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As regards this little key, it is the key to the
small room at the end of the long passage on
the lower floor. You may open everything,
you may go everywhere, but I forbid you to
enter this little room. And I forbid you so
seriously that if you were indeed to open the
door, I should be so angry that I might do
anything.

La Barbe Bleue, Charles Perrault
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Supervisor’s Foreword I

The information loss paradox in black hole physics has been an outstanding
problem for 40 years, ever since Hawking’s landmark paper titled “Breakdown of
Predictability in Gravitational Collapse” in 1976. There have been many proposals
over the years, ranging from “it is fine for information to be lost” to “information is
recovered at late time via subtle entanglements in the Hawking radiation.” The
debate became even more heated in 2012, when Almheiri, Marolf, Polchinski, and
Sully argued that (under some seemingly reasonable assumptions) if Hawking
radiation contains information, the horizon of a black hole will eventually be
shrouded by a high energy curtain—the “firewall”, which would burn up any
in-falling observer.

In order to track the information content, it is important to understand the
evolution of black holes as they undergo Hawking evaporation. However, the end
state of black hole evaporation is notoriously difficult to study in asymptotically flat
spacetimes. The usual Schwarzschild black hole has a Hawking temperature that
scales inversely proportional to its mass: T / 1=M. Therefore as the black hole
becomes smaller its temperature increases. In addition, curvature also becomes
unbounded as the black hole size shrinks towards zero. If one thinks of general
relativity as an effective field theory, this means that new physics may come in at
some point, and the attempt to understand the end state of the evaporation will
require some knowledge of the new physics, if not the entire mastery of quantum
gravity.

The firewall debate is therefore the sharpest when formulated in the context of a
certain topological black holes in anti-de Sitter space, namely black holes with flat
event horizons; for the curvature at the horizons of these black holes remains small
throughout their entire evolution under Hawking evaporation. More specifically, the
main work in this thesis concerns electrically charged black holes with flat horizons
in anti-de Sitter space, since charged black holes typically have a much longer
lifetime than their neutral counterparts. This is important because Harlow and
Hayden have proposed that firewalls can only be formed if there is enough time for
an external observer to decode the information from the Hawking radiation. With
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their longer lifetimes, charged black holes are therefore a threat to the
Harlow-Hayden proposal to avoid firewalls from ever forming. With careful
mathematical modeling, this thesis demonstrates that such a danger is never actually
realized. On the contrary, these black holes always evolve towards the extremal
limit, and are then destroyed by quantum gravitational effects (a stringy version
of the Schwinger effect that involves brane-pair production). These happen at a
timescale much shorter than the time required to decode Hawking radiation so that
firewalls never set in.

The last part of the thesis deals with a certain gravitational configuration called a
“monster,” which was first proposed by Stephen Hsu and David Reeb in 2007.
A monster is a nonblack hole configuration that has an even higher (in fact, arbi-
trarily large) entropy than the Bekenstein-Hawking entropy of a black hole of the
same mass. The nature of the Bekenstein-Hawking entropy, which is proportional
to the black hole area, is also an open problem; there are two interpretations: the
strong form and the weak form. The strong form interpretation is the most
well-known one—the Bekenstein-Hawking entropy is the maximum entropy a
black hole can have; and the interior degrees of freedom are somehow already
encoded in the area. The weak form, on the other hand, states that the
Bekenstein-Hawking entropy is not sensitive to the interior at all.

In fact, in some proposals that involve black hole remnants or baby universes,
information is never truly lost but is stored inside black holes. Monsters provide the
arena to study super-entropic objects, which could provide better insight into the
nature of black hole entropy and its information content. In this thesis, monsters in
anti-de Sitter space were considered. Such configurations are problematic for the
AdS/CFT correspondence since there will not be enough degrees of freedom on the
boundary to encode the bulk degrees of freedom, due to the fact that monsters can
have arbitrarily large entropy. Fortunately, it was found that brane-pair production
in string theory implies that, at least in the best understood case, such monster
configurations are unlikely to exist.

Taipei, Taiwan Pisin Chen
June 2015
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Foreword II

The past decade has seen a remarkable and unexpected development in the theory
of strongly-coupled systems, particularly in the physics of the Quark-Gluon Plasma
(QGP). The traditional lattice methods continue to be important, in fact ever more
so with increasing computational power; but, for well-known technical reasons,
they have not yet given a completely satisfactory account of all regions of the quark
matter phase diagram. In particular, they encounter serious difficulties when the
baryonic chemical potential μB is large, as it is in some current and many projected
experimental programs involving collisions of heavy ions.

It was therefore of the greatest interest when Witten proposed in 1998 that the
then new methods of gauge-gravity duality might be applied to such systems. In
this theory, the plasma is modeled by a certain conformal field theory defined on the
conformal boundary of certain asymptotically anti-de Sitter spacetimes (the “bulk”).
The bulk physics is described by string theory, but, under certain well-defined
circumstances (the string coupling and the ratio of the string length scale to the AdS
curvature scale L are small) it may be possible to neglect stringy objects, such as
“branes,” in the bulk. In such cases, the bulk can be understood by studying
relatively simple, weakly coupled systems in the bulk, such as electromagnetic
fields around semi-classical black holes. The duality then transforms an intractable
problem in the boundary field theory to a problem in semi-classical general rela-
tivity, where a vast array of sophisticated techniques are available.

Dr. Ong’s thesis reminds us, however, that while it may be consistent to ignore
stringy objects in the bulk, it may not be. In particular, he reminds us that it is not
correct to assume this for asymptotically AdS black holes which are highly charged
(yet still sub-extremal). Such a black hole is a perfectly respectable object in
classical general relativity, but not in string theory: even if one declares that the
bulk is free of branes initially, one finds that, for a sufficiently highly charged black
hole, branes will be produced in the bulk spontaneously, by a sort of generalized
version of Schwinger pair-production. These branes will themselves modify the
black hole geometry, and so the assumed existence of a long-lived black hole of this
sort is ruled out. This is an unusual example of gauge-gravity duality being applied
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in the reverse of the usual direction: for the dual statement is simply that a plasma
cannot be arbitrarily cold; a sufficiently cold plasma will hadronize. (The details are
more complicated than this sketch indicates, since the well-known Hawking-Page
transition must also be taken into account; but the point is that the nonexistence of
very cold AdS black holes is obvious when viewed from the dual standpoint.)

This is very interesting, because in 1990 Hiscock and Weems showed that, at
least in the asymptotically flat case, a charged black hole tends to evolve, under the
effects of Hawking radiation, toward extremality: in other words, it will eventually
find itself in precisely the “highly charged yet still sub-extremal” regime we have
been discussing. Dr. Ong extends this result to the asymptotically AdS case. The
upshot is that while charged black holes are the longest-lived of black holes, they
cannot, in string theory, be arbitrarily old.

In a seminal work, Harlow and Hayden proposed in 2013 that the maximal
possible lifetime of a black hole is a quantity of fundamental importance for
understanding the celebrated Black Hole Information Problem: that is, the question
as to whether Hawking radiation violates unitarity. Harlow and Hayden argue that,
in order for Hawking radiation to carry information, it must be decoded; however,
the time required for this is truly enormous, even by the standards of black hole
evaporation. In view of the above discussion, one suspects that even the most
long-lived of black holes, those which are charged, will completely evaporate long
before their Hawking radiation can be decoded, and this indeed is what Harlow and
Hayden assert.

The above ideas are presented by Harlow and Hayden in a more-or-less pro-
grammatic manner. Dr. Ong’s thesis shows in detail precisely how this program can
in fact be realized. It turns out that fleshing out this program is highly nontrivial,
and that it works in a somewhat unexpected manner.

These are remarkable and important findings, whether or not they actually
resolve the much debated “firewalls” of Almheiri et al. If, as Susskind has argued,
information theory is basic to understanding the behavior of black holes, then surely
the fact that Hawking radiation cannot actually be decoded will play a fundamental
role in the future work.

The key observation here is that one must take into account the geometry of the
bulk. The introduction of electric charge into the bulk changes its geometry, and the
extended objects (such as branes) of string theory are directly sensitive to this
geometry: it affects the relationship between brane areas and volumes in a way that,
as Dr. Ong explains, is absolutely decisive. His call to “take geometry seriously” is
thus exemplified in the strongest possible terms.

Singapore Brett McInnes
June 2015
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Preface

Beginnings are always troublesome.—George Eliot

This thesis was written during my last year at the Leung Center for Cosmology and
Particle Astrophysics (LeCosPA), National Taiwan University, Taipei. I always
knew I wanted to write a thesis about black holes, since I have always been interested
in them. The problem was finding a topic that would be sufficiently interesting as a
thesis, instead of merely as a journal publication. Perhaps I am somewhat
old-fashioned in this regard, but I am quite adamant that a thesis should be a
scholastic work that not only consists of new results, but is also a reasonably
self-contained, good introduction to the field, with digested insights of the author
over his or her many years of study. This is what I have striven to do, although
perhaps far from perfect, despite further improvements incorporated for the published
version with Springer (which include the addition of a new chapter and appendices).

The subject matter for my thesis was finally settled when I attended the Strings
2012 conference in München, Germany. “Strings” is a yearly conference for the
string theory community, and I thought it might be a good idea to attend one of these
just for the experience, even though I am not a string theorist. Raphael Bousso was
asked to give a special talk1 during the conference to explain firewalls—which was
very recently proposed back then—to the perplexed participants. I was rather
intrigued, but was only finally convinced by Brett McInnes, my Masters thesis
supervisor, that this topic would be suitable as a Ph.D. thesis.

I hope that I am able to convey the mysteries and the beauty of black holes to the
reader, and that he or she will be at least sufficiently intrigued to continue reading
the subsequent pages. I also hope that other researchers who would like to get into
this field of research will benefit from this thesis-turned-monograph, and its many
references at the back.

1The talk is available on the conference website: http://www.theorie.physik.uni-muenchen.de/
videos/strings2012/bousso/index.html.
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As a Ph.D. thesis, most of the content assumes some proficiency with graduate
level physics and mathematics. I will assume the reader to have a good background
in basic quantum mechanics, differential geometry, differential equations, and
topology. By basic I mean, specifically, knowledge of

(1) Quantum Mechanics At the level of a typical first undergraduate course; but
actually not much is required beyond knowing basic concepts such as the
wave function, state vectors jψi, quantum operators, unitarity, and the prin-
ciple of superposition.

(2) Differential Geometry Enough to understand what a Riemann curvature
tensor, a Ricci tensor, and a scalar curvature are. This means a typical first
course in Riemannian geometry, which is taught in most universities at the
graduate level. A prior knowledge of differential geometry of curves and
surfaces embedded in R

3 is helpful but not required.
(3) Differential Equations Very basic knowledge about differential equations—

most equations we will be solving are just linear ordinary differential equa-
tions. Some knowledge of partial differential equations is required to
appreciate the Einstein Field Equations, but we will not really solve the field
equations, so this requirement can be relaxed.

(4) Topology A typical first course of topology is sufficient. In particular, one
should understand basic concepts such as compactness and orientability. At
one point the concept of covering space will be needed, but this can be safely
skipped on first reading.

Some knowledge of general relativity and quantum field theory would be
helpful, but is not necessary to understand this thesis, provided the readers are
willing to take the results for granted without proofs. Even the aforementioned
assumed background items (1)–(4) are not really necessary if, e.g., one is willing to
take terms like “curvature” at superficial level without getting into its technical
definitions. Relevant chapters and appendices had been added to provide some
background to the readers. These are, unfortunately, necessarily brief, and may not
help someone with zero knowledge in the subjects. They would, however, be
hopefully sufficient to allow physicists in other fields (and students with sufficient
mathematical maturity) to appreciate much of this thesis.

The first chapter of this work is meant to be an introduction to the thesis, and is
at least partially aimed at a wider audience that may not necessarily have had
physics training beyond that of their high school education. The second chapter,
which is newly added for this Springer Theses publication, is a quick summary of
general relativity. The anti-de Sitter (AdS) spacetime is introduced in some detail.
This will be useful for physicists who are not experts in the field. In addition, it also
contains some—perhaps biased—opinions of the author about what general rela-
tivity is about, as well as subtleties of the theory that are not more widely recog-
nized or appreciated. Some discussions are more philosophical than what one may
find in a typical physics text, but after all, the “P” in a Ph.D. does stand for
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philosophiae, and it would be fitting to include some philosophical thoughts in a
Ph.D. thesis.

In Chap. 3, we discuss the much celebrated positive mass theorem in mathe-
matical relativity, stability of gravitational configurations, and phase transitions
between them. In particular, the famous Hawking-Page phase transition is explained
in detail. Some parts of this chapter require a good background knowledge of real
analysis, but these parts can be skipped without affecting the understanding of the
rest of the thesis. This chapter provides the background for some arguments we will
use in the later chapters. However, by itself, Chap. 3 is also a nice glimpse into
mathematical relativity—a huge effort from mathematicians to give general rela-
tivity the rigorous treatment it deserves.

The main parts of the thesis are in Chaps. 4 and 5. We investigate the
Harlow-Hayden conjecture (that it takes a vastly longer time to decode Hawking
radiation than the lifetime of a black hole) in the context of charged black holes
with flat event horizons in AdS spacetime. This is motivated by the fact that in the
application of the anti-de Sitter/conformal field theory (AdS/CFT) correspondence,
such black holes are dual to a field theory that behaves very much like a
Quark-Gluon Plasma (QGP), and are thus arguably the most well-understood
“quantum gravity system”, especially where charged black holes are concerned.

It is essential to study charged black holes because even neutral black holes
inevitably pick up electrical charges as they evaporate (as long as the theory admits
charged particles). By modeling Hawking evaporation using an extension of the
Hiscock and Weems analysis, we show that charged, flat black holes inevitably
evolve toward the extremal limit, and are destroyed either by brane-pair production
induced by the Seiberg-Witten instability, or by a phase transition into a type of
soliton. The lifetime of such black holes is thus cut short, as Harlow and Hayden
require, in order to evade the firewall argument.

Lastly in Chap. 6, we also investigate the possibility that black holes can store a
huge amount of information behind their horizon. Since black holes are formed
from gravitational collapse, it would be interesting to see if non-black hole con-
figurations can have arbitrarily large volumes bounded by finite horizon areas. Such
a “monster,” if it exists, could be the stage that leads to a black hole with arbitrarily
large statistical entropies, far beyond the bound set by the Bekenstein-Hawking
entropy of the black hole with the same mass. Again, by investigating the issue in
AdS spacetimes, we found that monsters most probably do not exist in quantum
gravity. This suggests—although it does not prove—that black holes formed from
collapse do not have arbitrarily large statistical entropies. However, this does not
mean that black holes cannot have large interiors.

The thesis concludes with an epilogue that discusses the current state of the
firewall controversy, and what else can be done to further understand this topic.
Several useful appendices are provided at the end.

Readers are warned that, in a work of this length, it is unlikely to be free of
mistakes despite rounds of proofreading.
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The original version of the book frontmatter was
revised: New contents have been replaced.
The erratum to the book frontmatter is available
at 10.1007/978-3-662-48270-4_7
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Notations & Conventions

The Lord said, “If as one people speaking the same language they have begun to do this,
then nothing they plan to do will be impossible for them. Come, let us go down and confuse
their language so they will not understand each other.”

Genesis 11: 6–7.

In this thesis, a spacetime refers to any connected time-orientable Lorentzian
manifold (thus, Hausdorff, second-countable, and furnished with a complete atlas)
that satisfies the Einstein field equations (possibily with a cosmological constant).
The signature of the metric is mostly plus, i.e., in four dimensions it will be
ð�; þ ; þ ; þÞ. An ðnþ 1Þ-dimensional Minkowski spacetime is denoted by R

n;1.
In local coordinate charts, spacetime indices are labeled by the beginning Latin

letters a; b; c; � � �f g, while spatial indices are labeled by the middle Latin letters
i; j; k; � � �f g. If the metric is Riemannian, i.e., with signature ðþ ; þ ; þ ; þÞ, then

no distinction is made between these two labels. The AdS length scale L is
important and thus will not be set to unity.

With the exception of several instances, we use the units in which Newton’s
gravitational constant G, the speed of light c, and the Boltzmann constant kB, are all
set to unity, but the reduced Planck constant �h is not, so that we know which
quantities involve quantum effects. (This differs from the Planck units, in which �h is
also set to unity.) Thus, �h ¼ �hG=c3 � 2:61� 10�66cm2. The symbol M� denotes a
solar mass, which is equivalent to 1:9891� 1030 kilograms. In our choice of unit,
M� ¼ M�G=c2 � 1:5 km.

Whenever exceptions are made they will be mentioned explicitly to avoid
possible confusion. Electrical charges follow the Gaussian units, so that with
G ¼ c ¼ 1, the mass M and the charge Q both have the dimension of length. In
Chap. 5, however, we use the Lorentz-Heaviside units, so that in place of Q in
Gaussian units, we have instead Q=

ffiffiffiffiffiffi

4π
p

.
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The symbol “A:=RHS” means A is defined by the expression on the right-hand
side, whereas “LHS=:B” means that B is defined by the expression on the left-hand
side of the equation.

Boxes are used to emphasize the important equations and main conclusions. It is
also used for additional information or a discussion that deviates somewhat from
the main text.
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Chapter 1
A Century of Black Hole Physics:
From Classical Geometry to Hawking
Radiation and the Firewall Controversy

“All right,” said the Cat; and this time it vanished quite slowly,
beginning with the end of the tail, and ending with the grin,
which remained some time after the rest of it had gone.
“Well! I’ve often seen a cat without a grin,” thought Alice; “but
a grin without a cat! It’s the most curious thing I ever saw in my
life!”

Alice in Wonderland, Lewis Carroll

This introductory chapter aims to provide a history of the field, from the early days
when Einstein first formulated his general theory of relativity, and discoveries of
black hole solutions in the theory, to the later debates about the as yet unresolved
information loss paradox and the firewall controversy today. Most of this chapter
is written in the style of a semipopular science article. The aim is to convey, at
least partially, the results of this thesis to a wider audience, who are not necessarily
trained in physics beyond that of their high school education. The use of equations
will be kept to a minimum (some equations are included since they represent major
milestones in the history of black hole physics; these will be further elaborated on
in Chap.2). Some technical statements are provided in footnotes and boxes.

1.1 The Mathematical Discovery of Black Holes

But the creative principle resides in mathematics. In a certain sense, therefore, I hold it true
that pure thought can grasp reality, as the ancients dreamed.

–Albert Einstein

Black holes, regionswith a gravitational field so strong1 that even light cannot escape,
have always been an intriguing subject in the field of physics and astronomy. Perhaps

1Strictly speaking, this is not a correct statement. For a sufficiently large black hole, one does not
feel much tidal force at the event horizon. It is the curvature of spacetime around a black hole that
is warped in such a way as to prevent anything from escaping.
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2 1 A Century of Black Hole Physics …

the reason that the general public are fascinated by the idea of black holes is that it
sounds like science fiction, yet black holes are supposedly real objects that exist in
our universe. In certain ways, black holes seem to blur our boundaries between what
qualifies as reality and what constitutes fantasy (perhaps the same reason why we
are so fascinated by dinosaurs). These mysterious objects are at the very edge of our
understanding of physics, and the attempts to understand them will no doubt push
that limit further out, allowing us a glimpse into some of Nature’s best kept secrets
about gravity. The story of black holes dates back to the very early days of general
relativity.

A letter dated December 22, 1915 from the German physicist and astronomer
Karl Schwarzschild surprised Albert Einstein with an exact solution of general rel-
ativity. This after all, happened in the same year that Einstein had just published his
ground breaking work on general relativity [1] that describes gravity as the effect of
curvature in the fabric of spacetime geometry, a 4-dimensional picture that unifies
space and time into a single framework. The equations of general relativity are so
complicated that Einstein did not expect an exact solution to be found so soon. He
himself had resorted to approximate solutions in deriving the three classic tests of
general relativity—the perihelion motion of planet Mercury, the bending of light in
the vicinity of the Sun [2], and the gravitational redshift.2 Yet Schwarzschild was
able to find an exact solution while serving in the German army during World War I.
Unfortunately, Schwarzschild passed away the following year, having contracted an
autoimmune disease on the Russian front.

The complicated Einstein field equations

Rab − 1

2
gab R = 8πG

c4
Tab (1.1)

consist of a coupled system of 10 partial differential equations. The left-hand side
describes the geometry of spacetime, while the right-hand side describes the distrib-
ution of mass and energy. That is, it describes how mass and energy curve spacetime
and thus give rise to gravity, and conversely howmass and energy behave in a curved
spacetime.3 If there is nomatter field but only gravity, then the right-hand side is zero,
and these are known as the vacuum Einstein field equations. Even in vacuum, gravity
itself carries energy and thus there can be nontrivial solutions to the equations. This
is what Schwarzschild sought and found.

It is common in general relativity to use the units in which Newton’s constant G
and speed of light c are set to one. The famous Schwarzschild solution [6] then reads,

2General relativity has been tested again and again throughout the century, and passed with flying
colors. Together with its underlying intricate geometric foundation and healthy causal structure,
general relativity deserves the title “the most beautiful theory in physics” [3, 4].
3In John Wheeler’s now famous words [5], “spacetime tells matter how to move; matter tells
spacetime how to curve.”
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g[Sch] = −
(
1 − 2M

r

)
dt2 +

(
1 − 2M

r

)−1

dr2 + r2
(
dθ2 + sin2 θdφ2

)
. (1.2)

Like the Pythagorean theorem ds2 = dx2 + dy2 one learned in high school,
which describes distance on a flat plane, the Schwarzschild solution describes a
4-dimensional geometry curved by the presence of a spherical body of mass M .
We call g or ds2 the metric tensor, or simply the metric (or the line element). The
Schwarzschild metric describes a black hole with an event horizon at the Schwarz-
schild radius r = 2G M/c2 = 2M . (The term “black hole” was not introduced until
much later by John Wheeler in 1967 during a lecture in New York City.4 It is inter-
esting to note that “Schwarzschild” means “black shield” in German.) This is the
surface below which one can no longer escape from the black hole. For this we can
calculate that, e.g., if one were to collapse the entire Sun into a sphere with about a
3km radius, then it would collapse and form a black hole. It is interesting to point out
that this particular form of the metric is not actually due to Schwarzschild, but Droste
[8], a student of the famous Hendrik Lorentz, in the same month that Schwarzschild
passed away.

The fact that the Schwarzschild solution becomes undefined at r = 2M , due
to a division by zero in the metric, was soon noticed.5 The technical jargon is that
r = 2M is a singularity—and of course, so is r = 0. Nevertheless physicists were
not worried; at least not in the beginning. For astrophysical bodies, the event horizon
corresponds to such a small radius that it lies inside a star, and so does not satisfy the
vacuum assumption that was used to derive the Schwarzschild solution in the first
place. Therefore, it does not seem like the event horizon is of any physical concern—
remember that this was in the days in which drastic gravitational collapse of a star
was still very unimaginable, and even the concept of white dwarf star was still about
a decade away.6 At the purely mathematical level however, the nature of the r = 2M
surface was in a state of grave confusion. Einstein, Arthur Eddington, and even the
great mathematician David Hilbert, all mistakenly thought that the event horizon
is a physical, impenetrable barrier. Eddington, for example, wrote that: “There is a
magic circle which no measurement can bring us inside” [11]. Light rays also get
bent around black holes. See Fig. 1.1.

4Wheeler did not actually invent the term. It was suggested to him a fewweeks earlier during another
lecture. A member of the audience suggested it after he presumably got tired of hearing Wheeler
repeatedly saying “gravitationally completely collapsed object.” Also, the term goes a couple of
years back at least—Science News Letter used the term “black hole” already in January 1964 [7].
Half a century later, it is no longer clear who actually first coined the phrase. Wheeler of course
deserves the credit for he popularized its usage.
5The peculiar property of the event horizon is not obvious in the original coordinates employed
by Schwarzschild [6]. He had followed Einstein’s idea that coordinate system that satisfies the
“unimodular condition” det (g) = −1 is somehow better.
6It was only in 1939 that Robert Oppenheimer and Hartland Snyder showed the collapse of a
pressureless homogeneous fluid sphere does lead to the formation of a black hole [9]. The suspicion
that even in a complete vacuum, a sufficiently strong gravitational field (in the form of a gravitational
wave) can form black holes was only proved in 2008 by Christodoulou [10].
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Fig. 1.1 Some light ray trajectories near a Schwarzschild black hole (not to scale). A similar
diagram appeared already in the work of Hilbert [12]. Any light ray that come in beyond r = 3

√
3M

may be deflected but not captured. (Light rays that come in from infinity with impact parameter
b = 3

√
3M will enter the photon orbit exactly.) Also notice that, as Hilbert already calculated, in

the Schwarzschild geometry a light ray can orbit a black hole at r = 3M (shown in red). In principle
then, you can see the back of your own head if you stay on the photon orbit, but this probably does
not happen in a realistic situation since the orbit is unstable. The photon orbit will appear again
later in this thesis

It was not until much later that the nature of the singularity at r = 2M was
recognized to be very different from that of r = 0. By changing the coordinate
system, it is possible to remove the singularity at r = 2M , but this cannot be done
for r = 0. Since physics should not depend on the choice of man-made coordinates,
it follows that the singularity at the event horizon is just an artifact, a so-called
“coordinate singularity,” due to a bad choice of coordinate systems. This is similar
to the fact that despite latitude and longitude systems becoming degenerate at the
North and South Poles, it does not mean there is anything special with the poles. The
r = 0 singularity however is real7; it is a sign that the theory breaks down there.
The confusion regarding the singularity at r = 2M was more or less settled by the
classic work of Martin Kruskal in 1960 [13], although it seems that Wheeler had to
convince him to actually publish his result [14]. It is not clear why it took so long to
understand that the event horizon is not a special place. For a very large black hole,
the tidal force can be negligible at the horizon, and an infalling observer will not feel
anything out of the ordinary. That is, the event horizon is not a physical surface, only
a mathematical one.8

7Technically, we can check that the scalar quantity called theKretschmann scalar, K = Rabcd Rabcd ,
is finite at the horizon, but is infinite at r = 0.
8As pointed out in [14], Georges Lemaître, among others, already pointed out that a coordinate
change can remove the r = 2M singularity back in 1933. Somehow the results were either ignored
or forgotten.



1.1 The Mathematical Discovery of Black Holes 5

Nevertheless, the event horizon prevents exterior observers from ever glimpsing
the interior of a black hole. All the stuff that a star consisted of before collapsing into
a black hole, has disappeared from view. John Archibald Wheeler once remarked
that [15],

The Cheshire cat in ‘Alice in Wonderland’ faded away leaving behind only its grin. A star
that falls into an already existing black hole, or that collapses to make a new black hole, fades
away. Of the star, of its matter and of its sunspots and solar prominences, all trace disappears.
There remains behind only gravitational attraction, the attraction of disembodied mass.

A few years after Schwarzschild’s discovery, the German aeronautical engineer
Reissner [16] and the Finnish physicist Nordström [17] independently solved the
Einstein–Maxwell field equations for charged spherically symmetric systems, in
1916 and 1918, respectively. In other words, they found an exact solution that
describes a charged black hole. In addition to the mass M , the solution is also
characterized by electrical charge Q:

g[RN] = −
(
1 − 2M

r
+ Q2

r2

)
dt2+

(
1 − 2M

r
+ Q2

r2

)−1

dr2+r2(dθ2+sin2 θdφ2).

(1.3)

This solution is not of astrophysical interest, since charged black holes in a realistic
environment will quickly attract opposite charges from the surroundings and as a
consequence the charges will be neutralized. However, as we shall see, the role of
charged black holes is a theoretical one—it may even hold the key to resolving some
paradoxes concerning black hole physics. Until then, however, let us put aside the
Reissner–Nordström black hole and continue our story.

Both the Schwarzschild and Reissner–Nordström black holes are nonrotating.
However we know that in the real universe, stars have angular momentum. Since
angular momentum is conserved, we expect that after the star collapses, the final
black hole should also be rotating—and in fact, rotating furiously, just like an ice
skater rotates at a faster rate when she draws her arms closer to her body. Therefore,
a realistic black hole solution should have angular momentum.9 The quest for such a
solution turned out to be extremely difficult, and was only achieved in 1963 by Kerr
[18, 19]. The solution, in the so-called Boyer–Lindquist coordinates [20], reads [21]

g[Kerr] = −
[
1 − 2Mr

r2 + a2 cos2 θ

]
dt2 − 4Mra sin2 θ

r2 + a2 cos2 θ
dtdφ +

[
r2 + a2 cos2 θ

r2 − 2Mr + a2

]
dr2

+ (
r2 + a2 cos2 θ

)
dθ2 +

[
r2 + a2 + 2Mra2 sin2 θ

r2 + a2 cos2 θ

]
sin2 θdφ2. (1.4)

9In realistic stellar collapse, some amounts of angular momentum can be lost due to shredding of
mass prior to a complete gravitational collapse.
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In addition to the mass M , there is an additional parameter a that is related to
the angular momentum J by J = aMc. Note that setting a = 0 recovers the
Schwarzschild solution. This is the beginning of the era now known as the Golden
Age of Black Hole Physics, which spans the 10year period from 1963 to 1973.

It is possible to describe a rotating black hole with electrical charge. The solution
is known as the Kerr–Newman black hole [22, 23], after the American physicist
Ezra Ted Newman. As we mentioned before, charged black holes are not considered
physical,10 and so astrophysical black holes are mainly Kerr. Indeed, Subrahmanyan
Chandrasekhar once remarked in 1975 that [24]

In my entire scientific life (...) the most shattering experience has been the realization that an
exact solution of Einstein’s equations of general relativity, discovered by the New Zealand
mathematician Roy Kerr, provides the absolutely exact representation of untold numbers
of massive black holes that populate the Universe. This “shuddering before the beautiful,”
this incredible fact that a discovery motivated by a search after the beautiful in mathematics
should find its exact replica in Nature, persuades me to say that beauty is that to which the
human mind responds at its deepest and most profound.

How do we know that we have exhausted all the possibilities? Might there not
be another rotating black hole solution? Surprisingly, the answer is no. We know all
asymptotically flat stationary black hole solutions of Einstein’s vacuum equations,
there can be no more—assuming Einstein’s theory is indeed correct, and there are
no other fields other than Maxwell’s!

In practice,11 “stationary”means that there exists a coordinate system such that the
metric is time translational invariant (unchanged under t �−→ t +a, a ∈ R). “Static”
means there exists a coordinate system such that the metric is time translational
invariant and time reflection invariant (unchanged under t �−→ −t). For example, for
the Schwarzschild solution, the components of the metric are time-independent (and
so the metric is trivially time translational invariant) and furthermore by replacing t
by−t , the metric remains the same. However, for the Kerr black hole, because of the
cross term dtdφ, the component of the cross term picks up a minus sign under time
reflection—the black hole rotates in the opposite direction. So a Kerr black hole is
stationary but not static. Note that a static spacetime is necessarily stationary.

It is extremely important to take note of the phrase “there exist coordinates such
that...,” because even for the Schwarzschild geometry, one could have a metric that
involves a cross term between dr and dt, where the time coordinate t is not the
Schwarzschild’s time t , so that the metric is not invariant under time reflection t �→
−t. A particular example is the Painlevé–Gullstrandmetric [25, 26], which covers the
interior of the black hole, smoothly joined with the exterior—again, nothing special
at the event horizon!.

10This is however not entirely a fair statement. It is true that astrophysical black holes tend to
discharge fairly quickly, but surely it is not difficult to find black holes with sufficiently low charge.
11In precise mathematical language, a spacetime is stationary if it admits a timelike Killing vector
field, and is static if it admits a hypersurface-orthogonal timelike Killing vector field.
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Back in 1923, Birkhoff [27] proved that a spherically symmetric vacuum space-
time must be locally Schwarzschild.12 The theorem was actually proved indepen-
dently 2years earlier by the Norwegian physicist, Jebsen [28]. In 1967,Werner Israel
was able to show that a static black hole solution in a vacuum necessarily implies
that the black hole must be spherically symmetric, and therefore, agrees with the
Schwarzschild solution [29]. This is the beginning of a series of works by numerous
authors, that finally lead to the so-called no-hair theorem [30, 31]—the statement
that in general relativity, the Kerr–Newman solution is the most general stationary
black hole solution (see [32] for a comprehensive treatment). That is, black holes
can be fully specified by only three parameters: mass M , charge Q, and angular
momentum J.

The detailed analysis of Richard Price in 1972 [33] showed that “anything that
can be radiated away is radiated away completely”,13 and gives an explanation of
how the no-hair theorem arises.

Actually the no-hair “theorem” has not been proved in all generality (i.e., math-
ematically it is really a conjecture14). Furthermore, in the presence of some matter
fields, or in higher dimensions, the no-hair theorem is not necessarily true [39].
Recently it was also argued that rotating black holes can have “short bristles”—
extremely short-range stationary scalar configurations (linearized scalar “clouds”)
in their exterior regions [40]. (For a recent review on no-hair theorem in the context
of black holes with scalar hair, see [41, 42].) Nevertheless, the general spirit remains
largely true—black holes tend to be very simple objects with not many parameters
to describe their internal states. One may suspect that the no-hair theorem is purely
academic and does not hold in astrophysical systems, with black holes that are not
isolated from the stellar environment. This, however, does not appear to be the case
[43, 44], at least in the nonrotating case. Black holes are that simple!

12Note that the usual statement one finds in many textbooks and literature reads “stationary spher-
ically symmetric vacuum spacetime must be static.” This is at best misleading. The correct math-
ematical statement of Birkhoff’s theorem is: any spherically symmetric spacetime satisfying the
Einstein vacuum field equations must have an extra Killing vector field V, in addition to the three
Killing vector fields we already have from spherical symmetry. There is no requirement that V has
to be timelike. In the interior of a Schwarzschild black hole, V is in fact spacelike, and therefore
the interior spacetime is not static.
13Technically, the theorem says that all multipole moments of the asymmetric body are radiated
away in the form of gravitational (and/or electromagnetic) waves.Mass, electric charge, and angular
momentum are protected due to the fact that these are (geometrically) conserved quantities.
14Even in the case without an electric field, the proof (Hawking–Carter–Robinson’s theorem [34–
36]) that the Kerr solution is unique requires additional assumptions that do not seem to be physical,
e.g., that the spacetime is real-analytic, a stronger condition than just being smooth. Recent advance-
ments in the field include proving uniqueness without the analyticity assumption, provided that a
scalar identity is assumed to be satisfied on the bifurcation 2-sphere (Ionescu–Klainerman [37]),
and proving uniqueness without the analyticity condition assuming that the spacetime is, in some
technical sense, “close” to being Kerr (Alexakis–Ionescu–Klainerman [38]).
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In view of the No-Hair Theorem, one could start with very different initial con-
ditions and collapse them into indistinguishable black holes. A hydrogen cloud can
collapse into a black hole of mass M , but so can a helium cloud, or anything else as
long as they have the same total mass. A great deal of information is lost from the
outside region once the event horizon is formed. We can no longer deduce, just by
looking at the black hole alone, what was the initial material that formed the black
hole. This, as we shall eventually see, will lead to a deep puzzle that still troubles
many physicists today.

Box 1.1: Newtonian Analogue of Black Hole

Although black hole is a concept tied to Einstein’s general relativity, a similar
concept actually dated back to the eighteenth century. A geologist John Michell
wrote to Henry Cavendish in 1783, in which he discussed the possibility that a
star is so massive that light cannot escape its gravitational pull, and therefore the
most massive stars in the universe would be completely invisible. The mathe-
matician Pierre-Simon Laplace proposed the same idea independently in 1796,
in the earlier edition of his book Exposition du système du Monde.

The calculation performed was simple: assuming that light is a particle with
mass m, its kinetic energy is mc2/2, where c is the speed of light. The gravita-
tional potential experienced by the particle is −G Mm/r . In order to escape the
gravitational pull with escape velocity c, the particle must satisfy the equation

mc2

2
= G Mm

r
, (1.5)

which yields

r = 2G M

c2
. (1.6)

This is the same expression as the Schwarzschild radius. This is an accident;
the derivation is in fact not correct since it applies Newtonian physics (which
is only applicable to particles with velocity much less than the speed of light)
outside its regime of validity.

Indeed, such “dark stars” behave very differently from black holes. Namely,
just like one can throw a ball into the air on Earth with speed less than that
of escape velocity, light can leave the surface of a dark star—it just has to fall
back down. As such, one could intercept the light before it falls back onto the
surface and thus see the “dark” star. On the other hand, light cannot leave the
event horizon of the black hole at all. Such “dark star” should not be confused
with the more recent proposal of massive stars in the early universe with dark
matter cores [45, 46]—the latter “dark stars” actually shine.
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1.2 The Thermodynamics of Black Holes

Thermodynamics is a funny subject. The first time you go through it, you don’t understand
it at all. The second time you go through it, you think you understand it, except for one or
two small points. The third time you go through it, you know you don’t understand it, but
by that time you are so used to it, it doesn’t bother you any more.

–Arnold Sommerfeld

In 1972, the English physicist Stephen Hawking proved that, assuming the weak
energy condition,15 the area of a black hole’s event horizon cannot decrease [48].
This may seem obvious since things can fall into the black hole yet nothing can come
out, and so black holes can only grow. However, the theorem says something more
than that. For example, it explains why a black hole is stable and cannot split into
two smaller black holes—the resulting two black holes would together have smaller
area than the original hole.

Together with James Bardeen and Brandon Carter, Stephen Hawking proved that
including the area increasing law, black holes obey the so-called “Four Laws of Black
Hole Mechanics” [49]. Except for the first law,16 all these laws depend on some kind
of energy conditions [47].

(0) The Zeroth Law The horizon of a stationary black hole has constant surface
gravity.

(1) The First Law The change in the mass of a black hole is given by

dM = κ

8π
dA + � dJ + � dQ, (1.7)

where M is the mass, A is the horizon area, � is the angular velocity, J is the
angular momentum, � is the electrostatic potential, κ is the surface gravity, and
Q is the electric charge.

(2) The Second Law The horizon area is a nondecreasing function of time.
(3) The Third Law It is not possible for any process to reduce the surface gravity of

a black hole to zero with finite number of operations.

This bears uncanny resemblance to the four laws of thermodynamics. This was the
first time that black hole physics made a connection to thermodynamics, the branch

15In general relativity, the theory becomes trivial if we do not specify some conditions for the
matter field, since given any Tab, one can always in principle find the corresponding metric gab
that solves the Einstein field equations. Various energy conditions are thus devised to specify how
“physically reasonable” matter fields should behave. The weak energy condition stipulates that for
every timelike vector field V , the matter density observed by a local observer is always nonnegative,
i.e., ρ := TabV a V b � 0. For a recent review on energy conditions, see [47].
16The first law does depend on the Dominant Energy Condition (DEC) in the sense that the proof
requires the 0th law, which requires the DEC. However a weaker form of the 0th law exists without
energy conditions; it is just the geometric statement that a “sufficiently regular” (a condition which
may not hold for all black holes) Killing horizon must be a bifurcation surface, and the surface
gravity will be constant. If one assumes this weaker 0th law, then the 1st law can be derived without
assuming energy conditions. See [47] for further discussions.
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of physics that is traditionally concerned with heat and temperature and their relation
to energy and work. The four laws are:

(0) The Zeroth Law The temperature of a system in thermal equilibrium is constant.
(1) The First Law The change in the energy of a system is given by

dE = T dS + dW, (1.8)

where E is the energy of the system, T its temperature, S its entropy and W the
work done on the system.

(2) The Second Law The entropy of any isolated system cannot decrease.
(3) The Third Law It is impossible for any process to reduce the entropy of a system

to its absolute-zero value in a finite number of operations.

Nevertheless, Hawking et al. [49] wrote explicitly in their paper that:

It can be seen that
κ

8π
is analogous to temperature in the same way that A is analogous to

entropy. It should however be emphasized that
κ

8π
and A are distinct from the temperature

and entropy of the black hole. In fact the effective temperature of a black hole is absolute
zero.

In other words, they thought that the laws of black hole mechanics is at best only
formally similar to that of thermodynamics. Despite the similarity, since black holes
have zero temperature, it cannot have a real finite entropy. That is, if [κ/(8π)]dA =
T dS, then this implies that for finite surface gravity κ, and zero temperature T , we
must have formally infinite entropy S, yet the area A is clearly finite, and thus does
not measure the entropy.

Soon after,Mexican–Israeli physicist JacobBekenstein suggested that black holes
do have an entropy proportional to their surface area [50]. Entropy is in some sense,
themeasure of disorder, and just like a room always becomesmessier in time, entropy
almost always—except for an occasional thermal fluctuation that lowers its value—
goes up. This is known as the Second Law of Thermodynamics.

Bekenstein noticed that just by throwing stuff into a black hole, the Second Law
gets into trouble. Imagine that you can throw a messy room into a black hole, then
the total entropy of the Universe seems to go down since that messiness disappeared
into the abyss—unless of course, the horizon of the black hole has entropy! Then,
as one throws stuff into a black hole, its mass increases, which in turn increases its
horizon area, and thus also entropy. Overall, the entropy of the entire system is still
nondecreasing. In addition, this is consistent with Hawking’s result that like entropy,
the horizon area of a black hole cannot decrease.17 The proposal of Bekenstein

17Note that there is still a crucial difference here that is not always mentioned—the Second Law
of Thermodynamics turns out to be a statistical law (a priori thermodynamics makes sense without
statistical mechanics at its foundation); entropy can and does occasionally go down due to fluc-
tuations. On the other hand, the area law of a black hole horizon is strictly geometrical; the area
cannot (classically) “fluctuate” downward. This only becomes consistent if one takes into account
the fact that quantum mechanically the energy conditions may not hold, and so the area may indeed
fluctuate downward.
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therefore rescues the Second Law of Thermodynamics. In addition, by the no-hair
theorem, there are many possible internal states corresponding to a given black hole.
This is similar to situations in thermodynamics in which many internal microstates
of a system are all compatible with the one observed macrostate. In the latter case,
entropy is a measure of the degeneracy. This provides another motivation to assign
some concept of entropy to black holes. Bekenstein proposed that a black hole has
entropy of the form (perhaps proportional to), in conventional units,

S = A

4

ln(2)kBc3

2G�
, (1.9)

where kB is the Boltzmann factor, and � is the (reduced) Planck constant. Quantum
mechanics has therefore made an appearance in black hole physics.

General relativity, which until then, was only an arena of differential geometry and
partial differential equations, now started to embrace Hilbert spaces with Hermitian
operators.

1.3 Hawking Radiation: Black Holes Are not so Black

Once we have bitten the quantum apple, our loss of innocence is permanent.

–Ramamurti Shankar, “Principles of Quantum Mechanics.”

Hawking did not agree with Bekenstein’s proposal since, as we have just seen, there
is no sense that a zero temperature black hole should have a finite entropy. Indeed,
Bekenstein did write down an expression for the “temperature” of the black hole, but
he was (perhaps overly) careful to remark that [50]

But we emphasize that one should not regard TBH as the temperature of the black hole; such
an identification can easily lead to all sorts of paradoxes, and is thus not useful.

Setting out to investigate the issue further,18 Hawking was surprised to find that if
one takes quantum physics into serious consideration, then black holes do in fact
emit radiation [52, 53] in a thermal spectrum, and so the idea of black holes having
entropy does make sense after all! The particles emitted are now called Hawking
radiation.

Hawking proved that the correct temperature that an asymptotic observer (for-
mally, this refers to an observer situated infinitely far away) would measure of a
Schwarzschild black hole is, in conventional units,

TBH = �c3

8πGkB M
. (1.10)

18For a more detailed history, see [51].
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The correct associated entropy, which only differs slightly from Bekenstein original
proposal, is called the Bekenstein–Hawking entropy,

SBH = A

4

kBc3

G�
. (1.11)

As with many phenomena (e.g., the ultraviolet (Rayleigh–Jeans) catastrophe of ther-
modynamics), quantumphysics provides a cutoff so that a classically infinite quantity,
like the entropy, becomes finite. Indeed setting � → 0, one recovers the classical
result of infinite entropy and zero temperature.19 It therefore appears that black holes
have connected geometry (gravity) with thermodynamics and quantum mechanics,
what a surprise!

The cartoon picture of Hawking radiation is as follows: In quantum field theory,
there is no such thing as a true vacuum, in the ordinary sense of the word. Instead,
the “vacuum” is teeming with particles and their antiparticle partners popping out
into existence only to annihilate back into nothingness. These are “virtual particles”
that cannot be (directly20) detected, and they can have bizarre properties—such as,
one of the pair-produced particle possessing negative energy. While these particle–
antiparticle pairs (note that both the particle and antiparticle can be the one that
possesses negative energy) usually annihilate almost instantly,21 in the vicinity of a
black hole, one of the pair may fall through the event horizon while the other one
is left outside. Unable to annihilate with the now lost partner, the virtual particle
becomes real. To the observer far away from the black hole, it would look like the
black hole is emitting a particle. This is the Hawking radiation (Fig. 1.2). The partner
that falls into the black hole is the onewith negative energy,22 and sincemass is energy
via E = mc2, it follows that negative energy reduces the mass of the black hole.

19A curiosity: � cancels out in the expression T d S, so we could not know from thermodynamical
laws alone, where the � is hiding (a related question was recently explored in [54]). Formally, one
only needs a cutoff � that has the right dimension to make T nonzero and S finite. In fact, recently
it was emphasized by Erik Curiel that even classical black holes are “hot,” i.e., one does not need
quantum mechanics to justify black hole thermodynamics [55]—“Does the use of quantum field
theory in curved spacetime offer the only hope for taking the analogy seriously? I think the answer
is ‘no.’ [...] the analogy between classical black hole mechanics and classical thermodynamics
should be taken more seriously, without the need to rely on or invoke quantum mechanics.”
20The Casimir effect is an example of “indirect detection” of virtual particles.
21This has basis in the time–energy uncertainty principle: �E�t � �. One could borrow large
energy �E from the vacuum as long as one returns it in a short time interval �t .
22The cartoon picture is of course just a cartoon picture and should not be taken too seriously (see
Box 1.2). However, even at this level, it should be clarified that the negative energy particle does not
have negative energy with respect to a comoving observer. Due to the Killing vector field switching
from timelike to spacelike beyond the horizon, what is seen as negative energy outside becomes
positive energy inside. This is consistent with the fact that local observers should not expect to see
a real particle with negative energy, either inside or outside the black hole.
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Fig. 1.2 A cartoon illustration of the Hawking radiation: particle–antiparticle pairs produced in
the vicinity of black holes from the “vacuum” could get separated by the event horizon. The virtual
particles cannot annihilate with their partners and become real. Negative energy particles fall into
the black hole, so the black hole shrinks. To the asymptotic observer, the black hole is seen to
be radiating. Outside the horizons, some particle–antiparticle pairs can still annihilate each other,
releasing energy in the process

The black hole will therefore become smaller and smaller, and eventually evaporates
away. Hawking has thus shown that, with quantum physics taken into account, the
area law is no longer true, and black holes are no longer permanent.

It should be noted that Hawking radiation arises from the “vacuum.” This is very
different from ordinary thermal radiation coming from say, a piece of hot burning
iron. In general relativity, what appears as a zero temperature vacuum to one observer
would appear to be teemingwith particles to another observer in a separate frame.This
was first discovered by Fulling [56] in the context of flat spacetime back in 1973, fol-
lowed by the work of Davies [57] and Unruh [58]. They found that while an observer
who remains either static or moving with constant velocity (i.e., in an inertial frame
of reference) sees no particles, an accelerating observer will detect radiation—a sea
of particles (only in a constant accelerating frame does he see a thermal spectrum23).
That is to say, if one were to wave around a sensitive thermometer in an empty space

23It is a common misunderstanding that all accelerating observers see a thermal radiation. The
spectrum of the radiation depends on themotions of the observer (more technically, on the curvature
and torsions of the Frenet–Serret frame that defines the worldline of the observer. See, e.g., [59, 60].
This is a nice example of elementary differential geometry being applicable to spacetime physics).
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with zero temperature, it will still detect a finite temperature. Explicitly, the Unruh
temperature detected by an observer with acceleration a is

T = �a

2πkBc
. (1.12)

In the case of Hawking radiation, one often reads in the literature that since an
infalling observer who is freely falling is not accelerating (because she is following
a geodesic of the spacetime geometry)—she does not see Hawking radiation. This
is not correct in general. This myth is due to taking the analogy of the Unruh effect
in flat spacetime to Hawking radiation too directly. In fact, Brynjolfsson and Thor-
lacius showed that the local free-fall temperature in the case of asymptotically flat
Schwarzschild spacetime remains finite at the event horizon24 [61].

According to an observer who stays put at some fixed distance from the black
hole (“fiducial observer”), the infalling observer is thermalized at the horizon by
the extremely hot Hawking temperature25—remember that the expression of the
Hawking temperature in Eq. (1.10) is the temperature as measured by an observer
situated infinitely far away; the radiation has been redshifted tremendously by then,
and appears much colder. Near the black hole—according to fiducial observers—the
temperature is actually much hotter, and in fact, mathematically divergent at the
horizon (in accordance with the Tolman law26).

The discovery that black holes radiate and shrink over time raised a question:What
happens to the information that falls into a black hole? Note that classically black
holes do not disappear and thus one can always propose that the information remains
locked inside the black hole without giving rise to any complication. Allowing the
black hole to evaporate and the information to seemingly disappear along with the
hole, however, is a rather worrying thing to do, as we shall see in the next section.

24This is not necessarily true for black holes with other asymptotic geometries, for example, it is not
true for large black holes in anti-de Sitter spacetime; there an infalling observer sees no Hawking
radiation [61].
25In the original derivation of Hawking, these modes are actually transplanckian when they are
first created near the horizon. However, subsequent works have shown that Hawking radiation is a
much more generic phenomenon. In particular it is independent on the cutoff scale imposed on the
wavelengths in the theory. See, e.g., the Refs. [62] and [63].
26The locally measured temperature of the Hawking radiation measured by an observer who is
following an orbit of a Killing vector field ξa normal to the horizon, is given by TBH/

√
ξaξa , where

TBH is the (asymptotic) Hawking temperature.



1.3 Hawking Radiation: Black Holes Are not so Black 15

Box 1.2: Hawking Radiation and Vacuum States

This box gives a technical detail for the origin of Hawking radiation. It assumes
the readers are familiar with quantum field theoretic ideas of creation, annihila-
tion, and number operators.

In the usual quantum field theory on flat spacetime, before we quantize a
scalar field φ, we start by decomposing it into Fourier modes:

φ(t, x) =
∑
k

[
ak fk(t, x) + a†

k f ∗
k (t, x)

]
, (1.13)

where
fk = exp[i(k · x − ωkt)], ωk =

√
|k|2 + m2. (1.14)

As usual † denotes Hermitian conjugate while ∗ denotes complex conjugate.
One can show that f and f ∗ form a complete, orthogonal set of basis. We then
identify ak as the annihilation operator and a†

k as the creation operator. The
vacuum state is the state annihilated by all the ak’s, i.e., the state |0〉 such that

ak |0〉 = 0,∀k. (1.15)

Such a decomposition is tricky to perform on a curved spacetime in general. The
usual required assumption is that the spacetime has to be globally hyperbolic, so
that theCauchy problem iswell-defined. This is important since theHamiltonian
is defined on constant time slices. Now since the Hamiltonian is the generator
of time evolution via exp(i Ĥ t/�), we expect the concept of energy to depend
on the choice of spatial slices (equivalently, on one’s choice of time coordinate).
Indeed, given two different reference frames with coordinates (t, x) and (t̃, x̃)
respectively, we can decompose the scalar field as

φ =
∑
k

[
ak fk(t, x) + a†

k f ∗
k (t, x)

]
=

∑
m

[
ãm f̃m(t̃, x̃) + ã†

m f̃ ∗
m(t̃, x̃)

]
.

(1.16)
The f̃m’s are related to fk’s and f ∗

k ’s by

f̃m =
∑
k

(
αmk fk + βmk f ∗

k

)
, (1.17)

where the coefficients αmk and βmk are called the Bogoliubov coefficients, and
Eq. (1.17) is known as the Bogoliubov transformation, named after the Soviet
mathematician and physicist Nikolay Bogolyubov.
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One sees that the vacuum |0̃〉 such that

ãm |0̃
〉
= 0,∀m, (1.18)

is in general not going to be the same as the vacuum state |0〉.
Indeed, the number operator Nk = a†

kak will satisfy

〈
0̃ |Nk| 0̃

〉
=

∑
m

|βkm|2 , (1.19)

so that as long as the coefficients βkm are not all vanishing, then the vacuum |0̃〉
contains particles from the point of view of the original frame.

In the context of Hawking radiation then, the particle production comes from
the fact that what the asymptotic observer considers as vacuum, is not the same
as what an infalling observer considers as vacuum.

It should be emphasized that the argument here bears little resemblance to the
cartoon picture. Furthermore, since the Hawking particles have wavelengths of
the order of the horizon, they should not be given a particle interpretation near
the horizon, as the cartoon picture suggests.

Note also that the argument about vacuum states here only depends on quan-
tum field theory formulated on a (spatial slice of a) curved, globally hyperbolic
Lorentzianmanifold, and is not particularly related to gravity. It is therefore also
completely independent of Einstein’s field equations. Indeed, the occurrence of
Hawking radiation does not depend on the validity of general relativity, although
the area law of Bekenstein–Hawking entropy does [62].

For more details of Hawking evaporation see, e.g., [64].

1.4 The Information Loss Paradox and Firewalls

Just as entropy is a measure of disorganization, the information carried by a set of messages
is a measure of organization. [In fact, it is possible to interpret the information carried
by a message as essentially the negative of its entropy, and the negative logarithm of its
probability] That is, the more probable the message, the less information it gives. Cliches,
for example, are less illuminating than great poems.

–Norbert Wiener

It has been 41years since Hawking found out that black holes radiate, a seemingly
innocent phenomenon until we realized that this leads to the (in)famous information
loss paradox—namely, as the black hole evaporates away, we lose information that
falls into the hole [65]. Hawking radiation, being thermal, does not seem to contain
much, if any, information. This is a problem because one deep law of physics is that
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theworld is predictable—given the initial conditions and the physical laws governing
a system, we can always calculate how the system would evolve. Similarly we can
also run the calculation backward to find out how a system was at an earlier time, if
we know the laws and the states of the system at some time.

At the classical level, one could think of information as a specific arrangement
of bits, i.e., a string of zeros and ones. The equations of motion of a physical law
tells us how to update a given (initial) state to give a new arrangement of bits at later
times. Information is preserved if one can reverse this operation to obtain the initial
state. Typically, it is practically impossible to recover the initial states. Imagine for
example, the burning of a book. All the initial configurations of the book—its texture,
color, writings—are practically gone. However all the bits are still there. If one could
reverse time,27 the ashes would rearrange themselves into the book, thus proving that
information is not lost.28 The fact that we cannot do this in practice does not affect
the fact that at the fundamental level, information is completely preserved. At the
quantum level, information preservation is synonymous with “unitarity,” and in the
language of quantum information theory, one says that a pure state cannot evolve
into a mixed state.29 Quantum information theorists quantify purity of states by an
entropymeasure called the von Neumann entropy [72] or the Shannon entropy30 [74].
A pure state has zero von Neumann entropy, while a mixed state has strictly positive
von Neumann entropy.

In the case of black holes, things are very different; even if we could reverse
time, in view of the no-hair theorem, we cannot seem to be able to recover all of the
information. Note that even if at the quantum level—as well as in the presence of
some matter fields—black holes can have hair, this does not resolve the information
loss paradox; unless, as John Preskill put it [75],

[...] (unless) there are an infinite number of exactly conserved charges [associated with an
infinite number of unbroken gauge symmetries], so that measuring values of all the charges
would suffice to uniquely specify the internal state of an arbitrarily large black hole.

What he meant is this: the hair of black holes that would be retained and not radiated
away during gravitational collapse must correspond to some kind of conserved quan-
tities (“charges”) related to the symmetry of the geometry. These “charges” are, e.g.,
mass, electrical charge, and angular momentum. Since the set of initial conditions
that lead to a black hole can be arbitrarily large, one would not be able to evade
information loss by appealing to the existence of some finite number of hairs. It may
even be problematic to think of a sufficiently large number of hairs.

27At the quantum level, reversing time is not sufficient since physics is not time-reversal invariant,
but CPT invariant. However, the same idea holds, mutatis mutandis.
28The fact that this does not happen in real life is merely because a book has a vastly lower entropy
than burned ashes. Low entropy states give rise to an arrow of time in the universe; see, e.g., [66–71].
29We will give a more detailed introduction to quantum information in Appendix B.
30More generally, there is the Rényi entropy [73], Sα = 1

1−α log
(∑n

i=1 pα
i

)
, α ∈ [0,∞). The

limiting case α → 1 yields the Shannon entropy S1 = − ∑n
i=1 pi log pi .
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Actually, not everyone agrees that information loss is a problem [76]. Neverthe-
less, this is a minority viewpoint, and various attempts were made to retrieve infor-
mation from black holes. One such approach is the proposal that the radiation, despite
its approximately thermal spectrum, actually contains a highly scrambled form of
(quantummechanically entangled) information [77]. Recovery of information from a
black hole however seems to contradict the so-called no-cloning theorem in quantum
mechanics, a result that says roughly that quantum states cannot be cloned.

Box 1.3: The Essence of the Quantum No-Cloning Theorem

Suppose “�−→” denotes a cloning (or “xeroxing”) operation. Then two quantum
states, say, up |u〉 and down |d〉, can be cloned as |u〉 �−→ |u〉⊗ |u〉 , |d〉 �−→
|d〉⊗ |d〉 . (Weare being imprecise here:we cannot really create a state out of thin
air, a real cloning machine needs to act on a so-called “blank state” |e〉, which
is independent of the state one wishes to copy, e.g., |u〉 ⊗ |e〉 �−→ |u〉 ⊗ |u〉.)
Let us then consider a superposition of these states |r〉 = (1/

√
2) ( |u〉 + |d〉) .

Then, on the one hand, we have

|r〉 �−→ |r〉 ⊗ |r〉 = 1

2
( |u〉 + |d〉) ⊗ ( |u〉 + |d〉) , (1.20)

while on the other hand, by the linearity of quantum states, we have

|r〉 �−→ 1√
2

( |u〉 ⊗ |u〉 + |d〉 ⊗ |d〉) . (1.21)

These two are not equivalent, and so we have a contradiction. The cloning oper-
ation cannot exist. (One can of course clone some known states—the theorem
only says that a perfect cloning that can clone arbitrary states cannot exist.)

To appreciate this, let us consider a thought experiment of throwing an elephant
down into ablackhole, in such away that the elephant is in free fall toward thehorizon.
First choose a sufficiently large Schwarzschild black hole so that its tidal effect at the
horizon can be assumed as small as one likes. General relativity has long taught us
that nothing special should happen at the horizon, so the poor elephant will simply
fall through the event horizon. Indeed, it will hit the singularity in finite proper time,
and presumably die. The outside observer however, never sees the elephant enters
the event horizon. Instead, due to gravitational time dilation, the outside observer
will see the motions of the elephant gradually slow down to a stop at the horizon,
its image redshifted and eventually vanishing from view. This is the usual picture in
general relativity before quantum effects are considered. Once we consider Hawking
radiation, asymptotic observers actually see that the elephant gets thermalized by the
Hawking radiation. On the other hand, as far as the elephant (or anyone who falls in
with the elephant) is concerned, it just falls through the horizon unharmed (free-fall
observers only see finite temperature [61]). This seems to suggest that there are two
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copies of the same information about the elephant—one in the black hole, and one
distributed in highly scrambled form, in the Hawking radiation.

Susskind, Thorlacius and Uglum [78] proposed the existence of the so-called
“stretched horizon”, which is a membrane hovering about a Planck length distance
outside the event horizon. According to the external observer, infalling information
heats up the stretched horizon, which then reradiates it as Hawking radiation, with the
entire evolution being unitary. In other words, according to the outside observer, the
elephant gets thermalized at the horizon and the Hawking radiation that radiates out
indeed contains the information of the elephant. However, any observer that chooses
to fall in together with the elephant will find nothing strange at all, as the elephant
will remain in sight, and both of them will be fine until the tidal force gets strong
enough to tear their bodies apart and “spaghettification”31 ensues.

This raises the question: how can the (information of the) elephant be in two
places at the same time? It cannot, as this violates the no-cloning theorem of quantum
mechanics. Thus the complementarity principle was proposed: both observers are
correct; however an observer can only detect the information outside, or inside, of the
horizon, but never both simultaneously. So it is fine that the observations of the two
observers differ: one sees an elephant burned up, the other sees a perfectly healthy
elephant, as long as the observers are causally disconnected and therefore cannot
communicate with each other. In other words, a fundamental description of Nature
needs only describe experiments that are consistent with causality.

Box 1.4: Consistency Checks of the Black Hole Complementarity
Principle

In order for the complementarity principle to be a correct description, one has
to check whether it is possible for the infalling Alice to send her quantum bit to
Bob who falls into the black hole at a later time, after he has obtained a copy of
the same bit from the Hawking radiation. Clearly the longer Bob waits outside,
the shorter the available time Alice has to send her bit before she crashes into
the singularity (or whatever replaces the singularity in a full quantum gravity
theory). Let us review this quantum bit duplication thought experiment.

We first prepare an entangled spin pair |a〉 and |b〉. If |a〉 is in the up state,
then |b〉 is in the down state, and vice versa. We assume that there is an ingoing
observer Alice, A, who brings |a〉 into the black hole. After a certain proper
time has passed by Alice’s clock, say �τ , Alice sends a signal regarding the
spin |a〉 in the “outgoing” direction. (Note that since the signal was sent from
inside the black hole, it cannot propagate out to null infinity.)

31Spaghettification refers to the process in which an infalling object is stretched vertically and
compressed horizontally by the tidal force of a black hole. Note that spaghettification can happen
way before one reaches the horizon if the black hole is sufficiently small: that is why we chose a
large black hole for our poor elephant.
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Meanwhile, the partner with spin |b〉 is outside the event horizon.We assume
that there is another observer Bob,B, who is outside the event horizon and mea-
sures |b〉. Therefore, Bob knows the state of |b〉, whether it is up or down. After
the so-called information retention time, t ∼ M3/� (here t is the Schwarzschild
coordinate time), Hawking radiation emits the information of |a〉: let us call
this |h〉. Then Bob can measure |h〉 outside the horizon. By comparing with
|b〉, Bob notices that this information is in fact |a〉. (This kind of experiment
should be repeated many times—or we can prepare an ensemble of many iden-
tical experiments. The correlation between |h〉 and |b〉 will then become more
obvious.)

Finally, having performed these measurements, Bob also chooses to fall into
the black hole. If Alice sent a signal of |a〉 fast enough, Bob can eventually see
|a〉 on his trip toward the (future spacelike) singularity. Then, he knows that
|a〉 is indeed the original information by comparing with |b〉. (Again, such an
experiment should be repeated to see the clear correlation between |a〉 and |b〉).

If all of these processes are possible, then Bob sees a duplication of infor-
mation |a〉, which contradicts the No-Cloning Theorem. Therefore, this will be
inconsistent with the assumptions of black hole complementarity.

However, to make this thought experiment possible, we need two require-
ments:

(1) The observerB should fall into the black hole after the information retention
time τ ∼ M3/�.

(2) The observerA should successfully send a signal to the observer B before
either of them crash into the singularity.

After a simple calculation [79]—essentially from considering the Kruskal–
Szekeres coordinates of the Schwarzschild black hole

gKS[Sch] = −32M3

r
exp

(
− r

2M

) [−dU 2 + dV 2] + r2d�2 (1.22)

we can show that the observer A should send a signal within the time interval
of

�τ � reh exp

(
−�t

reh

)
, (1.23)
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where reh = 2M is the black hole horizon, �τ is Alice’s proper time available
to send a message (and be received by Bob), and �t is the Schwarzschild
coordinate time delay between Alice and Bob. Here it is evident that the longer
Bob stays outside collecting Hawking radiation, the less time Alice has to send
her message.

To attach a bit of quantum information within the time �τ requires some
energy�E , and we have to rely on the uncertainty relation. Indeed, to send a bit
of information within �τ , one needs, with the Heisenberg uncertainty relation
�E�τ ∼ �,

�E � �r−1
eh exp

(
+�t

reh

)
. (1.24)

That is to say, to send message in a short time interval �τ requires the message
to be encoded in high enough energy (since energy is exponential in �t). The
longer Bob waits, the shorter the time Alice has, and the larger the energy she
needs to send the message. Eventually the required energy becomes greater
than that of the black hole itself, i.e., �E > M , and such a message sending act
would be impossible.

Such a bound, i.e,�E � M , implies that the success of information-sending
requires

�t � reh log
Mreh

�
∼ M log

M√
�
. (1.25)

Recall that we set G = c = 1, so the right hand side is really M log(M/ l p),
where l p is the Planck length l p := √

�G/c3. The timescale M log(M/ l p) is
known as the scrambling time. The consistency condition for complementarity
principle to hold—that is, Alice fails to send her message—is thus

�t � M log(M/ l p). (1.26)

In Appendix B, we will estimate the aforementioned information retention time
for a Schwarzschild black hole to be M3/�  M log(M/ l p) for a sufficiently
large black hole, so that complementarity principle is indeed safe.

The recent paper of Ahmed Almheiri, Donald Marolf, Joseph Polchinski, and
James Sully (henceforth, “AMPS” [80]), however, casts doubt on the above picture.
Specifically, AMPS argue that the three assumptions below are inconsistent:

(i) Unitarity Information is eventually recovered from the Hawking radiation.
(ii) Validity of Effective Field Theory The information carried by the radiation is

emitted from the region near the horizon, with low energy effective field theory
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being valid beyond some microscopic distance from the horizon. It is assumed
that this EFT is the usual version of quantum field theory, satisfying locality.32

(iii) “No-Drama” The infalling observer encounters nothing unusual at the horizon.

In other words, complementarity notwithstanding, there could still be conflicts
between the unitarity of quantum mechanics and the “no-drama” of general rela-
tivity. In fact, a single observer Alice could in principle observe a violation to the
No-Cloning Theorem.

AMPS proposed that the “most conservative resolution” is that even a freely
infalling observer does indeed burn up at the horizon, hence the term “firewall,” The
idea is unpalatable because curvature at the horizon is quite negligible for a large
black hole, and so one does not expect any correction from quantum gravity there.
Therefore, the usual quantum field theory on a curved spacetime would say that there
is nothing out of the ordinary at the horizon for a freely infalling observer. This is a
stark difference from the firewall proposal.

Twoweeks after the AMPS paper was uploaded to the arXiv, Raphael Bousso was
asked to give a special talk during Strings 2012 to explain firewalls to the perplexed
audience. The issue was—and still is—so confusing that Bousso eventually changed
his mind regarding the subject. During the talk Bousso still believed that a careful
analysis will show that complementarity will again save the day, however a few
months after that he replaced his arXiv paper “Observer Complementarity Upholds
the Equivalence Principle” [81] with version 2 that says “Complementarity is Not
Enough” [82].

The idea of firewall is as follows: Suppose we start with a pure state that collapses
into a black hole (see however, [83]). Initially, the von Neumann entropy of the state
is zero. In order to recover a pure state at the end, the late time radiation should
eventually start to purify the earlier radiation. For this purification to take place, the
late time Hawking radiation must be maximally entangled with the earlier Hawking
radiation. (The transition from “early” to “late” corresponds to the turnover in the
von Neumann entropy in the radiation, and is roughly when the black hole already
lost half of its Bekenstein–Hawking entropy. The time when this happens is called
the Page time [84–86].) However, if we consider late time Hawking particle pairs
that are created near the horizon, in order to have the outgoing pair being maximally
entangled with the earlier Hawking radiation, it cannot be maximally entangled with
the ingoing pair. This is the result of the so-called “quantum monogamy theorem.”
However, breaking the quantum entanglement between theHawking pairsmeans that
the near horizon region is far from being a vacuum.33 Instead, extremely high energy
particles are found near the horizon. This is the firewall, as illustrated in Fig. 1.3.

32Locality means roughly that quantum fields at different points of space do not interact with one
another. This should not be confused with “non-locality” of quantum entanglement.
33More technically, the absence of entanglement means that the field configuration across the event
horizon is generically not continuous, which leads to a divergent local energy density. We recall
that the quantum field Hamiltonian contains terms like (∂xϕ)2. The derivative is divergent at some
x = R, if the field configuration is not continuous across R.
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Fig. 1.3 Illustrations showing the difference between a conventional event horizon of a black hole
and a firewall. The latter arises from breaking the entanglement between the ingoing and outgoing
Hawking pairs near the vicinity of the black hole. Picture Source Nature News [87]

There are other ways to understand or interpret firewalls. For example, if one
could collect all the early Hawking radiation after the Page time, and decode some of
the information by running it through a quantum computer, one can then jump into
the black hole with that decoded information, which could well include information
about some late time ingoing Hawking pairs (whose outgoing partners entangle with
the early radiation) which have not yet been emitted, and meet with them later on
in the black hole. This is similar to time travel paradox, and so the firewall can be
seen as a chronology protection agent (a concept introduced by Hawking [88], which
postulates that Nature will do whatever it takes to prevent time travel) that destroys
the would-be time traveler before it can get into the black hole [89].

In either interpretation, thefirewall is like the fairy tale’sBluebeardwho threatened
to kill anyone who would dare to enter his “little room” that hides his hideous
secrets—anyone who dares to take a peek at the interior of a black hole is destroyed.

Then entered Daniel Harlow and Patrick Hayden, who proposed that the decoding
of Hawking radiation is not feasible even by an arbitrarily advanced civilization with
access to a powerful quantum computer [90], since it will take a vastly longer time
to decode Hawking radiation,34 by the time which the black hole has either already

34This is a generic statement. Complexity theory tells us that given a configuration on a n ×n chess
board, we could determine the winning strategy in 2nc steps for some constant c, i.e., it is what
a computer scientist would call an “EXPTIME complete” problem.However for specific small n this
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completely evaporated or some other physical processes had destroyed the black
hole.35 At the basis of Harlow–Hayden proposal, is the idea that information is only
physical if it can be decoded (in principle). This is not as strange as it sounds. In
the complementarity picture, an external observer can describe everything unitarily
without including the interior of a black hole, and so the interior can be seen as some
kind of “scrambled re-encoding” (in the words of Aaronson [91]) of the exterior
degrees of freedom. Since the interior is out of causal contact with the external
observer, that copy of information in the interior is not in principle decodable—and
thus also not physical—to him.

Admittedly, this decoding objection might not be able to get rid of firewall
[92, 93], it still raises a very interesting question: is it inevitable that the decod-
ing time always far exceeds the black hole lifetime?

To understand this problem one has to first know the evaporation history of a
given black hole. In the literature, much attention was focused on the issue of the
black hole final state, but not much work has been done to investigate the entire
evolutionary history as black holes evaporate, especially for black holes beyond the
usual asymptotically flat Kerr–Newman family.

In order to investigate this issue, we have to choose the proper black holes to
work with. Ordinary Schwarzschild black holes in asymptotically flat spacetimes
are not suitable since they become arbitrarily hot at the late stage of the evolution
[the Hawking temperature is inversely proportional to mass, see Eq. (1.10)], and we
have no reason to trust semiclassical physics at that point. In fact, since we don’t
know what new physics may kick in at sufficiently high energy, the end state of
Hawking evaporation is a controversial one. In addition, the physics also becomes
harder to handle since the curvature at the horizon also becomes larger as the black
hole shrinks. Not knowing what actually happens to the black hole at that point, it is
hard to answer the question about decoding time versus lifetime of the hole. More
importantly, as the curvature becomes sufficiently large, the firewall paradox is no
longer as sharply posed, since the “no-drama” assumption depends on the curvature
at the horizon being negligible.

Fortunately, there are other types of black holes. Some black holes in anti-de Sitter
(AdS) spacetime (a kind of spacetime with negative cosmological constant) behave
in a much “gentler” way—small black holes are actually cold, not hot. Furthermore,
one important application from string theory is the AdS/CFT correspondence (see,
e.g., the good exposition in [94]), in which quantum gravity in AdS is in one-to-one
correspondence with quantum field theory without gravity living on the boundary

(Footnote 34 continued)
is a manageable task. For black holes we could imagine that they are covered by configuration of
0’s and 1’s on each Planck sized square tiling their horizon. This yields n ∼ 1077 for a solar-mass
black hole (This is the ratio of black hole area over Planck area—in the units we use in this thesis,
� is an area: � ≈ 3 × 10−66 cm2. So, 4π(2M�)2/� ≈ 3.77 × 1077). Nevertheless we cannot rule
out the possibility that quantum gravity has novel features that may make computation easy.
35Scott Aaronson proposed a rather appropriate acronym HARD for “HAwking Radiation Decod-
ing” during his talk at the “Rapid Response Workshop: Black Holes: Complementarity, Fuzz, or
Fire?”, held at the KITP in Santa Barbara on August 19–30, 2013.
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of the AdS spacetime. We say that the gravity theory is “dual” to the boundary
field theory. This so-called “holographic duality” provides a strong reason for the
maintenance of unitarity of black hole evaporation, since the boundary theory has no
black hole and is completely unitary. This is not to say that we have a solution to the
information loss paradox since we still have to understand how information is not
lost in the gravity picture in the bulk, as emphasized in [95]. Hawking appeared to
be convinced by AdS/CFT, and attempted to address precisely this question in terms
of a Euclidean path integral in [96]. This follows the event on 21 July 2004, in which
Hawking conceded his bet with John Preskill regarding information loss.36

To stay away from as much uncertainty as possible, in this thesis, we decided to
work with the most understood system in the context of the AdS/CFT correspon-
dence. This turns out to be electrically charged black holes with either planar or toral
topology, which are dual to a field theory that behaves very much like a quark–gluon
plasma, an extremely hot fluid consisting of (almost) free quarks (elementary par-
ticles that make up protons and neutrons) and gluons (force carrying particles that
“glue” quarks together).

We investigated the evaporation of such black holes, and found that they inevitably
become cold if they were to acquire even a tiny bit of electric charge. It is worth
emphasizing that, since quantum fluctuations—in fact, the Hawking process itself—
always produce charged particles (even though the process may be exponentially
suppressed when the black hole is cold), there is no such thing as a perfectly neutral
black hole in practice (even in AdS, as long as the theory contains charged particles).
Now, the charge-to-mass ratio of a black hole cannot be unbounded. The upper
bound corresponds to an extremal black hole, which has absolute-zero temperature.
However, due to a quantum gravitational effect, black holes in AdS are actually
destroyed as they get close—but have not yet reached—the extremal limit.

Usually we expect quantum gravitational effects to be important at high energy
(i.e., high temperature) when new physics set in. However, quantum effects can arise
atmacroscopic scale at low temperature, e.g., in superconductivity andBose–Einstein
condensate. This is also true for gravity.37 It turns out that extended objects like
branes are copiously produced in the spacetime as the black hole becomes sufficiently
cold. This disrupts the black hole geometry and as Harlow and Hayden require, this
indeed happens at the timescale enormously shorter than the time required to decode
Hawking radiation.

InChap.4,wewill start to examine carefully thework ofHiscock andWeems [98],
which models the evaporation of asymptotically flat charged black holes, before we
extend their method to analyze AdS black holes in Chap.5. Specifically we pointed
out in Chap.4, how extremal black holes provide insight for understanding the more
general, non-extremal solutions.

36“The loser will reward the winner with an encyclopedia of the winner’s choice, from which
information can be recovered at will.”
37Perhaps gravity is more similar to a condensed matter system than being a fundamental
interaction—gravity could be “emergent” from some as yet unknown degrees of freedom. Such
ideas of “emergent gravity” can be dated back to Sakharov [97].

http://dx.doi.org/10.1007/978-3-662-48270-4_4
http://dx.doi.org/10.1007/978-3-662-48270-4_5
http://dx.doi.org/10.1007/978-3-662-48270-4_4


26 1 A Century of Black Hole Physics …

1.5 There’s Plenty of Room at the Bottom

Whoever fights monsters should see to it that in the process he does not become a monster.
And if you gaze long enough into an abyss, the abyss will gaze back into you.

–Friedrich Nietzsche

There’s Plenty of Room at the Bottom was a lecture given by Richard Feynman at
Caltech on December 29, 1959, which inspired the development of nanotechnology.
Here we are borrowing this phrase for use in black hole physics. One crucial aspect
of general relativity is that it is a theory of geometry. Despite some opinions to the
contrary (mostly by particle physicists and field theorists; we will elaborate more
in the next chapter), one should therefore be wise to actually pay more attention to
geometry.38 Curved spacetimes can behave inmany counterintuitivemanners. One of
which appears almost magical—a small surface as seen from the outside can bound
an arbitrarily large volume inside.

One such example is Wheeler’s “bag-of-gold” [99]: what appears as an ordinary
black hole to an exterior observer, actually has an entire universe inside (Fig. 1.4).39

Such an idea has since been proposed many times, e.g., Lee Smolin proposed that
black holes create new universes [100, 101], and the universe evolved in a way anal-
ogous to biological natural selection. Even though baby universes can have different
physical laws, over many generations of universes, eventually “cosmological natural
selection” would prefer a universe with physical laws that can make lots of black
holes—to continue to “procreate,” so to speak.

Therefore, one possible way out of the information loss paradox is that the infor-
mation is simply stored in the large interior within, despite the fact that evaporating
black holes eventually become very small with respect to exterior observers. At the
final stage of Hawking evaporation, as we already mentioned, there is no reason to
trust effective field theory to continue to be valid, and therefore it is not out of the
question that the evaporation will stop with some kind of “massive remnant”; or if
the evaporation is complete, the two spacetime regions across the horizon may get
completely separated. Such an idea that the information simply ends up somewhere
else behind the horizon goes as far back as Dyson [102]. These ideas are not without
problems, see e.g., [103] for a review. See, however, [104] for more recent arguments
regarding possibilities of such massive remnants. For a recent review on black hole
remnants and various challenges the remnant proposal faced, see [105].

Note that if there is indeed lots of room available in a black hole to hold informa-
tion, then we lose the nice interpretation of the Bekenstein–Hawking entropy as the
measure of the underlying black hole (internal)microstates. In place of such a “strong
form” of the Bekenstein–Hawking entropy interpretation, one can only subscribe to
the “weak form,” which says that the Bekenstein–Hawking entropy only counts the

38“Pace particle physicists, general relativity simply cannot be comprehended as a theory describing
a dynamical ‘force’ at all.” [47].
39Technically, it is a closed—and thus finite—Friedmann–Lemaître–Robertson–Walker (FLRW)
universe, but it can be arbitrarily huge.
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Fig. 1.4 “Bag-of-Gold”-type spacetimes consist of an asymptotically flat geometry glued to a
bag across the black hole horizon. That is, what appears to be a black hole to exterior observer
actually contains a potentially unbounded amount of spacetime inside. The idea can be generalized
to spacetimes with other asymptotic geometries

degrees of freedom related to the horizon [104, 106, 107]. Of course the strong form
seems to be favored since it has the “holographic feature” that one sees again and
again in quantum gravity research, e.g., AdS/CFT correspondence. However, we do
not actually know for sure that quantum gravity needs to be holographic. There is,
thus far, simply no way to rule out the weak form of the Bekenstein–Hawking inter-
pretation. Donald Marolf provided an argument for the weak form interpretation in
[108] as follows:

It is interesting to compare the bag-of-gold spacetime with the other class of examples
typically used to argue that black holes might contain an infinite number of internal states.
In this second example, one starts with a black hole of given mass M , considers some large
number of ways to turn this into a much larger black hole (say of mass M ′), and then lets
that large black hole Hawking radiate back down to the original mass M . Unless information
about the method of formation is somehow erased from the black hole interior by the process
of Hawking evaporation, the resulting black hole will have a number of possible internal
states which clearly diverges as M ′ → ∞. One can also arrive at an arbitrarily large number
of internal states simply by repeating this thought experiment many times, each time taking
the black hole up to the same fixed mass M ′ larger than M and letting it radiate back down
to M . We might therefore call this the ‘Hawking radiation cycle’ example. Again we seem
to find that the Bekenstein–Hawking entropy does not count the number of internal states.
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More recently, Hsu and Reeb [109, 110] coined the term monsters to describe
configurations that possess entropy much greater than a black hole of the same
mass40], due to their potentially unbounded interior volume. Unlike the “bag-of-
gold”,monsters arenot black holes, i.e., they do not have a horizon. Perhaps one could
argue that they are the kind of configurations that would potentially collapse into a
“bag-of-gold”-type geometry. Do ordinary stars eventually develop such monstrous
geometry before they collapse into a black hole, which in turn has large interior? If
so we may be able to store information inside a black hole.

Unfortunately the existence of monsters and “bags-of-gold” seems to threaten the
AdS/CFT correspondence. This is because if there can be such objects in the AdS
spacetime, then the corresponding field theory on the boundary will not have enough
degrees of freedom to describe them. It is thus an important question to investigate—
especially since such configurations are a potential solution to the information loss
paradox—if they are indeed allowed by (known) physics.

It turns out that monsters are allowed in general relativity, although this usually
means that we have to violate some energy conditions, which is not very surprising
since energy conditions are specificallymeant to prevent “unrealistic configurations.”
However at the quantum level, energy conditions can be violated [remember that
this is how we get black holes to evaporate in the first place—Hawking radiation
(more precisely the quantum average of the energy–momentum tensor 〈Tab〉) needs
to violate the Weak Energy Condition, due to the negative energy of the ingoing
Hawking flux; as well as the null energy condition, due to the shrinking of the horizon
area.] Therefore, if one wants to claim that monsters are somehow not allowed by the
laws of physics, one must look for a prevention mechanism in the quantum theory.

In this thesis, the plan is to study this problem by considering monster configu-
rations in AdS spacetime, for the same reason that AdS spacetime is the best arena
for quantum gravity to date. In the context of string theory, the physics of the AdS
bulk may be considerably modified at the semiclassical level due to the presence
of branes. One can show that for certain types of geometry, brane–anti-brane pairs
are nucleated at an exponential rate, signaling a breakdown of the geometry. This
is the Seiberg–Witten instability41 [111–113]—in fact, the same mechanism that we
appealed to in order to destroy charged flat black holes, as mentioned in the previous
section. However, in the case of monsters, it is not enough to show that they are
unstable, since they are already unstable at the classical level! In fact as Stephen
Hsu and David Reeb argued, they are on the verge of collapsing into black hole. The
fact that they are unstable does not by itself rule out their existence,42 however brief
that is.

In the end, the devil is in the details—and we can show that monsters are unlikely
to exist in the full theory of quantum gravity, although we cannot rule them out

40Here we are referring to the Arnowitt–Deser–Misner (ADM) mass, which will be reviewed in
Chap.3.
41We will provide a short introduction to the Seiberg–Witten instability in Appendix D.
42I thank Stephen Hsu for emphasizing this point to me during our conversations when he visited
Taipei in 2011.

http://dx.doi.org/10.1007/978-3-662-48270-4_3
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completely. The implication is that: if indeed black holes can possess a bag-of-gold
type of geometry behind their horizons, there is no intermediate stage between such
configurations and an ordinary star; the bag can probably only develop after the
horizon forms. The details will be discussed in Chap.6.

1.6 Some Other Approaches to Resolve the Information
Loss Paradox and Firewall Controversy

Sometimes I’ve believed as many as six impossible things before breakfast.

–Lewis Carroll, “Through the Looking-Glass.”

Before we end this chapter, it must be emphasized that there aremany other proposals
on how to solve the information loss paradox and settle the firewall debate, in fact,
too many to be listed here. We will however take a look at some of the more well
known and representative proposals. One such possibility is that, asHawking recently
claimed [114], an event horizon never forms in realistic black hole collapse, only an
apparent horizon does. This is however not a new proposal, even Hawking himself
had proposed this, at least as way back as his GR17 lecture in 2007, as mentioned in
[115]. If one does not allow Hawking radiation to carry away any information, then
such a proposal still requires the ever-shrinking black hole to hold a huge amount
of information, and so is similar to a massive remnant as discussed in the previous
section. Mathematically, while an apparent horizon is a much nicer concepts to
work with than the event horizon,43 there is a crucial tradeoff: an apparent horizon
also depends on the choice of spatial slices—in some coordinate system there is no
apparent horizon at all. Therefore it is somewhat unclear what the implications are
if there is no event horizon, but only apparent horizons.

Let us now look at other proposals.

(1) Firewall as singularity This idea, proposed by Susskind [89], suggests that fire-
wall could be the singularity of a black hole—as a black hole gets older, the
Hawking radiation starts to get purified; and as the result of losing entanglement
between the interior and the exterior, the black hole actually loses the spacetime
behind the horizon gradually, and the singularity “migrates” toward the horizon.
This idea was based on earlier finds that quantum entanglement seems to be, in
some sense, holding spacetime together [116–118].

(2) Final State Conspiracy This pre-firewall paper [119] by Gary Horowitz and Juan
Maldacena, suggested that one could impose a final state boundary condition at
the singularity to effectively “teleport” information out. (The idea behind this
proposal is that information should not be allowed to get into the singularity,
or whatever replaces the singularity in a complete quantum theory of gravity.)

43Since they are defined locally based on the behavior of light rays, while the very notion of the
event horizon requires a full knowledge of the entire spacetime.

http://dx.doi.org/10.1007/978-3-662-48270-4_6
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Unlike our typical experience in physics to impose only initial conditions, the
novel feature here is that the authors consider the possibility that a future condi-
tion could be important in black hole physics. One way to interpret this is that
the arrow of time inside the black hole reverses. See also the follow-up works
[120, 121].

(3) Fuzzball A model proposed by Samir Mathur, suggests that black holes are
actually a fuzzy superposition of different geometries [95, 122]. It has neither a
true horizon nor a singularity, and only looks like a classical black hole if one
does not look carefully at the finer quantum mechanical structure. Since there is
no horizon, there is neither information loss nor firewall.

(4) ER=EPR44 Susskind and Maldacena [125] suggested that a particle emitted via
Hawking radiation is entangled with the black hole via a wormhole, a shortcut
through spacetime. As such, they are probably not subjected to the monogamy
theorem of quantum entanglement—the outgoing Hawking particle can be max-
imally entangled with both the ingoingHawking partner and the earlier Hawking
radiation. Thus there will be no need for firewall.45

(5) Icewall This is not really a separate proposal, but a requirement of ER=EPR,
as pointed out by Raphael Bousso. Despite the wormhole connection between
the Hawking radiation and the black hole, firewall can reappear as a result of
interaction between the Hawking radiation with its environment. The only way
to make the proposal work is to readjust for any interaction, and this forces the
quantum vacuum to be “frozen” at the horizon, producing an “icewall” (this is
not the term used in the original papers) instead of a firewall [127, 128]. This
makes the horizon a special place much like firewall, again in stark contrast with
general relativity. See also the “icezone” of [129].

(6) Planck Star Carlo Rovelli and Francesca Vidotto proposed that a collapsing star
can reach a stage inwhich quantumgravitational pressure causes a “bounce,” i.e.,
the star bounced back outwards before it collapses into a black hole [130–132].
Since there is no black hole formation, there is no information loss. The duration
of this stage is very short in the star proper time, however due to gravitational
time dilation, asymptotic observers perceive this process to take a very long
time. In this model, the onset of quantum gravitational effects is governed by
the energy density instead of the size of the star, which means that the star can
be much larger than the Planck scale when such a bounce occurs.

44“ER” refers to the Einstein–Rosen [123] bridge, a non-traversable wormhole in a maximally
extended Schwarzschild manifold, while “EPR” refers to the Einstein–Podolsky–Rosen paradox
[124], a thought experiment that involved quantum entanglement.
45John Baez and Jamie Vicary examined 3-dimensional topological field theory, and found that the
process of particle pair-creation is identical to the process ofwormhole formation. The entanglement
between the particles is thus “fake entanglement,” which is indeed not subjected to the monogamy
theorem [126].
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It is clear that there is yet to be any consensus as to how to solve the information loss
and the firewall paradoxes. Let us end this section with a rather fitting quote:

People don’t expect too much from literature. They just want to know they’re not alone with
being confused.

–Jonathan Ames
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Chapter 2
General Relativity: Subtle Is the Lord

A certain king had a beautiful garden, and in the garden stood a
tree which bore golden apples. These apples were always
counted, and about the time when they began to grow ripe it was
found that every night one of them was gone. [...] As the clock
struck twelve he heard a rustling noise in the air, and a bird
came flying that was of pure gold; and as it was snapping at one
of the apples with its beak, the gardener’s son jumped up and
shot an arrow at it [...] it dropped a golden feather from its tail,
and then flew away. [...] it was worth more than all the wealth of
the kingdom: but the king said, ‘One feather is of no use to me, I
must have the whole bird.

The Golden Bird, The Brothers Grimm

In this chapter, we introduce themain ideas of Einstein’s theory of General Relativity.
We make precise some important terms that have been mentioned in the previous
chapter, such as black hole and event horizon. For later use, we also introduce Penrose
diagrams and anti-de Sitter spacetime. Finally we will briefly discuss the AdS/CFT
correspondence, and the role of general relativity in that context. Some parts of this
chapter consist of the author’s own, perhaps biased and rather philosophical, opinion,
on some aspects of general relativity.

2.1 What is General Relativity?

Devoting one’s life to general relativity is definitely a labor of love, an almost irresponsible
calling.

–Pedro G. Ferreira, “The Perfect Theory”.

General relativity is a theory of gravity. It models space and time together—an entity
called “spacetime”—as a 4-dimensional smooth manifold equipped with a metric

The original version of this book was revised: New contents have been replaced. The erratum
to this book is available at 10.1007/978-3-662-48270-4_7

© Springer-Verlag Berlin Heidelberg 2016
Y.C. Ong, Evolution of Black Holes in Anti-de Sitter Spacetime
and the Firewall Controversy, Springer Theses,
DOI 10.1007/978-3-662-48270-4_2
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tensor (this can be generalized to arbitrary dimensions). The metric is equipped
with a Lorentzian signature (−,+,+,+), where “−” denotes the time direction.
The sign convention (−,+,+,+), also dubbed the “east coast metric,” is usu-
ally preferred by relativists and mathematicians, whereas particle physicists mostly
prefer to use (+,−,−,−), also called the “west coast metric.” Physics is invari-
ant under the choice of convention.1 Of course, in pure mathematics, one can
also consider a metric with arbitrary number of “temporal” and “spatial” direc-
tions: (−, . . . ,−,+, . . . ,+). This is called a “semi-Riemannian” metric in general,
although sometimes a Lorentzian metric is also referred to as “semi-Riemannian”
(it is a special case of the latter). If the signs are all the same, the geometry is called
Riemannian geometry in mathematics. Confusingly, physicists often call Lorentzian
“Riemannian,” and call Riemannian “Euclidean.” In mathematics, having a Euclid-
ean geometry would mean that it has no curvature at all, i.e., the metric can take the
form g = δabdxadxb, where δab is the Kronecker delta, taking value 1 if a = b, and
0 otherwise.

Let us start with some quick review of basic differential geometry. This review
also serves to set our notations. It is, however, not meant to be a self-contained
introduction to differential geometry. Readers who are well-versed in differential
geometry can feel free to skip to Sect. 2.1.2.

2.1.1 Differential Geometry in a Nutshell

Philosophy is written in this grand book the universe, which stands continually open to our
gaze. But the book cannot be understood unless one first learns to comprehend the language
in which it is composed. It is written in the language of mathematics, and its characters are
triangles, circles, and other geometric figures, without which it is humanly impossible to
understand a single word of it; without these, one wanders about in a dark labyrinth.

–Galileo Galilei

Consider a smooth, d-dimensional manifold M (not yet equipped with a metric
tensor). We can define a smooth function f on M (Fig. 2.1).

Denote the set of all smooth functions on M by F(M). An alternative notation
that is often used is C∞(M). At each point p ∈ M , we can define a tangent vector
to M at p as a real-valued function V : F(M) → R such that the map is

(1) R-linear: V (a f + bg) = aV ( f ) + bV (g), and
(2) Leibnizian: V ( f g)|p = V ( f )g(p) + f (p)V (g),

for all f, g ∈ F(M), and a, b ∈ R. Note that F(M) is therefore a commutative
ring. The reason we have to define a tangent vector so abstractly is because the usual
notion of tangent vector as little pointing arrow sticking out from a curve or surface
does not make sense anymore if M is all there is, and there is no “outside” of M for
the vector to “stick out into”.

1This is, however, not necessarily true if the manifold is non-orientable; see Chap.1, Sect. 7 of [1].
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Given a coordinate system ξ = (x1, x2, . . . , xd) : U ⊂ M −→ R
d defined on a

neighborhood of p, and f ∈ F(M), we define the derivation

∂ f

∂xa
(p) := ∂( f ◦ ξ−1)

∂xa
(ξp). (2.1)

(Essentially, we are defining how to do calculus on a manifold, via what we already
know—how to do calculus in R

d .)
Then, the map

∂

∂xa

∣
∣
∣
p

: F(M) −→ R, (2.2)

such that

∂

∂xa

∣
∣
∣
p

: f �−→ ∂ f

∂xa
(p), (2.3)

is a tangent vector to M at point p.
Let TpM denote the set of all tangent vectors to M at p. It is called the tangent

space, and it is a vector space over R. If (x1, x2, . . . , xd) is a coordinate system in
some open set U ⊂ M at p, then its coordinate vectors

{
∂

∂x1

∣
∣
∣
p
,

∂

∂x2

∣
∣
∣
p
, . . . ,

∂

∂xn

∣
∣
∣
p

}

(2.4)

form a basis for the tangent space at TpM , and one may expand

V =
d

∑

i=1

V (xa)
∂

∂xa

∣
∣
∣
p
, for all V ∈ TpM. (2.5)

Fig. 2.1 An illustration of a
smooth function f defined
on a manifold M . Here ξ is a
homeomorphism of an open
set U of the manifold M
onto an open set ξ(U ) in R

d ;
it maps a point p ∈ U to
ξ(p) = (x1(p), x2(p),
. . . , xd (p))
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We often denote V (xa) by V a . The tangent bundle T M is simply the disjoint
union of all tangent spaces.

A map f : M → N between two manifolds induces the pushforward
f∗ : TpM → T f (p)N , defined by

( f∗|pV )(g) = V |p(g ◦ f ), ∀g ∈ F(N ). (2.6)

Similarly, f also induces the pullback f ∗ : T ∗
f (p)N → T ∗

p M .
Given any finite dimensional vector space V , it has a dual space defined by

V∗ = {ω : V → R| ω is linear} = Hom(V, R). (2.7)

Every member ω ∈ V∗ is called a 1-form, or traditionally a “covariant vector.”
The dual of the tangent space at p is the cotangent space, denoted by T ∗

p M . We have,
for ω ∈ TpM∗, the (symmetric) scalar product, which does not require the notion of
a metric:

〈X,ω〉 := ω(X) = X (ω) ∈ R, (2.8)

where X ∈ TpM .
Given a coordinate system ξ = (x1, x2, . . . , xd), one has an expansion for a

1-form

ω =
d

∑

i=1

〈

ω,
∂

∂xa

〉

p

dxa|p, for all ω ∈ T ∗
p M. (2.9)

We often denote
〈

ω, ∂
∂xa

〉

as ωa . Note that
〈

dxa, ∂
∂xb

〉 = δab , the Kronecker delta.
The disjoint union of all the cotangent spaces on M is the cotangent bundle,

denoted by T ∗M .
A type (r, s) tensor at p ∈ M is a multilinear map

T : T ∗
p M × · · · × T ∗

p M
︸ ︷︷ ︸

r

× TpM × · · · × TpM
︸ ︷︷ ︸

s

−→ R. (2.10)

We write T ∈ Tr
s .

We define the tensor product as follows:

T = T1 ⊗ T2 ∈ Tp
q ⊗ T

p′
q ′ (2.11)

is an element of Tp+p′
q+q ′ given by

T (ω1, . . . ωp, ξ1, . . . ξp′ ; X1, . . . , Xq , Y1, . . . ,Yq ′) (2.12)

= T1(ω1, . . . ωp, X1, . . . , Xq)T2(ξ1, . . . ξp′ , Y1, . . . ,Yq ′), (2.13)



2.1 What is General Relativity? 41

where {ω1, . . . ωp, ξ1, . . . ξp′ } are 1-forms and {X1, . . . , Xq , Y1, . . . ,Yq ′ } are vectors.
A (smooth) vector field X is a smooth assignment of each point p ∈ M to a vector

V ∈ TpM . Let X, Y be two vector fields onU ⊂ M . Let ϕt be the flow with respect
to X . Covector fields and tensor fields are defined similarly.

We define the Lie derivative of Y with respect to X by

£XY := lim
t→0

(φ−t )∗Y − Y

t
= d

dt

∣
∣
∣
t=0

(φ∗
t Y ). (2.14)

The Lie derivative can be generalized to other tensor fields.
A metric tensor g on M is a symmetric bilinear non-degenerate2 (0, 2)-tensor

field on M . More specifically, given any open subsetU ⊂ M and any smooth vector
fields X, Y on U , the metric is the assignment

g(X, Y )(p) = gp(X p, Yp) ∈ R. (2.15)

We write

ds2 = g = gabdx
a ⊗ dxb = gabdx

adxb, (2.16)

where

dxadxb := 1

2

(

dxa ⊗ dxb + dxb ⊗ dxa
)

(2.17)

is the symmetrized tensor product.
Wehave used the “EinsteinSummationConvention,”3 inwhich repeated indices—

such that each indexoccurs once in a superscript andonce in a subscript—are summed
over.

In terms of a coordinate basis, gab can be written as a square n × n matrix, with
inverse gab. One may use these to “raise” and “lower” indices of other tensors, e.g.,
gabTbc = T a

c, and gabSbc = Sac.
An important difference between Riemannian and Lorentzian geometry is that

the latter comes equipped with the notion of causality. A vector V is

(a) timelike, if g(V, V ) < 0,
(b) null, or lightlike, if g(V, V ) = 0, and
(c) spacelike, if g(V, V ) > 0.

A smooth curve γ is said to be timelike, null, or spacelike, respectively, if the tangent
vector to the curve is timelike, null, or spacelike, respectively, at all points on γ. A
curve is causal if it is either timelike or null.

2Though not positive definite in the Lorentzian case.
3I have made a great discovery in mathematics; I have suppressed the summation sign every time
that the summation must be made over an index which occurs twice... – Albert Einstein [2].



42 2 General Relativity: Subtle Is the Lord

Given two points p and q on a manifold, a priori there is no way to compare
the vectors in TpM and TqM since they belong to different vector spaces. A natural
way to make a comparison is to define parallel translation, which is a way to bring
a vector in TpM along a curve to TqM . To do this, we need an affine structure on
the manifold. Let E(M) denote the space of vector fields on M . A connection is the
map

∇ : E(M) × E(M) −→ E(M), (2.18)

written as (X, Y ) �−→ ∇XY , called the “covariant derivative of Y in the direction of
X ,” satisfying

(1) Linearlity over F(M) in the first argument:

∇ f X1+gX2Y = f ∇X1Y + g∇X2Y. (2.19)

(2) Leibnizian in the second argument:

∇X ( f Y ) = f ∇XY + (X f )Y. (2.20)

(3) Linearity over R in the second argument:

∇X (αY + βZ) = α∇XY + β∇X Z . (2.21)

Theoperation∇X canbe extended to tensors of any type, by requiring that∇X f = X f
and compatibility with contractions. For our purpose it suffices to assume that
E(M) = T M . In general relativity, the connection chosen is the Levi-Civita connec-
tion. It is the unique connection satisfying both the metric compatible (∇cgab = 0)
and torsion-free conditions (∇XY − ∇Y X = XY − Y X ).

Note that property (3) implies that ∇X ( f Y ) �= f ∇XY , so ∇X is not a tensor!4

One has to be careful in distinguishing the statement “∇X (tensor) is a tensor,” which
is true, and the statement that “∇X is a tensor,” which is false.

Let {Ea} be a local frame for T M on an open set U ⊂ M . We can expand in the
basis to get

∇Eb Ec = �a
bcEa, (2.22)

where the �a
bc’s are the so-called connection coefficients, or the Christoffel symbols.

Although it can be written in terms of the metric tensor, we emphasize that it does
not require the metric to make sense. In terms of the metric, in a given coordinate
system {xa}, the connection coefficients are, in terms of the local frame {∂/∂xa},

4Of course, since ∇X : Y �→ ∇XY ∈ T M , it is not a tensor in the strict sense of the word; but any
tensor T : TpM × T ∗

p M → R can also be viewed naturally as a map T : TpM → TpM . It is in
this sense that ∇X is not a tensor. If one wishes to be more accurate, one could say that ∇X is not
an endomorphism of the F(M)-module T M .
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�a
bc = 1

2

(
∂gcd

∂xb
− ∂gbc

∂xd
+ ∂gbd

∂xc

)

gda . (2.23)

An affine geodesic is a curve satisfying ∇γ̇ γ̇ = 0. Note that this definition only
depends on the connection, and not on the metric. If λ is the affine parameter, then
the geodesic equation is

d2xa

dλ2
+ �a

bc

dxb

dλ

dxc

dλ
= 0. (2.24)

In general relativity, the trajectories of the particles that are not subjected to
exterior forces are precisely the geodesics (gravity is itself not considered as a force).
Given a connection, one can define the Riemann curvature endomorphism, Rm :
T M × T M × T M −→ T M by

R(X, Y )Z := ∇X∇Y Z − ∇Y∇X Z − ∇[X,Y ]Z , (2.25)

where [X, Y ] := XY − Y X is the Lie bracket. It is equal to the Lie derivative:
[X, Y ] = £XY . There is a natural isomorphism with the (1,3)-tensor (also denoted
by Rm): Rm : T M × T M × T M × T M∗ −→ R. In terms of local coordinates,

Rm = Ra
bcd

∂

∂xa
⊗ dxb ⊗ dxc ⊗ dxd , (2.26)

that is,

Ra
bcd = dxa

[

R

(
∂

∂xb
,

∂

∂xc

)
∂

∂xd

]

. (2.27)

In terms of the connection coefficients,5 we have

Ra
bcd = ∂�a

bd

∂xc
− ∂�a

bc

∂xd
+ �a

ec�
e
bd − �a

ed�
e
bc. (2.28)

Note that we do not require a metric to define the Riemann curvature tensor.6 Among
the many symmetries of the Riemann curvature tensor, one notes from the coordinate
expression (2.28) that it is skew-symmetric with respect to c ←→ d.

5There is unfortunately no accepted convention of the sign of the curvature tensor, or even which
index is the one to be put “upstairs.” Exercise extreme caution when reading the literature.
6Spivak’s Volume 2 [3] has a nice explanation of the Riemann curvature tensor. Essentially, it
comes about from an integrability condition for the existence of solution, when trying to solve for
g(∂/∂xa, ∂/∂xb) = δab.
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Theorem (Riemann, 1861): The sufficient and necessary condition for a (semi)-
Riemannian manifold (M, g) to be flat is the vanishing of the Riemann curvature
tensor.

From the Riemann curvature tensor, we can obtain, by contraction, the Ricci
tensor:

Rab = Rc
acb. (2.29)

Again, we note that there is no requirement of a metric tensor to define the Ricci
tensor.

The Ricci tensor can be contracted again to obtain the Ricci scalar, or the scalar
curvature:

R = gab Rab = Ra
a . (2.30)

However, note that this time, we do need a metric—to raise one of the indices before
summing over them.

One can also define the torsion tensor:

T (X, Y ) := ∇XY − ∇Y X − [X, Y ]. (2.31)

In general relativity, just like inRiemannian geometry, the torsion vanishes identically
by the choice of the (Levi-Civita) connection.

2.1.2 The Einstein Field Equations

There was a blithe certainty that came from first comprehending the full Einstein field
equations, arabesques of Greek letters clinging tenuously to the page, a gossamer web.
They seemed insubstantial when you first saw them, a string of squiggles. Yet to follow
the delicate tensors as they contracted, as the superscripts paired with subscripts, collapsing
mathematically into concrete classical entities—potential; mass; forces vectoring in a curved
geometry—that was a sublime experience. The iron fist of the real, inside the velvet glove
of airy mathematics.

–Gregory Benford, “Timescape”.

Mathematically, general relativity is just Lorentzian geometry subjected to the con-
straint of the field equations:

Rab − 1

2
gab R + �gab = 8πG

c4
Tab , (2.32)
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where Rab are the components7 of the Ricci tensor, gab are components of the metric
tensor, R is the scalar curvature, � is a possibly nonzero cosmological constant term
(which we have not included in Chap. 1 when we first showed the field equations.),
and Tab are the components of the energy–momentum tensor.Mathematicians usually
prefer to write the field equations as

Ricg − R

2
g + �g = 0. (2.33)

One often assumes that the energy–momentum tensor should satisfy some nice,
“realistic,” properties. These are known as the energy conditions:

(1) Weak Energy Condition (WEC) For all future-pointing timelike vector fields
V , the matter density observed by the corresponding observer is always non-
negative,

TabV
aV b � 0, (2.34)

(2) StrongEnergyCondition (SEC)For all future-pointing timelike vectorfieldsV ,

(

Tab − 1

2
T gab

)

V aV b � 0, (2.35)

(3) Null Energy Condition (NEC) For all future-pointing null vector fields K ,

TabK
aK b � 0, (2.36)

(4) Dominant Energy Condition (DEC) In addition to requiring that the NEC
holds, one also requires that for every future-pointing causal vector field (i.e.,
either timelike or null) Y , the vector field −T a

bY
b must be a future-pointing

causal vector.

In terms of a fluid with energy density ρ and pressure p, these conditions read,
respectively,

(1) WEC: ρ � 0, ρ + p � 0,
(2) SEC: ρ + p � 0, ρ + (d − 1)p � 0,
(3) NEC: ρ + p � 0, and
(4) DEC: ρ � |p|.

Among all the four, the NEC is the weakest energy condition. Note also that
the SEC does not imply the WEC. All these energy conditions are known to be

7Sometimes, we carelessly refer to Rab as the Ricci tensor, or that gab is the metric tensor, instead
of the components of these tensors in a particular basis. In the “abstract-index notation,” they are
actually referring to the tensors themselves. However, such practice can be confusing to beginners.
For example, it may cause people to askwhether “coordinate xa is a vector” (c.f. V a , the components
of a vector V = V a ∂

∂xa ). My humble opinion is: learn the geometric objects properly, and then go
ahead and abuse the notations all you want—but not before you know what you are doing!

http://dx.doi.org/10.1007/978-3-662-48270-4_1
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violated, especially by quantum systems. However, there are other weaker, averaged
versions of the energy conditions. We shall not go into the details here. The readers
are encouraged to refer to [4] for detailed discussions.

Usually, in physics, one prefers to derive the equation ofmotion from the “action.”
An action is a curious beast.8 In classical mechanics, the total energy of a physical
system is the sum of its kinetic energy T and potential energy V ; one could also
define the difference between the kinetic energy and potential energy, and it is called
the “Lagrangian”: L(x, ẋ, t) = T − V . The action is then the integral

S =
∫

L dt. (2.37)

A variation of the action δS = 0 then gives the Euler–Lagrange equation,

d

dt

∂L

∂ ẋ
− ∂L

∂x
= 0, (2.38)

which in this case is equivalent to Newton’s force law F = ma. In the case of general
relativity, the action is known as the Einstein-Hilbert action. It is given by (restoring
c and G),

S = c4

16πG

∫

d4x
√− det(g)(R − 2�), (2.39)

where� is a possibly nonzero cosmological constant term. Note that the overall sign
of the action depends on the choice of sign convention. From this action, one can
derive the Einstein field equations.

Although not often emphasized in a typical course in general relativity (here-
inafter, “GR”), it is crucial—at least for someone who wants to work in gravitation—
to understand the layers of mathematical structures used in GR: Briefly, we have,
starting from the most basic structure,

(1) Topological Manifold Only topology is introduced at this level. Note, in partic-
ular, that there is not yet the concept of a metric. (See, e.g. [5])

(2) Differentiable/Smooth Manifold Differentiable structure is added; this means
we can do calculus on a manifold. (See, e.g. [6])

(3) SmoothManifoldwithConnectionWe can define parallel translation; note that
with a connection we can already define curvature and torsion—these quantities
do not require a metric to be defined. (See, e.g. [6, 7])

(4) Lorentzian ManifoldWe can introduce a metric such that it is compatible with
the connection, torsion-free, and has signature (−,+,+,+). Note that themetric
is required to define the scalar curvature, R = gab Rab. (See, e.g. [6, 7])

8I chose to explain what an action is, albeit very briefly and not very rigorously, because a mathe-
matician reader may not be familiar with this concept.
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(5) Physics Physics only arises when we introduce either an action (“physics is
where the action is”) or the field equations. (A good mathematically rigorous
text of general relativity is [8]). (See also [9])

Understanding the hierarchy of these structures becomes even more important when
one wants to contemplate an alternative theory of gravity, since then one will need to
know what can actually be modified—modified gravity is not just about modifying
the action, themathematical structures can also be chosen differently! Indeed, despite
the fact that general relativity has been a very successful theory, physicists are still
not satisfied; with major mysteries such as the dark energy problem still unsolved,
many modified theories of gravity have been proposed. One golden feather is not
enough; we need more. In this quest, however, it is important to check consistencies
of a proposed theory, not just fitting observational data. After all, we need to make
sure that the feather is really of genuine gold.

Having said all this about the different layers of mathematical structures, it may
be prudent to quote Carl G. Hempel at this point:

[...] to characterize the import of pure geometry, we might use the standard form of a movie-
disclaimer: No portrayal of the characteristics of geometrical figures or of the spatial proper-
ties of relationships of actual bodies is intended, and any similarities between the primitive
concepts and their customary geometrical connotations are purely coincidental.

Despite how we can construct mathematical structures, we should not confuse said
constructions with the real physical things.

2.2 Some Subtleties of General Relativity

Subtle is the Lord, but malicious He is not.

–Albert Einstein

General relativity is a rich theory. As Ferreira puts it, “despite being around for
almost a century, it continues to yield new results” [10]. In addition, it is also full
of subtleties, which are not often appreciated. In this section, we mention some of
these remarkable facts, followed by the explanations.

(1) Energy is, in general, not conserved.
(2) Gravity is not a force, and in fact, can be source-free.
(3) The Schwarzschild singularity lies in the future, and it is not a location in space.
(4) The event horizon is not a special place, but this does not imply that there is no

way for anyone to realize that he or she has crossed one.
(5) Whether a freely falling observer detects Hawking radiation from a black hole

actually depends on the geometry of the black hole—for asymptotically flat
Schwarzschild black holes, the freely falling observer does detect particle cre-
ation.
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Energy conservation is an important physical concept that has been deeply rooted
in our thinking ever since high school. It is therefore not surprising that one may
take it for granted that it has to be true. However, there is actually a deep reason
behind energy conservation, which is given by the well-known Noether Theorem
[11]: it corresponds to a time translational symmetry. In an expanding universe, for
example, dark energy density can remain constant, because the system simply has
no time translational symmetry (the universe is bigger now than it was yesterday).
In fact, the field equations of general relativity satisfy ∇aT ab = 0, which is some-
times referred to as a “conservation law.” However, this is different from the usual
conservation law in field theory: ∂aT ab = 0. The covariant derivative telling us that
the energy–momentum of the material field is exchanging energy in some precise
way with the gravitational field. One could of course interpret this to be conservation
of energy, provided that one takes into account the energy of the gravitational field
itself. Unfortunately, gravitational energy cannot be localized (see, e.g., [12, 13]),
and so it is difficult to make this statement precise. It is best to interpret ∇aT ab = 0
as a non-conservation law.

Furthermore, as we have just mentioned, the Noether theorem relates a continuous
symmetry with a conservation law. In general relativity, symmetry means isometry.
Given a Killing vector,9 there corresponds a conservation law of some kind. Specif-
ically, if ξa is the component of a Killing vector field, then the conservation law
associated with the symmetry generated by ξ is

∇a(ξ
bT c

b) = 0. (2.40)

Note that given a spacetime manifold, the existence of a Killing vector is not auto-
matic. Therefore, symmetry is generically a rare thing in general relativity.

The second item on our list concerns the interpretation of gravity as geometry
instead of as a force in GR. This is reflected in the fact that a free-falling particle
follows a geodesic of the underlying geometry, so they are not accelerated. The point
that gravity can be source-free is less appreciated. The easiest way to see this is
that the vacuum field equation (Tab = 0, which in turn implies that Rab = 0) can
nevertheless have non-trivial solutions in GR. The Schwarzschild solution is such
an example. This is of course well known. However, it is in relation to item (3) that
misconceptions can arise. Perhaps due tomisleading cartoon depictions (and popular
science descriptions along the line “you will be falling closer and closer towards the
singularity, where all known laws of physics break down”), it is often thought that
the singularity inside a Schwarzschild black hole is a location in space, namely, it
is at the center of the spherical black hole. This is incorrect. The singularity of the
Schwarzschild black hole is spacelike (see Sect. 2.5), which means that it lies in the
future, and cannot be interpreted as the “center” of the black hole. One can of course
define an effective center of mass for a Schwarzschild black hole, but this should not

9A vector field X is called a Killing vector field with respect to the metric g if the Lie derivative
£Xg = 0. Essentially, this is saying that the geometry on the manifold M determined by the metric
g does not change if we move along the flow of the Killing vector field.
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bemistaken as the statement that themass is concentrated at the “central singularity.”
See [14] for further discussion. The reason that one cannot escape the fate of hitting
the singularity is the same as the reason that one cannot escape the next dreadful
Monday from arriving—they are in the future of the observer.

For what it is worth, let us also mention that the event horizon is not a place in
the ordinary sense of the word. The event horizon is an outgoing null surface—it is
moving radially outward at the speed of light with respect to a local freely falling
observer (thus the usual statement that one can only escape a black hole by traveling
faster than light). The curvature of spacetime is such that, for observers far away
from the black hole, the event horizon looks like a nice, static sphere.

The last item on the list emphasizes the importance of being clear about what
one means in physics. It is often claimed that for a sufficiently large black hole, the
tidal force at the event horizon can be so small that anyone who crosses the event
horizon feels nothing out of the ordinary. This is correct. However, it does not mean
that there is no way to know where the horizon is. One may be tempted to think that
knowing the mass of the hole gives us the location of the horizon immediately via
the Schwarzschild radius r = 2M . However, r is nothing more than a coordinate,
and that does not help one to know physically where the horizon is. Nevertheless,
there are other quantities that one can measure, which would betray the presence of
the event horizon. One such example is the Karlhede scalar [15], constructed from
the contraction of the covariant derivative of the Riemann curvature tensor:

I = ∇e Rabcd∇e Rabcd . (2.41)

This geometric quantity changes sign at the event horizon for some black holes. For
example, for a Schwarzschild black hole, its Karlhede scalar is

I[Sch] = −720M2(r − 2M)

r9
. (2.42)

(For a Kerr black hole, the Karlhede scalar changes sign at the ergosphere, not at the
horizon; however, there are other invariants that do detect the event horizon in the
Kerr geometry [16, 17]). As a comparison, note that the usual Kretschmann scalar,
on the other hand, is just the contraction of the Riemann curvature tensor and does
not change sign at the event horizon. For a Schwarzschild black hole, it is

Rabcd R
abcd = 48M2

r6
. (2.43)

However, note that the firewall controversy has nothing to do with the ability to
detect the of event horizon (despite the claim in [18]), the “no drama” statement in
the paradox concerns the applicability of effective field theory at the event horizon
of the black hole (since for large black holes, the curvature there is small, and thus
EFT should apply).



50 2 General Relativity: Subtle Is the Lord

As for item (5) regarding detectability of Hawking radiation, we already discussed
this in Sect. 1.3.

2.3 Is the Metric Just Another Field?

Either, therefore, the reality which underlies space must form a discrete manifold, or we
must seek the ground of its metric relations (measure conditions) outside it, in binding
forces which act on it [...] This leads us into the domain of another science, of physics, into
which the object of this work does not allow us to go today.

–Bernhard Riemann, “On the Hypotheses which lie at the Bases of Geometry”.

Themetric tensor g = gabdxadxb measures “distance” on amanifold. This is particu-
larly clear in the Riemannian case, as the length � of a parametrized curve λ �→ x(λ),
joining two points λ = a and λ = b, is just defined by the integral

� :=
∫ b

a

[

gi j (x(λ))
dxi

dλ

dx j

dλ

] 1
2

dλ, (2.44)

and the distance between these two points is just the lower bound of the length of all
possible curves that join them.

In modern field theories, however, one is accustomed to the notion that everything
there is, is just a quantum field, and particles are nothing but excitations of the field.
This has led to the interpretation that the metric is just a spin-2 field, analogous to
a spin-0 scalar field or spin-1 vector field. The excitation in the spin-2 field then
gives rise to particles that mediate gravitational interaction—the gravitons.10 For the
spin-2 tensor theory to be mathematically consistent, it can only be either free (no
matter coupling), or in need of infinitely many correction terms, by including “grav-
itational energy-momentum” into the field equations (essentially, the field is coupled
to its own energy–momentum, a process which iterates indefinitely). Presumably,
if one does this correctly, after summing up all the terms, it is possible to recover
general relativity (perhaps including higher order terms) in all its glory. However,
“gravitational energy-momentum” is not even well defined (they are called “pseudo-
tensors” for a reason) and there are many ways to define such objects, so it is not
even clear if the result is unique. We shall not explore these issues further, for a nice
discussion, see Chap.3 of [19]. See also the objection raised in [20], but also the
counter-arguments in [21].

If one were to take the point of view that the metric is “just another field,” then it
is quite natural to consider the possibilities that the associated particle, namely the
graviton, may actually be massive (in standard GR, interpreted as a field theory, one
could see that graviton is massless). This gives rise to a class of theories that go under

10In linearized gravity, themetric tensor has components gab = ηab+hab, where η is the background
(here, flat) metric, and h is the perturbation (in the solar system, |hab| ∼ GM�/(R�c2) ∼ 10−6).
Roughly speaking, quantization of hμν gives the graviton—it is an excitation of the background
metric field.

http://dx.doi.org/10.1007/978-3-662-48270-4_1
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the name “massive gravity” (for reviews, see [22, 23]). In addition, if gravity is “just
another field,” then why cannot there be more than one such field? This gives rise to
the bimetric [24], and even multi-metric theories [25] in recent years. However, none
of these ideas are anything but natural ifwe considerGRas a geometric theory. In fact,
massive gravity is plagued with many issues, including problems with the laws of
black hole thermodynamics [26], as well as superluminality and micro-acausality—
closed timelike curves can arise in arbitrarily small regions in spacetime [27–30]. It
is not clear if bimetric and multi-metric theories can be free of such pathologies [31].

My humble opinion is that perhaps it is mistaken to view GR as just some dynam-
ical theory that arises out of treating gravity as nothing more than the interaction of
gravitons. Perhaps quantization of gravity is hard because we are trying to quantize
the wrong thing; perhaps we should take geometry seriously and re-consider the
question: what does quantized geometry really mean?11

Indeed, a similar viewpoint that gravity is different from other fields has been
mentioned in the literature. For example, H.A. Buchdahl stated that [32]:

I have spoken of ‘energy’, for instance. The energy ofwhat?Of the field perhaps? Field?—We
have no field in the sense in which one has a Maxwell field. Whenever I have used the term
‘field’ [in the context of the metric] I have done so as a matter of mere verbal convenience.
[...] The classical fields—the electrostatic field, for example—in the first instance had, so
to speak, a subjunctive existence. Let P be a particle satisfying all the criteria of being free
except in as far as it carries an electric charge. Then if P were placed at some point it would
be subject to a force depending on the value of the field intensity there. In particular, when
the latter is zero there is no force. [...] the ‘true’ fields subjunctively quantify the extent to
which a given particle P is not free, granted that P would be free if any charges it may carry
were neutralized [...] this field [the metric], unlike the ‘true’ fields, cannot be absent, cannot
be zero.12

On page 5 of [33], Hawking also mentioned that, if singularities in general relativ-
ity can indeed be smeared out by quantum correction, thingswould be rather “boring”
since gravity would then be “just like any other field,” whereas gravity should be dis-
tinctively different since it is not just a player on a spacetime background; it is both
a player and the evolving stage.

As a side remark, and on similar note, it has often been claimed that geometric
quantities like torsion13 can be treated just like any other field, and thus there is no
need to go beyond the Levi-Civita connection of GR. Such a proposition, while not

11There was one thing that really riled many of the general relativists about string theory: in string
theory [...] the geometry of spacetime, the be-all and end-all of general relativity, seemed to disap-
pear. It was all about describing a force [...] – Pedro G. Ferreira. [10].
12Indeed, even the “one-metric” theory of massive gravity requires two metrics, but one of which
serves as a fixed—nonzero—background for the dynamical metric.
13In GR, torsion vanishes identically by construction. The role of torsion in other theo-
ries of gravity is theory-dependent: in some theories such as the Einstein–Cartan theory
[34–36], torsion couples to spin; however, it is also possible to use only torsion (with-
out curvature), to construct a theory that is, surprisingly, equivalent to GR, which is
often called “TEGR (teleparallel equivalent of general relativity)” [37]. TEGR reminds us
that theories should not be confused with reality—the latter involves observed phenom-
ena, e.g., a falling apple, while the former are attempts to understand said observations.
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entirely wrong, can be misleading. In fact, from the point of view of well-posedness
of the evolution equations, it is far simpler to work with torsion as what it truly is,
namely, a geometric quantity [38].

2.4 Equivalence Principle, Einstein’s elevator, and All that

The Principle of Equivalence performed the essential office of midwife at the birth of general
relativity, but [...] I suggest that the midwife be now buried with appropriate honors.

–John L. Synge

Note that we have not mentioned the “equivalence principle” at all in this chapter—
general relativity as a matured mathematical theory, based on Lorentzian geometry
equipped with the Einstein field equations, requires no mention of the equivalence
principle.14 Many physicists like to treat the equivalence principle as an important
principle that somehow defines general relativity. This is, at best, misleading.

The equivalence principle says that the gravitational “force” as experienced
locally, while standing on a massive body is the same as the “pseudo-force” experi-
enced by an observer in a non-inertial (accelerating) frame of reference. The usual
depiction of this statement is using the “Einstein’s elevator.”Consider someone inside
an elevator with its cable cut, and thus is in free fall under the gravitational field. The
gravitational acceleration on Earth is about 9.8ms−2. Now, consider another elevator
in space, fitted to a rocket engine at the bottom, such that it accelerates at the same
rate. An observer inside such an elevator in space—so it is said—would not be able
to tell whether he is accelerating in space, or whether he is in free fall on Earth. This
allegedly demonstrates that acceleration is somehow equivalent to gravity.

Mathematically, the equivalence principle is merely the statement that one can
find a coordinate in the neighborhood of any point p on the spacetime manifold
such that the Christoffel symbols vanish at that point. These are called “Riemann
normal coordinates centered at p.” The metric, evaluated at p, takes the canonical
Minkowksi form and furthermore, the first derivative of the metric vanishes. That
is to say, higher order derivatives are, in general, non-vanishing. Thus, if one has a
sufficiently sensitive instrument, one can always detect curvature—curvature cannot
be “transformed away” simply because you change a coordinate system! This is
also saying that, strictly speaking, there is no such thing as an “inertial frame” in
GR. In practice, however, we often talk about “negligible curvature” so that we can
talk about an “inertial frame,” but one has to remember that this is an approximate
statement.

In terms of Einstein’s elevator, this fact can be seen by noting that, if the elevator
is indeed accelerating in space, two dropped balls would fall downward to the floor

(Footnote 13 continued)
It is possible that there can bemore than one theory,which are different in terms of theirmathematical
structures, yet provide equivalent physical predictions.
14Or for that matter, the “principle of general covariance”—(almost?) any theory can be made
general covariant. See the debate about this issue in [39].
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of the elevator in parallel. However, if the elevator is free falling in the Earth’s
gravitational field, each of the balls will fall toward the center of the Earth, and
therefore, they cannot fall down parallel to each other. Of course the effect is very
small, but this does not change the fact that it is there. The equivalence principle,
therefore, is only strictly true for an infinitesimally small elevator—a point—and
therefore not an elevator.

While the above technicality about the equivalence principle is nitpicking, there is
another folklore which is a serious misunderstanding of the physics, namely, that the
equivalence principle implies light bending. This again follows from takingEinstein’s
elevator too seriously: one imagines that a beam of light is hitting the elevator that
is accelerating in space, entering via a small hole on the side. By the time the light
ray hits the wall on the opposite wall of the elevator, the elevator would already had
accelerated upward a little, and so it would seem that the light beam does not travel
in a straight line, but would rather hit the wall at a position somewhat lower than
its entry point. By the equivalence principle, it is then claimed that, for an elevator
that is freely falling in a gravitational field, light rays would be bent by gravity. This
gravitational lensing is evident, for example, by observing the star lights around the
Sun during a solar eclipse (one of the classic tests of GR).

Although the conclusion that light rays can be bent by gravity is correct, the
reasoning via the equivalence principle above is entirely mistaken. The fact is that,
since the equivalence principle only holds at a point, it is nothing but a local statement.
This cannot possibly imply the bending of light rays in gravitational field, which is
clearly an effect over a finite region of spacetime. In fact, the local light bending
implied by equivalence principle is purely kinematical and does not depend on the
field equations. This is evident since we have not mentioned anything about how the
theory of gravity should be in this thought experiment. One could in fact construct a
theory that satisfies the equivalence principle but does not predict light bending. For
example, Nordström’s theory of gravitation15 [41–43], which is a generalization of
the Newtonian Poisson equation of a scalar field φ from

∇2φ = 4πGρ, (2.45)

to

φ�φ = −4πGT, (2.46)

where � := ∂a∂a is the D’Alembert operator and T is the trace of the energy-
momentum tensor. This fact is best appreciated by examining the geometrized version
of Nordström’s theory, also known as the Einstein–Fokker theory [44], in which the
scalar curvature of spacetime is related to the trace of the energy–momentum tensor:
R = 24πGT/c4. Since the energy–momentum tensor for the electromagnetic field
is trace-free, it cannot give rise to a curvature effect, and thus no light bending by the
gravitational field. The fact that it satisfies the equivalence principle merely follows

15Readers interested in thought experiments would also enjoy [40].
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from the purely geometric statement that any (semi)-Riemannian manifold admits a
normal coordinate system; see also [45]. For more discussion on the issue of “local
versus global” light bending, see [46].

It is not that the equivalence principle is wrong, but if one is not careful, it might
lead to the wrong results. It might be best not to bother with the principle at all, and
just focus on themathematics. Of course, different people think in different ways, and
not everyone prefers advanced mathematics over simple rods and clocks in relativity,
so the philosophy to do away with the equivalence principle in this section is purely
a personal, biased, preference.

2.5 Causal Structure and Penrose Diagrams

To see a world in a grain of sand,
And heaven in a wild flower,
Hold infinity in the palms of your hand,
And eternity in an hour.

–William Blake

The existence of a temporal dimension in Lorentzian geometry means that there is a
concept of causality. This is what allows one to define a black hole. Mathematically,
a black hole is a spacetime region such that whatever is inside the black hole, even
light, cannot escape. Let us make this notion more precise.

Given a point p ∈ M , we can define the causal past of p, denoted by J−(p), as
the set

J−(p) := {

q ∈ M
∣
∣∃ a past-directed causal curve from p to q.

}

(2.47)

The causal past can be defined for a set S, simply as

J−(S) =
⋃

p∈S
J−(p). (2.48)

The causal future of a point and a set can be defined similarly.16

Light rays travel on null geodesics all the way to “future null infinity,” which is
denoted by I +. A black hole, BH, is the region from which light cannot escape, so

BH := M \ J−(I +). (2.49)

The event horizon, EH, is its boundary

EH := ∂(M \ J−(I +)). (2.50)

16The study of causal structure is an important aspect of Lorentzian geometry, and we refer the
readers to [8, 47] for more details.
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Note that in this definition, the event horizon is a three-dimensional entity, and it is the
“world-tube” of what we usually think of as the event horizon—the two-dimensional
surface of a black hole. To obtain the two-dimensional event horizon, one simply
take a cross section between EH and a spacelike hypersurface. It turns out that since
EH is a null hypersurface, the area of the cross section is independent of the choice
of spacelike slices.

In addition to the future null infinity, there is also the “past null infinity,” denoted by
I −. Massive particles of course do not travel on null geodesics, and their trajectories
are always timelike. To this, there corresponds the notion of future and past timelike
infinity, denoted by i+ and i−, respectively. Spacelike infinity is denoted by i0.
Since spacetimes are often, though not always, infinite in both temporal and spatial
directions, it is difficult to grasp the entire spacetime. The Penrose diagram offers
such a mean, by representing the causal structure of the entire spacetime on a finite
diagram. Preserving the causal structure means that light cones are still represented
by 45◦ lines.

To be more explicit, suppose that (M, g) is the spacetime of interest. If �2 is a
smooth, strictly positive function, then the metric g̃ = �2g is said to arise from g
due to a conformal transformation. The angles on a manifold equipped with a metric
are measured using the generalized cosine law: If X and Y are two vector fields, then
the angle θ between the vectors at point p ∈ M is given by

cos θ = g(X, Y )√
g(X, X)g(Y, Y )

∣
∣
∣
∣
p

. (2.51)

Clearly, the angles between two vectors are the same regardless of whether it is
measured with respect to the original metric g or the conformally related metric g̃,
since the conformal factor �2 cancels out. In addition, the ratio of the length of any
two vectors measured by the two metrics remains unchanged for the same reason.
Also, null curves with respect to onemetric are also null with respect to the other one.
The trick then is to find a suitable � such that we can “pull” infinities to some finite
ranges. One possible function for such a re-scaling purpose is the arctan function,
since it is bounded between −π/2 and π/2. However, in practice, usually a few
coordinate transformations are required to successfully construct a Penrose diagram.

For an explicit example,wewillwork out the Penrose diagram for a Schwarzschild
black hole. Let us start with the usual metric of the form

g[Sch] = −
(

1 − 2M

r

)

dt2 +
(

1 − 2M

r

)−1

dr2 + r2(dθ2 + sin2 θdφ2). (2.52)

This can be transformed into the Kruskal–Szekeres coordinates (U, V, θ,φ) via, if
r > 2M ,

U =
( r

2M
− 1

)1/2
e

r
4M cosh

(
t

4M

)

, V =
( r

2M
− 1

)1/2
e

r
4M sinh

(
t

4M

)

.

(2.53)
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and for r < 2M ,

U =
(

1 − r

2M

)1/2
e

r
4M cosh

(
t

4M

)

, V =
(

1 − r

2M

)1/2
e

r
4M sinh

(
t

4M

)

.

(2.54)
The metric then takes the form

g = 32M3

r
e− r

2M
(−dV 2 + dU 2

) + r2(dθ2 + sin2 θdφ2). (2.55)

In order to construct the Penrose diagram, we introduce new coordinates u and v

such that17

U = 1

2
(v − u); V = 1

2
(v + u). (2.56)

In order to bring infinities intofinite range,weuse the aforementioned arctan function,
by introducing yet more coordinates (u′, v′) and (U ′, V ′), as follows:

u′ := arctan(u) := V ′ −U ′, (2.57)

v′ := arctan(v) := V ′ +U ′. (2.58)

It turns out that light rays move on curves of constant u′ and v′, i.e., the 45◦ lines in
the U ′V ′ plane. The ranges for u′ and v′ are (−π/2,π/2).
Also, note that, the Kruskal–Szekeres coordinates satisfy

( r

2M
− 1

)

e
r
2M = U 2 − V 2 = (U + V )(U − V ). (2.59)

On the event horizon r = 2M , it follows that U = ±V . This corresponds to the
“future event horizon” (U = V ) and “past event horizon” (U = −V ), respectively.
Since u = V−U and v = V+U , we can obtain u = 0 = v bymaking the appropriate
substitution. Then u′ = arctan u = 0 and similarly v′ = 0, that is, V ′ −U ′ = 0 and
V ′ +U ′ = 0. Thus the horizon is represented by the lines V ′ = ±U ′.

At the singularity r = 0, and V > 0, we see by the defining relations that
−1 = U 2−V 2 = −uv. Consider the equationu′+v′ = 2V ′ = arctan(u)+arctan(v).
Then, we have

tan(u′ + v′) = tan[arctan(u) + arctan(v)] = u + v

1 − uv
→ ∞ (2.60)

as uv → 1. It follows that u′ + v′ = 2V ′ = π/2, i.e., V ′ = π/4. Similarly, for r = 0
and V < 0, the singularity maps into the line V ′ = −π/4. On the other hand, since
u′, v′ ∈ (−π/2,π/2), we see that

17Note that both U, V and u, v are dimensionless.
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Fig. 2.2 The Penrose
diagram of a maximally
extended (asymptotically
flat) Schwarzschild black
hole. Singularities are
represented by wavy lines.
The 45◦ lines that cross at
the origin are the event (past
and future) horizons

− π < v′ − u′ = 2U ′ < π, (2.61)

so U ′ is bounded between −π/2 and π/2.
We may now proceed to draw the Penrose diagram for the Schwarzschild black

hole (Fig. 2.2). Note that a generic point on the diagram is a 2-sphere, that is, angular
dimensions have been suppressed. It is now clear from the Penrose diagram that the
Schwarzschild singularities are horizontal lines (and so are orthogonal to timelike
curves), and are therefore spacelike. It is also clear that any timelike or null curves
inside the horizon will hit the singularity. Note also that i+ and i− are distinct from
r = 0 since there are timelike curves (outside the black hole horizon) that never hit
the singularity. In fact, there are four regions of spacetime: Region I corresponds
to our assumed asymptotically flat universe, region II is a black hole, region III is
another asymptotically flat universe, connected to Region I via an Einstein–Rosen
bridge (the coordinate (U ′, V ′) = (0, 0)), and Region IV is a white hole region. This
is the maximally extended Schwarzschild spacetime. Note that the Einstein–Rosen
bridge is a non-traversable wormhole, since only spacelike curves pass through the
throat.

One important feature of this Penrose diagram is that it is time-reflective sym-
metric, i.e., invariant under t �→ −t . Such a black hole is not a very realistic one.
In the astrophysical context, black holes are the end stages of gravitational collapse
of massive stars. The interior of the star is of course not a vacuum, and hence not
described by a Schwarzschild metric. Therefore, there is no reason to expect the
presence of a wormhole connecting to another universe, not even a non-traversable
one. The past of this collapsing star spacetime is also not the same as that of the
maximally extended Schwarzschild metric—notably, there was no white hole. The
Penrose diagram is therefore quite different.

Note that we can also collapse a “null shell,” an incoming spherically symmetric
shell of radiation, into a black hole, provided we have enough energy in the shell. The
Penrose diagram in Fig. 2.3 makes it obvious that the event horizon forms before the
null shell has even arrived. This means that it is possible that an event horizon is now
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Fig. 2.3 The Penrose
diagram of an asymptotically
flat Schwarzschild black hole
formed from stellar
collapse—dotted part is the
stellar interior (left), and
from a collapsing null shell
(right). Note that in the case
of a collapsing null shell, an
observer can already be
inside the horizon well
before the null shell arrives
at his or her location

forming right where you are, without you realizing. This gives another indication
that the event horizon is really not a special entity at all.

For completeness, let us also mention the concept of a Cauchy hypersurface. A
set is achronal if no two points on S can be joined by timelike curves. If S is a set
that is achronal, and in addition, every causal curve in M crosses it precisely once,
then it is a Cauchy surface. A spacetime (M, g) that admits a spacelike hypersurface
�, which is Cauchy, is said to be globally hyperbolic. In general relativity, global
hyperbolicity means that one can set up a well-posed Cauchy problem, i.e., given
initial conditions on �, one can evolve the system forward (or backward) in time to
study its evolution. In a sense, this is what “doing physics” means.

If one examines thePenrosediagramof an asymptoticallyflatReissner–Nordström
black hole carefully (Fig. 2.4), one would notice that the physics in the region behind
the inner horizon of the black hole cannot be determined from the initial data outside
of said horizon alone, but must be fixed by boundary conditions on the (timelike)
singularity. Therefore, this spacetime is not globally hyperbolic, and the inner hori-
zon is called a Cauchy horizon. The asymptotically flat Kerr black hole has a similar
Cauchy horizon. For more discussion, see [48].

2.6 Anti-de Sitter Spacetime and Holography

There is geometry in the humming of the strings.

–Pythagoras

In this section, we start by reviewing the technique of stereographic projection on
a sphere, and then apply the same method to hyperbolic space. We explain how
anti-de Sitter spacetime is related to hyperbolic space. Several coordinate systems
that are commonly used in the literature are introduced, and the causal structure of
AdS spacetime is discussed. After that we introduce the idea of holography, which
says that physics with (quantum) gravity—in fact, string theory—in anti-de Sitter
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Fig. 2.4 The Penrose diagram of an asymptotically flat Reissner–Nordström black hole (not max-
imally extended). T and X are just labels for some temporal and spatial direction, respectively.
There are two horizons: r+ and r−. The latter is a Cauchy horizon. Given a Cauchy hypersurface
� in the exterior spacetime, the initial data cannot determine the physics at any point p behind r−,
since the timelike singularity is in the causal past of p (the boundary of the causal past is denoted
by dashed lines), and can therefore affect p (here, an arrow line emanating from the singularity
demonstrates this)

spacetime is in some precise sense equivalent to physics of supersymmetric field
theory without gravity on the conformal boundary of the same spacetime. This so-
called AdS/CFT correspondence will play a central role in this thesis, with a black
hole placed in the AdS bulk being dual to some field theory with finite temperature on
the boundary that behaves a lot like quantum chromodynamics (the study of quarks
and gluons).

2.6.1 Stereographic Projection and Hyperbolic Geometry

You must not attempt this approach to parallels. I know this way to its very end. I have
traversed this bottomless night, which extinguished all light and joy of my life. [...] For
God’s sake, I beseech you, give it up. Fear it no less than sensual passions because it too
may take all your time and deprive you of your health, peace of mind and happiness in life.

–Farkas Bolyai, to his son János Bolyai, one of the founders of non-Euclidean geometry.

We first review the method of stereographic projection on a sphere, usually taught
in the first course of differential geometry. We will do it on a 3-sphere S3, and then
generalize the method to hyperbolic 3-space H

3.
Let {ya} = {yi , y4} denote the coordinates in R

4. First recall that S3 is defined by
the equation (setting the radius to unity)
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3
∑

i=1

(yi )2 + (y4)2 = 1 (2.62)

in R
4. Our convention for stereographic projection is to project from the north pole

to a plane that the south pole rests on (See Fig. 2.5). Let {xi } denote the coordinates
on the projection plane. The origin of the sphere is at (0, 0, 0, 0), and the plane has
y4 = −1. Elementary geometry shows that

xi = 2yi

1 −
√

1 − ∑3
i=1(y

i )2
= 2yi

1 − y4
. (2.63)

That is to say, the metric tensor on the ambient space

δ[R4] = (dy1)2 + (dy2)2 + (dy3)2 + (dy4)2 (2.64)

restricted to S3 gives the equation

4

(1 − y4)2

3
∑

i=1

(dyi )2 =
3

∑

i=1

(dxi )2. (2.65)

Since

4

(1 − y4)2
=

[
2(1 − y4)

(1 − y4)2

]2

=
[
1 + (y4)2 − 2y4 + 1 − (y4)2

(1 − y4)2

]2

(2.66)

=
[

(1 − y4)2 + ∑3
i=1(y

i )2

(1 − y4)2

]2

, (2.67)

Fig. 2.5 Stereographic projection of a 3-sphere, with one dimension suppressed, from the north
pole to a 3-plane that the sphere sits on
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we have

[

1 +
3

∑

i=1

(yi )2

(1 − y4)2

]2 3
∑

i=1

(dyi )2 =
3

∑

i=1

(dxi )2, (2.68)

that is, S3 can be described by a metric tensor of the form

g[S3] = 1
[

1 + 1
4

∑3
i=1(x

i )2
]2

3
∑

i=1

(dxi )2. (2.69)

Note that this metric is manifestly homogeneous and isotropic.
Let y4 = cos ρ, yi = sin ρx̃ i , where

⎧

⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

x̃1 = sin θ cosφ,

x̃2 = sin θ sin φ,

x̃3 = cos θ.

(2.70)

We can then write the metric in the form

ds2 = dρ2 + sin2 ρ(dθ2 + sin2 θdφ2). (2.71)

Let r = sin ρ, we obtain another form of the metric

ds2 = 1

1 − r2
dr2 + r2(dθ2 + sin2 θdφ2). (2.72)

Readers familiar with cosmology will recognize that this is the form that goes
into the spatial part of the closed Friedmann–Lemaître–Robertson–Walker (FLRW)
metric.

The stereographic projection for hyperbolic 3-space can be carried out in the
exactly same manner, using the defining equation:

3
∑

i=1

(yi )2 − (y4)2 = −1, y4 > 1, (2.73)

as a hypersurface in Minkowski spacetime R
3,1. This is the so-called “hyperboloid

model” of H
3. We may now project the points on the hyperboloid onto the plane

y4 = −1, via the origin as the projection point (Fig. 2.6).
Then we would obtain, similarly, a metric for H

3:
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g[H3] = 1
[

1 − 1
4

(
∑3

i=1(x
i )2

)]2

3
∑

i=1

(dxi )2. (2.74)

This is the Poincaré ball.
The Poincaré disk H

2 is easier to imagine, and it is the disk of radius 1 equipped
with the metric

ds2 = 4(dx2 + dy2)

(1 − x2 − y2)2
. (2.75)

Readers familiar with complex analysis would appreciate this disk in complex coor-
dinates18

ds2 = 4 dzdz̄

(1 − |z|2)2 . (2.76)

The hyperbolic distance from the origin to any point z in the disk is given by

d(0,z) =
∫

2 d|z|
(1 − |z|2) = ln

(
1 + |z|
1 − |z|

)

. (2.77)

Note that this expression tends to infinity in the limit |z| → 1; the boundary of the
disk is infinitely far away.

The unit disk in the complex plane can be mapped into the upper-half plane via
the inverse Cayley transform, which is a Möbius transformation given by

Fig. 2.6 Stereographic projection of a hyperbolic 3-space, with one dimension suppressed, from
the hyperboloid model to a Poincaré sphere model (shown as a disk here). The disk at the side
shows some of the geodesics on this space—they are straight lines that pass through the origin, or
arcs that are perpendicular to the boundary at the points they meet the boundary

18Readers with a complex analysis background are encouraged to read [49].
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f (z) := i
1 + z

1 − z
. (2.78)

Note that the boundary of the disk is mapped into the real line. The (real) metric
on the upper-half plane takes the form:

ds2 = dx2 + dy2

y2
. (2.79)

Note again that distance becomes unbounded as y → 0, the boundary of the
upper-half plane. For H

3, we would have an upper-half space model, with metric

ds2 = dx2 + dy2 + dz2

z2
. (2.80)

From the Poincaré ball, we can also define y4 = cosh ρ and yi = sinh ρx̃ i analo-
gously, and furthermore r = sinh ρ, to put the metric into the “spatial FLRW form”:

ds2 = 1

1 + r2
dr2 + r2(dθ2 + sin2 θdφ2). (2.81)

2.6.2 The Geometry of Anti-de Sitter Spacetime

I regret that it has been necessary for me in this lecture to administer such a large dose of
four-dimensional geometry. I do not apologize, because I am really not responsible for the
fact that nature in its most fundamental aspect is four-dimensional. Things are what they
are; and it is useless to disguise the fact that “what things are” is often very difficult for our
intellects to follow.

–Alfred N. Whitehead

Anti-de Sitter (AdS) spacetime will play a central role in this thesis, as eventually
we would like to study black hole solutions that are asymptotically locally AdS.
It is therefore prudent to properly introduce AdS spacetime in some details.19 For
simplicity, we will restrict our discussion to four-dimensional spacetime, denoted by
AdS4. An AdS spacetime is a solution to the Einstein Field Equations with a negative
cosmological constant.

The best way to visualize this geometry is to consider it as a hypersurface in a
higher dimensional spacetime. In particular, consider R

3,2 (note that there are two
time dimensions!) with canonical metric

δ[R3,2] = −(dy4)2 +
3

∑

i=1

(dyi )2 − (dy0)2. (2.82)

19For even more details, see [50].
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AdS spacetime is then the hypersurface defined by the equation

− (y4)2 +
3

∑

i=1

(yi )2 − (y0)2 = −1. (2.83)

Note that for each constant yi slice,we have a circle defined by (y4)2+(y0)2 = const.,
and thus the topolgy is S1 × R

3. We can again perform stereographic projection,
but we will not carry this out explicitly. From the previous discussion, we know
that metrically R

3 here is really diffeomorphic to hyperbolic space H
3. Due to the

temporal plane spanned by the two temporal dimensions y0 and y4, there is a closed
timelike curve (CTC). Physicists are usually very uncomfortable with CTCs, and
speak of “passing to the universal covering spacetime ÃdS” instead, that is to say,
one “unwraps” the circle S1 representing time coordinate into its covering space R,
and by “AdS” one actually secretly means ÃdS.

As we will soon see, AdS spacetime is really a peculiar one: in addition to CTC,
it is not globally hyperbolic. The fact that it attracted so much attention despite these
otherwise undesired features (from the point of view of classical general relativity) is
due to its importance in supergravity and string theory. See a review by Gibbons [51]
for some applications of AdS spacetime. His comment on CTCs in AdS is especially
noteworthy:

Many physicists are unhappy with the CTC’s in AdSp+2 and seek to assuage their feelings

of guilt by claiming to pass to the universal covering spacetime ÃdSp+2. In this way they
feel that they have exorcised the demon of “acausality”. However therapeutic uttering these
words may be, nothing is actually gained in this way. Consider for example the behavior of
test particles. Every timelike geodesic on AdSp+2 is a closed curve of the same durations
equal to 2πR, which Heraclitus would have called the ‘Great Year’.

AdS spacetime, like de Sitter spacetime and Minkowski spacetime, is maximally
symmetric, in the sense that there are—in four dimensions—10 Killing vectors20

yA
∂

∂yB
− yB

∂

∂yA
; A �= B, A = 0, 1, 2, 3, 4, (2.84)

where yA = δAB yB , with δ being the metric 2.82.
An alternativeway to represent AdS spacetime is as a portion ofMinkowski space.

This is shown in Fig. 2.7. In fact, AdS spacetime admits metric of the form

g[AdS] = 1

[1 − 1
4 (−t2 + x2 + y2 + z2)]2 η, (2.85)

where η is the standard metric on R
3,1. This form of the metric makes it clear that

AdS spacetime is conformally related to Minkowski spacetime. In fact, for t = 0,

20A maximally symmetric spacetime has, in d-dimensions, a total of d(d+1)/2 Killing vectors. See
Lemma (9.28) of [8].
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Fig. 2.7 AdS spacetime
(dotted region) as a portion
of Minkowski spacetime
given by the metric
g = [1 − 1

4 (−t2 + r2)]−2η

one immediately sees that the metric is just that of a hyperbolic space given by the
metric 2.74. This is also true for different values of t—geometrically, they are just
hyperbolic balls with different radii.

For the discussions involving black holes, it is best to use the static coordinates
(which makes comparison to the usual Schwarzschild metric apparent):

g[AdS] = −
(
r2

L2
+ 1

)

dt2 +
(
r2

L2
+ 1

)−1

dr2 + r2(dθ2 + sin2 θdφ2), (2.86)

where L is called the curvature length scale of AdS spacetime. It is related to the
negative cosmological constant21 � by � = −3/L2. AdS spacetime has constant
scalar curvature22 R = −12/L2. Again, every constant time slice is just a hyperbolic
space given by the metric 2.81 (where L = 1).

The static coordinates relate to the embedding coordinates (ya) by

⎧

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

y0

L
=

√

1 +
( r

L

)2
cos

(
t

L

)

,

yi

L
= r

L
ωi ,

y4

L
=

√

1 +
( r

L

)2
sin

(
t

L

)

,

(2.87)

21In d-dimensions, � = − (d−1)(d−2)
2L2 .

22In d-dimensions, the Ricci tensor satisfies Rab = 2�
d−2 gab. Thus, the scalar curvature satisfies

R = − d(d−1)
L2 .
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where ω1 = cos θ, ω2 = sin θ cosφ, and ω3 = sin θ sin φ. The static coordinates
cover the entire spacetime (except for trivial coordinate singularities), so that it is
evident that AdS4 is globally static. By construction, it has symmetry group SO(3, 2).
This should be contrasted to the static coordinates for de Sitter spacetime, which
unlikeAdScase has positive cosmological constant. In this case, the static coordinates
do not cover the entire spacetime due to the presence of the cosmological horizon.

AdS spacetime also admits a coordinate system such that the spatial sections are
the upper-half space model of H

3, given by the metric (2.80). They are called the
Poincaré coordinates:

ds2 = L2

z2
(−dt2 + dx2 + dy2 + dz2

)

. (2.88)

If one defines r = L2/z, then the upper-half space model of H
3, upon restoring L ,

yields

ds2 = L2

r2
dr2 + r2

L2
(dx2 + dy2), (2.89)

which is just the spatial part of the flat slice parametrization of AdS spacetime:

ds2 = − r2

L2
dt2 + L2

r2
dr2 + r2

L2
(dx2 + dy2), (2.90)

which, in turn, is of course equivalent to the Poincaré patch given by the metric 2.88.
In fact, not only are that the spatial parts of AdSd simply H

d−1, but also the whole
AdS spacetime itself, under Wick rotation (i.e., the complexification t → i t) to
“Euclidean-AdS,” becomes H

d . This provides a means to study physics via powerful
tools of complex analysis. As an example, in AdS3, one can topologically identify
points to construct a black hole solution, known as a BTZ black hole [52]. The
Euclidean version of BTZ spacetime turns out to be H

3/�, where � ⊂ PSL(2, C)

is a Schottky group [53]. The discovery of the BTZ solution was itself a surprise
since without a negative cosmological constant, and Einstein gravity is trivial in
three dimensions.

2.6.3 Holography: The AdS/CFT Correspondence

String theory at its finest is, or should be, a new branch of geometry. …I, myself, believe
rather strongly that the proper setting for string theory will prove to be a suitable elaboration
of the geometrical ideas upon which Einstein based general relativity.

–Edward Witten

Consider first the Minkowski spacetime with canonical metric

η = −dt2 + dx2 + dy2 + dz2. (2.91)
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In terms of null coordinates u := t − r, v := t + r , we have

ds2 = −dudv + 1

4
(u − v)2(dθ2 + sin2 θdφ2). (2.92)

If we introduce new coordinates (U, V ) and (T, R) via23

U = arctan(u) = 1

2
(T − R); V = arctan(v) = 1

2
(T + R), (2.93)

with U, V ∈ (−π/2,π/2), then we obtain metric of the form

ds2 = 1

4 cos2U cos2 V
[−4dUdV + sin2(V −U )(dθ2 + sin2 θdφ2)], (2.94)

or equivalently,

ds2 = �−2(T, R)[−dT 2 + dR2 + sin2 R(dθ2 + sin2 θdφ2)], (2.95)

where � = 2 cosU cos V = cos T + cos R. Therefore, the Minkowski metric is
conformally related to the metric

ds2 = −dT 2 + dR2 + sin2 R(dθ2 + sin2 θdφ2), (2.96)

where 0 � R < π, and −π < T < π. The spatial part of this metric is a 3-sphere, so
its topology is R × S3. We refer to this as an Einstein Static Universe. Suppressing
one spatial dimension, we can represent this spacetime as an infinitely long solid
cylinder, and hence it is also called an Einstein Cylinder. Then, the above argument
implies that we can conformallymapMinkowski spacetime into a part of the Einstein
cylinder (Fig. 2.8).

Since AdS spacetime is conformally related to Minkowski spacetime, it can also
be conformally mapped into the Einstein cylinder. To see this explicitly, re-write the
static metric (2.86) into the form

ds2 =
[

1 +
( r

L

)2
][

−dt2 +
(

1 +
( r

L

)2
)−2

dr2 + r2
(

1 +
( r

L

)2
)−1

(dθ2 + sin2 θdφ2)

]

,

(2.97)

and then define

ω :=
∫

dr

1 + r2
L2

= L arctan
( r

L

)

. (2.98)

23Note that inwritingU = arctan(u), it is really tanU = u/1, where 1 is u = 1 in the corresponding
unit of length.
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This transforms the metric into the form

ds2 = sec2
(ω

L

) [

−dt2 + dω2 + L2 sin2
ω

L
(dθ2 + sin2 θdφ2)

]

. (2.99)

so the metric manifestly conformally maps into the Einstein cylinder. Note that the
spatial infinity r = ∞ is mapped into ω = πL/2. We can therefore visualize AdS
spacetime with a cylinder, each fixed time slice of which gives a hyperbolic space.

To do this, it is convenient to further define dimensionless coordinates η := t/L
and χ := ω/L , so that the metric (2.99) becomes

Fig. 2.8 Minkowski
spacetime conformally
mapped into the Einstein
Static Universe

Fig. 2.9 AdS spacetime
conformally mapped into the
Einstein static universe,
shown here as a (solid)
cylinder of infinite height.
AdS maps into a smaller
cylinder with radius
χ = π/2 instead of χ = π.
The Penrose diagram for
AdS spacetime is obtained
from the Einstein cylinder by
fixing φ = const.. For more
discussion, see [54]
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Fig. 2.10 The Penrose
diagram of AdS spacetime. It
is not globally hyperbolic
since light rays can bounce
off the conformal boundary
(which is spatially infinitely
far away) and be reflected off
into the bulk in a finite
proper time of an observer at
the (arbitrary) “origin”
r = 0. Physics at p is
determined by both the
initial conditions at q and the
boundary conditions at
r = ∞. No timelike
geodesic from q can reach
the boundary—the negative
cosmological constant
provides an attractive “force”
that pulls massive particles
back to the origin at p

ds2 = L2

cos2 χ

[−dη2 + dχ2 + sin2(χ)(dθ2 + sin2 θdφ2)
]

. (2.100)

Note that 0 � χ < π/2 (Fig. 2.9).
The Penrose diagram for AdS spacetime can be obtained from the Einstein cylin-

der by fixing φ = const. (Fig. 2.10). It has a peculiar feature that not all infinities
can be given a finite range, so the diagram is not compact. Also, we note that in AdS
spacetime, a light ray can travel from the (arbitrary) “center”24 to null infinity, and
be reflected back in a finite proper time of an observer sitting at the center (it takes
an infinite affine time for the light ray). This implies that physics depends on the
boundary conditions at null infinity—the spacetime is not globally hyperbolic. No
timelike geodesic can reach the conformal boundary.

Recall that AdS spacetime has maximal symmetry. For AdS5, the number of
Killing vector fields is 15. In physics, this corresponds to 15 “symmetry transforma-
tions.” In Maldacena’s conjecture in string theory [55], the so-called Type IIB string
theory in AdS5× S5 is dual to a supersymmetric Yang–Mills (SYM) theory that lives
on the boundary of AdS5, which has 10 symmetries (six Lorentz transformations
and four spacetime translations; these are all together called “Poincaré symmetry”).
Supersymmetry is a symmetry that pairs integer-spin particles with half-integer-spin
partners and vice versa (see Box 3.1 for more details). Being “dual” means that
there is an equivalence between them—a quantity computed on one side has a cor-

24This “center” is arbitrary in the same sense that all points in de Sitter spacetime are a “center” from
which everything else moves away from—there is no real center in such an expanding universe.
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responding interpretation on the other. This is useful since difficult calculations on
the boundary may become easier in the AdS bulk, and vice versa.

Due to the symmetry constraints (15 in the bulk, but only 10 on the boundary),
not all field theories can be dual to AdS5 (the S5 is compactified and often not
mentioned explicitly). The additional symmetries imposed on the field theory are
conformal symmetries. These are symmetries under the conformal transformations
of one dilatation and four coordinate inversions. Any quantum field theory that is
invariant under the conformal transformations is called a conformal field theory
(CFT). Furthermore, any theory that is invariant under dilatation is said to be scale
invariant. Maldacena’s conjecture is then a correspondence between physics in AdS
spacetime, with gravity, with physics on its boundary, and without gravity. This is
known as the AdS/CFT correspondence.

SYM theory has a SU(N ) gauge symmetry, where N is the number of “colors”
(like that of the quarks, see Box 5.1) in the theory. For the correspondence to be
useful, we require that N must be sufficiently large. The reason for this is the ’t Hooft
coupling, λ = g2YMN , where gYM is the Yang–Mills coupling, which determines the
interaction strength of the field theory. The local strength of gravity in the AdS bulk
is determined by the curvature with corresponding length scale L; the smaller value
of L corresponds to the greater curvature. Note that Maldacena’s conjecture is in the
context of string theory, so there are also strings living in the AdS bulk. Therefore,
there is a length scale �s related to the string, which is inversely proportional to
the string tension. The string coupling is gs ∼ g2YM. The ’t Hooft coupling satisfies
λ ∝ (L/�s)

4. Thus, if �s � L and N is sufficiently large, the strings are weakly
coupled in the bulk, but the field theory on the boundary is strongly coupled. Such
a situation makes AdS/CFT correspondence useful—the field theory is too difficult
for usual field theory techniques to compute, but the gravity in AdS is essentially
classical—that is, we only need to know GR. The opposite regime in which the
field theory is weakly coupled, however, means that one would require a full non-
perturbative string theory calculation in the bulk. There are of course regimes in
which calculations on both sides are difficult.

In the string theory picture, there are actually N D3-branes in the bulk. Their
presence induces curvature in the geometry. Near the branes, the geometry takes the
AdS5 × S5 form in the low energy limit. We will not go into any more details in
this work, and interested readers may refer to e.g. [51]. For some more details at the
non-technical level, see [56, 57].

Of course, in physically interesting systems, for example, field theory with
finite temperature, scale invariance is broken by the length scale set by the tem-
perature. Thus, many so-called “AdS/CFT correspondence” applications are really
neither (pure) AdS nor CFT. A better name would be gauge/gravity duality,
or simply, holography.
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Chapter 3
The Positive Mass Theorem, Stability,
and Phase Transitions

Down came the giant with a terrible crash, and that, you may be
sure, was the end of him.

Jack and the Beanstalk, Joseph Jacobs

This chapter explains the notions ofmass in general relativity. The positivemass theo-
rem, when it exists, guarantees stability. We also introduce the idea of Wick rotation
to imaginary time, and explain how to use this technique to study possible phase
transitions between various gravitational configurations. This includes, specifically,
the Hawking-Page phase transition between a Schwarzschild-AdS black hole and a
“thermal AdS” spacetime; and a similar phase transition discovered by Horowitz and
Myers, between toral AdS black holes and a type of soliton; which configurations
are preferred is dictated by their free energy.

3.1 Defining Mass in General Relativity

We demand rigidly defined areas of doubt and uncertainty!

—Douglas Adams, “The Hitchhiker’s Guide to the Galaxy.”

Mass is surprisingly a rather tricky quantity to even define in general relativity. In
addition, things get more complicated for geometries that are not asymptotically flat.
In this chapter, wewill first motivate the definition ofArnowitt-Deser-Misner (ADM)
mass [1], and then discuss the definition of mass for asymptotically AdS spacetime.
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76 3 The Positive Mass Theorem, Stability, and Phase Transitions

It turns out that general relativity has a very nice feature that—at least in some
spacetimes—mass is positive, which is important for the stability of the theory.1

We will not say too much about the positive mass theorem per se,2 but rather focus
our attention on the stability of various geometries. The most important subject
that we will discuss is the phase transition between black holes and non-black hole
geometries, since theywill be an important tool in Chap. 5. In order to do this, wewill
make a small detour into the land of imaginary time—Wick-rotation and Euclidean3

field theory.
There are too many concepts of “mass” in general relativity to be reviewed in this

chapter, so we will just focus on motivating the definition of the most well-known
concept of mass, namely the ADM mass for asymptotically flat spacetime. In fact,
this will allow us to be precise about what we exactly mean by “asymptotically flat”,
a phrase which up till now we take to simply mean, in a very vague manner, “looks
flat far away from a gravitating mass”. A good and detailed reference for the concept
of mass in general relativity is [7].

Let us start with Newtonian gravity, with the Poisson equation

∇2� = 4πρ, (3.1)

where ρ is the mass density function. The total mass is then the integral

M =
∫

R3
ρ d3x = 1

4π

∫
R3

∇2� d3x . (3.2)

If we assume that ρ has compact support supp(ρ) ⊂ B(0, R), where B(0, R) denotes
a ball of (coordinate) radius R centered at 0, then the integral can be reduced to

M = 1

4π

∫
B(0,R)

∇2φ = 1

4π

∫
S(0,R)

∇ i� dSi , (3.3)

via the (Ostrogradsky-Gauss) divergence theorem, where dSi is the Euclidean-
oriented area element of S(0, R).

If ρ is not compactly supported, the integral over the ball of radius R will depend
on R, and so one gets mass as a function of R. The total mass can then be obtained
by taking the limit:

1Somewhat ironically, our universe is most likely asymptotically de Sitter (with a positive; cosmo-
logical constant [2, 3]), but we do not have a positive energy theorem for asymptotically de Sitter
spacetimes [4]. In fact, the energy of linearized gravitational waves can be arbitrarily negative in
general, although gravitational waves emitted by physically reasonable sources do carry positive
energy [5].
2Interested readers should consult Chap. 9 of [6].
3To remind the readers, by “Euclidean”, we mean the signature of the metric tensor is (+, . . . ,+),
instead of (−,+, . . . ,+), which is referred to as being Lorentzian. This physicist’s terminology is
what a mathematician would refer to as “Riemannian”. To add to the confusion, when a physicist
says “Riemannian”, he or she may actually mean “Lorentzian”!

http://dx.doi.org/10.1007/978-3-662-48270-4_5
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M = lim
R→∞

1

4π

∫
S(0,R)

∇ i� dSi . (3.4)

In general relativity, due to the scalar constraint equation [8].

R[g] = 16πρ + |K |2 − (Trg(K ))2, ρ := Tabn
anb, (3.5)

where na denotes the unit vector field normal to the spacelike initial data hypersurface
�, the notionofmass is related to the integral of theRicci scalar of the spatialmetricg,

R[g] = gi j Rk
ik j = gi j (∂k�

k
i j − ∂ j�

k
ik + Q), (3.6)

where Q denotes a collection of quadratic terms in the first derivatives of the metric
with coefficients being rational functions of gi j . Rewriting the Christoffel symbols
in terms of the metric, we can obtain

R[g] = ∂ j
[
gi jgkl (∂kgli − ∂iglk)

] + Q, (3.7)

so that given any spatial metric g, we have

√
det (g) R[g] = ∂ j

⎡
⎢⎣√

det g gi jgkl (∂kgli − ∂iglk)︸ ︷︷ ︸
=:U j

⎤
⎥⎦ + Q. (3.8)

We can define

M(R) := 1

16π

∫
S(0,R)

U jdSj . (3.9)

Let us first now give a formal definition:

Consider, a spacelike hypersurface � in a Lorentzian manifold Mn+1 with metric tensor g
and second fundamental form (“extrinsic curvature”) K . Then (�, g, K ) is asymptotically
flat if there exists a compact setC such that the complement ofC is a finite union of ends (each
end is diffeomorphic to R

n\{xi : |x | � 1}) such that the metric tensor falls off sufficiently
fast, that is,

∂α
x

[
gi j (x) − δi j

] = O
(
|x |−q−|α|) , (3.10)

and

|∂β
x Ki j (x)| = O

(
|x |−q−1−|β|) , (3.11)

where

n − 2

2
< q � n − 2. (3.12)
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RemarksWeallow the partial derivatives above to be the so-called “weakderivatives.”
Indeed, consider an open domain� ⊂ R

n , and L1
loc(�) the space of locally integrable

functions for �. We say that a function f ∈ L1
loc(�) is weakly differentiable with

respect to xi if there exists a function gi ∈ L1
loc(�) such that

∫
�

f ∂iφ =
∫

�

giφ, for all φ ∈ C∞
c (�), (3.13)

i.e.,φ is compactly supported in�. Here, the integration is with respect to a Lebesgue
measure on the Borel σ−algebra on R

n . Then, the higher derivatives can also be
defined as follow: Let α be a multi-index, i.e., α = (α1, · · · αn). Then we define

|α| :=
n∑

i=1

αi . (3.14)

If f is an n-times differentiable function, then for any α with |α| � n, the derivative
can be expressed as4

∂α f (x) := ∂|α| f (x)
∂xα1

1 · · · ∂xαi
i

. (3.16)

A function f ∈ L1
loc(�) has weak derivative ∂α f ∈ L1

loc(�) if the integration-by-
parts formula below holds:

∫
�

(∂α f )φ dx = (−1)|α|
∫

�

f (∂αφ) dx, for all φ ∈ C∞
c (�). (3.17)

For example, the Schwarzschild metric in (n + 1)-dimensions can be recast into the
form (so-called “isotropic coordinates”, see the discussion in [9])

gi j =
(
1 + M

2|x |n−2

) 4
n−2

δi j , (3.18)

which is manifestly asymptotically flat by the above definition (Ki j = 0 in this case).
In 4-dimensions, this reads

gi j = δi j + O(r−1). (3.19)

4Let 1 � p � ∞, and n ∈ N. The Sobolev space is defined by

Wn,p(�) := {
f ∈ L p(�), ∂α f ∈ L p(�); ∀ |α| � n

}
. (3.15)
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Note that ∂kgi j = O(r−2). The power of r here is not optimal, as can be seen from
the formal definition. Indeed, we can generalize to

gi j = δi j + o(r− 1
2 ), ∂kgi j = o(r− 3

2 ). (3.20)

Note that r−3/2 is the borderline for the power of r to be in L2(R3\B(0, 1)). That
is to say, the function r−y will only be square-integrable if y > 3/2. For y � 3/2,
the integral diverges. Likewise, the conditions in Eq. (3.20) are important to prevent
the quadratic terms Q from diverging. (Also note that we have used the “little o
notation”!)

For a metric tensor satisfying Eq. (3.20), we can rewrite Eq. (3.9) as

16πM(R) =
∫
S(0,R)

δi jδkl (∂kgli − ∂iglk) dSj + o(1). (3.21)

The ADM mass is then

MADM := lim
R→∞

1

16π

∫
S(0,R)

δi jδkl (∂kgli − ∂iglk) dSj . (3.22)

More generally, as long as the metric is expressed in Cartersian type coordinates, we
have

MADM := lim
R→∞

1

16π

∫
S(0,R)

gi jgkl (∂kgli − ∂iglk) dSj . (3.23)

Note that we can rewrite this as

MADM := lim
R→∞

1

16π

∫
S(0,R)

√
det(g)gklni (∂kgli − ∂iglk) d

2x, (3.24)

where ni is the unit normal to the sphere at infinity, and d2x is the area element. It is
easily seen that in the present form, this only works in Euclidean-type coordinates.
For example, if we were to calculate this in spherical coordinates, then, we get

MADM := lim
R→∞

1

16π

∫
S(0,R)

r2 sin θgklnr (∂kglr − ∂rglk) dθdφ, (3.25)

which will prove to be divergent. This is not physical and is due to the “coordinate
ADM mass.” One needs to regularize to remove this infinity due to the coordinate
effect. This motivates the following (equivalent) form of definition of ADM mass5:

5Without taking the limit to infinity, this expression is known as the Brown-York mass [10]. For a
proof that the ADM mass is a geometric invariant, see, e.g., [11].
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MADM := − lim
R→∞

1

8π

∫
S(0,R)

√
det(g)(K − K0) d

2x (3.26)

where K is the trace of the extrinsic curvature of the sphere embedded into a hyper-
surface of the spacetime, and K0 is the trace of the extrinsic curvature of the sphere
embedded into a spacelike hypersurface in a background or “reference” space.6 For
example, the reference space for an asymptotically flat Schwarzschild black hole is
just the spatial part of the good old Minkowski spacetimeR

3,1, namely, the flat space
R

3. One could interpret this as the statement that mass in general relativity is always
defined with respect to a reference geometry. Again, one is reminded of Buchdahl’s
remark [13] that “this field [the metric], unlike the ‘true’ fields, cannot be absent,
cannot be zero”.

This definition is quite general, and we can use it to define mass in asymptotically
AdS spacetimes.7 Note that nevertheless, the term “ADM mass” is usually only
reserved for asymptotically flat geometries.

In later parts of the thesis, we will consider black holes with nontrivial horizon
topology in AdS—the topological black holes. These are not exactly asymptotically
AdS: neutral black holes in (n + 2)-dimensions admit a metric of the form

g = −
[
k + r2

L2 − 16πM

nV [Xk
n]rn−1

]
dt2 +

[
k + r2

L2 − 16πM

nV [Xk
n]rn−1

]−1

dr2 + r2d�2[Xk
n],

(3.27)
where V [Xk

n] is the (dimensionless) volume of the n-dimensional Riemannian space
Xk
n with metric of constant curvature k ∈ {−1, 0,+1}. For example, n-dimensional

sphere Sn gives V [Sn] = 2πn/2/�(n/2), where � is the Euler gamma function. In
particular a 2-sphere gives 4π, but a real-projective space RP

2 ≡ S2/Z2 gives a
volume of 2π. If the topology of the horizon is not Sn , then the topology is said to
be non-trivial, and the spacetime is foliated by the same topological space.

In 5-dimensions, we can consider a “black lens”, i.e., a black hole with lens
space8 topology. Clearly, since p is unbounded, there are infinitely many black hole

6To embed in a reference spacetime onemust consider two normals, one spacelike and one timelike,
and each has their associated extrinsic curvature. See also [12].
7There are more rigorous ways to define mass in an asymptotically AdS spacetime, such as the
Abbott-Desermass [14, 15]. For theAdS black holes that wewill be dealingwith later, the definition
here agrees with the Abbott-Deser mass [16].
8The 3-dimensional lens spaces L(p; q) are quotients of the 3-sphere by Z/p-actions. More specif-
ically, if p, q are coprime integers, we can consider S3 as the unit sphere in C

2, and define the free
Z/p-action on S3 by

(z1, z2) 	−→
(
e2πi/p · z1, e2πiq/p · z2

)
. (3.28)

This construction generalizes to higher dimensional lens spaces L(p; q1, q2, . . . , qi ), where the qi ’s
are coprime to p. Alternatively, we can think of L(p; q) as the 3-manifold obtained by gluing the
boundaries of two solid tori together such that the meridian of the first torus goes to a (p, q)-curve
on the second, where a (p, q)-curve is a curve that wraps around the longitude p times and around
the meridian q times.
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Fig. 3.1 Construction of a lens space. The identification is made between the triangles after a twist
of the upper hemisphere by 2π/p-radians. For example,�N xp−1x0 is identifiedwith�Sxp−2xp−1

topologies for the k = 1 case in 5-dimensions. There is a nice way to imagine how
a lens space might look. Let us start with a solid disk and glue up its boundary. This
wraps up the disk and gives us a 2-dimensional sphere S2. Similarly we can take a
solid ball and glue up its surface to form a 3-dimensional sphere S3.

The simplest type of lens space is constructed as follows. Take a solid ball and
divide it in half, the equator is then subdivided by the points {x0, x1, . . . , xp−1}.
Join these points with the north and south poles. Now twist the upper hemisphere
by 2π/p-radian. Finally, glue up all the upper “triangles” with their corresponding
lower partners. This is the lens space S3/Zp (Fig. 3.1).

Consider, now the case in which spacetime is 5-dimensional and k = 0. If we
restrict to orientable and compact topologies, then there are still six possibilities for
the admissible topology, namely the 3-torus T 3 ∼= R

3/Z
3 and its various quotient

topologies: T 3/Z2, T 3/Z3, T 3/Z4, T 3/Z6, and T 3/(Z2×Z2). For a proof, see Theo-
rem 3.5.5 of [17, 18]. See also Table 1 and Fig. 3.1 in [19] for a list and illustrations of
all flat 3-manifolds, including the non-compact and non-orientable ones. Including
the trivial R

3, there are 17 of them in total. The flat case is special in the sense that
there are only finitely many possible topologies. In 4-dimensions, things are easier
to imagine, the event horizon of a flat and compact black hole would be that of a flat
torus T 2 ∼= R

2/Z
2. This is obtained by identifying the opposite edges of a square:

gluing together the left and right edges first yields a cylinder, and then gluing up the
top and bottom circles of the cylinder gives a torus S1 × S1 ⊂ R

3 (Fig. 3.2). This
torus looks curved, but this is only an extrinsic (mean) curvature. The torus itself
is flat if we do not actually perform the “physical gluing operation” to put it in R

3.
Likewise, T 3 is obtained by identifying the opposite faces of a cube.

Like the k = 1 case, there is a vast set of distinct compact manifolds of unit neg-
ative curvature [20] in general dimensions. A compact hyperbolic (2-dimensional)
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Fig. 3.2 Construction of 2-dimensional torus by identification of the opposite sides of a square

Fig. 3.3 Construction of a
genus-2 surface. Here #
denotes a connected sum of
topological spaces—the
technical term for “gluing”

surface is a surface with more than one hole (genus). Such surfaces can also be
constructed by topological identifications similar to the construction of a torus. An
example is provided in Fig. 3.3. We remark that for 2-dimensional compact surfaces,
there is a nice result called the Gauss-Bonnet theorem, which essentially says that
the total amount of curvature of a surface is related to its topology:

∫
M
K dA = 2πχ(M) = 4π(1 − g), (3.29)

where K is the Gaussian curvature (it is twice the scalar curvature) of the surface
M , dA the area element, and g its genus. The quantity χ(M) = 2 − 2g is called the
Euler characteristic. The case g = 0 is just the sphere, and g = 1 a flat torus. The
integral

1

2π

∫
M
KdA (3.30)

has a nice name—the curvatura integra. This is a very surprising result since it links
geometry to topology in a neat way. In particular, the total Gaussian curvature does
not depend on differential geometry at all but only the genus. Therefore, if you distort
the surface and change the curvature at any location, as long as one does so smoothly
and does not change the topology, the total curvature will remain the same. One
immediate implication of this theorem is that, there are vastly many more negatively
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curved constant curvature compact surfaces (all those with g � 2) then positively
curved and flat ones.

Equation (3.27) thus describes asymptotically locally AdS spacetimes. (In the
physics literature, many authors do not distinguish between asymptotically locally
AdS and asymptotically AdS). Note that, even for the k = 1 case, unless the topology
is that of a sphere and not its quotient, the geometry is only asymptotically locally
AdS. In the mathematical literature the spatial geometries of such spacetimes are
often called “asymptotically locally hyperbolic” (ALH) spaces, since the asymptotic
behavior of the spatial geometries are H

n+1/� where H
n+1 is the hyperbolic space

and � is a finite group acting by isometries.
More technically we say that (M, g) is an asymptotically locally AdS spacetime

provided there exists a spacetime with boundary M ′, equipped with a Lorentzian
metric g′ such that

(1) The boundary ∂M ′ is timelike, i.e., ∂M ′ is a Lorentzian manifold with metric
induced from g′.

(2) M is the interior of M ′. That is, M ′ = M ∪ ∂M ′.
(3) g′ = �2g, where the conformal factor � is a smooth function on M ′ such that

it is positive on M , and vanishes on ∂M ′. Also, we require that d� = 0 along
∂M ′.

The requirement that � vanishes on the boundary can be appreciated as follows:
since g′ = �2g, and the distance described by the metric g in the AdS bulk can be as
large as we like by moving out toward the boundary, in order for g′ to be finite and
well defined at infinity means that we need the conformal factor to be smaller and
smaller toward the boundary. So it eventually goes to zero at the boundary.

Lastly, let us comment on a practical and often used method to define asymptoti-
cally AdS spacetimes in terms of local coordinate charts. If, under radial coordinate
inversion so that the AdS boundary lies at z = 0,9 the metric can be written in the
form10

9See [21] for explicit form of the inversion.
10One usually sees an AdS black hole metric in the form

ds2 = L2

z2

(
− f (z)dt2 + dz2

f (z)
+ ηi jdx

idx j
)

, ηi j = δi j . (3.31)

For example, a planar Schwarzschild-AdS black hole has f (z) = 1− z4/z4h , where zh denotes the
event horizon. This is not of the form specified by g[FG]. However, another coordinate transforma-

tion will do the job: Let z′ = z ·
√
1 + z′4

4z4h
, then, we can get the g[FG] form

ds2 = L2

z′2

⎡
⎢⎢⎢⎣−

(
1 − z′4

4z4h

)2

1 + z′4
4z4h

dt2 +
(
1 + z′4

4z4h

)
δi jdx

idx j + dz′2

⎤
⎥⎥⎥⎦ , (3.32)

as desired.
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g[FG] = L2

z2
[
dz2 + gab(x, z)dx

adxb
]
, (3.33)

where the sum over a and b does not include z, and

gab(z, x) = g(0)
ab (x) + z2g(2)

ab (x) + z4g(4)
ab (x) + · · · (3.34)

in which the metric of the conformal boundary g(0)
ab is non-degenerate, then, we say

that the spacetime is asymptotically AdS. The exact form in “· · · ” above depends
on whether the dimension is odd or even, but this should not concern us.11 This is
known as the Fefferman-Graham expansion [23].

For example, the pure AdS spacetime has a metric of the form

g[AdS(FG)] = L2

z2
[
dz2 + ηab(x, z)dx

adxb
]
. (3.35)

This is thewell-known “Poincaré patch,” analogous to the half-spacemodel of hyper-
bolic geometry. It is no surprise then that the boundary is flat in these coordinates.
Note that in general, given an asymptotically locally flat geometry, the conformal
boundary g(0)

ab need not be flat, as gab(x, z) depends on x, z and can in principle allow
for nonvanishing curvature at the boundary.

3.2 Positive Mass and Stability

Weep not that the world changes—did it keep. A stable, changeless state, it were cause
indeed to weep.

–William Bryant

The positive mass theorem, first proved by Richard Schoen and Shing-Tung Yau
in 1979 [24, 25] (and later by Witten [26] using a different method), holds that the
ADMmass has to be positive for a complete, asymptotically flat initial data set for the
Einstein Field Equations satisfying the dominant energy condition. This positivity
is essential to guarantee stability: If an isolated system could have negative energy,
we could in principle combine such systems to make one with a negative energy of
arbitrarily largemagnitude. Such physical systems could radiate an arbitrarily large
amount of energy, which is unstable. Therefore, we need a nonnegative lower bound
to energy in our theory to guarantee stability.

11A logarithmic term rd−1 log r appears in the expansion in an even dimensional spacetime with
dimensionality d. This is related to the Weyl anomaly in the boundary field theory in the context of
the AdS/CFT correspondence [22]. In the case of pure AdS spacetime, g(0)

ab = ηab.



3.2 Positive Mass and Stability 85

Fig. 3.4 Left Cross section of Minkowski spacetime with an extra dimension ϕ, two spatial dimen-
sions suppressed; that is, the metric is g = −dt2 + dx2 + dy2 + dz2 + R2dϕ2. The top and bottom
lines are topologically identified, so that we get R

3,1 × S1. Right Cross section through the center
of the “bubble of nothing” at the instant of nucleation. At large area radius r � μ, the space is
barely perturbed from the original R

3,1 × S1 spacetime, but as we approach the center, the size of
the extra dimension shrinks until, at r = μ, spacetime smoothly pinches off. The picture is taken
from Brown and Dahlen [28] with permission

Such an instability was shown explicitly to occur in the Kaluza-Klein model
by Witten in 1983 [27]. The model describes 5-dimensional general relativity with
a ground state consisting of the product of a Minkowski spacetime and a circle,
R

3,1 × S1. The positive mass theorem holds for such a background. However, it
no longer holds if we consider a generic, nontrivial, background, M4 × S1, where
M4 = R

3,1. (This means that while R
3,1 × S1 is classically stable, it is quantum

mechanically unstable, as fluctuations will bring it into the form M4 × S1, where
M4 = R

3,1, which is unstable.)
In particular, Witten showed that a gravitational instanton mediates a decay of

M4 × S1 into a zero-mass bubble, called “bubble of nothing”, with no spacetime
inside. This bubble of nothing rapidly expands at the speed of light, all the way to
null infinity. Such an instability due to the absence of a positive mass theorem has
drastic consequences—the world as we know it would not exist.12 See Fig. 3.4.

Box 3.1: A Foray into Supersymmetry
Supersymmetry, affectionately known as SUSY, is arguably the most favored
extension of particle physics beyond the Standard Model. It is a symmetry that
relates elementary particles of one spin to other particles that differ by half
a unit of spin, which are known as superpartners. In a theory with unbroken
supersymmetry, for every type of boson there exists a corresponding type of
fermion with the same mass and internal quantum numbers, and vice-versa. For
example, in supergravity, or SUGRA, in addition to the spin-2 graviton, there is
also its superpartner with spin- 32 , called the gravitino.

Technically, a supersymmetry transformation turns a bosonic state into a
fermionic state, and vice versa. This is achieved by extending the Poincaré
group to the super-Poincaré group, by adding two anti-commuting generators
Q and Q†, such that

12One way to stabilize Kaluza-Klein geometry is to incorporate supersymmetry (See Box 3.1)—the
production of these bubbles is forbidden in a theory with fundamental fermions and supersymmetric
boundary conditions [27].
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{
Q, Q†} = Pμ, (3.36)

{Q, Q} = {
Q†, Q†

} = 0, (3.37)

{Pμ, Q} = {
Pμ, Q†

} = 0, (3.38)

where Pμ is the four-momentum generator of spacetime translations. Here, Q
and Q† are actually spinorial objects (we have suppressed all the spinor indices).

This is the reason that the superpartners differ from their Standard Model
counterparts in spin. A particle and its superpartner forms a supermultiplet.
Since Pμ commuteswith the Q and Q†, somust−P2, which is themass-squared
operator. Consequently, the bosons and the fermions in a supermultiplet have
the same mass.

Howmany superpartners a particle has is actually theory dependent (depends
on the number of Q’s)—inN = 1 supersymmetry, amassless vector boson such
as photonwould have a singlemassless spin- 12 superpartner. In anN = 2 theory,
a photon has more superpartners—twomassless spin- 12 particles, and amassless
complex scalar particle.

Clearly, even if SUSY is a correct theory, such a symmetry is badly broken,
for otherwise we would have found many of the light superpartners, e.g., the
superpartner of the electron, the selectron. The fact that we have not yet dis-
covered any of the superpartners means that if SUSY is correct, it is so badly
broken that these superpartners ended up being very heavy.

In a more mathematical language, if a vector space can be decomposed as a
direct sum V = V0 ⊕ V1, we call it a Z2-graded vector space, or a super vector
space. Elements in V0 are called even (“bosonic”) while those in V1 are called
odd (“fermionic”). If we define linear algebra over a super vector space, we
get a super linear algebra. The rule is that when two odd elements are inter-
changed, one should introduce a minus sign; but not when two even elements
are interchanged. Given a smooth manifold, locally we can now introduce coor-
dinate charts (x1, ..., x p, θ1, ..., θq), where the θ j ’s are Grassmannian, i.e., they
satisfy θiθ j + θ jθi = 0, precisely the anticommutator satisfied by the odd ele-
ments. This gives a super manifold of dimension p|q. Technically, we say that a
super manifold is a smooth manifold of dimension p with a sheaf (a special case
being the fiber bundle—a stalk of a sheave generalizes a fiber of a bundle)OM of
super commuting algebras that looks locally like the ring C∞(Rp)[θ1, ..., θq ].
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The sections of the structure sheaf are the so-called “superfields” (just like a
vector field is a section of the vector bundle). Supersymmetry is then simply a
morphism between supermanifolds.

For more details on supersymmetry, see, e.g., [29, 30].

To be more specific, we consider the case where the manifold M4 × S1 is the
5-dimensional Schwarzschild spacetime

g[Sch] = −
(
1 − μ2

r2

)
dt2 +

(
1 − μ2

r2

)−1

dr2 + r2(dϕ2 + sin2 ϕd�2
2), (3.39)

where d�2
2 is the standard round metric on the 2-sphere. Here ϕ is the angular coor-

dinate on the compact S1. One couldWick-rotate this geometry to the 5-dimensional
Riemannian one by setting t = iξ, and then Wick-rotate back into Lorentzian signa-
ture via ϕ = π/2+ iτ . To avoid a conical singularity at r = μ in the metric we need
ξ to be periodic. However, the most important thing is that we now have obtained a
metric of the form

g[Bubble] = −r2dτ 2+
(
1 − μ2

r2

)
dξ2+

(
1 − μ2

r2

)−1

dr2+r2 cosh2 τd�2
2, (3.40)

which the original spacetime can tunnel into. The logic behind this statement is
explained in the next section. The fact that such a bubble expands outward and
consumes everything is clear from the observation that the minimal-area sphere
containing the bubble has area r2 cosh2 τ , a monotonically increasing function of the
time τ .

Such a procedure of “double Wick-Rotation” is the tool we need to study the
phase transition between charged toral black holes and soliton spacetimes (which do
enjoy stability due to a version of the positive mass theorem). However, let us first
give a quick recipe for calculating the temperature of a black hole via Wick-rotation.

3.3 The Euclidean Action

The shortest path between two truths in the real domain passes through the complex domain.

–Jacques Hadamard

We first recall from finite temperature quantum field theory (a review is provided in
Appendix B) that the usual path integral has the exponential term

exp

(
i

�

∫ +∞

−∞
LM dt

)
(3.41)
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in the propagator, whereLM is the Lagrangian, and the integral
∫

R
LMdt is the action,

which we will denote by SM . The standard recipe to obtain a partition function is as
follows. First, perform a Wick rotation by defining imaginary time τ = i t , thereby
converting the action into the so-called “Euclidean action” SE = −SM(t 	→ τ ). We
then impose periodicity over τ ∈ [0,β�). The exponential factor is thenWick-rotated
into

exp

(
−1

�
SE

)
= exp

(
−1

�

∫ β�

0
LE dτ

)
, (3.42)

which governs the propagators of Euclidean quantum field theory with a periodic
time. A more detailed explanation can be found in [31], from which the following
quote is taken (in which the author also uses the convention that � = 1):

Surely you would hit it big with mystical types if you were to tell them that temperature is
equivalent to cyclic imaginary time. At the arithmetic level this connection comes merely
from the fact that the central objects in quantum physics eiHt and in thermal physics e−βH

are formally related by analytic continuation. Some physicists, myself included, feel that
there may be something profound here that we have not quite understood.

More specifically, the quantum field theory integral of the form (with � now set to

unity, as wewill continue to do for the rest of the chapter) Z =
∫

Dφ exp(iS[φ]), for

some field configuration φ, becomes Z =
∫

Dφ exp(−S[φ]) under Wick-rotation

(For simplicity, note that we now abuse notation and denote SM and SE by the same
symbol S.). The amplitude for the field to propagate from an initial configuration φ1

to some final configuration φ2 can be calculated by

Z = 〈
φ2

∣∣e−i H(t2−t1)
∣∣φ1

〉
. (3.43)

If φ1 = φ2 = φ and i(t2 − t1) = τ2 − τ1 = β, then we can integrate over φ to obtain

Z = Tr
(
e−βH

) =
∑
n

e−βEn , (3.44)

where the path integral is taken over all fields that are periodic in imaginary timewith
period β. This is indeed the partition function of φ at a finite temperature T = 1/β;
“temperature is equivalent to cyclic imaginary time!”
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Wick-rotation provides a neat trick to calculate the temperature of a black hole.13

Let us consider, a typical n-dimensional spherical black hole with metric of the form
(after Wick-rotation)

ds2 = f dτ 2 + f −1dr2 + r2d�2
Sn−2 , (3.45)

where d�2
Sn−2 is the standard round metric on a (n − 2)-dimensional sphere. The

neighborhood near the horizon is trying to look like R
2 × Sn−2. This can be achieved

if (r, τ ) behave like polar coordinates on R
2, i.e., if τ is periodic. This periodicity

must behave appropriately so that the conical singularity is avoided. This is ensured
by imposing the following condition: the infinitesimal ratio of the circumference
(going around in the τ direction) to the radius (moving in the r direction) is 2π as
we approach the origin of R

2 which is at the horizon r = rh [33]. This procedure is
known as “ensuring regularity of the Euclidean section.”

For constant r and constant angular coordinates, we have ds = f 1/2dτ . Therefore,
the circumference C is given by

C =
∫ β

0
f 1/2dτ = f 1/2β, (3.46)

assuming the simple case that f is independent of τ . Requiring regularity means to
impose:

lim
r→rh

β

f − 1
2

d( f
1
2 )

dr
= lim

r→rh

β

f − 1
2

1
2 f

− 1
2 d f

dr
= 2π, (3.47)

which yields

d f

dr

∣∣∣∣
r=rh

= 4π

β
. (3.48)

The temperature is then simply the inverse of β.
It is important at this point to note that theWick rotation method assumes thermal

equilibrium between the static black hole and its Hawking radiation thermal bath. In
realistic situations in which the black hole actually evaporates away, it is clearly not
in thermal equilibrium. The rational here is that we can treat evaporating black holes
as quasi-static, i.e., its temperature does not change too quickly, and can be treated
to be in “equilibrium” if we only look at some sufficiently small time window.

13The caveat is that, as Sidney Coleman once said [32], “the Euclidean formulation of gravity is
not a subject with firm foundations and clear rules of procedure; indeed, it is more like a trackless
swamp. I think I have threaded my way through it safely, but it is always possible that unknown to
myself I am up to my neck in quicksand and sinking fast.”
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We also remark that this method also works in deriving the Unruh temperature,
as we shall now demonstrate. The Rindler coordinates (τ , ρ, y, z) are obtained from
the canonical coordinates (t, x, y, z) of Minkowski spacetime via

τ = 1

a
tanh−1

(
t

x

)
, ρ =

√
x2 − t2, (3.49)

where a denotes the proper acceleration of the Rindler observer. The metric tensor
takes the form

g[Rindler] = −a2ρ2dτ 2 + dρ2 + dy2 + dz2. (3.50)

Wick-rotating this metric, we obtain

g[Rindler]E = a2ρ2dτ 2
E + dρ2 + dy2 + dz2, (3.51)

where τE is the Euclidean time. At ρ = 0, we impose a periodic condition on τE to
avoid a conical singularity. We can work out in the same way as above the period,
which turns out to be 2π/a, and the Unruh temperature is thus T = a/2π.

Indeed, we see that the Euclidean metric

dl2 = a2ρ2dτ 2
E + dρ2 (3.52)

takes the form

dl2 = ρ2dφ2 + dρ2, (3.53)

which is just the flat metric on R
2 in polar coordinates (ρ,φ), once we introduce

φ = aτE such that φ ∈ [0, 2π). Thus, naturally, to achieve this, we need the period
of τE to be 2π/a. For more details on Unruh radiation, see e.g., [34, 35].

The Unruh temperature is intimately related to the Hawking temperature, as one
can easily show by writing r = 2M + ε, that the near-horizon metric of the (t, r)-
plane of a Schwarzschild manifold takes precisely the Rindler form. Indeed, the
2-dimensional metric is

g[Sch: near horizon] = − ε

2M
dt2 + 2M

ε
dr2, (3.54)

We now set ε = ρ2/(8M) (this is small if M is large). This will change the metric
into the form:

g[Sch: near horizon] = − ρ2

(4M)2
dt2 + dρ2. (3.55)
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This is just the Rindler metric with acceleration a = 1/(4M), which is also the
surface gravity14 of the Schwarzschild black hole.

3.4 Phase Transitions Between Spacetimes

When she transformed into a butterfly, the caterpillars spoke not of her beauty, but of her
weirdness. They wanted her to change back into what she always had been. But she had
wings.

–Dean Jackson

Recall from the previous section that we could Wick-rotate an action to a Euclidean
one and calculate the partition function Z . The free energy of the system can be
defined by (see, e.g., Chap. 14 of [36])

F = −T log Z ≈ TS, (3.56)

where we have use the fact that Z ≈ exp (−S), due to the fact that the path integral
is dominated by the minima of the action. Here S is of course the Euclidean action.

In Euclidean quantum gravity, the path integral involves also the sum over geome-
tries:

Z =
∫

D[g,φ]eiS[φ] Wick-Rotation−−−−−−−→
∫

D[g,φ]e−S[φ], (3.57)

where S is simply the Einstein-Hilbert action with a cosmological constant �,

S = SE = − 1

16π

∫
d4x

√− det(g)(R − 2�), (3.58)

the solution of which must satisfy R = 4�. We have emphasized that this is the
Euclidean version of the Einstein-Hilbert action, which differs from the Lorentzian
version by an overall minus sign. See [37] for some detailed explanations regarding
the Euclidean Einstein-Hilbert action.

The idea behind the phase transition is this: Given two metrics with the same
asymptotic geometry at the same temperature, we can compute their respective free
energy. If the two actions become equal, the system will prefer the state with lower
free energy, and a phase transition occurs.

14The surface gravity κ of any static Killing horizon in an asymptotically flat spacetime is the
acceleration, as exerted at infinity, needed to keep an object at the horizon. More rigorously, let
ka be a suitably normalized (usually, kaka → −1 as r → ∞) Killing vector (for Schwarzschild
geometry, it is just the time translation Killing vector satisfying ka∂a = ∂t ), then the surface gravity
is defined by the equation ka∇akb = κkb, evaluated at the horizon. For black holes in AdS, since
gt t (r) ∼ −r2/L2 diverges asymptotically, the surface gravity has to be “regularized”. In this case,
g′
t t |rh /2 is the “surface gravity” with respect to the observer whose proper time is t .
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For example, the 4-dimensional AdS background

g[AdS] = −
(
1 + r2

L2

)
dt2 +

(
1 + r2

L2

)−1

dr2 + r2d�2, (3.59)

has Euclidean action

SEAdS = − �

8π

∫
d4x

√− det(g) = − �

8π

∫ β1

0

∫ R

0
r2dr

∫
S2
d�2 = −�

6
β1R

3.

(3.60)
The value β1 is at this point completely arbitrary since the metric is already regular
without the need to impose any periodicity. Note that we have introduced a cutoff at
r = R, otherwise the integral simply diverges andwe do not get anythingmeaningful.

The same calculation for a neutral AdS spherical black hole

g[AdS-Sch] = −
(
r2

L2
+ 1 − 2M

r

)
dt2 +

(
r2

L2
+ 1 − 2M

r

)−1

dr2 + r2d�2,

(3.61)
yields the Euclidean action15

SEAdS-Sch = − �

8π

∫ β2

0

∫ R

rh

r2dr
∫
S2
d�2 = −�

6
β2(R

3 − r3h ), (3.62)

where β2 is the inverse of the black hole temperature. To compare these two actions to
see whether it is possible for a Schwarzschild-AdS black hole spacetime to undergo
phase transition into AdS spacetime without a black hole at some fixed temperature,
we require that their metric tensors match at the cutoff r = R. This means that the
time coordinates must have the same period, which restricts the formerly arbitrary
β1 to satisfy

β1

√
1 + R2

L2
= β2

√
1 − 2M

R
+ R2

L2
. (3.63)

The difference of the actions satisfies

lim
R→∞ (SEAdS-Sch − SEAdS) = − lim

R→∞
�

6

[−β2r
3
h + R3(β2 − β1)

]
(3.64)

= − β2

2L2
(r3h − ML2) (3.65)

= πr2h (L
2 − r2h )

3r2h + L2
, (3.66)

15We have ignored a (Gibbons-Hawking-York) boundary term from the action since this will cancel
out in the end.
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using the fact that the black hole temperature16 satisfies

TBH = 1

β2
= 3r2h + L2

4πL2rh
, (3.67)

and that

M = rh
2

[
r2h
L2

+ 1

]
. (3.68)

It can be seen that the difference of the actions vanisheswhen rh = L . This is the point
where the temperature of the black hole is Tcric := (πL)−1. Below this temperature
the system prefers thermal AdS, which has lower free energy. Therefore, sufficiently
cold spherical AdS black holes undergo phase transitions into thermal AdS. This
is the famous Hawking-Page phase transition [38]. Note that the temperature of a
spherical AdS black hole has a global minimum at rh = L/

√
3, which corresponds to

Tmin =
√
3

2

1

πL
< Tcrit. (3.69)

Below Tmin there can be no black holes; in between Tmin < T < Tcric, the system
prefers the thermal AdS over the black hole phase. See Fig. 3.5.

Let us now discuss the phase transition from an uncharged toral AdS black hole
into theHorowitz-Myers soliton [39]. The crucial difference between this phase tran-
sition and the previously discussed transition from the AdS-Schwarzschild geometry
to the AdS spacetime is the following: The Horowitz-Myers soliton is not a “natural”
background for a toral black hole, but rather the result of a double-Wick rotation from
the toral black hole metric. Nevertheless, the same idea holds in this case—in the
sum over geometries in the path integral, the soliton would be a preferred state due
to its lower free energy.

The following discussion follows closely that of [40].
The d-dimensional Horowitz-Myers AdS soliton has a metric of the form

g[soliton] = −r2dt2s + dr2

r2
L2 − A

rd−3

+
(
r2

L2
− A

rd−3

)
dφ2 + r2hi jdθ

idθ j , (3.70)

16In static spacetimes, in accordance with Tolman’s law, the proper temperature seen by local
observer at coordinate distance r is given by TBH/

√|gt t (r)|. For asymptotically flat spacetime
gt t → −1 at infinity so the proper temperature for asymptotic observers coincides with theHawking
temperature. This is not the case in AdS, since gt t ∼ −r2/L2 asymptotically. That is, the proper
temperature is asymptotically vanishing. TheHawking temperature is interpreted as the temperature
seen by the dual gauge theory on the conformal boundary of AdS, i.e., an observer whose proper
time is t .
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Fig. 3.5 Hawking temperature of a neutral AdS black hole with positively curved horizon, with
Tcric denoting the critical temperature below which the Hawking-Page transition [to thermal AdS]
occurs, and Tmin denoting the minimum temperature below which there is no black hole, only
radiation

where hi j is a Ricci-flat metric on the horizon equipped with coordinates {θi } and A
is some parameter that need not coincide with that of the black hole. In view of the
comparison with the toral black hole, we consider the case whereby hi j is a metric on
the torus R

d−3/�, where � is some discrete group action. The subscript “s” refers
to soliton. Similar to the Wick-rotated black hole metric, we need to avoid a conical
singularity and impose a regularity condition: the angle φ needs to be identified with
period

βs = 4πL2

(d − 1)rs
, (3.71)

where rs is the zero of the function

Vs(r) :=
(
r2

L2
− A

rd−3

)
. (3.72)

Recall that β = 1/T is the reciprocal of the temperature. Note that as pointed out in
[40], the AdS soliton has a flat conformal boundary with topologyR×S1×R

d−3/�,
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instead of the positively curved topology of R × Sd−2 in the case of global AdS
spacetime. The Wick-rotated Euclidean soliton metric is, with t → iτ ,

g[E-soliton] = r2dτ 2
s + dr2

r2
L2 − A

rd−3

+
(
r2

L2
− A

rd−3

)
dφ2 + r2hi jdθ

idθ j , (3.73)

where the imaginary time τs , in view of matching solutions for regularization later
on, has the same period as that of the Euclidean black hole, say 2πP .

Horowitz and Myers proposed that in (4 + 1)-dimensions, any spacetime that
asymptotically approaches the soliton metric g[soliton], that is, any spacetime with
metric gab = g[soliton]ab + hab, such that hcd = O(r−2), hcr = O(r−4) and
hrr = O(r−6), for c, d = r , must have energy E � 0 with respect to the soliton,
with equality attained only by the soliton itself. It has since been proven that the
Horowitz-Myers soliton is indeed the configuration of least energy, even in higher
dimensions [41, 42].

Let us now compare the soliton metric with the neutral flat black hole metric (The
subscript “b” refers to black hole).

g[BH] = −
(
r2

L2
− B

rd−3

)
dt2b + dr2(

r2
L2 − B

rd−3

) + r2dψ2 + r2hi jdθ
idθ j , (3.74)

where B is a parameter related to the mass of the black hole and the compactification
parameter K . By “compactification parameter,” we mean the following: the event
horizon has the topology of a torus. For simplicity we can take the torus to be cubic,
i.e., it is a product of circles with the same circumference 2πK . We have singled out
arbitrarily an angle parameter ψ from the {θi }. The period of ψ is of course 2πK .

The conformal boundary of the toral black hole is the same as that of the soliton,
and the event horizon rh is the zero of the function

Vb(r) :=
(
r2

L2
− B

rd−3

)
. (3.75)

Upon Wick-rotating the metric and requiring regularity at r = rh , we obtain

βb = 4πL2

(d − 1)rh
. (3.76)

We regularize thermodynamical quantities by matching the two solutions at some
finite cutoff radius R, calculate the quantity as a function of R, and send R to infinity
at the end. The matching conditions at finite R then require that the metric on the
two tori be the same, and furthermore that

βs

√
Vs(R) = (2πK )R, (3.77)
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and

βb

√
Vb(R) = (2πP)R. (3.78)

That is,

βs

√
R2

L2
− A

Rd−3
= 2πRK , (3.79)

and

βb

√
R2

L2
− B

Rd−3
= 2πRP. (3.80)

Let R → ∞, we obtain the limit

βs = 2πLK , βb = 2πLP. (3.81)

Note that A and B have both dropped out in the limit. The A = B case is special,
see below.

The regularized black hole action in the 5-dimensional case is given in [43]; it is

S = αPK 3
(
K−4 − P−4

)
, (3.82)

whereα is a positive number that depends on L . Its exact value can be computed [40]
but this is not of our concern. If A = B, one could show that the action vanishes and
there is no phase transition. The phase transition is determined by K and P , that is,
by the precise shape of the 4-dimensional torus at the Euclidean conformal infinity,
by the extent to which it deviates from being cubic.

From the matching condition βb = 2πLP , we have P = β/(2πL) = 1/(2πLT ).
Thus,

S = αPK 3
[
K−4 − (2πLT )4

]
. (3.83)

That is,

S = αPK 3

[
1 − (2πK LT )4

K 4

]
. (3.84)

From this, we see that with the free energy of the Horowitz-Myers soliton taken to
be zero, the black hole phase is energetically favored only if its temperature is not
too low compared to (2πK L)−1.

It is worth emphasizing that unlike spherical AdS black holes, the area and the
temperature of toral AdS black holes are independent quantities. This means that the
stability of black holes depends not only on the temperature but also on their size.
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Fig. 3.6 The Hawking temperature of a neutral AdS black hole with flat horizon has no minimum
temperature, but there still exists phase transition [to the Horowitz-Myers soliton] below a critical
temperature Tcric, which we denoted as Tc in the main text. This specific example is a schematic
plot for the 4-dimensional case

Specifically, black holes with sufficiently large K can be stable even if T is small,
i.e., a very large but very cold uncharged AdS toral black hole can be stable, and
conversely a sufficiently small one can be stable even if it is very hot. Nevertheless,
there exists aminimum temperature for toral black holes: for anyfixed K and L , stable
black holes must satisfy the bound (which is independent of spacetime dimensions)

Tc � �

2πK L
, (3.85)

where we have restored �. If the black hole gets below the critical temperature Tc,
it becomes unstable and undergoes a phase transition into the AdS soliton found by
Horowitz and Myers. See Fig. 3.6.

Charged toral black holes also undergo such a phase transition. Indeed, the bound
Eq. (3.85) is independent of the electrical charge [43].
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Chapter 4
Hiscock and Weems: Modeling the Hawking
Evaporation of Asymptotically Flat Charged
Black Holes

“But he has nothing at all on!” at last cried out all the people.
The Emperor was vexed, for he knew that the people were right;
but he thought the procession must go on now!

Kejserens nye Klæder, Hans Christian Andersen

This chapter explains how evaporating black holes with electrical charge or angular
momentummight, at least at first sight, violate the cosmic censorship conjecture, i.e.,
lead to naked singularities. The asymptotically flat Reissner–Nordström black hole
spacetime is then reviewed. The main focus of this chapter is to study the evolution
of such black holes as they undergo Hawking evaporation. The model used, which
is due to Hiscock and Weems, is explained in detail. It is shown that although the
extremal limit can be approached, it is never actually reached.

4.1 Black Hole Evolution and Cosmic Censorship

I thought about how there are two types of secrets: the kind you want to keep in, and the
kind you don’t dare to let out.

–Ally Carter, “Don’t Judge a Girl by Her Cover.”

With the exception of the Schwarzschild black hole, the Kerr–Newman family has
an extremal limit.1 For a given fixed mass, a black hole cannot have too much
electrical charge or rotate too fast, otherwise it will become “super-extremal” and
lose its horizon. As a result, the singularity becomes naked. Naked singularities

1In spacetime dimensions 6 and above, singly rotating (there can bemore than one angular momenta
in higher dimensions) black holes do not have an extremal limit! They can be ultraspinning—i.e.,
rotating arbitrarily fast—although these black holes may be unstable [1].
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are unpalatable in general relativity, since evolution becomes ill-defined with their
presence unless we know how to impose boundary conditions at the singularities.
In order to safeguard the predictability of physics, Sir Roger Penrose proposed the
cosmic censorship conjecture [2] in 1969, which posits that no naked singularities,
other than the Big Bang singularity, exists in Nature.2

A natural question to ask is whether we could start with a nonextremal black hole,
then either overcharge or over-spin it. This proves impossible. For example, Robert
Wald showed in 1974 that particles with dangerously large angular momentum are
simply not captured by an asymptotically flat Kerr black hole, and thus there is no
danger of over-spinning the hole [5]. For another recent attempt, see e.g., [6]. Of
course, in addition to manually tune the charge and mass by dropping in particles,
Hawking evaporation can also naturally change the parameters of a black hole via
the emission of particles. This poses a threat to cosmic censorship—if a charged or
rotating black hole does not lose its charge or angular momentum at least as rapidly
as it loses mass, then it is in danger of passing through one or both of the extremal
limits defined by the Kerr–Newman geometry.

In a classic work, Page [7] showed that an asymptotically flat rotating (uncharged)
black hole always loses angular momentum more rapidly than it loses mass, so
that censorship is safeguarded. It is interesting to remark that if one considers the
Hawking emission of scalar particles, then an asymptotically flat Kerr black hole
can evolve toward a state with nonzero angular parameter at the end, instead of the
Schwarzschild limit. Nevertheless, this requires at least 32 massless scalar fields. In
the (very artificial) case in which only scalar emission is considered, the final state
has angular parameter a ≈ 0.555M , i.e., slightly more than half of its mass. That is,
if the initial specific angular momentum is larger than this value the black hole will
spin down to this value, but if it is less than this value the black hole will actually first
spin up to said value [8–10]. More recently, it was argued that Hawking emission in
general can spin up a Schwarzschild black hole, due to the backreaction of stochastic
emission of Hawking particles with nonzero angular momentum3; more specifically

2Stephen Hawking had a bet with Kip Thorne and John Preskill in 1991, taking the position that
naked singularities could not exist. The stakeswere 100 pounds sterling and a clothing “embroidered
with a suitable concessionary message.” Hawking admitted defeat in 1997 after it was found that
there exist (nongeneric) conditions under which naked singularities may exist (e.g., [3]), yet he
presented a T-shirt with the now famous words “Nature abhors a naked singularity,” displaying his
belief that cosmic censorship is generically true. See also [4] for some evidence that the censorship
holds.
3The fact that black holes emit Hawking radiation stochastically also implies that they undergo
random walk motion. That is to say, the center of mass of an evaporating black hole does not simply
stay put at one fixed location, instead it drifts around due to the momentum recoil of the particles
emitted via Hawking radiation [11, 12]. Consider an asymptotically flat Schwarzschild black hole
with initial mass M . Suppose the black hole has emitted a fraction f of its total mass M . (For
simplicity we will use the Planck units here.) This means that it would emit about N ∼ f M2

particles in the time period �t ∼ f M3. Each of these particles would have root-mean-square (rms)

momentum of
〈
p2

〉1/2 ∼ 1/M . The total rms momentum is therefore �P ∼ 〈
N p2

〉1/2 ∼ f 1/2. The
rms uncertainty in the position induced bymomentum recoil would therefore be�x ∼ �P�t/M ∼
f 3/2M2. This distance can be astronomically large for sufficiently massive black holes.
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an asymptotically flat Schwarzschild black hole of initial mass M can spin up to a
Kerr black hole with angular momentum J ∼ M by a time scale of order M3 in
the Planck units [12]. Nevertheless, due to the mass loss of the black hole, there is
no real danger of getting very close to the extremal limit. In this work we will not
consider such an effect.

Page found that the dominant angular modes for the spin-s fields, where s =
1, 1/2, 2, were those with l = s. If this is true for s = 0, then the dominant mode
with l = 0 can carry away energy without affecting angular momentum—although
angular momentum is still lost via the other angular modes. This is the reason why
scalar emission can bring away more mass than angular momentum and affect the
final state of rotating black holes. For the same reason, scalar emission does not affect
the qualitative final fate of a nonrotating black hole (quantitatively, the lifetime of the
black hole will be shortened due to more channels of mass loss), and so for simplicity
we will not consider scalar emission in the following discussion. Nevertheless, the
evolution of charged black holes proved to be more complicated than rotating holes,
and this is precisely what we will describe in this chapter.

4.2 Reissner–Nordström Black Holes Revisited

There is nothing in the world except curved empty space. Geometry bent one way here
describes gravitation. Rippled another way somewhere else it manifests all the qualities of
an electromagnetic wave. Excited at still another place, the magic material that is space
shows itself as a particle. There is nothing that is foreign and “physical” immersed in space,
Everything that is, is constructed out of geometry.4

–John A. Wheeler

Recall that in this work,5 we follow the units and conventions such that G = c = 1
but � �= 1. (These are also known as the “relativistic units” [14]). Consequently,
�G/c3 = � ≈ 2.61 × 10−66 cm2. Note that � has the dimension of area. Also, the
Boltzmann constant kB = 1. Without loss of generality, we will choose the charge
of the black hole to be positive. The unit of charge follows the Gaussian system.

The metric of a four-dimensional asymptotically flat Reissner–Nordström black
hole is,6 as we recall from Chap.1,

g[AFRN] = −
(
1 − 2M

r
+ Q2

r2

)
dt2+

(
1 − 2M

r
+ Q2

r2

)−1

dr2+r2
(
dθ2 + sin2 θdφ2

)
.

(4.1)

4Wheeler eventually abandoned the view that geometry is fundamental, in favor instead of the idea
that information is fundamental—it from bit. The important role of information (recovery from
black hole) is of course an important theme of this thesis.
5Part of the analysis in this chapter was published in [13].
6One could also include a hypothetical magnetic charge P in addition to the electric charge Q, then
the metric is simply obtained by Q2 �→ Q2 + P2. This is called a dyonic black hole.

http://dx.doi.org/10.1007/978-3-662-48270-4_1
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It is the spherically symmetric solution to the Einstein–Maxwell equations (also
known as the “electrovac” solution). That is, the energy-momentum tensor is given by

Tab = Fac F c
b − 1

4
gab Fcd Fcd , (4.2)

where Fab is the usual Maxwell field strength tensor. In fact, since Tab is traceless,
the scalar curvature vanishes, and so the Einstein–Maxwell equations are simply

Rab = 8πTab. (4.3)

Without loss of generality, we will assume Q > 0.
We remark that this simplification does not happen in higher dimensions. This

is because the energy-momentum tensor of the higher dimensional Maxwell field is
no longer traceless. As a consequence, the Ricci scalar does not vanish in spacetime
dimensions d > 4, but is instead equal to

R = 4π(d − 4)

d − 2
F2, (4.4)

where F2 = Fab Fab.Nevertheless, theReissner–Nordströmsolution still generalizes
straightforwardly to higher dimensions.7

Note that in the Lorentz-Heaviside units, in which a factor of 4π appears in
the Coulomb’s Law but not in Maxwell’s equations, the Q2/r2 factor becomes
Q2/(4πr2). If we were to use conventional units, this becomes

G Q2

4πε0r2
, (4.5)

where ε0 is the permittivity of free space.
The horizon of the black hole is easily solved from the metric tensor; it is located

at coordinate radius
rh := M +

√
M2 − Q2, (4.6)

while the inner (Cauchy) horizon is located at

r = M −
√

M2 − Q2. (4.7)

The black hole becomes extremal when these two coordinate radii coincide.8 This
occurs at rext = M = Q.

7We cannot directly generalize the magnetic Reissner–Nordtsröm solution to a spacetime with
dimensions d > 4. This is related to the fact that the magnetic field in d-dimensional spacetime is
described by a (d − 3)-form potential. For d > 4, the magnetic charge will therefore not be carried
by a point particle, but by (d − 4)-dimensional objects.
8Taking limits of spacetime is actually rather nontrivial; see [15–17] for discussions.
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The Hawking temperature is given by

T = �

√
M2 − Q2

2π(M + √
M2 − Q2)2

. (4.8)

Note that an extremal black hole has zero Hawking temperature.
One interesting property of the Reissner–Nordström geometry is the following.

Recall fromgeneral relativity that one can recover theNewtonian gravitational poten-
tial � from the Schwarzschild metric by setting

g00 = −(1 + 2�), (4.9)

so that indeed

�(r) = − M

r
. (4.10)

If we were to repeat this calculation with the Reissner–Nordström metric, we see
that the Newtonian potential is

�(r) = − M

r
+ 2Q2

r2
. (4.11)

The second term becomes the dominant termwhen r is sufficiently small, and its sign
is opposite to that of the first term. Thus, while gravity behaves in qualitatively the
same way as the Schwarzschild geometry far away from the black hole, it becomes
repulsive near the central singularity of the hole (specifically, for r < Q2/(2M)).
Note that this repulsive gravity is universal and affects also neutral test particles,
which can be seen from the geodesic equation for a massive neutral particle. (One
may be tempted to think that this hints toward some kind of unification of electro-
magnetism and gravitation, but this may be too much of a leap of the imagination.)
Indeed, since the attractiveness of gravity relates to the fact that we have a posi-
tive energy theorem in general relativity, one would not be surprised to learn that
the quasi-local energy near the Reissner–Nordström singularity is negative [18]. In
addition, we note that the Reissner–Nordström solution can be obtained from the
Schwarzschild solution by replacing the Schwarzschild’s M by the effective mass
Meff = M − Q2/2r . The repulsive gravity in the region r < Q2/(2M) is therefore
formally analogous to a negative mass Schwarzschild black hole, which is a naked
singularity.

We will assume all black holes studied in this thesis to be isolated. This is espe-
cially important for charged black holes since realistic astrophysical black holes tend
to get (more or less) neutralized quickly by the interstellar medium and accretion.
The question we wish to study is the following: How would (isolated) charged black
holes evolve as they evaporate away?

Naively, one would expect that a black hole tends to lose charge faster than it
loses mass, due to the fact that the electromagnetic interaction is so much stronger
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than the gravitational interaction. More precisely, we expect that a discharge can
only be avoided if the gravitational attraction far exceeds the Coulomb repulsion
for the lightest charged particle pair, namely the electron and positron. This means
Mm/r2 � Qe/r2, where m and e are the mass and charge of the electron. A black
hole is thus expected to discharge down to Q/M � m/e ≈ 10−21. On the other
hand, if the black hole is very near extremal, then its temperature is very cold. With
not much radiation coming from the hole, onemayworry that its lifetime can actually
be infinite.

The issue can only be settled by a careful analysis. This was done by Hiscock and
Weems [19], in the regime that the black holes are sufficiently massive. They showed
that such asymptotically flat Reissner–Nordström black holes always eventually tend
toward the Schwarzschild limit, although the charge-to-mass ratio is not necessarily
monotonically decreasing depending on the exact initial conditions.9 Let us now take
a closer look at their model.

4.3 The Hiscock and Weems Model

All models are wrong, but some are useful.

–George E.P. Box

Since the problem of charged black hole evaporation is rather complicated, the analy-
sis of Hiscock and Weems (henceforth, HW) [19] is restricted to the case in which
the black holes are cold. In the asymptotically flat case, this means that the black hole
is necessarily large. Due to the low temperature, HW can reasonably assume that
all thermal mass loss in the Hawking evaporation is due to the emission of massless
particles, and treat charge loss as a result of the Schwinger effect [21]. In fact, a
result due to Gibbons [22] is that, as long as the black hole is much larger in radius
than the reduced Compton wavelength of the electron, that is, M � �/m ≈ 10−10

cm ≈ 1018 g, then the pair-production of charged particles is well-approximated by
flat-space quantum electrodynamics (QED). Intuitively, for a large enough mass, the
curvature radius of the two-sphere is larger than the size of an electron. More gen-
erally, there is no concept of “particle” on a generic curved geometric background.
However, knowing the local curvature scale we can define “particle.” Specifically,
if the Compton wavelength λC of the particle is smaller than the scale at which the
characteristics of the gravitational field change, then we have a good description of
a localized particle.

As HW emphasized, although the production of charged particles are treated
separately from the thermal Hawking flux of neutral particles in this model, they are
actually all part ofHawking emission. In otherwords, the charged particle emission is
actually thermodynamically related to a non-zero chemical potential associated with
the electromagnetic field of the black hole. The effective decoupling between thermal
emission of neutral particles and the electromagnetic (as opposed to gravitational)

9This behavior is not universal for allmodels ofHawking radiation, see [20], inwhich asymptotically
flat charged black holes have different final fates due to the different physical assumptions made.
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creation of charged particles is due to the low temperature of large black holes [22],
although it has been argued that the Schwinger mechanism and Hawking radiation
are generically indistinguishable for near-extremal black holes [23].

If we look at the original result of Hawking [24], we will see that he calculated the
number of particles of the j th species with charge e emitted in a wave mode labeled
by frequency ω, spheroidal harmonic l, and helicity p, and found that it is given
by (if we ignore the angular momentum of the emitted particles and the rotation of
the hole) 〈

N jωlp
〉 = � jωlp

exp ((ω − e�)/T ) ± 1
, (4.12)

where T is the temperature of the black hole. The plus sign in the denominator corre-
sponds to fermions, while the minus sign corresponds to bosons. Here � jωlp denotes
the absorption probability for an incomingwave of the specificmode. FromEq. (4.12)
we see that the precise statement is actually the following: At all nonzero tempera-
tures T , all species of particles regardless of whether they are charged, are emitted
by Hawking radiation. However, at low temperature, the production of charged (and
therefore massive) particles is exponentially suppressed by the Boltzmann factor. In
the model adopted by HW, this suppression, as we will see, is realized via the expo-
nential term in the Schwinger process,10 which describes the rate of pair creation per
unit 4-volume � by

� = e2

4π3�2

Q2

r4
exp

(
−π2m2r2

�eQ

)
×

[
1 + O

(
e3Q

m2r2

)]
. (4.13)

A characteristic scale involved in the Schwinger process is the Schwinger criti-
cal charge Ec := πm2/(�e). For convenience, HW denotes its inverse by Q0 :=
�e/(πm2).

For simplicity, HW assumed that the electromagnetic field is weak enough that
we may ignore the contributions of muons and other heavier charged particles, and
only deal with electrons and positrons. The “weak-field approximation” means that
one ignores all higher order terms, which is valid provided that

e3Q

m2r2
� 1, for all r � rh, (4.14)

where rh denotes the event horizon of the black hole.
For an asymptotically flat Reissner–Nordström black hole with mass M and

charge Q,
rh[RN] = M +

√
M2 − Q2, (4.15)

and thus

M � e3

m2
∼ 4 × 103M	. (4.16)

10The model has limitations. For example, Schwinger emission is of course not thermal.



108 4 Hiscock and Weems: Modeling the Hawking Evaporation …

That is, the black hole has to be large (and therefore cold) enough to satisfy this.
Indeed, in addition to the “weak-field approximation” in which one ignores all

higher order terms, HWalso apply the series approximation11 for the complementary
error function erfc(x) = 1 − erf(x), namely,

erfc(x) = e−x2

x
√

π

[
1 +

∞∑
n=1

(−1)n 1 · 3 · 5 · · · (2n − 1)

(2x2)n

]
, x � 1, (4.17)

to the charge loss rate (obtained from integrating �)

dQ

dt
≈ e3

�2

∫ ∞

rh

Q2

r2
exp

(
− r2

Q0Q

)
dr (4.18)

= e3

π2�2

[
− Q3/2

√
2√

Q0
erf

(
r√

Q0Q

)
− Q2

r
exp

(
− r2

Q0Q

)] ∣∣∣∣
∞

rh

. (4.19)

Thus, they obtained, finally, the ordinary differential equation that governs the charge
loss as

dQ

dt
≈ − e4

2π3�m2

Q3

r3h
exp

(
− r2h

Q0Q

)
. (4.20)

It is worth noting that the series approximation applying to the function
erfc(rh/

√
Q Q0) means that HW are necessarily only restricting their analysis to

the case

r2h � Q Q0 ⇐⇒ Q

r2h
� Ec. (4.21)

That is to say, charged particle production is greatly suppressed, as required. There-
fore, despite the occurrence of the Schwinger formula, for the model to be self-
consistent, we actuallywant the Schwinger effect—which produces copious amounts
of charged particles—to not set in. In other words, charge loss is inefficient in the
regime of validity of the model.

In fact, as argued by Gibbons (see Fig. 4.1), above Q ∼ m M/e it is energet-
ically favorable to form Schwinger pairs, and the process becomes rapid above
Q ∼ m2M2/(�e). (Here by “∼” we are ignoring factors like π and 2, etc.) However,
from Fig. 4.1 we see that for M � e/m2, although the condition Q � m M/e can be
satisfied, the condition that the charge be above Q ∼ m2M2/(�e) cannot be satisfied

11Note that this series diverges for all x > 0, but if a fixed number of terms is taken, then for large
enough x , the approximation is good.However, the divergencemeans that, for anyfixed x , increasing
the number of terms in the series does not help to increase the accuracy of the approximation. Such
a series is called an asymptotic series.
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Fig. 4.1 A schematic diagram of charge Q against mass M for Reissner–Nordström black holes.
There are no black holes above the extremal limit Q = M . Also, since charge is quantized, there
is no black hole below the Q = e line (the horizontal axis is an exception—it corresponds to
a Schwarzschild black hole). Above the Q = mM/e line, it is energetically favorable to form
Schwinger pairs, and the process becomes rapid above Q = m2M2/(�e). This diagram is adapted
from [22]

without going beyond the extremal limit. In other words, as we have argued above,
the Hiscock and Weems model necessarily only deals with the inefficient discharge
regime.

Having introduced the physics of charge loss, the mass loss of the black hole can
be described by

dM

dt
= −αaT 4σ + Q

rh

dQ

dt
. (4.22)

The first term on the right describes thermal mass loss due to Hawking radiation;
which is just the Stefan–Boltzmann law, with a = π2/(15�3) denoting the radiation
constant.12 Indeed, the power emitted by a black body of temperature T is

P = a

4
α × Area × T 4 = a

4
α × 4σ × T 4, (4.23)

whereσ is the cross section of the black body in the case of spherical symmetry. In the
context of black hole physics, it goes by the name “geometrical optics cross section.”
The quantity σ is essentially proportional to the area of the emitting surface, which is
not the event horizon but the surface that corresponds to the (unstable) photon orbit

12This is 4/c times the Stefan–Boltzmann constant, although HW refer to a as simply the “Stefan–
Boltzmann constant”.
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Fig. 4.2 A schematic sketch of the effective potential for null geodesics in the Schwarzschild
geometry

(Remember the light ray trajectories in Fig. 1.1). The reason is that only particles
that have enough energy can escape the effective potential barrier,

Vph(r) = J 2

r3
(r − 2M), (4.24)

with local maximum at the photon orbit (see Fig. 4.2, or Fig. 6.5 of [25]). Here J is
the angular momentum of the particle.

The constant α depends on the number of species of massless particles; it is
essentially the so-called “gray-body factor.” For the Reissner–Nordström geometry,
we have [19]

σ = π

8

[
(3M + √

9M2 − 8Q2)4

(3M2 − 2Q2 + M
√
9M2 − 8Q2)

]
. (4.25)

In the limit Q → 0, this correctly recovers the geometrical optics cross section of
the Schwarzschild geometry, 27πM2. For a detailed derivation of σ, see Box 4.1.

More precisely, HW consider the possible number of massless neutrino species
nν = 0, 1, 2, 3. Each choice gives rise to a corresponding value of α. The different
α’s contribute an O(1) difference to the lifetime of the asymptotically flat Reissner–
Nordström black hole. Due to the huge timescale involved in the lifetime of black
holes, and the fact that α only gives an order one correction, we will henceforth set
α = 1 for simplicity.

The second term in Eq. (4.22) is of course due to themass loss of charged particles.
It is in fact the same term that appears in the first law of black hole mechanics in
general relativity: dM = (κ/8π)dA + (Q/rh)dQ + �dJ .

http://dx.doi.org/10.1007/978-3-662-48270-4_1
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Box 4.1: Derivation of the Geometrical Optics Cross Section
Let us start with Schwarzschild geometry and consider the equatorial plane

θ = π/2:

gSch

[
θ = π

2

]
= −

(
1 − 2M

r

)
dt2 +

(
1 − 2M

r

)−1

dr2 + r2dφ2. (4.26)

Consider a test particle of rest mass m for generality. The equation of motion is

gμν pμ pν + m2 = 0. (4.27)

For an affine parameter λ parameterizing the worldline of the particle, we get

−
(
1 − 2M

r

)(
dt

dλ

)2

+
(
1 − 2M

r

)−1 (
dr

dλ

)2

+r2
(
dφ

dλ

)2

+m2 = 0. (4.28)

This can be written as

− E2∞

1 − 2M

r

+ 1

1 − 2M

r

(
dr

dλ

)2

+ J 2

r2
+ m2 = 0, (4.29)

where

E∞ :=
(
1 − 2M

r

) (
dt

dλ

)
, and J := r2

(
dφ

dλ

)
, (4.30)

are the conserved quantities—energy at infinity and the “angular momentum,”13

respectively. This yields

(
dr

dλ

)2

= E2
∞ −

(
1 − 2M

r

) (
J 2

r2
+ m2

)
. (4.31)

In terms of the angular momentum, we have, equivalently,

(
dr

dφ

)2

= r4

J 2

[
E2

∞ −
(
1 − 2M

r

)(
J 2

r2
+ m2

)]
. (4.32)

13Let V (λ) = ṫ∂t + ṙ∂r + θ̇∂θ + φ̇∂φ, where dot denotes the derivative with respect to the affine
parameter λ. The conserved quantities E∞ and J arise from the fact that ∂t and ∂φ are both Killing
vector fields. Specifically, E = − 〈∂t , V 〉, and J = 〈

∂φ, V
〉
. Note that since r is an area radius, J

is not, strictly speaking, an angular momentum in the usual sense of classical mechanics.
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The next step is to define the impact parameter by b := J/
√

E2∞ − m2, and
rewrite the equation further as

(
dr

dφ

)2

= r4

b2

[
E2∞

E2∞ − m2
−

(
1 − 2M

r

) (
b2

r2
+ m2

E2∞ − m2

)]
. (4.33)

Since we are mainly concerned about massless particle emissions, we can take
the m → 0 limit, and obtain

(
dr

dφ

)2

= r4

b2

[
1 − b2

r2

(
1 − 2M

r

)]
. (4.34)

When the derivative dr/dφ vanishes, we get the radius of closest approach r =
rmin, satisfying b2(rmin − 2M) = r3min. Since the photon orbit for Schwarzschild
geometry is at r = 3M , this is the value of rmin, and so the corresponding impact
parameter satisfies b2 = 27M2. Therefore, the geometrical optics cross section
is σ = 27πM2.

The same exercise can be carried out in a Reissner–Nordströmmanifold. The
effective potential experienced by a massless particle is

Vph(r) =
(
1 − 2M

r
+ Q2

r2

)
J 2

r2
. (4.35)

The location of the photon orbit can be found by solving dVph/dr = 0. It is

rph = 3M + √
9M2 − 8Q2

2
. (4.36)

Similar to the case of Schwarzschild, the impact parameter satisfies

r4min

b2

[
1 − b2

r2min

(
1 − 2M

rmin
+ Q2

r2min

)]
= 0, (4.37)

with rmin = rph. This yields the geometrical optics cross section for theReissner–
Nordström geometry given in Eq. (4.25).

We now have Eqs. (4.20) and (4.22), which taken together form a system of cou-
pled linear ordinary differential equations, which can be numerically solved once the
initial mass and initial charge are specified. HW found that although asymptotically
flat charged black holes always evolve toward the Schwarzschild limit, the evolu-
tionary path each black hole takes depends on the initial charge-to-mass ratio Q/M .
For low Q/M ratio, the black holes are in the “mass dissipation zone”—they lose
mass faster than charge and thus actually, initially tend towards the extremal limit.
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Their specific heat,

C := dM

dT
= dM

dt

(
dT

dt

)−1

, (4.38)

where the rate of change in the temperature is given by14 [19]

dT

dt
= e4

4π4m2

Q4

r6h
exp

(
− r2h

Q Q0

)
− α�

2

3840π2

(M2 − Q2)
3
2

r10h

×
[

(3M + √
9M2 − 8Q2)4(M − 2

√
M2 − Q2)

(3M2 − 2Q2 + M
√
9M2 − 8Q2)

]
, (4.39)

changes sign from negative to positive. Note that the specific heat has the opposite
sign of dT/dt because dM/dt < 0. The first term of dT/dt corresponds to the
change in temperature due to mass and charge loss via electromagnetic pair creation;
it is always positive. The second term, on the other hand, corresponds to the change
in temperature due to the thermal mass loss of massless particles; it is positive if
and only if Q2/M2 < 3/4. This is consistent with the prior work of Davies [26],
who showed that if the charge is held constant, then all asymptotically flat Reissner–
Nordström black holes have positive specific heat if the charge-to-mass ratio satisfies
3/4 < Q2/M2 < 1.

Eventually however, their evolution leaves the positive specific heat region of
the parameter space, and they flow along an attractor that brings them toward the
Schwarzschild limit (see Fig. 4.3).

One interesting feature for these black holes is that, while the electrical charge
stays almost constant initially, mass steadily decreases, until M ∼ Q, and then they
start to evolve together (since for M ∼ Q, we have T ∼ 0 and d M/dt ∼ dQ/dt) for
some time. Consequently the black hole—depending on the exact initial conditions
(such as the one in the right plot of Fig. 4.4)—can stay near the extremal limit for a
long time, until Q/M starts to decrease.

Note that although it may appear from the plots that Q ∼ M even at this stage,
this is only because the scale does not resolve the two curves close enough to see
the difference between them. For a better comparison we should plot the difference
M − Q as a function of time (see Fig. 4.5) in which it is evident that the difference
between M and Q can be large towards the end. Note also that the eventual decrease
in M − Q is not inconsistent with the decrease in Q/M . After all, d(M − Q)/dt �=
d(Q/M)/dt . Indeed, we see that

d

dt

(
Q

M

)
= 1

M

[
dQ

dt
− Q

M

dM

dt

]
(4.40)

14This is calculated using the chain rule: dT (M,Q)
dt = ∂T

∂M
dM
dt + ∂T

∂Q
dQ
dt . Note that Hiscock and

Weems missed a power of π in this expression (their Eq. (23))—they wrote α�
2

3840π instead of α�
2

3840π2 .
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Fig. 4.3 Left A Schwarzschild black hole has a negative specific heat—they get hotter when they
shrink. Hiscock and Weems showed that the specific heat of a Reissner–Nordström black hole,
however, can change sign. Right The region of positive specific heat in the parameter space gives
rise to an attractor along which Reissner–Nordström black holes evolve toward the Schwarzschild
limit. Note that given a different initial mass and initial charge, the evolution is always unique. In
particular, although they may get very close to each other near the attractor, their corresponding
curves are actually distinct. (This follows from the uniqueness theorem of differential equations.)
The dash-dot line emphasizes that the model eventually breaks down when the black hole becomes
too small. The plots are taken from Hiscock and Weems [19] with permission

Fig. 4.4 The evolution ofmass and charge of an asymptotically flat Reissner–Nordström black hole
in the mass dissipation zone. The initial conditions are M(0) = 7.35 × 1011, Q(0) = 2.94 × 1011

cm for the left figure, and M(0) = 7.35 × 1011, Q(0) = 4.41 × 1011 cm for the right figure
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Fig. 4.5 Left The evolution of the mass-charge difference, M − Q, of an asymptotically flat
Reissner–Nordström black hole in the mass dissipation zone. Right The evolution of the charge-to-
mass ratio of the same black hole. In this example the initial conditions are M(0) = 7.35 × 1011

and Q(0) = 2.94 × 1011 cm. Note that initially the charge-to-mass ratio increases, but eventually
decreases toward the Schwarzschild limit

can be negative, i.e., Q/M is decreasing, if

dQ

dt
<

Q

M

dM

dt
. (4.41)

Recall that dM/dt and dQ/dt are both negative. Thus this is equivalent to

∣∣∣∣dQ

dt

∣∣∣∣ >
Q

M

∣∣∣∣dM

dt

∣∣∣∣ . (4.42)

Therefore, d(Q/M)/dt can be negative even if dM/dt < dQ/dt , or equivalently,
|dM/dt | > |dQ/dt |, provided that Q/M is small enough. This is precisely what
happens toward the end of the evolution as depicted in Fig. 4.5.

Highly charged black holes, however, are in the “charge dissipation zone”—these
black holes lose their charge steadily and evolve toward the Schwarzschild limit
without any surprising behavior [19]. Despite the fact that it looks like both charge
and mass drop rapidly when one plots the entire evolution of the black hole (see
the left plot of Fig. 4.6), this is again an “illusion” due to the scale involved. If one
zooms in to the “rapid drop” portion of the graph, it becomes clear that the process
takes quite a long time by “normal” standards (although short relative to the much
longer time required to decode Hawking radiation, as wewill see in the next chapter),
specifically, O(1079) years in the example plotted (see the right plot of Fig. 4.6). This
is consistent with the fact that charge loss is not supposed to be rapid.
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Fig. 4.6 Left The evolution of the charge-to-mass ratio of a highly charged (i.e., in the charge-
dissipation zone) black hole with initial conditions M(0) = 1.47 × 1011 cm and Q(0)2/M(0)2 =
0.99. Right Part of the same plot now enlarged to show that the initial “rapid” drop of charge and
mass actually spans over O(1079) years

At this point in the discussion, it is insightful to consider an extremal black hole,
characterized by M = Q. Its horizon is located at rh = M . Note that an extremal
black hole has absolute zero temperature; it does not emit any Hawking radiation.15

Nevertheless, the ODE system of Hiscock andWeems still works—it reduces to only
one ODE governing the charge loss rate:

dQ

dt
≈ − e4

2π3�m2
exp

(
−πm2Q

�e

)
. (4.43)

Of course this ODE ceases to model Hawking radiation, however, it still describes
the charge-loss of an extremal black hole via the (nonthermal) Schwinger process
[23, 36, 37]. This ODE has the simple form

dQ

dt
= −A exp

(
− Q

B

)
, (4.44)

15There is a large literature on whether a semi-classical extremal black hole exists (see e.g., [27–
29]); even at the classical level it is not clear what the final state of an extremal black hole would
be since it is actually unstable [30–35]. Here we are neither concerned about the actual physical
existence nor the stability of such a solution—we are merely interested in the mathematical solution
as it provides insight into the more complicated non-extremal case.
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Fig. 4.7 The evolution of charge for a generic extremal black hole. Here A = −e4/(2π3
�m2) and

B = Q0 = �e/(πm2)

which is readily solved to yield an explicit solution

Q(t) = B

[
ln

(
exp

(
Q(0)

B

)
− At

B

)]
, (4.45)

which is schematically depicted in Fig. 4.7.
The function Q(t) stays more or less constant initially but then eventually starts

to drop and becomes zero at

t = A−1B

[
exp

(
Q(0)

B

)
− 1

]
. (4.46)

One can see that this behavior is essentially the same as how charge evolves for
non-extremal black holes in the mass dissipation zone, although the time it takes
for Q(t) to vanish is extended somewhat. This is understandable since with thermal
correction charge dissipation becomes slower (for a fixed charge, a near-extremal hole
has a larger surface area and thus a smaller electric field than an exactly extremal
hole). One can check numerically that the lifetime of charged black holes, regardless
of whether they started off in the mass dissipation zone or the charge dissipation
zone, is always longer than an extremal hole of the same initial charge.

Of course, for the non-extremal case, the temperature of the black holes eventually
get hot enough that the model of Hiscock and Weems breaks down, and a separate
careful treatment of Hawking evaporation will be necessarily to work with the small
hot black hole regime toward the end of the evaporation process. This interesting
(and important) problem is however, beyond the scope of this thesis.
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Chapter 5
Why Hawking Radiation Cannot Be Decoded

Cold Black Holes and the Harlow–Hayden Proposal

Some say the world will end in fire,
Some say in ice.
From what I’ve tasted of desire
I hold with those who favor fire.
But if it had to perish twice,
I think I know enough of hate
To say that for destruction ice
Is also great
And would suffice.

Fire and Ice, Robert Frost.

In this chapter, we come to the main part of the thesis—the extension of the Hiscock
and Weems model to charged black holes with a flat horizon in anti-de Sitter space-
time, as a concrete example in checking theHarlow–Hayden conjecture that the black
hole lifetime is shorter than the proposed decoding time of Hawking radiation.1 As a
consequence, it is shown that a black hole can evade firewals in the Harlow–Hayden
approach, but in doing so, it is destroyed by quantum effects that arise at low tem-
perature. We will first explain the motivation clearly, with more details than what we
have covered in the first chapter.

5.1 Information Decoding Versus the Lifetimes
of Charged Black Holes

Quantum Mechanics is like a pot: it is almost indestructible and extremely rigid, but also
very flexible because you can use any ingredients for your soup.

–Göran Lindblad

1The formal result is published in [1].
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Aswe havementioned in Chap.1, more than 40 years have passed since the discovery
of Hawking radiation [2, 3], and yet its precise nature and consequences are still
far from being fully understood. Although one should not discount the possibility
that technological advances might lead to progress on the experimental [4–8] or
observational [9, 10] fronts in the future, at present we are forced to rely on general
physical ideas in order to make progress.

Even on this front, however, there are difficulties. A basic guiding principle of
quantum gravity research has long been that the quantum theory should reproduce
the successes of classical general relativity in the case of arbitrarily small spacetime
curvature. The firewall controversy [11, 12] therefore threatens to develop into a
serious crisis, since it seems to imply that our current general ideas regarding quantum
gravitational fields will lead to theories that fail to satisfy this most basic criterion.
This is because thefirewall physically indicates the local presence of an event horizon,
even when the associated spacetime curvature is negligible. (There are, of course,
many other objections to firewalls: see for example [13].)

There are two obvious possible fates for the information associated with a black
hole: it may simply be lost [14, 15], or it may, by some very subtle process which
may or may not involve firewalls [16–20], be completely preserved. However, it
has become apparent that the “physics of information” [21–23], in particular the
applications of information theory in gravitational physics [24–27], may lead to
other outcomes.

In particular, quantum information theory is largely concerned with the time
required to decode a signal, and, in a work which has attracted much attention,
Harlow and Hayden [28] (see also [29]) have proposed that this could be a key issue.
The firewall argument assumes that infalling observers can make use of the infor-
mation encoded in the Hawking radiation they received prior to reaching the event
horizon. However, the decoding of Hawking radiation typically takes vast amounts
of time, exceeding even the lifetime of an evaporating black hole.2 Specifically, the
conjecture in [28] is that the time required is exponential in the black hole entropy. It
is argued in [28] that this might invalidate the firewall argument. Underlying this idea
is the novel doctrine that information is truly “physical” only if it can be decoded
(in principle). An introduction to some important concepts in quantum information
theory is provided in Appendix C.

One great advantage of the Harlow–Hayden approach is that it does not rely on
understanding the precise fate of the black hole when it nears the end of evaporation.

2There are other effects which can be taken into account, but all of them tend to reinforce the idea
that the decoding of Hawking radiation may not be possible. First, note that “collecting” Hawking
radiation is not quite straightforward, as black holes radiate in all spatial directions. An infalling
observer needs to devise a scheme to intercept and collate all of the Hawking radiation. (This fact
is easily forgotten especially for some of us who are used to thinking in terms of Penrose diagrams,
which suppress the angular part of the geometry!) It is not entirely clear that such a process is
completely innocuous. It has also been argued that except for a very late and very small fraction of
a black hole’s lifetime, the Hawking radiation is uncorrelated with the state of the in-fallen matter
[30]. If this is indeed the case, then an infalling observer who wishes to decode Hawking radiation
will find that there is not even enough time to collect the relevant Hawking radiation (that encodes
the information) before the black hole disappears. For another concern, see also [31].

http://dx.doi.org/10.1007/978-3-662-48270-4_1
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That question is of course highly controversial: somewould have it that the black hole
does indeed evaporate completely, while others are willing to consider “remnants”
[32–35]. The emphasis in the Harlow–Hayden approach is instead on computing
the timescale on which the overall evolution occurs: one needs only to show that the
longest-lived black holes have “short” lifetimeswhen compared to the decoding time.
It does not matter whether anything unusual happens at any point during this lifetime,
or whether a given black hole is “young” or “old.” The second great advantage is
that, as we shall see, the black holes involved in our analysis always have relatively
low curvature outside the event horizon, so the systems we study do indeed probe
precisely that regime in which the firewall argument is most controversial, the low-
curvature regime.

Even if, as is argued in [12, 36], this remarkable argument does not settle the
firewall problem, the idea that Hawking radiation cannot be decoded is certainly of
great interest,3 and will, if correct, surely play a central role in any future complete
theory of black hole evaporation. We should therefore ask: is it really the case that
black holes invariably have lifetimes shorter than the characteristic time required to
decode the information carried by Hawking radiation? If this is indeed so, precisely
which physical effects are involved?

In order to understand if the Harlow–Hayden (henceforth, HH) argument really
works, one has to check it for various black holes, not just neutral ones. HH them-
selves gave a rough estimate that electrically charged black holes can be expected to
have lifetimes enormously longer, perhaps even infinitely longer, than their neutral
counterparts: so these are the black holes that pose the most serious threat to the HH
proposal. The lifetime of a charged black hole can only be “short” if some additional
effect intervenes. The suggestion in [28] is that quantum gravitational effects, aris-
ing in the late stages of the evaporation, will save the day here; more precisely, HH
express the hope that the string-theoretic effect known as “AdS fragmentation” [38]
would destroy the charged black hole in a relatively short time. Our objective here is
to be much more explicit regarding the precise nature of the physics responsible for
this destruction. We shall see that the hope expressed by HH is realized in a sense
(the Seiberg–Witten effect discussed below is a greatly generalized version of the
effect noted in [38]); but the details are considerably more intricate than one might
have expected.

It is generally accepted that the most reliable probe of quantum gravity is the
AdS/CFT correspondence [39]; indeed, probably the strongest arguments in favor
of the maintenance of unitarity in black hole evaporation are based on its presumed
dualitywith a system inwhich unitarity is known to hold. Thefirewall controversy has
indeed been investigated in this manner (see, for example, [19, 40–44]). However,
some doubts have been raised as to whether even this powerful technique is able
to deal with all aspects of black hole physics (see [45] for a recent example). It is
therefore prudent to rely on some specific forms of the duality which is known to
work particularly well, especially when applied to charged black holes.

3Oppenheim and Unruh [37] recently pointed out that the Harlow–Hayden argument can be evaded
by a “precomputation” of quantum information by forming an entangled black hole. However, this
leads to superluminal signal propagation.
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Fig. 5.1 Conjectured quark matter phase diagram

There is in fact an extensive field of research in which the physics of electri-
cally charged AdS black holes plays a central role: the application of AdS/CFT
duality to the study of the Quark–Gluon Plasma (QGP). Specifically, AdS-Reissner–
Nordström black holes with toral or planar event horizons are dual to a field theory
which describes a system that in many ways resembles a quark–gluon plasma inhab-
iting a locally flat spacetime at conformal infinity [46–50]. (In (n + 2)-dimensions,
“planar” refers to event horizons with R

n topology; “toral” to the topology of the
n-dimensional flat torus.) This version of the duality has enjoyed substantial suc-
cesses (particularly with regard to the celebrated “KSS bound” [51, 52]), and can
claim to have some measure of experimental support. We propose to use ideas sug-
gested by this theory to throw some light on the fate of electrically charged black
holes, as they appear in the HH argument.

Whenwe do this, we find some unexpected answers. In particular, the duality sug-
gests that something dramatic must happen to AdS black holes at low temperatures.
For, of course, the QGP cannot be expected to exist at arbitrarily low temperatures—
it either hadronizes or undergoes a phase transition to some other, radically differ-
ent (for example, “quarkyonic”) state. This has been considered in a large number
of works (for example [53–57]) devoted to the quark matter phase diagram, which
represents various states of quark matter as a function of temperature and the quark
chemical potential: see4 Fig. 5.1. Some more details are provided in Box 5.1.

4In Fig. 5.1, ALICE, RHIC, FAIR, and NICA refer to various current and projected experimental
programs [58–62] designed to explore the physics of this diagram. Astrophysical phenomena such
as core-collapse supernovae and neutron star mergers could also serve as arenas to studyQCD phase
transitions; see for example [63–66].
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While many of the details remain conjectural, there is no suggestion that the
plasma phase extends downward to very low temperatures, at any value of the chem-
ical potential. In short, duality teaches us that we should expect Reissner–Nordström
black holes to have their lifetimes terminated by some effect which disrupts them at
low temperatures.5

Box 5.1: Understanding The Phases of Quark Matter
A quark is an elementary particle and a fundamental constituent of matter.
Quarks combine to form composite particles called hadrons, the most stable of
which are protons and neutrons, the components of atomic nuclei. There are six
types of quarks, known as “flavors”: up, down, charm, strange, top, and bottom.
For example, a proton is made of two up quarks and one down quark, whereas
a neutron is made of one up quark and two down quarks. Quarks carry both the
(fractional) electrical charge and the “color charge.”

Quarks are confined inside the hadron in a color-neutral state, i.e., we cannot
observe free quarks. By a color-neutral state, we mean the color combination
of the constituent quarks must give a “white” state: for hadrons this typically
means the 3 quarks are red, green and blue, respectively; while for a meson,
which is made up of 2 quarks, this means red and anti-red, blue and anti-blue,
or green and anti-green configurations. Note that “color” is merely a convenient
label, they are not really optically colorful in the ordinary sense of the word.

One way to appreciate color confinement is to consider, say, a meson made
up of one quark and one antiquark. An early attempt to study meson models the
force between the quark and its antiparticle partner as some kind of flux tube.
The color force favors confinement because in a certain range it is energetically
more favorable to create a quark-antiquark pair than to continue to elongate
the color flux tube. Thus, as we try to pull the quark-antiquark pair apart, we
eventually end up putting so much energy into the stretching tube that it forms
two quark–antiquark pairs instead. See Fig. 2 in [69] for a cartoon illustration. In
standard model QCD (Quantum Chromodynamics), the color force is mediated
by a particle called a gluon, analogous to the photon being the force carrier
for electromagentic force in QED (Quantum Electrodynamics). Unlike photons
however, gluons carry color charges and so they interact among themselves.
There are eight independent types of gluons. Quarks constantly change their
color charges as they exchange gluons with other quarks.

5We are of course restricting ourselves here to those AdS-Reissner–Nordström black holes which
do in fact give a broadly correct dual representation of the quark–gluon plasma. That immediately
excludes black holes with topologically spherical event horizons, precisely because these do suggest
that the plasma phase extends down to arbitrarily low temperatures (see [67], page 465). Fortunately,
the AdS-Reissner–Nordström black holes with toral or planar event horizons, those which are in fact
the ones used in applications of holography to quark matter, do not have this “undesired feature”
[68]. Henceforth we confine attention to these black holes. Note that HH do discuss (neutral) toral
black holes.
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“Quark Gluon Plasma” (QGP), sometimes also dubbed “quark soup”, is a
phase of QCD,which exists at extremely high temperature or density. This phase
consists of “deconfined” quarks—they are free to move over distances larger
than a femtometer. Such a state is believed to have existed in the early universe
when the temperaturewas very high (T > 100GeV). As the universe cooled due
to the expansion of space, the quarks, antiquarks and gluons combined to form
hadrons which eventually resulted in the matter that we are familiar with today
(see, e.g., [70–72]). Much of the physics about QGP and how this transition to
hadronic matter happened are still not well understood.

A key objective of the study of QGP is to further understand the quark
matter phase diagram as shown in Fig. 5.1. As of now we do not know the
details of the various phases. Some form of QGP has been produced in the
RHIC Au–Au collisions. RHIC stands for “Relativistic Heavy Ion Collider”, a
particle accelerator at the U.S. Department of Energy’s Brookhaven National
Laboratory. At the temperature that can be reached at RHIC, quark matter is
still strongly interacting, and is sometimes called “sQGP”. In this work, we will
simply refer to them as QGP: they are what QGP becomes once temperature and
pressure is sufficiently low, but still not low enough to undergo phase transition.
The strong coupling behavior makes perturbative field theoretical approaches to
study the properties of the quark–gluon plasma in this temperature range a nearly
impossible task. This is where holography (AdS/CFT correspondence) comes
in—it is precisely best understood when the field theory is strongly coupled.
The application of holography in this context is often called the AdS/QCD
correspondence.

Note that the phase diagram is a plot of the temperature T against the so-
called “chemical potential”, μ, which one can roughly think of as the pressure
of the system; it is an analogue to electric potential and gravitational potential
in which force fields are thought as being the cause of things moving, be they
charges, masses, or, in this case, “chemicals”. More precisely, in a thermody-
namic system containing n particle species, its Helmholtz energy A is a function
of its temperature T , the volume V and the number of particles of each species
N1, N2, . . . , Nn . Namely,

A = A(T, V, N1, N2, . . . , Nn). (5.1)

The chemical potential of the i th particle species is then defined by the partial
derivative

μi := ∂A

∂Ni
. (5.2)
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In the context of QGP, we are concerned with the chemical potential of the
quarks. One can also think of μ as a measure of the imbalance between quarks
and antiquarks in the system. Higher μ means the system has a higher density
of quarks.

The reader may protest at this point: a plasma, left to its own devices, cools
extremely rapidly—how, therefore, can this argument be relevant to black hole evap-
oration, which is normally taken to proceed in the opposite direction along the tem-
perature axis? In fact, however, such behavior for an evaporating black hole is not
generic, in the following sense: the temperature of a typical (that is, with charge not
exactly zero, and not already cold) black hole actually drops initially as it evapo-
rates. Let us explain this crucial point. (In this discussion, until further notice, we
will consider the asymptotically flat case, in which the event horizon necessarily has
spherical topology [73, 74].)

As mentioned in the previous chapter, when it was realized that Hawking evap-
oration can change the parameters of a black hole, it immediately became apparent
that this posed a threat to cosmic censorship [75]. For clearly, if a charged or rotating
black hole does not lose its charge or angular momentum at least as rapidly as it
loses mass, then it is in danger of passing through one or both of the extremal limits
defined by the Kerr–Newman geometry. In a classic work, Page [76] showed that an
asymptotically flat rotating (uncharged) black hole always loses angular momentum
more rapidly than it loses mass, so that censorship is safeguarded.

The charged case proved to be more difficult, and was not settled until Hiscock
andWeems [77] carried out a thorough numerical investigation (see also [78]). They
found that, initially, a black hole with a small but nonzero charge-to-mass ratio
Q/M—recall that the temperature is inversely related to Q/M , so this means that
the black hole is not unusually cold at the outset—actually loses mass more rapidly
than it loses charge as it evaporates. The temperature therefore drops, and the black
hole can come quite close to extremality. However, at a certain point before that
happens, the temperature reaches a nonzero minimum,6 the process reverses, and the
temperature begins to rise, eventually to the arbitrarily high values made familiar by
the evaporation of a Schwarzschild black hole. Censorship is again respected, but
not in the simple manner of the rotational case: censorship violation is staved off
“at the last moment”. (Highly charged black holes, that is, holes which are already
cold, behave more conventionally: they simply get hotter and tend steadily toward
the Schwarzschild limit.)

In short, a generic charged asymptotically flat black hole cools at first; if it survives
this cooling, it then gets hot. We shall see in this work that AdS-Reissner–Nordström
black holes with flat event horizons also undergo an initial drop in temperature;
however, the numerical data strongly indicate that, in this case, the temperature

6There is a large literature (for recent examples, see [79] and the references therein) on the question
as to whether exactly extremal semiclassical black holes can exist. Note that this is not useful to us
here: we need to exclude black holes with temperatures that are “low”, not necessarily exactly zero.



128 5 Why Hawking Radiation Cannot Be Decoded …

always falls, ultimately to arbitrarily small (but positive) values if no other effect
disrupts the black hole.7 Charged black holes in AdS with flat event horizons, then,
do behave in a manner consistent with the dual representation in terms of a cooling
plasma. (Of course, a real plasma cools enormously more rapidly than the black
holes considered here. Both scales are however negligible when compared with the
decoding time; showing this is our main objective.)

We can now resume the argumentweweremaking above. In short, the evaporation
of a generic charged AdS black hole with a flat event horizon causes the temperature
to drop. But if the black hole becomes sufficiently cold, then it must cease to exist
as a black hole, just as the dual plasma must cease to exist as a plasma as it cools.
Thus the lifetime must be cut short, as HH require. The great virtue of this argument
is that it does not involve black hole temperatures rising to levels where the physics
is not understood. The crucial effect involves cold black holes. We stress again that
the black holes in our analysis are such that the curvature outside the event horizon
is always small (as we will soon show, the value is around 144/L4, where L is the
asymptoticAdS curvature scale), sowe are directly probing the low-curvature regime
where firewalls are supposed to arise.

A less agreeable aspect of the argument, thus far, is that it is like an existence
proof. It convinces us that something happens to the black hole as it cools, but it does
not explain what that might be; and indeed the effect must be an unusual one, since
we are more accustomed to quantum gravity effects becoming important at high, not
low, temperatures. Our objective in this work is to remedy this. That is, we wish to
answer the question: exactly which physical effect is responsible for the destruction
of event horizons as charged black holes cool?

Of course, as we have seen in Chap.3, the idea that AdS black holes undergo
drastic changes as they cool is very familiar. Hawking and Page [81] showed that,
in the case of spherical event horizons, there is a phase transition, and a similar
statement is true in the case of toral (that is, flat but compact) event horizons [82]. In
both cases the black hole ceases to exist; the cold phase [83] has a definite geometry,
but it is not that of a black hole. (It is thought [84] that this transition might give
a simplified model of the hadronization of the QGP, at small chemical potentials.)
This is what we need here, in order to complete the Harlow–Hayden argument.8

However, we should not expect that the Hawking–Page transition is the only effect
responsible for the destruction of AdS black holes as they cool; this for two reasons.

First, while it is true that AdS black holes with flat compact event horizons
undergo a phase transition, this is not true when the compactification scale is taken to

7A similar pattern is observed in [80], even in the asymptotically flat case, though the physical
argument there is very different to the one in this work.
8This is unlike the case of a holographic superconductor, where the effect of the transition [85] is
not to destroy the black hole but merely to cause it to grow “hair” (see however [86]). Notice too
that this only occurs in response to the presence of a specific form of matter (usually a scalar field),
whereas here we want it to occur for pure AdS-Reissner–Nordström geometry.

http://dx.doi.org/10.1007/978-3-662-48270-4_3
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infinity—that is, when we turn to planar (rather than toral) black holes. (The tran-
sition temperature drops to zero in this case.) Hence charged planar black holes do
apparently have arbitrarily long lifetimes.

The second reason is revealed by Fig. 5.1, which shows that the transition from the
QGP state takes various forms, depending on the value of the chemical potential. For
example, it has been suggested [87] that, at sufficiently high values of the chemical
potential, the transition is not to the hadronic state but rather to a “quarkyonic” formof
quark matter. A holographic account of this state is available [88]. There is no reason
to think that the transition to this state is triggered by the same effect that causes the
very different transition to the hadronic state. Therefore, we should in general expect
to find that some other effect, apart from the Hawking–Page transition, is in some
cases responsible for the disappearance of cold AdS black holes.

In short, then, we need to identify some novel effect which supplements the
Hawking–Page transition in some cases, and which can, in particular, destabilize
an AdS-Reissner–Nordström black hole when its event horizon has either toral or
planar topology, and when its temperature is low but not zero.

Just such an effect was found in [68]: the Seiberg–Witten instability [89] (see
also [90, 91]). Seiberg and Witten showed that the stability of branes propagating
in asymptotically AdS spacetimes depends on the way the ambient geometry affects
the areas and volumes of the branes. For geometries with flat metrics at infinity, such
as we have in the case of AdS-Reissner–Nordström toral and planar black holes, the
competition between the positive and negative terms in the brane action is particularly
close. It turns out that the addition of small amounts of electric charge to a black hole
with a flat event horizon has no ill-effects, that is, the brane action remains positive
everywhere. But (for four-dimensional black holes) when the charge reaches about
92%of the extremal charge [92]—that is,when the temperature is low, but not zero—
the brane action becomes negative at a certain distance from the black hole, triggering
a pair-production instability. In short, we have exactly what we need, supplied by
basic objects in string theory.

In summary, we claim that AdS-Reissner–Nordström toral and planar black holes
are indeed destroyed as they evaporate, as HH require; and that we can, for various
values of the compactification parameter, identify the physical mechanism responsi-
ble: in the toral case it is a phase transition of the Hawking-Page type at low values of
the chemical potential, the Seiberg–Witten effect at high values. (In the planar case,
the Seiberg–Witten effect alone is responsible.)

We begin by generalizing the analysis of Hiscock and Weems (Henceforth, HW)
to charged AdS toral and planar black holes, in order to substantiate our claim that
the temperatures of these black holes do indeed drop when they radiate.
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5.2 Evaporating Charged AdS Black Holes

A topologist is a mathematician who can’t tell the difference between a coffee mug and
a donut.

–Anon

Four-dimensional9 AdS-Reissner–Nordström black holes with flat event horizons
(henceforth, “charged flat black holes”) have metrics of the form (see [93])

g(FAdSRN) = −
[
r2

L2 − 8πM∗

r
+ 4πQ∗2

r2

]
dt2 + dr2

r2

L2 − 8πM∗
r + 4πQ∗2

r2

+ r2
[
dψ2 + dζ2

]
,

(5.3)
where ψ and ζ are dimensionless coordinates on a flat space, and where the mass
and charge parameters M∗, Q∗, are defined as follows. In the case in which the
event horizon is compact, we shall take it to be a flat square torus with area 4π2K 2,
where K is a dimensionless “compactification parameter”. Then M∗ is defined as
M/(4π2K 2), and similarly Q∗ = Q/(4π2K 2), where M and Q are the physical
mass and charge of the hole. If we wish to consider a non-compact (planar) event
horizon, then we let M , Q, and K tend to infinity in such a manner that M∗ and Q∗
remain finite. The densities of the mass and electric charge at the event horizon of
the hole are then given, for both toral and planar cases, by M∗/r2h and Q∗/r2h , where
r = rh denotes the event horizon; note that rh can be computed if M∗ and Q∗ are
given, although the explicit form of the solution is so complicated that there is no
good reason to show it here.

In a holographic approach, M∗ and Q∗ are fixed by the physical properties of the
dual field theory, namely its energy density and chemical potential. (The formula
for the electromagnetic potential also involves Q∗ rather than Q.) Indeed, one could
define M∗ and Q∗ in thatway. Similarly, the time coordinate t in the above formula for
g(FAdSRN), which does not have a simple interpretation in the bulk, can be defined
as proper time at the conformal infinity (where the metric is locally Minkowskian10).
Henceforth, all of our references to “rates of change” will implicitly involve this
proper time at conformal infinity. See the related discussion in Chap. 3.

Despite being the arena in which quantum gravity is best understood, asymp-
totically AdS spacetimes do not straightforwardly allow one to study the Hawking
evaporation of black holes—“large” asymptotically AdS black holes with spherical
event horizons, and all planar and toral AdS black holes, tend ultimately to reach
thermal equilibrium with their Hawking radiation. Nevertheless, large black holes
can be made to evaporate by coupling the boundary field theory with an auxiliary
system, such as another CFT [12, 94, 95], or by attaching a Minkowski space to an
AdS throat geometry [28]. In this work, we assume that some mechanism of this

9We work in 4-dimensions only for the sake of simplicity; we expect the same qualitative results
to hold in higher dimensions.
10Note that we cannot take the r → ∞ limit directly in the metric g(FAdSRN), otherwise the
r2/L2 term will simply blow up; that is, the metric is only asymptotically conformally flat, not
asymptotically flat.
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kind11 can be made to work, and investigate the consequences, following Hiscock
and Weems (HW) (who of course dealt only with the asymptotically flat case).

As in Chap.4, following HW, we will work in the so-called “relativistic units”
[97] in which both the speed of light c and Newton’s constant G are unity but the
reduced Planck’s constant � is not. Consequently, �G/c3 = � ≈ 3×10−66 cm2. This
means that, unlike the usual convention in which � is set to unity and temperature
has dimension of inverse length, in our choice of units temperature has dimension
of length. However, in this chapter, as is evident in the metric (5.3), we will use
the Lorentz–Heaviside units, in which a factor of 4π appears in the Coulomb’s Law
but not in Maxwell’s equations. Therefore, Q2 in HW will appear as Q2/4π in our
work. The electron charge will be e/

√
4π and its mass m = 10−21e/

√
4π, where

e = 6 × 10−34 cm. In addition, we recall that Q0 := �e/πm2 ≈ 3.18 × 1010 cm.
We recall fromChap.4 that the charge loss rate of an asymptotically flat Reissner–

Nordström black hole in Hiscock and Weems analysis is given by the integral (now
in Lorentz–Heaviside units),

dQ

dt
≈ e3

4π3�2

∫ ∞

rh

Q2

4πr2
exp

(
− 4πr2

Q0Q

)
dr (5.4)

= e3

8π7/2�2

[
− Q3/2

2
√
Q0

erf

(
4πr√
Q0Q

)
− Q2

4πr
exp

(
− 4πr2

Q0Q

)] ∣∣∣∣
∞

rh

. (5.5)

For a sufficiently large black hole, HW apply the series approximation for the com-
plementary error function erfc(x) = 1 − erf(x) which gives, finally, the charge loss
rate

dQ

dt
≈ − e4

28π13/2�m2

Q3

r3h
exp

(
− 4πr2h
Q0Q

)
. (5.6)

Also recall that the mass loss of the black hole is given by

dM

dt
= −αaT 4σ + Q

rh

dQ

dt
, (5.7)

where in the case of an asymptotically flat Reissner–Nordström black hole σ is the
geometric optic cross section corresponding to the photon orbit, and α is a constant
that depends on the number of species of massless particles. HW showed that the
qualitative—and, to a large degree, the quantitative—results are not sensitive to the
exact value ofα. The differentα’s contribute an O(1) difference to the lifetime of the
asymptotically flat Reissner–Nordström black hole. Admittedly, in a “stringy” AdS
bulk there would be other massless particles beyond the standard model of particle
physics. Nevertheless, as we will see, the time scale involved is so enormously large

11These black holes can also evaporate if one artificially “mines” the black holes, an operation that
overcomes the effective potential around the holes. This is discussed in, for example [28]; but see
[96] for a discussion of the subtleties of such an operation.
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that an O(1) or even an O(1000) difference would not change the result appreciably.
We will henceforth set α = 1 for simplicity. Note that if one indeed considers
massless particle species in addition to the photon and graviton, then the lifetime
of the black hole will in fact be shortened (more energy radiated thermally per unit
time), and this would favor the HH proposal.

This model of evaporating asymptotically flat charged black holes can be gen-
eralized to asymptotically locally AdS black holes, and in particular to those black
holes with flat horizons. In the asymptotically flat case, we saw that, in order for
flat-space QED to be applicable, one needs a sufficiently large black hole to ensure
that the curvature radius of the underlying spherical geometry is larger than the size
of an electron. For flat black holes it would seem that this condition is automatically
satisfied, the curvature radius being infinite. However, there are a few subtleties here.
For simplicity, let us first consider electrically neutral toral black holes. TheHawking
temperature is (see, for example, [98, 99])

T [Q = 0] = 3�rh
4πL2

. (5.8)

We see that, unlike its asymptotically flat cousin, a toral black hole has a temperature
proportional to its radius. Thus, for any fixed compactification parameter K , a larger
black hole is hotter. This is of course related to the fact that these black holes have
positive specific heat, unlike the Schwarzschild black hole.

Since our aim is to study cold black holes, and also to use the method of HW, in
which thermal mass loss can be cleanly separated from charge loss, we need to make
sure that our black holes are not too hot. For a neutral black hole, this means that we
want

T [Q = 0] = 3�rh
4πL2

< 2m. (5.9)

Since the event horizon for a neutral toral black hole is located at a value of r given
by

rh =
(
2ML2

πK 2

) 1
3

, (5.10)

the inequality translates to an upper bound on M , given by

M < 28π4K 2L4
( m

3�

)3
. (5.11)

For L = 1015 cm, say, we get roughly

M < 1.12 × K 2 × 1097 cm. (5.12)
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Of course, a charged black hole will have a lower temperature, and therefore, can
tolerate a higher upper bound on the mass without emitting charged particles ther-
mally. Nevertheless, for convenience, we will always choose the initial condition for
mass to be below the bound given in Eq. (5.12).

Next, we need to find the circumstances under which the weak-field condition for
the Schwinger effect holds. (We remind the reader that the weak-field requirement
allows us to consider only positrons and electrons, not charged particles of higher
mass likemuons. This is reasonable since the pair-creation rate depends exponentially
on the square of the mass of the particle species.) Recall that it is the electric field
strength E = Q∗/r2 that is important in the pair-creation of charged particles,
not the charge Q per se. In terms of electric field strength, the Schwinger formula
(Eq.4.14) is

� = e2

16π4�2
E2 exp

(
−πm2

√
4π

�eE

)
×

[
1 + O

(
e3E

m2(4π)3/2

)]
. (5.13)

For our toral geometry, this expression yields

� = e2Q2

256π8�2K 4r4
exp

(
−8m2π7/2K 2r2

�eQ

)
×

[
1 + O

(
e3Q

25π7/2m2K 2r2

)]
.

(5.14)

The dependence on K 2 in the exponential term, which dominates the Schwinger
effect, is of course natural—due to the conservation of flux, for any fixed charge, one
expects a black hole with large area (that is, large K ) to have a weaker field.

This implies that for the “weak-field” approximation to hold, we need

e3

32π7/2K 2m2
� inf

(
r2

Q

)
= inf (r2)

sup (Q)
= r2ext

Qext
(5.15)

=
(

ML2

2πK 2

) 2
3

(108π5M4L2K 4)1/6
(5.16)

= L

2 × 31/2π3/2K 2
, (5.17)

where

Qext = (108π5M4L2K 4)1/6 (5.18)

is the extremal charge, and

rext =
(

ML2

2πK 2

) 1
3

(5.19)
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denotes the event horizon of the extremal black hole. The extremal charge can be
found using the extremality condition gtt(rext) = 0 = g′

t t (rext).
To summarize, we have the following result.

Proposition 1 The weak-field condition for the validity of the Schwinger formula
in the case of asymptotically locally AdS black holes with flat event horizons in
(3 + 1)-dimensions is

e3

m2
� 16π2L√

3
, (5.20)

that is,

L 	 6.6 × 106cm, (5.21)

independent of the mass of the black hole.

Unlike the asymptotically flat case then, the AdS case requires us to consider large
L , that is, small cosmological constant, not large M . In fact, as we have seen, M is
bounded above; and in addition, as we shall show later, phase transitions also put
constraints on the value the mass can take. In addition, it can be shown that, with the
expressions for the extremal charge and the extremal horizon, namely Eqs. (5.18) and
(5.19), the requirement that the series approximation (Eq.4.17) is valid yields, for
charged flat black holes, L 	 1.21×108 cm. This clearly also satisfies the inequality
obtained above in Proposition 1. Henceforth, in our numerical analysis, we shall fix
L = 1015 cm for definiteness. We will discuss the effect of varying L in Sect. (5.4).

This agrees with the usual conditions for holography to apply—that the string
coupling and the ratio of the string length scale to the AdS curvature scale L are
small. In particular, one should think of L as “large”.

Now one can compute the Kretschmann scalar (the square of the curvature tensor)
for g(FAdSRN): it is given by

Rabcd Rabcd (FAdSRN) = 8
(
96π2L4M∗2r2 − 192π2L4M∗Q∗2r + 112π2L4Q∗4 + 3r8

)
r8L4 .

(5.22)
The maximal squared curvature for any point not inside the event horizon is of
course attained at the event horizon. For very cold (nearly extremal) black holes of
this kind (the condition for extremality being Q∗6 = (27/4)πM∗4L2), one finds that
the squared curvature takes a remarkable form12:

Rabcd Rabcd(FAdSRN; Extremal; r = rh) = 144

L4
. (5.23)

That is, since L is assumed to be “large”, the spacetime curvature outside a cold black
hole of this sort is always very small, independent of any other parameter. Whatever

12In addition to its simplicity, note that this expression is also the square of the scalar curvature of
the geometry at the horizon, R = −12/L2.
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happens to the event horizon of such a black hole happens in the low-curvature
regime. Note that the expression only depends on the AdS length scale set by the
cosmological constant. In fact, in the neutral case, we also obtain an expression that
only depends on L:

Rabcd Rabcd(FAdSRN; neutral; r = rh) = 36

L4
. (5.24)

This should be contrasted with the Kretschmann scalar of the usual asymptotically
flat Schwarzschild black hole:

Rabcd Rabcd(Sch r = rh) = 3

4M4
, (5.25)

which becomes larger and larger without bound as the black hole shrinks in size.
The fact that the weak-field condition is independent of the black hole mass is

interesting in its own right. In fact, in some sense, these toral black holes behave
more like empty AdS than like asymptotically flat black holes. A simple example
of this is given by calculating the maximal infalling time from the horizon to the
singularity for a neutral toral black hole. In the Schwarzschild case, we have

τmax =
∫ 2M

0

(
2M

r
− 1

)− 1
2

dr = πM, (5.26)

but, for a neutral toral black hole, we have instead

τmax =
∫ rh

0

(
2M

πK 2r
− r2

L2

)− 1
2

dr = πL

3
, rh = 3

√
2ML2

πK 2
, (5.27)

which is again independent of the black hole mass. This is reminiscent of the fact that
the time to fall from anywhere to the “center” of AdS only depends on the curvature
radius. A similar observation holds in relation to the geometric cross section σ, to
which we now turn.

It turns out that the usual definition of the geometric cross section for asymptot-
ically flat black holes does not carry over straightforwardly to the toral AdS case.
Recall that the geometric cross section is by definition σ = πb2, where b is the
maximum impact parameter for a massless particle to be captured. The computation
of the impact parameter in the asymptotically flat case normally proceeds by nor-
malizing the asymptotic energy of the particle as E → 1. In the asymptotically AdS
case, however, E → ∞ toward the boundary.

Fortunately, this is misleading—we need not define b at all for our purpose of
studying the emission of Hawking radiation. We are only interested in particles that
can escape the black hole to infinity, not be captured. In the asymptotically flat case,
these two notions are interchangeable since the photon orbit corresponds to the local
maximum of the effective potential experienced by massless particles (see Fig. 4.2).
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However, for toral black holes, the potential reads

V [r ] = J 2

r2

(
r2

L2
− 8πM∗

r
+ 4πQ∗2

r2

)
, (5.28)

where J is the angular momentum of the particle. This potential is monotonically
increasing and approaches the asymptotic value J 2/L2. Therefore, in our case,
“escape” is not the same as “capture”, indeed every ingoingmassless particle reaches
the black hole, but not all massless particles can escape.

Evidently, given a fixed angular momentum J , the particle needs to climb over
the potential barrier of height J 2/L2 to reach infinity. The metric, restricted on the
equatorial plane, yields the equation of motion

− f (r)

(
dt

dλ

)2

+ f (r)−1

(
dr

dλ

)2

+ r2
(
dφ

dλ

)2

= 0, (5.29)

where λ is a parameter for null geodesics, and where

f (r) := r2

L2
− 8πM∗

r
+ 4πQ∗2

r2
. (5.30)

We have

E = f (r)
dt

dλ
, J = r2

dφ

dλ
. (5.31)

If the constant E is less than J 2/L2, then the particle cannot make it out to infinity.
That is, “escaping” needs E � J 2/L2. Thus, at infinity we must have

(
dr

dλ

)2

=
[(

J

L

)2

− J 2

r2

]
f (r), (5.32)

which vanishes when L = r . One can then define the “cross section” σ ∝ L2,
which is again independent of the black hole mass, as well as its charge. This simple
expression for the cross section agrees with the one given in [99].

We are now in a position to generalize the HW analysis.
The area appearing in the Stefan–Boltzmann law in Eq. (4.23) is now 4π2K 2L2

and so the differential equation governing mass loss is

dM

dt
= −aπ2K 2L2T 4 + Q

4π2K 2rh

dQ

dt
, (5.33)

where the Hawking temperature is
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T = �

2π2K 2

[
1

r2h

(
3M − Q2

2π2K 2rh

)]
, (5.34)

or, in terms of the AdS length scale,

T = �

[
rh

πL2
− M

2π2K 2r2h

]
. (5.35)

The differential equation governing charge loss in the weak-field limit can be
obtained by integrating the leading term of Eq. (5.14); it is given by

dQ

dt
≈ − e4K 2

1024π19/2�m2K 6

Q3

r3h
exp

(
− 8π7/2K 2m2r2h

�eQ

)
. (5.36)

In terms of M∗ and Q∗, these coupled ordinary differential equations read:

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

dM∗

dt
= −a

4
L2T 4 + Q∗

rh

dQ∗

dt
,

dQ∗

dt
≈ − e4

64π11/2�m2

Q∗3

r3h
exp

(
− 2π3/2m2r2h

�eQ∗

)
,

(5.37)

where the Hawking temperature is

T = �

r2h

[
6M∗ − 4Q∗2

rh

]
= �

[
rh

πL2
− 2M∗

r2h

]
. (5.38)

These expressions also hold in the case of a planar black hole.

5.3 Thermodynamics of Charged Evaporating
Flat Black Holes

Every mathematician knows it is impossible to understand an elementary course in
thermodynamics.

–V.I. Arnold

We first note that in the case of neutral evaporating toral black holes, the rate of mass
loss is

dM

dt
= −aπ2K 2L2T 4 = −aπ2K 2L2

[
�

2π2K 2

3M

r2h

]4

, (5.39)
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where the event horizon is located at

rh =
(
2ML2

πK 2

) 1
3

. (5.40)

Therefore dM/dt ∝ − M4/3, which implies that M(t) only reaches zero asymptot-
ically. This is in contrast to the case of a Schwarzschild black hole, for which, as is
well known, zero mass is attained in a finite time, since dM/dt ∝ − M−2 (though,
again, such a black hole eventually becomes so hot that we have no good reason
to trust semiclassical physics in the final stages of its evaporation). It is notewor-
thy that even uncharged toral black holes already threaten the HH proposal (as HH
themselves point out). We will return to this point later.

It is well known that electrically neutral, (quasi-)static flat AdS black holes have a
positive specific heat. However, in our setup, in which charged flat AdS black holes
are allowed to evaporate, it is a priori possible that the specific heat can change sign
at some point in the evolution of the black hole, just as Hiscock and Weems found in
the case of the evaporating asymptotically flat Reissner–Nordström black holes. It
is therefore important to check the specific heat of these black holes. We emphasize
that, on physical grounds, one should not hold the charge fixed when calculating the
specific heat (though it can be instructive to see what happens if that is done, see
below); instead one should directly compute it using

C := dM

dT
= dM

dt

(
dT

dt

)−1

, (5.41)

as HW did. Now note that dM/dt is always negative.13 Thus, the sign of the specific
heat is the opposite of the sign of dT/dt .

For any fixed compactification parameter K , we shall prove that, as one would
expect,14 the black hole gets smaller as it evaporates (the same proof,mutatis mutan-
dis, also holds for charged planar AdS black holes, as well as asymptotically flat
Reissner–Nordström black holes):

13It has recently been argued by Bianchi and Smerlak [100, 101] that, if black hole evaporation is
unitary, then black hole mass loss cannot be monotonic (actually it is sufficient to assume that the
entanglement entropy in the radiation goes to a constant at late time, as it was at the beginning). That
is to say, at some point the black hole mass must—very counterintuitively—increase. However,
a recent work by Abdolrahimi and Page [102] showed that such an effect is very small for an
asymptotically flat Schwarzschild black hole. They found that the mass increase of the black hole
is less than 0.09% of the energy of a single quantum of the energy of the Hawking temperature of
said black hole at that time. This means that such an effect is unlikely to be detectable, considering
that the signal would in addition also be swamped by quantum fluctuation noise. In addition, in
[103] it was shown that asymptotic observers cannot detect the presence of negative energy flux via
particle count.
14This still needs to be checked explicitly since it is possible that the horizon area is not monoton-
ically decreasing. In fact, for some initial conditions, (asymptotically flat) Kerr black holes lose
angular momentummuchmore rapidly thanmass, resulting in their horizon area initially increasing
as they evaporate [76].
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Proposition 2 The value of the radial coordinate at the event horizon, rh(t), is a
monotonically decreasing function of time.

Proof The defining equation of the event horizon is, from Eq. (5.3),

0 = r2h
L2

− 2M

πK 2rh
+ Q2

4π3K 4r2h
. (5.42)

Taking the derivative with respect to t , we obtain

0 =
(
2rh
L2

+ 2M

πK 2r2h
− Q2

2π3K 4r3h

)
drh
dt

− 2

πK 2rh

dM

dt
+ Q

2π3K 4r2h

dQ

dt
. (5.43)

The expression in the brackets is just 4π/� times the Hawking temperature, and so

4πT

�

drh
dt

= 2

πK 2rh

dM

dt
− Q

2π3K 4r2h

dQ

dt
. (5.44)

Upon substituting this into the mass loss equation, Eq. (5.33), we find that the dQ/dt
term cancels (of course drh/dt still implicitly depends on the charge loss rate via
T = T (M, Q)), and we are left with:

4πT

�

drh
dt

= −2aπL2T 4

rh
� 0, (5.45)

with equality attained only in the extremal case, at which T = 0.

�

Wemay describe the evolution of the generic horizon bymeans of a dimensionless
function γ(t), defined by

r3h (t) = γ(t)M(t)L2

πK 2
, (5.46)

where γ(t) ∈ [1/2, 2] is not necessarily monotonically decreasing. The case γ = 2
corresponds to a neutral black hole, while γ = 1/2 describes an extremal black
hole. Note that, due to the competition between γ(t) and M(t), we cannot decide, by
appealing to the monotonicity of rh alone, whether the black hole will evolve toward
the extremal limit or toward the zero-mass limit. (In principle, one can solve for rh
explicitly from the metric, but the expression is too complicated to be of practical
use for analytic calculations.)

From the expression for the Hawking temperature in Eq. (5.34), we can now
compute its time derivative:

dT

dt
= �

[(
1

πL2
+ M

π2K 2r3h

)
drh
dt

− 1

2π2K 2r2h

dM

dt

]
, (5.47)
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where
drh
dt

= 1

3
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)− 2
3
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dM
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πK 2
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)
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We can now compute the specific heat. First we note that the expression

1

3

(
1
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π2K 2r3h

)(
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πK 2

)− 2
3 γL2

πK 2
− 1

2π2K 2r2h
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can be simplified to

[
1

3
(1 + γ) − 1

2

] (
γπ2K L2M

)−2/3
. (5.50)

Since γ ∈ [1/2, 2], this expression is always positive except for the extremal case in
which the expression is identically zero. Thus
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3
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3
dγ
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, (5.51)

in which the first term is negative, due to the fact that dM/dt < 0. Now,
sgn(C) = −sgn(dT/dt). The specific heat is therefore positive only if the contribu-
tion from dγ/dt term never becomes too positive. Thus, indeed we cannot conclude
that the black hole always has positive specific heat a priori. Nevertheless, our numer-
ical results, for example, the left plot of Fig. 5.2, do suggest that dT/dt is always
negative, and thus that the specific heat is always positive for evaporating charged flat
black holes. In fact, the numerical results suggest that γ(t), far from becoming too
large, is in fact monotonically decreasing. (On the other hand, for some asymptot-
ically flat Reissner–Nordström black holes, γ(t) does eventually change sign.) See
the right plot of Fig. 5.2. We remark that the same result holds in the planar case.

Although, as we mentioned, on physical grounds we should not hold the charge
fixed when calculating the specific heat, it is nevertheless, instructive to do precisely
this. For, in the large mass limit, HW recover the classic result of Davies [104]: by
holding the charge fixed, one finds that sufficiently highly charged asymptotically
flat Reissner–Nordström black holes have positive specific heat. In other words, the
Q = const. case allows us to probe certain limits of the parameter space. In fact, our
numerical results in the next section show that charged flat black holes do maintain
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Fig. 5.2 Left The temperature (units of centimeters) as a function of time, of a charged toral black
hole with K = 1, and initial condition M(0) = 5.6 × 1020 cm, Q(0) = 1.7 × 109 cm. The initial
temperature is evaluated to be about 4.42 × 10−80 cm. Right The (dimensionless) function γ(t) of
the same black hole is monotonically decreasing. Note that γ(0) is extremely close (since the black
hole is initially very close to the extremal limit), but not exactly equal, to 2

Q ≈ const. along their evolutionary history, contrary to asymptotically flat spacetime
intuitions.15

For Q = const., from Eq. (5.44), we have

drh
dt

= �

2π2T K 2rh

dM

dt
. (5.52)

Substituting this expression into Eq. (5.47) and simplifying, we obtain

dT

dt
= �

[
3

2γ(t) − 1

]
1

2π2K 2r2h

dM

dt
. (5.53)

Since γ(t) ∈ [1/2, 2], and dM/dt < 0, we see that dT/dt is always negative and
diverges to −∞ as extremality is approached. Consequently, the specific heat is
always positive (and tends to zero in the extremal limit) if we hold the electric charge
fixed. The results can be appreciated from the plot of temperature as a function of
M and Q, as depicted in Fig. 5.3. First recall that holding charge fixed means that

dT

dt
= ∂T

∂M

dM

dt
, (5.54)

15We will take this for granted for now, in order not to disrupt the flow of the main argument in this
section. We will come back to address this question in Sect. (5.5).
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Fig. 5.3 Left The temperature as a function of mass and charge for an asymptotically flat Reissner–
Nordströmblack hole.Right The temperature as a function ofmass and charge for anAdS-Reissner–
Nordström black hole with toral topology and K = 1

so sgn(C) = sgn(∂T/∂M). For asymptotically flat Reissner–Nordströmblack holes,
there are regions in the parameter space (where the charge is sufficiently large) in
which ∂T/∂M does become positive. However, charged flat black holes do not
behave in that manner — ∂T/∂M is always positive.

In the case of AdS black holes with spherical topology, Hawking and Page showed
that cold black holes are not stable—they undergo a phase transition into thermal
AdS [81]. For neutral toral black holes, it is known that a similar phase transition
exists for cold black holes; however, the preferred state is not thermal AdS but a type
of “soliton” [82, 83]. The generalization to the charged case was considered in [68],
where the critical temperature below which the soliton configuration is thermody-
namically preferred is found to be governed by the compactification parameter K
(see Chap.3 for a more detailed discussion):

Tc = �

2πK L
. (5.55)

As with many properties of toral black hole spacetimes, this critical temperature has
the property that, for any fixed K , it only depends on the AdS length scale L , and is
independent of the mass and charge of the black hole.

If the black hole is to exist, then, it cannot be too cold. Specifically, its Hawking
temperature must satisfy T � Tc. Explicitly,

�

[
rh

πL2
− 2M

4π2K 2r2h

]
� �

2πK L
. (5.56)

http://dx.doi.org/10.1007/978-3-662-48270-4_3
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With the horizon parametrized by γ(t), this yields a lower bound on the black hole
mass

M(t) � 8πLγ(t)2

K (4γ(t) − 2)3
=: Mc(t), (5.57)

where we have expressed the time dependence explicitly.
However, note that Mc is unbounded above as the black hole tends to extremality,

that is, as γ → 1/2. Thus we see that, even if one starts with a black hole with
arbitrarily large mass, if the black hole evolves toward the extremal limit, then the
black hole mass (which is monotonically decreasing)will eventually drop below Mc.

This means that, if the phase transition temperature is not zero, then the black
hole will be destroyed by a phase transition (at some very low temperature) in a finite
time. This time will be very long by normal standards, especially for black holes with
large values of the compactification parameter K . However, theBekenstein–Hawking
entropy of these black holes is also very large (being related to K 2), and this means,
if the Harlow–Hayden conjecture (to the effect that the decoding time is exponential
in the entropy) is correct, that the decoding time in this case is even more enormous.
In every case, then, the black hole suffers a phase transition in a time which is utterly
negligible relative to the decoding time.

There is, however, a crucial exception to this statement: the case of planar black
holes, with non-compact event horizons. For these black holes—which are in fact
the most important ones in applications—there is no phase transition, as one sees
from Eq. (5.55). Thus we still have a very important class of flat black holes which
apparently have arbitrarily long lifetimes. This loopholemust be closed, for otherwise
we would arrive at the bizarre conclusion that the HH argument can only be made to
work if the event horizon is compactified. We now proceed to do that.

5.4 Fatal Attraction Toward Extremality

Mother tells me, the immortal goddess Thetis with her glistening feet, that two fates bear
me on to the day of death.

–Homer, “Iliad”

As mentioned in Sect. 1, what we need to complete the argument is to show that, in
addition to phase transitions, highly charged flat black holes are vulnerable to the
brane pair-production instability discovered by Seiberg and Witten [89]. This effect
destabilizes a four-dimensional flat black hole when the electric charge is around
92% of the extremal charge, and it does so both in the toral and in the planar cases.

Since the extremal charge is Qext = (108π5M4L2K 4)1/6, it is convenient to define

w[M] := (108π5L2K 4)1/6

M1/3
, (5.58)
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so that the normalized charge-to-mass ratio satisfies

Q̃

M
:= Q

wM
∈ [0, 1]. (5.59)

That is, the extremal case has Q̃/M = 1.
The evolutionary history of charged evaporatingflat blackholes is easy to describe.

Our numerical evidence indicates that, independent of the initial conditions, they all
evolve toward extremality, i.e., the extremal limit is an attractor. This is because,
as shown in Fig. 5.4, the charge Q remains almost constant, while the mass of the
black hole monotonically decreases. An example is provided in Fig. 5.5, in which
the initial (Q̃/M)2 ratio is tiny: 1.95 × 10−21; yet the black hole evolves to be
nearly extremal. (Here, and henceforth, “approaching extremality” is conveniently
defined as “reaching (Q̃/M)2 = 0.9”.) This takes about 4×1098 years, and it seems

Fig. 5.4 The evolution ofmass and charge of a toral black hole with K = 1,M(0) = 5.6×1020 cm,
and initial charge 1.7× 109 cm. Note that we are allowed to have Q > M since the extremal black
hole satisfies Q = wM instead of Q = M . The charge Q is not strictly constant, but drops by an
amount too small to be noticeable at this scale
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Fig. 5.5 Left The square of the normalized charge-to-mass ratio as a function of time of a charged
toral black hole with K = 1, and initial condition M(0) = 5.6 × 1020 cm, Q(0) = 1.7 × 109 cm.
Right The square of the normalized charge-to-mass ratio as a function of mass of the same black
hole

Fig. 5.6 The
Bekenstein–Hawking
entropy S, as a function of
time, of a charged toral black
hole with K = 1, and initial
conditions
M(0) = 5.6 × 1020 cm,
Q(0) = 1.7 × 109 cm.
Entropy, S = A/(4�) is a
dimensionless number in our
units, since � is an area

extremely likely that the time required to actually reach extremality is infinite.16 At
this point, the (Bekenstein–Hawking) entropy is still extremely large (see Fig. 5.6.),
of the order 1090 in these units. The decoding time according to HH is exponential
in numbers of this order, but it is still finite. This is our problem.

16Note that even if the black hole did become extremal in finite time, we would still have the same
problem—its lifetime still appears to be infinite.
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Fig. 5.7 The effect of varying the compactification parameter K on the evolution of the normalized
charge-to-mass ratio of a toral black hole, with initial mass and initial charge fixed to be 5.6 ×
1020 cm and 3.0 × 1019 cm, respectively. From top to bottom, the curves correspond to K =
0.7, 1, 2, 4, 6, 10, 15 and 20, respectively

The principal effect of varying the parameters is simply to modify the timescale
of the attractor. For example, a toral black hole with K = 1, M(0) = 5.6× 1020 cm
and Q(0) = 34.9×1018 cm, that is, (Q̃/M)2 = 0.82 initially, takes about 1094 years
to come close to (Q̃/M)2 ≈ 1, while a black hole of the same mass, but with much
lower charge, as shown in Fig. 5.5, takes about 1098 years. For the same initial mass
and initial charge, increasing the values of K lengthens the time required to approach
extremality. This is shown in Fig. 5.7. This is due to the fact that—see Eqs. (5.58) and
(5.59)—the initial (normalized) charge-to-mass ratio depends on the choice of the
compactification parameter K . On the other hand, increasing the value of L extends
the time it takes to approach extremality. For example, with the initial conditions
(M(0) = 5.6 × 1020 cm, Q(0) = 1.7 × 109 cm), a charged toral black hole with
K = 1, L = 1015 cm takes about 4 × 1098 years to approach extremality, but, if we
increase the value of L to 1030 cm, the black hole now takes 10151 years to approach
extremality; the timescale becomes 3×1083 years if one decreases L to 5×1010 cm.

Of course, starting with a lower value of the initial charge for a fixed initial mass
also lengthens the time it takes to approach extremality. An extreme example is
shown in the left plot of Fig. 5.8, in which we still keep the initial mass as M(0) =
5.6 × 1020 cm, but set Q(0) = 6 × 10−34 cm for a toral black hole with K = 1.
The black hole takes, as expected, a much longer time—10120 years—to approach
extremality.

The results discussed above also hold for planar black holes—one example is
provided in the right plot of Fig. 5.8. Thus we see that all toral and planar electrically
charged AdS black holes are, as they evaporate, driven toward (and come arbitrarily
close to) extremality, on time scales which are short relative to the decoding time.
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Fig. 5.8 Left The square of the normalized charge-to-mass ratio of a toral black hole with K = 1,
initial mass M(0) = 5.6 × 1020 cm, and initial charge Q(0) = 6 × 10−34 cm. Right The square
of the normalized charge-to-mass ratio of a planar black hole with M∗ = 5.6 × 1030 cm and
Q∗ = 1.7 × 109 cm

Of course, this statement does not apply to flat black holes which are exactly
electrically neutral. However, from our point of view here, such black holes should
be considered unstable. If the black hole should acquire any amount of charge,
no matter how small, it will be swept away toward extremality by the evaporation
process. Thus, physically, one should not regard this special case as an exception17.

In short, then, a generic black hole with a flat event horizon will get steadily
colder. One might think that planar black holes, which are immune to the Hawking–
Page transition discussed earlier, are therefore less at risk of being destroyed as time
passes. That is not correct, as we now explain.

As the charge on any black hole increases, the geometry of the ambient spacetime
changes. It follows that the geometry of any extended object in that ambient space is
also affected. This is directly relevant to theAdS/CFT correspondence, because string
theory in the AdS bulk does, of course, entail the existence of extended objects—
branes. In particular, the action of a BPS brane depends on its area and its volume,
and Seiberg and Witten [89] showed that it is possible for modifications of the bulk
geometry to distort the brane geometry in such a way that the consequent changes
to the areas and volumes cause the brane action to become negative. The resulting
instability is a generalization of the black hole “fragmentation” effect on which HH
hope to rely upon. The work of Seiberg andWitten allows us to be more explicit than
was possible in [28].

Seiberg and Witten stressed that the situation is particularly delicate when the
boundary geometry is (scalar-)flat—which is precisely the case here. In [68, 92]
it was shown that electrically neutral AdS black holes with flat event horizons are

17It takes only a time of order L3 for an arbitrarily large neutral AdS black hole to shrink to a mass
M = L , regardless of its horizon topology [105, 106].
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Fig. 5.9 The square of the normalized charge-to-mass ratio as a function of temperature for a
charged toral black hole with K = 1, and initial conditions (M(0) = 5.6 × 1020 cm, Q(0) =
3.0 × 109 cm) (left), and (M(0) = 5.6 × 1020 cm, Q(0) = 6 × 10−34 cm) (right), respectively.
Dotted lines indicate the critical temperature below which the black holes undergo phase transition
into solitons; this, for K = 1, is Tc = 4.16 × 10−82 cm. The dot-dash lines indicate the threshold
beyond which black holes become unstable due to the Seiberg–Witten effect. In this case, both
black holes reach the dot-dash line first

stable in this sense, and in fact this remains true for most values of the electric charge
below the extremal value. However, when the electric charge becomes sufficiently
large but still sub-extremal, the distortion of the branes does become large enough to
trigger the instability. In four dimensions, this happens when the charge parameter
is around 0.916 times the extremal value.18

Combining this with our findings in this work, we see that, as these black holes
evaporate, they inevitably (unless they are destroyed in some other way first) come
sufficiently close to extremality to trigger the Seiberg–Witten effect, and this happens
in a time which is very short relative to the decoding time. That is, the black hole
ceases to exist before its Hawking radiation can be decoded.

In the planar case, this is the only effect we need to consider, since there is no phase
transition. In the toral case, however, it is possible for the hole to undergo a phase
transition before the Seiberg–Witten instability arises or vice versa. The question
as to which effect actually destroys the hole can only be answered by considering
each case in detail. One way to investigate this is to plot the normalized charge-
to-mass ratio against the temperature, and see whether the black hole first reaches
(Q̃/M)2 ≈ 0.84 or Tc. In other words, the ultimate fate of a given black hole depends
on the competition between the fall in temperature and the rise in the normalized

18In the case of an (n + 2)-dimensional black hole, the instability is triggered when the electric

charge exceeds

√√√√ n−1
n+1

[
n

n−1

] 2n
n+1

× Qext. See [92] for detailed discussions.
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Fig. 5.10 The square of the normalized charge-to-mass ratio as a function of temperature of a
charged toral black hole with K = 10−4, and initial condition M(0) = 5.6 × 1020 cm, Q(0) =
6×10−34 cm. The dot-dash line indicates the threshold beyond which black holes become unstable
due to the Seiberg–Witten effect. The dotted line indicates the critical temperature below which
black holes undergo phase transition into a soliton; which is Tc = 4.16× 10−78 cm for K = 10−4.
In this example, the black hole reaches the dotted line first

charge-to-mass ratio. Two examples are provided in Fig. 5.9, both of which describe
black holes which are destroyed by the Seiberg–Witten effect.

Since Tc is controlled by K , we see that, for lower values of K , the black hole tends
to be destroyed by a phase transition into a soliton, instead of by the Seiberg–Witten
instability: see, for example, Fig. 5.10, with M(0) = 5.6 × 1020 cm, Q(0) = 6 ×
10−34 cm. These are the same initial conditions as in the right plot of Fig. 5.9, except
that K is now 10−4. The black hole now reaches the phase transition temperature
first, before Q2/w2M2 falls below 0.84. On the other hand, for larger values of K ,
black holes tend to be destroyed by the Seiberg–Witten instability rather than a phase
transition.

This, in fact, gives a holographic version of the QCD phase diagram (Fig. 5.1), as
shown in Fig. 5.11.
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Fig. 5.11 QCD phase diagram obtained using holography, if we identify the Horowitz–Myers
soliton as corresponding to the hadronic phase in Fig. 5.1. The Hawking–Page phase transition
is dominant at low chemical potential μ, whereas at higher values of the chemical potential, the
Seiberg–Witten instability is more important. In fact, the line in the diagram due to Seiberg–Witten
instability is linear in μ. See [107], from which this diagram is adapted

5.5 Charge Loss (or the Lack Thereof) for AdS Black Holes

The purpose of computing is insight, not numbers.

–Richard Hamming

The analysis in the preceding sections of this chapter, which was published in [1],
shows that given very generic initial conditions within the regime of validity of the
model (AdS length scale L 	 108 cm), we can see that while mass loss is quite
evident, electric charge seems to be held constant throughout the evaporation history
(see Fig. 5.4). This is of course not the case (since the differential equations do not
hold charge to be fixed); the charge is lost, but at a rate too slow to be noticeable at
the scale of the plot. The reason that charged flat black holes always evolve toward
extremality is simple—charge loss is inefficient.

This raises an interesting question: why do charged flat black holes behave so
much differently than their asymptotically flat counterparts?19 This puzzle is even
more pronounced if one considers the fact that the work in [1] concerns black hole
spacetimes with large AdS length scale L 	 108 cm, i.e., small cosmological

19The fact that the Schwinger process in AdS is less efficient than in asymptotically flat space has
been observed before in the literature [108–110]. Intuitively, a positive cosmological constant, e.g.,
in de Sitter cosmology, helps to push particle pairs apart as space expands and thus enhances the
Schwinger effect, whereas a negative cosmological constant suppresses the Schwinger effect.
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constant � = −3/L2 < 0, and it does not seem obvious why an asymptotically
flat spacetime with � = 0 allows charge loss to be so much more effective (though
itself not very effective, as we already seen in Chap.4.) than an asymptotically AdS
one with |�| ≈ 0. We now clarify the underlying physics of the apparent lack of
charge loss for these black holes. The following analysis was published in [111].

Let us first explain why the � ≈ 0 case is so different from � = 0. The answer is
this: Asymptotically flat Reissner–Nordström spacetime is not the limit of charged
flat black holes as we take L → ∞, as one can check from the metric tensors
explicitly. In the toral case this is even more obvious since spacetime is foliated by
2-tori instead of 2-spheres, and one cannot take a limit to pass from one topology
to another. In other words, despite the fact that pair production by the Schwinger
process can be said to be local (in the sense that particles are produced near the
field-emitting body), one should not expect that the results from an asymptotically
flat spacetime to also hold in an asymptotically locally AdS spacetime.

Of course, one would expect that the L → ∞ limit for an asymptotically AdS
charged black hole with spherical topology to correctly recover the behavior of the
asymptotically flat case, which also has spherical topology. Such a black hole has
metric of the form (switching back to the Gaussian unit for electrical charge, for
easier comparison with the asymptotically flat case and HW’s analysis.)

g[AdSRN(k = 1)] = −
(
1 − 2M

r
+ Q2

r2
+ r2

L2

)
dt2 +

(
1 − 2M

r
+ Q2

r2
+ r2

L2

)−1

dr2

(5.60)

+ r2d�2,

where d�2 is the standard metric on the 2-sphere. The horizon of the black hole is
located at coordinate radius

rh = 108
1
6

6
L

2
3

[(√
2L2 + 27M2 +

√
27M2

) 1
3 −

(√
2L2 + 27M2 −

√
27M2

) 1
3

]
.

(5.61)
Given any mass M , the extremal charge is given by

Q2
ext = rh

2
(3M − rh). (5.62)

The normalized charge-to-mass ratio is then Q/(wM), where

w2 := rh
2M2

(3M − rh). (5.63)

The (unstable) photon orbit in this case does depend on M and Q, and takes the
form [112, 113]

http://dx.doi.org/10.1007/978-3-662-48270-4_4
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Fig. 5.12 Left The evolution of the (normalized) charge-to-mass ratio of anAdS charged black hole
with spherical topology, with initial conditionsM(0) = 7.35×1011 cm and Q(0) = 4.41×1011 cm.
Right The separate evolutions of mass and charge of the same black hole

rph = 3M

2

[
1 +

√
1 − 8Q2

9

]
, (5.64)

which reduces to the familiar rph = 3M value for the Schwarzschild black hole
when Q → 0. Note also that this expression is independent of L . The corresponding
impact parameter b can be calculated straightforwardly, although the expression is
complicated and yields no immediate insight to be included here.20 That expression
can then be substituted into the ODE system of HW, namely Eq. (5.7), with σ =
πb2. The numerical evidence does show the same behavior as an asymptotically flat
Reissner–Nordström black hole, as expected. Namely, for black holes which are not
highly charged, although their (normalized) charge-to-mass ratio increases at first,
that ratio eventually does turn over and tends toward the neutral limit (Fig. 5.12).

On the other hand, as expected, the (normalized) charge-to-mass ratio for highly
charged black holes simply decreases steadily. Charge loss and mass loss proceed
relatively rapidly at the beginning of the evolution (see the right plot of Fig. 5.13),
although by “normal” standards it takes quite some time as Fig. 5.14 shows.

Having explained why charged flat black holes are not expected to behave like
the asymptotically flat case even if L → ∞, we still have not explained why charge

20In the case of a neutral black hole, it is b2 = 27M2L2

27M2 + L2 , which reduces to the well-known value

27M2 for the Schwarzschild geometry when we take the L → ∞ limit.
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Fig. 5.13 Left The evolution of (normalized) charge-to-mass ratio of an AdS charged black hole
with spherical topology, with initial conditionsM(0) = 5.47×1011 cm and Q(0) = 5.462631533×
1011 cm. Right The separate evolutions of mass and charge of the same black hole

Fig. 5.14 The beginning phase of Fig. 5.13 enlarged, showing that the time scale spans across
O(106) years
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loss is so much more inefficient for charged flat black holes. To do this we have to
take a closer look at the ODE system

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

dM∗

dt
= −a

4
L2T 4 + Q∗

rh

dQ∗

dt
,

dQ∗

dt
≈ − e4

64π11/2�m2

Q∗3

r3h
exp

(
− 2π3/2m2r2h

�eQ∗

)
.

(5.65)

Again, let us consider an extremal black hole. As it turns out this already provides an
insight into the puzzle since, as we argued before in Chap.4 (in the asymptotically
flat case), thermal correction for non-extremal black holes only extends the discharge
time even more. The objective here is to show that for an extremal black hole, the
rate of charge loss is practically zero.

The exponential term in the Schwinger formula is

exp

(
−2π3/2m2r2h

�eQ∗
ext

)
. (5.66)

For a charged flat black hole, the extremal horizon is located at

rext =
(

ML2

2πK 2

) 1
3

= (
2πM∗L2

) 1
3 , (5.67)

and the extremal charge is given by Qext = (108π5M4L2K 4)1/6, or equivalently,
Q∗

ext = 2−1/3
√
3L1/3M∗2/3π13/3. Upon substituting this into Eq. (5.66), we find that

the M and K dependence both drop out of the exponential term, and the charge loss
formula now reads

dQ∗
ext

dt
≈ − AM∗

L
e−BL , (5.68)

where

A := 3
√
3

28
e4

�m2
≈ 2.4357 × 1039, (5.69)

and

B := 4√
3

m2π2

�e
≈ 4.5586 × 10−9 cm−1. (5.70)

Upon evaluating the numbers, one finds that say, if M ∼ L = 1015 cm, then

http://dx.doi.org/10.1007/978-3-662-48270-4_4
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dQ∗
ext

dt
∼ −O(10−1979725), (5.71)

which is completely negligible.
The only way for charge loss to become appreciable is to take the black hole mass

parameter M∗ to be extremely large. However, this is not feasible since in our model,
following Hiscock andWeems, we need the black hole to be cold, so that charge loss
can be effectively modeled by the Schwinger formula separately from thermal mass
loss. This imposes a constraint on the mass of the black hole. As we have discussed
in Sect. 5.2, for a neutral toral black hole with K = 1 and L = 1015 cm, we need
M < O(1097)cm. Charged black holes can of course tolerate a higher bound for
mass since their temperature is lower. Knowing a posteriori that the black holes
are destroyed when they reach about 92% of the extremal charge, we can give a
somewhat more general bound as follows.

The temperature of the black hole is

T = �

2π2K 2

[
1

r2h

(
3M − Q2

2π2K 2rh

)]
, (5.72)

in which the event horizon can be parametrized by a dimensionless function γ(t) ∈
[1/2, 2]:

rh =
(

γML2

πK 2

) 1
3

= (
4πγM∗L2

) 1
3 , (5.73)

where γ = 1/2 corresponds to an extremal black hole and γ = 2 to a neutral black
hole. At 92% of the extremal charge, we have Q/(wM) = 0.92, i.e.,

Q2

(108π5L2K 4)1/3M4/3
= 0.922. (5.74)

This allows us to rewrite the expression of the Hawking temperature in Eq. (5.72) as

T = �

2π2K 2

[
1

r2h

(
3M − 0.922 · 1081/3M

2γ1/3

)]
(5.75)

=
(

�
3M

2π4γ2L4K 2

) 1
3
[
3 − 0.922 · 1081/3

2γ1/3

]
. (5.76)

This can of course be expressed in terms of M∗ and Q∗, which would make sense
for the planar black hole as well.

Requiring that T < 2m yields a bound on M∗:

M∗ <
4π2γ2m3L4

�3

(
3 − 0.922 · 1081/3

2γ1/3

)−3

. (5.77)
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We see that this bound is quartic in L , and therefore has no hope to counteract the
effect of the suppression term which is exponential in L , for large L . Putting in num-
bers for definiteness by setting L = 1015 cm, and with 1/2 � γ � 2 taking some
value close to 1/2, we find that M∗ � O(1096). This amount—which is monoton-
ically decreasing—is then divided by L before being multiplied with 10−1979725,
which still yields an extremely small number.

Of course the rate dQ∗
ext/dt depends on L , and indeed upon substituting Eq. (5.77)

into Eq. (5.68), we find that |dQ∗
ext/dt| does become of order unity for around

L = Lc ∼ 1.5 × 1010 cm. One may thus worry that the black hole may discharge
appreciably for low L � Lc. However, recall that our model is only consistent with
L 	 108 cm (more precisely, L 	 3.4 × 108 cm), which as we recall, originated
from requiring that the Schwinger effect be sufficiently suppressed, and mathemati-
cally, from the requirement that the series approximation in Eq. (4.17) holds, which
requires x 	 1. The bound L � Lc corresponds to x � 10, which is consistent with
x 	 1. (The asymptotic series actually “converges” rather quickly as x increases,
and so one does not need to go to an even higher power to get a good approximation.)
In other words, the bound L 	 108 cm certainly should not be treated as L � 108

cm, but an order or two greater to obtain a good approximation. This is the reason the
value L = 1015 cm was used in the numerical work in [1], and also the reason why
we should not worry that L � Lc seems to lead to different physics—this just means
that the model already breaks down at that point,21 and a separate, careful treatment
is needed to model Hawking evaporation. Indeed, for small enough L (though of
course still much larger than the string length), we expect the charge loss to become
efficient. Nevertheless, mass loss is also more efficient at the same time. Therefore
it is not clear that the (normalized) charge-to-mass ratio will evolve differently. We
leave this detailed investigation for future work.

Let us now be more explicit in our claim that considering non-extremal black
holes does not help to increase the charge loss rate. The charge loss for a generic
charged hole is similar to Eq. (5.68), but instead of Q∗

ext = wM∗, we now have
Q∗ = δ × (wM∗) where δ ∈ [0, 1], with δ = 1 for an extremal hole and δ = 0 for a
neutral hole. In addition, the horizon is given by Eq. (5.73). Therefore one obtains

dQ∗

dt
≈ − AM∗

L

δ3

2γ
exp

(
− (2γ)2/3

δ
· BL

)
. (5.78)

Note that δ, M∗ and γ are all functions of t . We immediately observe that if δ is
small, which corresponds to the near-neutral regime, the exponential factor is near
unity, but the charge loss rate remains small due to the δ3 factor. In general, it suffices
to show that

δ3

2γ
exp

(
− (2γ)2/3

δ
· BL

)
� exp (−BL). (5.79)

21Indeed, a sign that the model breaks down for L � Lc is that numerical artifacts, e.g., apparent
spiking up of the charge, start to show up in that range.

http://dx.doi.org/10.1007/978-3-662-48270-4_4
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Although δ and γ are not independent (δ increases as γ decreases), it is clear that
with δ ∈ [0, 1] and γ ∈ [1/2, 1], we must have the upper bound δ3/γ � 2. Thus

δ3

2γ

(
e−BL

) (2γ)2/3

δ �
(
e−BL

) (2γ)2/3

δ � e−BL . (5.80)

The last inequality follows from

1 � (2γ)
2
3

δ
< ∞ (5.81)

and the fact that 0 < exp(−BL) � 1.
Thus, starting with the same initial mass, the initial charge loss rate for a non-

extremal black hole is indeed smaller than that of the extremal black hole. Since
mass is monotonically decreasing, the rate for charge loss remains low throughout
the evolution.

Therefore, we have the following result:

Proposition 3 For any initial mass in the regime of validity of the model,22 and
independent of both the compactification parameter K and the (normalized) charge-
to-mass ratio Q∗/(wM∗), the charge loss rate of a charged flat black hole, which is
given by the metric g(AdSRN[k=0]) in Eq. (5.3), is (practically) zero.

Thus, the reason why electrical charge stays almost constant is due to the fact that
we are dealing with a large AdS length scale L , and the fact that L appears in such
a way in the Schwinger formula as to conspire to suppress charge production by an
enormously large exponential factor. Note that this behavior is not present in the
asymptotically flat case, which, as we have seen in the previous section, discharges
in a “reasonably short” timescale.

We have explained why AdS-Reissner–Nordström black holes with flat horizon
(of either planar or toral topology) and large L practically have constant charge,
and thus as mass continues to evaporate away, the black holes inevitably evolve
toward the extremal limit, i.e., the extremal limit is an attractor. We also explained
why such behavior, which is completely different from asymptotically flat charged
black holes, is not inconsistent with the latter. Indeed, while setting L → ∞ in a
geometry that corresponds to an AdS-Reissner–Nordström black hole with horizon
having spherical topology does recover the same qualitative behavior found in the
asymptotically flat case, setting L → ∞ in a charged flat black hole spacetime does
not. The latter simply has different topology, and we cannot pass from one topology
to another by taking a limit.

22Itmust be emphasized that, for asymptoticallyflatReissner–Nordströmblackholes,HW’s analysis
eventually breaks down when the black hole mass drops below a certain level. In the case of charged
flat black holes however, the evolution always stays within the regime of validity, since the model
requires a large fixed L , not large M .
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Due to the charge loss rate dQ∗/dt remaining small throughout the evaporation of
charged flat black holes in the large L regime, they are all driven toward extremality
as they steadily lose mass. Eventually, when these black holes reach around 92% of
the extremal charge, brane–pair-production instability [89, 90] is triggered and they
are destroyed, as was argued in the previous section.

For the toral black holes, one subtlety that has not been taken into account in
our analysis thus far, is the discreteness of the Hawking radiation modes when the
periodicity of the torus is comparable to, or shorter than, the thermal wavelength
of the Hawking radiation. This is expected to affect the lifetime of the black hole
somewhat.23

5.6 Conclusion: Hawking Radiation Cannot be Decoded

Attempts to settle the question of the unitarity of black hole evolution are plagued by
uncertainties connected with quantum gravity. This prompts the question: what can
be said if we approach the problem while staying clear, as far as possible, of these
uncertainties?

The AdS/CFT correspondence permits a definition of a quantum-gravitational
system in terms of a well-understood field theory at infinity. That field theory is best
well understood when the boundary geometry is just flat spacetime. We, therefore,
argue that the most reliable context for discussing these issues is provided by AdS
blackholeswithflat event horizons, since these are dual to afield theory on aboundary
which is either locally or even globally flat. We have shown that these black holes
have the great virtue of evaporating toward extremality: that is, they become cold.
This does indeed allow us to avoid the uncertainties associated with extremely high
temperatures. We find that low temperatures tend to destroy such black holes, just as
their duality with the quark–gluon plasma would suggest.

The destruction takes a long time by normal standards, like the evaporation ofmost
black holes; but compared to the time required to “decode the Hawking radiation,”
it happens very quickly. In short, in the best understood cases, Hawking radiation
cannot be decoded, confirming the claim of Harlow and Hayden.

There remains one question: since we no longer have a horizon in the end, can’t
informationwait until then to be released,without relying on the late-timepurification
by Hawking radiation? This is a tricky question. In order to settle the final fate of the
information, one has to know precisely how the singularity is resolved in quantum
gravity. After all, the information can presumably go into whatever replaces the
singularity in the final theory. In this work, we are only concerned with whether—if
information is indeed encoded in the Hawking radiation—it can be decoded before
the black holes get destroyed.

23I thank Don Page for this comment.
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Chapter 6
Slaying Monsters: Do Hyper-Entropic
Objects Exist in Quantum Gravity?

The witch intended to close the oven door once Gretel had
climbed inside, for the witch wanted to bake her and eat her too.
But Gretel sensed what she had in mind and said,“I don’t know
how to do it. How do I get in?” [...] Then Gretel gave her a push
that sent her flying inside and shut the iron door and bolted it.

Hansel and Gretel, The Brothers Grimm

In this chapter, we discuss the interior of a black hole, and explain why the volume
of a black hole can be much larger than its area might suggest. We then investigate
a gravitational configuration known as a “monster”; which has an arbitrarily larger
entropy than the Bekenstein-Hawking entropy of a black hole of the samemass. Once
a monster collapses into a black hole, it would presumably also has an arbitrarily
large entropy. Such objects are problematic for holography, and we seek the reason
why they are unlikely to be allowed in quantum gravity. We also discuss the strong
form and the weak form interpretations of the Bekenstein-Hawking entropy.

6.1 The Large Volume of Black Holes

There’s more than meets the eye.

–Wystan H. Auden

The idea that the interior of a black hole can be arbitrarily large is an intriguing one.
This is in fact not a very far-fetched idea: it is certainly true for themaximally extended
Kruskal–Szekeres geometry—there is an asymptotically flat (infinitely large) uni-
verse on the “other side” of the black hole, connected by the Einstein-Rosen bridge.
This is, however, a highly idealized mathematical structure; what about a realistic
black hole formed by stellar collapse?
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164 6 Slaying Monsters: Do Hyper-Entropic Objects Exist in Quantum Gravity?

The Schwarzschild coordinates have (t, r) exchanging their space and time roles
beyond the event horizon,1 so that an infalling object has no choice but to move
toward the decreasing r direction, all the way to the singularity r = 0, which lies
in the future (This is obvious in the Penrose diagram, as shown in Fig. (2.3)). The
singularity is spacelike, and all infalling observers will hit it in a finite proper time.
In fact, since t ranges from the infinite past to the infinite future, naively it is possible
that spatial slices (constant r ) inside a black hole could be infinite. Discussing the
3-volume of a black hole is, however, rather problematic as it depends on the choice
of spatial slices (see [1] for some explicit examples). Therefore, no unique volume
can be prescribed to a black hole. To make things worse, the interior of a static black
hole is dynamical (which can be appreciated from the “(r − t)-flip”), so one should
not think of a black hole as a black box that bounds a certain amount of volume,
which can be estimated from knowing the size of its area.

Christodoulou and Rovelli [2] have recently shown that, while there is no unique
volume that can be prescribed to the interior of a black hole, one could still consider
the volume of the largest spacelike spherically symmetric surface bounded by the
event horizon of the black hole. Such a volume is a geometrical property that is
coordinate-independent. Christodoulou and Rovelli (hereinafter, CR) showed that
most of the volume contribution comes from a regionwhich is not causally connected
with matter that has fallen far into the black hole (see the work of Bengtsson and
Jakobsson [3] for an explicit and nice illustration of this fact, and their generalization
of the work of CR to the case of asymptotically flat Kerr black holes.)

For an asymptotically flat Schwarzschild black hole in 4 dimensions, most of the
CR-volume contribution is given by the integral [2, 3]

Vol. ∼
∫ v ∫

S2
max

[
r2

√
2M

r
− 1

]
sin θ dθdφdv, (6.1)

where v is the advanced time defined by

v := t +
∫

dr

f (r)
= t + r + 2M ln

∣∣∣ r

2M
− 1

∣∣∣; f (r) := 1 − 2M

r
. (6.2)

Following [3], the lower limit in the integral with respect to v has been omitted, since
this only contributes to a negligible finite value, whereas the integral is dominated by
its upper limit v. The coefficient of v can be maximized by maximizing the function

F(r) := r2
√
2M

r
− 1. (6.3)

Elementary calculus shows that r = 3M/2 maximizes F(r). This hypersurface is
the maximal spacelike slice in the interior of Schwarzschild geometry [4, 5]. Indeed,

1Of course, t and r are just coordinates—time does not actually switch into space in any physical
sense.

http://dx.doi.org/10.1007/978-3-662-48270-4_2


6.1 The Large Volume of Black Holes 165

most of the volume comes from the contribution of this constant r slice. (Note that
this slice is rather “close” to the event horizon r = 2M .) This leads to

Vol. ∼ 3
√
3πM2v. (6.4)

That is, the CR-volume grows asymptotically linearly in v. In other words, even
though a static black hole looks the same to the exterior observer no matter how
long one waits (this is a classical statement without taking into account Hawking
radiation), its interior grows larger with time. This is perhaps not so strange if one
recalls that, despite looking the same to the exterior observers, the event horizon is still
an outward-moving null surface. (What is somewhat surprising is that, the volume
is also monotonically increasing even if one includes Hawking evaporation [6].)

The estimate given by CR is that the supermassive black hole at the center of our
galaxy, Sagittarius A∗, contains sufficient space to fit a million solar systems, despite
its areal radius being only a factor of 10 or so larger than the Earth-Moon distance.
Taking into account the rotation of the black hole does not change this result by
much, despite the rotation rate of Sagittarius A∗ being about 90% of the extremal
limit. In other words, the CR-volume for asymptotically flat black holes seems to
be robust against rotational effects, as long as it stays below ∼99% of the extremal
limit [3].

Our flat space intuition is that the volume of a closed surface should be amonoton-
ically increasing function of its area. In other words, a smaller surface area means the
volume enclosed is also small. For example, the volume of a 2-sphere is proportional
to A3/2, where A is its surface area. The interior volume proposed by Christodoulou
and Rovelli does have such a property in the case of an asymptotically flat Schwarz-
schild black hole (there the volume is proportional to A (×v)). That the same remains
true in the case of asymptotically flat Kerr black holes can be seen in [3]—for a fixed
mass M , increasing the angular momentum J = aM would decrease the horizon
area 8πM(M + √

M2 − a2) and likewise its CR-volume also decreases. (However,
no such volume arises in the extremal case. The reason is that the region in which
the calculation is valid is not present in the extremal case. This of course does not
mean that there is no volume at all inside an extremal black hole, just not a “large”
volume.) The case for asymptotically flat Reissner–Nordström black hole is very
similar.

However, things get very intriguing in anti-de Sitter spacetimes [7]. If one per-
forms such analysis on topological black holes with toral and lens space event hori-
zons, one will find that the CR-volume of a black hole is not always a monotonically
increasing function of its horizon area. In the toral case, if the black hole is neu-
tral, then the CR-volume is independent of the compactification parameter. In other
words, for fixed black hole mass M and fixed AdS length scale L , the CR-volume
is independent of the size of the horizon area. The CR-volume for an AdS black
hole in 5-dimensional spacetime with lens space topology S3/Zp (“black lens”; see
Sect. 3.1) is even more remarkable—for any fixed M and L , it is monotonically
increasing with p and tends to a constant 8πM Lv/3 in the limit p → ∞, whereas in
the same limit the horizon area shrinks toward 0. Therefore, a smaller black hole can

http://dx.doi.org/10.1007/978-3-662-48270-4_3
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have a larger CR-volume than a bigger hole of the samemass. (We remind the readers
that this statement is not exact since the CR-volumes we calculated are asymptotic
expressions—they ignore the lower limit of the integral in, e.g., Eq. (6.1).)

Therefore, there appears to be no simple relation between the area of the event
horizon and theCR-volume.Nevertheless, the fact that black holes could be very large
from the inside while appearing very small from the outside, does suggest a means
of “information storage” as the black hole Hawking evaporates away (exactly what
“information storage” means is of course not at all clear). The usual objection against
black hole remnants as the final fate ofHawking evaporation is that, since the remnant
is of Planck size, while the initial conditions to form a black hole are arbitrarily large
(since a black hole has no/little hair), there must be an infinite number of remnant
species (of course, one does not really need an actual infinity, a sufficient large number
wouldbeproblematic too),which at the level of effectivefield theory should be treated
equally with the same production cross section (since their size is smaller than some
λ � l p, where l p denotes the Planck length, and λ the cutoff for the effective field
theory). Even if the production of each of these is suppressed exponentially, the
existence of infinitely many species yields a divergent pair-production rate, which
means that the vacuum is unstable with respect to remnant pair-production. The fact
that we do not see such events in real life means that remnants probably do not exist.
However, as pointed out in [8], this argument does not hold in the case of a massive
remnant with an arbitrarily large interior. (For more discussion about the infinite
production problem, see [9]).

First and foremost, it is doubtful that effective field theory is applicable on a
curved background in a consistent manner, since one needs to impose a cutoff scale
in effective field theory. On a curved background in which wavelengths can get
infinitely redshifted at the horizon, and blueshifted inside a black hole, such a cutoff
is very likely ill-defined. That is, long wavelength modes outside the remnant are
unlikely to be able to completely decouple from the degrees of freedom within the
remnant. Therefore, massive remnants cannot be treated as point particles which can
be created and annihilated and described by local field operators.2

With the interest of information storage inmind, it becomes an interesting question
as to whether quantum gravity permits the existence of objects with entropy higher
than that of a black hole (with the Bekenstein-Hawking entropy as the measure of
entropy). This is the question we would like to explore in this chapter.

Recall from Sect. 1.5 that the term “monsters” was coined by Hsu and Reeb [10,
11] to refer to pathological configurations that possess entropy greater than their area
in Planck units. Monsters in asymptotically flat spacetimes have finite ADM mass
and surface area, but potentially unbounded entropy. The idea for constructing such
configurations is not difficult: in flat space, given an area that bounds a volume, we
have good knowledge of the volume of the interior. In particular, as the area shrinks,

2Such an argument, however, does not seem to explain why remnants cannot be infinitely produced
via “instanton” tunneling. I thank Don Page for pointing this out to me during the molecule-
type workshop on “Black Hole Information Loss Paradox” at the Yukawa Institute for Theoretical
Physics, Kyoto University, in May 2015.

http://dx.doi.org/10.1007/978-3-662-48270-4_1
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so does the volume; this is however not necessarily true in curved spaces, since as
we have seen, one can have larger proper volume than expected from looking at
the surface area alone. The idea is not new, for example, Wheeler’s “bag-of-gold”
spacetime [12] (a closed FLRW universe glued across an Einstein-Rosen Bridge) is
such an example; see also the discussion in [13]. In other words, curved space can
hide large amounts of “stuff.”3 (However, a “bag-of-gold” geometry is unlikely to be
generic inside black holes, whereas the CR-volume we discussed earlier is generic,
without the need to artificially “glue” some bags via the Einstein-Rosen bridge.)

As it turns out, monsters are problematic for both the unitary evaporation of black
holes and the AdS/CFT correspondence.4 Since Einstein’s General Theory of Rela-
tivity allows for such solutions, if we wish to argue that monsters somehow cannot
arise, then the prevention mechanism must lie in the realm of quantum theory. We
will first briefly review the construction of a monster and recall why such patho-
logical configurations are problematic for the AdS/CFT correspondence, as well as
some ideas that have been proposed to banish monsters and their kin from quantum
gravity. We then investigate the stability of AdS monsters, and finally conclude with
a discussion about the various kin of these monsters, and puzzles regarding black
hole entropy. The work in this chapter was formally published in [15].

The main idea to keep in mind is as follows: In string theory, asymptotically
locally AdS geometry becomes unstable if the Seiberg–Witten brane action becomes
negative. If the negative action is not bounded below, then such a configuration is
inherently unstable, and if furthermore no finite operations can evolve said configu-
ration to a new onewith a nonnegative brane action, then this can be interpreted as the
full theory not admitting such a pathological configuration. Using such an argument,
we are able to slay some, but not all, monsters. This nevertheless means that in all
cases in which our method is applicable, monsters, even if they exist, cannot have
arbitrarily large entropy, i.e., the Seiberg–Witten instability naturally allows us to
bound the size of monsters. Unfortunately, with the Seiberg–Witten instability as the
only tool to investigate the existence of monsters, one finds that not all monsters and
their various kin can be addressed in this approach. In particular, our argument works
well only for the cases in which the region that holds large entropy is not behind a
black hole horizon—a den for monsters to hide and avoid being slain.

6.2 A Monster Is Born

I’m every nightmare you’ve ever had, I am your worst dream come true. I’m everything you
ever were afraid of!

–Pennywise the Clown, in “It” by Stephen King

3One cute application of such an idea is to hide a spacecraft inside a bag geometry, so as to minimize
the use of exotic matter when creating a faster-than-light bubble (“hyperdrive” of science fiction
stories) that surrounds the spacecraft [14].
4This is only true because monsters have arbitrarily large entropy, not because they have arbitrarily
large volumes—if the volumes do not contain much entropy there is no tension with holography.
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As detailed byHsu andReeb [10, 11], monster configurations are expected to quickly
undergo gravitational collapse to form a black hole. Consider, for example, spher-
ically symmetric initial data on a Cauchy slice �0 at a moment of time symmetry,
which is not yet a black hole, i.e., there is no marginally trapped surface. Mathemat-
ically, an “instant of time” is described by a spacelike hypersurface �, which is a
Riemannian manifold with metric h. The initial data must satisfy the initial value
constraints determined by Einstein’s contraint equations (See, e.g., Chap. 10 of [16])

{
Di

(
Ki j − K 1

l hi j
) = −8πJ j , (6.5a)

R(h) + (K i
i )
2 − Ki j K i j j = 16πρ, (6.5b)

where D is the covariant derivative operator in �, R(h) is the scalar curvature of �

defined by hi j , Ki j the components of the extrinsic curvature of �, ρ is the value
of the energy density of the matter fields on � as measured by observers whose
worldlines are perpendicular to �, and finally J j is the projection onto � of the
four-dimensional energy–momentum flux vector seen by the observers. By “�0 is
at a moment of time symmetry” one means that the extrinsic curvature, Ki j , of the
hypersurface representing that instant of time vanishes. By Eq. (6.5), this implies that
J j must be zero, and thus the four-dimensional energy–momentum flux vector must
be orthogonal to the initial hypersurface �0, hence “symmetric” with respect to �0.

The spherical symmetric configuration has spatial metric

ds2
∣∣
�0

= grrdr2 + r2d�2, (6.6)

where d�2 is the standard metric on a 2-sphere. Since the configuration is not yet a
black hole, the full spacetime metric takes the form

ds2 = −gt tdt2 + grrdr2 + r2d�2, (6.7)

where gt t andgrr are not necessarily static, that is, they canbe functions of t in addition
to r . Typically, one considers a “star” of a certain fluid with some kind of density
profile ρ such that gt t and grr take the same form as the black hole metric exterior to
the star, however, it is important to note that unlike black holes, gt tgrr �= −1 in the
case of a fluid [17]. For the asymptotically flat case, it is well known that Einstein’s
field equations determine

g −1
rr = 1 − 2M(r)

r
, (6.8)

where

M(r) = 4π
∫ r

0
r ′2ρ(r ′) dr ′ (6.9)

is the “energy within radius r .” Note that ρ(r) = ρ(r, t0) is the proper energy density
as seen by a stationary observer at r on the initial time slice t = t0.
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Note that the “mass” M(r) is defined via integrating over the flat space volume
form r2 sin θ dr ∧ dθ ∧ dφ, so it is not the proper mass. The latter is defined by

Mp(r) = 4π
∫ r

0
r ′2√grrρ(r ′) dr ′. (6.10)

From the Schwarzschild solution (valid as the exterior solution), we know that M =
limr→∞ M(r) is the ADM mass, which can be interpreted as the total energy of the
spacetime, including the gravitational energy. However, ρ(r) is the density profile
of the star and this does not include gravitational energy. The difference between
M and Mp is precisely the negative gravitational binding energy. Monsters can thus
be viewed as configurations whose otherwise huge mass is canceled by the negative
gravitational binding energy. In Maxwell’s electromagnetism, one could hide the
details about the charge configurations by placing said charges inside a conductor.
However, such a shielding effect does not have a counterpart in gravity because there
is no “negative mass” which is analogous to the negative charge; there is, however,
negative binding energy.

A recent theorem [18] states that

Theorem (Corvino, 2000): Let g be any smooth, asymptotically flat and scalar-flat
metric on R

n , such that the geometry is conformally flat at infinity, with positive
ADM mass M . Given any compact set K, there exists a smooth scalar-flat metric
on R

n which is asymptotically Schwarzschild and agrees with the original metric
g inside K.

In other words, startingwith anymetric tensor satisfying the technical assumptions of
the theorem, one can cut a ball out of themanifold and replace the exterior regionwith
that of the Schwarzschild geometry; the details of the gravitational configurations
inside the ball are essentially inaccessible to asymptotic observers. (A generalization
to Kerr geometry has also been made [19].)

The same story about monsters holds in asymptotically anti-de Sitter spacetimes,
but now

g −1
rr = 1 − 2M(r)

r
+ r2

L2
, (6.11)

where L is the length scale associatedwith the cosmological constant by� = −3/L2

[20]. It is convenient to denote
ε(r) = g −1

rr . (6.12)

Denote the largest positive root of grr (r) = 0 by rh. Hsu and Reeb [10] gave two
examples of monster configurations in asymptotically flat spacetime: the “blob”
and the “shell.” The blob refers to an object with a core of radius r0 and mass M0

surrounded by a region with a density profile of the form

ρ(r) = ρ0

(r0
r

)2
(6.13)
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within the range r0 < r < R. In the units 8πρ0r20 = 1, we have

ε(r) = ε0

(r0
r

)
, (6.14)

where ε0 = 1− 2M0/r0. Hsu and Reeb showed that the entropy of the blob monster
is

S ∼ ρ
3
4 r0√
ε0

R2. (6.15)

The entropy can thus be arbitrarily large by taking ε0 arbitrarily small. Furthermore,
we can obtain faster than area scaling by taking ε(r) to approach zero faster than
1/r . More generally [11], one can consider a profile of the power-law type:

ε(r) = ε0

(r0
r

)γ

, γ > 0. (6.16)

The shell monster, on the other hand, is constructed from a thin shell of material with
R < r < R + d such that the mass function is

M(r) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

R1(r − R0)(1 − ε(r))

2(R1 − R0)
, if R0 < r < R1,

r(1 − ε0)

2
, if R1 < r < R1 + d = R.

(6.17)

Here the function ε(r) decreases rapidly to some ε0 between R0 < r < R1, and is
constant ε(r) = ε0 for R1 < r < R. Again, by choosing arbitrarily small ε0, the
entropy in the region R1 < r < R can be made arbitrarily large.

The major problem posed by monsters and their kin is the following: monsters
are believed to inevitably evolve into black holes [10, 11] (although we will later
argue against this, at least in the case of some monsters in anti-de Sitter spacetime);
however, by construction the entropy on the initial Cauchy slice can be arbitrarily
larger than the Bekenstein-Hawking entropy of the eventual black hole, where the
latter is determined by the area of the event horizon according toBekenstein-Hawking
formula S = A/(4�). As the black hole evaporates, the entropy released is only at
the order of M2. Assuming the usual scenario in which the black hole completely
evaporates, in order to preserve unitarity one would need to remove monsters with
S � A/� from the associated Hilbert space. In the case where one considers a
black hole remnant instead of complete evaporation, as long as the end state is not a
remnant that locks up an enormous amount of entropy (see, e.g., [21] in which the
entropy of the black hole remnant remains small), the same puzzle remains (this of
course depends on howone interprets theBekenstein-Hawking entropy.We leave this
issue for later discussion). Likewise, in the context of the AdS/CFT correspondence,
monsters are problematic because on the gravity side we have an enormous amount
of entropy but there is far from enough degrees of freedom on the field theory side
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to describe such a configuration. Thus, as pointed out already in [10], monsters with
sufficiently high entropy are semiclassical configurations with no corresponding
microstates in a quantum theory of gravity. In view of increased evidence in support
for the AdS/CFT correspondence, it is desirable to understand the nature of monster
spacetimes in this context. We, therefore, focus our attention to the fate of monsters
in AdS, since gravity in the bulk may be considerably modified at the semiclassical
level by the existence of extended objects such as D-branes.

We remark that it has been argued that the current known laws of physics prevent
the creation of monster configurations even by arbitrarily advanced civilizations [10,
13]. Likewise, at the classical level no mechanism is known to create a bag-of-gold
spacetime from an empty AdS space by acting with boundary observables [22].
However, there seems to be no obvious reasons monsters and their kin cannot be
created via some quantum tunneling processes [10, 11, 22].

There are at least two ways out of this puzzle:

(1) There might exist a “superselection rule” [23] that prevents the formation of
monsters and their kin from quantum tunneling processes. However, there is no
obvious reason why this should be the case. Marolf suggested in the context of
bag-of-gold spacetime in AdS that since such a spacetime inevitably contains a
past singularity, there is no obvious way to construct a bag-of-gold spacetime by
simply manipulating perturbative excitations near the AdS boundary, and this
could be a hint that bag-of-gold spacetimes lie in a different superselection sector
of the theory [22] . This is also true for monsters: They evolve into black holes,
but their time-reversed evolution also leads to black hole formation, that is, in
the time-forward sense, monsters emerge out of a white hole singularity in the
past [10, 11]. This is due to the fact that by construction the initial data set is
time symmetric.

(2) A full theory of quantum gravity might not permit monsters and their kin to
exist. For example, Hsu and Reeb [24] showed that, assuming unitarity, no rem-
nants, and no topology change, there must exist a one-to-one correspondence
between the states on future null and timelike infinity and any earlier spacelike
Cauchy surface. Consequently, a large set of semiclassical spacetime config-
urations including the monsters and bag-of-gold spacetime are excluded from
the Hilbert space of quantum gravity. Presumably, if the end state of black hole
evaporation is a remnant, but one which does not lock up a very high entropy,
it is conceivable that pathological configurations with sufficiently high entropy
would still be excluded from the Hilbert space.

In support of the claim that monsters simply do not exist in quantum gravity, we
will argue via the Seiberg–Witten instability that configurations with a finite area
bounding a sufficiently large volume is not acceptable in string theory. This idea has
been previously pointed out by Brett McInnes [25] in the context of “Bubble de Sitter
with Casimir effect” spacetime, which has precisely the aforementioned property
that finite area bounds a large volume at a sufficiently large value of proper time. In
this work we will emphasize this idea again, and explicitly show that, in particular,
shell monsters are completely unstable in string theory (the case for blob monster
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is similar). Furthermore, as pointed out also in [25], many concrete examples of
Seiberg–Witten instabilities are induced by a violation of the Null Energy Condition
(NEC). See also [26] for a general discussion about how a violation of NEC implies
instability in a broad class of physical models. We will prove that the shell monsters
indeed also violate the NEC. Nevertheless, we will point out how this does not rule
out all monsters.

6.3 Monsters in String Theory

General relativity is the cornerstone of cosmology and astrophysics. It has also provided the
conceptual basis for string theory and other attempts to unify all the forces of nature in terms
of geometrical structures.

–Paul Davies

Our plan is to show that monsters are unstable objects in the Seiberg–Witten sense.
However, it is crucial to note that merely being unstable is not good enough to rule
out monsters. After all, physical states which are unstable usually do not exhibit
truly runaway behavior. As we have argued, the brane–anti-brane pairs will soon
occupy the surrounding black hole environment due to the exponential rate of pair-
production. This will likely alter the boundary conditions of the original action. As a
result, the exponential pair-production will stop. We can compare this with the more
familiar physical system of neutral hydrogen gas ionizing into plasma (which we
can think of as “pair-production” of electrons and protons) under an external E-field
between parallel plates. As the E-field reaches the atom’s ionization energy within
one Å, there will be an exponential avalanche. This will nevertheless be quickly
suppressed since the surrounding plasma would induce a negative E-field that will
counter the original E-field. In otherwords, a physical instability is often self-limiting
due to backreaction. We might therefore object that even if monsters are unstable
objects in string theory, they can still exist for at least a short amount of time before
evolving into other stable configurations (perhaps a black hole). This clearly does
not solve the problem since monster states are expected to evolve into black holes
in the first place, i.e., the problem persists since, however, brief the life span of a
monster is due to instability, we cannot account for that existence on the field theory
side of the AdS/CFT correspondence. Therefore, it is important to argue that not only
are monsters unstable, but also that they are completely unstable in the sense that no
backreaction can bring the configuration to any stable configuration, and therefore
monsters probably do not exist in the full theory of quantum gravity.

For example, if the geometry of a (Euclidean) locally hyperbolic spacetime is
such that its scalar curvature at the boundary is negative, and it is of a certain class
of topology, then using results from differential geometry, one can prove that no
matter how the branes deform the spacetime, the scalar curvature at infinity can
never become everywhere positive or zero [27]. At this stage, this suggests that we
can already eliminate an entire zoo of locally AdS monster spacetimes with negative
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scalar curvature at infinity. We nevertheless need to be careful since we need to
take into account the time scale for the instability to set in. We will come back to
this point shortly. One might also argue that an infinite reservoir of negative action
means that the action cannot be made everywhere positive by the pair-production of
finitely many brane–anti-brane pairs. This innocent-sounding reasoning, however, is
a nontrivial statement, since, as we shall explain, it is not true in general. Despite that,
as we will subsequently argue, such reasoning is still applicable for these monsters.

What if the brane action is only negative for some finite range of r , and so the
reservoir of negative action is finite? For such an action, the emitted branes and
antibranes can minimize the action by moving to this region (Note that most of the
brane–anti-brane pairs are actually created in such a region in the first place due
to the exponential enhancement in pair-production rate, and by causality if nothing
else) instead of collapsing to zero size under their own tension. Nevertheless the
action can only be reduced by a finite amount in this case. This leads Maldacena
and Maoz [28] to suspect that there should be “nearby” solutions that are stable.
In a more dynamical picture, the branes are produced in such a way that some of
the metric parameters of the black hole spacetime will eventually be brought down
below the threshold value that triggered the instability. However, when everything
has settled down to a stable configuration, it is no longer the original spacetime. It
has become a “nearby” solution in the sense of Maldacena and Maoz. Qualitatively
we will expect that the more “negative reservoir” the action has, the more unstable
it is, in the sense that “nearby” solutions may not even exist and so the spacetime
is completely unstable (and consequently is likely to not be a solution of the full
theory), although we do not yet have a quantitative treatment of this claim. We will
see that there exist, in fact, monsters of this class.

It was commented in [22] that

AdS/CFT appears to predict that such tunneling [to create a bag-of-gold spacetime] is not
possible and that understanding this prediction from the AdS gravity point of view remains
an important open problem.

We argue that the solution to the analogous problem regarding (at least some) mon-
sters lies in the Seiberg–Witten instability. The reason we specifically emphasize
monsters separately from the bag-of-gold spacetime will become clear later. Specif-
ically, we consider any spherically symmetric monster configuration with metric
given by Eq. (6.6), with gt t and grr attaining the functional form of their vacuum
black hole counterpart in the exterior spacetime. This is a “star” with an unusual
density profile. Since monsters are very close to being a black hole (ε ≈ 0) but still
not a black hole, r = rh does not represent a horizon but a surface inside the star.
For convenience, we denote f ≡ gt t and ε ≡ g −1

rr . Despite the fact that monsters are
unstable and therefore dynamical objects, we will take the metric to be static just to
study the qualitative behavior of monster spacetimes. Essentially, we are treating the
case in which the dynamical spacetime can be approximated by a sequence of static
spacetimes, i.e., quasi-static approximation.
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We can then compute the Seiberg–Witten brane action:

S ∝ r2 f
1
2 − 3

L

∫ r

rh

r ′2 (
f ε−1

) 1
2 dr ′, (6.18)

where we have omitted an overall positive multiplicative factor. It is already sugges-
tive at this point that the second term is going to dominate if ε is sufficiently small,
which then leads to a negative brane action. We must, however, be more careful and
explicit about the details. First of all, we remark that Eq. (6.18) is not exactly correct.
In the case of black holes, when we do a Wick-rotation to Euclidean field theory,
the black hole interior is removed, and thus it makes sense that the radial integral
in Eq. (6.18) starts from the horizon r = rh. For a spacetime without a horizon, like
our fluid star, strictly speaking the integral should start from r = 0. Nevertheless, in
writing Eq. (6.18), all we want is to do a fair comparison, since the only thing we can
compare between a star and a black hole of the same mass is their exterior geome-
tries. Here by “exterior” we mean outside of the event horizon, which for the star
lies in its interior (in the formal sense, since it is not a “real” horizon). Regardless,
the geometries outside the event horizons for both a star and a black hole are not too
different and thus can be compared. More crucially in our work below, the objective
is to show that the brane action can become negative, and since the inclusion of
the range (0, rh) only makes the action more negative, for simplicity we need not
consider said range in our radial integral. Similarly, we can assume that the horizon
rh lies within the “problematic region” R1 � r � R (that is, the region in which, by
construction, an arbitrarily high entropy can be contained). However, this is due to
the fact that, in the construction of the shell monster, our problematic region shares a
boundary with the exterior vacuum geometry, and so we at least know that its horizon
lies inside the boundary surface r = R. In general, one can imagine constructing
a monster configuration such that the problematic region lies strictly within a fluid,
and it is then possible that the horizon is exterior to the region, i.e., rh > R. In the
case of such a “concentric monster,” which consists of a problematic region bounded
between a normal fluid, our calculation below needs to be modified accordingly, and
then it is crucial that our range of integration be taken from the origin instead of the
horizon. For the shell monster with mass profile given by Eq. (6.17), the brane action
is

S[shell] ∝ r2 f
1
2 − ε

− 1
2

0

3

L

∫ R

rh

r ′2 f
1
2 dr ′ − 3

L

∫ r

R
r ′2 (

f ε−1) 1
2 dr ′, (6.19)

the second term becomes unbounded below if ε0 is arbitrarily small. The case for the
blob monster is similar. We should of course be more careful about the first term and
the last term, since the asymptotic values of their sum could very well be infinite.
We will discuss this in more detail below.

Let us first remark on the energy condition, since pathological constructions like
the monsters immediately raise the concern about violation of energy conditions.
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This is indeed true at least for some monsters. To see this, as noted in [29], we can
take the radial null vectors to be of the form

na = (ε− 1
2 ,± f

1
2 , 0, 0)T, (6.20)

so that consequently the Ricci tensor satisfies [17]

Rabnanb = ( f ε−1)′ε
r

, (6.21)

where the prime denotes the derivative with respect to r , and the superscript “T”
denotes vector transposition.

Typically in classical general relativity, various energy conditions are imposed on
the matter field. The weakest of these energy conditions is the Null Energy Condition
(NEC), which requires that the energy–momentum tensor Tab satisfies Tabnanb � 0
for all null vectors na . By the Einstein field equations, the NEC is equivalent to the
geometric, Null Ricci Condition, Rabnanb � 0. Consequently, if the NEC holds, we
will have, by Eq. (6.21),

( f ε−1)′ � 0. (6.22)

By virtue of the AdS version of the Birkhoff’s theorem, in the exterior of our fluid
star the metric coincides with that of a black hole, of which f ε−1 is precisely unity.
Since f ε−1 is an increasing function of r , its value for a NEC-nonviolating fluid
is always less than unity. For stable black holes in the Seiberg–Witten sense (i.e.,
k = 0, 1 neutral topological black holes, but not the k = −1 case, which is unstable
[29]), the Seiberg–Witten brane action in Eq. (6.18) is always positive, so for a stable
fluid, the action is also positive (since the second term, with the same domain of
integration, is smaller than the black hole case). Consequently, if the NEC holds,
then the brane action of the (exterior geometry of the) “star” is always positive.
The contrapositive statement is then: If the star has negative brane action, then the
constituent fluid violates the NEC. In other words, monsters, at least the blob and
the shell species, violate the NEC. The argument here may not work for a concentric
monster, since the exterior geometry does not contain any problematic region, and so
as we discussed above, when considering the Seiberg–Witten instability we should
take the domain of integration to start from the interior of the horizon. Since the
domain of integration is no longer the same as that of the black hole case, we cannot
establish the argument above that leads to the conclusion of NEC violation. This is
of course not saying that such monsters are free of energy condition violations.

Now we return to the brane action for a shell monster in Eq. (6.19). Imagine a
“toral star” that collapses to form a black hole (for a careful treatment of such a
scenario, see [30]) with flat horizon equipped with metric

ds2 = − f (r)dt2 + f (r) −1dt2 + r2d�2
k=0, (6.23)
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where

f (r) =
(

r2

L2
− 2M

r

)−1

, M = M

πK
, (6.24)

and d�2
k=0 is the metric on the compact flat submanifold, while M is the physical

mass M dividedbyπK ,where the parameter K is related to the size of theflat compact
manifold. As in the previous sections, think of a flat square torus as parametrized by
two circles of circumference 2πK , and with area 4π2K 2.

The brane action for such a flat (uncharged) black hole asymptotes to a finite
positive constant [29]

πL�A

2
, (6.25)

where � is the brane tension and A is the horizon area. For an “ordinary” toral star,
i.e., when NEC is satisfied by the fluid, we observe that

S[ordinary star] ∝ r2 f
1
2 − 3

L

∫ r

rh

r ′2 (
f ε−1

) 1
2 dr ′. (6.26)

By the Birkhoff’s theorem, the exterior metric should match that of a black hole (i.e.,
f ε−1 = 1 for r > R), and so the brane action for themonster S[(Monster(k = 0)](r),
should satisfy

S[Monster(k = 0)](r) ∝ r2 f
1
2 − 3

L

∫ R

rh
r ′2 (

f ε−1
) 1

2 dr ′ − 3

L

∫ r

R
r ′2 (

f ε−1
) 1

2 dr ′

(6.27)

= r2 f
1
2 − 3

L

∫ R

rh
r ′2 (

f ε−1
) 1

2 dr ′ − 3

L

∫ r

R
r ′2dr ′ (6.28)

= S[Black Hole(k = 0)](r) + 3

L

∫ R

rh

[
r ′2

[
1 −

(
f ε−1

) 1
2

]
dr ′

]
.

(6.29)

Taking the r → ∞ limit on both sides of the equation yields

lim
r→∞ S[Monster(k = 0)](r) ∝ πL�A

2
+ 3

L

∫ R

rh

[
r ′2

[
1 − (

f ε−1
) 1

2

]
dr ′

]
. (6.30)

We note that even for k = ±1, the same argument in Eq. (6.29) also yields

S[Monster](r) = S[Black Hole](r) + 3

L

∫ R

rh

[
r ′2

[
1 − (

f ε−1
) 1

2

]
dr ′

]
, (6.31)
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so that the brane action in the monster case only differs from that of a black hole by
a term independent of r . This means that in particular, the turning points, if any, of
the actions are the same.

For an ordinary star, the term 1− ( f ε−1)1/2 is positive as we explained above, and
so the brane action is in fact positive at the boundary. However, for the shell monster
of which ε = ε0 = const., we now see that even though the brane action is exactly
the same as Eq. (6.30), the action can become negative and stays negative if

√
ε <

(
6
∫ R

rh

r ′2 f
1
2 dr ′

) [
πL2�A + 2

(
R3 − r3eh

)]−1 =: √
ε∞. (6.32)

If an infinite reservoir of negative action does imply no stable solutions exist regard-
less of backreaction, then this allows us to slay all shell monster spacetimes whose
Euclidean metric induces flat curvature on the conformal boundary, provided that
Eq. (6.32) holds. Mutatis mutandis, the argument should work for all monsters and
their kin whose metric asymptotically approaches that of a flat black hole, as long as
their “problematic region” does not lie behind the true event horizon, since other-
wise, as we have already mentioned, the region will be excised upon Wick-rotating
to Euclidean signature.

We should emphasize at this point that, it is not an essential part of the argument
to rely removing the problematic region by Wick-rotation. After all, in principle,
the Seiberg–Witten analysis can be carried out in Lorentzian signature. However
even then, one should only start the integration region from the horizon outward.
The reason for this is that as far as stability of the exterior geometry is concerned,
the interior of the black hole simply does not matter. This is related to the no-hair
property of black holes—exterior spacetime is only sensitive to conserved charges
of the black holes, not the details that are shrouded by the horizon. There might be
a problem concerning the entropy of the black hole if we allow the region to pass
beyond the horizon, but this is left for later discussion.

The question that we have to settle at this point is whether an infinite supply
of negative action does imply the nonexistence of stable solutions. The answer is
probably no in general. Consider, for example, the remarkable black hole solution
found by Klemm et al. [31]. The KMV black holes can have spatially flat spatial
sections, dubbed the KMV0 solution [31], and is in fact a kind of rotating—more
appropriately, shearing—planar black hole. It is shown in [32] that no matter how
small the angular momentum is, the brane action will eventually become negative
and stay negative. It is thus tempting to conclude that such solutions are not physical,
since emission of finitely many brane–anti-brane pairs does not seem capable of
getting rid of the infinite negative action. However, surprisingly, it is possible to do
so. One only needs to recall that the angular momentum of a black hole, like its
mass, can be changed by physical processes. When calculating the brane action for
the KMV0 black hole, one uses the original stationary black hole metric, but once
brane emission is triggered, one has to eventually take into account the backreaction
to the black hole spacetime. Specifically, we can imagine that branes are nucleated
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in pairs with a nonzero total angular momentum, and they carry it away and thus
reduce the angular momentum of the black hole. Since the latter is only finite, and
in fact could be very small, it is easy to imagine that such a process could reduce
it completely to zero. Thus, by emitting only finitely many brane–anti-brane pairs,
the infinite supply of negative action can, in principle, be removed. Therefore, we
should ask: is there any finite parameter in the monster case which, when changed
by a finite amount, removes the infinite negative action?5

Since the monster considered here is characterized by its mass, as well as the
equation of state of the fluid, one obvious way out is to collapse into a black hole
fast enough, and in the process, push the problematic region past the (true) horizon.
Once the entire problematic region is behind the horizon, its Wick-rotated Euclidean
metric will remove all problems (as mentioned above, there is also no problem in
the Lorentzian picture once the problematic region has passed beyond the horizon).
To recap, in order for us to claim that the monster has an infinite supply of negative
action and hence does not represent a physical solution, we need to establish that
the infinite negative action cannot be removed by changing any finite parameter. The
corresponding parameter is the size of the problematic region, which is finite, and
hence by collapsing beyond the horizon, one can remove the entire infinite supply of
negative action in finite proper time. For our plan to work then, wemust establish that
the monsters do not in fact have enough time to collapse into a black hole before the
Seiberg–Witten instability kicks in, thereby modifying the spacetime considerably
to the effect that we can no longer trust that the negative action can be removed via
gravitational collapse. We will come back to this important issue later on.

For now, let us consider the brane action and consider the point at which the action
vanishes. This value of r = r0 must satisfy the equation

r20

[
−2M

r0
+ r20

L2

] 1
2

− 3

L

∫ R

rh

r ′2 (
f ε−1) 1

2 − 3

L

∫ r0

R
r ′2 dr ′ = 0. (6.33)

This leads to

r30

[(
−2ML2

r30
+ 1

) 1
2

− 1

]
+ R3 = 3

∫ R

rh

r ′2 (
f ε−1) 1

2 dr ′ > 0. (6.34)

Interestingly, we observe that since the right-hand side is positive, with ε = ε0
assumed independent of r , it cannot be arbitrarily small, since the left-hand side is
bounded away from the upper bound R3 > 0. However, we have previously shown
that for ε < ε∞, the action is negative at infinity. We thus have to consider two

5Note that theKMV0 black hole is not spatially flat at the boundary of AdS, but only conformally flat
[33], i.e., it does not have quite the same geometry as the monster under consideration. However, all
we want to stress here is that, in principle an infinite amount of negative action of a given geometry
could go away by tuning a certain parameter by a finite amount; this is regardless of the curvature
at the boundary.
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quantities: ε∞ and εmin, the latter refers to the lower bound of ε that allows the action
to vanish. Explicitly,

√
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3
∫ R
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r ′2 f

1
2 dr ′

max

⎡
⎣r3

⎡
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1
2 dr ′
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∫ R
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r ′2 f

1
2 dr ′

2R3 − r3h
,

(6.35)
where we have used the fact that the event horizon is rh = (2ML2)1/3.

On the other hand, we have from Eq. (6.32),

√
ε∞ =

6
∫ R

rh

r ′2 f
1
2 dr ′

2R3 − r3h + (πL2�A − r3h )
. (6.36)

Therefore, we can consider several cases. The first possibility is if the brane tension
satisfies the inequality � > M/(2π3K 3). This corresponds to ε∞ < εmin. We then
have three subcases:

(1) If ε � ε∞ < εmin, then the brane action S never crosses the r -axis, and remains
negative at infinity, with the marginal case occuring when equality is attained.

(2) If ε∞ < ε < εmin, then S never crosses the r -axis, and is positive at infinity. This
is the case for an ordinary star (NEC preserving fluid) provided 0 < ( f ε−1) < 1.

(3) If ε∞ < εmin < ε, then S crosses zero, and remains positive at infinity.

Likewise, for a brane action satisfying � < M/(2π3K 3), we have ε∞ > εmin. We
then also have three subcases:

(I) If εmin < ε < ε∞, then S becomes zero at some finite value of r but negative
at infinity. This case cannot happen since the brane action S, like the brane
action of the black hole counterpart, is monotonically increasing (and tends to
a constant asymptotically) and thus has no turning point.

(II) If ε < εmin < ε∞, then S never becomes zero and remains negative at infinity.
(III) If εmin < ε∞ < ε, then S is positive at infinity but crosses the r -axis at some

finite value.

Going back to Eq. (6.31), we see that the brane action for monsters only differs from
that of black hole by a shift that only depends on ε, which we sketched in Fig. 6.1.
It is thus possible for the action to have only a finite amount of negative reservoir,
namely case (3) and case (III). We shall refer to such cases as “small monsters,”
while those with an infinite supply of negative action are called “large monsters.”
The instability of such monsters is thus of the Maldacena-Maoz type [28].

Let us move on to investigate the k = ±1 cases. We note that for the k = 1
case, the instability is always of Maldacena-Maoz type, with only a finite supply
of negative action. Nevertheless as we send ε toward zero, the action becomes very
negative, indicating the solution is becoming more unstable. To see the behavior of
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the brane action more explicitly, we note that for a k = 1 topological black hole, the
brane action is

S[Black Hole(k = 1)](r) = r2 f
1
2 −

∫ r

rh
r ′2dr ′ = r2

(
1 − 2M

r
+ r2

L2

) 1
2

− r3 − r3eh
L

(6.37)

= Lr

2
− M L + r3eh

L
+ O

(
r−1

)
, (6.38)

so that the brane action at infinity behaves linearly in r . This is clearly divergent,
and so we cannot conclude as in the k = 0 case that the action will become negative
at the boundary, even if ε0 is taken to be arbitrarily small. Indeed, at any fixed finite
value of r = r∗, the action S[Monster(k = 1)](r∗) will be negative if

√
ε <

(
3

L

∫ R

rh

r ′2 f
1
2 dr ′

)(
S[Black Hole](r∗) + 3

L

∫ R

rh

r ′2dr ′
)−1

. (6.39)

In particular, if we do take the limit r → ∞, the action will only be negative at the
boundary if ε = ε0 < 0. However, by definition, ε > 0. In other words for the shell
monster with k = 1, the action at the boundary is actually positive. It is, however,
clear that for finite values of r = r∗, ε can be chosen small enough so that the action

Fig. 6.1 The schematic graphs of brane actions for various geometries with flat spatial sections:
star (NEC preserving fluid), black hole, small monster (finite supply of negative action), and large
monster (infinite supply of negative action). Note that the various actions only differ by a constant
shift. The range r < rh is removed upon Wick-rotation and hence the graphs only start at rh
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Fig. 6.2 The schematic graphs of brane actions for the various geometries with positively curved
spatial sections and negatively curved spatial sections, respectively. Note that for positively curved
geometries, all monsters have only a finite supply of negative action, while monsters in a negatively
curved background have infinite reservoir of negative action. The range r < rh is removed upon
Wick-rotation and hence the graphs only start at rh

becomes negative at points rh � r � r∗. In other words, the instability of such
monsters are of the Maldacena-Maoz type [28].

Finally, for the k = −1 case, every brane action will be unbounded below as
shown in Fig. 6.2. We are now ready to interpret the results of our calculations.

6.4 Collapsing Versus Destabilizing a Monster

Monsters are born too tall, too strong, too heavy—that is their tragedy.

–Ishirō Honda, on his film “Rodan.”

As already pointed out in [32], what is relevant about instability is the timescale it
takes for the instability to manifest itself. If the instability time scale is very long,
the physical system in question may change its properties due to other effects long
before the instability can develop. In the case studied in [32], the planar KMV black
hole is used to study a quark gluon plasma formed in heavy ion collision. Since the
latter quickly expands and cools after collision, any effect which takes longer than
the hadronization time scale will simply not be observed. As a consequence, one
does not expect to observe the Seiberg–Witten instability at low angular momenta
since the point rneg, at which the brane action of planar KMV black holes becomes
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zero (and negative beyond the point), is further away from the horizon the slower the
rotation is.

The main idea for causality is this: If the brane nucleation happens far away from
the black hole, the black hole cannot know about the branes moving around in the
bulk until enough time has passed that the brane reaches the vicinity of the hole to
significantly perturb and change its geometry, which consequently changes also the
original action. To estimate this timescale, one can calculate the amount of time for
the brane to free fall inwards to the horizon [32]. This will be related to the distance
the brane has to travel, and thus involves an integral I over r from the horizon rh to
the point at which the brane action vanishes rneg.

In our case, if a monster has collapsed into a black hole before it knows about the
brane nucleation, then the Seiberg–Witten instability will simply not be observed.
What is the timescale for gravitational collapse to remove the problematic region
beyond the horizon? This will involve the free fall of a particle from the edge of
the fluid configuration at r = R. That is, the process involves the same integral I
over r , but now from the horizon rh to R. For the usual black hole cases in which
the brane action only becomes negative at relatively large r = rneg, we proceed by
comparing whether rneg < R or the other way around to determine which effect
is at work earlier; here for the monster case the situation is completely different:
all monsters have negative action starting right at the horizon! In other words the
monster configurations are almost immediately aware of the brane nucleations in
the close vicinity of the fluid surface (if not the horizon itself; since the horizon
is still within the fluid when it is first formed) and backreaction is swift to begin
changing themonster to some other stable configuration. Therefore, the backreaction
should take place at the same order of timescale, if not faster, as the time it takes
for gravitational collapse to occur. As a consequence we cannot be confident that
monsters will always collapse into black holes (at least in AdS spacetime). If the
instability is of the Maldacena-Maoz type (all k = 1 monsters and k = 0 little
monsters), we have hope to obtain a new (albeit unknown) final configuration after
the brane emission removes all the supply of negative action. If there is an infinite
reservoir of negative action (k = 0 large monsters and k = −1 monsters), since we
can no longer trust that gravitational collapse can remove the problematic region and
there are no other parameters that can be changed by a finite amount yet removing
an infinite supply of negative action, it seems plausible that these configurations are
unphysical, i.e., not a solution to the full theory of quantum gravity.

6.5 The Fate of Monsters

When a monster stopped behaving like a monster, did it stop being a monster? Did it become
something else?

–Kristin Cashore, “Graceling.”

We thus conclude that k = −1 monster configurations are completely unstable and
k = 0 ones are also completely unstable if ε0 violates the bound
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in the sense that there is an infinite supply of negative action. Furthermore this
instability is at work at the same time scale, if not earlier than the gravitational
collapse timescale, and thus the brane action cannot be trusted to be made positive
by the emission of a finite number of brane–anti-brane pairs. This signals that such
configurations are very likely not valid solutions of the full theory of quantumgravity.
The competition between gravitational collapse and Seiberg–Witten instability will
require further careful analysis to determine whether gravitational collapse can be
the winner. In this work we only pointed out that it is not clear that monsters in
anti-de Sitter spacetime will always evolve to become black holes. The case k = 1
is somewhat different: the action is always positive at infinity. The finite reservoir of
negative action can be reasonably removed via brane–anti-brane pair-productions.
We thus expect a new stable non-monster configuration at the end of the backreaction,
if it is not collapsed into a black hole first. In all cases, the final state of monsters,
perhaps worthy of the name monsters, remains elusive, much like their mythological
counterparts.

We now comment on the various kin of monsters. We note that in our analysis via
the Seiberg–Witten instability, we have performed a Wick-rotation (as mentioned
before, a similar conclusion can be reached in the Lorentzian picture), a process that
eliminates the interior of the black hole event horizon. For monsters, which do not
have true event horizons, their interior is not removed under a Wick-rotation, and
this is crucial in the analysis of some types of monsters, e.g., the concentric monsters
that may have their problematic region positioned behind the horizon (the formal
horizon identified by the exterior vacuum spacetime, hence not a real horizon). This
also implies that while our work may slay some classes of monsters and some of
their kin, any kin of monsters with problematic regions hiding behind a true event
horizon cannot be ruled out by the this kind of analysis. This includes, but is not
limited to, a bag-of-gold spacetime with a closed FLRW universe hiding behind
an Einstein-Rosen bridge of a Schwarzschild black hole (more precisely, its AdS
version), and the maximally extended (AdS-) Schwarzschild black hole. Curiously
it is not entirely clear whether these types of configurations with large volumes
bounded by true event horizons are problematic in the AdS/CFT correspondence.
In [22], the point is raised that the AdS/CFT correspondence seems to predict that
creating bag-of-gold spacetimes via quantum tunneling is not possible, however it
is also pointed out in the same work that there are theories in which bag-of-gold
spacetimes are allowed in AdS, and in fact various works have suggested that such a
gravitational theory is dual to a product field theory [34, 35], with one factor being
the usual CFT and the other being some new set of degrees of freedom. Here, we
do not claim to have shed any light on this interesting issue; we only argue that at
least some types of monsters seem not to be plausible in quantum gravity.6 If this

6Although the k = 1 case is not easily ruled out, it is possible that the system is really unstable,
similar to the cases for k = 0 and k = −1, and only appears to be stable because positive curvature
masks that instability. If we follow the same philosophy as in Chap. 5 of avoiding as many uncer-

http://dx.doi.org/10.1007/978-3-662-48270-4_5
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suggests that indeed there is difficulty in admitting all monster solutions in the final
theory, then even if a bag-of-gold spacetime exists, the bag probably develops either
together with, or after the black hole horizon formation, instead of passing through
an intermediate monster stage.

Finally, wemake some comments on the puzzles of black hole entropy for the sake
of completeness. No less puzzling than the information loss paradox is the problem
of the origin of black hole entropy. Consider a star, its entropy content scales like
S ∝ A3/4 [10], which is minuscule compared to the entropy of a black hole S ∝ A.
This is consistent with the Second Law of Thermodynamics, i.e., entropy should
be expected to increase. However, the entropy gap between A3/4 and A leaves one
wondering: where did the huge amount of entropy increase come from when a star
collapses into a black hole? Perhaps a bag-of-gold does develop to conceal a large
amount of information behind the horizon? Before proceeding, we should stress that
it is still an unsettled issue [36] whether Bekenstein-Hawking entropy measures only
the degrees of freedomon the horizon of the black hole, i.e., the surface area, or indeed
measures all the degrees of freedom of a black hole, including its interior volume.
These two interpretations are the so-called “weak form” and “strong form” of the
Bekenstein-Hawking entropy interpretations, respectively [8, 37–40]. If the weak
form interpretation is correct, then there is no direct relation between the entropy
of the black hole interior (i.e., the information it can store), and the mass of the
black hole (which is related to its area). Thus, as with the case of the bag-of-gold
spacetimes, a black hole of any fixed finitemass can contain in its interior, an arbitrary
high amount of information. If monsters exist, then it is reasonable to conjecture that
after it collapses to form a black hole, said black hole would also carry an arbitrarily
high amount of information. See [22] for the same puzzle regarding whether the
weak form or the strong form interpretation is correct, albeit in the context of the
AdS/CFT correspondence.

Note that if one believes in the weak form interpretation, then there is probably
no information loss paradox to solve, since all the information can be safely stored
in the black hole even if Hawking radiation is completely thermal and carries away
no information, until finally the information comes out during the Planck scale, at
which point effective field theory is expected to fail anyway, and so all bets are off.
Furthermore, black hole evaporationmaywell end in a remnant instead of completely
evaporating away. The remnants may in principle store a large amount of entropy in
its bag-of-gold. The case for remnantswas argued in, e.g., [21]. Note that in thatwork,
the entropy of the remnant is shown to be “small.” That entropy, however, is just the
Bekenstein-Hawking entropy, which, if one believes in the weak form interpretation,
does not really measure the information content of the black hole. The argument
that monsters lead to problems when considering the eventual loss of information is
therefore contingent on the assumption that the strong form interpretation is correct.
Unfortunately, our work does not shed any light on this age old problem regarding
the interpretation of the Bekenstein-Hawking entropy.

tainties as possible, we should take the conclusion for k = 0 most seriously. If this is indeed the
correct thinking, then it would seem that quantum gravity does provide some bounds for monsters.
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Appendix A
Epilogue

Mathematics is not a careful march down awell-cleared highway, but a journey into a strange
wilderness, where the explorers often get lost. Rigor should be a signal to the historian that
the maps have been made, and the real explorers have gone elsewhere.

W.S. Anglin

In this thesis,wehave explored someaspects of blackhole evolution in asymptotically
local AdS spacetimes, and applied our findings to the information loss paradox and
its recent incarnation—the firewall controversy. Beneath these issues is really the
age old question of how to settle the tension between general relativity and quantum
mechanics at the fundamental level. The firewall controversy is saying that, not only
do we not know how to quantize gravity and resolve black hole singularities, we in
fact may not even understand how to put general relativity and quantum mechanics
together under milder situations that do not involve large curvature. The literature is
full of various attempts to address these issues, and people are not agreeing with each
other on many fundamental aspects of the debate. Confusion is good, for it means
that there is still real science to be done.

Having said that, it is now perhaps more crucial than ever to actually be more
precise about what we mean by information loss. Indeed physicists are often not
very precise about terminologies compared to mathematicians or philosophers. In
this case, there appears to be no consensus about the exact meaning of unitarity—
different authors seem to have different interpretations. For example, some people
are perfectly fine with information leaking into another universe (if there is a baby
universe behind a black hole), but somewould say that in such a scenario information
is lost. Yet another camp of thought is that the information loss paradox is the result
of us still thinking too classically. Consider a wave function in quantum mechanics,
which evolves under the Schrödinger equation. The entire evolution is unitary. Wave
function collapse, however, is not a unitary process. In terms of the many-world
interpretation, unitarity is only preserved if we consider all the parallel universes;
while an observer in any specific “classicalized” universe has already lost unitarity.
In this view, one has to sum up all possible histories, including those histories in
which Alice never falls into the black hole; as well as histories in which the black
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Fig. A.1 What is the fate of quantum information—here depicted as a Schrödinger’s cat—that falls
into a black hole? Is there really an inconsistency between quantummechanics and general relativity
in the interplay of unitarity and black hole? Is there a firewall? (Illustration by Alan Stonebraker
c©American Physical Society [8])

hole has undergone phase transition (see, e.g., [1, 2]) or topology change (so we
have to sum over geometries as well [3]). Unitarity is only preserved as a whole, to
a super-observer that has access to all histories. For some views along this line, see,
for example, [4, 5].

Whether the aforementioned point of view is the correct one remains to be seen.
Nevertheless, it is true that perhaps we need to think less classically. After all, with
quantum mechanical superpositions and all that, it is not clear if our way of thinking
involving Penrose diagrams and causal structures still makes sense.

The issue of information loss is thus far from being settled, and the fate of a
Schrödinger’s cat that falls into a black hole will probably remain unknown until we
have a full working theory of quantum gravity (Fig. A.1). It is hoped that the ongoing
debate surrounding black hole information loss and firewalls will provide some hints
and guide us towards constructing such a theory, or perhaps provide some hints that
gravity should not be quantized, but rather be treated as an emergent phenomenon.1

Perhaps some insights can also be gained from learning more about singularities
(whether they can indeed either be cured, or prevented, by quantum effects, as widely
believed2), and also from investigating hyper-entropic objects3 in our candidate the-
ories for quantum gravity. It is even possible that the final theory, whatever that is,
will look entirely different from what we can imagine today. Time will tell. To quote
David Hilbert,

Wir müssen wissen—wir werden wissen!

1Other alternatives are explored in [6, 7].
2Whether quantization of gravity will actually save spacetime from such singularities one cannot
know untill the “fiery marriage of general relativity with quantum physics has been consummated”
—Misner, Thorne, and Wheeler [11].
3In addition to “monsters” and bag-of-gold type geometries, Don Page recently proposed “grire-
balls” [9]; see also [10].
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Appendix B
The Path Integral and Thermodynamics

In this appendix, we provide some basic concepts about the path integral and its
relation to thermodynamics. The main purpose is to explain the idea of the Euclidean
action and an important quantity called the partition function, which we have used
substantially in Sect. 3.3.

B.1 The Path Integral

There are in this world optimists who feel that any symbol that starts off with an integral
sign must necessarily denote something that will have every property that they should like
an integral to possess. This is of course quite annoying to us rigorous mathematicians; what
is even more annoying is that by doing so they often come up with the right answer.

–E.J. McShane [1]

The Feynman path integral formulation of quantum mechanics, and subsequently of
quantum field theory, can be found in many standard textbooks, and so we will not
explain it in too much detail beyond what is necessary.

The essential idea is nicely discussed in [2]: Recall the famous double-slit experi-
ment in quantummechanics, in which a beam of electrons is fired through two slits. If
the electrons are classical particles like tiny balls, then we should expect the screen
to have two bright strips corresponding to where the electrons hit, i.e., we would
not expect an interference pattern, which is a characteristic of waves. However, if
the experiment is conducted, we will indeed observe an interference pattern, which
implies that electrons do have wave properties! It is not that the electrons are inter-
fering with each other and thus somehow causing the interference pattern, since by
firing the electrons one at a time, an interference pattern still builds up gradually as
more and more electrons go through the slits. Quantum mechanically, we often say
that the wave function will be the sum of two possible states: one that passes through
slit A and one that passes through slit B, and the wave function is in a superposition
of states. However there is no reason why we should stop at two slits, we could have
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three, and then the wave function will be the sum of three possible states. We can
also have more than one screen. Therefore we could have, say, a first screen with
two slits, a second screen with three slits etc. and stack them all together. That is, we
have to consider all the probabilities of the particles passing through the i-th slit of
the k-th screen. Now imagine that we increase the number of screens and the number
of slits and continue to do so in the limit towards infinity. In the limit with infi-
nitely many slits, the slits are not there anymore! Therefore we reached a seemingly
absurd—though what isn’t in quantum mechanics?—conclusion that even in empty
space without physical screens, we have to consider the probabilities of the particles
taking all possible paths from one point to another instead of just the classical path
(which is the unique path determined by solving the Newtonian equations of motion
given some initial conditions). As Zee described it, this is almost Zen.

To sum up then, the idea of path integral is, with hindsight, a rather simple one:
there are many ways to get from point xi (at time ti ) to point x f (at time t f ), and in
quantummechanics, one should sum all of the possible histories in some precise way.
Namely there is a quantum probability amplitude K that describes all the possible
routes. K goes by many other names, such as the propagator, the evolution kernel,
or the transition amplitude. In quantum mechanics, the Hamiltonian generates the
time evolution of quantum states. So we define

K (x f , xi ; t) =
〈
x f

∣∣∣e− i t Ĥ
�

∣∣∣ xi
〉
. (B.1)

In the classical limit � → 0, we should of course recover the classical path of
Newtonian mechanics. In this appendix, we have emphasized that the Hamiltonian
here is a quantum operator with the hat notation. This hat is often dropped for the
sake of cleaner notation. The path integral formulation of quantummechanics has an
advantage over the canonical quantization approach, namely that it provides a more
physical intuition as to how quantum mechanics arises via summing over paths.
Nevertheless, it is mathematically challenging to make sense of the path integral.

Although the path integral formulation is developed by Richard Feynman [3],
who also showed that the Schrödinger equation and the commutation relation can be
recovered from the path integral formulation, the formulation itself was first invented
by Paul Dirac [4], who first formulated the amplitude of a particle to propagate from
a point qi to another point q f in time t = t f − ti by

〈
q f

∣∣∣e− i Ĥ t
�

∣∣∣ qi
〉
=
∫

Dq(t)e
i
�

∫ t
0 dt

′L(q,q̇). (B.2)

Before we review the path integration formulation in more details, we make some
remarks about the mathematical problems concerning the path integral. Despite the
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successful predictive power of the Feynman path integral, it lacks mathematical
rigor.4

To see why the path integral is problematic, note that in Eq. (B.2), the integral∫
Dq(t) is more appropriately denoted by

∫
�
Dγ where γ : [ti , t f ] → R

d is any
path connecting the endpoints γ(ti ) = qi and γ(t f ) = q f , and � is the space of
such paths. Here Dγ should be thought of as a Lebesgue-type measure on the space
� of paths. Unfortunately, this Lebesgue-type measure simply does not exist. This
follows from the well-known result in functional analysis that a (nontrivial) transla-
tional invariance Lebesgue-type measure cannot be defined on infinite dimensional
Hilbert spaces. However, even before Feynman and Dirac, there already existed sim-
ilar ideas of path integration, albeit it is formulated to deal with Brownian motion
instead of quantum mechanics. This is theWiener integral, formulated by American
mathematicianNorbertWienerwhomademajor contributions to stochastic and noise
processes as well as cybernetics (In fact, the one-dimensional version of Brownian
motion is known as the Wiener process).

The Wiener measure is not translationally invariant, and one wonders if the
Feynman path integral can be understood in a similar way. It turns out that the
answer is no: in 1960, Cameron proved that it is not possible to construct “Feynman
measure” as a Wiener measure with a complex variance, i.e., as the limit of finite
dimensional approximations of the expression

e
i
�

∫ t
0

m
2 γ̇(s)2ds Dγ∫

e
i
�

∫ t
0

m
2 γ̇(s)2ds Dγ

, (B.3)

as the resulting measure would have infinite total variation, even on bounded sets in
the path space. This is not the case for the usual Lebesgue measure on R

d , which
has finite total variation on bounded measurable subsets of R

d . More discussions
on the attempts to make mathematical sense of the path integral formulation can be
found in the first chapter of [5]. One relatively simpleway tomake path integralsmore
sensible is to performa “Wick-rotation” by analytic continuation and consider instead
a damping factor e−S instead of the oscillatory one ei S , where S = ∫ t

0 dt L(q, q̇).
One then gets precisely a Wiener path integration, which does make sense. After
one’s calculations have been performed, one can then Wick-rotate back and read off
the final answer. Unfortunately, there are subtleties involved in this approach and not
all Feynman path integrals allow Wick-rotation.

It must be emphasized that Feynman himself was aware of the lack of rigor in his
work, as evidenced from his paper [3] in which he wrote that:

[...] one feels like Cavalieri must have felt calculating the volume of a pyramid before the
invention of the calculus.

4Trained as a mathematician, I have difficulty accepting the validity of the path integral, and for
that matter, most of quantum field theory; although as a physicist, I know how to use them and to
wave my hands as necessary, deep down I am deeply troubled.
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This remark is perhaps too modest. A more appropriate analogy would be
that of calculus in its early days, more specifically when it was still plagued by
infinitesimals—a very small quantity which is greater than zero yet less than any
positive number, if you will. Sometimes we still think in this way, especially in
physics (but this is because we already know that if we wish, we could always make
it rigorous).5 The philosopher Berkeley was among the first to challenge the foun-
dation of calculus. He remarked:

They are neither finite quantities nor quantities infinitely small, nor yet nothing. May we not
call them the ghosts of departed quantities?

It was due to criticism like this that finally led to the rigorous formulation of calcu-
lus [6] in terms of ε and δ, which is now dreaded by many beginning mathematics
students. Nevertheless, calculus has yielded many amazing results ever since it was
invented by Newton and Leibniz, despite lacking a rigorous foundation until Berke-
ley’s objection prompted mathematicians to formulate just such a foundation. This is
precisely the state we are currently in for the path integration formulation of quantum
mechanics.

In view of the discussion on the mathematical difficulties in interpreting Feynman
path integration, wewill make aWick-rotation by setting τ = i t and calculate instead
the Euclidean propagator

K (qi , q f ; τ ) =
〈
q f

∣∣∣∣
(
e− τ Ĥ

N�

)N ∣∣∣∣ qi
〉

(B.4)

=
〈
q f

∣∣∣e− εĤ
� · · · e− εĤ

�

∣∣∣ qi
〉
; ε = τ

N
. (B.5)

Note that ε has the dimension of length. Take Ĥ = p̂2

2m
+ V̂ , where V is the potential

term.
We can now insert N − 1 copies of the completeness relation

∫

R

dqi |qi 〉 〈qi | = 1 (B.6)

into the propagator and obtain

K (qi , q f ; t) =
∫

R

dqN−1 · · ·
∫

R

dq1
〈
q f

∣∣∣e− εĤ
�

∣∣∣ qN−1

〉
· · ·
〈
q1
∣∣∣e− εĤ

�

∣∣∣ qi
〉
. (B.7)

5Infinitesimals were, much later, also given a rigorous foundationwith a field ofmathematics known
as the non-standard analysis.
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Now each factor becomes

〈
qi+1

∣∣∣e− εĤ
�

∣∣∣ qi
〉
=
∫

R

dp
〈
qi+1

∣∣∣e− εĤ
�

∣∣∣ p
〉
〈p|qi 〉 (B.8)

= e− εV (qi )
�

∫

R

dp e− εp2

2m�

[
e

ip(qi+1−qi )
�

2π�

]
(B.9)

= e− εV (qi )
�

2π�

[√
2πm

ε
e
− (qi+1−qi )

2

(2ε/m�)�2

]
(B.10)

= 1

2π�

√
2πm

ε
e− m

2ε� (qi+1−qi )2e− εV (qi )
� (B.11)

= N (ε)e−εL, (B.12)

where

N (ε) := 1

�

√
m

2πε
, (B.13)

and

L = m

2

(
qi+1 − qi

ε

)2

+ 1

2

[
V (xi+1) + V (xi )

]
, (B.14)

where we have used the mid-point prescription for the potential term discretization.
In the second equality above we have used the fact that6

〈x |p〉 = e
ipx
� , (B.15)

while in the third line we have evaluated the Gaussian-type integral via the standard
formula ∫

R

(e− 1
2 ax

2+i J x ) dx =
√
2π

a
e− J2

2a . (B.16)

Hence, with q0 = qi and qN = q f , we can show that we have

K (qi , q f ; τ ) =
∫

R

N−1∏
n=1

dqn

N−1∏
n=0

〈
qn+1

∣∣∣e− εĤ
�

∣∣∣ qn
〉

(B.17)

=
∫

R

N−1∏
n=1

dqn

N−1∏
n=0

N (ε)e− εL(qn+1,qn )

� (B.18)

6The completeness relations, or the resolutions of identity, are chosen such that
∫

R
dq |q〉 〈q| = 1,∫

R
dp |p〉 〈p| = B, and 〈x |p〉 = Aeipx/� , with the constraint 2π|A|2� = B. By choosing A = 1,

we have B = 2π�.
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=
∫

R

N−1∏
n=1

dqn
( m

2πε�2

) N
2
e− ε

�

∑N−1
n=0 L(xn+1,xn). (B.19)

Thus,

K (qi , q f ; τ ) ≡
∫

Dq e− S
� , (B.20)

where ∫
Dq ≡

∫

R

N−1∏
n=1

dqn
( m

2πε�2

) N
2

, (B.21)

and

S = SE = ε

N−1∑
n=0

m

2

(
qn+1 − qn

ε

)2

+ ε

N−1∑
n=0

V (qn). (B.22)

We have emphasized that here S is the Euclidean action. Taking the formal limit
ε → 0,

S →
∫ τ

0

[
m

2

(
dq

dτ ′

)2

+ V (q)

]
dτ ′. (B.23)

Upon a Wick-rotation back to Minkowski time we finally obtain the Minkowski
propagator

K =
∫

Dq eiS/�; S =
∫ t

0

[
m

2

(
dq

dt ′

)2

− V (q)

]
dt ′. (B.24)

We remark that generically [ p̂2, V̂ ] �= 0; it is this non-commutativity that makes
quantum mechanics non-trivial. In the calculation above we have ignored this fact
when we separated out the kinetic term and the potential term from the Hamiltonian.
However,

e− εĤ
� = e−( ε

�
)(

p̂2

2m +V̂ ) = e− ε p̂2

2m� e− εV̂
� + O(ε2), (B.25)

so the correction is small.
Finally, let us comment on the classical limit � → 0. In this limit, we expect that

the classical path should dominate in the path integral. The classical path xcl is of
course the solution to the functional variation of the classical action (“Hamilton’s
Principle of Least Action”7):

δS

δx(t)
= 0. (B.26)

7Readers who are interested in learning more about classical mechanics, including its historical
tidbits and aspects that are not usually covered in physics textbooks, should read [7].
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In other words, on a classical path, the action is stationary. Intuitively this means
that near xcl, the action varies very little, so that all paths in a tubular neighborhood
around xcl would add up in a coherent fashion in the sum over all paths, whereas
paths that are far away are more likely to interfere destructively.

B.2 Finite Temperature Quantum Field Theory

But although, as a matter of history, statistical mechanics owes its origins to investigations
in thermodynamics, it seems eminently worthy of an independent development, both on
account of the elegance and simplicity of its principles, and because it yields new results and
places old truths in a new light in departments quite outside of thermodynamics.

–Josiah W. Gibbs

We have seen in this thesis that quantum gravity in a d-dimensional AdS bulk is dual
to a (d−1)-dimensional quantum field theory on the conformal boundary. Similarly,
there is a close relation between quantum field theory and thermodynamics (or to
be more precise, a more fundamental theory of statistical mechanics that underlies
thermodynamics).

As mentioned in [8],

The reasonwhy the terms ‘quantumfield theory’ and ‘statisticalmechanics’ are used together
so often is related to the essential equivalence between these two disciplines. Namely, a
quantum field theory of a D-dimensional system can be formulated as a statistical mechanics
theory of a (D + 1)-dimensional system. This equivalence is a real godsend for anyone
studying these subjects. Indeed, it allows one to get rid of noncommuting operators and to
forget about time ordering, which seem to be characteristic properties of quantummechanics.
Instead one has awayof formulating the quantumfield theory in termsof ordinary commuting
functions, more or less conventional integrals, etc.

For a quantum mechanical system in finite temperature T , a basic and important
quantity to compute is the partition function Z . In the canonical ensemble, Z is a
function of T . With the Boltzmann constant set to unity, we have

Z(T ) = Tr[e−β Ĥ ], (B.27)

where β = 1/T , and Ĥ is the Hamiltonian of the system. Readers may recall from
basic thermodynamics that Z occurs e.g., in the Gibbs distribution

Pλ = e−βEλ

Z
, (B.28)

which gives the probability of a system being in some particular state |λ〉with energy
Eλ at temperature T = 1/β. In this case, Z = ∑

λ e
−βEλ , which is required as a

normalization factor to guarantee that
∑

λ Pλ = 1. Indeed, Z stands for “Zustand-
summe”, a German word that literally means “sum over states”.



198 Appendix B: The Path Integral and Thermodynamics

The importance of the partition function is that it allows us to compute many
useful, more familiar, quantities from thermodynamics, hence it is also called the
“generating function”. These include:

(1) Free energy, F = −T log Z ,
(2) Entropy, S = − ∂F

∂T = log Z + T ∂(log Z)

∂T ,

(3) Helmholtz energy, E = 1
Z Tr[Ĥe−β Ĥ ].

The link to path integral can be seen by writing Eq. (B.27) as

Z = Tr[e−β Ĥ ] =
∫ +∞

−∞
dx
〈
x
∣∣∣e−β Ĥ

∣∣∣ x
〉

(B.29)

=
∫ +∞

−∞
dx

〈
x

∣∣∣∣
(
e− εĤ

�

)N ∣∣∣∣x
〉
, (B.30)

where N := β�/ε. It is not difficult to see, based on our discussion in the previous
subsection, how this can be be re-written as a path integral of the form

Z =
∫

Dx e−S
� , (B.31)

where we note that the starting point x and the ending point x are one and the same,
so that integrating over all x’s means imposing a periodic boundary condition. Hence
the Euclidean action of the system S, e.g. for a mechanical system, has integration
limit as follows:

S =
∫ β�

0

[
m

2

(
dq

dτ

)2

+ V (q)

]
dτ . (B.32)

The integral limit β� comes from the fact that N = β�/ε.
This appendix is certainly not enough to explain everything about partition func-

tions and the path integral formulation in detail. Readers should refer to a good
quantum field theory text, e.g. [9], for a deeper treatment.
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Appendix C
Quantum Information

This appendix provides an introduction to some aspects of quantum information the-
ory which are relevant for our discussions of the black hole information paradox,
in particular the Page curve of an evaporating black hole, the information retention
time and scrambling time, and the decoding of Hawking radiation. To avoid toomany
technicalities, we will only motivate the main concepts, and give the necessary defi-
nitions as we go along. Readers interested in greater details should consult textbooks
on quantum information theory. In fact a free book is available on the arXiv [1].

C.1 Pure States and Mixed States

I would not call [entanglement] one but rather the characteristic trait of quantum mechanics,
the one that enforces its entire departure from classical lines of thought.

–Erwin Schrödinger

A pure state is represented by a state vector in a Hilbert space over the field of
complex numbers; amixed state corresponds to a probabilistic mixture of pure states.
A practical method to tell if a state is pure, is to look at its density operator

ρ =
∑
i

pi |ψi 〉 〈ψi | , (C.1)

where pi is the probability for the qubit (a qubit is simply a two-state quantum-
mechanical system) to be in the state |ψi 〉 . The density operator is related to the
density matrix, which can be constructed once a basis set {|vi 〉 } is chosen:

ρ jk =
∑
i

pi
〈
v j | ψi

〉 〈ψi | vk〉 . (C.2)

The density operator is Hermitian, and it satisfies Tr(ρ) = 1, which basically follows
from the fact that

∑
i pi = 1.
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A pure state |�〉 gives ρ = |�〉 〈� |. This means that

ρ2 = |�〉 〈� | �〉 〈� | = |�〉 〈� | = ρ. (C.3)

It thus follows that a pure state satisfies Tr(ρ2) = 1. On the other hand, a mixed state,
although satisfying Tr(ρ) = 1, has 0 < Tr(ρ2) < 1.

Suppose we start from a system in a pure state, we can partition the system into
two subsystems A and B. At the level of the Hilbert spaces, this means that the total
Hilbert space can be factorized as:

Htot = HA ⊗ HB . (C.4)

There are two types of pure states, namely the separable/product state, or the uncor-
related/unentangled state, in which the state can be written in the form:

|�〉 = |φ〉A ⊗ |ϕ〉B . (C.5)

If a state cannot be written in such a way, then it is a non-separable state, or an
entangled state. For mixed states, we likewise have separable states, in which the
total density matrix can be written in the form

ρtot =
∑
i

piρ
A
i ⊗ ρB

i , (C.6)

and the entangled states that cannot be so written.
Let us now consider a pure state with its total Hilbert space factorized intoHtot =

HA ⊗ HB . Let ψ(a, b) denote the wavefunction for the degrees of freedom in the
system. By integrating out the degrees of freedom in subsystem B we arrive at the
reduced density matrix

ρA = ρaa′ =
∑
b

ψ∗(a′, b)ψ(a, b). (C.7)

(More generally, ρA = TrBρtot). If we look at the subsystem separately, we will find
that they are both in a mixed state, but the entire system is in a pure state—we say
that “B is a system that purifies A”, or vice versa.

The density matrix in Eq. (C.7) contains all the statistical information about A. It
can be shown that, if A and B are sufficiently large, and if |A| � (1/2)(|A| + |B|),
where |A| denotes the “size” of the system,8 then for almost all states of A and B,
the density matrix ρA is the Boltzmann distribution. That is,

ρA = diag(e−βE1 , e−βE2 , · · · ) (C.8)

8Entanglement entropy is additive only if this inequality is satisfied, since as B gradually purifies
A, the entanglement entropy actually goes down.



Appendix C: Quantum Information 203

in the energy basis, where β is the inverse of temperature.
Naively speaking, a system is in amaximally entangled state if knowing everything

that can be known about the whole system does not give us knowledge about the
individual subsystem but only the correlation among them. More technically, we
define the entanglement entropy or von Neumann entropy as

S = −Tr(ρ log ρ). (C.9)

The entanglement entropy measures the degree of entanglement between two
subsystems.Apure state is trivially a product state, and sohas vanishing entanglement
entropy. Any state with non-zero entanglement entropy is said to be “entangled”. For
states like

1

2
(|ud〉 − |du〉 ) , (C.10)

(where |ud〉 denotes the state of two electrons, one with spin up and the other with
spin down), the densitymatrix works out to be ρ = diag(1/2, 1/2), and consequently
the entanglement entropy reads S = log 2. In fact the entropy achieves its maximum
for, and only for, the uniform probability distribution, so that any state satisfying
ρ = diag(1/n, . . . , 1/n), which yields S = log n, is said to bemaximally entangled.

The content of information is essentially the maximum allowed entropy minus
the actual entropy of the system.

C.2 Recovering Information from Hawking Radiation

In this significant sense quantum theory subscribes to the view that ‘the whole is greater than
the sum of its parts’.

–Hermann Weyl

This section is heavily based on the lecture notes of Harlow [2] and Hayden [3].
Consider a black hole formed from the gravitational collapse of a system which is
in a pure state. If the Hawking radiation is purely thermal and does not contain any
information, an asymptotic observer will measure a monotonically increase in the
entanglement entropy9 in the radiation SR . If we demand that information does come
out from a black hole to purify the radiation, so as to obtain SR = 0 at the end, then
a natural question to ask is: when does the quantum information start to come out?
This question is explored and answered by Don Page in [5], which was a follow-up
to his much earlier work [6, 7]. In this section, we will give a brief review of Page’s
works, which is of central importance in the black hole information loss problem.

First, let us write the Hilbert space of the out-going Hawking radiation states as
a bipartite system

9Due to the divergences in QFT, the entanglement entropy has to be normalized, see e.g., [4].
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Htot = HBH ⊗ HR
∼= C

b ⊗ C
r = C

d , d = br, (C.11)

where R denotes the early Hawking radiation and BH denotes the late Hawking
radiation (at an earlier time, these degress of freedom were in the black hole, hence
“BH”). Here we assume that the Hilbert spaceHR has dimension r , and the Hilbert
spaceHBH has dimension b. Thus the total Hilbert space has dimension d = br . We
assume that b and r are large.

Let us choose an arbitrary state |ψ〉 ∈ HBH ⊗HR at random, and ask: Does ρR =
TrB |ψ〉 〈ψ| depend on |ψ〉? That is, does the reduced density matrix in the radiation
contain any information about this particular state? If not, then no information is
released.

Recall that purity can be checked by calculating Tr(ρ2). Let us denote this sim-
ply as the purity (operator) P(ρ). We would like to estimate the expectation value
E[P(ρ)] by choosing |ψ〉 to be a Gaussian vector, that is

|ψ〉 =
∑
j,k

g jk | j〉BH |k〉R , (C.12)

where the g jk’s are independent complex Gaussian random variables (not to be con-
fusedwith ametric tensor!), g jk ∼ NC

(
0, 1

d

)
.We have,Eg jk = 0 andE|g jk |2 = 1/d.

Consequently,E|g jk |4 = 2/d2. (SeeBoxC.1 for an introduction to complexGaussian
variables).

The Gaussian state vector |ψ〉 is not normalized but we see that the expectation
of its norm is

E [〈ψ|ψ〉] = E

⎡
⎣∑

j,k

|g jk |2
⎤
⎦ = d · 1

d
= 1, (C.13)

and its variance is, by definition of the variance Var(X) := E[(X − E(X))2],

Var 〈ψ|ψ〉 = E

[
(〈ψ|ψ〉 − 1)2

]
(C.14)

= E

⎡
⎣
⎛
⎝∑

j,k

|g jk |2 − 1

⎞
⎠
(∑

m,n

|gmn |2 − 1

)⎤
⎦ (C.15)

=
∑

j,k,m,n

E

[∣∣g jk
∣∣2 |gmn |2

]
− 1 ∵ −E

⎡
⎣∑

j,k

|g jk |2
⎤
⎦− E

[∑
m,n

|gmn |2
]

= −2,

(C.16)

=
∑

( j,k)�=(m,n)

E

[∣∣g jk
∣∣2]E

[
|gmn |2

]
+
∑
j,k

E

[∣∣g jk
∣∣4]− 1 (C.17)

= (d2 − d)
1

d2
+ d

(
2

d2

)
− 1 = 1

d
. (C.18)
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Therefore, an arbitrarily chosen state vector |ψ〉 is “close” to being normalized with
norm 1+O(1/

√
d), but with a solar mass black hole, assuming that each Planck area

contains a bit of information, d ∼ 1077. Therefore we can carry on our calculation
even without normalizing the state vector.

Box C.1: Complex Gaussian Distribution in a Nutshell

A complex random variable ζ is said to be Gaussian if its real part, Re ζ,
and imaginary part, Im ζ, are jointly normal. Therefore, in general, a complex
Gaussian distribution has to be specified by 5 pieces of information: E[Re ζ],
Var[Re ζ], E[Im ζ], Var[Im ζ], and the covariance Cov[Re ζ, Im ζ]; or alterna-
tively, by two complex parameters: Eζ and

E[(ζ − Eζ)2] = Var[Re ζ] − Var[Im ζ] + 2iCov[Re ζ, Im ζ], (C.19)

together with the real parameter

E[|ζ − Eζ|2] = Var[Re ζ] + Var[Im ζ]. (C.20)

We say that a complex Gaussian variable ζ is centered if Eζ = 0, in which
case we can see that the distribution is totally determined by only two pieces of
information, namely, E[ζ2] and E[|ζ|2].

If ζ is distributionally equal to λζ for any λ ∈ C such that |λ| = 1, then
it is said to be symmetric. It can be shown that the following statements are
equivalent:

(1) ζ is a symmetric complex Gaussian variable,
(2) E[ζ] = 0, E[(Re ζ)2] = E[(Imζ)2], and E[Re ζ Im ζ] = 0,
(3) E[ζ] = E[ζ2] = 0,

For our case, since the g jk’s describe a quantum state (which corresponds to a
ray in a projective Hilbert space), it is symmetric. Therefore g jk ∼ NC

(
0, 1

d

)
can be specified only by two parameters: E[g jk] = 0 and E[|g jk |2] = 1/d.

For more details on complex Gaussian distribution and Gaussian Hilbert
spaces, see [8].

Next, we come to the most important theorem of this section:

Theorem 1 The expected purity of |ψ〉 is 1

r
+ 1

b
.

Proof The reduced density matrix of the radiation part is

ρR = TrBH |ψ〉 〈ψ| = TrBH
∑

j,k, j ′,k ′
g jkg

∗
j ′k ′ | j〉 〈 j ′|BHk

〉 〈
k ′∣∣

R (C.21)

=
∑
j,k,k ′

g jkg
∗
jk ′ |k〉 〈k ′∣∣ . (C.22)
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The purity is thus

P(ρR) = Tr(ρ2) = Tr

⎡
⎣∑

j,k,k ′
g jkg

∗
jk ′ |k〉 〈k ′∣∣ ∑

l,m,m ′
glmg∗

lm ′ |m〉 〈m ′∣∣
⎤
⎦ (C.23)

=
∑
j,k,l,m

g jkg
∗
jmglmg∗

lk . (C.24)

Therefore,

E[P(ρR)] =
∑
j,k,l,m

E
[
g jkg

∗
jmglmg∗

lk

]
(C.25)

=
∑
j,k

E[|g jk |4] +
∑
j �=l,k

E
[|g jk |2|glk |2

]+
∑
k �=m, j

E
[|g jk |2|gim |2] (C.26)

= br · 2

(br)2
+ (b2 − b)r · 1

(br)2
+ (r2 − r)b · 1

(br)2
(C.27)

= 1

r
+ 1

b
. (C.28)

�

Remark If the state vector is properly normalized, then the expected purity would

be
b + r

br + 1
, a small difference indeed for b, r � 1.

From the theorem we can conclude that: If b � r , then E[P(ρR)] ≈ 1/r , i.e.,
ρR is almost maximally mixed. In other words, typical states do not carry much
information! How, and when, does the information come out?

Let us define the Rényi entropy for a density operator ρ by

Sα(ρ) := 1

1 − α
log Tr(ρα), α � 0, α �= 1. (C.29)

Taking the limit α → 1, we can obtain the von Neumann entropy

S(ρ) ≡ S1(ρ) = −Trρ log ρ. (C.30)

Themost important property of the Rényi entropy is that it is non-increasing inα, that
is, whenever α � β, then Sα(ρ) � Sβ(ρ). This property can be proven by showing
that the derivative dSα/dα � 0. Therefore, in particular,

S(ρ) � S2(ρ) = − log P(ρ). (C.31)
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We thus obtain a relationship between the von Neumann entropy and the purity
operator. Taking expectation values then yields,

E[S(ρ)] � E[S2(ρ)] = − logE[P(ρ)]. (C.32)

For ρR , we therefore have,

E[S(ρR)] � − log

(
1

b
+ 1

r

)
. (C.33)

It turns out that S1 and S2 do not differ too much, and we obtain the following result:

E[S(ρR)] ≈

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

log r − r

b
, if r � b

log b − b

r
, if b � r.

(C.34)

From this,we see that information only comes out after the black hole has emitted half
of its Bekenstein-Hawking entropy. The entanglement entropy of the radiation first
grows linearly in time, just like one would expect if the radiation is purely thermal,
since SR is closely approximated by the coarse-grained entropy of the radiation
(Scoarse ∼ tTBH ). Eventually, the entanglement entropy reaches a maximum and
starts to reduce its value towards zero. The time at which the maximum value is
attained is called the Page time, while the entire graph is called the Page curve. The
black hole is said to be “young” before the Page time is reached, and is said to be
“old” afterwards. For old black holes, SR will be very close to the value given by the
coarse-grained entropy of the black hole, i.e., the Bekenstein-Hawking entropy.

For a Schwarzschild black hole, recall that the rate of change of its mass is

dM

dt
∝ −r2hT

4
BH . (C.35)

Strictly speaking the emitting surface is the one corresponding to the photon orbit
(assuming onlymassless particles are emitted—which is true until the black hole gets
sufficiently small near the final stage of its life), not the event horizon rh, but since
they are of the same order, and since our estimates here are not very careful anyway,
we should not be bothered by this subtle point. Solving the ODE in Eq. (C.35), we
get the mass of the black hole as a function of time:

M(t) = (M3
0 − 3At

) 1
3 , (C.36)

where A is a (dimension-full) constant, and M0 is the initial mass of the black hole.
The Bekenstein-Hawking entropy, as a function of time, is then,
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Fig. C.1 Left A black hole that is made from an initial shell of photons in a pure state eventually
evaporates into a cloud of Hawking particles. The short-dashed curve denotes the apparent horizon.
The Hawking radiation is split into an early part, R, and a late part, BH . The names are meant to
suggest that at some time the photons in R were already out in the radiation while the photons in
BH had yet to be emitted from the black hole. Right A Page curve for the Schwarzschild black
hole—the entanglement entropy in the radiation SR increases as the black hole evaporates until a
time of order tevap/2 (more accurately, 0.65tevap), at which point we have SR ≈ S0/2, where S0 is
the initial coarse-grained (Bekenstein-Hawking) entropy of the black hole. Eventually SR decreases
back to zero as the black hole evaporates away completely. The figures are adapted from [2]

SBH (t) = S0

(
1 − t

tevap

) 2
3

, (C.37)

where S0 is the initial Bekenstein-Hawking entropy of the black hole, and tevap is
the time it takes for the black hole to completely evaporates away (assuming no
remnant). Note that SBH (t) is not a linear function of t . We therefore obtained the
graph on the right of Fig. (C.1).

Since the time for the information to come out is about the same order as the black
hole lifetime,M3/�

2, which is, for large black holes, much larger thanM log(M/ l p),
which as we have seen in Box.1.4 of Sec. 1.4, is the time scale Alice has to send
an information to Bob before either of them crashes into the singularity. Therefore,
the black hole complementarity principle is safe for young black holes. However,
consider an old black hole, and consider that Bob already has in his control more than
half of the Hawking radiation before Alice jumps in, carrying a quantum bit with
her. This bit of information can come out quickly, at the order of the scrambling time
M log(M/ l p), so the complementarity principle is barely safe in this scenario [9].

Before we end this section, we explain another concept that one usually encoun-
ters in the literature—the mutual information, which is a measure of correlation
between quantum systems. For simplicity we will denote the entanglement entropy
of a subsystem A, S(ρA) as merely S(A). The definition of the mutual information
between two subsystems A and B is simply:
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I (A; B) := S(A) + S(B) − S(AB) (C.38)

where AB refers to the intersection of A and B. The mutual information I (A; B)

vanishes if and only if ρAB = ρA ⊗ ρB . For a maximally entangled state

|�〉 = 1√
dA

dA∑
j=1

| j〉A | j〉B , (C.39)

where dA is the dimension of the subsystem A, we have I (A; B) = 2 log dA − 0 =
2 log dA. Indeed, for all ρ, the mutual information satisfies

0 � I (A; B) � 2 log dA. (C.40)

An important property of mutual information is the so-called strong subadditivity,
namely, that

I (A; BC) � I (A; B), (C.41)

or equivalently,
S(AB) + S(BC) � S(B) + S(ABC). (C.42)

In the context of the firewall debate, one writes the total Hilbert space as

Htot = HBH ⊗ HR = HB ⊗ HH ⊗ HR, (C.43)

where HB is the Hilbert space of the “atmosphere” degrees of freedom consisting
of Hawking radiation between the horizon and the photon sphere (nowadays also
called “the zone”), and HH is the Hilbert space of the stretched horizon degrees of
freedom.

A smooth horizon requires a maximal entanglement between the late time Hawk-
ing pairs A (ingoing) and B (outgoing), whereas unitarity demands that B should
purify a subset of R, which we shall denote by RB . Thus, B is maximally entangled
with RB . This seems to be a violation of the monogamy theorem, which prohibits
quantum information from maximally entangling with more than one party. One can
also see a problem by looking at the mutual information. Since B and RB are max-
imally entangled, S(BRB) = 0. This in turn implies that S(ABRB) = S(A). Thus,
by Eq. (C.42), we have

S(B) + S(ABRB) � S(AB) + 0, (C.44)

that is,
S(B) + S(A) � S(AB). (C.45)

This yields, by the definition of the mutual information,
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0 � I (A; B) � 0 =⇒ I (A; B) = 0. (C.46)

Therefore ρAB must be of the form ρA ⊗ ρB , i.e., we are dealing with (uncorrelated)
product states. Since the field contents of both sides of the horizons are not correlated,
we have a firewall. (In other words, we have a contradiction with the assumption that
A and B are maximally entangled).

Finally we wish to make another important remark: Having information “leaking
out” of the black hole after the Page time does not necessarily mean that the radiation
spectrum is becoming non-thermal. One can have a thermal spectrum but not a
thermal state—that is, there are non-trivial correlations between the particles, but
the spectrum still looks thermal [10, 11].

C.3 Decoding Information from Hawking Radiation

The magic words are squeamish ossifrage.

–Plaintext of the message encoded in RSA-129, given in Martin Gardner’s 1977
“Mathematical Games” column about the RSA algorithm.

In this section we briefly explain the meaning of “decoding”. For much greater
detail, readers should refer to [2, 3]. A very simple model of information decoding is
depicted in the solid portion of Fig. (C.2). Consider the initial state of a black hole to
be |ξ〉, and an unknown quantum state |φ〉, which we throw into the black hole (BH)
as a message (M). The black hole scrambles this information beyond recognition
through a unitary operation V , and emits some Hawking particles (R). The black
hole thus reduces in size (BH’). To decode and recover the information of |φ〉 means
that there exists a process D consistent with quantummechanics such that the density
operator φ̃ obtained from D satisfies (for some suitable measure in the Hilbert space)

∫
dφ
〈
φ|φ̃|φ

〉
> 1 − ε. (C.47)

A stronger version is obtained by adding the dotted portion to the schematic diagram.
Here N is a so-called reference system or an auxiliary system, and one starts with
the quantum state

|�〉 = 1√
dM

dM∑
j=1

| j〉M | j〉N , (C.48)

where dM is the dimension of the Hilbert space of the message M . Here one can
think of M and N as a pair of maximally entangled particles with M dropped into
the black hole, while N remains outside (this can therefore model a Hawking pair).
To be able to decode the message means the following: there exists a process D such
that for any state |�〉—note that there is no averaging over states as before—we have
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Fig. C.2 A simple model of quantum information decoding from a black hole. Time runs vertically
in this diagram. This diagram is adapted from [3]. See also [9]

〈
�|�̃|�

〉
> 1 − ε. (C.49)

Remark De-correlating BH from N is necessary and sufficient for the existence of a
decoding process.

For a real black hole system with its Hilbert space factorized into the form

Htot = HB ⊗ HB ⊗ HR, (C.50)

any state |ψ〉 ∈ Htot can be written as [12]

|ψ〉 = 1√|B||H |
∑
b,h

|b〉B |h〉H UR |bh0〉R , (C.51)

where more explicitly,

|b〉B = |b1 · · · bk〉B , |h〉H = |h1 · · · bm〉H , (C.52)

and

|bh0〉R =
∣∣∣∣∣b1 · · · bkh1 · · · bm 0 · · · 0︸ ︷︷ ︸

r

〉

R

, (C.53)
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in which k,m, r are the dimensions of HB,HH and HR respectively. The operator
UR is a random unitary operator that scrambles the state |bh0〉R into a more compli-
cated one (more specifically, it relates the R-basis to the (Schmidt) basis in which
entanglement is manifest). To decode Hawking radiation means we must invert UR ,
a process that is highly non-trivial. In fact, Harlow and Hayden [12] proved that
with some reasonable assumptions, such a decoding process, if it exists, belongs to
a complexity class known as QSZK-hard, where QSZK is an acronym for Quantum
Statistical Zero Knowledge, and it would be very surprising indeed if the decoding
time is not exponential in the (Bekenstein-Hawking) entropy of the black hole.

Finally, we make some remarks about entanglement in the context of quantum
field theory (QFT). Usually we are more familiar with entanglement in quantum
mechanics, but it certainly also exists in QFT. Here we just want to point out a very
simple example: a free massive scalar field φ in Minkowski spacetime, with action
of the form (in the units c = G = � = 1):

S = 1

2

∫
d4x

(
∂aφ∂aφ + m2φ2) . (C.54)

Consider its ground state (i.e., vacuum state) |�〉, which is annihilated by all the
creation operators ak. Although the one-point correlation functions vanish identically

〈�|φ(t, x)|�〉 ≡ 0, (C.55)

the two-point functions do not vanish. In fact, one can show that for two spacelike
separated points x and y, we have [2]:

〈�|φ(0, x)φ(0, y)|�〉 = 1

4π2

m

|x − y|K1(m|x − y|) (C.56)

∼

⎧
⎪⎨
⎪⎩

1

|x − y|2 , if |x − y| � 1

m
,

e−m|x−y|, if |x − y| � 1

m
.

(C.57)

where K1 is a Bessel function, and 1/m is called the “correlation length”. The fact
that the two-point functions do not vanish is the result of the entanglement of different
regions of spacetime in the quantum field theoretic vacuum.

There is also the Reeh-Schlieder Theorem [13] in axiomatic QFT, which basically
says that by acting on the vacuum state |�〉 with elements of the von Neumann
algebra10 A(O) in some open spacetime region O, one can approximate any state
in the full Hilbert space of the QFT, as close as one wishes. This is one exploitation
of the entanglement between different spacetime regions. See [14] for a pedagogical
review on vacuum states and the Reeh–Schlieder Theorem.

10A von Neumann algebra is a ∗-algebra of bounded operators on a Hilbert space that is closed
in the weak operator topology and contains the identity operator. It is a special case of the better
known C∗-algebra.
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Afinal remark to bemade is that not everyone agrees about the Page curve analysis
we presented in this appendix in the context of a black hole. For example, in [15],
the authors mention that:

[...] Page curve argument is not able to be applied precisely to black hole evaporation.
Originally, the argument is based on appearance of almostmaximumentanglement in typical-
state models with huge degeneracy and small interaction. The models are proposed just for
exploring foundation of statisticalmechanics inmacroscopic systemswhich consist of a huge
number of the same-energy components interacting with each other via very small coupling
constants. However, many interacting systems like ordinary (uniformly distributed) spin
networks with finite dimensions do not satisfy this condition. The number density of states
usually increases very fast as energy increases. Thus the energy of “typical states” in the
Hilbert space is of almost the same order of the maximum energy of the system. If we ignore
the low-energy-state contribution, the standard analysis mean that two large complementary
subsystems have almostmaximumentanglement in a typical statewith typical energy, though
the energy is very high. [...] This may imply that the almost maximum entanglement cannot
be attained in ordinary low-energy states of quantum fields. Hence, in the context of firewall
arguments, it is naturally expected that the description of low-energy field theory does not
allow the almost maximum entanglement between two complementary subsystems. Thus
the Page curve picture may be inappropriate in cases with initial low-energy states.

See also, [16, 17].
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Appendix D
Brane-Pair Production via Seiberg-Witten
Instability

In this appendix, we introduce the readers to the Seiberg-Witten instability, which is
a string theoretic version of the Schwinger process. It involves brane-anti-brane pair
production that disrupts the geometry in the AdS bulk. The subtleties between the
Lorentzian analysis and that of the Euclidean version is clarified.

D.1 The Brane Action

But the beauty of Einstein’s equations, for example, is just as real to anyone who’s experi-
enced it as the beauty of music. We’ve learned in the 20th century that the equations that
work have inner harmony.

–Edward Witten

Most of the discussion in this appendix have previously appeared in [1, 2].
In view of the various applications of the AdS/CFT correspondence, black hole

solutions in AdS have received much attention in the literature [3]. In the original
formulation by Maldacena [4], it is conjectured that type IIB superstring theory in
AdS5 × S5 is dual toN = 4 SU(N ) super-Yang-Mills theory in (3+ 1)-dimensions.
This has since been generalized to other dimensions and other geometries (see the
discussion below). Many recent applications of holography do not even bother with
embedding the gravity theories in the bulk into string theory, but still managed to
obtain reasonable results.

In string theory, there are extended objects called branes; and the geometry of
spacetimes can be affected by the presence of branes. Seiberg and Witten showed
quite generically that if a certain function (the brane action) becomes negative, the
spacetime becomes unstable [5–7]. This analysis can be carried out in both the
Lorentzian signature as well as the Euclidean signature. However, there are some
subtleties involved that we will discuss in the next section.
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Given a BPS (Bogomol’ny-Prasad-Sommerfield11) brane � in Wick-rotated
d-dimensional spacetime (d = n+ 1), the Seiberg-Witten brane action in the appro-
priate units is a function of the radial coordinate r defined by (the probe brane has
dimension d − 2)

S[�(r)] = A(�) − (d − 1)V(�), (D.1)

where A is proportional to the area of � and V proportional to its volume.12 More
generally,

S[r ] = �(Brane Area) − μ(Volume Enclosed by Brane). (D.2)

Here � is related to the tension of the brane and μ relates to the charge enclosed by
the brane due to the background antisymmetric tensor field. For the experts in string
theory, this action is essentially the sum of the Dirac-Born-Infeld (DBI) term and
the Chern-Simons term [10]. Since the inequality involves the competition between
the area and the volume, it is some kind of “isoperimetric inequality”, a term used in
[10]. We remark that the type IIB backgrounds assumed here are of Freund-Rubin
type [11], i.e., the AdSn+1 × S9−n spacetime metric is supported by the background
antisymmetric field strength. In string theory, the existence of such a flux field natu-
rally induces compactification so that the full 10-dimensional spacetime reduces to
a product manifold AdSn+1 × S9−n where the factor S9−n is compactified.

We see that the action will become negative if the term proportional to the volume
is large. The most dangerous situation occurs when the charge μ attains its maximal
value: the BPS case with μ = n�/L . Explicitly, the Seiberg-Witten (Euclidean)
brane action is given by

S[r ] = � rn−1
∫

dτ
√

gττ

∫
d� − n�

L

∫
dτ
∫ r

dr ′
∫

d� r ′n−1√gττ
√

gr ′r ′ .

(D.3)
This action corresponds to a probe brane that we introduce to investigate the back-
ground fields and geometry of the bulk—this brane wraps around the black hole at
a constant radius r . One can think of t/L as an angular coordinate on the Wick-
rotated time direction, which is periodically identified with say, periodicity 2πP ,
chosen so that the metric is not singular at the horizon (the Euclidean origin). For an
asymptotically locally AdS static black hole in four-dimensions with metric (3.27),
for example, we get explicitly,

11The BPS condition [8] is some sort of extremality condition, we need not be concerned with the
details here.
12More precisely, we assume that there is a globally defined form fieldH such that the volume form
is exact: ω = dH. See also Footnote 13. Let � be a compact and orientable surface in M . It admits
a smooth unit normal, outward-pointing, vector field n. Let � have the orientation induced by n.
Orientability is required here to apply Stoke’s theorem. The brane action can then be defined as in
Eq. (D.1). The volume term V(�) is unique up to an additive constant, within a given homology
class [9]. We are mainly interested in � which is homologous to the boundary. See also [10].

http://dx.doi.org/10.1007/978-3-662-48270-4_3
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S[r ] = 2πPL�V [Xk
n]
[
r2 f (r)1/2 − r3 − r3h

L

]
, (D.4)

where V [Xk
n] is the dimensionless area of the event horizon, and f (r) = gt t (r). Since

the overall factor 2πPL�V [Xk
n] is positive, we often ignore this factor in stability

analysis. The Lorentzian action can be obtained via analytic continuation of the black
hole parameters in the usual way.

Seiberg and Witten showed that a non-perturbative instability occurs when the
action becomes negative due to uncontrolled brane productions [5, 6]. Brane-anti-
brane pairs are always spontaneously created from the AdS vacuum, a phenomenon
analogous to the well-known Schwinger effect in quantum electrodynamics [12],
with the rate of brane-anti-brane pair production being proportional to exp(−S)

where S is the Seiberg-Witten brane action. If the action becomes negative, the AdS
vacuum will nucleate brane-anti-brane pairs at an exponentially large rate instead of
being exponentially suppressed. This disrupts the background geometry so much so
that the spacetime is no longer described by the metric that we started with. That
is to say, the original spacetime is not stable if such brane-anti-brane production
is exponentially enhanced due to the “reservoir of negative action”. Seiberg-Witten
instability can occur, e.g., if the Seiberg-Witten brane action is negative at the large
r limit, which can happen when the boundary has negative scalar curvature [5].

This is of course a Lorentzian interpretation—in the Euclidean picture there is no
“onset of instability”, and no time scale, because there is no concept of time. We will
discuss this issue inmore detail in the next section. For now, let us just mention that to
appreciate the Seiberg-Witten instability in terms of brane and anti-brane dynamics in
the Lorentzian picture, one can refer to, e.g., [7]. It is also worthmentioning that prior
to the work of Seiberg andWitten, a work byMaldacena, Michelson, and Strominger
already pointed out that various AdS geometries are prone to such a drastic change,
a phenomenon which they referred to as AdS “fragmentation” [13]. Henceforth, in
the remaining discussion in this section, we only consider the Lorentzian action.

Note that the Seiberg-Witten instability applies to any spacetime of dimension
d = n + 1 � 4, even for string theory on Xn+1 × Y 9−n , where Xn+1 is an
(n + 1)-dimensional non-compact asymptotically locally AdS manifold (general-
izing AdSn+1) and Y 9−n is a compact manifold (generalizing Sn+1)13 [14].

As we have seen many times in this thesis, in asymptotically locally AdS space-
times, topological black holes (namely, black holes with non-spherical topology) can
have event horizon with positive, zero, or negative scalar curvature k. The positively
curved black holes include the usual Schwarzschild black hole with Sd−2 topology,
and also black holes of Sd−2/� topology, i.e., a quotient of Sd−2 by the action of
some discrete group �. Similarly, the event horizon of k = 0 and k = −1 black
holes have the topology of R

d−2/� and H
d−2/�, respectively.

13Again, we remind the readers that such a product manifold is supported by a Freund-Rubin type of
background antisymmetric tensor field. The requirement that Xn+1 has a well-defined; conformal
boundary guarantees that its volume form ω is exact: ω = dH for an n-formH, and dH is precisely
the background antisymmetric tensor field of the appropriate supergravity theory on Xn+1 .
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In the context of general relativity, it was shown that k = 1 black holes have
positive brane action, while for the k = −1 case, the brane action always becomes
negative and stays negative [15]. Therefore, positively curved black holes are stable
(of course being stable in the Seiberg-Witten sense does not preclude the possibility
that it is unstable due to other effects) but negatively curved ones are inherently
unstable (this is related to the fact that the negative scalar curvature at infinity causes
a certain scalar at the boundary to acquire an effective negative squared mass). Of
course the onset of every instability is associated with a time scale in the Lorentzian
picture, thus even unstable black holes could be effectively meta-stable [16].

Let us remark that, it now appears that the idea of holography and the AdS/CFT
correspondence is expected to arise in any consistent theory of quantum gravity (see
also [17]). In fact, in [18], it is remarked that:

[...] any consistent quantum theory of gravity must, on an AdS3 background, behave a lot
like string theory—so much so that we might reasonably call it string theory!

As the existence of holographic dualities is not contingent on the validity of string
theory, we expect that something similar, if not identical, to the Seiberg-Witten
instability is likely to be a feature in any quantum gravity theory that admits extended
objects (e.g., branes) propagating in asymptotically AdS spaces. Indeed, the stability
of topological black holes in the context of Hořava-Lifshitz gravity [19] has been
investigated in this manner [20], and it was found that in certain range of the so-
called detailed balance parameter ε (general relativity is recovered with ε = 1,
while Hořava-Lifshitz gravity with detailed balance condition corresponds to ε =
0), the black holes in Hořava-Lifshitz theory can have a brane action that is only
negative in some finite range of the radial coordinate. This is markedly different from
black holes in general relativity in which once the brane action becomes negative, it
always stays negative. A brane action with this property was previously found in the
context of cosmology by Maldacena and Maoz [21]. Such black holes are expected
to be unstable in the sense that backreaction is very likely to set in and the systems
eventually settle into some new, stable configurations.

The Maldacena-Maoz type instability that occurs in Hořava-Lifshitz gravity nat-
urally raises the suspicion that it could be due to the non-relativistic and Lorentz-
violating nature of Hořava-Lifshitz gravity. However, such an instability also arises
in the relatively simpler Einstein-Maxwell-Dilaton theory, which is a low energy
limit of string theory. In particular, extending the previous work in [22], it has been
shown that for dilaton coupling α > 1, asymptotically locally AdS charged dila-
ton Gao-Zhang black holes with flat horizon in five-dimensions have positive brane
action and thus are stable in the Seiberg-Witten sense [23]. For 0 < α < 1, there
is an instability of Maldacena-Maoz type. In both cases, the asymptotic behavior
of the brane action is logarithmically divergent in r for a finite value of α. In four-
dimensions, a similar result is obtained [2], except that the asymptotic behavior of
the brane action (for finite α) is not lograrithmically divergent, but instead diverges
linearly in r .
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D.2 Eucliean and Lorentzian Brane Actions

We know that God exists because mathematics is consistent and we know that the Devil
exists because we cannot prove the consistency.

–Andre Weil

As recently explained in [10], there is a fundamental consistency relation that holds
in Euclidean holography:

S∗
g = N

γ
S∗
b , (D.5)

where S∗
g is the (on-shell) gravitational action in the bulk, N is the number of colors

in the boundary theory, γ is the scaling exponent for the free energy of the boundary
theory, and S∗

b is the probe brane action. It turns out that the brane-anti-brane pair-
production due to the Seiberg-Witten instability is the Lorentzian interpretation of
such a consistency condition.

There are some subtle differences between the Lorentzian brane action and its
Euclidean counterpart. Consider as an explicit example, an electrically charged four-
dimensional black hole with a planar event horizon:

g(FAdSRN) = −
[
r2

L2
− 8πM∗

r
+ 4πQ∗2

r2

]
dt2

+ dr2

r2

L2
− 8πM∗

r
+ 4πQ∗2

r2

+ r2
[
dζ2 + dξ2

]
, (D.6)

where ζ and ξ are dimensionless planar coordinates, L is the asymptotic AdS cur-
vature radius, and M∗ and Q∗ are geometric parameters related to the mass and
electric charge per unit horizon area. The electric field of course has a corresponding
(dimensionless) electromagnetic potential form given by14

A = − Q∗

r L
dt. (D.7)

Under Wick-rotation to the Euclidean domain, since the time coordinate t is com-
plexified (t → i t), it is clear that Q∗ must also be complexified (Q∗ → − i Q∗), so
as to keep the potential as an invariant quantity under Wick-rotation.15 This means
that charge terms in the metric Q2/r2 will be Wick-rotated into −Q2/r2, with an

14Strictly speaking, we have to fix the gauge in such expressions (by adding certain constants to
the components of A) so that the Euclidean version of the potential form is regular everywhere. We
ignore this gauge-fixing issue here since it has no effect on our discussion. Interested readers are
referred to [24].
15This is required for technical reasons that we will not get into here—but one consequence for not
having A invariant is that things get messed up when magnetic charge is included.
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Fig. D.1 The Lorentzian
brane action of a sufficiently
charged planar black hole
becomes negative at some
point

overall minus sign.16 Therefore, the brane action in the Euclidean signature is in
general different from the Lorentzian one. This, in turn, means that it is possible that
the Euclidean brane action is everywhere positive, but the Lorentzian one becomes
negative at some point.

Note that in the dyonic case, i.e., when the black hole also carries a magnetic
charge density parameter P∗, the potential has the form

A = − Q∗

r L
dt + P∗ζ

L
dξ, (D.8)

and since ξ is not complexified underWick-rotation, neither should P∗. Rotation can
also give rise to complication. See [2] for a detailed treatment.

A sufficiently charged planar black hole will give rise to a negative brane action
in the Lorentzian signature (an example is shown in Fig. (D.1))—a fact that we have
relied upon to support the Harlow-Hayden conjecture in this thesis. In the Euclidean
signature, however, the brane action remains positive everywhere; an example corre-
sponding to the same black hole is shown in Fig. (D.2). Note that for both signatures,
the action necessarily vanishes at the horizon of the black hole.

This does not mean that there is a contradiction, but that one must interpret the
consistency conditions carefully. We proposed that holography is consistent if [2]

(a) the Euclidean brane action is well-behaved, and
(b) the Lorentzian brane action is also well-behaved, unless the system exists for

a sufficiently short period that any Lorentzian misbehaviour would not have
sufficient time to disturb the entire bulk geometry, particularly the vicinity of the
event horizon in the case of a black hole bulk spacetime.

16Therefore, notice that, the Euclidean approach of deriving the temperature of charged black holes
secretly involves rotating back to the Lorentzian signature after the calculation is done.
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Fig. D.2 The Euclidean
brane action of the same
spacetime in Fig.D.1 is
positive everywhere

Recall that in this thesis, we have also relied upon condition (b) above to argue
that monsters probably do not exist—they do not have a consistent holographic
description.
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