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Foreword

The early contributions to artificial satellite orbit theory were mostly made by
the celestial mechanicians, e.g., Brouwer, Garfinkel, Vinti and Kozai. Then, as
aerospace engineering curricula emerged, their astrodynamics graduates began to
make contributions. Most of the recent astrodynamics books have been written
by engineering graduates. This book, co-authored by a celestial mechanician, Ken
Seidelmann, and an astrodynamicist, Pini Gurfil, is a welcome addition to the
aerospace community as it merges the two backgrounds.

Chapter 1 begins with a short history of celestial mechanics and then transitions
to introductions to some of the key topics covered in the book. Topics included that
are not usually seen in astrodynamics books are stability, chaos, Poincaré sections,
KAM (Kolmogorov-Arnold-Moser) theory, and observation systems. Chapter 2
covers the basic math and physics concepts needed for the subjects in the book.
Chapter 3 provides an excellent discussion of coordinate systems and introduces rel-
ativity, a subject not usually included in astrodynamics books but certainly present
in celestial mechanics, e.g., the precession of Mercury’s perihelion. Chapters 4 and 5
provide a thorough discussion of the central force and two-body problems. Included
is a section on Einstein’s modification of the orbit equation. The focus of Chap. 6 is
initial orbit determination. Chapter 7 provides a thorough discussion of the N-body
problem and the integrals associated with this problem. Chapter 8 then addresses
the special case of the circular restricted 3-body problem (CR3BP). The coverage
of the CR3BP is more comprehensive than found in most astrodynamics books and
includes a discussion of families of periodic orbits. Chapter 9 is an introduction to
numerical procedures used in astrodynamics and celestial mechanics. This chapter
is not a comprehensive coverage and comparison of numerical integration methods
but an introduction to the methods needed to understand numerical methods and
error computation.

Chapter 10 begins a group of five chapters that this writer considers very
important for astrodynamics and celestial mechanics but is often not found in
astrodynamics books. I believe that the motion under the influence of conservative
perturbations, those derivable from a potential, is best addressed and understood
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viii Foreword

using Hamiltonian mechanics and perturbation methods such as Lie series. Chap-
ter 10 discusses the basics of Hamiltonian mechanics, canonical transformations,
generating functions, and Jacobi’s theorem and applies these to the two-body
problem. The focus of Chap. 11 is perturbation methods, and it begins with an
excellent discussion of the variation of parameters (VOP), which leads to Lagrange’s
planetary equations. Then, with the perturbations expressed as specific disturbing
accelerations instead of the accelerations obtained from a potential, Gauss’ vari-
ational equations are derived for the accelerations in the radial, transverse, and
orbit normal directions and the tangential, normal, and orbit normal directions.
Included is a discussion of Lagrange brackets, which are needed for the VOP. Also
in this chapter is the presentation of the Kustaanheimo-Stiefel variables. Using the
foundations developed in Chap. 10, Chap. 11 addresses the solution for the 3rd body
perturbations, atmospheric drag, and gravitational potential. Then Chap. 12 focuses
on the solution for motion about an oblate planet. There are many such solutions
beginning with Brouwer’s 1959 paper, and presenting even a few solutions would
be prohibitive. The solution presented here is the Cid-Lahulla radial intermediary.
Special perturbation (numerical integration) methods are the most accurate and
the general perturbation analytical methods, e.g, Brouwer’s solution, are the most
efficient. Chapter 13 presents the semianalytical approach, which is more efficient
than numerical integration and more accurate than the analytical solution. The
method is then applied to the four problems, a LEO satellite perturbed by drag,
frozen orbits, sun-synchronous and repeat ground track orbits, and the motion of a
geosynchronous satellite.

Chapters 10–13 address the problem of the motion of a space object under the
influence of forces derivable from a potential except for the section on the effects
of atmospheric drag. Chapters 14 and 15 consider the problem of the control of a
space object using both continuous and impulsive control. Chapter 14 considers the
control of specific types of orbits such as sun-synchronous orbits, frozen orbits, and
geosynchronous orbits, as well as gravity assists. Both impulsive and continuous
thrust control are addressed. Chapter 15 provides a very thorough coverage of the
well-known problem of optimal impulsive orbit transfers.

Chapter 16 addresses the problem of orbit data processing and presents batch
least squares and recursive filtering. Also discussed is the use of polynomials for the
compression/representation of ephemerides. Chapter 17 provides a summary of the
problem of space debris including probability of collision and collision avoidance
maneuvers. The book concludes with another discussion of main contributors to
celestial mechanics and the early pioneers of astrodynamics.

Entire books have been written on the subjects presented in many of the chapters
in this book. Thus, when writing a book on astrodynamics, there has to be a
balance between the amount of material presented and the necessary balance of
mathematical rigor and its application to the problem at hand. I believe this book
has achieved such a balance. There is a breadth of topics and each one is presented
with the necessary depth needed for the reader to understand the topic. The book can
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be used for a senior/1st-year graduate class in astrodynamics and also for a 2nd-year
graduate class in astrodynamics. It is a pleasure for me to write this Foreword and
recommend this book to the astrodynamics community.

Texas A&M University, College Station, TX, USA Kyle T. Alfriend





Preface

While astrodynamics is a relatively new science, celestial mechanics, dealing with
the motion of planets, satellites, comets, stars, and galaxies, is over three centuries
old, dating back to Kepler’s laws and Newton’s Principia. Celestial mechanics has
evolved into a myriad of approaches, methods, and results, some of which are the
bases for astrodynamics. Indeed, celestial mechanics and astrodynamics share some
fundamental tools, ranging from analytical dynamics to computer programs, used
for the calculation of spacecraft and planetary orbits.

In recent years, an unprecedented interest in celestial mechanics and astro-
dynamics has risen due to new space programs. Astrophysicists, astronomers,
space systems engineers, mathematicians, and scientists have been cooperating to
develop and implement groundbreaking space missions. Progress in the theory
of dynamical systems and computational methods has enabled development of
low-energy spacecraft orbits; significant progress in the research and development
of electric propulsion systems promises revolutionary, energy-efficient spacecraft
trajectories; and the idea of flying several spacecraft in formation may break
the boundaries of mass and size by creating virtual spaceborne platforms. The
problems with debris have been recognized and studied. All of these factors have
generated a growing interest in astrodynamics, a science devoted to understanding
and controlling the interaction between a spacecraft and the space environment.

Whereas there are many books dealing separately with celestial mechanics and
astrodynamics, one rarely finds a book dealing with these two topics in a unified
manner. The juxtaposition of celestial mechanics and astrodynamics is a unique
approach that is expected to be a refreshing attempt to discuss both the dynamics of
celestial objects and the mechanics of space flight. The purpose of this book is to
holistically describe methods and applications common to celestial mechanics and
astrodynamics. The book includes classical and emerging topics, manifesting the
state of the art and beyond. The book contains homogenous and fluent discussion
of the key problems, rendering a portrayal of recent advances in the field together
with some basic concepts and essential infrastructure in orbital mechanics. The
text contains introductory material followed by a gradual development of ideas
interweaved to yield a coherent presentation of advanced topics. The book presents
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xii Preface

the main challenges and future prospects for the two fields, in an elaborate,
comprehensive, and mathematically rigorous manner.

This book is designed as an introductory text and reference book for grad-
uate students, researchers, and practitioners in the fields of astronomy, celestial
mechanics, astrodynamics, satellite systems, space sciences, and astrophysics. The
purpose of the book is to emphasize the similarities between celestial mechanics and
astrodynamics and to present recent advances in these two fields, so that the reader
can understand the interrelations and mutual influences.

This book is of value to graduate students and academic researchers, for
its introduction of concepts in the field for future work and its comprehensive
discussion of the scientific and engineering state of the art; to university professors
teaching courses on orbital and/or celestial mechanics; to aerospace engineers, for
its discussion of advanced trajectory analysis and control techniques; to mathemati-
cians, for its discussion of nonlinear dynamics and mechanics; and to astronomers,
for its presentation of perturbation methods and orbit determination schemes. It is
also of value for commercial, economic, and space policymakers, as it presents the
forefront of space technology and science from a broad and innovative perspective.

Some of the developments in the book are based on the classical books by Danby,
McCuskey, Brouwer and Clemence, Kovalevsky, and Hildebrand. We cite these
authors throughout the text.

Haifa, Israel Pini Gurfil
Charlottesville, VA, USA P. Kenneth Seidelmann
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Throughout this book, we denote a vector w and a matrix W by a boldface font. By
default, w D kwk � kwk2 denotes the Euclidean norm. Ow denotes a unit vector,
i.e., Ow D w=w. We will use the notation ı=ıt for differentiation with respect to a
rotating frame and d=dt for differentiation with respect to a fixed frame.

The Lagrangian equilibrium points will be numbered according to the older
convention, in which L1 is the point exterior to the secondary body and L2 is the
interior point. In recent years, a different convention for numbering the Lagrangian
points has been widespread. Under this convention, L2 is the exterior point and L1
is the interior point.

We mostly use the following convention for denoting conservative specific
forces. For a position vector r and a potential function R, we choose the sign of
R such that Rr D rR. This is consistent with, e.g., Battin’s notation and will be used
in most parts of the book, unless specifically noted otherwise.

Upon a first occurrence of a term, we emphasize it using an italic font, for
example, the term Lagrangian point.

Finally, we elaborate below the main acronyms used throughout this book:
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Chapter 1
Introduction

1.1 Definitions

Celestial mechanics embraces the dynamical and mathematical theories describing
the motions of planets, satellites, one member of a double star pair around another,
and similar phenomena.

Dynamical astronomy includes celestial mechanics, plus galactic, stellar, and all
other studies of astronomical motions.

Astrodynamics is generally defined as the study of motion of artificial satellites,
where thrust is used to create and/or correct orbits (the term astrodynamics is
often attributed to R.M.L. Baker in the late 1950s). In particular, astrodynamics
constitutes the application of celestial mechanics, astroballistics, propulsion theory
and allied fields to the problem of planning and directing the trajectories of space
vehicles. Astrodynamics is now a well-recognized, stand-alone field of discipline
comprising many auxiliary fields including dynamical systems analysis, optimiza-
tion, control, estimation, numerical analysis, perturbation methods, Lagrangian and
Hamiltonian dynamics, geometric mechanics, and chaos.

The natural objects are composed of stars, which provide their own emissions
of energy and generally are more massive than 0.09 the mass of the Sun; planets,
which orbit around a star, reflect light, and are 0.001 the mass of the Sun or less
(planets are also now categorized as dwarf, minor, and extrasolar); moons, which
orbit around a planet; and comets, which generally have tails, can be long or short
periodic, or can make a first appearance.

The artificial bodies can be in orbit around the Earth, interplanetary objects going
to orbits around other bodies, or into orbit around the Sun. Objects revolve around a
point, so planets revolve around the Sun. Objects rotate about an axis, so the Earth
rotates. Each object creates a gravitational force on all other objects, which causes
perturbations in the motions of the objects.
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2 1 Introduction

In this chapter, we will present some background material, meant to provide the
reader with the context of this book. The topics discussed encompass fundamental
concepts in astrodynamics and celestial mechanics; orbital stability of celestial
bodies and artificial satellites; and observational data.

1.2 History

Celestial mechanics has a long and distinguished history. Many mathematical
developments were due to problems in celestial mechanics. Many advances can
be identified with specific people (IAU 2015). This will become apparent in the
different chapters of this book.

The ancient understanding of the solar system was based on the Earth being at the
center of the celestial motions, with the motions of the bodies being on epicycles.
Nicholas Copernicus proposed that the motions of the planets were around the Sun,
but still with epicycles to describe the motions.

Johannes Kepler used the observations of Tycho Brahe from the sixteenth century
to determine his laws of motion. In practice, the observations of Mars were the only
ones accurate enough for him to determine his laws. Kepler enunciated two laws in
1609, and the third law in 1619. The laws were the following:

1. The orbit of each planet is an ellipse with the Sun at one focus.
2. Each planet revolves so that the line joining it to the Sun sweeps out equal areas

in equal intervals of time (law of areas).
3. The ratio of the squares of the periods of any two planets is equal to the ratio

of the cubes of their mean distances from the Sun (this law is approximate, its
validity depends on the masses of the planets being small compared to the Sun’s
mass.)

Motion following these laws is called Keplerian motion. This is two-body motion,
and it is not accurate in the presence of other planets perturbing the motion.

These laws led Isaac Newton, and others, to the conclusion that the force
that keeps a planet in its orbit around the Sun varies inversely as the square
of the distance. Once Newton proved that gravitational attraction between two
homogeneous spheres could be calculated as if the masses of the spheres were
concentrated at their centers, progress in dynamical astronomy was clear and rapid.
The Law of Universal Gravitation by Newton is:

If two particles of masses, m1 and m2, are situated at a distance r apart, each
particle attracts the other with a force Gm1m2=r2, where G is a universal constant.
The forces act along the line joining the masses.

Newton’s Principia (Newton 1713) contains three dynamic postulates on which
subsequent analyses rests:

Newton’s 1st Law: A particle of constant mass remains at rest, or moves with
constant speed in a straight line, unless acted upon by some force.
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Newton’s 2nd Law: A particle subjected to the action of a force moves in such a
way that the time rate of change of the linear momentum equals the force.

Newton’s 3rd Law: When two particles act upon each other, the force exerted on
the second particle by the first is equal in magnitude and opposite in direction to
the force exerted by the second on the first.

Astrodynamics really started with the launch of Sputnik in 1957 and US
preparations for the launch of satellites. Paul Herget prepared the programs for orbit
calculations for the Vanguard project (Green and Lomask 1970) and those programs
were used for computations of the orbit of Sputnik from US observations. Herget’s
programs were continued for the Mercury and Apollo missions and continue today
in some NASA and military applications. Artificial satellite theories were developed
by Brouwer (1959), Vinti (1960), Musen (1961), Kozai (1962), and Garfinkel (1964)
among others. With time, the concepts of transfer orbits and gravity assists were
developed and will be described in the chapters of this book.

1.3 Properties of Conics

Conic, from a conic section, means any plane cross-section through a right circular
cone. Any plane cuts a cone in a conic and any conic can be so obtained. Also,
the general equation of the second degree in Cartesian coordinates is a conic, and
any conic can be represented by a Cartesian equation of the second degree. By a
suitable change of axes, we can usually reduce the general quadratic equation to
two variables in the form

ax2 C by2 C c D 0 (1.1)

The origin of the coordinates is called the center of the conic. The axes of the
coordinates are the axes of the conic, also the axes of symmetry.

Another definition of the conic leads to the general equation in polar coordinates.
The conic is the locus of points such that there is a constant ratio of its distance from
a fixed point to its distance from a fixed line. The fixed point is the focus; the fixed
line is the directrix; and the fixed ratio is the eccentricity.

For the polar coordinates equation, choose the origin at the focus, let the polar
angle, v, be measured from a line, OD, perpendicular to the directrix, which is at a
distance k from the directrix, as shown in Fig. 1.1.
Let P.r; v/ be a point on the conic; then, by definition,

r D e.k � r cos v/ or
p

r
D 1C e cos v (1.2)

where e is a constant ratio, eccentricity, and p D ek is the parameter of the conic; e
determines the shape, p determines the size, r has a maximum and minimum along
the line OD; the chord through O, perpendicular to OD, is the latus rectum, with
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Fig. 1.1 A conic

D
k

O

r

P

v

Directrix

a length 2p. The parameter p is referred to as the semilatus rectum (Danby 1962,
pp. 319–320).

1.3.1 The Ellipse, 0 < e < 1

The Cartesian equation of an ellipse can be written as

x2

a2
C y2

b2
D 1 (1.3)

where a and b are positive, a > b, x is the major axis, y the minor axis, a the
semimajor axis, and b the semiminor axis. The origin is on the x axis, the directrix
is parallel to the y axis, and the foci are S and S0, as shown in Fig. 1.2. We have the
relations

CA D CA0 D a; CB D CB0 D b; SA D q D a.1� e/; SA0 D q0 D a.1C e/
(1.4)

CS D CS0 D a e; p D a.1� e2/; b2 D a2.1 � e2/; SB D a (1.5)

The polar equation is

a.1� e2/

r
D 1C e cos v (1.6)

where v is called the true anomaly, and is also commonly denoted by f .
One can define an ellipse as the locus of P such that SP C S0P D constant D 2a. SP
and S0P make equal angles with the tangent at P.
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Fig. 1.2 An ellipse
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Fig. 1.3 A circle and an ellipse

The ellipse is the orthogonal projection of an auxiliary circle of radius a. Draw a
circle of radius a and choose a diameter AA0. From Q, draw a perpendicular QR, as
seen in Fig. 1.3, and make P such that PR

QR D b
a . P traces the ellipse with semiaxes

a and b. The area of the ellipse is 	ab. Let †QCA D E. The coordinates of P are
x D a cos E and y D b sin E. The angle E is called the eccentric anomaly. If e D 0,
the ellipse becomes a circle (Danby 1962, pp. 321–22).
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1.3.2 The Parabola, e D 1

As e goes to 1, a goes to infinity. Remembering that q D SA remains finite, we can
write

q.1C e/

r
D 1C e cos v (1.7)

Putting e D 1, the polar equation of the parabola is

r D q sec2
v

2
(1.8)

The size of the parabola is q; the semilatus rectum is 2q. The Cartesian equation
is

y2 D 4qx (1.9)

There is one focus at .q; 0/ and one axis, the x axis. Consider the ellipse and let
e tend to 1. The second focus tends to infinity; the tangent at P makes equal angles
with SP and the parabola axis, as shown in Fig. 1.4. This explains the focusing of
light by a parabolic mirror.

If we wish to have equations based on the variation of a single variable, or
parameter, the simplest case for a parabola is

x D qt; y D qt2 (1.10)

(Danby 1962, pp. 323–24).

Fig. 1.4 A parabola

q
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1.3.3 The Hyperbola, e > 1

The curve is not bounded, since r can become large. When r becomes large, v tends
to a value from

va D cos�1
�

�1
e

�
(1.11)

and we obtain a hyperbola, whose Cartesian equation is

x2

a2
� y2

b2
D 1 (1.12)

In this case, a and b are taken as positive; a can also be taken as negative. When x
and y become large, Eq. (1.12) is nearly the same as

� x

a
C y

b

� � x

a
� y

b

�
D 0 (1.13)

which is the equation of two lines through the origin. As r becomes larger, the
closer the curve resembles these lines; they are called asymptotes, and are shown
in Fig. 1.5. The directions given by va must be parallel to these asymptotes, so the
angle between the asymptotes is 2 cos�1 .�1=e/ or cos�1 �2=e2 � 1

�
.

The hyperbola has two branches, the polar equation gives only one. Comparing
Eq. (1.13) and Eq. (1.11), we find

tan�1
�

b

a

�
D cos�1

�
1

e

�
(1.14)

from which

b2 D a2.e2 � 1/ (1.15)

so that CA D a; AS D q D a.e � 1/.
The tangent at A cuts the asymptotes at points .�a;˙b/. The semilatus rectum is

p D a.e2�1/. The hyperbola is defined as the locus of P such that there is a constant
difference, 2a, between SP and S0P, so SS0 D 2c D 2ae. S and S0 are fixed points,
foci, as shown in Fig. 1.5. The Cartesian coordinates of any point on the hyperbola
are given by the parametric equations

x D ˙a cosh F; y D b sinh F (1.16)

(Danby 1962, pp. 324–26).
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b<a b=a b>a

A A’

S’S

Fig. 1.5 A hyperbola. The case a D b yields a rectangular hyperbola

1.4 Astronomical Background

In an orbit of one body about another, the least and greatest separations are indicated
by applying prefixes peri- and apo-, respectively, to the Greek word for the more
massive bodies. For a satellite around the Earth, the words are perigee and apogee.
For a planet around the Sun, it is perihelion and aphelion. For motion around any
star, the words are periastron and apastron; and for motion around a center of force,
pericentron and apocentron.

Time for a complete revolution in an orbit with respect to the stars is a sidereal
period. Due to the revolution of the orbit itself, many different periods can arise.
The positions with respect to the Sun and Earth in orbits of inner and outer
planets, as seen from the north pole of the ecliptic (the orbital plane of Earth about
the Sun; see Sect. 3.5.1 for an exact definition), are shown in Fig. 1.6. As inner
planets move around the Sun, their positions, as seen from the Earth, change from
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Fig. 1.6 The positions with respect to the Earth in orbits of planets as seen from the north pole of
the ecliptic

superior conjunction, when they are behind the Sun, to greatest eastern elongation,
to inferior conjunction, when they are between the Sun and the Earth, and to greatest
western elongation. Outer planets move from conjunction, when they are farthest
away beyond the Sun, to eastern quadrature, to opposition, when they are in the
opposite direction from the Sun, to western quadrature. Inner planets are visible at
elongations, and outer planets are visible for some time before and after quadratures.
The average time for a planet to return to the same position relative to Earth is the
mean synodic period. For a superior planet

1

sidereal period
C 1

synodic perid
D 1 (1.17)

For an inferior planet

1

sidereal period
� 1

synodic period
D 1 (1.18)

The unit being the sidereal year (the sidereal period of Earth).
We next discuss the stability of orbits, as well as notions related to the periodic

motion mentioned above.
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1.5 Stability and Chaos

The concepts of stability and chaos are of fundamental importance in celestial
mechanics and astrodynamics. There are formal definitions for different types of
stability and chaos (Belbruno 2004). However, the determination of the lack of
stability, or of the presence of chaos, does not mean that the objects cannot exist. For
example, our solar system is stable for some period of time and is in computational
chaos after an extended period of time, but our solar system exists now.

We can describe systems as being deterministic, if we can calculate their past
and future motions, when we know all the forces acting on them. Systems are not
deterministic, if their past or future motion cannot be determined unequivocally.

Physical systems can be described by continuous or discrete models. The
variation of a set of coordinates can be provided as a continuous function of time
or at discrete intervals of time. A physical system can be described by differential
equations, whose solution is a function of time, which varies continuously. A
discrete model of a system can be written using a mapping, which selects time
according to an iteration index over a set of integer numbers.

A definition of chaos is that, given a set of initial conditions, a small change in the
initial conditions can lead to an indeterminate change in the past or future motion.
The three-body problem, modelling the motion of three mutually-attracting bodies,
has led to many studies of stability. The restricted three-body problem, which is a
three-body problem wherein one of the masses is infinitesimally small compared to
the other two, attracted the attention of mathematicians such as Poincaré, who was
an early investigator of the restricted three-body problem and the related stability
issues, in particular those concerning the circular restricted three-body problem, in
which the two massive orbiting masses follow circular orbits about their common
center of mass.

1.5.1 Three-Body Problem

The three-body problem has led to many studies of stability and chaos. Sundman
developed a series solution, but its convergence is so slow that it is not useable.

Many determinations of stability are for the three-body problem. Euler and
Lagrange found specific solutions to the three-body problem, which are now
referred to as the Lagrangian points. Three of the solutions are for positions of
the small body on a straight line with the two massive bodies, exterior to the two
bodies or between them. These are the L1, L2, and L3 points, and have been shown
to be unstable. The other two points are at the vertices of an equilateral triangle
and labeled the L4 and L5 points. These are stable orbits, and bodies have been
discovered at these points for three-body systems involving the Sun and planets in
the solar system; these are referred to as Trojan orbits.
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1.5.2 Solar System

The solar system has led to many studies of stability and chaos. Some of this is
based on n-body studies and others specifically on our solar system. Very long term
integrations show a lack of determination of positions in the solar system, so the
system is chaotic. Attempts to determine the history of the solar system and how
the bodies move within the solar system, for example from the Oort cloud into the
Kuiper belt and into the inner solar system, show that relatively stable orbits can
change quickly, primarily through the change in the eccentricity of the orbit.

Until the later part of the twentieth century, our solar system was the only one
known. With the discovery of extrasolar planets, first individual planets around
other stars became known, and then multiple planets around individual stars—other
solar systems—became known. The variety of the sizes and distributions of the
planets has led to questions concerning how solar systems are formed and how they
evolve with time. The existence of a solar system alone does not prove its stability.
There is, of course, particular interest in planets that exist in the habitable zone
around a star.

1.5.3 Resonances, Singularities and Regularization

There are many resonances between the motions of celestial bodies. These are cases
where the mean motion of one body, multiplied by a small integer, is almost equal
to the mean motion of another body, multiplied by another small integer. The small
integers are usually single digits. In the main asteroid belt, these resonances cause
what are called the Kirkwood gaps. In the rings of Saturn, there are the Cassini
divisions. Among the planets, the resonances lead to long-period, large-amplitude
perturbations. The resonances also lead to tidal locking, such that, for example,
the same side of the Moon always faces the Earth. In perturbation theory, these
resonances lead to small divisors in the denominator of the series of the perturbation
theory and prevent convergence of the series.

In the three-body problem the source of instability is singularities, which
are based on collisions between bodies. These singularities can be eliminated
by regularization. So regularizations have been developed to avoid instabilities.
Regularization aims to reduce singular differential equations to regular differ-
ential equations. The regularizing transformations are used when two or more
bodies approach a collision. The elementary regularizing methods are Levi-Civita,
Kustaanheimo-Stiefel, and Birkhoff transformations (Stiefel and Scheifele 1971;
Kustaanheimo and Stiefel 1965; Celletti 2010).
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1.6 Stability Determination

Various methods of calculating measures of stability have been developed and
computer applications of these methods have led to faster calculation techniques.
Poincaré was one of the first to formalize such techniques, and he inspired a number
of people to follow his lead.

One way to investigate the dynamical behavior of a system is by mapping
techniques. A number of these have been developed, such as the logistic map, the
standard map, the dissipative standard map, Hénon’s map, and the Poincaré map
(Celletti 2010).

1.6.1 Poincaré Surface of Section

When dealing with a set of equations of motion consisting of two simultaneous,
nonlinear, second-order differential equations, the solution consists of values of
x; y; Px and Py at a sequence of times, where the quantities denote the position and
velocity vectors in the rotating reference frame. The values of x; y; Px and Py at any
given time correspond to a single point in a four dimensional phase space. The path
of the particle is confined to a surface. Thus, we only require three of the quantities
to define the orbit at that time uniquely. If we define a plane, for example y D 0,
in the three dimensional space, the values of x and Px can be plotted every time
y D 0. This is the Poincaré surface of section, or the Poincaré map. This technique
can be used to show the regular and chaotic regions in the restricted three-body
problem. The points are only plotted when the trajectory intersects the surface in
a particular direction. For regular orbits, a pattern develops with distinct islands,
which are a characteristic of resonant motion. For chaotic motion, the points cover
a larger region of the phase space. Also, the points do not fall on a smooth curve;
they fill in an area of the phase space (Murray and Dermott 1999).

1.6.2 Hill Stability

The concept of Hill stability is expressed in terms of the Hill sphere. An astronomi-
cal body’s Hill sphere is the region in which it dominates the attraction of satellites.
To be retained by a planet, a moon must have an orbit that lies within the planet’s
Hill sphere. That moon would, in turn, have a Hill sphere of its own. Any object
within that distance would tend to become a satellite of the moon, rather than that
of the planet itself. One simple view of the extent of the Solar System is the Hill
sphere of the Sun with respect to local stars and the galactic nucleus.

In more precise terms, the Hill sphere approximates the gravitational sphere
of influence (SOI) of a smaller body in the face of perturbations from a more
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massive body. It was defined by the American astronomer George William Hill,
based upon the work of the French astronomer Édouard Roche. For this reason, it
is also known as the Roche sphere. The sphere of influence is a two-body concept,
which geometrically defines the region where a celestial body would be an attractor
in the presence of solar gravitation. In a sense, it defines the border after which an
object departing a planet would be considered having reached infinity. The sphere
of influence radius can be approximated using the formula

rSOI D
�

Mplanet

Msun

� 2
5

rplanet (1.19)

where M denotes mass and rplanet is the distance between the planet and the Sun.
The Hill sphere extends between the Lagrangian points L1 and L2, which lie

along the line of centers of the two bodies. The region of influence of the second
body is shortest in that direction, and so it acts as the limiting factor for the size
of the Hill sphere. Beyond that distance, a third object in orbit around the second
(e.g. Jupiter) would spend at least part of its orbit outside the Hill sphere, and would
be progressively perturbed by the tidal forces of the central body (e.g. the Sun),
eventually ending up orbiting the latter.

The Hill sphere is only an approximation, and other forces (such as radiation
pressure or the Yarkovsky effect) can eventually perturb an object out of the sphere.
This third object should also be of small enough mass that it introduces no additional
complications through its own gravity. Detailed numerical calculations show that
orbits at, or just within, the Hill sphere are not stable in the long term; it appears
that stable satellite orbits exist only inside 1/2 to 1/3 of the Hill radius. The region
of stability for retrograde orbits at a large distance from the primary, is larger
than the region for prograde orbits at a large distance from the primary. This was
thought to explain the preponderance of retrograde moons around Jupiter; however,
Saturn has a more even mix of retrograde/prograde moons, so the reasons are more
complicated.

1.6.3 Lyapunov

One measure of stability is the Lyapunov time, which is the time period on which
a dynamical system is chaotic. Thus, the Lyapunov time indicates the limits of the
predictability of the system. Formally, it is the time for the distance between nearby
trajectories of the system to increase by e. The Lyapunov time, named after the
Russian mathematician Aleksandr Lyapunov, is used in celestial mechanics for the
stability of solar systems and elsewhere for computational uncertainties.

The rate of separation of infinitesimally close trajectories can be characterized
by the Lyapunov characteristic exponent (LCE). There is a spectrum of Lyapunov
exponents, equal in number to the dimensionality of the phase space. It is common
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to refer to the largest one as the maximal Lyapunov exponent (MLE), because it
determines the predictability of a dynamical system. The fast Lyapunov indicator
(FLI) obtains the value of the MLE at a fixed time. Comparing the FLIs as the initial
conditions are varied allows distinguishing between different kinds of motion; for
example, regular, resonant, or chaotic (Froeschlé et al. 1997).

1.6.4 Kolmogorov-Arnold-Moser Theorem

Kolmogorov (1954), and then Möser (1962) and Arnold (1963), provided the break-
throughs that have led to what is called KAM theory. It allows the proof of persistent
invariant tori. The implementation of computer-assisted KAM proofs has permitted
obtaining realistic results in simple models, like the planar circular restricted three-
body problem. KAM theory provides a lower bound on the persistence of invariant
tori, and the converse KAM theory gives an upper bound on the non-existence
of invariant tori. Just above the critical breakdown threshold, the invariant tori
transform into invariant Cantor sets or Cantori (Percival 1982; Celletti 2010).

The KAM theorem is a result in dynamical systems about the persistence of
quasiperiodic motion under small perturbations. The theorem partly resolves the
small-divisor problem that arises in the perturbation theory of classical mechanics.
The problem is whether or not a small perturbation of a conservative dynamical
system results in a lasting quasiperiodic orbit. The original breakthrough to this
problem was given by Andrey Kolmogorov in 1954. This was rigorously proven
and extended by Vladimir Arnold (in 1963 for analytic Hamiltonian systems) and
Jurgen Möser (in 1962 for smooth twist maps), and the general result is known as
the KAM theorem. The KAM theorem, as it was originally stated, could not be
applied directly as a whole to the motions of the solar system. However, it is useful
in generating corrections of astronomical models, and to prove long-term stability
and the avoidance of orbital resonance in the solar system. Arnold used the methods
of KAM to prove the stability of elliptical orbits in the planar three-body problem.

The KAM theorem is usually stated in terms of trajectories in phase space of
an integrable Hamiltonian system. In general, we say that a dynamical system is
integrable if the number of independent constants of motion, or integrals of motion,
is equal to the number of degrees of freedom. The system will be super-integrable
if the number of constants of motion exceeds the number of degrees of freedom.
The motion of an integrable system is confined to a doughnut-shaped surface, an
invariant torus. Different initial conditions of the integrable Hamiltonian system will
trace different invariant tori in phase space. Plotting the coordinates of an integrable
system would show that they are quasiperiodic.

The KAM theorem states that if the system is subjected to a weak nonlinear
perturbation, some of the invariant tori are deformed and survive, while others are
destroyed. The ones that survive are those that meet the non-resonance condition,
i.e., they have “sufficiently irrational” frequencies. This implies that the motion con-
tinues to be quasiperiodic, with the independent periods changed (as a consequence
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of the non-degeneracy condition). The KAM theorem specifies quantitatively what
level of perturbation can be applied for this to be true. An important consequence
of the KAM theorem is that for a large set of initial conditions, the motion remains
perpetually quasiperiodic.

The methods introduced by Kolmogorov, Arnold, and Moser have developed
into a large body of results related to quasiperiodic motions. Notably, it has been
extended to non-Hamiltonian systems, to non-perturbative situations, and to systems
with fast and slow frequencies.

The non-resonance and non-degeneracy conditions of the KAM theorem become
increasingly difficult to satisfy for systems with more degrees of freedom. As the
number of dimensions of the system increases, the volume occupied by the tori
decreases.

As the perturbation increases and the smooth curves disintegrate, we move from
KAM theory to Aubry-Mather theory, which requires less stringent hypotheses and
works with the Cantor-like sets (Celletti 2010).

1.6.5 Spacecraft Orbit Stability

Artificial satellites and interplanetary missions introduced a new category of
stability studies, with the added feature that the spacecraft could have a propulsion
system on board to alter the orbit.

For satellites around the Earth, there are a number of forces acting to change
the orbits. These include atmospheric drag, solar radiation pressure, oblateness,
and the gravitational pull of the Moon and the Sun, referred to as the lunisolar
perturbation. Also there are resonances to consider.

For interplanetary missions, the perturbations of the solar system bodies have
to be considered, and the shapes and gravity anomalies of the bodies need to be
considered as well. The gravity assists of bodies can be used to alter the trajectory
and achieve a different orbit without the use of propellant.

1.7 Chaos Determination

The availability of computers and the development of numerical experiments led to
tests of long time-period orbital evolutions and the identification of chaotic orbits.
Chaos can be studied in the circular restricted three-body problem or the solar
system. For the circular three-body problem, the different mappings and tests of
chaos indicators are applicable. Examples of chaos indicators are the LCE and
FLI mentioned previously, the mean experimental growth factor in nearby orbits,
the smaller alignment index, and the spectral analysis method (Dvorak and Lhotka
2013).
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For the solar system, a map of the n-body problem is needed. Wisdom and
Holman (1991) developed a map that is quick and symplectic in nature, which results
in no secular changes in the energy of the system. This map is the Hamiltonian of
the gravitational n-body problem, where the solution for a system of n mutually-
perturbed bodies is found. To derive the map, the Hamiltonian is separated into
a Keplerian part and an interaction part. In order to achieve the separation, a
new system of variables, called the Jacobian coordinates, are chosen (Murray and
Dermott 1999, pp. 440–448). The use of symplectic integrators, preserving the
symplectic structure of the integrated dynamical system, has become widespread.

Long-period integrations of the solar system were done by Sussman and Wisdom
(1988) and Wisdom and Holman (1991). By generating a system of averaged
equations, using terms from the disturbing function, which approximate the real
system, the equations can be integrated using a much longer time step; a step
size of 40 days for the outer planets can be replaced with a 500-year step. Laskar
(1994) investigated the planetary orbits for 10 billion years in the past and 15 billion
years in the future. This showed couplings of Earth and Venus in eccentricities and
inclinations, and chaotic variations in Mercury and Mars. Laskar (1994) also carried
out further integrations by shifting the initial position of the Earth. These studies
show that the planets, except possibly for Mercury, remain close to their current
orbits for about a billion years or more, although they are technically chaotic.

In summary, these studies lead to the concept of marginal stability of the solar
system. The solar system is unstable, but catastrophic phenomena leading to the
destruction of the solar system can take place only in a time comparable to the
age of the solar system, about 5 billion years. Thus, it is possible to suppose that
the chaotic evolution of the orbits was a part of the process for structuring the
system. There could have been additional bodies, but the system would have been
more unstable, and a collision or ejection could have taken place. Thus, the system
evolved into a more stable system. In the outer planets, the direct gravitational short
period perturbations are more significant. So particles among the outer planets do
not remain beyond a few hundred million years.

Applying these results to exoplanet systems, if the planetary formation from
planetesimals is correct, planetary systems will be in a state of marginal stability.
So at the end of the formation phase, a great number of bodies may remain, but the
system will be unstable, leading to collisions or ejections. If a system exists with
one or two planets, a multitude of small bodies will also remain, which have not
been evacuated by gravitational instabilities (Laskar 1996).

1.8 Observational Data

Observational techniques have evolved over the years. We will primarily deal
with positional and distance measurements necessary to be able to determine the
positions and motions of objects.
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Prior to about 1830, positional observations were of limited accuracy. With the
advent of improved star catalogs, the observations of the planets improved signifi-
cantly. The earliest observations were made with transit or meridian instruments,
which were used to determine star and planetary positions. Optical positions of
faint objects were observed visually. Circa 1900, photographic techniques were
introduced and the plates were measured with measuring machines. In the 1960s,
radar became available for measuring the distances to the Moon, Venus, and Mars.
It was also the technique of choice for observing uncooperative artificial satellites.
Artificial satellites with transmitters can be observed directly, and their velocities
determined from the Doppler effect.

In the mid 1960s, laser ranging became available and retroreflectors were
placed on satellites and the Moon to provide very accurate distance measures
between specific points. In the late 1970s, Charge Coupled Devices (CCDs) were
developed and could be used for astronomical observations. A CCD camera,
the Widefield/Planetary Camera, was selected for the Hubble Space Telescope,
and this promoted the development of the CCDs for astronomy. In the 1980s,
Very Long Baseline Interferometry (VLBI) was developed for observations of the
positions of distant radio sources. Also optical interferometry was developed as a
method of obtaining much more accurate positional measures of optical sources
(Kovalevsky and Seidelmann 2004). Over the years, infrared sensitive detectors
have been developed that permit observations of natural and artificial objects. The IR
observations have an advantage in being more sensitive to warm and redish objects.

The use of artificial satellites, as a means of determining accurate positions and
motions on the Earth or around the Earth, led to the Global Navigation Satellite
Systems (GNSS), and most specifically the Global Positioning System (GPS), which
is now used for navigation and positioning worldwide, for the determination of the
kinematics of the Earth, and for measuring terrestrial coordinates.

1.8.1 Transit Circle

Transit or meridian circles were used to develop star catalogs, observe solar
system body positions, and determine the local time. With the availability of
the telegraph and time signals from national services, the use of local transit
instruments to determine local time declined and most positional observations were
made by national observatories. International cooperation in the standardization of
ephemerides, astronomical constants, star catalogs, and time scales developed in
the beginning of the twentieth century. The transit circles were the source of star
positions, the celestial reference frame, and solar system observations, and remained
the primary sources of observations of the outer planets until the 1990s (Urban and
Seidelmann 2012, pp. 316–319). The observations of star positions with the transit
circles ended with the availability of the Hipparcos Star Catalog, whose positional
observations were much more accurate than could be achieved with transit circle
observations.
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1.8.2 Photographic

With the availability of photographic observations, the capability to observe fainter
objects made it possible to achieve astrometric studies for parallaxes, of faint
satellites, and fainter star catalogs. Full sky surveys were now possible. There are
now archives of plates that permit searches for historical observations of newly
discovered objects to improve their orbits.

1.8.3 Radar Observations

After World War II, radar became available. After Sputnik, means of observing
satellites were introduced. As larger antennas were developed, the ability to use
radar for observing distance measures to the nearby planets was possible. This
provided both the means of greatly improving the ephemerides of these planets,
but also the ephemeris of the Earth. The accuracy of the measures was limited by
the variations in the terrain of the targeted planets (Urban and Seidelmann 2012,
pp. 317–325).

With the launch of Sputnik, the initial satellite observations were all optical, as
radar equipment was not available for such observations. The US Navy developed
the capability of a radar fence across the southern United States, so that any satellite
passing over that fence would be detected. That Naval Space Surveillance Fence
operated, with upgrades, from about 1960 until 2013. A new, more capable fence is
being developed in 2015. A group of radars were developed both to detect possible
launches of intercontinental missiles, and also to observe artificial satellites and
maintain catalogs of these satellites. Both the US and Russia developed systems
for the observation and cataloging of artificial satellites.

1.8.4 Laser Ranging

The advent of lasers led to the development of corner cubes that would reflect the
laser beam directly back to its source.

The US Apollo missions to the Moon and the Russian lunar missions were
opportunities to place scientific instruments on the Moon. A logical instrument to
place there was a laser retroreflector that permitted measuring the precise distance
between an observatory on the Earth and that reflector on the Moon. The problem
was that the reflected signal would be very weak and the photons would be mixed
in with photon noise. So sophisticated means had to be developed to sort out the
reflected photons from the many other photons being detected. With time the lasers
improved, the detection methods improved, and the accuracies currently are at
the centimeter level. The lunar laser ranging measures have been used to greatly
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improve the lunar ephemeris, study the kinematics of both the Moon and the Earth,
determine the parameters of general relativity, and determine the values of the
Universal Time UT1 (Kovalevsky and Seidelmann 2004), to be discussed in Chap. 3.

The lasers and corner cubes led to the development of artificial satellites that
were round with corner cubes on the surface and in stable orbits. Observations of
these satellites, such as LAGEOS, were excellent for geodetic studies.1

With increased laser power, it has become possible to observe large objects
in Earth orbit with lasers. These observations can contribute significantly for
determination of the orbits of these objects.

1.8.5 VLBI

In the 1980s, VLBI, mentioned above, was developed. Organizations with a
large radio antenna obtained the VLBI recording equipment and correlators were
established at some organizations. A schedule of observations was developed, so
several antennas would be observing the same radio source at the same time. By
correlating the observational data recorded on large magnetic tapes, the difference in
the times of the observations could be determined and, hence, the angle to the object
with respect to the baseline between the antennas was determined very accurately.
By this means the locations of a number of radio sources could be determined. The
radio sources were very distant from the Earth and, hence, not subject to detectible
motions. The one problem was to determine whether there were any changes in the
source structure of the radio sources. The catalog of these objects was independent
of time, since they were not moving (Urban and Seidelmann 2012, pp. 175–177).
From the observations, the kinematics of the Earth could be solved and a celestial
reference frame, independent of epoch, established.

The Earth orientation parameters were determined from optical observations,
mostly Photographic Zenith Tubes (PZTs), since the discovery of the variability in
the rotation of the Earth. Laser ranging to satellites and the Moon contributed to the
determination of the parameters. When VLBI observations became available, they
provided a much more accurate source of the Earth orientation parameters. All of the
parameters, Earth rotation, polar motion, precession, and nutation, which we discuss
in Chap. 3, could be determined from the VLBI observations and more accurately
than from other observations (Urban and Seidelmann 2012, pp. 175–186).

As the sensitivity and accuracy of the VLBI observations improved, it became
possible to make observations of spacecraft at planets and achieve more accurate
observations than could be made with optical means. These observations could
be added to other spacecraft observations to improve the ephemerides (Urban and
Seidelmann 2012, pp. 320).

1See http://ilrs.gsfc.nasa.gov/missions/satellite_missions/current_missions/lag1_general.html.

http://ilrs.gsfc.nasa.gov/missions/satellite_missions/current_missions/lag1_general.html
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Recently, the Chinese have sent spacecraft to the Moon and have used VLBI
observations of the spacecraft signals to determine the spacecraft orbit. By trans-
mitting the observational data from the antennas directly to the correlator, the data
could be reduced and positional observations determined in 5 min.

1.8.6 CCDs

CCDs, mentioned above, started to become available in the 1970s. Their availability
was initially very limited, but increased during the 1980s. The use of CCDs in
cameras for everyone, and their many other applications, pushed the technical
developments of CCDs. The CCDs are much more efficient with 60 %–90 % of the
photons being recorded, as opposed to less than 10 % for photographic plates. Also,
the increase in the detection is linear with time for CCDs, while photographic plates
do not have that characteristic. Eventually, the availability of CCDs greatly reduced
the use of photographic plates, such that in the 1990s it became impossible to obtain
photographic plates for astronomy.

The quality of the CCDs improved significantly and the costs were greatly
reduced. Now, CCD cameras for astronomy are readily available, most observatories
have CCD cameras, and many amateurs use them for astrometric observations and
astronomical photographs. Recent developments in the CCD technology have led
to CMOS detectors, which are similar to CCDs, but permit reading out individual
pixels, rather than the CCD sequential reading out of the columns and rows of the
entire CCD. Hence, a pixel that is observing a bright star can be read out before it
saturates, and the observation of the field of stars continues uninterrupted.

By observational techniques of combining the tracking rate of the telescope
and the charge transfer rate within the CCD, observations of moving artificial
satellites and star backgrounds can be obtained with stellar images of the satellite
and the stars, and tracking images of the objects combined on a single image. These
observations can be repeated to get multiple measured positions of the satellite
during its track across the sky.

The astrometric observations with CCDs are much faster, reach much fainter
stars, and more accurate. The need for a measuring machine is eliminated as the
CCD locations can be determined directly for the observational data. A dynamical
range of magnitudes can be achieved by obscuring masks, multiple exposures of
different lengths, and other techniques. The accuracies of the measurements can be
optimized by the centroiding techniques in the measurements of the images.

The use of CCDs permitted making much better images of astronomical phenom-
ena and combining images taken with different filters to produce outstanding color
images of objects. The combined astrometric accuracy with faint images permits
studies of astrophysical activity.
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1.8.7 Optical Interferometry

While radio interferometry is done over long distances with the observations
recorded and then sent to a correlator for processing, optical interferometry is at
optical wavelengths and done over connected optical paths with a delay line to
combine the two images temporally, and achieve optical fringes that indicate the
time delay is correct. Optical interferometers have been developed over the past 30
years for imaging and astrometric measurements. Some interferometers are arrays
of small telescopes, others are large telescopes combined with smaller telescopes
(Kovalevsky and Seidelmann 2004, pp. 18–21).

The Naval Prototype Optical Interferometer (NPOI), now the Ken Johnston
Naval Precise Optical Interferometer, was developed on Anderson Messa outside
Flagstaff, Arizona. It is a joint project of the US Naval Observatory (USNO) and
the Naval Research Laboratory. It is an array of telescopes on three legs designed
to achieve both imaging and astrometric observations. The astrometric accuracy is
limited by the atmospheric effects on optical observations.

The Large Binocular Telescope (LBT) is designed to do both imaging and optical
interferometry, by combining the images from the two mirrors through a delay line
to achieve both images and astrometric measures.

The Space Interferometry Mission (SIM) was a planned optical interferometer
to be launched into space. It went through a development process at JPL to prove
that it could meet all the technical specifications required by the mission. It was
designed to achieve microarcsecond accuracies for 20th magnitude stars and achieve
a variety of research observations. It went through various reductions due to funding
limitations, but finally was terminated due to a lack of funding at NASA.2

1.8.8 Surveys

Historically, surveys have been made to achieve positional star catalogs, usually of
all the sky. Some have been limited to the sky coverage possible from an individual
telescope. The Palomar Sky Survey is an example of a photographic survey from
a single telescope. The USNO B catalogs were achieved by combining survey
observations from different telescopes that together covered the entire sky, going
down to 20th magnitude. The Hipparcos catalog was achieved from an astrometric
satellite. The 2 Micron Astronomical Sky Survey (2MASS) infrared catalog was
achieved by observations from both hemispheres in the near infrared. The USNO
CCD Astrograph Catalog (UCAC) is based on a CCD camera on an 8 inch telescope
that observed in both the southern and northern hemispheres. The Gaia astrometric

2See http://science.nasa.gov/missions/sim/.

http://science.nasa.gov/missions/sim/
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satellite is beginning an all-sky survey to achieve much better accuracies at faint
magnitudes.

The interest in Near Earth Objects (NEO), space debris, and astronomical
variability has led to the development of wide field-of-view telescopes for search
capability. These telescopes can search for objects and identify where there is a
need for follow up observations. They can identify moving objects that should be
re-observed immediately. They also produce sky survey observations that can be
used to produce a catalog of objects and positions. They discover and observe a
large number of asteroids, artificial satellites, and debris.

The Hipparcos astrometric satellite was launched in 1989. It did not achieve its
planned orbit, but through introduction of special efforts to overcome the difficulties
of the real orbit, its scientific objectives were achieved. It observed for three years
and produced a catalog of positions, proper motions, and parallaxes of 118,000 stars
down to 12th magnitude with milliarcsecond accuracies. With time, the positional
accuracies have degraded due to the limitations of the accuracies of the proper
motions. However, Hipparcos set a new level of astrometric accuracies, which could
not be achieved by telescopes on Earth (ESA 1997).

The UCAC was developed from observations with an 8 inch telescope with a
CCD camera. Observations were made from Cerra Tololo in Chile and Flagstaff,
Arizona, to obtain a full sky coverage. The resulting catalog of 100 million stars goes
down to 16th magnitude with accuracies of 15–100 mas dependent on magnitude
(Zacharias et al. 2010). The USNO NOMAD catalog is a combination of Hipparcos,
UCAC, and USNO B to achieve the best accuracy available for every star down to
20th magnitude (Urban and Seidelmann 2012, pp. 530).

The 2MASS project was an all sky survey of the sky in J, H, and K near infrared
bands going down to 14th magnitude. There are 471 million sources with accuracies
of about 80 mas (Cutri et al. 2003; Zacharias et al. 2005).

Gaia is a European Space Agency (ESA) astrometric satellite designed to obtain
astrometric positions and radio velocities of stars down to the 20th magnitude. It
has two optical systems with a fixed angle between them that are scanning the sky
in a rotational pattern and projecting the images onto an array of CCD detectors. It
has been launched to the Earth-Moon L2 point for an orbit. It is to observe for three
years.3

1.8.9 GNSS

There are a family of GNSS, which we briefly mentioned above, in existence and
in development. The GPS was developed by the US Defense Department and has at
least 24 satellites in about 12 hour orbits transmitting a coded signal that receivers,
accessing at least four satellites at a time, can use to measure their distance from the

3See http://sci.esa.int/gaia/ and http://www.esa.int/Our_Activities/Space_Science/Gaia_overview.

http://sci.esa.int/gaia/
http://www.esa.int/Our_Activities/Space_Science/Gaia_overview
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satellites. Originally, there were eight satellites in three orbital planes. Currently,
there are four satellites in six orbital planes. The GPS was designed for military
navigation purposes, but now the GPS receivers are in all kinds of equipment. It is
used for both military and civilian navigation on the seas, in the air, and on land. It
can be used for tracking objects anywhere. GPS can be used for scientific purposes,
such as measuring Earth tectonics and determining the Earth rotation and polar
motion. It can also be used to determine the positions of satellites in orbits around
the Earth, both below and above the GPS orbits. The Global Navigation Satellite
System GLONASS was developed by the Russian military and is in operation. The
Galileo satellite system is being developed by ESA. The BeiDou/Compass is being
developed by China (Urban and Seidelmann 2012, pp. 177).

1.8.10 Satellite Observations

Active satellites with transmission capabilities can be tracked and measurements
made to be able to determine their orbits to the required accuracy. These methods
include two-way distance measures, time of signals from the satellite, Doppler
determinations of velocities, optical observations, radar observations, and so on. The
concern for active satellites is possible impacts from other objects. As the ability
is developed to observe fainter and smaller objects around the Earth, the number
of objects to be cataloged and maintained in the catalog increases dramatically.
This requires improved observing capabilities and computational abilities. For
safety reasons, there is a need to observe smaller objects that could damage active
satellites, particularly the International Space Station (ISS). We shall discuss this
issue in Chap. 17.
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Chapter 2
Vectors

2.1 Introduction

This chapter is meant to provide the basic information concerning vectors, hopefully
as a review, but to ensure that the reader is familiar with the basics.

A scalar has a magnitude and a sign. A vector is a scalar with direction. This
can be given the notation from the ends of the vector or as a symbol; we will use
boldface notation for vectors. Thus, AB, shown in Fig. 2.1, would be equal the vector
a. Similarly, BC D b and AC D c.

A scalar multiples a vector to change its length, k a D a k.
In vector addition, a C b D c.
The commutative law means a C b D b C a.
The associative law is .a C b/C c D a C .b C c/.
Vectors can be given in components. If i and j are not parallel, and i; j; and r are

coplanar, then unique scalars x and y exist such that

r D xi C yj (2.1)

If we add k not in the plane, then r can be three dimensional and

r D xi C yj C zk (2.2)

r is resolved along directions Oi; Oj; Ok and x; y; z are its components. Normally, i; j, and
k are mutually perpendicular in a right-hand triad, with the positive directions as
shown in Fig. 2.2.

The shorthand notation for r in Eq. (2.2) may be written as r D Œx; y; z
. Written
this way, r is a row vector. To obtain a column vector, we use the transpose
operator, denoted by .�/T . In the following chapters, where appropriate, we will
usually assume that a vector v is a column vector , unless written otherwise.
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Fig. 2.1 Ends of a vector

A

B

Fig. 2.2 A
mutually-perpendicular
right-hand triad with positive
directions

̂

̂

Fig. 2.3 Components of a
vector

α

O

P

x ̂

y ̂ z ̂

r

Thus, the components can be written without ambiguity as r D Œx; y; z
. If ˛ is
the angle between OP and xi , then cos˛ D x=r D l, as shown in Fig. 2.3.

If m and n are defined similar to l, then l;m; n are direction cosines of r with
respect to the triad, and l2 C m2 C n2 D 1.
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If we denote Or as a unit vector, then our vector r can be written as

OP D r D xi C yj C zk D Œx; y; z
 D Œrl; rm; rn
 D rŒl;m; n
 D rOr (2.3)

If r1 D Œx1; y1; z1
 and r2 D Œx2; y2; z2
, then

r1 C r2 D Œx1 C x2; y1 C y2; z1 C z2


(Danby 1962, pp. 14–19).

2.2 Scalar Product

Take vectors a and b and the angle � between them as in Fig. 2.4. The scalar product
or dot product is

a � b D ab cos� (2.4)

We see by the commutative law that

a � b D ab cos � D ba cos � D b � a (2.5)

We can interpret this as a times the projected length of b on a, which is b cos � .
Since b C c is the projection of the sum of separate projections on a, it follows that

a � .b C c/ D a � b C a � c (2.6)

Also

m.a � b/ D .ma/ � b D a � .mb/ (2.7)

If fOi; Oj; Okg are a triad, then the components of r on the triad are

r � Oi; r � Oj; r � Ok

Fig. 2.4 An angle between
two vectors

θ
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and in addition

Oi � Oj D Oi � Ok D Oj � Ok D 0

The square of the vector r D xOi C yOj C z Ok is written as r2 � r � r D rr D r2,
r2 D x2 C y2 C z2 (Danby 1962, pp. 20–21).

2.3 Vector Product

The right-hand convention defines a unique direction (American screws for mechan-
ics), as illustrated in Fig. 2.5.

Then the vector cross-product is

a � b D .ab sin �/i (2.8)

This is not commutative, since a �b D �b�a. It is distributive, however, so that
a � .b C c/ D a � b C a � c. Note that r � r D 0. In the right-hand triad fOi; Oj; Okg,

Oi � Oj D Ok; Oj � Ok D Oi; Ok � Oi D Oj; Ok � Oj D �Oi

If b and c are Œbx; by; bz
 and Œcx; cy; cz
, then

b � c D Œbycz � bzcy; bzcx � bxcz; bxcy � bycx


Fig. 2.5 Illustration of the right-hand convention
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In the determinant form,

b � c D
ˇ̌̌
ˇ̌
ˇ

Oi Oj Ok
bx by bz

cx cy cz

ˇ̌̌
ˇ̌
ˇ

(Danby 1962, pp. 22–23).

2.4 Triple Scalar and Vector Products

The triple scalar product is defined as a � .b � c/ and can be written Œa;b; c
. If
a D Œax; ay; az
, then

a � .b � c/ D
ˇ̌
ˇ̌
ˇ̌
ax ay az

bx by bz

cx cy cz

ˇ̌
ˇ̌
ˇ̌

Note that

Œa;b; c
 D Œb; c; a
 D Œc; a;b
 D �Œc;b; a


The triple vector product is defined by

a � .b � c/ D .a � c/b � .a � b/c

If the vector equation has terms you do not like, cross multiply the equation by
its direction to eliminate it. For example, the equation of motion for a central orbit
is

d2r
dt2

D �f .r/Or (2.9)

where f .r/ is a scalar function. Vectorial multiplication by r results in

r � d2r
dt2

D 0 (2.10)

(Danby 1962, pp. 23–25).
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2.5 Velocity of Vector

The velocity can vary as a function of a scalar, such as time, or as a function of
another vector, such as position. We assume the variation is continuous, so it can be
differentiated. We shall consider vectors varying with time, as shown in Fig. 2.6, so
it is particle motion. In Fig. 2.6, AB is the path of P. P is the location at time t. P0 is
the location at time t C ıt. ıt is a small time interval. PP0 is ır. O� is the unit vector
along PP0, in the limit it will be tangent at P. ır D O�ıs, where s is the distance along
the curve. We have

lim
ıt!0

PP0

ıt
D lim

ıt!0

ır
ıt

D dr
dt

D O� ds

dt
(2.11)

This is the particle velocity at P, also commonly written as Pr or v. There is a
magnitude and a direction, the properties of a vector. The components of Pr are
.Px; Py; Pz/ and those of O� are .dx=ds; dy=ds; dz=ds/. Note that in modern convention
velocity is a vector v or Pr; speed is a scalar value of velocity. The speed of P is
ds=dt.

Also, kdr=dtk, the speed of P, is not the same as dkrk=dt, the component of
velocity along the radius vector, or dr=dt.

Because have r � r D r2, then differentiating gives r � Pr D rPr. Here r is a position
vector, defining the path traced by P and the locus of P; Pr is a vector, if OQ D Pr,
then Q follows a path called the hodograph of motion. The rate of change of OQ is
the acceleration of P, which is a vector written as

d2r
dt2

D dv
dt

D Rr (2.12)

In Fig. 2.6, OP�OP0 D r�ır. The modulus is twice the area of triangle OPP0, the
rate of change of the area is the areal velocity of OP, whose magnitude is kr � Prk=2.
The direction of r � Pr is perpendicular to the plane of r and Pr. This direction is
constant when the motion is in the plane.

Consider Kepler’s first two laws, mentioned in Sect. 1.2: (i) Motion is in a plane
for a planet; and (ii) the areal velocity is constant. So for Keplerian motion, r�Pr D h,

Fig. 2.6 Time-varying path
of a particle

′
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where h is a constant vector. Note that this is the first integral of r � d2r=dt2 D 0

(Danby 1962, pp. 26–28).

2.6 Rotation of Axes

Given a system of right-handed rectangular axes as in Fig. 2.7, we can perform
a rotation of axes through specified angles. A rotation about the x-axis positively
through � , as shown in Fig. 2.7, the new axes Œx0; y0; z0
 are related to the old axes
Œx; y; z
 by

Œx0; y0; z0
 D Œx; y; z


2
4 1 0 0

0 cos � � sin �
0 sin � cos �

3
5

A rotation about the y-axis positively through !, as shown in Fig. 2.8, the new axes
Œx0; y0; z0
 are related to the old axes Œx; y; z
 by

Œx0; y0; z0
 D Œx; y; z


2
4 cos ! 0 sin !

0 1 0

� sin ! 0 cos !

3
5

A rotation about the z-axis positively through i, as shown in Fig. 2.9, the new axes
Œx0; y0; z0
 are related to the old axes Œx; y; z
 by

Œx0; y0; z0
 D Œx; y; z


2
4 cos i � sin i 0

sin i cos i 0
0 0 1

3
5

Fig. 2.7 A rotation about the
x-axis by an angle �

′

′
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Fig. 2.8 A rotation about the
y-axis by an angle !

′

Fig. 2.9 A rotation about the
z-axis by an angle i

′

Combinations of rotations can be made by matrix multiplication. Care must be taken
of the signs of the rotations.

2.7 Angular Velocity

A vector can change both direction and length, so we can differentiate a unit vector,
Oi. Let Oi rotate through a small angle ı� , as shown in Fig. 2.10; the new vector is
Oi C ıOi. This is still a unit vector, so Oi � ıOi D 0.

Let the rotation be in a right-handed sense. Then the direction of ıOi is Ok � Oi and
the length is ı� , so

ıOi D ı� Ok � Oi (2.13)
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Fig. 2.10 A rotation by a
small angle ı�

̂

̂
̂

and

dOi
dt

D
�

Ok d�

dt

�
� Oi D ! � Oi (2.14)

where! is an angular velocity. Note, the derivative of a unit vector is normal to that
vector (Danby 1962, pp. 29–30).

2.8 Rotating Axes

Write r D r Or and differentiate,

Pr D Pr Or C r
dOr
dt

(2.15)

The components on the right side are (i) the change in the length of the radius
along the radius; and (ii) the change perpendicular to r due to rotation.

Rotating axes are a common phenomena. Suppose a vector r has a rate of change
dr=dt with respect to a fixed frame F1 and ır=ıt with respect to frame F2, rotating
with respect to F1 with an angular velocity !, which is not necessarily constant.
Equation (2.15) applies where the axes of F2 are rotating with r, so ır=ıt is written
instead of Prr. We will use the notation ı.�/=ıt for differentiation with respect to a
rotating frame and d.�/=dt for differentiation with respect to a fixed frame. Then,
Eq. (2.15) can be written as

dr
dt

D ır
ıt

C! � r (2.16)
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This is a general result, which we demonstrate. Let fOi; Oj; Okg be an orthogonal
triad, fixed to F2, then

r D
X
Oi;Oj;Ok
.r � Oi/Oi (2.17)

the summation being over Oi; Oj, and Ok. Then as in Eq. (2.15),

dr
dt

D
X 

d.r � Oi/
dt

Oi
!

C
X 

.r � Oi/dOi
dt

!
(2.18)

But dOi=dt D ! � Oi, so

X�
.r � Oi/di

dt

�
D ! �

X
.r � Oi/Oi D ! � r (2.19)

For ır=ıt, take Oi; Oj; Ok as non-rotating constant vectors, so

ır
ıt

D
X 

d.r � Oi/
dt

Oi
!

(2.20)

Written in notation of operators,

d

dt
D ı

ıt
C!� (2.21)

To illustrate, let us find components of velocity and acceleration in polar
coordinates. OP D r makes the angle � with a fixed direction, as shown in Fig. 2.11.
Let Oi point in the radial direction, Oj in the transverse direction (increasing �), and

Fig. 2.11 Finding the
components of velocity in
polar coordinates

̂

r

̂

̂
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Ok D Oi � Oj. Then the angular velocity of r is P� Oj, and

dr
dt

D Pr Oi C r P� Oj (2.22)

The first term on the right is the radial velocity, and the second term is the
transverse component of the velocity. It is assumed that there is no velocity in the Ok
direction. Similarly,

d2r
dt2

D d

dt
.PrOi C r P� Oj/ D

�
ı

ıt
C P� Ok�

�
.PrOi C r P� Oj/

D RrOi C .Pr P� C r R�/Oj C P� Ok � .PrOi C r P�Oj/ (2.23)

which reduces to

d2r
dt2

D .Rr � r P�2/ Oi C .r R� C 2Pr P�/ Oj (2.24)

The first term on the right is the radial acceleration, and the second term is the
traverse component of the acceleration, which can be written as

1

r

d

dt
.r2 P�/ (2.25)

where r2 P� is twice the areal velocity of P.
Consider a particle traveling in a circle with a constant speed. Then Rr D 0. The

traverse component of acceleration is zero, so

d2r
dt2

D �r P�2Oi (2.26)

Acceleration is the result of kinematics of a particle. If an observer is moving
with a particle, and wishes to work with respect to rotating axes, the observer will
be unable to account for the observations, unless “centrifugal acceleration” of �r�2Oi
is applied to every particle. Alternatively, a fictitious force, the “centrifugal force”,
can be introduced, which would produce this acceleration.

Consider a conical pendulum with a mass m at P, suspended from O by a string
with length r, moving with a constant angular velocity, P� , about the vertical, as
shown in Fig. 2.12. OP makes constant angle, �, from the vertical. The radius of the
circle is r sin �, and the centrifugal force magnitude is C D mr sin� P�2.

Resolving forces at right angles to the string to avoid the force T,

mg sin� D C cos� D mr sin � cos� P�2 (2.27)
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Fig. 2.12 Illustration of a
conical pendulum

φ

Fig. 2.13 Finding the
acceleration of a point above
the surface of the Earth

So,

P�2 D g

r cos�
(2.28)

Also, consider motion observed from a fixed point on the Earth. C is the center of
the Earth. Let a person at O observe the motion of a point P, as shown in Fig. 2.13.
We have CO D r0; OP D r, r is small compared to r0, and the angular velocity of
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the Earth is ! Oz. The velocity of P with respect to the non-rotating axes is

d

dt
.r0 C r/ D ır

ıt
C ! Oz � r0 C ! Oz � r (2.29)

where d=dt D ı=ıt C!� and ır0=ıt D 0. The acceleration of P is

d2.r0 C r/
dt2

D
�
ı

ıt
C !z�

�
d.r0 C r/

dt
D ı2r
ıt2

C 2! Oz � ır
ıt

C !2z � .Oz � r0/

C !2 Oz � .Oz � r/ (2.30)

The equation of motion of P contains d2.r0 C r/=dt2, and terms due to the forces
acting on P. If the equation is in terms of ı2.r0 C r/=ıt2, or equivalently ı2r=ıt2,
which is in terms of what the person at O observes, d2r=dt2 can be replaced with
ı2r=ıt2, if the following terms are added

� 2! Oz � ır
ıt

� !2 Oz � .Oz � r0/ � !2 Oz � .Oz � r/ (2.31)

to the other side, i.e. with the terms dealing with forces acting on P. Since ! is small,
the last two terms are normally neglected. These forces are Coriolis forces (we will
see them again later).

The Coriolis force is named for a nineteenth century French mathematician.
It is the inertial force caused by the Earth’s rotation that deflects a moving
body. This deflection is produced by the acceleration of any body moving at a
constant speed above the Earth with respect to the surface of the rotating Earth
(Danby 1962, p. 31–35).

2.9 Gradient of a Scalar

Take a scalar function of a position, written as f .x; y; z/ or f .r/. Assume that it is
defined and continuous in space. To move from f .x; y; z/ to f .xCıx; y; z/, the change
in f can be written as .@f=@x/ ıx, where @=@x is conventional partial differentiation
with respect to x, so y and z are assumed to be constant. This could be written

@f

@x
ıx D

�
@f

@x
Oi C @f

@y
Oj C @f

@z
Ok
�

� Oi ıx D rf � Oi ıx (2.32)

Likewise, a change from .x; y; z/ to .x; y C ıy; z/ is rf � Oj ıy, and from r to r C ır is
rf � ır.

The vector components .@f=@x; @f =@y; @f=@z/ are called the gradient of f , and
are denoted by grad f , or rf . The operator r is called the Nabla operator or Del
operator. Obviously, rf is a vector.
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Now, consider a curve C and the values of f along the curve. The rate of change
of f along C with respect to the arc length is

df

ds
D @f

@x

dx

ds
C @f

@y

dy

ds
C @f

@z

dz

ds
D O� � rf (2.33)

Consider a surface with f .x; y; z/ D constant. Along a line on the surface
df=ds D 0, so O� � rf D 0 and rf is perpendicular to the surface. rf is a field
vector, a vector that is a function of position (Danby 1962, pp. 35–36).

2.10 Momentum and Energy

Starting with some definitions, mass, m, is the measure of material in a body
independent of the object’s location on the Earth or Moon. Weight is mg, where
g is a localized constant depending on the location, on Earth or elsewhere. A point
mass is when all the mass of an object is treated as being localized at the center of
the object. This is valid for planetary theory; it is not valid for lunar theory, Earth
satellites, or close natural satellites. Linear momentum is mv, the mass times the
velocity of a body; it is a vector. The vector r � mv about O is angular momentum
(see Fig. 2.14). This is two times the areal velocity about O.

The kinetic energy is 1
2
mv2; this is a scalar. The work is P � r where the force

P on a particle moves it through r. If P is not constant, we integrate over small
displacements dr,

WAB D
Z B

A
P � dr (2.34)

The rate of doing work, P � dr=dt D P � v, is termed power; this is a scalar.
Using these definitions, the angular momentum of a mass m moving in a curved

path C, as shown in Fig. 2.15, is L D r�mv, where r and v are position and velocity
vectors at time t. Differentiation with respect to time with m constant,

PL D Pr � mv C r � mPv D r � F D N (2.35)

where Pr D v so the first term is zero.

Fig. 2.14 Mass, position and
velocity

r
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Fig. 2.15 Velocity and
position of a mass m along a
path C

2( 2, 2, 2)

F

r

v

By Newton’s second law of motion, F D d.mv/=dt. The particle m is caused
to move by the force F, and N is the torque or moment of F about O. It is a
vector perpendicular to the plane defined by r and F. Equation (2.35) expresses
Newton’s second law for rotational motion, namely the time rate of change of
angular momentum equals the torque.

Note that, in a plane, if N is zero, the forces on the particle pass through the
origin, and angular momentum is constant. Conversely, if angular momentum is
constant, the resultant forces pass through the origin. So forces acting on planets
causing curved paths, pass through the Sun.

In general, F may be a function of position, velocity, or time, or any combination
thereof. Normally, however, F will be independent of velocity. Suppose that two
masses m1 and m2 interact with each other. Let the force on m1 due to m2 be F12 and
let the force on m2 due to m1 be F21. Newton’s third law is expressed mathematically
as F12 D �F21.

Consider a constant mass m moving under the action of force F along C. Then
F D mPv. Take the scalar product by v, then

mv � Pv D v � F (2.36)

Since d.v � v/=dt D 2v � Pv and v � v D v2, then

d

dt

�
1

2
mv2

�
D v � F (2.37)

Note that 1
2
mv2 is kinetic energy and v � F is the rate of working by the force F

on the mass m. Multiply both sides of Eq. (2.37) by dt and integrate,

1

2
m.v22 � v21/ D

Z t2

t1

v � Fdt (2.38)
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vdt is an element of arc ds, so the integral becomes

Z s2

s1

F � ds (2.39)

This is a line integral along C and represents work done by F in motion of m
from P1 to P2. Thus, the change in kinetic energy in the motion of m from P1 to
P2 equals the work done by the force in that interval. If

R s2
s1

F � ds is independent of
path, then there is a scalar function of position, V , defined by

Z s2

s1

F � ds D V.s1/ � V.s2/ (2.40)

This is called the potential energy function. V.s/ denotes the potential energy at s.
Then substituting Eq. (2.40) into Eq. (2.38),

1

2
mv22 C V.s2/ D 1

2
mv21 C V.s1/ (2.41)

This is conservation of energy for moving mass, or the energy integral. The sum of
kinetic and potential energies of the system remains constant.

In Cartesian coordinates, let F D XOiCYOjCZ Ok and ds D dxOiCdyOjCdz Ok. X;Y;Z
are functions of x; y; z. Then Eq. (2.40) becomes

Z .x2;y2;z2/

.x1;y1;z1/
.X dx C Y dy C Z dz/ D V.x1; y1; z1/� V.x2; y2; z2/ (2.42)

This implies that X D � @V
@x ; Y D � @V

@y ; Z D @V
@z . The gradient of V.x; y; z/ is

defined by

rV D @V

@x
Oi C @V

@y
Oj C @V

@z
Ok (2.43)

Hence,

rV D �XOi � YOj � Z Ok D �F (2.44)

When this relationship between a force F at all points of a space and the
corresponding V.x; y; z/, called the potential, exists, we say that the force field is
a conservative force field.

A necessary and sufficient condition for the existence of V is

@Z

@y
� @Y

@z
D 0;

@Z

@x
� @X

@z
D 0;

@Y

@x
� @X

@y
D 0 (2.45)
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Fig. 2.16 Rotating motion
with respect to the z axis

For illustration, consider motion with respect to axes rotating with a constant
angular velocity ! about the z axis, as shown in Fig 2.16. If a mass m is acted on by
force F, its motion with respect to the rotating axes will be

F D m
�Rr C 2 ! Oz � Pr C !2 Oz � .Oz � r/

	
(2.46)

where

dr
dt

D @r
@t

C! � r (2.47)

is applied twice. Let r have components z along Oz and � be at right angles to Oz. Then
r D zOz C � and

F D m.Rr C 2 ! Oz � Pr � !2�/ (2.48)

Multiple scalarly by Pr and, since the component of Pr in the z direction dotted on
� is 0, and � � Pr D � � P�,

F � Pr D m.Rr � Pr � !2� � P�/ (2.49)

If F arises from a potential V , described with respect to a rotating axis, then the
modified energy integral from integrating the above equation is, with m D 1,

V � 1

2
!2�2 C 1

2
Pr2 D constant (2.50)

which is the same as the usual energy integral for motion of a particle in a field of
potential V � 1

2
!2�2. This is the modified potential; 1

2
!2�2 is the rotational potential.

Now we consider applications of the equations of motion to some simple
problems (Danby 1962, pp. 41–42), (McCuskey 1963, pp. 21–22).
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2.10.1 Simple Harmonic Motion

Assume that a particle is moving in a straight line with a force varying with distance
from a point. The point is the origin and x is the distance from it. The force per
unit mass is k2x and m D 1. The equation of motion is Rx D �k2x. The field is
conservative with the potential 1

2
k2x2, the energy integral is

1

2
Px2 C 1

2
k2 x2 D constant (2.51)

The constant must be positive, so write it as 1
2
k2a2, then

dx

dt
D k.a2 � x2/

1
2 (2.52)

A solution is x D a cos.kt C b/, where a and b are arbitrary constants. Note the
motion is symmetrical about the origin determined by the speed at origin. There are
finite oscillations whatever the initial speed is (Danby 1962, pp. 47–48).

2.10.2 Linear Motion in an Inverse Square Field

The approximation of a uniform field is only valid near the Earth’s surface. A force
of � k2

r2
Oz per unit mass, where r is distance from the Earth’s center, and k is a

gravitational constant, must be used further away. We will only consider motion
in the z direction, so use of vectors is unnecessary.

The field is conservative and the potential �k2=r. Thus, the energy integral is

Pz2 D 2k2

z
� 2k2

z0
C v20 (2.53)

where z0 and v0 are the position and velocity at t D 0. If we impose the condition
that the right side must not be negative, there are three possible cases:

1. If v20 < 2k2=z0, that is a negative constant in the equation which 2k2=z will equal
for some z1, so Pz will become zero and the particle will start to descend.

2. If v20 > 2k2=z0, Pz will never be zero, but will approach a finite numberq
v20 � 2k2=z0 as z approaches infinity, i.e. the particle just continues to move

away.
3. If v20 D 2k2=z0, then Pz ! 0 as z ! 1. This critical value is known as the escape

velocity. Each planet has such a velocity; it is the necessary speed for a rocket to
escape completely from the Earth. To calculate this k2 must be known.
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k2 is the product of mass of the body and the constant of gravitation. If we know
the gravity acceleration, g, at the Earth’s surface, g D k2=r2 where r is the Earth’s
radius,

v20 D 2k2

r0
D 2gr0 (2.54)

(Danby 1962, pp. 49–50).

2.10.3 Foucoult’s Pendulum

In 1851, Foucoult (1819–1868) devised an experiment, where a pendulum was
suspended from the dome of the Pantheon in Paris. The plane in which it swung was
slowly rotating due to the Earth’s rotation under the pendulum. This phenomenon is
termed Foucoult’s pendulum.

Let the suspension of the pendulum be at O, and the bob be at P, as shown in
Fig. 2.17. Let OP D r, where r is constant. Let Ok be along CO. We note that since
r � r0, which is the Earth’s radius, whether the gravity mg acts along Ok or PC
makes no difference.

Thus, the forces on the bob of mass m are tension in the string T along PO and
gravity mg along �Ok, i.e. �T Or and �mg Ok. The equation of motion with respect to
the non-rotating axes fixed in space is

m
d2r
dt2

D �T Or � mg Ok (2.55)

Fig. 2.17 Foucoult’s
pendulum
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But the equation of motion with respect to the axes rotating about O requires
adding in the Coriolis forces. In this case !2 terms are so small compared to ! that
they can be neglected. Then

d2r
dt2

C 2 ! Oz � dr
dt

D �g Ok � T

m
Or (2.56)

The equation of motion of a simple pendulum is derived by putting ! D 0.
Multiply vectorially by Or to eliminate T. Then

Or � d2r
dt2

C 2 ! Or �
�

Oz � dr
dt

�
D �gOr � Ok (2.57)

Since dr=dt D 0, and Or � dr
dt D r dr

dt D 0, the second term on the left reduces to
�2! dr

dt sin�, where � is the latitude of O,

Or � d2r
dt2

� 2! dr
dt

sin� D �gOr � Ok (2.58)

We expect a pendulum to have a uniform rotation about Ok. Assume axes rotating
with an angular velocity, !0 Ok, and set ı=ıt equal the rate of change with respect to
these axes. Assume !0 is constant and so small that !02 D 0 and !0! D 0. Then

Or �
�
ı2r
ıt2

C 2!0 Ok � ır
ıt

�
� 2!

ır
ıt

sin� D �gOr � Ok (2.59)

Since Or � ır
ıt D 0 and Or is perpendicular to ır

ıt , rearranging yields

Or � ı2r
ıt2

� 2.Or � Ok !0 C ! sin�/
ır
ıt

D �gOr � Ok (2.60)

Assume that the pendulum is always close to the vertical, so Or � Ok 	 1. Then, if
!0 D �! sin�, the equation is that of a simple pendulum. So the observed motion
is a simple pendulum rotating with an angular velocity �Ok! sin� (Danby 1962,
pp. 50–52).
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Chapter 3
Reference Systems and Relativity

3.1 Reference Systems

A reference system is a theoretical concept of coordinates, and includes the time
and the standards necessary to specify the bases for giving positions and motions
in the system. There are celestial and terrestrial reference systems. Previously, the
celestial reference system was based on reference planes aligned to the orbital plane
of the Earth—the ecliptic—and the Earth’s equatorial plane, both of which are in
motion. An intersection of these planes, the vernal equinox, was the origin of the
coordinates, longitude in the ecliptic plane and right ascension in the equatorial
plane. Latitude is measured perpendicular to the ecliptic plane and declination is
perpendicular to the equatorial plane (see Fig. 3.1). The celestial reference system
used to be based on the Newtonian dynamics of the solar system, star catalogs
based on observations of nearby stars with proper motions, and the dynamical mean
equator and equinox of the Julian date J2000.0. The equinox moved with time due
to precession and nutation. Star catalogs used the equinox as the origin of right
ascensions, but that catalog equinox did not necessarily agree with the dynamical
equinox and could differ with declination. The kinematics of the Earth result in
motions of the equator and equinox, variations in the pole of rotation, polar motion,
and variations in the rotation rate of the Earth, given by Universal Time. So all these
measurements are epoch dependent.

Now, the International Celestial Reference System (ICRS) is based on the theory
of relativity, observations of distant extragalactic radio sources, and a fixed origin.
The ICRS is basically fixed in space, determined from very distant sources, which
do not have apparent motion, and, thus, it is not epoch dependent. There are a
Barycentric Celestial Reference System (BCRS), centered at the barycenter of the
solar system, and a Geocentric Celestial Reference System (GCRS), centered at
the geocenter, both defined by the metric tensor of the International Astronomical
Union (IAU) 2000 resolutions, and both are global space-fixed reference systems
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Fig. 3.1 Equatorial and ecliptic reference planes (reproduced from Urban and Seidelmann (2012),
with permission)

(IAU-Resolutions 2000). The GCRS is defined such that its spatial coordinates are
not kinematically rotating with respect to the BCRS.

3.2 Relativistic Coordinate Systems

Although relativity theory had existed for half a century, the observational effects
of both special and general relativity were small, when compared to observational
accuracies. Except for the advance of the perihelion of Mercury, deviations from
Newtonian physics did not need to be taken into account in the solar system until the
advent of highly precise techniques in the 1960s and 1970s. These include numerical
integrations of orbits, planetary radar ranging, spacecraft ranging, very long baseline
interferometry (VLBI), pulsar timing, and lunar laser ranging (LLR). More recently,
optical astrometry has improved with Hipparcos satellite measurements at the
milliarcsecond (mas) level.

Hence, a relativistically consistent approach is required for coordinate systems,
time scales, and units of measurement. The IAU 2000 resolutions promote a con-
sistency, even though relativistic effects can be ignored, or handled as corrections
to Newtonian formulations, for some applications. The establishment of a self-
consistent relativistic framework has the benefit, where the effects of relativity are
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often treated as small corrections to Newtonian developments, as it allows physical
assumptions and errors to be more clearly understood (Seidelmann and Seago 2005).

3.2.1 Newtonian Coordinates

The inertial space-time coordinates of Newton’s theory become unique once the
origin, scales, and orientation of the three spatial axes are prescribed, together
with the (constant) origin velocity. Once introduced, such inertial coordinates can
cover the universe. There can be two conceptually relevant celestial systems serving
different purposes under Newtonian theory: a geocentric system and a barycentric
system. Neglecting external (galactic and extragalactic) gravity, the barycentric
celestial system is useful for solar system ephemerides and interplanetary spacecraft
navigation, and for defining concepts such as the ecliptic. In the fundamental system,
the astrometric remote-object positions and other concepts can be defined, such as
radial velocity or proper motion. The spatial axes of the geocentric celestial system
are considered non-rotating in the Newtonian absolute sense, but the geocenter is
accelerated within the solar system. This geocentric system might be called quasi-
inertial. This system is useful for concepts like the equator, and is most convenient
for describing dynamic processes near the Earth, including artificial satellite theory
and Earth rotation.

Denoting space and time coordinates of the barycentric celestial system as
.X; T/, and those of the geocentric celestial system as .x; t/, the trivial relationship
between these two sets of coordinates is

x D X � XE.t/; t D T (3.1)

where XE.t/ denotes the position of the geocenter in the barycentric system. For
this reason, the barycentric and the geocentric celestial systems are not always
clearly distinguished in the Newtonian system, and it has become common to view
ensembles of calculations as being carried out entirely in either a single reference
system, or two reference systems (barycentric and geocentric), having parallel axes
that differ only in the origin of coordinates (i.e., they are connected via a Galilean
transformation).

In Newtonian coordinates, relativistic effects are interpreted as corrections to an
otherwise classical result. However, at high levels of accuracy, and with some types
of observations, careful consideration of relativity theory will lead to a more correct
interpretation for the same calculations.
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3.2.2 Relativistic Coordinates

Einstein defined an inertial frame under general relativity as a coordinate system
freely falling in accordance with the local gravitational field due to all matter in
the Universe. Newtonian-inertial frames are then replaced under general relativity
by those that are locally inertial. The geometry of space-time in these freely falling
frames is defined by a metric tensor, a 4 � 4 matrix of mathematical expressions,
that serves as an operator on two 4-vectors (Soffel et al. 2003). The metric tensor
directly yields the generalized distance between two neighboring events in space-
time and effectively determines the equations through which physics is described
in the frame. In such locally inertial frames, gravitational forces are expressed in
terms of tidal potentials that appear in the metric; by construction, potentials due to
masses external to the system are zero at the origin.

Time in general relativity comes in two varieties: proper time and coordinate
time. Proper time is simply the time kept by a clock co-moving with the observer,
in whatever trajectory and gravity field the observer exists. Coordinate time
is one of the four independent variables used to characterize a locally inertial
coordinate frame in general relativity; that is, its value assigns chronological order
to sequentially occurring events within the coordinate frame. In general, coordinate
time will not be kept by any physically real clock; rather, it is the independent
argument of the equations of motion of bodies in its frame (Nelson 2000; Soffel
et al. 2003).

Barycentric and geocentric coordinates are related by a 4-dimensional space-
time (generalized Lorentz) transformation, complicated by acceleration terms and
gravitational potentials in the actual solar system. That these two astronomical
reference sub-systems are relativistically quite different has profound consequences
for many classical concepts in astronomy. For example, if the solar system is
gravitationally isolated, rays of light from some extremely distant source might be
traced back to a region of space-time described as the celestial sphere, because the
distance of a relatively close star will affect the appearance of its light rays.

One might also associate stellar location with a corresponding barycentric
direction-cosine vector

X
kXk D

2
4 cos˛ cos ı

sin ˛ cos ı
sin ı

3
5 (3.2)

where X is the barycentric coordinate position as a function of barycentric
coordinate time. From this vector, spherical angles .˛; ı/ can be simply introduced
as catalogued values on the celestial sphere. As the coordinate distance kXk of
a source tends to infinity, the two constructions for astrometric position become
coincident. Classical concepts such as proper motion, or radial velocity can then be
employed as coordinate quantities in the barycentric system.
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3.2.3 ICRS, BCRS, GCRS

The classical definitions of right ascension and declination .˛; ı/ use concepts from
both systems; the Conventional Intermediate Pole (CIP) with its corresponding
equator coming from the geocentric celestial system, and the ecliptic coming from
the barycentric celestial system. In astrometry, one distinguishes between the two
celestial systems; i.e., true (barycentric) places from the apparent places of stars;
annual aberration and parallax are seen as corrections needed to realize the quasi-
inertial celestial system. The coordinate system defined by the equator and equinox
of J2000.0 may be either barycentric or geocentric.

The conversion between the ICRS and the dynamical mean equator and equinox,
in either a barycentric or geocentric frame, is based on a frame bias matrix, B, which
corresponds to a fixed set of small rotations. In the barycentric case it is

rmean.2000/ D B rICRS (3.3)

where rICRS is a vector with respect to the ICRS and rmean.2000/ is a vector with
respect to the dynamical mean equator and equinox. The r0s are column vectors for
directions on the sky in the form

r D r

2
4 cos ı cos˛

cos ı sin ˛
sin ı

3
5 (3.4)

where ˛ is the right ascension and ı is the declination with respect to the appropriate
reference system. In the geocentric case, the vectors are rGCRS and rmean.2000/, which
is a geocentric vector. The matrix B is, to first order,

B D
2
4 1 d˛0 0

�d˛0 1 ��0
0 �0 1

3
5 (3.5)

where, in milliarcseconds, d˛0 D �14:6; 0 D �16:6170; and �0 D �6:8192
(IERS-Conventions 2010). The angles 0 and �0 are the ICRS pole offsets and d˛0
is the offset in the ICRS right ascension with respect to the dynamical equinox of
J2000.0, as measured in an inertial (non-rotating) system. A more accurate second-
order matrix is given in The Explanatory Supplement (Urban and Seidelmann 2012,
p. 118).

The terrestrial reference system used to be based on the Greenwich meridian
determined from the Airy transit instrument and the equator determined from
astronomical observations of nearby stars. Now measurements by multiple means
of the locations of many stations on Earth, and considering the motions of those
stations, are the basis of the terrestrial reference system. As a result the terrestrial
reference system has changed from astronomical position coordinates to geodetic
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position coordinates. The difference between these coordinates is the deflection
of the vertical, due to local gravitational anomalies. The International Terrestrial
Reference System (ITRS), to which positions on the Earth are referred, is geocentric
with no global residual rotation with respect to horizontal motions at the Earth
surface (IERS-Conventions-2003 2004; Altamini and Boucher 2002).

At the basic level, the transformation of a vector from the Terrestrial Reference
System (TRS), xTRS, to the Celestial Reference System (CRS), xCRS, is by the
transformation

xCRS D PNTW xTRS (3.6)

where P;N;T;W are rotational matrices that account for precession, nutation, Earth
rotation, and polar motion, respectively. Details are given in Sect. 3.5.

Each of these rotation matrices is the product of three basic rotation matrices,

R1.�/ D
2
4 1 0 0

0 cos � sin �
0 � sin � cos �

3
5 (3.7)

R2.�/ D
2
4 cos � 0 sin �

0 1 0

� sin � 0 cos �

3
5 (3.8)

R3.�/ D
2
4 cos � sin � 0

� sin � cos � 0
0 0 1

3
5 (3.9)

where � is a rotation angle and the subscripts refer to positive rotations about the
x; y; z axes, respectively, of a right-handed Cartesian coordinate system.

3.2.4 Geodesic Precession and Nutation

A dynamically non-rotating, freely falling, locally inertial, geocentric reference
system would slowly precess with respect to the BCRS, the largest component
being called geodesic precession. Geodesic precession amounts to 19.2 mas/yr and
geodesic nutation is dominated by an annual term with amplitude 0.15 mas. By
imposing the constraint of kinematical non-rotation to the GCRS, these Coriolis-
type perturbations must be added (via the tidal potential in the metric) to the
equations of motion of bodies referred to the GCRS. The motion of the celestial
pole is defined within the GCRS, and geodesic precession, therefore, appears in
the precession-nutation theory rather than in the transformation between the GCRS
and BCRS, per IAU Resolution B1.6 (IAU-Resolutions 2000). Other barycentric-
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geocentric transformation terms that affect the equations of motion of bodies in the
constrained GCRS are described by Soffel et al. (2003), and Kopeikin and Vlasov
(2004).

3.3 Reference Frames

A reference frame is the practical realization of a reference system and is based on
observational data.

3.3.1 Celestial Reference Frames

The International Celestial Reference Frame (ICRF) is the realization of the
barycentric, fixed, celestial reference system (ICRS) based on observations of
extragalactic radio sources. The sources are selected for stable source structure and a
lack of apparent motion, so the ICRF is fixed and stable. The different versions of the
ICRF, which are based on improved observations and more sources, are indicated by
dates (IERS 2009). There are other realizations of the ICRS at different wavelengths
and magnitude ranges, such as the Hipparcos Celestial Reference Frame (HCRF)
(ESA 1997) and the 2 MASS catalog (Cutri et al. 2003).

The Geocentric Celestial Reference Frame (GCRF) is the result of a transfor-
mation of the Barycentric Celestial Reference Frame (BCRF) to the geocenter and,
thus, a realization of the GCRS by extragalactic objects. It is a geocentric ICRF.

3.3.2 CIP and CIO

The Celestial Intermediate Pole (CIP) is the geocentric equatorial pole determined
by the IAU precession-nutation model for the transformation from the ICRF to the
GCRF. The Celestial Intermediate Origin (CIO) is an origin for right ascensions
on the instantaneous celestial true equator of date. Its motion has no component
along the true instantaneous equator around the z-axis, and at J2000.0 it has the
position of the mean equinox of J2000.0. Since the original determination, a slight
misalignment (about 20 mas) between the pole of the GCRS and the CIP, and
between the CIO and the mean equinox of J2000.0 has been determined, see Fig. 3.2,
which depicts the relationship between the CIO, � , the origin of right ascension of
the GCRS, †, the true equinox of J2000.0, �0, the mean equinox of date, �M , and
the true equinox of date, �T . The true equator of date is identical with the equator
of the CIP. The intersection of the equator of the GCRS and the true equator of date
occurs at N0. Since the GCRS is nearly aligned with the Earth’s mean equator of
J2000.0, there is a significant separation between �0 and †.
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Fig. 3.2 Ecliptic and equatorial planes (reproduced from Urban and Seidelmann (2012), with
permission)

The CIO is to be used with a combined bias, precession, nutation matrix. This
parametrization is in two angles, X in the direction of the origin of right ascension
in GCRS, and Y in the direction 90ı to the east of X. The third parameter is the CIO
locator, s. s is the difference between the length of the arcs from † and N0, and �
and N0. The point† is the origin of right ascensions of the GCRS, � is the CIO, and
N0 is the node of the equator of the CIP on the equator of the GCRS. The value of s
is given by

s D �
Z t

t0

X PY � Y PX
1C Z

dt � .�N0 � �0N0/ (3.10)

where �0 is the position of � at the Julian date JD 2451545.0 and Z D .1 � X2 �
Y2/1=2. The precession-nutation bias matrix is

PNBCIO D R3.�s/R

D R3.�s/

2
4 1 � aX2 �aXY X

�aXY 1 � aY2 Y
�X �Y 1 � a.X2 C Y2/

3
5 (3.11)

where

a 	 1

2
C X2 C Y2

8
(3.12)

X D
5X

iD1
xiT

i C
X

j

3X
kD0

Tk.bsjk sin dk C bcjk cos dk/ (3.13)

Y D
5X

iD1
yiT

i C
X

j

3X
kD0

Tk.esjk sin fk C ecjk cos fk/ (3.14)



3.3 Reference Frames 53

The variable T is the time in Julian centuries from J2000.0 Terrestrial Time
(TT),1 xi and yi are the coefficients for the frame bias and precession in X and
Y, respectively, bsjk; bcjk; esjk, and ecjk are the coefficients for the nutation and
coupling between precession and nutation, and dk and fk are the fundamental angular
arguments for the nutation and coupling terms.

The parameter s may also be represented by a series, but it can be derived from
the series for sC 1

2
XY. The non-periodic parts of Eq. (3.7) and sC 1

2
XY are in seconds

of arc,

X D �0:016617C 2004:191898T � 0:42978297T2

� 0:19861834T3 C 7:578 � 10�6T4 C 5:9285 � 10�6T5 (3.15)

Y D �0:006951� 0:025896T � 22:4072747T2

C 0:00190059T3 C 0:0011112526T4 C 0:1358 � 10�6t5 (3.16)

s D �1
2

XY C 9:4 � 10�5 C 0:00380865T � 0:00012268T2

� 0:7257411T3 C 2:798 � 10�5t4 C 1:562 � 10�5T5 (3.17)

Approximate formulae for the position of the CIP and CIO, accurate to about
0.001”, from 1975 to 2025, are given on pp. B46-B47 of The Astronomical
Almanac.2 More information is given elsewhere (IERS-Conventions-2003 2004).

The elements of the matrix in Eq. (3.7) are dimensionless, so the values of X;Y; s,
and the coefficients for the nutation and coupling between precession and nutation
should be in radians. However, they are usually given in arcseconds and must be
converted.

The Celestial Intermediate Reference System (CIRS) is a geocentric reference
system related to the GCRS by a time-dependent rotation taking into account
precession-nutation. It is defined by the intermediate equator of the CIP and the
CIO on a specific date.

3.3.3 Equation of Equinoxes

The equation of equinoxes, Ee, is the difference between the position of the true and
mean equinoxes of date, and equivalent to the difference between the apparent and
mean sidereal time,

Ee.T/ D ‡T �‡M D GAST � GMST (3.18)

1A detailed discussion of time scales will be given in Sect. 3.4.
2The Astronomical Almanac Online, http://asa.usno.navy.mil or http://asa.hmnao.com.

http://asa.usno.navy.mil
http://asa.hmnao.com
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where‡T is the true equinox of date and‡M is the mean equinox of date. Ee can be
expressed in series form as

Ee.T/ D � cos "AC
X

k

.C0
k sin AkCS0

k cos Ak/ D 0:"00000087T sin� (3.19)

where� is the total nutation in longitude, "A is the mean obliquity of the ecliptic,
� is the mean longitude of the ascending node of the Moon, and the coefficients, C0

k
and S0

k, and the angular arguments, Ak, are used to describe the complementary terms
arising from coupling between precession and nutation (Capitaine and Wallace
2006). The values of the coefficients are given in The Explanatory Supplement
(Urban and Seidelmann 2012, p. 207).

3.3.4 Equation of Origins

The IAU has recommended the use of the CIO in place of the equinox. If the CIO
is used, the equation of the equinoxes is not needed. Instead, determining the true
equinox requires the equation of the origins, E0.T/, which determines the difference
between the CIO and the equinox of date. This difference is the same as the
difference between the Earth Rotation Angle (ERA) and the Greenwich Apparent
Sidereal Time (GAST). Thus,

E0.T/ D CIO � ‡T D � � GAST (3.20)

A celestial object can have an equinox right ascension, ˛e, with respect to the
equinox and an intermediate right ascension, ˛i, with respect to the CIO. The
equinox right ascension is related to the intermediate right ascension by

˛e D ˛i � E0.T/ (3.21)

E0 is the difference between the CIO and the true equinox of date, so it is a
function of the position of both. Thus,

E0.T/ D s � tan
NPBT

1 � R1

NPBT
2 � R1

(3.22)

where s is the CIO locator, NPB1 and NPB2 are the row matrices consisting of
the first and second rows, respectively, of the matrix product of the frame bias, B,
precession P, and nutation N with respect to the equinox, and R1 is the row matrix
of the first row of the bias precession nutation matrix, Eq. (3.11), for rotation from
the intermediate reference frame to the GCRS. See The Explanatory Supplement
(Urban and Seidelmann 2012, p. 208).
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3.3.5 Terrestrial Reference Frames

The International Terrestrial Reference Frame (ITRF) is the realization of the ITRS
based on a set of coordinates and velocities of fiducial points on the Earth. The Earth
is not really a sphere, but rather an oblate ellipsoid of revolution, or spheroid. So the
height above mean sea level is measured from an irregular surface called a geoid.
These heights are such that water flows downhill under gravity. There are multiple
systems of terrestrial coordinates, so precise coordinates need to be specified as to
their basis.

The oblateness of the Earth is due to the rotation of the Earth. The axis of rotation
coincides on average with the axis of the principal moment of inertia, referred to as
the axis of figure. The axis of rotation moves in the Earth around the axis of figure in
a quasiperiodic motion, which is referred to as polar motion (see Sect. 3.6.4). The
Earth is not a rigid body, has secular and periodic changes in shape and distribution
of mass. The crust of the Earth consists of plates that move slowly over the mantle—
continental drifts. So the terrestrial coordinate frame is realized by adoptions of
positions and motions of primary reference points on the surface of the Earth. The
values of these reference points are chosen so there is no net rotation of the primary
points, and so the prime meridian is near Greenwich. In practice, the observations
and analyses can lead to differences in the terrestrial reference frames. This frame,
fixed in a mean sense with respect to the Earth’s surface, has a prime meridian that
is slightly offset from the historical Greenwich meridian through the Airy transit
instrument.

3.3.6 Terrestrial Intermediate Origin

The Terrestrial Intermediate Origin (TIO) is the non-rotating origin of the Terres-
trial Intermediate Reference System (TIRS). The TIO was originally set at the ITRF
origin of longitude and throughout 1900–2100 stays within 0.1 milliarcsecond of
the ITRF zero meridian. The TIRS is a geocentric reference system defined by the
intermediate equator of the CIP and the TIO on a specific date. It is related to the
CIRS by the ERA. The TIO locator denoted by s0, is an arc used in the location of
the TIO. Considering the node of the ITRS equator on the instantaneous equator
(orthogonal to the CIO), s0 is the difference in longitudes of that node measured
from the (1) ITRS origin and (2) the TIO (see Fig. 3.3). As a consequence of polar
motion, the TIO moves, and the s0 changes by approximately 50 microarcseconds
(1.5 mm) per century. The TIO meridian is the moving plane through the geocenter,
the CIP, and the TIO. The TIO is determined by successive rotations though two
small angles x and y, and the TIO locator, s0. The angles are the polar motion, the
angular coordinates of the CIP with respect to the terrestrial pole measured along
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Fig. 3.3 Relationships of origins (reproduced from Urban and Seidelmann (2012), with permis-
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the meridians at longitude 0ı and 270ı.90ı W). The TIO locator is determined by

s0 D �
Z t

t0

xPy � yPx
1C z

dt (3.23)

where t0 D JD 2451545:0 and

z D .1 � x2 � y2/1=2 (3.24)

The Earth Rotation Angle (ERA) is the angle, � , measured along the equator
of the CIP between the direction of the CIO and the TIO. It is a linear function of
Universal Time 1 (UT1),3 and its time derivative is the Earth’s angular velocity (see
Fig. 3.4). In 2001, the IAU redefined UT1 with respect to the Earth Rotation Angle
(ERA or �) beginning on January 1, 2003 as

�.UT1/ D 2	Œ0:7790572732640

C 1:00273781191135448.JD UT1 � 2451545:0/
 (3.25)

in radians.

3.3.7 ECEF, ECI, ECR

Earth-Centered, Earth-Fixed (ECEF), also known as Earth Centered Rotating
(ECR), is a Cartesian coordinate system, and is sometimes known as a “conventional
terrestrial” system. It represents positions as X, Y, and Z coordinates. The point
.0; 0; 0/ is defined as the center of mass of the Earth, hence the name Earth-
Centered. Its axes are aligned with the International Reference Pole (IRP) and

3We will elaborate on this time scale in Sect. 3.4.
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encountered in the celestial and terrestrial coordinate systems (reproduced from Urban and
Seidelmann (2012), with permission)

International Reference Meridian (IRM), which are fixed with respect to the surface
of the Earth, hence the name Earth-Fixed. This term can cause confusion, since
the Earth does rotate with the axis as opposed to an inertial system, such as
Earth Centered Inertial (ECI), and is, therefore, alternatively called Earth Centered
Rotating (ECR). The Z-axis is pointing towards the north, but it does not coincide
exactly with the instantaneous Earth rotational axis. The slight “wobbling” of the
rotational axis is known as polar motion, mentioned above. The X-axis intersects the
sphere of the Earth at 0ı latitude and 0ı longitude. This means that ECEF rotates
with the Earth and, therefore, coordinates of a point fixed on the surface of the Earth
do not change.

3.3.8 Satellite Geodesy

In satellite geodesy, two reference systems are required: (i) a space-fixed, inertial
reference system for the satellite motions, and (ii) an Earth-fixed, terrestrial refer-
ence system for positions on the surface of the Earth. These reference systems and
the transformations between them have been described previously. The terrestrial
reference systems used, WGS-84 and ITRF, differ by a few centimeters due to the
different reference stations used by each system.

The representation of geocentric positions can be in Cartesian coordinates,
X;Y;Z, or ellipsoidal representation, longitude (�), latitude (�), and height above
the ellipsoid (h), which are more commonly used in navigation. The relation
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between Cartesian and ellipsoidal coordinates is given by the formulae

X D .N C h/ cos� cos�

Y D .N C h/ sin� cos�

Z D
�

b2

a2
N C h

�
sin � (3.26)

where N is the radius of curvature in prime vertical given by

N D a2p
a2 cos2 � C b2 sin2 �

(3.27)

and a; b are the semiaxes of the ellipsoid. A set of parameters, called a geodetic
datum, defines the relationship between a specific reference ellipsoid and a ter-
restrial reference system. A number of ellipsoids and geodetic datum have been
used over the years. A list of these and their values are given in The Explanatory
Supplement (Urban and Seidelmann 2012, pp. 143–146).

The Helmert transformation is a means of a distortion-free transformation
between datum. With xT as the transformed vector and x as the initial vector

xT D C C �Rx (3.28)

where C contains the three translations along the coordinate axes, � is a unitless
scale factor, and R is the rotation matrix with rotations about the x, y, and z axes.
The values of the parameters of the rotations between the datum must be determined
based on the datum involved. These are available from the IERS.

3.3.9 GNSS Reference Systems

The World Geodetic System (WGS-84) is a unified terrestrial reference system for
position and velocity reference, based on the BIH-84 reference frame used for UT1.
The WGS-84 has been refined by more accurate coordinates, WGS-84(G1150) was
introduced in 2002 and agrees with ITRF2000 at the centimeter level (Merrigan
and Saffel 2002). The origin of WGS is meant to be at the Earth’s center of mass,
and the error is thought to be less than 2 cm. The meridian of zero longitude is
the ITRF reference meridian, which is 5.31 arcsec, or 102.5 m (336.3 feet) east of
the Greenwich meridian of the Airy meridian circle. The WGS-84 datum surface
is an oblate spheroid with major equatorial radius a D 6378137 m and flattening
f D 1=298:257223563. The polar semiminor axis b D a.1�f / D 6356752:3142m.
The Global Positioning System (GPS) uses the WGS-84.

The GLONASS ephemeris is given in the Parametry Zemli 1990 (Parameters
of the Earth 1990) (PZ-90) reference frame, which is basically an ECEF system
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(Boykov et al. 1993; Mitrikas et al. 1998). From 2007, PZ-90.02 is used and only
requires an origin shift to match ITRF2000 (Boucher and Altamimi 2001). The
transformation parameters between PZ90 and WGS-84 are published by the IERS
(Leick 2003).

The Galileo Terrestrial Reference Frame (GTRF) will be a dedicated terrestrial
reference frame, which will be an independent realization of the ITRS. The Galileo
requirements are that the differences of positions from the ITRF shall not exceed
3 cm.

The Chinese BeiDou-2 (formerly called COMPASS) will be a constellation of
35 satellites, 5 in geostationary orbits and 30 non-geostationary satellites (27 in
medium Earth orbit and 3 in inclined geosynchronous orbits) that will give complete
global coverage. The coordinate system is the China Geodetic Coordinate System
2000 (CGCS 2000), which is aligned with the ITRS. The time system is the BeiDou
System time (BDT), without leap seconds. BDT is linked to the national UTC(k),
which is consistent with UTC (Yang and Han 2012); these time scales are discussed
in the next section.

3.4 Time Scales

Historically, mean solar time was the basis of time keeping. It is based on the
concept of the diurnal motion of a fictitious mean sun, assuming that the Earth’s rate
of rotation is constant. This differs from the apparent solar time, based on the motion
of the true Sun, by the equation of time (see Fig. 3.5). With the discovery of the
variability of the rate of rotation of the Earth, Ephemeris Time (ET) was introduced
as the independent variable in gravitational theories of the solar system from 1960
to 1984 with an ephemeris second defined as 1/31556925.9747 of the tropical year
for 1900 January 0 12 hours ET. For a uniform time scale prior to atomic time scales
(1956), Ephemeris Time must still be used. With the development of atomic clocks,
the Systeme International (SI) second and International Atomic Time (TAI) were
adopted, based on transitions of the cesium atom.

Universal Time (UT) is a measure of time that closely conforms to the mean
diurnal motion of the Sun. UT1 is the angle of the Earth’s rotation about the CIP
axis defined by its conventional linear relation to the Earth Rotation Angle (ERA)
and regarded as a time determined by the rotation of the Earth. UT1 is related to
the Greenwich Apparent Sidereal Time (GAST) through the ERA and determined
from observations. The rotation of the Earth is measured, primarily by Very Long
Baseline Interferometry (VLBI), and by GPS and satellite and lunar laser ranging.
Sidereal time is the apparent diurnal motion of the equinox, so it is a measure of the
rotation of the Earth with respect to the stars, rather than the Sun.

Coordinated Universal Time (UTC) is a time scale differing from TAI by an
integral number of seconds and maintained within ˙0:9 s of UT1 by the introduction
of leap seconds. Thus, UTC is the international basis for legal and civil time with
local times differing due to time zones.
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Fig. 3.5 Variation in the equation of time through the year (reproduced from Urban and
Seidelmann (2012), with permission)

There are a family of dynamical time scales, as necessary for the theory of
relativity. Terrestrial Time (TT) is a coordinate time whose mean rate is close to
the mean rate of the proper time of an observer located on the rotating geoid. At
1977 January 1.0 TAI, the value of TT was 1977 January 1.0003725 exactly. An
accurate realization of TT is TT(TAI) D TAI C32:184 s. TT is related to Geocentric
Coordinate Time (TCG) by a conventional linear transformation.

TCG � TT D LG � .MJD.TAI/� 43144:0/� 86400s (3.29)

LG D 6:969290134 � 10�10, which provides continuity with TT, whose time
unit agrees with the SI second on the geoid (IERS-Conventions 2010). TCG is the
coordinate time of the GCRS based on the SI second. MJD is the Modified Julian
Date, JD�2400000:5.

The Barycentric Coordinate Time (TCB) is the coordinate time of the BCRS.
TCB is related to TCG by relativistic transformations that include secular terms,

TCB � TCG D c�2

Z t

t0

�
v2e
2

C Uext .xe/

�
dt C ve � .x � xe/

�

C O �c�4� (3.30)
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where c is the speed of light, and xe and ve denote the barycentric position and
velocity of the Earth’s center of mass, and x is the barycentric position of the
observer. The external potential Uext is the Newtonian potential of all solar system
bodies, apart from the Earth, and is evaluated at the geocenter. In the integral,
t D TCB and t0 is chosen to agree with the epoch in Terrestrial Time. TCB � TCG
can be approximated in seconds by

TCB � TCG D LC � .TT � TT0/C P.TT/ � P.TT0/

1� LB

C c�2ve � .x � xe/

where LB D 1:550519768�10�8, and the current estimate of LC is 1:48082686741�
10�8.˙2 � 10�17/. TT0 D JD2443144:5 TAI (1977 January 1, 0 h). The periodic
terms P.TT/ have a maximum amplitude of about 1.7 ms and can be evaluated by
an analytical model.4 Also P.TT/ � P.TT0/ can be determined from a numerical
time ephemeris (Irwin and Fukushima 1999). The values of LC.TT � TT0/ C
P.TT/ � P.TT0/ as a function of TT for 1600–2200 are available (Harada and
Fukushima 2003). The last term of Eq. (3.31) is diurnal at the surface of the Earth
with an amplitude of less than 2:1 � s. See The Explanatory Supplement (Urban and
Seidelmann 2012, p. 89).

Barycentric Dynamical Time (TDB) was originally intended to serve as an
independent time argument of barycentric ephemerides and equations of motion.
In 1991 the IAU resolutions noted that TDB is a linear function of TCB and in 2006
TDB was redefined through a linear transformation of TCB,

TDB D TCB � LB � .JDTCB � 2443144:5003725/� 86400s

C TDB0 (3.31)

where TDB0 D �6:55 � 10�5 and LB D 1:550519768� 10�8 by definition.
Barycentric Ephemeris Time Teph is the independent time argument of the JPL

and MIT/CfA solar system ephemerides. It differs from TCB by an offset and
constant rate. The rate of Teph is as close as possible to that of TT for the time
span covered by the particular ephemeris. Each ephemeris defines its own version
of Teph. For practical purposes the Teph of JPL ephemeris DE405 is the same as
TDB.

The International Telecommunications Union-Radio (ITU-R) has introduced a
resolution to redefine UTC without leap seconds. This would be a time scale
strictly based on TAI and differing from UT1 by an increasing amount. The Radio
Communication Assembly in 2015 again postponed a decision on the proposed UTC
resolution for more study, with consideration of the future of UTC to be considered
no sooner than 2023.

4Bretagnon, 2001, private communication.
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The GNSS use specific time scales for their systems. GPS uses an atomic clock-
based system with clocks on the satellites and ground stations. The time scale is
steered by the US Naval Observatory (USNO) to match the anticipated rate of TAI
with a constant offset of �19 s. So the GPS time scale itself is not affected by
leap seconds. The Galileo time scale will use the same constant offset from TAI as
GPS, but the time scale will be determined by the Bureau International des Poids
et Mesures (BIPM). The GLONASS system uses Moscow time, so it is adjusted by
leap seconds when they occur.

3.5 Coordinate Systems

A Cartesian coordinate system specifies each location uniquely in a three-
dimensional space by three Cartesian coordinates, its signed distances to three
mutually perpendicular planes (or, equivalently, by its perpendicular projection
onto three mutually perpendicular lines). Each reference line is called a coordinate
axis, or just axis, of the system, and the point where they meet is its origin,
.0; 0; 0/. The invention of Cartesian coordinates in the seventeenth century by René
Descartes (Latinized name: Cartesius) revolutionized mathematics by providing the
first systematic link between Euclidean geometry and algebra.

3.5.1 Origins and Planes

The origins of celestial coordinate frames are designated as follows: topocentric are
measured from the surface of the Earth, geocentric are measured from the center of
the Earth, barycentric are measured from the center of the mass of the solar system,
heliocentric are measured from the center of the Sun, planetocentric are measured
from the center of a planet, and selenocentric are measured from the center of the
Moon.

The principal celestial reference planes through appropriate origins are: astro-
nomical horizon is normal to the local vertical and passes through the observer;
local meridian contains the local vertical and the direction of the axis of rotation
of the Earth; celestial equator is normal to the axis of rotation of the Earth and
passes through the Earth’s center; ecliptic is the mean plane of the orbit of the
Earth-Moon barycenter around the solar system barycenter; invariable plane, or
Laplacian plane, is normal to the axis of angular momentum of a system and
passes through its center; a planet meridian contains the axis of rotation of a
planet and passes through the observer; a planet equator is normal to the axis
of rotation of the planet and passes through the planet’s center; orbital plane is
the plane of the orbit of a body around another body; the galactic equator is the
mean plane of the Milky Way normal to the North Galactic Pole, which is in
the constellation Coma at ˛.1950/ D 12h49m; ı.1950/ D 27ı270:4 and passes
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through the Galactic Center, which is in the constellation Sagitarius at ICRS(J2000)
˛ D 17h45:6m; ı D �26:56ı.

3.5.2 Horizon Reference Frame

The intersections of the plane of the meridian with the planes of the horizon and
equator define the directions for measuring azimuth and local hour angle. The
azimuth is measured in degrees in the plane of the horizon from the north, increasing
in positive value toward the east. Local hour angle is measured in units of time
positive to the west with respect to the local meridian. The latitudinal angles with
respect to the horizon and equator are altitude, which is measured positively toward
the zenith from the horizon, and declination, which is measured from the equator,
positive toward the north pole of rotation (see Fig. 3.6).

3.5.3 Geocentric Coordinates

The geocentric coordinates are the longitude, �0, and latitude, �0, of a point on the
Earth’s surface relative to the center of the Earth, with the equator and a prime
meridian as reference planes. Coordinates can be given in rectangular coordinates
or spherical coordinates, longitude, latitude, and radial distance. Longitude is
measured from the prime meridian positively to the east, usually in degrees to
˙180ı. Latitude is measured from the equator to 90ı, positively to the north.

Fig. 3.6 Horizon system
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(reproduced from Urban and
Seidelmann (2012), with
permission)
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Fig. 3.7 Geocentric and geodetic coordinates (reproduced from Urban and Seidelmann (2012),
with permission)

3.5.4 Geodetic Coordinates

The geodetic coordinates are the longitude and latitude of a point on the Earth’s
surface determined from the geodetic vertical, which is normal to the reference
ellipsoid. The equatorial radius and flattening of the adopted spheroid must be
specified. Geodetic and geocentric longitude � D �0 are defined the same way and
agree. Geodetic latitude, �, is the inclination to the equatorial plane of the normal to
the spheroid. Geodetic latitude may differ from geocentric latitude by up to 10 min
of arc in mid-latitudes. Geodetic height is the distance above the spheroid along the
normal to the spheroid (see Fig. 3.7).

3.5.5 Geographic Coordinates

The geographic coordinates refer to terrestrial longitude and latitude, when deter-
mined by astronomical observations with respect to the celestial pole and local
meridian through the local vertical, and a height above the geoid, also called the
height above mean sea level (see Figs. 3.8 and 3.9). These coordinates are also called
astronomical coordinates and terrestrial coordinates. The geographic longitude is
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Fig. 3.8 Relation between geographic latitude and the latitude of the celestial pole (reproduced
from Urban and Seidelmann (2012), with permission)
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Fig. 3.9 Geocentric (�0) and geodetic (�) latitude (reproduced from Urban and Seidelmann
(2012), with permission)

the angle between the plane of the astronomical meridian through a point and the
plane of the ITRF prime meridian. The astronomical meridian contains the direction
of the local vertical and the direction of the line through the point that is parallel
to the axis of rotation of the Earth. The local vertical is affected by local gravity
anomalies and by the varying gravity fields of the Sun, Moon, and oceans (see
Fig. 3.10). Thus, the astronomical meridian is not precisely the same as the geodetic
meridian through a point. So geographic and geodetic longitude of a point differ
slightly. Geographic latitude is also defined by the local vertical and axis of rotation,
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Fig. 3.10 Astronomical
latitude and longitude
(reproduced from Urban and
Seidelmann (2012), with
permission)
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and so is not equal to the geodetic latitude. The inclination of the local vertical to
the normal to the reference spheroid is known as the deflection of the vertical.

3.5.6 Astronomical Coordinates

The longitude and latitude of a point on the Earth relative to the geoid are
provided by astronomical coordinates. The coordinates are influenced by local
gravity anomalies. A proper, or virtual, place is the direction of an object in the
GCRS that takes into account orbital or space motion and light-time, light deflection,
and annual aberration. Thus, the geocentric right ascension and declination are the
position where the object would be seen from the center of the Earth, if the Earth
were transparent, non-refracting, and massless. Apparent place is the proper place
of an object expressed with respect to the true, or intermediate, equator and equinox
of date.

The mean place is the coordinates of an object at a specific date in the BCRS.
The coordinates represent the direction of the object as it would be observed from
the solar system barycenter at the specific time with respect to a fixed coordinate
system, e.g the ICRF, if the masses of the Sun and other solar system bodies were
negligible. The local place is the topocentric place in the coordinate system of the
reference system. The local place represents the position of an object as it would be
seen from some specific location on the Earth at some date and time in the coordinate
system of the GCRS, assuming the atmosphere was non-refracting. An astrometric
place is the direction of a solar system body formed by applying the correction for
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the barycentric motion of this body during the light-time to the geometric position
referred to the ICRS. For more information see The Explanatory Supplement (Urban
and Seidelmann 2012, pp. 281–283).

3.6 Kinematics of the Earth

3.6.1 Earth Orientation

The connection between an observation from the surface of the Earth in a local
coordinate system and a celestial coordinate system is complicated by three aspects
of the kinematics of the Earth: precession and nutation of the axes of rotation, the
motion of the pole of rotation within the Earth (polar motion), and the variability of
the rate of rotation of the Earth. Precession and nutation are the only ones of these
that are accurately predictable, the others have to be observed. The variability of the
rotation of the Earth is due to a number of causes, primarily a long term tidal friction
effect, and interchange of angular momentum between the mantle and a number of
elements, specifically the core, atmosphere, oceans, and others. The changes result
in variations in the length of the day. The observed determination of the rotation of
the mantle of the Earth is given by Universal Time, with versions UT0, UT1, and
UT2. UT1 is the measure used. This is available as observed and in predicted values
from the IERS. For observations and pointing from the surface of the Earth, UT1
must be known. The difference between UT1 and UTC is currently maintained at
less than 0.9 s.

3.6.2 Precession

The main sources of forced precession for the Earth’s rotation are the torques
caused by the attraction of the Sun and Moon on the Earth’s equatorial bulge,
called precession of the equator (formerly called lunisolar precession). The slow
change in the orientation of the Earth’s orbital plane is called precession of the
ecliptic (formerly called planetary precession). The combination of both motions,
the motion of the equator with respect to the ecliptic, is called general precession
(see Fig. 3.11). The precession matrix from mean equator and equinox of epoch to
mean equator and equinox of date is made up of the rotations

P D R3.�zA/R2.C�A/R3.��A/ (3.32)

An expansion of the equation and the values of the constants are given in The
Explanatory Supplement (Urban and Seidelmann 2012, pp. 216–217).
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Fig. 3.11 The general precession connects the mean equinox of epoch, �0, to the mean equinox
of date, �M (reproduced from Urban and Seidelmann (2012), with permission)

3.6.3 Nutation

Nutation is the oscillations in the motion of the Earth’s pole due to torques from
external gravitational forces and is specified in terms of components in obliquity
and longitude. It is limited to motions with periods longer than two days. The IAU
2000A Theory of Nutation was computed for the celestial intermediate pole by
determining the nutations in longitude and obliquity of a rigid Earth and making
modifications for the non-rigid Earth, so there are no nearly diurnal motions of
the celestial pole with respect to either space-fixed or body-fixed coordinates. See
Kaplan (2005) for a table of the fundamental arguments and nutation amplitudes.
The nutation matrix, N, is a sequence of three rotations

N D R1.�"/R3.�� /R1.C"A/ (3.33)

where� is the nutation in longitude, " D "A C�",�" is the nutation in obliquity,
and "A is the obliquity of the ecliptic of date. Software implementing the nutation
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theory is available from the IERS,5 USNO NOVAS subroutines,6 and SOFA.7 These
software routines implement the IAU 2000 nutation in slightly different ways. More
information about nutation is given in The Explanatory Supplement (Urban and
Seidelmann 2012, pp. 223–227).

3.6.4 Polar Motion

Polar motion, mentioned in Sect. 3.3.5, refers to the quasiperiodic motion of the
Earth’s pole of rotation with respect to the Earth’s solid body. This is the angular
excursion of the CIP from the ITRS z axis. There is a secular polar motion, which
is the non-periodic motion of the Earth’s pole toward the direction of approximately
75ı west longitude. For more information about polar motion see The Explanatory
Supplement (Urban and Seidelmann 2012, pp. 240–244).

3.7 Observation Effects

3.7.1 Aberration

The aberration phenomenon is the relativistic apparent angular displacement of
the observed position of a celestial object from its geometric position caused by
the motion of the observer and the object in the reference system, in which the
trajectories of the observed object and the observer are described. The displacement
due to the motion of the object may be considered a correction for light time. In
Fig. 3.12, E denotes the stationary observer at time t and P is the position of the
moving object at time t. The dotted line is the motion of the moving object and P0
is the location of the object when the light was emitted at .t � �/, where � is the
light time, the time for the light to travel from P0 to E. The light time is calculated
iteratively.

The correction for the motion of the observer is called stellar aberration and is
due to the following effects: the diurnal rotation of the Earth, diurnal aberration;
the orbital motion of the Earth around the barycenter of the solar system, annual
aberration; and the motion of the solar system in space, secular aberration. In
Fig. 3.13, p is the direction of EP0, the direction of the object allowing for light time,
the observer is moving with a velocity V relative to a fixed reference frame, and at
time t observes the object at P00 in the direction p1. P0EB is the angle � between the

5The IERS, http://www.iers.org.
6Naval Observatory Vector Astrometry Software (NOVAS), http://www.usno.navy.mil/USNO/
astronomical-applications/software-products/novas/.
7IAU Standards of Fundamental Astronomy (SOFA) Software Collection, http://www.iausofa.org/.

http://www.iers.org
http://www.usno.navy.mil/USNO/astronomical-applications/software-products/novas/
http://www.usno.navy.mil/USNO/astronomical-applications/software-products/novas/
http://www.iausofa.org/
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Fig. 3.12 Light-time
displacement (reproduced
from Urban and Seidelmann
(2012), with permission)
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Fig. 3.13 Stellar aberration
(reproduced from Urban and
Seidelmann (2012), with
permission)
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motion and p, and P0EP00, the angle �� , is the displacement due to aberration in
the moving frame, which is in the direction of the motion. The correction for stellar
aberration can be determined from

sin�� D V

c
sin � � 1

4

�
V

c

�2
sin 2� C : : : (3.34)

The corrections for annual aberration in the sense of apparent place minus mean
place are

cos ı�˛ D � PX
c

sin˛ C PY
c

cos˛

C 1

c2
. PX sin˛ � PY cos˛/. PX cos˛ C PY sin˛/ sec ı C : : : (3.35)
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�ı D �
PX
c

cos˛ sin ı �
PY
c

sin˛ sin ı C
PZ
c

cos ı

� 1

2c2
. PX sin ˛ � PY cos˛/2 tan ı

C 1

c2
. PX cos ı cos˛ C PY cos ı sin ˛ C PZ sin ı/

� . PX sin ı cos˛ C PY sin ı sin˛ � PZ cos ı/C : : : (3.36)

where PX; PY; PZ are the components of the Earth’s velocity parallel to equatorial
rectangular axes.

The diurnal aberration corrections in the sense of apparent place minus mean
place are

�˛ D 0:02133s �

a
cos�0 cos h sec ı (3.37)

�ı D 0:3200
00 �

a
cos�0 sin h sin ı (3.38)

where � and �0 are the geocentric distance and latitude of the observer and h is the
hour angle. The superscript s denotes seconds of time, and 00 denotes seconds of arc.

For more information about aberration corrections see The Explanatory Supple-
ment (Urban and Seidelmann 2012, pp. 263–270).

3.7.2 Proper Motion

The apparent space motion of a star in two dimensions relative to the celestial
reference frame is called proper motion. Thus, it is usually tabulated as changes
in right ascension and declination. Care must be taken to ensure that the units are
properly used. Modern catalogs tend to tabulate �˛ D 15�˛ cos ı and �ı , where
�˛ and �ı are the measurements on the celestial sphere in seconds of time and of
arc/year, respectively. The third dimension of the space motion is given as radial
velocity.

3.7.3 Radial Velocities

The radial velocity is the rate of change of the distance to an object, usually
corrected for the Earth’s motion, with respect to the solar system barycenter. For
more information about radial velocities see The Explanatory Supplement (Urban
and Seidelmann 2012, pp. 258–260).
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Fig. 3.14 Parallax of an object (reproduced from Urban and Seidelmann (2012), with permission)

3.7.4 Parallax

The term parallax denotes the difference in the apparent direction of an object
as seen from two different locations; conversely, the angle at the object that is
subtended by the line joining two designated points. Thus, there are different types
of parallaxes due to different locations for observations. Annual, or heliocentric,
parallax is the difference between the geocentric and heliocentric directions toward
an object (see Fig. 3.14). Geocentric, or diurnal, parallax is the difference between
the topocentric and geocentric directions toward an object. Horizontal parallax is the
difference between the topocentric and geocentric directions toward an object, when
the object is on the astronomical horizon. For more information concerning parallax
see The Explanatory Supplement (Urban and Seidelmann 2012, pp. 261–263).

3.7.5 Refraction

The phenomenon of refraction is the change in direction, or bending, of a light
ray as it passes obliquely from a medium of lesser/greater density to a medium of
greater/lesser density. Astronomical refraction is the change in direction as a light
ray passes obliquely through the atmosphere. The result of refraction is that the
observed altitude of an object is greater than the geometric altitude. The magnitude
of refraction is dependent on the altitude of the object and atmospheric conditions.
At the horizon a value of 340 is frequently used in computations for sea level
observations. Saastamoinen’s refraction formula can be used for zenith distances
down to 70ı. Given the observed zenith distance, z0, the temperature, pressure, and
partial pressure of water vapor, .T0;P0;P!0/, the refraction for a wavelength of
0:574�m, visible light, and an observer at sea level is

 D 16:271Q tan z0.1C 0:0000394Q tan2 z0/ � 0:0000749P0.tan z0 C tan3 z0/
(3.39)

where Q D .P0 � 0:156P!0/=T0. For more information on refraction see The
Explanatory Supplement (Urban and Seidelmann 2012, pp. 277–280).



3.7 Observation Effects 73

3.7.6 Relativistic Light Deflection

The phenomenon of relativistic light deflection is the bending of the path of light
towards the body in a gravitational field of a massive body. In Fig. 3.15, S is the
Sun, P the body being observed, and E is the Earth. The unit vectors e and q are the
heliocentric directions to the Earth and the body, respectively. The heliocentric angle
of the Earth from P is  , where cos D q � e. The unit vector p is the geocentric
direction of the body P when the light left it. The dotted arc AEB is the light path
as it passes the Earth. As the light travels along path AB, it is deflected towards the
Sun. At E, the direction between p and the tangent to the light path is� , which is

� D 2�

c2E

sin 

1C cos 
(3.40)

where E is the distance of the Earth from the Sun, � is the heliocentric gravitational
constant, and c is the speed of light. The apparent direction of P is along the tangent
to the light-path p1, which can be computed from

p1 D p C g1
g2
Œ.p � q/e � .e � p/q
 (3.41)

The dimensionless scalar quantities are g1 D 2�

c2E
and g2 D 1 � q � e, where

�=c2 D k2�2A=86400
2, k is the Gaussian gravitational constant, and �A is the light

time for a unit distant (1 astronomical unit, AU) for the ephemeris being used. For
more information, see The Explanatory Supplement (Urban and Seidelmann 2012,
pp. 270–272).

In this context, the term time dilation refers to the observed difference of elapsed
time between two observers, which are moving relative to each other, or being
differently situated with respect to nearby gravitational masses.

Fig. 3.15 Gravitational light
deflection (reproduced from
Urban and Seidelmann
(2012), with permission)
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3.7.7 Space Motion

The position of an object in space may be given in a form where the distance and
directions are combined to form a position vector r at an epoch t,

r D r

2
4 cos ı cos˛

cos ı sin ˛
sin ı

3
5 (3.42)

where ˛; ı are the right ascension and declination, and r is the barycentric distance to
the object in AU, which can be computed from r D 1= sin p, where p is the parallax
of the star. If r is known from another source, it can be used as is. If the distance, or
parallax, is not known, a small positive number can be used to avoid mathematical
indeterminacy. The space motion vector Pr of the object is given then by

Pr D
2
4� cos ı sin ˛ � sin ı cos˛ cos ı cos˛

cos ı cos˛ � sin ı sin ˛ cos ı sin˛
0 cos ı sin ı

3
5
2
4 15 srf�˛

srf�ı
kf Pr

3
5 (3.43)

where �˛; �ı are the proper motions in right ascension and declination in units
of time and arc, respectively, and Pr is the radial velocity. The factors 15s; s and k
convert �˛; �ı and Pr into the required units for the space motion vector, and the 15
assumes that �˛ is in units of time. The factor f is the relativistic Doppler effect.
In most cases, f may be ignored and set equal to 1. For more information, see The
Explanatory Supplement (Urban and Seidelmann 2012, pp. 258–261).

3.7.8 Tidal Effects

There are periodic variations in UT1 due to tidal deformation of the solar moment
of inertia and include the zonal tides of the Earth with a decoupled core, an elastic
mantle and equilibrium oceans. A model uses effective Love numbers. Care must be
used to specify any tidal model used. The IERS Conventions8 specify the corrections
to UT1, length of day, and rotation velocity in equations and tables of the terms to
be calculated.

8Available at ftp://tai.bipm.org/iers/conv2010/.

ftp://tai.bipm.org/iers/conv2010/
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3.8 Earth Satellite Equations of Motion in GCRS

For geocentric Earth satellites, developments may be restricted to a fictitious
observer at the center of the Earth for most computations (i.e., observations are
referred to the geocenter so that the GCRS is the proper reference system). A
summary by Ries et al. (1991) determined the geocentric frame as being suitably
accurate for near-Earth satellite motion. Equations of motion referred to the GCRS
follow from that presentation, as well as the development of Huang et al. (1990).
Notation is that of Ashby and Bertotti (1986); large bold letters (e.g., X;V;A,
and M) denote position, velocity, and acceleration vectors, and mass parameters in
barycentric coordinate-reference systems, while small bold letters (e.g., x; v; a, and
m) denote the same in non-inertial geocentric reference systems. Subscripts A,E,
and M refer to the Ath body, the Earth, and the Moon, respectively. The equations
of motion for a near Earth satellite in the geocentric, kinematically non-rotating
(non-inertial) system are

d2r
d2�

D �GmE
r
r3

CAnp CArel�1CArel�2CArel�3CAindr CAns CAother (3.44)

where r is the geocentric satellite location, Anp;Ans, and Aindr are the Newtonian n-
body perturbation, the Newtonian non-spherical geopotential perturbation, and the
indirect perturbation due to the Earth’s oblateness, respectively. Aother represents
other Newtonian perturbations, such as solar- or Earth-radiation pressure, in the
geocentric reference system. In the two-body term, GmE D 3:986004418 �
1014m3=s2 (conventional EGM96), when units of time are expressed in TCG, while
GmE D 3:986004415 � 1014m3=s2, when units of time are expressed in TT (or
equivalently, TAI), the scale difference being .1 � LG/ per Eq. (3.29). The indirect
perturbation term Aindr does not depend on a satellite orbit, as it is caused by the
interaction between the non-spherical part of the Earth and the other bodies. To a
high level of accuracy, it has the following form:

Aindr D �15
2

GMM

MER7ME

Œ.RT
ME

NHGT �BF NHG RME/RME

� 2

5
NHGT �BF NHG RME R2ME
 (3.45)

with

�BF D 1

2
mEa2MEJ2

0
@1 0 0

0 1 0

0 0 �2

1
A (3.46)

where RME D kXM � XEk, and aE; J2, and NHG are the Earth’s equatorial radius,
dynamical form-factor for the Earth, and the coordinate-transformation matrix from
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the non-inertial geocentric reference system to the (central) body-fixed geocentric
reference system, respectively.

The relativistic perturbations Arel�1 and Arel�2, and the Newtonian n-body
perturbations Anp, have the following forms:

Anp D
X
A¤E

GMA

kX.t/ � XA.t/k3 ŒX.t/ � XA.t/
 �
X
A¤E

GMA

R3EA

XEA (3.47)

The Schwarzschild solution, with the last term being the geodesic precession, is

Arel�1 D GmE

c2r3


�
4

GmE

r
� v2

�
r C 4 .v � r/ v

�
C 2 .� � v/ (3.48)

The Lense-Thirring precession is

Arel�2 D 2
GmE

c2r3



3

r2
.r � v/ .r � J/C .v � J/

�
(3.49)

where

� D 3

2c2
.VE � AE/C 2

X
A¤E

GMA

c2R3EA

.VA � XEA/ (3.50)

The first term in Eq. (3.48) is the Schwarzschild solution and the second term
is the effect of geodesic precession. The average effect on the (equatorial) orbital
node of a near-Earth satellite is approximately 17.6 mas/yr, sometimes known as
relativistic Coriolis acceleration. Equation (3.49) is the relativistic effect caused
by the Lense-Thirring perturbation, where J is the Earth’s angular momentum per
unit mass

�kJk D 9:8 � 108m2=s
�

(Lense and Thirring 1918). Arel�3 represents all
other relativistic perturbations due to the Earth’s rotation and finite size (including
oblateness). Since the Sun is the only significant contributor to geodesic precession,
Eq. (3.50) can be simplified to

� D 3

2
.VE � VS/ �


�GMSXES

c2R3ES

�
(3.51)

This simplification introduces an error of less than 0.1 mas/yr for an Earth
satellite.

The IERS Conventions (2003), in its Eq. (10.2.1), provides an alternative
expression for the relativistic perturbation of an artificial satellite, comparable
to Eqs. (3.48)–(3.51); however, it provides compatibility with the more general
Parameterized Post-Newtonian (PPN) formalism. The 2000 resolutions have been
discussed in the PPN context by Klioner and Soffel (2000) and Kopeikin and
Vlasov (2004). As adopted, the 2000 IAU resolutions are specific to Einstein’s
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General Theory of Relativity, where it is assumed that the two PPN parameters are
both unity (Kaplan 2005).

Barycentric equations of motion, along with their development, are given by
Huang et al. (1990), and the reader is further referred to Chap. 11 of the IERS
Conventions (2003) regarding the additional relativistic barycentric corrections
required for laser range measurements, data timing, and station coordinates.
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Chapter 4
Central Force Motion

4.1 Introduction

If the force causing accelerated motion of a particle passes through a fixed point,
then this yields central force motion. The center of force is the fixed point. Central
force motion predominates in the universe:

1. Planetary motion has the force of attraction passing through the Sun.
2. One double star moves around the other due to a gravitational central force.
3. Natural and artificial satellites move around a planet.
4. Interplanetary probes have attraction forces from the Sun or a planet.

The inverse square law of Newton, to be discussed in Sect. 4.6, applies to
astronomical and astrodynamical motions (McCuskey 1963, p. 19).

4.2 Law of Areas

We take a particle of mass m at r relative to O. Under a central force F, directed
toward or away from O, as shown in Fig. 4.1, the particle moves on the curve C. We
denote F by Fur, where ur is a unit vector along r. According to Newton’s second
law, mPv D Fur, where m is a constant mass, and

r � mPv D r � Fur D 0 (4.1)

since r and ur are collinear.
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Fig. 4.1 The areal velocity
due to a central force

 

 

 

 

 

 

 

 

 

The areal velocity (see Sect. 2.5) is

PA D 1

2
r � v (4.2)

so

d PA
dt

D 1

2
Œ.Pr � v/C .r � Pv/
 D 1

2
r � Pv D 0 (4.3)

This is because Pv is along r from above. Therefore, PA D constant. The areal
velocity is

PA D 1

2
r2 P� OuA (4.4)

where the unit vector OuA is perpendicular to r and v, thus perpendicular to the plane
defined by r and v. Since OuA is a constant vector, then the mass particle, moving
under a central force, moves in an orbit in a plane.

The constant areal velocity magnitude is 1
2
h. The area described in time t is A D

1
2
htCc, where c is a constant of integration. The law of areas, mentioned in Sect. 1.2

as Kepler’s second law, holds for any central force of planetary motion. The area
swept out by the radius vector is directly proportional to time. Conversely, if the
area swept out by the radius vector is directly proportional to time, the force is a
central force. This is shown by assuming A D ptCq, p and q are constants. Because
PA D p, from Eq. (4.4) r2 P� D 2p, and

2
dp

dt
D 0 D d

dt
.r2 P�/ D d PA

dt
D rPr P� C r2 R� D 0 (4.5)
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The expression rPr P� C r R� is the acceleration component perpendicular to the
radius vector. This vanishes by Eq. (4.5), so there is no acceleration and no force
perpendicular to r. Thus, the line of action of the acceleration, or force, passes
through the origin. Consequently, we showed that

d2r
dt2

D .Rr � r P�2/ Our C .r R� C 2Pr P�/ Ou� (4.6)

where the first term on the right is the radial component and the second the traverse
component. Thus, the traverse component is zero, the acceleration is all in the radial
component, and the force is a central force (McCuskey 1963, pp. 19–31).

4.3 Linear and Angular Velocities

Results follow from the fact that force, or acceleration, is central. Let p be the
perpendicular distance from O, the origin, to the tangent T of the curve at a point P,
as shown in Fig. 4.2. Then

2 PA D r � v D h OuA (4.7)

But by the cross product definition, r�v D rv sin˛ OuA and r sin˛ D p, so v D h=p.
The linear speed, v, of a particle moving at point P, under a central force, is inversely
proportional to the perpendicular distance from O to the instantaneous tangent to the
orbit at P.

Fig. 4.2 Understanding
linear and angular velocities
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The angular speed of the particle at P is P� D h=r2, since PA D 1
2
r2 P� OuA D 1

2
h OuA.

The angular speed of a particle moving under a central force varies inversely as the
square of the distance from the origin (McCuskey 1963, pp. 20–21).

4.4 Integrals of Angular Momentum and Energy

As in the previous section, the equation of motion of a mass, m, is mPv D F Our, where
F is the magnitude of a central force. The angular momentum is L D r � mv. So

PL D r � mPv D r � F Our D 0 (4.8)

Then the angular momentum L of a particle moving under a central force remains
constant in magnitude and direction; this is the conservation of angular momentum.
L is perpendicular to the orbital plane. From Eqs. (4.4), (4.6), and (4.7),

PA D 1

2
r2 P� OuA; 2 PA D r � v D h OuA (4.9)

We see that

L D r � mv D 2m PA D mr2 P� OuA D mh OuA (4.10)

so the magnitude of the angular momentum is

L D mr2 P� D mh (4.11)

Then one integral of the equations of motion of the mass particle is that of constant
angular momentum mh.

From the equation of motion of a mass we can write the scalar product mv � Pv D
Fv � Our . But

v � Pv D d

dt

�
1

2
v � v

�
D d

dt

�
1

2
v2
�

(4.12)

and v D Pr D Pr Our C r P� Ou� , where Our is perpendicular to Ou� (see Fig. 4.1). Since

v � Our D
�

Pr Our C r P� Ou�
�

� Our D Pr (4.13)

then

d

dt

�
1

2
mv2

�
D F

dr

dt
(4.14)
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If F depends only on the length of r, that is F D F.r/, then on integrating
Eq. (4.14) we have

1

2
mv2 D

Z
F.r/ dr C E (4.15)

where E is a constant of integration depending upon the initial conditions of motion.
The integral in Eq. (4.15) is the work done by F changing the position along the

orbit of the particle. From the analytical form of F.r/, the integral can be calculated;
F D F.r/ Our is a conservative force.

A potential energy, V.r/, exists such that F.r/ D �dV=dr. So, Eq. (4.15) can be
rewritten in the form

1

2
mv2 C V.r/ D E (4.16)

From this equation, the sum of the kinetic energy and the potential energy of a
particle moving under a central force is constant. This is the law of conservation of
energy (see also Sect. 2.10), and E is a second integral of the equations of motion.
Solving Eq. (4.16) for v, we have

v D ˙
r
2

m
.E � V/ (4.17)

The square root depends only on r through the V.r/, so, at a given distance r from
the center of force, the speed is the same in all orbits of the same total energy,
regardless of their shapes (McCuskey 1963, pp. 21–23).

4.5 Equation of the Orbit

Denote the force by F.r/. From Newton’s second law, the equations of motion are

m.Rr � r P�2/ D F.r/; mr2 P� D mh (4.18)

These differential equations, in their original form, were each second order, so
a complete solution would have four integration constants. Two are the angular
momentum and energy integrals. Two more constants are needed from Eqs. (4.18).
Two initial conditions are needed to fix the orbit.

Let u D 1=r be the reciprocal radius vector. From the second of Eqs. (4.18),
P� D hu2. Also,

Pr D � 1

u2
Pu D �h

du

d�
(4.19)
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and

Rr D �h2u2
d2u

d�2
(4.20)

After simplification, the first of Eqs. (4.18) is

du2

d�2
C u D �F.1=u/

mh2u2
(4.21)

This second-order differential equation for u, a function of � , gives the polar
equation of the orbit, when the proper force law in terms of u, is substituted. If
the force varies as an integer power, n, of the distance, namely

F.r/ D ˛rn; F.1=u/ D ˛u�n (4.22)

Then Eq. (4.21) becomes

d2u

d�2
C u D �˛u�n�2

mh2
(4.23)

This may be integrated directly. Multiplying both sides by 2du=d� and rewriting

d

d�

"�
du

d�

�2
C u2

#
D �ˇu�.nC2/ du

d�
(4.24)

where ˇ D 2˛=
�
mh2

�
. Integration yields

�
du

d�

�2
C u2 D ˇu�.nC1/

n C 1
C C; n ¤ �1 (4.25)

where C is a constant of integration. Integrating a second time, we obtain

Z u

u0

duq
c � u2 C ˇu�.nC1/

nC1
D � � �0; n ¤ �1 (4.26)

where .u0; �0/ define an initial starting point in the orbit.
With n, Eq. (4.26) defines u as a function of � , which is the polar equation of the

orbit. n D �1 is excluded, because in that case log u replaces the power of u in the
right-hand side of Eq. (4.15). The integral of Eq. (4.26) is

Z
.a C bu2 C cu�n�1/�1=2 du (4.27)
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where n is an integer. Integral tables result in trigonometric functions, if the power
of u does not exceed 2. So n is restricted to n D �1;�2;�3. Since n D �1 is
excluded, we have n D �2;�3.

When n D 1, the integral in Eq. (4.26) is

Z
.bu4 C au2 C c/�1=2 u du (4.28)

A substitution of v D u2 and dv D 2udu produces

Z
.bv2 C av C c/�1=2 dv (4.29)

which integrates into trigonometric functions. When the central force varies as
rn with n D C1;�2;�3, the polar equation of the orbit includes trigonometric
functions. Under special circumstances, higher powers of r yield equations in
circular functions. When n D C5;C3; 0;�4;�5;�7, the integral results in elliptic
functions. We will return to this issue in Chap. 12 (McCuskey 1963, pp. 23–24).

4.6 Inverse Square Law

In most astrodynamical and astronomical applications, the orbits are derived from
the inverse square law of Newton. We shall illustrate the analysis of the previous
section by using

F.r/ D �GMm

r2
(4.30)

where GM is the power of the force center, and m is the mass being accelerated. The
equations of motion, produced by this force law, yield for the orbit

d2u

d�2
C u D GM

h2
(4.31)

We shall integrate Eq. (4.31) to obtain

u D GM

h2
C A cos.� � �0/ (4.32)

where �0 and A are constants of integration. So,

r D h2=GM

1C .Ah2=GM/ cos.� � �0/ (4.33)
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0

/

O

Directrix

Focus

Fig. 4.3 Geometry of an ellipse

This is the polar equation of the orbit, which is the standard equation for a conic
section (cf. Eq. (1.2)),

r D p

1C e cos.� � �0/ (4.34)

where e is eccentricity and p=e is the distance from the focus to the directrix, as
shown in Fig. 4.3.

From Eqs. (4.33) and (4.34),

p D h2

GM
; e D Ah2

GM
(4.35)

As discussed in Sect. 1.3, the shape of the conic depends on p and e; e < 1 is an
ellipse, e D 1 is a parabola, and e > 1 is a hyperbola. These geometrical parameters
depend on the integration constant A. The physical constants of the system are h, G,
and M.

Equation (4.25) shows that for the inverse square law

�
du

d�

�2
C u2 D 2GMu

h2
C c (4.36)

The velocity components in the orbit are Pr D �hdu=d� and r P� D hu. So the speed
v is

v D
"�

h
du

d�

�2
C h2u2

#1=2
(4.37)
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�GM=r D �GMu is the potential energy per unit mass. Thus, Eq. (4.36) shows that
the total energy in the system stays constant. So

1

2
mv2 � GMmu D 1

2
h2cm D E (4.38)

where E is the total energy; c D 2E=.mh2/.
At the ends of the traverse axis of the conic, we have Pr D �hdu=d� D 0. From

Eq. (4.36),

u2 � 2GMu

h2
� 2E

mh2
D 0 (4.39)

and

u D GM

h2

2
41˙

s
1C 2Eh2

mG2M2

3
5 (4.40)

The values of u are at the ends of the transverse axis of the conic. From Eqs. (4.32)
and (4.40) we have

umax D GM

h2
C A D GM

h2

2
41C

s
1C 2Eh2

mG2M2

3
5 (4.41)

umin D GM

h2
� A D GM

h2

2
41 �

s
1C 2Eh2

mG2M2

3
5 (4.42)

Hence,

A D GM

h2

s
1C 2Eh2

mG2M2
(4.43)

e D Ah2=.GM/, so we have a relation between the eccentricity and the total energy
of the particle, namely

e D
s
1C 2Eh2

mG2M2
(4.44)

so, if

I E D 0; e D 1 the orbit is a parabola.
II E < 0; e < 1 the orbit is an ellipse.

III E > 0; e > 1 the orbit is a hyperbola.
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Case I
Let q denote the distance from the focus to the vertex. Then

p D h2

GM
D 2q (4.45)

The orbital equation is

r D 2q

1C cos.� � �0/
(4.46)

At a distance r from the center of force, the speed in the orbit is, by Eq. (4.38),

vp D p
2GM=r (4.47)

This is the resulting speed, if a particle moved from an infinite distance to r,
under the inverse square force. Or, if the particle has this speed at a distance r, it
will recede indefinitely far from the center of force. This speed vp is the escape
velocity from the force center (see also Sect. 2.10.2).

Case II
Let q denote the radius vector of the vertex of the ellipse nearest to the origin, and
q0 denote the radius vector at the maximum distance from the origin. The origin is
the focus. The major axis of the ellipse is 2a. Then q D p=.1C e/, q0 D p=.1� e/,
and q C q0 D 2a. So p D a.1� e2/, and the equation of the ellipse is

r D a.1� e2/

1C e cos.� � �0/ (4.48)

p D h2=.GM/, and the areal velocity constant is

h D
p

GMa.1 � e2/ (4.49)

Substituting this into Eq. (4.44) and simplifying, the total energy is

E D �GMm

2a
(4.50)

Equation (4.38) yields, for the orbital speed at a distance r from the force center,

v2 D GM

�
2

r
� 1

a

�
(4.51)
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We can write an expression for the period in elliptic motion. Let A be the area
swept out by the radius vector in time t. Then, from A D 1

2
ht C c given previously,

A D 1

2

p
GMa.1� e2/ t C c (4.52)

where c is a constant of integration. In a period P, the radius vector sweeps out an
area

	ab D 	a2
p
1 � e2 D 1

2

p
GMa.1 � e2/P (4.53)

where b D a
p
1 � e2 is the semiminor axis. So,

P D 2	a3=2p
GM

(4.54)

This is Kepler’s third law, first mentioned in Sect. 1.2, which is applied to the
planetary system. M is very nearly the same for each planet, and is approximately
the mass of the Sun. But Kepler’s third law is not quite exact, since variations of the
masses of the planets cause slight variations. Accepting the approximation, if two
planets have periods P1 and P2, and semimajor axes a1 and a2, then the relation

�
P1
P2

�2
D
�

a1
a2

�3
(4.55)

gives Kepler’s third law.

Case III
Let 2a denote the transverse axis of the conic. Then the geometry of the orbit
indicates p D a.e2 � 1/ and

r D a.e2 � 1/
1C e cos.� � �0/ (4.56)

The areal velocity constant is

h D
p

GMa.e2 � 1/ (4.57)

and the total energy will be

E D GMm

2a
(4.58)
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At a distance r from the force center , the speed will be given by

v2 D GM



2

r
C 1

a

�
(4.59)

From motion under an inverse square force directed toward a fixed center, a
deduction of Kepler’s first law of planetary motion is implied. The differential
equation defining the orbit yields, under proper conditions of total energy, an
elliptical path with the force center at one focus. Kepler deduced this from
observations of Mars. Kepler found Mars described an ellipse with the force center,
the Sun, at one focus. The equation for such a curve is

r D p

1C e cos �
(4.60)

when the major axis of the ellipse coincides with the polar axis of the coordinates.
On the assumption that the force governing the motion is a central force, we can
show directly from Eq. (4.21) that the law of force must be that of an inverse square.
From Eq. (4.60),

u D 1C e cos �

p
(4.61)

Then

d2u

d�2
C u D 1

p
(4.62)

so we have

F

�
1

u

�
D �mh2u2

p
(4.63)

The force law is then

F.r/ D �mh2

pr2
(4.64)

which is an inverse square law (McCuskey 1963, pp. 25–39).

4.6.1 Eccentricity Vector

We have seen in Sect. 4.4 that the angular momentum vector L D mh OuA is conserved
in central force motion. Another important quantity in central force motion is the
Laplace–Runge–Lenz vector, which determines the shape and orientation of orbits.
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If the orbital motion is determined by an inverse square law, e.g. Newtonian gravity,
the Laplace–Runge–Lenz vector is referred to as the eccentricity vector, and is
defined as

e D v � L
GMm

� Our (4.65)

By taking the time derivative of Eq. (4.65), keeping in mind that PL D 0 and recalling
that r � .r � v/ D r.r � v/� v.r � r/, it can be shown that Pe D 0, so the eccentricity
vector is fixed in magnitude and orientation for Newtonian gravity. Furthermore,
r � e D r e cos f , and the eccentricity is e D kek. The angle f is the true anomaly,
which we have seen in Sect. 1.3.1. Thus, the unit vector Oe D e=e points to the
periapsis, the point on the orbit closest to the attraction center.

4.6.2 From Orbit to Force Law

The converse of the previously discussed problem can be solved by use of Eq. (4.21).

d2u

d�2
C u D �F.1=u/

mh2u2
(4.66)

Suppose a mass particle is moving on the circle r D 2 cos � under the action of a
force directed toward the origin, as shown in Fig. 4.4. Then with �.u/ D F.1=u/,
from Eq. (4.66) we have

�.u/ D �mh2u2



d2u

d�2
C u

�
D �8mh2u5 (4.67)

Thus, the force F.r/ D �8mh2u5 is an inverse fifth power law.

Fig. 4.4 Mass particle on a
circular orbit

= 0
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4.7 Einstein’s Modification of the Orbit Equation

The theory of relativity requires a modification of Newton’s law. The equation of
the orbit becomes

du2

d�2
C u D �

h2
C ˛u2 (4.68)

where ˛ D 3�=c2 and � D GM; c is the speed of light. ˛ is a small quantity, so
the square can be neglected. The ratio ˛u2 to u=h2 is three times the square of the
transverse velocity in units of c.

Equation (4.68) can be solved by approximations. If we neglect ˛, leaving only
Newtonian motion, then

u D �

h2
Œ1C e cos.� � �0/
 (4.69)

For a better approximation, substitute this into the right side of Eq. (4.68),

du2

d�2
C u D �

h2
C ˛�2

h4
C 2˛

�2

h4
e cos.� � �0/C 1

2
˛
�2

h4
e2 f1C cos Œ2.� � �0/
g

(4.70)

If we neglect the �=h2 terms, we have

du2

d�2
C u D ˛

�2

h4

�
1C 2e cos.� � �0/C 1

2
e2 f1C cos Œ2.� � �0/
g


(4.71)

which has an integral

u D ˛
�2

h4

�
1C 1

2
e2 C e� sin.� � �0/ � 1

6
e2 cos Œ2.� � �0/



(4.72)

Combining Eqs. (4.69) and (4.72) and letting p D h2=�, we have a solution to
Eq. (4.70),

u D 1

p
Œ1Ce cos .� ��0/
C ˛

p2

��
1C 1

2
e2
�

C e� sin .� � �0/ � 1

6
e2 cos Œ2.� � �0/




(4.73)

Consider this modification to Kepler’s motion. The term

˛

p2

�
1C 1

2
e2
�

(4.74)
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increases u by a very small constant quantity. The third term,

� ˛

6p2
e2 cos 2.� � �0/ (4.75)

is very small and periodic. However, the term

˛

p2
e� sin.� � �0/ (4.76)

is periodic, and steadily increasing in amplitude as � increases. So this is bound to
have some effect with increased time. Considering only the observable effects,

u D 1

p
Œ1C e cos.� � �0/
C ˛e

p2
� sin.� � �0/ (4.77)

Let k� D ˛�=p and neglect ˛2, then Eq. (4.77) can be written as

u D 1

p
f1C eŒcos.� � �0/C k� sin.� � �0/
g 	 1

p
Œ1Ce cos.���0�k�/
 (4.78)

�0 C k� is the angular coordinate of the perihelion. So the planet is moving in an
ellipse with a moving line of apsides, which is a slowly rotating ellipse. The angular
change of the line of apsides is �! D 2	˛=p per period. Substituting values for
the planets we have

Mercury:�! D 43:03 arcsec per century.
Venus: �! D 8:63 arcsec per century.
Earth:�! D 3:84 arcsec per century.

For Mercury this small effect was observable and remained unexplained until
Einstein’s relativity. It was fudged in Newcomb’s planetary theories and called an
empirical term (Danby 1962, pp. 66–67).

4.8 Universality of Newton’s Law

Newton’s law follows from Kepler’s first two laws of planetary motion; therefore,
any two bodies traveling around each other according to Kepler’s first two laws
are subject to Newton’s law. When two stars are observed moving around each
other, these are called visual binaries. In other cases of binaries, the two stars have
different spectra, continuously shifting spectra, or eclipse each other. For visual
binaries, when the fainter star is plotted with respect to the brighter, the orbits are
ellipses, and the law of areas is followed. However, a projection of the true orbit is
being plotted, so the brighter star is not at the focus. It is unlikely in any case that
the orbital plane is perpendicular to the line of sight.
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An ellipse always projects into another ellipse. Since the apparent orbit as plotted
is an ellipse, the true orbit must be an ellipse. The law of areas of the apparent
orbit will hold for the true orbit, because the law of areas depends on ratios, which
are not affected by projections. For the true orbit, the theory of central forces and
conservative fields applies, and an ellipse with the brighter star at the focus can be
found. It can be shown that for visual binaries. elliptical motion requires the center
of attraction to be at the focus of the ellipse.

So Newton’s law is the only plausible law governing Keplerian motion within and
exterior to the solar system. Also, this law has explained deviations from Keplerian
motion, when the relativity effect is included, and has led to the correction of
Kepler’s third law (Danby 1962, pp. 73–76).
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Chapter 5
The Two-Body Problem

5.1 Introduction

Assume that the masses are spherically symmetrical and homogeneous in concentric
layers. So they attract one another as if the mass were concentrated at spherical
centers, i.e. gravitationally they act like two mass particles separated by the distance
between the centers. The two masses are assumed to be isolated from other masses,
so the only force acting is the inverse square force of their mutual attractions along
the line joining the centers. In astronomical applications, the distance between
centers is large, compared to the diameters of the spheres. This is not true for
artificial satellites.

The dynamics of the motion of two masses presents two problems for celestial
mechanics and astrodynamics:

1. Given the position and velocity, or three positions, of a mass as a function of time,
find the elements of the orbit. This is the computation of orbits to be considered
in Chap. 6.

2. Given the orbital elements, or parameters defining the orbital motion, find
the position in space of the mass at a given time. This we will take up now (the
first problem is by far the more difficult), with the first step being defining the
classical orbital elements.

5.2 Classical Orbital Elements

Assume that a mass m is rotating counterclockwise in orbit when viewed from the
planet’s north pole. If the orbital plane and the fundamental plane of some reference
frame intersect, then we define two points of interest on the line of intersection,
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x̂ (vernal equinox)

ŷ
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Fig. 5.1 Definitions of the right ascension of the ascending node, �, the argument of periapsis, !,
and the inclination, i. Also shown is the true anomaly, f

as shown in Fig. 5.1: The first is the ascending node, denoted by �. This point
marks the location on the line of intersection when moving eastward; the second is
the descending node, denoted by �. This point marks the location on the line of
intersection when moving westward. The line connecting � to � is called the line
of nodes (LON); we will use the notation Ol to denote a unit vector that lies along
the LON.

We now define three angles that determine the orientation of the orbital plane
with respect to the reference frame: �, the right ascension of the ascending node
(RAAN), also referred to as the longitude of the ascending node, an angle measured
from the vernal equinox (see Sect. 3.1) to the LON; !, the argument of periapsis,
which is an angle measured from the LON to the eccentricity vector (see Sect. 4.6.1);
and i, the inclination, an angle measured from the z axis of the reference frame, Oz,
to the vector normal to the orbital plane, OuA. These angles are shown in Fig. 5.1. It
is convenient to express the position vector in a perifocal coordinate system. This
coordinate system is centered at the attraction center. The fundamental plane is the
orbital plane. The unit vector OP is directed from the center to the periapsis (recall
Sect. 4.6.1), OR is normal to the fundamental plane, positive in the direction of the
orbital angular momentum vector, and OQ is pointed toward the point where the true
anomaly is 90ı, thus completing the right-hand Cartesian triad. Using the definition
of the true anomaly (Sect. 4.6.1), we can write the position vector in the perifocal
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frame as

rp D r Œcos f ; sin f ; 0
T (5.1)

where, as before, r D p=.1C e cos f /.
We can transform from the orbital frame to the reference frame using three

consecutive clockwise rotations: a rotation about OuA by 0 � ! � 2	 , mapping
the eccentricity vector, Oe, onto the LON, Ol; a rotation about Ol by 0 � i � 	 , mapping
OuA onto Oz; and a rotation about Oz by 0 � � � 2	 , mapping Ol onto Ox.

The composite rotation, transforming any vector in the orbital frame into the
inertial frame is given by

T D
2
4 c�c! � s�s!ci �c�s! � s�c!ci s�si

s�c! C c�s!ci �s�s! C c�c!ci �c�si

s!si c!si ci

3
5 (5.2)

where we used the compact notation cx D cos x, sx D sin x.
Transforming into inertial reference coordinates using Eqs. (5.1) and (5.2), we

obtain the position vector

r D p

1C e cos f

2
4 cf C!c� � cisf C!s�

cic�sf C! C cf C!s�
sisf C!

3
5 (5.3)

The true anomaly f depends on time and on the epoch of observation, T. Thus, the
inertial position and velocity depend on time t and the classical orbital elements,
given by

fa; e; i; �; !; Tg (5.4)

5.2.1 Osculating Orbital Elements

In the two-body problem, the orbital elements are constant; f is time-varying.
However, in the presence of perturbations and/or thrust forces, the orbital elements
may become time-varying, and are referred to as osculating orbital elements.

In general, elliptical motion constitutes a correct approximation to the real
motion observed in the solar system. Thus, for example if, starting from an instant
t0, all the perturbing forces were neglected, the movement of a body would become
exactly elliptical. It would represent the real movement quite well for a certain time,
even though strictly speaking, it would not be identical with the real movement as
regards position and velocity, except at the instant t0. The elements of an ellipse that
would be followed by a body after a specific time t are thus said to be osculating, or
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instantaneous, if starting from this instant, all the forces with the exception of the
central force were to disappear. The elements of such an unperturbed orbit can be
defined at any instant; they correspond to the elliptical orbit followed by a moving
body, which would have at the given instant the same position and velocity as the
real body. As in fact the real orbit is simply tangential to the osculating orbit, at an
instant tCıt the osculating orbit will be different, with different osculating elements.
It follows that the osculating elements in perturbed motion are no longer constant,
but are functions of time.

Osculating elements can be used to describe the perturbed motion of a body.
They possess the advantage of having a precise and simple geometrical significance
while having small variations.

The coordinates and velocity components of perturbed motion at an instant t are
those which would be obtained at this instant t, assuming that the orbit is elliptical,
from elements equal to the osculating elements at the same time t.

5.2.2 Nonsingular Orbital Elements

While the angles �; i; ! may become degenerate is some cases (for instance, !
is undefined for circular orbits; both ! and � are undefined for equatorial orbits),
the position and velocity vectors are always well-defined. However, occasionally
alternative orbital elements are used to alleviate these deficiencies. These alter-
native elements are collectively referred to as nonsingular orbital elements, see
Sect. 10.12. A thorough survey of these elements was performed by Hintz (2008).

5.3 Motion of the Center of Mass

Let an origin, O, define an inertial system with Newton’s laws of motion. The
positions of two masses are given by vectors r1 and r2, and R is the vector to the
center of mass of the pair, C. r is the position vector of m2 relative to m1, as shown
in Fig. 5.2.

From Newton’s law of gravitation, the force on m1 due to m2 is 1
r2

k2m1m2 Our and
that on m2 due to m1 is � 1

r2
k2m1m2 Our. Our is a unit vector in the direction of r, and

k2 is the constant of gravitation. The reason and significance of the notation k2 will
become apparent later. The equations of motion are

m1 Rr1 D k2m1m2

r3
r (5.5)

m2 Rr2 D �k2m1m2

r3
r (5.6)
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Fig. 5.2 Motion of the center
of mass

1

2

1

2

Adding Eqs. (5.5) and (5.6) and integrating twice, we have

m1r1 C m2r2 D c1t C c2 (5.7)

where c1 and c2 are vector constants. The left side of Eq. (5.7) is MR, by the
definition of the center of mass, with M D m1 C m2. Thus,

R D c1t
M

C c2
M

(5.8)

so the center of mass moves uniformly in a straight line in space.
This is in agreement with previous results and what one would expect, since

there is no external force acting on this system. This result is applicable to double
star observations, but of little interest otherwise (McCuskey 1963, pp. 32–33).

5.4 Relative Motion

The motions of m1 and m2 relative to the center of mass can be derived as follows.
Let r1 D R C r0

1 and r2 D R C r0
2, where r0

1 and r0
2 denote position vectors to m1

and m2 from the center of mass, C, respectively, as shown in Fig. 5.3.
Then r D r0

2 � r0
1. Since RR D 0, from definitions of r0

1 and r0
2, m1 Rr1 D m1 Rr0

1 and
m2 Rr2 D m2Rr0

2. Thus Eqs. (5.5) and (5.6) become

m1 Rr0
1 D k2m1m2.r0

2 � r0
1/

r3
(5.9)

m2 Rr0
2 D �k2m1m2.r0

2 � r0
1/

r3
(5.10)
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Fig. 5.3 Motion of two
masses relative to the center
of mass

1

2

1

2

′1

′2

and m1r0
1 C m2r0

2 D 0 due to the center of mass definition. So r0
2 can be eliminated

from Eq. (5.9) and r0
1 can be eliminated from Eq. (5.10). Thus,

m1 Rr0
1 D �k2m1m2



1C m1

m2

�
r0
1

r3
(5.11)

m2 Rr0
2 D �k2m1m2



1C m2

m1

�
r0
2

r3
(5.12)

Since

r D M

m2

r0
1 D M

m1

r0
2 (5.13)

we may write by dividing though by m1 or m2 and replacing the sum of the masses
by M, and then substituting from above,

Rr0
1 D �k2M

r3
r0
1 D �k2

�
m3
2

M2

�
r0
1

r03
1

(5.14)

Rr0
2 D �k2M

r3
r0
2 D �k2

�
m3
1

M2

�
r0
2

r03
2

(5.15)

The accelerations of m1 and m2 relative to the center of mass are given. They are the
same as Eqs. (5.5) and (5.6), with m1 and m2, respectively, replaced by the adjusted
effective mass.

From Eqs. (5.14) and (5.15) and constants c1 and c2 of Eq. (5.8), the positions
of m1 and m2 can be determined for any time. However, the constants cannot be
determined, because they are with respect to an origin fixed in space. So the solution
must be for one mass with respect to the other.
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Consider m1 as the origin of the two-body system. Then, from the first parts of
Eqs. (5.14) and (5.15)

Rr D �k2M

r3
r (5.16)

where r is the relative radius vector. This is the acceleration of m2 around m1. In a
planetary system, m1 is the Sun and m2 is the planet. In the case of a satellite and a
planet, m1 is the planet and m2 is the satellite.

For computations, the equations of relative motion can be expressed in Cartesian
form, with unit vectors Oi; Oj; Ok, so that r D xOi C yOj C z Ok. Hence, Eq. (5.16) is

Rx D �k2Mx.x2 C y2 C z2/�3=2

Ry D �k2My.x2 C y2 C z2/�3=2

Rz D �k2Mz.x2 C y2 C z2/�3=2 (5.17)

The differential equations, Eqs. (5.5) and (5.6), in vector form, are three second-
order equations. Each solution introduces two constants of integration, which would
be the initial conditions. So there are twelve constants in the original system.

If we ignore the motion of the center of gravity, the number of constants reduces
to six. So, the solution of Eqs. (5.17) will result in six constants. These six constants
can be determined, if we know the 3 position coordinates and 3 velocity components
at any instant. So to determine an orbit, six pieces of information are required; they
can be three observations of two angles each, or two observations of two angles and
a distance, each. An orbit is thus defined by six values: position and velocity or six
parameters (McCuskey 1963, pp. 33–35).

5.5 The Integral of Areas

The motion of m2 around m1 is a central force motion, so the areal velocity is
constant. That is

PA D 1

2
.r � v/ D 1

2
h OuA (5.18)

where OuA is a unit vector with constant direction perpendicular to the orbital plane
defined by r and v. The components of areal velocity in Cartesian coordinates are

1

2
.yPz � zPy/ D 1

2
c1

1

2
.zPx � xPz/ D 1

2
c2

1

2
.xPy � yPx/ D 1

2
c3 (5.19)
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where c1; c2; c3 are constants related to h by

q
c12 C c22 C c23 D h (5.20)

From the initial coordinate and velocity components of m2, the constants
c1; c2; c3 can be determined. When known, they must be related to the elements
of the orbit, which were defined in Sect. 5.2 (see also Fig. 5.1). In terms of �; i the
unit vector is

OuA D sin i sin� Oi � sin i cos� Oj C cos i Ok (5.21)

The areal velocity is

PA D 1

2
h sin i sin� Oi � 1

2
h sin i cos� Oj C 1

2
h cos i Ok (5.22)

Comparing Eqs. (5.19) and (5.20) we have

c1 D h sin i sin�

c2 D �h sin i cos�

c3 D h cos i

h D
q

c21 C c22 C c23 (5.23)

From the initial conditions, c1; c2; c3 are determined, and Eqs. (5.23) determine �
and i. These elements orient the orbital plane with respect to a Cartesian coordinate
system (McCuskey 1963, pp. 35–36).

5.6 Elements of the Orbit from Position and Velocity

The orientation of the orbital plane is established by the constants c1; c2; c3. The
size, shape, and orientation in the orbital plane must be determined. It will be a conic
section with a central force mass, M, at the conic focus. k2 D G is the gravitational
constant, m1 is at the focus, and m2 is the moving mass.

We seek the elements: a, the semimajor of an ellipse or semitransverse axis of a
hyperbola, respectively; q, the distance from the focus to the vertex of the parabola;
e, the eccentricity; !, the argument of periapsis, which is the angle in the orbital
plane between the line of nodes and the eccentricity vector, as explained in Sect. 5.2;
and T, the time of periapsis passage. The longitude of periapsis is Q! D �C !. As
defined in Sect. 4.6.1, the true anomaly, f , is the angle in the orbital plane between
the eccentricity vector and the m2 position vector, as shown in Fig. 5.1.
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The equation of the conic for the m2 motion is

r D p

1C e cos f
(5.24)

The coordinates, x0; y0; z0, and velocity components, Px0; Py0; Pz0, are for m2 at time
t D 0. Then Eqs. (5.19) and (5.23) are

c1 D y0 Pz0 � z0 Py0 D h sin i sin�

c2 D z0 Px0 � x0 Pz0 D �h sin i cos�

c3 D x0 Py0 � y0 Px0 D h cos i (5.25)

which determine�; i, and h, as previously indicated. The initial distance and speed

are r0 D
q

x20 C y20 C z20 and v0 D
q

Px20 C Py20 C Pz20. Then, for an ellipse,

1

a
D 2

r0
� v20

k2M
(5.26)

For a hyperbola,

1

a
D v20

k2M
� 2

r0
(5.27)

For a parabola,

q D h2

2k2M
(5.28)

We can determine the eccentricity from the values of h by

e2 D 1
 h2

k2Ma
(5.29)

where there is a minus sign for an ellipse and a plus sign for a hyperbola. The angle
! can be calculated as follows. Set the argument of latitude as u D f C !, then

r cos u D x cos�C y sin�

r sin u D .�x sin�C y cos�/ cos i C z sin i (5.30)

Once � and i are known, and from initial conditions r0 is known, Eq. (5.30) yields
u0 at time t0. From Eq. (5.24),

e cos f D p

r
� 1 (5.31)



104 5 The Two-Body Problem

Differentiating Eq. (5.31) with respect to time,

� .e sin f /Pf D � p

r2
Pr (5.32)

r2Pf � r2 P� D h is known. Furthermore,

r2 D x2 C y2 C z2

rPr D xPx C yPy C zPz (5.33)

Hence, Eq. (5.32) can be written for t D 0,

e sin f0 D p

h



x0 Px0 C yo Py0 C z0 Pz0

r0

�
(5.34)

Dividing Eq. (5.34) by Eq. (5.31) we find at t D 0

tan f0 D p

h



x0 Px0 C yo Py0 C z0 Pz0

p � r0

�
(5.35)

We determine the argument of periapsis, ! D u0 � f0, from u0 computed in
Eq. (5.30) and f0 given in Eq. (5.35). In Eq. (5.35), we use p D a.1 � e2/ for an
ellipse, p D a.e2 � 1/ for a hyperbola, and p D 2q for a parabola.

The quadrant of f0 is determined from the sign of x0Px0 C yo Py0 C z0Pz0. This is
equal to r0Pr0 and r0 > 0, so its sign will depend on Pr0. If Pr0 > 0, the radius vector
is increasing, then 0 < f0 < 	 . If Pr0 < 0, then 	 < f0 < 2	 . The quadrant of !
can be calculated when the quadrant of u0 has been established (McCuskey 1963,
pp. 38–40).

5.7 Properties of Motion

At a given distance r from the force center, O, the speed in all elliptical orbits of the
same major axis is the same, only the direction of the velocity vector differs. This
speed is

v2 D k2M



2

r
� 1

a

�
(5.36)

and

ve D k

r
2M

r
� M

a
(5.37)

where ve is the velocity in an elliptic orbit.
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At the same distance r from the force center, the speed in a parabolic orbit is

vp D k
p
2M=r (5.38)

and in a circular orbit

vc D k
p

M=r (5.39)

The circular and parabolic velocities at a given point, a distance r from the center
of force, are the lower and upper limits, respectively, for the speed in elliptic orbits
passing through the same point. When a mass is at r with a velocity v, between those
limits, the path it follows depends on the direction of v.

The expression for vp in Eq. (5.38) is identical to the escape velocity appearing
in Eq. (4.47). It is the velocity required for escaping a given gravitational body at a
given radius r.

For a hyperbolic orbit, utilizing the expression for the velocity in Eq. (5.36), it is
seen that when r ! 1, the velocity becomes

v1 D k

r
�M

a
; a < 0 (5.40)

The velocity v1 is called the hyperbolic excess velocity. It is related to the escape
velocity through the equation

v2 D v2p C v21 (5.41)

In elliptic motion Kepler’s third law, given as

P D 2	a3=2

k
p

M
(5.42)

holds, where it is clear the period is independent of all orbital elements except the
semimajor axis. We note again that M D m1 C m2, which is the total mass of the
two-body problem.

5.8 The Constant of Gravitation

The constant of gravitation G as known by laboratory measurements and in the
mks system is G D 6:67428 � 10�11m3kg�1s�2. This is known to about ˙6:7 �
10�15. This accuracy is not sufficient for astronomical purposes. It has been the
practice since Gauss’s time (ca. 1800) to adopt a value for describing the dynamical
properties of the solar system. Equation (5.42) is useful to define the astronomical
constant, k, the Gaussian gravitational constant. k D 0:01720209895. There are no
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more figures to this constant. The units for this value are: (i) The mean solar day for
time; (ii) the astronomical unit (AU) for distance; (iii) the mass of the Sun for mass.
In Eq. (5.42)

P D 2	a3=2

k
p
1C m2

(5.43)

applied to the Earth-Moon system, Gauss used the values P D 365:2563835

mean solar days, a D 1 AU, and m2 D 1=354710 solar masses. The value
of k, given above, comes from these values. The best values today would be
P D 365:25636042C 0:00000011T with T from 1900, and m2 D 1=332946:0487.
These values with a D 1 would yield a different value of k.

Until 2012, rather than change k, the value of the unit of distance has varied
and k was kept constant. So the value of the semimajor axis of the Earth was a D
1:000000031. In 2012, it was decided to stop holding the value of k as constant, fix
the real value of the AU at the determined value and use the best values of P and
m2, such that the variability of these quantities could be considered. The value of
the AU was fixed at 149597870700m exactly (Capitaine et al. 2011).

The mean daily motion of a planet is n D 2	=P, where P is the period. From
Eq. (5.42)

n D 2	

P
D k

p
1C m2

a3=2
(5.44)

P is in mean solar days and n is in radians per day. Equation (5.44) can be written as

n2a3 D k2.1C m2/ (5.45)

In some problems, it is convenient to use a system of units in which k D 1. We
set a D 1, 1 C m2 D 1 in Eq. (5.44) and appropriately adjust the unit of time. If
a D 1AU, 1C m2 D 1 solar mass, k D 1, then the unit of time is

365:2563835=2	 D 58:1323589mean solar days (5.46)

For the Earth-Sun two-body problem this would be a canonical system of units,
where n D 1. Canonical units are especially useful for purely theoretical investiga-
tions (McCuskey 1963, pp. 44–45). We shall discuss this later.

5.9 Kepler’s Equation

Elliptical orbital motion is the most important in the solar system and around the
Earth. Consider the problem, given the elements a; e; i; !;�;T of an elliptic orbit,
to find the polar coordinates—the radius, r, and the true anomaly, f —of the moving
mass at any time t. To that end, the relation known as Kepler’s equation is useful.
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Fig. 5.4 The construction of the eccentric anomaly, E

The elliptic orbit and an auxiliary circle, whose diameter is the major axis of the
ellipse, are shown in Fig. 5.4.

Mass m1 is at the focus, F, and mass m2 is moving in a counterclockwise direction
around the ellipse. BA is perpendicular to CD through the position of m2. The
auxiliary variable, E, is the eccentric anomaly, which we mentioned in Sect. 1.3.1.
As the true anomaly, f , changes by 2	 radians, so does E. Then from Fig. 5.4 and
the properties of an ellipse

r cos f D a cos E � ae (5.47a)

r sin f D a sin E � HA (5.47b)

Furthermore,

BH

BA
D b

a
D

p
1 � e2 (5.48)

where b is the semiminor axis of the ellipse. Thus,

HA D BA � BH D BA.1�
p
1 � e2/ D a sin E.1�

p
1 � e2/ (5.49)
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Hence, Eq. (5.47b) can be written as

r sin f D a sin E
p
1 � e2 (5.50)

Squaring Eq. (5.50), adding to the square Eq. (5.47a), and reducing yields

r D a.1 � e cos E/ (5.51)

So once we find E as a function of time, the value of r follows from Eq. (5.51).
To find E as a function of t, let us use a geometric argument. From Fig. 5.4 it can

be shown that

area.BDH/

area.BDA/
D b

a
D

p
1 � e2 (5.52)

But area.BDH/ D area.DFH/ � area.BFH/ and area.BDA/ D area.DCA/ �
area.BCA/. By Kepler’s second law,

area.DFH/ D 1

2
na2

p
1 � e2 .t � T/ (5.53)

where n is the mean motion, T is the time of periapsis passage, and t is the time
instant under consideration. Hence, Eq. (5.52) is written as

p
1 � e2 D

1
2
na2

p
1 � e2 .t � T/ � 1

2
r2 sin f cos f

1
2

a2E � 1
2
a2 sin E cos E

(5.54)

Using Eqs. (5.49) and (5.50), this reduces to

n.t � T/ D E � e sin E (5.55)

This transcendental equation in E is Kepler’s equation. n.t � T/ D M is the mean
anomaly, which is the angle the radius vector would describe, if it moved uniformly
with the average rate 2	=P. When .t � T/ is given, M is known, and Eq. (5.55) can
be solved for E. There are a number of ways to solve Kepler’s equation. We will
describe two such methods.

5.9.1 Series Expansion

When e is small, E does not differ greatly from M. To the desired accuracy, E
can be obtained by a series expansion. For a first approximation, E1 	 M. The
second approximation is E2 	 M C e sin M, which is approximate to first order in
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e. Substituting this into Kepler’s equation, we have

E3 D M C e sin E2 D M C e sin.M C e sin M/

D M C e sin M cos.e sin M/C e cos M sin.e sin M/ (5.56)

The terms in parenthesis are small, and we may write

cos.e sin M/ D 1C e2 sin2 M

2Š
C : : :

sin.e sin M/ D e sin M � e3 sin3 M

3Š
C : : : (5.57)

Substituting in Eq. (5.56), collecting like powers of e, a third-order approximation is

E3 D M C e sin M C e2

2
sin 2M C e3

8
.sin 3M � 3 sin M/C : : : (5.58)

which can be carried to a greater accuracy.
If e exceeds 0.2, the series converges too slowly. Then, an approximate value can

be determined graphically and corrected differentially (McCuskey 1963, pp. 47–48).

5.9.2 Differential Method

Assume an approximation value, E0, of E. Then a corresponding mean anomaly can
be computed

M0 D E0 � e sin E0 (5.59)

M is a continuous function of E, M D �.E/, which can be expanded into a Taylor
series about the point E D E0,

M D �.E0/C �0.E0/.E � E0/C �".E0/

2Š
.E � E0/

2 C : : : (5.60)

where primes denote derivatives of �.E/ with respect to E. Let E � E0 D �E0 and
neglect powers two and greater in Eq. (5.60). �.E0/ D M0 is given by Eq. (5.59). To
this order of approximation

M � M0 D �0.E0/�E0 D .1 � e cos E0/�E0 (5.61)
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Solving for�E0 we have

�E0 D M � M0

1 � e cos E0
(5.62)

and we have a new value of E

E1 D E0 C�E (5.63)

By using E1, the method is repeated with Eq. (5.59) to determine M1, and with
Eq. (5.62) for a new value of E.

Those are two of about 100 methods to solve Kepler’s Equation. With high speed
computers a simple iterative method can be used in the form

E D M C e sin E (5.64)

where M is the first approximation and then subsequent values of E from the left
are substituted on the right until it converges to the accuracy desired. Siewert and
Burniston (1972) have derived an exact analytical solution of Kepler’s equation,
but it probably takes more computation than any other scheme (McCuskey 1963,
pp. 48–49).

5.10 Position in the Elliptic Orbit

There is an expression for the radius vector in terms of the eccentric anomaly r D
a.1�e cos E/. We need the true anomaly, f , as a function of E. From Eq. (5.47a) we
have

a cos E D ae C r cos f (5.65)

from the polar equation of the orbit (5.24),

r D a.1� e2/

1C e cos f
(5.66)

Combining this with Eq. (5.65) we have

cos E D e C cos f

1C e cos f
(5.67)
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Thus,

1 � cos E D .1 � e/.1 � cos f /

1C e cos f
; 1C cos E D .1C e/.1C cos f /

1C e cos f
(5.68)

By division

tan2
�

E

2

�
D 1 � e

1C e
tan2

�
f

2

�
(5.69)

Thus,

tan

�
f

2

�
D
�
1C e

1 � e

�1=2
tan

�
E

2

�
(5.70)

The sign of the square root is not ambiguous, because tan. f=2/ and tan.E=2/ always
have the same sign (McCuskey 1963, pp. 51).

5.11 Position in the Parabolic Orbit

When a comet is discovered near perihelion, there is no way to distinguish from the
short arc of observations whether its orbit is an ellipse, a parabola, or a hyperbola.
The parabolic orbit is easily calculated from observations, so it is usually a first
approximation. When more observations are acquired, a definitive orbit can be
calculated; most likely an eccentric ellipse. For an initial ephemeris, we must obtain
polar coordinates of the object in a parabolic path.

The parabolic path equation is

r D 2q

1C cos f
D q sec2

�
f

2

�
(5.71)

which follows from Eq. (5.24). As shown in Fig. 5.5, the motion of m2 is coun-
terclockwise with the true anomaly f measured from the perihelion, V . The areal
velocity constant for the parabolic path is

h D k
p
2Mq (5.72)

The mass of a comet is usually negligible compared to the Sun’s mass, so M is the
solar mass. If q is in astronomical units and k is the Gaussian constant, M D 1. From
the areal velocity r2Pf D h, and by combining Eqs. (5.71) and (5.72) we obtain

q2Pf sec4
�

f

2

�
D k

p
2Mq (5.73)
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Fig. 5.5 Motion in a
parabolic orbit

O

q
f

r

V
m2

or

sec4
�

f

2

�
df D k

p
2M

q3=2
dt (5.74)

and by integration

tan

�
f

2

�
C 1

3
tan3

�
f

2

�
D k

s
M

2q3
.t � T/ (5.75)

where T is the time of perihelion passage. This is a cubic equation in tan. f=2/which
can be solved for f as a function of t by graphic or tabular methods or with much
computing.

Moulton (1970) derived a direct solution by a chain of calculations of auxiliary
quantities:

cot s D 3k.t � T/

.2q/3=2
(5.76)

cot w D
h
cot
� s

2

�i1=3
(5.77)

tan

�
f

2

�
D 2 cot 2w (5.78)

where M D 1. Having solved Eq. (5.75) for f=2, the radius vector is readily found
by (McCuskey 1963, pp. 52–53)

r D q sec2
�

f

2

�
D q



1C tan2

�
f

2

��
(5.79)
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5.12 Position in a Hyperbolic Orbit

A meteoroid entering the Earth’s atmosphere has a hyperbolic path with the Earth’s
center at one focus. Finding the position of the object on the hyperbola, as shown in
Fig. 5.6, is similar to that for the ellipse.
The path equation is

r D a.e2 � 1/

1C e cos f
; e > 1 (5.80)

where f is the true anomaly. f can only vary between values that cause the
denominator to vanish, i.e.



�180ı C cos�1

�
1

e

��
< f <



180ı � cos�1

�
1

e

��
(5.81)

f cannot have a value in the shaded region of Fig. 5.6. Using an analytical approach
to determine f and r in terms of time, from Kepler’s second law for the hyperbola

r2Pf D
p

k2Ma.e2 � 1/ (5.82)

and from the energy equation

Pr2 C r2 Pf 2 D k2M



2

r
C 1

a

�
(5.83)

Fig. 5.6 Motion in a
hyperbolic orbit

2

Asymptotes
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Substituting Pf from Eq. (5.82) into Eq. (5.83) yields the separable differential
equation

Pr2 D n2a2

r2
�
.a C r/2 � a2e2

	
(5.84)

where n2 D k2M=a3.
The quantity n is analogous to n in the elliptic case, but the relationship between

n and the period P is of course not present here.
Similar to the eccentric anomaly, E, in the elliptic orbit, we introduce an auxiliary

variable, F, defined by

r D aŒe cosh F � 1
 (5.85)

Differentiating Eq. (5.85)

dr D ae sinh FdF (5.86)

substituting this into a separated Eq. (5.84) gives

n dt D .e cosh F � 1/dF (5.87)

which upon integration yields

n.t � T/ D e sinh F � F D M (5.88)

This is similar to Kepler’s equation. It can be solved for F, when M D n.t � T/ is
known. This can be solved, as for Kepler’s equation, by graphical, iterative, or series
expansion methods.

When F is known, the radius vector can be determined from Eq. (5.85). From the
relation

r D a.e2 � 1/

1C e cos f
D aŒe cosh F � 1
 (5.89)

we derive the expression

tan

�
f

2

�
D
�

e C 1

e � 1

�1=2
tanh

�
F

2

�
(5.90)

which yields f when F is known (McCuskey 1963, pp. 55–57).
When e 	 1, the methods discussed previously for an object in an elliptical or

hyperbolic orbit, are not practicable. These very highly elliptic orbits occur among
comets, artificial satellites, lunar probes and solar probes. Herget (1948) presented
a special method for performing this calculation and tables of special variables.
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5.13 Position on the Celestial Sphere

We have considered polar coordinates of a celestial object in its orbit from given
elements. Now, consider the actual position on the sky at any time t. We seek for
a planet, or a satellite, its spherical coordinates with the origin at the center of the
Sun (heliocentric coordinates) or at the center of the Earth (geocentric coordinates).
Here, we omit corrections due to precession, nutation, aberration, and so on.

5.13.1 Heliocentric Coordinates

The heliocentric coordinates are defined as follows. The axis x0 points to the vernal
equinox, x0y0 is the Earth’s orbital plane (ecliptic plane), z0 is the north pole of the
ecliptic, the ascending node is N, the perihelion point P, and at any time t, m2 is as
shown in Fig. 5.7.

The heliocentric longitude, l, of m2 is the angle, in the plane of the ecliptic, from
the vernal equinox eastward to the projection of the radius vector on the ecliptic, as
shown in Fig. 5.8. The heliocentric latitude, b, is the angle, in a plane perpendicular
to the ecliptic, from the ecliptic to the object. We use .C/ when the object is north
and .�/ when the object is south. So 0ı � l < 360ı and �90ı � b � 90ı.

' (vernal equinox)x

'y

'z

Ecliptic plane iΩ

ω

Orbital plane 

lineof nodes

N
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Node 
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Sun

2m
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u

Fig. 5.7 Heliocentric coordinates
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Fig. 5.8 Definition of the heliocentric longitude and latitude

Let u D ! C f . The projection of the radius vector on SN is r cos u. Also it is
r cos b cos.l ��/. Hence,

cos u D cos b cos.l ��/ (5.91)

Using projections perpendicular to SN in the ecliptic plane,

sin u cos i D cos b sin.l ��/ (5.92)

and perpendicular to the ecliptic plane

sin u sin i D sin b (5.93)

From Eqs. (5.91)–(5.93) we have

tan.l ��/ D cos i tan u

tan b D tan i sin.l ��/ (5.94)

So when u; i and � are known, the heliocentric longitude and latitude are
uniquely determined from Eqs. (5.91)–(5.94).
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The rectangular ecliptic heliocentric coordinates of the moving mass m2 are
given by

x0 D r cos u cos� � r sin u sin� cos i

y0 D r cos u sin�C r sin u cos� cos i

z0 D r sin u sin i (5.95)

These coordinates are based on the plane of the Earth’s orbit, the ecliptic. The
fundamental reference plane for positions, as observed from the Earth, is the Earth’s
equatorial plane. This is inclined to the ecliptic by about 23ı 270. Thus, we have
coordinates with the Sun at the origin. Let x D x0 be the vernal equinox, and y and
z at angles � from y0 and z0 as shown in Fig. 5.9. Then in this heliocentric equatorial
system

x D x0

y D y0 cos � � z0 sin �

z D y0 sin � C z0 cos � (5.96)

Substituting Eqs. (5.95) into Eqs. (5.96) yields rectangular heliocentric equatorial
coordinates of the moving object. The transformation of x; y; z ! x0; y0; z0 is
(McCuskey 1963, pp. 63–65).

x0 D x

y0 D y cos � C z sin �

z0 D �y sin � C z cos � (5.97)

Fig. 5.9 Rotation from
ecliptic to equatorial
coordinates
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Fig. 5.10 Heliocentric and
geocentric coordinates
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5.13.2 Geocentric Coordinates

The heliocentric rectangular equatorial system can be related to a parallel system
with the Earth at the center. The geocentric equatorial coordinates X;Y;Z of the
Sun’s center, given in The Astronomical Almanac,1 are used. Let ; �; � denote
geocentric equatorial coordinates of a moving object, as shown in Fig. 5.10.

Let � be the vector from the center of the Earth to the object P, and r from the
center of the Sun to the object. Then

 D x C X

� D y C Y

� D z C Z (5.98)

are the geocentric coordinates of P. In vector notation,

� D r C R (5.99)

The geocentric polar coordinates are then

 D � cos ı cos˛

� D � cos ı sin ˛

� D � sin ı (5.100)

1The Astronomical Almanac Online, http://asa.usno.navy.mil or http://asa.hmnao.com.

http://asa.usno.navy.mil
http://asa.hmnao.com


References 119

It follows that

tan ˛ D �=

sin ı D �=�

� D .2 C �2 C �2/1=2 (5.101)

˛ is right ascension in the equatorial plane from the vernal equinox eastward to the
projection of � into that plane in hours, minutes and seconds. ı is declination, the
angular distance from the plane of the equator, and perpendicular to it, to the radius
vector �, (C) to the north and (�) to the south. Note these are viewed from the
center of the Earth.

If we wish a geocentric system with the ecliptic as the fundamental plane, then �
is the celestial longitude, the angular distance in degrees along the ecliptic eastward
from the vernal equinox to the projection of the radius vector into the ecliptic.
ˇ is the celestial latitude, the angular distance from the plane of the ecliptic and
perpendicular to it to the radius vector, (C) to the North and (�) to the South. The
relationships between ˛; ı and �; ˇ are (McCuskey 1963, pp. 65–67)

cos� cosˇ D cos ı cos˛

sin� cosˇ D sin ı sin � C cos ı cos � sin ˛

sinˇ D sin ı cos � � cos ı sin � sin˛ (5.102)
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Chapter 6
Orbit Determination

6.1 Introduction

So far we have considered the following problem: Given the elements of the orbit,
find the position of the celestial object at any time (Chap. 5). Now let us consider
the other problem: Given the observations of an object, determine the elements
of its orbit. We have considered determining the elements when the position and
velocity are known, but these are not the usual observations. Radar observations
can give the radial distance. Doppler observations can give a radial velocity, but in
both cases angular observations may be lost or reduced in accuracy. In any case,
six elements are to be determined, so six independent quantities must be observed,
either (i) three pairs of .˛; ı/ from Earth, (ii) two observations of .r; ˛; ı/, or (iii)
some other combination of six quantities.

We shall assume observations have been corrected for aberration, precession,
nutation, and other variations in the Earth’s motion. Also, all observables are
assumed in the same coordinate system. At this time, the ICRF should be used.
Before considering the general problem of three pairs of angular measurements,
we consider the trivial case, when the radius vector from the center of force to the
moving body is known, i.e. we know its spherical coordinates at each of three times.

6.2 Known Radius Vectors

Assume an object is moving around the Sun in an ellipse with the period P. Assume
a heliocentric longitude, a heliocentric latitude, and a radius vector, .l; b; r/, which
are known at times t1; t2; t3. The radius vector at each time is

r D x0 Oi C y0 Oj C z0 Ok (6.1)

© Springer-Verlag Berlin Heidelberg 2016
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Fig. 6.1 Computation of orbits from known radius vectors

where

x0 D r cos b cos l

y0 D r cos b sin l

z0 D r sin b (6.2)

Let the radius vectors be denoted by r1; r2; r3, where t1 < t2 < t3. Let Oe1; Oe2; Oe3 be
a triad of unit vectors as shown in Fig. 6.1, where Oe1 is directed along the line of
nodes, Oe2 is in the plane of the orbit and perpendicular to Oe1, and Oe3 is perpendicular
to the orbital plane, so that Oe3 D Oe1 � Oe2.
Then

Oe1 D cos� Oi C sin� Oj
Oe2 D � sin� cos i Oi C cos� cos i Oj C sin i Ok
Oe3 D sin� sin i Oi � cos� sin i Oj C cos i Ok (6.3)

where Oi; Oj; Ok are unit vectors along x0; y0; z0, respectively. From r1 and r3, we obtain
a unit vector

r1 � r3
kr1 � r3k D A1 Oi C A2 Oj C A3 Ok (6.4)
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This vector is perpendicular to the orbital plane and identical to Oe3. From Eq. (6.3)
we have

A1 D sin� sin i

A2 D � cos� sin i

A3 D cos i (6.5)

Thus,

tan� D �A1
A2

(6.6)

cos i D A3 (6.7)

and i and � are determined. The orbit in space is oriented. Any pair of r1; r2; r3
could be used in this calculation, but they must be non-collinear. The plane is best
determined by their being the farthest from collinear.

Let u denote the angle in the plane of the orbit from the line of nodes (see
Sect. 5.2) to the moving mass; the equation of the ellipse is written

r D a.1 � e2/

1C e cos f
D a.1 � e2/

1C e cos.u � !/
(6.8)

where, as before, f is the true anomaly. Substituting r1; r2; r3 into Eq. (6.8), rear-
ranging terms, and differencing in pairs, we have, remembering that the elements
have the same values throughout,

r2 � r1 D e cos!.r1 cos u1 � r2 cos u2/C e sin!.r1 sin u1 � r2 sin u2/ (6.9a)

r3 � r1 D e cos!.r1 cos u1 � r3 cos u3/C e sin!.r1 sin u1 � r3 sin u3/ (6.9b)

r cos u D r � Oe1 and r sin u D r � Oe2. So, Eqs. (6.9) can be written

r2 � r1 D e cos! Œ.r1 � r2/ � Oe1
C e sin! Œ.r1 � r2/ � Oe2
 (6.10a)

r3 � r1 D e cos! Œ.r1 � r3/ � Oe1
C e sin! Œ.r1 � r3/ � Oe2
 (6.10b)

We can calculate the dot products in brackets from Eqs. (6.3), (6.6), and (6.7),
and the observed values of the r’s. Equations (6.10) can be solved for e cos! and
e sin!. The determinant of the coefficient of e cos! and e sin! in Eqs. (6.10) does
not vanish, and values of e and ! can be determined, if the three radius vectors are
non-collinear.
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Then, the solution of Eqs. (6.10) is e cos! D B1 and e sin! D B2, and

e D .B21 C B22/
1=2 (6.11)

! D tan�1 B2
B1

(6.12)

The algebraic signs of e cos! and e sin! determine the quadrant of !, because
e > 0. The semimajor axis, a, can be determined by rearranging Eq. (6.8) into the
form

a D r C .r � Oe1/ e cos! C .r � Oe2/ e sin!

1 � e2
(6.13)

or equivalently

a D r C B1.r � Oe1/C B2.r � Oe2/
1 � e2

(6.14)

Any of the observations r can be used, or all can be used and an average of the a0s
taken, and it can be used as a check on the results. By Kepler’s third law, the period
can be found once the semimajor axis is known. The time of perihelion passage, T,
can e determined by the following steps: use Kepler’s equation, M D E � e sin E,
to find the mean anomaly, M, where E is calculated from r D a.1 � e cos E/. Then,
With M given for the time of one observation, the value of T follows from

M D 2	

P
.t � T/ (6.15)

Thus, the elements a; e; i; !;�;T for the orbit are determined from known space
coordinates of a moving celestial object. Actually, this can be done using only the
two positions and the constancy of the areal velocity, but the calculations are more
complex (McCuskey 1963, pp. 70–73).

6.3 Laplace’s Method

In most astronomical applications, the length of the radius vector is not known.
Only the angular position in the sky as seen from the Earth is recorded. Such an
observation locates an object on a line through the Earth; the distance from the Earth
is unknown, so the distance and position from the Sun are unknown. In the beginning
of the nineteenth century, Laplace devised a method of determining a preliminary
orbit from three observations of position, referred to as Laplace’s method.
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The equation of motion of a planet around the Sun can be written

Rr D � r
r3

(6.16)

if units of mass, distance, and time are chosen appropriately. The equation is in
heliocentric coordinates with r.t/, the radius vector from the Sun to the object
at time t. The conditions, which determine the arbitrary constants in its solution,
are expressed in terms of geocentric coordinates, because observations are made
from the Earth. The solution must include the transformation from geocentric to
heliocentric coordinates.

Let r0 be the heliocentric radius vector of the planet at the initial epoch t0. The
solution of Eq. (6.16) can be given in a Taylor series

r D r0 C Pr0� C 1

2Š
Rr0�2 C : : : (6.17)

where � D k.t � t0/, and k is the Gauss gravitational constant discussed in detail
in Sect. 5.8. Is assumed that r.t/ at t D t0 is differentiable. The time derivatives at
t D t0 are denoted by subscript 0. Using Eq. (6.16), we can express Rr from Eq. (6.17)
in terms of r0 and r0. So we have

r D r0 C Pr0� � 1

2Š

r0
r30
�2 C : : : (6.18)

Writing Eq. (6.16) for time t D t0

Rr0 D �r�3
0 r0 (6.19)

and differentiating

d3r0
dt3

D 3r�4
0 r0Pr0 � r�3

0 Pr0 (6.20)

and again in order

d4r0
dt4

D �12r�5
0 r0Pr20 C 3r�4

0 Pr0Pr0
C 3r�4

0 r0Rr0 C 3r�4
0 Pr0Pr0 � r�3

0 Rr0 (6.21)

Substituting Rr0 D �r�3
0 r0 and Rr0 D �r�2 and collecting terms

d4r0
dt4

D .�2r�6
0 � 12r�5

0 Pr02/r0 C 6r�4
0 Pr0 Pr0 (6.22)

In like manner higher derivatives can be written in terms of r0 and Pr0.
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Substituting Eqs. (6.20) and (6.22) into Eq. (6.17) reduces Eq. (6.17) to a linear
form,

r D f r0 C gPr0 (6.23)

where

f D 1 � 1

2
�2r�3

0 C 1

2
�3r�4

0 Pr0 � 1

12
�4.r�6

0 C 6r�5
0

Pr20/C : : : (6.24)

g D � � 1

6
�3r�3

0 C 1

24
�4r�4

0 Pr0 � : : : (6.25)

where � D k.t � t0/.
Thus, in principle, if the f and g series in Eqs. (6.24) and (6.25) converge, given

the position and velocity vectors r0 and Pr0 at the initial epoch t0, we can find r.t/.
So the problem is to find these vectors from the observations.

Consider Fig. 6.2. Let x; y; z denote a heliocentric equatorial coordinate system. S
denotes the Sun, � indicates the x-axis toward the vernal equinox. Let ; �; � denote
a parallel geocentric coordinate system centered at the Earth, E. The unit vector, Ou,
defines the position of the mass, m,

Ou D cos˛ cos ı Oi C sin ˛ cos ı Oj C sin ı Ok (6.26)

where Oi; Oj; Ok are unit vectors along ; �; �, respectively. The observations are .˛1; ı1/
at t1, .˛0; ı0/ at t0, .˛3; ı3/ at t3, where t1 < t0 < t3. By Eq. (6.26), these can be

Fig. 6.2 Heliocentric and
parallel geocentric
coordinates

ξ

η

ζ
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expressed in unit vectors Ou1; Ou0; Ou3. From Fig. 6.2 it is seen that

r D � � R D � Ou � R (6.27)

Hence,

Pr D P� Ou C � POu � PR (6.28)

and

Rr D R� Ou C 2 P� POu C � ROu � RR (6.29)

From Eq. (6.16), Rr D �r�3r. So Eq. (6.29) becomes

R� Ou C 2 P� POu C � ROu D RR � r�3 r (6.30)

Take the triple scalar product,
h

Ou � POu�
i
, of both sides of Eq. (6.30), remembering

that such a product, containing two identical elements, vanishes. So,

�
h

Ou � POu � ROu
i

D
h

Ou � POu � RR
i

� r�3
h

Ou � POu � r
i

(6.31)

If we substitute in the last bracket r D � Ou � R, we have

�
h

Ou � POu � ROu
i

D
h

Ou � POu � RR
i

C
h

Ou � POu � R
i

r3
(6.32)

This equation is of the form

� D A C Br�3 (6.33)

where

A D Ou � POu � RR
Ou � POu � ROu ; B D Ou � POu � R

Ou � POu � ROu (6.34)

Another relation between � and r is evident from Fig. 6.2. From the cosine law

r2 D R2 C �2 � 2� . Ou � R/ (6.35)

So we want to solve Eqs. (6.33) and (6.35) simultaneously for � and r at time t0;
i.e., the problem is to simultaneously solve Eqs. (6.33) and (6.35) for � and r at time
t0. The scalars A and B, which depend on the unit vectors and the position vector
of the Sun, must be known. For each day, The Astronomical Almanac gives the
Cartesian coordinates of the Sun, from which R D X Oi C Y Oj C Z Ok can be computed,
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and it gives the magnitude of this vector and the geocentric equatorial coordinates
of the Sun. From RR D �R�3R, RR is known. So substitution can be made for A in
Eq. (6.34).

Let �1 D k.t1 � t0/ and �3 D k.t3 � t0/ be the time intervals between the middle
and first and the middle and last observations. By a Taylor series, we write

Ou1 D Ou0 C POu0 �1 C 1

2
ROu0 �21 C : : : (6.36a)

Ou3 D Ou0 C POu0 �3 C 1

2
ROu0 �23 C : : : (6.36b)

Note �1 D k.t1 � t0/, k D 0:017202 : : :, so � D 1, if .t1 � t0/ D 58:3 days.
If the observations are not too far apart in time, these expressions can be truncated

to include only second degree terms in � . They may be written as

Ou1 � Ou0 D POu0�1 C 1

2
ROu0�21 (6.37a)

Ou3 � Ou0 D POu0�3 C 1

2
ROu0�23 (6.37b)

Ou1; Ou0; Ou3; �1; �3 are known, so we can solve for POu0 and ROu0, which will be used in
Eq. (6.34), to yield A and B at t D t0. To solve Eqs. (6.37), we introduce the notation

u.1;0/ ,
Ou1 � Ou0
�1

; u.3;0/ ,
Ou3 � Ou0
�3

(6.38)

Then Eqs. (6.37) can be written as

u.1;0/ D POu0 C 1

2
�1 ROu0 (6.39a)

u.3;0/ D POu0 C 1

2
�3 ROu0 (6.39b)

and we find

POu0 D �3u.1;0/ � �1u.3;0/
�3 � �1

(6.40a)

ROu0 D 2Œu.3;0/ � u.1;0/

�3 � �1

(6.40b)

If there are more than three observations, the series expansion in Eqs. (6.36) can
include higher order terms. The higher order terms in Ou and its derivatives can be
eliminated, resulting in higher accuracy for POu0 and ROu0.

Equations (6.33) and (6.35) can be solved by an iterative process as follows.
Assume a value for r1 in Eq. (6.33), and calculate a corresponding �1. Then
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Fig. 6.3 Illustration of
solutions based on Laplace’s
method

I

II

s

ρ
A0

substitute this in Eq. (6.35) to determine a new value of r2. Repeat the calculation of
Eq. (6.33) for a new value of �2. The speed of convergence depends on the wisdom
in guessing an initial r value. If mean daily motion, or the period of the object can
be estimated, Kepler’s third law can be used to estimate r.

The solution process can be visualized, as shown in Fig. 6.3. Let r2 D s, then
Eq. (6.33) is

s D
�

B

� � A

�2=3
(6.41)

The graph of s against � is shown by curve I in Fig. 6.3, with a vertical asymptote
at � D A.

Likewise Eq. (6.35) can be written

s D �2 � 2. Ou � R/�C R2 (6.42)

This is parabola II in Fig. 6.3. There may be three intersections of curves I and
II. One of these values can be used to begin the iterative process for determining
the exact numerical solution described above. Some of the values of r2 D s can
be eliminated as unreasonable, such as r less than the Earth’s radius. The slopes of
curves I and II in the neighborhood of the true values are indicative of how rapidly
the process converges.

We assume r0 and �0 are known from the above calculations and they satisfy
Eq. (6.27). To determine Pr0, we need to evaluate P�0. Operating on Eq. (6.30) with
the product Œ�. Ou � ROu
 and eliminating terms that vanish

2 P�Œ POu � Ou � ROu
 D Œ RR � Ou � ROu
C 1

r3
Œr � Ou � ROu
 (6.43)
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0̇

0

1

3
0

1

3

0

0

0

Fig. 6.4 Successive positions of the Earth and the object, projected on the equatorial plane

The quantities in brackets and r0 at t D t0 are known and P�0 can be calculated.
From Eq. (6.28) we have Pr0 from

Pr0 D P� Ou0 C �0 POu0 � PR0 (6.44)

With r0 and Pr0 we can find r at any other time t from Eq. (6.23). Thus, Laplace’s
method yields the values of r1; r0; r3, so the orbital elements can be calculated by the
method previously described. Alternatively, from the initial the position and velocity
vectors, r0 and Pr0, the elements can be calculated, as described in an earlier section.
The reader is referred elsewhere for an example (Herget 1948, p. 44).

A sketch of successive positions of the Earth and the object would appear as
shown in Fig. 6.4, projected on the equatorial plane.

The following checks can be applied to calculations:

1. Visual check of consistency between values.
2. From the calculated r1 and r3, calculate values of ˛c and ıc to compare with the

observed values of ˛ and ı. This indicates how well the preliminary orbit fits the
observations. The middle observation is fit exactly in this method. The other two
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observations only enter through approximations to the derivatives POu0; ROu0; PR0; RR0,
and so forth. Thus, exact agreement would not be expected.

This Laplace method represents the dynamical motion of the object, assuming
purely Keplerian motion. The first and third positions are dynamically correct. To
improve the orbital calculations and better fit the observations, the times of the
observations should be corrected for the light time, or the time for the light to travel
from the object to the Earth. Light travels 1 AU in 0.00577 days; the planetary
aberration correction is given by

t.true/ D t.obs/� 0:00577� days (6.45)

There are indeterminate cases with the Laplace method:

1. The inclination is zero. Then, i and� cannot be found. Four elements, a; e; !;T,
can be determined. When we convert to heliocentric coordinates, we have only
three longitudes and all latitudes are zero. Hence, a fourth observation is required.

2. If (a) the three observations are on a great circle and (b) the Sun crosses the great
circle during the time interval of the observations; then the situation is similar
to an object moving in the ecliptic plane. So more observations are required
(McCuskey 1963, pp. 76–84), (Herget 1948, pp. 40–51).

6.4 Gauss’s Method

Laplace’s method yields an orbit which fits the middle observation exactly. For
times t1 and t3 the fit depends on the truncated series f and g. In Gauss’s method,
the observed positions at t1 and t3 enter directly, thus strengthening the solution
immediately.

r1; r2; r3 are unknown heliocentric equatorial position vectors at times t1; t2; t3.
Since the motion takes place in a plane, one of these can be a linear combination of
the other two. So, we write

r2 D c1 r1 C c3 r3 (6.46)

where it is assumed r1; r2; r3 are not collinear. Set

r D � Ou � R (6.47)

where Ou is a unit vector for the geocentric position of the celestial object. Then
Eq. (6.46) can be

c1�1 Ou1 � �2 Ou2 C c3�3 Ou3 D c1 R1 � R2 C c3 R3 (6.48)
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If c1 and c3 are known, this equation provides three simultaneous equations
in �1; �2; �3, which are geocentric distances of the object at the times of the
observations.

So far we have discussed a geometrical relationship. So, c1 and c3 must be
determined such that as the object moves in its orbit, the dynamical conditions are
satisfied, that is

Rri D �r�3
i ri; i D 1; 2; 3 (6.49)

There are interesting geometrical interpretations of c1 and c3. Vector products of
Eq. (6.46) by r1 and by r3 yield

r1 � r2 D c3r1 � r3 (6.50a)

r2 � r3 D c1r1 � r3 (6.50b)

Consider Fig. 6.5, in which kr1 � r2k is twice the area of triangle SP1P2, kr2 �
r3k is twice the area of triangle SP2P3, and kr1 � r3k is twice the area of triangle
SP1P3. Since r1; r2; r3 are coplanar, the cross products are collinear. From the areas

3

1

1

2

3

[ 2, 3]

[ 1, 2]

2

Fig. 6.5 Geometry for orbit determination using the Gauss method
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involved by Œr1; r2
; Œr2; r3
; and Œr1; r3
, we have

c1 D Œr2; r3


Œr1; r3

(6.51a)

c3 D Œr1; r2


Œr1; r3

(6.51b)

The solutions devised by Gauss for c1 and c3 use sector-triangle ratios. This
is the ratio between the sectors of the ellipse bounded by the radius vectors to the
corresponding triangles. Let .r1; r3/; .r1; r2/; and .r2; r3/ denote the bounded sectors
of the ellipse. The sector-triangle ratios are

y1 D .r2; r3/

Œr2; r3

(6.52a)

y2 D .r1; r3/

Œr1; r3

(6.52b)

y3 D .r1; r2/

Œr1; r2

(6.52c)

Then we can write

c1 D .r2; r3/

y1

y2
.r1; r3/

D .t3 � t2/

.t3 � t1/

y2
y1

(6.53a)

c3 D .r1; r2/

y3

y2
.r1; r3/

D .t2 � t1/

.t3 � t1/

y2
y3

(6.53b)

The last terms in Eqs. (6.53) are based on Kepler’s second law, specifically that
the areas of the sectors, swept out by the radius vector, are proportional to the time
intervals.

The evaluation of c1 and c3 depends on a method of calculating the ratios y2=y1
and y2=y3. Methods are given in books on orbit computation, such as Williams
(1934) and Herget (1948). We can obtain series expansions for c1 and c3, which
satisfy the dynamical conditions of the motion. Let

T1 D k.t3 � t2/; T2 D k.t3 � t1/; T3 D k.t2 � t1/ (6.54)

We have seen previously

r1 D f1 r2 C g1 Pr2 (6.55a)

r3 D f3 r2 C g3 Pr2 (6.55b)
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where approximately

f1 D 1 � 1

2
� T23 ; g1 D �T3.1 � 1

6
� T23 / (6.56a)

f3 D 1 � 1

2
� T21 ; g3 D �T1.1 � 1

6
� T21 / (6.56b)

and � D 1=r32. Taking the f and g series further requires Pr2, which would be too
many unknowns. From Eqs. (6.55), substituting for r1 and r3

r1 � r2 D �g1 r2 � Pr2 D 2Œr1; r2
 (6.57a)

r2 � r3 D g3 r2 � Pr2 D 2Œr2; r3
 (6.57b)

r1 � r3 D g2 r2 � Pr2 D 2Œr1; r3
 (6.57c)

where g2 D f1g3 � f3g1 based on r1 and r3 in terms of r2 and Pr2. From Eqs. (6.51)
then

c1 D g3
g2
; c3 D �g1

g2
(6.58)

Substituting Eqs. (6.56) into g2 we have

g2 D f1g3 � f3g1 D T2 � 1

6
� T32 � 1

4
�T32 .T3 � T1/C : : : (6.59)

Substituting from Eqs. (6.56) and (6.59) into Eqs. (6.58) and expanding in powers
of T

c1 D T1
T2



1C 1

6
�.T22 � T21 /

�
(6.60a)

c3 D T3
T2



1C 1

6
�.T22 � T23 /

�
(6.60b)

where the derivation of the c0s should not be of concern. Gibbs (1889) gave a more
accurate expression for the c0s. The expressions given are of the form

c1 D a1 C b1
r32
; c3 D a3 C b3

r32
(6.61)

where a1; b1; a3; b3 can be calculated from the times of observations. From
Eq. (6.48)

c1�1 Ou1 � �2 Ou2 C c3�3 Ou3 D c1 R1 � R2 C c3 R3 (6.62)
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We isolate the �2 Ou2 term by taking the triple scalar product of both sides by
Œ� Ou1 � Ou3


� �2Œ Ou2 � Ou1 � Ou3
 D c1ŒR1 � Ou1 � Ou3
 � ŒR2 � Ou1 � Ou3

C c3ŒR3 � Ou1 � Ou3
 (6.63)

Substituting values of the c0s from Eq. (6.61), there results (reversing the order of
vectors on the left side)

� �2Œ Ou2 � Ou1 � Ou3
 D
�

a1 C b1
r32

�
ŒR1 � Ou1 � Ou3
 � ŒR2 � Ou1 � Ou3


C
�

a3 C b3
r32

�
ŒR3 � Ou1 � Ou3
 (6.64)

which yields

�2 D A C B

r32
(6.65)

where

A D a1ŒR1 � Ou1 � Ou3
 � ŒR2 � Ou1 � Ou3
C a3ŒR3 � Ou1 � Ou3

Œ Ou1 � Ou2 � Ou3
 (6.66a)

B D b1ŒR1 � Ou1 � Ou3
 � b3ŒR3 � Ou1 � Ou3

Œ Ou1 � Ou2 � Ou3
 (6.66b)

Also we have

r22 D �22 C R22 � 2. Ou2 � R2/�2 (6.67)

So Eqs. (6.65) and (6.67) are solved simultaneously for �2 and r2, similarly to the
procedure in the Laplace method. Operating on Eq. (6.48) with Œ� Ou2 � Ou3
, we obtain

c1�1Œ Ou1 � Ou2 � Ou3
 D c1ŒR1 � Ou2 � Ou3
 � ŒR2 � Ou2 � Ou3

C c3ŒR3 � Ou2 � Ou3
 (6.68)

and using Œ� Ou1 � Ou2
 on Eq. (6.48) we have

c3�3Œ Ou3 � Ou1 � Ou2
 D c1ŒR1 � Ou1 � Ou2
 � ŒR2 � Ou1 � Ou2

C c3ŒR3 � Ou1 � Ou2
 (6.69)
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Since we know r2, we can determine c1 and c3 from Eq. (6.61) and then �1 and
�3 from Eqs. (6.68) and (6.69). The geometrical conditions of the observations at
all three times are satisfied by the values of � found. The values of c1 and c3 were
determined from truncated series expansions, so the dynamical conditions imposed
upon the solution are only approximately satisfied. In Eq. (6.60) the truncation error
enters the values of b1 and b3. There are more accurate formulas for c1 and c3, when
r1; r2; r3 are approximately known. Using more accurate values, new values of b1
and b3 can be determined from

b1 D .c0
1 � a1/r

3
2; b3 D .c0

3 � a3/r
3
2 (6.70)

where c0
1 and c0

3 are improved values of c1 and c3. Gibbs (1889) gives the formulas
for c1 and c3

c1 D T1
T2



1C B1r�3

1

1 � B2r�3
2

�
; c3 D T3

T2



1C B3r�3

3

1� B2r�3
2

�
(6.71)

where

B1 D 1

12
.mn C n � m/T22 (6.72a)

B2 D 1

12
.mn C 1/T22 (6.72b)

B3 D 1

12
.mn � n C m/T22 (6.72c)

m D T1
T2
; n D T3

T2
(6.72d)

These values can improve �1; �2; �3 and, hence, r1; r2; r3. The times used in this
improvement should be corrected for light time by using the expression tcorr D
tobs �0:00577� in days, where � is the distance computed in the first approximation.

Now the calculation is again determining the orbital elements from the values
of r1; r2; r3 (Herget 1948, pp. 62–65), (McCuskey 1963, pp. 86–91), (Danby 1962,
175–177).

6.5 Lambert’s Theorem

Suppose E1 and E2, E2 > E1, are eccentric anomalies for points P1 and P2 in an
elliptic orbit. Let

2G D E2 C E1 (6.73)
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and

2g D E2 � E1 > 0 (6.74)

From the ellipse equation

r1 D a.1� e cos E1/; r2 D a.1� e cos E2/ (6.75)

and

r1 C r2 D aŒ2 � e.cos E1 C cos E2/
 D 2aŒ1� e cos G cos g
 (6.76)

c is the length of the chord P1P2; using the equations

x D a cos E (6.77)

y D b sin E D a
p
1 � e2 sin E (6.78)

c2 D a2.cos E2 � cos E1/
2 C a2.1 � e2/.sin E2 � sin E1/

2

D 4a2 sin2 G sin2 g C 4a2.1 � e2/ cos2 G sin2 g

D 4a2 sin2 g.sin2 G C cos2 G/ � 4a2e2 cos2 G sin2 g (6.79)

as well as writing e cos G D cos j,

c2 D 4a2 sin2 g.1 � cos2 j/ (6.80)

So

c D 2a sin g sin j (6.81)

From Eq. (6.76)

r1 C r2 D 2a.1� cos g cos j/ (6.82)

� D j C g; ı D j � g (6.83)

From Eqs. (6.81) and (6.82)

r1 C r2 C c D 2aŒ1 � cos.g C j/
 D 4a sin2
1

2
� (6.84a)

r1 C r2 � c D 2aŒ1� cos.g � j/
 D 4a sin2
1

2
ı (6.84b)
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Let t be the time interval in the orbit between the two positions. From Kepler’s
equation

nt D E2 � E1 � e.sin E2 � sin E1/ (6.85a)

nt D .� � ı/� .sin � � sin ı/ (6.85b)

The variables � and ı in terms of .r1 C r2/; c and a are given by Eqs. (6.84). These
equations are Lambert’s theorem for elliptic motion. The � and ı values are not
unique, but, for a small arc, � and ı can be taken as the smallest values satisfying
Eqs. (6.84). A geometric discussion is given by Plummer (1918).

A limiting case of Lambert’s theorem exists for parabolic motion, when a tends
to infinity. When a is large, � and ı are small, so approximately

a�2 D r1 C r2 C c (6.86a)

aı2 D r1 C r2 � c (6.86b)

Replacing n by
p
�=a3 and expanding the sine function as a series expansion

.sin x D x C 1
6
x3 C : : :/ Eqs. (6.85) become

p
�t D 1

6
a3=2.�3 � ı3/ (6.87)

and substituting from Eqs. (6.86)

p
�t D 1

6
.r1 C r2 C c/3=2 ˙ 1

6
.r1 C r2 � c/3=2 (6.88)

If this is to be applied to comets, it can be written

6kt D .r1 C r2 C c/3=2 ˙ .r1 C r2 � c/3=2 (6.89)

This is Euler’s theorem. Concerning the sign ambiguity, for small arcs use the minus
sign. When the difference between the true anomalies is 180ı, the second term is
zero. For larger differences, use the plus sign. So the plus, or minus, sign are used
based on whether the arc contains, or does not contain, the focus (Danby 1962,
p. 141–3).

6.6 Parabolic Orbits, Olber’s Method

Olber’s method for parabolic orbit determination can be described as follows. Using
Euler’s equation for parabolic motion (6.89)

.r1 C r3 C c/3=2 � .r1 C r3 � c/3=2 D 6k.t3 � t1/ D 6T2 (6.90)
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where c is the length of the chord .r3�r1/. Divide through Eq. (6.90) by .r1Cr3/3=2

and put

2T2
.r1 C r3/3=2

D � (6.91)

Then Eq. (6.90) becomes

�
1C c

r1 C r3

�3=2
�
�
1 � c

r1 C r3

�3=2
D 3� (6.92)

Solve this equation for c=.r1 C r3/ as a function of �. Call this function f .�/, which
can be tabulated. Consider the equation from Gauss’s method

c1 �1 � �2 C c3 �3 D c1 R1 � R2 C c3 R3 D V (6.93)

Let U be a vector coplanar with V and �2, which we will specify later. Multiply
Eq. (6.93) scalarly by .�2 � U/; then only the terms in �1 and �3 remain, so we have

�3 D �c1Œ O�1; O�3;U

c3Œ O�3; O�2;U


�1 D M�1 (6.94)

Now

r21 D .R1 � �1/2 D R21 � 2.R1 � O�1/�1 C �21 D ˛1 C ˇ1�1 C �1�
2
1 (6.95)

and

r23 D .R3 � �3/2 D .R3 � M�1 O�3/2
D R23 � 2M.R3 � O�3/�1 C M2�21

D ˛3 C ˇ3�1 C �3�
2
1 (6.96)

c2 D .r3 � r1/2 D Œ.M O�3 � O�1/�1 � .R3 � R1/

2

D .M O�3 � O�1/ � .M O�3 � O�1/�21 � 2.M O�3 � O�1/ � .R3 � R1/�1

C .R3 � R1/ � .R3 � R1/

D ˛3 C ˇ3�1 C �3�
2
1 (6.97)

If U is known, then M is known and also all the coefficients. If we take a trial
value of �1, we can calculate c from Eq. (6.97). Also, we can calculate r1 and r3
from Eqs. (6.95) and (6.96), so we can calculate � and f .�/ and c D .r1 C r3/f .�/.
The two values of c will not agree, the difference being due to the trial value of �1,
so we call this difference�.�1/. By varying �1 values, a table of�.�1/ as a function
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of �1 can be prepared. By inverse interpolation, a value of �1, when �.�1/ is zero,
can be found. Once �1 is found, �3; r1, and r3 can be found and, hence, the elements.
q is found from � by

q D kr1 � r3k2
2T22

"
1

3

 
1C 2p

1 � f .�/2

!#2
(6.98)

and v, the true anomaly, from

tan2
v

2
D r � q

q
(6.99)

In this method, the approximation is the preliminary value of U. We have

R2 D C1R1 C C3R3 (6.100)

where C1 and C3 are triangle ratios for the motion of the Earth about the Sun. To a
good approximation,

C1
C3

D T1
T3

(6.101)

If the time intervals are short, T1=T3 is a first approximation to the c0s ratios, so
to this order

c1 D aC1; c3 D aC3 (6.102)

for some unspecified a. From Eq. (6.93)

V D c1R1 � R2 C c3R3 D aC1R1 � R2 C aC3R3 D R2.a � 1/ (6.103)

For a first approximation, we take

U D R2;
c1
c3

D T1
T3

(6.104)

When r1 and r3 are known, r2 is found from

c1�1 � �2 C c3�3 D c1R1 � R2 C c3R3 (6.105)

and r D � � R.
With a rough value of r2, better values of the c0s can be found, and an improved

value of r2. From a final value we can determine values of ˛ and ı of the second
observation, but these are not likely to agree with the observed values. To eliminate
the discrepancies, the improved values of the c0s can be used to find V. Then take
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U D V and repeat the solution, or repeat the solution with different values of M.
The best result is found by inverse interpolation.

Another approach, due to Strömgren (1914), is the method of false position. If
U is fixed, then M can be a function of O�2. Since O�2 (observed) produces a solution
that yields the middle position at O�2 (computed), then if we use a fictitious

O�2 D 2 O�2 .obs/� O�2 .comp/ (6.106)

in M, we expect to get a solution yielding the middle position O�2 .obs/. Thus, M is
recomputed as before with the fictitious O�2, and the solution is repeated.

It may be that the residuals refuse to disappear; it could be that the orbit is
not parabolic. Three observations give too many quantities for the 5 unknowns
of the parabolic orbit. When a comet is discovered, it is usually moving in a
nearly parabolic orbit. A search ephemeris for a newly discovered comet is usually
calculated by this method. For a minor planet, a parabolic orbit normally is
unsatisfactory. When Uranus was discovered, it was thought to be a comet; it was
only recognized as a planet, when its orbit could not be fit by a parabolic orbit
(Danby 1962, pp. 180–182).

6.7 Circular Orbits

We include this mainly for completeness. Only four elements are required for a
circular orbit, so two observations are adequate. An orbit based on two observations
is unlikely to be of much value, unless the eccentricity is small. Thus, it might be
sufficient for a minor planet, but useless for a comet. The times of observations are
t1 and t2, and T D k.t2 � t1/. During interval t1 to t2, the object revolved through an
angle M around the Sun, where

M

2	
D T

period
(6.107)

The period from Kepler’s third law is 2	a3=2, so

M D Ta�3=2 (6.108)

Since it is a circular orbit,

r2 D r1 D a (6.109)
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So,

kr1 � r2k D a2 sin M D a2
�

M � 1

6
M3 C 1

120
M5 � : : :

�
(6.110)

kr1 � r2k D p
aT

�
1 � 1

6

T2

a3
C 1

120

T4

a6
� : : :

�
(6.111)

Since r21 D a2 D r22 ,

�21 � 2R1�1 cos 1 C R21 D a2 D �22 � 2R2�2 cos 2 C R22 (6.112)

where  1 and  2 are the angles between �1 and R1 and �2 and R2. If a value of �1
is assumed, then a; �2; r1, and r2 can be found. Then each side of Eq. (6.111) can
be calculated independently. They are not likely to agree, but, if their difference is
tabulated for different values of �1, the value of �1, which makes the difference zero,
can be found by inverse interpolation. This gives the solution (Danby 1962, p. 182).
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Chapter 7
The n-Body Problem

7.1 Introduction

When going from two bodies to three, or more, bodies, the complexity increases
significantly, due to their mutual attractions. The two-body problem can be math-
ematically formulated so a closed-form solution is possible. With more than two
bodies, it is impossible to formulate such a solution. There are some special cases,
however, that can be handled.

The solar system planets are an n-body problem. Here, the Sun is the center of
force, and the individual planetary motions approximate the two-body problem. The
deviations from the two-body problem are due to the other planets, and are called
perturbations. The minor planet motions approach the three-body problem (see also
Sect. 1.5), because the effects of the Sun and Jupiter dominate the motions. The
Trojan minor planets are a special case of the three-body problem.

When n is a limited number, less than ten such as for the solar system, the
computations of the motions of the n bodies can be done by general theories,
where the expressions for the bodies are generally in Fourier series or Chebyshev
series, or they can be done by numerical integrations. These will be discussed in
subsequent chapters. When n becomes a large number, as in the case of galaxies
or star clusters, special numerical techniques need to be applied for making the
computer computations of reasonable times.

We will start our discussion with analyzing the dynamics of the three-body
problem, and then generalize to the n-body case.
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144 7 The n-Body Problem

7.2 Equations of Motion

As usual, we assume the masses are spherically symmetrical in homogeneous
layers, so they attract one another like point masses. Let us consider three masses
m1;m2;m3 located in a primary-fixed reference system by position vectors r1; r2; r3,
as shown in Fig. 7.1.

Only the mutual Newtonian attractions of the bodies on each other are the forces.
The equations of motion are

m1 Rr1 D k2



m1m2

�312
�12 C m1m3

�313
�13

�
(7.1)

m2Rr2 D k2



m2m3

�323
�23 � m2m1

�312
�12

�
(7.2)

m3Rr3 D k2


�m3m2

�323
�23 � m3m1

�313
�13

�
(7.3)

where the �ij vectors join the masses with the orientation as in Fig. 7.1. Adding
Eqs. (7.1), (7.2), and (7.3) and integrating twice, we obtain

m1r1 C m2r2 C m3r3 D c1t C c2 (7.4)

where c1 and c2 are vector constants of integration. By definition, the center of mass
R of the three mass points is given by

R D m1r1 C m2r2 C m3r3
M

(7.5)

where M D m1 C m2 C m3. Therefore, from Eq. (7.4),

R D c1t
M

C c2
M

(7.6)

Fig. 7.1 Setup for the
three-body problem

1

2

1

2

12

23

13
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The center of mass remains at rest, or moves uniformly in a straight line, which
agrees with the same observation we made in the two-body problem (see Sect. 5.3).
This is the first integral of the equations of motion, and has six arbitrary constants,
the three components of each of the vectors c1 and c2.

With n bodies in the system, the ith member differential equation is

mi Rri D k2
n�1X
jD1

mimj

�3ij
�ij; i; j D 1; 2; 3; : : : :n; i ¤ j (7.7)

where �ij is from mi to mj. Remembering �ij D ��ji, summing Eq. (7.7) over i we
have

nX
iD1

mi Rri D 0 (7.8)

Two integrations of this equation give

nX
iD1

miri D c1t C c2 (7.9)

and since

R D 1

M

nX
iD1

miri (7.10)

then

R D c1
M

t C c2
M

(7.11)

where

M D
nX

iD1
mi (7.12)

So from the two-body problem, and any number of body problem, the center of
mass remains at rest, or moves uniformly in space on a straight line (McCuskey
1963, pp. 92–94).
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7.3 Angular Momentum, or Areal Velocity, Integral

Ou12; Ou13; Ou23 are unit vectors in the directions of O�12; O�13; O�23, respectively. Equa-
tions (7.1), (7.2), (7.3) are written

m1 Pv1 D k2



m1m2

�212
Ou12 C m1m3

�213
Ou13
�

(7.13a)

m2 Pv2 D k2



m2m3

�223
Ou23 � m2m1

�212
Ou12
�

(7.13b)

m3 Pv3 D k2


�m3m2

�223
Ou23 � m3m1

�213
Ou13
�

(7.13c)

Taking the vector products of Eqs. (7.13) by r1; r2; r3, respectively, and adding, we
have

3X
iD1

ri � mi Pvi D k2Œ
m1m2

�212
.r1 � r2/ � Ou12

C m2m3

�223
.r2 � r3/ � Ou23 C m3m1

�212
.r1 � r3/ � Ou13
 (7.14)

r1 � r2 is collinear with Ou12; r2 � r3 is collinear with Ou23; and r1 � r3 is collinear
with Ou13. Thus, each vector product is zero, and the right-hand side of Eq. (7.14) is
zero. The left-hand side can be written as

d

dt

"
3X

iD1
ri � m vi

#
D 0 (7.15)

The total angular momentum of the three masses about the origin O appears in the
brackets; we denote it by L. Equation (7.15) states that “L = constant vector”. This is
the second integral of the equations of motion. L has three arbitrary scalar constants.
Equation (7.15) expresses the conservation of angular momentum for the system of
three masses.

We represent the angular momentum vector in a Cartesian coordinate system,
with the origin at O, as shown in Fig. 7.2, by

L D a1 Oi C a2 Oj C a3 Ok (7.16)
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Fig. 7.2 The angular
momentum vector shown in a
Cartesian coordinate system

The Cartesian equations for the angular momentum are

3X
iD1

mi ŒyiPzi � zi Pyi
 D a1 (7.17a)

3X
iD1

mi Œzi Pxi � xiPzi
 D a2 (7.17b)

3X
iD1

mi Œxi Pyi � yi Pxi
 D a3 (7.17c)

The brackets in these equations are the projections of the areal velocities of the
different bodies upon the three coordinate planes. They are the integrals of area,

1

2
ŒyPz � zPy
 D 1

2
c1 (7.18a)

1

2
ŒzPx � xPz
 D 1

2
c2 (7.18b)

1

2
ŒxPy � yPx
 D 1

2
c3 (7.18c)

and h D
q

c21 C c22 C c23. These expressions have a counterpart in two-body motion
(see Sect. 5.5).
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Let Ai1;Ai2;Ai3 denote the projections of the areas swept out by the radius vector
of the mass mi upon the yz; xz; and xy planes, respectively. Equations (7.17) may be
written as

3X
iD1

mi PAi1 D a1 (7.19a)

3X
iD1

mi PAi2 D a2 (7.19b)

3X
iD1

mi PAi3 D a3 (7.19c)

Integrated, these yield

3X
iD1

miAi1 D a1t C b1 (7.20a)

3X
iD1

miAi2 D a2t C b2 (7.20b)

3X
iD1

miAi3 D a3t C b3 (7.20c)

Consequently, the sums of the products of the masses and the projections of
the areas swept out by the corresponding radius vectors increase uniformly with
time. As the three bodies move, their position and velocity vectors are oriented
so the vector L has a fixed direction in space and a constant magnitude, .a21 C
a22 C a23/

1=2. L is directed along a line that is the invariable line. A plane, which
is perpendicular to invariable line, and passes through the center of mass of the
system, is the invariable plane (see also Sect. 3.5.1). This term was introduced by
Laplace; the Laplacian plane is used for natural satellite systems, i.e. around Jupiter
and Saturn. The invariable plane has the following properties:

(a) The angular momentum about any line in the plane is zero.
(b) The angular momentum about a line normal to the plane is a maximum.

In our notation, the direction numbers of the normal to the invariable plane are
a1; a2; a3.

The orbital angular momentum of Jupiter and Saturn is nearly 87 % of the whole
solar system. As a consequence, and because the two planets’ orbital planes are
nearly in the ecliptic, the vector L is directed only about 1ı350 from the pole of the
ecliptic. The invariable plane lies between the orbita l planes of these two planets.
Since the masses, positions, and velocities of planets of the solar system are well
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known, the constants a1; a2; a3 can be determined with considerable accuracy. So,
the solar system’s invariable plane is relatively well determined.

What is stated here about the three-body system can be generalized to the n-body
problem, and will be shown later (McCuskey 1963, pp. 94–97).

7.4 Integral of Energy

The energy integral of the equations of motion in the three-body problem is
analogous to 1

2
mv2 C V.r/ D E under central force motion (see Sect. 4.4).

Take the scalar product of Eqs. (7.13) by Pr1; Pr2; Pr3, respectively, and add the
results. Then

3X
iD1

mi Pri � Pvi D k2



m1m2

�212
Ou12 � .Pr1 � Pr2/C m1m3

�213
Ou13 � .Pr1 � Pr3/

C m2m3

�223
Ou23 � .Pr2 � Pr3/

�
(7.21)

with Pr1 � Pr2 D �P�12; Pr1 � Pr3 D �P�13; Pr2 � Pr3 D �P�23 and

P�ij D d

dt
.�ij Ouij/ D P�ij Ouij C �ij

POuij; i; j D 1; 2; 3; i ¤ j (7.22)

Since Ouij is a unit vector, POuij � Ouij D 0 and Ouij � Ouij D 1. Then, using this in Eq. (7.21)

3X
iD1

mi Pri � Pvi D �k2



m1m2

�212
P�12 C m1m3

�213
P�13 C m2m3

�223
P�23
�

(7.23)

which can be written

d

dt

"
1

2

3X
iD1

miPr2i
#

D k2
d

dt



m1m2

�12
C m1m3

�13
C m2m3

�23

�
(7.24)

By definition, the kinetic energy of the system is

T D 1

2

3X
iD1

mi Pr2i D 1

2

3X
iD1

miv
2
i (7.25)
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where vi is the speed of the ith mass. The potential energy of the system is defined as

V D �k2



m1m2

�12
C m1m3

�13
C m2m3

�23

�
(7.26)

Integration of Eq. (7.24) yields

T C V D E D constant (7.27)

Equation (7.27), the energy integral, shows the conservation of energy for the system
of three masses. This result can be generalized to n bodies.

7.5 Stationary Solutions of the Three-Body Problem

Two special solutions of the three-body problem, designated stationary solutions,
were discovered in 1772 by Lagrange. Assume three mass points, m1;m2;m3,
are projected in one plane. A stationary solution is one where the geometric
configuration of the three masses is invariant with time. If the masses move such that
their mutual distances remain unchanged, the configuration simply rotates around
the center of mass in a plane. Alternatively, a contraction, which does not alter the
pattern of the points, may take place.

First, consider the special case where the three masses revolve with constant
angular speed around the center of mass in coplanar circular orbits. Their position
vectors relative to the center of mass C are r1 D r1 Ou1; r2 D r2 Ou2; r3 D r3 Ou3.
Ou1; Ou2; Ou3 are the unit vectors in the directions r1; r2; r3, respectively, as shown in
Fig. 7.3. For circular motion, r1; r2; r3 are constant.

Fig. 7.3 Coplanar orbits in
the three-body problem
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The total planar acceleration of each mass point is given by (recall Eq. (4.6))

a D .Rr � r P�2/ Our C .2Pr P� C r R�/ Ou� (7.28)

where Our and Ou� are unit vectors in the radial and transverse directions, respectively.
For the special case of the three-body problem considered here, for each mass Pr D
Rr D 0; R� D 0; P� D n, the constant speed of the revolution about C. Thus, the
accelerations become

ai D �rin
2 Our; i D 1; 2; 3 (7.29)

With these values in Eqs. (7.1)–(7.3), we have

� n2r1 Ou1 D k2



m2

�312
.r2 Ou2 � r1 Ou1/C m3

�313
.r3 Ou3 � r1 Ou1/

�
(7.30a)

�n2r2 Ou2 D k2



m3

�323
.r3 Ou3 � r2 Ou2/� m1

�312
.r2 Ou2 � r1 Ou1/

�
(7.30b)

�n2r3 Ou3 D k2


� m2

�323
.r3 Ou3 � r2 Ou2/� m1

�313
.r3 Ou3 � r1 Ou1/

�
(7.30c)

However, the origin is selected so

m1r1 Ou1 C m2r2 Ou2 C m3r3 Ou3 D 0 (7.31)

If we multiply Eq. (7.30a), by m1 and (7.30b) by m2 and add, we derive an
equation, which upon substitution from Eq. (7.31) yields Eq. (7.30c). Thus, we can
use Eq. (7.31) in place of Eq. (7.30c) in the unit vectors Ou1; Ou2; Ou3. Rewrite the
system of equations in the form

�
�n2 C k2m2

�312
C k2m3

�313

�
r1 Ou1 � k2m2

�312
r2 Ou2 � k2m3

�313
r3 Ou3 D 0 (7.32a)

�k2m1

�312
r1 Ou1 C

�
�n2 C k2m3

�323
C k2m1

�312

�
r2 Ou2 � k2m3

�323
r3 Ou3 D 0 (7.32b)

m1r1 Ou1 C m2r2 Ou2 C m3r3 Ou3 D 0 (7.32c)

These conditions must be fulfilled for the three mass points to move with uniform
angular speed in circular orbits around the center of mass in a plane.

If we have a rectangular coordinate system, origin at C, rotating in the counter-
clockwise direction with a constant angular speed, then the unit vectors Ou1; Ou2; Ou3
are fixed in position. The angles in the equations

ui D cos �i
Oi C sin �i

Oj; i D 1; 2; 3 (7.33)
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denote the orientations relative to these Cartesian coordinates. Taking the scalar
products of Oi and Eqs. (7.32), after simplification

� n2x1 C k2m2

�312
.x1 � x2/C k2m3

�313
.x1 � x3/ D 0 (7.34)

�n2x2 C k2m1

�312
.x2 � x1/C k2m3

�323
.x2 � x3/ D 0 (7.35)

m1x1 C m2x2 C m3x3 D 0 (7.36)

where

xi D ri cos �i; i D 1; 2; 3 (7.37)

Taking the scalar products of Oj and the same Eqs. (7.32), we have

� n2y1 C k2m2

�312
.y1 � y2/C k2m3

�313
.y1 � y3/ D 0 (7.38)

�n2y2 C k2m1

�312
.y2 � y1/C k2m3

�323
.y2 � y3/ D 0 (7.39)

m1y1 C m2y2 C m3y3 D 0 (7.40)

where

yi D ri sin �i; i D 1; 2; 3 (7.41)

Equations (7.34)–(7.36) and (7.38)–(7.40) are a system of six simultaneous
equations in the unknowns .xi; yi/; i D 1; 2; 3. Consider a case where the masses
are at the vertices of an equilateral triangle. Then, �12 D �23 D �13 D � at all times.
If the scale of the length is adjusted so that � is unity at all times, the equations may
be written with k2 D 1 by proper choice of time units,

.�n2 C m2 C m3/x1 � m2x2 � m3x3 D 0 (7.42a)

�m1x1 C .�n2 C m1 C m3/x2 � m3x3 D 0 (7.42b)

m1x1 C m2x2 C m3x3 D 0 (7.42c)

.�n2 C m2 C m3/y1 � m2y2 � m3y3 D 0 (7.43a)

�m1y1 C .�n2 C m1 C m3/y2 � m3y3 D 0 (7.43b)

m1y1 C m2y2 C m3y3 D 0 (7.43c)
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These have a nontrivial solution if

det

2
66666664

M0 �m2 �m3 0 0 0

�m1 M0 �m3 0 0 0

m1 m2 m3 0 0 0

0 0 0 M0 �m2 �m3

0 0 0 �m1 M0 m3

0 0 0 m1 m2 m3

3
77777775

D 0 (7.44)

where M0 D .�n2 C m2 C m3/.
The solution xi D 0; yi D 0; i D 1; 2; 3 is inconsistent with the requirement that

� D 1. Let M D m1 C m2 C m3 denote the total mass of the system. By the usual
reduction rules for determinants, we have Eq. (7.44)

m2
3.M � n2/4 D 0 (7.45)

This is satisfied when n2 D M. If we left k2 in the equations and the equal values of
� D �ij; i; j D 1; 2; 3I i ¤ j, this condition would be

n2 D k2M

�3
(7.46)

Equation (7.46) is dimensionally consistent and specifies that n is in radians per unit
of time.

With n2 D M in Eqs. (7.42) and (7.43), any two pairs of coordinates .xi; yi/ can
arbitrarily be chosen, the scale adjusted, and the third pair determined such that
� D 1. Therefore, there is a solution to the equations in this special problem of three
bodies.

There is a second solution for Eqs. (7.34)–(7.36) and (7.38)–(7.40). If y1 D y2 D
y3 D 0, then all three mass points lie on the x-axis, and Eqs. (7.38)–(7.40) are
satisfied. Arrange the masses on the x-axis as shown in Fig. 7.4.

Denote the distance between x3 and x2 by � and adjust the scale so the distance
between x2 and x1 is unity. Due to the inequalities, x1 < x2 < x3, Eqs. (7.34)–(7.36)
become

n2x1 C k2m2 C k2m3.1C �/�2 D 0 (7.47a)

n2.1C x1/� k2m1 C k2m3�
�2 D 0 (7.47b)

m1x1 C m2.1C x1/C m3.1C x1 C �/ D 0 (7.47c)

We eliminate n2 and x1 from these to obtain

.m1 C m2/�
5 C .3m1 C 2m2/�

4 C .3m1 C m2/�
3 � .m2 C m3/�

2

� .2m2 C 3m3/� � .m2 C m3/ D 0 (7.48)
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2( 2)

3( 3)

Fig. 7.4 Three masses arranged on the x-axis

This 5th degree equation in �, originally due to Lagrange, has only one real positive
root, because there is only one sign change in the coefficients. With this arrangement
of the masses along the x axis, only one positive solution for � exists. When � is
found, m3 is uniquely located, because m1 and m2 are arbitrarily located to set the
distance scale, x2 � x1 D 1. If the location of the masses is interchanged, a similar
unique solution is obtained for each arrangement. The solution for Eq. (7.48) can be
found by numerical, or iterative, means.

Lagrange found two distinct solutions to the three-body problem:

(i) The equilateral triangle solution
(ii) The straight-line solution

These solutions are valid for any masses moving with uniform angular speed in
coplanar circular orbits around their center of mass. Let us consider under what
dynamical conditions such motions take place.

Since each mass moves uniformly in a circular path around the center of mass,
C, the areal velocity in each orbit is constant. So, the resultant force, acting on each
mass, must pass through C.

From Eq. (7.29) the acceleration of each mass is �rin2 Oui; i D 1; 2; 3. So, the
force is �mirin2 Oui. The resultant force on each mass is directly proportional to the
distance from C, and is directed toward that point.

The initial velocity vectors, required for circular motion of the system, are
perpendicular to the initial position vectors of the respective masses. For each mass,
mi, the velocity, vi D ri

POui, so the velocity is proportional to the distance of mi from
C and is perpendicular to Oui. The motion in these cases is a rotation of the system
around the center of mass, C.

If the initial velocity vectors are not perpendicular to the position vectors of
the respective mass points, the configuration will change with time. If each vector,
vi; i D 1; 2; 3, makes the same angle with respect to its corresponding ri, then the
configuration will expand or contract such that the problem is still solvable. Each
mass will follow a conic section, the distances between the bodies varying with time,
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Fig. 7.5 A particular
solution of the three-body
problem, wherein each mass
follows a conic section,
resulting in a rotating
equilateral triangle

2

1

but such that their mutual distances remain in the same ratio. Thus, if �12; �23; �13
are initial distances at time t, then the distances become ˛�12; ˛�23; ˛�13, where ˛
is the proportional factor. The distances of m1;m2;m3 from the center of mass at
any time are r1 D ˛r01; r2 D ˛r02; r3 D ˛r03, where r0i; i D 1; 2; 3 are the initial
position vector lengths. The shape of the configuration remains invariant with time.
˛ may be a function of time. Each mass traverses a conic section with a resultant
pattern as shown in Fig. 7.5, with each triangle being equilateral.

The vertices of the equilateral triangle solution and the points on the straight line
solution of the three-body problem are the Lagrangian points (see also Chap. 1).
These are fixed in a planar coordinate system rotating with constant angular
speed around the center of mass. A body, situated and initially at rest at one of
the Lagrangian points, will remain so unless disturbed by external forces. The
gravitational and centrifugal forces balance each other at these points (McCuskey
1963, pp. 102–108).

7.6 Generalization to n Bodies

Previously, important characteristics of three body motions, which can be gen-
eralized to the n-body problem, have been developed. These characteristics are
summarized as follows:

(a) The system potential energy is

V D �k2
nX

i;jD1

mimj

�ij
; i ¤ j (7.49)
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This depends on the relative distances between the mass points. This value is
independent of location of the origin of the coordinate system and any arbitrary
angular rotation of the axes of the system.

(b) Because of this independence, the integrals yielding the motion of the center
of mass and areas, follow. There are nine constants of integration, six define
the center of mass position at any instant, and three define the orientation of
the angular momentum vector. A fixed origin and orientation of axes cannot
be defined in space, so these nine constants cannot be determined from the
observations.

(c) There is a tenth constant, E, the energy integral. These are ten constants of
integration for the n-body problem. From the equations of motion, 6n constants
are needed to solve the problem completely. For the three-body problem we
have only 10 of 18 constants needed.

Other integrals of the equations of motion, other constants, have been sought
by many. These efforts have not been successful. These integrals, such as the
energy integral, are relations between coordinates and velocities. They are called
the classical integrals of the three-body problem.

Bruns and Poincaré have shown that these 10 integrals are the only independent
integrals, and all others are combinations of these 10.

Thus, the coordinates and velocity components of the three mass points as
functions of time cannot be solved for, when given their values at some initial epoch.
This is also true for the n-body problem. A closed form solution of the n-body
problem is impossible. Specifically, given the coordinates and velocities of n mass
points, which are moving under mutual gravitational attractions, the motion for any
arbitrary succeeding time interval can not be predicted. Whether masses will collide
or escape in an arbitrary finite time interval cannot be predicted. Only some special
cases of the three-body problem can be addressed (McCuskey 1963, pp. 98–99).

7.7 Equations of Relative Motion

Since the motions of celestial bodies cannot be referred to a fixed coordinate system
in space, the relative motions of n � 1 bodies with respect to the nth body can be
established. In the solar system, the Sun is the origin of coordinates, and the plane of
the ecliptic or equator is the fundamental reference plane. The other bodies motions,
planets, comets, and asteroids, are given relative to the Sun. Now, we generalize the
three-body problem to the n body problem.

Let m1, shown in Fig. 7.6, be chosen as the origin. Taking the first three equations
from the three-body problem

m1 Rr1 D k2



m1m2

�312
�12 C m1m2

�313
�13

�
(7.50)
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Fig. 7.6 Relative motion in
the three-body problem

1
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3

1

2

12

13
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m2 Rr2 D k2



m2m3

�323
�23 � m2m1

�312
�12

�
(7.51)

m3 Rr3 D k2


�m3m2

�323
�23 � m3m1

�313
�13

�
(7.52)

So we will subtract Eq. (7.50) from Eqs. (7.51) and (7.52), and after some simplifi-
cation

R�12 D �k2.m1 C m2/

�212
Ou12 C k2m3



1

�223
Ou23 � 1

�213
Ou13
�

(7.53)

R�13 D �k2.m1 C m3/

�213
Ou13 � k2m2



1

�223
Ou23 C 1

�212
Ou12
�

(7.54)

These are the equations of motion of m2 relative to m1 and m3 relative to m1. The
right hand side of the first equation has three terms which represent, respectively:
(i) the acceleration of m2 due to m1; (ii) the acceleration of m2 due to m3; and (iii) the
reactive, or negative, acceleration of m1 due to m3. A similar explanation can be
given for the terms of Eq. (7.51).

If m3 D 0, Eq. (7.53) describes the two-body motion of m2 around m1. Likewise,
if m2 D 0, Eq. (7.54) gives the two-body motion of m3 with respect to m1.

Let m1 be the dominant mass of the three masses and at the origin of a Cartesian
coordinate system, as shown in Fig. 7.7.
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Fig. 7.7 A Cartesian
coordinate system centered at
the mass m1
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Let m be the body to be studied, and m0 a mass disturbing the motion of m around
m1. The equations of motion for m are

Rx D �k2Mx

r3
C k2m0



x0 � x

�3
� x0

r03

�
(7.55a)

Ry D �k2My

r3
C k2m0



y0 � y

�3
� y0

r03

�
(7.55b)

Rz D �k2Mz

r3
C k2m0



z0 � z

�3
� z0

r03

�
(7.55c)

where M D m1 C m. Since �2 D .x0 � x/2 C .y0 � y/2 C .z0 � z/2, then

x0 � x

�3
D @

@x
��1 (7.56)

y0 � y

�3
D @

@y
��1 (7.57)

z0 � z

�3
D @

@z
��1 (7.58)

Since x; y; z are independent of x0; y0; z0, we can write

@

@x



xx0 C yy0 C zz0

r03

�
D x0

r03 (7.59)
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@

@y



xx0 C yy0 C zz0

r03

�
D y0

r03 (7.60)

@

@z



xx0 C yy0 C zz0

r03

�
D z0

r03 (7.61)

Substituting these expressions into Eqs. (7.55) gives the symmetric forms

Rx D �k2Mx

r3
C @R

@x
(7.62)

Ry D �k2My

r3
C @R

@y
(7.63)

Rz D �k2Mz

r3
C @R

@z
(7.64)

where

R D k2m0


1

�
� xx0 C yy0 C zz0

r03

�
(7.65)

R is called the disturbing function or perturbing function. R D 0 leads to the simple
two-body problem.

We can now generalize to the n-body problem by noting that, if more than one
disturbing mass is present, the disturbing function due to all masses is the sum of
the disturbing functions for the individual masses. Let

Ri D k2m0
i



1

�i
� xx0

i C yy0
i C zz0

i

r03
i

�
(7.66)

be the disturbing function for the ith mass acting on m. The equations of motion of
m become

Rx D �k2Mx

r3
C

n�2X
iD1

@R

@x
(7.67)

Ry D �k2My

r3
C

n�2X
iD1

@R

@y
(7.68)

Rz D �k2Mz

r3
C

n�2X
iD1

@R

@z
(7.69)

where there are n masses in the system (McCuskey 1963, pp. 100–102).
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7.8 Energy Integral and Force Function

Define the force function, U, of a system as

U D k2
X
i<j

nX
jD1

mimj

�ij
(7.70)

Then

@U

@xi
D k2mi

@

@xi

nX
jD1

mj

�ij
(7.71)

@U

@xi
D k2mi

nX
jD1

mj
xi � xj

�3ij
(7.72)

The equation of motion of mi,

mi Rri D �k2mi

nX
jD1

mj
ri � rj

�3ij
(7.73)

can be written

mi Rri D riU (7.74)

where

ri D Oi @
@xi

C Oj @
@yi

C Ok @

@zi

If we assemble a system from an infinite diffusion state, we start with mi at ri.
In moving m2 from infinite to r2 � k2m1m2=�12 work is performed. Moving m3

to r3, �k2m1m3=�13 � k2m2m3=�23 additional work is performed. As particles are
assembled, the function U is built up, so �U is the total system potential energy.

Multiply Eq. (7.74) by Pri and add all n equations, then

nX
iD1

mi Pr � Rri D
nX

iD1
Pri � riU D dU

dt
(7.75)

by definition of the total derivative. Integrating this we find

1

2

nX
iD1

miPr2i D U C C (7.76)
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which is the energy integral. If T is the system kinetic energy, then

T D 1

2

nX
iD1

mi Pr2i (7.77)

and the energy integral can be written

T D U C C (7.78)

(Danby 1962, pp. 206–207).
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Chapter 8
The Restricted Three-Body Problem

8.1 Introduction

An important particular solution of the three-body problem results when one of
the three masses is so small, in comparison to the other two, that its gravitational
effects can be neglected. This may be called an infinitesimal body compared with
the two finite bodies. This is the restricted three-body problem (Szebehely 1967), as
mentioned in Sect. 1.5.

The restricted three-body problem has attracted the attention of numerous
mathematicians and astronomers since it was first considered by Euler and Jacobi.
The most obvious reason for this continued interest is that the model of the restricted
problem can serve as a good approximation in a number of real situations in
astronomy and astronautics.

A general solution to the problem has not been found, in spite of the apparent
simplicity of the problem. In 1913, Sundman obtained a solution to the problem
in the form of a convergent series (Rauschenbakh et al. 2003). However, its rate
of convergence is so slow that it is not possible to use it in practical calculations.
Estimates showed that to carry out calculations with an acceptable precision,
numerous terms would have to be employed.

In this chapter, we will consider some aspects of the restricted three-body
problem, including modelling, regions of motion, equilibria and their stability, as
well as some other models related to the restricted three-body problem.

8.2 Equations of Motion

Take two, spherically symmetric, massive bodies moving in circular orbits around
their center of mass. A third infinitesimal mass moves under the combined gravita-
tional attraction of the two, but it does not affect their motion. This is the circular
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Fig. 8.1 Coordinate system
for the circular restricted
three-body problem
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restricted three-body problem, which we mentioned in Sect. 1.5. For example, if
we neglect (i) the presence of the Sun, (ii) non-sphericity of the Earth, (iii) the
eccentricity of the Moon’s orbit, then the Earth-Moon system with an artificial
satellite is such a system of masses.

Denote the smaller of the two finite masses, m, the secondary, and the larger
mass, 1� m, the primary. The unit of mass, then, is such that the sum of the masses
is 1. Let the unit of time be such that the gravitational constant k2 D 1. P denotes the
position of the infinitesimal mass; r is its radius vector from the origin, O, which is
the center of mass of m and 1� m. Denote the distances from 1� m and m as �1; �2,
respectively. The orbital plane of the finite masses is the xy plane. This is shown in
Fig. 8.1.

Consider the rotating coordinate system shown in Fig. 8.1, whose origin is
located at the center of mass. This coordinate system is also known as a barycentric
coordinate system. Let a D Rr be the acceleration of P, and v D Pr be the velocity of
P in the rotating barycentric coordinate system, in which the finite masses revolve
around the z axis with angular speed n radians per second. In this rotating system,
the equation of motion of the infinitesimal mass is

a C 2! � v C! � .! � r/ D � .1 � m/ �1
�31

� m �2
�32

(8.1)

where ! D n Ok. The vectors in Eq. (8.1) can be given in their Cartesian components
as

a D Rx Oi C Ry Oj C Rz Ok (8.2)

v D Px Oi C Py Oj C Pz Ok (8.3)

! � v D �n
h
Py Oi � Px Oj

i
(8.4)

! � .! � r/ D �n2
h
x Oi C y Oj

i
(8.5)
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Then the Cartesian equations of motion are

Rx � 2nPy D n2x � .1 � m/

�31
.x � x1/ � m

�32
.x � x2/ (8.6a)

Ry C 2nPx D n2y � .1 � m/

�31
y � m

�32
y (8.6b)

Rz D � .1 � m/

�31
z � m

�32
z (8.6c)

where .x1; 0; 0/ and .x2; 0; 0/ are the coordinates of 1 � m and m, respectively, and
(see Fig. 8.1)

�1 D
p
.x � x1/2 C y2 C z2; �2 D

p
.x � x2/2 C y2 C z2 (8.7)

With these equations, the positions of the finite masses do not change with time in
this rotating coordinate system. From Kepler’s third law, the orbital angular speed,
n, is

n D 2	

P
D k

p
m1 C m2

a3=2
(8.8)

If we choose the distance scale so x2�x1 D 1, then, with the assumptions about k
and the masses, we have n D 1. Equations (8.6) become (where we have eliminated
n since it is 1)

Rx � 2Py D x � .1 � m/

�31
.x � x1/� m

�32
.x � x2/ (8.9a)

Ry C 2Px D y � .1 � m/

�31
y � m

�32
y (8.9b)

Rz D � .1 � m/

�31
z � m

�32
z (8.9c)

Thus, as usual, we need six constants to determine the motion of the infinitesimal
mass (McCuskey 1963, pp. 109–110).

8.3 The Jacobi Constant

These equations of motion yield one integral, which is similar to the three-body
problem energy integral. Define a function

U D 1

2
.x2 C y2/C 1 � m

�1
C m

�2
(8.10)
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Then

Ux ,
@U

@x
D x � .1 � m/

�31
.x � x1/ � m

�32
.x � x2/ (8.11a)

Uy ,
@U

@y
D y � .1� m/

�31
y � m

�32
y (8.11b)

Uz ,
@U

@z
D � .1 � m/

�31
z � m

�32
z (8.11c)

Substituting Eqs. (8.11) into Eq. (8.9) we have

Rx � 2Py D @U

@x
(8.12a)

Ry C 2Px D @U

@y
(8.12b)

Rz D @U

@z
(8.12c)

Multiplying these by 2Px; 2Py; and 2Pz, respectively, and adding, we have

2PxRx C 2PyRy C 2PzRz D 2Px@U

@x
C 2Py@U

@y
C 2Pz@U

@z
(8.13)

or

d

dt

�Px2 C Py2 C Pz2� D 2
dU

dt
(8.14)

Integrating we have

v2 D 2U � C (8.15)

where the speed of the infinitesimal mass is v.
U, originally introduced by Jacobi, looks like a potential energy, when the energy

from the rotation of the coordinate system, specifically .x2 C y2/=2, is included.
Equation (8.15) involves U and the constant of integration, C, which is one constant
of motion. Then, five constants remain to be found. The constant C is named the
Jacobi constant.

If we further restrict the motion of the infinitesimal mass to the xy plane, the
number of constants required can be reduced to three. Jacobi (1884) has shown that
two of these are related to the third. For a complete solution, one new integral must
be found, but Bruns (1887) demonstrated that no new algebraic integrals exist in
rectangular coordinates (McCuskey 1963, pp. 110–111).
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8.4 Zero Velocity Curves

The equations of motion in the rotating coordinate system, and particularly
Eq. (8.15), are useful in discussing qualitatively the behavior of the infinitesimal
mass. For simplification, assume that the infinitesimal mass moves in the xy plane.
Equation (8.15) shows that its speed is a function of its position in the plane. The
Jacobi constant, C, depends on its initial position and velocity. There will be zero
velocity curves given by 2U � C D 0, and in Cartesian coordinates by

x2 C y2 C 2.1� m/p
.x � x1/2 C y2

D 2mp
.x � x2/2 C y2

D C (8.16)

The particle motion can only occur in those xy plane regions where 2U � C >

0 (i.e., we cannot have a negative velocity squared). The contour curves from
Eq. (8.16) specify the boundaries of the regions within which motion can take
place. The contour curves for different values of C are shown in Fig. 8.2 where
C1 > C2 > C3.

Let us now consider areas of possible motion:

Case I
C is very large if x and y are very large, or if �1 or �2 are very small. As C becomes
larger, the oval outer contour asymptotically approaches the boundary circle. Then
the terms involving 2.1�m/p

.x�x1/2Cy2
and 2mp

.x�x1/2Cy2
become very small in Eq. (8.16).

Motion can take place outside the curve C1. Similarly, for small �1 and �2 and large
C, the x2 and y2 terms in Eq. (8.16) become insignificant compared with the third
and fourth terms. Thus, we have a pair of ovals surrounding 1 � m and m. With a
large value of C, motion cannot take place in the region between the ovals and the
outer contour. Motion can only take place within the C1 ovals, or outside the nearly
circular contour, C1.

Case II
If C decreases, the ovals around .1 � m/ and m expand and merge into a single
closed contour, and the outer contour moves toward the center of the figure. Motion
can take place inside the merged figure marked C2, or outside the larger contour
marked C2.

Case III
If C decreases further, the regions where motion can occur become larger. The
enlarged oval pattern around the finite masses merge into that outside the exterior
oval. We have only a small region, enclosed by C3, where motion is impossible
(Moulton 1970, pp. 112–113).

L1;L2;L3;L4;L5 are the Lagrangian points of the system, which are equilibrium
points for system (8.9). The stability of these points is analyzed in Sect. 8.6. L1;L3
are the points where the inner and outer systems of ovals merge to a common
tangent. L2 is where the ovals around the individual masses merge.
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C3

C1L3 L2

L1

C3

C2

C1C1

L4

L5

1-m m
C2

y

x

Fig. 8.2 xy projection of the zero velocity curves, with C1 > C2 > C3. Also shown are the
Lagrangian equilibrium points L1-L5

We note that, in recent years, a different convention for numbering the
Lagrangian points has been widespread. Under this convention, L2 is the exterior
equilibrium point and L1 is the interior equilibrium point. The notation for the
remaining points is the same as used here.

In the discussion above, the infinitesimal mass’s motion has been restricted to
the xy plane. In the more general case, where the particle moves in space, analysis
of zero velocity curves in xz and yz planes, similar to the xy described, is possible.
In the xz plane, there exist ovals surrounding .1 � m/ and m, together with exterior
contours approaching the straight lines x D ˙C, as shown in Fig. 8.3.

In the yz plane, the outer contours asymptotically approach the lines y D ˙C
for large values of C. Also, there are closed oval contours surrounding the origin of
coordinates, as shown in Fig. 8.4 (Moulton 1970, pp 283–285).
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Fig. 8.3 xz projection of the zero velocity curves, with C1 > C2 > C3

8.5 The Lagrangian Points

The Lagrangian points, which we also mentioned in Sects. 1.5.1 and 7.5, should be
discussed next. The equations of the contour curves for motion in the xy plane may
be written as

f .x; y/ � x2 C y2 C 2.1� m/

�1
C 2m

�2
D C (8.17)

As shown in Fig. 8.2, at a Lagrangian point L1, L2, or L3, double tangents appear
on these curves. In the geometry of algebraic curves, it is shown that a singular
point, or a point having two tangents to the curve, will occur where @f=@x D 0 and
@f=@y D 0. Applying these criteria to Eq. (8.17), we have

x � .1 � m/.x � x1/

�31
� m.x � x2/

�32
D 0 (8.18a)

y � .1 � m/y

�31
� my

�32
D 0 (8.18b)
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C3

C2

C3

z

yC1

Fig. 8.4 yz projection of the zero velocity curves, with C1 > C2 > C3

These are the values of @U=@x and @U=@y on the right-hand sides of Eqs. (8.9). Since
such a double point lies on the curve f .x; y/ D C, then the velocity components
Px D Py D 0. Examination of Eqs. (8.9) shows that at a double point Rx D Ry D 0. Since
z D 0, then Rz D 0.

So, there is no acceleration of a particle located at one of these points. If a particle
is placed there at rest, it remains at rest, unless acted upon by a force extraneous to
the system.

The Lagrangian points on the x axis, often called the collinear Lagrangian points
or libration points, are determined by setting y D 0 in Eqs. (8.18) and solving for
values of x, the roots of Eq. (8.18a). This equation has one root x > x2, one root
x1 < x < x2, and a root x < x1. In addition, there are also triangular Lagrangian
points, denoted by L4 and L5, which solve Eqs. (8.18) for y ¤ 0. We will discuss the
collinear solutions first.

Case I, Collinear Points, x > x2
Let x � x2 D �2 D �; x � x1 D �1 D 1C �; .1 � m/x1 C mx2 D 0. From the last
of these x D 1 � m C �. Substituting in Eq. (8.18)

�5 C .3 � m/�4 C .3 � 2m/�3 � m�2 � 2m� � m D 0 (8.19)
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Fig. 8.5 From top to bottom, location of the collinear Lagrangian points L1, L2 and L3

This equation has only one real positive root. This root can be found by modern
numerical methods such as Graeffe’s root squaring process (Wylie 1975), or, since
by definition m < 1=2, Eq. (8.19) can be solved with m D 0, and then the solution
for m ¤ 0 as a power series in m1=3 is

�L1 D
�m

3

�1=3 C 1

3

�m

3

�2=3 � 1

9

�m

3

�3=3 C : : : (8.20)

With �, �1 D 1C� is the distance from the mass .1�m/ to L1, the Lagrangian point
exterior to m, as shown in Fig. 8.5. We note that in modern literature, the exterior
point is sometimes referred to as L2, and the interior point, discussed next, is referred
to as L1.

Case II, Collinear Points, x1 < x < x2
Let �2 D x2 � x D �; �1 D x � x1 D 1 � �. From the definition of the center of
mass, x D .1 � m � �/. Then the 5th degree equation in � is

�5 � .3 � m/�4 C .3 � 2m/�3 � m�2 C 2m� � m D 0 (8.21)

From the same analysis as used in Case I,

�L2 D
�m

3

�1=3 � 1

3

�m

3

�2=3 � 1

9

�m

3

�3=3 � : : : (8.22)

and hence �1 D 1 � �. This is the location of the Lagrangian collinear point L2,
lying between the primaries, as shown in Fig. 8.5.

Case III, Collinear Points, x < x1
Take 1 � � as the distance from the larger mass .1 � m/ to the collinear point L3.
Then x1 � x D 1 � �; x2 � x D 2 � � and, from the center of mass equation,
x D �.m C 1/C �. The polynomial equation in � is

�5� .7Cm/�4C .19C6m/�3� .24C13m/�2C .12C14m/��7m D 0 (8.23)
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Table 8.1 Values of
�L1 ; �L2 ; �L3 for different
values of m

m Case I (�L1 ) Case II (�L2 ) Case III (�L3 )

0.1 0.35264 0.28360 0.05839

0.2 0.45289 0.34327 0.11710

0.3 0.52486 0.38124 0.17647

0.4 0.58306 0.40906 0.23681

The solution of this equation is

�L3 D 7

12
m C 1127

20736
m3 C : : : (8.24)

From this we find �1 D 1� �; �2 D 2� �. The location of the Lagrangian point L3
is shown in Fig. 8.5. To give some idea of the magnitudes of �, values are given in
Table 8.1 for Cases I–III as a function of m.

Case IV, Triangular Points
The Lagrangian points away from the x axis, denoted as L4 and L5, as mentioned
before, follow from Eqs. (8.18),

x � .1 � m/.x � x1/

�31
� m.x � x2/

�32
D 0 (8.25a)

y � .1 � m/y

�31
� my

�32
D 0 (8.25b)

Since y ¤ 0, we can divide Eq. (8.25b) by y to obtain

1 � .1 � m/

�31
� m

�32
D 0 (8.26)

Multiplying this by .x � x1/ gives

.x � x1/� .1 � m/

�31
.x � x1/ � m

�32
.x � x1/ D 0 (8.27)

Multiplying Eq. (8.26) by .x � x2/, we have

.x � x2/� .1 � m/

�31
.x � x2/ � m

�32
.x � x2/ D 0 (8.28)
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Fig. 8.6 Location of the
triangular Lagrangian points
L4 and L5
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Eliminating x from Eqs. (8.25), (8.27) and (8.28) gives

x2 � .1 � m/

�31
.x2 � x1/ D 0 (8.29a)

x1 C m

�32
.x2 � x1/ D 0 (8.29b)

However, x2 � x1 D 1 and .1� m/x1C mx2 D 0, so x1 D �m and x2 D 1� m. From
Eqs. (8.29) it follows that

1 � 1

�31
D 0;

1

�32
� 1 D 0 (8.30)

Only if �1 D 1; �2 D 1 are these satisfied. Thus, L4 and L5 are at the vertices
of equilateral triangles, as shown in Fig. 8.6, whose common base is the segment
.x1; x2/. The equilateral triangle solutions are independent of the relative sizes of
the two finite masses. This result is consistent with the stationary solution of the
three-body problem discussed in Chap. 7 (McCuskey 1963, pp. 112–117).

8.6 Stability of Motion Near the Lagrangian Points

Stability of an infinitesimal mass near one of the Lagrangian points is claimed when,
after a small displacement and small velocity, the particle oscillates for some time
around the point. It is unstable if it departs from the point with time. The stability
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of motion means bounded displacements and velocities as a functions of time in the
equilibrium points neighborhoods. A mathematical investigation of such stability
follows. The infinitesimal mass equations of motion are given by Eqs. (8.9).

Denote the coordinates of any Lagrangian point by .x0; y0; z0/. These points
occur in the xy plane, so z0 D 0. Let .˛; ˇ; �/ denote small displacements of the
infinitesimal mass from the Lagrangian point as functions of time, so there are
velocity components P̨ ; P̌; P� and acceleration components R̨ ; Ř; R� . We may write

x D x0 C ˛; Px D Px0 C P̨ ; Rx D Rx0 C R̨ (8.31)

y D y0 C ˇ; Py D Py0 C P̌; Ry D Ry0 C Ř (8.32)

z D z0 C �; Pz D Pz0 C P�; Rz D Rz0 C R� (8.33)

The displacements are assumed to be sufficiently small, so Taylor expansions of
Ux;Uy;Uz in Eqs. (8.11) about the Lagrangian point can be written as

Ux D .Ux/0 C ˛.Uxx/0 C ˇ.Uxy/0 C �.Uxz/0 (8.34)

Uy D .Uy/0 C ˛.Uyx/0 C ˇ.Uyy/0 C �.Uyz/0 (8.35)

Uz D .Uz/0 C ˛.Uzx/0 C ˇ.Uzy/0 C �.Uzz/0 (8.36)

where the partial derivatives are evaluated at the Lagrangian point. This assumption
means that the forces, acting on the infinitesimal mass, when it is displaced from the
equilibrium position, are proportional to the displacement only to the first power.

Equations (8.25) show that at a Lagrangian point

.Ux/0 D .Uy/0 D .Uz/0 D 0 (8.37)

Moreover, Rx0 D Ry0 D Rz0 D 0 and Px0 D Py0 D Pz0 D 0 at one of these points. Thus,
from Eqs. (8.12), (8.31) and (8.34) we have

R̨ � 2 P̌ D ˛.Uxx/0 C ˇ.Uxy/0 C �.Uxz/0 (8.38a)

Ř C 2 P̨ D ˛.Uyx/0 C ˇ.Uyy/0 C �.Uyz/0 (8.38b)

R� D ˛.Uzx/0 C ˇ.Uzy/0 C �.Uzz/0 (8.38c)

When the displacements are small, these are the equations of motion of the
infinitesimal mass particle in the neighborhood of a Lagrangian point. From
Eqs. (8.11) we have

Uxx D 1 � 1 � m

�31
� m

�32
C 3.1 � m/.x � x1/2

�51
C 3m.x � x2/2

�52
(8.39a)

Uxy D 3.1� m/.x � x1/y

�51
C 3m.x � x2/y

�52
(8.39b)
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Uxz D 3.1� m/.x � x1/z

�51
C 3m.x � x2/z

�52
(8.39c)

Uyy D 1 � .1� m/

�31
� m

�32
C 3.1 � m/y2

�51
C 3my2

�52
(8.39d)

Uyz D 3.1� m/yz

�51
C 3myz

�52
(8.39e)

Uzz D � .1 � m/

�31
� m

�32
C 3.1� m/z2

�51
C 3mz2

�52
(8.39f)

Equations (8.38) and (8.39) will be applied to study the stability of motion near the
triangular point L4 and the collinear point L1.

Case I, Motion Around L4
We have seen that all the Lagrangian points lie in the xy plane, so z0 D 0 in each
case. For L4; x0� x1 D 1=2; z0 D 0; x0� x2 D �1=2; �1 D �2 D 1; y0 D p

3=2 (see
Fig. 8.6). From Eqs. (8.39), the partial derivatives are

Uxx D 3

4
; Uyz D Uzy D 0 (8.40)

Uxy D Uyx D 3
p
3

2

�
1

2
� m

�
; Uyy D 9=4 (8.41)

Uxz D Uzx D 0; Uzz D �1 (8.42)

The equations of motion (8.38) are

R̨ � 2 P̌ D 3

4
˛ C 3

p
3

2

�
1

2
� m

�
ˇ (8.43a)

Ř C 2 P̨ D 3
p
3

2

�
1

2
� m

�
˛ C 9

4
ˇ (8.43b)

R� D �� (8.43c)

Equation (8.43c) has the solution � D c1 cos t C c2 sin t, where c1 and c2 are
constants of integration. The z direction displacement is periodic with the period
2	 , which is the period of revolution of the two larger masses around their center
of mass. The disturbed motion of the infinitesimal mass is bounded and stable
perpendicular to the xy plane.
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To solve Eqs. (8.43a) and (8.43b), let ˛ D Ae�t; ˇ D Be�t, where A;B; �
are parameters to be determined. Substitution in the equations of motion and
rearrangement yields

A

�
�2 � 3

4

�
C B

"
�2� � 3

p
3

2

�
1

2
� m

�#
D 0 (8.44)

A

"
2� � 3

p
3

2

�
1

2
� m

�#
C B



�2 � 9

4

�
D 0 (8.45)

These have a non trivial solution for A and B, if

2
664

�2 � 3

4
�2� � 3

p
3

2

�
1

2
� m

�

�2� � 3
p
3

2

�
1

2
� m

�
�2 � 9

4

3
775 D 0 (8.46)

which simplifies to

4�4 C 4�2 C 27m.1� m/ D 0 (8.47)

The solution as a quadratic equation in �2 is

�2 D �1
2

˙ 1

2

p
1 � 27m.1� m/ (8.48)

From the solutions ˛ D Ae�t and ˇ D Be�t it is recognized that these are periodic
and bounded, only if � is imaginary. Thus, we must choose m in Eq. (8.48) so that
�2 < 0. Hence, if stable motion is to be ensured

1 � 27m.1� m/ � 0 (8.49)

Otherwise �2 would have an imaginary part, which would lead to a real part of �.
Solving Eq. (8.49) we find that m < 0:0385, if �2 is to be negative. The other root of
Eq. (8.49) is greater than 1=2, and is excluded due to our hypothesis that m < 1=2.
Thus, stable motion around the L4 point takes place if the mass m does not exceed
0:0385.

The Trojan group of asteroids are an example of the motion discussed here. These
bodies are located near the points L4 and L5 of the Sun-Jupiter system. They have
closed orbits around equilibrium points, while moving as a group with the same
period as Jupiter around the Sun. Jupiter’s mass is about 0.001 the solar mass, so
the stability condition of Eq. (8.49) is met. The initial displacement of position and
velocity determines the motion around the Lagrangian point.
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Case II, Motion Around L1
In this case x0 � x D �1 D 1C �; x0 � x2 D �2 D �; y0 D z0 D 0 (see Fig. 8.5).
The partial derivatives of Eqs. (8.39) become

Uxx D 1 � .1 � m/

.1C �/3
� m

�3
C 3.1 � m/

.1C �/3
C 3m

�3
(8.50a)

D 1C 2.1� m/

.1C �/3
C 2m

�3
(8.50b)

Uxy D Uyx D Uxz D Uzx D Uyz D Uzy D 0 (8.50c)

Uyy D 1 � .1 � m/

.1C �/3
� m

�3
(8.50d)

Uzz D � .1� m/

.1C �/3
� m

�3
(8.50e)

Substituting these expressions into Eqs. (8.38), the motion around L1 is

R̨ � 2 P̌ D ˛Œ1C 2f 
 (8.51a)

Ř C 2 P̨ D ˇŒ1 � f 
 (8.51b)

R� D �f� (8.51c)

where

f D 1 � m

.1C �/3
C m

�3
(8.52)

Equation (8.51c) indicates that the motion perpendicular to the xy plane is periodic
with frequency ! D p

f and, therefore, bounded with

� D C3 cos
�p

f t
�

C C4 sin
�p

f t
�

(8.53)

where C3 and C4 are constants of integration.
For motion in the xy plane, let ˛ D Ae�t and ˇ D Be�t. Using Eqs. (8.51) and

combining terms

AŒ�2 � .1C 2f /
C �2B� D 0 (8.54a)

2A�C BŒ�2 � .1 � f /
 D 0 (8.54b)

These have a nontrivial solution if



�2 � .1C 2f / �2�

2� �2 � .1 � f /

�
D 0 (8.55)
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Simplified, this is

�4 C .2 � f /�2 C .1C 2f /.1 � f / D 0 (8.56)

From the definition of f , the fact that m < 1=2, and the value of � given by Eq. (8.20)

� D
�m

3

�1=3 C 1

3

�m

3

�2=3 � 1

9

�m

3

�3=3 C : : : (8.57)

Then we realize that

.1C 2f /.1� f / D 1C f � 2f 2 < 0 (8.58)

This is because with m < 1=2; � 	 1=2, so the second term of f in Eq. (8.52) is
greater than 3, and the first term of f in Eq. (8.52) is positive. Thus, f > 1 and
Eq. (8.58) is evident. Therefore, the solution of Eq. (8.56), which is

�2 D �.2 � f /˙p
.2� f /2 � 4.1C 2f /.1 � f /

2
(8.59)

is positive when the plus sign is taken, and negative when the minus sign is taken.
This is explained as follows. Since �4.1C 2f /.1 � f / < 0, then

p
.2 � f /2 � 4.1C 2f /.1 � f / > 2 � f

so when the plus sign is taken, �2 > 0, and when the minus sign is taken, �2 < 0.
The two real roots of Eq. (8.59) are equal numerically, but opposite in sign. The

two remaining roots of the characteristic equation (8.56) can be denoted by

�1 D a; �2 D �a; �3 D bi; �4 D �bi (8.60)

where

a D
"

�.2 � f /Cp
.2 � f /2 � 4.1C f � 2f 2/

2

#1=2
(8.61)

b D
"
.2 � f /Cp

.2 � f /2 � 4.1C f � 2f 2/

2

#1=2
(8.62)

Equations (8.51) then become upon substitution

˛ D A1e
at C A2e

�at C A3e
ibt C A4e

�ibt (8.63a)

ˇ D B1e
at C B2e

�at C B3e
ibt C B4e

�ibt (8.63b)
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where Bj are related to Aj .j D 1; 2; 3; 4/ through Eq. (8.54a); that is

Bj D
"
�2j � .1C 2f /

2�j

#
Aj; j D 1; 2; 3; 4 (8.64)

The exponential factors eat and e�at in Eqs. (8.63) show there is unbounded
motion in the xy plane. Thus, the L1 point is an unstable equilibrium point. Similar
analysis shows that the behavior of an infinitesimal mass near L2 and L3 is similar.
In general, these Lagrangian points are unstable. Assigning appropriate initial
conditions for the disturbed motion around L1, this point can be a point of stability.

Let

B1 D cA1; B2 D �cA2 (8.65)

B3 D idA3; B4 D �idA4 (8.66)

where

c D a2 � .1C 2f /

2a
; d D b2 C .1C 2f /

2b
(8.67)

Then Eqs. (8.63), with the corresponding velocities, are

˛ D A1e
at C A2e

�at C A3e
ibt C A4e

�ibt (8.68a)

ˇ D cA1e
at � cA2e

�at C idA3e
ibt � idA4e

�ibt (8.68b)

P̨ D aA1e
at � aA2e

�at C ibA3e
ibt � idA4e

�ibt (8.68c)

P̌ D acA1e
at C acA2e

�at � bdA3e
ibt � bdA4e

�ibt (8.68d)

Set the initial displacements and velocities to ˛0; ˇ0; P̨0; P̌
0. For t D 0, from

Eqs. (8.68) we have

˛0 D A1 C A2 C A3 C A4 (8.69a)

ˇ0 D c.A1 � A2/C id.A3 � A4/ (8.69b)

P̨0 D a.A1 � A2/C ib.A3 � A4/ (8.69c)

P̌
0 D ac.A1 C A2/� bd.A3 � A4/ (8.69d)

Assuming the motion is bounded and periodic, then A1CA2 D 0 and A1�A2 D 0,
so only the imaginary exponents remain. Hence, A1 D A2 D 0. From that constraint,
the relationship among the initial conditions to guarantee periodicity can be worked
out. With the restriction A1 D A2 D 0, from Eqs. (8.69a)–(8.69b) we find

A3 D ˛0

2
� iˇ0
2d
; A4 D ˛0

2
C iˇ

2d
(8.70)
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Equations (8.68a)–(8.68b) then become

˛ D
�
˛0

2
� i
ˇ0

2d

�
eibt C

�
˛0

2
C i

ˇ0

2d

�
e�ibt (8.71)

ˇ D id

�
˛0

2
� i
ˇ0

2d

�
eibt � id

�
˛0

2
C i

ˇ0

2d

�
e�ibt (8.72)

which, by means of the Euler relations between trigonometric functions and
exponents, can be simplified to

˛ D ˛0 cos.bt/C ˇ0

d
sin.bt/ (8.73)

ˇ D ˇ0 cos.bt/� d˛0 sin.bt/ (8.74)

These are the equations of the motion of the infinitesimal mass around L1. t may
be eliminated by solving for cos.bt/ and sin.bt/, then by squaring the results and
adding,

˛2

.d2˛20 C ˇ20/=d2
C ˇ2

d2˛20 C ˇ20
D 1 (8.75)

This is the equation of an ellipse, whose center is L1 and with axes parallel to
the x and y axes of the rotating coordinate system. It can be shown that d2 > 1, so
the ellipse’s major axis is parallel to the y-axis. Also, the eccentricity of the ellipse
is given by e2 D 1 � .1=d2/. Thus, the ellipse’s shape depends only on the relative
mass distribution through the constant d, and not on the disturbed motions initial
conditions.

There is a hypothesis that the counterglow, or gegenschein, a hazy patch of light
180ı from the Sun and near the ecliptic, is many small dust particles near the L1
point of the Sun-Earth system. Even if A1 and A2 in Eqs. (8.68) are not zero, but
are small in comparison with A3 and A4, particles could remain for a long time near
L1, before departing from it. The initial conditions for meteoric particles to be near
the L1 point are critical for this explanation of the gegenschein (McCuskey 1963,
pp. 118–126).

8.7 Hill’s Restricted Three-Body Problem

The discussion in previous sections dealt with a special case of the three-body
problem, in which one of the three masses, m3, was infinitesimally small compared
to the other two masses, m1 and m2, i.e. m3 � m2; m1. Another special case of
importance is when two masses are much smaller than the remaining mass, i.e.,
m3; m2 � m1. This problem is usually referred to as Hill’s restricted three-body
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problem (Hill 1878). This is a problem of practical importance both in celestial
mechanics and astrodynamics. The most important feature of Hill’s restricted three-
body problem compared to the original restricted three-body problem is that the
dynamics of the former are not dependant on the masses, and can hence be used
to any celestial or astrodynamical system in which two masses are much smaller
than the remaining one. We will present some interesting periodic orbits around the
secondary mass that emerge in Hill’s restricted problem.

8.7.1 Equations of Motion

Let m denote the mass of the secondary and M be the mass of the primary. In
previous sections, a barycentric rotating coordinate system, the origin of which was
located at the center of mass of m and M, was used (Fig. 8.1). Here we will use a
similar coordinate system; the only difference compared to the previous one is that
the origin is shifted to the center of m, as shown in Fig. 8.7. This coordinate system
was used by Hill in his lunar theory (1878).

Let r D Œx; y; z
T be the position vector of point P.x; y; z/ relative to m, R be the
position of m relative to M, and � be the position of P.x; y; z/ relative to M, as shown
in Fig. 8.7. Also we assume that m moves on a circular orbit about M. The equations
of motion of the point P are

d2�

dt2
D �k2mr

krk3 � k2M�

k�k3 (8.76)

( , , )

̂

̂
̂

Fig. 8.7 Coordinate system for Hill’s restricted three-body problem
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Substituting � D R C r into Eq. (8.76) yields

d2r
dt2

D �k2mr
krk3 � k2M.R C r/

kR C rk3 � d2R
dt2

(8.77)

The gravitational acceleration of m relative to M is given by

d2R
dt2

D �k2MR
kRk3 (8.78)

We now substitute Eq. (8.78) into Eq. (8.77), and write R D ŒR; 0; 0
T where R
is the constant orbital radius of m. The angular velocity is ! D Œ0; 0; n
T , where
n2 D k2.M C m/=R3. Using Eq. (8.1) and substituting for the gravitational terms
yields

Rx � 2Py � n2x D � k2mx

Œx2 C y2 C z2

3
2

� k2M.x C R/

Œ.x C R/2 C y2 C z2

3
2

C k2M

R2
(8.79a)

Ry C nPx � n2y D � k2my

Œx2 C y2 C z2

3
2

� k2My

Œ.x C R/2 C y2 C z2

3
2

(8.79b)

Rz D � k2mz

Œx2 C y2 C z2

3
2

� k2Mz

Œ.x C R/2 C y2 C z2

3
2

(8.79c)

To obtain a normalized set of equations, we divide the position components by R,
so that

 D x

R
; � D y

R
; � D z

R
(8.80)

and time is normalized by n. A new dimensionless gravitational parameter � is
defined as

� D m

m C M
(8.81)

Thus, the velocity and the acceleration are normalized as

P D Px
nR
; R D Rx

n2R
(8.82)
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We now rewrite Eq. (8.79a) into

Rn2R � 2 P�n2R � n2R D � �

.2 C �2 C �2/
3
2

k2m C k2M

R3
R

� .1 � �/. C 1/

. � 1/2 C �2 C �2

� 3
2

k2m C k2M

R3
R

C 1 � �

R2
.k2m C k2M/ (8.83)

If we substitute n2 D k2.m C M/=R3 into Eq. (8.83), we obtain the normalized
equation. In the same manner, we can manipulate the other two equations and get a
set of normalized equations,

R D 2 P�C  � �

Œ2 C �2 C �2

3
2

� .1 � �/. C 1/

Œ. C 1/2 C �2 C �2

3
2

C 1 � � (8.84a)

R� D �2 P C �� ��

Œ2 C �2 C �2

3
2

� .1� �/�

Œ. C 1/2 C �2 C �2

3
2

(8.84b)

R� D � ��

Œ2 C �2 C �2

3
2

� .1 � �/�

Œ. C 1/2 C �2 C �2

3
2

(8.84c)

8.7.2 Hill’s Equations of Motion

As noted previously, m � M and hence � � 1 and moreover, � ! 0. To use this
fact, apply the following transformation to Eqs. (8.84),

 D 1 � �C �
1
3 x (8.85a)

� D �
1
3 y (8.85b)

� D �
1
3 z (8.85c)

When we substitute Eqs. (8.85) into Eqs. (8.84) and let � ! 0, we obtain Hill’s
equations (Hénon 1969),

Rx � 2Py � 3x D @W

@x
(8.86a)
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Ry C 2Px D @W

@y
(8.86b)

Rz C z D @W

@z
(8.86c)

where

W � 1

r
D 1p

x2 C y2 C z2
(8.87)

Obviously, Eqs. (8.86) are independent of �. Another interesting observation is
the location of the Lagrangian collinear points; In Hill’s model L3 ! �1 and
.L1; L2/ D ˙. 1

3
/
1
3 D ˙0:69336. The Jacobi constant is given by

� D 3x2 C z2 C 2

r
� .Px2 C Py2 C Pz2/ (8.88)

8.7.3 Families of Periodic Orbits

Periodic orbits about the smaller primary m can be found using a numerical search.
The question is which initial conditions to choose in the six-dimensional state space.
To simplify the problem, we can eliminate some of the parameters that need to be
found.

One possibility is to search for orbits only in the xy plane. This reduces the
problem into a four-dimensional search. We can simplify the search further if we
choose to find only symmetrical orbits with respect to the x-axis. In this case we
know that the orbit must intersect the x-axis, so we can define the initial condition in
the intersection point, x0. Also, symmetry implies that the velocity at the intersection
point will only be in the y direction. Thus, looking for symmetric orbits simplifies
the problem to finding x0 and Py0. It is generally more convenient to use the Jacobi
integral instead of Py0.

In order to find orbits in the planar case, we need to know the value of the Jacobi
constant, � , and the initial condition x0, where the orbit crosses the x axis with
Py > 0. For that point we have y0 D 0; Px0, and Py0 are found from Eq. (8.88).

It is convenient to represent an orbit by a point in the .�; x0/ plane. In Fig. 8.8,
we depict the characteristic families of periodic orbits, which are denoted by
a; c; f ; g; g0; g0

2; g
0
3 (Hénon 1969, 1970).

The hatched areas in Fig. 8.8 are “forbidden”, i.e. areas in which Py0 < 0. All the
orbits found are symmetric with respect to the x axis because Px0 D 0.

We can use the Jacobi constant as an energy measure, where near m we have
� ! C1. From Fig. 8.8, it is evident that at the energy level of the L1;L2 points,
there are periodic orbits are closer to the secondary than L1. To find larger orbits, we
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Fig. 8.8 General map of periodic orbits in Hill’s problem

need to change the velocity of P, and thereby change the value of � to the value of
the desired orbit.

Families a and c
Families a and c include periodic orbits about the collinear points L1 and L2. Some
orbits of Family a can be seen in Fig. 8.9. Table 8.2 displays the Jacobi constant � ,
the initial condition x0 and the orbital period. The orbits of Family c are symmetric
with respect to Family a as can be seen in Fig. 8.10 and in Table 8.3.

Family f
Family f includes distant retrograde orbits about the secondary. These orbits are
stable and symmetric with respect to the x axis (Fig. 8.11). From Fig. 8.8 it is seen
that these orbits can be found for any � < 0. For � ! �1 the orbits become
ellipses centered at the secondary with a major to minor axis ratio of 2 as can be
seen in Fig. 8.12. Orbits that are very close to the secondary become circles due to
the decreasing gravitational effect of the primary. Figure 8.11 shows some of the
characteristic orbits in this family. The orbit parameters are given in Table 8.4.
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Fig. 8.9 Family a in Hill’s problem

Table 8.2 Family a: Jacobi constant and initial conditions

� x0 T � x0 T

4:327 0:69336 3:0513 1 0:18797 4:88

4:2 0:62698 3:084 0.5 0:13756 5:6

4 0:5802 3:172 0 0:09515 6:3504

3:5 0:4958 3:288 �0.5 0:06402 6:95

3 0:42585 3:44 �1 0:04383 6:95

2:5 0:36181 3:464 �1.5 0:03121 7:37

2 0:30114 3:928 �2 0:02314 7:656

1:5 0:24307 4:32
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Fig. 8.10 Family c in Hill’s problem

Table 8.3 Family c: Jacobi constant and initial conditions

� x0 T � x0 T

4.327 �0:69336 3.0513 1 �0:9778 4.88

4.2 �0:74757 3.084 0.5 �1:0677 6.3504

4 �0:77522 3.172 0 �1:2082 6.3504

3.5 �0:81245 3.288 �0.5 �1:3992 6.95

3 �0:83714 3.44 �0.5 �1:3992 6.95

2.5 �0:8597 3.646 �1 �1:615 6.95

2 �0:88586 4.32 �1.5 �1:8304 7.37

1.5 �0:92204 4.32 �2 �2:0352 7.656

Family g
Family g can be divided into several groups according to the value of � . For � �
4:5, we get a group of stable distant prograde orbits. They can be seen in Fig. 8.13.
These orbits are almost circular in form and resemble the orbits of the two-body
problem.

For 2 � � < 4:5 we obtain unstable distant prograde orbits. Figure 8.14 shows
that the orbits become ellipses, and in the critical value � D 2 the orbit resembles a
parabolic orbit, in which the velocity reduces to zero at infinity.

When � < 2, we obtain unstable orbits as seen in Fig. 8.15. These orbits can
be used as transfer orbits. In the WIND mission, these orbits were used to get to
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Fig. 8.11 Family f in Hill’s problem
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Table 8.4 Family f : Jacobi
constant and initial conditions

� x0 T � x0 T

6 �0:14779 0.3394 1 �0:43991 1.52

5.5 �0:15888 0.3794 0.5 �0:53182 1.938

5 �0:17169 0.422 0 �0:65966 2.526

4.5 �0:18661 0.474 �0.5 �0:83185 3.292

4 �0:20421 0.537 �1 �1:034 4.08

3.5 �0:22523 0.616 �1.5 �1:2341 4.7

3 �0:25071 0.714 �2 �1:4168 5.12

2.5 �0:28212 0.84 �2.5 �1:5817 5.38

2 �0:32163 1.02 �3.5 �1:8705 5.694

1.5 �0:37252 1.222
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Fig. 8.13 Family g with � � 4:5: Stable distant prograde orbits

and from a distant retrograde orbit.1 As mentioned previously, in Hill’s problem the
Lagrangian points L1 and L2 are located at x D ˙0:69336, so the orbits of family
g may reach to about five times this value. The initial conditions of these orbits are
displayed in Table 8.5.

Family g0
The orbits in family g0 pass close to the primary; they are unstable. The orbits are
shown in Figs. 8.16 and 8.17. There are two branches of the Family that split from
family g at the critical point � D 4:5.

1See http://wind.nasa.gov/.

http://wind.nasa.gov/
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Fig. 8.14 Family g with 2 � � < 4:5: Unstable prograde orbits
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Fig. 8.15 Family g with � < 2: Unstable prograde orbits
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Table 8.5 Family g: Jacobi
constant and initial conditions

� x0 T � x0 T

6 0.19489 0.62 1.5 0.17545 4:95

5.5 0.21788 0.734 1 0.13032 5:9

5 0.247 0.94 0.5 0.08902 7:094

4.75 0.26435 1.06 0 0.05587 8:44

4.5 0.2835 1.226 �0.5 0.03392 9:52

4.25 0.30343 1.728 �1 0.02104 10:26

3.75 0.33178 2.054 �1.5 0.01356 10:72

3.5 0.33173 2.4 �2 0.00909 11:02

3 0.3069 3.02 �2.5 0.006313 11:26

2.5 0.26679 3.6 �3 0.004523 11:42

2 0.22168 4.22
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Fig. 8.16 Family g0: Unstable orbits

The trajectory close to the secondary is equivalent to a hyperbolic flyby as seen
in the two-body problem. Figure 8.17 demonstrates a “slingshot” effect. A particle,
e.g. a spacecraft, will be diverted into an escape orbit with respect to a planet due to
this effect.

The orbits in this family display a new kind of motion. The orbits revolve around
the secondary only once, and can be characterized by two points x01 and x02 along
the orbit as noted in Table 8.6. The two branches of this family can be seen in
Fig. 8.8, where the branch of Family g0 splits from Family g at the critical point
� D 4:5.
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Fig. 8.17 Family g0: Delayed escape

Family g3
An additional family of orbits is g3. This family can be seen in Figs. 8.18 and 8.19
and its parameters are given in Table 8.7. The orbits in this family can be used
for libration point missions. In Fig. 8.18 the orbit passes close to the libration
points and, therefore, can be used as a transfer orbit between libration points. The
orbit in Fig. 8.19 moves from the vicinity of the secondary to a large orbit around
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Table 8.6 Family g0: Jacobi constant and initial conditions

� x01 x02 T � x01 x02 T

4.5 0.2835 0.2839 1.226 3.6845 0.50908 0 3:484

4.49 0.32486 0.24509 1.242 3.5 0.4808 �0.00184 3:56

4.48 0.34334 0.22965 1.26 3 0.41052 �0.02001 3:84

4.45 0.34684 0.19924 1.43 2.5 0.34555 �0.0515 4:12

4.4 0.43684 0.16385 1.43 2 0.28365 �0.0938 4:51

4.35 0.48918 0.13329 1.62 1.5 0.22422 �0.14642 5:06

4.3 0.55029 0.09921 1.94 1 0.16778 �0.20938 5:82

4.2714 0.58769 0.07366 2.302 0.5 0.11637 �0.28226 6:92

4.25 0.6009 0.057 2.6 0 0.07422 �0.36577 8:36

4.2 0.6004 0.03613 2.92 �0.5 0.0457 �0.47125 9:84

4.15 0.59171 0.025 3.06 �1 0.02928 �0.6191 11:08

4.1 0.58201 0.01766 3.16 �1.5 0.02011 �0.80868 12:2

4.05 0.57234 0.01241 3.22 �2 0.01464 �1.0044 12:8

4 0.56291 0.008533 3.28 �2.5 0.01107 �1.1795 13:34

3.9 0.54488 0.003494 3.28 �3 0.008613 �1.3322 13:72

3.8 0.52782 0.0009045 3.44
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Fig. 8.18 Family g3: Libration point transfer

the libration points; this kind of orbit can be used as an orbiter or a carrier that
always travels between a planet and the collinear points, thus reducing the velocity
requirements for transfer maneuvers.
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Fig. 8.19 Family g3: Libration point and planet orbiter

Table 8.7 Family g3: Jacobi constant and initial conditions

� x0 T � x0 T

3.5 �0:77365 5.16 0:1 �0:65482 7:18

3.4 �0:77323 5.02 �0:1 �0:65866 8:02

3.2 �0:77176 4.82 �0:5 �0:7161 9:92

3 �0:76969 4.68 �1 �0:92602 12:22

2.5 �0:75961 4.52 �1:3 �1:1221 13:42

2 �0:74453 4.54 �1:6 �1:3295 14:36

1.5 �0:72413 4.72 �2 �1:5823 15:82

1 �0:69838 5.14 �2:5 �1:8537 15:82

0.5 �0:66969 5.98 �3 �2:089 16:204
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Chapter 9
Numerical Procedures

9.1 Differences and Sums

This section is meant as an introduction to notation and procedures involved in
numerical work that occurs in celestial mechanics and astrodynamics. No theoretical
developments will be presented; for theory the reader might consult a work on finite
differences. The notation to be used and reference to more information is available
from Nautical Almanac Office (1956).

Assume a function f .x/ of an independent variable, x, is tabulated at equal
intervals, h. If x0 is a tabular point, then we can make a table of f .x0Cph/ values for
integer values of p, which could be written f .xp/, or fp. The argument is .x0 C ph/,
but, without ambiguity, this could be designated as p. The first difference, ıpC1=2 is
determined by subtracting fp from fpC1. This is shown in Table 9.1. Note that more
values of the function are required to generate the differences shown.

If we form a column of first differences, they can be differenced to form second
differences,

ıpC1=2 � ıp�1=2 D ı2p (9.1)

The superscript denotes the difference number, the subscript denotes the position
with respect to the argument. In principle, the differencing can be carried out
indefinitely.

Table 9.1 can be changed by adding arithmetical means of the entries, immedi-
ately above and below a space. These “half differences” are preceded by a �. Thus,

�ıfp D 1

2

�
ıpC1=2 C ıp�1=2

�
(9.2)

The half differences are listed in Table 9.2.
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Table 9.1 Finite differences Differences

Argument Function 1st 2nd 3rd 4th

�2 f�2 ı2
�2 ı4

�2

ı�1 1=2 ı3
�1 1=2

�1 f�1 ı2
�1 ı4

�1

ı�1=2 ı3
�1=2

0 f0 ı20 ı40
ı1=2 ı31=2

C1 fC1 ı2
C1 ı4

C1

ıC1 1=2 ı3
C1 1=2

C2 fC2 ı2
C2 ı4

C2

Table 9.2 Half differences

Differences

Argument Function 1st 2nd 3rd 4th

�1 f�1 Œ�ı�1
 ı2
�1 Œ�ı3

�1
 ı4
�1

Œ�f�1=2
 ı�1=2 Œ�ı2
�1=2
 ı3

�1=2 Œ�ı4
�1=2


0 f0 Œ�ı0
 ı20 Œ�ı30 
 ı40
Œ�f1=2
 ı1=2 Œ�ı21=2
 ı31=2 Œ�ı41=2


1 f1 Œ�ı1
 ı21 Œ�ı31 
 ı41

Table 9.3 Sums Sums

Argument 2nd 1st Function

�2 ı�2
�2 f�2

ı�1
�1 1=2

�1 ı�2
�1 f�1

ı�1
1=2

0 ı�2
0 f0

ı�1
1=2

1 ı�2
1 f1

ı�1
1 1=2

2 ı�2
2 f2

Differencing is a means of checking some calculations and tabulations of
numbers. The fp values can be considered as first differences of another function,
which we can call 1st sums of fp. The 1st sums can be viewed as differences of 2nd
sums, and so on. The sums have an uncertainty of an additive constant. See Table 9.3
for sums.

There is an analog between summing and integrating and between differencing
and differentiating. The ı’s can be considered operators that obey the laws of algebra
(Danby 1962, pp. 214–215).



9.2 Interpolation 199

9.2 Interpolation

The tables discussed referred to values of f .x0 C ph/ for integral values of p; once
the table is constructed, with some constraints, a value of f can be determined for
any value of p, which is within the range of the table. This process is interpolation.

Let us now assume that 0 � p < 1. If the second differences are negligible or
zero,

fp D f0 C pı1=2 (9.3)

This is equivalent to linear interpolation. In general, fp should be given by a
formula involving successive differences in a way depending on p. We will give two
relations where this is the case. The first is Bessel’s formula,

fp D f0 C p ı1=2 C B2 .ı
2
0 C ı21/C B3 ı

3
1=2 C B4 .ı

4
0 C ı41/C : : : (9.4)

where the B’s are Bessel interpolation coefficients and functions of p. For example,

B2 D 1

4
p.p � 1/ (9.5)

B3 D 1

12
p.p � 1/.2p � 1/ (9.6)

B4 D 1

48
p.p2 � 1/.p � 2/ (9.7)

These functions are tabulated in many references. The second relation is Everett’s
formula,

fp D .1 � p/ f0 C p f1 C E2 ı
2
0 C F2 ı

2
1 C E4 ı

4
0 C F4 ı

4
1 C : : : (9.8)

The Everett interpolation coefficients are related to the Bessel coefficients by

E C F D 2B (9.9)

and also E.p/ D F.1�p/ and E.1�p/ D F.p/.
Differences must be taken out to the point where they are small and irregular. This

is not a condition simply detected on computers. To reduce the interpolation formula
and the differences required, a throw back scheme may be used. For instance, if
the 4th differences are small (less than 1000), then the B4 term can be neglected,
provided that the 2nd difference is modified by

ı2mod D ı2 � 0:184 ı4 (9.10)
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Then, the 4th differences have been thrown back. A similar process can be used
in Everett’s formula, and more complicated throw backs can be used with higher
differences. When differences are smooth, it is possible with a minimum of error
to extrapolate the table of differences beyond the functions available. Likewise, it
is possible to determine the argument for a given value of the function by inverse
interpolation. This is usually done by some scheme of successive approximation
(Danby 1962, pp. 215–218).

9.3 Lagrangian Methods

It is frequently desirable to have a formula expressed explicitly in terms of functional
values, rather than in terms of the differences. Such formulae permit a direct
consideration of the effect on the value due to a change, or error, in the ordinates, and
the use does not require the calculation and tabulation of differences. Apparently,
the basic formula is due to Waring, but it is given the name Lagrange.

Lagrange’s form of the polynomial

y.x/ � y0; y1; : : : ; yn.x/ of degree n (9.11)

takes on the same values as a given function f .x/ for the n C 1 distinct abscissas
x0; x1; x2; : : : ; xn. It differs from the Newtonian form

f .x/ D f Œx0
C .x � x0/f Œx0; x1


C .x � x0/.x � x1/f Œx0; x1; x2
C : : :C .x � x0/ : : : .x � xn�1/f Œx0; : : : ; xn


C E.x/ (9.12)

where E.x/ , f .x1/�f .x0/
.x1�x0/

is a first divided difference.
The ordinates are displayed explicitly in the Lagrangian form, while the New-

tonian form explicitly involves divided differences of those ordinates. While
Lagrange’s form may be derived from Newton’s form, its importance justifies a
separate consideration.

We can write y.x/ in the form

y.x/ D A0 C A1x C A2x
2 C : : :C Anxn D

nX
kD0

Akxk (9.13)

where the A0s are to be determined such that

y.xi/ D f .xi/; i D 0; 1; 2; : : : ; n (9.14)
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These requirements can be given by n C 1 linear equations

A0 C A1x0 C A2x20 C � � � C Anxn
0 D f .x0/

:::

A0 C A1xn C A2x2n C � � � C Anxn
n D f .xn/

(9.15)

These equations can be solved by use of determinants, where the special
properties of the determinants can lead to simple expressions for the A0s in terms
of the ordinates. The requirement that the A0s satisfy Eqs. (9.13) and (9.15) can be
expressed by

2
6664

y j x x2 : : : xn

f .x0/ j x0 x20 : : : xn
0

:::
:::
:::
:::
:::
:::

f .xn/ j xn x2n : : : xn
n

3
7775 D 0 (9.16)

whose the expanded form gives the equation of the interpolation polynomial y D
y0; : : : ; yn.x/. Alternatively, we could write y.x/ as

y.x/ D l0.x/f .x0/C l1.x/f .x1/C : : :C ln.x/f .xn/ ,
nX

kD0
lk.x/f .xk/ (9.17)

where l0.x/; : : : ; ln.x/ are polynomials of degree n or less, which are determined
based on the requirement that replacing y.x/ by f .x/ be an identity, when f .x/
is an arbitrary polynomial of degree n or less. This situation will be true, if and
only if, replacing y.x/ by f .x/ is an identity when f .x/ D 1; x; x2; : : : ; xn. These
requirements are represented by n C 1 equations,

l0.x/C l1.x/C : : :C ln.x/ D 1 (9.18a)

x0l0.x/C x1l1.x/C : : :C xnln.x/ D x (9.18b)

::: (9.18c)

xn
0l0.x/C xn

1l1.x/C : : :C xn
nln.x/ D xn (9.18d)

where the coefficient functions can be determined as ratios of determinants, which
can be expanded in simple forms.

Rather than pursuing either of these approaches, we can avoid a lengthy
calculation by noticing that Eq. (9.17) will take on the value of f .xi/, when x D xi,
if li.xi/ D 1, and if li.xj/ D 0, when j ¤ i. Using the notation called the Kronecker
delta,

ıij D 0 if i ¤ j; ıij D 1 if i D j (9.19)
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the requirement becomes

li.xj/ D ıij; i D 0; : : : ; n; j D 0; : : : ; n (9.20)

Since li.x/ is to be a polynomial of degree n, which vanishes when x D
x0; x1; : : : ; xi�1; xiC1; : : : ; xn, it follows

li.x/ D CiŒ.x � x0/ : : : .x � xi�1/.x � xiC1/ : : : .x � xn/
 (9.21)

where Ci is a constant. Ci is determined from li.xi/ D 1 in the form

Ci D 1

.xi � x0/ : : : .xi � xi�1/.xi � xiC1/ : : : .xi � xn/
(9.22)

and the Lagrangian coefficient functions, li.x/, are determined by introducing
Eqs. (9.21) and (9.22). Putting this in a more compact form, let

	.x/ D .x � x0/.x � x1/ : : : .x � xn/ (9.23)

The derivative of 	.x/ can be expressed as the sum of n C 1 terms, in each of
which one of the factors of 	.x/ is deleted. If we set x D xi in this expression, we
obtain

	 0.xi/ D .xi � x0/ : : : .xi � xn/ D 1

C0
i

(9.24)

where .xi � xi/ is to be omitted in the product. After introducing Eqs. (9.17), (9.21),
(9.22) the Lagrangian interpolation polynomial of degree n is obtained

y.x/ D
nX

kD0

	.x/

.x � xk/	 0.xk/
f .xk/ ,

nX
kDo

lk.x/f .xk/ (9.25)

where

li.x/ D 	.x/

.x � xi/	 0.xi/

D .x � x0/ : : : .x � xi�1/.x � xiC1/ : : : .x � xn/

.xi � x0/ : : : .xi � xi�1/.xi � xiC1/ : : : .xi � xn/
(9.26)

The first expression for li.x/ is useful for theoretical considerations, the second
expression is useful for the actual calculation. The error committed by replacing
f .x/ by y.x/ is

f .x/ D
nX

kD0
lk.x/f .xk/C E.x/ (9.27)
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where

E.x/ D 	.x/f Œx0; : : : ; xn; x
 D 	.x/
f nC1./
.n C 1/Š

(9.28)

where  is some number in the interval limited by the largest and smallest of the
numbers x0; x1; : : : ; xn, and x.

The use of the Lagrangian formula is shown by taking the interpolation polyno-
mial of degree three related to the data

x �1 0 1 2

f .x/ 1 1 1 �5

in the form

y D 1 � .x � 0/.x � 1/.x � 2/

.�1 � 0/.�1� 1/.�1� 2/
C 1 � .x C 1/.x � 1/.x � 2/

.0C 1/.0� 1/.0� 2/

C 1 � .x C 1/.x � 0/.x � 2/

.1C 1/.1� 0/.1� 2/
� 5 � .x C 1/.x � 0/.x � 1/

.2C 1/.2� 0/.2� 1/

y D �1
6

x.x � 1/.x � 2/C 1

2
.x C 1/.x � 1/.x � 2/

� 1

2
.x C 1/x.x � 2/� 5

6
.x C 1/x.x � 1/

y D �x3 C x C 1 (9.29)

The Lagrangian form of the interpolation formula has the advantage that it does
not require differencing of data. It has the disadvantage that, if f .x/ is not given
analytically, the truncation error of the result afforded by interpolation from a given
number of ordinates, or the number of ordinates required to reduce the truncation
error below prescribed limits, are difficult to estimate (Hildebrand 1956, pp. 60–64).

9.4 Differentiation

If the 2nd differences in a table were all zero, the function would be an arithmetical
series, and its differential coefficient would be exactly

h
df

dx
D hf 0 D df

dp
D ı1=2 (9.30)

This is the linear case, so, in general, one would expect f 0 to be given by a
function involving higher differences. The appearance of h in the equation must
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not be forgotten. The Bessel interpolation coefficients are expressed in terms of p
in Eq. (9.4), so it can be differentiated any number of times to give formulas for the
successive differential coefficients. For instance, differentiating Eq. (9.4) with the
expressions of different B0s

hf 0
p D ı1=2 C 1

2
.2p � 1/.ı20 C ı21/C B0

3 ı
3
1=2 C B0

4 .ı
4
0 C ı41/C : : : (9.31)

The B0s are tabulated in references. Similar to interpolation, there are alternative
formulas. Usually, the derivatives at tabular, or half-tabular, points are only required.
The coefficients can be given definite values. For tabular points we have

hf 0
0 D � ı0 � 1

6
� ı30 C 1

30
� ı50 � 1

140
� ı70 C : : : (9.32)

and

h2f 00
0 D ı20 � 1

12
ı40 C 1

90
ı60 C : : : (9.33)

At half tabular points,

hf 0
1=2 D ı1=2 � 1

24
ı31=2 C 3

640
ı51=2 � : : : (9.34)

and

h2f 00
1=2 D � ı21=2 � 5

24
� ı41=2 C 259

5760
� ı61=2 � : : : (9.35)

(Danby 1962, pp. 219–220).

9.5 Integration

From the analogy between sums and integrals, or direct integration of Bessel’s
interpolation formula, we expect a formula like

Z p

fpdp D ı�1
1=2 C A0

0. f0 C f1/C A0
1ı1=2 C A0

2.ı
2
0 C ı21/C : : : (9.36)

for the integral of fp. Such is the case, and the A0s are tabulated in references. There
is a similar formula for double integrals. Then

Z
f .x/dx D h

Z
fpdp (9.37)
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If we are only interested in evaluating integrals at tabular points, where p D 0, then

1

h

Z 0

f .x/dx D
Z 0

fpdp D � ı�1
0 � 1

12
� ı0C 11

720
� ı30�

191

60480
� ı50C: : : (9.38)

and

1

h2

Z Z 0

f .x/dx2 D
Z Z 0

fpdp2 D ı�2
0 C 1

12
f0� 1

240
ı20C 31

60480
ı40�: : : (9.39)

These expressions will be needed for the numerical solution of differential
equations. The notation

R p causes uncertainty, because a definite value requires
two limits. When only the upper limit is specified, the value of an added constant
is unknown. In Eq. (9.36), this is the uncertainty in forming first sums. A definite
integral can be expressed as

Z p

q
fdp D

Z p

C
fdp �

Z q

C
fdp (9.40)

where C is arbitrary. If we omit C and apply Eq. (9.36) to each integral, the result
for the definite integral will be independent of the arbitrary constant, when forming
the first sums, as the constant disappears in subtraction.

When solving a differential equation, the sums must be known definitely and
they can be found from initial conditions. Definite integrals can be determined by
using tabular point values of the function to be integrated, instead of using sums and
differences. Many formulas are available for this; for example, the repeated Simpson
rule: Integrate y D f .x/ from x0 D a to xn D b, and let y be tabulated for all xi, so

yi D f .xi/; i D 1; 2; 3; : : : ; n (9.41)

Assuming n is even, then

Z b

a
ydx D b � a

3n
.y0C4y1C2y2C4y3C2y4C : : :C2yn�2C4yn�1Cyn/ (9.42)

Only if the third differences of the yi are approximately constant should this
formula be used (Danby 1962, pp. 220–221).

9.6 Differential Equations

The numerical solution of ordinary differential equations can be performed in many
ways. The purpose here is to prepare for some standard methods for calculation
of special perturbations. The situation faced, when solving a differential equation
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numerically, has been described by Herget (1948) as the problem of filling in
quantities on an initially blank sheet of paper, where only one quantity (the starting
value) may be known. For other values, we have to make tentative entries, and
proceed by successive approximation. Once the integration has been started, we
proceed step by step to build up the solution, using methods to be described. To
start the integration, we could solve the equation

h
dx

dt
D f .x; t/ (9.43)

in a series that rapidly converges over a limited range of t; the series is used to
find values for a numerical solution. A series expansion, however, is not practical in
celestial mechanics.

If we seek the perturbations of a cometary orbit caused by the planets, and if
they are not too large at the time of the start of the integration, the ephemeris of
the unperturbed orbit can be used as the start. This establishes a starting table,
from which the integration proceeds. The arbitrary constants in the sums are
determined from initial conditions. For Eq. (9.43), Table 9.4 shows the initial values
schematically. x0 is the starting value and xa are approximate, and to be modified as
the solution proceeds.

Here we have assumed that the interval is so chosen that differences beyond the
fourth are negligible. Normally, higher differences are required. x1 can be found
from Eq. (9.38) by

x1 D � ı�1
1 � 1

12
� ı1 C 11

720
� ı31 (9.44)

Here, ı31 1=2 must be extrapolated, but x1 will not be affected much, unless this

extrapolation is very wrong. Suppose, for example, that ı31 1=2 is wrong by 20, then

� ı31 will be wrong by 10, and 11
720
� ı31 will be wrong by 0.1, which does not affect

x1. This illustrates the normal strength of convergence of this process.

Table 9.4 Initial and
propagated values

t x xa ı�1 f ı ı2 ı3 ı4

0 x0 f0 ı20 ı40
ı�1
1=2 ı1=2 ı31=2

1 xa
1 f1 ı21

ı�1
1 1=2 ı1 1=2

2 xa
2 f2

ı�1
2 1=2
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Table 9.5 Extrapolated
values

t x xa ı�1 f ı ı2 ı3 ı4

0 x0 f0 ı20 ı40
ı�1
1=2 ı1=2 ı31=2

1 x1 xa
1 f1 ı21 ı4a

1

ı�1
1 1=2 ı1 1=2 ı3a

1 1=2

2 xa
2 f2 ı2a

2

ı�1
2 1=2 ıa

2 1=2

3 xa
3 f a

3

ı�1
3 1=2

We can extrapolate forward by assuming ı4a
1 D ı40 and we can build up extra

values as shown in Table 9.5. Then we can approximate x3 from

xa
3 D � ı�1

3 � 1

12
� ı3 C 11

720
� ı33 (9.45)

where more judicious extrapolation would be needed; then a better value of f3 can
be found and the approximate differences improved (we may find it necessary to
improve the value of x1).

We assume here that f will not be too sensitive to small errors in x, so this value
may be final. But any, or all, of these steps may have to be revised as the solution
is built up. Table 9.5 then is similar to Table 9.4, but one step further on. We are
ready to find x2 and so on. When the x value differs from the xa to affect f , the table
must be revised. This normally happens in the early stages of the integration, so it
is normal to iterate on the starting table, as it is called. After the starting table, the
deviations should not be that great, unless the interval of tabulation is too great. An
alternative method to find xa

3, instead of using Eq. (9.45), is to use an extrapolation
formula such as

xa
3 D x1 C 2f2 C 1

3
ı22 � 1

90
ı42 (9.46)

Now, if we consider a second-order differential equation

h2
d2x

dt2
D f .x; t/ (9.47)

we tabulate second sums, so the starting table will be of the form of Table 9.6.
Now, we have from Eq. (9.39),

x1 D ı�2
1 C 1

12
f1 C 1

240
ı21 C 31

60480
ı41 (9.48)
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Table 9.6 Starting values
with second sums

t x xa ı�2 ı�1 f ı ı2 ı3 ı4

0 x0 ı�2
0 f0 ı20 ı40

ı�1
1=2 ı1=2 ı31=2

1 xa
1 ı�2

1 f1 ı21
ı�1
1 1=2 ı1 1=2

2 xa
2 ı�2

2 f2
ı�1
2 1=2

3 ı�2
3

As before, if the 4th differences are small and steady (or higher differences, but
the table should extend to even differences), we can develop tentative values for
ı41; ı

3
1 1=2; ı

2
2; ı2 1=2, and f3. These provide tentative values of ı23 and, hence, of xa

3,
using

xa
3 D ı�2

3 C 1

12
f3 � 1

240
ı23 (9.49)

xa
3 is used to find f3 more accurately, and we can proceed to the next step.

In perturbation problems, seen in previous chapters (e.g. Eqs. (7.67)–(7.69)), we
have to solve simultaneously three equations of the form

Rx D X.x; y; z; t/ Ry D Y.x; y; z; t/ Rz D Z.x; y; z; t/ (9.50)

The three tables must proceed together with the same method. Tentative values,
xa; ya; za, are used to correct extrapolated values of X;Y;Z (Danby 1962, pp. 221–
224).

9.7 Errors

We will primarily be concerned with unavoidable errors, i.e. we are differentiating
between errors and blunders. All effort possible should be made to avoid blunders,
and there are some common checks which should be applied. For example,

1. In orbit calculations it is common to use a perifocal frame, as defined in
Sect. 5.2. Using the eccentric anomaly and the relations defined in Eqs. (5.47)–
(5.50), we have for the position in the perifocal frame

r D a OP.cos E � e/C b OQ sin E (9.51)
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where OP D �
Px; Py; Pz

	T
and OQ D �

Qx; Qy; Qz
	T

. When using these unit
vectors, it is advisable to apply the checks that

P2x C P2y C P2z D 1 D Q2
x C Q2

y C Q2
z

PxQx C PyQy C PzQz D 0 (9.52)

2. When the integration of equations is being performed and the energy integral
is known, but not being used, it should be calculated at intervals and used
as a check during the course of the integration. This is also a check on the
accumulation of accidental errors.

3. When a table is constructed, such as a calculation of an ephemeris, the figures
should be differenced. These differences should be carried until they become
small. If they do not become small, there is probably a mistake and blunders
usually show up clearly as a triangle of unusual values.

4. When laying out the computation of a complex problem, it is advisable to build
in check computations at various stages, when this is possible.

5. It is very helpful to have some idea of the answer to be expected. Drawings
of orbital positions are quite helpful in this regard. Quadrant errors are quite
common and easily picked up by rough sketches.

6. Critical examination of results is helpful; a minor planet on a hyperbolic orbit
should be reviewed suspiciously. An artificial satellite with a radius vector
shorter than the Earth’s equatorial radius is highly questionable. Experience
is a big help in this regard.

7. Be careful of the location of decimal points.
8. Be careful of plus and minus signs. Particularly when dealing with latitude and

declination where ˙ degrees, minutes, and seconds are involved.
9. Hand checks of computer programs are usually well worth the effort, both in

clarifying the process before programming and in checking sneaky errors that
will crop up.

10. Signs and quadrants from trigonometric functions bear special checking.
11. Choose the trigonometric function that is best behaved in the area to be used.

Cotangent near 90ı is better than a tangent.
12. Interpolate on a smooth function, not one changing radically. Azimuth and

altitude interpolation should be avoided.
13. Limit significant figures to what is justifiable in the result.
14. Remember, few numbers are completely accurate, usually just so many signifi-

cant figures of an accurate value. It is advisable to carry extra significant figures
during a calculation.

15. It is usually best to have a set rule for rounding when the next figure is 5, i.e.
how to round 0.20015, or 0.20025 to 4 significant figures. The American rule
is usually to make the last figure even, so both are rounded to 0.2002.

16. In solving a differential equation, an early round-off error can have a consider-
able effect. To see the effect of rounding errors, consider the differences of the
sequence C 1

2
;� 1

2
;C 1

2
;� 1

2
;C 1

2
. This is shown in Table 9.7.



210 9 Numerical Procedures

Table 9.7 Effect of rounding
errors

ı ı2 ı3 ı4 ı5 ı6

C1/2 �2 C8 �32
�1 C4 �16

�1/2 C2 �8 C32
C1 �4 C16

C1/2 �2 C8 �32
�1 C4 �16

�1/2 C2 �8
C1 �4

C1/2 �2
�1

�1/2

Table 9.8 Effect of an error
in differencing a sequence

ı ı2 ı3 ı4 ı5 ı6

0 0 0 C1
0 0 C1

0 0 C1 �6
0 C1 �5

0 C1 �4 C15
C1 �3 C10

1 �2 C6 �20
�1 C3 �10

0 C1 �4 C15
0 �1 C5

0 0 C1 �6
0 0 �1

0 0 0 C1

The magnitude of ın can be 2n�1. So if we calculated a table and found that
the 6th difference fluctuated between ˙32, this would not signify any avoidable
error. A larger fluctuation would signify an avoidable error.

17. Precision versus accuracy. Precision is the number of digits given, accuracy is
the number of digits that have meaning.

18. What is the effect of a mistake on the differences? Suppose one tabular value
is in error by one, so we have 0; 0; 0; 1; 0; 0; 0 from differencing the sequence.
The effect is shown in Table 9.8.

The numbers occurring in ın are the binomial coefficients in the expansion of
.1 � x/n. If we difference a table that, aside from errors, should produce negligible
6th differences, the presence and location of the error would be apparent when the
6th differences are written down. The location of the error is opposite the largest
value in the even differences (Danby 1962, pp. 219–228).
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9.8 Numerical Integration

Let us illustrate the process of numerical integration of a hypothetical planet with
negligible mass, which is moving from perihelion to aphelion under the attraction
of only the Sun. The orbit is an ellipse with a semimajor axis of 2 AU and an
eccentricity of 0.2. The plane of the orbit is the reference plane, with the x axis
directed toward perihelion. The equations of motion are

d2x

dt2
D �k2

x

r3
(9.53)

d2y

dt2
D �k2

y

r3
(9.54)

where r2 D x2 C y2 and k is the Gaussian constant, 0.01720209895. The units for
these equations are based on the value of k, with x; y and r given in astronomical
units, and t in ephemeris days. Based on experience, an orbit of this size and shape
can be integrated with a tabular interval of 20 days to acquire the desired degree
of convergence in differences. For simplicity, we will use a 10 day interval. So,
denoting the interval by w, we have w2 D 100 for converting the second summations
of Rx and Ry into x and y. It is inconvenient to multiply �x=r3 and �y=r3 by the small
factor k2, and then the second summations by 100. It is desirable for the second
summations to be the same magnitude as x and y, which can be accomplished by
integrating the equations

fx D �w2k2
x

r3
; fy D �w2k2

y

r3
(9.55)

where w2k2 D 0:02959122 for a 10 day interval. We take the time origin to be the
instant of perihelion passage. From the dimensions and orientation of the orbit, two
constants of integration are

x0 D r0 D a.1 � e/ D 1:6 AU; y0 D 0:0 (9.56)

w Px0 and w Py0 are two more constants. At perihelion Px0 D 0, so wkPx0 D 0 and
wkPy0 D wk a1=2r�1.1 � e2/1=2 D 0:1489745, since the velocity is all in the y
direction. To start the integration, we calculate seven consecutive values of fx and
fy. The mean motion is 57:2957795ıka�3=2 D 0:348464933ı, degrees per day, from
which the values of the mean anomaly are determined. The eccentric anomaly is
obtained by Kepler’s equation (see Sect. 5.9) and x and y by

x D a.cos u � e/; y D a.1� e2/1=2 sin u (9.57)
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Table 9.9 Values related to x

t ı�2 ı�1 fx ı ı2 ı3 ı4 ı5

�30 �109729

�3220

�20 �112949 1245

�1975 C63

�10 �114924 1308 �37

�667 C26 �15

0 1.60093638x �115591 1334 �52

57796x C667 �26 C15

10 1.5951842 �114924 1308 �37

�172720 C1975 �63 (�7)

20 15779122 �112949 1245 (�44)

�285669 C3220 (�107) C15

30 1.5493453 �109729 (1138) �29

�395398 (4358) �136

40 1.5098055 (�105371) C1002

(�500769) 5360

50 (1.4597286) 100011

�600780

.. .. .. .. .. .. .. .. ..

500 �2.3933823 52314 �45 C1

�59327 C51 C1 �3

510 �2.3993150 C51365 �44 �2

�7962 C7 �1

520 �2.4001112 C51372 �45

C43410 �38

530 �2.3957702 51334

C94744

540 �2.3862958 C51253

From x and y, we have r, 1=r3, w2k2=r3; fx and fy are determined from Eqs. (9.55).
From these, the first seven lines of Tables 9.9 and 9.10 are constructed.

The starting values of ı�2
0 and ı�1

1=2 are obtained by Eqs. (9.38) and (9.39), which
are written as

ı�2
0 D x0 � 1

12
f0 C 1

240
ı20 � 31

60480
ı40 (9.58)

ı�1
1=2 D ! Px0 C 1

2
f0 C 1

12
� ı0 � 11

720
�ı30 C 191

60480
�ı50 (9.59)
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Table 9.10 Values related to y

t ı�2 ı�1 fy ı ı2 ı3 ı4 ı5

�30 C31331

�10093

�20 C21238 �419

�19512 205

�10 C10726 �214 9

�10726 214 9

0 0.0000000x 0 0 0

1488848x 10726 214 �9

10 0.11488848 �10726 214 �9

1478122 �10512 205 (�15)

20 0.2966970 �21238 419 (�24)

1456884 �10093 (C181) �3

30 0.4423854 �31331 (C600) �27

1425553 (�9493) C154

40 0.5849407 (�40824) C754

(1384729) �8739

50 (0.7234136) �49563

1335166

.. .. .. .. .. .. .. .. ..

500 C0.1642454 �3521 �7 �4

�991836 C2128 C5 �4

510 C0.0650618 �1393 �2 �1

�993229 C2126 C4

520 �0.0342611 C733 C2

�992496 C2128

530 �0.1335107 C2861

�989635

540 �0.2324742 C4993

using �ı0 D 1
2
.ı�1=2 C ı1=2/, and having two similar equations for y and Py. So the

two values marked with superscript x0s in Tables 9.9 and 9.10 may be inserted. Now,
the table can be extended down and to the left through t D 40 using

ı�1
nC1=2 � ı�1

n�1=2 D fn (9.60)

ı�2
n � ı�2

n�1 D ı�1
n�1=2 (9.61)

and rearrangements of these equations. So the table can be extended by forming
differences.
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Next, we calculate fx and fy for t D 40, which requires the values of x and y.
Provisional values, as indicated by parentheses, may be obtained by means of
Eq. (9.39),

1

h2

Z Z 0

f .x/dx2 D
Z Z 0

fpdp2 D ı�2
0 C 1

12
f0 � 1

240
ı20 C 31

60480
ı40 (9.62)

if the necessary differences were extrapolated.
The values of x and y, thus obtained, are generally sufficiently accurate, but not

the differences written in by inspection. Instead of using an equation such as (9.39),
it is better to use a formula that will give x and y in terms of the diagonal differences
already known. Newton formulas of diagonal differences are an example;

fn D f0 C nı1=2 C n.n � 1/

2Š
ı21 C n.n � 1/.n � 2/

3Š
ı33=2

C n.n � 1/.n � 2/.n � 3/
4Š

ı42 C : : :

C n.n � 1/.n � 2/ : : : .n � m C 1/

mŠ
ım

m=2 (9.63)

which is the forward difference formula and

fn D f0 C nı�1=2 C n.n C 1/

2Š
ı2�1 C n.n C 1/.n C 2/

3Š
ı3�3=2

C n.n C 1/.n C 2/.n C 3/

4Š
ı4�2 C : : :

C n.n C 1/.n C 2/ : : : .n C m � 1/
mŠ

ım
�m=2 (9.64)

which is the backward difference formula.
Integrating Newton’s backward interpolation twice, and manipulating a little, we

have with sufficient accuracy for most applications

x0 D ı�2
0 C 1

12
f�1 C 1

12
ı�3=2 C 0:0791667 ı2�2 C 0:075 ı3�5=2

C 0:07135ı4�3 C 0:0682ı5�7=2 C 0:065ı6�4 C 0:06ı7�9=2 (9.65)

The forward formula for backward integration can be obtained by changing the
signs of all the subscripts and of the coefficients of the odd-ordered terms. With
Eq. (9.65) a third table can be started with values of x; y; r2 and 1=r3. The differences
in the integration tables become a check on the work; care must be taken to obtain
accurate differences. Due to the accumulation of rounding errors, the last decimal
of x and y is uncertain after a few integration steps. With fx and fy calculated by
Eq. (9.55) after determining x and y from Eq. (9.65), the diagonal differences above
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and to the right may be entered. Before filling in the sums, the provisional values of
x and y should be tested by the more accurate formula

x0 D ı�2
0 C 1

12
f0 � 1

240
ı2�1 � 1

240
ı3�3=2 � 0:00365 ı4�2

� 0:0031ı5�5=2 � 0:003ı6�3 (9.66)

If new values differ from the provisional values by half a unit or more, they need
to be corrected, and fx and fy values examined to determine if they need correction, or
not. If they do, corrected values of fx and fy must be entered in the integration table,
the differences corrected, and Eq. (9.66) reapplied. Generally, the tabular interval
should be chosen, so the provisional values of x and y might require correction by
a few units in the last decimal, and small enough that the provisional values of fx
and fy seldom need correction. The general rule is a step size about 1/100 of the
period of the orbit. When the final values of fx and fy are obtained, the tables may
be extended to the left giving ı�2

x and ı�2
y for t D 50, and the first integration step

is completed. Now, the values in parenthesis can be entered. The second step is like
the first. The rules for each step are the following:

1. Having completed a diagonal of the integration tables, determine provisional
values of x and y by Eq. (9.65).

2. Calculate fx and fy from the differential equations (9.55), enter them in the tables,
and fill in the differences above and to the right.

3. Test x and y by Eq. (9.66); if necessary, correct them, and test fx and fy. Then,
complete the diagonal of the tables.

In this example, the tabular interval is so small that Step 3 is hardly necessary.
The calculation of a single step is simple, but more steps are required, there is no
savings in effort, and the accumulation of end-figure errors is greater than necessary.
The table can be given after progressing as shown in subsequent values (Brouwer
and Clemence 1961, pp. 146, 153–157).

9.9 Numerical Integration by Runge-Kutta Methods

Just as we can interpolate using a difference table, or directly from function values,
similarly, numerical integration can be performed directly from functional values
without the difference table. There are a wide variety of methods available; we
will just give a few examples. Runge-Kutta methods are single-step methods, so
each step is like starting an initial value problem, independent of what went before.
Consider the equation

dx

dt
D f .t; x/; x.t0/ D x0 (9.67)
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The Runge-Kutta method has for a stepsize h, the operations

f0 D f .t0; x0/ (9.68)

f1 D f .t0 C 1

2
h; x0 C 1

2
hf0/ (9.69)

f2 D f .t0 C 1

2
h; x0 C 1

2
hf1/ (9.70)

f3 D f .t0 C 1

2
h; x0 C 1

2
hf2/ (9.71)

x.t0 C h/ ' x1 D x0 C 1

6
. f0 C 2f1 C 2f2 C f3/ (9.72)

This is a fourth-order method. Then, for h small enough, the error of approxima-
tion can be estimated by Ah5, with A independent of h, or

x.t0 C h/� x1 ' Ah5 (9.73)

This algorithm is quick and easy to program, but for most orbital calculations it is
neither accurate nor fast enough to be satisfactory. One modification of this method
allows for automatic control of the stepsize from one step to the next, based on an
error bound set by the operation. This is one of the methods by Fehlberg (1968). The
method described will give fifth-order accuracy. The method runs two algorithms in
tandem; at the end of a step there are two separate approximations for x; x1 has
fourth-order and Ox1 has fifth-order accuracy,

x.t0 C h/ ' x1 C Ah5 (9.74)

x.t0 C h/ 	 Ox1 C Bh6 (9.75)

The difference .Ox1 � x1/ is an approximation of the local truncation error of the
approximation x1. The stepsize is calculated, or adjusted, so this difference will be
less than a set amount. If the error of x1 is less than the amount, so will the error of
Ox1. Ox1 is used as the starting value of the next step. This procedure is most valuable
in cases of close approaches, or where the optimum step size changes. Let

TE D jOx1 � x1j (9.76)

Suppose we have just calculated a step in the integration. If TE is too large, or
if TE > TL, where TL is the greatest tolerable local truncation error, then the step
must be repeated with a smaller step size. If TE < TL, then the step is good and we
need the stepsize for the next step. When a step is calculated, a new value of h must
be found in each case. Approximately,

TE ' Ah5 ! A ' TE

h5
(9.77)
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If the local truncation error resulting from a new stepsize, h1, were to equal TL, then

Ah51 ' TL (9.78)

So from Eq. (9.78)

h1 '
�

TL

A

�1=5
' h

�
TL

TE

�1=5
(9.79)

It is not correct to replace ' by D in a formula for h1, due to all the approximations
made. So, we can set

h1 D CH � h

�
TL

TE

�1=5
(9.80)

where CH is the “chicken factor”, some number less than 1. A value of CH D 0:9

can usually ensure that TE will be less than TL. The basic formulae from Fehlberg
(1968) follow,

dx

dt
D f .t; x/; x.t0/ D x0 (9.81)

and

f1 D f .t0; x0/ (9.82)

f2 D f .t0 C a2h; x0 C h.b21; f1// (9.83)

f3 D f .t0 C a3h; x0 C h.b31 f1 C b32 f2// (9.84)

f4 D f .t0 C a4h; x0 C h.b41 C b42 f2 C b43 f3// (9.85)

f5 D f .t0 C a5h; x0 C h.b51 f1 C b52 f2 C b53 f3 C b54 f4// (9.86)

f6 D f .t0 C a6h; x0 C h.b61 f1 C b62 f2 C b63 f3 C b64 f4 C b65 f5// (9.87)

x1 D x0 C h.c1 f1 C c2 f2 C c3 f3 C c4 f4 C c5 f5/ (9.88)

Ox1 D x0 C h. Oc1 f1 C Oc2 f2 C Oc3 f3 C Oc4 f4 C Oc5 f5 C Oc6 f6/ (9.89)

The constants are given in the Table 9.11. Then,

TE D Ox1 � x1

D h

�
� 1

150
f1 C 3

100
f3 � 16

75
f4 � 1

20
f5 C 6

25
f6

�
(9.90)
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Table 9.11 Constants for Runge-Kutta-Fehlberg integration

k ak l D 1 l D 2 l D 3 l D 4 l D 5 ck Ock

1 0 1/9 47/450

2 2/9 2/9 0 0

3 1/3 1/12 1/4 9/20 12/25

4 3/4 69/128 �243/128 135/64 16/45 32/225

5 1 �17/12 27/4 �27/5 16/15 1/12 1/30

6 5/6 65/432 �5/16 13/16 4/27 5/144 6/25

This method can be generalized to apply to a system of equations. In that case,
the greatest absolute value for a TE must be used to determine the step size (Danby
1988, pp. 296–298).

9.10 Accumulation of Errors in Numerical Integration

The error accumulated in an integration cannot be determined in general, but the
probable error to be expected after any number of steps can be estimated by the
theory of errors. The theory of elliptic motion permits the determination of the error
for the example in Sect. 9.8. The real coordinates and velocities at aphelion are
x D �2:4 AU; y D 0; Px D 0; Py D �0:5773503 AU/day. The time of aphelion
passage is t D 516:551259 days. Interpolating the table for this time, we have
x D 2:3999888;wkPx D C0:0000007; Px D C0:0000041; y D �0:0000047;wkPy D
�0:0993166, and Py D �0:5773516, where w; k appear in Eq. (9.55). The error in x
and y is greater than the error in Px and Py.

The theory of the accumulation of errors in numerical integration indicates that
after n steps, the probable error of a double integral is 0:1124 n3=2 in units of the
last decimal. This means in many examples, that half will have errors greater than
this and half smaller. In this case n D 52, so the probable error is 42, and both
cases have given larger errors. The above error expression permits one to decide
the number of decimals required before starting an integration, when the length and
required accuracy is known. If an asteroid is to be integrated for 10 years at a 10
day interval, that is 365 steps, or 183 each way, when the integration is started at
the middle of the arc. The probable error after 183 steps is about 280. If the largest
error to be tolerated is 0.1 s of arc, or 0.0000005 radians, then nine decimals are
necessary in the calculation.

The theory of the accumulation of errors is applicable to the errors of osculating
orbital elements (see Sect. 5.2.1) of an orbit determined by numerical integration.
While the mean error of the mean orbital longitude is proportional the number
of steps to the three halves power, the mean errors of the other five elements are
proportional to the square root of the number of steps. This is true if the elements
are determined directly by integration, or obtained from transforming rectangular
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coordinates and velocities. The perihelion can have the same size error as the orbital
longitude (Brouwer and Clemence 1961, pp. 158–159).

9.11 Numerical Integration of Orbits

Numerical integration is undoubtedly the best method for calculating the motion
of any body in the solar system for a few revolutions about its primary, with
full precision of observations. Analytic methods of general theories were preferred
until the availability of computers made numerical integration accessible and more
accurate. A general theory amounts to a large number of terms of a Fourier series,
or a Chebyshev series, which can be evaluated and summed for any particular time
to give the position of the body at that time. Both general theories and numerical
integration can be performed on computers with the integration being easier to
understand, program, and perform.

We will discuss the two most common methods of numerical integration of
orbits, Cowell’s method and Encke’s method. These methods are popular due to
the availability of computers and software to implement them.

Cowell’s method does not use the conic section as a first approximation of the
orbit explicitly. The equations of motion in rectangular coordinates are integrated
giving rectangular coordinates of the disturbed body. The process is like the example
in Sect. 9.8, except:

1. Three coordinates are necessary instead of two.
2. The attractions of the disturbing planets are added to those of the Sun.

Usually, the origin is at the primary, but this restriction is not necessary. The
center of mass of the system or any disturbing mass can be used. The motions of
all bodies exerting appreciable effects can be taken from previous computations, or
integrated simultaneously. Since the conic section is not used in the method, the
system need not be dominated by a single mass. So, the method could be applied
to the satellite of a binary star system, or to an artificial satellite going from one
planet to another in the solar system. The disadvantage of the method is that the
integrals contain many significant figures and they change rapidly with time. So, the
integration tables are slowly convergent, which compels the use of a small tabular
interval.

In Encke’s method, the coordinates are not determined directly, but the integra-
tion calculates the difference between the actual coordinates and an osculating orbit
coordinates, which is the position the body would have had, if it had continued to
move in the conic section corresponding to the orbital parameters at a particular
instant, called the epoch of osculation. The differences from the osculating orbit are
perturbations, and are zero at the epoch of osculation. The advantage of the method
is that the perturbations are small for times near the epoch; they only require a few
significant figures, which permits a larger tabular interval than Cowell’s method.
The disadvantage is that the perturbations increase to a large size with time, which
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requires orbit rectification. The rectification requires the coordinates and velocities
to be determined at a new epoch, and the integration restarted. This rectification
introduces an error. The difficulty could be avoided, if the choice of the first
approximation conic section more closely matched the true motion over a longer
period of time, than the osculating orbit does. Generally, there is no information to
determine such a first approximation. Another method of integration is the variation
of parameters, the equations of which will be discussed in Chap. 10. In this method,
the quantities obtained by the integration are the six osculating elements. They
change comparatively slowly, which means that a larger tabular interval can be used.
The disadvantages are that the differential equations are more complicated in form
than the equations in rectangular coordinates, and it is necessary at each step to
determine the rectangular coordinates to evaluate the perturbations. There are other
more complicated and more elegant methods, which have not seen much use due to
the disadvantages of complications.

9.11.1 Equations for Cowell’s Method

The equations of motion of two point-masses, ma and mb, under their mutual action
for the  component are

ma
Ra D k2mamb

b � a

r3
(9.91)

mb
Rb D k2mamb

a � b

r3
(9.92)

with similar equations for � and �, and r2 D .a � b/
2 C .�a � �b/

2 C .�a � �b/
2. If

we introduce additional point masses m1;m2;m3; : : : and denote any of these by mj,
the attractions of mj on ma and mb are given by summing all these attractions,

ma
Ra D k2mamb

b � a

r3
C
X

j

k2mamj
j � a

�3ja
(9.93)

mb
Rb D k2mamb

a � b

r3
C
X

j

k2mbmj
j � b

�3jb
(9.94)

and similar equations for � and �, where

�2ja D .a � j/
2 C .�a � �j/

2 C .�a � �j/
2 (9.95)

�2jb D .b � j/
2 C .�b � �j/

2 C .�b � �j/
2 (9.96)
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We take the origin of the coordinates at ma, which is a linear transformation

b � a D x; j � a D xj (9.97)

�b � �a D y; �j � �a D yj (9.98)

�b � �a D z; �j � �a D zj (9.99)

and let

r2j D x2j C y2j C z2j (9.100)

�2j D .xj � x/2 C .yj � y/2 C .zj � z/2 (9.101)

Then divide Eq. (9.93) by ma and Eq. (9.94) by mb, and subtract the first from the
second. Then the equation of motion of mb relative to ma is,

Rx D �k2.ma C mb/
x

r3
�
X

j

k2mj
xj

r3j
C
X

j

k2mj
xj � x

�3j
(9.102)

with similar equations for y and z.
Assume that ma is the unit of mass, and all the other masses are measured in this

unit. Then put ma D 1, and drop the subscript from mb; Eq. (9.102) is now

Rx D �k2.1C m/
x

r3
�
X

j

k2mj

 
xj � x

�3j
� xj

r3j

!
(9.103)

This, with similar equations for y and z, are Cowell’s method’s fundamental
equations. If ma represents the Sun, then x; y; z are the heliocentric coordinates
of the body to be integrated, and xj; yj; zj are the heliocentric coordinates of the
bodies affecting m. From the derivation of the equations, it should be evident that in
Eq. (9.103):

(a) The first term represents the action of the Sun on m;
(b) the first term in the parenthesis represents the action of mj on m (the direct term);
(c) and the second term in the parenthesis represents the action of mj on the Sun

(the indirect term).

The equations can be used for satellite motion, taking the origin at the primary and
one mj for the Sun. For an asteroid or comet, m is equal to zero, the mj are small
compared to unity, and the xj; yj; zj can be regarded as known. The solution may be
obtained by successive approximations. At each step of the integration, approximate
coordinates are obtained by extrapolation and used to calculate w2 Rx;w2 Ry;w2Rz, as
described earlier, except that the disturbing planets’ portions must be calculated
separately for each planet, and added to the portion contributed by the Sun.
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The body will not depart much from the elliptical orbit at the osculation epoch
over a few revolutions, and unless the body comes close to a major planet. In this
case, the planetary attractions may be calculated in advance, using the position of
the body in the osculating orbit instead of in its actual orbit. When the integration
extends over many revolutions, such an approximation is not satisfactory (Brouwer
and Clemence 1961, pp. 169–170).

9.11.2 Equations for Encke’s Method

Take the heliocentric rectangular coordinates, x0; y0; z0, of a point-mass, m, moving
under the attraction of the Sun alone. The equations of the orbit are

Rx0 D �k2.1C m/
x0
r30

(9.104)

Ry0 D �k2.1C m/
y0
r30

(9.105)

Rz0 D �k2.1C m/
z0
r30

(9.106)

where r20 D x20 C y20 C z20. Take ; �; � as increments of x0; y0; z0, caused by the
attraction of the planets. The actual coordinates, x; y; z, of m at any time are

x D x0 C ; y D y0 C �; z D z0 C � (9.107)

and the actual equations of motion are as in Eq. (9.103), with similar equations for
y and z. Subtracting Eq. (9.104) from Eq. (9.103) gives

Rx � Rx0 D R D k2.1C m/

�
x0
r30

� x

r3

�
C
X

j

k2mj

 
xj � x

�3j
� xj

r3j

!
(9.108)

with similar equations for R� and R�.
The perturbations ; �; � could be calculated by direct integration of Eq. (9.108).

From the laws of elliptic motion, x0=r30 could be calculated for every integration
step, and x=r3 determined at each step by extrapolating  and adding it to x0 to get x,
and so on. This procedure is not convenient in practice.  is a small quantity, x0=r30
is almost equal to x=r3, so these terms would have to be calculated to many more
significant figures than their differences require. Encke sought a transformation to
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avoid this difficulty. Taking the equation for R, knowing that R� and R� are similar, we
have

x0
r30

� x

r3
D 1

r30

�
x0 � r30

r3
x

�
D 1

r30

�
x �  � r30

r3
x

�

D 1

r30


�
1� r30

r3

�
x � 

�
(9.109)

But

r2 D x2 C y2 C z2

D .x0 C /2 C .y0 C �/2 C .z/ C �/2

D r20 C 2x0  C 2y0 �C 2z0 � C 2 C �2 C �2 (9.110)

and

r2

r20
D 1C 2

.x0 C 1
2
/ C .y0 C 1

2
�/�C .z0 C 1

2
�/�

r20
(9.111)

Put

q D .x0 C 1
2
/ C .y0 C 1

2
�/�C .z0 C 1

2
�/�

r20
(9.112)

Then

r2

r20
D 1C 2q (9.113)

r30
r3

D .1C 2q/�3=2 (9.114)

1 � r30
r3

D 1 � .1C 2q/�3=2 (9.115)

Assume ; �; � are so small compared with x0; y0; z0 that their squares may be
neglected, then

q D x0 C y0�C z0�

r20
(9.116)

which is easily calculated, while 1 � .1 C 2q/�3=2 is not. Tables for this function
could be calculated, but they would be extensive and inconvenient to interpolate. If
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q is small compared with unity, then an approximate value of 1 � .1C 2q/�3=2 can
be determined from the first few terms of the binomial expansion. Approximately,

1 � .1C 2q/�3=2 	 3q � 15

2
q2 (9.117)

Define a function, f (not to be confused with the previous uses of f ) as

f D 1 � .1C 2q/�3=2

q
(9.118)

When q is small, we can see from Eqs. (9.117) and (9.118) that f will be close to 3,
and, since f changes much less rapidly than q, a table of f as a function of q can be
interpolated. Through multiplication by w2, Eq. (9.108) becomes

w2 R D w2k2.1C m/
1

r30
. fqx � /C

X
j

w2k2mj

 
xj � x

�3j
� xj

r3j

!
(9.119)

w2 R� D w2k2.1C m/
1

r30
. fqy � �/C

X
j

w2k2mj

 
yj � y

�3j
� yj

r3j

!
(9.120)

w2 R� D w2k2.1C m/
1

r30
. fqz � �/C

X
j

w2k2mj

 
zj � z

�3j
� zj

r3j

!
(9.121)

These are Encke’s method equations to be integrated. The solution requires six
constants of integration, selected so that the coordinates and velocity components in
the undisturbed orbit, .x0; y0; z0; Px0; Py0; Pz0/, are the same as those in the actual orbit
at a selected time; so ; �; �; P; P�; P� are all zero at that time. The selected time is the
epoch of osculation, as mentioned before. Equations (9.119)–(9.121) are rigorous,
if q is calculated by Eq. (9.112). In practice, Eq. (9.116) will be used for starting the
integration. The perturbations, ; �; �, will gradually increase in size, and when their
squares become significant, Eq. (9.112) must be used.

Since x; y; z differ from x0; y0; z0 by the small quantities ; �; �, and since mj is
small, we may substitute x0; y0; z0 for x; y; z in Eqs. (9.119)–(9.121). The resulting
errors will be of the order of m2

j . This substitution permits the attractions to be
calculated in advance for a large number of steps. These perturbations are said to
be accurate to the first order of the disturbing forces. However, if the integration
covers a long time interval, these perturbations will become so large that the error
committed becomes appreciable, and then the rigorous formulae must be used.
This may be avoided by orbit rectification, mentioned earlier. For rectification at
a new time, the coordinates of the body of interest are obtained by calculating
accurate values of x0; y0; z0 and adding them to ; �; �; the velocity components are
obtained by adding w Px0;w Py0;w Pz0 to values of w P;w P�;w P�, which are derived from
; �; � by numerical differentiation. The values of a; e; n and the vectorial constants
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of the ellipse, corresponding to the new coordinates and velocities at the epoch
of osculation, are calculated, and the integration is restarted at the new epoch of
osculation. Usually, it is preferable to rectify the orbit rather than use the rigorous
formulae for the planetary attractions (Brouwer and Clemence 1961, pp. 176–178).

9.11.3 Comparison of Cowell’s and Encke’s Methods

1. Neither is clearly superior to the other.
2. Encke’s method permits larger tabular intervals, but each step requires more

calculations than Cowell’s method.
3. For comets, it is recommended to use Encke’s method, when the comet is near

the Sun, and Cowell’s method, when it is far from the Sun.
4. When close approaches occur, Encke’s perturbations increase rapidly in size and

it loses all advantages.
5. It is easy to switch from one to the other by calculating coordinates and velocities

at a new epoch of osculation.
6. Cowell’s method is certainly simpler, since no judgements are required; such as

the formula to be used for q, and when to rectify to a new epoch of osculation.
These problems are especially true when using a computer, where the decisions
must be programmed (Brouwer and Clemence 1961, pp. 185–186).

9.12 Equations with Origin at the Center of Mass

The central force equations of motion may be extended to any number of disturbing
point masses simply by

Rx D
X

j

k2mj
xj � x

�3j
(9.122)

Ry D
X

j

k2mj
yj � y

�3j
(9.123)

Rz D
X

j

k2mj
zj � z

�3j
(9.124)

where �2j D .xj � x/2 C .yj � y/2 C .zj � z/2, in which the origin of coordinates
is the whole system’s center of mass. These equations are simpler than those of
heliocentric motion, because they avoid terms for the action of the disturbing planets
on the Sun. The coordinates of the Sun and disturbing planets relative to the center of
mass of the solar system are now available, because they are needed for millisecond
pulsar observations reductions.
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There are cases where the use of the center of mass is an advantage. In fact,
the Heidelberg n-body program integrates with respect to the center of mass, and
separately integrates the position of the Sun. When the Sun is used as the origin and
a body is very distant from the Sun, the indirect term xj=r3j may become greater than
the direct term .xj � x/=�3j . For example, the action of Jupiter on Pluto, the ratio of
these two terms averages to about 402=52 or 64. So if the center of mass is used as
the origin, a longer tabular interval can be used than when the Sun is taken as the
origin. Reduction of observational data from millisecond pulsars requires reduction
to the center of mass of the solar system.

Separating the solar term from the others and denoting the barycentric coordi-
nates of the Sun by xs; ys; zs, Eqs. (9.122)–(9.124) for Rx become

Rx D k2
xs � x

�3s
C
X

j

k2mj
xj � x

�3j
(9.125)

and similar equations for Ry and Rz.
These are Cowell’s method equations referred to the barycenter. These require

the barycentric coordinates,xs; ys; zs; xj; yj; zj, rather than heliocentric coordinates.
For now, we denote the heliocentric coordinates by xjh; yjh; zjh, so

xj D 1

1C mj
xjh; xs D �

X
j

mj

1C mj
xjh (9.126)

with similar equations for the other coordinates. If the coordinates and velocity
components at the epoch of osculation have been obtained from heliocentric
elements, the following transformations are necessary before calculating the starting
values for an integration. The coordinates are

x D 1

1C m
xh �

X
j

mj

1C m
xjh (9.127)

with similar equations for y and z. The barycentric velocity components can be
obtained from

Px D 1

1C m
Pxh � d

dt

X
j

mj

1C mj
xjh (9.128)

with similar equations for Py and Pz. The second part of Eq. (9.128) may be calculated
by numerical differentiation or the velocity may be known. Upon completion of the
integration, the coordinates may be referred to the Sun by

1

1C m
xh D x C

X
j

mj

1C mj
xjh (9.129)
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with similar equations for yh and zh. For Encke’s method the equations referred to
the barycenter are

R D k2
1

r30
Œ fq.x � xs/ � 
C

X
j

k2mj
xj � x

�3j
(9.130)

and similar equations for R� and R�, where q and r30 are determined from

x0 D 1

1C m
x0h �

X
j

mj

1C mj
xjh (9.131)

and xj and xs derived from Eq. (9.126).

9.13 Integration with Augmented Mass of the Sun

When the disturbed body is very far from the Sun, then one or more of the �j is
nearly equal to �s. Then, in Eq. (9.128), we can denote such a �j by �p, and the
corresponding disturbing mass by mp. If mp is sufficiently small, then

k2
xs � x

�3s
C k2mp

xp � x

�3p
D k2.1C mp/

xs � x

�3p
(9.132)

to the same number of significant figures as are needed in the attractions. This can
be the case with the action of Mercury on an asteroid, or the four inner planets on
Pluto or Kuiper Belt objects. Instead of Eq. (9.128), we write

Rx D k2.1C mp/
xs � x

�3s
C
X

j

k2mj
xj � x

�3j
(9.133)

This is equivalent to assuming that the body moves in an elliptic orbit about
the center of mass of the Sun and mp. Rigorously, the coordinates of mp should be
included in Eqs. (9.126) and (9.127), but this is normally not done; the planet’s mass
is just added to the Sun’s mass.

The center of mass of Mercury and the Sun is about 0.000000007 AU from
the center of the Sun, and for most asteroid orbits such a small correction to the
disturbing body coordinates may be neglected. When an augmented mass of the
Sun is used for integration, that same augmented mass must be used in calculating
the integration starting values. The method of doing this depends on the method of
integration. For Cowell’s method and Encke’s method the constants of integration
come from the coordinates and velocities at the epoch of osculation; these are
not the same for the augmented mass as for the un-augmented mass. The only
change involves the relation between the mean motion, n, and the semimajor axis
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in applying Kepler’s third law. The term k2.1 C m C mp/ should be substituted for
k2.1C m/. It is not normal to give the value of a or n based on the augmented mass.
So when the values are given, unless there is a specific note to the contrary, the
elements can be assumed referred to the Sun only.

References

Brouwer, D., Clemence, G.M.: Methods of Celestial Mechanics. Academic Press, New York (1961)
Danby, J.: Fundamentals of Celestial Mechanics. The Macmillan Company, New York (1962)
Danby, J.: Fundamentals of Celestial Mechanics, 2nd edn. Willmann-Bell, Richmond (1988)
Fehlberg, E.: Classical fifth-, sixth-, seventh- and eighth-order Runge-Kutta formulas with stepsize

control. Tech. Rep. 287, NASA, Huntsville, Alabama (1968)
Herget, P.: The Computation of Orbits. University of Cincinnati, Cincinnati (1948)
Hildebrand, F.B.: Introduction to Numerical Analysis. McGraw-Hill, New York (1956)
Nautical Almanac Office: Interpolation and Allied Tables. H.M. Stationery Office, London (1956)



Chapter 10
Canonical Equations

10.1 Introduction

Now we want to look at a completely different approach to solving the equations of
motion, and a different type of variables. We must first establish our notation and
the equations of motion which underlie this approach. We again assume a relative
coordinate system with one body at the origin, P1. The coordinates of bodies Pj are

Xj D xj � x1; Yj D yj � y1; Zj D zj � z1 (10.1)

where the little letters represent coordinates with respect to some fixed reference
system, and the capital letters represent coordinates with respect to P1. Also, let
�1j be the distance between P1 and Pj. The equations of motion of Pj with respect
to P1 are

d2Xj

dt2
D �k2.m1 C mj/

Xj

�3
J1

C
nX

iD2;i¤j

k2mi

 
Xi � Xj

�3
ij

� Xi

�3
1i

!
; i; j D 2; 3; 4; : : : n (10.2)

with similar equations for Y and Z. By calculating the partial derivatives of the
function

Vj D k2.m1 C mj/

�j1
C

nX
iD2;i¤j

k2mi

�
1

�ij
� XiXj C YiYj C ZiZj

�3
1i

�
(10.3)
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1( 1) 2( 2)

3( 3)

Fig. 10.1 Coordinates and mass locations

Equations (10.2) become

d2Xj

dt2
D @Vj

@Xj
;

d2Yj

dt2
D @Vj

@Yj
;

d2Zj

dt2
D @Vj

@Zj
(10.4)

There are as many functions Vj as there are bodies minus one.
Let us now review various notations and coordinate systems. Denote the coordi-

nates of P2 with respect to P1 by x; y; z. Denote the coordinates of P3 with respect to
the center of gravity G of P1 and P2 (see Fig. 10.1) by x0; y0; z0. The two sets of axes
are parallel.
Then

x0 D X3 � m2

m1 C m2

X2 (10.5)

y0 D Y3 � m2

m1 C m2

Y2 (10.6)

z0 D Z3 � m2

m1 C m2

Z2 (10.7)

and

�2
13 D

X�
x0 C m2

m1 C m2

x

�2
(10.8)

�2
23 D

X�
x0 � m1

m1 C m2

x

�2
(10.9)

The equations of motion of P2 relative to P1 are then

d2x

dt2
D �k2.m1 C m2/x

�3
12

C k2m3

"
x0 � m1

m1Cm2
x

�3
23

� x0 C m2
m1Cm2

x

�3
13

#
(10.10)
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and analogous equations for y and z. There are similar equations in x0; y0; z0, from
those in X3;Y3;Z3,

d2x0

dt2
C m2

m1 C m2

d2x

dt2
D �k2.m1 C m3/.x0 C m2

m1Cm2
x/

�3
13

(10.11)

� k2m2

"
x0 � m1

m1Cm2
x

�3
23

C x

�3
12

#
(10.12)

and similarly for y0 and z0. Subtracting Eqs. (10.11) and (10.10) term by term,
d2x=dt2 is eliminated from Eq. (10.11). If we put

V D k2m1m2

�12

C k2m1m3

�13

C k2m2m3

�23
(10.13)

the three-body problem equations become

m1m2

m1 C m2

d2x

dt2
D @V

@x
;
.m1 C m2/m3

m1 C m2 C m3

d2x0

dt2
D @V

@x0 (10.14)

and similar equations for y; z and y0; z0 (Kovalevsky 1963, pp. 20–22).

10.2 Canonical Form of the Equations

The system of equations is

mj
d2xj

dt2
D @V

@xj
; j D 1; 2; : : : ; n (10.15)

We introduce n new variables yj D mj.dxj=dt/, where yj is not the y coordinate, and
putting

T D 1

2

nX
jD1

y2j
mj

(10.16)

Then

@T

@xj
D 0;

@T

@yj
D yj

mj
;
@V

@yj
D 0 (10.17)



232 10 Canonical Equations

Equation (10.15) can be written as a system of linear equations of order 2n,

dxj

dt
D @F

@yj
;

dyj

dt
D �@F

@xj
; j D 1; 2; : : : ; n (10.18)

with F D T � V .
This is a canonical form of the equations of motion. The common function F

is called the Hamiltonian, or characteristic function, and xj and yj are conjugate
variables. Problems of celestial and quantum mechanics use these equations. The
function F may, or may not, be a function of time. In the three-body case, the
canonical system is of sixth order; from the positions of P3, F is a function of time
(Kovalevsky 1963, pp. 22–23).

10.3 Eliminating the Time Dependency

In using canonical systems, eliminating the explicit presence of t in F is frequently
desirable. So with 2n canonical equations

dqj

dt
D @F

@pj
.qi; pi; t/;

dpj

dt
D � @F

@qj
.qi; pi; t/; 1 � i � n; 1 � j � n (10.19)

we have that @F=@t ¤ 0 if F explicitly depends on t. So two new variables, qnC1
and pnC1, are introduced. The explicit variable t in F is replaced by qnC1. pnC1 is
the variable conjugate to qnC1, and t remains the independent variable. pnC1 is not
present in the Hamiltonian F, but a function of pn�1 could be added without affecting
Eqs. (10.19). The new system with this function is

dqj

dt
D @F�

@pj
.qi; pi; qnC1; pnC1/;

dpj

dt
D �@F�

@qj
.qi; pi; qnC1; pnC1/ (10.20)

with j D 1; 2; : : : ; n; n C 1, and the solution for qnC1 D t. We take F� D F C pnC1.
The last two equations become

dqnC1
dt

D @F�

@pnC1
D 1 (10.21)

dpnC1
dt

D � @F�

@qnC1
D �

�
@F�
@t

�
tDqnC1

(10.22)

The initial system has been reduced to a more general canonical system of order
2n C 2, and includes the solution of the first system. The characteristic function F
does not contain t (Kovalevsky 1963, pp. 23–24).
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10.4 Integral of a System of Canonical Equations

Let us take a system of 2n canonical equations, whose characteristic function does
not depend on t,

dqj

dt
D @F.qi; pi/

@pj
;

dpj

dt
D �@F.qi; pi/

@qj
; 1 � i � n; 1 � j � n (10.23)

Since F is not an explicit function of t, its total derivative is

dF

dt
D

nX
jD1

�
@F

@qj

dqj

dt
C @F

@pj

dpj

dt

�
(10.24)

We substitute for the 2n functions, qj and pj, from Eqs. (10.23), which are a solution
of the system; then

dF

dt
D

nX
jD1

�
@F

@qj

@F

@pj
� @F

@pj

@F

@qj

�
D 0 (10.25)

Integrating this equation, the equality F.qi; pi/ D C is satisfied for any solution
qi.t/; pi.t/, and it is an integral of Eqs. (10.23). The partial derivatives of F are also
independent of time; t only occurs as the differential dt, and by choosing qn as a new
independent variable, we write the system (10.23) in the form

dqj

dqn
D @F=@pj

@F=@pn
; 1 � j � n � 1 (10.26)

dpj

dpn
D � @F=@qj

@F=@qn
; 1 � j � n (10.27)

This system is of order 2n � 1, with F D C as its integral. If we have a function of
qn as a solution of the system, then we obtain t from the integration

t � t0 D
Z

dqn=.@F=@pn/ (10.28)

since the right-hand side is a function of qn alone. The result is a canonical system
of order 2n � 2, with a Hamiltonian dependent on an independent variable and an
integration. This process on a 2n C 2 order system, with a characteristic function
F�, produces F� D C as an integral, and Eq. (10.28) reduces to @F�=@pnC1 D 1.
Now, the integral F� D C is a function of pnC1, an additional variable. In celestial
mechanics, usually the elimination of t from a characteristic function is sought
(Kovalevsky 1963, pp. 24–25).
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10.5 Canonical Transformation of Variables

In celestial mechanics and astrodynamics, a frequent method of solving equations
of motion is by transformation of variables. With equations in canonical form, it is
very effective. The variables pi; qi; .1 � i � n/ are transformed into Pi;Qi; .1 �
i � n/, resulting in simpler equations. This is a canonical transformation, if
the new equations are canonical. This process can be continued as long as such
transformations can be found to reach an easily integrated system of equations.

We now seek the necessary and sufficient conditions under which a transforma-
tion of variables is canonical.

10.5.1 Necessary Condition

Consider the differential system (10.23), rewritten here for convenience,

dqj

dt
D @F.qi; pi/

@pj
;

dpj

dt
D �@F.qi; pi/

@qj
; 1 � i; j � n (10.29)

where F does not depend explicitly on t, and let Pj;Qj; 1 � j � N be 2N new
variables, which are canonical. Consider

d‚ D
X

j

pjdqj � Fdt (10.30)

We have dpj=dt D �@F=@qj for all values of j and pj depends only on t, since it is a
solution; we can write

@pj

@t
D � @F

@qj
(10.31)

A necessary and sufficient condition for
P

Xidxi to be a total differential is that the
quantities .@Xi=@xk � @Xk=@xi/ are zero. Applying this condition to the right-hand
side of Eq. (10.30), and remembering that only F depends on the qj, and pj depends
on t alone, we obtain (10.31)

@pj

@t
C @F

@qj
D 0 (10.32)

The quantity
P

j pjdqj � Fdt is a total differential. Applying the same reasoning to
the new canonical system

dQj

dt
D @F�.Pi;Qi/

@Pj
;

dPj

dt
D �@F�.Pi;Qi/

@Qj
(10.33)



10.5 Canonical Transformation of Variables 235

The new Hamiltonian F� is not necessarily identical with F.
P

PjdQj � F�dt D
d‚�, is a total differential. Subtracting term by term, a necessary condition for the
transformation of the variables to be canonical is

X
j

PjdQj �
X

j

pjdqj D d.‚� �‚/C .F� � F/dt (10.34)

Putting K D F� � F, this becomes

X
j

PjdQj �
X

j

pjdqj � Kdt D dW (10.35)

where K is a function of the variables and dW is a total differential.

10.5.2 Sufficient Condition

We shall show that condition (10.35) is sufficient. Since the initial system is
canonical,

X
j

pjdqj � Fdt D d‚ (10.36)

Substituting into Eq. (10.35) we obtain

X
j

PjdQj � .F C K/dt D d.W C‚/ (10.37)

The right-hand side is a total differential, so the left-hand side is one. The condition
for this is

@Pj

@t
D �@.F C K/

@Qj
(10.38)

Since we suppose that Pj is a variable, it depends only on t, which gives

dPj

dt
D �@.F C K/

@Qj
(10.39)

We also know that the total differential of
P

j PjQj is

d

0
@X

j

PjQj

1
A D

X
j

PjdQj C
X

j

QjdPj (10.40)
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Equation (10.37) can be written

d

0
@X

j

PjQj

1
A �

X
j

QjdPj � .F C K/dt D d.W C‚/ (10.41)

or

X
j

QjdPj C .F C K/dt D d

0
@X

j

PjQj � W �‚

1
A (10.42)

The left-hand side must be a total differential. This implies

dQj

dt
D @.F C K/

@Pj
(10.43)

Equations (10.38) and (10.43) show that the system of equations in Pj and Qj, with
a Hamiltonian .F C K/, is canonical. So we have shown that the condition

X
j

PjdQj �
X

j

pjdqj � Kdt D dW (10.44)

is a necessary and sufficient condition for the change of variables from pj; qj to Pj;Qj

to be canonical. The new characteristic function is .FCK/, regardless of the explicit
presence of t in the Hamiltonian.

The transformation .pi; qi/ ! .Pi;Qi/ of Eq. (10.44) is called a contact
transformation, which is important in the theory of partial differential equations
(Kovalevsky 1963, pp. 25–27).

10.6 Examples of Canonical Transformations

10.6.1 Change of Variables by Means of a Generating
Function

Consider a completely general set of canonical equations

dqi

dt
D @F

@pi
;

dpi

dt
D � @F

@qi
; 1 � i � n (10.45)

and a change of variables .qj; pj/ ! .Qj;Pj/. We have an arbitrary function S of 2n
variables, called a generating function and written as a function of the new variables
Qj and the old variables pj; S.Qj; pj/; 1 � j � n. The change of variables is defined
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by 2n implicit equations

qj D @S

@pj
; Pj D @S

@Qj
(10.46)

For any S, the change of variables is canonical and does not change the
characteristic function. We evaluate the quantity

E D
X

j

.PjdQj � pjdqj/ (10.47)

Differentiation of S.Qi; pi/ gives the identity

dS D
X

j

@S

@Qj
dQj C

X
j

@S

@pj
dpj (10.48)

From the definitions of Pj and qj in Eq. (10.46)

dS D
X

j

PjdQj C
X

qjdpj (10.49)

Then

E D dS �
X

j

qjdpj �
X

j

pjdqj D d

0
@S �

X
j

pjqj

1
A (10.50)

This is a total differential. Condition (10.35) is satisfied by K D 0 (the invariance
of the Hamiltonian) and W D S �P

j pjqj (Kovalevsky 1963, pp. 27–28).

10.6.2 Conjugate Variables to Qj

Consider a system with canonical variables xj and yj. We wish to make a canonical
transformation, which leaves the Hamiltonian unchanged and such that the qj are
given functions of the xj. The relation (10.35) gives

X
j

yjdxj �
X

j

pjdqj D dW (10.51)
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Since the xj are functions of the qj,

dxj D
X

i

@xj

@qi
dqi; i; j D 1; 2; : : : :n (10.52)

If we put dW D 0, Eq. (10.51) is identically satisfied, if

pi D
X

j

yj
@xj

@qi
; i; j D 1; 2; : : : :n (10.53)

If T has the previous form with respect to the xj, from Eq. (10.52)

T D 1

2

X
j

mj

�
dxj

dt

�2
D 1

2

X
j

mj

 X
i

@xj

@qi

dqi

dt

!2
(10.54)

with q0
i D .dqi=dt/,

@T

@q0
i

D
X

j

mj
@xj

@qi

dxj

dt
D
X

j

yj
@xj

@qi
(10.55)

This is from the definition of yj given after Eq. (10.15), i.e. yj D mj.dxj=dt/. Then,
from Eqs. (10.53) and (10.55), we have

pi D @T

@q0
i

(10.56)

where T is a function of qi and q0
i (Kovalevsky 1963, pp. 28–29).

10.7 Jacobi’s Theorem

We want to establish a theorem to define an important system of canonical variables
for the two-body problem. We want a canonical transformation that makes the new
Hamiltonian zero. For the canonical system

dqj

dt
D @F

@pj
;

dpj

dt
D � @F

@qj
; 1 � j � n (10.57)

we make the canonical transformation .pj; qj/ ! .Pj;Qj/ such that

X
j

PjdQj �
X

j

pjdqj C Fdt D �dW (10.58)
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We write �dW to simplify future notation. W is a function of t, since F is nonzero.
We equate term by term the coefficients of the .n C 1/ differentials,

Pj D �@W

@Qj
; pj D @W

@qj
; F.qj; pj; t/ D �@W

@t
(10.59)

Replacing pj by @W=@qj in the last equation, we obtain Jacobi’s equation

F

�
qj;
@W

@qj
; t

�
C @W

@t
D 0 (10.60)

If the change in variables has been made, the new Hamiltonian is F �F D 0. The
equations become

dPj

dt
D 0;

dQj

dt
D 0 (10.61)

or Pj D bj;Qj D aj, where aj and bj are constants. If we can find this change in
variables, the problem is thus solved. If we have a solution of Eq. (10.60), which
depends on n linearly independent arbitrary constants aj, the n variables qj, and t,
then W.qj; aj; t/ D 0.

The canonical transformation is such that the numbers aj are solutions to the new
variables Qj. Equations (10.59) define the conjugate variables Pj.

Pj D bj D �@W.qj; aj; t/

@aj
(10.62)

The constant values bj are the solution to Pj. The n relations (10.62) determine
n variables qj, which are functions of 2n integration constants aj and bj, and t; this
requires each qj to be in each of the n equations. This condition prevents one aj

as an additive constant, so W cannot be of the form W.qj; aj; : : : ; an�1; t/ C an.
We substitute the values of qj in the second of the series of Eqs. (10.59), pj D
@W.qj; aj; t/=@qj, obtaining the n variables pj as a function of aj; bj; t. Jacobi’s
theorem can be summarized as follows:
To integrate a system of 2n canonical equations

dqj

dt
D @F

@pj
;

dpj

dt
D � @F

@qj
(10.63)

find a complete solution of the Jacobi equation

F

�
qj;
@W

@qj
; t

�
C @W

@t
D 0 (10.64)
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This solution depends on n linearly independent arbitrary constants aj. Then solve
for qj; pj in the system of equations

bj D �@W.qj; aj; t/

@aj
; pj D @W.qj; aj; t/

@qj
(10.65)

where the n quantities bj are the missing n integration constants.
We can introduce one of the integration constants, say an, into Jacobi’s equation

by writing the equation as

F

�
qj;
@W

@qj
; t

�
C @W

@t
D an (10.66)

This is adding andt to both sides of Eq. (10.58), which does not change the condition,
except that the Hamiltonian is no longer zero; it is equal to an, i.e. Qn (Kovalevsky
1963, pp. 29–30).

10.8 Canonical Equations for the Two-Body Problem

Jacobi’s theorem can be applied to the elliptical case of the two-body problem. The
orbital elements for a system of canonical conjugate variables can be shown. After
division by mj in Eqs. (10.17), the equations of motion of one of the bodies are

dxj

dt
D @F

@yj
;

dyj

dt
D �@F

@xj
; j D 1; 2; 3 (10.67)

where x1; x2; x3 are the Cartesian coordinates of the body and

F D T � V D 1

2
.y21 C y22 C y23/ � �

r
(10.68)

retaining only the first term of V . From Fig. 10.2, the equations in spherical
coordinates are

x D r cos' cos �; y D r cos' sin �; z D r sin' (10.69)

The Hamiltonian F in these coordinates is

�
dx

dt

�2
C
�

dy

dt

�2
C
�

dz

dt

�2
D
�

dr

dt

�2
Cr2

�
d'

dt

�2
Cr2 cos2 '

�
d�

dt

�2
(10.70)
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Fig. 10.2 Spherical
coordinates

φ

Take the variables

q1 D r; q2 D '; q3 D � (10.71)

and let q0
1; q

0
2; q

0
3 be their derivatives dr=dt; d'=dt, and d�=dt. In this notation, from

T D 1
2

Pn
jD1

y2j
mj

T D 1

2
q02
1 C 1

2
q21q

02
2 C 1

2
q21q

02
3 cos2 q2 (10.72)

According to Eq. (10.56), the variables conjugate to qi are

p1 D @T

@q0
1

D q0
1 (10.73)

p2 D @T

@q0
2

D q21q
0
2 (10.74)

p3 D @T

@q0
3

D q21q
0
3 cos2 q2 (10.75)

In these new variables, the characteristic function F D T � V is

F D 1

2
p21 C 1

2q21
p22 C 1

2q21 cos2 q2
p23 � �

q1
(10.76)

and the equations are

dqi

dt
D @F

@pi
;

dpi

dt
D � @F

@qi
; i D 1; 2; 3 (10.77)

(Kovalevsky 1963, pp. 31–32).
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10.9 Application of Jacobi’s Theorem to the Two-body
Problem

From Eq. (10.76), the characteristic function, F, does not depend on t, so F D h is
an integral of the system of equations, and h is a constant. This integral is the kinetic
energy integral. F can be replaced everywhere by F � h. We can substitute F � h
for F in Jacobi’s equation, thus introducing an arbitrary constant. Jacobi’s equation
is then

1

2

�
@W

@q1

�2
C 1

2q21

�
@W

@q2

�2
C 1

2q21 cos2 q2

�
@W

@q3

�2
� �

q1
� h D 0 (10.78)

We want a solution depending on three arbitrary constants, not a complete solution.
Since the derivatives are separable, we want a solution W, whose variables are

separable. We seek W in the form

W D W1.q1/C W2.q2/C W3.q3/ (10.79)

Jacobi’s equation is then

1

2

�
@W1

@q1

�2
C 1

2q21

�
@W2

@q2

�2
C 1

2q21 cos2 q2

�
@W3

@q3

�2
� �

q1
� h D 0 (10.80)

Since the three bracketed quantities are independent, the equation is satisfied by the
three equations

dW3

dq3
D a3 (10.81)

1

2

�
dW2

dq2

�2
C a23
2 cos2 q2

D a22
2

(10.82)

1

2

�
dW1

dq1

�2
C a22
2q21

� �

q1
� h D 0 (10.83)

Direct substitution makes the left-hand side of Jacobi’s equation zero. From
Eq. (10.79) we have

W D
Z �

2h C 2�

q1
� a22

q21

�1=2
dq1 C

Z �
a22 � a23

cos2 q2

�1=2
dq2

C
Z

a3dq3 (10.84)
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which is a solution of Eq. (10.78) up to an additive constant from the indefinite
integrals. There are three arbitrary constants a3; a2, and h � a1. The signs of the
square root are not required at this stage (Kovalevsky 1963, pp. 31–32).

10.9.1 Meaning of the Constants a

The integration constants, a1; a2; a3, appearing in W, are the values of the new
variables Q1;Q2;Q3 of a system of canonical equations equivalent to the initial
system, whose characteristic function is zero. The solution is of the form

Q1 D a1; Q2 D a2; Q3 D a3 (10.85)

What is the meaning of these three canonical variables in elliptic motion? a1 is the
energy constant, h D ��=.2a/, where a is the semimajor axis.

The basic equation for a canonical transformation is

X
i

PidQi �
X

i

pidqi C Fdt D �dW (10.86)

From Eq. (10.84), W depends on q3 only through
R

a3dq3 D a3q3. The only term,
dq3, in dW is a3dq3. The terms in dq3 from Eq. (10.86) are �p3 D �a3, or

a3 D q21 cos2 q2q
0
3 D r2 cos2 '

d�

dt
(10.87)

from Eqs. (10.71) and (10.73). This is the z component of the angular momentum.
The magnitude of the angular momentum is

C D na2
p
1 � e2 D

p
�a.1 � e2/ (10.88)

Its z component is
p
�a.1� e2/ cos i and so

a3 D Q3 D
p
�a.1 � e2/ cos i (10.89)

We can identify �p2 with the coefficient of dq2 in the total differential of dW. Only
q2 and dq2 appear in dW2; consequently,

� p2 D �
s

a22 � a23
cos2 q2

D �
s

a22 � a23
cos2 '

(10.90)
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Replacing a3 by r2 cos2 '.d�=dt/, we have

p2 D
s

a22 � r4
�

d�

dt

�2
cos2 ' (10.91)

Then, from Eqs. (10.71) and (10.73)

p2 D q21q
0
2 D r2

d'

dt
(10.92)

Combining these two equations,

a22 D r4
"�

d'

dt

�2
C
�

d�

dt

�2
cos2 '

#
(10.93)

This is the square of the angular momentum magnitude. So

Q2 D a2 D
p
�a.1 � e2/ (10.94)

(Kovalevsky 1963, pp. 33–34).

10.9.2 Variables Conjugate to Qi

When W is given by Eq. (10.84), the variables Pj take the constant values given by
bj D �@W=@aj, according to Jacobi’s theorem. This W is defined up to an arbitrary
constant and the sign of the integrals. We take a different system of variables Pj,

W D
Z q1.t/

q1.t0/
"1

�
2a1 C 2�

q1
� a22

q21

�1=2
dq1

C
Z '

0

"2

�
a22 � a23

cos2 q2

�1=2
dq2 C

Z �

0

a3dq3 (10.95)

where t0 is the instant of periapsis passage; "1 D C1; if q1 D r is increasing,
"1 D �1. The derivative of the function of the first integral is continuous and is
zero at passages through apoapsis and periapsis. The quantity in the second integral
has a continuous derivative. "2 is C1, when at the discontinuity q2 D ' D i and '
is increasing, or when the argument of latitude, u D ! C f , is between �	=2 and
C	=2, so that cos u > 0. "2 D �1, if cos u < 0 (recall Figs. 5.1, 5.7, 5.8).
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The variable conjugate to Q1 is

P1 D �@W

@a1
D
Z q1.t/

q1.t0/
"1

�
2a1 C 2�

q1
� a22

q21

��1=2
dq1 (10.96)

q1 is r; a1 D h D ��=2a, and a22 D �a.1 � e2/. Multiplying above and below by
r.> 0/, we have

P1 D �"1
Z r.t/

r.t0/

rdrp�.�=a/r2 C 2�r � �a.1 � e2/
(10.97)

For the integration, these quantities are given in terms of the eccentric anomaly,
E, for which r D a.1 � e cos E/; dr D ae sin EdE. Let E be the eccentric anomaly
at t. It is zero at t0. Let J D 1 � e cos E, then

P1 D �
Z E

0

"1a.1� e cos E/ae sin E dEp
�aŒ�J2 C 2J � 1C e2
1=2

D �"1
Z E

0

a2.1 � e cos E/e sin E dEp
�a ej sin Ej (10.98a)

From the definition of "1, we have that

"1
sin E

j sin Ej D C1 (10.99)

From Eq. (10.96)

�
2a1 C 2�

q1
� 2a22

q21

�1=2
D j sin Ej

r
(10.100)

is zero on passage through perifocus. From Eqs. (10.98) that

P1 D �
Z E

0

a
p

ap
�
.1 � e cos E/dE

D �1
n
.E � e sin E/ D �.t � t0/ (10.101)

from Kepler’s third law (see Sect. 4.6). The final Hamiltonian is h D Q1, as per
Jacobi’s theorem. The equation giving P1 is

dP1
dt

D � @F

@Q1

D �1 (10.102)

which integrates to give P1 D �t C b1.
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The constant of integration b1 is t0, the instant of passage through the perihelion.
Similar calculations give P3 D �� and P2 D �!, where we must take

precautions in defining the signs and the end points of integration; � and ! are,
respectively, the argument of the ascending node and the argument of periapsis (see
Sect. 5.2) (Kovalevsky 1963, pp. 34–36).

10.9.3 Application to the General Problem

We have established a new system of conjugate variables,

Q1 D � �

2a
; Q2 D

p
�a.1 � e2/; Q3 D

p
�a.1� e2/ cos i

P1 D �t C t0; P2 D �!; P3 D �� (10.103)

whose characteristic function for the two-body problem reduces to Q1 D ��=2a.
We could make this Hamiltonian zero by a suitable canonical transformation, but
such a transformation is not desirable for the rest of the calculation (because we
want the Hamiltonian to be able to provide the perturbations for the computations).

Consider the three-body problem and the equations of one of the bodies, where
the equations can be extended to the other bodies. The system of equations was

dxj

dt
D @F

@yj
;

dyj

dt
D �@F

@xj
; j D 1; 2; 3 (10.104)

F is in the form of F D T � V , and, as we have seen, V contains the term �=r. Put
V D �=r C R, where R is the disturbing function. In the Hamiltonian F D .T �
�=r/� R, R accounts for perturbations in two-body problem motion. F� D T ��=r
is the Hamiltonian of the two-body problem, just discussed. Equations (10.104)
become

dxj

dt
D @.F� � R/

@yj
;

dyj

dt
D �@.F

� � R/

@xj
; j D 1; 2; 3 (10.105)

Let us now transform the variables of this system to the new variables,
P1;P2;P3;Q1;Q2;Q3, as defined in Eq. (10.103). System (10.104) is not the two-
body problem, and its solution’s new variables will no longer be constants. We
called these variables osculating elements in Sect. 5.2.1. The osculating elements
are defined in the set of axes x1; x2; x3 relative to the body in question. The change
in variables is such that the new Hamiltonian F1 is

F1 D F �
�

F� C �

2a

�
D �R � �

2a
(10.106)
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Consequently, the system (10.104) is equivalent to the system

dQj

dt
D @.�R � .�=2a//

@Pj
(10.107)

dPj

dt
D �@.�R � .�=2a//

@Qj
; j D 1; 2; 3 (10.108)

We can improve the appearance of this system by changing all the signs of the
Hamiltonian, and putting P0

j D �Pj

P0
1 D t � t0; P0

2 D !; P0
3 D � (10.109)

We have the following system:

dQ0
j

dt
D @.R C .�=2a//

@P0
j

(10.110)

dP0
j

dt
D �@.R C .�=2a//

@Q0
j

; j D 1; 2; 3 (10.111)

(Kovalevsky 1963, pp. 36–37).

10.10 The Delaunay Variables

The variables P0
2 and P0

3 now represent two classical orbital elements. We can
attempt to transform P0

1 such that it represents the mean anomaly. We denote
by L;G;H; l; g; h, six new canonical variables, which would be obtained after
this transformation. We seek a transformation such that the characteristic function
remains unchanged, as well as P0

2 and P0
3, which must be equal to g and h,

respectively. The condition for this transformation to be canonical and for the
Hamiltonian to remain unchanged is

l dL C gdG C hdH � P0
1dQ1 � P0

2dQ2 � P0
3dQ0

3 D dW (10.112)

We want

P0
2 D g; P0

3 D h; l D n.t � t0/ D nP0
1 D p

�a�3=2P0
1 (10.113)

These conditions are fulfilled if

Q2 D G; Q3 D H; ldL � P0
1dQ1 D dW (10.114)
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and

P0
1

�p
� a�3=2dL � �da

2a2

�
D dW (10.115)

A possible solution is dW D 0, then

p
�da

2
p

a
D dL (10.116)

so that L D p
�a. If we put again

� D �

2a
C R D �2

2L2
C R (10.117)

the system of equations given by Eq. (10.104) is equivalent to the system

dL

dt
D @�

@l
;

dG

dt
D @�

@g
;

dh

dt
D @�

@h
(10.118a)

dl

dt
D �@�

@L
;

dg

dt
D �@�

@G
;

dh

dt
D � @�

@H
(10.118b)

� is expressed as a function of the variables L;G;H; l; g; h, whose relation to the

classical elements is

L D p
�a; G D

p
�a.1� e2/; H D

p
�a.1 � e2/ cos i (10.119a)

l D M D n.t � t0/; g D !; h D � (10.119b)

These canonical variables are known as the Delaunay variables. They were used by

Delaunay for his theory of the Moon, and continue in use for perturbation problems
(Kovalevsky 1963, pp. 38–39).

The same reasoning of the osculating classical elements mentioned in Sect. 5.2.1
can be applied to Delaunay’s variables. When the perturbations disappear at an
instant t, � becomes �=2a .R D 0/ and the solution of the equations are
L;G;H; g; h (constants) and l D n.t � t0/ a variable. Thus, we see that in the
general case Delaunay’s variables are also osculating values in the sense mentioned
in Sect. 5.2.1. They are connected with the classical osculating elements by
Eqs. (10.119).
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10.11 The Lagrange Equations

The osculating elements are important as variables both in celestial mechanics
and in astrodynamics, so we shall establish the differential equations equivalent
to the systems already given, but where the variables are classical osculating
elements. Starting with the Delaunay equations, Eqs. (10.118), with the six variables
L;G;H; l; g; h, we effect a change of variables defined by the relations (10.119),
written in the differential form

dL D
p
�

2
p

a
da (10.120a)

dG D
p
�

p
1 � e2

2
p

a
da �

p
�aep
1 � e2

de (10.120b)

dH D
p
�

p
1 � e2 cos i

2
p

a
da �

p
�ae cos ip
1 � e2

de

�
p
�a.1 � e2/ sin idi (10.120c)

dl D dM (10.120d)

dg D d! (10.120e)

dh D d� (10.120f)

From Eqs. (10.120), noting that � D �=2a C R, we obtain

da

dt
D 2

p
ap
�

dL

dt
D 2

p
a

na3=2
@�

@l
D 2

na

@R

@M
(10.121a)

de

dt
D �

p
1 � e2p
�ae

dG

dt
D

p
�.1 � e2/

2
p

a
p
�ae

da

dt

D 1
p
1 � e2

na2e

@R

@!
C .1 � e2/

na2e

@R

@M
(10.121b)

di

dt
D �1

p
�a

p
1 � e2 sin i

dH

dt
C

p
�

p
1� e2 cos i

2
p

a
p
�a

p
1 � e2 sin i

da

dt

�
p
�ae cos ip

1 � e2
p
�a

p
1 � e2 sin i

de

dt

D �1
na2

p
1 � e2 sin i

@R

@�
C cos i

na2
p
1 � e2 sin i

@R

@!
(10.121c)
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Rearrangement of Eqs. (10.119) gives

a D L2

�
;

p
1 � e2 D G

L
(10.122)

where e D p
1 � .G2=L2/ and cos i D H=G. The last three differential equations

of (10.120) give

dh

dt
D d�

dt
D � @R

@H
D �@R

@i

@i

@H
D 1

na2
p
1 � e2 sin i

@R

@i
(10.123a)

dg

dt
D d!

dt
D � @R

@G
D �@R

@e

@e

@G
� @R

@i

@i

@G

D @R

@e

��G

L2

�
1p

1 � .G2=L2/
� @R

@i

� �1
sin i

���H

G2

�

D
p
1 � e2

na2e

@R

@e
� cos i

na2
p
1 � e2 sin i

@R

@i
(10.123b)

dl

dt
D dM

dt
D � @

@L

� �
2a

�
� @R

@L

D � @

@L

�
�2

2L2

�
� @R

@a

@a

@L
� @R

@e

@e

@L

D �2

L3
� @R

@a

�
2L

�

�
� @R

@e

�
G2

L3

�
1p

1 � .G2=L2/

D n � 2

na

@R

@a
� 1 � e2

na2 e

@R

@e
(10.123c)

This system of equations is equivalent to the Delaunay system, and constitutes
the Lagrange equations, also commonly referred to as the Lagrange planetary
equations (LPE):

da

dt
D 2

na

@R

@M
(10.124a)

de

dt
D �p

1 � e2

na2 e

@R

@!
C 1 � e2

na2 e

@R

@M
(10.124b)

di

dt
D �1

na2
p
1 � e2 sin i

@R

@�
C cos i

na2
p
1 � e2 sin i

@R

@!
(10.124c)

d�

dt
D 1

na2
p
1 � e2 sin i

@R

@i
(10.124d)
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d!

dt
D

p
1 � e2

na2e

@R

@e
� cos i

na2
p
1 � e2 sin i

@R

@i
(10.124e)

dM

dt
D n � 2

na

@R

@a
� 1 � e2

na2e

@R

@e
(10.124f)

Note that in these equations, n represents
p
�=a3=2. It is no longer a constant, since a

is no longer a constant. In Eq. (10.124f), the n term will be obtained, after integration
of the first equation, with the same approximation to the small quantities in R as
the other terms. A double integration of the semimajor axis equation is necessary
to obtain the mean anomaly. A double integration is always required in celestial
mechanics and astrodynamics to solve the problem of a perturbed trajectory. This is
an important consequence, when long-period terms and numerical integrations are
involved (Kovalevsky 1963, pp. 40–42).

10.12 Small Eccentricity and Small Inclination

Since e and i appear in denominators of some equations, when they are zero the
Lagrange formulae are not valid. These singularities are related to the definition
of the classical elements discussed in Sect. 5.2. Similarly, when using Delaunay
canonical equations, small e and i lead to problems. This is due to the choice of
variables.

10.12.1 Small Eccentricity

If there is an elliptical orbit with a small eccentricity, which is subject to pertur-
bations, these perturbations can shorten the semimajor axis, a, and increase the
semiminor axis, hence decreasing the eccentricity. Then, the periapsis (and location
of the semimajor axis) will become uncertain. The eccentricity can decrease to
zero, and then increase again. The periapsis will change, and the mean anomaly
will change by the same quantity in the opposite direction. The solutions of the
osculating elements will be discontinuous, but ! C M will remain continuous.
Other variables can be selected that are continuous when e passes through zero.
For example

�1 D e sin!; �1 D e cos!; Nu D ! C M (10.125)

where Nu is the mean argument of latitude. This change of variables can be effected
in Eqs. (10.124).
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10.12.2 Small Inclination

Similarly, perturbations cause the orbital plane to change such that the inclination
can go through zero, the two nodes are reversed, and the longitude of the ascending
node changes by 180ı. So we need to change the variables. We can introduce

p1 D tan
i

2
sin�; q1 D tan

i

2
cos�; $ D �C ! (10.126)

where$ is the longitude of the periapsis (Kovalevsky 1963, pp. 42–43).

10.12.3 Universal Variables

The cases of zero eccentricity and zero inclination have led to universal variables.
These are nonsingular variables that replace the classical elements, as briefly
mentioned in Sect. 5.2. The universal variables do not have discontinuities for all
practical elliptic orbits. One choice of such variables, which is always defined for
i ¤ 	; e < 1, is the equinoctial orbital elements, proposed by Broucke and Cefola
(1972):

a; „ D e sin.�C !/; k D e cos.�C !/

p2 D tan
i

2
sin�; q2 D tan

i

2
cos�; �0 D M0 C ! C� (10.127)

where �0 is the mean longitude at epoch. A different variation of the equinoctial
elements was used by Giacaglia (1977) and Nacozy and Dallas (1977):

a; � D e cos.�C !/; � D e sin.�C !/

p D sin
i

2
cos�; q D sin

i

2
sin�; � D M C ! C� (10.128)

where � is the mean longitude. Alternatively, some use the true longitude, defined
as ` D f C ! C�, in Eqs. (10.127) and (10.128).

Lagrange’s planetary equations for the set of elements (10.128) can be written as
(Giacaglia 1977; Nacozy and Dallas 1977)

Pa D 2

na

@R

@�
(10.129a)

P� D n � 2

na

@R

@a
C �

2na2

�
�
@R

@�
C �

@R

@�

�
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C 1

2 na2�

�
p
@R

@p
C q

@R

@q

�
(10.129b)

P� D � � �

na2.1C �/

@R

@�
� �

na2
@R

@�
� �

2 na2�

�
p
@R

@p
C q

@R

@q

�
(10.129c)

P� D � � �

na2.1C �/

@R

@�
C �

na2
@R

@�
C �

2 na2�

�
p
@R

@p
C q

@R

@q

�
(10.129d)

Pp D � p

2 na2�

@R

@�
� 1

4 na2�

@R

@q
C p

2 na2�

�
�
@R

@�
� � @R

@�

�
(10.129e)

Pq D � q

2 na2�

@R

@�
C 1

4 na2�

@R

@p
C q

2 na2�

�
�
@R

@�
� �

@R

@�

�
(10.129f)

where � ,
p
1 � e2 D p

1 � �2 � �2.
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Chapter 11
General Perturbations Theory

11.1 Introduction

We have seen the complexity of the problem when more than two gravitating masses
are involved. We have seen two methods of determining the orbits, Cowell’s and
Encke’s methods. Now, let us look at the basic mathematical description of the
perturbation problem.

Consider the planetary system. The dominant mass is the Sun, and each planet
moves in nearly Keplerian two-body motion around the Sun, which is a good first
approximation. The other planets do disturb this motion and slowly change the
elements in the Keplerian orbit; a; e; i; �; ! and T are slowly changing functions of
time. If the changes of these elements are known, the planets’ orbital characteristics
can be predicted. The distances between bodies are so large, compared with their
sizes, that the planets can be treated as point masses.

The perturbations in the motion of an artificial or a natural satellite close
to a planet are another type of problem. The oblateness of the planet causes
large perturbations from the simple two-body orbit. The motion of artificial Earth
satellites is characterized by the rotation of the lines of nodes and the perigee due
to the non-central force field, which is caused by the oblateness of the Earth. Other
perturbations arise due to the drag of the atmosphere acting on an artificial satellite
close to the Earth’s surface, the tidal effects between massive natural satellites
and their primary, and solar radiation pressure. The Earth oblateness is by the far
the most dominant perturbation acting on artificial satellites. We will discuss it in
Chap. 12.

When perturbations act upon an orbiting mass, the resulting motion is referred to
as non-Keplerian motion.
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11.2 Variation of Parameters

To solve for orbits resulting from non-Keplerian motion, Euler and Lagrange
developed the variation of parameters (VOP) method, mentioned in Sect. 9.11,
which is a method for solving non-homogenous, nonlinear, differential equations. In
essence, the VOP method suggests to turn the constants of integration related to the
unperturbed motion, resulting from the homogenous solution of a given differential
equation, into functions of time.

Let us introduce the concept of the VOP method. The equations of motion of a
particle may be put in the form

Rx C �x

r3
D X; Ry C �y

r3
D Y; Rz C �z

r3
D Z (11.1)

where the second terms on the left-hand side are the components of the relative
acceleration produced by the central mass, which is placed at the origin of the
coordinate system. The right-hand side are the perturbing accelerations produced by
all the other forces that affect the motion. If the right-hand side terms are equated to
zero, that is we have central-force motion, then

x D x.c1; : : : ; c6; t/; Px D Px.c1; : : : ; c6; t/ (11.2a)

y D y.c1; : : : ; c6; t/; Py D Py.c1; : : : ; c6; t/ (11.2b)

z D z.c1; : : : ; c6; t/; Pz D Pz.c1; : : : ; c6; t/ (11.2c)

These are expressions of the rectangular coordinates of Keplerian motion in terms
of time and six constants of integration. For Keplerian motion, the elements are
constants. In the method of VOP, the problem is to satisfy Eqs. (11.1) by the
formulas of Eqs. (11.2) that apply to Keplerian motion. Obviously, c1; c2; : : : ; c6 can
no longer be constants; instead, they become functions of time. The ck are identical
in the Keplerian case to a; e; i; !;� and T, or some combination of them. So the
problem is to determine the time rates of change of the ck.

Consider the elements ck at any fixed instant. They define the osculating orbit
at that time. The planet, or the artificial satellite, at that instant has the same
coordinates and velocity components in the unperturbed and the perturbed orbit.
That is to say, the planet has the position and is moving instantaneously with a
purely two-body motion, as given by the elements ck. A set of elements defining an
osculating orbit could be computed at any point in the actual orbit.
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We have previously derived the equations of motion of a mass m around a central
mass m1 under the perturbing influence of a mass m0 as

Rx D �k2
Mx

r3
C @R

@x
(11.3)

Ry D �k2
My

r3
C @R

@y
(11.4)

Rz D �k2
Mz

r3
C @R

@z
(11.5)

where

R D k2m0


1

�
� xx0 C yy0 C zz0

r03

�
(11.6)

In vector form those are

Rr C �r
r3

D rR (11.7)

where � D k2.m1 C m/ and

rR D @R

@x
Oi C @R

@y
Oj C @R

@z
Ok (11.8)

Let us consider what is happening for clarity. Suppose m and m0 are moving in
circular orbits of radii a and a0 > a around the central mass, m1, as shown in
Fig. 11.1. We will consider only the x component of motion.

1 0 ′
′

1

Fig. 11.1 A mass m moving in orbit around a central mass m1, and perturbed by a mass m0
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Assume m0 was not present, then the mass m, in an interval of time, � , would
move along the osculating orbit C1, so that x0 changes to x1. Actually, due to the
presence of m0, the mass m moves along C, the true orbit, so that x0 changes to x in
the same time, � . For simplicity, we assume that the time interval is small enough
so x and x1 can be written with sufficient accuracy as

x D x0 C
�

dx

dt

�
0

� C
�

d2x

dt2

�
0

�2

2
C : : : (11.9)

x1 D x0 C
�
@x

@t

�
0

� C
�
@2x

@t2

�
0

�2

2
C : : : (11.10)

where the subscripts indicate evaluation of the derivatives at the osculating point,
x0. The perturbation due to m0 is

x � x1 D ıx

D

�

dx

dt

�
0

�
�
@x

@t

�
0

�
� C


�
d2x

dt2

�
0

�
�
@2x

@t2

�
0

�
�2

2

C : : : (11.11)

The total derivatives are distinct from the partial derivatives. The total derivative
refers to the true orbit and includes the changes in the orbital elements, that is

dx

dt
D @x

@t
C

6X
kD1

@x

@ck
Pck (11.12)

The partial derivatives refer to the osculating orbit where the ck are constants. If
the velocity on the osculating orbit at x0 and that in the true orbit are the same (we
will return to this assumption later on), then

�
dx

dt

�
0

�
�
@x

@t

�
0

D 0 (11.13)

So, by Eq. (11.7) we have

�
d2x

dt2

�
0

C �x0
r30

D
�
@R

@x

�
0

(11.14)

and, for the osculating orbit

�
@2x

@t2

�
0

C �x0
r30

D 0 (11.15)
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Therefore,

�
d2x

dt2

�
0

�
�
@2x

@t2

�
0

D
�
@R

@x

�
0

(11.16)

The perturbation, Eq. (11.11), is

ıx D 1

2
�2
�
@R

@x

�
0

D 1

2
�2k2m0



x0 � x

�3
� x0

r03

�
0

(11.17)

by Eq. (11.8). For an order of magnitude calculation, assume the masses are
approximately aligned so x0 � x 	 a0 � a, and ignore perturbations in the y and
z directions. For convenience, express the time interval, � , in units of the period, P,
of m around m1. From Kepler’s third law, the period is approximately

P2 D 4	2a3

k2m1

if m1 � m (11.18)

Introducing this into Eq. (11.17)

ıx D 2	2a3
�

m0

m1

�� �
P

�2 
 1

.a0 � a/2
� 1

a02

�
(11.19)

For an order of magnitude calculation of a perturbation, take the effect of Jupiter
on an asteroid. Take an asteroid with a period half of Jupiter’s period. From Kepler’s
third law, the asteroid would have mean distance a D 3:3 AU. In Eq. (11.19), use
a0 D 5:2 and m0=m D 0:001 to find ıx 	 0:16.�=P/2 AU. Assume the effective
contact for the perturbation lasts 0.1 period of the asteroid; then the deviation
becomes 0.0016 AUD240,000 km. This is a sizable displacement, reflecting the
order of magnitude of perturbations due to Jupiter.

Perturbations of this kind may be involved in the Kirkwood gaps in the minor
planets and the Cassini divisions in the rings of Saturn (see also Sect. 1.5.3), which
are due in part to the satellite Mimas. These are cases of secular resonances and/or
chaos.

Now, let us return to the general discussion of the perturbation equation (11.7).
From the solution equation in vector form

r D r.c1; c2; c3; c4; c5; c6; t/ (11.20)

with r D xOi C yOj C z Ok and the ck functions of time,

Pr D @r
@t

C
6X

kD1

@r
@ck

Pck (11.21)
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The Pck are defined such that

6X
kD1

@r
@ck

Pck D 0 (11.22)

As explained in the simplified example, the velocity in the osculating orbit

@r
@t

D @x

@t
Oi C @y

@t
Oj C @z

@t
Ok (11.23)

is the same as in the true orbit, i.e. Pr D PxOi C PyOj C Pz Ok.
Note, however, that the constraint imposed by Eq. (11.22) is one particular

choice, and is also known as the Lagrange constraint or osculation constraint.
Mathematically, this restriction confines the dynamics of the orbital state space to a
9-dimensional submanifold of the 12-dimensional manifold of the orbital elements
and their time derivatives. More importantly, this reflects an internal freedom in the
mapping .r; Pr/ 7! .ck; Pck; k D 1; : : : ; 6/.

Physically, the Lagrange constraint postulates that the trajectory in the inertial
space is always tangential to an “instantaneous” ellipse (or hyperbola) defined by the
“instantaneous” values of the time-varying orbital elements ck.t/, meaning that the
perturbed physical trajectory would coincide with the Keplerian orbit that the body
would follow if the perturbing force was to cease instantaneously. As we mentioned
previously, this instantaneous orbit is the osculating orbit. Accordingly, the orbital
elements which satisfy the Lagrange constraint are osculating orbital elements. The
Lagrange constraint , however, is not unique. The generalized form of the Lagrange
constraint can be written as

6X
kD1

@r
@ck

Pck D ˆ.ck; Pck; t/ (11.24)

where the velocity ˆ is an arbitrary, user-defined function of the orbital elements,
their time derivatives and time. Equation (11.21) then becomes

Pr D @r
@t

Cˆ.ck; Pck; t/ (11.25)

The observation regarding the internal freedom embedded in transforming from
the inertial coordinates and velocities to the orbital elements rates of change has
been made by Brouwer and Clemence (1961), King-Hele (1958), and Cook (1963).
Efroimsky et al. have published key works on planetary equations with a generalized
Lagrange constraint (Efroimsky 2002; Newman and Efroimsky 2003; Efroimsky
and Goldreich 2003, 2004). They termed the constraint function ˆ gauge function
or gauge velocity, which are terms taken from the field of electrodynamics. The zero
gaugeˆ � 0 was termed the Lagrange gauge.
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The use of a generalized Lagrange constraint gives rise to non-osculating
orbital elements. Thus, although the description of the physical orbit in the inertial
Cartesian configuration space remains invariant to a particular selection of a gauge
velocity, its description in the orbital elements space depends on whether osculating
or non-osculating orbital elements are used. However, to avoid complications, we
will adhere to the Lagrange gauge, and assume from now on that the orbital elements
are osculating, i. e., ˆ � 0.

Proceeding with the constraint (11.22) and differentiating Eq. (11.21) with
respect to t, we obtain

Rr D @2r
@t2

C
6X

kD1

@2r
@t@ck

Pck (11.26)

Substitution of Eq. (11.26) into Eq. (11.7) yields

@2r
@t2

C �r
r3

C
6X

kD1

@2r
@t@ck

Pck D rR (11.27)

For the osculating orbit R D 0 and the ck are constants, so

@2r
@t2

C �r
r3

D 0 (11.28)

and Eq. (11.27) reduces to

6X
kD1

@2r
@t@ck

Pck D rR (11.29)

The time derivatives of the elements can be determined by simultaneously
solving Eqs. (11.22) and (11.29) for the Pck. Before proceeding, we can simplify
Eq. (11.29) by noting that

@2r
@t@ck

D @

@ck

�
@r
@t

�
D @Pr
@ck

(11.30)

This is from the definition, Pr D @r=@t, at the osculating orbit. Equation (11.29) can
be written

6X
kD1

@Pr
@ck

Pck D rR (11.31)

The solution for the Pck from Eqs. (11.22) and (11.31) can be performed by a
rearrangement that introduces new functions of the parameters ck, called Lagrange
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brackets. Take the scalar product of Eq. (11.31) by @r=@cj, and the scalar product of
Eq. (11.22) by @Pr=@cj, and subtract to obtain

6X
kD1



@r
@cj

� @Pr
@ck

� @r
@ck

� @Pr
@cj

�
Pck D rR � @r

@cj
; j D 1; : : : ; 6 (11.32)

The quantity in brackets in Eq. (11.32) is Lagrange’s bracket and will be denoted by
Œcj; ck
. In terms of its Cartesian components,

Œcj; ck
 D @.x; Px/
@.cj; ck/

C @.y; Py/
@.cj; ck/

C @.z; Pz/
@.cj; ck/

(11.33)

where

@.x; Px/
@.cj; ck/

,

ˇ̌
ˇ̌̌
ˇ̌
ˇ

@x

@cj

@x

@ck
@Px
@cj

@Px
@cj

ˇ̌
ˇ̌̌
ˇ̌
ˇ

(11.34)

with similar expressions for y and z. The determinant in Eq. (11.34) is the Jacobian
of x and Px with respect to cj and ck. The right-hand side of Eq. (11.32) is the partial
derivative of R with respect to cj. So, Eq. (11.32) can be written as

6X
kD1
Œcj; ck
 Pck D @R

@cj
; j D 1; : : : ; 6 (11.35)

These six equations are to be solved for Pck.
To illustrate this method, consider the one-dimensional linear oscillator, whose

differential equation of motion is

Rx C x D R.t/ (11.36)

The solution of this equation when R D 0 is x D c1 sin t C c2 cos t. Allow c1 and c2
to be functions of time and write

Px D .c1 cos t � c2 sin t/C . Pc1 sin t C Pc2 cos t/ (11.37)

The first parenthesis is @x=@t and the second is the analogue of the summation on
the right-hand side of Eq. (11.21), i.e.

P6
kD1 @r

@ck
Pck. So similarly to Eq. (11.22) (the

Lagrange constraint) we set

Pc1 sin t C Pc2 cos t D 0 (11.38)
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Differentiating once more, we find

Rx D .�c1 sin t � c2 cos t/C . Pc1 cos t � Pc2 sin t/ (11.39)

The first parenthesis in Eq. (11.39) is @2x
@t2

and the second is Pc1 @2x
@t@c1

C Pc2 @2x
@t@c2

, which
is the analogue of the summation on the right-hand side of Eq. (11.26). Substitution
of Eq. (11.39) into Eq. (11.36) yields

Pc1 cos t � Pc2 sin t D R.t/ (11.40)

So, we have to solve simultaneously

Pc1 sin t C Pc2 cos t D 0; Pc1 cos t � Pc2 sin t D R.t/ (11.41)

for Pc1 and Pc2. Observe that

@

@c1

�
@x

@t

�
D @Px
@c1

D cos t (11.42)

@

@c2

�
@x

@t

�
D @Px
@c2

D � sin t (11.43)

which are analogous to Eq. (11.30). Also,

@x

@c1
D sin t;

@x

@c2
D cos t (11.44)

Thus, Eqs. (11.41) can be written as

Pc1 @Px
@c1

C Pc2 @Px
@c2

D R.t/ (11.45)

Pc1 @x

@c1
C Pc2 @x

@c2
D 0 (11.46)

Multiplying the first by @x=@cj and the second by @Px=@cj; j D 1; 2 and subtracting,
we have

Pc1


@x

@cj

@Px
@c1

� @x

@c1

@Px
@cj

�
C Pc2



@x

@cj

@Px
@c2

� @x

@c2

@Px
@cj

�

D R
@x

@cj
; j D 1; 2 (11.47)
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and introducing Lagrange’s brackets,

Œcj; c1
 Pc1 C Œcj; c2
 Pc2 D R
@x

@cj
; j D 1; 2 (11.48)

This is analogous to Eq. (11.35). It may be shown then from the values of partials
given that

Œc1; c1
 D Œc2; c2
 D 0; Œc1; c2
 D �1; Œc2; c1
 D 1 (11.49)

so Eq. (11.48) for j D 1; 2 reduces to

Pc2 D �R sin t; Pc1 D R cos t (11.50)

c1.t/ and c2.t/ follow by integration, when R.t/ is known (McCuskey 1963, pp. 128–
134).

11.3 Properties of the Lagrange Brackets

By the definition of Œcj; ck
 given in Eq. (11.33), or, in vector notation,

Œcj; ck
 D


@r
@cj

� @Pr
@ck

� @r
@ck

� @Pr
@cj

�
(11.51)

then we see

Œcj; cj
 D 0; Œck; cj
 D �Œcj; ck
 (11.52)

Another important property is

@

@t

�
cj; ck

	 D 0 (11.53)

which implies that the Œcj; ck
 are explicitly independent of the time. This is
convenient, because the brackets can be computed for any epoch, such as the
perihelion, and they are invariant with respect to t thereafter.

The proof of the property stated in Eq. (11.53) can be given as follows. Denote
any one bracket by Œ p; q
 and one of the Jacobians by JŒ.x; Px/=. p; q/
 as defined in
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Eq. (11.34). Then

@J

@t
D @

@t



@x

@p

@Px
@q

� @x

@q

@Px
@p

�
D @2x

@t@p

@Px
@q

� @2x

@t@q

@Px
@p

C @2 Px
@t@q

@x

@p
� @2 Px
@t@p

@x

@q
(11.54)

But @x=@t D Px by the definition of the osculating orbit; so, the first two terms
become

@Px
@p

@Px
@q

� @Px
@q

@Px
@p

D 0 (11.55)

The last two terms of Eq. (11.54) can be written

@

@q

�
@Px
@t

�
@x

@p
� @

@p

�
@Px
@t

�
@x

@q
(11.56)

By the equations of motion for the osculating orbit

@Px
@t

� @2x

@t2
D ��x

r3
D @V

@x
(11.57)

where V D �=r. Equation (11.54) can be in the form

@J

@t
D @

@q

�
@V

@x

�
@x

@p
� @

@p

�
@V

@x

�
@x

@q
(11.58)

There are similar expressions with y and z substituted for x. V.x; y; z/ is continuous
and has continuous derivatives at all points except the origin. So, we can change the
order of differentiation and add the terms in y and z,

@J

@t
D @Œ p; q


@t
D


@Vq

@x

@x

@p
C @Vq

@y

@y

@p
C @Vq

@z

@z

@p

�
(11.59)

�


@Vp

@x

@x

@q
C @VP

@y

@y

@q
C @Vp

@z

@z

@q

�
(11.60)

where Vp � @V=@p and Vq � @V=@q. The first group of terms is @Vq=@p and the
second is @Vp=@q. Also, these second partial derivatives are equal. So

@Œ p; q


@t
D @Vq

@p
� @Vp

@q
D 0 (11.61)

Thus, the Lagrange bracket is explicitly independent of the time (McCuskey 1963,
pp. 135–136).
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11.4 Evaluation of the Lagrange Brackets

The Lagrange brackets Œcj; ck
, defined previously, must be evaluated in terms of the
orbital elements, so that Eq. (11.35) may be solved for the Pck; k D 1; : : : ; 6. The
procedure will be illustrated and the complete set of values developed. For further
details, see Smart (1960).

To begin, recall the definition of the perifocal coordinate system defined in

Sect. 5.2, that is, OP is a unit vector in the direction of the periapsis, OOQ is a unit
vector in the direction f D 90ı, and OR is a unit vector perpendicular to the orbital

plane. The latter is directed in the sense OR D OP � OOQ. Then

OP D .cos! cos� � sin! sin� cos i/Oi
C .cos! sin�C sin! cos� cos i/Oj C sin! sin i Ok (11.62a)

OOQ D .� sin! cos� � cos! sin� cos i/Oi
C .� sin! sin�C cos! cos� cos i/Oj C cos! sin i Ok (11.62b)

OR D sin� sin i Oi � cos� sin i Oj C cos i Ok (11.62c)

where Oi; Oj; Ok are unit vectors along x; y; z, respectively (recall Figs. 5.1, 5.7).
The unit vectors OP; OQ; OR depend only on the orbital elements �;!; i, which

orient the orbit in space, and not upon a; e;T, which define the shape of the orbit
and position of the body on the orbit. The elements ck fall into two groups of
three each. Let us denote the group a; e;T by ˛1; ˛2; ˛3, and the group �;!; i by
ˇ1; ˇ2; ˇ3. The Lagrange brackets are in three categories: Œ˛r; ˛s
; Œ˛r ; ˇs
; Œˇr; ˇs
,
where r ¤ sI r; s D 1; 2; 3. We evaluate the first of these to illustrate the procedure.
We can simplify Eqs. (11.62) to

OP D P1Oi C P2Oj C P3 Ok (11.63)

OOQ D Q1
Oi C Q2

Oj C Q3
Ok (11.64)

OR D R1Oi C R2Oj C R3 Ok (11.65)

where the components of OP; OQ; OR are the direction cosines of the respective vectors
relative to the x; y; z axes. At any instant, the radius vector can be expressed by

r D xOi C yOj C z Ok D  OP C � OQ (11.66)

where ; � are Cartesian coordinates in the orbital plane. From Eq. (11.66), the
velocity can be written

Pr D PxOi C PyOj C Pz Ok D P OP C P� OQ C 
POP C �

POQ (11.67)



11.4 Evaluation of the Lagrange Brackets 267

By the definition of the osculating orbit, Pr D @r=@t, and  POP C �
POQ D 0, so

Pr D P OP C P� OQ (11.68)

From Eqs. (11.66)–(11.68), x; Px; y; Py; z; Pz can be expressed in terms of the new
coordinates and velocity components ; �, P; P�, whenever desired. From the defini-
tion the Lagrangian bracket, Œ˛r; ˛s
 is

@.x; Px/
@.˛r; ˛s/

C @.y; Py/
@.˛r; ˛s/

C @.z; Pz/
@.˛r; ˛s/

D
ˇ̌
ˇ̌
ˇ̌̌
@x

@˛r

@x

@˛s
@Px
@˛r

@Px
@˛s

ˇ̌
ˇ̌
ˇ̌̌
ˇ̌
ˇ̌
ˇ̌̌
@y

@˛r

@y

@˛s
@Py
@˛r

@Py
@˛s

ˇ̌
ˇ̌
ˇ̌̌
ˇ̌
ˇ̌
ˇ̌̌
@z

@˛r

@z

@˛s
@Pz
@˛r

@Pz
@˛s

ˇ̌
ˇ̌
ˇ̌̌ (11.69)

In place of @x=@˛r; @Px=@˛r write by Eqs. (11.66) and (11.68)

@x

@˛r
D @x

@

@

@˛r
C @x

@�

@�

@˛r
(11.70)

@Px
@˛r

D @Px
@ P

@ P
@˛r

C @Px
@ P�

@ P�
@˛r

(11.71)

ålong with corresponding terms in y and z. Furthermore,

@x

@
D P1;

@Px
@ P D P1 (11.72)

@x

@�
D Q1;

@Px
@ P� D Q1 (11.73)

with similar terms for y and z. Substituting into Eq. (11.69) we have

ˇ̌
ˇ̌
ˇ̌̌
ˇ
P1
@

@˛r
C Q1

@�

@˛r
P1
@

@˛s
C Q1

@�

@˛s

P1
@ P
@˛r

C Q1

@ P�
@˛r

P1
@ P
@˛s

C Q1

@ P�
@˛s

ˇ̌
ˇ̌
ˇ̌̌
ˇ

(11.74)

for the first determinant and similar expressions for the second and third determi-
nants.
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The direction cosines have the properties

P21 C P22 C P23 D 1 (11.75)

Q2
1 C Q2

2 C Q2
3 D 1 (11.76)

P1Q1 C P2Q2 C P3Q3 D 0 (11.77)

When the determinants are evaluated and the terms collected, we have

Œ˛r; ˛s
 D

ˇ̌
ˇ̌̌
ˇ̌
ˇ

@

@˛r

@

@˛s

@ P
@˛r

@ P
@˛s

ˇ̌
ˇ̌̌
ˇ̌
ˇ
C

ˇ̌
ˇ̌̌
ˇ̌
@�

@˛r

@�

@˛s
@ P�
@˛r

@ P�
@˛s

ˇ̌
ˇ̌̌
ˇ̌

D @.; P/
@.˛r; ˛s/

C @.�; P�/
@.˛r; ˛s/

(11.78)

To evaluate these Jacobians, we use the time-invariance property of the bracket,
proved previously, and do the evaluation at the periapsis. We know the bracket is
constant for all t. We assume a value of t such that the mean anomaly, M D n.t�T/,
is small, and the eccentric anomaly, E 	 0. Then, we may write to terms of order 3,

sin E D E � E3

3Š
C : : : (11.79)

and by Kepler’s equation

E � e sin E D n.t � T/ (11.80)

E � eE C e
eE3

3Š
D n.t � T/ (11.81)

Neglecting the term eE3 in comparison with eE, we have

E D n.t � T/

1 � e
(11.82)

and

sin E 	 n.t � t/

1 � e
; cos E 	 1 � n2.t � T/2

2.1� e/2
(11.83)

By definitions of ; � and the elliptic equations

 D r cos f D acosE � ae; � D r sin f D a sin E
p
1 � e2 (11.84)
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and from Eqs. (11.83)

 D a



1 � n2.t � T/2

2.1� e/2

�
� ae (11.85a)

� D na
p
1 � e2.t � T/

1 � e
D na

r
1C e

1 � e
.t � T/ (11.85b)

Differentiating Eqs. (11.85), we obtain

P D � n2a

.1 � e/2
.t � T/; P� D na

r
1C e

1� e
(11.86)

Before taking partials of ; �; P; P� with respect to a, we must express n in terms of a
by Kepler’s third law, n2a3 D �. Then we can evaluate the Jacobians in Eq. (11.78).
For example, let Œ˛r; ˛s
 D Œa; e
. Then Eqs. (11.85) yield

@

@a
D


1 � n2.t � T/2

2.1� e/2

�
C a



�n.@n=@a/.t � T/2

.1 � e/2

�
� e (11.87)

and at t D T, this becomes

�
@

@a

�
T

D 1 � e (11.88)

In a similar way

 
@ P
@a

!
T

D @

@a



� � .t � T/

a2 .1 � e/2

�
T

D


2� .t � T/

a3 .1 � e/2

�
T

D 0 (11.89)

�
@

@e

�
T

D
"

�n2a .t � T/2

.1 � e/3
� a

#
T

D �a (11.90)

 
@ P
@e

!
T

D


�2n2a .t � T/

.1 � e/3

�
T

D 0 (11.91)

Then the Jacobian

@.; P/
@.a; e/

D 0 (11.92)



270 11 General Perturbations Theory

It can be shown that

�
@�

@a

�
T

D 0;

�
@ P�
@a

�
T

D �n

2

r
1C e

1� e
(11.93a)

�
@�

@e

�
T

D 0;

�
@ P�
@e

�
T

D na

.1 � e/
p
1 � e2

(11.93b)

Thus

@.�; P�/
@.a; e/

D 0 (11.94)

The Jacobians, Eqs. (11.93) and (11.94), used in Eq. (11.78), yield Œa; e
 D
0. Similarly, all the Lagrangian brackets needed to solve the perturbation equa-
tions (11.35) can be evaluated. The non-vanishing brackets are

Œ�; a
 D na cos i
p
1� e2

2
(11.95)

Œ!; a
 D na
p
1 � e2

2
(11.96)

Œe; �
 D na2e cos ip
1 � e2

(11.97)

Œe; !
 D na2ep
1 � e2

(11.98)

Œi; �
 D �na2 sin i
p
1 � e2 (11.99)

Œa;T
 D n2a

2
(11.100)

and all the others are zero. An element � D �nT can be used in place of T, so

Œ�; a
 D na

2
(11.101)

The brackets in Eqs. (11.95)–(11.98) are of the type Œ˛r; ˇs
, Eq. (11.99) is
Œˇr; ˇs
, and Eq. (11.100) is Œ˛r; ˛s
 (McCuskey 1963, pp. 137–142).
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11.5 Solution of the Perturbation Equations

Having evaluated the Lagrangian brackets, we can finish the solution of Eqs. (11.35)
for the time derivatives of the orbital elements. Substituting from Eqs. (11.95)–
(11.101) into Eq. (11.35) and using the property Œcj; ck
 D �Œck; cj
, we have

1

2
naPa D @R

@�
(11.102)

1

2
na

p
1 � e2 Pa � na2ep

1 � e2
Pe D @R

@!
(11.103)

1

2
na cos i

p
1 � e2 Pa � na2e cos ip

1 � e2
Pe � na2 sin i

p
1 � e2

di

dt
D @R

@�
(11.104)

na2 sin i
p
1 � e2 P� D @R

@i
(11.105)

�1
2

na cos i
p
1 � e2 P� � 1

2
na

p
1 � e2 P! � 1

2
na P� D @R

@a
(11.106)

na2e cos ip
1 � e2

P�C na2ep
1 � e2

P! D @R

@e
(11.107)

The simultaneous solution of these for the time derivatives gives

Pa D 2

na

@R

@�
(11.108a)

Pe D 1 � e2

na2e

@R

@�
�

p
1 � e2

na2e

@R

@!
(11.108b)

P� D �1 � e2

na2e

@R

@e
� 2

na

@R

@a
(11.108c)

P� D 1

na2 sin i
p
1 � e2

@R

@i
(11.108d)

P! D � cos i

na2 sin i
p
1 � e2

@R

@i
C

p
1 � e2

na2e

@R

@e
(11.108e)

di

dt
D cos i

na2 sin i
p
1 � e2

@R

@!
� 1

na2 sin i
p
1 � e2

@R

@�
(11.108f)

These equations are similar to the Lagrange planetary equations (10.124).
In using the equation for P� , it can be useful to introduce the mean anomaly,

M D n.t � T/ D n� C � , in place of � . The perturbation function can be written
in the form R.a; e; i; !;�;M/, because the Cartesian coordinates , in which R was
defined, are functions of time and T, which can be expressed in terms of M. To make
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this conversion, we note that

PM D n C Pnt C P� D n C dn

da
Pat C P� (11.109)

and P� is given in Eq. (11.108c). In using this equation we need @R=@a. However, R
depends upon a both explicitly and also through M, because n D �1=2a�3=2 and,
hence, M D �1=2a�3=2t C � . Therefore,

@R

@a
D
�
@R

@a

�
M

C @R

@M

@M

@a
D
�
@R

@a

�
M

C
��3n

2a
t

�
@R

@M
(11.110)

where .@R=@a/M denotes the derivative taken explicitly with respect to a. @R=@e
is not affected this way. With Eq. (11.110) and dn=da D �3n=2a substituted into
Eq. (11.109), we have

PM D n � 3nPat

2a
�
�
1 � e2

na2e

�
@R

@e
� 2

na

�
@R

@a

�
M

C 3t

a2
@R

@M
(11.111)

From Eq. (11.108a),

Pa D 2

na

@R

@�
D 2

na

@R

@M
(11.112)

Substituting this into the second term of Eq. (11.111), this cancels the last term, so

PM D n �
�
1 � e2

na2e

�
@R

@e
� 2

na

�
@R

@a

�
M

(11.113)

and

Pa D 2

na

@R

@M
(11.114)

These two relations replace the equations for Pa and P� , respectively, when the
mean anomaly is used in place of � as the sixth parameter of the orbit.

In order to apply Eqs. (11.96)–(11.114), it is clear that R.x; y; z; x0; y0; z0/ must
be expressed in terms of the elements desired. However, in many applications of
practical interest, the perturbation forces are expressed in terms of acceleration
components along satellite-fixed axes rather than in terms of the perturbation
potential; this is the case, for example, for perturbations such as drag, or control
forces acting on an artificial satellite. Thus, the perturbing forces are directed along
the radius vector, transverse to it, and perpendicular to the plane of the orbit. There
are applications where the perturbing force components are tangent to the orbit,
normal to the orbit, and perpendicular to the orbital plane. An artificial satellite,
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moving close to the Earth, experiences atmospheric drag, a perturbing force tangent
to the orbit in the direction opposite to the velocity vector.

Let us consider the equations appropriate for the two force systems; radial,
transverse, and orthogonal components, and tangential, normal, and orthogonal
components. The resulting equations are collectively referred to as the Gauss
variational equations (GVE). In the derivations, we shall mean force per unit mass,
whenever force is used (McCuskey 1963, pp. 142–144).

11.6 Case I: Radial, Transverse, and Orthogonal
Components

Let Our; Ou� ; OuW be a right hand triad of unit vectors with Our along r; Ou� perpendicular
to r in the orbital plane and with an angle less than 90ı from the velocity v, and
OuW perpendicular to the orbital plane such that OuW D Our � Ou� . This triad forms a
coordinate system which is sometimes referred to as an RSW frame.

u D !C f is the angle from the line of nodes to the radius vector. Then the force
under consideration is

F D R0 Our C S0 Ou� C W 0 OuW (11.115)

where the unit vectors in terms of the Cartesian coordinate system are

Our D .cos� cos u � sin� sin u cos i/Oi
C .sin� cos u C cos� sin u cos i/Oj
C sin u sin i Ok (11.116)

Ou� D .� cos� sin u � sin� cos u cos i/Oi
C .� sin� sin u C cos� cos u cos i/Oj
C cos u sin i Ok

OuW D sin� sin i Oi � cos� sin i Oj C cos i Ok (11.117)

The partial derivatives @R=@x; @R=@y; @R=@z are the components of the acceler-
ation, when the latter is due to the perturbation function, R. This can be seen from
Eq. (11.3). In vector form, this acceleration is

rR D @R

@x
Oi C @R

@y
Oj C @R

@z
Ok (11.118)

The force components of R enter the perturbation equations only through the partial
derivatives, .@R=@a/; .@R=@e/, and alike. The transformation to the new force, F,
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can be made as follows. If cj represents any one of the elements, then

@R

@cj
D rR � @r

@cj
; j D 1; : : : ; 6 (11.119)

where r D xOi C yOj C z Ok. So we need only evaluate

@R

@cj
D F � @r

@cj
(11.120)

in terms of the force components R0; S0;W 0, and use these partial derivatives in
Eqs. (11.108)–(11.114). As an example, we consider @R=@a. Using the notation
where OP and OQ are unit vectors of a perifocal frame (see Sect. 5.2),

r D xOi C yOj C z Ok D  OP C � OQ (11.121)

Thus,

@r
@a

D OP@
@a

C OQ@�
@a

(11.122)

Equation (11.120) yields

@R

@a
D F � OP@

@a
C F � OQ@�

@a
(11.123a)

where by Eq. (11.84)

@

@a
D cos E � e D 

a
(11.124a)

@�

@a
D sin E

p
1 � e2 D �

a
(11.124b)

In Eq. (11.115) we defined

F D R0 Our C S0 Ou� C W 0 OuW (11.125)

The unit vectors Our; Ou� and OP; OQ are related as shown in Fig. 11.2. So

F � OP D R0 cos f � S0 sin f (11.126)

F � OQ D R0 sin f C S0 cos f (11.127)
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Fig. 11.2 Relation of
perifocal and polar unit
vectors

Also,  D r cos f ; � D r sin f , so Eq. (11.126) becomes

F � OP D 1

r
ŒR0 � S0�
 (11.128a)

F � OQ D 1

r
ŒR0�C S0
 (11.128b)

Substituting Eqs. (11.128) and (11.128) into (11.123) we have

@R

@a
D 1

ra
R0.2 C �2/ D r

a
R0 (11.129)

This is the partial derivative for the force function postulated. In a similar manner,
the other derivatives can be found. These are

@R

@a
D R0 r

a
(11.130a)

@R

@e
D �R0a cos f C S0a sin f



1C r

a.1� e2/

�
(11.130b)

@R

@�
D R0ea sin fp

1 � e2
C S0a2

p
1 � e2

r
(11.130c)

@R

@�
D S0r cos i � W 0r sin i cos u (11.130d)

@R

@!
D S0r (11.130e)

@R

@i
D W 0r sin u (11.130f)
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Substituting Eqs. (11.130) into Eqs. (11.108), we have the element rates

Pa D 2e sin f

n�
R0 C 2a�

rn
S0 (11.131a)

Pe D � sin f

na
R0 C �

a2ne



a2�2 � r2

r

�
S0 (11.131b)

P� D


�2 cos f

ane
� 2r

na2

�
R0 � �2 sin f

a2ne



1C r

a�2

�
S0 (11.131c)

P� D r sin u

a2n� sin i
W 0 (11.131d)

P! D �� cos f

ane
R0 C � sin f

ane



1C r

a�2

�
S0 (11.131e)

� r sin u cot i

a2n�
W 0 (11.131f)

di

dt
D r cos u

a2n�
W 0 (11.131g)

where � ,
p
1 � e2. Equations (11.131) are the Gauss variational equations. In a

similar manner the equations for PM and Pa, independent of � , can be transformed. We
can see clearly from Eqs. (11.131d) and (11.131g) that the spatial orientation of the
orbit will change only when there is a component of specific force W 0 (McCuskey
1963, pp. 144–147).

11.7 Case II: Tangential, Normal, and Orthogonal
Components

We wish to express the radial and transverse components of Case I in terms of the
tangential and normal components. Let

G D T 0 OuT C N0 OuN C W 0 OuW (11.132)

define the force. OuT ; OuN ; OuW are unit vectors along the tangent in the direction of
motion, along the normal to the orbit directed toward its concave side (i.e., towards
the attraction center), and perpendicular to the orbit in the sense OuW D OuT � OuN ,
respectively. So W 0 is the same as W 0 of Case I. This triad forms a coordinate system
which is sometimes referred to as an NTW frame.
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We are concerned with transforming from R0; S0 to T 0;N0. The radial direction
component of G is

R0 � G � Our D T 0. OuT � Our/C N0. OuN � Our/ (11.133)

and in the transverse direction it is

S0 � G � Ou� D T 0. OuT � Ou� /C N0. OuN � Ou� / (11.134)

The scalar products are evaluated knowing that OuT and OuN are along and
perpendicular, respectively, to the velocity vector. So we may write

v D Pr Our C rPf Ou� D v Our (11.135)

Then the scalar products

Pr
v

D Our � OuT D Ou� � OuN (11.136a)

rPf
v

D Ou� � Our D �Our � OuN (11.136b)

The first parts of Eq. (11.136) can be seen from dot products of Eq. (11.135) by Our

and Ou� , respectively. The second parts are from the unit vectors geometry. From the
elliptic motion we have

r D a.1� e2/

1C e cos f
(11.137a)

r2Pf D h D
p

k2Ma.1� e2/ (11.137b)

Evaluation of Pr from the first and elimination of Pf by means of the second yields

Pr D k
p

Me sin fp
a.1 � e2/

(11.138)

rPf D k
p

M.1C e cos f /p
a.1� e2

(11.139)

v D k
p

M.1C e2 C 2e cos f /1=2p
a.1� e2/

(11.140)
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Then Eqs. (11.136) become

Our � OuT D Ou� � OuN D Pr
v

D e sin f

.1C e2 C 2e cos f /1=2
(11.141a)

Ou� � OuT D �Our � OuN D 1C e cos f

.1C e2 C 2e cos f /1=2
(11.141b)

Substituting Eqs. (11.141) into Eqs. (11.133) and (11.134), we have

R0 D e sin fp
1C e2 C 2e cos f

T 0 � 1C e cos fp
1C e2 C 2e cos f

N0 (11.142)

S0 D 1C e cos fp
1C e2 C 2e cos f

T 0 C e sin fp
1C e2 C 2e cos f

N0 (11.143)

With these equations and T 0, N0 given, one can substitute for R0 and S0 in
Eqs. (11.131) and obtain the perturbations in the elements due to a force that
has been resolved into tangential, normal, and orthogonal components (McCuskey
1963, pp. 147–149).

We must emphasize that some authors use a different convention for the NTW
frame (Vallado 2001, p. 163). In this convention, OuT is parallel to the direction of
the velocity vector, the normal axis OuN points away from the attraction center, and
OuW D OuN � OuT . In this case, the transformation in Eq. (11.142) is written as (note
the sign differences in the N0 terms)

R0 D e sin fp
1C 2e cos f C e2

T 0 C 1C e cos fp
1C 2e cos f C e2

N0 (11.144a)

S0 D 1C e cos fp
1C 2e cos f C e2

T 0 � e sin fp
1C 2e cos f C e2

N0 (11.144b)

11.8 Expansion of the Third-Body Potential

To obtain the time rate of change of the orbital elements, the disturbing function
R must be expanded as an infinite series, where the orbital elements appear in the
coefficients or arguments of trigonometric series. It is also possible to expand the
disturbing function as a power series, for artificial satellites, or as a Chebysehev
series, as per Carpenter (1966).

Let m and m0 be the perturbed and perturbing masses, let r and r0 be their
distances from the central mass m1, and let r0 > r at all times (recall Fig. 5.7).
The analysis is slightly different for r0 < r, and fails for the Neptune-Pluto case
where the values change with respect to each other. The perturbation function can
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be written as

R D k2m0


1

�
� xx0 C yy0 C zz0

r03

�

D k2m0

�

r2 C r02 � 2rr0 cos�
��1=2 � rr0 cos�

r03

�

D k2m0
"
1

r0



1C

� r

r0
�2 � 2

� r

r0
�

cos�

��1=2
� rr0 cos�

r03

#

D k2m0

r0

"

1C

� r

r0
�2 � 2

� r

r0
�

cos�

��1=2
�
� r

r0
�

cos�

#
(11.145)

where � is the angle between the radius vectors. Expanding the first term in the
bracket by the binomial theorem, we have



1C

� r

r0
�2 � 2

� r

r0
�

cos�

��1=2

D 1C
� r

r0
�

cos� C
� r

r0
�2 ��1

2
C 3

2
cos2 �

�

C
� r

r0
�3 ��3

2
cos� C 5

2
cos3 �

�
C
� r

r0
�4 �3

8
� 15

4
cos2 � C 35

8
cos4 �

�
C : : :

(11.146)

The groups of trigonometric functions in Eq. (11.146) that appear due to
expanding part of the disturbing function are Legendre polynomials of the first kind,
Pn.cos�/. The Legendre polynomials, generally denoted for some argument x by
Pn.x/, are useful when expanding functions such as

1

kr � r0k D 1p
r2 C r02 � 2rr0 cos�

D
1X

nD0

.r0/n

rnC1Pn.cos�/ (11.147)

Each Legendre polynomial, Pn.x/, is an nth degree polynomial. It may be expressed
using the Rodrigues formula:

Pn.x/ D 1

2nnŠ

dn

dxn

�
.x2 � 1/n

	
(11.148)
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For example, P0.x/ D 1, P1.x/ D x, P2.x/ D 0:5.3x2�1/ and P3.x/ D 0:5.5x3�3x/.
In our case, the polynomials are then

P0.cos�/ D 1 (11.149)

P1.cos�/ D cos� (11.150)

P2.cos�/ D 1

2
Œ3 cos2 � � 1
 D 1

4
Œ3 cos 2� C 1
 (11.151)

P3.cos�/ D 1

2
Œ5 cos3 � � 3 cos�
 D 1

8
Œ5 cos 3� C 3 cos�
 (11.152)

P4.cos�/ D 1

8
Œ35 cos4 � � 30 cos2 � C 3


D 1

64
Œ35 cos 4� C 20 cos2� C 9
 (11.153)

P5.cos�/ D 1

8
Œ63 cos5 � � 70 cos3 � C 15 cos�
 (11.154)

The Legendre polynomials are uniformly bounded, that is

jPn.cos�/j � 1; n D 0; 1; 2; 3; : : : (11.155)

so the series

1X
nD0

� r

r0
�n

Pn.cos�/ (11.156)

is convergent, since r=r0 < 1 by our choice. Combining Eqs. (11.145) and (11.146),
where the r cos�=r0 terms cancel, we have

R D k2m0

r0



1C

� r

r0
�2

P2 C
� r

r0
�3

P3 C
� r

r0
�4

P4 C : : :

�
(11.157)

We must now look at r=r0 and the polynomials Pn.cos�/ to determine R in terms of
the orbital elements. Let us consider the factors in

�
r
r0

�2
P2.cos�/ separately.

11.8.1 The Factor .r=r0/2

In Sect. 5.9, we saw Kepler’s equation and how we can expand E in trigonometric
functions of the mean anomaly M. Likewise, we can expand to the e2 term

r

a
D 1C 1

2
e2 � e cos M � 1

2
e2 cos 2M C : : : (11.158)

a

r
D 1C e cos M C e2 cos 2M C : : : (11.159)
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cos E D �1
2

e C
�
1 � 3

8
e2
�

cos M C 1

2
e cos 2M

C 3

8
e2 cos 3M C : : : (11.160)

sin E D
�
1 � 1

8
e2
�

sin M C 1

2
e sin 2M

C 3

8
e2 sin 3M C : : : (11.161)

From r=a and a=r,

r

r0 D
� r

a

��a0

r0

�� a

a0
�

D a

a0



1C 1

2
e2 � e cos M � 1

2
e2 cos 2M

�

� �
1C e0 cos M0 C e02 cos 2M0	 (11.162)

Squaring Eq. (11.162) yields in terms to order e2

� r

r0
�2 D

� a

a0
�2 �

1C e2 C e2 cos2 M � 2e cos M � e2 cos 2M

C e0 cos2 M0 C 2e0 cos M0 C 4ee0 cos M cos M0

C 2e02 cos 2M0 C : : :
	

(11.163)

Terms such as cos2 M and cos M cos M0 can be transformed into functions of
multiple angles or sums and differences of angles,

cos2 M D 1

2
.1C cos 2M/ (11.164)

cos M cos M0 D 1

2
Œcos.M C M0/C cos.M � M0/
 (11.165)

So Eq. (11.162) becomes

� r

r0
�2 D

� a

a0
�2 


1C 3

2
e2 C 1

2
e02 � 2e cos M C 2e0 cos M0

� 1

2
e2 cos 2M C 5

2
e02 cos 2M0 � 2ee0 cos.M C M0/

� 2ee0 cos.M � M0/
	

(11.166)

Thus, .r=r0/2 is the sum of terms of the form Apq cos. pM C qM0/, where p and q are
integers, either positive, negative, or zero, and Apq are functions of a; a0; e; e0.
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11.8.2 The Factor P2.cos�/

We have the polynomial

P2.cos�/ D �1
2

C 3

2
cos2 � (11.167)

First we want the form of cos� in terms of the orbital elements. From Eq. (11.66),

r D xOi C yOj C z Ok D  OP C � OQ (11.168)

and

 D r cos f D a cos E � ae (11.169)

� D r sin f D a sin E
p
1 � e2 (11.170)

we have

r D  OP C � OQ D aŒ.cos E � e/ OP C .
p
1 � e2 sin E/ OQ
 (11.171)

where OP and OQ are unit vectors, functions of �;!; i, as given in Eqs. (11.62). An
equation similar to Eq. (11.171) can be written expressing r0 to appropriate unit
vectors OP0 and OQ0, where the prime denotes the disturbing planet. So we can write

cos� D r � Or0

rr0 D
�
 OP C � OQ

�
�
�
 0 OP0 C �0 OQ0

�
rr0

D  0 OP � OP0 C � 0 OQ � OP0 C �0 OP � OQ0 C ��0 OQ � OQ0

rr0 (11.172)

Examining a term such as  0 OP � OP0=rr0, since  D a.cos E � e/ and  0 D a0.cos E0 �
e0/, using the expansion for cos E in Eq. (11.158) we have

 0

rr0 D
�a

r

��a0

r0

�

�3
2

e C .1 � 3

8
e2/ cos M C 1

2
e cos 2M

C 3

8
e2 cos 3M

�
�


�3
2

e0 C .1 � 3

8
e02/ cos M0 C 1

2
e0 cos 2M0

C 3

8
e02 cos 3M0

�
(11.173)

A typical product from the two brackets is of the form cos pM cos qM0, which can
be transformed into the form Œcos. pM C qM0/C cos. pM � qM0/
=2.
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Products of these terms by series expressions for .a=r/ and .a0=r/ can be reduced
in a similar manner. So the product  0=rr0 takes the form Bpq cos. pM C qM0/,
where p and q are integers, and Bpq are functions of a; a0; e; e0. The product OP � OP0 D
P1P0

1 C P2P0
2 C P3P0

3, where the components are

P1 D cos� cos! � sin� sin! cos i (11.174)

P2 D sin� cos! C cos� sin! cos i (11.175)

P3 D sin! sin i (11.176)

and similarly for P0
1;P

0
2;P

0
3. We can write cos i D 1 � 2 sin2.i=2/ and, since i is a

small quantity, sin.i=2/ 	 i=2 D � . So cos i D 1� 2�2. Then P1 D cos.�C !/C
2�2 sin! sin�, and, using 2 sin! sin� D Œcos.�C !/ � cos.� � !/
,

P1 D .1 � �2/ cos.�C !/C �2 cos.� � !/ (11.177a)

P0
1 D .1 � � 02/ cos.�0 C !0/C � 02 cos.�0 � !0/ (11.177b)

Other components of OP and OQ can be expressed similarly.
We are interested in the form of OP � OP0. From Eqs. (11.177), the product of P1P0

1

will consist of terms of the form cos.�C!/ cos.�0C!0/, which reduce to sums such
as Œcos.�C!C�0C!0/Ccos.�C!��0�!0/
=2. The products from OP� OP0 and other
scalar products in Eq. (11.172) are of the form Cj cos .j1�C j2�0 C j3! C j4!0/,
where ji; i D 1; 2; 3; 4 are integers and Cj are functions of � and � 0. From this
analysis of the form of  0P1P0

1=rr0, we can see that the form of the perturbation
function will be

R D k2m0X
p

Cp.a; a
0; e; e0; �; � 0/

� cos
�
p1M C p � 2M0 C p3�C p4�

0 C p5! C p6!
0� (11.178)

where pi; i D 1; : : : ; 6 are integers. The expression for R can be used in Eq. (11.108)
to obtain the perturbations in the orbital elements. Let M D nt C �; M0 D n0t C � 0,
so

p1M C p2M
0 D . p1n C p2n

0/t C p1� C p2�
0 (11.179)

Denote the angular argument in R by

� D . p1n C p2n
0/t C p1� C p2�

0 C p3�C p4�
0 C p5! C p6!

0 (11.180)

If we consider the orbital elements of the perturbing body m0 as constants,
Eq. (11.180) becomes

� D . p1n C p2n
0/t C p1� C p3�C p5! C �0 (11.181)
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where �0 contains the contributions from p2; p4; p6; � 0; �0; !0. Then

R D k2m0X
p

Cp cosŒ. p1n C p2n
0/t C p1� C p3�C p5! C �0
 (11.182)

where the summation refers to all pi; i D 1; : : : ; 6. Then

@R

@�
D
(

�k2m0P
p Cpp1 sin �; p1 ¤ 0

0; p1 D 0
(11.183a)

@R

@�
D �k2m0X

p

Cpp3 sin � (11.183b)

@R

@!
D �k2m0X

p

Cpp5 sin � (11.183c)

@R

@e
D k2m0X

p

@Cp

@e
cos � (11.183d)

@R

@i
D 1

2
k2m0 cos

�
i

2

�X
p

@Cp

@�
cos � (11.183e)

@R

@a
D k2m0X

p

@Cp

@a
cos � � k2m0X

p

Cp

�
p1t
@n

@a

�
sin � (11.183f)

where @n=@a D �3n=2a. Substituting Eq. (11.183e) into Eq. (11.108d) we have

P� D 1

na2 sin i
p
1 � e2

@R

@i
D k2m0 cos.i=2/

2na2 sin i
p
1 � e2

X
p

@Cp

@�
cos � (11.184)

Usually, m0 is small compared with the central mass; hence, as a first approximation,
the elements on the right of Eq. (11.184) are assumed constant. The derivative of P�
becomes a periodic function of t alone, if p1 and p2 are not both zero. If p1 and p2
are both zero, P� is a constant, say A. We can consider P� separated, so

P� D A C
X

p

Bp cosŒ. p1n C p2n
0/t C�1
 (11.185)

where �1 D p1�0 C p3�0 C p5!0 C �0, and the zero subscript denotes fixed
elements. Integrating Eq. (11.185) we have

� D �0 C At C
X

p

Bp

. p1n C p2n0/
sinŒ. p1n C p2n

0/t C�1
 (11.186)
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where p1 and p2 are not both zero. The linear part of the change in �, At, is known
as a secular perturbation term. From Eq. (11.184), we see that, if p1n C p2n0 D
0, a secular term will arise. This requires commensurability in the periods of the
perturbed and perturbing planets. If P and P0 are these periods, then

P0

P
D n

n0 D �p2
p1

(11.187)

and p1 and p2 are integers. Jupiter and Saturn approach the ratio 5:2. The nature of
the periodic perturbations in an element such as� depends on the magnitude of Bp,
and on p1nCp2n0. Bp is not large in the solar system. If p1nCp2n0 is large for a given
pair of values . p1; p2/, then for these values of p1; p2 � will have periodic terms of
small amplitude and short period. These are short-period inequalities. If, for a pair
of values p1; p2, the quantity p1n C p2n0 is small, then � will have a perturbation
with a large amplitude and a long period. These are long-period inequalities. From
the equations for all the elements, it can be seen that all the elements, except a, will
exhibit secular and periodic changes, from analysis made to the first order in m0,
such as that for �. For the semimajor axis, however,

Pa D �2k2m0

na

X
p

Cpp1 sin �; p1 ¤ 0 (11.188)

Pa � 0; p1 D 0 (11.189)

The semimajor axis oscillates about the mean value a0, where a D a0 C ı.a/ with a
period

P D 2	

p1n C p2n0

where

ı.a/ D 2k2m0

na0

X
Cp

�
p1

p1n C p2n0

�
cos � (11.190)

It has been shown that to the third power in m0, there is no secular change in a.
This, of course, becomes important when considering the stability of the planetary
orbit. The analysis discussed can, of course, be applied to the other elements. The
expressions derived are only to first order, so they only contain the factor m0.

We started with the assumption that the elements were constants. If we now were
to re-substitute with the secular and periodic terms for the elements, we should
obtain the second approximation with terms in t2, which would all contain the factor
m02; and thus higher approximations are derived.

The semimajor axis, as mentioned, and the eccentricity, are critical for the
stability of the system. If the eccentricity changed sufficiently, we might have a close
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approach between planets and a radical change in orbits. In 1776, Lagrange showed
that the semimajor axis was stable to the first order. In 1809, Poisson showed the
same result applied when m02 terms are included. The higher order condition is less
certain. Hagihara (1957, 1972) has discussed the stability question. Laskar (2008)
and Laskar et al. (2011) presented a number of important results on the subject.

There are many more possible approaches to perturbation theory using various
coordinates such as rectangular coordinates, Hansen variables, and so on. Likewise,
other series such as Chebyshev series can be used in place of trigonometric series
(McCuskey 1963, pp. 153–158).

11.9 The Earth-Moon System

The motion of the Moon around the Earth influenced by the Sun is a complex
problem. This is due to the large mass ratio of the Moon with respect to the Earth
and the proximity of the Moon to the Earth. The primary mass, m1, is the Earth, m,
the perturbed mass, is the Moon, and m0 is the Sun. The Moon’s orbit is inclined
about 5ı to the ecliptic; for this discussion we will neglect this inclination. Also
we will neglect the eccentricity of the Earth’s orbit around the Sun. The Earth’s
eccentricity e D 0:016 has only a second order effect on the analysis. The problem
then is reduced to a two-dimensional one.

Let  be the celestial longitude of the Moon and  0 the longitude of the Sun, as
shown in Fig. 11.3.

From Eq. (11.157), with � D  �  0 the perturbation function becomes

R D k2m0

a0



1C

� r

a0
�2

P2 cos
�
 �  0�C : : :

�
(11.191)

Fig. 11.3 Sun-Earth-Moon
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where a0 is the assumed circular radius of the Earth’s orbit. R will be truncated at
second order terms in .r=a0/. From the Legendre coefficients we have

P2Œcos. �  0/
 D 1C 3 cos 2. �  0/
4

and since .r=a0/2 D .a=a0/2.r=a/2, R may be written as

R D k2m0

a0



1C 1

4

� a

a0
�2 � r

a

�2 D 3

4

� a

a0
�2 � r

a

�2
cos 2. �  0/

�
(11.192)

R must be expressed in terms of the elements of the Moon’s orbit. Neglecting the
terms in Eq. (11.166) containing e0, which has been assumed to be zero, we have

� r

a0
�2 D

� a

a0
�2 


1C 3e2

2
� 2e cos M � 1

2
e2 cos 2M

�
(11.193)

in terms of second order in e. Since the Moon, Sun, and Earth have been assumed
to be in the same plane, we take  D �C!C f , where f is the true anomaly of the
Moon. Then

� r

a

�2
cos 2

�
 �  0� D

� r

a

�2
cos

�
2f C 2

�
�C ! �  0�	 (11.194)

which is expanded to

2
� r

a

�2
cos2 f cos 2

�
�C ! �  0� �

� r

a

�2
cos 2

�
�C ! �  0�

� 2
h� r

a

�
sin f

i h� r

a

�
cos f

i
sin 2

�
�C ! �  0� (11.195)

From r cos f D a cos E � ae and r sin f D a sin E
p
1 � e2, and the expansions of

cos E and sin E in terms of M, we have

r

a
cos f D

�
1 � 3

8
e2
�

cos M C 1

2
e cos 2M C 3

8
e2 cos 3M

� 3

2
e (11.196)

r

a
sin f D

�
1 � 5

8
e2
�

sin M C 1

2
e sin 2M C 3

8
e2 sin 3M (11.197)
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Substituting these into Eq. (11.195) and using Eqs. (11.195) and (11.192) in
Eq. (11.191), we have for the disturbing function

R D k2m0a2

a03

8̂
<̂
ˆ̂:
1

4
C 3

8
e2 � 1

2
e cos M � 1

8
e2 cos 2M C 15

8
e2 cosŒ2.�C ! �  0/
„ ƒ‚ …

.i/

� 9

4
e cosŒ2.�C ! �  0/C M
C 3

4
cosŒ2.�C ! �  /C 2M
„ ƒ‚ …

.ii/

� 15

8
e2 cosŒ2.�C ! �  0/C 2M


C 3

4
e cosŒ2.�C ! �  0/C 3M
C 3

4
e2 cosŒ2.�C ! �  0/C 4M
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Terms of order higher than two in e have been ignored. The Moon’s mass has
also been ignored. A more complete expression of R can be found in Brouwer and
Clemence (1961).

While Eq. (11.198) is a simplified version of R, it indicates the complexity of
the Moon’s motion. Terms in R such as 3k2m0a2e2=.9a03/ cause secular variations
in the orbital elements. Terms involving only cos M and cos 2M are elliptical terms,
similar to terms in a series representation of Keplerian motion. The remaining terms
in R depend on the relative positions of the Moon and Sun, and are perturbative
terms. Some of these are called (i) evection and (ii) variation in Eq. (11.198).

Consider the effect of a typical term in R on the orbital elements and the Moon’s
longitude. The method of analysis for evection will be discussed. Denoting the
evection-related term by

A D 15

8
n02a2e2 cos 2.�C ! �  0/ (11.199)

where n02 D k2m0=a03, the differential equations for the orbital elements are

Pa D 2

na

@A

@M
D 0 (11.200a)

Pe D 15

4

n02e
n

sin 2.�C !0
 / (11.200b)

PM D n � 15

4

n02

n
.1C e2/ cos 2.�C ! �  0/ (11.200c)
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P! D d.�C !/

dt
D 15

4
.1� 1

2
e2/

n02

n
cos 2.�C ! �  0/ (11.200d)

P� D 0 (11.200e)

di

dt
D 0 (11.200f)

The last two follow from the assumption that i D 0. There is no perturbation in the
semimajor axis due to the evection term. Integrating the equations for Pe; PM; P! yields

e D e0 C 15

8

�
n0

n

�
e0 cos 2.�0 C !0 �  0/ (11.201)

M D M0 C 15

8

�
n0

n

�
.1C e20/ sin 2.�0 C !0 �  0/ (11.202)

�C ! D .�C !/0 C 15

8
.1 � 1

2
e20/

�
n0

n

�
sin 2.�0 C !0 �  / (11.203)

where the subscripts refer to the osculating orbit of reference.
In the integrations we recall  0 D �0 C !0 C n0.t � t0/, where n0; �0; !0 refer to

the Sun’s apparent motion around the Earth. Thus, the perturbations are

ı.e/ D 25

8

�
n0

n

�
e0 cos 2.�0 C !0 �  0/ (11.204a)

ı.M/ D 15

8

�
n0

n

�
.1C e20/ sin 2.�0 C !0 �  0/ (11.204b)

ı.�C !/ D 15

8

�
n0

n

�
.1 � 1

2
e20/ sin 2.�0 C !0 �  0/ (11.204c)

The first-order perturbations in longitude, ı. /, are determined from D �C!Cf
and f D M C 2e sin M. Then

ı. / D ı.�C !/C .1C 2e cos M/ı.M/C 2 sin Mı.e/ (11.205)

and using Eqs. (11.204)

ı. / D 15

4

�
n0

n

�
e0 sinŒ2.�0 C !0 �  0/C M
 (11.206)

The period of this longitude perturbation caused by the evection term is about one
month, with an amplitude of about one degree. Other perturbations would appear
if the effects of the Earth’s orbit eccentricity and Moon’s orbit inclination were
included in the analysis. These are perturbations in �, and, through Eq. (11.204c),
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in !. The appearance of i in the disturbing function and, thus, in @R=@i leads to

P� D �3
4

n02

n

i

sin i
	 �3

4

n02

n
(11.207)

since i is small. Thus,

ı.�/ D �3
4

n02

n
.t � t0/ D �3

4

n0

n
n0ıt (11.208)

where n0 D 2	=Pe, and Pe is the Earth’s orbital period around the Sun. Since for
the Moon n D 2	=PM, Eq. (11.208) can be written

ı.�/

2	
D �3

4

PM

Pe

ıt

Pe
D �0:056 ıt

Pe
(11.209)

This indicates that � changes by 2	 radians, when ıt D 6580 days, approximately
18 years. The minus sign shows the node of the Moon’s orbit regresses, i.e. moves
west along the ecliptic, with a revolution in about 18 years. This is a secular
perturbation, since the change in � is a linear function of time.

Hundreds of periodic terms are required to describe the lunar motion, as shown
by the exhaustive lunar theory of Brown (1896) and Eckert (Gutzwiller and Schmidt
1986). The principal secular effects are: (i) the line of nodes regresses at an average
rate of one revolution in 18.6 years; (ii) the line of apsides (the major axis of the
orbit) advances . P! > 0/ at an average rate of one revolution in 8.9 years (McCuskey
1963, pp. 158–162).

11.10 Expansion of the Gravitational Potential

Under the assumption that the origin of a planet-fixed reference frame coincides
with the center of mass of the body, the gravitational potential of an arbitrarily-
shaped body is given by the spherical harmonics expansion (Vallado 2001, pp. 508–
517)

V.r; �; �/ D Gm

r

(
1 �

1X
lD1

Jl

� req

r

�l
Pl.cos�/

C
1X

lD1

lX
jD1

Jlj

� req

r

�n
Plj .cos�/ cos

�
j
�
� � �lj

�	
9=
; (11.210)
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Here � is the geographic longitude measured eastward from the major axis of the
elliptical equatorial cross section that goes through the center of mass of the planet.
The angle � is the colatitude, i.e. the angle between the body Oz axis and the radius
vector, satisfying

cos� D Our � OuA D sin i sin.f C !/ (11.211)

Alternatively, we can use the latitude in the above expression, defined as ' D
	=2��, in which case the terms containing cos� in Eq. (11.210) and in subsequent
expressions are replaced by sin'.

We have seen the Legendre polynomials Pl in Sect. 11.8; these polynomials
are periodic on the surface of a unit sphere and vanish along l parallels, dividing
the surface into .l C 1/ zones, thereby earning the name zonal harmonics for the
coefficients Jl. These harmonics are responsible for the axially-symmetric part of
the gravitational potential.

The functions Plj are the associated Legendre polynomials of degree j and order
l, which are expressed as

Plj.x/ D 1

2llŠ
.1 � x2/j=2

dlCj

dxlCj
.x2 � 1/l (11.212)

The terms including the coefficient Jlj are collectively referred to as the tesseral
harmonics. Generally, the tesseral harmonics reflect the triaxiality of the planet.
The triaxiality makes itself most evident through the equatorial ellipticity.

In Eq. (11.210), the distance from the origin to the orbiting mass is given by the
usual expression,

r D a.1� e2/

1C e cos f
(11.213)

The quantity req is the mean equatorial radius of the planet, and m is its mass. The
sign convention is chosen so that, for a unit mass (cf. Eq. (11.7))

Rr D rV (11.214)

A planet owes its nonsphericity, i.e., its departure from the Newtonian potential,
to topographic features, some of which stand testimony to intrinsic geological
processes and some are signatures of massive impacts. Oblateness guarantees a
noticeable value of the coefficient J2, an issue which will be discussed in detail
in Chap. 12.
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In different notations, the potential may be written as

V.r; �; �/ D Gm

r

"
1 �

1X
lD1

Jl

� req

r

�l
Pl.cos�/

C
1X

lD1

lX
jD1

� req

r

�l
Plj.cos�/

�
Clj cos j�C Slj sin j�
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or, equivalently, as

V.r; �; �/ D Gm

r

1X
lD0

lX
jD0

� req

r

�l
Plj.cos�/

�
Clj cos j�C Slj sin j�

	
(11.216)

where the terms including the coefficients Clj are tesseral harmonics, and those
including Slj are called sectorial harmonics. For any l,

Pl.cos�/ D Pl0.cos�/ (11.217)

For l D 2; : : : ;1 and j D 1; : : : ; l,

Clj � Jlj cos j�lj; Slj � Jlj sin j�lj (11.218)

thus also defining the angle �lj in Eq. (11.210), while for l D 2; : : : ;1 and j D 0

we have

Cl0 D �Jl0 � �Jl (11.219)

For l D 0, we get

C00 � J00 � 1; P0.cos�/ D P00.cos�/ � 1 (11.220)

The l D 1 terms need some attention. For a general choice of the origin,

C11 D Xcm

req
; S11 D Ycm

req
; C10 � �J10 � �J1 D Zcm

req
(11.221)

Xcm;Ycm;Zcm being the Cartesian coordinates of the center of mass (Hobson 1965).
The coefficient J11 is then related to C11 and S11 through Eq. (11.218). If, however,
we choose to place the origin in the center of mass, we obtain

C10 � �J10 � �J1 D 0;C11 D 0; S11 D 0; J11 D 0 (11.222)

which spares us from all the l D 1 terms in Eqs. (11.210), (11.215), and (11.216).
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11.11 Atmospheric Drag

Some of the perturbations affecting low Earth orbit (LEO) satellites are atmospheric
drag and solar radiation pressure (SRP). Both the translational and rotational satel-
lite dynamics are affected by drag, which depends on the satellite’s aerodynamical,
thermal, and mechanical properties. The aerodynamical parameters are the density,
the drag coefficient, and the lift coefficient, while the mechanical properties are
related to the satellite’s structure and the cross-sectional area.

Satellite drag modeling has been a vibrant field of study. We shall cover
this topic in the current chapter only briefly, with emphasis on modelling drag
using analytical, rather than empirical, representations. Additional results, using
semianalytical theories, are provided in Sect. 13.3.4.

Satellite aerodynamics have been studied by Fredo and Kaplan (1981), who
suggested a numerical procedure for calculating aerodynamical coefficients by basic
geometric modeling of the satellite and division into finite elements, and the overall
coefficients were determined by integrating the differential force acting on each of
the exposed elements. The aerodynamical forces and torques acting on the space
shuttle were developed by Stone and Witzgall (2006). Sutton (2009) proposed two
analytical methods for calculating the drag and lift coefficients for long satellites,
and the statistical results were validated through the CHAMP and GRACE missions.
An improved method for aerodynamical model estimation was developed by Fuller
and Tolson (2009).

A drag coefficient model for different solar activities was developed by Cook
(1965), while the accuracy of the drag model for LEO satellites due to the density
uncertainty was examined by Marcos (1990). Calculation of the drag coefficient
for different geometrical shapes was performed by Moe et al. (1998), based on
orbital measurements. Diverse approaches for the drag effects on LEO satellites
were examined, and a high accuracy model for satellite drag was developed by Storz
et al. (2005). Most of the available methods for drag coefficient calculation of LEO
satellites were reviewed by Prieto et al. (2014).

The specific force due to atmospheric drag can be modeled as

Fdrag D �1
2

SCD

m
� .v � vatm/ kv � vatmk (11.223)

where m is the satellite mass, S is the cross-sectional reference area, CD is the drag
coefficient defined with respect to the cross-sectional area, v is the velocity and
� is the atmospheric density. The vector vatm is the atmospheric velocity. If the
atmosphere is assumed to be spherical and co-rotating with the Earth, then vatm D�
0 0 !e

	T � r, where !e is the Earth’s spin rate and r is the position vector.
The model used herein approximates the atmospheric density as (Battin 1999,

pp. 505–506)

� D �0 exp
� rp0 � r

H

�
(11.224)
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where �0 is the atmospheric density at the initial perigee radius, rp0, and H is the
density scale height of the atmosphere.

The drag specific force vector Fdrag, written in terms of the osculating elements,
can be expressed in the NTW frame (see Sect. 11.7 for a definition and sign
conventions) as (Liu and Zhao 1981)

T 0 D �1
2

K1n
2a2�

1C 2e cos f C e2

1 � e2

N0 D 0

W 0 D �1
2

K2na�r cos.! C f / sin i

�
1C 2e cos f C e2

1 � e2

�1=2
(11.225)

where K1 D .CDS1=m /Q , K2 D .CDS2=m / !e
p

Q , and Q D�1 � rp0!e cos i=vp0

�2
.

The variables S1 and S2 are the respective cross-sectional areas perpendicular to the
tangential and subnormal directions, and vp0 is the velocity at the initial perigee.
The drag components can be transformed from the NTW frame into the RSW frame
using the transformation (11.144).

11.12 Regularization of Perturbed Motion

The perturbed two-body problem discussed in this chapter exhibits singularities
when the orbiting body approaches the attraction center, i.e. when r ! 0. As
mentioned in Sect. 1.5.3, this singularity can be eliminated by a proper variable
transformation. One possibility is to use the Kustaanheimo-Stiefel (KS) variables
(Stiefel and Scheifele 1971). These variables are obtained by transforming the
Euclidean space into a spinor space, which is a complex vector space, and by
using a new independent variable called universal anomaly or fictitious time
(Kustaanheimo and Stiefel 1965). The KS formulation has proven efficient for
numerically integrating the equations of motion (Fukushima and Arakida 2000)
and for characterizing the long-term dynamics of satellites subject to perturbations
(Sharma and Raj 1988, 2009).

Recall that the equations of motion governing the perturbed two-body problem
can be written as (cf. Eq. (11.7))

Rr C �

r3
r D rR C G (11.226)

where r is the position vector, r , krk, � is the gravitational parameter, R is a
perturbing potential, and G denotes any perturbing non-conservative force per unit
mass.
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The KS transformation maps the three-dimensional space into a four-dimensional
space. Given an inertial position vector, more than one spinor can be determined.
However, the inverse transformation, from KS variables to the inertial space, is
always unique.

The KS variables are denoted by u D Œu1; u2; u3; u4
T . The injective, nonsingular
transformation from the KS variables to inertial coordinates is given by (Stiefel and
Scheifele 1971)

Qr D

2
664

x
y
z
0

3
775 D

0
BB@

u1 �u2 �u3 u4
u2 u1 �u4 �u3
u3 u4 u1 u2
u4 �u3 u2 �u1

1
CCA
2
664

u1
u2
u3
u4

3
775 D

2
664

u21 � u22 � u23 C u24
2.u1u2 � u3u4/
2.u1u3 C u2u4/

0

3
775 (11.227)

or compactly

Qr D L.u/u (11.228)

The symbol Q.�/ denotes the vector r augmented by a fourth zero component.
Equation (11.227) implies that the transformation from inertial coordinates to KS
variables is not unique.

Given an initial position vector r.0/ D Œx.0/; y.0/; z.0/
, one may transform it
into the KS representation as follows (Junkins and Singla 2004). If x.0/ � 0,

u1.0/ D
r
1

2
Œr.0/C x.0/
; u2.0/ D y.0/

2u1.0/
(11.229a)

u3.0/ D z.0/

2u1.0/
; u4.0/ D 0 (11.229b)

Otherwise,

u1.0/ D y.0/

2u2.0/
; u2.0/ D

r
1

2
Œr.0/� x.0/
 (11.230a)

u3.0/ D 0; u4.0/ D z.0/

2u2.0/
(11.230b)

This transformation is used to obtain the initial conditions in KS variables, given an
initial position vector in inertial coordinates. It is also seen from Eq. (11.227) that

r D u21 C u22 C u23 C u24 D kuk2 (11.231)
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As mentioned before, the regularizing transformation derived by Kustaanheimo
and Stiefel utilizes an independent variable called universal anomaly or fictitious
time. This variable, denoted by s, is defined through the Sundman transformation

dt D r ds; r
d.�/
dt

D d.�/
ds

(11.232)

From Eq. (11.232), it is readily seen that

t.s/ D
Z s

s0

r.S/dS (11.233)

Since 0 < r.s/ < 1, t.s/ is monotonically increasing and defined for every s.
Hence, one can invert t.s/ to determine s.t/.

Stiefel and Scheifele (1971) state that the equation governing the dynamics of
the perturbed two-body problem, formulated in terms of the fictitious time and the
KS variables, is

u00 C ˛.u;u0; s/
2

u D 1

4



kuk2 @R.u; s/

@u
C 2R.u; s/u

�
C kuk2

2
LTG (11.234)

where .�/0 denotes differentiation with respect to the new independent variable s.
The perturbing potential R is generally a function of time and the position vector r,
or equivalently, a function of u and s. The parameter ˛ is the total energy, given by

˛.u;u0; s/ D � � 2 ku0k2
kuk2 C R.u; s/ D �

r
� kPrk2

2
C R.r; t/ (11.235)

In order to integrate (11.234), u.0/ and u0.0/ are needed; u.0/ is computed from
Eqs. (11.229) or (11.230), and u0.0/ is obtained as

u0
1.0/ D 1

2

�
u1.0/Px1.0/C u2.0/Px2.0/C u3.0/Px3.0/

	
(11.236a)

u0
2.0/ D 1

2

� � u2.0/Px1.0/C u1.0/Px2.0/C u4.0/Px3.0/
	

(11.236b)

u0
3.0/ D 1

2

� � u3.0/Px1.0/� u4.0/Px2.0/C u1.0/Px3.0/
	

(11.236c)

u0
4.0/ D 1

2

�
u4.0/Px1.0/� u3.0/Px2.0/C u2.0/Px3.0/

	
(11.236d)
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The inertial velocity vector Pr.t.s// D ŒPx.t.s// Py.t.s// Pz.t.s//
T can be computed
from KS variables as (Stiefel and Scheifele 1971):

Px.t.s// D 2

r

�
u1.s/u

0
1.s/ � u2.s/u

0
2.s/ � u3.s/u

0
3.s/C u4.s/u

0
4.s/

	
(11.237a)

Py.t.s// D 2

r

�
u2.s/u

0
1.s/C u1.s/u

0
2.s/ � u4.s/u

0
3.s/� u3.s/u

0
4.s/

	
(11.237b)

Pz.t.s// D 2

r

�
u3.s/u

0
1.s/C u4.s/u

0
2.s/C u1.s/u

0
3.s/C u2.s/u

0
4.s/

	
(11.237c)

The solution of Eq. (11.234) represents the actual dynamics of the two-body
problem if u.0/ and u0.0/ satisfy the bilinear relation, which is stated as

u4.0/u
0
1.0/ � u3.0/u

0
2.0/C u2.0/u

0
3.0/� u1.0/u

0
4.0/ D 0 (11.238)

Once u.s/ is obtained, r.s/ can be determined through Eq. (11.227). To find r.t/,
s.t/ is substituted into r.s/.

If G D 0 and @R=@t D 0, then ˛.u;u0; s/ becomes constant, and Eq. (11.234)
assumes the form

u00 C ˛

2
u D 1

4



kuk2 @R.u/

@u
C 2R.u/u

�
(11.239)

Since ˛ is constant along the trajectory in the phase space, it can be computed
at s D 0. In such a case, the left-hand side of Eq. (11.239) becomes linear, and,
therefore, if the perturbing potential R is identically zero, this representation turns
the Keplerian two-body problem into a four-dimensional harmonic oscillator. This
observation implies that only perturbations generate nonlinear terms in Eq. (11.239).
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Chapter 12
Motion Around Oblate Planets

12.1 Introduction

An important perturbation affecting low planetary satellites is the planet’s oblate-
ness, approximated mathematically by the second zonal harmonic J2, discussed in
Sect. 11.10. The problem of motion in such a potential field is often referred to
as the main problem in artificial satellite theory, and has been the subject of many
studies over the years. Because the dynamics in this case are generally nonintegrable
dynamics, and might even exhibit chaos (Celletti and Negrini 1995; Irigoyen and
Simo 1993), as discussed in Sects. 1.5 and 1.6, the only possible closed-form
solutions may be obtained by approximating and/or averaging the J2 gravitational
potential.

The most important result in the context of the main problem was obtained
by Brouwer (1959). By using the von Zeipel method (von Zeipel 1921), inte-
grable approximations of motion under the J2 perturbing potential were obtained.
Brouwer’s results were later refined by several other authors, in order to eliminate
the singularities occurring at small inclinations and small eccentricities (Lyddane
1963; Izsak 1961). Some solutions were based on the Delaunay variables, discussed
in Sect. 10.10.

Another approximation for the gravitational potential of an oblate spheroid,
predominant in the Russian school, is that of two fixed attraction centers, which
is an integrable problem (Aksenov et al. 1961). Another analytical approach is
due to Vinti (1960), who used oblate spheroidal coordinates in order to find an
approximating potential for zonal harmonics up to J4.

A different approach to the main problem belongs to two Spanish scientists,
R. Cid Palacios and J. F. Lahulla Fornies. Their main work, published only in
Spanish (Cid and Lahulla 1969, 1971), introduced a new way of approximating
the potential of an oblate spheroid by using polar-nodal (Whittaker) coordinates.
The result reveals a new Hamiltonian, which, unlike the first-order Brouwer model,
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contains short-periodic terms. Moreover, the Cid-Lahulla model admits a closed-
form solution, expressed with the help of elliptic integrals (Lara and Gurfil 2012).

In this chapter, we will present analytic solutions to motion about an oblate
spheroidal planet. We begin by considering equatorial motion, and then proceed
to a more general approach, emanating from the Spanish school.

12.2 Axially-Symmetric Gravitational Field

Let us return to Eq. (11.7), describing the equations of motion of a mass particle
under the effect of Newtonian gravity and a perturbing potential R. We rewrite
Eq. (11.7) as

Rr D rW (12.1)

where as before r is the position vector in an inertial reference frame, but here W is
the total gravitational potential, or in other words

W D �

r
C R (12.2)

If the attracting body has a rotational symmetry, and the origin of the body’s
reference frame is set at the center of mass, then the potential W can be expanded
into a series of the form (see Eq. (11.215))

W .r; �/ D �

r

(
1 �

1X
nD2

Jn

� req

r

�n
Pn .cos�/

)
(12.3)

where as seen previously � is the gravitational parameter, r D krk, req is the
equatorial radius of the attracting body, Jn; n � 2 are the zonal harmonics
coefficients, Pn; n � 2 are the Legendre polynomials, which we have already seen
in Chap. 11, and � is the colatitude angle, defined as in Eq. (11.211).

The integrability of Eq. (12.1) with the potential (12.3) is a challenging problem.
It was proven that when only the J2 term is retained, the problem is generally
non-integrable (Celletti and Negrini 1995; Irigoyen and Simo 1993), except for
equatorial motion (for the definition of integrability, see Sect. 1.6.4). However, we
see that for � D 	=2, i.e in the equatorial plane,

W.r/ D �

r



1C J2

2

� req

r

�2 � 3J4
8

� req

r

�4 C 5J6
16

� req

r

�6 � : : :
�

(12.4)

meaning that the force induced by this potential will be a central force as discussed
in Chap. 4. We conclude that equatorial motion will be a central-force motion under
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any order of even zonal harmonics. This is particularly true when considering only
the J2 zonal harmonic.

12.3 Equatorial Motion

The gravitational potential considered here includes only the first term, J2, in
Eq. (12.4). Considering only J2 in Eq. (12.4), and adding the specific kinetic energy
v2=2, with v being the speed, we obtain the total specific energy

" D v2

2
� �

r



1C J2

2

� req

r

�2�
(12.5)

The total specific energy can be negative, positive, or zero. Similarly to the
Keplerian two-body case, discussed in Chap. 5, when the total specific energy is
negative, the motion is bounded. In contrast, a positive specific energy gives open
orbits, and zero total specific energy represents escape. This notion can be described
as follows. Define U D U .r/ to be the specific effective potential energy:

U .r/ � h2

2r2
� W .r/ (12.6)

If the effective potential energy U of the radial motion has a local minimum, and
the initial conditions are chosen adequately, then the motion is bounded between
two concentric circles, of radii 0 < rmin � rmax, with rmin and rmax being among the
roots of the algebraic equation

" � U .r/ D 0 (12.7)

The assumptions made on the effective potential energy U ensure that rmin and rmax

are simple roots of Eq. (12.7), and may be equal (circular motion).
If the constant energy line intersects the graph of the potential energy only once,

and the initial conditions are adequately chosen, then the motion is unbounded,
and Eq. (12.7) has only one simple positive real root, 0 < rmin: Two subcases of
the unbounded motion are possible: (i) the velocity vanishes at infinity, v1 D
limt!1 Pr .t/ D 0, and (ii) the velocity at infinity approaches asymptotically a
constant value, 0 < v1 < 1: Figure 12.1 shows examples associated with the
situations described above.

First we examine the case " < 0. Multiplying Eq. (12.5) by r3=" and re-arranging
leads to a cubic equation for the variable r,

r3 � v2

2"
r3 C �

"
r2 C �J2req

2

2"
D 0 (12.8)
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Fig. 12.1 Examples of orbits in the phase plane of the radial motion, associated with constant
levels of energy. Left: bounded orbit, " < 0. Middle: unbounded orbit, " D 0. Right: unbounded
orbit, " > 0

In the instantaneous periapsis and apoapsis the radial velocity is Pr D 0, and the
specific angular momentum is h D rv. By using this connection, Eq. (12.8) becomes

r3 C �

"
r2 � h2

2"
r C �J2req

2

2"
D 0 (12.9)

Equation (12.9) is a cubic equation with 3 real, positive solutions (Martinusi and
Gurfil 2011). The solutions of Eq. (12.9) will produce the radii of the circles on
which the periapsis and apoapsis lie (for closed orbits), denoted as above by rmin and
rmax, respectively, as well as a third solution r�, which satisfies 0 < r� < rmin < rmax.
Using Vieta’s formulae for polynomial equations, we can obtain the connections
(Martinusi and Gurfil 2011)

rminrmax.rmin C rmax/

J2req
2=2� rminrmax

D �

"
(12.10)

�
J2req

2

2

�
.rmin C rmax/

2

J2req
2=2� rminrmax

� rminrmax D h2

2"
(12.11)

r� D
�

J2req
2

2

�
rmin C rmax

rminrmax � J2req
2=2

(12.12)

It is possible to see that the radii of the periapsis and apoapsis depend on the specific
angular momentum, specific energy and the values of J2 and req. Due to the laws
of conservation these values remain constant, which implies that rmin; rmax remain
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Fig. 12.2 The orbit in the equatorial plane of an oblate planet (bold). The orbital angle ', and min
(periapsis) and max (apoapsis) circles, which define the motion

constant as well. Therefore, the values of rmin; rmax represent two concentric circles,
and the resulting motion can be seen in Fig. 12.2.

12.3.1 The Orbital Angle and Radial Period

Next we calculate the angle between rmin and the following rmax, which is the orbital
angle ' (as shown in Fig. 12.2), and the time between two consecutive rmin or two
consecutive rmax, which is the radial period T.

We begin by writing the position, velocity, and acceleration in polar coordinates,
as seen in Chap. 4,

r D r Our (12.13)

Pr D Pr Our C r P� Ou� (12.14)

Rr D
�

Rr � r P�2
�

Our C
�
2Pr P� C r R�

�
Ou� (12.15)

The derivative of the potential in a central force field includes only radial terms,
which represent attraction towards the center, and, therefore, the equations of motion
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are

Rr � r P�2 D @W

@r
(12.16)

2Pr P� C r R� D 0 (12.17)

From Eq. (12.17) we obtain the conservation of angular momentum,

h , r2 P� D constant (12.18)

Therefore,

P� D h

r2
(12.19)

By substituting Eq. (12.19) into Eq. (12.16),

Rr D h2

r3
C @W

@r
(12.20)

By defining the effective potential energy as in Eq. (12.6) we can obtain from
Eq. (12.20)

Rr D �@U.r/

@r
(12.21)

Integrating Eq. (12.21) with respect to time will result in

Pr D p
2 ." � U.r// (12.22)

Next we integrate Eq. (12.22) and obtain the radial period

T ,
Z rmax

rmin

2p
2 ." � U.s//

ds (12.23)

Using Eqs. (12.19) and (12.22) gives

d�

dr
D h

r2
p
2 ." � U.r//

(12.24)

Thus, the orbital angle is

' ,
Z rmax

rmin

hs�2p
2 ." � U.s//

ds (12.25)
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By using the definition of U while considering only J2, we obtain the connection

�
U

"
� 1

�
r3 D �1

�
r3 C �

"
r2 � h2

2"
r C �J2req

2

2"

�
(12.26)

Since rmin; rmax; r� are the solutions of Eq. (12.9), we can write Eqs. (12.23)
and (12.25) as

T D 2p�2"
Z rmax

rmin

s
3
2p

.s � r�/.s � rmin/.rmax � s/
ds (12.27)

' D hp�2"
Z rmax

rmin

s� 1
2p

.s � r�/.s � rmin/.rmax � s/
ds (12.28)

By using elliptic integrals we can write Eqs. (12.27) and (12.28) as

T D 2p�2"



C1E.w/C C2F.w/C C3P

�
rmax � rmin

rmax � r�
;
p

w

��
(12.29)

' D 2hE.w/

C2
p�2" (12.30)

where

w , .rmax � rmin/r�
.rmax � r�/rmin

(12.31)

C1 ,
r�2 C r�rmin C r�rmax � rminrmaxp

rmin.rmax � r�/
(12.32)

C2 ,
p

rmin.rmax � r�/ (12.33)

C3 ,
�r�2 � r�rmax C rmin

2 C rminrmaxp
rmin.rmax � r�/

(12.34)

and E;F;P are complete elliptic integrals of the first, second and third kind,
respectively, defined as

E.m/ ,
Z
0

1 1p
.1 � t2/.1� mt2/

dt (12.35)

F.m/ ,
Z
0

1
p
1 � mt2p
.1 � t2/

dt (12.36)

P.n; k/ ,
Z
0

1 1p
1 � t2.1 � nt2/

p
1 � k2t2

dt (12.37)
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12.3.2 New Orbital Elements

Using rmin; rmax we define new orbital elements for equatorial motion about an oblate
planet (Martinusi and Gurfil 2011):

a� , rmax C rmin

2
(12.38)

e� , rmax � rmin

rmax C rmin
(12.39)

p� , a�.1 � e�2/ (12.40)

where a� is equivalent to the classical semimajor axis, e� is equivalent to the
classical eccentricity, and p� is equivalent to the classical semilatus rectum, but all
have a different physical meaning compared to the osculating elements, because the
new elements are constants of motion.

By substituting Eqs. (12.38) and (12.39) into Eq. (12.40) we obtain

p� D 2rmaxrmin

rmax C rmin
(12.41)

We can define the specific energy in terms of the new orbital elements by
substituting Eqs. (12.38) and (12.41) into Eq. (12.10)

" D � �

2a�
C �J2req

2

4p�a�2
(12.42)

By comparing (12.42) and (12.5) we obtain an expression for the velocity,

v D
s�

2�

r
� �

a�

�
C
�
�J2req

2

r3
C �J2req

2

2a�2p�

�
(12.43)

and by using the definitions from Eqs. (12.38), (12.39) and (12.41) combined with
Eq. (12.11), we obtain the expression for the specific angular momentum,

h D
vuut�

 
p� � J2r2eq

2a�
C 2J2r2eq

p�

!
(12.44)

It is readily seen that the modified values for "; h and v are larger than the equivalent
Keplerian values.
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12.3.3 Open Orbits and the Escape Velocity

In previous sections, we examined bounded motion, and assumed that the specific
energy is negative (from Eq. (12.8)). Now we obtain expressions for the escape orbit,
mentioned in Sect. 4.6, which can be derived by nullifying the specific energy. Thus,
from Eq. (12.5)

" D v2

2
� �

r



1C J2

2

� req

r

�2� D 0 (12.45)

Solving for the velocity,

vesc ,

vuut2�

r

 
1C J2r2eq

2r2

!
(12.46)

Comparing the escape velocity (12.46) to the Keplerian model clearly shows that
a larger velocity is needed to escape an oblate planet. Therefore, by using the
Keplerian value, an escape trajectory cannot be reached. Next, we rewrite Eq. (12.9)
as

r3"C �r2 � h2

2
r C �J2req

2

2
D 0 (12.47)

Since " D 0,

2�r2 � h2r C �J2req
2 D 0 (12.48)

Solving Eq. (12.48) for r, we obtain two solutions, which represent rmin and r�,

rmin D h2 Cp
h4 � 8�2J2req

2

4�
(12.49)

r� D h2 �p
h4 � 8�2J2req

2

4�
(12.50)

Finally, we wish to obtain the orbital angle of the escape trajectory. Isolating the
specific energy from Eq. (12.10) yields

" D �
�
J2req

2=2� rminrmax
�

rminrmax.rmin C rmax/
(12.51)
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Using the definition for C2 from Eq. (12.33) and Eq. (12.51) gives

C2
p�2" D p

rmin.rmax � r�/

s
�
�
2rminrmax � J2req

2
�

rminrmax.rmin C rmax/
(12.52)

Rearranging Eq. (12.52) leads to

C2
p�2" D

s
2�r2minr2max � �J2r2eqrminrmax � 2�r2minrmaxr� C �J2r2eqrminr�

r2minrmax C rminr2max
(12.53)

For any escape orbit, rmax ! 1, and Eq. (12.53) becomes

C2
p�2" D p

2�rmin (12.54)

In addition, for rmax ! 1 Eq. (12.31) transforms into

w D r�
rmin

(12.55)

By substituting Eqs. (12.54) and (12.55) into Eq. (12.30) we obtain the orbital angle
for escape orbits, which defines the direction at infinity, towards which the orbiting
body moves,

'esc D 2hE.r�=rmin/p
2�rmin

(12.56)

The terms obtained in this section provide the general description of the escape
orbit from the equatorial plane of an oblate planet. A more thorough examination of
such orbits was performed by Martinusi and Gurfil (2013).

12.3.4 Circular Orbits

For circular orbits rmin D rmax , rc, and, therefore,

p� D a� D rc (12.57)
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By substituting Eq. (12.57) into Eqs. (12.42), (12.43), and (12.44) we obtain

vc D
vuut�

rc

 
1C 3J2r2eq

2r2c

!
(12.58)

"c D ��
2rc

 
1 � J2r2eq

2r2c

!
(12.59)

hc D
vuut�rc

 
1C 3J2r2eq

2r2c

!
(12.60)

From Eqs. (12.58), (12.59), and (12.60) it is seen that the velocity, specific energy,
and the specific angular momentum of a circular equatorial orbit around an oblate
planet are larger than the equivalent values obtained by using Keplerian motion for
the same radius rc.

Another important aspect of the circular equatorial motion is the fact that,
since there is no distinction between rmin and rmax, the orbital angle ' loses its
physical meaning, and, therefore, the radial period must be calculated in a different
manner. One possible method to calculate the period is by using the basic physical
connection

h D r2 P� (12.61)

which can be re-written as

d�

dt
D h

r2
(12.62)

Integrating Eq. (12.62) yields

TZ
0

dt D
�Z
0

r2

h
(12.63)

For a circle, � D 2	 , so

T D 2	
r2

h
(12.64)
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Using the expression for the specific angular momentum from Eq. (12.60) will lead
to the circular radial period in the presence of J2,

Tc D 2	

vuut r3c
�

 
1 � 3J2r2eq

2r2c C 3J2r2eq

!
(12.65)

12.4 The Cid-Lahulla Approach

In previous sections we presented solutions for equatorial motion under the effect
of the zonal harmonic J2. We now discuss an alternative approach, the Cid-Lahulla
approach, which yields approximate analytical solutions for inclined orbits as well,
through the concept of radial intermediaries.

12.4.1 Polar-Nodal Coordinates

We start by introducing the polar nodal coordinates .r; �; �;R; ‚;N/. We shall use
the original notation used by Cid and Lahulla (1969), which is as follows: r is the
magnitude of the position vector, � is the argument of latitude (denoted previously
by u in the context of Chap. 5), � is the right ascension of the ascending node
(previously denoted by �), R is the radial velocity (not to be confused with the
perturbing potential used previously), ‚ is the magnitude of the specific angular
momentum, and N is the polar component of the specific angular momentum vector,
i.e. the projection of the specific angular momentum vector on the inertial z axis.

The transformation between the inertial position and velocity vectors .r; v/ and
the polar-nodal coordinates .r; �; �;R; ‚;N/ is performed as follows. Let the three
unit vectors of the inertial planet-centered frame be Ox; Oy; Oz. Define the unit vectors
n1;2 as

n1 D
�

h � Oz=kh � Ozk h � Oz 6D 0
Ox h � Oz D 0

I n2 D Oh � n1 (12.66)

Then

r D krk I
�

cos � D Our � n1
sin � D Our � n2

I
�

cos � D Ox � n1
sin � D Oy � n1

I

R D r � v
r

I ‚ D kr � vk I N D .r � v/ � Oz
(12.67)
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The inverse transformation is performed by

R� D
2
4 cos � � sin � 0

sin � cos � 0

0 0 1

3
5 I Ri D

2
4 1 0 0

0 cos i � sin i
0 sin i cos i

3
5

R� D
2
4 cos � � sin � 0

sin � cos � 0

0 0 1

3
5 (12.68)

r D R�RiR�

�
r 0 0

	T
; v D h � r

r2
C R

r
r

(12.69)

where

cos i D N

‚
I sin i D

s
1 �

�
N

‚

�2
I h D r � v D R�Ri

�
0 0 ‚

	T
(12.70)

Some simplifications may be made to the above formulas. By using some
algebraic manipulations, one obtains:

Q
�D R�RiR� (12.71)

r D rQOxI v D Q
�

ROx C ‚

r
Oy
�
; h D ‚QOz (12.72)

12.4.2 The Cid-Lahulla Radial Intermediary

The Hamiltonian associated with the motion in a Cid-Lahulla potential is obtained
by using the von Zeipel method (von Zeipel 1921; Cid and Lahulla 1969). An outline
of the method is presented below.

Consider the Hamiltonian associated with the motion in a J2 potential, written in
polar-nodal variables,

H D 1

2

�
R2 C ‚2

r2

�
� �

r
� �J2r2eq

r3
.B20 C B22 cos 2�/ (12.73)

where

B20 D �1
4

�
1 � 3N2

‚2

�
(12.74a)

B22 D 3

4

�
1 � N2

‚2

�
(12.74b)
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Recall the methodology of canonical transformations discussed in Chap. 10
and consider a canonical transformation .r; �; �;R; ‚;N/ ! .r0; � 0; �0;R0; ‚0;N0/,
given by a generating function W which satisfies

R D @W
@r

‚ D @W
@�

N D @W
@�

r0 D @W
@R0 � 0 D @W

@‚0 �0 D @W
@N0

(12.75)

such that the new equations of the phase space are:

dR0

dt
D �@H

�

@r0
d‚0

dt
D �@H

�

@� 0
dN0

dt
D �@H

�

@�0

dr0

dt
D @H�

@R0
d� 0

dt
D @H�

@‚0
d�0

dt
D @H�

@N0

(12.76)

and the new Hamiltonian H� satisfies the equality

H� �r0; � 0; �0;R0; ‚0;N0� D H .r; �; �;R; ‚;N/ (12.77)

In order to determine the generating function W , expand H� and W into a series
depending on a small parameter of order J2 (von Zeipel 1921),

W D W0 C W1 C W2 C : : : (12.78a)

H� D H�
0 C H�

1 C H�
2 C : : : (12.78b)

and search for W0 of the form;

W0 D R0r C‚0� C N0� (12.79)

After some manipulations (Cid and Lahulla 1969), the expressions for H�
0 and H�

1

are obtained as

H�
0 D 1

2

�
R02 C ‚02

r02

�
� �

r0 (12.80a)

H�
1 D ��J2r2eq

r03 B0
20 (12.80b)

while the partial differential equation for W1 is written as

r3R0 @W1

@r
C‚0r

@W1

@�
C �

‚02 � �r
� @W1

@R0 D �J2r
2
eqB0

22 cos 2� (12.81)
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The associated differential equations are

dr

R0r3
D d�

‚0r
D dR0

‚02 � �r
D dW1

�J2r2eqB0
22 cos 2�

(12.82)

and the expression of the generating function W1 is found to be (Cid and Lahulla
1969)

W1 D �2J2r2eq

2‚03 B0
22

h
sin 2� C e sin .2� � f /C e

3
sin .2� C f /

i
(12.83)

where f is the (osculating) true anomaly of the orbit, e its (osculating) eccentricity,
both linked to r by

r D ‚2

� .1C e cos f /
(12.84)

By taking into account Eqs. (12.79), (12.83), as well as the equation

R D @W
@r

‚ D @W
@�

N D @W
@�

r0 D @W
@R0 � 0 D @W

@‚0 �0 D @W
@N0

(12.85)

where W is approximated as

W ' W0 C W1 (12.86)

the contact transformation is explicitly determined by using Eqs. (12.76) as follows
(Cid and Lahulla 1969):

R D R0 � 2�J2B0
22r

2
eq

3r2‚02 cos 2� (12.87a)

‚ D ‚0 C �2J2B0
22r

2
eq

‚03
h
cos 2� C e cos .2� � f /C e

3
cos .2� C f /

i
(12.87b)

N D N0 (12.87c)

r D r0 C �J2B0
22r

2
eq

3‚02 cos 2� (12.87d)
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� D � 0 � 3�2J2
8‚04

h
sin 2� C e sin .2� � f /C e

3
sin .2� C f /

i �
5 cos2 i0 � 3�

(12.87e)

C �J2B0
22R

0r2eq

3‚03 cos 2� � 4�J2B0
22r

2
eq

3‚02r
sin 2�

� D �0 C 3�2J2
4‚04

h
sin 2� C e sin .2� � f /C e

3
sin .2� C f /

i
cos i0 (12.87f)

where for convenience it was denoted

cos i0 �D N0

‚0 (12.88)

Equations (12.87) do not yield a closed-form expression for the contact trans-
formation, since Eq. (12.87b) involves solving a 6th order polynomial equation in
‚0: In order to overcome this issue, a first-order approximation of ‚0 about ‚ is
performed. The relationship between‚ and ‚0 may be written as

‚ D ‚0 C ˛

‚03 C ˇ

‚05 ; (12.89)

where
8̂̂
<̂
ˆ̂̂:

˛ D 3

4
�2J2r2eq

h
cos 2 � C e cos .2 � � f /C e

3
cos .2 � C f /

i

ˇ D �3
4
�2J2 N02r2eq

h
cos 2 � C e cos .2 � � f /C e

3
cos .2 � C f /

i (12.90)

Now, consider the function

h
�
‚0� D ‚0 C ˛

‚03 C ˇ

‚05 (12.91)

The approximation is made by considering the Taylor series expansion

h
�
‚0� D h .‚/C�‚0 �‚� dh

d‚0

ˇ̌
ˇ̌
‚

C .‚0 �‚/
2

2Š

d2h

d‚02

ˇ̌
ˇ̌
‚

C .‚0 �‚/3
3Š

d3h

d‚03

ˇ̌
ˇ̌
‚

C: : :
(12.92)
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which yields

0 D ˛

‚3
C ˇ

‚5
C �

‚0 �‚
� �
1 � 3˛

‚4
� 5ˇ

‚6

�
(12.93)

C .‚0 �‚/
2

2Š

�
12˛

‚5
C 30ˇ

‚7

�
� .‚0 �‚/

3

3Š

�
60˛

‚6
C 210ˇ

‚8

�
C : : : :

The linearized expression of ‚0 is

‚0 ' ‚
‚6 � 4˛‚2 � 6ˇ

‚6 � 3˛‚2 � 5ˇ
D ‚

�
1 � ˛‚2 C ˇ

‚6 � 3˛‚2 � 5ˇ

�
(12.94)

The rest of the equations needed to perform the transformation are

N0 D N (12.95a)

R0 D R C 2�J2B0
22r

2
eq

3r2‚02 cos 2� (12.95b)

r0 D r � �J2B0
22r

2
eq

3‚02 cos 2� (12.95c)

� 0 D � C 3�2J2
8‚04

h
sin 2� C e sin .2� � f /C e

3
sin .2� C f /

i �
5 cos2 i0 � 3

�
(12.95d)

� �J2B0
22R

0r2eq

3‚03 cos 2� C 4�J2B0
22r

2
eq

3‚02r
sin 2�

�0 D � � 3�2J2
4‚04

h
sin 2� C e sin .2� � f /C e

3
sin .2� C f /

i
cos i0 (12.95e)

It is necessary to derive also the inverse transformation, namely from
.r0; � 0; �0;R0; ‚0;N0/ to the .r; �; �;R; ‚;N/ variables. Given the complexity of the
system of equations (12.87), a direct approach to solve them for .r; �; �;R; ‚;N/
seems impossible. Therefore, a classical approximation from perturbation theory is
used (Brouwer 1959), and is presented below.

Let
˚
ck; c0

k

�
be the six-dimensional sets of old and new variables, respectively.

Assume that the transformation ck ! c0
k is given by the equation

ck
0 D ck C �f

�
cj
�

(12.96)
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where � denotes the small perturbing parameter (in the present case, � D J2). Then
the inverse transformation c0

k! ck may be approximated by

ck 	 c0
k � �f

�
cj

0� (12.97)

Consequently, the old-to-new contact transformation may be deduced by apply-
ing exactly the same procedure as in the old-to-new transformation, by considering
Eqs. (12.87) where J2 ! �J2 (Brouwer 1959).

12.4.3 Comparison with Brouwer’s Approximation

Like the Brouwer (1959) model, the Cid-Lahulla potential was derived based on the
classical method of von Zeipel (1921), but starting with a different set of canonical
coordinates. While the Brouwer first-order approximation is expressed with respect
to three constant Delaunay elements, namely

H�Brouwer
1

��;�;�;L0;G0;H0� D � �2

2L02 � �4J2r2eq

L03G03

�
�1
2

C 3

2

H02

G02

�
(12.98)

it contains no short-periodic terms. The Cid-Lahulla potential, to a first-order
approximation, is expressed with respect to four polar-nodal variables, of which
only two are constant, while the other two, r0 and R0, contain short-periodic terms,

H�Cid
1

�
r0;�;�;R0;N0; ‚0� D 1

2

�
R02 C ‚02

r02

�
� �

r0 C �J2r2eq

4r03

�
1 � 3

N02

‚02

�

(12.99)

12.5 Solution for Motion in a Cid-Lahulla Potential

Consider the Hamiltonian in Eq. (12.99). As done previously, denote by " the
constant specific energy of the motion, which is equal to the Hamiltonian expressed
in Eq. (12.99). For simplicity, the prime symbol will be omitted while carrying on
the computations associated with the new Hamiltonian. Hamilton’s equations yield

dr

dt
D R (12.100a)

d�

dt
D ‚

r2
C 3

2

�J2r2eq

r3
N2

‚3
(12.100b)

d�

dt
D �3

2

�J2r2eq

r3
N

‚2
(12.100c)
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dR

dt
D ��

r2
C ‚2

r3
C 3

4

�J2r2eq

r4

�
1� 3

N2

‚2

�
(12.100d)

d‚

dt
D 0 (12.100e)

dN

dt
D 0 (12.100f)

The equations are separable, based on the fact that‚ and N are constants. The radial
motion r D r .t/ satisfies (based on Eq. (12.99), as well as on the fact that R D Pr)

Pr2 D 2"C 2�

r
� ‚2

r2
� 1

2

�J2r2eq

r3

�
1 � 3N2

‚2

�
(12.101)

The only case of interest is when the total energy " is strictly negative, which
yields bounded orbits. Then Eq. (12.101) may be rewritten as

Pr2 D 2 j"j
r3

"
�r3 C �

j"jr2 � ‚2

2 j"jr � �J2r2eq

4 j"j
�
1 � 3N2

‚2

�#
(12.102)

The algebraic equation

r3 � �

j"jr2 C ‚2

2 j"jr C �J2r2eq

4 j"j
�
1 � 3

N2

‚2

�
D 0 (12.103)

has always at least one real solution, since it is a cubic equation. Denote by r1; r2; r3
the roots of Eq. (12.103). From the Vieta formulae, it follows

8̂
ˆ̂̂̂̂
<
ˆ̂̂̂̂
:̂

r1 C r2 C r3 D �

j"j
r1r2 C r2r3 C r3r1 D ‚2

2 j"j
r1r2r3 D ��J2r2eq

4 j"j
�
1 � 3

N2

‚2

� (12.104)

Assume that the conditions for Eq. (12.103) to have three real solutions are fulfilled.
The last of the Vieta formulae (12.104) shows that one of the roots might be
negative, depending on the orbit inclination. In any case, the equation for the radial
motion may be written as

Pr2 D 2 j"j
r3

.r � rmin/ .rmax � r/ .r � r�/ (12.105)
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(a) (b)

Fig. 12.3 Geometric interpretation of the motion in a Cid-Lahulla potential

where rmin;max are the actual bounds of the radial motion (see also Fig. 12.3a), while
r� is the third root of the algebraic equation (12.103), expressed as

r� D �
rmin C rmax

rminrmax � �
; �

�D �J2r2eq

2

�
1 � 3N2

‚2

�
(12.106)

The sign of r� depends on the sign of 1 � 3N2=‚2 D 1 � 3 cos2 i. Three cases are
distinguished,

i > cos�1
�
1=

p
3
�
; 0 < r� < rmin

i D cos�1
�
1=

p
3
�
; 0 D r� < rmin

i < cos�1
�
1=

p
3
�
; r� < 0 < rmin

(12.107)

The equations of motion are then

Pr2 D2 j"j
r3

.r � rmin/ .rmax � r/ .r � r�/ (12.108a)

P� D‚

r2
C 3

2

�J2r2eq

r3
N2

‚3
(12.108b)

P� D � 3

2

�J2r2eq

r3
N

‚2
(12.108c)
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with the initial conditions r .t0/ D r0, � .t0/ D �0, � .t0/ D �0, and the values of N
and ‚ determined based on the initial state .r0; v0/. Solving Eqs. (12.108) leads to
the analytical equations of motion.

12.5.1 Main Steps Towards a Solution

By manipulating Eq. (12.108a),

dt D ˙ r3=2drp
2 j"j .r � rmin/ .rmax � r/ .r � r�/

(12.109)

If r0 2 Œrmin; rmax
, then r .t/ 2 Œrmin; rmax
, for all t � t0, and, therefore, the
motion is bounded and so is the radial velocity Pr: The radial motion is periodic
(Arnold 1989), and its main period is denoted by T: Its value is determined from
Eq. (12.109),

T D 2p
2 j"j

rmaxZ
rmin

s3=2dsp
.s � r�/ .s � rmin/ .rmax � s/

: (12.110)

The closed-form expression for T may take three forms, depending on the orbit
inclination, as distinguished in Eqs. (12.107).

Consider the incomplete elliptic integrals F .�; �/ ;E .�; �/ ;… .�; �; �/ of first, second
and third kind, respectively, written by using the Jacobi notation, as follows: let
�1 � z � 1, 0 � k � 1, then

F .z; k/ D
zZ

0

dup
1 � u2

p
1 � k2u2

(12.111a)

E .z; k/ D
zZ

0

p
1 � k2u2p
1 � u2

du (12.111b)

….z; �; k/ D
zZ

0

du

.1 � �2u2/p
1 � u2

p
1 � k2u2

(12.111c)

and denote by K .�/ ;E .1; �/ and….1; �; �/ their complete counterparts.
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(i) If i > cos�1
�
1=

p
3
�

:

TC D
p
2pj"j

(
�rminrmax C r� .rmax C rmin C r�/p

rmin .rmax � r�/
K .wC/

C rmin .rmax � r�/p
rmin .rmax � r�/

E .1;wC/ (12.112)

C .rmin � r�/ .r� C rmin C rmax/p
rmin .rmax � r�/

…

�
1;

rmax � rmin

rmax � r�
;wC

�)

where

wC D
s
.rmax � rmin/ r�
.rmax � r�/ rmin

: (12.113)

(ii) If i D cos�1
�
1=

p
3
�

:

T0 D 2	�

.2 j"j/3=2 (12.114)

(iii) If i < cos�1
�
1=

p
3
�

:

T� D
p
2pj"j

(
�rminrmaxp

rmax .rmin � r�/
K .w�/

C rmax .rmin � r�/p
rmax .rmin � r�/

E .1;w�/ (12.115)

C rmin .r� C rmin C rmax/p
rmax .rmin � r�/

…

�
1;

rmax � rmin

rmax
;w�

�)

where

w� D
s
.rmax � rmin/ r�
rmax .rmin � r�/

(12.116)
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The solution to the system of differential equations (12.108a)–(12.108c) always
depends upon three integrals, which are functions of r 2 Œrmin; rmax
,

Jr D
rZ

rmin

s3=2dsp
.s � r�/ .s � rmin/ .rmax � s/

(12.117a)

Jh D
rZ

rmin

s�1=2dsp
.s � r�/ .s � rmin/ .rmax � s/

(12.117b)

J� D
rZ

rmin

s�3=2dsp
.s � r�/ .s � rmin/ .rmax � s/

(12.117c)

Their closed-form expressions may be deduced with the help of the incomplete
elliptic integrals, for all three possible cases shown in Eqs. (12.107).

It is useful to point out a few qualitative features of the motion. As assumed
previously, the radial motion is periodic, and its main period T is computed as in
Eqs. (12.112), (12.114) and (12.115). The motion may be visualized as follows. The
satellite moves in a variable plane (see Fig. 12.3a). For an observer for whom this
plane is fixed, the motion takes place on a rigid rosette (the trajectory of the motion
in a central force field, see Fig. 12.3b), which precesses about the normal to the
plane with the rate

P$ D 3

2

�J2r2eq

r3
N2

‚3
(12.118)

The orbital angle associated with the central motion (from the point of view
of another observer, for whom the rosette is fixed in space), denoted by 'orb, (see
Fig. 12.3b) is computed from

'orb D
rmaxZ

rmin

‚

r2
dt D ‚p

2 j"jJh .rmax/ (12.119)

Its values in the three situations (i)–(iii) are determined as (the superscripts

are: “C” for i > arccos
�
1=

p
3
�

, “.0/” for i D arccos
�
1=

p
3
�

and “�” for
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i < arccos
�
1=

p
3
�

):

'C
orb D 2‚p

2 j"j
K .wC/p

rmin .rmax � r�/
(12.120)

'
.0/
orb D 	 (12.121)

'�
orb D 2‚p

2 j"j
K .w�/p

rmax .rmin � r�/
(12.122)

During one radial period, the angle swiped by the position vector for an observer
for whom the rosette is fixed, is 2'. However, for an observer for whom the plane
of motion is fixed, the total angle swiped in the interval of time T is different,
because of the precession of the rosette about its normal, revealed in Eq. (12.127).
The quantity

�!orb D 2

rmaxZ
rmin

3

2

�

r
J2

r2eq

r2
N2

‚3
dt D 3�J2r2eqp

2 j"j
N2

‚3
J� .rmax/ (12.123)

is the angle of displacement of the rosette about its normal during an entire radial
period T, which may also be regarded as the displacement of any pericenter of the
rosette in the variable plane of motion. The closed-form expression for �!orb is
deduced based on the previous considerations, and the three cases are

�!
.C/
orb D6�J2r2eqp

2 j"j
N2

‚3

1

r�
p

rmin .rmax � r�/



K .wC/� 2 .rmax � r�/

rmax
E .1;wC/

�

(12.124a)

�!
.0/
orb D	�2J2r2eq

‚4
(12.124b)

�!
.�/
orb D6�J2r2eqp

2 j"j
N2

‚3

1

r�
p

rmax .rmin � r�/



K .w�/ � 2 .rmin � r�/

rmin
E .1;wC/

�

(12.124c)

The plane of motion precesses about the South-North axis, with the rate described
by Eq. (12.108c). The total angular displacement of this plane during a single radial
period is computed as

��orb D 2

rmaxZ
rmin

 
�3
2

�J2r2eq

r3
N

‚2

!
dt D �3�J2r2eqp

2 j"j
N

‚2
J� .rmax/ (12.125)
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The following additional notations will be useful in deriving the closed-form
solution of the motion in a Cid-Lahulla potential,

Jr .r/ D 1p
2 j"jJr .r/ (12.126a)

FR D 2p
2 j"jJr .rmax/ D T (12.126b)

J� .r/ D ‚p
2 j"jJh .r/C 3

2
�J2r

2
eq

N2

‚3
J� .r/ (12.126c)

F‚ D 2‚p
2 j"jJh .rmax/C 3�J2r

2
eq

N2

‚3
J� .rmax/ (12.126d)

J� .r/ D �3
2
�J2r

2
eq

N

‚2
J� .r/ (12.126e)

FN D �3�J2r
2
eq

N

‚2
J� .rmax/ (12.126f)

12.5.2 New Independent Variable

In Eq. (12.108a), the only case of interest is when

r� < rmin < r < rmax

which guarantees that r � r� > 0: The dependence of the radial distance r on time is
given by Eq. (12.109), which contains singularities and does not yield a closed-form
expression.

A change of variable may be performed as follows. Introduce the independent
variable � such that

dt D r3=2p
2 j"j .r � r�/

d�; � .tP/ D 0 (12.127)

where tP � 0 is defined as

tP D

8̂
ˆ̂̂̂̂
ˆ̂<
ˆ̂̂̂
ˆ̂̂̂
:

1p
2 j"j

r0Z
rmin

s3=2dsp
.s � r�/ .s � rmin/ .rmax � s/

; r0 � v0 � 0

T � 1p
2 j"j

r0Z
rmin

s3=2dsp
.s � r�/ .s � rmin/ .rmax � s/

; r0 � v0 < 0

(12.128)
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Then the initial value problem for the radial motion becomes

�
d

d�
r

�2
D .r � rmin/ .rmax � r/ ; r .0/ D rmin (12.129)

and its closed form solution is expressed as

r .�/ D a� .1 � e� cos �/ (12.130)

where the following notations were used:

a�
�D rmax C rmin

2
I e�

�D rmax � rmin

rmax C rmin
(12.131)

The radial motion is expressed exactly as in the Keplerian case, where the
function � D � .t/ is considered as the pseudo-eccentric anomaly and it is the
solution to the initial value problem (12.127). Unlike the Keplerian case, there does
not exist a Kepler-like equation connecting this function and the time variable t:

It is now possible to give the full closed-form solution to the motion in a Cid-
Lahulla potential. The solution is explicit with respect to the newly introduced
independent variable, the pseudo-eccentric anomaly � D � .t/, defined with the help
of the initial value problem (12.127).

Since the radial distance r is a periodic function of t, with the main period T,
it follows from Hamilton’s equations (12.108b) and (12.108c) that both functions
P� and P� are periodic, with the same main period T: By using Eqs. (12.108),
Eqs. (12.126) transform into

dJr D dt (12.132a)

FR D T (12.132b)

dJ� D d� (12.132c)

F‚ D � .t C T/ � � .t/ (12.132d)

dJ� D d� (12.132e)

FN D � .t C T/ � � .t/ (12.132f)

Care should be taken when dealing with the differential equalities for � and �, since
they are valid only for a limited time, given the definitions (12.117) for the integrals
Jr, Jh and J�: In order to extend these definitions over the entire interval Œt0;C1/,

P� D

8̂̂
<̂
ˆ̂̂:

d

dt
J� .r/ r � Pr � 0

� d

dt
J� .r/ r � Pr < 0

P� D

8̂̂
<̂
ˆ̂̂:

d

dt
J� .r/ r � Pr � 0

� d

dt
J� .r/ r � Pr < 0

(12.133)
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The quantities FR, F‚, and FN are the variations over a period of t, � , and �,
respectively, while � and � are periodic functions of t, with the main period T: Then
it can be stated that:

�
t � t0
FR

�
D
�
� .t/ � � .t0/

F‚

�
D
�
� .t/ � � .t0/

FN

�
; t � t0; (12.134)

where b�c denotes the floor function, where, for an integer n,

bxc D n; n � x < n C 1 (12.135)

By taking into account Eqs. (12.133), the solution to the Hamilton’s equations of
motion (12.108a)–(12.108c) is

r .t/ D a� Œ1 � e� cos � .t/
 (12.136)

� .r/ D �0 C
�
� � �0
F‚

�
F‚

C f� .Pr .t//J� .r .t//C Œ1 � � .Pr .t//
 ŒF‚ � J� .r .t//
gjt
t0

(12.137)

� .r/ D �0 C
�
� � �0

FN

�
FN

C f� .Pr .t//J� .r .t//C Œ1 � � .Pr .t//
 ŒFN � J� .r .t//
gjtt0
(12.138)

where � denotes the Heaviside step function,

� .x/ D
�
1; x � 0

0; x < 0
(12.139)

For computational purposes, it is useful to note that

� .Pr/ D � .sin � .t// (12.140)
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Chapter 13
Semianalytical Orbit Theory

13.1 Introduction

Semianalytical theories provide tools for propagating perturbed satellite orbits.
The power of these theories lies in the ability to efficiently calculate, and thereby
comprehend, the orbital dynamics of satellites. In many cases of practical interest,
as we will see in Chap. 14, satellite orbit control laws also utilize mean orbital
elements. The mean elements are most commonly defined as doubly-averaged ele-
ments, obtained from a doubly-averaged Hamiltonian. However, the mean elements
in the current chapter will be singly-averaged elements, obtained by removing the
short-periodic oscillations only.

There are various alternatives for calculating the mean orbital elements. One
possibility is to use an analytical theory, such as the Brouwer (1959) artificial
satellite theory, the Kozai (1959a) theory, the Brouwer and Hori (1961) theory,
or other theories, including those developed by Lane et al. (1962); Lane (1965);
Liu and Alford (1979, 1980); Hoots (1981); Lin and De-zi (1981); Liu (1983);
Bezdek and Vokrouhlickı (2004) to name only a few. An alternative is to use
batch processing to transform osculating to mean elements using least-square-type
approaches, such as those that we will discuss in Chap. 16. Brouwer-type theories
are usually sensitive to noise and modeling errors and cannot easily accommodate
thrust. Also, batch processing is not adequate for real-time on-board implementation
as it requires data accumulation for at least a complete orbital period. A different
option is to use recursive filtering, to be discussed in Chap. 16, to estimate the mean
elements.

The original efforts to write a computationally efficient semianalytical model
date back to the early Eighties, with the onset of the Draper Semianalytical Satellite
Theory (DSST) (Cefola et al. 1980; Zeis and Cefola 1980). DSST contains an
extensive treatment of perturbations, expressed in terms of equinoctial elements,
and can also be implemented in a recursive form (Taylor and Cefola 1982).
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In this chapter, we describe an approach for calculating the mean elements
from osculating elements. A semianalytical dynamical model that includes
zonal/tesseral/sectorial harmonics and drag is formulated to capture the daily,
long-periodic, and secular evolution of the mean orbital elements. Because there is
a tradeoff between precision and complexity, the semianalytical model is truncated
to include the control inputs, the long-periodic and secular terms up to J4=C33=S33,
and exponential drag. The mapping from mean to osculating elements is obtained
by adding the short-periodic effects of drag and zonal/tesseral/sectorial harmonics
to the mean elements.

13.2 Preliminaries

For easier reference, we will repeat some of the coordinate frame definitions made
in previous chapters (assuming an Earth satellite), to be used in this chapter. J2000
is an ECI frame. The epoch is January 1, 2000 at noon. The fundamental plane is
the mean Earth equator of epoch. The OxJ2000 axis is directed toward the mean vernal
equinox at epoch. The OzJ2000 axis lies along Earth’s mean rotational axis of epoch,
positive northward, and the OyJ2000 axis completes the setup.

The True-of-Date (TOD) frame is an Earth-centered, quasi-inertial coordinate
system. The epoch is the time of interest. The fundamental plane is Earth’s true
equator of epoch. The OxTOD axis is directed toward the true vernal equinox of epoch.
The OzTOD axis lies along Earth’s true rotational axis of epoch, positive northward,
and the OyTOD axis completes the setup.

The distinction between the TOD and J2000 coordinate systems is important for
the calculation of mean orbital elements, because the amplitude of the long-periodic
variation of the osculating elements depends on Earth’s nutation and precession.
This effect is particularly significant for the inclination. The long period of the
inclination in the TOD frame is around 5 months for low Earth orbits, and the
magnitude is slightly varying. However, the long period of the inclination in J2000
is about 3 months, and the magnitude could reach a few tenths of a degree. This
phenomenon is caused by precession and nutation. Thus, if measurements are
taken with respect to J2000, a transformation to TOD would be required. The
transformation of the respective position and velocity vectors can be written as

rTOD D NTPTrJ2000; vTOD D NTPTvJ2000 (13.1)

where P and N are Earth’s precession and nutation transformation matrices,
respectively, as determined by IAU-76/FK5 (Seidelmann 1992).
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In an inertial reference frame, the equations of motion for the perturbed Keplerian
two-body problem are written as

Rr C �

r3
r D F (13.2)

where as usual r is the position vector, r D krk, and F is the perturbation. As we
have seen previously, the position and velocity vectors can be written as functions
of time and the classical osculating elements

fa.t/; e.t/; i.t/; �.t/ ; !.t/ ;M0.t/g

with M0 denoting the mean anomaly at epoch. The variational equations for the
classical elements are written either in the Lagrange form (10.124) or the Gauss
form (11.131). We will rewrite these equations here for convenience. The LPE for a
perturbing potential R are

da

dt
D 2

na

@R

@M
(13.3a)

de

dt
D 1 � e2

na2e

@R

@M
�

p
1 � e2

na2e

@R

@!
(13.3b)

di

dt
D cot i

na2
p
1 � e2

@R

@!
� 1

na2
p
1 � e2 sin i

@R

@�
(13.3c)

d�

dt
D 1

na2
p
1 � e2 sin i

@R

@i
(13.3d)

d!

dt
D

p
1 � e2

na2e

@R

@e
� cot i

na2
p
1 � e2

@R

@i
(13.3e)

dM0

dt
D �1 � e2

na2e

@R

@e
� 2

na

@R

@a
(13.3f)

where n D p
�=a3, and the Gauss equations, with F D R0 Our C S0 Ou� C W 0 OuW as in

Eq. (11.115), are written as

da

dt
D 2

n
p
1 � e2

�
e sin f R0 C p

r
S0
�

(13.4a)

de

dt
D

p
1 � e2

na



sin f R0 C

�
cos f C e C cos f

1C e cos f

�
S0
�

(13.4b)

di

dt
D r cos .! C f /

na2
p
1 � e2

W 0 (13.4c)
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d�

dt
D r sin .! C f /

na2
p
1 � e2 sin i

W 0 (13.4d)

d!

dt
D

p
1 � e2

nae



� cos f R0 C sin f

�
1C r

p

�
S0
�

� r cot i sin .! C f /p
�p

W 0 (13.4e)

dM0

dt
D 1

na2e

�
.p cos f � 2er/ R0 � .p C r/ sin f S0	 (13.4f)

where p D a
�
1 � e2

�
and f is the true anomaly.

A common definition of the mean elements relies on the averaging operator,
which, for some given vector-valued periodic function s.t/ with period T is defined
by (Battin 1999; pp. 503–504)

Ns D hs.t/i , 1

T

Z T

0

sdt D 1

2	

Z 2	

0

s
1p
1 � e2

� r

a

�2
df D 1

2	

Z 2	

0

sdM (13.5)

where M is the mean anomaly. Thus, any mean element Nci; i D 1; 2; : : : ; 6 is
obtained from the osculating element ci; i D 1; 2; : : : ; 6 through

Nci D hci.t/i , 1

T

Z T

0

ci.t/ dt (13.6)

where T denotes the orbital period. Thus, mean elements in the current context are
obtained by removing the oscillatory motion with a period equal to an orbital period
through single averaging. This definition is consistent with other semianalytical
theories (Cefola et al. 1980).

An analytical mean-elements calculation scheme was proposed by Kozai (1959a)
and Brouwer (1959), who used the averaging technique to isolate the short-periodic
terms ci;short in the sense

Nci .t/ D ci .t/ � ci;short .t/ ; i D 1; 2; : : : ; 6 (13.7)

This implies that

PNci .t/C Pci;short .t/ � gi D Ngi C gi;short; i D 1; 2; : : : ; 6 (13.8)

In the Brouwer-Kozai formulation, PNci .t/ consists of secular and long-periodic terms,
namely

Ngi D gi;sec C gi;long; i D 1; 2; : : : ; 6 (13.9)
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where, written as functions of the orbital elements, for any i D 1; 2; : : : ; 6,

gsec D gsec
�Na; Ne; Ni� ; glong D glong

�Na; Ne; Ni; N�; N!�
gshort D gshort

�Na; Ne; Ni; N�; N!; NM� D g � Ng (13.10)

13.3 Semianalytical Models

In this section, the semianalytical astrodynamical models used for the propagation
of the mean elements will be discussed, including zonal, tesseral, and sectorial
harmonics, as well as atmospheric drag. We will omit the bar notation of the mean
elements for simplicity.

13.3.1 The Zonal Part of the Geopotential

Recalling Eq. (11.210), the perturbing gravitational potential including zonal har-
monics only is given by

Rzonal D ��
r

1X
nD2

Jn

� re

r

�n
Pn .sin '/ (13.11)

where, as we have seen in Sect. 11.10, Jn; n D 2; 3; : : : are the zonal gravitational
coefficients, ' is the latitude, sin ' D sin i sin u , u D ! C f is the argument
of latitude, re is Earth’s mean equatorial radius, and Pn .x/ denotes a Legendre
polynomial of the first kind of order n, which is expressed as

Pn .x/ D 1

2nnŠ

dn

dxn

�
x2 � 1

�n
(13.12)

The potential Rzonal is averaged prior to substitution into Eqs. (13.3). Applying the
averaging operator (13.5) gives

NRzonal D 1

2	

Z 2	

0

Rzonal
1p
1 � e2

� r

a

�2
df D Rsec C Rlong (13.13)

To evaluate the integral in Eq. (13.13), the zonal potential should be written as a
function of the classical orbital elements. The resulting variational equations can be
written as follows (Danielson et al. 1995), where we use the standard notation for
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the binomial coefficient,

�
n
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The secular element variations are
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where
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(13.15)
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(13.16)

The long-periodic terms are

Palong D 0

Pelong D �
�
1 � e2

e
tan i

�
di=dt long
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where

ı1 D 1

2
Œ1 � .�1/n
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�
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1 p ¤ 0
(13.18)
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13.3.2 Second-Order Effects

As pointed out by Brouwer (1959), due to the nonlinear nature of the variational
equations, the short-periodic terms contribute both secular and long-periodic varia-
tions of O. J22 /.

The resulting short-periodic averaged potential, after transforming into the
classical orbital elements, is given by

NRshort D 3J22r
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128�7a5
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5�2 � 4�� 5 � cos2i

�
18�2 � 24�� 10� C

cos4i
�
5�2 C 36�C 35

�C e2
�
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(13.21)

where � D p
1 � e2 .

Substituting Eq. (13.21) into the LPE (13.3) provides the second-order secular
effects, resulting from the short-periodic terms,
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The expressions for the second-order long-periodic terms are
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In addition, Kozai (1959a) derived the short-periodic terms of O .J2/, which are
given by
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13.3.3 The Tesseral-Sectorial Part of the Geopotential

The dominant tesseral and sectorial harmonics (degree 2 and order 2) have a
period of approximately half a day, which is much longer than the orbital period.
Hence, tesseral and sectorial harmonics may have a significant effect on the
long-periodic dynamics. The perturbing gravitational potential of the tesseral and
sectorial harmonics as given in Sect. 11.10 is
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 (13.25)

where � is the geographic longitude of the satellite measured eastward from
the Greenwich meridian, Cnm, Snm are harmonic coefficients, and Pnm .x/ are the
associated Legendre polynomials of degree n and order m, which are expressed as
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The geopotential up to degree 3 and order 3 can be written based on Eq. (13.25),
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Using the averaging method presented in Sect. 13.2, the long-periodic perturbing
potentials of the tesseral and sectorial harmonics up to degree 3 and order 3 can be
derived,
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where�s D � � � , and � is the Greenwich sidereal angle.
Substituting Eq. (13.28) into Eq. (13.3) yields the rates of change of the long-

periodic components contributed by tesseral and sectorial harmonics,
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By defining
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The Kozai (1959a) method yields the short-periodic terms due to the tesseral and
sectorial harmonics,

ashort;22 D �3
2

J22
a

r2e

�
�
.1C cos i/2



1

1�� cos .2M C 2! C 2�e/�1
2

e

�
1

1 � 2� cos .M C 2! C 2�e/

� 21

3 � 2�
cos .3M C 2! C 2�e/

��
C.1 � cos i/2



1

1C �
cos .2m C 2! � 2�e/

� e

2

�
1

1C 2�
cos .M C 2! � 2�e/� 21

3 � 2�
cos .3M C 2! � 2�e/

��

C3esin2i



1

1 � 2�
cos .M C 2�e/C 1

1C 2�
cos .M � 2�e/

�

(13.34)

eshort;22 D �3
4

J22
� re

a

�2

�
�
.1C cos i/2



1

2 � 4�
cos .M C 2! C 2�e/C 7

6 � 4�
cos .3M C 2! C 2�e/

C e

2

�
1

� � 1
cos .2M C 2! C 2�e/C 17

2 � �
cos .4M C 2! C 2�e/

��

C .1 � cos i/2



1

2C 4�
.cos .M C 2! � 2�e//C 7

6C 4�
cos .3M C 2! � 2�e/

C e

2

�
� 1

1C �
cos .2M C 2! � 2�e/C 17

2C �
cos .4M C 2! � 2�e/

��

C 2sin2i



3

2 � 4�
cos .M C 2�e/C 3

2C 4�
cos .M � 2�e/

C9e

4

�
1

1 � � cos .2M C 2�e/C 1

1C �
cos .2M � 2�e/

��

(13.35)



13.3 Semianalytical Models 341
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Mshort;22 D �9
4

J22
� re

a

�2

�
�
.1C cos i/2



1

1 � �

�
1 � 1

2 � 2�

�
sin .2M C 2! C 2�e/

� e

1 � 2�

�
1 � 1

2 � 4�

�
sin .M C 2! C 2�e/

� 7e

3 � 2�

�
1 � 3

6 � 4�

�
sin .3M C 2! C 2�e/

�

� .1 � cos i/2



e

1C 2�

�
1 � 1

2C 4�

�
sin .M C 2! � 2�e/

� 7e

3C 2�

�
1 � 3

6C 4�

�
sin .3M C 2! � 2�e/

� 1

1C �

�
1 � 1

2C 2�

�
sin .2M C 2! � 2�e/

�

C 6esin2i



1

1 � 2�

�
1 � 1

2 � 4�

�
sin .M C 2�e/

C 1

1C 2�

�
1 � 1

1C 2�

�
sin .M � 2�e/

�

� !short;22 ��short;22 cos i

(13.39)

where�e D �s � �22, � D !e=n, and !e is the Earth spin rate.

13.3.4 Atmospheric Drag

Recall the drag modelling done in Sect. 11.11. Substituting Eqs. (11.225) and
(11.144) into Eq. (13.4) yields
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The atmospheric density can be expanded into a series dependent upon modified
Bessel functions (Brouwer and Clemence 1961; Breiter and Metris 1994), a
procedure that results in the following variational equations for the secular terms,
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with t0 denoting the time of epoch, while the long-periodic terms are given by
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Finally, the effect of the short-periodic terms can be obtained following the method
of Kozai (1959a),
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13.4 Frozen Orbits

An important application of semianalytical orbit theory is the ability to find frozen
orbits. These orbits have constant mean semimajor axis, eccentricity, inclination,
and argument of perigee. For a variety of reasons, among which is precision altitude
keeping, these kinds of orbits are advantageous for Earth remote sensing, mapping
and observation, and have been used in missions such as RadarSat, Topex, CloudSat,
and Aqua (Gurfil and Lara 2013).

The frozen orbit design is commonly done in a J2-J3 model by finding the null
rate of variation of the eccentricity and argument of periapsis in the Lagrange
equations (10.124) for the mean elements (Cutting et al. 1978). However, higher-
degree zonals may have a non-negligible influence on the frozen orbit geometry,
and, thus, could be needed for a precise orbit design (Rosborough and Ocampo
1992; Shapiro 1995).

The frozen orbit is defined in terms of mean elements, but the computation
of the nominal orbit requires the recovery of the short-periodic effects (that are
eliminated by averaging). This procedure can be efficiently carried out by means of
the perturbation approach relying on Lie transforms (Gurfil and Lara 2013), which
shows the important qualitative effects that subsequent zonal harmonics introduce
into the frozen orbit problem (Coffey et al. 1994). However, the traditional J2-J3
approach may remain valid for low-eccentricity orbits, assuming that they are far
enough from the equatorial plane.

Although the frozen orbit definition is tied to an averaging process, these orbits
can also be identified as periodic orbits in the meridian plane of the satellite and,
therefore, can be computed directly from the non-averaged equations, as shown by
Broucke (1994) and Lara et al. (1995). The direct computation of frozen, periodic
orbits shows that a subset of frozen orbits are also periodic in the three dimensional
space. Indeed, those periodic orbits in the meridian plane of the satellite, whose
node rotation rate is commensurate with the orbit mean motion, will close in three-
dimensional space. In inertial space, this could happen after very long periods, but
in a rotating frame attached to the Earth, these three-dimensional periodic orbits are
ideal candidates for repeat ground-track orbits (RGT) (Lara 1999), to be discussed
in the next section.
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In the case of Earth-like bodies, the second-order zonal harmonic dominates over
all other harmonics of the expansion of the perturbing gravitational potential. Thus,
the main part of these perturbing effects can be studied from the truncation of the
perturbing gravitational potential, derived based on Eq. (11.210) up to J2, which
yields
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r

�2
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2
sin2 i C 3

2
sin2 i cos 2u

�
(13.45)

where as before � is the gravitational parameter, re is the equatorial radius, and
u D f C ! is the argument of latitude.

As we have seen previously, this simple perturbation model is usually expanded
into a trigonometric series with arguments of the type ˇ D j M C k!, with j and k
being integers (Kaula 1966), where M is the mean anomaly and ! is the argument of
periapsis. From this expansion, one can distinguish among the secular terms j D k D
0, the long-periodic terms j D 0; k ¤ 0, and the short-period terms j ¤ 0. Recall
that the disturbing function does not depend on �, because of the axial symmetry
of the zonal model with respect to the polar axis. The Lagrange equations used in
previous sections can be used to show that the arguments of the node and perigee,
and also the mean anomaly, undergo secular effects, whereas all the elements exhibit
periodic effects.

The transformation from osculating to mean elements can be written to first order
in J2 using a direct application of the averaging operator (13.5). Thus, denoting by
primes the mean elements or functions thereof,
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where � D p
1 � e2.

This form of the potential reveals a specific inclination where the secular effects
on the argument of perigee vanish. From the Lagrange planetary equations, up to
O.J2/,

d!0

dt
D n0

� re

a0
�2 3J2
4�04 .4 � 5 sin2 i0/ (13.47)

where a (and, therefore, the mean motion n), e, and i are unaffected by secular
variations, and, hence, the corresponding mean values a0, n0, e0, and i0 are constant.
In consequence, the inclinations satisfying sin2 i0 D 4=5 freeze the mean perigee to
a constant value. Each value is called the critical inclination,

i0crit D 63:435ı; 116:565ı (13.48)

where the first value represents a direct orbit and the second represents a retrograde
orbit.
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Table 13.1 Inclination polynomials
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The truncation up to the first-order in J2 of the transformation from osculating
to mean elements is only able to deal with the secular effects. However, since
long-periodic effects are related to the motion of the argument of perigee, it seems
unrealistic not to deal with them when assessing a frozen perigee condition (Gurfil
and Lara 2013). A second-order truncation in the transformation equations from
osculating to mean elements enables to cope with long-periodic effects of the
disturbing function (Deprit 1981; Coffey et al. 1986),
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where s � sin i, and the inclination polynomials mi;j are given in Table 13.1. Since
we only deal here with mean elements, in what follows we drop the prime notation.

Now, the Lagrange planetary equations give
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where the inclination polynomials � are given in Table 13.1.
As opposed to the first-order condition in Eq. (13.47), Eq. (13.50) shows that

long-periodic effects in the eccentricity constrain the frozen orbits to exist only when
! D k	=2, with k an integer. In addition, the second-order effects in Eq. (13.51)
slightly modify the critical inclination value.
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The mean elements representation has reduced the phase space of the J2 problem
to a single degree of freedom problem in e and !, which is made only of
closed curves and equilibria. The representation of the reduced phase space can
be made without need of integrating the differential equations of the reduced flow,
Eqs. (13.50) and (13.51), by means of contour plots of the energy or the disturbing
function Eq. (13.49). We see from Eq. (13.50) that circular orbits, up to long-term
effects, remain circular. Therefore, although the argument of perigee is undefined
for this case, circular orbits are equilibria of the reduced problem and, hence, they
are also frozen orbits.

We note that while Eqs. (13.50)–(13.51) fully describe the frozen orbits problem,
if second-order effects of J2 are taken into account, one cannot neglect other effects
of the geopotential, such as those of J3 and J4. Indeed, J3 breaks the equatorial
symmetry of the problem, and, thus, introduces qualitative changes in the reduced
phase space (Coffey et al. 1994). Finally, the inclusion of J4 in the geopotential
makes radical changes in the frozen orbits diagram, stabilizing the behavior of
frozen orbits with perigee at ˙	=2. The perturbing potential is
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where the inclination polynomials Qmi;j are given in Table 13.1. From Eq. (13.52) we
obtain
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(13.54)

where the inclination polynomials Q�i;j are given in Table 13.1.
For frozen orbits with low eccentricities, e D O.J2/, the terms factored by J22 and

J4 are of higher order in Eqs. (13.53) and (13.54) when compared to those factored
by J2 and J3 and, therefore, can be neglected. Besides, except for the case of orbits
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that are very close to the equator, one can also neglect the term in Eq. (13.54) that is
factored by J3 e=s, thus leading to the classical equations for determining the (almost
circular, non-equatorial) frozen orbit conditions
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Equation (13.55) vanishes for ! D ˙	=2, which leaves the computation of the
frozen orbit’s eccentricity limited to the solution of the algebraic equation

n
� re

a

�2 3J2
4�4

.4 � 5sin2 i/

�
1˙ re

a

J3
J2

sin i

2e �2

�
D 0; (13.57)

which, for orbits out of the critical inclination, implies that the second parentheses
must vanish, and, hence
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13.5 Sun-synchronous and Repeat Ground-track Orbits

In Earth imaging missions, it is often required to have the satellite pass over the
same part of the Earth at roughly the same local time each day. The resulting orbit
is called a sun-synchronous orbit (SSO).

To obtain conditions for sun synchronicity, we use the following notation:�n is
the RAAN of the satellite, �s is the right ascension of the Sun, and�ns D �n ��s

is the local hour angle. The local time of the ascending node (LTAN) is then

LTAN Œhr
 D 12C �ns Œdeg


15
(13.59)

From the Lagrange equations, we know that, up to the order of J2,
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2
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�
re
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Sun synchronicity is defined as

P�n D P�s D 2	

1 Œyear

(13.61)
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or

Ksa
�7=2 cos i

.1 � e2/2
D P�s; Ks D �3

2
J2

p
�r2e (13.62)

Usually, the orbit is near-circular, so the effect of eccentricity is small. Thus, the
drift rate can be controlled by modifying a and i, as will be seen in Chap. 14.

However, if the satellite is designed for observing specific regions on Earth, as
opposed to global observations, sun synchronicity is not enough. It is then also
required that the satellite traces the same track on the ground with a given periodicity
pattern. The orbital elements are chosen so that the satellite completes an integer
number of revolutions in an integer number of days. This would then constitute an
RGT orbit, mentioned in the previous section.

Suppose that the satellite should complete j orbits in k days. The calculation of
the required altitude is done iteratively. The first iteration assumes a spherical Earth,
and the next iteration uses the obtained result to yield an improved result, taking
into account the effect of J2.

In the first iteration, we calculate the altitude h from the orbital period,

T D kTday

j
D 2	

s
.re C h/3

�
; Tday D 86164 sec (13.63)

yielding

h D
"
�

�
kTday

2	j

�2#1=3
� re D 42164:173

�
k

j

�2=3
� re Œkm
 (13.64)

Now we can introduce the effect of J2 by using the semimajor axis a D re C h in
the Lagrange equations for the mean elements,

P� D Ksa
�7=2 �1� e2

��2
cos i (13.65a)

P! D �1
2

Ksa
�7=2 �1 � e2

��2 �
5 cos2 i � 1

�
(13.65b)

PM D �1
2

Ksa
�7=2 �1 � e2

��3=2 �
3 cos2 i � 1� (13.65c)

The amended angular velocity of the orbit is

n D j

k

�
!e � P� � PM � P!� (13.66)
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where !e is the angular velocity of the Earth, which yields the new altitude

h D
� �

n2

�1=3 � re (13.67)

In addition, we require sun synchronicity according to Eq. (13.62). The semimajor
axis has been defined by Eq. (13.67), so Eq. (13.62) provides a single relation for
the inclination and eccentricity. Thus, another degree of freedom exists, which may
be used to require that the orbit be circular or frozen. Then, another iteration is
performed with the set values of e and i to recalculate the semimajor axis.

13.6 Geostationary Orbits

Circular, equatorial, eastward orbits whose periods are equal to the Earth’s rotational
period, are called geostationary orbits (GEO). These orbits are widely used by
communication satellites and weather satellites. If the inclination and eccentricity
of a GEO are not zero, the orbit becomes a geosynchronous orbit. The dynamics in
a GEO are affected by perturbations, the most significant of which are the zonal
harmonics, the tesseral harmonics, the lunisolar gravitation, and solar radiation
pressure. To obtain a semianalytical model of the dynamics in GEO, we will
utilize the nonsingular elements defined in Eq. (10.128), and the variational equa-
tions (10.129), but with a slight modification: We redefine � to be the geographical
longitude, measured along the equator and then along the orbital plane,

� D M C ! C� � � (13.68)

The variable � is the Greenwich sidereal angle (recall Eqs. (13.28)), measured from
the instantaneous equinox. Hence, Eq. (10.129b) is replaced by

P� D n � P� � 2

na

@R

@a
C �

2na2

�
�
@R

@�
C �

@R

@�

�
C 1

2 na2�

�
p
@R

@p
C q

@R

@q

�
(13.69)

An expression that relates the motion of the equinox to the variation in P� , in units
of sidereal days, can be written as (Vallado 2001; p. 184)

P� D !e C 5:96006� 10�11TUT1 � 5:9 � 10�15T2UT1

where!e is the Earth’s rotation rate, and TUT1 is the number of Julian centuries since
the J2000 epoch. The value of !e used here is 6:3003880944 rad/day.

For nearly-circular orbits, the values of � and � remain small and Eqs. (10.129c)–
(10.129d) are decoupled from the rest of the equations. Also, for near-equatorial
orbits, the values of p and q are small and the coupling between Eqs. (10.129a)–
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(13.69) and Eqs. (10.129e)–(10.129f) can be neglected. Thus, the satellite motion in
the orbital plane can be treated separately from the out-of-plane motion.

Typically, the perturbing potential is written as (Belyanin and Gurfil 2009)

R D Re C Rls (13.70)

The terms Re and Rls are generated by Earth’s triaxiality and by the lunisolar grav-
itation, respectively. The expression for Earth’s perturbing gravitational potential is
taken from Eq. (11.215),

Re D �

r

h
�

1X
lD2

� re

r

�l
JlPl.cos�/

C
1X

lD2

lX
mD1

� re

r

�l
Plm.cos�/ŒClm cos m�C Slm sin m�


i (13.71)

where � is the colatitude angle, satisfying

cos� D sin.! C f / sin i (13.72)

and f is the true anomaly; re D 6378:1363 km is the Earth’s equatorial radius, and
we recall that Plm is a Legendre polynomial of degree l and order m, Jl are the
coefficients of the zonal harmonics, and Clm, Slm are the coefficients of the tesseral
harmonics.

For circular orbits, the significant terms of Earth’s perturbing potential inducing
long-periodic and secular perturbations, written in terms of mean elements as
elaborated in Sect. 13.3, are

Re 	 RJ2 C RJ22

D 1

4
n2J2r

2
e.2 � 3 sin2 i/C 3n2r2e J22 cos2

i

2
cos 2.� � �22/

(13.73)

where J2 D 1082:62668355� 10�6, and

J22 D
q

C2
22 C S222 D 1:81543019� 10�6

�22 D 1

2
tan�1 S22

C22
D �0:260556 rad

(13.74)
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The perturbing potential due to the Moon and the Sun, approximated up to second
order, is given by (Kozai 1959b)

Rls D 1
4
�mn2ma2

��
1 � 3

2
sin2 i

� �
1 � 3

2
sin2 im

�C 3
4

sin.2i/ sin.2im/ cos.� ��m/

C 3
4

sin i2 sin2 im cosŒ2.� ��m/

	C 1

4
n2s a2

��
1 � 3

2
sin2 i

� �
1 � 3

2
sin2 is

�
C 3

4
sin.2i/ sin.2is/ cos�C 3

4
sin2 i sin2 is cos.2�/

	
(13.75)

where �m D 1=82:3 is the ratio between the mass of the Moon and the sum of the
masses of the Earth and the Moon; nm D 0:23 rad/day is the Moon’s orbit mean
motion; ns D 0:017203 rad/day is the Sun’s apparent orbit mean motion; im is the
Moon’s orbit inclination with respect to the equatorial plane; �m is the RAAN of
the Moon’s orbit with respect to the equatorial plane; and is D  D 23:445ı is
the Sun’s apparent orbit inclination with respect to the equatorial plane. The above
expression is derived based on Kozai (1959b) by setting e D 0 and averaging along
the period of the third body (Moon and Sun). Thus, the lunar-monthly and solar-
yearly oscillations are neglected.

The angles im and �m vary with time as a result of lunar regression: 18:3ı �
im � 28:59ı and �13ı � �m � 13ı. They can be expressed in terms of the Moon’s
inclination, iM , and node longitude, �M , referred to the ecliptic plane, which are
given by (Kamel and Tibbitts 1973)

iM D5:145ı

�M D259:183ı � 0:05295ı t
(13.76)

where t is the time in Julian days measured from January 1, 1900, 12:00 hr. Using
spherical trigonometry (see Fig. 13.1), im and�m are given by

cos im D cos iM cos is � sin is sin iM cos�M (13.77)

sin�m D sin iM sin�M=sin im (13.78)

Consequently, the expressions for Re and Rls in terms of the nonsingular
elements (10.128) are

Re D1

4
n2J2r

2
e

�
2 � 12.p2 C q2/.1 � p2 � q2/

	

C 3n2J22r
2
e

�
1 � p2 � q2

�
cos 2.� � �22/

(13.79)
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Fig. 13.1 Spherical trigonometry of the lunar orbit

Rls D1

4
�mn2ma2

h�
1 � 3

2
sin2 im

� � 6 .p2 C q2/ cos2
i

2

C 9 .p2 C q2/ cos2
i

2
sin2 im C 3 .p2 � q2/ cos2

i

2
cos 2�m sin2 im

C 6 p q cos2
i

2
sin 2�m sin2 im C 3 p cos

i

2
cos i cos�m sin 2im

C 3 q cos
i

2
cos i sin�m sin 2im

i

C 1

4
n2s a2

h�
1 � 3

2
sin2 is

� � 6.p2 C q2/ cos2
i

2

C 6.2p2 C q2/ cos2
i

2
sin2 is C 3p cos

i

2
cos i sin 2is

i
(13.80)

where cos i
2

D p
1 � p2 � q2 and cos i D 1 � 2p2 � 2q2.

13.6.1 In-Plane Motion

Assume an ideal geostationary orbit, i.e. i D e D 0 and a perturbing potential
comprising the J2 and J22 terms only, R D RJ2 C RJ22 . The variational equations
governing the change in longitude and semimajor axis in this case are

P� D n � !e C 3
n

a2
r2e J2 C 18

n

a2
r2e J22 cos 2.� � �22/ (13.81)

Pa D �12n

a
r2e J22 sin 2.�� �22/ (13.82)
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By solving P� D Pa D 0 we get 4 equilibrium points, which are called geostationary
points, 2 of which are stable, and 2 are unstable (Belyanin and Gurfil 2009),

stable W �s D 75:07ı; 255:07ıI a D 42166:237 km (13.83)

unstable W �us D 165:07ı; 345:07ıI a D 42166:279 km (13.84)

In the nominal gravitation field of the Earth, comprising the J2 and J22 terms, the
longitudinal motion of a geosynchronous satellite, initially positioned at a stable
geostationary point, is zero. In the presence of perturbations, the equilibria are
disturbed and the resulting motion is libration about the stable position with a period
of about 2 years (Gedeon 1969; Kamel et al. 1973). The amplitude of librations is
dictated by the magnitude of the perturbing potential.

13.6.2 Out-of-Plane Motion

The analysis of out-of plane motion is based on a method developed by Kamel and
Tibbitts (1973). According to this method, the equations governing the evolution of
inclination and ascending node are cast in canonical form, suitable for perturbation
analysis. The Hamiltonian of the system then becomes quadratic with coefficients
that vary slowly with a period of 18.6 years (same as the lunar nodal regression
period). The averaged differential equations are subsequently solved in closed form.
The geometry of the averaged solution is used to obtain the initial node location that
maximizes the time of staying within a given inclination slot.

We start with the variational equations (11.108) governing the evolution of
inclination, i, and ascending node,�, written for a near-circular orbit,

di

dt
D � 1

na2 sin i

@R

@�
(13.85)

d�

dt
D 1

na2 sin i

@R

@i
(13.86)

where the perturbing potential satisfies R D RJ2 C Rls. By introducing new
nonsingular variables, representing the Cartesian coordinates of the orbital specific
angular momentum unit vector on the equator,

h1 D sin i sin� (13.87)

h2 D sin i cos� (13.88)
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assuming cos i 	 1 and differentiating with respect to �M , defined in Eq. (13.76),
Eqs. (13.85)–(13.86) can be written in the canonical form

dh1
d�M

D @H

@h2
(13.89)

dh2
d�M

D � @H

@h1
; (13.90)

where H is the Hamiltonian of perturbations. In our case, The Hamiltonian H
satisfies

H D Hg (13.91)

where Hg represents the gravitational perturbations of the Earth, the Moon and the
Sun.

By neglecting third-order terms, Hg becomes quadratic in h1, h2 with coefficients
slightly varying with time (due to the lunar 18.6 years oscillations),

Hg D A11h
2
1 C A12h1h2 C A22h

2
2 C B1h1 C B2h2 (13.92)

where the coefficients A11 to B2 can be found in Kamel and Tibbitts (1973),

A11 D �
1� �

1C sin2.�m/ sin2.im/
�C �s cos2.is/

	
� C �obl (13.93a)

A12 D �� sin2.im/ sin.2�m/ (13.93b)

A22 D �
1� �

1C cos2.�m/
�

sin2.im/C �s cos.2is/
	
� C �obl (13.93c)

B1 D �� sin.2im/ sin.�m/ (13.93d)

B2 D �� sin.2im/ cos.�m/ � ��s sin.2is/ (13.93e)

�s D 1

�m

�
ns

nm

�2
(13.93f)

� D �3
8
�m P��1

M

n2m
n

D �3
8
�m P��1

M

s
r3e
�

�
a

re

�3=2
(13.93g)

�obl D �3
4

P��1
M

r
�

r3e
J2
� re

a

�7=2
(13.93h)

and P�M is defined as

P�M D d�M

dt
D �0:05295	

180

rad

day
(13.94)

The coefficients appearing in Eq. (13.92) are functions of the lunar node and
inclination, �m and im, which are periodic with a period of 18.6 years. These
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variables can be expanded into a Fourier series with argument �M (Kamel and
Tibbitts 1973),

�m D 0:22578 sin.�M/ � 0:02338 sin.2�M/C 0:00338 sin.3�M/

� 0:00055 sin.4�M/C 0:00010 sin.5�M/C 0:00010 sin.6�M/

� 0:00002 sin.7�M/ (13.95a)

im D 0:41388C 0:08940 cos.�M/ � 0:00458 cos.2�M/ (13.95b)

C 0:00052 cos.3�M/ � 0:00006 cos.4�M/

A11 D .0:83048C 0:841637�s/ � C �obl � 0:06507� cos.�M/ (13.95c)

C 0:00466� cos.2�M/

A12 D �0:07109� sin.�M/� 0:00738� sin.2�M/ (13.95d)

A22 D .0:67438C 0:68327�s/ � C �obl � 0:13032� cos.�M/ (13.95e)

� 0:00274� cos.2�M/

B1 D �0:16388� sin.�M/C 0:00319� sin.2�M/ (13.95f)

B2 D � .0:72077C 0:730162�s/ � � 0:12221� cos.�M/ (13.95g)

C 0:00292� cos.2�M/

Then, the Hamiltonian (13.91) can be rewritten as

H D H0 C QH (13.96)

where H0 has constant coefficients, and QH depends on �M . In addition, H0 � QH,
which renders Eqs. (13.89)–(13.90) convenient for a perturbation treatment. If QH is
ignored, then Eqs. (13.89)–(13.90) become linear with constant coefficients. This is
equivalent to averaging the equations over 18.6 years.

The averaged solution can be obtained in closed form and will contain two
arbitrary constants of integration. Then, the perturbed solution can be found by
considering the variations of these “constants” with time in the presence of the
perturbation QH.

13.6.3 Averaged Solution

The averaged equations are given by

dh1
d�M

D 2 NA22h2 C NB2 (13.97)
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dh2
d�M

D �2 NA11h1 (13.98)

where NA11, NA22, NB2 are the portions of A11, A22, and B22 invariant with respect to�M .
The equilibrium solution can now be obtained,

h1e D 0

h2e D �
NB2
2 NA22

(13.99)

Equations (13.87)–(13.88) imply that the corresponding equilibrium values of
the node and inclination are �e D 0, ie D sin�1 h2e. Equations (13.97)–(13.98) can
be reduced to the simple harmonic oscillator form,

d2h1=d�2
M C !2l h1 D 0 (13.100)

with the normalized period (the normalization factor is � P��1
M )

P D 2	=!l (13.101)

and

!l D 2

q
NA22 NA11 (13.102)

The general solution may be written as

h1 D
p
ı1X sin .!l�M C x/ (13.103)

h2 D h2e C 2

s
X

ı1
cos .!l�M C x/ (13.104)

where x, X are constants of integration, and

ı1 D 2

s
NA22
NA11

(13.105)

In the coordinates .h1; h2/, Eqs. (13.103)–(13.104) describe a counterclockwise

ellipse with a center at .0; h2e/, see Fig. 13.2a. The semimajor axis is 2
q

X
ı1

,

lying along the h2 axis. The semiminor axis is
p
ı1X and the eccentricity is e D

1
2

q
4 � ı21 . The ellipse represents the precession cycle of the angular momentum

vector about its equilibrium position .0; h2e/. The period of this precession cycle
is given by Eq. (13.101). The numerical values of the constant parameters that
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Fig. 13.2 Geometrical interpretation of the averaged solution in h1�h2 coordinates. (a) Precession
cycle of the angular momentum vector. (b) Optimal inclination drift cycle

determine the averaged solution are (h2e, ı1, !l are non-dimensional):

h2e 0:13055

!l 0:34453

ı1 1:9457

ie 7:5001ı
P 54:024 yrs

In Fig. 13.2a, the precession time from an initial point .h10 ; h20/ to a point .h1; h2/
is proportional to the subtended angle  . Due to the fact that ı1 	 2, the precession
ellipse can be approximated by a circle. Then, the precession time is given by

T D  

2	
P (13.106)

In GEO missions, it is generally required to maintain the orbital inclination below
a specified maximum value, i � imax. It is obvious that, if imax < ie, then the
inclination constraint cannot be satisfied forever. However, the initial values of the
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node and inclination can be chosen in such a way that the time of staying within the
inclination constraint will be maximized.

The optimal initial conditions for .�0; i0/ can be found using simple geometry,
depicted by Fig. 13.2b (see e.g. Kechichian (1997)). The inclination constraint in
the coordinates .h1; h2/ is represented by a circle centered at the origin with radius
sin imax. The maximum time of staying within the constraint circle corresponds to
the maximum subtended angle max, which is the angle between tangent lines drawn
through the equilibrium .0; h2e/. The maximum time Tmax is

Tmax D  max

2	
P (13.107)

where

 max D 2 sin�1
�

sin i0
h2e

�
(13.108)

and

i0 D imax (13.109)

The optimal initial node location is given by

�opt D 3	

2
C  max

2
(13.110)

Thus, the optimal inclination drift cycle must be initiated at i0 D imax and �0 given
by Eq. (13.110). At the end of the cycle, the node assumes some final value,�f , and
the inclination angle is the same as i0. If the mission extends beyond Tmax, then a
correction maneuver must be performed. This will be discussed in Sect. 14.8.

13.6.4 The Perturbed Problem

The optimal initial node location, �opt, is not constant in time due to the lunar
regression. To find how it varies with time, a problem that includes the perturbation
QH must be solved. Utilizing the variation of parameters technique, the equations of

motion for the perturbed problem are found to be

Px D @ QH
@X

(13.111)

PX D �@ QH
@x
: (13.112)
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To obtain the Hamiltonian QH in terms of x and X, Eqs. (13.103)–(13.104) are
substituted into Eq. (13.96). The second harmonics in the Fourier expansions of A11,
A12, A22, B1, B2 can be ignored, because the coefficients are very small compared
to coefficients of the principal harmonics; see Kamel and Tibbitts (1973). Then, the
Hamiltonian QH is given by

QH D p
Xf
p
ı1 b1 sin�M sin .!l�M C x/C 2p

ı1
b2 cos�M cos .!l�M C x/g

C p
Xh2ef

p
ı1 a12 sin�M sin .!l�M C x/C 4p

ı1
a22 cos�M cos .!l�M C x/g

C Xfa11 ı1 cos�M sin2 .!l�M C x/C 4p
ı1

a22 cos�M cos2 .!l�M C x/

C 2 a12 sin�M sin .!l�M C x/ cos .!l�M C x/g
C a22 cos�Mh2e C b2 cos�M h2e

(13.113)

where a11, a22, a12, b1, b2 are the coefficients of the fundamental harmonics in the
Fourier expansions of A11, A12, A22, B1, B2, respectively

a11 D �0:06507�; a12 D �0:07109�; a22 D �0:13032�
b1 D �0:16388�; b2 D �0:12221� (13.114)

The last two terms in Eq. (13.113) can be ignored because they do not depend on x
and X and, thus, do not affect the final results. By performing some algebraic and
trigonometric manipulations, the expression for QH can be written as (Kamel and
Tibbitts 1973)

QH Dp
Xf.˛1 C ˛3/ cosŒ.!l C 1/�M C x
C .˛2 C ˛4/ cosŒ.!l � 1/�M C x
g

C Xf˛5 cos.�M/C ˛6 cosŒ.2!l C 1/�M C 2x


C ˛7 cosŒ.2!l � 1/�M C 2x
g;
(13.115)

where

˛1;2 D �
b2 ˙ 1

2
b1 ı1

�
=
p
ı1; ˛3;4 D 1

2
h2e .4 a22 
 a12 ı1/ =

p
ı1

˛5 D 1

2

�
a11 ı

2
1 C 4 a22

�
=ı1; ˛6;7 D 1

2

h�
2 a22 � 1

2
a11 ı

2
1

�
=ı1 
 a12

i
(13.116)

The classical method to solve Eqs. (13.111)–(13.112) is to perform a canonical
transformation from the set of variables .x;X/ to a new set .y;Y/ with corresponding
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new Hamiltonian K. In our problem, the original Hamiltonian QH is time varying.
However, it can be seen that QH depends on a small parameter: Each of the
coefficients ˛1�7 in Eq. (13.116) is a linear combination of the parameters appearing
in Eq. (13.114), i.e. has a common factor �.

If we define

N̨ i D ˛i=�; i D 1; 2 : : : 7 (13.117)

NH1 D QH=� (13.118)

then QH may be represented by

QH D NH0 C � NH1; (13.119)

where NH0 D 0.
The canonical transformation for a system described by a Hamiltonian depending

on a small parameter can be performed by using Lie transforms. Kamel and
Tibbitts (1973) utilized the method developed by Kamel (1970) to obtain a second-
order solution for the system defined by Eqs. (13.111)–(13.112), (13.115), (13.116).
According to this method, the canonical transformation .x;X/ ! .y;Y/ can
be constructed recursively to achieve specific requirements in the transformed
Hamiltonian K.

To eliminate time-dependence, we seek for a new Hamiltonian

K D 0 (13.120)

Thus, both Y and y are constants. Following the steps outlined by Kamel (1970), we
obtain the first-order expression for the generating function,

W1 Dp
Yf N̨1 C N̨3
.!l C 1/

sinŒ.!l C 1/�M C y


C N̨2 C N̨4
.!l � 1/ sinŒ.!l � 1/�M C y
g

C Yf N̨5 sin�M C N̨6
.2!l C 1/

sinŒ.2!l C 1/�M C 2y


C N̨7
.2!l � 1/ sinŒ.2!l � 1/�M C 2y
g

(13.121)

By introducing the new functions

Nh1 D
p
ı1Y sin .!l�M C y/ (13.122)
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Nh2 D h2e C 2

s
Y

ı1
cos .!l�M C y/ (13.123)

and assuming W1 to be quadratic in Nh1, Nh2, we can write (Kamel and Tibbitts 1973)

W1 D �1 Nh21 C �2 Nh1 Nh2 C �3 Nh22 C �4 Nh1 C �5 Nh2 (13.124)

where

�1 D 1

ı1

�
N̨5 � N̨6

2!l C 1
C N̨7
2!l � 1

�
sin�M (13.125a)

�2 D
� N̨6
2!l C 1

C N̨7
2!l � 1

�
cos�M (13.125b)

�3 D ı1

4

�
N̨5 C N̨6

2!l C 1
� N̨7
2!l � 1

�
sin�M (13.125c)

�4 D
h
�h2e

� N̨6
2!l C 1

C N̨7
2!l � 1

�
(13.125d)

C 1p
ı1

� N̨1 C N̨3
!l C 1

C N̨2 C N̨4
!l � 1

�i
cos�M (13.125e)

�5 D
h
�h2e

ı1

2

�
N̨5 C N̨6

2!l C 1
� N̨7
2!l � 1

�

C
p
ı1

2

� N̨1 C N̨3
!l C 1

� N̨2 C N̨4
!l � 1

�i
sin�M (13.125f)

The coefficients �1�5 are found by substituting Eqs. (13.122)–(13.123) into
Eq. (13.124) and comparing the coefficients with those in Eq. (13.121). Now, the
solutions h1, h2 can be found in terms of Nh1, Nh2 (Kamel and Tibbitts 1973; Kamel
1970)

h1 D Nh1 C �
@W1

@Nh2
; h2 D Nh2 � �

@W1

@Nh1
(13.126)

The parameter � is constant and, thus, can be inserted into the derivatives of W1,

h1 D Nh1 C @W

@Nh2
; h2 D Nh2 � @W

@Nh1
(13.127)
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where W D �W1, i.e. W has the same expression as W1 with parameters N̨1�7
replaced by ˛1�7.

Finally, after differentiating, we get the approximated solution given by the
following transformation:

h1 D Nh1 C �
�2 Nh1 C 2�3 Nh2 C �5

�
h2 D Nh2 � �

2�1 Nh1 C �2 Nh2 C �4
�

(13.128)

The formulae for the inverse representation are

Nh1 D h1 � .�2h1 C 2�3h2 C �5/

Nh2 D h2 C .2�1h1 C �2h2 C �4/ (13.129)

The solution in the coordinates .y;Y/ can be written in terms of initial conditions.
The constants y, Y are evaluated from Eqs. (13.122)–(13.123) in terms of Nh10 D
Nh1.�M0/, Nh20 D Nh2.�M0/, and are given by

Y D
Nh210
ı1

C ı1

4

�Nh10 � h2e
�2

cos y D Nh10p
ı1Y

sin.!l�M0/C
p
ı1.Nh20 � h2e/

2
p

Y
cos.!l�M0/

sin y D �
p
ı1.Nh20 � h2e/

2
p

Y
sin.!l�M0/C Nh10p

ı1Y
cos.!l�M0/

(13.130)

By substituting back into Eqs. (13.122)–(13.123), we obtain

Nh1 D ı1

2

�Nh20 � h2e
�

sin
�
!l
�
�M ��M0

�	C Nh10 cos
�
!l
�
�M ��M0

�	

Nh2 D �Nh20 � h2e
�

cos
�
!l
�
�M ��M0

�	 � 2

ı1
Nh10 sin

�
!l
�
�M ��M0

�	C h2e

(13.131)

The resulting solution can now be used to calculate the optimal initial node
location,�opt, defined in Fig. 13.2b, under the effect of lunar regression.
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Fig. 13.3 The dependence of �opt on time for different inclination constraints

By utilizing an algorithm for calculating �opt, detailed in Kamel and Tibbitts
(1973), �opt and the corresponding time of staying within a given inclination
constraint, Tmax, were calculated over a 20-year period. The dependence of �opt

on time for different inclination constraints is given in Fig. 13.3. In this figure, the
y-axis is the initial node location (defined as the node at epoch, �0 D �.t D t0/),
which is set to be equal to the optimal initial node location, i. e. �0 D �opt. The
x-axis is the epoch.
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Chapter 14
Satellite Orbit Control

14.1 Introduction

Satellite orbit control refers to the process of generating thrust for tracking a
particular orbit in the presence of orbital perturbations. The particular orbit is
mission dependent. It could be a low Earth orbit (LEO), used for Earth imaging,
a geostationary orbit (GEO) used for communication and weather monitoring, or an
interplanetary orbit.

The control forces can be applied by chemical or electric rocket propulsion
systems. Over the past few decades, there has been significant progress in the
research of advanced electric propulsion systems for space missions. Propulsion
technologies such as Hall thrusters, field emission electric propulsion, and pulsed
plasma thrusters have been developed, tested and implemented on board operational
spacecraft.

To understand how orbit control systems operate, we start this chapter by
introducing some basic concepts in stability and control of dynamical systems. We
then distinguish between impulsive and continuous maneuvers, and discuss various
problems related to orbit control, including interplanetary travel by means of gravity
assists, trajectory optimization, and satellite rendezvous maneuvers.

We devote the last two sections to continuous-thrust orbital maneuvers using
orbital elements. Within this context, several methodologies have been proposed
over the years, with the use of the variational equations of the orbital elements
being the most prevalent approach (Kluever 1998; Gurfil 2007). Other approaches
considered a hybrid Cartesian coordinates and orbital element-based control laws
(Schaub and Alfriend 2002).

© Springer-Verlag Berlin Heidelberg 2016
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and Practice, Astrophysics and Space Science Library 436,
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14.2 Stability and Control of Dynamical Systems

Let x be an n-dimensional vector of state variables called a state vector. For
example, we can include in x the inertial position and velocity vectors of the satellite,
so that x D ŒrT vT 
T , and x is a 6-dimensional column vector. We also define an m-
dimensional vector of control variables called a control vector, denoted by u. In
the artificial satellite example, this vector would include the 3 components of the
specific thrust vector.

In general, we distinguish between open-loop control, where u is a direct function
of time, and closed-loop control, or feedback control, in which u D g.x/. For
example, the controller u D �Kx, with K being an m � n gain matrix, would
constitute a linear feedback controller.

Using the state and control vectors, we can write the equations of motions as n
first-order nonlinear differential equations,

Px D f.x;u/; x.t0/ D x0 (14.1)

where f is a vector-valued function, t0 is the initial time (epoch), and x0 are the initial
conditions.

A fundamental aspect related to the dynamical system (14.1) is stability. We
qualitatively discussed this topic in Chap. 1, and will now highlight some qualitative
aspects.

First, we consider the uncontrolled version of system (14.1), namely the case
wherein u � 0, and define an equilibrium, x?, for which

f.x?/ D 0 (14.2)

Stability theories analyze the trajectories of system (14.1) with respect to the
equilibrium x?. We have already seen such an analysis when we introduced the
stability of the Lagrangian points in Sect. 8.6. Here, the treatment focuses on the
use of the control vector u for steering the states of the system to the equilibrium x?.

A fundamental equilibria stability theory is the Lyapunov theory. The equilibrium
x? is said to be stable in the sense of Lyapunov, if for any � > 0, there exists a
ı D ı.�/ > 0 such that, if kx.t0/� x?k � ı, then kx.t/� x?k � � for all t � t0. The
equilibrium is locally asymptotically stable, if it is stable in the sense of Lyapunov,
and in addition, for kx.t0/ � x?k � ı,

lim
t!1 kx.t/ � x?k ! 0 (14.3)

Finally, the equilibrium is said to be globally asymptotically stable, if it is stable in
the sense of Lyapunov, and Eq. (14.3) is satisfied for any initial condition x.t0/.
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Lyapunov’s theory also provides a method for examining the stability of equilibria.
This method, called Lyapunov’s second method, provides sufficient stability condi-
tions for the equilibrium x? of the system

Px D f.x/ (14.4)

Suppose there exists a differentiable function V.x/, which satisfies V.x/ > 0

in some domain D around the equilibrium x?, and in addition V.x?/ D 0. If
PV.x/ is continuous both in x and t, and in addition PV.x/ � 0 everywhere except
x D x? in the same domain D, then the equilibrium x? is stable in the sense of
Lyapunov. If PV.x/ is not identically 0 for all x except x?, then the equilibrium x?

is locally asymptotically stable. Finally, if in addition to all the previous conditions
limkxk!1 V.x/ ! 1, then x? is globally asymptotically stable.

In many practical applications, the nonlinear equations of motion (14.1) can be
linearized about a given point

�
xp;up

�
or about a trajectory, .xt.t/;ut.t//. In the

former case, we obtain a system of linear time-invariant (LTI) differential equations
of the form

ı Px D Aıx C Bıu; ıx.t0/ D ıx0 (14.5)

In Eq. (14.5), we have

ıx D x � xp; ıu D u � up; A D @f
@x

ˇ̌
ˇ̌
xp;up

; B D @f
@u

ˇ̌
ˇ̌
xp;up

(14.6)

The LTI system (14.5) admits a closed-form solution. Since LTI systems are shift-
invariant, we can set t0 D 0 without loss of generality, and the solution is given
by

ıx.t/ D eAtıx.0/C
Z t

0

eA.t��/Bıu.�/d� (14.7)

where the notation eY denotes the matrix exponential, i.e.

eY D I C
1X
`D1

1

`Š
Y` (14.8)

in which I denotes the identity matrix. The expression eAt in Eq. (14.7) is called the
transition matrix.

The (internal) stability of the linear system (14.5) is determined by the eigenval-
ues of the matrix A for ıu � 0. Thus, we first solve the characteristic equation

j�I � Aj D 0 (14.9)
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for the n eigenvalues �. The system would be asymptotically stable, if all the
eigenvalues have negative real parts, unstable, if at least one eigenvalue has a
positive real part, and stable in the sense of Lyapunov, if all the eigenvalues located
on the imaginary axis are distinct. Even if the linear system is unstable, we can
still find initial conditions that would yield bounded state trajectories. In this case,
we say that this specific selection of initial conditions is included within a stable
subspace.

14.3 Impulsive and Continuous Maneuvers

Let us assume that the dynamics of a satellite are determined by the two-body
problem, and that the only additional acceleration acting on the satellite is due to
the specific thrust, u. Thus, for a thrust vector T, we have

u D T
m

(14.10)

where m denotes the satellite mass. In this case, we can write the equations of motion
as

Rr D ��r
r3

C u (14.11)

The thrust magnitude is determined by the relation

T D kTk D j PmUej (14.12)

where Ue > 0 is the exhaust velocity. The magnitude of the thrust acceleration is,
therefore,

u D kuk D T

m
D j PmUej

m
(14.13)

We now take into account the fact that the mass variation Pm is always negative,
since the propellent ejected from the satellite always decreases its mass. Hence, we
rewrite Eq. (14.13) into

u D �Ue

m

dm

dt
(14.14)

The velocity increment obtained at a total burning time of tb, reducing the satellite’s
mass from the initial mass m0 to the final mass mf , is calculated based on Eq. (14.14)
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as

�v D
Z tb

t0

udt D �
Z mf

m0

Ue

m
dm (14.15)

The exhaust velocity depends on the specific impulse, denoted by Isp (a characteristic
of the propellant used), and on the standard gravitational acceleration at sea level,
g0,

Ue D Ispg0 (14.16)

In general, Isp depends on the fuel chamber’s temperature. However, in many
common applications, particulary those that involve chemical propellants, it may
be assumed that Isp, and, therefore Ue, are approximately constant, thus providing a
simple solution to Eq. (14.15),

�v D Ue ln
m0

mf
(14.17)

Equation (14.17) leads to the important conclusion that, in chemical propellants,
minimization of the fuel mass, which is equal to m0 � mf , will be obtained by
minimization of �v.

An approximation is often made to the expression for �v. In this mathematical
abstraction, it is assumed that an “infinitely large” force causes an “instantaneous”
change in the velocity of the satellite without affecting its position. For some
required velocity corrections, this rationale would be valid if tb � T, where T is
some characteristic time constant, such as the orbital period. This approximation,
called an impulsive maneuver, is of great value for preliminary mission design.
Typically, the impulsive maneuver model would be valid for chemical thrusters.

However, for low-thrust systems, such as electric propulsion systems, the actual
time history of the maneuver acceleration should be used for calculating �v.
Electric propulsion systems utilize accelerated plasma to generate an exhaust
velocity, which could be up to a few orders of magnitude larger than the exhaust
velocity in chemical thrusters. This is achieved by generating electromagnetic fields
to ionize and accelerate gas, and, hence, requires additional electric power.

For an electric propulsion system, the required propulsion power would be

P D 1

2
PmU2

e D 1

2
Pm T2

Pm2
D m2u2

2 Pm (14.18)

The ratio between P and the supplied electric power, Pe, is the efficiency, i.e.

� D P

Pe
(14.19)
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which leads to

dm

m2
D 1

2�Pe
u2 dt (14.20)

Hence, upon integrating Eq. (14.20), we obtain

1

mf
� 1

m0

D 1

2�Pe

Z tf

t0

u2 dt (14.21)

Consequently, an important observation is that minimization of fuel for power-
limited electric propulsion systems would be achieved by minimizing the integral of
the maneuver acceleration squared, and not the integral of the maneuver acceleration
magnitude, as we have seen in the case of constant exhaust velocity chemical
thrusters.

14.4 Gravity Assist Maneuvers

An impulsive variation in velocity can be achieved by chemical thrusters, as we
have seen in the previous section, but also by utilizing a flyby, which is a close
approach to planets moving about the Sun. This process is referred to as a gravity
assist maneuver (GAM). GAMs were explored already in the nineteenth century
by Leverrier and Tisserand, who tried to explain the large perturbation of cometary
orbits when passing near Jupiter.

Using GAMs as a supplementary propulsive scheme in spaceflight was developed
by Lawden in England and simultaneously by Ehricke in the United States; there
is still controversy as to who was the true pioneer of this idea (Flandro 2001).
The GAM concept has enabled access to distant targets in the solar system and
the successful accomplishment of challenging missions with a significant reduction
in fuel mass. GAMs were used by Voyager, Galileo, Cassini, Ulysses, and other
missions (Meltzer 2007).

Over the years, automated tools were developed for GAM itinerary design. An
example for such an automatic tool is the Satellite Tour Design Program. This tool is
able to find all GAM trajectories for a given set of launch dates and escape velocities.
It has been extensively used for the preliminary investigation of interplanetary
trajectories to Mars and the outer planets (Longuski and Williams 1991; Sims et al.
1997; Petropoulos et al. 2000).
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14.4.1 Multiple Gravity Assists

We consider orbits with multiple GAMs in a system comprising the Sun (m1), the
flyby planet (m2), and the spacecraft (m3), all considered as point masses governed
by Newton’s gravitational law. In practice, the influence of m3 on the motion of the
other bodies can be neglected, which implies that the planet follows a Keplerian
orbit about the Sun. If this orbit is circular, the resulting setup is the circular
restricted three-body problem, which we have seen in Chap. 8.

The scaling of time, length, and mass units uses the planet’s orbital radius and the
inverse of the angular velocity as the length and time units, respectively, and m1Cm2

as the mass unit. The only remaining parameter is the mass ratio� D m2=.m1Cm2/.
The problem may be further simplified when� � 1. In this case, the heliocentric

spacecraft orbit is nearly Keplerian everywhere except a narrow vicinity of the
planet, where the spacecraft experiences a short impulse of gravitational attraction.
When � ! 0 simultaneously with the flyby distance, the impulse duration tends
to zero, and the resulting trajectory is similar to an ideal elastic collision. This
asymptotic case is called, following Poincaré (1899), the problem of trajectories
with consecutive collisions (an alternative name is zero-point patched conic model).
It deals with a chain of collision trajectories, i.e., Keplerian arcs having collisions at
one or both ends.

The geometry of this problem is depicted in Fig. 14.1. In this figure, vpl and
v are the heliocentric velocities of the planet and the spacecraft, respectively. The

Fig. 14.1 Asymptotic case of
flyby: a collision model

Sun direction

spacecraft orbit 

before flyby

planet orbit

spacecraft orbit 
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+
∞v

−
∞v

+v

plv
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planet
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hyperbolic excess velocity vector v1 (see Sect. 5.7 for the definition of this velocity)
constitutes the velocity of the spacecraft relative to the planet (at infinity). The
angle ı is the turning angle of v1. This angle is identical to the angle between
the asymptotes of the hyperbolic trajectory, as seen in Fig. 5.6.

Letting the superscripts .�/� and .�/C denote the state before and after the flyby,
respectively, we can write, based on the conservation of energy along a hyperbolic
trajectory,

kv�1k D kvC1k D v1 (14.22)

which means that the magnitude of v1 is fixed, although the direction of v1
changes because of the planetary encounter.

14.4.2 Concatenation Rules

In the collision model setup, a multiple gravity assist interplanetary transfer consists
of segments, where each segment is patched to the following one by a GAM. In
case of an unpowered segment, the transfer is ballistic, and the spacecraft flies
on a Keplerian arc; in case of a powered segment, the transfer consists of several
Keplerian arcs patched by deep-space maneuvers. The arcs before and after each
of the flybys must obey the following concatenation rules: (i) preservation of
relative velocity with respect to the flyby planet; (ii) feasible flyby altitude and (iii)
synchronization, meaning that at the end of the arc the spacecraft has to encounter
the flyby planet.

The first concatenation rule for a circular planet orbit was described by Tisserand.
This rule, called Tisserand’s criterion, can be obtained from the conservation of
Jacobi’s constant, see Chap. 8. It reads

� v21
�ˇ

C 3

rpl
D 2

s
p

r3pl

cos i C 1

a
(14.23)

where rpl is the orbital radius of the planet, �ˇ is the gravitational parameter of
the Sun, a is the semimajor axis, and p is the parameter. Based on Eq. (14.22),
Eq. (14.23) leads to a connection between the orbital elements of the spacecraft
before and after the flyby,

2

s
p�
r3pl

cos i� C 1

a� D 2

s
pC
r3pl

cos iC C 1

aC (14.24)

If the planet’s orbit is elliptic, Tisserand’s criterion can be rewritten in terms
of the radial and transverse velocities of the spacecraft, denoted by vr and v� ,
respectively, and the radial and transverse velocities of the planet, vpl;r and vpl;� ,
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Fig. 14.2 Velocity diagram corresponding to the flyby moment, with the inclination of the
spacecraft’s orbit, i, measured relative to the planet’s orbit

respectively, as seen in Fig. 14.2. The expressions for these velocities are

vr D e sin f
r

�

a .1 � e2/
; v� D

p
�a.1 � e2/

r
(14.25)

where f is the true anomaly, and r is the orbital radius, given by the usual conic
equation

r D a.1� e2/

1C e cos f
(14.26)

The modified version of the Tisserand criterion, as obtained by Pisarevsky et al.
(2007), is given by

v21 D �
vr � vpl;r

�2 C v2� C v2pl;� � 2v�vpl;� cos i (14.27)

The second concatenation rule requires that the flyby altitude (the minimal
distance to the planet during a hyperbolic flyby) be above some allowed threshold.
The flyby altitude, given an elliptic planetary orbit, can be written as (Pisarevsky
et al. 2007)

hfb D �pl

v21

2
64 2v1q

�v2r C�v2� C 4v�
� v

C
� sin2 .�i=2/

� 1

3
75 � Rpl (14.28)
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where hfb is the flyby altitude, �pl and Rpl are the gravitational parameter and the
equatorial radius of the flyby planet, respectively, and

�vr
�D vC

r � v�
r ; �v�

�D vC
� � v�

� ; �i
�D iC � i� (14.29)

Therefore, two arcs (before and after the flyby, see Fig. 14.1) can be patched if
hfb > hm, where hm is the minimal allowed flyby altitude above the planet.

The third concatenation rule, the synchronization condition, establishes a cou-
pling between the angular size of an arc and the respective flight time. According to
Lambert’s theorem (see Sect. 6.5), the flight time over an arc is

t D
q

a3
ı
�ˇ Œ.˛ � sin ˛/� .ˇ � sinˇ/
 (14.30)

The variables ˛ and ˇ are determined by

r1 C r2 C c D 4asin2 .˛=2/ (14.31)

and

r1 C r2 � c D 4asin2 .ˇ=2/ (14.32)

where

c
�D kr2 � r1k D

q
r21 C r22 � 2r1r2 cos � (14.33)

The vectors r1 and r2 are the initial and final position vectors for the arc, r1 D kr1k,
r2 D kr2k, and � is the transfer angle of the arc, as shown in Fig. 14.3.

planet

orbit

spacecraft

orbit

1r,1plr

2 ,2pl≡r r

θ

t

Fig. 14.3 A geometric representation of the synchronization condition
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The procedure of obtaining the arc parameters guaranteeing an encounter
between the spacecraft and flyby planet is as follows. For a given initial position
of the spacecraft, r1, (see Fig. 14.3), the position of the next flyby planet, rpl;1, and
the time until the encounter, t, calculate the final position vector, r2 � rpl;2, using the
known orbital parameters of the planet. Then, from r1 and r2, calculate the transfer
angle, � , using Eq. (14.33). Finally, using Eqs. (14.31) and (14.32), calculate all
the remaining transfer parameters. A more detailed analysis of the multiple GAM
problem was performed by Pisarevsky and Gurfil (2009).

14.5 Optimization of Orbits

The term optimization of orbits refers to designing maneuvers that are efficient
in some sense. The most common performance measure in space systems design
is the consumed fuel mass. Since launch and operation cost are directly related
to the satellite mass, minimization of fuel consumption is vital. Indeed, most of
the orbit optimization problems have focused on fuel minimization (Ross 2006;
Conway 2010). Other performance metrics could be the transfer time from one
orbit to another. In this section, we will outline some basic optimization tools. A
more thorough discussion of optimal orbit transfers is provided in Chap. 15.

14.5.1 Static Optimization

If the control of orbits is applied using impulsive maneuvers, the orbit equations can
often be described by algebraic relations. In this case, derivation of optimized orbits
is based on static optimization. This means that differential equations are not used
in solving for the optimal maneuvers. The purpose of the following discussion is
to introduce a method for solving static optimization problems using the formalism
of Lagrange multipliers. The method of Lagrange multipliers has been generalized
by the Karush-Kuhn-Tucker conditions (Haykin 2008), which can also take into
account inequality constraints. However, here we will use the classical formalism.
To that end, consider the following problem:

minimize J.x/

subject to

gk.x/ D 0; k D 1; : : : ;m (14.34)

In Eq. (14.34), J is the cost function, x is an n-dimensional vector of optimization
variables, Œx1; x2; : : : ; xn


T , and gk are m equality constraints. Now, we define an
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augmented cost function, JA, as

JA.x; �/ D J.x/C
mX

kD1
�kgk.x/ (14.35)

where� D Œ�1; �2; : : : ; �m

T , m < n, is a vector of Lagrange multipliers. If J and gk

have continuous first partial derivatives and the gradients of gk do not vanish on the
domain of J (the domain of J is assumed an open set containing all points satisfying
the constraints), then the stationary points of JA are determined by

rJA D
"�

@JA

@x

�T

;

�
@JA

@�

�T
#

D 0 (14.36)

Equation (14.36) gives m C n unique equations for the unknowns x? and �?,
constituting the solutions for the optimization parameters and Lagrange multipliers
at the critical point.

To determine whether some stationary point fx?; �?g is a minimum, one must
examine the Hessian matrix of the Lagrangian. If there exist vectors x? and �? such
that

rJA.x?; �?/ D 0 (14.37)

and if, for twice continuously-differentiable J and gk,

.�1/m det

2
666666666664

@2JA.x?;ƒ?/
@x1@x1

: : :
@2JA.x?;ƒ?/
@x1@xp

@g1.x?/
@x1

: : :
@gm.x?/
@x1

:::
:::

:::
:::

:::
:::

@2JA.x?;ƒ?/
@xp@x1

: : :
@2JA.x?;ƒ?/
@xp@xp

@g1.x?/
@xp

: : :
@gm.x?/
@xp

@g1.x?/
@x1

: : :
@g1.x?/
@xp

0 : : : 0

:::
:::

:::
:::

:::
:::

@gm.x?/
@x1

: : :
@gm.x?/
@xp

0 : : : 0

3
777777777775

> 0 (14.38)

for p D m C 1; : : : ; n, then J has a local minimum at x? such that (Alfriend et al.
2010; pp. 46–47)

gk.x?/ D 0; k D 1; : : : ;m (14.39)

An application of static optimization tools for impulsive orbit transfer design is
discussed in Chap. 15.
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14.5.2 Dynamic Optimization

When orbital maneuvers are performed using continuous thrust, as discussed in
Sect. 14.3, orbit optimization problems can no longer be treated as static problems.
In this case, we must take the differential equations of motion into account, and treat
them as constraints, giving rise to dynamic optimization.

The underlying dynamical model is that of system (14.1). It is required to find an
m-dimensional particular control u?, such that the system will satisfy a set of q final
conditions at the final time tf , formulated as

 
�
x
�
tf
�
; tf
	 D 0 (14.40)

while at the same time minimizing a cost function of the form

J D ˆ
�
x.tf /; tf

	C
Z tf

t0

L.x;u; t/dt (14.41)

where L is commonly referred to as the Lagrangian. For ˆ � 0 and L � 1, the cost
function J represents a minimum-time problem.

System (14.1) is written as the equality constraint

f.x;u/ � Px D 0 (14.42)

Because this constraint has to be satisfied for the interval Œt0; tf 
, it is added to the
integrand of J, and the augmented cost becomes

JA D ˆ
�
x.tf /; tf

	C
Z tf

t0

˚
L.x;u; t/C �T Œf.x;u/ � Px
� dt (14.43)

where as previously � are the Lagrange multipliers, also referred to as the co-
states. We can omit the subscript A, because J and JA are equal when the dynamic
constraints are satisfied. To obtain the necessary conditions for a minimum, we
define a Hamiltonian as

H.x;u;�; t/ D L.x;u; t/C �T f.x;u/ (14.44)

so that

J D ˆ
�
x.tf /; tf

	C
Z tf

t0

�
H.x;u;�; t/ � �T Px	 dt (14.45)



382 14 Satellite Orbit Control

A necessary condition for a minimum is that the first variation of J is nullified, that
is

ıJ D @J

@u
ıu C @J

@x
ıx.ıu/ D 0 (14.46)

where ıx.ıu/ is a functional. i.e., the function ıx depends on the function ıu.
Using the technique of integration by parts, Eq. (14.46) leads to conditions for

local stationary points known as the Euler-Lagrange equations (Stengel 1994;
pp. 202–208),

P�T D �@H

@x
; �T.tf / D @ˆ Œx.t/; t


@x

ˇ̌̌
ˇ
tDtf

(14.47a)

@H

@u
D 0 (14.47b)

which constitute a two-point boundary value problem when appended with the
initial value problem (14.1).

14.6 Linear Orbit Control

In some cases, orbit control is performed with respect to some given reference. For
example, an approach of a transfer vehicle to the ISS requires that the relative motion
is controlled to guarantee a safe approach. When the two objects are relatively
close, i.e their distance is a few orders of magnitude smaller than the orbital radius,
the relative dynamics can be linearized to simplify the maneuver design. Other
examples in which proximity plays a major role include satellite formation flying,
satellite rendezvous, and satellite docking (Alfriend et al. 2010; pp. 1–11).

Satellite rendezvous and docking (RVD) have been playing an important role in
space activities since 1966, when Gemini 8 docked on an unmanned Agena Target
Vehicle. In the following year, the Soviets carried out the first automated, unmanned
RVD mission (Lamkin and Mccandless 1990).

The ability to approach an orbital target has been attracting increasing attention,
as the concepts of in-orbit servicing, refueling, repairing, and de-orbiting have
emerged. This technology has been demonstrated in several recent missions,
including the Engineering Test Satellite VII (Kawano et al. 2001), Orbital Express
(Weismuller and Leinz 2006), and Demonstration of Autonomous Rendezvous
Technology (Rumford 2003).

Rendezvous is usually divided into two phases: A preparatory phase, often called
closing phase, and a final approach phase, leading to the mating conditions (Fehse
2005). The closing phase reduces the range to the target from several kilometers
to a few hundreds of meters using impulsive maneuvers; each trajectory segment
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Fig. 14.4 Closing-phase strategies for rendezvous

between two impulsive maneuvers is usually referred to as hopping. Various closing
phase strategies are depicted in Fig. 14.4.

The closing phase can be executed by approaching the target satellite either from
the radial direction, called R-bar, or the transverse direction, referred to as V-bar,
as shown in Fig. 14.4. Hopping along the V-bar to the injection point for the final
approach phase can be achieved by applying radial maneuvers, with the duration
being half an orbital period (Fehse 2005; Wenfei et al. 2012). This is denoted as
Case (a) in Fig. 14.4.

Alternative strategies lead to an injection point for the final approach phase which
is located along the R-bar. These strategies include performing an additional fly-
around maneuver from V-bar to R-bar (Case (b) in Fig. 14.4); utilizing a natural drift
orbit (Case (c) in Fig. 14.4); or using a looping trajectory (Case (d) in Fig. 14.4)
(Fehse 2005). A typical example of the fly-around R-bar injection is the Shuttle
rendezvous with the ISS (Woffinden and Geller 2007).

In this section, we develop the necessary modelling tools for designing a single-
hop rendezvous maneuver. The first step is to develop linearized equations of
motion.

To that end, consider two satellites orbiting the same primary. One of the
satellites will be termed chief ; all variables related to the chief will be denoted
by .�/0. The other would be the deputy; all variables related to the deputy will
be denoted by .�/1. The chief serves as the non-maneuvering reference point. The
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equations of motion of the chief are governed by the two-body dynamics, namely

Rr0 D ��
r30

r0 (14.48)

where as usual

r0 D kr0k D a0.1 � e20/

.1C e0 cos f0/
(14.49)

and a0; e0; f0 are the chief’s orbit semimajor axis, eccentricity, and true anomaly,
respectively. In a similar fashion, the equations of motion of the deputy are

Rr1 D ��
r31

r1 (14.50)

where

r1 D kr1k D a1.1 � e21/

.1C e1 cos f1/
(14.51)

and a1; e1; f1 are the deputy’s orbit semimajor axis, eccentricity, and true anomaly,
respectively. Let

r D r1 � r0 (14.52)

denote the position of the deputy relative to the chief. Subtracting Eq. (14.48) from
Eq. (14.50) yields

Rr D ��.r0 C r/
kr0 C rk3 C �

r30
r0 (14.53)

We now define a rotating frame centered at the chief, so that the x axis points radially
outward, i.e. Oi D r0=kr0k, the z axis coincides with the chief’s angular momentum
vector, that is Ok D h0=jh0k, and Oj D Ok � Oi. This rotating frame is called a local-
vertical local-horizontal (LVLH) frame. In the LVLH frame, the equation of motion
of the deputy is (compare to Eq. (8.1))

a C 2! � v C! � .! � r/C P! � r D ��.r0 C r/
kr0 C �k3 C �

r30
r0 (14.54)

where! D Pf0 Ok is the angular velocity vector of the LVLH frame with respect to the
inertial reference. Expressing the vectors in Eq. (14.54) in terms of their Cartesian
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components, we have

r D x Oi C y Oj C z Ok (14.55)

v D Px Oi C Py Oj C Pz Ok (14.56)

a D Rx Oi C Ry Oj C Rz Ok (14.57)

! � v D �Pf0
h
Py Oi � Px Oj

i
(14.58)

! � .! � r/ D �Pf 20
h
x Oi C y Oj

i
(14.59)

P! � r D �Rf0
h
y Oi � x Oj

i
(14.60)

which, upon substitution into Eq. (14.54) yields

Rx � 2Pf0Py � Rf0y � Pf 20 x D � �.r0 C x/

Œ.r0 C x/2 C y2 C z2

3
2

C �

r20
(14.61)

Ry C 2Pf0 Px C Rf0x � Pf 20 y D � �y

Œ.r0 C x/2 C y2 C z2

3
2

(14.62)

Rz D � �z

Œ.r0 C x/2 C y2 C z2

3
2

(14.63)

Equations (14.61)–(14.63) together with the two-body relations

Rr0 D r0 Pf 20 � �

r20
; Rf0 D �2Pr0Pf0

r0
(14.64)

constitute a 10-dimensional system of nonlinear differential equations. For Rf0 ¤ 0,
these equations admit a single relative equilibrium at x D y D z D 0, meaning that
the deputy spacecraft will appear stationary in the chief’s frame, if and only if their
positions coincide on a given elliptic orbit. We will later see that the single relative
equilibrium is transformed into infinitely many relative equilibria, if the chief is
assumed to follow a circular reference orbit.

If there are external (differential) perturbations, denoted by d D Œdx; dy; dz

T , and

(differential) control forces, u D Œux; uy; uz

T , they are introduced into Eqs. (14.61)–

(14.63) in the following manner:

Rx � 2Pf0Py � Rf0y � Pf 20 x D � �.r0 C x/

Œ.r0 C x/2 C y2 C z2

3
2

C �

r20
C dx C ux

(14.65)

Ry C 2Pf0 Px C Rf0x � Pf 20 y D � �y

Œ.r0 C x/2 C y2 C z2

3
2

C dy C uy (14.66)
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Rz D � �z

Œ.r0 C x/2 C y2 C z2

3
2

C dz C uz (14.67)

A simpler form of the relative motion equations can be derived, if we assume
that the chief follows a circular orbit. In many practical cases this is a realistic
assumption. In this case, Pf0 D n0 is constant, r0 D a0, and, hence, Rf0 D 0.
Substituting into Eqs. (14.61)–(14.63) results in

Rx � 2n0Py � n20x D � �.a0 C x/

Œ.a0 C x/2 C y2 C z2

3
2

C �

a20
(14.68)

Ry C 2n0Px � n20y D � �y

Œ.a0 C x/2 C y2 C z2

3
2

(14.69)

Rz D � �z

Œ.a0 C x/2 C y2 C z2

3
2

(14.70)

The equilibria (Px D Rx D Py D Ry D Pz D Rz D 0) satisfy

z D 0; .x C a0/
2 C y2 D a20 (14.71)

Equation (14.71) defines a circle that coincides with the chief’s orbit. This result
reflects the fact that the deputy will appear stationary in a chief-fixed frame, if the
deputy is co-located on the circular orbit of the chief. This type of relative motion is
referred to as co-orbital motion.

A straightforward approach to obtain the linearized equations is to expand the
right-hand side of Eqs. (14.68)–(14.70) into a Taylor series about the origin of the
LVLH frame. Taking only the first-order terms in x=a0; y=a0; z=a0, and denoting

n0 D
q
�=a30, we get

� �.a0 C x/

Œ.a0 C x/2 C y2 C z2

3
2

	 n20.2x � a0/ (14.72)

� �y

Œ.a0 C x/2 C y2 C z2

3
2

	 �n20y (14.73)

� �z

Œ.a0 C x/2 C y2 C z2

3
2

	 �n20z (14.74)

Rearranging and omitting the subscript 0 (so that n � n0 and a � a0) yields

Rx � 2nPy � 3n2x D 0 (14.75)

Ry C 2nPx D 0 (14.76)

Rz C n2z D 0 (14.77)
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Equations (14.75)–(14.77) are called the Hill-Clohessy-Wiltshire (HCW) equations.
The nonhomogeneous forms of Eqs. (14.75)–(14.77) are

Rx � 2nPy � 3n2x D dx C ux (14.78)

Ry C 2nPx D dy C uy (14.79)

Rz C n2z D dz C uz (14.80)

where Œdx; dy; dz

T and Œux; uy; uz


T are, respectively, the vectors of environmental
perturbations and control accelerations.

We often normalize the relative coordinates by the radius of the reference orbit,
a, and the angular velocities by n, so that in normalized form the unforced HCW
equations (14.75)–(14.77) become

Nx00 � 2Ny0 � 3Nx D 0 (14.81)

Ny00 C 2Nx0 D 0 (14.82)

Nz00 C Nz D 0 (14.83)

where .�/0 denotes differentiation with respect to normalized time.
Choosing the state vector x D Œx; y; z; Px; Py; Pz
T , Eqs. (14.75)–(14.77) assume the

form

Px.t/ D Ax.t/ (14.84)

where

A D

2
66666664

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

3n2 0 0 0 2n 0
0 0 0 �2n 0 0

0 0 �n2 0 0 0

3
77777775
; (14.85)

and the initial conditions are x.0/ D Œx.0/; y.0/; z.0/; Px.0/; Py.0/; Pz.0/
T . The
eigenvalues of A are f˙nj; ˙nj; 0; 0g, so a secular mode is expected to appear in
the solution according to the discussion in Sect. 14.2.

Solving the HCW equations is straightforward. We follow Eq. (14.7) and formu-
late the solution in terms of the transition matrix,

x.t/ D eAtx.0/ (14.86)
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where

eAt D

2
6666666666664

4 � 3 cnt 0 0
snt
n

2
n � 2cnt

n 0

�6 nt C 6 snt 1 0 � 2
n C 2cnt

n
4snt
n � 3 t 0

0 0 cnt 0 0
snt
n

3 nsnt 0 0 cnt 2 snt 0

�6 n C 6 ncnt 0 0 �2 snt �3C 4 cnt 0

0 0 �nsnt 0 0 cnt

3
7777777777775

(14.87)

and cnt � cos.nt/; s � sin.nt/. We can now determine, by substituting Eq. (14.87)
into Eq. (14.86), the solutions to the relative position and velocity components,

x.t/ D


4x.0/C 2Py.0/

n

�
C Px.0/

n
sin.nt/�



3x.0/C 2Py.0/

n

�
cos.nt/ (14.88)

y.t/ D �Œ6nx.0/C 3Py.0/
t C



y.0/� 2Px.0/
n

�
C


6x.0/C 4Py.0/

n

�
sin.nt/

C 2Px.0/
n

cos.nt/; (14.89)

z.t/ D Pz.0/
n

sin.nt/C z.0/ cos.nt/; (14.90)

Px.t/ D Px.0/ cos.nt/C Œ3x.0/n C 2Py.0/
 sin.nt/ (14.91)

Py.t/ D �Œ6nx.0/C 3Py.0/
C Œ6x.0/n C 4Py.0/
 cos.nt/

� 2Px.0/ sin.nt/ (14.92)

Pz.t/ D Pz.0/ cos.nt/� z.0/n sin.nt/ (14.93)

It is now possible to find the impulsive velocity corrections required for rendezvous.
This will be performed in two stages: We will initially find an impulsive maneuver
that nullifies the final relative distance between the chief and the deputy. This
process is termed targeting or guidance. At the final time, once the relative distance
has been nullified, we will determine the additional impulsive maneuver required to
cancel the relative velocity and complete the rendezvous.

Designating the moment of the targeting maneuver by t0 D 0, the velocity
impulse,�v1, satisfies

�v1 D vC.0/� v�.0/ (14.94)

where v�.0/ and vC.0/ are the relative velocity vectors before and after application
of the targeting impulse, respectively. The vector vC.0/, which is the required initial
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velocity for targeting, can be found by substituting x.tf / D y.tf / D z.tf / D 0

into Eqs. (14.88)–(14.90) and solving for Px.0/; Py.0/; Pz.0/, given the initial relative
position components x.0/; y.0/; z.0/:

vC.0/ D

2
64

Px.0/
Py.0/
Pz.0/

3
75

C

D

2
6666666664

�n
��4 x.0/ sin.ntf /C 3 x.0/ ntf cos.ntf /C 2 y.0/ � 2 y.0/ cos.ntf /

	
�8C 8 cos.ntf /C 3 ntf sin.ntf /

�n
��14 x.0/ C 14 x.0/ cos.ntf /C 6 x.0/ ntf sin.ntf / � y.0/ sin.ntf /

	
�8C 8 cos.ntf /C 3 ntf sin.ntf /

�z.0/n cot.ntf /

3
7777777775

(14.95)

vC.0/ does not exist for all flight times, because PzC.0/ is singular for ntf D
k	; k D 0; 1; : : :, and the in-plane components PxC.0/ and PyC.0/ are singular at
ntf D 2k	; k D 0; 1; : : : and at additional points satisfying 8cntf C 3ntf sntf D 8,
such as ntf D 2:8135	 and ntf D 4:8906	 .

At tf , when the deputy satellite reaches the chief satellite, its relative velocity
must be nullified to guarantee rendezvous. Therefore, the required velocity impulse
at impact must be equal in magnitude and opposite in sign to the final relative
velocity,

�v2 D �v.tf / (14.96)

where v.tf / is the final relative velocity, obtained by substituting t D tf into
Eqs. (14.91)–(14.93),

v.tf / D
2
4 Px.tf /

Py.tf /
Pz.tf /

3
5

D

2
664

PxC.0/ cos.ntf /C Œ3x.0/n C 2PyC.0/
 sin.ntf /

�Œ6nx.0/C 3PyC.0/
C Œ6x.0/n C 4PyC.0/
 cos.ntf /� 2PxC.0/ sin.ntf /

PzC.0/ cos.ntf / � z.0/n sin.ntf /

3
775

(14.97)

The total velocity change required for a two-impulse rendezvous, i.e. a single hop,
is

�v D k�v1k C k�v2k (14.98)
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14.7 Low Earth Orbit Control

Low Earth orbits (LEO) are satellite orbits up to an altitude of about 1000 km.
Satellites in LEO perform mainly Earth observation missions. Observation satellites
are required to maintain their altitude throughout their lifetime. Other mission
parameters of importance are Sun synchronization, required to maintain the same
lighting conditions, and the ground trace, required for tracking the same regions on
Earth in each pass. The orbital elements of the nominal orbit are chosen to satisfy
these constraints. Active control, commonly referred to as orbit keeping, is required
to keep the satellite on the nominal orbit under the effect of orbital perturbations.
We will discuss some common impulsive maneuver methods for orbit keeping.

14.7.1 Altitude Correction

A basic orbital maneuver is keeping a fixed altitude, without controlling the
particular location of the satellite on the orbit. The altitude tends to decrease due
to the effect of atmospheric drag. When the altitude decreases below some pre-
specified threshold, maneuvers are performed to increase the altitude.

Consider a circular orbit of radius r1. It is required to change the radius to r2 > r1,
as shown in Fig. 14.5. Both orbits are coplanar. Because there is no intersection

1

2

Δ 1

Δ 2

Fig. 14.5 Hohmann transfer for altitude correction
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between the initial and final orbits, at least 2 impulsive maneuvers are needed. A
maneuver sequence comprised of 2 impulses can be designed as follows. The first
impulse, �v1, is applied in the direction of the velocity of the initial orbit, Ou�1 ,
transferring the satellite into an elliptic orbit whose perigee radius is equal to r1 and
apogee radius is equal to r2. The second impulse, �v2, is applied in the direction
of the velocity at apogee, Ou�2 , transferring the satellite to the higher final orbit. This
sequence of maneuvers is called an Hohmann transfer. We will prove in Chap. 15
that the Hohmann transfer is in fact the fuel-optimal bi-impulsive transfer between
2 coplanar circular orbits.

The total required velocity increment can be calculated as follows. We first
calculate the magnitude of the velocity at the perigee of the transfer ellipse, vp,
which can be obtained from the specific energy equation (4.51),

vp D
s
2�

�
1

r1
� 1

r1 C r2

�
(14.99)

where we substituted a D .r1 C r2/=2. The magnitude of the first velocity impulse
is the difference between vp and the velocity on the initial circular orbit, and the
direction is Ou�1 ,

�v1 D
�
vp �

r
�

r1

�
Ou�1 (14.100)

In an equivalent manner, the magnitude of the velocity at the apogee of the transfer
ellipse is

va D
s
2�

�
1

r2
� 1

r1 C r2

�
(14.101)

and the second velocity change, calculated as the difference between the velocity on
the target orbit and the velocity at apogee, becomes

�v2 D
�r

�

r2
� va

�
Ou�2 (14.102)

In both Eqs. (14.100) and (14.102), the velocity is increased. The direction of both
impulses would be in the opposite direction if the altitude is to be reduced from
r2 to r1. In both cases, however, the overall magnitude of the required maneuver is
calculated as

�v D k�v1k C k�v2k (14.103)



392 14 Satellite Orbit Control

Defining  , r1=r2 < 1 and substituting Eqs. (14.100) and (14.102) into
Eq. (14.103) yields

�v D
r
�

r1

 s
2

 C 1
.1 � / � 1Cp



!
(14.104)

For small altitude corrections, namely �h D r2 � r1 � r1, Eq. (14.104) can be
approximated as

�v 	
r
�

r1

�h

2r1
(14.105)

14.7.2 Frozen Orbit Control

As mentioned in Sect. 13.4, frozen orbits have constant mean semimajor axis,
eccentricity, inclination, and argument of perigee. These orbits, whose mean
element evolution is determined by Eqs. (13.55)–(13.56), can be obtained either at
the critical inclination values, given by Eq. (13.48), or at ! D ˙	=2, together with
the eccentricity given by Eq. (13.58).

However, atmospheric drag and solar radiation pressure affect the semimajor
axis, eccentricity, and argument of perigee. The semimajor axis can be corrected
by using a velocity impulse in the direction of the orbital velocity. At the same time,
a radial velocity impulse can correct both the eccentricity and argument of perigee.
By using a proper maneuver timing along the orbit, a single velocity impulse can
simultaneously correct all three elements.

To obtain the required maneuver, we consider a linearized form of the Gauss
equations for near-circular orbits and impulsive maneuvers (Alfriend et al. 2010;
p. 256), written in the NTW frame, using the nonsingular elements introduced in
Eq. (10.125), namely �1 D e sin!; �1 D e cos!; Nu D ! C M,

�a 	 2

n
�vT (14.106a)

�Nu 	 �2��vN � � sin u.cot i/�vW (14.106b)

�i 	 �.cos u/�vW (14.106c)

��1 	 �.sin u/�vN C 2�.cos u/�vT (14.106d)

��1 	 ��.cos u/�vN C 2�.sin u/�vT (14.106e)

�� 	 � sin u

sin i
�vW (14.106f)
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where �vN ; �vT , and �vW are the magnitudes of the impulse components in
the radial, tangential, and out-of-plane directions, respectively, which are small
compared to the orbital velocity, n D p

�=a3, and � D p
a=� D 1=v. Thus,

we obtain 2 equations with 2 unknowns: The magnitude of the radial pulse, �vN ,
and its location along the orbit, u,

�e cos u C e�! D �a

a
; �e sin u � e�! cos u D �vN

na
(14.107)

14.7.3 Sun-synchronous Orbit Control

To maintain the SSO as defined in Sect. 13.5, the nodal drift of the satellite orbit
should match the Sun’s right ascension rate, and the relative angular position should
be equal to a given local hour angle (LHA), i.e.

P�ns D 0 (14.108)

and

�ns D LHA (14.109)

We first discuss Eq. (14.108). Correcting the drift rate is possible using a combined
correction of the semimajor axis and the inclination, using a single impulsive
maneuver.

Consider a circular orbit, which is close to sun synchronicity, with the orbital
elements a0 and i0. The nodal drift of this orbit is denoted by P�0. A single
impulsive maneuver, which includes an along-track component and an out-of-plane
component will simultaneously modify the semimajor axis and inclination so that
the nodal drift becomes equal to P�s. The required correction in the nodal drift is

� P� D P�0 � P�s (14.110)

The relation between the required correction and the variations of the semimajor
axis and inclination is given by

� P�
P�s

D �7
2

�a

a0
� .tan i0/�i (14.111)

From the Gauss equations, we realize that

�a

a0
D 2

r
a0
�
�vT ; �i D

r
a0
�
.cos u/�vW (14.112)
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The variation in the inclination depends on u. Hence, the timing in which
the impulse is applied along the orbit is important. Combining Eqs. (14.111)
and (14.112) we have

�vTp
�=a0

D � 7

49C tan2 i0 cos2 u

 
� P�
P�s

!
(14.113)

�vWp
�=a0

D � tan i0 cos u

49C tan2 i0 cos2 u

 
� P�
P�s

!
(14.114)

and the magnitude of the combined impulse, applied as a single impulsive correc-
tion, is given by

�v D
q
�v2T C�v2W (14.115)

The minimum of �v is obtained when the maneuver is performed at one of the
nodes (u D 0 or u D 	). If the velocity impulse is applied away from the nodes, the
RAAN is affected and, hence, the LHA.

The scheme described so far deals with the adjustment of the nodal drift only. To
adjust the LHA as well, i.e. Eq. (14.109), the following procedure is used.

Assume that the LHA should be maintained within the tolerance �ns ˙ ��ns.
The main reason for the violation of the sun synchronicity condition is the decrease
in altitude due to the effect of atmospheric drag. Orbit keeping in this case will be
performed by applying velocity corrections in the direction of the orbital velocity,
so that the satellite remains within an altitude band wherein the LHA tolerance is
satisfied.

Assume that the initial altitude is �a0 above the nominal altitude, and that the
initial node is located at ��0 eastward to the nominal node. According to the drag
model (11.223) (neglecting the atmosphere’s velocity) and the Gauss equations, the
altitude decreases according to

Pa D ��SCD

m

p
�a (14.116)

In the short term, it may be assumed that the altitude decay rate is constant, so that

�a 	 �a0 C Pat (14.117)

The motion of the node, assuming that the inclination does not change, is given by

��.t/ D ��0 � 7

2

P�s

a0

�
�a0t C 1

2
Pat2
�

(14.118)
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We will require that when the node reaches the westernmost limit of the tolerance,
the altitude reaches its nominal value. The elapsed time is

t1 D ��a0
Pa (14.119)

which, upon substitution into Eq. (14.118) yields the required additional altitude,

�a0 D
s

�8Paa0��0

7 P�s

(14.120)

The altitude continues decreasing below the nominal altitude, causing an eastward
nodal drift. When the satellite reaches the lower altitude limit ��a0, the node
assumes its initial value at the easternmost tolerance bound. At this point, a velocity
impulse is applied in the direction of the orbital velocity, increasing the semimajor
axis to its initial value, i.e. a0 C�a0. The required impulse is given by

�vT D v
�a0
a0

(14.121)

This process entails only tangential velocity impulses, and does not require a specific
impulse application timing along the orbit.

14.7.4 Repeat Ground-track Orbit Control

As mentioned in Sect. (13.5), in RGT orbits the satellite tracks the same trace on the
ground with a given periodicity pattern. Let �G denote the angular deviation of the
equatorial ground track with respect to the reference ground track. The rate of the
ground track drift depends on altitude. This drift can be determined by calculating
the angular separation between 2 subsequent equatorial passes, given by

S D �.!e � P�/TN (14.122)

where !e 	 7:2921 � 10�5 rad/s is Earth’s spin rate, and TN is the nodal period,
given approximately by (Vallado 2001; pp. 788–789)

TN D T



1 � 3

2
J2
� re

a

�2 �
3 � 4 sin2 i

��
(14.123)

where T D 2	
p

a3=� is the orbital period. Neglecting the Earth oblateness,

S D �!eT (14.124)
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so that, approximately, the ground track depends only upon the semimajor axis a.
Variations in a due to orbital decay, given by Eqs. (14.116) and (14.117), cause
variations in the ground track pattern according to

PG D �3
2
!e
�a

a0
(14.125)

Thus, the ground track motion is parabolic, similarly to the motion of the LHA. The
adjustment of the ground track is, therefore, performed in a similar manner to the
method described in the previous subsection, namely, the satellite is initially located
at a higher altitude, and the ground track will then pass eastward with respect to the
reference value. The decay will shift the track westward. Once the satellite reaches
below the nominal altitude, the track will be shifted eastward again and will resume
its original value. At this point a tangential velocity impulse is given, which can be
determined by

�a0 D
s

�8a0 Pa�G

3!e
(14.126)

The remaining expressions for the time between subsequent impulses and the
magnitude of the velocity impulse are identical to the expressions obtained in the
previous subsection.

14.8 Geostationary Orbit Control

In general, GEO control is divided into inclination corrections, referred to as north-
south stationkeeping, and longitude corrections, called east-west stationkeeping.
Other orbital elements, such as the eccentricity, should also be periodically cor-
rected.

14.8.1 North-South Stationkeeping

As mentioned in Sect. 13.6.2, the inclination drift cycle is initiated at i0 D imax,
which is the maximum allowed inclination deviation, and at the node location
�0 given by Eq. (13.110). At the end of the cycle, the node assumes some final
value,�f , and the inclination angle is the same as i0. Then, an impulsive correction
maneuver is performed. The magnitude of the impulsive maneuver is given by

�v D 2

r
�

a
sin

i?

2
; (14.127)
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where i? is the wedge angle. If a time-maximizing strategy is used, then i? can be
computed from (Kechichian 1997)

cos i? D cos.�opt ��f / sin2 imax C cos2 imax (14.128)

where �opt is the initial node location computed for a new inclination drift cycle
(Kamel and Tibbitts 1973) (see Sect. 13.6.2).

14.8.2 East-West Stationkeeping

As discussed in Sect. 13.6.1, Earth’s triaxiality generates 4 geostationary equilib-
rium points, 2 of which are stable and 2 are unstable (see Eq. (13.84)). The satellite
will tend to approach the nearest stable equilibrium point. Substituting numerical
values into Eq. (13.82) will lead to

Pa D �0:132 sin 2.� � �s/ km=day (14.129)

where �s is the nearest stable geostationary point. Differentiating Eq. (13.81) yields

R� D �3
2

n

a
Pa (14.130)

which, upon substitution of numerical values yields

R� D �K sin 2.� � �s/; K D 0:00168 deg=day2 (14.131)

Assume that the nominal longitude is �n. East-west stationkeeping will keep the
satellite within a small longitude tolerance, typically fraction of a degree. Hence,
we may treat R� as constant, and write

R� D �K sin 2.�n � �s/ D R�n (14.132)

Integrating Eq. (14.132) twice with respect to time, with the initial conditions
�.0/ D �0 and P�.0/ D P�0, provides the relation

� D 1

2
R�nt2 C P�0t C �0 (14.133)

Thus,

P� D R�nt C P�0 (14.134)
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and the time is expressed as

t D
P� � P�0

R�n

(14.135)

By substituting Eq. (14.135) into Eq. (14.133) we have

� D 1

2 R�n

. P� � P�0/2 C
P�0
R�n

. P� � P�0/C �0 (14.136)

Assume that the allowed longitude is �n ˙��. The satellite is stationed initially
at �0 D �n � ��, so that the perturbation will decrease the initial longitudinal
deviation until it reaches zero, and then will grow again. By using an initial altitude
offset, P�0 can be determined so that the angular rate of the longitude deviation will
reach zero when the longitude deviation reaches the edge of the allowed limit. In
other words, at some time tf , we require that P�.tf / D 0, so at that time Eq. (14.136)
is evaluated as

�n C�� D �
P�20
2 R�n

C �n ��� (14.137)

Thus, the initial conditions in which the satellite should be stationed are

�0 D �n ���; P�0 D �2sign. R�n/

q
�R�n�� (14.138)

The sign of �� is determined according to the direction of the perturbing accelera-
tion, so the argument of the square root in Eq. (14.138) is positive.

The longitude will move from �n ��� to �n C��. At this point, the longitudinal
drift will change sign, and the longitude will move again towards �n � ��. Once
reaching this value, an impulsive maneuver will be used to change the drift rate
from �P�0 to P�0. The required semimajor axis change is calculated so that the mean
motion is changed by

�n D 2 P�0 (14.139)

Since n D p
�=a3, then

�a D �2
3

�n

n
a (14.140)

and hence

�v D
ˇ̌
ˇ �

2a2v
�a
ˇ̌
ˇ D a

3
j�nj D 2a

3

ˇ̌
ˇ P�0
ˇ̌
ˇ (14.141)
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The time between subsequent corrections is determined according to

tm D 2

ˇ̌
ˇ̌̌ P�0
R�n

ˇ̌
ˇ̌̌ (14.142)

which leads to the altitude change given by (assuming tm is measured in days)

�a D �0:132 sin 2.�� �s/tm km (14.143)

The annual required velocity correction is then

�v D 1:75 sin 2.� � �s/ m=sec=year (14.144)

14.8.3 Eccentricity Correction

Equations (14.106d)–(14.106e) relate the eccentricity correction to the required
velocity impulses. One possibility is to use the east-west stationkeeping tangential
impulse and apply it at a specific location along the orbit to correct the eccentricity.
For a tangential impulse only, dividing Eq. (14.106e) by Eq. (14.106d) will lead to
the required location,

tan u D ��1

��1
(14.145)

It is not guaranteed that the tangential impulse will achieve the required eccentricity
correction, and, thus, there are 2 equations with 2 unknowns: u and �vN .

14.9 Nonlinear Feedback Control of Orbits

In previous sections, we considered impulsive maneuvers for orbit control. In this
section, we will show how continuous thrust can be used to steer the orbital elements
towards given desired values based on Lyapunov’s second method, developed in
Sect. 14.2.

The acceleration caused by thrust is expressed in the RSW frame (see Sect. 11.6)
as

u D ur Our C u� Ou� C uW OuW (14.146)

The state vector comprises the classical elements, namely x D Œa; e; i; �; !;M
T .
With these definitions, we can write the Gauss equations (11.131) using the compact
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notation

Px D g0.x/C G.x/u (14.147)

where

g0.x/ ,

2
66666664

0

0

0

0

0

n

3
77777775

(14.148)

G.x/ , 1

h

2
6666666666666664

2a2e sin f 2a2p
r 0

p sin f . p C r/ cos f C re 0

0 0 r cos. f C !/

0 0
r sin. f C !/

sin i
�p cos f

e
. p C r/ sin f

e
�r sin. f C !/ cos i

sin i
bŒp cos f � 2re


ae
�b. p C r/ sin f

ae 0

3
7777777777777775
(14.149)

In Eqs. (14.148) and (14.149), we have used the notation

n D
p
�=a3; p D a.1� e2/; h D p

�p; b D a
p
1 � e2 (14.150)

As previously discussed, the true anomaly f is an implicit function of the mean
anomaly M. Based on the solution of Kepler’s equation (see Sect. 5.9), f can be
expended into the infinite power series (Battin 1999; pp. 210–212)

f .M; e/ D MC2
1X

lD1

1

l

2
4 1X

sD�1
Js.�le/

 
1 � p

1 � e2

e

!jlCsj3
5 sin.lM/ (14.151)

where Js.�/ is a Bessel function of the first kind of order s.
The orbital control problem is to find a continuous feedback control law u.x/ that

steers a satellite from an initial elliptic orbit to a desired elliptic orbit. To find such
a feedback control law, we will utilize a Lyapunov-based approach.
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The first step is to define a subset of orbital elements that we wish to control.
These are

z , Œa; e; i; �; !
T ; zd , Œad; ed; id; �d; !d

T (14.152)

where zd denotes the classical orbital elements of some desired target orbit. The
mean anomaly of the target orbit is not controlled according to this formulation.
Thus, we can write

Pz D Z.z;M/u (14.153)

where

Z.z;M/ , 1

h

2
66666666666664

2a2e sin Œf .M; e/

2a2p

r
0

p sin Œf .M; e/
 . p C r/ cos Œf .M; e/
C re 0

0 0 r cos Œf .M; e/C !


0 0
r sin Œf .M; e/C !


sin i
�p cos Œf .M; e/


e

. p C r/ sin Œf .M; e/


e

�r sin Œf .M; e/C !
 cos i

sin i

3
77777777777775

(14.154)

Now, consider the quadratic form

V.z; zd/ D 1

2
.z � zd/

TP.z � zd/ (14.155)

where P is some positive definite matrix, and a related control law, written as

u D �ŒrV.z; zd/ � Z.z;M/
T D ��.z � zd/
TPZ.z;M/

	T
(14.156)

The control law appearing in Eq. (14.155) is known as the Jurdjevic-Quinn damping
feedback (Jurdjevic and Quinn 1978). To show that the control law (14.156) can
indeed render the desired orbital elements set zd asymptotically stable in the sense
defined in Sect. 14.2, we evaluate the time derivative of V along the trajectories of
the system in Eq. (14.153),

PV D rV.z; zd/ � Pz D rV.z; zd/ � Z.z;M/u (14.157)
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Utilizing Eq. (14.156) we have

PV D �.z � zd/
TP � Z.z;M/

�
.z � zd/

TP � Z.z;M/
	T � 0 (14.158)

According to Lyapunov’s second method, in order to prove asymptotic stability, we
need to show that PV D 0, if and only if z D zd. To this end, we note that PV D 0 in
the following cases:

z D zd (14.159)

a � 0 (14.160)

a D ad; e D ed; i D id; ! D !d; f C !d D k	; k D 0; 1; : : : (14.161)

a D ad; e D ed; � D �d; ! D !d; f C !d D k	=2; k D 1; 3; : : :(14.162)

Equation (14.160) represents the degenerate case of zero angular momentum
(rectilinear motion) and is, hence, ruled out. Equations (14.161) and (14.162) are
ruled out because they cannot be satisfied for all f . Thus, Eq. (14.159) is the only
case in which PV D 0 and the controller (14.156) is a globally asymptotically
stabilizing controller, assuring that lim

t!1kz.t/ � zd.t/k ! 0.

By taking a diagonal matrix P D diagŒ�a; �e; �i; ��; �!
, closed-form
component-wise expressions for the continuous feedback control law can be
obtained by substituting Eq. (14.154) into Eq. (14.156),

ur D �1
h



2�a�aa2e sin f C�e�ep sin f � �!�!p cos f

e

�
(14.163a)

u� D �1
h

"
2�a�aa2p

r
C�e�eŒ.p C r/ cos f C re
C�!�!. p C r/ sin f

e

#

(14.163b)

uW D �1
h



�i�ir cos u C ����r sin u

sin i
� �!�!r sin u cos i

sin i

�

(14.163c)

where u D f C!; �a D a�ad; �e D e�ed; �! D !�!d; �� D ���d; �i D
i � id.

The continuous thrust acceleration components given in Eqs. (14.163) provide a
variable-magnitude thrust, and, hence, can be applied only on throttable propulsion
systems. In many practical cases, however, the thrust magnitude is fixed, i.e. unthrot-
table. This case is discussed in the next section.
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14.10 Fixed-Magnitude Continuous-Thrust Orbit Control

Let x , Œa; e; i
 be the state vector, so only the semimajor axis, eccentricity, and
inclination are controlled. The control vector is expressed in the NTW frame as per
the discussion in Sect. 11.7, so that

u D uT OuT C uN OuN C uW OuW (14.164)

In this case, we can write the GVE as Px D Gu, where

G D

2
666664

0
2

n��
0

��
2�

na

� sin f

1C e cos f

2��

na
.e C cos f / 0

0 0
r cos u

na2�

3
777775

(14.165)

The matrix G is determined by the GVE as explained in Sect. 11.7. In Eq. (14.165),

� D �
1C 2ecf C e2

��1=2
, � D p

1 � e2, and n D p
�=a3.

We assume here that the satellite is equipped with a single thruster producing
a constant magnitude thrust T0. Based on Eq. (14.165), the dynamics of the orbital
elements are given by

Px D T0
m

G Ou (14.166)

where Ou is a unit vector constituting the control direction, and m is the mass of the
satellite. The mass flow rate is given by

Pm D � T0
Ue

(14.167)

where as in Eq. (14.16), Ue D Ispg0 is the exhaust velocity, Isp is the specific impulse,
and g0 is the gravitational acceleration at sea level.

The control objective is to drive the state x from x0 to xd. Let �x D x � xd.
Assuming G is nonsingular, namely, f ¤ k	 , � ¤ k	=2, k D 1; 2; : : :, a possible
control law to determine the commanded control direction can be written as

Ou D � G�1�x��G�1�x
�� (14.168)

The control law in Eq. (14.168) utilizes an inversion of the matrix G and was, hence,
called by Zhang and Gurfil (2014) an inverse-dynamics controller. It is a special
case of the more general control proposed by Schaub et al. (2000). It can also be
interpreted as a Jurdjevic-Quinn controller, discussed in the previous section, with a
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time-varying gain matrix P.t/, i.e.

Ou D � GTP .t/ �x��GTP .t/ �x
�� (14.169)

where

P.t/ D G�T G�1 (14.170)

The gain matrix P is positive definite, but not necessarily diagonal.
To show stability, the following Lyapunov function candidate is considered,

V D 1

2
�xT�x (14.171)

The time derivative is

PV D �T0
m

�xT�x��G�1�x
��

� �T0
m

k�xk
�max

�
G�1� D �T0

m
�min .G/ k�xk �0

(14.172)

where �max and �min denote the maximum and minimum singular values of a matrix.
The inequality in Eq. (14.172) is obtained by using the fact that, for a matrix M

and a vector a, the following relations are satisfied:

�min.M/kak � kMak � �max.M/kak; �max
�
M�1� D 1

�min.M/
(14.173)

Hence, the control law is asymptotically stable, because PV D 0 only when k�xk D
0. Note also that the magnitude of thrust and the mass have no effect on the sign of
PV , and, thus, on the stability of the controller.

Since a thruster with a fixed magnitude thrust is assumed, a time-optimal
controller, i.e., a controller which achieves the desired state in minimum time,
also implies fuel-optimality. To show time optimality we approximate the matrix
G in Eq. (14.166) by substituting the values of some reference state xr, so that the
new matrix is denoted by Gr.t/ 	 G .xr.t//. This manipulation removes the state
dependence. Thus, the dynamics can be represented as

Px D T0
m

G Ou 	 T0
m

Gr Ou (14.174)
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A constrained time-optimal control problem, seeking to minimize the control
operation time tf , is then formulated as

Minimize J D tf ;

Subject to

8̂̂
<
ˆ̂:
Px D T0

m
Gr Ou

x .0/ D x0; x
�
tf
� D xd

kOuk D 1

(14.175)

According to the optimal control theory presented in Sect. 14.5, the Hamiltonian is
defined as

H D 1C T0
m
�TGr Ou (14.176)

where � is the co-state vector corresponding to x. The necessary condition as given
in Eqs. (14.47) becomes

P� D �


@H

@x

�T

D 0 (14.177)

which gives a constant solution,

� D �c (14.178)

After substituting Eq. (14.178) into Eq. (14.176), the optimal control Ou? is found to
be the solution to the equation

Ou? D min
kOukD1

H D min
kOukD1

�T
c Gr Ou (14.179)

Equation (14.179) can be solved by using the method of Lagrange multipliers
discussed in Sect. 14.5, yielding the optimal control

Ou? D � GT
r �c��GT
r �c

�� (14.180)

The state dynamics are obtained by substituting Eq. (14.180) into Eq. (14.174),

Px? D �T0
m

GrGT
r �c��GT

r �c

�� (14.181)
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Considering that the Hamiltonian H
�
tf
� D 0, another relation can be found,

T0
m
�
tf
� ��GT

r

�
tf
�
�c

�� D 1 (14.182)

It follows that the original optimization problem is transformed into a set of
nonlinear equations,

8̂
ˆ̂̂̂<
ˆ̂̂̂̂
:

xd � x0 D �
Z tf

0

T0
m

Gr .t/GT
r .t/�c��GT

r .t/ –c

�� dt

T0
m
�
tf
� ��GT

r

�
tf
�
�c

�� D 1

(14.183)

with the unknowns being �c and tf .
Equation (14.183) is a two-point boundary value problem and does not permit

analytical solutions in general. However, when the control time is short compared
to the orbital period, some analytical insight may be gained. During the control, the
reference state xr, and also the matrix Gr, can be treated as constants. By utilizing
the relationship

m D m0 � T0
Ue

t (14.184)

Equation (14.183) admits the solution

8̂
ˆ̂̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂̂
<
ˆ̂̂̂̂
ˆ̂̂̂
ˆ̂̂̂̂
ˆ̂̂̂
:̂

�c D � m

T0

G�T
r G�1

r .xd � x0/��G�1 .xd � x0/
��

Ou D G�1
r .xd � x0/��G�1
r .xd � x0/

��

mf D m0 exp

 
�
��G�1

r .xd � x0/
��

Ue

!

Px D T0
m

.xd � x0/��G�1
r .xd � x0/

��

(14.185)

where the expression for final mass mf is given instead of tf . After substituting
the control in Eq. (14.185) into Eq. (14.174), the state dynamics can be solved in
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closed-form,

x D x0 C Ue .xd � x0/��G�1
r .xd � x0/

�� ln

0
BB@ m0

m0 � T0
Ue

t

1
CCA (14.186)

Thus, the controller (14.185) can also be expressed as

Ou D � G�1
r .x � xd/��G�1
r .x � xd/

�� (14.187)

which is the same as the controller in Eq. (14.168).
Because the entries of Gr depend on the fast variables f and u, Gr is constant for

short control times, and the control law (14.168) is in fact nearly time-optimal.

14.11 Comparison of Continuous-Thrust Controllers

This section compares the performance of the inverse-dynamics controller (14.168)
with a fixed-magnitude variant of the feedback controller presented in Sect. 14.9,
i.e.

u D � GTP .xnc � xd/

kGTP .xnc � xd/k ; (14.188)

where P is a constant positive definite gain matrix, and the states are xnc D Œa; i
T .
A length unit R0 D 6378:137km is used. After the scaling, the constant gain matrix
P in Eq. (14.188) is taken as

P D


1 0

0 pI

�
(14.189)

where several values of pI are chosen between 0:1 and 100. A reference orbit with
a D 7000 km, e D 0:002, and i D 51ı is chosen for the simulation. The mass of
the satellite is 8 kg. The initial errors are set as �a D 4 km, and �i D 0:03ı. The
nominal values for the single thruster are given as T0 D 80mN and Isp D 35 s. The
controller began to work near the ascending node, until the mean elements errors
were driven below the tolerances.

The results for the controllers in Eqs. (14.168) and (14.188) are depicted in
Figs. 14.6 and 14.7. It can be seen from the phase portraits in Fig. 14.6 that only
the inverse-dynamics controller (14.168) can produce a straight line, i.e. minimum
time convergence. It is also important to note that the controller (14.168) is invariant
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Fig. 14.7 Control time comparison for different controllers

to the scaling. However, for controller (14.188), the scaling plays an important role
for the convergence of the algorithm.

The different control times are shown in Fig. 14.7. The control times for
controller (14.188) are denoted by circles, while a smooth curve, representing
the control time with respect to different gains, is obtained by a cubic spline
interpolation. The control time for the constant-gain controller (14.188) varies
considerably according to the different gains. Thus, gains should be tuned before the
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in-flight application. The controller (14.168), however, is relatively straightforward
to implement. Furthermore, as can be clearly seen, the control time for controller
(14.168) is much shorter than that of controller (14.188), which validates the
optimality analysis in the previous section. Specifically, the mass consumption in
the current example for the inverse-dynamics controller is 109:3 grams, while the
mass consumption of controller (14.188) ranges from 109:4 grams to 144:9 grams.
Thus, the fuel consumption can be reduced by up to 33%.
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Chapter 15
Optimal Impulsive Orbit Transfers

15.1 Introduction

In Chap. 14, we defined the notion of impulsive maneuvers, used as a common
approximation for designing orbital maneuvers. An important orbital maneuver
problem is the fuel-optimal impulsive transfer between 2 coplanar circular orbits.
Three such transfers are the Hohmann transfer, discussed in Sect. 14.7.1; the bi-
elliptic transfer; and the bi-parabolic transfer. These transfers were originally
conceived based on the Keplerian two-body problem, discussed in Chap. 5.

The Hohmann transfer was presented by Walter Hohmann in 1925. The opti-
mality of the Hohmann transfer was proven by Barrar (1962). Other methods for
proving the fuel optimality of the Hohmann transfer were developed by Prussing
(1992).

The Hohmann transfer is the optimal two-impulse orbit transfer between two
circular, coplanar, non-intersecting orbits. The resulting optimal transfer consists
of two tangential impulses. The first impulse is given on an arbitrary point of the
initial circular orbit, and is collinear with the velocity vector. The transfer orbit is an
ellipse, whose perigee is located on the smaller circle. The second impulse, collinear
with the velocity vector, is given either at the apogee of the transfer orbit, located
on the larger circle, or the perigee, depending on whether the transfer is from the
smaller to the larger circle or vice versa.

Hoelker and Silber (1961) suggested that, since for some Hohmann transfers the
total impulse becomes greater than the impulse required to escape from the initial
orbit, and that the total impulse for Hohmann transfers with some final to initial radii
ratio is larger than for Hohmann transfers with an infinite ratio, there exists a more
efficient, three-impulse transfer obtained by sending the spacecraft to a transition
orbit with a large radius. This maneuver is the bi-elliptic transfer, which consists of
two intermediate transfer ellipses. Hoelker and Silber (1961) found the ratio of the
final to initial radii above which all bi-elliptic transfers are more efficient than the
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Hohmann transfer, and showed that the optimal maneuver in terms of fuel cost can
be obtained by setting the transition radius to be close to infinity. This maneuver is
the bi-parabolic transfer.

In this chapter, we will re-derive the optimal transfer solutions by adopting a
unique approach. Instead of assuming that the motion is determined by the two-
body problem, we will derive optimal transfer solutions while utilizing the closed-
form solutions for J2-perturbed equatorial motion developed in Chap. 12. We will
call these solutions “modified solutions”. What we call “classical solutions”, can
be obtained by simply substituting J2 D 0. Thus, we will obtain more accurate
solutions for optimal orbit transfers compared to the classical solutions.

15.2 Modified Hohmann Transfer

As mentioned before, for the two-body problem the optimal two-impulse transfer
between two coplanar, non-intersecting circular orbits is the Hohmann transfer
(Barrar 1962; Miele and Mathwig 2004; Prussing 1992). Here, we obtain closed-
form expressions for the equivalent transfer in the equatorial plane, while taking
into account the effect of J2. This transfer is referred to as the modified Hohmann
transfer.

Let � be the angle between the velocity vector and the local horizon (perpendic-
ular to the radius vector), as shown in Fig. 15.1. The notations (1), (2), .m/, .A/, and
.B/ denote parameters related to initial orbit, final orbit, transfer orbit, transfer orbit
after the first impulse, and transfer orbit before the second impulse, respectively.

Fig. 15.1 Generic description of a two-impulse transfer. Left figure: Initial and final orbits (solid
line), transfer orbit (dashed). Right figures: The velocity before and after each impulse. (a) The
transfer. (b) First impulse. (c) Second impulse
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Figure 15.1 shows a generic two-impulse transfer between two coplanar circular
orbits. To optimize the two-impulse maneuver in terms of fuel consumption, the
total velocity change is minimized while maintaining the physical constraints of
the motion, namely specific energy and angular momentum conservation. Angular
momentum conservation means that hA D hB, where h D r � v. Using the geometry
of Fig. 15.1, we obtain the momentum conservation equation

r1vA cos .�A/ D r2vB cos .�B/ (15.1)

The total specific energy of equatorial orbits is given in Eq. (12.5). By using the
definition of escape velocity as given in Eq. (12.46), we have

" D v2

2
� vesc

2 .r/

2
(15.2)

Since the impulse is instantaneous, Eq. (15.2) is evaluated for r D rA D r1 and
r D rB D r2, yielding

"A D vA
2

2
� vesc

2 .r D r1/

2
(15.3)

"B D vB
2

2
� vesc

2 .r D r2/

2
(15.4)

Energy conservation suggests that "A D "B, and, therefore, we can obtain the energy
conservation equation

v2A � vesc
2 .r1/ D v2B � vesc

2 .r2/ (15.5)

By using Eq. (12.58), it is evident that in the equatorial plane the initial and final
velocities on the circular orbits are constant, and depend only on the initial and final
radii r1 and r2,

v1 D
s
�

r1

�
1C 3J2req

2

2r12

�
(15.6)

v2 D
s
�

r2

�
1C 3J2req

2

2r22

�
(15.7)

Now we split the impulse �v into radial and transverse components,

�v D �vr Our C�v� Ou� (15.8)
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In a circular orbit there is no radial velocity, so

�v�1 D vA cos .�A/ � v1 (15.9)

�vr1 D vA sin .�A/ (15.10)

�v�2 D v2 � vB cos .�B/ (15.11)

�vr2 D �vB sin .�B/ (15.12)

Substituting Eqs. (15.9)–(15.12) into Eq. (15.8) yields

�v1 D
q
v2A C v21 � 2vAv1 cos .�A/ (15.13)

�v2 D
q
v2B C v22 � 2vBv2 cos .�B/ (15.14)

To minimize the total velocity impulse while keeping the specific energy and angular
momentum constant, we define the augmented cost function (see Sect. 14.5.1)

L D �v1 C�v2 C �M Œr1vA cos .�A/� r2vB cos .�B/


C �E
�
v2A � v2B � vesc

2 .r1/C vesc
2 .r2/

	
(15.15)

where �M and �E are Lagrange multipliers (see Sect. 14.5.1). For finding optimal
solutions,

@L

@vA
D vA � v1 cos .�A/p

vA
2 C v12 � 2 vAv1 cos .�A/

C 2 �EvA C �Mr1 cos .�A/ D 0 (15.16)

@L

@vB
D vB � v2 cos .�B/p

vB
2 C v22 � 2 vBv2 cos .�B/

� 2 �EvB � �Mr2 cos .�B/ D 0 (15.17)

@L

@�A
D vAv1 sin .�A/p

vA
2 C v12 � 2 vAv1 cos .�A/

� �Mr1vA sin .�A/ D 0 (15.18)

@L

@�B
D vBv2 sin .�B/p

vB
2 C v22 � 2 vBv2 cos .�B/

C �Mr2vB sin .�B/ D 0 (15.19)

@L

@�E
D v2A � v2B � vesc

2 .r1/C vesc
2 .r2/ D 0 (15.20)

@L

@�M
D r1vA cos .�A/� r2vB cos .�B/ D 0 (15.21)

Equations (15.16)–(15.21) yield several solutions, shown in Table 15.1.
For a closed orbit, the velocity cannot be zero, and, therefore, Solutions 1–8 are

infeasible. A negative velocity magnitude is not physical, so Solutions 9 and 10 are
infeasible as well.
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Table 15.1 Two-impulse optimal transfer—list of solutions

Solution vA vB �A [deg] �B [deg]

1 Cpvesc
2.r1/� vesc

2.r2/ 0 C90 ˙ 90

2 Cpvesc
2.r1/� vesc

2.r2/ 0 �90 ˙ 90

3 �pvesc
2.r1/� vesc

2.r2/ 0 C90 ˙ 90

4 �pvesc
2.r1/� vesc

2.r2/ 0 �90 ˙ 90

5 0 Cpvesc
2.r2/� vesc

2.r1/ C90 ˙ 90

6 0 Cpvesc
2.r2/� vesc

2.r1/ �90 ˙ 90

7 0 �pvesc
2.r2/� vesc

2.r1/ C90 ˙ 90

8 0 �pvesc
2.r2/� vesc

2.r1/ �90 ˙ 90

9 ˙
r

r22.vesc2.r1/�vesc2.r2//

r22�r21
�
r

r21.vesc2.r1/�vesc2.r2//

r22�r21
180 0

10 ˙
r

r22.vesc2.r1/�vesc2.r2//

r22�r21
�
r

r21.vesc2.r1/�vesc2.r2//

r22�r21
0 180

11 ˙
r

r22.vesc2.r1/�vesc2.r2//

r22�r21
˙
r

r21.vesc2.r1/�vesc2.r2//

r22�r21
180 180

12 ˙
r

r22.vesc2.r1/�vesc2.r2//

r22�r21
˙
r

r21.vesc2.r1/�vesc2.r2//

r22�r21
0 0

Table 15.2 Two impulse
optimal transfer—the feasible
solutions

�v1 �v2 Result

Solution 11 kv1 C vAk kv2 C vBk Maximum

Solution 12 kv1 � vAk kv2 � vBk Minimum

To detect which of Solutions 11 and 12 provides a minimum, the total impulse
magnitude is calculated, see Table 15.2. It is readily seen that Solution 12 is the
optimal solution. From Solution 12 we obtain

�v1 D vA � v1 D
s

r22 Œvesc
2 .r1/� vesc

2 .r2/


r22 � r21
� v1 (15.22)

�v2 D v2 � vB D v2 �
s

r21 Œvesc
2 .r1/ � vesc

2 .r2/


r22 � r21
(15.23)

Figure 15.2 depicts the maneuver resulting from Solution 12. Recall our discussion
of the classical Hohmann transfer in the previous chapter. It is evident that, as in
the classical Hohmann transfer, the resulting transfer orbit is bounded between the
initial and the final circles. But in contrast to the classical transfer, the new transfer
orbit is not an ellipse, which is manifested by the fact that the orbital angle 'm is
larger than 180ı.

As in the classical Hohmann transfer, the obtained optimal maneuver requires
velocity impulses in the direction of the instantaneous velocity, causing the transfer
orbit to be between perigee and apogee, and the spacecraft completes half a period
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Fig. 15.2 J2-modified Hohmann transfer: Initial and final orbits (solid thick line), transfer orbit
(dashed thick line)

Table 15.3 Parameter values for J2-modified and classical Hohmann transfers

Parameter J2-modified Hohmann transfer Classical Hohmann transfer

v1 [km/s] 7:661688 7:656220

�v1 [km/s] 0:303746 0:304338

�v2 [km/s] 0:291709 0:292211

v2 [km/s] 7:062329 7:058686

Tm [s] 3169:51 3167:58

'm [deg] 180:2202 180:0000

on the transfer orbit. However, although the maneuvers seem similar, the presence
of J2 affects the optimal maneuver as follows:

1. The impulse size changes due to the different values of vesc.r1/; vesc.r2/; v1; v2.
2. The transfer trajectory changes due to the difference in the angle 'm between

the (instantaneous) perigee and apogee, and the consequent change in the orbit
shape, as shown in Fig. 15.2.

3. The transfer time is different compared to the classical Hohmann transfer.

As an example, a simulation is performed with the scenario being a transfer
between a circular orbit with a radius of r1 D 6800 km and a circular orbit
with a radius of r2 D 8000 km. The orbital perturbations include a complete
geopotential model, lunisolar perturbations, and drag. The initial impulse is applied
at the instantaneous apogee, for the sake of comparison with the classical Hohmann
transfer. The parameter values used in the simulation can be seen in Table 15.3.
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Fig. 15.3 Simulation results of the equatorial Hohmann transfer—showing the initial orbit radius
(J2-modified transfer result magnified at the bottom graph)
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Fig. 15.4 Simulation results of the equatorial Hohmann transfer—showing the transfer orbit
radius

The first implementation of the model is an equatorial transfer. The results are
shown in Figs. 15.3, 15.4, 15.5, which compare the time histories of the orbital
radius for the initial, transfer, and final orbits, respectively, between the classical
and modified Hohmann transfers. The circular orbits are generated as explained in
Sect. 12.3.4.
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Fig. 15.5 Simulation results of the equatorial Hohmann transfer, performed using the J2-modified
transfer (top) and the classical transfer (bottom)—showing the final orbit radius

Figure 15.3 shows that the initial orbit obtained using the modified initial
conditions, corresponding to the circular equatorial orbit in the presence of J2, is
quite accurate, with the deviation being less than 150 m even in the presence of
perturbations other than J2.

Figure 15.4 shows that the classical Hohmann transfer is unable to converge to
the final orbit radius, and the transfer orbit ends 21 km short of r2.

Figure 15.5 depicts the final orbit radius evolution. Even after a period of one
month, the orbital radius remains tightly bounded, with a maximum deviation of
less than 1 km, while the classical transfer leads to a deviation of up to 20 km from
the target orbit radius.

Consequently, the J2-modified Hohmann transfer yields improved results com-
pared to the classical transfer even in the presence of other perturbations.

Examining the evolution of the new orbital elements, defined in Eqs. (12.38)–
(12.40), provides another insight to the effect of perturbations during the transfer,
which may not be visible by examining only the radius of the orbit. Figures 15.6
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Fig. 15.6 Simulation results of the modified equatorial Hohmann transfer—showing a� during
the transfer (top) and final (bottom) orbits

and 15.7 show the evolution of the elements a� and e� during the transfer and the
final orbits of the modified Hohmann maneuver, obtained by using Eqs. (15.22) and
(15.23). It is possible to see that the new elements remain almost constant during the
motion. Consequently, the cumulative effect of all perturbations except J2 is small
during the transfer.

To extend the possible applications of the modified maneuver, we test the model
for a moderately inclined orbit, by performing the maneuver given by Eqs. (15.22)–
(15.23) with an initial inclination of 30ı.

Figure 15.8 shows the initial orbit radius. The deviation is still greatly reduced—
from almost 20 km to less than 5 km—with respect to the Keplerian initialization.

Figure 15.9 shows the transfer orbit radius. As in the equatorial case, the classical
Hohmann transfer is unable to achieve the final orbit radius, and the transfer orbit
ends 18 km short of r2. In contrast, the distance from the center of attraction at the
end of the modified Hohmann transfer deviates from the nominal value of r2 by
3 km only.
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Fig. 15.7 Simulation results of the modified equatorial Hohmann transfer—showing e� during
the transfer (top) and final (bottom) orbits
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Fig. 15.8 Simulation result of a 30ı inclined Hohmann transfer—showing the initial orbit radius
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Fig. 15.9 Simulation results of a 30ı inclined Hohmann transfer—showing the transfer orbit
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Fig. 15.10 Simulation results of the Hohmann transfer, performed with an initial inclination of
30ı, by using a J2 modified transfer (top) and the classical transfer (bottom)—showing the final
orbit radius

Figure 15.10 shows the final orbit radius. It is possible to see that the error of
the modified transfer is significantly smaller than the classical transfer, with an error
variation of C8:65 km/�7:48 km compared to C5:45 km/�23:89 km.
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Fig. 15.11 Simulation results of a 30ı inclined modified Hohmann transfer—showing a�, during
the transfer (top) and final (bottom) orbits

Another noticeable fact is that in contrast to the equatorial maneuver, we can now
see a significant change in the radial distance amplitude, which is mostly due to J3.
The zonal harmonic J3 may have a significant effect on the eccentricity, especially
in inclined near-circular orbits.

Figures 15.11 and 15.12 show the evolution of a� and e�, respectively, during
the transfer and final orbits of the modified maneuver. The effect of perturbations
is illustrated by the change in orbital elements, and is significantly larger than
the minor effect which was seen in the equatorial transfer. This confirms that the
equatorial model does not accurately describe the motion outside the equatorial
plane, and the change in orbital elements can be seen as an indicator to the ability
of the model to accurately describe the motion. However, this does not diminish the
improvement in comparison to the classical transfer.

Finally, it is emphasized that for inclinations larger than 60ı, the modified
solution does not necessarily lead to improved results. In fact, for higher inclinations
it can produce larger errors than the classical transfer.
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Fig. 15.12 Simulation results of a 30ı inclined modified Hohmann transfer—showing e�, during
the transfer (top) and final (bottom) orbits

15.3 Modified Bi-Elliptic and Bi-Parabolic Transfers

In this section, we will derive a more efficient maneuver than the modified Hohmann
transfer, by optimizing the three-impulse transfer between coplanar circular orbits
in the equatorial plane, while analytically taking into account the effect of J2. It is
important to note that although the transfers are called “modified bi-elliptic” and
“modified bi-parabolic”, the orbit shape is neither an ellipse nor a parabola.

15.3.1 Definitions

The classical bi-elliptic transfer consists of two Hohmann transfers: one between
the initial orbit with radius r1 and a user-defined mid-orbit with a radius of r3, and a
second Hohmann transfer between the mid-orbit and the final orbit, with a radius of
r2. Depending on the value of the radius r3, three distinctive possible transfers can
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Fig. 15.13 External bi-elliptic transfer

be performed; a transfer where r3 < r1; a transfer where r1 < r3 < r2; and a transfer
where r2 < r3. The first two cases are called “internal transfers”, and the third case
is referred to as an “external transfer”. Hoelker and Silber (1961) showed that for a
Keplerian motion, the optimal maneuver is obtained for an external transfer, while
internal maneuvers are more fuel-expensive than the Hohmann transfer; therefore,
we focus on external maneuvers. An illustration of an external maneuver can be
seen in Fig. 15.13.

In our discussion, the following notation will be used: (1)—initial orbit, (2)—
final orbit, (3)—mid-orbit, (m1)—first transfer orbit, (m2)—second transfer orbit,
(A)—first transfer orbit after the first impulse, (B)—first transfer orbit before the
second impulse, (C)—second transfer orbit after the second impulse, (D)—second
transfer orbit before the third impulse.

15.3.2 Modified Bi-Elliptic Transfer

We can also extend the classical bi-elliptic transfer to the case of motion under J2.
This transfer will be referred to as the modified bi-elliptic transfer. The velocity
impulses are given by

�v1 D vA � v1 (15.24)
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�v2 D vC � vB (15.25)

�v3 D v2 � vD (15.26)

Since the initial, final, and mid-orbits are circular, the velocities are given by

vi D
s
�

ri

�
1C 3J2req

2

2ri
2

�
; i D 1; 2; 3 (15.27)

Next, we use Eqs. (15.22) and (15.23), applied to a modified Hohmann transfer from
a circular orbit with r D r1 to a circular orbit with r D r3, and obtain

vA D
s

r23 Œvesc
2 .r1/� vesc

2 .r3/


r23 � r21
(15.28)

vB D
s

r21 Œvesc
2 .r1/� vesc

2 .r3/


r23 � r21
(15.29)

The additional modified Hohmann transfer from a circular orbit with r D r3 to a
circular orbit with r D r2 requires that

vC D
s

r22 Œvesc
2 .r3/� vesc

2 .r2/


r22 � r23
(15.30)

vD D
s

r23 Œvesc
2 .r3/� vesc

2 .r2/


r22 � r23
(15.31)

where vesc .r/ is given in Eq. (12.46). The total impulse (for each component the
positive value for an external transfer is selected) is given by

�vtotal D vA � v1 C vC � vB � v2 C vD (15.32)

Next, some algebraic manipulations are performed to simplify Eq. (15.32). First,

vA � vB D
r

r3 � r1
r3 C r1

Œvesc
2 .r1/ � vesc

2 .r3/
 (15.33)

vC C vD D
r

r3 C r2
r3 � r2

Œvesc
2 .r2/� vesc

2 .r3/
 (15.34)

Now, we define

Je ,
J2req

2

2r12
; X , r3

r1
; Y , r2

r1
; K ,

s
2�

r1
(15.35)
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Using this notation, the expressions for the three escape velocities are

vesc .r1/ D
s
2�

r1
.1C Je/ (15.36)

vesc .r2/ D
s
2�

r1Y

�
1C Je

Y2

�
(15.37)

vesc .r3/ D
s
2�

r1X

�
1C Je

X2

�
(15.38)

Substituting Eqs. (15.36), (15.37) and (15.38) into Eqs. (15.33) and (15.34) yields

vA � vB D
s�

2�

r1

�
r3 � r1
r3 C r1



.1C Je/�

�
1

X
C Je

X3

��
(15.39)

vC C vD D
s�

2�

r1

�
r3 C r2
r3 � r2


�
1

Y
C Je

Y3

�
�
�
1

X
C Je

X3

��
(15.40)

Normalizing Eqs. (15.39) and (15.40) by using Eq. (15.35) gives

vA � vB

K
D
s

X � 1

X C 1



.1C Je/ �

�
1

X
C Je

X3

��
(15.41)

vC C vD

K
D
s

X C Y

X � Y


�
1

Y
C Je

Y3

�
�
�
1

X
C Je

X3

��
(15.42)

Differentiating Eqs. (15.41) and (15.42) with respect to X is equivalent to
differentiation with respect to r3 (since r1 is constant), so

@. vA�vB
K /

@X
D .X � 1/.3Je C 5JeX C 2JeX2 C 2JeX3 C X2 C 3X3/

2X4.X C 1/2
q

.X�1/2.JeCJeXCJeX2CX2/
X3.XC1/

(15.43)

@. vCCvD
K /

@X
D �.X2Y2 C 2JeX2 C 4JeXY C 3JeY2/

2X4Y2
q

.XCY/.X2Y2CJeX2CJeXYCJeY2/
X3Y3

(15.44)

To find the optimal solution, we need to differentiate Eq. (15.32) with respect to r3.
This is equivalent to differentiating Eq. (15.32), normalized by the constant value K,
with respect to X. By using Eqs. (15.43) and (15.44), and adopting the notation

DX ,
@.�vtotal

K /

@X
(15.45)
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we obtain

DX D .X � 1/.3Je C 5JeX C 2JeX2 C 2JeX3 C X2 C 3X3/

2X4.X C 1/2
q

.X�1/2.JeCJeXCJeX2CX2/
X3.XC1/

� .X2Y2 C 2JeX2 C 4JeXY C 3JeY2/

2X4Y2
q

.XCY/.X2Y2CJeX2CJeXYCJeY2/
X3Y3

(15.46)

Because the value of DX depends on X, Y and Je, trying to directly solve
Eq. (15.46) will lead to a four dimensional surface, which contains the extremum
points. To circumvent the complexity of the direct solution, an alternative approach
is used (Hoelker and Silber 1961), containing the following steps:

1. Finding a critical value of Y, denoted by Ycrit, for which the modified bi-elliptic
transfer is more economic than the modified Hohmann transfer for at least some
mid-orbits.

2. Showing that for Ycrit, the modified bi-elliptic transfer is more economic than the
modified Hohmann transfer for all mid orbits, and that by increasing the value of
X, a more economic solution is obtained.

3. Extending Step 2 for all Ycrit < Y.

15.3.2.1 Calculating Ycrit

It is possible to compare the total velocity impulse of the modified bi-elliptic transfer
to the total velocity impulse of the modified Hohmann transfer by imposing the mid-
orbit radius to be equal to the final orbit radius (r3 D r2). At the point where r3 D r2
or X D Y, the total impulse of the modified Hohmann transfer equals the total
impulse of the modified bi-elliptic transfer. If, for that point, DX is negative, the total
impulse size begins with a negative slope, and will decrease for a positive increment
of X. Since Y < X, at least some values of X will provide a more economic solution
than the transfer with X D Y. Thus,

1. For X D Y, the total impulse size of the modified bi-elliptic transfer equals the
total impulse size of the modified Hohmann transfer.

2. If, for X D Y, DX is negative, then for some values of X the modified bi-elliptic
transfer is more economic than the modified Hohmann transfer.

Considering these facts, first we find the values of Y under the condition Y D X, for
which DX is zero. This will provide the critical value above which DX is negative,
and the modified bi-elliptic transfer is more economic.
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Equating Eq. (15.46) to zero and simplifying, while considering the fact that 1 �
Y � X, leads to

.3Je C 5JeX C 2JeX2 C 2JeX3 C X2 C 3X3/

�
p

Y.X C Y/.X2Y2 C JeX2 C JeXY C JeY2/

� .X2Y2 C 2JeX2 C 4JeXY C 3JeY2/
p
.Je C JeX C JeX2 C X2/.X C 1/3

D 0
(15.47)

Setting X D Y gives

p
2
p

Y2 C 3Je.3Je C 5JeY C 2JeY2 C 2JeY
3 C Y2 C 3Y3/

� .Y2 C 9Je/
p
.Y C 1/3.Je C JeY C JeY2 C Y2/ D 0

(15.48)

Equation (15.48) depends on r1 through Je, and for Je D J2 D 0

p
2.1C 3Y/� .Y C 1/

3
2 D 0: (15.49)

The positive solution of Eq. (15.49) is Ycrit D 15:58171873876, which corresponds
to the classical solution obtained by Hoelker and Silber (1961).

At this point, to solve Eq. (15.48), a numerical procedure will be employed. In
order to accommodate possible solutions, we need to approximate the range of the
different variables appearing in Eq. (15.48). The sphere of influence radius can be
approximated using Eq. (1.19).

For Earth, rSOI 	 925; 000km. Since the initial radius cannot be smaller than req,
the values of X and Y cannot extend beyond 150 without exceeding the SOI radius.
Therefore, after taking some margin of error, the variables can be limited as follows:

req < r1 < 1000000 km (15.50)

1 < Y < 156 (15.51)

Y < X < 156 (15.52)

Numerically solving Eq. (15.48) for Y while using the values relevant for Earth,
namely

J2 D 0:0010826269; req D 6378:1363 km; � D 398600:4415 km3/sec2

(15.53)

and denoting the solution by Ycrit, will yield the results shown in Fig. 15.14.
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Fig. 15.14 The final-to-initial radii ratio (Ycrit) for which the modified bi-elliptic transfer is more
economic than the modified Hohmann transfer given an external mid-orbit, as a function of the
initial radius

The results shown in Fig. 15.14 are the values of Y for which the normalized total
impulse of the modified bi-elliptic transfer is equal to the normalized total impulse
of the modified Hohmann transfer, and DX is zero.

Evaluation of @DX=@X shows that this derivative is negative. Therefore, for some
values of X that satisfy the condition Ycrit D Y < X, we obtain DX < 0, and it is
possible to conclude that for every value of Ycrit there exist at least some values of X
providing a modified bi-elliptic transfer, which is more economic than the modified
Hohmann transfer.

15.3.2.2 Evaluating the effect of X on maneuvers where Y D Ycrit

By using the obtained values Y D Ycrit and their compatible values of Je, it is now
possible to evaluate the effect of X on the bi-elliptic transfers while considering
only two variables (since Je is directly derived from Ycrit). Numerical evaluation of
Eq. (15.46), for all values of Ycrit (and the corresponding values of Je) and all values
of Ycrit < X can be seen in Fig. 15.15.

The derivative is always negative. Therefore, we can conclude that for values of
Y 	 Ycrit, all modified bi-elliptic maneuvers are more economic than the modified
Hohmann transfer. Moreover, the maneuver becomes more economic as the value
of X becomes larger.
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Fig. 15.15 Partial derivative of the normalized total impulse with respect to X for all values of
Y D Ycrit and Ycrit < X

15.3.2.3 Extending the evaluation to include all Ycrit < Y

Finally, we calculate the normalized derivative of the total impulse with respect to
X, from Eq. (15.46), for

req < r1 < 1000000 km (15.54)

Ycrit.r1/ � Y <
1000000

r1
(15.55)

Y < X <
1000000

r1
(15.56)

The result is a 4 dimensional surface. The value of the normalized derivative for all
the values listed above is

� 5:2935 10�4 � DX � �1:6044 10�5 (15.57)

By evaluating only for values where Y � Ycrit, it is possible to exclude the regions
that contain extremum points. By doing so, we obtain a region where the derivative
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is always negative. Consequently,

1. For Y � Ycrit, all modified bi-elliptic maneuvers are more fuel-efficient than the
modified Hohmann transfer.

2. For Y � Ycrit, increasing the value of X will improve the fuel efficiency of the
transfer.

3. Under the condition that Y � Ycrit, the optimal modified bi-elliptic transfer is
obtained for X ! 1.

15.3.3 Modified Bi-Parabolic Transfer

As shown in the previous section, the optimal modified bi-elliptic transfer is
obtained for X ! 1, where the total impulse size is asymptotically converging to
a constant value. This value is a particular case of the modified bi-elliptic transfer,
called the modified bi-parabolic transfer. By setting r3 ! 1 (which corresponds
to X ! 1) in Eqs. (15.27)–(15.31) we obtain

v1 D
s
�

r1

�
1C 3J2Re

2

2r12

�
(15.58)

v2 D
s
�

r2

�
1C 3J2Re

2

2r22

�
(15.59)

v3 D 0 (15.60)

vA D vesc .r1/ (15.61)

vB D 0 (15.62)

vC D 0 (15.63)

vD D vesc .r2/ (15.64)

The impulses are

�v1 D vA � v1 (15.65)

�v2 	 0 (15.66)

�v3 D v2 � vD (15.67)

This is the optimal maneuver (among all modified bi-elliptic maneuvers) for all
values of Y � Ycrit.
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15.4 Comparison Between the Modified Bi-Parabolic
and the Modified Hohmann Transfers

To compare the modified Hohmann transfer to the modified bi-parabolic transfer,
we first calculate the point at which the two transfers yield the same total impulse,

.vA;Hoh � v1/C .v2 � vB;Hoh/ D .vA;Bip � v1/C .vD;Bip � v2/ (15.68)

where the subscripts “Hoh” and “Bip” denote the values for the modified Hohmann
and modified bi-parabolic transfers, respectively. Substituting from Eqs. (15.61),
(15.64), (15.22) and (15.23) yields

s
r22 .vesc

2 .r1/ � vesc
2 .r2//

r22 � r21
�
s

r21 .vesc
2 .r1/� vesc

2 .r2//

r22 � r21
C v2

D vesc .r1/C vesc .r2/ � v2 (15.69)

Simplifying Eq. (15.69) gives

r
r2 � r1
r2 C r1

.vesc
2 .r1/ � vesc

2 .r2// D vesc .r1/C vesc .r2/ � 2v2 (15.70)

Normalizing the velocities provides the expressions

v2

K
D
s
1
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�
1C 3

Je

Y2

�
(15.71)

vesc .r1/

K
D
p
1C Je (15.72)

vesc .r2/

K
D
s
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Y

�
1C Je

Y2

�
(15.73)

Normalizing Eq. (15.70) by K, and substituting Eqs. (15.71), (15.72) and (15.73),
gives

s
Y�1
YC1



1CJe� 1

Y

�
1C Je

Y2

��
D
p
1CJeC
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1

Y
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Y2

�
�
s
2

Y

�
1C3 Je

Y2

�

(15.74)
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Re-arranging Eq. (15.74) leads to

p
.Y � 1/ .Y3 C Y3Je � Y2 � Je/

C p
Y C 1

�p
2Y2 C 6Je �

p
Y3 C Y3Je �

p
Y2 C Je

�
D 0

(15.75)

Solving Eq. (15.75) for Earth with values taken from Eq. (15.53) will yield the value
of the final-to-initial radii ratio Y, above which the modified bi-parabolic transfer is
more economic than the modified Hohmann transfer. This value of Y is denoted by
Ym.

At this stage, several observations can be made:

1. For values of Y > 1 the function in Eq. (15.75) is continuous, and has no
singularities.

2. The modified Hohmann transfer equals the modified bi-parabolic transfer only
for Y D Ym.

3. It has already been proven that for Y D Ycrit > Ym, all modified bi-elliptic
transfers (which include the modified bi-parabolic transfer) are more economic
than the modified Hohmann transfer.

From these observations, we conclude that since there is at least one value of Y,
larger than Ym, for which the modified bi-parabolic transfer is more economic than
the modified Hohmann transfer, Ym represents the minimal value of Y above which
all modified bi-parabolic transfers are more economic than the modified Hohmann
transfers. The Keplerian value of Ym D 11:9387654726, obtained by Hoelker and
Silber (1961), was re-calculated by setting Je D 0, and degenerating Eq. (15.75) to
the equation

Y.Y � 1/C p
Y C 1

�p
2Y �

p
Y3 � Y

�
D 0 (15.76)

In Fig. 15.16, it is possible to see that for small values of r1, the difference between
the Keplerian case and the J2-perturbed case is the largest. This corresponds to the
fact that the effect of J2 is more pronounced for low orbits.

To compare the obtained solutions, we test the transfers in simulations. The
simulations were performed using a full geopotential model, lunisolar attraction,
and drag.

15.4.1 Bi-Elliptic Transfer

The first test case will be an equatorial transfer between a circular orbit with a radius
of r1 D 6800 km, to a coplanar circular orbit with a radius of r2 D 108800km.
The modified bi-elliptic transfer is performed using a mid-orbit with a radius of
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Fig. 15.16 The final-initial radii ratio for which the modified bi-parabolic transfer is more
economic than the modified Hohmann transfer

Table 15.4 Parameter values of the J2 modified bi-elliptic transfer, J2 modified Hohmann transfer,
and the classical bi-elliptic maneuver

J2 modified Classical J2 modified

Parameter
bi-elliptic bi-elliptic Hohmann

transfer transfer transfer

v1 [km/sec] 7:661688 7:656220 7.661688

T1 [sec] 5576:53 5580:52 5576.53

�v1 [km/sec] 2:879713 2:882524 2.845227

Tm1 [sec] 81704:69 81701:45 69149.99

'm1 [deg] 180:0716 180:0000 180.0726

�v2 [km/sec] 1:165079 1:165222 —

Tm2 [sec] 195577:47 195576:98 —

'm2 [deg] 180:0009 180:0000 —

�v3 [km/sec] 0:055491 0:055491 1.257378

v2 [km/sec] 1:914060 1:914055 1.914060

T2 [sec] 357152:02 357153:02 357152.02

�vtotal [km/sec] 4:100283 4:103238 4.102605

Total transfer time [hr] 77:0228 77:0218 19.2083

r3 D 122400km. Thus, Y D 16 (Y > Ycrit) and X D 18, which suggests that such a
transfer is more economic than the modified Hohmann transfer.

We test the improvement obtained by modifying the bi-elliptic transfer by
comparing it to the classical bi-elliptic transfer, as well as comparing the modified
bi-elliptic transfer to the modified Hohmann transfer. The maneuver parameter
values can be seen in Table 15.4.

The modified bi-elliptic transfer is more economic than the modified Hohmann
transfer, as expected. However, the small fuel saving comes at the price of a
significantly increased maneuver time. It is also interesting to see that the classical
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Fig. 15.17 The modified bi-elliptic transfer, the classical bi-elliptic transfer, and the modified
Hohmann transfer in the equatorial plane

bi-elliptic transfer is the most expensive maneuver, which leads to the conclusion
that by modifying the bi-elliptic transfer we obtain a more accurate maneuver, and
at a lower fuel cost. The different transfers can be seen in Fig. 15.17.

The significant deviation of the classical bi-elliptic transfer from the target orbit
can be seen in Fig. 15.17. This is a result of an insufficient velocity at the start of the
maneuver.

Although it seems as if the orbital angle of the Keplerian transfer is larger than
180ı, in reality the insufficient velocity causes the final radius to be smaller than
expected, and, therefore, the radial period of the transfer orbit is also smaller than
expected. That causes the Keplerian transfer second impulse to be applied after the
local apogee, while the radius is decreasing, which leads to additional errors.

The final orbit radius error is depicted in Fig. 15.18. It is possible to see the
significant reduction of the final radius error—from more than 6000 km in the
classical bi-elliptic maneuver to about 250 km in the modified bi-elliptic transfer.
Also, the modified Hohmann transfer produces more accurate results, with a final
radius error around 100 km.

In general, for distant orbits, the external perturbations, such as the third-body
effect, become significantly larger, and, therefore, the final error remains quite large
in all cases.
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Fig. 15.18 Final orbit radius deviation from the nominal value, obtained using the modified bi-
elliptic transfer, the classical bi-elliptic transfer, and the modified Hohmann transfer

15.4.2 Bi-Parabolic Transfer

An orbit with an infinite radius is a theoretical concept, so propagating an ideal bi-
parabolic transfer is not possible. Therefore, we should make some approximations.
The radial distance, which is considered “infinite”, is the SOI border, calculated
using Eq. (1.19). The second approximation will be the elimination of the third-
body perturbation.

The selected maneuver will be a transfer between an initial circular orbit in the
equatorial plane with r1 D 6800km, to a final circular orbit with r2 D 85000 km,
and a mid-orbit with r3 D 880000km (close to the border of the SOI). In terms of
X and Y, the normalized values are Y D 12:5 and X D 129:41, and since Y > Ym

we can expect the modified bi-parabolic transfer to be more fuel efficient than the
modified Hohmann transfer, which will be tested here as well.

The parameter values of the approximated bi-parabolic transfer can be seen in
Table 15.5. The resulting transfers can be seen in Fig. 15.19, and the final radius
error in Fig. 15.20. Although the modified bi-parabolic transfer is more economic
than the modified Hohmann transfer, it considerably extends the transfer time, as
expected. In this case, the classical bi-parabolic transfer results in a collision due to
the extensive deviation from the target orbit, which is depicted by the straight line
trajectory in Fig. 15.19.

The error in the classical bi-parabolic transfer is comprised of three factors: The
first is the initialization, which causes the initial velocity to be smaller than required;
the second is the transfer orbit, which due to the insufficient initial velocity, reaches
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Table 15.5 Parameter values of the approximated J2 modified bi-parabolic transfer, J2 modified
Hohmann transfer, and the approximated original classical bi-parabolic maneuver

J2 modified Classical J2 modified

Parameter
bi-parabolic bi-parabolic Hohmann

transfer transfer transfer

v1 [km/sec] 7:661687 7:656220 7.661687

T1 [sec] 5576:53 5580:52 5576.53

�v1 [km/sec] 3:126838 3:129718 2.759804

Tm1 [sec] 1469186:45 1469178:34 48935.59

'm1 [deg] 180:0653 180:0000 180.0750

�v2 [km/sec] 0:199115 0:199135 —

Tm2 [sec] 1667735:42 1667734:69 —

'm2 [deg] 180:0005 180:0000 —

�v3 [km/sec] 0:758992 0:758997 1.331797

v2 [km/sec] 2:165516 2:165506 2.165516

T2 [sec] 246625:16 246626:29 246625.16

�vtotal [km/sec] 4:084945 4:087849 4.091600

Total transfer time [hr] 871:3671 871:3647 13.5932
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Fig. 15.19 The modified bi-parabolic transfer, the classical bi-parabolic transfer, and the modified
Hohmann transfer in the equatorial plane
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Fig. 15.20 Final orbit radius deviation from the nominal value, obtained using the (a) modified
bi-parabolic transfer, (b) the classical bi-parabolic transfer, and (c) the modified Hohmann transfer
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a smaller maximal radius; and the third is a smaller radial period, which causes the
impulses to miss their target location, thus the transfer fails completely.

It is important to note that the collision of the classical bi-parabolic transfer is a
result of the scenario defined here, and for a different scenario design, a different
result can be obtained.
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Chapter 16
Orbit Data Processing

16.1 Introduction

In Chap. 9 we discussed numerical procedures for computation of orbits. In
this chapter we will discuss other numerical procedures as needed for celestial
mechanics and astrodynamics. These include the processing and filtering of obser-
vations and fitting ephemerides to the observations, determining an approximation
for a given set of measurements, the use of polynomials for the computation
from numerical integrations of positions of objects for specific times, and the
use of different expressions for the series expansions of general perturbations
theories. We will also present a recursive filtering approach for fitting dynamical
models to noisy sets of observations. Whereas a polynomial fit to a given set of
observations is usually referred to as batch processing, recursive filtering generates
an approximation for the state of a system as each measurement is obtained.

There are two cases where determining an approximation by fitting a polynomial
to a discrete set of points is inefficient. First, when all values of a function in an
interval are specified, and it is desirable to use as many values as possible, rather
than the least, to approximate the function. The presence of discontinuities in the
function, or its derivative, becomes important. Second, when there are a limited
set of approximate values of uncertain accuracies available. It is not desirable to
determine a high degree polynomial to fit the data exactly. A high degree polynomial
might fit the data exactly, but it would oscillate around the true function. The second
case is when there are a large number of observations with observational errors and
noise.

The method of least squares is designed for both of these cases. In addition to the
principle of least squares, we will also introduce some classical sets of orthogonal
polynomials and some of their properties.

© Springer-Verlag Berlin Heidelberg 2016
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16.2 Principle of Least Squares

Instead of seeking a polynomial y.x/ of degree n, which agrees exactly with a
function f .x/ at n C 1 points, we can seek to have y.x/ and f .x/ agree in some sense
as well as possible over a domain D. The domain can be a continuous interval, or a
set of NC1 points, N > n. A possible measure of agreement would be for the sum of
the squared errors to be a minimum. This measure is Legendre’s principle of least
squares. A weighting function, w.x/, which is based on the precision of the f .x/
value, can be added, so w.x/ corresponds to the value of f .x/ when x D xi. Thus,
the square error at xi is multiplied by w.xi/ to determine the sum of the squares.

Suppose that values of f .x/ are known at points x0; x1; x2; : : : ; xn in a domain D,
or a continuous interval .a; b/; then an approximation can be made,

f .x/ 	
nX

kD0
ak�k.x/ � y.x/ (16.1)

where �0.x/; : : : ; �n.x/ are n C 1 chosen functions. To obtain a polynomial
approximation of degree n, we could take �0 D 1; �1 D x; �2 D x2; : : : ; �n D xn, or
a more advantageous function. The nonnegative weighting function is

w.x/ � 0 (16.2)

We define the residual R.x/ as

R.x/ D f .x/�
nX

kDo

ak�k.x/ � f .x/ � y.x/ (16.3)

Then the best approximation, in a least squares sense, is when the a0s are determined
so the sum of w.x/R2.x/ over D is a minimum. The sum is

˝
wR2

˛
and the

requirement is

hwR2i �
*

w. f �
nX

kD0
ak�k/

2

+
D minimum (16.4)

which implies the conditions

@

@ar

*
w. f �

nX
kD0

ak�k/
2

+
D 0; r D 0; 1; 2; : : : ; n (16.5)



16.2 Principle of Least Squares 443

or
*

w�r. f �
nX

kD0
ak�k/

2

+
� hw�r. f � y/i D 0 (16.6)

or

nX
kD0

ak hw�r�ki D hw�rf i ; r D 0; 1; 2; : : : ; n (16.7)

which leads to nC1 simultaneous linear equations in the nC1 unknown parameters
a0; a1; : : : ; an. These are called the normal equations. These can be expressed as

hw.x/�.x/R.x/i D 0; r D 0; 1; 2; : : : ; n (16.8)

We also have

˝
wR2

˛ D hwR � Ri D
*

wR. f �
nX

kD0
ak�k/

+
D hwRf i �

nX
kDo

ak hw�kRi

(16.9)

When the coefficients a0; a1; : : : ; an satisfy Eq. (16.7), the squared residual sum
reduces to the following, since by Eq. (16.8) hw�rRi D 0,

˝
wR2

˛
min D hwRf i � hwf . f � y/i � ˝

wf 2
˛ �

nX
kD0

ak hw�kf i (16.10)

The size of this quantity is a criterion of the approximation over D. If we have
n C 1 points and functions �0; �1; : : : ; �n, polynomials of degree less than n, then
R.x/ can be zero at each point. So the n degree polynomial y.x/ agrees with f .x/
at n C 1 points. If we have N C 1 points, N > n, an exact fit is impossible, and
the least squares produces a function, which is the best fit under criterion (16.4).
From Eq. (16.7), the unknowns in the left hand members of the normal equation are
independent of the function f .x/ to be approximated. From the coordinate function
and weighting function, they can be recalculated. Since

˝
w�i�j

˛ � ˝
w�j�i

˛
, the

coefficient ai in the jth equation equals the coefficient aj in the ith equation, and
the coefficients of the a0s are symmetrical with respect to the principal diagonal.
This reduces the calculations required.

Another simplification is accomplished by choosing coordinate functions such
that

˝
w�i�j

˛ D 0; i ¤ j (16.11)
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This set of �0s are an orthogonal set with weighting function w.x/ over D. This set
of functions, from the normal equations (16.7), are uncoupled, and of the form

ar
˝
w�2r

˛ D hw�rf i ; r D 0; 1; 2; : : : ; n (16.12)

w.x/ is nonnegative, and it is assumed that none of the functions vanish everywhere
over D, so we obtain

ar D hw�rf i
hw�2r i ; r D 0; 1; 2; : : : ; n (16.13)

From Eqs. (16.10) and (16.12), the value of
˝
wR2

˛
can be written as

˝
wR2

˛
min D ˝

wf 2
˛ �

nX
kD0

a2k
˝
w�2k

˛
(16.14)

The root-mean square (RMS) error over D relative to w.x/ is defined to be

�RMS � . f � y/RMS D
s

hwR2i
hwi (16.15)

When w.x/ � 1, the quantity h1i represents the length of the interval in the
continuous case and the number .N C 1/ of points in D in the discrete case. In
the discrete case, the data are frequently observations, and the function f .x/ is not
known (Hildebrand 1956; pp. 258–261).

16.3 Least Squares Approximation

Consider applying the least squares method to a discrete set of points in a domain
D, or a continuous interval. Take an approximation of the form

f .x/ 	
nX

kD0
ak�k.x/ (16.16)

over N C 1 points x0; x1; x2; : : : ; xN , where N > n, and the weighted squared error
is to be a minimum,

NX
iD0

w.xi/

"
f .xi/�

nX
kD0

ak�k.xi/

#2
D minimum (16.17)
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The n C 1 normal equations (16.7) become

a0

NX
iD0

w.xi/�r.xi/�0.xi/C a1

NX
iD0

w.xi/�r.xi/�1.xi/C : : : (16.18a)

an

NX
iD0

w.xi/�r.xi/�n.xi/ D
NX

iD0
w.xi/�r.xi/f .xi/

r D 0; 1; 2; : : : ; n (16.18b)

These equations are obtained by writing down the N C 1 equations which would
require that Eq. (16.16) be an equality at the N C 1 points xi.

a0�0.x0/C a1�1.x0/C; : : : ;Can�n.x0/ D f .x0/ (16.19a)

a0�0.x1/C a1�1.x1/C; : : : ;Can�n.x1/ D f .x1/ (16.19b)

::: (16.19c)

a0�0.xN/C a1�1.xN/C; : : : ;Can�n.xN/ D f .xN/ (16.19d)

The rth normal equation is obtained by multiplying each equation by the coefficient
of ar in that equation, and by the weight associated with that equation, and then
summing the results. The weights assigned should be independent of the least
squares results, and unity should be used in the absence of a good source. When
N D n, the problem reduces to Eqs. (16.19) in n C 1 unknowns, and the normal
equations are the original equations.

As an example, let us fit a line by the least squares method to the data in
Table 16.1.

We have

a0 C a1x D f .x/ (16.20)

The coefficients a0 and a1 and the data of Table 16.1 give

1 0 1:00

1 1 3:85

1 2 6:50

1 3 9:35

1 4 12:05

(16.21)

Table 16.1 Data for fitting a
straight line

x 0 1 2 3 4

f .x/ 1.00 3.85 6.50 9.35 12.05
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Table 16.2 Values obtained
from a least squares
approximation

x 0 1 2 3 4

f .x/ 1:00 3:85 6:50 9:35 12:05

y.x/ 1:03 3:79 6:55 9:31 12:07

Taking weights of unity, the first normal equation is formed by adding the
columns of (16.21) giving Œ5; 10; 32:75
. the second normal equation is formed
by multiplying the elements of each row by the element in the second column of the
row, and adding the results, giving Œ10; 30; 93:10
. the normal equations are

5a0 C 10a1 D 32:75 (16.22)

10a0 C 30a1 D 93:10 (16.23)

The symmetry is as expected. The solution is a0 D 1:03; a1 D 2:76, and the
approximation is

f .x/ 	 y.x/ D 1:03C 2:76x (16.24)

Table 16.2 contains the given data and the approximation values
The sum of the squared errors is 0.0090 and the RMS of the points is 0.042, which

represents the RMS deviation of the approximation function from the true function,
if the given values are exact function values. If the given values are observed values,
0.042 is the RMS error of the given values (Hildebrand 1956; pp. 261–263).

16.4 Orthogonal Polynomials

We want a least squares approximation over the interval .a; b/ by constructing a set
of polynomials �0.x/; �1.x/; : : : ; �r.x/, where each is orthogonal to all others over
.a; b/, with a nonnegative weighting function w.x/. We seek a polynomial �r.x/ of
degree r, which is orthogonal over .a; b/ to all polynomials of degree less than r,
such that

Z b

a
w.x/�r.x/qr�1.x/dx D 0 (16.25)

where w is specified and qr�1 is an arbitrary polynomial of degree r � 1, or less. Put
in a more useful form, integrate by parts r times, and use the fact that q.r/r�1 � 0.
Introduce the notation

w.x/�r.x/ � drUr.x/

dxr
D U.r/

r .x/ (16.26)
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so Eq. (16.25) becomes

Z b

a
U.r/

r .x/qr�1.x/dx D 0 (16.27)

and after r integrations by parts

ŒU.r�1/
r qr�1 � U.r�2/

r q0
r�1 C U.r�3/

r qr�1" � : : : ; :C .�1/r�1U.r�1/
r qr�1

r�1
b0 D 0

(16.28)

The function �r.x/ defined by Eq. (16.26)

�r.x/ D 1

w.x/

drUr.x/

dxr
(16.29)

is a polynomial of degree r, so Ur.x/ satisfies the differential equation

drC1

dxrC1



1

w.x/

drUr.x/

dxr

�
D 0 (16.30)

in .a; b/. For Eq. (16.28) to be satisfied for any values of

qr�1.a/; qr�1.b/; q0
r�1.a/; q0

r�1.b/

leads to 2r boundary conditions

Ur.a/ D U0
r.a/ D Ur".a/ D � � � D Ur�1

r .a/ D 0 (16.31a)

Ur.b/ D U0
r.b/ D Ur".b/ D � � � D Ur�1

r .b/ D 0 (16.31b)

If a solution of Eq. (16.30), which satisfies Eqs. (16.31) for each integer r, can
be obtained, the rth member of the set of functions is given by Eq. (16.29). Each
solution will contain an arbitrary multiplicative constant. The formulated problem
possesses a solution, even when a and/or b is infinite, assuming that w.x/ � 0

in .a; b/ and that
R b

a xkw.x/dx exists for all nonnegative integral values of k. The
coefficients in the expression

y.x/ D
nX

rD0
ar�r.x/ (16.32)

are determined from

Z b

a
w.x/Œf .x/ � y.x/
2dx D minimum (16.33)
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in the form

ar D
R b

a wf�rdxR b
a w�2r dx

D
R b

a wf�rdx

�r
(16.34)

where the numerator depends on f , but the denominator �r is independent of f , and
can be calculated only once. The calculation of �r can be simplified. Write

�r.x/ D Ar0 C Ar1x C � � � C Arx
r (16.35)

so that Ark is the coefficient of xk in �r.x/, and Ar � Arr is its leading coefficient. It
follows

�r D
Z b

a
w.x/�r.x/�r.x/dx �

Z b

a
w.x/�r.x/ŒAr0CAr1x C� � �CArx

r
dx (16.36)

and from Eq. (16.25)

Z b

a
w.x/�r.x/x

idx D 0; i D 0; 1; 2; : : : ; r � 1 (16.37)

so

�r D Ar

Z b

a
xrw.x/�r.x/dx D Ar

Z b

a
xrU.r/

r .x/dx (16.38)

Integrating by parts r times and using Eqs.(16.31), this relation takes the form

�r �
Z b

a
w.x/�2r .x/dx D .�1/rrŠAr

Z b

a
Ur.x/dx (16.39)

where Ar is the coefficient of xr in �r.x/ (Hildebrand 1956; pp. 269–271).

16.5 Chebyshev Series

A development in celestial mechanics is the introduction of Chebyshev series in
the 1960s. Historically, Fourier series have been used for planetary and lunar
theories. Attempts have been made to utilize power series, and various polynomial
approaches to interpolation have been applied. Carpenter (1966) provided the first
application of Chebyshev polynomials for celestial mechanics, for development of
planetary theories over a specified time period. Now Chebyshev polynomials, or
economization of power series from Chebyshev polynomials, are being used to
represent and compress ephemeris data over varying periods of time to various



16.5 Chebyshev Series 449

accuracies (Deprit et al. 1979; Lee et al. 2003). They provide compact means
of providing the data and an accurate method of interpolation at the same time.
Whereas Fourier series give accurate representation at the middle of an interval
of time and reduced accuracy with greater distance from the middle, Chebyshev
polynomials are weighted for increased accuracy at the ends.

16.5.1 Chebyshev Approximation

Chebyshev polynomials have the advantage of minimizing errors at the ends of the
interval, so a weighting function 1=

p
.x � a/.b � x/ is useful. A linear change of

variables has transformed the interval into .�1; 1/, so the weighting function is

w.x/ D 1p
1 � x2

(16.40)

For an orthogonal polynomial of degree r; �r.x/, to be orthogonal to all polynomials
of degree inferior to r over the interval .a; b/, it is required that

Z b

a
w.x/�r.x/qr�1.x/dx D 0 (16.41)

where w.x/ is a specified weighting function, and qr�1 is an arbitrary polynomial of
degree r �1 or less. For the interval .�1; 1/ and this weighting function, Eq. (16.41)
becomes

Z 1

�1
�r.x/qr�1.x/p

1 � x2
dx D 0 (16.42)

The change of variables x D cos � gives

Z 	

0

�r.cos �/qr�1.cos �/d� D 0 (16.43)

cos k� can be expressed as a polynomial of degree k in cos � , and any
polynomial of degree k in cos � can be expressed as a linear combination of
1; cos �; cos 2�; : : : ; cos k� , so Eq. (16.43) will be satisfied, if and only if,

Z 	

0

�r.cos �/ cos k� d� D 0; k D 0; 1; : : : ; r � 1 (16.44)

Thus, the function

�r.cos �/ D Cr cos r� (16.45)
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has this property. Using x D cos � , we return to the variable x. We establish that the
functions

�r.x/ D Cr cos.r cos�1 x/ (16.46)

are the orthogonal polynomials. With Cr D 1, these polynomials are the Chebyshev
polynomials, Tr.x/, so

�r.x/ D Tr.x/ D cos.r cos�1 x/ (16.47)

These polynomials possess the orthogonal property

Z 1

�1
Tr.x/Ts.x/p
1 � x2

dx D 0; r ¤ s (16.48)

where r and s are nonnegative integers. The first six of these polynomials are

T0.x/ D 1; T1.x/ D x; T2.x/ D 2x2 � 1; T3.x/ D 4x3 � 3x

T4.x/ D 8x4 � 8x2 C 1; T5.x/ D 16x5 � 20x3 C 5x (16.49)

and additional polynomials may be determined from the recurrence formula

TrC1.x/ D 2xTr.x/ � Tr�1.x/ (16.50)

The product of two Chebyshev polynomials is

2Tr.x/Tq.x/ D TrCq.x/C Tjr�qj.x/ (16.51)

The integral is

Z
T0.x/dx D T1.x/;

Z
T1.x/dx D 1

4
T2.x/

2

Z
Tr.x/dx D 1

r C 1
TrC1.x/ � 1

r � 1
Tr�1.x; r > 1 (16.52)

To evaluate the factor

�r D
Z 1

�1
T2r .x/p
1 � x2

dx (16.53)

write x D cos � and Tr.x/ D cos r� , so

�r D
Z 	

0

cos2 r� d� D
�
	; r D 0
	
2
; r ¤ 0

(16.54)
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With the weighting factor w.x/ D 1=
p
1 � x2, the least squares polynomial of

degree n approximating f .x/ in .�1; 1/ is

y.x/ D
nX

rD0
arTr.x/; �1 < x < 1 (16.55)

where

a0 D 1

	

Z 1

�1
f .x/p
1 � x2

dx; ar D 2

	

Z 1

�1
f .x/Tr.x/p
1 � x2

dx; r ¤ 0 (16.56)

The integrated weighted square error of all polynomials of degree n or less,

Z 1

�1
1p
1 � x2

Œf .x/ � yn.x/

2dx (16.57)

is least when yn.x/ equals the right hand member of Eq. (16.55) (Hildebrand 1956;
pp. 279–281).

16.5.2 Other Polynomial Approximations

Using other weighting functions, many types of least squares polynomial approxi-
mations can be formed. For the weighting function over .�1; 1/

w.x/ D .1 � x/˛.1C x/ˇ; ˛ > �1; ˇ > �1 (16.58)

This reduces to the Legendre case, when ˛ D ˇ D 0, and to the Chebyshev case,
when ˛ D ˇ D �1=2. The rth orthogonal polynomial is

�r.x/ D Cr.1 � x/�˛.1C x/�ˇ
dr

dxr

�
.1 � x/˛Cr.1C x/ˇCr

	
(16.59)

This can be identified as the rth Jacobi polynomial, when Cr is properly specified.
The factor Cr for Tr.x/ is .�2/rrŠ=.2r/Š, so Eq. (16.47) can be written

Tr.x/ D .�2/rrŠ
.2r/Š

.1 � x2/1=2
dr

dxr
.1 � x2/r�1=2 (16.60)
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Similar polynomials, Sr.x/, are from the weighting function w.x/ D .1�x2/1=2, and
can be expressed as

Sr.x/ D sinŒ.r C 1/ cos�1 x


sin.cos�1 x/

D .�2/r.r C 1/Š

.2r C 1/Š
.1 � x2/�1=2

dr

dxr
.1 � x2/rC1=2 (16.61)

and

Sr.x/ D 1

r C 1
T 0

rC1.x/ (16.62)

which can be expressed as

Sr.x/ D 1p
1 � x2

sinŒ.r C 1/ cos�1 x
 D sin.r C 1/�

sin �
(16.63)

where � D cos�1 x. For the weighting function

w.x/ D xˇe�˛x; ˇ > �1; ˛ > 0 (16.64)

over .0;1/ there follows

�r.x/ D Crx
�ˇe˛x dr

dxr
.xˇCre�˛x/ (16.65)

These polynomials are called Sonine polynomials, or generalized Laguerre polyno-
mials (Hildebrand 1956; pp. 281–282).

16.6 Fourier Approximation: Continuous Range

If the function to be approximated is a periodic function f .x/ of known period, and
the period is 2	 after an adjustment of the units, then

f .x C 2	/ D f .x/ (16.66)

A set of coordinate functions is

1; cos x; cos 2x; : : : ; cos rx; : : :

sin x; sin 2x; : : : ; sin rx; : : : (16.67)
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where each member has a period 2	 . The following useful properties are present:

1. A product of any two members can be expressed as a linear combination of two
members.

2. The derivative of each member is a member.
3. The integral of each member is a member, except for the constant.
4. The set is orthogonal over any period interval, say the period .�	; 	/, so thatZ 	

�	
sin jx sin kx dx D 0; j ¤ k (16.68a)

Z 	

�	
cos jx cos kx dx D 0; j ¤ k (16.68b)

Z 	

�	
sin jx cos kx dx D 0 (16.68c)

where j and k are nonnegative integers; negative integers are not considered. We
want an approximation of the form

f .x/ 	 a0 C
nX

kD1
.ak cos kx C bk sin kx/ (16.69)

where the coefficients are to be such that the integrated square error is a minimum.
From the period of f .x/ and the sine and cosine harmonics, one period interval of,
for example, .�	; 	/, might be considered. The requirement

Z 	

�	

"
f .x/ � a0 �

nX
kD1
.ak cos kx C bk sin kx/

#2
dx D minimum (16.70)

leads to

Z 	

�	

"
f .x/ � a0 �

nX
kD1
.ak cos kx C bk sin kx/

#
dx D 0

Z 	

�	
cos rx

"
f .x/ � a0 �

nX
kD1
.ak cos kx C bk sin kx/

#
dx D 0; r D 1; 2; : : : ; n

Z 	

�	
sin rx

"
f .x/ � a0 �

nX
kD1
.ak cos kx C bk sin kx/

#
dx D 0; r D 1; 2; : : : ; n

(16.71)
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when the partial derivatives of the left-hand member of Eq. (16.70), with respect to
a0; ar, and br, are equated to zero. Equations (16.68) and

Z 	

�	
dx D 2	;

Z 	

�	
cos2 kx dx D

Z 	

�	
sin2 kx dx D 	; k ¤ 0 (16.72)

lead to the expressions

a0 D 1

2	

Z 	

�	
f .x/dx; ak D 1

	

Z 	

�	
f .x/ cos kx dx; k ¤ 0

bk D 1

	

Z 	

�	
f .x/ sin kx dx (16.73)

If f .x/ D f .�x/, then bk D 0, and Eq. (16.69) reduces to

f .x/ 	 a0 C
nX

kD1
ak cos kx (16.74)

where

a0 D 1

2	

Z 	

�	
f .x/dx D 1

	

Z 	

0

f .x/dx

ak D 1

	

Z 	

�	
f .x/ cos kx dx D 2

	

Z 	

0

f .x/ cos kx dx; k ¤ 0 (16.75)

If f .x/ D �f .�x/, then ao D ak D 0, and Eq. (16.69) becomes

f .x/ 	
nX

kD1
bk sin kx (16.76)

where

bk D 1

	

Z 	

�	
f .x/ sin kx dx D 2

	

Z 	

0

f .x/ sin kx dx (16.77)

If f .x/ is bounded and piecewise differentiable, the approximation comes closer
to f .x/ as n ! 1 at x, where f .x/ is continuous, and at discontinuity points to
1
2
Œf .xC/ C f .x�/
, which is the mean value of the right- and left-hand limits at the

discontinuities. Each coefficient is independently determined, and independent of
the number of harmonics in the approximation, which is typical of least squares
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2

−

( )

Fig. 16.1 Discontinuous periodic function

approximations by orthogonal functions. Define f .x/ over .�	; 	/ as

f .x/ D 0; �	 < x � 0

f .x/ D x; 0 � x � 	=2

f .x/ D 	=2;
	

2
� x � 	 (16.78)

and it is periodic with period 2	 , as shown in Fig. 16.1, elsewhere. Since f .x/
is neither even nor odd, the presence of both sine and cosine harmonics may be
anticipated. Equation (16.73) gives

a0 D 1

2	

"Z 0

�	
0dx C

Z 	=2

0

xdx C
Z 	

	=2

	

2
dx

#
D 3	

16

ak D 1

	

"Z 0

�	
0 cos kx dx C

Z 	=2

0

x cos kx dx C
Z 	

	=2

	

2
cos kx dx

#

D 1

	k2
.1 � cos

k	

2
/; k ¤ 0

bk D 1

	

"Z 0

�	
0 sin kx dx C

Z 	=2

0

x sin kx dx C
Z 	

	=2

	

2
sin kx dx

#

D 1

	k2
.sin

k	

2
� k	

2
cos k	/ (16.79)

Thus,

f .x/ D 3	

16
� 1

	
cos x � 1

2	
cos 2x � 1

9	
cos 3x � : : :

C 2C 	

2	
sin x � 1

4
sin 2x C 3	 � 2

9	
sin 3x � : : : (16.80)

Since f .x/ has discontinuities, a good approximation will require a large number
of terms, particularly near discontinuities. In many cases, low harmonic coefficients
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are adequate. If f .x/ is not periodic, but is defined by Eq. (16.78) in the interval
.�	; 	/, then inside the interval the expansion in Eq. (16.79) would be satisfactory,
independent of the values of f .x/ outside the interval. A trigonometric expansion
will be periodic both inside and outside the interval, independent of the behavior of
f .x/ (Hildebrand 1956; pp. 369–372).

16.7 Fourier Approximation: Discrete Range

Let f .x/ be of period 2	 , with values only known at 2N C 1 equally-spaced discrete
points

� 	;� .N � 1/	

N
; : : : ; ;

�	
N
; 0;

	

N
; : : : ;

.N � 1/	
N

; 	 (16.81)

of the interval .�	; 	/. Periodicity means f .�	/ D f .	/, so there are 2N
independent data, to be used to determine the coefficients of 2N terms of an
approximation like Eq. (16.69). Denote the rth abscissa as

xr D r
	

N
; r D �N C 1;�N C 2;�N C 3; : : : ;�1; 0; 1; : : : ;N � 1;N (16.82)

so 2N independent values fr � f .xr/ are determined. Only the 2N functions
1; cos x; cos 2x; : : : ; cos Nx; sin x; sin 2x; : : : ; sin.N � 1/x are independent over the
domain comprising this set of abscissas, because sin Nx vanishes at each of these
points, and the functions cos.N C 1/x; : : : ; and sin.N C 1/x; : : : ; take on the same
values at the points as does one of the 2N functions given above. For example, since
sin Nxr D 0, we have

cos.N C 1/xr D cos Nxr cos xr D .�1/r cos xr D cos.N � 1/xr

Under summation over the set in Eq. (16.82), this set of functions is orthogonal.
With the notation of Eq. (16.82),

NX
rD�NC1

sin jxr sin kxr D 0; j ¤ k

NX
rD�NC1

cos jxr cos kxr D 0; j ¤ k

NX
rD�NC1

sin jxr cos kxr D 0 (16.83)
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where j and k are integers between 0 and N inclusive, similar to Eq. (16.68). When
j D k,

NX
rD�NC1

sin2 kxr D
NX

rD�NC1
cos2 kxr D N; k ¤ 0;N

NX
rD�NC1

1 D 2N;
NX

rD�NC1
cos2 Nxr D 2N (16.84)

can be established, similar to Eq. (16.72). We assume an approximation

f .x/ 	 A0 C
nX

kD1
.Ak cos kx C Bk sin kx/ (16.85)

where n � N, and adopting the least squares criterion

NX
rD�NC1

"
f .xr/� A0 �

nX
kD1
.Ak cos kxr C Bk sin kxr/

#2
D minimum (16.86)

a derivation similar to Eqs. (16.70)–(16.73), using Eqs. (16.83) and (16.84), yields

A0 D 1

2N

NX
rD�NC1

f .xr/; Ak D 1

N

NX
rD�NC1

f .xr/ cos kxr; k ¤ 0;N

An D 1

2N

NX
rD�NC1

f .xr/ cos Nxr; Bk D 1

N

NX
rD�NC1

f .xr/ sin kxr

(16.87)

The coefficients in Eq. (16.85) are obtained by summation. The calculation of each
coefficient is independent of the others, and independent of n, when n � N. When
n D N, the least squares criterion requires that Eq. (16.85) be equal at 2N points,
specified by Eq. (16.82). Equations (16.87) are in a more symmetrical form

A0 D 1

2N



1

2
f�N C f�NC1 C : : : ;Cf�1 C f0 C f1 C : : : ; fN�1 C 1

2
fN

�

Ak D 1

N



1

2
f�N cos kx�N C f�NC1 cos kx�NC1 C : : : ;Cf�1 cos kx�1

C f0 cos kx0 C f1 cos kx1 C : : : ;CfN�1 cos kxN�1 C 1

2
fN cos kxN

�
; k ¤ 0;N
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AN D 1

2N



1

2
f�N cos Nx�N C f�NC1 cos Nx�NC1 C : : : ;Cf�1 cos Nx�1

C f0 cos Nx0 C f1 cos Nx1 C : : : ;CfN�1 cos NxN�1 C 1

2
fN cos NxN

�

Bk D 1

N



1

2
f�N sin kx�N C f�NC1 sin kx�NC1 C : : : ;Cf�1 sin kx�1

C f0 sin kx0 C f1 sin kx1 C : : : ;CfN�1 sin kxN�1 C 1

2
fN sin kxN

�
; k ¤ 0;N

(16.88)

from f�N D fN . It is convenient to separate f .x/ into even and odd components, by
introducing the auxiliary functions

F.x/ D 1

2
Œf .x/C f .�x/
; G.x/ D 1

2
Œf .x/ � f .�x/
 (16.89)

so f .x/ D F.x/C G.x/. Since x�r D �xr and x0 D 0, Eqs. (16.87) and (16.88) may
be reduced to

A0 D 1

N



1

2
F0 C F1 C F2 C : : : ;CFN�1 C 1

2
FN

�

Ak D 2

N



1

2
F0 C F1 cos kx1 C F2 cos kx2 C : : : ;CFN�1 cos kxN�1

C 1

2
FN cos kxN

�
; k ¤ 0;N

AN D 1

N



1

2
F0 � F1 C F2 � : : : ;C.�1/N�1FN�1 C .�1/N 1

2
FN

�

Bk D 2

N
ŒG1 sin kx1 C G2 sin kx2 C : : : ;CGN�1 sin kxN�1
 (16.90)

To illustrate the use of these formulas, consider the case N D 6, corresponding to
the use of 12 independent ordinates. The tabular forms are appropriate (though more
systematization is possible).

The sum of the products are given at the bottom of each column. For the empirical
data shown in Table 16.5 and 16.6, the data columns of Tables 16.3 and 16.4 are

F0
2

D 0:605; G1 D 0:075

F1 D 1:245; G2 D 0:160

F2 D 1:300; G3 D 0:150
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Table 16.3 Using a discrete Fourier approximation: cosine terms

x Data cos x cos 2x cos 3x cos 4x cos 5x cos 6x

0 1
2
f0 D 1

2
F0 1 1 1 1 1 1

	=6 1
2
. f1 D f�1/ D F1

1
2

p
3 1

2
0 � 1

2
� 1
2

p
3 �1

	=3 1
2
. f2 C f�2/ D F2

1
2

� 1
2

�1 � 1
2

1
2

1

	=2 1
2
. f3 C f�3/ D F3 0 �1 0 1 0 �1

2	=3 1
2
. f4 C f�4/ D F4 � 1

2
� 1
2

1 � 1
2

� 1
2

1

5	=6 1
2
. f5 C f�5/ D F5 � 1

2

p
3 1

2
0 � 1

2
1
2

p
3 �1

	 1
2
f6 D 1

2
F6 �1 1 �1 1 �1 1

6A0 3A1 3A2 3A3 3A4 3A5 6A6

Table 16.4 Using a discrete Fourier approximation: sine terms

x Data sin x sin 2x sin 3x sin 4x sin 5x

	=6 1
2
. f1 � f�1/ D G1

1
2

1
2

p
3 1 1

2

p
3 1

2

	=3 1
2
. f2 � f�2/ D G2

1
2

p
3 1

2

p
3 0 � 1

2

p
3 � 1

2

p
3

	=2 1
2
. f3 � f�3/ D G3 1 0 �1 0 1

2	=3 1
2
. f4 � f�4/ D G4

1
2

p
3 � 1

2

p
3 0 1

2

p
3 � 1

2

p
3

5	=6 1
2
. f5 � f�5/ D G5

1
2

� 1
2

p
3 1 � 1

2

p
3 1

2

3B1 3B2 3B3 3B4 3B5

F3 D 1:250; G4 D 0:145

F4 D 1:195; G5 D 0:085

F5 D 1:095

F6
2

D 0:535 (16.91)

and calculation gives

A0 D 1:204; A1 D 0:084; A2 D �0:062; A3 D �0:012; A4 D �0:009
B1 D 0:165; B2 D 0:001; B3 D 0:003; B4 D �0:007 (16.92)

for the coefficients of harmonics through the fourth. If all the available harmonics
are retained, the resultant approximation takes on the prescribed value at each of
the points employed in the calculation (Table 16.5 and 16.6). Retention of a smaller
number of harmonics leads to the appropriate least-squares approximation relevant
to that set of points. Tables similar to those above, but employing larger sets of data
and further systematized are in the literature and books of tables (Hildebrand 1956;
pp. 373–377).
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Table 16.5 Using a discrete Fourier approximation: empirical data

� 0ı 30ı 60ı 90ı 120ı 150ı 180ı 210ı 240ı

f 1.21 1.32 1.46 1.40 1.34 1.18 1.07 1.01 1.05

x 0 	=6 	=3 	=2 2	=3 5	=6 	 �5	=6 �2	=3

Table 16.6 Using a discrete
Fourier approximation:
empirical data (cont.)

� 270ı 300ı 330ı 360ı

f 1.10 1.14 1.17 1.21

x �	=2 �	=3 �	=6 2	

16.8 Optimum Polynomial Interpolation

Suppose a function f .x/ is approximated by the polynomial y.x/ of degree n, and
agrees with f .x/ at n C 1 points x0; x1; : : : ; ; xn, then

f .x/ D y.x/ D 	.x/
f nC1./
.n C 1/Š

(16.93)

where 	.x/ D .x�x0/.x�x1/; : : : ; .x�xn/, and  lie in the interval of the largest and
smallest values of x0; x1; x2; : : : ; xn. An appropriate change of variables can reduce
the interval to .�1; 1/. We will consider trigonometric interpolation formulas.

How  depends on the n C 1 values of x depends on the function f .x/. If we
want the error over .�1; 1/ to be as small as possible for the functions having n C
1 continuous derivatives in .�1; 1/, we should make j	.x/j as small as possible,
knowing that the coefficient of the highest power of x in 	.x/ must be unity from
Eq. (16.93). So we require

Z 1

�1
w.x/Œ	.x/
2dx D minimum (16.94)

where w.x/ is the nonnegative weighting function in .�1; 1/. 	.x/ can be
expressed as

	.x/ D xnC1 C Cnxn C : : : ;CC2x
2 C C1x C C0 (16.95)

and can be specified by n C 1 coefficients C0;C1; : : : ;Cn. Then Eq. (16.94) requires
that the partial derivative of the left-hand member with respect to each Cr must be
zero. Since

@	.x/

@Cr
D xr; r D 0; 1; 2; : : : ; n (16.96)
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the requirement becomes

2

Z 1

�1
w.x/

@	.x/

@Cr
	.x/dx � 2

Z 1

�1
w.x/	.x/xrdx D 0; r D 0; 1; 2 : : : ; n (16.97)

so 	.x/ is a polynomial of degree n C 1, with a unity leading coefficient. It is
orthogonal to all polynomials of an inferior degree over .�1; 1/ with w.x/. The
n C 1 points where the polynomial y.x/ and the function f .x/ should agree, are the
zeros of the polynomial. The integral approximation

Z 1

�1
w.x/f .x/dx 	

Z 1

1

w.x/y.x/dx (16.98)

is the corresponding Gaussian quadrature formula. Let w.x/ D 1 and seek to
minimize the integral of the square of the error E.x/ over .�1; 1/, the n C 1 values
should be the zeros of the Legendre polynomials PnC1.x/ (see Sect. 11.8); i.e.

Z 1

�1
Pr.x/Ps.x/dx D 0; r ¤ s (16.99)

where

P0.x/ D 1; P1.x/ D x; P2.x/ D 1

2
.3x2 � 1/; P3.x/ D 1

2
.5x3 � 3x/

P4.x/ D 1

8
.35x4 � 30x2 C 3/; P5.x/ D 1

8
.63x5 � 70x3 C 15x/ (16.100)

and

PrC1.x/ D 2r C 1

r C 1
xPr.x/� r

r C 1
Pr�1.x/ (16.101)

We take w.x/ D 1=
p
1 � x2 and seek to minimize the integral of ŒE.x/
2=

p
1 � x2.

Then the values are the zeros of the .n C 1/th Chebyshev polynomial

TnC1.x/ D cosŒ.n C 1/ cos�1 x
 (16.102)

and are given by

xi D cos

�
2i C 1

n C 1

	

2

�
; i D 0; 1; 2; : : : ; ; n (16.103)

Since the coefficient of xr in Tr.x/ is 2r�1, then

	.x/ D 2�nTnC1.x/ (16.104)
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The extreme values of 	.x/ in .�1; 1/ are then ˙2�n and have alternating signs
at the end points, x D ˙1, and at n interior points, each of which separates a pair of
adjacent values. With this choice of values, the coefficient of f .nC1/./=.n C 1/Š in
the error term of Eq. (16.93) oscillates with a constant amplitude 2�n as x increases
from �1 to 1. Since the coefficient of xr in Pr.x/ is 2�r.2r/Š=.rŠ/2, the use of the
zeros of PnC1.x/ as values corresponds to

	.x/ D 2nC1Œ.n C 1/Š
2

.2n C 2/Š
PnC1.x/ (16.105)

The Legendre polynomial has the values +1 at x D C1 and .�1/nC1 at x D
�1. PnC1.x/ oscillates in .�1; 1/, such that the n successive maxima and minima,
separating pairs of adjacent zeros, decrease in magnitude toward the center of the
interval. The maximum value of 	.x/ in Eq. (16.105) over .�1; 1/ is approximated
by 2�n

p
	n=4, when n is large. Where the zeros of PnC1.x/ minimize the RMS

value of 	.x/ over .�1; 1/, the zeros of TnC1.x/ lead to a value of j	.x/jmax, which is
smaller by a factor that increases in proportion to n1=2. The Chebyshev polynomials
have an error oscillating uniformly over the interval, while Legendre polynomial
errors oscillate with increasing amplitude towards the interval ends. If the maximum
error is to be limited, the Chebyshev polynomial is best (Hildebrand 1956; pp. 386–
388).

16.9 Chebyshev Interpolation

A linear combination of Chebyshev polynomials, of degrees zero through n, can
approximate any degree n polynomial, y.x/, which agrees with f .x/, when x D
x0; x1; : : : ; xn, where xr is the rth zero of TnC1.x/. So

f .x/ D
nX

kD0
CkTk.x/C 1

2n.n C 1/Š
TnC1.x/f .nC1/./ (16.106)

agreeing with Eq. (16.93), where jj < 1 when x is in .�1; 1/. The C0s are
determined such that the error term is suppressed, when x D x0; x1; x2; : : : ; xn, where

xi D cos

�
2i C 1

2n C 2
	

�
; i D 0; 1; 2; : : : ; n (16.107)

Introduce the change of variables

x D cos �; 0 � � � 	 (16.108)
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then

f .x/ 	
nX

kD0
CkTk.x/; �1 < x < 1 (16.109)

becomes

F.�/ 	
nX

kD0
Ck cos k�; 0 < � < 	 (16.110)

with F.�/ D f .cos �/. The C0s are determined such that Eq. (16.110) is an equality,
when � D �i and F.�/ D f .cos �/,

�i D cos�1 xi D 2i C 1

2n C 2
	; i D 0; 1; : : : ; n (16.111)

At the equally spaced points 	=.2n C 2/; 3	=.2n C 2/; : : : ; .2n C 1/	=.2n C 2/

agreement occurs. cos j� and cos k� are orthogonal under summation over the .nC1/
points defined by Eq. (16.111),

nX
rD0

cos j�r cos k�r D
8<
:
0; j ¤ k
nC1
2
; j D k ¤ 0

n C 1; j D k D 0

(16.112)

where j and k are nonnegative integers not exceeding n. The left-hand side
of Eq. (16.112) is identical to

Pn
rD0 Tj.xr/Tk.xr/; then, since T0.x/;T1.x/ : : : are

orthogonal under integration over .�1; 1/ relative to w.x/ D 1=
p
1 � x2, the

T0.x/;T1.x/; : : : ;Tn.x/, with a unit weighting function, are orthogonal under sum-
mation over the zeros of TnC1.x/. From Eq. (16.112), the C0s are

C0 D 1

n C 1

nX
rD0

F.�r/

Ck D 2

n C 1

nX
rD0

F.�r/ cos k�r (16.113)

where �r is given by Eq. (16.111), or

C0 D 1

n C 1

nX
rD0

f .xr/

Ck D 2

n C 1

nX
rD0

f .xr/Tk.xr/ (16.114)
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Table 16.7 Chebyshev interpolation

f .x/ x D T1.x/ T2.x/ T3.x/ T4.x/ T5.x/

� F.�/ cos � cos 2� cos 3� cos 4� cos 5�

	=12 F1 D f1 A 1
2

p
3 1

2

p
2 1=2 B

	=4 F2 D f2
1
2

p
2 0 � 1

2

p
2 �1 � 1

2

p
2

5	=12 F3 D f3 B � 1
2

p
3 � 1

2

p
2 1=2 A

7	=12 F4 D f4 -B � 1
2

p
3 1

2

p
2 1=2 -A

3	=4 F5 D f5 � 1
2

p
2 0 1

2

p
2 �1 1

2

p
2

11	=12 F6 D f6 -A 1
2

p
3 � 1

2

p
2 1=2 -B

6C0 3C1 3C2 3C3 3C4 4C5

where xi is given by Eq. (16.107). For n D 5

A D cos
	

12
D 1

2

q
2C p

3
:D 0:96593

B D cos
5	

12
D 1

2

q
2 � p

3
:D 0:25882 (16.115)

Table 16.7, with dual headings, can be used either with the function f .x/, over
�1 � x � 1, with the unequally spaced values in the third column, or with the
function, F.�/, over 0 � � � 	 , with the equally spaced values in the first column.
Thus, the coefficient of cos 4� in Eq. (16.110) is from Table 16.7 and Eq. (16.114)

C4 D 1

3

�
1

2
F1 � F2 C 1

2
F3 C 1

2
F4 � F5 C 1

2
F6

�
(16.116)

while the coefficient of T4.x/ in Eq. (16.109) from Table 16.7 and Eq. (16.113) is

C4 D 1

3

�
1

2
f1 � f2 C 1

2
f3 C 1

2
f4 � f5 C 1

2
f6

�
(16.117)

When the C0s are determined, the right-hand side of the approximation is evalu-
ated as

f .x/ 	
nX

kD0
CkTk.x/ (16.118)

at intermediate points using available tables of Chebyshev polynomials (Hildebrand
1956; pp. 389–391).
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16.10 Economization of Power Series

When the integral of the product of 1=
p
1 � x2 and the square of the error is to be

minimized, the nth degree least-squares polynomial approximation to a function f .x/
over .�1; 1/, is

f .x/ 	 y.x/ D
nX

kD0
akTk.x/; jxj < 1 (16.119)

where

a0 D 1

	

Z 1

�1
f .x/p
1 � x2

dx; ak D 2

	

Z 1

�1
f .x/Tk.x/p
1 � x2

dx; k � 1 (16.120)

Since the coefficients determined by summation over a discrete set, or by
integration over an interval, are generally unequal, the approximation will not
usually be that of Eq. (16.118). The two approximations may be of similar nature, in
that each error will tend to oscillate with uniform amplitude over .�1; 1/. The finite
Legendre series least squares approximation, with uniform weighting, will tend to
oscillate with amplitudes increasing towards the interval ends. So an approximation
may be achieved with fewer Chebyshev series than Legendre series, if smallness of
the maximum error is the criterion.

The evaluation of the integrals of Eq. (16.120) is not readily effected for many
functions. An alternative method is useful, if a function f .x/ is a power series for
sufficiently small values of jxj. If one has the relation

f .x/ D
nX

kD0
Akxk C En.x/ (16.121)

where

jEn.x/j < �1; �1 � x � 1 (16.122)

and �1 is smaller than the error tolerance �, while jAnj C �1 is not smaller, then the
last term in the approximation

f .x/ 	
nX

kD0
Akxk (16.123)

cannot be neglected. The right-hand side of Eq. (16.123) can be expanded in
Chebyshev polynomials. Since it is a degree n polynomial, the series will end with
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the term involving Tn.x/, and be

nX
kD0

Akxk �
nX

kD0
akTk.x/ (16.124)

The terms of highest degree in Tr.x/ are given by

Tr.x/ D 2r�1
�

xr � r

4
xr�2 C : : :

�
(16.125)

and expressing the two members of Eq. (16.124) in terms of decreasing powers of x

Anxn C An�1xn�1 C An�2xn�2 C � � � D 2n�1an

�
xn � n

4
xn�2 C : : :

�

C2n�2an�1
�

xn�1 � n � 1

4
xn�3 C : : :

�
C 2n�3an�2

�
xn�2 � : : :

�C : : :

(16.126)

it follows that

an D 2�.n�1/An; an�1 D 2�.n�2/An�1; an�2 D 2�.n�3/.An�2 C n

4
An/; : : :

(16.127)

If n is sufficiently large, the coefficients of

Tn.x/;Tn�1.x/; : : : ;Tn�mC1.x/

in Eq. (16.124) will be small compared to the coefficients of

xn; xn�1; : : : ; xn�mC1

in Eq. (16.121) for some m, and it could be that

.jan�mC1j C jan�mC2jC; : : : ; janj/C �1

is smaller than �, thus a tolerable error in the approximation to f .x/. Since jTr.x/j �
1 in .�1; 1/, then the last m terms in the right-hand member of Eq. (16.124) are
negligible. The approximation in Eq. (16.123) can be replaced by

f .x/ 	
n�mX
kD0

akTk.x/ (16.128)
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Table 16.8 Process of power series economization

1 D T0 T0 D 1

x D T1 T1 D x

x2 D 1
2
.T0 C T2/ T2 D 2x2 � 1

x3 D 1
4
.3T1 C T3/ T3 D 4x3 � 3x

x4 D 1
8
.3T0 C 4T2 C T4/ T4 D 8x4 � 8x3 C 1

x5 D 1
16
.10T1 C 5T3 C T5/ T5 D 16x5 � 20x3 C 5x

x6 D 1
32
.10T0 C 15T2 C 6T4 C T6/ T6 D 32x6 � 48x4 C 18x2 � 1

x7 D 1
64
.35T1 C 21T3 C 7T5 C T7/ T7 D 64x7 � 112x5 C 56x3 � 7x

x8 D 1
128
.35T0 C 56T2 C 28T4 C 8T6 C T8/ T8 D 128x8 � 256x6 C 160x4 � 32x2 C 1

x9 D 1
256
.126T1 C 84T3 C 36T5 C 9T7 C T9/ T9 D 256x9 � 576x7 C 432x5 � 120x3 C 9x

where m > 0. This approximation can be transformed to an expression of the form

f .x/ 	
n�mX
kD0

NAkxk (16.129)

if desired. Thus, a polynomial approximation to f .x/ over .�1; 1/ is obtained
with fewer terms than required by a truncated power series, and involving the
smallest possible number of polynomial terms, which will supply an accuracy
within the prescribed tolerance limits. The error En.x/ in Eq. (16.121) is accepted
as a fixed error, and an efficient approximation to f .x/ � En.x/ is sought. The
approximation obtained may not be the best possible one, if jEn.x/j is small relative
to �. The transformations can be facilitated using the following two sets of relations;
the second being the Chebyshev polynomials, and the first being obtained by
successively inverting the second set members, as shown in Table 16.8.

To illustrate, if a polynomial approximation to ex is required for the interval
.�1; 1/ with a tolerance of 0.01, the truncation of a Maclaurin series gives a
polynomial approximation of degree five,

ex 	 1C x C 1

2
x2 C 1

6
x3 C 1

24
x4 C 1

120
x5 � y.x/ (16.130)

with an error

jE.x/j D
ˇ̌̌
ˇ e

720
x6
ˇ̌̌
ˇ < e

720
< 0:0038 (16.131)

Neglecting the x5=120 term would permit a possible error exceeding the prescribed
tolerance. Using the first set of relations in Table 16.8 transforms Eq. (16.130) into

y.x/ D 81

64
T0 C 217

192
T1 C 13

48
T2 C 17

384
T3 C 1

192
T4 C 1

1920
T5 (16.132)
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where Tr D Tr.x/. If the last two terms are neglected, an additional error not
exceeding 11=1920 < 0:0058 for all x in .�1; 1/ would be introduced. Thus, a
total error smaller than j0:0096j is achieved with

ex 	 81

64
T0 C 217

192
T1 C 13

48
T2 C 17

384
T3 (16.133)

Using the second set of Table 16.8,

ex 	 1

384
.382C 382x C 208x2 C 68x3/; jxj � 1 (16.134)

For comparison, in Legendre polynomials,

y.x/ D 47

40
P0 C 309

280
P1 C 5

14
P2 C 19

270
P3 C 1

105
P4 C 1

945
P5 (16.135)

Since the last term could be neglected, a fourth degree polynomial would
satisfy the approximation. This procedure, economization of power series, is useful
when minimization of numerical operations is desirable. It can be applied to any
polynomial once the interval has been transformed to .�1; 1/ (Hildebrand 1956;
pp. 391–396).

16.11 Recursive Filtering

Whereas in previous sections we described model fitting procedures based on batch
processing of data, in this section we will discuss a method for estimating the state
vector of a dynamical system (see Sect. 14.2) based on measurements obtained at
each time instant. This process is referred to as filtering. The most notable result
in this context is the Kalman filter (KF) (Kalman 1960; Kalman and Bucy 1961).
The KF was further developed by NASA and successfully implemented for the first
time in the Apollo mission in the late 1960s. The KF provided a solution to the
Apollo spacecraft trajectory estimation and control problem, and was vital for the
mission success (Grewal and Andrews 2010). Kalman filters are widely used in orbit
determination, guidance, and navigation systems of satellites.

The KF is the optimal filter for a linear system with linear measurements and
additive Gaussian noise. However, most physical processes are nonlinear. To deal
with nonlinearities, the system can be linearized about the estimated trajectory. The
resulting filtering scheme is known as the extended Kalman filter (EKF). The EKF
has become one of the most widely used nonlinear filters, and was implemented in
navigation systems in low Earth orbits (Busse 2003).

There are a number of variants for the EKF formulation. The one that best suits
astrodynamical applications uses a continuous-time physical model and a discrete-
time (sampled) measurement model. In between measurement samples, the state of
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the satellite is estimated based on the model only. The physical time is denoted by t
and the sampled time instances are denoted by tk. As in Sect. 14.2, the state vector
is denoted by x. The estimated state will be denoted by Ox.

Looking at Eq. (14.1), the continuous dynamics are modelled as

Px.t/ D f.x;u; t/C w.t/ (16.136)

Here, we added the term w.t/ to the model appearing in Eq. (14.1). This term,
commonly referred to as the process noise, is an additive white noise, which is
assumed to be zero-mean and Gaussian, and is used for modelling uncertainties.
The power spectral density of the process noise is

EŒw.t/wT .�/
 D Q.t/ı.t � �/ (16.137)

where E.�/ denotes the expected value operator, and ı.�/ is the Dirac delta function.
Now, we distinguish between two estimates. The first, is an estimate of the state at
some time � before a measurement is obtained. This estimate is denoted by Ox.��/.
The second, is an estimate updated by a measurement, which will be denoted by
Ox.�C/. In between measurements, i.e. between the times tk�1 and tk, the estimated
state is propagated by using numerical integration, e.g. the Runge-Kutta method
(See Sect. 9.9) to obtain (Stengel 1994; p. 388)

Ox.t�k / D Ox.tCk /C
Z tk

tk�1

fŒOx.��/;u.�/; �
d� (16.138)

where the initialization is written as

Ox0 D E.x0/ (16.139)

The EKF approximates the nonlinear dynamics by linearizing it about the estimate
Ox.��/. The corresponding Jacobian is given by

F D @f
@x

ˇ̌̌
ˇOx.��/

(16.140)

In addition to the state estimate, the EKF propagates a covariance estimate of
the state. Still without considering any measurements, the covariance estimate is
propagated as (Stengel 1994; p. 388)

P.t�k / D P.tCk�1/C
Z tk

tk�1

�
F.�/P.�/C P.�/FT.�/C Q.�/

	
d� (16.141)
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and the initialization is performed according to

P0 D E
h
.x0 � Ox0/ .x0 � Ox0/T

i
(16.142)

The vector of sampled measurements, y, is expressed through the nonlinear
measurement equation

y.tk/ D hŒx.tk/; tk
C �.tk/ (16.143)

where � denotes the measurement noise, which is assumed to be a white, zero-mean
Gaussian random sequence, so that

EŒ�.tk/
 D 0; EŒ�.tk/�
T.tk/
 D R.tk/ (16.144)

It is also assumed that the measurement noise is uncorrelated with the process
noise. Now, the nonlinear measurement equation is also linearized about the current
estimate,

H.tk/ D @h
@x

ˇ̌̌
ˇOx.t�k /

(16.145)

and the Kalman gain is calculated as

K.tk/ D P.t�k /HT.tk/
�
H.tk/P.t�k /HT.tk/C R.tk/

	�1
(16.146)

This gain is used for calculating a state estimate update as (Stengel 1994; p. 388)

Ox.tCk / D Ox.t�k /C K.tk/
˚
y.tk/ � hŒOx.t�k /; tk


�
(16.147)

and the covariance estimate update

P.tCk / D ŒI � K.tk/H.tk/
P.tk�/ (16.148)

The process is then repeated for the next index k.

16.12 Mean Elements Estimator

We will now illustrate the application of the EKF to an astrodynamical problem.
The goal is to obtain estimated mean orbital elements by utilizing instantaneous
measurements of the osculating elements (or functions thereof). To that end, we



16.12 Mean Elements Estimator 471

write the fully-assembled semianalytical model described in Sect. 13.3 as

PNc D Pcsec .Nc/C Pclong .Nc/C Pcsec;2 .Nc/C Pclong;2 .Nc/
C Pclong;nm .Nc/C Pcdrag;sec .Nc/C Pcdrag;long .Nc/C u C w

(16.149)

where c , Œa; e; i; �; !;M0
; Nc denotes the mean elements; u are the control inputs
(either impulsive or continuous), whose effect is modeled using the GVE (13.4);
and w is the process noise, satisfying Eq. (16.137). As in Sect. 13.3, the subindices
are used for denoting secular terms of the first (sec) and second (sec; 2) order that
are due to the gravitational harmonics, long-periodic terms of the first order (long)
and second order (long; 2) that are due to zonal harmonics and tesseral harmonics
(long; nm), and the secular (drag; sec) and long-periodic (drag; long) effects of drag.

The incorporation of the control forces using Eqs. (13.4) involves an inherent
approximation, since the GVE are written in osculating, not mean, elements.
However, as previous studies have indicated, this approximation is adequate (Schaub
and Alfriend 2001).

The satellite on-board sensors—e.g., a GPS receiver—provide measurements
of the inertial position and velocity or unfiltered outputs of the osculating orbital
elements. Thus, following the discussion in Sect. 13.3, it is possible to write the
following relation between the osculating and mean elements,

cosc D Nc C cshort .Nc/C cdrag;short .Nc/C cshort;nm .Nc/C � (16.150)

where � is the measurement noise, a white, zero-mean Gaussian random sequence,
satisfying Eq. (16.144). It is readily seen that Eqs. (16.149) and (16.150) constitute
nonlinear process and measurement equations, respectively, which correspond to
Eqs. (16.136) and (16.143), namely

Px .t/ D f .x.t/;u; t/C w .t/ (16.151)

y .tk/ D h .x .tk//C � .tk/ (16.152)

where in this case the state vector to be estimated is x � Nc, and y � cosc is the
measurement vector. To obtain the estimated mean elements ONc from the osculating
elements measurements, a nonlinear estimation algorithm, such as the EKF, can be
used (Zhong and Gurfil 2013).

The mean elements estimation algorithm will be illustrated using three test cases:
Orbits with no control inputs; impulsive orbital corrections; and continuous-thrust
orbital transfer. The “true” orbits are generated based on a high precision orbit
propagator, including a 21�21 gravity model, drag according to the ISA-1976 model
(Noaa and Usaf 1976) and other perturbations, including solar radiation pressure and
lunisolar attraction. For the first example, a simulation time of one year is chosen so
that the long-periodic terms, whose period is around five months, can be seen in the
orbital dynamics.
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16.12.1 Initial Conditions and Parameter Values

The mission epoch is 1 Mar 2012 10:00:00.000 UTC, and it lasts until 28 Feb 2013
10:00:00.000 UTC. Table 16.9 gives the initial conditions in terms of osculating
orbital elements.

The simulated observation data are generated by contaminating the simulation-
generated position and velocity vectors with measurement errors. The standard
deviations of the position and velocity errors, for each axis, are 5m and 2 cm/s,
respectively.

The transformation of the position and velocity measurement noise covariance
into osculating orbital elements can be done by means of a Monte-Carlo simulation,
i.e., repeated random sampling. The results are presented in Table 16.10, where the
measurement noise covariance matrix R is given by

R D diag Œcova; cove; covi; cov�; cov!; covM
 (16.153)

and the notation covx denotes the covariance of x. The covariance is calculated
as follows: Since the common formulation of recursive filtering assumes additive
noise, it is required to calculate the covariance of the orbital elements starting from
the covariance of position and velocity. Since the mapping from inertial position
and velocity to orbital elements is nonlinear, a Monte-Carlo simulation is used
to evaluate the probability density function of the elements and the related noise
statistics. The covariance is time dependent, but is averaged to yield constant values.
It is approximated as a diagonal matrix, since the cross-correlation terms practically
vanish.

Table 16.9 Initial osculating
orbital elements values

Parameter Numerical value

a 7000 km

e 0:01

i 55ı

� 10ı

! 10ı

M 10ı

Table 16.10 Measurement
noise covariance of the
osculating orbital elements

Parameter Numerical value

cova 500:4 m2

cove 8:966 � 10�12

covi 1:886 � 10�12 rad2

cov� 9:020 � 10�13 rad2

cov! 3:179 � 10�8 rad2

covM 3:086 � 10�8 rad2
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Table 16.11 Geopotential
and drag model coefficients

Parameter Numerical value

J2 1082:62668355 � 10�6

J3 �2:53265648533 � 10�6

J4 �1:61962159137 � 10�6

C22 1:57446037456 � 10�6

S22 �9:03803806639 � 10�7

C31 2:19263852917 � 10�6

S31 2:68424890297 � 10�7

C32 3:08989206881 � 10�7

S32 �2:11437612437 � 10�7

C33 1:00548778064 � 10�7

S33 1:97222559006 � 10�7

!e 7:2921158553 � 10�5 rad/s

re 6378.137 km

� 3:98600436 � 1014 m3/s2

H 68.7 km

�0 2:34 � 10�13 kg/m3

CD 2:2

m 6 kg

S 0:2474 m2

The estimated state propagation was performed based on the model of
Eq. (16.149), which included zonal harmonics up to J4 and tesseral/sectorial terms
up to C33/S33. Table 16.11 lists the numerical values of the geopotential coefficients
and other parameters related to the astrodynamical models.

To obtain faster convergence, a judicious initialization of the estimated mean
elements is required. To that end, the following initialization is used:

ONc.t0/ D cosc .t0/� cshort .cosc .t0//� cdrag;short .cosc .t0// (16.154)

Equation (16.154) generates an approximation of the initial estimated values by
replacing the mean elements with the (measured) osculating elements in the
expressions for the short-periodic variations.

16.12.2 Uncontrolled Orbits, Single Run

The simulation study starts by examining the long-periodic and secular mean
element evolution for a one-year mission. The results are presented in Figs. 16.2,
16.3, 16.4, which compare the osculating and mean values of the semimajor axis
(Fig. 16.2a), eccentricity (Fig. 16.2b), inclination (Fig. 16.3a), RAAN (Fig. 16.3b),
and argument of perigee (Fig. 16.4). It is evident that the filter captures the long-
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Fig. 16.2 A 1-year simulation run comparing the osculating and estimated mean (a) semimajor
axis and (b) eccentricity
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Fig. 16.4 A 1-year simulation run comparing the osculating and estimated mean argument of
perigee

periodic evolution of the eccentricity and inclination as well as the secular evolution
of the semimajor axis (due to atmospheric drag).

The next step is to evaluate the mean elements estimation errors. However,
as opposed to standard filtering problems, in which the states of the process
model are used as reference for comparing the estimated states, in the case at
hand the semianalytical model of the mean elements, given by Eq. (16.149), is
truncated on purpose, and does not include effects such as lunisolar attraction,
gravitational perturbations beyond order 4 and solar radiation pressure, for the sake
of computational efficiency. Thus, it makes little sense to use it as a reference for
evaluating the estimation errors. Instead, a batch numerical averaging procedure is
carried out to evaluate the “true” mean elements per the definition in Eq. (13.6).
The batch averaging relies on the extended Simpson quadrature rule, given by (see
Sect. 9.5) where the alternation of 2=3 and 4=3 continues throughout the interior of
the parentheses in Eq. (16.156). The vector of estimation errors is then defined as

ec , Nc � ONc (16.155)

The estimation errors of Eq. (16.155) are compared to a direct calculation of the
mean elements using the Brouwer artificial satellite theory (Schaub and Junkins
2003; pp. 693–696). The purpose of the comparison between the Brouwer and EKF-
based estimation of the mean elements is to examine whether a direct application
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of the Brouwer theory may be used as a substitute for recursive filtering; as will be
seen shortly, the answer to this question is negative.

A comparison of estimation errors between the EKF and the Brouwer theory is
depicted in Figs. 16.5, 16.6, 16.7. In this figure, the estimation errors of the semi-
major axis (Fig. 16.5a), eccentricity (Fig. 16.5b), inclination (Fig. 16.6a), RAAN
(Fig. 16.6b), and argument of perigee (Fig. 16.7) are shown for a 24-h period to
better illustrate the quantitative aspects of the differences between the Brouwer
theory and the recursive filter. It is evident that the Brouwer errors are noisier than
the filter-based estimation errors. In addition, the eccentricity estimation through
Brouwer’s theory is slightly biased, whereas in the filter-based estimation it is
unbiased.

16.12.3 Orbits with No Control Inputs, Monte-Carlo Runs

The observations made previously can be substantiated using a long-term Monte-
Carlo simulation. Figures 16.8–16.10 depict the results of 100 Monte-Carlo simula-
tion runs, each propagated for 175 days. In each of Figs. 16.8, 16.9, 16.10, the single
standard deviation (˙�) curves as obtained by the filter and through Brouwer’s
theory are shown. The numerical values of the standard deviations are summarized
in Table 16.12. It is evident that the filter yields at least an order of magnitude better
accuracy than the Brouwer theory. The difference is particularly dramatic in the
estimation of the semimajor axis, for which the filter provides a 1-� value of about
60 cm, compared to a Brouwer 1-� value of about 22m.

16.12.4 Impulsive Maneuvers

We can now examine how the filter behaves when the control term in Eq. (16.149)
becomes active. The first test is conducted for an impulsive maneuver. The direction
of the thrust is along the velocity vector, with a magnitude of 1N. The estimated
mean semimajor axis and eccentricity in the presence of this maneuver are shown in
Fig. 16.11a and b, respectively. The filter keeps tracking the mean elements, which
indicates that it can be combined with impulsive maneuvers for correcting the mean
elements, as explained in Sect. 14.3.
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Fig. 16.5 Simulation run comparing the mean (a) semimajor axis and (b) eccentricity estimation
errors as obtained from the Brouwer theory and the EKF
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Fig. 16.6 Simulation run comparing the mean (a) inclination and (b) RAAN estimation errors as
obtained from the Brouwer theory and the EKF
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Fig. 16.7 Simulation run comparing the mean argument of perigee estimation error as obtained
from the Brouwer theory and the EKF

16.12.5 Continuous Thrust

The final test case involves continuous thrust. The magnitude of the thrust is 0:08N

and the direction is determined by the unit vector
hp
3=3;

p
3=3;

p
3=3

iT
in the

NTW frame (see Sect. 11.7,) indicating that all three maneuver axes are active.
A thrusting time of 3 h is used. The results for a 12-h integration are shown
in Figs. 16.12, 16.13, 16.14. Although the acceleration caused by the continuous
thrusting induces both secular and periodic variations in the mean elements, the filter
is capable of providing an unbiased estimation of the mean elements, including the
semimajor axis (Fig. 16.12a), eccentricity (Fig. 16.12b), inclination (Fig. 16.13a),
RAAN (Fig. 16.13b), and argument of perigee (Fig. 16.14).
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Fig. 16.8 The standard deviation of the mean (a) semimajor axis and (b) eccentricity estimation
errors as obtained from 100 Monte-Carlo simulation runs, compared to the Brouwer theory
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Fig. 16.9 The standard deviation of the mean (a) inclination and (b) RAAN estimation errors as
obtained from 100 Monte-Carlo simulation runs, compared to the Brouwer theory
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Fig. 16.10 The standard deviation of the mean argument of perigee estimation error as obtained
from 100 Monte-Carlo simulation runs, compared to the Brouwer theory

Table 16.12 Standard
deviation values of the mean
elements estimation errors for
100 Monte-Carlo Runs

� Filter Brouwer

ea 0.6118 m 22.42 m

ee 3:972 � 10�7 2:994 � 10�6

ei 9:380 � 10�6 deg 7:877 � 10�5 deg

e� 6:665 � 10�6 deg 5:486 � 10�5 deg

e! 0:0013ı 0:0103ı

To summarize, using the EKF for estimating the mean orbital elements has clear
advantages over the Brouwer artificial satellite theory. It can adequately respond to
thrust, and it is much less sensitive to measurement noise. In the examined scenarios,
the filter provides a sub-meter 1-� estimation accuracy of the mean semimajor axis,
which is almost two orders of magnitude better than the Brouwer-based estimation.
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Fig. 16.11 Estimated mean (a) semimajor axis and (b) eccentricity in the presence of a single
impulsive maneuver
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Fig. 16.12 Estimated mean (a) semimajor axis and (b) eccentricity under continuous constant-
magnitude thrust
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Chapter 17
Space Debris

17.1 Introduction

Since 1957, more than 4500 satellites have been launched and over 1000 active
satellites are in orbit. The intensive use of the space environment created a
large amount of man-made objects in orbit around the Earth, which no longer
serve a useful purpose. These objects are commonly referred to as space debris.
Approximately 20,000 objects larger than 10 cm are known to exist; 500,000
particles between 1–10 cm in diameter and about 10 million debris smaller than
1 cm have been estimated to exist.

Most space debris are a result of used rocket stages, anti-satellite tests, defunct or
dead satellites, different explosions, and spacecraft erosion or fragmentation. From
1957 to 2003, there were 186 space object explosions that produced thousands of
debris (Davidov et al. 2005). The smaller debris source could be dust from solid
rocket motors, bolts and other objects released during the satellite deployment
and fragmentation of larger debris. All these space debris accumulate and reside
in orbit for very long periods, because there is no simple way to remove large
amounts of debris from high-density debris zones, although this possibility has been
investigated (Cerf 2013).

The space debris density varies in the different regions as a function of space
activity. The LEO and GEO regions are highly utilized and rich in space debris
because they cover almost 90% of space activities (Wright 2007). The LEO region
is up to 1000 km in altitude, entailing high collision probabilities for future space
flights with 70% of catalogued artificial space debris (Davidov et al. 2005). There
is a drastic growth of LEO usage since these orbits are well adapted to Earth
observation. The GEO debris-rich zone is at a 200 km distance from the GEO
altitude, which is utilized for communication satellites.
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Most of the debris are tracked, mapped, correlated, and cataloged by international
agencies. The larger debris are tracked by the US Space Surveillance Network
(SSN) using radar and optical sensors that are able to detect debris larger than
10 cm in LEO and 1m in GEO (Sánchez Ortiz et al. 2001). Many models have
been developed to detect and identify the space debris by estimating physical
characteristics. Other models estimate the space debris trajectories using algorithms
for orbit determination (Farnocchia et al. 2010) based on information from a
network of optical sensors or a radar system (Milani et al. 2012).

Several models provide a description of the environment in terms of the distri-
bution of debris flux as a function of size, altitude, and inclination. For example,
ORDEM 2000 and SIMPLE are used for LEO (Liou et al. 2001; Ananthasayanam
et al. 2006); MASTER 99 is the ESA orbital debris model (Sdunnus et al. 2001); and
there are many evolutionary models that are designed to predict the future debris
environment and verify correlation between measurements and prediction models
(Landgraf et al. 2004).

Over the years, the debris have been dispersed due to fragmentation. Several days
after an explosion, for example, due to the distribution in speeds of the particles, the
debris will spread out along the initial orbit. After a longer period, Earth’s oblateness
will cause the debris to rotate around Earth’s axis. If the debris cloud is on a polar
orbit, it will create a shell around Earth. Debris in orbits near the equatorial plane
will spread out into a band around the equator.

Space debris pose a risk to continued reliable use of space-based services and
operations. The risk of damage may vary as a function of the debris size. Small
debris impacts cause erosion and may severely damage the solar panels or optical
devices such as telescopes and star trackers (Carpenter et al. 2008). Shielding
can protect against these smaller particles, but will increase the production and
launching cost. Even very small debris (less than 1 cm in diameter) may cause fatal
impact to the spacecraft, since they move at a speed of a few kilometers per second.
Major debris can destroy the spacecraft or severely damage the structure due to the
large kinetic energy.

There are known orbital collisions that made satellite inoperable. The first one
is probably Olympus-1, which collided with a meteor in August 1993. In 1996, the
French satellite Cerise had its stabilization arm damaged by a piece of an Ariane
rocket. It was the first official registered space object collision. In March 2006,
Russian Express-AM11 communication satellite was hit by an unknown object. In
February 2009, Iridium 33, an operational communication satellite in LEO, collided
over Siberia with Cosmos 2251, a defunct Russian satellite. The two satellites were
completely destroyed. It was the first collision between two satellites in orbit. In
addition to these fatal collisions, there are many events of dangerous approaches of
large debris to the manned space stations or space shuttles. Some of them have been
documented to pass at only 300 m away from the MIR station.

Catastrophic impact with large debris is considered as a primary risk for space
missions. Many studies have been focused on calculation of the collision probability.
According to statistical studies, the average time between collisions of two major
debris is 7–8 years for the next decades, with a catastrophic collision every 12–14
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years (Wright 2007). These predictions could be even worse, since in some areas the
number of collisions is so high that it will produce more debris than the atmospheric
drag could remove. It is known as the Kessler syndrome. Davidov et al. (2005)
predict that even if the number of debris in LEO remains unchanged, the number
of fragments will increase at least fivefold and the number of collisions will grow
up to 40–60 per year.

Mitigation measures include recommendations and international consensus to
minimize or prevent the creation of new debris and measuring the existing ones, as
well as implementing operational procedures such as utilizing orbital regimes with
less debris, using shielding to protect from smaller debris, and adopting specific
spacecraft maneuvers to avoid collisions with debris.

The large number of objects in Earth orbits makes it impossible to examine
possible collisions with every catalogued space debris due to the huge computational
effort that would be required. Only high risk conjunction events can be considered.
If the estimated collision risk exceeds a pre-defined threshold, a collision avoidance
maneuver is required. Sánchez-Ortiz et al. (2006) suggest a number of evasive
maneuver strategies to reduce the collision risk. Warning messages are being sent
for possible collisions.

17.2 SGP4 Propagator and TLE

As we have seen throughout this book, motion can be described using the position
and velocity (r and v), or orbital elements (e.g. classical, Delaunay). The North
American Aerospace Defense Command (NORAD) provides information about
orbiting objects in a format called Two Line Elements (TLE). The Center for Space
Standards and Innovation (CSSI) website CelesTrak provides a catalog (SATCAT)
of these TLE. When dealing with space debris, TLE are often the only source of
information.

The TLE were created to work with the Simplified General Perturbations series
of propagators. The most common propagator is SGP4 (Hoots et al. 2004). The TLE
set contains the following orbital information: Spacecraft name and catalog number;
epoch; eccentricity; mean motion; RAAN; inclination; argument of perigee; mean
anomaly; the first and second derivatives of the mean motion; a drag parameter
B� D B�0=2, where �0 is the atmospheric density and B is the ballistic coefficient,
B D CDS=m, CD is the drag coefficient, S is the cross-sectional area, and m is the
mass.

TLE are generated using SGP4 for use in the SGP models only. The major
advantage of the TLE and SGP4 are their availability. SGP4 was implemented on a
number of computational platforms.

Another advantage of SGP4, being an analytical propagator, is its speed. The
major disadvantage of both the propagator and the format is accuracy. A generated
TLE may contain inaccuracies of hundreds of meters in position and mm/sec in
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velocity (Foster Jr 2001). The SGP4 propagation error is also quite large, tens of
kilometers after a few days (Knowles 1995).

TLE can be converted into position and velocity by feeding the TLE data into
the SGP4 propagator. Let x D Œx1; x2; : : : x6


T be the state vector of the satellite, i.e.
x D ŒrT ; vT 
T , and let P be the orbital propagator. Denote by y D Œy1; y2; : : : ; y6
T

the set of six TLE i, !, �, M, n, and e. Then

x D P.y/ (17.1)

Inverting the problem, that is, calculating the TLE from a known state, is not as
straightforward. If a collision avoidance maneuver is planned, one needs to calculate
the influence of a velocity impulse �v on the orbit (see discussion of impulsive
maneuvers in Sect. 14.3). To that end, first transform the TLE state to r and v. Then,
after adding the impulse vC D v C �v, transform the new state into a new TLE
set. This problem was solved by Lee (2002). Assuming B� is not changed due to the
maneuver, the TLE can be calculated in an iterative manner. First, expand P into a
Taylor series about yi,
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(17.2)
In matrix form,
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x � xi
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�
(17.3)
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The iterations are preformed as follows:

yiC1 D yi C M�1 �x � xi
�

(17.5)

Since the partial derivatives cannot be calculated analytically, central finite
differencing is used (see Chap. 9). The inverse function requires the inverted matrix
to be nonsingular. In addition, the matrix inversion may be slow. Using the Moore-
Penrose pseudo inverse (Penrose 1955) is faster and more robust.
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17.3 Sizing the Debris

An important part of assessing the probability of collision between a satellite and
a debris is knowing the size of the objects. The size of each satellite is known.
However, when dealing with debris, the size of the object is not always known. The
size of objects can be found in American, European or Russian catalogs. None of
the catalogs is readily accessible to the general public. CelesTrak offers a catalog
containing some radar cross sections (RCS) of objects.

To transform the RCS to the true area of the object, the wavelength with which
the measurement was taken must be known. One may use the TLE to make an
educated guess as to the radar that made the measurement. Knowing the bandwidth
of the radar, one can assess the wavelength used. Another option is to use the power
law approximation (Badhwar and Anz-Meador 1989)

S D 0:5712 .RCS/0:7666 (17.6)

17.4 Time of Closest Approach

Usually, when calculating the risk of collision, an operating satellite is tested against
a catalog of objects. A geometric filter is used to sift out the objects with which
there is no chance of approach. Then, the minimum distances among the satellite
and the hazardous objects need to be calculated. The operator is interested both in
the minimum distance between the satellite and the object, and in the time of closest
approach (TCA). The most straightforward way of calculating these two parameters
is by using the propagator to build a “truth table” that would tell where the two
orbiting objects were at any moment. This method is computationally expensive.

Alfano (1994) suggested a method called the Alfano-Negron Close Approach
Software (ANCAS). This method is widely used today and can be implemented on
any propagator. Following is an explanation of the mechanism of ANCAS.

Let the relative position between two orbiting objects be defined as rd, the relative
velocity is vd D Prd, and the acceleration ad D Rrd. Alfano (1994) demonstrates
ANCAS on an integrator with J2 to calculate the relative distance, velocity and
acceleration. Since SGP4 only provides position and velocity, the acceleration is
derived using forward finite differencing. A distance function is defined as

g D rd � rd (17.7)

It follows that

Pg D 2Prd � rd (17.8)



494 17 Space Debris

and

Rg D 2.Rrd � rd C Prd � Prd/ (17.9)

A close approach will occur when g obtains a local minimum, i.e. when Pg D 0 and
Rg > 0. To approximate the time for which Pg D 0, a cubic spline is fitted to the data
set of time points. The spline is a set of cubic polynomials, i.e. for every given pair
of ti and tiC1, a cubic is fitted. The cubic is defined on � D Œ0; 1
 : The transformation
between � and t is

t.�/ D ti C ��t (17.10)

The cubic is formulated as

C .�/ D a0 C a1� C a2�
2 C a3�

3; 0 � � � 1 (17.11)

where

8̂̂
<
ˆ̂:

a0 D Pg.ti/
a1 D Rg.ti/�t
a2 D �3Pg.ti/� 2Rg.ti/�t C 3Pg.tiC1/� Rg.tiC1/�t
a3 D 2Pg.ti/C Rg.ti/�t � 2Pg.tiC1/C Rg.tiC1/�t

(17.12)

The roots of Eq. (17.11) are found, and if a minimum is identified, the value of rd

is calculated using three quintic polynomials fitted between rd.ti/ and rd.tiC1/. For
instance, if rd D �

rx; ry; rz
	
, then for rx

Qrx.�/ D b0 C b1� C b2�
2 C b3�

3 C b4�
4 C b5�

5; 0 � � � 1 (17.13)

where
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(17.14)
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Fig. 17.1 Example of inter-satellite distance evolution under perturbations

The approximated minimum distance would be

rmin D
q

Q2
rx

C Q2
ry

C Q2
rz

(17.15)

The advantage of this method is computational speed.
Alfano (1994) chose a uniform time step. Choosing a uniform time-step makes

sense since rd is usually evaluated using some form of a numerical integrator. The
error in position using this method could be as large as hundreds of meters, and the
error in time tenths of a second. The accuracy of the method depends on the time
step chosen. Alfano (1994) stated that there was no need to iterate the splining or
the root finding. Due to the inaccurate nature of ANCAS, this method can be used
to perfrom initial calculations before preforming more precise ones.

Another way of looking at the TCA problem is treating it as an optimization
problem, i.e. finding min

t
.rd/. Though the problem seems simple, and may have

analytic solutions in the two-body case, when taking into account the gravitational
harmonics and drag, the distance function becomes multi modal. To illustrate this
phenomenon, Fig. 17.1 shows a sample evolution of distance between two orbiting
objects. The graph was produced using the SGP4 propagator.

17.5 Probability of Collision

The simplest way of avoiding conflicts in space is keeping a safe distance from all
threatening objects. For instance, an operator may define a safety distance of 15 km.
When debris are expected to be within a smaller distance, a maneuver is initiated to
keep the required distance. This approach is wasteful because the determination of
the satellite orbit is inaccurate, and the determination of the debris orbit is even less
accurate.
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Instead of wrapping the satellite with a “safety sphere”, operators define the
maximum allowed probability of collision; should a collision probability be higher
than the threshold, a maneuver would take place.

Many formulations for the collision probability were developed (Patera 2003;
Alfano 2005; Foster and Estes 1992; Klinkrad 2006; Chan 2008), most deal
with short-term conjunctions. Several criteria exist for the definition of short-term
conjunction (Chan 2008; Coppola 2012). Methods of calculating long-term collision
probability are also known (Chan 2008; Alfano 2006; Patera 2003; McKinley 2006).
Plainly put, the conjunction time will be short if the relative speed between the two
objects is high. Usually, when dealing with space debris in LEO, the relative speed
is high.

The most common assumption when dealing with orbiting objects is that the
object is spherical. Representing the collision probability with non-spherical objects
was also studied, but because there is little to no information about the debris
rotational state, using the spherical model makes sense. Additional assumptions
are that the covariances of the two objects are uncorrelated, and the probability
density functions are zero-mean and Gaussian. Under these assumptions Chan
(2008) showed that the covariances can be combined into a single covariance located
in the center of one of the objects, the primary.

Let C3D be the combined covariance. The probability density function of an
object in a position rd relative to the primary is

p.rd/ D 1p
.2	/3 det.C3D/

exp

�
�1
2

rT
d C�1

3Drd

�
(17.16)

The secondary object passes through the C3D ellipsoid and sweeps a volume
through it. The probability of collision would be the three-dimensional integral on
Eq. (17.16) with the volume of the swept volume as the domain of integration,

Pc D
•

V

p.rd/dx dy dz (17.17)

Because the covariances are combined, the secondary object’s size must reflect the
combined size of both objects. The secondary object is, therefore, a sphere with the
radius being the sum of radii of both objects,

R D R1 C R2 (17.18)

The solution of the 3D integral in Eq. (17.17) is quite difficult. Hence, a simplifying
assumption is made. According to this assumption, if the relative velocity is large,
then the relative motion is rectilinear. If the motion is rectilinear, then the volume
swept by the secondary object is approximately a tube. A plane normal to the
relative velocity is formed. The combined covariance and the volume traced by the
secondary object are then projected onto that plane, as shown in Fig. 17.2.
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Fig. 17.2 Description of a 3D encounter and its projection to 2D
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Fig. 17.3 Probability as a function of uncertainty of two objects of size 20 cm2

Thus, the integral in Eq. (17.17) is reduced to two dimensions, and the probability
of collision becomes

Pc D 1

2	
p

det.C2D/

Z R

�R

Z p
R2�x2

�p
R2�x2

exp

�
�1
2

rTC�1
2D r

�
dy dx (17.19)

where C2D is the projected covariance, and r is the relative position, rotated to 2D
coordinates. We can either numerically evaluate the double integral in Eq. (17.19),
use a method that transforms it into a series (Chan 2008), preform a one-dimensional
integral over a line (Patera 2005), or use a series of error functions (erf) (Alfano
2007).

The methods introduced so far relied on covariance matrices. Klinkrad (2006)
shows that the probability does not grow as the covariance grows (see Fig. 17.3).

For some relative position, there exists a covariance matrix which makes the
argument of the exponent equal to �1. Let C� be that covariance. If C� D kC2D,

then the argument will be �1 when k D
q

1
2
rTC�1

2Dr, and then we get the maximum
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probability

Pc D R2

exp.1/
p

det.C2D/rTC�1
2D r

(17.20)

Alfano (2005) provides an approximation for Pc using error functions in the
following manner.

Let r D R=krdk; assuming the covariance grows linearly, and parameterizing it
using r, the following formulation is derived:
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(17.21)

The value of Pc computed using Eq.(17.21) and the one computed using
Eq. (17.20) is the same up to the 5th decimal place. Using the last formulation proves
to be easier since no need for covariances or the propagation thereof is required.

17.6 Calculating the Required	v

Once the calculation of probability is complete, the operator must decide whether
or not to maneuver, and what type of maneuver to preform. By defining an accepted
collision probability level (ACPL) the operator can decide whether a maneuver is
required. If the calculated probability is higher than the ACPL, the satellite must
be maneuvered. The most efficient maneuver would be an along-track maneuver.
Sánchez-Ortiz et al. (2006) suggest two strategies for assessing the along-track
maneuver. The long-term maneuver, based on an along-track separation, would take
place at the point of the collision several revolutions before it occurs. The short-term
maneuver takes place at the location opposite the expected collision, and is based on
a radial separation. To calculate both maneuvers, Sánchez-Ortiz et al. (2006) define
an allowed minimum miss distance (AMMD). The AMMD is not derived directly
from the ACPL, but is rather selected in a manner that would satisfy the ACPL. The
short-term maneuvers are far more expensive than the long term.

The required �v for long-term maneuvers is calculated as follows. Let v1 be
the known speed of the satellite at the collision, dmin be the AMMD, and T1 be the
orbital period. Then

�T D d

nrevv1
(17.22)

and

T2 D T1 C�T (17.23)
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where nrev is the number of orbits before the collision at which the maneuver is
preformed, and T2 is the new period. From Eq. (17.23), we can derive the speed v2
at the collision point,

�v D v2 � v1 (17.24)

This method is approximate. It is useful for assessing how much fuel will be required
and is usually used together with statistical information about the flux of debris. Just
as in the case of ANCAS, this method tends to produce solutions that are larger than
the actual required maneuver.

To find a more accurate maneuver, Patera and Peterson (2003) suggested using
an iterative method. This method uses the gradient of the probability of collision
with respect to the maneuver direction, and Newton-Raphson iterations to find the
optimum. This method assumes that the covariances are small and so the maneuver
amplitude would be small as well.
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Chapter 18
People, Progress, Prospects

18.1 People and Progress

The developments and progress in celestial mechanics and astrodynamics can in
most cases be tied directly to the scientists who contributed to the ideas and
advancements. Some of those people are identified here.

Aristotle (384–322 BC) was a very influential philosopher and thought the Earth
was fixed in space, and all motions must be perfect, hence, circular.

Aristarchus (310–230 BC) measured the diameter of the Earth, the distances to
the Sun and Moon, and concluded that the Sun was much bigger than the Earth
and, therefore, should be at the center of the solar system. However, Aristotle’s
philosophy was more generally accepted.

Hipparchus (150 BC) discovered the precession of the equinox and, hence, the
motion of all stellar positions.

Ptolemy (140 AD) produced the Almagest, which included a section on cosmol-
ogy. He placed the Earth at the center of the universe, the stars on a sphere rotating
daily around the Earth, and the Sun, Moon, and planets on different spheres rotating
with uniform motions. Smaller spheres were attached to the larger ones to explain
complex and retrograde motions. Ptolemy recognized the variation in apparent solar
time and developed mean solar time for computation of ephemerides.

Roger Bacon (1200) proposed that theories must be based on observations, which
are repeatable. This was the beginning of the renaissance period.

Nicolaus Copernicus (1473–1543) introduced the hypothesis of the solar system
with the Sun at the center. His “De Revolutionibus Orbium Coelestium” was only
published after his death.

Tycho Brahe (1546–1601) built for that time the finest astronomical observatory,
“Uranienborg”, on the island of Hven near Copenhagen. He made accurate obser-
vations of the Sun, Moon, planets, and stars for over 20 years. After being forced to
leave Denmark, he became the astronomer of the Imperial Court in Prague.
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Galileo Galilei (1564–1642) pointed a telescope at the sky and observed the
planetary phases and satellites of Jupiter, confirming Copernicus’s hypothesis of
the heliocentric solar system.

Johanes Kepler (1571–1630) used Tycho Brahe’s observations, particularly those
of Mars, to develop his three laws of planetary motion. This required abandoning
circular motions and believing in Tycho’s observations.

Isaac Newton (1642–1727) used Kepler’s laws to develop the basic principles of
the law of universal gravitation and a second law of motion, that the acceleration of
an object is due to the force applied to move it.

Ole Roemer (1644–1710) developed the transit circle for accurate astrometric
observations and measured the speed of light based on observations of the satellites
of Jupiter.

Edmund Halley (1656–1742) paid for the publication of Newton’s “Principia”,
predicted the return of a comet that now bears his name, and discovered proper
motion of fixed stars from observations of Arcturus and Sirius.

Leonard Euler (1707–1783) developed a lunar theory, which was the basis for a
lunar ephemeris, published in 1767 and used for navigation.

James Bradley (1693–1762) was able to detect aberration and nutation from
stellar observations.

Joseph Lagrange (1736–1813) announced the possibility of triangular libration
points in the Sun-Jupiter system and predicted the possible existence of asteroids.
He developed the method of variation of parameters.

William Herschel (1738–1822) discovered in 1781 the planet Uranus, and later
two of its Moons, Titania and Oberon, and two moons of Saturn, Mimas and
Enceladus. He discovered the existence of infrared radiation. He observed many
binary and multiple star systems and nonstellar objects. He was a musician and
composer of twenty four symphonies and other musical pieces.

Pierre Simon de Laplace (1749–1827) developed a perturbation theory to study
the stability of the solar system and concluded that the solar system was stable.
This proved to be not quite correct. He introduced the potential function known
as Laplace’s equation. He developed a lunar theory and wrote the five volumes of
“Mécanique Céleste”.

Carl Friedrich Gauss (1777–1855) was a brilliant mathematician. He developed
Gauss’s method of orbit computation to predict the future location of newly
discovered minor planet, Ceres. His theory of the motion of celestial bodies
introduced the Gaussian gravitational constant and an influential treatment of the
method of least squares.

Fredrick Bessel (1784–1846) determined the positions of over 50,000 stars, was
the first to use parallax to determine the distance to a star, 61 Cygni, deduced
that Sirius and Procyon had unseen companions, the first correct claim of unseen
companions. Bessel developed what are known as Bessel functions, for the solution
of certain differential equations.

Peter Andreas Hansen (1795–1874) published his Tables of the Moon in 1857,
which was believed at the time to be a complete lunar theory. However, within a
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decade Newcomb found deviations between the tables and observations. Hansen
developed a planetary theory for the Jupiter-Saturn perturbations.

George Biddell Airy (1801–1892) was Astronomer Royal from 1835–1881 and
his stellar observations were the basis for the Greenwich meridian becoming the
prime meridian. He oversaw the reduction and publication of a large number of
planetary and lunar observations. He determined the mean density and the polar and
equatorial radius of the Earth, which established the Airy Geoid, still in use in the
United Kingdom.

William Rowan Hamilton (1805–1865) reformulated Newtonian mechanics into
what is called Hamiltonian mechanics. He is the inventor of quaternions.

Charles-Eugene Delaunay (1816–1872) developed the lunar theory and the
infinite series converged very slowly, but it led to further development of functional
analysis and computer algebra. With Ferrel he determined that the tides retard the
rotation of the Earth.

U. J. J. Leverrier (1811–1877) used the perturbations of Uranus by an unknown
planet to predict the location of the planet and Neptune was discovered as he
predicted by J. F. Encke and L. d’Arrest in 1846. Bessel’s star catalog was critical
for the discovery of Neptune.

J. C. Adams (1819–1892) predicted the location of an unknown planet at the
same time as Leverrier. Unfortunately for him, the planet Neptune was observed at
Cambridge Observatory, but not recognized as moving, and Airy did not follow up
on the prediction at Greenwich. Adams found the secular acceleration of the mean
motion of the Moon.

Wilhelm Struve, Thomas Henderson (1838–1840) made stellar observations
sufficiently accurate to prove there was parallactic motions, so the Earth was moving
around the Sun.

Simon Newcomb (1835–1909) introduced a standardized reference system and
planetary theories that were used from 1900 to 1984. He was a leading astronomer
in the US for the last 30 years of his life.

George W. Hill (1838–1914) wrote many papers on celestial mechanics and
developed the general theories for Jupiter and Saturn that were used for their
ephemerides over the first half of the twentieth century.

Seth Carlo Chandler (1846–1913) performed research on positional astronomy
and discovered the Chandler Wobble in polar motion.

Albert A. Michelson (1852–1931) used the Michelson-Morley experiment to
measure the speed of light and introduce interferometry.

Henri Poincaré (1854–1912) wrote many scientific papers and more than 30
books. He established the concept of nonintegrable dynamical systems. This
affected the concept of stability in the solar system. He showed the existence
of deterministic chaos, where the three-body system may become chaotic, i.e.
unpredictable.

E. W. Brown (1866–1938) developed the lunar theory used during the first half
of the twentieth century.

P. W. Cowell (1870–1949) developed a method of numerical integration for orbit
computations.
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Albert Einstein (1879–1955) developed the theories of special and general
relativity.

Willem de Sitter (1872–1934) investigated the variability of the Earth rotation.
With Einstein he authored a paper arguing that there might be large amounts of
matter that do not emit light. He developed the concept of de Sitter Space and de
Sitter Universe, a solution of general relativity in which there is no matter and a
positive cosmological constant.

H. Spencer Jones (1890–1960) investigated the variability of Earth rotation. He
determined the solar parallax from the observations of 433 Eros and was an expert
on astronomical constants. He was Astronomer Royal from 1933 to 1956.

Andre-Louis Danjon (1890–1967) designed the impersonal astrolabe, known
as the Danjon astrolabe, which improved the accuracy of fundamental optical
astrometry. He suggested the establishment of Ephemeris Time long before G. M.
Clemence, but that was not known by Clemence.

George E. Lemaitre (1894–1966) introduced the concepts of expansion of the
universe, Hubble’s law, Hubble’s constant, and the Big Bang theory.

Y. Hagihara (1897–1979) wrote a nine-book text on celestial mechanics.
Dirk Brouwer (1902–1966) developed a theory for artificial satellite motions and

was a leader in the development of astrodynamics after Sputnik. He was head of
the astronomy department at Yale and educated and attracted many of the future
leaders in celestial mechanics. Brouwer, Clemence, Eckert, and Herget were the
leaders in the field of celestial mechanics at the advent of the space program and
astrodynamics.

Wallace Eckert (1902–1971) was a pioneer in the use of punched card equipment
and computers for astronomy. He introduced their use for computing the almanacs at
the US Naval Observatory during World War II. He developed the computer used for
the integration of the ephemerides of the outer planets that were used internationally
from 1960–1984. He developed a modern lunar theory.

Andrey N. Kolmogorov (1903–1987) investigated probability theory and
stochastic processes. He is known for the Kolmogorov-Arnold-Moser theorem
and the Kolmogorov complexity theory.

Boris Garfinkel (1904–1999) developed an artificial satellite theory.
Clyde W. Tombaugh (1906–1997) discovered Pluto in 1930 near the predictions

of its location, but its mass is too small to be the basis of the predictions.
William Markowitz (1907–1998) developed the Moon camera used to measure

the ephemeris second with respect to an atomic clock and determined the resulting
value of the atomic second, which became the SI second.

John P. Vinti (1907–1990) developed an artificial satellite theory and his lecture
notes were published as “Orbital and Celestial Mechanics”.

G. M. Clemence (1908–1974) was a pioneer in the use of punched card
equipment and computers for celestial mechanics. He proposed the introduction
of Ephemeris Time. He was Scientific Director of the US Naval Observatory and
developed a general planetary theory for Mars.

Paul Herget (1908–1981) was a pioneer in the use of punched card equipment
and computers for celestial mechanics and developed the computational methods
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used for the Mercury, Gemini, and Apollo missions and artificial satellite orbits.
He was director of Cincinnati Observatory and the Minor Planet Center after World
War II.

Samuel Herrick (1911–1974) taught astrodynamics at UCLA and wrote books
on Astrodynamics.

G. A. Chebotarev (1913–1975) studied minor planets, and was a Russian leader
in the field and wrote a book on celestial mechanics.

Raynor L. Duncombe (1917–2013) worked with Eckert, Clemence and Herget
with punched card computers and early orbit determination of artificial satellites.
He was director of the US Nautical Almanac Office and taught in the Aerospace
and Engineering Mechanics Department at the University of Texas for thirty six
years.

John V. Breakwell (1917–1991) made contributions in astrodynamics and related
areas of optimization, control theory, and differential games. One of his major
contributions was his mentoring of many students who have made numerous
contributions to astrodynamics.

Victor Szebehely (1921–1997) is best known for his work on the three-body
problem and his book “Theory of Orbits: The Restricted Problem of Three Bodies”.
He was well known for his entertaining lectures.

Richard H. Battin (1925–2013) was responsible for developing the guidance and
navigation concepts and software for the Apollo on-board flight computers. He
taught astrodynamics at MIT and wrote several books on astrodynamics.

Andre Deprit (1926–2006) was one of the pioneers in the development and use
of Lie Series and algebraic manipulation in the development of orbit theories.

18.2 Future Prospects: Exoplanets

A summary of celestial problems already solved, that can and should be solved more
completely, and still waiting to be solved, is given by Brumberg (2013). We focus
our discussion of future prospects on the topic of exoplanets. This remarkable field
holds much promise for both astrodynamics and celestial mechanics. Moreover, it
could answer some of the most fundamental questions of existence.

18.2.1 History

An exoplanet, also called extrasolar planet, is a planet outside our solar system.
Objects with true masses below the limiting mass for thermonuclear fusion of
deuterium (currently 13 Jupiter masses for objects of solar metallicity) that orbit
stars, or stellar remnants, are planets (no matter how they formed). The minimum
mass required for an exosolar object to be considered a planet should be the same as
that used in our solar system. Substellar objects with true masses above the limiting
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mass for thermonuclear fusion of deuterium are brown dwarfs. Free floating objects
in young star clusters with masses below the limiting mass for thermonuclear fusion
of deuterium are not planets, but are sub-brown dwarfs.

The sixteenth century Italian philosopher Giordano Bruno and the eighteenth
century scientist Isaac Newton proposed that stars similar to the Sun should likewise
be accompanied by planets. There is a long history of searches for planets and life
somewhere other than on Earth (Dick 1999, 2001). Hence, the search for life, or
traces of past life, on planets in our solar system continues. Also the search for
radio signals from other solar systems, such as SETI, has a long history going back
to Drake (2009). There is the resulting Drake equation concerning the probability of
radio signals from outside our solar system. There is also the Fermi paradox, which
is basically “if there are so many of them, where are they?” (Prantzos 2013).

The first real discovery of an exosolar planet was from a radio astronomy
observation of a planet around a pulsar by Wolszczan and Frail (1992). There have
been many searches using astrometry, where the periodic motion of a star due to its
motion about the center of mass of the star and a planet could be detected, just as
binary stars are detected, but with the much smaller mass of the planet. None of the
claimed detections proved to be real.

Campbell et al. (1988) used radial velocity observations to suggest that a planet
was orbiting Gamma Cephei. The observations were at the limits of instrumen-
tal capacities and the discovery remained in doubt until 2003, when improved
techniques confirmed its existence (Hatzes et al. 2003). The breakthrough in the
discovery of exoplanets came from very accurate radial velocity measures, where
the periodic variations in the observed radial velocities revealed the existence of
a planet going around the star (Mayor and Queloz 1995). Their discovery was
followed by a number of other exoplanets by Marcy and Butler (1996).

The detection of a planet passing in front of a star by the photometric measure
of the stellar magnitude, which dips and returns, has resulted in over 2700 planet
detections with the Kepler spacecraft (Dunham et al. 2014; Batalha et al. 2013).

Current information about the status of exoplanets and catalogs of exoplanets can
be found online.1

18.2.2 Observations

18.2.2.1 Direct Imaging

Since the star is usually a million times brighter than the planet and causing a glare,
it is necessary to block the light from the star so the planet can be seen. An occulting
technique is necessary to block the light from the star. The larger the planet and the

1www.exoplanets.org; www.exoplanet.eu; www.exoplanetarchive.ipac.caltech.edu; www.
openexoplanetcatalogue.com.

www.exoplanets.org
www.exoplanet.eu
www.exoplanetarchive.ipac.caltech.edu
www.openexoplanetcatalogue.com.
www.openexoplanetcatalogue.com.
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farther from the star the better. Infrared observations are better than visual, since
the planets are hot and emit infrared radiation. Specially designed direct imaging
instruments, Gemini Planet Imager, VLT-SPHERE, and SCExAO will image gas
giants. In images taken by the Keck and Gemini telescopes, four giant planets at
distances between 14.5 and 68 AU, periods between 50 and 450 years, have been
detected around star HR 8799 (Sudol and Haghighipour 2012). The direct imaging
of exoplanets is described in more detail by Dotson et al. (2010); Biller (2013);
Kostov and Apai (2013). However, most observations of exoplanets will be made
by indirect means.

18.2.2.2 Radial Velocities

When a planet orbits a star, the two bodies move around the system’s center of mass.
The changes in the stars radial velocity, its motion with respect to the Earth, can be
detected from the displacements in the star’s spectral lines due to the Doppler effect.
Surveys began 25 year ago with a few hundred bright stars. The measurements must
be very accurate, about 1 m/s or less. Now planets with a few Earth masses with
close in orbits are being detected. A disadvantage of this method is that only a lower
limit on the mass can be set. The details of the technique and the software and
methods of analyzing the observations are given by Dotson et al. (2010); Ma and
Ge (2012); Baluev (2013).

18.2.2.3 Transits

When a planet passes in front of a star, the brightness of the star drops by a small
amount. The amount of the dimming depends on the size of the planet. Repeated
observations of the transits indicate the period of the planet. Variations in the
times of the transits can indicate perturbations by additional planets. Sometimes the
shape of the decrease in the brightness can indicate the presence of an atmosphere.
Transit Timing Variations (TTV) can be detected from the mutual perturbations in
multiplanet systems. Also Transit Duration Variations (TDV) can be measured as a
means of detecting multiple planets. However, this technique is subject to a large rate
of false positives, and, thus, confirmation from another method is usually necessary.

The first exoplanet discovery with the transit technique was of OGLE-TR 56 b by
the photometric survey Optical Gravitational Lensing Experiment (OGLE)(Udalski
et al. 1993). The CoRoT space mission, launched in 2006, has discovered planets
starting in 2007. The Kepler mission, launched in 2009, has been extremely
successful in detecting planets by the transit technique, and has a large list
of candidate planets requiring independent confirmation. The Canadian MOST
mission has succeeded in observing transits. Future exoplanet discoveries can be
expected from the Transiting Exoplanet Survey Satellite (Ricker et al. 2014), the
Super WASP exoplanet transit survey (Smith 2014), and Gaia (Voss et al. 2013).
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18.2.2.4 Astrometry

By measuring the position of a star and changes in the position of the star over time,
the parallax and proper motion of the star can be determined. If the proper motion
of the star is not linear, but has a periodic signature included, this may be due to
the gravitational influence of a planet. The size of the periodic motion is dependent
on the ratio of the mass of the star and planet. Astrometric satellites, like Hipparcos
and Gaia, provide the accuracy for such detections, but their limited observational
periods reduce the probability of such detections. Combining lengthy ground-based
observing data with both Hipparcos and Gaia observations may be successful in
detecting planets. The astrometric detection and characterization of exoplanets is
described by Dotson et al. (2010); Sahlmann et al. (2013); Sozzetti (2012).

18.2.2.5 Microlensing

When the gravitational field of a star acts as a lens, magnifying the light of a distant
background star, this is microlensing. If the lensing star has planets orbiting it,
they cause detectable anomalies in the magnification over time. The microlensing
method is most sensitive to detecting planets about 1- 10 AU away from a Sun-
like star. Unfortunately, the detection of such a planet does not tell much about its
characteristics. The searches for and detection of exoplanets by microlensing are
described by Brown (2014); Zakharov (2012); Sumi (2012).

18.2.3 Types of Exoplanets

The indirect detection of exoplanets requires observations of at least half of the
orbital period of the planet, so shorter period planets are the first to be detected.
Also, the more massive planets will produce a larger signal, and will be detected
first. Hence, the first exoplanets were close in large planets, called Hot Jupiters
(periods less than 10 days). They are only found around 0.5% to 1% of Sun-like
stars. With time, smaller planets with longer periods were detected, going down in
size to Neptune size and smaller. As expected, the planets were similar to the gas
giants of the solar system with rocky cores and gaseous atmospheres. Surveys over
decades at Keck Observatory show that 10.5% of G and K dwarf stars have one
or more giant planets (0.3 to 10 Jupiter masses) with orbital periods of 2 to 2000
days (distances of 0.03 to 3 AU). Planets between the Earth and Neptune in size are
common in exosolar systems, but absent in our solar system. 15% of Sun-like stars
have one or more planets which satisfy

M sin i D 3 � 30ME
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where M denotes the exoplanet’s mass, ME is Earth’s mass and i is the inclination
between the normal to the planet’s orbital plane and the line of sight from the Earth
to the star. These planets are orbiting within 0.25 AU, and by extrapolation, another
24% have planets with

M sin i D 1 � 3ME

The goal, of course, is to get down to the Earth size. Knowing the mass of a
planet does not specify its size. A planet of Earth mass will have a size dependent
on its composition and atmosphere. There are super Earths with a rock/iron core
surrounded by about 3% H2 gas by mass; water world planets, consisting of a
rock/iron core, with a water ocean and atmosphere that contribute 50% of the mass;
a mini Neptune composed of rock/iron, water, and H/He gas (Howard 2013).

18.2.4 Orbit Determinations

With the observations being made by indirect methods, all the orbital parameters
cannot be determined. From radial velocity measurements, at best the semimajor
axis, eccentricity, longitude of periastron, and time of periastron can be determined.
The inclination and longitude of ascending node cannot be determined. The
combination of radial velocities and transit observations of an exoplanet permits
the determination of the inclination of the orbit and, thus, overcoming the sin i
indetermination in the mass determined from the radial velocity, and also to
determine the radius of the planet. Furthermore, the combined observations can
significantly improve the eccentricity value (Beaugé et al. 2012).

The mass of transiting planets can be determined from follow-up radial velocity
measures, if the star is bright enough. Masses can be determined from precise
timings for multiple planet systems from the deviations from strict periodicities due
to gravitational perturbations, given sufficient observations.

The orbital inclination is normally the angle between the planet’s orbital plane
and a plane of reference for the star and its planetary system. However, for
exoplanets, the inclination is usually between the normal to the planet’s orbital
plane and the line of sight from the Earth to the star. So most inclinations are near
90ı. Generally, when there are multiple planets around a star, the planets’ orbits are
nearly in the same plane. However, Hot Jupiters tend to have orbital planes very
misaligned with their planet star’s rotation, some even have retrograde orbits.

Exoplanets have been discovered much closer and farther from stars than those
in our solar system. Exoplanets have orbital periods of hours to thousands of years.
Most exoplanets discovered with short periods, 20 days or less, have near circular
orbits. However, giant planets with longer orbital periods tend to have eccentric
orbits, greater than 0.2.

There is a peculiar pattern to the obliquities of stars with Hot Jupiters. The
obliquities are apparently random about a critical temperature of about 6250 K,
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but cooler systems are mostly aligned. Thus, in-situ formation is unlikely for Hot
Jupiters due to the insufficient protoplanetary disk close to the star. Rather the
planets likely formed in the disk at several AUs, and were gravitationally perturbed
into orbits with random inclinations and high eccentricities. They were captured at
about 0.05 AU by dissipation of orbital energy in tides raised on the planet.

18.2.5 Planetary Systems

As the period of observing has increased, more systems with multiple planets around
a single star, i.e. planetary systems, have been discovered. Planetary systems can be
resonant, when the orbital periods of the planets are in integer ratios. Kepler-223
has four planets in an 8:6:4:3 orbital resonance. In interacting systems, the planets
are close enough to perturb the orbital parameters of each other.

Buchhave et al. (2014) finds that the exoplanet solar systems can be divided into
three types. One, those around the most metallic stars are dominated by gas giants.
Two, those around the least metallic stars have mostly rocky planets, usually larger
than those in our solar system. Third, stars of medium metallicity have gas dwarfs
around them. These have rocky cores with a thick atmosphere of hydrogen and
helium.

18.2.6 Habitable Zone

The habitable zone is the region around a star where the temperature allows liquid
water to exist on the planet. The heat from stars depends on their size and age, so the
habitable zone is at different distances. The planet can have an atmosphere which
influences its ability to retain heat. Dessert planets have very little water and water
vapor, so they can be closer to the star. Also, the lack of water means less ice to
reflect heat, so its outer edge of the habitable zone is further out. Rocky planets with
a thick atmosphere could maintain surface water further from a star. If subsurface
temperatures are considered, the habitable zone extends much further from the star.
Hence, the habitable zone depends on the characteristics of both the star and planet.

Confirmed discovered planets in the habitable zone include super-Earths Kepler-
22 b, Kepler-62 e, Kepler-62 f, Kepler-69 c, Gliese 667 Cc, Gliese 667 Ce, and
Gliese 667 Cf. Two planets orbiting a red dwarf, Gliese 163, have been discovered.
Kepler 186 f is an Earth-sized planet in the habitable zone of a red dwarf.
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18.2.7 Observing Program

The SOFIA 2.5 m telescope on a Boeing 747 will make optical and near infrared
photometric and spectrophotometric observations during planetary transits and
eclipses (Angerhausen et al. 2012).
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