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Preface

In the week of May 12–15, 2014, the Observatory of Besançon (France) welcomed
a scientific community willing to develop new ways on how stars could be resolved
and mapped to confront theory and observations. The cartography of the surface
of the stars requires diverse skills, technique of analysis, and advanced modeling,
i.e., the collaboration of scientists with various expertises. About 25 physicists
and astronomers were able to debate, exchange, and share their knowledge in that
rapidly developing field. Specific sessions were devoted to practical exercises, which
encountered a real success. Following tradition, as this book is the fourth of a series,
the speakers of this school were asked to supply a written version of their talks. Two
additional chapters were added to provide a broader vision of the topic.

A particular attention has been paid to the Sun, with the invitation of solar experts
in this area, because the Sun, due to its proximity, is a valuable laboratory for the
mapping of all other stars. The knowledge gained on the Sun and the techniques
developed are thus very important for scientists working on other stars.

Even in the best weather conditions, the instrumental diffraction limits drastically
the angular resolution to perform astronomical imaging outside our solar system.
Today, new techniques allow us for the first time to obtain nice images of stars.
In particular, interferometry, combined with adaptive optics, recently allowed to
reconstruct images of several stars. Already seven stars have been resolved in detail,
in addition to the Sun of course.

This book takes stock of what was achieved with interferometry so far in Chile,
on the ESO VLTI instrument and in the United States on the CHARA instrument.
Physical aspects of the observations are important, especially in the case of rapidly
rotating stars, for which the flatness and gravity darkening of the photosphere
constrain models.

In addition to interferometric techniques, this book highlights mapping of
surfaces of stars using Doppler or Zeeman–Doppler imaging methods, i.e., the use
of spectroscopic or spectropolarimetric data to map spots, abundance, or magnetic
fields at the stellar surface. It is also possible to resolve close binary stars by eclipse
methods, which gives access to the interacting components.
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vi Preface

This book also reports on the best images of the solar surface and connects
the observable differential rotation to the underlying physical parameters. Recent
measurements of flattening of the solar surface by SDO showed that its shape is
linked to the rotation of its core. Such a result can probably be applied generally to
stars.

The General Overlook of This Book Is as Follows. Chapter 1 by Aimé and
Theys presents the basics of image reconstruction in astrophysics. Chapter 2 by
Kosovichev and Zhao deals with the reconstruction of solar subsurfaces through
local helioseismology from the GONG network and two space missions SOHO
(Solar and Heliospheric Observatory) and SDO (Solar Dynamics Observatory).
Chapter 3 by Lanza and Chap. 4 by Hiremath present results obtained from space
photometry through helioseismology to map surface spots and thermal and magnetic
field structures of the Sun. Chapter 5 by Rieutord shows how physical processes lead
to the observed surface inhomogeneities. Chapters 6, 7, and 8, by Kervella, Perrin,
and Domiciano de Souza, respectively, show the use of interferometric techniques to
infer the shape, surface spots, and rotation of more distant stars. Finally, Chap. 9 by
Kochukhov explains how spectroscopy and spectropolarimetry allow us to produce
images of stars and, in particular, of their spots, abundance maps, and magnetic field
configuration.

The authors wish to express their gratitude to all participants and speakers as
the Besançon workshop permitted to anticipate the development of this particular
branch of astrophysics, not only through future formal publications but also,
and in many cases, through detailed discussions between specialists of different
disciplines. The authors would also like to thank Jeff Kuhn, from the Institute of
Astronomy of the Hawai University, for his plenary lecture, which could not be
transcribed in this book.

We sincerely hope that all scientists, doctors, and students will be happy to find
here the base of this new field of research, aimed at revealing the surface of stars.

Nice, France Jean-Pierre Rozelot
Meudon, France Coralie Neiner
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Chapter 1
Reconstructing Images in Astrophysics,
an Inverse Problem Point of View

Céline Theys and Claude Aime

Abstract After a short introduction, a first section provides a brief tutorial to the
physics of image formation and its detection in the presence of noises. The rest
of the chapter focuses on the resolution of the inverse problem. In the general
form, the observed image is given by a Fredholm integral containing the object
and the response of the instrument. Its inversion is formulated using a linear
algebra. The discretized object and image of size N � N are stored in vectors x
and y of length N2. They are related one another by the linear relation y D Hx,
where H is a matrix of size N2 � N2 that contains the elements of the instrument
response. This matrix presents particular properties for a shift invariant point spread
function for which the Fredholm integral is reduced to a convolution relation.
The presence of noise complicates the resolution of the problem. It is shown
that minimum variance unbiased solutions fail to give good results because H is
badly conditioned, leading to the need of a regularized solution. Relative strength
of regularization versus fidelity to the data is discussed and briefly illustrated on
an example using L-curves. The origins and construction of iterative algorithms
are explained, and illustrations are given for the algorithms ISRA, for a Gaussian
additive noise, and Richardson–Lucy, for a pure photodetected image (Poisson
statistics). In this latter case, the way the algorithm modifies the spatial frequencies
of the reconstructed image is illustrated for a diluted array of apertures in space.
Throughout the chapter, the inverse problem is formulated in matrix form for the
general case of the Fredholm integral, while numerical illustrations are limited to
the deconvolution case, allowing the use of discrete Fourier transforms, because of
computer limitations.
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1.1 Introduction

Due to diffraction of light, a point source on the sky produces, in the focal
plane of the telescope, a response which is an extended pattern, called the point
spread function (PSF). The observed focal plane image is obtained by substituting
a weighted and shifted PSF to each point of the perfect geometrical image of
the astronomical object. This operation is mathematically described by a two-
dimensional Fredholm equation that simplifies to a convolution for a space invariant
PSF. In this case the problem is conveniently treated in the Fourier space using
the linear filtering of the optical transfer function (OTF). The resulting image is
a blurred version of the object. The recorded image is contaminated by noises of
several origins. A fundamental source of noise is the photodetection of the light,
mathematically described by a Poisson transformation. Imperfections of detectors
may add other sources of noises, generally assumed to follow Gaussian statistics.
The problem of image reconstruction is to recover a result as close as possible to the
object. We examine here, from an inverse problem point of view, a few techniques
utilized for that.

The chapter is organized as follows. Basis of physical imaging are summarized
in Sect. 1.2. The direct resolution of the inverse problem is discussed in Sect. 1.3,
and the matrix formalism is introduced there. The principle of a regularization of
the solution is described in Sect. 1.4. Iterative algorithms are explained in Sect. 1.5
on the examples of ISRA (Gaussian noise) and Richardson–Lucy (Poisson noise).
An illustration for a diluted array of apertures is detailed in Sect. 1.6. Conclusions
are given in Sect. 1.7.

1.2 Physical Basis of Optical Imaging

For a perfect circular telescope illuminated by a plane wave, the figure observed in
the focal plane is an Airy function of angular size �=D, where � is the wavelength
of the light and D is the diameter of the aperture. In presence of atmospheric
turbulence, a large ground based telescope gives a random figure of speckles.
Many elaborated techniques have been developed for their statistical exploitation
for imaging (Labeyrie 1976; Roddier 1988; Weigelt 1991), but are beyond the
scope of this work. We do not consider either conditions of long time exposure,
studied by Fried (1966), because then the resolving power of the telescope is too
drastically reduced, and is not very attractive for illustration of inverse problems.
The kind of telescope response we use in this work corresponds to small defaults of
the wavefront for a monolithic aperture. It may correspond to observations using a
telescope in space, or using excellent adaptive optics for ground based observations.
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1.2.1 Basic Relations for Image Formation

For a wave �0.r/ arriving from an on-axis point-source on the aperture of the
telescope of transmission P0.r/, we denote P.r/ the quantity:

P.r/ D �0.r/P0.r/; (1.1)

where r.rx; ry/ is the position on the aperture. The complex-valued function �0.r/
expresses the defaults from a plane wave. In the focal plane, Fourier optics show
that the observed intensity can be written as:

j�F .r/j2 D 1

�2F 2
j OP. r

�F
/j2; (1.2)

where F is the focal length of the telescope. The integral of j�F .r/j2 over r gives
the total flux passing through the telescope aperture. It is more convenient to use
the angular units ˛.˛x; ˛y/, and to substitute to the true focal plane response a
normalized quantity:

H.˛/ D 1

�2S
j OP.˛
�
/j2 (1.3)

where S is the telescope area. H.˛/ is indeed the function we take as the point
spread function (PSF). It is normalized so that its integral over ˛ is 1. An illustration
of P.r/ and its corresponding PSF is given in Fig. 1.1. In this example, the
defaults of the wavefront are small, and the corresponding PSF (right figure) is a
slightly perturbed Airy spot. Now let us consider the incoherent imaging process.
To derive the fundamental mathematical relations, we need to denote differently
angular directions for the object and the image. We denote ˇ the angular direction

Fig. 1.1 Left: phase of the wavefront on a telescope aperture with a central obscuration. Right:
corresponding PSF. The wavefront is the result of a numerical simulation that consists of filtering
a white noise by a low-pass filter
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corresponding to the object of intensity X.ˇ/. An elementary two-dimensional
angular region dˇ of the object around the direction ˇ irradiates an elementary
intensity X.ˇ/dˇ. This intensity is spread in the image plane as a function of the
instrument response Hˇ.˛/. It produces the elementary intensity dI.˛/ of the form:

dI.˛/ D X.ˇ/dˇ � Hˇ.˛/: (1.4)

For more generality, we have considered here the case in which the telescope
response may vary in shape depending on the direction ˇ of the source. This may
be mandatory in the case of strong vignetting in an optical system, or if a large field
of view is observed using an adaptive optics system optimized for a narrower zone.

Since the object is incoherent, the intensity in the focal plane is the sum of
elementary intensities coming from all ˇ directions. We have:

I.˛/ D
Z

X.ˇ/Hˇ.˛/dˇ (1.5)

which is a Fredholm integral. Recover X.ˇ/ from I.˛/ is the general problem that
can be solved by the procedures described in this chapter, but this requires heavy
numerical matrix computations, as developed in the next section.

The problem is much simpler if we can assume that the wavefront perturbation is
independent of the direction of observation, i.e. that conditions of isoplanatism are
fulfilled. Then the PSF is space invariant, and H.˛Cˇ/ can be substituted to Hˇ.˛/

in the integral. The relation then simplifies to:

I.˛/ D
Z

X.ˇ/H.˛ C ˇ/dˇ D X.˛/ � H.�˛/; (1.6)

which is the classical relation of convolution between the image, the object and the
PSF. The minus sign comes from the inversion of the geometrical image by the lens.
It is very often forgotten in the literature, but mandatory when the PSF is not an even
function. An illustration of the smoothing effect of the PSF of Fig. 1.1 on a synthetic
representation of an Earth-Moon system (NASA image) is shown in Fig. 1.2. Taking
the Fourier transform of the terms of Eq. (1.6), we obtain:

OI.u/ D OX.u/:T.u/ (1.7)

where u.ux; uy/ are angular frequencies. T.u/ is the optical transfer function (OTF),
Fourier transform of the PSF. This can be written as the aperture autocorrelation
function:

T.u/ D F ŒH.�˛/� D 1

S

Z
P.r/P�.r � �u/dr (1.8)

where H.˛/ is given by Eq. (1.3) and P�.r/ is the complex conjugate of P.r/.
An illustration of T.u/, represented in modulus and phase, is given in Fig. 1.3.

This function is zero for u � D=� for a circular aperture of diameter D, making the
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Fig. 1.2 Left: Synthetic object used for numerical illustration. Right: Noiseless focal plane image
result of the convolution of the object by the PSF of Fig. 1.1

Fig. 1.3 OTF in modulus (left) and argument (right) corresponding to the PSF of Fig. 1.1. The
white circle gives the aperture cut-off frequency

PSF a band limited function. Numerically, it is much easier to use the linear filtering
of the OTF than to perform the convolution with the PSF. The focal plane noiseless
image shown in Fig. 1.2 was indeed computed as the inverse Fourier transform of
OI.u/ in the form:

I.˛/ D X.˛/ � H.�˛/ D F�1Œ OX.u/:T.u/�: (1.9)

1.2.2 Image Detection in the Presence of Noises

The quantity I.˛/ gives the intensity of the image in the classical sense. The first
source of noise comes with the fundamental process of photodetection. A sensor
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such as a CCD collects the light received inside elementary surfaces that further
lead to pixels in the image. For an integrated energy of m photons (a real positive
number), the effective number of photons detected is a random integer variable n
following the Poisson law P.n=m/ D exp.�m/mn=nŠ, as described in Goodman
(2012) for example.

There are other sources of noises. For example, the detector is read by an
electronic process which adds a noise independent of the number of photoelectrons
in a pixel. It is usually assumed a Gaussian law for that, of the form N .g; �2/, of
mean g and variance �2.

For the sake of clarity and easiness of reading, we will consider only two extreme
cases. The first one considers that the read-out noise is negligible, taking only into
account the Poisson transformation:

Y.˛/ � P.I.˛//: (1.10)

Figure 1.4, top curves, gives an illustration for a total number of 30 � 106 photons
in the whole image. Curves have been normalized for comparison with noiseless
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photons per pixel). Right: horizontal center cut. Bottom: Left: Image with Gaussian noise �
N .0; 0:02/. Right: horizontal center cut
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data, and the levels are no more integer numbers. A typical value for a pixel of the
Earth-like image is 100 photoelectrons.

The second model assumes that the number of photons is sufficiently large to
neglect the Poisson transformation and consider only the read-out noise, modeled
as a signal-independent additive noise:

Y.˛/ D I.˛/C B.˛/: (1.11)

Figure 1.4, bottom curves, is an illustration of Eq. (1.11), with B.˛/ that follows a
zero-mean Gaussian law N .0; 0:02/. That standard deviation roughly gives a level
of noise comparable to that of the Poisson noise, where the image is non-zero.
Differences between the two models appear clearly in the regions where I.˛/ ' 0,
since P.n=0/ D 0. Arrays used in numerical simulations are 1024�1024 pixels, but
only the central part of the images is represented (zoom � 5).

1.3 Inverse Imaging Problem

For the purposes of calculation it is necessary to use discretized quantities. Thus the
observed process described in Eq. (1.11) can be written as:

y.m; n/ D
X

i; j

x.i; j/h.m; i; n; j/C b.m; n/ (1.12)

for the general case of the Fredholm equation of Eq. (1.5), which reduces to the
discrete form of the convolution of Eq. (1.6):

y.m; n/ D
X

i; j

x.i; j/h.m � i; n � j/C b.m; n/ (1.13)

where y; h; x and b are numerical values of tables (indexed by m; n) corresponding
to discretized quantities Y;H;X and B, respectively.

1.3.1 The Raw Inverse Filter and an Improved Version

Considering the space-invariant case of Eq. (1.13), an immediate naive solution to
estimate the object from the data is to take the Discrete Fourier Transforms (DFT)
of y and h and to recover the DFT of the object by a simple division:

Ox.k; l/ D Oy.k; l/
Oh.k; l/ (1.14)
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where .k; l/ have generally the same dimensions than .m; n/ and Ox is the DFT of x.
The estimated object is then taken as the inverse DFT of Ox.k; l/. The division can
be made only where Oh.k; l/ is different from zero. A simple treatment of that is to
limit the domain of the division to the region where the OTF is non-zero, setting
Ox.k; l/ D 0 where Oh.k; l/ D 0 or very small. For that we can insert a multiplicative
window function F.k; l/ in Eq. (1.14):

Ox.k; l/ D F.k; l/ �
 Oh.k; l/Ox.k; l/

Oh.k; l/ C Ob.k; l/
Oh.k; l/

!
; (1.15)

where we have replaced Oy by the direct transformation in Eq. (1.13).
In the example of Fig. 1.5, we give the result obtained for the photodetected

image, limiting the division in Eq. (1.15) to the spectral bandwidth at 98% of the
telescope frequency cut-off. The representation of the corresponding inverse filter
is clipped to twenty in the figure, while true values reach several hundred close to
the cut-off frequency. Trying to use 99% of the cut-off frequency would induce a
correcting factor of the order of one thousand.

An intuitive improvement would be to use a smooth function for F, depending
on the signal to noise ratio. This is the effect of the Wiener filter, developed for
Gaussian noise. It is equal to the ratio of the object power spectrum to the sum of
the object power spectrum and the noise power spectrum. Some a priori knowledge
of these quantities is necessary. Nevertheless, to implement this correction, we have
used for F the ideal theoretical OTF of the telescope that is a damping function for
high frequencies. This has given excellent results in this case. Note that the problem
of the inversion of H exists also for a noiseless image, which is characteristic of an
ill posed inverse problem. In the following, we develop a matrix formulation of the
model to search for better solutions.

1.3.2 Matrix Formulation

The discretized form of the Fredholm integral given in Eq. (1.12) can be written in
the following matrix form:

y D Hx C b (1.16)

where y, x and b are vectors of the discretized values of the image, the object and
the noise lexicographically stored. Lexicographic means that the values of each table
read from left to right and from top to bottom are arranged in a vector. An image
of size N � N then yields a vector of length N2. Consequently the matrix H is of
dimensions N2 � N2. Each line of H sums to 1 since each line contains all the
coefficients of the normalized PSF. We denote in bold the vectors and in capital
letters the matrices. A realization of the value of the image in the pixel i is written



1 Reconstructing Images in Astrophysics 9

0 200 400 600 800 1000
– 5

– 4

– 3 

– 2

–1

0

Points of a central line of the DFT

M
od

ul
us

D
FT

 (l
og

-s
ca

le
)
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by the “regularized” inverse filter
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in the following matrix form:

yi D .Hx/i C bi: (1.17)

Considering the space-invariant case of Eq. (1.13), the matrix H is block Toeplitz
and each block is Toeplitz, so H has a Toeplitz-block-Toeplitz structure. In this
case, the matricial product Hx can be advantageously performed in the Fourier space
using two-dimensional DFT on the N �N arrays. Nevertheless we keep the matricial
notation for more generality.

The problem without constraints on the solution is then to restore x from the data
y with the knowledge or the measure of the PSF, H.

1.3.3 Minimum Variance Unbiased Solutions

From the model described in Eq. (1.16), without noise or with unknown noise, a
classical estimate is the solution that minimizes the quadratic error:

J1.xjy/ D jjy � Hxjj2: (1.18)

This term is called the fidelity term in the sense of fidelity with respect to the
measurements, and the argument of the minimum of J1 is called the least squares
solution, xLS:

xLS D arg min
x

J1.x/ D .HTH/�1HTy D H�y (1.19)

where H� is called the generalized inverse matrix and xLS is also called the
generalized inverse solution. If the matrix H is square then the solution reduces
to:

xIF D H�1y; (1.20)

which is the solution given by the inverse filter described in Sect. 1.2.1. The same
solution is obtained if noise components are independent and identically distributed
(i.i.d).

If the noise has a known autocorrelation matrix, then the solution is called the
Generalized Least Squares solution, xGLS:

xGLS D .HTR�1H/�1HTR�1y; R D EŒbbT �: (1.21)
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It is important to notice that from a statistical point of view, all the previous
solutions, xLS, xIF and xGLS are the best solutions in the sense of unbiased estimators
and of minimum variance (Kay 1993).

In conclusion, in the discrete case, although a solution can always be obtained,
the inversion of H or HTH (if H is not square) is a difficult operation because H is
badly conditioned.

A numerical solution consists of increasing the conditioning of H by suppressing
the smaller singular values of the singular decomposition of H and by computing
the inverse of H by:

.HTH/�1 D
KX

iD1

1

�2i
vivT

i (1.22)

where �i are the singular values of H or HT arranged in the decreasing order and vi

are the corresponding singular vectors, K is the order of the truncation. This solution
has the main drawback of the choice of the truncation order K that moreover cannot
be linked to physical considerations.

1.4 Adding A Priori: Regularization

The “best” solution obtained in Sect. 1.3 is not a good solution in the context of
ill-posed problems. A classical way to stabilize the solution is to regularize the
problem. From a statistical point of view, the estimator is biased and no result on the
variance of the estimators is available. In other words, only empirical considerations
or numerical computations can be made to evaluate the quality of the estimation.

A classical way to regularize the problem is to add a regularization term J2 to the
fidelity term J1 and to minimize a composite criterion J:

J.xjy/ D J1.xjy/C �J2.x/: (1.23)

The regularization coefficient � tunes the weight of the fidelity term versus the
weight of the regularization term. The choice of J1 and J2 is qualitative, J1 is
generally assigned by the data model while J2 is chosen to impose a smoothness
constraint on the solution. A well known class for regularization terms J2 is the
Tikhonov regularization (Tikhonov 1976). The regularization considered in the
following is a Tikhonov regularization.

In the linear form of Eq. (1.16) with a quadratic error for J1 as in Eq. (1.18), an
interesting choice for J2 is the quadratic one:

J2.x/ D jjx � Nxjj2: (1.24)
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By minimizing this term, we minimize the Euclidean distance between x and a
default solution Nx, that must be chosen “smooth” in order to pull the solution towards
a “smooth” object. Then the composite criterion, Eq. (1.23) is:

J.x/ D jjy � Hxjj2 C � jjx � Nxjj2 (1.25)

and in this case the minimizer is explicit:

xRLS D arg min
x

J.x/ D .HTH C �/�1.HTy C � Nx/: (1.26)

We find the non-regularized solution, Eq. (1.19), by setting � D 0 and on the
contrary xRGLS ! Nx for � D 1.

The choice of Nx is both important and limited. If no information about the object
is available, taking any informative Nx a bit different from the true object pulls
the result towards this false object. In this case, the most non informative choice,
allowing to stabilize the solution must be taken, so that the choice of a constant
value for Nx appears to be a satisfactory default solution.

In the particular quadratic case of Eq. (1.25), the tuning of the regularization
parameter can be made by the method of the L-curve (Hansen 1992). The L-curve
is a plot of the regularization term J2 versus the fidelity data term J1. The resulting
curve has the shape of an L and the value of � at the angle of the L corresponds to a
trade-off between the error due to the regularization and the error due to the fidelity
term. It is the value suggested by this approach.

The regularized least squares estimator of Eq. (1.26), has been computed for the
image with Gaussian noise, and the results are given in Fig. 1.6. In practice, all
the quantities have been computed by DFT, products of DFTs and inverse DFT of
the arrays of the PSF, the OTF and the image. The regularization parameter has
been tuned by the method of the L-curve and the corresponding “best” regularized
solution is obtained for � D 0:008, a value very close to the one that could be
obtained by comparison with the true object. In Fig. 1.6, under-regularized (� D 2�
10�5) and over-regularized (� D 0:2) solutions are shown. Adding a regularization
term clearly improves the result, the regularized solution must be compared to the
one obtained by the inverse filter, Fig. 1.5.

Some considerations can be made from the numerical experiment of Fig. 1.6. The
L-curve is a good non supervised method for choosing the regularization parameter.
The dynamic of the color bars gives information on the behavior of the algorithm.
A first point is that the reconstructed image can have negative values since no
positivity constraint on the solution is imposed. If the coefficient of regularization
is chosen too low, the image is not sufficiently stabilized and the amplitude of high
frequency increases. On the contrary, if the coefficient of regularization is chosen
too large, the estimated solution will tend to the default solution, 1 in this example.
In this case there is no negative value in the image. The two main limitations of
this estimator are that the non-negativity constraint cannot be imposed and that
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Fig. 1.6 Top left: L curve for different � values. Central part of the images (zoom �5) obtained
for: � D 0:008 (top right), � D 2 � 10�5 (bottom left) and � D 0:2 (bottom right). Note the
negative parts in the image for the weak regularization parameter

the analytical solution exists only in the case of the linear quadratic model of
Eq. (1.25).

In astrophysics, a classical model is the Poisson model of Eq. (1.10). In this case,
the model is not linear anymore and there is not an analytical solution. We have
to turn towards iterative methods that allow the introduction of a non-negativity
constraint and make it possible to stop the iterations before convergence. Effectively,
at convergence, the “optimal” solution is reached but, as we have seen, this solution
is a bad one for ill-posed problems.

1.5 Iterative Methods and Non-negativity Constraint

The use of iterative methods is justified for one or more of the following problems:

• The problem is large and computation of H�1 is too expensive in computation
time.

• There is no analytical solution for the model under consideration.
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• The introduction of inequality constraints makes the problem non-linear with
respect to unknowns.

In these cases, we search for the solution by minimizing iteratively the criterion J
with eventual constraints.

In the following, we present a succinct overview of optimization methods just
enough to retrieve the two well-known algorithms Richardson Lucy and ISRA. The
problem is to solve:

min
x

J.x/; s:t xi � 0; 8i (1.27)

with J convex and Lipschitz (finite) gradient. If we consider the minimization of J
without constraints, a classical iterative method is the gradient descent one:

xkC1 D xk C ˛kŒ�rxJ.xk/�; (1.28)

where xkC1 is the iterate k C 1, rxJ is the gradient of J with respect to (w.r.t) x
and ˛k is the descent step size, tuned to ensure the descent of the algorithm, i.e.
J.xkC1/ � J.xk/.

Minimizing a convex cost function J under inequality constraints can be classi-
cally achieved by introducing the Lagrange function L associated to the problem
without constraints that is for the non-negativity constraint, Eq. (1.27):

L.x;�/ D J.x/� �Tg.x/;

where � is the vector of Lagrange multipliers and g.x/ is the vector of a function of
x, that must be chosen to express the non-negativity constraints. The Karush Kuhn
Tucker (KKT) conditions (Karush 1939; Kuhn and Tucker 1951) at the optimum
.x?;�?/ express as follows

ŒrxL .x?;�?/�r D 0; 8r; (1.29)

g.x?r / � 0; 8r; (1.30)

��
r � 0; 8r; (1.31)

��
r g.x�

r / D 0; 8r; (1.32)

where rxL is the gradient of L w.r.t. x and the notation Œ��r is used for the rth
component of a vector. Once the system (1.29) is solved, the KKT conditions are
reduced to the following condition:

ŒrxJ .x?/�r g
�
x?r
� D 0; r D 1; : : : ;R: (1.33)
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R is the number of components. This equation gives the condition that must be
satisfied at the optimum of the function J under the constraint of non-negativity on
the parameters x. The simplest choice for g.�/ is g.xr/ D xr. Then, more generally,
if we can ensure that xr remain positive or zero along the iterations, we can propose
a modified gradient descent algorithm:

xkC1
r D xk

r C ˛k
r fr.x

k/xk
r Œ�rxJ.xk/�r: (1.34)

where fr.x/ is a positive function. In this equation, ˛.k/r is the descent step-size that
must be adjusted to ensure the non-negativity of the estimate and the convergence
of the algorithm.

The iterative form of Eq. (1.34) is a general gradient descent algorithm that solves
the problem of Eq. (1.27) for an appropriate chosen value of ˛k

r . In the following,
we consider the two functionals J corresponding to the poissonian model, Eq. (1.10)
and the Gaussian model, Eq. (1.11) and a particular choice of f and ˛ will lead to
the so-called Richardson Lucy and ISRA algorithms.

1.5.1 Poisson Process, Richardson Lucy Algorithm

In this part, the considered model is a discretization of the Poisson model of the
data, and Eq. (1.10) becomes for a pixel i:

yi D P ..Hx/i/ : (1.35)

Since pixels are independent w.r.t. the Poisson process, the probability density for
N pixels is:

P.yjx/ D
NY

iD1

.Hx/yi
i

yiŠ
exp .�.Hx/i/ : (1.36)

Maximizing the log-likelihood log.P.yjx/ is equivalent to minimize the objective
function J.x/ D � log.P.yjx// that is, to an additive constant:

J.x/ D
NX

iD1
..Hx/i � yi log.Hx/i/: (1.37)

The argument of the minimum of J is not explicit, and using an iterative algorithm is
then mandatory. The gradient is easily computed and can be written in the following
matrix form:

rxJ.x/ D HT.�y:=Hx C 1N/ (1.38)
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where : denotes the Hadamard product, i.e the product term by term and 1N D
.11 : : : 1/T . Then if we take the iterative form, Eq. (1.34) and setting ˛k

r D 1, 8r,
8k, we obtain the following multiplicative form called the Richardson–Lucy (RL)
algorithm (Richardson 1972; Lucy 1974, 1994):

xkC1
r D xk

r ŒH
T.y:=.Hxk//�r (1.39)

where we have made use of the property HT1N D 1. The convergence of Eq. (1.39)
has been demonstrated. This algorithm, like all multiplicative algorithms, ensures
the non-negativity of xk for a non-negative initial value x0. Moreover it has the
property of conserving the flux i.e

P
r xkC1

r D P
r xk

r . These properties have made it
very popular in astrophysics.

As the deconvolution problem is an ill-posed problem, instability in the solution
appears as the number of iterations increases. The problem is then to stop them to
get a physically satisfactory solution and for that, to determine the optimal iteration
number (Lucy 1994).

The RL algorithm of Eq. (1.39) has been applied on the image with Poisson
noise, Fig. 1.4 top left and results are shown in Fig. 1.7. Figure 1.7 left is the best
reconstructed object obtained by stopping the process at the optimal number of
iterations, taken as the one that minimizes the normalized quadratic error:

kopt D arg min
k

.xk � x/T.xk � x/
xTx

: (1.40)

Figure 1.7 right is the reconstructed object at iteration 500, the result deteriorates
with the increasing number of iterations. Let us note that in real experiments, the
optimal iteration cannot be computed.

Fig. 1.7 Illustration of the Richardson–Lucy algorithm. Left: Best reconstructed object (kopt D
36). Right: Reconstructed object at iteration k D 500 showing the noise amplification
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1.5.2 Gaussian Process, ISRA Algorithm

In this part, the considered model is the Gaussian one of Eq. (1.17). The approach
to achieve the algorithm is substantially the same as for the RL algorithm. Since the
noise b is i.i.d, the probability density for N pixels is:

P.yjx/ D .�
p
2	/�N

NY
iD1

exp

 
� . yi � .Hx/i/

2

2�2

!
(1.41)

and the objective function J.x/ is naturally the same as in Eq. (1.18). As we saw it
in Sect. 1.3.3, the usual minimizers of J are unacceptable in the context of inverse
ill-posed problems and moreover in physical applications it is necessary to add a
constraint of non-negativity. The gradient of J is:

rxJ.x/ D HTHx � HTy: (1.42)

In the same way that for the RL algorithm, we take the iterative form of Eq. (1.34)
with ˛r D 1 and fr.xk/ D 1=ŒHTHx.k/�r. We then obtain the multiplicative form
of the modified gradient descent algorithm, called the iterative space reconstruction
algorithm (ISRA) by Daube-Witherspoon and Muehllehner (1986):

x.kC1/
r D x.k/r

ŒHTy�r
ŒHTHx.k/�r

: (1.43)

The convergence of Eq. (1.43) has been demonstrated in DePierro (1987). An
important point is that this algorithm does not ensure the non-negativity of x for
values of y negative.

ISRA, Eq. (1.43), has been applied on the image with Gaussian noise, Fig. 1.4
bottom left and results are shown in Fig. 1.8 . Figure 1.8 left is the best reconstructed
object obtained by stopping the process at the optimal number of iterations, taken as
the one that minimizes the normalized quadratic error, Eq. (1.40). Figure 1.8 right
is the reconstructed object at iteration 100 showing the noise amplification with the
increasing number of iterations. Note that the reconstructed objects have negative
values in both cases, as indicated in the color bars, and the noise amplification
is particularly dramatic in the region near the moon, completely altering the
image.
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Fig. 1.8 Illustration of ISRA. Left: Best reconstructed object (kopt D 19). Right: Reconstructed
object at iteration k D 100 showing the noise amplification

1.6 Illustration of RL Algorithm for Observations Made
with a Diluted Array of Telescopes

For the monolithic aperture considered in the previous section, the OTF is a low
pass filter with a well defined cut-off angular frequency jucj D D=�. The first
goal of an iterative algorithm such as RL is to retrieve the best as possible the
spectral information in this domain, and try to recover some information coming
from outside the cut-off frequency. For a diluted array of apertures, the problem is
more complex. Then the OTF stands in several non-continuous regions, according
to the number of apertures and the configuration.

The problem of the optimal configuration for a given number of apertures is
a very stimulating mathematical problem, as described by Kopilovich and Sodin
(2001), for example. The configuration we have used in our simulation (see Fig. 1.9,
top left), is made of M D 35 identical apertures set on a regular two-dimensional
grid in a non-redundant configuration, which means so that there is never two
identical differences of positions between apertures. We do not claim that this
configuration is the optimal one for 35 non redundant apertures, but it presents
interesting features to illustrate the behavior of the RL algorithm. We assume that all
apertures can form an image at a common focus, the array being perfectly coherent
with no phase aberration. Such an experiment is very far from being feasible now,
but might be possible in the future for a space-born array of telescopes.

The OTF of this configuration fills fairly regularly the low frequencies, notwith-
standing void spaces between the regions due to distances between elementary
apertures. For the sake of clarity, only the positions of the regions are represented in
Fig. 1.9, top right. In fact, the OTF of an elementary aperture should be substituted
to each point in the figure. This result is directly obtained from the relations we have
given in Sect. 1.2. Heuristically one may come to the same result just considering
that any two given apertures form an elementary stellar Michelson interferometer.
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Fig. 1.9 Aperture configuration of the 35 diluted apertures set in a non redundant configuration
(top left), corresponding MTF (top right) and PSF (bottom left). Focal plane noiseless image
(bottom right)

Setting as before the value of the OTF to 1 for u D 0, the level of each elementary
OTF is 1=2M, as it is 1/4 for the Michelson stellar interferometer.

For our simulation done using 1024 � 1024 points, the elementary distance
between two apertures is 8 points while the diameter of the telescope is 3 points.
In Fig. 1.9 the array is presented in a box of 50 � 50 elementary distances, and the
OTF in a box of 100 � 100 elementary distances, i.e. 800 � 800 points.

The corresponding PSF (bottom left of Fig. 1.9) possesses two features. First an
Airy-like response is replicated on a two-dimensional grid. In a first approximation,
this Airy pattern is that of the giant meta-telescope we seek to synthesize, and
the replication step is the inverse of the elementary distance between telescopes.
A random speckle-like structure appears added to this regular pattern. It reflects
the fact that the configuration of 35 telescopes does not form a perfect regular
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Fig. 1.10 Noisy focal plane image of the 35 apertures NR array for 30 M photons in the image.
The level 0.6 corresponds to 200 photons per pixel in the horizontal center cut. Red curve: noiseless
image

grid that would otherwise require 2500 elementary apertures. The corresponding
noiseless focal plane image is given in Fig. 1.9, bottom right. The object is replicated
according to peaks in the PSF. To keep the illustration possible for a representation
of 1024�1024 pixels, the Earth-Moon object has been slightly reduced in resolution,
and the relative distance between the Earth and the Moon increased such as to
introduce a visual ambiguity in the resulting image, whether the Moon is at the
right or at the left of the Earth.

The photodetected image is given in Fig. 1.10 and corresponds also to
30 � 106 photons in the image, as in the former simulation for the monolithic
aperture. An horizontal cut of the image is provided in the figure and compared
with the corresponding noiseless representation. This cut makes it visible
the high level of the diffuse image produced by the speckle-like part of the
PSF.

An illustration of the results obtained at different iteration numbers (k D 5,
100 and the best reconstruction obtained for 3866) of the RL algorithm is given
in Fig. 1.11, left curves, together with the original object. As k is increased, the
dominant visual effect on the reconstructed object xk is the reduction of the number
of replicas towards a single object-like Earth-Moon image. It is interesting to see
the evolution of the algorithm in the Fourier plane, as represented in Fig. 1.11, right
curves. The suppression of replicas corresponds to a filling of the frequency gaps
in the OTF of the NR array. This phenomenon was described in Aime et al. (2012)
and in Mary et al. (2013). During the iterations there is a progressive filling of the
Fourier plane similar to the expansion of an ink stain on a blotting paper, resulting
to a progressive in painting from known to unknown regions of the Fourier plane.
We have no rigorous mathematical explanation for this effect that deserves further
studies beyond the limits of this work.
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Fig. 1.11 Illustration of the application of the RL algorithm to the 30M photons image of the
NR array of 35 apertures of Fig. 1.10. Left curves: direct plane, right curves modulus of the
corresponding Fourier transform in log scale. From top to bottom, results of RL at iterations 5
and 100 (zoom �2:5), best reconstruction at iteration k D 3866 (left) and original object (right)
(zoom �5). See the text for comments on image spectra
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1.7 Concluding Remarks

This chapter provides elements of methodology for solving an ill-posed inverse
problem. We have seen that for such problems an optimal solution in the statistical
sense is irrelevant. The solution must be stabilized by regularizing the problem
or by using an iterative algorithm and stopping the iterations. The problem then
becomes finding the optimal number of iterations. Throughout the chapter numerical
illustrations are proposed for an extended object observed using monolithic or
diluted apertures.

The study focuses on two basic models, the presence of an additive Gaussian
noise and the Poisson transformation for a photodetected image. For the Gaus-
sian model, there is an analytical regularized solution that can be qualified of
unsupervised in the sense that a correct value of the regularization coefficient can
be obtained by the method of the L-curve, for example. However, this solution
does not ensure the non-negativity of the solution. For the Poisson model, there
is no analytical solution, then we turn to iterative methods such as the Richardson
Lucy algorithm. This multiplicative algorithm minimizes the Kullback–Leibler
divergence, associated to the Poisson model and guarantees the non-negativity of
the solution and the conservation of the flux. For the Gaussian model, an iterative
algorithm may be necessary in the case where the inversion of H is too expensive in
computation time. A well-known algorithm is ISRA but its use in its original version
does not guarantee the non-negativity of the solution.

The presentation of inverse problems for reconstructing images in astrophysics
we have given in this chapter must be considered as an introduction to the
subject. For example, the problem of stopping the iterations can be solved by
using a regularized algorithm which stabilizes the error when the number of
iterations increases (Titterington 1985; Demoment 1989; Bertero et al. 1995). More
sophisticated models have been developed for reconstruction of images corrupted
by Poisson and Gaussian noise (Llacer and Nunez 1990; Nuñez and Llacer 1993,
1998; Wu and Anderson 1997; Lantéri and Theys 2005; Benvenuto et al. 2008;
Snyder et al. 1993, 1995).
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Chapter 2
Reconstruction of Solar Subsurfaces by Local
Helioseismology

Alexander G. Kosovichev and Junwei Zhao

Abstract Local helioseismology has opened new frontiers in our quest for under-
standing of the internal dynamics and dynamo on the Sun. Local helioseismology
reconstructs subsurface structures and flows by extracting coherent signals of acous-
tic waves traveling through the interior and carrying information about subsurface
perturbations and flows, from stochastic oscillations observed on the surface. The
initial analysis of the subsurface flow maps reconstructed from the 5 years of
SDO/HMI data by time-distance helioseismology reveals the great potential for
studying and understanding of the dynamics of the quiet Sun and active regions,
and the evolution with the solar cycle. In particular, our results show that the
emergence and evolution of active regions are accompanied by multi-scale flow
patterns, and that the meridional flows display the North-South asymmetry closely
correlating with the magnetic activity. The latitudinal variations of the meridional
circulation speed, which are probably related to the large-scale converging flows,
are mostly confined in shallow subsurface layers. Therefore, these variations do not
necessarily affect the magnetic flux transport. The North-South asymmetry is also
pronounced in the variations of the differential rotation (‘torsional oscillations’).
The calculations of a proxy of the subsurface kinetic helicity density show that the
helicity does not vary during the solar cycle, and that supergranulation is a likely
source of the near-surface helicity.

2.1 Introduction

Observations of solar oscillations provide a unique opportunity to obtain infor-
mation about the structure and dynamics of the solar interior beneath the visible
surface. The oscillations with a characteristic period of 5 min represent acoustic
waves stochastically excited by the turbulent convection in a shallow subsurface
layer. The excitation mechanism has not been completely understood. However,
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recent numerical simulations have shown that the waves can be excited due to
the interaction of turbulent vortex tubes ubiquitously generated in the intergranular
lanes (Kitiashvili et al. 2011). These stochastic waves produce chaotic oscillation
patterns on the solar surface. However, a spectral analysis of the time series of
these patterns reveals that most of the oscillation power is concentrated in a set of
normal modes (Fig. 2.1a). These modes represent standing acoustic waves trapped
in the subsurface layers by their reflection between the sharp density gradient near
the surface, and the increasing sound speed in the interior. The depth of the inner
reflection depends on the horizontal wavelength of the oscillations. The horizontal
wavelength, �h, is usually represented in terms of the spherical harmonic degree,
` D 2	R=�h. The oscillation frequency is expressed in terms of cyclic frequency

 D !=2	 . In the ` � 
 diagram shown in Fig. 2.1a, the lowest ridge represents
the surface gravity mode ( f -mode). The other ridges are acoustic modes of various
radial order n, which is equal to the number of nodes along the radius. This number
is higher for higher frequency ridges. The time-series of solar oscillations have
been obtained almost uninterruptedly since 1995 from the ground-based network
GONG and space mission SOHO (Solar and Heliospheric Observatory) and SDO
(Solar Dynamics Observatory). The oscillation frequencies are routinely measured
from 72- and 108-day time series by fitting the modal lines which are used for

a) b)

Fig. 2.1 (a) The power spectrum of solar oscillations as a function of the angular degree `, and
cyclic frequency, 
. The enhanced power corresponds to the normal oscillation modes of the Sun.
(b) The cross-covariance function (‘time-distance diagram’) of solar oscillations as a function of
the distance between the correlation points on the solar surface and the time lag of the cross-
covariance. The lowest ridge is formed by acoustic wave packets traveling between two surface
points (‘source’ and ‘receiver’) through the solar interior (so-called, the first skip); the higher ridges
are formed by the wave packets arriving to the receiver after additional reflections from the surface
(the ‘second’ skip, and so on)
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inferring variations of the sound speed, asphericity, and differential rotation rate.
This approach called ‘global helioseismology’ has provided important information
about the structure, composition and dynamics of the solar interior. In particular, it
was led to the discovery of a sharp radial gradient of the differential rotation at the
base of the convection zone (Kosovichev 1996b), the so-called tachocline, the near-
surface rotational shear layer (Schou et al. 1998), subsurface zonal flows migrating
with the solar activity cycle (Kosovichev and Schou 1997). Recent analysis of the
high-degree oscillation modes revealed a sharp gradient of the sound speed in a
narrow 30 Mm deep layer just beneath the solar surface (Reiter et al. 2015). This
layer (called ‘leptocline’, Godier and Rozelot 2001) presumably plays an important
role in the solar dynamo (Pipin and Kosovichev 2011).

It is important to note that while the oscillation power spectrum extends into the
high-frequency region (10 mHz and higher), only the ridge parts with the frequency
below the acoustic cut-off frequency (which is approximately at 5.2 mHz) represent
the normal modes. The higher frequency parts correspond to so-called ‘pseudo-
modes’ . The pseudo-modes are formed by interference between the waves traveling
from the excitation sources directly to the surface and the waves which come to the
same surface location after reflection in the interior. The pseudo-mode ridges are
close to the mode ridges (so that the ridges look continuous) because the excitation
sources are located very close to the surface where the oscillations are observed.
The pseudo-mode frequencies depend on details of the excitation mechanism and on
the wave interaction with the solar atmosphere. Therefore, so-far, only the normal
modes have been used for the reconstruction of solar subsurfaces. The primary
restriction of global helioseismology is that it can only reconstruct the azimuthally
averaged properties of the interior. This is not sufficient for the understanding of the
solar dynamics and magnetism.

The three-dimensional structure of the solar subsurfaces can be reconstructed by
techniques of local helioseismology. One of these techniques, called ‘ring-diagram
analysis’ (Gough and Toomre 1983) is based on measuring frequency shifts in
local (typically 15 � 15 deg) areas, and uses the global helioseismology description
of the mode frequency sensitivity to local sound-speed variations and flows. This
techniques allows us to reconstruct the solar subsurfaces with relatively low spatial
resolution in shallow regions. The reconstruction with higher spatial resolution and
much deeper in the interior can be achieved by methods based on extracting coherent
wave signals and measuring variations of the wave travel times or phase shift. These
techniques called time-distance helioseismology (Duvall et al. 1993) and acoustic
holography (Lindsey and Braun 2000) employ cross-covariance functions of solar
oscillations instead of the power spectral analysis. The discovery that coherent
signals, such as wave packets, can be extracted from the cross-covariance functions
of the stochastic solar oscillations (Fig. 2.1b) was made by Duvall et al. (1993).
This approach was then developed in helioseismology, terrestrial seismology, and
other disciplines, and in broader applications is called ‘ambient noise imaging’. The
foundation of this approach is based on the property of cross-covariance functions
to represent wave signals corresponding to point sources. Roughly speaking the
cross-covariance function can be considered as the Green’s function of the solar
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wave equation. In real solar conditions this is only an approximation because of
the limited frequency bandwidth of solar oscillations and inhomogeneities of the
solar structures and distribution of the stochastic sources. A complete theory of this
approach of helioseismology has not been developed. It requires extensive studies of
wave interaction with turbulence, flows and magnetic field. Nevertheless, the initial
results based on relatively simple descriptions of wave propagation have provided
important insights into the three-dimensional structures and flow patterns of the
solar subsurfaces. The primary focus of these studies is mapping the flow patterns
associated with the solar cycle, and formation and evolution of active regions.

In the current state of local helioseismology the systematic errors as well as
effects of the stochastic realization noise have not been fully investigated. These
studies require substantial effort for modeling the wave dynamics in realistic solar
conditions, and require 3D MHD simulations on large supercomputer systems.
The validation and testing of the time-distance technique have been performed by
comparing the helioseismic inversions in the shallowest layer with the surface flows
obtained by a local correlation tracking technique (Liu et al. 2013), and through the
analysis and inversion of numerical simulation data for subsurface flows and sound-
speed variations (Birch et al. 2011; Hartlep et al. 2013; Parchevsky and Kosovichev
2009; Parchevsky et al. 2014). The testing for regions with strong magnetic field
has not yet been completed. However, the simulations of the wave propagation in
sunspot models showed that one of the primary effects in sunspot regions is the
wave reflection from deeper layers, compared to the quiet-Sun regions, where the
plasma parameter, ˇ D 8	 P=B2, the ratio of the gas pressure to magnetic pressure,
is equal to unity (this layer also corresponds to the deeper photospheric surface of
sunspots, known as the Wilson depression). Below the Wilson depression level the
gas pressure dominates, and the helioseismic acoustic waves behave like fast MHD
waves: the wave speed becomes anisotropic, and also depends on the temperature
stratification beneath sunspots. The magnetic and temperature effects have not been
separated in the wave-speed inversion results (Kosovichev et al. 2000). This is an
important task of local helioseismology. One of the difficulties is that the limited
computer power has not allowed to simulated the sunspot models sufficiently large
and deep for the helioseismology testing, so that the wave properties are not affected
by the boundary conditions of the simulations. A comparison of the wave-speed
inversions obtained for a sunspot regions by the time-distance and ring-diagram
techniques (see Kosovichev 2012; Kosovichev et al. 2011 and references therein)
shows a good qualitative agreement: both inversions show a two-layer structure
with a layer of reduced wave speed beneath the surface followed by a layer of
an increased wave speed. However, the depth of these layers is different, perhaps,
because of the drastically different spatial resolution, and different contributions
of magnetic field. A comparison of the time-distance and acoustic holography
inversion results has been performed by using artificial simulation data (Birch et al.
2011; Parchevsky et al. 2014).
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2.2 Time-Distance Helioseismology from SDO

This brief review presents recent results obtained by the helioseismology recon-
structions of subsurface flows in the near-surface layer and development of active
regions. The results are obtained by analyzing inversions for subsurface flows from
the SDO Joint Science Operations Center (JSOC) at Stanford University (Scherrer
et al. 2012). The JSOC data analysis pipeline provides 3D maps of solar flows
covering almost the whole disk (within 60 deg from the disk center) in the range
of depths from 0 to 30 Mm, every 8 h.

The time-distance helioseismology pipeline (Fig. 2.2a) developed by the Stanford
group (Couvidat et al. 2012; Zhao et al. 2012) utilizes two different methods for
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Fig. 2.2 (a) A scheme of the Time-Distance Helioseismology Pipeline implemented at the Joint
Science Operations Center (JSOC) for Solar Dynamics Observatory at Stanford University (Zhao
et al. 2012); (b) Illustration of the surface locations of the individual patches used for inferences of
the subsurface structure and flows; the total 25 patches are used to cover 120� 120 deg of the disk
area
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measuring the acoustic travel times: (1) the method of fitting the Gabor wavelet to
the cross-covariance function, which provides measurements of both the phase and
group travel times (Kosovichev and Duvall 1997) and (2) the method of calculating
the travel-time shift relative to a reference cross-covariance function (Gizon and
Birch 2002), usually calculated for a quiet-Sun region. The two sets of the travel
times are calculated independently for 11 travel distances, for the same 25 areas
covering the solar disk (Fig. 2.2b), and for the same 8-h intervals. Then, the travel
times are used for reconstruction of subsurface flows in 11 subsurface layers in the
depth ranges: 1–3, 3–5, 5–7, 7–10, 10–13, 13–17, 17–21, 21–26, 26–30, and 30–
35 Mm, and with the horizontal spatial sampling of 0.12 deg (1.5 Mm).

The inversions are performed by using two different methods for calculating
the travel-time sensitivity functions: (1) the ray-path approximation (Kosovichev
1996a; Kosovichev and Duvall 1997) and (2) the first Born approximation (Birch
and Kosovichev 2000, 2001; Birch et al. 2001, 2004; Birch and Gizon 2007). The
inversions are performed using the Multi-Channel Deconvolution (MCD) technique
(Jacobsen et al. 1999) for the two independent travel-time measurements using
the two types of the sensitivity kernels. Therefore, the pipeline output consists
of four sets of subsurface flow maps for the same areas on the Sun (Zhao et al.
2012). This allows the comparison of the different approaches and estimate potential
systematic errors. The reconstruction of subsurface flows has also been tested
through analysis and inversion of numerical simulation results as well as by the
comparison of the flow maps obtained by the different techniques, and also by
comparing the inversion results in the shallowest layer with the surface flows
measured by the feature correlation tracking techniques (Liu et al. 2013). Figure 2.3
illustrates the comparison of the flow maps below a sunspot region, obtained by
using two different techniques for measuring the travel times and two different
models for the travel-time sensitivity functions. The results show that the agreement
is quite good everywhere except the areas close to the sunspot. As discussed in
the Introduction, the effects of a strong magnetic field and large perturbations
of the thermodynamic structure have not been fully investigated. Solving this
problem requires more studies of systematic uncertainties using realistic numerical
simulations. Nevertheless, the currently available inferences shed light on the
intriguing dynamics of the solar interior.

2.3 Subsurface Flows and Effects of Solar Activity

An example of the reconstructed subsurface flow maps is illustrated in Fig. 2.4a,
which shows the distribution of the divergence of the horizontal flow velocity
in the depth range 1–3 Mm. The primary feature covering the whole surface is
supergranulation. The outflows of a few hundred m/s in the supergranulation cells
are represented by light dot-like features. However, the examination of these maps
shows that in the vicinity of magnetic active regions (shown in Fig. 2.4b), the
supergranulation pattern is substantially suppressed. The flow pattern beneath and
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Fig. 2.3 Comparison of the subsurface flow maps in the depth range from 1 to 3 Mm, obtained by
using two different types of the travel measurements and two different approaches for calculation
of the travel-time sensitivity functions: red arrows show the flow field obtained by using the Gabor-
wavelet fitting technique and the raypath kernels (Kosovichev and Duvall 1997), the blue arrows
are obtained by using the cross-correlation approach for the travel times (Gizon and Birch 2002),
and the Born-approximation kernels (Birch and Kosovichev 2000). The longest arrows correspond
to the velocity of about 1 km/s

around sunspots represents a complicated combination of converging flows towards
the sunspot centers (displayed as dark dots in the divergence map) surrounded by
outflows (represented as white rings). Such a pattern, similar to the flows shown in
Figs. 2.3 and 2.5, has been previously studied using SOHO/MDI and Hinode data
(Zhao et al. 2001, 2009, 2010). A new feature of the SDO/HMI analysis is that
the HMI data allow us to reconstruct the flows in a shallow subsurface layer, and
match these to the directly observed surface flows. This agreement provides more
confidence in the helioseismic inferences.

Figure 2.5 shows a portion of the horizontal velocity map around an emerging
active region NOAA 11726, during its development phase. This is the largest
active region observed by the HMI instrument during the first 5 years of operation.
The flow velocities are shown by arrows, and the photospheric magnetogram is
represented by the color map. Such flow maps are obtained with 1-h sampling,
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Fig. 2.4 (a) A full-disk map
showing the divergence of the
horizontal velocity at the
depth of 1–3 Mm, obtained on
December 19, 2014,
12:00 UT. The bright
point-like areas represent
diverging supergranulation
flows, the dark areas
surrounded by bright rings
represent flows converging
beneath sunspots and
diverging in the areas
surrounding the sunspots. (b)
The corresponding maps of
the line-of-sight magnetic
field obtained from the SDO
Helioseismic and Magnetic
Imager

a)

b)

although each map requires 8-h time series of Dopplergrams for the helioseismology
analysis. The analysis of these maps indicates that the converging flows beneath
the sunspots are developed simultaneously with the sunspot formation, as was
previously found from analysis of the SOHO/MDI data (Kosovichev and Duvall
2006; Kosovichev 2009), and, probably, is closely associated with the mechanism of
the sunspot formation. At the same time, large-scale diverging flows are developed
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Fig. 2.5 Arrows show the horizontal flow map in the active region NOAA 11726 at the depth of
2 Mm on April 21, 2013, 21:00 UT, about 2 days after its emergence from the interior. The color
background image shows the surface magnetic field. The flow map is reconstructed by using the
Gabor-wavelet technique for measuring the travel times, and the Born-approximation sensitivity
kernels for the flow velocity inversion
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around the active region, and are probably related to the well-known phenomenon
of the surface ‘moat’ flow.

Outside the active region the flow pattern is mostly represented by supergranula-
tion which, however, is clearly disturbed by the presence of the active region. It is
interesting that the spatial averaging of these flow maps reveals a large-scale pattern
of converging flows occupying a surrounding area which is significantly larger than
the active region (Fig. 2.6). Such converging flows with the characteristic speed
of about 50 m/s were first discovered by the ring-diagram technique (Haber et al.
2003). The origin of these flows is not understood, but our analysis shows that these
flows are formed and stable only when the active region is fully developed, and,
thus, they are not associated with the emergence of magnetic flux and formation of
the active region.

The large-scale converging flows around active regions play an important role
in the solar-cycle evolution of the meridional circulation (Haber et al. 2002; Zhao
and Kosovichev 2004). The meridional circulation can be calculated from the
reconstructed subsurface flow maps by averaging the North-South component of
the flow velocity. Figure 2.7a shows a map of the North-South velocity component
smoothed with a 5-deg Gaussian window.
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Fig. 2.6 Arrows show the horizontal flow map around the active region NOAA 11726 at the depth
of 0.3 Mm on April 23, 2013, 03:00 UT (when the active region is fully developed) after averaging
the high-resolution flow map on a grid with a 15-degree sampling. The color background image
shows the surface magnetic field. The typical flow speed is about 50 m/s
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Fig. 2.7 (a) A map of the North-South component of the subsurface flow velocity of December 12,
2014, 12:00 UT, smoothed with a 5 deg Gaussian window, reveals that the meridional flow
pattern disturbed the converging flows around active regions. (b) The corresponding photospheric
magnetogram map. Red color shows the positive polarity, the blue color shows the negative polarity

The appearance of the poleward trends in each hemisphere is apparent. It is
interesting that the meridional circulation can be detected in a single flow map, but it
is also important that the flow pattern correlates with the surface magnetic field map
shown in Fig. 2.7b. The variations can be interpreted as caused by the large-scale
converging flows around active regions. However, the strongest variations in this
flow map seem to be in the areas of decaying active regions. Thus, it is important
to investigate the formation and evolution of the converging flows during the whole
evolution of active regions, from their formation to decay.

The evolution of meridional circulation is obtained by averaging the North-
South velocity component over longitude and 1-month periods, and displaying the
averages in the form of a time-latitude diagram (Fig. 2.8a). This diagram shows that
the evolution of the subsurface meridional circulation correlates with the magnetic
activity in each hemisphere. At the beginning of the current cycle most active
regions emerged in the Northern hemisphere, where we see a strong variation of
the meridional circulation speed: a sharp increase at low latitudes (in the 10–20 deg
interval) and a decrease at mid latitudes (in the 20–30 deg range). A similar variation
in the Southern hemisphere is observed in 2014–2015 when most magnetic activity
was in the South (Fig. 2.9b).

Such variations of the meridional circulation may affect the magnetic flux
transport and the polar magnetic field polarity reversal. However, this link has
not been fully established (Švanda et al. 2007a,b, 2008). Figure 2.8b shows the
variation of the mean (averaged over the whole period) meridional circulation
profile with depth. It appears that at a depth of �10 Mm the latitudinal variations
are significantly reduced, and at the depth of �20 Mm almost entirely disappear.
Therefore, if the large-scale magnetic flux is anchored at this depth or lower then its
transport is not affected by the meridional flow variations.
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Fig. 2.8 (a) Evolution of the subsurface meridional flows obtained from the 5-years of the
SDO/HMI observations during Solar Cycle 24. The red and yellow colors show the flow
components towards the North pole, the green and blue colors show the South-ward flow. The
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Fig. 2.9 (a) The evolution of the subsurface zonal flows (‘torsional oscillation’) during the
first 5 years of the SDO observations, covering the raising phase of Solar Cycle 24. The flow
map (in m/s) is obtained by averaging of the azimuthal flow component of longitude and 1-month
time, subtracting the mean rotational velocity from each of the 1-month averaged profile, and then
stacking the residual velocity profiles and smoothing with 1-year running window to remove the
annual variations due to the inclination of the Earth orbit. The yellow and red colors correspond to
the zonal flows faster than the mean solar rotation at the same depth, and the blue color shows the
slower rotating regions. (b) The corresponding magnetic ‘butterfly’ diagram from the SDO/HMI
data, showing the evolution of the mean radial magnetic field (in G) in the solar photosphere during
the same period
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Solar-cycle variations of the differential rotation are also of great interest for
the understanding of the mechanisms of solar activity. These variations, known
as ‘torsional oscillation’, have been detected from the surface Doppler-shift maps
(Howard and Labonte 1980; Ulrich 2001), and by global (Kosovichev and Schou
1997) and local (Zhao and Kosovichev 2004) helioseismology. The high-resolution
flow maps from SDO/HMI provide new opportunities for investigating the detailed
structure and evolution of these flows. Figure 2.9a shows the time-latitude diagram
of variations of the differential rotation during the 5 years of the SDO/HMI
observations. These variations are relative to the mean differential rotation profile
averaged for the whole period, and smoothed with a 1-year window to remove the
orbital variations. As it was established before, the zonal flow closely correlates
with the magnetic butterfly diagram (Fig. 2.9b). However, our results also show the
North-South asymmetry of the flows, which follows the asymmetry of the magnetic
activity.

The flow maps allow us to investigate other important properties of the subsur-
face dynamics of the Sun, which previously were not accessible. For illustration, in
Fig. 2.10a we show a map of the kinetic helicity proxy calculated as rvh � .r �vh/z,
where vh is the horizontal velocity component. By looking at this map one can
notice that the Northern hemisphere is darker than the Southern hemisphere, and
that the asymmetry is particularly pronounced in the supergranulation cells. After
the longitudinal and time averaging of the individual helicity proxy maps we obtain
the time-latitude diagram (Fig. 2.10b), which shows that the kinetic helicity does not
vary on this time scale. This result puts constraints on the dynamo theories, and also
shows that the supergranulation flows are likely a primary source of the near-surface
helicity.
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Fig. 2.10 (a) The proxy of kinetic helicity density, rvh � .r � vh/z, calculated from the flow map
of December 12, 2014, 12:00 UT, reveals a systematic North-South asymmetry in local sources
associated with supergranulation. (b) The evolution of the mean helicity proxy during the observed
period of Solar Cycle 24
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2.4 Conclusion

The initial analysis of the subsurface flow maps reconstructed from the 5 years
of SDO/HMI data by time-distance helioseismology reveals the great potential
for studying and understanding the dynamics of the quiet-Sun and active regions,
and the evolution with the solar cycle. In particular, our results show that the
emergence and evolution of active regions are accompanied by multi-scale flow
patterns. Beneath the sunspot, during their formation, we observe appearance
of flows converging towards the sunspot center. and also the ‘moat’-like flows
diverging from the active region in the surrounding regions. On the larger scale,
revealed by averaging the high-resolution flow maps, we find a pattern of flows
converging towards the active region. This pattern is formed when the active region
is fully developed. On the global-Sun scale, the flow maps allow us to investigate
the structure and evolution of the meridional flows. In particular, we find that the
meridional flows display the North-South asymmetry closely correlating with the
magnetic activity. The latitudinal variations of the meridional circulation speed,
which are probably related to the large-scale converging flows, are mostly confined
in a shallow subsurface layers. Therefore, these variations do not necessarily affect
the magnetic flux transport. The North-South asymmetry is also pronounced in the
variations of the differential rotation (‘torsional oscillation’). The calculations of a
proxy of the subsurface kinetic helicity density show that the helicity does not vary
during the solar cycle, and that the supergranulation is a likely source of the near-
surface helicity. These initial results are obtained from the analysis of a small sample
of flow maps produced by the SDO/HMI time-distance helioseismology pipeline.
Further detailed investigations are required for understanding the complicated
subsurface dynamics of the Sun.
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Chapter 3
Imaging Surface Spots from Space-Borne
Photometry

A.F. Lanza

Abstract A general introduction to the foundations of spot modelling is given.
It considers geometric models of the surface brightness distribution in late-type
stars as can be derived from their wide-band optical light curves. Spot modelling
is becoming more and more important thanks to the high-precision, high duty-
cycle photometric time series made available by space-borne telescopes designed
to search for planets through the method of transits. I review approaches based
on a few spots as well as more sophisticated techniques that assume a continuous
distributions of active regions and adopt regularization methods developed to solve
ill-posed problems. The use of transit light curves to map spots occulted by a planet
as it moves across the disc of its host star is also briefly described. In all the cases,
the main emphasis is on the basic principles of the modelling techniques and on
their testing rather than on the results obtained from their application.

3.1 Introduction

The photosphere of the Sun is not homogeneous. Dark features, called sunspots,
appear and evolve during most of the time, while bright faculae are often observed
in proximity to sunspots when they are close to the limb. Those structures are due
to the interaction of convection with localized magnetic fields. The total sunspot
area does not exceed 0.2–0.3 % of the solar surface. The total facular area can
be about one order of magnitude larger, but faculae have a very low contrast
close to the disc centre and may not be easily detected there (e.g., Chapman
et al. 2001, 2011). Looking at the photosphere with a resolution of the order of
102�103 km, we see other brightness inhomogeneities associated with magnetic flux
tubes that are localized around the borders of the convective cells. In particular,
the flux tubes observed around supergranules are brighter than the unperturbed
photosphere and form the photospheric network that is best detected on high-
resolution magnetograms.
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In distant late-type stars, we observe similar photospheric features because those
stars have surface convection and magnetic fields produced by a large-scale dynamo,
at least if they rotate sufficiently fast (e.g., Berdyugina 2005; Strassmeier 2009;
Kővári and Oláh 2014). However, the lack of spatial resolution means that we can
detect them only indirectly. During this school several methods to reach this goal
have been introduced. Here I focus on the information that can be extracted from
wide-band photometry, especially from the large datasets recently made available
by space-borne telescopes designed to look for planetary transits such as CoRoT
and Kepler (e.g., Auvergne et al. 2009; Borucki et al. 2010). The typical accuracy
of the measured flux is of the order of 20 parts per million (ppm) on a V D 12

magnitude G-type star in 1 h of integration time, considering that Kepler has a
telescope diameter of 95 cm.

The rotation of a star changes the projected area of its surface brightness
inhomogeneities leading to a rotational modulation of its optical flux. Moreover,
the intrinsic evolution of these inhomogeneities contributes to the flux variations.
In principle, it is possible to measure the rotation period from the light modulation
provided that the inhomogeneities evolve on a timescale long in comparison with
the rotation period. If they evolve on a shorter timescale, the light variations will
provide information on their typical lifetime, but they cannot be used as tracers to
measure the stellar rotation period. This is the case of the Sun. The time variation
of its total irradiance is dominated by active regions produced by magnetic fields.
When the modulation is dominated by faculae with a typical lifetime of 50–80
days, i.e., 2–3 rotations, we can apply time-series analysis techniques to measure
the rotation period. On the other hand, when sunspots with a lifetime of only 10–
15 days dominate, the measurement of the rotation period becomes difficult and
imprecise (cf. Lanza et al. 2004).

Several techniques were introduced to analyze time series of stellar optical
photometry to derive the rotation period, the longitudes where surface inhomo-
geneities preferentially form, and their evolution timescales as well as the long-term
variations associated with stellar activity cycles, i.e., the phenomena analogous to
the 11-year sunspot cycle (e.g., Jetsu 1996; Donahue et al. 1997a,b; Kolláth and
Oláh 2009; Lehtinen et al. 2011; Lindborg et al. 2013; McQuillan et al. 2013;
Reinhold et al. 2013; McQuillan et al. 2014). We shall not discuss those techniques
here, but shall focus on the foundations of the modelling of the rotational modulation
by means of a simple geometrical approach (spot modelling). In the case of close
eclipsing binaries, we can also exploit the occultation of one component star by the
other to scan its disc (eclipse mapping, e.g., Collier Cameron 1997; Lanza et al.
1998). This approach becomes particularly powerful when a planet transits across
the disc of its parent star. Thanks to its small size in comparison to the stellar disc,
a detailed scanning of the occulted band becomes possible (transit mapping, e.g.,
Schneider 2000; Silva 2003). The foundations of such a technique will be also
briefly reviewed.
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3.2 Spot Modelling with Discrete Spots

3.2.1 Model Geometry

For the sake of simplicity, let us consider a single, spherical star rotating with a
uniform angular velocity �. We assume a Cartesian reference frame fixed in the
inertial space (i.e., a non-rotating frame) with the origin O at the barycentre of
the star, the z axis along the stellar spin axis (Oz 	 O�), and the x and y axes in
the equatorial plane; the x axis is chosen so that the direction pointing towards the
observer Os 	 cOE is contained in the xz plane (see Fig. 3.1).

Let us consider a point P.x; y; z/ on the surface of the star. If we denote its
colatitude and its longitude with � and �, respectively, the Cartesian components of
the unit vector cOP are: cOP D .sin � cos�; sin � sin �; cos �). Note that � is a linear
function of the time t because the star is rotating with an angular velocity ˝ . If the
longitude of P at the time t0 is �0, we have: �.t/ D �0 C ˝.t � t0/. The Cartesian
components of the unit vector pointing towards the observer are: Os D .sin i; 0; cos i/,
where i is the inclination of the stellar spin axis to the line of sight.

The normal On to the stellar surface at the point P is parallel to cOP because the star
is spherical, that is On D cOP. Therefore, the angle between the normal at P and the
direction towards the observer is given by the scalar product cos D On � Os D cOP � Os.
Introducing � 	 cos and substituting the above expressions for cOP and Os into
this relationship, we finally obtain:

� D sin i sin � cosŒ�0 C˝.t � t0/�C cos i cos �: (3.1)
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Fig. 3.1 Illustration of the geometry adopted to compute the spot modeling in the case of a single
spherical star. The reference frame has its origin at the barycentre O of the star; the z-axis is along
the stellar angular velocity ˝; the xy plane coincides with the equatorial plane of the star with the
x-axis chosen so that the line of sight is in the xz plane. The spherical coordinates of a point P on
the surface of the star are the colatitude � and the longitude �. The inclination of the stellar rotation
axis to the line of sight is i, while  is the angle between the normal in P and the line of sight. The
projection of the point P on the equatorial plane of the star is indicated with Pxy and is introduced
to define the longitude � measured with respect to the x-axis
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3.2.2 Flux Variation Produced by an Active Region

Let us assume a quadratic limb-darkening law for the unperturbed photosphere in
the passband of the observations (cf. Gray 2008):

Iu.�/ D I0.a C b�C c�2/; (3.2)

where Iu is the specific intensity in the given passband; I0 the intensity at the centre
of the disc; a, b, and c the limb-darkening coefficients that verify a C b C c D 1.
The flux emerging from the stellar disc of radius R is:

Fu D 2	R2
Z 	=2

0

Iu.cos / cos sin d D 2	R2
Z 1

0

Iu.�/� d�; (3.3)

where dA D 2	R2 sin �d� is the area of the elementary band on the sphere between
colatitudes � and � C d� , and the factor cos gives its projection on the plane
normal to the line of sight. Substituting the limb-darkening law and performing the
integration, we find the unperturbed stellar flux:

Fu D 	R2I0

�
a C 2

3
b C 1

2
c

�
: (3.4)

In the Sun and sun-like stars, the photospheric active regions are much smaller than
the area of the disc. Therefore, we can simplify our treatment by considering point-
like active regions. Each one consists of a spotted area As and a facular area Af

localized at the same point P with As; Af 
 	R2 (cf. Lanza et al. 2003). The flux
perturbation produced by that active region, i.e., by its dark spots and bright faculae
localized in P, is:

F D Fs CFf D As�.Is � Iu/C Af�.If � Iu/; (3.5)

where Is is the specific intensity in the spots and If that in the faculae. If A is the area
of a surface element of the photosphere, we define the filling factor of the spots fs
and that of the faculae Q f according to the relationships:

As 	 fsA; Af 	 QfsA D QAs; (3.6)

and their intensity contrasts as:

cs 	
�
1 � Is

Iu

�
; cf 	 �

�
1 � If

Iu

�
; (3.7)

where the specific intensity of the spot Is and of the faculae If are given at the same
point of the photosphere as the unperturbed intensity Iu. The solar faculae are more
contrasted towards the limb and virtually invisible at disc centre. For the sake of
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simplicity, we assume a linear dependence of their contrast on � (cf. Lanza et al.
2003, 2004):

cf D cf0.1 � �/; (3.8)

so that

F D AsIu.�/ Œ�cs C Qcf0.1 � �/� � D fsA Iu.�/ Œ�cs C Qcf0.1 � �/� �:
(3.9)

In addition, to further simplify our model, we assume that the spot area As and the
contrasts cs and cf0 are constant as well as the ratio of the facular-to-spotted area
Q D Af=As. We also neglect the presence of the spot penumbra as in the first simple
models of the variation of the solar irradiance (e.g., Chapman et al. 1984).

The observed flux at the time t is:

F.t/ D Fu CF.t/; (3.10)

where the time dependence of F comes from the rotation of the star that changes
the projection factor �. Therefore, the relative variation of the flux according to
Eq. (3.9) is:

F.t/

Fu
D 1C F.t/

Fu
D 1C AsIu.�/

Fu
ŒQcf0.1 � �/� cs� v.�/�; (3.11)

or, substituting Eqs. (3.2) and (3.4) into Eq. (3.11):

F.t/

Fu
D 1C

�
As

	R2

��
a C b�C c�2

a C 2b=3C c=2

�
ŒQcf0.1 � �/ � cs� v.�/�; (3.12)

where the time dependence of the projection factor is given by Eq. (3.1) and v is the
visibility of the surface element centered at the point P defined as:

v.�/ D
�
1 if � � 0

0 if � < 0:
(3.13)

An illustration of the typical rotational modulation produced by our model active
region is given in Fig. 3.2. When the active region is on the invisible hemisphere,
the flux is constant at the unperturbed value. When stellar rotation brings the active
region into view, the flux initially rises because faculae are more contrasted close to
the limb and their dark spots have little effect owing to the foreshortening. As the
active region moves towards the centre of the disc, the effect of the faculae becomes
less important owing to the decrease of their contrast, while dark spots become
dominant as their projected area rises towards disc centre. Finally, when the active
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Fig. 3.2 Illustration of the rotational modulation of the flux produced by a single active region
consisting of a dark spot and a bright facular area around it with solar-like contrasts

region moves toward the other limb, the flux increases again due to the prevailing
effect of the faculae.

When a star is much more active than the Sun, its active regions cannot be
treated as point-like features. This is the case of young rapidly rotating stars or
of the active components of close binaries that were monitored from the ground
thanks to their large light curve amplitudes reaching up to 0.2–0.3 mag in the optical
passband (Strassmeier et al. 1997; García-Alvarez et al. 2011). In this case, active
regions were generally treated as spherical caps, as discussed in, e.g., Rodonò et al.
(1986), Dorren (1987), or Eker (1994). We shall not consider the theory of the light
variations produced by such extended spots, referring the interested reader to those
works and the references therein. However, a few results obtained with those models
will be mentioned in Sect. 3.2.3.

An important geometrical parameter affecting starspot modelling is the inclina-
tion of the stellar spin axis i. If the photometric period Prot is known from timeseries
photometry, the rotational broadening of the spectral lines v sin i is measured from
high-resolution spectroscopy, and the radius of the star R is estimated from models
or interferometry, we can derive the inclination from: sin i D Prot.v sin i/=2	R.
This method can be applied to young rapidly rotating stars because for stars similar
to the Sun the relative error on v sin i is of �50–100 % due to the effects of
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macroturbulence, even when very high-resolution spectra are available. Moreover,
for those rapidly rotating stars, the inclination can be derived by minimizing
systematic errors in the process of constructing Doppler imaging maps (e.g., Rice
and Strassmeier 2000). For stars that rotate slowly, the inclination is generally
unknown or can be estimated with large uncertainties. An intermediate case is that
of stars that rotate with ˝ � .2� 3/˝ˇ for which asteroseismology can be applied
to derive the inclination because the visibility of the p-modes belonging to a given
rotationally split multiplet, that differ by the azimuthal order m, depends on the
inclination (e.g., Ballot et al. 2006, 2011).

The role of faculae is parametrized by Q in our simple model. In general, light
variations in stars remarkably more active than the Sun seem to be dominated by
dark spots (Lockwood et al. 2007) and also in the Sun the relative contribution of
the faculae decreases during the maximum phase of the 11-year cycle (e.g. Foukal
1998). The recent works by Gondoin (2008) and Messina (2008) provide more
information on the facular contribution. A method to estimate Q from single-band
light curves, thanks to the different shapes of the facular and spot light modulations,
was introduced by Lanza et al. (2003), and its applications are mentioned in
Sect. 3.2.3.

We have considered the case of photometry in a single passband because
space-borne telescopes generally observe in a single wide passband to maximize
the flux and reduce the photon-shot noise when searching for planetary transits,
or have a few non-standardized passbands, such as CoRoT (Auvergne et al.
2009). However, ground-based photometry is often acquired in several standard
photometric passbands that allow to estimate the spot temperature (e.g., Poe and
Eaton 1985; Strassmeier and Olah 1992). For this application, it is important an
appropriate modelling of the limb-darkening in the different passbands. In Fig. 3.3,
the synthetic light curves produced by a starspot on a solar-like star in two different
passbands are plotted. The spot is completely dark, that is no flux is coming from it.
Therefore, the observed colour variation is due solely to the different limb-darkening
coefficients in the two passbands and amounts to �10 % of the amplitude of the
light modulation. Therefore, a word of caution is in order when interpreting colour
modulations as immediate proxies for starspot temperature. If the intrinsic flux of
the spot in the considered passbands is low, as it is often the case in the U or B
passbands, the colour variation can be dominated by differential limb darkening
rather than by the spot temperature deficit.

3.2.3 Few-Spot Models

The light curves of a spotted star are generally not sinusoidal, therefore a single
spot is not enough to obtain an adequate fit. The simplest models consider two or
three non-overlapping spots. In order to compute those models, it suffices to add the
effects of individual active regions as introduced in Sect. 3.2.2. For the case of two
spots, the free parameters are: the inclination i, the rotation period Prot D 2	=˝ ,



50 A.F. Lanza

Fig. 3.3 Upper panel: Synthetic flux vs. rotation phase at two wavelengths (400 and 600 nm) in the
case of a completely dark starspot transiting across the disc of a late-type star. The two light curves
are different because of the dependence of the limb-darkening coefficients on the wavelength.
Lower panel: the flux difference (colour) vs. the rotation phase

the limb-darkening coefficients, the unperturbed flux level Fu, the spot and facular
contrasts cs and cf0, the ratio of the facular-to-spotted areas Q; and, for each spot, the
relative area As=	R2, the colatitude � , and the initial longitude �0. The unperturbed
level is generally unknown, so it is usually fixed at the maximum observed flux or
allowed to vary by 0.1–1 % above that level because this can sometimes improve the
best fit by providing the model with an additional degree of freedom that allows it
to converge to a deeper minimum in the �2 landscape. The parameters i, Prot, and Q
are generally fixed and only the geometrical parameters, i.e., As, � , and �0 for each
of the spots, are varied to minimize the �2 of the model. Sometimes, a flux term
independent of the spot longitude is added to the model to account for a uniformly
distributed pattern of spots that does not produce any flux modulation, but affects
the mean light level (cf. Lanza et al. 2003).

In some cases, thanks to the small number of varied parameters, the model may
be unique, for example, a well-defined minimum of the �2 can be found in the six-
parameter space of a two-spot model. However, in most of the cases, degeneracies
among the parameters are present, especially when the accuracy of the photometry
is limited. This can be understood if one considers for simplicity a model with only
one dark spot without faculae (Q D 0). The minimum of light corresponds to the
transit of the spot on the central meridian of the star’s disc and it allows us to derive
the initial longitude of the spot �0. The minimum of light occurs at time tm when
.tm � t0/ D ��0=˝ and its amplitude is: jFjmax=Fu D cs.As=	R2/ cos.i � �/,
where limb-darkening is neglected for simplicity. The duration of the spot transit
ıt corresponds to the two longitudes where � D 0, i.e., ıt D t2 � t1, where
sin i sin � cosŒ�0 C ˝.tk � t0/� C cos i cos � D 0, with k D 1; 2. Therefore,
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if the inclination i 6D 90ı, the unspotted flux level Fu, and the other physical
parameters are known, we can derive the three geometrical parameters As, � , and
�0 of our single spot from the duration ıt, the time of light minimum tm, and
the amplitude of the light minimum jFjmax=Fu. If the inclination is 90ı, the
duration ıt of the transit of the spot across the disc becomes independent of its
colatitude and we loose the information on that parameter. Even if i 6D 90ı, the
finite precision of the photometry introduces uncertainties on the spot location and
area. If the inclination i is not known a priori, the colatitude � , the unprojected area
As, and the inclination i itself become largely degenerate because the combination
As cos.i � �/ appears in the relationship for the amplitude of the flux modulation.
These considerations show that spot modelling can give unique solutions only in
very special cases.

When we fit two spots and the inclination is only poorly estimated, we expect
strong degeneracies to arise among the different parameters because different com-
binations of the individual spot areas and colatitudes give similar light modulations,
especially when the inclination is close to 90ı. In spite of such limitations, two-
spot models have been widely applied to fit ground-based photometry for which
the precision is of the order of 0:01mag. To obtain a sufficient coverage in phase,
the data gathered along an entire season were generally used to construct an
average light curve, thus averaging short-term changes in the spot pattern. Rodonò
et al. (1986) provided some examples of that kind of spot models, generally
yielding a well-defined minimum in the �2 space thanks to the limited number of
free parameters. Spots at high latitudes and even at the poles were often found
because the model used them to adjust the variations of the mean light level
given that they were circumpolar for inclination i 6D 90ı and therefore always in
view.

Recently, two-spot models have been resumed and applied within a Bayesian
framework using Monte Carlo Markov Chain techniques to fully explore the a
posteriori parameter distributions and their degeneracies (Croll 2006; Fröhlich
2007; Lanza et al. 2014). The applications were focussed on estimating the
amplitude of the surface differential rotation by allowing the two spots to have
different rotation periods. A two-spot model with non-evolving spots was applied to
individual time intervals sufficiently short to avoid that the intrinsic spot evolution
affects the result.

Other applications of models with a few spots are the estimation of the facular-to-
spotted area ratio Q or of the maximum time interval during which the spot pattern
is unaffected by the intrinsic starspot evolution. Lanza et al. (2003) first performed
those applications for the Sun and then for some CoRoT and Kepler targets (cf.
Lanza et al. 2009a,b, 2010, 2011; Bonomo and Lanza 2012). Note that, since Q
appears in combination with the facular contrast parameter cf0 in the product Qcf0

(cf. Eq. (3.12)), it is possible to determine Q only by fixing cf0.
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3.2.4 Multispot Models with Evolution

The advent of automated photometric telescopes in the 1990s allowed to follow the
evolution of the light modulation of active stars in a systematic way and posed the
problem of modelling their spot evolution (e.g. Rodonò et al. 2001). Strassmeier
and Bopp (1992) were among the first to propose a model that incorporated the
intrinsic evolution of the starspots and the relative drift in longitude owing to surface
differential rotation. With space-borne telescopes such as CoRoT, multi-spot models
with evolution became even more important. Mosser et al. (2009) fitted the light
curves of several CoRoT asteroseismic targets by applying a model with evolving
spots, usually limited to 2–3 per stellar rotation. Best fits were obtained with an
extended exploration of the geometric parameter space by means of a relaxed �2

minimization based on a technique similar to simulated annealing. Their method
was extensively tested with simulated data and compared to other approaches to
study the dependence of the results on model assumptions and on the parameters
held fixed. The model proved useful to derive robust estimates of the spot lifetimes
and mean rotation period, while other parameters, such as the inclination of the spin
axis (independently known from asteroseismology), spot latitudes, and differential
rotation were found sensitive to model assumptions.

Frasca et al. (2011) and Fröhlich et al. (2012) (cf. also Fröhlich et al. 2009),
applied multispot models with up to 7–9 evolving spots to fit Kepler timeseries
of several hundred days. A Bayesian approach was used to derive the a posteriori
free parameter distributions generally including the inclination and the surface
differential rotation.

The main limitation of multi-spot models, in addition to the strong parameter
degeneracies, is the large amplitude of the residuals in comparison with the
photometric errors. This is especially critical when we model the light curves of
eclipsing binaries because the eclipse profile is highly sensitive to the shape and
location of the occulted spots. For these reasons, continuous spot models, similar
to those considered for Doppler imaging (Vogt et al. 1987), have been introduced
since the second half of the 1990s to improve the best fits of the light curves. They
will be the subject of the next sections.

3.3 Models with Continuous Spot Distributions

A continuous distribution of spots on the surface of a star can be specified by giving
the spot filling factor fs in each surface element. We define fs 	 As=A, where As is
the spotted area within the surface element of area A, as considered above. The spot
distribution is mapped by the distribution of fs over the surface of the star. Since
the light curve is a one-dimensional dataset, while the filling factor map is a two-
dimensional function, i.e., fs D fs.�; �/, the problem of finding fs given the light
curve has generally many different solutions and the map is also highly sensitive to
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small variations in the input dataset. In the mathematical language, this is a ill-posed
problem (cf. Tikhonov and Goncharsky 1987).

The usual method to solve this kind of problems is by combining the information
coming from the light curve with some a priori information in order to obtain a
unique and stable solution, i.e., a map that does not vary greatly when there are
small variations in the dataset, or, in other words, that is not critically sensitive to
the effect of the errors in the photometry. A simple way of introducing a priori
assumptions in the solution process is by restricting the shape and number of the
spots, as we did in the previous discrete spot models. A more sophisticated way is
that of coding some statistical property that we want to impose to the solution into
an appropriate functional. This is the method of solution regularization that will
be described below. However, before introducing the mathematical formulation of
regularization, we need to compute the flux emergent from the stellar disc in the
presence of a continuous spot distribution.

3.3.1 Flux Variation Produced by a Continuous Distribution
of Active Regions

For simplicity, we subdivide the surface of the star into a large number of elements
N, each of area Ak, where k D 1; : : : ;N. The flux coming from the kth element is:

ıFk D I.�k/Ak�kv.�k/; (3.14)

where

I.�k/ D fsIs C QfsIf C Œ1 � .Q C 1/fs�Iu.�k/: (3.15)

This equation gives the average specific intensity emerging from the given surface
element as the result of the intensity coming from the spotted photosphere with a
filling factor fs, from the facular photosphere with a filling factor Q f s, and from the
unperturbed photosphere, the filling factor of which is 1 � .Q C 1/fs. With little
algebra, we find:

I.�k/ D ˚
1C �

cf0Q.1� �k/ � cs
�

fs
	

Iu.�k/: (3.16)

The total flux coming from the disc is:

F.t/ D
NX

kD1
ıFk D

X
k

AkIu.�k/
˚
1C �

cf0Q.1� �k/ � cs
�

fk
	
v.�k/�k; (3.17)
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where fk is the spot filling factor (previously indicated with fs), �k the projection
factor of the kth surface element at the time t (cf. Eq. (3.1)), and v.�k/ the visibility
function in Eq. (3.13).

In general, we want to compute M flux values Fj 	 F.tj/, where tj are the times
of the observations, with j D 1; : : : ;M; we define them as the model flux vector
F 	 ˚

F.tj/; j D 1; : : : ;M
	
. We can express its relationship to the distribution of the

filling factor on the surface of the star by introducing an M � N projection matrix
QR D ˚

Rjk
	

and a constant vector Cu such as:

Fj 	 F.tj/ D
X

k

Rjk fk C Cuj; (3.18)

or, in matrix notation:

F D QRf C Cu; (3.19)

where f D f fk; k D 1; : : : ;Ng is the vector of the filling factor on the surface of the
star and

Rjk 	 AkIu.�k/
�
cf0Q.1 � �k/� cs

�
v.�k/�k with �k D �k.tj/; (3.20)

and

Cuj 	 AkIu.�k/v.�k/�k D Fuj; (3.21)

(cf. (3.17)) where we introduce the vector of the unperturbed flux Fu consisting of
M constant components, i.e., Fu 	 fFuj; j D 1; : : : ;Mg with Fuj D Fu.

3.3.2 The Light Curve Inversion Problem
and the Regularization

We now consider the inverse problem of deriving the distribution of the spot filling
factor from the light curve dataset. If the observed flux values at the times tj are
denoted as the vector D D ˚

Dj; j D 1; : : : ;M
	
, we can first consider the ideal case

when: (a) there are no measurement errors; (b) our model for the flux variations is
exact; and (c) the unspotted flux is known. In this case, one may hope to derive a
solution for the filling factor vector f, by solving the linear system:

QRf D D � Cu: (3.22)

In general, this system has infinite solutions because the matrix QR is singular, i.e., it
has a nullspace of finite dimension whose vectors fnull have the property QRfnull D 0
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(see Press et al. 2002, Ch. 2). Therefore, if a given vector f0 is a solution of
Eq. (3.22), f0 C hfnull, where h is any real number, is a solution too. Cowan et al.
(2013) investigated the nullspace in some light curve inversion problems showing
that it can significantly affect the solution. From a geometrical point of view, the
existence of the null space is associated with particular distributions of brightness
on the stellar surface that do not produce a light modulation as the star rotates (see
Cowan et al. 2013, for some examples).

A more realistic case is that of a dataset with finite errors. In this case, we look
for a solution that minimizes the �2 between the dataset and the model. Specifically,
the �2 corresponding to a given distribution of the filling factor is:

�2.f/ 	
MX

jD1

.Dj � Fj/
2

�2j
; (3.23)

where �j is the standard deviation of the flux measurement Dj.
In general, the solution found by minimizing the �2 is not unique and is highly

sensitive to small changes in the dataset, in the sense that a small change in the
data vector D produces a large change in the filling factor distribution f. The idea
of regularization is to add to the �2 an appropriate mathematical function of f that
warrants a unique and stable solution, i.e., a solution that varies in a continuous
way in the f space. Note that in general the filling factor is a function f .�; �/ that
we have discretized into a vector f of N elements, therefore the regularizing term
is, mathematically speaking, a functional. There are several possible choices that
have been investigated by the mathematicians and proved effective in our kind of
inversion problem (cf. Tikhonov and Goncharsky 1987; Titterington 1985).

The most widely used is the maximum entropy functional that provides a
quantitative measure of the configuration entropy of the map, i.e., of the information
necessary to transmit the map expressed as a sequence of bytes (Bryan and Skilling
1980; Narayan and Nityananda 1986). It assumes a default map as a reference and
measures the difference in the information content of the considered map with
respect to it. In our case, the default map corresponds to an immaculate star. The
specific formulation of the maximum entropy functional that I prefer is that given
by Collier Cameron (1992).

The regularized solution is computed by minimizing an objective function Z
defined as a linear combination of the �2 and the regularizing functional S. For
the maximum entropy case:

Z.f/ D �2.f/� �MES.f/; (3.24)

where f D f fk; k D 1; : : :Ng is the vector of the spot filling factors for the individual
surface elements, �ME > 0 a Lagrangian multiplier, and

S D �
X

k

wk



fk log

fk
m

C .1� fk/ log
.1 � fk/

.1 � m/

�
; (3.25)
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Fig. 3.4 The �2 landscape in
the case of a simple model
with only two surface
elements f D f f1; f2g,
showing the minimum of the
�2, i.e., �20, and the effect of
the regularization (�ME > 0)
that increases the �2 value,
driving at the same time the
solution towards the
unspotted map with f D 0.
The effect of a different
regularizing functional that
moves the solution along a
different path is also shown
for comparison
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is the entropy functional, where wk is the relative area of the kth surface element and
m D 10�6 is a default minimum spot filling factor included to avoid the divergence
of the logarithm. S gets its maximum value equal to zero for an immaculate star, i.e.,
fk D m in each surface elements.

The effect of the regularization is that of reducing the spot filling factor (or the
spotted area) as much as possible, compatibly with fitting the data, by increasing
the Lagrangian multiplier. In Fig. 3.4, we show the isocontours of the �2 landscape
for the illustrative case of a map consisting of only two surface elements that we
use to explain the concept. Without regularization (i.e., �ME D 0), the best fit has
the minimum �2 D �20 and the residuals of the fit have a Gaussian distribution
with a mean value � D 0 and a standard deviation �0. In general, the best fit with
�2 D �20 is not acceptable because we fit also some component of the measurement
errors and the solution is unstable. With the regularization, (�ME > 0), the fit has
�2 D �21 > �

2
0 and the residual distribution is now centred at a value � < 0 because

the spotted area is reduced. However, the solution becomes stable and unique for a
sufficiently large value of �ME.

The role of the a priori information introduced through the regularization is that
of selecting one specific solution vector f among the infinite ones that correspond to
the condition �2 D �21. In the case of the maximum entropy solution, the selected
vector f corresponds to the solution that minimizes the individual fk, while verifying
the condition �2 D �21. Of course, it is possible to move along a different line
in the �2 landscape which corresponds to a different kind of regularization. The
fundamental requisite for the choice of the regularizing functional is that it must
lead to a unique and stable solution when the Lagrangian multiplier � is sufficiently
large.

In the case of the maximum entropy regularization, we fix the optimal value
of �ME by comparing � with �0, the standard deviation of the residuals as obtained
with the unregularized best fit (i.e., for �ME D 0). The signal-to-noise ratio of a light
curve can be defined as S=N D Amax=�0, where Amax is the maximum amplitude
of the light modulation due to the starspots. By increasing �ME, the fit is shifted
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Fig. 3.5 Illustration of the best fit of a light curve without regularization (solid line) with �2 D �20
and with regularization having �2 D �21 > �20 (dashed line). The latter is higher than the best fit
corresponding to the minimum of the �2 D �20 and its residuals are not symmetrically centred on
the zero value because the regularization smooths out the spot pattern driving the solution towards
the unspotted flux level, here assumed to be higher than the light maximum

towards the unspotted level (see Fig. 3.5), while the distribution of the residuals is
shifted towards negative values and its standard deviation � increases because the
regularization smooths out the small spots that were previously used to fit the noise
components and reduce the �2 (see Fig. 3.6). A practical recipe to fix �ME in the
case of photometry with high signal-to-noise (S=N � 100) consists in increasing
�ME until:

� D �0p
M
; (3.26)

where M is the number of data points in the light curve (cf. Lanza et al. 2009a).
When S=N � 10–30, we need to adopt a stronger regularization to reduce the impact
of the noise, i.e.:

� D ˇ
�0p
M
; (3.27)

where 1:5 � ˇ � 3 is a numerical factor (cf. Lanza et al. 2009b). A visual
inspection of the fit is generally needed to find the largest possible acceptable
deviations, i.e., to fix the appropriate value of ˇ by considering the trade-off between
the accuracy of the fit and its smoothness.

Another regularizing functional often adopted is the Tikhonov functional T. It
selects the smoothest map compatible with the data, i.e., the one that minimizes the
average jrf .�; �/j2 over the stellar surface (Piskunov et al. 1990). In other words,
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Fig. 3.6 Distribution of the residuals of the best fit of a light curve obtained without any
regularization (green histogram) together with its Gaussian best fit (green dashed line) centred
at zero value, as indicated by the dashed green vertical line. The distribution of the residuals after
applying the maximum entropy regularization is shown by the black histogram together with its
Gaussian best fit (black solid line); the solid vertical line marks the mean of the Gaussian best fit.
Note that the distribution of the residuals of the regularized solution is centred at a negative value
because the corresponding fit is systematically higher than the photometric data points as shown
in Fig. 3.5. Its standard deviation is greater than that of the unregularized solution because the spot
pattern is smoother owing to the regularization

one seeks to minimize a linear combination Z D �2 C �TT, where �T > 0 is the
Lagrangian multiplier and:

T.f/ D
Z
˙

"�
@f

@�

�2
C 1

sin2 �

�
@f

@�

�2#
d˙; (3.28)

where ˙ is the surface of the star whose element is d˙ D sin �d�d�. Of course,
other regularizing functionals are possible, e.g., that introduced by Harmon and
Crews (2000) and applied by Roettenbacher et al. (2013).

A crucial limitation of spot modelling is that we use one-dimensional infor-
mation, that is, a light curve, to reconstruct a two-dimensional map of the stellar
surface. Most of the applications of regularized spot modelling have targeted close
eclipsing binaries or, more recently, active stars with transiting planets whose
inclination is close to 90ı. Therefore, the information on spot latitude is very limited
or non-existent. In those cases, it is better to collapse the two-dimensional map
obtained by a regularized model into a one-dimensional distribution of the spot
filling factor versus the longitude and consider that distribution as the final product
of the modelling. The relative variation of the spotted area vs. the longitude has little
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dependence on the specific regularization adopted and can be considered as a robust
result of the analysis (cf. Lanza et al. 1998, 2006). In other words, the absolute value
of the spotted area depends on the often unknown spot contrast and unspotted light
level, but its relative distribution vs. longitude can be derived thanks to the light
modulation that it produces as the star rotates. Similarly, the long-term variations in
the relative spotted area can be considered a robust result of the modelling, if we
assume that the spot contrast stays constant in the given passband. This allows us to
detect stellar activity cycles akin to the 11-year sunspot cycle.

3.3.3 Alternative Approaches

The minimization of the �2 can be approached also by means of the singular value
decomposition (hereafter SVD) of the projection matrix QR. The method is described
in, e.g., Press et al. (2002). The main advantage is that the linear combinations
of the components of f that are not constrained by the data are driven to zero
or to small, insignificant values, while the solution becomes dominated by the
linear combinations of the elements of f that can account for most of the flux
variation. These are the so-called principal components. The number of components
retained in the solution is determined by the minimum acceptable singular value.
An advantage of the method is that the errors of the individual components can be
evaluated starting from the errors of the individual photometric data. In the case
of the regularized models, the statistical errors on the fk are not easily estimated
because the a priori information introduced into the solution usually dominates.
Therefore, systematic errors can be larger than the statistical errors in most of the
cases and only a comparison between maps obtained with different regularizing
functionals provides some insight into the errors (Lanza et al. 1998).

Several spot modelling approaches based on the general principle of SVD or
principal component analysis have been proposed, e.g., by Berdyugina (1998) or
Savanov and Strassmeier (2005, 2008) who also performed comparisons with test
cases and studied the general properties of the solutions.

Finally, it is worth mentioning the approach by Cowan et al. (2013) who applied
a Fourier decomposition method to extract a map from the observed rotational flux
modulation. In principle, all the Fourier components of the spot map characterized
by different azimuthal orders m can be extracted in the case of an ideal noiseless
light curve sampled with perfect continuity. In practice, their amplitude decreases
as jm2 � 1j�1 for m > 1. This implies that in the case of a real light curve,
the amplitudes of the higher order Fourier components become soon comparable
with or smaller than the noise, making it impossible to accurately extract them.
In other words, it becomes impossible to resolve sufficiently localized brightness
inhomogeneities. For this reason, a model based on a discrete (or continuous) spot
distribution is generally superior to Fourier decomposition in the case of active stars.
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3.4 Spot Occultations During Planetary Transits

The observations of extrasolar planets transiting their host stars opened a new
avenue in the investigation of other planetary systems. Here, I shall consider only
the contribution that planetary transits give to the modelling of the distribution of
the surface brightness on the disc of their host stars. In Fig. 3.7, the case of a planet
transiting across the disc of a star with a dark spot along the occulted band is shown,
neglecting for simplicity the effects of the limb darkening. When the planet’s disc
is not covering the spot, the flux is reduced by the spot, but the variation of the
flux vs. the time has exactly the same shape as when the spot is not on the stellar
disc. However, when the spot is occulted by the planet, the flux shows a relative
increase because the configuration corresponds to that of a planet transiting across
the disc of a star without spots, that is, whose flux is higher. The position of the
centre of the light bump gives a measure of the spot longitude on the stellar disc,
while its extension gives a measure of the size of the spot, or, to be precise, of the
extension in longitude of the portion of the spot that is occulted by the planet (e.g.,
Wolter et al. 2009). Finally, the amplitude of the bump depends on the contrast of the
spot that can provide a measure of its temperature when the effective temperature
of the unperturbed photosphere is known. Silva-Valio et al. (2010) determined
the distributions of the size and contrast of the spots occulted in CoRoT-2 using
this approach. This method is unique to resolve small spots (�50 Mm) on slowly
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Fig. 3.7 The case of a transiting planet occulting a dark spot (at the disc centre) along the transit
chord. The flux variation due to the transit in the case of a star with the spot is given by the solid
line in the lower plot that shows a relative flux increase (a bump) when the spot is occulted. This
happens because the corresponding configuration is the same as in the case without spot. In that
case the reference flux level outside the transit is higher as shown by the dashed line that is the
flux variation vs. the time in the case of a star without spots. The quantityFspot measures the flux
decrease due to the spot when it is in view on the stellar disc
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rotating, sun-like stars that cannot be mapped through Doppler imaging techniques.
In principle, spots as small as a few Mm can be resolved if an Earth-size planet
occults them, although the photometric accuracy of CoRoT and Kepler is generally
insufficient to do that on individual transits (cf. Barros et al. 2014).

Starspot occultations can be used to derive the rotation rate of the star in the
latitude band occulted by the planet, if the orbit of the planet and the equator
of the star are aligned, because successive occultations of the same spot along
successive transits can be used to precisely measure the variation of its longitude
vs. the time (Silva-Valio 2008). On the other hand, if the stellar spin and the orbital
angular momentum are not aligned, the planet cannot occult the same spot along
successive transits because the rotational motion of the spot across the stellar disc
is not parallel to the transit chord (Nutzman et al. 2011; Sanchis-Ojeda and Winn
2011; Sanchis-Ojeda et al. 2013). Therefore, monitoring starspot occultations along
successive transits can provide information on the projected alignment of the stellar
spin and orbital angular momentum in a planetary system. Similar information can
be obtained through the observation of the radial-velocity anomaly induced by the
transit, i.e., the so-called Rossiter–McLaughlin effect, that allows a measurement of
the projected misalignment, although limited to stars with a v sin i � 2 � 3 km s�1
(e.g., Albrecht et al. 2012). Note that different models of planetary system formation
predict different misalignment distributions, therefore such a kind of measurements
provides stringent tests to those models.

The precise timing of planetary transits should also take into account the
distortions of the transit profile due to spot occultations. This can be a subtle effect
when the photometric accuracy is not high enough to resolve the individual bumps
(Oshagh et al. 2013; Barros et al. 2014).

3.5 Tests of Spot Models

Many tests of spot models have been published in the literature since the beginning
of their application. Among the classic works, I refer to Kovari and Bartus
(1997) for two-spot models. Here, I shall consider only a few tests that are based
on a comparison with direct observations in the case of the Sun or with the
results obtained with independent methods such as Doppler imaging or starspot
occultations during planetary transits.

The total solar irradiance (hereafter TSI) provides a good proxy for the modula-
tion of the Sun as a star because its variation is dominated by photospheric sunspots
and faculae that produce most of their effects in the optical passband, although the
relative variations becomes larger and larger at shorter and shorter wavelengths,
in particular if we consider those associated with the solar cycle. Our star is seen
almost equator-on, therefore the TSI light curve does not contain information on the
latitudes of the active regions, but only on their longitudes and area variations. Lanza
et al. (2007) performed detailed tests for different spot modelling approaches by
fitting the TSI modulation over an extended portion of solar cycle 23. They applied
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three-spot, maximum entropy, and Tikhonov regularized models, and compared the
derived distributions of the filling factor vs. longitude with those of observed sunspot
groups as well as with the variation of their total area. Adopting a fixed value Q for
the facular-to-spotted area ratio, they found a remarkably good reproduction of the
longitude distribution of the sunspot groups during the rising and the maximum
phase of the cycle with the maximum entropy model performing significantly better
than the three-spot and Tikhonov models. The resolution in longitude of the models
was about 40ı–50ı considering a typical S=N � 50–100.

The facular component in the active regions can induce systematic shifts in
their derived longitudinal distribution because faculae have a photometric effect that
reaches the maximum close to the limb, while dark spots produce their maximum
effect closer to the disc centre. Therefore, the model can shift the longitude of a
given active region in an attempt to better reproduce the light modulation with the
constraint of a fixed Q. The variation in the total spotted area is also systematically
affected by the value of Q, but the overall variations due to the solar 11-year cycle
are reproduced, in particular by the maximum entropy models.

Lanza et al. (2007) conclude that the maximum entropy model provides the most
accurate description of the distribution of the active regions vs. longitude in the Sun,
in particular when the Q D 9 value they adopted is the most appropriate, that is in
the rising and maximum phases of the 11-year cycle. The good reproduction of the
overall variations in the total sunspot area supports the use of that spot modelling to
detect stellar activity cycles. The reason why the maximum entropy model is better
in comparison to the discrete and Tikhonov models is probably associated with the
low level of activity of our star that is characterized by several small active regions
simultaneously present on the stellar disc. The three spot models has too few degrees
of freedom to account for the complexity of the pattern, especially during the rising
and the maximum cycle phases, while the Tikhonov maps display too smooth and
extended features that are not observed on the Sun.

In the case of distant stars, the results of Lanza et al. (2007) support the use of
spot modelling to derive active spot longitudes and activity cycles. An independent
test by comparing maximum entropy models with an extended sequence of Doppler
imaging maps was performed by Lanza et al. (2006) in the case of the highly
active close binary HR 1099 for which long-term photometry from the ground
was available. The results support the possibility of deriving the distribution of the
starspots vs. the longitude, although with a limited resolution (�100ı) because of
an S=N � 10–30 attainable from the ground.

Another interesting test was performed by Silva-Valio and Lanza (2011) in the
case of the planetary host CoRoT-2. From the out-of-transit light curve, Lanza et al.
(2009a) computed a maximum entropy spot model that provided them with the
distribution of the spot filling factor vs. the longitude and time. It was compared
with the longitudes of the spots occulted during the transits finding a remarkably
good agreement. Although planetary occultations provided a significantly higher
longitude resolution, the locations of the active longitudes where starspots were
preferentially found were reproduced very well and also their migration vs. the time
was very similar.
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CoRoT-2 became also a benchmark to test different spot modelling approaches.
For example, Huber et al. (2010) considered a model in which the surface of the
star was subdivided into 12 non-occulted sectors and 24 sectors along the occulted
chord, varying their brightness to fit the light curve. They obtained a spot map
remarkably similar to that of Lanza et al. (2009a) that was based on the out-of-
transit light curve only, thus confirming their results. Another test came from the
comparison with a Bayesian few-spot model by Fröhlich et al. (2009).

Independent confirmations are particular important in view of the results on the
active longitudes, spot lifetimes, surface differential rotation, and short-term activity
cycles obtained for CoRoT-2 as well as for other stars with close-in transiting planets
such as Kepler-17 (Bonomo and Lanza 2012). For a detailed discussions of these
topics, I refer to the cited original papers and to Lanza (2015) for the possibility of
star-planet interactions affecting stellar photospheric activity.

3.6 Conclusions

I briefly reviewed the foundations of spot modelling, the relevance of which is
becoming increasingly greater thanks to the availability of high-precision, high-
duty cycle light curves acquired by space-borne telescopes designed to look for
transiting planets around solar-like stars (cf. Rauer et al. 2014). Different mapping
techniques can be applied to derive the distribution of the spotted area vs. longitude
and its relative time variation with good confidence, especially in the case of stars
with transiting planets for which the inclination can be safely derived or reasonably
guessed from the measurement of their projected spin-orbit angle. CoRoT-2 is a
benchmark case for the comparison of different modelling approaches as well as for
the phenomena that can be detected with spot modelling such as active longitudes,
spot evolution, differential rotation, and short-term activity cycles (Lanza et al.
2009a).

I limited myself to the standard spot models proposed for active stars. However,
specialized models for stars with transiting and non-transiting planets are expected
to become even more important in the near future because they provide information
on the spin-orbit alignment of the systems. The radial velocity jitter associated
with stellar active regions is a major limitation to the detection and measurement
of the mass of Earth-sized planets (e.g. Haywood et al. 2014). Spot modelling
techniques can be applied to mitigate its impact as shown by recent investigations
(cf. Dumusque 2014; Dumusque et al. 2014, and references therein).

The possibility of extending spot modelling to pre-main sequence stars is also
interesting, although limited to those objects the light variations of which are
dominated by photospheric brightness inhomogeneities (Cody et al. 2014). Finally,
a word of caution is in order in the case of close binary systems where the
light modulations due to different effects, such as ellipsoidicity, reflection, gravity
darkening, and Doppler beaming can combine with those due to surface brightness
inhomogeneities to produce a complex phenomenology the modelling of which is
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a very challenging task (cf. Lanza et al. 1998; Kallrath and Milone 1999; Herrero
et al. 2013, 2014).
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Chapter 4
Reconstruction of Thermal and Magnetic Field
Structure of the Solar Subsurface Through
Helioseismology

K.M. Hiremath

Abstract Before the era of helioseismology, thermal and magnetic field structure
of the Sun’s subsurface was understood from the stellar structure evolutionary
calculations and modeling of magnetic field structure. Recent discovery of Sun’s
oscillations whose amplitudes and frequencies are estimated with an unprecedented
precision heralded a new era in solar physics that unraveled the hitherto unknown
mysteries of the Sun’s thermal and magnetic field structure of the subsurface.
With a brief introduction to surface observations, I present the thermal structure
of the solar subsurface as obtained from the evolutionary calculations. Both the
thermal and magnetic field structures of the solar subsurface as reconstructed
from helioseismology are also presented. Finally, I briefly dwell upon subtleties of
different models that are developed for understanding both the thermal and magnetic
field structures of the solar surface and subsurface respectively.

4.1 Introduction

Study of the Sun is important for very simple reason that Sun is very close to us
so that details of its surface structure can be resolved to understand its internal
structure. When I say Sun’s internal structure means, shape of the Sun is nearly
balanced by the three major forces, viz., gravity, thermal, dynamic and magnetic
forces, in decreasing order in the Sun’s interior. Presently Sun’s shape is dictated
by the gravity and the thermal pressure that is generated by the nuclear energy
generation, although in the early history of solar system formation, magnetic field
structure might have also played a dominant role. Imbalance of either of these forces
completely destroys the present shape and structure of the Sun.

Another reason to give importance for the Sun is, its whole or part of its structure
can be treated as a gigantic laboratory wherein some of the known physics that
can not be tested from the laboratory can be tested in the Sun. For understanding
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Sun’s structure, a knowledge of micro and macro physics are required. Some of
the hypothetical physical phenomena that can not be tested in the laboratory can be
tested from the astrophysical gigantic laboratory-the Sun. It is instructive to know
that, for the first time, general relativistic phenomenon, such as bending of light near
the massive body, is tested from the solar eclipse observations. Consensus emerged
from the recent studies of Sun’s surface dynamics and oscillations that, precession
of the Mercury’s orbit could be due to combined effect of a fast rotating core (nearly
2–3 times surface rotation; see Woodard 1984; Garcia et al. 2007), strong (�105 G)
magnetic field structure (Sturrock and Gilvarry 1967; Paterno et al. 1996), planetary
gravitational attractions (Xu et al. 2011) and general relativistic effects.

Microphysics such as particle physics, equation of state, opacity, nuclear reac-
tions are tested by considering the Sun as a laboratory. Neutrino, hitherto considered
to be a massless particle from the standard models, has a small mass, that
is concluded from the expected dearths of solar neutrinos as measured by the
solar neutrino experiments. Recently Sun’s interior is considered as a test bed
for detection of the WIMPS (Weakly interacting massive particles), dark matter
candidates (Turck-Chièze and Lopes 2012; Lopes et al. 2014; Lopes and Silk 2014;
Turck-Chièze et al. 2012; Casanellas and Lopes 2014; Vincent et al. 2015) and
possibly cosmic gravitational waves (Lopes and Silk 2014; Siegel and Markus 2014;
McKernan et al. 2015) whose presence in the solar interior, if confirmed, may
resolve some of the cosmological problems.

We are close to a nearest star such that influence in terms of radiation and high
energy particles emitted by the Sun influence our environments and affect the life
time of the artificial satellites that are used for human welfare and advancement.
Space weather, disturbances in the geospace, such as ionosphere and magnetosphere
of the Earth, is solely due to Sun only. Recent overwhelming evidences from the
present and paleoclimatic data show that there is a strong solar forcing on the
Earth’s climate, such as temperature and Monsoon rainfall (Hiremath and Mandi
2004; Hiremath 2006a,b, 2009; Hiremath et al. 2015) of the Indian subcontinent,
East Asian and Australia.

Hence, study of Sun is not only important for the intellectual and philosophical
reasons, but also for humans’ survival on the Earth itself. With this brief introduction
to importance to the Sun, in Sect. 4.2, I elaborate in detail the observed solar cycle
and activity phenomena. Section 4.3 introduces thermal structure of the solar interior
as understood by solar structure evolutionary calculations. Whereas, with a brief
introduction to helioseismology, Sect. 4.4 is reserved for reconstruction of thermal
and magnetic field structures of the solar subsurface from helioseismic surface
observations. Concluding remarks are presented in the last section.

4.2 Solar Cycle and Activity Phenomena

Before understanding the solar cycle and activity phenomena, let us know the
magnitudes of standard estimates of different physical parameters such as mass,
radius, etc., of the Sun. According to astronomical description, Sun is a G type main
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sequence star (spectral type of G2V), with a visual (apparent) magnitude of �26:74
and absolute magnitude (a hypothetical apparent magnitude if Sun’s brightness is
measured from 32.6 light years away form the Sun) of 4.83. Estimated distance
between the Sun and the Earth (or 1 Astronomical Unit) is 1:496 � 108 km. Sun’s
mass and radius are estimated to be �2 � 1030 kg and 7 � 105 km respectively.
With effective temperature of �6000K, average density of Sun is found to be
�1408kg/m3. Total amount of energy emitted or luminosity of the Sun is 3:85 �
1026 J/s.

4.2.1 Sunspots

The most outstanding activity of the Sun is Sunspots (Fig. 4.1) that are dark and are
cooler compared to the ambient medium. First observations of these blemishes of
the Sun through telescopes are done independently by four Europeans, viz., Galileo
Galilee, Thomas Harriet, Christopher Schiener and Johannes Fabricius. Right from
Galileo’s observations, genesis of sunspots and their periodic behavior on the Sun
is still a mystery and one of the unsolved problem in astrophysics.

4.2.2 Sunspot 11 Year Cycle

In 1843, Schwabe discovered that, on the Sun’s surface, occurrence number of
sunspots with different years is not constant and has a near periodicity of 11
years (Fig. 4.2, lower panel). After the 20 years of discovery of 11 year sunspot
cycle, Richard Carrington’s observations indicate that, on the surface of the Sun,
occurrence position of sunspots is not random. As sunspot cycle progresses, during

Fig. 4.1 Sunspot, courtesy
BBSO/New Jersey Institute
of Technology’s New Solar
Telescope
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Fig. 4.2 For different years, sunspot occurrence area latitude-time variation represented as a
butterfly diagram (upper panel) and daily variation of area (lower panel). Courtesy: David
Hathaway

minimum activity periods, sunspots occur at high latitudes (particularly confined
approximately to 50ı north and south of the equator) and progress (drift) towards the
solar equator. This spatial and temporal sunspot occurrence activity is represented
as well known butterfly diagram (Maunder 1904) and is presented in Fig. 4.2 (upper
panel). From long stretch of sunspot data, the most startling discovery by Eddy
(1976) is that, during the period of 1645–1715, there was a dearth of occurrence
of sunspot activity. Now such a dearth of sunspot activity phenomenon is popularly
known as Maunder minimum of solar activity. From the well recorded sunspots
data, such episodes of minimum activities, with different magnitudes are also found
during different cycles of solar activity. Interestingly, Eddy (1976) also found that
such an episode of dearth of sunspots activity was coincided with the little ice age
when different parts of the European countries experienced sever cold weather.

4.2.3 Sunspot 22 Year Magnetic Cycle

From his ingenious experiment and due to Zeeman effect, Hale (1908) discovered
that sunspots are associated with a strong magnetic field (�103 G) structure.
Recent analysis of MDI magnetograms obtained from space suggests that majority
of the sunspots are bipolar (i.e., negative and positive polarities; Hiremath and
Lovely 2007) during a particular sunspot cycle. Leading sunspots in the northern
hemisphere have one polarity (say positive) and in the southern hemisphere the
same have an opposite polarity (say negative). During the next sunspot cycle, in
a particular hemisphere, polarity of the previous cycle reverses and returning back
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Fig. 4.3 A magnetic butterfly diagram: Latitude-time variation of longitudinally averaged radial
magnetic field obtained from the Kitt Peak and SOHO data (Courtesy: David Hathaway)

to same polarity in the next cycle, thus constituting a 22 year magnetic cycle .
For nearly four solar cycles (1975–2015), Sun’s such a magnetic activity obtained
from the Kitt Peak and SOHO magnetograms data is represented in Fig. 4.3. From
this figure, one can notice the Hale’s Polarity Law, polar field reversals, and the
migration of higher latitude magnetic field structures toward the poles.

4.2.4 Spherical Harmonic Fourier Analysis of Sun’s Magnetic
Activity

In addition to a strong localized sunspots’ magnetic field structure, Sun also
possesses a weak (�1G) (Hale 1908, 1913; Hale et al. 1918; Babcock 1947, 1961)
large-scale general magnetic field structure that can clearly be discerned at the time
of total solar eclipse and, during minimum solar activity period when one can notice
intensity rays emanating from both the poles of the Sun that appear to be a dipole
like structure. With his invented magnetograph, Babcock (1953) initiated mapping
of global magnetic field structure of the Sun that senses both the background weak
and the localized strong magnetic field (see Fig. 4.3). Now a days, important ground
and space based observatories routinely take such magnetograms.

Spherical harmonic Fourier (SHF) analysis (Stenflo and Vogel 1986; Stenflo
1988; Knaack and Stenflo 2005) of magnetograms and magnetic field inferred from
the sunspots (Gokhale et al. 1990; Gokhale and Javaraiah 1992) show that the
axisymmetric global odd degree modes with selected periods (�22 yr and smaller)
contribute predominantly to the evolution of the large-scale photospheric magnetic
field structure of the Sun. The power spectra of these data show that the odd and even
degree modes behave differently. All the odd parity modes have same periodicity of
22 years and the frequency of even parity modes increases with degree l that is
almost similar to the observed helioseismic p mode l � 
 diagnostic spectrum (see
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Fig. 4.6). Recent SHF analysis (DeRosa et al. 2012) of many years of magnetograms
suggests that, compared to magnetic energy of the toroidal (due to sunspots) flux,
magnetic energy due to poloidal field is substantial and dominant for maintaining
the large-scale solar cycle and activity phenomena.

4.2.5 Polar Faculae and Coronal Holes

After the well known sunspots, other outstanding solar cycle and activity phenom-
ena, especially that occur near Sun’s both the poles are faculae at the photosphere,
extension of the same at the chromospheric heights as plages and much bigger
activity phenomenon as coronal holes. It is interesting to note that all the three
activity phenomena, viz., polar faculae, coronal holes and the sunspots have same
cyclic near periodicity of 11 years (Ikhsanov and Tavastsherna 2013; Karna et al.
2014). Polar faculae and the coronal holes have the same phase occurrences
(Mordinov and Yazov 2014). Compared to sunspot occurrence activity, both the
occurrence activity of polar faculae and the coronal holes, differ by phase difference
of 5–6 years and appear in advance near the poles. In addition, both the polar
faculae and the coronal holes follow the same phase as that of occurrence of polar
magnetic flux (Karna et al. 2014). Both the Figs. 4.4 and 4.5 illustrate the low
latitude (sunspots) and high latitude (polar faculae and polar coronal holes) activities
respectively.

Therefore any physical magnetic model must be consistent to address the
following important problems: (1) a large-scale weak (�1G) dipole like magnetic
field structure, (2) why Sun oscillates with a periodicity of either 11 year sunspot
occurrence number or 22 year magnetic cyclic activity, (3) sunspot butterfly
diagram, (4) reversal of the sun’s magnetic field structure, (5) excitation of odd
(�22 years) and even degree (�2–5 years) magnetic modes and, (6) how to explain
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Fig. 4.4 Left figure: Yearly variation of polar faculae (upper panel) and the sunspot numbers
(Courtesy: Linhua Deng). Right figure: Yearly variation of sunspot number (black continuous line),
polar coronal hole activity (blue and red colors) (Courtesy: Nishu Karna)
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Fig. 4.5 Yearly variation of polar faculae (PF) and coronal holes (CHs) for the northern (left
figure) and southern (right figure) hemispheres respectively

the occurrence of polar activity (�11 year sunspot or 22 year magnetic periodicity)
that is antiphase with the equatorial sunspot activity.

4.3 Solar Thermal Structure as Understood
from the Evolutionary Calculations

Vogt-Russell theorem states that star’s internal structure can be uniquely determined
by its mass and internal chemical composition if star is in hydrostatic and thermal
equilibrium. With the assumption that Sun is in hydrostatic and thermal equilibrium,
macro and micro physics are used to obtain the internal structure of the Sun.
As for macrophysics, conservation of mass, hydrostatic equilibrium, depending
upon physical condition of the solar interior, viz., radiative or convective envelope,
equation of energy transport and equation of thermal equilibrium (that means
luminosity or total energy radiated by the Sun should be balanced by the energy
generated by nuclear reactions at the core) are used. Mathematically all these
macrophysical equations are compiled as follows

dM

dr
D 4	r2� ; (4.1)

dP

dr
D �GM�

r2
; (4.2)

dL

dr
D 4	r2�� ; (4.3)
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dT

dr
D � 3

4ac

��

T3
L

4	r2
if radiative ;

D .
dT

dr
/conv if convective ; (4.4)

dY

dt
D dX

dt
C � ; (4.5)

where the radial variables M, P, L, T, X and Y are the mass, pressure, luminosity,
temperature, hydrogen abundance and helium abundance respectively. Other vari-
ables �, � and . dT

dr /conv are the rate of nuclear energy generation, opacity of matter
and knowledge of convective energy transport in the outer 30 % radius of the Sun.
Further auxiliary equations are invoked from the microphysics such as equation
of state, equations of opacity (that impedes flow of radiative energy) and rate of
nuclear energy generation respectively. One can notice from Eq. (4.5) that changes
in stellar structure basically depends upon the changes in hydrogen abundance into
higher elements due to nuclear fusion reactions. In order to simplify the solutions,
reasonable assumptions and approximations are made.

While evolving the afore mentioned equations, importance of Sun’s rotational
and magnetic field structure are neglected. Mass loss and accretion during the
early history of Sun’s evolution is completely neglected. In the first 70 % of solar
radius from the center, energy generated from the deep core by nuclear reactions
is transferred by radiation transport mechanism and in the next 30 % of the solar
radius, energy is transferred by convection. In fact, it is also evident from the
surface observations that Sun is fully convective at the outer 30 % of the Sun’s
radius. Hence, in the convective envelope, energy is transferred by the convection
and is reradiated near the surface. Transfer of radiation by convection is treated
by a mixing length parameter ˛ (a ratio of the mixing length to the local pressure
scale height; Böhm-Vitense 1958) which is considered to be a free parameter.
Except helium, most of the Sun’s chemical abundances (including lighter element
Hydrogen and heavier elements or metals according to astronomers) are available
from the spectroscopic inferences.

Hence, in addition to the mixing length parameter ˛, Helium abundance is also
used as a free parameter in the evolutionary calculations. By adjusting the parameter
˛ and the helium abundance, all the above equations are evolved up to the present
age and the presently observed luminosity and radius are matched. Owing to energy
generation due to nuclear fusion of hydrogen into helium, some part of the energy
generated is also carried away to the space by the neutrinos that can indirectly be
measured at the Earth.

With such a solar standard model, thermal structure (pressure, temperature,
density, etc.,) of the Sun’s interior is presented in Fig. 4.8 (blue continuous line).
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The evolutionary computations of the standard solar model yield the following
important salient physical structure of the Sun’s interior. (1) Presence of dense, high
temperature energy generating core. That means 50 % of solar mass and about 99 %
of luminosity is concentrated with in 25 % of the solar radius from the center. High
concentration of mass is attributed to the self gravitation and sharp radial gradient of
the density. (2) Near the center, we have pressure of �1017 dynes/cm2, temperature
is �107 K and density is �150 gm=cm3. (3) In the core, hydrogen abundance is
depleted by 60 % and helium abundance is enhanced by 30 % compared to surface
values. (4) From the center, moving towards surface, there is a sharp increase of
opacity around 0.7Rˇ (where Rˇ is radius of the Sun) and increase of the radial
gradient of temperature resulting in starting place for the convection. (5) Finally,
standard solar model yields a sharp decrease in pressure near the surface. At the
surface, the temperature is 6:4 � 103 K, the pressure is 0.14 atmospheres and the
density is 3 � 10�7 gm/cm3. (6) Observed neutrino flux emitted by the Sun and
estimated at Earth is not compatible with the neutrino flux computed from this
standard solar model, thus constitutes a solar neutrino problem.

4.4 Helioseismology

When there was no general consensus among the scientific community for under-
standing the following three unsolved solar physics problems (to name few),
Helioseismic observations and inferences came in handy to resolve these out-
standing issues. Three outstanding unsolved problems are: (1) physics of the solar
sunspot butterfly diagram, (2) precession of the Mercury’s orbit and, (3) the dearth
of expected neutrinos emitted by the Sun. Before the era of helioseismology, in
order that observed sunspots move from higher latitudes to the equator, kinematic
turbulent dynamo models (Cowling 1953; Babcock 1961; Leighton 1964, 1969;
Stix 1972; Krause 1976; Radler 1976; Yoshimura 1978; Duvall 2001; Ossendrijver
2003; Venkatakrishnan 2003; Dikpati 2005; Brandenburg and Subramaniyam 2005;
Solanki et al. 2006; Hiremath and Lovely 2007 and references there in; Choudhuri
2008; Cally 2009; Hiremath 2010 and references there in; Charbonneau 2010;
Sakurai 2012; Miesch 2012) require a rotation profile that increases from surface
to the interior. Contrary to this expectation, helioseismic inferences rule out such a
increasing rotation profile. As for Mercury’s orbital precession, there is a difference
of 43 s of arc per century which can not be accounted from the Newton’s formalism
of gravity. Hence, there were convincing proposals that Sun’s core must be rotating
fast (nearly 2–3 times surface rotation; see Woodard 1984; Garcia et al. 2007).
Similarly unresolved issue of solar neutrino problem was argued possibly due to
astrophysical solution. That means if Sun’s core temperature is reduced, emission
of neutrino flux is reduced. We will come to know in the subsequent section as to
how helioseismic inferences of solar structure consistently resolved these conflicting
issues.
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Fig. 4.6 A typical l-
 (l is
spherical harmonic degree
and 
 is frequency in milli
Hz) diagnostic diagram of the
p mode oscillations obtained
from the SOHO observations.
Different ridges slanted to x
axis are radial orders n and �h

is horizontal wavelength (in
Mega meter). Image courtesy
SOHO/MDI

Observations from the Doplerograms show that Sun oscillates in millions (with
5 min as the dominant periodicity) of modes whose frequencies, phases and line
widths are measured accurately from the ground and space based experiments.
There are three main restoring forces, (viz., gravity, pressure and magnetic field
in decreasing order of magnitudes) that affect the physical state of the solar plasma.
The observed near 5 min oscillations are due to pressure (p modes) perturbations
of the solar interior. From the structure of the degree (l)-frequency (
) diagnostic
diagram (Deubner 1975) of the observed oscillations, it is unambiguously confirmed
(Ulrich 1970; Leibacher 1971) that these pressure perturbations are standing
oscillations in the solar interior. One such a degree (l)-frequency (
) diagnostic
diagram constructed from helioseismic observations is presented in Fig. 4.6 (see
also Chap. 2, page 26). Whereas higher periods around 160 min (Severnyi et al.
1976; Appourchaux and Palle 2013 and references there in) are probably due to
gravity and 1–22 year long period (Hiremath 1994 and references there in; Hiremath
and Gokhale 1995; Hiremath 2009, 2010 and references there in) oscillations could
be due to large-scale combined weak (�1G) poloidal and a strong toroidal (�10–
103 G) magnetic field structure.

Depending upon physical conditions of the solar interior, all the three modes
are excited. Sound waves, due to pressure perturbations, are stochastically excited
by the turbulent region of the convective envelope (Gough 1985; Kumar et al.
1996; Belkacem et al. 2009). Other possible mechanisms for excitations of pressure
(p) modes are: (1) penetrative convection (Andersen 1996; Dintrans et al. 2005),
(2) mode coupling (Dziembowski 1983; Guenther and Demarque 1984; Ando
1986; Wentzel 1987; Wolff and O’Donovan 2007) and, (3) magnetic torques
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(Dziembowski et al. 1985) respectively. Whereas gravity modes are excited in
the stable radiative core. As the large-scale magnetic field structure is threaded
throughout the solar interior, magnetic modes (poloidal and toroidal, depending
upon whether large-scale structure is poloidal or toroidal magnetic field), due to
Alfven wave perturbations, probably are excited throughout the Sun’s interior (see
for details Hiremath 2010 and references there in).

4.4.1 Inference of Thermal Structure by Comparing
the Observed and Computed Frequencies

As ‘p’ modes are recognized to be standing oscillations in the solar interior,
observed frequencies are matched with the theoretical frequencies that are obtained
from linearizing the hydrodynamic equations (with the adiabatic constraint that
excited ‘p’ modes do not exchange energy with the ambient medium). By using
linearized hydrodynamic equations and with proper boundary conditions, standard
solar model structure is used for computation of theoretical frequencies (Dalsgaard
2003; Unno et al. 1989) and are compared with the observed frequencies. It is found
that, computed frequencies that are related to low and medium degree modes match
very well with the observed frequencies. Whereas computed frequencies do not
match very well with the observed high degree modes’ frequencies that probably
suggests that near surface physics is not very well understood.

4.4.2 Inference of Thermal Structure: Primary Inversions

In this method, standard solar model as a reference model, observed p mode
frequencies are used to estimate the thermal structure, such as sound speed and
density of the solar interior. As the observed amplitudes of ‘p’ mode oscillations are
very small, it is reasonable to consider the adiabatic approximation for the solution
of linearized hydrodynamic equations. With the constraint of conservation of mass,
generalized form of equation (Lynden-Bell and Ostriker 1967; Gough and Taylor
1984; Unno et al. 1989; Dalsgaard 2003) of oscillation that takes into account the
effects of velocity flows v and magnetic field structure B is given as follows

L.�/� �!2� C rıp C �Œ!M.�/C N .�/C B.�/� D 0 ; (4.6)
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where

L.�/ D r.c2�r:� C rP:�/� gr:.��/ � G�r.
Z

V

r:.��/dV

jr � r0 j / ; (4.7)

M.�/ D 2iŒ˝0 � � C .v � r/�� ; (4.8)

N .�/ D .v � r/2� � 2˝0 � Œ.� � r/v � .v � r/�� � .� � r/.v � r/v ; (4.9)

B.�/ D .4	�/�1
�
Œ��1.� � r/� C r � ��B � .r � B/

�Œ.r � B
0

/ � B C Œ.r � B/ � B
0

�
�
; (4.10)

where L is differential operator, � is eigen function of oscillations, c is speed of
sound, � is density, P is pressure, M.�/ and N .�/ are effects due to velocity
flows, B.�/ is effect due to magnetic field structure and other symbols have usual
meanings. For the sake of simplicity, effects due to flows and magnetic field
structure in the solar interior are neglected and, with special boundary conditions
such that density and pressure perturbations completely vanish at the surface,
Eq. (4.6) leads to the form L.�/ D �!2� which is an eigen value problem and
is also Hermitian. By invoking the variational principle (Chandrasekhar 1964 see
also Unno et al. 1989) this equation is linearized and the frequency difference
ı
n;l obtained from the Sun and the standard solar structure model (Basu 2010 and
references there in) yields the following equation

ı
n;l


n;l
D
Z R

0

Knl
c2;�.r/

ıc2

c2
.r/dr C

Z R

0

Knl
�;c2 .r/

ı�

�
.r/dr C F.
n;l/

Enl
; (4.11)

where Knl
c2;�
.r/ and Knl

�;c2
.r/ are kernels that involve eigen functions of the oscilla-

tions and the known solar structure. In this equation, ıc
2

c2
and ı�

�
are the normalized

differences of sound speed and density between the Sun and the reference solar
structure model. Whereas the last term (see for details Basu 2010) in the right hand
side of above equation is a correction for the surface effects that may not be due
to linearization of hydrodynamic equations. There are many inversion algorithms
(Gough and Thompson 1991; Unno et al. 1989; Dalsgaard 2002 and references
there in) to infer the sound speed and density. Typical inverted sound speed and
density profiles from one such inversion technique (Basu et al. 2009) are presented
in Fig. 4.7.

It is obvious from Fig. 4.7 that the inferred sound speed is almost similar to
the sound speed computed from the standard solar model (in this case Dalsgaard’s
1996 model) although there are statistically significant differences near base of the
convection zone and in the radiative zone. The inferred sound speed (Fig. 4.7) is
for the particular period of observation and can be represented as a steady part
of thermal structure of the solar interior. However, recent overwhelming evidences
show that observed p mode frequencies increase with the strength of solar activity,
especially solar cycle effect is pronounced for the high frequency modes. If the
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Fig. 4.7 Inference of thermal structure: (i) Left figure illustrates the sound speed difference
between the Sun and the model and, (ii) right figure illustrates the density difference between
the Sun and the model. Image courtesy, Basu

magnitudes of frequencies change from solar minimum to maximum, it is interesting
to know whether such changes affect the inverted sound speed. In fact, Rabello-
Soares (2012) inversion of the changing frequencies with the solar cycle indeed
shows interesting statistically significant, oscillatory perturbations of normalized
sound speed in the radial directions.

If one notice Fig. 4.7, information regarding thermal structure of the subsurface
is not available after 0.95Rˇ. However, from the f modes one can probe this near
surface region. Infact, from the inversion of f mode frequencies, Lefebvre and
Kosovichev (2005) and Lefebvre et al. (2007) found changes of thermal structure
in this region with respect to solar cycle. Interestingly these authors found that for
the subsurface region of 0.97 and 0.99Rˇ, thermal structure varies in phase with
the solar cycle, whereas above the region of 0.99Rˇ, thermal structure varies in
antiphase with the solar cycle. Infact such a transition layer near the surface is coined
as leptocline region by Rozelot and Lefebvr (2006). Origin of such changes with the
solar cycle is understood mainly due to changes in the sun’s radius (Lefebvre et al.
2009).

4.4.3 Inference of Thermal Structure: Secondary Inversions

In Sect. 4.3, with appropriate boundary conditions and by evolving stellar structure
equations, we obtained the internal structure (such as pressure, temperature, etc.,)



82 K.M. Hiremath

of Sun. However, some of the so-called reasonable assumptions such as neglect of
rotation and magnetic field can not be guaranteed during the early history of Sun’s
evolution. This is because, observations from the distant universe show that Sun
like stars are fast rotating and have a very strong magnetic field structure whose
effects can not be neglected in the structure equations. Similarly, prescribed mixing
length parameter ˛ and the helium abundance in the evolutionary calculations are
too adhoc. In order to avoid these inconsistencies, is there any independent and
self consistent way of getting the thermal structure of the Sun’s interior, without
any bias of Sun’s evolutionary history? Yes, this question can be answered with
affirmative way if one knows the sound speed of the solar interior. As sound speed
is a thermodynamic variable which in turn depends upon pressure and temperature,
by supplementing the knowledge of microphysics and by imposing the sound speed
on the stellar structure equations, one can infer not only the chemical abundances
(such as hydrogen X, helium Y and, heavier elements Z in principle) and other
thermal structures such as pressure, temperature, etc., but also one can infer the
mass, luminosity, depth of convection zone etc., from this method. Thus, such a
model developed from the helioseismically inferred sound speed is called “solar
seismic model” .

With appropriate boundary conditions and by imposing the helioseismically
inverted sound speed (Takata and Shibahashi 1998), in the previous study (Shiba-
hashi et al. 1995; Shibahashi and Takata 1996, 1997; Takata and Shibahashi 1998;
Antia and Chitre 1999), stellar structure equations (4.1)–(4.4) are used to solve
for the thermal structure of the radiative core. Although deduced internal structure
profiles of seismic model are almost same as the structure profiles obtained from the
standard solar model, there is no guarantee that luminosity and mass obtained from
such a seismic model satisfy the observed surface mass and luminosity of the Sun.

Hence, with the same inverted sound speed (Takata and Shibahashi 1998), and in
order to overcome this inconsistency, Shibahashi et al. (1998a,b, 1999) developed a
seismic model that takes into account the whole (radiative core and the convective
envelope) interior of the Sun. However, the deduced internal structure profiles,
helium abundance and depth of the convection zone are not very different than the
profiles obtained from the standard solar model.

Recently, we (Hiremath, Shibahashi and Takata) used helisoeismically imposed
sound speed (kindly provided by Antia) and developed a seismic model whose
structure profiles are presented in Fig. 4.8 (red dotted and dashed lines). One can
notice from these profiles that thus developed seismic model is entirely not different
than the solar standard model (in case Dalsgaard et al. 1996 standard solar model is
considered). The perfect matching of these internal structure profiles could be due
to same hydrogen to heavy element abundance ratio (X=Z) used in developing the
seismic model. However, if we use the recently obtained (Asplund et al. 2004, 2009)
and downgraded abundance ratio, we get the values of helium abundance and depth
of the convection zone different than the values obtained from the conventional
standard solar model and above mentioned solar seismic model. It is to be noted that
seismic model can also be used for obtaining the solar neutrino fluxes. Hence, for the
conventional (X=Z D 0:0247) and lower (X=Z D 0:0215, 0.0188, 0.0158) hydrogen
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Fig. 4.8 Thermal structure such as pressure, temperature, density and hydrogen abundance X and
helium abundance Y obtained by the solar seismic model for surface heavy elemental abundances
Z D 0:0185 and Z D 0:0122 respectively. Units are in cgs scale
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Table 4.1 Neutrino fluxes (in the units of 1010cm�2 s�1) estimated by the solar seismic model

SSM Seism1 Seism2 Seism3 Seism4

Z D 0.0185 Z D 0.0185 Z D 0.0165 Z D 0.015 Z D 0.0122

Z/X D 0.0247 Z/X D 0.0247 Z/X D 0.0215 Z/X D 0.0188 Z/X D 0.0158

Source BCZ D 0.709 BCZ D 0.709 BCZ D 0.709 BCZ D 0.709 BCZ D 0.72

pp 6.0 6.01 6.05 6.07 6.1

pep 0.014 0.015 0.014 0.015 0.015

hep 8�10�7 0.3�10�9 0.3�10�9 1.3�10�7 1.32�10�7

7Be 0.47 0.44 0.42 0.41 0.379
8B 5.8�10�4 4.5�10�4 4.03�10�4 3.76�10�4 3.18�10�4

13N 0.06 0.057 0.047 0.04 0.0287
15O 0.05 0.052 0.042 0.036 0.025
17F 5:2 � 10�4 4:02 � 10�4 3.2�10�4 2.7�10�4 1.92�10�4

and heavy element abundance ratio, in Table 4.1, we present deduced depth of the
convection zone BCZ and the computed neutrino fluxes at the Earth. First to sixth
columns in Table 4.1 are: (1) different nuclear reactions, (2) neutrino fluxes at the
Earth estimated from standard model and, (3) rest of the columns represent seismic
models that use different hydrogen to heavy elemental abundance ratio.

Before analyzing the results of neutrino fluxes for the low chemical abundance
ratio, let us analyze the neutrino fluxes obtained from the seismic model (Seism1,
third column) that uses the conventional chemical abundance ratio. One can notice
from Table 4.1 that, for the earlier (Grevesse and Noels 1993) chemical abundance
ratio Z=X D 0:0247, neutrino fluxes computed from the seismic model are almost
same as the neutrino fluxes computed from the solar standard solar model. This
is a main reason that deficiency of neutrinos emitted by the Sun lies in the
solution of neutrino physics rather in the astrophysical solutions, viz., changing of
uncertain physics of the interior, such as opacity, equation of state, etc., or chemical
composition (especially the heavy elemental abundance Z) that could not solve the
solar neutrino problem.

Coming to the inclusion of low chemical abundance ratio for the development of
the seismic model, computed neutrino fluxes, especially for 8B, there is a substantial
reduction and is almost similar to the observed neutrino fluxes. However, deduced
depth of base of the convection zone is higher and the inferred helium abundance is
very low (�0.18) which is inconsistent with the cosmic helium abundances (�0.23)
and helium abundance as inferred from helioseismology (Kosovichev et al. 1992;
Antia and Basu 1994; Basu and Antia 2004).
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4.4.4 Inference of Magnetic Field Structure: Primary
Inversions

As the Sun is rotating and is pervaded by a large-scale combined poloidal and
toroidal magnetic field structure, magnitudes of frequency of the solar p modes
are affected. Similar to Zeeman effect that splits the spectral lines due to a strong
magnetic field structure, solar rotation splits the frequency of individual modes,
especially odd degree modes. Hence, observed rotational frequency splittings are
used to infer the internal rotation of the Sun. Details of inversion procedure can
be found in the previous (Hiremath 2013 and references there in) review. The
rotational profile of the solar interior as inferred by the helioseismic rotational
splittings is presented in Fig. 4.9. Whereas even degree modes are influenced by
a combined effect of rotation (a second order effect, first order rotational effect is on
the odd degree modes), magnetic field and aspherical sound speed perturbations
(Kuhn 1988) of the solar interior. Hence, by neglecting aspherical sound speed
perturbations and by removing second order rotational effects in the even degree
frequency splittings, resulting residual of even degree splittings are compared with
the computed frequency splittings with a assumed form of magnetic field structure
(Dziembowski and Goode 1989; Gough and Thompson 1991; Dziembowski and
Goode 1991; Basu 1997; Antia et al. 2000a; Antia 2002; Baldner et al. 2010).
With this method, Baldner et al. (2010) came to a conclusion that the observed
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variation of even degree frequency splittings for different modes can be explained
if the Sun is pervaded by a right combination of poloidal (�100 G) and toroidal
(that varies from �103 G near the surface to 104 G near base of the convection zone)
magnetic field structure. Interestingly, from the analysis of sunspot data during their
initial appearance on the surface from the SOHO/MDI magnetograms, Hiremath
and Lovely (2012) estimated strength of toroidal magnetic field structure of similar
order confirming the previous theoretical estimates (Choudhuri and Gilman 1987;
D’Silva and Choudhuri 1993; D’Silva and Howard 1994; Hiremath 2001; Brun et al.
2004).

4.4.5 Inversion of Poloidal Magnetic Field Structure:
Secondary Inversions

Observations (Ambroz et al. 2009; Pasachoff 2009; Pasachoff et al. 2009) of white
light pictures obtained during total solar eclipse, especially in the solar minimum
activity, indicate that the delineating rays of intensity structures emanating from
both the poles represent tracing of dipole like magnetic field structures. It is
interesting to know whether Sun has retained such as large scale weak (�0.01–1 G)
magnetic field structure probably of primordial origin. In fact, with the current limit
of instrumental detection of solar observations, such a large-scale magnetic field of
primordial origin can not be ruled out. From theoretical and observational (from
the stars in pre-main sequence phase which are fast rotating and are magnetically
active) point of views, it is reasonable to expect such a large scale magnetic field
structure in the solar interior whose diffusion time scale is order of billions of years,
larger than the Sun’s age.

We have an advantage of helioseismic inferences of internal rotation rate of the
plasma that geometry and magnitude of such a large-scale magnetic field structure
in the solar interior can be inferred. Surface observations indicate that Sun’s large-
scale poloidal average magnetic field structure can not be greater than 1 G (Stenflo
1993). As the strength of large-scale poloidal magnetic field structure is very weak
compared to magnitude of rotational structure of the Sun, one can show (Hiremath
1994; Hiremath and Gokhale 1995) that such a poloidal magnetic field structure can
isorotate with the solar plasma. Hence, if ˝ is angular velocity of the plasma and
˚ is the magnetic flux function representing flux of the large-scale weak poloidal
magnetic field structure, one can show that

˝ D function.˚/ : (4.12)

To a first approximation, right hand side of equation can be linearized in the
following way

˝ D ˝0 C˝1.˚/ : (4.13)
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That means, if one knows the internal rotational profile of a star in general and
Sun in particular, with a suitable combination of poloidal magnetic field structure
and by subjecting to a least-square fit of the above equation, one can infer the Sun’s
large-scale magnetic field structure of the solar interior.

Previous studies (Hiremath 1994; Hiremath and Gokhale 1995) have shown
that, for both the radiative core (RC) and the convective envelope (CE), poloidal
component of the Sun’s steady magnetic field structure can be modeled as an
analytical solution of magnetic diffusion equation. Such a solution yields the
following magnetic flux function .˚/ in RC

˚RC.x; #/ D 2	A0R
2
cx1=2sin2#

1X
nD0

�nJnC3=2.˛nx/C3=2
n .�/ ; (4.14)

where x D r=Rc, Rc is radius of the radiative core, � D cos# , r and # are radial and
colatitude coordinates, n is non negative integer, C3=2

n is the Gegenbaur’s polynomial
of degree n, JnC3=2.˛nx/ is Bessel function of order .n C 3=2/ and ˛n are the eigen
values that are to be determined from the boundary conditions. Here A0 is taken as
a scale factor for the field and hence �n D An=A0.

Similarly, in the region of convective envelope, magnetic flux function can be
modeled as

˚CE.x; #/ D 	B0R
2
csin2#

�
x2C3=2

0 .�/C
X
n�0

O�nC1x�.nC1/C3=2
n .�/

�
; (4.15)

where O�nC1 D Mn=.	B0RnC3
c / are strengths of multipoles that are scaled to an

asymptotically uniform magnetic field structure B0 as x ! 1.
In case of the Sun, with the appropriate boundary conditions and available

helioseismically inferred rotation rate (Dziembowski et al. 1989; Antia et al. 1998)
the unknown coefficients and eigen values can be computed uniquely. With this
information, geometry and radial variation of poloidal magnetic field structure (see
Fig. 4.10) can also be reconstructed in the solar interior (Hiremath 1994; Hiremath
and Gokhale 1995). Such a reconstructed poloidal component of steady part of
magnetic field structure consists of a diffusing uniform like magnetic field structure
in the radiative core and a combined dipole and quadrupole like magnetic field
structure in the convective envelope.

It is interesting to know strength of poloidal magnetic field structure near the
solar core. Physics of this region is essential to unravel some of mysteries posed
by the observations. As multipole moments Mn that are used to reconstruct the
poloidal magnetic field structure are scaled with the asymptotic uniform magnetic
field structure (that merges with the interstellar magnetic field structure), if one
accepts the magnitude of interplanetary magnetic filed structure (B0 � 10�5 G),
strength of Sun’s poloidal magnetic field structure near its center is estimated to be
� 107 � 108 G. From the dynamical constraints point of view, this strong magnetic
field structure near the center can not be accepted. However, if the 22 yr solar
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Fig. 4.10 Left figure illustrates the meridional cross section of poloidal component of magnetic
field structure. This figure is reproduced from, and all rights are reserved by, the Astrophysical
Journal. Where as right figure illustrates radial and latitudinal variations of the magnitude of the
poloidal magnetic field structure Bp normalized to an asymptotic uniform magnetic field B0 that
merges with the interplanetary field structure

cycle and activity phenomena probably could be due to global slow MHD modes
(Hiremath and Gokhale 1995), strength of asymptotically uniform magnetic field
structure B0 is found to be �10�2 G. With this magnitude, strength of poloidal
magnetic field structure near the solar core is estimated to be �105 G. Unfortunately,
observed low degree solar modes do not show such a signature of strong magnetic
field structure near the center. However, as low degree p modes sense the solar core
region very poorly, it is not ruled out that such a strong magnetic field structure
near the center might exists. This reality can be possible only when the g (due
to buoyancy) modes are unambiguously detected from the surface observations
or indirectly (for example characteristics of g modes or modified by the strong
magnetic field; see Rashba et al. 2006, 2007; Rashba 2008; Burgess et al. 2004)
with consistent way. Another promising way of detecting such a strong magnetic
field structure is due to Sun’s surface oblate measurements (Rozelot and Damiani
2011; Damiani et al. 2011; Rozelot et al. 2011; Rozelot and Fazel 2013; Meftah
et al. 2015).

4.5 Concluding Remarks

Let us recapitulate the reconstruction of thermal and magnetic field structure of
the solar subsurface through helioseismology. After giving a brief introduction to
the solar cycle and activity phenomena, standard solar model and, helioseismology,
thermal and magnetic field structure of the solar subsurface are reconstructed as
deduced from helioseismology.
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4.5.1 Recent Estimation of Chemical Abundances
and Incompatible Seismic Models

Helioseismic inferences revolutionized our understanding of physics of the solar
interior. As presented in this chapter, from helioseismic inferences, one of the
parameter of thermal structure such as sound speed is obtained right from near
surface up to close to the solar interior. From helisoeismically inferred sound speed,
seismic model is developed in which we find that thermal structure of the solar
interior is not entirely different than the structure computed from the standard solar
model. However, thermal structure that is reconstructed form seismic solar models
that incorporate the recent revision (Asplund et al. 2004, 2009) of hydrogen to
heavy elemental abundance ratio is not compatible with the Sun’s thermal structure.
These results suggest that probably careful modeling and computation (Chaplin and
Basu 2008; Basu and Antia 2008) in estimating the heavy elemental abundance
are necessary. If more evidences lead to the general consensus about the heavy
elemental abundance, there is a serious problem in explaining the sound speed
difference between the models and the Sun near base of the convection zone and in
the radiative interior. Probably, as deeply dwelt by Basu et al. (2014), in the recent
review, physics (especially dynamics and magnetic field structure) of the radiative
core has to be revisited and to be explored further.

4.5.2 Solar Cycle Changes of Frequencies and the Sound
Speed

Recent intriguing result that frequencies (Woodard and Noyes 1985; Ronan et al.
1994; Howe et al. 1999; Antia et al. 2000b; Chaplin et al. 2001; Rabello-Soares et al.
2008; Jimenez et al. 2011; Tripathy et al. 2013) and hence the inverted sound speed
(Rabello-Soares 2012) vary with the solar cycle. More inferences are accumulating
that solar cycle variation of the frequencies due to high degree modes is solely due
to variation of physics of the near surface. However, one has to explain the physics
behind the solar cycle changes of the frequencies due to low degree modes.

4.5.3 Steady Parts of Poloidal and Toroidal Magnetic Field
Structure

As for reconstruction of magnetic field structure of the solar interior from helio-
seismology, poloidal component of steady part of magnetic field structure is
reconstructed. It is found that reconstructed poloidal magnetic field structure likely
consists of a combined field structure that is dictated by diffusion (time scales are �
billion yrs) in the radiative core and a current free like structure that is dictated by
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the convection. From the constraint of 22 yrs magnetic cycle, strength of magnetic
field structure near the solar core is estimated to be �105 G. It is concluded that
if signature of such a strong magnetic field structure is not detected from the
low degree modes, one has to wait for unambiguous detection of g modes whose
amplitudes are higher near the solar core.

This chapter also presents the estimates of magnitude (�104 G near base of
convection zone and �100G near the surface) of magnetic field, probably due
to combined poloidal and toroidal magnetic field structure, from the p modes’
even degree frequency splittings. Interestingly, near base of the convection zone,
such a magnitude of magnetic field structure matches with theoretically estimated
(Choudhuri and Gilman 1987; D’Silva and Choudhuri 1993; D’Silva and Howard
1994; Hiremath 2001; Brun et al. 2004; Hiremath and Lovely 2007) magnitude
of toroidal magnetic field structure. As the well known sunspots are supposed to
be originated from toroidal magnetic field structure of the convective envelope,
effect due to such a field structure on the even degree frequency splittings has to
be delineated. In addition, as many years of helioseismic observations are available,
from the even degree mode splittings, steady and time dependent parts of toroidal
magnetic field structure of the convective envelope are to be separated. Infact,
further helioseismic inferences of time dependent part of toroidal magnetic field
structure (due to which sunspots are supposed to be formed) of the whole convective
envelope that varies from year to decadal scales is necessary to understand the origin
of solar cycle and activity phenomena.

Another interesting topic to ponder over in this chapter is the reconstruction
of steady part of poloidal magnetic field structure of the solar interior from the
helioseismology. Unfortunately, as the strength of poloidal magnetic field structure
is so weak (�1 G in the whole convective envelope; see Fig. 4.10) that signature
of such a field structure can not be sensed from the ‘p’ modes. Hence, indirect
information (either weak magnetic field structure isorotates with the solar internal
rotation or from p modes even degree frequency splittings) is only available. That
too in the present chapter, geometry and magnitude of steady component of poloidal
magnetic field structure and, magnitude of probably a combined (poloidal and
toroidal) magnetic field structure in the convective envelope is obtained. However,
further helioseismic inferences on the time dependent part of poloidal part of
magnetic field structure that has year to decadal time variations are necessary to
understand the polar magnetic field activity that is antiphase with the middle latitude
sunspot activity.

4.5.4 Origin and Consequences of Near Surface Rotation
Profile and Toroidal Magnetic Field Structure

If future helioseismic inferences confirm the steady part of toroidal magnetic field
structure in the solar interior, probably whose diffusion time scales is � billion yrs,
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there will be important consequences for explanation of near surface shear rotation
profile, accretion of the proto planetary mass on to the Sun and, faint young Sun
paradox during early evolutionary history of the Sun.

For example, although many studies (Kitchatinov and Rüdiger 1995; Elliott et al.
2000; Robinson and Chan 2001; Hiremath 2001; Brun and Toomre 2002; Rempel
2005; Miesch et al. 2006; Kuker et al. 2011; Brun et al. 2011) reproduced the
rotational isocontours as inferred by helioseismology, to the knowledge of this
author, none of the studies reproduced isorotational counters close (0.935Rˇ to
1.0Rˇ) to the surface. Of course, we can not brush aside that this is a resolution
problem in the numerical simulations. Even if future numerical simulations achieve
this goal of reproducing near surface rotation profile, such a decreasing profile is
unstable and does not satisfies the MHD stability criterion (Dubrulle and Knobloch

1993; Mestel 1999), r2 d˝2

dr � . 1
r2
/ d

dr Œ
.r2B2�/

4	�
� > 0 (where r is the radial coordinate,˝

is angular velocity, � is density and B� is toroidal magnetic field structure), unless
there is a permanent equipartition toroidal magnetic field structure. Interestingly,
recent helioseismic inferences (Antia 2002; Baldner et al. 2010) from the even
degree frequency splittings yield the same order (about 100 G) magnitude of
magnetic field structure near the surface.

Another consequence of this near surface decreasing rotation profile is that,
during early history of solar system formation, mass from the protoplanetary disk
might have accreted on to the Sun and poloidal magnetic field structure might
have wound around in that region to form a toroidal magnetic field structure. That
means present Sun is slightly more massive and heavy refractory elements (that are
supposed to be building blocks of the terrestrial planets in the Sun’s vicinity) might
have accreted on to the Sun. This in turn means, heavy elemental abundance in the
solar core may not be representative of the presently observed surface heavy element
abundance as used in the standard solar models and seismic models. This interesting
scenario further may solve two well known unsolved solar problems, viz., (1) faint
young Sun paradox (for which slightly more massive Sun is required) and, (2) Sun’s
low angular momentum (as the accretion and transfer of angular momentum to the
planetary system are related with each other).

4.5.5 Origin of 22 yr Cycle and Future Helioseismic Inferences

So far understanding the origin of solar cycle and activity phenomena is eluded
the scientists and remains one of the important unsolved problem in solar physics.
Different variants of Babcok and Leighton and, Parker’s kinematic dynamo models
[supplemented with generation of large scale magnetic field structure from the small
scale turbulent fields by Krause (1976) and Radler (1976)] are used to explain
successfully some of characteristics of solar cycle and activity phenomena. To recall
history of science, helioseismic inferences of rotation rate of the solar convective
envelope ruled out the dynamo models that assume radial variation of solar rotation
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rate profile which increases with the depth. However, contrary to the expectation
of kinematic dynamo models, especially from 0.935Rˇ downwards, rotation rate
decreases.

Recently, flux transport dynamo mechanism (another form of kinematic turbulent
dynamo mechanism) that needs meridional circulation flow (single cell flow from
surface to pole and return back via base of convection zone and back to the surface),
are used to explain the solar cycle periodicity, reversal of magnetic flux, explanation
for occurrence of Maunder minimum (occurrence of dearth of sunspot activity,
probably on century scales), prediction of future solar cycles, etc. Unfortunately,
these flux transport dynamo models, predicted different amplitudes of the present
solar cycle. From time to time, consistencies of turbulent kinematic dynamo models
are questioned (Piddington 1972; Hiremath 1994 and references there in; Petrovay
2000; Duvall 2001; Venkatakrishnan 2003; Jouve and Brun 2007; Garaud and
Brummell 2008; Hiremath 2008; Cally 2009; Hiremath 2009 and references there
in; Hiremath 2010 and references there in; Sakurai 2012; Priest 2014; Hathaway
2015; Brun et al. 2015). However, consistent way of understanding the solar cycle
and activity phenomena is solution of MHD equations. These solutions (Miesch
et al. 2000; Brun and Toomre 2002; Miesch et al. 2008; Miesch and Brown 2012;
Brun et al. 2015 and references there in) are compatible with the helioseismically
inferred rotation rate (Kosovichev 2011) and characteristics of the solar cycle and,
activity phenomena. However, these MHD models, yield many meridional flow
cells in the convective envelope contradicting the expectation of the flux transport
dynamo models. Hence, at this crucial juncture of solar physics, further helioseis-
mic inferences regarding correct and unambiguous estimation of meridional flow
velocity in the convective envelope is necessary. Moreover, magnetic models that
are consistent with physics of the solar subsurface and which can explain many
observations (11 yr sunspot or 22 yr magnetic cycle, butterfly diagram, polarity
reversal, in a particular cycle poleward and equatorward migration of activity
phenomena, even and odd degree magnetic oscillations, genesis of polar faculae and
coronal holes and their phase difference with the sunspot activity, etc.,) are presently
needed.
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Chapter 5
Physical Processes Leading to Surface
Inhomogeneities: The Case of Rotation

Michel Rieutord

Abstract In this lecture I discuss the bulk surface heterogeneity of rotating stars,
namely gravity darkening. I especially detail the derivation of the !-model of
Espinosa Lara and Rieutord (Astron Astrophys 533:A43, 2011), which gives the
gravity darkening in early-type stars. I also discuss the problem of deriving gravity
darkening in stars owning a convective envelope and in those that are members of a
binary system.

5.1 Introduction

As it has been much discussed in this school, surface inhomogeneities of stars
are more and more frequently detected due to the increasing sensitivity of the
instruments. If correctly understood, and therefore modeled, these data may open
new windows on the interior or on the history of stars.

The purpose of this lecture is to first briefly review the processes that lead to such
inhomogeneities and then to focus on a very fundamental one, namely rotation.

In the ancient times, when the eye was the only optical instrument to observe
Nature, the Sun was thought as a pure uniform bright disc. The invention of the
telescope by Galileo ruined this idea, showing that the Sun was spherical with
spots on it. Presently, it suffices to have a look at images of the Sun taken at
short wavelengths to understand that its surface is certainly not uniform. Such
images actually reveal that the magnetic fields are a prominent cause of this non-
uniformity. It looks like a mess which even impacts the distribution of surface
flux and temperature. A closer look at the magnetic structures but also below,
at the photospheric level, shows that all these heterogeneities evolve with time.
On the photosphere, turbulent convection features the surface with two important
scales: granulation and supergranulation (Rieutord and Rincon 2010). Even the bulk
surface rotation is not uniform. This differential rotation, known since the nineteenth
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century, with fast equatorial regions and slow polar regions, is now understood as
driven by Reynolds stresses coming from the turbulence in the solar convection
zone.

Hence, the surface of the Sun teaches us that we should expect non-uniform
velocities, temperatures, flux and magnetic fields at the surface of all low-mass stars.
But one consequence of the strong mixing imposed by turbulent convection and the
ever changing magnetic fields is that the solar photosphere has a uniform chemical
composition!

But uniform chemical composition is certainly not possible when turbulent
convection disappears and no longer mixes the surface layers, that is when we
consider stars of higher mass with an outer radiative envelope. There, combination
of magnetic fields with microscopic diffusion processes (gravitational settling or
radiative acceleration) may on the contrary lead to chemical surface inhomo-
geneities (Vauclair and Vauclair 1982; Alecian 2013; Korhonen et al. 2013). But
even when magnetic fields are absent at their surface, early-type stars are still
endowed with a non-uniform surface: absence of magnetic field is indeed correlated
with fast rotation, a feature that makes the polar caps brighter than the equatorial
regions.

From the foregoing presentation we see that three processes, intrinsic to each
star may lead to surface inhomogeneities: rotation, convection and magnetic fields.
There is a fourth one, but extrinsic to the star itself, namely binarity. A companion
indeed raises tides, illuminates one side of the star or may even transfer mass.

Within these four physical processes that make the surface of stars not uniform,
we shall concentrate on the most simple, namely rotation, which, a priori leads
surface variations that only depend on the latitude. We shall discuss in detail
this very basic physical effect, leaning on the recent works of Espinosa Lara and
Rieutord (2011, 2012).

5.2 The Energy Flux in Radiative Envelopes of Rotating
Stars

5.2.1 von Zeipel 1924

In a seminal paper, von Zeipel (1924) showed that a rotating star may be brighter at
the poles than at the equator. This result is quite simple to derive if we assume that
the star is barotropic and that the energy flux is given by Fourier’s law. Indeed, if the
star is barotropic, meaning that its equation of state can be simplified to

P 	 P.�/;

it implies that there exist a hydrostatic solution in the rotating frame and that all
thermodynamic quantities can be expressed as a function of the total potential ˚
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(i.e. gravitational plus centrifugal). Hence, one writes

� 	 �.˚/; T 	 T.˚/; etc:

Then, using Fourier’s law to derive the heat flux, one finds

Frad D ��rT D ��.˚/T 0.˚/r˚ D K.˚/geff

whence von Zeipel law

Teff D Kg1=4eff on the surface ˚ D Cst

This result is simple but incorrect. Indeed, barotropic stars are realized in two cases:
either the star is isentropic and thus fully convective or it is isothermal but this can
hardly be the case.1 So the closest case that may match the barotropic state is that
of a fully convective star, but in such a case the flux cannot be derived from the
Fourier’s law. In fact, these hypothesis (barotropicity and heat diffusion) lead to
a contradiction. Indeed, we may note that the total potential and the temperature
would verify in the envelope of the star,

�
Div.�rT/ D 0

˚ D 4	G�C 2˝2 (5.1)

which leads to

Div.�.˚/T 0.˚/r˚/ D 0 ” 4	G� C 2˝2 C .ln.�T 0//0g2eff D 0

On an equipotential, � is constant as well as .ln.�T 0//0, but geff is not constant.
Hence, the latter equation is impossible. The reason for that is that for a rotating
star where heat is transported by diffusion, a barotropic state cannot be and should
be replaced by a baroclinic state. In such a state, isobars, isotherms or equipotential
are all different, not very different, but different. This is the normal state that comes
from the fact (basically) that temperature, pressure, and gravitational potential all
obeys different and independent equations. The barotropic state is therefore rather
peculiar (but see Rieutord 2006, for a more detailed presentation).

Now one may wonder if it is possible to derive the dependence of the flux with
latitude for a rotating star without computing the whole stellar structure and the
associated flows as in Espinosa Lara and Rieutord (2013). Fortunately, this is indeed
possible as Espinosa Lara and Rieutord (2011) have shown. It is not as simple as
von Zeipel law, but it has the merit of relying on controllable hypothesis.

1Some models of prestellar core use this hypothesis, sometimes.
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5.2.2 The Idea of the !-Model

In the following we shall first restrict ourselves to the case of early-type stars, that
is to stars that have a radiative envelope around a convective core. We’ll discuss the
case of convective envelope in the next section.

Within the envelope of a star the flux just obeys:

DivF D 0 (5.2)

namely energy is conserved and there are no energy sources.
This is a single equation, not enough to determine the two components, (Fr;F� ),

of the flux, but if we add a constraint to the flux we may find it. We thus assume that
the flux is anti-parallel to the effective gravity

F D �f .r; �/geff (5.3)

In order to avoid an additional unknown, we shall take the effective gravity geff as
given by the Roche model. In such a case we shall see that the flux function f can be
determined and that the latitude variation of the flux depends on a single parameter
! defined as the ratio of the angular velocity to the keplerian angular velocity at the
equator. In other words, the flux depends on

! D ˝

˝k
D ˝

 s
GM

R3e

!�1
(5.4)

Thus, we shall call this model the !-model to emphasize the crucial role of the
reduced angular velocity !.

However, before going any further, we may wonder whether the assumptions are
strong or not, especially (5.3).

In a radiative zone, the configuration is baroclinic so vectors are surely not
aligned but fortunately we can now revert to 2D-models to get an idea of the
misalignment. As shown in Fig. 5.1, the misalignment remains small, less than a
degree, even if the star rotates close to criticality.

Thus, even if the envelope is the seat of baroclinic flows, the misalignment
is small. Actually, the baroclinic torque .rP � r�/=�2 does not need a strong
misalignment of the vectors to be efficient at driving baroclinic flows because the
two gradients (of pressure and density) are already quite strong.

Let us pursue somewhat. From (5.2) and (5.3), we have

DivF D 0 ” Div. f r˚/ D 0
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Fig. 5.1 Misalignment between pressure gradient and flux for a configuration with a flatness
�30 % (from Espinosa Lara and Rieutord 2011)

thus

geff � r ln f D �2˝2 (5.5)

because˚ D �2˝2; hence,

@ ln f

@�
D �2˝

2

geff
(5.6)

where we introduced the local vertical coordinate �. Equality (5.6) shows that
@ ln f
@�

, and therefore f , has latitudinal variations similar to those of geff. Hence the
horizontal variations of the flux cannot be given by von Zeipel law. In other words
Teff=g1=4eff cannot be constant.

The second hypothesis is the use of the Roche model. This model assumes that
the whole mass of the star is concentrated at the centre thus leading to a gravitational
potential in 1=r2 everywhere. For the regions we are interested in, namely the
envelope of early-type stars, this is a rather good approximation since these stars
are usually said to be “centrally condensed”. In Fig. 5.2 we show the density profile
of a non-rotating 5 Mˇ star along with the profile of two polytropes. We see that
the n D 3 polytrope represents fairly well the density profile of the star and that the
n D 3=2-polytrope, which is a very good model for fully convective stars, is much
less “centrally condensed”. Hence, gravity in the outer envelope of an early-type star
is well represented by the Roche model (see Fig. 5.2 right). The interior discrepancy
with the Roche model has no consequence for our purpose.
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Fig. 5.2 Left: Density profile of a M D 5M
ˇ

ZAMS, non rotating star (solid line) together with
that of a n D 3=2 and n D 3 polytropes. Right: The interior gravity of the same stellar model
(solid line) together with the �1=r2 Roche model (dashed line). The ZAMS model is an ESTER
model (e.g. Espinosa Lara and Rieutord 2013)

5.2.3 The Derivation of f.r; �/

f is given by (5.5) but we first need to scale this function so as to introduce a non-
dimensional function F that accounts for the radial and latitudinal variation of the
flux. This is easily done if we observe that near the star’s centre

F � L

4	r2
er geff � �GM

r2
er

So that we may set

f .r; �/ D L

4	GM
F.r; �/ (5.7)

with

lim
r!0

F.r; �/ D 1

Then, we scale the gravity with GM=R2e and the length scale with the equatorial
radius Re. The scaled angular velocity is therefore given by

! D ˝

˝k
D ˝

 s
GM

R3e

!�1
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At this point we should underline that the angular velocity is scaled by the keplerian
angular velocity given by the equatorial radius. It is often the case in the literature
that the scale of angular velocity is the critical velocity associated with the Roche
model of the considered mass M (e.g. Monnier et al. 2012, for instance). This gives
a different ! (i.e. fraction of critical velocity). We give in the Appendix the relation
between these two ways of appreciating angular velocity.

We now proceed to the derivation of F the scaled version of f . From (5.7)
and (5.5) we get

�
1

!2r2
� r sin2 �

�
@F

@r
� sin � cos �

@F

@�
D 2F

With F.0; �/ D 1 we have all the elements for solving the equation for F.
First, we solve for ln F, namely,

�
1

!2r2
� r sin2 �

�
@ ln F

@r
� sin � cos �

@ ln F

@�
D 2 : (5.8)

If we set ln F D ln GCA.�/, so that A.�/ removes the RHS of (5.8), we immediately
find that

A0.�/ D �2= sin � cos � H) A.�/ D � ln.tan2 �/ :

But we still have to solve the homogeneous equation, namely

�
1

!2r2
� r sin2 �

�
@ ln G

@r
� sin � cos �

@ ln G

@�
D 0 (5.9)

Such a first order partial differential equations is solved by the method of character-
istics. We therefore look for places where ln G is constant. These places are called
the characteristics curves of G. They are such that

@ ln G

@r
dr C @ ln G

@�
d� D 0

but G also verifies (5.9) so that we can eliminate @ ln G
@r and @ ln G

@�
and get

�
1

!2r2
� r sin2 �

�
d� C sin � cos �dr D 0 (5.10)

which is the equation of characteristics.
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We first observe that we may multiply this equation by any function H.r; �/
without changing anything. So we may also look for h such that

8̂
ˆ̂<
ˆ̂̂:

@h

@r
D H sin � cos �

@h

@�
D H

�
1

!2r2
� r sin2 �

� (5.11)

where H needs to be chosen so that this system can be integrated. After trial and
error, we find that H D !2r2 cos � cot � is the right function. Thus

8̂
ˆ̂<
ˆ̂̂:

@h

@r
D !2r2 cos3 �

@h

@�
D cos2 �

sin �
� !2r3 cos2 � sin �

(5.12)

and the solution is

h.r; �/ D 1

3
!2r3 cos3 � C cos � C ln tan.�=2/

The curves h.r; �/ D Cst are the characteristics. Note that the polar equation of
a characteristic, namely the dependence r 	 r.�/, is just implicitly known, and
depends on the chosen constant.

Now, we know that ln G or G is constant on the curves where h.r; �/ D Cst. So
we can write

G 	 G.h/ : (5.13)

It means that the variations of G with .r; �/ are through those of h.r; �/ only. So we
find that

ln F D ln G.h/� ln tan2 � or F D G.h.r; �//

tan2 �

This is the solution of the partial differential equation, but it is up to an arbitrary
function G.h/ that we should determine. For that, we need to revert to the boundary
conditions, namely that F.0; �/ D 1. We thus need to impose

G.h.0; �//

tan2 �
D 1 (5.14)

or

G.cos � C ln tan.�=2// D tan2 � (5.15)
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for all � . This is certainly a weird expression of G, but actually it is sufficient. Let’s
introduce the function h0 such that

h0.�/ D cos � C ln tan.�=2/ (5.16)

Hence, we have

.G ı h0/.�/ D tan2 �

or

G ı h0 D tan2 H) G D tan2 ıh�1
0

so formally, the solution for G is

G.r; �/ D tan2.h�1
0 .h.r; �///

To make it more understandable, we set

 D h�1
0 .h.r; �// (5.17)

so that

h0. / D 1

3
!2r3 cos3 � C cos � C ln tan.�=2/

or

cos C ln tan. =2/ D 1

3
!2r3 cos3 � C cos � C ln tan.�=2/ (5.18)

which is a transcendental equation for  . However, it is not difficult to solve
numerically (we know that when r or ! are small  ' �). So finally we find

F.r; �/ D tan2. .r; �//

tan2 �
(5.19)

where  .r; �/ is given by (5.18).

5.2.4 Two Interesting Latitudes

F seems to be singular at the pole (� D 0) and at the equator (� D 	=2). Let us
explore these two latitudes.
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Starting with the pole, we see that if � 
 1, then, from (5.18), we find that
 
 1 as well. Indeed, for small values of the angles we have

1C ln tan. =2/ ' 1

3
!2r3 C 1C ln tan.�=2/

so that

 ' �e!
2r3=3 (5.20)

and

F.r; 0/ D e2!
2r3=3 (5.21)

which gives the values of F along the rotation axis.
The equator is more complicated. We need to know that if " 
 1 then

ln
�

tan
h	
4

� "
i

D �" � 1

6
"3 � � � �

With this asymptotic expansion we find

F.r; 	=2/ D .1 � !2r3/�2=3

5.2.5 The Final Solution of the !-Model

Back to the definitions we started with, we can express the flux with the effective
gravity in the following way:

F D � L

4	GM
F.!; r; �/geff (5.22)

so that we also get the effective temperature

Teff D
�

L

4	�GM

�1=4r tan 

tan �
g1=4eff (5.23)

From this expression, we see that the function
p

tan = tan � shows the deviation
from the von Zeipel law.

Noting that

geff D GM

R2e

�
�er

r2
C !2r sin �es
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for the Roche model (es is the unit radial vector of cylindrical coordinates and er

that of spherical coordinates). We find that the flux is given by

F D � L

4	R2e

�
�er

r2
C !2r sin �es


F.!; r; �/ (5.24)

which shows that it depends only on ! and a scaling factor L
4	R2e

, hence the name
“!-model”.

5.2.6 Comparison with 2D Models: A Test
of the ˇ- and !-Models

After the foregoing mathematical developments we certainly would like to compare
the results of this modeling to more elaborated models. For this purpose, we
compared the latitude variations of the flux with the prediction of fully two-
dimensional ESTER models (Espinosa Lara and Rieutord 2013). We recall that
ESTER models give a full solution of the internal structure of a rotating early-type
star including the differential rotation and the meridional circulation driven by the
baroclinicity of the envelope. They also include the full microphysics (opacity and
equation of state) from OPAL tables. Figures 5.3 and 5.4 show that the !-model
matches very well the output of the full ESTER models. Moreover, we also note

Fig. 5.3 Left: Scaled effective temperature as a function of colatitude for a 3 M
ˇ

model at ˝ D
0:9˝k . The solid line shows the prediction of the simplified model, ‘pluses’ show the prediction
of a fully 2D ESTER model including differential rotation (see Espinosa Lara and Rieutord 2013,
for details), while the dashed line is for the von Zeipel law. Right: With the same symbols as on
left, the effective temperature as a function of the effective gravity (plots from Espinosa Lara and
Rieutord 2011)
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Fig. 5.4 Variation of the
ratio of effective temperature
at pole and equator as a
function of the flatness of the
star. Symbols are the same as
in Fig. 5.3 (plots from
Espinosa Lara and Rieutord
2011)

that the dependence of the effective temperature versus gravity is close to but not
exactly a power law.

Observational data often show the polar-equator contrast in effective temperature
in terms of the exponent ˇ defined as

Teff / gˇeff (5.25)

We shall call this approximate modeling the “ˇ-model”. Actually, note that (5.25)
demands that

ˇ D @ ln Teff

@ ln geff

ˇ̌
ˇ̌
rDR.�/

(5.26)

where R.�/ is the radius of the star at colatitude � . Since the relation between Teff

and geff is not a power law, ˇ is not constant on the surface of a rotating star. It varies
between two extreme values that we can also compute.

To make things simpler we therefore define the b-exponent as follows:

Te D Tp

�
ge

gp

�b

or b D ln.Te=Tp/

ln.ge=gp/
(5.27)

where the indices e and p refer to the equator and pole respectively. T and g
designate the effective temperature and effective surface gravity.

From the polar and equatorial expression of the flux, we get

Fe D .1 � !2/�2=3ge and Fp D e2!
2r3p=3gp
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for the !-model, while, from the Roche model,

ge

gp
D r2p.1 � !2/ with rp D 1

1C !2=2

where rp is the polar radius. So we find

�
Te

Tp

�4
D .1 � !2/1=3

.1C !2=2/2
e�2!2r3p=3

and

b D 1

4
� 1

6

ln.1 � !2/C !2r3p
ln.1 � !2/� 2 ln.1C !2=2/

(5.28)

We plotted in Fig. 5.5 the values of b with increasing values of the flatness
(namely with increasing rotation). In this figure we see that the b-exponent is close
to a linear dependence b D 1

4
� 1

3
" up to " D 0:3. However, note that since the true

dependence is not a power law, ˇ, as given by (5.26), varies at the surface of a given
star. We also show in Fig. 5.5 its range of variation and it is clearly not negligible
when " is larger than �0.15. This means that if we had access to a very high spatial
resolution of the stellar surface we would find different ˇ’s whether we look at the
pole (large values) or at the equator (low values).

Fig. 5.5 The ˇ-values from various models: The solid line shows the b-exponent of the !-model,
while the dot-dashed line shows the corresponding ESTER model. The extra dashed lines give
the range of ˇ values spawned at the stellar surface by a ˇ-model. Data from interferometric
observations of some early-type stars are shown (from Domiciano de Souza et al. 2014)
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If the ˇ-model is a poor representation of the latitudinal variation of the flux, can
we devise a better one? Surely, a decomposition of the effective temperature on the
spherical harmonics basis, namely

Te.�/ D
X
l;m

tl
mYm

`

has the advantage of being model independent. The coefficients of the expansion are
the results of observations. Such an expansion is already used for the description of
spotted stars for the reconstruction of their magnetic fields (e.g. Donati et al. 2006
but see also the lecture of Kochukhov in this volume).

In Fig. 5.5, we also show the observationally derived values for a few early-type
stars observed with interferometers. The matching is quite remarkable, even if some
cases like ˛ Cep certainly need a more detailed study.

To finish with the case of early-type stars, let us consider the case of small
rotations. We may first derive the linear dependence of the b-exponent with ".
From (5.28) we get

b D 1

4
� 1

6
!2 C O.!4/ or b D 1

4
� 1

3
"C O."2/ (5.29)

where we observed that " D 1� rp. This expression shows that in the limit of small
rotation we recover von Zeipel law. To understand the origin of this property, it is
useful to reconsider the !-model and the expression of the function F.r; �/. Let us
first solve (5.18) in the limit ! 
 1. This yields

 D � C 1

3
!2 sin � cos � C O.!4/ (5.30)

From this relation, we derive the asymptotic expression of F.r; �/ at low !, namely

F.r; �/ D 1C 2

3
!2r3

The latitudinal dependence has disappeared. Hence the latitudinal variations of the
flux are those of the effective gravity. Therefore, von Zeipel law applies at low
rotation rates. We can understand this result, if we recall that in the limit of zero
rotation, the star is spherical and all surfaces of constant pressure, temperature, etc.
are spheres so that we can consider the gravitational potential or the pressure as the
independent variable. Thus we recover a kind of barotropic situation where one can
use a relation between pressure and density, and derive a von Zeipel law.
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5.3 The Case of Convective Envelopes

5.3.1 Lucy’s Problem

In the 1960s it was realized that gravity darkening was very important for the
interpretation of light curves of contact binaries (like the W UMa-type stars). But
most of these stars are low-mass stars, thus with a convective envelope. The use of
von Zeipel law, which is based on heat diffusion, was therefore doubtful.

So Lucy (1967) asked: “What is the gravity-darkening law appropriate for late-
type stars whose subphotospheric layers are convective?” Lucy’s reasoning was the
following.

In the convective envelope of a rotating star, if we go deep enough, we should
reach a medium of constant entropy. This value should be the same whatever
the latitude. 1D models show that the entropy jumps from a minimum near the
surface (where the convective driving ceases) to a plateau in the deep layers where
convective mixing is efficient (see Fig. 5.6). Lucy argues that the value of the entropy
s on this plateau is a function of the surface gravity gs and effective temperature Teff.
He thus writes

s 	 s.gs;Te/ (5.31)
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In the case of a rotating star, where gs and Teff vary, we must have

s.gs;Te/ D s0 (5.32)

where s0 is the entropy on the plateau. If we differentiate this expression with respect
to gs and Te, we find that

@s

@gs
dgs C @s

@Te
dTe D 0

in the deep layers of the rotating star. Since we admit that Te / gˇs , then we have

@s

@ ln gs
C ˇ

@s

@ ln Te
D 0 (5.33)

Thus, if we are able to evaluate the values of the above partial derivatives, we can
obtain ˇ. For that, Lucy considered various 1D neighbouring models (we do not
know how the variations were made), and evaluated the partial derivatives so as to
find ˇ. Using five stellar models (three with M D 1Mˇ, two with M D 1:26Mˇ),
he found that

0:069 � ˇ � 0:088

Lucy adopted ˇ D 0:08 as a representative value.

5.3.2 A New Derivation of Lucy’s Result

It is interesting to note that Lucy’s results may be derived from simple considera-
tions on one dimensional stellar models in the solar mass range.

Let us first recall that the surface of a star is usually determined by a surface
pressure given by

P D 2gs

3�
(5.34)

where gs is the surface gravity and � an average opacity. This boundary condition
comes from the assumption of hydrostatic equilibrium of the atmosphere, namely

@P

@z
D ��g ” 1

��

@P

@z
D � g

�
” @P

@�
D g

�
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where the last relation is integrated from the zero optical depth down to � D 2=3.
In the range of density and temperatures typical of the solar type stars, opacity may
be approximated by a power law of the form:

� D �0�
�T�s (5.35)

For instance Christensen-Dalsgaard uses � D 0:408 and s D �9:283 for the Sun
(e.g. Christensen-Dalsgaard and Reiter 1995).

Now in convective envelopes, the variation of pressure and density are related to
temperature through

P / TnC1 and � / Tn :

namely with a polytropic law with n D 3=2.
Using the foregoing power laws for the opacity, pressure and density, we can

express gravity as a function of temperature. We find that

g / Tn.�C1/C1�s

Identifying temperature and effective temperature, we find a gravity darkening
exponent which reads:

ˇ D 1

n.�C 1/C 1 � s
(5.36)

Using Christensen-Dalsgaard’s solar values and n D 3=2, the foregoing expression
yields

ˇ ' 0:0807

which is precisely the value found by Lucy. This is no surprise since Lucy used
models similar to solar models, so the power law fit of Christensen-Dalsgaard is
appropriate.

This derivation clearly shows that this ˇ-exponent, as defined by (5.33), depends
on the chemical properties of the surface through the opacities.

5.3.3 Can Lucy’s Law Represent a Gravity Darkening Effect?

The foregoing derivation of Lucy’s result enlights us on the origin of Lucy’s value of
the ˇ exponent. We see that it is essentially due to the strong dependence of opacity
with temperature in the surface layers. Since the values for � and s are chosen
to fit the table values in some range of density and temperature, we understand
that Lucy’s result applies only to stars similar to the Sun, in terms of gravity and
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effective temperature. We may note, as Espinosa Lara and Rieutord (2012), that
if the opacity law extend in the deep layers so as to control the structure of the
envelope and leads to a radiative one, then ˇ D 1=4 because the polytropic index
is n D .s C 3/=.� C 1/. We recover the previous result for non rotating radiative
envelopes. We see that when the opacity is such that the polytropic index is less than
3/2, and the envelope is convective, the ˇ is governed by the opacity of the surface
layers, those which are assumed to be transparent and fixing the atmosphere. The
structure of the envelope is close to the adiabatic index n D 3=2.

Now we wish considering the case of rotating stars. The question is whether we
can use the foregoing value of the exponent, if we consider a fast rotating star of
solar type. A first obstacle is the validity of the boundary condition (5.34), which
relies on a hydrostatic equilibrium. When rotation is present such an equilibrium
is impossible because of baroclinicity (for the same reason as the origin of the
so-called von Zeipel paradox, see Rieutord 2006). The proper boundary condition,
replacing (5.34) should be derived from

v � rv D �1
�
rP � r˚

where v is the fluid velocity in an inertial frame. Basically the flow is a differential
rotation plus some weak meridional currents. The important point is that the
differential rotation is latitude dependent. Hence, if we were to use some pressure
boundary condition like (5.34), we should expect some extra variations from this
latitudinal differential rotation. But this is likely not the whole story as we shall
discuss it now.

If we consider the deep convective envelope of a rapidly rotating star, we might
consider too contradicting effects. First the Coriolis effect: analysis of a linear
stability of a convectively unstable layer shows that polar regions are less unstable
than equatorial ones. This a consequence of the presence of the Coriolis force.
This force indeed prevents variations of the velocity field along the rotation axis
(the so-called Taylor–Proudman theorem). It shows up in numerical simulations as
convective rolls parallel to the rotation axis near the equatorial regions (Glatzmaier
and Olson 1993). For stars this may imply that the convective flux is larger in the
equatorial plane than in the polar region, thus meaning a negativeˇ. However, in the
equatorial plane the effective gravity is less, and so is the buoyancy force. This is the
effect of centrifugal force, which therefore points to more flux in the polar region
(thus for a positive ˇ). The conclusion of the foregoing argument is that nothing is
clear. We may only guess that if Lucy’s law applies, it is for slowly rotating stars
of solar type only. This is a deceptive conclusion since we may have interesting
data only on fast rotators or evolved stars with weak self-gravity. In addition, the
previous remarks do not mention the magnetic fields that are almost unavoidable in
late-type stars.
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Fig. 5.7 Schematic representation of the primary star with filling factor � D 0:8. The position of
the Lagrange point L1 is shown on the z-axis that joins the centre of the two stars (from Espinosa
Lara and Rieutord 2012)

5.4 Binary Stars

Binary stars is another domain where gravity darkening has been considered, mainly
for reproducing the light curves of eclipsing binaries. We may wonder if the !-
model can be generalized to predict the gravity darkening of a star belonging to a
binary system. It does but without any (known) analytic solution.

Let us follow the work of Espinosa Lara and Rieutord (2012). In the radiative
envelope of an early-type star member of a binary system we can still write the
conservation of the flux and assume the anti-parallelism of flux and effective gravity:

DivF D 0 and F D �f geff

but now the effective gravity comes from the 3D potential:

� D �GM1

r
� GM2p

a2 C r2 � 2ar cos �

�1
2
˝2r2.sin2 � sin2 ' C cos2 �/C a

M2

M1 C M2

˝2r cos � ;
(5.37)

where M1 and M2 are the masses of the two stars, ‘a’ is the distance between the two
stellar centres and ˝ is the orbital angular velocity. The orbit is assumed circular.
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Let us write Div. f geff/ D 0 as

n � r ln f D r � geff

geff
; (5.38)

where we set geff D �geffn.
We consider the three-dimensional curve C.�0; '0/ that starts at the centre of the

star with the initial direction given by .�0; '0/, and that is tangent to n at every point.
C.�0; '0/ is therefore a field line of the effective gravity field.

The value of f at a point r along the curve can be calculated as a line integral

f .r/ D f0 exp

�Z
C.�0;'0/

r � geff

geff
dl

�
for r 2 C.�0; '0/ : (5.39)

Despite much efforts no analytical expression could be found for f . Expres-
sion (5.39) is thus integrated numerically.

One interesting result of this approach, is that there is not a one-to-one relation
between effective gravity and effective temperature. Indeed, because of the absence
of symmetry of the star (except of the equatorial one if the obliquity is zero), two
different points of the stellar surface may have the same effective gravity but a
different effective temperature. This property comes from expression (5.39): the
path integrals that lead to two points of identical effective gravity are not necessarily
the same and can lead to different values of the flux. This property is illustrated in
Fig. 5.8. In this figure we see that the curve Teff D f .geff/ is not smooth because

Fig. 5.8 From Espinosa Lara and Rieutord (2012), correlation of effective temperature and
effective gravity in the primary early-type star of a binary system. Mass ratio is unity and the
star fills the Roche lobe at 95 % (see text for our definition). The correlation may be represented
by a ˇ-exponent of 0.229. The solid line shows a linear fit, the dashed line the von Zeipel law, and
pluses are from our generalized !-model
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similar values of geff lead to different values of Teff. Fortunately, these variations are
small.

As in Espinosa Lara and Rieutord (2012), we define q as the mass ratio, and
evaluate the filling of the Roche lobe by the radius � of the star along the line joining
the stellar centres, taking the distance between the star centre and the Lagrange L1
point as unity. Hence, a star filling its Roche lobe has � D 1 while the one filling it
at 95 % has � D 0:95 (see Fig. 5.7). The different positions where the same effective
temperature are found, is illustrated in the two cases shown in Fig. 5.9. There we see
that the curves of isoflux are not simple curves over the stellar surface.

As shown by Djurašević et al. (2003), the determination of the ˇ-exponent from
the light curves of semi-detached binaries is almost impossible since magnetic spots
induce similar variations (see Figs. 5.10 and 5.11).

Fig. 5.9 From Espinosa Lara and Rieutord (2012): distribution of the effective temperature at the
surface of a tidally distorted star. Left: q D 1 and � D 0:8. Right: q D 1 and � D 0:95

TV Cas

PHASE – 0.25

Fig. 5.10 A model of TV Cas that leads to ˇ D 0:15 from fitting the light curve (from Djurašević
et al. 2003)
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TV Cas

PHASE – 0.25

Fig. 5.11 The second model with a spot and ˇ D 0:25 for TV Cas (from Djurašević et al. 2003);
the difference between the calculated and observed light curve is the same as with the model of
Fig. 5.11

5.5 Conclusions

To conclude these notes, I would like to stress a few points on gravity darkening:

• As far as non-magnetic early-type stars are concerned, gravity darkening has no
longer to be proved. The use of the ˇ-model, which is not physically sound can
be left aside and replaced by the !-model, which has the advantage of giving a
direct estimate of the ! parameter.

• As far as late-type stars or giant stars are concerned, the situation is much
more uncertain. The problem is indeed more difficult both on the theoretical
and observational sides. On the theoretical side, the absence of any universally
accepted model of turbulent rotating convection impedes any serious prediction
on the latitude dependence of the convective flux. Observational constraints are
therefore most welcome. However, this is not a simple matter either. Convective
envelopes are usually harboring magnetic fields which can disturb the flux
distribution. Ideally, the surface of these stars should be constrained by both
interferometers and Zeeman-Doppler Imaging so as to disentangle the effects.

• Finally, for both type of (single) stars, we may recommend the following scheme
of hypothesis and measurements. First assume the axi- and equatorial symmetry
of the star. Then, if the star is centrally condensed (like an early-type or a giant
one), adopt the Roche model. If the star is not centrally condensed (like a late-
type star of the main sequence), a bipolytropic model is fine. Such a model,
which fits the radiative and convective zones with a polytrope, just depends on
three parameters, mass, equatorial radius and !, just like the Roche model. Then,
the flux or the effective temperature Teff.�/ can be derived after an expansion
on the spherical harmonic basis along with an atmosphere model used for the
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determination of the limb darkening effect. The gravity darkening law can then
be evaluated from the curve (or correlation) Teff.�/ versus geff.�/.
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and the opportunity to present in more details the recent work I did with Francisco Espinosa Lara
on gravity darkening. This school triggered many stimulating discussions that helped me deepen
this subject. Finally, I would like to stress that this work owes much to Francisco who had the
original idea of the !-model.

Appendix: Angular Velocity with Respect to Critical Rotation

In this appendix we discuss the correspondence between two definitions of the
scaled angular velocity. The first one is the one we used in the text, namely

! D ˝

˝k
D ˝

 s
GM

R3e

!�1

where ˝k is the orbital angular velocity for an orbit at the actual equatorial radius
of the star.

The other definition is based on the Roche model and considers the angular
velocity ˝c such that the rotation on the equatorial radius is keplerian. This latter
definition is a true critical angular velocity, while the previous one is a keplerian
velocity at the actual equatorial radius. However, the critical angular velocity is
model dependent, this is why we have to mention Roche’s model for the definition
of ˝c. The first definition does not need any model, but it is not the exact critical
angular velocity. This latter quantity cannot in general be computed a priori with
just a given spherical model of a star. It needs a full computation of the structure at
the actual critical velocity and is thus an output of 2D models like ESTER ones (e.g.
Espinosa Lara and Rieutord 2013).

So we now only consider Roche models where all quantities can be derived in a
simple manner. We recall that the polar Rp and equatorial Re of an equipotential of
a star rotating at angular velocity˝ are related by

GM

Rp
D GM

Re
C 1

2
˝2R2e (5.40)

Then, the critical angular velocity˝c and the critical equatorial radius Rec are related
by

˝2
c D GM

R3ec

(5.41)
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and hence

Rec D 3

2
Rp (5.42)

at critical rotation.
If the rotation is subcritical, the Roche model gives the following relation

between Re and Rp

Rp D Re

�
1C !2

2

��1
(5.43)

But we may take ˝c as the scale of the rotation rate and set

Q! D ˝

˝c
(5.44)

From the preceding definitions we get the relation between Q! and !, namely

Q! D !

r
27

8

�
1C !2=2

��3=2
(5.45)

We note that if ! D 1 then Q! D 1 as expected. We also note that if ˝ is subcritical,
then Re < 3Rp=2 and therefore˝k > ˝c, which implies that we always have

Q! � ! (5.46)

Equation (5.45) shows that it is easy to compute Q! from ! but the opposite is a little
more complicated since a cubic equation must be solved. Setting � D arcsin Q!, we
find

! D
r
6

Q! sin.�=3/� 2 (5.47)
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Djurašević, G., Rovithis-Livaniou, H., Rovithis, P., Georgiades, N., Erkapić, S., & Pavlović, R.
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Chapter 6
Interferometry to Determine Stellar Shapes:
Application to Achernar

Pierre Kervella

Abstract The shape of stellar photospheres can depart significantly from the
spherical geometry, due e.g. to fast rotation. In this chapter, I focus on the application
of long-baseline interferometry to the determination of the photospheric shape of
fast rotating stars. I present the example of the VLT Interferometer observations of
the nearby Be star Achernar (˛ Eri), using the VINCI (two telescopes) and PIONIER
(four telescopes) beam combiners. I present the adjustment of a simplified model of
the light distribution of Achernar to the measured interferometric visibilities and
closure phases. This example application is based on the LITpro software from
the JMMC.

6.1 Introduction

Optical interferometry at visible and infrared wavelengths over hectometric base-
lines provides a sufficiently high angular resolution to spatially resolve the photo-
sphere of nearby stars. This gives the possibility to measure their size, shape and
surface brightness distribution, that are intimately linked to their physical properties
(internal structure, rotation, convection, . . . ).

The southern star Achernar (˛ Eridani, HD 10144) is the brightest and one of the
nearest Be stars (mV D 0:46, 	 D 22:7˙ 0:6mas). Its estimated projected rotation
velocity v sin i ranges from 220 to 270 km/s and the effective temperature Teff is
around 15;000K (Domiciano de Souza et al. 2014). Such rapid rotation (�80 % of
the critical velocity) induces two effects on the star structure: a rotational flattening
and an equatorial darkening (von Zeipel 1924).

The extreme flattening of the photosphere of Achernar was first measured by
Domiciano de Souza et al. (2003). This discovery turned Achernar into a prominent
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fiducial object to study the effect of rotation on the structure and atmospheric
properties of fast rotating stars. A recent review of the field of optical interferometry
applied to fast rotators can be found in van Belle (2012) and observation reports in
Aufdenberg et al. (2006) and Monnier et al. (2014). As a Be star, Achernar presents
episodic emission lines in its spectrum, created by the temporary appearance of an
equatorial disk. Due to the high temperature of its polar caps, is shows a relatively
strong polar wind (Kervella and Domiciano de Souza 2006). It was also discovered
recently by Kervella and Domiciano de Souza (2007, see also Kervella et al. 2008)
that Achernar is a binary star with a close main sequence companion of early A
spectral type.

6.2 VLTI Observations of Achernar

Thanks to its brightness and southern declination (ı D �57ı), Achernar has
been observed regularly since the first light of the VLT Interferometer in 2001
(Glindemann et al. 2003; Mérand et al. 2014), first using the VINCI instrument
(Domiciano de Souza et al. 2003; Kervella and Domiciano de Souza 2006), then
with the beam combiners MIDI (Kervella et al. 2009), AMBER (Domiciano de
Souza et al. 2012) and PIONIER (Domiciano de Souza et al. 2014).

The observations discussed here were obtained with the two-telescope beam
combiner VINCI (Kervella et al. 2004) in the H (1.64�m) and K (2.2�m) bands,
and the four-telescope instrument PIONIER (Le Bouquin et al. 2011) in the H band.
The details of the observations with these two instruments are presented respectively
in Kervella and Domiciano de Souza (2006) and Domiciano de Souza et al. (2014).
Photographs of the different telescopes used for these observations and of one of the
long optical delay lines of the VLTI are shown in Fig. 6.1.

The VINCI observations produced a set of squared interferometric visibility
measurements over a range of azimuth angles and projected baseline lengths.
Thanks to the larger number of telescopes, the observations obtained with PIONIER

Fig. 6.1 Left: Light collectors used for the observations of Achernar: 0.4 m test siderostat
(foreground), 1.8 m auxiliary telescopes (right) and 8.2 m unit telescopes (background). Right:
One of the long delay lines of the VLTI
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Fig. 6.2 Coverage of the .u; v/ plane of the spatial frequencies for the VINCI (left) and PIONIER
(right) observations of Achernar

resulted in a much denser coverage of the .u; v/ plane of the spatial frequencies
(Fig. 6.2). The PIONIER spectral dispersion over seven channels results in short
segments in the .u; v/ plane, as opposed to the single points sampled by the VINCI
instrument. In addition, the six baselines sampled simultaneously by PIONIER
give access to three independent closure phase triangles. The closure phase is a
particularly interesting observable for fast rotating stars as it is related to the degree
of deviation of the observed object from point symmetry. As the polar caps of fast
rotators are brighter than their equatorial belt (due to the Von Zeipel effect), the
closure phase is an excellent proxy for the inclination of the rotation axis on the line
of sight.

6.3 Analysis Using LITpro

The objective of the application presented here is to determine the equatorial angular
size, flattening ratio and orientation on sky of Achernar’s apparent disk. With the
PIONIER closure phases, we will also probe the degree of asymmetry of the flux
distribution at the surface. The VINCI data were processed using the dedicated
pipeline,1 and then converted to the OIFITS data format. As discussed by Domiciano
de Souza et al. (2014), the raw data from the PIONIER instrument have been
reduced with the dedicated pipeline2 available from IPAG in France, that produced
calibrated squared visibilities and phase closures.

1vndrs package, see Kervella et al. (2004).
2pndrs package, see Le Bouquin et al. (2011).



130 P. Kervella

As a practical example of the analysis of interferometric data using a model-
fitting approach, I present an analysis of the OIFITS files using the LITPro3

software (Tallon-Bosc et al. 2008). For simplicity, I consider a uniform ellipse as
the morphological model to adjust to the VINCI and PIONIER data. This model has
three parameters in total: the major axis of the ellipse a (in milliarcseconds, hereafter
mas), the flattening ratio f D a=b (with b the minor axis) and the position angle of
the minor axis �pol (corresponding to the polar axis position angle with respect to
North, in degrees).

It should be noted that the uniform ellipse model is only a poor match for the
actual intensity distribution of Achernar. As shown by Domiciano de Souza et al.
(2014), the polar temperature reaches more than 17,000 K, while the equatorial
temperature is below 13,000 K. This results in a strongly non-uniform brightness
of its apparent disk, as the polar caps have a surface brightness three times higher
than the equator. Moreover, as shown by Kervella and Domiciano de Souza (2006),
Achernar is surrounded by an extended envelope, that we neglect in this simplified
approach. We also neglect the contribution of the close-in stellar companion of
Achernar, that amounts to only �3 % of the primary flux in the near-infrared.

6.3.1 VINCI Data Set Only

We first fit the VINCI squared visibilities alone, in order to be able to compare
with the results of a global fit including the extensive PIONIER data set. The
results are presented in Fig. 6.3, and the derived parameters are listed in Table 6.1.
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Fig. 6.3 Left: VINCI squared visibilities of Achernar (red crosses with error bars), uniform ellipse
model visibilities (black circles) and polar visibility curve of the model (blue curve). Right: Image
of the best-fit uniform ellipse model

3LITpro software, available at http://www.jmmc.fr/litpro.
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Table 6.1 Parameters of the uniform ellipse model of Achernar

Data set f D b=a a (mas) �pol (deg) �2red

VINCI 1:39˙ 0:04 2:33˙ 0:06 45:6˙ 1:9 2:8

VINCICPIONIER 1:239˙ 0:005 1:914˙ 0:005 36:1˙ 0:7 2:3
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Fig. 6.4 Left: PIONIER squared visibilities of Achernar and adjusted model (see Fig. 6.3 for
symbols). Right: Two dimensional visibility function of the best-fit uniform ellipse model (color
scale) and position of the sampled .u; v/ points

The reduced �2 of the fit of 2.8 shows that the chosen model is not a very
good representation of the data. This is particularly visible in Fig. 6.3 for the
lower spatial frequencies, for which the observed visibilities are systematically
below the model visibilities. This behavior is caused by the presence of spatially
extended emission. This envelope was identified by Kervella and Domiciano de
Souza (2006) using a model combining a uniform ellipse and a Gaussian extended
component.

6.3.2 Full VINCICPIONIER Data Set

The .u; v/ plane coverage of the VINCICPIONIER data sets is much denser
and more uniform than the VINCI data alone, as shown in Fig. 6.2. The best-fit
parameters of the uniform ellipse model are listed in Table 6.1. These parameters
are in reasonably good agreement with those derived by Domiciano de Souza
et al. (2014) using a physically realistic model of the star. The reduced �2 of
the fit is slightly better than for the VINCI data alone, although it still shows
that our simple ellipse model is insufficient to interpret the interferometric data
(Fig. 6.4).
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Fig. 6.5 Closure phases measured by PIONIER on Achernar (red crosses with error bars). The
centrally symmetric uniform ellipse model (black circles) has naturally a zero closure phase at all
spatial frequencies

Figure 6.5 shows the closure phase signal from the PIONIER observations. As
the uniform ellipse model is point-symmetric, the corresponding closure phases are
always equal to zero. This corresponds well to the observed values, indicating that
the actual light distribution on Achernar is close to centrally symmetric. Taking into
account the Von Zeipel effect, the inclination of the rotation axis on the line of sight
can therefore be either close to 0ı (i.e. the star is seen pole-on) or 90ı (the star is
seen equator-on). Considering that the measured flattening is large, this implies that
the star is seen close to equator-on. An almost pole-on star would appear circular,
as in the case of Vega (Aufdenberg et al. 2006). This is qualitatively consistent with
the results obtained recently by Domiciano de Souza et al. (2014) for Achernar, who
determined a high inclination of �61ı.
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6.3.3 Discussion

The combined analysis of the VINCICPIONIER results in significantly different
model parameters than with the VINCI data alone. Figure 6.6 shows a graphical
view of the two resulting ellipses. While the position angle of the polar axis on the
sky is reasonably similar, the flattening ratio is significantly lower for the global
fit than for the VINCI data only. This difference may be of astrophysical origin,
as Achernar is a Be star, and is therefore episodically surrounded by an equatorial
gaseous disk. The presence of such a disk at the epoch of the VINCI observations
and not at the epoch of the PIONIER observations would result in a larger apparent
equatorial size.

But more likely, the true reason for this difference is the limited .u; v/ coverage
of the VINCI observations, compared to the PIONIER data. In particular, as shown
in Fig. 6.2, the position angle corresponding to the equator (�36ı) is poorly covered
by the VINCI measurements, as only shorter baselines are available in this range of
position angle compared to the polar direction.

Finally, the model that is adjusted to the data (uniform ellipse) is an imperfect
match to the actual light distribution of Achernar. The true light distribution of
Achernar induces a baseline and azimuth dependence of the visibility that is not
reproduced properly by the model, and causes biases in the derived parameters.

Fig. 6.6 Best-fit model representations using the VINCI visibilities alone (larger ellipse), and the
full VINCICPIONIER data set (smaller ellipse)



134 P. Kervella

6.3.4 Conclusion

Using a very simple uniform ellipse model, we established that the derived flattening
ratio f D a=b of Achernar depends on the data set that is selected for the fit (VINCI
alone or VINCICPIONIER). This undesirable effect is caused by the relatively poor
.u; v/ coverage of our VINCI observations, and the fact that the uniform ellipse
model is insufficient to reproduce properly the two dimensional visibility function
of the star in the .u; v/ plane. As the model visibility function is adjusted to a limited
number of measurements, the fitted parameters depend on the distribution of the
sampled spatial frequency in the data set.

To interpret properly the interferometric observations, the solution is to adopt a
model of the stellar light distribution as realistic as possible. It can be assembled
from a combination of the observed properties of the star (e.g. from spectroscopy,
photometry, . . . ) and its expected internal structure from stellar interior models
(Espinosa Lara and Rieutord 2007; Rieutord 2013). An example of a suitable model
of Achernar is presented in Domiciano de Souza et al. (2014), where an application
of image reconstruction to this star is also discussed. It is in any case essential
to have a .u; v/ plane coverage sufficiently dense and uniform (as the PIONIER
observations) to prevent biases on the derived parameters (in particular the position
angle of the polar axis on the sky).

Once these conditions are met, optical interferometry is extremely constraining
to determine stellar shapes and other physical parameters linked to the intensity
distribution on the photosphere. As interferometric measurements are independent
from the other classical disk-integrated observables, the optimal approach is in
most cases to include as much independent observables in the input data set
(e.g. spectroscopy, photometry, . . . ) while keeping the number of free parameters
in the model as low as possible.
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Chapter 7
Interferometry to Image Surface Spots

Guy Perrin

Abstract I present in this lecture the technique of interferometric imaging at
optical/infrared wavelengths. The technique has matured since the pioneering work
of Michelson at the end of the XIXth—beginning of the XXth when he first resolved
the surface of a star, Betelgeuse, with his colleague Pease. Images were obtained
for the first time 20 years ago with the COAST instrument and interferometers
have made constant progress to reach the minimum level where blind image
reconstruction can be achieved. I briefly introduce the topic to recall why studying
the surface and close environment of stars is important in some fields of stellar
physics. I introduce the theory of imaging with telescopes and interferometers. I
discuss the nature of interferometric data in this wavelength domain and give a few
insights on the importance of getting access to visibility phases to obtain information
on asymmetries of stellar surfaces. I then present the issue of aperture synthesis
with a small number of telescopes, a signature of optical/infrared interferometers
compared to the radio domain. Despite the impossibility to measure the phase of
visibilities because of turbulence I show that useful information can be recovered
from the closure phase. I eventually introduce the principles of image reconstruction
and I discuss some recent results on several types of stars.

7.1 Motivations for Interferometric Imaging of Stars

The reasons to image the surface of stars to understand stellar physics are many
whatever the evolution stage:

• Departure from spherical symmetry because of rotation or interactions in bina-
ries;

• Intensity variations even in the simplest cases: basic limb darkening, gravitational
darkening for rotating stars, convection, granulation;
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• The spatial variations of magnetic field and the link with convection in red
supergiants for example;

• Spatial variations of surface brightness in the atmosphere of evolved stars;
• Interactions with the close circumstellar environment (e.g. understanding the

onset of mass loss);
• Other reasons, the list could be quite long!

The problem of mass loss in red supergiants is a privileged science case for the
author. The case for lower mass stars going through the asymptotic giant branch and
in particular through the Mira phase is much better understood. The large amplitude
pulsations input enough mechanical energy to lift the atmosphere up to an altitude
where dust can condense. Radiation pressure from the star pushes the grains away to
produce a wind in which the gas is dragged to reach high velocities of a few 10 km/s.

This scenario does not apply to red supergiants by lack of sufficient large
amplitude pulsations. However, dust is detected at distances of a few tens of stellar
radii from the photosphere of red supergiants (e.g. Danchi et al. 1994). Other sources
of mechanical energy therefore need to be invoked. Betelgeuse has been a privileged
playground for this quest because it is the largest red supergiant seen from Earth.
One source of energy may be produced by large-scale convective motions who
generate turbulent pressure which may be at the origin of mass loss by decreasing
the effective gravity (Josselin and Plez 1997). Those upward and downward motions
were detected in CO lines by Ohnaka et al. (2009) with the AMBER instrument at
VLTI. Magnetic fields may be another source of energy. Haubois et al. (2009) have
imaged convective cells at the surface of Betelgeuse with the IONIC instrument
at IOTA and Aurière et al. (2010) have detected a 1 G magnetic field by Zeeman
splitting with the NARVAL instrument at the Bernard Lyot Telescope at Pic du Midi.
The existence of the latter may be caused by a dynamo effect in the convective
cells. Convection is the key in this mechanism too. Given the large size of the
convective cells and their characteristic time scales, one expects inhomogeneities
in the atmospheric layers at the base of the mass loss process. Images taken by
Kervella et al. (2009) with the NACO instrument at VLT show plumes that could be
connected to the process of mass loss and that are consistent with these scenarios.

The understanding of the origin of mass loss in red supergiants probably comes
with a complete picture of the zone located just above the photosphere where it starts
from. The current largest telescopes can barely resolve the surface of the largest
stars like Betelgeuse. The future Extremely Large Telescopes (ELTs) will allow to
resolve the surface of the stars larger than 10 mas at near-infrared wavelengths.
Very few stars match this requirement as only four red supergiants have sizes
larger than 10 mas (counts base on the CHARM2 catalog by Richichi, Percheron
& Khristoforova 2005). As a consequence, a much higher angular resolution is
required. The milli-arcsecond scale is a good goal as it will allow to produce detailed
images of the largest stars and corresponds to the resolution limit for a few tens of
evolved stars at near-infrared wavelengths. Such an angular resolution can only be
obtained by a large optical instrument with a diameter of 100–200 m depending on
wavelength. Diluted apertures need to be put together to reach such scales. It is
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the goal of this lecture to explore how images can be obtained with this type of
instrument.

7.2 Theory of Imaging with Telescopes and Interferometers

7.2.1 Imaging with Single Apertures

The theory of imaging of uncoherent sources in the most simple case of a linear
system invariant by translation leads to the following relation between the spatial
intensity distribution of the source and the image as a function of the angular
coordinates ˛ and ˇ:

Im.˛; ˇ/ D O.˛; ˇ/ ? PSF.˛; ˇ/ (7.1)

where PSF is the Point Spread Function, the image of a perfectly pointlike source.
In the case where imaging is limited by the diffraction limit of an optical system,
the PSF is the Fourier Transform of the autocorrelation function of the pupil:

PSF.˛; ˇ/ D
Z Z

P ˝ P.u; v/e�2i	.˛uCˇv/dudv (7.2)

where the pupil function P is equal to 1 in the pupil and 0 outside, u and v are
the spatial frequency coordinates and correspond to linear coordinates in the pupil
plane divided by the wavelength. P ˝ P.u; v/ is the Optical Transfer Function of the
imaging system. According to Eq. 7.1, it acts as a filter on the source spatial intensity
distribution. For a circularly symmetric single aperture of diameter D, the OTF is a
low-pass filter with cut-off frequency D=�. All frequencies are set to 0 above this
cut-off frequency by the imaging process. This sets the angular resolution to �=D
in absence of aberrations. All frequencies up to the cut-off frequency are present in
the image, although they are all the more attenuated as they are close to the cut-off
frequency. The image is not a perfect representation of the source but the presence of
all frequencies up to the cut-off frequency makes it a useful image for astronomical
interpretation, unless the size of the object is close to the diffraction limit and then
a deconvolution process is necessary to disentangle the image information contents
from diffraction effects.

These relations are the direct consequence of the theory of diffraction of
Fraunhofer. In case the system has some optical aberrations (either static or due
to the turbulence of the atmosphere), the relations still hold but the pupil function is
now complex and equal to:

Pab.u; v/ D P.u; v/ei�ab.u;v/ (7.3)

where �ab.u; v/ is the distribution of phase due to aberrations across the pupil.
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7.2.2 Imaging with Sparse Apertures

This theory applies as well when the aperture is diluted as is the case for an
interferometer. The pupil function is then the discrete sum of sub-pupils that do
not overlap. The autocorrelation function is not a continuous function anymore as is
the case for a single pupil but has a number of peaks: N.N �1/ centered on non-zero
frequencies ˙Bij=� (where Bij is the distance between telescopes i and j) and 1 peak
centered on 0, the sum of all individual OTFs. The high-frequency peaks are the pure
interferometric parts of the OTF. The more diluted the interferometer, the larger the
gaps between the peaks in the OTF. This is the main difference with single-aperture
imaging: depending on the distribution of the individual pupils, the OTF may be a
collection of diluted peaks with many spatial frequencies missing. The consequence
is manyfold: (1) the PSF has several peaks and the direct image obtained with the
interferometer is no longer directly useful to astronomical interpretation (2) the
imager is no longer a low-pass filter but a collection of band-pass filters (3) the
deconvolution process is difficult to apply as many spatial frequencies are missing.
As a consequence, no direct useful image can be obtained with the interferometer
and other techniques are required to obtain an image as described in the following
sections.

The angular resolution of the interferometer (the diffraction-limited angular
resolution) can be derived as in the case of a single-pupil imager: it is the reciprocal
of the highest non-zero spatial frequency in the OTF. If the maximum baseline is
Bmax it is therefore �=Bmax. The angular resolution is approximately:

�

1mas
D �

1�m
� Bmax

200m
(7.4)

In the case of the VLTI where the maximum baseline is 200 m, the angular
resolution in milli-arcseconds therefore scales as the wavelength in microns. It is
2 mas at 2�m meaning most largest red supergiants are resolved.

7.3 The Nature of Interferometric Data

The exact way to measure interferometric data depends on the type of beam
combination. However, one may consider that different beam combiners provide
the same data for highly diluted apertures when B � D, which is usually the case
for long-baseline interferometers. With this assumption, the OTF can be described
by a series of peaks of negligible width and centered on the ˙Bij=�. Each baseline
contributes to a positive Bij=� and to a negative one. The two peaks are actually
complex-conjugated with each other and carry the same information (because the
source spatial intensity distribution takes real values). By Fourier transforming
Equation 7.1, one sees that the spectrum contents of the sparse interferometer image
are the spatial frequency components of each Bij=�. The frequency components
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are the Fourier transform of the object spatial intensity distribution QO.u; v/. The
interferometer therefore samples the spatial spectrum of the astronomical source.

This result can also be obtained with the theory of spatial coherence. The reader
is referred to Goodman (1985) for a more comprehensive discussion. In case of the
two-telescope interferometer, a fringe pattern is obtained whose characteristics are
given by the complex visibility. The fringe contrast is the module of the complex
visibility and the fringe phase, or the distance of the white-light fringe to the Zero
Optical Path Difference position, is the phase of the complex visibility (Fig. 7.1).
The complex visibility is linked to the source spatial intensity distribution by the
Zernike-van Cittert theorem:

V.u; v/ D
R R

O.˛; ˇ/e�2i	.˛uCˇv/dudvR R
O.˛; ˇ/dudv

(7.5)

The complex visibility is the normalized source spatial spectrum and can also be
expressed as:

V.u; v/ D
QO.u; v/
QO.0; 0/ (7.6)

Fig. 7.1 Sum of interferograms of point-like sources in various directions. The directions are
coded with colors. Interferograms on sources in different directions are shifted relative to a
fixed reference. The shift is proportional to the angular offset. The resulting interferogram for
an extended source is the black one. As the source has a non-zero angular extent, the modulus of
the visibility jV.u; v/j is smaller than 1. In case the source is asymmetric and resolved, the phase
of the visibility �.u; v/ is no longer zero and is defined as the phase equivalent of the distance to
the Zero Optical Path Difference
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Fig. 7.2 Modulus of the visibility function of a uniform disk of diameter Ø

where the e symbol is for the Fourier transform. The visibility is a complex number
whose modulus is always smaller than 1 and whose value is exactly 1 at zero spatial
frequency with the consequence that the phase of the visibility is necessarily 0 at
small spatial frequencies. A classical example is the visibility function of a uniform
disk of Fig. 7.2. The source spatial intensity distribution is a door function with
circular symmetry˘.r=Ø/. Applying the Zernike-van Cittert theorem, the complex
visibility is equal to:

V.u; v/ D 2J1.	ØS/

	ØS
(7.7)

with S the modulus of the spatial frequency vector .u; v/. This visibility function can
be used as a ruler to measure the size of stars from a few visibility points obtained
in the first lobe. As the source is centro-symmetric, the visibility function is real.
It comes to a first null for exactly S D 1:22=Ø. This led to the historical method
by Michelson to measure the diameter of stars by searching for the first null of the
visibility function. Today, the theoretical curve is fitted to a set of points to derive the
uniform disk diameter. The phase of the visibility flips from 0 to 	 and vice-versa
after each null. The visibility of the uniform disk model is the most simple visibility
function to describe the interferometric data of a star. It can be refined to account
for limb darkening.

The visibility modulus is therefore to first order a proxy for the size of an
object. The phase of the visibility carries very important information for imaging.
The visibility is real for a centro-symmetric source, meaning the phase can only
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Fig. 7.3 Illustration of the importance of visibility phase for interferometric imaging (derived
from Buscher (2003)). Left: original pictures of Dr. D. Buscher and Pr. C. Haniff. Right: processed
images after exchanging the phase maps of the spatial spectrum or visibility. The asymmetric
features are mostly coded in the phase. Images are courtesy of Dr. D. Buscher and Pr. C. Haniff

be: �.u; v/ D 0mod.	/. But it can take any value between 0 and 	 for a
source with no particular symmetry. The visibility phase is therefore a strong
indicator of asymmetries in the source spatial intensity distribution. Figure 7.3
is a classical example derived from Buscher (2003) to show the importance of
visibility phase to reconstruct images in interferometry. The pictures of Doctor
David Buscher and Professor Christopher Haniff from the university of Cambridge
are Fourier transformed into visibilities and visibility phases are swapped. Images
are reconstructed (inverse Fourier transform) using the visibility modulus and the
swapped visibility phase maps. One can easily distinguish the picture of each
colleague in these synthetic images showing that visibility phases carry important
informations for imaging.

Since the visibility function is equal to 1 at 0 spatial frequency, the phase can
only be 0 for short telescope spacings. This means that all sources tend to look the
same and look symmetric when they are not resolved. The source has to be resolved
to be able to measure useful phase information. In practice phases can take non-zero
values below 50 % of visibility modulus. This fact can be used as a calibration tool
for phases.
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7.4 Aperture Synthesis and Supersynthesis

One of the most striking characteristics of optical/infrared interferometers is the
relatively small number of telescopes. There are several reasons to this, one of which
is the increasing complexity of the interferometer with the number of telescopes
as the beams need to be carried down to a beam combination station without loss
of spatial coherence and then need to be recombined into N.N � 1/ baselines. An
additional reason in the case of large telescopes is their cost. The major consequence
of this fact is the sparseness of the array: the .u; v/ plane is sampled with very few
peaks.

The original idea behind the aperture synthesis technique is that a large pupil
can be built with many small ones. This is a very naive idea indeed as one single
large pupil filled with small ones would lead to redundant baselines: different
pairs of telescopes would yield the same baselines and therefore the same spatial
information as they would sample the same spatial frequencies. This is illustrated in
Fig. 7.4 where 6 telescopes are recombined in two different ways. First, by trying to
fill a single large pupil, in this case the number of independent spatial components
is equal to 9 (plus the central peak that corresponds to a single-telescope OTF).
Second, by trying to maximize the number of sampled spatial frequency components
while keeping the interferometer OTF as compact as possible. This is the Golay
6 distribution of pupils whose effect is to provide exactly 15 independent spatial
frequencies while keeping the interferometer OTF compact. This example shows
that synthesizing a pupil is not what matters but what is important is to synthesize
the best OTF possible instead by maximizing the number of spatial frequencies
provided by the interferometer.

Pupil
Optical Transfer Function

Golay 6

N N 1

2
independent baselines

9 measured
spatial
frequencies

15 measured
spatial
frequencies

Fig. 7.4 Redundant and non-redundant configurations. Left: two different pupil setups with 6
apertures. Right: the supports of the OTF. The Golay 6 configuration leads to 6 high-frequency
additional peaks in the OTF
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In the above example, compactness was a major constraint. It leads to a
limited angular resolution. It is not necessarily absolutely mandatory to measure
all spatial frequencies up to a cut-off frequency. If this constraint is released
then the angular resolution can be higher. But, the .u; v/ plane sampling has to
be rich enough to minimize the number of unknowns for image reconstruction
(see Sect. 7.6). In sparse interferometers, the OTF or .u; v/ plane coverage is also
sparse. Interferometers use the rotation of Earth to increase the number of sampled
visibilities. This technique is called supersynthesis and builds upon the fact that for
each baseline of the interferometer the spatial frequency at which visibilities are
measured is the projection of the baseline in the direction of the source divided by
the wavelength. As a consequence, for a given telescope pair, the spatial frequency
will vary with time along a .u; v/ track whose characteristics depend upon the source
declination, the hour angle and the latitude of the interferometer. The equation of
.u; v/ tracks is given by (see e.g. Ségransan 2003):

u2 C
�
v � .Bz=�/ cos ı

sin ı

�2
D B2x C B2y

�
(7.8)

.u; v/ tracks are ellipses whose center is on the v axis. (u is pointing towards
East, and v towards North). Bx, By and Bz are the coordinates of the baseline vector
projected onto the axes pointing towards East, North and the meridian, respectively.
Two particular cases can be underlined:

• ı = 0o: .u; v/ tracks are straight lines parallel to the u axis;
• ı = 90o: .u; v/ tracks are circles centered on the origin.

An example of .u; v/ tracks at VLTI is presented in Fig. 7.5. This example is a
good mix between supersynthesis and the use of various telescopes or telescope

Fig. 7.5 .u; v/ tracks (left) obtained at VLTI with (right) 1 configuration with the 4 Unit
Telescopes, 2 configurations with 4 Auxiliary Telescopes and 1 configuration with 3 Auxiliary
Telescopes. Courtesy of Dr. Jean-Philippe Berger
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positions at VLTI: the rich .u; v/ plane was obtained by using 3 quadruplet
configurations (2 with the Auxiliary Telescopes and 1 with the Unit Telescopes)
and 1 triplet configuration (with the Auxiliary Telescopes), each providing 6 or 3
baselines, and by improving the .u; v/ plane coverage through Earth rotation. This
.u; v/ plane coverage is quite dense and circularly symmetric (except at the highest
spatial frequencies though) and is one of the best examples of spatial frequency
contents obtained in optical/infrared interferometry so far.

7.5 Closure Phases

Optical/infrared interferometers are very sensitive to atmospheric turbulence. The
main effect is the degradation of spatial coherence: the module of the visibility

scales with the coherent energy (Rousset et al. 1991) available in the pupil e��2� .
The variance of phase �2� increases rapidly with the diameter of the pupils: �2� D
1:03

�
D
r0

 5
3
, where r0 is the Fried parameter (the seeing is �

r0
), causing the fringe

contrast to drop with telescope diameter D. The coherent energy is improved in
interferometers using pupils larger than r0 by correcting turbulence with adaptive
optics. The combination of adaptive optics or small pupils with modal filtering with
fibers or integrated optics allows to restore very high fringe contrasts with a high
accuracy (see examples in Perrin et al. 1998 or Lacour et al. 2008).

Atmospheric turbulence and other phase errors have an another important impact
on the measurement of visibility phases. The phase of the visibility is the normalized
distance measured between the zero optical path difference (ZOPD) position and the
white light or central fringe of the interferogram (Sect. 7.3). The ZOPD position is
disturbed by the piston effect whose cause is illustrated in Fig. 7.6. The piston is
the spatial average phase in the pupil of the telescope. Different telescopes have
different pistons (the correlation decreases with the distance between telescopes)
and interferometers are sensitive to the differential piston between pupils. The
differential piston shifts the phase of the interferogram by � or induces a motion
of the ZOPD of �

2	
�. At optical/infrared wavelengths, the shift is many fringes

as shown in Fig. 7.7 where the fringe shift was measured with the PRIMA fringe
tracker of the VLTI as a function of time (Sahlmann et al. 2009). The piston
effect correlation time is small (a few tens of milli-seconds depending on seeing
conditions) and forbids any long integration time if not compensated in real time
with a fringe tracker. The non-stationarity of turbulence and the large amplitude
of piston also prevent in practice to average it down to zero. The ZOPD exact
position is therefore lost and it is not possible to measure absolute values of the
phase of visibilities. This is a very strong consequence as half of the interferometric
information (the one on asymmetries) is lost.

This was a historical problem for radio interferometry also although to a lesser
extent. The closure phase technique was invented to solve this issue (Jennison 1958).
The principle is very simple. Each telescope contributes an error �i on phase so that
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Fig. 7.6 Sketch of a 2-telescope interferometer showing the nature of differential piston. The
piston mode is the spatial average of phase in a telescope pupil. Differential piston is the
difference of average phase between 2 pupils. Differential piston causes fringe motion at the beam
combination point of the interferometer and can be compensated with fast delay lines

Fig. 7.7 Measurement of fringe shift due to differential piston with the PRIMA fringe tracker of
the VLTI as a function of time (Sahlmann et al. 2009)
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the visibility phase measured for baseline ij writes:

�obs
ij D �ij C �i � �j (7.9)

The errors can be smartly eliminated by summing the observed visibility phases
over a triangle of baselines:

�obs
12 D �12 C �1 � �2

�obs
23 D �23 C �2 � �3

�obs
31 D �31 C �3 � �1

� � � � � � � � �� � � � � � � �X
�obs

ij D
X

�ij (7.10)

Closure phases are therefore immune to piston errors or other phase perturbations
and are pure observables as they only depend on the geometry of the object. Closure
phases were first demonstrated on long baselines by the Cambridge group with the
COAST interferometer (Baldwin et al. 1996).

One can demonstrate that closure phases convey similar informations on the
asymmetries of the source as visibility phases. The closure phases are equal to
0mod.	/ and can take any value between 0 and 	 otherwise. The amount of
asymmetric flux in the spatial intensity distribution of a source is directly linked
to the closure phase value if the source is resolved by the interferometer (Monnier
et al. 2007):

Closure phase (rad) ' asymmetric flux

symmetric flux
(7.11)

Based on Huby et al. (2012) and following the theoretical derivation by Baldwin
and Haniff (2002), the 1 � dynamic range in a reconstructed image scales with the
accuracy on closure phases:

DR ' 88
p

#B

�
1o

�CP

�
(7.12)

with #B the number of independent baselines or spatial frequencies and �CP the
accuracy on closure phases. This theoretical formula is only indicative. The dynamic
range in a reconstructed image depends on other factors such as the noise on
visibility moduli and on the exact .u; v/ coverage but this gives a hint of what could
be expected. With 4 different configurations of a 4-telescope interferometer a 1o

accuracy on closure phases translates into a 1:400 dynamic range to detect spots at
the surface of a star. The best accuracy demonstrated on closure phases reaches just
a few � 0:1o (see e.g. Lacour et al. 2011) meaning that spots could be imaged if
they contain a few thousandths of the star flux.
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Closure phases are not the ideal solution to the issue of piston though. As a matter
of fact, for a 3-telescope interferometer, 3 visibility phases have to be measured
to recover the full phase information. A single closure phase is measured instead
meaning that only 33 % of the phase information can be obtained. But this is to be
compared to no phase information at all and the gain is infinite. More generally,
the amount of phase information obtained with the closure phase technique can be
derived by counting the number of independent triangles with a set of N telescopes
which is equal to .N�1/.N�2/

2
. This has to be compared to the number of baselines

N.N�1/
2

. The fraction of phase information is therefore: 1 � 2
N . It increases with

the number of telescopes and reaches 80 % with 10 telescopes or ' 90% with
21 telescopes as is the case for the VLA. With a 4-telescope interferometer like
VLTI, this fraction is equal to 50%, 67% with the CHARA array with 6 telescopes.
This would be insufficient if all visibility phases were a priori unknown. However,
depending on the distribution of baselines relative to the source geometry, a more
or less large fraction of the visibility phases can be set to an a priori value. As
recalled in Sect. 7.3, the phase of the visibility function is necessarily zero for short
baselines. Partial redundancy in the array can also reduce the number of unknowns.
All in all, the fraction of unknown phases is therefore smaller than given than the
formula above. The full information has to be recovered though to reconstruct an
image. The principle is described in the next section.

7.6 Image Reconstruction

Image reconstruction is a difficult problem in interferometry but is not unique and
has some similarities with other problems in other fields. In Sect. 7.2.2 we discussed
an interferometer as a collection of low-pass filters. The visibilities are filtered by the
OTF or, equivalently, the spatial intensity distribution is convolved with a multiple-
peak PSF called the dirty beam by radio astronomers. The problem is therefore
equivalent to a deconvolution problem as encountered in imaging with adaptive
optics for example but with a complex PSF. Another way to see it is to consider
an image as a model (Fig. 7.8). The image is a set of N � N pixels with as many
fluxes to be determined. The parameters are therefore the N2 pixel fluxes. The
problem is all the more difficult as the number of parameters/pixels is large. The
sparseness of optical arrays adds even more to these difficulties as the number of
collected informations is in practice limited and smaller than the number of pixels
to reconstruct. Image reconstruction in optical/infrared interferometry is a really
complex problem.

Several methods have been developed or are used to reconstruct images in
(optical/infrared) interferometry of which one may cite a few examples:

• CLEAN;
• Maximum likelihood;
• �2 with regularization;
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Fig. 7.8 Sketch of a 16� 16

pixel image. From image
reconstruction point of view,
the image is like a
256-parameter model, the
pixel intensities, whose value
need to be constrained from
the interferometric data and
from a priori informations
(regularization)

• Maximum entropy method;
• Building block method.

I will only give here the principles of the �2 method with regularization which
is discussed in more details in Thiébaut (2013). It is derived from the classical �2

method to constraint the parameters of a model applied to interferometric data:

�2.Im/ D 1

M � N2

2
4X

Si

� jVij2 � jVIm j2.Si/

�jVij2

�235 (7.13)

C 1

M � N2

2
4X

Si;Sj

 
CPi;j � CPIm.Si; Sj//

�CPi;j

!23
5

where M is the total number of data (jVj2 and closure phases, squared quantities
are used for the modulus of the visibility instead of the linear quantity because
of the existence of an estimator immune to noise bias), N2 is the size of the
reconstructed image in pixels, jVij2 and CPi;j are the squared modulus visibilities
and the closure phases data, jVIm j2.Si/ and CPIm.Si; Sj/ are the equivalent for the
model/image at spatial frequencies Si and (Si,Sj) for the closure phases (closure
phases are defined for a triangle of spatial frequencies which is fully defined
with two spatial frequencies), �jVij2 and �CPi;j are the respective estimated errors.
A simpler version of image reconstruction is called parametric imaging. The �2

function can be minimized against an image model, i.e. a 2D astrophysical model,
with a few parameters (for example the diameter of the star, the limb darkening
coefficient(s) and some spot parameters). The image in this case is pre-determined
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by the model. Examples of parametric imaging are given in Lacour et al. (2008) or
Haubois et al. (2009).

For blind image reconstruction, i.e. without an a priori model of the image, the
formula has to be refined to take extra constraints into account. As a matter of fact,
in the image reconstruction process, some information has to be produced at spatial
frequencies where no data were taken. The solution cannot be unique and many
possibilities satisfy the minimum �2 criterion. The uniqueness of the solution can
be forced by adding an extra penalty term to the �2 which forces the solution to
be compatible with some a priori information on the object and called the prior.
Equation 7.13 then becomes:

�2.Im/ D 1

M � N2

2
4X

Si

 
jVij2 � jVIm j2.Si/

�2jVij2

!23
5 (7.14)

C 1

M � N2

2
4X

Si;Sj

 
CPi;j � CPIm.Si; Sj//

�2CPi;j

!23
5

C� � penalty function

The penalty function is a regularization term which adds constraints to recon-
struct the image (e.g. positivity, smoothness, limited extension, general shape . . . ).
The hyper-parameter � can be adjusted to weigh the relative influences of the data
and of the a priori information. The higher �, the closer the final image to the
prior. The reconstructed image is therefore not only determined by the data but
also by the choice of the hyper parameter and by the choice of the constraints.
Let us assume that the penalty function is a simple squared distance to a particular
image, if � tends towards infinity then the final reconstructed image will be the
same as the particular image, whatever the data. This method is very powerful to
reconstruct images with physical significance but one has to be cautious with the
tuning parameters and aware that the particular solution provided by the image
reconstructor is determined by extra informations independent of the data. Image
reconstruction in optical/infrared interferometry is therefore difficult and primarily
because of the lack or sparseness of the observed information. The characteristics
of the reconstructed image can be compared with some characteristics directly
derived from the visibilities to check the relevance of the image and make sure
the main features of the image are compatible with the most certain information
included in the data. Example of reconstructed images based on long-baseline
optical/interferometer data are given in the next section.
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7.7 Examples of Results

Since the first image of the Capella binary system obtained by Baldwin et al. (1996),
most interferometric studies have used closure phases to detect asymmetries without
reconstructing images because of poor .u; v/ coverage. The situation has changed
in the second half of the 2000 decade during which both interferometers and image
reconstruction techniques applied to the optical/infrared domain have improved.

Parametric imaging is a powerful tool when the geometry of the object is likely
to be simple. A very spectacular example is the image of Vega obtained with NPOI
at 500 nm (Peterson et al. 2006). This image is a wonderful evidence that Vega is a
rapid rotator (gravitational darkening) seen almost pole on (Fig. 7.9), thus providing
a wonderful explanation why Vega could not be identified as a particular star by
classical techniques without spatial information. Another one is the evolution of the
photosphere of Betelgeuse in the H band observed by VLTI/PIONIER between 2012
and 2014 (Montargès et al. 2015). The data are quite sparse for image reconstruction
and the .u; v/ plane coverage mostly samples a single direction. However a feature
is clearly detected in the closure phase data and can be fitted as a single spot
(Fig. 7.10). These are complemented with new data in 2015 whose processing is
on going as well as the overall interpretation of the full sequence of images.

Betelgeuse was observed in the H band too by Haubois et al. (2009) with the
IONIC instrument at IOTA in 2005. The .u; v/ plan coverage was more dense

Fig. 7.9 Parametric image of Vega obtained with the NPOI array at 500 nm (Peterson et al. 2006).
This image is a wonderful evidence that Vega is a rapid rotator (gravitational darkening) seen
almost pole on
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Fig. 7.10 Parametric images of Betelgeuse obtained with the VLTI/PIONIER instrument in the H
band with .u; v/ plane coverage (Montargès et al. 2015)

MIRA algorithm WISARD algorithm 

Fig. 7.11 Images of Betelgeuse obtained with the IOTA/IONIC instrument in the H band with
.u; v/ plane coverage (Haubois et al. 2009). The two images were obtained with two different
algorithms, MIRA and WISARD

in this case and could allow to reconstruct an image in parallel with parametric
imaging. The image was reconstructed with two different codes: MIRA (Thiébaut
2008) and WISARD (Meimon et al. 2009). As Fig. 7.11 shows, the two different
algorithms lead convincingly to the same result to within noise (noise from the data
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Fig. 7.12 Images of T Leporis obtained with the VLTI/AMBER instrument in the H and K bands
(Le Bouquin et al. 2009). The dashed circles are respectively the sizes of the star and of the CO
and H2O molecular shell in the astrophysical model. The axes are in mas units

and image reconstruction noise). Both algorithms are based on the regularization
method applied to the �2 analysis. The best limb-darkened fit of the star with an
environment was used as the prior. In both cases a quadratic regularization was
used meaning that the strong intensity gradients between the a priori image and the
reconstructed image are quadratically minimized.

The main information in the image is the presence of two spots, one barely
resolved and one unresolved. It is hard to tell if other features are real but a large
fraction of them is probably of noisy origin. This was the first evidence of the
presence of spots at the surface of Betelgeuse in this wavelength range and was
demonstrated to be consistent with the presence of convective cells (Chiavassa
et al. 2010). This triggered the first successful search for a magnetic field in a red
supergiant attributed to a dynamo effect in the convective cells (Aurière et al. 2010).

Le Bouquin et al. (2009) have produced the first image of a star observed with
the VLTI with the AMBER instrument in the H and K bands (Fig. 7.12). It is a
series of images obtained in various spectral channels from 1.46 to 2.30�m. The
MIRA software was used for image reconstruction. Two steps were applied with two
different regularizations: smoothness and quadratic. T Leporis is a Mira star and the
images clearly show a mostly centro-symmetric object surrounded by a shell with
CO and H2O absorption, consistent with previous observations of the same type of
objects. Mira stars can therefore be centro-symmetric to a high degree!
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Fig. 7.13 Images of � Cygni obtained with the IOTA/IONIC instrument in the H band (Lacour et
al. 2009). The dashed sphere is the molecular shell derived from the modeling of the data

Lacour et al. (2009) have observed another Mira star, � Cygni, at four different
epochs in the H band with IONIC at the IOTA interferometer. The images were
reconstructed with MIRA using a limb-darkened disk as the prior and a weighted
quadratic distance to the prior as regularization term (see Fig. 7.13). Not all images
are centro-symmetric despite the prior and asymmetric features are clearly detected.
The star is all the more asymmetric as its diameter is small during the pulsation
cycle. This could be a signature of convection, this has to be confirmed by
hydrodynamic simulations. Contrary to the T Leporis images, no molecular shell
is visible around the central star although it is necessary to fit the visibilities as
demonstrated in the paper by parametric images. The shell in the case of � Cygni
seems more detached and thinner in angular width, a difficulty for the regularization
algorithm. The images in this case were of great use to find the best model for
parametric imaging which provided the basis for the astrophysical analysis.

The last example of image reconstruction from near-infrared data, and to close
the loop with Vega, is the work by Monnier et al. (2007) on Altair. Altair is a rapid
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Altair Image Reconstruction Altair Model (  =0.19)
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Fig. 7.14 Left: Image of Altair obtained with the CHARA/MIRC instrument (4 telescopes) in the
H band (Monnier et al. 2007). Right: gravity darkening model of the source superimposed on the
reconstructed image isocontours

rotator as well. The image was obtained with the MIRC instrument at CHARA using
4 telescopes (Fig. 7.14). They used a different algorithm than the regularized �2: the
MACIM algorithm (Ireland et al. 2006) based on the Maximum Entropy Method
(Narayan and Nityananda 1986). The reconstructed image was forced to fit into
an a priori ellipse, the ellipse parameters were obtained from the interferometric
data. The goal of the work was to study the surface of the star and in particular
gravity darkening which is expected in the case of rapid rotators. The images clearly
show that the pole is brighter than the equator. The latitude dependence of gravity
darkening is described by the ˇ parameter. A value of 0.19 is derived from the data
whereas the von Zeipel theory prediction is 0.25. These data were a fundamental
contribution to the discussion and improvement of the von Zeipel theory with new
fast rotator theories and models.

7.8 Conclusion

After the pioneering image of Capella by the COAST interferometer in 1996,
imaging with interferometers is now becoming more commonplace. A few arrays
working at optical and infrared wavelengths produce images of stellar surfaces.
Asymmetries or spots are detected for a large fraction of them. This will certainly
contribute to a new era of stellar physics.

Acknowledgements I am grateful to the organizers of the Besançon school for their invitation.
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Chapter 8
Interferometric Surface Mapping of Rapidly
Rotating Stars: Application to the Be star
Achernar

Armando Domiciano de Souza

Abstract Rotation is one of the fundamental parameters that governs the physical
structure and evolution of stars. Massive stars are those presenting the highest
rotation velocities and thus those for which the consequences of rotation are
the strongest. On the stellar photosphere fast-rotation induces (1) a geometrical
flattening and (2) a non-uniform distribution of flux/effective temperature (gravity
darkening effect). A detailed mapping of these effects on the stellar photosphere,
including large scale surface velocity fields, is nowadays possible thanks to modern
techniques of optical/infrared long-baseline interferometry (OLBI). In this paper we
focus on the measurement of gravity darkening from OLBI, while the determination
of flattening is detailed by Kervella (this volume). In addition, we also show that, for
fast-rotators, the combination of OLBI and spectroscopy (spectro-interferometry)
allows to go beyond the spatial resolution limit of interferometers in order to mea-
sure angular sizes of stars, otherwise not measurable by classical OLBI techniques.
The results presented here are based on ESO-VLTI interferometric observations of
the Be star Achernar.

8.1 Introduction

Rotation is present everywhere in astrophysics, from the smallest bodies of the
solar system to the largest scale structures in the Universe. In stars, rotation is
present since their formation from the interstellar molecular clouds, during all the
protoplanetary phase, main sequence, formation of planetary systems, and up to the
final stages of stellar evolution, playing a crucial role for example in supernovae
explosions, formation of pulsars and rotating black holes, possible origin of some
gamma-ray bursts.
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The first measurements proving that stars rotate started 400 years ago with
the Galilei Galileo observations of mysterious dark features moving in front of
the visual image of the Sun. After some debates, these features were correctly
interpreted as dark spots on the solar surface and their movement was caused by the
rotation of the Sun. Since then, this field encountered a initially slow development,
probably due to the lack of realistic physical models and precise observational
data. Nowadays, in particular thanks to many theoretical and observational results
obtained over the twentieth century, rotation is considered a fundamental stellar
parameter that, together with the stellar mass and metallicity, governs the structure
and evolution of stars across the Hertzsprung–Russell (H-R) diagram.

Of course, the effects of rotation on stars are stronger for stars with high
rotation velocities. Modern stellar interferometers are now currently used to map
the photosphere of fast-rotating stars. An overview of optical/infrared long-baseline
interferometry (OLBI) results on rapid rotators from 2001 to 2011 is given by van
Belle (2012). The results obtained include stellar parameters derived from physical
models as well as interferometric reconstructed images of the stellar photosphere.

Among the fast-rotators, the Be stars1 are those presenting the highest rotation
velocities among non-degenerate stars. Achernar (˛ Eridani, HD 10144; spectral
type B6Vep) is the closest (d D 42:75˙ 1:04 pc; van Leeuwen 2007) and brightest
Be star as seen from Earth. It is easily observable in the southern hemisphere,
being the ninth star in the night sky in visible light (V D 0:46). As discussed by
Kervella (these proceedings), Achernar has a strong rotational flattening due to its
fast rotation (Domiciano de Souza et al. 2003; Kervella and Domiciano de Souza
2006). As we show in the following, these characteristics make Achernar an ideal
target to study fast-rotation effects on the stellar surface using OLBI techniques.

8.2 Quick Overview of OLBI

In this section we give some basic concepts of OLBI techniques, which were
used to obtain the results presented in this work. The capability of OLBI to map
the surface of stars is based on a relation between the observed interferometric
fringes (translated into complex visibilities) and the sky-projected monochromatic
brightness distribution (also called intensity map of the apparent stellar surface).
Thus, for a given intensity map I�, the Van Cittert-Zernike theorem (e.g. Born and
Wolf 1999) relates the observed complex visibility to the Fourier transform (FT) of
I�, normalized by its value at the origin, i.e.,

V.u; v; �/ D jV.u; v; �/j ei�.u;v;�/ D QI�.u; v/
QI�.0; 0/

; (8.1)

1A non-supergiant B star whose spectrum has, or had at some time, one or more Balmer lines in
emission.
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where QI� is the FT of I�, given explicitly by

QI�.u; v/ D
“

I�.x; y/e�i2	.xuCyv/dxdy : (8.2)

Note that the normalization term QI�.0; 0/ is the stellar flux. The amplitude
jV.u; v; �/j and phase �.u; v; �/ of the complex visibility are related, respectively,
to the contrast and position of the observed interferometric fringes. The spatial
(angular) coordinates x and y describe the position of the intensity map on the sky-
plane and are generally chosen to follow the coordinates of right ascension (˛) and
declination (ı). They are defined by the actual (linear) position on the visible stellar
surface projected onto the sky-plane, divided by the distance d to the star. Of course,
OLBI does not provide observations at all spatial (or Fourier) frequencies, u and v,
but only at points corresponding to the actual separations (baselines) of telescopes,
i.e.,

.u; v/ D Bproj

�
D Bproj

�
.sin PA; cos PA/ ; (8.3)

where Bproj is the baseline (distance between two telescopes) projected onto the
target’s direction, and PA is the position angle of the baseline (from north to east).
Observations with different baselines and/or at different times during the night
(technique of Earth-rotation synthesis) are often used to increase the number of
observed points in the uv-plane, i.e., the uv-coverage.

The instrument (telescopes, optics, detectors, etc.) and the Earth atmosphere alter
the recorded target light in different ways that cannot be completely compensated.
As a consequence, the observed complex visibility is given by

Vobs.u; v; �; t/ D V.u; v; �/OTF.u; v; �; t/

D V.u; v; �/ jOTF.u; v; �; t/j ei'.u;v;�;t/ ;
(8.4)

where V.u; v; �/ is given defined in Eq. (8.1) and OTF is the complex optical
transfer function, which is the FT of the combined time-dependent point spread
function (PSF) of the instrument and of the Earth atmosphere. Note that the target
can also vary in time, but we are interested here only in the temporal variations of
the OTF and its effects on the interferometric observables.

In the following we describe some techniques allowing to (at least partially)
estimate the actual complex visibility V of the target (amplitude and phase) from
the observed one Vobs.
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8.2.1 Visibility Amplitudes

To estimate the visibility amplitude jV.u; v; �/j from observed fringe contrasts
(jVobsj) it is thus often necessary to combine the observations of the target with those
of a calibrator star of known size (and thus of known theoretical fringe contrast). The
observations of target and calibrator need to be performed close in time and with the
same instrumental conditions. This procedure allows to partially compensate some
effects that corrupt the measurements of interference fringes, diminishing the fringe
contrast.

Indeed, one can see from Eq. (8.4) that the observed visibility amplitude jVobsj is
given by

jVobs.u; v; �/j D jV.u; v; �/j jhOTFitj D jV.u; v; �/j T ; (8.5)

where the proportionality factor T is called (modulus) transfer function (also
represented as MTF), which is the modulus of the OTF averaged over the time
span of the observations. The observation of calibrators of known sizes thus
allows to estimate T from their observed jVcal

obsj and theoretical jVcalj visibility
amplitudes. The estimated T can then be applied to the target, preferably interpo-
lating between observations of calibrators performed before and after those of the
target.

8.2.2 Differential and Closure Phases

Because of instrumental instabilities and optics imperfections, and because of
the fast and unpredictable phase variations introduced in the light path by the
turbulence of Earth atmosphere, interferometers cannot measure directly the target’s
FT phase �.u; v; �/ (Eq. (8.1)). However, at least part of the phase information
can be recovered from two observable quantities related to �.u; v; �/, namely, the
differential phase and the closure phase.

The differential phase is essentially �.u; v; �/ as a function of wavelength
from which a reference phase calculated at a chosen wavelength (or wavelength
range) �ref has been subtracted. Somewhat different ways of estimating the dif-
ferential phase from observations exist, depending on the instrument used and
on the assumptions made for the calculations. Since the results using differential
phases in this work are based on the observations from the VLTI/AMBER beam
combiner (Petrov et al. 2007), the formalism adopted here for the differential phase
estimations is similar to the one described by Millour et al. (2011, 2006) for this
instrument.
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The time-average of the FT of the intercorrelations (cross-correlation spectrum)
between observed fringes at the reference (�ref) and considered (�) wavelengths is
given by,

C.u; v; uref; vref; �; �ref/ D ˝
Vobs.u; v; �; t/V

�
obs.uref; vref; �ref; t/

˛
t

D jC.u; v; uref; vref; �; �ref/jei�diff.u;v;uref ;vref;�;�ref/ ;
(8.6)

where �diff is the observed differential phase that can be approximated in a first
order by

�diff D � �
�

a C b

�

�
; (8.7)

where � is defined in Eq. (8.1), the parameter a corresponds to a global phase offset,
and b is a slope representing an overall residual piston term.

The term .a C b=�/ that is subtracted from � represents a weak dependence of
the phase with �. It contains not only the influence of the instrument and Earth
atmosphere but also any phase term from the observed object that is slowly varying
with �. Consequently, only strong variations (orders higher than ��1) of the target’s
FT phase � with wavelength remain in the differential phase �diff. Fortunately, this
is typically what happens inside spectral lines where the phase can strongly depend
on the wavelength, while it is nearly constant in the adjacent continuum, which is
then often adopted as a reference wavelength range.

The closure phase is another observable commonly delivered by OLBI instru-
ments operating simultaneously with three or more telescopes. From the fringes
recorded with three telescopes, Ti, Tj, and Tk, the phases observed at each baseline
are given by (c.f. Eq. (8.4))

�obs.uij; vij/ D �.uij; vij/C'.uij; vij/ D �.uij; vij/C �
'Ti � 'Tj

�
;

�obs.ujk; vjk/ D �.ujk; vjk/C'.ujk; vjk/ D �.ujk; vjk/C �
'Tj � 'Tk

�
;

�obs.uki; vki/ D �.uki; vki/C'.uki; vki/ D �.uki; vki/C .'Tk � 'Ti/ ;

(8.8)

where only the dependence on the spatial frequencies are written explicitly for
simplicity. The total phase shift' introduced by the OTF is explicitly represented
in the last term as the combination of phase shifts (e.g. 'Ti ) introduced by the
instrument and Earth atmosphere on the path of the light collected by each individual
telescope (e.g. Ti). From the equation above it is possible to combine the three �obs to
form the quantity called closure phase, in which the phase shifts ' are canceled out
and only the sum of the phase information from the target at each baseline remains,
i.e.,

˚ijk D �obs.uij; vij/ C �obs.ujk; vjk/ C �obs.uki; vki/

D �.uij; vij/ C �.ujk; vjk/ C �.uki; vki/
(8.9)
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The astrophysical results on fast-rotating stars presented in the following sections
are based on measurements of visibility amplitudes, differential phases, and closure
phases.

8.3 Roche-von Zeipel Model and the CHARRON Code

Most recent interferometric works on rapidly rotating, nondegenerate, single stars
of intermediate to high masses adopt the Roche model (rigid rotation and mass
concentrated in the center of the star) with a generalized form of the von Zeipel
gravity darkening (von Zeipel 1924), hereafter called the RVZ model. Several
existing codes provide numerical implementations of the RVZ model. The results
presented here were obtained using the IDL-based program CHARRON (code for
high angular resolution of rotating objects in nature). We present below a short
description of the RVZ model and the CHARRON code. Rieutord (this proceedings)
describes in more details the Roche model and in particular the gravity darkening
effect on fast-rotating stars. A more detailed description of CHARRON is given by
Domiciano de Souza et al. (2012a,b, 2002).

The stellar photospheric shape is assumed to follow the Roche equipotential
(gravitational plus centrifugal),

�.�/ D � GM

R.�/
� ˝2R2.�/ sin2 �

2
D �GM

Req
� v2eq

2
; (8.10)

where � is the colatitude, G is the gravitation constant, M is the stellar mass, and
Req and veq are the equatorial radius and rotation velocity. The last equality in the
above equation sets the equipotential value from equatorial quantities. Solving this
cubic equation provides the colatitude-dependent stellar radius R.�/.

The effective surface gravity is obtained from the gradient of � calculated at the
stellar surface R.�/,

geff.�/ D jgeff.R.�/j D j�r� j : (8.11)

In particular, the equatorial and polar effective gravity are given by

geq D geff.
	

2
/ D GM

R2eq
� v2eq

Req
; (8.12)

and

gp D geff.0/ D geff.	/ D GM

R2p
: (8.13)
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The ratio between the equatorial and polar radii can be obtained directly from
Eq. (8.10),

Req

Rp
D
 
1 � v2eqRp

2GM

!�1
D 1C v2eqReq

2GM

or

� 	 1 � Rp

Req
D v2eqRp

2GM
;

(8.14)

where � is the flattening parameter, ranging from 0 (spherical star where r D Rp at
all latitudes) to a maximum (critical) flattening �c, attained when gravity is totally
compensated by the centrifugal force at some point on the stellar surface. This
condition (geff D 0) is satisfied first at the stellar equator where the centrifugal
force is highest, with the equatorial radius attaining its critical (maximum) value
Rc D 3=2Rp, so that �c D 1=3. By imposing that geq D 0 (Eq. (8.12)) and solving
for the equatorial velocity, the critical equatorial rotation velocity vc and the critical
angular rotation velocity˝c in the Roche model can be defined as

vc D
s

GM

Rc
;

and

˝c D vc

Rc
D
s

GM

R3c
:

(8.15)

Gravity darkening is considered by relating the local effective gravity geff.�/

.D jr�.�/j/ to the local effective temperature Teff.�/ (and local radiative flux
F.�/) by,

Teff.�/ D
�

F.�/

�

�0:25
D
�

C

�

�0:25
gˇeff.�/ ; (8.16)

where � is the Stefan–Boltzmann constant and ˇ is the gravity-darkening coef-
ficient, which is more general than the value from von Zeipel (1924): ˇ D
0:25. However, ˇ is still assumed to be constant over the stellar surface (see
Rieutord, this proceedings, for a more detailed discussion on gravity darkening).
The proportionality constant C can be related to the stellar luminosity L and the
average effective temperature Teff over the total stellar surface S?,

L D �

Z
T4eff.�/ dS D �T

4

effS? D C
Z

g4ˇeff.�/ dS : (8.17)
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In our numerical implementation of the RVZ model (CHARRON code) the
stellar surface is divided into a predefined grid with nearly identical surface area
elements (typically �50,000 surface elements). From Teff.�/ and geff.�/ defined
in the equations above, a local specific intensity from a plane-parallel atmosphere
I D I.geff;Teff; �; �) is associated to each surface element. Here, � is the wavelength
and � is the cosine between the normal to the surface grid element and the line
of sight (limb darkening is thus automatically included in the model). The local
specific intensities I are interpolated from a grid of specific intensities, which are
pre-calculated using spectral synthesis codes and model atmospheres available in
the literature.

From the juxtaposition of specific intensities associated to each surface element
we obtain wavelength-dependent intensity maps of the visible stellar surface at the
chosen spectral domain and resolution, such as the images given in Fig. 8.1. The
interferometric observables (e.g., squared visibilities, closure phases, differential
phases) are then directly obtained from the Fourier transform of these sky-projected
photospheric intensity maps, which for a given star in the sky also depend on
its rotation-axis inclination angle i and on the position angle of its sky-projected
rotation axis PArot (counted from north to east until the visible stellar pole).

Indeed, the geometrical flattening and gravity darkening caused by rotation
shown in Fig. 8.1 can be measured by OLBI (Sect. 8.4). In particular, the small
differences of intensity distributions among different wavelengths in this figure can
be measured by the spectro-interferometric techniques described in Sect. 8.2.2. The
darker vertical lines corresponding to the location of the photospheric absorption
lines at different wavelengths (center and right panels) introduce small shifts of
interferometric fringe positions (relative to the continuum) that lead to a “S”-shaped
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Fig. 8.1 Specific intensity I� in the vicinity of the hydrogen spectral line Br� : continuum (left
panel), line center (middle panel), and line center plus Doppler shift of 0:5veq sin i (right panel).
These intensity maps were created with the model CHARRON for a fast-rotating B type star with
M D 6M

ˇ

, Req D 11R
ˇ

, Teff D 15;000K, ˇ D 0:2, i D 60ı, and veq D 290 km/s D 0:929vc.
The signatures of rotation seen on these intensity maps can be measured by OLBI techniques
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signal of rotation. This signal can be detected in the differential phases observed
across photospheric lines (Sect. 8.5 and Fig. 8.4).

8.4 Gravity Darkening of Achernar Measured from OLBI
at ESO-VLTI

In this section we analyze interferometric observations of the Be star Achernar
recorded at the ESO-VLTI (Haguenauer et al. 2010) to measure several stellar
parameters (size, inclination, rotation velocity), and in particular the gravity dark-
ening induced by rotation. Further details of this analysis are given by Domiciano
de Souza et al. (2014).

Achernar is a Be star alternating between periods where it behaves mostly as
a normal B star and periods with emission lines from a circumstellar disk in a
time scale of typically 10 years. Thus, before considering Achernar as a simple
fast-rotator without disk in our analysis, we performed a physical modeling of its
close circumstellar environment (CSE) to investigate multi-technique observations
(spectroscopic, polarimetric, and photometric) in order to show that the VLTI data
were recorded during a normal B phase. Our analysis shows that any possible
influence of a residual disk can be neglected within � ˙1% level of intensity. This
conclusion is also supported by interferometric image reconstruction.

Near-infrared (H band) interferometric data of Achernar were obtained in
2011/Aug.-Sep. and 2012/Sep. with the VLTI/PIONIER beam combiner (Le
Bouquin et al. 2011). We used the largest quadruplet available with the Auxiliary
Telescopes (AT) at that time (AT stations A1-G1-K0-I1) to resolve the stellar
photosphere as much as possible. The resulting uv coverage (Fourier plane
coverage) is quite satisfactory as shown in Fig. 8.2. Data were reduced and calibrated
with the package pndrs (Le Bouquin et al. 2011). Each observation provides six
squared visibilities V2 and four closure phases CP.

The combination of (1) high quality interferometric observations of Achernar
taken in a normal B phase, (2) physical modeling of fast rotators, and (3) model fit-
ting with an efficient MCMC (Markov chain Monte Carlo) method (using the emcee
code; Foreman-Mackey et al. 2013), allowed a robust and precise determination of
photospheric parameters for this Be star. The results of this analysis is summarized
in Table 8.1, which gives the measured physical parameters of Achernar and their
corresponding uncertainties. Derived parameters based on measured values are also
listed in the table. The reduced �2 of the best-fit model is �2r D 1:9, where �2 has
its usual definition and is composed by the sum of �2 from the V2 and CP data.
The sky-projected intensity map in the H band of the visible stellar photosphere for
this best-fit model is shown in Fig. 8.3. This best-fit model is also compatible with
polarimetric, photometric, spectroscopic observations of Achernar (further details
are given by Domiciano de Souza et al. 2014).
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Fig. 8.2 uv coverage of VLTI/PIONIER observations of Achernar. The AT baselines used are
identified with different colors. Image adapted from the OIFITSExplorer/JMMC tool

Being the most flattened fast-rotating, non-degenerated, single star known to-
date, Achernar provides a crucial test to gravity-darkening theories. We confronted
the results obtained from the analysis of PIONIER data described above to the
gravity-darkening model proposed by Espinosa Lara and Rieutord (2011, ELR
model; see also Rieutord, these proceedings). Figure 5 of Rieutord (these proceed-
ings) or Fig. 13 of Domiciano de Souza et al. (2014) compares the gravity darkening
ˇ coefficient determined from the MCMC fitting of the CHARRON model to
the VLTI/PIONIER data, as well as with values from other fast rotators (from
other authors), with an equivalent ˇ computed from the ELR model. The gravity
darkening coefficient measured on Achernar is compatible with the previsions of
the ELR model providing observational support to this model in the regime of
highly flattened stars (flattening � D 1 � Rp=Req > 0:26 or, equivalently, Req=

Rp > 1:35).
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Table 8.1 Physical parameters and uncertainties of Achernar derived from the fit of the RVZ
model (CHARRON code) to VLTI/PIONIER H-band data (visibility amplitudes and closure
phases) using the MCMC method (emcee code; Foreman-Mackey et al. 2013)

Fitted model parameters Values and uncertainties

Equatorial radius: Req .Rˇ

/a 9:16 .C0:23I �0:23/
Equatorial rotation velocity: veq (km/s) 298:8 .C6:9I �5:5/
Rotation-axis inclination angle: i .ı/ 60:6 .C7:1I �3:9/
Gravity-darkening coefficient: ˇ 0:166 .C0:012I �0:010/
Position angle of the visible pole: PArot .

ı/ 216:9 .C0:4I �0:4/
Derived model parameters Values

Equatorial angular diameter: ˛eq D 2Req=d (mas)b 1:99

Polar radius: Rp .Rˇ

/ 6:78

Req=Rp; � � 1� Rp=Req 1:352I 0:260
veq sin i (km/s) 260:3

Critical rotation rate: veq=vc 0.883

Polar and equatorial temperatures: Tp (K) ; Teq (K) 17 124; 12 673

Luminosity: log L=L
ˇ

3:480

The minimum reduced �2 of the best-fit model is �2r D 1:9 (for 1777 degrees of freedom and 5 free
parameters). The fixed parameters of the model are the stellar mass M D 6:1M

ˇ

, surface averaged
effective temperature Teff D 15;000K, and distance d D 42:75 pc (van Leeuwen 2007). The
stellar parameters derived from the best-fit RVZ model are also listed. It is important to note that
this best-fit model is also compatible with polarimetric, photometric, spectroscopic observations
of Achernar. Details of this analysis, discussion of the results, and further references are given by
Domiciano de Souza et al. (2014)
aThe uncertainty in the distance d from van Leeuwen (2007) was added quadratically to the fit-
uncertainty on Req
bmas stands for milliarcseconds

The ELR model thus seems validated by interferometric results obtained on five
hot, massive fast-rotating stars, with flattening � ranging from 0.11 to 0.26 (Req=Rp

from 1.13 to 1.35), Vega (˛ Lyr) being the less flattened star, and Achernar being
the flattest one. This agreement between theory and interferometric observations
provides a more realistic description of gravity darkening on single stars, signif-
icantly improving our view of this important physical effect since the pioneering
work of von Zeipel almost a century ago. This more profound understanding of
gravity darkening provided by the ELR model also allows to decrease the number
of parameters required to model fast rotators, since the surface intensity (effective
temperature) distribution is defined without the need of a ˇ coefficient, present in
the von Zeipel-like gravity darkening laws currently used.
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Fig. 8.3 Modeled H-band intensity map of Achernar corresponding to the best MCMC fit of the
CHARRON RVZ model to the VLTI/PIONIER observations. The spatial coordinates are given in
angular milliarcseconds (mas) units and also normalized to the equatorial radius Req D 9:16R

ˇ

.
The complete list of the measured stellar parameters is given in Table 8.1

8.5 Beyond the Diffraction Limit of OLBI

The results described in the previous section providing several physical parameters
of a fast-rotating star can be obtained only for stars that can be well resolved
(spatially) by the interferometer, i.e., for stars presenting angular diameters of the
same order of the classically adopted diffraction-limited angular resolution: �=Bmax

proj ,
where � is the wavelength and Bmax

proj is the maximum projected baseline. With
available baselines Bmax

proj of '100–300 m the current optical/IR interferometers can
resolve angular diameters of �0.5–2 mas, which are typical values for many bright
stars.
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For stars with sizes several times (�5–10) smaller than �=Bmax
proj the analysis

applied in the previous section cannot be performed and new/alternative high
angular resolution techniques are required to map the surface of fast-rotating stars.
Differential interferometry is a self-calibrated and essentially seeing-independent
technique that combines high spatial and high spectral resolutions and allows to
go beyond diffraction-limited angular resolution of the interferometer. This allows
differential interferometry to be used even in cases where visibility amplitudes
jVj (fringe contrast) are unavailable and/or when the star is poorly resolved (a
few times smaller than the diffraction limit of the instrument) so that jVj ' 1.
The differential phase described in Sect. 8.2.2 is a commonly used differential-
interferometry observable that allows to measure sizes, rotation velocities, and
orientation of rotating stars.

This possibility was theoretically proposed by Chelli and Petrov (2005) and
was recently demonstrated on four fast-rotating stars based only on differential
phase measurements (Domiciano de Souza et al. 2012a; Hadjara et al. 2014). As
an example, we present below the results obtained on the Be star Achernar based on
differential phases recorded with the ESO VLTI/AMBER beam combiner (Petrov
et al. 2007) centered on the Br� hydrogen line (wavelengths ranging from 2.159 to
2.172�m).

VLTI/AMBER observations of Achernar in high spectral resolution (�=� �
12;000) on the K band were carried out from October 25th to November 1th, 2009,
during four nights with a different Auxiliary Telescope (AT) triplet configuration
in each night, providing good .u; v/ coverage (as complete as in Fig. 8.2). After a
tricky data reduction, described in detail by Domiciano de Souza et al. (2012a),
our final data set consists of 84 (D 28 � 3 baselines) �diff.�/ curves centered
on Br � and presents '45 �diff points for each of the 84 individual projected
baselines.

These VLTI/AMBER �diff observations of Achernar were analyzed with the
numerical model CHARRON presented in Sect. 8.3 used to perform a �2 mini-
mization with an IDL implementation of the Levenberg–Marquardt (LM) algorithm
(Markwardt 2009, and references therein). The physical parameters of Achernar
derived from this analysis are summarized in Table 8.2. Some examples of observed
and modeled �diff associated to the best-fit model are shown in Fig. 8.4.

This result shows that differential interferometry can potentially be used to
measure stellar parameters of fast-rotators, namely Req (or ˛eq), veq, i, and PArot.
The derived ˛eq is '1.5 times smaller than the maximum available diffraction-
limited angular resolution. Indeed, these observations show that the Achernar’s
diameter is already resolved at shorter baselines, with a clear signature of rotation
(of the order of the noise level of �diff) already seen at Bproj as short as '30 m
(Fig. 8.4). For example, considering the observations with Bproj ' 45m, the
measured diameter is '4 times smaller than the corresponding diffraction-limited
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Table 8.2 Parameters and
uncertainties estimated from a
Levenberg-Marquardt fit of
our model to the
VLTI/AMBER �diff observed
on Achernar

Fitted model parameters Values and uncertainties

Req .Rˇ

/a 11:6 .C0:4I �0:4/
veq (km/s) 298 .C9I �9/
i .ı/ 78:5 .C5:2I �5:2/
PArot .

ı/ 214:9 .C1:6I �1:6/
Derived model parameters Values

˛eq (mas) 2:45

Rp .Rˇ

/ 8:0

Req=Rp; � � 1� Rp=Req 1:45I 0:31
veq sin i (km/s) 292

veq=vc 0:96

Tp (K) ; Teq (K) 18 013; 9 955

log L=L
ˇ

3:654

The minimum reduced �2 of the fit is �2r D 1:2 (for
3809 degrees of freedom and 4 free parameters). The
fixed parameters of the model-fitting are the stellar mass
M D 6:1M

ˇ

, surface averaged effective temperature
Teff D 15;000K, gravity-darkening coefficient ˇ D
0:2, and distance d D 44:1 pc (Perryman et al. 1997)
aThe uncertainty in the distance d from Perryman et al.
(1997) was added quadratically to the fit-uncertainty
on Req

resolution of 10 mas for this baseline length, revealing the super-resolution capacity
of this technique.

Although differential interferometry is a promising technique to measure stellar
parameters of fast-rotators, the comparison of these results with those obtained from
classical interferometric observables (Table 8.1) shows that some improvements are
still necessary. For example, the model-fitting of differential phases can a present
relatively shallow �2 because the data points in the continuum (equal to zero by
construction; see Fig. 8.4) can always be well fitted by any set o model parameters.
Also, compared to visibility amplitudes and closure phases, the differential phases
are also less sensitive to the ˇ value and thus less capable of disentangling i and
veq (see also Domiciano de Souza et al. 2012a). Possibilities to overcome these
difficulties in order to optimally exploit the differential phases are for example to
adopt model-fitting procedure that allow a robust and realistic estimation of the
uncertainties (as the MCMC method for example), and/or to combine the differential
phase observations with additional observational constraints, such as spectroscopy,
polarimetry, and photometry. We follow this strategy in the next section where
we analyze both the PIONIER and AMBER data together using the MCMC
method.
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Fig. 8.4 Sub-set of the 84 VLTI/AMBER �diff measured on Achernar around Br � at 28 different
observing times (format YYYY-MM-DDTHH_MM_SS) and, for each time, three different
projected baselines B and baseline position angles PA, as indicated in the plots. The dashed gray
horizontal lines indicate the median �diff uncertainty ˙0.6ı of all observations. The smooth curves
superposed to the observations are the best-fit �diff obtained with a �2 minimization using the
CHARRON code. All curves have zero average value in the continuum, but they were shifted
for better readability. The full data set and detailed description of the data analysis is given by
Domiciano de Souza et al. (2012a)

8.6 Combined Analysis of AMBER and PIONIER Data

In this section we analyze the PIONIER H-band data (visibility amplitudes and
closure phases) and AMBER K-band data (differential phases centered on Br � )
together using the MCMC method. We applied the same model-fitting strategy
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Table 8.3 Physical
parameters and uncertainties
of Achernar derived from the
fit of the RVZ model
(CHARRON code) to both
PIONIER H-band data
(visibility amplitudes and
closure phases) and AMBER
K-band data (differential
phases centered at Br �) using
the MCMC method (emcee
code; Foreman-Mackey et al.
2013)

Fitted model parameters Values and uncertainties

Req .Rˇ

/a 9:22 .C0:25I �0:24/
veq (km/s) 306:0 .C10:2I �10:4/
i .ı/ 59:0 .C12:7I �6:6/
ˇ 0:186 .C0:011I �0:010/
PArot .

ı/ 216:6 .C0:4I �0:4/
Derived model parameters Values

˛eq (mas) 2:01

Rp .Rˇ

/ 6:72

Req=Rp; � � 1� Rp=Req 1:371I 0:271
veq sin i (km/s) 262:4

veq=vc 0:861

Tp (K) ; Teq (K) 17 467; 12 082

log L=L
ˇ

3:479

The minimum reduced �2 of the fit is �2r D 1:5

(5590 degrees of freedom). The fixed parameters of
the model are the stellar mass M D 6:1M

ˇ

, surface
averaged effective temperature Teff D 15;000 K, and
distance d D 42:75 pc (van Leeuwen 2007). This best-fit
model the combination of PIONIER and AMBER data
is compatible with the results in Table 8.1. This solution
is also compatible with spectroscopic, polarimetric, and
photometric observations
aThe uncertainty in the distance d from van Leeuwen
(2007) was added quadratically to the fit-uncertainty
on Req

described in Sect. 8.4. The results of the MCMC model-fitting using the CHARRON
code (RVZ model) are presented in Table 8.3.

The stellar parameters values shown in Table 8.3 are compatible with the values
in Table 8.1 (within ' ˙1�). We note however, that the uncertainty on veq

and i is increased when the AMBER differential phases are included, since these
observables cannot easily disentangle those two quantities.

This analysis shows that a unique solution can be obtained from the whole
set of interferometric data obtained in a normal B star phase (AMBER and
PIONIER). The best-model obtained from these two data sets are also compatible
with spectroscopic, polarimetric, and photometric observations since they agree
with the results from Table 8.1.
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Chapter 9
Doppler and Zeeman Doppler Imaging of Stars

Oleg Kochukhov

Abstract In this chapter we discuss the problem of reconstructing two-dimensional
stellar surface maps from the variability of intensity and/or polarisation profiles
of spectral lines. We start by outlining the main principles of the scalar Doppler
imaging problem concerned with recovering maps of chemical spots, temperature
or brightness from the intensity spectra. After presenting the physical and mathe-
matical foundations of this remote sensing method, we review its applications to
mapping different types of spots in early-type chemically peculiar and late-type
active stars, and non-radial pulsations in early-type stars. We also discuss an exten-
sion of Doppler imaging to the problem of recovering vector distributions of stellar
magnetic fields from spectropolarimetric observations and review applications of
this Zeeman Doppler imaging technique in the context of stellar magnetism studies.

9.1 Introduction

Stars exhibit different types of inhomogeneities on their surfaces. In many cases,
including the presence of cool spots on the solar surface, magnetic fields are
responsible for this structure formation. In other situations lateral inhomogeneities
may be related to non-radial pulsations or surface convection. Investigation of the
formation, evolution and mutual interaction of different stellar surface structures
represents an essential part of stellar physics, which has profound consequences
for understanding the stellar evolution in general and the phenomena of mass loss,
angular momentum evolution, planet formation and habitability of exoplanets in
particular. Detailed information about geometrical distribution of stellar surface
inhomogeneities and its temporal evolution comprises a critical input required for
developing realistic theoretical models of these phenomena. For instance, historical
observations of sunspot cycles and more recent discovery of the link between cool
spots and magnetic fields was a prerequisite for understanding the solar activity in
the context of a dynamo theory.
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For the Sun a bewildering complexity of surface structures is accessible to direct
imaging with many ground-based instruments and space missions. But, with a few
exceptions of interferometric studies of nearby and intrinsically large stars (see
chapters by P. Kervella and J. Monnier), the disks of stars other than the Sun cannot
be resolved and hence cannot be studied using direct imaging. In that case the only
viable option to obtain information about the stellar surface structures is to apply
some form of an inverse remote sensing method of indirect imaging, capable of
recovering a stellar surface map from spatially unresolved stellar observations.

In this chapter we will discuss two powerful remote sensing techniques: Doppler
imaging (DI) and Zeeman Doppler imaging (ZDI). The first method uses time
series observations of the intensity line profiles recorded at high spectroscopic
resolution to reconstruct scalar star spot maps. The second technique utilises circular
polarisation signatures inside line profiles or, more generally, high-resolution
spectropolarimetric observations in all four Stokes parameters to recover topology
of vector magnetic field at the stellar surface. In the following sections we outline
key physical principles and mathematical methods used by DI and ZDI techniques.
This discussion is supplemented with a brief overview of the applications of indirect
imaging to different types of surface structures in both hot and cool stars.

9.2 Doppler Imaging with Intensity Spectra

9.2.1 Main Principles of DI

An inhomogeneity on the stellar surface changes the local emergent line and
continuum radiation. For example, a local enhancement of the concentration of
some chemical element increases intensity of its absorption lines; the presence of a
cool dark spot changes the local spectrum and suppresses the continuum radiation
relative to immaculate photosphere. The flux spectrum of an unresolved stellar disk
represents a weighted average of all local spectral contributions, Doppler-shifted
according to the local projected rotational velocity relative to the observer. If the
surface inhomogeneities are sufficiently large and have a high contrast, their spectral
signatures will be visible in the disk-integrated line profiles as distortions—either
“emission” bumps for cool spots or an extra absorption features for spots with an
enhanced element concentration (see Fig. 9.1a, b)—superimposed onto the regular
Doppler-broadened line profile. The velocity of the distortion relative to the line
centre is given by the longitude of the surface feature, reckoned from the central
stellar meridian.

The latitude position of a star spot cannot be inferred from a single observation.
Instead, one uses time-series behaviour of the spot signatures to recover the latitude
information. As the star rotates, spectral distortions corresponding to each spot first
appear on the blue side of the spectral line profile and then gradually move to the
red side. As illustrated by the dynamic spectra in Fig. 9.1c, temporal behaviour of
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Fig. 9.1 Illustration of the main principles of Doppler imaging. The local stellar spectrum formed
in a spot differs from the photospheric spectrum. This leads to a distortion in the disk-integrated
stellar line profile. This distortion is Doppler-shifted according to the position of the spot relative to
the disk centre. The two spherical plots and corresponding line profiles illustrate spectral signatures
of (a) a single spot with reduced continuum brightness typical of late-type active stars and (b) a
spot with enhanced line strength typical of early-type chemically peculiar stars. As the star rotates,
the spot signature moves across the line profile from blue to red. The rectangular panel (c) shows
the dynamic difference spectrum as a function of the rotational phase. In this case, the stellar
surface has four small spots at latitudes �30; 0;C30, and C60 degrees. This plot demonstrates
how temporal variation of the spot signatures depends on their latitude position

the spot signatures depends significantly on their latitudes. For the intermediate
inclination of the stellar rotational axis (i D 50o) shown in this figure, the line
profile distortions produced by the spots with latitudes from 0o to � C30o span
the largest range of relative velocities and are visible roughly half of the rotational
period. On the other hand, signatures of structures at higher latitudes move over a
smaller velocity range and are visible over a larger fraction of the rotational cycle.
Spots with a latitude above i remain visible all the time; their line profile signatures
exhibit faint “backward” red-to-blue progression during some part of the rotational
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cycle. Spots below the equator are visible very briefly and leave a weak signature in
the disk-integrated line profile.

To summarise, the amplitude and position of stellar surface structures are
encoded in the variability of distortions observed in Doppler-broadened line profiles.
Given high-quality observations of stellar spectra, obtained with a sufficiently dense
rotational phase coverage and a signal-to-noise (S/N) ratio high enough to clearly
detect line profile distortions due to spots, it should be possible to reconstruct a two-
dimensional map of the stellar surface. This is the scope of the inversion technique
known as Doppler imaging.

9.2.2 Spatial Resolution of DI

A classical method of estimating resolution at the stellar surface provided by DI is to
compare the rotational Doppler broadening with the stellar line width in the absence
of rotation. The latter is usually dominated by the instrumental broadening. Then,
the angular size of the resolution element at the stellar equator is given in degrees
by

ı` D 90o�

�

vc

ve sin i
; (9.1)

where R D �=� is the instrumental resolution of the spectrograph, ve sin i is
the projected rotational velocity, and vc is the speed of light. For example, for
R D 65 000 and ve sin i D 150 km s�1 we obtain ı` D 2:7o, which corresponds
to 133 resolution element along the equator. The distance to the star is not directly
entering Eq. (9.1); but of course the star has to be sufficiently bright to allow
obtaining high S/N ratio spectra within a time interval small compared to the
rotational period. Considering, for instance, a main sequence early B-type star at
1 kpc (with V magnitude � 6 it is easily accessible to high-resolution spectroscopy
at 2–4 m class telescopes), we can infer that ı` D 2:7o corresponds to an angular
resolution of 0.3�arcsec. This is orders of magnitude better than any direct imaging
technique can provide at the moment or in the foreseeable future.

A common misconception is to use Eq. (9.1) for estimating the lower ve sin i
limit of DI, which leads to an argument that DI requires ve sin i � vc=R. On the one
hand, it is certainly true that the spatial resolution of this remote sensing method
gradually decreases as the Doppler broadening becomes comparable to the intrinsic
line width. On the other hand, we should not forget that Eq. (9.1) estimates spatial
resolution based on a single snapshot observation. In reality, DI operates with time
series spectra, gaining significant additional resolution from rotational modulation.
The same type of information is used by the photometric mapping methods (see
the chapter by A. Lanza) to recover coarse brightness maps of stellar surfaces from
broad-band light curves. Similarly, DI and especially its extension to the polarisation
spectra—ZDI—is capable of recovering maps of large-scale surface features for
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extremely slowly rotating stars (e.g. Petit et al. 2008) independently of the actual
ve sin i value, provided that the input time series data exhibit a significant phase-
dependent variation.

9.2.3 DI as an Ill-Posed Inverse Problem

As discussed above, DI provides a method to relate the observed line profile
variability to the underlying geometry of stellar surface structures. However, a
key question is how to mathematically implement the inverse problem of deriving
a 2-D surface map from a given spectroscopic observational data set. Early
studies of chemically peculiar stars and late-type active stars attempted to fit
observations with parameterised maps, typically consisting of a small number of
circular spots (Mihalas 1973; Vogt and Penrod 1983b) or employing a low-order
spherical harmonic expansion (Mégessier 1975). But it was quickly realised that
the problem of finding parameters of these spots is in practice mathematically ill-
posed, meaning that an infinite number of very different solutions can fit a given
data set. A breakthrough was achieved when Goncharskii et al. (1977) suggested
to employ regularisation methods to ensure uniqueness of the DI solution. In other
words, besides observations themselves, one introduces some additional criterium
of simplicity to limit the family of possible solutions. Mathematically this is
implemented by finding a solution x that minimises the sum of �2 of the fit to
observations and regularisation function R

X
ŒSobs � Smodel.x/�

2 =�2obs C�R.x/ ! min; (9.2)

where regularisation parameter � is determined empirically by trial and error or is
set by requiring a certain target �2.

In the early studies of chemical spots in Ap stars (e.g. Khokhlova et al. 1986) DI
problems were regularised with the Tikhonov functional

R.x/ D krxk: (9.3)

Later Vogt et al. (1987) introduced the maximum entropy method (MEM) in the
context of the application of DI to temperature mapping of cool active stars. In this
case,

R.x/ D
X

i

xi

x0
log

xi

x0
; (9.4)

where x0 is some default value of the map. Subsequently both regularisation
methods were used for mapping chemical structures in Ap stars and temperature
spots in late-type stars (Piskunov et al. 1990; Hatzes 1991).
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The two regularisation approaches differ slightly in their interpretation of the
concept of “simplicity” of a surface map. The Tikhonov regularisation favours
solutions with the least local gradient. On the other hand, MEM prefers a map
with the least deviation from the default value. In practice, the two methods
produce compatible results when applied to the same observations of sufficiently
high quality (Strassmeier et al. 1991). However, it cannot be taken for granted
that the two regularisation schemes are always equivalent and equally applicable
to any DI problem. In particular, MEM fails whenever the surface structure does not
have a natural default value. For example, this problem is encountered in the ZDI
reconstruction of large-scale multipolar magnetic fields.

Finally, it should be added that a number of auxiliary stellar parameters are
required to perform a DI inversion. They include the stellar rotational period Prot,
inclination of the stellar rotational axis relative to the line of sight i, the projected
rotational velocity ve sin i, and the radial velocity of the star Vr. Of these parameters,
Prot and Vr are usually known prior to a DI analysis. The projected rotational velocity
can be accurately determined with the help of DI inversions themselves by finding
a ve sin i value that yields the best fit to observations. An incorrect ve sin i produces
characteristic axisymmetric artefact features in the surface maps (Vogt et al. 1987;
Rice et al. 1989). On the other hand, DI inversions are relatively insensitive to the
choice of i, with errors of 10–15o leading to negligible distortions of the surface
map. The relation

sin i D Protve sin i

50:613R?
(9.5)

can be employed to constrain inclination if the stellar radius R? is known. In this
equation ve sin i is measured in km s�1, Prot in days, and R? in solar units.

In addition to all these parameters specific to DI, one has to know parameters
that determine the shape and strength of the local line profiles. Depending of the
modelling approach, these parameters can comprise either a few numbers required
to specify some analytical line profile function (e.g. a Gaussian profile) or a
complete set of stellar atmospheric parameters and chemical abundances for the
most realistic spectrum synthesis representation of stellar observations.

9.2.4 DI Applications

Chemical Mapping of Ap and HgMn Stars

Chemical mapping of the upper main sequence chemically peculiar A and B stars
was the first application of Doppler imaging (Goncharskii et al. 1983; Khokhlova
and Pavlova 1984; Khokhlova et al. 1986). These objects, comprising a small
fraction of all A and B stars, are distinguished by a host of peculiarities including
anomalously strong spectral lines of iron-peak and rare-earth elements, a strongly
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non-uniform (with contrasts of up to several orders of magnitude) vertical and
horizontal chemical distributions, and the presence of strong (typically 1–10 kG),
globally organised magnetic fields. These so-called magnetic Ap stars exhibit a
well-defined periodic variability of line profiles, spectral energy distribution, and
magnetic field strength. Since the seminal paper by Stibbs (1950), this behaviour
is interpreted in the context of the oblique rotator model. This phenomenological
framework attributes all types of stellar variability to the rotational modulation of
the aspect angle at which the surface spot structure and magnetic field are seen by
a distant observer. Consequently, Ap stars vary in a strictly periodic manner and do
not exhibit any intrinsic evolution of their surface structure. These properties make
them ideal DI targets.

Early abundance DI studies of Ap stars focused on mapping a small number
of chemical elements (Khokhlova et al. 1986; Ryabchikova et al. 1996; Rice and
Wehlau 1991; Hatzes 1991, 1997), trying to relate their distributions to the process
of atomic diffusion in magnetic field thought to be responsible for the formation
of horizontal chemical inhomogeneities (Michaud et al. 1981). Although some
encouraging results were obtained, particularly for Si (Alecian and Vauclair 1981),
these interpretation efforts were hampered by the lack of detailed information about
magnetic field geometries of the target stars.

More recent abundance DI studies of Ap stars provided maps of up to a dozen
chemical elements (Kochukhov et al. 2004; Lüftinger et al. 2010; Nesvacil et al.
2012), taking advantage of a wide wavelength coverage of modern echelle spectrom-
eters. Some of these maps were reconstructed simultaneously, by modelling blends
containing contributions of several elements. A typical example of such abundance
DI maps is shown in Fig. 9.2.

The comprehensive multi-element DI studies uncovered a complex and diverse
behaviour that did not agree with expectations of simple atomic diffusion models for
a star with a dipolar-like magnetic field. In particular, only a few chemical elements,
notably Li (Polosukhina et al. 1999) and O (Rice et al. 1997, 2004), showed a surface
distribution with a systematic relationship to the underlying magnetic field topology.
Other chemical elements, for example Ca, Fe, Cr, Ti, typically show little or no
such relation. There is also a great deal of diversity in the surface distributions of
the same elements in stars with very similar fundamental and magnetic parameters
and in the surface patterns of elements with similar properties (e.g. different rare-
earth elements) in the same stars. This non-systematic behaviour suggests that some
hitherto unknown structure formation mechanism contributes to shaping of chemical
maps of Ap stars.

A new domain of applications of abundance DI was opened by the discovery
of chemical spots in late-B HgMn stars (Ryabchikova et al. 1999). These objects
also belong to the group of chemically peculiar stars. But, unlike magnetic Ap
stars, HgMn stars lack detectable large- or small-scale magnetic fields (Aurière
et al. 2010; Bagnulo et al. 2012; Kochukhov et al. 2013). Despite this, several
chemical elements which are most overabundant in these stars (Hg, Y, Pt) show
subtle line profile variations indicative of low-contrast non-uniform chemical
distributions (Kochukhov et al. 2005; Hubrig et al. 2006; Folsom et al. 2010).
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Fig. 9.2 Typical chemical abundance distributions reconstructed with DI for a magnetic Ap star. In
this case, the maps of Li, O, Fe, and Eu are shown for the cool Ap star HD 83368. The scale bars to
the right indicate abundance values in logarithmic units log.Nel=Ntot). The magnetic field structure
of this star is approximately dipolar, with a large magnetic obliquity (ˇ 	 90o). The “C” and
“o” symbols indicate positions of the positive and negative magnetic poles, while the dashed line
corresponds to the magnetic equator. Some chemical elements have simple distributions correlating
with the dipolar magnetic field geometry. Other elements exhibit complex or simple maps, which
show no apparent relation to the underlying magnetic field structure. Adapted from Kochukhov
et al. (2004)

These inhomogeneities were mapped with DI in several HgMn stars (Adelman
et al. 2002; Briquet et al. 2010; Makaganiuk et al. 2011, 2012; Korhonen et al.
2013). Remarkably, it was discovered that chemical spots in HgMn stars evolve
slowly with time (Kochukhov et al. 2007)—something that has never been observed
in magnetic Ap stars. Figure 9.3 shows an example of such an evolution, on a
time scale of several years, for the mercury distribution in the brightest HgMn
star ˛ And. No conclusive theoretical explanation of the origin of these spots and
reasons for their slow variation has been proposed. However, there are indications
that a non-equilibrium, time-dependent atomic diffusion may play some role in these
phenomena (Alecian et al. 2011).
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Fig. 9.3 Slow evolution of mercury overabundance spots on the surface of non-magnetic chem-
ically peculiar star ˛ And. (a) The Hammer-Aitoff projection of the Hg DI maps reconstructed
at three different epochs spanning 7 years. The sidebar gives the local element abundance in
logarithmic units relative to the solar concentration of mercury. (b) The corresponding pairwise
difference maps. Adapted from Kochukhov et al. (2007)

Temperature Mapping of Active Late-Type Stars

In parallel with the DI studies of chemically peculiar stars significant efforts were
devoted to reconstruction of temperature inhomogeneities on the surfaces of cool
active stars. In these objects the surface activity is invariably associated with an
enhanced dynamo action amplified by a rapid stellar rotation. This makes these stars
much more active and consequently more spotted than the Sun. Several classes of
late-type active stars exhibit these characteristics: single rapidly rotating pre-main
sequence (including classical and weak-line T Tauri) and young main sequence
stars, members of close binary systems spun up by tidal interaction (RS CVn stars),
various classes of rapidly rotating giants (e.g. FK Com-type stars). The presence
of large spots on the surfaces of these stars and significant rotational broadening
of their spectral line profiles facilitate application of DI. However, unlike static
chemical maps of Ap stars, temperature distributions of active cool stars evolve with
time. This imposes a significant limitation of the observational data: a complete
rotational phase coverage has to be achieved within � 10 stellar rotations, which
typically corresponds to a single observing run.

Temperature maps have been published for � 100 cool stars. A catalogue and
detailed review of these studies can be found in Strassmeier (2009, 2011). A few
active stars were targeted repeatedly by DI (Vogt et al. 1999; Kovári et al. 2004;
Korhonen et al. 2007; Hackman et al. 2012) in an effort to reveal activity cycles and
compare them with predictions of dynamo theories. Despite collecting a valuable
data base of temperature maps, these investigations achieved a rather limited success
in establishing connections with dynamo theory and with well-known cyclic activity
behaviour of the Sun. This is either because the most active cool stars usually chosen
for DI do not exhibit well-defined activity cycles or because a long-term behaviour
was sampled by DI studies with too few maps to reach definite conclusions about
the nature of temporal evolution of the surface structure.
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Methodologically, the temperature mapping of cool stars is commonly performed
using a small number of diagnostic lines or even a single spectral feature. These
spectral lines are modelled by assigning individual temperature values to each
stellar surface element and using model atmospheres from standard grids with
Teff corresponding to these local temperatures to calculate local continuum and
line intensities. Reliability of temperature distributions, especially the spot to
photosphere temperature contrastTs, can be improved by considering atomic lines
with different temperature sensitivity or by incorporating molecular bands in the
temperature inversion (Rice et al. 2011). Summarising studies with the most careful
determination of Ts, Berdyugina (2005) found that there exists a systematic trend
of the spot contrast with the stellar Teff. The maximum Ts � 2000K is found for
early G-type stars while the minimum contrast of only a few hundred K is seen in
active M dwarfs.

Reconstruction of the stellar surface map in terms of brightness distribution or
fractional spot coverage instead of local temperature is an alternative method of
performing cool star DI (Collier Cameron 1998). These studies often completely
neglect variation of the local line intensities with temperature, attributing all disk-
integrated line profile variability to changes of the local continuum brightness. In
other cases spectra of slowly rotating cool and hot template stars are employed
to approximate the local spot and photospheric profiles of the DI target (Unruh
et al. 1995). Due to this simplified spectrum synthesis approach results of the
brightness DI studies cannot be directly interpreted in terms of physical parameters,
such as spot temperatures. This type of DI also requires some external information
(e.g. setting the spot to photosphere brightness contrast or choosing appropriate
template stars) that can only be provided by more physically detailed studies. On the
other hand, this method is well adapted to using high S/N ratio mean line profiles
constructed by combining information from thousands of individual metal lines.
This enables a fast and very precise (but not necessarily accurate) reconstruction
of the stellar surface map, which is particularly suitable for detection of subtle
secondary effects such as differential rotation (Donati et al. 2003; Barnes et al.
2005).

Mapping of Stellar Non-radial Pulsations

Stellar non-radial pulsations (NRP) represent another well-known cause of line pro-
file variability. Pulsational perturbation on the stellar surface produces an alternating
pattern of zones receding and approaching to the observer. The resulting velocity
shifts are superimposed on the rotational Doppler shifts, producing a characteristic
periodic variability of the disk-integrated line profiles (Vogt and Penrod 1983a).

Typically, the stellar NRP pattern is parameterised with the spherical harmonic
functions and is fully described by specifying the ` and m numbers of each pulsation
mode, and a ratio of the vertical to horizontal pulsation amplitude. However, in
some particularly interesting cases the NRP geometry is significantly and non-
trivially distorted by a rapid stellar rotation or a strong magnetic field (Lee and Saio
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1990; Saio and Gautschy 2004). In such cases a mono-periodic pulsation cannot be
described with a single combination of ` and m values. Instead, one can attempt to
reconstruct the surface pulsation pattern by solving an ill-posed DI problem. For
example, Berdyugina et al. (2003) mimicked the line profile variation due to NRP
with temperature spots. They performed a pseudo-temperature DI for the B-type
pulsating star !1 Sco with a dominant sectoral mode (` D m). In this particular
case pulsations can be described as a fixed surface pattern that rotates with a period
determined by the stellar rotation period and the m value (which has to be guessed)
of the sectoral pulsation mode.

In another implementation of the NRP DI problem, Kochukhov (2004a) devel-
oped a more physically realistic description of an arbitrary pulsational velocity
perturbation in terms of two surface maps, effectively representing the surface
distribution of the pulsational amplitude and phase. This study demonstrated that
it is possible to reconstruct both maps with the help of DI methodology, provided
that the stellar rotational and pulsational periods are known. This DI technique was
applied to the rapidly oscillating Ap star HR 3831 (Kochukhov 2004b), yielding the
first DI NRP velocity map and providing a unique insight into the interplay between
p-mode pulsations and a global magnetic field.

9.3 Zeeman Doppler Imaging with Polarisation Spectra

9.3.1 Detection and Diagnostic of Stellar Magnetic Field

The presence of a magnetic field leads to splitting of the atomic energy levels due
to the Zeeman effect. Consequently, individual spectral lines corresponding to the
transitions between Zeeman-split levels separate into groups of so-called 	 and
� components. The magnitude of this separation depends on the magnetic field
strength, magnetic sensitivity of a given spectral line (characterised by the mean
Landé factor), and the central wavelength of this line. Then, a magnetic field at the
stellar surface can be detected by two basic effects: the splitting of magnetically
sensitive lines and the presence of polarisation in Zeeman components.

Typical magnetic fields of non-degenerate stars produce Zeeman splitting which
is much smaller than the intrinsic line width. Only very strong (� 1–2 kG) magnetic
fields of slowly rotating Ap stars and active M dwarfs can be diagnosed by the
Zeeman splitting or broadening of spectral lines in high-dispersion optical spectra
(Mathys et al. 1997; Reiners and Basri 2007). At the same time, magnetic field is
normally the only cause of polarisation in spectral lines. This means that the mere
presence of a systematic line polarisation signal is a signature of magnetic field.

The full state of polarisation of stellar radiation is characterised by the four
Stokes parameters: Stokes I (total intensity), V (circular polarisation), and QU
(linear polarisation). The line profile shape in Stokes I is primarily sensitive to the
field modulus. The amplitude of the corresponding circular polarisation signal is
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given by the line of sight projection of the magnetic field vector. The magnitude of
the transverse field component and its orientation in the plane of the sky determines
the Stokes QU parameters. Thus, all four Stokes parameters are in principle needed
for a complete diagnostic of stellar magnetic field. However, the Zeeman effect
produces circular polarisation that is up to 10 times stronger than linear polarisation.
In addition, the local Zeeman circular polarisation profile has a simpler morphology
(S-shape, double-lobe signature) compared to the linear polarisation profiles (M
or W-shape, three-lobe signature).1 For these reasons, the vast majority of stellar
magnetism studies rely exclusively on the Stokes V observations both for the field
detection and modelling.

Even constrained to the Stokes V parameter, stellar spectropolarimetry is a
challenging task owing to low amplitudes of the typical polarisation signals. For
example, the global kG-strength magnetic fields of Ap stars produce circular
polarisation signatures with amplitudes of a few % of the unpolarised continuum.
These signatures can be observed in individual spectral lines (e.g. Silvester et al.
2012) provided that the spectra have a S/N ratio of 300–500. Much weaker magnetic
fields of active cool stars yield disk-integrated signals at the level of 10�3 to 10�4
in Stokes V . A detection of 1–10 G global fields of moderately active or inactive
stars, such as the Sun, requires polarimetric precision of 10�5–10�6. Obviously,
such signals are impossible to detect in individual spectral lines. Instead, efficient
multi-line polarisation methods were developed to average polarisation signatures
over all suitable spectral lines. These procedures reduce the photon noise to the
level required for the detection of extremely weak polarisation signals. The most
commonly used multi-line method of least-squares deconvolution (LSD, Donati
et al. 1997; Kochukhov et al. 2010) incorporates de-blending and recovers an
average profile shape that in the context of DI can often be treated as a single spectral
line with mean parameters.

A fundamental difference between magnetic field signatures in the intensity
and polarisation is that the Zeeman splitting in the Stokes I spectra depends on
the field modulus while the Stokes QUV profiles are highly sensitive to the field
orientation. On the one hand, this means that polarisation observations are providing
rich information about field geometry. On the other hand, any analysis of complex
magnetic topologies inevitably suffers from a cancellation of polarisation signals in
the disk-integrated spectra due to addition of polarisation signatures with opposite
signs corresponding to the regions of opposite field polarity.

1We refer to the textbook by Landi Degl’Innocenti and Landolfi (2004) for a comprehensive review
of spectral line polarisation theory.
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9.3.2 Mapping of Stellar Magnetic Field Topologies

Magnetic field is a vector quantity. Therefore, to fully describe the stellar surface
magnetic field topology one has to specify three scalar two-dimensional maps of
the radial, meridional, and azimuthal magnetic field components. Simultaneous
reconstruction of these distributions from spectropolarimetric observations is a
formidable task, generally requiring data in all four Stokes parameters. Such
observations are currently available for a small sample of strongly magnetic Ap
stars (Wade et al. 2000; Silvester et al. 2012; Rusomarov et al. 2013) and for only
one bright active RS CVn star (Rosén et al. 2013).

Figure 9.4 gives an example of the Stokes IQUV profile variation for a star with a
strong dipolar magnetic field. These theoretical profiles demonstrate that magnetic
field influences the line shapes in intensity as well as gives rise to a stronger
circular and weaker linear polarisation signatures. Piskunov and Kochukhov (2002)
and Kochukhov and Piskunov (2002) showed that based on an observational data
set comprising 10–20 phase of high-quality Stokes IQUV spectra it is possible to
recover a vector magnetic field map using the same basic mathematical formulation
of the DI problem as described in Sect. 9.2.3 and applying Tikhonov regularisation
to each of the three magnetic field component maps individually. In their magnetic
inversion method Piskunov and Kochukhov (2002) modelled the Stokes parameter
profiles of individual spectral lines with realistic numerical polarised radiative
transfer calculations and implemented a self-consistent and simultaneous magnetic

Fig. 9.4 Stokes profile variation of a star with an oblique dipolar magnetic field. The spherical
plots show the surface magnetic field distribution for three different rotational phases. The
underlying colour image represents the field modulus. The vector map shows the field orientation
with different colours highlighting areas of the inward and outward directed magnetic field. The
Stokes IQUV profiles are illustrated below. The scale of the polarisation profiles is the same for
Stokes V and QU but is expanded by a factor of 1.4 relative to Stokes I. These calculations are
for 4 kG dipolar field inclined by ˇ D 50o with respect to the stellar rotational axis. The latter is
inclined by i D 60o with respect to the line of sight. The projected stellar rotational velocity is
30 km s�1
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and chemical spot inversions. According to the numerical tests by Kochukhov and
Piskunov (2002), this general ZDI methodology is successful in recovering both
global and structured magnetic field topologies. This ZDI method is now routinely
used to study the field topologies and chemical spot distributions in magnetic Ap
stars (see Sect. 9.3.3).

However, due to lack of linear polarisation observations for cool magnetic stars,
a different restricted and less sophisticated ZDI technique is usually applied. Brown
et al. (1991) and Donati et al. (1997) developed and tested a MEM-based inversion
procedure relying on the Stokes V time series, which still aims at recovering all
three components of the stellar magnetic field distribution. Figure 9.5 gives an idea
of how one can constrain the field orientation with the help of rotational modulation
of the Stokes V signatures of magnetic spots. In this highly simplified example of
isolated circular magnetic spots, the radial field spot produces a Stokes V signature
moving across the stellar line profile from blue to red and showing a maximum
amplitude when the spot is at the disk centre (Fig. 9.5a). The meridional field of the
same strength produces a much weaker Stokes V signal that has a minimum at the
disk centre (Fig. 9.5b). On the other hand, the azimuthal field exhibits a noticeably
different Stokes V signature, which changes sign at the disk centre (Fig. 9.5c). Based
on this behaviour, one expects that the azimuthal field can be readily distinguished
from the radial and meridional fields. But the latter two magnetic components are
difficult to disentangle from each other over at least some part of the stellar surface.
Reconstruction of the meridional field is going to be the least reliable. Detailed ZDI
numerical tests by Brown et al. (1991), Kochukhov and Piskunov (2002) and Rosén
and Kochukhov (2012) confirmed this assessment.

Returning to the question of regularisation in ZDI, Brown et al. (1991) found
that the restricted Stokes V inversions produce reasonable results for isolated radial
field spots but fail for global magnetic field distributions such as a dipolar field. This
problem was attributed to the fundamental assumption of the MEM regularisation
(Piskunov and Kochukhov 2002): it requires setting a “default” value that cannot
be easily and uniquely defined for a global magnetic field geometry. In contrast,
the Tikhonov regularisation performs much better for global magnetic geometries.
More recent ZDI studies switched to using a spherical harmonic representation of
the stellar magnetic field (Donati et al. 2006; Kochukhov et al. 2014). In this case
a ZDI inversion code recovers spherical harmonic coefficients corresponding to the
poloidal and toroidal magnetic field components rather than the local magnetic field
values. This modification allows one to model both global and highly structured
magnetic topologies with an added benefit of being able to characterise the field in
detail (e.g. assess poloidal vs. toroidal or axisymmetric vs. non-axisymmetric field).
In this case the regularisation is accomplished by limiting the maximum angular
degree ` of the harmonic expansion and by adding to chi-square an additional
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Fig. 9.5 Signatures of magnetic spots in the circular polarisation line profiles of a rotating star.
Different rows show the Stokes V profiles corresponding to the radial (a), meridional (b), and
azimuthal (c) magnetic spots with the same field strength. In each case the star is shown at three
rotational phases, separated by 0.125 of the rotational period
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penalty function which discourages the inversion code to introduce high-order
harmonic modes not justified by the observational data.2

The restricted Stokes V inversions are usually applied to the LSD circular polari-
sation profiles of cool active stars using a simplified polarised line formation models.
Typically, a Gaussian local line profile together with the weak-field approximation
(Marsden et al. 2011) or the Milne-Eddington analytical solution of the polarised
radiative transfer equation (Morin et al. 2008) is used. Except for the recent series
of studies of global magnetic fields of classical T Tauri stars (Donati et al. 2010) and
a couple of exploratory analyses of other types of active stars (Carroll et al. 2012;
Kochukhov et al. 2013), these ZDI studies completely ignore the effect of cool spots
on the circular polarisation profiles. Consequently, the field strength in the vicinity
of dark features is at least significantly underestimated. In the worst-case scenario
when all magnetic field is concentrated within cool spots magnetic field distributions
inferred by this inversion methodology are largely spurious (Rosén and Kochukhov
2012).

A new self-consistent ZDI inversion method based on detailed polarised radiative
transfer modelling of the LSD profiles in two or all four Stokes parameters was
introduced by Kochukhov et al. (2014). This technique is computationally expensive
but overcomes most of the shortcomings of the restricted ZDI based on LSD profiles
and can be applied to both early- and late-type magnetic stars.

9.3.3 ZDI Applications

Magnetic Mapping of B and A Stars

Historically information about magnetic field topologies of Ap stars was obtained
by fitting the phase curves of integral magnetic observables (longitudinal magnetic
field, mean field modulus, etc.) with low-order multipolar geometries (Landstreet
and Mathys 2000; Bagnulo et al. 2002). These studies established that the majority
of early-type magnetic stars possess nearly dipolar fields, with occasional deviations
from axisymmetry or a quadrupolar contribution (Kochukhov 2006; Bailey et al.
2012). Initial applications of ZDI to high-resolution Stokes I and V observations
of Ap stars validated this picture (Kochukhov et al. 2002, 2014; Lüftinger et al.
2010). Even using detailed circular polarisation profile modelling of individual
spectral lines in the framework of the general ZDI methodology discussed above
little deviation from the basic dipolar field topology was found for A-type magnetic
stars.

2Somewhat confusingly, such ZDI with the spherical harmonic regularisation is still commonly
called “maximum entropy” inversion although the employed regularisation is quite different from
the original MEM-based ZDI scheme described by Brown et al. (1991).
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A qualitatively different picture emerged when ZDI was applied, for the first
time, to the full Stokes vector observations of Ap stars obtained with the MuSiCoS
spectropolarimeter (Wade et al. 2000). In particular, Kochukhov et al. (2004) and
Kochukhov and Wade (2010) showed that satisfactory fits to the Stokes QU (linear
polarisation) observations of Ap stars 53 Cam and ˛2 CVn require a considerably
more complex field topologies than is apparent from the Stokes IV profiles of
these stars. Figure 9.6 shows a comparison of the ZDI results by Kochukhov and
Wade (2010) for ˛2 CVn obtained by considering all four Stokes parameter spectra
(Fig. 9.6a) and excluding the linear polarisation data from inversion (Fig. 9.6b).
Evidently, the full Stokes vector ZDI is able to recover the small-scale magnetic
field structures—essentially comprising several horizontal field spots—that remain
undetected by the inversions limited to Stokes IV data.

Subsequent investigation of ˛2 CVn using high-quality Stokes IQUV observa-
tions secured with a new generation of spectropolarimeters (ESPaDOnS and Narval,
see Silvester et al. 2014) confirmed the ZDI results of Kochukhov and Wade (2010)

Fig. 9.6 Comparison of the ZDI reconstruction of the surface magnetic field topology of the Ap
star ˛2 CVn from observations in all four Stokes parameters (a) and from a data set limited to
Stokes I and V (b). In both cases the rows show spherical plots of the magnetic field modulus
(upper row) and field orientation (lower row). The star is shown at five rotational phases and at
the inclination angle of i D 120o. The contours are plotted with a 0.5 kG step in the field strength
map. It is evident that the magnetic inversion limited to the circular polarisation spectra is unable
to recover the small-scale magnetic features. Adapted from Kochukhov and Wade (2010)
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Fig. 9.7 Long-term stability of the global and small-scale magnetic field topology of the Ap star
˛2 CVn. Rectangular plots show surface distributions of the radial, meridional, and azimuthal field
components. The two rows correspond to (a) magnetic field map derived by Kochukhov and Wade
(2010) from the MuSiCoS observations collected in 1997–1999 and (b) an equivalent magnetic
field distribution obtained by Silvester et al. (2012) from the ESPaDOnS and Narval four Stokes
parameter data acquired in 2006–2007. In both cases magnetic inversions were carried out using
all four Stokes parameters. Adapted from Silvester et al. (2012)

and demonstrated that no significant evolution of either the global or small-scale
magnetic field of this star has occurred during � 10 years that have passed between
acquisition of the two polarisation data sets (see Fig. 9.7).

Thus, the four Stokes parameter ZDI studies of intermediate-mass Ap stars
53 Cam and ˛2 CVn indicated that, although the overall magnetic field structure
defined by the radial field component is dipolar-like, there are also smaller scale
magnetic features on the stellar surface. Since very few Ap stars were studied with
four Stokes parameter ZDI, it is difficult to ascertain how this picture depends on
the stellar mass and age. To this end, recent results seem to hint on the mass (or
age) dependence of the level of complexity of Ap star magnetic fields. Rusomarov
et al. (2015) reported no evidence of deviations from a dipolar field topology
based on the ZDI analysis of very high quality HARPSpol Stokes IQUV spectra
of the low-mass (and old) Ap star HD 24712. On the other hand, a couple of
magnetic early B stars (hence massive and young) were found to possess remarkable
non-dipolar magnetic geometries from a complex phase variation of their circular
polarisation profiles (Donati et al. 2006; Kochukhov et al. 2011). ZDI results for
one of these extraordinary stars, HD 37776, are presented in Fig. 9.8. In this case
the field structure does not resemble a dipole or quadrupole even remotely. So far
this extreme degree of the field complexity has only been seen in the most massive
early-type magnetic stars.

Several ongoing four Stokes parameter ZDI studies will increase the sample of
Ap stars with detailed information on the surface magnetic field structure, helping
to clarify the emerging trend of the field complexity with stellar parameters.
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Fig. 9.8 Unusually complex magnetic field structure of the B-type star HD 37776 reconstructed
with ZDI. The spherical maps show surface distributions of (a) the field modulus and (b) field
orientation. This magnetic field geometry clearly deviates from a simple axisymmetric dipole or
dipole+quadrupole topology. From Kochukhov et al. (2011)

Magnetic Mapping of Late-Type Active Stars

First ZDI maps of the magnetic field topologies of cool active stars were published
by Donati and Collier Cameron (1997), Donati (1999) and Donati et al. (1999,
2003). These authors studied a couple of rapidly rotating single dwarf stars (AB Dor,
LQ Hya) and the primary giant component of the RS CVn binary HR 1099. For all
three objects inversions were performed for several epochs, giving an idea of the
field evolution. These ZDI studies employed LSD profiles for the restricted ZDI
reconstruction (see above) of the brightness map from Stokes I and the magnetic
field distribution from Stokes V data.

Magnetic geometries of cool active stars turned out to be qualitatively different
from that of the Sun. Rather than featuring a system of bipolar regions with mostly
radial field orientation, as was expected by some “active Sun” models (Schrijver
and Title 2001), the first ZDI targets showed significant amounts of large-scale
horizontal magnetic fields. This field was found to be arranged in azimuthal bands
which evolved with time (Donati 1999). Another surprising result was the lack of
correlation between the dark photospheric regions and magnetic features, suggesting
that the strong magnetic fields inside star spots are not resolved or that the restricted
ZDI technique is not sensitive to such fields (Donati and Collier Cameron 1997). In
general, the local magnetic field strengths inferred by ZDI studies occasionally reach
1 kG in the strongest magnetic concentrations but, more typically, amount to only a
few hundred G. However, extrapolating from the physics of cool spot formation on
the solar surface, multi-kG fields should be ubiquitous in active stars with large star
spots.

Subsequently ZDI analyses were applied to many other classes of late-type
active stars, ranging from F stars to M dwarfs. A comprehensive review of these
investigations can be found in Donati and Landstreet (2009). One of the most
impressive achievements was an extension of the magnetic mapping to G-type
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stars with the overall activity levels and rotation rates comparable to the Sun (Petit
et al. 2008). This work demonstrated that magnetic inversions can constrain the
global field topologies even for stars with very small ve sin i. As discussed above
(Sect. 9.2.2), in that case information is primarily extracted from the rotational
modulation of the Stokes V signal rather than from Doppler shifts. For a sample
of four solar analogues Petit et al. (2008) found that the balance between poloidal
and toroidal contributions to the global magnetic field geometry depends on the
stellar rotation rate. Stars rotating faster than 12 days show predominantly toroidal
field and stars with a slower rotation exhibit poloidal field topology, reminiscent of
the global structure of the solar magnetic field.

A few active stars were systematically followed by ZDI over several years
(Fares et al. 2009; Morgenthaler et al. 2012; Kochukhov et al. 2013). In most
cases a significant change of the global field topology was detected. For example,
Fig. 9.9 illustrates the magnetic field reversal for the RS CVn star II Peg studied by
Kochukhov et al. (2013). It remains to be seen how these direct observations of the
magnetic field cycles relate to the behaviour of indirect magnetic proxies such as
the X-ray and Ca H&K emission measures. So far no clear link between the cycles
in direct magnetic observations and proxy indicators was found.

A new type of stellar magnetic field topologies was identified in active M dwarfs
stars with the help of ZDI (Morin et al. 2008; Donati et al. 2008). It turns out that the
convective dynamo mechanism operating in mid- and late-M dwarfs produces fairly
strong (� 500 G), large-scale magnetic fields. For the majority of these stars the field
topology is dipolar and aligned with the stellar rotational axis. On the other hand,
early M dwarfs tend to exhibit more complex, weaker and non-axisymmetric fields.
At the same time, it also became clear that the Stokes V ZDI of M dwarfs misses up
to 95 % of the magnetic flux (Reiners and Basri 2009) because the field modulus
measured from the Stokes I spectra of the same objects indicates 2–4 kG fields
(Johns-Krull et al. 1999; Reiners and Basri 2007), which is much larger than the
global field strength inferred by polarimetry. Presumably, these strong fields have a
complex structure and therefore cancel out in the disk-integrated polarisation signal.
Quantitative field topology models simultaneously reproducing both the Stokes I
and V observations of M dwarfs are yet to be developed.

Over the past few years significant efforts were made to test key assumptions of
the restricted ZDI inversions and to introduce more realistic polarisation modelling
methodologies in the ZDI of cool stars. Limitations of the traditional single-
line interpretation of the Stokes V LSD profiles were explored by Kochukhov
et al. (2010). Based on the experience gained from the general ZDI of Ap stars,
Kochukhov et al. (2013) performed ZDI inversions for the RS CVn star II Peg using
detailed self-consistent polarised radiative transfer calculations. According to the
numerical tests by Rosén and Kochukhov (2012), this should have been sufficient for
identifying strong unipolar magnetic fields inside cool spots. However, such fields
were not detected suggesting that the dark spots recovered by DI are not monolithic
but are composed of numerous bipolar groups whose polarisation signals cancel out
in the disk-integrated Stokes V spectra.
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Fig. 9.9 Self-consistent ZDI reconstruction of the vector magnetic field and temperature distribu-
tion for the RS CVn star II Peg at two different epochs. For each epoch the two columns on the
left compare the observed (symbols) and theoretical (lines) LSD Stokes I and V profiles. The four
rectangular maps illustrate distributions of the radial, meridional, and azimuthal field components,
and temperature. Significant evolution of the surface structure over a time span of 2 years is evident.
From Kochukhov et al. (2013)

In another development, Kochukhov et al. (2011) and Rosén et al. (2013)
obtained the first spectropolarimetric observations of cool active stars in all four
Stokes parameters. It was demonstrated that the full Stokes vector Zeeman spec-
tropolarimetry is feasible using LSD, at least for a handful of brightest objects. A
ZDI investigation based on these data was published by Rosén et al. (2015). Their
results indicate that, similar to the situation with ZDI of Ap stars, simultaneous
modelling of the Stokes IQUV spectra reveals considerably more complex magnetic
fields than suggested by the traditional Stokes V inversions.
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9.4 Conclusions

Doppler and Zeeman Doppler imaging have proven themselves as a powerful remote
sensing methods of obtaining detailed maps of spot distributions and magnetic field
topologies for unresolved stellar surfaces. DI and ZDI have been applied to a large
number of stars, leading to several important breakthroughs in our understanding
of the stellar magnetism and the processes of surface structure formation. As
a conclusion of this review we take a look into the future, summarising key
development directions of Doppler inversion studies of early- and late-type stars.

• DI of chemical spots Doppler inversions of chemical abundance inhomo-
geneities in chemically peculiar stars recover horizontal distributions under the
assumption of no significant vertical abundance variation. However, Ap stars
are known to exhibit vertical stratification of chemical elements (Ryabchikova
et al. 2002) and the apparent lateral inhomogeneities may well be a consequence
of the variation of vertical stratification over the stellar surface (Alecian and
Stift 2010). Therefore, chemical abundance DI should eventually incorporate the
vertical dimension in the inversion process, ultimately providing 3-D chemical
spot maps.

• DI of temperature spots This application of DI would benefit from an increase
of reliability of reconstruction of the physical properties of star spot interiors.
This can be accomplished by a systematic incorporation of the molecular
indicators in the temperature DI modelling and combining the optical and near-
infrared spectroscopic diagnostics. At some stage, the question of the vertical
temperature and pressure structure of magnetised star spots needs to be addressed
and dedicated models of spot atmospheres be developed and incorporated in DI.

• ZDI of early-type magnetic stars The methodology of self-consistent four
Stokes parameter inversions using polarisation profiles of individual lines is well-
established and thoroughly tested. However, this technique requires Stokes IQUV
observational data of superb quality that is unavailable for all but brightest stars.
It is of interest to pursue development of multi-line four Stokes parameter ZDI
methodology, using the S/N gain advantages of LSD but without compromising
on the detailed polarised radiative transfer calculations. First steps in this
direction were taken in the Stokes IV inversions described by Kochukhov et al.
(2014), but the method is yet to be tested for a full Stokes vector data set.

• ZDI of cool active stars Despite numerous applications of magnetic mapping
to different classes of active stars, there remain fundamental questions about
reliability of the ZDI inversions of complex field topologies using only Stokes IV
observations. Furthermore, the consequences of numerous simplifications of the
restricted ZDI (analytical line profiles, lack of self-consistency between spot and
magnetic field modelling, etc.) remain poorly explored. Occasional comparisons
of the ZDI reconstructions by independent inversion codes reveal uncomfortably
large discrepancies (see Skelly et al. 2010; Carroll et al. 2012). Methodological
improvements of the cool star ZDI are essential for understanding the absence
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of correlation between temperature and magnetic maps and the apparent lack of
strong magnetic fields that should be associated with cool star spots.
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