/ function in Maxima.

(%i) y(t):=ys(t)-ys(0)+y0$ y(t);

(%o) y0 C
�

t log
�

m0
m0�k t

�� k
�
� m0 log.k t�m0/

k2 � t
k

��
vex�

m0 log.
�m0/ vex
k C t v0 � g t2

2

This result can be simplified using Maxima’s expand command.

(%i) expand(y(t));

(%o) y0 C t log
�

m0
m0�k t

�
vex C m0 log.k t�m0/ vex

k C t vex � m0 log.
�m0/ vex
k C

t v0 � g t2

2

Now we determine what would happen if our Saturn V rocket were launched
from Earth’s surface. First we need to determine the fuel burn rate, k D .m0 �mf /=t.
Using the values given above we can calculate k.

(%i) m0:2.8e6$ mf:6e5$ tf:160$ k:(m0-mf)/tf;
(%o) 13750:

So the S-IC engine burns fuel at a rate of 13,750 kg/s. Now we can compute the
velocity of the rocket at the end of the burn.

(%i) vex:2500$ g:9.8$ v0:0$ v(tf); (%o) 2283:1

In this case the rocket is traveling at a speed of 2283 m/s at the end of the burn, much
slower than when the rocket was in deep space. That makes sense because gravity
is pushing down on the rocket and slows its ascent. We can use the solution for y.t/
to calculate the height of the rocket above Earth’s surface at the end of the burn.

(%i) y(t):= vex*t-(vex/k)*(m0-k*t)*log(m0/(m0-k*t))+
v0*t-g*tˆ2/2$ vex:2500$ g:9.8$ v0:0$ m0:2.8e6$

mf:6e5$ tf:160$ k:(m0-mf)/tf$ yf:y(tf);
(%o) 106511:

In this case, the rocket will reach a height of more than 106 km before the fuel in
the S-IC engine is spent. Although this height is still small compared to the radius
of Earth (6371 km), it is greater than 1 % of that radius and we might worry that our
assumption of constant gravity will lead to errors. More importantly, a real rocket
must travel through Earth’s atmosphere and will be subject to air resistance. We get

3.2 Rockets 65

a better idea about the real motion of a Saturn V by using an external force that
incorporates universal gravitation and quadratic air resistance:

Fext D � GMm

.R C y/2
� cv2; (3.18)

where R is the radius of Earth, c D �D2, D is the diameter of the rocket, and � �
0:25 N s2/m4.3 Substituting this external force into our rocket equation (Eq. 3.10)
and solving for dv=dt we find

dv

dt
D � GM

.R C y/2
C kvex � cv2

m0 � kt
: (3.19)

Once we specify all of our parameters, we can solve Eq. 3.19 numerically using
rk with a time step of 0.1 s.

(%i) D:10.1$ gamma:0.25$ c:gamma*Dˆ2$ m0:2.8e6$
GM:3.99e14$ R:6.371e6$ vex:2500$ tf:160$
mf:6e5$ k:(m0-mf)/tf$
data1: rk([v,-GM/(R+y)ˆ2 + (k*vex-c*vˆ2)/
(m0-k*t)],[y,v], [0,0],[t,0,tf,0.25])$

To find out the rocket’s velocity and position at the end of the burn we only need
to look at the last element in the data list produced by rk.

(%i) length(data1);
data1[length(data1)];

(%o) 641 ŒŒ160:0; 72144:; 1003:6�

This shows us that the rocket reaches a height of over 72 km. But the Earth’s
troposphere only extends about 17 km above the surface. If we assume that the
rocket experiences no resistance after it leaves the troposphere then we need to
determine the rocket’s velocity at the top of the troposphere and then continue our
solution from that point without air resistance. To determine the time at which the
rocket reaches the top of the troposphere we first fit the y versus t data from rk
using cspline. We can then plot the resulting fit function to find the approximate
time at which y D 17;000 m. The code below generates this plot, which is shown in
Fig. 3.3.

(%i) yvt:makelist([data1[i][1],data1[i][2]],i,1,
length(data1))$

load(interpol)$ cspline(yvt)$ yc(x):=”%$
wxdraw2d(explicit(yc(t),t,0,tf),
xlabel="time (s)", ylabel="height (m)")$

3We are using the same value for � that we used earlier for a spherical projectile. This is a
reasonable choice if we assume that our rocket has a cone-shaped nose, since the drag coefficient
for a cone is very similar to that for a sphere.

66 3 Momentum and Energy

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 0 20 40 60 80 100 120 140 160

he
ig

ht
 (

m
)

time (s)

Fig. 3.3 Height of rocket as a function of time, assuming universal gravitation and quadratic air
resistance

The rocket passes 17 km somewhere between 60 and 100 s after launch. To get a
more precise value we can use find_root.

(%i) t1:find_root(yc(t)=17000,t,60,100);
(%o) 87:592

The rocket reaches the top of the troposphere about 87.6 s after launch. Next we
need to find the rocket’s velocity at this time, which we do by fitting the velocity
versus time data from rk and then evaluating the fit function at t D 87:6 s. We also
determine the rocket’s mass at this time.

(%i) vvt:makelist([data1[i][1],data1[i][3]],i,1,
length(data1))$
cspline(vvt)$ vc(x):=”%$ vc(t1);

(%o) 476:15

(%i) m0:2.8e6$ tf:160$ mf:6e5$ k:(m0-mf)/tf$
m1:m0-k*t1; (%o) 1595612:

The rocket’s speed is 476 m/s when it leaves the troposphere, and its mass is just
under 1.6 million kg. We can continue our solution from this point, but without air
resistance. Again we use rk, and the last element in the output from rk provides
the velocity and height of the rocket at the end of the burn.

(%i) y0:17000$ v0:476.1540117582936$ tf:160-t1$ data1:
rk([v,-GM/(R+y)ˆ2 + k*vex/(m1-k*t)],[y,v],
[y0,v0],[t,0,tf,0.1])$ data1[length(data1)];

(%o) Œ72:4; 100292:; 2219:9�

3.3 Center of Mass 67

The rocket is just over 100 km above the Earth and traveling at about 2200 m/s.
This is somewhat lower and slower than we found from our model with constant
gravity and no air resistance, but it is not dramatically different. Air resistance
does slow the rocket, but the effect is not very large and it is partially offset by
our improved model for gravity. Even this model is far from perfect. For example,
we have assumed a constant density of air throughout the troposphere when in fact
the density of air decreases with altitude.

3.3 Center of Mass

So far we have addressed the motion of particles, or objects that can be treated as
particles. To examine the motion of extended objects or systems of particles we must
define some new concepts. One of the most important concepts for understanding
the motion of an extended object or system of particles is the center of mass. The
motion of a system can be broken down into the motion of the center of mass, and
the motion of the system about the center of mass. The motion of the center of mass
is determined by the external forces on the system. It is not affected by internal
forces. It is for this reason that we can treat extended objects as though they were
point masses: we are really examining the motion of the object’s center of mass.

But what is the center of mass? How do we find it? Consider a system of N point
particles with mass m1; m2; : : : ; mN located at positions Er1; Er2; : : : ; ErN . The center of
mass of this system is

ER D 1

M

NX
˛D1

m˛Er˛; (3.20)

where M is the total mass of all of the particles.
Consider a system of three point particles with mass of 5, 3, and 1 kg located at

.3; �2; 7/, .�1; 4; 4/, and .6; 4; �5/ meters, respectively. We can find the location
of the center of mass for this system using Eq. 3.20.

(%i) m1:5$ r1:[3,-2,7]$ m2:3$ r2:[-1,4,4]$ m3:1$
r3:[6,4,-5]$
R:(m1*r1+m2*r2+m3*r3)/(m1+m2+m3);

(%o) Œ2; 2
3 ; 14

3 �

The center of mass is at .2; 2=3; 14=3/ meters. We plot the location of the center
of mass, as well as the locations of the three particles. An interactive plot is best so
that you can view the 3D plot from various angles, but here we show one particular
view in Fig. 3.4.4

4In the workbook that accompanies this section, replace wxdraw with draw. The result will be
an interactive plot.

68 3 Momentum and Energy

Fig. 3.4 Three point masses
(filled circles) and their center
of mass (open circle)

 0
 2

 4
 6 -2

 0

 2

 4

-4

0

4

z (m)

Center
Points, Area

x (m)

y (m)

(%i) wxdraw3d(key="Center",point_type=circle,
points([R]), point_type=7, points_joined=true,
key="Points, Area", points([r1,r2,r3,r1]),
view=[70,30], xlabel="x (m)", ylabel="y (m)",
zlabel="z (m)", dimensions=[480,480], xtics=2,
ytics=2, ztics=4)$

The three point masses form a triangle. By viewing this plot from different angles
in the interactive view you should be able to see that the center of mass lies in the
plane of this triangle, and in the triangle’s interior. It is not in the center of the
triangle (however you define that center), but is instead shifted toward the locations
of the larger masses.

What about the center of mass for an extended object? Think of a solid object as
consisting of an infinite number of infinitesimally small point masses. In this case
the sum in Eq. 3.20 turns into an integral over the volume of the object:

ER D 1

M

Z

V

 Er dV; (3.21)

where dV is an infinitesimal volume element within the object, Er is the location of
that element, and
 is the density of the object (which may depend on location).
Although the term “volume” implies a three-dimensional object, this formula can
be easily extended to 2D objects by integrating over the object’s area and using a
surface density. Likewise, we can write a 1D version in which we integrate over the
object’s length and use a linear density.

As an example, consider a uniform density triangular lamina (flat surface) with
vertices at .0; 0/, .a; 0/, and .0; b/. Think of this triangle as the area between the
x-axis, the y-axis, and the line y D b � bx=a. First we need to find the mass of this
triangle. We can easily find this mass by multiplying the density
 by the triangle’s
area A D .1=2/ab. However, it is instructive to calculate the mass by integrating the
density over the area of the triangle.

3.3 Center of Mass 69

(%i) integrate(integrate(%rho,y,0,b-b*x/a),x,0,a);
(%o) � a b

2

The result is exactly what we expected. Now we can calculate the x-coordinate
and y-coordinate of the center of mass by evaluating the same integral except with
a factor of x or y added to the integrand, and then dividing by the total mass.

(%i) %rho:2*M/(a*b)$ integrate(
integrate(%rho*x,y,0,b-b*x/a),x,0,a)/M;

(%o) a
3

(%i) integrate(integrate(
%rho*y,y,0,b-b*x/a),x,0,a)/M;

(%o) b
3

The center of mass of the triangle lies at .a=3; b=3/. We can use Maxima to
display the triangle and its center of mass for a D 4 and b D 3, in order to illustrate
the reasonableness of our result. The resulting plot is shown in Fig. 3.5.

(%i) wxdraw2d(fill_color=gray, polygon([[0,0],[4,0],
[0,3]]), point_type=7,points([[4/3,1]]));

Now consider a three-dimensional solid. The solid is a uniform quarter sphere
of mass M constructed by building a sphere of radius R centered at the origin but
keeping only the portion with y � 0 and z � 0. We calculate the center of mass
coordinates using Eq. 3.21, but it will be most convenient to use spherical polar
coordinates. The transformation from polar to Cartesian coordinates is given by
x D r sin � cos �, y D r sin � sin �, and z D r cos � where � is the polar angle and
� is the azimuthal angle. The volume element is dV D r2 sin � dr d� d�.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0 0.5 1 1.5 2 2.5 3 3.5 4

y

x

Fig. 3.5 A uniform triangular lamina (shaded region) and its center of mass (filled circle)

70 3 Momentum and Energy

We want to integrate from the origin out to the surface of the sphere (0 < r < R),
but only in the region where z > 0 (so 0 � � � �=2) and y > 0 (so 0 � � � �).
We can integrate to find the mass of this quarter sphere:

M D
Z R

0

Z �=2

0

Z �

0

 r2 sin � d� d� dr: (3.22)

We can evaluate this triple integral in Maxima.

(%i) kill(%rho, R)$ integrate(integrate(
integrate(%rho*rˆ2*sin(theta),r,0,R),
theta,0,%pi/2),phi,0,%pi);

(%o) � � R3

3

The mass is M D
�R3=3, as expected since the volume of a quarter sphere is
�R3=3. So the density is
 D 3M=.�R3/. Now we can determine the coordinates
for the center of mass by computing the same integral, but with an additional factor
of x, y, or z (converted into spherical polar coordinates) in the integrand, and then
dividing by the mass.

(%i) %rho:3*M/(%pi*Rˆ3)$ X:integrate(integrate(
integrate(%rho*rˆ3*sin(theta)ˆ2*cos(phi),r,0,R),
theta,0,%pi/2),phi,0,%pi)/M$

Y:integrate(integrate(integrate(
%rho*rˆ3*sin(theta)ˆ2*sin(phi),r,0,R),
theta,0,%pi/2),phi,0,%pi)/M$

Z:integrate(integrate(integrate(
%rho*rˆ3*sin(theta)*cos(theta),r,0,R),
theta,0,%pi/2),phi,0,%pi)/M$ [X,Y,Z];

(%o) Œ0; 3 R
8 ; 3 R

8 �

The center of mass lies at .0; 3R=8; 3R=8/. This quarter sphere is symmetric
about the y-z plane, so its center of mass must lie in that plane. It is no surprise
that the x-coordinate of the center of mass is zero. The object is also symmetric
about a plane that makes a 45ı angle with both the y and z axes, so the center of
mass must lie in that plane. Therefore, the y and z coordinates must be the same.
More precisely, our result shows us that the center of mass lies at a distance of
3R

p
2=8 � 0:53R from the origin.

3.4 Torque and Angular Momentum

We have already seen that the total momentum of an isolated system (a system
not subject to any external forces) must remain constant. In a similar manner, the
total angular momentum of a system will remain constant if it is not subject to any
external torques. Angular momentum and torque can be viewed as the rotational
analogues of (linear) momentum and force. The angular momentum of a point

3.4 Torque and Angular Momentum 71

particle about the origin is defined as the cross product of the particle’s position
and momentum vectors:

È D Er � Ep: (3.23)

For a system of N particles, the total angular momentum of the system is

EL D
NX

˛D1

Er˛ � Ep˛ D
NX

˛D1

m˛Er˛ � Ev˛: (3.24)

The code below shows how to use Maxima to compute the angular momentum
of three point masses, as well as the total angular momentum of the system (with
values given in MKS units). Recall that to perform cross products you must first
load the vect package. The symbol for a cross product is a tilde, but to get Maxima
to display the result of the cross product you must use the express command.

(%i) load(vect)$ m1:5$ r1:[3,-2,7]$ v1:[2,0,3]$
m2:3$ r2:[-1,4,4]$ v2:[-3,4,1]$
m3:1$ r3:[6,4,-5]$ v3:[0,-1,-5]$
L1:m1*express(r1˜v1)$
L2:m2*express(r2˜v2)$ L3:m3*express(r3˜v3)$
Lnet:L1+L2+L3$ [L1,L2,L3,Lnet];

(%o) ŒŒ�30; 25; 20�; Œ�36; �33; 24�; Œ�25; 30; �6�; Œ�91; 22; 38��

If we take the time derivative of Eq. 3.23 we find

d È
dt

D dEr
dt

� Ep C Er � dEp
dt

: (3.25)

But dEr=dt D Ev which is parallel to Ep so Ev � Ep D 0. Also, Newton’s Second Law tells
us that dEp=dt D EF where EF is the net force on the particle. So

d È
dt

D E�; (3.26)

where E� D Er � EF is the torque on the particle about the origin.
For a system of particles we have

dEL
dt

D
NX

˛D1

E�˛ D
NX

˛D1

Er˛ � EF˛: (3.27)

Newton’s Third Law can be used to show that internal torques between particles
in the system cancel each other out, and thus we need only consider external torques
(torques caused by external forces) when computing the net torque on a system. For
example, we can compute the net gravitational torque about the origin on the system

72 3 Momentum and Energy

of particles we examined above. Each particle is subject to a gravitational force of
magnitude m˛Eg, where Eg D �gOz.

(%i) m1:5$ r1:[3,-2,7]$ m2:3$ r2:[-1,4,4]$ m3:1$
r3:[6,4,-5]$ grav:[0,0,g]$
t1:m1*express(r1˜grav)$
t2:m2*express(r2˜grav)$
t3:m3*express(r3˜grav)$
tnet:t1+t2+t3$ [t1,t2,t3,tnet];

(%o) ŒŒ�10 g; �15 g; 0�; Œ12 g; 3 g; 0�; Œ4 g; �6 g; 0�; Œ6 g; �18 g; 0��

We see that gravity produces a nonzero net torque and thus the angular
momentum of this system about the origin will change. But what if we choose a
different origin? For example, we could compute the torque about the center of
mass of the system. If the center of mass position is ER then the torque about the
center of mass will be E� D .Er � ER/ � EF. Using our previous formula for computing
the center of mass of a system of particles (Eq. 3.20) we can calculate the net torque
on our system.

(%i) R:(m1*r1+m2*r2+m3*r3)/(m1+m2+m3)$
t1c:m1*express((r1-R)˜grav)$
t2c:m2*express((r2-R)˜grav)$
t3c:m3*express((r3-R)˜grav)$
tnetc:t1c+t2c+t3c$ [R,t1c,t2c,t3c,tnetc];

(%o) ŒŒ2; 2
3 ; 14

3 �; Œ� 40 g
3 ; �5 g; 0�; Œ10 g; 9 g; 0�; Œ

10 g
3 ; �4 g; 0�; Œ0; 0; 0��

Our results indicate that the torque about the center of mass is zero. It is a special
property of the center of mass that the torque on an object (or system of particles)
about its center of mass by a uniform gravitational force is always zero. For this
reason, the center of mass is sometimes referred to as the “center of gravity.” To
balance an object (and thus keep its angular momentum constant) you must support
the object beneath its center of mass.

3.5 Products and Moments of Inertia

In this section we examine the angular momentum of an object or system of particles
that is rotating about a fixed axis. We start by determining the angular momentum
of a single particle rotating about the z-axis. The angular velocity of the rotation is
given by the vector E! D !Oz, where j!j is the angular speed of the rotation. The right-
hand rule determines the direction of rotation about that axis: point the thumb of
your right hand in the direction of E! and your fingers curl in the direction of rotation.
So as viewed from above the x–y plane the rotation will be counterclockwise if
! > 0, clockwise if ! < 0.

The velocity of the particle that results from its rotation about a fixed axis through
the origin is

Evr D E! � Er: (3.28)

3.5 Products and Moments of Inertia 73

We can use Maxima to determine the velocity of our particle rotating about the
z-axis.

(%i) load(vect)$
w:[0,0,omega]$ r:[x,y,z]$ vr:express(w˜r);

(%o) Œ�! y; ! x; 0�

We see that the particle’s velocity is directed along the x–y plane, as we should
expect for a rotation about the z-axis. Likewise, we see that the speed of the particle
is !.x2 C y2/ D r! as expected from the rules of circular motion. Now we can
compute the angular momentum of this particle, È

r D mEr � Evr:

(%i) Lr:m*express(r˜vr);
(%o) Œ�m ! x z; �m ! y z; m

�
! y2 C ! x2

�
�

Note that the components of this angular momentum vector have a common
factor of !. The remaining factors depend on the mass and position of the particle.
We can extend this result to find the components of the total angular momentum for
a system of N particles:

EL D !
�
Ixz Ox C Iyz Oy C IzzOz

�
; (3.29)

where

Ixz D �
NX

˛D1

m˛x˛z˛;

Iyz D �
NX

˛D1

m˛y˛z˛;

Izz D
NX

˛D1

m˛.x2
˛ C y2

˛/: (3.30)

Izz is known as the moment of inertia of the system about the z-axis, while Ixz and
Iyz are known as products of inertia.

To show that Eq. 3.29 works we compute the angular momentum of a system of
three particles (with the same positions as in the previous section) rotating about the
z-axis. First we compute the total angular momentum of the system using Eqs. 3.28
and 3.23.

(%i) v1r:express(w˜r1)$ L1r:m1*express(r1˜v1r)$
v2r:express(w˜r2)$ L2r:m2*express(r2˜v2r)$
v3r:express(w˜r3)$ L3r:m3*express(r3˜v3r)$
Lnetr:L1r + L2r + L3r;

(%o) Œ�63 !; 42 !; 168 !�

74 3 Momentum and Energy

Now we compute the total angular momentum of the rotating system of particles
using Eq. 3.29 to show that it gives the same result.

(%i) Ixz:-m1*r1[1]*r1[3]-m2*r2[1]*r2[3]-
m3*r3[1]*r3[3]$

Iyz:-m1*r1[2]*r1[3]-m2*r2[2]*r2[3]-m3*r3[2]*r3[3]$
Izz:m1*(r1[1]ˆ2+r1[2]ˆ2)+m2*(r2[1]ˆ2+r2[2]ˆ2)+

m3*(r3[1]ˆ2+r3[2]ˆ2)$
Lnetr:omega*[Ixz,Iyz,Izz];

(%o) Œ�63 !; 42 !; 168 !�

We can extend the definitions of the moment and products of inertia to cover
solid objects by converting sums into integrals.

Ixz D �
Z

V

 x z dV;

Iyz D �
Z

V

 y z dV;

Izz D
Z

V

 .x2 C y2/dV: (3.31)

We now apply these formulas to determine the angular momentum of the uniform
solid quarter sphere that we examined in Sect. 3.3, rotating about the z-axis with
angular velocity !. We will use spherical polar coordinates to evaluate the integrals,
just as we did to find the center of mass in Sect. 3.3. The density
 and the limits
of integration are the same as the center of mass integrals, only the integrand is
different.

(%i) kill(all)$ %rho:3*M/(%pi*Rˆ3)$
Ixz:-integrate(integrate(integrate(%rho*rˆ4*

sin(theta)ˆ2*cos(theta)*cos(phi),r,0,R),
theta,0,%pi/2),phi,0,%pi)$

Iyz:-integrate(integrate(integrate(%rho*rˆ4*
sin(theta)ˆ2*cos(theta)*sin(phi),r,0,R),
theta,0,%pi/2),phi,0,%pi)$

Izz:integrate(integrate(integrate(%rho*rˆ4*
sin(theta)ˆ4,r,0,R),theta,0,%pi/2),phi,0,%pi)$

L:omega*[Ixz, Iyz, Izz];
(%o) Œ0; � 2 ! M R2

5 �
; 9 � ! M R2

80 �

Note that the angular momentum of this rotating object does not point in the
same direction as its angular velocity. Mathematically this result follows from the
fact that the object has nonzero products of inertia (Ixz is zero, but Iyz is not). It is
not hard to see that as the object rotates about the z-axis the products of inertia will
change, because the object’s orientation relative to the x and y axes will change.
Therefore, the object’s angular momentum must change as it rotates. So a continual
external torque must be applied for this quarter sphere to rotate at a constant angular
velocity about the z-axis. In contrast, both products of inertia will be zero for an
object that is symmetric about the z-axis (such as a full sphere, or the half of the

3.6 Work and Potential Energy 75

sphere with z > 0). If such a symmetric object rotates about the z-axis then its
angular momentum will point along the z-axis and the object will be able to rotate
without changing its angular momentum. In that case there is no external torque
needed to maintain the rotation.

3.6 Work and Potential Energy

In this section we begin working toward the Principle of Conservation of Energy.
We begin by defining the kinetic energy of a particle of mass m moving with speed
v to be K D .1=2/mv2. If the particle is subject to a net force EF and the particle is
displaced by dEr, then Newton’s Second Law can be used to show that the particle’s
kinetic energy will change by

dK D EF 	 dEr: (3.32)

The right-hand side of this equation is called the work done on the particle by the
net force EF over the displacement dEr. Therefore, Eq. 3.32 says that the change in a
particle’s kinetic energy is equal to the work done on the particle by the net force,
a statement that is sometimes called the “Work-KE Theorem.”

If a particle moves through a force field so that at each location Er it is subject to
a force EF.Er/ then the total change in the particle’s kinetic energy as it moves along
a path from point Er0 to point Er is

�K D KEr � KEr0
D
Z Er

Er0

EF.Er0/ 	 d Er0: (3.33)

where the integral is a line integral that is evaluated along the particle’s path from
Er0 to Er.

As an example, consider a particle moving through a force field given by

EF1 D 3kxy3 Ox C 3kx2y2 Oy: (3.34)

How much work is done on the particle if it moves from the origin to the point
.a; b/ along the path P1 which consists of two straight line segments: one from
.0; 0/ to .a; 0/ and another from .a; 0/ to .a; b/. On the first segment the motion
is entirely in the x-direction, so EF1 	 dEr D F1xdx. But on the first part of this path
y D 0, so F1x D 0. On the second part of the path the motion is in the y-direction,
so EF1 	 dEr D F1ydy. On this part of the path x D a so F1y D 3ka2y2. Computing the
integral along each portion of the path and adding the results show the work done
along the full path.

(%i) F1x(x,y):=3*k*x*yˆ3$ F1y(x,y):=3*k*xˆ2*yˆ2$
integrate(F1x(x,0),x,0,a)+
integrate(F1y(a,y),y,0,b); (%o) a2 b3 k

76 3 Momentum and Energy

Suppose instead that the particle moves along the path P2, which follows the
curve y D bx3=a3 from .0; 0/ to .a; b/. Maxima’s diff command can evaluate the
vector dEr along this path.

(%i) declare([a,b],constant)$ y2:b*xˆ3/aˆ3$

dr:diff([x,y2]); (%o) Œdel .x/ ;
3 b x2 del.x/

a3 �

Note the use of the declare command to indicate that a and b are constants,
not variables. The expression del(x) just represents the differential element for x,
or dx. Now we can evaluate EF1 	 dEr by substituting y D bx3=a3 into our force field
equation and carrying out the dot product.

(%i) F1:[F1x(x,y2),F1y(x,y2)]$ dT1:F1.dr;

(%o) 12 b3 k x10 del.x/

a9

Now we compute the total work along the path P2 by integrating our result for
EF1 	 dEr with respect to x from 0 to a.

(%i) integrate(12*bˆ3*k*xˆ10/aˆ9,x,0,a); (%o) 12 a2 b3 k
11

The work done on the particle by this force field is different along path P2 than
along path P1. Let’s try this again with a slightly different force field:

EF2 D 2kxy3 Ox C 3kx2y2 Oy: (3.35)

Now we can evaluate the work done on the particle by this force field along the two
paths, P1 and P2.

(%i) F2x(x,y):=2*k*x*yˆ3$ F2y(x,y):=3*k*xˆ2*yˆ2$
integrate(F2x(x,0),x,0,a)+
integrate(F2y(a,y),y,0,b); (%o) a2 b3 k

(%i) F2:[F2x(x,y2),F2y(x,y2)]$ F2.dr;

(%o) 11 b3 k x10 del.x/

a9

(%i) integrate(11*bˆ3*k*xˆ10/aˆ9,x,0,a); (%o) a2 b3 k

In this case the work is the same along the two paths. In fact, for this force field
the work will be the same along any path with the same starting and ending points.
In such a case we say that the work is independent of the path, and a force field that
has this property is called a conservative force field. Although we not prove it here,
it turns out that a force field is conservative if and only if it has zero curl: Er � EF D 0.
We can illustrate this property for the two force fields considered above. We can use
Maxima to evaluate the curl with the vect package. Keep in mind that the curl is
defined only for three-dimensional vectors, so we need to add a zero z-component
to our 2D force fields in order to evaluate the curl.

(%i) load(vect)$ F1:[F1x(x,y),F1y(x,y),0]$ curl(F1);
(%o) curl

�
Œ3 k x y3; 3 k x2 y2; 0�

�

3.6 Work and Potential Energy 77

The output from curl is not particularly helpful. As with other commands in
the vect package, if we want Maxima to show the result of evaluating the curl we
must use the express command.

(%i) express(curl(F1));
(%o) Œ� d

d z

�
3 k x2 y2

�
; d

d z

�
3 k x y3

�
; d

d x

�
3 k x2 y2

�� d
d y

�
3 k x y3

�
�

Even this result is not completely satisfactory. We would like for Maxima to
evaluate the derivatives. To do so we need to use the ev command and instruct
Maxima to evaluate anything that involves the diff operator. The code for this
evaluation is shown below.

(%i) ev(express(curl(F1)),diff); (%o) Œ0; 0; �3 k x y2�

So Er � EF1 D �3kxy2Oz ¤ 0. Therefore EF1 is not conservative, and the work done
by this force is not path-independent as we showed earlier. Now we can evaluate
Er � EF2.

(%i) F2:[F2x(x,y),F2y(x,y),0]$
ev(express(curl(F2)),diff); (%o) Œ0; 0; 0�

Here we see that Er � EF2 D 0. Therefore, this force field is conservative and the
work done by EF2 will be path-independent, in agreement with our earlier results.
When the work is path-independent, then the kinetic energy of a particle moving
from Er0 to Er will change by the same amount regardless of the path taken. In that
case it is useful to define a potential energy associated with the conservative force
field.

The potential energy function U.Er/ is defined such that

U.Er/ � U.Er0/ D �
Z Er

Er0

EF.Er0/ 	 dEr0; (3.36)

where Er0 is an arbitrary point at which the potential energy will be zero. The right
side of this equation is just the negative of the work done on the particle as it moves
from Er0 to Er. Thus, the change in the potential energy is the negative of the change
in kinetic energy, and therefore the total mechanical energy E D U C K will be
conserved.

We have already calculated that the work done by EF2 from the origin to .a; b/ is
ka2b3. Therefore, if we define the origin as our zero point for potential energy the
potential energy function associated with EF2 must be U2.x; y/ D �kx2y3 CC, where
C is a constant. We can verify that the change in potential energy as the particle
moves from .0; 0/ to .a; b/ is just the negative of the work we calculated earlier.

(%i) U(x,y):=-k*xˆ2*yˆ3+C$ U(a,b)-U(0,0);
(%o) �a2 b3 k

We can even recover the force field from the potential energy function by using
the inverse of Eq. 3.36:

EF D � ErU.Er/: (3.37)

78 3 Momentum and Energy

The code below computes the negative gradient of U.x; y/ to show that this gives
the correct force field EF2.x; y/.

(%i) ev(express(-grad(U(x,y))),diff);
(%o) Œ2 k x y3; 3 k x2 y2; 0�

3.7 Fall from a Great Height: Conservation of Energy

In this section we use the Principle of Conservation of Energy in order to examine
the behavior of an object falling to Earth from a great height. We will ignore the
effects of Earth’s atmosphere, so we do not account for air resistance. Air resistance
is a velocity-dependent force that is nonconservative, so including air resistance
would prevent us from making use of the conservation of energy. To examine the
fall of an object with air resistance we could numerically solve Newton’s Second
Law as was done in Sect. 2.3.

To use the conservation of energy, we must first make sure that we are dealing
with conservative forces. In studying the fall of an object we will consider two
different models for the gravitational force. Our first model examines a uniform
gravitational force given by EFg D �mgOz where Oz is a unit vector pointing upward
(perpendicular to Earth’s surface), m is the mass of the object, and g � 9:8 m/s2 is
the gravitational field strength at Earth’s surface. We can make sure that this force
is conservative by evaluating the curl.

(%i) load(vect)$ Fg:[0,0,-m*g]$
ev(express(curl(Fg)),diff); (%o) Œ0; 0; 0�

Since Er � EFg D 0 we know that the force is conservative. Now we can find the
potential energy function associated with this force. We choose the Earth’s surface
(z D 0) to be the zero-point for this potential energy function, and we integrate
along a path that goes straight up from Earth’s surface so that EFg 	 dEr D .�mg/dz
and

U.z/ D �
Z z

0

.�mg/dz0 D mgz: (3.38)

The object is subject only to the conservative gravitational force, so the total
mechanical energy, E D K C U, is conserved.

If the object is dropped from rest at a height h above Earth’s surface, then E D
mgh. We can determine the speed v of the object at any other height z by solving the
equation mgh D .1=2/mv2 C mgz.

(%i) spd:solve(m*g*h=m*g*z+(1/2)*m*vˆ2,v);
(%o) Œv D �p

2
p

g h � g z; v D p
2

p
g h � g z�

3.7 Fall from a Great Height: Conservation of Energy 79

There are two solutions, but they differ only by sign. The positive solution tells
us the speed, and we know that the object will move in the �Oz direction. Therefore,
the velocity of the object at height z is

v D �
p

2g.h � z/Oz: (3.39)

We use this result to determine the speed on impact with Earth if the object was
dropped from the height of the International Space Station,5 which is about 370 km.

(%i) h:370000$ g:9.8$ sqrt(2*g*h);
(%o) 2693:0

This object would hit the Earth at a speed of almost 2.7 km/s. We examine how
the speed of the object changes as it falls by constructing a plot of speed versus
height using the code below. The resulting plot is shown in Fig. 3.6.

(%i) wxdraw2d(explicit(sqrt(2*g*(h-y)),y,0,h),
xlabel="height (m)", ylabel="speed (m/s)",
xtics=100000)$

Figure 3.6 illustrates that the increase in speed is much greater in the first
kilometer of fall than in the last kilometer. This makes sense because with constant

 0

 500

 1000

 1500

 2000

 2500

 0 100000 200000 300000

sp
ee

d
(m

/s
)

height (m)

Fig. 3.6 Speed as a function of height for an object dropped from the height of the ISS, assuming
constant gravity and no air resistance

5The ISS is in orbit around the Earth, so it is not at rest. We are assuming the object is dropped
from rest, so our calculation does not apply to an object that is actually dropped off of the ISS. In
fact, such an object would continue to orbit Earth right along with the ISS.

80 3 Momentum and Energy

acceleration the speed increases at a constant rate with respect to time. At the
beginning of its fall the object is moving slower and therefore it takes a longer
time to cover the first kilometer. During this long time the object will significantly
increase its speed. Just before hitting Earth the object is moving very fast, so it
covers the last kilometer very quickly and does not gain much speed during this
brief interval of time.

To find the total time of fall for this object we rewrite Eq. 3.39 as

dz

dt
D �

p
2g.h � z/: (3.40)

Separating the variables and integrating both sides we have

Z T

0

dt D �
Z 0

h

dzp
2g.h � z/

(3.41)

or

T D 1p
2g

Z h

0

dzp
h � z

: (3.42)

We evaluate the integral in Eq. 3.42 with Maxima.

(%i) kill(values)$ assume(h>0)$
integrate(1/sqrt(h-y),y,0,h)/sqrt(2*g);

(%o)
p

2
p

h
p

g

The total time of fall is T D p
2h=g. We evaluate this time for a fall from the

height of the ISS.

(%i) h:370000$ g:9.8$ sqrt(2*h/g);
(%o) 274:79

Our object takes almost 275 s to fall from the ISS height to the surface of Earth.
Of course, Earth’s gravitational field is not truly uniform. It changes with distance

from Earth’s center. A more accurate model for the fall of an object from a great
height would use Newton’s Universal Law of Gravitation:

EFN D �GMm

r2
Or D �GMm

r3
Er; (3.43)

where G is Newton’s gravitational constant, M is the mass of Earth, and Er is the
position of the object measured relative to Earth’s center. We can show that this
force is conservative by showing that it has zero curl.

(%i) FN:-GM*m/(xˆ2+yˆ2+zˆ2)ˆ(3/2)*[x,y,z]$
ev(express(curl(FN)),diff);

(%o) Œ0; 0; 0�

3.7 Fall from a Great Height: Conservation of Energy 81

If we set the zero point of potential energy at the surface of Earth (z D R, where
R is Earth’s radius) then our potential energy function is

U.z/ D �
Z Er

Er0

EFN 	 d Er0 D �
Z RCz

R

�GMm

z02 dz0: (3.44)

We use Maxima to evaluate this integral.

(%i) assume(z>0,R>0)$ -integrate(-GM*m/zpˆ2,zp,R,R+z);

(%o) m GM
�

1
R � 1

RCz

�

We now have

U.z/ D GMm

�
1

R
� 1

R C z

�
; (3.45)

so the total energy of an object dropped from rest at height h is E D GMm.1=R � 1=

.R C h// and we can solve for the speed as a function of height by solving
E D K C U for the speed v.

(%i) kill(h)$ solve(GM*m*(1/R-1/(R+h))=
GM*m*(1/R-1/(R+z))+(1/2)*m*vˆ2,v);

(%o) Œv D �
p

2
p

h GM�z GM
p

R2
Cz RCh RCh z

; v D
p

2
p

h GM�z GM
p

R2
Cz RCh RCh z

�

This speed formula is much more complicated than our result for a uniform
gravitational field. We can use this formula to evaluate the speed on impact with
Earth’s surface (z D 0).

(%i) R:6371000$ h:370000$ GM:3.983324e14$
sqrt(2*h*GM/(Rˆ2+h*R));

(%o) 2619:8

In this model the impact speed is just over 2.6 km/s, somewhat slower than our
result for a uniform field. This makes sense because the universal gravitation model
has a weaker gravitational force, and thus a smaller acceleration, everywhere but at
Earth’s surface. We can construct a plot of speed versus time for this model as well,
using the code below. The resulting plot is shown in Fig. 3.7.

(%i) wxdraw2d(explicit(sqrt(2)* sqrt((h*GM)/
(Rˆ2+y*R+h*R+h*y)-(y*GM)/(Rˆ2+y*R+h*R+h*y)),
y,0,h) ,xlabel="height (m)", ylabel=
"speed (m/s)", xtics=100000)$

The plot in Fig. 3.7 looks much like the plot from our uniform field model. This
result is not surprising because even the height of the ISS is small relative to Earth’s
radius, so the difference between universal gravitation and uniform gravity is slight.
Now we try to find the total time of fall for our universal gravitation model. If we
use separation of variables as before we find that

T D 1p
2GM

Z h

0

 r
1

R C z
� 1

R C h

!�1

dz: (3.46)

82 3 Momentum and Energy

 0

 500

 1000

 1500

 2000

 2500

 0 100000 200000 300000

sp
ee

d
(m

/s
)

height (m)

Fig. 3.7 Speed as a function of height for an object dropped from the height of the ISS, assuming
universal gravitation and no air resistance

We can try to evaluate this integral using Maxima.

(%i) integrate(1/sqrt(1/(R+y)-1/(R+h)),y,0,h)/
sqrt(2*GM);

(%o) 3:5429 10�8
��13500 74903=2asin

�
6001
6741

�C
6750 74903=2� C 30000

p
7490

p
2357270

�

(%i) float(%);
(%o) 287:87

Recent versions of Maxima return the correct result, 287.87 s, as shown above.
However, older versions of Maxima may be unable to evaluate this integral. In
situations where Maxima cannot evaluate an integral analytically, we can still use
Maxima to evaluate the integral numerically. Maxima includes multiple numerical
integration routines. For more information on numerical integration methods, see
Sect. A.2.

For our problem we can use the quad_qags routine, which uses adaptive
interval subdivision to evaluate the integral of a general function over a finite
interval. The arguments of quad_qags include the function to be integrated, the
integration variable, and the lower and upper limits of integration, in that order.

(%i) R:6371000$ h:370000$ GM:3.983324e14$
quad_qags(1/sqrt(2*GM*(1/(R+y)-1/(R+h))),y,0,h);

(%o) Œ287:87; 3:15072 10�9; 315; 0�

We see that the output from quad_qags consists of four numbers. The first is
the approximate value for our integral, 287.87 s, in agreement with the analytical

3.8 Exercises 83

result obtained above. Note that this time is slightly longer than for our uniform
gravity model, which again makes sense because universal gravitation is weaker
than our uniform gravitational force above Earth’s surface. The second number in
the output from quad_qags is the estimated absolute error of the approximation.
In this case, the absolute error of 3:2 � 10�9 s represents a relative error of about
one part in 100 billion. The third number in the output shows how many times the
integrand had to be evaluated and the fourth number is an error code (0 indicates no
problems). For more information on quad_qags see Sect. A.2 or Maxima’s help
menu.

3.8 Exercises

1. Two rubber balls are placed one on top of the other. The top ball has mass m and
the bottom ball has mass M. The balls are dropped onto a hard floor. The bottom
ball strikes the floor with speed v0. The elastic collision between the bottom ball
and the floor simply reverses the velocity of the bottom ball. The bottom ball
then undergoes a head-on elastic collision with the top ball. Determine the final
speeds of the two balls after this collision. If the bottom of the bottom ball was
initially at a height h above the floor when the balls were dropped, how high will
the top ball bounce on its rebound? How high can the top ball go in the limit
where the mass of the bottom ball becomes much greater than that of the top
ball?

2. Consider a glancing elastic collision between a particle of mass m1, initially
moving in the x-direction at speed v0, and a stationary particle of mass m2. If the
first particle is deflected by an angle � , determine the speed of the first particle
after the collision. (Hint: you must also consider the x- and y-components of the
second particle’s velocity after the collision.)

3. In Sect. 3.2 we analyzed the first stage of a Saturn V rocket. Once the first stage
is complete the spent S-IC engine is released, reducing the mass of the rocket by
1:4 � 105 kg. Then the stage 2 (S-II) engine fires for 6 min. This engine expels
exhaust at 4200 m/s and contains 4:4 � 105 kg of fuel.

(a) Determine the final speed of the rocket at the end of the stage 2 burn if the
rocket was launched in deep space (with no gravitational forces). Start with
the relevant stage 1 results from Sect. 3.2.

(b) Determine the final speed of the rocket, and its height above Earth’s surface,
if the rocket was launched from Earth. Start with the stage 1 results from
Sect. 3.2 that incorporated air resistance in the troposphere and universal
gravitation. Solve using rk, using Newton’s universal law of gravitation.

4. Consider a hemispherical shell (the portion of a spherical shell centered on the
origin that is above the x–y plane) of mass M, inner radius a, and outer radius
b. Find the center of mass of this object. Also, find the products and moment
of inertia for rotation about the z-axis (Ixz, Iyz, and Izz). What is the angular

84 3 Momentum and Energy

momentum of this object if it rotates about the z-axis with angular velocity
!? Is an external torque required to keep this object rotating this way? Explain
how you might have anticipated this result based on the symmetry of the object.
Finally, go back and reevaluate your results in the limit of a thin spherical shell
(i.e., the limit a ! b).

5. Consider the force field EF D �kx2y4 Ox � 4kx3y3 Oy. Evaluate the work done on a
particle that moves through this field along a path that consists of two straight
line segments: from .0; 0/ to .0; b/ and then from .0; b/ to .a; b/. Then find the
work done if the particle takes a straight line path from .0; 0/ to .a; b/. Is the
work done along the two paths the same? Evaluate the curl of this force field and
explain how your result for the curl relates to whether or not the work done along
the two paths is the same. Is this a conservative force field?

6. Consider the potential energy function U.x; y/ D kx3y4. Find the force field
associated with this potential energy. Evaluate the work done on a particle that
moves through this field along a path that consists of two straight line segments:
from .0; 0/ to .0; b/ and then from .0; b/ to .a; b/. Then find the work done if the
particle takes a straight line path from .0; 0/ to .a; b/. Is the work done along the
two paths the same? Show that the curl of this force field is zero.

7. A block of mass m is moving at speed v0 when it hits a spring. The spring,
initially in its equilibrium position, is compressed by the impact of the block. If
the spring exerts a Hooke’s Law force (F D �kx) on the block, determine the
potential energy function U.x/ where x is the displacement of the spring from its
equilibrium position. Use conservation of energy to find the speed of the block
as a function of x, and plot this function. How far will the spring be compressed
before the block comes to rest? Use separation of variables to calculate how
much time it takes for the block to come to rest after hitting the spring. Compare
your result to the known period of a mass oscillating on a spring (T D 2�

p
m=k).

Does your result makes sense?

Chapter 4
Oscillations

In this chapter we examine oscillating systems. In particular, we focus on harmonic
oscillations produced by linear forces. We begin by showing why such oscillations
are common and then proceed to an analysis of oscillating systems with and without
damping and driving forces. The chapter concludes with a brief examination of an
oscillating system with nonlinear forces, namely the simple pendulum.

4.1 Stable and Unstable Equilibrium Points

Section 3.6 shows that the force on a particle in a conservative system can be derived
from the potential energy function of the system:

EF D � ErU: (4.1)

This relationship implies that the system has equilibrium point (a point at which
there is no force on the particle) whenever ErU D 0. In a one-dimensional system
the criterion for an equilibrium point at x D a is just

�
dU.x/

dx

�

xDa

D 0: (4.2)

In this section we examine the nature of equilibrium points in one-dimensional
systems. The extension to higher dimensions is straightforward, at least in Cartesian
coordinates.

To understand the different types of equilibrium points we examine the motion
of the particle in the vicinity of x D a. As long as we remain sufficiently close
to this equilibrium point, then we can accurately approximate the potential energy
function for the system by using a Taylor series expansion about x D a with only a

© Todd Keene Timberlake & J. Wilson Mixon, Jr. 2016
T.K. Timberlake, J.W. Mixon, Classical Mechanics with Maxima, Undergraduate
Lecture Notes in Physics, DOI 10.1007/978-1-4939-3207-8_4

85

86 4 Oscillations

few terms. We can use Maxima to compute the Taylor series expansion for a generic
U.x/ to second order.

(%i) taylor(U(x),x,a,2);

(%o) U .a/ C
�

d
d x U .x/

ˇ̌
xDa

�
.x � a/ C

�
d2

d x2 U.x/
ˇ̌
ˇ
xDa

�
.x�a/2

2 C :::

Since we are free to define the zero-point for our potential energy function, we
can make the first term in this Taylor series vanish by choosing U.a/ D 0. The
second term vanishes because x D a is an equilibrium point, satisfying Eq. 4.2.
Therefore, to second order in .x � a/ we have

U.x/ � .1=2/k.x � a/2; (4.3)

where k D .d2U=dx2/xDa. We can use Eq. 4.1 to evaluate the approximate force
function.

(%i) Ua(x):=(1/2)*k*(x-a)ˆ2$ Fa(x):=”(-diff(Ua(x),x));
(%o) Fa .x/ WD �k .x � a/

So F.x/ D �k.x � a/. If k > 0 then this force has the form of Hooke’s Law
(F D �kx) and it serves as a restoring force that always pushes the particle back
toward the equilibrium point. In this case we say that the equilibrium point is stable,
and the motion of the particle near the equilibrium point will consist of oscillations
like those of a spring. If k < 0 then the force will push the particle farther away
from the equilibrium point and we say that such an equilibrium point is unstable. If
k D 0 we cannot determine whether the equilibrium point is stable or unstable and
we must consider higher-order terms in our Taylor series expansion of U.x/.

Now we can identify and analyze the equilibrium points of any one-dimensional
system for which we know the potential energy function. For example, consider a
system with potential energy function

U.x/ D ax3 � bx2 C c: (4.4)

We can find the equilibrium points by solving for the values of x such that
dU=dx D 0.

(%i) U(x):=a*xˆ3+b*xˆ2+c$ solve(”(diff(U(x),x))=0,x);
(%o) Œx D � 2 b

3 a ; x D 0�

So the equilibrium points are at x D �2b=.3a/ and x D 0. We evaluate the
stability of these equilibrium points by calculating d2U=dx2 at each point.

(%i) [k(x):=”(diff(U(x),x,2)), k(0), k(-2*b/(3*a))];
(%o) Œk .x/ WD 6 a x C 2 b; 2 b; � 2 b�

At x D 0 k D 2b, so this equilibrium point is stable if b > 0 and unstable if
b < 0. Likewise, at x D �2b=.3a/ k D �2b, so that equilibrium point is stable if
b < 0 and unstable if b > 0. Figure 4.1, which shows a specific example of this
potential energy function, helps us see how this works.

4.1 Stable and Unstable Equilibrium Points 87

-40

-20

 0

 20

 40

 60

 80

-6 -4 -2 0 2

U
 (

J)

x (m)

Fig. 4.1 A potential energy function with a stable equilibrium point at x D 0 and an unstable
equilibrium point at x D �4

(%i) wxdraw2d(explicit(subst([a=1,
b=6,c=5],U(x)), x,-7,3),xlabel="x (m)", ylabel="U (J)");

In this case a D 1 and b D 6, so there should be an unstable equilibrium point at
x D �4 and a stable equilibrium point at x D 0. The graph shows that the potential
energy function has a local maximum at x D �4 and a local minimum at x D 0. In
this case, therefore, stable equilibrium points correspond to local minima in U.x/,
while unstable equilibrium points correspond to local maxima.

Although we will not present a proof here, it turns out that this technique
for finding and analyzing equilibrium points can be applied to many curvilinear
systems. Curvilinear systems are systems where motion is constrained to take place
along a curved, one-dimensional path which can be parameterized by a single
coordinate. Consider the quarter sphere we examined in Sect. 3.3. We found that
the center of mass of this quarter sphere lies a distance d D .3

p
2=8/R from the

center point of the full sphere, where R is the sphere’s radius.
Now imagine setting this object onto a flat table with the curved surface of

the quarter sphere touching the table. The object can rock from side to side. The
geometry of this situation is illustrated in Fig. 4.2. In Fig. 4.2 the point C is the
center of the full sphere. The point CM is the center of mass of the quarter sphere.

The gravitational potential energy of the system is given by mgh, where m is the
mass of the quarter sphere and h is the height of the center of mass above the table.
From trigonometry we find that the center of mass lies a distance d cos � below the
point C, so that h D R � d cos � . Therefore, the potential energy function for this
system is

88 4 Oscillations

Fig. 4.2 The rocking quarter sphere. Here C is the center of the sphere and CM is the center of
mass of the quarter sphere

U.�/ D mg.R � d cos �/ D mgR.1 � 3
p

2 cos �=8/: (4.5)

To find the equilibrium points we first evaluate dU=d� .

(%i) U(theta):=m*g*R*(1-3*sqrt(2)*cos(theta)/8)$
diff(U(theta),theta);

(%o) 3 g m sin.�/ R

2
5
2

The equilibrium points occur when sin � D 0, so they occur whenever � D n� ,
where n is an integer. The only one of these angles that makes sense in this situation
is � D 0, because a rotation of � radians in either direction would cause our quarter
sphere to flip over onto one of its flat faces. It is not surprising that the equilibrium
position occurs when the center of mass is directly below the center of rotation. But
is this equilibrium stable or unstable? We evaluate d2U=d�2 at � D 0 to find out.

(%i) k(theta):=”(diff(U(theta),theta,2))$ k(0);
(%o) 3 g m R

2
5
2

Here, k D 3mgR=.4
p

2/ > 0, so the equilibrium point is stable. If we nudge the
quarter sphere away from its equilibrium position it will just rock back and forth. It
is to just such motion about a stable equilibrium point that we now turn our attention.

4.2 Simple Harmonic Motion 89

4.2 Simple Harmonic Motion

We have seen that the force on a particle near a stable equilibrium point at x D a can
be approximated as F.x/ � �k.x � a/, where k > 0. We can define our coordinates
such that a D 0 in order to reduce this force approximation to the familiar Hooke’s
Law: F � �kx. For motion near a stable equilibrium point, Newton’s Second Law
is approximately

mRx D �kx: (4.6)

We use desolve to solve this ordinary differential equation, for a particle with
initial position x0 and initial velocity v0.

(%i) assume(k>0,m>0)$ atvalue(x(t),t=0,x0)$
atvalue(’diff(x(t),t),t=0,v0)$
eq1:m*’diff(x(t),t,2)=-k*x(t)$
sol:desolve(eq1,x(t));

(%o) x .t/ D m cos
�p

k t
p

m

�
x0C

m
3
2 sin

� p

k t
p

m

�
v0

p

k

m

If we define !0 D p
k=m then our solution reduces to

x.t/ D v0

!0

sin.!0t/ C x0 cos.!0t/: (4.7)

This solution can also be written as x.t/ D A cos.!0t � ı/. To see how this works,
we can use trigexpand to rewrite this new form of our solution.

(%i) trigexpand(A*cos(omega[0]*t-delta));
(%o) .sin .ı/ sin .!0 t/ C cos .ı/ cos .!0 t// A

From this result it is clear that the two forms of the solution will match as long
as A sin ı D v0=!0 and A cos ı D x0. Squaring these two expressions and adding
them together results in A2 D .v0=!0/2 C x2

0. Dividing the first expression by the
second yields tan ı D v0=.!0x0/. Figure 4.3 illustrates the relationship between the
parameters in the two forms of our solution.

A system with a Hooke’s Law force is known as a simple harmonic oscillator,
and its motion is known as simple harmonic motion. Our solution indicates that
the motion is a sinusoidal oscillation with angular frequency !0 D p

k=m. We can
visualize the motion of this system by defining and plotting functions for x.t/ and

Fig. 4.3 A right triangle
illustrating relations between
the parameters in the two
forms of the simple harmonic
oscillator solution

90 4 Oscillations

-1

 0

 1

 0 2 4 6 8 10

x
(m

)

t (s)

-2

-1

 0

 1

 2

 0 2 4 6 8 10

v
(m

/s
)

t (s)

Fig. 4.4 Plots of position and velocity as a function of time for a simple harmonic oscillator

v.t/. The graphs in Fig. 4.4 illustrate the motion for !0 D 2 rad/s, x0 D 1 m, and
v0 D 0:5 m/s.

(%i) x(t):=(v0/omega[0])*sin(omega[0]*t)+
x0*cos(omega[0]*t); v(t):=”(diff(x(t),t));

xvalues:gr2d(explicit(subst([x0=1,v0=0.5,
omega[0]=2],x(t)),t,0,10),xlabel="t (s)",
ylabel="x (m)",ytics=1)$

vvalues: gr2d(explicit(subst([x0=1,v0=0.5,
omega[0]=2],v(t)), t,0,10),xlabel="t (s)",
ylabel="v (m/s)",ytics=1)$

wxdraw(xvalues,vvalues)$
(%o) x .t/ WD v0

!0
sin .!0 t/ C x0 cos .!0 t/

(%o) v .t/ WD cos .!0 t/ v0 � !0 sin .!0 t/ x0

It is useful to visualize this motion in phase space. For a one-dimensional system,
phase space is a two-dimensional space with position on one axis and velocity on
another. The code below shows how to generate a plot of the phase space trajectory
of our simple harmonic oscillator using a parametric plot. Figure 4.5 shows the
phase space trajectory for our example oscillator.

(%i) [xt_expression,vt_expression]:
subst([x0=1,v0=0.5,omega[0]=2], [x(t),v(t)])$

wxdraw2d(nticks=100,parametric(xt_expression,
vt_expression,t,0,%pi), xlabel="x (m)",
ylabel="v (m/s)")$

4.2 Simple Harmonic Motion 91

-2

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 2

-1 -0.5 0 0.5 1

v
(m

/s
)

x (m)

Fig. 4.5 Phase space trajectory for a simple harmonic oscillator

This plot shows that the simple harmonic oscillator follows an elliptical path in
phase space, beginning at the point .x D 1; v D 0:5/ and moving clockwise. The
ellipse is centered at the origin and has a length of 2A along the x-axis, and a length
of 2A!0 along the v-axis. Changing the initial conditions may change the size of the
ellipse, or it may change the point on the ellipse at which the motion begins, but the
motion will always follow a clockwise, elliptical path in phase space.

We could have predicted that the phase space path for a simple harmonic
oscillator would be an ellipse by considering conservation of energy. If the oscillator
has total mechanical energy E, then

1

2
kx2 C 1

2
mv2 D E; (4.8)

which we can rewrite as

x2

a2
C v2

b2
D 1; (4.9)

where a2 D 2E=k and b2 D 2E=m. Equation 4.9 is the standard form of the equation
for an ellipse in the x–v plane, centered at the origin, with length 2a along the x-axis
and length 2b along the v-axis. Since E D .1=2/kx2

0 C .1=2/mv2
0 we find that a D A

and b D A=!0, in agreement with our analysis above.

92 4 Oscillations

4.3 Two-Dimensional Harmonic Oscillator

Now that we have solved the one-dimensional harmonic oscillator, we extend our
solution to the case of a two-dimensional harmonic oscillator. We assume a Hooke’s
Law type of force, but we do not necessarily assume that the force constants will be
the same along each axis. So the force is given by

EF D �kxxOx � kyyOy; (4.10)

where kx and ky are the force constants in the x- and y-directions, respectively. We
can write Newton’s Second Law as two separate equations:

mRx D �kxx;

mRy D �kyy:

(4.11)

Each of these equations is identical to the equation of motion for a one-
dimensional harmonic oscillator, and therefore the solutions will be of the same
form as for the one-dimensional case:

x.t/ D x0 cos.!xt/ C .vx0=!x/ sin.!xt/; and

y.t/ D y0 cos.!yt/ C .vy0=!y/ sin.!yt/;
(4.12)

where !x D p
kx=m and !y D p

ky=m.
Let’s take a look at the motion of this two-dimensional harmonic oscillator. First

we consider an isotropic harmonic oscillator for which kx D ky D k. The code below
generates a plot of the trajectory of an isotropic oscillator initially displaced from
the origin in both the x and y directions. The resulting plot, illustrating the motion
of the oscillator in the x–y plane, is shown in Fig. 4.6.

(%i) x(t):=x0*cos(%omega[X]*t)+(vx0/%omega[X])*
sin(%omega[X]*t)$
y(t):=y0*cos(%omega[Y]*t)+(vy0/%omega[Y])*
sin(%omega[Y]*t)$
[xExpr1: subst([x0=1,y0=1,vx0=0,vy0=0,
omega[X]=1,omega[Y]=1], x(t)),
yExpr1: subst([x0=1,y0=1,vx0=0,vy0=0,
%omega[X]=1,%omega[Y]=1], y(t))]$
wxdraw2d(nticks=100,parametric(xExpr1,yExpr1,

t,0,10),xlabel="x (m)", ylabel="y (m)",xaxis=true,
yaxis=true)$

The motion of the oscillator is confined to a line containing the initial point
and the origin. This is not surprising if we consider that the force on our isotropic
oscillator is always directed toward the origin (since we can rewrite the force as
EF D �kEr, where Er D xOx C yOy). When we release the oscillator from rest it will be

4.3 Two-Dimensional Harmonic Oscillator 93

-1

-0.8

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

-0.8 -0.4 0 0.4 0.8

y(
m

)

x (m)

Fig. 4.6 Trajectory of a two-dimensional isotropic oscillator released from rest at x0 D 1 m and
y0 D 1 m

pulled directly toward the origin. It will then overshoot the origin and continue to
the point opposite its initial position. It will continue to oscillate between these two
points indefinitely.

What happens if we give the oscillator an initial velocity? If we revise the code
above to give the oscillator an initial x-component of velocity of 1 m/s, while
keeping the other initial values the same (x0 D y0 D 1 m and vy0 D 0), the resulting
plot is that shown in Fig. 4.7.1

Giving the oscillator an initial velocity in the x-direction changes the path from a
line to an ellipse. The motion is still periodic: it repeats this same elliptical path over
and over. It turns out that these are the only two types of paths that an isotropic 2D
harmonic oscillator can follow: a line or an ellipse. Now let’s look at an anisotropic
case.

First consider a case where !y D 3!x. We release the oscillator from rest at a
point displaced from the origin along both the x- and y-directions. Figure 4.8 shows
the resulting plot with !x D 1 rad/s, !y D 3 rad/s, x0 D y0 D 1 m, and no initial
velocity.

The path is no longer a straight line, as it was for the corresponding isotropic case,
but it is still a one-dimensional curve. The oscillator moves along this curve and back
again, repeating the same motion over and over. Note how the path illustrates the
difference in !x and !y. While the oscillator completes a single oscillation along the
x-direction, it also completes three full oscillations along the y-direction.

1The commands, essentially identical to those above, are omitted.

94 4 Oscillations

-1

-0.8

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

-1 -0.5 0 0.5 1

y
(m

)

x (m)

Fig. 4.7 Trajectory of an isotropic oscillator with x0 D y0 D 1 m, vx0 D 1 m/s, and vy0 D 0

-1

-0.8

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

-0.8 -0.4 0 0.4 0.8

y
(m

)

x (m)

Fig. 4.8 Trajectory of an anisotropic oscillator (!x D 1 rad/s, !y D 3 rad/s) released from rest at
x0 D y0 D 1 m

4.3 Two-Dimensional Harmonic Oscillator 95

-1

-0.8

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

-1.5 -1 -0.5 0 0.5 1 1.5

y
(m

)

x (m)

Fig. 4.9 Trajectory of an anisotropic oscillator (!x D 1 rad/s, !y D 3 rad/s) with initial conditions
x0 D y0 D 1 m, vx0 D 1 m/s, and vy0 D 0

Figure 4.9 shows what happens if we add an initial velocity in the x-direction
to our anisotropic oscillator. The resulting motion is no longer one-dimensional
(as it was when the oscillator was released from rest), nor is it an ellipse (as for
the corresponding isotropic case), but it is still periodic. In fact, we can still see
that the particle completes three y-oscillations for every x-oscillation. The period
of the motion in the y-direction is exactly one-third of the period of motion in the
x-direction, so after each x-oscillation (and three y-oscillations) the system returns
to its initial state and the motion repeats.

In fact, the motion will be periodic as long as n!x D m!y for some integers n and
m because every m oscillations in x will correspond to exactly n oscillations in y.
We can rewrite our condition as !x=!y D m=n. Another way to state this condition
is that the ratio of the two frequencies is a rational number. In this case we say the
frequencies are commensurable.

If the frequencies are incommensurable (that is, their ratio is not a rational
number) then the motion of the oscillator will not be periodic. Let’s consider an
example where !y D �!x, so that the ratio of the frequencies is the irrational
number � . Figure 4.10 illustrates this case, showing the first 50 oscillations in the
y-direction.

The particle now oscillates back and forth along the x- and y-directions, but with-
out ever quite returning to its starting point. Thus, the motion never really repeats.
This type of motion, consisting of two periodic motions with incommensurable
periods, is called quasiperiodic. We get a better idea of the long-term behavior of
this system if we plot the motion for a longer time. Figure 4.11 shows this system’s
behavior over 150 oscillations in the y-direction.

96 4 Oscillations

-1

-0.8

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

-0.8 -0.4 0 0.4 0.8

y
(m

)

x (m)

Fig. 4.10 Trajectory for an incommensurate anisotropic oscillator (!x D 1 rad/s, !y D � rad/s)
with x0 D y0 D 1 m and no initial velocity. The plot shows the motion during the first 50
oscillations in the y-direction (from t D 0 to t D 100 s)

-1

-0.8

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

-0.8 -0.4 0 0.4 0.8

y
(m

)

x (m)

Fig. 4.11 The same as in Fig. 4.10, except over 150 oscillations in the y-direction (from t D 0 to
t D 300 s)

4.4 Damped Harmonic Oscillator 97

This path is gradually filling a rectangular region of the x–y plane. Eventually the
path will pass arbitrarily close to any point in this region. Such motion is said to be
ergodic.

4.4 Damped Harmonic Oscillator

So far the oscillators we have considered have all been idealized systems that will
oscillate forever at a constant amplitude, never losing energy. Realistic mechanical
oscillators do lose energy due to damping forces, such as internal friction within
a spring. This section investigates the motion of a damped harmonic oscillator, in
which the Hooke’s Law force on our oscillator is joined by a linear damping force
of the form Ef D �bEv, where Ev is the velocity of the oscillator.

We can write Newton’s Second Law for this system as

mRx D �kx � bPx: (4.13)

Dividing by the mass, and defining the constant ˇ D b=.2m/, we have

Rx D �!2
0x � 2ˇPx; (4.14)

where !0 D p
k=m is the natural frequency of the undamped oscillator.

We use Maxima to solve the differential equation in Eq. 4.14, but as we see the
solution depends on the relation between ˇ and !0. For now, let us assume that
ˇ < !0, a situation we will refer to as an “underdamped” oscillator.

(%i) assume(%beta>0,
%omega[0]>0, %beta<%omega[0])$

atvalue(x(t),t=0,x0)$
atvalue(’diff(x(t),t),t=0,v0)$
eq1:’diff(x(t),t,2)=-%omega[0]ˆ2*x(t)-2*%beta*

’diff(x(t),t)$ sol:desolve(eq1,x(t));

(%o) x .t/ D e�ˇ t

sin
�p

!2
0�ˇ2 t

�
.2 .2 ˇ x0Cv0/

�2 ˇ x0/

2
p

!2
0�ˇ2

C cos
�q

!2
0 � ˇ2 t

�
x0

!

We can simplify this solution by defining a new constant !1, such that !2
1 D

!2
0 � ˇ2. Note that our solution above consists of the sum of two trigonometric

functions that oscillate with frequency !1, but with that entire sum multiplied by an
exponential factor that decreases with time.

(%i) x(t):=exp(-%beta*t)*(((v0+%beta*x0)/%omega[1])*
sin(%omega[1]*t)+x0*cos(%omega[1]*t));

x0:1$ v0:0$ %omega[0]:1$ %beta:0.1$
%omega[1]:sqrt(%omega[0]ˆ2-%betaˆ2)$

(%o) x .t/ WD exp ..�ˇ/ t/
�

v0Cˇ x0
!1

sin .!1 t/ C x0 cos .!1 t/
�

98 4 Oscillations

Fig. 4.12 Plots of position
(top left) and velocity (top
right) as a function of time, as
well as the phase space
trajectory (bottom left) and
energy per mass as a function
of time (bottom right) for an
underdamped harmonic
oscillator

-0.5

 0

 0.5

 1

 0 25 50

x
(m

)

t (s)

-0.5

 0

 0.5

 0 25 50

v
(m

/s
)

t (s)

-1

-0.5

 0

 0.5

 1

-0.5 0 0.5 1

v
(m

/s
)

x (m)

 0.1
 0.2

 0.3
 0.4

 0.5

 0 10 20 30

E
/m

 (
J/

kg
)

t (s)

4.4.1 Underdamped Oscillators

To see what the motion looks like we plot the position and velocity as a function of
time, as well as the motion in phase space (v versus x). We assume that the oscillator
starts from rest, but displaced from the origin, with !0 D 1 rad/s and ˇ D 0:1 in the
same units. The code below shows how to display all three of these plots, as well
as a plot of energy versus time (discussed below). Figure 4.12 shows the resulting
plots. The top two panels show the values of x and v as a function of time. The
bottom left panel shows the phase space trajectory for this oscillator. The final panel
will be discussed below.

(%i) xpathUD:gr2d(explicit(x(t),t,0,50),
xlabel="t (s)", ylabel="x (m)",
xtics=25,ytics=.5)$

v(t):=”(diff(x(t),t))$
vpath UD: gr2d(explicit(v(t),t,0,50),

xlabel="t (s)", ylabel="v (m/s)",
ytics=.5,xtics=25)$

phaseUD: gr2d(nticks=400,
parametric(x(t),v(t),t,0,50), xlabel="x (m)",
ylabel="v (m/s)",yrange=[-1,1],xtics=.5)$

EmpathUD: gr2d(explicit(0.5*%omega[0]ˆ2*x(t)ˆ2+
0.5*v(t)ˆ2,t,0,30), xlabel="t (s)",
ylabel="E/m (J/kg)",ytics=.1,xtics=10)$

wxdraw(xpathUD, vpathUD,phaseUD,EmpathUD,
dimensions=[640,480], columns=2)$

The top two panels of Fig. 4.12 show that both the position and velocity graphs
are oscillating functions, but with amplitudes that decay with time. The path in phase

4.4 Damped Harmonic Oscillator 99

space is a spiral that gradually approaches the origin. All of these plots make it clear
that after a long time this oscillator will come to rest at x D 0. The loss of motion
occurs because the damping force is removing energy from the system. Once all
of the mechanical energy has been removed, the system will come to rest at the
equilibrium point.

The mechanical energy in this system is given by

E D 1

2
mv2 C 1

2
kx2: (4.15)

We can examine what happens to the mechanical energy in this system by plotting
the total mechanical energy per unit mass,

E=m D 1

2
v2 C 1

2
!2

0x2: (4.16)

as a function of time. The resulting plot is shown in the bottom right of Fig. 4.12.
The energy decreases rapidly at first, because the oscillator is moving rapidly and

therefore the damping force (Ef D �bEv) is strong. As more energy is removed from
the system the oscillator’s motion slows, and the damping force is not as strong.
Thus, the energy decrease is generally less rapid at later times. The oscillations in
the energy versus time curve occur because the damping force has little effect when
the oscillator is near its endpoints (and moving slowly) but has its greatest effect
when the oscillator is passing through the equilibrium point (and moving rapidly).

4.4.2 Overdamped Oscillators

Now that we understand the motion of the underdamped harmonic oscillator, we can
consider the “overdamped” case when ˇ > !0. We can use Maxima again to solve
Eq. 4.14 for this new case.

(%i) kill(all)$
assume(%beta>0,%omega[0]>0, %beta>%omega[0])$

atvalue(x(t),t=0,x0)$ atvalue(’diff(x(t),t),t=0,v0)$
eq1:’diff(x(t),t,2)=-%omega[0]ˆ2*x(t)-2*%beta*

’diff(x(t),t)$ sol:desolve(eq1,x(t));

(%o) x .t/ D e�ˇ t

sinh

�p
ˇ2�!2

0 t
�

.2 .2 ˇ x0Cv0/�2 ˇ x0/

2
p

ˇ2�!2
0

C cosh
�q

ˇ2 � !2
0 t
�

x0

!

This solution looks like the solution for the underdamped case, except that the
trigonometric functions have been replaced by hyperbolic functions (sinh rather than
sin, and so on). We can simplify the result by defining the new constant !2, such
that !2

2 D ˇ2 � !2
0 . Before we construct plots of our solution, it helps to rewrite

the solution in terms of exponential functions (rather than hyperbolic functions) and
expand the multiplication of the various exponential factors. To achieve this, we use
Maxima’s exponentialize command.

100 4 Oscillations

(%i) x(t):=exp(-%beta*t)*(sinh(%omega[2]*t)*
(%beta*x0+v0)/%omega[2]+ x0*cosh(%omega[2]*t))$

expand(exponentialize(x(t)));

(%o) ˇ e!2 t�ˇ t x0
2 !2

C e!2 t�ˇ t x0
2 � ˇ e�ˇ t�!2 t x0

2 !2
C

e�ˇ t�!2 t x0
2 C e!2 t�ˇ t v0

2 !2
� e�ˇ t�!2 t v0

2 !2

The result has six different terms, and each term contains an exponential factor.
Three of the terms have an e�.ˇ�!2/t factor, and three have an e�.ˇC!2/t factor. Since
.ˇ C !2/ > .ˇ � !2/ we can see that the terms with the e�.ˇC!2/t factor will decay
more rapidly than the other terms. The long-term behavior of this oscillator will
be governed by the slowly decaying terms, which decay exponentially with a rate
.ˇ�!2/ (unless the initial conditions are such that the slowly decaying terms cancel
each other out).

To visualize the motion of this overdamped oscillator, we construct plots of
position and velocity as a function of time, as well as the phase space trajectory
and the energy (per unit mass) as a function of time. Figure 4.13 shows the results.2

We assume the same initial conditions that were used above for the underdamped
case, but this time we will use ˇ D 5 s�1.

This “oscillator” moves steadily toward the origin, asymptotically approaching
the origin as t ! 1. The velocity of the oscillator initially becomes negative, but
then this velocity too decays away, approaching zero in the limit t ! 1.

 0.5

 1

 0 25 50

x
(m

)

t (s)

-0.075

-0.05

-0.025

 0

 0 25 50

v
(m

/s
)

t (s)

-0.1
-0.08
-0.06
-0.04
-0.02

 0

 0 0.5 1

v
(m

/s
)

x (m)

 0.1
 0.2
 0.3
 0.4
 0.5

 0 10 20 30

E
/m

 J
/k

g)

t (s)

Fig. 4.13 Plots of position (top left) and velocity (top right) as a function of time, as well as the
phase space trajectory (bottom left) and energy per mass as a function of time (bottom right) for an
overdamped harmonic oscillator

2The commands, essentially the same as those used to generate Fig. 4.12, are omitted.

4.4 Damped Harmonic Oscillator 101

The phase space path is particularly interesting because it illustrates that there are
two distinct phases to the motion of this oscillator. In the first phase the oscillator
moves toward the equilibrium point and picks up a negative velocity, much as we
might expect for an undamped harmonic oscillator. However, the oscillator then
makes a sharp turn in phase space and subsequently approaches the origin along a
straight line path.

We can better understand this two part motion by referring to the exponential
factors in the solution for x.t/ discussed above. For the parameter values we have
chosen, the values of ˇ and !2 are very similar (ˇ D 5 s�1, while !2 D p

24 � 4:9

s�1). Therefore, the terms that decay at the rate .ˇ C !2/ do so very rapidly, while
the terms that decay at the rate .ˇ � !2/ do so much more slowly. The second
phase of the motion, in which the oscillator gradually approaches the origin along
a straight line in phase space, corresponds to the slowly decaying terms, after the
rapidly decaying terms have already vanished.

Figure 4.13 shows that, as with the underdamped oscillator, the energy rapidly
decreases at the beginning, but decreases more gradually at later times. In this case
there are no oscillations in the energy curve, because this oscillator doesn’t actually
oscillate! It just gradually approaches the origin from one side. Note that it takes
about as long for the energy to vanish from this overdamped oscillator as it did
from the underdamped oscillator we examined above. Although the damping force
is much stronger in the overdamped case, the damping force actually prevents the
oscillator from moving quickly back to its equilibrium point. Thus, even though the
damping force quite effectively removes kinetic energy from the system, it actually
slows the removal of potential energy.

4.4.3 Critical Damping

Finally, we examine the case of “critical damping” when ˇ D !0. Again, we use
Maxima to solve Eq. 4.14, but this time replacing !0 with ˇ.

(%i) kill(all)$ atvalue(x(t),t=0,x0)$
atvalue(’diff(x(t),t),t=0,v0)$ eq1:’diff(x(t),t,2)=

-%betaˆ2*x(t)-2*%beta*’diff(x(t),t)$
sol:ratsimp(desolve(eq1,x(t)));

(%o) x .t/ D e�ˇ t ..ˇ t C 1/ x0 C t v0/

The solution consists of a factor that is linear in time (.tv0 C .ˇt C 1/x0) and an
exponential decay factor (e�ˇt). To examine the behavior of this critically damped
oscillator we will again construct plots of x.t/, v.t/, v versus x, and E=m as a
function of t. We will use the same initial conditions as we used for the previous
oscillators, but this time with ˇ D 1 s�1. The resulting plots are shown in Fig. 4.14.

In general we see that the behavior is similar to that of the overdamped oscillator.
The oscillator moves directly toward the origin where it comes to rest. The velocity
initially becomes negative and then decays to zero. The path through phase space

102 4 Oscillations

 0

 0.5

 1

 0 5 10

x
(m

)

t (s)

-0.3

-0.2

-0.1

 0

 0 5 10

v
(m

/s
)

t (s)

-0.3

-0.2

-0.1

 0

 0 0.5 1

v
(m

/s
)

x (m)

 0
 0.1
 0.2
 0.3
 0.4
 0.5

 0 5 10

E
/m

 (
J/

kg
)

t (s)

Fig. 4.14 Plots of position (top left) and velocity (top right) as a function of time, as well as the
phase space trajectory (bottom left) and energy per mass as a function of time (bottom right) for a
critically damped harmonic oscillator

begins like that of an undamped oscillator, but then curves and moves toward the
origin where it ends (although the curve is much more gradual for the critically
damped oscillator than for the overdamped oscillator). However, note the shorter
time scale in the graphs for the critically damped oscillator. The different time scales
become apparent when we consider a plot of energy versus time for the case of
critical damping, as shown in the bottom right of Fig. 4.14.

Note how rapidly the energy decays to zero. Critical damping leads to the fastest
possible removal of energy, and thus the motion of an oscillator will die out quickest
when the damping is critical. This explains why shock absorbers on vehicles (cars,
bicycles) aim for critical damping. When you hit a bump, you want your wheel to
return to its proper position as quickly as possible and stay there. An underdamped
shock will cause the wheel to oscillate before returning to its equilibrium location,
while an overdamped shock will return to equilibrium too slowly (so that the shock
may not be ready for the next impact).

4.5 Driven Damped Harmonic Oscillator

In the previous section we saw that a harmonic oscillator subject to a damping force
will eventually cease its motion. But what would happen if there was an external
force acting on the oscillator to keep it in motion? In this section we examine the
motion of a harmonic oscillator that is subject to damping and also to an external
force that varies sinusoidally in time.

4.5 Driven Damped Harmonic Oscillator 103

We consider external forces that vary periodically in time because such forces
will keep the oscillator oscillating—unlike, for example, a constant force which
would only result in the oscillator coming to rest at a displaced equilibrium point.
We consider sinusoidally varying forces first, because such forces are easiest to
deal with, mathematically. In the next section we will look at how to handle non-
sinusoidal periodic forces.

The external force that drives the oscillator takes the form F cos.!t/, where !

is the angular frequency of the driving force and F is the amplitude (maximum
magnitude) of the driving force. Newton’s Second Law for this system is

mRx D �kx � bPx C F cos.!t/: (4.17)

Dividing through by the mass and defining the new constant f D F=m we have

Rx D �!2
0x � 2ˇPx C f cos.!t/; (4.18)

where !0 D p
k=m and ˇ D b=.2m/ as for the damped harmonic oscillator. We can

use Maxima to solve Eq. 4.18, assuming an underdamped oscillator (ˇ < !0).3

(%i) assume(%beta>0, %beta<%omega[0], %omega>0)$
eq1:’diff(x(t),t,2)=-%omega[0]ˆ2*x(t)-2*%beta*

’diff(x(t),t)+f*cos(%omega*t)$
atvalue(x(t),t=0,x0)$ atvalue(’diff(x(t),t),t=0,v0)$
sol:desolve(eq1,x(t));

(%o) x.t/ D e�ˇt..sin.
p

!2 � ˇ2t/ / .
2 ..2 ˇ !4

C.8 ˇ3
�4 !2

0 ˇ/!2
C2 !4

0 ˇ/ x0C.!4
C.4 ˇ2

�2 !2
0/!2

C!4
0/ v0�2 !2

0 ˇ f/
!4

C.4 ˇ2
�2 !2

0/!2
C!4

0

�
2 ˇ ..!4

C.4 ˇ2
�2 !2

0/!2
C!4

0/ x0C.!2
�!2

0/ f/
!4

C.4 ˇ2
�2 !2

0/!2
C!4

0

//=.2

q
!2

0 � ˇ2/C
cos
�p

!2
0 �ˇ2 t

�
..!4

C.4 ˇ2
�2 !2

0/!2
C!4

0/ x0C.!2
�!2

0/ f/

!4
C.4 ˇ2

�2 !2
0/!2

C!4
0

/C
2 ˇ ! f sin.! t/

!4
C.4 ˇ2

�2 !2
0/!2

C!4
0

� .!2
�!2

0/ f cos.! t/

!4
C.4 ˇ2

�2 !2
0/!2

C!4
0

The solution is quite complicated, but note that all but the final two terms (the
two on the bottom output row) contain a factor of e�ˇt. Therefore we can expect
the first part of the solution to decay away, and at long times the solution will be
dominated by the final two terms, both of which are sinusoidal functions of time
with angular frequency ! (the frequency of the driving force). Before we focus on
this “steady state” portion of the solution, though, let’s examine the full solution
by loading the above result into a new function (note the use of double quotes and
parentheses in the code below) and constructing a plot of position versus time. To
illustrate this process, we assume !0 D 1 rad/s, ! D 1:3 rad/s, ˇ D 0:1 s�1, f D 1

N/kg, x0 D 1 m, and v0 D 1 m/s. Figure 4.15 shows the resulting plot.

3The steady state portion of the solution, which is the part we are most interested in, is the same
whether the oscillator is underdamped, overdamped, or critically damped.

104 4 Oscillations

-2

-1

 0

 1

 2

 0 20 40 60 80 100

x
(m

)

t (s)

Fig. 4.15 Position as a function of time for a sinusoidally driven, damped oscillator. Parameters
and initial conditions are given in the text

(%i) x(t):=”(rhs(sol))$ %omega[0]:1$ %beta:0.1$
%omega:1.3$ f:1$ x0:1$ v0:1$

wxdraw2d(explicit(x(t),t,0,100),yrange=[-2.5,2.5],
xlabel="t (s)",ylabel="x (m)")$

We see that after some initial transient behavior the system settles into a steady
sinusoidal oscillation with a constant amplitude and well-defined period. It is this
“steady state” solution that is represented by the final two terms in our solution
above. We can write this steady state solution as

xss.t/ D f .2ˇ! sin.!t/ C .!2
0 � !2/ cos.!t//

.!2
0 � !2/2 C .2ˇ!/2

: (4.19)

This steady state solution does not depend on the initial position or velocity. We
can construct a plot of our steady state solution using the code below. The resulting
plot is shown in Fig. 4.16.

(%i) xss(t):=f*(2*%beta*%omega*sin(%omega*t)+
(%omega[0]ˆ2- %omegaˆ2)*cos(%omega*t))/
((%omega[0]ˆ2-%omegaˆ2)ˆ2+(2*%beta*%omega)ˆ2)$

%omega[0]:1$ %beta:0.1$ %omega:1.3$ f:1$
wxdraw2d(explicit(xss(t),t,0,100),yrange=
[-1.5,1.5], xlabel="t (s)",
ylabel="x_{ss} (m)")$

4.5 Driven Damped Harmonic Oscillator 105

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 0 20 40 60 80 100

x s
s

(m
)

t (s)

Fig. 4.16 Steady state solution for the driven, damped harmonic oscillator shown in Fig. 4.15

Comparing the plot of the steady state solution and the full solution shows that
after about t D 40 s the two solutions are indistinguishable. It is also clear from
this plot that the steady state solution is a simple sinusoidal function. In fact, we can
write the steady state solution as

xss.t/ D A cos.!t � ı/: (4.20)

To see how to rewrite the solution in this way, we can expand the new form of the
solution given in Eq. 4.20.

(%i) kill(all)$ trigexpand(A*cos(%omega*t-%delta));
(%o) Œ.sin .ı/ sin .! t/ C cos .ı/ cos .! t// A

To match with the form given in Eq. 4.19 we must have

A sin ı D 2f ˇ!

.!2
0 � !2/2 C .2ˇ!/2

; (4.21)

and

A cos ı D f .!2
0 � !2/

.!2
0 � !2/2 C .2ˇ!/2

: (4.22)

106 4 Oscillations

Fig. 4.17 A right triangle
illustrating the relation
between parameters in
Eqs. 4.19 and 4.20

Adding the squares of Eqs. 4.21 and 4.22 we find that

A2 D f 2

.!2
0 � !2/2 C .2ˇ!/2

; (4.23)

and dividing Eq. 4.21 by Eq. 4.22 we find that

ı D tan�1

�
2ˇ!

!2
0 � !2

�
: (4.24)

The triangle in Fig. 4.17 illustrates the relation between the phase angle ı and
the parameters !, ˇ, and !0. The amplitude of the steady state solution is then
A D f =C, where C is the hypotenuse of the triangle in Fig. 4.17. If we define new
dimensionless constants q D !=!0 and p D ˇ=!0, then we have

A2 D f 2

!4
0

1

.2qp/2 C .1 � q2/2
: (4.25)

The first factor on the right-hand side of Eq. 4.25 does not depend on q or p, and
thus does not depend on ! or ˇ. We will refer to the other factor as the relative
square amplitude and we can plot this relative square amplitude function versus q to
see how the amplitude of the steady state solution depends on the driving frequency
! D q!0. The code below constructs plots of the relative square amplitude as a
function of q for two different values of p: p D 0:1 and p D 0:3. The resulting plots
are shown in Fig. 4.18.

(%i) SqAmp(q,p):=1/((2*q*p)ˆ2+(1-qˆ2)ˆ2)$
withp01: gr2d(title="p=0.1",explicit(

SqAmp(q,0.1),q,0,3),xlabel="q", ylabel=
"relative square amplitude",xtics=1,ytics=10)$

withp03: gr2d(title="p=0.3",explicit(
SqAmp(q,0.3),q,0,3),xlabel="q",
xtics=1,ytics=1)$

wxdraw(withp01,withp03,columns=2)$

The first panel of Fig. 4.18 shows that when p D 0:1 the relative square amplitude
of the steady state solution peaks near q D 1 or, equivalently, near ! D !0. This
phenomenon is known as resonance. The oscillator responds much more strongly
to a driving force with a frequency near that of the oscillator’s natural frequency.

4.5 Driven Damped Harmonic Oscillator 107

 0

 10

 20

 0 1 2 3

re
la

tiv
e

sq
ua

re
 a

m
pl

itu
de

q

p=0.1

 1

 2

 3

 0 1 2 3
q

p=0.3

Fig. 4.18 Relative square amplitude of the driven, damped harmonic oscillator as a function of
q D !=!0, for two values of p D ˇ=!0

However, close inspection of the plot reveals that the peak occurs at a value of q
slightly less than one. What happens if we change the value of p? The second panel
of Fig. 4.18 shows the resonance peak for p D 0:3.

Note that the peak is much wider for this larger value of p, which corresponds
to a larger value of ˇ. Damping forces widen the resonance peak for the oscillator.
Also, the location of the peak has shifted toward a lower q value. We can determine
the exact location of the peak by using calculus to find the value of q that maximizes
the relative square amplitude function.

(%i) solve(”diff(SqAmp(q,p),q)=0,q);
(%o) Œq D �p1 � 2 p2; q D p

1 � 2 p2; q D 0�

The peak in the relative square amplitude occurs when q D p
1 � 2p2, or when

! D
q

!2
0 � 2ˇ2 (the other two solutions are not physically relevant). We can

evaluate the relative square amplitude at this resonance frequency.

(%i) SqAmp(sqrt(1-pˆ2),p); (%o) 1
p4

C4 p2 .1�p2/

Multiplying by the factor of f 2=!4
0 from Eq. 4.25 we find that the square

amplitude at resonance is

A2
res D f 2

4ˇ2!2
0 � 3ˇ4

: (4.26)

108 4 Oscillations

For weak damping (ˇ << !0) this result reduces to Ares � f =.2ˇ!0/. Stronger
damping forces not only shift the resonance frequency farther below the natural
frequency of the oscillator, but they also reduce the amplitude of the steady state
solution at resonance. Therefore, resonance behavior will be strongest, and narrowly
confined to frequencies near !0, when there is minimal damping. When there is
strong damping the resonance effect will be much less noticeable.

4.6 Non-sinusoidal Driving Forces

The previous section considered a harmonic oscillator subject to a sinusoidal driving
force. This section shows how to solve for the motion of a harmonic oscillator
subject to a non-sinusoidal (but still periodic) driving force. We focus on the special
case of an oscillator driven by a periodic series of square pulses, but the methods
used to solve this problem apply to any periodic driving force.

We begin by defining our non-sinusoidal driving force. We consider only periodic
forces such that F.t C T/ D F.t/, where T is the period of the function. We want
this driving force to consist of a series of square-shaped pulses, so that the external
driving force on the oscillator is either zero or a constant nonzero value. The force
will be “on” for a time dt and then “off” for the remainder of the period T . The
angular frequency of the pulses is ! D 2�=T .

We define a function s.t/ that produces such a series of square pulses using
Maxima’s floor function. The floor function, sometimes known as the greatest
integer function, returns the greatest integer that is less than its argument. The code
below shows how to use the difference of two floor functions to construct and
plot a series of square pulses with period T D 2� s (so ! D 1 rad/s) and pulse
width dt D 1 s. Figure 4.19 shows the resulting plot.

(%i) s(t):=floor(%omega*(t+dt/2)/(2*%pi))-
floor(%omega*(t-dt/2)/(2*%pi));

%omega:1$ dt:1$
wxdraw2d(explicit(s(t),t,-10,10),
yrange=[-1,2],xlabel="t (s)",ylabel="s")$

We can write Newton’s Second Law for our driven oscillator as

Rx D �!2
0x � 2ˇPx C f .t/; (4.27)

where f .t/ D F.t/=m. We can solve this differential equation numerically using
Maxima’s rk command, with f .t/ D fmaxs.t/ (where fmax is just the force value
for the square pulses divided by the mass of the oscillator). The code below show
how to generate and plot the solution for !0 D 1 rad/s, ˇ D 0:5 s�1, and fmax D 1

N/kg. The resulting plot is shown in Fig. 4.20.

4.6 Non-sinusoidal Driving Forces 109

-1

-0.5

 0

 0.5

 1

 1.5

 2

-10 -5 0 5 10

s

t (s)

Fig. 4.19 A periodic series of square wave pulses

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0 10 20 30 40 50

x
(m

)

t (s)

Fig. 4.20 Numerical solution of x.t/ for the harmonic oscillator driven by a periodic series of
square pulses

110 4 Oscillations

(%i) %omega[0]:1$ %beta:0.5$ f:1$ data1:
rk([v,-%omega[0]ˆ2*x-2*%beta*v+f*s(t)],

[x,v],[0,0],[t,0,50,0.1])$
xvt:makelist([data1[i][1],data1[i][2]],i,1,

length(data1))$
wxdraw2d(xlabel="t (s)",ylabel="x (m)",

xaxis=true, point_size=0,
points_joined=true,points(xvt))$

Figure 4.20 shows that the oscillator settles into a periodic pattern of steady state
motion after some initial transient behavior. However, the steady state oscillations
are not sinusoidal. The natural oscillations of the harmonic oscillator are sinusoidal,
but the driving force is non-sinusoidal. The combination of the two forces produce
a periodic motion that is does not match the shape of the natural oscillations or the
driving force.

Our numerical solution is helpful, but an analytical solution might be even
better. We can construct an analytical solution to our problem by taking advantage
of Fourier’s theorem, which states that any periodic function f .t/ with period
T D 2�=! can be written as

f .t/ D
1X

nD0

Œan cos.n!t/ C bn sin.n!t/� ; (4.28)

where an and bn are constants that depend on the function f .t/. The sum in Eq. 4.28
is known as a Fourier series and the coefficients in the series, for n � 1, are given by

an D 2

T

Z T=2

�T=2

f .t/ cos.n!t/dt; (4.29)

and

bn D 2

T

Z T=2

�T=2

f .t/ sin.n!t/dt: (4.30)

The coefficients for n D 0 are treated separately: b0 D 0 and

a0 D 1

T

Z T=2

�T=2

f .t/dt: (4.31)

We illustrate how the Fourier series works by constructing the series for the
square pulse function s.t/ defined above. Note that s.t/ is periodic on the interval
Œ�T=2; T=2�, but it is zero everywhere on that interval except on Œ�dt=2; dt=2�,
where it has the value 1. Therefore, the Fourier coefficients for s.t/ are

4.6 Non-sinusoidal Driving Forces 111

an D 2

T

Z dt=2

�dt=2

cos.n!t/dt;

bn D 2

T

Z dt=2

�dt=2

sin.n!t/dt;

a0 D 1

T

Z dt=2

�dt=2

dt; (4.32)

and b0 D 0 (where the expressions for an and bn apply for n � 1). We can calculate
these integrals using Maxima, replacing T with 2�=!.

(%i) kill(all)$
a0:%omega*integrate(1,t,-dt/2,dt/2)/(%pi)$
a(n):=%omega*integrate(cos(n*%omega*t),t,

-dt/2,dt/2)/%pi$
b(n):=%omega*integrate(sin(n*%omega*t),t,

-dt/2,dt/2)/%pi$ [a0, a(n), b(n)];

(%o) Œ ! dt
�

;
2 sin. ! dt n

2 /
� n ; 0�

We see that bn D 0 for all n. This result follows from the fact that s.t/ is an
even function, therefore its Fourier series representation must consist only of even
functions (cosines) with no odd functions (sines) contributing. We can also see that
an is inversely proportional to n, so the coefficients will be negligibly small for large
values of n. This fact is illustrated in Fig. 4.21, which shows a plot of an versus n for
the function s.t/.

-0.1

-0.05

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 10 20 30 40 50

a n

n

Fig. 4.21 Fourier coefficients an for the function s.t/ shown in Fig. 4.19

112 4 Oscillations

(%i) %omega:1$ dt:1$ fc:makelist(a(n),n,1,50)$
wxdraw2d(points(fc),xrange=[0.5,50.5],

yrange=[-0.1,0.32],xaxis=true),
xlabel="n", ylabel="a_n"$

Recall that a0 D dt!=� � 0:318. So a0 and a1 are of comparable size, but for
higher values of n the value of an becomes generally smaller. Although the values
of an oscillate about zero, the amplitude of these oscillations decreases steadily as
n increases. This is a fortunate situation, since we would not be able to make much
use of the infinite Fourier series if we really needed to calculate all of its terms.
Thankfully, in this case and in most cases of practical interest, we can get accurate
results by truncating the series at n D nmax. To illustrate how this works, we can
construct the Fourier series for s.t/ up to n D 10 and plot the resulting function
using the code below. The results are shown in Fig. 4.22.

(%i) ff(t):=a0+sum(a(n)*cos(n*%omega*t),n,1,nmax)$
ff0(t):=”(subst([%omega=1,dt=1,nmax=10],ff(t)))$
wxdraw2d(explicit(ff0(t),t,-10,10),yrange=[-1,2],
xlabel="t (s)",ylabel="f")$

Our truncated Fourier series with only 11 terms manages to reproduce the general
shape of our square pulses, but the pulse tops are not quite flat, nor is the region in

-1

-0.5

 0

 0.5

 1

 1.5

 2

-10 -5 0 5 10

f

t (s)

Fig. 4.22 Plot of the Fourier series for s.t/ using the first 11 terms

4.6 Non-sinusoidal Driving Forces 113

-1

-0.5

 0

 0.5

 1

 1.5

 2

-10 -5 0 5 10

f

t (s)

Fig. 4.23 Plot of the Fourier series for s.t/ using the first 51 terms

between the pulses. We now see what kind of improvement we get if we include
terms up to n D 50. The plot using the first 51 terms is shown in Fig. 4.23.4

The Fourier series with 51 terms more accurately reproduces the square pulses,
as Fig. 4.23 shows. The tops of the pulses are relatively flat, and the region between
the pulses is quite flat. However, we see that the Fourier series tends to overshoot
at the points of discontinuity in the s.t/ function, resulting in spikes that rise above
one and fall below zero at the edges of each pulse. This is a common effect in
Fourier series for periodic functions with jump discontinuities. The effect is usually
known as the Gibbs phenomenon, and it is responsible for “ringing artifacts” in the
processing of signals (including digital images and audio).

In Sect. 4.5 we saw that a damped harmonic oscillator, driven by a periodic force
F cos.!t/, has a steady state solution of the form

xss.t/ D A cos.!t � ı/: (4.33)

Likewise (although we will not derive the solution here) a driving force F sin.!t/
gives rise to a steady state solution of the form

xss.t/ D A sin.!t � ı/: (4.34)

4The commands, essentially the same as those used to produce 4.22, are omitted.

114 4 Oscillations

We have now seen that any periodic force can be written as a sum of sine and
cosine forces with frequencies n!. Because Eq. 4.27 is linear in x, the principle
of superposition tells us that the solution when f .t/ is the sum of several sinusoidal
forces is just the sum of the solutions for each individual sinusoidal force. Therefore,
the solution for any periodic f .t/ is

xss.t/ D
1X

nD0

An cos.n!t � ın/ C Bn sin.n!t � ın/; (4.35)

where

An D an=

q
.!2

0 � n2!2/2 C .2ˇn!/2;

Bn D bn=

q
.!2

0 � n2!2/2 C .2ˇn!/2;

ın D tan�1

�
2ˇn!

!2
0 � n2!2

�
;

(4.36)

and an and bn are the Fourier coefficients from Eqs. 4.29, 4.30, and 4.31.
We can apply this solution to the case of the oscillator driven by the square pulse

function s.t/. We have already computed the Fourier coefficients an for this function
(recall that bn D 0 for all n because s.t/ is an even function). We can now use
Eq. 4.36 to compute An and ın and then construct our solution from Eq. 4.35, but
using only a finite number of terms in the sum (for this example we will use the first
11 terms).

We can then plot this approximate solution and compare it to the numerical
solution generated by the rk command above. (Note the use of atan2 in the
code below. Using the atan2 function ensures that the phase angles ın come out
in the correct quadrant. Using the regular atan function can result in incorrect
phase angles. In this particular case, using atan rather than atan2 would generate
a solution that is the negative of the correct solution.) The code to generate the
solution and plot is shown below, and the resulting plot is shown in Fig. 4.24.

(%i) amp(n):=f*a(n)/sqrt((%omega[0]ˆ2-nˆ2*%omegaˆ2)ˆ2
+ 4*%betaˆ2*nˆ2*%omegaˆ2)$

delta(n):=atan2(2*%beta*n*%omega,%omega[0]ˆ2-
nˆ2*%omegaˆ2)$

xf(t):=%omega*dt*f/(2*%pi*%omega[0]ˆ2)+
sum(amp(n)*cos(n*%omega*t-delta(n)),n,1,nmax)$

%omega:1$ dt:1$
%omega[0]:1$ f:1$ %beta:0.5$ nmax:10$
wxdraw2d(explicit(xf(t),t,0,50),xlabel="t (s)",
ylabel="x (m)")$

Comparing Fig. 4.24 to Fig. 4.20 shows that the two plots disagree initially, but
agree very well for later times. Since Eq. 4.35 provides only the steady state solution,
ignoring the transient motion at the beginning, we don’t expect it to match the actual

4.7 The Pendulum 115

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0 10 20 30 40 50

x
(m

)

t (s)

Fig. 4.24 Fourier series solution of x.t/ for the harmonic oscillator driven by a periodic series of
square pulses. The first 11 terms of the Fourier series were used to construct this solution

motion of the system for small times. But at large times the two solutions should
match, as indeed they do. The close agreement between the numerical solution and
the Fourier solution using only eleven terms suggests that eleven terms is sufficient
to get accurate results from the Fourier method in this case. However, we could
test this conclusion by including more than eleven terms to see if it results in any
noticeable changes in the output.

4.7 The Pendulum

Although Sect. 4.1 shows that many physical systems can be approximated as
harmonic oscillators, the analysis is restricted to oscillations near a stable equilib-
rium point. An important question remains: What happens if the motion deviates
too far from the stable equilibrium point, such that we can no longer accurately
approximate the system as a harmonic oscillator? This section looks at a simple,
but important, case in which we can observe deviations from harmonic oscillator
behavior when the amplitude of oscillations about a stable equilibrium point
becomes too large.

Consider the simple pendulum, as depicted in Fig. 4.25: a point particle (or bob)
of mass m attached to the end of a massless rigid rod of length L. The other end of
the rod is fixed to a point, and the rod can pivot about this point to move in a single
plane.

116 4 Oscillations

Fig. 4.25 The simple pendulum: a point mass attached to a massless, rigid rod that is free to rotate
about the opposite end

Basic trigonometry implies that the pendulum bob lies a distance L cos � below
the top of the pendulum. If we let the bottom of the pendulum serve as our zero-
point for gravitational potential energy, then the potential energy function for this
system is

U.�/ D mgL.1 � cos �/: (4.37)

The equilibrium points for this system occur at values of � for which dU=d� D 0.
To find the equilibrium points we first evaluate dU=d� .

(%i) Up(theta):=m*g*L*(1-cos(theta))$
diff(Up(theta),theta);

(%o) g m sin .�/ L

The equilibrium points will occur whenever sin � D 0, or when � D n� for
integer n. Although, mathematically, there are an infinite number of solutions, these
solutions correspond to only two physically distinct positions of the pendulum:
hanging straight down (� D 0 ˙ 2n�) or sticking straight up (� D � ˙ 2n�).
We can evaluate the stability of these two equilibrium points by first computing
d2U=d�2 and then evaluating this second derivative at each equilibrium point to
find the corresponding value of k for that point.

(%i) k(theta):=”(diff(Up(theta),theta,2))$
[k(0),k(%pi)];

(%o) Œg m L; �g m L�

We find that at � D 0, k D gmL > 0 and therefore this equilibrium point is
stable. However, at � D � , k D �gmL < 0 and therefore the equilibrium point at
� D � is unstable. These results are intuitive: a pendulum can balance if it is placed

4.7 The Pendulum 117

straight upward, but the slightest nudge will send it falling away from this upright
position. In contrast, a downward hanging pendulum will only begin to oscillate if
nudged away from its equilibrium position.

The potential energy function near the stable equilibrium point at � D 0 will
have the approximate form of a harmonic oscillator potential energy function. We
can illustrate this fact by expanding U.�/ as a Taylor series about � D 0.

(%i) taylor(Up(theta),theta,0,4);

(%o) g m L �2

2 � g m L �4

24 C :::

To second order in � we see that U.�/ � .1=2/gmL�2. We can compare this
approximate function to the full potential energy function (Eq. 4.37) over the full
range of motion for the pendulum (�� � � � �). We will assume a 1 m pendulum
with a 1 kg bob. The code below generates a plot of the full potential energy function
as well as the approximate function. The results are displayed in Fig. 4.26.

(%i) [g,m,L] : [9.8,1,1]$ wxdraw2d(key = "Actual",
explicit(Up(theta),theta,-%pi,%pi),
xlabel="{/Symbol q}", ylabel="U(J)",
color=gray,key="Approximate",
explicit(g*m*L*thetaˆ2/2,theta,-%pi,%pi))$

Figure 4.26 shows that the approximate function (lighter curve) fits very well
with the actual potential energy function (darker curve) near � D 0, but for j� j > 1

there are noticeable deviations among the curves on the scale of this plot. For large
values of � the two curves deviate significantly. So near the equilibrium point we

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

-3 -2 -1 0 1 2 3

U
(J

)

θ

Actual
Approximate

Fig. 4.26 Potential energy as a function of angle (in radians) for a pendulum near the stable
equilibrium point (black) and second order Taylor series approximation (gray)

118 4 Oscillations

would expect the motion to mimic that of a harmonic oscillator, but far from the
equilibrium point we expect significant deviations from harmonic oscillator motion.

In Sect. 4.2 we showed that the energy equation for a simple harmonic oscillator
could be rewritten to demonstrate that the motion of a harmonic oscillator will
lie along an ellipse in the phase space. We now try a similar procedure with the
pendulum. The total energy for our simple pendulum is given by

E D .1=2/mv2 C mgL.1 � cos �/ D .1=2/mL2!2 C mgL.1 � cos �/; (4.38)

where ! D P� is the angular velocity of the pendulum’s motion. To determine the
path of the pendulum in phase space we can solve Eq. 4.38 for ! as a function of � .

(%i) kill(L,m,g)$ solve(E=m*Lˆ2*%omegaˆ2/2+
m*g*L(1-cos(theta)),%omega);

(%o) Œ! D �
p

2
p

E
m �g L.1�cos.�//

L ; ! D
p

2
p

E
m �g L.1�cos.�//

L �

So the pendulum will follow a path in phase space that is defined by

! D ˙
p

2

L

r
E

m
� gL.1 � cos �/: (4.39)

The plus sign gives the portion of the curve for which the pendulum is swinging
counterclockwise (positive angular velocity) while the minus sign gives the portion
of the curve for which the pendulum is swinging clockwise (negative angular
velocity). The code below constructs a plot of these phase space curves for three
different energies: E1 D 5 J, E2 D 15 J, and E3 D 20 J.5 The resulting plot is shown
in Fig. 4.27.

(%i) %omega(theta,E):=sqrt(2*E/m-2*g*L*(1-cos(theta)))
/L$ L:1$ m:1$ g:9.8$ E1:5$ E2:15$ E3:20$

wxdraw2d(yrange=[-2*%pi-1,10],
/* For E = E1 */ key = concat("E =", string(E1)),
explicit(%omega(theta,E1),theta,-%pi,%pi), key=
"", explicit(-%omega(theta,E1),theta,-%pi,%pi),
-Similar commands for E2 and E3 are omitted.-
xlabel="{/Symbol q}",ylabel = "{/Symbol w}
(rad/s)");

Figure 4.27 shows three different curves. Near the center is the ellipse-shaped
curve for E1. At this energy the pendulum has small amplitude oscillations, so it
remains near the stable equilibrium point at � D 0. The phase space path looks
just like that of a harmonic oscillator. Outside of this curve there is another closed
curve for E2. The curve is not quite ellipse-shaped, but has left and right sides that
are somewhat pointed. At this energy the pendulum swings farther from equilibrium

5The Symbol commands might not work in all Maxima installations. The text entries theta and
omega may be substituted.

4.7 The Pendulum 119

-4

 0

 4

 8

-3 -2 -1 0 1 2 3

ω
 (

ra
d/

s)

θ

E =5
E =15
E =20

Fig. 4.27 Phase space path (angular velocity !, in rad/s, as a function of angle � , in rad) for a
simple pendulum with three different energies

(reaching as far as two radians from the equilibrium point) and its motion deviates
noticeably from that of a harmonic oscillator. However, the pendulum will still
exhibit oscillatory motion.

For even greater energies, like E3, the pendulum can swing with enough energy
to reach the unstable equilibrium point at � D ˙� and even go past it, so that
the pendulum will repeatedly swing through full circles of motion. This motion is
represented by the two curves at the top and bottom of the plot.6

How do these deviations from the elliptical phase space path affect other
properties of a pendulum’s motion? We have seen that one important property of
a harmonic oscillator is that its motion is periodic with a period T D 2�

p
m=k.

This period does not depend on the amplitude of the oscillations. Will the same hold
true for the pendulum? If the pendulum has enough energy to swing all the way
around, then it won’t oscillate at all. But if the pendulum does oscillate, will the
period of these oscillations depend on the amplitude of the motion?

We can determine the period of a pendulum by rewriting Eq. 4.39:

! D d�

dt
D ˙

p
2

L

r
E

m
� gL.1 � cos �/: (4.40)

6Unless the option draw_realpart=false is used the graph will show horizontal lines at
! D 0. This happens because, by default, draw plots the real part of complex-valued functions.
We use the command set_draw_defaults at the beginning of the workbook to suppress the
drawing of the real parts of complex values and well as to set other default values.

120 4 Oscillations

We can separate the variables � and t to find

dt D ˙ L d�p
2E=m � 2gL.1 � cos �/

: (4.41)

We can integrate both sides of Eq. 4.41 to find the period of the pendulum, but we
must first consider our limits of integration.

We want the time integral to cover one full period of oscillation. Therefore, the
integral over � must also cover a full oscillation. In other words, we need to integrate
from one extreme value of � to the other, and back again. Suppose the pendulum is
released from rest at an angle ��max. The pendulum will swing until it reaches the
angle �max. At that point it will turn around and swing back. So our integral over �

must run from ��max to �max (with positive !), and back again (with negative !).
We can write the total energy E in terms of �max because when � D �max then

! D 0, so Eq. 4.38 gives E D mgL.1 � cos �max/. Substituting this expression into
Eq. 4.41 and integrating both sides we find

Z T

0

dt D
Z �max

��max

L d�p
2gL.cos � � cos �max/

C
Z ��max

�max

�Ld�p
2gL.cos � � cos �max/

;

(4.42)
or

T D 2

Z �max

��max

L d�p
2gL.cos � � cos �max/

: (4.43)

We can try to evaluate this integral using Maxima’s integrate command.

(%i) 2*integrate(L/sqrt(2*g*L*(cos(theta)-
cos(theta[max]))), theta,-theta[max],theta[max]);

(%o) 0:45175
R �max

��max

1
p

cos.�/
�cos.�max/

d�

Maxima is unable to evaluate this integral symbolically. This is not a flaw in
Maxima: this integral has no closed form solution. We can, however, compute this
integral numerically as long as we have values for all of the parameters. Note that
we can rewrite Eq. 4.43 as

T D 2�

s
L

g

1

�
p

2

Z �max

��max

d�p
cos � � cos �max

D 2�

s
L

g
f .�max/: (4.44)

We use Maxima’s quad_qags numerical integration command to evaluate the
f .�max/. Then we can construct a plot of f .�max/ versus �max to determine how the
period of the pendulum’s oscillations depend on amplitude. The code below shows
how to construct the plot and Fig. 4.28 shows the result.

4.7 The Pendulum 121

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0.5 1 1.5 2 2.5 3

f

θmax

Fig. 4.28 Plot of the function f .�max/, where �max is the amplitude of the pendulum’s oscillation
(in radians). The period of a pendulum’s oscillation is T D 2�

p
L=g f .�max/

(%i) f(q):=quad_qags(1/sqrt(cos(x)-cos(q)),x,-q,q)[1]
/(%pi*sqrt(2))$

wxdraw2d(explicit(f(q),q,0.01,%pi-0.01),xlabel=
"{/Symbol q}_max",ylabel="f")$

Note how we use the [1] to select the first element from the list that
quad_qags returns, so that the function returns the value of the integral but
not the other numbers in that list. Note also how our plot range extends from just
above 0 to just below � : the numerical integration routine runs into problems at
�max D 0 or � . The plot shows that for small values of �max, f .�max/ � 1. So for
small amplitude oscillations the period of the pendulum is simply T D 2�

p
L=g

and the period does not depend on amplitude (since the curve is relatively flat).
However, for larger amplitude oscillations the period will be longer. For �max D 2

radians the period is roughly 50 % greater than it is for small amplitude oscillations.
As �max approaches � the period increases without bound. This result makes sense
because if the pendulum were released exactly at � D � then it would remain at
that unstable equilibrium point forever.

As the system moves far from the stable equilibrium point the motion begins to
deviate from that of a harmonic oscillator. In the case of the simple pendulum the
deviations are not dramatic. The pendulum still oscillates as long as it doesn’t have
enough energy to swing all the way around. In the next chapter, however, we will
see that these deviations from a harmonic oscillator potential energy function can
give rise to some novel and interesting behavior patterns.

122 4 Oscillations

4.8 Exercises

1. Show that if the quarter sphere is placed on its point (the point C in Fig. 4.2)
then it still has an equilibrium at � D 0. Is this equilibrium stable or unstable?
Provide proof for your answer.

2. Investigate the isotropic three-dimensional harmonic oscillator with kx D ky D
kz D 1 N/m. Plot the motion for several different initial conditions. Examine
cases in which the oscillator starts from rest but is displaced from the origin (try
several different directions) as well as cases where the oscillator is displaced
from the origin and has a nonzero initial velocity. For what kind of initial
conditions is the motion periodic? For what kind of initial conditions is the
motion one-dimensional? For what kind of initial conditions is the motion two-
dimensional? Is it possible for the motion to be three-dimensional (i.e., not
confined to a plane)?

3. Repeat the previous problem, but this time for an anisotropic oscillator with kx,
ky, and kz equal to 1, 1=2, and 1=3 N/m, respectively. Comment on the differences
between this case and the previous case.

4. Repeat the previous problem, but this time for an anisotropic oscillator with
kx, ky, and kz equal to 1, 1=

p
2, and 1=� N/m, respectively. Comment on the

differences between this case and the previous case.
5. Consider a damped harmonic oscillator with !0 D 1 rad/s, x0 D 1 m, and v0 D 0.

Construct a single plot that shows x.t/ for three different values of ˇ: 0.5, 1, and
1.5 s�1. Then do the same for plots of v.t/, phase space trajectory, and E.t/.
For each plot, comment on the differences between the three cases. Make sure
to clearly identify which case is underdamped, which case is overdamped, and
which case is critically damped.

6. Examine what happens to the steady state motion of a driven harmonic oscillator,
as shown in Fig. 4.16, if you vary some of the parameters. Recreate the figure
using all of the same parameters except let ˇ D 0:5 s�1. How (if at all) does
increasing ˇ alter the period and amplitude of the steady state motion? Recreate
the figure again, but this time just change f to 5 N/kg. How (if at all) does
increasing f alter the period and amplitude of the steady state motion? Finally,
recreate the figure with the same parameters except for the value of !. Create
plots using the following values of !: 0.6, 0.8, 1.0, 1.2, and 1.4 rad/s. Discuss
how these changes in the driving frequency alter the period and amplitude of the
steady state motion.

7. Repeat the analysis of Sect. 4.6, but this time with a driving force given by

f .t/ D f ! .mod.t C �=!; 2�=!/ � �=!/ =�: (4.45)

Note that the mod.x; y/ function can be written in Maxima as mod(x,y). Plot
the function, using f D 1 N/kg and ! D 1 rad/s. Then investigate the motion of a
harmonic oscillator with !0 D 1 rad/s and ˇ D 0:5 s�1 driven by this force. Use
rk to generate a numerical solution for x.t/ if the oscillator starts from rest at

4.8 Exercises 123

the equilibrium position. Then plot the Fourier series for this f .t/ using the first
ten terms in the series, and then again using the first 50 terms. Note how the
inclusion of more terms leads to a better approximation of f .t/. Finally, plot the
approximate steady state solution for x.t/ using the first ten terms in the Fourier
series for f .t/.

8. A quartic oscillator has potential energy U.x/ D ˛x4, where ˛ is a positive
constant. Show that this oscillator has an equilibrium point at x D 0. The
stability of the equilibrium point is indeterminate using the methods discussed
in this chapter, but it turns out that the equilibrium is stable. Plot the potential
energy function (for some value of ˛) and explain how the plot indicates that
the equilibrium point is stable. Find the period of oscillation for a particle of
mass m in this quartic oscillator system if the particle is released from rest at
x D x0. (Note: you may get a cryptic answer from Maxima when you evaluate
the integral needed to find the period, but just use float to convert the answer
to a more useful form.) Does the period of a quartic oscillator depend on the
amplitude of oscillation? How so?

Chapter 5
Physics and Computation

By this point we have seen that Maxima’s built-in routines can be very helpful
tools in solving physics problems. Users can expand Maxima’s usefulness by taking
advantage of its programming capabilities. Although Maxima should not be viewed
as a substitute for a full-featured programming language, it does have some basic
programming features that allow users to write simple programs. This chapter
introduces these basic programming features and shows how they can be used to
solve problems in mathematics and physics.

Maxima’s programming features not only let users add new functionality, but
they also allow users to explore the algorithms used to carry out various numerical
computations. Although many of these computational tasks can be performed
using Maxima’s built-in routines, it is important for users to have some idea of
what is going on “inside the black box.” In this chapter we will explore some of
these algorithms and show how the behavior of the algorithms can be connected
to important physics concepts. Other numerical algorithms are discussed in the
Appendix.

5.1 Programming: Loops and Decision Structures

Maxima is designed for symbolic and numerical mathematics, not as a tool for
computer programming. Even so, Maxima does offer programming features that
can be useful for mathematics and physics. This section introduces two types
of programming features that will be used later in the book: loops and decision
structures.

© Todd Keene Timberlake & J. Wilson Mixon, Jr. 2016
T.K. Timberlake, J.W. Mixon, Classical Mechanics with Maxima, Undergraduate
Lecture Notes in Physics, DOI 10.1007/978-1-4939-3207-8_5

125

126 5 Physics and Computation

5.1.1 Loops

Loops allow repetition. In each pass through a loop, Maxima executes a specific
set of commands, possibly changing the values of certain variables. It then makes
another pass through the loop, using the new values for the variables produced by
the previous pass. Maxima uses the do command to specify the set of instructions to
be executed in each pass of the loop. Other commands control how many times these
instructions will be executed before the program stops. The best way to understand
how loops work is to look at several examples. Our first example of a Maxima loop
is shown below.

(%i) for i:0 thru 2 do (display(i))$
(%o) i D 0

i D 1
i D 2

The example above uses a for command to control the loop. The variable i is an
index that counts the number of passes through the loop. This index variable is given
an initial value of 0, and its value is automatically increased by 1 after each pass
through the loop. The thru command specifies when Maxima should terminate the
loop. In this case, we instruct Maxima to continue executing the loop until the value
of i reaches 2. Then Maxima executes the loop one last time and stops. Finally, the
do command tells Maxima that the next command after do is the one that should
be executed on every pass through the loop. Each line of the output is produced by a
different pass through the loop. The last pass occurs when i D 2. Note that the index
i is a local variable, which means that its value is defined only within the loop, not
stored in Maxima’s memory. Once Maxima exits the for loop the value of i reverts
to whatever it was before the for loop was entered.

For this first example it may help to walk through a detailed description of what
happens during each pass through the loop.

• On the first pass the variable i is set to 0 and the command display(i) is
executed.

• Then the value of i is increased to 1 and the display command is executed again
(giving a different output value this time, because the value of i has changed).

• Then i is increased to 2 and the display command is executed again.
• At this point the loop terminates because it has completed the pass with i D 2 as

specified by the thru command.

The next example uses for in a different way. In this example the loop is
controlled by the while command. This command specifies the condition under
which the program will continue passing through the loop. In this case, the
programming will continue looping as long as i is less than 4. As soon as the
condition is no longer satisfied, then the loop will terminate.

5.1 Programming: Loops and Decision Structures 127

(%i) for i:0 while i<4 do display(i)$
(%o) i D 0

i D 1
i D 2
i D 3

It may seem that thru and while do the same thing, but there is at least one
important difference. The thru command only lets you specify the final value for
the index variable. The while command specifies a condition for continuing the
loop that may involve variables other than the index variable. Look at the example
below and try to predict the value of x after the program has been executed.1

(%i) x:4$ for i:0 while x<280 do x:x*x-3$

The next example uses the unless command to control the loop. This command
is similar to the while command, except that it specifies a condition that causes
the loop to terminate. In the example below the loop will continue as long as i is not
greater than 3. Once i exceeds 3, then the loop terminates.

(%i) for i:0 unless i>3 do display(i)$
(%o) i D 0

i D 1
i D 2
i D 3

To increase the value of the index variable by increments other than 1, use the
step command. For example, the code shown below increases i by 3 after each
pass through the loop, terminating after the i D 9 pass. Try changing thru 9 to
thru 10 to see what happens. This example illustrates that the thru N command
is equivalent to unless i>N, where i is the index variable.

(%i) for i:0 step 3 thru 9 do display(i)$
(%o) i D 0

i D 3
i D 6
i D 9

We can change the value of the index variable in more complicated ways, using
the next command. Look at the example shown below and be sure that you
understand why it produces the output shown. For the first pass through the loop
the index is set to 1. On the next pass the index is set to five times the current value
of i, so the new value of i will be 5. On the next pass the new index will be the old
index (i D 5) times five, so i D 25, and so on.

(%i) for i:1 next 5*i while i<1000 do display(i)$
(%o) i D 1

i D 5
i D 25
i D 125
i D 625

1To check your answer, have Maxima display the value of x immediately after executing the
program.

128 5 Physics and Computation

We often want to execute more than one command during the course of a
single pass through the loop. The block command lets us define a sequence
of commands to be executed as a single step. The block command takes
the form block([v_1, ..., v_m], com_1, ..., com_n) where
com_1,...,com_n) represent the sequence of commands that will be executed
during each evaluation of the block. The commands will be executed in the order in
which they are listed. The vi are local variables within the block. The values may
be changed within the block. Once Maxima exits from the block, however, these
variables revert to whatever values they had before the block was executed. The
examples below are two programs that compute the so-called Fibonacci numbers.
The first uses a block to keep the created value(s) of the variables local; the second
does not. Notice the different treatments of the z variable.

(%i) x:1$ y:1$ z:5$
for i:3 thru 7 do

block([z], z:x+y, x:y, y:z,print(y))$
display(z)$

(%o) 2
3
5
8
13
z D 5

(%i) x:1$ y:1$ z:5$
thru 5 do

(z:x+y, x:y, y:z,print(y))$
display(z)$

(%o) 2
3
5
8
13
z D 13

The following example uses a block to create the recursion required to compute
the factorial of a number. For a given value of the variable x, the function of x equals
x’s current value times the value when x is one less than the current value. The lists
show the factorials for the integers 1–5, first created by this small program and then
created directly by using Maxima’s factorial command.

(%i) kill(values,functions,arrays)$
g(x) := block([temp], temp: 1,

while x > 1 do (
temp : x*temp, x:x -1), temp)$

xL : makelist(x, x, 1, 5);
gL : map(g, xL);
xfactorial_Maxima : map(factorial, xL);

(%o) Œ1; 2; 3; 4; 5� .%o/ Œ1; 2; 6; 24; 120� .%o/ Œ1; 2; 6; 24; 120�

5.1 Programming: Loops and Decision Structures 129

5.1.2 Decision Structures

Maxima functions can be extended to include logical expressions like the following
simple if ...then ...else statement. In this example, the result of a
negative or zero argument for f .x/ is a text message warning that x must be positive.
If the argument is positive then f .x/ D log.x/. The code below defines the function
and generates output for the function evaluated at a few values of x.

(%i) f(x) := if x <= 0 then "x must be positive"
else log(x)$

f(-5.0); f(0); f(5.0);
(%o) x must be positive
(%o) x must be positive
(%o) 1:6094

The if ...then construction is called a decision structure, because it supplies
the computer with alternatives and criteria to decide which alternative should
be used. The if ...then structure can be extended to include intermediate
possibilities, using elseif statements between the if and the else. The code
below uses one such statement to create a piecewise function with kinks at x D 1

and at x D 2. The code also generates the plot of the function shown in Fig. 5.1.

(%i) f(x) := if x < 1 then x
elseif x<2 then 1+3*(x-1)
else 4-2*(x-2)$

wxdraw2d(xlabel="x",ylabel="f(x)",
explicit(f(x),x,0,4))$

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0 0.5 1 1.5 2 2.5 3 3.5 4

f(
x)

x

Fig. 5.1 Plot of a piecewise function constructed using an if ... then decision structure

130 5 Physics and Computation

Later in the book we will see that the combination of loops and decision
structures can provide for powerful programming. To give an example, the code
below defines a function that tests whether or not the input value is a prime number.
The function uses Maxima’s integerp command, which evaluates whether or not
the argument is an integer. It also uses Maxima’s catch and throw commands.
For more information on these commands see the Maxima manual or wxMaxima’s
Help menu. To illustrate the capabilities of this newly defined function, the code
generates a table that shows the result of evaluating the function for several inputs.

(%i) prime(x):= (if integerp(x) then
(if x<2 then "not an integer > 1" else
catch(i:2,
while i <= sqrt(x) do
(j:2, unless j*i > x do
(if j*i=x then throw("no")

else j:j+1), i:i+1
),

throw("yes")))
else "not an integer")$

/*Evaluate four numbers */
transpose(matrix(["Number", 1, 17, 21, 21/2],
["Evaluation", prime(1), prime(17),
prime(21), prime(21/2)]));

(%o)

2
66664

Number Evaluation
1 not an integer > 1
17 yes
21 no
21
2

not an integer

3
77775

5.2 Random Numbers and Random Walks

Most of the material that this text covers is deterministic. That is, a specified set
of conditions always generates the same outcome. Some processes, however, are
not deterministic; they are random. Although classical physics does not involve
the fundamental randomness of quantum mechanics, it is nevertheless true that
many classical systems display motion that is apparently random. Moreover, random
numbers can sometimes be used to produce completely predictable (and useful)
results. This section briefly examines Maxima’s random number generation and how
it can be used to investigate interesting mathematical and physical concepts.

Maxima’s random command produces sequences of pseudorandom numbers.
These numbers, actually the product of a mathematical algorithm that depends on a
particular “seed,” are generally close enough to random for practical purposes. The
random command differs from most other Maxima commands in one important
respect: simply using this command repeatedly can give different answers each time,
depending on the seed. If we want to get the same “random” number sequence each

5.2 Random Numbers and Random Walks 131

time, we can begin with the commands below. These commands specify a seed,
which sets the state of the random number generator.2

(%i) s1:make_random_state(345497)$
set_random_state(s1)$

If x is a positive real (floating-point) number, then the command random(x)
will generate a value selected from random real numbers that are uniformly
distributed on the interval Œ0; x/. If x is a positive integer then random will generate
a random integer from 0 to x � 1, with all possibilities being equally likely. Other
inputs for x will generate an error message.3

(%i) /*floating point*/ random(1.0);
/*integer*/ random(7);

(%o) 0:731 .%o/ 5

Try evaluating the above commands a few times. If you reset the state of the
random number generator to the state s1 before evaluating the random command,
you always get the same result. If you evaluate the random command again without
first resetting the state of the random number generator, then you can get a different
result each time you evaluate random. Play around with this to make sure you
understand how setting the state of the random number generator affects the results
obtained from random.

5.2.1 Approximating �

As an example of producing a predictable outcome by using random numbers,
consider the following method for approximating the value of � . Begin with a 2
by 2 square that is centered on the origin. Inscribe a unit circle, also centered on the
origin. The square’s area is 4; the circle’s area is � . If we randomly generate a large
number of points inside the square, then the fraction of these points that fall inside
the circle should be �=4. That is, the probability that any one randomly generated
value will fall within the unit circle is �=4. Therefore the number of randomly
generated values (call this number j) that fall inside the unit circle approaches n�=4

as n becomes large. Another way to say this is that j tends toward n�=4, though
it cannot equal n�=4 in any particular finite sample. This relationship provides an
approximation, � � 4j=n, where j is the number of points that fall inside the unit
circle and n is the number of randomly generated points inside the square.

2There is nothing special about the number that serves as the argument for the
make_random_state command. Any integer may be used, but different arguments will
generate different “seeds.”
3Note the use of /* and */ to enclose comments in this code. Comments are ignored by Maxima
when the code is evaluated.

132 5 Physics and Computation

The program below generates 10,000 pairs of x- and y-coordinates, each between
�1 and 1. These values are generated by first generating a random number between
0 and 1, then subtracting 0.5, and finally multiplying by 2. For each coordinate pair,
if x2 C y2 < 1, the point lies inside the square and inside the unit circle. When this
condition is met, the counter variable j is increased by 1. Once all 10,000 points
have been generated and tested, the program displays the approximate value of �

given by 4j=n. Suppose 7901 of the 10,000 points fall inside the circle, then the
approximation of � is 4.7901=10;000/ D 3:1604. (But running the code again will
give a different result, because it will generate a different set of random numbers,
unless you reset the state of the random number generator each time.)

(%i) n:10000$ j:0$
for i:1 thru n do
block(x:2*(random(1.0) - 0.5),
y:2*(random(1.0) - 0.5),
if (xˆ2+yˆ2 <= 1) then j:j+1)$

float(4*j/n);
(%o) 3:1764

The exercise above illustrates how the generation of random numbers can be
used within a Maxima program, and how random numbers can be used to produce a
predictable result. This method is not, however, an efficient way of calculating the
value of � .

5.2.2 Evolution of an Ensemble

We can also use random numbers to illustrate the movement of an ensemble (or
collection) of particles. For example, we can examine the motion of an ensemble
of particles moving with constant acceleration. First we generate a large number
of initial position and velocity values distributed uniformly within fixed ranges
(i.e., within some rectangular region of the phase space). Think of these as initial
conditions for a large number of particles. The code below shows how to generate
these initial points and create a plot of the ensemble, which is shown in Fig. 5.2.

(%i) l1:makelist(
[random(1.0),random(1.0)],i,1,4000)$

wxdraw2d(xrange=[-0.1,1.1],yrange=[-0.1,1.1],
xlabel="Initial Position (m)", ylabel="Initial
Velocity (m/s)",points(l1))$

Now, allow each particle in the ensemble to move with constant acceleration a
until some later time t. The code below evolves the ensemble to the time t D 3

s with constant acceleration a D 9:8 m/s2. Figure 5.3 shows the final locations
of the particles in phase space. The ensemble now occupies a distorted rectangle

5.2 Random Numbers and Random Walks 133

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

In
iti

al
 V

el
oc

ity
 (

m
/s

)

Initial Position (m)

Fig. 5.2 Initial conditions for an ensemble of particles placed at random points within a
rectangular region of phase space

 29.4

 29.6

 29.8

 30

 30.2

 30.4

 44 44.5 45 45.5 46 46.5 47 47.5 48

F
in

al
 V

el
oc

ity
 (

m
/s

)

Final Position (m)

Fig. 5.3 Final phase space locations for the ensemble after motion with constant acceleration

134 5 Physics and Computation

(it’s actually a parallelogram) in phase space. The fact that the area occupied by the
ensemble remains constant illustrates Liouville’s Theorem, which we discuss more
fully in Sect. 5.4.

(%i) t:3$ f(x):=[x[1]+x[2]*t+0.5*9.8*tˆ2,x[2]+9.8*t]$
l2:map(f,l1)$
wxdraw2d(xrange=[44,48.1],yrange=[29.3,30.5],

xlabel = "Final Position (m)",
ylabel= "Final Velocity (m/s)",points(l2))$

5.2.3 A Random Walk

In this section we use Maxima to generate and display a “random walk” on a
lattice in two dimensions. Random walks can be used to model interesting physical
processes like the diffusion of molecules in a gas. Let’s look at a simple example of a
random walk. The walker begins at the origin. During each time step the walker can
move one unit in any of four directions (˙x or ˙y) with equal probability for each
direction. The probability to increase x by one unit, which we can denote p.x !
xC1/, is 0.25. Likewise, p.x ! x�1/ D p.y ! yC1/ D p.y ! y�1/ D 0:25. We
can generate a random number between zero and one and then use the probabilities
to determine in which direction the walker will move.

To investigate this random walk, we first generate the sequence of points in
the walk. The code below executes a random walk by initializing x and y to zero
and then, for each step in the walk, using a set of if ... then ... elseif
statements to determine whether the walker moves in the positive x, negative x,
positive y, or negative y direction. Think carefully about why we must use the
various numbers in the condition statements (0.25, 0.5, 0.75) and the final else
statement in order to ensure that each direction is assigned an equal probability.
After each step has been taken the new position .x; y/ is added (using the append
command) to an array that stores the entire sequence of locations for the walker.

(%i) s1:make_random_state(373497)$
set_random_state(s1)$
x:0$ y:0$ rw1:[[x,y]]$ steps:20000$
for i:0 thru steps do

block(r1:random(1.0),
if r1 < 0.25 then x:x+1
elseif r1 < 0.5 then x:x-1
elseif r1 < 0.75 then y:y+1
else y:y-1,
rw1:append(rw1,[[x,y]]))$

To display the results of this random walk we create four different graphic
objects, each of which displays the first N steps of the walk (with N D 200, 2000,
10,000, and 20,000). The code below shows how to create the graphic object for
N D 200. Similar code is used to create the other three graphic objects, which are
then displayed using the wxdraw command. Figure 5.4 shows the results.

5.2 Random Numbers and Random Walks 135

Fig. 5.4 The first N steps of
a random walk for N D 200

(top left), N D 2000 (top
right), N D 10;000 (bottom
left), and N D 20;000

(bottom right)
-10

-5

 0

 0 4 8 12

y

x

 0

 20

 40

-20 -10 0 10

y

x

 0

 30

 60

 0 30 60

y

x

 0

 50

 100

-40 0 40 80

y

x

(%i) n200:gr2d(xaxis=true, yaxis=true, xlabel="x",
ylabel = "y", ytics=5, xtics=4,
point_size=0, points_joined=true,
points(makelist(rw1[i],i,1,200)))$

/*Commands for n2000, n10000, and n20000 omitted.*/

wxdraw(n200,n2000, n10000, n20000,columns=2,
dimensions=[480,480])$

We can also calculate the expected value of each coordinate after N steps. If the
walker starts at .x0; y0/ and can only move one unit in each of the four primary
directions, then the expected value for x after N steps is:

hxiN D x0 C NŒp.x ! x C 1/ � p.x ! x � 1/�: (5.1)

Likewise the expected value for the y coordinate is

hyiN D y0 C NŒp.y ! y C 1/ � p.y ! y � 1/�: (5.2)

If the walker is not restricted to moving one unit at each step, then the expected
value for x would be

hxiN D x0 C N
X

d

Œp.x ! x C d/ � d � p.x ! x � d/ � d�; (5.3)

where the sum is taken over all distances d that the walker can move in a single step.
The expected value of y is obtained by replacing x with y in the above equations.

136 5 Physics and Computation

For the simple random walk we examined above the expected values for x and
y are both zero, because the probability to increase each coordinate by one unit is
balanced by an equal probability to decrease the coordinate by one unit. In fact, we
can see that any time the probability for a coordinate to go up by d is equal to the
probability for that coordinate to go down by d (for all d) then the expected value
of that coordinate must be zero. But Fig. 5.4 shows that our random walker does not
remain at the origin. The reason for this is that statistical fluctuations prevent the
random sequence of steps from perfectly canceling, even though we would expect
them to cancel in the limit of an infinite number of steps.

We examine these statistical fluctuations by looking at how the walker’s distance
from the origin changes as more steps are taken. The code below generates a list
of these distances and then plots the distances as a function of the number of steps
taken. The results are shown in Fig. 5.5.

(%i) rw2:makelist(sqrt(rw1[i][1]ˆ2+rw1[i][2]ˆ2),
i,1,steps+2)$

wxdraw2d(point_size=0, xlabel="Step Number",
ylabel="Distance from Origin",
points_joined=true,points(rw2),line_type=dots,
explicit(sqrt(stepno),stepno,0,20000))$

For a random walk of this type, in which the expected values of x and y are zero,
we expect the distance from the origin, on average, to increase like the square root
of the number of steps (shown by the dotted line in Fig. 5.5) because of statistical
fluctuations. The plot shows that the distances are not generally equal to the square
root of the step number, but the increase in distance with step number does generally
track the curve for the square root function. For a random walk in which the expected
values are not zero we would see a linear increase in distance as a function of the
number of steps taken.

Fig. 5.5 Distance from the
origin as a function of the
number of steps for the
random walk shown in
Fig. 5.4

 0

 20

 40

 60

 80

 100

 120

 140

 0 5000 10000 15000 20000

D
is

ta
nc

e
fr

om
 O

rig
in

Step Number

5.2 Random Numbers and Random Walks 137

5.2.4 Nonuniform Distributions

We have so far been considering only random numbers that are uniformly distributed
on some interval (and random integers). In this section we look at how to generate
random real numbers that follow a nonuniform distribution. For comparison, the first
example shows random values drawn from the uniform distribution on the interval
(2,5). The makelist command generates the list of random numbers, while
the wxhistogram command (part of the descriptive package) generates a
histogram of the data with 20 bins, as shown in Fig. 5.6.

(%i) load(descriptive)$
uniform:makelist(2+random(3.0),i,1,1000)$
wxhistogram(uniform,nclasses=20, xlabel="x",

ylabel="Frequency")$

The histogram is relatively flat, as we would expect for a uniform distribution.
The numbers produced by the random command are equally likely to be found
at any location in the interval .2; 5/. However, the histogram is not perfectly flat
because our list of random numbers will exhibit some random fluctuations away
from the expected uniform behavior.

The next example shows how to generate random numbers that follow a
exponential distribution such that the probability of getting a value between x and
x C dx is P.x/dx where P.x/ D exp.�x/. It is fairly easy to derive that we need:
x D � log.y/ where y is distributed uniformly on .0; 1/. The code below uses
this result to generate a list of 1000 random numbers that follow the exponential

 0

 10

 20

 30

 40

 50

 60

 2 2.5 3 3.5 4 4.5 5

F
re

qu
en

cy

x

Fig. 5.6 Histogram for a set of 1000 random numbers uniformly distributed on the interval .2; 5/

138 5 Physics and Computation

 0

 50

 100

 150

 200

 250

 0 1 2 3 4 5 6

F
re

qu
en

cy

x

Fig. 5.7 Histogram of 1000 random numbers that follow the exponential distribution

distribution and then plot a histogram of those numbers. The histogram in Fig. 5.7
shows the expected decreasing exponential form.

(%i) expdist:makelist(-log(random(1.0)),i,1,1000)$
wxhistogram(expdist,nclasses=20, xlabel="x",

ylabel="Frequency")$

The final example shows how to generate numbers that follow a Gaussian
(normal) distribution with mean zero and variance 1. This example uses the Box-
Muller method where r is a Poisson random number and � is a uniform random
angle on the interval (0, 2�). Then x D p

2r cos � and y D p
2r sin � are both

distributed according to the normal distribution. The code below generates 1000
random numbers that follow the Gaussian (normal) distribution. The histogram of
these numbers shown in Fig. 5.8 exhibits the expected “bell curve” form.

(%i) normal1:makelist(float(sqrt(-2*log(random(1.0)))*
cos(2*%pi*random(1.0))),i,1,1000)$

wxhistogram(normal1,nclasses=20, xlabel="x",
ylabel="Frequency")$

5.3 Iterated Maps and the Newton–Raphson Method

As we saw in Chap. 1, not all equations can be solved analytically using Maxima’s
solve command. To find the solution to some equations we must use numerical
methods. In this section we will examine one particular method for solving

5.3 Iterated Maps and the Newton–Raphson Method 139

 0

 20

 40

 60

 80

 100

 120

 140

-3 -2 -1 0 1 2 3

F
re

qu
en

cy

x

Fig. 5.8 Histogram of 1000 random numbers that follow a Gaussian (normal) distribution with
mean 0 and variance 1

equations. This method is known as the Newton–Raphson method (or sometimes
just Newton’s method). A special case of the method was employed by Isaac Newton
and simplified by Joseph Raphson, both in the seventeenth century. The general
method, as described in this section, was first presented by Thomas Simpson in the
eighteenth century.

The detailed examination of the Newton–Raphson method presented in this
section serves two purposes. First, it gives you a “behind the scenes” look at how
numerical root finding works. While the main goal of this book is to help you use
Maxima as a tool for solving physics problems, it is good to know some details
of how Maxima actually carries out all of these calculations. All of the Maxima
routines that carry out numerical computations use some sort of algorithm, or set
of specific operations. All algorithms have their strengths and weaknesses, and it is
important to understand that fact even when you don’t have to program the algorithm
yourself.

The second purpose for examining the Newton–Raphson method is that it
provides an introduction to the topic of iterated functions. To iterate a function
means to apply the same function over and over again. Start with some initial value
and substitute this value into the function. Take the result (the output of the function
on this pass) and substitute that value back into the same function. Continue this
process as many times as desired. This process can be encapsulated in a formula:

xnC1 D g.xn/: (5.4)

Here g.x/ is the function to be iterated. The initial value is x0. Iterating the function
using Eq. 5.4 generates a sequence of values x1; x2; : : :.

140 5 Physics and Computation

We can think of an iterated function (also called an iterated map) as generating
the dynamics of a very simple system. The variable x represents the state of the
system. The initial state (at t D 0) is x D x0. We generate future states of the system
(x1, x2, etc.) by iterating the function g.x/. The sequence of x values produced by
this iterated function forms a “trajectory” in the (one-dimensional) state space.

In Chap. 6 we will take a closer look at the dynamics of iterated maps to discover
that these very simple dynamical systems can exhibit a rich variety of behaviors.
In this chapter we will only examine the behavior of the iterated function used in
the Newton–Raphson method. This method defines a function g.x/ that, if iterated,
will converge to a root of the function f .x/. To get an idea of how this convergence
works, let’s take a look at a particular example of an iterated function.

5.3.1 Iterated Functions and Attractors

To better understand how an iterated function can converge to a particular value,
we consider a specific example. We can then use Maxima to generate the sequence
produced by iterating that function. Let’s consider the function

g.x/ D sin.2x/: (5.5)

What happens if we iterate this function, starting with the initial condition x0 D 0:5?
The code below generates the first five iterations of the function (x1; : : : ; x5).

(%i) x0:0.5$ g(x):= sin(2*x)$
for i:0 thru 4 do

(x0:g(x0), print(x0))$
(%o) 0:84147

0:99372
0:91445
0:96687
0:93485

As an exercise, modify the code above to generate the first 30 iterations of the
function g.x/ D sin.2x/ with initial condition x0 D 0:5. You should find that the
sequence converges to the value x� � 0:94775. This value is an example of an
attractor. After repeated iterations of the function, the sequence converges to this
particular value and remains there. An attractor like this one is known as a fixed
point because the tail end of the sequence just repeats a single value. The value to
which this sequence converges must be a solution to the equation g.x�/ D x�, so
that substituting x� into the function g just gives back x� again. You can verify that
x� � 0:94775 is, indeed, a solution to sin.2x/ D x.

There are other kinds of attractors in which the sequence converges to a repetitive
sequence of two, three, four, etc. numbers. We do not consider these here because
they are not relevant to the Newton–Raphson algorithm. We will, however, see these
other types of attractors in Chap. 6 when we examine chaotic dynamics.

5.3 Iterated Maps and the Newton–Raphson Method 141

So our function g.x/ D sin.2x/ has an attracting fixed point at x� D 0:94775. Is
that the only fixed point for this function? It is not hard to show that x D 0 is also a
fixed point for g.x/. Why, then, doesn’t our iterated function sequence converge to
x D 0 instead of x D x�? It seems as though some fixed points are attractors and
others are not. To understand the difference between attracting and non-attracting
fixed points, we analyze the stability of each fixed point.

A fixed point of an iterated function can be stable or unstable, in much the same
way that the equilibrium points discussed in Sect. 4.1 can be stable or unstable. If
the fixed point is stable then nearby points will tend to get closer to the fixed point
when the function is iterated. If the fixed point is unstable then nearby points will
tend to move away from the fixed point as the function is iterated. We can examine
the stability of a fixed point by expanding the function in a Taylor series about the
fixed point. If the function has a fixed point at x D x� then

g.x� C �x/ � g.x�/ C �x

�
dg

dx

�

xDx
�

D x� C �x

�
dg

dx

�

xDx
�

: (5.6)

If our initial x value is a distance j�xj away from x�, then after one iteration of
the function it will be a distance

jg.x� C �x/ � x�j D
ˇ̌
ˇ̌�x

�
dg

dx

�

xDx
�

ˇ̌
ˇ̌ (5.7)

from the fixed point. So we see that if

ˇ̌
ˇ̌
�

dg

dx

�

xDx
�

ˇ̌
ˇ̌ < 1 (5.8)

then iterating the function brings the value closer to the fixed point and the fixed
point is stable. On the other hand, if

ˇ̌
ˇ̌
�

dg

dx

�

xDx
�

ˇ̌
ˇ̌ > 1 (5.9)

then iterating the function takes the value farther away from the fixed point and the
fixed point is unstable. The case

ˇ̌
ˇ̌
�

dg

dx

�

xDx
�

ˇ̌
ˇ̌ D 1 (5.10)

requires further analysis and will not be considered here.
Applying these criteria to the fixed points of g.x/ D sin.2x/ we find that the

fixed point near x D 0:94775 is stable while the fixed point at x D 0 is unstable.
The stability of a fixed point can also be illustrated by choosing an initial x value
that is very close to the fixed point and observing the sequence of terms generated

142 5 Physics and Computation

by iterating the function. If the terms get farther away from the fixed point, then the
fixed point must be unstable. If they get even closer to the fixed point, then the fixed
point is stable.

You might wonder whether an iterated function sequence always converges to a
stable fixed point. It turns out that it does not always do so. As we have mentioned,
a given function can have more than one stable fixed point, and obviously a single
initial condition cannot converge to multiple stable fixed points. But even if there
is only one stable fixed point, we cannot guarantee that our iterated function will
converge to that fixed point for all initial conditions. Recall that our stability analysis
was based on a first-order Taylor series expansion of the function near the fixed
point. This analysis is reliable only in the region near the fixed point, where the
first-order Taylor series approximates the function well. Outside of that region the
iterated function may behave in a way that disagrees with the stability analysis given
above.

What do we mean by “near” the fixed point? The answer is sensitive to the details
of the function. Some stable fixed points attract a wide range of other points, while
other stable fixed points attract only those points that are very close by.

The set of points that is attracted to a stable fixed point under iteration of the
function is known as the basin of attraction of that fixed point. The basin of
attraction may be large or small, and it can even consist of disjoint sets of points
(i.e., points that are not all next to each other). The basin of attraction can even have
a complicated fractal structure.4 Here we will not attempt to determine the basin
of attraction for any fixed points, but it is important to be aware that only points
within the basin of attraction will converge to the fixed point under iteration of the
function. This is particularly important when a function has multiple stable fixed
points, which may have basins of attraction that intermix with each other.

5.3.2 The Newton–Raphson Method

Now that we have discussed the convergence of iterated functions, we can examine
the details of the Newton–Raphson method. To use the Newton–Raphson method,
we first rewrite the equation we want to solve so that all terms are on the left side.
Now solving our equation becomes equivalent to finding the roots of some function
f .x/. The roots of the function are just those values of x such that f .x/ D 0. A given
function may have no roots, or it may have several (or even an infinite number).
As we will see, there is no completely reliable way to find all of the roots of a
function. However, if we can make a good guess about the approximate location of
the root, then the Newton–Raphson method is very likely to lead to a correct value
(to whatever precision we desire) for the root.

4We will examine some fractal structures in Chap. 6.

5.3 Iterated Maps and the Newton–Raphson Method 143

The Newton–Raphson algorithm uses an iterated function g.x/ to generate a
sequence of values that has a stable fixed point at a root of the function f .x/. As long
as we start within the basin of attraction of this stable fixed point, then continued
iterations of g.x/ should bring us arbitrarily close to the desired root of f .x/. To see
how this works, suppose our initial guess for the value of the root is x D x0. We
expand f .x/ in a first-order Taylor series about x D x0:

f .x/ � f .x0/ C .x � x0/

�
df

dx

�

xDx0

D f .x0/ C .x � x0/f 0.x0/: (5.11)

The right side of Eq. 5.11 provides an equation for a straight line, passing through
the point .x0; f .x0// and tangent to f .x/ at that point. This straight line serves as an
approximation to the function, valid near x D x0. We want to find the root of our
function, but we may be able to get an approximate answer by determining where
this straight line approximation crosses the x-axis. Setting the right side of Eq. 5.11
equal to zero and solving for x yields

x D x0 � f .x0/

f 0.x0/
: (5.12)

If the function f .x/ is linear, we are finished! The value of x given by Eq. 5.12 is
a root (in fact, the one and only root) of f .x/. You can easily verify this for f .x/ D
mx C b, where m and b are constants. Even if the function is not linear, the value of
x given by Eq. 5.12 will be closer to the root of f .x/ than x0 was, provided x0 was
close enough to the root to begin with.

This is easier to state in the language of iterated functions. Define the function

g.x/ D x � f .x/

f 0.x/
: (5.13)

We can show that the function g.x/ has a fixed point at x D x� where f .x�/ D 0.
In other words, the fixed point of g.x/ is a root of f .x/. Furthermore, we can show
that this fixed point is stable. So if x0 is within the basin of attraction of x�, then
g.x0/ will be closer to x� than x0 is. By continuing to iterate the function g.x/ we
get closer and closer to x�. In principal we can get as close as we want, provided we
iterate the function enough times. This is how the Newton–Raphson method works:
to find a root x� of f .x/ construct the function g.x/ and iterate it, starting with a value
x0 which is in the basin of attraction of the stable fixed point x� of g.x/. Eventually
this iteration process produces a value that is sufficiently close to the root x�.

We must define what we mean by “sufficiently” close to the root, so that we have
a criterion for stopping the iteration process. The key is that as our iterated function
sequence approaches the desired root, the differences between successive values in
the sequence decrease exponentially. One simple way to estimate how far we are
from the root is to use the difference between the last two values in the sequence.

144 5 Physics and Computation

Once this difference is smaller than the specified precision for the root, we can stop
iterating the function and use the final value as our numerically determined root.

For the Newton–Raphson method to work, we must choose an initial value x0 that
is in the basin of attraction of the fixed point x� (under iteration of g.x/). If x0 is not
in the basin of attraction then the Newton–Raphson method may not converge at all
(in which case the algorithm will never stop) or else it may converge to a different
root than the one we seek. There is no easy way to determine the basin of attraction
for a given root of an arbitrary function, so we must watch out for the bad behavior
described above (either non-convergence or convergence to the wrong root). If we
detect this bad behavior we can start over again with (we hope) a better value of x0.

How can we determine what initial value to use? We want to select a value for x0

that is close to the actual root. The easiest way to determine the approximate location
of a root is to plot the function and see where the plot crosses the horizontal axis.
We will illustrate this process, and the Newton–Raphson method, with the example
function

f .x/ D tan.x/ � x � 5: (5.14)

We can plot this function to find approximate values for the function’s roots. In
order to locate the roots of a function we may need to experiment with the range of
x values to use in the plot. We want to find a range of values that includes the root
we seek, but which also makes the approximate location of that root easy to see. The
code below defines our function and generates a plot that will allow us to determine
approximate values for two of the function’s roots. The plot is shown in Fig. 5.9.

-20

-15

-10

-5

 0

 5

 10

 0 1 2 3 4 5

f(
x)

x

Fig. 5.9 Plot of the function f .x/ D tan.x/ � x � 5

5.3 Iterated Maps and the Newton–Raphson Method 145

(%i) f(x) := tan(x) - x- 5$
wxdraw2d(yrange=[-20,10],xaxis=true,line_width=2,

xlabel="x",ylabel="f(x)",explicit(f(x),x,0,5))$

The curve crosses the x-axis near x D 1:5 and again near x D 4:5. Extending the
range of this plot would reveal an infinite number of roots for this function. This
result follows from the periodic nature of the tangent function. We will focus on
finding the first root, near x D 1:5, using the Newton–Raphson method. The method
can then be used to find any other root of this function, if desired.

Now that we know our function has a root near x D 1:5 we can use this value as
the initial condition for our Newton–Raphson algorithm. The code below illustrates
how to implement the algorithm to find the root of f .x/ that is near x D 1:5. First, we
define a new function that is the derivative of f .x/, and then we define the function
g.x/ that is used in the Newton–Raphson algorithm. Then the code specifies an
initial value x0 as well as an error tolerance tol.

The for loop will run until the difference between consecutive terms in the
iterated function sequence is smaller than the error tolerance, at which point the
program exits the loop. On each pass through the loop the code outputs the number
of iterations that have been performed and the current estimate for the root. Note
that the code includes a safeguard that stops the loop after 30 iterations, in case the
sequence does not converge.

(%i) df(x):=”(diff(f(x),x)); (%o) df .x/ WD sec .x/2 � 1
(%i) g(x):= x - f(x)/df(x)$ g(x);
(%o) x � tan.x/

�x�5
sec.x/2

�1
(%i) x0:1.5$ tol:0.0001$ x1: g(x0)$ n:0$

for i:1
while ((i<30) and (abs(x1-x0) > tol)) do
(x0:x1, x1:g(x1), n:n+1,
print(n, x1))$

(%o) 1 1:4297
2 1:4174
3 1:4162
4 1:4162

The algorithm converges after only four iterations. If we demand more precision
by reducing the error tolerance to 10�6, the Newton–Raphson method takes five
iterations to converge to an answer (you can verify this by modifying the code—
you may also want to increase the value of fpprintprec in order to display
more decimal places in the results). What if we start with a different initial value?
Try an initial value of 0.2. The iterations head off toward positive infinity, stopping
only when the safeguard kicks in after 29 iterations. This initial value is not in the
basin of attraction for the root at x � 1:416, so the Newton–Raphson method fails
to converge to the desired root (or, in fact, to any root at all). Now try an initial value
of 4.6 and confirm that the method does converge, but to a different root of f .x/.

These experiments illustrate two important facts about the Newton–Raphson
method. First, when the method works it works very well. If the initial value is
in the basin of attraction for a root, the method quickly converges to that root in

146 5 Physics and Computation

only a few iterations even for relatively strict error tolerances. Second, the Newton–
Raphson method does not always work. If the initial value is not in the basin of
attraction for the desired root, then the method may converge to a different root or
may fail to converge at all. Because it is hard to know in advance whether our initial
value is in the basin of attraction, the Newton–Raphson method is not always the
best choice for numerical root finding.

Maxima has a built-in routine called newton for implementing the Newton–
Raphson method. To use the newton command we must first load the newton1
package. The arguments of the newton command are the function, the variable
for which we are solving, an initial guess for the root, and an error tolerance. If
we apply this command to our example function we find that the built-in routine
produces exactly the same result we found above.

(%i) load(newton1)$ newton(f(x),x,1.5,0.0001);
(%o) 1:4162

We examine another common method for root finding, known as the bisection
method, in Sect. A.1. The bisection method is very reliable (in the sense of always
finding the desired root) but it is also much slower than the Newton–Raphson
method. Maxima’s built-in routine find_root, which we introduced in Chap. 1,
uses a combination of the bisection method and linear interpolation (similar to
the Newton–Raphson method, but without the need to know the derivative of the
function) to achieve both reliability and speed. We can verify that find_root
gives us the same answer as the Newton–Raphson method for our example function.
Recall that find_root requires the user to specify bounds for x that contain the
desired root of the function (and no other roots).

(%i) find_root(f(x),x,1.4,1.5); (%o) 1:4162

5.4 Liouville’s Theorem and Ordinary Differential
Equation Solvers

In Chap. 2 we saw that Maxima has a routine (rk) for numerically solving systems
of ordinary differential equations (ODEs). As with the other numerical computation
routines in Maxima, the rk routine uses a specific algorithm to generate the solution
to the system of ODEs given some initial conditions. The Runge–Kutta algorithm
that is used for the rk command is presented in Sect. A.3. In this section we
examine two simpler algorithms for numerically solving systems of ODEs: the Euler
algorithm, and the closely related Euler–Cromer algorithm.

As with the Newton–Raphson method discussed in the previous section, one
reason to learn about ODE solving algorithms is just to know what is going on
“behind the scenes” with commands like rk. But the Euler and Euler–Cromer algo-
rithms also provide a valuable opportunity to learn about an important physics topic
known as Liouville’s Theorem, which shows a connection between conservation

5.4 Liouville’s Theorem and Ordinary Differential Equation Solvers 147

of energy and preservation of area (or volume) in phase space. In this section we
introduce these two ODE solving algorithms and show how their behavior illustrates
Liouville’s Theorem.

To investigate ODE solving algorithms we must, of course, first have a system
of ODEs that we want to solve. The most commonly encountered ODE in Classical
Mechanics is Newton’s Second Law. For a single particle in one spatial dimension
(with coordinate x) we can write Newton’s Second Law as

d2x

dt2
D F

m
; (5.15)

where F is the force on the particle and m is the particle’s mass.
Most algorithms for solving ODEs are designed to work with first-order dif-

ferential equations. Newton’s Second Law is, however, a second-order differential
equation. Fortunately, it is easy to reduce Newton’s Second Law to two first-order
equations by introducing the velocity, v D dx=dt. This definition, along with
Newton’s Second Law, gives us the following two first-order ODEs:

dx

dt
D v; (5.16)

dv

dt
D F

m
: (5.17)

The material that follows focuses on this system of ODEs. Note that, in general, the
force F can be a function x, v, and t.

5.4.1 The Euler Algorithm

The simplest numerical algorithm for solving the system of ODEs in Eq. 5.16 is the
Euler algorithm. The Euler algorithm approximates the values of x and v at time
t C �t using the values at time t. This means that we calculate the values of x and v

only at a set of discrete times given by

tn D t0 C n�t; (5.18)

where n is a nonnegative integer. The values of x and v at these discrete times are
denoted by xn D x.tn/ and vn D v.tn/.

To approximate xnC1 and vnC1 from xn and vn we can just try to use a first-order
Taylor series expansion for x.t/ and v.t/:

x.tn C �t/ � x.tn/ C
�

dx

dt

�

tDtn

�t;

v.tn C �t/ � v.tn/ C
�

dv

dt

�

tDtn

�t: (5.19)

148 5 Physics and Computation

Using Eq. 5.16 and our discrete notation we can rewrite Eq. 5.19 as

xnC1 � xn C vn�t;

vnC1 � vn C
�

Fn

m

�
�t; (5.20)

where Fn D F.xn; vn; tn/ is just the force function evaluated at t D tn. Equation 5.20
is known as the Euler algorithm. Once we specify the initial position and velocity
(x0 and v0) we can use this algorithm to generate the position and velocity at all later
times tn. Note that this is just like a two-dimensional version of the iterated maps
we examined in the previous section.

It helps to consider a concrete example of using the Euler algorithm. Doing so
is the best way to understand how the algorithm works, and it also reveals some
problems inherent in this simple algorithm. Consider a simple harmonic oscillator
subject to a Hooke’s Law force:

F.x/ D �kx:

We found the exact solution for this system in Sect. 4.2, but here we will examine
how to generate an approximate solution for this system using the Euler algorithm.
The Euler algorithm for this system is:

xnC1 D xn C vn�t; (5.21)

vnC1 D vn � kxn�t=m: (5.22)

Below we implement this algorithm using Maxima’s for command. First we
define the values of our parameters (k D 1N=m, m D 1kg, �t D 0:2s, and nt D 100

is the number of time steps to use). Then we create arrays of length nt to hold x
and v values (we name these arrays xe and ve to indicate that they are computed
using the Euler algorithm). Then we define the initial conditions (x.0/ D 1m, and
v.0/ D 0). The for loop then applies the Euler algorithm nt � 1 times.

(%i) k:1$ m:1$ dt:0.2$ nt:100$
array(xe,nt)$
array(ve,nt)$
xe[0]:1$ ve[0]:0$
for i:0 while i < nt do

block(xe[i+1]:xe[i]+ve[i]*dt,
ve[i+1]:ve[i]-k*xe[i]*dt/m)$

Each pass through the for loop generates the values of xe and ve at the next time step.
Immediately after the for statement we initialize an index that counts the number of
passes through the loop (i W 0). This index is automatically increased by one after
each pass through the loop. Then comes a statement which tests to see whether or
not a sufficient number of passes have been performed (while i < nt). This is
followed by the do command and then a block statement. The block statement

5.4 Liouville’s Theorem and Ordinary Differential Equation Solvers 149

-4

-2

 0

 2

 4

 6

 0 5 10 15 20

x e
 (

m
)

t (s)

Fig. 5.10 Numerical solution for x.t/ in the harmonic oscillator system generated by the Euler
algorithm

gathers all the code for the algorithm so that it can be executed as a single unit. Once
the for loop is executed it has produced values for xn and vn for n D 1 to nt � 1.

Next we plot the results using wxdraw2d. The code below produces a plot
of x as a function of t, and Fig. 5.10 shows the result. The makelist com-
mand first produces a list of ordered pairs of the form .t; x/. The wxdraw2d
command generates a plot of these points. The points_joined=true option
specifies that lines should be drawn to “connect the dots.” We could redo the plot
with points_joined=false to see the sequence of points generated by the
algorithm.

(%i) xvst:makelist([i*dt,xe[i]],i,0,nt)$
wxdraw2d(xlabel="t (s)",ylabel="x_e (m)",xaxis=true,

point_size=0,points_joined=true,points(xvst))$

We can compare this result to the exact solution found in Sect. 4.2 by plotting
both the Euler algorithm solution (in black) and the exact solution (x.t/ D cos.t/,
shown by the thicker gray curve) using the code below. The resulting plot is shown
in Fig. 5.11.

(%i) wxdraw2d(xaxis=true,user_preamble="set key top
left", point_size=0,points_joined=true,
xlabel="t (s)",ylabel="x (m)",key="Euler x_e(t)",
points(xvst),color="light-gray",key="Exact x(t)",
line_width = 3,explicit(cos(t),t,0,nt*dt))$

150 5 Physics and Computation

-4

-2

 0

 2

 4

 6

 0 5 10 15 20

x
(m

)

t (s)

Euler xe(t)

Exact x(t)

Fig. 5.11 Euler approximation solution and exact solution for x.t/ for the simple harmonic
oscillator

Clearly there is a problem with our Euler algorithm result. We discuss this
problem below, but first we look at the plot, in Fig. 5.12, of the velocity versus time
(for the Euler algorithm as well as the exact solution v.t/ D � sin.t/), constructed
in a similar way.5

Plotting the solution in phase space (v versus x) is instructive. The code below
constructs a plot of v versus x for the range of times we have computed and
compares this approximate solution to the exact path in phase space. The resulting
plot is shown in Fig. 5.13.

(%i) xvsv:makelist([xe[i],ve[i]],i,0,nt)$
wxdraw2d(user_preamble = "set size ratio 1",
xaxis = true, yaxis=true,point_size=0,
point_type=6,xlabel="x (m)", ylabel="v (m/s)",
points_joined=true, points(xvsv),
line_width=3,color=gray,
parametric(cos(t),-sin(t),t,0,2*%pi))$

The exact solution produces an ellipse in the phase space. In contrast, the values
generated by the Euler algorithm spiral outward. We now construct a plot of the total

5The commands are essentially identical to those above and are omitted.

5.4 Liouville’s Theorem and Ordinary Differential Equation Solvers 151

-4

-2

 0

 2

 4

 0 5 10 15 20

v
(m

/s
)

t (s)

Euler ve(t)

Exact v(t)

Fig. 5.12 Euler approximation and exact solution for v.t/ for the simple harmonic oscillator

Fig. 5.13 Euler
approximation (thin black
curve) and exact phase space
path (thick gray curve) for the
simple harmonic oscillator

-4

-2

 0

 2

 4

-4 -2 0 2 4 6

v
(m

/s
)

x (m)

energy of the oscillator as a function of time, using our Euler algorithm solution. The
total energy is given by

E D 1

2
mv2 C 1

2
kx2: (5.23)

The code below constructs a list of ordered pairs of .t; E/ and then plots these points.
The resulting plot is shown in Fig. 5.14.

152 5 Physics and Computation

 5

 10

 15

 20

 25

 0 5 10 15 20

E
 (

J)

t (s)

Fig. 5.14 Euler approximation for the total energy as a function of time for the simple harmonic
oscillator

(%i) evst:makelist([i*dt,0.5*k*xe[i]ˆ2+0.5*m*ve[i]ˆ2],
i,0,nt)$

wxdraw2d(point_size=0,points_joined=true,
xlabel="t (s)", ylabel="E (J)",points(evst))$

Figure 5.14 illustrates a major problem with this application of the Euler
algorithm: energy is supposed to be conserved in this system but in the Euler
algorithm result energy is increasing steadily. This anomaly relates to another
problem with the Euler algorithm, one that we can illustrate by looking at how
an ensemble of orbits (rather than a single orbit) behaves under the action of the
algorithm.

The code below produces 1000 initial conditions located at random inside a small
square around x D 1, v D 0. It then uses the Euler algorithm to calculate where
these trajectories will be at t D 20 s. Note that there are three for loops in this
code. The first is fairly straightforward and simply loops over the 1000 particles in
order to set their initial conditions, making use of the random command to generate
random initial values. The next for loop iterates the Euler algorithm for nt�1 steps,
but this loop contains another for loop within it. This procedure of putting one loop
inside another is known as “nesting” loops. Here the “outer” loop cycles over the
time steps of the Euler algorithm, while the “inner” loop cycles through all of the
different particles. Spend some time thinking through this code to determine exactly
what it is doing.

5.4 Liouville’s Theorem and Ordinary Differential Equation Solvers 153

-8

-6

-4

-2

 0

 2

 4

 6

 8

-8 -6 -4 -2 0 2 4 6 8

v
(m

/s
)

x (m)

Fig. 5.15 Initial phase space locations for an ensemble of particles in the simple harmonic
oscillator system

(%i) k:1$ m:1$ dt:0.2$ nt:100$
array(xre,nt,1000)$ array(vre,nt,1000)$
for j:0 while j < 1000 do
block(xre[0,j]:0.8+0.4*random(1.0),
vre[0,j]: 0.4*random(1.0)-0.2)$

for i:0 while i < nt do
block(for j:0 while j<1000 do
block(xre[i+1,j]: xre[i,j] + dt*vre[i,j],
vre[i+1,j]: vre[i,j] - k*xre[i,j]*dt/m))$

We can plot the resulting collection of points at any of the times we have computed.
The code below shows how to construct a list of ordered pairs .x; v/ for the initial
locations in phase space, as well as a list of the final locations at t D 20 s. Figure 5.15
shows a plot of the initial list, and Fig. 5.16 shows the plot of the final list. (The
wxdraw2d commands used to generate these plots should be familiar by now,
so that code has been suppressed. Likewise, we will leave out the wxdraw2d
commands for all code in the remainder of this section.)

(%i) xvi:makelist([xre[0,j],vre[0,j]],j,0,999)$
xvf:makelist([xre[nt,j],vre[nt,j]],j,0,999)$

A comparison of Figs. 5.15 and 5.16 shows that the phase space area covered by
our ensemble of orbits is growing. However, Liouville’s Theorem states that the
phase space area should remain constant for a conservative system such as the
simple harmonic oscillator. Another way to think about how the Euler algorithm
will affect the phase space area of an ensemble in phase space is to consider how

154 5 Physics and Computation

-8

-6

-4

-2

 0

 2

 4

 6

 8

-8 -6 -4 -2 0 2 4 6 8

v
(m

/s
)

x (m)

Fig. 5.16 Phase space locations at t D 20 s for the ensemble shown in Fig. 5.15, as determined by
the Euler algorithm

the infinitesimal volume element, dx dv, changes under application of the algorithm.
We can view the mapping .xn; vn/ ! .xnC1; vnC1/ as a change of variables. The new
volume element, dxnC1dvnC1, is related to the old volume element, dxndvn, by the
equation

dxnC1dvnC1 D j det Jjdxndvn; (5.24)

where J is the Jacobian matrix defined by

J D

2
64

@xnC1

@xn

@xnC1

@vn
@vnC1

@xn

@vnC1

@vn

3
75 : (5.25)

If the algorithm preserves the area occupied by an ensemble of orbits in phase
space, then the absolute value of the determinant of this Jacobian will be equal to
one. If the absolute value of the determinant is not equal to one, then the algorithm
fails to preserve phase space area. It is not hard to show that the determinant of the
Jacobian for the SHO Euler algorithm is greater than one, thus indicating that the
phase space area will grow under repeated applications of the algorithm.

All of these problems indicate that the Euler algorithm is unstable for this system.
Although it starts off close to the exact solution, it does not remain there. This is a
general property of the algorithm. We can improve its performance by making the
time step smaller (requiring that we increase the number of time steps used to cover

5.4 Liouville’s Theorem and Ordinary Differential Equation Solvers 155

the same range of time). Reducing the time step will keep the Euler solution close to
the exact solution for a longer period of time, but the Euler solution will still diverge
after a sufficiently long time. To deal with this problem we need to introduce another
algorithm.

To further explore the Euler algorithm for this system, try reducing the time step
to 0.05 s and repeating the above computations. Increase the value of nt so that your
solution reaches t D 20 s. Does reducing the time step help? Does the reduction of
the time step solve the problems with the Euler algorithm?

5.4.2 The Euler–Cromer Algorithm

The Euler–Cromer algorithm is a minor modification of the Euler algorithm. The
modification consists of updating the velocity first, and then using the new velocity
to update the position:

vnC1 D vn C Fn�t=m; (5.26)

xnC1 D xn C vnC1�t: (5.27)

This apparently minor change makes a big difference. Below we use the Euler–
Cromer algorithm to calculate x and v using the same parameters that we used for the
Euler algorithm above. We then construct the same set of plots that were constructed
for the Euler algorithm, providing a direct comparison of the performance of the
two algorithms (the code to construct the plots is omitted since it is essentially
identical to the code used to construct the plots for the Euler algorithm results).
Figure 5.17 shows the Euler–Cromer values for x.t/ as + marks, with the exact
solution appearing as a gray line.

(%i) k:1$ m:1$ dt:0.2$ nt:100$
array(xc,nt)$ array(vc,nt)$
xc[0]:1$ vc[0]:0$
for i:0 while i < nt do
block(vc[i+1]:vc[i]-k*xc[i]*dt/m,
xc[i+1]:xc[i]+vc[i+1]*dt)$

Compared to the results of the Euler algorithm, the improvement is striking. As
Fig. 5.18 demonstrates, the velocity comparison is even more impressive.

The phase space plot shown in Fig. 5.19 does not reveal any tendency of
the Euler–Cromer values to spiral away from the true values. The Euler–Cromer
solution does not coincide precisely with the exact solution, but it remains close to
the exact solution and does coincide with that solution at four times during each
oscillation.

The Euler–Cromer algorithm does a much better job of conserving energy, as
Fig. 5.20 shows. Although the approximated energy value oscillates, the amplitude
of these oscillations is very small and the average energy over one period of the
oscillator remains fixed (and is close to the correct value, in this case 0.5 J).

156 5 Physics and Computation

-1

-0.5

 0

 0.5

 1

 0 5 10 15 20

x
(m

)

t (s)

Fig. 5.17 Euler–Cromer approximation (pluses) and exact solution (thick gray curve) for x.t/ for
the simple harmonic oscillator

-1

-0.5

 0

 0.5

 1

 0 5 10 15 20

v
(m

/s
)

t (s)

Fig. 5.18 Euler–Cromer approximation (pluses) and exact solution (thick gray curve) for v.t/ for
the simple harmonic oscillator

5.4 Liouville’s Theorem and Ordinary Differential Equation Solvers 157

-1

-0.5

 0

 0.5

 1

-1 -0.5 0 0.5 1

v
(m

/s
)

x (m)

Fig. 5.19 Euler–Cromer approximation (pluses) and exact solution (thick gray curve) for the
phase space trajectory of the simple harmonic oscillator

 0.46

 0.48

 0.5

 0.52

 0.54

 0 5 10 15 20

E
 (

J)

t (s)

Fig. 5.20 Euler–Cromer approximation for E.t/ for the simple harmonic oscillator. The correct
energy for this oscillator is 0.5 J

158 5 Physics and Computation

Finally, we examine the question of the preservation of phase space area. First,
we initialize our ensemble of particles and then apply the Euler–Cromer algorithm
to the ensemble using nested for ...while ...do loops, as shown in the code
below.

(%i) k:1$ m:1$ dt:0.2$ nt:100$
array(xrc,nt,1000)$
array(vrc,nt,1000)$
for j:0 while j < 1000 do

block(xrc[0,j]:0.8+0.4*random(1.0),
vrc[0,j]: 0.4*random(1.0)-0.2)$

for i:0 while i < nt do
block(for j:0 while j<1000 do
block(vrc[i+1,j]: vrc[i,j] -
k*xrc[i,j]*dt/m,

xrc[i+1,j]: xrc[i,j] + dt*vrc[i+1,j]))$

Next we plot the resulting ensembles at t D 0 and at t D tnt. We can create lists
of the .x; v/ points for the initial ensemble and the ensemble at t D 20 s, using
essentially the same code that was used for this purpose in our investigation of the
Euler algorithm. Plots of these data lists show the region of phase space occupied
by our ensemble at each time. Figure 5.21 shows the initial positions, and Fig. 5.22
shows the positions at t D 20 s.

We see that the region occupied by the ensemble of orbits has moved and changed
its shape, but that it does not appear to have changed its size. This suggests that
the Euler–Cromer algorithm preserves phase space area (and thus conforms to
Liouville’s Theorem).

-2

-1.5

-1

-0.5

 0

 0.5

 1

-1 -0.5 0 0.5 1 1.5 2 2.5 3

v
(m

/s
)

x (m)

Fig. 5.21 Initial phase space locations for an ensemble of particles in the simple harmonic
oscillator system

5.4 Liouville’s Theorem and Ordinary Differential Equation Solvers 159

-2

-1.5

-1

-0.5

 0

 0.5

 1

-1 -0.5 0 0.5 1 1.5 2 2.5 3

v
(m

/s
)

x (m)

Fig. 5.22 Phase space locations at t D 20 s for the ensemble shown in Fig. 5.15, as determined by
the Euler–Cromer algorithm

You may want to experiment further with the Euler–Cromer algorithm for this
system by reducing the time step. Do the Euler–Cromer algorithm results fit better
to the exact solution with a smaller time step? What happens to the energy plot?

5.4.3 Comparing Algorithms

The preceding sections introduced two algorithms for numerically solving systems
of ODEs, the Euler algorithm and the Euler–Cromer algorithm. Examining the
behavior of these algorithms introduces Liouville’s Theorem and the preservation of
phase space area (as well as how to determine whether a given algorithm preserves
phase space area). In addition to these topics a few other important ideas merit our
attention.

To solve a system of ODEs numerically, a computer must use an algorithm. For
a given system, some algorithms are better than others. For example, the Euler–
Cromer algorithm is clearly superior to the Euler algorithm for oscillatory systems
like the SHO. For other systems, however, the Euler–Cromer algorithm will not
work very well. In fact, no single algorithm is best for all problems. Choosing the
best available algorithm is an important part of numerically solving a system of
ODEs.

Which algorithm one chooses may depend on the properties of the system being
analyzed. If the phase space dynamics are not of interest, then it may not be

160 5 Physics and Computation

very important that the algorithm preserves phase space area. An algorithm that
produces a very slowly increasing or decreasing energy (rather than an oscillating
energy) but doesn’t preserve phase space area might be preferred. The examples
above demonstrate that even the Euler–Cromer algorithm doesn’t do a perfect job
of getting x.t/ and v.t/ right: the error in those functions grows over time (this is
because the Euler–Cromer solution has a slightly different period from the exact
solution, so it goes in and out of phase with the exact solution over time). The
selection of an algorithm depends on what is important for the calculation you are
trying to perform.

Generally, reducing the time step improves the performance of ODE solving
algorithms, at a cost: reducing the time step requires more steps (and more
computations) to cover the same time interval. For difficult problems the added
time for computation can become problematic. Ideally, we want an algorithm that
performs well even with a large time step. The most sophisticated algorithms adapt
the size of the time step to make it as large as possible while still achieving the
desired precision.

Often we cannot know that we have chosen the best algorithm for a particular
problem. The only way to proceed is to test the algorithm. Check for certain things
like conservation of energy or phase space area to see if the algorithm is unstable.
If the algorithm appears to be stable then we can estimate the error produced by
the algorithm by comparing the results obtained using one time step with those
obtained using a smaller (say, by a factor of 2) time step. The difference between
the two provides an estimate for the error in the numerical solution. This procedure
will not only indicate whether or not the algorithm is acceptable, it will also help
with the selection of the time step. Again, we want to use the largest time step that
will produce a solution with the required precision.

For more discussion of ODE solver algorithms, see Sect. A.3.

5.5 Exercises

1. Use a for loop to generate the cubes of the first six multiples of five. Do this
in two ways:

• with a step command to generate the multiples of five, and
• without a step command.

2. Think carefully about what happens in Maxima when you run the following
code:

x:5$ for i:0 while x<3000 do x:x*x-14$
display(x)$

Fill in the table below to show what happens before, during, and after each pass
through the for loop.

5.5 Exercises 161

i x before loop is x < 3000? x after loop

What value of x will be displayed when this code is run? (You may want to
check your answer.)

3. Write a program in which you specify the integers n and r (with n � r) and then
the program computes the value of nCr D nŠ

rŠ.n�r/Š . Do not use any of Maxima’s
built-in functions (like factorial or binomial) to do this. Just use simple
arithmetic expressions and programming with for and if ...then.

4. Define the following piecewise function in Maxima:

f .x/ D
8
<
:

x2; x < 6;

54 � 3x; 6 � x � 10;

2x2 � 40x C 224; x > 10:

(5.28)

Create a plot of this function over the range 0 < x < 15. Is this function
continuous? Is it everywhere differentiable?

5. Modify the code for estimating � in Sect. 5.2.1 to instead estimate the fraction
of area within the unit square (with 0 < x < 1 and 0 < y < 1) that satisfies the
condition y < 5x � 3. Plot y D 5x � 3 over an appropriate range and comment
on whether your result seems reasonable based on the plot.

6. In Sect. 5.2.2 we looked at the motion of an ensemble of particles experiencing
constant acceleration (as in freefall near Earth’s surface). If these particles were
subject to linear air resistance, their distances of fall (x) and velocities (v) are
given by:

x.t/ D x0 C g� t C .v0 � g�/�.1 � e�t=� /;

v.t/ D g� C .v0 � g�/e�t=� ;
(5.29)

where � D m=b is the characteristic time associated with the air resistance on
these particles. Suppose � D 1 s.6 Modify the Maxima code in Sect. 5.2.2 so
that it displays the motion of particles falling with air resistance. Use the same
range of initial values. Plot the original ensemble (at t D 0) and the ensemble
at t D 1 s. Does the area occupied by this ensemble remain constant? (Note: if
you aren’t sure, try plotting the ensemble at later times to see if the area changes
noticeably over longer intervals.)

6This is totally unrealistic. A typical value for, say, a raindrop would be more like 10�5 s.

162 5 Physics and Computation

7. Examine a new version of the random walk from Sect. 5.2.3 with p.Cx/ D 0:26,
p.�x/ D 0:24, p.Cy/ D 0:23, and p.�y/ D 0:27. What are the expected values
of x and y after N steps for this walk? Modify your code so that you can generate
the plots for this walk. Examine walks of different lengths (N D 200, 2000,
10,000, and 20,000). Do your results fit with these expected values? What is the
expected distance from the origin after N steps? Make a plot of distance as a
function of step number and compare the results to the expected distance.

8. Consider a different version of a random walk. The walker begins at the origin.
At each time step the walker chooses a direction at random (i.e., the walker
chooses an angle 0 < � < 2� , with equal probability for any angle in that
range). The walker then takes a step of unit length in that direction. Generate
plots of this random walk, as well as of the distance from the origin as a function
of the number of steps. (Note: you may want only to go up to 2000 steps,
since the evaluation of trig functions can bog Maxima down.) Compare this
random walk to the standard random walk discussed in Sect. 5.2.3. What are the
expected values of x and y after N steps of this walk? Make a plot of distance
from the origin as a function of step number for this walker. How does this plot
compare to the same plot for the standard random walk discussed in the text?

9. Use the Newton–Raphson method to find the two roots of the function f .x/ D
sin.x/ � x2 C log.x/ C 2 on the interval .0; 4�. Determine the values of the roots
to six decimal places. You may want to start by plotting this function in order
to determine approximate locations of the roots.

10. A damped harmonic oscillator with !0 D 10 rad/s and ˇ D 0:5 s�1 is
launched from its equilibrium position (x D 0) with speed v0 D 1 m/s. Use the
results from Sect. 4.4 to construct x.t/ for this oscillator. Find v.t/, then use
the Newton–Raphson algorithm to determine the first time after t D 0 at which
the speed of the oscillator is half of its initial speed. (Note: you should plot v.t/
first.) What is the position of the oscillator at this time? What fraction of the
oscillator’s initial energy has been lost by this time?

11. Calculate the determinant of the Jacobian for the Euler algorithm applied to
the simple harmonic oscillator. Explain how your result relates to the increase
in phase space area occupied by the ensemble of particles shown in Figs. 5.15
and 5.16. Then calculate the determinant of the Jacobian for the Euler–Cromer
algorithm applied to the simple harmonic oscillator. Explain how your result
relates to the preservation of phase space area occupied by the ensemble of
particles shown in Figs. 5.21 and 5.22.

12. Repeat the investigation of the Euler–Cromer algorithm for the simple harmonic
oscillator in Sect. 5.4, but this time include a damping force F D �bv with
b D 0:1 kg/s. Redo all of the calculations and plots from that section that related
to the Euler–Cromer algorithm, but with this new damping force included.
Comment on how the damping force alters the results. Do the results make
physical sense? What happens to the phase space area occupied by an ensemble
of particles in this system? Calculate the determinant of the Jacobian for the
Euler–Cromer algorithm as applied to this damped harmonic oscillator. How
does this result relate to your results for the phase space area occupied by an
ensemble of particles?

5.5 Exercises 163

13. Consider the quartic oscillator with potential energy function V.x/ D ˛x4.

(a) What is the force, as a function of x, on a particle in this potential?
(b) Use the Euler–Cromer algorithm to solve the equations of motion for the

quartic oscillator with m D 1 g, ˛ D 1 ergs/cm4, x.0/ D 1 cm and v.0/ D
0. Use a time step of 0.01 s and integrate the equations of motion from t D 0

to t D 10 s. Construct plots of position versus time, velocity versus time,
and the trajectory in phase space (velocity versus position). Discuss how
the motion of this oscillator compares to that of a harmonic oscillator.

(c) Use your plots to estimate the period of the oscillations. (Note: if you
completed Problem 8 in Sect. 4.8, compare your answer to your result for
that problem.)

(d) Construct a plot of energy versus time for the quartic oscillator, using
your Euler–Cromer algorithm results. Does the Euler–Cromer algorithm
conserve energy (on average)? Should it conserve energy in this case?

(e) Construct the Jacobian matrix for the Euler–Cromer algorithm, as applied
to the quartic oscillator. Find the determinant of this matrix. Is it equal to
one? Will the Euler–Cromer algorithm preserve phase space area? If not,
what will happen to the area over time as we apply the algorithm?

(f) Plot an ensemble of points in the phase space at t D 0 and then show where
these points end up at t D 10 s using the Euler–Cromer algorithm with a
time step of 0.1 time units. Do your results show that phase space area is
preserved, or does it seem to grow or decrease? Does this agree with your
answer to the previous question?

14. Consider a projectile moving in the x–y plane subject to both gravity (Fg D
�mgOy) and linear air resistance (Fr D �bEv).

(a) Write down the x- and y-components of the net force on this projectile.
Then write down Newton’s Second Law for this projectile as a system of
four first-order ODEs.

(b) Write down the Euler–Cromer algorithm for this system.
(c) Use your Euler–Cromer algorithm to numerically solve the equations of

motion for initial conditions x.0/ D 0, y.0/ D 0, vx.0/ D 10 m/s, and
vy.0/ D 15 m/s. Let m D 1 kg, g D 9:8 m/s2, and b D 0:1 N s/m. Use
a time step of 0.01 s. Construct plots of x versus t, y versus t, y versus x,
and vy versus t. Make sure you extend your solution until the projectile hits
the ground. Comment on how your results here differ from the results you
would expect with no air resistance.

(d) Construct a plot of vy versus y. Comment on how the shape of this plot is
altered by air resistance.

Chapter 6
Nonlinearity and Chaos

One of the most exciting areas of current research in classical mechanics is the
dynamic behavior of nonlinear systems. Nonlinear systems exhibit a much richer
variety of behaviors than do linear systems. However, most nonlinear systems are
impossible to solve using paper and pencil methods. It was only with the advent of
digital computers that nonlinear dynamics really came into its own. With computer
software like Maxima we can explore nonlinear dynamics in a way that is impossible
without a computer.

6.1 Nonlinear Dynamics

To understand what nonlinear dynamics means, we first define what we mean by
linear. To this point, we have examined systems whose dynamics are defined by
differential equations of the form

Rx D f .x; Px; t/: (6.1)

Such a system is considered linear if the dependent variable x and its derivatives
appear only to the first power (i.e., contain only linear terms). In other words, the
equation of motion does not contain any factors of x2, or 1=x, or cos.Px/, etc. If the
equation of motion in Eq. 6.1 is to be linear, it must have the form

Rx D a.t/Px C b.t/x C c.t/ (6.2)

where a.t/, b.t/, and c.t/ are functions that depend only on the time t. The harmonic
oscillator systems that we studied in the previous chapter are all linear systems in
this sense.

© Todd Keene Timberlake & J. Wilson Mixon, Jr. 2016
T.K. Timberlake, J.W. Mixon, Classical Mechanics with Maxima, Undergraduate
Lecture Notes in Physics, DOI 10.1007/978-1-4939-3207-8_6

165

166 6 Nonlinearity and Chaos

A nonlinear system is just a system whose equation of motion contains one or
more nonlinear terms. A simple example that we have already encountered is a
particle in free fall with quadratic air resistance, which has the equation of motion

Rx D �g � cPx2: (6.3)

The Px2 term makes this equation, and thus the system, nonlinear.
Why is the distinction between linear and nonlinear important? It is because

linear systems obey something called the superposition principle, while nonlinear
systems do not. The superposition principle states that if x1.t/ is a solution to a
particular linear differential equation, and x2.t/ is a different solution to the same
equation, then ax1.t/ C bx2.t/ is also a solution of that equation for any constants
a and b. But this result doesn’t hold for nonlinear systems. We can find two
independent solutions to a nonlinear differential equation, but a linear combination
of these solutions may not be a solution to that equation.

As mentioned above, nonlinear systems can exhibit a rich variety of behaviors
that are not seen in linear systems. One particularly remarkable type of motion
that can occur in nonlinear, but not in linear, systems is chaotic motion. Chaotic
motion is characterized by a sensitive dependence on initial conditions, in which a
slight change in the initial conditions can lead to dramatically different motion after
some time. Chaotic systems cannot be solved (even approximately) using analytical
methods, so very little was known about chaotic systems until the development of
computers that could generate approximate numerical solutions for these systems.

This chapter provides an introduction to how Maxima can be used to explore
nonlinear dynamics and chaos in a few example systems. These examples illustrate
many important features of nonlinear dynamics and chaos, but this chapter should
not be taken as a comprehensive treatment of the subject. For more on this exciting
area of classical mechanics, see the references at the end of this chapter.

6.2 The van der Pol Oscillator

6.2.1 The Undriven Case

We begin our investigation of nonlinear systems by examining a modified harmonic
oscillator system. This system is a version of the “van der Pol oscillator.” It consists
of an oscillator with a linear restoring force (like the harmonic oscillator) as well as
a nonlinear force. The dimensionless equations of motion for the system are

Px D v; (6.4)

and

Pv D �x C �.1 C x2 � v2/v; (6.5)

where x is a dimensionless position variable, v is a dimensionless velocity, and � is
a constant.

6.2 The van der Pol Oscillator 167

Fig. 6.1 Phase space
trajectory for a Van der Pol
oscillator starting from rest at
x D 0:5. The x and v

coordinates are dimensionless

-1

-0.5

 0

 0.5

 1

-1 -0.5 0 0.5 1

v

x

We solve for the motion of this system numerically using � D 0:1 and two
different initial conditions. We begin by finding the motion with initial conditions
x0 D 0:5 and v0 D 0. The code below uses Maxima’s rk command to generate
1000 values of t, x, and v. The code then generates a data list containing the ordered
pairs of x and v values for various times. The last portion of the code generates a
plot of the phase space trajectory (v versus x) for our van der Pol oscillator, which
appears as Fig. 6.1.

(%i) gamma:0.1$ data:
rk([v,-x+gamma*(1-xˆ2-vˆ2)*v], [x,v],[0.5, 0],

[t,0,100,0.1])$
xvL: makelist([data[i][2], data[i][3]],i,1,

length(data))$
wxdraw2d(user_preamble = "set size ratio 1",
xlabel="x", ylabel ="v", xaxis = true,

yaxis = true, xtics = 1/2, ytics = 1/2,
point_size=0,points_joined=true,points(xvL))$

We see that this trajectory spirals outward, gradually approaching a circle with
unit radius. Next we examine the motion when the initial conditions are x0 D �1:5

and v0 D 0. The phase space trajectory is shown in Fig. 6.2. The code to generate
the solution and plot is almost identical to the code above, except for the change in
the initial value for x and the use of the line_type=dots option in wxdraw2d
in order to plot the trajectory as a dotted line. Figure 6.2 shows that for this initial
condition the trajectory spirals inward, again approaching a circle with a unit radius.

Our two trajectories both approach the unit circle x2 C v2 D 1. To illustrate this
we plot this circle as a thick line (line_width=2) and then combine it with the
two previous plots. The resulting plot is shown in Fig. 6.3.

168 6 Nonlinearity and Chaos

-1

-0.5

 0

 0.5

 1

-1.5 -1 -0.5 0 0.5 1

v

x

Fig. 6.2 Phase space trajectory for a Van der Pol oscillator starting from rest at x D �1:5. The x
and v coordinates are dimensionless

-1

-0.5

 0

 0.5

 1

-1.5 -1 -0.5 0 0.5 1

v

x

Fig. 6.3 Phase space trajectories of the van der Pol oscillator (thin solid curve and dotted curve)
shown with the unit circle (thick solid curve)

This convergence to the unit circle illustrates the self-limiting nature of the
Van der Pol oscillator. The initial motion depends upon the initial conditions, but
eventually the motion settles into a particular pattern (clockwise rotation on the
unit circle) regardless of the initial conditions. The pattern of motion into which

6.2 The van der Pol Oscillator 169

the system settles is known as a limit cycle or attractor. We have already seen an
example of a limit cycle in the case of the driven harmonic oscillator, but in the van
der Pol oscillator this limit cycle behavior occurs without a driving force.

The Maxima command drawdf is useful for analyzing dynamical systems like
the van der Pol oscillator. This command produces a plot of the “direction field” for
a system of ODEs. The direction field shows the direction of motion for a particle at
a grid of points in the state space. The drawdf command can also be used to display
a particular trajectory (with specified initial conditions) along with the direction
field. The basic arguments of the drawdf (or wxdrawdf for producing plots inside
a wxMaxima notebook) consist of three lists. The first list contains the equations that
specify the derivatives for each of the two system variables. The second list specifies
one of the system variables and the maximum and minimum values of that variable
to be used in the plot. The third list is the same as the second, but for the other
system variable. The drawdf command allows a variety of options as well. The
Maxima manual provides more information on drawdf.

The commands below generate the direction field for the van der Pol oscillator
with � D 0:3. The results appear in Fig. 6.4. Note that to use the drawdf command
we must first load the drawdf package. The soln_at option generates a solution
curve that passes through the specified point. Here we generate two different
solution curves. One solution passes through the point .x D 0:5; v D 0/ and the
other passes through .x D 1:5; v D 0/. The duration option controls the length
of the time interval over which the solutions are generated. Note that the solution
curves cover a time interval that starts before, and ends after, the time when the
curve passes through the specified location.

Fig. 6.4 Direction field plot
for the van der Pol oscillator
with � D 0:3. Two
trajectories are shown: the
thick curve passes through
.x D 0:5; v D 0/ and the thin
curve passes through
.x D 1:5; v D 0/. The x and v

coordinates are dimensionless

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 2

-1.5 -1 -0.5 0 0.5 1 1.5

v

x

170 6 Nonlinearity and Chaos

(%i) load(drawdf)$ gamma:0.3$
wxdrawdf([v,-x+gamma*(1-xˆ2-vˆ2)*v],[x,-1.5,1.75],

[v,-1.5,2.0], color=black,line_width=2,
duration=20, proportional_axes=xy,soln_at(0.5,0),
line_width=1, soln_at(1.5,0),xlabel="x",
ylabel="v", dimensions=[480,480])$

Note how the trajectories follow the direction of the arrows in the direction field.
The behavior of the van der Pol oscillator for � D 0:3 is similar to that for � D 0:1,
examined above. The two trajectories spiral outward or inward, as needed, to reach
the unit circle. The only difference is that with � D 0:3 the trajectories approach the
unit circle faster than they did for � D 0:1. Exercise: Use drawdf to examine the
behavior for other values of � .

6.2.2 The Driven Case

The van der Pol oscillator exhibits limit cycle behavior even without a driving force.
What happens if we do add a driving force to this oscillator? The dimensionless
equations of motion for this system are

Px D y; (6.6)

and

Pv D �x C �.1 C x2 � v2/v C ˛ cos.!t/; (6.7)

where ˛ represents the amplitude and ! represents the frequency of the driving
force.

Below we find the numerical solution for this system with ˛ D 0:9, � D 0:25 and
! D 2:47 with initial conditions x0 D �1:5 and v0 D 0. We then use the solution
to generate a plot of the phase space trajectory in Fig. 6.5. The code to produce the
solution and plot requires only a small modification of the code given above for the
undriven system, so it is not shown here.

We can also view the phase space trajectory in three dimensions, as in Fig. 6.6.
We can display the x–v plane horizontally and allow the time axis to run upward.
The code below produced the numerical solution, generates the necessary data list,
and then plots this 3D trajectory.

(%i) w:2.47$ data3:rk([v,-x+0.25*(1-xˆ2-vˆ2)*v+
0.9*cos(w*t)],[x,v],[-1.5,0],
[t,0,200*%pi/w,0.1])$

xvt3d:makelist([data3[i][2],data3[i][3],data3[i][1]],
i, 1, length(data3))$

wxdraw3d(user_preamble="set size ratio 1",
xlabel="x",ylabel="v",zlabel=”t”,xaxis=true,
yaxis=true, xtics = 1/2, ytics = 1/2,

6.2 The van der Pol Oscillator 171

Fig. 6.5 Phase space
trajectory for a driven van der
Pol oscillator. The x and v

coordinates are dimensionless

-1

-0.5

 0

 0.5

 1

-1.5 -1 -0.5 0 0.5 1

v

x

Fig. 6.6 Three-dimensional
plot of the location in phase
space as a function of time for
the driven van der Pol
oscillator. The x, v, and t
coordinates are dimensionless

-1
 0

 1
-1

 0

 1

 0

 75

 150

 225

x
v

t

ztics=75, point_size = 0,
points_joined = true, points(xvt3d),
dimensions=[480,480])$

The 3D plot in Fig. 6.6 shows some initial transient behavior, after which the
motion seems to settle into a pattern. It is hard to tell, though, whether the pattern is
repeating (periodic motion) or not (quasi-periodic motion).

We gain a different perspective on the motion by looking at the location of the
particle in the x–v plane each time the driving force completes one cycle. In other
words, we find the intersection between the 3D trajectory shown above (with the
time axis running upward) and a plane of constant time (a horizontal plane, in this
case). Figure 6.7 illustrates this concept by displaying the 3D trajectory along with

172 6 Nonlinearity and Chaos

Fig. 6.7 The phase space
path shown in Fig. 6.6
superimposed with a plane of
constant time at t D 100�=!

-2
-1

 0
 1

 2
x -2

-1
 0

 1
 2

v

 0

 75

 150

 225

t

the plane representing t D 100�=!.1 The black representation of the trajectory
cuts the gray representation of the plane from below at approximately x D �0:69,
y D 0:72).

Now we look at only those points where the trajectory intersects one of the
constant time planes defined by t D 2�n=!, where n is an integer. That way we
are only seeing where the particle is in the x–v plane at the end (or beginning)
of each cycle of the driving force. A plot of these intersection points is known as
a strobe plot (because we are only looking at the trajectory at discrete, regularly
spaced times—much like watching a moving object that is illuminated by a strobe
light). The code below generates a strobe plot for the driven van der Pol oscillator
using the parameters we just examined (the wxdraw command has been omitted).
Figure 6.8 shows the resulting plot. Note that the time step for the rk command is
one tenth of the period of the driving force. This time step is sufficiently small
so that we can get accurate results from the Runge–Kutta algorithm. (You can
test this by redoing the calculation with a smaller time step to see if it makes a
difference.) However, we only want to plot points at increments of the full period,
so the makelist command for constructing the xvL4 list uses only every tenth
element of the data4 list, so only the points with t D 2�n=!, where n is an integer,
appear in the plot.

(%i) w:2.47$ data4:rk([v,-x + .25*(1-xˆ2-vˆ2)*v+
0.9*cos(w*t)],[x,v], [-1.5, 0],
[t,0,200*%pi/w,0.2*%pi/w])$

xvL4:makelist([data4[i][2], data4[i][3]],
i,1,length(data4),10)$

We see that all but a few points lie on a closed curve in the phase space. We can
show that these few points that don’t lie on the closed curve are associated with the

1To get a better view of the intersection of the trajectory and the plane, remove the wx from this
command and execute it. A graph appears outside the wxMaxima session. Expand and rotate that
graph.

6.2 The van der Pol Oscillator 173

Fig. 6.8 Strobe plot for the
driven van der Pol oscillator.
The x and v coordinates are
dimensionless

-1

-0.5

 0

 0.5

 1

-1.5 -1 -0.5 0 0.5

v

x

Fig. 6.9 Same as Fig. 6.8 but
with the first ten points
omitted to eliminate transient
motion

-1

-0.5

 0

 0.5

 1

-1.5 -1 -0.5 0 0.5

v

x

transient motion during the first few cycles. We can do this by plotting only those
points from the tenth cycle onward. Figure 6.9 shows the resulting plot.

Once we get past the transient behavior at the beginning, the strobe plot reveals a
simple pattern. All points lie on a closed curve in the phase space. This closed curve
serves as the attractor for the strobe plot. However, there are an infinite number
of points on this attractor. The system does not repeat itself, so the motion is not
periodic. However, the motion is restricted such that at the beginning of each cycle

174 6 Nonlinearity and Chaos

the system must be on this attractor. This kind of motion is known as quasiperiodic
motion. We saw another example of quasiperiodic motion when we examined the
2D harmonic oscillator with incommensurate frequencies in Sect. 4.3.

We can construct a strobe plot for the undriven van der Pol oscillator that appears
earlier in this section. We do not have a periodic driving force, so we must determine
the period at which we sample the data. An intuitive choice would be to sample at
the natural frequency of the oscillator without the nonlinear term. For the version
of the van der Pol oscillator that we have been studying, that frequency would be
2� (in dimensionless units). Now we can construct a strobe plot at this frequency.
Except for the function that generates the data, all commands are as above, so only
the command that includes the data-generating function appears below.

(%i) data5:rk([v,-x+0.25*(1-xˆ2-vˆ2)*v],[x,v],[-1.5,0],
[t,0,200*%pi,0.628318531])$

The plot in Fig. 6.10 looks odd until we realize that what we are seeing is just the
transient behavior of the oscillator as it approaches its limit cycle. If we want to see
only the limit cycle behavior we can ignore the first 90 oscillations and then plot the
data for the next 10, yielding the plot in Fig. 6.11.

As the oscillator settles into its limit cycle, the strobe plot settles into a single
point in the phase space. When the attractor for a strobe plot is a single point in the
state space, we call this point a fixed point. A fixed point in the strobe plot indicates
that the long-term motion is periodic, with the period used to generate the strobe
plot (in this case, the natural period of the oscillator without the nonlinear term).

Fig. 6.10 Strobe plot for the
undriven van der Pol
oscillator. The x and v

coordinates are dimensionless

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

-1.5 -1 -0.5 0 0.5 1 1.5

v

x

6.3 The Driven Damped Pendulum 175

Fig. 6.11 Same as Fig. 6.10
but with the first 90 points
omitted to eliminate transient
motion

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

-1.5 -1 -0.5 0 0.5 1 1.5

v

x

6.3 The Driven Damped Pendulum

The van der Pol oscillator is not the first nonlinear oscillator we have encountered.
In Sect. 4.7 we examined the simple pendulum. The simple pendulum is an example
of a nonlinear oscillator because the restoring force is proportional to the sine of the
position angle, not to the position angle itself. In the limit of small oscillations the
pendulum closely approximates a linear (harmonic) oscillator. But we have already
seen that for large oscillations the simple pendulum can deviate from the behavior
expected of a linear oscillator.

6.3.1 Solving the Driven Damped Pendulum

The plane pendulum becomes even more interesting when we add damping and
driving forces. The equation of motion for a simple pendulum of length L and
mass m with linear damping and driven by a sinusoidal force with amplitude F0

and frequency ! is

mL2 R� D �bL2 P� � mgL sin � C LF0 cos.!t/; (6.8)

where b is the coefficient for the linear damping.
We can recast this equation of motion in terms of the constants ˇ D b=.2m/ and

� D F0=.mg/. The equation of motion can be written as

176 6 Nonlinearity and Chaos

R� C 2ˇ P� C !2
0 sin � D �!2

0 cos.!t/; (6.9)

where !0 D p
g=L is the natural frequency for small oscillations of the pendulum.

We must solve this second order differential equation numerically. To do so we
rewrite it in the form of two first order differential equations:

Px D v; (6.10)

Pv D �2ˇv � !2
0 sin x C �!2

0 cos.!t/; (6.11)

where we use the notation x D �.
We then solve this system of ODEs numerically using Maxima’s rk command.

First we examine the case with ! D 2� rad/s (so the period is 1 s), !0 D 1:5!,
ˇ D !0=4, and � D 0:2, with initial conditions x.0/ D 0 and y.0/ D 0. The
code below generates the numerical solution, organizes the resulting data into a list
of ordered pairs .t; x/, and creates a plot, Fig. 6.12, of angular position versus time
over ten cycles of the driving force (the first 1000 ordered pairs).

(%i) w:2*%pi$ w0:1.5*w$ b:w0/4$ g:0.2$
data:rk([v,-2*b*v-w0*w0*sin(x)+g*w0*w0*cos(w*t)],

[x,v], [0,0],[t,0,200,0.01])$
txL:makelist([data[i][1],data[i][2]], i,1,1000)$
wxdraw2d(xaxis = true, yaxis = true, xtics=1,

ytics=0.1, xlabel="t (s)",ylabel="x (rad)",
point_size=0,
points_joined=true,points(txL))$

-0.3

-0.2

-0.1

 0

 0.1

 0.2

 0.3

 0 1 2 3 4 5 6 7 8 9 10

x
(r

ad
)

t (s)

Fig. 6.12 Angular position as a function of time for a driven damped pendulum with � D 0:2

6.3 The Driven Damped Pendulum 177

-2

-1

 0

 1

 2

 0 1 2 3 4 5 6 7 8 9 10

v
(r

ad
/s

)

t (s)

Fig. 6.13 Angular velocity as a function of time for a driven damped pendulum with � D 0:2

Fig. 6.14 Phase space
trajectory (angular velocity
versus angular position) for a
driven damped pendulum
with � D 0:2

-2

-1

 0

 1

 2

-0.3 -0.2 -0.1 0 0.1 0.2 0.3

v
(r

ad
/s

)

x (rad)

Using similar code we generate a list of ordered pairs .t; v/ and plot the angular
velocity versus time over the first ten cycles of the driving force. The resulting plot
is shown in Fig. 6.13.

Finally, Fig. 6.14 shows a plot of the trajectory in phase space (angular velocity
versus angular position) using the full set of data points generated by the rk
command.

178 6 Nonlinearity and Chaos

Fig. 6.15 Same as Fig. 6.14
but with the first 5000 data
points (up to t D 5 s) omitted
to eliminate transient motion

-1

 0

 1

-0.3 -0.2 -0.1 0 0.1 0.2 0.3

v
(r

ad
/s

)

x (rad)

The graphs show that after some initial transient behavior the pendulum settles
into a periodic oscillation that looks like simple harmonic motion. In other words,
the driven damped pendulum at these parameter values exhibits limit cycle behavior
just like the driven damped harmonic oscillator and the van der Pol oscillator. We
can focus on the limit cycle motion by ignoring the first 5000 data points. The results
appear in Fig. 6.15.

This path in the phase space looks just like simple harmonic motion. We check on
the periodicity of the pendulum by constructing a strobe plot of the motion, plotting
x versus v after each cycle of the driving force. Since the driving force has a period
of 1 s, and the time step we used in rk was 0.01 s, we extract every 100th data point
to construct our strobe plot, which appears in Fig. 6.16.

We see multiple points, but some of these may reflect transient behavior that
occurs before the limit cycle is reached. For example, the point at the origin is
just our initial condition. We can exclude the transient behavior by plotting only
the points generated after 50 cycles of the driving force have been completed (i.e.,
ignoring the first 5000 data points from rk). Figure 6.17 shows the result. Now the
strobe plot produces a single fixed point near .x D 0:27; v D 1:02/, indicating that
the long-term behavior of the driven damped pendulum with these parameter values
is periodic.

6.3.2 Period Doubling

Is this fixed point behavior the only kind of motion that we can get from the driven
damped pendulum? We can show that it is not by looking at the motion with different
parameter values. We use the same parameter values as above, but with a stronger

6.3 The Driven Damped Pendulum 179

Fig. 6.16 Strobe plot of the
driven damped pendulum
with � D 0:2. The
coordinates are angular
position and angular velocity

-2

-1

 0

 1

 2

-0.3 -0.2 -0.1 0 0.1 0.2 0.3

v
(r

ad
/s

)

x (rad)

Fig. 6.17 Same as Fig. 6.16
but with the first 5000 data
points (up to t D 5 s) omitted
to eliminate transient motion

-2

-1

 0

 1

 2

-0.3 -0.2 -0.1 0 0.1 0.2 0.3

v
(r

ad
/s

)

x (rad)

driving force .� D 1:077/. Also, we start the system at x D ��=2 and v D 0. As
before, we begin by examining the angular position over the first ten periods. A plot
of the position as a function of time appears in Fig. 6.18.2

2The code for producing this plot and the other plots in this section is just a minor modification of
the code shown above, so we do not include the code here.

180 6 Nonlinearity and Chaos

Fig. 6.18 Angular position
as a function of time for a
driven damped pendulum
with � D 1:077

-3

-2

-1

 0

 1

 2

 3

 0 1 2 3 4 5 6 7 8 9 10

x
(r

ad
)

t (s)

-20

-10

 0

 10

 20

 0 1 2 3 4 5 6 7 8 9 10

v
(r

ad
/s

)

t (s)

Fig. 6.19 Angular velocity as a function of time for a driven damped pendulum with � D 1:077

We next examine the angular velocity over these ten periods, as shown in
Fig. 6.19.

Finally, Fig. 6.20 shows the motion in phase space.
Figures 6.18, 6.19, and 6.20 highlight two important aspects of this system’s

motion. First, the oscillations are no longer sinusoidal. This is clear from the plots
of v versus t and v versus x. Second, if we look closely we can see that the motion is
not quite periodic, either, at least not with the period of the driving force. The peaks
and troughs of the x versus t curve do not always occur at the same values, but seem
to hop back and forth between two different values. We examine this behavior in
more detail by plotting the phase space trajectory without the transient behavior.
Figure 6.21 replicates Fig. 6.20 but starting at t D 50 s instead of t D 0.

The limiting motion of the pendulum now consists of two different oscillations,
repeated one after the other. We can best illustrate this by constructing a strobe

6.3 The Driven Damped Pendulum 181

Fig. 6.20 Phase space
trajectory (angular velocity
versus angular position) for a
driven damped pendulum
with � D 1:077

-20

-10

 0

 10

 20

-2 -1 0 1 2 3

v
(r

ad
/s

)

x (rad)

Fig. 6.21 Same as Fig. 6.20
but starting at t D 50 s to
eliminate transient motion

-20

-10

 0

 10

-2 -1 0 1 2 3

v
(r

ad
/s

)

x (rad)

plot that samples the phase space location after each cycle of the driving field (but
ignoring the initial transient motion). The strobe plot in Fig. 6.22 confirms that the
pendulum settles into a periodic oscillation, but that the period of this oscillation
is not the period of the driving force. Rather, it is twice the period of the driving
force. The motion of the pendulum with these parameter values is an example of
a period-2 attractor. (The fixed point motion we saw earlier can also be referred
to as a period-1 attractor.) The transition from period-1 to period-2 motion as we

182 6 Nonlinearity and Chaos

Fig. 6.22 Strobe plot for the
driven damped pendulum
with � D 1:077. The
coordinates are angular
position x and angular
velocity v. The first 50 cycles
have been omitted to
eliminate transient motion

-20

-10

 0

 10

 20

-3 -2 -1 0 1 2 3

v

x

change the value of � is known as period doubling. You can show that the driven
damped pendulum undergoes more period doublings, as the value of � is increased,
by examining the motion for � D 1:081 and � D 1:0826.

6.3.3 Rolling Motion

Another type of behavior that the driven damped pendulum can exhibit is rolling
motion. Rolling motion occurs when the pendulum swings all the way around. In
this case the values of x will go outside the range Œ��; ��. We illustrate rolling
motion by looking at our driven damped pendulum system with � D 1:4 and initial
conditions x.0/ D ��=2 and v.0/ D 0 (all other values as before). Figure 6.23
shows a plot of the angular position as a function of time.

This plot of x versus t shows that in addition to oscillating, the values of x
decrease steadily over time. The pendulum is repeatedly swinging all the way
around in the clockwise direction. We next examine plots of the angular velocity
as a function of time and the phase space trajectory for this pendulum, shown in
Fig. 6.24.

The angular velocity values oscillate, while the angular position values oscillate
and also decrease over time. Again, this shows that the pendulum is swinging all the
way around in the clockwise direction.

Because x is an angle variable, x and xC2n� represent the same angular position
if n is an integer. We can account for this equality in our plot by plotting the principal
value of x, instead of x itself. The principal value is the angle equivalent to x that lies
in the principal domain Œ��; ��. We can compute the principal value of x by using
modular arithmetic.

6.3 The Driven Damped Pendulum 183

-60

-50

-40

-30

-20

-10

 0

 0 1 2 3 4 5 6 7 8 9 10

x
(r

ad
)

t (s)

Fig. 6.23 Angular position as a function of time for a driven damped pendulum with � D 1:4

-20

-10

 0

 10

 0 1 2 3 4 5 6 7 8 9 10

v
(r

ad
/s

)

t (s)

-20

-10

 0

 10

-60 -50 -40 -30 -20 -10 0

v
(r

ad
/s

)

x (rad)

Fig. 6.24 Plots of angular velocity as a function of time (top) and phase space trajectory (bottom)
for a driven damped pendulum with � D 1:4

The expression “a modulo b” means the remainder obtained when a is divided
by b. For example, 12.3 modulo 5 would be 2.3 (because 12.3 divided by 5 is 2 with
a remainder of 2.3). If we compute x modulo 2� we will get an angle equivalent
to x in the range Œ0; 2��. This is close to what we want, but not quite it. We can’t

184 6 Nonlinearity and Chaos

-20

-10

 0

 10

-3.14159 0 3.14159

v
(r

ad
/s

)

x (rad)

Fig. 6.25 Same as the bottom of Fig. 6.24, but using the principal value of x

just subtract � from our result because doing so will give us an angle that is not
equivalent to x. So here’s what we do: if xp represents the principal value of x then

xp D ..x C �/ mod 2�/ � �: (6.12)

In Maxima we write the expression on the right-hand side as mod(x + %pi,
2*%pi) - %pi. The code below generates a list of ordered pairs .xp; v/. (Note
that data3 is the list containing the output from rk for this system.) We can then
construct a plot of v versus xp, as shown in Fig. 6.25 (code omitted).

(%i) xvLr3:makelist([mod(data3[i][2]+%pi,2*%pi)-%pi,
data3[i][3]],i,1,length(data3))$

Figure 6.25 illustrates the rolling motion of the pendulum. The pendulum
eventually settles into a path that enters the plot from the right side, does a loop
in the phase space, and then goes out of the plot on the left side. Because the left
side (x D ��) is an angle equivalent to the right side (x D �), when the trajectory
goes out the left side it immediately comes in on the right side.

There is one problem with the plot above, though. When the trajectory goes out
the left side and comes in the right side, Maxima connects the last point on the left
side and the first point on the right side with a line. This leads to the horizontal lines
in the range �15 < y < �13. These lines are artifacts of the way Maxima constructs
the plot, they are not really part of the trajectory. We can remove these spurious line
segments by using the xrange option to truncate the x values a bit. For example,
using the option xrange=[-.95*%pi,.95*%pi] results in the plot shown in

6.3 The Driven Damped Pendulum 185

-20

-10

 0

 10

-2.98451 0 2.98451

v
(r

ad
/s

)

x (rad)

Fig. 6.26 Same as Fig. 6.25 but with the range of x values limited in order to prevent spurious
lines

Fig. 6.27 Strobe plot for the
driven damped pendulum
with � D 1:4. The first 50
cycles have been omitted to
eliminate transient motion

-20

-10

 0

 10

 20

-3 -2 -1 0 1 2 3

v
(r

ad
/s

)

x (rad)

Fig. 6.26. This plot misses a few points on either end but eliminates the spurious
lines in Fig. 6.25.

Now we can construct a strobe plot of the motion, using the principal value of
x and ignoring the transient motion at the beginning. The code below shows how
to construct the list of data points for such a plot. Figure 6.27 shows the plot of
this data set. This plot shows that the motion is periodic with the same period as

186 6 Nonlinearity and Chaos

the driving force. So again we have a fixed point, but this time with rolling motion
instead of oscillatory motion. This rolling motion goes through a period-doubling
sequence just like the oscillatory motion we examined earlier. You can examine the
motion for � D 1:45, � D 1:47, and � D 1:477 (all other parameters the same as
above) to see this period-doubling in action.

(%i) xvLsp3:makelist([mod(data3[i][2]+%pi,2*%pi)-%pi,
data3[i][3]], i, 5001, length(data3), 100)$

6.3.4 Chaos

So far we have seen that the driven damped pendulum can exhibit motion with
a period-1, period-2, period-4, etc. attractor. It can exhibit these periodic motions
while oscillating or while rolling (swinging all the way around). What else can it
do? To find out, we increase the driving force a bit more, to � D 1:5, with initial
conditions x.0/ D ��=2 and v.0/ D 0. We begin with Fig. 6.28, which shows the
system’s angular position, this time over twenty cycles of the driving force.

The x versus t plot in Fig. 6.28 shows that with these parameter values the
pendulum exhibits a kind of behavior that we have not seen before. At first it swings
around (rolling motion) in the clockwise direction, but then it begins to swing
around counterclockwise before reversing yet again and swinging in a clockwise
direction.

-40

-30

-20

-10

 0

 0 2 4 6 8 10 12 14 16 18 20

x
(r

ad
)

t (s)

Fig. 6.28 Angular position as a function of time for a driven damped pendulum with � D 1:5

6.3 The Driven Damped Pendulum 187

-20

-10

 0

 10

 20

 0 2 4 6 8 10 12 14 16 18 20

v
(r

ad
/s

)

t (s)

Fig. 6.29 Angular velocity as a function of time for a driven damped pendulum with � D 1:5

We next observe the angular velocity v, shown in Fig. 6.29. The angular velocity
oscillates, but it never seems to fall into a repeating pattern.

Finally, we observe the trajectory in phase space, as shown in Fig. 6.30. The
phase space representation shows the oscillations in v and the rolling motion (with
changing directions) in x. This state space trajectory shows no signs of settling in to
a limit cycle.

We can reconstruct Fig. 6.30 using the principal value of x rather than x itself. As
above, we truncate the xrange in order to prevent spurious horizontal lines. The
resulting plot appears in Fig. 6.31.

The motion shown in this plot looks much more complicated than what we have
seen before. Could this be quasiperiodic motion, as we saw in the van der Pol
oscillator? To find out we construct a strobe plot. To ensure that we have enough
data points in our strobe plot we recompute our numerical solution, this time using
larger time steps (ıt D 0:1) and examining 5000 cycles of the driving force. We
discard the first 100 cycles to eliminate any transient motion from our plot. The
resulting plot is shown in Fig. 6.32.

The strobe plot in Fig. 6.32 shows that the motion is definitely not periodic.
Neither does it quite look like the quasiperiodic motion we saw in the van der Pol
oscillator. The points lie on a curve in the state space, but close inspection reveals
that the curve has a complicated structure. It seems to fold in on itself, creating
loops within loops. Although we cannot show this numerically, the number of loops
within the curve is infinite.

188 6 Nonlinearity and Chaos

-20

-10

 0

 10

 20

-40 -30 -20 -10 0

v
(r

ad
/s

)

x (rad)

Fig. 6.30 Phase space trajectory for a driven damped pendulum with � D 1:5

Fig. 6.31 Same as Fig. 6.30
but using the principal value
of x and truncating the x
range to avoid spurious lines

-20

-10

 0

 10

 20

-2 -1 0 1 2

v
(r

ad
/s

)

x (rad)

This structure, which has infinite length, differs dramatically from the finite-
length quasiperiodic attractor that we saw in the van der Pol oscillator. The structure
shown in Fig. 6.32 is known as a strange attractor. The points in the strobe plot are
restricted to the region of state space occupied by the attractor, but the motion is
neither periodic nor quasiperiodic. In fact, we will show that the motion is chaotic.
Strange attractors are characteristic of chaotic systems with damping.

6.3 The Driven Damped Pendulum 189

Fig. 6.32 Strobe plot for the
driven damped pendulum
with � D 1:5. The
coordinates are angular
position and angular velocity.
The first 100 cycles have been
omitted to eliminate transient
motion

 0

 10

 20

-3.14159 0 3.14159

v
(r

ad
/s

)

x (rad)

Chaotic motion is motion that exhibits sensitive dependence on initial conditions.
This means that if we start the system off with two sets of initial conditions that are
almost—but not exactly—identical, then after some time the motions that follow
from these two sets of initial conditions are quite different. This is essentially the
opposite of limit cycle behavior, because with a limit cycle we find that even widely
different initial conditions can still converge to the same limit cycle motion in the
long term.

To illustrate sensitive dependence on initial conditions, we use our driven damped
pendulum system with � D 1:5. This time we look at the motion generated by
two different sets of initial conditions. One set of initial conditions will be x.0/ D
��=2, v.0/ D 0. The other set will be x.0/ D ��=2 C 0:001 and v.0/ D 0. The
two versions of the driven damped pendulum are starting off at almost the same
angle (just 0.001 radians difference) and both at rest. Everything else about the two
pendulums is the same. The code below generates the numerical solutions for these
two pendulums a single plot showing x.t/ for both pendulums (some options for the
wxdraw2d command have been omitted). The resulting plot is shown in Fig. 6.33.

(%i) w:2*%pi$ w0:1.5*w$ b:w0/4$ g:1.5$ x0:-%pi/2$
data6a: rk([v,-2*b*v-w0*w0*sin(x) +

g*w0*w0*cos(w*t)], [x,v],[x0,0],
[t,0,200*%pi/w,0.01])$

data6b: rk([v,-2*b*v-w0*w0*sin(x) +
g*w0*w0*cos(w*t)], [x,v], [x0+0.001,0],
[t, 0, 200*%pi/w, 0.01])$

txL6a:makelist([data6a[i][1],
data6a[i][2]],i,1,2000)$

txL6b:makelist([data6b[i][1],
data6b[i][2]],i,1,2000)$

wxdraw2d(..., key="x(0)=%phi/2,v(0)=0", ...,
points(txL6a),key="x(0)=%phi/2+.001, v(0)=0",
..., points(txL6b))$

190 6 Nonlinearity and Chaos

-40

-30

-20

-10

 0

 0 2 4 6 8 10 12 14 16 18 20

x
(r

ad
)

t (s)

x(0)=%phi/2,v(0)=0

x(0)=%phi/2+.001, v(0)=0

Fig. 6.33 Angular positions as a function of time for driven damped pendulums with � D 1:5 and
two slightly different initial conditions

The two pendulums exhibit nearly identical motion until about t D 11 s. After
that time, however, their motions are quite different. This is what is meant by
sensitive dependence on initial conditions: the two versions of the system start with
nearly identical initial conditions but end up behaving quite differently in the long
term.

What happens if we start our two pendulums off even closer together, say with
a difference in x of only 0.0001 radians? Modify the code above and generate the
new plot. You should find that starting the pendulums closer together only delays
the inevitable. Their motion stays matched until about t D 14 s, but then deviates
noticeably. Starting the pendulums off only 0.00001 radians apart keeps the motion
the same until about t D 17 s. In fact, each factor of ten reduction in the difference
in x.0/ results in the motion staying the same for only a few additional cycles of the
driving force.

To repeat, this sensitive dependence on initial conditions is characteristic of
chaotic systems. This behavior has important consequences for the predictability of
these systems. It is nearly impossible to predict the long-term behavior of a chaotic
system. Our knowledge of the initial conditions of any system is inevitably limited
in precision. In non-chaotic systems this lack of precise knowledge may not matter,
since a slight difference in initial conditions will produce only a slight difference
in motion. But in chaotic systems a slight difference in the initial conditions will
eventually produce a large difference in the motion.

A more precise determination of the initial conditions doesn’t help. As we just
saw in the driven pendulum, reducing the uncertainty in our initial conditions by a

6.3 The Driven Damped Pendulum 191

factor of ten (a big improvement!) will only allow us to make accurate predictions of
the motion for a slightly longer time. The fact that dividing the difference in x.0/ by a
certain factor only adds a little bit to the time the trajectories stay close to each other
suggests that there is some sort of exponential relationship between the difference
in x and the elapsed time. In fact, another way to define “sensitive dependence on
initial conditions” is to say that nearby trajectories diverge exponentially in time.
Mathematically we can express this behavior as

j�x.t/j � j�x.0/je�t; (6.13)

where �x.t/ represents the difference in x for our two pendulums and � is called the
“Lyapunov exponent.”

The Lyapunov exponent characterizes how rapidly the exponential divergence
takes place (large � indicates a very rapid exponential divergence, while small
� indicates a slower exponential divergence). The trajectories will diverge expo-
nentially as long as � is positive. Systems with non-chaotic dynamics will have
� D 0, indicating that the trajectories either maintain a fixed separation or else
diverge/converge slower than exponentially (linearly, quadratically, etc.), or � < 0,
indicating that the trajectories converge exponentially.

We can illustrate the exponential divergence of trajectories in the driven damped
pendulum by constructing a plot of log.j�xj/ versus t. If the trajectories diverge
exponentially we should find

log.j�x.t/j/ � �t C log.j�x.0/j/: (6.14)

Our plot should show that log.j�x.t/j/ increases linearly with time, at least
when averaged over sufficiently long times. The slope of the line is the Lyapunov
exponent. The code below illustrates how to construct this plot for the two
pendulums shown in Fig. 6.33. The resulting plot is shown in Fig. 6.34.

(%i) logD:makelist([data6a[i][1],log(abs(data6a[i][2]-
data6b[i][2]))],i,1, 2000)$

wxdraw2d(..., points(logD))$

Figure 6.34 indicates that, on average, log.j�x.t/j/ does increase linearly over
time. Nearby trajectories (such as this pair, with an initial divergence of only 0.001
radians) diverge exponentially, the Lyapunov exponent is positive, and the motion
is chaotic.

The value of log.j�x.t/j/ oscillates. We should expect this because both pendu-
lums are oscillating. There will be times when they happen to pass by each other,
even if their motion is very different. But this plot shows that over long times the
pendulums do in fact get farther apart, exponentially fast.

What would a plot of log.j�xj/ versus t look like for the other (non-chaotic)
parameter values that we studied? You can find out for yourself by modifying the
code shown above.

192 6 Nonlinearity and Chaos

-10

-5

 0

 0 2 4 6 8 10 12 14 16 18 20

lo
gD

t (s)

Fig. 6.34 Plot of log D D log.j�xj/ as a function of time (in s) for the pendulums shown in
Fig. 6.33. The curve roughly follows an upward sloping line. The slope of this line is the Lyapunov
exponent

6.4 Maps and Chaos

We have seen that the driven damped pendulum has some interesting characteristics:
oscillatory and rolling motion, with a period-1 attractor (or fixed point in the strobe
plot). Furthermore, as the strength of the driving force is increased, it exhibits a
succession of period-doublings that eventually culminates in chaotic motion on a
strange attractor. Exploring these characteristics in greater detail (both numerically
and analytically) is instructive, but the numerical solution of the ODEs is so time-
consuming that a more detailed exploration may not be practical. Fortunately, a
more easily solved system that exhibits these same characteristics is available.

6.4.1 The Logistic Map

We wish to examine chaotic dynamics in a system with deterministic dynamics, such
that the state of the system at time t C �t is determined by the state of the system
at time t. In most physical systems the deterministic dynamics is generated by a set
of differential equations. It is possible, however, to generate deterministic dynamics
in a simpler way, using an iterated map. An iterated map generates a sequence of
numbers (or ordered pairs of numbers, etc.). Each term in the sequence is a function

6.4 Maps and Chaos 193

of the preceding term. We have already seen iterated maps used in the context of the
Newton–Raphson method for finding roots in Sect. 5.3.

As an example of an iterated map, consider the “logistic equation” defined by

f .r; x/ D rx.1 � x/: (6.15)

This function can be used to define an iterated map that generates a sequence of
values xn such that

xnC1 D f .xn/ D rxn.1 � xn/: (6.16)

This logistic map is used in studies of predator–prey population dynamics, but we
are primarily interested in this iterated map because it generates behaviors that are
very similar to those exhibited by the driven damped pendulum. These behaviors
can be studied more easily in the context of an iterated map than they can in the
context of differential equations.

To get an idea of how the logistic map works, consider what happens when we
choose a particular value for r and a particular initial value for x. Suppose we choose
r D 0: and x0 D 0:2. The successive values of the sequence will be 0.2, 0.08, 0.0368,
0.0177, etc. The code below uses the for loop introduced in Sect. 5.1 to generate
the list of x values produced by iterating the logistic map for any value of r and
any initial value of x. We can then plot the resulting series of values to examine the
behavior of the map. Figure 6.35 shows the result of using draw to create this plot.

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0.18

 0.2

 5 10 15 20

x(
n)

n

Fig. 6.35 Sequence of values generated by the logistic map with r D 0:5

194 6 Nonlinearity and Chaos

(%i) f(x, r) := r*x*(1-x)$
x0:0.2$ data: [x0]$

for i thru 20 do block(
x0:f(x0,0.5),
data: append(data,[x0]))$

wxdraw2d(xlabel="n", ylabel="x(n)",
point_type=7,point_size=1,points(data))$

Maxima also has built-in functions that can display the dynamics of an iterated
map in various ways. These functions are part of the dynamics package. To use
these functions we must first load this package. The evolution command (part
of the dynamics package) generates a plot of the sequence of values produced
by an iterated map. The syntax is evolution(f .x/, x0,n) where f .x/ is the
mapping function, x0 is the initial value for x, and n is the number of iterations
to be performed.

The code below generates a plot of the sequence generated by our logistic map
for r D 0:5 with x0 D 0:2. The plot, shown in Fig. 6.36, displays in a separate
window, rather than within the wxMaxima notebook.3

x(
n)

n

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0.18

 0.2

 0 5 10 15 20

Fig. 6.36 Same as Fig. 6.35, but generated using the evolution command from the dynamics
package

3Macintosh users need to have X11 or another xWindows system running in order to display
these plots. One can instruct Maxima to export the graphic image to a file. The command
evolution(f(x,0.5,0.2,20, [gnuplot_term, png]) would place a file named
maxplot.png in the user’s root folder. This graphic file can be viewed, edited, and incorporated
into documents. The Maxima manual’s plot documentation provides more options that allow
controlling the plot and the folder to which it is exported. We copied the plot to a paint program
and reduced it to grayscale for inclusion in this book.

6.4 Maps and Chaos 195

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0 0.1 0.2 0.3 0.4 0.5

x(
n+

1)

x(n)

Fig. 6.37 Staircase plot for the logistic map with r D 0:5. The thin, solid curve is the mapping
function. The dotted line is xnC1 D xn. The thick line is the staircase path showing the evolution
of the system

(%i) load("dynamics")$
evolution(f(x,0.5),0.2,20,[ylabel, "x(n)"])$

We can get a better picture of this iterative process by plotting the logistic
equation and the reference line y D x. Refer to Fig. 6.37. Begin at x0 on the line
y D x. Move vertically to the logistic curve. The y-coordinate of this point is the
next term in the sequence. This y-coordinate will now become the x-coordinate used
to determine the next term. To accomplish this on our plot we just move horizontally
to the line y D x. Then we move vertically to the logistic curve again. Again,
the y-coordinate of this point is the next term of the sequence. If we continue this
procedure indefinitely we get the picture of the entire sequence shown in Fig. 6.37.
The code below shows how to produce this plot.

(%i) f(x, r) := r*x*(1-x)$
x0:0.2$ data: [[x0,x0]]$
for i thru 200 do block(

x1:f(x0,0.5),
data:append(data,[[x0,x1],[x1,x1]]),x0:x1)$

wxdraw2d(xlabel="x(n)", ylabel="x(n+1)",
explicit(f(x,0.5),x,0,0.5),
line_type=dots,
explicit(x,x,0,.5), points_joined=true,
line_width=3, line_type=solid, point_type=0,
points(data))$

196 6 Nonlinearity and Chaos

x(
n+

1)

x(n)

 0

 0.05

 0.1

 0.15

 0.2

 0 0.05 0.1 0.15 0.2 0.25

Fig. 6.38 Same as Fig. 6.37, but generated with the staircase command from the dynamics
package

Note how the thick line, which traces the evolution of the sequence, bounces
between the dotted line (the y D x line) and the thin, solid line (the mapping
function). The plot clearly illustrates that the sequence produced by the logistic map,
with r D 0:5 and x0 D 0:2, converges steadily to zero. This kind of plot is sometimes
called a “staircase plot” or a “cobweb plot.” Fortunately, the dynamics package
provides a way of generating these plots without having to program a for loop.
The command for generating these plots is staircase and the syntax is almost
identical to that for evolution. The code shown below produces the staircase
(or cobweb) plot for our logistic map with r D 0:5 and x0 D 0:2 that appears in
Fig. 6.38.

(%i) staircase(f(x,0.5),0.2,20,
[xlabel,"x(n)"],[ylabel,"x(n+1)"])$

As noted before, this staircase plot shows that the sequence of numbers converges
to zero. For the logistic map with r D 0:5, x D 0 is a fixed point (or period-1
attractor, sometimes called a “1-cycle”) of the map. What if we change the value of
r? The staircase plot for r D 2 (with x0 D 0:2) is shown in Fig. 6.39. (The command,
essentially identical to the preceding one, is omitted.)

When r D 2, the map again converges, but to 0.5 instead of to zero. We will
examine a few more values of r to see how changing r affects the system’s behavior.
Figure 6.40 shows the map when r D 2:9.

When r D 2:9 the sequence still converges, to x D 0:655. Now the convergence
occurs much more slowly than it did for r D 2 or r D 0:5. Instead of approaching the
fixed point directly, the staircase curve gradually spirals in toward the fixed point.

6.4 Maps and Chaos 197

x(
n+

1)

x(n)

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7

Fig. 6.39 Staircase plot for the logistic map with r D 2

x(
n+

1)

x(n)

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Fig. 6.40 Staircase plot for the logistic map with r D 2:9

Figure 6.41 shows the staircase plot for r D 3:1. When r increases to 3.1, the
sequence does not converge onto a single value. Rather, the sequence eventually
oscillates between two values (0.558 and 0.765). This is an example of a 2-cycle
(or period-2 attractor). This change in behavior (from converging to a 1-cycle to
converging to a 2-cycle) is an example of a period-doubling, just like those we saw
in the driven damped pendulum.

198 6 Nonlinearity and Chaos

x(
n+

1)

x(n)

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1

Fig. 6.41 Staircase plot for the logistic map with r D 3:1

x(
n+

1)

x(n)

 0.2

 0.4

 0.6

 0.8

 1

 0.2 0.4 0.6 0.8 1 1.2 1.4

Fig. 6.42 Staircase plot for the logistic map with r D 3:9

Figure 6.42 shows the staircase plot for r D 3:9. For r D 3:9 the sequence does
not seem to converge to any value, or to any repeating series of values. The system
now exhibits chaotic dynamics. The sequence of x values for this map seems to be
a list of essentially random numbers. This appearance is deceptive, however. This
system is still deterministic, not random.

6.4 Maps and Chaos 199

Examining the logistic map shows that it reproduces many of the behavioral
features that we observed in the driven damped pendulum: periodic attractors,
period-doubling, and chaos. More importantly for our purposes, the relative sim-
plicity of iterated maps lets us delve more deeply into the dynamics of the logistic
map.

6.4.2 Bifurcation Diagrams

To get a more detailed picture of what happens in this system as r is increased, we
can create a bifurcation diagram. For several different values of r, and for some
initial value x0, we generate the sequence of x’s using our map. We can then plot all
of these values of x versus r, but we leave out the first several hundred (or so) x’s
for each r value. That way we are only seeing the behavior of the map after it has
converged (if it does converge), not the transient behavior at the beginning of the
sequence.

Bifurcation diagrams can be constructed using the orbits command from the
dynamics package. The syntax is

orbits.f .x; r/; x0; n1; n2; Œr; rmin; rmax�; options/:

As before, f is the mapping function and x0 is the initial value of x used to generate
each sequence. Here n1 is the number of x values at the beginning of the sequence
for each r value that are discarded, while n2 is the number of subsequent x values to
be plotted. The r values to be used range from rmin to rmax.

For the logistic map defined by Eq. 6.15 we do not consider values of r greater
than 4 or less than 0 because such values of r can lead to negative values in our
sequence and the map can go off to infinity. The code below creates a bifurcation
diagram for the logistic map. The option nticks specifies the number of r values
to be used in generating the plot. Note that the code may take a while to run. After
all, it has to generate 250�400 D 100;000 x values! Figure 6.43 shows the resulting
bifurcation diagram.

(%i) orbits(f(x,r), 0.1, 50, 200, [r, 0, 4],
[style, dots], [nticks,400])$

In the diagram above we see that for r < 1 the map has a 1-cycle at x D 0. For
2 < r < 3 the map still has a 1-cycle but the value of x for the 1-cycle increases
from 0 up to 2/3. At r D 3 the 1-cycle disappears and for 3 < r < 3:45 the map has
a 2-cycle. This change from a 1-cycle to a 2-cycle at a particular parameter value is
known as a period-doubling bifurcation. (This particular bifurcation is an example
of a pitchfork bifurcation.) Another period-doubling bifurcation occurs at r D 3:45

leading to a 4-cycle. The sequence of period-doubling bifurcations continues until
about r D 3:57, at which point the map becomes chaotic. Even for r > 3:57 there
are some particular values of r that lead to regular N-cycles, rather than chaotic
behavior (most notably near r D 3:84).

200 6 Nonlinearity and Chaos

x

r

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.5 1 1.5 2 2.5 3 3.5 4

Fig. 6.43 Bifurcation diagram for the logistic map with 0 � r � 4

x

r

 0.76

 0.78

 0.8

 0.82

 0.84

 0.86

 0.88

 0.9

 0.92

 0.94

 3.4 3.45 3.5 3.55 3.6 3.65 3.7

Fig. 6.44 Detail of the bifurcation diagram for the logistic map with 3:4 � r � 3:7

We can use the orbits command to zoom in on a particular region of the
bifurcation diagram. For example, we could focus on the top branch of the diagram
shown above (with 0:75 < x < 0:95) in the parameter range 3:4 � r � 3:7 using
the code below. Figure 6.44 shows the result.

(%i) orbits(f(x,r), 0.224, 100, 400, [r, 3.4, 3.7],
[style, dots],[nticks,400],[x,0.75,0.95])$

6.4 Maps and Chaos 201

A comparison between the detail plot in Fig. 6.44 and our original bifurcation
diagram in Fig. 6.43 reveals an interesting new feature: the bifurcation diagram is
self-similar. An object is self-similar if a small part of the object looks like the
entire object. Here we see that our detailed look at a small portion of the bifurcation
diagram looks very much like the entire bifurcation diagram. Self-similarity is a
characteristic of fractals, a fascinating topic that is unfortunately beyond the scope
of this book.

6.4.3 Diverging Trajectories

As we did with the driven pendulum, we can investigate how nearby trajectories in
the logistic map system diverge. First consider a map that converges to a 1-cycle
(r D 2:9) for initial conditions x0 D 0:1 and 0:3. The code below generates a single
plot showing both of these two sequences. We will refer to the curves as trajectories
with different initial conditions. Figure 6.45 shows the plot of these trajectories.

(%i) f(x, r) := r*x*(1-x)$
x0:0.1$ data1: [x0]$
for i thru 50 do block(

x0:f(x0,2.9),
data1: append(data1,[x0]))$

f(x, r) := r*x*(1-x)$
x0:0.3 $ data2: [x0]$
for i thru 50 do block(

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 10 20 30 40 50

x(
n)

n

Fig. 6.45 Two trajectories for the logistic map with r D 2:9

202 6 Nonlinearity and Chaos

x0:f(x0,2.9),
data2: append(data2,[x0]))$

wxdraw2d(xlabel="n", ylabel="x(n)",
points_joined=true, point_type=0,points(data1),
line_type=dots, points(data2))$

In Fig. 6.45 the trajectory with x.0/ D 0:1 is displayed as a solid line, while the
trajectory with x.0/ D 0:3 is displayed as a dotted line. Although the trajectories do
not start off close to each other, and they follow different paths for many iterations,
eventually they both converge on the same value. This behavior is characteristic of
a regular (non-chaotic) map with a periodic attractor. Different trajectories converge
into the same trajectory in the long run. They may end up in a 2-cycle, or a 4-cycle,
or some other N-cycle, but they all end up doing the same thing.

Next we examine the behavior of trajectories that begin very close together, but
with a value of r in the chaotic regime. First we examine the sequences for r D 3:9

with x0 D 0:2 (shown as a solid line) and 0:20001 (shown as a dotted line) in
Fig. 6.46.

Here we see that the trajectories start off very close together and remain together
for about 18 iterations. After 18 iterations, though, the trajectories diverge and
become easily distinguishable. As with the driven damped pendulum, this sensitive
dependence on initial conditions is characteristic of chaotic systems. We can reduce
the difference in initial conditions by a factor of 100 and see what happens. The
resulting plot is displayed in Fig. 6.47.

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 5 10 15 20 25 30

x(
n)

n

Fig. 6.46 Two trajectories for the logistic map with r D 3:9. The initial conditions for the two
trajectories are nearly identical (0.2 and 0.20001)

6.4 Maps and Chaos 203

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 5 10 15 20 25 30

x(
n)

n

Fig. 6.47 Same as Fig. 6.46 but with initial conditions closer together (0.2 and 0.2000001)

The trajectories do stay together longer, but for only about 25 iterations. This is
not a big improvement considering how much closer our initial values were. Nearby
trajectories diverge at an exponential rate in chaotic systems. We now turn to a closer
examination of this exponential divergence.

6.4.4 Lyapunov Exponents

In the logistic map, as in the driven damped pendulum, nearby trajectories will
diverge exponentially when the system is chaotic. This means that, on average, the
distance between trajectories with initial conditions x0 and x0 C d0 after n iterations
of the map is

dn D d0en�; (6.17)

where � is the Lyapunov exponent of the map. If � is negative then the trajectories
will converge, as we saw for the logistic map with r D 0:5, 2, 2.9, and 3.1. If
� D 0, then nearby trajectories may converge or diverge but at a rate that is slower
than exponential. However, if � is positive we get the exponential divergence that is
characteristic of chaotic maps (and chaotic physical systems).

For the driven damped pendulum we estimated the Lyapunov exponent by
graphing the logarithm of the difference in angle between the two trajectories as a
function of time. The approximate slope of the curve gave the Lyapunov exponent.
For the logistic map we can derive an analytical expression for the Lyapunov
exponent.

204 6 Nonlinearity and Chaos

6.4.4.1 Derivation of Lyapunov Exponent

Suppose we have two trajectories, one of which starts with the initial value x0 and
the other starts with initial value x0

0 D x0 C . After one iteration of the map we
have, to first order in ,

x0
1 D f .x0 C / � f .x0/ C

�
df

dx

�

xDx0

D x1 C

�
df

dx

�

xDx0

; (6.18)

and after two iterations of the map we have

x0
2 � f

x1 C

�
df

dx

�

xDx0

!
� x2 C

�
df

dx

�

xDx1

�
df

dx

�

xDx0

: (6.19)

After n iterations we have

x0
n � xn C

n�1Y
iD0

�
df

dx

�

xDxi

; (6.20)

where xi is the ith iterate of x0. So the distance (absolute value of the difference)
between xn and x0

n is

dn �
ˇ̌
ˇ̌
ˇ

n�1Y
iD0

�
df

dx

�

xDxi

ˇ̌
ˇ̌
ˇ D d0

ˇ̌
ˇ̌
ˇ
n�1Y
iD0

�
df

dx

�

xDxi

ˇ̌
ˇ̌
ˇ ; (6.21)

where d0 D jj.
Comparing this to Eq. 6.17 we find

en� D
ˇ̌
ˇ̌
ˇ
n�1Y
iD0

�
df

dx

�

xDxi

ˇ̌
ˇ̌
ˇ : (6.22)

We can take the natural logarithm of both sides and solve for � to find

� D 1

n

n�1X
iD0

ln

ˇ̌
ˇ̌
ˇ
�

df

dx

�

xDxi

ˇ̌
ˇ̌
ˇ : (6.23)

There is a problem with this expression for �: it depends on the value of n,
whereas we want the Lyapunov exponent to depend only on the map and possibly
the initial conditions. Therefore we define the Lyapunov exponent to be the limit of
this expression as n goes to infinity:

� D lim
n!1

1

n

n�1X
iD0

ln

ˇ̌
ˇ̌
ˇ
�

df

dx

�

xDxi

ˇ̌
ˇ̌
ˇ : (6.24)

6.4 Maps and Chaos 205

If f .x/ is a linear function (so that its derivative is constant) then this expression
reduces to � D ln.jdf =dxj/. Similarly, if x0 happens to be a fixed point of the map
then � D ln.j.df =dx/xDx0 j/.

6.4.4.2 Lyapunov Exponent for the Logistic Map

For a given map we can construct a numerical approximation for the Lyapunov
exponent. We can only compute an approximate value because we cannot actually
perform the infinite sum in Eq. 6.24. Instead of going to the limit n ! 1 we must
be content with using a large, but finite, value for n. Often this is sufficient to give
us a good approximation for �.

To carry out these calculations we first evaluate the derivative df =dx. We can use
Maxima to assign the derivative of f to a new function df .

(%i) diff(f(x,r),x)$ df(x,r) := ”%;
(%o) .df .x; r/ WD r .1 � x/ � r x

Next we define a function that computes an approximation to the Lyapunov
exponent for a given r using Eq. 6.24. We define the function using a for loop
to carry out the sum. We sum over the first 200 terms, in hopes that this will be
sufficient to accurately approximate the Lyapunov exponent. Once this function is
defined we can use it to compute the Lyapunov exponent for any value of r and any
x0.4 The code below defines this function and demonstrates its use.

(%i) lyapunov(r,x0):= block(le:0,
for i:0 thru 199 do block(
le:le+log(abs(df(x0,r))),
x0:f(x0,r)
),

return(le/200))$
lyapunov(3.8,0.2);

(%o) 0:40059

We see that the Lyapunov exponent is positive for r D 3:8, indicating that the
dynamics are chaotic for that value of r. We can now use our function for computing
the Lyapunov exponent to generate a plot of the Lyapunov exponent as a function
of r (using x0 D 0:2 as our initial value for all values of r). Maxima has difficulty
plotting this function as an explicit function, so instead we generate a list of
ordered pairs and use points to generate the plot, as shown in the code below.
Figure 6.48 shows the resulting plot.

(%i) lelist:makelist([0.004*i,lyapunov(0.004*i,0.2)],
i,1,1000)$

wxdraw2d(xlabel="r",ylabel="Lyapunov exponent",
xaxis=true,points_joined=true, point_type=0,
points(lelist), yrange=[-3,1])$

4Recall that we must restrict ourselves to 0 < r < 4 because for values of r outside this range the
sequence can run off to infinity, which will cause serious numerical problems.

206 6 Nonlinearity and Chaos

-3

-2.5

-2

-1.5

-1

-0.5

 0

 0.5

 1

 0 0.5 1 1.5 2 2.5 3 3.5 4

Ly
ap

un
ov

 e
xp

on
en

t

r

Fig. 6.48 Lyapunov exponent as a function of r for the logistic map

Fig. 6.49 Detail of Fig. 6.48

-1

-0.5

 0

 0.5

 1

 3.5 3.6 3.7 3.8 3.9 4

Ly
ap

un
ov

 e
xp

on
en

t

r

The Lyapunov exponent goes to zero at a bifurcation point (such as at r D 1,
3, etc.), but after the bifurcation has occurred it drops below zero again. Also, the
Lyapunov exponent becomes positive (indicating a transition to chaos) for some
r > 3:5. We examine this transition to chaos in more detail by focusing on the
region 3:5 � r � 4. Figure 6.49 shows a plot of the Lyapunov exponent for this
range of r values.

Figure 6.49 shows that the Lyapunov exponent crosses the axis around r D 3:57.
However, it does occasionally dip below the axis again, such as near r D 3:63, 3:74,

6.5 Fixed Points, Stability, and Chaos 207

3:83, and 3:84. These dips in the Lyapunov exponent correspond exactly to the gaps
in the bifurcations diagram for this map. They indicate values of r at which the map
is no longer chaotic. Instead, the sequences generated by the map with these r values
will converge to a periodic attractor.

6.5 Fixed Points, Stability, and Chaos

The bifurcation diagram for the logistic map shows that the map has a period-1 (or
fixed point) attractor that disappears at r D 3, giving way to a period-2 attractor.
What happens to the fixed point attractor at this point? The answer, in this case,
is that the fixed point continues to exist for r > 3, but it no longer attracts nearby
trajectories. We characterize an attracting fixed point as stable and a repelling fixed
point as unstable. How, other than by examining the bifurcation diagram, can we
evaluate the stability of a given fixed point? We addressed this topic briefly in
Sect. 5.3, where we showed that the Newton–Raphson method for finding roots of a
function employs an iterative map that has a stable fixed point at the root. Here we
will take a closer look at the stability of fixed points and illustrate the role that fixed
points (and other n-cycles) play in the dynamics of the logistic map.

6.5.1 Stability of Fixed Points

The fixed points of an iterative map are the values of x for which f .x/ D x, where
f is the mapping function. A fixed point x D x� is stable if the derivative of the
mapping function at x� has absolute value less than one, while the fixed point is
unstable if the absolute value of the derivative at the fixed point is greater than one.
In summary,

• x� is a fixed point if and only if f .x�/ D x�,
• x� is a stable fixed point if jdf =dxjxDx

�

< 1, and
• x� is an unstable fixed point if jdf =dxjxDx

�

> 1.

The case jdf =dxjxDx
�

D 1 is ambiguous and requires further analysis. Usually fixed
points with jdf =dxjxDx

�

D 1 are unstable, but this is a complicated issue that we
will not address here.

It is not hard to visualize how these criteria work. A fixed point is simply the
intersection of the curve y D f .x/ and the line y D x. In the vicinity of the fixed
point x D x� we can approximate the function f .x/ by the linear function flin.x/ D
x� C .df =dx/xDx

�

.x�x�/. This approximate function should accurately describe the
behavior of the map for points close to the fixed point. We can explore the stability
of a fixed point by generating the staircase plot using flin and an initial value x0 that
is close to x�. If the staircase plot displays motion away from the fixed point, then
that fixed point is unstable. If the staircase plot converges to the fixed point then that
fixed point is stable.

208 6 Nonlinearity and Chaos

x(
n+

1)

x(n)

-4

-3

-2

-1

 0

 1

 2

 3

 4

-4 -3 -2 -1 0 1 2 3 4

Fig. 6.50 Staircase plot for the case .df =dx/xDx
�

D �1:5 with x0 D 0:001

We examine staircase plots for four different cases, all with fixed points located
at x� D 0 (for convenience). We first consider a case with .df =dx/xDx

�

< �1 using
the code below, which produces the staircase plot in Fig. 6.50 if we use the initial
value x0 D 0:001. 5

(%i) load(dynamics)$
staircase(-1.5*x,0.001, 20, [x,-4,4],[y,-4,4])$

According to our criteria above, a fixed point with .df =dx/xDx
�

D �1:5 should
be unstable. Although the sequence shown in Fig. 6.50 starts very close to the fixed
point at x D 0 it gradually moves away under the action of the mapping. In this
case the motion spirals outward in the staircase plot, indicating that the sequence
alternates between values with x > x� and values with x < x�. Clearly this fixed
point is unstable, as expected based on our criteria.

Now look at a case with .df =dx/xDx
�

> 1. We use .df =dx/xDx
�

D 1:5 and again
start our sequence at x0 D 0:001. Figure 6.51 shows the result.

Here the mapping also carries the sequence of points away from the fixed point,
but in this case the motion is in one direction with the values becoming successively
greater than x�. The fixed point is unstable, as expected. These first two examples
illustrate that there are really two different types of unstable fixed points. In the case
.df =dx/xDx

�

< �1 the staircase plot spirals away from the fixed point (indicating an

5Recall from the previous section that these graphs are not produced inside a wxMaxima session.
Also, as before, we show the commands for the first example only. The remaining commands
are essentially the same as the first, except that the slope of the function will be different and
load(dynamics) need not be repeated.

6.5 Fixed Points, Stability, and Chaos 209

x(
n+

1)

x(n)

-2

-1

 0

 1

 2

 3

 4

-2 -1 0 1 2 3 4

Fig. 6.51 Staircase plot for the case .df =dx/xDx
�

D 1:5 with x0 D 0:001

alternating sequence). When .df =dx/xDx
�

> 1, in contrast, the staircase plot moves
away from the fixed point along a single direction, bouncing between y D f .x/ and
y D x.

What happens when �1 < .df =dx/xDx
�

< 0? We will investigate this case by
considering the linear map with .df =dx/xDx

�

D �0:8. This time, we start a little
farther away from the fixed point, at x0 D 0:5. The staircase plot for this case,
shown in Fig. 6.52, spirals inward toward the fixed point. This fixed point is stable,
as expected. The sequence of numbers produced by the mapping converges to x�,
but with the numbers alternating between values greater than x� and values less
than x�.

Finally, we will consider a case with 0 < .df =dx/xDx
�

< 1. We examine the map
with .df =dx/xDx

�

D 0:8 starting at x0 D 0:5. As Fig. 6.53 illustrates, the staircase
plot bounces between y D f .x/ and y D x as it heads toward the fixed point. This
fixed point is stable, as expected. The numbers in the sequence gradually approach
the fixed point from above.

A little geometrical reasoning, guided by the examples given above, shows that
the criteria for fixed point stability given at the beginning of this section are correct.

6.5.2 Fixed Points of the Logistic Map

We now examine the fixed points of the logistic map. First we identify the fixed
points. Maxima solves the equation f .x/ D x where f .x/ is the logistic map function.

210 6 Nonlinearity and Chaos

x(
n+

1)

x(n)

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0.6

-0.6 -0.4 -0.2 0 0.2 0.4 0.6

Fig. 6.52 Staircase plot for the case .df =dx/xDx
�

D �0:8 with x0 D 0:5

x(
n+

1)

x(n)

-0.2

-0.1

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

-0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5 0.6

Fig. 6.53 Staircase plot for the case .df =dx/xDx
�

D 0:8 with x0 D 0:5

(%i) f(x) := r*x*(1-x)$ fp:solve(f(x) = x, x);
(%o) Œx D r�1

r ; x D 0�

The solution shows that the logistic map has two different fixed points: x1 D
1 � 1=r and x2 D 0. We now analyze the stability of these fixed points. We evaluate
the derivative of our mapping function. We define a new function for that purpose.

6.5 Fixed Points, Stability, and Chaos 211

Then we can evaluate the derivative of our mapping function at the locations of the
fixed points by substituting the solutions stored in the array fp (defined above) into
the function df .x/.

(%i) df(x):=”(diff(f(x),x));
ratsimp(df(rhs(fp[1]))); ratsimp(df(rhs(fp[2])));

(%o) df .x/ WD r .1 � x/ � r x .%o/ 2 � r .%o/ r

The stability criteria imply that the fixed point at x1 D 1 � 1=r will be unstable
for r < 1 and for r > 3, but stable for 1 < r < 3. (In fact, for r < 1 this fixed point
is not even within the domain of our map!) The fixed point at x2 D 0 will be stable
for r < 1 and unstable for r > 1.

Compare these results with the bifurcation diagrams we generated in Sect. 6.4.
The bifurcation diagram shows us that for r < 1 the map converges to the fixed point
at x D 0. That makes sense because we found that this fixed point is stable for those
values of r, while the other fixed point is unstable (and not even in the domain). For
1 < r < 3 the bifurcation diagram shows that the map converges to a nonzero value.
It’s not hard to see that this value is just our other fixed point, x D 1 � 1=r. Again,
this behavior makes sense because for these values of r the fixed point at x D 0 is
unstable while the one at x D 1 � 1=r is stable. For r > 3 the bifurcation diagram
reveals that the map does not converge to any single point. There is no stable fixed
point for these values of r.

6.5.3 Stability of Periodic Points

So what happens in the logistic map for r > 3? The bifurcation diagram shows us
that for values of r slightly greater than 3 the logistic map converges to a 2-cycle. We
can determine the x values that make up this 2-cycle for a given value of r, and we
can analyze the stability of this 2-cycle. To do so we define a new function, f .2/.x/,
that carries out two successive iterations of the map at once. In other words, f .2/.x/

is just the composition of f .x/ with itself:

f .2/.x/ D f .f .x//: (6.25)

The advantage of defining this new function is that a 2-cycle for the function f .x/

will be a fixed point for the function f .2/.x/. To find the 2-cycle of a map f , and to
analyze its stability, we need only to find and analyze the fixed points of f .2/. We
can find the fixed points by solving the equation f .2/.x/ D x.

(%i) f2(x):=f(f(x))$ soln:solve(f2(x)=x,x);

(%o) Œx D �
p

r2
�2 r�3�r�1

2 r ; x D
p

r2
�2 r�3CrC1

2 r ; x D r�1
r ; x D 0�

We find that four points are fixed points of f .2/.x/. This does not mean, however,
that we have two different 2-cycles (each with two points). Two of these points are
just the fixed points of f that we found earlier. A little thought reveals that the fixed

212 6 Nonlinearity and Chaos

points of a map f are also solutions to the equation f .f .x// D x. Thus, our fixed
points will always appear when we solve for the points in the 2-cycle. The two new
points are really the points in our 2-cycle. We can analyze the stability of this 2-cycle
using the same criteria we used to analyze the stability of the fixed points, but this
time using f .2/ in place of f . (We will apply this analysis to the fixed points as well,
just to show that the results are consistent with what we found earlier.)

(%i) df2(x) := ”(diff(f2(x), x))$
radcan(df2(rhs(soln[1])));
radcan(df2(rhs(soln[2])));
radcan(df2(rhs(soln[3])));
radcan(df2(rhs(soln[4])));

(%o) �r2 C 2 r C 4 .%o/ � r2 C 2 r C 4 .%o/ r2 � 4 r C 4 .%o21/ r2

Both of the two points in the 2-cycle have df .2/=dx D �r2 C 2r C 4. This is not
surprising: both points are part of the same 2-cycle. Figure 6.54 shows a plot of
df .2/=dx for these 2-cycle points as well as each fixed point. The dotted lines at
y D ˙1 indicate the region of stability.

The (thick gray) curve for the fixed point at x D 0 is within the stable region for
r < 1. At r D 1 the curve for x D 0 leaves the stable region, but the (thick black)
curve for r D 1 � 1=r enters the stable region at that same point. This curve remains
within the stable region until r D 3, at which point it leaves the stable region and
the (thin black) curve for the 2-cycle enters that region. These results fit with what
we found earlier.

-4

-2

 0

 2

 4

 6

 0 0.5 1 1.5 2 2.5 3 3.5 4
r

-r2 + 2*r + 4
r2 - 4*r + r

r2

Region of stability

Fig. 6.54 Stability regimes for the 2-cycle and fixed points of the logistic map. The curves show
.df .2/=dx/xDx

�

for the 2-cycle (thin black), the fixed point at x D 1 � 1=r (thick black), and the
fixed point at x D 0 (thick gray)

6.5 Fixed Points, Stability, and Chaos 213

A question remains: at what value of r does the 2-cycle become unstable?
Maxima can help us find out. We must find the value of r for which df .2/=dx,
evaluated at either point in the 2-cycle, is equal to -1.

(%i) [solve(-rˆ2+2*r+4=-1,r),
float(solve(-rˆ2+2*r+4=-1,r))];

(%o) ŒŒr D 1 � p
6; r D p

6 C 1�; Œr D �1:4495; r D 3:4495��

This equation has two solutions, but one is negative and makes no sense in our
context. Therefore, we conclude that the 2-cycle becomes unstable at r D 1 Cp

6 � 3:4494. What happens at this point? You might guess that there is a 4-cycle
that becomes stable at this value of r. We can find and analyze this 4-cycle using
the same procedure we used for the 2-cycle, but this time employing the function
f .4/.x/ D f .f .f .f .x////. Unfortunately, this process generates polynomial equations
of a very high order which we may not be able to solve analytically. We could,
however, solve this equation using numerical methods for a specific value of r.

Determining the values of r at which each bifurcation occurs can help us illustrate
another intriguing feature of the logistic map. If the nth bifurcation occurs at r D �n,
then we find that

lim
n!1

�n � �n�1

�nC1 � �n
D ı (6.26)

where ı � 4:6692 is a number known as the Feigenbaum number (after Mitchell
Feigenbaum, who first discovered this property). Note that the Feigenbaum relation
holds exactly only in the limit n ! 1, but it will be approximately correct for finite
values of n.

We have found that �1 D 3, �2 D 1 C p
6. Using the Feigenbaum relation

(but ignoring the limit) we find that �3 � 3:54576. Examination of the bifurcation
diagram shows that the 4-cycle does bifurcate to form an 8-cycle near this value
of r.

The most remarkable aspect of the Feigenbaum relation is that it is not limited to
the logistic map. In fact, this relation has been found to hold for a wide variety of
dynamical systems that undergo period-doubling as some parameter is varied. This
is an example of universality: a property of the dynamics that is largely independent
of the details of the system, but rather holds for many different systems.

6.5.4 Graphical Analysis of Fixed Points

Another way to approach the analysis of the fixed points and periodic points of an
iterated map is to do so graphically. The fixed points of the map f can be found by
plotting y D f .x/ and y D x and finding the points of intersection. The stability of
each fixed point can be judged by estimating the slope (derivative) of f .x/ at each

214 6 Nonlinearity and Chaos

 0

 0.05

 0.1

 0.15

 0.2

 0 0.2 0.4 0.6 0.8 1
x

x
f (x)

Fig. 6.55 The logistic map f .x/ for r D 0:4 (solid) and the line y D x (dotted)

intersection point and applying the criteria given above. For example, we can find
and analyze the fixed points of the logistic map for r D 0:4 by creating Fig. 6.55.6

(%i) r:0.4$ f(x) := r*x*(1-x)$
wxdraw2d(xlabel = "x",key = "x", line_type=dots,

explicit(x,x,0,1), line_type = solid,key=
"f(x)",explicit(f(x),x,0,1),yrange=[0,0.2])$

From this plot it is clear that the only fixed point within the domain is the one at
x D 0. It is also clear that the slope of the curve at x D 0 is positive, but less than 1.
Therefore, we would expect the fixed point at x D 0 to be stable, in agreement with
our earlier results for 0 < r < 1. Now we can take a look at the same plot for
r D 2:3, as shown in Fig. 6.56.

This plot shows that there are two fixed points in the domain, one at x D 0 and
another at x � 0:57 (actually at x D 1 � 1=2:3 � 0:5652). The fixed point at x D 0

is unstable because the slope of the mapping function at that point is greater than 1.
The slope at the other fixed point is negative, but still greater than �1, so this fixed
point is stable. For r > 3 we would find that neither fixed point is stable.

We can take the same approach to examining 2-cycles by replacing f .x/ with
f .2/.x/. Consider the plot of f .2/.x/ for r D 2:8, shown in Fig. 6.57.

6The commands for the next five graphs are much the same, so the commands that generate the
second through fifth graphs are not reported.

6.5 Fixed Points, Stability, and Chaos 215

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1
x

x
f (x)

Fig. 6.56 The logistic map f .x/ for r D 2:3 (solid) and the line y D x (dotted).

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1
x

x
f2 (x)

Fig. 6.57 The composite mapping function f .2/.x/ for r D 2:8 (solid) and the line y D x (dotted)

There are two points of intersection, but these are just our fixed points. There are
no 2-cycle points. In fact, if we look back at our expressions for the coordinates of
our 2-cycle we will find that they are complex-valued. We now look at the same plot
for r D 3:2, in Fig. 6.58.

216 6 Nonlinearity and Chaos

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1
x

x
f2 (x)

Fig. 6.58 The composite mapping function f .2/.x/ for r D 3:2 (solid) and the line y D x (dotted)

Now we have two new intersection points, corresponding to the points in our
2-cycle. The slope of the curve at both of these points is positive but less than 1, so
the 2-cycle is stable. For r > 1Cp

6 we would find that the slope of the curve at the
2-cycle points is less than -1, indicating that the 2-cycle is unstable for these values
of r.

It is not hard to extend this graphical analysis to higher-order cycles. We can
examine 4-cycles by plotting y D f .4/.x/ and y D x. Figure 6.59 shows this plot for
r D 3:5.

A close examination reveals eight different points of intersection in this plot.
Four of these we have encountered before: they are the two fixed points and the
two points of the 2-cycle. The other four are the points in a 4-cycle. The function
f .4/.x/ has a very shallow slope at these points, indicating that the 4-cycle is stable
for r D 3:5.

Whenever the map has a stable n-cycle, the system will tend to converge to this
n-cycle after many iterations of the map. In this case, the dynamics will not be
chaotic. The dynamics of the map can be chaotic only when there are no stable
n-cycles. As we increase the value of r in the logistic map, the stable fixed point at
zero gives way to a stable fixed point at x D 1 � 1=r. This fixed point gives way to
a stable 2-cycle, which gives way to a stable 4-cycle, which gives way to a stable
8-cycle, etc.

The Feigenbaum relation shows us that these period-doubling bifurcations occur
at values of r that are more closely spaced as we go through the sequence. As a
consequence, there is some finite value of r which exceeds the limits of the period-
doubling sequence. At this value of r there are no longer any stable fixed points

6.5 Fixed Points, Stability, and Chaos 217

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1
x

x
f4 (x)

Fig. 6.59 The function f .4/.x/ for r D 3:5 (solid) and the line y D x (dotted)

or periodic points and the dynamics of the map is chaotic. If we use the first two
bifurcation points (�1 D 3 and �2 D 1 C p

6), and assume that the Feigenbaum
relation (Eq. 6.26) holds exactly rather than only in the limit n ! 1, then the
properties of geometric series will show that the period-doubling sequence reaches
its limit at r � 3:572. This estimate is in good agreement with the point where
chaos begins in the bifurcation diagram in Fig. 6.44, as well as the point where the
Lyapunov exponent becomes positive in Fig. 6.49.

There are “routes to chaos” other than the period-doubling sequence exhibited by
the logistic map (and the driven damped pendulum), but the period-doubling route is
a fairly typical one. Our goal here was simply to illustrate how Maxima can be used
to explore nonlinear dynamics and chaos. For those who are interested in learning
more about this fascinating part of classical mechanics we provide a list of useful
references below.

• G. L. Baker and J. P. Gollub, Chaotic Dynamics: An Introduction, second edition,
Cambridge University Press (1995).

• Robert C. Hilborn, Chaos and Nonlinear Dynamics, Oxford University Press
(1994).

• Francis C. Moon, Chaotic and Fractal Dynamics, An Introduction for Applied
Scientists and Engineers, Wiley (1992).

• Edward Ott, Chaos in Dynamical Systems, Cambridge University Press (1993).
• Steven Strogatz, Nonlinear Dynamics and Chaos with Applications to Physics,

Biology, Chemistry and Engineering, Addison-Wesley (1994).

218 6 Nonlinearity and Chaos

• Robert C. Hilborn and Nicholas B. Tufillaro, “Resource letter: ND-1: Nonlinear
dynamics,” American Journal of Physics 65, 822–834 (1997).

• Robert DeSerio, “Chaotic pendulum: The complete attractor,” American Journal
of Physics 71, 250–257 (2003).

• Todd Timberlake, “A computational approach to teaching conservative chaos,”
American Journal of Physics 72, 1002–1007 (2004).

6.6 Exercises

1. Use drawdf to generate difference field plots (with two sample trajectories
each) for the van der Pol oscillator with � = 0.7, 1.5, and 2.5. Comment on
how changing the value of � alters the difference field and the trajectories.

2. Examine the motion of the driven van der Pol oscillator with driving frequency
! D 1:5 and � D 1. Create plots of the phase space trajectory, as well as strobe
plots, for the following values of ˛: 0.01, 0.1, 0.2, 0.5, 0.7, 0.9, and 1.5. Comment
on how the motion changes as you increase ˛.

3. Continue your exploration of the behavior of the driven damped pendulum for
more parameter values. Keep ! D 2� , !0 D 1:5!, and ˇ D !0=4. Always
launch the pendulum from rest at � D ��=2. Explore the motion for the values
of � shown in the table below. (Note that � D 0:2 and 0.7 were already discussed
in the text, but they are included here for completeness.) In each case, indicate
whether the motion is periodic or not. If it is periodic, indicate the period (e.g., 1
if it has the same period as the driving torque, 2 if the period is twice that of the
driving torque, etc.). Indicate the type of motion: either oscillatory (pendulum
swings back and forth) or rolling (pendulum swings all the way around).

� Periodic? Period Type of Motion
0.7
1.075
1.081
1.0824
1.1
1.13
1.2
1.35
1.44
1.5

4. Figure 6.33 shows that two driven pendulums (� D 1:5) with nearly identical
initial conditions (only 0.001 radians apart) diverge noticeably at about t D 11

s. Modify the code used to produce this figure so that the two pendulums start
only 0.0001 radians apart. At what time do these pendulums begin to noticeably

6.6 Exercises 219

diverge? Repeat for an initial separation of 0.00001 radians. Use your results,
along with Eq. 6.13, to estimate the Lyapunov exponent for the driven damped
pendulum with � D 1:5. Also estimate the Lyapunov exponent by estimating the
slope of log D versus t in Fig. 6.34. Compare your two answers.

5. Create staircase plots for the logistic map with r D 3:52, 3.56, and 3.568. You
can use x0 D 0:2 in each case. Instead of using the staircase command
from the dynamics package, use the code given in the text. Modify the code so
that it produces 200 iterations of the map, but only plots the last 100 resulting
values (ignoring the first 100). Explain what is happening as r increases from 3.1
(shown in Fig. 6.41) to 3.568. How does this behavior relate to the features seen
in the bifurcation diagram (Figs. 6.43 and 6.44)?

6. Calculate the Lyapunov exponent for each of the two fixed points for the logistic
map. Recall that the equation for calculating the Lyapunov exponent (Eq. 6.24)
simplifies considerably if the initial point is a fixed point. Comment on how
your results for the Lyapunov exponents fit with the analysis of the fixed points
discussed in the text.

7. In this problem you will explore the dynamics generated by the “tent map,”
which is defined as

f .x/ D r .1 � 2jx � 0:5j/ ; (6.27)

where 0 < r < 1 and 0 � x � 1.

(a) Make a plot of f .x/ for r D 0:3 and r D 0:7 to get an idea of what the tent
map function looks like and how the function changes as you change the
value of r.

(b) Examine staircase plots for r D 0:3, 0.62, 0.75, and 0.9. Use x0 D 0:2

as your starting value. Describe what you see for each case. Does the
sequence converge to a stable attractor? If so, what is the period? Does
the sequence appear chaotic?

(c) Find the fixed points of the tent map. (Hint: there are two fixed points. You
may want to rewrite the mapping function as a piecewise function before
trying to solve for the fixed points. Then it is easy to find the fixed points
by hand.) For each fixed point, state whether that fixed point exists for all
values of r or for only a limited range of r values.

(d) Analyze the stability of each fixed point. For what range of r values (with
0 < r < 1) is each fixed point stable? For what range of values is each fixed
point unstable? Is the stability of either fixed point indeterminate for some
value of r? (Note: for each fixed point you should only consider values of
r for which that fixed point exists, based on your results from the previous
question.)

(e) Pick a value of r for which the tent map has a stable fixed point. Examine
the behavior of two trajectories that start off far apart (difference of at least
0.3). Do these trajectories converge over time?

220 6 Nonlinearity and Chaos

(f) Now examine two trajectories that start off close together (difference of
0.0001), but with a value of r for which the tent map appears to generate
chaotic dynamics (based on your staircase plots). Provide detailed evidence
that these trajectories diverge exponentially and use your results to estimate
the Lyapunov exponent for this case.

(g) Show that the Lyapunov exponent for the tent map is the same for any initial
value of x. Determine an exact formula for the Lyapunov exponent, �, as
a function of r. Do this by hand! (Hint: you may want to rewrite the tent
map function as a piecewise function, instead of using the absolute value.
This will make it easier to take the derivative.) Compare your result to the
estimate for the Lyapunov exponent that you obtained in the previous part.

(h) Make a plot of � as a function of r. For what value of r does the Lyapunov
exponent become positive?

(i) Generate the bifurcation diagram for the tent map, with 0 < r < 1.
(j) Discuss the connections between your results for the staircase plots, the

stability of the fixed points, the Lyapunov exponent, and the bifurcation
diagram. How do all of these results fit together to provide a coherent
picture of the transition to chaos in the tent map?

(k) Plot f .x/ for r D 0:5 and the line y D x on the same plot. What is unusual
about the tent map for this value of r?

(l) Compare the dynamics of the tent map, and how it changes as you vary r, to
the dynamics of the logistic map and how it changes with r. In what ways
are the dynamics similar? In what ways are the dynamics different? Do the
two systems undergo similar dynamical changes as r is varied? If not, how
are their changes different?

Erratum

Classical Mechanics with Maxima

Todd Keene Timberlake and J. Wilson Mixon, Jr.

© Todd Keene Timberlake & J. Wilson Mixon, Jr. 2016
T.K. Timberlake, J.W. Mixon, Classical Mechanics with Maxima, Undergraduate Lecture Notes
in Physics, DOI 10.1007/978-1-4939-3207-8

DOI 10.1007/978-1-4939-3207-8_7

The original version of this article was inadvertently published with a sign error in
equations 6.5 and 6.7. The x2 term in both equations should have a � (negative)
rather than a C (positive) in front of it.
The correct equation is shown below

Pv D �x C �.1 � x2 � v2/v; (6.5)

Pv D �x C �.1 � x2 � v2/v C ˛ cos.!t/; (6.7)

In the 15th line of page 193, r D 0 should be r D 0:5.

The online version of the original chapter can be found under
http://dx.doi.org/10.1007/978-1-4939-3207-8_6

© Todd Keene Timberlake & J. Wilson Mixon, Jr. 2016
T.K. Timberlake, J.W. Mixon, Classical Mechanics with Maxima, Undergraduate
Lecture Notes in Physics, DOI 10.1007/978-1-4939-3207-8_7

E1

http://dx.doi.org/10.1007/978-1-4939-3207-8_6

Appendix A
Numerical Methods

A.1 The Bisection Method

In Sect. 5.3 we examined the Newton–Raphson method for numerically finding a
root of a function. The Newton–Raphson method is very effective and fast, provided
that the initial guess for the solution is within the basin of attraction of the iterated
map used in the method. There is, however, no way to be certain that any given
initial guess will be in the basin of attraction. For this reason, the Newton–Raphson
method can sometimes fail to find the desired root of the function.

In this section we examine the bisection method, a numerical root finding method
that avoids the basin of attraction problem because it does not use an iterated
function. We want to use the bisection method to find a root, x�, of the function
f .x/ (so f .x�/ D 0). To use the bisection method, begin by specifying an interval
ŒxL; xR� which contains a single root x� but no other roots of f .x/, so xL < x� < xR.
The function crosses the x-axis once and only once on this interval (at x D x�), so
the signs of f .xL/ and f .xR/ must be opposite.

The method proceeds by first computing the midpoint of this interval: xM D
.xL C xR/=2. The sign of f .xM/ must be the same as either f .xL/ or f .xR/, but not
both. We define a new interval with xM as an endpoint and such that the function
has opposite signs at the two endpoints. If f .xM/ has the same sign as f .xL/ (and
therefore the opposite sign from f .xR/) then the new interval is ŒxM; xR�. The root
must be contained in this new, smaller interval. Otherwise the root must be contained
in the interval ŒxL; xM�. Using our new interval, we repeat these steps (finding the
midpoint, checking the signs, defining a new interval) and continue the process until
the interval length is less than the desired precision for the root.

© Todd Keene Timberlake & J. Wilson Mixon, Jr. 2016
T.K. Timberlake, J.W. Mixon, Classical Mechanics with Maxima, Undergraduate
Lecture Notes in Physics, DOI 10.1007/978-1-4939-3207-8

221

222 A Numerical Methods

The major advantage of this procedure is that for continuous functions it will
always converge to a root as long as the initial interval contains a root.1 If the initial
interval contains multiple roots then the bisection method will converge to one of
these roots, though perhaps not the desired one. Problems can occur if the function
has a vertical asymptote or other discontinuity within the initial interval. The method
can also run into difficulty with double (or quadruple, etc.) roots. Otherwise this
method is quite reliable.

It might seem that we would always want to use this method rather than the
Newton–Raphson method, which sometimes fails to converge. Looking at the
bisection method in action, however, reveals why this is not always the case.
The code below implements the bisection method for finding the root of f .x/ D
tan.x/ � x � 5 (using fpprintprec:8). We found in Sect. 5.3 that this function
has a root at x � 1:416. To locate the root using the bisection method we choose the
initial interval Œ1:3; 1:5�, which contains this root but no other roots of the function.
The code first checks to make sure the function changes sign on the specified
interval, then it implements the method, printing the number of iterations performed
and the midpoint of the interval on each pass through the loop.

(%i) f(x) := tan(x) - x- 5$
xL:1.3$ xR:1.5$ tol:0.00001$ n:0$
if (f(xL)*f(xR) > 0) then
print(
"Sign does not change within the interval.")

else
for i:1 while ((i<100) and (abs(xR-xL)>tol))
do (xM:(xL+xR)/2,
if (f(xM)*f(xR) > 0) then xR:xM
else xL:xM, n:n+1,
print(n, xM))$

(%o) 1 1:4
2 1:45
3 1:425
4 1:4125
5 1:41875
6 1:415625
7 1:4171875
8 1:4164062
9 1:4160156
10 1:4162109
11 1:4161133
12 1:4161621
13 1:4161865
14 1:4161743
15 1:4161804

1If the function is discontinuous, it is possible for the bisection method to converge to a
discontinuity rather than a root.

A.2 Numerical Integration 223

The bisection method does converge to the same value that the Newton–Raphson
method produced, but it takes the bisection method 15 iterations to converge. The
Newton–Raphson method requires four iterations (with an initial value of 1.5 and
an error tolerance of 0.00001). While the bisection method is reliable, it is not very
efficient.

Modify the code above to use an initial interval of Œ1:5; 2�. The function has
no root on this interval, but it does have a vertical asymptote (at x D �=2) and
the bisection method converges to the location of this asymptote. Try the interval
Œ0; 4:65�. In that case the function has two roots and a vertical asymptote on the
interval. It is hard to know to which of these values the bisection method will
converge, but it must converge to one of them.

The Newton–Raphson and bisection methods illustrate a common feature of
numerical algorithms: there is usually no single best algorithm. Sometimes one
algorithm works better, sometimes another algorithm works better. Understanding
the strengths and weaknesses of each algorithm helps us to choose the one that will
work the best for the problem at hand. Maxima’s built-in find_root command
uses a combination of the bisection method and a linear interpolation method that
is similar to the Newton–Raphson method (but doesn’t require knowledge of the
derivative of the function). This combination is, on average, faster than the bisection
method but more reliable than the Newton–Raphson method. The find_root
command does give the same result as the bisection method used above.

(%i) find_root(f(x), 1.3, 1.5); (%o) 1:4161843

The difference between the final value from the bisection method and the value
returned by find_root is approximately 4 � 10�6, which is smaller than the
10�5 error tolerance that we used for the bisection method. Modifying our bisection
method code to use a stricter error tolerance will produce a result that is closer to
the result from find_root.

A.2 Numerical Integration

Maxima’s library of integrals is quite large.2 Even, so, it cannot evaluate all integrals
for which closed forms exist. Furthermore, not all functions are susceptible to
analytical integration.

Fortunately, numerical techniques allow us to compute definite integrals of
functions that cannot be integrated analytically. This section introduces some exam-
ples of numerical integration, ranging from simple approximations to sophisticated
methods that are built into Maxima.

2It incorporates material from Milton Abramowitz and Irene A. Stegun (eds.), Handbook of
Mathematical Functions, National Bureau of Standards, U. S. Government Printing Office, 1964.

224 A Numerical Methods

-40

-20

 0

 20

 40

 60

 0 0.5 1 1.5 2 2.5 3 3.5 4

f(
x)

x

Fig. A.1 The oscillatory function f .x/ D .6x2 � 7x/ cos.3�x/

We illustrate these techniques by applying them to two functions that can be
integrated analytically. Doing so provides a basis for comparing the techniques. We
start with the relatively difficult case of the function

f .x/ D .6x2 � 7x/ cos.3�x/: (A.1)

As you might guess from the cosine term, this function oscillates. Figure A.1 shows
the function on the interval Œ0; 4�.

(%i) f(x):=(6*xˆ2-7*x)*cos(3*%pi*x)$
wxdraw2d(xlabel="x",ylabel="f(x)",
explicit(f(x),x,0,4))$

For purposes of comparison, we use the integrate command to integrate
the function over this interval. Maxima returns an exact answer, which we then
evaluate as a floating-point number. This value will be compared to the results of
the numerical techniques that are developed in the rest of the section.

(%i) integrate(f(x),x,0,4); float(%);
(%o) 16

3 �2 .%o/ 0:5403796460924681

Now we define a second function

g.x/ D .x � 3/.x � 5/x2; (A.2)

A.2 Numerical Integration 225

-15

-10

-5

 0

 5

 10

 1 1.5 2 2.5 3 3.5 4 4.5 5

g(
x)

x

Fig. A.2 The polynomial function g.x/ D .x � 3/.x � 5/x2

a fourth degree polynomial. This function will be much easier to integrate with
numerical methods. The function is defined and graphed over the interval [1, 5] in
Fig. A.2.

(%i) g(x):=(x-3)*(x-5)*xˆ2$
wxdraw2d(xlabel="x",ylabel="g(x)",
explicit(g(x),x,1,5))$

As before integrate provides an exact answer, and float provides a
floating-point representation of the answer. Again, this exact answer provides the
benchmark for evaluating the numerical methods that follow.

(%i) integrate(g(x),x,1,5); float(%);
(%o) � 16

5 .%o/ � 3:2

A.2.1 Rectangular Approximation

Our first and simplest numerical integration method breaks up the interval into
equal-sized subintervals. For each subinterval we estimate the area under the curve
in that subinterval by constructing a rectangle. The rectangle’s width is the length of
the subinterval. The rectangle’s height is the value of the function at the beginning
of the subinterval. The subinterval’s area is simply the product of its width and
height. If the function’s value is negative at the beginning of the subinterval, then
the area will be negative (which is the way we want it to work for integration). We
then sum the areas of the rectangles for all the subintervals in order to estimate the

226 A Numerical Methods

-40

-20

 0

 20

 40

 60

 0 0.5 1 1.5 2 2.5 3 3.5 4
x

h(x)
f(x)

Fig. A.3 Rectangular approximation for f .x/

integral’s value over the specified interval. This procedure is called the rectangular
approximation for the integral. To illustrate the rectangular approximation we can
define a function that gives the height of the rectangles for ten subintervals in the
integration of our oscillatory function. A plot of this function, in Fig. A.3, illustrates
how we will use the areas of these ten rectangles to approximate the area under the
oscillatory curve.

(%i) h(x):= (if x <= 0.4 then f(0) else if
x<0.8 then f(0.4) else if x<1.2 then f(0.8)
else if x < 1.6 then f(1.2) else if x < 2
then f(1.6) else if x < 2.4 then f(2)
else if x < 2.8 then f(2.4) else if x < 3.2
then f(2.8) else if x < 3.6 then f(3.2)
else if x<4 then f(3.6) else if x >=4 then 0)$

wxdraw2d(xaxis = true, filled_func = 0,
fill_color= gray, key="h(x)",xlabel="x",
explicit(h(x),x,0,4),filled_func=false,
key="f(x)",explicit(f(x),x,0,4))$

The rectangles in Fig. A.3 appear as gray bars, and the curve shows the function
being integrated. Notice the use of filled_func for showing the rectangles.3

Cursory visual analysis shows that the rectangles do not approximate the area under

3The option filled_func=0, causes draw to see 0 as a function of x. It then shades the
difference between the function h.x/ and 0. After this is accomplished, shading is turned off with
filled_func=false, which is the default value.

A.2 Numerical Integration 227

the function very well. Even so, this analysis provides insight into the nature of
numerical integration. The much more sophisticated, and accurate methods that are
built in to Maxima are based on the same basic idea as this simple technique.

We now calculate the areas of these rectangles and sum them, using the code
below. This code does not involve the h.x/ function defined above. That function
was needed only to produce the visual representation of the rectangles in the plot
above.

(%i) a:0$ b:4$ n:10$ dx:(b-a)/n$ int:0$
for i:0 thru n-1 do
block(xi:a+i*dx,int:int+f(xi)*dx)$

float(int);
(%o) �11:477

This result is not good at all, giving an estimated value of �11.477 versus the
actual value of 0.5404. Re-evaluate the code block above using 100 subintervals
(n:100), and again with 1000 subintervals. The results get better as n gets larger,
but even with n:1000, the error is still around 25 %.

Now we apply this approach to the polynomial function, g.x/. Again, we look at
the rectangles by creating a function that gives the height of the rectangle for each
subinterval and then plotting those rectangles (along with the polynomial function).4

Figure A.4 indicates that the rectangular approximation should work better for
this function. The code below evaluates the rectangular approximation for this
integral.

-15

-10

-5

 0

 5

 10

 1 1.5 2 2.5 3 3.5 4 4.5 5
x

p(x)
g(x)

Fig. A.4 Rectangular approximation for g.x/

4The code is a straightforward modification of the code above and is omitted.

228 A Numerical Methods

(%i) a:1$ b:5$ n:10$ dx:(b-a)/n$ int:0$
for i:0 thru n-1 do
block(xi:a+i*dx, int:int+g(xi)*dx)$
float(int);

(%o) �1:0701

Even for this relatively well-behaved function, with n:10 the result (�1.07)
is not very close to the actual value (�3.2). Confirm that with n:100 the
approximation (�3.035) is much better, and with n:1000 it is even better (�3.184).
With the use of modern computers, n:10000 or more could be used, so that
the rectangular approximation could be forced to yield good results, at least for
reasonably well-behaved functions. We can do much better, however, by selecting a
better numerical method.

A.2.2 Trapezoidal Approximation and Simpson’s Rule

Instead of using rectangles, we could use trapezoids to estimate the subinterval
areas. The bottom of the trapezoid will still run along the x-axis over the subinterval.
The height of the left side of the trapezoid is given by the function’s value at the start
of the subinterval, and the height of the right side is given by the function’s value at
the end of the subinterval. This minor modification of the rectangular approximation
yields the trapezoidal approximation.

The area of the trapezoid is just the width times the average of the two heights,
so the approximate value of the integral is given by

Z b

a
f .x/dx �

n�1X
iD0

.f .a C i�x/ C f .a C .i C 1/�x//�x=2 (A.3)

where �x D .b � a/=n and n is the number of subintervals. This sum can be
rewritten as

Z b

a
f .x/dx � .f .a/ C f .b//�x=2 C

n�1X
iD1

f .a C i�x/�x: (A.4)

The code below implements this approximation for the integral of our oscillatory
function f .x/.

(%i) a:0$ b:4$ n:10$ dx:(b-a)/n$ int:0$
for i:1 thru n-1 do
block(xi: a+i*dx, int:int+f(xi)*dx)$

float(dx*0.5*(f(a)+f(b))+int);
(%o) 2:1227

The result isn’t impressive for n:10 (2.1226 versus 0.5404). It is, however,
much better than the rectangular approximation. Furthermore, the quality improves

A.2 Numerical Integration 229

quickly with increased n: for n:100 the trapezoidal approximation actually gives a
pretty good result (0.5468). As an exercise, determine how close the approximation
becomes with n:1000 The results for this difficult oscillatory function suggests
that the use of the trapezoidal rule represents progress.

We now apply the trapezoidal method to the integral of our polynomial function
g.x/.

(%i) a:1$ b:5$ n:10$ dx:(b-a)/n$ int:0$
for i:1 thru n-1 do
block(xi:a+i*dx,int:int+g(xi))$

float(dx*(0.5*(g(a)+g(b))+int));
(%o) �2:6701

The result is not great for n:10 (�2.67 versus �3.4). Confirm that with n:100
the result is fairly accurate. Still, we can do better.

The rectangular approximation represents the original function as a constant
within each subinterval. The trapezoidal approximation represents the function as
a straight line within each subinterval. The trapezoidal approximation does a better
job because the straight line segments more closely follow the shape of the function
than can a set of flat-line (constant) segments. The straight lines are more flexible
than the constant values.

Even more flexibility results from allowing the top of the shape to curve. Suppose
we have two adjacent subintervals with endpoints x0, x1, and x2. We can approximate
the function on the interval Œx0; x2� by a parabola that passes through the points
.x0; f .x0//, .x1; f .x1//, and .x2; f .x2//. We can then integrate this parabolic function
to find the area underneath the parabola from x0 to x2. The result is

.f .x0/ C 4f .x1/ C f .x2//�x=3: (A.5)

This serves as an approximation for the integral of our function from x0 to x2.
Repeating this procedure for each pair of subintervals and then summing the results
yield Simpson’s Rule which gives the following approximation for the integral:

Z b

a
f .x/dx � .f .x0/ C 4f .x1/ C 2f .x2/ C 4f .x3/ C : : : C 2f .xn�2/ C 4f .xn�1/ C f .xn//�x=3;

(A.6)
where xi D a C i�x, �x D .b � a/=n, and the number n of subintervals is assumed
to be even.

The code below implements Simpson’s Rule for our oscillating function. Note
that the if statement evaluates to 2 if the index of the point (the i in xi) is even, and
4 if the index is odd. The last step adds the endpoint terms (f .x0/ and f .xn/).

(%i) a:0$ b:4$ n:10$ dx:(b-a)/n$ int:0$
for i:1 thru n-1 do
block(xi:a+i*dx,int:int+(if mod(i,2)=0
then 2 else 4)*f(xi))$

float(dx*(f(a)+f(b)+int)/3);
(%o) �4:5795

230 A Numerical Methods

The results from Simpson’s Rule are not impressive for n:10 (remember: the
actual value is approximately 0.5404), but it works pretty well with n:100 and
much better with n:1000. Confirm these assertions.

We now apply Simpson’s rule to g.x/, our polynomial function.

(%i) a:1$ b:5$ n:10$ dx:(b-a)/n$ int:0$
for i:1 thru n-1 do
block(xi:a+i*dx,int:int+(if mod(i,2)=0
then 2 else 4)*g(xi))$

float(dx*(g(a)+g(b)+int)/3);
(%o) �3:1863

The result is pretty good with n:10. With n:100 we get a result that is accurate
to better than one part in a million.

A.2.3 Monte Carlo Methods

Another way to estimate the value of an integral numerically is to use a so-called
Monte Carlo method. These methods are so named because they are based on
randomness and probability, much like the games of chance at the famous casinos
in Monte Carlo, Monaco.

The Monte Carlo method that we will examine here is the sample mean method. It
is based on the mean-value theorem of integral calculus which states that the integral
of a function over an interval equals the mean value of the function on that domain
times the length of the interval. We can estimate the mean value of the function by
evaluating the function at several randomly selected points and taking the mean of
these values. Multiplying this result by the length of the interval yields an estimate
for the integral of the function. The following code applies this procedure to f .x/,
our oscillatory function.

(%i) a:0$ b:4$ n:10$ dx:float(b-a)$ int:0$
for i:1 thru n do
block(xi:a+random(dx),int:int+f(xi))$

float((b-a)*int/n);
(%o) 6:3576

Unless you got lucky (remember, random chance is involved) the result isn’t
very good. Simpson’s rule definitely works better here. In fact, even the rectangular
approximation often works better. (Remember: This approach yields random results,
so a given pass might yield an estimate that is near to the actual value.) If you
increase the value of n you will get closer to the correct answer. Even so, this method
does not seem to work well for this function. Let’s try this method on our polynomial
function.

(%i) a:1$ b:5$ n:10$ dx:float(b-a)$ int:0$
for i:1 thru n do
block(xi:a+random(dx),int:int+g(xi))$
float((b-a)*int/n);

(%o) 0:30915

A.2 Numerical Integration 231

This method is still not very good. We will not prove it here, but the errors from
the rectangular approximation scale like n�1, while the trapezoidal approximation
errors scale like n�2 and the Simpson’s Rule errors scale like n�4. Errors from Monte
Carlo methods, on the other hand, scale like n�1=2. All of the classical approximation
techniques considered above perform better than the Monte Carlo methods, because
as n increases their errors decrease much faster (fastest for Simpson’s Rule).

So why even consider Monte Carlo methods? The answer is that they are
useful for higher dimensional integrals. Consider a d-dimensional integration. For
the classical methods like the rectangular approximation or Simpson’s Rule if
the errors in a one-dimensional integral scale like n�k, then the errors for a d-
dimensional integral scale like n�k=d. In contrast, Monte Carlo errors scale like
n�1=2 regardless of the dimension of the integral. Thus for a double integral the
rectangular approximation errors scale like n�1=2, the same as for Monte Carlo
methods. For a triple integral Monte Carlo methods are better than the rectangular
approximation, and for an integral of 9 or higher dimensions Monte Carlo methods
perform better than Simpson’s Rule. Furthermore, Monte Carlo methods are much
easier to implement than the classical rules for high dimensional integrals.

Consider approximating the function of two variables given by

q.x; y/ D .x2 C y2/ exp.�x2 � y2/: (A.7)

We use the code below to plot this function for �3 < x < 3 and �2 < y < 2, which
will also serve as our domain of integration. In Fig. A.5, the meshed black surface
represents the function. The gray plane is the z D 0 plane. Therefore, the volume
between the surface and the plane is what we seek to determine.

(%i) q(x,y):=(xˆ2+yˆ2)*exp(-xˆ2-yˆ2)$
wxdraw3d(view=[45,315], color=gray,ztics=.1,
xlabel="x",ylabel="y",
explicit(0,x,-4,4,y,-3,3),key="q(x,y)",
color=black,explicit(q(x,y),x,-3,3,y,-2,2))$

Fig. A.5 The
two-dimensional function
q.x; y/ D .x2 C y2/

exp.�x2 � y2/

-4
-3

-2
-1

 0
 1

 2
 3

 4

-3
-2

-1
 0

 1
 2

 3

 0
 0.1
 0.2
 0.3

q(x,y)

xy

232 A Numerical Methods

Now we will evaluate the integral of this function on the specified domain using
Maxima’s integrate command. Maxima calculates the volume between the gray
plane and the black surface in the plot above. The Maxima output shows the exact
result and its floating-point representation.

(%i) integrate(integrate(q(x,y),x,-3,3),y,-2,2);
float(%);

(%o) �e�9
�p

�
�
2 e5 erf .3/ C 3 erf .2/

�� e9 � erf .2/ erf .3/
�

.%o/ 3:0612

Now we can estimate the integral using Monte Carlo methods. The code appears
below. The code is only slightly longer, and no more complicated, than the Monte
Carlo code for the one-dimensional case.

(%i) x1 :-3$ x2 : 3$ y1 : -2$ y2 : 2$ n : 10$
dx:float(x2-x1)$ dy:float(y2-y1)$ int:0$
for i:1 thru n do
block(xi:x1+random(dx),yi:y1+random(dy),
int:int+q(xi,yi))$

float((x2-x1)*(y2-y1)*int/n);
(%o) 4:7005

As with the one-dimensional case, when you execute this input block, the
result may look pretty good or it may not. It’s random! One way to get a good
estimate for the error is to re-evaluate the code without changing n. The result is
a different answer each time because we have not reset the state of the random
number generator. The spread of the results provides an estimate for the error in the
numerical integration.

Once you have run the code several times with n:10, change to n:100 and
evaluate the code several times. Some variation will still be present, but you should
notice that the results are all hovering closer to the correct answer. Try it again with
n:1000. For high-dimensional integrals Monte Carlo methods are more effective
and easier to implement than the classical methods, and they provide their own built-
in way for estimating error (by evaluating multiple times and looking at the spread
and/or the standard deviation of the results).

A.2.4 Built-in Routines

Now that we know something about numerical integration we look at Maxima’s
built-in numerical integrators. We look first at quad_qags.5 This command uses
a more sophisticated algorithm than the classical methods we examined above. It
adapts the size of the subintervals based on how rapidly the function is changing
in that region (smaller subintervals when the function changes rapidly, larger

5The term “numerical quadrature” is used as a synonym for numerical integration. Hence the
“quad” in the names of the procedures.

A.2 Numerical Integration 233

subintervals when the function is relatively constant). We use quad_qags to
compute the integral of our oscillatory function f .x/ from x D 0 to x D 4.

(%i) quad_qags(f(x),x,0,4);
(%o) Œ0:5403796460924575; 3:929944130537377 10�11; 147; 0�

The output from quad_qags is a list with four numbers. The first number is
the estimate for the integral, which is the same as the 0.54037964609246 that we
obtained analytically. The second number is an estimate for the absolute error in the
result. In this case, the error is very small compared to the result itself. (In fact, this
number is an overestimate of the error. We can see by comparison with the analytical
result that the actual error is 0 to all decimal places shown.) The third number shows
how many times the function had to be evaluated in estimating the integral. The
number, 147, might seem large, but go back and try any of the other methods with
n:147 (note that each method evaluates the integrand at least n times) and compare
the result to the quad_qags result. You should be impressed that quad_qags
gets such a good result with so few function evaluations. The final output number
is an error code that is described in the quad_qags documentation (a code of 0
indicates normal output).

Now try another built-in routine: quad_qag. This routine is specifically
designed to work with oscillatory integrands. It has the same general form as
quad_qags, but uses a fifth argument to specify the degree of the approximation
formula used in computing the estimate. We will use degree 6.

(%i) quad_qag(f(x),x,0,4,6);
(%o) Œ0:5403796460924478; 5:33738358364152 10�13; 61; 0�

The quad_qag procedure yields an even better result (smaller estimated error)
than quad_ qags, and it took only 61 function evaluations instead of 147.
We consider one more routine, called romberg. This command uses a routine
called Romberg’s method, which is similar to Simpson’s method, but executes
faster. The required error tolerance can be set by assigning a value to the variable
rombergtol (romberg tolerance) as shown below. We set this level at the same
order of magnitude that results from applying quad_qag.

(%i) rombergtol:1e-13$ romberg(f(x),x,0,4);
(%o) 0:5403796460924576

The Romberg method yields a good result for this function, but it does not
provide an error estimate (although presumably it is on the order of 1e � 13 as
required) and we do not find out how many times it had to evaluate the function.
Generally quad_qags or quad_qag will be better for one-dimensional integrals,
but romberg can be used for higher dimensional integrals. The routines in the
quadpack package, which includes quad_qag and quad_qags, cannot. As an
example, we can use romberg to evaluate the multiple integral of the function
q.x; y/ that we examined above.

(%i) rombergtol:1e-6$
romberg(romberg(q(x,y),x,-3,3),y,-2,2);

(%o) 3:061249076983766

234 A Numerical Methods

The result is equal to the 3.0612 that we derived analytically, at least to four
decimal places. The romberg method can be applied to higher-order nestings, too.
In fact, romberg can even handle variables in the limits of integration as long as
they only appear on “inner” integrals (i.e., integrals nested inside other integrals) and
only involve the integration variables from “outer” integrals (i.e., integrals within
which they are nested). Below is an example in which the inner integral is over
y, but has an x in its limits of integration. The outer integral is over x and has no
variables in its limits of integration. In the code below we first evaluate the integral
exactly, and then evaluate it using romberg.

(%i) integrate(integrate(q(x,y),y,-2,x),x,-3,3);
float(%);
rombergtol:1e6$
romberg(romberg(q(x,y),y,-2,x),x,-3,3);

(%o) � e�9 .
p

� .2 e5 erf.3/
C3 erf.2//�e9 � erf.2/ erf.3//

2
(%o) 1:530624540495877 .%o/ 1:53062454031224

So we see that romberg does a good job in estimating this integral.
What if we want to numerically evaluate an integral in which one or more limit

of integration is infinite? Consider the following example, which can be evaluated
exactly.

(%i) r(x):= exp(-x)*log(x)$
integrate(r(x),x,0,inf); float(%);

(%o) �� .%o/ � 0:5772156649015329

Here Maxima evaluates this integral exactly in terms of the Euler-Mascheroni
constant � . The floating-point representation is produced for comparison.

To numerically compute this integral we could try to change variables so that the
new integral would be over a finite interval, or use other sophisticated techniques
like Fourier transforms. But a straightforward way to handle the situation is to use
quad_qagi, which is like quad_qags but accepts infinite limits of integration.
We use quad_qagi to evaluate our example integral below.

(%i) quad_qagi(r(x),x,0,inf);
(%o) Œ�0:5772156649015293; 5:110526668516968 10�9; 345; 0�

The result is excellent, but it required many function evaluations. Also, the size
of the absolute error is larger than in previous examples. This relatively large error
shows that numerical integration doesn’t work as well when the limits are infinite
(which is not surprising). So, if possible, one should recast an infinite integral as
a finite one. If that is not possible, then quad_qagi provides a relatively good
numerical approximation. Finally, consider an example in which both limits are
infinite.

(%i) integrate(exp(-xˆ2),x,minf,inf); float(%);
quad_qagi(exp(-xˆ2),x,minf,inf);

(%o)
p

� .%o/ 1:772453850905516/

(%o) Œ1:772453850905516; 1:420263678094492 10�8; 270; 0�

Again we see that quad_qagi gives a good approximation for this integral.

A.3 Runge–Kutta Algorithms 235

Each of the methods introduced in this section has its strengths and weaknesses.
Because modern computers allow almost instantaneous numerical analysis of many
functions, one need not limit analysis to a single, best approach. Try two or three. If
the results are the same, then you probably have your answer. If not, then undertake
a more careful examination to determine which method is giving the best results.

A.3 Runge–Kutta Algorithms

In Sect. 5.4 we examined two algorithms for numerically integrating a system of
ordinary differential equations (ODEs): the Euler algorithm and the Euler–Cromer
algorithm. In that section we found that the Euler algorithm is unstable, causing
the calculated energy of the system to grow over time and leading to large errors
in the solution over long times. The Euler–Cromer algorithm, on the other hand,
is stable for oscillatory systems. In this section we examine a class of algorithms
for numerically integrating ODEs that are known as Runge–Kutta algorithms. The
Runge–Kutta algorithms can provide superior performance compared to the Euler
and Euler–Cromer algorithms.

The Euler and Euler–Cromer algorithms discussed in Sect. 5.4 used a fixed time
step of size �t. We saw that a smaller value for �t generally leads to a more
accurate result, but with the cost of a larger number of function evaluations (and
thus more time for the algorithm to run). These algorithms were derived by using
a simple Taylor series to first order in �t, so the calculation of each time step
introduces errors that are proportional to �t2 and higher powers of �t. We say
that the errors are “of order �t2,” which we write as O.�t2/. Because these errors
accumulate, the global error (i.e., the maximum error for any part of the solution)
is O.�t/. So the smaller �t, the smaller the global error in our numerical solution.
Because the global error is of first order in the time step, we say that these two
algorithms are first order algorithms.

We can get better performance by finding an algorithm that eliminates the O.�t2/

errors in the computation of each time step. If we can accomplish that goal, then our
algorithm will have O.�t3/ errors for each time step and a O.�t2/ global error. Such
an algorithm is considered a second order algorithm. There are several different
second order algorithms. The one we will examine here is known as the second
order Runge–Kutta algorithm. In all Runge–Kutta algorithms we evaluate the rate of
change of each variable multiple times for each time step. For example, the second
order Runge–Kutta algorithm requires evaluation of the rate of change twice per
time step (for each variable), as compared to just once for the Euler and Euler–
Cromer algorithms.

The second order Runge–Kutta algorithm, as applied to Newton’s equations of
motion, is fairly simple. We just use the Euler algorithm to estimate the position and
velocity at the midpoint of the time step (t D tn C �t=2), and then use the estimated
midpoint position and velocity to estimate the rates of changes (i.e., velocity and

236 A Numerical Methods

acceleration) for the time step. The second order Runge–Kutta algorithm for solving
Newton’s equations of motion for a single particle in one dimension are:

kx1 D vn�t;

kv1 D 1

m
F.xn; vn; tn/�t;

kx2 D .vn C 1

2
kv1/�t;

kv2 D 1

m
F.xn C 1

2
kx1; vn C 1

2
kv1; tn C 1

2
�t/�t;

xnC1 D xn C kx2;

vnC1 D vn C kv2;

(A.8)

where F.x; v; t/ is the force on the particle.
The k-notation in Eq. A.8 is a standard one for presenting the Runge–Kutta

algorithms. However, we can present the second order Runge–Kutta algorithm in
a simpler form by first computing the midpoint values of t, x, and v:

tm D tn C 1

2
�t;

xm D xn C 1

2
vn�t;

vm D vn C 1

2m
F.xn; vn; tn/�t;

xnC1 D xn C vm�t;

vnC1 D vn C 1

m
F.xm; vm; tm/�t:

(A.9)

To demonstrate the use of this algorithm we consider the same harmonic
oscillator system that we examined with the Euler and Euler–Cromer algorithms
in Sect. 5.4. The code below implements the second order Runge–Kutta algorithm
for the harmonic oscillator with the same parameters used in Sect. 5.4 for the other
two algorithms (k D 1 N/m, m D 1 kg, x.0/ D 1 m, v.0/ D 0, and a time step of
�t D 0:2 s). Note that we don’t bother to compute the midpoint time tm because it
is not needed.

(%i) k:1$ m:1$ dt:0.2$ nt:100$
array(xrk,nt)$
array(vrk,nt)$
xrk[0]:1$ vrk[0]:0$
for i:0 while i < nt do
block(xm:xrk[i]+0.5*dt*vrk[i],

vm:vrk[i]-0.5*dt*k*xrk[i]/m,
xrk[i+1]:xrk[i]+vm*dt,vrk[i+1]:vrk[i]-k*xm*dt/m)$

A.3 Runge–Kutta Algorithms 237

-1

-0.5

 0

 0.5

 1

 1.5

 0 5 10 15 20

x
(m

)

t (s)

Runge-Kutta xrk(t)
Exact x

Fig. A.6 Second order Runge–Kutta solution (xrk.t/) and exact solution (x.t/) for a harmonic
oscillator

We can then make a plot of the position versus time data generated by the
algorithm and compare it to the exact solution (x.t/ D cos.t/), as shown in Fig. A.6.
The code used to generate this plot is very similar to the code used to generate
similar plots in Sect. 5.4, so we will not show the code here.

An examination of this plot shows that the second order Runge–Kutta algorithm
does a good job of approximating x.t/ on the interval shown. Initially the results
of the algorithm are indistinguishable from the exact solution. However, by t D
20 s the results of the algorithm are noticeably different from the exact solution.
A comparison of this plot to the plots for the Euler and Euler–Cromer algorithms
in Sect. 5.4 shows that the second order Runge–Kutta algorithm performs better
than the Euler–Cromer algorithm (and vastly better than the Euler algorithm) on
this problem. We should expect better performance from the second order Runge–
Kutta algorithm since the global error should be O.�t2/ rather than O.�t/ as for
the Euler–Cromer algorithm.

We can get even better performance by using a higher-order algorithm. For exam-
ple, the fourth-order Runge–Kutta algorithm for numerically integrating Newton’s
equations of motion for a single particle in one dimension is:

238 A Numerical Methods

kx1 D vn�t;

kv1 D 1

m
F.xn; vn; tn/�t;

kx2 D .vn C 1

2
kv1/�t;

kv2 D 1

m
F.xn C 1

2
kx1; vn C 1

2
kv1; tn C 1

2
�t/�t;

kx3 D .vn C 1

2
kv2/�t;

kv3 D 1

m
F.xn C 1

2
kx2; vn C 1

2
kv2; tn C 1

2
�t/�t;

kx4 D .vn C kv3/�t;

kv4 D 1

m
F.xn C kx3; vn C kv3; tn C �t/�t;

xnC1 D xn C 1

6
.kx1 C 2kx2 C 2kx3 C kx4/;

vnC1 D vn C 1

6
.kv1 C 2kv2 C 2kv3 C kv4/:

(A.10)

This algorithm is obviously quite a bit more complicated than the second order
Runge–Kutta algorithm or the Euler–Cromer algorithm. For example, we must
evaluate the force function four times per time step in the fourth order Runge–Kutta
algorithm while we only had to evaluate the force function twice for the second
order Runge–Kutta algorithm. These additional function evaluations cost time, so
it might seem like we could do better by just reducing the time step in our second
order algorithm. The second order algorithm with a time step of �t=2 will have
about the same number of function evaluations as the fourth order algorithm with
time step �t. But the fourth order algorithm has a O.�t4/ global error. With a small
time step, this error will usually be much smaller than the global error for the second
order algorithm with a �t=2 time step.

Fortunately we don’t have to program the fourth order Runge–Kutta algorithm in
Maxima, because the built-in rk command implements this algorithm. We used rk
earlier in the text (for example, in Sect. 2.3.5). The code below shows how to use rk
to numerically integrate the equations of motion for our simple harmonic oscillator
example. The arguments of the rk command are lists. The first list supplies the
expressions for evaluating the derivatives (in this case, dx=dt and dv=dt). The second
list gives the variables to be solved (x and v). The third list gives initial conditions
(values for x.0/ and v.0/). The ordering (first x, then v) must be the same for all
three of these lists. The final list gives the range of times over which the solution
is to be generated, as well as the time step (in this case we want the solution for
0 < t < 20 with a time step of 0.2). Figure A.7 shows a plot of x.t/ using the results
from the rk command as well as the exact solution.

(%i) kill(values,functions,arrays)$
k:1$ m:1$ dt:0.2$ x0:1$ v0:0$
sol:rk([v,-k*x/m],[x,v],[x0,v0],[t,0,20,dt])$

Note that the numerical solution is indistinguishable from the exact solution in
this plot. This illustrates the improved performance that we expected from the fourth
order Runge–Kutta algorithm, as compared to the second order algorithm. Since we

A.3 Runge–Kutta Algorithms 239

-1

-0.5

 0

 0.5

 1

 1.5

 0 5 10 15 20

x
(m

)

t (s)

Runge-Kutta 4 xrk4(t)
Exact x(t)

Fig. A.7 Fourth order Runge–Kutta solution (xrk4.t/) and exact solution (x.t/) for a harmonic
oscillator

know the exact solution we can take a closer look by computing the actual error for
each x value produced by rk as a function of t. The code below generates a list of
such error values at each time step and then constructs a plot of error as a function
of time, as shown in Fig. A.8.

(%i) err:makelist([sol[i][1],sol[i][2]-cos(sol[i][1])],
i,1,length(sol))$

wxdraw2d(xaxis = true, user_preamble=
"set key top left", point_size=1,
points_joined=true, xlabel="t (s)",

ylabel="error (m)", points(err))$

We see that the error oscillates, but with increasing amplitude over the time
interval. The largest errors occur at the end of the interval, with the size of the
error roughly 0.0002 m. Considering that the amplitude of the particle’s oscillations
is 1 m, this is a relatively small error.

The fourth order Runge–Kutta method is a very popular one for the numerical
integration of ODEs. For many users, this algorithm may be the only one they ever
need. Even better algorithms are available, however. One of the big advances in
the numerical solution of ODEs was the development of adaptive step size methods.
The idea is to change the size of the step used in the algorithm depending on the size
of the rate of change for the variables. A smaller step size is used when the rates
of change are large, but a larger step size can be used when the rates of change
are small. Adapting the step size in this way provides both accuracy (because the
step size can be reduced to avoid large errors) and speed (because the step size can
be increased, reducing the number of steps needed, as long as accuracy won’t be
compromised).

240 A Numerical Methods

-0.0002

-0.00015

-0.0001

-5e-05

 0

 5e-05

 0.0001

 0.00015

 0.0002

 0 5 10 15 20

er
ro

r
(m

)

t (s)

Fig. A.8 Error (xrk4.t/ � x.t/) of the fourth order Runge–Kutta solution of a harmonic oscillator

Maxima has a built-in routine that uses a modified Runge–Kutta algorithm with
adaptive step size. The rkf45 command uses the Runge–Kutta-Fehlberg method
of fourth-fifth order to numerically integrate a systems of ODEs. This method uses
a fourth order Runge–Kutta algorithm in tandem with a fifth order Runge–Kutta
algorithm. The difference between the results of the two algorithms is used to
estimate the error, and the step size can then be adjusted if errors become too large.
The rkf45 command allows the user to set the absolute error tolerance for each
step by specifying a value for absolute_tolerance (the default value is 10�6).

Below we use the rkf45 command to numerically integrate the ODEs for our
example harmonic oscillator system. The syntax is almost identical to that of rk.
Here we use the option report=true in order to get some useful information
about the performance of the algorithm.

(%i) kill(values,functions,arrays)$ load(rkf45)$
k:1$ m:1$ dt:0.2$ x0:1$ v0:0$
sol45: rkf45([v,-k*x/m],[x,v],[x0,v0],
[t,0,20,dt],report=true$

——————————————————————–
Info: rkf45:
Integration points selected: 140
Total number of iterations: 140
Bad steps corrected: 1
Minimum estimated error: 4.438211725433255 10�8

Maximum estimated error: 5.669538788115278 10�7

Minimum integration step taken: 0.07957609597782067
Maximum integration step taken: 0.1529355426216121
——————————————————————–

A.3 Runge–Kutta Algorithms 241

-1

-0.5

 0

 0.5

 1

 1.5

 0 5 10 15 20

x
(m

)

t (s)

R-K-F 45 xrkf45(t)
Exact x(t)

Fig. A.9 Fourth-fifth order Runge–Kutta–Fehlberg (R–K–F) solution (xrkf 45.t/) and exact solution
(x.t/) for a harmonic oscillator

The estimated maximum error for any step is � 6 � 10�7, which is less than the
default error tolerance of 10�6. This level of accuracy was achieved with only 140
steps, as compared to the 100 steps used by rk in the previous example. Figure A.9
plots position as a function of time for both the rkf45 results and the exact
solution.6

It is clear that the algorithm worked well. The numerical results are indistinguish-
able from the exact solution in the plot. Let’s take a closer look by computing the
actual error in the numerical results, which appear in Fig. A.10.

We see that the error oscillates with increasing amplitude, just as it did for the
fourth order Runge–Kutta solution. However, the largest error on the interval is
about 10�5 m, about 20 times smaller than the largest error from rk. Recall that
this improved accuracy was achieved with roughly the same number of time steps
(140 versus 100).

If we need more accurate results we can set absolute_tolerance to a
smaller value in the rkf45 command. The code below shows the error results for
our harmonic oscillator using rkf45 with an error tolerance of 10�7. Figure A.11
shows the errors.

6Once again, the commands are essentially the same as those used above, and they are omitted.
Likewise, for Fig. A.10.

242 A Numerical Methods

-8e-06

-6e-06

-4e-06

-2e-06

 0

 2e-06

 4e-06

 6e-06

 8e-06

 1e-05

 0 5 10 15 20

er
ro

r
(m

)

t (s)

Fig. A.10 Error (xrkf 45.t/ � x.t/) of the fourth-fifth order Runge–Kutta–Fehlberg solution of a
harmonic oscillator

-8e-07

-6e-07

-4e-07

-2e-07

 0

 2e-07

 4e-07

 6e-07

 8e-07

 0 5 10 15 20

er
ro

r
(m

)

t (s)

Fig. A.11 Same as Fig. A.10, but with a smaller error tolerance

A.4 Modeling Data 243

(%i) kill(values,functions,arrays)$ load(rkf45)$
k:1$ m:1$ dt:0.2$ x0:1$ v0:0$
sol45b:rkf45([v,-k*x/m],[x,v],[x0,v0],
[t,0,20,dt],absolute_tolerance=1e-7,report=true)$

err45b:makelist([sol45b[i][1],sol45b[i][2]-
cos(sol45b[i][1])],i,1,length(sol45b))$

wxdraw2d(xaxis = true, user_preamble= "set key
top left", point_size=1,points_joined=true,
xlabel="t (s)",ylabel="error (m)", points(err45b))$

———————————————————————-
Info: rkf45:
Integration points selected: 248
Total number of iterations: 248
Bad steps corrected: 1
Minimum estimated error: 2.03214853050808 10�10

Maximum estimated error: 5.399519048049547 10�8

Minimum integration step taken: 0.02047937767783381
Maximum integration step taken: 0.08610004786735029

———————————————————————-

These results show that the rkf45 command achieved an estimated maximum
error per step of � 5:4 � 10�8 and a maximum actual error of about 10�6 with only
248 steps. The performance of rkf45 will generally be superior to that of rk, and
particularly so if the rates of change of the variables vary greatly over the integration
interval.

There are even more sophisticated algorithms for numerically integrating sys-
tems of ODEs, but currently the only built-in routines that are provided in Maxima
are rk and rkf45. For most users these two routines will suffice.

A.4 Modeling Data

Physics is about the real world, not just the theories we have devised to describe
and explain that world. Therefore, physicists must work with actual experimental
data. In this section we examine some Maxima tools that can be used to build a
mathematical model to represent a set of data. We will focus on cases for which the
mathematical model is just a function of a single variable. Once the function has
been obtained, then it can be manipulated or displayed using the wide variety of
Maxima commands discussed in this book.

We examine two general methods of devising a function to represent a data set.
The first method we will consider is interpolation. The goal of interpolation is to
find a smooth function that fits the data exactly, but the form of the function may
be quite complicated and will generally depend on the number of data points in the
data set. The other method is curve fitting, in which we assume that our function will
take a particular (usually simple) form. The function will involve certain parameters
and our goal is to determine the values of those parameters that result in the best
(approximate) fit between our function and the data.

244 A Numerical Methods

A.4.1 Interpolation

Suppose we have a data set that consists of N ordered pairs .xi; yi/, where i is an
index that runs from 1 to N. We want to construct a function f .x/ such that f .xi/ D yi

for all i from 1 to N. We would like for this function to be “well behaved,” which
mostly means we want it to be smooth (the function should be continuous and
have continuous derivatives up to some order). The hope is that this function will
approximate the “true” function that correctly describes not just the data we have
but also the data we don’t have. We want the function to give us an accurate value
for y even when we input a value of x that is not one of our xi’s.

Maxima offers a few options for interpolation, of which we will examine two
in this section. The first interpolation method we will consider is cubic spline
interpolation. Cubic spline interpolation fits the data to a piecewise function. Each
piece is a cubic polynomial which is defined on an interval between two consecutive
data points. The polynomial pieces are defined so that the function and its first two
derivatives are continuous. This ensures that the function passes through all of the
data points and also that the function has a smooth appearance (no corners or other
sudden changes).

To perform a cubic spline interpolation with Maxima we must use the cspline
command, which is part of the interpol package. The code below illustrates
how to define a data list, load the interpol package, perform the cubic spline
interpolation, and assign the resulting interpolation function to a new function that
can be called at a later point.

(%i) DataList:[[1,3.2],[2.1,7.0],[3.1,12.5],
[4,11.1],[5.2,6.2],[6,2.3]]$

load(interpol)$ cspline(DataList)$ c(x):=”%;
(%o) .c .x/ WD�

0:89527 x3 � 2:6858 x2 C 5:0571 x � 0:06654
�

charfun2 .x; �1; 2:1/ C�
0:20749 x3 � 3:7348 x2 C 17:401 x � 12:47

�
charfun2 .x; 5:2; 1/ C��0:049637 x3 C 0:27638 x2 � 3:4571 x C 23:683

�
charfun2 .x; 4; 5:2/ C�

2:2047 x3 � 26:776 x2 C 104:75 x � 120:6
�

charfun2 .x; 3:1; 4/ C��3:0755 x3 C 22:33 x2 � 47:476 x C 36:706
�

charfun2 .x; 2:1; 3:1/

The output function contains several terms. Each term is a cubic polyno-
mial multiplied by a factor of the form charfun2(x,a,b). The function
charfun2(x,a,b) returns true if x is in the interval Œa; b/ and false oth-
erwise. If a charfun2 factor evaluates to true then the polynomial multiplying
that factor will be used in evaluating that function. Otherwise the polynomial is not
used. Note that the second and third arguments of the charfun2 functions in the
output above form a nonoverlapping set of intervals that cover the real line and have
their boundaries at the locations of the data points. Thus, when we evaluate c.x/ the
function will first determine in which interval x lies and then use the corresponding
cubic polynomial for that interval to evaluate the function.

A.4 Modeling Data 245

-2

 0

 2

 4

 6

 8

 10

 12

 0 1 2 3 4 5 6 7

y

x

Fig. A.12 The sample data set (squares) and the cubic spline interpolating function (line)

We can get a sense of how well our cubic spline fits the data by using the now-
familiar plotting commands to plot the interpolating function as well as the data
points, as displayed in Fig. A.12.

The curve for the interpolating function passes through all of the squares that
represent the data points. The function has an overall smooth appearance. We can
now use the interpolating function to evaluate y for a value of x within the range
of our data (interpolation) or even for a value of x outside of the range of our data
(extrapolation).

(%i) [c(2.7), c(7.5)]; (%o) Œ10:772; �4:5114�

We can expect our interpolating function to give us accurate results (i.e., a good
approximation to the “true” function) for values within our data range, provided
the true function is well-behaved (smooth, not highly oscillatory, etc.). However,
extrapolation is always risky. There is no way to know if our interpolating function
is accurate outside of our data range, because we have no way to know what the
function is doing outside of that range.

Now that we have our interpolating function, and we feel confident that it is
accurate (at least within our data range), we can perform further analysis on that
function. For example, we may wish to find the maximum value of y. We can find
this maximum value by calculating the derivative dc.x/=dx, setting it equal to zero,
and solving for x. This gives us the value x D xmax that maximizes the function,
and then c.xmax/ will give us the maximum value for y (assuming our interpolating
function is accurate). However, taking the derivative of our cubic spline function is
problematic because we will end up with derivatives of the charfun2 terms which
are not defined.

246 A Numerical Methods

To maximize our cubic spline function we must first determine which piece of
the function to use. The plot above shows us that the function is peaked somewhere
on the interval Œ3:1; 4/, so we can define a new function p.x/ which is just the cubic
polynomial from our cspline result that corresponds to this particular interval.
We can then find the maximum of this polynomial as described above. The output
of the code below shows that the interpolating function reaches its maximum value
at x � 3:306 and the maximum value is y � 12:728.

(%i) p(x):=(2.204723215025239*xˆ3-
26.77595198132017*xˆ2+
104.7521741087083*x-120.5957504953258)$

diff(p(x),x)$ dp(x):=”%$
matrix(["x at which p is maximized","maximum p"],
[xmax:find_root(dp(x),x,3.1,4),p(xmax)]);

(%o)
�

x at which p is maximized maximum p
3:306 12:728

	

Another approach to interpolation is to find a single polynomial that fits all of
the data points. If we have N data points, then we can fit all of the points by using a
polynomial of degree N � 1. In fact, a straightforward formula derived by Lagrange
defines such a polynomial:

L.x/ D .x � x2/.x � x3/ : : : .x � xN/

.x1 � x2/.x1 � x3/ : : : .x1 � xN/
y1 C .x � x1/.x � x3/ : : : .x � xN/

.x2 � x1/.x2 � x3/ : : : .x2 � xN/
y2

C : : : C .x � x1/.x � x2/ : : : .x � xN�1/

.xN � x1/.xN � x2/ : : : .xN � xN�1/
yN :

(A.11)

This function is a polynomial of degree N � 1 and L.xi/ D yi for all i from 1 to
N. The interpol package includes the command lagrange for generating the
Lagrange polynomial to fit a given set of data. The code below shows how to use
this command to fit our example data set.

(%i) fpprintprec:5$ lagrange(DataList)$ L(x):=”%$
expand(%);

(%o) L .x/ WD �0:14019 x5 C 2:7237 x4 � 19:877 x3C
65:376 x2 � 90:534 x C 45:652

We can plot the resulting Lagrange polynomial, along with our data points, to check
the quality of the fit. The plot is shown in Fig. A.13.

Just as with the cubic spline interpolation, the Lagrange polynomial does pass
through each of the data points. However, note the unexpected behavior of the
function outside of the data range. In particular, the function shoots up to large
values of y as x ! 0. This unexpected behavior is a general problem with
polynomial interpolation. In fact, we can even get bad behavior within the data range
if we use a large number of data points to generate the Lagrange polynomial. The
more data we have, the higher the degree of the Lagrange polynomial. These high
degree Lagrange polynomials may be highly oscillatory even when the data does

A.4 Modeling Data 247

-10

 0

 10

 20

 30

 40

 0 1 2 3 4 5 6 7

y

x

Fig. A.13 The sample data set (squares) and the interpolating Lagrange polynomial (line)

not indicate that the function should oscillate. For this reason, it is better to perform
polynomial interpolation using a small number of data points focused on the range
of interest.

For example, to find the maximum value of y within our data range, we might
discard the first and last data points (since the peak seems to occur near the center
of the data range) and use the middle four data points to compute a Lagrange
polynomial. The code below shows how to construct the polynomial and a plot of
the polynomial is shown in Fig. A.14.

(%i) PeakList:[[2.1,7.0],[3.1,12.5],[4,11.1],
[5.2,6.2]]$ lagrange(PeakList)$ h(x):=”%$

Now we can maximize this Lagrange polynomial in order to estimate the
maximum of the “true” function.

(%i) dh(x):=”(diff(h(x),x))$
matrix(["x at which h(x) is maximized",
"maximum h(x)"],
[xmax2:find_root(dh(x),x,2,5),h(xmax2)]);

(%o)
�

x at which h.x/ is maximized maximum h.x/

3:2535 12:58

	

We see that this Lagrange interpolation indicates that the maximum value occurs
at x � 3:2535 and that the maximum value is y � 12:58. These results are similar,
but not identical, to the results from our cubic spline interpolation.

248 A Numerical Methods

-50

-40

-30

-20

-10

 0

 10

 0 1 2 3 4 5 6 7

y

x

PeakList
Excluded DataList points

Fig. A.14 The sample data (squares) and the Lagrange polynomial (line) fit to the middle four
data points (filled squares)

A.4.2 Curve Fitting

In curve fitting we no longer demand that our model function pass through each
data point. Instead, we want to model the data with the equation y D f .xI a/, where
f is a function of some simple (pre-determined) form and a represents one or more
parameters that are used to define the function. We would like to find the parameters
values a that result in the function that “best” fits our data.

One problem we must confront is: what do we mean by “best”? What we want
is for the function to pass as close as possible to our data points. The best function
will be the one such that f .xi/ differs as little as possible from yi. But we cannot just
consider each data point separately. We can force our function to go through any
particular data point, but we may then find that the function misses other data points
by a wide margin. So what we want to do is to somehow minimize the collective
differences between the function and the data points.

There are several ways we can select parameters that minimize this collective
difference. The most popular method is to minimize the sum of the squares of the
differences between the function and the data points. Thus, we want to find the
values for the parameters a that minimize

NX
iD1

.yi � f .xiI a//2 : (A.12)

This approach to fitting our function to the data is known as the least squares
method.

A.4 Modeling Data 249

Maxima can perform a least squares fit for a given data set and a given form of
the function f . To perform a least squares fit we load the lsquares package and
use the lsquares_estimates command. To use this command, we must get
our data into the proper format to be accepted by lsquares_estimates. The
data must be in the form of a matrix, with each ordered pair (triple, etc.) placed in a
row of the matrix. We can convert our sample data list into the proper matrix form
using the apply command as shown below.

(%i) DataMatrix:apply(’matrix,DataList);

(%o)

2
6666664

1 3:2

2:1 7:0

3:1 12:5

4 11:1

5:2 6:2

6 2:3

3
7777775

Now we can load the lsquares package and use the lsquares_estimates
command. The lsquares_estimates command takes four arguments. The first
is the matrix containing the data, the second is a list of the variables (independent
and dependent), the third is an equation specifying the form of the function, and
the fourth is a list of the parameters to be adjusted in order to fit the function to
the data. The code below shows how to fit our sample data to a quadratic function
g.x/ D Ax2 C Bx C C.

(%i) load(lsquares)$
params:lsquares_estimates(DataMatrix,
[x,y],y=A*xˆ2+B*x+C, [A,B,C]);

float(params);
(%o) ŒŒA D � 240273530

167471391 ; B D 1660389386
167471391 ; C D � 6497960877

1116475940 ��

(%o) ŒŒA D �1:4347; B D 9:9145; C D �5:8201��

Note that by default Maxima gives the parameter values as exact values if it can.
These values can easily be converted to decimal form using float.

We can examine the fit by plotting our quadratic function with the parameter
values determined by the least squares fit along with the data points, as shown in
Fig. A.15.

The fit is not bad, but obviously the curve does not pass through all of the data
points (or even though one of the data points). Even so, it appears plausible that this
is the best quadratic function to fit the data. The peak seems to be in the right place.
In fact, it is not hard to show that the function must be peaked at x D �B=.2A/.
With the parameter values from our least squares fit this indicates that the peak is at
x � 3:455, which is similar to the results from the interpolating functions discussed
above. However, the peak value for our quadratic function is y � 11:308, which is
noticeably less than the values obtained from the interpolating functions.

It is not surprising that this simple quadratic function cannot fit the data as well
as our interpolating functions did. Recall that the cubic spline function consisted of
five pieces, each of which was a cubic polynomial. The Lagrange polynomial was
a polynomial of degree five. Therefore, the interpolating functions have many more

250 A Numerical Methods

-5

 0

 5

 10

 15

 0 1 2 3 4 5 6 7

y

x

Fig. A.15 The sample data set (squares) and the quadratic least squares fit function (line)

parameters that can be tweaked to give a better fit. Depending on your goal, you
may prefer a simple function that gives a decent fit to the data to a very complicated
function that gives a perfect fit.

A.5 Exercises

1. Use the bisection method to find the roots of the function f .x/ D sin.x/ � x2 C
log.x/ C 2.

(a) Plot the function on the interval 0 < x � 4. Determine the approximate
location of the two roots of this function on this interval.

(b) Suppose we were to apply the bisection algorithm to finding the root of f .x/

near x D 2. Suppose we set our initial interval to Œ1:5; 2:5� so that it contains
that root and no other roots. Using the terminology of the text, we are starting
with xL D 1:5 and xR D 2:5. Complete the table below to determine the
values of xL, xR, and xM D .xL C xR/=2 before each pass through the loop
in the bisection algorithm. Also show whether the function f .x/ evaluated at
these x-values is positive (C) or negative (�). Finally, show whether xM !
xL or xM ! xR for the next pass through the loop.

A.5 Exercises 251

Before Function Values After
i xL xR xM f .xL/ f .xR/ f .xM/ xM ! ?
1
2
3

(c) Use the bisection algorithm to find the two roots of f .x/ using an error
tolerance of 10�6. Record your starting values for xL and xR, along with the
root (xr) and the number of passes through the loop, in the table below.

xL xR xr # Passes

(d) Use find_root to check your values for the roots of f .x/.

2. Consider the function

f .x/ D e�x2
p

x2 � 1: (A.13)

(a) Use integrate to find an exact expression for the integral

Z 3

1

f .x/ dx: (A.14)

Explain why the result is not particularly useful.
(b) Use the trapezoidal approximation to evaluate the above integral. Play

around with the number of divisions n until you are sure your answer is
correct to three decimal places. What is the minimum number of divisions
you have to use to obtain this precision (i.e., what is the smallest value of
n you can use to get a result that is accurate when rounded to 3 decimal
places)?

(c) Use Simpson’s Rule to evaluate the above integral. Make sure your answer
is precise to three decimal places. What is the minimum number of divisions
you have to use to obtain this precision? Does this result agree with what
you got from the trapezoidal approximation, at least to three decimal places?
Would you say that Simpson’s Rule is more efficient, less efficient, or about
the same efficiency as the trapezoidal approximation for evaluating this
integral?

(d) Use one of Maxima’s built-in routines to evaluate the above integral. Does
the result agree with your values from the trapezoidal approximation and
Simpson’s Rule to at least three decimal places?

252 A Numerical Methods

3. Suppose we wanted to numerically estimate the value of

Z 2

0

Z 5

0

Z 10

0

q.x; y; z/ dz dy dx; (A.15)

where

q.x; y; z/ D x2yz3e�x2�y2�z2

: (A.16)

(a) Which numerical integration method would you use, and why?
(b) Use integrate to determine the exact value of this integral, then convert

to a floating-point number.
(c) Use the numerical method you specified to estimate the value of this integral.

Record your results in the table below.

n Estimate Correct Sig Figs
10
100

1000
10,000

100,000

Comment on your results.
(d) Set rombergtol to 10�6 and then use romberg to compute this integral.

To how many decimal places is the result accurate?

4. Consider the quartic oscillator system, which consists of a particle subject to the
force F D �4˛x3 (see Problem 13 in Sect. 5.5).

(a) Use the built-in rk command to solve the equations of motion for the quartic
oscillator with m D 1 g, ˛ D 1 erg/cm4, x.0/ D 1 cm, and v.0/ D 0. Use
a time step of 0.1 s and integrate the equations of motion from t D 0 to
t D 10 s. Construct plots of position versus time, velocity versus time, and
the trajectory in phase space (velocity versus position). If you completed
Problem 13 from Sect. 5.5, discuss any differences you see between these
results and those from the Euler–Cromer algorithm.

(b) Construct a plot of energy versus time for the quartic oscillator, using your
4th order Runge–Kutta algorithm (the algorithm used by rk) results. Does
this algorithm conserve energy (on average)? You know that total energy
should be constant—what value should it have? What is the maximum
relative error (i.e. the difference from the correct value divided by the correct
value) in the energy produced by the rk command over this time interval?

5. Consider a particle of mass m D 0:1 kg that moves along the x-axis in a potential
well of the form V.x/ D �k=.x2 C a2/, with a D 0:1 m and k D 0:05 J	m2.

A.5 Exercises 253

(a) What is the force on this particle? Construct plots of both the potential energy
function and the force as a function of x.

(b) Write down Newton’s Second Law for this system as a system of two first-
order ODEs.

(c) Use the built-in rkf45 command to solve the equations of motion for this
system with x.0/ D 0:2 m, and v.0/ D 0. Use a time step of 0.01 s and
generate solutions for 0 � t � 1 s. Construct plots of x versus t, v versus t,
and v versus x. Comment on how this motion compares to that of a harmonic
oscillator.

(d) Use your results to construct a plot of energy versus time. Is the energy
conserved, on average? You know that total energy should be constant—what
value should it have? What is the maximum relative error (i.e. the difference
from the correct value divided by the correct value) in the energy produced
by the rkf45 command?

6. Consider the following data set of .x; y/ ordered pairs: ŒŒ6:9; 61:5�; Œ9:1; 63:7�;

Œ11:3; 68:0�; Œ13:5; 65:4�; Œ15:7; 58:9�; Œ17:9; 50:6��.

(a) Use cspline to create an interpolating function for this data. Find the value
of x that maximizes the interpolating function, as well as the maximum value
of the interpolating function.

(b) Use lagrange to create an interpolating function for this data. Find the
value of x that maximizes the interpolating function, as well as the maximum
value of the interpolating function. Compare to your results from cspline.

(c) Fit this data to a quadratic polynomial y D Ax2 C Bx C C. Find the value
of x that maximizes the fit function, as well as the maximum value of the fit
function. Compare to your results from cspline and lagrange.

7. Show that a least squares fit to the sample data in Sect. A.4 for a fifth degree
polynomial h.x/ D Ax5 C Bx4 C Cx3 C Dx2 C Ex C F gives the same function
as the lagrange interpolation method. Explain, with reference to the number
of parameters and number of data points, why this should be the case.

Index

Symbols
2-cycle, 211

A
Abramowitz, Milton, 223
acceleration, 14
analytical solution

test, 31
angular momemtum, 74
angular momentum, 71
angular velocity of rotation, 72
assignment

binding a name to an expression, 9
attractor

basin of attraction, 142
attractors, 140

B
basin of attraction, 142
bifurcation, 199
binding

assigning a name to an expression, 9
block and wedge, 29

limit, m ! 1 , 31

C
center of mass, 67
chaos, 186

exponential divergence, 203
chaotic systems

inability to solve analytically, 166
numerical solutions, 166

sensitive dependence on initial conditions,
190

charged particle, 48
collision

elastic, 59
inelastic, 58

commands, 3
append, 134, 195
array, 149
assume, 40
atvalue, 48, 89
block, 128, 195
catch, 130
colon (:) to bind a name to an expression, 9
colon-equals (:=) to create a function, 10
curl, 78
declare, 76
desolve, 48, 89
diff, 14
display, 126
do, 126
double-quote (”) to force evaluation, 10, 13,

14, 18
draw, 17, 19

explicit, 17
parametric, 21
xlabel, 17
ylabel, 17

draw3d
nticks, 50
parametric, 50

drawdf, 169
dynamics, 194
ending a command, 3
equals (=) for temporary binding, 10

© Todd Keene Timberlake & J. Wilson Mixon, Jr. 2016
T.K. Timberlake, J.W. Mixon, Classical Mechanics with Maxima, Undergraduate
Lecture Notes in Physics, DOI 10.1007/978-1-4939-3207-8

255

256 Index

commands (cont.)
erf, 9
ev

diff, 77
exponentialize, 99
express, 49, 71, 77
factor, 51
factorial, 128
find_root, 18
float, 7
for, 126
fpprintprec, 7
gamma, 9
higher-order derivatives, 14
histogram, 137
ic1, 40
if . . . elseif . . . else, 134
integrate, 14, 224
kill, 7
load(vect), 48
make_random_state, 131
makelist, 45, 128
map, 128
Maxima response to errors, 4
mod, 182, 184
next, 127
ode2, 40

ic1, 40
orbits, 199
parametric, 90
percent (%), 4, 13
print, 128
proportional_axes, 51
quad_qagi, 234
quad_qags, 233
quadpack package, 233
random, 131
rk, 167
romberg, 233

nesting, 233
rombergtol, 233
set_draw_defaults, 119
set_random_state, 131
single-quote (’)

see ”, 15
solve, 12
staircase, 196
step, 127
string, 224
subst, 9
throw, 130
thru, 126
tilde (˜) for cross product, 48, 71
trigreduce, 51

trigsimp, 31
unless, 127
vect, 71, 76
while, 126
wxdraw2d, 17
xaxis, 36
ztics, 53

commands,’, 15
commandspoints_joined, 149
commans

expand, 64
computer algebra system (CAS), 2
conservation of energy, 78
curl, 78
curvilinear systems, 87

D
damped driven pendulum, 176
degrees

conversion from radians, 11
dependence on initial conditions, 190
derivative, 14
derivatives

higher-order, 14
draw commands

parametric, 150
draw options

filled_func, 226
draw_realpart, 119
driven damped pendulum

chaotic motion, 186
fixed point case, 178
limit cycle, 178
Lyapunov exponent, 191
period doubling, 179
phase space, 178
strange attractor, 188
strobe plot, 182, 187

dynamic systems
bifurcation, 199

E
electromagnetic field

charged particle in, 48
energy conservation, 152
equilibrium, 85

stability, 86

F
Feigenbaum number, 213
fixed point, 142

Index 257

force
normal, 30

force field
conservative, 76

G
Gamma Function, 9
Gamma function, 9
Gassian Error Function

erf, 9
Gaussian Error Function, 9

H
harmonic oscillator

2D
anisotropic, 93
isotropic, 92

phase space, 90
Hooke’s Law, 86

I
initial conditions

sensitive dependence on, 190
integral

indefinite, 14
integration, 14

missing constant of integration, 14
numerical

see numerical integration, 224
iterated functions, 140

convergence, 142
iterative map, 193

K
kinematics

one-dimensional, 9
kinetic energy, 75

loss in collision, 58
Work-KE Theorem, 75

L
limit cycle, 174, 178
linear resistance, 37
Liouville’s Theorem, 147, 154

illustration, 134
logistic equation, 193
logistic map, 193

bifurcation, 206
Feigenbaum number for, 213

Lyapunov exponent, 203
loops

nesting, 152
Lyapunov exponent

logistic map, 203
sensitive dependence on initial conditions,

191

M
Maxima CAS, 2

arithmetic operations, 4
Bessel functions, 8
data types, 7
download, 3
install, 3
operating systems, 2
trigonometric functions, 8

modular arithmetic, 182
modulo, 182, 184
momentum

angular, 71

N
Newton

Principia Mathematica Philosophiae
Naturalis, 1

Third Law, 29
nonlinear dynamics, 165

chaotic motion, 166
superposition principle, 166

normal forces, 29
numerical integration, 224

built-in routines, 233
Monte Carlo methods, 230

and higher dimensional integrals, 231
rectangular approximation, 226
Runge–Kutta methods, 235
Runge–Kutta-Fehlberg method, 240
Simpson’s rule, 229
trapezoidal approximation, 228

numerical methods
rk, 44

O
ODE

nonlinear, 40
ODEs

numerical solution, 147
Euler algorithm, 148
Euler–Cromer Algorithm, 155

258 Index

P
period doubling, 179, 182
periodic points, 211
phase space, 155

harmonic oscillator, 90
position, 13
potential energy, 77, 78, 86
principal domain, 182
principal value, 182
programming, 125

loops, 126
recursion, 128

projectile
range, 16

projectile motion, 12
initial conditions, 13
quadratic resistance, 43
range, 13
time to impact, 12

Q
quadratic resistance, 39

R
random numbers, 131

Gaussian (normal) distribution, 138
generator, 131

seed, 131
Poisson distribution, 138
random walk, 134
uniform distribution, 137

resonance, 107
rocket

air resistance, 67
velocity and position, 65

rolling motion, 182
root finding

numerical method, 18
roots

numerical methods, 144
bisection, 222
Newton–Raphson, 140

Runge–Kutta (rk) procedure, 44, 167

S
sensitive dependence on initial conditions, 190

Lyapunov exponent, 191
simple harmonic motion, 89
Simpson’s rule, 229
Stegun, Irene A., 223
strange attractor, 188
strobe plot, 172, 186
superposition principle

see nonlinear dynamics, 166
system of particles

angular momentum, 71
center of gravity, 72
center of mass, 72

T
torque, 71

and Newton’s Third Law, 72
gravitational, 72

V
van der Pol oscillator

attractor, 169
driven, 167
limit cycle, 169
strobe plot, 172

vector
components, 11
magnitude and direction, 11

vector calculations, 11
vectors, 11
velocity, 14

derivative of position function, 14

W
work, 75

on particle moving through a force field, 75
wxMaxima

comments, 5
cursor, 5
entering commands, 3
icons, 5
input cells, 6
Maxima graphic user interface, 2
screen, 5
text cells, 6
tutorials, 5

	Preface
	Contents
	1 Basic Newtonian Physics with Maxima
	1.1 Introduction to Maxima
	1.1.1 Computer Algebra Systems
	1.1.2 Installing Maxima

	1.2 Interacting with Maxima
	1.2.1 The wxMaxima Screen

	1.3 Maxima as a Calculator
	1.3.1 Data Types
	1.3.2 Mathematical Functions

	1.4 1D Kinematics: Variables and Functions
	1.5 2D Kinematics: Vectors
	1.6 Projectile Motion: Solving Equations
	1.7 Position, Velocity, and Acceleration: Calculus
	1.8 Newton's Second Law: Solving ODEs
	1.9 Range of a Projectile: Root Finding
	1.10 Visualizing Motion in Maxima
	1.11 Exercises

	2 Newtonian Mechanics
	2.1 Statics
	2.2 Constant Forces: Block on a Wedge
	2.3 Velocity-Dependent Forces: Air Resistance
	2.3.1 Models of Air Resistance
	2.3.2 Falling with Linear Resistance
	2.3.3 Projectile Motion with Linear Resistance
	2.3.4 Falling with Quadratic Resistance
	2.3.5 Projectile Motion with Quadratic Resistance

	2.4 Charged Particles in an Electromagnetic Field
	2.5 Exercises

	3 Momentum and Energy
	3.1 Collisions: Conservation of Momentum
	3.2 Rockets
	3.3 Center of Mass
	3.4 Torque and Angular Momentum
	3.5 Products and Moments of Inertia
	3.6 Work and Potential Energy
	3.7 Fall from a Great Height: Conservation of Energy
	3.8 Exercises

	4 Oscillations
	4.1 Stable and Unstable Equilibrium Points
	4.2 Simple Harmonic Motion
	4.3 Two-Dimensional Harmonic Oscillator
	4.4 Damped Harmonic Oscillator
	4.4.1 Underdamped Oscillators
	4.4.2 Overdamped Oscillators
	4.4.3 Critical Damping

	4.5 Driven Damped Harmonic Oscillator
	4.6 Non-sinusoidal Driving Forces
	4.7 The Pendulum
	4.8 Exercises

	5 Physics and Computation
	5.1 Programming: Loops and Decision Structures
	5.1.1 Loops
	5.1.2 Decision Structures

	5.2 Random Numbers and Random Walks
	5.2.1 Approximating π
	5.2.2 Evolution of an Ensemble
	5.2.3 A Random Walk
	5.2.4 Nonuniform Distributions

	5.3 Iterated Maps and the Newton–Raphson Method
	5.3.1 Iterated Functions and Attractors
	5.3.2 The Newton–Raphson Method

	5.4 Liouville's Theorem and Ordinary Differential Equation Solvers
	5.4.1 The Euler Algorithm
	5.4.2 The Euler–Cromer Algorithm
	5.4.3 Comparing Algorithms

	5.5 Exercises

	6 Nonlinearity and Chaos
	6.1 Nonlinear Dynamics
	6.2 The van der Pol Oscillator
	6.2.1 The Undriven Case
	6.2.2 The Driven Case

	6.3 The Driven Damped Pendulum
	6.3.1 Solving the Driven Damped Pendulum
	6.3.2 Period Doubling
	6.3.3 Rolling Motion
	6.3.4 Chaos

	6.4 Maps and Chaos
	6.4.1 The Logistic Map
	6.4.2 Bifurcation Diagrams
	6.4.3 Diverging Trajectories
	6.4.4 Lyapunov Exponents
	6.4.4.1 Derivation of Lyapunov Exponent
	6.4.4.2 Lyapunov Exponent for the Logistic Map

	6.5 Fixed Points, Stability, and Chaos
	6.5.1 Stability of Fixed Points
	6.5.2 Fixed Points of the Logistic Map
	6.5.3 Stability of Periodic Points
	6.5.4 Graphical Analysis of Fixed Points

	6.6 Exercises

	Erratum
	A Numerical Methods
	A.1 The Bisection Method
	A.2 Numerical Integration
	A.2.1 Rectangular Approximation
	A.2.2 Trapezoidal Approximation and Simpson's Rule
	A.2.3 Monte Carlo Methods
	A.2.4 Built-in Routines

	A.3 Runge–Kutta Algorithms
	A.4 Modeling Data
	A.4.1 Interpolation
	A.4.2 Curve Fitting

	A.5 Exercises

	Index

