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Preface

Topological insulators are crystalline solids with supposedly very special properties.
If stumbling upon such a crystal, which is possible because topological insulators are
known to occur naturally on earth [73], a curious investigator will discover that the
electrons deep inside the material are locked and they do not flow under electric field
excitations. The immediate conclusion will be that the crystal is an insulator.
However, when examining the surface of the crystal, our fictitious character will
discover that the surface electrons are free to move like in a metal. Perhaps the first
reaction will be to assign this odd behavior to surface contaminants and other factors
like that, and the natural course of action will be to cleave a new surface and see what
happens. To one’s surprise, no matter how careful the new surface is cleaved, the
metallic character is still present. There are many untold details to the story, but,
broadly speaking, this is what a topological insulator ought to be. As the story
suggests, the special properties must be determined by the bulk characteristics of the
material, but there must be a bulk-boundary correspondence principle which tells
how these bulk characteristics determine the metallic character of the surface. We
should specify here, at the beginning, that although the properties of the topological
insulators are ultimately determined by the number, type, and arrangements of the
atoms in the repeating cell of the crystal, the topology guaranteeing the metallic
surface states is actually routed in the abstract space of electron ground states and
has, for instance, nothing to do with the appearance and shape of the sample.

One may be reminded of the integer quantum Hall effect (IQHE) [117], where
robust conducting channels occur along the edges of a specially prepared sample
immersed in a relatively large magnetic field. In contradistinction, no magnetic
fields were mentioned in the above story. The special properties of the topological
insulators are intrinsic to the materials, which presumably will enable a broader
range of applications. It was Haldane [80] who realized in 1988 that all the char-
acteristics of the IQHE can occur naturally in materials with special unit cells and
hopping matrices. The next milestone of the field occurred much later, in 2005,
when Kane and Mele revealed that these special hopping matrices can be induced
by the spin–orbit interaction [99, 100]. At the same time, they discovered a new
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class of topological materials, the quantum spin-Hall insulators in two space
dimensions which have topologically nontrivial time-reversal symmetric ground
states. These developments gathered momentum with the theoretical prediction [26]
and then the experimental confirmation [121] of the first quantum spin-Hall insu-
lator, and then further with the theoretical prediction of new topological insulators
in three space dimensions [70, 71, 141, 189] and their experimental realization [91].
The field of topological insulators is now fairly mature and there are several very
good surveys [84, 86, 173, 174] and excellent monographs [25, 67, 150, 199],
where the reader can also find extensive literature on the subject. We want to
mention in particular the short survey by Ando [8], which includes a table of 34
topological materials that were synthesized and characterized in laboratories,
together with a summary of the findings for each compound. Ando’s analysis
reveals that, while the patterns seen in the surface electronic band structure agree
quite well with the theoretical predictions, the transport experiments indicate a
weak bulk metallic character (i.e., large, but nevertheless finite resistivity at low
temperatures) for all these materials (excepting the two-dimensional ones). Because
of it, the transport characteristics of the surfaces were impossible to measure and the
main conjecture about their metallic character is yet to be confirmed. The lack of
insulating bulk character is usually attributed to the disorder in the samples, which
is difficult to control for materials with such large and complex unit cells. A great
deal of experimental effort was invested in overcoming this last hurdle, and one
success has been recently reported for thin films [32]. On the theoretical front, these
issues prompted the need for theoretical methods which can handle more realistic
models of topological insulators, in particular, to incorporate the effects of disorder.
On the fundamental level, a rigorous proof of the conjectures on topological
insulators in such real-world conditions is highly desirable.

What are the main aims? The present monograph is a mathematically rigorous
contribution to the theory of so-called complex classes of topological insulators,
namely those classes which are not specified by symmetries invoking a real
structure, such as time-reversal or particle-hole symmetries (see Chap. 2 for a
concise description). The main objectives are to:

Aim 1: Construct the observable algebras within an effective one-particle
framework.

Aim 2: Encode the nontrivial topology in bulk and boundary invariants which
are robust against disorder and magnetic fields.

Aim 3: Establish the equality between the bulk and the boundary invariants.
Aim 4: Determine the range of the invariants using generalized Streda formulas

which connect different invariants.
Aim 5: Establish local index theorems for the so-called strong bulk and boundary

invariants.
Aim 6: Prove the defining property of topological insulators, i.e., the immunity

of the boundary states against Anderson localization.
Aim 7: Connect the invariants to response coefficients and other physical

observables.
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Which mathematical tools are used? The C*-algebras describing the bulk sys-
tems are those introduced by Bellissard for the description of the quantum Hall
effect and quasicrystals [17]. Algebras describing half-space models and their
boundaries are the extensions of the bulk algebras introduced in [107, 197]. These
algebras form a short exact sequence of C*-algebras, which is central to the
bulk-edge correspondence. In the mathematical literature, these algebras are
respectively well known as (twisted) crossed product algebras [156, 223] and their
Toeplitz extensions, as given by Pimsner and Voiculescu [160]. In a first step, the
topological invariants are encoded in the K-theory of these algebras. Based on the
Pimsner–Voiculescu six-term exact sequence [160] and on [60, 183, 185], these K-
groups and their generators can be determined completely. In a second step, the K-
theoretic content is extracted via pairings with the cyclic cohomology of the
observables algebras, the latter being a key element of Connes’ non-commutative
geometry [47]. At this step, numerical invariants are generated and, for bulk sys-
tems, these invariants extend those known in the physics literature [170, 190, 192].
It is then possible to prove duality results for the connecting maps of K-theory, such
as the suspension map, Bott map, index map, exponential map, and their coun-
terparts in cyclic cohomology [63, 107, 145, 159]. This allows to connect various
invariants. In particular, the bulk invariants are equal to the boundary invariants as
well as the Volovik–Essin–Gurarie invariants calculated in terms of the Green
functions [64, 213]. Another technique used here is that of Fredholm modules for
index calculations, as introduced by Atiyah [10] and further developed by Kasparov
[101] and Connes [46]. This technique leads by rather elementary means to index
theorems for the so-called strong invariants of topological insulators. Alternative
mathematical approaches to the duality results behind the bulk-boundary corre-
spondence were given in [79] and [30, 31]. To achieve Aim 4, we use another
technical tool, namely the Ito derivative w.r.t. the magnetic field, as introduced by
Rammal and Bellissard [176] and further elaborated in [198]. Resuming, this
monograph shows how a variety of abstract mathematical tools, ranging from C*-
algebras and their K-theories to non-commutative geometry, can be put to work on
very concrete problems coming from solid state physics, and help resolve issues
which are presently addressed in the physics community.

What is new and what was known before? The real space versions of the bulk
invariants in arbitrary dimensions already appeared in our prior works [139, 169,
171], where also the index theorems for these invariants were proved. These works
paralleled the much earlier work of Bellissard on two-dimensional quantum Hall
systems [17, 18, 20]. This approach to topological invariants allows to go beyond
their definition based on Bloch theory, as it is usually done in the physics literature
[172, 192]. The use of K-theory to connect with the invariants of Volovik [213] and
Essin-Gurarie [64] is new. Also, the definitions of the boundary invariants for
arbitrary dimensions are new, as are the index theorems for them. In the context of
condensed matter physics, the connecting maps of K-theory were first put to work
for integer quantum Hall systems, where they provided a structural framework for
the proof of the equality between the bulk and edge Hall conductances, under quite
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general assumptions [107, 109, 197]. This series of works was heavily inspired by
Hatsugai’s work [87] on edge states for the Harper model. Actually, these works
only used the exponential connecting map which is also applied to higher even
dimensions here. A key new element of the present work is the use of the index map
for chiral systems (see Sects. 1.3 and 4.3.2), and actually for the much wider class
of approximately chiral systems. The index map is the key to a sound definition
of the boundary invariants and is also instrumental for the proof of the bulk-edge
correspondence for chiral systems, from which the delocalized character of the
boundary states follows (see Aim 6).

Another important new result is a generalized Streda formula and its corollaries
on the ranges of the pairings of K-theory with cyclic cohomology. The classic
Streda formula refers to the equality between the variation w.r.t. magnetic field of
0-cocycle pairings (particularly, the density of states) and 2-cocycle pairings
(particularly, the Hall conductance) [176, 198, 204]. This equality will be gener-
alized to cocycles of arbitrary dimensions and this will enable us to attach physical
content to the abstractly defined topological invariants. As we shall see in Chap. 7,
the generalized Streda formula has numerous physical applications and unifies other
results obtained in the literature [172, 200]. Further new results in Chap. 7 concern
the stroboscopic interpretation of the orbital polarization, the connection of orbital
polarization to spectral flow of boundary states and the prediction of a quantum Hall
effect in approximately chiral systems in dimension d = 3. Interestingly, the Hall
conductance of these surface states is dictated by the bulk invariant.

What is left out? There is no attempt here to deal with systems having
time-reversal symmetry, particle-hole symmetry or reflection symmetries. There is
an exhaustive physical literature on such systems starting with [92, 172, 190], and a
few more mathematical oriented works [11, 68, 76, 77, 85, 111, 162, 194, 207]
which already proposed topological invariants for such systems. However, the
bulk-boundary correspondence for these systems has only been established for very
special situations [11, 76, 137, 138]. Based on [77, 194, 207], we expect that these
symmetries can be accommodated in the framework developed here and that the
bulk-boundary correspondence will follow for these systems, too, but this definitely
requires further investigations. Even for the complex classes extensively treated
here, K-theoretic techniques can supply further interesting results not included in
the monograph. For example, in [56] it is shown that the Laughlin argument
(piercing of a flux through a quantum Hall system and inducing an associated
spectral flow) can be described by an exact sequence of C*-algebras. This exact
sequence is a mapping cone and is hence different from the exact sequence of the
bulk-boundary correspondence. Nevertheless, the K-theory associated to that
sequence links Hall conductance (i.e., Chern numbers) to a spectral flow and hence
captures again the essence of Laughlin’s argument. Implementing symmetries in
this sequence allows to derive criteria for the existence of zero modes attached to
flux tubes in dirty superconductors or Kramers bound states at defects in quantum
spin-Hall systems [56]. Another example is boundary forces [103, 104, 110, 168].
It is actually the firm belief of the authors that other defects, e.g., as described in
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[93, 188, 206], can also be described by adequate sequences of C*-algebras and the
associated K-theoretic sequences can be used to uncover new interesting topolog-
ical effects. From this perspective, the bulk-boundary correspondence can be seen
as one particular situation where these ideas can be implemented, albeit probably
the most important one. To further support this belief, we included here the stro-
boscopic interpretation of the orbital polarization as a further example. Behind it is
a natural exact sequence associated to the suspension construction in K-theory. Let
us mention that the use of exact sequences to connect topological invariants in
physics is not restricted to solid state systems, but has also been successfully
implemented in scattering theory to prove Levinson’s theorem [21, 105, 106].

Concerning the index theory, let us first point out that it has very recently been
shown [30] how to obtain index theorems as stated in Chap. 6 by evaluating the
general Connes–Moscovici local index formula [50] in a form proved in [34] under
much broader assumptions. The argument is close to [7] and avoids using the
intricate geometric identities discovered in [47, 169, 171] and presented in Sect. 6.4,
but the price are other technicalities. We decided to stay with the more direct
arguments which rely on the Calderon–Fedosov formula [33, 66] for the Fredholm
index and the above-mentioned geometric identities. On another front, we did not
attempt any (generalized) index theorems for the so-called weak topological
invariants. Such results are possible [165], but one has to leave the realm of finitely
summable Fredholm modules and work with semifinite spectral triples [37–39].
Actually, the latter framework was shown to be fruitful in much broader contexts, in
some cases even for correlated quantum systems [35, 36, 152–154]. This brings the
hope that the electron–electron interaction can be treated by these techniques. This is
one of the big open issues in the field and is not dealt with in the present work. We
also decided not to include any numerical evaluation of the invariants. This will be
presented elsewhere. While completing the manuscript, we came across the fol-
lowing works [31, 137, 138] which open new directions and partially overlap with
our presentation.

How is the monograph organized? Chapter 1 illustrates the key concepts on
perhaps the simplest of all topological systems, a lattice model with chiral sym-
metry in space dimension d = 1. In this case, the bulk invariant is provided by the
winding number of the so-called Fermi unitary operator and the edge effect consists
in the emergence of zero-energy quantum states localized near the edge, called
zero-edge modes. The space of zero-edge modes is invariant under the chiral
symmetry, hence the zero modes have a specific chirality assigned to them. The
bulk-boundary principle then asserts that the bulk invariant is equal to the number
of zero-edge modes with positive chirality minus the number of zero-edge modes
with negative chirality. As a result, if the bulk invariant is not zero, there will
always be zero-edge modes and their number is necessarily larger or equal to the
value of the bulk invariant. This statement, which is proved here using a K-theoretic
approach, holds in the presence of disorder and regardless of how the lattice is
terminated at the edge, provided the chiral symmetry is always present. Along the
way, many of the concepts used later in the monograph are introduced. Actually the

Preface xi

http://dx.doi.org/10.1007/978-3-319-29351-6_6
http://dx.doi.org/10.1007/978-3-319-29351-6_6
http://dx.doi.org/10.1007/978-3-319-29351-6_1


key ideas on how to use the index map for the bulk-boundary correspondence in
chiral systems is already exposed in Chap. 1.

Chapter 2 gives a brief overview of the classification table of topological
insulators and superconductors [115, 190, 192], which is now accepted by the
majority of the condensed matter physics community. The present work only deals
with the first two rows of this table, the so-called unitary symmetry class A and the
chiral unitary symmetry class AIII. They are also called the complex classes since
they are classified by the complex K-theory while the remaining 8 classes are
classified by real K-theory. The physics and the conjectures for the complex classes
are presented in detail in Sects. 2.2 and 2.3. These sections also provide simple
models in arbitrary dimensions where the bulk-boundary principle can be witnessed
first-hand. The last section of Chap. 2 introduces the physical models which are
studied in the remainder of the manuscript, together with technical conditions on
these models.

Chapter 3 introduces the operator algebras for bulk, half-space, and boundary
observables. Section 3.1 describes the disordered non-commutative torus which
plays the role of bulk algebra. This C*-algebra can be presented as a d-fold iterated
crossed product (d is the dimension of the physical space) and it has a canonical
representation on ‘2ðZdÞ which generates the bulk models discussed in Chap. 2.
Section 3.2 then introduces the disordered non-commutative torus with a boundary.
Here one of the unitary generators becomes a partial isometry which can be seen as
introducing a defect. This algebra plays the role of the half-space algebra and it has
a canonical representation on ‘2ðZd�1 � NÞ which generates the physical models on
a half-space. The algebra of boundary observables is a prime ideal of the half-space
algebra. The elements of this algebra generate the boundary conditions. The exact
sequence between the bulk, half-space and boundary algebras is also discussed in
this chapter. The last sections of the chapter present the non-commutative analysis
tools for the observables algebras and the smooth sub-algebras where this calculus
actually takes place.

Chapter 4 presents the K-theory of the observables algebras. It begins with a
concise description of the basic principles of K-theory. The exact sequence of
Chap. 3 is shown to be isomorphic to the Pimsner–Voiculescu exact sequence [160]
and the latter is then used to compute the K-groups. In particular, the K-groups
of the bulk algebra and of the non-commutative torus coincide. For the latter, the
generators of the K-groups have been computed explicitly by Elliott [60] and
Rieffel [183] and we reproduce them in Sect. 4.2.3. Section 4.3 computes various
connecting maps between the K-groups of observables algebras. This section is
central for the whole book.

Chapter 5 invokes the cyclic cohomology and its pairing with the K-theory to
define the bulk and the boundary topological invariants in terms of the Chern
characters paired with the appropriate elements of the K-groups. It is shown how to
suspend these invariants and that this suspension does not alter the values of the
invariants. The equality between the bulk and the boundary invariants is established
using the duality between the pairings for bulk and boundary algebras. The range
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of these pairings is calculated using a generalized Streda formula. Detailed proofs
are provided for all of these central results.

Chapter 6 constructs finitely summable Fredholm modules canonically associ-
ated with the observables algebras. The pairings of the associated Connes–Chern
characters with the K-groups are expressed as Fredholm indices. Section 6.3
establishes the equality between the Chern and Connes–Chern characters based on
two remarkable geometric identities, which in turn provide the index formulas for
the bulk and boundary invariants. The metallic character of the boundary states is
established as a direct consequence of these index formulas.

Chapter 7 presents a series of corollaries which describe our physical predictions
based on the mathematical statements from the previous chapters. The chapter starts
with a brief introduction to the bulk and boundary transport coefficients of
homogeneous disordered systems. These linear and nonlinear coefficients are then
connected to the bulk and boundary topological invariants for systems of class A.
Predictions about the quantized values and the robustness of these physically
measurable properties are provided. Similar results are presented for the sponta-
neous electric polarization and the magneto-electric response coefficients. For chiral
symmetric solid state systems, the physically relevant quantities are the sponta-
neous chiral electric polarization and its variations w.r.t. magnetic fields, which are
shown to be of topological nature and connected to the bulk and boundary
invariants constructed for systems from class AIII. Again several of these mea-
surable quantities have quantized vales. The chapter also includes a prediction and
discussion of an IQHE at the surface of chiral or at least approximately chiral
symmetric systems. The generalized Streda formula developed in Chap. 5 is an
essential tool for the analysis in Chap. 7.

New York Emil Prodan
Erlangen Hermann Schulz-Baldes
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Chapter 1
Illustration of Key Concepts
in Dimension d = 1

Abstract This introductory chapter presents and illustrates many of the key concepts
developed in this work on a simple example, namely the Su-Schriefer-Heeger model
[205] of a conducting polymer. This model has a chiral symmetry and non-trivial
topology, given by a non-commutative winding number which is remarkably stable
against perturbations like a random potential [139]. Hence this is a relatively simple
example of a topological insulator. Here the focus is on the bulk-boundary corre-
spondence in this model, which connects the winding number to the number of edge
states weighted by their chirality. This connection will be explained in a K-theoretic
manner. These arguments constitute a rather mathematical introduction to the bulk-
edge correspondence and the physical motivations and insights will be given in the
following chapters.

1.1 Periodic Hamiltonian and Its Topological Invariant

As a general rule, the topology in topological insulators is always inherited from
periodic models and this topology can be shown in many instances to be stable under
perturbations which also break the periodicity. It is therefore instructive to start out
with a detailed analysis of the periodic models and to identify their topological
invariants. The one-dimensional periodic Hamiltonian H considered here acts on the
Hilbert space C

2 ⊗ C
N ⊗ �2(Z) and is given by

H = 1
2 (σ1 + iσ2) ⊗ 1N ⊗ S + 1

2 (σ1 − iσ2) ⊗ 1N ⊗ S∗ + m σ2 ⊗ 1N ⊗ 1 , (1.1)

where 1N and 1 are the identity operators on C
N and �2(Z) and the 2 × 2 Pauli

matrices are

σ1 =
(

0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
,

and S is the right shift on �2(Z) while m ∈ R is the mass term. The component
C

2 ⊗ C
N of the Hilbert space will be referred to as the fiber. This Hamiltonian goes

© Springer International Publishing Switzerland 2016
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2 1 Illustration of Key Concepts in Dimension d = 1

back to Su et al. [205] and its physical origin will be discussed in Sect. 2.3.2. It has
a chiral symmetry w.r.t. the real unitary J = σ3 ⊗ 1N ⊗ 1 squaring to the identity

J∗ H J = − H . (1.2)

The Fermi level μ is always assumed positioned at 0 for chiral symmetric systems,
see Chap. 2. Note that a model with chiral symmetry can display a spectral gap at
μ = 0 only if the fiber has even dimension, which is obviously the case here.

The discrete Fourier transform F : �2(Z) → L2(S1) defined by

(Fφ)(k) = (2π)−
1
2

∑
x∈Z

φx e−i〈x|k〉 ,

partially diagonalizes the Hamiltonian to FHF∗ = ∫ ⊕
S1 dk Hk with

Hk = 1
2 (σ1 + iσ2) ⊗ 1N e−ik + 1

2 (σ1 − iσ2) ⊗ 1N eik + m σ2 ⊗ 1N

or

Hk =
(

0 e−ik − im
eik + im 0

)
⊗ 1N .

Also the chiral symmetry operator diagonalizesFJF∗ = ∫ ⊕
S1 dk Jk , even with constant

fibers Jk = σ3 ⊗ 1N . The two eigenvalues of Hk are

E±(k) = ±
√

m2 + 1 − 2m sin(k) ,

and both are N-fold degenerate. Their symmetry around 0 reflects the chiral sym-
metry JkHkJk = −Hk which, as for any Hamiltonian with chiral symmetry, implies
σ(Hk) = −σ(Hk). The central gap around 0 is Δ = [−Eg, Eg] with Eg = ∣∣|m| − 1

∣∣.
Hence it is open as long as m /∈ {−1, 1}. Let us also note that for m = 0, one has
E±(k) = ±1 for all k, namely the two bands are flat. In fact, one readily checks that
the eigenfunctions of H are supported on two neighboring sites each.

In the mean-field approximation, which will be assumed throughout, the electron
ground state is encoded in the Fermi projection PF = χ(H ≤ μ) and we recall that
in the chiral symmetric models one fixes μ = 0 to ensure the charge neutrality of
the system. Since we are in dimension one, this projection cannot be used to define
a topological invariant (other then the electron density), and we should rather look
for a unitary operator. Note that JPFJ = 1 − PF and therefore the so-called flat band
Hamiltonian

Q = 1 − 2PF = sgn(H)

satisfies again J∗QJ = −Q. It also satisfies Q2 = 1, hence its spectrum consists of
only two eigenvalues, 1 and −1, which are both infinitely degenerate. The chiral

http://dx.doi.org/10.1007/978-3-319-29351-6_2
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symmetry combined with Q2 = 1 implies the existence of a unitary UF on C
N ⊗

�2(Z) such that

Q =
(

0 U∗
F

UF 0

)
. (1.3)

In analogy with the Fermi projection, this unitary operator UF will be called the
Fermi unitary operator. The existence of the Fermi unitary operator is a generic
characteristic of chiral symmetric gapped Hamiltonians. Note that UF can be con-
structed entirely from the electron ground state and, reciprocally, the electron ground
state can be reconstructed entirely from UF . Also, note that in the physics literature
and in our previous work [171] UF and U∗

F are interchanged. The choice in (1.3) will
prove more convenient here, especially when computing the index map, see below.

For the Hamiltonian (2.24), one readily calculates FQF∗ = ∫ ⊕
S1 dk Qk , with

Qk =
(

0 e−ik+im
|e−ik+im|

eik+im
|eik+im| 0

)
⊗ 1N .

In general, every flat band Hamiltonian of a periodic chiral Hamiltonian with open
central gap is fibered as

Qk =
(

0 U∗
k

Uk 0

)
,

with some unitary matrix Uk ∈ MN (C) acting on C
N which is supposed to be dif-

ferentiable in k. It is now natural to consider the winding number associated to the
Fermi unitary operator, which for reasons explained further below will be called the
first odd Chern number:

Ch1(UF) = i
∫
S1

dk

2π
tr
(
U∗

k ∂kUk
)

. (1.4)

For the Hamiltonian (2.24) one finds

Ch1(UF) =
{− N , m ∈ (−1, 1) ,

0 , m /∈ [−1, 1] .

This integer Ch1(UF) is the bulk invariant associated to the ground state of Hamil-
tonian (1.1). The term invariant reflects the fact that Ch1(UF) does not change for suf-
ficiently small perturbations of the Hamiltonian, even though UF itself does change.
In particular, the following perturbations are of interest:

(i) Next nearest hopping terms.
(ii) A random potential or random hopping elements.

(iii) Terms breaking the chiral symmetry (1.2).

The perturbations (i) and (iii) can be dealt with in the framework of periodic operators
where a Bloch Floquet transform is applicable. If the chiral symmetry is broken, then

http://dx.doi.org/10.1007/978-3-319-29351-6_2
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the flat-band Hamiltonian is not described as in (1.3) by a unitary anymore, but it may
still have invertible off-diagonal entries of which a winding number is well-defined
as well. For the random perturbations in (ii) one is forced out of the realm of Bloch
theory. One of the main points to be developed further down is to show how this
can be accomplished. Of course, another question addressed is to find the adequate
replacement for Ch1(UF) for higher dimensions.

1.2 Edge States and Bulk-Boundary Correspondence

In this section, an edge or boundary for the one-dimensional periodic Hamiltonian
(1.1) is introduced. This can be achieved by simply restricting (1.1) to the half-space
Hilbert space C

2 ⊗ C
N ⊗ �2(N), e.g. by imposing the Dirichlet boundary condition

Ĥ = 1
2 (σ1 + iσ2) ⊗ 1N ⊗ Ŝ + 1

2 (σ1 − iσ2) ⊗ 1N ⊗ Ŝ∗ + m σ2 ⊗ 1N ⊗ 1 .

All half-space operators will carry a hat from now on. For example, Ŝ above is
the unilateral right shift on �2(N) and there is the half-space chirality operator Ĵ =
σ3 ⊗ 1N ⊗ 1. The half-space Hamiltonian still has the chiral symmetry Ĵ Ĥ Ĵ =
−Ĥ. Again the chiral symmetry implies that the spectrum satisfies σ(Ĥ) = −σ(Ĥ).
Furthermore, the direct sum of two copies of Ĥ is a finite dimensional perturbation of
H. Hence the essential spectra coincide σess(H) = σess(Ĥ), but Ĥ may have additional
point spectrum, corresponding to the edge states which are also called bound or
boundary states.

Example 1.2.1 Let us consider the Hamiltonian Ĥ for m = 0. It takes the form

Ĥ =
(

0 1N ⊗ Ŝ
1N ⊗ Ŝ∗ 0

)
.

The spectrum is now σ(Ĥ) = {−1, 0, 1} with infinitely degenerate eigenvalues ±1
having compactly supported eigenstates on two neighboring sites, and a kernel of
multiplicity N containing vectors supported in the upper entry over the boundary site
0. They result from the fact that |0〉 ∈ �2(N) lies in the kernel of the unilateral left shift
Ŝ∗. For N = 1, this zero mode is simple and perturbations of the Hamiltonian Ĥ within
the class of half-sided chiral Hamiltonians cannot remove it since the symmetry of
the spectrum has to be conserved and a simple eigenvalue cannot split into two by
perturbation theory. The same stability actually holds for N > 1 because the signature
of Ĵ on the kernel is N and also this signature is conserved during a homotopy of
chiral Hamiltonians. Note also that the signature is equal to N = −Ch1(UF). Due to
the stability of both quantities, the equality Ch1(UF) = −Sig(̂J|Ker(Ĥ)) holds also in
a neighborhood of the Hamiltonian Ĥ with m = 0. 
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Now let us go on with a more structural analysis of the edge states which is
not as tightly linked to the special model under consideration. Suppose that ψ ∈
C

2 ⊗ C
N ⊗ �2(N) is such a normalized bound state with energy E, namely Ĥψ =

Eψ . Then Ĥ Ĵ ψ = −E Ĵ ψ , which implies that the span E of all eigenvectors with
eigenvalues in [−δ, δ] ⊂ Δ is invariant under J . Therefore Ĵ can be diagonalized onE
leading to a splittingE = E+ ⊗ E− such that Ĵ is ±1 onE±. Accordingly, the spectral
projection P̃(δ) = χ(|Ĥ| ≤ δ) can be decomposed into an orthogonal sum P̃(δ) =
P̃+(δ) + P̃−(δ) and Ĵ P̃(δ) = P̃+(δ) − P̃−(δ). The difference of the dimensions of
E± spaces is the boundary invariant of the system

Tr(̂J P̃(δ)) = N+ − N− , N± = dim(E±) .

This invariant is also equal to the signature of Ĵ|E and such signatures are again
well-known to be homotopy invariants, as already pointed out in the example above.
The invariant is independent of the choice of δ > 0 as long as δ lies in the gap of
H, hence its value must be determined entirely by the spectral subspace of the zero
eigenvalue, known also as the space of the zero modes. Zero modes in E+ and E− are
said to have positive and negative chirality, respectively. The following result now
connects the bulk invariant Ch1(UF) to the boundary invariant Tr(̂J P̃(δ)).

Theorem 1.2.2 Consider the Hamiltonian H on C
2 ⊗ C

N ⊗ �2(Z) given by (1.1)
and let Ĥ be its half-space restriction. If UF is the Fermi unitary operator defined via
(1.3) and if its winding number is defined by (1.4), then the bulk-edge correspondence
in the following form holds

Ch1(UF) = − Tr(̂J P̃(δ)) . (1.5)

This result can be proved by various means (see the above example and [64,
65], but likely there are other references). However, in the following, a detailed K-
theoretic proof will be provided. Such a structural argument stresses the robust nature
of the above equality. In particular, stability under the perturbations listed at the end
of Sect. 1.1 will be covered. Furthermore, it will be possible to extend the structural
argument to higher dimensional systems.

1.3 Why Use K-Theory?

There have been numerous works that use K-theory for topological condensed matter
systems. Pioneering were the papers by Bellissard on the integer quantum Hall effect
[17, 18], which were reviewed and extended to the regime of dynamical Anderson
localization in [20]. K-theory can be used to obtain gap labelling [17]. Starting with
the Kitaev’s paper [115], K-theory and KR-theory (which is K-theory in presence of
symmetries) were more recently used as a tool to classify topological insulators [54,
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68, 111, 143, 203, 207] or define topological invariants in the absence of periodicity
[85, 134]. Here the main objective is a different one:

• Use the connecting maps of K-theory to relate different invariants.

This was first achieved in [107, 109, 197] for integer quantum Hall systems, where
the equality of bulk and edge Hall conductivity was proved using the exponential
map of K-theory. There are other connecting maps in K-theory though, in particular
the index map, the suspension map and the Bott periodicity map. In this work it will
be shown how they can be put to work as well and produce interesting identities.
In this introductory section on the one-dimensional Su-Schrieffer-Heeger model,
the K-theoretic index map of the so-called Toeplitz extension will be used to prove
Theorem 1.2.2. Along the lines, quite a few things about K-theory will said and used
without proof. These are all standard facts that are well-known in the mathematics
community and can be found in the introductory books on K-theory [187, 222] or
the more advanced textbook [28], but for the convenience of the reader they will be
briefly reviewed in Sect. 4.1 of Chap. 4.

The Toeplitz extension is at the very heart of K-theory. The reader familiar with
all this can jump directly to Proposition 1.3.1. The Toeplitz extension is the following
short exact sequence of C∗-algebras:

0 � K
i� T

(
C(S1)

) ∼= C∗(̂S )
ev� C(S1) ∼= C∗(S) � 0 (1.6)

Here K denotes the algebra of compact operators on �2(N), C(S1) is the algebra of
continuous functions over the unit circle which, by the discrete Fourier transform, is
isomorphic with the algebra generated by the shift operator S on �2(Z), and T(C(S1))

is the algebra of Toeplitz operators. The latter can be presented as the C∗-algebra of
operators on �2(N) which can be approximated in operator norm by polynomials in
Ŝ and Ŝ∗, that is, by finite sums

∑
n,m≥0

an,m (̂S)n(̂S∗)m .

Since
Ŝ∗ Ŝ = 1 and Ŝ Ŝ∗ = 1 − P̃ , (1.7)

where P̃ = |0〉〈0| is the one-dimensional projection on the state |0〉 ∈ �2(N) at the
boundary, the operators from T(C(S1)) can be uniquely expressed as:

∑
n≥0

an(̂S)n +
∑
n<0

an(̂S
∗)−n +

∑
n,m≥0

cn,m (̂S)nP̃(̂S∗)m . (1.8)

One can now see explicitly the connection between the Toeplitz operators and the
half-line observables. Indeed, the first two terms in (1.8) represent the restriction of
the bulk operator

∑
n∈Z anSn to the half-line via the Dirichlet boundary condition,

http://dx.doi.org/10.1007/978-3-319-29351-6_4
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while the third term redefines the boundary condition. The latter is just a compact
operator on �2(N), hence K is a sub-algebra of T(C(S1)) and i in (1.6) denotes the
associated inclusion map. The second morphism in (1.6) is defined by ev(̂S) = e−ik

and ev(̂S∗) = eik , or equivalently ev(̂S) = S and ev(̂S∗) = S∗. Since P̃ = Ŝ∗Ŝ − ŜŜ∗,
one has ev(P̃) = 0 which means that the compact operators are sent to zero by the
second morphism. As a consequence, the sequence (1.6) is exact, namely the image
of each of the three maps is equal to the kernel of the following map.

All the operators appearing above lie in matrix algebras over one of the algebras in
the Toeplitz extension (1.6). Indeed, the Hamiltonian H as well as PF and Q belong to
the algebra M2N (C(S1)) ∼= C

2N×2N ⊗ C(S1) of 2N × 2N matrices with coefficients
in C(S1), and the half-line Hamiltonian Ĥ is an element of M2N (T(C(S1))). Actually,
Ĥ is a so-called lift of H, namely, one has ev(Ĥ) = H. The Fourier transform of
the Fermi unitary operator UF lies in MN (C(S1)). Finally, the finite dimensional
projections P̃(δ) and P̃±(δ) are projections in M2N (K).

Warning: From here on, K-theoretic concepts will be used and only explained on
an intuitive level. Details are found in Chap. 4.

The proof of Theorem 1.2.2 will show how the equality (1.5) results from a
K-theoretic index theorem associated to the Toeplitz extension. The definitions of
K-groups and of the index map are recalled in Sect. 4.1. Roughly stated, for each
C∗-algebra A there exist two groups K0(A) and K1(A) given by homotopy classes
of projections and unitaries, respectively, in the matrix algebras over A. The group
operation in K0(A) is given by the direct sum of projections, while in K1(A) by the
multiplication of unitaries. The K-groups of all algebras in the Toeplitz extension
(1.6) are well-known: K0(K) ∼= Z generated by the rank one projection P̃ = |0〉〈0|,
K0(T(C(S1))) ∼= Z and K0(C(S1)) ∼= Z both generated by the identity, K1(K) = 0
and K1(T(C(S1))) = 0, and finally K1(C(S1)) ∼= Z generated by e−ik (or S) which
is a function with unit winding number. The elements K1(C(S1)) can be uniquely
labeled by their winding number, namely the first odd Chern number. It is also worth
pointing out that the class [̃P]0 in K0(T(C(S1))) is trivial because the isometry Ŝ
satisfies Ŝ∗ Ŝ = 1 and Ŝ Ŝ∗ = 1 − P̃. Hence 1 and 1 − P̃ are Murray-von Neumann
equivalent and are therefore in the same K0-class, to that [̃P]0 = [1]0 − [1 − P̃]0 = 0.
On the other hand, in K0(K) the projection P̃ defines a non-trivial class which is
actually the generator of K0(K).

The central result of K-theory used for the bulk-boundary correspondence is that,
for every exact sequence of C∗-algebras, there is a 6-term exact sequence of the 6
associated K-groups. For the Toeplitz extension, this sequence is

K0(K) = Z
i∗� K0(T(C(S1))) = Z

ev∗� K0(C(S1)) = Z

K1(C(S1)) = Z

Ind
�

�ev∗ K1(T(C(S1))) = 0 �i∗ K1(K) = 0

Exp
�

(1.9)

http://dx.doi.org/10.1007/978-3-319-29351-6_4
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Here the maps i∗ and ev∗ are push-forward maps naturally induced by the maps in
(1.6). Interesting are the so-called boundary maps Exp and Ind. The exponential map
Exp has to be trivial for the Toeplitz extension as K1(K) = 0. Focus will therefore
be on the index map Ind, which has to be an isomorphism. First of all, note that it
maps classes of unitaries from the bulk algebra C(S1) to projections in the boundary
algebra K. Hence it establishes a link between the topology of the bulk and the
boundary, which is precisely what we are looking for. Let us first recall the general
definition of the index map (as already pointed out, more details and a more stringent
formulation using utilizations are given in Sect. 4.1) and then evaluate it explicitly.
Given a class [U]1 ∈ K1(C(S1)) associated to a unitary U ∈ MN (C(S1)), one first
constructs a unitary lift

Ŵ = Lift

(
U 0
0 U∗

)
∈ M2N (T(C(S1))) ,

which is by definition a unitary satisfying ev(Ŵ ) = diag(U, U∗), and then defines

Ind([U]1) =
[

Ŵ

(
1N 0
0 0

)
Ŵ ∗

]
0

−
[(

1N 0
0 0

)]
0

. (1.10)

In general, it can be shown that the lift exists and that the r.h.s. of (1.10) really
specifies an element in K0(K) and not in K0(T(C(S1))), as one may think at first
sight.

Let us first calculate Ind([Sn]1) for the bilateral left shift Sn by n sites. These
unitaries generate K1(C(S1)) = {[Sn]1 | n ∈ Z}. A unitary lift for n ≥ 0 is

Lift

(
Sn 0
0 (Sn)∗

)
=

(
Ŝn P̃n

0 (Ŝn)∗

)
,

where as above Ŝ is the unilateral right shift and P̃n = ∑n
k=1 |k〉〈k| is the projection

on the n states localized at the boundary of �2(N). Hence Ŝn(̂S∗)n = 1 − P̃n and
P̃nŜn = 0. Evaluating (1.10) now shows

Ind([Sn]1) =
[(

Ŝn (̂S∗)n 0
0 0

)]
0

−
[ (

1 0
0 0

)]
0

= − [̃Pn]0 , (1.11)

which is the explicit form of the isomorphism between K1(C(S1)) and K0(K). This
concludes our description of the K-theory associated to the Toeplitz extension (1.6).

Now let us come to the application to the model (2.24). First of all, the Fermi
unitary UF in (1.3) defines a class in K1(C(S1)), and the finite dimensional projections
P̃(δ) and P̃±(δ) specify classes in K0(K). Hence they lie in the l.h.s. of the six term
exact sequence (1.9) for the Toeplitz extension (1.6) and they are connected via the
index map. In fact, the following holds.

http://dx.doi.org/10.1007/978-3-319-29351-6_4
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Proposition 1.3.1 Let UF ∈ MN (C(S1)) be given by (1.3). Further let us choose an
odd and non-decreasing smooth function fInd : R → [−1, 1] such that fInd(E) = −1
for E ≤ −Eg and fInd(E) = 1 for E ≥ Eg. Then

Ind([UF]1) =
[

e−i π
2 fInd(Ĥ)

(
1N 0
0 0

)
ei π

2 fInd(Ĥ)

]
0

−
[(

1N 0
0 0

)]
0

. (1.12)

Proof For the evaluation of the index map (1.10) one needs the lift

Ŵ = Lift

(
UF 0
0 U∗

F

)
= Lift

( (
0 1N

1N 0

) (
0 U∗

F
UF 0

) )
=

(
0 1N

1N 0

)
Lift(Q) .

Now recall that Q = sgn(H) is a self-adjoint unitary that will now be expressed as a
smooth function of H with values on the unit circle. Actually, with the function fInd

defined in the proposition, one has Q = ie−i π
2 fInd(H). Hence a lift is given by

Lift(Q) = i e−i π
2 fInd(Ĥ) .

As it is obtained by smooth functional calculus from Ĥ, it follows that Lift(Q) ∈
M2N (T(C(S1))) as required. We arrived at

Ŵ = i

(
0 1N

1N 0

)
e−i π

2 fInd(Ĥ) .

Plugging into the definition (1.10) of the index map

Ind([UF]1) =
[(

0 1N

1N 0

)
e−i π

2 fInd(Ĥ)

(
1N 0
0 0

)
ei π

2 fInd(Ĥ)

(
0 1N

1N 0

)]
0

−
[(

1N 0
0 0

)]
0

,

and the projection appearing in the first term is homotopic to the projection appearing
in the statement. �

The previous argument did not require the presence of any spectral gaps in the
spectrum of Ĥ and will therefore also apply to higher dimensional models, see
Proposition 4.3.2. In presence of spectral gaps, however, one can further refine the
argument.

Proposition 1.3.2 Let UF ∈ MN (C(S1)) be given by (1.3). Then for 0 < δ < Eg

Ind([UF]0) = [̃P+(δ)]0 − [̃P−(δ)]0 . (1.13)

Proof Let fInd be as in Proposition 1.3.1 and, moreover, let it be such that fInd(E) ∈
{−1, 0, 1} for any E ∈ σ(Ĥ). For sake of concreteness, suppose fInd(E) = 0 only for
E = 0 and no other E ∈ σ(Ĥ). Recall that, in dimension d = 1, the spectrum of Ĥ

http://dx.doi.org/10.1007/978-3-319-29351-6_4
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is discrete inside [−Eg, Eg]. Now,

e−i π
2 fInd(Ĥ) diag(1N , 0N ) ei π

2 fInd(Ĥ) = e−i π
2 fInd(Ĥ) 1

2 (̂J + 12N ) ei π
2 fInd(Ĥ) .

The chiral symmetry of Ĥ combined with fInd(−E) = −fInd(E), for E ∈ σ(Ĥ),
implies

e−i π
2 fInd(Ĥ) Ĵ = Ĵ ei π

2 fInd(Ĥ) ,

so that

e−i π
2 fInd(Ĥ) 1

2 (̂J + 12N ) ei π
2 fInd(Ĥ) = 1

2 Ĵ(eiπ fInd(Ĥ) + 12N ) + diag(0N , 1N ).

With the choice made for fInd one has eiπ fInd(Ĥ) + 12N = 2P̃(δ), so that

1
2 Ĵ (eiπ fInd(Ĥ) + 12N ) = Ĵ P̃(δ) = P̃+(δ) − P̃−(δ).

Then, by noticing that P̃+(δ) and diag(0N , 1N ) − P̃−(δ) are orthogonal projections
and that diag(1N , 0N ) and diag(0N , 1N ) are homotopic,

Ind([UF]1] = [̃P+(δ) + diag(0N , 1N ) − P̃−(δ)]0 − [diag(1N , 0N )]0

= [̃P+(δ)] + [diag(0N , 1N ) − P̃−(δ)]0 − [diag(0N , 1N )]0 .

The statement now follows from the rule 3. of the standard characterization of the
K0 group, listed in Sect. 4.1.1. �

1.4 Why Use Non-commutative Geometry?

Theorem 1.2.2 results by extracting a numerical identity from the K-theoretic identity
(1.13). This is done via a pairing of the K-groups with adequate cohomology theory,
which is the cyclic cohomology developed by Connes since the early 1980s [46,
47]. This was at the heart of the early developments of non-commutative geometry.
Actually, it could also be referred to as non-commutative differential topology as
topological invariants are calculated by tools of non-commutative differential and
integral calculus. In the simple framework of periodic models, the relevant pairings
of K-theory with cyclic cohomology are established by the two maps

C̃h0 : K0(K) → Z , C̃h0([̃P]0 − [̃P′]0) = Tr(P̃) − Tr(P̃′) , (1.14)

Ch1 : K1(C(S1)) → Z , Ch1([U]1) = i
∫
S1

dk

2π
tr
(
U(k)∗∂kU(k)

)
,

(1.15)

http://dx.doi.org/10.1007/978-3-319-29351-6_4
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where in the second line it is supposed that k �→ U(k) is differentiable. Any contin-
uous path k �→ U(k) can be approximated by a differentiable one, which means that
any K-theory class in K1(C(S1)) has differentiable representatives simply because
the smooth functions C∞(S1) are dense in C(S1). Such arguments are always needed
in differential topology, and also in non-commutative differential topology, where it
is necessary to work with dense subalgebras (of smooth elements) of C∗-algebras.
This issue will be discussed in detail in Sect. 3.3.3. The term pairing expresses the
fact that C̃h0([̃P]0) and Ch1([U]1) do not depend on the choice of the representative
of the two classes. The following result now connects the two pairings.

Proposition 1.4.1 The maps C̃h0 and Ch1 are well-defined group homomorphisms
into the additive group Z, and

Ch1([U]1) = − C̃h0(Ind([U]1)) . (1.16)

Proof Neither of the pairings depends on the representatives, namely, norm con-
tinuous paths of projections and unitaries, respectively, have constant pairings.
Furthermore, C̃h0([̃P]0 + [̃P′]0) = C̃h0([̃P]0) + C̃h0([̃P′]0) holds by definition and
elementary properties of the winding number imply Ch1([UU ′]1) = Ch1([U]1) +
Ch1([U ′]1). Finally the equality (1.16) follows once it is verified for every class. But

Ch1([Sn]1) = n = Tr(P̃n) = C̃h0([̃Pn]) = − C̃h0(Ind([Sn]1)) ,

where in the last equality (1.11) was used. Actually, it would have been sufficient to
check the above equality for the (sole) generator n = 1. �

Proof of Theorem 1.2.2. This follows by combining Propositions 1.3.1 and
1.4.1. �

1.5 Disordered Hamiltonian

The next step is to add a random perturbation to the Hamiltonian (2.24), just as
in [139]. Let ω′

x, ω
′′
x ∈ [− 1

2 , 1
2 ] be independent and uniformly distributed random

variables and define a disorder configuration in the Tychonov space Ω = ([− 1
2 , 1

2 ] ×
[− 1

2 , 1
2 ])Z by ω = (ω′

x, ω
′′
x )x∈Z. The probability measure on Ω is just the product

measure. The associated Hamiltonian Hω for two coupling constants λ′, λ′′ ≥ 0 is
still acting on �2(Z, C

2 ⊗ C
N ) and is given by

Hω =
∑
x∈Z

1
2 (1 + λ′ω′

x)
(
(σ1 + iσ2) |x〉〈x + 1| + (σ1 − iσ2) |x + 1〉〈x|)

+ m(1 + λ′′ω′′
x ) σ2 |x〉〈x| . (1.17)

http://dx.doi.org/10.1007/978-3-319-29351-6_3
http://dx.doi.org/10.1007/978-3-319-29351-6_2
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For ω = 0 or λ′ = λ′′ = 0, the Hamiltionian Hω is exactly the same as (2.24). From
now on, the letter H will be used for the full family H = {Hω}ω∈Ω of random Hamil-
tonians. The spectra σ(Hω) of these operators are known to be almost surely and
given by σ(Hω) = σ(Hω=0) + [−λ′, λ′] + [−λ′′, λ′′].

As we have already seen, the periodic model exhibits a non-trivial topological
phase and, according to [3, 4, 139, 171, 202], this phase is stable against disorder. This
means that the trivial and topological phases continue, in the presence of disorder, to
be separated by a sharp phase boundary where a localization-delocalization transition
must occur. This phase boundary is characterized by a divergence of the Anderson
localization length and it can be mapped using transport experiments. The existence
of such sharp phase boundary can be established by an analytical calculation, which
we reproduce below from [139]. To simplify notations, let us use tx = (1 + λ′ω′

x)

and mx = m(1 + λ′′ω′′
x ), in which case the Schrödinger equation at the Fermi level

E = 0 for (1.17) reads

(
0 tx
0 0

)(
ψx+1,+1

ψx+1,−1

)
+

(
0 0
tx 0

)(
ψx−1,+1

ψx−1,−1

)
+ i

(
0 −mx

mx 0

) (
ψx,+1

ψx,−1

)
= 0 .

On the components, txψx−α,α + iαmxψx,α = 0, α = ±1, hence the solution is

ψξα+x,α = ix
x∏

j=1

(
tj
mj

)α

ψξα,α ,

where ξα = 0, 1 for α = ±1, respectively. The inverse of Anderson localization
length is given by

Λ−1 = max
α=±1

[ − lim
x→∞

1

x
log |ψξα+x,α|] =

∣∣∣∣∣∣ lim
x→∞

1

x

x∑
j=1

(ln |tj| − ln |mj|)
∣∣∣∣∣∣ .

Using Birkhoff’s ergodic theorem [27] on the last expression,

Λ−1 =
∣∣∣∣
∫ 1/2

−1/2
dω′

∫ 1/2

−1/2
dω′′ (ln |1 + λ′ω′| − ln |m + λ′′ω′′|)

∣∣∣∣ .

The integrations can be performed explicitly and, in the regime of large λ’s where
the arguments of the logarithms (inside the absolute values) take negative to positive
values as ω’s are varied, the result is

Λ−1 =
∣∣∣∣∣ln

[
|2 + λ′| 1

λ′ + 1
2

|2 − λ′| 1
λ′ − 1

2

|2m − λ′′| m
λ′′ − 1

2

|2m + λ′′| m
λ′′ + 1

2

]∣∣∣∣∣ . (1.18)

One can now check that, indeed, the Anderson localization length diverges for certain
values of λ′ and λ′′. A plot of the manifold where this occurs can be found in [139]

http://dx.doi.org/10.1007/978-3-319-29351-6_2
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and there one can see that the topological phase is indeed fully enclosed by this
manifold. In other words, the only way to cross from the topological to the trivial
phase is to go through a localization-delocalization quantum transition. As we shall
see, it is exactly this divergence of the localization length which triggers an abrupt
change in the quantized values of the bulk topological invariant.

While the bulk analysis, just by itself, can be carried in the regime of strong
disorder, the bulk-boundary correspondence will be established under the following
assumption:

Bulk Gap Hypothesis Eg = inf σ(Hω) ∩ R≥0 is positive, namely 0 /∈ σ(Hω).

Each Hω still has the chiral symmetry (1.2), that is JHωJ = − Hω, and therefore
also the flat band Hamiltonian Qω = 1 − 2Pω = sgn(Hω) satisfies JQωJ = −Qω and
Q2

ω = 1. This implies as in (1.3)

Qω =
(

0 U∗
ω

Uω 0

)
, (1.19)

with a unitary operator Uω on �2(Z, C
N ). The aim in the following is to show that

Theorem 1.2.2 remains valid provided that the disorder does not close the gap and
the invariant Ch1(U) is adequately defined.

Neither of the operators Hω, Uω and Qω is periodic anymore, but this lack is
replaced by the so-called covariance relation, explained next. First of all, on Ω one
has an Z-action τ : Z × Ω → Ω given by

ω = (ω′
x, ω

′′
x )x∈Z �→ τω = (ω′

x−1, ω
′′
x−1)x∈Z ,

and with this action one has
S Hω S∗ = Hτω . (1.20)

Similar covariance relation applies to any function of the Hamiltonian (such as Qω)
or to operators extracted from such functions (such as Uω).

1.6 Why Use Operator Algebras?

A fruitful point of view [17] is to consider the whole C∗-algebra A1 of one-
dimensional covariant operator families on �2(Z), which is constructed as follows.
One starts with the set A1,0 of families a = {Aω}ω∈Ω of operators on �2(Z) sat-
isfying the covariance relation SAωS∗ = Aτω as well as the finite range condition
〈x|Aω|y〉 = 0 for all |x − y| > C for some C < ∞. Then A1,0 is a ∗-algebra because
the product and adjoint of finite range covariant operator families is again such a
family. A C∗-norm on A1,0 is defined by

‖a‖ = sup
ω∈Ω

‖Aω‖ ,
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where on the right we have the standard operator norm. Then A1 is the C∗-algebra
given by the closure of A1,0 under this norm. Elements in A1 are covariant families
of bounded operators having decaying off-diagonal matrix elements and will still be
denoted by a = {Aω}ω∈Ω . Note the lower case notation, which will be use throughout
for elements of the algebras, while the upper case letters will be reserved for operators
on the physical Hilbert space. While A1 was defined as algebra of covariant operator
families with certain decay conditions, it is isomorphic to the C∗-algebraic (reduced)
crossed product algebra C(Ω) �α Z of C(Ω) w.r.t. the Z-action α(f )(ω) = f (τ−1ω)

on C(Ω). The isomorphism is

{Aω}ω∈Ω �→ a ∈ C(Ω × Z) , a(ω, x) = 〈0|Aω|x〉 ,

which associates a continuous function over Ω × Z to every covariant operator
family. This identification of A1 with the crossed product algebra will tacitly be
used below, and further stressed and explored in the higher dimensional cases. The
Hamiltonian h = {Hω}ω∈Ω , the flat band Hamiltonian q = {Qω}ω∈Ω and the Fermi
unitary uF = {Uω}ω∈Ω are all elements of matrix algebras overA1. One crucial fact is
that the 1-periodic (or translation invariant) operators are also covariant, and actually
identified with those covariant operator families which do not depend on ω. Hence
the algebra of periodic operators C(S1) (in its Fourier transformed representation)
is a (closed) subalgebra of A1. This implies that the generators of the K-groups of
C(S1) also specify elements of the K-groups of A1. In fact, even more holds, namely
the K-groups coincide.

Proposition 1.6.1 The K-groups of A1 are

K0(A1) = Z , K1(A1) = Z ,

and the generators are the same as those of C(S1), namely 1 and S respectively.

Proof We will check that C(S1) is a deformation retract of A1 = C(Ω) � Z and this
implies that Kj(A1) = Kj(C(S1)) [222, Sect. 6.4]. The key for this is the contractibil-
ity of Ω to one point which we choose to be 0 = (0, 0)x∈Z. Indeed, γλ : A1 → A1

defined by

(γλa)(ω, x) = a(λω, x) , λ ∈ [0, 1] , (1.21)

is a continuous family (in λ) of continuous morphisms which connects γ1 = idA1 to a
right inverse γ0 : A1 → C(S1) of the inclusion map i : C(S1) → A1 by a continuous
path. �

The algebra A1 (and matrix algebras over it) contains covariant operator families
on �2(Z). The edge algebra is now E1 = C(Ω) ⊗ K and the half-space algebra is
Â1 = A1 ⊕ E1 as a direct sum of vector spaces, but not algebras. Operators in Â1

are concretely given by the sum of a half-space restriction of a covariant operator in
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A1 and a compact operator in E1, namely

â = (a, k̃) = {�Aω�∗ + Kω}ω∈Ω ,

if a = {Aω}ω∈Ω ∈ A1 and k̃ = {Kω}ω∈Ω ∈ E1, and where � : �2(Z) → �2(N)

denotes the partial isometry with ��∗ = 1�2(N) and projection �∗� in �2(Z) onto
�2(N) ⊂ �2(Z). The product and adjoint in Â1 and E1 are naturally inherited from
the operator product on �2(N). Exactly as in (1.6), one has an exact sequence of
C∗-algebras

0 � E1
i � Â1

ev� A1
� 0 (1.22)

The detailed construction of these algebras will be given in Chap. 3. Again, various
operators constructed from the disordered Hamiltonian h = {Hω}ω∈Ω ∈ A1 are in this
sequence. The half-space restriction ĥ = {Ĥω}ω∈Ω is an element of a matrix algebra
over the Toeplitz extension Â1 as is the lift of q = {Qω}ω∈Ω ∈ A1. Furthermore, the
projections p̃±(δ) = {P̃±,ω(δ)}ω∈Ω on bound states, constructed for every ω just as in
Sect. 1.1 by splitting P̃ω(δ) = χ(Hω ∈ [−δ, δ]) with δ < Eg into ±1 eigenspaces of
Ĵ , lie in E1 = C(Ω) ⊗ K, and they define a class in the K0-group of this C∗-algebra.
It is worth pointing out that both projections P̃±,ω(δ) are indeed continuous and,
in particular, do not change dimension. On the other hand, the covariant family of
Fermi unitaries uF = {Uω}ω∈Ω defined in (1.19) specify a class in K1(A1). Now the
index map of the K-theoretic exact sequence associated with (1.22) connects these
two classes, namely by exactly the same proof as given for (1.13), one shows the
following.

Proposition 1.6.2 Let uF = {Uω}ω∈Ω ∈ MN (A1) be given by (1.19) and p̃±(δ) =
{P̃±,ω(δ)}ω∈Ω the projections on the zero energy bound states of positive and negative
chirality, respectively. Then, with the K-theoretic index map associated to the exact
sequence (1.22),

Ind([uF]1) = [p̃+(δ)]0 − [p̃−(δ)]0 . (1.23)

1.7 Why Use Non-commutative Analysis Tools?

The equivalent of Theorem 1.2.2, namely Theorem 1.8.2 below, will again follow by
extracting numbers from the K-theoretic identity (1.23). For this purpose, one has
to extend the definitions (1.14) and (1.15) of the cyclic cocycles C̃h0 and Ch1 to the
operator algebra A1 describing disordered systems. The generalization of Ch0 is

C̃h0([p̃]0 − [p̃′]0) =
∫

P(dω)
(
Tr(P̃ω) − Tr(P̃′

ω)
)

. (1.24)

Actually, by continuity, the map ω �→ Tr(P̃ω) ∈ Z is constant and therefore the aver-
age P over the disorder is not necessary. As to Ch1, the definition (1.15) involves

http://dx.doi.org/10.1007/978-3-319-29351-6_3
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differentiation in Fourier space and this now has to be replaced by non-commutative
differentiation. For any finite range operator a = {Aω}ω∈Ω ∈ A1,0, one defines its
derivative ∂a ∈ A1,0 by

∂a(ω, x) = − i x a(ω, x) .

This definition can be extended to so-called differentiable operators a ∈ A1 as long
as the r.h.s. defines an element in A1. The set of differentiable operators is denoted
by C1(A1). By iteration one defines Cn(A1), and then C∞(A1) = ⋂

n≥1 Cn(A1). The
latter is a Fréchet algebra, clearly dense in A1, that is invariant under holomorphic
functional calculus. It follows [75] that the algebraic K-groups Kj(C∞(A1)) are
equal to the topological K-groups Kj(A1) for j = 0, 1. Operators in this sub-algebra
are sufficiently regular for differential topology. Apart from differentiation, a non-
commutative integration tool is needed. A state T on A1 is defined by

T(a) =
∫

P(dω) 〈0|Aω|0〉 =
∫

P(dω) a(ω, 0) , a = {Aω}ω∈Ω .

In fact, it is a trace that is invariant under ∂ , as shows the following lemma.

Lemma 1.7.1 The following holds.

(i) For a, b ∈ A1, one has T(ab) = T(ba).
(ii) For a ∈ C1(A1), one has T(∂a) = 0.

(iii) For a, b ∈ C1(A1), one has T(∂a b) = −T(a ∂b).
(iv) For a translation invariant a ∈ A1 with Fourier transform k ∈ S

1 �→ a(k), one
has T(a) = ∫

S1
dk
2π

a(k).
(v) For a translation invariant a ∈ C1(A1), one has (∂a)(k) = ∂ka(k) where k ∈

S
1 �→ a(k) and k ∈ S

1 �→ (∂a)(k) are the Fourier transforms.

The straightforward proof is left to the reader. Finally, one can introduce

Ch1(u) = i T(u−1 ∂u) , u ∈ C1(A) . (1.25)

Let us point out that, for translation invariant u, this reduces precisely to (1.4).

Proposition 1.7.2 Ch1 is a homotopy invariant, namely for any continuous path
λ ∈ [0, 1] �→ u(λ) ∈ C1(A) the number Ch1(u(λ)) is constant.

Proof First of all, u �→ Ch1(u) is continuous and therefore the path λ ∈ [0, 1] �→
u(λ) can be approximated by a differentiable one. For such a differentiable path,

−i ∂λ Ch1(u(λ)) = T(∂λu−1 ∂u) + T(u−1 ∂∂λu)

= −T(u−1∂λu u−1 ∂u) − T(∂u−1 ∂λu) ,

where in the second equality Lemma 1.7.1(iii) was used. As ∂u−1 = −u−1∂u u−1

one concludes that ∂λ Ch1(u(λ)) = 0 and this completes the proof. �
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The physical model is defined over C
2N ⊗ �2(Z) rather than just �2(Z) and Uω

is actually defined over C
N ⊗ �2(Z). As one can see, most of the time we will be

dealing with the matrix algebras over A1. The non-commutative calculus can be
trivially extended to cover these cases, by replacing T by T ⊗ tr, where tr is the
trace over the fiber. We now can finally define the bulk invariant for the disordered
chiral system, as Ch1(uF). Based on the above result, we can state at once that, if
h(λ) is a smooth deformation of h such that its central spectral gap remains open,
then uF(λ) varies smoothly in MN (C) ⊗ C1(A1) and, consequently, Ch1(uF) remains
unchanged.

1.8 Why Prove an Index Theorem?

Proposition 1.7.2 implies that Ch1 only depends on the K1-class of its argument so that
one may write Ch1(u) = Ch1([u]1). The homotopy invariance can, in particular, be
applied to the homotopy uλ = γλ(u) with γλ defined in (1.21). This implies Ch1(u) =
Ch1(u0) for u ∈ C1(A1). Now u0 ∈ C1(A1) is translation invariant and therefore
Ch1(u0) can be calculated by (1.4) as a winding number. In particular, this shows
that Ch1(u) ∈ Z. An alternative way to verify the integrality of Ch1(u) is to prove
an index theorem. This has the advantage that one can also prove that the pairing
is well-defined and integral in the regime of a mobility bulk gap, namely, when the
Fermi level lies in a region of the essential spectrum which is dynamically Anderson
localized. This type of extension is crucial for the understanding of the quantum Hall
effect [20] and will be discussed further in Chap. 6, which also applies to the present
one-dimensional example.

Theorem 1.8.1 Let � : �2(Z) → �2(N) be the surjective partial isometry as above.
For a unitary u = {Uω}ω∈Ω ∈ C1(A1), the operators �Uω�∗ are Fredholm opera-
tors with an almost sure index given by

Ch1(u) = − Ind(�Uω�∗) .

This is an extension of the Noether-Gohberg-Krein index theorem to covariant
operators and its proof can be found in [107] as well as [171]. It assures us that the
bulk invariant Ch1(uF) remains stable and quantized in the regime where the spectral
gap of h is replaced by a mobility gap. After all these preparations, the disordered
version of Theorem 1.2.2 can finally be stated and proved.

Theorem 1.8.2 Consider the element h = {Hω}ω∈Ω ∈ A1 associated to the Hamil-
tonian (1.17) and let ĥ = {Ĥω}ω∈Ω ∈ Â1 be a restriction to the half-space given by an
arbitrary chiral symmetric boundary condition. Assume h to have a central spectral
gap and let uF be the Fermi unitary element as well as Nω,± = Tr(P̂±,ω(δ)). Then,
for all ω,

Ch1(uF) = − Nω,+ + Nω,− . (1.26)

http://dx.doi.org/10.1007/978-3-319-29351-6_6
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Proof Set h(λ) = γλ(h) with the homotopy γλ given in (1.21), which induces a
smooth deformation uF(λ). By homotopy invariance, Ch1(uF(λ)) is constant, in
particular, Ch1(uF) = Ch1(uF(0)). Furthermore, the projections supplied by the
index map define a homotopy of projections and, since the pairing C̃h0([p]0) =∫

P(dω) Tr(Pω) = Tr(Pω) is homotopy invariant, it and can be can be computed at
λ = 0. Consequently, the equality (1.26) follows from the equality at λ = 0, which
was already proved in Theorem 1.2.2. �
Second Proof of Theorem 1.8.2, based merely on Theorem 1.8.1. First of all, the
chiral symmetry JHωJ = −Hω implies that there exists an invertible operator Aω

such that, in the grading of J ,

Hω =
(

0 A∗
ω

Aω 0

)
. (1.27)

By homotopy invariance of the index,

Ind(�Uω�∗) = Ind(�Aω�∗) = dim(Ker(�Aω�∗)) − dim(Ker(�A∗
ω�∗)) .

But Ker(�Hω�∗) = (
Ker(�A∗

ω�∗) ⊕ 0
) ⊕ (

0 ⊕ Ker(�Aω�∗)
)
, and Ĵ is positive

definite on the first and negative definite on the second summand. Therefore

Ind(�Uω�∗) = Sig
(̂
J|Ker(�Hω�∗)

)
,

where the signature is calculated of the (finite dimensional non-degenerate) quadratic
form obtained by restriction of Ĵ to Ker(�Hω�∗). But this signature is up to a sign
precisely the r.h.s. of (1.26). �

Another thing that becomes apparent in the above proof is how to address the
stability of the invariants under terms which break chiral symmetry, see Sect. 1.1.
Indeed, such terms lead to non-vanishing diagonal entries in the Hamiltonian in the
form (1.27). If, however, the off-diagonal entry Aω remains invertible, then one can
still define its winding number via the pairing with Ch1. Such systems are called
approximately chiral and are further described in Sect. 2.4.2

1.9 Can the Invariants be Measured?

Of course, it is interesting to link the invariants to quantities that can potentially be
measured. The best know example is the quantum Hall effect in which an invariant
is linked to the Hall conductance. For the present one-dimensional chiral models the
so-called chiral polarization is connected to the bulk invariant Ch1(uF) as is discussed
in Sect. 7.3. One of the things that is always true is that the bulk invariant determines
the boundary invariant, which is here the chirality of the bound states. This boundary
invariant can in principle be measured.

http://dx.doi.org/10.1007/978-3-319-29351-6_2
http://dx.doi.org/10.1007/978-3-319-29351-6_7


Chapter 2
Topological Solid State Systems:
Conjectures, Experiments and Models

Abstract This chapter reviews the ten classes of topological insulators and super-
conductors and presents their classifying table. The two complex classes of the table,
which are the focus of our work, are then discussed in depth. The emphasis is on the
physical properties, experimental achievements and the conjectures put forward by
the physics community. The bulk-boundary correspondence principle is exemplified
using exactly solvable models in arbitrary dimensions. The chapter also introduces
the generic classes of physical models which incorporate the effect of an external
magnetic field and disorder. It elaborates the main assumptions and summarizes the
behavior of various physical quantities of interest. The reader will find here several
technical results from functional analysis used in our work.

2.1 The Classification Table

Hereafter, a crystal will be said to be insulating in the bulk if the direct bulk resistivity
diverges as the temperature is taken to zero. In what concerns the electron-electron
interaction, all insulators mentioned in this work are well described by mean-field
approximations, hence the analysis is always carried out in the independent electron
picture. Then, a strong topological insulator is a crystal which is insulating in the
bulk, but becomes metallic when an edge or a surface (called boundary hereafter)
is cut to the crystal. This definition automatically implies that boundary spectrum
emerges at the Fermi level and, since disorder is unavoidable in real samples, it also
implies that this spectrum is immune to Anderson localization, at least in the regime
of weak disorder. For superconductors, the fermionic quasiparticle excitations are
assumed to bewell describedwithin the Bogoliubov-deGennes approximation. Then
a strong topological superconductor has gapped fermionic quasiparticle excitations
in the bulk, but supports gapless excitations modes along any boundary cut to the
system. There are other effects appearing in topological insulators, e.g. the existence
of zero modes attached to defects, but this is not in the focus of the present work
(except in Chap.1).

One of the first efforts to classify the strong topological insulators and supercon-
ductors was undertaken by Schnyder, Ryu, Furusaki, and Ludwig in [192]. The first
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accomplishment of their work was to realize that the classification should be per-
formed inside the universality classes. Focussingmainly on randommatrices, Altland
and Zirnbauer [5, 232] argued that there are ten classes which cover both Fermionic
systems of electrons with conserved particle number and systems of the Bogoliubov-
de Gennes type. These classes are listed in Table2.1. Each class is characterized by
the transformations of their elements, i.e. the quantum systems themselves, under
three generic symmetries, namely, the time-reversal (TRS), particle-hole (PHS) and
chiral (CHS) symmetries. The TRS and PHS can square to plus or minus the iden-
tity, leading to a total of precisely ten distinct choices. Note that the combination
of a TRS and a PHS results in a transformation of CHS type, and this aspect needs
to be taken into account when counting the universality classes. As explained in
Ref. [232], these classes are closely connected to Cartan’s symmetric spaces, which
explains the Cartan labels assigned to them (e.g. A, AIII, etc.). The separation in
universality classes applies to random matrices and disordered metals and insulators
alike. Ref. [192] then went systematically over these ten classes for bulk insulators
in dimension d ≤ 3, by performing an analysis of the localized/delocalized character
of the boundary states in the presence of disorder. This analysis was based on the
classification of the one- and two-dimensional disordered Dirac Hamiltonians by
Bernard and LeClair [24] and on a complementary field-theoretic argument based
on the replica trick, both of which rely on effective theories involving saddle-point
approximations (the non-linear sigmamodels). The final conjecture of Ref. [192]was
that all topological phases for d ≤ 3 (those with a non-vanishing entry in Table2.1)
display delocalized boundary spectrum which fills the bulk gap entirely. For the

Table 2.1 Classification table of strong topological insulator and superconductors

j TRS PHS CHS CAZ d = 0, 8 d = 1 d = 2 d = 3 d = 4 d = 5 d = 6 d = 7

0 0 0 0 A Z Z Z Z

1 0 0 1 AIII Z Z Z Z

0 +1 0 0 AI Z 2Z Z2 Z2

1 +1 +1 1 BDI Z2 Z 2Z Z2

2 0 +1 0 D Z2 Z2 Z 2Z

3 −1 +1 1 DIII Z2 Z2 Z 2Z

4 −1 0 0 AII 2Z Z2 Z2 Z

5 −1 −1 1 CII 2Z Z2 Z2 Z

6 0 −1 0 C 2Z Z2 Z2 Z

7 +1 −1 1 CI 2Z Z2 Z2 Z

Each row represents a universal symmetry class, defined by the presence (1 or ±1) or absence
(0) of the three symmetries: time-reversal (TRS), particle-hole (PHS) and chiral (CHS), and by
how TRS and PHS transformations square to either +1 or −1. Each universality class is identified
by a Cartan-Altland-Zirnbauer (CAZ) label. The strong topological phases are organized by their
corresponding symmetry class and space dimension d = 0, . . . , 8. These phases are in one-to-one
relation with the elements of the empty, Z2, Z or 2Z groups. The table is further divided into the
complex classes A and AIII (top two rows), which are the object of the present study, and the real
classes AI, …, CI (the remaining 8 rows)
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unitary chiral AIII class it is now known that the conjecture is not entirely true, as
disorder can localize the entire boundary spectrum except at the Fermi level [65],
which for AIII class in pinned at E = 0, and magnetic fields can even open spectral
gaps in the boundary spectrum. Ref. [192] also introduced a higher winding num-
ber for chiral systems in dimension d = 3 allowing to distinguish so-called strong
topological insulators. The possible values of this invariant and its analogues in other
dimensions and universality classes appear in Table2.1. For example, the Z for class
A systems in d = 2 is the well-known Chern number of quantum Hall systems.

The structure of the classifying table reported in Ref. [192] differed from the one
seen in Table2.1. The latter displays an obvious flow-pattern and periodicity with
the space dimension and, because of these characteristics, the table is also called the
periodic table of topological insulators and superconductors. These features were
pointed out by Kitaev [115], who noted that the systems with (without) TRS and
PHS are classified by the real (complex) K-theories. Then Bott periodicity alone
can explain the patterns seen in Table2.1, as it is nicely explained in Refs. [111,
143, 203, 207] for the real classes. See also [77] for an index-theoretic approach
which holds in the regime of strong disorder. In the complex case, there are only
two available K-groups, the K0 and K1 groups, and they classify the two complex
classes A and AIII, respectively. One can move between the two groups using the
suspensions maps, the θ -map and the Bott map (see Sect. 4.1.4), which effectively
increase the space dimension by one. As such, to any strong topological insulator
from class A one can associate a strong topological insulator from class AIII using
Bott map and by doubling the dimension of the fiber to accommodate for the chiral
symmetry; and to each topological system from AIII class one can associate a strong
topological insulator fromclassAusing the θ -map.Repeating this procedure, starting
from d = 0 where K0 � Z, one can get an understanding of the flow-pattern,
the periodicity and the counting of the strong complex topological phases listed in
Table2.1. Let us mention that Table2.1 is adopted from Ref. [190], which relied on
the same classifying criterium andmethods as Ref. [192]. Further let us point out that
the 2Z entries in Table2.1 express that the invariants for the corresponding systems
are always even [77, 190].

The complex K-groups of the algebras of bulk observables, in the presence of
disorder and magnetic fields, are listed in Sect. 4.2 and, as one can immediately see
from Table2.1, the strong topological insulators account only for a fraction of these
groups. As discussed in Sect. 4.2.3, the strong topological systems are generated by
the top generators of the K-groups, while the rest of the generators generate the so-
called weak topological insulators. The same is true for the real classes. An example
of weak topological insulator is the quantum Hall effect in three space dimensions
[120]. As we shall see, the bulk-boundary principle applies to the weak topological
insulators too, but with two important modifications: (1) The principle does not work
for all boundaries. In other words, boundaries cut along specific crystallographic
planes do not carry topological boundary states (see [225] for explicit examples).
(2) Their bulk and boundary invariants (see Sects. 5.3 and 5.2) do not satisfy index
formulas and for this reason the bulk invariants cannot be formulated in the regime of
strong disorder and the delocalization of the topological boundary spectrum cannot

http://dx.doi.org/10.1007/978-3-319-29351-6_4
http://dx.doi.org/10.1007/978-3-319-29351-6_4
http://dx.doi.org/10.1007/978-3-319-29351-6_4
http://dx.doi.org/10.1007/978-3-319-29351-6_5
http://dx.doi.org/10.1007/978-3-319-29351-6_5
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be established by the present methods. The latter remains an important open issue
because, in certain circumstances, the weak topological insulators were shown to
display metallic boundary states in the presence of disorder [15, 118, 140, 186] and
robust conducting channels along line-defects [93]. We want to mention that new
mathematical tools, targeting precisely this issue, were put forward in Ref. [165].

Lastly, let us point out that there are additional classes of topological insulators
which received substantial attention from both theoretical and experimental physics
communities. These are the crystalline topological insulators [9, 69], which are sta-
bilized by the TRS and a space point-symmetry of the crystal, and furthermore the
spin-orbit and TRS free topological insulators [6], which are stabilized just by a space
point-symmetry. By stabilized we mean that interesting topological classifications
of phases emerges when these constraints are enforced, at least in the periodic case.

2.2 The Unitary Class

The systems in the unitary class have no symmetry constraints except for the require-
ment that the time evolution is unitary. As a consequence, the generators of the time
evolution, which are theHamiltonians if the discussion is about the quantum systems,
are self-adjoint operators. This means, for example, that open or dissipative quantum
systems are excluded from the unitary class or, putted differently, the topological
characteristics associated with the unitary class may brake down when unitarity is
lost. As such, the self-adjoint property of the Hamiltonians can be regarded as a
“symmetry” which, like all the other symmetries in the classification table, stabilizes
the topological properties of the systems from class A. In this section we introduce
themodels and their physical characteristics, both for bulk and half-space.We formu-
late the bulk-boundary principle for periodic systems and demonstrate this principle
using an exactly solvable model in arbitrary dimensions. The existing experimental
results are briefly surveyed.

2.2.1 General Characterization

The most general translation invariant (i.e. 1-periodic) lattice model from the unitary
class in d space dimensions takes the form:

H : CN ⊗ �2(Zd) → C
N ⊗ �2(Zd) , H =

∑
y∈Zd

Wy ⊗ Sy, (2.1)

where Sy is the shift operator by y on �2(Zd) given by Sy|x〉 = |x + y〉, and the N ×N
matrices Wy, called tunneling or hopping matrices, satisfy only the constraint

W ∗
y = W−y ,
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ensuring that H is self-adjoint. Throughout, we denote the space of N × N matrices
with complex entries by MN (C). Also, tr will denote the trace of matrices, such as
those from MN (C), or more general the trace over finite dimensional Hilbert spaces.
The trace over infinite Hilbert spaces, such as �2(Zd) orCN ⊗�2(Zd), will be denoted
as usual by Tr.

The dimension N of the fiber is determined by the number of molecular orbitals
per unit cell of the material included in the model, and the larger this number the
more precise the model is. Let us make it clear from the beginning that (2.1) are not
toy models, but rather the models of choice in materials science. Given a concrete
material, such lattice Hamiltonians can be generated empirically by fitting avail-
able experimental data or using first-principle calculations [132, 150, 221, 230]. The
main tool for generating lattice models from first principles continuous model cal-
culations is the maximally localized Wannier basis set. The reader can find in [136]
impressive demonstrations of how effective and accurate this tool can be. Even when
working empirically, the lattice models can be finely tuned to accurately reproduce a
broad range of experiments and, once such fine tuning is achieved, the models can be
used for predictions. An example of this sort is the discovery of the first topological
insulator [26]. The quantitative predictions based on a lattice model made in [26]
were later shown to be extremely accurate by the experiment [121].

Typically, the hopping matrices Wy in (2.1) decay rapidly with y and in practice
the summation over y is restricted to a finite number R ⊂ Z

d of terms, and this will
be done from now on. We refer to such Hamiltonians as having finite hopping range.
If adequate conditions are imposed on the fall-off of Wy in y, the case R = Z

d can
be also managed with some further technical effort, but it will not be pursued here.
For the periodic models, one can use the Bloch-Floquet decomposition

FHF∗ =
∫ ⊕

Td

dk Hk (2.2)

over the Brillouin torusTd , to reduce the analysis to that of a smooth family of N ×N
matrices

Hk : CN → C
N , Hk =

∑
y∈R

ei〈y|k〉Wy .

Throughout, 〈 , 〉 will denote the Euclidean scalar product. Examining the classifi-
cation table, we see that the topological phases in the unitary class are conjectured
to occur only in even space dimensions, and for each such dimension there is an
infinite sequence of topological phases. It is also conjectured that these phases can
be distinguished from one another by tagging them with just one integer number. In
the bulk, this number is given by the top even Chern number, which is a measurable
physical coefficient (see Chap. 7) and takes the form [13]

Chd(PF) = (2π i)
d
2

( d
2 )!

∑
ρ∈Sd

(−1)ρ
∫

Td

dk

(2π)d
tr

(
PF(k)

d∏
j=1

∂PF(k)

∂kρj

)
, (2.3)

http://dx.doi.org/10.1007/978-3-319-29351-6_7
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for the periodic crystals. Throughout, Sd will denote the group of permutations and
i = √−1. In (2.3),

PF(k) = χ(Hk ≤ μ)

is the spectral projection onto the energy bands below the Fermi levelμ. The standard
terminology for it is the Fermi projection. Because we are dealing with insulators,
the Fermi level is assumed to be located in a spectral gap of H. Throughout, χ(A)

will denote the characteristic function of a set A. We will present an explicit topo-
logical model shortly, but let us mention at this point that the periodic models with
Chd(PF) 
= 0 are ubiquitous. For example, if one generates the hopping matrices
Wy randomly, assuming R and N large, then the chances of obtaining a topological
system are far greater than the chances of obtaining a trivial one.

Our analysis, while limited to lattice models, will include uniformmagnetic fields
and disorder. The presence of a uniform magnetic field is incorporated in the lattice
models using the Peierls substitution [157], which amounts to replacing the ordinary
shift operators with the dual magnetic translations

1 ⊗ Sy �→ Uy
sym = 1 ⊗ e

i
2 〈y|B|X〉Sy = 1 ⊗ Sye

i
2 〈y|B|X〉 . (2.4)

Here, B is a real anti-symmetric d × d matrix representing the magnetic field and
X is the position operator on �2(Zd). The label “sym"indicates that the so-called
symmetric gauge has been used above.After the substitution, the latticeHamiltonians
take the form

Hsym =
∑
y∈R

Wy ⊗ Uy
sym =

∑
y∈R

∑
x∈Zd

e
i
2 〈y|B|x〉 Wy ⊗ |x〉〈x − y| . (2.5)

The Hamiltonian (2.5) is no longer invariant to the ordinary lattice translations.
Nevertheless, Hsym is invariant relative to the magnetic translations

V x
sym Hsym (V x

sym)∗ = Hsym , V x
sym = 1 ⊗ e− i

2 〈x|B|X〉Sx = 1 ⊗ Sxe− i
2 〈x|B|X〉 ,

(2.6)
written here also in the symmetric gauge.

A Landau gauge can be defined so that no Peierls phase is generated when the
lattice is shifted in the d-th direction. While the symmetric gauge is more convenient
for the bulk analysis, the Landau gauge is obviously more convenient for systems
with a boundary in the d-th direction. The dual and the direct magnetic translations in
the Landau gauge can be obtained from the symmetric ones via the transformations

Uy = e− i
2 〈y|B+|y〉 e

i
2 〈X|B+|X〉 Uy

sym e− i
2 〈X|B+|X〉 = Syei〈y|B+|X〉 (2.7)

and
V x = e

i
2 〈x|B+|x〉 e

i
2 〈X|B+|X〉 V x

sym e− i
2 〈X|B+|X〉 = ei〈X|B+|x〉Sx , (2.8)
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where B+ is the lower triangular part of B. Note that, indeed, if x and y are strictly
along the d-th direction, bothUy and V x reduce to ordinary shifts. By the conjugation
of (2.5)with the local unitary operator e

i
2 〈X|B+|X〉 (namely, by a gauge transformation),

the Hamiltonian becomes

H = e
i
2 〈X|B+|X〉 Hsym e− i

2 〈X|B+|X〉 =
∑
y∈R

e
i
2 〈y|B+|y〉 Wy ⊗ Uy . (2.9)

It is unitarily equivalent to (2.5) and satisfies V xH(V x)∗ = H. As a consequence, H
in (2.9) is periodic in the d-th direction. We will refer to (2.9) as the representation
of the Hamiltonian in the Landau gauge.

A homogeneous disorder will be described by a dynamical system (Ω, τ,Zd,P).
Here, Ω is a compact metrizable topological space representing the disorder config-
uration space and τ is a homeomorphic action ofZd onΩ , describing the behavior of
the disorder configurations under the lattice translations. FurthermoreP is an invariant
and ergodic probability measure on Ω w.r.t. τ , which defines the disorder averag-
ing procedure. A more detailed description of the space of disorder configurations
is given in Sect. 2.4.1. If disorder is present, all the coefficients in the Hamiltonian
develop a random component and its generic form becomes

Hsym,ω =
∑
y∈R

∑
x∈Zd

Wy(τxω) ⊗ |x〉〈x|Uy
sym (2.10)

=
∑
y∈R

∑
x∈Zd

e
i
2 〈y|B|x〉 Wy(τxω) ⊗ |x〉〈x − y| ,

in the symmetric gauge. The hopping matrices Wy are now continuous functions
over Ω with values in MN (C). The models with disorder are no longer invariant to
the magnetic translations, but this property is replaced by the following covariance
relation:

V x
sym Hsym,ω (V x

sym)∗ = Hsym,τxω , x ∈ Z
d . (2.11)

The Landau representation is obtained by conjugating (2.10) by e
i
2 〈X|B+|X〉, which

gives

Hω =
∑
y∈R

∑
x∈Zd

e
i
2 〈y|B+|y〉Wy(τxω) ⊗ |x〉〈x|Uy , (2.12)

and the covariance relation becomes

V x Hω (V x)∗ = Hτxω , x ∈ Z
d . (2.13)

The bulk-boundary analysis will be carried in the Landau gauge, hence we will
primarily work with the Hamiltonian (2.12).
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Since the origin of the lattice is completely arbitrary and will change every time
a crystal is put down and picked up again in the lab, the model of the disordered
crystal must include the whole family of covariant Hamiltonians H = {Hω}ω∈Ω . The
notation is appropriate because in the absence of disorder, the entire family consists
of just one element, the H itself. Systems with the covariance property (2.13) are
called homogeneous and have remarkable properties. As we shall see later, there
exists a Fourier calculus for them which can be used to define a (non-commutative)
differential calculus. Also, any such covariant family F = {Fω}ω∈Ω posses the self-
averaging property that for P-almost every configuration ω one has

lim
V →∞

1
|V | Tr

(
�V Fω �∗

V

) =
∫

Ω

P(dω′) tr(�0 Fω′ �∗
0) , (2.14)

where�V : CN ⊗�2(Zd) → C
N ⊗�2(V ∩Z

d) is a partial isometry onto the quantum
states |α〉 ⊗ |x〉 with x located inside V . In particular, �0 is the partial isometry onto
the quantum states |α〉⊗|0〉. Identity (2.14) follows directly from Birkhoff’s ergodic
theorem [27]. The quantity on the l.h.s. of (2.14) is called the trace per volume of the
covariant observable F. It is hence, with probability one, independent of the disorder
configuration and is equal to the disorder average of the trace of its matrix elements
computed at the origin (or any other point of the lattice). In the following we will use
the notation T(F) for the trace per volume of a family covariant observables. The top
even Chern number can be formulated for the generic models (2.10) or (2.12) using
a real-space representation and the trace per volume [169]

Chd(PF) = (2π i)
d
2

d
2 !

∑
ρ∈Sd

(−1)ρ T
(

Pω

d∏
i=1

(
i[Pω, Xρi ]

))
. (2.15)

Here,
PF = {Pω}ω∈Ω = {χ(Hω ≤ μ)}ω∈Ω

is the covariant family of spectral projections onto the energy spectrum belowμ, that
is, the family of Fermi projections. The top even Chern number, as defined in (2.15),
is known to remain quantized, non-fluctuating from one disorder configuration to
another, and be homotopically stable as long as the Fermi level resides in a region
of Anderson-localized spectrum [20, 169]. These statements will be re-examined in
Chap.6.

To model a boundary, the physical space and the models are restricted to the
half-space Zd−1 × N. The half-space Hamiltonian Ĥ then acts on the Hilbert space
C

N ⊗ �2(Zd−1 × N). For the moment being, it can just be thought of as the restric-
tion of H which corresponds to Dirichlet boundary conditions. In Sect. 2.4.3 other
allowed boundary conditions will be described. When the bulk Chern number Chd

does not vanish, the energy spectrum of the half-space Hamiltonian Ĥ extends inside
the bulk insulating gap, covering it completely [58, 172]. The electron states corre-

http://dx.doi.org/10.1007/978-3-319-29351-6_6
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sponding to the spectrum inside the bulk insulating gap are exponentially localized
near the boundary, hence the terminology boundary states and boundary spectrum
(see Sect. 2.4.3 for an explicit example). For periodic crystals with a planar boundary,
say xd ≥ 0, the spectrum can be represented as energy bands rendered as functions
of the momentum k ∈ T

d−1 parallel to the boundary. The hallmark feature of the
topological phases from the unitary class is the existence of boundary energy bands
that connect the bulk valence and conduction bands. For d > 2, the boundary bands
display one or more singularities called Weyl points. Around a Weyl point, denoted
by kW ∈ T

d−1 in the following, the spectrum and the states are well described by a
Weyl operator

d−1∑
j=1

vj(kj − kW
j )σj, (2.16)

where σ = (σ1, . . . , σd−1) are the generators of an irreducible representation of the
odd complex Clifford algebra Cld−1 and v = (v1, . . . , vd−1) are the non-vanishing
slopes of the bands in different directions parallel to the boundary, which can be
positive or negative.

Remark 2.2.1 In the literature, the singular points (2.16) are sometimes also called
Dirac points, which is not appropriate for the following reasons. In 4 dimensions, for
example, the zeromassDirac operator takes the form 〈k, γ 〉 andhas a chiral symmetry
w.r.t. the product γ1 · · · γd . This splits it into two chiral sectors and, in each of those
chiral sectors, one gets the classical Weyl operator 〈k, σ 〉 when the “time” direction
is separated out. Here, γ and σ denote the Dirac and Pauli matrices. This pattern
can be recognized in any dimension, and in general, the Weyl operator involves an
odd number of Clifford generators and does not have a chiral symmetry, but rather a
chirality that will be introduced below. Throughout, we will be consistent and use the
notation σ (γ ) for the generators of the odd (even) complex Clifford algebras, and
refer to the operators 〈k, σ 〉 (〈k, γ 〉) as Weyl (Dirac) operators when the dimension
of k is odd (even), respectively. �

Now, suppose that all the Weyl singularities have been identified from the bound-
ary band spectrum and that the asymptote (2.16) of the Hamiltonian has been
extracted for each singularity (dimension d = 2 is special in this respect, see below).
Then the chirality of a Weyl point

νW =
d−1∏
j=1

sgn(vj) ∈ {−1, 1}, (2.17)

is a well defined topological invariant, provided the Weyl point remains separated
from the rest. The central conjectures for the unitary class is the following bulk-
boundary principle [172]

Chd(PF) = χ
∑

νW , (2.18)
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where the sum on the left goes over all Weyl points. In other words, under defor-
mations of the model, the Weyl singularities will move and possibly collide and
annihilate, yet the sum of their chiralities remains the same and equal to the bulk
invariant. Above, χ is a sign factor which depends on the normalization (or the sign
convention) of the bulk invariant and on the specific representation σ of the odd d −1
dimensional Clifford algebra (recall that there are two inequivalent representations).

In dimension d = 2, the chiralities are given by the signs of the slopes of the
boundary bands traversing the bulk insulating gap. The slopes are computed at a
fixed (but arbitrarily chosen) energy level. If a slope of a band happens to be zero,
then this band is excluded. The bulk-boundary principle (2.18)was first demonstrated
by Hatsugai [87] for the special case of the Harper operator with rational magnetic
field. In higher dimension, the bulk-boundary principle will be exemplified on an
exactly solvable model in Sect. 2.2.4. A proof of (2.18) will be given in Sect. 5.5,
combined with the evaluation of the boundary invariants for periodic systems in
Sect. 5.3.

One of the main goals of the present work is to formulate
∑

νW as a boundary
topological invariant which makes sense in the presence of disorder and magnetic
fields, and to derive an index theorem for it. In dimension d = 2, this was achieved
in [107] and will be reviewed and expanded in Chap.7. The boundary invariant and
the bulk-boundary equation takes the form

2π T̃
(
J‖ ρ(Ĥ)

) = Ch2(PF) , (2.19)

where T̃ is the trace per length, taken in the direction parallel with the boundary, J�

is the current operator along the boundary and ρ is a distribution which integrates
to one and has support inside the bulk insulating gap, but is otherwise arbitrary.
As above, the Hamiltonian Ĥ describes the system with a boundary. Physically, the
invariant on the l.h.s. of (2.19) gives the charge current spontaneously carried by the
boundary states when they are populated with the distribution ρ. If the bulk invariant
Ch2(PF) is nonzero, (2.19) automatically ensures that the boundary spectrum cannot
display gaps or be localized by disorder. This statement will be generalized to higher
dimensions in this work.

2.2.2 Experimental Achievements

The prototypical example of a topological condensed matter system from the unitary
class is the two-dimensional electron gas subjected to a perpendicular uniform mag-
netic field for which the integer quantumHall effect (IQHE) is observed [117]. In this
case, the Chern number Ch(PF) equals the Hall conductance of the system and all
the characteristics described above have been mapped experimentally with amazing
precision. We have been careful not to use the word “material” because this topo-
logical state of matter is stabilized by a magnetic field which needs to be externally

http://dx.doi.org/10.1007/978-3-319-29351-6_5
http://dx.doi.org/10.1007/978-3-319-29351-6_5
http://dx.doi.org/10.1007/978-3-319-29351-6_7
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maintained. It was Haldane [80] who first realized that two-dimensional materials
can display characteristics similar to IQHE without the need of an external magnetic
field. The minimal yet not sufficient requirements for this to happen is a unit cell
containing two (chemically active) molecular orbitals and complex tunneling matri-
ces between these molecular orbitals. The decisive step towards the experimental
realization of a topological material from the unitary class were taken in 2013 in the
series of works [40, 41] where a thin film of (Bi,Sb)2Te3, which in the pristine bulk
phase is a time-reversal symmetric topological insulator, was doped with chromium
magnetic atoms to induce a gapped ferromagnetic ground state. In the short period
since then, there have been quite a number of experimental refinements [16, 44, 95,
97, 125, 126], notably the achievement of the quantum critical regime at the transition
between the presumed topological and trivial phases [42]. The scaling analysis with
the temperature revealed the existence of the critical point and confirmed beyond
any doubt that a new topological state of matter was indeed achieved (see also [227]
for numerical simulations and discussion). Other materials [131] and experimental
paths have been explored. For example, a topologically non-trivial state was realized
in a system of one-dimensional array of optical guides which implemented literally
the one-dimensional Aubry-Andre model [127, 212]. The condensed matter system
proposed by Haldane [80], in its exact form, was finally realized experimentally with
ultra-cold fermions in a periodically modulated optical honeycomb lattice [96]. Here
the complex tunneling matrices were tuned using time-modulated pulses. Strong
two-dimensional topological insulators were also theoretically predicted [81, 175]
and then realized in photonic crystals [215]. Furthermore, they were also theoreti-
cally predicted [170, 218, 219, 224] and then realized in phonon or acoustic crystals
[144]. Lastly, we should mention that driving a condensed matter systems with time-
periodic potentials [116, 133, 177] or by considering incommensurate potentials
[128, 167] opens the possibility of experimental realizations of topological states
which mimic topological insulators in space dimensions higher than three. Such a
system will be discussed in details in Sect. 7.5.

2.2.3 Conventions on Clifford Representations

To give a firm meaning to the invariants and also to the index theorems presented in
Chap.6, the following conventions will be adopted throughout.

Conventions on the Clifford representations (CCR). Since only the complex
classes of topological insulators are investigated, we will only be dealing with the
complex Clifford algebras Cln. They are defined by n generators obeying the com-
mutation relations

νiνj + νjνi = 2 δi,j 1 , ν∗
i = νi , i, j = 1, . . . , n . (2.20)

http://dx.doi.org/10.1007/978-3-319-29351-6_7
http://dx.doi.org/10.1007/978-3-319-29351-6_6


30 2 Topological Solid State Systems: Conjectures, Experiments and Models

As previously mentioned, when the parity of n is important, we will use for the
generators the symbols σ (n odd) and γ (n even) but, if the parity is not important
and the discussion can be carried in parallel for the two cases, then we will use the
symbol ν. The commutation relations (2.20) are invariant to the operations

ν ′
i = uνiu

−1 , ν ′
i =

∑
j

Ai,jνj , (2.21)

and their combinations, where u is any unitary element from the Clifford algebra and
A is an orthogonal matrix form Mn×n(R), that is AAT = AT A = 1. Below, we list our
conventions.

(i) The orientation of the physical space is fixed once and for all. In other words,
one is allowed to redefine the space directions using only proper orthogonal
transformations. For example, the reflections are excluded.

(ii) The orientation of the generators νi is also fixed once and for all. This means
that all systems of generators can be connected to a reference one using the
transformations in (2.21) with A a proper orthogonal matrix.

(iii) Once the previous convention is adopted, we can unambiguously define a chiral
element (up to a harmless unitary conjugation), forwhichweadopt the following
normalization

ν0 = (−i)[
n
2 ] ν1ν2 · · · νn , ν∗

0 = ν0 , ν2
0 = 1 .

(iv) For n = 2k + 1, the commutation relations accept two inequivalent irreducible
representations on C2k

. In this odd case, the chiral element commutes with the
entire Cl2k+1, hence in an irreducible representation it will be sent to a matrix
proportional to unity. Our convention is that ν0 is sent exactly into the identity.
In other words, our odd representations are uniquely defined (up to proper
isomorphisms) by the previous conventions and by

σ1σ2 · · · σ2k+1 = ik 1 . (2.22)

For example, the Pauli matrices obey this convention.
(v) For n = 2k, the commutation relations accept a unique irreducible representa-

tions onC2k
. In this case, the chiral element anti-commutes with the generators,

hence it provides a grading, which we spell again below

γ0 = (−i)kγ1γ2 · · · γ2k , γ ∗
0 = γ0 , γ 2

0 = 1 . (2.23)

Example 2.2.2 Awell-known particular sequence of irreducible representations can
be constructed inductively, starting from the one dimensional representation of Cl1
given by σ1 = 1. Then, for Cl2,
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γ1 =
(
0 1
1 0

)
, γ2 =

(
0 −i
i 0

)
, γ0 =

(
1 0
0 −1

)
,

and then one can continue iteratively by building the representation of Cl2k+1 from
the one of Cl2k via

σi = γi for i ≤ 2k , σ2k+1 = γ0 ,

and the representation of Cl2k+2 from the one of Cl2k+1 by

γi =
(
0 σi

σi 0

)
for i ≤ 2k + 1 , γ2k+2 = i

(
0 −1
1 0

)
, γ0 =

(
1 0
0 −1

)
.

These representations satisfy the normalizations (2.22) and (2.23). �

2.2.4 Bulk-Boundary Correspondence in a Periodic
Unitary Model

We present here a simple model from the unitary class in even dimension d which
displays a rich phase diagram and yet can be explicitly solved in the bulk and with a
boundary. Consider the irreducible representation of Cld from Example 2.2.2 and let
ej be the generators of Zd and Sj the associated shifts on �2(Zd). The Hilbert space

of the model is C2
d
2 ⊗ �2(Zd) and the bulk Hamiltonian is translation invariant and

takes the form

H = 1
2i

d∑
j=1

γj ⊗ (Sj − S∗
j ) + γ0 ⊗

(
m + 1

2

d∑
j=1

(Sj + S∗
j )

)
. (2.24)

The Fermi level is assumed at μ = 0. The Bloch-Floquet decomposition gives

Hk =
d∑

j=1

γj sin(kj) + γ0

(
m +

d∑
j=1

cos(kj)
)

.

As (Hk)
2 is proportional to the identity, there are just two eigenvalues of Hk

E±
k = ±

√√√√ d∑
j=1

sin2(kj) +
(

m +
d∑

j=1

cos(kj)
)2

, (2.25)

hence the model displays two d
2 -fold degenerate energy bands, arranged symmetri-

cally relative to E = 0. There is a spectral gap at the Fermi level, except whenm = 0,
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±2, . . ., ±d. These are precisely the points where the topological transitions take
place. Due to the simplicity of the spectrum, the Fermi projector can be computed
explicitly

Pk = (E+
k − E−

k )−1(E+
k − Hk),

and the top even Chern number can be evaluated using Eq. (2.3). An analytical cal-
culation is feasible by counting its jumps at the critical values of m where the bulk
gap closes. This analysis has been carried out in [74], see also [172], and is sketched
in the following. At the critical values, the band spectrum displays a set of Dirac
singularities.

Remark 2.2.3 Since the discussion is now about the bulk Hamiltonian, therefore in
even d space dimensions, near the singular points the Hamiltonian takes the form
of a Dirac operator rather than a Weyl operator. Hence, the appropriate terminology
here is Dirac points rather than Weyl points. �

Both the critical m values and the location of the Dirac points can be derived from
(2.25) by imposing the gap closing condition

d∑
j=1

sin2(kj) = 0 and m +
d∑

j=1

cos(kj) = 0 .

These equations have the following solutions:

m0
c = −d , kD = (0, 0, . . . , 0) ,

m1
c = −d + 2 , kD = (π, 0, 0, . . . , 0) plus

(
d
1

)
permutations ,

m2
c = −d + 4 , kD = (π, π, 0, . . . , 0) plus

(
d
2

)
permutations ,

...

md−1
c = d − 2 , kD = (π, . . . , π, 0) plus

(
d

d−1

)
permutations ,

md
c = d , kD = (π, . . . , π) .

The jumps of the Chern number at the gap closings can be explicitly evaluated [74,
172], allowing us to ultimately compute the actual Chern numbers. Indeed, when
the gap is closed, there will be a number of Dirac singularities in the band spectrum,
and the jumps of the bulk invariant result entirely from these Dirac points. When the
bulk gap is nearly closed, i.e. m = mc + ε, |ε| � 1, and near such Dirac singularity,
the Bloch Hamiltonian takes an asymptotic form,

Hk =
d∑

j=1

αD
j (k − kD)jγj + ε γ0 + O(k2) ,

where αD
j = ±1 if kD

j = 0, π , respectively. It will convenient to make the change of
variables αD

j (k − kD)j → ξj, in which case
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Hk = 〈ξ, γ 〉 + ε γ0 .

The contribution to the Fermi projector coming from the band spectrum near the
Dirac singularity is

P(ξ) = 1

2
− 1

2

〈ξ, γ 〉 + ε γ0√
ξ 2 + ε2

.

To compute the contribution I of the band spectrumnear kD to the total Chern number,
we plug P(ξ) into (2.3)

I = (2π i)
d
2

( d
2 )!

−1

2d+1

d∏
i=1

αD
i

∑
ρ∈Sd

(−1)ρ
∫

dk

(2π)d
tr

⎛
⎝ ε γ0√

ξ 2 + ε2

d∏
j=1

γρj√
ξ 2 + ε2

⎞
⎠ ,

where the simplifications are solely due to the properties of the γ matrices. The
factor

∏d
i=1 αD

i represents the Jacobian produced by the change of the variable made
above. Up to a factor, the integrand converges to the Dirac-delta distribution, hence
the domain of integration can be extended to R

d , in which case the integral can be
explicitly evaluated and, with our conventions on γ ’s, the result is

I = χ

2

ε

|ε|
d∏

i=1

αD
i , χ = (−1)

d
2 +1 .

When ε is varied from negative to positive values, Iwill jump by twice this quantity,
leading to a total jump of χ

∑
D

∏d
i=1 αD

i for the bulk invariant, at the gap closing.
Here it is assumed that m increases and the sum is over all Dirac singularities present
in the boundary band spectrum. Using the information provided above about the
number and locations of the Dirac points, we see that the change of the Chern
number at a critical value mn

c is

ΔnChd(PF) = χ(−1)n

(
d

n

)
.

Finally, one can check that Chd(PF) = 0 for m < m0
c by sending m to −∞. Hence

for m ∈ (−d + 2n,−d + 2n + 2) with n = 0, . . . , d − 1,

Chd(PF) = χ

n∑
j=0

(−1)j

(
d

j

)
= χ(−1)n

(
d − 1

n

)
, (2.26)

and Chd(PF) = 0 for m /∈ [−d, d].
Let us now consider the case with a boundary. Specifically the Hamiltonian is

restricted to the Hilbert spaceC2
d
2 ⊗�2(Zd−1×N)with Dirichlet boundary condition

at xd = 0. As before, this restriction is denoted Ĥ. The Hamiltonian Ĥ remains
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translationally invariant in the first d − 1 direction, hence one can perform a partial
Bloch-Floquet decomposition:

FĤF∗ =
∫ ⊕

Td−1
dk Ĥk , Ĥk : C2

d
2 ⊗ �2(N) → C

2
d
2 ⊗ �2(N) ,

with

Ĥk =
d−1∑
j=1

sin(kj) γj ⊗1 + 1
2iγd ⊗ (̂S − Ŝ∗) + γ0 ⊗

(
m +

d−1∑
j=1

cos(kj)+ 1
2 (̂S + Ŝ∗)

)
.

Here, Ŝ is the unilateral shift operator on �2(N). For Êk inside the bulk insulating
gap, the solutions to the Schrödinger equation Hkψk = Êkψk must be sought in the
form

ψk(x) = ξk ⊗ (λk)
x , |λk| < 1 , ξk ∈ C

2
d
2

.

Writing the Schrödinger equation for generic xd > 0 and at xd = 0 with the Dirichlet
boundary condition, leads to two independent constraints:

[ d−1∑
j=1

sin(kj)γj + λk − λ−1
k

2i
γd +

(
m +

d−1∑
j=1

cos(kj) + λk + λ−1
k

2

)
γ0

]
ξk = Êkξk ,

and

[ d−1∑
j=1

sin(kj)γj + λk

2i
γd +

(
m +

d−1∑
j=1

cos(kj) + λk

2

)
γ0

]
ξk = Êkξk .

Taking the difference of these equation, we obtain the simpler constraints

(iγd + γ0)ξk = 0

and [ d−1∑
j=1

sin(kj)γj +
(

m +
d−1∑
j=1

cos(kj) + λk

)
γ0

]
ξk = Êkξk .

It is not difficult to see that these two constraints can be simultaneously satisfied only
if the coefficient of γ0 in the last constraint is identically zero. The conclusion is that
ξk ⊗ (λk)

x solves the Schrödinger equation with the Dirichlet boundary condition at
xd = 0 if and only if

(iγd + γ0)ξk = 0 and λk = −
(

m +
d−1∑
j=1

cos(kj)
)

.
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This implies that ξk is a common eigenvector for two commuting matrices:

[ d−1∑
j=1

sin(kj)γj

]
ξk = Êkξk ,

and
− i γ0γdξk = − (−i)

d
2 +1 γ1 · · · γd−1ξk = ξk . (2.27)

For d = 2, the condition (2.27) is equivalent to γ1ξk = ξk , hence ξk is the unique
eigenvector corresponding to the positive eigenvalue of γ1, denoted by ξ+ in the
following (no dependence on k = k1). The Schrödinger equation Ĥkψk = Êkψk then
admits a unique solution inside the insulating gap:

Êk = sin(k) , ψk(x) = ξ+ ⊗ (λk)
x√

2
(
1 − (λk)2

) , λk = −(m + cos(k)) ,

which leads to an edge state provided the constraint |λk| < 1 is satisfied. As one can
see, there are no singular points in the boundary band spectrum and Êk ≈ ±k near
E = 0. The sign depends on where the band crosses the E = 0 mark, which can be
at k = 0 or π . The chirality νW of the edge band is determined by the constraint
|λk| < 1 which is equivalent to

cos(k) ∈ [−m − 1,−m + 1] ∩ [−1, 1] . (2.28)

If |m| > 2, the constraint (2.28) cannot be fulfilled and consequently there are no
edge bands. If m ∈ (−2, 0), then k = 0 does satisfy (2.28), but k = π does not.
Hence, the slope of the edge band is positive when it crosses the E = 0 level, hence
the chirality νW is positive. If m ∈ (0, 2), then k = π does satisfy (2.28), but k = 0
does not. Hence, the slope of the edge band is negative when it crosses the E = 0
level, hence the chirality is negative. These and the values of the Chern number given
in (2.26) confirm the bulk-boundary correspondence (2.18) in two space dimensions.

For d > 2, note that the matrix on the l.h.s. of (2.27) is Hermitean and commutes
with all γ1, . . . , γd−1.Hence, the constraint (2.27) reduces the algebra of γ1, . . . , γd−1

to an irreducible representation of the complex odd Clifford algebra Cld−1. Indeed,
the dimension of the linear subspace L ⊂ C

d
2 spanned by the ξ ’s satisfying (2.27)

is 2
d−2
2 , and this subspace is invariant for the matrices γ1, . . . , γd−1. Hence we can

define the linear operators:

σ̂j : L → L , σ̂j = γj �L , j = 1, . . . , d − 1 ,

which satisfy the Clifford relations σ̂iσ̂j + σ̂jσ̂i = 2δi,j for i, j = 1, . . . , d − 1, and
the CCR convention σ̂1 · · · σ̂d−1 = i

d−2
2 1L.
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We can now draw the conclusions for d > 2:

(i) ξk’s are eigenvectors of a reduced Hamiltonian which is a Weyl-type operator

[ d−1∑
j=1

sin(kj)σ̂j

]
ξk = Êkξk .

(ii) The band spectrum inside the insulating gap is given by

Ê±
k = ±

√√√√d−1∑
j=1

sin2(kj) . (2.29)

The ± branches are connected at a singular point which occurs at E = 0.
This singularity is the Weyl point mentioned earlier. The bands are 2

d−4
2 -fold

degenerate. This degeneracy can be lifted by a small perturbation except at
E = 0 where the bands will remain connected via a singularity. It is, however,
possible to move the singularity both in k-space and in energy.

(iii) The 2
d−4
2 eigenstates corresponding to Ê±

k , respectively, are all of the form

ψk(x) = ξ±
k ⊗ (λk)

x√
2(1 − (λk)2)

, λk = −
(

m +
d−1∑
j=1

cos(kj)
)

.

(iv) Generically, the boundary bands are not defined over the entire Brillouin zone,
but only over the domain determined by the implicit condition |λk| < 1. By
examining (2.25) and (2.29), one can see that if k is at the edges of this domain,
then Ê+

k is aligned with min
kd

(E+
k,kd

), and Ê−
k is aligned with max

kd

(E−
k,kd

), where

E±
k,kd

are the bulk eigenvalues (2.25). These identities are not generic though as
it may happen that edge spectrum overlaps bulk spectrum.

(v) From (2.29), one sees that the coordinates of the Weyl points are restricted to

kW
j ∈ {0, π}, j = 1, . . . , d − 1 .

For k in a neighborhood of a Weyl point, the reduced Hamiltonian can be
approximated by an exact Weyl operator

d−1∑
j=1

αj(kj − kW
j )σ̂j , (2.30)

where the sign factors αj = ±1 are determined by the exact location of theWeyl
point in theBrillouin zone. For example, if kW

j = 0 then sin(kj) ≈ kj−kW
j , while

for kW
j = π rather sin(kj) = −(kj−kW

j ).We recall that the signs of a pair (αi, αj)
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can always be flipped by a continuous rotation in the (ki, kj) plane. As such,
if (2.30) contains an even number of negative αj’s, then (2.30) is homotopic
with +〈(k − kW )|σ̂ 〉 and will have a positive chirality. If (2.30) contains an odd
number of negative αj’s, then (2.30) is homotopic with −〈(k − kW )|σ̂ 〉 and will
have a negative chirality.

(vi) There can be more than one Weyl point. The condition which determines how
many Weyl points are there and where are they exactly located is

|λkW | < 1 ⇐⇒
d−1∑
j=1

cos(kW
j ) ∈ [−1 − m, 1 − m] ∩ [−d + 1, d − 1] .

Now we can demonstrate the bulk-boundary principle (2.18) for this particular
model. Indeed, let m ∈ (−d +2n,−d +2n+2). Then there is only one combination
(modulo permutations) of d−1 numbers equal to+1 or−1, representing the cos(kW

j )

appearing in the last equation, such that their sum belongs to the interval (−1−m, 1−
m). Indeed, since

(−1 − m, 1 − m) ⊂ (d − 2n − 1, d − 2n + 1) ,

n of these numbers have to be −1 and (d − 1− n) of them have to be +1. There are(d−1
n

)
permutations of these signs, corresponding to as many distinct locations of the

Weyl points. Furthermore, precisely n of the coordinates kW
j are equal to π while the

remaining are zero, hence the chirality of all Weyl points is the same and equal to
(−1)n. The conclusion is that the boundary invariant is

∑
νW = (−1)n

(
d − 1

n

)
, m ∈ (−d + 2n,−d − 2n + 2) ,

and hence,whenmultiplied by the sign factorχ , it equals the bulk evenChern number
given in (2.26).

2.3 The Chiral Unitary Class

The solid state systems from the chiral unitary class have a unitary time evolution
semi-group and a sub-lattice symmetry to be described in great length below. Fol-
lowing the same format as for the previous section, we introduce the models and
their physical characteristics, both for bulk and for half-space. We formulate the
bulk-boundary principle for periodic systems and demonstrate this principle using
an exactly solvable model in arbitrary odd dimension. The existing experimental
results are briefly surveyed.
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2.3.1 General Characterization

The lattice models for insulators from the chiral unitary class are defined over the
Hilbert space C

2N ⊗ �2(Zd), as the dimension of the fiber is necessarily an even
integer. A Hamiltonian H displays chiral (or sublattice) symmetry if there exists a
symmetry J onC2N satisfying J∗ = J and J2 = 12N and having eigenspaces of equal
dimension, such that

(J ⊗ 1) H (J ⊗ 1) = − H . (2.31)

Throughout, we work with a basis of C2N such that J takes a diagonal form

J =
(

1N 0
0 −1N

)
, (2.32)

We will also write J instead of J ⊗ 1. The Fermi level is pinned at 0 for the chiral
unitary symmetry class which is a point of reflection symmetry of the spectrum of
H by (2.31). Since we deal with insulators, the Fermi level will also be assumed to
be in a spectral gap of the bulk Hamiltonian. In this situation the Fermi projection
PF = 1

2 (1 − sgn(H)) is given in terms of a unitary UF on C
N ⊗ �2(Zd) because

(2.31) implies

sgn(H) =
(

0 U∗
F

UF 0

)
. (2.33)

Wewill refer toUF as the Fermi unitary operator, in analogywith the Fermi projection
for the unitary class. It encodes the Fermi projection PF = χ(H ≤ 0) of a chiral
Hamiltonian via

PF = 1

2

(
1 −U∗

F−UF 1

)
. (2.34)

Let us begin by looking at periodic models with vanishing magnetic field. The
Hamiltonian H : C2N ⊗ �2(Zd) → C

2N ⊗ �2(Zd) is given by (2.1) together with the

chirality constraint, which implies Wy =
(

0 wy

w∗−y 0

)
with N × N matrices wy so that

H =
∑
y∈Zd

(
0 wy

w∗−y 0

)
⊗ Sy . (2.35)

Its Bloch-Floquet decomposition (2.2) has fiber Hamiltonians

Hk =
∑
y∈Zd

(
0 ei〈y|k〉wy

e−i〈y|k〉w∗
y 0

)
.

By examining the classification table, we see that the topologically non-trivial phases
are conjectured to occur only in odd space dimensions. Furthermore, for each such
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dimension, there is an infinite sequence of topological phases and the phases can be
distinguished from one another by tagging them with just one integer number. In the
bulk, this number is given by the top odd Chern number [190, 193]:

Chd(UF) = i(iπ)
d−1
2

d!!
∑
ρ∈Sd

(−1)ρ
∫

Td

dk

(2π)d
Tr

( d∏
j=1

U∗
F(k)

∂UF(k)

∂kρj

)
, (2.36)

where UF(k) is the N × N matrix appearing in the Bloch-Floquet decomposition
FUFF

∗ = ∫ ⊕
Td dk UF(k) of the Fermi unitary operator. As we shall see in Chap.7,

the bulk topological invariant for chiral symmetric solid state systems is a physically
measurable coefficient.

Remark 2.3.1 We will use the same notation for the bulk invariants, but it will be
always understood that Chd refers to (2.3) (and its extensions) when d is even, and
to (2.36) (and its extensions) when d is odd. �

Next, let us write out the generic chiral models with a magnetic field and disorder.
In the symmetric gauge, the systems are again described by covariant families of
Hamiltonians of the form (2.10), but with the chirality constraint (2.31):

Hsym,ω =
∑
y∈R

∑
x∈Zd

(
0 wy(τxω)

w−y(τxω)∗ 0

)
⊗ |x〉〈x| Uy

sym (2.37)

=
∑
y∈R

∑
x∈Zd

e
i
2 〈y|B|x〉

(
0 wy(τxω)

w−y(τxω)∗ 0

)
⊗ |x〉〈x − y| .

The representation in theLandaugauge,whichwill be primarily used in the following,
is similarly obtained from (2.12):

Hω =
∑
y∈R

∑
x∈Zd

e
i
2 〈y|B+|y〉

(
0 wy(τxω)

w−y(τxω)∗ 0

)
⊗ |x〉〈x| Uy . (2.38)

Here wy are continuous functions on the space of disorder configurations Ω . The top
odd Chern number has a real-space representation [139, 171], which can be applied
to models like (2.38). With the notation introduced in the previous section,

Chd(UF) = i(iπ)
d−1
2

d!!
∑

ρ

(−1)ρ T
( d∏

i=1

U∗
ω i[Uω, Xρi ]

)
, (2.39)

where UF = {Uω}ω∈Ω is the covariant family of Fermi unitary operators. The invari-
ant Chd(UF) is known to remained quantized, non-fluctuating from one disorder
configuration to another, and be homotopically stable as long as the Fermi level
resides in a region of dynamically localized spectrum, see [171] and Chap.6.

http://dx.doi.org/10.1007/978-3-319-29351-6_7
http://dx.doi.org/10.1007/978-3-319-29351-6_6
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When a chiral symmetry preserving boundary is present and Chd(UF) 
= 0, the
energy spectrum extends inside the bulk insulating gap. The boundary spectrum
does not necessarily cover the entire insulating gap. A situation when this doesn’t
happen is when a magnetic field perpendicular to the surface of a three-dimensional
crystal breaks the boundary spectrum into a Hofstadter pattern. The case d = 1 is
special and, since it was already discussed in Chap. 1, it will be excluded from the
following discussion. For periodic crystals with a planar boundary, say xd ≥ 0, and
in the absence of magnetic fields, the boundary states can be determined as a function
of momentum k parallel to the boundary. The hallmark feature is the existence of
boundary energy bands displaying Dirac singularities at E = 0 [90, 192]. Around a
Dirac point kD, the spectrum and the states are well described by a Dirac operator

d−1∑
j=1

vj(kj − kD
j )γj , (2.40)

where γ are the generators of the irreducible representation of the complex even
Clifford algebra Cld−1 (fixed by our conventions) and vj are the slopes of the bands
at E = 0. Now a chirality νD = ∏d−1

j=1 sgn(vj) can be defined for each Dirac point,
just as for the Weyl points in Sect. 2.2. The central conjecture for the chiral unitary
class is the following bulk-boundary principle [190]:

Chd(UF) = χ
∑

νD , (2.41)

where the sum carries over all Dirac singularities located at E = 0 of the boundary
band spectrum, and χ is again a sign which depends on the representations of the
Clifford algebras and normalization of the bulk invariant. One conclusion that can
be drawn from this principle is that, as long as Chd(UF) 
= 0, there will always be
boundary bands at E = 0. Hence, unavoidably, the insulator becomes metallic when
a boundary is present. Similarly as for the unitary class, it is one of the main goals of
the present work to formulate

∑
νD as a boundary topological invariant whichmakes

sense in the presence of magnetic fields and disorder, to derive an index theorem for
it and to establish (2.41). Among other things, this will enable us to demonstrate that
the boundary energy spectrum at E = 0 remains extended in the presence of disorder
whenever Chd(UF) 
= 0.

We now come to the extremely important point of choosing the unit cell of the
crystal. This determines which states are regrouped in the fibers C

2N and which
are the hopping matrices in the Hamiltonian (2.38). It is well-known in the physics
community that the value of the bulk invariant for the chiral class depends on this
process. We will carry out the discussion on a model in dimension d = 1 which
describes a chain with two different atoms (as in [92], p. 22, for example). Figure2.1
shows two alternatingmolecular states (or two alternating atoms) and two alternating
hoppingmatrices (the horizontal links). Each of the choices (a), (b) and (c) of the unit
cell lead to a different chiral unitary operator U(a)

F , U(b)
F and U(c)

F , respectively. For

http://dx.doi.org/10.1007/978-3-319-29351-6_1
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Fig. 2.1 Graphical representation of the model (1.1) as a molecular chain containing two species
of atoms with alternating hopping amplitudes. Panels a–c show various possibilities to choose the
unit cell. Panels d–e show the unique unit cells compatible with the given boundaries

adequate fixed values of the parameters, one finds Chd(U
(a)
F ) = 0, Chd(U

(b)
F ) = 1

and Chd(U
(c)
F ) = 2, respectively. Furthermore, [208] showed that, using certain

isomorphisms defined inmomentum space, one can change Chd by any even number.
In the real space representation, one such isomorphism corresponds to redefining the
unit cell in panel (a) into the unit cell in panel (c). This arbitrariness is very puzzling
at first sight for, given a concrete problem, how are we going to predict the physical
surface properties from the bulk invariant? The issue has a very simple resolution:
The boundary itself dictates which unique unit cell is to be used in the computation
of the bulk invariant. Thus the rule is that the boundary never cuts through a unit
cell, which mathematically means that the fiber subspaces are either erased or kept,
entirely, but never split. For example, if the boundary is as in panel (d), then only the
unit cell shown in panel (a) obeys this rule, and if the boundary is as in panel (e), then
only the unit cell shown in panel (b) obeys the rule. The unit cells of the type shown
in panel (c) will always be cut through by a boundary, hence they can be dropped
from the beginning. These conclusions apply also in higher space dimensions where
one needs d boundaries to uniquely determine the bulk unit cell and hence the Fermi
unitary as well as its Chern number.

2.3.2 Experimental Achievements

We should make clear from the start that the chiral symmetry is never exact in
solid state systems. After all, the non-relativistic Schrodinger operators are bounded
from below and the spectrum extends all the way to +∞. The chiral symmetry
should be sought in the electron spectrum near the Fermi level, which determines
most of the electronic properties of materials. Moreover, it will be shown below
that for approximate chiral systems, namely those obtained by a sufficiently small
perturbation of an exact chiral system, one can still define a Fermi unitary and its
Chern number. Hence non-trivial odd Chern numbers do not require exact chiral
symmetry, but in such conditions the delocalized character of the boundary states is
lost, in general. There are, however, several materials where chiral symmetry can be

http://dx.doi.org/10.1007/978-3-319-29351-6_1
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assumed virtually exact. The prototypical examples of strong topological materials
from the chiral unitary class are the one-dimensional conducting polymers, with
poly-acetylene as the prominent representative [14]. TheSu-Schrieffer-Heegermodel
[205] used in our introductory Chap.1 was developed precisely for the description of
poly-acetylene. The conducting polymers areπ -conjugated organicmolecular chains
which in the absence of lattice distortions would have extended π -molecular orbitals
and would display a metallic character. The systems, however, are unstable to Peierls
lattice distortions which double the original repeating cells [14]. These distortions
open small gaps at the Fermi level and drive these systems into an insulating chiral
topological phase. There is a tremendous interest in these materials, not because of
their topological properties, but because these polymers can become again metallic
when doped with strong oxidizing or reducing agents [43], thus paving the way for
conducting plastics [43].

Graphene [148, 149] is a two-dimensional crystal which also displays the chiral
symmetry. The band spectrum of graphene is gapped everywhere except at two
special points of the Brillouin zone, hence graphene can be considered as a special
case of weak topological material from the chiral class. Its honeycomb lattice can be
cleaved along the zigzag, the bearded or the arm-chair edges, all of which preserve
the chiral symmetry. Using a partial Bloch-Floquet transformation in the momentum
k parallel with the boundary, one obtains families of k-dependent one-dimensional
chiral symmetric Hamiltonians. Excepting two k values, these Hamiltonians are
gapped and hence one can compute the bulk invariant [88]. Whenever the invariant
takes a non-trivial value, boundary states occur at E = 0 which ultimately lead to
dispersionless boundary bands. It is known that such dispersionless edge states exists
along the zigzag edge [72]. The bearded edge is unstable for graphene, but it was
engineered in photonic crystals and the dispersionless edge states were confirmed
[161]. There are no edge states along the armchair edge. The different behaviors are
due to the fact that the unit cell changes from one boundary to another (cf. discussion
above). Alternatively, these characteristics of graphene can be explained directly
using the boundary invariant [88].

In a recent development, Kane and Lubensky [98] have discovered that, within
the harmonic approximation, any isostatic mechanical lattice has a built-in chiral
symmetry. They also demonstrated, theoretically, the mechanical analog of the one
dimensional Su-Schrieffer-Heeger model and constructed weak chiral symmetric
topological mechanical materials in two and three dimensions. These theoretical
predictions have recently been confirmed in the lab [155].

So far, we have only mentioned the weak topological insulators in higher dimen-
sions. The search for the strong topological materials with exact (or weakly broken)
chiral symmetry is vigorously underway. For example, there are several feasible pro-
posals to realize such systems with cold atoms trapped in optical lattices [216, 217].
Our Sect. 7.4 should be a helpful theoretical contribution to this search.

http://dx.doi.org/10.1007/978-3-319-29351-6_1
http://dx.doi.org/10.1007/978-3-319-29351-6_7
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2.3.3 Bulk-Boundary Correspondence in a Periodic
Chiral Model

Here we present a simple model from the chiral unitary class which displays a rich
phase diagram and yet can be explicitly solved in the bulk and with a boundary.
Let γ be the generators of the irreducible representation of Cld+1 from Example
2.2.2. Using the same notations as in Sect. 2.2.4, the bulk Hamiltonian acting now

on C2
d+1
2 ⊗ �2(Zd) is

H = 1
2i

d∑
j=1

γj ⊗ (
Sj − S∗

j

) + γd+1 ⊗
(

m + 1
2

d∑
j=1

(Sj + S∗
j )

)
.

It has the required chiral symmetry γ0Hγ0 = −H. Its Bloch-Floquet fibers

Hk =
d∑

j=1

sin(kj)γj +
(

m +
d∑

j=1

cos(kj)
)
γd+1

have just two eigenvalues

E±
k = ±

√√√√ d∑
j=1

sin2(kj) +
(

m +
d∑

j=1

cos(kj)
)2

. (2.42)

Hence the model displays two d+1
2 -fold degenerate energy bands arranged, symmet-

rically relative to E = 0. There is a spectral gap at E = 0, except when m is equal
to ±1,±3, . . ., ±d. These are precisely the points where the topological transitions
take place. Due to the simplicity of the spectrum, the Fermi unitary matrix Uk can
be computed explicitly to be

Uk = (E+
k )−1

⎡
⎣ d∑

j=1

sin(kj) σj + i
(

m +
d∑

j=1

cos(kj)
)

1

⎤
⎦ ,

where σj’s are the irreducible representation of the odd complex Clifford algebra

Cld on C
2

d−1
2 (with our CCR conventions). The top odd Chern number can again

be computed by counting the change at the critical values of m where the bulk gap
closes, as done for the unitary case. Formally, the gap closing conditions are exactly
the same as in the unitary case, and the analysis can be adapted. Near a gap closing,
the contribution I to the bulk invariant becomes
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I = i(iπ)
d−1
2

d!!
d∏

i=1

αD
i

∑
ρ∈Sd

(−1)ρ
∫

dk

(2π)d
tr

⎛
⎝ −iε√

ξ 2 + ε2

d∏
j=1

σρj√
ξ 2 + ε2

⎞
⎠ ,

which can be computed explicitly

I = χ

2

ε

|ε|
d∏

i=1

αW
i , χ = (−1)

d−1
2 ,

where one should note that now we have Weyl singularities at the gap closing. By
literally repeating the counting done for the unitary case, we conclude

Chd(UF) = χ(−1)n

(
d − 1

n

)
, (2.43)

form ∈ (−d +2n,−d +2n+2)with n = 0, . . . , d −1, and Chd(UF) = 0 otherwise.
We now impose the Dirichlet boundary condition at xd = 0. As before, a partial

Bloch-Floquet decomposition has fibers

Ĥk =
d−1∑
j=1

sin(kj) γj ⊗1+ 1
2iγd ⊗ (̂S − Ŝ∗)+γd+1⊗

(
m+

d−1∑
j=1

cos(kj)+ 1
2 (̂S + Ŝ∗)

)
,

and the solutions to the Schrödinger equation Ĥkψk = Êkψk are sought in the form

ψk(x) = ξk ⊗ (λk)
x , |λk| < 1 , ξk ∈ C

2
d+1
2

,

Due to the Dirichlet boundary condition at xd = 0 this leads to the two independent
constraints

[ d−1∑
j=1

sin(kj)γj + λk − λ−1
k

2i
γd +

(
m+

d−1∑
j=1

cos(kj)+ λk + λ−1
k

2

)
γd+1

]
ξk = Êkξk ,

and

[ d−1∑
j=1

sin(kj)γj + λk

2i
γd +

(
m +

d−1∑
j=1

cos(kj) + λk

2

)
γd+1

]
ξk = Êkξk .

They can be simultaneously satisfied if only if

(iγd + γd+1)ξk = 0 and λk = −
(

m +
d−1∑
j=1

cos(kj)
)

.
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This implies that ξk is a common eigenvector for two commuting matrices:

[ d−1∑
j=1

sin(kj)γj

]
ξk = Êkξk , (2.44)

and
− iγd+1γdξk = ξk . (2.45)

Let L ⊂ C
2

d+1
2 be the linear space spanned by the ξ ’s satisfying (2.45) whose

dimension is 2
d−1
2 . This linear space is invariant for the matrices γ1, . . . , γd−1 so that

one can define
γ̂j = γj �L , j = 1, . . . , d − 1 ,

as well as γ̂0 = γ0 �L= (−i)
d−1
2 γ̂1 · · · γ̂d−1. This provides an irreducible represen-

tation of the even complex Clifford algebra Cld−1 on L, satisfying our conventions.
We are now ready to draw our conclusions for d > 1:

(i) ξk’s are eigenvectors of a reduced Hamiltonian which is of Dirac-type

[ d−1∑
j=1

sin(kj)γ̂j

]
ξk = Êkξk .

(ii) The band spectrum inside the insulating gap is given by

Ê±
k = ±

√√√√d−1∑
j=1

sin2(kj) . (2.46)

The ± branches are connected at a singular point which occurs at E = 0.
This singularity is the Dirac point mentioned earlier. The bands are 2

d−3
2 -fold

degenerate. This degeneracy can be lifted by a small periodic perturbation
except at theWeyl pointwhere the bandswill remain connected via a singularity.

(iii) The 2
d−3
2 eigenstates corresponding to Ê±

k are all of the form

ψk(x) = ξ±
k ⊗ (λk)

x√
2(1 − (λk)2)

, λk = −
(

m +
d−1∑
j=1

cos(kj)
)

.

(iv) Generically, the boundary bands are not defined over the entire Brillouin zone,
but only over the domain determined by the implicit condition |λk| < 1.
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(v) From (2.46), the d − 1 coordinates kD
j of the Dirac points can only be equal to

0 or π . For k in a neighborhood of such a Dirac point, the reduced Hamiltonian
can be approximated by an exact Dirac operator

Hk ≈
d−1∑
j=1

αj(kj − kD
j ) γ̂j , (2.47)

where the sign factorsαj = ±1 are determined by the exact location of theDirac
point in the Brillouin zone. We can always flip the signs of a pair (αi, αj) by a
continuous rotation in the (ki, kj) plane. As such, the Hamiltonians (2.47) fall
into two homotopy classes, one of positive chirality for which (2.47) contains
an even number of negative αj’s, and one of negative chirality for (2.47) which
contains an odd number of negative αj’s.

(vi) There could be more than one Dirac point. The condition which determines
how many Dirac points are there and where are they exactly located is:

|λD
k | < 1 ⇐⇒

d−1∑
j=1

cos(kD
j ) ∈ [−1 − m, 1 − m] ∩ [−(d − 1), d − 1] .

The bulk-boundary correspondence can now be established following line by line
the arguments provided for the unitary case.

2.4 Main Hypotheses on the Hamiltonians

This section translates the settings and the assumptions in a mathematically precise
language and presents the behavior of various quantities of interest under such cir-
cumstances. Most of the statements are well-known or can be found in the literature,
hence some are presented without a proof. Having all these statements listed in one
place will be useful because they are referenced often throughout the book.

2.4.1 The Probability Space of Disorder Configurations

Here an explicit mathematical definition of the dynamical system (Ω, τ,Zd,P)

describing the disorder configurations of the models is given. Throughout it will
be assumed that this particular set-up is given. Recall that the allowed hopping range
R ⊂ Z

d is supposed to be finite.

Definition 2.4.1 Suppose that the randomness in the individual hopping process by
y ∈ Z

d can be described by a compact and convex (hence contractible) space Ω
y
0

equipped with the probability measure Py
0. Then the dynamical system (Ω, τ,Zd,P)

is defined by:
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(i) The compact and metrizable Tychonov space

Ω = ( ∏
y∈R

Ω
y
0

)Z
d

. (2.48)

(ii) The family of homeomorphisms

(τzω)y
x = ω

y
x−z , ω =

(
ωy

x

)y∈R
x∈Zd

∈ Ω , z ∈ Z
d .

In particular, the homeomorphisms corresponding to the generators ej of Zd

will be dented by τj, so that τz = τ
◦z1
1 . . . τ

◦zd
d .

(iii) The product probability measure

P(dω) =
∏
y∈R

∏
x∈Zd

P
y
0(dωy

x) , (2.49)

which is invariant and ergodic w.r.t. the Zd action τ .

For sake of concreteness, let us give a very concrete and simple example ofΩ and
also the matrix functions Wy entering into the Hamiltonian (2.12). One may choose
Ω

y
0 = [− 1

2 ,
1
2 ] with P0(dω

y
x) = dω

y
x , and

Wy(ω) = (1 + λyω
y
0)Wy

with real coefficients λy which can be seen as a measure of disorder strength.
One last but important observation spurs from the fact that the space Ω is con-

tractible. In this case, all the maps are homotopic with the constant map. As a con-
sequence, the map τ and the identity map are homotopically equivalent. This will
have an important consequence for the K-theory of the observables algebras.

2.4.2 The Bulk Hamiltonians

The analysis carried out in this book applies to the families of Hamiltonians H =
{Hω}ω∈Ω defined in (2.12) and (2.38), and indexed by the disorder probability space
(Ω, τ,Zd,P) described in Definition 2.4.1. These families of Hamiltonians satisfy
the covariance relation (2.13). The bulk analysis can be carried out as well in the
symmetric gauge but, to avoid confusion, we consider only the Landau gauge from
nowon.Almost surely, the spectra ofHω are identical non-random sets (see e.g. [49]).
This non-random set can be regarded as the spectrum of H, the family of covariant
Hamiltonians.
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Bulk Gap Hypothesis (BGH): The Fermi level μ ∈ R lies in a gap Δ ⊂ R of the
spectrum of H.

The gap mentioned above will be referred as the bulk or insulating gap. By a well-
known Combes-Thomas estimate (e.g. [53]) one deduces the following estimate on
the Fermi projection.

Proposition 2.4.2 If BGH holds, then the Fermi projection has exponential decay

sup
ω∈Ω

∣∣〈x|χ(Hω ≤ μ)|y〉∣∣ ≤ γ e−β|x−y| , (2.50)

for some strictly positive and finite constants γ and β.

A periodic insulator has, by definition, always a bulk gap. Turning on a disordered
perturbation will ultimately close the bulk gap. Nevertheless, it is possible that the
Fermi level lies in a region of dynamically Anderson localized spectrum. In this
regime, the Fermi level is located in the essential spectrum, but the spectrum is dense
pure point and the eigenvectors decay exponentially at infinity. This regime can
nicely be characterized by requiring the means square replacement to be bounded
[20], however, for sake of simplicity and because it holds in many random models
anyway (in particular, those considered here, see [53]), we choose to characterize
this regime by the stronger Aizenmann-Molchanov bound [2].

Mobility Bulk Gap Hypothesis (MBGH): The Fermi level μ ∈ R lies in an interval
Δ ⊂ R of the spectrum of H which is Anderson localized, in the sense that the
Aizenmann-Molchanov bound on the resolvent

∫
Ω

P(dω)
∣∣〈x|(E + iε − Hω)−1|y〉∣∣s ≤ γs e−βs|x−y| (2.51)

holds uniformly as ε → 0, for all E ∈ Δ and any s ∈ (0, 1). Above, γs and βs are
strictly positive and finite parameters which depend only on s.

Definition 2.4.3 We say that the energy spectrum is delocalized at energy E if the
uniform Aizenmann-Molchannov bound (2.51) cannot be established.

The physical regime where BGH is replaced by MBGH is often referred to as the
strong localization regime. The existence of a mobility gap also induces a special
behavior on the Fermi projection.

Proposition 2.4.4 ([1, 53, 169]) If MBGH holds, then, on average, the Fermi pro-
jection is exponentially localized

∫
Ω

P(dω)
∣∣〈x|χ(Hω ≤ μ)|y〉∣∣ ≤ γ e−β|x−y| (2.52)

for some strictly positive and finite constants γ and β.
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Next we describe the behavior of the Fermi projections under homotopies. To
describe the deformations of the covariant Hamiltonians properly, recall that the
hopping matrices are continuous functions over Ω with values in MN (C). As such,
it is natural to view Wy as elements of the C∗-algebra MN (C) ⊗ C(Ω), where C(Ω)

is equipped with the supremum norm

‖φ‖C(Ω) = sup
ω∈Ω

|φ(ω)| .

Definition 2.4.5 We call t ∈ [0, 1] �→ H(t) a continuous deformation of a family of
a covariant Hamiltonians H if H(t) are covariant families of Hamiltonians obtained
by continuous variations of Wy in MN (C) ⊗ C(Ω), for every y ∈ R.

Here it is understood that R is sufficient large (but finite) to account for all the
non-zero hopping matrices during the variation of t ∈ [0, 1]. Note that the alignment
of the Fermi level with respect to the spectrum can be changed by adding a constant
to H, and this can be done by modifying W0. In other words, the above definition of
deformations includes also the continuous variations of the Fermi level relative to
the spectrum.

Proposition 2.4.6 The following holds:

(i) Let t ∈ [0, 1] �→ H(t) be a continuous deformation such that BGH holds for all
t. Then

sup
ω∈Ω

∣∣〈x∣∣χ(
Hω(t′) ≤ μ) − χ

(
Hω(t) ≤ μ

)∣∣y〉∣∣ ≤ C(t, t′) e−β|x−y| ,

where β is a strictly positive constant (hence independent of t or t′) and C(t, t′)
is a continuous function of the arguments, such that C(t, t) = 0 for all t ∈ [0, 1].

(ii) If BGH is replaced by MBGH above, then [181]

∫
Ω

P(dω)
∣∣〈x∣∣χ(

Hω(t′) ≤ μ) − χ
(
Hω(t) ≤ μ

)∣∣y〉∣∣ ≤ C(t, t′) e−β|x−y| .

The above statements apply to both the unitary and chiral unitary Hamiltonians.
The latter class posses a chirality operator, which is a selfadjoint operator J : C2N ⊗
�2(Zd) → C

2N ⊗ �2(Zd), with J = J∗ and squaring to J2 = 1 and commuting with
the position operator, i.e. J is local.

Chirality Hypothesis (CH): The family H of covariant Hamiltonians has an (exact)
chiral symmetry if and only if JHωJ = −Hω for all ω ∈ Ω .

Throughout, we will chose a basis for C2N such that the chirality operator is in
the diagonal form given in (2.32). Then all chiral symmetric Hamiltonians take the
form shown in Eq. (2.38). We recall that the Fermi level is fixed at μ = 0 for the
chiral unitary class.

Proposition 2.4.7 Suppose BGH and CH hold. Then:
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(i) The family sgn(H) is chiral symmetric and is of the form

sgn(Hω) =
(

0 U∗
ω

Uω 0

)
.

(ii) The family UF = {Uω}ω∈Ω is covariant and unitary onCN ⊗�2(Zd). In analogy
with the Fermi projection, UF will be called the Fermi unitary operator.

(iii) The matrix elements of Uω are exponentially localized

sup
ω∈Ω

∣∣〈x|Uω|y〉∣∣ ≤ γ e−β|x−y| ,

for some strictly positive and finite constants γ and β.
(iv) If BGH is replaced by MBGH, then (i)-(iii) hold with the modification

∫
Ω

P(dω)
∣∣〈x|Uω|y〉∣∣ ≤ γ e−β|x−y| .

Proof (i) We have sgn(H) = 12N − 2PF . Since JPFJ = 12N − PF , the first part of
the statement follows. The second part is a consequence of the chirality. (ii) Because
UF is obtained by functional calculus form a covariant family of operators, it is itself
covariant. Since sgn(H)2 = 1, one has UωU∗

ω = U∗
ωUω = 1N . The statements (iii)

and (iv) follow from Propositions 2.4.2 and 2.4.4 and the formula in (i). �

When discussing the continuous deformations for models from the chiral unitary
class, we use Definition 2.4.5 with the added assumption that, at all times, H(t)
remains chiral symmetric relative to the same J .

Proposition 2.4.8 The following holds:

(i) Let t ∈ [0, 1] �→ H(t) be a continuous deformation of H and assume that BGH
and CH hold for all t. Then

sup
ω∈Ω

∣∣〈x|Uω(t′) − Uω(t)|y〉∣∣ ≤ C(t, t′) e−β|x−y| ,

where β is a strictly positive constant (hence independent of t or t′) and C(t, t′)
is a continuous function of the arguments, such that C(t, t) = 0 for all t ∈ [0, 1].

(ii) If BGH is replaced by MBGH above, then

∫
Ω

P(dω)
∣∣〈x|Uω(t′) − Uω(t)|y〉∣∣ ≤ C(t, t′) e−β|x−y| .

Proof Both statements follow from Propositions 2.4.6 and 2.4.7. �

As already pointed out, for the physical materials, the chiral symmetry does not
hold exactly but only approximately. In the followingwe introduce anotionof approx-
imate chirality, which will ultimately allow us to define topological invariants for
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such systems. Let us write a general covariant Hamiltonian Hω on C
2N ⊗ �2(Zd) in

the grading of J given in (2.32)

Hω =
(

Bω A∗
ω

Aω Cω

)
. (2.53)

Then the CH is equivalent to saying that the self-adjoint covariant operators Bω and
Cω vanish. Given the CH, the BGH is then equivalent to the invertibility of Aω. The
invertibility of Aω will turn out to be sufficient to define invariants, so let us state it
as a generalization (of a combination of BGH and CA):

Approximate Chirality Hypothesis (ACH): The off-diagonal entry Aω in (2.53)
is invertible and, moreover, ‖BωA−1

ω ‖ < 1 and ‖Cω(A∗
ω)−1‖ < 1 uniformly in ω.

The Fermi unitary operator of a Hamiltonian Hω satisfying the ACH is given by
Uω = Aω|Aω|−1.

Under the ACH, there exists a continuous deformation of Hamiltonians with ACH

λ ∈ [0, 1] �→ Hω(λ) =
(

λ Bω A∗
ω

Aω λ Cω

)
, (2.54)

connecting the Hamiltonian Hω = Hω(1) to an exact chiral Hamiltonian Hω(0).
Furthermore one has:

Proposition 2.4.9 Let Hω satisfy the ACH. Then each operator Hω(λ) on the path
(2.54) also satisfies the BGH.

Proof The invertibility of Hω(λ) is equivalent to the invertibility of

Hω(λ)

(
0 A−1

ω

(A∗
ω)−1 0

)
=

(
1 λ BωA−1

ω

λ Cω(A∗
ω)−1 1

)
,

This is guaranteed because the Schur complement 1 − λ2 BωA−1
ω Cω(A∗

ω)−1 is
invertible. �

2.4.3 The Half-space and Boundary Hamiltonians

The half-space lattice Hamiltonians are restrictions of the bulk Hamiltonians to the
half-space, hence to the Hilbert space C

N ⊗ �2(Zd−1 × N). The surjective partial
isometry �d from �2(Zd) onto �2(Zd−1 × N) will become useful in the following.
We want the half-space Hamiltonians to be realistic models of disordered crystals
with a homogeneous boundary. The latter means that the covariance property w.r.t.
magnetic translations along the first (d − 1)-directions is preserved. For the unitary
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class, we claim that this can be achieved within the following generic class of half-
space Hamiltonians

Ĥω = �dHω�∗
d + H̃ω , (2.55)

where the first term represents the restriction of the generic bulk Hamiltonians (2.10)
to half-space via a simple Dirichlet boundary condition and the second term will be
referred to as the boundary Hamiltonian. Supposing again a finite range condition,
its most general covariant expression in the symmetric gauge is

H̃sym,ω =
R∑

n,m=0

∑
y∈R′

∑
x∈Zd−1

W̃ y
n,m(τx,nω) ⊗ |x, n〉〈x, n|Uy,n−m

sym

=
R∑

n,m=0

∑
y∈R′

∑
x∈Zd−1

e
i
2 〈y,n−m|B|x,n〉W̃ y

n,m(τx,nω) ⊗ |x, n〉〈x − y, m| ,

whereR′ is a finite subset ofZd−1,R a finite number and W̃ y
n,m ∈ MN (C)⊗C(Ω). The

representation in the Landau gauge is obtained by conjugating H̃sym,ω with e
i
2 〈X|B+|X〉,

which gives

H̃ω =
R∑

n,m=0

∑
y∈R′

∑
x∈Zd−1

e
i
2 〈y,n−m|B+|y,n−m〉 W̃ y

n,m(τx,nω) ⊗ |x, n〉〈x, n|Uy,n−m .

(2.56)

The Landau gauge representation will be primarily used in the following.
Let us further discuss the terms above. The first term �dHω�∗

d models the ideal-
ized situation where a boundary was physically created and the remaining hopping
matrices are not effected at all by the process of cutting the boundary. Of course, this
is not what happens in reality and this is why the boundary Hamiltonian is needed.
Note that its hopping matrices depend on m and n instead of n−m, which enables us
to model practically any homogeneous distortion occurring near the boundary. These
distortions will eventually become experimentally undetectable far away from the
boundary, hence we imposed the cut-off at m, n ≤ R, where R can be arbitrarily large
but nevertheless finite.

We now turn our attention to the chiral unitary class. The chiral symmetry on
C

2N ⊗ �2(Zd−1 × N) is given by

Ĵ = �d J �∗
d . (2.57)

Since J is local, Ĵ inherits the basic properties Ĵ∗ = Ĵ and Ĵ 2 = 1. The bulk-
boundary principle derived in our work applies strictly to pairs (H, Ĥ) of bulk and
half-space Hamiltonians which are chiral symmetric with respect to (J, Ĵ). The
generic half-space Hamiltonians which remains chiral symmetric, Ĵ Ĥ Ĵ = −Ĥ,
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takes the form (2.55) with (2.38) and (2.56), and the boundary hopping matrices
assume the chiral form

W̃ y
n,m(τx,nω) =

(
0 w̃y

n,m(τx,nω)

w̃y
n,m(τx,nω)∗ 0

)
. (2.58)

For chiral systems, one should also keep in mind the discussion at the and of
Sect. 2.3.1 where we have seen that the bulk unit cell needs to be adapted to a given
boundary.

We now present the behavior of various quantities of interest. Recall the decompo-
sition Eq. (2.55), which justifies the notation Ĥ = (H, H̃) for the covariant families
of half-space Hamiltonians. Below, the components H and H̃ are assumed of the
generic forms (2.12) and (2.56), respectively. When we say that BGH holds for Ĥ
we are referring specifically to the bulk component H. The following estimates are
by now standard with proofs based on the functional calculus introduced by Dynkin
[57], often also referred to as the Helffer-Sjorstrand formula [89].

Proposition 2.4.10 ([58, 166, 194]) Assume that the BGH holds for the half-space
Hamiltonian Ĥ. Then, for any smooth function φ with support in the bulk insulat-
ing gap,

sup
ω∈Ω

∣∣〈x, n|φ(Ĥω)|y, m〉∣∣ ≤ AM

1 + |x − y|M e−β(n+m) , n, m ∈ N , x, y ∈ Z
d−1 .

where M is any integer and AM and β are strictly positive constants.

Definition 2.4.5 of continuous deformations extends literally to the half-space
Hamiltonians. By similar proofs, one obtains the following:

Proposition 2.4.11 ([58, 166, 194]) Let Ĥ(t) be a continuous deformation of a
family of covariant half-space Hamiltonians. Then, for any smooth function φ with
support in a common insulating gap,

sup
ω∈Ω

∣∣〈x, n|φ(
Ĥω(t)

) − φ
(
Ĥω(t′)

)|y, m〉∣∣ ≤ CM(t, t′)
1 + |x − y|M e−β(n+m) ,

where M is any integer, β is a strictly positive constant, and CM(t, t′) is a continuous
function of the arguments such that CM(t, t) = 0 for all t ∈ [0, 1].



Chapter 3
Observables Algebras for Solid State Systems

Abstract This chapter introduces the C∗-algebras of bulk, half-space and boundary
observables, together with their canonical representations which generate the physi-
cal models for topological insulators presented in Chap.2. Then the exact sequence
connecting these algebras is discussed. In particular, it is shown to be isomorphic
to the Pimsner-Voiculescu exact sequence. This chapter also introduces the non-
commutative analysis tools and the smooth sub-algebras to be used in the remainder
of the book.

3.1 The Algebra of Bulk Observables

In this section, the operator algebra in arbitrary dimension d are first studied as
mathematical objects, without any mentioning of the connection to Hamiltonians.
The canonical covariant representations are given in Sects. 3.1.2 and 3.1.3, and the
connection to concrete physical bulk models introduced in the previous chapter is
then established in Sect. 3.1.4.

3.1.1 The Disordered Non-commutative Torus

Let B = (Bi, j )1≤i, j≤d be the anti-symmetric real matrix of a constant magnetic
field, with entries from [0, 2π). We will need the decomposition of B into its lower
and upper triangular parts, hence we introduce the notation B+ for the lower tri-
angular part and B− = BT+, such that B = B+ − B−. Recall the d-dimensional
non-commutative torus, defined as the universal C∗-algebra generated by u1, . . . , ud

satisfying the commutation relations

ui u j = eiBi, j u j ui , u∗
j u j = u∗

j u j = 1 . (3.1)

The non-commutative torus algebra is sufficient to describe periodic tight-binding
models of solid state systems submitted to an external magnetic field, in which case
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the representation of the u j will be that of the (dual) magnetic translations. Infor-
mation about the non-commutative torus and its K -theory can be found in [60, 183,
214] and in the remainder of the book. The Morita equivalence of higher dimen-
sional non-commutative tori was solved in [61, 181]. Notes on the non-commutative
geometry of these spaces can be found in [51, 184].

In order to include disorder, a larger algebra is needed and this is defined next.
Let (Ω, τ, Z

d , P) be the dynamical system given in Definition 2.4.1 (the measure P

plays no role here).

Definition 3.1.1 The algebra of the bulk observables is defined as the universal
C∗-algebra generated by C(Ω) and u1, . . . , ud ,

Ad = C∗(C(Ω), u1, . . . , ud) ,

with the following additional commutation relations:

φ u j = u j (φ ◦ τ j ) , ∀ φ ∈ C(Ω) , j = 1, . . . , d . (3.2)

If the dependence on the magnetic field is to be stressed, the notation AB,d = Ad

will be used.

As we shall see shortly, the disordered bulk Hamiltonians introduced in Chap.2
can all be generated from Ad . In the following, we offer the reader various ways to
look at Ad . Of central importance to the bulk-boundary analysis is the presentation
of Ad as an iterated crossed product

Ad = C(Ω) �α1 Z . . . �αd Z , (3.3)

with adequate Z-actions α j , constructed below. This iterative construction immedi-
ately implies

Ad = Ad−1 �αd Z , (3.4)

which will be used in the proof of the bulk-boundary correspondence. It will become
apparent shortly that the iterated crossed product is connected to the Landau gauge.
In the literature [17, 20], the bulk algebra is often introduced as a twisted crossed
product

Ad = C(Ω) �α,B Z
d , (3.5)

with a twist given by the magnetic field. This presentation has similarities to the
symmetric gauge and will also be discussed below as well.

The first step of the construction of (3.3) is to consider the C∗-algebra C(Ω)

of the continuous functions over Ω with the sup-norm. Then one considers A1 =
C∗(C(Ω), u1) whose commutation relations define a ∗-automorphic action of Z on
C(Ω):

Z � x1 �→ α
x1
1 (φ) = (u1)

x1 φ (u∗
1)

x1 = φ ◦ τ−x1 .

http://dx.doi.org/10.1007/978-3-319-29351-6_2
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Comparing e.g. with [52], one realizes thatA1 is in fact the crossed product algebra
associated to this action

C∗(C(Ω), u1) = C(Ω) �α1 Z .

The next step is to consider A2 = C∗(A1, u2), whose commutation relations define
a ∗-automorphic action of Z on A1:

Z � x2 �→ α
x2
2 (φu1) = (u2)

x2(φu1)(u
∗
2)

x2 = eix2 B21
(
φ ◦ τ−x2

)
u1 ,

and for the same reasons

C∗(A1, u2) = A1 �α2 Z = C(Ω) �α1 Z �α2 Z .

The steps can be iterated to finally obtain (3.3). The presentation as iterated crossed
product is closely related to writing the dense set of non-commutative polynomials
in Ad in the form

p =
∑
x∈Zd

p(x) ux , (3.6)

where p(x) are continuous functions over Ω which are non-vanishing only for a
finite number x ∈ Z

d , and ux are the monomials

ux = ux1
1 . . . uxd

d , x = (x1, . . . , xd) .

Note the particular ordering of the ui ’s in ux , which reflects the iterated nature of the
crossed product and is connected to the Landau gauge. The monomials ux obey the
following commutation relations:

ux uy = ei〈x |B|y〉uyux , ux uy = ei〈x |B+|y〉ux+y , (3.7)

and
(ux )∗ = ei〈x |B+|x〉 u−x .

Care must be taken because p(x) does not commute with ux . Given a second poly-
nomial q = ∑

y∈Zd q(y) uy , one has

p q =
∑
x∈Zd

( ∑
y∈Zd

p(y)
(
q(x − y) ◦ τ−y

)
ei〈y|B+|x−y〉

)
ux , (3.8)

p∗ =
∑
x∈Zd

p(−x) ◦ τ−x ei〈x |B+|x〉 ux . (3.9)

The bulk algebraAd is then just the closure of the set of these polynomials under the
C∗-norm ‖p‖ = sup ‖π(p)‖, where the supremum is taken over all∗-representations
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π . In particular, every element ofAd is a norm limit of non-commutative polynomials
and can be written by the same formula (3.6) with coefficients p(x) having appro-
priate decay properties (instead of being of finite range, see Sect. 3.3.1). Many of the
algebraic identities in the following will be stated for non-commutative polynomials,
but they extend by continuity to the whole algebra Ad .

For sake of concreteness, let us write out the dependence on ω explicitly as in

p(ω) =
∑
x∈Zd

p(ω, x) ux , p(ω, x) ∈ C .

Then the multiplication and adjunction rules become

(p q)(ω) =
∑
x∈Zd

( ∑
y∈Zd

p(ω, y)q(τ−yω, x − y) ei〈y|B+|x−y〉
)

ux ,

p∗(ω) =
∑
x∈Zd

p(τ−xω,−x) ei〈x |B+|x〉 ux .

Furthermore, let us showhow the iterationAd = Ad−1�αd Z of (3.4) occurs naturally
for the presentation in (3.6). Due to the particular ordering in the monomials ux , one
can write

p =
∑
xd∈Z

∑
x∈Zd−1

p(x, xd)u
x uxd

d =
∑
xd∈Z

pd−1(xd)u
xd
d , (3.10)

where
pd−1(xd) =

∑
x∈Zd−1

p(x, xd)u
x ∈ Ad−1 .

Furthermore, if q is another non-commutative polynomial fromAd which is decom-
posed in the same manner, then:

p q =
∑
yd∈Z

pd−1(yd)u
yd

d

∑
xd∈Z

qd−1(xd)u
xd
d

=
∑

xd ,yd∈Z
pd−1(yd)

(
uyd

d qd−1(xd) u−yd

d

)
uxd+yd

d .

By a change of variable xd �→ xd − yd ,

p q =
∑
xd∈Z

( ∑
yd∈Z

pd−1(yd)α
yd

d

(
qd−1(xd − yd)

))
uxd

d , (3.11)

and the r.h.s. is exactly the multiplication in Ad−1 �αd Z.
Next let us explain how the bulk algebra can be viewed as the twisted crossed

product (3.5). For this, we consider the monomials

ux
sym = e

i
2 〈x |B+|x〉ux , (3.12)
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which obey the relations

ux
symuy

sym = ei〈x |B|y〉uy
symux

sym = e
i
2 〈x |B|y〉ux+y

sym , (ux
sym)∗ = u−x

sym . (3.13)

Instead of (3.6), one now decomposes the non-commutative polynomials as

p =
∑
x∈Zd

psym(x)ux
sym , (3.14)

where, as before, psym(x) ∈ C(Ω) is non-vanishing only for a finite number x ∈ Z
d .

Given a second polynomial q = ∑
x∈Zd qsym(x)ux

sym, one has

p q =
∑
x∈Zd

( ∑
y∈Zd

psym(y) qsym(x − y) ◦ τ−y e
i
2 〈y|B|x〉

)
ux
sym , (3.15)

p∗ =
∑
x∈Zd

psym(−x) ◦ τ−x ux
sym. (3.16)

By looking at the coefficients, one realizes that (3.5) holds with the Z
d -action α on

C(Ω) given by αx (φ) = φ ◦ τ−x , and a twist given by the magnetic field.

3.1.2 Covariant Representations in the Landau Gauge

Here we define the family of covariant representations which generate the Hamilto-
nians presented in Chap.2 in the Landau gauge.

Proposition 3.1.2 Recall the generators e j of Z
d , the right-shifts S j |x〉 = |x + e j 〉

and the position operator X = (X1, . . . , Xd) on �2(Zd). Then the following relations
define a family {πω}ω∈Ω of faithful ∗-representations of Ad on �2(Zd):

πω(u j ) = ei〈e j |B+|X〉 Sj = Sj ei〈e j |B+|X〉 , j = 1, . . . , d , (3.17)

and
πω(φ) =

∑
x∈Zd

φ(τxω)|x〉〈x | , ∀ φ ∈ C(Ω) . (3.18)

Proof We need to verify the commutation relations (3.1) and (3.2). We have

πω(u j )πω(ui ) = ei〈e j |B+|X〉 Sj ei〈ei |B+|X〉 Si = ei〈e j |B+|X〉ei〈ei |B+|X−e j 〉Sj Si .

By switching i ↔ j , one immediately sees that

πω(ui )πω(u j ) = ei(〈ei |B+|e j 〉−〈e j |B+|ei 〉)πω(u j )πω(ui ) .

http://dx.doi.org/10.1007/978-3-319-29351-6_2
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The first part of the commutation relation (3.1) is now established because of the
identity 〈ei |B+|e j 〉−〈e j |B+|ei 〉 = Bi, j . The second part also follows becauseπω(u j )

are unitary. For (3.2), we can use the following simple, but useful identity,

|x〉〈x | πω(u j ) = πω(u j ) |x − e j 〉〈x − e j | , (3.19)

which gives

πω(φ) πω(u j ) = πω(u j )
∑
x∈Zd

φ(τxω)|x − e j 〉〈x − e j | = πω(u j ) πω(φ ◦ τ j ) .

It is also clear that πω(φ∗) = πω(φ)∗. �

For the monomials ux , we have

πω(ux ) = (
ei〈e1|B+|X〉 S1

)x1 · · · (ei〈ed |B+|X〉 Sd
)xd

.

Since B+ is a lower triangular matrix, all the phase factors commute with the shifts
following them, in particular, πω(uy)|0〉 = |y〉. Then (3.7) gives

πω(ux ) |y〉 = πω(ux ) πω(uy) |0〉 = ei〈x |B+|y〉 |x + y〉 .

This shows that πω(ux ) are precisely the dual magnetic translations on �2(Zd) in the
Landau gauge, introduced in (2.7). Hence, we can unify the notations

U x = πω(ux ) = Sx ei〈x |B+|X〉 =
∑
y∈Zd

ei〈x |B+|y〉 |y + x〉〈y| .

Later, we will also use U j = U e j . Note that x ∈ Z
d �→ U x provides a projective

unitary representation of the translation group Z
d on �2(Zd). Lastly, let us write

explicitly the representation of the non-commutative polynomials

Ad � p =
∑
y∈Zd

p(ω, y)uy �→ πω(p) =
∑

x,y∈Zd

p(τxω, y)|x〉〈x |U y . (3.20)

Now the covariance properties of these representations are investigated. The dual
magnetic translations U x are invariant w.r.t. the magnetic translation V x , introduced
in (2.8). Let us introduce the latter in a different way,

Z
d � x �→ V x = (V1)

x1 · · · (Vd)
xd , Vj = ei〈X |B+|e j 〉 Sj . (3.21)

Their commutation relations are

V x V y = e−i〈x |B|y〉 V y V x = e−i〈x |B+|y〉 V x+y , (3.22)

http://dx.doi.org/10.1007/978-3-319-29351-6_2
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and
(V x )∗ = e−i〈x |B+|x〉V −x ,

hence they also form a projective unitary representation of Z
d on �2(Zd). Since

(V −y)∗|0〉 = |y〉,

V x |y〉 = ei〈y|B+|y〉V x V y|0〉 = ei〈x+y|B+|x〉 |y + x〉 ,

so that, indeed,
V x = ei〈X |B+|x〉 Sx ,

as in (2.8). Recall that there is no Peierls phase factor when the magnetic translation
is only along xd because ei〈ed+y|B+|ed 〉 = 1, which is a defining characteristic of the
Landau gauge. The invariance relation is

V x U j (V x )∗ = U j ,

which can be verified using the explicit actions of U j and V x on �2(Zd). Moreover,
one has

V x πω(φ) (V x )∗ = πτx ω(φ) , φ ∈ C(Ω) .

Together this implies the covariant property

V x πω(p) (V x )∗ = πτx ω(p) , p ∈ Ad , x ∈ Z
d . (3.23)

Inversely, any finite range operator family {Aω}ω∈Ω on �2(Zd) satisfying the covari-
ance relation V x Aω(V x )∗ = Aτx ω for all x ∈ Z

d is the representative Aω = πω(p)

of a polynomial p in Ad . This property gives the physical meaning to the algebra
Ad , which now can be identified with the algebra of covariant operators on �2(Zd).
Some of the special properties of these operators have been already highlighted in
Sect. 2.2.1.

3.1.3 Covariant Representations in the Symmetric Gauge

Let us briefly comment here on the family {πsym,ω}ω∈Ω of covariant representations,
which generate the physical models in the symmetric gauge, as discussed in Chap.2.
These representations were used in most prior works, e.g. [17, 20], but they will play
little role in our analysis. They are obtained from πω via a gauge transformation

πsym,ω(p) = e− i
2 〈X |B+|X〉 πω(p) e

i
2 〈X |B+|X〉 , p ∈ Ad . (3.24)

http://dx.doi.org/10.1007/978-3-319-29351-6_2
http://dx.doi.org/10.1007/978-3-319-29351-6_2
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One can immediately see that the dual magnetic translations in the symmetric gauge,
introduced in Chap.2 in (2.4), are actually equal to

U y
sym = πsym,ω(uy

sym) = e
i
2 〈y|B+|y〉 e− i

2 〈X |B+|X〉 U y e
i
2 〈X |B+|X〉 .

Recalling the magnetic translations (2.6) in the symmetric gauge and the invari-
ance relation V x

sym U y
sym (V x

sym)∗ = U y
sym, one obtains the covariance relation for the

symmetric gauge

V x
sym πsym,ω(p) (V x

sym)∗ = πsym,τx ω(p) , p ∈ Ad , x ∈ Z
d . (3.25)

Lastly, the representation of the symmetric non-commutative polynomials is given by

Ad � p =
∑

y∈Zd

psym(y)uy
sym �→ πsym,ω(p) =

∑
x,y∈Zd

psym(τx ω, y)|x〉〈x | U y
sym . (3.26)

3.1.4 The Algebra Elements Representing the Hamiltonians

As stressed several times before, the families of Hamiltonians {Hω}ω∈Ω introduced in
Chap.2 are representations of elements from MN (C)⊗Ad . Thiswill shown explicitly
here. First, by comparing (2.10) and (3.26), one can immediately conclude

Hsym,ω = πsym,ω(hsym) , hsym =
∑
y∈R

Wy ⊗ uy
sym ∈ MN (C) ⊗ Ad . (3.27)

As for the Landau gauge, by comparing (2.12) and (3.20), it follows that

Hω = πω(h) , h =
∑
y∈R

e
i
2 〈y|B+|y〉 Wy ⊗ uy ∈ MN (C) ⊗ Ad . (3.28)

By examining the relation (3.12) between the monomials uy and uy
sym, one imme-

diately sees that hsym = h. All this applies equally well to the chiral symmetric
Hamiltonians in both the symmetric gauge (2.37) and the Landau gauge (2.38), the
only difference is the particular form of Wy .

The algebra elements corresponding to the Fermi projection and the Fermi unitary
operator can be obtained from the functional calculus onAd , provided theBGHholds.
For example, in the Landau gauge, the Fermi projection PF = {Pω}ω∈Ω is given by

Pω = πω(pF ) , pF = χ(h ≤ μ) .

http://dx.doi.org/10.1007/978-3-319-29351-6_2
http://dx.doi.org/10.1007/978-3-319-29351-6_2
http://dx.doi.org/10.1007/978-3-319-29351-6_2
http://dx.doi.org/10.1007/978-3-319-29351-6_2
http://dx.doi.org/10.1007/978-3-319-29351-6_2
http://dx.doi.org/10.1007/978-3-319-29351-6_2
http://dx.doi.org/10.1007/978-3-319-29351-6_2
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If h ∈ M2N (C) ⊗ Ad such the CH holds, then J h J = −h, hence

sgn(h) =
(
0 u∗

F
uF 0

)
,

which defines the element uF ∈ MN (C)⊗Ad representing the Fermi unitary operator
UF = {πω(uF )}ω∈Ω . If only the MBGH holds, then pF is not in Ad , but only lies in
the non-commutative Sobolev spaces defined below.

3.2 The Algebras of Half-Space and Boundary Observables

The operator algebras for half-space and boundary observables are first introduced
as mathematical objects. The canonical covariant representations are discussed in
Sect. 3.2.4 and the connection to the concrete models is established in Sect. 3.2.5.

3.2.1 Definition of the Algebras and Basic Properties

Definition 3.2.1 The algebra Âd of the half-space observables is defined as the
universal C∗-algebra generated by C(Ω) and û1, . . . , ûd satisfying the commutation
relations:

ûi û j = eiBi, j û j ûi , i, j = 1, . . . , d , (3.29)

û j û
∗
j = û∗

j û j = 1 , j = 1, . . . , d − 1 , (3.30)

and
û∗

d ûd = 1 , ûd û∗
d = 1 − ê , (3.31)

for some projection ê2 = ê∗ = ê commuting with û1, . . . , ûd−1, as well as the
additional commutation relations

φ ê = ê φ , φ û j = û j (φ ◦ τ j ) , φ û∗
j = û∗

j (φ ◦ τ−1
j ) , (3.32)

for all φ ∈ C(Ω) and j = 1, . . . , d. The algebra

Âd = C∗(C(Ω), û1, . . . , ûd) ,

will be called the half-space algebra or also the disordered non-commutative torus
with a boundary.
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The difference w.r.t. the bulk algebra Ad is that the last generator ûd is not uni-
tary, but only a partial isometry. The label “half-space” will become clear when the
canonical representations are discussed below, as will the following terminology.

Definition 3.2.2 The algebra of the boundary observables is the proper two-sided
ideal Ed of Âd generated by the projection ê, namely, Ed = Âd ê Âd .

Let us point out that ê is part of both the half-space and boundary algebras, but
ûd is only in the half-space algebra. Hence Ed is indeed a proper ideal of Âd . The
element ê commutes with all ûi for i = 1, . . . , d − 1 and êûd = û∗

d ê = 0. Therefore
(û∗

d)
nê(ûd)

m = 0 whenever n + m > 0. Furthermore,

ûn
d(û

∗
d)

m =
{

ûn−m
d

(
1 − ∑m−1

l=0 (ûd)
l ê(û∗

d)
l
)

, n ≥ m ,(
1 − ∑n−1

l=0 (ûd)
l ê(û∗

d)
l
)
(û∗

d)
m−n , n ≤ m .

hence dense subsets of the algebras Âd and Ed are linearly spanned by monomials
of the form

φ ûx1
1 . . . ûxd−1

d−1 ûn
d(û

∗
d)

m and φ ûx1
1 . . . ûxd−1

d−1(ûd)
nê(û∗

d)
m , (3.33)

respectively, with φ ∈ C(Ω), xi ∈ Z and m, n ∈ N. As such, elements of Âd and Ed

can be presented in the form

p̂ =
∑

n,m≥0

p̂n,m ûn
d(û

∗
d)

m , p̃ =
∑

n,m≥0

p̃n,m ûn
d ê (û∗

d)
m , (3.34)

respectively, where both p̂n,m and p̃n,m belong toAd−1
∼= C∗(C(Ω), û1, . . . , ûd−1).

The algebraic operations in this presentation can be conveniently written out using
the automorphism αd : Ad−1 → Ad−1 of Sect. 3.1.1. By a similar calculation leading
to (3.11), one finds that in Âd

p̂ q̂ =
∑

n,m≥0

( ∑
k>l≥0

p̂n,k αn−k
d

(
q̂k,m+l−k

) +
∑

l≥k≥0

p̂n+k−l,k αn−l
d

(
q̂l,m

))
ûn

d(û
∗
d)

m ,

p̂∗ =
∑

n,m≥0

αm−n
d ( p̂∗

n,m) ûm
d (û∗

d)
n .

In Ed , the expressions simplify to

p̃ q̃ =
∑

n,m≥0

(∑
k≥0

p̃n,k αn−k
d

(
q̃k,m

) )
ûn

d ê (û∗
d)

m , (3.35)

p̃∗ =
∑

n,m≥0

αm−n
d ( p̃∗

n,m) ûm
d ê (û∗

d)
n .
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3.2.2 The Exact Sequence Connecting Bulk and Boundary

Let us now consider the embedding i : Ed ↪→ Âd and the canonical surjective
C∗-algebra homomorphism ev : Âd → Ad defined by

ev(φ) = φ , ev(û j ) = u j , ev(û∗
j ) = u∗

j ,

for j = 1, . . . , d. Then necessarily ev(ê) = 0 so that:

Proposition 3.2.3 The following sequence

0 � Ed
i� Âd

ev� Ad
� 0 (3.36)

is an exact sequence of C∗-algebras.

The bulk-boundary correspondence for the topological invariants is rooted in this
sequence, which is hence of major importance for what follows. Let us collect a
number of basic implications of Proposition 3.2.3. First of all, Âd/Ed

∼= Ad . The
sequence is never split-exact as a sequence between C∗-algebras, but it is split-exact
as a sequence between linear spaces, with the split i ′ : Ad → Âd given by:

i ′(φ ux1
1 . . . uxd

d

) =
{

φ ûx1
1 . . . ûxd−1

d−1 ûxd
d , if xd ≥ 0,

φ ûx1
1 . . . ûxd−1

d−1(û
∗
d)

|xd |, if xd < 0.
(3.37)

The split is well defined because Ad is linearly spanned by the monomials consid-
ered above and the required property ev ◦ i ′ = idAd can be verified through direct
computation. Hence Âd = Ad ⊕ Ed as linear spaces. We should emphasize that i ′ is
not an algebra homomorphism. For example, udu∗

d = 1, but i ′(ud)i ′(u∗
d) = 1 − ê.

Nevertheless, the split-exact sequence between the linear spaces generates a useful
presentation of the half-space algebra, since any element from Âd can be written
as a direct sum i ′(p) + p̃, with p ∈ Ad and p̃ ∈ Ed . Even more convenient, the
elements of Âd can be represented as p̂ = (p, p̃), where p = ev( p̂) ∈ Ad and
p̃ = p̂ − i ′(p) ∈ Ed . In this presentation, the multiplication in Âd takes the form:

(p, p̃)(q, q̃) = (pq, p̃q) ,

where p̃q = p̂q̂−i ′(pq). Furthermore, the∗-operation becomes (p, p̃)∗ = (p∗, p̃∗).

3.2.3 The Toeplitz Extension of Pimsner and Voiculescu

In this section, the exact sequence (3.36) will be isomorphically mapped to the
Toeplitz extension of Pimsner and Voiculescu [160] associated to the discrete time
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C∗-dynamical system (Ad−1, αd , Z). Such a dynamical system always comes with
the crossed product Ad−1 �αd Z as well as its Toeplitz extension

0 � Ad−1 ⊗ K ψ� T (Ad−1)
π� Ad−1 �αd Z � 0. (3.38)

Here, T (Ad−1) is defined as the sub-algebra ofAd ⊗ C∗(Ŝ
)
generated by a ⊗ 1 and

ud ⊗ Ŝ with a ∈ Ad−1 and Ŝ a partial isometry on a separable Hilbert space H,
satisfying

Ŝ∗ Ŝ = 1 , Ŝ Ŝ∗ = 1 − P̃ ,

with a non-trivial projection P̃ onH. Hence T (Ad−1) is generated by the monomials

a un−m
d ⊗ Ŝ n(Ŝ∗)m , a ∈ Ad−1 .

Modulo isometries, the Toeplitz extension is independent ofH, Ŝ or P̃ and therefore
it is allowed to have the concrete realization of Chap.1 in mind. As before,K denotes
the algebra of compact operators over H and thus only remains to define the maps
appearing in (3.38):

ψ
(
a ⊗ |n〉〈m|) = un

d a (u∗
d)

m ⊗ Ŝ n P̃(Ŝ∗)m

and
π

(
a un−m

d ⊗ Ŝ n(Ŝ∗)m
) = a un−m

d .

Let us point out that if d = 1 and Ω is just a point, then Ad−1 = C and the exact
sequence (3.38) reduces exactly to the sequence (1.6), while with disorder it becomes
(1.22). This also justifies the terminology. The Toeplitz extension was used in [160]
as a tool to calculate the K -theory of Ad = Ad−1 �αd Z in terms of the K -theory
of Ad−1, and this is precisely what will be done in Sect. 4.2. Here we establish the
connections of (3.38) to (3.36).

Proposition 3.2.4 Let p̃ and p̂ be decomposed as in (3.34).

(i) The map ρ̃ : Ed → Ad−1 ⊗ K given by

ρ̃( p̃) =
∑

n,m≥0

α−n
d

(
p̃n,m

) ⊗ |n〉〈m| , (3.39)

is a C∗-algebra isomorphism.
(ii) The map η̂ : Âd → T (Ad−1) given by

η̂( p̂) =
∑

n,m≥0

p̂n,m un−m
d ⊗ Ŝ n(Ŝ∗)m (3.40)

is a C∗-algebra isomorphism.

http://dx.doi.org/10.1007/978-3-319-29351-6_1
http://dx.doi.org/10.1007/978-3-319-29351-6_1
http://dx.doi.org/10.1007/978-3-319-29351-6_1
http://dx.doi.org/10.1007/978-3-319-29351-6_4
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(iii) The Pimsner-Voiculescu exact sequence and (3.36) are isomorphic:

0 � Ad−1 ⊗ K ψ� T (Ad−1)
π� Ad−1 �αd Z � 0

0 � Ed

ρ̃ �
i � Âd

η̂ �
ev � Ad

||| |||
� 0

(3.41)

This diagram is commutative.

Proof All affirmations follow from straightforward computations. �

This isomorphism will be used in Sect. 5.5, where the bulk-edge correspondence
principle is established.

3.2.4 Half-Space Representations

The half-space algebra Âd , and thus its sub-algebra Ed have canonical faithful
∗-representations on the Hilbert space �2(Zd−1 × N) which are constructed and
described in this section. Recall that �d : �2(Zd) → �2(Zd−1 × N) is the surjective
partial isometry satisfying �∗

d |x〉 = |x〉 for x ∈ Z
d−1 × N ⊂ Z

d .

Proposition 3.2.5 The following relations

π̂ω(û j ) = �dπω(u j )�
∗
d = �dU j�

∗
d = ei〈e j |B+|X〉�d S j�

∗
d ,

for j = 1, . . . , d,

π̂ω(φ) = �dπω(φ)�∗
d =

∑
n∈N

∑
x∈Zd−1

φ(τx,nω)|x, n〉〈x, n| ,

for φ ∈ C(Ω), and
π̂ω(ê) = Pê =

∑
y∈Zd−1

|y, 0〉〈y, 0| ,

define a family of faithful ∗-representations of Âd on �2(Zd−1 × N).

Proof We need to verify the commutation relations in Definition 3.2.1. Since U j

commutes with �∗
d�d for j = 1, . . . , d − 1, and since �d�

∗
d = 1�2(Zd−1×N),

π̂ω(ûi )π̂ω(û j ) = �dUiU j�
∗
d = ei Bi, j �dU jUi�

∗
d = ei Bi, j π̂ω(û j )π̂ω(ûi )

for all i = 1, . . . , d, hence the first set of commutation relations (3.29) are automat-
ically satisfied. For the same reason,

π̂ω(û j )π̂ω(û∗
j ) = �dU jU

∗
j �

∗
d = 1�2(Zd−1×N) ,

http://dx.doi.org/10.1007/978-3-319-29351-6_5
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and the second set of commutation relations (3.30) follows. Next, from (3.19) one
finds

�∗
d�dUd = Ud

(
�∗

d�d+
∑

y∈Zd−1

|y,−1〉〈y,−1|) , Ud�
∗
d�d = (�∗

d�d−Pe)Ud ,

hence

π̂ω(ûd)
∗π̂ω(ûd) = �dU ∗

d Ud
(
�∗

d�d +
∑

y∈Zd−1

|y,−1〉〈y,−1|)�∗
d = 1�2(Zd−1×N)

and

π̂ω(ûd)π̂ω(ûd)
∗ = �dU ∗

d Ud
(
�∗

d�d − Pê)�
∗
d = 1�2(Zd−1×N) − π̂ω(ê) ,

which confirm the commutation relations (3.31). Lastly, since πω(φ) commutes with
�∗

d�d ,

π̂ω(φ)π̂ω(û j ) = �dπω(φ)U j�
∗ = �dU jπω(φ ◦ τ j )�

∗
d = πω(û j )π̂ω(φ ◦ τ j ) ,

for all j = 1, . . . , d, and the commutation relations (3.32) follow. �

Let us write the representation explicitly for the non-commutative polynomials.
It is useful to decompose p̂ = i ′(p) + p̃ with p = ev( p̂), since then

π̂ω( p̂) = �d πω(p)�∗
d + π̂ω( p̃) , (3.42)

which shows that essentially only the representation of the boundary algebra is new.
Therefore, we also write π̃ω( p̃) = π̂ω( p̃) for p̃ ∈ Ed . If we decompose as in (3.34),
then

π̃ω( p̃) =
∑

n,m,k∈N

∑
x,y,z∈Zd−1

p̃n,m(τx,kω, y)|x, k〉〈x, k|U yU n
d |z, 0〉〈z, 0|U−m

d ,

and we can use (3.19) to transfer all the U ’s to the end, to conclude:

p̃ = ∑
n,m∈N

∑
y∈Zd−1

p̃n,m(ω, y) uy ûn
d ê (û∗

d)
m ∈ Ed

↓
π̃ω( p̃) = ∑

n,m∈N

∑
x,y∈Zd−1

p̃n,m(τx,nω, y)|x, n〉〈x, n|U (y,n−m) .

(3.43)

Because both �d�
∗
d and Pê are invariant under translations in Z

d−1 × {0}, the rep-
resentations π̂ω (hence also π̃ω) inherit from (3.23) the covariance property

V̂ (x,0) π̂ω( p̂)
(
V̂ (x,0)

)∗ = π̂τx ω( p̂) , p̂ ∈ Âd , x ∈ Z
d−1 ,
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where the magnetic translations are given by V̂ (x,n) = �d V (x,n)�∗
d for (x, n) ∈

Z
d−1 × N. We also mention the following property w.r.t. the magnetic translations

in the dth direction

V̂ (0,k)π̃
τ k
d ω

( p̃)
(
V̂ (0,k)

)∗ =
∑

n,m∈N

∑
x,y∈Zd−1

p̃n,m (τx,n+kω, y)|x, n + k〉〈x, n + k|U (y,n−m) ,

(3.44)

which effectively translates the boundary by k ≥ 0 units. As one can see, if the lattice
sites are relabelled such that (x, n + k) becomes (x, n), then V̂ (0,k)π̃τ k

d ω( p̃)
(
V̂ (0,k)

)∗

becomes identical with π̃ω( p̃).

3.2.5 Algebra Elements Representing Half-Space
Hamiltonians

Thegeneric half-spaceHamiltonianswere introduced in Sect. 2.4.3. The generic form
of a covariant family {Ĥω}ω∈Ω of half-space Hamiltonians was given in (2.55). Here,
we want to show explicitly that every half-space Hamiltonian can be represented
uniquely as Ĥω = π̂ω(ĥ) with some adequate ĥ ∈ Âd . Using the decomposition
from (2.55) and by comparing with (3.42), we see that

Ĥω = �dπω(h)�∗
d + π̃ω(h̃) ,

with h given in (3.28). Our task was reduced to finding h̃ ∈ Ed for the generic H̃ω in
(2.56). By comparing with (3.43), one immediately finds

H̃ω = π̃ω(h̃) , h̃ =
∑

n,m≤R

∑
y∈R′

∑
x∈Zd−1

e
i
2 〈y,n−m|B+|y,n−m〉 W̃ y

n,m uy ûn
d ê (û∗

d )m . (3.45)

All the above applies to the unitary as well as the chiral unitary class, the only
difference being the special form of the hopping matrices in the latter case.

3.3 The Non-commutative Analysis Tools

3.3.1 The Fourier Calculus

The Fourier calculus onAd is defined by the following ∗-action of theU (1)×d group
on Ad

u j �→ e−ik j u j , k j ∈ [0, 2π ] , j = 1, . . . , d .

http://dx.doi.org/10.1007/978-3-319-29351-6_2
http://dx.doi.org/10.1007/978-3-319-29351-6_2
http://dx.doi.org/10.1007/978-3-319-29351-6_2
http://dx.doi.org/10.1007/978-3-319-29351-6_2
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This action generates a d-parameter group k ∈ T
d �→ ρk of continuous ∗-automor-

phisms [52], acting as
ρk(p) =

∑
x∈Zd

e−i〈x |k〉 p(x)ux

on the non-commutative polynomials. Given a generic element a ∈ Ad , one can
define its Fourier coefficients

Φx (a) =
[∫

Td

dk

(2π)d
ei〈x |k〉ρk(a)

]
(ux )∗ , x ∈ Z

d .

The Fourier coefficients are ordinary functions over the space of disorder configu-
rations Ω . For x = 0, Φ0 is actually an expectation of Ad onto C(Ω) (see [52],
pp. 222 for details). For a non-commutative polynomial p = ∑

x p(x)ux , we have
Φx (p) = p(x). For a generic element a ∈ Ad , the Cesàro sums

a(n) =
∑
x∈Vn

d∏
j=1

(
1 − |x j |

n + 1

)
Φx (a)ux , (3.46)

with Vn = [−n, . . . , n]d , converge in norm to a as n → ∞ [52]. While we already
knew that the algebra of non-commutative polynomials is dense in Ad , (3.46) pro-
vides an explicit approximation of a in terms of such non-commutative polynomials.
It also tells us that two elements with the same Fourier coefficients are identical.
Hence various actions onAd , such as the derivations below, can be defined by speci-
fying their action on the Fourier coefficients or on the non-commutative polynomials.

Now we consider the algebra of boundary observables. The Fourier calculus over
Ed is defined by the following ∗-action of the U (1)×(d−1) group

û j �→ e−ik j û j , k j ∈ [0, 2π ] , j = 1, . . . , d − 1 .

The remaining generator ûd , hence also the projector ê, remain unchanged. This gen-
erates a (d − 1)-parameter group k ∈ T

d−1 �→ ρ̂k of continuous ∗-automorphisms,
acting as

ρ̃k( p̂) =
∑

n,m∈N

∑
x∈Zd−1

e−i〈x |k〉 p̃n,m(x)ux ûn
d(û

∗
d)

m

on the non-commutative polynomials from Ed . Given a generic element ã ∈ Ed , one
can define its Fourier coefficients

Φ̃x (ã) =
[∫

Td−1

dk

(2π)d−1
ei〈x |k〉ρ̃k(ã)

]
(ûx )∗ , x ∈ Z

d−1.

These Fourier coefficients belong to the algebra E1.
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3.3.2 Non-commutative Derivations and Integrals

The Fourier calculus over the algebra of bulk observables generates a system of
unbounded closed ∗-derivations ∂ = (∂1, . . . , ∂d). Indeed, let Cn(Ad) be the linear
subspace spanned by those elements a ∈ A for which ρk(a) is an n-times differen-
tiable function of k. Then the derivations are defined over C1(Ad) as the generators
of the automorphisms ρk . Their actions on the non-commutative polynomials are
given explicitly by

∂ j

∑
x∈Zd

p(x)ux = − i
∑
x∈Zd

x j p(x)ux . (3.47)

The derivations satisfy the Leibniz rule

∂(ab) = (∂a)b + a(∂b) , a, b ∈ C1(Ad) ,

and for the representations on �2(Zd)

πω(∂a) = i
[
πω(a), X

]
. (3.48)

The Fourier calculus also defines a faithful continuous trace over Ad . Indeed,
the map a → Φ0(a) generates a faithful and continuous expectation from Ad to
C(Ω) [52]. Combined with the continuous and normalized trace over C(Ω) given
by

∫
Ω

dP(ω) φ(ω), it defines the canonical trace on Ad

T (a) =
∫

Ω

P(dω)Φ0(a) . (3.49)

For the non-commutative polynomials, the trace can be computed as

T (p) =
∫

Ω

P(dω) p(ω, 0) .

The trace T is continuous, normalized, T (1) = 1, and invariant w.r.t. the automor-
phisms ρk . Its physical meaning can be understood from Birkhoff’s ergodic theorem.
As shown in (2.14), T is actually equal to the trace per unit volume on �2(Zd)

T (a) = lim
V →Zd

1

|V |Tr
(
�V πω(a)�∗

V

)
, (3.50)

where V is a cube in Z
d and |V | is its cardinality and the equality holds for P-almost

all ω.

http://dx.doi.org/10.1007/978-3-319-29351-6_2
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Remark 3.3.1 When Ω consists of just one point and B = 0, then the operators in
the algebraAd are periodic and actuallyAd is isomorphic to the continuous functions
C(Td) on the d-dimensional torus T

d = (−π, π ]d . This can be explicitly seen via
the discrete Fourier transform F : �2(Zd) → L2(Td) defined by

(Fφ)(k) = (2π)−
d
2

∑
n∈Zd

φn e−i〈n|k〉 , k ∈ T
d .

If now a ∈ Ad , then

Fπ(a)F∗ =
∫ ⊕

Td

dk a(k) ,

where the r.h.s. is a multiplication operator with a(k) = ∑
n∈Zd a(n)e−i〈n|k〉. Now

the trace per unit volume becomes

T (a) =
∫
Td

dk

(2π)d
a(k) ,

and the derivations satisfy for a ∈ C1(Ad)

F π(∂a)F∗ = F i[π(a), X ]F∗ =
∫ ⊕

Td

dk ∂ka(k) .

This establishes the connection between the familiar calculus over the Brillouin zone
and the non-commutative analysis tools. �

Now we turn our attention to the algebra of boundary observables where we
can define again a non-commutative differential calculus. As before, the system
of derivations ∂̃ = (̃∂1, . . . , ∂̃d−1) is defined over C1(Ed) by the generators of the
automorphisms ρ̃k . On the non-commutative polynomials,

∂̃ j p̃ = − i
∑

n,m∈N

∑
x∈Zd−1

x j p̃n,m(ω, x) ux un
d ê (û∗

d)
m . (3.51)

The derivations ∂̃ obey the Leibniz rule and

π̃ω(̃∂ j ã) = i
[
π̃ω(a), X j

]
(3.52)

on �2(Zd−1×N), for j = 1, . . . , d−1.A systemof derivations can be also introduced
over the algebra of half-space physical observables,

∂̂ j â = i ′(∂ j a) + ∂̃ j ã , j = 1, . . . , d − 1 ,
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for any â = (a, ã) ∈ Âd . On the non-commutative polynomials,

∂̂ j p̂ = − i
∑

n,m∈N

∑
x∈Zd−1

x j p̂n,m(ω, x) ux un
d(û

∗
d)

m . (3.53)

The Fourier calculus over Ed presented in the previous section provided us with
Φ̃0, which is a continuous expectation from Ed to E1 [52]. Therefore, as already
seen in the bulk case, a canonical trace can be introduced over Ed once we define a
canonical trace over E1. The non-commutative polynomials from E1 have the form

p̃ =
∑

n,m∈N
p̃n,m ûn

d ê (û∗
d)

m ,

with p̃n,m ordinary continuous functions over Ω . These coefficients can also be seen
as functions over Ω with values in K, the algebra of compact operators on �2(N).
Hence a trace can be canonically defined by

∑
n

∫
Ω

P(dω) p̃n,n(ω) which then can
be promoted to a lower-semicontinuous trace T̃1 over E1 [29]. The trace over Ed is
then defined as

T̃ (ã) = T̃1
(
Φ̃0(ã)

)
. (3.54)

For the non-commutative polynomials from Ed , it takes the explicit form

T̃ ( p̃) =
∑
n∈N

∫
Ω

P(dω) p̃n,n(ω, 0) . (3.55)

The trace T̃ is lower semicontinuous and invariant w.r.t. the automorphisms ρ̃k .
Using Birkhoff’s ergodic theorem together with an average over the position of the
boundary, one can write T̃ as the trace per area on �2(Zd−1 × N):

T̃ (ã) = lim
A→Zd−1

lim
K→∞

1

K |A|
K∑

k=1

Tr
(
�A×N π̃τ k

d ω(ã)�∗
A×N

)
, (3.56)

where A is a cube from Z
d−1 and |A| is its cardinality.

The pairs (∂, T ) and (∂̃, T̃ ) define the non-commutative differential calculus over
the algebras of bulk and boundary observables, respectively. As we’ve already seen,
the physical models are rather generated from MN (C) ⊗ Ad and MN (C) ⊗ Ed , but
the non-commutative calculi extend naturally over these algebras as (1 ⊗ ∂,Tr⊗T )

and (1⊗ ∂̃,Tr⊗ T̃ ), respectively. To ease the notation, we will continue to use (∂, T )

and (∂̃, T̃ ) for these situations too. Next let us list a few useful identities.
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Proposition 3.3.2 The following holds for (∂, T ), and analogously for (̃∂, T̃ ):

(i) Let e be a projection from C1(Ad). Then

e(∂i e) = (∂i e)(1 − e) ,

(1 − e)(∂i e) = (∂i e)e ,

(1 − 2e)(∂i e) = −(∂i e)(1 − 2e) .

(ii) Let e be a projection from C2(Ad). Then

e(∂i∂ j e)e = −e{∂i e, ∂ j e} = −{∂i e, ∂ j e}e ,

(1 − e)(∂i∂ j e)(1 − e) = (1 − e){∂i e, ∂ j e} = {∂i e, ∂ j e}(1 − e) ,

where { , } denotes the anti-commutator.
(iii) Let a ∈ C1(Ad) be invertible. Then a−1 ∈ C1(Ad) and

∂i a
−1 = −a−1(∂i a)a−1 .

(iv) Let a, b ∈ C1(Ad). Then

T
(
∂i a

) = 0 , T
(
a(∂i b)

) = −T
(
(∂i a)b

)
.

3.3.3 The Smooth Sub-algebras and the Sobolev Spaces

Due to the result below, the spaces of infinitely differentiable elements

Ad = C∞(Ad) =
⋂
n≥1

Cn(Ad) , Ed = C∞(Ed) =
⋂
n≥1

Cn(Ed) ,

can be endowed with a locally convex topology so as to become Fréchet algebras.
In particular, this implies that they are metrizable and complete. Before proceeding,
we want to elaborate briefly on why these technical structures are important in what
follows. The K -groups of operator algebras (see Chap.4) can be introduced in a
topological or purely algebraic fashion, and the non-commutative geometry program
can be carried in both settings [211]. However, for applications in solid state physics
we eventually would like to come back to the topological K -groups. While the
algebraic K -groups can be defined for generic ∗-algebras, the topological K -groups
are natural forC∗-algebras and, at most, can be defined for Fréchet algebras. As such,
the smooth sub-algebras Ad and Ed will posses well-defined topological K -groups.
Since the topological invariants can only be defined over the smooth sub-algebras,
they can provide information only about these K -groups. If one is only interested
in defining topological invariants, this aspect will be marginally relevant, but if one
cares about the classification of the topological insulators, then it is imperative to

http://dx.doi.org/10.1007/978-3-319-29351-6_4
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make sure that the K -groups of the smooth sub-algebras coincide with the ones of
the original algebras. An important technical result in non-commutative geometry
states that this is indeed the case if the smooth sub-algebras are dense and invariant
w.r.t. the holomorphic calculus [47, 75]. The good news is that all these issues have a
simple resolution for the present context. The statements below follow from the work
by Rennie [178] (see, particularly, the examples provided at p. 131) which covers
both the unital and non-unital algebras. This is relevant here since the algebra Ed has
no unit.

Proposition 3.3.3 (The smooth sub-algebras defined)

(i) The ∗-algebra Ad endowed with the topology induced by the seminorms

‖a‖α = ‖∂αa‖ , ∂α = ∂
α1
1 . . . ∂

αd
d , α = (α1, . . . αd) ,

is a dense Fréchet sub-algebra of Ad which is stable under holomorphic cal-
culus. The norm appearing on the right, above, is the C∗-norm of Ad .

(ii) The completion of the dense sub-algebra of non-commutative polynomials from
Ed in the topology induced by the seminorms

‖ p̃‖α,β = sup
n,m∈N

nβ1mβ2‖(∂̃α p̃)n,m‖ , ∂̃α = ∂̃
α1
1 . . . ∂̃

αd−1
d−1 ,

is a Fréchet algebra Ed which is stable under holomorphic calculus. The norm
appearing on the right, above, is the C∗-norm of Ad−1.

The smooth algebras can be characterized as the sub-algebras of elements with
rapidly decaying Fourier coefficients, more precisely:

Proposition 3.3.4 If a ∈ Ad ⊂ Ad , then for any d-index α:

xα‖Φx (a)‖C(Ω) ≤ ‖∂αa‖ < ∞ , xα = xα1
1 . . . xαd

d . (3.57)

Conversely, if for every d-index α

xα‖Φx (a)‖C(Ω) < ∞

uniformly in x, then a belongs to Ad . Similarly for the boundary algebra, if ã ∈ Ed

then for any indices β1, β2 and (d − 1)-index α

xαnβ1mβ2‖Φ̃x (ã)n,m‖C(Ω) ≤ ‖̃∂α ã‖ < ∞ , xα = xα1
1 . . . xαd−1

d−1 . (3.58)

Proof One has

|xαΦx (a)(ω)| = |〈0|πω(∂αa)| − x〉| ≤ sup
ω∈Ω

‖πω(∂αa)‖ = ‖∂αa‖ < ∞ .

The other cases are treated similarly. �
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It follows from the estimates presented in Proposition 2.4.2 that the Fermi pro-
jections (and the Fermi unitary operators) of finite-range bulk Hamiltonians belong
to the smooth algebra Ad , provided BGH (and CH) holds. Furthermore, from the
estimates presented in Proposition 2.4.10, it follows that under BGH any smooth
function of finite-range half-space Hamiltonians belongs to the smooth algebra Ed .

Another important issue is to find the maximal domains of the linear functionals
defined using the non-commutative differential calculus. For the cases of interest in
Chap.5, they are given by certain Sobolev spaces [20, 169, 171]. To define these
spaces we need first to introduce and characterize the so-called non-commutative
Ls-spaces. Let us consider first the bulk case. Denoting the absolute value of an
element a ∈ Ad as usual by |a| = √

a∗a, we set

‖p‖s = T
(|p|s) 1

s , s ∈ [1,∞] . (3.59)

This defines a norm on Ad . The completion of Ad under this norm defines the
non-commutative Ls-space, which as usual are denoted by Ls(Ad , T ). Of particular
importance is the space L∞(Ad , T )which represents theweak vonNeumann closure
of Ad . This space can be also viewed [48] as the closure of the non-commutative
polynomials from Ad under the norm

‖p‖∞ = P−esssup
ω∈Ω

‖πω(p)‖ .

Since von Neumann algebras are stable under the Borel functional calculus, the
Fermi projections and Fermi unitary operators belong to L∞(Ad , T ), regardless
of the existence of spectral or mobility gaps at the Fermi level. The topology of
L∞(Ad , T ) is, however, too strong to be useful in the strong disorder regime. For
example, the Fermi projections do not vary continuously w.r.t. ‖ · ‖L∞ when the
models are deformed continuously, even when the Fermi level is located in a region
of Anderson localized spectrum. This is another reason for introducing the non-
commutative Sobolev spaces. We continue, however, first with the characterization
of the Ls-spaces.

The non-commutative version of Hölder’s inequality is a useful tool for the char-
acterization of the Ls-spaces,

‖ f1 · · · fk‖s ≤ ‖ f1‖s1 · · · ‖ fk‖sk ,
1

s1
+ · · · + 1

sk
= 1

s
. (3.60)

Note that, in general, the Ls-spaces are not closed under multiplication, hence they
are not algebras, but only Banach spaces. Nevertheless, (3.60) enables one to make
sense of the products of elements from different Ls-spaces, such as the one on the
l.h.s. of (3.60), as elements of lower Ls-spaces. Taking some of the f ’s in (3.60) to
be the identity in Ad , the following sequence of inclusions can be derived

L∞(Ad , T ) ⊂ · · · ⊂ Ls(Ad , T ) ⊂ · · · ⊂ L1(Ad , T ) . (3.61)

http://dx.doi.org/10.1007/978-3-319-29351-6_2
http://dx.doi.org/10.1007/978-3-319-29351-6_2
http://dx.doi.org/10.1007/978-3-319-29351-6_5
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Dense subspaces of elements for each of the Ls-spaces are furnished by the non-
commutative polynomials with coefficients in Ls(Ω, P). In fact, the maps Φx which
give the Fourier coefficients can be extended by continuity on the non-commutative
Ls-spaces and, using the classical Hölder inequality, one sees that the Fourier coef-
ficients take values in Ls(Ω, P). Lastly, let us state a useful upper bound on the
Ls-norms.

Proposition 3.3.5 Let a ∈ Ls(Ad , T ) and assume s is integer. Then

‖a‖s ≤ 2
∑
x∈Zd

[∫
Ω

P(dω) |a(ω, x)|s
] 1

s

, (3.62)

where a(ω, x) it the Fourier coefficient at x.

Proof It is enough to establish the estimate on a dense subspace, which we take to
be the algebraAd . Let us first assume that a is self-adjoint, in which case |a|s = |as |.
Furthermore, the absolute value of any self-adjoint operator f can be computed by
applying the continuous function t sgn(t) on f . By approximating the sign function
by the smooth function sgnε(t) = tanh(t/ε), one can write | f | = limε→0 f sgnε( f )

with a limit taken inside Ad w.r.t. the C∗-norm. The point of the last expression is
that sgnε( f ) ∈ Ad , while sgn( f ) is not. Also, note that f sgnε( f ) is an increasing
sequence of positive operators as ε → 0. Since the trace T is continuous,

T (| f |) = lim
ε→0

T
(

f sgnε( f )
) = lim

ε→0

∫
Ω

P(dω) ( f sgnε( f )
)
(ω, 0) .

We now take f = as and denote vε = sgnε(a
s). We will exploit the fact that

sup
ω∈Ω

|vε(ω, x)| ≤ 1, (3.63)

which follows from

|vε(ω, x)| = |〈0|πω(vε)| − x〉| ≤ ‖sgnε

(
πω(a)s)‖ ≤ 1 .

Let us evaluate the product asvε at x = 0, explicitly,

(
asvε

)
(ω, 0) =

∑
x1,...,xs

eiφa(τ−xs+1ω, xs − xs+1) · · · a(τ−x2ω, x1 − x2)vε(τ−x1ω,−x1),

where eiφ is a phase factor containing all the Peierls factors, x1, . . . , xs run over Z
d

and xs+1 = 0. With the notation ωi = τ−xi+1ω and change of variable yi = xi − xi+1,
and from (3.63), it follows
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T
(
asvε

) ≤
∫

Ω

P(dω)
∑

y1,...,ys∈Zd

s∏
i=1

|a(ωi , yi )| .

The terms above are all positive hence one can interchange the integral and the
summations and, after applying the classical Hölder inequality,

T
(
asvε

) ≤
∑

y1,...,ys∈Zd

s∏
i=1

⎡
⎣∫

Ω

P(dω) |a(ω, yi )|s
⎤
⎦

1
s

=
(∑

x∈Z
‖a(·, x)‖Ls (Ω,P)

)s

,

where we also used the invariance of P against lattice translations. This is a uniform
upper bound in ε. Hence it applies to the limit, too. The statement now follows for
self-adjoint a, even without the factor 2 in front. The result can be extended to the
generic case by using the decomposition a = ar + iai into the real and imaginary
parts, ar = 1

2 (a + a∗) and ai = − i
2 (a − a∗). Indeed

‖a‖Ls ≤ ‖ar‖Ls + ‖ai‖Ls ≤
∑
x∈Zd

(
‖ar (·, x)‖Ls (Ω,P) + ‖ai (·, x)‖Ls (Ω,P)

)
,

and the statement follows from the definition of the real and imaginary parts and
after applying the triangle inequality once again. �

We are now ready to introduce the non-commutative Sobolev spaces for the bulk
algebra. Let α = (α1, . . . , αd) be a d-index, as above, and |α| = α1 + · · · αd . Then

‖p‖s,k =
∑

0≤|α|≤k

‖∂α p‖s , s ∈ [1,∞] , k ∈ N (3.64)

defines a norm on the algebra of non-commutative polynomials from Ad . The com-
pletions under these norms define the first class of non-commutative Sobolev spaces,
which will be denoted byWs,k(Ad , T ). These spaces represent the maximal domain
for the multilinear forms defined in Chap. 5. The use of Wp,r (Ad , T ) for the index
theorems in [20, 169] depends critically on the computation of a certain Dixmier
trace, which is highly technical and is further complicated when the dimensionality
of the space is odd.However, as in [171], we can avoid all this by introducing a second
class of Sobolev spaces, generated by the closure of the algebra of non-commutative
polynomials from Ad under the norm

‖p‖′
s,k =

∑
x∈Zd

(1 + |x |)k

[∫
Ω

P(dω)|p(ω, x)|s
] 1

s

, s ∈ [1,∞] , k ∈ N .

These Banach spaces will be denoted by W ′
s,k(Ad , P). Some of their important

properties are listed below.

http://dx.doi.org/10.1007/978-3-319-29351-6_5
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Proposition 3.3.6 The two classes of Sobolev spaces satisfy the following relations:

(i) W ′
s,k(Ad , P) is invariant to the ∗-operation.

(ii) W ′
s,k(Ad , P) ⊂ W ′

s ′,k ′(A, P), whenever s ≤ s ′ and k ≤ k ′.
(iii) W ′

s,k(Ad , P) ⊂ Ws,k(Ad , T ) for s integer.

Proof (i) Since the norms ‖ · ‖′
s,k are invariant to the transformations p(ω, x) �→

p(τyω,−x) and to the complex conjugation of p(ω, x), the equality ‖p∗‖s,k =
‖p‖s,k holds. (ii) From the very definition,

‖p‖′
s,k ≤ ‖p‖′

s,k ′ , for k ≤ k ′ , (3.65)

and Hölder’s inequality gives ‖p‖′
s,k ≤ ‖p‖′

s ′,k whenever s ≤ s ′. (iii) We will show

‖p‖s,k ≤ 2Nk ‖p‖′
s,k , (3.66)

with a constant Nk specified below. Indeed, from (3.62),

‖∂α p‖s ≤ 2
∑
x∈Z

‖∂α p(·, x)‖Ls (Ω,P) ≤ 2
∑
x∈Zd

|x ||α|‖p(·, x)‖Ls (Ω,P) ,

hence ‖∂α p‖s ≤ 2 ‖p‖′
s,|α|. Then

‖p‖s,k =
∑
|α|≤k

‖∂α p‖s ≤ 2
∑
|α|≤k

‖p‖′
s,|α| ≤ 2Nk‖p‖′

s,k ,

where Nk is the cardinality of the set {α ∈ N
d : |α| ≤ k}. �

Let us now turn our attention to the boundary algebras and spaces. The definition
of the non-commutative Ls-spaces is universal, hence Ls(Ed , T̃ ) is defined in the
same way as the closure of the algebra Ed under the norm

‖ã‖s = T̃
(|ã|s) 1

s .

Again, a special role is played by L∞(Ed , T̃ ) which can be also characterized as
L∞(Ed , T̃ ) � L∞(Ad−1, T ) ⊗B, where B is the algebra of bounded operators on a
separableHilbert space. In particular, this implies that L∞(Ed , T̃ ) has a unit. Since Ed

does not have a unit, there are no inclusions as in (3.61) for the boundary Ls-spaces.
Recall that the elements from Ed are of the form

ã =
∑

n,m∈N

∑
x∈Zd−1

ãn,m(ω, x) ûx (ûd)
n ê (û∗

d)
m ,

where the Fourier coefficients ãn,m(ω, x) are continuous functions in ω. It will be
convenient to denote the matrix with entries ãn,m(ω, y) by ã(ω, x).
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Proposition 3.3.7 Let ã ∈ Ls(Ed , T̃ ) and assume s integer. Then

‖ã‖s ≤ 2
∑

x∈Zd−1

[∫
Ω

P(dω) ‖ã(ω, x)‖s
(s)

] 1
s

, (3.67)

where ‖b‖(s) = tr(|b|s) 1
s represents s-Schatten norm of a matrix b.

Proof As in Proposition 3.3.5, it is enough to establish the inequality for self-adjoints
from Ed . Since T̃ is lower semicontinuous, we can still apply

T̃ (|ã|s) = lim
ε→0

T̃
(
ãs ṽε

) = lim
ε→0

∫
Ω

P(dω) tr
(
(ãs ṽε)(ω, 0)

)
,

where ṽε = sgnε(ã
s). From (3.35), the product ãs ṽε at x = 0 is given by,

(
ãs ṽε

)
(ω, 0) =

∑
x1,...,xs∈Zd−1

eiφ ã(ωs, xs − xs+1) · · · ã(ω1, x1 − x2)ṽε(ω0,−x1) ,

where eiφ is a phase factor containing all the Peierls factors,ωi are translates ofω and
xs+1 = 0. By taking the trace norm, factoring out the matrix norm of ṽε(ω0,−x1)
which is bounded by 1, and by applying Hölder’s inequality (3.60), we obtain

tr
(
(ãs ṽε)(ω, 0)

) ≤
∑

y1,...,ys∈Zd−1

s∏
i=1

‖ã(ωi , yi )‖(s) ,

where yi = xi − xi+1 for i = 1, . . . , s. Finally, by taking the integrals w.r.t. ω and
applying Hölder’s inequality once again,

∫
Ω

P(dω) tr
(
(ãs ṽε)(ω, 0)

) ≤
∑

y1,...,ys∈Zd−1

s∏
i=1

[∫
Ω

P(dω) ‖ã(ωi , yi )‖s
(s)

] 1
s

,

Since P is invariant against translations, the above inequality can be cast in the form
presented in the statement. �

The first class of non-commutative Sobolev spaces corresponding to the algebra
Ed of the boundary observables can be defined in the same way as Ws,k(Ed , T̃ ),
using the obvious substitutions. Given the isomorphism Ed � K⊗Ad−1, the second
class of Sobolev spacesW ′

s,k(Ed , P) can also be canonically defined for the boundary
algebra, as the closure of the algebra of non-commutative polynomials from Ed under
the norm

‖ p̃‖′
s,k =

∑
x∈Zd−1

(1 + |x |)k

[∫
Ω

P(dω) ‖ p̃(ω, x)‖s
(s)

] 1
s

, s ∈ [1,∞] , k ∈ N .
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Note that the quantity appearing between the square brackets is just the Ls-norm for
the trace

∫
Ω

P(dω)tr(·). The following properties of these spaces are proved as in
Proposition 3.3.6.

Proposition 3.3.8 The two classes of Sobolev spaces satisfy the following relations:

(i) W ′
s,k(Ed , P) is invariant to the ∗-operation.

(ii) W ′
s,k(Ed , P) ⊂ W ′

s,k ′(E, P), whenever k ≤ k ′.
(iii) W ′

s,k(Ed , P) ⊂ Ws,k(Ed , T̃ ) for s integer.

3.3.4 Derivatives with Respect to the Magnetic Field

One further element of analysis will be used below, namely the derivatives w.r.t. the
components of the magnetic field. These so-called Ito-derivatives (due to similarities
withSPDE’s)were introducedbyRammal andBellissard [176] and further developed
and used in [19, 130, 198]. Recall that the magnetic field B = (Bi, j )1≤i, j≤d is
an antisymmetric real matrix with entries in [0, 2π), hence a point in the torus of
dimension d(d−1)

2 whichwill be denoted byΞ . As this section is about the dependence
on B, the algebras will carry a supplementary index AB,d . Togehter they form a
continuous field of C∗-algebras which will be denoted by Fd = (AB,d)B∈Ξ . A dense
set inside this algebra are the non-commutative polynomials which now carry a
supplmentary index B. In the symmetric presentation similar to (3.14), they are
given by

p(B, ω) =
∑
x∈Zd

psym(B, ω, x) ux
sym , (3.68)

with complex coefficients psym(B, ω, x) ∈ C. The C∗-norm on Fd is then given by
‖p‖ = supB∈Ξ ‖p(B)‖ where p(B) = p(B, . ) ∈ AB,d . Let now C1

K (Fd) be the
dense set of non-commutative polynomials having coefficients psym(B, ω, x) which
depend in a differentiablemanner onB. For p ∈C1

K (Fd), the 1
2d(d−1) Ito-derivatives

are introduced by

(δi, j p)(B, ω) =
∑
x∈Zd

(
∂Bi, j psym(B, ω, x)

)
ux
sym , 1 ≤ i < j ≤ d . (3.69)

A norm on C1
K (Fd) can then be defined by

‖p‖C1(Fd ) = ‖p‖ +
d∑

j=1

‖∂ j p‖ +
d∑

i, j=1

‖δi, j p‖ .

The closure of C1
K (Fd) w.r.t. this norm is a Banach space denoted by C1(Fd). Let us

collect the most important facts about the Ito-derivatives.
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Proposition 3.3.9 The following identities hold:

(i) Let p ∈ C1(Fd). Then T (p) is a differential function of B and

∂Bi, jT
(

p
) = T

(
δi, j p

)
.

(ii) Let p ∈ C1(Fd). Then

δi, j (p∗) = (δi, j p)∗ , δi, j∂k p = ∂kδi, j p .

(iii) If p = p∗ and f ∈ C2(R), then f (p) ∈ C1(Fd).
(iv) Let p, q ∈ C1(Fd). Then pq ∈ C1(Fd) and

δi, j (pq) = (δi, j p)q + p(δi, j q) − i
2

(
∂i p ∂ j q − ∂ j p ∂i q

)
.

(v) The Ito-derivative obeys the Leibniz rule under the trace,

T
(
δi, j (pq)

) = T
(
(δi, j p)q + p(δi, j q)

)
.

(vi) If p is invertible from C1(Fd), then p−1 ∈ C1(Fd) and

δi, j (p−1) = p−1

(
−δi, j p − i

2
∂i p p−1∂ j p + i

2
∂ j p p−1∂i p

)
p−1 .

(vii) If e is a projection from C1(Fd), then

e(δi, j e)e = i
2e[∂i e, ∂ j e] = i

2 [∂i e, ∂ j e]e ,

(1 − e)(δi, j e)(1 − e) = − i
2 (1 − e)[∂i e, ∂ j e] = − i

2 [∂i e, ∂ j e](1 − e) .

Proof The identity (i) follows from the definition (3.69) and that of the trace. (ii) is a
direct consequence of the definition (3.69). (iii) can be checked via Laplace transform
and a generalized DuHamel formula, (iv) is obtained by taking the Ito derivative on
(3.15). (v) follows from (iv) by observing that, by using the cyclic property of the
trace, the third term of (iv) can be written as a total derivation. (vi) is obtained by
observing that δi, j (pp−1) = 0 and using (iv). As for (vii) see [198] for details. �

3.4 The Exact Sequence of Periodically Driven Systems

As already stressed in the preface, the bulk-boundary correspondence is just one
instance where exact sequences of C∗-algebras are useful. As a second example, let
us sketch in this section how to associate an exact sequence to periodically driven
systems. In such a system, theHamiltonian depends continuously and periodically on
a time parameter t . We choose t to vary in the interval [0, 2π). Hence is given a path
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t ∈ [0, 2π) �→ ht = h∗
t ∈ MN (C)⊗Ad with h0 = h2π . Each matrix element of this

path defines an element in the C∗-algebra C(S1,Ad). If furthermore is given a loop
t ∈ [0, 2π) �→ μt ∈ R such that μt lies in a gap of ht , then there are also associated
the (instantaneous) adiabatic projections pA,t = χ(ht ≤ μt ) ∈ MN (C)⊗Ad . Again
pA = {pA,t }t∈S1 is an element in MN (C)⊗C(S1,Ad)which is actually a projection.
As will be shown in Sect. 7.6 the orbital polarization is expressed in terms of this
projection and is of topological nature. This topology can also be read off certain
unitary elements in MN (C) ⊗ Ad (see the stroboscopic interpretation in Sect. 7.6).
To make this connection, the following exact sequences will be used:

0 � SAd
i� C(S1,Ad)

ev� Ad
� 0 (3.70)

Here SAd = C0((0, 2π),Ad) is the so-called suspension of Ad which is embedded
as a subalgebra in C(S1,Ad), and ev is the evaluation at 0 ∼= 2π . A follow-up on
how this sequence is used is given in Sects. 4.3.4 and 7.6. The natural extension of
the analysis tools to C(S1,Ad) is described in Sect. 5.4.

http://dx.doi.org/10.1007/978-3-319-29351-6_7
http://dx.doi.org/10.1007/978-3-319-29351-6_7
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http://dx.doi.org/10.1007/978-3-319-29351-6_7
http://dx.doi.org/10.1007/978-3-319-29351-6_5


Chapter 4
K -Theory for Topological Solid State Systems

Abstract The first part of the chapter reviews the K -theory of unital and non-unital
C∗-algebras, particularly, the K -groups and their standard characterization, the six-
term exact sequences and their connecting maps as well as the suspensions and Bott
periodicity. In the second part, the analysis is specialized to the observable algebras
defined in Chap.3. Using the Pimsner-Voiculescu sequence, this allows to present
the generators of the K -groups in detail. In the third part, various connecting maps
for solid state systems are computed explicitly.

4.1 Review of Key Elements of K -Theory

This section, which is intended for non-specialists, collects in a highly condensed
form, e.g. from [28, 75, 187, 222], the essential facts from K -theory of operator alge-
bras needed in the sequel. To give a head-start, recall fromChap.2 that the topologies
of the solid state systems from the complex classes are encoded in the Fermi pro-
jection or Fermi unitary operator. The complex K -groups are of central importance
because they deal precisely with the projections and the unitary elements of an alge-
bra, for which they provide a classification by stable homotopy. As elaborated on
many occasions, e.g. in [115, 164, 203], this stable homotopy criterion is exactly the
one sought when classifying the topological condensedmatter phases. The K -groups
not only allow to distinguish the topological phases but also to identify the generators
of the entire sequences of topological phases. Recall also from Chap.2 that one of
the main conjectures is that the topology of the solid state systems can be recovered
from the boundary physics. K -theory will enable us to identify a projection and a
unitary operator from the algebra of boundary observables, which encode the same
topological information as the Fermi projection and Fermi unitary operator. This is
accomplished with the so-called six-term exact sequence of K -theory associated to
(3.36).
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4.1.1 Definition and Characterization of K0 Group

LetA be a C∗-algebra with or without the unit. The following definition and charac-
terization of K0(A) is borrowed from [187]. Recall that a projection is an element of
the algebra which obeys e2 = e and e∗ = e. Let PN (A) denote the set of projections
from MN (C) ⊗ A and consider the infinite union

P∞(A) = ∪∞
N=1PN (A) , (4.1)

where PN (A)’s are considered pairwise disjoint. On P∞(A), one introduces the
addition operation

e ⊕ e′ =
(

e 0
0 e′

)
= diag(e, e′) ,

so that e ⊕ e′ ∈ PN+M(A) when e ∈ PN (A) and e′ ∈ PM(A). The following defines
an equivalence relation on P∞(A), which is compatible with the addition,

PN (A) 	 e ∼0 e′ ∈ PM(A) ⇐⇒
{

e = vv∗
e′ = v∗v

(4.2)

for some v from MN×M(C)⊗A. This is a slight extensionof theMurray-vonNeumann
equivalence relation because the projections can belong to different matrix algebras.
Let [ . ]0 denote the equivalence classes corresponding to (4.2). Then (P∞(A)/ ∼0

,+) with
[e]0 + [e′]0 = [e ⊕ e′]0 = [e′ ⊕ e]0

becomes an Abelian semi-group.

Definition 4.1.1 The group K00(A) is defined as the enveloping abelian Grothen-
dieck group of P∞(A)/ ∼0.

For C∗-algebras with a unit, the K00-group coincides with the actual K0-group,
but this is not the case for algebras without a unit. For example, the algebra Ed

of the boundary observables does not have a unit, hence we need the definition of
K0-group for non-unital algebras. The construction is, however, useful even for the
characterization of the K0-groups of unital algebras. It starts from the observation that
any C∗-algebra, unital or not, accepts a unique extensionA+ such that the following
long diagram is split-exact

0 � A
i � A+ π ��

λ
C � 0 . (4.3)
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The algebra A+ can be presented as

{(a, t) : a ∈ A, t ∈ C} ,

with i(a) = (a, 0),π(a, t) = t and splittingλ(t) = (0, t), andwith themultiplication
rule and adjunction:

(a, t)(a′, t ′) = (aa′ + t ′a + ta′, t t ′) , (a, t)∗ = (a∗, t) .

The algebra A+ can be endowed with a C∗-norm and A+ has a unit

1+ = (0, 1) . (4.4)

Hence, this is a canonical way to adjoin a unit to a non-unital C∗-algebra. In terms
of this unit, A+ can be represented as

A+ = {a + t 1+ : a ∈ A, t ∈ C} ,

where we dropped the inclusion and wrote i(a) as a. If ϕ : A → B is a C∗-algebra
homomorphism, then ϕ extends canonically to a homomorphism ϕ+ : A+ → B+,
by declaring

ϕ+(a + t 1+) = ϕ(a) + t 1+.

If A has a unit 1, then 1 is a projection in A+ and each element can be represented
uniquely as a + t (1+ − 1). In turn, this gives an C∗-algebra isomorphism ψ : A+ →
A⊕ C by ψ(a, t) = (a + t 1, t). This isomorphism does not exist if A is not unital.

Throughout, we will use a uniform definition and characterization of the K0

group, regardless of lack or presence of a unit element. Note that any homomorphism
ϕ : A → B betweenC∗-algebras induces a homomorphism between the K00-groups:

K00(A) 	 [e]0 �→ ϕ∗[e]0 = [ϕ(e)]0 ∈ K00(B) .

In particular, π in (4.3) induces a map from K00(A
+) to K00(C) = Z.

Definition 4.1.2 The K0 group of the C∗-algebra A is defined as

K0(A) = Ker{π∗ : K00(A
+) → K00(C)} .

If A is unital, then K0(A) � K00(A) and, apparently, in this case we do not
really need A+ but, as we shall see below, the characterization of the K0-group is
greatly simplified if we follow Definition 4.1.2. The use of A+ also comes handy
when morphisms between unital and non-unital algebras are considered. Below, we
provide the standard picture of the K0 group. Throughout the book, the unit elements
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of the matrix algebras MN (C) ⊗ A+ will be denoted by 1N . They should not be
confused with the unit elements of MN (C) ⊗ A when A has a unit.

Proposition 4.1.3 (Standard picture of the K0 group.)

(i) The group can be presented as:

K0(A) = {[e]0 − [s(e)]0 : e ∈ P∞(A+)
}

= {[e]0 − [s(e)]0 : e ∈ PN (A+), N ∈ N
}

,

where s = λ ◦ π is the morphism which identifies the scalar part of elements.
(ii) The addition is given by

([e]0 − [s(e)]0
) + ([e′]0 − [s(e′)]0

) = [e ⊕ e′]0 − [s(e) ⊕ s(e′)]0 .

(iii) If e and e′ belong to same MN (C) ⊗ A+ and ee′ = 0, then

[e ⊕ e′]0 = [e + e′]0, [s(e) ⊕ s(e′)]0 = [s(e + e′)]0.

(iv) The inverse of an element e ∈ PN (A+) is

−([e]0 − [s(e)]0
) = [1N − e]0 − [1N − s(e)]0 .

(v) The zero element in K0(A) can be characterized as

[e]0 − [s(e)]0 = 0 ⇐⇒ e ⊕ 1M ∼0 s(e) ⊕ 1M

for some finite integer M. Consequently

[e]0 − [s(e)]0 = [e′]0 − [s(e′)]0 ⇐⇒ e ⊕ 1M ∼0 e′ ⊕ 1M ′

for some finite integers M and M ′.
(vi) Any homomorphism ϕ : A → B between C∗-algebras, unital or not, induces

a group homomorphism

ϕ∗ : K0(A) → K0(B) , ϕ∗([e]0 − [s(e)]0) = [ϕ+(e)]0 − [s(ϕ+(e))]0 .

If ϕ1 and ϕ2 are homotopic, then the group morphisms ϕ1∗ and ϕ2∗ coincide.
(vii) If e is a projection from P∞(A), then e is also a projection from P∞(A+) and

furthermore s(e) = 0. As such, [e]0 just by itself is an element of K0(A).

Proof See [187]. �
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4.1.2 Definition and Characterization of K1 Group

The following definition and characterization of K1(A) group is also borrowed from
[187]. LetA be a C∗-algebra, unital or not. Let UN (A+) denote the group of unitary
elements of MN (C) ⊗ A+ and let

U∞(A+) = ∪∞
N=1UN (A+) , (4.5)

whereUN (A+)’s are again considered pairwise disjoint. Define the following binary
operation on U∞(A+):

u ⊕ v = diag(u, v) ,

so that u ⊕ v ∈ UN+M(A+) when u ∈ UN (A+) and v ∈ UM(A+). Define the
equivalence relation, which is compatible with the binary operation,

UN (A+) 	 u ∼1 v ∈ UM(A+) ⇐⇒ u ⊕ 1K−N ∼h v ⊕ 1K−M

for some K ≥ max(N , M). Here, ∼h denotes the homotopy equivalence inside
UK (A+), namely, u ∼h v if u can be continuously deformed into v, with respect to
the topology of MK (C) ⊗ A+, without ever leaving the unitary group UK (A+).

Definition 4.1.4 For any C∗-algebra A, the K1-group is defined as

K1(A) = U∞(A+)/ ∼1

equipped with the commutative addition:

[u]1 + [v]1 = [u ⊕ v]1 ,

where [ . ]1 denotes the equivalence classes w.r.t. ∼1.

Proposition 4.1.5 (Standard picture of the K1 group)

(i) The group can be presented as:

K1(A) = {[u]1 : u ∈ U∞(A+)}
= {[u]1 : u ∈ UN (A+), N ∈ N} .

(ii) In general, u ⊕ 1N ∼1 u. In particular, the units are all equivalent: 1N ∼1 1M

for all natural numbers N and M. Their common equivalence class give the
zero element:

[1]1 = 0 .

(iii) If u, v ∈ UN (A+) and u ∼h v, then [u]1 = [v]1.
(iv) If u, v ∈ UN (A+), then
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[uv]1 = [vu]1 = [u]1 + [v]1 .

According to the second point, we can always place the representatives u and v
in a commonUK (A+). As such, K1(A) can be also presented as a multiplicative
group.

(v) If u ∈ UN (A+), then the inverse of [u]1 is given by

−[u]1 = [u−1]1 = [u∗].

(vi) If A is a unital algebra and u ∈ A is a unitary element, then u can be promoted
to a unitary in A+ by

u+ = u + (1+ − 1).

This is a group homomorphism which can be automatically extended to a homo-
morphism between U∞(A) and U∞(A+). Then the equality U∞(A+)/ ∼1=
U∞(A)/ ∼1 follow, or, put it differently, K1(A) = K1(A

+).
(vii) Any C∗-algebra homomorphism ϕ : A → B between C∗ algebras, unital or

not, induces a group homomorphism

ϕ∗ : K1(A) → K1(B) , ϕ∗[v]1 = [ϕ+(v)]1 . (4.6)

If two homomorphisms ϕ1 and ϕ2 are homotopic, then the induced maps ϕ1∗
and ϕ2∗ coincide.

Proof See [187]. �

4.1.3 The Six-Term Exact Sequence

The central result of K -theory states that the K -groups of three C∗-algebras (unital
or not) in a short exact sequence

0 � E
i � Â

ev� A � 0 (4.7)

form a six-term exact sequence of Abelian groups

K0(E)
i∗� K0(Â)

ev∗� K0(A)

K1(A)

Ind
�

�ev∗ K1(Â) �i∗ K1(E)

Exp
�

(4.8)
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As already discussed in our introductory remarks, this diagram is the key to the bulk-
boundary correspondence. Here we define the connecting maps in (4.8), called the
index and the exponential maps. A proof that these definitions indeed lead to an exact
sequence can be found in [28, 187, 222]. The physical implications and applications
are presented in the following sections.

The index map is defined as follows (see [187], p. 153). First, note that the eval-
uation map ev in (4.7) is surjective, so id ⊗ ev+ : MN (C) ⊗ Â+ → MN (C) ⊗ A+
is also surjective for any N ∈ N. In such circumstances, there is the elementary but
profound observation that

(id ⊗ ev+)
(
UN (Â+)0

) = UN (A+)0 , ∀ N ∈ N ,

where ( )0 denotes the connected component of the unity. This tells that any element
from the connect component of the unity ofUN (A+) has a preimage in the connected
component of the unity of UN (Â+). If v is a unitary from UN (A+), then diag(v, v∗)
belongs to U2N (A+)0, hence there exists a unitary ŵ ∈ U2N (Â+)0 such that

(id ⊗ ev+)(ŵ) = diag(v, v∗) .

The element ŵ so defined is called a lift and the standard notation is

ŵ = Lift
(
diag(v, v∗)

)
.

The lift is unique up to homotopies. Next, one considers the projection

ŵ diag(1N , 0N ) ŵ∗ ∈ P2N (Â+) , (4.9)

whose homotopy class is entirely determined by v and, moreover,

s(ŵ diag(1N , 0N ) ŵ∗) ∼h diag(1N , 0N ) .

Since
(id ⊗ ev+)

(
ŵ diag(1N , 0N ) ŵ∗) = diag(1N , 0N ) ,

and the short sequence (4.7) is exact, the projector (4.9) is in the image of E+ in
Â+ under i+. Throughout, we will identify i+(E+) and E+. Then the index map is
defined as

Ind
([v]1) = [ŵ diag(1N , 0N ) ŵ∗]0 − [diag(1N , 0N )]0 ∈ K0(E) . (4.10)

The lift ŵ is not constructively defined above, but, as we shall see in Sect. 4.3.1,
for the Fermi unitary operator, the lift can be generated using the functional calculus
with the Hamiltonian, through an explicit procedure which also has a certain physical
interpretation. Note that the projection (4.9) belongs to [0]0 class of K0(Â ) because
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ŵ can be continuously deformed to 12N . But as an element of K0(E ), this is not the
case because, in general, ŵ can not be continuously deformed to 12N and keep the
projection (4.9) inside i+(E+). If v = ev(v̂), however, then

Lift
(
diag(v, v∗)

) = diag(v̂, v̂∗) ,

in which case the projector (4.9) is just diag(1N , 0N ), hence its class in K0(E) is
trivial. This shows that the sequence (4.8) is exact at K1(A). Lastly, note that, for
v ∈ UN (A+) and v′ ∈ UM(A+),

Lift
(
diag(v ⊕ v′, (v ⊕ v′)∗)

) ∼1 Lift
(
diag(v, v∗)

) ⊕ Lift
(
diag(v′, v′∗)

)
,

which in turn gives

Ind([v ⊕ v′]1) = Ind([v]1) + Ind([v′]1) .

In other words, the index map is indeed a group homomorphism.
The exponential map is defined as follows (see [187], p. 209). Consider an ele-

ment from K0(A) which, according to the standard characterization, can always be
represented as [e]0 − [s(e)]0 with e ∈ PN (A+) for some N . Since the evaluation
map is surjective we can always find a lift for e

ĝ = Lift(e) ∈ MN (Â+) , (id ⊗ ev+)(ĝ) = e .

The lift is unique up to homotopies and it can always be chosen self-adjoint, in which
case one can define the unitary element

exp(2π iĝ) ∈ UN (Â+) , (4.11)

such that
(id ⊗ ev+)

(
exp(2π iĝ)

) = 1N .

Since the sequence (4.7) is exact, the unitary element (4.11) has a pre-image in
UN (E+). Following the same convention as for the index map, i.e. E+ = i+(E+),
the exponential map is defined as

Exp
([e]0 − [s(e)]0

) = −[exp(2π iĝ)]1 = [exp(−2π iĝ)]1 ∈ K1(E) . (4.12)

As for the indexmap, we shall see that the lift ĝ corresponding to the Fermi projec-
tion can be constructed explicitly using the functional calculus with the Hamiltonian.
Note also that, if e ∈ PN (A+) and e′ ∈ PM(A+), then

Lift(e ⊕ e′) = Lift(e) ⊕ Lift(e′) = diag(ĝ, ĝ′) ,
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hence the exponential map is indeed a group homomorphism. Lastly, if e = ev(ê)
for some ê ∈ PN (Â+), then Lift(e) = ê and exp(2π iê) = 1N , hence trivial. This
shows that sequence (4.8) is exact at K0(A).

4.1.4 Suspension and Bott Periodicity

The suspension SA and cone CA of a C∗-algebra A are defined as

SA = C0((0, 2π),A) , CA = C0([0, 2π),A) ,

with the C∗-norm given by the supremum over the intervals of the C∗-norm on A.
Of course, the boundary 2π can be replaced by any other positive number or ∞. The
suspension can alternatively be thought of as the algebra of the loops over A which
are pinned at one point

SA ∼= { f ∈ C(T,A) : f (0) = 0} . (4.13)

Suspension and cone are connected by an exact sequence

0 � SA
i� CA

ev� A � 0 , (4.14)

where i is the obvious inclusion and ev the evolution at 0. A special case of this exact
sequence was already discussed in Sect. 3.4. Note that neither SA nor CA have a
unit, hence their K -groups are necessarily defined through (SA)+ and (CA)+. Now
the cone CA is contractible and therefore has trivial K -groups. Therefore the six-
term exact sequence (4.8) associated to (4.14) decouples and index and exponential
become isomorphisms.

Theorem 4.1.6 K1(A) � K0(SA).

Theorem 4.1.7 K1(SA) � K0(A).

As pointed out above, index and exponential map provide the isomorphism. As
these isomorphisms can be made more explicit and play a role in what follows, we
will write them out below. But first, let us mention that, together, the two theorems
from above provide the Bott periodicity

K0(SSA) � K1(SA) � K0(A) .

We have already discussed, at the beginning of Chap.2, the relevance of the Bott
periodicity to the classification of the topological band insulators. In the presentwork,
the suspensions and the above isomorphisms will be used in a different direction,
namely, to give alternative representations of the topological invariants.

http://dx.doi.org/10.1007/978-3-319-29351-6_3
http://dx.doi.org/10.1007/978-3-319-29351-6_2
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The θ -map, which gives the isomorphism in Theorem 4.1.6, is defined as follows.
First, note that, for any v ∈ UN (A+), s(v) ∈ MN (C) which is a simply connected
space. Hence, s(v) is always a homotopy of the identity and v ∼1 s(v)∗ v, and the
latter has the useful property that s(s(v)∗ v) = 1N . Therefore, any class from K1(A)

can be represented by v′s with s(v) = 1N , for some integer N . Another general fact is
that12N anddiag(v, v∗) are homotopic inU2N (A+). As such, there exists a continuous
interpolation wt inside U2N (A+) such that w0 = 12N and w2π = diag(v, v∗), which
can always be normalized such that s(wt ) = 12N , for all t ∈ [0, 2π ]. Setting w =
{wt }t∈[0,2π] ∈ M2N (C) ⊗ (CA)+, the θ -isomorphism is defined as

K1(A) 	 [v]1 θ�→ [w diag(1N , 0N ) w∗]0 − [diag(1N , 0N )]0 ∈ K0(SA) .

(4.15)

The construction is even more flexible, namely it is sufficient to choose a path wt

from 12N to diag(v, v′) for a given unitary v′ (chosen such that a path exists, which
is the case for v′ = v∗). Note that the projection

{et }t∈[0,2π] = {wt diag(1N , 0N ) w∗
t }t∈[0,2π]

is in the image of M2N (C)⊗(SA)+ under i+, hence it belongs toP2N
(
(SA)+

)
. Also,

note that the proper normalization of wt ensures that s(et ) = diag(1N , 0N ), hence
the θ -map is conform with the standard picture of the K0-group. A common choice
[151, 187] for wt is

wt = rt diag(v
∗, 1N ) r∗

t diag(v, 1N ) , (4.16)

with

rt =
(

cos
(

t
4

)
1N sin

(
t
4

)
1N

− sin
(

t
4

)
1N cos

(
t
4

)
1N

)
. (4.17)

With this choice

et = rt

(
cos2( t

4 )1N cos( t
4 ) sin(

t
4 ) v∗

cos( t
4 ) sin(

t
4 ) v sin2( t

4 )1N

)
r∗

t . (4.18)

The isomorphism in Theorem 4.1.7 is given by the Bott map

K0(A) 	 [e]0 − [s(e)]0 β�→ [(1N − e) + exp(it)e]1 ∈ K1(SA) , (4.19)

for e ∈ PN (A+). Note that the unitary (1N − e) + exp(it)e indeed belongs to
UN

(
(SA)+).
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4.1.5 The Inverse of the Suspension Map

Let t ∈ [0, 2π) �→ et ∈ MN (C) ⊗ A be a closed smooth loop of projections in A

defining a projection e in MN (C) ⊗ C(S1,A). With e0 viewed as a constant loop,
then the class [e]1 − [e0]1 ∈ K0(C(S1,A)) is an element in K0(SA) because its
image under evaluation in the split exact sequence (different from (4.14)!)

0 � SA
i� C(S1,A)

ev� A � 0 (4.20)

vanishes. Hence i−1∗ ([e]0 − [e0]0) ∈ K0(SA) is well-defined and any element of
K0(SA) is of this form. The aim is to determine a preimage of i−1∗ ([e]0 − [e0]0) ∈
K0(SA) in K1(A) under the suspension map θ . Our answer in Theorem 4.1.9 will
involve the adiabatic time evolution as introduced by Kato [102], and this is an
alternative argument showing the surjectivity of the θ -map (e.g. Sect. 7.2 of [722]).
As we are not aware of a reference, we provide a detailed proof.

Proposition 4.1.8 Let ht = h∗
t be a path of self-adjoints in MN (C) ⊗ A satisfying

[ht , et ] = 0. Then the solution vt ∈ A+ of the adiabatic evolution

i ∂t vt = (
ht + i[∂t et , et ]

)
vt , v0 = 1N , (4.21)

is unitary and satisfies
et = vt e0 v∗

t .

Proof First of all, as ht + i[∂t et , et ] is self-adjoint the solution vt is indeed unitary.
Furthermore,

∂t (v
∗
t et vt ) = −v∗

t (∂t vt )v
∗
t et vt + v∗

t (∂t et ) vt + v∗
t et ∂t vt

= v∗
t

(
i(ht + i[∂t et , et ])et + ∂t et − et i(ht + i[∂t et , et ])

)
vt ,

which now vanishes by hypothesis and ∂t et = et∂t et + ∂t et et . As v∗
0 e0 v0 = e0 the

proof is completed. �

Let us point out that ht = 0 is a possible choice. Furthermore, [vt ]1 = 0 in K1(A)

because it is vt is path connected to the identity. The Poincarémap v2π of the adiabatic
evolution is in general different from the identity, but e2π = e0 implies

v2π e0 v∗
2π = e0 . (4.22)

Therefore the range of e0 is invariant under v2π and hence e0v2π e0 + 1N − e0 is a
unitary in A+. The following result now determines the inverse of θ and shows that
it has some structural similarity with the Bott map. The freedom of choice of ht in
(4.21) reflects that many v2π ’s define the same K1-class.



96 4 K -Theory for Topological Solid State Systems

Theorem 4.1.9 Let t ∈ [0, 2π) �→ et ∈ MN (C) ⊗ A be a closed smooth loop of
projections in A and t ∈ [0, 2π) �→ vt an associated adiabatic evolution. Then

θ−1
(
i−1
∗ ([e]0 − [e0]0)

) = [e0v2π e0 + 1N − e0]1 . (4.23)

Proof Using the rules of Sect. 4.1.1, one finds in K1(C(S1,A))

[e]0 − [e0]0 = [e]0 + [1N − e0]0 − [1N ]0
=

[(
e 0
0 1N − e0

)]
0

−
[(

e0 0
0 1N − e0

)]
0

.

Note that also the r.h.s. is in the image of i∗ and hence represents an element of
K0(SA). Now let us introduce the path of unitaries

s ∈ [0, π
2 ] �→ rs =

(
e0 + cos(s)(1N − e0) − sin(s)(1N − e0)

sin(s)(1N − e0) e0 + cos(s)(1N − e0)

)
.

It allows to write, still in a form lying in the image of i∗ for every s,

[e]0 − [e0]0 =
[

rs

(
e 0
0 1N − e0

)
r∗

s

]
0

−
[

rs

(
e0 0
0 1N − e0

)
r∗

s

]
0

.

As

rs

(
e0 0
0 1N − e0

)
r∗

s =
(

e0 + sin2(s)(1N − e0) − cos(s) sin(s)(1N − e0)
− cos(s) sin(s)(1N − e0) cos2(s)(1N − e0)

)
,

we will choose s = π
2 . Then

r π
2

(
e 0
0 1N − e0

)
r∗

π
2

= w

(
1N 0
0 0

)
w∗ ,

with w = {wt }t∈[0,2π) given by

wt = r π
2

(
vt 0
0 1N

)
r∗

π
2

=
(

e0vt e0 + 1N − e0 e0vt (1N − e0)
(1N − e0)vt e0 (1N − e0)vt (1N − e0) + e0

)
.

Thus

[e]0 − [e0]0 =
[

w

(
1N 0
0 0

)
w∗

]
0

−
[(

1N 0
0 0

)]
0

.

Noww2π is diagonal due to (4.22)with upper left entry e0v2π e0+ 1N −e0. Comparing
with the definition (4.15) of θ , the result follows. �
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4.2 The K -Groups of the Algebras of Physical Observables

The K -theory of the algebras of bulk, half-space and boundary observables can be
determined from the six-term exact sequence

K0(Ed)
i∗� K0(Âd)

ev∗� K0(Ad)

K1(Ad)

Ind
�

�ev∗ K1(Âd) �i∗ K1(Ed)

Exp
�

(4.24)

associated to (3.36). Since the algebra Ad of the bulk observables can be presented
as an iterated crossed product by Z, the computation of the K -groups reduces to a
standard application of the Pimsner-Voiculescu machinery [160]. Furthermore, the
generators of K0,1(Ad) groups can be explicitly identified based on the work of
Elliott [60] and Rieffel [183] on the non-commutative torus. All these generators are
presented in this section.

4.2.1 The Pimsner-Voiculescu Sequence and Its Implications

It was shown in Sect. 3.2.3 that the short exact sequence

0 � Ed
i � Âd

ev� Ad
� 0

between the algebras of physical observables is isomorphic to the Toeplitz extension
of Pimsner and Voiculescu [160]. Here we collect the K -theoretic consequence of
this fact, namely that (4.24) is identical to the Pimsner-Voiculescu 6-term sequence.
Throughout, the identifying maps of Sect. 3.2.3 will be freely used and K0,1(Ad−1)

will be identified with K0,1(Ad−1 ⊗K) via the isomorphism induced by the imbed-
ding a → a ⊗ |1〉〈1|. As a straightforward consequence of (3.39), we have the
isomorphisms

ρ̃∗ : K j (Ed) → K j (Ad−1) , j = 0, 1 .

To go further, two additional natural maps can be defined, the inclusion i(a) = a ⊗1
of Ad−1 into its Toeplitz extension T (Ad−1) and the inclusion j of Ad−1 into Ad =
Ad−1 �αd Z. One important result of [160] is that the inclusion i generates group
isomorphisms:

i∗ : K j (Ad−1) → K j (T (Ad−1)) , j = 0, 1 .

http://dx.doi.org/10.1007/978-3-319-29351-6_3
http://dx.doi.org/10.1007/978-3-319-29351-6_3
http://dx.doi.org/10.1007/978-3-319-29351-6_3
http://dx.doi.org/10.1007/978-3-319-29351-6_3


98 4 K -Theory for Topological Solid State Systems

Hence the natural inclusion

i′ : Ad−1 → Âd , i′ = η̂−1 ◦ i , (4.25)

generates the group isomorphisms

i′∗ : K j (Ad−1) → K j (Âd) , j = 0, 1 .

Moreover, the following identity holds

ψ∗ = i′∗ ◦ (1 − α−1
d )∗ ◦ ρ̃∗ .

As such, (4.24) can be rewritten as:

K0(Ed)
i′∗ ◦ (1 − α−1

d )∗ ◦ ρ̃∗� K0(Âd)
ev∗ � K0(Ad)

K1(Ad)

Ind
�

� ev∗ K1(Âd) �i
′∗ ◦ (1 − α−1

d )∗ ◦ ρ̃∗
K1(Ed)

Exp
�

(4.26)

Using the isomorphisms listed above, this diagram can be seen to be completely
equivalent to the standard six-term exact sequence of [160]:

K0(Ad−1)
(1 − α−1

d )∗� K0(Ad−1)
j∗ � K0(Ad)

K1(Ad)

Ind
�

� j∗ K1(Ad−1) �(1 − α−1
d )∗

K1(Ad−1)

Exp
�

(4.27)

One insight that came out of this diagram is that the K -groups of the crossed product
by Z depend on the action αd , or better said on the homotopy class of αd . On the
other hand, if the homotopy class of αd is trivial, then the six-term diagram becomes
a straightforward tool for the computations of the K -groups, and this is the case in
the present application. For the following, it will be crucial that the disorder space
Ω is contractible (in fact convex), resulting from the assumed contractibility of the
local disorder spaces Ω

y
0 .

Proposition 4.2.1 The map αd : Ad−1 → Ad−1 defined as before, αd(p) = ud p u∗
d ,

p ∈ Ad−1, is homotopic to the identity.

Proof The action of αd on the generators of Ad−1 is

αd(u jφ) = eiBd, j u j (φ ◦ τ−1
d ) .
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For t ∈ [0, 1],

ξt : Ω → Ω , ξt (ω) = tω + (1 − t)τ−1
d (ω) ,

is a homotopy between τd and the identity, which commutes with the action of Z
d−1

for all t’s. Then
αt

d(u jφ) = ei(1−t)Bd, j u j (φ ◦ ξt )

defines the family of ∗-endomorphisms which interpolates continuously between
αd and the identity. By definition (cf. p. 43 in [187]), this is the desired homotopy
equivalence. �

There is an important direct consequence of the above statement, which will be
essential at several points of our presentation.

Proposition 4.2.2 Let e ∈ PN (Ad−1) be a projection. Then there exist the unitary
elements w̄e and we from UN (Ad−1)0, the connected component of the unity, such
that w̄e = ud we u∗

d and

(id ⊗ αd)(e) = (1N ⊗ ud)e(1N ⊗ u∗
d) = w̄e e (w̄e)

∗ ,

and for the inverse action,

(id ⊗ α−1
d )(e) = (1N ⊗ u∗

d)e(1N ⊗ ud) = w∗
e e we .

Remark 4.2.3 One should be aware that the above statement does not imply that αd

is an inner automorphisms because, as the notation suggests, we and w′
e both depend

on e. �
Proof Since αt

d are ∗-endomorphisms, (id⊗αt
d)(e) are projections for all t ∈ [0, 1].

As such, there is a homotopy of projections between (id⊗αd)(e) and e, in which case
the construction of the unitary element we can be accomplished by many methods,
in particular by Proposition 4.1.8. Inverting the action readily leads to the second
identity. �

Proposition 4.2.4 For d ≥ 1, the K -groups of the observable algebras are given by

K j (Ad) = K j (Ed+1) = K j (Âd+1) = Z
2d−1

, j = 0, 1 .

Proof We have already seen above that:

K j (Ed) � K j (Âd) � K j (Âd−1) .

Since the homotopy class of αd is trivial by Proposition 4.2.1, the upper-left corner of
the six-term diagram (4.27) becomes the following short exact sequence of Abelian
groups

0 � K0(Ad−1)
ev∗� K0(Ad)

Exp� K1(Ad−1) � 0 . (4.28)
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Similarly, the lower-right corner of (4.27) gives

0 � K1(Ad−1)
ev∗� K1(Ad)

Ind� K0(Ad−1) � 0 (4.29)

The K -groups can now be derived iteratively, starting from the K -groups of A1

which has C(S1) as a retract so that K0(A1) = K1(A1) = Z. Indeed, the only
abelian group extension of Z by Z is Z

2, so that (4.28) and (4.29) for d = 2 imply
K0(A2) = K1(A2) = Z

2. This procedure can now be iterated to complete the
proof. �

Let us point out that the above argument also shows

K0(Ad) � K0(Ad−1) ⊕ K1(Ad−1) � K0(Âd) ⊕ K1(Ed) ,

and
K1(Ad) � K1(Ad−1) ⊕ K0(Ad−1) � K1(Âd) ⊕ K0(Ed) .

This holds for d ≥ 2. The case d = 1 is described in (1.9).

4.2.2 The Inverse of the Index Map

The following explicit construction of the index map is reproduced from [107] (see
Proposition A.1) and it also follows from [160]. This result is instrumental for the
construction of the generators of the K -group, presented in the following section, as
well as for Sect. 5.5

Proposition 4.2.5 Consider the Pimsner-Voiculescu exact sequence and let e be a
projection from PN (Ad−1). With the unitary we ∈ Ad−1 from Proposition 4.2.2 and
ud identified with 1N ⊗ ud , let us set

v = (1N − e) + e we u∗
d ∈ UN (Ad) . (4.30)

This is a pre-image of e for the index map:

Ind[v]1 = [e]0 .

Proof First of all, checking the unitarity of v is elementary if one observes that
we u∗

d and e commute. Next, with the partial isometry Ŝ and projection P̃ as in the
construction of the Pimsner-Voiculescu sequence in Sect. 3.2.3, we can generate the
following lift

Lift
(
diag(v, v∗)

) =
(

(1N − e) ⊗ 1 + e we u∗
d ⊗ Ŝ ∗ 0

e ⊗ P̃ (1N − e) ⊗ 1 + w̄∗
e ud e ⊗ Ŝ

)
.

http://dx.doi.org/10.1007/978-3-319-29351-6_1
http://dx.doi.org/10.1007/978-3-319-29351-6_5
http://dx.doi.org/10.1007/978-3-319-29351-6_3
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Indeed, by recalling that Ŝ ∗ Ŝ = 1 and Ŝ Ŝ ∗ = 1 − P̃ , one can easily verify that
the r.h.s. is a unitary element from U2N (T (Ad)). We also recall that π(1 ⊗ P̃) = 0,
hence π(e ⊗ P̃) = 0, and π(ud ⊗ Ŝ) = ud while π(u∗

d ⊗ Ŝ ∗) = u∗
d . Thus

π
(
(1N − e) ⊗ 1 + e we u∗

d ⊗ Ŝ ∗) = (1N − e) + e we u∗
d = v ,

and similarly for the other diagonal term, using that w̄∗
e ud e = e w̄∗

e ud . This proves
the second claim. Now, a direct computation gives

Lift
(
diag(v, v∗)

)
diag(1N , 0N )Lift

(
diag(v, v∗)

)∗ = diag(1N , e ⊗ P̃) ,

hence

Ind([v]1) = [e]0,

from the definition (4.10) of the index map. �

4.2.3 The Generators of the K-Groups

Proposition 4.2.4 shows that K -groups of Ad and the d-dimensional rotation alge-
bra coincide. This is routed in the fact that the contractability of Ω implies that
the rotation algebra (with same magnetic field) is a retract of Ad (see also Propo-
sition 1.6.1 for a direct argument). Therefore, also the generators of the K -groups
K0,1(Ad) can be chosen to be elements of the rotation algebra, which is also denoted
by Ad in this section (as it corresponds to the special case of a set Ω having only
one point). These generators have been analyzed in detail by Elliott [60] and Rieffel
[183]. Here we present an iterative construction in increasing dimension d based on
the Pimsner-Voiculescu exact sequence (4.27) just as the proof of Proposition 4.2.4.
Supplementary information on the generators and their pairing with the cyclic coho-
mology can then be found in Sect. 5.7.

Let us beginwith several well-known explicit computations. The group K0(A1) ∼=
Z is generated by the identity and K1(A1) ∼= Z by [u1]1. The group K1(A2) ∼= Z

2

is generated by [u1]1 and [u2]1, while K0(A2) ∼= Z
2 is generated by the identity and

by the Powers-Rieffel projection [e{1,2}]0 [182, 222], given by

e{1,2} = u∗
2 g(u1) + f (u1) + g(u1) u2 , (4.31)

where f and g are properly chosen functions such that e{1,2} is indeed a projection
and T(e{1,2}) = 1

2π B1,2 = θ . Through a direct computation (cf. p. 116 in [160]), one
can show that

Exp[e{1,2}]0 = [exp(−2π i ê{1,2})]1 = [1 − ê + û1ê]1 = [u1]1 , (4.32)

http://dx.doi.org/10.1007/978-3-319-29351-6_1
http://dx.doi.org/10.1007/978-3-319-29351-6_5
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where the last two elements lie in K1(E1) and K1(A1) respectively, which are iden-
tified as in Proposition 4.2.4. The identity (4.32) is the K -theoretic essence of the
bulk-edge correspondence for two-dimensional quantum Hall effect. Let us go one
step further to d = 3 before describing the general structure of the K -groups. The
group K0(A3) ∼= Z

4 is generated by the identity and the three Powers-Rieffel projec-
tions e{i, j} corresponding to the two-dimensional tori C∗(ui , u j ), i �= j ∈ {1, 2, 3}.
On the other side, K1(A3) ∼= Z

4 is generated by u1, u2, u3 and the additional unitary
operator [160, 214]

v{1,2,3} = 1 − e{1,2} + e{1,2} ŭ3 u∗
3 ,

where ŭ3 ∈ A2 implements the action of u3 on the Powers-Rieffel projection by an
inner automorphism of A2 (see Proposition 4.2.2). Due Proposition 4.2.5 one then
has

Ind[v{1,2,3}]1 = [e{1,2}]0 . (4.33)

We now provide the general iterative procedure for constructing the generators of
the K -groups. For this, suppose the K -theory of Ad−1 has been already computed.
Then the inclusion maps j : Ad−1 → Ad in (4.27) induce injections

j∗ : K0,1(Ad−1) → K0,1(Ad) , (4.34)

so that the generators of K0,1(Ad−1) are naturally identified with generators of
K0,1(Ad). By doing so, we already identified half of the generators in dimension
d. Still by (4.27), the index and exponential maps are surjections and can therefore
be inverted to injective maps

Exp−1
d : K1(Ad−1) → K0(Ad) , Ind−1

d : K0(Ad−1) → K1(Ad) , (4.35)

which supply the other half of the generators. As it will become apparent below, it is
convenient to work with−Ind−1

d , where minus means inversion in the K1 group. The
index d on Exp and Ind indicate that they correspond to (4.27). The inverse of the
index map is written down explicitly in Proposition 4.2.5. To our best knowledge,
a similar simple construction of the inverse of the exponential map is not known,
except in the case d = 2 already mentioned above.

If we apply the above iteration, starting from A0
∼= C, we can compute the

K -theory ofAd for arbitrary d. In particular, this will reproduce the explicit compu-
tations of the K -theories A1, A2 and A3 provided above. The generators of K0(Ad)

provided by the iteration will be uniquely labeled as [eI ]0 by the increasingly ordered
subsets I ⊂ {1, . . . , d} of even cardinality |I |. As a convention, the empty set I = ∅
of zero cardinality is a valid choice and [e∅]0 represents the class of the unit element.
Likewise, the generators of K1(Ad)are uniquely labeled as [vJ ]1 by the increasingly
ordered subsets J ⊂ {1, . . . , d} of odd cardinality |J |. Due to (4.34) applied itera-
tively, if I and J are subsets of {1, . . . , d ′}, the corresponding generators [eI ]0 and
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[vJ ]1 can be seen as generators of K0(Ad) and K1(Ad) for any d ≥ d ′. The iteration
is started by choosing e∅ = 1 as representative for the generator of K0(A0). New gen-
erators in K0,1(Ad), namely not inherited from K0,1(Ad−1) via (4.34), correspond to
labels I and J containing the index d and are obtained using (4.35). They are defined
by the equations

Ind−1
d [eI ]0 = −[vI∪{d}]1 , Exp−1

d [vJ ]1 = [eJ∪{d}]0 . (4.36)

The labelling by the subsets provides the following decomposition of the K -groups

K0(Ad) =
∑

I⊂{1,...,d}
Z , K1(Ad) =

∑
J⊂{1,...,d}

Z , (4.37)

where the sums run over |I | even and |J | odd respectively. Accordingly, one can
count again the dimensionality of the K -groups,

[d/2]∑
k=0

(
d

2k

)
= 2d−1 ,

[d/2]∑
k=0

(
d

2k + 1

)
= 2d−1 ,

in agreement with Proposition 4.2.4.
Starting from the generator [e∅]0 ∈ K0(A0), one first infers from (4.36) that

ν{1} = u1 specifies the generator of K1(A1). Applying (4.36) for d = 2, leads to
v{2} = u2 and, due to (4.32), to the Powers-Rieffel projection e{1,2}. For d = 3, the
new generators in K1(A3) are v{3} = u3 and minus v{1,2,3} defined above, see (4.33),
while the new generators for K0(A3) are the Powers-Rieffel projections e{1,3} and
e{2,3} defined as in (4.31).

The generators of the K -groups of the algebras of half-space and boundary observ-
ables can be derived from the generators of the bulk algebra and the isomorphisms
established in Sect. 4.2.1. In particular, the isomorphisms between the K -groups
induced by i′ defined in (4.25) provide the generators of K0,1(Âd) groups:

êI = i′∗(eI ) , v̂J = i′∗(vJ ) , (4.38)

with I, J ⊂ {1, . . . , d − 1} of even and odd cardinality respectively. The evaluation
map sends these generators into

ev(êI ) = eI , ev(v̂J ) = vJ .

Finally, the generators of K0(Ed) consist of ê and

ẽI = êI ê , (4.39)
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still with I ⊂ {1, . . . , d − 1}. The K1(Ed) group is generated by

ṽJ = 1 − ê − v̂J ê , (4.40)

where J ⊂ {1, . . . , d − 1} has odd cardinality. If we recall that the projection ê is
sent to 0 by the imbedding i , then we see explicitly how i∗ sends the entire groups
K0(Ed) and K1(Ed) into the trivial classes 0 and [1]1 respectively. Further let us note
that

ρ̃(ẽI ) = eI , ρ̃(ṽJ ) = vJ .

Next let us discuss how the generators are mapped by the connecting maps of the
six-term exact sequence (4.26) rather than (4.27), which given various isomorphisms
of Sect. 4.2.1 is merely a rewriting of (4.36). First of all,

Ind[ vJ ]1 = [ẽI ]0 , J = I ∪ {d} , I ⊂ {1, . . . , d − 1} .

All the other generators, namely vJ with d /∈ J , are sent to the trivial class by the
index map. As for the exponential map, note that êI with d /∈ I provides a lift of eI

in Âd . As d /∈ I , this lift is again a projection and

Exp[eI ]0 = [exp(−2π iêI )]1 = [0]1 ,

which merely confirms that Exp ◦ ev∗ = 0. On the other hand, if d ∈ I , the lift is no
longer a projection, and one has

Exp[eI ]0 = [ṽI\{d}]1 .

A particular case of this is (4.32).
To round up this section, let us briefly place the classification of the unitary

and chiral unitary classes of topological insulators into this K -theoretic context.
According to (4.37) and the discussion before, the K0-group has a generator which
involves all space dimensions only if the space dimension is even. This top generator
e[1,d] generates all the strong phases of topological insulators appearing in the first
row of the classification (Table2.1) under dimension d. In other words, modulo lower
generators, the Fermi projector of any strong topological insulator from the unitary
class belonging to the n-th phase in d space dimensions, is stably homotopic to

pF ∼0 diag(e[1,d], . . . , e[1,d]) ,

with precisely n copies of e[1,d] appearing inside the diagonal. It will be shown in
the next chapter, see in particular Sect. 5.7, that the strong even Chern character
pairs non-trivially with the generator e[1,d], but its pairings with all other generators
vanish. These comments transpose to the K1-group in connection with the chiral
unitary topological insulators. According to (4.37), K1(Ad) has a generator which
involves all space dimensions only when d is odd. This top generator is v[1,d] and, as

http://dx.doi.org/10.1007/978-3-319-29351-6_2
http://dx.doi.org/10.1007/978-3-319-29351-6_5
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we shall see, this generator pairs non-trivially with the strong odd Chern character,
hence it generates all the strong phases of topological insulators appearing in the
second row of the classification table.

4.3 The Connecting Maps for Solid State Systems

Various connecting maps between the K -groups were defined and discussed in
Sects. 4.1.3 and 4.1.4. Here the general theory is applied to different exact sequences
associated to solid state systems.

4.3.1 The Exponential Map for the Bulk-Boundary
Correspondence

We begin by considering the exact sequence

0 � Ed
i � Âd

ev� Ad
� 0

constructed in Sect. 3.2.2. Aswe have already seen, associated is the induced six-term
exact sequence between the K -groups

K0(Ed)
i∗� K0(Âd)

ev∗� K0(Ad)

K1(Ad)

Ind
�

�ev∗ K1(Âd) �i∗ K1(Ed) .

Exp
�

(4.41)

Here we are interested in the class [pF ]0 ∈ K0(Ad) of the Fermi projection pF =
χ(h ≤ μ) of a bulk Hamiltonian satisfying the BGH, with the aim of expressing its
image under the exponential map in terms of the finite range half-space Hamiltonian
ĥ = (h, h̃) ∈ MN (C)⊗Âd (which is a particular lift of h in the above exact sequence).
This is achieved by the following result.

Proposition 4.3.1 ([197]) The class of the Fermi projection in K0(Ad) is mapped
under the exponential into

Exp([pF ]0) =
[
exp(2π i fExp(ĥ))

]
1

∈ K1(Ed) , (4.42)

where fExp : R → [0, 1] is a non-decreasing continuous function equal to 0 below
the insulating gap Δ and to 1 above Δ. Above, the functional calculus involving fExp

http://dx.doi.org/10.1007/978-3-319-29351-6_3
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is carried out in MN (C) ⊗ Âd algebra, while the one involving the exp function in
MN (C) ⊗ Â+

d algebra.

Proof In the light of statement (vii) of Proposition 4.1.3, pF can be viewed as an
element of PN (A+

d ). The statement follows directly from definition (4.12) of the
exponential map, provided we can show that (1− fExp)(ĥ), viewed as an element of
MN (C) ⊗ Â+

d , is a lift of pF . We have

(id ⊗ ev+)
(
(1 − fExp)

(
ĥ
)) = (id ⊗ ev)

(
(1 − fExp)

(
ĥ
))

and, since id ⊗ ev is a bounded homomorphism of C∗-algebras, it commutes with
the continuous functional calculus

(id ⊗ ev)
(
(1 − fExp)

(
ĥ
)) = (1 − fExp)

(
(id ⊗ ev)(ĥ)

) = (1 − fExp)(h) = pF ,

where the last equality follows because 1− fExp is equal to 1 below the bulk gap and
to 0 above the bulk gap. �

The exponential connecting map provides a unitary element in the boundary alge-
bra MN (C)⊗E+

d which encodes the topology of the system. Due to its central impor-
tance for the bulk-boundary problemwe call the image the boundary unitary element
and used the notation:

ũΔ = exp
(
2π i fExp(ĥ)

) ∈ MN (C) ⊗ E+
d . (4.43)

We used the label Δ because ũΔ − 1N can be constructed entirely from the spectral
subspace of ĥ corresponding to the bulk insulating gap Δ. Indeed, exp(2π i fExp)− 1
is a smooth function with support in the insulating gap. Furthermore, according to
Proposition 2.4.10, ũΔ − 1N belongs to the smooth algebra MN (C) ⊗ Ed and to any
Sobolev space W s,k(Ed , T̃), which is an important technicality playing a role in the
definition of the boundary topological invariant.

4.3.2 The Index Map for the Bulk-Boundary Correspondence

This section dealswith the other connectingmap of the exact sequence (4.41), namely
the index map. The unitary specifying an element of K1(Ad) is the Fermi unitary
associated to a chiral symmetric Hamiltonian ĥ = (h, h̃) ∈ M2N (C) ⊗ Âd via

sgn(h) =
(
0 u∗

F
uF 0

)
, J =

(
1N 0
0 −1N

)
.

http://dx.doi.org/10.1007/978-3-319-29351-6_2


4.3 The Connecting Maps for Solid State Systems 107

The present task is to compute the element Ind([uF ]1) of K0(Ed). Obviously, this will
be relevant for the bulk-boundary problem in the chiral unitary class of topological
insulators.

Proposition 4.3.2 Suppose BGH and CH hold for ĥ = (h, h̃) ∈ M2N (C) ⊗ Âd

and let uF be the Fermi unitary operator associated to h ∈ M2N (C) ⊗ Ad . Let
fInd : R → [−1, 1] be a non-decreasing smooth function, equal to ±1 above/below
the bulk insulating gap, respectively, and odd under inversion, fInd(−x) = − fInd(x).
Then

(i) The class [uF ]1 ∈ K1(Ad) is mapped by the index map into

Ind
([uF ]1

) =
[
e−i π

2 f Ind(ĥ) diag(1N , 0N ) ei
π
2 f Ind(ĥ)

]
0

− [
diag(1N , 0N )

]
0 .

(4.44)

Above, the functional calculus involving f Ind is carried out in M2N (C) ⊗ Âd

algebra, while the one involving the exponential function in M2N (C) ⊗ Â+
d

algebra.
(ii) The projection provided by the index map and explicitly written above belongs

to the smooth sub-algebra MN (C) ⊗ E +
d .

Proof (i) Recall statement (vi) of Proposition 4.1.5, which says that the Fermi unitary
element uF from UN (Ad) can be promoted to a unitary element u+

F from UN (A+
d ).

According to definition (4.10) of the index map, we need to find an explicit lift in
U2N (Â+

d ) of

diag
(
u+

F , (u∗
F )+

) = diag(uF , u∗
F )+ ∈ U2N (A+

d ) .

But if we find a lift of diag(uF , u∗
F ) to U2N (Âd), then this lift can be automatically

promoted to a lift in U2N (Â+
d ) of diag(uF , u∗

F )+. Furthermore, since

diag(uF , u∗
F ) =

(
0N 1N

1N 0N

)(
0N u∗

F
uF 0N

)
=

(
0N 1N

1N 0N

)
sgn(h) ,

the problem is reduced to finding an appropriate unitary lift for sgn(h) in U2N (Âd).
Following the same strategy as for the exponential map, we can consider

Lift
(
sgn(h)

) = i e−i π
2 f Ind(ĥ) ,

and we can verify that

(id ⊗ ev)
(
ie−i π

2 f Ind(ĥ)
)

= i e−i π
2 f Ind((id⊗ev+)(ĥ)) = i e−i π

2 f Ind(h) = sgn(h) .
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Then the unitary ŵ in the definition (4.10) of the index map becomes

ŵ = i

(
0N 1N

1N 0N

)
e−i π

2 f Ind(ĥ) ∈ U2N (Â+
d ) ,

where the exponentiation is considered inside M2N (C) ⊗ Â+
d . The statement then

follows from the definition of the index map and the homotopy argument used in
Proposition 1.3.1.

(ii) We have

e−i π
2 f Ind(ĥ) diag(1N , 0N ) ei

π
2 f Ind(ĥ) = 1

2 e−i π
2 f Ind(ĥ) (12N + Ĵ ) ei

π
2 f Ind(ĥ)

= 1
2 12N + 1

2 Ĵ ei
π
2 ( f Ind(ĥ)− f Ind(−ĥ))

= 1
2 Ĵ (eiπ f Ind(ĥ) + 12N ) + diag(0N , 1N ) .

The function eiπ f Ind(x) + 1 is smooth and with support inside the bulk insulating gap
Δ. Hence, the non-scalar part of the projection is a function of ĥ which satisfies all
conditions of Proposition 2.4.11, hence in MN (C) ⊗ Ed . �

The conclusion is that the index map provides a projection from the smooth
boundary sub-algebra M2N (C) ⊗ E +

d , which can be used to encode the topology of
the boundary and will be of central importance for the bulk-boundary problem. We
call it the chiral boundary projection and use the notation

p̃Δ = e−i π
2 f Ind(ĥ)diag(1N , 0N ) ei

π
2 f Ind(ĥ) ∈ M2N (C) ⊗ E +

d . (4.45)

We used the label Δ because, as we have seen above, p̃Δ − s( p̃Δ) can be constructed
entirely from the spectral subspace of ĥ corresponding to the bulk insulating gap Δ.
Also, note that, since diag(1N , 0N ) and diag(0N , 1N ) are homotopic, the index map
can be also written as:

Ind
([uF ]1

) = [
p̃Δ

]
0 − [

s( p̃Δ)
]
0 . (4.46)

Finally, let us consider the particular case when the boundary spectrum has gaps,
which due to the chiral symmetry must occur symmetrically relative to the origin.
This allows to further simplify the image of the index map and will be of particular
physical relevance in Sect. 7.4, where we analyze the situation when a magnetic field
perpendicular to the boundary of a chiral topological insulator opens gaps in the
boundary spectrum.

Proposition 4.3.3 If [−δ, δ] ⊂ Δ such that ±δ lie in a spectral gap of ĥ, then the
spectral projector p̃(δ) = χ(−δ ≤ ĥ ≤ δ) belongs to Ed and the chiral boundary
projection can be chosen as

p̃Δ = Ĵ p̃(δ) + diag(0N , 1N ) .

http://dx.doi.org/10.1007/978-3-319-29351-6_1
http://dx.doi.org/10.1007/978-3-319-29351-6_2
http://dx.doi.org/10.1007/978-3-319-29351-6_7
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Furthermore, p̃(δ) can be simultaneously diagonalized with Ĵ , namely there exist
the mutually orthogonal projections p̃±(δ) ∈ Ed with p̃(δ) = p̃+(δ) + p̃−(δ) and
Ĵ p̃±(δ) = ± p̃±(δ). Then

p̃Δ − s( p̃Δ) = p̃+(δ) − p̃−(δ) ,

and
[ p̃Δ]0 − [s( p̃Δ]0 = [

p̃+(δ)
]
0 − [

p̃−(δ)
]
0 .

Proof All the statements follow as in Proposition 1.3.2, by choosing a smooth
function fInd and such that fInd = 0 inside the interval [−δ, δ], fInd = −1 on
(−∞,−δ) ∩ σ(ĥ) and fInd = +1 on (δ,+∞) ∩ σ(ĥ). �

The following is a trivial consequence of the above, but nevertheless it is important
to state it explicitly.

Corollary 4.3.4 If the spectrum of ĥ is gapped at E = 0, then the chiral boundary
projection can be chosen to be trivial:

p̃Δ = diag(0N , 1N ) ,

and p̃Δ − s( p̃Δ) = 0.

4.3.3 The Bott Map of the Fermi Projection

The topology of the solid systems from the unitary class is encoded in the Fermi
projection pF = χ(h ≤ μ). Using the Bott connecting map (4.19) for suspensions,
we show here that, equivalently, the topology can be encoded using the resolvent
function of the Hamiltonian. As shown in Sect. 5.4, this can be used to reformulate
the bulk invariants in terms of the resolvent function. Such expressions are well-
known in the physics literature [64, 65, 172, 213].

Proposition 4.3.5 Consider a finite range bulk Hamiltonian h ∈ MN (C) ⊗ Ad

obeying BGH. Let ΓF be a negatively oriented curve in the resolvent set of h such
that the Fermi projection is given by pF = ∮

ΓF

dz
2π i gz where gz = (h − z)−1 is the

resolvent function. Then the Bott isomorphism β : K0(Ad) �→ K1(SAd) satisfies

β[pF ⊕ pF ]0 = [
z ∈ ΓF �→ (h − z̄)gz

]
1 . (4.47)

Proof First, note that (h − z̄)gz is a unitary element fromAd such that (h − z̄0)gz0 =
1N , where z0 is one of the points whereΓF traverses the real axis. As such, by a proper
parametrization of ΓF , z ∈ ΓF �→ (h − z̄)gz becomes an element of UN

(
(SAd)

+)
,

as required. In the path given in (4.47), the Hamiltonian h can be homotopically

http://dx.doi.org/10.1007/978-3-319-29351-6_1
http://dx.doi.org/10.1007/978-3-319-29351-6_5
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deformed to the flat band Hamiltonian 1N − 2pF , while at the same time ΓF is
deformed to t ∈ [0, 2π ] �→ exp(−it) − 1 and z0 can be taken as 0. Then

(h − z̄)gz = 2 − exp(it)

2 − exp(−it)
(1 − pF ) + exp(2it)pF .

The r.h.s. can be continuously deformed to (1 − pF ) + exp(2it)pF without leaving
UN

(
(SAd)

+)
. In other words

(h − z̄)gz ∼1
(
(1 − pF ) + exp(it)pF

)2
.

One can recognize inside the square the unitary element

u = (
t ∈ [0, 2π ] → (1 − pF ) + exp(it)pF

)

from the definition of the Bott map (4.19). Then

[
z ∈ ΓF �→(h − z̄)gz

]
1 = [u2]1 = [diag(u, u)]1 = β[diag(pF , pF )]0 .

The statement is proved. �

Remark 4.3.6 It is possible to restate (4.47) as

β[pF ]0 = [
z ∈ ΓF �→ (gz0)

−1gz
]
1 .

where z0 is some fixed point on the loop which is choose to correspond to 0 so that
the loop on the r.h.s. is in (SA)+. Its values are not in the unitaries, but only in the
invertibles which by polar composition can be retracted to the unitaries. While this
second formula looks more compact, (4.47) has the advantage of remaining valid in
the regime of the MBGH. When the pairings are calculated under a BGH also the
second path can be used, see Theorem 5.4.2. �

4.3.4 The K-Theory of Periodically Driven Systems

Here we suppose given the set-up described in Sect. 3.4, namely let t ∈ [0, 2π) �→
ht ∈ MN (C) ⊗ Ad be a closed smooth loop attached to h = h0 and suppose that
there exists a loop t ∈ [0, 2π) �→ μt ∈ R is such that μt lies in a gap of ht .
Associated are then the (instantaneous) adiabatic projections pA,t = χ(ht ≤ μt ) ∈
MN (C) ⊗ Ad . They specify an element in MN (C) ⊗ C(S1,Ad) which is denoted
by pA = {pA,t }t∈S1 . We also set pA,0 = pF = χ(h0 ≤ μ0), and write also pF for
the constant smooth loop. Then the class [pA]1 − [pF ]1 ∈ K0(C(S1,Ad)) can be
viewed as an element in K0(SAd), if the exact sequence (3.70), which is a special
case of (4.20), is invoked. Based on the results of Sect. 4.1.5, we can now determine

http://dx.doi.org/10.1007/978-3-319-29351-6_5
http://dx.doi.org/10.1007/978-3-319-29351-6_3
http://dx.doi.org/10.1007/978-3-319-29351-6_3
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the preimage of [pA]0 − [pF ]0 ∈ K0(SAd) in K1(Ad) under the suspension map θ .
The adiabatic time evolution vA,t is given by

i ∂t vA,t = (
ht + i[∂t pA,t , pA,t ]

)
vA,t , vA,0 = 1N . (4.48)

Hence Theorem 4.1.9 implies the following result which is at the heart of the stro-
boscopic interpretation of the polarization as discussed in Sect. 7.6.

Proposition 4.3.7 Assume all the above. Then

θ [pF vA,2π pF + 1N − pF ]1 = [pA]0 − [pF ]0 , (4.49)

where on the r.h.s. pF denotes the constant path so that [pA]0 − [pF ]0 ∈ K0(SAd).

http://dx.doi.org/10.1007/978-3-319-29351-6_7


Chapter 5
The Topological Invariants
and Their Interrelations

Abstract This chapter first reviews the cyclic cohomology for general C∗-algebras
and its pairing with the K-theory, which produces numerical topological invariants.
The discussion is then specialized to the algebras of physical observables. The strong
and the weak topological invariants, for both bulk and boundary, are defined as
pairings of specific cyclic cocycles with the elements of the K-groups encoding the
topology of the solid state systems. The duality of the pairings with respect to the
connectingmaps is proved and the equality between the bulk and boundary invariants
is established. Lastly, generalized Streda formulas are derived and used to determine
the range of the topological invariants.

5.1 Notions of Cyclic Cohomology

The cyclic (co)homology [46, 210] is a theory for both commutative and non-
commutative C∗-algebras, which can be regarded as a natural extension of the clas-
sical de Rham theory (see [113] for insightful discussion). Of key importance for the
invariants of solid state systems are the explicit pairing formulas between the cyclic
cocycles and the elements of the K0 and K1-groups. As we shall see, the numeri-
cal topological invariants used in the classification of the unitary and chiral unitary
classes of topological insulators can be obtained this way.

Below, we present some key aspects of the cyclic cohomology which are instru-
mental for our goals. For example, as already pointed out in [107], the proof of
equality between the bulk and the boundary invariants relies on the invariance of
the pairings against the deformations of both the cyclic cocycles and the K-group
elements. It would be very difficult, if not impossible, to prove this equality by brute
computation, yet an elegant argument is possible when taking full advantage of the
cyclic cohomology theory. As such, we feel that a brisk introduction to this theory is
absolutely necessary. Below we will make references to the de Rham cohomology
because physicists are familiar with this theory, but the reader should be aware that
cyclic cohomology is in fact a generalization of the de Rham homology [46].

The setting is that of a C∗-algebra A. One considers densely defined (n + 1)-
multilinear functionals ϕ on A satisfying the cyclicity relation

© Springer International Publishing Switzerland 2016
E. Prodan and H. Schulz-Baldes, Bulk and Boundary Invariants
for Complex Topological Insulators, Mathematical Physics Studies,
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ϕ(a1, . . . , an, a0) = (−1)nϕ(a0, a1, . . . , an) , (5.1)

which play the same role as the differential forms in the classical de Rham theory.
The equivalent of the exterior derivative is played by the Hochschild coboundary
map

bϕ(a0, a1, . . . , an+1) =
n∑

j=0

(−1)jϕ(a0, . . . , ajaj+1, . . . an+1)

+ (−1)n+1ϕ(an+1a0, . . . , an).

Note that indeed b◦b = 0. The cyclic cohomology ofA is defined as the cohomology
of the complex

. . .
b−→ Cn−1(A)

b−→ Cn(A)
b−→ . . . ,

where Cn(A) are the linear spaces of the cyclic (n+1)-linear functionals. The objects
of the cyclic cohomology are the cyclic cocycles defined by

b ϕ = 0, ϕ ∈ Cn(A) , n ≥ 0 . (5.2)

They play the same role as the closed differential forms in the classical de Rham
cohomology. The cohomology class [ϕ] contains all ϕ′ ∈ Cn(A) with ϕ′ = ϕ + bφ

for someφ ∈ Cn−1(A). A cyclic cocycle ϕ fromCn(A)will be called n-cyclic cocycle
and ϕ will be called odd (even) if n is an odd (even) integer.

The domains of the cyclic cocycles need not be the entire algebra A, but they
must all include a dense Fréchet sub-algebra A of A which is invariant under the
holomorphic functional calculus. The terminology and its significance was already
explained in Sect. 3.3.3 where this sub-algebra was called smooth, in analogy with
the classical case (see [178] for a detailed discussion).

Example 5.1.1 (Standard cocycles for the unital case) Let ∂1, . . . , ∂k be commuting
derivations on a unital algebra A and let A be the smooth sub-algebra of Proposi-
tion3.3.3(i). Assume the existence of a continuous trace such that T(∂ja) = 0 for all
a ∈ A and j = 1, . . . , k. Then

ϕ(a0, a1, . . . , ak) =
∑
ρ∈Sk

(−1)ρ T
(

a0

k∏
i=1

∂ρi ai

)
(5.3)

satisfies bϕ = 0, hence it is a cyclic cocycle over A with domain A . Above, Sk

denotes the group of permutations and (−1)ρ the signature of the permutation. �
Example 5.1.2 (Standard cocycles for the non-unital case) Let ∂1, . . . , ∂k be com-
muting derivations on a non-unital algebra A and let A be a smooth sub-algebra,
as in Proposition3.3.3(ii). Assume the existence of a lower semicontinuous trace T

http://dx.doi.org/10.1007/978-3-319-29351-6_3
http://dx.doi.org/10.1007/978-3-319-29351-6_3
http://dx.doi.org/10.1007/978-3-319-29351-6_3
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such that T(∂ja) = 0 for all a ∈ A and j = 1, . . . , k. Extend the derivations and the
trace over A+ by declaring ∂(1+) = 0 and T(1+) = 1. Then

ϕ(a0, a1, . . . , ak) =
∑
ρ∈Sk

(−1)ρ T
(

a0

k∏
i=1

∂ρi ai

)
(5.4)

is a cyclic cocycle over A+ with domain A +. Furthermore,

ϕ(a0, a1, . . . , ak) = ϕ
(
a0 − s(a0), a1 − s(a1), . . . , ak − s(ak)

)
.

Note that the scalar part of a1, . . . , ak can be dropped because ∂(1+) = 0, and the
scalar part of a0 can be dropped for the same reason due to the cyclicity of ϕ. �
Remark 5.1.3 According to the work by Nest [145, 146], the above cyclic cocycles
generate the entire (periodic) cyclic cohomology of the smooth non-commutative
torus, hence of the smooth algebras of bulk and boundary observables. �

We now introduce the concept of pairing. In the classical de Rham theory, a
differential form defined over a smooth manifold can be integrated over a closed sub-
manifold of appropriate dimension. If the form is closed, then the integral is invariant
to smooth deformations of both the closed sub-manifold and of the closed differential
form. As a result, the integral defines a paring between the cohomology class of the
closed differential form and the homotopy class of the closed sub-manifold. The
equivalent of all these in the non-commutative setting is the pairing between the
cyclic cocycles and the classes of the K-groups.

Theorem 5.1.4 (Pairing even cocycles with K0-classes [46]) Let ϕ be an even cyclic
cocycle overA+ with domainA +, and let tr # ϕ be its natural extension overK⊗A +,
where K is the algebra of compact operators. Then the map

P∞(A +) � e �→ (tr # ϕ)(e, . . . , e) ∈ C (5.5)

is constant on the equivalence class of e in K0(A ) (= K0(A)) and on the equivalence
class of ϕ in the cyclic cohomology. As such, there exists a pairing between K0(A)

and the even cyclic cohomology of A,

〈[ϕ], [e]0 − [s(e)]0
〉 = (tr # ϕ)(e, . . . , e) , (5.6)

where on the r.h.s. it is understood that the representative for the class [e]0 was
chosen from the smooth sub-algebra A +. Moreover, the map

[e]0 − [s(e)]0 ∈ K0(A) �→ 〈[ϕ], [e]0 − [s(e)]0
〉 ∈ C

is a homomorphism of abelian groups.
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Theorem 5.1.5 (Pairing odd cocycles with K1-classes [46]) Let ϕ be an odd cyclic
cocycle overA+ with domainA +, and let tr # ϕ be its natural extension overK⊗A +.
Then the map

U∞(A +) � v �→ (tr # ϕ)(v∗ − 1, v − 1, . . . , v∗ − 1, v − 1) ∈ C (5.7)

is constant on the equivalence class of v in K1(A ) (= K1(A)) and on the equivalence
class of ϕ in the cyclic cohomology. As such, there exists a natural pairing between
K1(A) and the odd cyclic cohomology of A,

〈[ϕ], [v]1
〉 = (tr # ϕ)(v∗ − 1, v − 1, . . . , v∗ − 1, v − 1) ∈ C , (5.8)

where on the r.h.s. it is understood that the representative for the class [v]1 was
chosen from the smooth sub-algebra A +. Moreover, the map

[v]1 ∈ K1(A) �→ 〈[ϕ], [v]1
〉 ∈ C

is a homomorphism of abelian groups.

As shown in Examples5.1.1 and 5.1.2, cyclic cocycles can be straightforwardly
defined for both algebras of bulk and of boundary observables, using the non-
commutative calculus presented in Sect. 3.3.2. Let us point out that the above state-
ments give no information about the range of the pairings in (5.6) and (5.8), except
that they are some countable subgroup of C. In Sect. 5.7 these ranges will be deter-
mined explicitly.

5.2 Bulk Topological Invariants Defined

Consider an ordered subset I = {i1, . . . , in} ⊂ {1, . . . , d}, with order not necessarily
the one induced by Z. We define (n + 1)-cyclic cocycles ξI : Wn,1(Ad,T)×n+1

→ C by

ξI(a0, . . . , an) = Λn

∑
ρ∈Sn

(−1)ρ T
(

a0 ∂ρ1a1 . . . ∂ρn an

)
, (5.9)

where elements ρ ∈ Sn of the symmetric group are viewed as a bijective map from
{1, . . . , n} onto I with signature (−1)ρ , and the normalization constants chosen as

Λn = (2iπ)
n
2

n
2 !

for n even , Λn = i (iπ)
n−1
2

n!! for n odd . (5.10)

The associated pairing of ξI with |I| even and odd respectively define the bulk Chern
numbers of the projections and unitary elements, respectively:

http://dx.doi.org/10.1007/978-3-319-29351-6_3
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ChI(e) = 〈[ξI ], [e]0 − [s(e)]0
〉
, ChI(v) = 〈[ξI ], [v]1

〉
.

In previous works [47, 159, 107], other normalization coefficients were used. Our
present choices are as in [169, 171] and assure that the top pairings are integer-valued
in any dimension.

Remark 5.2.1 The cocycles ξI can be shown to be continuous over the Sobolev
spaceWn,1(Ad,T), n = |I|, by using the non-commutative Holder inequality (3.60).
Hence, we chose to define the cocycles from the beginning over their maximal
domain of continuity, but we recall that the smooth sub-algebra Ad is contained
inWn,1(Ad,T). �
Remark 5.2.2 When pairing the cocycles with the K-groups, the cocycles are
extended over the matrix algebras as tr # ξI (see [46] for the standard procedure
in the generic case). For the particular cocycles considered here, this amounts to
replacing T by tr ⊗ T in the above definitions. This will tacitly be assumed for
all observables algebras and suppressed in the notations, as already done in
Sect. 3.3.2. �

We now combine the above cyclic cocycles with the Fermi projections and the
Fermi unitary operators.

Theorem 5.2.3 (The bulk invariants defined [169, 171])

(i) Let h ∈ MN (C)⊗Ad be a finite hopping range bulk Hamiltonian and assume that
BGH holds. If pF = χ(h ≤ μ) denotes the Fermi projection and I ⊂ {1, . . . , d}
is an ordered subset with |I| even, then

ChI(pF) = Λ|I|
∑
ρ∈S|I|

(−1)ρ T
(

pF

|I|∏
j=1

∂ρj pF

)
(5.11)

is a real number which remains constant under the continuous deformations of
h defined in Definition 2.4.5, as long as BGH holds.

(ii) Let h ∈ M2N (C) ⊗ Ad be a finite hopping range bulk Hamiltonian and assume
that BGH and CH hold. If uF is the Fermi unitary operator and I ⊂ {1, . . . , d}
is an ordered subset with |I| odd, then

ChI(uF) = Λ|I|
∑
ρ∈S|I|

(−1)ρ T
(
(u∗

F − 1N )

|I|∏
j=1

∂ρj u
∗j−1

F

)
(5.12)

is a real number which remains constant under the continuous deformations of
h defined in Definition2.4.5, as long as BGH holds.

http://dx.doi.org/10.1007/978-3-319-29351-6_3
http://dx.doi.org/10.1007/978-3-319-29351-6_3
http://dx.doi.org/10.1007/978-3-319-29351-6_2
http://dx.doi.org/10.1007/978-3-319-29351-6_2
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Remark 5.2.4 To simplify the notations, we used above ∗j for the j-fold convolution
∗j = ∗◦ · · · ◦ ∗, equal to ∗ if j is odd and to the identity map if j is even. The notation
will prove useful in several other places. �
Proof (i) Under BGH, the Fermi projection pF can be computed as a smooth function
of h. As a consequence, pF is an element of the C∗-algebraAd and it defines a class in
K0(Ad). Furthermore, the Hamiltonian has a finite range hopping. Hence, according
to Proposition 2.4.2, pF belongs to the smooth sub-algebraAd , and in fact to any of the
Sobolev spacesWs,k(Ad,T). ThenEq. (5.11) is just the pairing

〈[ξI ], [pF]0−[s(pF)]0
〉

because s(pF) = 0. According to Proposition2.4.6, a continuous deformation of h
which does not violate BGH generates a homotopy of pF inside Ad , hence inside a
class of K0(Ad). Then the statement follows from Theorem5.1.4. The proof of (ii)
parallels the above, except that at the end one invokes Theorem5.1.5. �

Remark 5.2.5 We stressed above the smoothening process because the C∗-algebras
are stable only under the functional calculus with continuous functions. For example,
if the Fermi level lies inside the energy spectrum, then the smoothening argument
can no longer be applied and pF and uF are no longer elements of Ad . However,
if the Fermi level lies in a region of Anderson localized spectrum, then pF and uF

remain inside the Sobolev spaces Wn,1(Ad,T) according to Propositions2.4.4 and
2.4.7, and hence lie in the maximal domain of the cyclic cocycles ξI . This regime
will be analyzed in Chap.6. �
Remark 5.2.6 Let us recall some further aspects already stressed in Sects. 2.2.1 and
2.3.1. First of all, for periodic systems the invariants (5.11) and (5.12) reduce to the
expressions (2.3) and (2.36) already used for solid state systems in prior works [13,
190], and known from differential topology (over the torus). Furthermore, the invari-
ants (5.11) and (5.12) can be calculated from the covariant physical representations
Pω = πω(pF) and Uω = πω(uF) if one interprets the trace T as the trace per unit
volume. The outcome is then P-almost surely constant, as already stressed in (2.15)
and (2.39). �

5.3 Boundary Topological Invariants Defined

Let Ĩ ⊂ {1, . . . , d − 1} be an ordered subset with the order not necessarily the one
induced by Z. Extend the differential calculus (̃∂, T̃) as in Example5.1.2. Then the
(n + 1)-linear maps ξ̃Ĩ : Wn,1(E

+
d , T̃)×n+1 → C defined by

ξ̃Ĩ(ã0, . . . , ãn) = Λ|Ĩ|
∑
ρ∈Sn

(−1)ρ T̃(ã0∂̃ρ1 ã1 . . . ∂̃ρn ãn) (5.13)

are cyclic cocycles over the algebra of boundary observables. The associated pairings
with K-group elements then define the even and odd Chern numbers:

http://dx.doi.org/10.1007/978-3-319-29351-6_2
http://dx.doi.org/10.1007/978-3-319-29351-6_2
http://dx.doi.org/10.1007/978-3-319-29351-6_2
http://dx.doi.org/10.1007/978-3-319-29351-6_2
http://dx.doi.org/10.1007/978-3-319-29351-6_6
http://dx.doi.org/10.1007/978-3-319-29351-6_2
http://dx.doi.org/10.1007/978-3-319-29351-6_2
http://dx.doi.org/10.1007/978-3-319-29351-6_2
http://dx.doi.org/10.1007/978-3-319-29351-6_2
http://dx.doi.org/10.1007/978-3-319-29351-6_2
http://dx.doi.org/10.1007/978-3-319-29351-6_2
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C̃hĨ(e) = 〈[̃ξĨ ], [ẽ]0 − [s(ẽ)]0
〉
, C̃hĨ(ṽ) = 〈[̃ξĨ ], [ṽ]1

〉
.

Asbefore, the cocycles andhence the pairings are definedover theirmaximal domains
and we recall that Ed ⊂ Wn,1(Ed, T̃) hence E +

d ⊂ Wn,1(E
+
d , T̃). We now combine

these cocycles with the boundary unitary operator ũΔ of (4.42) and with the chiral
boundary projection p̃Δ of (4.44).

Theorem 5.3.1 (The boundary invariants defined)

(i) Let ĥ = (h, h̃) ∈ MN (C) ⊗ Âd be a half-space Hamiltonian of finite hopping
range such that BGH holds. If Ĩ ⊂ {1, . . . , d − 1} is an ordered subset with |Ĩ|
odd, then

C̃hĨ(ũΔ) = Λ|Ĩ|
∑
ρ∈S|Ĩ|

(−1)ρ T̃
(
(ũ∗

Δ − 1N )

|Ĩ|∏
j=1

∂̃ρj ũ
∗j−1

Δ

)
(5.14)

is a real number which remains constant under the continuous deformations
of ĥ defined in Definition2.4.5, provided BGH continues to hold.

(ii) Let ĥ = (h, h̃) ∈ M2N (C) ⊗ Âd be a half-space Hamiltonian of finite hopping
range such that BGH and CH hold. If Ĩ ⊂ {1, . . . , d − 1} is an ordered subset
with |Ĩ| even, then

C̃hĨ(p̃Δ) = Λ|Ĩ|
∑
ρ∈S|Ĩ|

(−1)ρ T̃
(

p̃Δ

|Ĩ|∏
j=1

∂̃ρj p̃Δ

)
(5.15)

is a real number which remains constant under the continuous deformations of
ĥ defined in Definition2.4.5, provided BGH and CH continue to hold.

Proof We recall the discussion below Eq. (4.42) where it was shown that ũΔ − 1N

belongs to the smooth algebra MN (C) ⊗ Ed . A similar conclusion was achieved
in Proposition4.3.2 for the chiral boundary projection. Therefore Eqs. (5.14) and
(5.15) are just the pairings

〈[̃ξĨ ], [ũΔ]1
〉
and

〈[̃ξĨ ], [p̃Δ]0 − [s(p̃Δ)]0
〉
for |Ĩ| odd or

even, respectively. According to Proposition2.4.11, any continuous deformation of
ĥ generates a homotopy of ũΔ − 1N and p̃Δ inside the smooth algebra. Then the
statements follow from Theorems5.1.4 and 5.1.5. �

Remark 5.3.2 The boundary invariants can also be expressed in terms of the physical
observables. This follows directly from the above definitions, the canonical represen-
tation defined in Sects. 3.2.4 and the representation (3.56) of the trace per unit area T̃.
For example, in the case of odd |Ĩ|, let Ũω = π̃ω(ũΔ) be the physical representations
at a disorder configuration ω. Then

http://dx.doi.org/10.1007/978-3-319-29351-6_4
http://dx.doi.org/10.1007/978-3-319-29351-6_4
http://dx.doi.org/10.1007/978-3-319-29351-6_2
http://dx.doi.org/10.1007/978-3-319-29351-6_2
http://dx.doi.org/10.1007/978-3-319-29351-6_4
http://dx.doi.org/10.1007/978-3-319-29351-6_4
http://dx.doi.org/10.1007/978-3-319-29351-6_2
http://dx.doi.org/10.1007/978-3-319-29351-6_3
http://dx.doi.org/10.1007/978-3-319-29351-6_3
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C̃hĨ(ũΔ) = Λ|Ĩ|
∑
ρ∈S|Ĩ|

(−1)ρ T̃
(
(Ũ∗

ω − 1)

|Ĩ|∏
j=1

i[Ũ∗j−1
ω , Xρj ]

)
,

P-almost surely. �
Example 5.3.3 Let d be even.We demonstrate here that, in the periodic case, the odd
C̃hd−1(ũΔ) for d even reduces to the quantity χ

∑
νW defined in (2.41) of Sect. 2.2.1

in terms of the chiralities of the Weyl points:

C̃hd−1(ũΔ) = χ
∑

W

νW . (5.16)

The computation is restricted to d = 4 (but the generalization is possible, see [129])
and translation invariance is assumed in the directions parallel to the boundary. In
this case, χ = −1. Let there be a Weyl point in the boundary spectrum, assumed to
be isolated from the other possible Weyl singularities. We may assume EW = 0 and
kW = 0 without loss of generality. Further let us choose fExp such that fExp(E) = 0
for E ≤ −δ and fExp(E) = 1 for E ≥ δ, with δ arbitrarily small. The computation
of the boundary invariant involves only the band spectrum inside [−δ, δ] and, since
δ is arbitrarily small, we can use the Weyl Hamiltonian (2.16) to describe the bands
connected at the Weyl point. By a change of variables kj → kj

vj
, we can reduce the

Weyl Hamiltonian to 〈k, σ 〉, k ∈ R
3. In the process, a sign factor appears, equal

precisely to νW . After a Fourier transform, C̃hd−1(ũΔ) becomes

C̃hd−1(ũΔ) = − νW

24π2

∫
d3k

∑
ρ∈S3

(−1)ρ tr
( 3∏

j=1

Ũ(k)−1∂ρj Ũ(k)
)

,

with Ũ(k) = −e2π ifExp(〈k,σ 〉), wherewe inserted a harmlessminus sign. It is convenient
tomake the change of variable κ = k

δ
. Since Ũ(κ) = 1 for |κ| ≥ 1, one can view Ũ(κ)

as a map from the three-dimensional unit ball with its boundary |κ| = 1 identified
with a point, to the SU(2) group which is parametrized precisely by this space. Then,
as noted in [220] in a different context, the degree of this map is well defined and is
equal to the r.h.s. of the above equation, times νW . As the degree is defined for any
continuous function, one can deform fExp from a smooth to a continuous map which
we choose to be fExp(E) = 1

2 (1 + E
δ
) for |E| < δ, and fExp(E) = 0 for E ≤ −δ and

fExp(E) = 1 for E ≥ δ. Using the new variable, the computation reduces to finding
the degree of the map

Ũ(κ) = − eiπ(1+〈κ,σ 〉) = cos
(
π |κ|) + i sin

(
π |κ|)

〈
κ

|κ| , σ
〉

.

But this is just the inverse of the standard parametrization of SU(2), hence a homeo-
morphism of degree−1. The calculation can then be repeated for the rest of theWeyl

http://dx.doi.org/10.1007/978-3-319-29351-6_2
http://dx.doi.org/10.1007/978-3-319-29351-6_2
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points and the conclusion will be C̃hd(ũΔ) = −∑ νW . This shows that the l.h.s. of
(2.41) is indeed minus the boundary invariant of (5.14). That it is indeed connected
to the bulk invariant will follow from the results of Sect. 5.5. �
Example 5.3.4 Let d be odd. We demonstrate here that, for the periodic case, the
even C̃hd−1(p̃Δ) reduces (up to a sign) to the one defined in Sect. 2.3.1 in terms of
the chiralities of the Dirac points :

C̃hd−1(p̃Δ) = −χ
∑

D

νD. (5.17)

The computation is restricted to d = 3 (hence χ = −1) and translation invariance is
assumed in the directions parallel to the boundary. The assumptions and the settings
are the same as in the previous example and we start directly with the computation
of C̃hd−1(p̃Δ) for the chiral boundary projection

P̃(k) = e−i π
2 fInd(Ĥk)diag(1, 0)ei

π
2 fInd(Ĥk) ,

with Ĥk a Dirac Hamiltonian of positive chirality

Ĥk =
(

0 k1 − ik2
k1 + ik2 0

)
,

and fInd an odd function such that fInd = ±1 above/below an interval [−δ, δ].We have

Ĥkψ±(k) = ±r ψ±(k) , ψ±(k) = 1√
2

(
1

± e−iα

)
,

where k1 + ik2 = reiα , and note that Ĵψ±(k) = ψ∓(k). Then

P̃(k) = |ϕ(k)〉〈ϕ(k)| , ϕ(k) = 1√
2

(
ψ+(k) + eiπ fInd(r)ψ−(k)

)
,

which can be verified by a direct computation. More explicitly,

ϕ(k) = 1
2

(
1 + eiπ fInd(r)(

1 − eiπ fInd(r)
)

e−iα

)
, ϕ′(k) = 1

2

((
1 + eiπ fInd(r)

)
eiα

1 − eiπ fInd(r)

)
,

where we displayed two expressions which differ by just a gauge factor. The first
expression has a limit as k → 0 and the second one has a limit as k → ∞. We now
proceed as

Ch2(P̃) = − 1
2π i

(∫
|k| ≤ R

+
∫

|k| ≥ R

)
tr
(

P̃(k) dP̃(k) ∧ dP̃(k)
)

,

http://dx.doi.org/10.1007/978-3-319-29351-6_2
http://dx.doi.org/10.1007/978-3-319-29351-6_2
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where d is the exterior derivative, and we apply Stokes’ theorem to continue

Ch2(P̃) = − 1
2π i

∫
|k|=R

[〈
ϕ(k)|dϕ(k)

〉− 〈
ϕ′(k)|dϕ′(k)

〉]

= − 1
2π i

∫ 2π

0
dα
(〈

ϕ(Reiα)|∂αϕ(Reiα)
〉− 〈

ϕ′(Reiα)|∂αϕ′(Reiα)
〉)

.

Using the explicit expressions of ϕ and ϕ′, the integrant can be seen to be independent
of α and

Ch2(P̃) = − 1
4

(
− ∣∣1 − eiπ fInd(R)

∣∣2 − ∣∣1 + eiπ fInd(R)
∣∣2) = 1 = −χ νD .

For a Dirac Hamiltonian of negative chirality, we only need to change α into −α

everywhere in the above calculations, whose effect will be a change of sign for the
Chern number, as expected. �

We end this section by introducing more precise terminology and conventions,
which apply to both bulk and boundary invariants:

(1) In analogy to the classical differential geometry (compare (2.3) and (2.36) and
the classical expressions from [151]), we call the invariants the even or odd
Chern numbers.

(2) The cyclic cocycles (5.9) and (5.13) will be called the bulk and boundary Chern
cocycles.

(3) If |I| or |Ĩ| equals the maximum even (odd) number allowed by the space dimen-
sion, then we call the pairings with ChI or C̃hĨ a top even (odd) Chern number.
The rest of the invariants will be called lower Chern numbers.

(4) If I = {1, . . . , d} or Ĩ = {1, . . . , d − 1} with order induced by Z, then parings
with ChI and C̃hĨ will be called the strong Chern numbers and will simply be
denoted by Chd and C̃hd−1, respectively. The rest of the invariants are called the
weak Chern numbers.

Remark 5.3.5 The weak Chern numbers are not integer valued except if |I| = d − 1
and |Ĩ| = d − 2, see Sect. 5.7. The strong Chern numbers are the only invariants for
which an index theorem holds (which is proved in Chap.6). This allows to define
the strong invariants also in the more general conditions of MBGH, which is not the
case for the weak invariants. �

5.4 Suspensions and the Volovik-Essin-Gurarie Invariants

In this section we use the connecting maps for suspensions to derive equivalent
expressions of the bulk topological invariants, in terms of the resolvent functions
of the Hamiltonians. These expressions are of interest because the resolvent func-
tion, hence the topological invariants, can be generalized via the one-particle Green’s

http://dx.doi.org/10.1007/978-3-319-29351-6_2
http://dx.doi.org/10.1007/978-3-319-29351-6_2
http://dx.doi.org/10.1007/978-3-319-29351-6_6
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function [135] to models which include the electron-electron interaction [78]. One
should be aware, though, that the one-particle Green’s functions can display singu-
larities which are not well understood at this time, and that the problem of defining
the topological invariants in the presence of electron-electron interaction remains an
open problem.

Let us now consider the n-cocycle ξI given in (5.9), corresponding to a set of
indices I ⊂ {1, . . . , d} with |I| = n. Its suspension ξ s

I : Wn,1(SAd,T
s)×(n+2) → C

is the following cyclic (n + 2)-multilinear map over the suspension algebra SAd

ξ s
I (a0, . . . , an+1) = Λn+1

∑
σ∈Sn+1

(−1)σTs
(

a0,t

n+1∏
i=1

∂ρi ai,t

)
, ai = {ai,t}t∈T .

Here, elements σ ∈ Sn+1 are viewed as maps from {1, . . . , n + 1} to {0} ∪ I , further-
more ∂0 = ∂t , and Ts denotes the following trace on SAd

Ts(a) =
∫ 2π

0

dt

2π
T(at) , a = {at}t∈(0,2π) ∈ SAd .

Let us write the suspended cocycle more explicitly:

ξ s
I (a0, . . . , an+1) = Λn+1

n+1∑
j=1

(−1)j−1
∑
ρ∈Sn

(−1)ρ

Ts
(

a0,t
( j−1∏

i=1

∂ρi ai,t

)
∂taj,t

( n∏
i=j

∂ρi ai+1,t

))
.

The following result, due to Pimsner [159], shows that the suspension of cocycles
is dual to the suspension maps θ and β of K-theory. The proof given below is
considerably streamlined. It also extends to suspensions of pairings over the edge
algebra, if adequate trace class conditions are imposed. Actually, the same proof
carries over to any cocycle over someC∗-algebra that is obtained as in Examples5.1.1
or 5.1.2.

Theorem 5.4.1 For |I| even,

〈[ξI ], [e]0 − [s(e)]0
〉 = − 〈[ξ s

I ], β[e]0
〉
, (5.18)

while for |I| odd, 〈[ξI ], [v]1
〉 = 〈[ξ s

I ], θ [v]1
〉
. (5.19)

Proof Let |I| = 2k and let e ∈ PN (A+
d ). Further let

v = (1 − e) + ue ∈ (SAd)
+ ,
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with u = {eit}t∈[0,2π], so that β[e]0 = [v]1. Then ∂0v = iue and e∂ie = e∂ie(1N − e)
for i ≥ 1, so that e(

∏j−1
i=1 ∂ρi e)e = 0 for even j, while for odd j the e on the r.h.s. can

be dropped. Using these facts and eu = ue, one can evaluate

〈[ξ s
I ], [v]1

〉 = i(k + 1)Λ2k+1

∑
ρ∈S2k

(−1)ρ

∫ 2π

0

dt

2π
T

⎛
⎝ u(u − 1)k(u∗ − 1)k+1 e

2k∏
j=1

∂ρj e

⎞
⎠

= iΛ2k+1 (k + 1)

(
2k + 1

k

) ∑
ρ∈S2k

(−1)ρ T

⎛
⎝e

2k∏
j=1

∂ρj e

⎞
⎠

= iΛ2k+1 (k + 1)

(
2k + 1

k

)
1

Λ2k

〈[ξI ], [e]0 − [s(e)]0
〉
,

where we used

∫ 2π

0

dt

2π
u(u − 1)k(u∗ − 1)k+1 =

(
2k + 1

k

)
.

The first statement then follows from (5.10) which implies

i(k + 1)Λ2k+1

(
2k + 1

k

)
= −Λ2k , (5.20)

For (5.19), let |I| = n = 2k −1 and v ∈ UN (A+
d ). Recall the θ -map from Chap.4:

θ [v]1 = [et]0 − [diag(1N , 0N )]0 , et = rt pt r∗
t ,

with

pt =
(

c21N csv∗
csv s21N

)
, c = cos( t

4 ) , s = sin( t
4 ) ,

and rt is the rotation matrix given in (4.16). In the following we will drop the explicit
dependence of e, r and p on t, as already done for c and s. Then

〈[ξ s
I ], θ [v]1

〉 = Λ2k

2k∑
j=1

(−1)j−1
∑

ρ∈S2k−1

(−1)ρ Ts
(

e
( j−1∏

i=1

∂ρi e
)
∂te
( 2k−1∏

i=j

∂ρi e
))

.

Next let us collect some useful identities

∂ρi e = r(∂ρi p)r∗ , i = 1, . . . , 2k − 1 ,

http://dx.doi.org/10.1007/978-3-319-29351-6_4
http://dx.doi.org/10.1007/978-3-319-29351-6_4
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and
∂te = r

(
∂tp + r∗(∂tr) p − p r∗∂tr

)
r∗ .

Note that the flanking by r and r∗ can be dropped above because of the cyclic property
of the trace. Another identity is

r∗∂tr = − 1
4

(
0N −1N

1N 0N

)
.

As p is a projection itself, we can use the identities mentioned in the proof of (5.18)
to move p around inside the trace, and to conclude that

〈[ξ s
I ], θ [v]1

〉 = Λ2k

2k∑
j=1

(−1)j−1
∑

ρ∈S2k−1

(−1)ρ

Ts

⎛
⎝p
( j−1∏

i=1

∂ρi p
)(

∂tp − (−1)j

4

(
0N −1N

1N 0N

))( 2k−1∏
i=j

∂ρi p
)⎞⎠ .

Let us split the above pairing into two summands

T1 = Λ2k

2k∑
j=1

(−1)j−1
∑

ρ∈S2k−1

(−1)ρ Ts

⎛
⎝p
( j−1∏

i=1

∂ρi p
)
∂tp
( 2k−1∏

i=j

∂ρi p
)⎞⎠

and

T2 = 1
4 Λ2k

2k∑
j=1

∑
ρ∈Sn

(−1)ρ Ts

⎛
⎝p
( j−1∏

i=1

∂ρi p
)(0N −1N

1N 0n

)( 2k−1∏
i=j

∂ρi et

)⎞⎠ .

The second term T2 is identically zero. Indeed, note first that

∂ρi p = cs

(
0N ∂ρi v

∗
∂ρi v 0N

)
.

Then inside the last trace we have the projection p followed by 2k off-diagonal
matrices, hence the off-diagonal part of p leads to an overall trace-less term and only
the diagonal part of p needs to be taken into account. But the diagonal part of p is
pdiag = diag(c21N , s21N ), which commutes with the derivations ∂i. Then

T2 = 1
4 Λ2k

2k∑
j=1

(−1)j−1
∑
ρ∈Sn

(−1)ρ
∫ 2π

0

dt

2π

· T
(

∂ρ1

(
pdiag p ∂ρ2p . . . ∂ρj−1p

(
0N −1N

1N 0N

)
∂ρj p . . . ∂ρ2k−1p

))
,



126 5 The Topological Invariants and Their Interrelations

because, when applying the Leibniz rule for ∂ρ1 , all the terms containing ∂ρ1∂ρi p
cancel out identically due to the anti-symmetrizing factor (−1)ρ . The trace of a total
derivation vanishes by Proposition3.3.2, so T2 = 0. As for T1, let us first note

∂tp = 1
4

( −2cs 1N (c2 − s2) v∗
(c2 − s2) v 2cs 1N

)
,

so that

T1 = Λ2k

2k∑
j=1

(−1)j−1
∑

ρ∈S2k−1

(−1)ρ
∫ 2π

0

dt

8π
(cs)2k−1

· T
⎛
⎝p

j−1∏
i=1

(
0N ∂ρi v

∗
∂ρi v 0N

)( −2cs 1N (c2 − s2) v∗
(c2 − s2) v 2cs 1N

) 2k−1∏
i=j

(
0N ∂ρi v

∗
∂ρi v 0N

)⎞
⎠ .

Now one can use the following anti-commutation relations

{(
0N ∂iv∗
∂iv 0N

)
,

(
1N 0N

0N −1N

)}
= 0 ,

{(
0N ∂iv∗
∂iv 0N

)
,

(
0N v∗
v 0N

)}
= 0 ,

together with the explicit expression for p to further simplify

T1 = Λ2k

2k∑
j=1

∑
ρ∈S2k−1

(−1)ρ
∫ 2π

0

dt

8π
(cs)2k−1

· T
((−cs 1N c2 v∗

−s2 v cs 1N

) 2k−1∏
i=1

(
0N ∂ρi v

∗
∂ρi v 0N

))
.

The product of matrices inside the trace is off-diagonal and therefore the diagonal
term of the first factor inside the trace does not contribute (namely the one with a
factor cs). Then

T1 = k Λ2k

∑
ρ∈S2k−1

(−1)ρ
∫ 2π

0

dt

4π
(cs)2k−1

·
⎡
⎣ c2 T

⎛
⎝v∗∂ρ1v

k∏
j=1

∂ρ2j v
∗∂ρ2j+1v

⎞
⎠ − s2 T

⎛
⎝v∂ρ1v

∗
k∏

j=1

∂ρ2j v∂ρ2j+1v
∗
⎞
⎠
⎤
⎦

= k Λ2k

Λ2k−1

∫ 2π

0

dt

4π
(cs)2k−1

[
c2
〈[ξI ], [v]1

〉 − s2
〈[ξI ], [v∗]1

〉]
.

The pairing is a group homomorphism from the K1-group, hence

http://dx.doi.org/10.1007/978-3-319-29351-6_3
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0 = 〈[ξI ], [1N ]1
〉 = 〈[ξ I ], [vv∗]1

〉 = 〈[ξ I ], [v]1
〉 + 〈[ξI ], [v∗]1

〉
,

so that
〈[ξI ], [v∗]1

〉 = −〈[ξI ], [v]1
〉
. Now using this fact and the integral

∫ 2π

0

dt

4π
(cs)2k−1 = 1

22k−1

1

π

(2k − 2)!!
(2k − 1)!! = 1

2k

1

π

(k − 1)!
(2k − 1)!! ,

one can conclude the proof by using the expressions for Λn in (5.10). �

As an application of the above result, we provide two expressions of the bulk
invariants in even dimensions in terms of the resolvent function. This will establish
a link with the invariants introduced by Volovik [213] for d = 2 and arbitrary d by
Essin and Gurarie [64, 65].

Theorem 5.4.2 Consider the settings and the notations of Proposition4.3.5 and let
t ∈ [0, 2π ] �→ z(t) be a parametrization of the loop ΓF such that z(0) belongs to
the bulk spectral gap. Assume |I| = 2k. Below, each σ is seen as a bijection from
{1, . . . , 2k + 1} onto {0} ∪ I.

(i) Consider the unitary operator

q = [
t ∈ [0, 2π ] → qz = (h − z̄)(h − z)−1

] ∈ UN
(
(SAd)

+).
Then

ChI(pF) = − 1
2 Λ2k+1

∑
σ∈S2k+1

(−1)σ Ts(q∗∂σ1q ∂σ2q
∗ . . . ∂σ2k+1q) .

(ii) Consider the invertible element from (SAd)
+

g = [
t ∈ [0, 2π ] → gz = (h − z)−1

]
.

Then

ChI(pF) = −Λ2k+1

∑
σ∈S2k+1

(−1)σ Ts(g−1∂σ1g ∂σ2g
−1 . . . ∂σ2k+1g) .

Proof (i) This follows directly by combining Proposition4.3.5 with (5.18) in
Theorem5.4.1 and using the additivity of the even Chern number. (ii) Note that
the r.h.s. is just the odd Chern number applied on the invertible element g. Then the
identity follows from the first statement by observing that q = (g∗)−1g and using
the factorization of the odd Chern numbers with respect to the multiplication

Ch2k+1(q) = Ch2k+1
(
(g∗)−1

) + Ch2k+1(g) .

Hence only remains to note that Ch2k+1
(
(g∗)−1

) = −Ch2k+1
(
g∗) = Ch2k+1(g). �

http://dx.doi.org/10.1007/978-3-319-29351-6_4
http://dx.doi.org/10.1007/978-3-319-29351-6_4
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Remark 5.4.3 The first expression is new and has the advantage that qz is differen-
tiable in z even when the bulk gap is filled with the dense point spectrum, hence this
expression works even under MBGH. We have carried out numerical calculations
which indicate that the second expression fails in this regime. �

Another application of Theorem5.4.1, following from (5.19), is the following
expression of the strong invariants in odd space dimensions in terms of the resolvent,
similar as in [64, 65].

Theorem 5.4.4 Suppose h satisfies the BGH and CH with Fermi unitary operator
uF. Set g0 = h−1. Then

Chd(uF) = Λd

2

∑
σ∈Sd

(−1)σ T(Jg0∂σ1g
−1
0 ∂σ2g0 . . . ∂σd g−1

0 ) .

5.5 Duality of Pairings and Bulk-Boundary
Correspondence

In this section we focus on the short exact sequence (3.36) and on the induced six-
term exact sequence (4.23) between the K-groups. The connecting maps in this exact
sequence link K0 and K1-classes, both of which have pairings with cyclic cocycles.
Duality theory studies the equalities between such pairings. A general theorem of
this kind was proved in [107, TheoremA.10], based on various prior works [62, 63,
145, 159]. Since it plays a central role in the following, not only the statement but
also the proof are reproduced below. The theorem is then adapted to present context
and the equality between the bulk and the boundary invariants is established. By
doing so, we attain one of the main aims of the book.

Theorem 5.5.1 [107] Consider the Pimsner-Voiculescu exact sequence:

0 � Ad−1 ⊗ K
ψ� T(Ad−1)

π� Ad−1 �αd Z � 0.

and its corresponding six-term diagram

K0(Ad−1)
(1 − α−1

d )∗� K0(Ad−1)
i′∗ � K0(Ad)

K1(Ad)

Ind
�

� i′∗ K1(Ad−1) �(1 − α−1
d )∗

K1(Ad−1)

Exp
�

Then, for a set of indices I such that d /∈ I and |I| odd,

〈[ξI∪{d}], [e]0 − [s(e)]0
〉 = 〈

ξI ,Exp[e]0
〉
, (5.21)

http://dx.doi.org/10.1007/978-3-319-29351-6_3
http://dx.doi.org/10.1007/978-3-319-29351-6_4
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while for |I| even, 〈[ξI∪{d}], [v]1
〉 = − 〈[ξI ], Ind[v]1

〉
. (5.22)

Proof Let us consider first the second identity. Throughout the notations from
Sects. 3.2.3 and 4.2.1 will be used. We also recall that Ad = Ad−1 �αd Z and that
Ad−1 is viewed as a sub-algebra ofAd . Let e ∈ PN (A+

d−1) be such that [e]0 −[s(e)]0
is contained in the image of the indexmap. In Proposition 4.2.5 we found a pre-image
of e under the index map, given by

v = (1N − e) + e weu∗
d . (5.23)

Recall that weu∗
d commutes with e. We will proceed with the computation of the r.h.s.

of Eq. (5.22) for this v. Let us use the notation u = we u∗
d such that

v = (1N − e) + e u = 1N + e (u − 1N ) .

We have:

〈[ξI∪{d}], [v]1
〉 = Λ2k+1

∑
σ∈S2k+1

(−1)ρT
(
(u∗ − 1N )e

2k+1∏
j=1

∂σj

(
(u∗j−1 − 1N )e

))
,

where σ is seen as a map from {1, . . . , 2k + 1} to I ∪ {d} and we rearranged the
factors slightly, using the fact that e and u commute. At this point, one cannot proceed
directly. Instead, one should note how much the calculation would simplify if u was
replaced by u∗

d , because of the simplification of the derivations. This can be achieved
by replacing the action αd by α′

d = αd ◦ Adw∗
e
. Indeed, the action of α′

d on Ad−1 is
implemented on Ad−1 by u′

d = ud w∗
e , which is precisely u∗. Let us then complete

the calculation for the simpler case ofAd−1 �α′
d
Z. All objects will carry a prime for

this algebra. First of all,

〈[ξ ′
I∪{d}],[v′]1

〉 = Λ2k+1

2k+1∑
j=1

(−1)j−1
∑

ρ∈S2k

(−1)ρ T′
(
(u′

d − 1N )e

·
( j−1∏

i=1

∂ ′
ρi

(
(u′

d)
∗i e − e

))
∂ ′
ρd

(
(u′

d)
∗j e − e

)( 2k∏
i=j

∂ ′
ρi

(
(u′

d)
∗i e − e

)))
.

where ρ maps {1, . . . , 2k} onto I , this time. Noticing that

∂ ′
ρi

(
(u′

d)
∗i e − e

) = (
(u′

d)
∗i − 1N )∂ ′

ρi
e , ∂ ′

d

(
(u′

d)
∗j e − e

) = −i(−1)j(u′
d)

∗j e ,

http://dx.doi.org/10.1007/978-3-319-29351-6_3
http://dx.doi.org/10.1007/978-3-319-29351-6_4
http://dx.doi.org/10.1007/978-3-319-29351-6_4
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and recalling that u′
d commutes with e, we can write:

〈[ξ ′
I∪{d}],[v′]1

〉 = −iΛ2k+1

2k+1∑
j=1

(−1)2j−1
∑

ρ∈S2k

(−1)ρ

· T′
(
(u′

d − 1N )k+1
(
(u′

d)
∗ − 1N )k(u′

d)
∗j e
( j−1∏

i=1

∂ ′
ρi

e
)

e
( 2k+1∏

i=j

∂ ′
ρi

e
))

.

Now e
(∏j−1

i=1 ∂ ′
ρi

e
)

e = 0 for j − 1 odd, while for j − 1 even one can erase e on the

l.h.s. Hence

〈[ξ ′
I∪{d}], [v′]1

〉 = i(k + 1)Λ2k+1

∑
ρ∈S2k

(−1)ρ

· T′
(
(u′

d − 1N )k+1((u′
d)

∗ − 1N )k(u′
d)

∗e
2k∏

i=1

∂ ′
ρi

e
)

.

From the definition of the trace for crossed products, only the terms not containing
u′

d contribute. There are

k∑
l=0

(
k + 1

l

)(
k

l

)
=
(
2k + 1

k

)

such terms, hence

〈[ξ ′
I∪{d}], [v′]1

〉 = i(k + 1)Λ2k+1

(
2k + 1

k

) ∑
ρ∈S2k

(−1)ρT′
(

e
2k∏

i=1

∂ ′
ρi

e
)

.

Note that T and T′ as well as ∂ ′ and ∂ coincide on A+
d−1, hence we can erase the

primes. With (5.20) one deduces

〈[ξ ′
I∪{d}], [v′]1

〉 = − 〈[ξI ], [e]0 − [s(e)]0
〉
.

Our next task is to show the equality of pairings:

〈[ξI∪{d}], [v]1
〉 = 〈[ξ ′

I∪{d}], [v′]1
〉
. (5.24)

Following [107], we imbed the crossed products Ad−1 �αd Z and Ad−1 �α′
d

Z in a
common crossed product (M2(C) ⊗ Ad−1) �α′′

d
Z, where

α′′
d

(
a b
c d

)
=
(

αd(a) αd(b)we

we
∗αd(c) α′

d(d)

)
,



5.5 Duality of Pairings and Bulk-Boundary Correspondence 131

where we = udweu∗
d as in Proposition4.2.2.

If u′′
d is the element of (M2(C) ⊗ Ad−1) �α′′

d
Z implementing the action α′′

d , then
the two imbeddings are explicitly given by:

R
( ∑

n∈Zd−1

pnun
d

)
=

∑
n∈Zd−1

(
pn 0
0 0

)
(u′′

d)
n

and

R′
( ∑

n∈Zd−1

p′
n(u

′
d)

n
)

=
∑

n∈Zd−1

(
0 0
0 p′

n

)
(u′′

d)
n .

Obviously,R andR′ are homomorphisms. The next ingredient is the family of smooth
inner automorphisms:

AdVt : (M2(C) ⊗ Ad−1) �α′′
d

Z → (M2(C) ⊗ Ad−1) �α′′
d

Z , t ∈ [0, π ] ,

corresponding to the unitary elements

Vt =
(
cos( t

2 ) − sin( t
2 )

sin( t
2 ) cos( t

2 )

)
⊗ 1 ∈ M2(C) ⊗ Ad−1 .

Let us focus for the moment at t = π . The action of AdVπ
on M2(C) ⊗ Ad−1 is:

AdVπ

(
a b
c d

)
=
(

d −c
−b a

)

and

AdVπ
(u′′

d) =
(
0 −1
1 0

)
u′′

d

(
0 +1

−1 0

)
=
(
0 −1
1 0

)
α′′

d

(
0 +1

−1 0

)
u′′

d ,

and, using the definition of α′′
d ,

AdVπ
(u′′

d) =
(

we
∗ 0

0 we

)
u′′

d .

Then it can be checked that the following diagram commutes:

Ad−1 �αd Z
R� (M2(C) ⊗ Ad−1) �α′′

d
Z

Ad−1 �α′
d

Z

Q
� R′

� (M2(C) ⊗ Ad−1) �α′′
d

Z

AdVπ

�

http://dx.doi.org/10.1007/978-3-319-29351-6_4
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with Q the ∗-isomorphism defined by Q(a) = a for a a ∈ Ad−1 and Q(ud) = weu′
d .

In particular, Q(v) = v′. We now start the ascent towards (5.24). The first step is to
recognize that

ξI∪{d} = ξ ′′
I∪{d} ◦ R , ξ ′

I∪{d} = ξ ′′
I∪{d} ◦ R′ ,

that is, the two cocycles involved in (5.24) are pullbacks of the same cocycle ξ ′′
I∪{d}

defined over (M2(C) ⊗ Ad−1) �α′′
d

Z. This gives:

〈[ξI∪{d}], [v]1
〉 = 〈[ξ ′′

I∪{d} ◦ R], [v]1
〉
.

The second step is to realize that the cocycles

ξ ′′
I∪{d} ◦ R and ξ ′′

I∪{d} ◦ AdVπ
◦ R

are connected by the homotopy ξ ′′
I∪{d} ◦ AdVt ◦ R. Hence:

〈[ξ ′′
I∪{d} ◦ R], [v]1

〉 = 〈[ξ ′′
I∪{d} ◦ AdVπ

◦ R], [v]1
〉
.

For the last step, we use AdVπ
◦ R = R′ ◦ Q implying that

〈[ξ ′′
I∪{d} ◦ AdVπ

◦ R], [v]1
〉 = 〈[ξ ′′

I∪{d} ◦ R′ ◦ Q], [v]1
〉

= 〈[ξ ′′
I∪{d} ◦ R′], [Q(v)]1

〉
= 〈[ξ ′

I∪{d}], [v′]1
〉
.

The statements (5.24) and thus also (5.22) are now proved.
The first identity (5.21) follows from (5.22) if the following commutative diagram

is used:

K0(Ad)
β� K1(SAd)

K1(Ad−1)

Exp
�

θ� K1(SAd−1)

Ind
�

namely Exp = θ−1 ◦ Ind ◦ β. Indeed, one finds

〈
ξI∪{d}, [e]0 − [s(e)]0

〉 = − 〈ξ s
I∪{d}, β[e]0

〉 = 〈
ξ s

I , Ind ◦ β[e]0
〉

= 〈
ξ s

I , θ ◦ Exp[e]0
〉 = 〈

ξI ,Exp[e]0
〉
,

where we used both equalities of Theorem5.4.1. �

The above result can be extended to the algebras of physical observables using
the isomorphisms established in Sects. 3.2.3 and 4.2.1.

http://dx.doi.org/10.1007/978-3-319-29351-6_3
http://dx.doi.org/10.1007/978-3-319-29351-6_4
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Corollary 5.5.2 Consider the exact sequence (3.36) between the algebras of observ-
ables

0 � Ed
i� Âd

ev� Ad
� 0

and the associated six-term exact sequence (4.23) between the K-groups

K0(Ed)
i∗� K0(Âd)

ev∗� K0(Ad)

K1(Ad)

Ind
�

�ev∗ K1(Âd) �i∗ K1(Ed)

Exp
�

Then, for a set I of indices such that d /∈ I and |I| odd,

〈[ξI∪{d}], [e]0 − [s(e)]0
〉 = 〈[̃ξI ],Exp[e]0

〉
, (5.25)

while for |I| even and v ∈ UN (A+
d ),

〈[ξI∪{d}], [v]1
〉 = − 〈[̃ξI ], Ind[v]1

〉
. (5.26)

Proof Wewill use the isomorphism (3.41) between the exact sequence of observables
algebras and the Pimsner-Voiculescu sequence. Let e ∈ PN (A+

d ). Then

〈[̃ξI ],Exp[e]0
〉 = 〈

ρ̃∗[̃ξI ], ρ̃∗Exp[e]0
〉
.

Note that ρ̃∗Exp[e]0 = Exp[e]0,where the latter exponentialmap is the one appearing
in the Pimsner-Voiculescu sequence. Also, ρ̃∗[̃ξI ] = [ξI ]. Then

〈[̃ξI ],Exp[e]0
〉 = 〈[ξI ],Exp[e]0

〉 = 〈[ξI∪{d}], [e]0 − [s(e)]0
〉
.

The second identity follows in a similar way. �

Theorem 5.5.3 (Equality between the bulk and boundary invariants)

(i) Let ĥ = (h, h̃) ∈ MN (C) ⊗ Âd satisfying BGH, and let I be a set of indices such
that |I| = 2k − 1 < d and d /∈ I. Then:

ChI∪{d}(pF) = C̃hI(ũΔ) . (5.27)

(ii) Let ĥ = (h, h̃) ∈ MN (C) ⊗ Âd satisfying BGH and CH, and let I be a set of
indices such that |I| = 2k < d and d /∈ I. Then:

ChI∪{d}(uF) = − C̃hI(p̃Δ) . (5.28)

http://dx.doi.org/10.1007/978-3-319-29351-6_3
http://dx.doi.org/10.1007/978-3-319-29351-6_4
http://dx.doi.org/10.1007/978-3-319-29351-6_3
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Proof The bulk and boundary invariants are defined in Theorems5.2.3 and 5.3.1.
For (i), we now combine Proposition4.3.1 and (4.42) with (5.25), we have

ChI∪{d}(pF) = 〈[ξI∪{d}], [pF]0
〉 = 〈[̃ξI ],Exp[pF]0

〉
= 〈[̃ξI ], [ũΔ]1

〉 = C̃hI(ũΔ) .

Similarly, (ii) follows by combining Proposition 4.3.2 and (4.44) with (5.26):

ChI∪{d}(uF) = 〈[ξI∪{d}], [uF]1
〉 = − 〈[̃ξI ], Ind[uF]1

〉
= − 〈[̃ξI ], [p̃Δ]0

〉 = − C̃hI(p̃Δ) ,

completing the proof. �

Remark 5.5.4 The bulk-boundary correspondence relations are fully compatible
with the ones stated in Chap.2. Indeed, by combining (5.27) with (5.16) we can
reproduce (2.18) for the unitary class A, and by combining (5.28) with (5.17) we can
reproduce (2.41) for the chiral unitary class AIII. �

5.6 Generalized Streda Formulas

The results in this section are inspired by the Streda formula [204] for quantum Hall
effect in d = 2, connecting the derivative of the electron density n and the Hall
conductance, ∂Bn = σH . As we shall see in Sect. 7.1, this translates into

∂B12 T(pF) = 1

2π
Ch2(pF) , (5.29)

where pF ∈ Ad is the Fermi projection. An algebraic proof of this identity which
is not based on Bloch theory was provided by Rammal and Bellissard [176]. More
recently, it was shown that the Streda formula holds also when the Fermi level lies in
a region of dynamical Anderson localization as well as in higher dimensions [198,
Theorem 7]. It is useful to read this formula in the following manner: on the l.h.s.
is the magnetic field derivative of a pairing with a 0-cocycle, while on the r.h.s. is a
pairing with a 2-cocycle. Likewise, the generalized Streda formulas derived below
connect derivatives of pairings with n cocycles w.r.t. the magnetic field to pairings
with n + 2 cocycles. Due to the importance of the Streda formula in condensed
matter physics, let us begin by providing a short proof separately before going to
more complicated algebraic manipulations.

Proposition 5.6.1 Suppose that a projection e ∈ PN (Fd) is Ito-differentiable. Then
for given i, j ∈ {1, . . . , d} with i < j,

∂Bi,j

〈[ξ∅], [e]0 − [s(e)]0
〉 = 1

2π

〈[ξ{i,j}], [e]0 − [s(e)]0
〉
. (5.30)

http://dx.doi.org/10.1007/978-3-319-29351-6_4
http://dx.doi.org/10.1007/978-3-319-29351-6_4
http://dx.doi.org/10.1007/978-3-319-29351-6_4
http://dx.doi.org/10.1007/978-3-319-29351-6_4
http://dx.doi.org/10.1007/978-3-319-29351-6_2
http://dx.doi.org/10.1007/978-3-319-29351-6_2
http://dx.doi.org/10.1007/978-3-319-29351-6_2
http://dx.doi.org/10.1007/978-3-319-29351-6_7
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Proof The proof uses rules (i) and (vii) of Proposition3.3.9,

∂Bi,j T(e) = T
(
δi,je

) = T
(
e(δi,j)e + (1 − e)(δi,je)(1 − e)

)
= i

2T
(
e[∂ie, ∂je]

) − i
2T
(
(1 − e)[∂ie, ∂je]

)
= i

2
1
2π i

(
ξ{i,j}(e, e, e) − ξ{i,j}(1 − e, 1 − e, 1 − e)

)
,

and the statement follows because e and 1 − e are orthogonal and they add up to
identity, hence

〈[ξ{i,j}], [1 − e]0 − [s(1 − e)]0
〉 = − 〈[ξ{i,j}], [e]0 − [s(e)]0

〉
.

The pairing with the scalar part s(e) vanishes. �

For d = 2, Proposition5.6.1 reduces to the Streda formula (5.29). Proposi-
tion5.6.1 is also particularly interesting for dimension d = 3, because the pairing〈
ξ{i,j}, [e]0

〉
on the r.h.s. of (5.30) is integer valued, see Sect. 5.7. Hence, in d = 3,

the relation (5.30) can be regarded as the Streda formula for the three-dimensional
quantum Hall effect. Next let us turn to higher cocycles. As a next step, we derive a
paring with a 1-cocyle w.r.t. a magnetic field.

Proposition 5.6.2 Suppose that a ∈ MN (C1(Fd)) is invertible. Then for given i, j ∈
{1, . . . , d} and k �= i, j,

∂Bi,j

〈[ξ{k}], [a]1
〉 = 1

2π

〈[ξ{i,j,k}], [a]1
〉
. (5.31)

If k ∈ {i, j}, then the l.h.s. of (5.31) vanishes.

Proof The definitions and rules (i) and (v) of Proposition 3.3.9 imply

∂Bi,j

〈[ξ{k}], [a]1
〉 = Λ1 ∂Bi,j T

(
a−1∂ka

) = i T
(
δi,j(a

−1∂ka)
)

= iT
(
δi,j(a

−1)∂ka + a−1δi,j(∂ka)
)

= iT
(
δi,j(a

−1)∂ka − (∂ka−1)δi,ja
)

.

Using rule (iii) of Proposition3.3.2 and a cyclic permutation on the second term,

∂Bi,j

〈[ξ{k}], [a]1
〉 = iT

(
δi,j(a

−1)∂ka + a−1(δi,ja)a−1(∂ka)
)

.

Then rule (vi) of Proposition3.3.9 gives

∂Bi,j

〈[ξ{k}], [a]1
〉 = − 1

2 T
(
a−1(∂ia) (∂ja

−1)(∂ka) − a−1(∂ja) (∂ia
−1)(∂ka)

)
.

http://dx.doi.org/10.1007/978-3-319-29351-6_3
http://dx.doi.org/10.1007/978-3-319-29351-6_3
http://dx.doi.org/10.1007/978-3-319-29351-6_3
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If say i = k, then one can use the identity a−1∂ja = −(∂ja−1) a twice on the second
term to verify that both terms cancel. Otherwise, using the cyclicity of the trace, and
with σ ∈ S3 viewed as map from {1, 2, 3} to {i, j, k}, the derivative can be written as

∂Bi,j

〈[ξ{k}], [a]1
〉 = − 1

2
1
3

∑
σ∈S3

(−1)σ T
(
a−1(∂σ1a) a−1(∂σ2a) a−1(∂σ3a)

)

= 1

2π

〈[ξ{i,j,k}], [a]1
〉
,

where in the last step the constant Λ3 = − π
3 was restored. �

The identity in Proposition5.6.2 is particularly interesting in dimensions d = 3
and d = 4 where the pairing on the r.h.s. is integer valued. This will be exploited
in Sect. 7.3. Up to now, only derivatives of pairings with 0 and 1-cocycles were
considered. The generalized Streda formulas concern pairings with higher cocycles.

Theorem 5.6.3 Let I ⊂ {1, . . . , d} be an ordered subset and i, j /∈ I, where the
ordering of I is not necessarily the one induced by Z. Then:

(i) If |I| is even and e is a projection from C1(Fd),

∂Bi,j

〈[ξI ], [e]0 − [s(e)]0
〉 = 1

2π

〈[ξ{i,j}∪I ], [e]0 − [s(e)]0
〉
. (5.32)

(ii) If |I| is odd and v is a unitary from C1(Fd),

∂Bi,j

〈[ξI ], [v]1
〉 = 1

2π

〈[ξ{i,j}∪I ], [v]1
〉
. (5.33)

The ordering of the indices on the r.h.s is as the notation {i, j} ∪ I implies. If i ∈ I or
j ∈ I, the derivatives on the l.h.s. of (5.32) and (5.33) vanish.

Proof (i) Let |I| = n be even. Using rules (i) and (v) of Proposition 3.3.9,

∂Bi,j ξI(e, . . . , e) = ξI(δi,je, e, . . . , e) + Λn

∑
σ∈Sn

(−1)σT
(
eδi,j(∂σ1e . . . ∂σn e)

)
.

The second term can be further processed using the identity

δi,j(p1 . . . pn) =
n∑

k=1

p1 . . . (δi,jpk) . . . pn

− i
2

∑
ρ∈S2

∑
k<l

(−1)ρp1 . . . (∂ρ1pk) . . . (∂ρ2pl) . . . pn ,

http://dx.doi.org/10.1007/978-3-319-29351-6_7
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5.6 Generalized Streda Formulas 137

obtained by iterating rule (iv) of Proposition3.3.9. The result is

∂Bi,j ξI (e, . . . , e) =
n+1∑
k=1

ξI (e, . . . , δi,je, . . . , e)

− i
2Λn

∑
σ∈Sn

∑
ρ∈S2

∑
k<l

(−1)σ+ρT
(
e∂σ1e . . . ∂ρ1∂σk e . . . ∂ρ2∂σl e . . . ∂σn e

)
,

where δi,je is at the k-th position in the first summand and (−1)σ+ρ = (−1)σ (−1)ρ .
We will compute separately the first and second terms, called T1 and T2 in the
following. Using the cyclic property of the cocycle

T1 = (n + 1)ξI((δi,je), e, . . . , e) = (n + 1)Λn

∑
σ∈Sn

(−1)σT
(
δi,j(e)∂σ1e . . . ∂σn e

)
.

Since n is even, one can replace δi,je inside of the trace by its diagonal part

e(δi,je)e + (1 − e)(δi,je)(1 − e) .

Now applying rules of Proposition 3.3.9(vii), one obtains

T1 = − i
2 (n + 1)Λn

∑
σ∈Sn

∑
ρ∈S2

(−1)σ+ρ T
(
(1 − 2e)∂ρ1e∂ρ2e∂σ1e . . . ∂σn e

)

= − i
2 (n + 1)Λn

∑
σ∈Sn

∑
ρ∈S2

(−1)σ+ρ T
(
(1 − 2e)∂σ1e . . . ∂σn e∂ρ1e∂ρ2e

)
,

where in the second line we used the last of the rules in Proposition 3.3.2(i) and
the cyclic property of the trace. As for the second term, we first perform a partial
integration with respect to ∂σk and use the anti-symmetrizing factor (−1)σ to cancel
all but one term produced when applying Leibniz rule. The result is

T2 = i
2Λn

∑
σ∈Sn

∑
ρ∈S2

∑
k<l

(−1)σ+ρ T
(
∂σk e∂σ1e . . . ∂ρ1e . . . ∂ρ2∂σl e . . . ∂σn e

)
.

We reorder the σi’s up to i = k, which brings a sign factor (−1)k−1. Also, note that
∂ρ2∂σl e can be replaced by its diagonal part

e(∂ρ2∂σl e)e + (1 − e)(∂ρ2∂σl e)(1 − e) ,

which enables us to apply the rules (ii) of Proposition3.3.2. We obtain

T2 = i
2Λn

∑
σ∈Sn

∑
ρ∈S2

∑
k<l

(−1)σ+ρ (−1)k−1

T
(
∂σ1e . . . ∂σk e∂ρ1e . . . ∂σl−1e (1 − 2e){∂ρ2e, ∂σl e}∂σl+1e . . . ∂σn e

)
.

http://dx.doi.org/10.1007/978-3-319-29351-6_3
http://dx.doi.org/10.1007/978-3-319-29351-6_3
http://dx.doi.org/10.1007/978-3-319-29351-6_3
http://dx.doi.org/10.1007/978-3-319-29351-6_3
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Now Proposition3.3.2(i) allows to bring 1 − 2e in front:

T2 = − i
2Λn

∑
σ∈Sn

∑
ρ∈S2

(−1)σ+ρ

∑
k<l

(−1)k+l T
(
(1 − 2e)∂σ1e . . . ∂σk e∂ρ1e . . . {∂ρ2e, ∂σl e} . . . ∂σn e

)
.

After writing out the anti-commutators explicitly, all terms in the sum over l cancel
out due to the sign factor (−1)l, except for the first and last ones:

T2 = − i
2Λn

∑
σ∈Sn

∑
ρ∈S2

(−1)σ+ρ

n−1∑
k=1

[
(−1)k+k+1 T

(
(1 − 2e)∂σ1e . . . ∂σk e∂ρ1e∂ρ2e∂σk+1e . . . ∂σn e

)

+ (−1)k+n T
(
(1 − 2e)∂σ1e . . . ∂σk e∂ρ1e∂σk+1e . . . ∂σn e∂ρ2e

)]
.

At this point we use again the last rules of Proposition3.3.2(i) and the cyclic property
of the trace to move all ∂ρ2e to the right. After reordering ∂σi ’s,

T2 = − i
2Λn

∑
σ∈Sn

∑
ρ∈S2

(−1)σ+ρ
[

− (n − 1)T
(
(1 − 2e)∂σ1e . . . ∂σn e∂ρ1e∂ρ2e

)

+
n−1∑
k=1

(−1)k T
(
(1 − 2e)∂σ1e . . . ∂σk e∂ρ1e . . . ∂σn e∂ρ2e

)]
.

Combining with T1, one concludes

∂Bi,jξI(e, . . . , e)

= − i
2Λn

∑
σ∈Sn

∑
ρ∈S2

(−1)σ+ρ

n∑
k=0

(−1)k T
(
(1 − 2e)∂σ1e . . . ∂σk e∂ρ1e . . . ∂σn e∂ρ2e

)
,

where we used the fact that the terms k = 0 and k = n are both equal to

T
(
(1 − 2e)∂σ1e . . . ∂σn e∂ρ1e∂ρ2e

)
.

The result can be further processed to

∂Bi,j ξI (e, . . . , e) = − i
n+2 Λn

1
2

∑
σ∈Sn

∑
ρ∈S2

(−1)σ+ρ

∑
0≤k �=l≤n

(−1)k+l+1 1
2 T

(
(1 − 2e)∂σ1e . . . ∂σk e∂ρ1e . . . ∂σl e∂ρ2e . . . ∂σn e

)

http://dx.doi.org/10.1007/978-3-319-29351-6_3
http://dx.doi.org/10.1007/978-3-319-29351-6_3
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or, since k + l is even,

∂Bi,j ξI(e, . . . , e) = 1
2π Λn+2

∑
σ∈Sn+2

(−1)σ 1
2 T
(
(1 − 2e)∂σ1e . . . ∂σn+2

)
,

with σ viewed as a bijection from {1, . . . , n + 2} to the ordered set I ∪ {i, j}. This
is precisely the r.h.s. of (5.32), because the pair {i, j} can be brought in front of I
without changing the signatures.

(ii) For the proof of (5.33) one could in principle proceed in a similar manner as
above, but it ismore simple to use the suspension of pairings proved inTheorem5.4.1.
In particular, the identity (5.19) shows that for odd |I|

〈[ξI ], [v]1
〉 = 〈[ξ s

I ], θ [v]1
〉 = 〈[ξI∪{d+1}], θ [v]1

〉
,

where the last pairing is seen as a pairing over the algebra Ad+1 with vanishing
magnetic field componentsBi,d+1, i = 1, . . . , d, which contains SAd as a subalgebra.
Now one can use (5.32) to deduce

∂Bi,j

〈[ξI ], [v]1
〉 = 1

2π

〈[ξ{i,j}∪I∪{d+1}], θ [v]1
〉 = 1

2π

〈[ξ{i,j}∪I ], [v]1
〉
,

where in the last step the suspension (5.19) was applied a second time. �

Below we specialize Theorem5.6.3 to condensed matter systems. Using the bulk-
boundary duality, generalized Streda formulas can be automatically formulated for
the boundary pairings too.

Corollary 5.6.4 Let ĥ = (h, h̃) ∈ Âd and assume that BGH holds. Then the Fermi
projection (hence the Fermi unitary element too, if CH applies) are Ito-differentiable
[198], and:

(i) If I ⊂ {1, . . . , d} with |I| even and {i, j} /∈ I,

∂Bi,jChI(pF) = 1

2π
Ch{i,j}∪I(pF) . (5.34)

(ii) If Ĩ ⊂ {1, . . . , d − 1} with |Ĩ| odd and {i, j} /∈ Ĩ ,

∂Bi,j C̃hĨ(ũΔ) = 1

2π
C̃h{i,j}∪Ĩ(ũΔ) . (5.35)

(iii) If CH holds, too, and |I| is odd,

∂Bi,jChI(uF) = 1

2π
Ch{i,j}∪I(uF). (5.36)



140 5 The Topological Invariants and Their Interrelations

(iv) If Ĩ ⊂ {1, . . . , d − 1} with |Ĩ| even and {i, j} /∈ Ĩ ,

∂Bi,j C̃hĨ(p̃Δ) = 1

2π
C̃h{i,j}∪Ĩ(p̃Δ) . (5.37)

Aswe shall see inChap.7, the above formulaswill be instrumental for the physical
interpretation of the bulk and boundary invariants of topological insulators.

5.7 The Range of the Pairings and Higher Gap Labelling

Let us begin by recalling from Sect. 5.1 that the map

[e]0 ∈ K0(AB,d) �→ T(e) = 〈[ξ∅], [e]0
〉 ∈ R ,

is a homomorphism of abelian groups. As K0(AB,d) ∼= Z
2d−1

, the range Ran(ξ∅)
is a discrete subset of R which can be calculated once the image of the generators
is determined. In dimension d = 2, it was accomplished by Pimsner [159] who
established Ran(ξ∅) = Z+ B1,2

2π Z. For higher dimensional non-commutative tori, the
range of the tracewas computed in [60] (see [23] for extensions and new conjectures).
In order to understand the link with the generalized Streda formulas, let us take a
closer look at the well understood case of d = 2. If e{1,2} is the Powers-Rieffel
projection given in (4.30), then

〈[ξ∅], [1]0
〉 = 1 ,

〈[ξ∅], [e{1,2}]0
〉 = 1

2π B1,2 .

One way to verify this is to use the Streda formula (5.30), which implies that〈[ξ∅], [e{1,2}]0
〉
is linear in B1,2. The slope is given by 1

2π times the Chern number
of e{1,2} which is 1, and the constant term vanishes because the T(e{1,2}) converges to
0 as B1,2 goes to 0. All these facts apply, in particular, to the Fermi projection pF of a
Hamiltonian inAB,2 if the Fermi level lies in a gap, and hence the integrated density
of states T(pF) takes values inZ+ B1,2

2π Z. This fact is referred to as gap labelling [17].
It is the object of this section to determine the range of pairings with higher

cocycles from the generalized Streda formulas and thereby to establish a gap labelling
by higher cocycles. The essential inputs for this are:

• The duality of pairings established in Sect. 5.5, together with the behavior of the
generators [eI ]0 and [vJ ]1 under the connecting maps, summarized in (4.35).

• The fact that limB→0 T(eI) = 0 unless I = ∅. For example, the Powers-Rieffel
projection has this property. The general case follows from Elliott’s work [60].

We will adopt the notation from [23] and define BI to be the skew-symmetric
matrix obtained by restricting the indices to the set I . Furthermore, Pf(BI) will
denote its Pfaffian. Then, with the input from above, we can prove the following
result.

http://dx.doi.org/10.1007/978-3-319-29351-6_7
http://dx.doi.org/10.1007/978-3-319-29351-6_4
http://dx.doi.org/10.1007/978-3-319-29351-6_4


5.7 The Range of the Pairings and Higher Gap Labelling 141

Theorem 5.7.1 Let I, J ⊂ {1, . . . , d} be increasingly ordered sets of even cardinal-
ity. Then the generators eJ of K0(AB,d) presented in Sect.4.2.3 and the cocycles ξI

pair as follows:

〈[ξI ], [eJ ]0
〉 = 0 , I \ J �= ∅ , (5.38)〈[ξI ], [eJ ]0
〉 = 1 , I = J , (5.39)〈[ξI ], [eJ ]0
〉 = (2π)−

1
2 |J\I| Pf(BJ\I) , I ⊂ J . (5.40)

Similarly, for index sets I and J of odd cardinality and generators vJ of K1(AB,d)

defined in Sect.4.2.3, one has

〈[ξI ], [vJ ]1
〉 = 0 , I \ J �= ∅ , (5.41)〈[ξI ], [vJ ]1
〉 = 1 , I = J , (5.42)〈[ξI ], [vJ ]1
〉 = (2π)−

1
2 |J\I| Pf(BJ\I) , I ⊂ J (5.43)

Proof First of all, the generators eJ and vJ are all in C1(Fd), which follows auto-
matically from the their explicit construction. Then, (5.38) follows from the fact that
when i ∈ I \ J , the cocycle involves a derivative ∂i for which ∂ieJ = 0 because eJ

only lies in the algebra generated by uj with j ∈ J , see Sect. 4.2.3. Similarly, one
argues for (5.41).

Next, let us show (5.39) and (5.42). These pairings are the strong pairings over the
algebra AB,|I|. For J = ∅, 〈ξ∅, e∅〉 = 1 because the trace is normalized. Now (5.42)
for J = {1} can be studied as a paring onA1. As [v{1}]1 = [u1]1 and ∂1u1 = −iu1 by
(3.47), one finds from the definition (5.9)

〈[ξ{1}], [v{1}]1
〉 = i T(u∗

1∂1u1) = 1 .

The pairing (5.39) for J = {1, 2} can be deduced via the bulk-boundary correspon-
dence (5.21) combined with the defining relation (4.35) of the generators

〈[ξ{1,2}], [eJ ]0
〉 = 〈[ξ{1,2}],Exp−1[v{1}]1

〉 = 〈[ξ{1}], [v{1}]1
〉 = 1 .

If we now assume that (5.42) is true for some I with |I| odd and j is larger then any
index in I , then one infers from (4.35) and the bulk-boundary principle (5.25)

〈[ξI∪{j}], [eI∪{j}]0
〉 = 〈[ξI∪{j}],Exp−1

j [vI ]1
〉 = 〈[ξI ], [vI ]1

〉 = 1 .

Likewise, if (5.39) holds for some I with |I| even, then from (4.35) and (5.26),

〈[ξI∪{j}], [vI∪{j}]0
〉 = 〈[ξI∪{j}],−Ind−1

j [vI ]1
〉 = 〈[ξI ], [eI ]1

〉 = 1 .

http://dx.doi.org/10.1007/978-3-319-29351-6_4
http://dx.doi.org/10.1007/978-3-319-29351-6_4
http://dx.doi.org/10.1007/978-3-319-29351-6_4
http://dx.doi.org/10.1007/978-3-319-29351-6_3
http://dx.doi.org/10.1007/978-3-319-29351-6_4
http://dx.doi.org/10.1007/978-3-319-29351-6_4
http://dx.doi.org/10.1007/978-3-319-29351-6_4
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Now let us consider (5.40) as a weak pairing in AB,|J|. Then by Theorem5.6.3
one has for any pair partition (p1, . . . , pk) of J \ I

∂Bp1
. . . ∂Bpk

〈[ξI ], [eJ ]0
〉 = 1

(2π)k

〈[ξ{p1,...,pk}∪I ], [eJ ]0
〉
.

After re-ordering the indices in the increasing order,

∂Bp1
. . . ∂Bpk

〈[ξI ], [eJ ]0
〉 = 1

(2π)k ηp1,...,pk

〈[ξJ ], [eJ ]0
〉
, (5.44)

whereηp1,...,pk is the sign of the permutationwhich arranges {p1, . . . , pk} in an increas-
ing order. Furthermore, derivatives w.r.t.Bi,j with i and j either in I or appearing twice
vanish. In order to avoid redundancies, we only consider pairs pl = (il, jl) satisfying
il < il+1 and il < jl. All these facts imply that

〈[ξI ], [eJ ]0
〉
is a polynomial in the

magnetic field components of the form

〈[ξI ], [eJ ]0
〉 =

k∑
l=0

∑
(p1,...,pl)

α(l)
p1,...,pl

Bp1 . . . Bpl ,

where the sum runs over pair partitions of subsets of J \ I of cardinality 2l with pairs
pl = (il, jl) satisfying il < il+1 and il < jl, and the α(l)

p1,...,pl
are complex coefficients.

Let us first show that all lower coefficients with l < k actually vanish. They are given
by

α(l)
p1,...,pl

= ∂Bp1
. . . ∂Bpl

〈[ξI ], [eJ ]0
〉∣∣∣

B=0
= 1

(2π)k

〈[ξ{p1,...,pl}∪I ], [eJ ]0
〉∣∣∣

B=0
.

Using the duality of the pairings and the iteration used to construct the generators in
Sect. 4.2.3, the last pairing is given by

〈[ξ{p1,...,pl}∪I ], [eJ ]0
〉 = 〈[ξ∅], [eJ\({p1,...,pl}∪I)]0

〉
.

But as l < k, this is a pairing of the trace with a non-trivial class, hence it vanishes
as B goes to zero by Elliott’s result [60]. The top coefficients α(k)

p1,...,pk
can be read off

from (5.44) so that, as the sum runs over the ordered pair partitions as above,

〈[ξI ], [eJ ]0
〉 = 1

(2π)k

〈[ξJ ], [eJ ]0
〉 ∑

(p1,...,pk)

ηp1,...,pk Bp1 . . . Bpl = 1
(2π)k Pf(BJ\I) .

For (5.43) one can proceed similarly. �

Theorem5.7.1 immediately implies the following generalization of the results
from [23, 60, 159] which deal with the case I = ∅. Our new result, applied to solid
state systems, provides a gap labelling by higher invariants.

http://dx.doi.org/10.1007/978-3-319-29351-6_4
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Corollary 5.7.2 The image Ran(ξI) of the index pairings with a cocycle ξI on AB,d

is given by

Ran(ξI) = Z +
∑
I⊂J

(2π)−
1
2 |J\I| Pf(BJ\I) Z ,

where the sum goes only over J’s with |J| even.



Chapter 6
Index Theorems for Solid State Systems

Abstract The values of the parings between cyclic cohomology and K -theory have
already been determined in Sect. 5.7 and only the strong topological invariants take
integer values in general. In this chapter index theorems are proved for these strong
invariants which allow to extend this integrality to the regime with mobility gap. For
this purpose it is first shown how cyclic cocycles obtained from Fredholm modules
pair integrally with K -theory.When combinedwith a local index formula, this allows
to prove the integrality of the strong topological invariants and to establish their
stability underMBGH.Furthermore, the delocalized nature of surface states is proved
for non-trivial topological insulators.

6.1 Pairing K -Theory with Fredholm Modules

This section, essentially taken from [47], reviews the definition of (bounded) Fred-
holm modules and how they pair with K -theory.

Definition 6.1.1 Let A be a C∗-algebra. An even Fredholm module (π,H, F, γ )

overA consists of a representation π ofA on a Hilbert spaceH, a bounded operator
F and a grading operator γ onH satisfying γ ∗ = γ and γ 2 = 1, such that:

(i) F∗ = F,

(ii) F2 = 1,

(iii) For all a ∈ A, [F, π(a)] ∈ K(H) is compact,
(iv) γπ(a) = π(a)γ for all a ∈ A,
(v) γ F = −Fγ.

An odd Fredholm module (π,H, F) over a C∗-algebra A is defined by just the
first three properties (i)-(iii). For an even Fredholm module, the operator F is off-
diagonal in the spectral representation of the grading γ and the off-diagonal is a

© Springer International Publishing Switzerland 2016
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unitary operator G which will also be called the Dirac unitary:

F =
(
0 G∗
G 0

)
, γ =

(
1 0
0 −1

)
. (6.1)

The restrictions of π to the spectral subspaces of γ are also denoted by π .

Let us point out the similarities of the operator F , G and γ with the flat band
Hamiltonian sgn(H), the Fermi unitary UF an the chiral symmetry J respectively.
Thus in the terminology of symmetries, one could refer to an even Fredholm module
also as an odd Fredholm module with chiral symmetry γ . For the index calcula-
tion below, it is important to impose further traceclass conditions on the Fredholm
modules.

Definition 6.1.2 A Fredholmmodule is said to be n-summable over a dense Fréchet
sub-algebra A ∈ A if [F, π(a)] belongs to the nth Schatten class for all a in A :

Tr
(∣∣[F, π(a)]∣∣n

)
< ∞ . (6.2)

Given an (n + 1)-summable Fredholm module one can build up a quantized cal-
culus consisting of a graded algebra

Ω =
⊕

Ωk , Ωk = span{a0[F, a1] · · · [F, ak] : a j ∈ A } ,

furnished with an external differentiation

Ωk � η �→ dη = Fη − (−1)kηF ∈ Ωk+1 ,

and a closed graded trace:

Ωn � η �→ Tr′{η} =
{

1
2 Tr(γ Fdη) , for an even Fredholm module ,

1
2 Tr(Fdη) , for an odd Freholm module .

Proposition 6.1.3 ([47], p. 295–296)Given an (n + 1)-summable Fredholm module
over A which is even for n even and odd for n odd, define

ζn(a0, a1, . . . , an) = �n Tr′
(
π(a0)[F, π(a1)] · · · [F, π(an)]

)
, (6.3)

where

�n = (−1)
n
2 for n even , �n = (−1)

n+1
2 2−n for n odd .

Then ζn is a cyclic n-cocycle over A . Its cohomology class is called the nth even
Connes-Chern character of the Fredholm module and will be denoted byChn(H, F).
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The Connes-Chern characters pair integrally with the K -groups via indices of
Fredholm operators on H:

(i) Even Connes-Chern characters pair with K0(A):

〈Chn(H, F), [e]0 − [s(e)]0〉 = Ind
(
π(e) G π(e)

)
∈ Z , (6.4)

where G is defined by (6.1) and it is understood that, on the r.h.s., the represen-
tative e for the class [e]0 was taken from A and π(e)Gπ(e) is an operator on
the range of π(e).

(ii) Odd Connes-Chern characters pair with K1(A):

〈Chn(H, F), [v]1〉 = Ind
(

E π(v) E
)

∈ Z , (6.5)

where E is the projection E = 1
2 (1 + F). It is understood that, on the r.h.s., the

representative v of the class [v]1 was taken from A and Eπ(v)E is an operator
on the range of E.

Remark 6.1.4 The constants Γn are chosen as in [113] (see pp. 174 and 176), but
note that our super-trace Tr′ differs by a factor 1

2 . �
The (n + 1)-summability condition implies theCalderon-Fedosov conditions [33,

66], namely for even n

Tr
(
π(e) − (

π(e) G∗ j π(e)
)(

π(e) G∗ j+1 π(e)
)∗)m

< ∞ , j = 0, 1 ,

and for odd n

Tr
(

E − (
E π(v)∗ j E

)(
E π(v)∗ j+1 E

))m
< ∞ , j = 0, 1 ,

wherem is any integer larger or equal to 1
2 (n + 1). The summability condition ensures

that these operators belong to the Fredholm class and, moreover, allows to calculate
the Fredholm index using the Calderon-Fedosov formula [33, 66] which leads to the
proof of Proposition 6.1.3 (see also [113] for a detailed derivation). These traceclass
estimates are relevant for Sect. 6.5.

6.2 Fredholm Modules for Solid State Systems

Fredholm modules in the sense of Definition 6.1.1 are typically obtained from so-
called K -cycles consisting of a representation and an unbounded Dirac operator
satisfying certain properties. K -cycles are also called spectral triples or unbounded
Fredholm modules. We will not build up the full formalism in this section [47, 75],
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but rather directly present the natural Dirac operators for condensed matter systems
and show how they lead to summable even and odd Fredholm modules over the
algebras Ad and Ed of bulk and boundary observables. This implements Connes’
program for solid state systems.

Let us first comment on how these structures came to be. In the non-commutative
geometry of the IQHE in two space dimensions [18, 20, 47], the construction of the
(even) Fredholm module starts from the unitary transformation

G = X1 + iX2

|X1 + iX2| ,

where X1 and X2 are the self-adjoint position operators on �2(Z2) and G|0〉 = |0〉.
This unitary describes the effect of a magnetic tube flux threaded through the lattice
at the origin [12, 20], see also [56]. The operator F and the grading are then defined
as in (6.1). The Fredholm module described above can be recast in a form which
pertains to higher dimensional extensions:

F = σ1X1 + σ2X2

|σ1X1 + σ2X2| ,

and γ = σ3, with σi ’s being the Pauli matrices. Hence the operator F is nothing else
but the sign of the self-adjoint Dirac operator D = σ1X1 + σ2X2 on C

2 ⊗ �2(Z2).
After Fourier transform, D takes the more familiar form 〈(σ1, σ2),∇k〉 of the Dirac
operator on the two-torus of the momentum space, and the grading is the natural
grading of the complex Clifford algebra Cl2 given by σ3 = −iγ1γ2. It is now quite
apparent how to extend the Dirac operator in the position representation and the
associated the Fredholm module to higher space dimensions, both even and odd.

Let us first focus on the Fredholmmodules for the bulk algebras. In the following,
γ and σ represent the generators of the irreducible representations of the even and
odd Clifford algebras, respectively, with the CCR strictly enforced. Also, we recall
that the sign function is defined as sign(t) = ±1 for strictly positive/negative t and
sign(0) = 0.

Proposition 6.2.1 Let x0 be a shift taking values in the open cube Cd = (0, 1)d .

(i) For even space dimensions d = 2k, let

Dx0 : C2k ⊗ �2(Zd) → C
2k ⊗ �2(Zd) , Dx0 =

d∑
i=1

γi ⊗ (Xi + x0,i ) ,

be the shifted self-adjoint Dirac operator. Then

Feven =
(
id ⊗ πω,C2k ⊗ �2(Zd), sgn(Dx0), γ0 ⊗ 1

)
(x0,ω)∈Cd×Ω

defines a field of even Fredholm modules over Ad .
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(ii) For odd space dimensions d = 2k + 1, let

Dx0 : C2k ⊗ �2(Zd) → C
2k ⊗ �2(Zd) , Dx0 =

d∑
i=1

σi ⊗ (Xi + x0,i ) ,

be the shifted self-adjoint Weyl operator. Then

Fodd =
(
id ⊗ πω,C2k ⊗ �2(Zd), sgn(Dx0)

)
(x0,ω)∈Cd×Ω

defines a field of odd Fredholm modules over Ad .

In the following, we will use the conventions

sgn(Dx0) = Fx0 , id ⊗ πω = πω , γ0 ⊗ 1 = γ0 , (6.6)

as well as Ex0 = 1
2 (1 + Fx0) and Gx0 as in (6.1). To further compactify notations, we

will use ν = (γ1, . . . , γd) for d even, and ν = (σ1, . . . , σd) for d odd. Furthermore,
the standard basis for C2k ⊗ �2(Zd) will be denoted by |α〉 ⊗ |x〉. If A is an operator
on this Hilbert space, then 〈x |A|y〉 will be understood as the 2k × 2k matrix and
|〈x |A|y〉| will represent the operator norm of the matrix.

Proof Items (i), (ii), (iv) and (v) of Definition 6.1.1 are satisfied by construction
because the spectra of the Dirac and Weyl operators do not contain the origin due
to the shift x0. Let us now concentrate at point (iii) of Definition 6.1.1. Since the
algebra of compact operators is closed in the operator norm, it is enough to consider
only polynomials

∑
y p(y)uy from Ad . Then

[Fx0 , πω(uy)] = (
Fx0 − Fx0−y

)
πω(uy) .

The matrix elements of Fx0 − Fx0−y are diagonal,

〈x |Fx0 − Fx0−y|x ′〉 = δx,x ′
(
sgn〈ν, x + x0〉 − sgn〈ν, x − y + x0〉

)
,

where the sign functions act on Hermitean matrices as usual. As

sgn〈ν, x〉 − sgn〈ν, x − y〉 ∼ |x |−1
〈
ν, y + |x |−2〈x, y〉x 〉

, for |x | → ∞ ,

(6.7)
the diagonal elements of the diagonal operator Fx0 − Fx0−y decay to zero. Hence it
is compact. �

In order to define the Connes-Chern characters, the Fredholm modules must be
finitely summable. Hence, the following somewhat technical statement is important.
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Lemma 6.2.2 The families of Fredholm modules Feven and Fodd are n-summable
over the Fréchet algebra Ad for any n ≥ d + 1.

Proof Let a = ∑
y a(y)uy ∈ Ad and recall that a(y) are continuous functions of ω.

Due to theMinkovski inequality for the Schatten norms and the usual decomposition
a = ar + iai , where ar = 1

2 (a + a∗) and ai = 1
2i (a − a∗) are the real and imaginary

parts of a, respectively, it is sufficient to consider the case a = a∗. Recall that 〈x | · |x ′〉
is viewed as a matrix, which in this context is from MQ(C) with Q the dimension
of the space for the irreducible representations of the Clifford algebras. We will first
show that ∑

x ′∈Zd

‖〈x |[Fx0 , πω(a)]k |x ′〉‖(1) ≤ const · |x + x0|−k , (6.8)

for any positive integer k, where we recall that ‖ · ‖(n) represents the n-Schatten
norm. Let us denote the l.h.s. of (6.8) by Y . Let us write out the commutator

〈x |[Fx0 , πω(a)]|y〉 = ei〈x−y|B+|y〉a(τxω, x − y)
(
sgn〈ν, x + x0〉 − sgn〈ν, y + x0〉

)
.

When raising the commutator to power k, one generates convolutions over the lattice
sites accompanied by shifts of ω and Peierls factors. As such, the following upper
bound can be readily derived

Y ≤ Q
∑

x1,...,xk+1∈Zd

δx1,0

k∏
i=1

|a(τxi ω, xi − xi+1)|

· ∣∣sgn〈ν, xi + x + x0〉 − sgn〈ν, xi+1 + x + x0〉
∣∣ ,

where | · | represents the matrix norm (same as absolute value if the matrix is one-
dimensional). Due to the asymptotic behavior in Eq. (6.7), the supremum

S(y, y′) = sup
x∈Rd

|x | ∣∣sgn〈ν, y + x〉 − sgn〈ν, y′ + x〉∣∣

is finite. Since the sign function is invariant to scaling by scalars, the homogeneity
S(sy, sy′) = s S(y, y′) holds for all s ∈ R+. Taking s = (|y| + |y′|)−1, one con-
cludes

S(y, y′) ≤ (|y| + |y′|) sup
|x |+|x ′ |=1

S(x, x ′) .

Returning to Y , this gives

Y ≤ const · |x + x0|−k
∑

x1,...,xk+1∈Zd

δx1,0

k∏
i=1

(|xi | + |xi+1|) |a(τxi ω, xi − xi+1)| .
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Wenowmake the change of variables yi = xi+1 − xi , i = 1, . . . , k, and since x1 = 0,

xi+1 = yi + · · · + y1 =⇒ |xi+1| ≤
k∏

j=1

(1 + |y j |) .

Then let us continue with

Y ≤ const · |x + x0|−k
∑

y1,...,yk∈Zd

k∏
i=1

(1 + |yi |)k |a(τxi ω, yi )| , (6.9)

and furthermore

Y ≤ const · |x + x0|−k
( ∑

y∈Zd

(1 + |y|)k sup
ω∈Ω

|a(ω, y)|
)k

.

The sum is finite due to (3.57) and this concludes the proof of (6.8). Now, since a is
self-adjoint, i[Fx0 , πω(a)] is self-adjoint and

∣∣[Fx0 , πω(a)]∣∣d+1 = (
i[Fx0 , πω(a)])d+1

U ,

with U = sgn
(
i[Fx0 , πω(a)])d+1

a unitary operator. Of course, for d odd, U is just
the identity. Then

Tr
(∣∣[Fx0 , πω(a)]∣∣d+1

)
≤

∑
x∈Zd

∑
x ′∈Zd

‖〈x |(i[Fx0 , πω(a)])d+1|x ′〉〈x ′|U |x〉‖(1)

and, by using |〈x ′|U |x〉| ≤ 1 together with (6.8),

Tr
(∣∣[Fx0 , πω(a)]∣∣d+1

)
≤ const ·

∑
x∈Zd

|x + x0|−d−1 < ∞ ,

and (d + 1)-summability follows. �

The proof shows that the summability condition for both Feven and Fodd will not
hold for integers lower than d + 1. Hence, the lowest Connes-Chern characters that
can be defined for Feven and Fodd are Chd . This makes out the difference between
the strong and the weak Chern numbers. Let us now collect the main conclusion for
the topological invariants following from the pairing of the Fredholm modules and
K groups of Ad .

Theorem 6.2.3 The dth Connes-Chern characters

ζd(a0, a1, . . . , ad) = �d Tr
′
(
πω(a0)[Fx0 , πω(a1)], . . . , [Fx0 , πω(ad)]

)

http://dx.doi.org/10.1007/978-3-319-29351-6_3
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are well defined over Ad for both Feven and Fodd. They pair integrally with the
K -groups of Ad as described in Proposition 6.1.3. In particular:

(i) If d is even and h ∈ MN (C) ⊗ Ad is a short-range Hamiltonian for which BGH
applies, then

(tr ⊗ ζd)
(

pF , . . . , pF
) = Ind

(
PωGx0 Pω

)
,

where Pω = πω(pF ) = χ(Hω ≤ μ) is the physical representation of the Fermi
projection pF at disorder configuration ω.

(ii) If d is odd and h ∈ M2N (C) ⊗ Ad is a short-range Hamiltonian for which BGH
and CH apply, then

(tr ⊗ ζd)
(
u∗

F − 1N , . . . , uF − 1N
) = Ind

(
Ex0Uω Ex0

)
,

where Uω = πω(uF ) is the physical representation of the Fermi unitary uF at
disorder configuration ω.

In both odd and even cases, the Fredholm indices are independent of ω or x0.

We now turn our attention to the Fredholm modules over the boundary algebra
Ed . Since Ed � Ad−1 ⊗ K, the analysis and the results and proofs are quite similar
to that for the bulk algebra except for the shift from even to odd and odd to even.
In accordance with the above, we use tildes on the notations such as (6.6). In an
analogous manner to Proposition 6.2.1 one first checks the following.

Proposition 6.2.4 Let x̃0 be a shift taking values in the open cube Cd−1.

(i) For even space dimensions d = 2k, let σ̃i be the irreducible representation of the
complex Clifford algebra Cl2k−1 on C

2k−1
(with the same conventions as for the

bulk), and let the shifted self-adjoint Weyl operator D̃x0 onC2k−1 ⊗ �2(Zd−1 × N)

be defined as

D̃x0 =
d−1∑
i=1

σ̃i ⊗ (Xi + x̃0,i ) .

Then

F̃odd =
(
id ⊗ π̃ω,C2k−1 ⊗ �2(Z2 × N), sgn(D̃x̃0)

)
(x̃0,ω)∈Cd−1×Ω

defines a field of odd Fredholm modules over Ed .
(ii) For odd space dimensions d = 2k + 1, let γ̃i be the irreducible representation of

the complex Clifford algebra Cl2k on C
2k

(with the same conventions as for the
bulk), and let the shifted Dirac operator D̃x̃0 on C

2k ⊗ �2(Z2 × N) be defined
by

D̃x0 =
d−1∑
i=1

γ̃i ⊗ (Xi + x̃0,1) .
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Then

F̃even =
(
id ⊗ π̃ω,C2k ⊗ �2(Z2 × N), sgn(D̃x̃0), γ̃0 ⊗ 1

)
(x̃0,ω)∈Cd−1×Ω

,

defines a field of even Fredholm modules over Ed .

Next let us spell out the summability properties of these Fredholm modules.

Lemma 6.2.5 The families of Fredholm modules F̃even and F̃odd are n-summable
over the smooth sub-algebra Ed for any n ≥ d.

Proof First recall that elements in Ed are of the form

ã =
∑

n,m∈N

∑
x∈Zd−1

ãn,m(ω, x)û y(ûd)
nê(û∗

d)
m

with continuous functions ãn,m(ω, x) inω of rapid decayw.r.t. n,m and x (see Propo-
sition 3.3.4). It is convenient to form thematrix ã(ω, y) out of the Fourier coefficients
ãn,m(ω, y). We will still view 〈x | and |x〉 for x ∈ Z

d−1 as partial isometries, so that
〈x |[F̃x0 , π̃ω(ã)]|y〉 is a matrix from MQ(C) ⊗ K with Q the dimension of the space
of irreducible representations of the Clifford algebras. One can again write out the
commutators explicitly:

〈x |[F̃x0 , π̃ω(ã)]|y〉 = eiφ
(
sgn〈ν, x + x̃0〉 − sgn〈ν, y + x̃0〉

)
⊗ ã(τx,nω, x − y) ,

where eiφ is the Peierls factor ei〈x−y|B+|y〉. The structure of this commutator is very
similar to the one appearing in Lemma 6.2.2, hence the estimate

∑
x ′∈Zd−1

‖〈x |[F̃x̃0 , π̃ω(ã)]k |x ′〉‖(1) ≤ const · |x + x0|−k (6.10)

can be proved by applying identical steps as in the proof of (6.8). Indeed, let us again
denote the l.h.s. by Y . Then,

Y ≤
∑

x1,...,xk+1∈Zd−1

δx1,0

∥∥∥
k∏

i=1

(
sgn〈ν, xi + x + x0〉 − sgn〈ν, xi+1 + x + x0〉

)

⊗ a(τxi ω, xi − xi+1)

∥∥∥
(1)

.

By employing the asymptotics from Lemma 6.2.2 and Hölder’s inequality for the
Schatten norms, we arrive at

Y ≤ const

|x + x0|k
∑

y1,...,yk∈Zd−1

k∏
i=1

(1 + |yi |)k ‖ã(ωi , yi )‖(k) (6.11)

http://dx.doi.org/10.1007/978-3-319-29351-6_3
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where ωi are translates of ω and y1 = xi − xi+1 for i = 1, . . . k. This can be further
processed as

Y ≤ const

|x + x0|k
( ∑

y∈Zd−1

(1 + |y|)k sup
ω∈Ω

‖ã(ω, y)‖(k)

)k
,

and the sum inside the pharanteses is finite due to the rapid decay of the Fourier
coefficients ãn,m(ω, y), see (3.58). This concludes the proof of (6.10). Now, take ã
self-adjoint and consider the decomposition

∣∣[F̃x̃0 , π̃ω(ã)]∣∣d = (
i[F̃x̃0 , π̃ω(ã)])d

Ũ ,

with Ũ a unitary operator. Then

Tr
(∣∣[F̃x̃0 , π̃ω(ã)]∣∣d

)
≤

∑
x∈Zd−1

∑
x ′∈Zd−1

∥∥〈x |(i[F̃x0 , π̃ω(ã)])d |x ′〉〈x ′|Ũ |x〉∥∥
(1)

and, by using |〈x ′|U |x〉| ≤ 1 together with the generic properties of the Schatten
norms and (6.10),

Tr
(∣∣[F̃x̃0 , π̃ω(ã)]∣∣d

)
≤ const ·

∑
x∈Zd−1

|x + x0|−d < ∞ ,

and d-summability follows. �

Below, we summarize the properties of the boundary topological invariants result-
ing from the pairing of the Fredholm modules and the K groups of Ed .

Theorem 6.2.6 The (d − 1)th Connes-Chern characters

ζ̃d−1(ã0, ã1, . . . , ãd) = �d−1 Tr
′
(
π̃ω(ã0)[F̃x̃0 , π̃ω(ã1)], . . . , [F̃x̃0 , π̃ω(ãd−1)]

)

are well-defined over Ed for both F̃even and F̃odd. They pair integrally with the K -
groups of Ed as described in Proposition 6.1.3. In particular:

(i) If d is even and ĥ = (h, h̃) ∈ MN (C) ⊗ Âd is a short-range half-space Hamil-
tonian such that BGH holds, then

(tr ⊗ ζ̃d−1)
(
ũ∗

Δ − 1N , . . . , ũΔ − 1N
) = Ind

(
Ẽx0Ũω Ẽx0

)
,

where ũΔ is the unitary operator defined in Eq. (4.42) and

Ũω = π̃ω(ũΔ) = e2π i fExp(Ĥω)

http://dx.doi.org/10.1007/978-3-319-29351-6_3
http://dx.doi.org/10.1007/978-3-319-29351-6_4
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is a physical representation at disorder configuration ω. Recall that fExp is a
smooth function with fExp = 1below and fExp = 0above the bulk insulating gap.

(ii) If d is odd and ĥ = (h, h̃) ∈ M2N (C) ⊗ Âd is a short-range Hamiltonian such
that BGH and CH apply, then

(tr ⊗ ζ̃d−1)
(

p̃Δ − s( p̃Δ), . . . , p̃Δ − s( p̃Δ)
) = Ind

(
P̃ωG̃x0 P̃ω

)

where p̃Δ is the projection defined in Eq. (4.44) and

P̃ω = π̃ω(pΔ) = 1
2 Ĵ

(
eiπ fInd(Ĥω) + 12N

) + diag(0N , 1N )

is a physical representation at disorder configuration ω. Here fInd is a smooth
odd functions with fInd = ±1 above/below the bulk insulating map.

In both even and odd cases, the Fredholm indices are independent of ω and x̃0.

The above result has the following important physical consequence.

Corollary 6.2.7 Assume that the boundary invariants defined in Theorem 6.2.6 are
not zero. Then the Fermi level must be located in the essential spectrum ĥ.

Proof Indeed, if the Fermi level is located in a gap of the essential spectrum of ĥ,
then we can choose fExp and fInd such that the support of their derivative is contained
entirely inside this gap. In this case, the Fredholm operators are compact, hence have
zero index. �

Since for solid state systems from the unitary class the Fermi level can be located
anywhere inside the bulk gap, it follows that, if the invariant defined in Theorem 6.2.6
is not zero, then the essential spectrum of ĥ must fill the bulk gap Δ entirely. For
solid state system from the chiral unitary class, the Fermi level is constrained to be
at the origin, hence the above result assures that, whenever the invariant defined in
Theorem 6.2.6 is not zero, ĥ has essential spectrum at the origin. Note, however,
that, as of yet, we cannot make any assertion about the nature of the spectrum at the
Fermi level.

6.3 Equality Between Connes-Chern and Chern Cocycles

The Connes-Chern characters from Theorem 6.2.3 and the Chern cocycles defined
in Theorems 5.2.3 and 5.3.1 in Chap.5 look very different from one another. The
Chern cocycle is local in nature in the sense that it involves only derivations and
no convolutions. In contradistinction, the Connes-Chern cocycle is non-local as it
involves a convolution with the non-local kernel of Fx0 = sgn(Dx0).

http://dx.doi.org/10.1007/978-3-319-29351-6_4
http://dx.doi.org/10.1007/978-3-319-29351-6_5
http://dx.doi.org/10.1007/978-3-319-29351-6_5
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Theorem 6.3.1

(i) For odd or even space dimensions, ξd = (−1)d ζd over Ad .

(ii) For odd or even space dimensions, ξ̃d−1 = (−1)d−1 ζ̃d−1 over Ed .

Proof There are four cases to be covered and inherently there will be repetitive argu-
ments. Common to all is the observation that the fields of covariant representations
over the smooth sub-algebras are continuous as functions of ω and F operators are
norm-continuous of x0. As a consequence [46], the Connes-Chern cocycles at dif-
ferent ω and x0 belong to the same cohomology class. Hence the average over ω

and x0 is still a representative for the same cohomology class. Another useful fact
is that the cocycles are continuous over Ad or Ed , hence it is enough to prove the
equalities for polynomials which form dense subsets in these algebras. Henceforth,
all the arguments of the cocycles below are assumed polynomial. Another common
feature of the proofs are the use of two geometric identities (one in each case) which
are presented in Lemma 6.4.1.

(i) The d even case for the bulk invariant. From the definition,

ζd = 1
2�d

∫
Cd

dx0

∫
Ω

P(dω)
∑
x∈Zd

tr
(
γ0〈x |Fx0

d∏
i=0

[Fx0 , πω(ai )]|x〉
)

, (6.12)

and we use the magnetic translations to shift all the C2k
fibers to the origin,

ζd = 1
2�d

∫
Cd

dx0

∫
Ω

P(dω)
∑
x∈Zd

tr
(
γ0〈0|Fx0+x

d∏
i=0

[Fx0+x , πτx ω(ai )]|0〉
)

.

The Fredholm module is (d + 1)-summable, hence the sums and the integrals above
are absolute convergence and we can interchange them. Then one can use the invari-
ance of P(dω) to replace τxω by ω. After that, let us combine the summation over x
with the integral over x0 to write:

ζd = 1
2 �d

∫
Rd

dx
∫

Ω

P(dω) tr
(
γ0〈0|Fx

d∏
i=0

[Fx , πω(ai )]|0〉
)

.

Writing out the commutator [Fx , πω(a0)] and using the cyclic property of the trace as
well as Fx [Fx , πω(a)] = −[Fx , πω(a)]Fx , F2

x = 1 and γ0Fx = −Fxγ0, we arrive at

ζd = �d

∫
Rd

dx
∫

Ω

P(dω) tr
(
γ0〈0|πω(a0)

d∏
i=1

[Fx , πω(ai )]|0〉
)

.



6.3 Equality Between Connes-Chern and Chern Cocycles 157

Next we insert partitions of unity using the projections �x = 12k ⊗ |x〉〈x |:

ζd = �d

∫
Rd

dx
∫

Ω

P(dω)
∑

xi ∈Zd

tr
(
γ0〈0|πω(a0)

d∏
i=1

�xi [Fx , πω(ai )]|0〉
)

.

Since ai are polynomials, the sums over xi contain finite number of terms and they
can be interchanged with the integrals, to continue

ζd = �d

∑
x1,...,xd∈Zd

∫
Rd

dx tr
(
γ0

d∏
i=1

(
sgn〈γ, xi + x〉 − sgn〈γ, xi+1 + x〉))

·
∫

Ω

P(dω) 〈0|πω(a0)

d∏
i=1

�′
xi
πω(ai )|0〉 ,

where�′
x = |x〉〈x | and πω is just the representation on �2(Zd). Also, in the first line,

it is understood that xd+1 is fixed at the origin. We now use the first identity from
Lemma 6.4.1 to deduce

ζd = id Λd

∑
x1,...,xd∈Zd

∑
ρ∈Sd

(−1)ρ
d∏

i=1

xi,ρi

∫
Ω

P(dω) 〈0|πω(a0)

d∏
i=1

�′
xi
πω(ai )|0〉 ,

where we already combined the normalization constants. Next we combine the sum
over xi with the projections �′

xi
to form the position operators

ζd = id Λd

∑
ρ∈Sd

(−1)ρ
∫
Ω

P(dω)〈0|πω(a0)

d∏
i=1

Xρi πω(ai )|0〉 .

Due to the anti-symmetrizing factor (−1)ρ , one can actually form commutators:

ζd = Λd

∑
ρ∈Sd

(−1)ρ
∫
Ω

P(dω)〈0|πω(a0)

d∏
i=1

i[Xρi , πω(ai )]|0〉

= Λd

∑
ρ∈Sd

(−1)ρ
∫
Ω

P(dω)〈0|πω

(
a0

d∏
i=1

∂ρi ai

)
|0〉 .

Here one can recognize the trace T over Ad and the statement follows.

(i) The d odd case for the bulk invariants. We only highlight the main points.
From definition and after a few elementary steps
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ζd = 1
2 �d

∫
Cd

dx0

∫
Ω

P(dω)
∑
x∈Zd

tr
(
〈0|Fx0+x

d∏
i=0

[Fx0+x , πτx ω(ai )]|0〉
)

, (6.13)

As before, this can be processed to

ζd = �d

∫
Rd

dx
∫

Ω

P(dω) tr
(
〈0|πω(a0)

d∏
i=1

[Fx , πω(ai )]|0〉
)

,

and by inserting the partitions of unity

ζd = �d

∑
x1,...,xd∈Zd

∫
Rd

dx tr
( d∏

i=1

(
sgn〈σ, xi + x〉 − sgn〈σ, xi+1 + x〉))

·
∫
Ω

P(dω) 〈0|πω(a0)

d∏
i=1

�′
xi
πω(ai )|0〉 .

We now use the second identity from Lemma 6.4.1,

ζd = − idΛd

∑
xi ∈Zd

∑
ρ∈Sd

(−1)ρ
d∏

i=1

xi,ρi

∫
Ω

P(dω) 〈0|πω(a0)

d∏
i=1

�′
xi
πω(ai )|0〉

and combine the sum over xi with the projections �′
i to form the position operators,

then the commutators,

ζd = −Λd

∑
ρ∈Sd

(−1)ρ
∫
Ω

P(dω)〈0|πω(a0)

d∏
i=1

i[πω(ai ), Xρi ]|0〉 .

The statement now follows.

(ii) The d odd case for the boundary invariants. From the definition of the even
Connes-Chern cocycle for the boundary algebra:

ζ̃d−1 = 1
2�d−1

∫
Cd−1

dx̃0

∫
Ω

P(dω)
∑

x̃∈Zd−1

∑
n∈N

tr
(
γ̃0〈0, n|F̃x̃0+x̃

d−1∏
i=0

[F̃x̃0+x̃ , π̃τx̃ ω(ãi )]|0, n〉
)

, (6.14)

where the magnetic translations parallel to the boundary were used to shift the fibers.
The Fredholm modules are summable, hence the sums and the integrals above are
absolute convergence and we can interchange them. In this case, one can use the
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invariance of P(dω) to replace τx̃ω by ω. After that, we can combine the summation
over x̃ with the integral over x̃0 to write:

ζ̃d−1 = 1
2 �d−1

∫
Rd−1

dx̃
∑
n∈N

∫
Ω

P(dω) tr
(
γ̃0〈0, n|F̃x̃

d−1∏
i=0

[F̃x̃ , π̃ω(ãi )]|0, n〉
)

.

Repeating the manipulations performed for the odd bulk case,

ζ̃d−1 = �d−1

∫
Rd−1

dx̃
∑
n∈N

∫
Ω

P(dω) tr
(
γ̃0〈0, n|π̃ω(ã0)

d−1∏
i=1

[F̃x̃ , π̃ω(ãi )]|0, n〉
)

.

Next we insert partitions of unity using the projections �x̃,n = 12k ⊗ |x̃, n〉〈x̃, n|:

ζ̃d−1 = �d−1

∑
n∈N

∫
Rd−1

dx̃
∑
n∈N

∫
Ω

P(dω)
∑

x̃i ,ni ∈Zd−1×N

·

· tr
(
γ̃0〈0, n|π̃ω(ã0)

d−1∏
i=1

�x̃i ,ni [F̃x̃ , π̃ω(ãi )]|0, n〉
)

.

Since ãi ’s are polynomials, the sums over (x̃i , ni ) contain a finite number of terms
and we can interchange them and the integrals, to continue

ζ̃d−1 = �d−1

∑
x̃i ,ni ∈Zd−1×N

∫
Rd−1

dx̃ tr
(
γ̃0

d−1∏
i=1

(
sgn〈γ̃ , x̃i + x̃〉 − sgn〈γ̃ , x̃i+1 + x̃〉))·

·
∑
n∈N

∫
Ω

P(dω) 〈0, n|π̃ω(ã0)

d−1∏
i=1

�′
x̃i ,ni

π̃ω(ãi )|0, n〉,

where �′
x̃,n = |x̃, n〉〈x̃, n| and π̃ω is now just the representation on �2(Zd−1 × N).

Also, in the first line, it is understood that (x̃d , nd) is fixed at (0, n). We now use the
first identity from Lemma 6.4.1 with 2k = d − 1

ζ̃d−1 = id−1�d−1

∑
x̃i ,ni ∈Zd−1×N

∑
ρ∈Sd−1

(−1)ρ
d−1∏
i=1

x̃i,ρi ·

·
∑
n∈N

∫
Ω

P(dω) 〈0, n|π̃ω(ã0)

d−1∏
i=1

�′
x̃i ,ni

π̃ω(ãi )|0, n〉 ,
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and combine the sum over (x̃i , ni ) with the projections �′
x̃i ,ni

to form the position
operators, then the commutators,

ζ̃d−1 = �d−1

∑
ρ∈Sd−1

(−1)ρ
∑
n∈N

∫
Ω

P(dω) 〈0, n|π̃ω(ã0)

d−1∏
i=1

i[Xρi , π̃ω(ãi )]|0, n〉

= �d−1

∑
ρ∈Sd−1

(−1)ρ
∑
n∈N

∫
Ω

P(dω) 〈0, n|π̃ω

(
ã0

d−1∏
i=1

∂̃ρi ãi

)
|0, n〉.

On the r.h.s. appears the trace T̃ over Ed and this concludes the proof.

(ii) The d even case for the boundary invariants. This is a combination of the
arguments above and is left to the reader. �

Corollary 6.3.2 (Index Theorems under BGH)

(i) Let d be even and ĥ = (h, h̃) ∈ MN (C) ⊗ Âd be a short-range half-space
Hamiltonian for which BGH applies. Then, for all ω ∈ Ω ,

Chd(pF ) = Ind
(

PωGx0 Pω

)
, (6.15)

where pF is the Fermi projection and Pω = πω(pF ) = χ(Hω ≤ μ) is the phys-
ical representation at disorder configuration ω. Furthermore, for all ω ∈ Ω ,

C̃hd−1(ũΔ) = − Ind
(

Ẽx0Ũω Ẽx0

)
, (6.16)

where ũΔ is the unitary operator defined in Eq. (4.42) and

Ũω = π̃ω(uΔ) = e2π i fExp(Ĥω)

is a physical representation at disorder configuration ω. Here fExp is a smooth
function and fExp = 1 and fExp = 0 below and above the bulk insulating gap
respectively. Lastly, for all ω ∈ Ω , we have the equality

Chd(pF ) = C̃hd−1(ũΔ). (6.17)

(ii) Let d be odd and ĥ = (h, h̃) ∈ M2N (C) ⊗ Âd be a short-range half-space
Hamiltonian for which BGH and CH apply. Then, for all ω ∈ Ω , Then

Chd(uF ) = − Ind
(

Ex0Uω Ex0

)
, (6.18)

http://dx.doi.org/10.1007/978-3-319-29351-6_4
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where uF is the Fermi unitary operator and Uω = πω(uF ) its physical repre-
sentation at disorder configuration ω. Furthermore, for all ω ∈ Ω ,

C̃hd−1( p̃Δ) = Ind
(

P̃ωG̃ x̃0 P̃ω

)
, (6.19)

where p̃Δ is the projection defined in Eq. (4.44) and

P̃ω = π̃ω(pΔ) = 1
2 Ĵ (eiπ fInd(Ĥω) + 12N ) + diag(1N , 0N )

is a physical representation at disorder configuration ω. Recall that fInd is
smooth odd function and fInd = ±1 above/below the bulk insulating map. Lastly,
for all ω ∈ Ω , we have the equality

Chd(uF ) = − C̃hd−1( p̃Δ). (6.20)

For all cases, the Fredholm indices are independent of ω or x0 and the strong invari-
ants remain quantized and invariant under continuous deformations of h as long as
BGH holds.

6.4 Key Geometric Identities

The following identities are direct generalizations [169, 171] of an identity which
played a pivotal role in the non-commutative geometry of IQHE (see [12] and Th. 10
in [20]). In d = 2, the identity is due to Connes (see [46] pp. 81), who originally
used it to compute the Chern characters of the convolution algebras C∞

c (R2) and
C∞

c (SL(2,R)). A more elementary proof was found by Verdiére, and this proof was
reproduced in [1] and served as inspiration for [169, 171].

Lemma 6.4.1 (Key geometric identities)

(i) Let x1, . . . , x2k+1 ∈ R
2k with x2k+1 fixed at the origin and γ1, . . . , γ2k be the

irreducible representation on C
2k

of the complex Clifford algebra Cl2k as given
in the CCR. Then:

∫
R2k

dx tr
(
γ0

2k∏
i=1

(
sgn〈γ, xi + x〉 − sgn〈γ, xi+1 + x〉))

= (2iπ)k

k!
∑

ρ∈S2k

(−1)ρ
2k∏

i=1

xi,ρi . (6.21)

http://dx.doi.org/10.1007/978-3-319-29351-6_4
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(ii) Let x1, . . . , x2k+2 ∈ R
2k+1 with x2k+2 fixed at the origin and σ1, . . . , σ2k+1 be

the irreducible representation on C
2k

of the complex Clifford algebra Cl2k+1 as
given in the CCR. Then:

∫
R2k+1

dx tr
( 2k+1∏

i=1

(
sgn〈σ, xi + x〉 − sgn〈σ, xi+1 + x〉))

= − 22k+1(iπ)k

(2k + 1)!!
∑

ρ∈S2k+1

(−1)ρ
2k+1∏
i=1

xi,ρi . (6.22)

Proof (i) Let us begin by listing a few identities for the γ matrices which follow
from the CCR:

(a) γ0γ1 · · · γ2k = ik12k ;
(b) tr(γ0γρ1 · · · γρq ) = 0 if q even and q < 2k;
(c) tr(γ0γρ1 · · · γρ2k ) = 0 unless ρ is a permutation of 1, 2, . . . , 2k;
(d) tr(γ0γρ1 · · · γρ2k ) = (2i)k(−1)ρ if ρ is such a permutation.

All these identities follow from the defining relations of the Clifford algebra and
our conventions on its representations. As another preparation let us establish the
following basic geometric identity

tr
(
γ0

2k∏
i=1

〈γ, yi 〉
)

= (2i)k(2k)! Vol[0, y1, . . . , y2k] , (6.23)

for any set of points y1, . . . , y2k from R
2k . Above, [y0, y1, . . . , y2k] denotes the

simplex in R
2k corresponding to this set of points and Vol[. . .] the oriented volume

of the simplex. Indeed, expending the r.h.s. of (6.23) and taking into account (c), one
has

tr
(
γ0

2k∏
i=1

〈γ, yi 〉
)

=
∑

ρ∈S2k

y1,ρ1 · · · y2k,ρ2k tr
(
γ0γρ1 · · · γρ2k

)
,

and from (d)

tr
(
γ0

2k∏
i=1

〈γ, yi 〉
)

= (2i)k Det[y1, . . . , y2k] ,

where inside the determinant is the 2k × 2k-matrix with columns y1, . . . , y2k . On
the other hand, the volume of a simplex in R

2k can be computed with the formula

Vol[y0, y1, . . . , y2k] = 1

(2k)! Det
[

y0 y1 . . . y2k

1 1 . . . 1

]
,

hence Eq. (6.23) follows by setting y0 = 0 above.
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For the computation of the l.h.s. of (6.21) let us set

I (x) = tr

(
γ0

2k∏
i=1

(
sgn〈γ, xi − x〉 − sgn〈γ, xi+1 − x〉)

)
.

We will now use the identity sgn〈γ, y〉 = 〈γ, y〉 where y denotes the unit vector
y/|y| for y �= 0. Replacing this and writing all terms one finds that

I (x) =
2k+1∑
j=1

(−1) j+1 tr

(
γ0

〈
γ, x1 − x

〉 · · · 〈γ, x j − x
〉 · · · 〈γ, x2k+1 − x

〉)
,

where the underline designates a factor which is omitted. This holds except for the
cases when x = xi which, however, have no contribution to the integral over x to be
taken below. Now with (6.23)

I (x) = (2i)k (2k)!
2k+1∑
j=1

(−1) j+1 Vol
[
0, x1 − x, . . . , x j − x, . . . , x2k+1 − x

]
.

The vertices can be re-ordered and it is convenient to translate the whole simplex by
x . Taking into account the sign changes due to the re-ordering,

I (x) = (2i)k (2k)!
2k+1∑
j=1

Vol[x + x1 − x, . . . , x, . . . , x + x2k+1 − x] ,

where the vertex x is located in the j th entry. We introduce the notations

S j (x) = [
x + x1 − x, . . . , x, . . . , x + x2k+1 − x

]

and
S = [x1, x2, . . . , x2k+1] ,

and recall that x2k+1 = 0. The orientations of these simplexes are the same because
each S j (x) can be continuously deformed into S without reducing the volume to
zero. Now note that, for arbitrarily selected j , all vertices ofS j (x), except the vertex
x , are located on the unit sphere centered at x . As such, the facets ofS j (x) stemming
from x define a solid angle sector of the unit ball centered at x . This sector will be
denoted by B j (x) and its orientation is taken to be the same as that of S j (x). The
entire unit ball will be denoted byB and its orientation will be taken to be the same
as that of S. One key fact is that

Vol(S j (x)) − Vol(B j (x)) ∼ |x |−(2k+1) , as |x | → ∞ .
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This suggests to break the integral into two terms:

∫
R2k

dx I (x) = (2i)k (2k)!
2k+1∑
j=1

∫
R2k

dx [Vol(S j (x)) − Vol(B j (x))]

+ (2i)k (2k)!
∫
R2k

dx
2k+1∑
j=1

Vol(B j (x)) .

At this point let us note that

∫
R2k

dx [Vol(S j (x)) − Vol(B j (x))] = 0 ,

which is a consequence of the odd-symmetry of the integrand relative to the inversion
of x relative to the center of the facet x1, . . . , x j , . . . , x2k+1 of S. Furthermore:

2k+1∑
j=1

Vol(B j (x)) =
{
Vol(B) , if x inside S ,

0 , if x outside S ,

because the solid angles corresponding to the facets of the simplex S, as seen from
x , add up to the full solid angle if x is inside the simplex, and they add up to zero if
x is outside the simplex. Hence

∫
R2k

dx I (x) = (2i)k (2k)! Vol(B)|Vol(S)| .

Now the orientations of B and S are the same so that

Vol(B) |Vol(S)| = |Vol(B)|Vol(S) = π k

k!
1

(2k)! Det(x1, . . . , x2k) ,

and the identity follows.

(ii) Again, identities for the representation of the Clifford algebra are used:

(a) σ1σ2 · · · σ2k+1 = ik 12k ;
(b) tr(σρ1 · · · σρq ) = 0 if q odd and q < 2k + 1;
(c) tr(σρ1 · · · σρ2k+1) = 0 unless ρ is a permutation of 1, 2, . . . , 2k + 1;
(d) tr(σρ1 · · · σρ2k+1) = (2i)k(−1)ρ if ρ is such a permutation.
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Based on them, the following basic geometric identity can be established as before:

tr
( 2k+1∏

i=1

〈σ, yi 〉
)

= (2i)k(2k + 1)! Vol[0, y1, . . . , y2k+1] .

Let I (x) now denote the integrand on the l.h.s. of (6.22). Expanding shows

I (x) =
2k+2∑
j=1

(−1) j tr

(〈
σ, x1 − x

〉 · · · 〈σ, x j − x
〉 · · · 〈σ, x2k+2 − x

〉)
,

hence

I (x) = (2i)k (2k + 1)!
2k+2∑
j=1

(−1) j Vol[0, x1 − x, . . . , x j − x, . . . , x2k+2 − x] .

We reorder the vertices and translate the whole simplex, to write

I (x) = − (2i)k (2k + 1)!
2k+2∑
j=1

Vol[x + x1 − x, . . . , x, . . . , x + x2k+2 − x] ,

where the vertex x is located at the j th position. From here on, the proof continues
identically to the even case. �

6.5 Stability of Strong Bulk Invariants Under Strong
Disorder

The prior results lead to index theorems for projections and unitaries in the bulk and
boundary C∗-algebras. In this section, these index theorems are extended to much
larger classes of projections and unitaries, not necessarily lying in the C∗-algebras,
but only in the non-commutative Sobolev spaces introduced in Sect. 3.3.3. This will
enable us to replace the assumption of a bulk gap with that of a mobility bulk gap.
Let us now formulate the index theorems in a general form.

Theorem 6.5.1 Let Fx0 , Ex0 and Gx0 be the Weyl (Dirac) phase, Hardy projection
and the upper right corner of Fx0 in odd and even dimension, respectively.

(i) Let the space dimension d be even and consider a projection e ∈ MN (C) ⊗
L∞(Ad ,T) which is also in the Sobolev space MN (C) ⊗ W′

s,k(Ad ,P), with
s = k = d + 1. Then, P-almost surely, πω(e) Gx0 πω(e) is a Fredholm operator

http://dx.doi.org/10.1007/978-3-319-29351-6_3
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on the range of πω(e) and its P-almost sure index is independent of x0 and
connected to the strong even Chern number of e by the following index formula:

Chd(e) = �d

∑
ρ∈Sd

(−1)ρT
(

e
d∏

j=1

∂ρ j e
)

= Ind
(
πω(e) Gx0 πω(e)

)
. (6.24)

Furthermore, the strong even Chern number remains constant during any homo-
topy of projections

t �→ et ∈ MN (C) ⊗
(

L∞(Ad ,T) ∩ W′
s,k(Ad ,P)

)

which is continuous w.r.t. the norm ‖ . ‖′
s,k (and not necessarily w.r.t. ‖ . ‖∞).

(ii) Let the space dimension d be odd and consider a unitary element u ∈ MN (C) ⊗
L∞(Ad ,T) which also belongs to the Sobolev space MN (C) ⊗ W′

s,k(Ad ,P),
with s = k = d + 1. Then, P-almost surely, Ex0 πω(u) Ex0 is a Fredholm oper-
ator on the range of Ex0 and its P-almost sure index is independent of x0 and
connected to the strong odd Chern number of u by the following index formula:

Chd (u) = �d
∑

ρ∈Sd

(−1)ρT
(
(u∗ − 1N )

d∏
j=1

∂ρ j u∗ j−1
)

= − Ind
(

Ex0 πω(u) Ex0

)
.

(6.25)
Furthermore, the strong odd Chern number remains constant under any homo-
topy of unitaries

t �→ ut ∈ MN (C) ⊗
(

L∞(Ad ,T) ∩ W′
s,k(Ad ,P)

)

which is continuous w.r.t. the norm ‖ . ‖′
s,k (and not necessarily w.r.t. ‖ . ‖∞).

Proof Let us begin by trivially extending the potential Fredholm operators to the
whole Hilbert space. Hence, let K denote either πω(e) Gx0 πω(e) + (1 − πω(e)) or
Ex0πω(u)Ex0 + (1 − Ex0). Recall the Calderon-Fedosov principle [33, 66], which
states that K is Fredholm provided there is a positive integer n such that (1 − K K ∗)n

and (1 − K ∗K )n are trace class. As already mentioned in Sect. 6.1, the Calderon-
Fedosov principle for K reduces precisely to the summability condition (6.2), regard-
less of the parity of d. Recall the convention by which 〈x | · |y〉 is viewed as a matrix,
which in this context belongs to MN (C) ⊗ MQ(C), where Q is the dimension of the
representation space of the Clifford algebras. We will show that

∫
Ω

P(dω) Tr
(∣∣i[Fx0 , πω(a)]∣∣d+1

)
≤ const · (‖a‖′

s,k)
d+1 , (6.26)

for any a ∈ MN (C) ⊗ W′
s,k(Ad ,P). This ensures that the Calderon-Fedosov prin-

ciple holds P-almost surely for K . As in the proof of Lemma 6.2.2, it is enough
to consider only self-adjoint elements. Furthermore, decomposing a in a basis of
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MN (C) and using Minkovski inequality for the Schatten norms, one can see that it
is enough to take a from W′

s,k(Ad ,P) rather than from MN (C) ⊗ W′
s,k(Ad ,P). For

a = a∗ ∈ W′
s,k(Ad ,P), we will prove the estimate

∫
Ω

P(dω)
∑

x ′∈Zd

‖〈x∣∣[Fx0 , πω(a)]d+1|x ′〉‖(1) ≤ const

|x + x0|d+1
(‖a‖′

s,k)
d+1 , (6.27)

which as in Lemma 6.2.2 implies (6.26). Let us denote the l.h.s. of (6.27) by W and
start the calculation from Eq. (6.9),

W ≤ const

|x + x0|d+1

∫
Ω

P(dω)
∑

y1,...,yd+1∈Zd

d+1∏
i=1

(1 + |yi |)d+1 |a(ωi , yi )| .

Since all the terms are positive, the sums and the integral can be interchanged and
Hölder’s inequality gives

W ≤ const

|x + x0|d+1

∑
y1,...,yd+1∈Zd

d+1∏
i=1

(1 + |yi |)d+1

[∫
Ω

P(dω)|a(ωi , yi )|d+1

] 1
d+1

≤ const

|x + x0|d+1

( ∑
y∈Zd

(1 + |y|)d+1

[∫
Ω

P(dω)|a(ω, y)|d+1

] 1
d+1 )d+1

,

and (6.27) follows.

Next, let us prove the P-almost sure constancy of the Fredholm indices inω. Since
P is ergodicw.r.t. the lattice shifts, it is sufficient to check constancy along every orbit.
Hence, let us compare the indices of Ex0πω(u)Ex0 ⊕ (1 − Ex0) and Ex0πτbω(u)Ex0 ⊕
(1 − Ex0) for arbitrary b ∈ Z

d . Since the index is invariant to conjugations with
unitaries, we only need to check equality of the indices of Ex0πω(u)Ex0 + (1 − Ex0)

and Eb+x0πω(u)Eb+x0 + (1 − Eb+x0). But

Eb+x0πω(u)Eb+x0 − Ex0πω(u)Ex0

= 1
2 (Fb+x0 − Fx0)πω(u)Eb+x0 + 1

2 Ex0πω(u)(Fb+x0 − Fx0)

and the operator difference

Fb+x0 − Fx0 = 1N ⊗ (
sgn〈σ, b + x0 + X〉 − sgn〈σ, x0 + X〉)

is compact due to the asymptotic estimate (6.7). For the same reason, Ex0 − Eb+x0
is also compact. The compact stability of the index now allows to conclude. The
invariance of the index in x0 follows by a similar argument. Exactly same arguments
apply to the operator πω(e) Gx0 πω(e) ⊕ (1 − πω(e)).
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At this point, we have established that K is P-almost surely in the Fredholm class
and with a P-almost sure index given by the Calderon-Fedosov formula

Ind
(
K

) = Tr
(
(1 − K K ∗)d+1

)
− Tr

(
(1 − K ∗K )d+1

)
.

As well-known [47], this formula reduces precisely to the pairing between the Fred-
holm modules and K -groups, spelled out in Proposition 6.1.3. Furthermore, since
the index is P-almost surely constant in ω and independent of x0, one is allowed to
take the average of the r.h.s.. But this leads precisely to (6.12) and (6.13). Hence,
from here on, the calculation can proceed as in the proof of Theorem 6.3.1.

We now turn to the invariance of the strongChern numbers under the deformations
et and ut . The P-almost sure Fredholm index of K and the strong Chern numbers
are linked by Eqs. (6.24) and (6.25), and both sides of these equations must be used
to establish the claim. First, Proposition 3.3.6 and the fact that the Chern cocycles
are continuous over the Sobolev spaces of first kind assures that the strong Chern
numbers are a continuous functions of t . Now assume that that they change from
one integer value to another as t is varied. Due to continuity with t , then there must
be at least one value of t for which the strong Chern numbers are not integers. Now
since the Fredholm index is de facto an integer number, we have to conclude that
actually there is not a single ω in the whole Ω for which Eqs. (6.24) and (6.25)
hold at this t . But this will contradict the P-almost sure character of these equalities.
Hence, the starting assumption must be false and the conclusion is that the strong
Chern numbers stay pinned to a single integer value at all t’s. �

Let us now spell out the implications topological solid state systems.

Corollary 6.5.2 (Index formulas for the bulk Chern numbers under MBGH)

(i) Let d be even and h ∈ MN (C) ⊗ Ad be a short-range Hamiltonian for which
MBGH applies. Then, P-almost surely,

Chd(pF ) = Ind
(

PωGx0 Pω

)
,

where pF is the Fermi projection and Pω = πω(pF ) = χ(Hω ≤ μ) is the phys-
ical representation at disorder configuration ω.

(ii) Let d be odd and h ∈ M2N (C) ⊗ Ad be a short-range Hamiltonian for which
either the MBGH and CH apply. Then

Chd(uF ) = − Ind
(

Ex0Uω Ex0

)
,

where uF is the Fermi unitary operator and Uω = πω(uF ) its physical repre-
sentation at disorder configuration ω.

http://dx.doi.org/10.1007/978-3-319-29351-6_3
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For both odd and even cases, the Fredholm indices are P-almost surely independent
of ω and also of x0, and the strong invariants remain quantized and invariant under
continuous deformations of h as long as the MBGH holds.

An important physical consequence of the above statements is the fact that the
strong invariants can change their quantized value only ifMBGHfails, i.e. if theFermi
level crosses a region of delocalized spectrum. In other words, the topological phases
from the unitary and chiral unitary classes, labeled by the strong Chern numbers,
are separated by phase boundaries where the Anderson localization length diverges.
These phase boundaries can be detected experimentally via transport measurements
of the direct conductance. This will be further elaborated in Chap.7

6.6 Delocalization of the Boundary States

In this section we again assume a bulk spectral gap and then provide a proof of
the delocalized character of the boundary states for non-trivial complex topological
insulators. The first task is to push the index theorems for the boundary algebras over
to Sobolev spaces, just as was done for the bulk in Sect. 6.5. The arguments there used
Z

d -ergodicity of the probability P on the space of disorder configurations. For half-
spacemodels, however, the representations π̃ω are no longer covariant w.r.t. the shifts
along the dth direction, and the probability measure P is in general not ergodic w.r.t.
just the Zd−1 shifts parallel to the boundary. For this reason, we restrict to boundary
disorder only, which allows us to carry over the arguments from the previous section.
Let us begin by describing the probability space of boundary disorder configurations.

Proposition 6.6.1 Set IL = {−L , . . . , L} ⊂ Z for L ∈ N and let (ΩL ,PL) be the
probability space

ΩL =
( ∏

y∈R
Ω

y
0

)Z
d−1×IL

, PL(dωL) =
∏
y∈R

∏
x∈Zd−1×IL

P
y
0(dωy

x ) , (6.28)

where (Ω
y
0 ,P

y
0) are the probability spaces from Definition 2.4.1. Let τ be the action

of Zd−1 on ΩL , given by the shifts of the first d − 1 coordinates of x in ω
y
x . Then

(ΩL , τ,Zd−1,PL) is an ergodic dynamical system.

Proof The statement is evident once one realizes that this dynamical system is iden-
tical with the original dynamical system, set for the space dimension d − 1 and with
R replaced by R × IL . �

Now, let pL : ΩL → Ω be the map which assigns to ω = pL(ωL) the same ω
y
x

components if x ∈ Z
d−1 × IL and setsω

y
x = 0 otherwise. It is continuous and pushes

forward the probability measure PL , and in fact the entire ergodic system defined in
Proposition 6.6.1, on Ω . We will use the notation (Ω, τ,Zd−1,PL) for this ergodic

http://dx.doi.org/10.1007/978-3-319-29351-6_7
http://dx.doi.org/10.1007/978-3-319-29351-6_2
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system. Note that the C∗-algebras of observables remain unaltered and only the
probability by which the disorder configurations occur has been changed, for the
boundary algebra only. We will use the notation T̃L for the trace on Ed defined with
the probability measure PL . The weak von Neumann closure of Ed and the Sobolev
spaces constructed in Sect. 3.3.3 can be automatically adapted to the present settings.
The statements about the boundary algebra in Sect. 3.3.3 are valid for any probability
measure over Ω which is ergodic and invariant w.r.t. the action of Zd−1, hence they
carry over to the present settings without any modifications.

Lemma 6.6.2 Let F̃x0 , Ẽx0 and G̃x0 be the boundary Dirac (Weyl) phase, Hardy
projection and the upper right corner of F̃x0 in odd and even dimension, respectively.

(i) Let the space dimension d be even and let ũ ∈ MN (C) ⊗ L∞(Ed , T̃L) be
a unitary element such that ũ − 1 belongs to the Sobolev space MN (C) ⊗
W′

d,d(Ed ,PL). Then, PL-almost surely, the operator Ẽx̃0 π̃ω(ũ) Ẽx̃0 belongs to
the Fredholm class and the odd strong Chern number of ũ admits the following
index formula:

�d−1

∑
ρ∈Sd−1

(−1)ρ T̃L

(
(ũ∗ − 1N )

d∏
j=1

∂̃ρ j ũ
∗ j−1

)
= − Ind

(
Ẽx̃0 π̃ω(ũ) Ẽx̃0

)
.

(6.29)
Furthermore, the strong odd Chern number C̃hd(ũt ) remains quantized and
invariant for any unitary deformation t �→ ũt ∈ MN (C) ⊗ L∞(Ed , T̃L) such
that ũt − 1 belongs to MN (C) ⊗ W′

d,d(Ed ,PL) and varies continuously w.r.t.
the norm ‖ . ‖′

d,d (and not necessarily w.r.t. ‖ . ‖∞ norm).

(ii) Let the space dimension d be odd and let p̃ ∈ MN (C) ⊗ L∞(Ed , T̃L) be a projec-
tion such that p̃ − s( p̃) belongs to the Sobolev space MN (C) ⊗ W′

d,d(Ed ,PL).
Then, PL-almost surely, the operator π̃ω( p̃) G̃ x̃0 π̃ω( p̃) belongs to the Fredholm
class and the even Chern number of p̃ admits the following index formula:

�d−1

∑
ρ∈Sd−1

(−1)ρ T̃L

(
p̃

d−1∏
j=1

∂̃ρ j p̃
)

= Ind
(
π̃ω( p̃) G̃ x̃0 π̃ω( p̃)

)
. (6.30)

Furthermore, the strong even Chern number C̃hd( p̃t ) remains quantized and
invariant for any projection deformation t �→ p̃t ∈ MN (C) ⊗ L∞(Ed , T̃L) such
that p̃t − s( p̃t ) belongs to MN (C) ⊗ W′

d,d(Ed ,PL) and varies continuously
w.r.t. the norm ‖ . ‖′

d,d (and not necessarily w.r.t. ‖ . ‖∞ norm).

Proof The arguments are very similar to those employed for Theorerm 6.5.1, hence
let us only mention the key points. First, starting from (6.11), one can establish that,
for any ã ∈ MN (C) ⊗ L∞(Ed , T̃L) with ã − s(ã) ∈ MN (C) ⊗ W′

d,d(Ed ,PL),

∫
Ω

PL(dω)
∑

x ′∈Zd−1

∥∥〈x∣∣[F̃x̃0 , π̃ω(ã)]d |x ′〉∥∥
(1) ≤ const

|x + x̃0|d (‖ã − s(ã)‖′
d,d)

d ,

http://dx.doi.org/10.1007/978-3-319-29351-6_3
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which in turn gives

∫
Ω

PL(dω) Tr
(∣∣i[F̃x̃0 , π̃ω(ã)]∣∣d

)
≤ const · (‖ã − s(ã)‖′

d,d)
d . (6.31)

This ensures that the Calderon-Fedosov principle holds PL -almost surely for the
operators mentioned in the statement. Above, note that the scalar part of ã already
drops out when taking the commutator. The PL -almost sure constancy of the indices
w.r.t. ω and x̃0 follows in exactly the same way as in Theorerm 6.5.1, after Ed is
mapped into Ad−1 ⊗ K. Then, by applying Calderon-Fedosov formula and taking
the average over ω and x̃0 w.r.t. the measure PL , one arrives at Eq. (6.14) and its
equivalent for even d, hence from there on the calculations can proceed identically.
Finally, the continuity of the strong Chern numbers w.r.t. the variable t can be readily
establishedusingProposition 3.3.8 and the fact that theChern cocycles are continuous
over the Sobolev spaces of first kind. The invariance of the strong Chern numbers
under the deformations ũt and ẽt can be establish using the same argument as in
Theorerm 6.5.1. �

The following result now shows that, when exposed to disorder, the boundary
states of a non-trivial topological insulator behave completely different from the
boundary states of a normal insulator. Indeed, Jaksic and Molchanov [94] proved by
an adaption of the techniques from [2] that the boundary states of a normal insulator
are localized, in the sense that Aizenmann-Molchanov bound holds for the those
energies, as soon as a random boundary potential is added. On the other hand, one
has the following.

Theorem 6.6.3 (Delocalizion of the boundary states) Let ĥ = (h, h̃) ∈ MN (C) ⊗
Âd be a short-range half-space Hamiltonian for which BGH applies.

(i) If the space dimension d is even and the bulk invariantChd(pF ) defined in (5.11)
is not zero, then the Aizenmannn-Molchanov bound (uniform as ε → 0)

∫
Ω

PL(dω)
∣∣(E + iε − ĥ

)−1
(ω, x)

∣∣s ≤ γs e−βs |x | , s < 1, (6.32)

with E anywhere in the spectral gap of h, cannot hold for any arbitrarily large
but finite L. In other words, adding disorder in an arbitrarily thick surface layer
will not result in the Anderson localization of any part of the boundary spectrum.

(ii) If the space dimension d is odd, the CH holds and the bulk invariant Chd(uF )

defined in (5.12) is not zero, then the Aizenmannn-Molchanov bound (6.32) at
E = 0 cannot hold for any arbitrarily large but finite L. In other words, the
boundary spectrum at E = 0, hence at the Fermi energy, cannot be Anderson
localized by the addition of disorder in an arbitrarily thick surface layers.

Proof Key to the argument are the equality between the bulk and the boundary
invariants and the index formulas for the boundary invariants, all summarized in

http://dx.doi.org/10.1007/978-3-319-29351-6_3
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Corollary 6.3.2. Since the boundary invariants are defined using the functional cal-
culus with smooth functions, the operators appearing inside the Fredholm indices
in both (6.16) and (6.19) are norm-continuous of ω. As such, the average over ω

performed in the proof of Theorem 6.3.1 can be done w.r.t. any probability measure
over Ω , in particular, with PL . If so, then the Chern number of the boundary unitary
operator ũΔ or boundary projection p̃Δ remains unchanged if we replace the trace
T̃ by T̃L . But once this switch is made, one has an index theorem which remains
valid over the Sobolev space MN (C) ⊗ W′

d,d(Ed ,PL), by virtue of Lemma 6.6.2.
Now, it is known (see [1, 169]) that, whenever the Aizenmannn-Molchanov bound
(6.32) applies, the functional calculus with piece-wise smooth functions generates
elements belonging to this Sobolev space, provided the discontinuities occur in an
interval of energies where (6.32) applies. As such, we can deform the functions fExp
and fInd used in the definition of the boundary invariants into fExp(t) = χ(t ≤ μ)

and fInd(t) = sgn(t − μ), continuously within the Sobolev space. Lemma 6.6.2 then
assures that the values of the invariants do not change during these deformations.
But with the fExp and fInd assuming these particular forms, one has ũΔ = 1N and
p̃Δ = diag(1N , 0N ) and the boundary invariants are necessarily zero, hence also the
bulk invariants. This contradiction shows that the Aizenmannn-Molchanov bound
cannot apply at the Fermi energy μ. The statements now follow because the Fermi
energy can be anywhere in the bulk spectral gap for topological insulators from class
A, while it is always pinned at μ = 0 for topological insulators from class AIII. At
the technical level, the constraint μ = 0 must be strictly imposed for p̃Δ to remain a
projection inside the smooth algebra or the Sobolev space. �



Chapter 7
Invariants as Measurable Quantities

Abstract This chapter presents various applications to solid state physics of the
mathematical results obtained in the earlier chapters. The topological invariants are
connected to linear and nonlinear transport coefficients and the expected physical
effects are discussed in depth for class A and class AIII of topological insulators,
in several space dimensions. Then we follow with an in depth analysis of orbital
polarization andmagneto-electric effects, and virtual topological insulators are taken
up as a more recent development. As a further novel implication, it is shown that
the surface states of approximately chiral systems may exhibit a quantum Hall effect
with a Hall conductance imposed by the bulk invariants.

7.1 Transport Coefficients of Homogeneous Solid
State Systems

The topological invariants are closely related to the transport coefficients. These are
briefly reviewed in this section within the operator algebra formalism developed so
far. Let us consider a bulk homogeneous solid state systemdefinedby theHamiltonian
h ∈ MN (C) ⊗ Ad . Following mainly [20, 195] (see also [168] for a computational
perspective), let us assume an effective time evolution etL on MN (C) ⊗ Ad in the
presence of a macroscopic electric field E and dissipation, generated by the densely
defined derivation

L(a) = i[a, h] + 〈E , ∂a〉 + Γ (a) ,

where Γ is the so called collision (super-) operator having adequate dissipation
properties [195]. Recall that 〈 , 〉 denotes the Euclidean scalar product. The temporal
evolution of a density matrix is ρt = etL∗

ρ0 for a given an initial density matrix ρ0.
Now one is interested in computing (or measuring) the time average charge current
density

J = lim
T→∞

1
T

∫ T

0
dt T

(
j ρt

)
, (7.1)

where j = ∂h = {∂jh}j=1,...,d is the observable representing the charge current.
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Proposition 7.1.1 ([20, 195, 196]) Assume the initial state of the system to be that
of thermal equilibrium, namely the initial density matrix is the Fermi-Dirac function

ρ0 = fβ,μ(h) = 1

1 + exp
(
β(h − μ)

) .

Then:

(i) The current density is given by Ji = ∑d
j=1 σi,jEj +o(E 2), i = 1, . . . , d, with the

linear conductivity tensor σ given by the Kubo formula

σi,j = T
(
(∂ih)L−1

(
∂jfβ,μ(h)

))
.

(ii) If BGH or MBGH holds, the off-diagonal components of the linear conductivity
tensor converge in the limit β → ∞ and Γ → 0 to

σi,j = 〈[ξ{i,j}], [pF]0
〉 = Ch{i,j}(pF) , (7.2)

for 1 ≤ i 
= j ≤ d, while the diagonal components vanish in this limit.

The above statement provides a direct link between the 2-cocycles and the lin-
ear conductivity tensor. By taking derivatives with respect to the magnetic field of
Eq. (7.2) and using the generalized Streda formulas from Corollary 5.6.4, we will
be able to establish direct links between higher cocycles and non-linear transport
coefficients. This will be quite relevant for the analysis in dimensions higher than
d = 2.

We now turn our attention to the charge transport parallel the boundary of a solid
state system defined by ĥ = (h, h̃) ∈ MN (C) ⊗ Âd . The observable representing the
charge current parallel to the boundary is given by ĵ = ∂̂ ĥ, which indeed provides
the expected expression when represented on the Hilbert space,

π̂ω(ĵ) = i[Ĥω, X̂] ,

with X̂ = (X1, . . . , Xd−1). Now, assume that BGH applies and let fExp : R → [0, 1]
be as in Proposition 4.3.1, that is, its derivative f ′

Exp is positive and supported in the
bulk gap and

∫
dE f ′

Exp(E) = 1, and

[ũΔ]1 = Exp[pF]0 = [exp(2π i fExp(ĥ))]1 .

The function f ′
Exp(ĥ) can be regarded as a density matrix, and since f ′

Exp is smooth
and with support inside the bulk gap, this function is an element from the boundary
algebra and in fact from the smooth sub-algebra Ed . Then

J̃ = T̃
(
f ′
Exp(ĥ) ∂̂ ĥ

)
(7.3)

http://dx.doi.org/10.1007/978-3-319-29351-6_5
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is the well-defined charge current density, flowing along the boundary when the
quantum states are populated with a statistical weight given by f ′

Exp(E). We will refer

to J̃ as the boundary current.

Proposition 7.1.2 ([197, 107]) The following identity holds for j = 1, . . . , d − 1:

i T̃
((

exp(−2π ifExp(ĥ)) − 1
)
∂̂j exp(2π ifExp(ĥ))

)
= − 2π T̃

(
f ′
Exp(ĥ) ∂̂j ĥ

)
. (7.4)

Written differently,

C̃h{j}(ũΔ) = − 2π J̃j . (7.5)

Sketch of Proof Let Wind denote the quantity on the l.h.s. of (7.4). Expanding the
exponential under the derivation as a series and using the Leibniz rule

Wind = i
∞∑

m=1

(2π i)m

m!
m−1∑
l=0

T̂
(
(ũ∗

Δ − 1) fExp(ĥ)l ∂̂jfExp(ĥ) fExp(ĥ)m−l−1
)
,

where the trace and the infinite sum can be exchanged because ũΔ − 1 belongs to
the smooth sub-algebra Ed . Due to cyclicity and the fact that [ũΔ, fExp(ĥ)] = 0, each
summand is equal to T̃((ũ∗

Δ − 1) fExp(ĥ)m−1 ∂̂j fExp(ĥ)). Exchanging the sum and the
trace again and summing up the exponential,

Wind = i T̃((ũ∗
Δ − 1) ∂̂j ũΔ) = 2π T̃

(
(1 − ũΔ) ∂̂j fExp(ĥ)

)
.

Now let us use the homomorphism property of the pairing and repeat the same
argument for ũk

Δ = exp(2π i k fExp(ĥ)) with k 
= 0,

Wind = i

k
T̃
(
(ũk

Δ − 1)∗∂̂j û
k
) = 2π T̃

(
(1 − ũk

Δ) ∂̂jfExp(ĥ)
)

.

Writing fExp(E) = ∫ ∞
−∞ dt f̃Exp(t) e−E(1+it) as a Laplace transform with an adequate

function f̃Exp, the last expression can be further processed using Duhamel’s formula

Wind = 2π
∫ ∞

−∞
dt f̃Exp(t) (1 + it)

∫ 1

0
dq T̃

(
(ûk − 1) e−(1−q)(1+it)ĥ (̂∂j ĥ)e−q(1+it)ĥ

)
.

Using the cyclic property of the trace and f ′
Exp(E) = − ∫

dt (1 + it) f̃Exp(t) e−E(1+it),
one therefore finds for k 
= 0,

Wind = 2π T̃
(
(ûk − 1) f ′

Exp(ĥ) ∂̂j ĥ
)

.

For k = 0, the r.h.s. vanishes, a fact which will be used below.
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To conclude, let us choose a differentiable function φ : [0, 1] → R vanishing
at the boundary points 0 and 1. Its Fourier coefficients will be denoted by ak =∫ 1
0 dx e−2π ikxφ(x). Then

∑
k ake2π ikx = φ(x) and thus

∑
k ak = 0. Hence

a0 Wind = −
∑
k 
=0

ak Wind

= −2π
∑

k

ak T̃
(
(1 − ûk) f ′

Exp(ĥ) ∂̂j ĥ
)

= −2π T̃
(
φ(fExp(ĥ)) f ′

Exp(ĥ) ∂̂j ĥ
)
.

Finally, we let φ converge to the indicator function of [0, 1]. Then a0 → 1, while
on the other hand φ(fExp(ĥ))f ′

Exp(ĥ) → f ′
Exp(ĥ) (the Gibbs phenomenon is damped).

This concludes the proof. �
The above statement establishes a direct link between the boundary 1-cocycles

and the charge current density flowing along the boundary. By taking derivatives
with respect to the magnetic field of Eq. (7.2) and using the generalized Streda
formulas from Corollary 5.6.4, we will be able to establish direct links between
higher cocycles and measurable physical quantities. This will again be quite relevant
for the analysis in dimensions higher than d = 2. Furthermore, let us point out that the
calculation of the above proof combined with a homotopy argument can be used to
deal with quantized currents at interfaces of two materials with different topological
invariants [124].

7.2 Topological Insulators from Class A in d = 2, 3 and 4

In dimensiond = 2, the topological phases from the unitary class include the classical
integer quantum Hall phases and there are many excellent accounts on the physics
and mathematics of the integer quantum Hall effect in dimension d = 2, and we
refrain from giving an incomplete list here. The papers of Bellissard [17, 18] present
the bulk theory for tight-bindingmodels and build up the algebraic formalism used in
this work. A detailed account of this and an extension to the regime of a MBGH can
be found in [20]. The bulk-boundary principle was first demonstrated by Hatsugai in
[87] for the rational magnetic flux case, then [107, 197] used the Pimsner-Voiculescu
sequence to extend this result to amore general context (see (iii) ofCorollary 7.2.1). In
particular, [197] also contains a detailed description of the physical interpretation and
importance of this result as well as many citations to the physics literature. Later on,
other rigorous proofs of bulk-boundary correspondence for tight-binding quantum
Hall systems were found [58, 59] and the techniques were extended to models in
continuous physical space [45, 108, 109]. An application of themachinery developed
in [107, 197] to Chern insulators can be found in [166].

http://dx.doi.org/10.1007/978-3-319-29351-6_5
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Below we summarize the main statements available for the topological phases
from class A in dimension d = 2. They follow directly from [20, 107, 197] and
they were also known in the physics literature [82], but here we view them as direct
corollaries of the theory developed in the previous chapters. Of course, the input
from the previous section is absolutely necessary.

Corollary 7.2.1 Let ĥ = (h, h̃) ∈ MN (C) ⊗ Âd with d = 2.

(i) If BGH holds, then the integrated density of states can take only the discrete
values

T(pF) = Ch∅(pF) ∈ Z + B1,2

2π
Z .

(ii) If MBGH holds, then the off-diagonal element of the bulk conductivity tensor
is quantized by the strong bulk invariant

σ1,2 = Ch2(pF) ∈ Z .

Furthermore, as long as MBGH holds, σ1,2 remains quantized and invariant to
the deformations of h defined by Definition 2.4.5.

(iii) If BGH holds, then the boundary current is quantized by the bulk and boundary
invariants

2π J̃1 = − C̃h1(ũΔ) = −Ch2(pF) = σ1,2 ∈ Z .

Furthermore, if Ch2(pF) 
= 0, the entire boundary spectrum is delocalized.

Let us point out that (ii) assures us that the topological phases corresponding to the
different values of Ch2(pF) are separated by a localization-delocalization phase tran-
sitions, which can be sharply identified experimentally via transport measurements,
as demonstrated in [42].

In dimension d = 3 there are only weak topological phases. Among them are
the quantum Hall phases in 3-dimensions. The available results for the latter [83,
119, 120, 122, 123, 142] are restricted to the cases where the entries in the B matrix
(divided by 2π ) are rational numbers. The following statements, which are again
direct corollaries of the theory of the previous chapters, generalize them to arbitrary
B and also include the disorder.

Corollary 7.2.2 Let ĥ = (h, h̃) ∈ MN (C) ⊗ Âd with d = 3 and assume that BGH
holds. Then:

(i) The integrated density of states can take only the discrete values

T(pF) = Ch∅(pF) ∈ Z +
∑

1≤i<j≤3

Bi,j

2π
Z .

http://dx.doi.org/10.1007/978-3-319-29351-6_2
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(ii) The off-diagonal elements of the bulk conductivity tensor are quantized

σi,j = Ch{i,j}(pF) ∈ Z , 1 ≤ i < j ≤ 3 .

Furthermore, as long as BGH holds, σi,j’s remains quantized and invariant to
the deformations of h defined by Definition 2.4.5.

(iii) The boundary currents are quantized too

2π J̃j = − C̃hj(ũΔ) = Ch{j,3}(pF) = − σj,3 ∈ Z , j = 1, 2 .

Since the weak Chern numbers do not accept an index formula, we cannot replace
BGH with MBGH at point (i). In other words, with the methods developed here we
cannot conclude that weak topological phases defined by the quantized values of
σi,j’s are separated by phase boundaries where the localization length diverges, as
it happens in d = 2. Also, at point (ii), we cannot say anything about the local-
ized/delocalized character of the boundary spectrum, though we can say that is never
gapped if any of σ{j,3} happens to be non-zero. Note that [15] predicted a certain delo-
calization of the boundary states, hence it will be important to further investigate the
weak topological insulators.

Although purely fictitious, the quantum Hall effect in dimension d = 4 was
conceptually very important in condensed matter theory [172, 228]. Below we sum-
marize our predictions for the hypothetical topological insulators from class A in
d = 4.

Corollary 7.2.3 Let ĥ = (h, h̃) ∈ MN (C) ⊗ Âd with d = 4.

(i) If BGH holds, the integrated density of states can take only the discrete values

T(pF) = Ch∅(pF) ∈ Z +
∑
{i,j}

Bi,j

2π
Z + Pf(B)

(2π)2
Z ,

where all indices are assumed as being ordered.
(ii) If BGH holds, the off-diagonal elements of the bulk conductivity tensor take

only the discrete values

σi,j = Ch{i,j}(pF) ∈ Z + Bk,l

2π
Z ,

where k < l and such that {i, j} ∩ {k, l} = ∅. Furthermore, as long as BGH
holds, σi,j’s remains quantized and invariant to the deformations of h defined
by Definition 2.4.5.

(iii) If MBGH holds, the derivatives of the Hall conductivities w.r.t. to the magnetic
field are quantized by the strong invariant

2π ∂Bi,j σk,l = (−1)ρ Ch4(pF) ∈ Z , {i, j} ∩ {k, l} = ∅ ,

http://dx.doi.org/10.1007/978-3-319-29351-6_2
http://dx.doi.org/10.1007/978-3-319-29351-6_2
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where ρ is the permutation which brings {i, j, k, l} into {1, 2, 3, 4}. Further-
more, as long as MBGH holds, ∂Bi,j σk,l’s remain quantized and invariant to the
deformations of h defined by Definition 2.4.5.

(iv) If BGH holds, then the boundary currents can take only the discrete values

2π J̃j = − C̃hj(ũΔ) = −Ch{j,4}(pF) ∈ Z + Bk,l

2π
Z , j = 1, 2, 3, (7.6)

where {k, l} are the unique set of indices such that {k, l} ∩ {j, 4} = ∅.
(v) If BGH holds, then the derivatives of the boundary currents w.r.t. the magnetic

field are quantized

(2π)2 ∂Bi,j J̃k = − (−1)ρ C̃h3(ũΔ) = − (−1)ρ Ch4(pF) ∈ Z, (7.7)

where i 
= j 
= k and ρ is the permutation which brings {i, j, k} into {1, 2, 3}.
Furthermore, if the above invariants are not zero, then the entire boundary
spectrum is necessarily delocalized.

Note that ∂Bi,j σk,l represents the second-order response function ∂2Jk/∂El∂Bi,j,
hence point (iii) predicts the quantization of this physically measurable quantity, in
agreement with the original finding in [228].

7.3 Topological Insulators from Class AIII in d = 1, 2 and 3

The experimentally measurable bulk properties relevant to the class of chiral sym-
metric solid state systems are the chiral (orbital) polarization PC and the variations
of PC w.r.t. the magnetic field. For a chiral Hamiltonian H = {Hω}ω∈� of a solid state
system with sub-lattice symmetry, the chiral polarization is defined as the difference
between the electric dipole moments per unit cell of the two sub-lattices, which can
be written as:

PC =
∫

�

P(dω) tr 〈0|Pω J X Pω|0〉 , Pω = χ(Hω ≤ 0). (7.8)

Using X|0〉 = 0, one can rewrite PC with the non-commutative analysis tools as

PC = i T(pFJ∂pF) .

Let up point out that, without the chirality operator J , the r.h.s. would vanish iden-
tically. Hence, it is impossible to define the total dipole polarization in this manner.
The real reason for this is that definition (7.8) will be ill behaved without J . Now,
the following result show that PC is actually of topological nature, namely given by
a pairing of a K1-group element with a 1-cocycle.

http://dx.doi.org/10.1007/978-3-319-29351-6_2
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Proposition 7.3.1 Let h ∈ M2N (C) ⊗ Ad and assume CH and BGH hold. Then

PC,j = − 1

2

〈[ξ{j}], [uF]1
〉 = − 1

2
Ch{j}(uF) , j = 1, . . . , d .

Proof Recall from (2.34) that

pF = 1

2

(
1 −u∗

F−uF 1

)
, J =

(
1 0
0 −1

)
.

Thus

PC = i

4
T

((
1 u∗

F−uF −1

)(
0 −∂u∗

F−∂uF 0

))
= i

4
T(−u∗

F∂uF + uF∂u∗
F) .

Now by Proposition 3.3.2(iv), uF(∂u∗
F) = −(∂uF)u∗

F , so that by cyclicity

PC = − i

2
T(u∗

F∂uF) ,

which is the precisely the claim. �

We now have all the tools to characterize the physics of the chiral symmetric solid
state systems. The following statements were discussed extensively in Chap. 1, but
we state them for completeness. In the published literature, one can find them in
[139, 200].

Corollary 7.3.2 Let ĥ = (h, h̃) ∈ M2N (C) ⊗ Âd with d = 1. Assume that CH holds
and recall that, for d = 1, the spectrum of ĥ inside Δ is discrete whenever a bulk
spectral gap exists.

(i) If the MBGH holds, then the chiral polarization is quantized by the strong bulk
invariant

PC = − 1

2
Ch1(uF) ∈ 1

2
Z .

Furthermore, as long as the MBGH holds, PC remains quantized and invariant
to the deformations of h defined by Definition 2.4.5.

(ii) If the BGH holds and PC 
= 0, then by Corollary 4.3.4 there will necessarily be
edge states exactly at E = 0, which are the zero modes discussed in Sect.2.3.
Furthermore

N+ − N− = C̃h∅(p̃Δ) = −Ch1(uF) = 2PC ,

where N± is the number of zero modes of ± chirality.

http://dx.doi.org/10.1007/978-3-319-29351-6_2
http://dx.doi.org/10.1007/978-3-319-29351-6_3
http://dx.doi.org/10.1007/978-3-319-29351-6_1
http://dx.doi.org/10.1007/978-3-319-29351-6_2
http://dx.doi.org/10.1007/978-3-319-29351-6_4
http://dx.doi.org/10.1007/978-3-319-29351-6_2
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Let us stress that, as for the IQHE, topological phases corresponding to different
values of PC are separated by a localization-delocalization phase transition which
can be determined experimentally via transport measurements. Next, in dimension
d = 2, there are only weak chiral systems. Nevertheless, there are some interesting
predictions for these systems.

Corollary 7.3.3 Let ĥ = (h, h̃) ∈ M2N (C) ⊗ Âd with d = 2 and assume that BGH
and CH hold. Then everything said in Corollary 7.2.1 holds and, additionally:

(i) The components of the chiral polarization are quantized as

PC,j = − 1
2 Ch{j}(uF) ∈ 1

2 Z , j = 1, 2 .

Furthermore, as long as BGH and CH hold, the components PC,j remain quan-
tized and invariant under the deformations of h defined by Definition 2.4.5.

(ii) The bulk-boundary principle gives

T̃(p̃Δ) = C̃h∅(p̃Δ) = −Ch{2}(uF) = 2PC,2 .

As a consequence, if PC,2 
= 0, ĥ will have essential spectrum at E = 0.

Proof We only need to show point (ii). If the spectrum at the origin is discrete, then
we can choose an interval [−δ, δ] as in Proposition 4.3.3, and [−δ, δ] contains only
discrete spectrum of ĥ. With the notations from Proposition 4.3.3, the bulk-boundary
principle gives

T̃
(
p̃+(δ)

) − T̃
(
p̃−(δ)

) = 2PC,2 .

Hence for p̃(δ) = p̃+(δ) + p̃−(δ)

T̃
(
p̃(δ)

) ≥
∣∣∣̃T(

p̃+(δ)
) − T̃

(
p̃−(δ)

)∣∣∣ = ∣∣2PC,2

∣∣ .

But for a spectral projector p̃(δ) onto discrete spectrum one has T̃
(
p̃(δ)

) = 0, and
this is a contradiction. �

The bulk invariants appearing in (i) of Corollary 7.3.3 are weak odd Chern num-
bers, hence we cannot replace the BGH by theMBGH. Consequently, with the meth-
ods developed so far, we cannot conclude that weak topological phases defined by the
quantized values of PC,j’s are separated by phase boundaries where the localization
length diverges, as it happens in d = 1. Also, in item (ii), we cannot say anything
about the localized or delocalized character of the boundary spectrum appearing at
E = 0.

Corollary 7.3.4 Let ĥ = (h, h̃) ∈ M2N (C) ⊗ Âd with d = 3 and assume that the
CH holds. Then:

http://dx.doi.org/10.1007/978-3-319-29351-6_2
http://dx.doi.org/10.1007/978-3-319-29351-6_4
http://dx.doi.org/10.1007/978-3-319-29351-6_4
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(i) If the BGH holds, the components of the chiral polarization take discrete values

PC,i = − 1
2

〈[ξ{i}], [uF ]1
〉 = − 1

2Ch{i}(uF) ∈ 1
2 Z + Bj,k

4π
Z , i 
= j 
= k 
= i .

Furthermore, as long as BGH holds, the components PC,i remain quantized and
invariant to the deformations of h defined by Definition 2.4.5.

(ii) If the MBGH holds, then the chiral magneto-electric response coefficients are
quantized by a strong invariant

∂Bi,j PC,k = 1

4π

〈[ξ{i,j,k}], [uF]1
〉 = η

4π
Ch3(uF) ∈ 1

4π
Z ,

with η the sign of the permutation which brings i, j, k to the natural order.
Furthermore, as long as the MBGH holds, ∂Bi,j PC,k remains quantized and
invariant to the deformations of h defined by Definition 2.4.5.

(iii) If the BGH holds, then the bulk-boundary principle gives

T̃(p̃Δ) = C̃h∅(p̃Δ) = −Ch{3}(uF) = 2PC,3 ∈ Z + B1,2

2π
Z ,

and
C̃h2(p̃Δ) = −Ch3(uF) = 4π ∂B1,2PC,3 ∈ Z .

As a consequence, if PC,3 
= 0, then ĥ will necessarily display essential spectrum
at E = 0. If instead of or additionally to PC,3 
= 0 we have ∂B1,2 PC,3 
= 0, then
the boundary spectrum at E = 0 is necessarily delocalized.

(iv) Assume the existence of an interval [−δ, δ] ⊂ Δ such that the ends ±δ lie in
a region of Anderson localized surface spectrum. Let p̃(δ) = χ(−δ ≤ ĥ ≤ δ)

be the associated spectral projection and decompose it as in Proposition 4.3.3
into chiral sectors p̃(δ) = p̃+(δ) + p̃−(δ) with Jp̃±(δ) = ±p̃±(δ). Then

C̃h2
(
p̃+(δ)

) − C̃h2
(
p̃−(δ)

) = −Ch3(uF) = 4π ∂B1,2PC,3 ∈ Z .

Among other things, this implies that, if the bulk invariant is odd, then neces-
sarily

Z � C̃h2
(
p̃(δ)

) 
= 0 ,

so that the surface will display the IQHE with the Hall conductance jumping
at least by one unit in the interval [−δ, δ].

Proof Item (ii) follows from Proposition 5.6.2 and (iv) by choosing the lift as in
Proposition 4.3.3. �

http://dx.doi.org/10.1007/978-3-319-29351-6_2
http://dx.doi.org/10.1007/978-3-319-29351-6_2
http://dx.doi.org/10.1007/978-3-319-29351-6_4
http://dx.doi.org/10.1007/978-3-319-29351-6_5
http://dx.doi.org/10.1007/978-3-319-29351-6_4
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Let us stress that (ii) assures that the topological phases corresponding to the
different values of ∂Bi,j PC,k are separated by a localization-delocalization phase tran-
sitions which is again visible in transport experiments. This has been confirmed
numerically in [201]. The statement (iii) on the delocalized character of the surface
states at E = 0 is in full agreement with the conclusions drawn in Ref. [65]. As
already pointed out there, no such statement can be formulated about the states at
other energies. For the IQHE predicted in (iv), the methods developed so far give no
further information about the values of C̃h2

(
p̃(δ)

)
. Hence we have no general pre-

diction about the value of the Hall conductance of the surface states, though we will
make a conjecture on these values in the next section. Nevertheless, let us note that
the spectrum away from the origin is expected to be localized (see the discussion in
[65]) and that (iv) can occur in the absence of a magnetic field. In the latter situation,
item (iv) hence predicts an anomalous quantum Hall effect. Lastly, let us mention
that the IQHE at the surface may be absent altogether for an even bulk invariant, as
for example would happen if Ch3(uF) = 2 and C̃h2

(
p̃±(δ)

) = ∓1. However, there
are other interesting particular scenarios which are worth discussing and this is done
in the next seciton.

7.4 Surface IQHE for Exact and Approximately
Chiral Systems

Let us start by formulating a conjecture on the values of C̃h2
(
p̃(δ)

)
which is compat-

ible with the bulk-boundary principle. For this, we introduce the concept of stable
configuration which is best explained for d = 1. In this case, the bulk-boundary
principle states that N+ − N− = −Ch1(uF), from where one can conclude that the
number of edge zero modes N = N+ + N− is necessarily larger than or equal to the
absolute value of the bulk invariant, but one cannot say what exactly this number is,
just from the bulk topology. However, under small perturbations or disorder, pairs of
zero modes of opposite chirality can and usually will exit the zero-mode subspace,
and this phenomenon will repeat itself until one of the chiral sectors is completely
depleted of zero modes. The process cannot continue and the system reached what
we call the stable configuration. In d = 3 and in the absence of disorder, something
similar will happen because pairs of zero-energy Dirac points of opposite chirality
in the boundary spectrum can annihilate each other or leave the zero-energy level,
and a stable configuration can be reached only when one chiral sector is completely
depleted of zero-energy Dirac points . For a general chiral system in dimension
d, we define a stable configuration to be reached if there is a δ such that one of
C̃hd−1

(
p̃±(δ)

)
is zero. We are now ready to formulate our conjectures. The notations

from Corollary 7.3.4 will be used throughout.

Conjecture ((Anomalous) Surface IQHE) Let ĥ = (h, h̃) ∈ M2N (C)×Âd in dimen-
sion d = 3 be such that BGH and CH apply, and assume Ch3(uF) 
= 0. Then
Corollary 7.3.4 assures us that the boundary spectrum is delocalized at E = 0. The
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first conjecture is that, in presence of disorder, the boundary spectrum is everywhere
localized except at E = 0 for B = 0, and for B 
= 0 furthermore at a discrete set
of Landau bands symmetrically located around E = 0. The second conjecture is
that, in presence of disorder, the system is always in a stable configuration for all
values of the magnetic field. In these conditions, the Hall conductance of the surface
will display a plateau-plateau transition exactly at E = 0, with a jump equal pre-
cisely to

∣∣Ch3(uF)
∣∣. For B = 0 this is hence an anomalous surface IQHE with Hall

conductance dictated by the bulk invariant.

This conjecture can be probed numerically. For vanishing magnetic fields, our ini-
tial efforts in this direction unfortunately could not shed any light on these important
issues. During these attempts, it became clear that resolving the localized/delocalized
character of the surface states will be a large scale computational endeavor. We hope
that this will be of interest to the experts in the field. We also hope that the possi-
bility of observing the anomalous IQHE at the surface of a non-magnetic material
will renew the experimental and theoretical efforts on identifying a topological solid
state system from the AIII class in d = 3.

If an external magnetic field perpendicular to the surface is present, then the situ-
ation is more traceable because gaps in the surface spectrum open at weak disorder.
Indeed, as it usually happens for two-dimensional electron systems, Landau bands
are forming. If the bulk invariant is nowodd, then based on item (iv) ofCorollary 7.3.4
we know that a Landau band will be pinned at the origin and that the Hall conduc-
tance of the surface will jump by at least one unit as the Fermi level crosses this
band. In this situation, we have verified the conjecture numerically for all topolog-
ical phases of the model presented in Sect. 2.3.3 in d = 3, under relatively small
magnetic fields. Note that there is one phase with even bulk invariant which hence
also had a non-vanishing surface Hall conductance.

Let us further elaborate on the importance of the parity of the bulk invariant in
the case of a non-vanishing magnetic field, hence supplementing statement (iv) of
Corollary 7.3.4. Suppose that there is a Landau band atE 
= 0. Then, due to the chiral
symmetry, there will be another Landau band at −E and the Chern numbers of the
two bands are equal. Under small perturbations, these paired Landau bands can, in
principle, migrate towards E = 0 and then join the central Landau band, but note that
such process will change the Chern number of the central band by an even number.
If C̃h2

(
p̃(δ)

)
was odd in the first place, then the Chern number of the central Landau

band cannot be canceled by the processes just described and it indeed remains odd.
The physics described in the above conjecture might remind one of the observa-

tions made on graphene at relatively small magnetic fields [147, 229] where the Hall
conductance jumps by four units as the Fermi level crosses the Landau band pinned
at the origin. However, this feature of graphene is not stable and at larger magnetic
fields where the central Landau band splits into four Landau sub-bands and only
jumps by one unit occur for the Hall conductance [226, 231].

We now turn our attention to the solid state systems with approximate chiral
symmetry in dimension d = 3, that is, the ACH defined in Sect. 2.4 is supposed

http://dx.doi.org/10.1007/978-3-319-29351-6_2
http://dx.doi.org/10.1007/978-3-319-29351-6_2
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to hold. By Proposition 2.4.9, such a system is homotopically connected to a solid
state system exhibiting an exact chiral symmetry and thus displaying the physics
discussed above on its surface. Since the IQHE is robust against homotopies, we
can automatically conclude that this interesting physics will also be observed under
weak breaking of the chiral symmetry. More precisely:

Proposition 7.4.1 ((Anomalous) Surface IQHE under ACH) Let ĥ = (h, h̃) ∈
M2N (C) × Âd in dimension d = 3 be such that BGH and CH apply, and assume
that the above Conjecture applies. Let t ∈ [0, 1] �→ ĥ(t) be a continuous deforma-
tion of ĥ (as defined in Definition 2.4.5) which breaks the chiral symmetry. Further
assume that the interval [−δ, δ] can be chosen such that its ends resides in a region
of localized boundary spectrum for all t ∈ [0, 1] (which is always possible for small
deformations). Then the spectral projections p̃(δ, t) = χ(−δ ≤ ĥ(t) ≤ δ) lead
to a constant value C̃h2

(
p̃(δ, t)

)
during the deformations. As such, the system with

weakly broken chiral symmetry will continue to display the surface IQHE, which is
anomalous if the magnetic field vanishes. However, the divergence of the localization
length is not necessarily at E = 0 any more.

Proof From Proposition 2.4.11, it follows that p̃(δ, t) varies continuously in the non-
commutative Sobolev space MN (C) ⊗ Wd−1,1(Ed, T̃). Then the statement follows
from Theorem 6.6.2. �

When the chiral symmetry is broken, the Hall conductance of the surface should
continue to display a net jump of |Ch3(uF)| over the interval [−δ, δ]. This net jump,
however, will very likely not happen suddenly at a single energy, but instead will be
a sum of elementary jumps by one unit. As we already pointed out several times, the
chiral symmetry is expected to hold only approximately in real solid state systems,
hence the established stability of the physical effects also against weak symmetry
breaking should facilitate the experimental observability of the surface IQHE in
adequate materials.

7.5 Virtual Topological Insulators

The topological systems in d = 4 or higher dimensions are not entirely fictitious since
additional dimensions can occur in a parameter space. A special place among such
systems is held by the virtual topological insulators, introduced and characterized in
[127]. Their defining characteristic is a strong topological invariant which is defined
in d+d′ space dimensions, where d counts the physical dimensions and d′ the virtual
ones, with an invariant that is yet computable and experimentally measurable inside
the d physical dimensions.

Let us briefly describe the virtual topological insulators from class A in 3 + 1
dimensions, introduced in [167]. For sake of simplicity, the disorderwill be neglected.
Then the virtual systems are generated by the algebra A4 = C∗(u1, . . . , u4) from

http://dx.doi.org/10.1007/978-3-319-29351-6_2
http://dx.doi.org/10.1007/978-3-319-29351-6_2
http://dx.doi.org/10.1007/978-3-319-29351-6_2
http://dx.doi.org/10.1007/978-3-319-29351-6_6
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Definition 3.1.1 via the following faithful representation on �2(Z3) invoking only
three magnetic translations U1, U2, U3:

πθ(uj) = Uj , for j = 1, 2, 3 , πθ (u4) = ei(〈B4,X〉+θ) ,

where B4 = (B1,4, B2,4, B3,4) now plays the role of frequencies of the perturbation
and θ ∈ R the phase of the representation. As a non-trivial example, let us take

h = 1
2i

4∑
j=1

γj ⊗ (uj − u∗
j ) + γ0 ⊗

(
m + 1

2

4∑
j=1

(uj + u∗
j )

)
∈ M4(C) ⊗ A4 ,

which generates the model already analyzed in Sect. 2.2.4. There it was also shown
to posses a strong topological invariant Ch4(pF) 
= 0. Here focus is on the represen-
tations Hθ = πθ(h) on C

4 ⊗ �2(Z3) rather than C
4 ⊗ �2(Z4):

Hθ = 1
2i

3∑
j=1

γj ⊗ (Uj − U∗
j ) + γ0 ⊗

(
m + 1

2

3∑
j=1

(uj + u∗
j

)

+ γ4 ⊗ sin(〈B4, X〉 + θ) + γ0 ⊗ cos(〈B4, X〉 + θ) ,

which describes a periodic crystal subjected to a magnetic field and an additional
incommensurate periodic potential, namely we require 1

2π Bj,4 to be irrational. As Hθ

acts on a Hilbert space over the three-dimensional lattice and and it depends on an
additional parameter θ ∈ S

1 we refer to it as a model in 3 + 1 dimensions. Let us
now show that the topological invariant can be computed at fixed θ . First of all,

T(a) =
∫
S1

dθ

2π
Tr 〈0|πθ(a)|0〉 = lim|V |→∞

1

|V |
∑
x∈V

Tr 〈0|πθ+〈B4,x〉(a)|0〉

= lim|V |→∞
1

|V |
∑
x∈V

Tr 〈x|πθ(a)|x〉 ,

where Birkhoff’s theorem was used combined with Ujπθ(a)U∗
j = πθ+Bj,4(a) and

the irrationality of Bj,4. Hence the topological invariant can be indeed computed at
fixed θ :

Ch4(pF) = Λ4

∑
ρ∈S4

(−1)ρ T
(

Pθ

4∏
j=1

∂jPθ

)
,

where Pθ = χ(Hθ ≤ μ), ∂4Pθ = ∂θPθ and ∂jPθ = i[Pθ , Xj] for j = 1, 2, 3. This bulk
topological invariant was related in [167] to the magneto-electric response function,
discussed in the following sections. Another interesting link can be established via
the generalized Streda formulas. For example,

Ch4(pF) = 2π ∂B3,4σ1,2 ,

http://dx.doi.org/10.1007/978-3-319-29351-6_3
http://dx.doi.org/10.1007/978-3-319-29351-6_2
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which implies the quantization of the variation of the bulk Hall conductance in the
(1, 2) plane (i.e. the non-linear Hall conductivity) w.r.t. the modulation of the incom-
mensurate potential (or of the original lattice) in the third direction. This is a piezo-
magneto-electric effect and the prediction could be tested with cold atom physics.
Furthermore, assume now a boundary, say at x1 = 0. Then we can consider the
topological invariant C̃h3(ũΔ) and by applying the statement (v) of Proposition 7.2.3
we obtain

(2π)2 ∂B3,4 J̃2 = (2π)2 ∂B2,4 J̃3 = − C̃h3(ũΔ) = −Ch4(pF) ∈ Z .

This implies the existence of boundary currents in the second (third) direction whose
variation w.r.t. the modulation of the incommensurate potential in the third (second)
direction is quantized in units of 1

(2π)2
.

7.6 Quantized Electric Polarization

The electric polarization has two contributions, one from the displacements of the
nuclei and one from the electrons. Here we will be dealing only with the latter con-
tribution, which is often called the orbital polarization P = (P1, . . . , Pd). It has been
realized in the 1990s that P itself is not a gauge-invariant and measurable quantity,
but that the variation ΔP of the orbital polarization during adiabatic deformations
of crystals is gauge-invariant and measurable which is directly related to the flow
of charges induced by such deformations (see [179, 180] for a historical account).
If the deformation is periodic in time, it turns out that the orbital polarization is of
topological nature and is actually the same quantity considered in charge pumps
[209]. This well known effect can now be placed in a broader context and several
predictions can be made using the tools developed so far.

Let be given a closed differentiable path t ∈ [0, T ] �→ h(t) ∈ Ad , h(T) =
h(0), of Hamiltonians satisfying the BGH at a fixed Fermi lelve μ, and set pA(t) =
χ(h(t) ≤ μ) to be the instantaneous Fermi projection. Then it is shown in [198] that,
up to arbitrarily small corrections in the adiabatic limit, the change in the electric
polarization during one adiabatic cycle is

ΔPj = i
∫ T

0
dt T

(
pA(t)

[
∂tpA(t), ∂jpA(t)

])
. (7.9)

This is the disordered version of the King-Smith-Vanderbilt formula for the orbital
polarization [114]. Note that Eq. (7.9) is invariant to the scaling of the time, hence
t can be seen as taking values on the unit circle S

1 ∼= [0, 2π). The r.h.s. is, up to
a constant, the pairing of the projection pA = {

pA(t)
}

t∈S1 with a 2-cocyle over the
algebra C(S1,Ad), which is isomorphic to Ad+1 if the periodic time dependence is
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interpreted as an extra space direction. To avoid confusion, we choose the time to be
in the 0th direction. Then, from (7.9),

ΔPj = 2π
〈[ξ{0,j}], [pA]0

〉 = 2π Ch{0,j}(pA) . (7.10)

Based on (7.10), Theorem 5.7.1 and Corollary 5.7.2 gives the following prediction.

Corollary 7.6.1 The change in the components of the bulk electric polarization,
after and adiabatic periodic cycle, depends only on the class [pA]0 ∈ K0(Ad+1) of
the Fermi projection, and is equal to:

ΔPj =
∑

{0,j}⊆J⊆{0,...,d}
βJ (2π)1−

|J|
2 Pf

(
BJ\{0,j}

)
,

with |J| even and βJ the integer numbers appearing in the decomposition of [pA]0
into the generators of the K0(Ad+1) group,

[pA]0 =
∑

J⊂{0,...,d}
βJ [eJ ]0 ,

as elaborated in Sect.4.2.3. Above, it is assumed that Pf(B∅) = 1.

According to the above statement, ΔPj can take only discrete values but these
values are not necessarily integer. For example, for d = 1 and d = 2 the set J can
only be {0, j}, hence ΔPj = β{0,j} is always an integer, while for d = 3 we have in
general

ΔPj = β{0,j} + β{1,2,3}\{j}B{1,2,3}\{j} , j = 1, 2, 3 .

Note, however, that the variation of the magneto-electric response coefficient

∂B{1,2,3}\{j}ΔPj = β{1,2,3}\{j} , j = 1, 2, 3 ,

is an integer, a fact which will be addressed in more detail in Sect. 7.8. Let us mention
that, for d = 1, the above quantization already appeared in the work of Thouless
[209], while, for d = 2, a non-trivial example manifesting this quantization is con-
structed in [55], where an adequate loop of next-nearest hopping Hamiltonians on
the hexagonal lattice is constructed. It will definitely be very interesting to test the
prediction of Corollary 7.6.1 in dimension d = 3.

Next let us show how theK-theoretic result of Sect. 4.3.4 can be applied to obtain a
further formula for the polarization. Invoking (5.19) in Theorem 5.4.1 on the duality
of pairings under the suspension map combined with Proposition 4.3.7, on obtains:

〈[ξ {0,j}], [pA]0
〉 = 〈[ξ {0,j}], [pA]0 − [pF]0

〉
= 〈[ξ{j}], [pFvA,2π pF + 1N − pF]1

〉
,

http://dx.doi.org/10.1007/978-3-319-29351-6_5
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where vA,2π is the Poincaré map of the adiabatic time evolution over one cycle,
see Sect. 4.3.4. Now the r.h.s. can be written out more explicitly (using the identity
vA,2π pF = pFvA,2π pF):

ΔPj = 2π iT
(
pFv∗

A,2π pF ∂j
(
pFvA,2π pF

))
.

This is the stroboscopic interpretation of the polarization, expressing it in terms of
the winding number of the adiabatic evolution over one cycle restricted to the range
of the Fermi projection. Yet another formula for the polarization will be given in the
next section.

Next let us come to periodic loops of chiral systems. The following shows that
their polarization vanishes.

Proposition 7.6.2 Suppose that t ∈ S
1 ∼= [0, 2π) �→ h(t) ∈ Ad is a loop of

Hamiltonian satisfying the CH. Then ΔP given by (7.9) vanishes.

Proof Inserting J2 = 1 and using JpAJ = 1 − pA on the r.h.s. of (7.9) shows
−ΔPj = 2π Ch{0,j}(1 − pA). But the homomorphism property of the pairing
implies Ch{0,j}(pA) + Ch{0,j}(1 − pA) = Ch{0,j}(1) = 0 so that ΔPj = −Δ

Pj = 0. �

Nevertheless, it is possible to associate a topological quantity to a loop of chiral
systems, namely the chiral time polarization defined by

PCT = i
∫ 2π

0
dt T(pF(t) J ∂tpF(t)) .

The chiral polarization PC defined for a given chiral Hamiltonian (and not a loop
of them) in Sect. 7.3 is quite similar. Following the calculation in the proof of
Proposition 7.3.1 shows

PCT = 1
2i

∫ 2π

0
dt T(uF(t)∗∂tuF(t)) = − 1

2

〈[ξ s
∅], [uF(t)t∈[0,2π)]1

〉
.

The r.h.s. is, up to a factor, the winding number of the time-varying Fermi unitary
operator, hence it is a stable topological number. Using the Streda formula, one
deduces for 1 ≤ i, j ≤ d

∂Bi,j PCT = − 1
4π

〈[ξ s
{i,j}], [uF(t)t∈[0,2π)]1

〉
. (7.11)

In d = 2, the r.h.s. is integer valued by the odd index theorem. For d = 3 it is an
integer valued weak invariant under the BGH.

http://dx.doi.org/10.1007/978-3-319-29351-6_4
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7.7 Boundary Phenomena for Periodically Driven Systems

In this section investigates the implications of the bulk-boundary correspondence for
the periodically driven systems used for the definition of the orbital polarization in
Sect. 7.6. Thus let us consider a time-periodic family of half-space Hamiltonians

t ∈ S
1 ∼= [0, 2π) �→ ĥ(t) = (

h(t), h̃(t)
) ∈ Âd .

This family is a lift of t ∈ S
1 �→ h(t) in the exact sequence of time period systems

0 � C(S1,Ed)
i� C(S1, Âd)

ev� C(S1,Ad) � 0 , (7.12)

which is just a reformulation of (3.36). In fact, if we see the time as another space
direction, then (7.12) is exactly (3.36).Now thebulk-boundary correspondence (5.27)
implies

ΔPd = 2π Ch{0,d}(pA) = 2π C̃h{0}(ũΔ) ,

where the 0th component is still time and [ũΔ]1 = Exp[pA]0. Our goal here is to
give a physical interpretation of the 1-cocycle appearing on the r.h.s.. According to
Proposition 7.1.2

C̃h{0}(ũΔ) = − 2π
∫ 2π

0
dt T̃

(
f ′
Exp

(
ĥ(t)

)
∂t ĥ(t)

)
. (7.13)

Following an argument from [56] (see Proposition 4 there), in the cased = 1, the r.h.s.
of (7.13) is just 2π times the classical spectral flow [158] of boundary eigenvalues
of the path t ∈ S

1 �→ ĥ(t) through the bulk gap at μ,

ΔP1 = − 2π Sf
(
t ∈ S

1 �→ ĥ(t) byμ
)
.

The spectral flow counts the number of eigenvalues crossing the Fermi level from
below minus the number of eigenvalues crossing from above during the adiabatic
cycle. As one can immediately see, this is precisely the amount of charge pumped
from the valence to the conduction states. For d > 1, the spectral flow in the above
bulk-boundary correspondence has to be understood in a generalized sense of Breuer-
Fredholm operators (see [22]), but its physical interpretation remains the same, as the
charge per the unit area pumped during the adiabatic cycle. We will use the symbol
Sf also for the spectral flow in this generalized sense.

Let us briefly comment on the bulk-boundary correspondence for the chiral time
polarizationPCT for paths of chiral Hamiltonians. AsPCT itself is given by the pairing
with a 0-cocycle, there is no bulk-boundary correspondence for it. On the other hand,
for its derivatives w.r.t. a magnetic field perpendicular to the surface one has due to
(7.11):

http://dx.doi.org/10.1007/978-3-319-29351-6_3
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∂Bi,d PCT = − 1
4π

〈[ξ s
{i}], [p̃Δ(t)t∈[0,2π)]0

〉
= − 1

4π

(〈[ξ s
{i}], [p̃+(δ, t)t∈[0,2π)]0

〉 − 〈[ξ s
{i}], [p̃−(δ, t)t∈[0,2π)]0

〉)
,

where in the second identity it was supposed that ±δ lie in gaps of the surface
spectrum (e.g. opened by the magnetic field).

7.8 The Magneto-Electric Response in d = 3

The magneto-electic effect in an insulating material consists in the change of its
electric polarization under a variation of the external magnetic field or, alternatively,
the change of the magnetization under a variation of an electro-static potential. As
in the previous section, we will be dealing only with the electron contributions to the
effect.Now, let us consider a periodically driven system in dimensiond = 3 forwhich
the orbital polarization is given by (7.9). Then the change in the magneto-electric
response coefficients per cycle is

Δ αi,j,k = ∂Bi,j ΔPk , {i, j, k} = {1, 2, 3} .

By using the connection given in (7.10) and applying the generalized Streda formula
from Theorem 5.6.3, we obtain

Δαi,j,k = (−1)ρ
〈[ξ{0,1,2,3}], [pF]0

〉 = (−1)ρ Ch4(pF) ∈ Z ,

where ρ is the permutations which sends {i, j, 0, k} into {0, 1, 2, 3}. The r.h.s. is the
strong even pairing over the algebra A3+1 and hence integer-valued. A formula of
this type already appeared in [169], but there an average over the space direction k
was taken and used. The above statement shows that all 3 terms are in fact equal
to the same invariant. In dimension d = 4, which will be relevant for the virtual
topological insulator discussed above, a similar statement holds, but the even pairing
is only a weak invariant in this case.

For a crystal with surface in d = 3, we can use the bulk-boundary principle of
(5.27) in the following way

Δα1,2,3 = ∂B1,2ΔP3 = ∂B1,2 C̃h{0}(ũΔ) = − 2π ∂B1,2Sf
(
t ∈ S

1 �→ ĥ(t) byμ
)

.

Hence, the spectral flow is not quantized but its variation with respect to the compo-
nent of the magnetic field perpendicular to the surface is quantized:

− 2π ∂B1,2 Sf
(
t ∈ S

1 �→ ĥ(t) byμ
) = Ch4(pF) .

This relations tells that, if Ch4(pF) 
= 0, there is a spectral flow no matter where we
place the Fermi level in the bulk gap. This implies that essential spectrum moves
across the bulk gap as the time evolves, connecting the upper and lower parts of the
bulk spectrum.

http://dx.doi.org/10.1007/978-3-319-29351-6_5
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