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Preface to the Fourth Edition

During the past two decades, our monograph has served as an invaluable peda-
gogical source for students and teachers alike, who have used it to become more
familiar with classical and quantum dynamics using path integrals, Schwinger’s
quantum action principle, functional methods, Berry’s phase and Chern—Simons
mechanics, to mention just a few topics. In addition to correcting some minor
typos in the previous edition, we have added two more topics, namely a detailed
study of quantum electrodynamics using path integrals and an introduction to the
Schwinger—Fock proper time method to work out in all details the effective action
of an electron in a harmonic classical electric field.

Tiibingen, Germany Walter Dittrich

Mainz, Germany Martin Reuter
February 2015
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Preface to the Third Edition

In this third edition, the major purposes and emphasis are still the same, but there are
extensive additions. These consist mainly in the chapter on the action principle in
classical electrodynamics and the functional derivative approach, which is set side
by side to the path integral formulation. A further major augmentation is a chapter on
computing traces in the context of the WKB-propagator. Finally, we have corrected
some (not only typographical) errors of the previous editions.

Tiibingen, Germany Walter Dittrich

Mainz, Germany Martin Reuter
February 2001
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Preface to the First Edition

This volume is the result of the authors’ lectures and seminars given at Tiibin-
gen University and elsewhere. It represents a summary of our learning process
in nonlinear Hamiltonian dynamics and path integral methods in nonrelativistic
quantum mechanics. While large parts of the book are based on standard material,
readers will find numerous worked examples which can rarely be found in the
published literature. In fact, toward the end they will find themselves in the midst of
modern topological methods which so far have not made their way into the textbook
literature.

One of the authors’ (W.D.) interest in the subject was inspired by Prof. D. Judd
(UC Berkeley), whose lectures on nonlinear dynamics familiarized him with
Lichtenberg and Lieberman’s monograph, Regular and Stochastic Motion (Springer,
1983). For people working in plasma or accelerator physics, the chapter on nonlinear
physics should contain some familiar material. Another influential author has been
Prof. J. Schwinger (UCLA); the knowledgeable reader will not be surprised to
discover our appreciation of Schwinger’s Action Principle in the introductory
chapters. However, the major portion of the book is based on Feynman’s path
integral approach, which seems to be the proper language for handling topological
aspects in quantum physics.

Our thanks go to Ginny Dittrich for masterly transforming a long and complex
manuscript into a readable monograph.

Tiibingen, Germany Walter Dittrich

Hannover, Germany Martin Reuter
January 1992
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Chapter 1
Introduction

The subject of this monograph is classical and quantum dynamics. We are fully
aware that this combination is somewhat unusual, for history has taught us convinc-
ingly that these two subjects are founded on totally different concepts; a smooth
transition between them has so far never been made and probably never will.

An approach to quantum mechanics in purely classical terms is doomed to
failure; this fact was well known to the founders of quantum mechanics. Never-
theless, to this very day people are still trying to rescue as much as possible of
the description of classical systems when depicting the atomic world. However,
the currently accepted viewpoint is that in describing fundamental properties in
quantum mechanics, we are merely borrowing names from classical physics. In
writing this book we have made no attempt to contradict this point of view. But
in the light of modern topological methods we have tried to bring a little twist to the
standard approach that treats classical and quantum physics as disjoint subjects.

The formulation of both classical and quantum mechanics can be based on the
principle of stationary action. Schwinger has advanced this principle into a powerful
working scheme which encompasses almost every situation in the classical and
quantum worlds. Our treatment will give a modest impression of the wide range
of applicability of Schwinger’s action principle.

We then proceed to rediscover the importance of such familiar subjects as Jacobi
fields, action angle variables, adiabatic invariants, etc. in the light of current research
on classical Hamiltonian dynamics. It is here that we recognize the important role
that canonical perturbation theory played before the advent of modern quantum
mechanics.

Meanwhile, classical mechanics has been given fresh impetus through new
developments in perturbation theory, offering a new look at old problems in
nonlinear mechanics like, e.g., the stability of the solar system. Here the KAM
theorem proved that weakly disturbed integrable systems will remain on invariant
surfaces (tori) for most initial conditions and do not leave the tori to end up in chaotic
motion.

© Springer International Publishing Switzerland 2016 1
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2 1 Introduction

At this stage we point to the fundamental role that adiabatic invariants played
prior to canonical quantization of complementary dynamical variables. We are
reminded of torus quantization, which assigns each adiabatic invariant an integer
multiple of Planck’s constant. All these semiclassical quantization procedures have
much in common with Feynman’s path integral or, rather, approximations thereof.
Indeed, Feynman’s path integral methods are ideally suited to follow a quantum
mechanical system—if certain restrictions are enforced—into its classical realm.
Consequently it is one of our main goals to apply Feynman’s path integral and
other geometrical methods to uncover the mystery of the zero point energy (Maslov
anomaly) of the quantum harmonic oscillator.

That quantum and classical mechanics are, in fact, disjoint physical worlds was
clear from the very beginning. Present-day experience is no exception; it is rather
embarrassing to find out that an important geometric phase in a cyclic adiabatic
quantal process has been overlooked since the dawn of quantum mechanics. This
so-called Berry phase signals that in nonrelativistic as well as relativistic quantum
theory, geometrical methods play an eminent role.

The appearance of topology in quantum mechanics is probably the most impor-
tant new development to occur in recent years. A large portion of this text is
therefore devoted to the geometric structure of topologically nontrivial physical
systems. Berry phases, Maslov indices, Chern—Simons terms and various other
topological quantities have clearly demonstrated that quantum mechanics is not,
as of yet, a closed book.



Chapter 2
The Action Principles in Mechanics

We begin this chapter with the definition of the action functional as time integral
over the Lagrangian L(q;(t), g;(?); f) of a dynamical system:

S{aO): . 0} = / " L(gi(0). (o)1) - @.1)

151

Here, ¢g;, i = 1,2,...,N, are points in N-dimensional configuration space. Thus
qi(t) describes the motion of the system, and §;(f) = dg;/dt determines its velocity
along the path in configuration space. The endpoints of the trajectory are given by
qi(t1) = qi1, and q;(©2) = gn.

Next we want to find out what the actual dynamical path of the system is. The
answer is contained in the principle of stationary action: in response to infinitesimal
variation of the integration path, the action S is stationary, §S = 0, for variations
about the correct path, provided the initial and final configurations are held fixed.
On the other hand, if we permit infinitesimal changes of ¢;(¢) at the initial and final
times, including alterations of those times, the only contribution to §S comes from
the endpoint variations, or

88 = G() —G(n) . 2.2)

Equation (2.2) is the most general formulation of the action principle in mechanics.
The fixed values G| and G, depend only on the endpoint path variables at the
respective terminal times.

Again, given a system with the action functional S, the actual time evolution
in configuration space follows that path about which general variations produce
only endpoint contributions. The explicit form of G is dependent upon the special

© Springer International Publishing Switzerland 2016 3
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4 2 The Action Principles in Mechanics

representation of the action principle. In the following we begin with the one that is
best known, i.e.,

1. Lagrange: The Lagrangian for a point particle with mass m, moving in
a potential V(x;, 1), is

Leu i) = 52 = Vi) 23)

Here and in the following we restrict ourselves to the case N = 3; i.e., we
describe the motion of a single mass point by x;(¢) in real space. The dynamical
variable x;(f) denotes the actual classical trajectory of the particle which is
parametrized by ¢ witht; <t < 1.

Now we consider the response of the action functional (2.1) with respect to
changes in the coordinates and in the time, 8x;(f) and §¢(¢), respectively. It is
important to recognize that, while the original trajectory is being shifted in real
space according to

xi(1) = X(1') = x;i(t) + 8x;(1) (2.4)

the time-readings along the path become altered locally, i.e., different at each
individual point on the varied curve—including the endpoints. This means that
our time change is not a global (§7(f) = const.) rigid time displacement, equally
valid for all points on the trajectory, but that the time becomes changed locally,
or, shall we say, gauged, for the transported trajectory. All this indicates that we
have to supplement (2.4) by

t— 1) =t+68t() , (2.5)
where the terminal time changes are given by 8¢(f2) = 6t», and 8#(f;) = 6¢;.

To the time change (2.5) is associated the change in the integration measure
in (2.1) given by the Jacobi formula

d(t+ 8t = d(t;t&) dt = (

d
1+ &t St(t)) dt (2.6)
or
d
8(dt) :==d(t + 6t) —dt = dtdt 8t(t) . 2.7

If the time is not varied, we write & instead of §; i.e., §ot = 0 or [8¢, d/df] = 0.
The variation of x;(¢) is then given by

8xi(1) = Soxi(1) + 1 jt (xi(1)) (2.8)



2 The Action Principles in Mechanics 5

since up to higher order terms we have

dx.

550 = X0 50 = 5+ 50— 5 0) = 50 + 50 0
e dx; . ' dx;
= (x}(2) —x:(1)) + o1 P 8oxi(t) + Ot g

Similarly,
. . d .
8x;(1) = Soxi(f) + &dt Xi (2.9)
. d . . d
= 50xi + d (8txi) — X d (51‘)
d d . d d . d

= d (50 + 8tdl‘) Xi —xidt5t = dt(Sxi) —xidt St . (2.10)

The difference between § and 8y acting on ¢, x;(¢) and x;(¢) is expressed by the
identity

d
§=296 1) . 2.11
0+ tdt ( )

So far we have obtained

4 (L8r)—81 %

o
n

15}
8S=/ [6(dt)L + drSL] :/ dt L;;t(&) +3L
| n

f2 d dL n d
=/t1 dt[dt(Lé’t)—i- (5L—8tdt)} =/tl dt[dt(LSt)+80L} ,
(2.12)

since, according to (2.11) we have
d
0L =68L+6t L. (2.13)
dt
The total variation of the Lagrangian is then given by

d oL oL . . dL
SL = 8oL + StdtL = o Soxi + o Sox; + Ot dr

X

L L L
= 0 50xi+ g 80)'Ci+8t(a X +
. X;

0x; ox;

oL, dL
0x; ' ot



2 The Action Principles in Mechanics

oL d oL d\ . oL
= (80+8tdt)Xi+a'< (80+8[dt).xi+8l

0x; X; ot
aL oL . oL
= o, Sx; + 5, 8% + o ot .

Now we go back to (2.3) and substitute

oL V() AL . AL _ Vv
T R T 219

so that we obtain, with the aid of (2.10):

A% av . d L d
SL = — o 8t — ax, Sx; + mx,-dt dx; — mx; & ot . (2.15)

Our expression for 65 then becomes

£ d v A% d
= b Sxi— - i + (L() — mi? : 2.1
N /t1 dt [mx " 8x Iy 8t ax, 8xi + (L(t) —m l)dt SI] (2.16)

We can also write the last expression for §S a bit differently, thereby presenting
explicitly the coefficients of §x; and 41

f d dx; m { dx;\
SS—/t1 dt{dt|:mdt Sxi—(z (dt) +V)5t:|

d?*x; aV aV d | m [dx; 2
- Sxi— . Sxi— . St+38 v, 2.17
" o ax; T o tdt|:2(dt) + } 17)
or with the definition
=l o dxi2+V( ) 2.18)
o, T T 2\ A ‘
2 dT dy
58 = / di [m xé’x,-—Eé’t}
n dr| dt
& d*x; 9V dE 9V
dr | —8x; St - . 2.19
+/n [ x(mdt2+ax,-)+ (dt ar)} @19

Since 8x; and &t are independent variations, the action principle §S = G, — G
implies the following laws:

2
i it
8x; : mddtf = _avgi ) (Newton) . (2.20)
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i.e., one second-order differential equation.

dE 9V
bri = 2.21)

so that for a static potential, dV/dt = 0, the law of the conservation of energy
follows: dE/dt = 0.

dx;
Surface term: G =m ; éx; — Ebt . (2.22)

. Hamiltonian: As a function of the Hamiltonian,

p;

H(x;,pi;t) = om

+ V(xi, 1), (2.23)
the Lagrangian (2.3) can also be written as (p; := dL/dx;):
dx;
L=p " —HGwpin). (2.24)

Here, the independent dynamical variables are x; and p;; ¢ is the independent
time-parameter variable. Hence the change of the action is

15} dx;
N 8/ dt [p,- i —H(x,-,pi;t)}
f dt

f d dx; d
= dt|pi | 6x; 0pi—8H—H 4t . 2.25
/,1 t[pdtx+dtp dt t} (225)
Upon using
oH oH oH
H = ; ; , 2.2
) (ax,- Sx; + I, 8p)+ 9 ot (2.26)

where, according to (2.23): dH/dx; = dV/0dx; and dH/dp; = p;/m, we obtain

1% d
%z/d%%%—%ﬂ

151

f2 dpi BV dxi Di dH 8H
—0X; i - - . 2.27
+[}h[8x(dt+an)+8p(?t n)-+&(dt m)} (2.27)

The action principle §S = G, — G then tells us here that

dxi _ 8H _pi

, 2.28
dt opi m ( )

Spi .
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i dpi _ oH _ av
8x; g T = o (2.29)

Here we recognize the two first-order Hamiltonian differential equations.

dH 0H
ot : = . 2.30
dt ot ( )
Surface term: G = p;6x; — Hét . (2.31)
Let us note for later use:
S =G, — G = [pi8xi — HSZ‘];Z — [[7,‘8)@' — HSZ‘];I . (2.32)
Compared with (x1 := {x;(t1)}, x2 := {xi(t2)}; i = 1,2, 3)
aS aS aS aS
88 = 1 1 ot 8t 2.33
3)(1 1+ 8x2 ¥+ 3t1 1+ 8t2 2 ( )
(2.32) yields
aS aS
= — s H s ; t = 234
P1 Ay (xl P1 1) o ( )
or
aS aS
H ,— ) — =0. 2.35
(xl o, 1) o (2.35)
In the same manner, it follows that:
aS aS aS
= , H , ,f =0. 2.36
P2 8x2 (X2 8x2 2) + 8t2 ( )

Obviously, (2.35) and (2.36) are the Hamilton—Jacobi equations for finding the
action S. In this way we have demonstrated that the action (2.1) satisfies the
Hamilton—Jacobi equation. (Later on we shall encounter S again as the generating
function of a canonical transformation (g;, p;) — (Q;, P;) of the F\(q;, O;, 1)-
type.

3. Euler-Maupertuis (Principle of Least Action): This principle follows from
the Lagrangian representation of the action principle:

15 dxl‘ 2
88 = 8/ dtL = |:m o B —ESt} , (2.37)
t

1 1
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if we introduce the following restrictions:

a) L should not be explicitly time dependent; then the energy E is a conserved
quantity both on the actual and the varied paths; b) for the varied paths, 8x;(7)
should vanish at the terminal points: 6x;(#;2) = 0. What remains is

n
8/ dtL = —E(8t; — 6ty) . (2.38)
n
But under the same restrictions we have, using (2.18),

n 9L
/ dtL:/ dto 5% —E(t—1) , (2.39)
f f 0x,

the variation of which is given by
2 9L
8/ dtL = 8/ dta' xi—E(6t, —611) . (2.40)
n 131 i
Comparing (2.40) with (2.38), we get, taking into consideration p; := dL/dx;:
f dx;
§ | ditpi '=0. 2.41
/n Pi 4 (2.41)

If, in addition, we assume the potential to be independent of the velocity, i.e., that

oT
. x5 =2T, (2.42)
3xi
then (2.41) takes on the form
[5)
8/ atT =0, (2.43)
3|
or
[5)
/ dt T = Extremum. (2.44)
3|

Thus the Euler—-Maupertuis Principle of Least Action states: The time integral
of the kinetic energy of the particle is an extreme value for the path actually
selected compared to the neighboring paths with the same total energy which the
particle will travel between the initial and final position at any time — is varied!



2 The Action Principles in Mechanics

This variation in time can also be expressed by writing (2.43) in the form [see

also (2.7)]:
%) 153 d
8/ arT = / dt (T ot + ST) . (2.45)
f f dt

In N-dimensional configuration space, (2.41) is written as

n N oo
s> by gidt =0, (2.46)
no= 04

or

2 N
8 / > pidg;=0. (2.47)
=1

If we parametrize the path in configuration space between 1 and 2 using the
parameter ¢, then (2.47) is written

h N .
Y 5 gy — 0 (2.48)

On the other hand, it follows from the Hamiltonian version of the action principle
in its usual form with vanishing endpoint contributions §g;(¢12) = 0, 6¢(t;2) = 0
in 2N-dimensional phase space:

. [ N dq
8/ dt U _H|l=0 2.49
i ;p 0 (2.49)

One should note the different role of § in (2.46)—the time is also varied—and § s
which stands for the conventional virtual (timeless) displacement.
With the parametrization ¥ in (2.49), the expression

22 Y dgi . d
~ qi t
8 dv i o —H =0 2.50
i [;p a dﬁ‘] (230
can, by introducing conjugate quantities,

gn+1 =1, pn+1=-—H, (2.51)
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be reduced formally to a form similar to (2.48):

9y N+1

3 dg;
E i =0. 2.52
8/191 ‘_pdﬂdz? 0 (2.52)

Besides the fact that in (2.52) we have another pair of canonical variables, the
different roles of the two variation symbols § and § should be stressed. § refers
to the paths with constant H = E, whereas in the 8 variation, H can, in principle,
be any function of time. § in (2.52) applies to 2N + 2-dimensional phase space,
while § in (2.48) applies to configuration space.

If, in the case of the principle of least action, no external forces are involved,
i.e., we set without loss of generality V = 0, then E as well as T are constants.
Consequently, the Euler—Maupertuis principle takes the form

[5)
8/ dt =0 =6, — 6ty , (2.53)
151

i.e., the time along the actual dynamical path is an extremum.

At this point we are reminded of Fermat’s principle of geometrical optics: A light
ray selects that path between two points which takes the shortest time to travel.
Jacobi proposed another version of the principle of least action. It is always useful
when one wishes to construct path equations in which time does not appear. We
derive this principle by beginning with the expression for the kinetic energy of
a free particle in space:

3

1 dx; dxy,
T = m; , 2.54
2 Z “dt ar 2:54)
i,k=1
where my; are the elements of the mass tensor, e.g. my = mdj.
In generalized coordinates in N-dimensional configuration space, we then have

1 (ds)?
T = , 2.55
2 (dr)? (2.33)
with the line element
N
(ds)> =) malqu. qa. ... qn)daqidas (2.56)
ik=1
and position-dependent elements m;;; for example, from
d 2 2 4o 2 d 2
M+ P9 + (@) 057

2 (dr)?
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we can immediately see that

The mj; take over the role of the metric tensor in configuration space. At this
point mechanics becomes geometry.
Writing (2.55) in the form dt = ds/ /2T we can restate (2.43) as

1% 2
8/ dthOzS/ dsv/'T . (2.58)
1 1
Here, we substitute 7 = H — V(g;) to obtain Jacobi’s principle:
2
§ / VH—=V(g)ds =0, (2.59)
1
or, with (2.56):
2 N
$ / VH = V(g) Z mi(gp)dgidqr = 0 . (2.60)
1 ik=1

In the integrand, only the generalized coordinates appear. If we parametrize them
with a parameter ¥, we get

253 da: d.
: VH — v\/ My d‘g d‘g‘ d® = Extremum . 2.61)

Since ¥ is not constrained in any way, we can construct the Euler equations for
the integrand using the conventional variation procedure. The solutions to these
equations yield the trajectories in parameter representation.

A comparison of Fermat’s and Jacobi’s principles is appropriate here. If we
apply the principle of least time (2.53) to a light ray in a medium with index
of refraction n(x;) and, due to

v

1
= , vdt=ds, dt
¢ n(x;) 0 ’

- "(:i) ds (2.62)

get the expression

2
8/ dsn(x;)) =0, (2.63)
1
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then it is obvious from a comparison with Jacobi’s principle (2.59) that the
quantity \/ (E—V) can be looked at as “index of refraction” for a massive
particle.

. Schwinger: Here we use x;, p;, t and v; as the variables to be varied. We shall
immediately see, however, that v; does not satisfy an equation of motion, i.e.,
dv;/dt = ... does not appear; therefore v; is not a dynamical variable (just like
¢ and B in the canonical version of electrodynamics). Schwinger writes

dx; 1
L=p; ( ; - vi) + vai2 — V(x;, 1) (2.64)
dxi
=pi , —H@i,pi1), 2.65
pi 4 —H(xi.pi1) (2.65)
with H given by
H = p; — ymv} + V(x;, 1) . (2.66)

The variation of the action now gives

f d oH % dxi
8S = dt i 8 ;i — 5t — 8,’ —V; I} i
/n [pdtx ot ox; x+(dt U)p

1 d
—pi )8v; — | pivi — V) s
+(—pi + mv;)dv (pv 2mvl—i- )dt :|

or

n g n dpi OV
S = dt 0x; — HOt dt | —6x;
/,1 ar 0 H/,l [ x(dt+3xi)

dxi dH 3H
+6pi ( dr — Ui) + 8vi(—p; + mv;) + 8t( dr — 9 ):| . (2.67)

With the definition of H in (2.66), the action principle yields

b= = o (2.68)

dxi 8H
Sp;i - = =v;. 2.69
pit ap: v (2.69)

There is no equation of motion for v;: no dv;/dr.

8v; —p; + mv; = — =0, (2.70)
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dH O0H
ot : = . 2.71
dt ot @7
Surface term: G = p;6x; — Hét . (2.72)

Schwinger’s action principle contains the Lagrangian and Hamiltonian versions
as special cases. So when we write

m
H(xi,pi, Vi, t) = piv; — Uiz + V(Xi, t)

2
P; 1
=0 VL) — o (pi—mu)? (2.73)
2m 2m
and introduce v; = p;/m as definition of v;, we return to the Hamiltonian

description. On the other side we can also write L in (2.65) as

2
I = 'dx,-_ -v-+mv-2—V(x- t):m dx;
pl dt pl 1 2 1 (Al 2 d[

dx; m [ dx; 2
—V(xi, 1) + (pi — mvy) ( dt‘ — vi) -, ( dl’ - vi) , (2.74)

and if we now define: v; = dx;/dt, then the Lagrangian description follows.
Once again: Schwinger’s realization of the action principle is distinguished by
the introduction of additional variables for which no equations of motion exist.

Finally, we should like to briefly discuss the usefulness of the surface terms
G . These offer a connection between the conservation laws and the invariants
of a mechanical system (Noether).

Let us assume that our variation of the action vanishes under certain circum-
stances: §S = 0. We then say that the action, which remains unchanged, is invariant
under that particular variation of the path. The principle of stationary action then
states:

§=0=G,—Gy, (2.75)
i.e., G has the same value, independent of the initial and final configurations.

In particular, let us assume that the action (Hamiltonian version) is invariant for
a variation around the actual path for which it holds that

0xi(t12) =0, jt(&) =0: 6t =const. = ¢ . (2.76)
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Then it follows from the invariance of S under infinitesimal constant time transla-
tion:

8S=0=G,— G, = —H(t)ét, + H(t))6t, = —(H, — H}) ¢, 2.77)
the conservation of energy:

. dH
H(t;) = H(t;) , meaning i =0. (2.78)

Similarly, the conservation law for linear momentum follows if we assume that
the action of the system is invariant under constant space translation and the change
of the terminal times vanishes:

Sx; = 8e; = const., 8t(t;) = 0. (2.79)

58S =0= G2 — G1 = (pini)z — (pini)l = (piz —pi1)88i (2.80)

or
. dp;
pi(t) = pi(t1) , meaning 0= 0. (2.81)
Now let
P2
H=_"'"+V(), (2.82)
2m

i.e., the potential may only depend on the distance r = \/ xiz. Then no space direction
is distinguished, and with respect to rigid rotations §w; = const. and

St(tip) =0, &x; = epdaxy , (2.83)

we obtain
8S—5/t2dt i _pi vy | =0 (2.84)
A Pras ~ om o0 '
Let us prove explicitly that §S = 0.

dx; p2 dx; d Di d
I} i -4 ! :8,' i 81'_ ] i — Pi ) i
(p dt) (Zm) Pige T Pige O™y PP P g, 0%
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where we used dx;/dt = p;/m, since our particle travels on the correct classical
path; thus we are left with

d

8x; = pi
a™ TP

d 1
Di . sijkbwixy = " sixbwpipr =0, (2.85)

d
where again, X, = p;/m has been applied together with the total antisymmetry
of g

The remaining variation is

Vv 1% x; oV
8V = ax,' SX,‘ = ax,' siija)jxk = roor siijwjxk
1 9V
= - or siijwjxixk =0. (2.86)

Because

88 =0 = Gy — Gi = (pidx;)2 — (pibxi)1 = (Pigbwix)2 — (PisikSwixy)
= Swi {[(r x p)il2 — [(r xp)il1} (2.87)

this implies the conservation of angular momentum:

L(t;) = L(t;) , meaning 21; =0. (2.88)
Conversely, the conservation of angular momentum corresponds to the invariance,
8S = 0, under rigid rotation in space. The generalization of this statement is:
if a conservation law exists, then the action S is stationary with respect to the
infinitesimal transformation of a corresponding variable. The converse of this
statement is also true: if S is invariant with respect to an infinitesimal transformation,
8S = 0, then a corresponding conservation law exists.



Chapter 3
The Action Principle in Classical
Electrodynamics

The main purpose of this chapter is to consider the formulation of a relativistic point
particle in classical electrodynamics from the viewpoint of Lagrangian mechanics.
Here, the utility of Schwinger’s action principle is illustrated by employing three
different kinds of action to derive the equations of motion and the associated surface
terms.

The first choice is rather standard and is given in covariant language through the
invariant action

(%3 d v
s =/ dr |:—m062 40 A,L(x)] 3.1)
o cdrt

Here, t denotes the proper time, and dt = ' \/—dxl‘dxﬂ = \/1 - ”Z dt is the
& C
invariant proper time interval. The variation of S is given by

5§ = /1 ’ [—mOCZS(dt) + ié’(dx")A,L(x) n jdx"é’A,L(x)] 3.2)
with
— - (flx {sx#) LR
Aub(dxty = d(A,6x") — dA,Sx",
dx"8A, = dx" ?;ifj 8x¥ = 0,A,dx" $x
© Springer International Publishing Switzerland 2016 17
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so that §S takes the form

2 dx* e
G, — G| =65 = /1 |:d (mo dr lel + CAMSXM)

&
+ (—mo T A — edA“) 8x,{|. (3.3)
dt c c

From here we obtain the equation of motion,

APt e dx’ edA* e dx’
= oA, - = (314, — 9,A"
o dr? c "dr ¢ dt c( ! ! )dr
d vV
= Spr, (3.4)
c dt

which we recognize as the Lorentz equation. The surface term is identified as
dxt e
G= (mo + A“) Sxt (= pHéx,). (3.5)
dt ¢

dxt dxy

With the aid of (3.4) we can easily verify that °; "’

remains constant (= —c?):

dx, d®x*  1d (dxtdx,\ e o dx’dxy
dr dt>  2dr \ dr dt

v
moc dt dt

because of the antisymmetry of F,.

. . wodx
Now, 7 is not a measure of proper time unless djf o= —c?, as assumed so far.

If, more generally, T serves as an independent parameter other than proper time, we
can write as an equivalent action:

R mg [ dx* dx e dxM
S=|[ dr F o)+ Ayl 3.6
/771 |:2(dtdr C) cdr™" (36)
With the additional requirement that G be independent of §t, we can carry out our
variational procedure and end up with

2 dxt e 1 dx* dx
§S = d 5 AM8x, — B_?)s
/1 |: (mo dt Mt c e 2mO ( dt dt ¢ ) t)

Pxt e mo dx* dx
- F*,dx" ) d 1) s 3.7
+(’"°dz *. ”x)x“+(2 (drdt)) T} 7

=G, -G
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dx*

with G = (mo + eA") Sx, (= phéxy) .
c

T
as before. Since G was required to be independent of 7, we obtain

dx* dx,,
dr dt

5t -t =0. (3.8)

As a consequence, the last term in (3.7) multiplying 87 vanished automatically:

dx" dx,,
dt dt

= const.

Again we find for the equation of motion:

d>xH e dx’
Oxy mo P CFff gr (3.9
Incidentally, the structure of the integrand of Eq. (3.6) can easily be derived by use of
the method of Lagrange multipliers. For this reason, we introduce a new Lagrangian
by

A
L=L+ (;) (2 + ) (3.10)
2, ©.
where L = —moc” + x,A".
C

Variation of the associated action leads us directly to the Euler-Langrange equa-
tions:

oL d (BL

d
- — Ax,) = 11
oxt  dt 8)'6“) dt (A%) =0 G-10)

and the variation with respect to the multiplier A gives
P+ =0. (3.12)

Altogether we have five equations for the five unknowns x*(7) and A(7).
2 _

Multiplying equation (3.11) by x* and using x,X* = 0, which follows from x° =

—c?, we find

L L
" Baxu - (Ei'cﬂ) B xﬂi(xxl‘) =0

_— =
=4 Qi) =—c2}
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or d)L__l ,ME)L__M oL
dv = 2 xBxl‘ o OxH

which can be integrated to yield

: -1 oL dx* d oL
= = — ™
A /dtk 2 [/ dthl‘ g /drx e (3)’(")] (3.13)

Since our original Lagrangian has the form L = L(x*, "), we have

= Ty T (3.14)

so that we can continue to write for A(7)

1 oL d (0L
- _ _ o i
Ar) = 2 L /dt BXI‘x /drx e (35(“)i|

[ d aL
= — — o
c? _L /dtdt (x 356“)i|

:—12 L—jc";)i] (3.15)

JL

In our particular case with .. = ©A,, we obtain
Oxt K

P €. €.
A= —C2 [—moC —+ CXMAIL — CXMAM]

= my.

Remarkably, A has become independent of t by now. Therefore, according to (3.10),
the modified Lagrangian L is given by
L=—moc® + iA + n;O @+
c

=M@+
2 c

which brings us back to the integrand of Eq. (3.6).
Finally, as a third version of the action we consider

R dxH moy e
S =/ dt |:p ( - v") + (Vo =)+ vtA } (3.16)
o B\ dr 2 K c K
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which, after variation of the independent variables, x,., p,., v, and 7 leads to
2 my 2 €
88 = 8/ [pﬂdx“ —puotdr + 5 (viv, —c*)dr + v“A,Ldr] (3.17)
1 c

2
my €
= /1 [d(p,LSx") +d (51 (—puv" + 5 (v v —c?) + cv"AM))
+ 8x, (—dp" + evua"Avdt) + 8p,. (dxt —vtdr)
c
+ dv, (—p“dr + movtdr + eA“dt)
c
+ 8td (p“vﬂ _m (v, — cz) — ev“AM)] (3.18)
2 c
=G, —G.
The surface term yields
G = pudxt (3.19)
provided that G is again independent of §z, which implies

puvt = ”;0 W'v, — ) + jv"A,L (3.20)

so that the term in (3.18) that multiplies §t is automatically zero.
The equations of motion follow from

apt e ;
8x, P Ca"Avv (3.21)
dxt
dp, : = v, 3.22
P dr v ( )

There is no dynamical equation of motion for v* since there is no term proportional
dvt .
to J in the action. Thus
T

Svy : p" = mpv* + eA“, (3.23)
C
which, together with (3.21) and (3.22) can be combined into

A2t e dx’
= FH . 3.24
o dr? ¢ Vdt (3.24)
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Furthermore, substituting equations (3.22) and (3.23) into (3.20) gives us back the
constraint

dx" dx,,

dr dv = vy, = - (3.25)

In summary, we were led to three equivalent actions which express the dynamics of
a relativistic point particle in presence of an external electromagnetic field.



Chapter 4
Application of the Action Principles

We begin this chapter by deriving a few laws of nonconservation in mechanics.
To this end we first consider the change of the action under rigid space translation
8x; = 8¢; and 81(t1 ) = 0. Then the noninvariant part of the action,

2 dx; p.2
S = dt|\pi =" =V&i,0|, 4.1
[l = v @

is given by
av
SV(xi, 1) = ox;
0x;
and thus it immediately follows for the variation of S that
2 oV (x;, t 2od
552/ dt[— (x )5xi:| =Gy — G :/ dt | (pidx;) ,
f Bxi fn dt

or

f d av
dt i 1) i =0.
/tl |:dlp * 8x,-:| ¢

Here we recognize Newton’s law as nonconservation of the linear momentum:

dpi _ OV(x.0)

dt Bxi (42)

Now it is straightforward to derive a corresponding law of nonconservation of the
angular momentum. To do so, we need the variation of (4.1) under 8x; = ejdwjxx

© Springer International Publishing Switzerland 2016 23
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with constant w; and again, §#(¢1,) = 0. As before, only V(x;, f) contributes to the
variation :

av

av av
SV(X,', l) = ‘ ox; = ‘ eiijwjxk = (Sa),-s,-jkxj e = Swi(r X VV),' .

0x; 0x,

The variation §[p;(dx;/dt) — (p?/2m)] makes no contribution.
Then we obtain

15 o) d
88 = —/ dt(r x VV)idw; = G, — G| = / dtdtpi((sw Xr)i

n 151
15 d
= dt iS i
/tl & (rxp)idw,

or
%) d
/ dt [(r xVV)+ (r ><p),} dw; =0.
" dt

Upon using the definition L = r x p and F = —VV we have immediately

LN rxF 4.3)
= =r . .
dt

As a further example we consider a particle in an 1/r-potential with r = \/ xi2

and k = const.:

f dx; p? k
S = dt|p; =" . 4.4
/,: [p dt 2m + ri| 4

The special form of the variations of dx; and §p; is now given by the rigid
displacements (§&; = const., §1(t;2) = 0):

1
dx; = ds; mk5ijxk1?k —xipj—&ipla |, Lk = EumXiPm 4.5)
XiXj 1 1 2
8pj = SSi }’3 — 8ijr — mk (pipj — 8ijp ) . (46)

Here, in contrast to our former examples, §p; is not arbitrary anymore. The
calculation of S with the help of (4.5) and (4.6) is performed in the usual way
and yields, after a few steps (here is an exercise):

58 = 255,-[2 di (—jt) (’;) . 4.7)

n
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So the action principle then reads:

f d Xi f d
8S = —28¢; dt = dt 0 . 4.8
¢ /,1 dt ( r) /,1 dl‘p N (4.8)

For the integrand on the right-hand side we get

2 2
pi8xi = 885 [pkxkpi —pzxi] = 885(L Xp)i . (49)
mk mk

Our final result is, therefore:

f d /r d 1
25e /n dt [—dt (r) - L Xp)i| 0. (4.10)

So we have proved that the Runge—Lenz vector A is a conserved quantity in the
Coulomb problem:

A= Toxps" My @.11)

= X : =0. .
mk P r dt

In our series of standard examples, the harmonic oscillator is still missing. The paths

of a particle in the three-dimensional oscillator potential,

m

22
4.12
X (4.12)

V(r) = ;kﬂ =

with k = mw? and r* = x7 are, as in the Kepler (Coulomb) problem, closed. In the

case of the 1/r-potential, the presence of closed paths is attributed to the existence of
the conserved Runge—-Lenz vector. This suggests searching for additional conserved
quantities in the harmonic oscillator. The well-known constants of motion are the
energy and the angular momentum:

1 dE
E= 2 4 mw?d) -0, 4.13
dL;
L,' = EijkXjPk » d =0. (414)

We now wish to prove that the following tensor (nine elements) of the Runge-Lenz
type is also a constant of motion:

1
(pipj + mzwzx,-xj) . (4.15)

A=,
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Here we need not limit ourselves to three space dimensions. In the following we
thus consider the isotropic N-dimensional harmonic oscillator:

N N
1 2, m 5 2
H= ;pi + o in ) (4.16)

i=1

The variations §x; and ép; are now given by (67, = const.)

1
8x; = 2m5njk(5ijpk + pidi) (4.17)
2
maw
bpi =", Snu(G0e + x6u) - (4.18)

The variation §S is then obtained in the form

1% d 153 d
58S = (Snikme/ dt I:—dt(xj'xk)i| =G, — G| = / dtdt (pidxi) . 4.19)

151 n

In (4.19) we need p;6x; = (1/m)8np;px, so that our variation (4.19) reads

od 5 1
2)’77//(/t1 dtdt [mw Xjx + mpjpk:| =0,
or, using (4.15):

dA

0. 4.20
s (4.20)

e 1
A= _ (pp+mPa’mr) :
2m

The virial theorem in mechanics also provides a good example of an application.
Here we begin with the variation

8xi = 88)@' s 8[7,‘ = _55[71' s (421)
in
5] .
58 =8 / [p,-‘g’ —T(p) — V(xi)i| , (4.22)
151

where T(p) denotes the kinetic energy T(p) = p?/2m. The term p;(dx;/dt) in (4.22)
remains unchanged under (4.21):

A d
Yy L Bex) = 0. (4.23)

dx; dx; d
8\ pi = Opi i, 0x; = —dep;
() s o=t

dt dt
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But H = T(p) + V(x;) changes according to

1
8H = pidp; + v Ox; = —88 17,-2 + 588V x; =6 | —2T + x; ov . (4.24)
m ox; m 0x; ax;

Applying the action principle yields

f dxi f2 BV
= i —H| = 2T — i
88 8/t1 dt [p & } /t1 dt [85( X 8x,-):|

%) d 8 15 d 8
=G, — G| = / dl‘dt(p,' x,-) = / dtdt( E)Cip,') s

n 1
so that the theorem we seek follows:

d aV
iPi) — 2T — A . 42
dt(xP) * ox; (4.25)

In particular for the Kepler problem with V(r) = —k/r we find, with the aid of
x;(0V/dx;)) = k/r = =V (r):

d

We now come to the calculation of the action functional for a few simple
cases, e.g., for a free particle in one dimension or a particle under the influence
of a constant force. Here we want to apply the action principle exclusively: §S =
G, — Gi.

Let §#; = 0. If we then use H = p?/2m in G = pSx — H8t we have

2
t
G> = p(tr)éxs — ¥ (2) Sty 4.27)
2m
G, =p(0)6x(0), x(0) =x; . (4.28)
At this point we need the solutions to Hamilton’s equations
oH t
x(1) = _ 0 , (4.29)
ap m
oH
p(t) =— =0. (4.30)
ox

Clearly we obtain p(t) = p(t;2) = const. and

x(t):x(O)—}—p’(:)tExl—}—’l;t.
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When we solve this for p we get p = m[x(t;) — x1]/t2 or
2

p- _ m _ 2
om 28 (2 = x0)”

Finally we end up with a total differential for §S:

2
l’ J—
88 =G, -G, = pS)CQ —p5x1 — p 8t = }’l’lX( 2) i 5()62 —xl) (4.31)
2m 1)
ey [’" (2 _xl)z} ,
2 5 2 %)
or
S m (x — x1)? fe.

2 1)

The constant ¢ is determined from the condition lim;, ;o S{[xi]; 71, 2} = 0. This
yields ¢ = 0. If we then refrain from setting #; = 0, the action for a free particle of
mass m is given by

_om (x—x)?

S = 4.32
2 bh—1h ( )

The second example for calculating S from the action principle directly concerns
a particle in presence of a constant force F:

»
H = —Fx. (4.33)
2m
The corresponding equations of motion are
. 0H  p(t) . oH
=, = . p=—-, =F,
ap m ox

with the initial conditions given at #; = 0 : x(0) = x;, p(0) = p;. The solutions are
obviously expressed in

p(t) = Ft+ p;

1F
Pr, 4 2.

x(t) = x1 +
m 2 m
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Again we need the following:

m Fz m Fi3
pr=p1+Fn = X2 —X] — + Ft, = Xy —x; +
1) 2m i 2m
2 2 2.4
Py _m (o, » Fn £t
om 222 (x2 Trm s e s )
If we now continue our calculation as for a free particle, we get
2
S=G,— G| = p28X2 — ( 2 _ F)Cz) ot —p18X1
2m
mx—x1)* 1 F’5
{ 2 g, TofRatw =,
or
m (x; — x1)2 1 F? 3
S = + F(y—t +x) — Hh—1). 4.34
2 b1 ) (r = 1) (x1 + x2) 24m(2 1) (4.34)

We still want to prove that the actions (4.32) and (4.34) do indeed satisfy the
Hamilton—Jacobi equations (2.34) and (2.36). To show this, we build the following
partial derivatives:

aS (2 —x1) N (2 —x1)
m =m

2 = = y l —_ — =
P 0x h—1 p 0x h—1h

from which follows: p; = p2, x = (p1/m)(t; — t1) + x;. Later we will show that §
is a generating function for the canonical transformation (x,, p2) — (x1, p1):

1 _lz — 1
Cl) = m CZ) (4.35)
1 0 1 2

Furthermore, we have to demonstrate that H(x,, dS/dx,) + dS/0t, = 0.

3 1 (3S\  m(x—x)?
H X2, = = s
9x, 2m \ 0x, 2 (h—1)?
as _m (x2 —x1)?
2 (-1
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Addition of these two expressions does, indeed, give zero. The same can be shown

for
Y as\ _as _
Xl, 0x1 on o

Similar steps can be performed with the action (4.34):

aS ()Cz—xl) F
= = h—1t s
P2= =M +2(2 1)
8S (xz—xl) F
= — = — h—1t .
pi o =" et 2(2 1)

These equations can be rewritten as
pr=p1+F(ty—n),

D1 F
=x1+ (b—t)+ . (ta—1).
m 2m

The action S in (4.34) is, correspondingly, the generating function of the canonical
transformation

h—=h (2 —1)?

| - _
(;‘) - m n=F (4.36)
! 0 1

p2—F(ty —11)

It can be seen that the Hamilton—Jacobi equations are also satisfied.
We are now going to complicate the previous example by allowing the external
force to become time dependent so that the Lagrangian reads

L= ’;xz + F()x

with the equation of motion:
.1 o
X= F@®=G.
m

Of course, we could proceed as before, using the action principle. However, to bring
a little variety into our calculation, we decide to compute the action directly from
its very definition as the time integral of the Lagrangian. We will see that in this
kind of calculation we have to solve the equations of motion before we can do the
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integration. In the sequel we need
F(y .
dt +a=G@)+a
n m

t /4 7
x(t) = / dt’/ dt”F(t/) +a(t—t)+b=G@t)+alt—1t)+b.
n 131 m

The constants a and b follow from

=0

——
x(t) =x1= G(t)) +b: b=x

X)) =x=Gn)+alp—n)+x:a= H i " [(x2 —x1) — G(12)] .

Furthermore: k(1) = a, ¥(12) = G(,) + a.
These results will be used in the action when we write:

S:/tzdtL:/ dt[ X +F(t)x]

n 131
m e 1 [2 d?x f m. .
= [zxx]rl — 2/” dt)cmdt2 +/ dtF(t)x = ) [eox(t2) — x1x(11)]
~——

1
=F

+ ; /2 dtF(f)x = ’Z[a(xz —x1) + 0G(1)] + ; /zth(t)x.

n n

Next, the time integral can be rewritten as

; / ’ dtF(H)x(t) = ; / ’ dtF(1)G(t) + a ’121[1‘2(G(t2) + a) — ta— (x — x1)]
= TanGin) + T uGw) |

so that

S= % / ’ dtF(t)G(f) + mG(l2)X2

n

+ 5100 —x) = G0 s = 5 GG
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We note that the remaining time integral can be expressed as

%/: di F(1)G (1) Z%/””d 1 L66="2 9/({)/(;(;2) - G G

m (2 .
—— | atG* o).
5]

Finally we arrive at

1
(tr—1t)

m 2o, . m 1 t F([/) 2
— dt G*(t) + mG(tr)x; = |:x —x —/dt/dt/ }
R eI R K

1 1 t 2 h
- / dt ( / dt’F(t’)) +x / dtF (1) .
2m n 131 131

Next, we present the results for the one-dimensional harmonic oscillator and for
a particle with charge ¢ and mass m in a constant magnetic field in z-direction.

_ / zdt[’;licz —l—F(t)x] - ’; (2 — x1) — G(12)]?

1

_mol a0 oy 2ax _ \/k _
S = 5 [(x2 + x7) cot [w(t, — 11)] sinfw(t — f1)]i| , W= m 4.37)
_m (- 2)? o w(ty — 1) ) )
S_Z{ tr— 1 +2C0t( )[(x —x1)"+ (2 —y1)7]
B
+o(x1y2 _XZyI)}s w="" (4.38)
mc

We start out with the Lagrangian:
L(x,x) = m)'cz— ma) X
2 2

The equation of motion follows from

d (LY _ L
dar\ox ) "o TTONT

and has the solution

x(t) = Asin(wt + @) . (4.39)
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A bit later we need
X(l‘lqz) =A Sin((l)tl,Z + Ol) . (440)

Since p = dL/0x = mx, the Hamiltonian reads

2
. p m 55
H=px—L= .
px 2m+2a)x

Now the action can be simplified by using the equation of motion ¥ + w’x = 0 in

15} 23 d 2
S = / dtL(x,x) = m/ dt * —w?x?
f 2 J, dt

2

m 2 m [~ d 5
[2xx]tl —, /tl drx(t) (dt2 +w )x(t)

 Ble2)i(e2) —x(n)i(1)] (4.41)

In (4.41) we need to eliminate x(#;), X(#;) in terms of x(¢,), x(¢;). To achieve this, let
us rewrite (4.39) in the following form:

x(t) = Asin(wt + o) = Asinfo(t — 1)) + (0t + )]

= Asinfo(t — t1)] cos(wt; + o) + Asin(wt; + o) cos[w(t —11)] .

Using (4.40) again we can continue to write

x(t) = J)jc(tl) sinfw(t — t1)] + x; cos[w(t — t1)] .

For the particular value t = #, we then find

= (z b sl =)l (4.42)
Similarly,
. _ w - _
() = sinfw(ts — ll)][ X1 + x cosfw(ty — 1)]] - (4.43)
In (4.41) we need

X(b:)i(t) = Sm[w(z _ylEeostotn = m] —xnl
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M) = o et — 0] ]

Taking the difference of these expressions yields the predicted

me
= 2 +a h—1)] =2 4.44
2sinfw(t — 11)] [(x3 + x7) cos[w(rz — 11)] — 2xax1] (4.44)
or, with T = t, — 1;:
s=_ " [(3 4 x3) cos(wT) — 2xox1] , T # nw (4.45)
" 2sin(wn) " 2! 2], _ .

Next in the list of standard problems, we compute the classical action for a charged
particle in a uniform magnetic field in z-direction. The Lagrangian has the form

B 1
L="@E+7P+D+ T y—yi), A= Bxr
2 2¢ 2
m eB
= 2[(x2+y2+zz)+w(xy—yx)], o= (4.46)

The z-coordinate satisfies the equation of motion of a free particle. The associated
classical action is therefore given by (4.32):

2om m (2 —z1)*
Sz = / dr_ 7} = ) (4.47)
[ ] " 2 2 th—1

The motion perpendicular to the z-axis follows from

doL dL . m . m R (4.48)
deox  ox 0 2@ T @Y T o AW '

d oL oL m m

i3 ay my + ) wx + , 0 y wx (4.49)

Equation (4.49) is solved by y = —wx + @ C which, when substituted in (4.48),
yields

¥ =—w’x+o’C. (4.50)
Here we make the usual ansatz,
x(t) = A’ sin(wt) + B cos(wt) + C 4.51)

which produces

y(t) = —wA’ sin(wt) — wB cos(wt) — wC + oC
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and therefore
y(t) = A’ cos(wt) — B sin(wt) + D . (4.52)
Using the initial conditions x(#;) = x1, y(t1) = y1, we get

x(t) = Asin[w(t — #;)] + Beos[w(t — ;)] + x1 — B,
y(t) = Acos|w(t — ;)] — Bsin[w(t —t)] +y1 — A .

Taking the time derivative of these equations yields
Xx(t) = Aw cos|w(t — t1)] — Bw sin[w(t — t;)] (4.53)
y(t) = —Aw sin[w(t — ;)] — Bw cos[w(t — t;)] . (4.54)
The fixed end points at #, give us in addition

x(ty) = xp = Asin[w(t, — t1)] + Beos[w(t — t1)] +x1 — B,
y(t2) = y2 = Acos[w(ty — t1)] — Bsin[w(t, —t1)] +y1 —A .

Writing 1, — 1, = T, sing = 2sin(¢/2) cos(¢/2), cos g — 1 = 2sin’(¢/2) we get

oT oT wT
Xy = 2A sin cos — 2B sin? + X1,
2 2 2

., 0T . oT oT
y, = —2Asin ) — 2B sin ) cos ) + v,

or

T T T
(x2 — x1) sin a)2 + (y2 — y1) cos a)2 = —2Bsin a)2

from which follows

1 oT oT
B=-— — i - . 4.55
2sin(wT/2) [(Xz x1) sin , T (y2 — y1) cos ) :| (4.55)
Likewise,
T T T
(x — x1) cos w2 — (y2 — y1) sin a)2 =2Asinw
or

1 wT
A= -
2sin(wT)/2) [(xz *1) cos

T
) — (y2 —y1)sin a)2 } . (4.56)
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Finally we have to compute the action;

'2 m 2 dx\? dy 2
S = dtL = dt v — VX
Jra=ty [ () (5 -ots-

1) 2 2
m,_ . 2 M d“x . d-y .
:2[xx+yy]l_2/,1 dt x(dﬂ —a)y)—f-y(dt2 —a)x)

- -_— - - -_— -

)
I
S

= ’Z[(xzfcz —x1x1) + (2y2 — yiy1)] - (4.57)

Again, we just need to express X, X2, ¥, y2 in terms of xj, x2, ¥, y». This can easily
be achieved with the aid of (4.53, 4.54) and (4.55, 4.56). We obtain

o= (‘;T 13y B2 =0 €OS(@T/2) + 12002 = ) sin(@T/2)]
i = (‘:}T 13y 122 =31) COS(@T/2) =31 (32 = 1) sin(T/2)]
yaba = sz)“T 13y D208 =30 $In@T/2) = y2(02 = 1) cos(@T/2)]
i =, Sin(‘:)T 13y D102 =0 ST /2) 4 31002 = ) cos(@T /2)]

With these expressions, (4.57) turns into

5 [(x2i2 — x1%1) + (232 —y1y1)] = 4 [(r2 —x1)* + (2 — y1)7]
wT m eB
X cot + oy —yixn), o= .
2 2 mc
Altogether then,
2
m (22 —2 ) h—t
Se1 = {( 2= 1) + COtw(2 % [(2 —x1)* + (2 —y1)?]
20 -1 2
+o(xiy2 — ylxz)} . (4.58)

Our final example is concerned with the linear harmonic oscillator that is driven
by an external force F(r). The calculation of the associated classical action is a bit
more elaborate than anything we have encountered before. But besides being of
great value, it leads us to the best of company: Feynman, too, treated the problem in
his Princeton Ph.D. thesis.
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So let us begin with the Lagrangian

L@@:?ﬁ—?wﬁ+nm. (4.59)

The equation of motion follows from

d (JL aL . )
dt(a)'c)_ax_o. mx + mw°x = F(f) . (4.60)

Introducing the Green’s function equation

2
[m;ltz + mw2i| G(t,/)=8(t—1) (4.61)

with

G(,1) =

1 rmwu—ﬂﬂ,t>f’ (4.62)

mw |Q, t<t,
we can solve (4.60) by superimposing the homogeneous with a particular solution:
x(t) = x4(t) + x,(t) = acos(wt) + bsin(wr)
+ : /rdt/ sinfw(t — )]F () . (4.63)
mw Jo
Let us choose x(#;) = x; and x(f;) = x; as initial conditions. Then we obtain
x(t) =x; cos[w(t — 11)] + Asinfo(t —11)]
+ mla) /rltdt sinfw(t — 7)]F(7) . (4.64)

At time 1, (4.64) takes the value (T :=t, — t1)

x(ty) = xp = x; cos(wT) + Asin(wT) + mla) /tz dt sinjw(t, — 1)]F (1)

1

which identifies the constant A as

1 1
A=(x— T -
(x2 — x1 cos(wT)) sin(wT) ~ mo sin(wT)

x /tzdr sin[w(t; — 7)]F (7). (4.65)

151
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x(f) given in (4.64) indeed solves the differential equation (4.60).
Let us quickly check this. First we need

:llt/,ltdt sinfw(t — t)]F(7) = a)/tltdt cosfw(t — v)]F(z) .

A second time derivative produces

dZ t t
/ dt sinjw(t — 1)|F (1) = —a)z/ dt sinfw(t — 1)]F(r) + wF(?) .

ar? #

Thus we obtain

mi + mw’x =m %—wle cof{w(t — )] — a)ZW)(t —1)]
_i wz/” dr sinks(t — T)]F(7) + ‘“;;”}

—{—ma)z%xlco a)(t—tl)]—FA//%(t_tl)]
1 ! s o
—|—%/II dt W[—r)]F(T)} =F(1) .

Now let us define the following quantities:

1 f ) ) 1
H(t, ) = mo sin(a)T) /,1 dt sinfw(t; — 1)]F(7) =: sin(a)T) S(ty), (4.66)
S@) = mla) /tdr sinfw(t — ©)]F(7) , (4.67)
c@) = wmla) /tdt cos[w(t — 1)]F(z) = ;;tS(t) . (4.68)

With the abbreviations, (4.64) can be written as
x(1) = xy cos[w(r — 1)] + Asinfw(r — ;)] + S(@) . (4.69)

Here, we substitute the expression for A given in (4.65) and obtain, after a few
rearrangements:

sinfw(t; — )] sinfw(t — #1)]

X0 =x sin(wT) 2 sin(wT)

—H(1y, 1) sinfw(t—1)]+S(¢) . (4.70)
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From here we get

cos[w(tr — 1)] coslw(t —t1)]
sin(wT) 2 sin(wT)

— H(t1, )w cos[w(t — )] + C(¢) .

x(t) = —wx;

Hence, for the action we obtain

15 15
S:/ dtL:/ dt m)'cz —mw2x2+F(t)x

f f 2 2
int. b. parts

m t 1 %) d2 %)
= xx| — dtx|m + mw? x—}—/ dtF(t)x
[ 2 ][1 2 /;1 ( dtz ) 1 ( )

~ -
=F

S = ’Z[x(tz))'c(tz) —x(t))x(t)] + ; / ’ dtF(f)x .

1
Here we need the expressions x(#; ), which we obtain from (4.71):

cos(wT) 1

) =
xn) @n sin(wT) ton sin(wT)

_ msinl(a)T) /”2 dt sinfw(t, — 17)]F (1)

cos(wT)  cos(wT) [7

d
sin(wT)  msin(wT) J,, ‘

x(h) = —wx wxy

1
sin(wT)

x sinfw(t, — 1)|F(t) + ! /fz dt cos[w(t, — 1)]F (1) .
m

151

The first contribution in (4.72) is then easily calculated and yields

(x% + x%) cos(wT) — 2x1x; + 2
mw

m( . o) m
XoXy — X1X1) =
p AT 2 sin(wT)

x / “dt sinfo(c — ]F@) + / "de sinfo(t — DFO)
I3t maw

1

The second half in (4.72) is also readily evaluated:

;/Zth(t)x(t) = ;/zth(t)

[ sinfw(t, — 1)] sinfw(r — 11)]
X1

sin(wT) 2 sin(wT)

39

.71

4.72)

4.73)
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S;ila[)wsﬁl(_wt;;] dt sinfw(r, — 7)]F(7) + mla) /rltdf sin[w(r — T)]F(t)}
{ / W) [nj; sinfw(r> — 1)]

. mw
~ 2sin(wT)

sin a)(t tl)]

+ 2 sinfw(t — t)] — / dt sinfw(t; — 1)]F(7)
me

sin(wT)
(mw)*

[tdc sin[w( — t)]F(r)i|} . (4.74)
Using the following identity,
/t ; dsF(s) sinfw(s — ;)] /t ; dtF (¢) sin[w(t; — 1)]
— sin a)T/tt2 dtF (1) /tt dt sinfw(t — 1)]F (1)

=2 /fz dt/r dsF(1)F(s) sin[w(t, — t)] sin[w(s — #1)] 4.75)

we finally end up with the classical action for the driven harmonic oscillator:

- 2$wa {("% +x7) cos(wT) — 2xox; + Z)Z / "4t F () sinfw(t — 1)]
+ ZZ /rl dtF @) sinfoln =) = - / dt / ds F(1)F(s)
x sin[w(t; — 1)] sin[w(s — tl)]} . (4.76)

For the rest of this chapter we want to stay with the one-dimensional harmonic
oscillator but intend to give it a little twist. To motivate our procedure, let us write
again

Hp.x) =7 + ™Mo, 4.77)
2m 2
with
oH oH
_)‘C = = p s p = — = —m(,()zx . (478)
ogp m ox
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The action is

%) 2
S = / di [px— P —mw2x2i| . (4.79)
f 2m 2

Now let us study the response of S with respect to the changes (¢ = const., §#(t12) =
0):

oH oH
Sx=c¢ = ep , Op=-—¢ = —emw’x . (4.80)
ap m ox

Then we can readily prove that
[5)
88 = / dt[pdx + épx —SH] =0 . (4.81)
3|
To see this, let us first write
5 d (pSx) — pé
X = X) — pdx
p dt p

and

oH oH

x = P (—emw*x) + mwzxsp =0.
ap ox m m

Therefore §S is reduced to

%) d 15
§S = / di . (psv) + / d[Spi — péx] .

151 n

But
dpx — péx = —smwzxp + mwzxsp =0.
m m
We get
88 = [péx]> = G, — G, , (4.82)

i.e., the usual form of the action principle.

Here it is appropriate to stress again that so far, all variations were performed
around the actual classical path, i.e., for which the equations of motion are satisfied
(Hamilton’s equations “on-shell”). On the way to (4.82) we repeatedly used them
at various places. Now we want to relax this on-shell requirement; i.e., we are
still dealing with a Hamiltonian system (in our case, the one-dimensional linear
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harmonic oscillator), but we do not want the equations of motion to be satisfied as
expressed by the right-hand sides of (4.78), x # 0H/dp, etc.
So let us consider the following general transformation of S with respect to

oH oH
6p = —¢ , dx=c¢ . (4.83)
ox ap
The parameter ¢ is, at this stage, independent of time. Again, we are not assuming
that (4.78) is satisfied; i.e., we are talking about “off-shell” mechanics of the linear
harmonic oscillator. The response of S in (4.79) under (4.83) is then given by

%) d n
- - b — §H .
88 /tl dtdt (pdx) +/t1 difl ép x 8x p—268H(p,x)]

B
Using
oH JH oH 0H oH 0H
8H 5 == 5 5 = — =
- p8p+x8x Sax 8p+£8p ox
we get

h d 0H oH oH
= - ; )| 4.84
8 SA‘”LJ?w) (@p+ax0] (89

Notice that

oH oH dH
; ¢ = 0. 4.85
ap P+ ox * dt 7 (4.85)

The variation of S under (4.83) is therefore given by

nodT oH
8S = d —H(p, 4.86
sA %P% @ﬂ (4.86)
0H 2
— |:p - H} . (4.87)
317 1

For the harmonic oscillator 85 is given by §S = e[p?/m — H];. Hence 8S is a pure
surface term which will be absent for closed trajectories (period 7)—a case to be
considered later on. Since ¢ is supposed to be independent of time, we may say that
S is invariant—up to surface terms—under the global transformation (4.83).
Things really change substantially if we permit ¢ to depend on time, i.e., we
elevate our “global” symmetry transformation to a local “gauge” symmetry. This
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requires the introduction of a “gauge potential” A(¢) which couples to the “matter”
field (p, x) via

L=px—H(p,x)—AOH@p(),x()) , (4.88)

S = [

n

153 1%
dtL = / dtlpx — H(p,x) —A(t)H(p, x)] . (4.89)
n
Let us prove that the action Sy is—up to surface terms—invariant under

Sp(t) = —e(1) aaH Sx(t) = e(1) 5 H (4.90)

i)
(1) p(0)
SA() =¢. (4.91)

85, —/lzdt d () o (t SA() H—A §H
0= ; i 3 p8p & 7 240 o

=0

=é
d/dt(sH)fs(dH/df/

Loy OH OH f
= [Lagleolg-ull =0 bh-1)]

For closed trajectories (period T) and “small” gauge transformations (0) = &(7),
the surface term vanishes:

T

£(0) [p %I; - H} =0. (4.93)
0

At this stage we add to L given in (4.88) a pure “gauge field” term and thereby
introduce the so-called Chern—Simons action:

ScslA] = k/ 2 dtA(t) . (4.94)

1
Here, k denotes an arbitrary real constant. Variation of Scg simply gives
%) %)
8Scs = k/ dt§A(t) = k/ dré(t) = k(e(ty) —e(ty)) . (4.95)
n 1

Hence Scs is invariant under “small” gauge transformations with &(f;) — e(f;) =
0. However, Scs is not invariant under “large” gauge transformations with &(z;) —

e(t) # 0.
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The complete action under discussion is
S[p, x, A] = So[p, x,A] + Scs[A]

= / ’ di[pi — H(p,x) — A()(H(p,x) — K)] . (4.96)

151

By the way, the equations of motion following from (4.96) are obtained from the
independent variations §p, éx and §A:

Sp: i=(1+A) M (4.97)
ap
sx: p=—(1+4)° (4.98)
0x
SA: Hp,x) =k . (4.99)

Later we will show that under certain conditions it is possible to gauge A(¢) to
zero, which would leave us with the usual equations of motion (4.78). However,
there is still the constraint (4.99). Hence, only those trajectories (in phase space) are
allowed for which H takes that constant value k which appears in the Chern—Simons
action (4.94). The surfaces (4.99) (ellipses with fixed energies k, k' . ..) foliate the
entire phase space and, since for a certain 1-torus (= ellipse) with prescribed k the
energy (= action J) is constant, a trajectory which begins on a certain torus will
always remain on that torus.

Evidently A(7) is not a dynamical field but is to be thought of as a Lagrangian
multiplier for the constraint (4.99), H(p, x) = k. This is similar to the role of A = ¢
in electrodynamics, which does not satisfy an equation of motion either, but acts as
a Lagrangian multiplier for Gauss’ law:

8¢ SLpm. = ! / d*ré¢[V -E — 4ng] . (4.100)

4
— V.E =4np.

The analogue is H = k, where H is the generator of the gauge transformation for A,
while k corresponds to the current of the “matter field”.

In a later chapter we will pick up this topic again when discussing topological
Chern—Simons quantum mechanics and the Maslov index in the context of semi-
classical quantization a la Einstein—Brillouin—Keller (EBK).



Chapter 5
Jacobi Fields, Conjugate Points

Let us go back to the action principle as realized by Jacobi, i.e., time is eliminated,
so we are dealing with the space trajectory of a particle. In particular, we want
to investigate the conditions under which a path is a minimum of the action and
those under which it is merely an extremum. For illustrative purposes we consider
a particle in two-dimensional real space. If we parametrize the path between points
P and Q by ¥, then Jacobi’s principle states:

=0 dq; dg;
8 d%/H—V(q, ; Y =0, 5.1
/ﬂlep V. (q1.92) ”2:1’"1( k)dﬁ ae = (5.1

To save space let us simply write g(g1, ¢a, Z”{,} , Z”{,?

action reads

) for the integrand. Hence the

(5.2)

L2}
q1 dq>
Slgr. q2l: . 92} = | dP B, g2V
Hlaraakn. 02t = [~ a0 g (.00 1) 90

For our further discussion it would be very convenient to choose one coordinate,

e.g., g1 instead of ¥}, to parametrize the path: g»(g;) with ¢; < q1 < q( ) Thus in
the following, we will be talking about the action

@\’
Stlalay . ay) = fm qlf(cn(ql) —/)
9

where we have dropped the external g;-dependence. In this action we perform
a variation around the actual classical path g,(q). Let a varied path be given by

(5.3)

(@) = 3(q1) +e9(q) . 9(@)") =0=0(g?). (5.4)
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Next we need

2
Sla> + eo(an)] = Saz) + e8(a:) + , 8°0as) + ... (5.5)

(2)

91
=/ dar f (@ + £0(a1). 35 + o0/ (@)
q

(1
1

2 9 9
:/ dq [f(c_]z,c_z’z)Jr ;;H/)Jr f,eqo/ (5.6)
1

a 0q5

V(8 5, . Pf . ®f
+ +2 g 2’2}+...},
2{Mf¢ dgroq,” ¥ T ag2® ?

where g5, means dq>(q1)/dq; and the partial derivatives have to be evaluated along
the actual path g»(g;1). Now it is standard practice to perform an integration by parts
on the third term in (5.6). The surface term drops out and the remainder together
with the second term in the integrand yields Euler’s equation

a d a
8f ~ 4 8f’ =0. 5.7
qz |z, q1 a1,
So we are left with
2 32 32 , 32 ,
52S=/dq1 f2 <p2+2a g, oo + /fz o . (5.8)
! 03 Iz, 12092 13, 945 1,

Now in order to find out whether we have a minimum of the action or just an
extremum we have to know more about the sign of [...] in (5.8). If g2(q) is to
be a minimum action trajectory, §2S[¢] must be positive. For this reason we are
looking for a function ¥ (g;) which makes §2S a minimum and if for this function
828 is positive, we can be sure that §2S[g] is positive for all ¢(g;). At this stage
the question of positiveness of §2S has been formulated in terms of a variational
problem for §2S[¢] itself.
We can normalize 1 (g) so that

2
[dmwwwzl,w@%=0=w#» (5.9)

Hence we are looking for a function ¥ (q;) for which

§2S[¥] = Minimum (5.10)
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with the constraint

2
5/ dg1(¥(q1))> =0. (5.11)
1
To proceed, we employ the method of Lagrangian undetermined multipliers:
2
5 [ dan [Fv @09 (@) = 2] = 0 (5.12)
1
with
92 02 9
F= ch v +2 f, vy + fz v (5.13)
03 I3, 092043 |5, 045 1z,

The explicit variation of (5.12) yields

2 2 oF oF
§ dF—)LZ:/d § SU' =298
/1 q1( V) 1 m(awlﬁ‘i‘aw,lﬁ lﬁlﬁ)

N ——

d oF d oF
] — 1)
ilch (EW/ wz dq, (EW/) v

—0
2 OF d [ OF
= d — — A2y |8y .
/1 o [(w da, (aw/)) I/’} v
So we obtain
d JoF oF
_ = A2 . 5.14
dg, (aw’) oy = 19
Here we need
oF 0f 0*f
=2 ¥ +2 v
oy~ " agdl, 34204} |,
JoF *f 0*f
, =2 v +2 Y
oY 992045 |, 995 |,

d OF _d [ ¥ ) 82 d (32f 82f
N - . +2 ) ) ) "
dq oY’ dq (3612361/2 4 36]23%1# dgi \ 9q% 4 3q/22w
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When substituted in (5.14), we get

2 2 2 2
Zd ( vf )1//+2d (af)W’+28J;w”—28f1//=2A1//. (5.15)
0q5 0
This result can also be written in the form

dqi \ 09204, dqi \ 9q% %
d [ 0*f o)+ d 0%f B 0%f
dq \ 345 |, dgi \ 99209, |;,)  dq3
If we multiply both sides with 1/ (g;) and integrate over g;, we obtain

2 d (f , d ( & P | 2
/1 dql[w dq (aq’fw ) +qu1 (aqﬁqé) Vv aq%w] B _Al day

] V(q) = —Av(q1).
(5.16)

7

- - - =
n Pf gy =1
—>— Zaqéz —>=2yy quﬁqé
or
82S[y] = A . (5.17)

So we know what A is: it is the value §2S[i/] we are interested in; namely, the
Lagrangian multiplier A is the smallest value of §2S. Equation (5.16) together
with (5.9) defines a Sturm—Liouville problem whose eigenfunctions and eigenvalues
are those of §2S. Here §2S is treated as a quadratic form (9%f/dq% has to be
positive, however). Eigenfunctions with eigenvalues higher than the lowest one do
not minimize 825, but §2S is still stationary and satisfies (5.17). The eigenvalue
problem (5.16) with (5.9) has an infinity of eigenvalues and eigenvectors A, and v,
withn = 1,2,... (A; < Ay < ...). The ¢, form a complete orthonormal set of
functions. Hence any function ¢ which vanishes at q(ll) ,q(lz) can be expanded in
terms of the v,’s:

o(q) =) aalq) . (5.18)
n=1

If we substitute this expression in (5.8), we obtain

Z A WYnW¥m + .. :|

9@ nm

(2)
0 °f (g2, 95)
§%S[g] = / d 2
[(p] q(ll) q1 |: aq%
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and after use of the orthonormality condition f 12 dqi VY = 8um, We arrive at
o0
5Slp] = Y Auay . (5.19)
n=1

Hence if all eigenvalues A, of §2S are positive, then g»(g;) is a minimum-action
trajectory. Conversely, g2(q1) is not a minimum-action trajectory if, for some n,
Ay < 0. This can occur for sufficiently small &:

2
S + eVl = S[ga] + 52 Ay + O() < S[Gs] for An<0. (5.20)

Let us apply our knowledge and work out an example; namely, the behavior of
a particle with charge (—e) in presence of a constant magnetic field which is directed
in the positive z direction. Then we have as starting Lagrangian:

L(X,',).Ci) = ’;xz

1

— A . (5.21)
C

Using

L
Pz—a.

. e . 1 e
=mii— A xi= (pi+ A)
X; c m c
we obtain the associated Hamiltonian:

1
Heop) =pii—L= _ (m+ A ="3="1. (5.22)
2m c 2 2

Since dH/dt = 0, energy is conserved: H = const. Then, according to (5.22), mv
is likewise conserved. In order to study the space trajectory, we have to first rewrite
our action principle:

t di 2 di
5/ dtp,-xzaf dx,-[mx—eA,}zo. (5.23)
I dt 1 dt C

We choose B = Bej and therefore the particle travels in the x-y plane on a circle
with radius ¢ = muvc/eB counterclockwise around the z direction. The constant
B-field in z direction can be obtained with the aid of the vector potential

A= éB(—yél + xey) = éBrﬂ ,

since in a (r, ¥)-coordinate system we have

o A 2 A NA . ~ ~ ~ X A
7= ,el)el+(17,e2)e2=—sm19e1+cosz9e2=—yel+ e
r r
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or
— —yé; + xe; .
Furthermore,
ds = /(dx)? + (dy)? = /(dr?) + 2(dD)? = /r2 + (dr/d®)? d .

We use this information in (5.23) to write
dx; e
— A;|dx;
[m dt ¢ :| "

=1

| | Ry |
mdxl ds _ eAi dx; ds = | mo dx; _eAi dx; ds
ds dt ¢ ds ds c ds

eB dx dy eB
= [mv ~ .2 (_yds +xds):| ds = mv [ds = e (—ydx +xdy):| .

Using ydx = rsin® rd(cos®) = —r?sin®>® do and xdy = r?>cos?> 9 dv¥, our
variational problem becomes formulated in

s [ a9 2y + (" R B (5.24)
mv r - _r|=0. .
th dv 20

The actual classical path is given by o = ry = const., so that ¢’ = 0. The integrand
in (5.24) is now in the desired coordinate form (Jacobi principle), and from here
on, we can follow our program and study the change in the action with respect to
a small deviation from the actual trajectory ry = @.

72 dr\> P
S={[r];z‘/‘1,z‘/‘z}=mv/§l dv \/r2+(d;) “ 20| (5.25)

For the slightly varied path we write
r@) =rnf[l +9@)]. @) =0=0e@). (5.26)

In our former notation we have (¥ = dr/dv)

)y =Vr+r2—72/2. (5.27)
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Following our earlier procedure we find

25 25 i
S = mv/ dv f(r,r') = mv/ d¥[f(o, o )+ O(Euler)
191 191
L, (of f n
+ 2 ( or? aror’ 0 ¢

Pf

2
v t2 or'?

4

p¢' +
o

o=rg

S D2 1 2 2
= v /,91 @y Jro+mv’) 85 = :”zvro(ﬁz—ﬁ13+mv’2°525
So
or
}’2
S—Sy=mv 20525 , (5.28)
with
¥ aZf aZf aZf
3252/ g | | o> +2 e+ L @7 (5.29)
9 ar? |, aror' |, arz|,

With the aid of (5.27) we can easily compute the partial derivatives in (5.29) for
r = o = rp and find

253
§2S[¢] = rlo / dv [¢” — ¢?] . (5.30)

t

Now we expand in the complete orthonormal set of functions

3 2 . (0 =) —0=
Un(¥) = \/(192 gy S0 [nn 9, — 0, i| o V(@) =0 = YD)
(5.31)
0= an. (5.32)
n=1

Then we obtain

8Slp] = Y Auay (5.33)
n=1
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with
2 2 aZf 2 1 72 22 2
/\n:é’S[wn]:/ do| | Vit | = / do [y} —vy] (534
91 a}’ 0 o oA
or
1 n2m?
Ay = —1| =10 —-%). 5.35
" [(192_191)2 } (D — ) (5.35)

r(z) 1 &S 2 n?m?
S—8 = —1
0 =M, roza"((ﬁz—ﬂl)z )

n=1
© 2.2
140) 2 n-im
= my a -1). (5.36)
2 ; ((ﬂz—ﬁl)z )

From (5.33) we see that for sufficiently small (¢, — ¢), i.e., (¥, — ) < m, all A,
are positive, and thus r(¢}) = o = ry is a minimum-action trajectory: Sy < S.

For (¢ — ) = = and only the lowest mode contribution in (34.32, 5.33), i.e.,
a, =0forn#1,

2
Y, = \/ sin@ =9, A =0, (537)

we have §2S[y/;] = 0 and consequently we obtain for this particular case, S = Sj.

The zero-mode 1//1(0) satisfies our Eq. (5.16):

d [ Pf| oy d  of ’f 0
- =0 5.38
dﬂ( a2 |, V1) T aw Carar Q) ar|, |1 -38)
;17-@ -:0- —1/o
d? © © ©
(dﬁ2+1) O—0, yOw)=0=y"). (5.39)

This equation is called the Jacobi equation and the function wl(o) is called the Jacobi
field for the problem under discussion.

Let us set ¥, = 0 and, therefore, ¥, = 7. Starting from P(£ ¥, = 0), we reach,
after half a rotation around the circular orbit, the point Q(= ¢, = ). The point
Q is called a focal or conjugate point in relation to P along the circular trajectory.
Once the trajectory has passed the conjugate point at ¢, = 7 in relation to ¢; = 0,
So is no longer a minimum action.
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So let us assume (¥, — ;) > 7. Then, if we look at the contribution a, = 0 for
n # 1in (4.33, 4.35), we find

— . 2 — — 1 7[2 —
(192 191) >l 1) S[I//]] = Al = Yo |:(l92 _ 191)2 1:| <0. (540)

Therefore this particular example yields S < Sy, and thus, although Sy is still an
extremum, it is not a minimum. We also could drop lower lying modes, a,, = 0, and
keep some of the higher lying ones, a,, # 0. In this case, S > Sy, so that Sy is not
a maximum either.

Since most of the time our goal is to study the time-development of a system let
us repeat some of the former steps and investigate the dynamical #-dependent path
x(t) of the one-dimensional harmonic oscillator. Here the Lagrangian reads

L) = 2= "2, (5.41)
2 2
and the action is given by

S{; 1, 12} = /t2 dr L = /t2 dr[";;ﬁ— ’/}210)2)(2] . (5.42)

151 151

As is by now routine, we look at the response of this action with respect to
a displacement around the classical trajectory x(7):

x(f) = X(1) + en(t) . (5.43)

Again we expand the action according to

2
S[E + en] = S[F] + £8S[F] + 52 §2S[E] + ... (5.44)
where
0oL 2L L
§825=|[ d 242 ) 7?1 . 5.45
/,l I[sz)—cn + axa)'ch]—f_ 3)%2)-Cni| ( )

The classical action is given by (5.42). The partial derivatives can readily be
obtained from (5.41) so that we have to deal with

5]
828 = / dm[i* — w™n?] . (5.46)

151
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As before, we are looking for a function that minimizes §2S. Let this function be
¥ (t), which should be normalized according to

/ AW =1, Yn) = 0= Yn). (5.47)

With the introduction of the Lagrangian multiplier A we meet the variational
problem

153 .
§ / dt[my* — mo*y? —Ay*] = 0. (5.48)
n
After an integration by parts we obtain the (Sturm-Liouville) eigenvalue equation

d . A
av T (w2+ )w =0, ¥(n)=0=9(). (5.49)
t m

If we multiply this equation by ¥ and integrate between ¢, and #,, we find

/zdt (1//5[1/} +w2w2) = —Z/zdt V2 = —:1 , (5.50)

or, after an integration by parts:
? P2 2,02 A L
dit(Y> —w®y?) =" = §Sy]. (5.51)
f m m

The eigenfunctions and eigenvalues of the oscillator equation (5.49) are given by

_ 2 . (t—1t)
Y (t) = \/(l‘2 1) sin [nn b1 i| (5.52)

dn = / 2 dt(yr* — w*y?) . (5.53)

151

Since the v, form a complete set of orthonormal functions, we expand 7(7)
according to

oo

N = ann . (5.54)

n=1
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When substituted in (5.46) this gives

8Sl =m»_ Auat . (5.55)
n=1
Substituting (5.52) in (5.53) or (5.49) we get
(”m')2 2 _ An
( (fz—f1)2+w o=y v

and therefore the spectrum is given by

n’m? )
Ap = — = A(r —11), =1,2,.... 5.56
m((tz—tl)z w) (p—n), n (5.56)
For sufficiently small (&, — #;) ie., (h — 1)) < T/2 = n/w we have

828[¥,] = A, > 0. In this case, X(¢) is a minimum-action path.
Forn = 1and (t, — t;) = T/2, we obtain, setting t; = 0, the Jacobi field

sy =0, 00 = (%)= |2 s 20 (7) =0,

(5.57)
The conjugate points (caustics) follow from
2.2
T
T T, =" =0, n=12...., (5.58)
T2 1) 2

i.e., at each half period we run through a focal point, i.e., as soon as (t; —#;) > T/2
we do not have a minimum-action trajectory anymore.

We will close this chapter with another more intuitive derivation and interpreta-
tion of the Jacobi equation and the associated fields. For this reason, let us go back
to our examples and think of the actual and the varied paths all leaving one and the
same point, i.e., at f; = 0, if we consider the time development of the system. We
label the emerging paths by their momenta x(p, ) with x(p, 0) = x; for all p.

A measure for establishing how two neighboring paths deviate from one another
as time goes on is given by the following derivative:

x(p. 1)
0

J(p,1) = (5.59)

Therefore, at time ¢, two neighboring paths are separated by the distance

x(p+ &0 —x(p.1) =eJ(p.1) + O(c?) . (5.60)
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By definition, all of the trajectories x(p, f) are extremum-action paths, which means
that they satisfy the Euler-Lagrange equation

d (0L oL

Let us differentiate this equation with respect to p. Then we need the following
partial derivatives:

aL dx(p.ty OL 9 d L L.

ad
L 9 9 X 9 = . = J . J 9
ap (x(p. 1), X(p. 1)) dx dp + dox dp dtx ox + ax

L 0oL _ 82LJ+82Lj
% dp  oxax” a2’

d (9 0L\ d (&L It 82Lj+d 82Lj 5.62)
dr \ox dp ) dr \ 9xdx oxax”  dr \ 32" )’ '

9 oL L L .

ox dp  ox2 I axaxj ' (5.63)
If we subtract (5.63) from (5.62) we find that J satisfies the equation
2 2 2
L) e e
But this is precisely the Jacobi equation. Using x(p,0) = const. = x;, we add
to (5.64) the initial condition
J(@,0)=0. (5.65)

For a simple standard Lagrangian we may assume that the initial velocity x(p, 0)
and p are related by p = mx(p, 0). Then dx(p,0)/dp = 1/m implies

8(p,0) 1
= (5.66)

Hence, although (5.65) tells us that J begins with zero, the derivative is nonzero,
however. eJ (p, t) is a measure for the distance between two neighboring paths. They
meet again at conjugate points, where for some T at x(p, T) = x»,

Jp,T)=0. (5.67)
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The action computed along the trajectory between (x;, 0) and (x,, T) is denoted by
S(x2, T; x1,0). Now we found in (2.34) that this implies for the initial momentum:

as N
h=0=p=— =— . 5.68
pti=0)=p Ix(ty = 0) — i (5.68)
Differentiating (5.68) again with respect to x, yields
a 1 %S
o= (5.69)

8x2 B J _8x18xz ’

The discussion so far can be extended to N(> 1) dimensions. Then, similarly,
it holds that Jiy and 92S/0x1;0xx%, i,k = 1,2,...,N are inverse matrices. The
determinant,

D := det [—( s ) } = det[(J ™)l (5.70)
ik

8x1 8x2

is known as the Van-Vleck determinant and plays an important role in semiclassical
approximations in quantum mechanics.

At focal points, D becomes infinite (/ = 0). At this point many paths which left
x1 att; = 0 have come together again at x,(7’). Using the explicit form of the action
for the harmonic oscillator

maw

S = 2 sin(T) [(F + x3) cos(wT) — 2x1x2] (5.71)

we find

RN _ mw (5.72)
oxj0x,  sin(wT)’ ’

and this is infinite at each half-period, as stated already in (5.58).

An important theorem exists, relating the conjugate points along a classical
trajectory to the negative eigenvalues of §2S. If we call the index of §2S the number
of eigenvalues A, with A,, < 0, then the Morse Index theorem makes roughly the
following statement: Let x(¢), 0 < r < T, be an extremum action-path of S. Then
the index of §2S is equal to the number of conjugate points to x(0) along the curve
x(#), 0 <t < T. In fact, from our earlier examples, we can read off immediately
that once a curve traverses a conjugate point, §2S picks up a negative eigenvalue.



Chapter 6
Canonical Transformations

Let g1,92,....9nN,P1.D2,-..pny be 2N independent canonical variables, which
satisfy Hamilton’s equations:

. oH . oH )
Gi=o . pi=—7. i=12,....N. 6.1)
api 0q;

We now transform to a new set of 2N coordinates Q1, ... Qy, P, ... Py, which can
be expressed as functions of the old coordinates:

0i = Qi(gi,pi:t) ,  Pi = Pi(qi.pi;1) . (6.2)

These transformations should be invertible. The new coordinates Q;, P; are then
exactly canonical if a new Hamiltonian K(Q, P, t) exists with

. 0K . 0K
i = s Pi=— . .
0 oP, (6.3)

Our goal in using the transformations (6.2) is to solve a given physical prob-
lem in the new coordinates more easily. Canonical transformations are problem-
independent; i.e., (Q;,P;) is a set of canonical coordinates for all dynamical
systems with the same number of degrees of freedom, e.g., for the two-dimensional
oscillator and the two-dimensional Kepler problem. Strictly speaking, for fixed
N, the topology of the phase space can still be different, e.g., RV, R" x (S")™,
n+m = 2N etc.

Using a canonical transformation, it is occasionally possible to attain a particu-
larly simple form for the new Hamiltonian, e.g.,

K(Qi,Pi,t) =0, (6.4)

© Springer International Publishing Switzerland 2016 59
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leading to
. 0K . 0K
i = - 0 5 Pi = — == 0 . 6.5
Q oP; 00; (6.5)
The solutions are
Qi(t) = const. = P;(1) . (6.6)

This manner of solving the problem is called “reduction to initial values”.
Another simple solution results if the Q; are ignorable:

K =K(P,P,,...,Py). (6.7)
Then it follows from
. oK
P =— =0 (6.8)
00;
that P; = const. foralli = 1, ..., N and, thus
. 0K
0 = oP, = const. (6.9)
This means that Q is linear in time:
Qi(t) = Bit + i (6.10)

with constants §; and y;. This kind of procedure is called “reduction to an
equilibrium problem”.

One has to be able to derive the Hamiltonian equations (4.3) from Hamilton’s
principle:

S/Zdt[PiQi —K(Qi,Pi,0]=0. (6.11)

The integrands in (6.11) and in

n
8 / dl[piqi — H(C],’,pi, l)] =0 (612)
1

differ only by a total differential:

dF

igi—H = PiQi — K
piq o t o

(6.13)



6 Canonical Transformations
with

L dF
8/ dt = =68F(t)) —8F(t) =0.
nodt

61

(6.14)

F is called the generating function of the canonical transformation of (g;, p;, 1) —

(Qi, P;, 1). There are four possibilities for a generating function:

Fi=Fi(q,0,t); Fo =Fy(q,P,t); F3=F:(p,0,1); Fy=F4p,P,1).

It follows from (6.13) that

oF,  OF; dF,

igi—H = PiQi — K + + i + ;i .
Piq 0 o gl agQ
which means that
_ JoF,
pPi = 3qi s
JoF;
P =— ,
00;
oF,
K=H-+ .
ot

There are similar equations for F, = F,(q, P, 1).
Using the relation F| = F,(g, P,t) — Q;P; it follows from (6.15) that

. . . . oF, oF, . oF, .
pigi—H = PiQi — K — Q;P; — QiP;i + o T o, + 8P,~Pi

with which we get

o 0F,
b= g '
0F,
0= op,
0F,
K=H+

ot

The other cases, F;3 and F4; can be dealt with in the same manner.
Useful simple examples of generating functions are given by:

()

F> = qiP; .

(6.15)

(6.16)

(6.17)

(6.18)

(6.19)

(6.20)

6.21)

(6.22)
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(b)

(©)
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From
_8F2_P Q_8F2_ K=H

pl_aqi_ L l_api_qls - k]
it is clear that (6.22) generates the identity transformation. The choice of this
generating function is, however, not unique, since F3 = —Q;p; accomplishes
the same:

3F3 3F3
s = — frd i s P = — = i K = H .
@ pi o l 00,

Generating function of an exchange transformation: F; = ¢;0;.

LR R 1
pl_ aql - 1A [ BQZ_ qla - .

Here, “coordinates” and “momenta” are exchanged. Again, the choice of F| =
qiQ; is not unique for the generation of an exchange transformation. This is also
accomplished by Fy = p;P;:

LW, o R e
ql_ apl_ [ l_aPi_pls - .

Point transformation:

F; Zﬁ(ql, . ,qN,t)Pi s (623)
oF,

i = =Jilq1,-..,9n,1) . 24

0 o, filqa gn 1) (6.24)

This is the generating function of a canonical transformation that affects
a change of the coordinates; e.g., of (x,y) = (q1,92) = (r,¢) = (Q1,0»)
with

q1 = Q1 COS QZ s qr = Q1 sin QZ . (625)

If we invert this transformation, we then get the form (6.24):

q2
q1

0 = \/q% +¢%, Q= arctan (6.26)

As generating function of this transformation we choose

Fr= \/ qi + 5P + arctan (qz) P, . (6.27)
Q1
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With this F,, we can reproduce (6.26) immediately, since

0 = 32 = \/q% + q% , O = gg = arctan (Z?) . (6.28)
The momenta are then given by
o= F _ aPr_ (@P/q) _ Pt @b ’
g \/q% e 1+ (q2/q1)? \/q% + & 4+ 4
= oF, _ q2P1 + q1P> (6.29)

) 2 2"
P \/q?+q% hata

If we now express the g; as functions of the Q; by means of (5.25, 5.26), we get

sin cos
p1 =P cos Oy — QZPZ , DP2=P sin Q, + Q2P2 . (6.30)
(0] (0]
But we can also solve (6.29) for P;:
q1P1 + q2p2
P = . Pr=qip2—qp1 . (6.31)
Ja+a
or
Dr =PpxCOSQ +pySing , p, = —pirsing + p,rcose .
At this point we select a simple Hamiltonian, e.g.,
Lo, 2
H = 2m(p1 +p3) . (6.32)
Then, in the old coordinates, it holds that:
) oH p1 . 0oH p» . oH ) oH
q1 = = , Qo = = , p1=— :O’pzz— =0.
1 m dgp2  m g1 g2
(6.33)
The Hamiltonian in the new coordinates follows from (6.30):
K== (P2+ 1PZ) (6.34)
== 1 2 ) .
2m 0?



64

6 Canonical Transformations

and the canonical equations read:

Q_BK_P1 Q_aK_P2
"Toapr T m” 2T op, T mQ?
P__E)K_P§ o K _
: 001  mQ}’ ? 00, ’

or, in the familiar form:

1 1
K= 2 2, 6.35
2m (Pr + r? Pw) (6.33)
. P
pr=P =mr, p(/,EPg:mrz(/'):const., P, = 23:m'f:p,.
mr-

The change of Cartesian coordinates to spherical coordinates is not much more
complicated: (x,y.2) = (q1.42.43) = (r.¢. V) = (01, Q2. 03):
g1 = Qi1cos QrsinQs ,
q2 = Q1sinQrsin Qs (6.36)
g3 = Q1cos Q3 .

Inversion of these equations yields

0 = \/q% + q% + q% , (O, = arctan % , (03 = arctan

Ja +a
q1 q3 |

(6.37)

Again, it is convenient to choose the following expression for the generating
function of this point transformation:

Fa(qi, P}) = \/q% +¢3 + ¢3 Py + arctan (Zz) P,
|

Ja +a
+ arctan P;.  (6.38)
q3

Because Q; = 0F,/dP;, it is clear that (6.37) is reproduced.
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Now we come to the calculation of the momenta p;:

or, q1P q2P> q193P3
pr= dq - 2, 2, 2 PA * I N S
VRt dE g TR @+ i+ d + 8
or, q2P1 q1P> q193P3
p2:3q2: 2 2 2 ¢+ ¢ 2 2 2 2 2
\/Q1+Q2+Q3 1 2 (CI1+CI2+CI3)\/‘]1+CI2
2, 2
an q3P1 \/‘h +Q2
p= = Ps. (6.39)

P ) 2 2
© R grg NTRTEG

Equation (6.39) can be rewritten with the expressions for Q; from (6.37) and (6.37):

. sin Q» cos Oy cos O3
p1=PicosQrsinQ; — Py . 3 ,
Q1 sin Qs 01
cos O sin Q5 cos Q3

p2 =P sin Q, sin O3 + P,

’

Q1 sin O3 ’ 0

sin Q3
pP3 = P1 COS Q3 — P3 Q . (640)
1

On the other hand, we also can invert (6.39), with the result:

P = q1p1 + q2p2 + q3p3

1 = s
Ja+ 8+ 3

Py = qip2 — qap1

q193p1 + q2q3p2 — (6]% + ‘1%)173

Py =
Ja+a

(6.41)

The Hamilton for a free particle,

1
H= 2m(p?+p§+p§)

with
. _O0H _p; . O0H _ 0
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is transformed, taking (6.40) into account, into

KeH= ﬂ+1#+ b op (6.42)
T orY gpsin’os ) |
or, the more familiar form:
1 1 1
K= 24+ i+ 2. 6.43
2m (p, PP T gin2 g P (049

So, we have convincingly demonstrated that every point transformation is
a canonical transformation.

Also useful is the generator of a canonical transformation of an inertial system
(x, y, z) to a coordinate system (X, Y, Z) rotating around the z(Z) axis. Let the angular
velocity be w. Then, it holds that, with t := wt,

X =xcost+ysint, Y =—xsint+ycost, Z=z. (6.44)
The invariant is
r2:x2+y2:X2+Y2:R2.

We should like to again attempt to get the transformation (6.44) with the help of the
following generating function:

Fy = (xcost + ysint)P; + (—xsint + ycost)P, + zP3 . (6.45)

Of course we have

oF,

=0;,=X,Y,2).
gy, == (X.1.2)

Note that zP3 generates the identity Z = z. Now the calculation of the momenta is
brought in:

0F; .
DPx = = Picost —Pysint ,
ox
0F, )
Dy = = Pysint + Pycost,
dy
oF
po= =P, (6.46)

0z
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This system of equations can be solved for P; and P»:
Py =pycost +pysint, P,=—p.sint +p,cost,
Py=p.: Pi+Pi+Pi=pi+p+pi.

One must not forget here that F, is time-dependent, so that (t = wf):

0F

oy = o [(—xsint 4+ ycos )P 4+ (—xcost — ysin1)P;] = w [YP; — XP3]

= —a)L3 .

So the new Hamiltonian reads:

1
K=H+ = =H-ol= 2m(P%+P§+P§)+V(R)—wL3. (6.47)

Here we have assumed that the original Hamiltonian had been given for a particle
in the potential V(r, z), which is axial symmetric:

1
H=_ p’+V(r,2).
2m

Since dH/dt = 0, H is a constant of motion. Furthermore, no torque acts around
the z axis, so that L3 = const. Hence it follows from this that K is also a constant of
motion. K describes the time development relative to the moving system:

1
K=, (P} 4+ P24+ P} + V(R) + w(YP, — XP,) .

The corresponding canonical equations read:

or
Pi=mX—wY), Pr=m{Y+wX), Pi=mZ.

The other half of the Hamiltonian equations gives

P = _8K = wP, — v = mwY + mw*X — v
0X 0X X’
Py = _K —oP) — w_ —mwX + mw’Y — v ,
Y Y Y
0K av

Ps==z ="z
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If we here substitute Pl = m(}"( — wY), etc., we get for the equations of motion
relative to the rotating coordinate system:

. oV . )
mX = — X+2ma)Y+mwX,

0
my = _BV —2mwX + mw’Y
aY ’
m — _BV
0Z

Here the Coriolis and centrifugal forces appear relative to the rotating reference
system—as is to be expected.

Now we consider Fi = (m/2)wg’cotQ and look for the transformations
(g, p) — (Q, P) which are generated by F. First we have

aF,
p= = mwgqcotQ
dq

8F1 m > 1

P = — = w .
00 2 1 sin Q
This can also be written as
p 2
cot? Q = ( ) , (6.48)
mwgq
1 _ 2P (6.49)
sin? Q B mog? '
From this follows
2 1 1 2
C982Q_~2 1= 2(1’ —2P)
sin“Q  sin“ Q mwg* \ mw
or
1 2
p= (ma)q2+ P ) (6.50)
2 mw

Now let us rewrite (6.49) as

1 1 2 2
Lo = z(qu2+p)=1+ P
sin” Q mwq m
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or
1 _ P
—1 = (tan® = .
sin? 0 (tan” Q) (mog)?
Solving for Q gives
Q = arctan (qu) . (6.51)
p
So we have from (6.49):
2P .
q= \/ sin Q (6.52)
mw

and (6.48) yields with g from (6.52)

cos’Q  p? prmow

sinQ  m?w?¢®> 2mPw?Psin’ Q
or

p = v2mwP cos Q . (6.53)

At last we can rewrite H in the simple form

2

5 n ’Zaﬂqz — wPcos’ Q + wPsin?Q = wP = K(P) . (6.54)
m

H =
K is ignorable with respect to Q; therefore, P is a constant of motion:

P=". (6.55)
w

The canonical equations now simply read:

with the solution

o) =wt+a,
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and

. E
P=— =0: P =const. =
00 w

Finally, from (6.52), the solution for g follows:

q(t) = \/ 2E2 sin(wt + o) , (6.56)
mw

the usual solution for the harmonic oscillator.
The above choice of F| reduces our problem to an equilibrium problem. Contrary
to this, the following F, reduces our problem to the initial conditions.

2

Faq.P) = """ tanfo( - P) .
oF
p= 5 2 = —mwqtan[w(t — P)] , (6.57)
q
oF 242 1 oF
o= "2 =-"7 (6.58)
oP 2 cos?[w(t — P)] ot
an m- 5 5 1
K=H =H-— .
+ ot 2 @1 cos?[w(t — P)]
It follows from (6.58) that
2
q(t) = \/ Qz cos|w(t — P)] , (6.59)
me
and this, when inserted in (6.57), gives
p(t) = —/2mQ sin[w(t — P)] . (6.60)
Combining (6.59) and (6.60) yields
1 p
P(p,q) = arctan +t.
w mwq
Squaring (6.59) and (6.60) and adding gives
P m 22
Op.q9) =, + joq . (6.61)
2m 2

So we have found explicitly the canonical transformations which are generated by
Fa(q. P).



6 Canonical Transformations 71

According to (6.61) we have

2
p m p m
K=H-0= 2m+ 2w2q2—(2m+ 2w2q2)=0.

Therefore the canonical equations are simply

with the solutions Q, P = const.
In a further example we look for the canonical transformation which is generated
by the following F>:

F2(q1, g2, P1, P2) = /2m(Py — P2) g1 —

2 \/2 (Pz—mngﬁ/{ 6.62)

3Vm g

Furthermore, how does the new Hamiltonian read and what do the canonical
equations look like in the new variables?
We begin with the set of equations

oF
P11 = a 2:\/2m(P1—P2), (663)
q1
oF
=, = V2m(P, — mgqn) . (6.64)
q2
an mqi
0 = — , (6.65)
"R Jam(P — Py)
an mqi 21 1/2
0, = = = (P> —mggq)'/* . (6.66)
2= ap, Jam(Pr — Py) m g 292)
From (6.64) we get
2
P Py —mgqn
2m
or
2
P="2 4 mgqs . (6.67)
2m
Using (6.67) in (6.63) results in
2 2
P1 D3
=P —P, =P — —
2m ! 2 " om med>
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or

_ Pt

Py
2m

+ mgq, = H =: o) = const .

Equations (6.65) and (6.66) lead to

q1 0O
Qr=m" ; q= " 2mP —Py)
P1 m
q1 P2
O =—-m - ,
P1 mg

O+ 0= —:lzg ;o p2=-—-mg(Q1+ Q1) .

Squaring the last equation and using (6.67) yields

2
Q1+ 02)* = mzZz (P> — mgq>)

(6.68)

(6.69)

(6.70)

or
P, g
g2 = — 201+ 0)*.
mg 2
The new Hamiltonian is
oF,
K=H-+ =H
ot
or
2 2 2 2
+
K:pl P2 + mgg, = Pi + P +mggy | =P1—P,+P,=P;.
2m 2m 2m

With K = P; we can readily find the canonical equations:

0=y =1 ¢ Q=1+

Qz—gfz:O O =P,

Plz—aK:O P, =const. = = H ,
90,

P2=_3K=O P> = const. = o .
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If we set g1 = x, g» =y, then it follows from (6.69) and (6.70) that

1
x() = (t+ ,31)\/2111(051 — ap) = const. t + const.
m

o
y() = —g(t + const.)? + 2__8p + const. t + const.
2 mg 2

The constants have to be fixed by the initial conditions.

In the usual calculation of the projectile motion in the x-y plane, one chooses at
t=0:x =0 =ypand vy = (vpcosw, vy sinw) as the initial velocity. Our result
is then given by

x = (v cos )t

y = (vosina)t — i 7.

The above procedure may seem like a very difficult way to solve an easy problem,
and indeed it is. The following problem is along the same line; it concerns the
damped harmonic oscillator. The equation of motion is given by

mij+bg+kg=0, 6.71)

where F = —bg denotes the frictional force and, as usual, k = mwé.
The equation of motion (6.71) can be derived from a Lagrangian, which we define

according to

k
L — ht/m m -2 _ 2 . 672
e (2 = ,4 (6.72)

However, this choice of L is not unique! The canonical momentum is

oL
P= g = mgel"/™ (6.73)
So the Hamiltonian becomes
P k
H — pq _ L — e—ht/m + eht/m qZ . (674)
2m 2

This Hamiltonian is explicitly time-dependent and indicates the dissipation inherent
in the system. The canonical equations belonging to (6.74) are:

é= aH: pe—bt/m’ ﬁ:—aHZ—kqebt/m.
op m daq

(6.75)
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With this we reproduce (6.71):

b
mij = ( - p)e_b’/’”:—kq—bi].

m

The form of (6.74) suggests that the following canonical transformation should
simplify the Hamiltonian:

Q — qeht/2m ., P= pe—bt/Zm ) (676)

One can be easily convinced that the generating function of the canonical transfor-
mation (6.76) is given by

F>(q, P, 1) = e"/*"gp . (6.77)

Indeed:

0F> bt/2m 0F> b
= =e/7P, = =Py
P= 0 op q

The new Hamiltonian therefore reads:

P? N kQ2+
2m 2 2

b
QP . (6.78)
m

daF;
K(@Q.P.0) =H(g.p.n - .= =
Note that K does not explicitly depend on time and thus is conserved. If we then
express (6.78) again as a function of the old canonical variables, we get:

2 k
e—br/mp pehmt 2y

, 6.79
2m 24 T P (6.79)

and this expression is an integral of motion—a fact that would not have been seen
so easily from the original form of H.



Chapter 7
The Hamilton—Jacobi Equation

We already know that canonical transformations are useful for solving mechanical
problems. We now want to look for a canonical transformation that transforms the
2N coordinates (g;, p;) to 2N constant values (Q;, P;), e.g., to the 2N initial values
(¢°,p?) at time ¢ = 0. Then the problem would be solved, ¢ = g(qo,po. 1), p =
p(qo,po. 1).

We can now automatically make sure that the new variables are all constant
by requiring that the new transformed Hamiltonian K(Q, P, f) vanish identically,
K=0:

oK . oK

Di=. =0, P=—__ =0. 7.1
0 9P, 90, (7.1)

Now, however, 0 = K = H + dF/0t, and thus H(gq,p,t) + 0F/dt = 0 must be
valid for F. At this point we choose F as a function which depends on the old
coordinates ¢; and the new constant momenta P;, so that we are talking for a while
about F = F,(q;, P;, t). If we add to this relation

JoF
= ’ (1.2)
qi

then the differential equation for F, takes the form:
oF oF
H(qi,az;t)+ > =0. (7.3)

This is the well-known Hamilton—Jacobi equation for finding F>(g;, P;, t)—the
generating function of that canonical transformation which brings us to the constant
values Q; and P;.

© Springer International Publishing Switzerland 2016 75
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The Hamilton—Jacobi equation is a partial differential equation of first order in
the N+ 1 variables (¢1, q2, - - - , gn; ). Normally the solution to (7.3) is denoted by S:
this is known as Hamilton’s principal function.

Note that in (7.3) the derivatives of F appear, but not F itself. Thus, along with
F,, F, + const. is also a solution. This additive constant can be arbitrarily chosen.

Now we want to assume the existence of a solution to (7.3):

Fr=8=58(1.92,....qn; 01,02, ..., 0N, QN 15 ) (7.4)

with N + 1 independent constants of integration o, o, . . . , &y, &n+1. Such a solu-
tion is called a complete solution. In contrast to this, general solutions also exist
with arbitrary functions of the independent variables instead of constants. For our
further considerations, it is only important that there be a complete solution (7.4)
to (7.3).

The constant a4 in (7.4) plays a special role. We can call it an additive constant,
as mentioned above, and, since only partial derivatives of the generating function
S appear in the transformation equations, we can just omit it. Then we get, as
a complete solution to (7.3):

S=S(ql,...,qN;O{],...,O{N;l‘), (7.5)

where none of the constants ¢; is additive. Since the «; are now arbitrary, we can put
the new (constant) P;’s in their place: o; = P;. Then as transformation equation, we
have:

_08(q, ;1)

7.
dgi 70

_08(q,030)
B 80(,-

Qi = const. = f§; . 7.7)

If we assume that (7.7) is invertible, then ¢; = g;(a, B,f) and thus, from (7.6),
pi = pi(a, B,1). In principle our dynamical problem with given H(g, p, t) is hereby
solved.

Finally we wish to show that the letter S was not chosen purely by chance.
There is indeed a relation between the action functional | L(¢)dr and the generating
function of the canonical transformation S which transforms on constant values
(Q, P). This can be seen as follows:

ds(qi, Pi = aijt) as . s EN
dt N Z
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where we have used (7.3) and (7.6). So the principal function S is given by the time
integral of the Lagrangian:

n
S:/ drL . (7.8)
1

We need, however, the complete solution of the problem ¢;(f), ¢;(¢) to calculate S.
Exactly this way was chosen earlier when we calculated the classical action for the
forced oscillator.

We should like to point out that a Hamilton—Jacobi equation also exists for
generating functions of the F(q, Q, f)-type, which also reads

(a2 )20 2 (7.9)
ql? aql 9 al‘ - . .

Only the transformation equations are changed:

_0R@Qn , _ @0 (7.10)

l 9 s 90,
One generally prefers the Hamilton—Jacobi equation for F, = S, since, in particular,
the identical transformation has a generator of the F- and not of the F-type.

As a first example of the application of a solution to the Hamilton—Jacobi
equation, we consider a particle in a time-dependent potential V(g,1) = —qFt,
where F is a constant. The Lagrangian then reads:

m
L= 2q + gFt, (7.11)
so that, with
oL . oL Fr
= mg = N = B
9~ TP gy

the equation of motion follows: mg = Ft.
The explicitly time-dependent Hamiltonian is, accordingly,

p2
H= —gFt. (7.12)

2m

From this we get the Hamilton—Jacobi equation:

1 2
(35) —qFt+aS=O. (7.13)
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This partial differential equation for S can be solved using the following ansatz:

S=f(t)g+g@) . (7.14)
Then we have
sy _p B
ag) T e TS

Inserted in (7.13), this gives:

1 ,
( f2+g) +q(f —F1)=0.
2m
So the following equations must be integrated:

f = Ft s g = —
We immediately get the solutions
F
f(1) = 5 P +a

and with

1 (F 2 1 F 1
g=- PHoa|l =— F¥H—  af —_ o
2m \ 2 8m 2m 2m

it follows that

1 F o?
H=— FPP—  af—_ t+1.
8 40m 6m 2m !

t; plays the role here of an additive constant ay+; and can be omitted. So far we
have found:

F 1 F o?
S(g, ;1) = 2 - Fr £ t]. 7.15
(g.0:1) (2 +“)q (40m Tom® T om (7.15)

For the transformation equations we get with this S

as  of ag F , «

ﬂzQ:aazaanraa:q_émt“_mt‘ (7.16)
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Solved for g, this yields
F o
g)=_ £+ t+p. (7.17)
6m m

B = 0 follows from the initial condition ¢(0) = 0, so that

F
an="7+%. (7.18)
6m m

From this we have ¢(0) = o/m, so « = p(0) = P. This is in accord with
aS F
py=, = _ r+a. (7.19)
daq 2

If H is not explicitly time-dependent, then

(e 5+ o (7.20)
W og ) T or T :

We can separate off the time variable with the following ansatz:
S(gi, iz 1) = W(gi, i) —ant . (7.21)

If we substitute this ansatz in (7.20), then

H (q,’, aW) =] . (722)
9

constants in S, «;, is thus equal to the constant value H(= E). W is known as
Hamilton’s characteristic function.

We now show that W is the generator of a canonical transformation in which
the new momenta are constants o; = P; (or: the Q; are ignorable), and, in
particular, that «; is identical to the conserved quantity H. If, with foresight, we
denote the generator of this canonical transformation W(q, P), then the following
transformation equations are valid:

ow ow oW
Pi= g Qi = =

. P = g (7.23)

In order to determine W, we require that the following should hold for the conserved
quantity H:

H(gi,pi) = o1 =Py .
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This requirement yields, via (7.23), a partial differential equation for W:

(4 2ur)
H | gi, =,
q;

which is identical with (7.22). Furthermore, since W is time-independent,
K=H+ =H=uwo (7.24)

is valid for the new Hamiltonian. With this new K = «;, the canonical equations
follow:

Pi=—__=0. (7.25)

. K 0K 1,i=1
;= = =8 = ’ ’ 7.26
Q BPi BO{i ! 0 N 75 1 ( )
The solutions are simply
ow
Or=t+p = 3 (7.27)
oy
ow
Qi=pi= , i#E1L. (7.28)
a()éi

Only (7.27) contains the time. Equation (7.28), which contain no time, can be used
to determine the space trajectory (orbit).

One need not identify oy with H and the other integration constants with the
new constant P;’s. The N constants P; can also be linear combinations of the «;:
P; = Pi(ay,...,ay), i = 1,2,...,N; for example, P1 = oy + a2, Py = o] — ).
Then it holds that

81]'
Z 8K 805] dog (7.29)
= =V .
8a, , 8P,

with

Qi =vit+ B (7.30)
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and
K:Oll(Pl,...,PN). (731)

Hereby W is shown to be the generator of a canonical transformation in which
the new Hamiltonian depends only on the constant new momenta. The new Q; are
ignorable and move linearly in time.

The characteristic function W has the following physical significance:

aw ow . ow
= .i .i = i.i' 732
dt Z og; T ey i Xi:pq (7.32)

=0

We designated the time integral of the right-hand side in Chap. 1 as action. It should
be recalled that, contrary to (7.32), the equation dS/dt = L is valid for S.

We now want to show how to solve the Hamilton—Jacobi equation and supply
some examples. The method of separation of the variables is of prime importance
here. If, as had been discussed above, dH/dt = 0, we separate off the time
dependence according to

S=W-—-at. (7.33)
Note that «; = H = E applies for conservative systems, so that the variable —H
canonically conjugate to ¢ appears as a factor next to ¢ in (7.33). Let us assume,

likewise, that for a given k, dH/dq, = 0, i.e., gi is ignorable; then, as in (7.33), we
write:

S = (const.) gx + S (g1 - Gr—1. Gkt 1+- - GN3T) (7.34)

The constant next to the ignorable coordinate gy, results from dS/dq; = pr = const.
Then

S = prgi + 8’ (1.35)
or
W =pigi + W' .

If all g; (and ¢) are ignorable except for gy, then we obtain:

W= Zpiqi + Wi(qr) - (7.36)
i#k
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Here W; is the solution of the reduced Hamilton—Jacobi equation

W
H Qo g O B Ol O | =y (7.37)
qk

This is a normal first-order differential equation in the variable g; and can be
immediately reduced to quadratures.

A dynamical problem is solvable if it is completely separable. There are
unfortunately no general rules which indicate when a system is separable. A system
can be separable in one coordinate system and not in another. Thus we need
acleverly chosen coordinate system. Furthermore, even if certain coordinates are not
ignorable, the Hamilton—Jacobi equation can nevertheless be separable. Ignorability
of coordinates is therefore not a necessary but sufficient condition for separability.
Moreover, if a system is separable in more than one coordinate system, then we are
necessarily dealing with a degenerate system (e.g. the Kepler problem).

Since many examples for calculating S (or W) can be found in pertinent
textbooks, we shall limit ourselves in the following to the computation of three
cases.

As a first example we consider a particle in the gravitational field with the
Hamiltonian

1
H=, (P +p;) +mgy . (7.38)
m

Since we are dealing with a conservative system, we have H = const. = E = «;.
The Hamilton—Jacobi equation associated with (7.38) is

IR VAN A AN
+ +mgy=a =FL. (7.39)
2m ox ay

We recall that W is the generator of a canonical transformation to new constant
momenta: W = W(x, y; Py, Py) with P, = oy = E, Py = ».
The separation ansatz

W= W.(x,E,a0) + W, (v, E, o) (7.40)
makes (7.39) become:
bW 2+ bW 2+ (7.41)
mgy = o .
2m \ dx 2m \ dy & !

or

1 (aw, 2+ 1 (dW,\ 742)
m =] — . .
2m \ dy &Y "om \dx
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Since the right- and left-hand sides of (7.42) are functions of different variables,
e.g., y and x, they have to be equal to a constant, o;. Then

dW, = /2m(a; — az) dx
or

W, = \/2}71(0{1 — Q)X = PyX

since x is an ignorable variable. Furthermore we get

dw, = \/Zm(otz —mgy)dy,

which, when integrated, yields the following expression:

22m
Wy=— (02 —mgy)*? .
mg
So for the entire characteristic function we have:
2 /21 32
W(x, yian, a2) = v/2m(oy — o) x — . g(az —mgy)*/? . (7.43)
With this we can write
aw m
Ql = = X
day \/2m(a1 —ay)
or, solved for x:
2 0
x= \/m Jo —a Q) = m‘ V2m(Py —P>) . (7.44)

This should be compared with the result (6.69). Similarly, we find:

aw
Q) = = "

1 \/ 2 J
— X — Oy —m
o \/2m(a1 —ay) gym &

1 /2
=-0— \/ oy —mgy
g m
or

1 /2
O1+0r=— \/ (ax —mgy) . (7.45)
gVm
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By squaring, we can solve this equation for y:

P
y= _i(Ql 02+ 2 =7 50 4 0,) = 3w Onin) . (7.46)
mg mg 2

This corresponds exactly to the result (6.70).
We now recall the canonical equations with K = H = E = ) = Py:

. oK

Q1=a =1 : Qi=t+p1,
ay

. oK

QZZB =0 . Q2:,32.
(05]

In addition, we have the equations:

P K _o
o = = — = s
1 1 20,
P K _o
o = = = s
2 2 90,
as is to be expected. Now
m
: : \/2m(E —ay)

or
1
() = V2m(E—w)(+ ).
For the initial conditions, x(# = 0) = 0, it holds that 8; = 0, so that
1
x(f) = 2m(E —ay) t = x(0)t = vy cos(a)t (7.47)
m
since
. 1
)= 2m(E—) . (7.48)
m

Squaring (7.48) gives ay = E —mi*(0)/2 = mgy(0) + (m/2)y*(0). With the initial
condition y(0) = 0 we therefore conclude:

m,
ay = 2)’2(0) =P.
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Now we insert this expression for o5 in (7.45), f; = 0:

=2 (502 )

Using y(0) = 0, it follows from the last equation that 8, = —y(0)/g. Therefore

1, 1 /2 /m,
t— 3(0)=- \/ ( ¥2(0) — mgy) :
g gVm\2
Squaring and solving for y finally yields
_ 8 . _ 8 .
y() = —2z2 +3(0)t = —2z2 + o sin(a)r . (7.49)

Together with (7.47), these are the familiar kinematic equations for a particle in
presence of a gravitational field.

As our next example we consider the damped harmonic oscillator. Here, we solve
the equation of motion for the new Hamiltonian K(Q, P) from (6.78) with the help
of the Hamilton—Jacobi equation:

1 (S k., b3S S
o (aQ) 20+ Qa0 t g =0 (7.50)

Since K is not explicitly time-dependent, i.e., K = «; = const., we again write
S = W — «;t and get for W:

1 8W2+k2+b w .51
2m(aQ) 22 @0 T o

This is a quadratic equation in dW/0dQ and has, as its solution,

ow

b1
20 = -0+ 2\/(b2—4mk)Q2 + 8ma .

Integration then gives the Hamiltonian characteristic function:
b , 1
WQ.a) =~ 0"+, dQ v/ (b® — 4mk) Q2 + 8ma; .

We need the derivative

oW 1
:t+,31=:i:2m/dQ .
oty V(b2 — 4mk) Q2 + 8ma
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The integral is elementary and yields

t+ B ==+ 2m arc sin Ak = b?
= i
T ke — b2 8may

Since we want to assume that 4mk > b?, then, with w3 := k/m — (b/2m)*:

1 . m
t+ B =+ arcsin woQ
wo 20[1

or

00 = + ! \/ 2o sinfwo(t + B1)] - (7.52)
wo m

The =+ sign is unimportant here. So we finally have as a solution for the original
variable:

4 = Qe = ! \/ 20 /2 Sinl 1 + B)] (7.53)
wo m

The constants «; and B, still have to be determined by the initial conditions.

Our last example concerns the Coulomb problem with an in z-direction. It is
certainly true that the 1/r-Coulomb problem is spherical symmetric. However, in
presence of a constant F-field in z-direction, it is more useful to employ a parabolic
coordinate system which distinguishes a certain direction; here, the z-direction. The
potential is given by

A
V="—Fz, (7.54)
r

and we are now going to separate the associated Hamilton—Jacobi equation in
parabolic coordinates (&, n, ¢). These are related to the cartesian coordinates (x, y, z)
in the following way:

x = \/&n cosg
y = Ensing
z=1E—-n, o=@+ = Ven. (1.55)

The invariant 72 is then given by

P=xX 4y + 2 =0+ =+ LE P —28n) = L(E +n)?
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or
r=3E+n). (7.56)
The kinematics is contained in
m
=2(Q2+Q<p + 7). (7.57)
So we need:
2 . 4 . %) 1 4 .\2
o°=§&n, 200=En+E&n. o0 = 4@2(§n+é‘n)
or

&= @i 4 oine = (52”+n25+25fz),
4¢n 3 n

9P + 2 =Eng® + LE—)? = Eng® + L(E + 0 —2£0) .

The kinetic energy can then be expressed in the form

2( 52"+ n—+/+sn¢+ gl a /567)

S
=——(i§+n)<E )+ —Eng” .
n

Therefore the Lagrangian reads, in parabolic coordinates:

§-2

(E+n)<g

/ m. . 21 F B
n)+zén<p §+n+2(é n . (7.58)

From (7.58) we obtain the canonical momenta:

L m £
ps = o 4(S+n);E
8L m
L .
Po= .. =mEng . (7.59)

a9
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Equation (7.59) is needed to build the Hamiltonian:

H:P$é+Pnil+P¢¢_L
28p; +py Pl 24 F
— + + — —n). 7.60
m E+n omen T €+ 2(&‘ n) (7.60)

Since dH /0t

0 = 0H/d¢ and therefore H = E = Py = «; = const. and

likewise,
Py = w = o5 = P, = ap = const.
dp B¢
we can write
S=W—ait =We(§) + W,(n) + pop — Et, (7.61)

and thus obtain for Hamilton’s characteristic function W the time-independent
partial differential equation

2 AW (§) )2 (de(m )2 py, | 2X
m(é‘+n)[§( g ) T\ ay Tomen T g4
—127(5—77)=061 =E.

Multiplying both sides by m(§ + 1), we get

dw:\* P F
25( g) T

dt 28 2
dw,\* P> mF
=-2 L I g 2 En . 7.62
n(dn) 2 Zn+mn (7.62)

The left-hand side of (7.62) depends only on £ while the right-hand side is only
n-dependent. Hence, in an obvious notation we set [ = —a3 = —[/],.- Now we
take the left-hand side of (7.62) and solve for dW; /d§; similarly for [/ ],. Then we
have the result:

§ mE o3 —2mA mF P2
SE n ¢, tE py,az) = dg’ r— ¢
(C/ % Py- 03) / é‘\/ , t 2% +, 3 4g2

n mE o3 mF p>
+ / d?]/ - r 7]/ - (,;2
2 2n 4 4n

+ pop —Et . (7.63)
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If the calculation were to be continued, we would have

Q_8W_8WQ_3W_3WQ_3W_8W (7.64)
"Topy T OEC T 0P, op, 0 0Py das '
The new Hamiltonian would depend only on the constants (Py,P,,P3;) =
(E.py.a3) and Q; = v; = const. or Q; = v;it + B; with six further constants
vi, Bi.

In the middle of this chapter [Eqgs.(7.11)—~(7.19)], we discussed a rather ele-
mentary problem with external time dependence. We now consider a slightly more
elaborate problem, namely, a harmonically bound particle driven by an arbitrary
time-dependent prescribed force as expressed by the Lagrangian

L=""2 "+ qF () (7.65)
2 2
or the Hamiltonian
Pt om
H=_ + _o’¢—qF@). (7.66)
2m 2

Here, the real-valued “source” F() is coupled to the dynamical variable ¢().
Obviously, Eq. (7.66) could be augmented by an additional source coupling pG(?),
so as to write (7.66) symmetrically. For our purposes, Eq.(7.66) will suffice.
Associated with this equation is the Hamiltonian—Jacobi equation

1 (3S\> m s
- ( 3q) + za)zqz—qF(t)—}— o= 0, (7.67)

which we solve with the ansatz (we putm = 1)

S(g.1) = a(t)q* + b(t)q + c(t). (7.68)
In Eq. (7.67) we need
05\ 2 2 2
(aq) =4a°q” + 4abg + b (7.69)
and
9 g+ g+ (7.70)

ot
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We then obtain a set of equations for a, b and c:

. 2 1 2

a—+ 2a” + 2(0 =0, (7.71)

b+ 2ab—F(t) =0, (1.72)
bZ

¢+ , =0 (7.73)

Equation (7.71) can easily be solved with the result:
1)
a(t) = — 5 tan w(t — to). (7.74)

Here, 1y is our first constant of integration, a(t)) = 0.
The solution for (7.72) is also standard and yields

t ’
b(t) = e~ f’dr’za(tf)/ ef’ dr”Za(r”)F(t/)dt/
o

1 t
= / d'F(t') cosw(t' — 1p). (7.75)
cosw(t —19) Jq

Here, we meet another constant of integration, «, with the property (o) = 0.
Finally, Eq. (7.73) is solved by

1 [ dr !
c(t) = —2/ y /
n cosfw(t —1y) | Jo

The constant #; is like o4, our former additive constant which can either be
dropped or chosen at will. The constant of integration #; is connected with the
solution of the homogenous problem, i.e., without the driving F-term. What remains
is the constant ¢ (= P), here a time variable, which occurs in the coefficients (7.75)
and (7.76).

Our generator of transformation is, correspondingly, S = F»(q, P = «, 1), so that

/

2
dt"F(") cosw(t” — to):| . (7.76)

N
P—aqs
B = const. = O = s _ as _ 8b+ dc
T TET 0 T 0w Yo T b
q
=_ F -
cos ot — 1) (o) cosw(a — 1)

/

t dt/ t
+ /,l cosZ w(t' — tp) /a

dt"F(I") cosw(t” — to):| F(a) cos(a — 1p).
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If we solve this equation for g we obtain

B . q

F(a)cosw(a —1p) " cos o(t —ty)

+ / t dr / ' dt"F(!")cosw(t” — ty)
n cos?w(t' —19) J,

or

g(0) = [ P

" F(a) cos w(a — 1)

cos? w(?

t 1 4
+ / dr / dt'F(t") cosw(t” — 1) | cosw(t — tg).
t - tO) a

The first term in the square brackets is simply a constant, C. Since #; was arbitrary,
we put it equal to . Thus we end up with

t 4 " 7
q(t) = cosw(t — 1o) [c+ / ar / g T coselt t‘))] (7.77)

cosZw(t' — 1)

The contribution of the integral can also be written as
cosw(t—to) [* ., " . F{i)coso —1)
dt wdt 5
w o o cos? w(t' — ty)

t—1) ('
. lt = to) / dt'F(1") [tanw(r — 1) — tan (¢ — t9) | cos w (7" — 19)
w o

1 t
= / di"F(1") [sino(t — tg) cos o(t” — ty) — sinw(f" — 1g) cos w(t — to) |
®

o

1 t
= / d'F({)sinw(t—1).
®

o

Here, then, is our final result for the amplitude of a harmonically bound particle
driven by a time-dependent external force F'(¢):

q(t) = Ccosw(t—ty) + / dtG(t, ! )F (), (7.78)

o

where the Greens’s function is given by (m = 1)

Gt 1) = i} sinw(t —1t). (7.79)
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The associated generator F, as defined in (7.68) can now be identified and takes the
form

S{la).a:t.10} = = tanw(t = 10)q*()

1 t
/ di' F(f") cos (1 — 19)q(t)
cosw(t —t9) Jgu

1 [ dr !
B 2/a cosZw(t' — 1) /a

/

2
dt"F({") cosw(t”" — to):| . (7.80)



Chapter 8
Action-Angle Variables

In the following we will assume that the Hamiltonian does not depend explicitly
on time; dH/dt = 0. Then we know that the characteristic function W(g;, P;) is
the generator of a canonical transformation to new constant momenta P; (all Q; are
ignorable), and the new Hamiltonian depends only on the P;: H = K = K(P;).
Besides, the following canonical equations are valid:

. 0K
Q= ,, =vi=const (8.1)
b= gg —0. (8.2)

The P; are N independent functions of the N integration constants ¢;, i.e., are not
necessarily P; = «;. But the P; are, like the «;, constants. On the other hand, Q;
develops linear with time:

Qi = vt + ,3[ s (8.3)

with constants v; = v;(P;) and B;. The transformation equations which are
associated with the above canonical transformation generated by W(g;, P;) are given
by

ow ow

= = 8.4
P o1 0 oP, (8.4

Before we come to the action-angle variables, the following canonical transfor-
mation may serve as an introduction. It is clear that F, = gP/«, o = const. is the

© Springer International Publishing Switzerland 2016 93
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generator of a canonical transformation which causes a scale change (extension or
stretching) of a canonical pair (g, p):

aF, P
p= = , P=ap, (8.5)
dq o
_an_q _1
Q_E)P_a’ Q—aq- (8.6)

Along with (g, p), (¢/o,ap) = (Q, P) are also canonical variables. The two pairs
are said to possess the same canonicity. The area of the phase plane remains
unchanged when we go from (¢,p) — (Q,P) : QP = (g/a)ap = gp in the
simplest case.

In order to go from (g;,p;) to action-angle variables caused by canonical
transformation, we have to require the system to be periodic; furthermore, it should
be completely separable. The latter means that there exist functions

_ W(gan, ... o)

, 1=12,...,N
0q;

pi = pi(gj;ar, ..., ay) . (8.7

The above equation gives the phase space trajectory. From these trajectories we have
to require of all (g;, p;) pairs that they be either closed curves (libration: pendulum,
harmonic oscillator) or that the p; be periodic functions of the ¢; (rotation: rotating
pendulum). So if one of the g; runs while the remaining g;(j # i) are “frozen”, the
system should, after a certain time, return to its original state (in the case of libration)
in the (g;, p;) phase space. In addition to the above periodicity requirement, the
canonical transformation should be of such a kind that for the transformation

(gi,pi) = (Qi, P) = (wi, Jy)

the new O; = w; (angle variable) increases by one unit if g; runs through one
complete cycle so that the integral has to be performed over one period in g;:

9de,-(q,~) =1. (8.8)

The new canonical variables corresponding to the angle variables w; = Q; we shall
call J; £ P;. Then, according to Q; = dW/0dP;, we have as transformation equation:

o W 8.9)
w; = o, .

(Actually, one ought to use a different letter, W, for W, since W refers to the
canonical transformation (¢, p) — (Q, P).)
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According to (8.8), it holds that in the case of a complete cycle by ¢; while the
others are held fixed, we have for the corresponding change of w; = w;(g;, /i),
Ji = const,, i.e., (Ow;/3J;)dJ; = 0:

w; *w a (oW 9
1=Qdw = " dg; = dq; = dq; = idg; .
_(]SWJ ¢3qi q 0500 %= 01, P g, M anflgp q

From this, the important relation

_C]Sp,- dgi =Ji , (8.10)

follows, with p; = pi(gj; a1, ..., an).

After performing the g; integration in (8.10), each J; is a function of the N
integration constants «;, which appeared upon integration of the Hamilton—Jacobi
equation. Then it holds that

JiZJi(Oél,...,OéN). (811)

As a result, the J; are indeed constants of motion. In the following we shall assume
that the system of Eq. (8.11) is invertible. Then the J; are N independent functions of
the integration constants ; = P; and can thus be considered to be our new momenta.

The canonical transformation (¢,p) — (w,J) generated by W(g,J) with the
transformation equations

L ow= (8.12)

is an area (volume)-preserving transformation—similar to the canonical transforma-
tion (¢, p) — (Q, P) introduced earlier with the generating function F, = gP/a.

We could have introduced the action-angle variables in this manner: we are
looking for transformations (¢,p) — (w,J), J = const., which are volume
preserving (in phase space), whereby we require that when ¢ completes a single
period in the (g, p) phase space (in the case of libration), the corresponding new
variable w must change by one unit.

With the canonical transformation (g,p) — (w,J) and its transformation
equations (8.12), we have simultaneously succeeded in making the new Hamiltonian
dependent only on the new constant “momenta” J;; the w; are, like the Q;, ignorable
coordinates. This was exactly the intention of the generating function W(q,J),
which is of the F, type. So we can write:

K=H=Oé1 ZH(Jl,...,JN).
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The w;’s, like the Q;’s, are linear functions of time:

wi =vit+ B, (8.13)
. dH(J) _ ~ A 0K _
=" = (_ 0= yp - K—H). (8.14)

The constant v; now proves to be a real frequency, since if we go through a period,
t — t+ T, then according to (8.13),

AW,‘ = U[Ti =1

is valid; or

vV = .
T;
Thus v; is the frequency of motion with which the path will run through the (g;, p;)
phase space. The rule
__O0H(J)

i=1,2,...,N 8.15
o, i (8.15)

i

supplies us with an extremely useful method of calculating frequencies without prior
knowledge of the time development of the system as contained in the equations of
motion. But we need H = H(J1,...,Jy).

Here, again, briefly, the “recipe” for finding the frequencies v;:

(a) calculate gS pidg; and call this expression J;;
(b) determine H = H(J4,...,Jn);
(¢) constructv; = dH/dJ;.

As our first example, let us take the linear harmonic oscillator:

2
p m
H(q,p):2m+2a)2q2:ot:E.

Then
p(g.@ = E) = v/2ma — (mwg)? .

Now we follow the above scheme:

(a) 9§pdq = ¢ V2ma — (mwq)?dg = 95 \/1 — m;);qz V2ma dg

2a mw?q? [mw?
= 1- dq ;
w 200 20
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97
mw? mw?
= , d :\/ d
e \/205 q.4e 2a d
200 .
= 95\/1—Q2dg, ¢ =sing, do=cospdy
1)
2a [T 2
= a/ COSZ(pd(pZOl]TZZJ.
w 0 w
a=HJI)= " J. (8.16)
2
oH w
= =v. 8.17
© a7 = on =V .17

As our next example we consider the cycloid pendulum, i.e., the motion of
a particle m, that is constrained to swing back and forth in the gravitational field
along a prescribed curve (cycloid). The lowest point through which the particle

swings is to be the origin of an x—y coordinate system. Then the parametric form
of the cycloid is:

x=a(f +sinf) ,
y=a(l—cosf), —m<6<m.
The square of the line element is given by
(ds)* = (dx)* + (dy)* = (vdr)’
= a?[(1 + cos )% + sin” 0](d)* = 24>(1 + cos 0)(dH)* .

With this, we get for the kinetic energy
T= n;vz = ma*(1 + cos 0)6> .
Using V = mgy = mga(1 — cos 8), we then have for L:
L=T-V =mad [(1 +cos€)éz— i(l —cos@)] .

This gives us the canonical momentum:

L .
po= 5= 2ma*(1 + cos )6
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or
b= T
2ma?(1 +cosf)

So the Hamiltonian can be written

P3

H(, =T+V=
(©.po) + 4ma? 1 + cos 9

+ mga(l —cos6) . (8.18)

According to our “recipe” we need py to build _(ﬁ po df. Now, H is conserved; then
it holds, in particular for 6 = m: py = 0 and therefore

H=oa =2mga .
If we set this equal to the right-hand side of (8.18) and solve for pf), we get
pf) = 4m’a’g(1 + cosh)? .

Now we can calculate successively:

+7
(a) Ppodd = 4ma\/ag/ df(1 4 cos )

—T

a a

= 471(2mag)\/ = 4]T\/ H=:J.
8 8
8

1 1
() H= \/g J= \/ J
47 \V a 2n \ 4a

© v:3H: l\/g'
aJ 2 \ 4a

The frequency is thus independent of the amplitude. This conforms to a simple
pendulum of the length /| = 4a—but for small amplitudes. The above system
corresponds to the famous Huygens cycloid pendulum discovered in 1673.

Before we go on to the next example, we still want to express ¢(#) and p(z) for
the simple linear harmonic oscillator as function of the action-angle variables. First
of all it holds that

2
p m
Hig.p)=, +, w'q* =E,

q(t) = \/,552 sin(wt + ), p@) = 2mE cos(wt + @) .
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With the result (8.16),

H(J)=2C;J=E

as well as
w=vt+p : 2aw=owt+a«a
it follows that
J .
q(t) = \/ sin(2ww) , (8.19)
T
mwJ
p(t) = \/ cos(2mw) . (8.20)
T

The transformation of (g, p) to the action-angle variables (w, J ) is generated by
W(q,J), which is of the F»(g, P) type. For a period of motion in ¢ it now holds that
W(J) changes by

AW() = ggdqawgzj) - 9§pdq —J. (8.21)

For the generating function F(gq, Q) we found the Legendre transformation:

Fl(qu) :FZ(qu)_QP

In correspondence to these equations, we set

Wig,w)=W(g,J)—wJ,

ow’ ow’
) J = —

P= o

ow
Here, W’ generates the same canonical transformation as W, which is nothing new.
But contrary to (8.21), W’ is a periodic function in w with the period 1:

AW (w) = AW — A(wJ), J = const.

=AW-—-J Aw =0,
——
=1
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where we have used (8.21). According to this result, W(g, w) returns to its initial
value after one period in g, whereas W(q,J) increases by J. Thus, W’ is indeed
periodic in w with the period w = 1, whereas W is not. (But W’ does not satisfy the
Hamilton—Jacobi equation!)

We recall that for the individual periodic coordinates g = gx(w, J ), it holds that:

Libration: gx(wx + 1) = gr(wx) . (8.22)

Thus, gy is periodic in wy with period 1, and we can, therefore, expand ¢; in a Fourier
series:

+o00

— (k) J2mimwy

=3 e
m=—00
or
+o00
q() = Y a®errmtutho (8.23)
m=—00

where the Fourier coefficients are determined in the usual manner:
1 .
agf) = / dwy g (wy) e 2Timve (8.24)
0
In the case of rotation, we have
Rotation:  gx(wx + 1) = gx(wk) + gro » (8.25)
whereby gy usually is a constant angle value, like 2 for a rotating pendulum. Now

since wyqko increases by one unit for each g; period, the following expression is
periodic and can thus also be expanded in a Fourier series:

+o00
G—wigio = Y, aRe (8.26)
m=—00
with
l .
a® = / dwi (g — wiqro) €2k (8.27)
0

If the motion is not limited to the subspace (g, px), then because of the periodicity
in all coordinates g, generally, it holds that

gwi + 1w+ 1,0 ,wv + 1) = qe(wi, ... wy) .
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For this reason, every ¢; (or p;) and every function of it can be expanded in an
N-fold Fourier series. In particular, for the trajectory in phase space and its time-
dependence, it holds that

+o0 +oo
L (i) 2ri(mywy+...4+mywy)
gi= Y ... Y ai e

mp=—0o0

my=—0Q
or
+o0 +00
ql(t) — Z L Z b,g?lmmNeznl(W”VI+”'+mNUN)t (828)
mp=—0oQ my=—0o0
with
bf/:,)lmN — airl;)lmmNGZHi(mlﬁl+...+mNﬂN) ) (829)
The various frequencies v; = 1/7; in (8.28) are generally different, so that the

motion of the whole system (in time) does not return to its initial state. But if
the fundamental frequencies are commensurate, i.e., are rationally related so that
N integers r, s, . . . , t exist with

v v v
=2 =V oy, (8.30)
r N t
then for the coordinates ¢;(f), we have
+o00
Qi(t) — Z bgyz;)lmmNeZm(mlr+m2s+...+mNr)vt ) (831)

After the time T = 1/v, all separation coordinates return to their initial positions.
In the process, they have completed r, s, . . . t cycles, since
Vi
Aw; =y, T = = {r, Sy l‘} . (8.32)
v
If this is not the case, i.e., no commensurability prevails, the motion is called
conditionally or multiply periodic.
We continue, however, to be interested in commensurate frequencies and say that
a system with N degrees of freedom is m-fold degenerate, if relations exist between
the frequencies of the kind:

N
ijivi=o, k=1,2,....m; jucl. (8.33)

i=1
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Simple examplesare N = 2, m = k = 1:

. . V2 r
Ju vi+ Jjiz v»=0, = .

N—— N — V1 S
= —

Another exampleis N =3, m =2 =N(=3)—1:

Juvi +jiva +jizvs =0,
J21v1 + jaava + vy = 0.

In the Kepler problem with r = 1, 8 = 2, ¢ = 3, it holds that
V= Vg = Vg =:V
or
vg—vg =0, vg—v,=0,
which can also be written as

Oy + (=Dvg + (Dvy =0,
(=Dv, + (Hvg + (0)vg =0,

with

Ju=jn =0, ju=ju=1, jpu=jp=-1.

(8.34)

(8.35)

In the last example (Kepler problem) we have m = 2 commensurability relations.
Here, the ratios of all frequencies are rational (= 1). A system like this is called
completely degenerate if m = N — 1 equations of the form (8.33) exist between the
frequencies. If only m < N — 1 such equations exist, the system is called m-fold
degenerate. The Kepler problem is thus completely degenerate. In general we can
say that every system with a closed path is completely degenerate (V(r) ~ 1/r, ?).

We mention incidentally that H(J;) and the frequencies of the Kepler problem

(V = —k/r) are given by

27 2mk?
H=E=— ,
(Jr +Jo +Jp)?
oH o0H oH 4 mk?
VvV = = =

o, 0dy  0ly  (4+Jo+ s

(8.36)

(8.37)
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For the cyclotron motion (charged particle in a homogeneous magnetic field B) with
N = 2 and plane polar coordinates r, 8, it similarly holds that

H=v.(J, +Jp) ,

with v. = w./2nr = (1/2m)eB/mc and due to v, = vy = v., we have the
commensurability condition

—v,+vy=0. (8.38)

So this system is also completely degenerate.

If a system is m-fold degenerate, one can, via a canonical transformation to
new action-angle variables (w', J'), make the new frequencies vanish. For example,
for the Kepler problem, it holds for the transition from (w,, wg, wg;J,, Jo,Jp) —
(w1, wa,w3;J1,J2,J3), with two new vanishing frequencies, that the associated
generating function reads:

Fy(Wr,wo, wys J1,J2,03) = (—wg +wy)J1 + (—w, +wy)o +w,J3 ,

since
aF, .
o, =wg—wg=w; : vy=w; =0
because of
wg =vi+ B4, we=vt+ fg.
Likewise,

0F, ) 0
= — W, = N Vy = =
3J2 Wo w Ui%} bl %}

with w, = vt + B,. Finally we have

0F, )
=W, =WwW3 . Vi =wW3 =V.

0J3
The new action variables follow from the transformation equations

an(Wr,...;Jl,...)
oWy, ...

Js—Dh=J, Lh-hi=Jyg, J1=Jp

- Jr
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or

Ji=Jy, h=Jot+Jy, =0 +Jog+Js.
The new (only) action variable with nonvanishing frequency is J3. Therefore we find

27 2mk?

H=H(3) = — 2

J3 is called the “proper” action variable. (Only these become multiples of /4 in the
older quantum theory!)

For the example of a charged particle in a homogeneous magnetic field B, it holds
similarly that (N =2, m = 1)

—v,+vg =0, v, =vg=1

ju=-1, ju=1; w.=vr+p,, wg=vt+fy.

The generating function which brings us to a single nonvanishing frequency is
given by

Fy(wr,wai J1,J2) = (=w, +wa)J1 + wela

0F, ) 0
=wpg—w,=w; . V=W =
o, 0 1 1 1
oF, .
= = : V) = = 1.
aJ, W w2 2 w2
The transformation equations dF, (W, ...;J1,...) /0w, ... = J,, ... yield

-h=J, Ji+h=Jy,

or
h=—J, h=J+Jg.

The new Hamiltonian again contains only the action variable with nonvanishing
frequency:

1 eB
H= H(]z) = VCJZ = Jz .
2w mc
The general form of the generating function for the canonical transformation from
(w,J) to (w',J') in which we want to obtain zero-frequencies for m of the new
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actions, is given by
m N N
Fy = Fh(w, J/) = Z Zjllﬁjkiwi + Z J,/(Wk .
k=1 i=1 k=m+1

The transformed coordinates are:
N
oF,
we= o= juwi. k=12...m
k i=1

w,=wx, k=m+1,...,N.

The corresponding new frequencies result from (cf. (8.33))

The associated new constant action variables follow from the solution of
AF2 (wj, Ji) [ Owi = Ji:

m N
L= "Thi+ Y T
k=1

k=m+1
This then yields: H = H(J}) with

. O0H

vkzajl/(;zéo.

The results concerning the Coulomb or Kepler problem are well known (Born,
Goldstein). We want to still prove the formulae used above for a particle in
amagnetic field. To this end, we begin with the Lagrangian for a particle with charge
e and mass m in a magnetic field:

e m e
L(r, @,z ¢,2) = 2v2+cv~A(r)

m e
- 2(# + 22 + ) + c(ifA, + rgA, + ZA,) .

Here we have used cylindrical coordinates (r, ¢, z). The vector potential is given by

A(r) = (O,A(/,(r) = BZO r, o).
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If we then express V x A in cylindrical coordinates, only

19 10 r?
B-es= r ar(rA“’): r or (302) =Bo

remains for the third component of B. Thus we are dealing with a time-independent
magnetic field in z direction—as desired. In the following we suppress the uninter-
esting z-part in L and therefore write:

L="1+r0)+ A, . (8.39)

From this L we get the canonical momenta:

oL . L 2__}_eA
y = .. =mi, = _.=mr r.
P ar Pe Rl ¢ c ?
or
=P g ! (po = ray) (8.40)
r—m, go—mrz Do cr(p. .

We use these equations in
. . m . . e .
H = p,i+ py@ — 2(r2 + r¢?) — Crgko

and thus obtain

He ' 2! R (8.41)
= om | Pr PPe T e ' '
Since in our gauge it holds that A, = Bor/2, (8.41) becomes
1 2 Py eBy 2
H = Dy + — r . (8.42)
2m r 2¢

The canonical equations of motion are then given by

. oH p,
r = = N
op, m
oH 1 eBy
p = = - 2, 8.43
¢ dp, mr? (17¢ 2¢ (843)

Po=0. (8.44)
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For a circular motion, p, = 0, p, = 0 is valid. Then (8.44) yields

B
@ p, = 62 )2 and with (8.43), ¢ =0
C

0

B,
(b) p, = _82 ? <0! for (eBy)>0.
C

When (b) is inserted in (8.43), it gives

. eBy
mrrg + ”? =0
c
or
. eBo eBo
Y =— =. @, we = .
mc mc

;o r=0.

With the cyclotron frequency (8.46), H from (8.42) can be written as

1 p mwer\?
il
2m|:pr+ r 2 Pe

The Hamilton—Jacobi equation reads, accordingly:

1 3W2+ 1w mo, |’
2m or r dg 2r

With @y = E, ap = p,, and the separation ansatz,

<0.

=FE=qu;.

W =W(r ¢;a1,02) = ¢op, + W,(r) ,

we get

dw,

dr r 2

so that (8.48) can be written as

r mwe
W:(pp¢+/ dr’|:2mE—(ljj) ~ 5 r

The action variables J, and J, must be calculated next:

Jp = glg Ppdp = 27|py| .
Pp<0

21/2
,: [sz_ (e - r)}

i
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(8.45)

(8.46)

(8.47)

(8.48)

(8.49)
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ow
J = %p,dr: dr

ar
oz mwg
= Sgdrjsz — (r;” —ppmac + rZ)
2

:mwcsﬁd’ amEtppmee 5 Po 4 (2=

2 r (mw./2)? (mw./2)?

c d. ¢
=m:) ¢ x\/—a+2bx—x2=mz) 27(b — a) . (8.50)
x

Here we have used the following abbreviations:

I _ mE + py(me/2)
(ma)c/z)2 ' (ma)c/z)2
If we now use
_ Py
V= ) 2)
as well as
mE 1 4E  2|py| Jo
b = = — s = s
(mw./2)? t Py mo:/2 mw?  mo. Pyl 27

then it follows from (8.50) that

mwe 4E 2J, Jy 2
J, = 2 , = - = E—J,.
mw?  2wmoc 25 (mw./2)

4 W
Thus we get
H(J, Jy) = vy +Jyp) (8.51)
and from this,
1 eBy

(8.52)

V’:V‘/’ZVCEZJT e

As a further example we determine the action variables and frequencies of the
plane mathematical pendulum. We begin with the Lagrangian

L=T-V= ’;’(1%2) + mglcos . (8.53)
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@ is the angle of deviation from the lower (stable) equilibrium position. [ is the
length of the pendulum. From (8.53) it follows that

oL
_=mlg,

Py = 9

so that
. L,
H(p,py) = ppp —L = o2 Pe mglcosg . (8.54)

Since the system is conservative, dH/dt = 0, we set H = E = «. The Hamilton—
Jacobi equation is, accordingly:

1 [(awy’
i (dqo ) —mglcosgp = E | (8.55)
from which follows
¢
W(p:E) = / dg' [2mPE + 2m?gP cos ¢']'/? . (8.56)

=171

The action variable J then follows from

dw
Jy = 9519(/) de = 95 d do = ¢d¢[2mle + 2m?gl cos ¢]'/? . (8.57)
@
The limits of integration are determined in the case of libration from ¢ = 0 at

Py = 0;i.e., they result from setting the expression in parentheses in (8.57) equal to
zero. At this point we have to distinguish between two cases:

(a) Libration: |H| < mgl; then ¢ is always smaller than 7. If we start at ¢ = O,
then the angle 0 — @pax — 0 = (—@max) — 0 will be covered in one period:
T = 1/v,. Then we can write:

®Pmax
J, = 95 dol1)'? = 4/ dol11'? . (8.58)
1 period 0

So we have to integrate four times over a fourth of one period.
(b) Rotation: H > mgl; here, ¢ always has the same sign, and for the action variable
it now holds that

2 T
Jo = 95d¢[~/.]1/2 = / d[/]'? =2 / de[1]'? . (8.59)
0 0
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One should note the discontinuity in the definition of a period (of factor 2)

when going with H — mgl from below (libration: —mgl < H < mgl) or above
(rotation) with H — mgl. This is, however, only a matter of definition of where
to start a period.

We now come to the determination of the frequencies associated with the above
two cases. First of all, it generally holds that

—1
1 2
b, = _ ¢d¢ " (8.60)
aJ,/0H V2mH + 2m2gl cos ¢

or

b \/l 9§d¢) ! . (8.61)
Vg 3 V2(cos ¢ + (H/mgl))

From here on it is convenient to introduce the parameter

(a’) Here, as in the case (a) above, it holds for || < 1 and @uax = arc cos(—h) that

1 ! Pmax 1
=4 do
Vo 8 Jo V/2(cos ¢ — coS Pimax)

or, with cos ¢ = 1 —2sin’ ¢/2

1 [ Pmax 1
=4 d . 8.62
vy \/g [ VA (s /2) — sin2(p/2) e

At this point we introduce the following additional variables:

. qD . @max
sin | = sin

5 5 sinf =: ksiné& (8.63)

with

max 1 h
k = sin 7™ = \/ th (8.64)
2 2
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The last formula is valid because
H
2% = 25in® P = 1~ cosgmu =1+ h=(1+ _
2 mgl

In this manner we get the expression

! —4\/l/n/zd§ ! —4\/1K(k) (8.65)
Vo gJo V1 —k2sin?& g ' '

Here, the complete elliptic integral of the first kind appears:

/2 1
K(k) = / dt ., 0<k<l1 (8.66)
0 V1 —k2sin® €
T 1\ 13} 1-3-5)°
= 1 k* K Kb
2 +(2) +(2-4) +(2-4-6) i §
(8.67)
For
T
@Pmax —> O(k - O) : K(O) = 2 . (868)

In this case (small angle), the familiar amplitude-independent frequency

follows:
1 [
Vo = \/ & 1= 2n\/ . (8.69)
2w\ I g

As normalized frequency we thus find

vp(k) 7w 1

= <
", 2 KW 0<k<l. (8.70)

(b’) Here we have h > 1 (complete rotation):

1 I [~ 1 I (" 1
=2 / dy =2 / de
Vg g o V2(cos ¢ + h) 8 Jo V2h + 2 — 4sin’(¢/2)

I [T 1 1 2
- d K= =\/ g =2f,
\/g/o "V~ sin(p/2) ¢V 07
8.71)
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/ l ”/2 1 / l /
=2k dt =2k | K. (8.72)
8 Jo V1—k2sin? & 8

Using

, 2 2mgl
kK = = (8.73)
1+h H + mgl

we immediately get

1 2mi? ,
=2 K(k) (8.74)
Vy H + mgl
and the normalized frequency:
2k
Yo _ T L k>1K <1). (8.75)
vo 2 \K(1/k)

In both cases (a’) and (b’) the value of K goes to infinity, K — oo, as H —
mgl (k — 1)—but only slowly; namely, logarithmically:

b4 1
tim "¢ = ] 2Inl4/(1—k)12)
k—>1 Vg

k<l (8.76)

Tl — 1)1/ k>1 . (8.77)

For v, — 0, the period T = 1/v, is then infinite; the mass m is at the upper,
unstable equilibrium point.

Finally we summarize the most important results for the mathematical
pendulum:

H
Libration: |H| <mgl, h= , —l<h<l1,
mgl
1 +h
J = 16miy/Ig [E(K) — (1 —IDK®)] . K = ;“ . (8.78)

K (k) and E(k) are the complete elliptic integrals of the first and second kind:
/2 d%‘
K(k):/ , 0<k<1, (8.79)
0 1 —k2sin¢

/2
E(k):/ dé\/l—kzsinzé, 0<k<1. (8.80)
0
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For h — 1 (k — 1), we have (1 — k*)K (k) — 0. Furthermore, E(1) = 1. For
this limiting case it follows from (8.78) that

] = 16mly/Ig . (8.81)
, .o 1 2
Rotation: h>1, k= =
K 1+4h
J = 4/2mP2(H + mgl) E(K') (8.82)
and
] = 8mi+/lg . (8.83)

When comparing (8.81) with (8.83), we again meet the factor 2, which was
mentioned earlier when defining the frequency: the jump in J results from the
inconsistency of the definition of the period.

The energy and phase diagram of the plane pendulum is well known. The phase

trajectory for the separatrix can be obtained from H = pé /2ml> —mglcosp = E
for ¢ = £ with E = E = mgl. Then

or

2
Psx

o2 = mgl(1 + cos gsx)

Doy = :t\/Z mlz(ZJTU() (1 + cos Qosx)lz

—_—

=2 cOS @sx /2

sX

— +2m (27 vg) cos ‘”2 (8.84)

The two signs refer to the upper and lower branch. From ¢ = 0H/dp, we have
along the separatrix @5 = py, / ml?, and with (8.84) we get

d
:;" — +2(27vp) cos ‘/’25" . (8.85)

If we integrate the differential equation with ¢(r = 0) = 0, we obtain

Psx d 2 x
2w vt = / (0/2) = Intan ((p‘ + ]T)
o cos(p/2) 4 4

or, solved for ¢g:

s (1) = 4arctan (e”™) — 7 . (8.80)
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This expression clearly shows the asymptotic behavior along the separatrix: ¢g —
+m,t - +oo.

As a final example we consider the “Toda molecule” . Here we are dealing
with a system of three degrees of freedom, which will, surprisingly, prove to be
completely integrable. The Hamiltonian is given by

H(gi,pi) = é(P% +p§ —i—p%) + e (P1—¢3) + e (92— 4 e (p3—e2) _ 3 , (8.87)

and describes three particles that are moving on a circle and between which
exponentially decreasing repulsive forces are acting.

A first integral is obviously the energy. In addition, the total momentum (=
angular momentum) P3 is conserved:

P3 = (p1 + p2 + p3) = const . (8.88)

This results from the fact that A is invariant under rigid rotation: ¢; — @; +@o, p; —
pi. Of course we could also prove this with the help of a canonical transformation,
by transforming H to the new momenta P; = py, P, = p», and Pz = p| + p> + ps.
The generating function that generates this momentum transformation is

Fy(¢i, P}) = ¢1P1 + ¢2P2 + ¢3(P3 — Py — P») , (8.89)

since it holds that

oF, p
P11 = =ry,
dp1
oF,
Pzza =P, cp1+p2+p3=~Ps.
®2
JoF,
p3 = =P;—P—-P
dp3

If we designate the new variable canonically conjugate to P; by ¢;, then it holds
further that

oF,
¢1=8P =@ —¢3,
8F; == — ¢,
¢2—3P2—<ﬂ2—§03,
8 _3F2_
3—3P3—§03-

Now inserting the newly found variables into (8.87), we have, as new Hamiltonian,

H(¢i.Pi) =, [P] + Py + (P — P1 = P2)’]
4 e N + e~ ($2—¢1) + e _ 3 (8.90)
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Since .77 is independent of ¢3 (¢3 is ignorable), P3 is indeed conserved. Without
loss of generality we set P3 = 0, which represents a transition onto the rotating
system with vanishing angular momentum. Note that at this point we have reduced
our problem with three degrees of freedom to one with only two:

H =PI+ P5+PPy+e? e @9 p 3, (8.91)
We now want to demonstrate that we are dealing here with the dynamics of a particle

moving in a two-dimensional potential. To do so, we introduce a second canonical
transformation with the generating function

1
Fiip) = . |0 = V3p)d1 + (0 + V3p))en] (8.92)
43
From this follow the transformation equations:
oF} 1
Pi=,2= L—~/3p)) .
e VA R L
oF} 1
P=, %= L+ 3p) .
2T 0 43 7. Py)

Let the conjugate variables to p/, p} be x', y':

oF! 1
/ 2
= == + )
x o 4\/3(451 )
oF, 1
/o 2 _
= ap, 4(¢2 @) .

From here follow the equations necessary for (8.91):
¢ :2~/3(;/— Y ) ¢>2=2x/3(x’+ Y ) $r— 1 =4y .
V3 V3
Accordingly, our new Hamiltonian is written:

/ 1 / / ! :
ot = [0l V3 V) 02 - 307

e 2VIWY/VE) Lo L VAWV 3

1
= 13 GpZ+3p)+ ) e —3.
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The following noncanonical trivial transformations then supply the Toda Hamilto-
nian:

X =x, p;:8\/3px, y=y, p;=8x/3py; (8.93)

H/

Hp=_ |
T 4

Hy = ;(pz 02+ 214 [ez(y+J3x) + e20—/3) + e—4y] . é
X y
This Hamiltonian describes the motion of a particle in a potential U(x,y) with
threefold symmetry.
For small Hr = E (also for small x and y), one can expand (8.93) to get, up to
cubic terms,

H =102+ + @ +y) +x% =1y (8.94)

Whereas (8.93) proves to be integrable, (8.94), a two-dimensional oscillator with
the perturbation term x>y — y®/3, is not. We shall return to this and similar systems
later when considering stochastic systems.

If the Hamiltonian for the Toda molecule is to be completely integrable, then,
in addition to the energy H and angular momentum P3, still another conserved
quantity / must exist. This has in fact been found and reads:

1(x,y.ps.py) = 8pu(p? = 3p2) + (px + V/3py)e20 V3

+ (px — x/Spy)ez(yJ“/“) —2pe™® = const . (8.95)

Discovering that this is a conserved quantity is, of course, no trivial task. Neverthe-
less, it is relatively simple to confirm that / = 0.

In order to prove this explicitly, we begin with (8.93) and get, as equations of
motion:

0Hr d0Hr

x o= op, P y= S (8.96)
pr = _ag; = —214 [24/3620%39 _ 2 32030 |

= —2633 sinh (2+/3x) , (8.97)
Py = _3;‘)1}T = é [e_4y —e® cosh (2\/3x)] . (8.98)



8 Action-Angle Variables 117
Now [ can be written in the form:
1=8p(p? = 3p2) + po (2073 4 20%V30)
+/3p, (ezov—J3x) _ eZ(y+«/3x)) _opee®
=8p.(p? — 3p?) — 21, [e—“y — ¥ cosh (2v/3 x)] —2+/3p,e sinh (2+/3x)
=8pu(p} = 3p3) — 12p.py + 12pyp. - (8.99)
The time derivative of I is, accordingly:
1 = 2492, —~24p 02— 48Py 2oy~ 1 20y Yoo+ 12,
or
=242 — pDpx — 48pupypy — 12p.by + 12D, . (8.100)

If we ipsert (8.97, 8.98) and the time derivatives of these into (8.100), we indeed
obtain I = 0.



Chapter 9
The Adiabatic Invariance of the Action Variables

We shall first use an example to explain the concept of adiabatic invariance. Let us
consider a “super ball” of mass m, which bounces back and forth between two walls
(distance /) with velocity vy. Let gravitation be neglected, and the collisions with
the walls be elastic. If F,, denotes the average force onto each wall, then we have

FmT:—/ fdr. ©.1)
coll. time

f is the force acting on the ball during one collision, and 7T is the time between
collisions. Now according to the law of conservation of momentum we have

/ fdl‘ = Py — P; = —mvg — mvy = —2mvy . 9.2)
1 coll.

Here, P; ¢ are the initial and final momenta of the ball. Equations (9.1) and (9.2),
taken together, yield

F, T = 2mv . 9.3)

Since the ball travels the distance 2/ between collisions, with the velocity vy, the
corresponding time interval is

T="", 9.4)
Vo

so that the average force on each wall follows from (9.3):

2
_ 2muy _my;

m=p =y 9.5)
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Now let the right wall move toward the left one with the velocity V « v. Here, too,
it is valid that

F,T =— fdt=—(P;—P)) . (9.6)
1 coll.

In order to determine the right-hand side, we go from the laboratory system into the
comoving system, i.e., place ourselves into a system that moves with the constant
velocity V toward the left wall. This system is also an inertial system, since V =
const. Then it is clear that

Pi—Pi=-m(v+V)—mv+V)=-=22mv+V)
and, accordingly,
F,T =2m(v+V). 9.7)

We still need T. To get it, we take advantage of the fact that V « v. Then the ball
moves very rapidly, whereas the wall hardly moves between collisions:

2x

T .
v

Il

(9.8)

Here, x indicates the present distance between the walls. Now, because of v > V,
(v 4+ V) = v is valid, so that from (9.7) it follows that

2x
F, T ~F, =~2mv

and thus
F, =~ . 9.9)

Now we still need the velocity as a function of the distance x. To find this, we again
go back into the comoving system and find for the change of velocity (v+2V)—v =
2V = Av. This change occurs at each collision or once within every 2x/v seconds
(cf. (9.8)); thus, it holds that

Av 2V vV dv vV

At 2x/v T x a X
or

d \%
VeV (9.10)
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Now x = (I — Vt), so that dx = —Vdt. With this we find for (9.10):

dv dx

The integration is simple:

or

ln(;)o) :—ln()lc) : ;)0 = i

Thus, we find for v as a function of x:

——— ©.11)

X
As was to be expected, the velocity of the ball increases as the distance between the
walls decreases. Moreover, as the distance decreases, the number of collisions per
unit time (collision rate) increases.

Finally, the average force on the walls can be given as a function of the
momentary distance x:

mv?(x) _m v _ mv3l? . 9.12)

Fn
X x x2 x3

[

With (9.12) it is easy to show that the work performed on the ball by the wall is
equal to the increase of kinetic energy of the ball. For, according to the work-energy
theorem, it holds for the work performed on the ball using (9.12)

x m m
Wz—/l Fdx = 5 v (x) — 5 vé,
thus
W= ’;’ V(1) — ’;’ V() = T(l) — T() .

Although the distance and thus the kinetic energy of the particle now change, the
action J is practically constant. This can be seen as follows: first, it holds that (p =

mv)
T
J:¢pdx:m/ v2dr .
0
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If it were true that [ = const., then, with v = vy we could write T = 2I/vy and
therefore

21
J = mvé = 2mlvy = 2mliv(l) . (9.13)
Vo

We can easily confirm that the action variable J practically does not change when
the distance between the walls is slowly changed: J is an adiabatic invariant; i.e., if
the walls are at a distance of x apart, then, from (9.11) and (9.13) it follows that

Je = 2mxv(x) . (9.14)

For the change in time of J it therefore holds that

X v4+x 0 =2m(—Vv+Vv) =0. (9.15)
dl N—— N——
=V — UY
At a distance x, (9.14) is valid. After the occurrence of the collision onto the right
wall and shortly prior to the next collision, the following changes apply:

2x 2V
x—Ax=x—-TV =x— V=|(1- X,
v v

v(x — Ax) = v(x) + 2V,

Ji—ay = 2m(x — Ax)v(x — Ax)

=2m [(1 — 2V) x(v + 2V)} = 2mxv [1 — 42 Vz} . (9.16)
v v

A comparison of (9.14) and (9.16) shows that the action variable J has changed after
one period by only a small amount of the order of V2 ~ 2.

As our next example we consider the harmonic oscillator with a slowly changing
restoring force or frequency w. We want to assume that the change in time of w(¢)
within the time of one period 1/ is small compared to w, i.e., ®/® < . Thus our

assumption is

L
Y «1. 9.17)
w w

1/w = T/27 is the oscillation period, and (@ /)~ corresponds to the time scale
during which the restoring force changes; this is very large compared to 7. The fact
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that w(z) is supposed to be slowly changing during one period 7 is expressed by the
differential equation,

VI
[ R (st):|x(t) =0. (9.18)

Again: the argument of w? emphasizes the slow change of the “coupling constant”
w?; it does not mean w? is small; after a certain (long) time the coupling w? will
reach its maximal strength, which need not be small. We now introduce the new
variable T:

t(t) = et; & dimensionless, small . (9.19)

Then

d _dvd _ d dY _a(dY
dt  dtdv “dv’ \dt) ~ \dr

and (9.18) can be written as:

a Y 2 =0 9.20
dr2+(s)w(f) x(r) =0. (9.20)

We try to solve (9.20) with a WKB ansatz:
x(7) =f(1)e¥® ;. f.g real. (9.21)
Then
d / / ig(t) v ig(t)
(D) =X (@) = (O + fig (D)e'
x//(‘l,') :f//eig +f/ig/eig +f/ig/eig _,’_fig//eig _fg/Zeig
= [1" +2if's’ + fig" — fg?] e .
Our oscillator equation is thus
1 .
I:f// + Zif/g/ + ifg" _fg/2 + szf:| e =0
&
or

f// _fgxz + 12a)2f + i [zf/g/ +fg//] eig —0.
&
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So we have to solve the differential equations

0)2

f” _fg/Z + 2 f=0, (9.22)
2f'd +fd" =0. (9.23)

We shall soon need the last equation in the following form:

4 1 "
J; =, ‘Z, . (9.24)
But first we multiply (9.23) by f:
d
Afe +18" =, () =0
T
so that
C
g =C* or f= e (9.25)

We now write (9.22) as

2
w
="+

2 1/ 2 / 7\ 2
0] 0] d
g e (Y (Y
g f g dt \f f
At this point we use (9.24) to obtain
w? 1 d g// 1 g// 2
=, - + . (9.26)
e 2dt \ g 4\ ¢
The last equation is in a form that allows us to set up a perturbation series.
Oth approximation:

or

, 1
g=x ow.
£
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1st approximation:

II

H_
/N
[

|
B~ =
S o™
S
/N
e g
\v\/
_l’_
o0
S o™
/N
e g
\_/N
N———"

[

(1 3 (a)/)z le a)”)

+ w + — .

e 8w \w 40 w

If we re-introduce the normal time derivative, we get

1. (1 3102 11 a))
g==x w + -

£ £

8ewd 4¢w?
or

oot a)+3 ® ® 1 &
&= 8 \w w? 4 @?

~———
17):k1
Thus we set

g = :i:i o(t), g=+w@®) (9.27)

in first WKB approximation and obtain, according to our solution ansatz (9.21)
with (9.25),

x(7) = 2/ exp [ii i /T dt’w(f/):|

or

x(f) =~ \/Z(z‘) exp [:I:i/tdt’a)(t’):| . (9.28)
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The real part of (9.28) reads:

x(f) = a\/waz(;) sin [/tw(t’)dt’ + a} ; a,o0 = const.

a \/ ww((;) sin () . (9.29)

In the following we shall need the time derivative of (9.29):
CoN o .
#(f) = ay/wo | Vo cosg — 532 SO

. _ . _ . . . _ d(p
Using p = mx, dq = dx = xdt we get for the action variable (a) = dt)
= sin(2p)

J:¢ pdqg = ¢m§c2dt
1 per.
W~ ==

.2
2 2 wT . . N
= mwya wcos" ¢ +  ,sin"p— singcosg | dt
4w- w

L2 .
= mwoa* 95 dy [cos2 @+ (26:)2) sin ¢ — 26:)2 sin(2q0):| )

With the familiar integrals ¢ sin” 9 dp = © = ¢ cos? ¢ dg, $sin(2¢)dp = 0, we

obtain the result,
1 o\
J=mamod |1+ (. “) |. (9.30)
2 w?

Our adiabatic invariant is thus
J = wmwoa® = nmkad® . 9.31)

The correction term is of the order O(w?).
If we use (9.31) in the form a,/wy = \/J /mm, then (9.29) can be written as

x(f) = \/nmfo(t) sin [/tw(t’)dt’ + a} (9.32)
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or

p(t) = \/ mwf)J cos [ / ()l + a} . 9.33)

These results should be compared with the formulae (8.19) and (8.20). During the
time interval (f,t 4+ 27 /w), (9.32, 9.33) represents (approximately) an ellipse in
(x, p)-phase space.

Next we again consider the problem of a charged particle in an external
homogeneous magnetic field B which points in the z-direction. The force acting
on the moving particle is the Lorentz force: m(dv/dt) = (e/c)v x B or

d B
”z(_"’ )xv:wcxv. 9.34)
dt mc

Equation (9.34) says that the velocity vector precesses around the direction of the
B-field with the angular frequency (cyclotron frequency) w. = —eB/mc. Of course,
the Lorentz force also follows from the Lagrange formulation of the problem:

m 5
L=T-V= v +pB. (9.35)

The last term in (9.35) is the potential energy of a magnetic dipole in presence of

a magnetic field: V = —u - B; more precisely: p is the orbital magnetic dipole
moment: 4 = (e/2mc)L. Then the z-component of p is given in cylindrical
coordinates by
e e e 5,
pe=, (rxp:=_ (xv.=_r¢ (9.36)
2mc 2c 2c

so that, from (9.35), it follows for L that
m . 5.2 .2 eB , .
L= (F+r¢+2)+, r'p. (9.37)

Obviously, ¢ is an ignorable variable; thus the canonically conjugate momentum p,,
is conserved:

oL

B
Po= g = m2g + <7 1% = const. (9.38)

2c
The radial equation can be obtained from

d oL oL

. .y € .
— — — — = O
dt o Or e c 4
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or
. ., eB
mi—ro | mo + =0. (9.39)
c

The regular circular motion follows then from 7 = 0, ¢ = const., where ¢ = v, =
—eB/mc (as above). For this we get from (9.38)

eB
= — 72 = const.
Pe 2c
and the action variable becomes
B weB
J¢=§£P¢d¢=—e Pom=-—"" 1 (9.40)
2c c

If we use (9.36) in the form er?/c = 21,/ w, then (9.40) can be written as

2, B 2mwmc
J,=— af‘z =" (9.41)

The magnetic moment is thus an adiabatic invariant: in the case of sufficiently small
changes of the external magnetic field, i, (J,) remains constant. If we look at (9.40),
we can say that B times the encompassed area of the circular orbit (flux) remains
constant.

Finally we consider once again the problem of the linear harmonic oscillator with
time-dependent frequency: ¥ + w?(f)x = 0. Many physical problems can be reduced
to this equation, e.g., the motion of a charged particle in a time-dependent magnetic
field. Also the treatment of small oscillations of a pendulum, whose length changes
constantly with time, belongs to this realm of problems. Here we are interested
in the remarkable fact that the harmonic oscillator with time-dependent frequency
possesses an exact invariant which reduces to the action variable J in case of an
adiabatic change of .

The equation of motion for the harmonic oscillator is known to be derived from
the Lagrangian or Hamiltonian:

2
L= _i— 2x*; H= + 2(0)x* . 42
5 2w(t) ; 5 2a)()x (9.42)

The conserved quantity /(r) with I(r) = 0 is given by

1 [
10 =, [Qz + (Qk—x@)2:| : (9.43)
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where o(¢) satisfies the following differential equation:

. 2 1

0+ w (o — 0 =0. (9.44)

If we use this equation and, in the following, take advantage of the fact that x =
—w?()x, then it is easy to show that indeed I = 0:

a d(2\ d
2 (x )+dt(gic—xg')2

dr ~ dr 0>
or
=—w’x =—w?x

dl_ xk  ox* e NI et P
dr = e - e +ox X —Q0xx—Q0x X +x00

. . 2 1 2. . 2 1

=oxx|—0—wo+ 3 +x0lo+wo— 3 =0. (9.45)
© Q

In order to better understand the physical significance of the invariant (9.43), we
consider the motion of the one-dimensional harmonic oscillator as a projection
of the motion of a plane two-dimensional oscillator on the x axis. This kind of
consideration of a linear harmonic oscillator is also valid when the frequency w
is time-dependent. So we shall first study as an auxiliary problem a central force
problem with time-dependent potential

V= ’;wz(t)gz, = +y.

In plane polar coordinates x = pcos¢, y = psing, L reads for our auxiliary
problem:

L="[@-0%) + (-] = 1@+ 07~ (0e) . (9.46)

In cartesian coordinates we have two linear uncoupled harmonic oscillators. In
plane polar coordinates, (9.46) tells us that ¢ is ignorable and therefore the angular
momentum is conserved:

oL
L =p,= b = mo*¢ = const.

or

2 . LZ
o°p = = h = const. (9.47)
m
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In the following we need the radial equation; it follows from d(dL/d¢)/dt —
dL/dp = 0:

mp + mw*o —m¢*o =0 (9.48)
or, with (9.47):
h2
0+w0— =0, (9.49)
o

For h = 1, this equation becomes (9.44). But since ¢ now satisfies (9.49), the
invariant at first reads—with the help of the conserved quantity &

1 [ h2x?

I'= + ek —x0)* | - (9.50)
2 [ o?

One can immediately write down the value for this invariant if one takes into

consideration that, with x = g cos ¢, the following holds:

0x —x0 = 0(0 cos ¢ — 0@ sin ) — pd cos ¢ = —>@ sing = —hsing

and thus, it follows from (9.50) that

2

I = ;(h2 cos® ¢ + h*sin’ ¢) = hz . (9.51)
Thus the constancy of I’ is proven equivalent to the conservation of angular
momentum in the associated two-dimensional oscillator problem.

Now we want to explain why it is always possible to choose the initial value for
the y-amplitude and the phase between the x- and y-motion in such a way that h
takes the value 1. In order to do so, we begin with an initial frequency @y, which is
to be constant: x = x sin(wy?), y = yo cos(wot+ ). Then, by definition, & becomes:

ln: =h = xy — yX = —wpXyo COS . (9.52)
If we allow w to change in time, i of course maintains its value as conserved
quantity. We can make this 1 because of the free choice of yy, o for every xq. Thus we
can relate (embed) each linear harmonic oscillator with time-dependent frequency to
aplane isotropic oscillator with 2 = 1. At that moment (9.49) becomes (9.44), and I’
from (9.50) with 2 = 1 becomes (9.43). The existence of the exact invariant / in the
case of the one-dimensional harmonic oscillator thus results from the fact that the
angular momentum is conserved in the associated problem of the two-dimensional
oscillator.
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Now we finally come to the relation between J and [ for the harmonic oscillator.
If w is constant, then a possible solution of (9.44) is o = \/ 1/w (plane circular
orbit). Since ¢ = 0, we obtain directly from (9.43):

1 i 1
1) = | Yo+ = [+ o’ (9.53)
2 w 2w
L tm, m ,, 1 E J
— = = . 9.54
mw[2x+2wx] m 2mm ( )

So, in lowest order (w = const.), the exact invariant / is proportional to the action
variable J.



Chapter 10
Time-Independent Canonical Perturbation
Theory

First we consider the perturbation calculation only to first order, limiting ourselves
to only one degree of freedom. Furthermore, the system is to be conservative,
dH /90t = 0, and periodic in both the unperturbed and perturbed case. In addition
to periodicity, we shall require the Hamilton—Jacobi equation to be separable for the
unperturbed situation. The unperturbed problem Hy(Jy) which is described by the
action-angle variables Jy and wy will be assumed to be solved. Thus we have, for
the unperturbed frequency:

0H,
= 10.1
Vo 8, (10.1)
and
wo = Vot + ,3() . (10.2)

Then the new Hamiltonian reads, up to a perturbation term of first order:
H = H()(J()) + eH; (W(),Jo) R (10.3)

where ¢ is a small parameter. Our goal now is to find a canonical transformation
from the action-angle variables (Jy, wp) of the unperturbed problem Hy(Jy) to
action-angle variables (J, w) of the total problem H(J); this canonical transforma-
tion should make the perturbed problem become solvable. If we can achieve this,
then it holds that H = E(J), where J = const., and now (1) and (2) are replaced by

IH(J)
V= (10.4
oJ )
© Springer International Publishing Switzerland 2016 133
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and
w=vi+pf. (10.5)

The canonical transformation in question can be generated with the help of the
generating function of the type F»(q,P) : W = W(wp,J). wp stands for the
old coordinate and J for the new momentum. Since we are limiting ourselves to
d0F,/0dt = 0, it holds that H,j¢ = Hyew. Then the Hamilton—Jacobi equation reads:

ow
H(Wo,Jo) =H (Wo,

) =E() (10.6)
8w0

with

aW(Wo,J) BW(W(),J)
= . w = .

J.
0 dwo aJ

(10.7)

This corresponds to the familiar transformation equations p = dF,/dq and Q =
dF,/0P.

It is important to emphasize that for the perturbed problem, the (w, J) are “good”
action-angle variables, while the (wy, Jo) “basis” no longer plays the role of action-
angle variables. wy is angle variable for the unperturbed case and is related to the
original coordinate g by

+o00
g= Z ar(Jo) €™ (libration) , (10.8)
k=—o00
or
+o0
q— qowo = Z ar(Jo) €% (rotation) . (10.9)
k=—00

Certainly (wyg,Jo) remain canonical variables for the perturbed situation, since
they are, according to the above, related to the original canonical variables (g, p)
by a canonical transformation. Jy is now, however, no longer constant [jo =
—dH /0wy = —e(0H{(wo, Jo)/dwp)] and wy is no longer a linear function in time
[Wo = 0H/dJy = dHy(Jy)/dJo + €(dH,(wg,Jo)/0Jy) # const.]. Since (w,J) are
action-angle variables, w increases by one unit when g runs through one period. This
also applies, however, to wy, because ¢q is, according to (10.8), a periodic function
of wy with period 1. The canonical transformation (10.8) expresses g in dependence
of (wy, Jo), and has nothing to do with the particular form of the Hamiltonian.
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We now return to (10.6) and treat this equation perturbatively, i.e., we expand
both sides:

H(wo.Jo) = Ho(Jo) + eHy(wo.Jo) + ... (10.10)
E(J;e) = Eo(J) + eE1(J) + &*E2(J) + ... . (10.11)

We apply the same procedure to the generating function W(wy, J) of the canonical
transformation (10.7), which transforms (wy, Jo) to (w, J):

W(wo.J) = Wo(wo.,J) +eWi(wo,J) + & Wa(wo.J) + ... . (10.12)
_—y
For ¢ = 0, only the identity transformation woJ/ remains. The transformation

equations (10.7) take on the following form:

oW (wo, J oW (wo, J
Jo = (v )=J+8 10v0 )+...
aWO aWO
W (wo,J) W1 (wo, J)
= = e 10.13
w a7 wo + ¢ a7 + ( )
The Hamilton—Jacobi equation (10.6) can then be written in first-order perturbation
theory:
ow
H (wo, ) =E():
aW()
ow
H()(J()) + eH, W(),aw =Ey(J) + ¢E\(J) (10.14)
0
(13):J4edWy /dwg
and with
Ho(Jo) = H Jre™
oo (13) 0 Iwo
oW, 0Hy(J) 5
=Hy(J O
o )+88W0 a0 + 0(¢?)
we get

Hy(J) + ¢ |:H1(W0,J) " 0Hy(J) aW1(W0,J):|

aJ 8w0
= Eo(J) + ¢E1(J) . (10.15)
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Here, only wy and the constant J still appear. Comparison of coefficients in ¢ finally
yields:

%1 Ho(J) = Eo(J) , (10.16)

N 0Hy(J) oW (wo,J)

1.
e Hl(wo,J) a7 Swo

=E(J). (10.17)

Equation (10.17) contains the two unknown functions W;(wy,J) and E;(J). Two
assumptions permit us to solve (10.17). First of all, we set

0Ho(J) _ 0Ho(Jo)

e o, =yp. (10.18)

Jo=J
Vg is the frequency of the solved problem! Then (10.17) becomes

oW1 (wo,J)
0

Hl(wo,J) + v Bwo

=Ei(J). (10.19)

The inhomogeneous term H is given, E;(J) is unknown. Thus, (10.19) is a linear
partial differential equation with constant coefficient (vg) for Wj.

Next we take advantage of the fact that the function W is a periodic function
of wy. In this respect we recall that the function W*(wo, w) = W(wy,J) — woJ
is a periodic function of wy; since J is an action variable here, it holds that J =
$pdg = $(dW/dq)dq, so that for a single rotation in g, the action increases by J.
Simultaneously, wy increases by one unit, (10.8). Then it holds that

W*(wo + Lw) = W(wo + 1,J) — (wo + 1)J = W(wo.J) +J —wol —J
= W(wo.J) —wod = W*(wo, w) . (10.20)
Because

w* 5 (wo,J) + & Wa(wo.J) + ... (10.21)

every W, in particular, Wy, is also a periodic function in wy:

+o00
Wi(wo.J) = D Ce(J)e?™ (10.22)

k=—o00

Consequently, dW;/dwy in (10.19) contains no constant term. If one now aver-
ages (10.19) over one period wy of the unperturbed problem, one gets

E\(J) = Hi(wo.J) . (10.23)
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because the average over the derivative of the periodic function (10.22) vanishes. If
we then insert the expression for E;(J) in (10.23) into (10.19), we have

W1 (wo, J)
Vo =

. _ [Hl (wo.J) — Hy (wo,J)] — _{H)}. (10.24)

Here, the right-hand side is known, and we thus get a linear partial differential
equation with constant coefficients for W;. Note that averaging the right-hand side
of (10.24) indeed yields zero.

If we now are interested in the new frequency, the knowledge of W; is
superfluous, since we only need (10.23) in

E E H
U:a (J)=U0+88 1(J)Z\)()'i‘f;‘a !

57 a7 a (10.25)

We now come to a few simple illustrative examples and begin by determining the
dependence of the frequency on the amplitude in first-order perturbation theory for
a perturbed oscillator potential,

k 1
V(g) = 2q2+ 6emq‘>, (10.26)

where k = mwoz, and g is the small-amplitude frequency of the unperturbed
oscillator. The Hamiltonian of the problem is given by

2w ma®
b + wyq* +e 7

H=T+YV =
+ 2m 2 6

=Hy+¢eH; . (10.27)
For the unperturbed Hamiltonian we already have found that

Hy = voJy = ;)0 Jo, wo=vot+ Bo. (10.28)
i1

qg= \/ Jo sin(2rwo) , p = \/ma)ojo cos(2mwy) . (10.29)
Tmawy T

According to (10.23), we have to compute

J
T My

_ m m
Ei)=H = _¢°= (

3
6 6 ) sin® (27rwo) (10.30)

In order to determine the average value in (10.30), we recall that

;6 1y o L —ie)© n?
sine = ) (e —e™) = (-
2i 4
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X [1 - e —6e 4 156 — 20 + 15¢™2% + 6™ + 1 - e ]
= _624 [cos(6a) — 6 cos(4r) + 15 cos(2a) — 10] .
Thus we have
sin®e = (—2) (—=10) = > . (10.31)

For the energy correction £ in E = Ey + ¢E), it therefore follows from (10.30) that

3
En="" ( I ) . (10.32)

6 16 \ mmw,

We have been looking for the new frequency,

JdE(J) 5m J?
V= =vy+¢

aJ 32 (mmawg)? (10.33)

If A is the maximum amplitude of the unperturbed harmonic oscillator, then J =
Jo = mmawyA? in first-order perturbation theory. Then (10.33) becomes

1+ 5 em A* N 5 eAt
V =V =
0 32 vy mTmwy O 6472 Vo
or
5 eAt
Ay =v—yy = , 10.34
PEVTOT qan2 (1034)
A 5 A4 A 5 gA*
v_ P (10.35)
Vo 6472 v wo 16 wg

A further example with one degree of freedom is the plane mathematical
pendulum with small amplitude. If / is the length of the pendulum and the origin of
the coordinate system is assumed to be in the suspension point, then the Hamiltonian
reads:

_ 7
- 2mb

[72

2 4
0> ¢
=~ ) - .
omp T8 ( 2 24)

H + mgl(1 — cos p) (10.36)
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Introducing I = ml?, wy = \/ g/l we have

p2 Ia)g2 1
a2 T

H= [03¢* = Hy(H.O.) + ¢H, . (10.37)

We now substitute m — [ and ¢ — ¢ in (10.29):

¢ = \/ Jo sin(2rwo) , p = \/Ia)ojo cos(2mwy) . (10.38)
It wy b4

Now we can express H in terms of action-angle variables and in this manner gain
access to a perturbative treatment:

wo 1 Jé

H="Jy—
2770 24 In?

sin*(27rwo) (10.39)

with
2

eH, = — 2410712 sin*(27wo) . (10.40)

For ¢ we choose (plz, the maximum angle of the harmonically swinging pendulum
(with small amplitude). Then (10.23) tells us that

2

Ei(J) = Hi(wo,J) = —
D=t ==,

sin*(27wwy)
Here, we have
! 3
sin*(27rwo) = / dwy sin* (27T wy) = X
0
since
- 4 (Y i —ia\4 I e 2ia —2iar —dia
sinfa = | (€“—eT) = [e" =667 +6—6e7 + e ]
2i 16
1
= [cos(4a) — 6 cos(2a) + 3]
so that

sin“a =
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Up until now we have

J2
Ei(J) =— .
1 6412¢?
The frequency change results from this as
0E(J) J
Av = =— . 10.41
TTE 3202 (1041)

Since we are determining Av in first order, we can replace J by Jy here: Jo =
(27 /wo) Ey with Ey = Ia)gfplz/Z. Then Jy becomes

Jo = JTIa)qul2 = 2712<p12v01 .

We insert this into (10.41) and get

272 lp?v 2
Av = — 32;212 0 _ —‘fé Vo (10.42)
or
A _ 2
V_VTh_ % (10.43)

Vo Vo 16



Chapter 11
Canonical Perturbation Theory with Several
Degrees of Freedom

We extend the perturbation theory of the previous chapter by going one order
further and permitting several degrees of freedom. So let the unperturbed problem
Hy(J?) be solved. Then we expand the perturbed Hamiltonian in the (WY, J?)-“basis”
according to

HWJY) = Ho(J9) + eH\ (W) JY) + EHa (Wi, JP) + ... . (11.1)
We are looking for the generating function of the canonical transformation which

will lead us from the variables (J, w?) to the new variables (Ji, wy). This generating
function is the solution to the Hamilton—Jacobi equation

oW
H(w?, =E(J 11.2
(18- o ) =00 112
with
AW (Wy, Ji) AW, i)
J = k , = k ) 11.3
k awg i a]k ( )

Since we want to solve (11.2) perturbatively, we expand both sides as follows:

H, (aW)+8H ( 0 aW)+82H ( 0 aW)+
Wi Wi,
0 Y U Y 2\ oY
= Eo(Jx) + eE1(Ji) + 2 E2(Jk) + ... . (11.4)

With the expansion of W(wg, Ji),

W (W0 i) = D widi + Wy (Wl i) + W (Wl Ji) + ... (11.5)
k
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W, J, oW W
JO = (W"O k)—.lk—i—s RN
owy owy, owy

is valid. We use this in (11.4), where we write

Ho (7)) =Ho(J) + (e

an 23W2) aHO(Jk)

Y Y 0Jx

N 1 (San) (BZHO(Jk)) (Sawl) N
2\ ow? aJ20J? Y T

We again set

IHo(Jx) _ 0Ho )
aJy aJP

_ 0
= .

R=1I

Furthermore, in (11.4) we need

L 0W, OH, (Jp)

eHy (W), JY) = eHy (wy. Ji) + wm®
k

eH, (W, JY) = e2Hy (W), Ji) -

(11.6)

(11.7)

(11.8)

(11.9)

The results (11.7-11.9) are now inserted into the left-hand side of (11.4); by

comparing coefficients in & we get
80 . H()(Jk) = E()(Jk) s

ow
81 . H1 kalk ka l El(Jk) s

e K (wg,Jk) + Xk: v,? ng = Ez(Jk) )
with
oW, 0H, (Jx)
awg 8Jk

1 0W; 9?Ho(Ji) aW,
2 0wd 0, owd

K> (Wi, Ji) :=Hs (Wi, Ji) +

(11.10)

(11.11)

(11.12)

(11.13)
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As in the previous chapter it can be shown that every W; is a periodic function in
every wY argument:

Wk? Jk Z Z B(l) Zﬂi(jlw(l)+...+j/vw}({,) . (1114)

J1- jzv
JN=—00

The derivatives of W; with respect to wg have no constant term, so that, after
averaging over a complete period (w(l) e w?v) of the unperturbed motion, we obtain
the following system of equations:

Ho(Jx) = Eo(Jx) . (11.15)
Hy (WY Ji) = E1(Jx) . (11.16)
K> (W0, k) = Ea (i) (11.17)

If we insert (11.16) into (11.11), and (11.17) into (11.12), we get

ZUEaWS :—(Hl—l'_ll) —- —{Hl}, (11.18)
Pt owy
or
N
Zv]?an _ (Kz —I_(z) —. —{Kz} ) (11.19)
P owy,

From this, W; and W, can be (_ietermined. According to (11.13), we need to know
Wi in order to calculate K, or K,. Since W, is periodic in wg, it holds that

+o00
i 0 -
Wi= D B, ettty (11.20)
Jlsemn JN=—00
Correspondingly,
W = e
> 3 0= 2 Gy (i) ettt (11.21)
= Mk =
JlseesJN
Ji70
— (1) 0 27i(jiw 04 +jvw )
20) B v Jk ZJkV e N2 (11.22)
Ji€L k=1
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A comparison of the last two equations yields

B, () = 2:3121,13:1]2\),? . i #0. (11.23)
With this, (11.20) gives
1 C}l--:iN(Jk) . N .0
W=, ,ZE; s P [27“;]%} : (11.24)
Ji#0

We have to limit ourselves here to nondegenerate frequencies. The C;, ., should
converge fast enough because for large ji, the scalar product (j - ®°) can
come arbitrarily close to zero. [It can be shown (cf. later: KAM theorem) that,
under certain assumptions for the unperturbed frequencies—these must be “very
irrational”—the series (11.24) converges.] The above series does not, in a strict
sense, converge, and the perturbation theory becomes meaningless. This problem,
“problem of small divisors,” was first clearly recognized by Poincaré. Nevertheless,
one gets in celestial mechanics, for example, very useful results by cutting off
the perturbation series at an appropriate point. The motion of the system is then
determined for finite times only.

Finally we present the frequencies of the quasiperiodic motions up to second
order:

0H oK
! + ¢ 2

_ 0
vi(Jk) = v + ¢ 3, B

(11.25)
We now again consider a few examples, beginning with the linear harmonic oscil-

lator with the perturbation term H; = (ma)g /240)q>. Then the total Hamiltonian
reads:

2 2 2
, W,
H=Hy+et, =" 702405

11.26
w2 T Ty, (11.26)

In terms of action-angle variables we have

Jo .
Hy=wJy, q= - sin(2wo) |
0

so that

mew? Jo 3/2
H = _7° ( ) sin® (27rwy) (11.27)
2g0 \mmwy
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Equations (11.15)—(11.17) then tell us:

Eo(J) = voJ , (11.28)
E\(J)=H, =0, (sif’a=0), (11.29)
Ey(J) = K, (11.30)

with Ky = (dW; /0w®)dH,/dJ, since H, = 0; dW,/dwy = —H, /vy, so that it holds
for K, that

_Hi 0H, 1 9H?

K, = = — .
2 vy dJ 2vy dJ

With the above expression for Hy, (11.27), we then obtain

1 2t 1 ad
K, = — m CZO sin® (Zero) J?
2v9 4qF (mmaw)? oJ
3J? 6
= — sin® (27 . 11.31
4n2mq% ( WO) ( )

We already found the average of sin®(27wy) in the last chapter: sina = 5/16.
Thus we have

_ 1572
EJ) =K, =— , 11.32
W) =K =-_ dmom? (11.32)
from which, according to (11.25), we get the frequency,
157
v(J) =g — & . 11.33
( ) 0 327r2mqé ( )

Now, with gg as maximum amplitude of the unperturbed oscillator, E = (ma)g / Z)q%,
which we can rewrite (in lowest order) as

2.2

mw, w J
040 = vy = e mqy =
2 2 Twy

we obtain from (11.33)

V=Vy)—¢&
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or

Av 15,
= — & .
Vo 16

(11.34)
More interesting is the following example with two degrees of freedom (m = 1):

1
5 i+ oq) + eoor’qlq; (11.35)

1

H=

2
k=

In action-angle variables:

Ho = v)J) + )9 = Ey ,

R 0
gr = o Sin (27wy) .

ka
0 0] .2 0\ o2 0

H, (wk,Jk) = 72 JiJ> sin (27”"1) sin (27rw2) ,

(11.36)
E(Jx) = Eo(Jt) +¢Ei (L) . Ei(J) = Hy (W), J)
0,,0
= V(I)Jl + Ug.lz + 86217;2 JiJo
=007 + 000 4+ v, (11.37)

The frequency spectrum of H; is (« := 2zxw!, B := 27n))

Hy = 4v{v)J1J, sin® (2zw!) sin® (2rw)

4
1 0 .0 2 -0 .0 2
— 4])(1)])3]1]2 ( (eZmWI _ e—ZmWI) (e2mw2 _ e—2ﬂ1W2)
2i

1 . . . .
4v?v§]1]2 (ez”" -2+ e_zw‘) (ezlﬂ -2+ e_zlﬂ)

iv?vghb [e2i(a+ﬂ) _ pelier | Q2ie—p)
—2e% 442

4 QliB—a) _ 2 | e—2i(a+ﬂ>] ) (11.38)
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With

1 o K
Hy — U?vg.h.]z = 41)?1)8]1]2 ZHlmn e2milmw+mw)) {Hl} (11.39)

in comparison to (11.38) we obtain

Hip=Hpo2=H-pn=H-2=1,

Hipo = Hi—20 = Hio-2 = Hipp = 2. (11.40)
All remaining Hy,,, are equal to zero. Since H =v v2J1J2, (11.39) tells us that,
in accord with (11.18), H; — H, = {Hl} is the oscﬂlatlon part of H;. The latter

vanishes when averaging over one period.
According to (11.18), it holds that

St =

=1

>~

so that

3 W _ vl 00012 3 Hypyy 2103 (11.41)
k=1 mn

Then, with help of (11.21) and (11.24), it follows that

eZni(mw(l) +nwg)

1 1 Hium
Wi = — v
! 27ri( 41212)% mv) + nvd

v 0,0 07,7, ( 2T +2w9) _ o—2mi(2n{+209) N )

8mi 21)? + 21)3

v [ sin[dm(w] 4+ w))]  sinfdrw (W) —w))]
B 8r v? + vg v? — vg

2 sin(47w? 2 sin(47w?
+ (dmw?) + (4rw) + } .

0 0
Yy )

(11.42)

Atresonance v? = vg the procedure naturally fails. Incidentally, higher perturbation

terms W;, i = 2 produce even more critical denominators. But we know that the
formula (11.24) diverges in general.

As another example of the application of canonical perturbation theory in more
than one dimension, we consider a charged particle in a homogeneous magnetic
field. In addition, an external “electrostatic” plane wave should act on the particle;
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i.e., we want to assume that the interaction of the particle with the magnetic part of
the electromagnetic wave is smaller by v/c, so that we can neglect its contribution.
Then the Hamiltonian of the unperturbed problem is:

1 2
Hy = Ho(r.p) = (p — iA(r)) . (11.43)

The canonical momentum is p = mv + (e/c)A. We choose the vector potential for
a homogeneous magnetic field By in z-direction in the form

A =—-Byyx, B=By. (11.44)
This choice of A emphasizes the y coordinate—contrary to A = Boxy, which also
leads to a homogeneous By field in z-direction.
Our next goal is to transform the variables g1 = x, g» = y, px, p, into “guiding
center coordinates.” These are

Q=(.Y.Z=2), P=(Psy,mRX,P.=p,).

Their dependence of the old cartesian coordinates is defined as follows:

X Q X
¢>=arctan|:p tom y}, y=—" | (11.45)
Dy mS2
.« + m2y)? + p? .
P¢=(p ) Py xoxy P
2ms2 ms2

That these variables are canonical can easily be proved by computing the Poisson
brackets:

dp Py 0P, 09
sP - - == 1 ’ Y’ QX = 1 ’
it ‘f’}qi,pf Z (qu dpi  9q; Op; omx]

i=xy

(.Y} = (§.X} = {Py.Y} = {Py.X} = 0.

The generating function for the canonical transformation (g;, p;) — (Q;, P;) is of
type Fi:

Fi =Fi(q1.92.01.Q2) = Fi(x,y.¢.Y) ,
where Q1 = ¢ and O, = Y are the new canonical coordinates. Here, too, we

emphasize the Y coordinate in F, reflecting the presence of y in the gauge (11.44).
The explicit form of F is given by

Fi=m@[}(g: - 02) cot 01— 910:] . (11.46)



11 Canonical Perturbation Theory with Several Degrees of Freedom 149

Here, £2 = eBy/mc is the cyclotron frequency, and (X, Y) specify the origin of the
circular orbit of the electron. The direction of motion is clockwise if we choose
e > 0, By > 0. Then, the following formulae are obvious:

x=X+opcos ¢, Uy =X = —pf2 sin ¢ = —v] sin ¢,
y=Y—psin¢, Vy =y =—0§ cos $ =—vy cos ¢,
=2, v.=:=2.

From this, it follows that
tan¢ = oy = Vi +32 = 082
vy

2 2 2

vlzvf+vy2.=v —v; = const. = (02)° .

The transformation equations associated with F are:

oF; oF, .
. Pi=—_ ., i=12.
90

The various partial derivatives are then given by

oF
=y ' =m0,
q1
e = —mRY (11.47)
oF
p= ' = m2(q2 — 02)cot O :
q2
py = m2(y — Y)cotp (11.48)
aFl ms2 2 1
P =- = — :
1 20, ) (g2 — 02) sin® 01
ms2 1
Py = —-Y)? 11.49
6=, 0=D sinZ¢ (11.49)
oF
Py=—_ ' =m2[(g2— 02)cotQ +q1] :
00>
Py = m2[(y — Y)cot¢p + x] . (11.50)

We shall now use Eqs. (11.47)—(11.50) to express the new coordinates (¢, Y, Py, Py)
as functions of the old coordinates (x, y, py, py) and in this way justify the formu-
lae (11.45). It follows from (11.47) that

Px

Y=— .
ms2

(11.51)
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If we insert (11.48) into (11.50), then we can write
Py =p, + mfx . (11.52)

Finally, it follows from (11.48) that

cotp = Py = Py
mQ(y —¥) G mRy — (—pe/m)]
or
' 5 Q
cotp = Py : ¢=arctan[p o y} . (11.53)
px+mS2y Py
The results (11.51) and (11.53) can now be inserted into (11.49):
ms2 Dx )2 Py g
Py = 1
’ 2 (y+m9) |: +(Px+m.§2y)
or
P, = (px + mS2y)* + p2 _ (mvy)? 4 (mv,)?
¢ 2mSs2 2ms2
1 1 mv? mc
= mRo = L= : 11.54
,0T =, o P ( )

On the other hand, we also can express (x, y, p, py) as functions of (¢, Y, Py, Py):

(A7) :  p.=-mRY, (11.55)

2Py .
(49) : y=Y=+ sin ¢ . (11.56)
ms2
Choosing the minus sign,

y=Y—osing. (11.57)

P
(50):  x= ' —(y—Y)cotg
m.Q N ———
=(57)

P
= ' yosing=X+osing. (11.58)
ms2
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Let us keep in mind:

2P,
= o(P,) = , 11.59
0 = o(Py) \/ P (11.59)

PY p}
= = 11.60
ms2 (52)x ms2 ( )

Finally, (11.48) and (11.57) yield

py = mRo sin ¢ 5 V/2m2P, sin ¢ . (11.61)

Now we return to the Hamiltonian (11.43) with the vector potential (11.44):

1 2
Ho=, [(px +mS2y)” +p; +p§] ) (11.62)
The equations of motion read, accordingly, (§; = 0Ho/dp;, pi = —0Ho/9q;):

mvy =py +mfy, py=0, p, =const.,

muvy = py ,

mv; = pz, p. =0, p, =mv, = const. = P,

Now, according to (11.54) it holds that

1
QPy =, [(px +mQy)’ +p§] :

So we have for the Hamiltonian in the new variables

2

1
Hy(Py.P;) = 2Py + mP§ =H, + (11.63)

Z
2m

2
Here, no external time dependence appears; the momenta J; = P, and J, = Py
(= m£20?/2) are our new action variables. With this new Hamiltonian we get for
the canonical equations of the variables (Y, Py, ¢, Py, z, p.):
YZPY=P¢=[72=P7=O, H()ZO,

thus {Y, Py(= m$2X), Py, P} are all constant. But it holds that

dH,

¢ = " = 2 = const.
0Py

Z:Z:pz EPZ
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So the guiding center coordinates of the particle trajectory (X, Y) with X = Py/mS2,
the transverse energy §2Ps as well as ¢ and the longitudinal energy P? /2m are
all constants of motion. They are, therefore, the appropriate variables with which
to set up a perturbation theory. A small perturbation term ¢H; will then make
these quantities slowly change. As an example of a perturbation, let us consider
a propagating “electrostatic” wave with the amplitude ¢y, frequency @ and wave
vector k, which lies in the y-z plane:

Hy =ep(y,z,0), ¢ =gosin(kz+kiy—wr), (11.64)
E=-V¢.
With

y=Y—-osing,

2P
o(Py) = \/m;; ;

we obtain with (11.63) and (11.64) the time-dependent Hamiltonian,

2
H=Hy+¢eH = 51 + 2Py + sedosin(k.z + k1Y — k1o sin ¢ — wi)
m

(11.65)

=H(¢.Py.Y.z.p:s1) .

But Py(= m$2X) does not appear in (11.65). Therefore, Y is a constant, as is
k1Y. We can then eliminate the k; Y in (11.65) by choosing the origin of z or
t appropriately. Since, furthermore, the two variables z and ¢ only occur in the
combination k,z—wt, we shall try to eliminate the time by means of a transformation
to the wave system. Thereby, the following generating function is of help:

Fy(q1.q2. P1. P2;t) = Fa(¢.2, Py, P2 1)

Here we put g1 = ¢, g¢» = z, P = Py, P, = P, and begin with the generating
function for the identity i P1 = ¢Py:

F,=q P + (kZZ—a)l)Pw
or

F) = ¢Py + (kz— wt)Py . (11.66)
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The transformation equations then yield, together with (11.66),

oF, oF,
=Py = ) = = kP 11.67
p¢ [ 3¢ pZ BZ Ly ( )
— _ aFZ _ . an _
Oy =¢ = 0P, Oy =Yy = 0P, 22— Wt . (11.68)

Thus the combination of two variables, z and ¢ in k,z — wt is replaced by one
variable, .
Finally, our new transformed, time-dependent Hamiltonian reads:

0F,
Hpew = Hola + 3 = old_a)Pw
t
or
kP’
H= ZZ v _ wPy + 2Py + gegy sin(y — koo sin ¢) = E = const. (11.69)
m

The last term on the right-hand side with sin ¢ and o(Py) indeed represents a highly
nonlinear perturbation. This causes many resonances, which is immediately clear,
when one considers that (J,, Bessel functions)

+o00

sin(w — k10 sin ¢) = Z Jn(kJ_Q)Sin(l// —ng) . (11.70)

n=—00
Accordingly, the Hamiltonian in question reads:

K2p2
H= ;mlﬂ — WPy + 2P + ey Y Ju(kLo) sin(y —ng) . (11.71)

We have already pointed out (cf. discussion on convergence of the perturbation
series) that it is necessary to stay away from the unperturbed frequencies; the Fourier
amplitudes (J,,(k1 o)) of the nth frequency will then vanish more rapidly than the
next resonating denominator.

In order to obtain the resonances between the unperturbed frequencies caused by
H,, we first need those frequencies. Now it holds for ¢ — 0:

_ (kzplll)z

H
0 2m

— 0Py + 2Py = H(Py, Py) . (11.72)

Note the nonlinearity of Hy in Py . The P’s are our new action variables; i.e., J; and
Jy are constants. Their conjugate angles develop linearly in time:

0H,

op, =" 0i=wit+ Bi . (11.73)
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(Note: At this point we re-define our action variable, i.e.,

J= ! 95 d oH (11.74)
= R w = . .
o PP a7

We hereby adopt Lichtenberg and Lieberman’s notation.) Then it holds that

0H,
@ = g P, 2 ( )
and
0Hy, K k.p.
wy an m v — @ & m w U, — ( )

The perturbation (¢H;) contains terms in the form sin(y» — n¢) and can thus lead to
resonances between the frequencies wy, (Doppler-shifted frequency of the incoming
wave) and the various harmonics of wy. This occurs when the following resonance
condition is satisfied:

V—np =0y —nwy =y —n2 =kv" —0-n2=0,neZ. (11.77)

v, is the particle velocity. So there is a set of resonant parallel velocities {vy') } if
k, # 0. The resonance condition contains two interesting limiting cases:

@ k=0: wy=-w: w+n2=0, 2= . (11.78)

The nonlinearity only enters via the perturbation. This case is called perturbation
with intrinsic degeneracy. While (a) does not contain the particle velocity, it shows
up in the case of an degeneracy:

) k2Py
b) k#0: kv =w+n2=
’ m
or
(n) (n)
m muv; Pz
J=P, = 2) = = 11.79
v © (w + mS2) k. N ( )

We shall return to this case in a later section.
Right now we consider case (a), i.e., orthogonal wave propagation (k, = 0),
where it is assumed that we are staying away from the “primary” resonances as
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defined in (11.78). Now we use (11.18):

2
OHo oW, =N
2o ow) (Hy —H) = —{H,} . (11.80)

where {Hl} denotes the oscillating part. Now, according to (11.75, 11.76),

aH() aHO
= (,()1// = —Q . = C()¢ = Q
P, P,

so that altogether it holds that (W) = W, (V. ¢.Jy. Jy))

ow ow -\ .
—o awl +Q 8(}51 = —egyo ;Jn(klg) sin(y — ng) . (11.81)

Here, 0 is a function of the new constant action variables Py = Js. The partial
differential equation (11.81) for W, can be solved easily:

Wi = —edo > (k1) Slgﬁ;g‘p) (11.82)
because
o™ = ey S (ki) Y D)
aw = 0 - n\KLO © + nf2
and

oW _ sin(y — ng)
2 a¢1 - _equXn:Jn(kJ_Q)n.Q oing

Adding the last two equations indeed yields (11.81).
W, is part of the generating function W, which takes us from the old action
variables Py, Py to the new constant ones Py, Py :

W=Wy+eW;+....

Here, W, is the generator of the identity transformation; p; = dW(qg;, P;)/0q;
becomes
- oW,
Py =Py +e¢ + ... 11.83
v =Ly oy ( )
- oW
Py=Py+e .  +... . (11.84)

¢
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Thus, if we stay away from the primary resonances (w + nf2 = 0), then we get in
first order

Py =Jy = Py — eedy Zn:Jn (kL0) snzsli;gq&) = const.
- - _\sin(y — n
Py =Jy = Py + cedy Xn:an (le) afl/_fi_ n9¢) = const.

with g(Py) = \/ 2P,/mS2. The Py, P4 are constants. This was the intention of the
canonical transformation W.

describes the change (oscillation) of the Larmor radius in the vicinity of a resonant
trajectory.



Chapter 12
Canonical Adiabatic Theory

In the present chapter we are concerned with systems, the change of which—with
the exception of a single degree of freedom—should proceed slowly. (Compare
the pertinent remarks about & as slow parameter in Chap. 10.) Accordingly, the
Hamiltonian reads:

H = Ho(J.epi.eqi; et) + eHy (J. 0, ep;, eq;: 1) . (12.1)

Here, (J, ) designates the “fast” action-angle variables for the unperturbed, solved
problem Hy(¢e = 0), and the (p;,g;) represent the remaining “slow” canonical
variables, which do not necessarily have to be action-angle variables. Naturally, we
again wish to eliminate the fast variable 6 in (12.1). In zero-th order, the quantity
which is associated to 6 is denoted by J. In order to then calculate the effect
of the perturbation ¢H;, we look for a canonical transformation J,0,pi,q) —
(] ,0,Dpi,q;) which makes the new Hamiltonian H independent of the new fast
variable 6.
It is only logical to now begin with a generating function,

W(j, Q,ﬁi,qi;l‘) = j@ +[_7iQi + W, (._], Q,I_Ji,qi;l) + ... . (12.2)

To this belong the transformation equations (in first order)

J = =7 =J _ 12.3
90 +¢ 20 +¢ Y ( )
- 0w oWy oWy
0= _ =0+¢ - =0+c¢ , 12.4
aJ aJ aJ ( )
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ow oW, oW,

i = =pite =pi+e ., _ , 12.5
P g =P g TP g, (122
- ow ow oW
Gi= . =q+e, =q+e, . (12.6)
pi pi opi
We insert these expressions into Hy and expand up to first order in &:
Hy = H()(J, Epi, €4, SI)
a7+ oW, 5 oW, _ oW, ,
= € » E\piTé€ , elgi—¢ ;€
0 a0~ T\ oy, T8 o,
- dH, oW, )
= Hy(J, epi, £qi; &t (0] . 12.7
0( &pi, €q 8)+ 97 J_js 90 + (8) ( )

=w

w is the fast frequency corresponding to 6. Note that in (12.7) we have omitted the
following terms, since they appear with &2:

0Hy, oW 0Hy, oW
_ oo Lo ! (12.8)
9g;  Ip; opi  9g;
N—— N——
=W, /op; =W, /0g;
Now it holds that
- oW
H=H-+
ot
or
~ - = aijev _i7 _i; t
H(J.0,epi, eqi; 1) = H(J, 0, epi.eqiret) + & (aﬁqu)
&
or
H()(j, 8]_)1',8éi;€t) + gﬁl(jv évgﬁivgéi;gt)
_ oW,
=Hy(J, ep;, €q;; €t) + € + eH 12.9
0] 0( P, &4 ) @ 06 ! ( )
=Jo
—_—~—
a[ Wo +8W1+]

te d(et)

Since W, has no external time dependence, the last term on the right-hand side is
second order in ¢ and is thus neglected. A comparison of coefficients of ¢ in (12.9)
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then yields:
e Ho(J, epi,eqiet) = Ho(J, epi, £; et) (12.10)
=0+..
oW (J, 6 )
e I:Il(j’evgﬁi,séi;et)zw 1 ’39 ) g

AW, 0, epi, Gi; £t) N

iy Hi(7.0,epi,eqiiet) . (12.11)

We now write (12.11) in the form

o Wi (J.0,..) T T
Hi(J.0,..)=0w l(aé )+(H1—(H1)§)+(H1)§ (12.12)
with
2 _
H); = Hydf
( 1)0 27 o 1

Then H; becomes a function which only depends on J and not on 6. if we choose
W, so that

wa;gl +{Hi}; =0. (12.13)

This differential equation is immediately solvable and gives for W;:
1 6
W =— / {H:},d0" . (12.14)
@ Jo

Here, we have replaced 6 by 6. So we finally get from (12.12)
Hi(J,...) = (H)g (12.15)
and, altogether:
H(J, epi, £Gi; et) = Ho + e(H)g . (12.16)

The old adiabatic invariant was J. Now the new (constant) adiabatic invariant is
called J and is related with J to first order according to

_ W
J(J,6,epi,eqiet) =J —¢ ael : (12.17)
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J varies slowly now with 6:

J= 7 +€8W
= const.

- H
1 _ ]—g{ 1o , (12.18)
(13) w

At this point we return once again to Poincaré’s “small divisors”. These were
responsible for the fact that our perturbation series for W did not converge. These
small denominators are present in the problem under discussion as well, which can
be seen immediately if we do not neglect (12.8) and W /9t in (12.9). Then, instead
of (12.13), we get

oW,

Wi oW
w - +ewp
ot

IW,
"oy ' +{H);=0. (12.19
90 aeq) T a(eq tHijs =0. (12.19

1
+...4+¢
2)

The (p;, g;) are to be understood here as action-angle variables (J;, 6;). The solution
to (12.19) can be immediately written in the form of a Fourier series if we take into
account the fact that W, and {H, } ; are periodic in the 6’s and £2r:

H mn jv_i
Wy =i Z 1ktmn...(J Di)
S~ ko + e(mwy + nw, + ...+ 182)

k#£0

« ei[k§+s(mc_11+n212+...+19t)] ) (12.20)

One can tell by the denominator that even for small w;, £2, which belong to the
slow variables, resonance behavior can occur between the slow and fast oscillation
(w) if the integers m, n... are large enough. We are not permitted to neglect the
terms of the order ¢ in (12.19) in sufficient proximity to the resonances. It is thus
not surprising that the adiabatic perturbation series for W, which neglects these
resonance effects, can only be asymptotically correct and thus formally diverges.

To illustrate the above perturbative procedure, we calculate in first order the
adiabatic invariant of the slowly changing harmonic oscillator,

H=1G)p* + ) F(r)q" . (12.21)

with © = er. We again switch to action-angle variables, in order to make the system
accessible to an adiabatic perturbation. To this end we use a generating function of
the Fj-type:

Fi = Fi(g.0.7) = JR(v)g* cot§ (12.22)

with

1/2
®0= (o)
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Now the following transformation equations are valid:

oF
p= ' =Rqcoth, (12.23)
dq
dF; oF, , 1
P=J=- =— = R 12.24
00 ~ 90 27 gin2g (1229
or, solved for the trigonometric functions:
p 2
cot?d = ( ) , (12.25)
Rq
1 2J
i = oo (12.26)
sin‘d  Rgq
Subtraction yields
cos?6 1 1 (p?
Y ) =—1= 2 —-2J
sin“f  sin“f Rg*> \ R
from which we obtain
2
R =2-"",
or, finally:
1 p?
P=J=_|(RS . 12.27
2( e R) (12.27)

Equation (12.26) then reads, with (12.27):

1 1 1 p? P?
=  2/= Rg* + ) =1+
sin20 R Rq2( 7 R (Rg)?

or

1 1 p?
sin’@ ©tan20 (Rq)?

R
0 = arctan( q) ,
p

and thus
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or, solved for g:

2J
= in6 .
q \/Rsm

If we now use (12.25), then it follows that

cos?6 _ P’ . P’R
sin0  R2g% (28) R22J sin%6
or

p = +2RJcosb .

Finally, it holds for the new Hamiltonian that

Hoow = Hoa + 1 =gl + 1!
new — Iold 9 = o a

So we still need dF, /dt:

oF;
ot

l1,p , 1FR

1,

cot(A)e OR(z) /0t = £
2q ©) - (.v)_/ - (25) 2q Rq
=R'(v) (28/29)

/

1 R 1 R
e 2Jsinfcosf = e Jsin(20) .
2 R 2 R

So the Hamiltonian transformed to action-angle variables reads:
H = wyJ + 51 R/Jsin(29)
2 R
with
(1) = (FG)'/?.
In lowest order the adiabatic invariant is simply

0
J = = const.
wo

R = ¢
2RI

(12.28)

(12.29)

(12.30)

(12.31)

(12.32)

(12.33)

(12.34)
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This result is familiar to us from Chap. 10. In order to see how this quantity changes
if we use adiabatic perturbation theory to order &, we use (12.18):

- H 1 R
J=J+e{ 1}9:J+£ Jsin(26)
w 2wo R
= J(l + eP(7) sin(29)) = const. (12.35)

with
/

P(r) = .
(T) ZwoR

Accordingly, J changes in first order with a small component, which oscillates with
twice the frequency of the fast variable.

We now want to verify that J indeed is constant. In order to do so, we take the
time derivative (6 = wy)

i] = J + ePJsin(20) + 2woePJ cos(26) + O(&?) . (12.36)
On the other hand, it follows from (12.32) that
J=— = —8; I;JZ cos(20) = —ewoP2J cos(26)
so that (12.36) reduces to

J = ePJsin26 . (12.37)

However, since P(t) is supposed to change slowly (adiabatically), i.e., P~ gP, it

follows from (12.37) that J is of the order £2; then J is indeed an adiabatic invariant
of first order.



Chapter 13
Removal of Resonances

From the perturbative procedure in the last chapter we have learned that in the
proximity of resonances of the unperturbed system, resonant denominators appear in
the expression for the adiabatic invariants. We now wish to begin to locally remove
such resonances by trying, with the help of a canonical transformation, to go to
a coordinate system which rotates with the resonant frequency.

Let the unperturbed, solved problem with two degrees of freedom be given by

2
Z P+ 0lq}) (13.1)

The transition to action-angle variables J;, 0; is achieved with the transformation

2J;
qi = \/w COSQ,’ , (132)
pi = _\/zwi-]i sin 9,‘ . (133)

These formulae agree with (10.28/10.29) in so far as we have replaced 0 by 6 + /2
there. This corresponds to a simple phase change in 6; = w;t + f;. Furthermore, it
holds that J; = (1/27) ¢ p; dg;. Thus we can write (13.1) as

0H,
Ho(Ji) = o1y + wala,  w; = Y (13.4)
i
Let the perturbation term be given by
Hy = qiq2— 345 - (13.5)
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and let us assume a 1:2 resonance between w; and w,, i.e., that oscillator 1 is slower
than oscillator 2. Then our complete Hamiltonian reads

H=)p+p3)+ 4 +26 +dia— a3 (13.6)
with
=1, w=2.
The resonance of the unperturbed frequencies,
wy/wy =r/s=2/1, (13.7)

leads to divergent expressions in the perturbative solution of the problem. We shall
therefore attempt to eliminate the commensurability (13.7),

ro; —swy, =0, (13.8)
by making a canonical transformation to new action-angle variables i, 0;, so that
only one of the two actions J; appears in the new, unperturbed Hamiltonian. In order
to do so, we choose the generating function

F, = (}’91 —S@z)jl + 92.}2 . (13.9)

The corresponding transformation equations then read

Ji = ?3512 =rly = 2], Iy = 3N
N N A R : R (13.10)
=42 =Th—sh=Jh-1J L=+
él = ?512 :}’91—5‘92:291—92 @1 = él;éz
N oF : (13.11)
— 2 — A
92_8?2_92 92:92.

This choice of coordinates puts the observer into a coordinate system in which the
change of 6,

0, = 16, — 56, = ro; — sws (13.12)
measures small deviations from the resonance (13.8). For él = 0, the system is in

resonance. The variable 0; changes slowly and is, in the resonant case, a constant.
Thus 6, is the fast variable, and we shall average over it.
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One should note that the new Hamiltonian is now actually only dependent on

a single action variable, i.e., J>; J| does not appear:

A A ~ wy
Hy = 2J Jro—Ji) =

0(10)w1( 1)—}-(02( 2 l)(7) )
The perturbation term is then

g
3
q;

€H1 = EQ%CQ — 3

201\ (24:\"? 205\
:e( 1) ( 2) cos?fcos B, — ¢ ( 2) cos’6, .
2) w1 wy 3\ w

The product of the cosines is

_ 13 (ei91 4 e—191)2(ei92 + e—i@g)
2

_ é(eziel 124 e—2i01) (ei02 + e—iGZ)

cos?0; cos 6,

_ 1[ei(zol+02) 1 e @01 +0) | (i201=62) | o —i(261—6))
8
+ 2(6192 + e_wz)]

an 8

1 A R R N
=, [cos(61 4 26,) + cos 6 + 2cos 0] .
Likewise, for cos®6s, it holds that (recall 8, = éz):
cos’h, = é(eﬁe +e B30 4 36l 4 36_192)

4 [cos 36, + 3 cos éz] )

We then have for the frequency spectrum of H;:

21\ (2,\7*1 .
H, = ( 1) ( 2) . ZHZm il +mb2)
Im

w1 w3

12V -
_ Hm e1(191 +mb)
3 (w2 ) 8 %; !

(2.71) + (02(.72 _jl) = a)z.}z .

(13.13)

_ 1[ei(é1+2éz) +e—i(él+2éz) + eiél + e—iél + 2<eiéz + e—iéz)]
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with

Hy =H_o =Hy_y=H_5 =Hp=Hyp3=1,
Ho = Ho—1 =2, Hy =Ho—1 =3.

The complete Hamiltonian can be written in terms of the new hat variables as (J; =
201, =0 =)

VI A 4 2\~ .~ . 1/2
H(Jhei) =wyJr+ ¢ 2.]1(.]2—.]1)
wr wr

X i [cos(él + 2@2) + cos él + 2cos éz]

3/2 R A
€ ( 2 ) (7, —jl)S/Zi[cos@@z) +3coshy] .

3(1)2

If we now average over 6,, we obtain the dependence on 6;:

R A A N1)2
_ 8\ (20,-7 A
el = ¢ ( 1) ( (2 1)) cos f; . (13.14)
4 wr wy

Because aﬁl/aéz = 0 and of course 81:10/892 =0, jz is proved to be a constant—
up to averaging over the fast angle:

]2 = ]20 = const. (13.15)

Altogether our new Hamiltonian now reads

H= I:Io(jz) + 81:11 (.71,?2, él) (13.16)
. N 20T A
=wJp + 26" \/ (2 =J0) cos b . (13.17)
w? w7

Because of (13.10), it holds that
n s
J, =J, + J; = const. (13.18)
r

If, therefore, s > r—which means a primary resonance of high order—then J; also
becomes (almost) a constant.

After having transformed away the original (2:1) primary resonance, we can now
study, in the usual manner, the motion that H (13.17) implies: one determines the
singular points, analyzes their characteristics, etc. It is remarkable that since I =
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const., the problem has become one-dimensional and therefore integrable: H =
H(J1, 0:). Closed (periodic) trajectories can occur, etc. In the generic form

H = const. + 28/’1(.}1) cosél (13.19)

the stationary (fixed) points can be located in the Ji— él phase plane:

A 0H A 0H
0,="" =0, n=-""=o (13.20)
aJ, 00,
or
oh L
268] cosfy =0, —2eh(Jy)sinf; =0. (13.21)
1

The “elhptlc” fixed pomt is given by Ji0. 910 = 0, while the “hyperbolic” fixed point
is given by Jio=0, 910 = =£. These singular points then determine the topology
in phase space.

For (13.19) we write

AH = 2¢h(J;)cos 0, (13.22)
and expand around the elliptic fixed point (j 105 élO =0):
Al =0 =T, A6 =0,—b6=46

cos él =1- é(Aél)z +

Then
Al =2en(0y) (1- 5(46,)°)
= 26h(T)) + ) (—2¢n(01)) (46))°
and with
oh , ~. 1 9%
h(7\) = h(J L (AL + . . (A
() =hu)+ gt (an)+ 5 ol (an)?

neglecting the unimportant constant term h(} 10), we get the standard Hamiltonian
for the harmonic oscillator,

AH = 1G(A1)? + LF(46,) (13.23)
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with

3h(J .
G200 g —28h(T10) . (13.24)
aJ3,

The frequency of the Ji— él-oscillation in the proximity of the elliptic fixed point
is [compare (12.21, 12.33)]

&1 = (FG)'? = 0(e) (13.25)

and the ratio of the semiaxes of the ellipse reads

AJ F\'?
! =( ) =0(1) .
A6, G

We conclude this chapter by again considering the resonant particle-wave
interaction which was introduced at the end of Chap. 11. However, we first begin
with the case in which no external magnetic field is present; i.e., we consider the
one-dimensional motion of a charged particle in presence of a plane wave field.
Let the direction of the particle and the direction of propagation of the wave be the
positive z-axis:

»
H= ’; + sedpy sin(k.z — ot) .

2
With
Fy(z.Py) = (kz— 0t)Py
an an

= :kP . = — P N
Pe= g TRV TN
oH
= = _C()t,
14 op, Z

we get a new time-independent Hamiltonian:

OFy  (k:Py)?
d  2m
=: M + gedpsiny .

H— % =H+ — wPy + gedo sin Y

From the nonlinear free Hamiltonian % = (k.Py)?/2m — wPy we find for the
frequency

oA _KPy .

k. —
Py m m @

=0y =
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or
Wy (vz) =vk,—w,

where v, is the particle velocity. Resonance occurs if the particle velocity is equal
to the phase velocity of the wave:

®m_®
v = .
Z kz
From the equation of motion
. 0
Py =— oy = —ge@y cos Y
and with
K. K?

= Py =— “gepocosy
m m
and a simple change of phase, ¥ — ¥ — /2, the pendulum equation follows:

N
Y+ ‘eegosiny =0

m

or
1/2
. &
V + wlsing =0, wbzkz(e%) .
m

In linearized form we get v/ + w?y = 0. Here we can see that wy is the frequency
(for small amplitudes) of the electron trapped in the wave. For this reason, wy, is
called the “bounce” frequency. The amplitude of the wave must, however, be high
enough. We can determine just how high by calculating the width of the separatrix.

In order to do so, we linearize .77 in the neighborhood of the resonance vy) :

w
vzzvir)—i-AvZ:k + Av, ,
Z

. w
V =0y =vk—w= (k +sz)kz—a)= (Av,)k. .

Z

The Hamiltonian then becomes

H — AH = él‘ﬂz—a)gCOSI//
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or
AN = ékzz,(AUZ)z —wycos Y = éG(sz)z —Fcosy .

From this we get for the width of the separatrix:

F 12 Wp €e¢)() 12
(sz)max=2(G) —2% :2( m ) .

(Av)max 1s the maximum “oscillation amplitude” of the particle trapped in the
wave. Particles whose velocity differs from the phase velocity of the wave, w/k,,
by less than the trapping velocity, 2(geg/m)'/?, may be trapped into orbits and
then oscillate with bounce frequency k.(geg/m)'/? around the phase velocity
w/k, = vy). This periodic colliding of the particle with the potential wall of
the wave (Landau damping) limits the energy transfer of the wave to the resonant
particle.

The situation changes drastically, however, if we now apply a magnetic field.
Let us recall that it was not possible to find adiabatic invariants with the aid of
perturbation theory because resonant denominators appeared. We therefore now
wish to apply the procedure developed at the beginning of this chapter to remove
the resonances locally. In doing so, we must distinguish between two cases: (1)
oblique wave propagation k; # 0 (accidental degeneracy) and (2) right-angle
propagation k, = 0—with respect to the direction of the magnetic field. The latter
case corresponds to intrinsic degeneracy.

1. For k; # 0, accidental degeneracy occurs if the resonance condition (11.79)
is satisfied; this is satisfied for a series of n values for particles with different
z-momentum. We now choose a special resonance n = [ and transform again to
the comoving system with the following generating function:

Fy= (¢ —lp)Py + Py . (13.26)

With this F, we obtain the following transformation equations:

A an ~ 3F2
v ¢
oF A dF A A
Py = a; =P,, P,= a; =P, —1P, . (13.28)

Then (11.71) yields the new Hamiltonian:

2
B=" P 0@, —1p,) - wb
Tom ¥ ¢ 14 14

+eedy Y Ju(kLo)sin[fy — (n— D] , (13.29)
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where

L. 2Py \'? 2\ .
Q=Q(P¢’Pw)=(m{;) =(m9) (By—1Py)* . (1330)

Iﬁ is slowly changing, so we average over the fast phase ¢3 According to (13.29),
only the term n = [ survives. Then the averaged Hamiltonian reads:

_ k2 5 R . R . )
H= 2;1P"’ + 2(Py — IPy) — Py + cegJi(kpo)sin

—U+r/2
R, .
=, Pyt 2(Py — IPy) — wPy + sedoJi(kpo)cosyr . (13.31)
Since H is independent of <;§, the associated action is constant (up to averaging):
Py =Py + 1Py = Py, . (13.32)
The fixed points can be found, as in (13.20),
Yo=0, =L, (13.33)

and if we replace J, by Py, in (13.20), we obtain with H of (13.31)

0H k2 . /Po=0 aJ(k
S =00 P iR—w=  F ey ko) 33
an m 1?/0/=:|:7z aPW

where, according to (13.30), o depends on the actions P¢ and P,,, Equa-
tion (13.34) implicity determines P,,,O If we now linearize again in P,,, but not in
Ip we get the standard Hamiltonian of a pendulum (13.23) with

k2
G=* (13.35)
m
and
F = —Seqﬁojl(kJ_Q()) . (1336)

In the proximity of the elliptic singular point, it holds for the (slow) frequency of
the perturbed motion that

y = (FG)'* =

5 1/2
£€¢0J1kz (13 37)
m .
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The maximum Aﬁw (the separatrix) is given by

20,

Ai) max —
v G

(13.38)

Both @y and Aﬁv, are proportional to /e. From (11.79) follows the distance
between neighboring resonances:

mS2

§Py =

(13.39)

Finally, the ratio of oscillation width (twice the half-width) to the distance
between neighboring oscillations is, according to (13.78/13.79),

2AP 46
om0 (13.40)
8Py 2
2. We now come to the intrinsic degeneracy. For this case, k; = 0in (13.31). We
now expand again in APw and Alﬁ around the elliptical point and get in the
standard Hamiltonian of the pendulum the parameters (13.24) without 2¢ and
h— H:

2
k
G = cey” J’(Ajg‘)) (13.41)
8p2,
F = —Seqﬁojl(kJ_Q()) . (1342)

The corresponding (slow) frequency and half-width are given by

82] 1/2
Wy = (FG)I/2 = 8€¢0 Ji ,\21
9 Vo
N 20
APy = G‘* .

Compared with (13.37/13.38), @y is of order ¢ for the present intrinsic oscil-
lation, i.e., ¢!/2 slower than in the case of accidental degeneracy, whereas the
deviation Aﬁw for the intrinsic degeneracy is of order unity, i.e., £~'/? larger
than for the case of accidental degeneracy.



Chapter 14
Superconvergent Perturbation Theory, KAM
Theorem (Introduction)

Here we are dealing with an especially fast converging perturbation series, which is
of particular importance for the proof of the KAM theorem (cf. below).

Until now we have transformed the Hamiltonian H = Hj + ¢H; by successive
canonical transformations in such a manner that the order of the perturbation grows
by one power in ¢ with every step. After the nth transformation we therefore obtain

eH, — ¢’H, — ... — &"H, . (14.1)

Following Kolmogorov, we can find a succession of canonical transformations for
which the order of the perturbation series increases much faster:

eH, — 2H> — *Hy — ... — &> 'H, . (14.2)
We should now like to establish an analogy between the two procedures. It is based
on the two following methods of finding the zero of a function f(x). We begin

by assuming that the zero is at xo (unperturbed value of the action Jy). The next
improved approximation x; is obtained from a Taylor expansion around xy:

df (x)
+ dx

X=X0

(x—xo) +rem. =0.

fx) = f(x0)

If we neglect the remainder, then we obtain as our first approximation

X0
X1 = Xo — f/( ) (143)
J'(x0)
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In order to establish the error, we consider the first neglected term in the Taylor
series: for this reason, let us define € := (x — xp), and write

f(&) =f(x0) +1 (x0)e + 5f" (x0)e* = 0.

If we subtract from this expression f(x;) = f(x0) +f (xo)(x1 —xo) = 0, then we get
as error

1f " (XO) &2

_ . 14.4
2 F(xo) (149

e =X—Xx =

If we are considering n terms, then we would have to solve the following polynomial
(of nth degree) for x,, in order to determine x;,:

> L) —x0)" = 0.
m=0 "

If we were to now subtract this result from the Taylor series around x(, we would
obtain, after the nth step, an error of

1 (n+1)
ey =X — Xy~ f (XO) €n+1 ) (14’5)

(n+ D! f(x0)

i.e.,
ey ~ "t (14.6)

One should note that in the denominator, the derivative is always taken at xo.
Matters look completely different when using Newton’s procedure. The first step
is identical to that of the foregoing procedure and gives

2 = xg— ] 0 (14.7)

1 (x0)
with the error

el =x—x = a(x0)82 ,

where

(0)_ 1 " (x0)

a(x) = ~5 Fo) (14.8)
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However, the second step consists of an expansion around x; (not xy!) which we
have just found:

f@ =fx)+f () (x—x)+...=0.
Thus, we obtain as solution for x, [unlike in (14.3)]:

_ f(a)
fa)

The error in the second step can now be determined by subtracting the equation

X2 = X1

SE) +f (k) (2 —x1) =0

from

Fle) + 1 () (x—x1) + Zl!f”()cl)(x—xl)2 =0.
Thus

_ 1 f//(xl) (x—x )2
2! f(x1) :

= oz(xl)(ot(xo)ez)2 = ot(xl)a(xo)284 . (14.9)

X—Xp =€ =

Hence, it follows for the error e, after the nth step:

~ . on—i . 2" . )
e l:!(a (vi-1)) & (14.10)

The fast convergence of the Newtonian iteration procedure is evident if we write
er~¢er, ex~et, ex~ed, es~el®, . (14.11)

The reason for this fast convergence (superconvergence) is the fact that at each step,
f(x) is taken at the just previously calculated approximation x,, rather than at x.

This is precisely the procedure used to prove the KAM theorem. Each new
“torus” which was generated by the preceding approximation becomes the
basis of the next approximation itself. Thus we do not generate all successive
approximations—as in the canonical perturbation series—always starting with the
unperturbed torus (J;, 6;), with the Hamiltonian Hy(J;).

We now look a bit ahead: the crux of the KAM theorem (according to Kol-
mogorov, Arnol’d and Moser) is that the process of generating “perturbed tori”
indeed “almost always” converges for small but finite ¢. Thus most of the phase
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space trajectories remain for all times on tori .# of N dimensions and do not
migrate into the entire 2N — 1 dimensional energy hyperplane. But “almost all”
those unperturbed tori found in the proximity of tori whose orbits are closed will be
destroyed. These orbits lie on tori with commensurate frequencies:

wo -m=0. (14.12)

These destroyed tori are precisely the ones which give rise to the famous small
denominators. But we have already seen that for every arbitrary g, there are
“rational tori” which satisfy (14.12). So if we destroy all rational tori and their close
neighbors, are there any at all which remain intact—although somewhat deformed?
Indeed! In order to understand this, and to specify the width of the destroyed regions,
we must concern ourselves briefly with rational and irrational numbers. These are
necessary for the arithmetic of torus destruction.
In the following we consider two degrees of freedom. This is the most simple
nontrivial case. Then for closed orbits it holds for the frequency ratio that
o1 r

w2 N

r and s are integers, and o is therefore rational. A torus with incommensurate
frequencies possesses irrational o and cannot be represented in the form of (14.13).
But one can approximate its frequency ratio arbitrarily precisely by rational o”’s. Let
us take, for example, the number 7:

o =m = 3.1415926535...

with

r 3 31 314 3142 31426
10 ° 100 * 1000 * 10000 """ °

s 1

) ) )

The better approximations contain larger values for r and s. In fact, for each of these
approximations, it holds that

< . (14.14)

But we can approximate irrational tori even better (faster): namely, with the help of
continued fractions. Here are a few examples:

747—12+15—12+ ! =12+ !
61 61 61/15 4+1/15
7 1 1 1 1

10210/7: 1+3/7: 1+7}3 B 1"‘2+11/3'
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For the number 7, matters are more complicated:

141592654
7w A 3.1415926534 = 3 4 10°
=3+ o 3+ !
= o= 8851436
141592654 T 14159654
1 1
=3+ 74 | =3+ 74 |
141592654/8851436 15+8821114/8851436
1 1
T 15 ! T 15 !
+8851436/8821114 +1430322/8821114
1
T =3+ |
7T+ 1

154 1 4 1/201+...
Thus the approximands of the continued fractions read

r 3 22 333 355

T =0 = = s s s yeee .
s 1 7 106 113
—— N N —
3.14 3.141 3.141592

The rational numbers r,, /s, appearing here are alternatively larger and smaller than
o and approximate o with quadratic convergence:

1
< . (14.15)

SnSn—1

I'n
o —

Sn

The slowest convergence, i.e., the most irrational number which one is least able to
approximate using continued fractions, is given by the golden mean:

1
o= | = 0.618033989 (14.16)
1+ 14+1/14...
5—-1
= v ) = “golden mean.” (14.17)

Apparently o satisfies the equation

= 14.18
“ 140 ( )
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of which (14.16) is the iteration. Let us write (14.18) in the form
o(l4+0)=1: 6 +0—-1=0.

Then one solution is indeed

o=1(5-1).
Another famous irrational numberis e = 2.7182818285. ..
1
e=2+ .
1+

1
g

Having completed these mathematical preliminaries, let us return to physics. We
know that a system with rational frequency ratios is not integrable—perturbatively
speaking. It looks as if the system would at the most be integrable for irrational
values of w;/w,, and that convergence of the perturbation series in & would exist
in this case. We shall therefore first answer the question as to what happens to an
integrable unperturbed system Hy(J, J2) whose unperturbed frequency ratio w;/w,
lies in the neighborhood of an irrational number, and which is perturbed by ¢H].
What happens to the rational w; /w; in the case of a perturbation will be answered
later on.

The KAM theorem now says that if, in addition to other assumptions (cf. below),
in particular the functional determinant of the (action-dependent) frequencies does
not vanish,

‘aw" £0, (14.19)

0

for those tori, whose frequency ratio w; /w, is “sufficiently” irrational,

K(e)

§25 0

w1 r
‘ (14.20)

w7 N

with r and s relatively prime, the iterated (according to Kolmogorov) perturbation
series for the generator W (62, J;) converges (for small enough €), and therefore the
invariant tori are not destroyed.

One should note that the set of frequency ratios or space for the KAM curves,
i.e., curves for which condition (14.20) holds, indeed amounts to a finite part of,
e.g., the interval 0 < w;/w, < 1, because we obtain for the total length L of the
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intervals for which (14.20) is not valid, i.e., |w1/w, — r/s| < K(g)/s>>,
o0
K(e
L< Zs 2(5) =K(e)t 2.5) ~2.6K(s) < 1. (14.21)
§2
s=1

Here, K(g)/s*° is the width of an interval around the rational value r/s, for
which (14.20) does not hold, and s is the number of r-values with r/s < 1.

1 1 1 2 1 3 2 3 4
0 5 3 3 5 2 5 3 1 3 1
-
X K K K K K K K K o
55.9 32 15.6 55.9 5.7 55.9 15.6 32 55.9 w2

For sufficiently large ¢, ¢H; destroys all tori. The last KAM torus which is
destroyed is the one whose frequency ratio is the most irrational; namely,

0)1_1
o = 2(~/5—1).

By way of illustration of the KAM theorem, we consider a system from
the dynamics of the solar system. (Admittedly, the following treatment will be
somewhat oversimplified; nevertheless, it contains much truth.) Let three bodies
move under the influence of mutual gravitation, e.g., a very massive main body M
(sun or Saturn), a perturbing body m (Jupiter or moon of Saturn) and a test body
of mass pt, whose long-term behavior we wish to study. Furthermore, let us assume
that u <« m < M; second, that all these bodies are moving in a fixed plane; and
third, that m is rotating on a circle (rather than on an ellipse) around the common
center of mass of M and m.

The Hamiltonian for the motion of the test body p in presence of the gravitational
fields of m and M is thus

p> GMu Gmpu

— — . 14.22
w” o lg—r) (1422)

H(g.p:1) =

It is obvious that (14.22) is a time-dependent Hamiltonian. Now, according to our
assumption, m is supposed to move around the center of mass at the angular velocity
£2, so that it seems logical to eliminate the time dependence of H by making
a transformation to the comoving, rotating system. In this system, m is at rest. Then
the new conservative Hamiltonian reads

2
P GMu Gmp
H(q.p) = ., — Q2pg— -
2p r lg — 1l

= Ho(q.p) + ¢H, . (14.24)

(14.23)
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where
1 1 GMu
Hyo = Holg =r.p) =, (pf + 2pﬁ,) — Qpy— (14.25)
,LL I r
and
G
eHy = — M (14.26)
|q - rm|

Note that we have replaced ¢ — r as m — 0 in (14.25). Neither 7 nor ¢ appears
in (14.25), so that the two constants of motion are py and Hy. Equation (14.26) gives
the nonintegrable perturbation term in which m plays the role of the small parameter.

Specifying the conserved quantities pg and Hy, then a certain torus is defined.
The action variables J4 and J, in terms of py and Hy are given as follows:

1 2
J, = dop = 14.27
0= 5 /0 Py dd = pg ( )

1 1 GM J3
J, = 9§p, dr = 9§dr 2u (Ho— 20, + 77 ) =7 (14.28)
2 2 r r2

GMu?
s T .
V=21 (Ho + 274)

(14.29)

The new Hamiltonian—relative to the rotating system—thus reads, as a function of
the action variables Jy and J,:

GPM2 1

Ho(Jr Jg) = —$2J4 — 2,4+ T

(14.30)

Hence, the unperturbed Hamiltonian is a nonlinear function of the actions. For the
unperturbed frequencies we find, using wy; = dHy/dJ;:

GZMZMS
wo, = , wop = —2 +
U U Y

GZMZMS

Ut Iy (14.31)

Here,

GPM2

= 14.32
RN AE (14.32)

is the frequency of the Kepler motion relative to the nonrotating coordinate system
in which the - and ¢-motion have the same frequency (accidental degeneracy in the
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1/r-potential). Then we finally obtain
wor = Wy, Wop =—82 +w, . (14.33)

So the decision as to the regular or stochastic behavior of the motion of the problem
perturbed by ¢H; depends on the following frequency ratio:

wp _y_ 2 (14.34)
wor wy

The invariant tori are thus destroyed if the frequency ratio, £2/w,,, of the m- and
M-motion is rational. In fact, there are distributions of test bodies in the solar system
in which gaps between tori can be observed. This is the case for the asteroid belt
between Mars and Jupiter. Here, the sun is the main body, and Jupiter, the perturbing
body. The test mass p is any asteroid. According to the KAM theorem, one should
expect gaps (instabilities) in the asteroid belt if the frequency of the asteroids and the
Jupiter frequency £2, are commensurate. These gaps were observed by Kirkwood in
1866 and are therefore called Kirkwood gaps. They occur at w,/$2; = 2, 3, 4
especially clearly, at w,, /2, = 3/2, 5/2, 7/2, less so.



Chapter 15
Poincaré Surface of Sections, Mappings

We consider a system with two degrees of freedom, which we describe in four-
dimensional phase space. In this (finite) space we define an (oriented) two-
dimensional surface. If we then consider the trajectory in phase space, we are
interested primarily in its piercing points through this surface. This piercing can
occur repeatedly in the same direction. If the motion of the trajectory is determined
by the Hamiltonian equations, then the n + 1-th piercing point depends only on the
nth. The Hamiltonian thus induces a mapping n — n + 1 in the “Poincaré surface
of section” (PSS). The mapping transforms points of the PSS into other (or the
same) points of the PSS. In the following we shall limit ourselves to autonomous
Hamiltonian systems, dH/dt = 0, so that because of the canonicity (Liouville’s
theorem) the mapping is area-preserving (canonical mapping).

So let H(q1, q2, p1, p2) = E = const. Then the motion is reduced to a three-
dimensional energy hypersurface. Now we can, for example, delete p,, since
this quantity can be expressed by the remaining three (g1, g2, p1). In this three-
dimensional space we now construct the two-dimensional PSS, ¢, = const. Here it
is advantageous to choose action variables rather than the original g;, p;. At this
moment, we are dealing with tori which are nested within each other. We may
say that phase space becomes foliated with different tori. Closed circles in the
PSS are indicative of integrable systems, because if there is another constant of
motion (in addition to the energy), then the piercing points always lie on a curve.
Conversely, a closed curve in the PSS indicates an additional conserved quantity. If
that conserved quantity does not—or no longer—exists (the torus is destroyed!) the
points wander around chaotically (stochastically) in the PSS.

The above approach (after Poincaré) of the study of mappings replaces the
integration of equations of motion. The development in time of the Hamiltonian
system will now be treated on the basis of a series of piercing points in the PSS.
This is an algebraic iteration method which, in the age of fast computers, has proven
especially advantageous in the iteration of nonlinear algebraic mappings.
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We return to our oscillator system with two degrees of freedom and a time-
independent Hamiltonian. Let the system be integrable:

Ho = Ho(J1,J2) = E . (15.1)

The J; are constants of motion. Equation (15.1) reduces our motion to a three-
dimensional space, and fixing of one of the actions finally reduces the motion
process to a two-dimensional surface (torus). We parametrize this torus with the
help of the angle variables 6;:

Oh=oit+p1, =wi+ps, (15.2)
where the frequencies are determined according to

_ 0Ho(J1, J2)

o (15.3)

i

The trajectory then runs on the torus. We are particularly interested in the frequency
ratio o:

a="" (15.4)
w3
If it holds that « = r/s, with r and s relatively prime, then there is a common

frequency: after r rotations in 6y, and s in 65, the trajectory returns to its initial point
of departure. If, however, « is irrational, then the surface of the torus eventually
becomes densely filled with arbitrarily close-lying trajectories—Ilike Lissajous
figures. The system is then only conditionally periodic. The condition for a periodic
solution (commensurability) is

mow; +mw; =0=m - o(J) . (15.5)

The time for one complete rotation in 6, i.e., the time between two piercings in the
PSS (Jl, 91) is

2
ar="" (15.6)
(9]

Meanwhile, the angle in the PSS has progressed by A6, :
w1
AB = wAt= 27 =: 27105(]1) . (15.7)
(6) w2

a = «a(Jy) is termed the rotation or winding number. Since E is given and J;
was chosen fixed (PSS), J, = J>(E, J)) is also determined. Hence, everything, i.e.,
J2, w1, Wy, o, can be expressed in terms of J;. In the following we shall suppress



15 Poincaré Surface of Sections, Mappings 187

the subscript 1 in J;. Then we obtain for our unperturbed problem (no angle in Hy)
the mapping (/ is conserved)

-]n+l =Ju, (158)
9n+l = en + 27t0l(.,n+1) s (159)

where it is useful to write J,4; instead of J,, in the argument of . The mapping
defined by (15.8, 15.9) is called twist mapping. The motion proceeds on the torus
defined by J(= J;). The twist mapping is area-preserving; i.e., the Jacobian of the
transformation matrix is equal to one:

01 0Jng1

3(Jnt1. Ont1) aJ, 06,
3n 00) {90,401 06,41
aJ, 006,

=1. (15.10)

Equation (15.10) is written as Poisson bracket in the (6, J,)-basis as

Ong1 00ni1 OJuyr 004

a, 96, 96, dJ, = O iy =1

The proof that (15.8, 15.9) is indeed area-preserving is given upon insertion into the
determinant (15.10):

1 0
2ra’ 1

-

Now we are going to study systems which are almost integrable; i.e., we add
a perturbation term to Hy:

H=Hy(J)+eH,(J.9) . (15.11)

In this case we have to modify the twist mapping. In the J; — 8; PSS 6, = const.,
we get, instead, the perturbed twist mapping

Jn+l =J, +8f(1n+ls en) (1512)

Ons1 = On + 20 (Jug1) + €8(Jur1.6n) (15.13)

where f and g are supposed to be periodic in 6; i.e., the modified torus remains
periodic in 8 (= 6,).



188 15 Poincaré Surface of Sections, Mappings

The following generating function F, = Fa(q = 6,, P = J,+1) yields the
transformation equations (15.12, 15.13):

Fy = Ju 100 +270%(Jug1) + €6 (Jus1, 0n) (15.14)
ident.
with
;O _ L0
" 96, N o,
or
GIS
Jn1 = Jn — . 15.15
+1 €96, ( )

Comparing (15.12) with (15.15) we obtain

I®
f= 96, (15.16)

Finally, 6 = dF,/dP also belongs to the transformation equations:

oF dl 6
en-l—l = ? = 911 +2n

. 15.17
0Jp+1 dJp+1 * 88]n+l ¢ )

If we compare (15.17) with (15.13), we obtain

_a
Cdly
e

Wyt

« (15.18)

g (15.19)

Since we are still dealing with a Hamiltonian system, (15.12, 15.13) is naturally
area-preserving, since it holds that

of og d 0% 0 06
+ .0 = - + =0.
0Jut1 06,  OJpp 26, 06, \ 0J,41
For many interesting mappings, g = 0 is valid and the function f is independent of
J: 9f /dJ = 0. Then (15.12, 15.13) takes on the form of the “radial” twist mapping:

Jnr1 = Jn +&f (0n) . (15.20)
9n+l = 9,, + 27tOl(Jn+1) . (1521)
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Next we assume that we have a fixed point (Jy, ) with period 1, i.e., corresponding
to one rotation in 6,. Per definition, a fixed point is a point that is mapped into itself.
Let the winding number «(Jy) be an integer p, and f(6y) = 0. The radial twist
mapping then becomes simply

Jn+l =J,=J
Opir = Op+21p, pel, (15.22)

or

9n+l = en (mod 271’)
=6 . (15.23)

In the J; — 60; Poincaré S.S., we shall now linearize (15.21) near the fixed point
(Jo, 6p); it then holds that, in direct proximity of the action Jy at the nth step,

J,=Jo+ AJ, . (15.24)
Then

Ajn+1 (;) A.In + €f(9n) y f(@()) =0

da
Oir = 60, + 27 (V] ‘ A,
+1 +\n[?,(_ol+dJ " +1]
multiple of 2
=0, + 21 d'(Jo) Adyy1  (mod 27) . (15.25)

N——

= const.

Here we have assumed that «(J,,+1) is a slowly changing function of the action. We
now define a new action [, according to

I, :=2na' AJ, . (15.26)
Then, from (15.24, 15.25) we obtain

Lipy = I, + 2 ef (6,) | (15.27)
9n+1 = 9,1 + In+1 (mod ZJT) . (1528)
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This is the desired linearized radial twist mapping in the neighborhood of the fixed
point (Jo, 6p), period 1, in the direction of 6,. Instead of 2z a’gf (6,) in (15.27), we
now use the product Kf*(6,):

K = 27d efpax (15.29)
5 (6s) = Cfe”) . (15.30)

K is called the “stochasticity parameter” and f*(6,) measures the jump in the action
I, — I,41. The maximum value of f*(6,) is 1 because of the normalization (15.30):
f*(6,) < 1. The thus defined mapping is called the “generalized standard mapping”:

L1 =1 + Kf*(6,) . (15.31)
Ont1 = On + Ly . (15.32)

Until now, *(6,) has been a fairly general function. If we now simply choose sin 6,
for f*(6,), then we obtain the “standard mapping”:

In+l = In + K sin 9,, s (1533)
Ontt = On + Inyy . (15.34)

To conclude, we want to show how to transform the Hamiltonian development of
a system into a mapping and, vice versa, how a certain class of mappings can be
re-written into Hamiltonian form.

Let us begin by finding a mapping from a Hamiltonian. In particular, we again
consider the two-dimensional J; — 8; PSS with 6, = const. Furthermore, let the
unperturbed problem (¢ = 0) with Hy = Hy(J, J») be solved. Since Hy = const. =
E, when fixing one of the actions, for example, J;, the other, J», can be expressed as
Jo = J2(J1, E). So we find ourselves once again in the PSS of a 2-torus.

Now in analogy to p = —0H/dq with H = Hy + gH(J1,J>, 01, 60;) and
dHy/00; = 0:
dJy 0H;
=— . 15.35
ar e, (15.35)

If we go around the torus once in the direction 65, period T, then J; (= J,,+1) changes
by the amount

L
Al = —8/ dta@ Hl(-]n+l = Ji,J5, 0, + wit, O + a)zt) . (15.36)
0 1
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Let us recall that J,, w; and w, are all determined by J; = J,4;. Since AJ; is of
order ¢, we shall replace the arguments of H; by those of Hy; i.e., we integrate
dH, /00 along the unperturbed orbit. The jump in the action J; (during a single
rotation around the torus in 6,-direction) is thus

ALy (Jug1,00) = Tt — I o &f (Jus1.6n) -
So we have determined &f in
gt = Ju+ &f (Jug1.6,) - (15.37)
We still need the phase jump in the phase given by g in

9n+1 (E) 0, + ZJTO{(JH_H) + Sg(.]n_H, 9,1) . (15.38)

Here, « is given. g can be obtained most conveniently from the requirement that the
perturbed twist mapping (15.37, 15.38) be area-preserving:

n 7911
‘B(J +1: )| (15.39)

9(n, bn)

If we apply (15.39) to (15.37, 15.38), we again obtain

a9 0
o9 _ g
aJn-H 8en
so that, by simple integration, we get
O P
st = [, ag;. (15.40)
041

where f already has been identified. In this manner we can, in principle, generate
a mapping for any given Hamiltonian.

Now, conversely, we want to determine a Hamiltonian from a given mapping. For
this reason, let us imagine an infinite series of sharp spikes (kicks) along the #(= n)-
axis, represented by §-functions at n = r = 0, 1, £2,.... Since this periodic
8-function [period 1:8;(n)] is even, its Fourier series reads:

+o0 9]
Si1(n) = Z S(n—m) = azo + Zaq cos(2mgn) ,

m=—00 q=1
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or, since
ao +1 +1
5 = / Simdn=1, a,;= 2/ 81(n)cos(rn)dn = 2,
-1 -1
o0
8i(n) =142 cos(2mgn) . (15.41)
g=1

The iteration number n takes over the role of the time here. As mapping we take
the radial twist mapping (15.20, 15.21): AJ = J,4+1 — J, = €f(6,), and because of
An = 1, it holds that

AT dJ
=A== 080 (15.42)

The jumps in J = J(n) are measured by &f(6,). Accordingly, it holds that

A do
= A0 : =2 , 15.4
An n wo(J) (15.43)

where J,, and 6, are J(n) and 6(n) at n — 0, i.e., just before the “time” n. We now
write Egs. (15.42) and (15.43) in the form of Hamilton’s equations of motion:

dl  dj 0H d9 do oH

dt ~ dn 90 dt  dn aJ

These equations can be integrated and yield
J 6
H=H(,0;n) = Zn/ a(J)dJ —851(n)/ £(0")do'" . (15.44)

Note that H is nonautonomous with one degree of freedom. In this manner we
have reached our goal of constructing the appropriate Hamiltonian from a given
mapping—here, the radial twist mapping.

Another example is provided by the standard mapping (15.33, 15.34) that
corresponds to a Hamiltonian which we can construct, again with the help of the
periodic §-function §; (n). For this reason, let us first replace J by I in (15.44) and
put

Al =141 —1,=f(0) =K sin 6 , (15.45)
and

Af = 9n+1 — Gn = 27‘[0[(1) =1. (1546)
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Then we obtain for (15.44) (n = time)

I 9
H:/ I’dI’—81(n)K/ sin 0’ do’

12 +oo
_ 2mimn
=, + K cos 0 Z e
m=—00
12 +o0
=, + Km;oo cos( — 2mmn) . (15.47)

At this point we want to draw attention to the fact that we are dealing here with
a periodically driven pendulum which displays both regular and stochastic behavior.
We can thus write (cf. 8.54)

H= "% Vs
2ml?
with
V(p) = —mgl cos ¢ = —mwilcosg . wof = i’ ,
so that
pé 272
H=, p—mol cosg8i(n). (15.48)

This Hamiltonian is that of a free rotator that is perturbed every second by a §-type
kick. If we now set

H ~ Dy
=H, =1,
mi? mi?
then we obtain for (15.48)
51 2
H= 2I — wyy cos b (n)
I ¢
=2 / a()dl' + o38i(n) / sin ¢’ dg’ . (15.49)

From here, it obviously follows that (cf. 15.45, 15.46)

Lipi=1L,—Ksing,, K=}, (15.50)
Gnt1 = o+ L1 (mod 27) . (15.51)
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Replacing ¢, — 6, = ¢, — & we again make it possible for (15.50) to be written in
the form (15.45):

ILy1=1,+Ksin 6, .

Finally, we again use

+o0o ) (o]
Sy = Y " =142 cos(2mqn)

q=—00 q=1
and thus obtain
L 1 Yoo
H=H(,¢;n) = 2I2 — w cos ¢ Z e2rian
q=—00

(15.52)

1 o0
= (212 — w? cos qo) — 2w} cos ¢ Zcos(2nqn) )
gq=1

This is indeed the Hamiltonian of a mathematical pendulum that is driven by an
external periodically acting force. K = a)g is the stochasticity parameter. If the
time n becomes increasingly shorter between the §-kicks, i.e., goes to zero (n is
the fast parameter), then the graviational potential will be continuously turned on
and H becomes H = pé /2ml? — mglcos @, i.e., the integrable Hamiltonian of the
mathematical pendulum.

If the time interval of the §-kick gradually grows out of zero, the phase
space orbits of the new Hamiltonian deviate more and more from the integrable
Hamiltonian H and ultimately exhibit stochastic behavior. In the case of sufficiently
small K = a)g, however, the mapping (15.50, 15.51) is, according to the KAM
theorem, almost integrable; most of the orbits are still lying on invariant KAM
curves.

We now proceed with (15.47), and want to assume that 6 is a slow variable. We
again retain only the most important terms, m = 0, &1, and obtain to this order

12
H= 5 + K cos 0 + 2K cos 0 cos(2mn) .

We have used the fact that
cos(f —2mwn) + cos(0 + 2mwn) = 2 cos 6 cos(2wn) .

Assuming that the third term on the right-hand side of H is a perturbation term
whose averaging over n vanishes, we obtain for the unperturbed Hamiltonian

12
H:2+Kc059,
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i.e., the pendulum motion once again. The elliptic fixed point lies at I = 0, 6 = r,
and the separatrix trajectory runs through § = 0, 6 = 2. The libration frequency
in the vicinity of the elliptic point 6 = 7 is

wy = K'/?
and the separatrix width is
Alax = 2K'77.

Since the distance between the primary resonances 4/ is equal to the period 27 in
the case of the standard mapping, it holds for the ratios of the whole separatrix width
to the distance between the resonances that

2Alny  4K'?
81 2m



Chapter 16
The KAM Theorem

This theorem guarantees that, under certain assumptions, in the case of a perturba-
tion eH,(J, @) with small enough &, the iterated series for the generator W(6?, J;)
converges (according to Newton’s procedure) and thus the invariant tori are not
destroyed. The KAM theorem is valid for systems with two and more degrees of
freedom. However, in the following, we shall deal exclusively with the case of two
degrees of freedom.

Thus, let an integrable Hamiltonian system Hy(J;,J;) be perturbed by a term
eH(Jy,J2, 01, 6,) which depends on the angle variables 6;. Then we know that
the convergence of the various perturbation series is destroyed by the presence of
the resonance condition Ziz:l m;w; = 0 in the denominators (Poincaré’s problem
of small divisors). Nevertheless, under certain conditions concerning the ratio of
the unperturbed frequencies, numerous invariant tori (J;, 6;) survive a “moderate”
perturbation, albeit somewhat deformed.

Let us imagine these tori to be parametrized by 5, where the relation between the
unperturbed and perturbed tori is given by

J:J0+v(ﬂs€)s (161)
0 =n+u(ye).
n is a generalized angle variable. The perturbation terms # and v are periodic in 3
and vanish with ¢ — 0. ) = @ for ¢ — 0 are the unperturbed frequencies on the
torus.

The conditions which must be fulfilled in order for invariant tori to survive
a perturbation are:

1. Linear independence of the frequencies,

> mioi() #0.  mi€Z/{0}, (16.2)
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over a certain region of J. w;(J;) are the components of @ = VjHy(J), and the
m; are the components of the vector m; thus, it should hold thatm - @ (J) # 0.
2. Existence of sufficiently numerous derivatives of Hi; i.e., we require a certain
“softness” of the perturbation.
3. “Sufficiently large distance” from the resonance:

m - | =y(E)m|™™, Vm. (16.3)

Here, v depends on the number of degrees of freedom and the softness of the
perturbation term. y depends on ¢ and the “nonlinearity” G of the unperturbed
Hamiltonian H.

Since condition (3) cannot be fulfilled if y (¢) is too large, and—as we shall see—
grows with ¢, the smallness of the perturbation is a condition for the existence of
KAM tori.

In order to elucidate the terms “linear independence” and “moderate nonlinear-
ity”, the following examples may prove helpful.

We are familiar with the Hamiltonian for the uncoupled harmonic oscillator (in
two dimensions),

Ho(J1,J2) = Ho(h) + Ho()2) = o1Ji + w2)5 .

Hy(J1,J2) is a linear function of the action variables, and w; is independent of the
actions J;, so that the frequencies are indeed constants:

BH() BHO
= w; = const. , = @, = const.
aJ; 0J2

Furthermore, it holds that

9%H, 0> Hy dw; .
= = =0, Lk=12.
ajiz 0J;0J; aJx

The situation is different in the Kepler problem. There it is well known that for the
motion of a particle in a plane with polar coordinates (r, 8), we have

const.

Hy = — .
AL

Here, Hy(J,, Jg) is obviously nonlinear in the action variables. Since H, depends

only on the sum (J, + Jg) (degeneracy), the frequencies are equal:

0H, const.

= :’9‘
o T U+ Je) "

w; = w =
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Furthermore, the second derivatives are equal—but unequal to zero:

0%H, 9%H, dw; const.

- = = - 0
aJ?2  AJidde Ok (, + Jo)* 7

Again, we shall limit ourselves in the following to a two-dimensional system and
shall assume from now on that the (unperturbed) frequencies of the two degrees of
freedom,

oHy(J
o o 1,12)’ = 1.2
aJ;

are functions of the action variables:
w; = a)i(.]l,.]z) .

Let us assume that between the two degrees of freedom of our so far unperturbed
system commensurable frequencies ), mjw;(J1,J2) = 0, m; € Z/{0} exist for
a certain pair (J1,J»); e.g., 1(J1,J2) = w2(J1,J2), i.e., mw; + myw,; = 0, with
m; = —my = 1. Then, according to the KAM theorem, the invariant torus will be
destroyed after turning on the interaction ¢H;. Only those invariant tori for which
the w; are linear independent in the sense of (1) come into further consideration and
have a chance (if € is small enough) to survive a perturbation.

So let f(w1,w2) = 0 be a general relation between the frequencies. We now
wish to establish which requirements have to be made regarding w;(J;) in order
to be led to noncommensurate frequencies. We do not want a relation of the kind
Zi m;w;(J) = 0 for all J;. In other words, we are interested in finding a condition
for the linear independence of the frequencies,

> miwi(J1.J2) #0 . (16.4)

To achieve this, we recall the functional dependence f = f[w;(J1,J2), w2(J1, J2)] =
0 and construct

_ af [dw dwq af [ dws dwy
df o aa)l |:a.,1 dJl + 812 dJ2:| + 8w2 |:a.,1 dJl + 8.12 dJ2:|

o dw; I dw I dw; I dw
(8(01 8]1 + 8w2 8]1 )dJl + (8(01 812 + 8w2 8.12

vdly,dl,

)szzO.
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From this, we obtain the following pair of equations:

Bf 30)1 af 80)2

= 0 s
30)1 8J1 3602 8J1
of dw af dw,
) -0
aa)l 812 + E)wz 812 ’
or, written in matrix form:
aa)l E)wz 8f
8J1 3.]1 30)1 _
S0 Doy o |~ 0 (16.5)
8J2 3.]2 30)2
or
Z(aw) af __(aw) af
=\ ") b — N\ ) v
= (V,w) - Vof(@) =0. (16.6)

From det (Vy®) # 0 follows, as only solution, V,f = 0; i.e., df /dw; = 0 and
df /0w, = 0. Therefore, there is no valid relation for all J; of the kind f(w;, w;) =
miw; + myw, = 0, m; # 0. Consequently, as necessary condition for the nonlinear
dependence of the frequencies, we obtain

Ba)i 82H0
det(Vy0 () = det(ajk) = det (aJ,-aJk) £0. (16.7)

Now let us turn on the interaction ¢H; and assume a particular resonance behavior
flwy, ) = ro; — sw, = 0 in the Fourier decomposition of ¢H;. This kind of
commensurability also leads to the destruction of the torus. Thus it is necessary
to formulate a nonlinearity condition for this case, too, in order not to completely
destroy the invariant torus. Here we can show that a weaker condition than (16.7)
prevails; required is only that the frequency w (J) not be zero along the direction of
the actual change of J. For proof, we again consider the Hamiltonian

H = Hy(l1.J2) + &Y _ H})(J1.Jy) = (16.8)

I.m
and choose a particular resonance [ = r, m = s and w,/w; = r/s; in other words,

f(@1, ) |res. = rby — 56, = roy —swy =0,
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from which we obtain

o, ¥ (16.9)
30)1

At the point of resonance we get, with the help of the canonical equations,

0H

I =— = —irgHW i(r01—362) ,

1 891 ret,

. oH )

J — — _1 EH(I) el(rel—sez) ,

27 T, T e

from which we derive

jl_djl __r__w2 (1610)
_}2 - d.]z - N - w1 ' ’

res

Thus in a (J;,J,)-diagram, the direction of J at the location of the resonance is
parallel to m = {—r, s} ~ J, and since according to our assumptionm - @ = 0, it
also holds that J - @ = 0. The unit vector J is normalized according to

~

Jo.

LY

r A )
- Ji+

V2 + 52 2482
So we obtain

0=J -w=J-VH(J)
_ (—V) aH() N aH()
2+ 52 0, V2452 0y

Together with 0 = f(w;, w2) = rw; — sw,, we then get for the frequencies:

1 aH() 1 a[10

-  ap=-— . (16.11)
V2 452 0 ? V2452 0

w] =

We now use these expressions together with (16.9) in (16.5) and obtain, after some
trivial changes,

32H0 BZHO

r —s =0,
P 9,00,
32H0 32H0 —0.

“onan ~ an
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By multiplying the first equation by r, the second by (—s) and then adding the two
equations, we finally get as sufficient condition for the nonlinearity:

02H, 0 H, 02H,
2 0 0 + SZ 20
3.2

2 0. 16.12
a2~ oanon 7 (16.12)

We recall that in canonical perturbation theory, the Hamiltonian describing the
motion in the vicinity of a resonance is given by

AH = ;G(Ajl)z—F cos 0, .

Here, G is the nonlinearity parameter, i.e., our measure of the degree of linear
independence,

X O H,

GUo)=".."
aJ7,

and F is the product of the strength of the perturbation, ¢, and the Fourier amplitude:

F=—2eHV(Jy) .

We still want to show that the nonlinearity condition can also be derived from
canonical perturbation theory. To that end, we apply the generating function

F, = (}’91 —S@z)jl + 92‘}2 (16.13)
to the Hamiltonian
H =Hy(J1.)2) +& Y _H) (1) =) (16.14)
I.m
and obtain (in lowest order ¢) in the new variables (13.10) rjl = Jy,..., after

having expanded around the resonant value of the action and averaged over the fast
variables:
_ 1 %Hy, 502 W A
AH = ~ (AJ1)" + 2eHY cos 6, . (16.15)
1
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(Here, again, we consider the case of accidental degeneracy, 821310 / Eﬁf # 0). Then
we find

- =r =—s

92H, 9 | 0H, oJ dH, 0J
0" 0 _ 0 0 Al 4 0 Az
ar  an | o A o gy

d [ 0Hy 8H0}
= . |r

o3, Lo o
0’Hy 8J,  9*Hy dJ»
- [ 012 93, " o a)l}
_s[ 0’Hy 0J; N 0’H, 3J2:|
a1 dJy 3], 33 8T,
0’H, 02H, ,0*Hy

=7 -2
o2~ onon T an

£0. (16.16)

The question that now arises is: “How far from zero” must we stay? For a fixed
e-value, one can estimate the required nonlinearity in G by assuming that the
deviation in the action AJ; is much smaller than the unperturbed action Jy(¢ = 0).
Now AJ; = rAJ,. For the half-width of the separatrix, we found |Ajl| =
2(2¢H,;/G)'/?, so that for the total width we estimate

2eH,, '/
4r( ) <o (16.17)
G
or
322 H,
G> rj(i ) (16.13)
0

In this case, we find KAM curves.

We conclude by considering the fate of the tori with rational frequency ratios ¢ =
r/s after a perturbation has been switched on. For tori with sufficiently irrational
frequency ratio and small enough perturbation, we have made it plausible that these
are only deformed and remain otherwise stable (KAM curves). It would thus be
natural to suspect that for rational « = r/s, where the KAM theorem fails, all the
tori would be destroyed. The circumstances of just how this happens are, however,
more complicated, as a theorem going back to Poincaré and Birkhoff shows.

For the unperturbed twist mapping (15.8, 15.9), we have seen that every point
on the circle, with a(J) = r/s =rational, is a fixed point of the twist mapping
with period s (s =number of rotations along 6,). Now the Poincaré-Birkhoff
Theorem states that even after switching on the perturbation, the now perturbed twist
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mapping (15.12, 15.13) still has fixed points, namely 2ks in number with k € N. Half
of these are elliptic (stable); the other half are hyperbolic (unstable) fixed points.
The simple proof of this theorem can be found in, for example, Lichtenberg and
Lieberman.



Chapter 17
Fundamental Principles of Quantum Mechanics

There are two alternative methods of quantizing a system:

(a) quantization via the Feynman Path Integral (equivalent to Schwinger’s Action
Principle);
(b) canonical quantization.

We shall favor the first method, which Feynman followed. Feynman, on his part,
was put on the right track by—none other, of course, than—Dirac.

The first step on the way to quantizing a system entails rewriting the problem in
Lagrangian form. We know from classical mechanics that this is a compact method
with which to derive equations of motion. Let us refresh our memory by considering
the one-dimensional motion of a particle along, say, the x-axis. Let the particle move
from the point in space-time A = (x,1;) to B = (x2, ;). In classical mechanics,
the motion of a particle between A and B is described by the classical path x = x(¢),
which makes the action functional (for short: action) an extremum. We thus assign
a number, the action S, to each path leading from A to B:

S=S8{x0]:n.0n} = /tz di L(x(t), x(1): 1) . (17.1)

151
Then the neighboring paths of the classical trajectory x(f) are given by
x(1) = x(t) + ey(1) . (17.2)

The “perturbation” y(¢) around the classical path is arbitrary except for the boundary
conditions at the terminal times,

y(n) =0=y(n) . (17.3)

© Springer International Publishing Switzerland 2016 205
W. Dittrich, M. Reuter, Classical and Quantum Dynamics, Graduate Texts
in Physics, DOI 10.1007/978-3-319-21677-5_17



206 17 Fundamental Principles of Quantum Mechanics

Besides, the time is not going to be varied. Then the action—considered as
a function of ¢

S(e) = / i dt L(x(1) + ey(1), x(t) + €y(1); ) (17.4)
3|
becomes extremal for ¢ = 0. The necessary condition for S to become stationary is
therefore
0= b= 500+ 5050]
S R IR

Since the surface term in (17.5) does not contribute, and y(f) was chosen to be
arbitrary, we obtain the Euler-Lagrange equation for the classical motion of the
particle along the actual path x(¢):

oL
0x

d oL
. dt 0x

=0. (17.6)
Now we can start to quantize the theory. We begin with the important concepts of
transition amplitude and probability. The motion of a particle between x; and x,
is described in Feynman’s quantum mechanical formulation by a phase-carrying
transition amplitude. Furthermore, all possible particle paths between x; and x,
contribute to the transition amplitude.

One possibility of explaining the meaning of the complex-valued transition
amplitudes is provided by the well-known double-slit experiment. A double slit is
irradiated with a parallel beam of electrons. We designate the registration of an
electron at a point x of the detector (screen) as an event. Each event is assigned
a complex-valued transition amplitude ¢ (x) = (x|¢). The probability, W(x), that an
electron will be found at point x is given by the square of the amplitude:

W(x) = |px)|*. (17.7)

The electron may, on its way to the detector, have taken path (1) or path (2) through
slit (1) or (2), respectively. However, one cannot order the particle to take a particular
path—through slit (1) or slit (2). Thus, there are two alternative paths which can lead
to event x. Each of them is characterized by a probability amplitude ¢; (x) = (x|1)
and ¢, (x) = (x|2). The total amplitude then yields, by addition,

() = (xlp) = (x|1) (1|9) +{x|2) (2|9) = a1h1(x) + arh2(x) . (17.8)

=:a) =:ay

|a;|? is the probability for the particle to have been selected by slit (1); likewise,
for slit (2). Equation (17.8) is the well-known superposition principle of quantum
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mechanics which allows for interference effects. If we successively put up various
slit screens, we obtain a number of possible paths that the electron can take in order
to reach x. To each of these connecting paths, an amplitude is assigned, and the total
amplitude of the event x is given by multiplication, e.g.,

{xl@) = (1) (1] (Z In)(nl) |¢)

+ (x[2)(2] (Z |m)(m|) o) + ... . (17.9)

Now we have completed all preparations and can begin with the quantum mechani-
cal description of a propagating particle.

At time f;, we have a probability amplitude i (ry, ;) of finding the particle at
the location r;. Similarly, ¥ (r2, f2) is the probability amplitude of the particle at the
location r; at time t,.

With K (r, t;|ry, 1) we want to denote the transition amplitude for a particle that
is emitted at r; at time ¢#1, and is being detected at r; at time .

If a particle is selected by a screen with openings r; to be at (ry, t;) with the
amplitude ¥ (ry, t;), then propagates, [i.e., is emitted at (ry, ;) and goes to (r;, 1),
which is described by the quantum mechanical amplitude K (r,, f2|r1, )], and then
is detected at (r,, ro)—amplitude v (r;, t,)—then, according to (17.9), the total
amplitude v (r,, 1) reads

W(rz,lz) = /d3r1K(r2,tzlrl,tl)w(rl,tl) . (17.10)

integral equation, we shall show later on that it is completely equivalent to the
Schrodinger equation. Our main concern now is how to find K, the kernel of the
integral equation. So we have to study K(r,, t;|r;, ;) more closely. K is also called
the Feynman propagator, and once we have found its explicit form, we can control
the dynamical development of the Schrodinger wave function.

In order to get from A(ry,1;) to B(ry, 1), the particle must have taken some
path C. Let ¢p4[C] be the amplitude for the path of the particle going from A to
B along C. Then it holds that

K(BlA) = / [dCgma[C] . (17.11)

where the integral (or the sum) has to be taken over all paths from A to B. Obviously,
the integral is very complicated, as infinitely many paths exist between A and B. The
right-hand side of (17.11) is called the Feynman path integral. A precise definition
of the path integral is anything but easy. Since we are interested in explicit examples,
we shall always write down in detail, wherever appropriate, the right-hand side
of (17.11), without considering the finer details of the existence of the path integral
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in general. Thus, we shall continue to use (17.11) in its naive form; for example,
when we allow all possible paths in the (x, 7)-plane between two points a and b,
then the path integral is written as

b
K(b.a) = / [ (O] pal(1)] (17.12)

and the integral is taken over all possible paths from a to b.

We have until now reduced our problem to finding the amplitude ¢p4[C]. But
one cannot determine this amplitude from a fundamental physical principle! We
shall therefore postulate ¢p4[C] at first according to Dirac. Precisely here we again
come into contact with the Lagrangian formulation of classical mechanics. Let us
recall that we assigned a classical action to each path:

S[C] = /2 diL(r.7:1) . (17.13)

151

Following an idea of Dirac’s (1933), Feynman uses the following expression for

#[CI:
¢palC] = VM (17.14)

With this we obtain the following formula for the Feynman propagator:

r(n)=r
K(rz,lz;rl,ll) :/ [dr(t)]
r(n)=ry
i [n
X exp[h/ dtL(r(t),i'(t);t)i| . (17.15)
I

We can see from this form of K = [[dr(r)] exp[iS [r(]/ h] that the phase is
constructed in such a way that in the classical limit, S > #, exactly the actual
classical particle path results, for the classical path is constructed in such a manner
that S does not change in first order in the vicinity of the classical trajectory; i.e., the
phase S/# stays constant in an infinitesimal neighborhood of the classical path r. (z).
Outside of this vicinity of r¢(7), the phase, in case Si/% > 1, will change rapidly,
so that the corresponding amplitudes will be washed out by destructive interference.
Since the main contribution to the propagator comes from the infinitesimal strip
around the classical path, as first approximation it holds that in the classical limit

h—0:

K(rz,tz;rl,tl) ~ exp|:;l /zdtL(rcl(t),i'Cl(t);t):| . (17.16)

1

For a typical classical problem, the strip is very “narrow”, but for a typical quantum
mechanical problem, the strip is very “wide”. Consequently, the classical path loses
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its meaning in a typical quantum mechanical situation, like, for example, the case
of an electron, in its orbit around the nucleus. The path of the electron is “smeared
out”.

Before using (17.15), let us point out another characteristic of the propagator K.
To this end we now keep x; and #; fixed, and consider K (x,, f,; x1, ;) as a function
ofx, =xandt, =t

Ky (. 0) := K(x, t;x1. 1) (17.17)

This form makes it clear that K(,, ;,)(x, f) is a (Schrodinger) probability amplitude
(wave function) of finding the particle at (x,?). But we know very well where
the particle was located at time ¢ = #;, namely at x = xi; i.e., for t = 1, the
amplitude is not smeared out. This can also be seen immediately from our integral
equation (17.10) for the Schrédinger wave function:

W(XZ,IQ) = /dxl K()Cz,lz;xl,ll)W(xl,ll) . (17.18)

For t = t, = t;, we therefore obtain

() = /dx1 K(rtix )y (1. 1)

which yields,
K(x, tl;xl,tl) = 8(x—x1) . (17.19)

A comparison with (17.17) shows clearly that K, ;)(x, f) reduces to a §-function
fort = 1;:

K(Xl,l‘l)(xa t)|t=t1 = S(X—xl) .

Since Ky, 1)(x, ) is now a Schrodinger wave function itself, it has to satisfy the
integral equation (17.10):

+o00
K(X3,t3;x1,t1) = / dXQK(X3,l‘3;xZ,IQ)K(Xz,tz;xl,tl) . (17.20)

—00

Thus we have derived the important group property for propagators. In general we
can write [b := (xp, 1), a = (X4, t4)]

+o00 +o00
K(b,a):/ dxy—1 ... / dx; K(b,N — 1)

o0 o0

xKN—-1,N=-2) ... K(2,1)K(,a). (17.21)

Note that the intermediate times #; are not integrated over.



Chapter 18
Functional Derivative Approach

Let us now leave the path integral formalism temporarily and reformulate operatorial
quantum mechanics in a way which will make it easy later on to establish the
formal connection between operator and path integral formalism. Our objective is
to introduce the generating functional into quantum mechanics. Naturally we want
to generate transition amplitudes. The problem confronting us is how to transcribe
operator quantum mechanics as expressed in Heisenberg’s equation of motion into
a theory formulated solely in terms of c-numbers. This can be achieved either by
Schwinger’s action principle or with the aid of a generation functional defined as
follows:

i
(2.2 1 q1.11)°" = (q2.12 | T(e? hi AEOPOTPOIDN | g 1) . (18.1)

Here Q(¢) and P(¢) stand for arbitrary c-number functions (“sources”) and 7 denotes
the time-ordering operation with respect to the Heisenberg operators g(f) and p(?).
When acting on a string of operators with different time arguments it orders the
operators in such a way that the time arguments increase from the right to the left.
The exponential in (18.1) should be interpreted as a power series, and in each term
T acts according to the above rule:

15 1 2 B
Tl diA® E§ '/ d;l.../ dt,TA(1)) . .. A(t,). (18.2)
n.
n=0 u

!

The advantage offered by the introduction of external sources is that any number of
operators between brackets can be generated by a simple functional differentiation,

e.g.,
h $
Q.P
) t t ) t = . k) t k) t =P=0,
(92,12 1 q(0) | g1, 11) 18P(t)(q2 21 q1.0)°" lo=p=0
(18.3)
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(@2.02 | g1.11)%" |o=p=0

hos
. [P L) = 1o

(18.4)

or, somewhat more generally:

hdé hé

(q2.12 | TF[q.p] | g1, t1) = F[

QP | hp 18.
5P’ i8Q:| (2.2 | q1,11)%" |g=p=0,  (18.5)

where F[q, p] is any functional of ¢(#) and p(¢). To be more specific, let us consider
the two-point function

h 6 h &

’ T ! ’ = 5 5 op =pP=0 -
(q2,12 | T(q(1)q(1)) | q1.11) i $P() i 8P(1) (2,02 | q1.11)"" [o=P=0
(18.6)
s
The LHS contains the time-ordering operation, which is given by
(2.2 | T(q()q()) | q1.11) = (q2.12 | q(Dq(¢) | q1.11)0(t — 1)
+ (2.2 1 q(1)q(®) | q1.11)0(F" — 1),
(18.7)
where the step function 6(¢) is defined by
1,t>0
60 = 0,1<0.

The functional derivative referred to above is the limiting process

§Flo] _ . 1 ) ) /

5o = 1, (FIOW) + &8 — )]~ FIOW)). (18.8)
Here we list a few examples:

@ ol = [ 0wy,
SF[Q] © (18.9)
= f(1).
sow) ~/
50

Note o) =8(/ —1). (18.10)

§0(1)
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(b) F[Q] = e QW dl
SF10] S oWl (18.11)
= f(r)e! SV
§0(1)

© FIO]=e [t d” QAW ¥ Q")

SFIO] _ A VO niact oS00
50() [/ di’A(t,17)Q(1") + /dt Q(t)A(t,t)i| el Q.

Our main goal is to rewrite Heisenberg’s operator quantum mechanics equations into
a coupled set of c-number functional differential equations. For this reason we start
with the Hamiltonian operator H = H (q(t), p(t)) and write Heisenberg’s equations
of motion for the operators ¢(7) and p(z) as

_ 9H(q(),p(®)

(18.12)

q(®) o)
. 0H(q(1),p@®)
p@) = — 24() (18.13)

In the following we want to keep the c-number sources, i.e., we do not set them
equal to zero after functional differentiation. Thus we write

(@t | ar, 1)2F = (az, 1o | T(eh Il WROPOTFPOION) | g 4y (18.14)
and obtain
h 6
0P 0P
, t N =, , b ,
(az,12 [ q(1) | ar, 1) 18P(t)(az 2 | ai,t)
h §
o.p Q.P
N t Jt = . N t 18.15
(a2, 12 | p(0) | a1, t1) 18Q(t)(a2 2 | ar,ty) ( )

or, more generally

h§ h $

o.P __
(s> | TFlg(0).p(0)] | ar,1,)2" = F[i P sou

:| (az. 12 | a1, 11)°".
(18.16)
Now we operate with the time derivative upon the RHS of (18.15):

dh § d i
0P _ Ji2 df' (Qp+Pg)
t ot = b | T(g(Her 1
dtié)’P(t)(a2 2| ann) dt(a2 [ Taer ALY

d i [t / it
= lant] T(eh 17 4 @HPDY ()T (eh Jn 4 @HPD) | ay, 1)
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i rr 7 it /
= (as, 1y | T(eh 74 @HPD) (1) T(eh In @ @HPD) | g, 1))
N——

— 0H
— op

+ar 1y | T(eh 5 %) [q(0), 1 Q@@p(0) + P()q(e)] T(er 1 ) | ar, 1)

N -_ -
=—0(1
0H (q(H)p(t)) i
= (a2, 1 | T( (a(p( ))eh " dt(Qp+Pq>) | ai,t1)

ap(1)
— Q(){az. 1z | T(eh 17 MDY | 4y 1))

_aH[h 5§ ho§

or or
= ap Lisrey iSQ(t):| (a2, tr | a1, 1) O {az, o | ar, 1)~ .

So we obtain with the aid of the equations of motion and the equal-time commuta-
tion relation [g(7), p(¢')]s=; = ih the functional differential equation

dh § H[h 8§ h §
o.pP _ o.p

dtiSP(t)<a2’t2 | ap, 1)~ = op [i 5P()” i SQ(t)} (az.tr | a1, t1)

—0({az. 12 | ar.11)?". (18.17)

Similarly,

dh 8 or  OH[h & h 6 or
ar i so(p 21T =, [i 5P(1) iSQ(t):| a2 [ ar.h)

+ P(t){az. 1r | a1, 11)°". (18.18)

This set of coupled functional differential equations for the transition amplitude

(az. 12 | ay, )" can obviously be obtained by replacing in Heisenberg’s equations
of motion
hoé
t , 18.19
90 —> . op 0 (18.19)
h §
t 18.20
P = 00) (18.20)

and adding the source terms as done in (18.17) and (18.18).

Now we turn to the solution of our system of equations as expressed in (18.17)
and (18.18), and begin with the simplified free situation H = 0. The corresponding
functional equations are then reduced to

dh ¢

o.pP o.pP
dt i 8P(1) (a2, tr | a1, t1) =g = —QO) (a2, 12 | a1, t1) s (18.21)
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dh §
dri380Q(r)

(a2t | ar.11)52) = P(0{az. 1o | a1.11) 52, (18.22)

or, if we divide both sides by (as, 1, | a1, tl)g’io,

dh

or _
dt i 5P(1) log(az,t2 | a1, ti)g—y = —Q(1), (18.23)
dh §
dt 1 800) log (a2, 12 | a1, 11)9L, = P(1). (18.24)

In a moment we will choose some particular quantum numbers for our brackets.
Without any further specification we can show, however, that the interacting
transformation amplitude can be solved in terms of the free theory by

P
(ar,tr | dl,ll)g

~ im (hos b or

Let us prove this statement by constructing

dh 8
dt i 8P(1)

i/’zdtHhé’ A\l dh s o
= X — ) s =
PYTw ), 18P 180 )( drisp A =0

i [~ hé hé
ZeXP{—;/ dtH(. , )§ (—0(){az.12 | ar.11)5Lo)

P
(az, > | al,tl)g

iéP 160
H[h S h$ i o
B [_Q(tH Ip |:i 8P i 5QH6XP%;/H H(...)} (a2, 12 | ar,m)5L,
_[oH[R S h &7 o
B [3p [i 8P’ i 8Qi| Q(t)} (a2, 02 [ar, ) (18.26)

In the last line of (18.26) we arrived at the RHS of (18.17), as it should be. Here we
used the result of the following calculation:

_i (M g / i [ g0 / _i (g /
(e R O ()er i H(t)) e h e HO ay, 1 | dl,ll)g’io
N -

_—

=/

= |:1— ;1 /:zdt’H([/)—i-...:| o) |:1 + fll /:zdt’H(t’)—}—...i| 4



216 18 Functional Derivative Approach

I Y S A
{Q@ h/,l ””[ (iap(ﬂ)’iag(ﬂ))’Qm] o[
=ity H [ti' 52y 30t }8(’_’/)
BH h 8 h 8 i /"2 diH (1) o.P
= — hJt >
{Q(t) 3P[i§P(t)’iSQ(t)}}e~ e [ an )=
o.pP

=(a2.02lar.n) g
In arriving at this result we made use of
8 )
) = Oa 5 t/ = 8 t— t/ .
s PRCUIRE

At this stage we return to the H = 0 case as contained in Eqs. (18.23) and (18.24).
These can be solved with the ansatz

P
log {a»,t; | ai, ll)g=o

_ ;1 { / 40 0(0) / "4eP(e) + A / "40(t) + B / dP(r) + c} 827

n n

where A, B, C are constants of integration which do not depend on the source
functions Q(¢) and P(¢). We can fix the particular values for A, B, C by selecting
specific base states for our brackets. Here we choose the mixed representation
(q2.1 | p1.11)2* and formulate our initial conditions in terms of the equations

h 4

1 b | pr)2E = p(n) = p, 18.28
i 50(1) og{q2. 2 | p1.t1) =g = P(t1) = p1 ( )
ho8 log (ga. 1> | p1.11)%E = q(r) = (18.29)
i 8P(12) g2, 02 | P11 ) g=o = 9(12) = q2, .
—p= 1 i
(@212 | 1.0)920=" = (g2, 12 | pro11) = @ h)lef'qz”‘. (18.30)
th)2

When these conditions are employed in the above ansatz (18.27), we obtain
A =p, B = q,

hl
C=qp + ‘2 log(2mh).
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This result enables us to rewrite (18.27) more specifically as

1 i o o
(g2.t2 | pr.t)gLy = exp / daQ(o)/ dtP(t)+
R LI :

+ pi1 / darQ(r) + qz/ dtP(t) + qu1:|} . (18.31)

Now let us consider the free particle as a simple example. To evaluate the
transformation amplitude (g2, > | p1, tl)g’P , we have to operate with

=p?/2m
i 1 (k8§ \?
€ — dt on o ot Q’f .
XP§ h/tl m (i 5Q(t)) } (2,12 | p1. 1) =
Now the functional operation fl’ 85( 5 on (g2, | p1. 1) 1%:0 yields the shift

h

8 '
i 50() (@202 | pr.0n)9ly = (p1 +/t1 dtP(t)) (g2.12 | pr.0)2r,  (18.32)

so that the transformation amplitude for the free particle is given by

q ) 1 p ) 1 ' - exp dl . q ) 1 ) 1 :
2512 1,41 plzn h n 2’" 1 SQ(I) 2,12 }'71 1 H=0

. t 1 t 2
:exp{_;l / di (p1+ / drP(r)) } (2. 12 | P 1) 2L,
- (znlh)% P { ; /nzdt[g(t) (/ b +p ') P

1 ' 2 i
- dtP
o (p1 +/t1 T (f)) ]+ 5 02P1

Setting Q(¢) = 0, i.e., H = p*>/2m — q(t)P(), we obtain

. (18.33)

H=2m N (zﬂh);

. 1 %) t 2
—;lzm/n dt(pl—i-/rl dtP(t)) } (18.34)

1 i 2
(g2.2 | pr.1))0_ enghqz (/ dtP(t)+p1)
n
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and for Q = 0 = P, we rediscover the well-known result,

=P=0
)Q —

="

) )
— (zﬂh); eh P17 4 g,l,,(tz—fl)‘ (18.35)
2m

(q2.t2 | p1. 11

Let us now return to the general discussion. Our aim is to construct a formal solution
of the functional differential equations (18.17) and (18.18) in terms of a path
integral. In order to be precise, we choose the labels a; and a, to represent position
eigenstates, and we try to calculate the transition matrix element (gs, 1, | p1, tl)g’P
for an arbitrary Hamiltonian H. We shall start with H = 0 and use Eq. (18.25) later
on to obtain the matrix element for an arbitrary H. The argument consists of the
following four steps:

(1) We convert the mixed g—p matrix element (18.31) to a g—g matrix element by
inserting a complete set of momentum eigenstates and using (18.30):

+o00

(@202 | . 1)8L, = / dpiiga, to | pr. 1)L it | qi, )

—00
1

+o0 ., |
= (2 h)l / dPl(Clz,tz |p1,t1)g’=0 e HhP1q1
Th)2 J—

(o]

(18.36)

Employing (18.31) in (18.36), the momentum integral leads to a §-function, and
the g—g matrix element reads:

n
(@20 | g1, 101)8L =6 (42 —q +/ dTQ(T))
n

-exp% ;1 |:/r1t2 doQ(o) /tla dTP(t) + q» /tltz d‘L’P(‘L’)i|} .

(18.37)

(ii) We reproduce the amplitude (18.37) by an integral over paths in phase space,
(q(0),p(1)),t € [t1, 12]. It reads:

q()=q>

(et L)l = [ g [lapio)

q(n)=qi

-exp{ . / "t (i) + 00p() +P(r)q(r)]} . (1838)

Here we only give a formal proof of Eq.(18.38); for a more rigorous treatment
we refer to the literature. Note that the integration over the momenta p(t) is not
subject to any restrictions. Therefore we can easily perform the integrations which
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are implied by the measure

+o00
/ [dp(0)] = ]‘[ /_ dp(7) . (18.39)

t€(r,12] o0

Because the exponential appearing in (18.38) contains p(¢) linearly, the integral
factorizes into an infinite product of delta functions:

+oo Lot e
1_[ {/_ dp(t)eh i dr[q(r)+Q(t)]P(t)} =N l_[ 8(g(H) + 0®)

t o0

= _¥8[g+0]. (18.40)
AS a consequence,

q(12)=q>

@t | @1.0)20y = N / ldq ()18 + 0]

q(t)=qi

.exp% ;1 /tz dtP(t)q(t)} . (18.41)

151

The normalization factor .4” is ill defined a priori. We shall fix it by the requirement
(g2, t| g1, 1) = 8(g2 — q1) later on. The remaining functional integral (18.41) is over
paths in coordinate space only. Because of the “delta functional” §[§ + Q], only
paths satisfying

q(t) = —Q(1) (18.42)
can contribute. At most one single path exists which satisfies (18.42) and is

consistent with the boundary conditions. Solving (18.42) subject to g(2) = g2,
one finds

q(t) = q2 + / ’ dtQ(7). (18.43)

The second boundary condition ¢(f;) = ¢ is satisfied only if the triple (g1, g2, O(+))
is such that

9 —q1+ / 2 dtQ(r) = 0. (18.44)

151
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This implies that the path integral (18.41) is proportional to a delta function
enforcing equation (18.44):

~ 5}
(g2, 12 | %Jl)%io =N (42 —-q +/ de(T))
3|

-exp%; / ’ dtP(1) (qz+ / i ch(r))}. (18.45)

We fix the new normalization constant .4 as .4 = 1, because this yields the correct
normalization (g2, | q1, t)g’io = 6(g2 — q1). If we note that

/ZdoQ(a) /0 dtP(7) = /zdtP(t)/zer(t) (18.46)

we see that Eq. (18.45) is precisely the same expression as matrix element (18.37).
This completes the proof that the phase space path integral (18.38) provides
a representation of the transition matrix element (18.37), i.e., that this path integral
is a formal solution of the functional differential equations (18.17) and (18.18) for
H=0.

(iii)) So far we have dealt with the case H = 0. Now we allow for a generic
Hamiltonian H and derive the corresponding phase space path integral. This
is most easily done by using Eq. (18.25). If we insert (18.38) on its RHS and
interchange the functional integration with the differentiation with respect to
the sources, we arrive at

q(12)=q2 ik
s Lo’ = [ "o [lavorenn] , [ il
q n

(r)=q1

i [2 h 6 h S
'exp%_h/n dtH(MP(r)’iSQ(r))}

-exp{ ;z / 2 dt[Q()p(1) + P(t)q(t)]} . (18.47)

151

When acting on the last exponential in (18.47), we may replace the derivatives
—ih6/8P(f) and —ih$/8Q(t) by q(¢) and p(t), respectively. This can be shown by
a power series expansion of the exponential and the rules of functional differentia-
tion. Hence we obtain as our final result for the matrix element in presence of the
sources P and Q, and for an arbitrary Hamiltonian H:

q()=q2
@t | q1.01)2" = / ldq(0)] / ldp(1)]
q

(t)=q1

-exp{; [ atbi - Ha@.p0) + 00p0) + POGOL] . (1848
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The propagation kernel K introduced earlier is a special case of (18.48). It is
obtained by setting Q and P equal to zero: K(q2,%2;q1,t1) = (g2, | q1,11)g-
This leads us to the important result that K is given by the following phase space
integral:

q()=q>

K(q.t;q1. ) = /

q(n)=qi

[dq (1) / [dp 1)

TP {;z / i) - Hg.po)]} . (18.49)

(iv) What is the relation between the phase space integral (18.49) and the position
space (or, more precisely, configuration space) path integral (16.15), which we
discussed earlier? To answer this question we define a functional Slg(0)] by the
following momentum path integral:

exp (;S[q(t)]) = / [dp(1)] exp [;l / dr {(p()q(t) — H(q(), p(t))}}

151

(18.50)

so that (18.49) becomes

q()=q>

K(q2.12;q1,11) =/

q(h)=q1

[dg(1)] exp (;S[q(r)]) : (18.51)

Obviously the path integral (18.51) coincides with (16.15) only if we can show
that S equals the conventional action S, the one related to H by the usual Legendre
transform. From (18.50) it is clear that the equality S[g(r)] = S[g()] cannot hold
true, however, for an arbitrary Hamiltonian. It is true, however, for all Hamiltonians
which have a “natural” kinetic term proportional to p?. If we make the ansatz
2
H="" 1V, (18.52)
2m
the momentum integral (18.50) becomes Gaussian and can be solved by completing
the square in the exponent:

: n 2
Jones|, [ arlpoan "0 |

L oen
= const. - exp |: ! / dt mc'](t)Z:| . (18.53)
hit, 2
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This means that, up to an irrelevant constant,’

Slql = / " (54 + V@) = slal. (18.54)

In the sequel we shall primarily consider systems with Hamiltonians of the
type (18.52). For them the functional S in the configuration space path inte-
gral (18.51) is indeed the same as the classical action, and Feynman’s for-
mula (16.15) may be used. However, it is important to keep in mind that for a generic
momentum dependence of H, S might differ from S.

IRather than keeping track of naively divergent constants of this sort, we shall determine the overall
normalization of K from the condition (17.19) when we discuss concrete examples.



Chapter 19
Examples for Calculating Path Integrals

We now want to compute the kernel K (b, a) for a few simple Lagrangians. We have
already found for the one-dimensional case that
x(t2)=x2 .
K(x2 b3 x1,t1) = / [dx(£)] e/)S (19.1)

x(t1)=x1

with

153
S=/ dtL(x,x;1) .

151

First we consider a free particle,
L=mi*/2, (19.2)
and represent an arbitrary path in the form,
x(H) = x() +y(@) . (19.3)
Here, x(¢) is the actual classical path, i.e., solution to the Euler-Lagrange equation:

oL
0x

_daL

=— =0=xX. 19.4
s dr ok * (194

x

For the deviation from the classical path, y(¢), it holds that

y(ll) =0= y(lz) . (19.5)

© Springer International Publishing Switzerland 2016 223
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Now let us substitute

x(0) = x(0) +y() .

(1) = x(1) + 3(1)
in L(x) = mi?/2 and expand the Lagrangian around :

1 9°L

. AL
L(x) = L(x y) = L(x y
() =Lx+3) =L + 5. ‘;y * 2 oxax

‘;yz . (19.6)

This expansion is exact, i.e., terminates with the term of second order, since L is
quadratic in x. Hence, we can write the action in the following form:

f2 . aL 1 9L
s= | a|LG E K4 19.7
/,1 [(X)Jrax;y*zaxax;y} (197
Using
/fzdtaL . [oL (t)"z /fz g BL‘
o okl T Laxl ], T T ar ol )”
=mx=0
t X aZL
Sa = / dtL(x) , ...| = m = const.
f 0x0x |2
we finally get
m (2
S =S84+ / dry* (19.8)
2 J,
and thus, for the kernel:
o y(t2)=0 i 2 m
K(x2, o3 x1, 1) = elSall/A / [dy(t)]exp[ / dt yz} . (19.9)
y(t1)=0 h f 2
Here we have used
8x(1)
dx(1)] = dy(t)] = [dy(?)] .
0] = | lv0) = v

The classical action for a free particle was worked out in (4.32):

Y
5, = ™ Xt (19.10)
2 th—1h
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Equation (19.9) thus yields for the kernel

. 2 (12)=0
K2, 1251, 11) =exp[‘ m (2 =) ] / T o)

2 n—n |Jym=o

i f” m.,
. 19.11
xexp|:h/t1 dt2y (t):| (19.11)

Later we shall calculate the path integral in (19.11) explicitly. Here we want to apply
a trick which makes use of the group property (17.20). First of all, the path integral
over y(¢) in (19.11) is independent of x; and x;. Its value can thus depend only on
t; and t,, and since the entire problem is time-translation invariant, (conservation of
energy!), the value of the path integral is only a function of the time difference, i.e.,

0 i 1 m.,
Al — 1) ::/0 [dy(t)] exp [h/ dtzy:| . (19.12)

So we get

(19.13)

i —x)2

h2 b—n

To determine A(f) we make use of the group property (17.20), which reads for t; =

Kh(=1):

5(x2 —xl) = K(xz,t;xl,t)

+o00 pz
de xz,t X, 0) (x,O;xl,t) , H=

. 4
-/

+o00
de xz,t X, 0) (xl,t;x,O) .

o

Here we substitute

K(xz, £ x, 0) = A1) eli/)Se(x2.1:0.0)

K*(x1,£:x,0) = A* () el /M50

Hence we can continue to write

+o0
3(x2 _ xl) — / dx|A(t)|2e(l/h)[Scl(xz,r;x,O)—Scl(xl,t;x,O)] )

o0
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The exponential can also be written as (x, = x; + Ax)

S (x1, 2, x,0
Sai(x1 + Ax. £:x,0) — Sa(x1. £:x,0) = “i;x %9 A . avso,
1
= (x2—x1)

where

dSa(x1,x,0) 0 m (x; — x)? _m( B )
0x1 B ox; | 2 t - t S

or

aSCl(xlv ta .X, 0) _

ax) = o,

" =)

Note that «(x) is a linear function of x, so that do/dx is independent of x. With this
information, we can continue to write

too dx .
5(x2 —xl) = / do '|A(;)|2 e li/)a(x)(=x1)
—00 do
=/+oo da oli/Mato—x) 27h|A(1)]?
0o 27h |doe/ dx| ’
= 8(xa—x1)
so that we obtain
1 |da 1 m
A 13 2 = = J—
@) 27h | dx Znh‘ t
_ 1 aZScl(xla Lx, O)
T 2nh 0x10x
or
Ay =4 | "= \/ "o — i/ 19.14
0 =e \/Znht omiht i (19.14)

Here we have chosen the phase in such a manner that

. Y
im (—x) } (19.15)

m
Kot 0) =0 P50
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reduces to the §-function when the limit ¢ — 0 is performed. To prove this, let us
use the following representation of the §-function:

I (xy —x1)?
S(xz—xl) = Jr }grg)[\/texp |:— . .
Then the limit of (19.15) takes the value

. ) _ m . 1 m 2
fim K (12, £:21,0) = \/erih i J;eXp[ 2in 2 ) ]

m 2mih
s ) =) asa

So we have determined in detail the propagator of the free particle,

m im (x—xp)?
K(x2,t2;x1, 1) = . 19.16
(Xz 2 l) \/Zﬂlh(l‘z — l‘])exp |:h 2 bh—1h i| ( )
- " l/mSa
2mik(ty — 1)
As a side-result we have [cf. (19.11)]
y(2) =0 i r? m m 1/2
dy(t)] ex /dt 'Zti|=( . ) : (19.17)
[, ol ol [ 570] = (rinen )
In three dimensions we obtain instead
3/2 . 2
m im(rp—ry)
K(r2, tsr1, 1) = . . 19.18
(7'2 zn l) (Zﬂlh(l‘z — tl)) °xp |:h 2 bHh—1h i| ( )
For future purposes, let us keep the above boundary condition in mind:
lim K (x2, £;x1,0) = 8(x, — x1) . (19.19)

t—0

To conclude we shall use (19.16) to establish contact with the Schrodinger
wave function. We already know from Chap. 15 that K(x,t;0,0) represents the
Schrodinger wave function for a free particle which was emitted at x; = 0 at time
t; = 0 and at (x, 7) is described by the probability amplitude v (x, ):

m i mx?
Y(x, 1) = K(x,1,0,0) = \/ZJriht exp[h 5 i| . (19.20)
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Let (xo, fo) be a special point. If the particle is then observed at x = x at time ¢,

then it has, classically speaking, the momentum

Xo
po = mvy =m
fo
and the energy
1 1 x3
Eo= _mvi= _m?.
T T T

The change in phase (m/2#)x?/t in (19.20) in the vicinity of (xo, fo) is then

( t)—\/ m imx?
vy = 2riht P H 2

- \/ m
=\ 2xihe

o2 ) e ) oo )
X — X0 — 1o
h 2 io a'x t X0.f0 at 4 X0,%0

-
2 2
X, 2x0 X,
0 0
+  (x—x0)— ,(t—1)
o 1o 1
- -_ -
> 2 2 > >
X0 2ox 25 X X0 _ 2xox __ %o
P o r(z)t+t0_ o t%t
: 2
m i X0 m X ,
= _ex m X — .
ikt P i fo 2 1
N ——— N——
=Po =Ey

-

(19.21)

Thus, the wave function varies in the immediate vicinity of (xy, #y) according to

Yix, 1) = \/27:;” exp|:;l (pox—EOt)] .

(19.22)

This is the well-known Einstein—de Broglie relation, according to which a particle
with momentum p and energy E is assigned a wave function with the wave length

A = h/p and the frequency v = E/h:

exp |:i (2;x— 21;t)i| = exp |:;l(px—Et)i| .

(19.23)

With ¥y, =04 =0(x,1) = K(x,#,0,0) we have a space—time description of
the freely moving particle. We now want to proceed to the momentum (energy)
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description of the particle with the aid of (17.10) and (19.16):

+ =K(x',0;p,0)

&) — ==~

K(x,£;p,0) = ypolx,1) = / dx' K(x,1;x',0) xp0(x',0) . (19.24)
X =—00

Later on we shall prove in more detail the following ansatz for the transformation
amplitude y, (x, 0):

1 .
(K(x.0:p.0) =)y 0) = e/ (19.25)

Hence, (19.24) can be written as

X(-x t)=/+oodxl\/ m exp i m(X—x/)z 1 exp ix/p
P o 2riht h2 t V2rh h '

With the aid of the identity

_ 2 ¢ 2 2
x/p-i-m(x *) zm[x’—(x—p)] +xP—p t
m

2 t 2t 2m
we get
: 2
i P m 1
p(X, 1) = - t .
1ol 1) =exp [h (xp 2m ):| \/2mht \/Znh
+o00 . - -~ ¢ -
x/ dx' exp ! m[x’—(x—p>] 2
oo h 2t m
or

(. 1) i P’ , 1 \/ m /+°° i im ,
p(X, 1) = €X - . ex
Xpt P A\ oy 2k N 2wiht | "exp hort

—_—

=1

or

1 i i p?
Ap(x, 1) = Jah exp hxp— 5 th . (19.26)

So we are describing a particle with momentum p and energy E(p) = p?/2m.
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In three dimensions:

= L el s _iry (19.27)
D= a2 P A" P T o] '

Of course a propagator K can also have momentum arguments. Again with the help
of the group property (17.10) we obtain

+o00
K(p2.1:p1,0) Z/ K(p2.t:x,1) dx K(x,1:p1,0)
—00 N -_— - ~— _ -
If(pzﬁx,()_z Xpi (x. 1)

X, (%)

/+°°d 1 [ i } 1 [i i p? t}
X €X — X €X X —
—00 V2rh P hpz V2rh P hpl h 2m

1 +o0 . i p2
_ / dre=0/mxm=) g [ 1 PT,
27h J o h 2m

_—

=38(p2—p1)

S
= 8(p2 —p1) exp [—;l 51;1{| )

So for the free propagator in momentum space we have

.2
i pj
K(p>2,t;p1,0) = 8(pr — — t] . 19.28
(p2.1:p1,0) = 8(p2 pl)eXp[ thi| (19.28)
With this form for K we can, conversely, return to real space:

K(XQ, t;x1, O)

:/ K(x2,t:p,1) dp  K(p.;p',0)  dp’ K(p',0;x1,0)

\.\,__« - ~ —_ -

e lier] 5o [~ 2] yewl-ior]

2mh h 2m

t m(xy — x1) 2 im (x2 — x1)?
/ 7P h2m[p_ t }+h2 t

im (x—x)?
27r1ht h 2 t '

d i p?
P e(i/B) (y—x1)p exp [_1 p t:| (19.29)
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where we have again used

+oo
2 b3
dxe Y = o, a>0.
o0 ai

Using (19.28), we can show that K (p, t; p1, 0) satisfies the Schrédinger equation:

) 3 p2 i p2
in atK(Pz,t;pl,O) = 8(p2 _171)2’;1 exp [_h 2};4

2

p
2’/2,11(([72, t,pi1, 0)

or

2
(ih o pz)K(P2,l§P1,0) =0.
m

Similarly, it holds that

L0 p?
(1h o 2m) xp(x, ) =0

and

0 K2 92 ,
(lh3t+ om axz)K(x,t,)c,O) =0.

By way of illustration we consider the path integral solution of a particle in a one-
dimensional infinite square well (walls separated by a distance L):

V() = { 0, O<x<L,
o0, x<0, x=>L.

path integral treatment, let us first clarify how the particle can travel from (x;, ;)
to (xy, tr). As in the double-slit experiment, we again have to allow all paths along
which the particle can travel from i — f. There is an infinite number of possibilities:
the direct path (free propagation from i — f), while on a second path, the particle
bounces against the rigid wall one time before travelling on to the final point.
Geometrically, one can say that the end point (x7,#) is reached via the image
point (—x, #), starting at (x;,#;). If we now turn once again to the superposition
principle, we expect the propagator to consist of the sum of the two contributions of
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the classical paths:
m im (xf—xi)2
Kp(xr, 17, %1, 1) = .
ot \/thw—n) %exp[h 2 (1) }

im (—xp—x)?
— €X ’
Pli2 G-n
= K(xf,tf;xi,ti) —K(—xf,tf;xi,ti) . (19.30)

The K’s are free propagators, while the subscript L on K; reminds us that the particle
is trapped between the walls of the box. The minus sign between the two free
propagators is due to the action of the elastic wall. We cannot keep the particle
from bouncing off the wall arbitrarily often, i.e., an infinite number of times to the
right and the left, while on its way from i — f. Thus it is natural to construct
the propagator by forming the sum of all these infinitely many classical paths. The
contribution of each classical path is the free particle propagator, multiplied by (—1)
for every collision against the wall. Thus it is clear that the generalization of the
above formula can only read

o0
Ki(gtpixit) = > (=DK% 1% ) - (19.31)

r=-—00

With the help of (19.29), we also can write

+o00 dp
Kl ki) = 3 /27th

r=-—00
2

. 2 .
ip i
—exp{—h 2m(tf—ti)+ h(ZrL—xf—xi)p}:| .

At every turning point we pick up a phase 2Lp/h. We continue to write

d . 2 .
KL(xf, Ir; Xi, ti) :/ 272’ exp |:—;l P (tf — ti):| exp I:—;lpxi:| 21

2m
(/mxrp _ o=G/h)xp [ £ 2irL
e e irLp
x ex .
(]

sin[(ﬁ h)xs]
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At this stage we use Poisson’s formula

+o0 +o00 L
(i/my2Lpr — § -
e =

Y > 5(r 1)

r=-00 n=—00
+00
_ nLh Z 5 (p 3 nnLh)
and obtain for our propagator
i X i
Ki(xp, t5xi, 1) = L ;oo exp [—hEn (tr — l‘i)i|
x exp[—ikyx;] sin(kuxr) . (19.32)
The appearance of the §-function implies energy and momentum quantization:

1 72k ) n
E, = , N, k, = . (19.33)
2m L L

Since the term n = 0 vanishes in (19.32), we can combine positive and negative
terms to get (t; > ;)

K(xf,tf,x,,t, = (Z ni)

S22 expl—(i/A)En(ty—1)] expl—ikyxi]sin(kyy)

o0
— Z e~ W/RE(tr—t:) giknxi [_ sin(k,,xf)]
n=1

£Z=_Ek—n i o0 i e—ik,,x,' _eik,,x;
=" exp|—. E,(t —1;) | 21 . sin(k,xr) .
L2 om0 st
— sin(kyx;)
So our final result reads (#; > t;)
1
K; (xf,tf,x,,t, = Zexp{ 4 (tf — t,)} sin k,x; sin k,xs . (19.34)

n=1

Later on we shall derive the same formula in a somewhat different manner.
As our next example we consider a particle whose one degree of freedom is
constrained to move on a closed path, i.e., a curve that can be deformed continuously
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into a circle S'. Let the ring be parametrized by s and its length be L. The coordinate
on S'is ¢ with 0 < ¢ < 27 with ¢ = 0 and ¢ = 27 identified. So we are dealing
with a problem with periodic boundary conditions.

Now, as is well known, the universal covering space for the circle S! is the line R,
which, of course, is simply connected. Hence, when projecting the motion of our
circulating particle onto R, we are dealing once again with a free particle whose
propagator we can write down immediately:

1/2 . (x(n) _ x,)z
m 1 m i
K; ((n),t; i,li)z . ex ! .
AR A ity — 1;) Plaa tr—t;
(n)

The superscript (n) in x}") reminds us that while the particle is going from x; to x;
on R, it has covered the ring n times. The last formula can then be carried over to
our ring with length L using the relation (x; = s;):

(n) _

Xy xi:(sf+nL)—siE§+nL, T=1—1,

m )1/2exp[i m (§+nL)2:|

KL(Sf’tf;Si’ti) = (27riht 2 ‘

With the aid of the identity

| . .
Jr exp [;xz} = \/4; /dp exp [—inz + ipx]

one obtains

) m A2 (i \"? T, . m
KL(S”)_(zmh) (47r) /d”eXp[_l4p +lp\/2h(s+”L)}

or, employing the substitution p — \/ (2/hm)p:
K. G )—/d”e G4
ESOZ ] 0mn P T o T APE T

dp i p? i
_ /mpin gy | —
/mhe EXP[ hom' Tl

Let us recognize that we cannot distinguish between those particles which start at s;
and reach sy directly and those which only arrive after numerous orbitings. In other
words, the winding number is not observed and therefore has to be summed over.
Again, as in the double-slit experiment, we cannot say via which of the possible
paths the particle has reached sy. Hence the propagator for our system should read
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more properly

+o00

- m \1/2 i m 5+ nL)?
Ko = Z (Zniht) expl:h 2 T :|

n=—00
dp [ =X ip? i
- (i/mypLn _ 5 1
/Znh (n;ooe ) exp[ 5 2mt + hps:| . (19.35)

This is still not the final answer.
Now we use Poisson’s summation formula once again,

foo +o00
Z elZﬂnx — Z 5()6— M)
n=—00 U =—00

and obtain in this manner (x = pL/27h)

+o00 +o00 +o00

- L 2rch 2h

(i/mpLn _ s P~ — )= slp—
D M (e B ORI (S B
n=—00 L =—00 H=—00

With this result our propagator reads
+o0 . .
1 2rh 2
K (5,7) = L/dp Z 8 (p— th n) exp [—;l gmr + ;lpi} . (19.36)

n=—0o0

Here we want to emphasize that p and s or § are canonically conjugate variables.
Performing the p-integration in (12.36) we obtain

I G i1 (27h ) 5
K (5,7) = N E exp s om\ L n)t+ 27t1nL . (19.37)
n=—00

For a circular motion with radius R, the natural parameter is the angle ¢. This
suggests rewriting (19.37) by setting

5=R(pf—@)=Rp. L=27R, v=t—t;, I=mR>.

On the left-hand side of (19.37) we then obtain K;.(Rg, 7), so that our propagator
for a particle moving on a circular orbit becomes

+o00

1 h .
K. (Rp, 1) = iR Z exp [—121n2r+m¢} (19.38)
n=-—0o0
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or, introducing K.(Ry, 7) = (1/R)K (¢, 7):

1 +o00
K(‘/’fvtf;(/)i,li) = o Z

n=—0o0

h
exp [—izlnzr + in<pi| . (19.39)

The §-function in (19.36) tells us that

2rh L
p= n: Pt _ hn, neZl.
L 2
For a circular motion this implies quantization of the orbital angular momentum and
the energy:

p=mRp, L=2nR:

L mRq
PR _ M) R = mR%p = L, = nh (19.40)
27 27

2 hz hz
p 2" (19.41)

E, = = n
2m  2mR? 21

Notice that we have never mentioned the name, “Hermitian operator.” In fact we are
witnessing the first sign of a topological quantization procedure, in particular of the
orbital angular momentum.

Let us rewrite (19.39) a bit with the aid of Jacobi’s 6s-function:

+o00
O3l = Y eI = gy (—glr) (19.42)

Setting z = ¢/2 and t = —ht/271, we obtain

1 10 At
K(p.7) = 2n93(2’— 2n1) . (19.43)

The 6;-function satisfies the Poisson identity

. 1
03(zt) = (—ir)~V/2 e/im1 g, (ﬂ — t) . (19.44)

This allows us to write for the propagator

1 12 i1 (gr—9)?
K(Wﬂt.f;(/)i,li):( )) eXP|:h2 ! :|

2mih(ty — t; Ir—1
wler— )| 27l
. 194
93( By — 1) |hiy — 1) (1945
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Let us go back to (19.35), which takes a slightly different form when written for
a circular orbit:

+o0 .
K, G.1) = Z ( m )l/zexp[l m(R<p+n27rR)2}

L= \2miht h 2 T
io:o ( m )1/2 . i mR2 (¢ + 27n)? (19.46)
= X B
= \2mihtT Pla2 T

or, upon introducing K (¢, ) via K.(s,7) = K(¢, 7)/R:

+o00 2 1/2 . 2 2
mR i mR* (¢ 4+ 2nn)
Kp.n= 3, (2mhz) exp [h 2 v }
+o00 1/2 . 2
1 il (p+2mn)
= 19.47
_Z: (ZJriht) exp |:h 2 T :| (19.47)
n=—00
+o0
= Y K. (19.48)
n=—00
where
1 \? i I (p+2mn)?
K, = . 19.49
(ZJriht) exp [h 2 T i| ¢ )

We shall now assume (however, a proof can be given) that each term in (19.48)
individually satisfies the Schrodinger equation. Then it follows that

+o00
K= Y AK,. A,=e"  0<6<2r, (19.50)

n=—00

is also a legitimate candidate for a circular propagator. The justification for this can
be found in the standard literature. Consequently, we find for the 8-propagator

+o00 1/2 . )
I ) il (¢ +2mn)
K° = 0 .
(.0 n;oo (27tiht) exp |:1n o T :|

The term in the exponential is given by

i1e* (2wl , , .. (0 7l
2 .
h2r+m(hr)n+m(2+hr
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Thus we obtain

+o0 1/2 . 2
1 11le
K'(p,7) =
(.0 Z (ZJriht) exp|:h 2 ‘Ci|

n=—0oo

(27D 5, . (0 wip
2
xexp[ln(ht)n—k 1n(2+hr):|,

I \"? i1 ¢2 0 rwlp|2nl
K (p,7) = 6 . 19.51
(.0 (Zniht) exp |:h 2t :| ’ (2 + ht | ht ) ¢ )

All values of 6 are equally acceptable. To understand this “quantum ambiguity”, let
us write K% in a form that will allow us to identify the wave functions and the energy
spectrum of the underlying problem:

6 1 (O¢ 0%ht
K (¢r. 173 91, 11) =, x| =i + Sl

¢  htf ht
0 - . 19.52
e (2 * s 2n1) (19.52)

Proof
¢  hto ht
0 -
’ (2 * snr 27r1)
=t =z
N e e i
. (TN, (e T
= Z exp[m( ZhI)n —+-12n(2 + 47ﬂ)i| (19.53)

n=—0o0

) 1
= (—if —1/2 zz/mte < _
(i) € 3 ti /
iht \ /2 2l (¢  ht6 2 wle 0)2xl
= exp + 0| — — ‘
2rl At \2  4nl ht 21 At

271\? .21 hto\’
03(Z|t) 293(_Z|t) L= (lhf) eXp |:1h1; (g * 47{1)

nlp  0)2xl
0 .
x 3( ht + 21 At )

If we multiply this result by the factor in front of 63 in (19.52), we indeed
obtain (19.51). On the other hand, we can simply substitute (19.53) in (19.52). Then
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we can easily show that the Green’s function can be written as

; 1 I i h2 0\
Koriont) = n;ooeXp Thot ("_ 2n) (tr — 1)

x el=0/27) (g—0)

+o00
_ Z e_(i/h)En("j‘_ti)un((ﬂf)M:(qoi)'

n=—0o0

So we obtain for the eigenfunctions
Vil (p.1) = u(p) M
with

ei(n—0/2n)<p
v

1
u, (¢) = ~
and for the energy spectrum

h? 6\
Eg: n— , ne.
21 21

The uﬁ are no longer periodic:
W 2r) = e 7 ul (0)
or, more generally,

uz Q2rm) = e uz 0) .

239

(19.54)

(19.55)

(19.56)

(19.57)

(19.58)

(19.59)

Different values of 8 correspond to different energy spectra, i.e., different physics.
For the interpretation of the f-angle, we refer to the literature, in particular, to the

Aharonov-Bohm effect: 6 = e¢® /#c.

Let us now return to the beginning of this chapter and consider, rather than the

simple Lagrangian for a free particle, a more general quadratic form:
L = a()x* + b()xx + c()x> + d(t)x + e()x + (1) .
Again we disturb the system relative to the classical path and write

x(t) = X0) +y(1) . &(1) =X+ 3(0)

(19.60)
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with
y(n) =0=y(n).

Subsequently, we expand L(x(f), x(¢); 7) in a Taylor series around X(7), x(). This
series terminates after the second term because of the special form (19.60). Then

oL| .

. oL
L(x,x;t) =L(x,x; 1) + v+ |y
ax X ax X

+1 9L 2+232L ,+32L,2
o Lo? T oY T ae”

XX

From here we obtain for the action

f f . f oL oL
S :/ dr L(x, x;1) :/ dtL(x,x; 1) +/ dt( v+ .y)
f f f ox ox

+ / " di(alt? + b0y + cOF)

1

XX

Integration by parts and use of the Euler-Lagrange equation makes the second term
on the right-hand side vanish. So we are left with

S=Su+ / " dt(a(y? + by + c07)

3|
and the propagator can be written as

(12)

: ¥(12)=0
K (52, i1, 1) = /05 / [dy(0)]
¥(11)=0

X exp { ;1 / ’ di(a(t)y* + b()yy + c(t)y*); - (19.61)

1

Since x; and x, do not appear in the path integral, the latter can only depend on ¢,
and t,:

K(xa,t2ix1.11) = A(t2. 1) VP50 (19.62)

If, furthermore, the coefficients a, b, and c are time-independent, then it follows
[as in the case c(f) = m/2] that A is a function of the time difference: A(t; — #;). If
A(ty, 1) is known for a Lagrangian L, then A(f,, ;) is also known for all Lagrangians
of the type L' = L + d(t)x + e(?)x + f(¢), because the linear terms did not appear
in the calculation of A(#,, #;). Here is an example: a particle in a constant external
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field: L = mi? /2 + Fx. The associated classical action was calculated in (4.34):

m (x;—x1)*  F(t,—1) B FX(t, — 1)?

Sa =, 4 , bt 24m

(19.63)

Since the coefficients a and b are equal to zero, we immediately obtain from (19.61)
with ¢ = m/2:

) Y(t2)=0 i r? om
K(x25t2;xlstl) = e(l/h)S“/ [dy(®)] exp[ / dt ?z(f):| .
¥(i1)=0 Ay 2

But we have already calculated the path integral in (19.17), so that the propagator
of a particle in a constant external field is

m i[m (x—x)?
K(xy, t;x1,11) = .
(Xz 2 l) \/Zﬂlh(l‘z—tl) exp{h [2 h—th

F
+ 2 (x1 +XQ)(1‘2 — l‘l) —

2(p 3
Flo=n) }} (19.64)

24m
As final and most important example we consider the linear harmonic oscillator:
L= ”;xz _ ’;cuzxz . (19.65)

Since the Lagrangian is quadratic, for the propagator we again arrive at a form of
thekind (T =1, — 1)

K(x2, T;x1,0) = A(T) el¥/MSa (19.66)

The classical action was calculated in (4.45) with the result

mw
Sa=, sin(wT) [(5 + x7) cos(@T) —2x1x2] . wT #nrw, neZ. (19.67)
If, however, T = nm, corresponding to a half, or complete, period, then we

encounter difficulties. After one-half of a period, the particle is at the opposite
position, and after a complete period, it is at the original point once again. At this
stage, it is useful to recall the results worked out at the end of Chap.4. There we
discussed in detail the conjugate points (caustics) of the harmonic oscillator; cf. in
particular, (5.58) and (5.72).

What we are mainly interested in right now is the factor A(f), which we want to
obtain with the aid of the group property (17.20), as we have already done for the
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case of a free particle. We recall that as a result of time-translation invariance, we
have

+o00
5(xz —xl) = / de(xz,t;x, O)K(x,O;xl,t)

o0
+o00
= / dx K (x2, :x, 0) K™ (x1, £;x,0) . (19.68)
—0o0
Writing
K(XZ, £ x, 0) = A1) e (i/7)Sa1 (x2,£5x.,0)
K* (xl, £ x, O) — A*(t) e—(i/fl)scl(xl,t;x,())
we obtain
+o00 )
§(x2 —x1) = JA(D)|? / dx ei/Ma®)x—x) (19.69)
—00
with
0S¢ (x1, 1 x,0) 0 mw ) )
a(x) o, by | 2 sin(en) [ (] + x%) cos(wi) — 2xx]
mw
= 1) — .
sin(o) (x1 cos(wr) —x)

Again, «(x) is a linear function of x, so that do(x)/dx is independent of x:

do mo 02Sc1(x1, 1; x, 0)

dx _sin(a)t) N 0x10x

Changing integration variables in (19.69),

2h T Ja .
8(x2 —x1) = JA@)? / —(i/mawn—x)
bz =x1) =140 (detjdx)] ) o 27h°
we obtain

1 )82501(x1,t;x,0)
2mh 0x10x

1 mw 1 m 1

2rh sin(wf)  2mh t sin(w?)/ot

A =

The phase can be determined from our knowledge of the free particle propagator.
Using lim,_, sin(x)/x = 1, we obtain from (19.14)

m .
A(t) — e i@/
( ) w—0 \ 2mht
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Thereby we have found the propagator for the linear harmonic oscillator (7T = t, —

tl)l

K(x2.T:x1.0) e
x2,T;x1,0) = i
2 ! 2mih sin(wT)

im w
x exp{ A 2 sin(wT) [(xf + x%)

x cos(@T) — 2x1x2]} . (19.70)

Formula (19.70) is, however, not absolutely correct. The problematic points are
the caustics of K(x;,T;x1,0) at T, = nw/w. Now we recall that below the first
caustic, i.e., T < 7/w, formula (19.70) is correct, as it agrees with the free particle
propagator for small 7. Then it holds that (1/+/i = e™"/4)

K(x.Tix 0) =e7/4 [ "
(02, 751,0) =¢ \/Znh sin(wT)

im o
2 4+ x%) cos(wT) — 2x2x1]} .

x exp% h 2 sin(wT) [(x

If T = (r/2w), this expression reduces to

X 17 0 e_i”/4\/mwe i
X2, » X1, = Xp | —, Mwxsx .
22w ! 27ch P h 2

From the group property and the time-translation invariance, it follows further that

T oo 17 1z
K (xz, ; xl,O) = dx K | x,, x,0) K| x, 7 x1,0
w o0 2w 2w

+o00
= e 17/2 n;la) / ;ix e~ W/Pymottx)x e—in/25(x2 + x1) .
oo 2T

This expression is thus valid at the first caustic. In exactly the same manner we can
proceed with the second caustic:

+o00
K(xz, ZH;xl,O) :/ de(xz, n;x,O)K(x, n;xl,O)
w _ w w

(o]

+o00
:e_i”/ de(x2+x)8(x+x1) =e_i”8(x2—x1) .

(o]
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If we continue in this way, we obtain for the propagator at any caustic:
T —inm/2 n
K(x,n :x,0)=¢e §(xa— (=1)"xy) .
)

The propagator at a caustic serves as initial condition for the propagator in the
following section, i.e., we have to require that

lim K(XQ, T; X1, O) = e—im‘[/Z 8 (XQ — (—1)"x1) .
T—(nm/w)t

Now let us consider the expression

lim e /¢ e exp ime
T—(nmr/w) 2rh|sin(wT)| 2% sin(wT)

X [(x% + x%) cos(wT) — 2x2x1]} )

If we now set T = nm + wét (0 < §t K 1), and use sin(wT) = sin(nw + wdt) =
(—=1)" sin(wédr) >~ (—1)"wdt, we get

. —in/4 mw imw 2 VAR
pim e \/2nhw8teXp% 2h(—1)wdt [0 +2q) (1) = 20u]

. m iml a2l "
= jim \/2nih8t eXp%h 2 g P2~ D] } =80 =) -

The last equal sign follows from a comparison with the propagator for the free
particle:

8( — )—lim m ex im (=)’
2T E SN 2minst TP 2 s '

So in order to obtain the correct boundary conditions at the caustics, we need only
include the additional phase factor (T = 1, — t1):

o727

where [x] denotes the largest integer smaller than x, e.g., [3/2] = 1. In our case,
oT/n < 1yields [wT /7] = 0; T/ < 2 gives [wT/x] = 1, etc.
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The correct propagator for the linear harmonic oscillator is therefore given by the
following formula:

o1 w mw
K(.x27 T,xl,o) = exp |:_12 (2 + I:HT:I)} \/27[h|sln((UT)|

flz 5 sinz(c)oT) [( +26) cos(@T) - 2x1x2]} : (19.71)

X exp {
Formula (19.71) is called the Feynman—Soriau Formula and clearly takes care of
the behavior of the propagator at the caustics. This formula was first written down
in the above form in 1975. We shall hardly concern ourselves with the caustics and
shall forthwith primarily use the form (19.70).



Chapter 20
Direct Evaluation of Path Integrals

Until now we have always used a trick to calculate the path integral in

. ¥(12)=0
K (x2, 12321, 17) = e/MSal0l] / [dy(1)]
y(11)=0

<o, [Cartao oo+ o) . eon

151

The path integral in (20.1) requires integration over all possible paths y(f) from
(0, 11) to (0, t;) with the associated action

n

§1(0.12). (0.1)} = / di(a(Dy” + b + c()?) . (202)

n

In order to calculate K directly, we divide the time interval T = #, —#; in N steps of
width e: T = Ng, 1, = 1.

790 :=1 (fixed), 1 =t +¢&,..., tyv—1 =1 + (N — De, 5 := 1, (fixed) .

Every time 7, is assigned a point y,. We now connect the individual points with
a classical path y(7). y(t) is not necessarily the (on-shell trajectory) extremum of
the classical action. It can be any path between 7, and t,—; specified by the classical
Lagrangian L(y, y,t). The action along one step of the path from (n) to (n + 1) is
thus

Tn+1
Sa(n+1,n) = / At L(y, $;7) (20.3)

n
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and the action along the entire path, accordingly,

N—1
Sa(N.0) = > Sa(n+ 1.n) . (20.4)

n=0

The contribution of each infinitesimal step of the path to the phase integral is then
(Dirac, Feynman)

@u+1., = const. ei/mSan+1n) (20.5)

The sum over all path contributions is, at last,

Vi) =0 , +oo +o00
/ [dy(1)] e /S @] :const./ dy; .. / dyn—1
) _

(t1) =0 ) 00
i N—1
X exp [ \ nZ::OScl(n + 1, n)} : (20.6)

We do not integrate over yo = y(to) = y(#1) = 0 and yy = y(zv) = y(©2) = 0,
since these are the fixed, chosen initial values of y(7). In order to obtain all paths
between ¢; and t, in the (y, t)-plane, we have to form the limite = (¢, —#;)/N — 0
or N — oo. In order for this limit to exist, the constant in (20.6), i.e., the integration
measure, has to be chosen properly.

We know from experience with our examples from Chap. 18 that

2mih
const. =A™V | A(St=¢) = \/ e . (20.7)

m

For this case, the limit exists and we can write

y(t2)=0 ) 1 +o0 d +o0 dvn_
/ [dy(1)] V/WSHO] = Jim n / IN-1
Wi)=0 204 ) o A —o A

. N=1
XeXP|:;l > San+ Ln)] : (20.8)
n=0

Thus, our formula for calculating the propagator reads

+o0 +o0
K(x2, 15 x1,11) = e({/MSaClD) [jm ! ol / dyv-1

—0A J o A oo A

. N—1
X exp [;1 3 Sa(n+ 1, n):| . (20.9)
n=0
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We want to now prove that this instruction for the calculation of a propagator
indeed leads to this goal, at least for a free particle. The Lagrangian in the (y, 7)-
plane is in this case

L= ’; () . (20.10)
The classical action between n := (y,, t,) and n+1 := (Y41, Tu+1) 18, accordingly,

m (Yn+l - yn)2

Scl(n+lsn): 2 e

(20.11)

Then it follows that

0 . 15
[ wsoren|, [“a)vo)]

1 [t /+°° dy, dyn—1

= lim
o A A

e—0 A —00

. N=1
1 m(yn+l_yn)2
. 20.12
oal, 2500 ] -

To calculate the first integration, dy;, we combine all terms which contain y;:
oo i m R =2,
d [0 - -0’

/_ A2 exp{h 26 ‘(yz y) +Ooi—="y ) }

o0 —

2(1=y2/2)2+y3/2
1 imys Foo im 1) , 2mihe
= d — s A =
AZeXp[hZEZ /_oo VIR g o (1T 02 m

~ —_— -

=\/iﬂh£/m

m i m,
- . 2013
\/ 2mit(2e) F [Zh 2¢” 2} (20.13)

One can show by induction that the n-th step of integration yields the following
result:

el LM o] (20.14)
2rih(n + 1)e 2h (n+ 1)e
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After (N — 1) integrations one obtains

i \/ m i m( )2 \/ m

m e — = .

sl—>0 2nwihNe P 2h Ne \yz:r_/ JL Ne=T \ 2mihT
=0 =0

So we again find for the propagator of a free particle

m im@O—x)?
K(x2, t;x1,11) = \/thTeXp[h ) (e2 ; D } . (20.15)

For the linear harmonic oscillator we write in the same fashion
‘ 0
Ko i) =<5 [ayo)
0

i m ., 2.2
xexp | dtz(y -’ | . (20.16)
n

The value of the path integral before the first caustic is repeated here:

0 i [ om,., oo | mo
/0 [dy(t)] exp |:h/t1 dt2 (* — 0% )i| = \/erih sinfoo(ts — )] (20.17)

At this point we want to establish contact with the conventional approach to
quantum mechanics, which is based on the Schrodinger equation.

We found a dynamical equation (integral equation) in (17.10) that describes the
time development of the Schrédinger amplitude. As promised, we now wish to
show that this equation is equivalent to the Schrodinger equation. To that end, we
again consider the one-dimensional motion of a particle in a potential V(x). The
Lagrangian is then

L(x,%) = "21)8 — V() (20.18)

with the propagator

x(h) =x

K(X, 7y, ll) = /

x(t) =y

[dx()] exp{ ;l / § dt[’;’xz—V(x)]} . (20.19)

1
Writing #; = t and t, = ¢ + ¢, our integral equation reads
+o0

Yx,t+e) = / dyK(x,t+ &y, )0 (y,1) . (20.20)

—00
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Since ¢ is assumed very small, we can use the following approximation for K
in (20.20):

: 2
K(o 1+ e5y,1) ~ :‘exp{h [’;’ (xgy) V(y):| } (20.21)

The constant A is still to be determined. Using (20.21) in (20.20), we obtain

+o00 : —_v)2
v(x,t+¢€) :j‘/_oo dyeXp%flz [’;(x Sy) _V(y)g}} vy, 1)
1

+o0 ilTm %-2
/_ d&exp%h |:2 i —sV(x+$)i|} v(x+£E1). (20.22)

(o]

Because of the smallness of &, £2/¢ is the dominant term in the exponential. For
large £, the integrand oscillates very rapidly and makes no contributions. The main
contribution to the integral comes from values § ~ /g, or, better: —\/ eh/m <& <
\/ eh/m. In the case of expansion of the integral up to linear terms in &, the integrand
must be expanded up to quadratic terms in £. Thus, with

%Y (x, 1)
a2

VatEn =y +e 0 g e

we get in (20.22)

+w . 2 .
w(x,t—i-s)::‘/_ d&exp%;l’;i (1—;18‘/()6)-}-...)}

oo

1,0

2582 vx, )+ .

0
x|ven+ &5 +
odd in &

Using the integrals

400 - . 2 ik 1/2
/ exp imé dsz(me) e

0o Lh 2 ¢ ] m
+oo 'ing-z‘
d¢ =0,
[ e, e

too [im &7, ihe \?
=2
/_oo exp_h22 £°dE = \/JT( )
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it then follows that

vt +e VD L e LAy
ot A
il Py i
+8[AA m2 o —A A hV(x)lﬁ(x, t)i| .

If we take the limit ¢ — 0, then we can identify
A A= (2mh5)‘/2 .
m

A comparison of the linear terms in ¢ yields, finally,

ih Pyen i

ad
e = 0 ST = vy

or

L 0Y(x, 1) K% 92
ih =

b T Tom eV ED V@YD (20.23)

This is the well-known Schrédinger equation of a particle in the potential V(x).
The infinitesimal propagator obtained in this manner (20.21) can be factorized as
follows:

m im@x—y)? i
Kx,t+¢&y,1) >~ \/thgexp [h 5 . } exp [—hV(x)s}

= Ko(x, 1 + &y, )¢e(x,t + &:3,1) (20.24)

where K is the infinitesimal free particle propagator and qb’c is the phase factor that
corresponds to the interaction

¢¢ = exp [—;l /C dtV(x)} : (20.25)

The methods just described are now to be applied to the direct calculation of the
path integral (with potential):

x(tp) =x i i
K(xf, te; Xi, ti) = / [dx(r)] exp [h / dt L(x, X; t):| . (20.26)

(1) =xi li
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To this end, we again divide the time interval between #; and #r in N equal parts,
e = (1 —1)/N:

=t (fixed), n =ti+e,..., tyn.1=ti+eN-1), ty =t (fixed) .
Now we recall the definition of the path integral:
‘ x(t)=xy i
kg = [ asolewn | s
x(t)=x;

+o0 +00
= / / dxy ... dxy—1K ()CN s IN S XN—1, tN—l)
— — N——

00 o) ——
=xf 7

xK(xl,tl; X0 , Ho )
——

=X; t;

For N — oo, or ¢ — 0, we again use infinitesimal propagators:

) m \l/2 im(x—y)?
KG.t+ex1) _<2nih8) exp [h 2 e

i x+y
xexp[—hsV( 5 )i| (20.27)

Then we get for the propagator K(f|i):

/:(tf):)(f [dx(t)] exp { ;l [&‘ dt [’121)(2 _ V(x)]}

(ti)=x;

I m \N/2
_NLHAO(Zn’lhs) /dxl /de—l

X ex iXN:m(x"_x"‘l)z—v Bt Bt (20.28)
Plylas ¢ 2 ' ‘

k=1

For the path integral, one often simply finds the expression

~/dx1 .../de_1

. N 2
1 m (X — Xx—1) Xk + Xk—1
xexp[hzz . —V( 5 )e] (20.29)

k=1

Here, the integration measure has been “forgotten”. This can sometimes be justified
by calculating, instead of a single path integral, the ratio of two path integrals, both
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of which describe a particle of mass m. Then the measure drops out and we have
simply

S0 (] exp {§ ST(0)]} / S astoylexp {4 Solx()]}

fjo? f+ dxy ... dey— 1exp{ ; Zk X lg (xk—/\: D? V(xk+/2\'k—l )S}
= th_,oo .
ffo?ffo? dxy..dy—1 exp{i Q/ L (Xk—Xk 1?2 Vo (Xk+/2\'k—l )a}

(20.30)

Here, S refers to the free propagator, so that we indeed are calculating the ratio of
the interacting propagator to the free propagator.

If we want to calculate a path integral, we need not necessarily sum piecewise
over straight lines in (x, )-space. Other complete classes of paths can equally well
be used. For example, if we wish to calculate the propagator

K(0,T;0,0)

we normally begin by dividing an arbitrary path x(7) in segments which connect
the intermediate points x; = x(#;) up to xy—; = x(#y—1). Now, however, we shall
approximate the path x(7) by using a “Fourier path”, i.e., a path of the form

N—1

i) =Y a sin (”Tkz) . (20.31)

k=1
If we then choose the coefficients a; in such a manner that

N—1

X = Zak sin (”k ) (20.32)

then the Fourier paths obviously go through the same intermediary points of (x, £)-
space.

The approximated path is then once again completely characterized by the vertex
coordinates (xj, ..., xy—1), and we again can sum up the contributions of the
various paths by integrating over the vertex coordinates. In practice, however, it is
more convenient to integrate over the Fourier components (a;, ..., ay—1). Since the
relation (20.32) is one-to-one between the (xi, ..., xy—1) and the (a, ..., ay—1),
it is immediately evident that

/.../{./.}dxl...de—lz/ /{/}}( )

dal e daN_1 .
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Since the transformation (20.32) is linear, the Jacobi determinant is independent of
(ai, ..., ay—1)! Its value is thus unimportant (drops out) when calculating the ratio

again:
x(T)=0 x(T)=0
[ st exp{ x(r)]} / / [dx(0)] exp{ so[x(r)]}
x(0)=0 (0)=0

;
. fdal...daN_lexp{ [Zk | a sm k ]}

Jir e ) (2033)
® [day...day—, exp{;lSo [Zk:l ay sin (”T t)]}

In order to illustrate how this procedure works, we again return to the example of
the harmonic oscillator, which we all treasure:

i x(T)=0
K(xz, T, xl,O) =exp { S[xcl]} / [dx(1)]
h x(0)=0
i 7 m., m ,
xexp{h/o dt[zxz—zw xz]} . (20.34)

[The path integral is the same as in (20.17), where we used y(#) instead of x(7).]
According to (20.33), we can rewrite (20.34) as

K(x2. T:x1,0) = exp% ;ls[xd]} Ko(0.T:0,0)

< lim f fda1 .daN_leXp{,ilS[./.]}

k . 20.35
N—o0 f fdal daN_lexp{;lSo[./.]} ( )

The free propagator (w = 0) is known to be given by
m )1 /2

Ko(0.7:0,0) = <2nihT

So now we have to calculate the remaining multiple integrals over the g;. First we
want to show that

= nk mTN_1 , (K N
Zak sin =, 2@l p ). (20.36)
1
Proof

km
()—Zaksm( ) Zaksmwkt Wy = T
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N—1 N—1N—1
x = Zaka)k COS(C()kl‘ x2 Z Zakaja)ka)j COS(C()/J) cos(a)jt) .
k=1 k=1 j=1
We need
T . T kit
/0 dtx” = %:akajwkagifo dt cos( T t) cos ( ) Zakwk .

Similarly, it follows that

/ dtx® Zak

Therefore, we find indeed

i (7 m,. ) i mT = (R )\,
exp|:h/0 dtz(xz—a)xz)i|—exp|:h A (T2 —a))ak )

k=1

Now the integration over the a; is simple to perform, since the exponential is not
only quadratic but also diagonal in (ay, ..., ay—1).

. [N-1
i . (kn
/.../dal daN_lexp{hS[;aksm( T t):|}
i mT = (12n? 5\ o
dap ... dan—exp hoa o - )ag| . (20.37)

Using
/+o° P \/7‘[1
e dx =
—oo o
/+°°d [i mT( 2 ) 2} 4rih
ay ex wp —w)a; | =
e K Pla 4 \% k mT(w} — w?)

we obtain in (20.37)

N—1 ny_ —
\/4mh ket
—w .
mT ] T?

k=
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The free particle propagator is obtained simply by setting @ = 0. The forefactor
(y/4mih/mT)N=" drops out when constructing the ratio in (20.35).

With
T2 (K7 /T? — 0?12 1:[1 ( w?T? )_1/2
=1 (4 _ -
1—[2’:11 (K272 T2)~1/2 P k2m?

we find

K(x2,T:x1,0) =exp % ;S[xcl]}

N—1 20N\ —1/2
m T
li 1-—- . 20.38
< mm;“;okﬂl( orr) 2058)

Euler’s famous product formula for the sine function
1/2 00 2 —1/2
Z Z
. = 1- , z=oT
(sm z) 11:11 ( kznz)

therefore yields for N — oo or ¢ — 0 in (20.38):

mw i
K(x2,T;x1,0) = SHO. )
(2. 7:x1,0) \/ZJrih sin(wT) exp { B [x]}

We already know from our earlier considerations that the phase dependence is not
yet correctly described. Let us recall, however,

+ a in/4
/ oodxe”)‘2 = \/” i/ dsign A _ \/Ml e/t A>0,
—o |A|

\/fh e A <0,

and return to the action expressed in the Fourier path,
. . N—1
i i mT , (7K )
exp[hS}:exp[h 4;ak(T2 —w .

Then we see that the analogue of A is negative if k < wT/m, and positive if
k > wT/m. Once again, the additional phase factor exp{—(i/2)[wT/x]} has to
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be included, so that our multiple integral is given more precisely by

. N—1 212
1 mT , (7mk )
/.../dal...daN_lexp|:h 4 kélak(Tz —a)):|
N—1 n_, _i
7 [T » 4h 72 k?
— _ in/4 2
= exp{ i [ N }} (e \/mT) L[l n O (20.39)

(For the free propagator this ambiguity does not appear.) The correct formula for the
propagator of a particle in the potential of the harmonic oscillator well is therefore

K(x2.T:x.0) =exp [—i (n + [wTD} \/ i
4 2| x 2mhlsin(wT)|

« exp{;lsg{-o-[x} . (20.40)

This is precisely the Feynman—Soriau formula (19.71).



Chapter 21
Linear Oscillator with Time-Dependent
Frequency

Here is another important example of a path integral calculation, namely the time-
dependent oscillator whose Lagrangian is given by

L= ’;xz - ’ZW(z‘)xz . Q1.1

Since L is quadratic, we again expand around a classical solution so that later on we
will be dealing again with the calculation of the following path integral:

x(tr) =0 o [ & ) i
/x(t,-)=0 [dx(t)]expgh 2/:,- dt[(dt) — W(Hx :|§ . (21.2)

Using x(;) = 0 = x(#), we can integrate by parts and obtain

1 2
Slx(0)] = —’Z /fdt |:x(t) cj{; 4 W(t)x2:| ; 213)
ie.,
) =0 im [¥ b
/X o [dx(t)]exp%— 5o [ dt x(1) [ ae T W(t)} x(t)} . (21.4)

Here we are dealing with a generalized Gaussian integral. In order to calculate it,
we should diagonalize the Hermitean operator,

d2
+ W@ . 21.5
WO (21.5)
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But at first we shall proceed somewhat differently. Using an appropriate transfor-
mation of variables, one can transform the action into that of a free particle.
Let f(¢) be the solution of

d2
{ ot W(t)}f(t) =0. (21.6)

f(¢) is mostly arbitrary, up to the restriction that at the initial point #;

ft) #0. (21.7)

Thus f(¢) is not an allowed path, as it violates the boundary condition. With this f
we now construct the following linear transformation, where x(z) is replaced by the

path y(7):

x(6) = (1) /t t dsj; 8 . (21.8)
Differentiation of (21.8) gives
1) =) / ds}{f; +30) = ﬁgx(r) 50). (21.9)

so that the inverse transformation of (21.8) is given by

y(t) = x(1) —/ f( )x(s) . (21.10)

Note that y(7) satisfies the boundary condition y(;) = 0, since x(¢;) = 0. If we
differentiate (21.9) once again,

0 =) [ a5y 03 +50.

we obtain

d2
% a2 + W(t)} x(?)

= g0+ Wore) 3 [ a0 5.
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So far we can write:

S[()] = —’;’ / dtx(t)[ +W(t)i|x(t)

__m () (fO3@) | .
__2/r,- dt|:f(t)/ f()( ) +y(t)):|,

AR (O)
F(t) := t,- dsf ®

== [ atrwioio + Fososo .

ti

An integration by parts on the second term yields

Iy . . . tr
Slxt] =~ / drFf — s — Ffsy+ Ff 3]

_ y() B ’
=y [ roso = kosol;

=0

So we obtain
iy
S[x(0)] :/ dt’;yz, @1.11)
ti

which is, as promised, the action of the free particle transformed to the path y(r)
of (21.10).

The only complication we have to deal with concerns the boundary value
condition at the endpoint #. The boundary conditions for x(¢) are transformed into
those for y(#) according to [cf. (21.8) and (21.10)]:

y(s)

=0, [ -

0. (21.12)

The second boundary condition is nonlocal and thus not easy to use directly. We
therefore use a trick based on the representation of the §-function:

§(x(tp)) = 2; /doz exp[—iax(tr)] -
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This allows us to rewrite the path integral in the form

x(tr) =0 i
/ [dx(r)]exp{ S[x(m}
(1) =0 h

1 x(tr) = arb. +o00 ] i
= / [dx(1)] / da e exp { S [x(t)]}
27 iy =0 —00 h

1 y(tr) = arb. Sx
| L, oo

+o00
() =0 8y '/— dc{
xexp|: iaf (7 / ds;E;} p[; ’121/tfdtjz(t)2:| . (21.13)

The infinite dimensional generalization of the Jacobian is independent of y(7)

because the transformation (21.10) is linear in y. Let us write the exponents
in (21.13) somewhat differently:

;l’;’/ dr( ar(y) (’))

f@
im [ . ha f(t) ’ h2a? f* (1)
_hZ/f,- ‘”[(y_ m f(t)) o f%r)]
" ds
y(0) = y(t) — () )

We then obtain for (21.13)

Sx
8y

oo ih 5, vodt
. /_OO da exp [—zmaf (tf)/ :|

1 fz(t)

¥ (tr)arb. im [r
<[ e, [Cao]
y(E) =0 ti

Now comes the pleasant surprise: we can perform the «-integration (Gaussian
integral). Furthermore, the path integral is easy to handle, since only the free particle
propagator appears:

(21.14)

y (tf)arb. +oo
/ [dy(r)]exp[ / Mz@]: [ drkatws0.)
Y =0 h 2 - ‘

o0

m /+°°d im x2 |
= X €X =
\/ 2ih (s — 1) oo P

h2t—t
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This result should not surprise anyone, since by virtue of its construction, the
path integral represents the probability amplitude that the particle will be found
anywhere at time #r. The path integral being sought thus can be reduced to the simple
expression

Y A2 — W)
/XW: [x(t)]exp{h 2/ t[x — W()x ]}

,
‘\/ /i) fz(r)

We shall now calculate the Jacobian, using a rather naive procedure that is not
always “clean”, but produces the correct result. First we again replace the paths
x(2) and y(7) by the points

(Xo,xl, ---,XN) ) (yo,yl, cees yN) 5 Xk Zx(lk) s Yk Zy(lk) .
We then write the transformation (21.10) as

Ft) Go + xi—1)
Zf(lk) 2

N
_ _ Fw) T V) T
N ; e Z ‘ flo) N Zf(tk+1) N*

Now, the determinant is given by the diagonal elements, so that

| 1f@w) T
Zn(l_zf(rk)zv |

If we now perform the limit N — co, we obtain

sy| B al () T
s = A, Sy = fim eXp{k’g kLIl (1 T2 ) N)
o Lfw) T
= W, { 2 loe (1 2 /@) N)

~ Ft) T L[ f@)
= N]gr;o exp |: (Z ) N)i| exp |:—2 /t, £0) dt:|

e [_ g (f(rf) )} _ Jrw
275 st £
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Therefore

Sx
Sy

8y
Sx

- fw)

f@)
We thus obtain the remarkably simple result: the path integral which corresponds to
the quadratic action is given by

x(tr) =0 i
[ asolew |, ston]

(1) =0

) ¥ oodr
= \/m/2n1hf(ti)f(gf) s (21.15)
where f is an arbitrary function with the property:
2
[jﬂ + W(t)i|f(t) =0, f(t)#0. (21.16)

It is easy to see that the free particle propagator (W(#) = 0) and the harmonic
oscillator (W(f) = w?) are contained in (21.15). We only have to set f(f) = 1 or
f( = sin[a)(z‘ — ti)].

Now that in (21.15) we have access to a formula for the propagator of a quadratic
Lagrangian, we consider it once again from another point of view. Since the action
is quadratic, i.e.,

m (¥ d?
S = - 5 /t dt x(1) [dﬂ + W(t):| x(?) , (21.17)
we can diagonalize it. In order to do this, we consider the Hermitean operator
d>
— w(t) , (21.18)

which acts on the space of paths x(¢), where the following boundary conditions are
to be satisfied:

x(t) =0 =x() . (21.19)
The operator (21.18) possesses a complete system of normalized eigenfunctions

on(1):

2
|:_;1t2 - W(t)i| ¢n(t) = /\nq&n(t) s ¢n(ti) =0= ¢n(tf) s

/ ' dt g ()P (1) = S - (21.20)
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A given path can now be approximated by

N 7
() = Zancﬁn(t) .y = / dr g (XN (1) (21.21)
n=1 ti

The action containing the approximated path then reads:

2

tr d
S[Ev()] = ’: / "t (o) [—dﬂ - W(t):|5cN(t)

m i m
o2 Aty | di gu(OGu (1) = " Auay 21.22
(20,21)2;2/: and /t bn(O)pw (1) 2; a (21.22)
=8,

Hence we obtain

. . N
/da1 /daNexp{;lS[fc(t)]} - (\/Zzh) \//\1 1 " (21.23)

In the limit N — oo the approximated paths fill up the whole path space and the
path integral (21.23) is essentially given by

o =172 42 -1/2
(]:[1 An) = (det [—dﬂ - W(t)D , (21.24)

i.e., by an infinite product of eigenvalues. Of course the determinant will become
divergent, but we can “regularize” it by calculating the ratio of two determinants.

So up to now we have found that the path integral which corresponds to
a quadratic Lagrangian is essentially given by the determinant of the associated
differential operator:

M) =0 im 7 d?
/x o [dx(t)]exp{ 4o /t drx(t) [_dﬂ — W(t):| x(t)}

d2 —1/2
—A (det [—dﬂ - W(t)D , (21.25)

where the right-hand side is in reality to be interpreted as the limit

2 N
ZIVILH;OA(N)/ /(\/2:01) da
N

X exp [;1 ’;’anaﬁ} . (21.26)
n=1

_1/

N
o 1)
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On the right-hand side one can see that the correct integration measure for the
calculation of the determinant is given by

]ﬁ[\/ " da (21.27)
Pl 2k ’

Since we already know how to calculate the path integral (21.25), we want to try
to derive a relation for the determinants; in order to avoid divergence problems, we
consider the ratio

det[—02 —W(n)] _ fwlt)fw () [ di/f (1)

= . 21.28
det[-0? — V()]  f(fi)fv(n) f,ltf d/f7 (1) ( :

We have previously assumed that f(t;) # 0 and fy(1;) # 0. We now want to
study the limit fiy v (¢;) = 0. For this reason, let fg, be the solution with boundary
conditions:

[0, - WO =0, f(t)=0, cclifv?/(ti) =1. (21.29)

Similarly, let fle be the solution with boundary conditions

fwln) =1, 2@@)=0- (21.30)
In (21.28) we put
fw =1y +¢fiy
fv=1+efy. (21.31)
and so obtain for the limit ¢ — 0:

limfw(li) _ 1 fwt)  fu(ty)

i = :
2 o) 0 () fOp)

The limit of the integral in (21.28),
/’f dt
ti [fW (t)]z ’

diverges, however, since fg, vanishes at the lower limit #;. But since the main
contribution to the integral comes from the infinitesimal neighborhood around #;

(21.32)
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(in the limit ¢ — 0), the integral diverges as

Toodr
/t,- (r—1)*"

So we find
Y (dt/f3(t
lim f’rf (o) (21.33)
=0 [Uld/fR(0)]
Thus, (21.28) reduces to the simple relation
det [—0? — W(¢
et[-0] — W] _ £ 2134

det[-02 — V()] fy)
A simple example is supplied by
Viy=0: fl=t—1t,

which satisfies f(t;,) = 0 and (d/d)f(;) = 1. Then the ratio of the determinants
becomes simply

det[-07 = W] _ fi (@)

_ _ (21.35)
det [—Btz] Ir —1;

This can be used to calculate the propagator of a quadratic Lagrangian, relative to
the free propagator Ky:

K(Xz, 1, X1, ll) = K(O, 1;0, l‘l) e(i/h)s[xd]

—1/2
det (—32 — W(1)) .
:[ detr(—a%) Ko(0, 15,0, 1,) e@/™5Ske

—h m o i/)Sxal

Sy (@) \ 2xih(n — 1)

oli/mSlrer] (21.36)

\/2mhf§,(t2)

For a simple check of the formula we can take the linear harmonic oscillator again:
W(1) = w?, f3(t) = sin[w(t — 1;)]/w. This example shows that we are allowed to
add to the argument of fVOV the initial time and hence rewrite (21.29) a bit, namely:

d2
[ et W(t):| fl(t.t) =0 (21.37)
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with

=1, (21.38)

and therefore

m i
K(x2, 15 x1, = NES . 21.39
(2.2 tl)(%) \/2”ihfv?/(l2,l1)exp{h b 1]} ( )

At this stage it is very useful to return to the end of Chap.5. If we then
compare (21.38) with (5.65-5.66), we can see that f;, and J = 0x(p,1)/dp satisfy
exactly the same (Jacobi) equation and have proportional boundary conditions.
Since, given L = mi?/2 — mW(t)x*/2, we find that

PL d (PLY PL o
( fVOV) [dt(axax)_axZ}fW_O

2

reduces to

. d
mf Sy +mWfy =0: [dﬂ

+ W(t):|f§,(t, n)=0.

Moreover, since by (5.69)

s
J B 8x28x1
it follows that
i 0%8y i
K(x2, t2;x1, 1) = Sa | - 21.40
(x2. 125x1, 1) \/27th B0, exp[h 1:| ( )
In N dimensions this formula goes into
i 028y i
K(x2,t2:x1,11) = ,[det S 21.41
(v2. 2301, 1) \/eN(Znh BxZinlj)eXpl:h “} (21.41)
or
K(x2, 123 x1, 1) = x/Dexp S (21.42)
27r1h
N/2 L ;
(detyJy;) Ser|
(anh) ey exp [h 1:|
0%s
D = dety | — . (21.43)
BXZiaxlj
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This propagator might be called the WKB propagator . D, as we know from Chap. 4,
is the Van-Vleck determinant.

Note that the WKB propagator is exact for Lagrangians which terminate with
quadratic terms. Here are three well-known examples to illustrate (21.42):

(a) Free particle in N = 1 dimension:

sa= " (0T

2 bh—1h
D= (-1 9%s — m _oom
B 0x70x1 - h—1 - h—h

m i
K(x2, 123 x1,1) = 27rih(t2—t1)eXp hScl )

(b) Particle in a constant field, N = 1:

m ()cz—xl)2 F F? 3
Sa = th—t — h—t
1=, f— 1 + 2(2 1)(x1+x2) 24m(2 1)
9%s
D= (1" ): "
3x28x1 h—h

m i
K(x2. tix1,11) = Znih(tz—tl)eXp hSCl .

(c) Linear harmonic oscillator, N = 1:

mao

S =
47 cos[w(t, — 11)]

[(x% + x%) sin[a) (tz — tl)] — 2x2x1]

028 mo
D(tb—1) = (DN =
(tz tl) =D 0x,0x] ‘ sin[a) (tz — tl)]

2rih

mne i (21.44)
= ex gl .
it sinfw(ts — )] | £

which is exactly the same result as that of many of our former lengthy
calculations of

K(x2,t2;x1,11) = /

x(11) =x

| .
2K (x2, 121 x1,11) = \/ \/Dexp[;lScl}

xX(2) =x2

[dx(?)] exp% ;l /ttl dt [n;)cZ — n;a)zxz]} .



270 21 Linear Oscillator with Time-Dependent Frequency

A more sophisticated problem arises when considering the harmonic oscillator
with time-dependent frequency—the title of this chapter. For that reason, let us go
back to (9.42):

L) = ”2158 - n;a)z(t)xz (21.45)
with the equation of motion
d? 5
[dt2 +o (t):| x(t) =0. (21.46)

To solve this equation we use the ansatz
x(1) = f(r) e (21.47)
and obtain the expressions (9.22,9.23):
f=f+o*=0, (21.48)
2 +f§=0. (21.49)
The last equation is equivalent to

C2

Fe=C o g=

(21.50)

with C? a constant which is independent of the terminal conditions x(¢;) =
X1,x(t2) = x. Substituting (21.50) into (21.48) produces an equation which f has
to satisfy:

/- C4fl3 + o’ (f =0. 21.51)

Now, the equation we are interested in is stated in (21.48):

d2 2 2 =0
(ﬁﬂ+g—wuﬂﬂo—

or
d2
(— ar W(t))f(t) =0, (21.52)
with

W(t) = —g* (1) + 0(1) . (21.53)
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Introducing the abbreviations g(¢) = g, g(t;) = g1, £(t1) = &1, etc., we can easily
prove that a function that meets the requirements (21.37) and (21.38) is given by

£(tn) = Si“(jg;gl) (21.54)
with
d
fﬁ/(thtl) =0 ) dthOV(t’ tl)it=t1 =1.

For this case, i.e., for the time-dependent harmonic oscillator, we therefore obtain,
according to (21.39):

ma/g81 (i/h)sS
K(x2,025x1,11) = o n e
(xz 23 X1 1) \/anh sin(g2 — g1) ) ( )

Here we need the classical action of the present problem. This information is also
needed if we want to obtain the propagator via (21.40), where two derivatives of
Se are to be taken. Hence, let us first solve the classical problem of the harmonic
oscillator with time-dependent frequency.

Here it is convenient to solve (21.46) with the ansatz

x(t) = f(1)[A cos g(¢) + B sin g(1)] . (21.56)

With the end point conditions x(#;) = x;, x(f;) = x,, we can easily compute the
constant coefficients A and B using Cramer’s rule and then obtain for the classical
trajectory

o) = sin(gz(t)— g1) (Xl sinfgz — ) -
g(r2) —8(r

Now we turn to the object of interest, the classical action:

2 m [" T dx 2
S = / drL(x,x;1) = / dt [( ) —a)z(t)x2:|
R A 2/, dt
m. ., m 2 d? )
= [xx]rl -, /n dt x(t) [dﬂ + w*(1) | x(?)

_— -

=0

sm(gl — g)) , (21.57)

X2
f
)#nn.

integr. by parts

m . .
2 [XQXZ - xlxl] . (2158)
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Here we have to express the terminal velocities in terms of x; and x,. Taking the
time derivative of (21.57) gives, first of all,

! |:fx1 sin(gz — g) — fx sin(g1 — g)

! =sin(g2 —-g) | fi f

_Jféx
f

After a bit of algebra we obtain

cos(g> —g) + féx2 cos(g1 — g):| .
i3

Po p o

[)'62X2 —)'clxl] = fj::z —flfll +

_(f2g2+ﬁg1)xx 1 ._C

h e / sin(gr — g1) # 1?
=/

(8215 + &1x7) cot(g2 — 1)

N

=f22$’2 +fi& _ 2¢?
fif2 C?/ Va1

Finally we obtain for the classical action

/- =2V .

S

r 2 r 2
_m [f I 602 1 2) cot(ga — g1)

01—2 fz fl

1
-2 018 . 21.59
oxiy 8182 sin(gz—gl)i| ( )

From here we get

aZScl _ m\/glgz
0x20x] sin(g, — g1)

which implies the desired result,

. i 82Scl i
K(x2 tsx1. 1) = 2 B0, exp hScl

:\/ m&i& expl:;lScli|, (21.60)

27ih sin(g, — g1)

where S is given by (21.59).
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In (9.43) we found an interesting invariant associated with the time-dependent
oscillator, which we rewrite a bit (x = p/m):

ol
ot

1 2 . 1

(0 =_ |m" +@p-mo)?|. I + _[LH =0. 21.61)
2m 02 i

From the quantum mechanical point of view, I(¢) is an invariant operator, while H(¢)
is not. p in (21.61) means p = (h/i)d/dx. We also repeat the differential equation

that () has to satisfy:
.. 2 1
0+ o (o — o= 0. (21.62)

But this equation is equivalent to (21.50,21.51) if we absorb the constant C in f :
f/C — f, so that (21.50) becomes

g= flz (21.63)
and (21.51) takes the form
(f + wz(t)f—flS) =0. (21.64)

The existence of the Hermitean invariant operator /(¢) is of utmost importance in
solving the time-dependent quantum mechanical problem given by

2 2
LY (21.65)

2
p m 5 2
H(t) = t = —
0=, + @O om a2

If we write the time-dependent Schrédinger equation for the problem as

i gtw(x, 1) = HOY (x, 1) (21.66)

then Lewis and Riesenfeld have shown that the general solution is given by the
superposition

Yt =Y ey, (x.0) (21.67)

where v, (x, 7) are the normalized eigenfunctions of the invariant operator I:

I, (x, 1) = A (x, 1) (21.68)
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with time-independent eigenvalues A,,. The coefficients ¢, in (21.67) are constants,
while the time-dependent phases «,(¢) are to be obtained from the equation

do, (1) L0
h u —<% lhat H¢n>. (21.69)
From (21.67) we have
cpel® = / dxyr (x, )Y (x, 1) (21.70)

so that it holds that

V(x.n) = Ze_m”(”) |:/ dx1 ¥, (xl,tl)lﬂ(xl,tl):| ey (x2,12)
= / dxy Y ey (oo )y (v, 1) (1. 1) (21.71)

= /dxl K()Cz,lz;xl,ll)W(xl,ll) , hh>1t. (21.72)
The last two equations allow us to identify the Feynman propagator:

K(xp. tixin) =y @@y (o p)yr(x.0) . o> . (21.73)
n

Here we see that the propagator admits an expansion in terms of the eigenfunctions
of the invariant operator /(f).

Now with the explicit knowledge of K at hand as given by (21.59) and (21.60),
we should be able to write down the eigenfunctions and eigenvalues of 1(z). This
can indeed be done and yields

an(t) =—(n+ 1) g

(1 (mg 12\ 1/2 im(i .\, mi /2
wn(x,t)—(znn!(h) ) exp 5o f—i—lg x~ | Hy, (h) X
with

() =h(n+ ) ¥ulx,), n=0,1,2,...

while «, (¢) satisfies (21.69).



Chapter 22
Propagators for Particles in an External
Magnetic Field

In order to describe the propagation of a scalar particle in an external potential, we
begin again with the path integral

v i
K@@ ,/;r 0) = / [dr(®)] exp% 1S[r(t)]} (22.1)
r(0) h
with

/4
S[r()] = /0 dtL(r,F) .

Classical electrodynamics tells us that in the presence of an external classical field
(A,¢), B=V x A, the Lagrangian is modified as follows:

m (dr\* e dr
L= -A— . 22.2
2 (dt) + c dt () ( )

We now pursue the calculation of the particle propagator as it was done in (20.18){f.
We take a wave function at time ¢ and let it be propagated toward ¢ + ¢:

+oo 1 i [m@—r? e@—r)
_ 3
W(r/’t+£)—/_oo drA3(8)exp{h5|:2 o2 +c .

A1)l 1 oo
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As usual, we have A = (2rike/m)'/?. Now we define the variable 0: 0 = ¥ —r

and obtain
T Bo im ie 2 — o
/ 2
Jt+e) = + <A
yirite) /_OO A3(e) exp%h ZSQ th ( 2 )
i 2r —
—;leeqb( r2 Q)} v —o.1). (22.3)

In analogy to the procedure on the way to the Schrodinger equation of Chap. 20, we
now expand up to terms linear in ¢ or quadratic in @:

o _ [ Fe i mp
w(r,t)—l—satlﬁ("sf)‘f‘ ---—/A3(5)6Xp[h 289:|

<ol o400 =0 (@ Va0 ||

=0n0m az/nAn (r/)

X (1 — i;aqﬁ(r’) + ) (W(r’,t) —(0 - V¥, 1)
1
+ 2(9 V2@ 1) + ) )

In the next step we also expand the exponential on the right-hand side, which
contains the vector potential:

/ d / _ d3Q im 2
1//(r,t)+88t1p(r,t)+ ...—/AS(g)exp%h 28@}

X (1+ ie |:Q A - 19 (0 - VIAF) + :|
hc 2

2 .
- ; hicz[(a FAW) + ]) (1 —~ ;lse¢>(r/)+ )
g (‘W”) @ VWD (o VYYD + )
. d3Q im , i v’ 1 o2
- /A3(8) eXp%h ZSQ } (w_ h8€¢1ﬁ—(9 : )w + 2(9 : ) Y
ie , 1 , )

1 &
2 h2c?

e A V)Y -

h (0 - AW)) 'y + ) .
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At this point we make use of the integrals
d’o (i m ]
=1,
/ A3 P g 0e®

d’o (i m ]
/ exp h26‘92 e=0.

A3
d’o exp (i m Qz_ 0% = ihe
A3 |7 2¢ | m

So we finally end up with

0 1ih
YLD e YD+ = D) — e+ V)
ihe ie ,_, , ihe ie ,
o e (VA D= A V()

ihe 1 e,
o 2 e @' .

A comparison of the terms linear in ¢ yields (' — r):
0 Y(r, 1) = ! edp()Y(r,t) + ! V2 (r, 1) + ! e(V -A(r))w(r 1)
o A ’ 2m ’ 2m ¢ ’
le n v 1 ¢ A2
+ JA@ Ve + o ATV
or
., 0 h oy
ih atlp(r, H=— V Y(r, 1) + (V AP (r, 1) + (A V)Y (r, 1)
; © 2A21//(r,t)+€¢(r)l//(r,t)
2mc
(o™
=|(—. V (V A) + (A V)
2m
e,
+ ,AT(r) + e¢(r)) Y(r,t) .
2mc

Recalling the r-representation of the momentum operator, we obtain the well-known

equation

0 1 2
ih, V) = |:2m (p _ iA(r)) T e¢(r):| ) (22.4)
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since

1 e \? 1 e e e’
—A) Y= _p- A-— A A?
Zm(p c )W Zm(p P c p—i_c2 )W

1 2
- (_hsz +in’ vo@y) +in‘@a-vyy+© Azw)
2m C ~ —— = c c?
Y(V-A)+A-V)y

eh 2

_ K2 ) i e )
= _2mV v+ 2mc(l/f(v A +A - VY +A-V)Y) + 2mC2A v
2 : : 2
ey e s P a vy A%Y
2m 2mc mc 2mc

The above Eq.(22.4) is the Schrédinger equation of a particle of mass m and
charge e in presence of an external electromagnetic field. In this way we have
demonstrated that the wave function propagated by the path integral (kernel) follows
a development in time which is fixed by the Schrddinger equation.

The complete expression for the path integral is then

()

KA 1ir) = / 1dr(0)]

r(0)

i m ., e.
X exp{h/() dt[zr —ed)(r)—i—cr-A] (22.5)
A gauge transformation with respect to A,
A—A =A+Vy@r) (22.6)

where y(r) is a scalar function, leads to an additive term in the exponential of (22.5):

/ . /

ie [! ie [T ie
d .. V = V . d = / - .
5o /0 V= / x-dr=, [x() — x(]

This value is the same for all paths, i.e., is path-independent. So we have found that
the gauge transformation (22.6) induces a transformation on the propagator:

K =K\ )

= exp |:;z i)((r’):| KA( 1 r)exp |:—;l i)((r):| . (22.7)
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This corresponds to a change of the phase of the wave function

P =0 =exp |, 10| A0 =ew | S| v . 28

If at the same time the wave function is subjected to a phase transformation while
A is changed according to (22.6),

A—>A =A+Vy,
i

w+W=wﬂh

e
)(i| v, (22.9)
c

then one can say that the quantum mechanics is gauge invariant. One can, of course,
prove this fact directly, using the Schrédinger equation (22.4).

In order to confirm (22.8), we recall that the Schrodinger wave function satisfies
the following integral equation:

W(rz,l‘z) = /d3r1K(r2,tz;rl,tl)w(rl,tl) . (2210)

In order to find the gauge-transformed wave function ', we first note that it has to
satisfy an integral equation similar to (22.10):

V' (ra. 1) = /d3r1K’(l‘2,tz;rl,tl)lﬂ/(rl,tl)

:/d3r1 exp |:flz i){(rz)i| K("27t2§"17t1)

()
X exp [—;l i)((rl)} v'(rn) .

The first exponential under the integral sign is independent of r| and therefore may
be moved to the left-hand side:

exp |:—;l iX("z):| V' (r2, 1)
ie

= /d3r1 K(rat;r1, 1) exp I:—h C)((rl):| v/ (r.n) .
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If we compare this expression with the integral equation (22.10), we immediately
obtain

exp [—; jx(r)} V() = ¥

or
Y@ = ') = exp [; jx(r)} Y.

which is exactly Eq. (22.9).



Chapter 23
Simple Applications of Propagator Functions

Let us first summarize what we know until now about the Feynman propagator,
thinking first, for simplicity, of a one-dimensional system, described by the follow-
ing Lagrangian:

L(x,%) = ’:xz V(). (23.1)

Then we know that

x(tp)=xf
D Kl = [ o)
x(t)=x; ' (23.2)

xexp{;l/rilf dt[n;)'cz—V(x)]} .

2) 'haK( 1 X, 1) = _r 82+V() K (xr. 71 X1, ;) (23.3)
1 atf 'xf’ .f"xl’ LV 2m ax% 'x 'xf’ .f"xl’ LY :
K(xf, tis Xi, l,') = S(Xf —x,-) .

) K{y it = S5 b)) e V00 234)

We have already seen in some examples (particle in a square well, or constrained to
move on a ring) that the representation (23.4) exists. More generally, (23.4) can be
shown as follows: we know that the propagator for fixed x;, ¢; solves the Schrédinger
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equation. This Schrodinger function can be decomposed as follows:

Ve (7. 17) = Ky tixi 1) = Z<)€f|e_(i/h)H”|(|”>(”|)|xi7 fi>

n

= Z ay (_Xfi7 tl)wn (_xf)e_(l/h)E”rf )

n

For #; = 1; we have the condition

8 —x) = 3 (i 1) () €= OME

n

Since the left-hand side is time-independent, we are forced to choose
a ()C,', [,') = w; ()C,') e+(i/h)E"ri .
Check:

8 =) = D () ¥nly) = 3 (sl

n

= (x| (Zﬂ: In)(nl) i) = 8 (x —x1) -

I
=1

With (23.4) the propagator can be calculated if one knows the wave function and
the energy spectrum. For example, it holds for the free particle that

Keztnn) = [apv s 2 (:-1)|
()]

m 172 im (xz—xl)z
= €X .
(18.29) \ 2mih(t; — 11) P h2 th—t

Now let us consider the time-development operator

1 . dp . _ i p?
_ G/ . _ i/ Mpla—x1) gy |
¥ () V2rh © ' / 2k P exp |: h 2m

e (/MHT (23.5)
In coordinate representation, it is given by

(e O/WHT 1)
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where
x|xé) =x1 |x;) .
Let |n) be a complete system of states of the Hamiltonian H:
H|n) = E,|n) , Z |n)(n| =
Then we expand any state, e.g., the eigenstate vector |x), according to

) =Y In)(nlx) =y (xi)n) -

Furthermore, we use

e—(i/h)HT|n) — e—(i/h)EnT|n>

so that

(xple™/MHT|x)) = Z<x2|(|n><n|) e (/MHT |y

—Zw x1) e W/MET (23.6)

Then we arrive at the following important result:

4. The propagator can be written as matrix element of the time-development
operator exp[—(i/A)HT]:

K(x2.T:x1.0) = (xple /MHT|x)) = (xy|le”(/MHGT0 |y

T=n—1
- ((x2|e—(i/h)Ht2) (e(i/h)Htl |x1))
which implies
(2, 02] = (role™@MHL |y 1) = e@/MH |y (23.7)

We now want to use the explicit form of the propagator in order to find the energy
spectrum of a particle in a potential. To this end we consider the trace of the time-
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development operator:

G(T') = Tr{e W/DHTY — / dso[sale ™0/

/deK xo, T;x0,0 /d_xo Z |¢) xO |2 —(i/h)E,T
o0

P ( [ sl ) i Z /R

- -
=1

2|

i.e., we have found
G(T) = Trfe (/MHT) Z e W/MET (23.8)
With the Fourier transform (Im E > 0),

i [ (/h)ET
G(E) = h/o dTe G(T)

we immediately obtain

o0

oo . 00
1 . _ 1
GE) =) " /0 dT e/MEEIT = % E_E" (23.9)
n=0 n=0

Since we have the propagator for the harmonic oscillator at hand, we ought to be
able to calculate the energy spectrum by forming the trace:

mw
G(T) = | dxoK(xo, T;x0,0) = o d
() /xo (xo o ) \/th sm(a)T)/ o

X exp |:h sin (wT) (cos(wT) - 1):|
1 1 e—ia)T/Z

T 2(cos(@T) —1)  2isin@T/2)  1—eoT

[e.]

o0
— o—i0T/2 Z ool _ Z e inF1/20T (23.10)

n=0

Comparison with (23.8) yields

EMO =(mn+)ho, n=012.... (23.11)
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From the above, something can also be learned about the free propagator:

K(x.T-0.0) = m 1/2 imx?
T30, )_<2th) Pl

The Fourier transform is given by

i 2 i

m 1/ mx2
GEE) =, /dT(zmhr) eXp[h (ET+ o7 )} ‘

With the aid of the identity

o0
/ duexp [— az —buz] = \/n e_z‘/“b . T =:u
0 u 4b

we can easily show that
G(x;E) = ;1 \/;]15 exp [_;1 x/ZmEx:| ,

which gives the well-known branch point in the E-plane at E = 0.
In the case of the harmonic oscillator, the following statements can be made. First
of all, we recall that

o0
K, tx",0) = Z V()Y () et/ 2er (23.12)
n=0
Then it can be shown that K is periodic in ¢ with the period (27/w):
KO, t+m2n/w;x") = (=1)"KX,6;x") . (23.13)
Proof

K(x’, f+ mZn/w;x") — Z I/IH(X/)I//; (x//) e—i(n+1/2)w(t+m2n/a)) .

n
Now we write

e—i(n+l/2)wm2n/w —i(n+1/2)2mn

=e
— @—imn) @2n+1) _ (_l)m(_l)mZn — (_l)m )

="
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Therefore, we indeed obtain
K, t+m2n/w;x") = (=1)"KW,;x") .
Furthermore, it holds that
K, t+ @m+ Dr/wix") = (=) MK, ;=" (23.14)
since

K(.X/,t“r‘ (2m + l)n/a);x//) — an(xl)w:(x//) e—i(n+l/2)[a)[+(2m+l)7‘[] .

Because

i+ 1/2)Cm+ D —i(nt1/2)2mn o=i(n+1/2)7

=e
— (_1)m e—inn e—in/Z — (_1)M(_1)n(_1)
= (_i)zm(_i)(_l)" — (_i)2m+l(_1)n

we can continue to write

(_i)2m+l Z wn(x/)(_l)nw: (x//) e—i(n+l/2)a)t )

Now we know from the v, (x) (o< Hermite polynomials) that they are even for even n
and odd for odd n:

Va(=x) = (=D)"Vu(®) 1 ¥,/ (—x) = (D)"Y, () .

Then we immediately get

o0
K(x/, t+ (Zm + 1)”/@;)(”) — (—i)2m+1 Z wn(x/)l/f; (_x//) e—i(n+1/2)wt
n=20
= (—)"T'KW.—x"). qed.
The physical meaning of (23.13) and (23.14) becomes clear when looking at

(Wily) = ¥ (Lot = [ (.1, 0y (¥ O] y)

= /dx"K(x’,t;x”,O)w(xﬁ,O),
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which yields
V(x.to + m2r/w) = /dx”K(x, to + m2x/w;x" )y (x”, 0)

=(=D" / dx" K (x, 1o x" )y (x, 0)

(13)
= (—1)"y(x.10) . (23.15)

On the other hand, (23.14) gives us
Y(x.t0+ QCm+ /o) = / dxX" K (x, 10 + @m + D/ 2" )y (", 0)
— (—i)2m+l / dx// KH'O' (x, fo: —x”)w(x”, O)

— (—i)2m+l / dx// KH'O' (_x, to;x”)w(x”, O)

= (=) "'y (—x. 10) (23.16)

LD ()

We now present a highly interesting application of the just-derived formulae—valid
only for the oscillator potential.

Let ¥ (x, t9) be the wave function of a particle centered around xo = x(#y), and
let this particle move with an average momentum py, so that we can write a wave
packet of the form

¥ (x,10) = eWPPr £(x — x(19)) . (23.17)

f is real and takes its maximum when the argument is zero. After a time interval
of 7/w, i.e., corresponding to one-half of the classical period, (23.16) tells us that,
withm = 0,

w(x, fo+ w/w) = —iy (—x, fo) = —i e_(i/h)"o"f(—x —X0) . (23.18)

so that the wave packet is now centered around x = —x, unchanged in form, and
where its initial average momentum is now turned around: —py. After one period,
27 /w, (23.15) tells us, withm = 1,

Y(x. 10+ 2m/w) = (=) (x, 1) = —eVPPorf(x — xp) (23.19)

so that the wave packet has again reached its initial state, unchanged in shape and
with its initial average momentum, po. This motion is repeated arbitrarily often,
whereby the wave packet moves like a classical particle. One should note that this
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conclusion requires no special form of the wave packet; it applies to every wave
packet (cf. special case of the Gaussian wave packet—ground state wave function
of the harmonic oscillator—studied by Schrodinger himself). We want to retrace
Schrodinger’s calculations, considering, at time ¢ = 0, the wave function

o \1/4 o 2 . L mo
Y(x,0) = (ﬂ) exp[—z(x—xo) +1k0x] , o= "
At a later time, ¢t > 0, y develops as
V(x,t) = / dx’' KHO-(x, 1 X, 0)yr (', 0) (23.20)

= (a)l/4 M l/Z/d)c’
h 2mih sin(wr)
o

X exp % U:;:) [(x2 + x%)cot(wt) — ,2)(Cx;):| ~ ( —xo)2 + ikox’}
sin(w

1/4 172 i
= (0{) ( ne ) exp%I?:f cot(wt) — Zx%}

g 2mih sin(wr)
X / dx’ exp{ [1’;1: cot(wt) — Zi|x’2
imw g |y
h sin(a)t)x ]
_ (oz )1/4 mw 172
- \x 27ih sin(wt)

. 2
1mamwx s
imw o 1 (h sin(w —lk() —OlX())
X exp ?h *? cot(wr) — 2x2 - @

2 imw

4 cot(wr) —a

imwx : 2
imw o e — ko — otxg
X /dx’ exp [ " cot(wt) — :| x — Tsin@n)
2h 2 " cot(wt) —a

_ (a)1/4( mo )1/2 7 v
\x 2k sin(wr) ¢ — 1 cot(wi)

1 o+ i”;l‘" cot(wt)
202+ (" cot(a)t))2

w mex ’ (23.21)
—1 —_ . .
hosin(wr) 0 R

X exp [1;1: cot(wt)x* — Zx% +
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If we set « = mw/h, ko = 0, xo = a, then we get for this special case of an initial
Gaussian probability distribution centered around xo = a:

/4 o 1/2 o7 1/2
Ve = (71) (Zni sin(a)t)) (06(1 —icot(a)t)))

. 1 i cot(wf . 2
X exp 1O[)czcot(a)z‘)—O{az—i-O[ + Leot(wr) . w —a
2 2 2 1 + cot?(wit) \ sin(wi)

a\l/4 iwt o ; [0 ;
= (ﬂ) exp |:— — x> +aaxe @ — 4az(l + e_Z“‘"):|

2 2
mw\1/4 iwt  mow it
_(nh) exp{—2 ~ o [xZ—Zaxe
1 .
+ a1+ e_2l‘”’)]} . (23.22)

In particular, we obtain for t = n2x/w:

v (x, nzaj)t) = (ﬁ: )1/4 exp [—imr — ’Z: (xz — 2ax + az)]
= (1Y (.0

andfort = (n+1/2)2n/w:

1\2 1/4 . 1
v (x, (n+ 2) ;r) = (’::) exp |:—1.7t (n+ 2) — ”;:l)(xz —|—2ax+a2)i|

LY 0).

In general we obtain:

From this we learn that

K(x,nZ;x’,O) = (:)n5(x— (—1)"x’) ,

which is known to us from p. 243.
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We now split ¥ (x, 7) into its modulus and the phase, in order to study the shape

of Y (x,1):

vx, 1) = (ZC;; )1/4 exp{ _ic;)t - n;;lo I:)c2 - Zax(cos(a)t) —i sin(a)t))
+ ;az(l + Sosgwg —i En_(\Zfa)Q )]}
g cos’(wt) — sinz(wg 2 sin(wr) cos(wt)
2 co-;’-z(a)t)

2 cos?(wt) — 2i sin(wt) cos(wt)

1/4 i 2
= (m:) exp |:—1;)t - i”;lw sin(w?) (ax— az cos(a)t)):|

X exp [— m;:) (x* — 2ax cos(wt) + a* cosz(a)t))]

2
_ (ma) 1/4 iwt  mo (@) a (@)
=(,,) ep|—, —i, sin()|ax—", cos@
maw 2
X exp [— - (x — a cos(wi)) ] . (23.23)

Apart from the complicated phase factor, ¥ (x, f) has the same form as (23.20) with
ko = 0, where it now holds that

X0 = a cos(wt) .

The corresponding probability distribution reads, therefore, simply

Px, 1) = |y (x, 0 = (n:; )1/2 exp [_mha) (x— a cos(a)t))z] . (23.24)

This is still (for # > 0) a Gaussian distribution, only this time centered around
X0 = a cos(wt). We are dealing here with a highly interesting result: the wave
packet oscillates back and forth, following the same path as a classical particle. For
a = 0, (23.24) implies a stationary probability distribution:

a=0: Pt = (Z: )1/2 exp [—”;lwxz] . (23.25)
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This corresponds to a particle that is sitting on the bottom of the harmonic oscillator
potential. The associated ground state is found from (23.23) with a = 0:

V(1) = (":; )1/4 exp [—"21:)8] exp [—i‘;t] (23.26)

hw

=Y 0 e =y, 0) TR By ="

We now want to determine the lowest eigenfunctions from the propagator of the
harmonic oscillator. Let us recall

1/2
me
K /,l‘; //’0 —
(<. £:x7.0) (Znih sin(a)t))
imw

2h sin(e) [(¥% 4+ x) cos(wt) — 2x'x" ]

X exp {

and use here
2i sin(wr) = (1 —e 2")
2 cos(wr) = (1 +e ).

This yields, in K:

K(.X/, t x//’ 0) — (m(;l) )1/2 e—iwr/2(1 _ e—Ziwr)—1/2
4

mw 2 "2 1 + e—2iwt
X exp{ " |:—(x —+x )2(1 B e—Ziwt)

+2x/x// e—iwr
1 — e 2iwt :

Now we make use of the series expansion

—1/2 _ 1 -1 _
1-x""=14+x+..., 0-0"=1+x+... <l
and write
K(x’,z‘;)c”,O):(mw)l/2 e w2 (1 4+ 1e_zm’r+
h 2

" exp{ n;la) [_;(x/z ) (1 4 e (1 4 o720 4 )

+ 2x'x" e_i’”r(l +e Aot 4 ):|} .
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Expanding up to quadratic terms yields

_ (Z:)l/z e—ia)r/Z (1 + ;e—Ziwr + .. )

X exp [_ mw (x/2 +x”2)] exp [_ mw (x/2 + x//z) o~ 2ot
2h h
2mw :
+ /1wt .
h XX €

At this point we also expand exp][. .. e "] and so obtain

_ (m:)l/z e—iot/2 (1 + ;e—Ziwr) exp [_”21:; (x/z +x//2)]
b4

% (1 _ WZ‘) (x/2 4 x//2) e—Zia)t 4 Z’wa/x// e—iwr
2m*w? .
+ ";2“’ X2y g | ) . (23.27)

Using E, = (n + 1/2)hw and (23.12),
o
K@ 527,00 = > g () (") e (/mEnt
n=0

and comparing the first terms with (23.27), we obtain:

—0- _1 . mw\1/2 _ma) 2 //2:| —iwt/2
n—O.Eo—zha), (nh) exp[ 2h(x + x ) e

= Yo () g () e~/ ME!
= Yo(x) = (ma))l/4 exp [_mw 2] )

h ™
3 /22 )
n=1:E = zha); (Z:) ’:wx’x” exp [_"21:; (x’2 + x’/z)] o 3ion/2

= Y ()Y () e (/WE

s v = () e[

n=2:E= ;hw; (ﬁ:)l/z exp [—’Z;U (x +x’/2)]

1 2 2.2 .
9 (2 _ I’r;la) (x,z +x/,2) T mhzw x/zx//z) e—5iwr/2
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= () oot e ()

% (2”;(0 Y2 1) o~ Siwr/2

= w2(x/)1ﬂ2* (x”) e_(i/h)Ezf

= Ya(x) = \}2 (Z:)w (2’;;&)x2 - 1) exp [_n;loxz] :

From the quantum mechanics of the harmonic oscillator, one gets for the eigenfunc-
tions

1 mw\1/4 mw 3
— —mwx* [2h
Ya(x) = o <Jrh) H, (\/ : x) e (23.28)

with the Hermite polynomials
Ho(§) =1, Hi(§) =28, Hy(§) =4 -2, ...

Knowing the propagator functions e.g., for the free particle or for the particle
in the harmonic oscillator potential, we are now in a position to quickly give the
density matrix—in configuration space, for example. This can simply be achieved
by going over to the propagator with “imaginary time”, i.e., by the substitution

1 1
t ;) = .
=P B= g

. /o I2
L:”;)-Cz: K(x’,t;x”,O):\/ im(x x):|

m
ex
2miht P h2 t
m m
= o, x";B) = \/Zﬂhzﬂ exp |:_2h2,3 o —x" 2i| ) (23.29)
For the important case, L = mi?/2 — mw?x? /2, we get from

K, t;x",0) = \/

mw { i mow

” 2
2mif sin(wr) exp h 2sin(wr) [(x +%)

x cos(wt) — 2x’x”]}

AN N mw B mw 2 mn
o0, f) _\/ 2rh sinh(hwp) eXP{ 2h sinh(hwﬂ)[(x +%)
x cosh(hwpB) — 2x’x”]} . (23.30)

Here, as a reminder, the most important properties of the density operator.
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Let |a’) be a complete orthonormal basis. In this basis the operator A can be
represented as

A=) "dld)d]. (23.31)

If we now take the number w, for the numbers a’, where w, is the probability of
finding the system in the state |a’), then a new operator, the density operator, can be
written as:

0= wald)(d] (23.32)
with
we 20 and D we =1. (23.33)

From (23.32) it is obvious that g is Hermitean: o = of. Then the expectation value
of an operator O can be expressed as

(0) =Tr(e0) = ) (ald)wu(d'|a"){a"|Ola) (23.34)

ad a’

=Y _wald|0ld) =) w0 .
where (a’|O|d’) is the expectation value of O in the state |a’). For O = 1l we get
Tr(p) = 1. (23.35)
Pure states |a’) are those for which wy = §y47, i.€.,

o=ld){d]: o =ld){d|ld)d| =) d| =0,

ie.,
=o0. (23.36)

The expectation value is then simply written as

8(“1/ Sa///(Z

—_—~— ——

(0) =Tr(e0) = > (ald) (d'|d") (a"|Ola") (a"|a)
aa’ d" 5;:;

(d'|0la’) . (23.37)
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Let us again recall that the operator o is suitable for describing a system whose
probability of being found in the state |a’) is equal to w,. These can be both pure
and mixed states, e.g., the orientation of the spin of the silver atoms in the Stern-
Gerlach experiment prior to entrance into the inhomogenous magnetic field or an
unpolarized beam of photons.

In x-representation we write the density operator as

o(x.x) = (¥]olx) = Y " (¥|a)wa (a Zwa )a"™* (x) .

a

The expectation value is likewise
(0) = [ drtalel)av (10l
= /dx dx' o(x,x)O(x,x") = Tr(00) . (23.38)
If the states change in time, (23.32) becomes

o(t) = wald ) 0] . (23.39)
Now H, the Hamilton operator, generates the development in time, so that with
H|n) = E,|n) , Z [n){(n
and
= In){nld)

as well as (for Schrodinger state kets)

|, t) = Z|nn|at

—e (1/71)Ht‘a )

it follows that

1) = 3 In) e VPE (')
n
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If we substitute |a/(r)) = e~@/MH1|¢') in (23.39), we then get

o(t) = Z W € GH g1y (5| @/ MHE

a

— e—(i/h)Ht (Z Wa/|a/>(a/|) e(i/h)Ht

a

= e~ (/MH 5(() e/MH! (23.40)
The time derivative yields
do i i
=—_ Holt 1), H
5 pHe® +e),
or
do i
=—_[H o(1)].
0 = =y [H-0()]

By way of illustration, let us consider a canonical ensemble from statistical
mechanics. Let |n) and E, be eigenstate and eigenvalue of the Hamilton operator
H. Then the probability of finding the system in state |n) with the energy E, is given
by

e_ﬁEn

Zm e_ﬂEm ’

Then the density operator becomes

Wy = Hn) = E,|n) . (23.41)

—BH

—BEy
€ €
Q= ZW"|” {nf = Z Y e —pE, 1M = Tr(e—BH)

Thus we have

O s
o= Tr(e—PH) =: Qe , (23.42)
with the partition function
Q := Tr(e ) Ze—En/kT eI — o=BF (23.43)

and the free energy

F=—kT'nQ = —kTIn) e ™/
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Incidentally, we have for the entropy

S=—k) W,InW, (23.44)
with
W, = 1e_E”/ kT

We now consider the density operator as a function of j:

e PH

o) = 1y oty

or, with the non-normalized o:

ou(B) =P 0 ="Tr(a) .

In the following, we drop the index u and obtain in the energy representation

0nm(B) = Sum e P s

which implies

3§/§m = Sun(—En) €5 = —E,0um(B)
or
1Y — ). e =1, (23.45)
In configuration space we thus obtain
B BQ(xé;’:ﬂ) = Ho(e,X:B): o(r,x:0) = 8(x—x). (23.46)

For a free particle with H, = p)zc /2m we get the differential equation

do(x, x'; h? 92 / / /
_ do( i 2 = a0 oK) =8 —¥).  (2347)

Note that the substitution 8 — (i/A)t brings us back to the Schrodinger equa-
tion. This analogy makes it easy to write down the solution of the differential
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equation (23.47):

o(x,x;B) = \/2];:2’3 exp [— 2:21’3 (x—x/)2i| ) (23.48)

For the harmonic oscillator with H, = p?/2m + mw?x?/2, we obtain likewise

B . 2 23.49
o8~ 2ma®t 2 *0 =
with the solution
o mo B mw 2 ”
o P _\/ZJrh sinh(e /KT) eXp% 2h sinh(hw/kT)[(x )
« cosh hw ! (23.50)
cos kT XX : '

For a free particle, the above result (23.48) originates from the calculation of the
path integral (U = Af)

x(U)=x 1 U m
o(x,X;U) = / [dx(u)] exp | — / du_i*(u)| . (23.51)
x(0) =’ hJo 2
For a particle in the potential V, it holds analogously that
x(U)=x
o) = [ st
x(0) =x"
1 (Y m.,,
x exp ) — du[ 2(u) + V(x(u))] . (23.52)
hJo 2

The trace is also interesting:

e Pr=0= /dxg(x,x; U)

= /dx /X:::X:X[dx(u)] exp { —;l /OUdu [n;)'cz(u) + V(x(u))]}

-/ x(u)]
all closed paths
U
X exp % —fll / du [’;)'cz(u) + V(x(u))]} . (23.53)
0

This kind of path integral representation of the partition function is frequently used
in statistical mechanics.



Chapter 24
The WKB Approximation

In this chapter we shall develop an important semiclassical method which has
come back into favor again, particularly in the last few years, since it permits
a continuation into field theory. Here, too, one is interested in nonperturbative
methods.

As a starting point we consider the propagation of a particle in a constant field:

2

P . (24.1)
2m

H=
The Heisenberg equations of motion then read

x=", p=F (24.2)
with the solutions (x = x(0), p = p(0))

p()=p+Ft
1 F
x=x+ "1+ £
m 2 m
Note that the first equation is simpler, so that we prefer to work in the p-
representation:

2

ad p p? ad
ih _ (p,tlp’,0) =(p.t|. —Fx|p/,0)= — Fih p') .
ot = (o2 a0} = (2 <)) o)
Using
(p1lp) = (ple” M) = / (pIE) dEe™PE (E|p) (243)
—— ——
v(p) v*P)
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we easily obtain

P
(2 — Fih ) v(p) = EV(p) . (24.4)
m ap

This can be rewritten as

a 1 (p?
1 = —-E),
op 8V = (Zm )
which is solved by
3

v = cen|- (0~ )| = i),

The constant is determined by the §-normalization in E:

56~ £) = [ Epaptole) = ICP [ dpesp|~ ) (- £ ]
= |C|*2nhFS8(E — E')

so that
c— 1
V2rhF

and

_ _ 1 i p3
V(o) = (PIE) = sz,hﬁ"p[mv (Ep— 6m)} . (24.5)

If we substitute this result into (24.3), we obtain

i 1 i
(p.1lp") = exp [—hémF r’ —p’3)} S F / dE exp [hF(p -p - Ft)E}

=68(p—p —Ft)exp [—;l o (- p’ﬂ . (24.6)

In the limit F — 0, we reproduce a well-known result:

0 80— = Fexp| =y (= o= )|

2

ip
=38(p—p)exp |:_h 2mti| ,
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i.e., for F = 0, there is only one value of p (or E), namely p’ (E(p) = p’?/2m > 0);
whereas for F # 0, the spectrum is continuous—Ft is an arbitrary number. The
only value for p’(E(p’)) mentioned above comes from the fact that for F — 0, the
amplitude (p|E) oscillates so rapidly that no contribution exists—except for the case
in which the phase becomes stationary at a certain point p’:

d p3
E —
@(p m)

In order to calculate the configuration space wave function ¥ (x) = (x|E), we write

=0=E-— .
p=p 2m

wm=mm=/uwwmm
_ dp (i/h)x 1 1 [ i ( _ P3 )i|
e T

SIS B
AT 2t I Al Sy | '

Now we introduce a new integration variable,
u=—QmhF)~p

and write

Then our wave function takes the form

9] 3
Y(x) = nf{/F/o du cos(u3 —qu) .

The integral in this expression can also be written with the definition of the Airy

function,
1 o w
Ai = du cos ,
i(q) Jn /0 u (3 + uq)

vx) =

as

(07
Ai(—q) . 24.8
JrF i(—q) (24.8)

We now return to our solution (x|E) in the form (24.7) and consider the semiclassical
(WKB) approximation, where x and E are to be taken so that the phase in the
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integrand of (24.7) is very large relative to #. Then we are dealing with rapid
oscillations which become washed out—except for the stationary points. These
stationary values are determined by

ad 1 p?
Ep — =0, 249
3p |:px+ F ( P 6m)i| P=D0 ( )
i.e.,
2
Fx+E-"0 =0
2m
or
2
E=P0 _py.
2m

Here we meet the classical energy-momentum relation again:
po = £/ (E + Fx)2m . (24.10)
Fx can take positive and negative values.
The value of the integral in (24.7) can, under certain conditions which have been

given above, be dominated by the points pg of (24.10). The classical x-regions are

allowed: x> —E/F, pg real,
forbidden: x < —E/F, po imaginary .

Let us first consider the classically allowed region x > —E/F and write

i 1 3 ‘
exp % A [Px—i- F (EP— gm)]} =: ¥t

and then expand ¢(p) around the stationary value py:

_ a(p 1 282¢
¢(p) = ¢(po) + (p — o) 9 Lo (p=po) | T
SN—— po

=0
Now we have

1 E 1 pi 1 p
(p(po)—hpo(x—}-F) hF 6m  hF 3m

(9):p3/2mF
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and

3290 Po

8p2 Po o _mhF '
The condition that allows us to neglect the third derivative in the above expansion

for ¢(p) will be given later. So far we have found the asymptotic behavior of v (x)
(there are two values of py!):

1 (p—po)* po
~ ip(po) _
V=) Znh«/Fe / dp exp [ Yo mhF |~

Writing ¢ = p — po and using

+
/ Oodq e—iaq2 — \/JT e—(in/4)signa
—o0 |al

where a = po/2mhF, we finally obtain

1 2nmhF
V) =y+(x) +y-(x) = zthF\/ o

.3 . 3
—in/4 1Dy in/4 R W 2
X (e exp [hF 3mi| + e/ "exp |:( hF) am . 24.11)

Po = |po

With this we get the asymptotic formula,
¥ (x) 2m cos Ps y
X) ~ -
4 hp() 3hFm 4

po = ++/2m(E + Fx)

with

and

3 X

Po 1/ I
= dx' po(x') ,

3hFm h xo=—E/F

which can be proved as follows:

ad
p%:Zm(E+Fx) : 3 p%:ZmF.
X
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Furthermore,
3 pp _ 12 (p2)3/z: 1 dp} 9 (2)3/2
Ox 3hmF ~ 3hmF ox *° 3hmF 0x 0p] 0
1 3 Po
= 2mF = N
3mE " 2P0 T

integration yields

E
P

3 1 X
P = | ) =
X0

So we obtain

2m 1 [ b4
~ d / / _
e \/nhpo cos [ @)=
m i [ i
_ dx' N
\/27thp0 (exp [h /XO X po(x) 4 :|

i

+exp[ h/de’po(x’)JriZD (24.12)

Y+ () + Y-

What we have found is the superposition of a wave that is moving toward the left and
another wave that is moving toward the right. The total phase change (one “bounce”)
is /2. All our considerations apply to stationary states, so that we have inward
bound and outward bound particles at all times.

If py were constant, then we would obtain in (24.12) exp[+(i/A)xp], i.e., free
particles. The form we have obtained for 1 (x) takes the slowly changing momentum
(in configuration space) into account, po(x). If po(x) does not vary very much, then
we know that the derivatives are small, and this provides us with the condition under
which we can neglect the third derivatives in the final expansion of ¢(p):

9 Inpo(x) < po ( h = A(x))
X Po

h d
1 =h
) . 250 () 3

ho0py _ h 2
2) = mF <Lpj.
podx 2 po 0

From (2) it follows that pj >> hmF or p} /hmF = 3¢(po) > 1. Using the classical
energy momentum relation, we also can write

[2m(E + Fx)]*? > hmF
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or
E\Y2 »
X+ F @2mF)*'* > hmF ,
i.e.,
E\Y2 32 A
X+ =x—x >
( F ) ( 0) mF
Soif x is far enough to the right of the classical turning point xo = —E/F, the results

which have been derived so far are valid:

hz 1/3
(x—xo) > (mF) .

Under these conditions we found

() ~exp[;l / dx’ po(x') —i’j ]

+ exp |:—;l / dx' po(x) +iZ:| =Yy +yY_.

0

This is our former superposition of stationary states. If we measure p, then the same
probability exists for measuring 4+ or —. The coordinate measurement is given by

= 2 o] [Carmer -7 ]

hpo o 4
We obtain an interference pattern between the incoming and outgoing particles.
With increasing x, po increases in order to satisfy pg = \/ 2m(E + Fx). Accord-
ingly, the “wave lengths” decrease and the modes move closer together. In the
classical limit of very large x, the modes get so close to each other that an
interference pattern is no longer visible, and we thus again are dealing with the
classical case.

In the following we wish to establish the formal identity between the WKB
method and the path integral method, where the path integral is dominated by
the classical trajectory of the particle, which we assume to be moving in a one-
dimensional potential V(x).

We now do not want to assume that V(x) is harmonic (“weak coupling” limit).
Rather than expanding V (x) around its minimum, V(x) = V(0) + maw?x?/2 + ...,
we shall expand the entire action S[x(¢)] around the extremum path, i.e., around the
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classical trajectory. This solves Newton’s equation of motion:

d*x(1) (=
m d); = —V'(x()) (24.13)

with the initial condition

Note that it is only for the classical path that it makes sense to speak of the conserved
energy of the particle (on-shell):

dE d[m
dr — dtl2

¥+ V()"c)] = ¥mi+ V@] =0.

For any path other than X(¢), the energy is not constant. Besides, the energy is
a function of the terminal configurations (x,, #2), (x1,#):

X2 m 1/2
h—t=T= /Xl dx(Z[E—V(x)]) . (24.14)

So let us begin with the expansion of S[x(z)] around the classical solution:

x(1) =x(0) +y@) , y(n) =0=y(n)
V(x(0) = V(@) + V' (X0)y(@) + V' ZO)Y (0 + ... .

When substituted in S[x(#)], this yields, using (24.13):

S[(r)] = / " [”21 G+ )% — V(x(t))]

:[2 dz[’;icz—v(m))] +[2 dt[’;yZ_;V’/()‘c)yZ(t)} :

L&)

a1
stxo) = s60)+ 7 [Cano[- 4, - VO o, e

151

The propagator now can be written as
K(Xz, X1, fl) = /[dx(t)] e (/M)S[(®)]

) . y(12)=0 i 2 m 1
= e(l/h)S[X] / [dy(t)] exp % / dt [ )')2 — V//()_C)yz:|} . (24.16)
(1) =0 h n 2 2
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The path integral was calculated in (21.15). There we found

0 m
dy(0)]./. = , 24,
|, o ﬁwwwﬁwm .
where
& " (=
[mdﬂ +V (x(t))} ft)=0. (24.18)

We can easily relate f(r) to the classical path. In order to do so, we differentiate
Newton’s equation (24.13) once more and get

dx(r)

Oy ) O

dr

i.e., we can set f(f) = dx(t)/dt. This yields

0 : 1 —1/2
/0 [dy(5)]./. = (27’;‘;’;(;1);(;2) / di ) (24.19)

n )'_C(t)z
. w gy \7V?
= (27t1k(x2)k(x1) /Xl k(x)3) , (24.20)
where
K =, [2m(Ea — V()] 4.21)

and E;; = Eq(xa, 12 x1, 1) is defined by

2 4 X2 1/2
bh—1 = / - / dx( " ) . (24.22)
? wov@ Ly \2[E- V@)

Until now we have for the propagator

) . —1/2
K(XZ, 1y, x1, l‘l) = e(i/h)S[X] (2ﬂik(X2)k(X1) / ’ k(d);S) . (24.23)
X1 X

For a potential of the form V(x) = V, + mgx +mw?x?/2, the above formula (24.23)
for the propagator is exact, since V”(x) is a constant. If the potential does not have
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this specific structure, then we obtain

_ f2 m.» _ 2 .2
Skx] = /rl dl[zx — V(x)] E=?+V/rl dt[mx —Ecl]

- / ’ dx{2m[Eq — VO }? = Ea(t —11) - (24.24)

151

Therefore, the semiclassical approximation for the propagator is

X2 —1/2
Klon i) = (2mik(e)in) [ )

X1

X exp [i / " dxk(x) — ;lEcl(t2 —zl)} . (24.25)

x|

An alternative representation of K exists in the form of
K(xa, a3 x1,17) = (ol VWA )

- Z(xz|n) (n|x;) e~ /WEn=1)
= Z VY (XZ)W,T (Xl) e_(i/h)E,,(tz—rl) . (24.26)

Here we can use the explicit form of the WKB wave function (24.12) to our
advantage (po(x) = hk(x)):

1 m i [, ,
Ya(x) = 5 \/27tk,,(x) exp I::th /a dx' ky(x ):| , (24.27)

where a is a parameter and k,,(x) is given by

ko (x) = ;1{2m[E,, —ve'?.

Then our propagator becomes

K(Xz,lz;xl,ll) = /dEW(Xz)W*(Xl)e_(i/h)E(rz_rl)

-y " / dE e~ (i/ME@—1)
2 2mm | k()] 2

X exp [is /Xz dx k(x)i| . (24.28)

1
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e = =1 takes care of the twofold degeneracy of the energy eigenstates. We shall
compute the integral in (24.28) using the saddle point method (‘“‘stationary phase
approximation”). To this end we consider the following one-dimensional integral:

+o00 )
/ dxe'Wg(x) |

(o]

and look for points xo, where the phase becomes stationary, i.e., f' (xo) = 0. We then
expand around this point:

F@) = f(x0) + 1" (x0) (x—x0)”
) gfon) + ¢ )5 ).

The above integral is hereby reduced again to a Gaussian integral:

00 " (x0) '

+oo . . 2mi
/ dxe™g(x) = g(xp) e s (24.29)

In our case it holds that

16 =y [ amlE - v - ).
so that
f _ (-n) , e [® m v
E- T n T nl, d’“(Z[E—V(x)]) - 2430

Assuming x, > xp, so that only ¢ = +1 makes a contribution, we can determine £

from (24.30):
X2 m 1/2
R / dx(z[E—V(xn) |

So we find E = E, i.e., the classical energy dominates in the energy integral
in (24.28). Since, furthermore,

0*f __m2 /)‘2 dx __m2 /XZ dx
0E? h X1 {Zm[E_V(x)]}3/2 / X1 k(x)3
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we find

Kot x1. 1) = " 1 g )
0202001 = 00k (hGakea) V2 \ /) [ e/ o)

X

) 2
x e~ W/MEa=1) expy [1/ dx k(x):|
X1

. “oogde 7?2
_ (2n1k(x2)k(x1) / . (X)S)

X2 1
X exp [1/ dxk(x) — ;Ecl(lz —fl)i| ;

X1

which is identical to (24.25).



Chapter 25
Computing the Trace

So far we have been interested in the general expression for the WKB-propagation
function. Now we turn our attention to the trace of that propagator, since we want
to exhibit the energy eigenvalues of a given potential. From earlier discussions we
know that the energy levels of a given Hamiltonian are provided by the poles of the
Green’s function:

1 1 i
E = TerETG(T 25.1
6w =T, =3 =, [ areem @s.1)
where G(T) = Tr [e hHT] /dxo(xo | e™ Wt ™| xo). (25.2)

The transition amplitude (xy | e #HT | x0) will be written as Feynman path integral
x(T)=xo ;
o L L) = [ (e, (53)
x(0)=xo

where S[x(7)] is the action functional along the path x(t):

S[x(1)] = /0 " [”2%2 - V(x(t))] (25.4)

and the integral in (25.3) goes over all closed paths that begin at xo at # = 0 and end
at xg at t = T. Proceeding as before, we obtain for Eq. (25.2)

+o00 x(T)=x¢
6(1) = / dx, / [dx(0)] exp{ [x(r)]}

(0)=x0
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i
_ / SS?;”“T’MX(I)] exp% hS[x(t)]} (25.5)
+oo i WT)=0
:/_oo dxoexp{hS[x(t)]} /y(0)=0 [dy(1)]
im (7 21
P {;l 2 /0 diy(®) [_ - mV”(X(t))} y(t)} . (25.6)

The path integral appearing in (25.6) was already calculated in (24.17), so that we
may write

0 m
) _ 25.7
/0 ol \/Znihf(o)f(T) I A o

and we can set f(f) = x(¢). This brings us to

m

. 25.8
2ihx(0)X(T) fi (),Cz;)z 8

+o00 :
G(T) = /_ dxoexp { ;S[x(t)]}

o

Next, we have to perform the xj integration, again by stationary phase approxima-
tion. Hence we need those classical paths which produce stationary phases in the
variable xg:

ad
0= S[X(),T;X(),O]
BX()

3 .
aXi S[-va T, Xis O] |X,‘=Xf=X()

=pt=T)—pt=0)=pr—pi. (25.9)

a .
= axf S[xf’ T;x;, 0] |Xi=Xf=X() +

The latter equality follows from (2.34), (2.36). Equation (25.9) shows that the
path not only has the same initial and final position, x(0) = x(T) = xp, but
the same momentum as well, i.e., the path is periodic. Hence the stationary
phase approximation selects periodic classical paths only. These orbits can be
parametrized by their fundamental period 7. For every “primitive” periodic orbit
with fundamental period 7T, orbits with periods n7T,n = 1,2,3... exist which
are realized if the primitive orbit is traversed n times. By definition, a primitive
orbit is not the iteration of another one with a smaller period. For a given T, G(T)
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will receive contributions from all periodic orbits whose fundamental period is an
integral fraction of 7"

xT(t),xzé(t), e XT (0.

A primitive orbit of period T/n, traversed n times, gives rise to a periodic orbit of
the desired period T. As a result, G(T) takes the form

1 \/ m /T dt
XZ(O)‘ 2mih 0 (xfl)z

The action of the periodic orbits does not depend upon the choice of the starting

. . : o1 o
point; this is also true for the expression [ dr (%) . The only contribution to the
Xo-integral comes from

+o0 1 X2 1 T
[ w2 [T, —pa= 25.11)
—00 x7(0) X1 dt n

Next, we have to compute the integral

T X2 X2 T\ _ _g
/ i , = Zn/ df = Zn/ dx(z[E(”) V(x)]) ) (25.12)
. X m
0 (XT) X1 X1

n

G(T) = /+oodeZexp{ ;lnS[Z:H
T n=1

(25.10)

where the classical orbit may have completed n traverses of a fundamental periodic
path in time 7, and x;, x, are the turning points. In the last equality in (25.12) we
have used '5’5(2 = E — V(x). We have also dropped the bar in x, indicating that
everything corresponds to the classical orbit.

Let us pause for a moment and note that the integral (25.12) shows up by
a different reasoning. So far we have classified every orbit by its fundamental
period T : x = xr(¢). Furthermore, every orbit is associated with a certain energy
E = E(T). Now we know from classical mechanics that gi = E and g; = —E.

Putting #r = T we obtain

N

=-E, E=ET 25.1
T ; (1), (25.13)

where S(T') stands for the classical action of the periodic orbit x7(¢), and E is the
classical energy.
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Introducing a Legendre transform with respect to the variable 7 we get

aS
W(E) = S(T) + ET = S(T) — o7 T, T = T(E) (25.14)
ond dW(E) _ 3SdT N T+EdT
dE ~ 0T dE dE
dr dT
=—E T+E =T. 25.15
JE +T+ JE ( )

Returning to the action S we obtain

S(T) = W(E) — TE = W(E) — ‘;ZE

ds
where T —E, E=EQ). (25.16)

If we now recall the relation £ = ’gicz + V(x), we can express Eq.(25.14) in the
form

T T
W(E) = S(T) + ET = / dt( P2-V+ E) = / dimi?
0 2 0

=2n /xz dx/2m(E — V) (25.17)

1

which holds true for an orbit with n traverses.
Differentiating (25.17) twice with respect to E we obtain

3
W dr 2n [ 2 T2
— = _ d E—V
dE2 T dET T m /xl * (m( ))

e . . T dt dT
which implies the desired relation , =—m JE (25.18)
o (s )
X1

n

Collecting our results so far we get

1

> i TNT | m dT\ "2

G = ’;exp{ hns[n:” n\/27rih (_de)
ad i TN T | i |dT
:Zexp{hnS[n:H n\/27rh ‘dE

1
2

(25.19)
EsEc1=E(§)
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With this expression for G(T) we return to Eq. (25.1):

G(E) = ;z /000 dT exp { ;zET} G(T)

i i [ i T T |dE,
= dr ET + nS
h\/znh’;/O eXp{h( o [nD}n‘dT

Here it is convenient to replace the integration variable 7 by t = T/n, which is the
fundamental period of the periodic orbit in question. We also need to rewrite

1
2

(25.20)

dEa["]  dEq(v)dv _ dEq1
dT dt dT  dt n

so that Eq. (25.20) becomes

T G i dE;
G(E) = h\/znh;/drexp{hn(Er+S(f))} f\/n\/‘ dtl

Again, we compute the r-integration by use of the stationary phase approximation.
For the phase in (25.21) to be stationary we require

. (25.21)

0 as
0= (Et+S(v)) =E— =E—E,.
dt ot
Thus, for a given value of E we obtain the main contribution from the periodic orbit
which has exactly the classical energy E.;. This enables us to rewrite (25.21) as

i [ i [2nih i dE,
G(E) = h\/znh ;\/H% exp{hn(Et(E)—l-S(r))} t(E)\/n\/‘ dtl

Using the fact that ddzf;‘ = —‘é’f and W(E) = S(v) + Et(E), we end up with

i i X [2r7h i
G(E) = h\/znh’;\/ . t(E)exp{hnW(E)}

i > i i )
= ht(E)’;exp%hnW(E)} = ht(E)l i

—eh

. (25.22)
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This form of G(E) allows us to identify the poles which are located at the energies
E, satisfying

W(E,) = 27nh (25.23)

for n integer. Using

T m T X2
W(E)=S+Et:/ dT(chz—VJrE):m/ dp?:z/ pdx
0 0 X1

Equation (25.23) assumes the form

¢pdq = 27hn. (25.24)

So we have rediscovered the old Bohr—Sommerfeld quantization rule.

We can, however, do better than that. What we are aiming at is an improvement of
formula (25.23), i.e., we want to generate the correct half-integer quantum number
(n+1/2). The reason that we have not been able to produce the quantum mechanical
correction is due to the fact that we have not taken care of the phase ambiguity of
the path integral. However, the same problem occurred with the harmonic oscillator.
Expression (25.18) is completely analogous to the result contained in (19.70). In
both cases we have to carefully study the behavior of the propagator at the caustics.
In the present case, the additional phase factor stems from the singularities of the

1
integrand in ( fOT fzd(’t)) * . These singular points correspond to the zeros of f(f) =

x(1), i.e., the turning points x; and x,. Each time we run through a turning point, we
pick up an additional phase factor e'2, and since there are 2n turning points in the
orbit x7/,, we gain e™ = (—1)" altogether. It is this factor which, when included
in (25.22), will produce the correct pole structure:

G(E) = ;lt(E) > =1y exp{ ;an(E)}

n=1

. T W(E)
! © (25.25)

Therefore the poles are correctly shifted to

W(E,) =27 (n+ }) h. (25.26)



Chapter 26
Partition Function for the Harmonic Oscillator

We start by making the following changes from Minkowski real time ¢t = x to
Euclidean “time” 7 = fg:

r=it=4. (26.1)

Here we put # = 1, T = temperature of the system = B~!, k = 1. Then we write
for the partition function of our one-dimensional quantum mechanical system:

ﬁ m
zZ= / 0 [X)] expg— /O dr[zjcz(t)+V(x(f))]§ . (26.2)

arbitr.

The exponential is obtained from
d m
is=1i / dr [ L) - V(x(t’))]
0

- _/Oﬁ dr [”215(2@) 4 V(x(t))] .

In the functional integration we require x(7) to be periodic with period 8 : x(t) =
x(t + B) or, if we put T = 0,

x(0) = x(B) .

In particular, we obtain for the harmonic oscillator (m = 1), where V(x) = w?x?/2,

— 1 P 2.2
Z= /ﬁ[dx(r)] exp{ 2/0 dr[xz(r) + wx (‘C)] ,
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or, performing an integration by parts on the first term in the exponential,

B 1 [P d? )
Z = /ﬂ[dx(r)] exp{—z/0 dt x(1) |:_d1'2 + o :|5X(T)§ . (26.3)

The subscript B in [-d?/dt*> + w?] indicates that the differential operator is
restricted to the function space defined by x(0) = x(f).

dZ
Q2.:=|-  +ot (26.4)
dz? 8

£2; is a positive definite elliptic operator acting on x,(t) defined on a compact
circular r-manifold. §£2; has a complete set of orthonormal (real) eigenfunctions
x, () and associated eigenvalues A,

2
[— d , + w2i| X, (T) = Apx,(7) (26.5)
dt 8
with
B
5O =5(B) . [ o0 = b 26.6)
0
Explicitly,
2 o 2 )
x(7) = \/2’3 Sm(fnm) L= (Zﬂn) +w*, nek. (26.7)
\/ﬂ cos ( 5 nr) , B

Check:

Periodicity is also obvious:

xn(t + ) = x(1)
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and orthonormality follows from

2 (P 27 27
dt cos mt | cos nt ) = 6 .
B Jo B B
Now, as we have done with the real-time oscillator, we approximate the path x(t)
by a finite number of basis functions

N

B
iv(D) =Y ax(t) . a, = /0 dt x,(0)in (1) (26.8)

n=1

and write for the Euclidean action

B
Selx(0] = ) /0 4t x(2)2:x(7)

or

B
sefin(@)] =, [ drinm2an()

Substituting (26.8) and using £2,x,(t) = A,x,(7), we find

N
1 B
SE[X(T)] = 2 anaman/o dtxm(r)xn(t)
N
1
= Z /\naﬁ
2 n=1

From here on we are on familiar ground:

+o0 0o
/ da; / day exp {—Sg[xn(1)]}

N —1/2
= Qm)"? \/A1 1 s 2m)N/? (]_[ A,,) . (26.9)

n=1

If we change the integration measure,

N N |
J:[ldan — 1_[ da,,\/zﬁ

n=1
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and finally let N go to infinity, N — oo, we obtain

Z= / [dx(1)] e SR (26.10)
B
or
1) d?
Z=(det2,)” ", 2.= [— R +a)2:| ) (26.11)
dt B

There are various ways of computing this determinant. This is a good setting for
introducing the so-called ¢-function evaluation of determinants. So let us consider
an operator A with positive real discrete eigenvalues A, ..., A,, ... and let the
eigenfunctions be f,,(x) : Af,(x) = A,f,(x). Then we form the expression

1
AOEDY i (26.12)

This is the ¢-function associated to A. For the one-dimensional oscillator H = A, ¢
is, except for the zero-point energy, Riemann’s {-function. In (26.12) the sum goes
over all the eigenvalues, and s is a variable, real or complex, chosen such that the
series (26.12) converges.

Writing A* = e™*I"*1we have

o0
tals) = ) e
n=0

or, upon formal differentiation with respect to s,

o0

d
/ —slnA, _ —slnA,
ACES s E e = niolnkne

n=0

and, putting s = 0,
o0
G|y == Ik,
n=0

we finally obtain

detA = Hkn = exp |:Z In /\,,:| = e 5O , (26.13)

n n=0

or

IndetA = —£(0) (26.14)
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where ¢’(0) has to be determined by analytic continuation from the domain where
the defining series (26.12) actually converges. Now let us return to (26.11) and
apply (26.13):

1 1
InZ = —Zlndet[? = 2{"Q(O) (26.15)
where
Lals) =Y A"
neZ
with
27n\? 2
Ap = P +w°, nez. (26.16)

Expression (26.16) is also known as the “Matsubara rule” for Bose particles. In
order to evaluate (26.15), we have to discuss the thermal {-function,

ta(s) n:Z: [(25 ) “’ZT -(3) n:zi ["2 (o )T

() (-50)

or
,3 2s
{a(s) =( ) D(s,v) (26.17)
27
where
+o00 » a),B
D(s,v) := n;oo(nz )7, vi= oy (26.18)

The series (26.18) converges for Res > 1/2, and its analytic continuation defines
a meromorphic function of s, analytic at s = 0. Further properties are:

D(0,v) =0, (26.19)
which implies ¢ (0) = 0, and since

det(uf2) = nt2©@ det 2 = det 2 , (26.20)
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there is no dependence on the overall scale of £2. In fact the first equal sign in (26.20)
follows from

/ d
det(uf2) = e 2@ = exp |:_ds (guﬂ(s))is=0:| :

Here we need the scaling property

D (da) = a7 Y AT = 1)

n

Lu(s)
=" La(s)
which yields
jsé“m(S) = —Inpe M ro(s) + e gL (s)
and, putting s = 0,
—ifm(s)lmo = In(11)¢2(0) — 5(0)

we obtain indeed

ebie® — ;2© ~pO) _ o~tp0)
In addition to (26.18), we list the following properties:
ad .
5 D(s,v)|;=0 = —21n(2 sinh(rv)) ,
A
i
D(1,v) = coth(wv) ,
v
1 1 3 1
D(_z’o):_o’ D(_z’o): 60

D(s, v) has poles at
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We are interested in
=0

) B d ,3 2s _———— ﬁ 2s
o= & (ZH) OD(O’“”(zn)

= 2 s = 21 ()

) [mz + In sinh (“’f)} .

Setting x := wf/2, we can continue to write

G — [mz i (e”‘ ;e‘X)}

= —2[In2—1n2 + In(e*(1 —e™2))]

D(s,v)|s=
Pl

s=

= —2[x+In(1-e)].
So we finally obtain
Lo (8)])s=0 = —wf — 21n(1 — e_’”ﬁ)
or, according to (26.15),
InZ=1¢5(0) = —lwp—In(1—eF). (26.21)

Note that we have clearly isolated the zero-point energy. Another useful form is

nZ = ;g/g(m = _In [2 sinh (“’f)}

which implies

1

Z= . 26.22

2 sinh(wpB/2) ( )
Admittedly, the above procedure is a little far-fetched. But it is exactly the way that
is used to great advantage in field theory. This, however, is a totally different story
and can be looked up in the authors’ contributions on {-function regularization in
quantum field theory as published in Springer’s Lecture Notes in Physics, Nos. 220
and 244.



Chapter 27
Introduction to Homotopy Theory

Consider two manifolds X and Y together with a set of continuous maps f, g, . . .
f:X—>Y, x—>f(x)=y; xe€X, yevY.
Then two maps are defined to be homotopic if they can be continuously distorted
into one another. That is, f is homotopic to g, f ~ g, if there exists an intermediate
family of continuous maps H(x,f), 0 <t < 1,
H: XxI—>Y, I=]0,1] (27.1)
such that

H(x,0) =f(x), Hx1) =gx). (27.2)

H is then called a homotopy between f and g.
Next we define a product of paths:

f*xg: [0,1]>Y
or

f(2x), xe [O, ;] ,

*= e = g2x—1), xe[é,l].

The inverse of f is

o1 ->y
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or
x—=>flx):=f1-x), Vxel0,1].

The homotopy relation, usually indicated by ~, is an equivalence relation on the set
of continuous maps X — Y:

(a) reflexive: f~f
(b) symmetric: fi ~f = L ~fi
(c) transitive: fi~Hh AL ~f[=>f~f.

Let us verify (b) and (c) with the aid of Eqgs. (27.1) and (27.2).
(b') Define G(x, 1) := F(x,1—1), t € [0, 1], then

F:fi~f G: HL~h
F(x,0) =fi(x) = G(x,0)=f2(x)
F(x,1) = fa(x) G(x, 1) = fi(x)

since  G(x,0) = F(x,1) = f5(x)
G(x, 1) =F(x,0) = filx).

O F:fi~p AN Gificfi = H:ifi~fs

F(x,21), 0<
G(x,2t—1), 1 <

here H is defined by H(x,1) = S
where H is defined by H(x,f) = r<1.
F(x,0) =fi(x) Gx,0)=fx) Hx0) =/fi(x)

Fx,1) =) Gk 1)=f0) Hx1) =70

since  H(x,0) = F(x,0) = fi(x)
H(x, é) =F(x,1) = fr(x)
H(x, ) = G(x,0) = f2(x)
H(x,1) =G, 1) = f3(x) .

So homotopically equivalent maps form an equivalence class. Hence the equivalence
relation ~ decomposes the set of maps {f : X — Y} into equivalence classes called
homotopy classes Hp;:

Hp ={f: X > Y|f ~Fj,

where F; denotes a representative of the equivalence class H,.

Next we want to show that homotopy classes can assume a group structure under
multiplication. This can best be seen by taking a specific example for X, namely, the
closed line interval 1[0, 1] with end points identified. This manifold is topologically
equivalent to a circle S'. We want to restrict ourselves to continuous maps f which
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satisfy f(0) = f(1) = yo, a fixed point in Y; then the equivalence classes f, g, . ..
form a group under the multiplication defined on the previous page. Notice that the
multiplication is independent of our choice of representatives because

(i ~ ) A (81~ 82) = fig1 ~ fog2 -
In particular,
(f ~ Fi) A (g~ F) = fg ~ FiF;
or
f€Hr, g€Hr=fgeHrr.

Also note that the identity element e = ff~! is the class of mappings homotopic to
the constant mapping C:

x—>Ckx)=yo, Vxel0,1].

So we have discovered that our homotopy classes form a group under multiplication.
Our particular example with X = S! is called the first homotopy group of Y:

I1,(Y)
with group properties
(1) HrHp, = Hrr,

(2) neutral element: C  (all mappings which are homotopic
to the constant mapping)

(3) inverse element: H;il =H1.

Group manifolds are topological spaces, and it is possible to calculate the first
homotopy group for any Lie group G. Let us demonstrate this explicitly for G =
U(1), so that we have

x=s., vy=uQ).

ie,f: S' - U' or S! — S!. What, then, is I1,(U;)? Let us parametrize

X =S'={(cos 6, sin 6)|# € [0,27]}, Y =U(l) = {ei“|a € [0, ZJr]} .
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We shall now decompose these mappings into homotopy classes.

100,27 > U), 60— f(O) =e"® (27.3)
with
J0) =f@2m) =y =1€U(l)
so that
f(0) =@ = = f(27) |
which yields

an) =a0) +2nn, neZ. (27.4)

Hence,  — f(6) = ) becomes decomposed into homotopy classes which are
classified by an integer n € Z. We now give some examples.

L fi() =e'sin?, a1(0) = sin 6
L) =1, a(0) =0
a12(0) = ajo() ;. nip=0.

/i and f, are homotopic since they can be continuously deformed into each other via
a sequence of mappings, namely a homotopy given by

F(6.1):=¢"s"’
so that
F(0,0) =1=/(0)
and
F(0,1) =¢ "% = £,(0) .

So, all mappings with «(0) = «a(27) = 0 (which includes the identity mapping)
belong to the same homotopy class.

2. @) =e", @ =90,
LB =1, w®) =0,

aqr)=a1(0)+1-27, n =1,
ax(2m) = a2(0) , ny=0.
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This example yields two mappings, f; and f,, which are not homotopic; i.e., there is
no way to continuously deform f; into f>, although f; of the present example is not
so very different from f; of the first example. f; (9) = ¢!’ identifies a new homotopy
class which does not include the identity.

3. fild)=e", a =nb,
HO)=e" ., ay=mh, mnel

a12n) =a1(0) + 270, n =n,
a2n) = a(0) +2rm, ny=m

fi and f, are not homotopic for m # n, and they are homotopic if, and only if,
m=n.

It is clear that any mapping f : 6 — f(6), because it has to satisfy (27.4), is
homotopic to one, and only one, of the mappings

L@ =", nez, (27.5)
so that
m(uQ) =2. (27.6)

The group property can be illustrated as follows:

Inverse element of {f|f ~ f,} is given by {f|f ~ f—u}.
Neutral element:

UIf~fy . f@) =1=y.

Composition (multiplication):

S~ Jusfo ~ fu = fifa ~ fifm = Jatm

since
f;l(g)fm(g) — eir19 eim9 — ei(n-l-m)@ Zﬁt+m(9) .

Obviously, when 6 varies from O to 27, so thatnf = 0, ... 2zn, f,(0) = ein? goes
around the U(1) circle n times. Hence, one round-trip in X = S! corresponds to
n round-trips in ¥ = U(1), or n points in X = S' have the same image point in
u(l).

For obvious reasons,  is called the winding number, and any mapping homotopic
to f,(6) also winds around the group space U(1) n times.

After having explained what the first homotopy group is all about, we give the
definition of the nth homotopy group I7,(Y): the nth homotopy group I7,(Y) is the
set of all equivalence classes of maps of the unit sphere S” into a topological space Y.
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As has already been stated above, two mappings are said to be homotopic if they
can be continuously deformed into each other, i.e., the mappings

f: S"—>Y
are decomposed into equivalence classes which are the group elements of
I7,(Y) .
Unfortunately, all of this is hard to visualize for the higher homotopy groups.

Nevertheless, here are some results which can be understood, to some extent, by
analogy with I1;:

m(U) =1(S") =2
I1,(SUQ2)) = 1, ($’) =0
M (UQ2) =7
I,(8")=0.n<m
,(8") =7
m,(s")=0,n>1

(

(

(



Chapter 28
Classical Chern—-Simons Mechanics

We are interested in a completely integrable Hamiltonian system (#ay,w,H).
Local coordinates on the 2N-dimensional phase space .#5y are denoted by n* =
(»,q), a=1,2, ... 2N and the symplectic 2-form w is given by

= Jwawdn® A dnP

with do = 0 and det(w,;) # 0. For simplicity we assume that w,, is 7°-
independent. In canonical form we have ¢ = (p’,¢"), i=1,2, ..., NIfN =1,
e.g.n' =p, ¥ =q, wyy = —wy = 1 and 0 = dp A dg. By definition, the system
has N conserved quantitites J;(n*), which are in involution:

OH , dJ;
H,J\ = a ==, 28.1
aJ; Ay
Jiyt’ = ab =0. 28.2
Podi) = oo™ o) (282)

In canonical form:

wqp = diag [(_01 (1)) e (_01 (1))} . (28.3)

The Poisson brackets (28.1,28.2) are defined in terms of the matrix w®, the inverse
of wyp:

W™ = 5. (28.4)
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Hamilton’s equations of motion read:

~a

L

o = o®d,H (28.5)
n

and the total time derivative of some function of the canonical variables n“(t), A =
A(n“(2)) is given by

A(1) = 0,47 = 0,Aw™d,H (28.6)
or
d
th(n(t)) = {A,H}, (28.7)
where
{A,B} = 0,A0™0,B . (28.8)

To make contact with the usual form of Hamilton’s equations, let us write (28.5) in
components:

oH
p=0owi,H =— 9q
i=omau ="
which results in
w? = -l =1, (28.9)
and, together with (28.4), i.e.,
wpw ™ =1 = Wyt (28.10)
yields, as it should,
Wy = —1 = —wy, . (28.11)

The Lagrangian that produces the correct equations of motion is given by

L= n"wasn” —H(n"). (28.12)
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To show this, let us look at the variation of the action,
n
S = / dtL,
1

under n — 1 + 8n. According to the action principle, it holds that

n

88 = 5/ dtL = G[n]-G[n] .
1

For our particular Lagrangian (28.12), we obtain:

n
8S = / dt[ 80 waite + 31 wapS1p — SH(n)] .

n

Writing
8H(n) = dn*d.H (n)
and
ﬂawabgﬁb — & (nawahSTIb) _ ﬁawabgnb
=4 (n*wwdn”) + 81 wapii”
dl’ a a
we find

153 1
88 = / dt [M“wabﬁ” —snaHO + - (ﬂ“wabé’nb)}
n 2 dl

o dr1 o)
= / dtd |: T’Iaw¢¢b57’lbi| + / dr [(Sﬂa (a)abi]h - aaH(r/))]
f 12

151

=G,— Gy .
From (28.17) we conclude
wabﬁb = aaH(r/) s
= 0“1’ = 00,H(1) ,
= 0" = wd,H(n) or
f}a — a)“babH(n(t)) ,

333

(28.13)

(28.14)

(28.15)

(28.16)

(28.17)

(28.18)
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which brings us back to (28.5). The surface term in (28.17) is given by
2 1. a 12
[G]} = [n“@adn’]; - (28.19)

At this point we leave the on-shell theory; i.e., we are still given a Hamiltonian H
but we are not assuming that Hamilton’s equations (28.5) are satisfied; i.e., we are
concerned with “off-shell” mechanics.

Next we study the response of the action (28.13) under an infinitesimal variation
of the form

N
S = e (1) . (28.20)
i=1

where the “charges” J;(”) are the generators of the infinitesimal canonical transfor-
mation (28.20). The ¢; are constant parameters — as in a global gauge transformation.
Accordingly, a path on .#,y, n°(f), transforms as

§n(1) = eiw™pJi(n° (1) . (28.21)

Here and in the following, a summation over i = 1,2, ..., N is understood.
Variation of the action yields:

n d 1 n
88 = / dt [ n”wahSn”} + / dt [8n° wap” — 811 0aH (1) ]
f dr |2 f

odT1 )
/ dtdt |:2 naa)absiwbcac]i:| + & / dl[a)acwab i]hacji - abJ,-w“”aaH]
n < g 2

g ?El{ ={HJ}=0
1 ; Lod 1 B
= i 0.Ji17 — & dr J; 1)) = ¢&; 40,Ji — J; . 28.22
5 €1 n"dadils 8/” dr (n) =« [2n ll (28.22)

This is a pure surface term.

Next we gauge our U(1)"-symmetry; i.e., we make (28.20) a local symmetry
transformation by allowing ¢ to depend on time. As in ordinary gauge field theory,
this requires the introduction of a U(1)¥-gauge field A;(f) which couples to the
“matter field” n“():

1
Lo = ,n'@wil’ = H(m) = Ai0Ji(n(®) , (28.23)

n
So [n*, Al Z/ dt Ly

n

15 1
= / dr[zn“wam”—H(n)—Aia)Ji(n(r))} . (28.24)
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Variation of Sy with respect to n* and A; yields:

f2 L, , 1
550 = dl[2577 Wap) +

d
aa 5[)
! 2 T g

(d/di) (nwadn?) +8ntwuyip

Snd.H 3194
—— ——
~T8H —A 80 —sAu]

%) n
= / dt d [ ! ﬂaa)abSﬂbi| + / dl|:8?’}a (a)abi]b
n o dr]2 /

1

— Da(H +Aidi)) = A1) (28.25)
The equations of motion are given by
" wwi’ = aa(H +Ai-]i) or
i = &y (H) + Adi(n) . (28.26)
SA;: Ji=0. (28.27)

Now we study the response of Sy under the local gauge transformation — and
consider off-shell dynamics again:

8n°(t) = ei(Dw™0pJi(n° (1)) (28.28)
8Ai(1) = & . (28.29)
In (28.25) we need the expressions
At wadn” = 0 wwei )™ = Je D) 0adi(n) (28.30)
577“ [a)abﬁb - aa(H +A/Jj)] = Si(t)wabab-]i (wacﬁc —0,H _Ajaa-]j)
= —&;()7" i (n(1)) — &i(1)d.Hw 0pJ; — £:(D)Aj(1)0ad ;0™ 01 J;

d
= —&i(0) dt.l,-(r)(t)) = &i() {H. Ji} —&i()A;(1) @ Ji_}; , (28.31)
=0 =0

SAJ; = &J; . (28.32)
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Using (28.30-28.32) in (28.25) we obtain:

hodT1 n d
58Sy = dt (O, | — dre;(t)  J;
: / dt[zs()n ] / [0

_ / § dt ?J,-(r)(t))

n —_—

= (d/d) (1Ji) —ei(ds; i)
24Tl
= dt ei()n?0,J; — €i(t)J;
[ g yeom o]

2
= |:8,'(l) (; 7]“8“.1,- — J,)i| . (28.33)
1

[The surface term vanishes identically if J(n) is quadratic in n: J(n) =
Qun®n’/2, Q symmetric. Then 7%9,J/2 = n°Qupn”/2 = J.]

Thus, Sy will be invariant under (28.28,28.29) if the surface terms vanish,
which is certainly true for closed trajectories and “small” gauge transformations
(cf. below): &;(t;) = &i(t1). Then

15}

8Sy = [si(t) ( ;n“ani(n(t)) —Ji(n<f)))}

n

= &i(n) [;n‘*aafi(n(t)) _Ji(ﬂ(t)):| (28.34)

5|
- -_— -
=0 for closed trajectory.

Usually one adds to (28.24) a gauge invariant kinetic term like F,, F*". However,
in 0 + 1 dimensions, such a term does not exist; hence, the only term which can be
added to S containing the gauge field A; alone is the Chern—Simons action:

5]

Scs[Ai] = ki / dtA(1) . (28.35)
151

So far the k; are arbitrary real constants. The variation of Scs is given by

15 n
8SCS = kl/ dt5Ai(t) = kl/ dt g;

n n

= ki(ei(r2) — ei(n1)) . (28.36)

Evidently Scs is invariant under “small” gauge transformations with €;(f,) —¢&;(t;) =
0, but it is not invariant under “large” gauge transformations with g;(t,) —¢&;(t;) # 0.
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Now, the complete action of interest reads:
Sn“. Al = So[n". Ail + Scs[Ai]

%) 1
= / dt [2 nwawil” —H() — Ai(Ji(n) — ki):| . (28.37)

To derive the classical equations of motion belonging to (28.37), we can follow the
same steps as before [cf. (28.26,28.27)]:

§n*: 0t = 0™, (H + Adi) (n(0) . (28.38)
8Ai: Ji(n(®) =k . (28.39)

In the sequel we will show that, using appropriate boundary conditions, we
can always gauge A; to zero. As a result, we get back the usual equation of
motion (28.18), 7* = w“d,H, but supplemented by the “Gauss law constraints”
(28.39). Hence, only those trajectories n“(¢) are admitted for which the J; equal
the constant coefficients k; occurring in the Chern—Simons term (28.35). The level
surfaces of J;(n“) induce a foliation of phase space by N-tori and, since {H,J;} = 0,
a classical trajectory which starts on a given torus Ty (k;) will always stay on this
particular torus. Thus we are dealing with different classical Chern—Simons theories,
“living” on different tori Ty (k;), for different values of the parameters ;.

Eventually we want to quantize the model (28.37) by way of a path integral.
Therefore we need to know all closed classical trajectories of period T which serve
as “background fields” for the one-loop approximation.

Let us begin by introducing action-angle variables (I;, 9;) as coordinates on phase
space. So we perform a canonical transformation on .#,y : n* — (I;,6;). The
actions I;, i = 1,2, ... N fix certain tori on .#5y. Since we are studying integrable
systems, the solutions of Hamilton’s equations simply read:

I,'(l) = lj (28.40)
0, = 0 + a)i(l())l‘ s (28.41)
with the frequencies
dH(I
wi(lo) = @ . (28.42)
ol =y,

For closed trajectories it holds that

2

;P €L, i=12,. N, (28.43)

w; (Io) =
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Thus, all closed classical solutions are described in action-angle variables by
I,'(l) =TIy, (28.44)
2
6:6) = O+ 7 pit (28.45)
At this stage we return to the previously introduced gauge transformations. Let
n(t) = ([(r), 6:(r)), t € [0,T], be an arbitrary closed path on .#,y with period
T, n*(0) = n*(T). or

6:T)— 6:(0) = 27p; . pi€. (28.46)

Since we will be interested in closed paths contributing to Tr(e™*T), our “field
theory” defined by

r 1
So [0, Ai]l = / dt |:277a0)¢zbﬁb —-H _Aiji:|
0
T
Ses[Ai] = k; / dt A1) (28.47)
0

can be visualized as a theory of maps from the circle S' to the symplectic manifold
Moy In terms of action-angle variables, Sy becomes

So[ L, 61, Ai] = /0 ' di[1:(06,(0) — H(I(0) — Ai(DL(0)] (28.48)

and the gauge transformations (28.28,28.29) are replaced by

Ali(n) =0,
A@,’(l) = Si(t) s (28.49)
AAi(t) = &)

where the use of A instead of § indicates that we also allow for finite gauge
transformations. In particular, there exists the possibility of topologically nontrivial
(“large”) transformations which cannot be continuously deformed to the identity.
They are introduced in the following way: under a gauge transformation (28.49),
we obtain for (28.46):

6/(T) — 6(0) = 6,(T) — 6,0) +&/(T) — £:(0) . (28.50)

=2np;
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If the gauge-transformed trajectory (I'(z), 6/(r)), t € [0,T] is to be closed again,
€i(T) — &;(0) must be a multiple of 27:

ei(T)—¢i(0) =2n0;, N€ZL. (28.51)
Consequently, relation (28.46) is changed to
0;(T) = 6,(0) = 27 (pi + ) =2mp;, e, pi=pi+N. (28.52)

Previously we considered ¢; infinitesimal, so that only .4 = 0 was possible. These
transformations are called “small” or topologically trivial transformations because
they can be obtained by iterating infinitesimal ones. Now we also allow for “large”
gauge transformations, i.e., topologically nontrivial ones: .4/ # 0. They change
the revolution number p;, i.e., the number of revolutions which the angle variables
perform between t+ = 0 and ¢+ = 7. Obviously, it is impossible to gauge transform
two closed paths into each other by a small gauge transformation if they have
different p;’s, i.e., belong to disjoint homotopy classes in the sense of IT;(S') = Z.

The condition (28.51) implies a partition of the gauge fields A;(¢) in different
topological classes. Now, using small gauge transformations, .47 = 0,

A =¢;, &(T)—¢&(0)=0, (28.53)

every A;(f) can be transformed into a time-independent U(1)"-gauge field:

- 1 T
A= / dtA«(b) . (28.54)
T Jy

This quantity is invariant under small gauge transformations but changes under large
ones:

. I _ 2
AA; = T/o dtéi(t) = T[e,-(T)—s,-(O)] = N (28.55)

Note that if A; is not an integer multiple of 277/T, A; or A;, respectively, cannot be
gauged to zero. Since we wanted to work with the usual Hamiltonian equation of
motion (28.18) by going to the A; = 0-gauge, we impose the following restriction
on the allowed gauge fields:

~ 2
Ai = T Zi, Zi€ Z . (2856)



340 28 Classical Chern—Simons Mechanics

{z;} enumerates the topological classes of the gauge fields. Thus, according
to (28.54), the space of allowed gauge fields A; (over which the path integral
will be performed) is subject to the condition

T
/ dtAi(t) =27z . (28.57)
0
Using
~ ~ 27
Al =A; N
+ T
or
2r , 2w 2
= i N
A
we obtain
Z=zu+ M, (28.58)

i.e., large gauge transformations change the topological class of the gauge field.
Now let us go back to the action (28.48) which is invariant under infinitesimal
gauge transformations. But it is also invariant under large gauge transformations:

T
ASy = / difIi(r) Ab; — AA(D) L(D)] - (28.59)
0 N—— N————
£i(1) £i(1)

So, the two terms in (28.59) cancel. That is precisely the reason for having
introduced A;. The Chern—Simons term,

T
Ses[Al] = ki / drAi(r) | (28.60)
0

on the other hand, is invariant only under small gauge transformations. Under large
ones it changes according to

T T
Scs [A;] = kL/ dl‘A; = kl/ dtA; + 2w Nik;
0 0

= Scs[Ai] + 2mki A7 (28.61)
= ASCS = 27tk,'«/% .
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Next we look at closed paths on .,y which are solutions of the classical equations
of motion derived from Sy (28.48):

(1) = algl(il(g)) Wt Ai(0) = wi(lo) + Ai(D) (28.62)
(=0, (28.63)
with the solutions
6:(1) = 6o + w;(Lo)r + /0 tdt’ Ai(t) . (28.64)
Ii(t) = Iy . (28.65)

A gauge transformation yields for (28.62,28.63):
0/(t) = wi(lo) + Ai) + &:(r) (28.66)
=0 (28.67)
with the solutions
0! = 6o + a)i(lo)t + /Otdt’Ai(t’) + &i(t) — &:(0)

= 0:(t) + &:i(t) — &;(0) , (28.68)
Ii/(l‘) = Iy .

If A; satisfies (28.57), then (28.68) implies
0/(T) — 6/(0) = 2n (pi +zi + </1{) . (28.69)

The p;’s are the numbers of revolutions of a classical solution if A; = 0. Adding
a gauge field of topological class {z;} changes p; to p; + z;. Finally, if the trajectory
is gauge-transformed, the revolution numbers are changed from p;+z; to p;+z;+ 4.

Again, the number p; € Z tells us how often the trajectory (during the time T')
winds around the i-th homology cycle y; of the torus defined by {/;}. From the
definition of the action variables we have:

I ! §£ d ! §£ L it (28.70)
i = iaqi = Wy, . .
I AR P o Mt
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The coordinate 6; increases along the cycle y; from 0 to 274;;. Hence, for a path n*
winding around y; p;-times, we get:

T
1
/ dtzn“wamb =2nlp; . (28.71)
0

Therefore, we obtain for Sy, evaluated along a solution of Hamilton’s equations:

T
1
So[ne1 = (I, 6a1). Ai] = / dlzﬂ“wabﬁb
0

=2x Y Iipi

T N T
— H(I) / dt—Y I / dt Ai(f)
— 0 i=1 0
—F “~—— ~ -
=T =27ZZ,‘

or
So[ne. Ai] =27 Y " Ii(pi — z) — ET . (28.72)

The constants /; and E are determined by the initial conditions: I; = I;(n(0)), E =
H(n(0)). Again, we observe that Sy is gauge invariant:

pi—>pi=pi+ N, uog=u+ M
= (pi—z,-)/ =pi—%-
If we had not introduced the — )" A;l;-term, the action would have changed by
27 Y 1A

Here, then, is a summary of how to gauge-transform Hamilton’s equations of
motion:
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[ general coordinates n: |

i = ™8 [H + 3, Aili] () i = o™dy [H+ 3,(Ai + &) ] ()
mign;;gET:EMinales: —‘

b; = wi(D) + Ai(1) 6 = wi(D) + Ai() + & (D)

;=0 I =0
I solutions: |

r
6i (1) = 0;(0) + i (1 +f dt Ai(D)| 0/(1) = 0;(1) + & (1) — £:(0)
0

I;(H) = I; = const. I(t) = I; = const.

| angles at L= 4 ]

I
9,-(_;‘")‘9,-(0):@,-14/- dtA; | 6(T)-6/0) =
0
(T ) — 6:(0) + &(T) — & (0)

:2:'1(,'),-4—2,—) =27(pi + z: + M)

]—Littlejohn’s winding numbcﬂ

W= (pi+z)wi W= (pi+ 2+ M)w

Hence

Az = N (gauge field),
Api = N (classical trajectory),
AW =) w4 (Littlejohn’s winding number).

The winding numbers % and w;, respectively, will be studied in the following
sections.



Chapter 29
Semiclassical Quantization

We want to investigate the semiclassical or one-loop approximation of our Chern—
Simons model:

S =380+ Scs , (29.1)

where
11
So[n. Al = /0 dt |:277“w¢zbﬁb —H(n) - ZAi(f)Ji(U(f))]

T
Scs[A] = /0 dt Y kiAi(t) (29.2)

and k; is fixed. We shall see that consistency requires k; to assume (half-) integer
values only. In the following, all fields are defined on [0, 7] and are assumed to be
periodic.

Now the question arises as to whether the gauge invariance present at the classical
level is maintained at the quantum level. To answer this question, we define the
“effective action” I"'[A] by integrating out the “matter field” n*:

. i (rori .
el Al :/@n”exp{h/() dt[zn"a)a;,nb—H(n)—Ai(Ji(n)—ki):|} .

(29.3)

This path integral must be evaluated for periodic boundary conditions ¢(0) =
q(T) in configuration space. In the sequel we are only interested in the one-loop
approximation I'V[A] : I'[A] = {1 + O(&)} " V[A].
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To do the calculation we separate a general path 1“(f) into a classical path 7 (?)
and a quantum fluctuation y“():

n'(t) = ng(t) + x“ (1) . (29.4)

Here, n(f) as well as the fluctuating field y“(¢#) are periodic with period T.
Furthermore, 1% () satisfies the modified Hamiltonian equation

n4(0) = 0”3 (n3(1)) (29.5)
where
A (n") = H(n") + X Ai(n") - (29.6)

Since the equation of motion for A; (“Gauss’ law”) requires J;(n%(¥)) = ki, we use
only those 7, as backgrounds so that J; equals ;. Therefore, we consider only those
classical trajectories which lie on the torus

Ty(ki) :== {n € Aow|Ji(n) = ki} . (29.7)
If we integrate (29.3) over the gauge field, we obtain the §-function §[J;(n) — k;];
i.e., quantum paths lie on Ty (k;) also. Consequently, J;(n%) = J;(n%) = ki, and we
have to make sure that the fluctuation field y¢ is tangent to Ty (k;); i.e., we impose

on the allowed y’s the restriction y“d,J;(n.) = 0.
At last we come to the substitution of (29.4) into (29.1):

T
1 .
Soln. A] = / dt[zn“wamb —e%”(n)}
0
Tl b b
= /O dt[2 (6 + 1) @as (0 + 1) = (2 + 1) ]
= S (Ne)+ 24007 (1) + 3 2 2 80D 7 (1) +O(1?)
Tl b b b b
= /O df[z (T@a e + NG@w " + X Cwid + X' Cw i)
1
— H(na) — x“ 3.7 — zx“x” Baabéf] .
The second and third term in the integrand can be rewritten as follows:
r)gla)abxb) - i)gla)abxb

nglwabx'b = dl (

d
= dt (r)gla)abxb) — 0. gacwab Xb
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d a b a
= dl (ﬂclwah)( ) + aaff)(
Xawabi]gl = Xaa)abwbcac% = Xaaa%

n4@ax")

Torl . 1d
= So[n,A] :/0 dt[zncla)abnfl — «%ﬁ(ﬂcl) + 5 dr (

1 L1
+ Zx“wabxb - X xbaaab%”(ncl)] .

So we obtain

1 T
So [n*, Ai] =So [nglsAi] + P / dt x* [wabar - aaabjf(ncl(t))])(h
0

1 a T
+, [ndwabx"]o +0(x*)

- —— -
=0 for periodic orbits

or
So [n“. Al = So [14. Ai] + Sa [x“. n%. Al + O(x?) (29.8)

with the action of the fluctuation y,:

1 T
o [x A = /0 dt 1 [ad — D307 (0 (D) ] (29.9)

17 - )
) / dt f* a8 — MO 2° - (29.10)
0
In (29.10) we introduced the matrix-valued field
M@, = 030, (na (1)) (29.11)
= w*0.0p (H + Ai-]i) (ﬂcl(l‘)) .

The local gauge transformations

81°(1) = el ™ i (1(0)) .
8A;(t) = &;i(1) (29.12)
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decompose under n* = ng + x“ according to

so that

where

8 (4 + x“®) = e Ji(na + 1))
=Ji(na () +x¢dcJi(na) +0(x?)
= &i() 0" 0pJi (1)

+ &i(1) [0™8,0:Ji(na (D) ] 1)

80 (1) = e 9T (na (1)) . (29.13)
§x“(0) = ei(t)Mi(t)*, x° (1) (29.14)
8A; (1) = &(r) , (29.15)
M), == w™d.0pJi(na (1)) - (29.16)

né (1) [like n°(¢)] transforms as a coordinate (or rather, a path) on .4y, whereas
x“(t) transforms (homogeneously!) like a tangent space vector. The transforma-
tions (29.13-29.15) induce the following transformation on M:

SM = 0,(e:M;) + [eiM;, M) . (29.17)

(When we use an index-free notation, it is understood that the upper index of M is
left, the lower one is right.)

Proof

M, = 08,058 (H + Ay) (na)

N - =

Il
X

=w Bcab[aef%ﬂ(nd)gncl + JA; Ji(ncl)]

£iw®ddyJ; &
i)™ 8,050, 7 (1) 0 941 (ne1) + £10™D:0pJ; (1))
Cei(f) .+ EMY, .

Since {H, J;} = 0, we can write:

8e%a)ed8d1,~ =0
BhBE%wEdadJi = —36%0)6[13[13;,]5
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0:0p0e H 0 0q]; = —0p0, 7 0°D0cd; — 0,007 @ 0q0pJ;

— 00 040,0.J;
Jo=— a;,B %a)j ada)acf) Ji— a)”CB de %a) dBdB;,J
:wdﬁae% A}zz 1\71“6 Mieb
_ B (e,
(M;M)*,

—8%”(0 adaba) 8]

o, O/
i

(d/di)M;},(nei (1))

- ~ . d
= M = Ei[Mi,M] + eM; + &M; = SiMi) + Si[Mi,M] .

dt(

Now we can write down—in one-loop approximation:

e = 3 gitnal / @y Sl

cet x4(0)=x(T)
=) eistiadl el Al (29.18)
cct
where
S[ne1. A] = So[ne1. A] + Scs[A] (29.19)
and
eiﬁ[ﬂclsA] — / Dy eiSalenaAl (29.20)
0)= x*(T)
In (29.18), “>"...” denotes the sum over all classical trajectories generated by ¢

(or equivalently, by H) which have period T and for which J;(1(0)) takes the
prescribed values k; on the torus Ty (k;).

Finally, we determine the allowed values of k; by requiring gauge invariance of
exp{il"V[A]}. So let us consider a large gauge transformation of the topological

class {47},

ei(T) —€;(0) =24}, (29.21)
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with the gauge-transformed field
A — Al{ =A+é. (29.22)

Then, denoting the “summation variable” in (29.18) as 1,

eil“(”[A/] — Z eiS[i’]él,A/] eiﬁ[i’]él,A/] . (29.23)
4

Here we assumed that “) , ” is a gauge invariant measure, i.e., that we can replace
Nl

[TV aR 1]

the “ne”-integration by a “/,”-integration or summation, where 7., is the gauge

transform of 7;. From (28.59) and (28.61) we know that S is strictly gauge invariant
but Scs changes by the amount of 27k; 47

So[A",nly] = So[A. nat] . (29.24)

Scs[A'] = Scs[A] + 27k A7 . (29.25)

Consequently, (29.23) can be written as

WM Z el ki N+ AL Sl Al il [1a.A] (29.26)

Tel

Here we have introduced the change in the quantum action
Al = T'[nl, A'] = I [na,A] - (29.27)

A priori we do not know AT Tt has to be calculated from (29.20), which is, for Sy
quadratic, formally given by

il Al — det_1/2(8, —M(t)) ) (29.28)

It will be one of our goals in the sequel to study the behavior of this quantity under
gauge transformations. We will find out that A" depends only on the .4;{’s but not
on the details of 1. or A:

AF =27y ‘i L (29.29)

The constants j; are even integers which are related to certain winding numbers on
the group manifold Sp(2N).
Altogether we obtain from (29.26) and (29.29):

e = 3" exp [Zniz (ki - ’Z ") m} eiStneAl gil el (29.30)

Nel
i=ki
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Gauge invariance, el "1 = el"" ] obviously requires that k;—p;/4 be an integer:

m:m+ﬁﬂ nel. (29.31)

Since k; equals the action J; of the classical “background” trajectory around which
we expanded, we obtain the requirement:

Mi

L meZ. (29.32)

Ji(na) = ni +
Only if J; is quantized in this manner is gauge invariance left intact at the quantum
level. Equation (29.32) is the well-known semiclassical EBK quantization condition.
The topological numbers p; coincide with the Maslov indices. In the present
treatment they arise from a quantum mechanical anomaly: despite the fact that
the classical action Sp is gauge invariant, the associated action I (29.20) is gauge
invariant only under small gauge transformations with .4; = 0, but changes under
large ones. In the next section we are going to evaluate u; for a specific example.



Chapter 30
The “Maslov Anomaly” for the Harmonic
Oscillator

Specializing the discussion of the previous section to the harmonic oscillator we
haveforN =1, = (p,x), a= 1,2, ' =p, P =x

H(p.x) = n'n" = S (p* + %) . (30.1)

The only conserved quantity is / = H. In the action we need the combination

1 Y 1 d
i’ — M) = 1| w,
o 11" @av (m N [whdt

—(14+A®) 11,1,,} n’ (30.2)

and
M%, = 0d.0,(H + AJ) = (1 + A(t)) 0“1
or, compactly written:
M= (1+A0)R2 . (30.3)
where we have introduced the notation 2 = ™! = (0®). A(¢) is the gauge field

for a single U(1) group associated with energy conservation. The fluctuation part of
the action is now given by

1 (7 d -1°
Sq = dt yw, -M 30.4
f 2/0 wa[dt Lx (30.4)
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and the path integral for I" becomes

R : T=2n b
il 1Al :/ Dy exp|:l / dl)(a(l)ab|: I _ (1 —i—A(t)).Q} )(‘} (30.5)
p 2 Jo ot

©)=x(T) - =l
=M
= det™!/? |:a)(aat—1\~4):| , detowo =1
= det™!/? 0 -M) . (30.6)
ot

For a two-dimensional space and canonical coordinates, @ and its inverse ™! =
can be expressed by the Pauli matrix 0, : w = ioy, £2 = —io,. Furthermore,
in (30.5) we put T = 2, since the classical trajectories of (30.1) are all 2 -periodic.
Altogether we get:

1] = ger=!/2 [;t +i(1 +A(t))02i| : (30.7)

At this stage we have to investigate the eigenvalue problem of the antihermitian
operator:

D:= gt +i(1 +A@0))o (30.8)

E?t +iB(t)o2 ,
on the space of periodic functions:

DFl(1) =iAlFl (1), Al eR, (30.9)
with

FI(t+ 27) = F1.(1) .

Here is the set of complete, orthonormal functions on [0, 277] that satisfy (30.9):

_ L fa
Fo(n) = /2 (inf,Z(t)) , (30.10)

where

JMOES «/1271 exp I:ikl’,’lt —in /Ordt’B(t’):| . (30.11)
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The F’s are simultaneous eigenfunctions of D and o,
oFl =nF), n==%l. (30.12)
Periodicity f,1(0) = f,n(27) implies that
2w
1 =exp |:ik,’7’1271 — in/ dtB(t)i|
0
or
2w
MnZn—n/ dtB(t) =2mm, meZ.
0
Hence the eigenvalues are given by
1 2
Al =m+n / dtB(t)y, meZ, n==l. (30.13)
21 0

Let us check some of the above-mentioned properties

1 WA U\ =t 1 (£
i = n( o) () = 02 () =10 (i) =

V2 \inf
"
DF}, = (3, + i0»B)F}, = (3, + inB) \;2 (iﬁ;”)

7
;) m[a, + mB]fm V2 i

since f,Z solves (30.9),

[ 5 + 17’)B(t):| £ =iAnf

The orthonormality follows from
2 2 /
/ 1 * * d
[ arioro = [l -w)( 2
0 2 0 lﬂ/fm/

a2 [ al )

(30.14)

1
2 (Smm’ + (Smm’) = S’

n=-

=y Tl -] =0
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Hence we have proved

2 ,
/ dt FI (F", (1) = S Sy - (30.15)
0

Note that the spectrum (30.13) is symmetric around zero, and that under a gauge
transformation A’ = A + &, ¢(2xw) — &(0) = 274/, it is mapped onto itself:

2 2 2 2
/ dtA (1) = / dtA(t) + / dré(t) = / dtA(t) + 2n N .
0 0 0 0
Upon using the definition B(f) = 1 4+ A(¢), we can continue to write
2 2
/ dtB'(t) = / dtB(t) + 2n N
0 0
or
1 2 1 2
n / dtB'(t) = n / dtB(t) + nAN . (30.16)
2 0 27 0
If we add m € Z on either side of (30.16) and employ (30.13), we obtain:

A =20  lA] (30.17)

with m + n.#/" = m £ .4 again an integer.
If the gauge field is restricted according to (28.57),

2
/ dtA(t) = 2nA =2nz, z€Z,
0

the eigenvalue (30.13) becomes:

1 2 1 2
Al =m+n / di(l+A@) =m+n+n / dtA(1)
21 0 21 0
=m+n(l+z), (30.18)
which contains two zero modes:
n=1, m=—-(1+2),
n=-1, m=+4+(1+z2). (30.19)

In this case the determinant in (30.7) vanishes and r is not defined for th~ese fields.
As a way out, we assume that for the computation of I"[A], the conditionA = z € Z
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is not imposed on the gauge field. Instead we use A(7)’s for which A is arbitrary.
After having computed AT for such fields, we let A — z € Z at the very end.

We now turn to the computation of Al by a spectral flow argument. Before we
do so, we read off a reality constraint for the functions F, " which follows from the
explicit expressions given in (30.10) and (30.11):

6 =ron: (FL) = le (_i(;n’i(};)*)

1 A N
= (_i rzf__yZ) =F". (30.20)

This equation puts constraints on the coefficients in the expansion of the path
integration variable y“(f) in terms of the complete set F:

+o0
=Y Y CEND =) CIFL ()
m=—00 n==1 mnn
=D CUFI) =Y CIhFL) .
m,n m,n

Therefore

> (ch—-cr)Fn=o0.

m,n

meaning that for real y, the expansion coefficients satisfy
(cry =czn . (30.21)

Let us return to the representation of the determinant as a Gaussian integral as given
in (30.5) and (30.6):

. : 21
el — / _@Xexpl:; / dr XTa)D)(:| : (30.22)
0

where we have used a two-component matrix notation in the exponential. The
operator wD is given by

wD = [;f +io(1 +A(t)):| iy = —!

]
=w, —(1+40)
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and the integral in the exponential of (30.22) is

2 , 2 ,
dt "Dy = crer, / diFl o DF", | o =io,
| Yy arc | aropry

mn m' g

2 , 2 . , , 2 P
/O S =170, /0 dtF] ooF!, = —n'A!, /O dtF) F!,

- -
=n'F, =8yt
= —nA} S Sy -
This leads to
2 +o00
/ diy"wDy =— Y Y nALICH>. (30.23)
0 m=—00 n==+1

In order to reexpress the path integral measure in (30.22), we have to find a set of
independent C’s. Now, the C’s are subject to constraints as stated in (30.21). Hence,
a set of independent C’s is given by

{Chlm=0, n=1 ad m>0, n==I},
{Chlm=0, n=-1 and m>0, n==l}.

We choose the first alternative if foh dtB(t) > 0 and the second alternative if
02” dtB(f) < 0. Then, in view of

1 21
Al =m+1 / dtB(1) , (30.24)
2 0

we take those pairs (1, m), which have A,;, > 0. Thus the path integral becomes

o] — / [T dcudcy exp [— ; > nk,’l,lcfnlz]

{m.n|2>0} mi

ch=cl
For a fixed pair (1, m) we have in the exponential:
i * i
—, PPRICHP + CAhICl P = = midh — 2Tl P

where we have used the explicit formula (30.24) for A, to show that A=), = — A/},
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So far our result reads

eil Al — I1 dC? dC?" exp [—inAnL|Ch ] (30.25)
{m.nAm>0}

What we actually are looking for is not I itself, but the difference:
Al =F[A1- Al = F[A + &8 — [[A], (30.26)
where &(7) is a gauge transformation of winding number ./
e2n) —e(0) =2n.4" . (30.27)

We are going to evaluate the difference (30.26) by spectral flow arguments. For
this reason we introduce the following 1-parameter family of gauge potentials A,(¢)
interpolating between A(¢) and A’(¢) as s runs from minus to plus infinity:

A;(H) = A1) + g(s5)é(r) , s € (—o0, +00) . (30.28)

Here, g(s) is an arbitrary smooth function with g(s = —o0) = 0 and g(s = +00) =
1. Hence, A—oo(f) = A(f) and A4 oo (1) = A’(f). We can derive AT from the flow
of the eigenvalues A, = A/,(s) as the parameter s is varied. The spectrum {A,}
changes as follows:

1 2 1 2
Al(s)y=m+n / di(1 + A,(t)) =m+ n/ di(1 4+ A1) + g(s)é(1))
2 0 2 0
1 [ 1
=m+n / dtB(t) + | ng(s)2n AN
27 0 2

1 2
= (m + ng(s)JV) + nZn /(; dtB(t) = /\Zl+ng(s)ﬂ(0) . (30.29)

We observe that as s runs from —oco to +o00, the m index of the eigenvalues with
n = +1(—1) is shifted tom + A" (m — A):

+1 +1
/\m /\m+=/V ’

-1 -1
Am A’m—g/V °

What is important for the determination of AT are the eigenvalues crossing zero for
some value of s.

Now (30.29) tells us that for a gauge transformation with .4~ > 0 there are .4/
eigenvalues with n = 41 which are negative for s — —oo and which become
positive for s — +o00. There are also ./ eigenvalues with 7 = —1 which cross zero
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in the opposite direction; i.e., they are positive for s — —oo and become negative
for s — +o0.

For a gauge transformation with .4~ < 0, the pattern is reversed: there are |. 4|
zero-crossings of eigenvalues with n = 41, which go from positive to negative
values, and |-#’| zero-crossings of eigenvalues with n = —1, which go from
negative to positive ones.

For the interpolating gauge field A,(f), the path integral (30.25) is modified
according to

= T] dC" dCT exp [—inAl(s)|C1?] (30.30)
{m, A (s)>0}

Using the formula

/dZdZ* e—ialzl2 — |27l|’ e—insign(a)/Z
a

we obtain

S 21 .
e = T] e 30.31
Am(s) 03D
{m.nlAm(s)>0}

since sign (nAm(s)) = n for Aj(s) > 0. We need
eiAﬁ[A] _ eiﬁ[A']—iﬁ[A] _ eiIA’[AS:+OO]—iI:[Ax:_oo]

il ool nkfn(+00)>0 27/ A (+00)
eilfA—co] [T (=000 277/ Am(—00)

inn/2

1 e
om0 g (30.32)
nlﬁl(—oo)>0 €
The first factor in (30.32) is 1, since A and A’ are related by a gauge transformation,
and we found in (30.17) that the spectrum is gauge invariant. So we obtain:
SiF1A] _ [Tiroo-0€™ "2

w2 = e imv/2 (30.33)
e 17T

A (—00)>0

A nonzero AI” can occur only if the number of factors of exp[—izn/2] is different
for s = —oo and s = 4-o00. This number is determined by the eigenvalues crossing
zero. Writing

T

Al =—
2

= _’2’ (v =) (mod 27) (30.34)
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we have in an obvious notation:
v=#{n=+1, /}—#{h=+1, \},
vz:#{n:—l,/}—#{n:—l,\}, (30.35)

where #{n = +1, /' } denotes the number of eigenvalues with n = +1 crossing
zero from below, etc. For a gauge transformation with .4 > 0, we know from the
explicit construction of the spectrum

v=(N—-0)—-0—AN)=24 (30.36)
and for A4 < 0:
v=0—[A)=(AN-0)==2[N]=24".

Hence, v = A4 and vy = —4, sothaty =24, AN € Z.
Our final result is therefore given by

AP = —72’ 2. (mod 27). (30.37)
In (29.29) we defined the Maslov index via

Al = —27t'ZJV —

e (30.38)

This at last identifies the Maslov index for the linear harmonic oscillator: u =
2. The correct energy spectrum follows from (29.32): E = n + 1/2, n =
0, =1, £2, ... . Note our argument implies only n € Z; the actual range of n has
to follow from other considerations. In the present case it is the positivity of H = J
which implies n € N.

Since

AP —in +1, A even
= = {—1 V% ovdd} =07 (039

we observe that in (30.7),
e d
el IBl = get™!/2 |:8t + icrzB(t):| , (30.40)

the effect of a large gauge transformation A’ = A + .4 or B = B + ./ is at most
a sign change of the square root of the determinant.



Chapter 31
Maslov Anomaly and the Morse Index Theorem

Our starting point is again the phase space integral
el — /@x” efSalcl BL1)
with periodic boundary conditions y(0) = y(T) and
- 1T a - 1
Salx. M] = dtjya() |, —M@®)| 1. (31.2)
2 Jo ot b

Here we have indicated that Sz and I” depend on n% and A; only through M¢, :
M@, = 080, (na(1)) = 0™ 3.0, (H + AJ;) (na(t)) - (31.3)

We also have used the “dual” j, = x’wp, in (31.2). We decompose y* =
(mi,x;)), a = 1,2,...2N; i = 1,2..., N. Now, the Morse Index theorem
works in configuration space. Therefore we have to convert the phase space path
integral (31.1) to a configuration space integral by integrating out the momentum
components ;. So let us first write:

1T ,
Si= [ drlcanit = 100 (1a0)2'] (314)
0
and define

Q5" (1) Q5" ()
Qup(t) 1= 0,0p7 (a1 (2)) =: v v . (3L.5)

b b (N (1)) 0 (1) QT (1)
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Note that the Q’s are time-dependent, and Q,;, is symmetrical. This leads to

T 1
Sqg = / dt |:JTZ‘)'CZ‘ — 2 (ﬁiQ;ﬂT[j + ZﬂiQZ'Xxj + xiQi;'xx/‘):| (3L.6)
0
T
_ / dt Ly (31.7)
0
with
Ly = m; (% — iy ) — é”in{;’””j - ;xiQij'xxf ‘ (31.8)

Equation (31.6) is still in first-order form. Now we eliminate the momenta by means
of their classical equations of motion to get the second-order form. Upon using

dLg
=0
am

we obtain
—1y.
Xi— ngxl — Qlszﬂnl T = (Qﬂﬂ) (X— Qﬂxx) .
Inserting this back into (31.7), we find:
Ly = mQy" mj — ;ﬂiQZ}n”j - ;xiQijxj

_ 1 1

=, 0" — ,x0%x
or

. . —1.
Lae. ) = (8- 079, (07); (k — 07), — Ly

If we substitute this expression into (31.7) and perform suitable integrations by
parts, we may rewrite the new action as

Sp= Tdt (@) | 2 (1) < +C(l)(t)d + 00 | %)
1= ), R W g T g TR U

T
1/ dt x;i(H) Ayixi(1) . (31.9)

where the Hermitian operator has the form

d
_ @ ) (©)
= C; (t) +CW G (31.10)
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The C’s could be expressed in terms of the Q’s, but this relation is not important
here. What is important is that the classical equation of motion belonging to Lg, i.e.,

Ayi(t) =0 (31.11)

is equivalent to the Jacobi equation,
-\,
—-M) ¥’@) =0. (31.12)
ot b

Let us recall that the zero modes ¥ of the fluctuation operator (3, — M) are called
Jacobi fields. They follow from a solution 7¢,(#) of Hamilton’s equation 7g(f) =
09,7 (05, (1)) when we linearize according to n°(f) = n%(#) + ¥*(¢). The Jacobi
field in configuration space, ¥, is obtained from ¢ by eliminating the momentum
components.

Let us return to the path integral

A~ T
ell'M — / Dx; Dri exp [i / dtLﬂ:| . (31.13)
0

When we insert the first-order form (31.8) in (31.13) and integrate over the momenta
7; we obtain the following path integral over configuration space:

- : T
eiF[M] = /de(O)/@/xi(t) exp[;/ dtxi(l‘)Ainj(l‘)i| . (31.14)
0

Here we have indicated explicitly the integration over the terminal points of the path;
the integration 2'x;(¢) is over paths with the boundary condition x;(0) = xgo) =
X[(T).

In order for the Morse theory to be applicable, we reduce the path integral over
loops (in configuration space) based at xl(.o) = 0. This is done by expanding the
quantum path x;(¢) around the Jacobic field:

xi(t) = i) +yi(0) , Ay =0. (31.15)

We require the Jacobi field ; to fulfill the condition v;(0) = x?o) = ;(T), so that
y; has to vanish at the end points: y;(0) = 0 = y;(T). Then we obtain

T T
/ dtxAx = / di(y + )AW +y)
0 0

T
:/ aify Ay + YA y+y Ay +yAy].
0 ~—— ——

=0 =0
A=At
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Therefore we get

: T
x/ _@y(t)exp[lf dtyAyi| . (31.16)
¥(0)=0=y(7) 2 Jo

The first factor involves the classical action of the Jacobi field. Since this factor is
gauge invariant, the remainder I has the same gauge variation (under large gauge
transformations) as I, Ay = AI', where

A o~ : T
cifolit) _ / Dy(t) exp|:1 / d;y,-A,-iy,} . (31.17)
W0)=0=y(T) 2 Jo ‘

In the usual way, by expanding y; in terms of a complete set of eigenfunctions of A,

T
Ayw = Ay /0 Ay =S Y yaOyn() = 8~ 1)

T
20 =Y aio [ divay =3 ral.

we obtain

A ~ +w
elloM] 1_[/ danei/\na%/Z
a J—00
2 )1/2 i
_ el sign(A,)/2 . (31.18)
(i

Under a large gauge transformation M — M, the product

[ ]12] = Idet(2)] (31.19)

can be regularized gauge invariantly. The only change comes from the exponential
in (31.18) with the signs of the eigenvalues. Let us choose a path M, s(1),
(=00, 400) which interpolates between M and the gauge-transformed M’ As we
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vary s, some of the eigenvalues A, = A,(s) of A = A[M;] will cross zero and might
give rise to a change AT of I. With the notation used before, we have:

A

Al = ATy = [[M'] — [[M)
= _’2’(#{\ Y— #{ 1) (mod2r). (31.20)

Now the Morse Index theorem (cf. Chap. 4) tells us that the index of 825 is equal to
the number of conjugate points to g.;(0) with g (¢) restricted to 0 < r < T. When
this is applied to

A= AM@)] = Alo®8.0,2 (5(0)] . 1) = (ga(®) . Pa()

we find that the number of negative eigenvalues of A[g’,(#)] equals the number of
points conjugate to ¢, ( = 0) along the trajectory ¢’ (z). Note that ¢',(0) = ¢',(T).

Under a large gauge transformation, a trajectory is mapped onto a new one with
a different number of revolutions around the torus {J; = const.} and a different
winding number. Also, the number of conjugate points in configuration space
changes:

#{N\ )~ #1{ /) =index [A(gu(r)] —index [A (¢(1)]
= # {conj.pts.along gq(¢)} — # {conj.pts.along q’cl(t)} . 31.21)

Combining this with (31.20) we obtain:

Al = —7; [ # {conj. pts. along g (1)} — # {conj.pts. along q’cl(t)}] . (31.22)

This shows that A" can be obtained from purely classical data, namely by
examining how often the final point ¢,(T) is conjugate around the loop to the
initial point ¢;(0). This is easily done for the harmonic oscillator where gq(27) is
conjugate to g1 (0) of “order 27, since the first point conjugate to ¢.;(0) appears after
half-period already: g.(7r). On the other hand, the effect of a gauge transformation
with winding number .4 is to increase the number of revolutions from p to p + 4.
Hence the square bracket in (31.22) equals 2.4, which yields

Al = —n ¥, (31.23)

as found in (30.37). One can generalize the result from a one-torus to an N-torus.
One obtains [s. M. Reuter, Phys. Rev. D 42,2763 (1990)]

N
I'=—x mei = AW, (31.24)

i=1
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where the integers w; are certain winding numbers related to the topology of Sp(2N).
The quantity Zf\]: \wie#i = AW has been called Littlejohn’s winding number
in one of the previous sections. For its definition and a detailed discussion of its
properties we have to refer to the original publications in Phys. Rep. 138, 193
(1986) and Phys. Rev. A 36, 2953 (1987). Comparing (31.24) and (29.29) we see
that p; = 2w; which is the most important result we can obtain in this approach.

Let us have a final look at the gauge variance of el il Formally we may write:

. 9 B —1/2
ymtha(m—AO} (31.25)

or
—2il[A] 9 C
e = det o M) . (31.26)

Note that det(d;, — M) is real since w(d, — M) is Hermitian and det[w(d, —
M)] = det(d; — M), detw = 1. Our main result was that under a (large) gauge
transformation

N
Al = —x Z«/%Wi = m - (integer) . (31.27)
i=1
Therefore
eiAf' — eiJT(imeger) = +1 (3128)
but
A4 — 41 (31.29)

Comparing (31.29) with (31.25, 31.26), we see that det(d, — M) is gauge invariant
under large gauge transformations, but its formal square root [det(d; — 1\7[)]1/ 2
is not, because it is not a priori clear which sign the square root should have.
Defined in this way, [det(d, — M)]"/? is certainly invariant under infinitesimal gauge
transformations—since the sign cannot change abruptly. But nothing guarantees that
[det(0, -M )]'/? is invariant under topologically nontrivial gauge transformations. In
other words, if one continuously varies the gauge field from A;(z) to A; + 27w A4/ T,
one will possibly end up with a square root of opposite sign.

The situation outlined here is very similar to Witten’s global SU(2) anomaly.
For the partition function Zpy,. = det ) of a massless Dirac fermion, there is no
problem defining it in a gauge invariant way. However, the partition function of
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a Weyl fermion reads: Zwey,1 = \/ det ), and the sign ambiguity :I:\/ det D leads to
the global SU(2) anomaly. The correspondence is therefore:

Zpirac = detP «<— . =& noanomaly .
v b det(d, — 1) Y
1 S
Zyey) = /det P <— =&, global anomaly .
Jdet(@, — i)

From this general discussion we learn that the effect of a large gauge transformation
is at most a sign change:

eiAF =41 = eiﬂ(integer) ) (31.30)



Chapter 32
Berry’s Phase

Let a physical system be described by a Hamiltonian with two sets of variables r
and R(¢) : H(r,R(?)). The dynamical degrees of freedom r (not necessarily space
variables) are also called fast variables. The external time dependence is given by the
slowly varying parameters R(r) = {X(¢), Y(¢), ..., Z(t)}; consequently, the R(?)
are called slow variables.

We will be interested in solving the Schrodinger equation for the state vector

v (@)

0
i WD) = H(R(®))|y (1) . (32.1)

If the R(r) were independent of the external time parameter f, then a time-
independent set of energy eigenstates |n, R) with energy eigenvalues E,(R) would
exist satisfying

H(R)|n.R) = E,(R)|n,R) . (32.2)

When R(f) changes in time, we can still take |n, R(f)) as a basis; however the
eigenvalue equation (32.2) is then only valid at an instantaneous moment :

H(R())|n,R(1)) = E,(R(1))|n.R(1)) . (32.3)

This eigenvalue equation implies no relation between the (so far arbitrary) phases
of the eigenstates |n, R(r)) at different R(r). The states |n,R(f)) are normalized
according to

(n,R(t)|m,R(1)) = Sum - (32.4)
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The solution of the Schrodinger equation (32.1) can be expanded in terms of the
complete basis set |n, R(f)):

o) = Y atewn| -, [ a B R Ry (325)

Substituting this ansatz in (32.1) we obtain
ih) " exp —i/tdt/E(R(t’)) it aEs+a 9 In, R(1))
- h o n n 1h n~=n Vlat ’

= Zan(t) exp [—;l /0 dr En(R(t’)):| g(R(t))|n,R(t)-z .
' E,(R®) In R ()
So we get

o 5
Z exp I:—;l /0 dr En(R(t’))i| (c'zn +a, 8t) |n,R()) = 0.

n

Taking the inner product of this equation with

(m,R(1)| exp [;1/0 dt/Em(R(t/))i|

leads to
an(t) = =Y an(t) exp { ;l /0 dt [En(R(7)) — E,,(R(t’))]}

x (m,R(®)| ° |n,R(®)) . (32.6)

0
ot

In order to get rid of the time derivative of the base set we go back to the eigenvalue
equation (32.3) and take the time derivative on both sides:

oH a oE, a
JR(t H_ |n,R(1) = JR(t E, JR(D) .
o) IR@) +H [n.R©) = " [n.RO) + E, | [n.R)
Multiplying this equation from the left by (m, R(f)| we find

MR+ (RO ;
Em(m,R\

(m. R(1)

n,R())

n,R(1)) .

= aEt" (m,R(t)|n,R(t)) +E,(m,R(t) gt

ot < _ -

=0, m#n
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This equation can be rewritten in the form

(m. R (1)

0
o |1 ROV En(R®) = E,(RO))

" n,R() m#n (32.7)

0
=—(m.R@®)|

or

(m,R(t)|0H /0t|n, R(1))

(m. R(2) Ex(R()) — En(R(1))

n,R(t)) = , m#n,

0
ot

which is the desired expression in (32.6). Hence we end up with

am(1) = — am(1){m, R (1)

0
9 ’m R())

-~ ;an(r) exp { ;l /0 L [En(t) — E.(1)]

. (m.R()[0H/d1ln. R())

En(t) — En(®) (528)

At this stage we want to make the adiabatic approximation for the coefficients a,,(?),
which is equivalent to requiring

(m,R()| . [n,R(®)) =0, m#“n. (32.9)

d
ot

In other words, we want the base state vector |, R(f)) to undergo a parallel transport
in parameter space. Equation (32.8) is then reduced to

am(1) = —an()(m, R(7)

3
aJm,R(t)) . (32.10)

The physical meaning of the above approximation is that the rate of change of
the basis states is small compared to the Bohr period w,,, = (E, — E,)/h for
the transition m — n; the perturbation should be so slow—in fact, infinitely slow
(adiabatic)—that no transitions between the energy eigenstates become possible.
Therefore, neglecting the second term in (32.8) expresses the fact that H(R(f)) does
not change rapidly enough to induce transitions between the states. The system, once
in the eigenstate |m, R(0)), remains in this state also at a later time ¢, |m, R(7)).
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Now, let the system be in an eigenstate |m, R(0)) at + = 0, so that according
to (32.5), we obtain @,,(0) = 1. If we then integrate (32.10) with this initial
condition we obtain

an(t) = exp |:— /Otdt/(m,R(f/) 8at’

m,R(t’))i| am(0) . (32.11)
=1

Using the normalization condition (32.4),

(E?t (m,R(t)l) |m, R(1)) +(m, R(¢) gt‘m,R(t)) =0 (32.12)

_—

=(m.R(1)|0/dt|m.R(1))*

or

2 Re(m, R(f)

0
,R(1)) =0,
Am(»
we see that the integrand in the exponential of (32.11) is purely imaginary:

an() =0y, eR, (32.13)

where

Yu(t) = i/otdt/(m,R(t/) m,R()) . (32.14)

ad
or
Finally, then, the adiabatic approximation yields, according to (32.5),

[ (1)) = @ exp [—;1 /0 tdt’Em(R(t’))} |m,R(1)) . (32.15)

Here, the question naturally arises as to whether the extra phase y,,(¢) in (32.15) has
any physical significance. The naive answer would be no; let us look at the state

" |m, R(5)) =: |m, R(1)) (32.16)

which appears in (32.15). Taking the time derivative of (32.16) yields

J — . 0
— v (s
8t|m’R(t)) e (1)/m + 8t) |m, R(¢)) ,
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or, multiplying from the left with (m’,\l?(t)| and using (m, R(#)|m, R(¢)) = 1, we find

— || —
(m,R(1) at‘m,R(t)) = iyn(1) + &m,R(t)|a/at|m,R(t)l
=iy (1)
= i(yum(t) + am(1)) . (32.17)

If we now choose y,, to be

Ym(t) = — / dr oy (1) . (32.18)
0

Equation (32.17) turns into

(m. R(t)

9 —
at‘m,R(t)) =0.

If the phase y,, has been chosen in this way, (32.18), dropping the tilde we simply
obtain

{m, R(1)

9
at’m,R(t)) =0

and hence y,, would be absent from (32.15).

This was the state of affairs until Berry (1984) looked at the problem again,
considering the case in which the R(7) change by moving along a closed path, or
circuit C, in parameter space, returning to their original values att = T : R(T) =
R(0). Since the states |n, R(f)) only depend on ¢ via the external parameters R(?),
we may write (32.14) as

T
yn(C) = i / ai™ O RO, R()
0 t
— 195 dR - (m,R|Vg|m,R) , (32.19)
C

where the integral in the R-space (slow parameter space) is along the circuit C
parametrized by .

Introducing a “vector potential” in R-space (this need not be the ordinary three-
dimensional space),

A(R) := i(m,R|Vg|m,R) (32.20)

the Berry phase becomes

Ym(C) = SﬁdR -A(R) . (32.21)
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If we now make an R-dependent phase change of |m, R) via
|m,R) — e"® |m R) , (32.22)
A(R) changes as follows: first we need in (32.20)

Vr[e?®|m,R)]

= e¥i(Vgx(R))|m.R) + e Vg|m,R) .

Multiplying this equation from the left by (m, R|e™"* we obtain, using (32.4) once
more,

IVRX(R) + (m,R|VR|m,R) .
This then says that A(R) changes by a gradient:
AR) — A(R) — Vrx(R) , (32.23)

i.e., the parameter vector potential transforms exactly the way in which an elec-
tromagnetic vector potential A changes when the states undergo a local phase
transformation analogous to (32.22). Nevertheless, Berry’s phase is gauge invariant
because by Stoke’s Law, the line integral in (32.21) may be converted to an integral
of the curl of A:

Ym(C) = 55 dR - A(R) = / ds - (V x A) (32.24)
C=0S N
=/dS-V, V=VxA, (32.25)
N

where S is a surface in parameter space bounded by C, and use has been made of the
“Vx” notation as if that space were three dimensional. Nevertheless, let us assume
in the sequel that we are indeed working in three dimensions.

The analogy with the electromagnetic potentials and fields does not mean that the
effects are necessarily of electromagnetic origin. Hence, in order not to make any
reference to electrodynamics, we call the vector potential A a connection and the
field V a curvature. The Berry phase arises from the nontrivial topological properties
of the space spanned by the parameters R.

If A is a pure gauge A = V¢, then Berry’s phase will vanish, provided ¢ is
nonsingular. However, we anticipate a Berry phase for a magnetic flux (Aharonov—
Bohm) or a magnetic monopole configuration.

Let us continue to rewrite y,,(C) in (32.24), so as to get rid of the gradient of the
state vector and obtain for y,,(C) an expression which is manifestly independent
of the phase of |m,R). For this reason we write, limiting ourselves to a three-
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dimensional parameter space:
(VR XA)i = i(VR X (m,R|VR|m,R))
0 .
ai = aRl , = 1£ijk8j((m,R|3k|m,R))
= ie,;jk(aj(m,R|)(8k|m,R)) + is,-jk(m,R|(a,~8k|m,R))

= iSijk (Bj(m, R|) (aklm’ R>)

i

or
Vg X i(m,RlVle,R> = Vg XA(R)
= i(Vr(m,R|) x (Vg|m.R)) .

Hence we can rewrite (32.24) in the form
V() = i/dS . (Ve(m.R]) x (Velm.R) .
s

or, upon using the completeness of the energy eigenstates,

> InR)(n.R| =1

Ym(C) = Zi/dS - (Ve{m.R|)|n,R) x (n,R|Vg|m.R) . (32.26)
n N

To discuss this expression further, let us begin by looking at the diagonal elements:
first we repeat the equation which follows from the normalization (32.4):

(VR(m,R|)|m,R) + (m,R|Vg|m,R) =0 .
This equation is employed in the integrand of (32.26):

(VR(m,R|)|m,R) X {(m,R|Vg|m,R)
= —(m,R|Vg|m,R) x (m,R|Vg|m,R)
= (m,R|Vg|m,R) x (VR(m,R|)|m,R)
= —(Vg(m.R|)|m,R) x (m,R|Vg|lm,R) =0 . (32.27)
Therefore the sum in (32.26) can be taken over n # m. So we have to look at the

off-diagonal elements in (32.26). For this reason we start out with the eigenvalue
equation (32.3):

H®R)|m,R) = E,,(R)|m.R) . (32.28)
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Taking the gradient on both sides we obtain
(VeH)|m.R) + HVg(|m.R)) = (VREn(R))|m. R) + E,,(R)(Vg|m.R)) .
Now we multiply from the left by (n, R| to get

(n,R|(VRH)|m,R) + (n,R|H Vg|m,R)
Eq(R)(n.R|

= VRE,(R) (n,R|m,R) +E,,(R){(n, R|Vg|m,R)

\--\/-_/

:0,n$ém
or
(n.R|(VgH)|m.R)
,R|Vg|m,R) = 7
(n,R|Vg|m,R) E,(R) — E,(R) n#m
Likewise,
R|(VgrH)|n,R
(VR(m,R|)|n’R>: (m,R|(VgH)|n,R) vt m

E.(R) —E,(R) ’
These last two results are needed in (32.26):

(VR(m,R|)|n,R) X (n,R|Vg|m,R)
(m.R|(VgH)|n.R) x (n. R|(VgH)|m,R)

= . 32.29
(E(R) — E,(®)) (3229

Therefore y,, can be expressed as
(€ == [ds - Vum. (3230)

s
where
(m,R|VgH|n,R) x (n, R|VgH|m,R)

VaR) =1 32.31
®=m) (E.(R) ~ E,(R)) G230

Starting from (32.19) we have used the fact in (32.31) that (m,R|Vg|n,R) is
imaginary, i.e., (m, R|Vg|m,R) = iIm[{m, R|Vg|m, R)].

We are now going to study a by now standard example in which we obtain
a nonzero flux in (32.30). Note that if two energy eigenvalues cross in parameter
space, e.g., E,(R*) = E,(R*) for some R*, something interesting will certainly
occur. It is this kind of spin degeneracy (r = o, 0’ = +1, E+(0) = E_(0))
that will appear in the sequel. The parameter space is given by the magnetic field
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R(r) = B(¢) and a spin 1/2 particle is cyclically transported in this space. The
Hamiltonian that describes the time development in R-space is given by

B o uZ0) X)) —iY()
H(R() =~ o - R() = 2(X(t)+iY(t) 20 ) (32.32)

The energy eigenvalues follow from

Z—-E X-—-iY| 0

X+iY -Z-E|
or

E+(R) = ig‘ VX4 Y2472 = i’z‘R . (32.33)
Hence, there exists a degeneracy where R = 0.
Now, in (32.31) we need
_ M _ M
VrH(R) = VR( )0 R) =-lo.

and, assuming O’Z/ = —1 as initial spin state,

(—|VrH|+) x (+|VrH|-)
(E-—E+)’

3

where we temporarily rotate the z-axis so as to point along R. In the numerator we
have in components

2 [{=loxl+) (+lox|-)
(=loyl+) | < | (Floyl=)
{(=lo:[+) {(+loz[-)

2 [({=loyl+)(+lozl=) = (=loz|+) (+]oy]-)
=4 | ozl ) {Hoxl=) = (=lowl+){+]oz|-)
{(=lowl+) {(+loyl=) = (=loy|+) (+]ox] =)

oz|+) = +[£) 2 [ =22 F =) 2 (0
olE)=1F). =, (=HH{+HH) + (=) ) = 0
oyl£) = FilF) ; —i{=|=)(H]+) === {++) —2i
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So we find, according to (32.31),

2 0 0
ok 1 1
V_(R) = 0]=- 0
®=" (LR)? 2R’
-2 1
or, reverting to unrotated axes again:
I R
V_(R) = — . 32.34
® =, (32.34)
Similarly for the spin state 6/ = +1
1 R
ViR) = +2 R (32.35)

Our findings correspond to the potential of a “magnetic monopole” of strength +1/2
at the origin in parameter space; R = 0 is the site of the degeneracy.
For the Berry phase we obtain

y+(C) = —/dS ViR = F12(0) . (32.36)
N

where §2(C) is the solid angle subtended by the closed path as seen from the origin
of parameter space, R = 0. We can verify this result more explicitly by using the
representation of our spin state

_ cos(6/2)
|t R) = (Sin 6/2) eiw(,)) : (32.37)

which is taken along the R-field whose cyclic adiabatic motion is given by
R(r) = R(sin 6 cos (1), sin 6 sin ¢(7), cos 0) (32.38)

with 6 fixed and ¢(7) = wt, so that R(f) moves on a cone of half angle 6 with period
27 /w. The spin state (32.37) is, of course, an eigenstate of the Hamiltonian (32.32),
since

o - R0 1.R) =R( cos 6 sin Ge_i‘”)( cos(6/2) )

sin e —cos 6 sin(0/2) e

_ cos(6/2)
= (sin(0/2) ei‘/’) ‘ (32.39)
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Using (32.37), we finally obtain for the Berry phase, according to (32.14):

t . O
1) =i ! 0/2), si 2)e ¢ .
20 1/0 dt (cos( /2), sin(0/2) e ) (igb(t/) sin(6/2) el‘/’)
' do(!)
=i [ dfsin*(9/2 ,
1/0 sin“(6/2)i &
1 tod
= — (1—cos€)/dl’ -
2 0 dr
With ¢ = wt, we find for a complete cycle T = 27 /w

y4(C) = —;(1 —cos )2 = —;.Q(C) . (32.40)

This coincides with (32.36).

Another well-known phenomenon that finds its explanation in a Berry phase is
the Aharonov-Bohm effect. For this reason, consider a thin magnetic flux tube.
Furthermore, let a quantal system consist of a charged particle confined to a box
which is not penetrated by the flux tube. The box is located at a distance R away
from the flux tube. Now the box is transported around the flux tube on a closed
classical path C. In this case, it is not even necessary that the cyclic round-trip be
adiabatic.

The fast variable r is the location of the charged particle as measured from
the flux tube. After the box has completed a full circle, the particle will have
picked up a phase—the Berry phase—which is equal to the phase difference
in comparing charged particles passing on opposite sites of the flux tube with
subsequent recombination.

The amount of flux encircled by the box is given by

/da'B:/da'(VxA):ﬁdR-A(R)zcb. (32.41)

If there is no flux line present (A = 0), the particle Hamilton operator depends
only on the canonical position r and momentum p: H = H(p, r — R), and the wave
function has the form ¥, (r — R) with the energy E, independent of R.

The situation changes if we have a nonzero flux line inside C. Then the energy
states [n(R)) satisfy the Schrédinger equation

H (p — ZA(r), r— R) n,R) = E,|n.R) . (32.42)

As we know from Chap. 22, the solution of this problem can be obtained from the
flux-free problem with the aid of a gauge factor. Since A (r) can be gauged to zero
(at least locally) outside the flux tube, i.e., it can be represented as the gradient of
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a scalar function x(r), we must multiply our free (A = 0) wave function by an
appropriate phase factor exp{ % y(r)}:

A@r) > A@P) = V@) =0, |m) — ei9/mx0 |y

In our case we get for the wave function in presence of the flux tube

iqg (7, ’

(r|n,R) :exp% / dr -A(r)} Y, (r —R)
hC R
=:ey,(r—R) , (32.43)
where 1, (r — R) denotes the wave function if the flux line is absent. We repeat:
() = / ar' -A(r) = A(r) = Vy(r) .
R

The solution (32.43) is single-valued in r € box and (locally) in R. The energies are
not affected by the vector potential.

We are now going to transport the box along the closed classical orbit C around
the flux line. As result we expect a geometrical phase which can be calculated with
the aid of formula (32.19). For this we need

(n,R|Vg|n,R) = /d3r(n,R|r)(r|VR|n,R)
= / dre My (r — R)Ve{e" ¥, (r — R)}
_ / Pre Myt — R)[— AR
fic
x €M (r = R) + €A Vi r — R) |
_ —;lqA(R) + / Bry*(r—R) Ve —R). (32.44)
Cc
The second term in (32.44) vanishes. This follows from

[rvze-wVane-r)_= [ @rinv.iin
=V,(njn) =0.

Therefore, (32.44) reduces to the desired expression for the Berry connection:

i(n, R|Vg|n,R) = thA(R) . (32.45)
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At last we obtain for the Berry phase
_ 4 _ 4
Yn(C) = 9£dR ‘AR)= [ @ (32.46)
he he

which we interpret in the following way: if the particle (confined in the box) travels
once around the flux line, it accumulates a phase ;fCCD. If ;fccb = 2nn, n =
0, &1, £2, ..., there is no Aharonov—Bohm effect. Also note that the result
as stated in (32.46) is independent of the particle’s energy state in the box.
Furthermore, y,,(C) is invariant under continuous deformations of the path C: the
Aharonov—-Bohm phase is not only “geometrical” (as is any Berry phase), but even
“topological”.

We began this chapter on the Berry phase by following the Schrodinger state
vector |¥(¢)) on its cyclic evolution in parameter space. But this treatment is not
in accordance with the representation which we have favored so far, namely, the
development of time-dependent base state vectors which satisfy the “wrong sign”
Schrodinger equation. So let us return to the Heisenberg picture and study once
more the whole problem with emphasis on transition amplitudes.

In our convention, operators and base state vectors respond under unitary
transformation as

X=U"'XU, (=(U, UUT=1=U"U. (32.47)
Let us then consider a class of Hamiltonians H(B) which describe the interaction of
our quantum system with an external uniform magnetic field, e.g., H(B) = —uJ - B.
The Hamiltonian H(B) is taken to be invariant upon simultaneous rotation of the
quantum system (J) and the external field B:

H(B) = H(RB) = U'H(RB)U , (32.48)

U= exp{ ;lJ : éy} . (32.49)

The initial field configuration is given by By = B(fy) = const., so that
B(t) = R(¢)By .

Now let us generate a time-dependent Hamiltonian by operating with the time-
dependent rotation R(t) = R(E(¢), y(¢)) on the initial field vector By:

H(r) = HB(t)) = H(R(H)B,) (32.50)
or

H(t) = UR())H(By)UT (R(1)) . (32.51)
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In order to solve the Schrodinger equation for time-dependent base state vectors,

ih ;t(;t| = (;t|H() , (32.52)

we switch over to “rotated frame states” via the unitary transformation
(11l = (U (32.53)
(i1 = (2| UT () . (32.54)
Inserting (32.54) into (32.52) we obtain

+

m;“ﬂuﬁ):m(i(W)U++mtﬂag = (| UTH() (32.55)
or, upon multiplying from the right by U():
ih ! (st + i (:1| Wy - (:tlUTH(®)U = (;1|H(Bo) (32.56)
ot ot 1)
ie.,
ihgt(;tl = (1] (H(Bo) —ih(‘na]t+ U) : (32.57)

We can also rewrite the last term in (32.57) by making use of the unitarity condition:

U™ oUu Ut U
TUu=1 t, = =-Uut" . 2.
utu = o U+U o 0= atU U Y (32.58)
Hence we obtain
0
ih, (il = (Hl(HBo) + Hi@®) | (32.59)
where
aU
Hi (1) = ihUT o (32.60)

Hi(?) in Eq. (32.59) contains the explicit time dependence. The unitarity condition
can again be applied to show that H(¢) is a Hermitean operator:

=H (1),

C1AN Ut
Hf’(t):(ihUJr ) =i

10
_ — iUt
ot = —ih ot v (58) iht ot



32 Berry’s Phase 385

Now we need to calculate H,(¢). For this reason we choose By) to point in the
direction of Xj, a unit vector that lies in the x — z plane of an x,y, z-coordinate
System:

By =BX;, |By)=B.
The angles ¢(f) and () are used to describe the curve drawn by B(f) during its
adiabatic round trip in the spherical coordinate system. So we have for the initial
field configuration
Bo = X\B = R(5, 0)3B (32.61)
and, furthermore, using 2B = R~ (3, %9)Bo = R(3, —1%)By, we find
B(1) = R(Z.¢)R(),V)zB ,
= R, @)R(, D)R(, —P0)Bo
= R(Z. ¢())R(,9(1) — %9)Bo =: RBy . (32.62)

For one period T we have
B(T) = B(), l?(T) = 190, (p(T) =2 .

At last we turn to the computation of H(7):
Hi (1) = ihU™T U =ik lim ! U (R®)(UR(t + AD) — U(R(1)))
! ot A—0 At

=it lim AI(U(R_I(I)R(t +AD) —1). (32.63)

Using the definition of R in (32.62), we can calculate

R'(OR( + At) =R($, —9(1) + 90)R(E. —p(1))
X R, gt + AD)R(G. 9t + At) — D) .

Here we substitute

et + A1) = ¢(1) + Ap
Dt + Af) = 9(1) + AD
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to obtain

R OR( + A = RB, =3 () + 90)R(3, —0(1))
X R(Z, ¢(1) + AQ)R(3, 9(1) + AY — D)
= R(3. =0 (1) + %0)RE. AQ)R(. 9 (1) + AP — D)

This result is needed in (32.63):
UR'(OR(t + A1) = exp { ;Jy(—l? + ﬁo)}

X exp{ ;IJZAqo} exp { ;Jy(ﬂ — v+ Aﬂ)}

= exp{—;ljy(ﬂ — 190)} (1 + ;IJZAgo + )
X (1 + ;JyAﬁ + ) exp { ;Jy(ﬂ — 190)}

=1+ exp{—;Jy(ﬂ — 190)} ;JZAq)
X exp{ ;Jy(ﬂ — 190)} + exp{—;lly(ﬂ — 190)}
X ;JyAﬁ exp{ ;Jy(ﬂ — 190)} + ...

Multiplying the last line by Al , and letting Az — 0, we note that the 1 is cancelled
by the —1 in (32.63) so that we are left with

i

h

i

" I

i i
exp { —th(ﬂ - 190)} J.¢ exp { th(ﬂ — 190)} +
So far we have arrived at the following expression for H(7):

i i i i
Hy(1) = ih (h¢e‘”f“"%’fzeh”’“"l’” bt )

= —ge ahITI)  ehhO=I) _ g (32.64)

It is convenient to go to the X;-frame defined by
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In particular we have

J - Xy =Ty, = eh0hj e itk
which can be used in (32.64) to give us

Hi(6) = —g e #h7 Jy erh? — §Jy,
or
Hi(t) = —¢ (cos 3 (t)Jx, — sin ﬁ(t)JXz) — By, . (32.65)

At this point we assume that the Hamiltonian is given by

H(By) = —pJ - Bo = —uJx,B. (32.66)
The eigenstates satisfy

H(Bo)|m) = E;lm) , (32.67)

Jx,Im) = fim|m) .
Let the initial state be an eigenstate of H(By):
(m;t =0 = (m;t =0| = (m| . (32.68)

Then the adiabatic approximation is defined by keeping only the diagonal part
in (32.65):

(Hi(1),, = —¢ cos B (D)Jx, - (32.69)

Integrating (32.59) between 0 < ¢t < T, we obtain

. T
(m;T| = (m:t = 0| exp [— ;l / dt(H(Bo) + H, (t))i|
0
i T
=e #EnT exp |:1m/ dt ¢ cos 19(1‘):| (m] .
0
Here we recall (32.53), i.e.,

(m;T| = (m: T|UT(R(T)) %(m; T| =4 hm2n
7
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so that we get
. T
. — o~ EnT —i27m . .
(m; T| = e n e exp [1m/0 dt cos ﬁ(t)(p(t)i| (m, 0|
= exp[—im /OT dt (p]

i

T
=e #EnT exp |:—im/ dt(1 — cos ﬂ(t))¢:| (m, 0]
0
— e #EnT oiym(C) (m, 0|

with

T
Yu(C) = —m /0 di(1 — cos B (1))

T B()
:—m/ dt(/')/ d sin?d
0 0
=—-m // sin® dd dp = —mS$2(C) , (32.70)

where £2(C) is the solid angle enclosed by the curve C.
Here, then, is our final answer for the transition amplitude of an energy eigenstate
being adiabatically transported in a closed loop:

(m, T|n,0) = e~ #EnT @5, (32.71)
|(m., T|n, 0)* = S . (32.72)

So the system will be found, with certainty in the energy state of the same quantum
number 7, but in addition to the dynamical phase — ,IIEW,T it will have accumulated
a geometrical, the Berry phase, y,,(C), in going through a complete cycle from O to
T.

Note that the Berry phase can be written as the circulation of a classical gauge
field along the closed loop. It was Berry who first noted that this gauge field is that
of a magnetic monopole of charge m. This follows from writing

T d
m/ di(1 — cos9) Y = m9§d¢(1 — cosd) = 9§Am - dl =1 —y,(C)
0 dt C
so that

iyn(C) = —isﬁAm - dl (32.73)

or

(m, T|n,0) = e~ # 5T exp [—i 9§Am : dl} S - (32.74)



Chapter 33
Classical Analogues to Berry’s Phase

In the last chapter we saw how a quantum system can give rise to a Berry phase, by
studying the adiabatic round trip of its quantum state on a certain parameter space.
Rather than considering what happens to states in Hilbert space, we now turn to
classical mechanics, where we are interested instead in the evolution of the system
in configuration space.

To be more specific, let us consider a point particle constrained to move in
a two-dimensional plane. In this plane, the particle moves under the influence of
a cylindrically symmetric potential V = V(r). Finally, let the plane (plate) move
on a different manifold, e.g., on a sphere. This latter motion may be caused by
an external force. The equations for a particle moving on the plate, where the plate
continually changes its orientation, are generally very complicated. Therefore it will
be our main goal, when dealing with the motion of a particle, to introduce a local
inertial frame; this greatly simplifies the equations of motion. (Later we shall change
this instantaneous inertial system adiabatically, so that velocity-dependent forces
cannot act from one to the next “infinitesimally slowly” reached neighboring frame.
This does not mean, of course, that after a finite but long time duration, nothing will
have changed. On the contrary, it is precisely this effect that is of interest to us.)

The orientation of the plane is defined by a unit vector S that is perpendicular to it.
Let this vector change slowly when the external force acts. After an adiabatic round
trip, S(7) returns to its origin. Meanwhile, it has continually changed its orientation,
as did the other two vectors, N(¢) and B(f), which, together with S(7), form an
orthonormal triad (dreibein) accompanying the curve:

B=SxN, |B|=|S|=|N]=1.

© Springer International Publishing Switzerland 2016 389
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The time dependence of the frame defined by S, N and B is characterized by Frenet’s
formulae

as N
a
dN
&t =—xS+ 1B, (33.1)
dB N
= —1IN.
dt

The first equation in (33.1) says that the change of § is chosen in the direction of N.
The time-dependent parameters y and t denote curvature and torsion of the curve.
An adiabatic change of the dreibein means that y and t are small.

If S were time independent, then we would have, as equation of motion for our
mass point,

.dv A

mi= Vg, (33.2)
dr

where r is a two-dimensional vector in the plane, and r - S = 0. As soon as

S(#) changes in time, however, we will certainly obtain equations of motion more
complicated than (33.2). In order to find out what they look like, we need the
following equations:

N=—3S—xS+iB+ B

=—%S — x(xN) + iB + t(—tN) (33.3)
=—iS— (¥’ +7)N+iB
B=—iN—1N =—iN —1(—xS + tB) (33.4)

=—iN+tyS—°B.
A vector ry in the plane can be written with respect to the {N, B} basis as
ro = xoN + y()B . (335)

The equations of motion for the components xy and y, are then obtained by taking
the following steps:

i = %oN + xoN + joB + yoB
= ¥y = %N + 1N + 2N + xoN + 5B + 2yB + yoB
= ¥oN + 2io(— S + B) + xo(— 7S — (x* + T*)N + iB)
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+ JoB + 290(—TN) + yo(—tN + xS — v’B)
= (%o —x0()* + %) — 2¥0T — Yot) N

+ (2%0T + x07 + Jo — yor’) B

+ (=2%0x — X0 + yoTx)S -

We assume that the mass point is held on the plane by external constraints. The
motion in the S-direction is therefore not of interest. Then the motion in the plane is
given by

mig = —VV(}’()) , o= \/x(z) +y% ,

or, in components,

.. . . av
m (¥o — xo (x> + %) — 250T — yot) = o
0
.. . . v
m (yo — tzyo + 27tx0 + ‘Cx()) =— ,
dyo
or, upon isolating the acceleration components,
.. av . .
mig =~ +m ((x* + t%)x0 + 2730 + y0) (33.6)
0
. v P o
myg = — +m(t y0—2tx0—rxo) .
)

The terms proportional to the velocities xo and y, are the Coriolis forces.

The equations of motion (33.6) are obviously somewhat complicated. Therefore
we shall try to simplify them by transforming to a local inertial system; here the
velocity-dependent forces should vanish; of course, this applies only locally, i.e., in
the immediate proximity of a point. Here, the coordinates are as close as possible
to Euclidean coordinates; the velocity-dependent forces can be transformed away
locally. Local inertial frames are defined as frames whose basis vectors undergo
parallel transport. Parallel transport applied to an orthonormal set of vectors U;, U,
means that the change in the vectors has no components along the direction of the
original vectors,

v.-Y_o =12 (33.7)
i ‘ ’ = 9 l’ = b . .
dt J
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It should be noted that on the basis of this definition, N and B do not undergo parallel
transport, since

The basis vectors that undergo parallel transport differ from N and B by a rotation

Ui\ _ [cos B —sin B (N
(Uz) N (sin B cos B ) (B) ' (33.8)
Let us determine the angle B(7).

Ul:,3sin,BN+cos,8N—,3cos,BB—sin,BB.

Forming
U, - Uy = (—B sin BN + cos BN — f cos BB — sin BB)
- (sin BN + cos BB)
= —B sin? B+t sin® B + 7 cos? B — B cos> B
=1 —,3 =0,
we obtain
d
df =r. (33.9)

The same result is obtained by forming U, - U,. Use has been made of

N>=1, N- =0, B*=1, B- =0.
dt dt

So, for the change in time of the basis vectors U;, we have

du
dtl = 1 sin BN + cos B(—xS + ©B) — t cos BB —sin B(—tN) (33.10)
= —y cos BS,
dU . . .
dt2 = B cos BN + sin BN — B sin BB + cos BB

=1 cos BN + sin B(—xS + ©B) — 7 sin BB + cos B(—tN)
= —y sin BS, (33.11)
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or
U, = —y cos BS,
U, = —y sin BS . (33.12)
From this we get, via another time derivative,
U, = —j cos BS — )((—,3 sin BS + cos BS)
()(B sin B — y cos B)S — x> cos BN , (33.13)

U, = —y sin BS — x(B cos BS + sin BS)
= —(yB cos B + y sin B)S — x* sin AN . (33.14)

In general, a local inertial frame can only be defined in the direct proximity of
a point. In the present example, however, the motion takes place in a plane and
not on a general curved surface; this enables us to extend our local inertial frame to
the entire plane.

With respect to our inertial frame, a vector r can then be expressed as

r=xU, +yU, . (33.15)
We need
F = xU; +xUl + yU, +yi]2
=r=xU, + 2)CU1 +xl“]1 + yU, + 2yU2 +yi]2
= XU, —2xy cos S +x()(,3 sin B — j cos B)S — xyx? cos BN
+ U, — 2y sin BS — y(xB cos B + jsin B)S — yx? sin BN
=ixU; + (x)(,B sin B —xj cos B — 2y cos B)S —xy*> cos BN (33.16)
+ U, — (yxB cos B+ yy sin B — 2yx sin f)S — yx? sin AN .

The motion is to be restricted, as before, to the plane. Thus, we shall again suppress
the S-component. But first, N should be expressed as function of the basis vectors
U;. According to (33.8), it holds that

U, = cos BN —sin BB,

U, = sin BN + cos SB.
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Multiplying the first line by cos 8 and the second line by sin 8 and adding the result
yields

cos U, + sin U, =N . (33.17)

If we substitute this expression for N in (33.16) and suppress the S component, we
obtain for the equation of motion relative to the inertial frame (r = \/ X2 +y?2):

mi = _3\;(r) + my*(x cos* B + y sin B cos f) ,
x
(33.18)
my = _8\;(}') + my*(y sin® B + x sin B cos B) .
y

So we have reached our goal: relative to the inertial frame, the Coriolis forces no
longer appear; they are automatically included in the rotation of the basis vectors
U, and U,. The dependence of 7 enters (33.18) via the angle . In the U;-system,
the terms which are proportional to y* correspond to the centrifugal force which
is caused by the rotation of the plane. The equations of motion (33.18) can be
simplified further by introducing a modified potential U = V + W, where W is
given by

W = —’;lxz(x cos B+ y sin B)> ~ —’Za)zr2 . (33.19)

In this way, (33.18) can be written in the simple form

.. oU
mx = — s
0x
U
my = — . (33.20)
dy

Let us now assume that the plane is rotated adiabatically; i.e., y is small so that )(2
in (33.18) can be neglected. No restrictions are made with respect to t. Then we
obtain, in adiabatic approximation (relative to the U;-frame),

LoV
= ox
my = v (33.21)
dy

These equations of motion are identical to those of a particle moving in a fixed
plane. Coriolis as well as centrifugal forces have been eliminated. The only effect
of the rotation that remains is hidden in the time dependence of the basis vectors
U,. If the potential does not depend on the direction, then all that can be observed is
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that the parallel transport will cause U;, U, to be rotated with respect to N, B by an
angle B = [dr ().

We shall now apply the above formulae to the special case of the Foucault
pendulum. Here, the normal vector of the plane at one point on the Earth’s surface,
is represented as

S = (sin 6 cos ¢(7). sin 6 sin ¢ (1), cos 6) .
To satisfy N - § = 0, we require
N = (— sin ¢ (), cos ¢ (1), O) . (33.22)

0 measures the angle from the North Pole. The Earth rotates beneath our plane with
constant angular velocity, ® = d¢/dt.
With respect to the original dreibein, it holds that

ds N dN S+ B dB N
= B = — T . = —7 .
at ~* dt * dt

With (33.22), it follows that for B(f) = S x N,

By = S3N; — S3N; = sin 0 sin ¢ - 0 — cos 6 cos ¢ (7)
By = S3N; — S1N3 = —cos 6 sin ¢(l) -0
B3 = SN, — SN, = sin 6 cos®> ¢ + sin 6 sin’> ¢ = sin 6 .

So we obtain
B = (— cos 0 cos ¢(t), —cos 0 sin ¢(¢), sin 9) ,

from which we get

dB . .
= (cos O sin ¢, —cos 0 cos ¢, 0)

= —1tN = —t(—sin ¢, cos ¢, 0) .
From the last two equations we then obtain the relation
T=¢cosf =wcosb, (33.23)
which yields, with the aid of (33.9):

B() = ¢(r) cos 0 . (33.24)
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Let ¢(0) = O and t = T; i.e., after exactly one rotation of the Earth, ¢(7) = 27.
Then (33.22) and (33.24) tell us that while N has rotated by —2, the inertial system
has rotated by the angle § = 27 cos 6 with respect to N. Therefore the net effect
of the rotation of the local inertial frame is

2 =2n(1—-cos ). (33.25)

This is exactly the solid angle of the cap bounded by the curve, which the tip of S
traces on the unit sphere.

In our second example we are going to deal with the motion of a free rigid body.
“How much a free rigid body rotates” can be answered by solving Euler’s equations
of motion. It is, however, possible to look at the whole question in a completely new
light by stressing the geometrical rather than the dynamical side of the problem.

It is well known that the angular momentum J of a free rigid body is constant in
an inertial (space-fixed) reference frame. Relative to a body-fixed frame, the motion
of J is periodic in time. Let the period be T'. In one such period, the body, as viewed
from the inertial frame, rotates about J. In the sequel we want to prove that the
rotation angle is given by

E
A6=2 T-2. (33.26)

The first term on the right-hand side is the dynamical angle, while the second term
is the geometric (Hannay) angle. E is the kinetic energy of the initial condition; J is
the magnitude of the angular momentum vector; T is the period of motion relative
to the body frame; and £2; is the solid angle swept out by J relative to the body
frame. We can think of our rigid body as of an asymmetric top with moments of
inertia, I; < I < I3. The three components J; of J relative to the body frame
span a three-dimensional parameter space. The body angular momentum undergoes
a closed circuit. In one such period, the body, looked at from the inertial frame,
rotates about its angular momentum vector by an amount Af. We want to emphasize
that the formula for A@ is exact. There is no adiabatic approximation involved.

The motion of a rigid body is described by a time-dependent 3 x 3 rotation matrix
g = g(®) (= R(1)). If X is the position of a point on the reference body, then

x(t)=gnX, gt eSO3), X=X,=-const (33.27)

is its position in the inertial frame. The angular momentum of a free rigid body is
constant in time: M = 0, where

M = Zxa X p, = const.
a

The sum runs over the body’s particles. The angular momentum, as viewed from the
body-fixed frame, is no longer constant; M}, # 0. The relation between M and M},
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is given by
M =gM, . (33.28)
In particular,
1M51* = M (33.29)
since
ge' =1, detg=1 (no reflection). (33.30)

The set of rotations can be parametrized by, e.g., the Euler angles. Equation (33.29)
says that M;, moves on the surface of a sphere. The kinetic energy of the motion is
given by

H= MM, (33.31)

where I}, is the moment of inertia tensor. It is a symmetric positive definite matrix.
Both M and H are constants of the motion. This means that M} moves along a curve
defined by intersecting the sphere defined by (33.29) with the ellipsoid defined
by (33.31). Now let us assume that M = J and H = E are typical, so that these
intersecting curves are in fact closed. Let T be the period of M}’s oscillation along
the curve:

My (to + T) = My (to) . (33.32)
Then, with the aid of (33.28) we obtain
glo+T) 'M=g(t)' M, M=,
so that
glto+T)g(to) ' J=RI=1J. (33.33)

This means that R = g(to + T)g(to) " is a rotation about the J axis.
Note that

g(to + T) = Rg(to) . (33.34)

so that R describes the rotation of the body in the space-fixed frame (i.e., relative to
the inertial frame) after each closed orbit (full cycle) of its angular momentum in the
body-fixed frame. The angle of the rotation is A8 and is given explicitly in (33.26),
as we now shall prove.
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Let us start at = fo = 0. Then g(0) = 1, M,(0) = J and

z(0) = (1,J) (33.35)

are initial conditions for the motion of the rigid body in phase space. The phase
space trajectory z(#) through z(0) consists of pairs:

((1), My(1)) . (33.36)

Consider the following two curves in the phase space of the rigid body, both
beginning at z(0):

Ci(t)y=z(), 0<t<T. (33.37)

This part of the trajectory describes the dynamical evolution starting at z(0).
G(0), 0<0 <A (33.38)
denotes a counterclockwise spatial rotation of the body about the J axis by 6 radians.
These two curves intersect when t = T and 6 = Af6. C = C; — C, is thus a closed

curve, starting and ending at z(0).
Now it is convenient to introduce the one-form pdg on phase space:

A

pdg= p, - dr,. dx,=dBxx,, dB=Rdf. |Bl=1
so that

pdg = (Zx xpa) -dB =M -dp . (33.39)

We shall now evaluate the line integral [ pdq for the two special curves C; and C,
that make up our curve C. The curve C; is parametrized by the time #:

dB = wpdt along C .

Here, ), is the angular velocity; w, = 27/T, where T is the period of motion of J
relative to the body frame. Hence we obtain

pdq =M, - wpdt = wyp, - [w,dt =2Edt
or

pdqg = 2Edt along C) . (33.40)
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The curve C; is parametrized in radians 6:
dp = Bdo .
Moreover, [3 =J/Jand M = J on Cy, so that

pdg=M - dB =] - id@ =Jdf along C, . (33.41)

At this point we make use of Stokes’ theorem,

/ o =/ do . (33.42)
c=ix z

Here, o denotes any one-form, and d stands for the exterior derivative. According
to (33.40) and (33.41), the left-hand side of (33.42) is given by

1
/‘a’zf pdq_/ pdg = 2ET — J A . (33.43)
C C G

We still need the surface integral of the 2-form, f > da. X is contained in the three-
dimensional submanifold defined by M(gq,p) = J of our six-dimensional phase
space.

On our way to determining do we are going to expand pdq in terms of Euler
angles (¢, ¥, ¥) for the rotation group. The complete rotation matrix is then written
as

g =g 0. ¥) = g(p)g(H)es(¥) . (33.44)

gi(0) = R(6;, ;) denotes counterclockwise rotation about the i-th coordinate axis
by an angle of 6; radians, fori = 1,2, 3. Let

J=Jes, les|=1. (33.45)
Now in (33.27) we had
x(t) =g(®X, X = const. (33.46)
From here we obtain
dx = (dg)X, dx=dfxx (33.47)

so that

_ -1, _
(@)X = (dg)g ™% = df xx (33.48)
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Let R(B, ﬁ) denote the counterclockwise rotation about the fl-axis by B rad, where
B is fixed. Then (33.48) can also be rewritten as

(dR)X = dBB x x = dBB x RX (33.49)
or
(dR)R'x = dBB x x . (33.50)
Likewise we write
g3(@) =R(p.&3) . () =R(9.&) . (33.51)

Now let us differentiate

g = g3(p)g2(M)gs(¥) .
(dg) = [dg3(9)]g2(9)g3(¥) + g3(e)[dg2(9)]g3(v)
+ g3(9)g2(P)[dgs(¥)] . (33.52)

Multiply from the right by

g =g e e

[dgls™ = [dgs(9)]83(0)™" + g3(9) {[dg2(N)] 838 (1)~ 22097 | ga(p) ™
=1

+ 8308 {[dgs )]s (W) ™ g2 ga(@)

The result is applied to x:

(de)g™"x = (dg3(9)g3(0)'x +23(0) {(dg2(®))823) " fes () '

- _— - -

~ -
dype3xx

dderxg3(p) " x

+ (3(0)829)) { (A8 (1) o) T ale) e . (3353)

N~ -
—1
ayesx[ @5 x

Now it holds for any rotation g (detg = 1)

gvxw) = (gv X gw) . (33.54)
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Therefore (33.53) goes into

(dg)g™'x = dpés x x + d¥g3(p)er x x + dYg3(p)ga()és x x
= [dyés + dVgs(p)ér + dVgs(p)g2(D)és] x x
—dB xx, Vx. (33.55)
()

This identifies df:
dB = dyes + dvgs(p)es + dygs(¢)ga(9)es (33.56)
and, upon using
M=]=Jes,
we find

cos ¥é3+sin Ve

= J{dp + dy cos ¥} .

So at last we arrive at

o = pdg = J{dy + dy cos ¥} (33.57)
so that
do =J{ d*¢ + d*¥ cos ¢ + dyd(cos #)}
—_——  ——
=0 =0
or
do = —J sin 9dOdY = —JdQiner - (33.58)

Finally we want to rewrite (33.58) in terms of the solid angle in the space of the
body angular momentum. We begin with M = gM,,. Then we obtain explicitly

My=g"'"M=¢" J =Jgsa®@) &) 53(¢)_1é3
Jes =63

= Jg3(¥) 'g2(9)'é3 = Jg3(¥) ' [cos Pés — sin P |

= J[cos e — sin l?gg,(l//)_lél]
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= J{cos Pes — sin ﬂ[cos we, — sin 1//2‘2]}
= J{—sin ¥ cos Y&, + sin ¥ sin Yé; + cos Vés} .
This says that our ¥ and ¢ are related to spherical coordinates on the body angular

momentum space by ¥ = —y,, ¥ = —v. This is an orientation-reversing
coordinate transformation, so that

do = Jd$2, (;) —Jd2iner. - (33.59)

So finally we obtain the right-hand side of (33.42):
/ do = / Jds§2, = J$2, (33.60)
z z
and this completes the proof of our original claim (33.26):
E
Af = ZJT—.Q,, . (33.61)

As our final example we consider the classical adiabatic motion of charged
particles in strong magnetic fields. This so-called guiding center motion (cf.
Chap. 11) also exhibits an anholonomic (nonintegrable) phase similar to Berry’s
(Hanny’s).

The motion of the charged particle takes place in a nonuniform magnetic field
B = B(r). The equations of motion are nonlinear and in general nonintegrable; they
show chaotic behavior. For strong magnetic fields, however, it is possible to perform
a separation of time scales in the three degrees of freedom. The most rapid time
scale arises from the gyration of the particle about a magnetic field line. It is like
an oscillator being adiabatically transported by the slower degree of freedom. This
can best be seen after a Hamiltonian formulation has been set up and a canonical
perturbation analysis, otherwise known as “guiding center expansion”, has been
established — a highly nontrivial task.

In the case of a uniform field, B = Byz, the particle is bound to follow a helical
orbit around a field line. The frequency of motion in a plane orthogonal to B is given
by the gyrofrequency §2 = e¢By/mc. The guiding center position X moves along the
field line (z-axis) with constant velocity. The vector running orthogonally from X on
the z-axis to the particle position we call r, the gyroradius vector. Finally, we define
the “gyrophase” 6 as the angle in the perpendicular plane between some reference
direction e and r. Note that for the case of a uniform field, € may be chosen any
constant perpendicular direction, such as r.

Now we are going to look at nonuniform but time-independent magnetic fields.
In this case the guiding center no longer follows a field line, but slowly drifts away
from it: X = X(r). This makes it necessary to consider arbitrary paths of transport,
not just along field lines. Also, £2 becomes space dependent. Now, the dominant
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contribution in the time evolution of the gyrophase is given by the dynamical phase

0(f) = /Otdt’ X)) . (33.62)

Note that in (33.62) we have evaluated the gyrofrequency at the guiding center
position rather than at the particle position.

Of course, it is no longer possible to choose a constant reference direction to
represent the origin of the gyrophase. To see this more clearly, let us elaborate for
a while on the geometrical rather than the dynamical picture of the Problem and
introduce an orthonormal triad (dreibein) of unit vectors (€1, é-, b) = B(r)/B.
All three vectors are functions of position #. We are going to fill up space with such
triads, so that we can talk about a field of orthonormal frames.

Now, when b moves along the field line, the é; are constrained to stay perpendic-
ular to b. But the é; are also free to rotate around b by an arbitrary angle. Therefore
the dynamical phase cannot be the only contribution to the gyrophase, because the
definition of the gyrophase depends on the choice (€1, €,), and we do not see any
such dependence in Eq. (33.62). There is no best choice of (¢;, ;). One could pick

b- Vb
b - Vb|’

>
i)
Il
S
X
>

6 = (33.63)

i.e., the principal normal and binormal vectors of the field line. But this is only
a particular choice out of many. In fact we can call Eq. (33.63) a choice of
gauge. Then every other choice of gauge is related to (33.63) by a rotation in the
instantaneous perpendicular plane. So let us define a “gyrophase transformation’:

é\(r) = &1(r) cos Y (r) + &,(r) sin Y (r) ,
&y(r) = —&,(r)sin ¥ (r) + éx(r) cos Y (r) . (33.64)

Next, we want to know which quantities are gyrogauge invariant, and how those
which are not transform. Quantities which can be expressed purely in terms of b,
B, etc. are gyrogauge invariant. The gyrophase itself is not gyrogauge invariant; it
transforms according to

0 =6+ y() . (33.65)

(We follow the gyrophase in clockwise direction, the same as the direction of
rotation of a positively charged particle.) Returning to the dynamical consideration
as stated in (33.62), we know that since 6 is not gyrogauge invariant, 6 cannot
be either, so there must be terms other than the dynamical phase reflecting this
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fact. Indeed, lengthy nontrivial calculations show that the guiding center expansion
results in

0() = LXX@®) +R - X(1) + gyrogauge invariant terms (33.66)
with
R(r) = Ve (r) - éx(r) . (33.67)
Equation (33.66) is actually an averaged equation; all fast oscillations have been
averaged out. )

The term of special interest to us is given by R - X, which is reminiscent of A - v
in the Aharonov—Bohm effect. R is not gyrogauge invariant. In fact, we now want to
demonstrate that R responds under the gyrogauge transformation (33.64) according
to

R =R+Vy. (33.68)
Proof: first let us note that
R = (Vé]) . éz = (Bielj)ezj s él‘ = éi(r) .
Then let a be an arbitrary constant vector, so that it holds that

@-R) =[(@-V)e] er=—[(a-V)es]-& . Va.

To see this, we start with

Véy) - & =—(Véy) - & . (33.69)
Of course, we have
=0. (33.70)
Now we turn to R = (Vé’l) . é/z and substitute (33.64):

R =[V(e; cosy + & siny)] - [—& siny + & cos ]
= [cos ¥ (Vé,) — siny (V)e; + siny(Ve,)
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+ cos Y (V)és] - [—é1 siny + &, cos /]
= —siny cos ¥ (Vé;) - & +cos> ¥ (Veéy) - &

~ ——

=0

+ sin? Y(Vy) —sinyy cos (V) é; - é;
%
—sin® Y (Vé,) - & +siny cosy (Véy) - &

= Sinzlﬁ(val)'éz =0

—sin Y cos Ip(le)él . é_%—i- cos? ¥ (V)

=0
= (sin? ¥ + cos’ ¥)[(Ve1) - e2+Vy ] =R+ Vy .

=R
Finally, using the result (33.68), we can find the transformation property of 0:
0 =2X)+R -X=QX) +R-X)+Vy - X
or
0 =60+Vy - X, (33.71)
which is completely consistent with (33.65):
O =0+y@F) =047 -Vy=0+X-Vy, (33.72)

after averaging, (r) = X.
The time integral of the second term of (33.66) can be written as a line integral
along the guiding center trajectory:

X,
Af :/ R - dX = /da -(VXR). (33.73)

rmfor closed
Xo loops

So long as V x R # 0, this angle will be anholonomic, i.e., dependent on the path
X(7) of the guiding center. We see that the (fast) gyration of the particle and X are
coupled. X represents the slow change for the environment of the rapidly oscillating
particle. The guiding center coordinate X is the analogue of the Berry (Hannay)
connection A.

Note that the gyrophase is an angle in real physical space, which is endowed
with a metric. The changes in ¢;(X) as the guiding center X moves through space
are comprised of two parts. First, the é; are forced to stay perpendicular to b, and
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since b is changing along the X-trajectory, the €; must change. However, during the
transport the ¢; can also be rotated in their plane. Hence the increment in the vectors
é;(X) on moving X to X +dX consists of a part parallel to b and a part perpendicular
to b, representing the angle of rotation d¢ within the moving plane. For instance,
the increment dé; of ¢, can be decomposed in two components:

déy = dX - Véy =dX - Vé, - 1 = (dX - Véy) - (6161 + é26> + bb)
= (dX - V&1 - &), + (dX - Ve, - b )b

(70) -
=R =—(Vb)-é

=R - dX)é, — (dX - Vb - &,)b . (33.74)

Now we see that the angle dgp can be written as dp = R - dX, which is identical
to the increment in the gyrophase arising from the R - X-term in (33.66) when the
guiding center X is displaced by dX. So we have shown that the analogue of Berry’s
(Hannay’s) angle for guiding center motion is exactly the accumulation of the angle
of rotation as the guiding center moves from some initial to some final point, as
stated in (33.73).



Chapter 34
Berry Phase and Parametric Harmonic
Oscillator

Our concern in this section is once more with the time-dependent harmonic
oscillator with Lagrangian

L= ;)'cz - éwz(t))c2 .

To present a coherent picture of the whole problem, let us briefly review some of
the results of Chap. 21. There we found the propagation function

\/g & v
. 1 (i/h)Sa
yhix, ) = .y ¢ ’ 34.1
K(xz 2;X1 1) I:zmh 51n¢(t2,l1):| ( |

where the classical action is given by

St =

1o 2 s 2
|:Q2x2 o + (gzx% + glx%> C0t¢>(l2,ll)

2] o 01

2213 ! (34.2)
- XoX . .
S8 i (12, 11)
The various functions that enter (34.1) and (34.2) are defined by
i 2 1
0+ (o — 0 =0 (34.3)
. 1
g= 0 P(r.11) = g(t2) —g(n) - (34.4)
© Springer International Publishing Switzerland 2016 407

W. Dittrich, M. Reuter, Classical and Quantum Dynamics, Graduate Texts
in Physics, DOI 10.1007/978-3-319-21677-5_34



408 34 Berry Phase and Parametric Harmonic Oscillator

In the limiting case of @ = const., we obtain
w=const.: o(t)=0""?, gi)=wt, ¢(tt) =w(t—1). (34.5)

Consider, then, the trace of the propagator (34.1):

+00
G(tz, tl) = / de(x, h;x, l‘l)

o

.. 1/2 o . . .
_ Véig /+ drexp) ! (o2 o
2mik sin ¢(f, 1) oo h2[\e o

[+ ) cos (1) ~2uia] |}

sin ¢ (t2,11)

Here we meet a Gauss-type integral,

+o0 x2 _ b4 172 _ [./] e
/_oo dxexp{—zih[./-]} - ([_/_]/2ih) N (27tih) .

This allows us to write

_[@rimysing]™2 1 T2 (o2 e
G(’Z’“)_[ Vg } (Mh) ¢ o

—1/2
1
. ) oo
* i ¢[(82 + &1) cos ¢ \/glgz]:|
in g(i2,01) (62 ¢ $(1.1) o
sin 1 CcoS (1,1 . .
= A (Qz—QI)Jr M e+ a) -2 .
V18 Q@ Q1 V818
(34.6)
Using (34.4) we have
1 1
. =0, .. = 0102
V& NZAYS)
so that
| ) . . ) ' '
.. (Q2 - Ql) = 0201 (Q2 - Ql) = 0102 — 0201 (34.7)
Vaig \o2 o 02 o1
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and
o, . 1 1 01, 02
.. (&2 t+81)=0 + = + . (34.8)
NZ3YS) (g 8 ) @0 (Q% Q%) Q2 Q1

These expressions are substituted in (34.6) and so we obtain
G, 1) = [(Qléz — 0201) sin ¢(t2,11)

-1/2
+ (Ql n Qz) cos (2. 11) — 2} . (34.9)
02 Q1

Here we should be able to extract some known results for the case of w(f) = w =
const. According to (34.5) we have

010=0. ga=0"?, (91_'_92):2’ ¢ =w(—1n)=oT
@ Q1

so that (34.9) simplifies to

N 2 -
=s11;(:T/2)
1 1
T 2 sin(wT/2) - expli(wT/2)] — exp[—i(wT/2)]

— exp[_l(G)T/z)] — eXp[—l(a)T/2)] Z e—ian

_ —1/2
G(T) = [2{cos T — 1}]71/%2 = [_2 9 1 COS(a)T)i|

1— e—ia)T =
> > i 1
— —i(n+1/20T _ [_ A ( )T]
’;e V;exp " wl|n+ ) s

which identifies the energy spectrum of the linear harmonic oscillator as E, =
ho(n+1/2).

To draw some nontrivial consequences of our result as stated in (34.9), we shall
now consider the special case of a parametric oscillator for which w is constant in the
remote past and in the distant future, and we shall calculate the vacuum persistence
amplitude , i.e., the amplitude for the ground state to remain in the ground state
while w(t) is acting for a finite time duration.

Att; - —oo and 1, — +00 we set

a)(tl) =w; — w =const., @, —> @ = const. >0 . (34.10)
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In obtaining the vacuum transition amplitude we need the general solution of
.. 2 1
o+ w (I)Q—Q3 =0. (34.11)

As time-independent solution for (34.11) at 1, — —oo we choose

1 . do

N —0. 34.12
01 = 0(—00) Jo o= . ( )

HH=—00

Then, however, for #, — +o00 we have to use the most general solution of (34.11)
for constant w:

o() = j [cosh & + y5 sinh § sin(2w6 + ¢)]"/7 (34.13)
w

where y; , = %1 and ¢ is a real phase constant. The meaning of the real parameter §
becomes clear when we go back to (34.11)—with constant w—which we multiply
by 0 to obtain

ld, ,  wd, 1djly _
2 @) 2dtQ+2dt(Q2)_

or
df ., 20, 1
=0
dt %Q + w70 + o
which can be integrated with the result

1
O +’*+ , =2wcosh$. (34.14)
Q
The integration constant on the right-hand side of (34.14) is chosen so that o will be

real for all values of the real parameter §.
Let us check quickly that (34.13) is indeed a solution of (34.14). We need

1 1

o> = [cosh § + y, sinh § sinQwt + ¢)] . o= ol./]! (34.15)
w

0= j;;) ;[./.]_1/2 (y2 sinh § cosQur + ¢))2w (34.16)

0% = w[./.]7"! sinh? § cos>Qwt + @) . (34.17)
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When substituted in (34.14) we find

o[./.]7" sinh? § cos’Qut + ¢) + w[./.] + w[./]! £ 20 cosh §
or

sinh? § cos>Qwr + @) + [./* + 1 é[./.]Z cosh § . (34.18)

Since

[./.> =2[./.] cosh § + L =(/]-cosh §)? — sinh? §

= cosh? §—sinh® §

we can continue to write for (34.18)

sinh? § [1 — cos?ut + (p)] = ([./.] — cosh §)?

= sin Qwt+¢)
= (cosh 8 4+ y» sinh § sin(Qwt + ¢) — cosh 8)2
= sinh? § sin’ ot + @) .

In (34.9) we also need

5]

15 1
P(r.11) = g(t2) — g(1) :/ drg(1) :/ dtgz(t) ) (34.19)

131 13

Here it is convenient to split up the last integral in (34.19) in three parts:

f 1 i gt " odt 2 dt
P L N / n / _ 34.20
¢(12.11) /n Lo02(0) /,l 0 Sy 2 ), o) R

The first and the third integral are to be integrated between times for which we
encounter free evolution of our system (w = const.). @ # 0 is important for the
time interval of the second integral on the right-hand side: t € [1,#4] C [/ —
—00, I — o0]. Also note that this integral is constant with respect to #; and f,.
Thus, for t; - —o0, t, — +00, we have

n

n
¢(t2,t1) = —/ dt w + const. +a)/ dt

1
" cosh § + > sinh § sinRwt + @)

1 1

x=2wihr+¢
= dx . . —wh + const.
2 / cosh § + y; sinh §sinx !
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To compute the integral we recall the formula

/ dx 2 atan(x/2) + b
.= arc tan .
a+bsinx /g2 _p2 Va2 — p?

This brings us to
¢(t2, tl) =arc tan[cosh 8 tan(a)tz + (g)
+ y, sinh 5:| — wty + const. (34.21)

For reasons which will become clear in a moment, we are interested in the limit
t, — —ioo. Therefore let us write £, = —it,, so that

tan (wtz + (5) = tan (—ia)rz + (;) = —tan (ia)tz — g;)

eilion—p/2) _ g=ilon—¢/2) 0 — e ¢il¢/2)

= Leilon—¢/2) 4 e=ilon—¢/2) nooe () + evr2 i@/

Thus we obtain for 7, — oo

¢(12.11) — arctan[y, sinh § —i cosh §] + iw | (34.22)
=o+iwT . (34.23)
Writing
o =arctanf, P =y,sinhd—icoshd (34.24)
we have
1. 1+ip 1. 1—-ip 1. (1—iB\'?
= _In o =— _In S =—_In .
2i 1—if 2i 1+4ip i 1+ip
so that
. 1/2 . . 1/2
i _ 1- 1',3 / _[1- iy> 31.nh § + cosh 67" . (34.25)
1+ip 1 4 iy, sinh § + cosh §
After these intermediate calculations we return to (34.9):
—1/2

_ipdo(n) 0”2 o)

— 1/2

G(tz,tl) = [w ity sin ¢ + ( o(t2) + w—l/z) cos ¢ —2
(34.26)
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The next step involves taking the following limiting processes:

o(h = —in) = yio/*[cosh § + y, sinh § sin(—2iwT, + (,0)]1/2
—> expEth+i<p]/2i
1)—>00

inh§ '/
— )/la)_l/z(yzslr_1 ) exp [wt2+i(§] .

T,—>00 21

From here we obtain

o(t2) y2 sinh 8 '/ [ .w] 3
- . +it |, -
-1/ ”‘( 2i aplenTl, (1)

~1/2
0.

We also need

do(h) _ dor _ isz = iwo
dt d(—ity) dr, 2
so that
_1pdo() . . 02
1/2 12 _
w a, ¢ o(n) = R

When we substitute these quantities in (34.26), we get

. 02 . 02 02 . 02
160_1/2 sin ¢ + (O + a)—l/z) cos ¢ = w1/ [cos ¢ + i sin @] = w12 e'?

inh §\ /2 .
= V2 sn'l exp [(MZ I iﬁﬂ] if
21 2

or introducing the Euclidean propagator

—1/2
y, sinh § 1/2 AN /
Ge(r2. 1) = | n 2 exp [a)rz +12] e —2

where
e'? z expli(e + iwt)]| = explia] exp[—wT |

(1 4 cosh &) + iy, sinh §7"/
= - . 34.27
(25) exp[ o] |: (1 —cosh §) — iy, sinh § ( )
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What emerges as our final expression is

inh § 1/2 )
Ge(n. 1) — |:J/1(y2 S;n ) el¥/2) gom=u)
i

(34.28)

—1/2
(1 4 cosh ) + iy, sinh § 1277
(1 — cosh §) — iy, sinh §

Now let us search for a relation that connects (34.28) with the vacuum-to-vacuum
amplitude. Generally speaking, if we have an external source J acting on the system
between ¥ = t; and ¢/ = 7, where t; <t < " < t,, we obtain for the transition
amplitude

(e tabin. ) = [ "z Bl e e
Upon using
(02, " 1Y ree = (rale™ )
=D bulx)g, () e D
m
and, likewise for (x', 7 |x, ), where Hy = H(J = 0), Ho¢py, = Ejnm, We get

(x27 t le’ l‘l)J — Z e_iEm(tz—t”) e—iEn(t’_t1)¢m (XZ)QZS: (xl)
n.m
X /dx/ dx//¢;(x//) (x//’ t”|x’, t’)ngSn(x’) .
Taking the trace in x-space we find
G(lz, l‘l) = /dx(x, t2|x, l1>
— Z e_iElz(tl_T//+t/_rl)
n
X /dx/ dx//¢: (x//) (x//’ t//l.x/, t/)]¢n(x/)

— Z e 1B (t2—11) e+iE,1(t”—r’)

n

% /dxdx”d),f(x”)(x”, t”|x’, t/>1¢n(x/) )
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At this point we perform a Wick rotation 7y, = it} »; we do not rotate ¢ and ¢’! This
brings us to

Ge(. 1) = Ze_E”(tz_t‘) iEn("=1)
n
x /dx/ dx’/qﬁ: (x//) ()C”, t"|x/, t/)Jd)n(x/)

_ _ : 1"
s e Eo(m—u) Gifo (" —1")

T—>+00
] —>—00

x /dx/ dx”c]ﬁ(’f (x//) (x//’ t"|x/, l‘/)J(P()(x/) )

= (¢o.t" |po.t")’

The above formulae for G and its “Euclidean” counterpart G are valid for 1, > ¢’
and 1y <, where /' = t; and ¢ = 17 are fixed. Under these conditions, G depends
only on the difference 7, — 7, despite the fact that the system is not translational
invariant. Here, then, are the formulae we were looking for:

. Ge(r2, T1) — oifoln—1)

n—>+o00 e~Eo(ra—11)
1 —>—00

(¢o. trlgo. ;)

or, in terms of the “vacuum persistence amplitude” (0|0_)”,

Poo = = [{0+10-)'1 = [{¢o. trl¢po, 1) |*

2
Ge(r2, 11)
e—Eo(a—11)

= lim (34.29)
—>+00
1 —>—00

In terms of the effective action I" and with the external source J = w(f), we obtain

|Gg|* = exp{—2ImI"} _ [w]} (34.30)
Poo = TZETOO exp[—Z{Im]"TfJ1 [w] — E()(Tz - tl)}] . (34.31)
1 —>—00

It is (34.29) together with (34.28) that enable us to compute the probability for the
vacuum to remain the vacuum under the influence of the parametric perturbation
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(). But first we have to calculate (Ey = w/2)

1 1 h 8) + iy, sinh §|]7"/2
|G15(t2,t1)|2 — [2 sinh § e?®(=~™) (1 + cosh &) + iy, sin H

(1 — cosh §) — iy, sinh §

}—1/2

(1 4 cosh §) + iy, sinh §

= /2e @@= |ginh §
V2e [sm (1 — cosh §) — iy, sinh §

and thus
. (1 + cosh 8) + iy, sinh §|77"/2
Py = +/2|sinh § 34.32
00 |:sm (1 — cosh §) — iy, sinh § ( )

After a few more elementary steps, the outcome for the right-hand side of (34.32) is

2 1/2
Pyo = . 34.33
0 (1 + cosh 8) ¢ )

which is the result we wanted to derive. It expresses the quantum mechanical
probability Py in terms of the parameter &, which can be found from the asymptotic
form (34.13) of the classical equation (34.11).

Now we turn to the main topic of this chapter: computation of Berry’s phase con-
tribution to the vacuum decay amplitude for the generalized parametric harmonic
oscillator.

Let us briefly review some of the elements necessary to set up our problem stated
in the Hamiltonian of the generalized harmonic oscillator:

H() = J[X(O)xX* + Y(1) (xp + px) + Z(t)p?] (34.34)

with slowly varying parameters (X, Y, Z) (¢). The system characterized by the time-
dependent Hamiltonian (34.34) allows for an Hermitean invariant /(z), which is

given by (34.34):
10 = | 2 RN (34.35)
T2 T8\ ZY) T 0 ‘
with
al(yy . ()
dt =iH.0+ ot =0

and o(7) a c-number solution of the auxiliary equation

1d (6 d(Y\ XZ-Y* Z
°) - - +%|=o0. (34.36)
odt\Z dt\Z z o*
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The instantaneous eigenstates of /(¢) are defined by
1| An, 1) = Apldn, 1) (34.37)

where the eigenvalues A, are time independent, (0/97)A,, = 0. The system (34.34)
develops according to the Schrodinger equation (A = 1)

.0
i, V@) =HOY®)
whose solution can be expressed in terms of the eigenstates |A,, t):

(@) =D Cre™ DA, 1) . (34.38)

The constant coefficients C, have to be determined from the initial conditions.
According to the general theory of Lewis and Riesenfeld, the phase angles o, (?)
can be obtained from the equation

t
a,(f) = / dt’()tn,t’|i£/ —H@)| A, 1) . (34.39)
0

In our particular case this can be evaluated to yield

1 tZ([)
an(f) = — (n + 2) /0 dr 2 (34.40)

The eigenvalue spectrum of [ is givenby A, =n+1/2, n =0,1,2,....

We are now going to introduce the effective action I'[X(f), Y(¢),Z(?)] in the
spirit of field theory. One must recognize that it is the effective action that properly
addresses questions like vacuum persistence amplitude of a quantum system, a topic
we are now going to concentrate on. In a certain sense we are dealing with a toy
model simulating particle creation in relativistic field theory by a prescribed external
field (QED), or cosmological particle creation by a time-dependent metric.

The effective action is defined by the path integral representation

elMX Y2 — / Dp(1) Dx(t) exp{i / Zdt[p)'c—H(p,x;X, Y.2); . (34.41)

151

where the integration is to be performed over all paths satisfying x(7) = x(0)
and T — oo at the end, meaning an adiabatically closed cycle. The effective
action I itself (or, for finite 7, I'r) can be computed with the aid of the Feynman
propagator K (x,, t2|x1, t;) in presence of the “external field” (X, Y, Z)(¢) by a similar
path integral with terminal conditions x(¢;) = x1, x(f2) = x,. We are specifically
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interested in the “loop contribution”, i.e., the trace of the diagonal part of K in x-
space:

) +o00
G(T) = TV 2 — / dxK(x,T|x,0) . (34.42)

—00

At this point we recall that the imaginary part of [ is related to the vacuum
persistence amplitude. Instead of explicitly computing the path integral, we now
make substantial use of the Lewis—Riesenfeld theory to determine K. We claim that
the equation for the kernel,

d
(iBt - sz(t)) K(x.t]x1,0) =0, t#0
with the boundary condition K (x;, O|x;, 0) = §(x, — x1) is solved by

K(xa, 11, 0) = 3 €@ (3], 1) (4. 01} (34.43)

That this statement is true can be recognized from the fact that K, ;) (x2, f) is a wave
function of the type (34.38) for a special choice of the C,’s. Let us quickly check
our claim. Equation (34.43) obviously reduces to

K(x2,0x1,0) = > (xalAn, 0) (A, 0x1) = {xalixr) = (2 — 1)

n

since (34.40) implies «,(0) = 0 and the eigenstates of /(¢) form a complete set for
all ¢. Furthermore,

(1 gt - sz(l)) K(Xz, tlxy, 0)
= Zn:(xz‘ (i gt - H(t)) eien®

following from the result by Lewis and Riesenfeld:

Ao 1) (A, Olx1) = O

(i E?z _H(t)) e A,.1) = 0.
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Thus we obtain

G(T)

+o00
/ dxK(x, T|x,0)

o

+o00 )
_ / dx 37 €O (32, T) (A, OJ)

—00

+
—00

=) el / dx(Ay, 0lx) (x| A, T)

=Y e D(1,.0[%,.T) =&'" . (34.44)

Next we turn to the adiabatic limit of our so far exact treatment. Let us assume that
the external parameters (X, Y, Z) perform an adiabatic excursion during the time T
in the parameter space so that (X, Y,Z)(0) = (X,Y,Z)(T). In the adiabatic limit,
the o-term in the auxiliary equation (34.36) may be ignored; then we obtain

z L Zd(Y 12
=w - .
0? P wp dt \Z

The frequency wp can be obtained by rewriting the Hamiltonian (34.34) in terms of
action-angle variables. The result is a linear relation H = wpJ, with

oH

=VXZ-Yv2, XZ>VY*.
aJ

wp =

Furthermore, expanding with respect to

zZd (Y <1
w3 dt \Z ’
we obtain

Z Z d (Y Z d (Y
G T | T P
0 2w, dt \Z 2p dt \Z

When this adiabatic expression is substituted into (34.40), the Lewis—Riesenfeld
phase goes over to the Berry phase:

1 T
an(T) = — (n + 2) /O drf(f) (34.46)
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where

o=y - 4 (;) .

2wp dt

Because the external parameters return to their starting point at t = T, so does the
adiabatic solution (34.45) as well as the operator /(f) and its eigenstates. Hence it
holds that (4,, 0|A,,, T) = (A,,0]A,,0) = 1. In this way we obtain for the adiabatic
approximation of the effective action

o0
exp{il7[X,Y,Z]} = Z e~ 1/2)p(T)
n=0

=27"2[cos ¢(T) —1]7/?, (34.47)

where the total phase collected during one cycle of adiabatic excursion is given by

r r oz d{(y
¢(T)=/O dta)D(t)—/O dtzwD 0 (z)

r Z Y
:/ dth(t)—gng . VR( ) ,R=(X.Y.2), (34.48)
0 C 2wp Z

where the first term is the dynamical phase and the second is the geometrical Berry
phase, i.e., only dependent on the path in parameter space. By the way, we can
easily rediscover the standard result for the time-independent harmonic oscillator
by recognizing that the phase function is then given by ¢ (T) = wT. As can be seen
from (34.47), the effective action is augmented by an “anomalous” geometric phase
contribution,

1 z Y
ric = —(n+ Z)ﬁdR : [_ZwDVR (z)} , (34.49)

not unlike the appearance of anomalies in gauge field theories.

Now let us assume that the oscillator is in its ground state (“vacuum”) in the
remote past, t — —oo. What, then, is the probability |{0.|0_)®|? for the oscillator
to be still in the ground state in the distant future, t — 4-00? Quite generally, given
the traced Feynman kernel

+o00
G(l‘z,ll) = / de(x, t2|x, ll) s

o0
the vacuum persistence amplitude can be calculated as given in (34.39):

2

Ge(r2, 1) (34.50)

— 2 = i
Poo = [{040-)] rzll)l_li_loc e—Eo(n—11)
71 —>—00
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where Ej is the ground state energy of the unperturbed system. Thus, initially and
finally, the oscillator is a simple harmonic oscillator in its ground state Ey = /2.
(The above formula still holds if we put 7; = 0, as was done previously.) Py is
related to the imaginary part of the effective action as stated in (34.31)

Py = lim exp[—2{Im[},[X.Y.Z] — Ey(r. — 11)}] -
T—>+00
1 —>—00

Let us consider (04 |0_)% of the parametrically excited oscillator for a periodic path
(period T — 00) in the space of the external parameters R = (X, Y, Z)(¢). If the
time evolution is truly adiabatic, no excitation (“particle creation”) will occur, and
Py = 1. Knowing I'7[R], we can compute the deviation from Pyy = 1 for very
slow, but nonadiabatic changes of the parameters. The result is

i exp [— (n + ;) /OTdrf(—it)i|

n=20

2

2E0T . (34.51)

P()(): lim e
T—o00

One can justify that the integral in the exponential of (34.51) has a positive real part,
so that only the n = 0 term contributes for T — oo. Here, then, is our final result
for the probability of the ground state to remain in the ground state:

o0
Poo =exp |:—Re/ dr{a)D(—ir) — ZEO}
0

o0 Z d (Y .
+ Re/0 dt { 20 di (Z)} (t= —11):| , (34.52)

which exhibits explicitly the contributions arising from the dynamical and geo-
metrical (Berry) amplitude. The transitions occur by almost adiabatic motion and
are contained in a dynamical and geometrical (Berry) part, where the latter is the
analytic continuation (in time) of the Berry phase.



Chapter 35
Topological Phases in Planar Electrodynamics

This section is meant to be an extension of Chap. 31 on the quantal Berry phases. In
particular, we are interested in studying the electromagnetic interaction of particles
with a nonzero magnetic moment in D = 2 + 1 dimensions and of translational
invariant configurations of (D = 3 + 1)-dimensional charged strings with a nonzero
magnetic moment per unit length. The whole discussion is based on our article in
Physical Review D44, 1132 (1991).

We begin by recalling that the Lagrangian density of electrodynamics is given by

Z:;(EZ—BZ)—Q¢+j-A, (35.1)

where the particle-field interaction is contained in

L = / ix s = / d*x{—o¢p +j - A} . (35.2)

As pointed out above, we consider D = 3 4 1 with translation invariance along
the x3-axisand D = 2 + 1 in parallel. In the former case all quantities (L, o, ...)
are understood to be “per unit length”. Hence we write D-vectors as x* = (x°, x/)
wherei = 1,2 for D = 2 4 1 (particles) and i = 1,2,3 for D = 3 + 1 (strings
oriented parallel to the x3-axis). Let us consider a classical model for the magnetic
moment. Then in its rest frame the current density jg = (0o, jg) of a particle located
at x = x, has the following form:

won (o) _ [ e*(x—xp) ) o
JO (x) - (16) - (y,eijaj(sz(x—xp) ) L] = 1,2 . (353)

The 2-component vectors x, x,, lie in the x'-x? plane.

© Springer International Publishing Switzerland 2016 423
W. Dittrich, M. Reuter, Classical and Quantum Dynamics, Graduate Texts
in Physics, DOI 10.1007/978-3-319-21677-5_35



424 35 Topological Phases in Planar Electrodynamics

Let us quickly check that the point source (35.3) gives rise to the magnetic
moment /L

1 1 .

5 /dzxx xXjx) = 5 /dzx e xji (x)

_ ! efey 1 /dzx x:0i8% (x —x,) = 1pL Su=p
2 ~—— ' P 2 '

=—38;

Now we assume that the particle or the string moves with the velocity v, = %,
relative to the laboratory frame. (It is understood that jg =0if D =3+4+1)
The resulting current distribution is obtained by boosting ji from the particle’s rest
frame. Since eventually we are mainly interested in the adiabatic limit, it is sufficient
to keep only the terms linear in the velocity (“Galileo boost”). Hence one has in the
laboratory frame

0=00+10, - jo+O(v;) . (35.4)
J=Jo+vp00 +0(vp) .
or
o(x) = e8*(x —x,) + pelv,0,8(x —x,) + O(vlz,) ,
J @) + uel9;6% (x — x,) + evi8*(x —x,) + O(vy) . (35.5)

Therefore the interaction with an external field A* = (¢,A), A3 = 0, is given by
U= [ xi-op i 4)
— [ @xl-cup — v, -od +io - A+ auv, - A]

= /dzx[—eqb(x)é)’2 (x—x,) - 11y, 79;8% (x — x,) ¢ (x)

- -
= +pvpic¥ 9;¢p (x)862 (x—xp)=;wva¢(x)82 (x—xp)
+ pA;870,6% (x — x,,) +e8%(x — x,)v,, - A(x)]
- _ -

=/1eldjA; (x)8% (x—x,,)

or

L' = —ep(x,) +ev, - A(x,) + uB(x,) + nE(x,) x v, (35.6)
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with the electric field E = —V¢ and the magnetic field B = V x A = &Y9A;.
Assuming that the field A* is generated by another particle, either of the four terms
on the r.h.s. of (35.6) can give rise to a topological phase. Hence, let us first calculate
the ¢- and A-fields generated by the other particle. To do so, we distinguish particles
(or strings) with e # 0 and i = 0 and refer to them as “charges”, and particles with
e = 0 and p # 0, which we call “magnetic moments” for short. Then we perform
the following four experiments:

1. A magnetic moment is transported adiabatically around a charge which is at
rest in the origin. The effect on the wave function of the magnetic moment is
considered.

2. As in (1), but now the effect on the wave function of the charge at rest is
considered.

3. A charge moves adiabatically around a magnetic moment which is at rest in the
origin. The effect on the wave function of the magnetic moment is considered.

4. As in (3), but the effect on the wave function of the charge is considered.

By “considering the effect on the wave function” we have in mind the following
gedanken experiment due to Berry. In the first experiment, (1), for instance, we
assume that (by means of some additional interaction) the wave function of the
magnetic moment is confined to a small box centered around the position x = x,(¢)
of the particle. Then, invoking the general philosophy of Berry phases, the contents
of the box are considered the proper “system” or the “rapid degrees of freedom”,
whereas the field generated by the charge in the origin is considered a set of external
parameters or “slow degrees of freedom”. The Berry phase obtains as a response of
the wave function inside the box to an adiabatic excursion in the space of external
parameters. In the case at hand, this is tantamount to a motion of the box around
the second particle. Similarly, in all the gedanken experiments listed above, one of
the two particles, namely the one whose wave function is considered, defines the
“system” living within the “box”, whereas the other serves as a source of time-
dependent external fields. The respective topological phases are easily computed.

Experiment (1) This experiment coincides with the standard Aharonov—Casher

(AC) setup in which a neutron moves around a charge. The interaction term of

interest is the last term in (35.6): L} = wE x v. To find the electric field by the

charge at the origin, we recall from elementary electrostatics (in 2 dimensions):
V.-E=-V¥¢=0.

In terms of the Green’s function G(x, x’) of V2 the solution reads

px) = — / Px' Gx.x') o)

1
- /dzx’ Injx — x| o(x) .
2
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Substituting o(x’) = e8?(x' — x,,) we obtain

P(x) = —Zenlnlx —Xp
so that
e 1 2
—E; = 0;¢p(x) = “on z8,- In(x —xpl
_ 2(x—xp);
C2(x—x,)?
or
e (x—xp)

Vo(x) = —-Ex) = o 2
P

Hence the electric field due to the charge at the origin (x, = 0) is given by

Consequently,

, e XXV ep xed
L 2
27 x| 2w |x|

(35.7)

(35.8)

Then, during one round trip along the path C, we accumulate the following Berry

phase:

om [t
= =e =eM .
1 0 1 J2% C27T|x|2 2%

Here the value of the integral in (35.9) is one, as can be seen as follows:

X X dx
I = 2 = Fidxi
¢ 2m|x| c

where

1 1 1
F;, = ki = e Ox In|x|?
2ﬂ|x|2xk k=, Bk Ok |x|

(35.9)
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and therefore

1
V x F = ¢,;0,F; = &€y 0k 0y 1n|x|2
—— 471

= 20u

1
V2 1In|x|? ~ 8% (x) .
4

We conclude that the value of 7 does not depend on the local details but solely on the
homotopy class of C. For one revolution around the origin we may therefore choose
a circle of radius |x| = R:

1 1
I = ¢xxdx:1.
7TR22 Cr

~ ;;2 -
Experiment (2) Here, the relevant part of (35.6) is L, = —e¢(0), where ¢ is

generated by the motion of the magnetic moment:
1 2./ / /
o(x) =— d°x" Injx —x'| o(x)
27 N——

= oox)) + v, o)

=0
= pvpie’ 9787 (x" — x,)

1 i » 2
==, ,uvp,-sf/d x' Injx — x| 3;6%(x' —x,)

~ - -

1
=_ / d*x'8*(x' — x,) 23} In(x —x')?

2 =X
T2k —x)?
_ kool —x); _p (x—xp) X,
2n e —x,)? 2 |x—x,|?
We need
U Xy, X U,
pO) =1 T

2w |xp)?
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and so we end up again for the phase for one revolution

T T v
o= [ ity = a5 = e (35.10)

Experiment (3) The relevant interaction term is now L; = uB(0), where B(0) is
the magnetic field generated by the orbital motion of the charge acting upon the
magnetic moment at the origin.

Starting from V?A = —j, we obtain first the vector potential (recall Jjo = 0 for
p=0)
1 2. / P
Alx) = — dx' Inlx —x'| jx)
27 N——

=jo + vp00 = €8’ (x' —x,)v,
ev,
==, Injx —x,| .

From here we obtain

e

B(x) = £¥9;A; = o Ui

il 2
gl 28i In(x —x,)
=i
so that

e X, X (x—x,)
B(x) = ’ zp
2w |x — x|

and

e X, XX,

B(0) =
©) 2 |xp|?

Hence the Berry phase is

T T [}
0 E/ aiL, = e,u/ a7 e (35.11)
0 0 27 |, |

Experiment (4) This is the situation of the Aharonov—Bohm effect discussed in
Chap. 31. The interaction is L, = ev, - A(x,), where A is the vector potential
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generated by the magnetic moment at the origin. To obtain this potential we compute

. 1 .
Al(x) = o /dzx’ Inlx — x| ji(x")

= uel98*(x' — x,)

1, 1
=, lw//de/ 8 (x' —x,) E)j/-zln(x—x’)2

woeix—x,),
2 |x —xp)?

For x, = 0, we find

poEgx
Ai(x) = — 35.12
==, (35.12)
so that again the phase for one circuit is
T T ;
X

945/ dtngeu/ dr X —en (35.13)

0 o 2mx|?

where in the (3 + 1)-dimensional interpretation, p coincides with the flux through
the solenoid.

As we see, all four phases coincide numerically. In all the above experiments,
we encounter an effective interaction L' = &7 - v with a vortex potential <7 (<7 ~
&;x;/|x|?), where </ does not necessarily stand for the magnetic vector potential.

Finally, let us consider a set of interacting nonrelativistic particles with charges e,
and magnetic moments ji,, p = 1,2, ... N. In addition to the Coulomb and Lorentz
forces acting between them, there will be a Berry phase part of the &7 - v-type
interaction which receives contributions from all four effects discussed above. The
relevant part of the Lagrangian is obtained by starting from (35.6) for one particular
particle, and inserting the expression for the fields generated by the other particles:

L' =pEY xv—e¢® + uB® 4 ev - AW |

where we have to insert (cf. the four experiments listed above)

e xX—Xx

1) EV@x) = P
m BV = T
u(x—x,,)xv,,
2 |x —x,|?

2 ¢Px) =
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3) B(3)(x) _ e X (x —xp,)
2 |x —xp|?

M &ij(x —xp);
2 |x —x,?

@ AP =
In this way we obtain for a two-particle system

Ly—pody = Ly + Ly ,

with the A-type and ¢-type interactions contained in Ly and Lg, respectively. (V and
S stands for “vector” and “scalar”, respectively.) More explicitly:

2Ly = ejvy - A(xy) +u1 B(xy) +exvy - A(x2) +pu2 B(xs)
—— —— ——— ——

~u2 ~erv) ~ K1 ~elvy
2Ls = —e1 ¢(x1) +i1 E(x1) Xv1 — ez ¢(x2) +2 E(x2) Xv; .
SN—— N—— N—— SN——
~ V2 ~e ~U1v] ~el
If we now insert the expressions (1), ..., (4), we obtain

_ejls vigj(xr —x2); | pies vy X (X1 —X)

2Ly =
! 2 |xp—x2|? 2 |xp —x2|?

_ ey vhe(xa —x1); | paer v1 X (X3 — X))
2 |x1 —XQ|2 2 |x1 —Xle

_ e v X (X1 —X2) | expty v X (X1 —X2)
T e —xf? T |x—xf

Hence the A-type interaction yields

1 (x1 —x2)
Ly = —_ {eipav — expt1va) X 5 -
[ —x2]

35.14
2 ( )

Similarly, we compute

Ceipy (k1 —x2) X vy ey (X —X2) XU

2Ls =
§ 27 |x; —x2)? 2 |xp—xf?

ey (e —xp) X poer (X2 —X1) X 02
2 |x1 —x|2 2 [x1 —x|2

_Hiex v X (X1 —X2) | iger 02 X (X —X2)
7 [x1 —x>|? 7 [x1 —x>|?
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so that the ¢-type contribution gives

1 (v1 —x2)
Ls = —_ {miev; — poe va} x 5 -
[xr —xs|

35.15
ot ( )

For equal charges and magnetic moments, we obtain (e; = e; = e, | = U = WU):

_ep (v —v2) X (¥1 —X2)

Ly =1Ls = 35.16
v = Ls oot X1 — 12 ( )
Writing for the relative position x = x| — x,, we finally arrive at
0 xxx
L2—b0dy = 5 0 = el . (3517)
7 |x|

The appearance of the interaction term (35.17) is remarkable for the following
reason. One of the simplest field theory models showing the phenomenon of
fractional (“anyonic”) statistics consists of a commuting or anticommuting matter
field coupled to a U(1) Chern—Simons gauge field. These systems provide an
interesting laboratory for the investigation of fractional spin and statistics which,
in 2 4 1 dimensions, are possible due to the fact that the rotation group SO(2) is
Abelian and that the first homotopy group of the many-particle configuration space
is a braid group. Moreover, anyons of this type also made their appearance in the
theory of the fractional quantum Hall effect and of high-7, superconductivity. To
capture the essence of the “anyonization” via Chern—Simons gauge fields it is not
really necessary to describe the matter sector by a (relativistic) field theory; for many
considerations it is sufficient to consider nonrelativistic point particles (of mass m
and charge e) whose dynamics is governed by the action

N
S = / dry (5 + ety - A(t.x,(0) — eAo(t.x,0) ) + Tes (35.18)

p=1

with the Chern—Simons term
1
Tes = N / dx ""°A,(x)0,A,(x) . (35.19)

Since no Maxwell term is included in the gauge field action its only effect is to
change the statistics of the originally bosonic particles. It can be shown that, because
of the Chern—Simons term, each particle of charge e also carries a magnetic flux
@ = —(e/k). We can visualize these (2 + 1)-dimensional flux-carrying particles
as (3 + 1)-dimensional flux tubes (“solenoids”) cut by a plane perpendicular to
the magnetic field. When the world lines of two particles wind around each other,
due to the Aharonov—Bohm effect, their wave function will pick up a phase factor
explie A - dx} = expl{ie®} = exp{—ie?/k}. Since the exchange of two particles
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corresponds to one-half of a revolution of the particle around the other (followed by
a translation) the phase factor associated to it is exp(if) with the “statistics angle”
6 = —(e?/2k). The origin of this phase is most easily understood if one eliminates
the gauge field from (35.18) by means of its equation of motion. One obtains the
following effective Lagrangian:

Lo = Z AN Z = xq} X G =) (35.20)

x, —x,|

More generally, whenever in some two-particle system, say, the interaction
Lagrangian contains a piece which has the form of the second term on the right-
hand-side of (35.20),

0 xxx

Ly = (35.21)

x?

where x = x; — x; is the relative separation of the two-particles, an Aharonov—
Bohm-type phase will appear if one particle is moved around the other. Equa-
tion (35.21) yields, for a full circuit,

dx
/dtLg - 2995 YXEX_ g (35.22)

27 |x|?

so that 6 is indeed the angle related to the exchange of the two particles. In
deriving (35.17) we have shown that, at low energies, particles with non-zero
charge and magnetic moment undergo a kind of “self-anyonization”. Without
explicitly introducing a Chern—Simons term, their effective Lagrangian contains
the term (35.17) which is of the form (35.21) with the “statistics angle” given by
0 = ep.



Chapter 36
Path Integral Formulation of Quantum
Electrodynamics

Let us consider a pure Abelian gauge theory given by the Lagrangian
1 v
thoton = - F}L\)FM
4
1
=-, (9,40 — BuA,,) (3"AY — 3"AM)
or, after integration by parts,
1
Lopoion = =, [— (9,0"A,) A" + (30" AL) A, |
1
= ZA“ [¢"'O —0"0"1A,
and therefore, the corresponding action is given by

S [AM] = ; /(dx)AM(x) [¢"'0 — 040" A, (x)

1 dk) -~ .
=-, (;ﬂ;AM(k) [¢""k> — k'Kk"] A, (—k)

(36.1)

(36.2)

(36.3)

The operator M (k) = (g""k* — k’*k”) has no inverse, because it has eigenfunc-

tions k, with eigenvalues zero:

M"™ (k)k, = (K'k* —k'k*) = 0

© Springer International Publishing Switzerland 2016
W. Dittrich, M. Reuter, Classical and Quantum Dynamics, Graduate Texts
in Physics, DOI 10.1007/978-3-319-21677-5_36

(36.4)
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This fact corresponds to the freedom of making a gauge transformation A, (x) —
Au(x) + 0, A(x) = Aﬁ (x), and since S [A,L] is gauge invariant, we have

sfa =s[ar] (36.5)

Now we want to quantize the gauge field via the path integral method. If we include
arbitrary field configurations A, (x) in the path integral

/ [dA,] €14] (36.6)

we are integrating over too many redundant equivalent fields which make the
integral diverge. It is then our goal to select only one representative from every set
of gauge-equivalent potentials (orbits) which contribute to the path integral (36.6).
The idea is to fix a gauge such that f [A,L] = 0 is satisfied by only one A, in every
orbit, i.e., the gauge condition is such that the equation

f [AQ] -0 (36.7)

has a unique solution A (x) for given A,,.
Example To select those fields which satisfy the Coulomb gauge, one considers
only such fields that fulfill f[A,(x)] = 9,A'(X) = V-A = 0. Then A}x) =

-

Ai®) — 0 A®) yields V- AN = 0=V -4 — V2A :

AG) = / 27 Ve A

=¥

In order to limit the fields in (36.6) to the ones that satisfy the condition (36.7), we
insert under the integral of (36.6) the unity 1. Corresponding to [ df§(f) = 1 we
have

[ln[Ts(r[apw]) =1 - (36.8)
Changing to A as integration variable yields
/ [dA]App [Aﬁ]a (f [AQ]) -1 . (36.9)

Here it is important to note that the (Fadeev—Popov) determinant Agp [AQ] is
actually gauge invariant, i.e., independent of the gauge function A, so that we are
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allowed to write (36.9) in the form
Az [AQ] - / [dA]S (f [AQ]) . (36.10)

That A;}, [Aﬁ] is indeed gauge invariant follows from

szt [a] = fianw (far])
_ / din + A5 (r[an+]) = / @A"18 (£ [40"]) = Azt Au]
Here we used A* = A — 9A and
AN =A—3A - 0N =A—-d(A+A)=A—dN",
Furthermore, it can be shown that

. sAN
|daf] = [dA,]. ie., det ( SA") =1

m

and of course S [Aﬁ] =S [Au] so that the vacuum persistence amplitude or
generating functional (with external sources) is given by

(04]0-) = 2Z[J,] = / [dA] / [dAM] App [AQ] § (f [Aﬁ]) (ST + [0, ()

= [1an) [ i [a,15 ¢ [a, L1000,
(36.11)

The integral [[dA*](...) is independent of A and [[dA] = oo, i.e., independent of
Ju.. The infinite constant [[dA] will be omitted in the future.

Hence, the correct path integral representation for pure gauge theories is given
by

ZY, = / (A A FplAL)S (F [A]) I+ @A W) (36.12)

Let us have a closer look at the Fadeev—Popov determinant in (36.10) in our Abelian
gauge theory. First of all we expand

F(AL®) = £ (4u0) = 9,A()

§f(A* (x))

54,,0) \AA:Aa{LA(y) +...

= (A () — / (dy)
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8f(A(x))

=)+ [ @, (A0
i

‘--\/-_/

)A(y)+...

- / (d)Mx.)AG) + O(A?)

where

8f(A(x))
M =2, 84, ()

So we obtain

et = fuanis (1 [a2]) = fuansonn = 1

or

ApplA,] = detM = ™M (36.13)

Examples

1. Coulomb or radiation gauge f(A) = VA= 0,f(A(x)) = 9;A'(x) = 0.

] ‘ , ‘
M .y Az — i f _ =9; iz _ 3
() = B ) VA = 0,08,80 =) = 0 G =)
M(x.y) = V(i —5)
2. Landau gauge 9,A*(x) = 0:
M(x,y) = O8(x — y) so that App[A] = detd = TTK>.

Evidently, the Fadeev—Popov determinant is divergent, but independent of A, and
can therefore be absorbed into the normalization constant.
Therefore we end up with

Zl = /[dA]8 (f [A]) &/ (Sertal+[ @07,A%)
with

1
SerlAl = — / 4F,wF“”(dx)—iTr1nM
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Next we want to find the propagator functions for gauge bosons, i.e., for photons.
By way of example, we consider the generating functional in the Landau gauge
9, A" (x) = 0

Zi[J] = /[dA](S (aMAM) eif(dx)(—iFwFM”HMA,l)
with

§ (0,A") = lim ¢% /@ (4" (36.14)

a—0

Hence we can write
1 1
— 1 ; Iz vy _ _ 1z v
Z[J] = lim / [dA] exp [z / (dx) % ~ (9,A")(3,A") 2[ (,0"A,)A
+ (0"0"AA] +J"ALY]
. . 1 v 1 v v
_ i%/[dA] exp [z/(dx){ = A BudA) + A 81D - 8491 A,

+7Au}]

ii_l)r})/[dA] exp [i/(dx) % ;AM |:g’w|j — 9" (1 - ;)}AV +J“A,L”

j 1
lin})/[dA]exp —; /(dx) AM|:—g’“’E|+8"8” (1— )i|AV —2J"A,
o—> o

- —_ -
=Jn
ZiJ] = 1iII}) e—éf(dx)(dy)hl(X)Div(x—ym)lu(y) ) (36.15)
a—

Result:  To get rid of the problems that arise through the gauge freedom, one has
to change the normalization of the generating functional and add an extra term in
the Lagrangian

1 1
L =— F"F,, —  (3,A"). 36.16
4 W 20[(# ) ( )

« is called the gauge-fixing parameter. Instead of requiring gauge freedom, one
requires that formulas following from (36.16) do not depend on «.



438 36 Path Integral Formulation of Quantum Electrodynamics

The propagation function contained in (36.15) is given by
1\
D el = ol [~ 0+ 09 (1 )] )

or

[—g"”D + 9"9” (1 - i)}Dﬂw(x—yla) =68(x—y)

1 (dk) ey dk) s
—ov[] mayv (1 — Dy (k ik(x—y) _ tk(X})’
e (1 )] [ Pt (@)

so that in momentum space

1
[—kzg“” + Ktk (1 — )}Dﬂw(kla) =1
o
Thus, the photon propagator is given by

ok
—&uw + M 1—-o)

D+;w(k|a) = K2 + ie

(36.17)

Proof

) , 1 1 Kok
e s 1= L (o 00 -

1 ) 1 1
— (1 — Kl — " " — —
= it ic |:k gl — (1 — )k'k, (1 a)k kp + ktky(1 — o) (1 a)}

2N€—>O m

= k
K24 ie 8 8o
Altogether
Kyuky
(dk) ik (x— g;w - M l (1 )
Dy (x— = — o) 36.18
+v(x = yla) Qn )4 k2 + ie ( )
where o = 0 is called the Landau gauge
Ky
dk v e
D;,,(x—y) = @) e 0~ o (36.19)

@2 )4 K2 + ie



36 Path Integral Formulation of Quantum Electrodynamics 439

and o = 1 denotes the photon propagator in the Feynman gauge

Dh,,(x—y) =— é‘jf; k) kzgf y (36.20)
or
L k’/f“ — 8y F v
Dy, (k) = Pt Diw =~ i (36.21)

So, with immense effort, we have derived the customary QED propagator for the
photon.

So far we have taken the vacuum fluctuations of the photon field into account.
Now we want to add a classical background field so that the total potential consists
of two parts:

A () = A, () + 4y (x)

Here, a,,(x) denotes the fluctuations of the quantized photon field. Previously this
field was called A, (x)! Here, A,(x) stands for an external classical field. If we
calculate the effective action, or equivalently, the vacuum persistence amplitude in
presence of the photonic and fermionic fluctuations, we have to integrate over the

(¥, ¥, a) fields:

(0410 = / [dVdrda) exp (i / (dx)

- (1
[D%_W(ya_gyA_eya—Fm)W}) (3622)
i
with the photon kinetic term
1
L = —4F;wF’w + Ly, Fuy = 040, — 0va,, (36.23)

where % is the gauge-fixing term. The integral (36.22) can be further evaluated
using the following trick: One adds a (source) term j*a, to the Lagrangian and
represents the a,, field in the interaction term ¥y, a*y by a, — ; 518.“ .

Of course, at the end, one has to set j, = 0. This leads to

0410- = [1da) [ layag)

X exp I:—i/(dx)lﬁ (: y-0—ey-A—epy? : Sj:;(x) + m)i| (36.24)
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X exp [i / (dx) [Z + j"au]i| li=o (36.25)
:/[da]det(l,y-a—ey-A—ey“l, 8 +m)

i i §j¢
X exp (i / (dx) [Z, + j/’«aﬂ]) li=0 - (36.26)

The last integral [ (dx) [i”a +j“au] has the structure [ (dx) B“u (D:_l)w a, +j"au]
with D’_T_" being the photon propagator in the gauge specified by .Z,s. Indeed, we
calculated this integral already before with the result (36.15).

So we end up with

1 16 i
(0+|0—>A=det(l.y~8—e)f~A—eV“l.8. +M)e><p( JD+J) li=o0
n

j 2
(36.27)
where we use a compact matrix notation,

JD4j = / () (@) D™ (= Wjn(y) - (36.28)

At this point it is convenient to use the following identity, which is valid for any
sufficiently differentiable functional F:

F [1 ; } P+ = e3P e P F | j2p, ;- (36.29)
i 8

AgainJ = Dyjmeans J,(x) = [(dy)D ., (x—y);* (v), etc. Thus, (36.27) becomes
(04]0_)4 = ex i‘D i | ex i 5D 5
+V-) = p2]+J P 287 T8
1
det(,y'a—ey-A—ey'J—i-m)I;:o. (36.30)
; ‘
At this point we use
- - 1
exp (iWV[A]) = / [dydyr] exp (—i / (dx)yr I:y“ ( 0y — eAM) + m:| w)
l

= det [y“ (1% — eAM) + mi| =det (G4 [A]_l) . (36.31)
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This gives
WIA] = —ilndet (G4[A] ")
= iIndet (G+[A])

=iTrinG4[A] . (36.32)

where we used the (formal) identity det(expG) = exp(TrG). Because action
functionals are defined up to a constant, we exploit this freedom to replace (36.32)
by

GilA
WOA] = iTrln G4|A] — i TrlnG4[0] = i Trln ( + ]) (36.33)
G+[0]
Making use of (36.31), we obtain for (36.30)
Ny = (04]0_)* = exp i D 5 exp (iWP[A + J]) |y=0 (36.34)
P 287 187 =0 '

This compact formula contains radiative corrections to Ny of arbitrary order on a
single fermion loop which one can calculate perturbatively, i.e., by expanding the
left exponential function. If one only takes the zeroth term of the series into account,
one gets precisely back

G.

[A]
(04]0_) = V01 — () 2 gr@zin (36.35)

Tr indicates the traces both in spinor and configuration space. Formula (36.32) is
the one-loop effective action, i.e., the effective Lagrangian introduced in (36.35) is
the formal expression for the effect which an arbitrary number of “external photon
lines” (external classical electromagnetic fields) can have on a single fermion loop.



Chapter 37
Particle in Harmonic E-Field E(¢) = E sin wf;
Schwinger-Fock Proper-Time Method

Since the Green’s function of a Dirac particle in an external field, which is described
by a potential A*(x), is given by

|:y . (:8 - eA) + mi| G(x,X|A) = 8(x — X)) (37.1)

the Green operator G4 [A] is defined by

YOI 4+mGy =1, I, =p,—eA,

or
1
Gy = ., €>0
yII 4+ m —ie
yIl —m _ —yIl+m

(YI)? —m? +ie  m?— (yI)* —ie
_ (_ . b o 2_ 2 _
= (—yIl + m)l/o ds exp[ is (m (yII) ) es]e_m

This expression is needed in

SWWIA]
j =etr, [y*G ,x|A)] . 37.2
sy = €O PG Gl (372)
One can show that the ansatz
1 [*®ds _. .
W = / (d0). 2D = — / S =i Ty [em“’z] (37.3)
2 0 N
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fulfills equation (37.2). One can therefore write the unrenormalized Lagrangian
i > ds - : 2
W0 = tr/ e (x| |x) + const. (37.4)
2 0 S
Let us write (37.3) in the form

iw[A] = —; / - ise—imz Tr {[U(s) — Uo(s)] + ct} (37.5)
0

where

Uo(s) = s’

U(S) — 6‘is(yl'I)z — eis(—l'lz-l-gawF/”)
V(s) = Uy () U(s) = Up(=5)U(s) = e (" Hiom™)
V(s) satisfies the differential equation
—i I V(s) = e [—H2 -+ e(fF] eifan(s)
0s 2
4 1 1 4
= i [— [—az —e ( 0A+A a) + e2A2i| -+ ;UF} SV (s)
1 l
4 1 1 4
= i [32 +e ( 0A+A a) —PAT - + ;oF} SV (s)
1 1
= 0"V (s) = Uy (9)QUo(9)V () = Uy (5)QU (s)
where
242 ¢
Q:=—e"A"+e(pA+Ap) + 2aF

The corresponding integral equation, incorporating the boundary condition V(0) =
1,i1s

Vis)=1+i / Sds’Uo‘ HHQU(HV(s), U= UpV
0

U(s) = Uo(s) + iUo(s) /0 Sds’Uo_l(s’)QU(s’)
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Iterating

U6) = Uns) + iti(9) [ 505 )0Un(s)

+ 2Us(s) / A UTN() 0 / 45" Uo(s) Uz ' (s")QUO(S") + ... .
0 0
Using Uy(s1)Uo(s2) = Up(s1 + s2) and Up(—s) = Uo_l(s) we obtain

Tr[U(s)] = Tr [Uo(s)] + is T [Uo(s) 0]

s S1
+ iz/ ds1 / dS2 Tr [U()(S + 55 — Sl)QU()(Sl — S2)Q] + ...
0 0

The contribution of Tr[Uy(s)] = Tr 5P s independent of A, and hence to be
dropped as the unwanted additive constant in (37.5).

Calling 1 = s — s, [, dsa — [,'dt, we can replace [ ds; [;'dt by
f(; dt fts ds; — f(f di(s —1):

Tr[U(s)] = is Tr [Uo(s)Q] + /‘Y dt(s — 1) Tr [Uo(s — ) QU (1) O] + ... .
~ —_— — 0

A ~ - -
B
(37.6)

As an explicit example we take

A, = (0,0,acoswyt, 0)

W =3:A5(t) = acoswyt

Fu= M 0 g E Rk
;w—axu_axv7 03 — L, I's =
dA 0A
Foz = axg = 3; = —awo Sin wot = —E(l)
0A
E(t) = awp sinwpt, E(t) = — o

1 1 1
I:iauAMi| = [p,A] = iaﬂAM = i83A3(t) =0:pA=Ap

3
> 0w Fu = 003F03 + 030F30 = 2003F03 = —2003E(1)
JTRY)

= —2093awg sin wyt
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1 e 2.2
=0 =2eA, .0, + ZUWFW —eA

l
= —2ieAs(1)d3 — eopzE(f) — e*A? .
=3

n=73

With this information we can begin with the calculation of the first tra
Eq. (37.6):

A =isTr[Uy(s)Q] = is/(dx) tr, (x| Uo(s) Q| x)
—is [ (@05, Y- o) o1(6)01)
p

(plU(5)Q1x) = —(p|e"” (2ieAsds + eonsE + €*A2) |x)
‘ 1
= —¢ " (p| — 2eA; 03+ o + )

try oy =0 —isp?
PET e (pa(pl — 2eAslx) + (ple*A2|x))

ce in

tr,[1] = 4, —2eAsp3 = —2ep, 8,343, /(dp)pue_i‘v’2 =0, oddinp.

2

1 ipx —isp? T
(o) = oy o™ [ e =7
A = —dis / (d0) / (dp)e™ (x|p) (p ) A2

= —4zs/(dx) ((2 Vs )e (As(1)°
_ 4" / @ as0)?

s (2m)*
e’ d*x
— dx’ (As(1)?, =1
N P RO

&% ~
w0 = [ aoe i@ : [ 09 o= [ 35 [ doli)

e’ d*x ~ 2
A=-4 s /(2ﬂ)4/dw|A3(a))|

627[

2 74 B
=4 E (zn)4/dw|A3(a))|2

(37.7)
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-~ 1 .
Az(w) = Jon /dte”‘”acoswot

= 621\/27r [6(@ 4+ wp) + §(w — wp)]

As(0) = As(—w) = A}(w)
_ 0A3(1)

y = E(t) : iwAs(w) = E(w) = in«/Zn [6(w + wo) + §(w — wy)]

E(w) = —E(—w) = E*(w)

2.2 \% 00 1 -
A=-—4T" / do |E@)|
s Q) ) @2

The second term (B) in (37.6) yields, up to a quadratic A-dependence the sum of
C = 2 / di(s— 1) Tr [e“f—f)az (—i) (8343 + A3d3) € (—i) (3345 + A383)]
0
and
2 . .

D=/ (;) /0 dt(s —t) Tr [e’(s_r)az (c-F)e” (o -F)] .

C = 16¢* / dt(s — 1) / (dp) (dp") (dx) (dx)e ™7 (—p2)
0

X (PIX)As(XO)(lev')e_”"/2 (' IX) A3 (") (¥ |p)
_ —1662
- (@8

X /dx0A3(x0)eix0(p0_”/O)/dx/OA_o,(x’o)e_ix/o(po_p/o)
< [ @S0 [ e )
- N

~ - — -

=(27)383 (‘;;_"/) =V

/ di(s — 1) / (dp)(dp')e™ =P i7" 2
0

/ A () W) = Vom Ay (1 - pP), P —pP=w

C—_ 16¢2 V/S dt(s_t)/d,%ﬁ/dpodp/oe—i(s—r)f'z
@m)* Jo

% e—ir52+n(p'°)2p§ i A3 (po _ p/O) |2
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2
= (126 . /dt(s t)/dw\Ag(w)\

« / d313dp0 e—i(s—t)pz—itﬁz+it(p°—w)2p§

After a change of variables 7 = us =[5 dr — s [} duand u = }(1 + v) so that
fol du— ) f_+11 dv and (s — 1) = s(1 —u) — }s(1 —v) . This leads to

162 1, (T yWPNE
C= _(27r)4V4S2/_1 dv(l—v)/dw|A3(w)\
> / dSﬁdpoe—és(l—v)pz—i;(1+U) [52—(17()_‘1))2]17%
Exponent:

— s =v)p? =i (0P +i (1) —w) =

= —isp® + is(p°)* — iswp® — isvwp® + i;a)z(l +v).
= /d?)-' —zvp 2 /(dpj_)@ va /dp3e mp3p _ T _ I \/7‘[ '
is 25V is

/d3pe—zvp Z/dp ezv[(po)z—wpo(l+v)]ei§(1+v)a)2 —

_ (_ i ) \/” (7.1')/dpoeis[(p())z—wpo(l+v)]ei§(l+v)a)2
2s is \is

2 2
Iz Ps1=v)
2 53

16e* 1, [! < 2 1\ 7 el
_ is(1—v")
C=-— (2 )4V s /_ldv(l—v)/dw ‘A3(a))‘ (—2) s3e 4

vr? 1 1 (! < 2 i
= 2¢ 2(271)4 (2'2) /_ldv(l—v)/dw ‘A3(a))‘ S
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Integration by parts yields:

1! : 21 1! 2 . o
/ dv(l1— ¥ )e”(l_vz) 4 = .2 / dvv [ is” (—2v)e’s(l_vz) 4
2/ oddin v 2 2/ 4

2 1
=1+is” / do?ed 1%
4 Jo

The 1 yields in C

vV 1 ~ 2
4¢* 2m) s /da) |A3(a))|

canceling exactly A in (37.7).
The remainder of C gives

1% ! ~ . w2
remainder of C = ie’r? (2m) / dvv? / dow? iA3(w)|2 U
) J-1
Vv ! - ‘ o2
=i e [ 407 [ o @ 0
(2m)* Jo

D= iz/ di(s — 1) Tr [ei(s—r)BZ 60 . Feit32 ea F]
o 2 2

1,5 V ! - -
= —4e24 (270)! /_ldv(l —v)/da)try (0 - F(w)o - F(-w))

« / dSI-')dpoeisﬁzeis[(po)z—a)po(l-l—v)] ei;(1+u)w2

1 ,, V /1
=— dv(1 —
16es (27[)4 -1 U( oddpi/nv)
w2

2
8 /da) ty (G ’ i?(w)a ﬁ(_w)) (=) Jstz oS0

1% ! - N o2
X _in? / dv/da) ‘E(a))|2e”(l_”2) 4,
@2m)* )

Where in * one uses tr, (cr - F(w)o -F(—w)) = —16E(w)E(—w) and E # 0,H =
0. Thus:

1 [*®ds _,
rem.C+D : iwlh = —2/0 :eﬂ‘""z(—i)ezn2

1% - ! 502
X /da) |E(a))|2/ dv(l = v?)ess 1=
(2m)* —1

14 - ®ds _, ! o2
= ie’n? . /dw |E(a))|2/ Yef”'”2 / dv(1 — v?)e’ss (=
2n) o S 0
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Extract and isolate the log-divergence by integration by parts:

o] 1
/ dse—ism2 / dv(l _ UZ)eis“j‘z (1—v?)
0 S
1
— —mn LS‘ 42 (l—vz)i|
0 0
03 2
- / dv (v - ) ( 2vzsw )e” 4 (1_”2):|
0 3 4
2 /oo ds _in2
= e
3 0 S
2 1 2 00 X w2 v
- / dvo? (1-" i/ dse (=% =)
2 Jo 3 0
2 [ds _, 2t 2 1
= / se_’”"2 + @ / dvv? (1 Y ) o2 .
3 s 2 Jo 3 ) m2 = (1-v?)
iwh) = je?g? / dw |E(a))| / S gmion?
(2m)* o S

2 1 2 1
+a; / dvv? (1—U3) ) w2 )
0 m* — % (1 —v?)

R:= [ %e —ism® T2 15 ‘fe““"z diverges logarithmically, however real.
1 2
v 1
W = in? 4/ do |E(@)[’ / dvv’ (1_ )
(27) 0 3 ) m2— 4 (1-v?)
(37.8)

Substituting v = \/1 M2 e’ = dra:

1 v? (1 — ”32)
/dv s
o mr=2(1-v?
4 [ , «o 2m? 4m? 1
= dM , 14+ ) 1-— , 5 ,
o Jom)? 3aM M M- —w* + M* —
=:a(M?)
o0
= W) = ie’x? / do |E()[’ 4”/ AMPa(M?)
s (2m)* @ Jome

1
X
—w? + M? —
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using lim¢_¢ x—X(l):I:is = Px_lxo Finé(x — xo) :
T = 23 Y /Oo dw o ‘E(a))‘z 4na(w2)
Q2r)* J_o 2 o
=l (2;)4 /_Z dwa;2 ‘E(a))‘z :Cjz (1 + 2::22) \/1 - 4::122
o b [ o ) o

eEnd v . 4m? \/ 4m?
- dw |E 2 1—
3 Quy /_oo v |B@)| ( " aﬂ) o

with |E(@)|” = @2 (4)’ T8(@ — w))

167*aTV [ 5 (a)2 2m? \/ 4m?
3e0¢ o dow (2) (1+ a)z) 1-— o2 8(w — wp)

2Jmw® 2 2 2m? 4m?
m W _ “wg(“) 1+ M) = (37.9)
VT 3 2 a)g wg

and with wpa = E, E(t) = E sin wyt

Jmw® =

o 4m? 4m?
JmgW = * E? (2+ ) 1— O (w2 — 4m?) .
24 w? w} (@ )

Let us return to the effective action given in Eq. (37.8):

4

22 00 5 1 p2
wo = 7 v/ do |E(a))|2w2/ dv N (37.10)
T —00 0 m? + ai (UZ -1

which is graphically shown in Fig. 37.2.

We want to compute the last integral. The result will depend on the ratio fmz )
For w? > 4m? the integrand has a pole between zero and one. Hence W) gets an
imaginary part, which for our former \E () |2 should result in formula (37.9). For

w? < 4m? we should find the real part of W), Let us prove these statements. We
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begin with (37.10) and rewrite the v-integral in the following way:

1 v2_v4 4 1 —v* 4+ 32

/dv , 2/ dv " +2v
0o m24+ % (r-1) 3w v 1
4

3w?

_ 4 5 + 4m? 4 4m? | 4m? 42
T 3w2\3 w? 3w?2 \ w? w?

! 1
X dv .
/0 w2 4 4

w

! we (0 =1) (4 +2)
/dv 242+ , — 5
0 ® 1)2+4a’j’2 -1

For w? < 4m?* we obtain

! 1 1 1
dv a1 = , arctan .
0 ve+ 1 \/ ‘tumz 1 \/ 4312 —1
1 \/ 4m? 1 L
= arcot —1= arcsin
2 2m

2
L
For w? > 4m? there exists a pole in the interval [0, 1]:

1

1 1 1
/dv 5 L am :/ dv
0 v+ -1 o (v—\/1—4aj"22+ie)(v+\/1—‘g'f)
1 1
1 1 1
/dv R 277/ ,\ T imRes R ‘
0 vz—(1—4m> 0 vz—(1—4m) 1)2—(1—4a’)”2>v=\/1—“w’”22

a)2 (1)2
(37.11)
—lim|—.In UEF RS - _e_ ”+\/1
e—0 \/1_%2_1) v=0 U—\/l l 4m +e
1 . 1
X + i
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Fig. 37.1 Path in the
complex plane used in (37.11) 0 @ 1
l - lm?
w.‘.’
m2
=— ! ln1+\/1_t)z+i d
2\/1—% 1—\/1—‘;”;2 2\/1—4;)"22
1 m? T
=— Artanh /1 — , Ti
\/1 — dn @ 2\/1 — dn

where in (x*) we integrate along the path shown in Fig. 37.1. Altogether we obtain
the following result:

/ld v:— vt 4 5+4m2 4 2m2+1
v = _
0o m?+ af W-1) 302\3 o? 3w? \ w?
4m? 4m?
x(\/ mz —1-2arcc0t\/ mz —1-0 (4m* — &%)
® ®

4m? 4m?
+ \/1— n12 (ZArtanh \/1— n12 —in)@(w2—4m2))
w w

(37.12)

With these results we arrive at the following formulae:

n? v . 4m? 4m?
Jmw® =7 /dw ‘E(w)‘z( ”; +2) 1-— ”; O (w® — 4m?)
(O} (O}

3 (2n)*
(37.13)
28272V ~ 2[5 4m? 2m?
Re W) = / dw |E — 1
¢ 3 (2n)* a)| (a))\ 3 + w? w? +
dm2
X (\/ n12 — 1-2arcsin @ -@(4m2—a)2)

w 2m

4m? 4m?
+ \/1— " .2Artanh\/1— " @(w2—4m2)):| (37.14)
w w



454 37 Particle in Harmonic E-Field E(t) = E sin wot; Schwinger—Fock Proper-Time. . .
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Fig. 37.2 Dependence of the real and imaginary parts of the effective Lagrangian on frequency
for a harmonic electric field: E(f) = E sin(wy?). Units are given in brackets

The real part of the Lagrangian is then given by (using E(f) = awpsinwyt =
E sin wot):

5  4m? 2m?
Re.gM = ¢ azwg[ + ”;—(”;—f-l)

127 —— |3 w; wy
=E2
\/4”;2 — 1-2arcsin ;‘)r‘r’l] , 4m* > v}
X i , (37.15)

0
\/1 — 4 2 Artanh \/1 - 4’"22], am? < @?
@y @y

which is graphically represented in Fig. 37.2.
This frequency-dependent real part causes a polarization of the quantum vacuum.
This can be seen as follows. Since the action can be expressed according to

1 1
W= 2E2 +w® = 5V / dtE(t)D(1)
1.1 L o
=V / dt / dwdw'E(w)D(w')e™@+e)
2 2

= ;/dwda)’ﬁ‘(a))b(w/ﬁ(w/ + )

= ;V / dwE(w)D(—w)
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Since the frequency-dependent dielectric constant € is given by
D(w) = e¢(w)E(w)

we obtain from (37.14):

5 4m? 2m?
elw)=1+ * [3+ " —(m +1)

3r w? w?
4m? 1-2 oW
» —1-2aresin ), w <2m
X w m

2 2
\/1— o -2Artanh\/1—‘g§, ® > 2m
. 2
For w? < 4m* we can expand arcsin ; and \/ 1
m [0}

arcs'nw—w+l(w)3+3<w)5+
Mom = om T 6 \am) T a0 \om

\/4m2 122 { w? 2m { 1<w)2+1<w>4+
—_ =2m — = — e
w? 4m? w 2 \2m 8 \2m

o o) s G e

from this follows

@=1+ "o (L2 D! (w)2+
e(w) = - -
3w 3740 127 8) \om

o 4 w?

=1
€(@) + 37 5 4m?

(w <2m), €(0)=1.

The approximation used in (37.14) is justified since the frequency for 2m, two rest
masses of the electron, corresponds to w = 2’202 ~ 1.6 x 10?'[Hz], while the
frequency for alternating currents is limited to @ < 10[Hz]. Hence it is completely
hopeless to try to measure the vacuum polarization induced effect in such a high-
frequency experiment. The situation changes completely when we use the same
formulation to compute the contribution to the energy of an electron moving in
a Coulomb field which is modified by the vacuum polarization due to virtual pair
production. Here, the 2.5 ! and 2P ! levels, degenerate by the Dirac theory, are shifted
relative to each other, with the S level lowered. This is the famous Uehling frequency
shift v = 27 mc/s. Together with the much bigger Lamb shift of about 1000 mc/s,
this convincingly demonstrates the importance of the vacuum polarization effect.
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Asymmetric top, 396

Degeneracy
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Canonical with adiabatic approximation, 420
adiabatic theory, 157 Einstein—de Broglie relation, 228
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Equivalence relation, 326
External sources, 211

Fermat’s principle, 12
Feynman propagator, 207, 281
Feynman—Soriau formula, 245, 258
Fixed point
elliptic, 169
hyperbolic, 169
Fourier path, 254
Fractional statistics, 431
Frenet’s formulae, 390
Functional differential equation, 214

Gauge

field, 334

function, 279, 334
Gaussian wave packet, 288
Gauss law constraints, 337
Generating function, 61
Generation functional, 211
Group property for propagators, 209
Gyrophase

invariant, 403

transformation, 403

Hamilton—Jacobi equation, 8, 77, 141
Hamilton’s
characteristic function, 79
principal function, 76
Harmonic oscillator
damped, 73, 85, 96
in N-dimensions, 26
parametric, 407
perturbed, 137, 144
with time-dependent frequency, 122, 128,
259
Hermite polynomials, 286, 293
Homotopy, 325
class, 326
group, 326

Inertial frame, 391
Integrable system, 186

Jacobi
equation, 52, 55, 268, 365
field, 45, 365
6-function, 236

Index

KAM theorem, 144, 175, 177, 194, 197
Kepler problem, 198
Kirkwood gaps, 183

Lagrange multipliers, 19

Landau damping, 172

Large gauge transformations, 336
Lewis—Riesenfeld theory, 273, 417
Libration, 94, 109

Liouville’s theorem, 185

Lorentz equation, 18

Magnetic flux, 381
Map
area preserving, 185
canonical, 185
Maslov
anomaly, 363
index, 361
Mathematical pendulum
perturbative treatment, 139
Matsubara rule, 321
Momentum description, 229
Morse Index theorem, 57, 363

N-dimensional harmonic oscillator
invariant, 26

Newton’s procedure, 176

Nonlinearity parameter, 202

One-loop approximation, 345

Parabolic coordinate, 86
Parallel transport, 391
Particle
creation, 417
in magnetic field, 49, 105, 127
Partition function, 317
Path integral, for
free particle, 223, 269
general quadratic Lagrangian, 239
harmonic oscillator, 241, 255, 269
particle in a box, 231
particle in a circle, 234
particle in a constant force field, 240, 269
Pendulum
cycloid, 97
Foucault, 395
mathematical, 139
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periodically driven, 193
Perturbation series, 144
Perturbation theory, 175
Poincaré-Birkhoff theorem, 203
Poincaré surface of section, 185
Point transformation, 62
Poisson identity, 236

Poisson’s summation formula, 235

Primary resonance, 156
Product of paths, 325
Proper action variable, 104
Proper time, 17

Quantum Hall effect, 431

Reduction to

an equilibrium problem, 60

initial values, 70
Resonances

primary, 168

removal of, 165
Resonant denominators, 172
Rigid body, 396
Rotated frame states, 384
Rotating coordinate system, 66
Rotating number, 186
Runge-Lenz vector, 25

Schrodinger
equation, 250
wave function, 207, 227
Semiclassical
approximation, 299
quantization, 345
Separatrix, 113, 171, 195
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Small divisors, 144, 160, 197
Small gauge transformations, 336
Spectral flow, 357
Standard mapping, 190

generalized, 190
Stationary phase approximation, 312
Stochastic behavior, 194
Stochasticity parameter, 190
Strings, 423
Superconvergent perturbation theory, 175
Superposition principle, 206
Symplectic 2-form, 331

Time-ordering operation, 212
Toda molecule, 114
Topological quantization, 236
Transition amplitude, 206
Twist mapping, 187

radial, 188

Vacuum persistence amplitude, 409
Van-Vleck determinant, 57, 269
Variables

fast, 157, 371

slow, 157, 371
Virial theorem, 26

Winding number, 329
WKB
ansatz, 123
approximation, 299
propagator, 269, 305

¢-function, 320
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