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Preface

Have patience with everything unresolved in your heart, and try
to love the questions themselves as if they were locked rooms or
books written in a very foreign language. Don’t search for the
answers which could not be given to you now because you
would not be able to live them. And the point is, to live
everything. Live the questions now. Perhaps then, someday far
in the future, you will gradually, without even noticing it, live
your way into the answer.

Rainer Maria Rilke

In most dictionaries the word ‘boundary’ is defined as something that shows where
one thing ends and another begins or something that divides something else into
two parts. In some dictionaries a boundary is also defined as the limit of a subject,
activity, or experience. More mathematical dictionaries define a boundary as the
closure of a given set, the points separating the set from its complement. Overall,
the boundary seems to be defined by divide et . . . separare (see the figure below). In
this book we try to discuss the many aspects of the boundary from a unifying point
of view, an interdisciplinary angle. We shall examine how important the boundary is
for the existence, dynamics, and stability of what it bounds. In other words, we shall
discuss and exemplify the extent to which the boundary dynamics is essential for
the dynamics of the interior. The book emphasizes the importance of the boundary
as a glue, rather than as a separation between various interrelated topics.

Real and apparent boundaries and frames

vii
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The direction this book has taken has been strongly influenced, if not even
determined, by Dr. Christian Caron, executive publishing editor at Springer and my
editorial adviser, who encouraged me to approach the topic of boundaries in parallel
with the increasing importance of interdisciplinary topics, complex systems science,
and especially the booming new socioeconomic theories. He also drew my attention
to several crucial papers for the contents of this book.

Another motivation derives from the mathematical claim that ‘a boundary has
no boundary’. I first heard this affirmation when at elementary school, from an
uncle, accountant by profession and spare-time astronomer by vocation, and for
many years I was intrigued by its strange duality. Of course, when I was taught a
little geometry, I was able to prove it, but in this book I will try to express the essence
of the assertion through several different forms of expression and not only purely
mathematically.

Last but not least, another motivation for writing this book built up from many
discussions I had with vision scientists, neuroscientists, painters, and art critics on
the difference between painting on the circular (hence, infinite) surface of a vase
(e.g., ancient Greek vases) and painting on a regular flat surface delimited by the
rigid boundary of a frame. The question is whether the existence of a frame has
consequences for the power of creativity and for the freedom in choosing a subject.
I do not think we found an answer, but at least we raised a question.

The importance of boundary is discussed in this book from several points of view:
artistic, sensorial, neuroscientific, social, physical scientific, epistemological, and
mathematical. Let us give a simple example of the type of argumentation we develop
throughout the book. In a series of psychological studies on delayed gratification,
performed in the 1960s by Walter Mischel et al. [1], studies known as the Standford
marshmallow experiment, the subjects (children) were offered a choice between
one small reward (marshmallow, cookie) provided immediately and two such small
rewards if they waited for a short period of time. The children could eat one
marshmallow right away, but if they waited for fifteen minutes without giving in to
the temptation, they would be rewarded with a second marshmallow. The researcher
interviewed a girl from the group of children who had waited patiently for the late
(hence, double) reward: How did she do it? The girl explained how she “put a frame
around the marshmallow” so that it became more of an abstract photograph than a
real treat. This comment illustrates a situation where the importance of the frame,
even an abstract or imaginary one, grows beyond its supportive mission.

This book is not aimed only at expert readers in some field or another and
is thus written in a self-contained manner. The mathematical approaches are
introduced gradually where needed, and they are exemplified as intuitively as
possible. However, to avoid trading rigor for simplicity, we do introduce some of the
sophisticated and counterintuitive concepts in a self-explanatory form: words and
images, rather than formulas. Formulas and equations, main theorems, and proofs
are always provided as supplements, along with intuitive examples.

The book is divided into three parts. In the first part the human, artistic, and
social components are dominant. The second part is dedicated more to mathematical
language, including both continuous and discrete mathematics, and the interface
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between them. In the third part, we present several applications of the theoretical
aspects introduced in the first two parts. Specifically, we cover elements of network
theory, big data, and examples from the physical sciences. For the second and third
parts, the reader will need a grasp of linear algebra and elementary calculus. This
book is a graduate level text: I try to maintain an approachable and fairly constant
level throughout, in spite of the breadth and diversity of topics covered, ranging
from the visual arts to differential geometry. Globally speaking, this book is mainly
addressed to readers interested in complex systems with boundaries, especially
those occurring at the interface between different domains like art and neuroscience,
fluid dynamics and computer science, networks and geometry, etc.

The book tries to present the concept of boundary from very different angles, yet
in a uniform and integrated structure, by focusing on the same major theme, viz., the
extent to which the structure of the boundary of a system controls the evolution of
the system as a whole. The goal of this book is to present models of phenomena
that occur mainly on closed, compact surfaces with boundary, especially where
nonlinear and complex solutions are involved. We are acutely aware that the book
is still far from being a comprehensive study of the importance of the boundary for
systems that have one.

After a motivational introduction, Chap. 2 begins by describing the influence and
importance of the frame for the visual arts. The reader is taken on a tour of different
opinions and different artistic media relating to boundaries, frames, and contours.
Beginning with Sect. 2.5, we move smoothly from the visual arts to vision itself
and then to the neuroscience of vision and other perceptions. Section 2.7 describes
the possibility of comparative studies involving many senses, different types of
perception, and mathematical language.

In Chap. 3, we study the importance of boundaries for social systems. The
feedback effect of boundaries on social relations is also described in Sect. 3.3.
Sections 3.4–3.6 introduce the elements of social metrics and their relations to social
boundaries and socio-mathematics. In the last two sections of Chap. 3, namely,
Sects. 3.7 and 3.8, we develop the theory of topological social boundaries, providing
a few examples of topological patterns and discussing modern trends.

The second part of the monograph contains an exposition of the basic topics in
mathematics and the physical sciences which relate to boundaries in a nontrivial
way. We introduce the mathematical language of boundaries using topological
and geometrical tools. In Chap. 4, we discuss topology and differential manifolds
and also differential forms and fiber bundles. Section 4.7 considers the effects of
perturbations of the boundaries on the evolution of dynamical systems, and Sect. 4.8
introduces the elements of cobordism. In Chap. 5, we describe the basic features of
discrete mathematics in order to balance the mathematical content of the book. We
elaborate on graph theory, limiting ourselves mainly to topological, geometrical,
and boundary affirmations, formulas, examples, and theorems. We introduce the
elements of algebraic topology and homology in Sects. 5.5–5.7, and we conclude
with a unifying overview of discrete and continuous methods.

The third part of this book describes applications. In Chap. 6, we briefly discuss
the concept of boundary and boundarylessness in the philosophy of science. In
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Chap. 7, we continue the presentation of examples by introducing networks and in
particular by describing the Internet as a system with boundary. In Chap. 8, we give
examples from the modern topic of big data. We examine three domains of research
concerning very large data sets, viz., the dimensionality of data sets, topology of
data sets, and holes in data sets.

Chapter 9 is devoted to liquid boundaries, and examples of 3D liquid drops,
2D drops, bubbles, shells, double bubbles, antibubbles, etc., are presented and
discussed. Sections 9.7–9.9 present an interesting parallel between Leidenfrost
drops, hurricanes, and rotating volumes of liquid confined in containers. The chapter
ends with three appendices containing a few mathematical elements needed to better
understand the above applications. In the conclusion in Chap. 10, we summarize the
most important features of boundaries across the various fields of human knowledge.
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Part I
Arts and Nonlinear Systems: ‘Nonlineart’

In their inspiring interdisciplinary anthology of essays on Framing Borders in
Literature and Other Media, Wolf and Bernhart (editors) point out that, in the
last few decades, any signifying human act, meaningful perception, cognition, or
communication involves frames [2]. Of course, they use the word in its most generic
sense as referring to a structure, skeleton, plan, system of reference, opening,
closure, or boundary. In arts that develop and fulfil themes over a certain period
of time, such as literature, music, and the performing arts, or what Wolf calls
the ‘temporal media’, the beginning as an introduction, overture, or preamble
represents the essential meaning of the frame’s beginning. The mission of this initial
frame is to label and structure the cognitive development of the given work of art.
There is a similar sequence of events in dynamics and other disciplines involving
mathematics and applied mathematics, the physical sciences, astronomy, etc., where
time evolution is the core of the theory. The frame is the law, the reference, the
coding, and in that sense there is no escape from the frame into another non-realistic
world.

There is a second use of the boundary metaconcept in its spatial context as
a natural physical border, or enframing. From the art perspective, this boundary
represents painting, photography, film, and all visual arts. Yet, there are connections
between the two types of boundary concepts, and there is interference between the
uses. For example, the frame of a blank canvas tells the painter to begin painting. The
viewer, shopper, collector, and art critic attempts something completely different. In
the first instance, the frame plays the role of structure, and it is an overture for
the artist, in fact, a limitation which can sometimes be stressful and painful for the
process of creation. However, upon completion of the work, the frame becomes its
boundary, and in a simplistic way, its glue.

In the first part of this book we pursue this pioneering research on the frame-
theoretical approach in the visual arts, and develop it into a more mathematically
oriented language. We maintain the connection with visual perception and physi-
ology, and orient it towards findings in neuroscience, and even a global network
framing of knowledge. This first part investigates the consequences of the exis-
tence/nonexistence of frames for the psychology of the visual arts. In particular,
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we elaborate on how the perception, cognition, and characteristics of visual arts and
their productions are influenced by the interaction with the frame and boundary of
the artwork. After an introductory chapter in which we seek to decode the message
of the frame for the spectator, the book continues with chapters dedicated to the
arts, networks, biology, and neuroscience. The first three sections of Chap. 2 discuss
the sensory influence of the boundary of a given work of art on our perception and
judgment. We discuss the way our brain processes the visual information coming
from a framed image, and how this information is enriched, transformed, or distorted
by the existence of its boundary.

In Sect. 2.4, we make connections between the way our brain processes visual
information and the most novel computational models for image storage, recogni-
tion, and reconstruction. In Sect. 2.5, we debate the way different schools and artists
use the boundary dilemma.

Section 2.6 focuses on the field of perception and we discuss how the physiology
of vision is influenced by the information coming from a bounded image with well
determined and definite boundaries.

Finally, Sect. 2.7 compares two people who have done much to further our under-
standing of the framing and bounding paradigms: René Magritte and Bernhardt
Riemann, the first through his surrealist paintings, and the second by founding what
we know today as the theory of functions of complex variable, branch lines, and
Riemann surfaces. Other art forms, including theater and film, are briefly described
in this section.



Chapter 1
Introduction

The origins of the words ‘boundary’, ‘bound’, and ‘frontier’ can be traced to two
different etymologies. The oldest comes from expressing the repetition of a loud
noise, reverberated by surrounding mountains or walls, possibly an echo. A more
recent etymology can be traced to an expression meaning ‘under obligation’.

The first occurrence of the root word is noted in Medieval Latin as budina, still
of uncertain origin. Only around the thirteenth century AD do we find the word
bombitire in Vulgar Latin, meaning to echo back, to buzz, or to mumble. From here
the word is seen again around 1170–1230 in Middle English and Anglo-French in
the form bounde. Also mentioned in Old French as bone, bonde, or bodne, and
in Gaulish as banna. Some authors attribute the roots of the word to the Vulgar
Latin tinnitire, or tentir in Old French. A third possible root comes from the Vulgar
Latin word bombus, meaning a deep, hollow noise, a buzzing or booming sound.
Finally, some authors attribute its origin to the Greek bombos, also meaning deep
and hollow, an echoic sound once again.

In Anglo-Latin, around 1200, we find bunda, or born in Old French, having
already established the meaning of limit, or boundary stone. Around 1400, the
word frontiere is used in Old French to indicate the prow of a ship, the front rank
of an army, facing, or neighboring, believed to arise from the word brow. In the
mid-fourteenth century, we find boundary, border, and bound used in the sense of
fastened, or in the figurative sense of compelled, from bounden (the past participle
of bind).

The first attested use of the word in North America is in the early fifteenth
century, where it has the specific meaning of the front line of an army, or again
a borderland.

A deviation from the geometrical meaning was recorded around 1550, with the
sense of ‘under obligation’, or even ‘made fast by tying’. We find the word back
in Europe in 1580, as bombe in French and bomba in Italian. The word is recorded
around 1850 in Old French as bondir, meaning to rebound, to resound, or to echo.

© Springer-Verlag Berlin Heidelberg 2016
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4 1 Introduction

At this time it is also being used to express leaping, rebounding, making a noise, or
beating (a drum).

Back in the North American continent, we find the word used to describe mortar
shells, or specifically an ‘explosive device placed by hand or dropped from an
airplane’ in 1909. In an American 1920 census report, we find the word ‘frontier’
used to refer to the margin of ‘that settlement which has a density of two or more to
the square mile’.

From the point of view of physics, the boundary of a system can exist in two
situations: when it separates a system from the rest of the environment (if the system
is part of, or embedded in some environment), or when the existence of collective
coordinates provides a faithful description of the system, as happens when a system
reaches a point where its phase space can be reduced in dimension (Fig. 1.1).

The theory of boundary in science has a living history, from navigation around
the Earth to navigation in the universe. Boundary problems are encountered at any
physical scale, from quark–gluon droplets and heavy nuclei, to liquid droplets,
swimming cells, labs-on-chips, and all the way to neutron stars and black holes.
Historically, as almost every new theory begins to develop, another tends to ignore
the existence of any natural boundaries. With the development and the occurrence of
contradictions and experimental improvements, theoreticians are eventually forced
to recognize the various fundamental limits within the theory.

On Earth, we live on the boundary of a compact spherical domain, so our
geographical world is the boundary of the sphere, and consequently our world has
no boundaries. It is also a 2D world, and the other 2D geographical/geometrical
entity that is unbounded is the Euclidean plane, which happens to be flat. Therefore,

Fig. 1.1 An artistic
procedure to underline the
dynamical duality,
inside–outside, of a frame.
Pere Borrell del Caso,
Escaping Criticism, 1874 oil
on canvas, Banco de España,
Madrid. Public Domain:
https://commons.wikimedia.
org/wiki/File:Escaping_
criticism-by_pere_borrel_
del_caso.png

https://commons.wikimedia.org/wiki/File:Escaping_criticism-by_pere_borrel_del_caso.png
https://commons.wikimedia.org/wiki/File:Escaping_criticism-by_pere_borrel_del_caso.png
https://commons.wikimedia.org/wiki/File:Escaping_criticism-by_pere_borrel_del_caso.png
https://commons.wikimedia.org/wiki/File:Escaping_criticism-by_pere_borrel_del_caso.png
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our world must be flat! This was one of the first documented association fallacies in
the perennial need to understand nature by models.

Another example is provided by the concept of the speed of an object, a wave,
or information. Measured speed is a real number. Numbers are unbounded, hence
velocities must be unbounded. This is once again an association fallacy created by
theoretical knowledge. This fallacy contributed to the delay in understanding the
geometry of our world as Minkowskian, as opposed to Euclidean, and relativistic
as opposed to classical. The unboundedness of speed was shown to be false, and a
boundary for velocities was established in the relativistic and causal world.

Another example is provided by the cross-multiplication rule which works very
well for linear systems. For example, if yesterday I wrote one page, and today I
wrote two, I figure that following this trend I will eventually be able to write a whole
book in one day. This is the fallacy of linearity, which ruled the scientific world
for thousands of years, until people figured out that this world is predominantly
nonlinear.

In a more general sense, the boundaries of a signal largely determine its
properties and qualities. As a first example, a signal carrying one pure note, one
frequency, played for an unlimited duration is fully described by that frequency,
and its spectrum consists of just one spectral line, one Fourier component. On the
other hand, if this pure frequency is generated only for a short interval of time,
one needs more parameters to describe the signal. It is necessary to know the
time duration, which actually means knowing one more frequency, given by the
reciprocal of this time interval, and one also needs to know how the signal started,
i.e., the signal phase. The shorter the signal duration, the more information one
needs to know to reproduce the signal. In the limit as the duration approaches
zero, this pure frequency signal becomes a noise, and hence contains almost the
whole spectrum of acoustic frequencies. In other words, there is a trade-off between
duration and complexity. In engineering, this is known as the bandwidth–gain trade-
off, in physics and mathematics as the principle of uncertainty, and in economics
as the opportunity–cost trade-off. No matter what the field of application, the
philosophy of this principle is that, by bounding one parameter in a feedback system,
the bounds of some other correlated parameter must be extended.

A similar trade-off of bounds can be obtained by playing two sounds with very
close frequencies. The closer in frequency the two signals, the longer the time
needed to detect this difference. In other words, when we listen to these signals,
we hear the phenomenon of beats, that is, a modulation of the resulting signal with
a very low frequency equal to the difference between the two original frequencies.
In order to detect beats, one needs to wait long enough to be able to count them,
so here we have a trade-off between measurement time and proximity of the two
frequencies.

Another interesting situation where the boundedness of a parameter generates
significant effects is in differential equations. It is well known that a linear differen-
tial system will have a unique solution when we are given enough initial conditions.
The unique solution is in general smooth to some extent and can be extended without
limit in time. Linearity involves a high degree of predictability. By negation, a
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set of non-unique solutions should occur in principle from a nonlinear differential
system. Non-uniqueness versus time means that the solution is invariant under time
translations, which implies that its time extension must be finite, or bounded. A
time-limited signal is zero everywhere outside some bounds, so does not affect the
time axis (at infinity) if it is translated in time. It follows that temporally bounded
solutions must emerge from nonlinear systems. Moreover, since all identifiable
patterns must have a certain degree of time localization, and consequently a degree
of boundedness, it follows that pattern generation is intimately connected with
nonlinearity, via the property of being limited or bounded.

More examples of the importance of boundedness in science arise from string
theory, quantum gravity, and cosmological models. For example, it has been
conjectured that the maximum entropy that can be enclosed by a spatial boundary is
given by a fraction of its surface area [3]. In physics, the Bekenstein bound

S � 2�kB

„c RE

provides an upper limit to the entropy S, or information, that can be contained within
a given finite region of space of radius R which contains a finite amount of energy
E. In this equation the quantities kB, „ D h=2� , and c are the Boltzmann constant,
the rationalized Planck constant, and the speed of light in vacuum. In computer
science, this implies that there is a maximum information processing rate (the so-
called Bremermann limit) for a physical system that has a finite size and energy.

In computer science, Moore’s law [4], which states that the density of indepen-
dent electronic units increases as a power law versus time inside a given independent
functional system, may become another example of an association fallacy. By
applying the laws of physics to the process of computation and by applying Moore’s
law, an extrapolation of current exponential improvements, two more decades would
result in computers processing information at the scale of individual atoms [5].

Another example where the boundary is important relates to thermodynamics,
and the definition of the thermodynamic temperature. A thermodynamic system
must have a number of constituents of the order of the Avogadro number (NA � 6�
1023). This means that the space of mechanical degrees of freedom and constituent
configurations has a huge number of dimensions of the order of the Avogadro
number. Let us keep the system in thermal equilibrium, by holding it in contact with
a thermostat. This constant temperature constraint is described mathematically by
one equation, so the particles in the system must occupy on average a hypersurface
of their phase space. Given the huge number of dimensions of this space, the
topological difference between the sphere and its boundary is null, and practically
all points inside the hypersurface are actually localized on the hypersurface, that is,
at the boundary. It follows that, in a large enough system, the thermodynamic laws
require the dynamics to happen mainly at the boundary of the space.

Another question arising from these discussions is whether complexity involves a
boundary, and if the answer is affirmative, what its structure, topology, and geometry
might be. Traditional complex systems are large networks (like neuronal networks,
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the Internet, the World Wide Web), physicochemical systems (turbulence, patterns,
spin glasses), life science systems (biological morphogenesis, genetic algorithms,
evolutionary dynamics, the immune system, socially interacting species), and more
recently, intelligent robotic systems (ant-like robotic systems), as well as social,
economic, and political systems (e.g., the evolution of cooperation, evolutionary
economics) [6].

Since the existence of a boundary involves measurement of localization (topo-
logical by neighborhood or metric), one can start by specifying how to measure
complexity. One might say that, in the first approximation, complexity could be
evaluated through measurement of self-organization [7]. Traditionally, measuring
self-organization by entropy decrease does not work, since there are low temperature
systems (like Ising systems or Fermi liquids) with low entropy, but which have no
organization, and on the contrary, there are biological systems that are thermody-
namically driven by increasing in entropy [6, 7].

The option for a system to be complex or to have a boundary is a direct conse-
quence of the observer’s interaction with it. When Marcel Proust once commented
on Rodin’s sculptures, he mentioned that there is some inherent impersonality in
a sculpture because the spectator can understand everything about it by moving
around and observing. In contrast, in a painting, the viewer is guided by the artist.
What creates this difference is either the 2D or 3D aspect, or the interaction of light
with the artistic material, or the change of reference of the spectator, or all of these
variables interacting in our visual brain. We do not know. For both art works are
bounded, one by its own surface, and the other by a frame. What we do comprehend
is that, in these effects, we find the signature of complexity.



Chapter 2
Boundaries in Visual Perception and the Arts

Like all walls it was ambiguous, two-faced. What was inside it
and what was outside it depended upon which side of it you
were on.

Ursula K. Le Guin, The Dispossessed: An Ambiguous Utopia,
1974

In this chapter we study several examples and theories from the visual arts in order
to analyze the importance of the boundary and frame for these types of artistic
creations and perceptions. The main goal of this study is to investigate whether the
‘feeling and perception’ of a visual boundary is more of an artistic emotional effect,
or a psychological effect, or whether it simply has a neurological and physiological
explanation through the mechanism of visual perception.

Visual perception is the interpretation of the environment by processing the
visible light information assimilated through the visual system. Light travels from
direct and indirect sources into the eyes and is projected onto the retina. The
multiple paths of the visual information from the retina are pieced together to
form a perceptual representation of an object. Then a meaning is attached to the
perceptual representation, the object is identified, and human decisions are made. In
this process, the information is generated by a 3D distribution of sources, mapped
onto a 2D surface (retina), and then mapped again into a 3D (or even a more complex
Riemann surface1) structure in the central nervous system.

This chain of singular morphisms provides sensory information (especially in the
retinal information segment) with some ambiguity. Visual perception is inherently
ambiguous since infinitely many real everyday scenes can generate the same retinal
information. Some scholars predicate that perceptual inferences are analyzed in the
brain through Bayesian inference. However, the inference predicament is easily
solved, thanks to additional knowledge referring to prior constraints: “everyday
perception uses prior knowledge” [9].

At an associative level, perceptions of the surrounding environment are linked
to human decisions. In real life, making a wrong decision is generally costly, thus

1For example, each eye projects onto three of the six layers of the primate lateral geniculate body
in a very particular way: each half-retina is mapped three times onto one geniculate body: twice
onto the parvicellular layers, and once onto the magnocellular layers [8].

© Springer-Verlag Berlin Heidelberg 2016
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the process of visual perception is associated with a certain risk in the orbitofrontal
cortex. The connection between daily perceptions, decisions, and risks brings more
affective motivation for the accuracy and faithfulness of the visual observation and
perception process.

But what about the perception of art? How does one’s mind reduce the perceptual
ambiguity in visual art? It is well known that visual ambiguity can create conflicting
situations and bistable (or unstable) perception, as in the case of the Necker cube.
Without a critical attitude, the inherent arbitrariness of the artistic approach will
not stimulate much artistic emotion. Mamassian’s solution [9] is that “without
specifying a task, the question of how good one is at looking at a painting becomes
irrelevant, and the notion of risk associated with an alleged wrong perception
becomes meaningless”. Consequently, the low level of risk will involve a weak
affective motivation, and hence a minimal interest in perception. A plausible path
in the perception of visual arts is to return to the challenges of everyday perception.
However, in addition to everyday perception which mainly uses prior knowledge,
Mamassian considers that visual arts should use conventions for the elimination of
ambiguities. The conventions can be inspired by prior visual knowledge, like placing
dominant characters at the vanishing point, or can be arbitrary, like placing one eye
of a person in a portrait on the vertical median of the frame, or having the face lit
from the above-left.

Several researchers advocate this convention-driven way of resolving ambiguity.
In her observations, Sylvia Pont et al. [10] concluded that visual awareness is
frequently non-veridical. Human observers do not use natural image cues, i.e.,
perspective in a formal sense, but instead apply a template. Subjects maintain
notions of how things should appear in a ‘canonical view’. This also seems to be
true in particular from the evolutionary perspective, since the canonical view is what
viewers form mainly from their visual experiences, and they strengthen prior beliefs
about this canonical template in a Bayesian sense. Haber considers that having two
simultaneous realities (on the one hand, the flat 2D reality of the picture surface, and
on the other, the 3D reality of the natural scenes) makes pictures more complex than
natural scenes, while simultaneously the flat reality of the picture makes it possible
for the viewer to perceive the layout of space in pictures more easily and accurately
[11].

With philosophers and thinkers like Aristotle, Roger Bacon, Thomas Aquinas,
Francis Bacon, and John Locke, we find scholars of various disciplines who are
favorable to the peripatetic principle,2 attributing some mathematical finality to the
sensorial perceptions [12]. These scholars consider the type of mathematics that
we humans handle in our everyday reasoning and thinking processes as having a
partially sensorial ascendant. Therefore, some basic mathematical concepts must
somehow be related to special human sensorial experiences and abilities. We
communicate and think in terms of language: written language (chains of symbols

2Nihil est in intellectu quod non prius in sensu: nothing is in the intellect that was not first in the
senses.
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read one at a time) or spoken language (chains of sounds and musical notes,
heard consecutively), which are basically chains of algebraic symbols. Conversely,
interesting algebraic structures have been detected in language and music; see,
for example, Noam Chomsky’s minimalist program and syntactic structures, or
Blanchard et al.’s game of structure and chance [13]. However, we can also express
ourselves and think in terms of images, which are instantly perceived, and connected
to principles and theorems of geometry in the most sub-cognitive forms. The fast
developments of neuroscience and brain mapping [14] add more support to this
peripatetic approach. The majority of the most highly appreciated mathematical
tools for signal processing, data mining, and image reconstruction, to enumerate just
a few of applications, have been shown to work identically to certain functions of
our brain. For example, in image reconstruction, the Gabor filter [15], a commonly
used image compression and recognition tool, works similarly to the simple cells
[16] of the primary visual cortex. Such recent developments show that humans see
the world primarily like a barcode scanner.

2.1 Is Our Visual Perception Two Dimensional or Three
Dimensional?

The most common definition of the words ‘frame’ and ‘boundary’ relates to the
act of being surrounded by an edge and exhibiting a 2D aspect, rather than 3D.
Bounding or framing simply represent the action of eliminating some degree of
freedom, or restricting dimensions: the boundary has one dimension less than its
inside. Therefore, recognizing the frame’s tendency to be 2D, we may wonder how
the brain analyzes and represents space as the subject (human, animal) moves within
2 or 3 dimensions.

Questions about perception of a 3D world that apparently surrounds us have
occupied humankind for centuries, and have been debated in the arts, philosophy,
mathematics, physics, and lately also neuroscience [17–25]. We live in a world
perceived as a 3D space, but when we travel we navigate by referring to a 2D map
that accounts for distances on a surface.

If ancestral drawing was not born just as a means for representation and
communication, but sprang up as a cognition product and a natural language, the
neural representation of a 3D space must have occurred just as a more efficient
mapping of the surroundings.

Recent experiments on rats [25] have shown that the hippocampal place cells
and the grid cells [21, 22] exhibit vertically-elongated firing fields, indicating that
the rat brain may encode the third dimension (elevation) in their motion with less
accuracy than the horizontal dimensions. In a similar study, Savelli and Knierim [20]
determined that the vertical dimension is encoded in the brain with less precision
than the horizontal plane. Hayman et al. [19] studied the encoding of 3D space
by place cells and grid cells, and found an anisotropy disfavoring the existence of
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the third dimension in rat brains. This group of researchers affirms that we do not
yet know whether other areas of the brain encode the third dimension, or whether
mammals simply do not need that information to survive: “An animal has a mosaic
of maps, each fragment of which is flat but which can be oriented in the way that is
most appropriate. Or maybe in our heads, the world is simply flat” (Kathryn Jeffrey
in an interview [19]).

Given this asymmetry, it is then legitimate to ask which came first: the ‘invention’
and use of the third dimension as a survival skill, or its preexistence in the brain
as a visually-based neural mechanism needed for 3D navigation? Did we mentally
escape from our 2 dimensions at some point in our evolution, or was the ability to
use a third dimension already encoded in our brains? Researchers are not certain,
as this relationship essentially winds itself into a cycle [21]. Yet, some scientists
believe [23] that natural selection drove the development of systems in ancestral
mammals to allow their brains to make rapid calculations in order to be able to grab
moving insects or other prey quickly and accurately.

Even more technically, some recent studies [21] accept that it is still unknown
whether rodent place-coding has a homologue in humans or whether human
navigation is driven by a different, visually-based neural mechanism. Maybe the
constant human need to navigate throughout space and beyond has enabled human
brains to transfer easily from few to many dimensional spaces. Such a hypothesis is
supported by studies performed with fMRI (functional magnetic resonance imaging)
in 2013 by Mrucksez et al. [17]. It is plausible that, at some point in the evolution of
anatomically modern humans, their brain became able to practise abstract thinking
and symbolic behavior, and consequently to learn to project real-life events in higher
than three-dimensional abstract spaces.

In the seventeenth century, we learned from Descartes and Fermat that space has
3 dimensions. We have since continued to stick to this ‘belief bias’, supported by
thousands and thousands of experiments, data, and verifications. Of course, with
the development of modern physics, we learned that space and time involve extra
dimensions, and that a grand unification of all interactions, especially gravity and
quantum gauge fields, is possible only in even higher dimensional spaces, where
particles are strings and trajectories are branes. Even if our physical space appears
to have only three large dimensions and, with duration, a fourth, nothing prevents
a complete theory from including more than four dimensions. In the case of string
theory, consistency requires spacetime to have 10 dimensions. Recently, however, a
possibility has surfaced that refutes the belief that the universe has 3 or more than 3
dimensions.

When are we ever going to find out if the world is flat or not, and whichever it
is, identify what it is that we really perceive? Well, given the very latest scientific
findings, it seems that the archaic flat Earth belief may rule again. A glimpse of a
new physics that could supplant our current understanding may shift the foundations
of what we know about space and time. In a very unexpected way, we may return to
the belief in a flat universe, after our trip into the third, fourth, tenth, and even the
twenty-sixth dimension.
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At the Planck scale (shorter than 5:4 � 10�44 s for time, and less than 1:6 � 10�35
meters for space), it is speculated that the concepts of time and distance break
down. At such a tiny scale, all fundamental forces become ‘equally strong’, and the
quantum uncertainty principle becomes the absolute rule [24]. In the world on the
laboratory scale, we know that atoms, photons, and other quantum objects fluctuate
and obey quantum uncertainty relations between their position and momentum, or
between their energy and duration. At the Planck scale, however, space and time
cease to be deterministic, smooth, and continuous since they begin to fluctuate
themselves.

Apparently, recent calculations predict that, on the Planck scale, space is 2D, and
the third dimension is inextricably linked with time [18]. If this is the case, then
our 3D universe is nothing more than a hologram of a two-dimensional universe. At
Fermilab in Batavia, Illinois, an experiment called the holographic interferometer
is in preparation, supposed to measure the quantum noise of space itself. The
measurement of this so-called holographic noise may allow us to take a major step
forward in our understanding of how spacetime, relativity, and quantum mechanics
coexist at the Planck scale, and consequently how spacetime emerges as a structure.

The comparison with holograms is used because, as in the case of a regular laser
hologram (a 3D image coded on a 2D surface), the universe may be built in a similar
fashion, i.e., its higher-dimensional information may be coded on a flatter and lower-
dimensional component. If this hypothesis is true, classical 4D spacetime becomes
just the approximate behavior of 2D quantum matter over long durations, viz., an
illusion resulting from entanglement of the Planck world with geometrical degrees
of freedom.

There is a long history of human obsession with the notion of 2 dimensions.
The connection between the mathematical cognition processes in our brain and
the phylogenetic and ontogenetic processes (through which this mathematics was
constructed in our brain by prior perceptions) reveals a connection between the most
important 2D mathematics and 2D neurological mapping processes. From drawings,
paintings, photographs, and movies to the 2D theory of complex functions as the
richest subject of continuum mathematics, there is historic evidence supporting
the idea that our brain favors a 2D map of the world. This is certainly true for
this statement: “A picture is worth a thousand words,” or the famous Casorati–
Weierstrass theorem on the ability of complex functions to reach any value ‘they
want’ close to a singularity, or the recent tendency to understand the ‘big data’
phenomenon as a 2D structure, or finally the successful signal and system theories
based on 2D input–output diagrams. Our human obsession with 2 dimensions seems
to be the product of millions of years of evolution, and we seem to give in to Franz
Kafka’s counsel: “Follow your most intense obsessions mercilessly.”
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2.2 Message of the Frame

There is one special way of viewing the surrounding environment: through frames.
We view a lot of things through boundaries: pictures, photographs, movies, TV,
pages, reading glass frames, windows, mirrors, screens, wind shields, etc., and we
make a decision based on the evaluations and processing of these framed 2D images.
The art critic must decide on the value of the artistic massage from one particular
painting, and the pilot must decide on the landing procedure based on the image
received from the framed windshield in a visual regulation approach. Traditional
visual artwork is generally bounded in space because we need to view it all at once:
it must have bounds. The bounds can be formed by the very frame of the painting,
or by the walls around a stage in a theater. The same goes for a structureless clutter
of objects placed on a table. Place the same objects in a shelf, frame them, and
suddenly the clutter becomes organized and structured, and acquires depth.

The viewer’s eyes follow a path around the frame and such a cycling motion may
bring a sense of infinity. Indeed, because the frames are spatial boundaries around
2D domains, they have no boundaries themselves, so a sort of flavor of infinity is
brought by the frame to its captured image. Consequently, the bounded/unbounded
properties of the frame may induce or enhance the perception of depth.

Why do taller windows look nicer than small ones? The windows on a building
are preferably constructed as tall rectangles because they can then let in as much
light as possible from the sky (and also let us know the weather outside). This is
contrary to the case of a car windshield which is always made wider and less tall,
because the images seen from a car require a specific field of vision, more horizontal,
and more 2D.

In this section, we shall argue the pros and cons of a frame and its importance for,
and effects on, image perception, from physiological reactions to artistic knowledge
and interpretation. Taken together, current literature states that frames, margins,
and boundaries induce manifest effects on perception, at different levels in the
processing of image information. Because a boundary not only bounds, but isolates,
divides, and induces cyclical perception in a steep and nonlinear way, we shall gather
these features under a common term which we like to call nonlineart.

In the following, we enumerate the main effects of the existence of a frame or
boundary as they are presented in the literature:

1. The frame offers historical and chronological recognition, and sometimes even
underlines the ontology.

2. The frame stands as a message of discontinuity in the domain of the visual
field: ‘the artistic message is from this point to this point’. The frame brings
compactness and support to the image within. Consequently, it brings extra
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wavelengths in addition to the original visible spectrum of the original image.3

These extra wavelengths induce specific illusions and perception alterations.
3. As opposed to the unframed image, which identifies with the whole ambient

situation and is endless, taking over the whole visual field and consequently
immovable (there is no other space available to move it to), the framed image
is locally defined so it is movable: it is local, but not localized.

4. A framed image is finite, yet connected to infinity: the frame is a boundary and is
itself boundless. The boundary is a closed curve, and cyclic, so the frame invites
the gaze to engage in an infinite number of loops.

Any 2D map of the world is a contradiction in terms because, on the one
hand, it is represented by a flat picture with boundaries, and on the other,
it represents a boundless shape. It is interesting to see how the shape of
medieval world maps changed over time as a consequence of increasing
knowledge about the Earth’s shape: from Eratosthenes to Magellan and
Mercator. The oldest ‘T-O’ type of map, to use the name given by John
Gillies [26], is framed by the map of the church perimeter, and the building
itself is displayed through sacred geography. An example is the Psalter
world map c. 1265. The Ptolemaic world map has a bent, yet flat shape (see
Fig. 2.1). As early as 1530, we find a ‘cordiform’ world map by Peter Apian,
which suggests an inward bend around a spherical object. The Chinese
world map from 1418, drawn up by Mo Yi Tong, is the first in which
periodic boundary conditions tend to substitute a 3D shape.

5. The frame plays the inside–outside game of separation of worlds. The frame of an
image is a consequence of the nonlinear interaction among the image elements,
an interaction (known as image unity) that holds them together against the natural
dispersive forces of the emptiness of the plane, and of their own individualities.
See for example Fig. 2.2.

6. There are images insensitive to the existence of a frame, like obsessive repetition
of patterns (grids, lattices, quilts), or self-similar structures (fractals, chaos). Such
images contain their boundless extension to infinity inside their structure. In
contrast, framed images, being compactly supported and not necessarily self-
similar or partitioned, are inherently nonlinear. Only nonlinearity can warrant
the non-uniqueness of localization necessary for their local definition.

7. A frame with a particular shape can enhance some artistic effects overall. For
example, if we study Degas’ famous painting of the ballerinas in their rehearsal
room, the paintings often depict the ballerinas’ bodies cut by the frame, and the
frame is rather shallow.

3When we rapidly turn off a smooth musical note generated by an electronic device, we hear a sort
of snapping, crackling noise. This short signal contains many more wavelengths than the original
note. This is just the mathematical effect of abruptly cutting a smooth harmonic signal. The shorter
the train of notes, the more extra wavelengths it includes. If we try to listen to one pure musical note
for a very short interval of time, we will actually hear only a crackling, which consists in a pulse of
white noise containing almost all wavelengths on top of that note. In Sect. 2.4, we elaborate more
on this effect, known as the Fourier uncertainty principle.
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Fig. 2.1 Ptolemaic world map, second century AD, reconstructed c. 1400. The Earth is displayed
as a bent shape, despite the then accepted understanding that the world was flat. This is one of the
first instinctual attempts to represent the world in 3 dimensions. Public Domain: https://commons.
wikimedia.org/wiki/File:Claudius_Ptolemy-_The_World.jpg

Following Martin Heidegger’s ideology, the way technology functions for humans
is fundamentally by enframing (das Gestell), without a necessary means to an end,
but rather as a mode of human existence. Heidegger says that what is revealed in the
world, what has shown itself as itself, requires first an enframing. He gives Gestell
an active role, not reducing it to a simple display apparatus of some sort. In his
Posed Spaces: Framing in the Age of World Picture, John Gillies [26] considers that
enframing is the engine for moving forward by ‘gathering together’, for the purpose
of revealing, presenting, and understanding.

Commenting on enframing philosophy in his study Museums and the Framing
of Modernity, Donald Preziosi asks: “What can it mean, then, to be a meaningful
image in a world in which there exist frames for everything, and where virtually
anything can serve as a frame? What kind of entity, then, is a frame?” Preziosi claims
that the elements inside a frame are ‘museologised’ and somehow re-fabricated in
opposition to what is not visible inside. A frame, once created, exists mainly within
its circumference and possesses an outside.

https://commons.wikimedia.org/wiki/File:Claudius_Ptolemy-_The_World.jpg
https://commons.wikimedia.org/wiki/File:Claudius_Ptolemy-_The_World.jpg
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Fig. 2.2 Artistic
representation of the
mechanism of separation and
competition between the
imaginary ‘inside world’ and
the real outside world, using
the frame technique. The
‘image’ does not fulfil the
symmetry laws of reflection,
so it must be a true repetition
of reality, while the frame has
the role of a separation, rather
than a final double bar line.
René Magritte, La
Reproduction Interdite (1937,
oil on canvas). Permission for
reproduction from ©2015 C.
Herscovici, Artists Rights
Society (ARS), New York

2.3 Importance of the Frame to the Image Inside

Without the ability to localize objects in the environment, it would be nearly impos-
sible to perform important functions in daily life, including obstacle avoidance,
navigation, or the development of spatial representations to guide behavior (see
Fig. 2.3). Similarly, localization and realization from the image delivered in a 2D
photograph require a minimal reference frame (see Fig. 2.4).

What makes the frames important is definitely the improvement in the perception
of complex scenes by introducing additional depth cues. It is argued by many
authors (Ebenholtz and Benzschawel, Sigman, Goodenough and Flannagan, Lee
and Aronson, see for example references in Ebenholtz and Glaser [27]) that eccen-
trically located retinal patterns (like frames and boundaries) serve the functions of
artificial horizon or orientation guidance system by providing a reference signal
for egocentric orientation perception. It is likely that such peripheral patterns act
automatically without the need for prior perceptual or cognitive processing for size,
shape, and depth.

Of course, depth and perspective also require a focal system processing for the
recognition and identification of specific patterns; some visual illusions result from
processing within the focal system. The way objects in a painting are arranged rel-
ative to the frame (of the composition) can be amended by prior expectations based
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Fig. 2.3 Detail of a painting, artificially rotated through 90ı here. Without an explanation, we are
almost unsure which one is the real house and which is the reflection

Fig. 2.4 In the complete painting, the boundary of the water allows identification of the real world.
Freylemaborg in autumn reflected in the moat, ©Anna Poelstra Traga (2012, watercolors) http://
www.annapoelstratraga.com

on perceptual organization able to disentangle the patterns from the background.
This idea is supported by the Gestalt principles relating to evolutionary criteria
inspired by statistical regularities in the natural environment [9]. At the same time
composition conventions in the visual arts do not always obey the above-mentioned
prior expectations. For example, many objects may be arranged according to some
principles of harmony that are similar to the Gestalt principle of organization, but

http://www.annapoelstratraga.com
http://www.annapoelstratraga.com
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the placement of individual objects of importance in a painting appears to follow
conventions that are quite different from everyday visual expectations.

The perception of the orientation of the objects represented in a framed image
is influenced by the orientation of the surrounding frame, and precedes the multiple
stages of size and form brain processes; this situation is known from experiments
relating to the ‘rod-and-frame’ effect (RFE) [27]. This effect represents the influence
of a large surrounding frame upon the apparent orientation of a rod enclosed within
it, the latter appearing to tilt in a direction opposite to that of the frame. Among
other conclusions, Ebenholtz and Glaser demonstrated the failure of large frames
to exhibit the depth separation effect. Their measurements of the RFE show that
depth processing is essentially uninfluenced by processing stages associated with
global perceptual properties such as size and shape. In other words, our visual brain
decides on the perspective and depth properties independently of and previously to
perceptions and judgments based on size and shape. A framed image will talk to the
brain in a very particular way, creating the perception of an open window towards
an extra depth field. This happens independently of the retinal angle (of course,
within certain biological limits) or the shape of the frame, while the same image
projected on a blank background will induce the sensation of emerging from the
background, and jumping out towards the viewer. Ebnholtz and Glaser show that
“large and small frame effects are quite different phenomena”, because they relate
to functional differences in the focal visual systems.

Paul Duro [26] affirms in his study Containment and Transgression in French
Seventeenth-Century Ceiling Painting that the frame and the system of perspective
are mutually supporting of each other, i.e., symbiotic systems. Depth perception in
2D images is a monocular ability, i.e., it does not rely on stereoscopic cues. Linear
perspective (convergence of illusionary parallel lines) is a monocular depth cue to
perspective projection. As shown above in the RFE effect, presentation of certain
patterns of flat trapezoidal shapes gives the illusion of slated 3D rectangles.

In 2006, Saunders and Backus [28] presented experiments on the quantitative
psychophysical measurement of depth perception from perspective convergence.
Human subjects understand 3D relationships from monocular images, with very
little variability with respect to the projected sizes or slant conditions. In addition,
textured images provide better depth recognition (see Figs. 2.5 and 2.6). Through his
process of unweaving and reconfiguration, Esparza displaces the textile’s potency as
a clean-cut symbol for the socio-economic and political issues that arise from living
in a border town, El Paso, Texas, a melting pot of varied traditions. The boundary
between these traditions, and Mexican–American cultures, is seen in art as a graphic
that relies heavily on the border and frame ideas. Even if the threads lie flat on
the two walls, running in only two dimensions, the effect of using many different
angles of intersection between the bundles provides an overall perception of three-
dimensionality, of filling the whole exposition room in different directions.
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Fig. 2.5 Example of a flat structure delivering a strong feeling of depth. Adrian Esparza, Spectra
Work I, 2014. Deconstructed sarape textile, wood, nails, bamboo furniture, and dimensions vari-
able. Courtesy of Taubert Contemporary and Houston Center for Contemporary Craft, Houston,
TX. Photography by Logan Beck

Fig. 2.6 Another example of a flat structure delivering a powerful perspective effect. Adrian
Esparza, Spectra Work II, 2014. Deconstructed sarape textile, wood, nails, bamboo furniture, and
dimensions variable. Courtesy of Taubert Contemporary and Houston Center for Contemporary
Craft, Houston, TX. Photography by Logan Beck

Besides the largest frame surrounding an entire image, if we also consider local
frames, like contours and simple shapes, there is evidence of a conditional relation
between depth cues and contours. First discovered by Schuman in 1904, and later
developed by Kanizsa in 1955 [29], subject contours are the special patterns in
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Fig. 2.7 Examples of a white triangle and shading cues from Kanizs’s subjective contours. Even
in the absence of an enclosed outline (no white triangle, and no really drawn letter), our visual
brain tells us that the negative spaces are a triangle and the letter F. Courtesy of Houston Center
for Contemporary Craft

which the observer has the illusory perception of a contour even in homogeneous
visual field areas (see, for example, Fig. 2.7). Subjective contours occur in the
absence of an abrupt change in brightness, and sometimes they appear as bounding
a white opaque figure which is in front of other opaque elements. The illusion of
an opaque image in front of the others is so strong that small identical elements of
patterns drawn inside the subjective contour and outside it appear to have different
sizes through an effect of difference in apparent depth. Coren [29] explains the
appearance of subjective contours simply as the edges of a subjective plane with
a surface that ‘ought to be present’ in our mind on the basis of the available depth
cues of the patterns.

Moreover, in an effort to explain a neurological effect of de-blurring and opti-
mization of the clarity of the image by a mental process of compensation, Georgeson
and Sullivan introduced the concept of contrast constancy [30]. This principle states
that different patterns can appear to have the same contrast when their physical
contrasts are equal, despite gross differences in the contrast thresholds for the
patterns. This apparent contrast must be independent of the contrast sensitivity
function, and even when the visual information is blurred by optical or neural
processes, it can be restored by an active process of compensation.

In a rather surprising study, researchers Giesler et al. [31], by analyzing human
eye movements while searching for and detecting targets in a complex naturalistic
background, discovered that the most needed quality is a visual memory that can
suppress the inhibition of return. The details are not so crucial to the study, but their
location is essential. In order to be able to integrate across, one needs to remember
where the details are. Not only do these findings explain why humans perform so
well in extended visual search tasks, given that they have relatively poor memory
for image details, but they reiterate the importance of returning to fixed points (like
milestones, frames, etc.) within the image.
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Another important effect generated by the existence of a frame around a 2D
image is the genuine enhancement of the image, by providing an extra reference
frame for the tilt aftereffect (TAE) [32]. While inspecting the image, our eyes
generate sequences of retinal maps that are processed by our visual brain at a certain
rate. A periodic incidence of a standard fixed-angle frame in our visual field should
enhance the stability of a such a retinal frame. While analyzing the environment, we
have the impression of a stable world, despite the continuously changing positions
of our eyes, head, and body. Recent neurophysiology studies provide indications
of possible mechanisms. Visual perception is based on several reference frames
among which the retinotopic coordinates, the craniotopic coordinates, and body
coordinates. Extensive experimental studies performed by Knapen et al. show that
the critical factor in the TAE is the “correspondence between the adaptation and test
locations in a retinotopic frame of reference, whereas world-centric and head-centric
frames of reference do not play a significant role”.

Typical studies show that, in the absence of a system of reference, subjects
manifest either a tendency to underestimate (foveal biases) or to overestimate
(peripheral biases) target eccentricity. A study performed on the influence of
visual boundaries on peripheral localization [33] proved that peripheral biases
and non-linear scaling metrics are evident when localization occurs in spaces
without clearly visible boundaries. The researchers found that boundaries of the
visual space modulate biases in judging target location, and hence influence depth
and perspective perception. Their results provide evidence that visual boundaries
influence both the reference frame in which localization forms, and the metric
imposed by this reference system on the image.

The presence of external boundaries allows a regularization in the perception
of the eccentricity, and also acts like a switch from a peripheral to a foveal bias,
depending on the degree to which boundaries enclose a region that is separate
from the observer. It is known that 3D surfaces serve better than 2D cues as
informative cues for defining a functional space. For example, a 4 year-old reorients
himself/herself within a certain layout defined by short walls, and fails to do so if
the layout is marked by colored tape.

The dual reality of pictures (see, for example, [11]) is the human ability to
perceive depth from either a flat 2D picture or a 3D environment (and according
to some authors this ability works not only for human subjects). A study of the
influence of tilting surrounding frames on the detection of bilateral symmetry in the
fronto-parallel plane was performed by Herbert et al. [34]. By using dot patterns,
Herbert noticed that the orientation of rectangular boundaries influences the speed
of detection of associated symmetric patterns. The obliquely or vertically oriented
rectangular frames slow down the detection of symmetries along vertical or oblique
axes. Patterns were detected faster if they were parallel to the frame axes.
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Fig. 2.8 Emphasis of a historical narrative using frames. Giotto, Legend of Saint Francis,
Scenes 4–6, 1297–99. Upper Church of S. Francesco, Assisi, Italy. Public Domain: https://
commons.wikimedia.org/wiki/File:Giotto_-_Legend_of_St_Francis_-_-04-_-_Miracle_of_the_
Crucifix.jpg#/media/File:Giotto_di_Bondone_-_Legend_of_St_Francis_-_Scenes_Nos._4-6_-_
WGA09116.jpg

The type of frame is relevant to the functional space generated in the observer’s
mental projection of the space inside the frame. Studies were performed on fMRI
response in subjects exposed to views of artificially-created indoor scenes bounded
by three different types of frames: high 3D (wall), low 3D (curb), and 2D (stripe).
The measured multivoxel pattern activity across the retrosplenial cortex (RSC)
scene-selective region showed a significant classification for the size of space when
defined by the wall and the curb, but not when defined by the stripe. Such studies
show that 3D surfaces serve better than 2D surfaces as informative cues to define a
functional space [35].

Frames can also induce temporal dependence. For example, comic strips create
a narrative effect. The same temporal dependence effect is used in the door of Santa
Sabina in Rome, or in Michelangelo’s Gates of Paradise in the Florence Baptistery.
The panels accommodated by the whole frame provide an effective structural tool
which emphasizes the historical narrative. Wolfgang Kemp, or Rico Franses [26],
for example, address the impressive continuity in the flow of the biblical narrative,
tunneling from frame to frame in Gothic stained-glass windows of churches and
cathedrals in northern France (in Paris, Chartres, or Bourges). The frame rapidly
grew in importance within the next 150 years, as we can see in the Life of St. Francis,
painted at the end of the eleventh century (see Fig. 2.8).

It was not only during the Gothic and Renaissance that such panelled partition
of the frame was used to narrate stories. More recently, Ryman’s paintings develop
out of units that are reminiscent of pickets, bricks, and tiles. With a fixation for
modularity, and in a reaction to architecture, objects, and materials, Ryman recasts
in his Scrapwalls elements and features suggesting the Gates of Paradise and

https://commons.wikimedia.org/wiki/File:Giotto_-_Legend_of_St_Francis_-_-04-_-_Miracle_of_the_Crucifix.jpg#/media/File:Giotto_di_Bondone_-_Legend_of_St_Francis_-_Scenes_Nos._4-6_-_WGA09116.jpg
https://commons.wikimedia.org/wiki/File:Giotto_-_Legend_of_St_Francis_-_-04-_-_Miracle_of_the_Crucifix.jpg#/media/File:Giotto_di_Bondone_-_Legend_of_St_Francis_-_Scenes_Nos._4-6_-_WGA09116.jpg
https://commons.wikimedia.org/wiki/File:Giotto_-_Legend_of_St_Francis_-_-04-_-_Miracle_of_the_Crucifix.jpg#/media/File:Giotto_di_Bondone_-_Legend_of_St_Francis_-_Scenes_Nos._4-6_-_WGA09116.jpg
https://commons.wikimedia.org/wiki/File:Giotto_-_Legend_of_St_Francis_-_-04-_-_Miracle_of_the_Crucifix.jpg#/media/File:Giotto_di_Bondone_-_Legend_of_St_Francis_-_Scenes_Nos._4-6_-_WGA09116.jpg


24 2 Boundaries in Visual Perception and the Arts

Fig. 2.9 Use of modularity to create a sense of narration and time arrow. Cordy Ryman, Rafterweb
Scrapwall V2 (2012–2013). Acrylic, shellac, and enamel on wood, 30 � 10 feet. Courtesy of the
DODGEgallery, NY, Cordy Ryman, and the ZURCHER Gallery, Paris, NY

Rodin’s La porte de l’enfer (see Fig. 2.9). Similar tendencies using the gate motif
as an artistic instrument, and the power of the frame (gates, doors, windows) in
focusing attention can be found in many modern artists from René Magritte (see
Sect. 2.7), to Don Dahlke (repetitive usage as in Seductive Silence), Konstantin
Somov, Ben Aaronson, and Neil Simone, or in Samuel Yellin’s huge brass doors
for the Bok Tower in Central Florida.
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Another situation when an art object involves a narrated story can be found in the
case of amphorae, vases, and urns (see more details in Sect. 2.5.4). Such symmetric
art objects manifest rotational unboundedness at the price of not being able to see
the whole message at once. A painted vase requests the motion of the body, like
sculptures. A painted vase has a hidden bulk, has secretes because involves cosmic
circularity and mystery. There is always an unseen part of it, a next thing to do.

Of course, frames also play a role in cinematographic art. Kemp’s Narrativity
of a Frame [26] gives a very touching example of how important the effect of the
frame is in cinema, for both artists and business people. The first ever wide-screen
movie (Cinemascope) was How to Marry a Millionaire by the Romanian director
Jean Negulescu in 1953. Nevertheless, Twentieth Century Fox held this film just
to present it together with The Robe, directed by Henry Koster and made after the
Passion of Christ in the same year. As Kemp comments, film producers opted for
“the era of big films to be ushered in by the biggest theme of all”.

2.4 What Type of Mathematics Does Our Visual Brain
Possess?

A successful approach in the mathematics of functions, transformations, transfers,
and signals is provided by the theory of orthogonal expansions and multiresolution
analysis. This theory gives a complete answer to the question of how we can
understand a new and complicated signal using a well studied database of simpler
signals. Of course, the procedure is an approximation, and this leaves open the
question of how well we can approximate everything.

The starting point in the theory of approximation is the celebrated Weierstrass
theorem (see, for example, Theorem 1 in Sect. 4.1). This asserts that any finite-
duration continuous signal can be approximated globally and as accurately as we
like with power functions (i.e., every continuous function defined on a closed
interval has a sequence of polynomials converging towards it in norm). Powers
and their linear combinations, the polynomials, are the simplest functions to
use, and they work well around singular points. The latter occur when signals
break, bifurcate, or approach infinite values (see Fig. 2.10). However, there are
many situations where smooth functions can barely be approximated with powers,
polynomials, or even orthogonal polynomials (see Fig. 2.11). This happens mainly
because the conditions for the Weierstrass theorem involve local constraints, and in
order to approximate well with powers, one needs continuity of the signal at every
point.



26 2 Boundaries in Visual Perception and the Arts

3

2

1

0

–1

–2
–2 –1 0 1 2 3 4

2

1

0

–1

–2
0.00 0.02 0.04 0.06 0.08 0.10

Fig. 2.10 The power functions (dotted and dashed curves) are very good approximations in
the asymptotic regions of a function (solid curve) towards C1 (main frame) and around the
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Fig. 2.11 Complete failure to approximate a hyperbolic tangent with polynomials (dashed curves
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The approximation is improved if we change the database from powers to
trigonometric functions (complex exponentials), or from the field of orthogonal
polynomials to the field of Fourier transforms. Not only do the results improve, but
the convergence criteria relax compared with the previous approach. For a Fourier
series to approximate globally to any accuracy, or to converge in the norm to the
function, the only requirement for a finite duration signal is that the area under the
square of the signal shape should be finite, i.e., the function must belong to the L2

class of functions.
The Fourier analysis of a signal provides a very good insight into signal dynam-

ics, namely, the general principle of uncertainty [36]. In its simplest formulation,
the signal theory principle states that a signal cannot be localized in both time and
frequency. For example, a pure musical note of frequency f played for a time interval
t is represented mathematically by the sine function sin.2�ft/, which extends by
definition and by construction from t ! �1 to t ! C1. The signal is infinitely
extended in time, and its Fourier spectrum is infinitely narrow in frequency space:
just one spectral line f (see the right-hand frame in Fig. 2.12). On the contrary, a
point localized in space (a signal whose width in time approaches zero) contains
all possible harmonics and its Fourier spectrum is infinitely extended (see the left-
hand frame in Fig. 2.12). In other words, a signal f .t/ and its Fourier transform
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Fig. 2.12 Upper frames are density plots of the spectral distribution versus time (horizontal axis)
and frequency (vertical axis, labeled in number of octaves) of a sine signal, while the lower
frames represent the corresponding signal plotted against time. The left-hand frame represents
a portion of an infinitely long sine function and its spectral distribution shows as a narrow stripe of
localization in frequency. The right-hand frame represents a highly localized signal in time, and we
can see how its frequencies diffuse through the whole spectrum, especially downwards, towards
the lowest frequencies. The middle frame shows an intermediate situation, a sine signal with the
same frequency but finite duration
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OF.f / cannot be simultaneously well localized. A good quantitative characterization
of this uncertainty principle is provided by Hardy’s theorem, which states that, if a
real function of real variable f .t/ and its Fourier transform OF.f / are simultaneously
smaller in magnitude than a sufficiently narrow Gaussian profile, then the function
must be zero. That is,

0
B@
j f .t/j � e�.t=�t/

2
;

and j OF.f /j � e�. f=�f /
2
;

and �t�f < 2

1
CA H) s.t/ � 0 : (2.1)

Considering the Gauss bell function exp.�t2=�2/ as a prototype of a localized
signal with width �, (2.1) tells us that, if a signal f .t/ has its envelope bounded
by a Gaussian shape (so that it is more localized than a Gaussian), and if we also
expect its spectrum to be more localized than a Gaussian in the Fourier space of
frequencies, then the signal is simply zero. The Hardy theorem is generalized by
the Paley–Wiener theorem in many dimensions, including the well known case in
the plane [37]. Such uncertainty theorems became famous through Heisenberg’s
principle of uncertainty, or Robertson’s relation of uncertainty. Technically, the
Fourier–Hardy and Paley–Wiener theorems bring a more general mathematical
understanding than the limited quantum mechanics point of view [36].

The uncertainty principle can easily be verified in everyday life. John Wolfe’s
website provides many examples showing that the closer two notes are in tune, the
longer one needs to listen in order to perceive the difference (see [38] for more
details). When musicians tune, they listen to a note for a long time by removing
beats, which are regular pulsations of loudness produced by notes that are nearly
in tune. If the frequency difference is very small, then we hear an interference beat
at very long time intervals. Therefore, small differences in tone require a longer
‘measurement’ time.

Regarding measurement approximations, we have to admit that the Fourier
approach works well for ‘smooth enough’ signals of various types. However, when
signals contain strong discontinuities, or singularities, it becomes harder to tackle
these local disturbances while keeping the approximating functions under the same
global constraints. The solution is to use pieces of functions, and adapt the right
piece to the right local behavior. Since changing the ‘degree of discontinuity’
should be one of the properties of the set of functions in the database, in order
to accommodate various discontinuities and patterns on different scales, pieces
of functions are required to conserve their orthogonality even after a change in
scale. A good solution for this problem is the wavelet approximation method
(Haar 1909 [39]), represented by finitely supported (Daubechies 1988 [40]) pieces
of trigonometric functions (Morlet 1983 [41]) that can be moved around by
translations, or squeezed and expanded by compression and dilation.

Windowed Fourier analysis can be generalized from trigonometric functions
to more general ‘scaling functions’. Such wavelets adapt locally to the degree of
smoothness or discontinuity by changing their scales. This approach is called multi-
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resolution analysis (MRA), or multi-scale analysis (Mallat 1989 [42]). Furthermore,
the convergence condition for wavelet approximation to a signal involves class
Lp functions (the area under the p th power of the signal should be finite). If
this condition is fulfilled, pointwise convergence of the multi-resolution series is
guaranteed almost everywhere [43]. The series formed by dilations and translations
of the same scaling function approaches the required signal with the same rapidity
at any point. This property offers a better quality of convergence than the global one
(convergence in norm) for either polynomials or Fourier series.

Since their development, wavelets have been successfully applied to signal and
image processing, visual reconstruction, numerical analysis, turbulence, fractals,
economics, forensic sciences, and quantum mechanics, among many other appli-
cations. By virtue of the Paley–Wiener theorem, wavelets and their multi-resolution
analysis work under the same principle of uncertainty, in the same way as Fourier
analysis does.

Among different types of wavelets for 2D MRA, there is one which has recently
raised much interest because of its similarity to the way our visual brain works [16].
The Gabor filter is a Gaussian shape modulated by a plane sine wave [15] (Fig. 2.13).
In this way it is localized, yet has patterned structure and scale (the sine wavelength),
and it also has an orientation in the plane through the angle between the plane axes
and the plane wave [44]. In Fig. 2.14, we present an abstract diagram with different
patterns of spatial frequencies and orientations. In Fig. 2.15, we analyze this image
with a Gabor filter with different scalings and orientation.

Not only scientists, but some painters have given great importance to a variable
scale approach among their techniques. In Kinkead’s painting White Horse (see
Fig. 2.16), for example, large rectangular impasto patterns are used for the uniform
background, and smaller scale rectangles for the horse face details.

Fig. 2.13 Density plot of a
Gabor filter function of
wavelength � D 0:6 m,
spatial frequency
f D 0:1 m�1, and orientation
� D 60ı
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Fig. 2.14 Example of combined patterns using different scalings and orientations of a Gabor filter
function

Fig. 2.15 MRA of the patterns in Fig. 2.14 using the Gabor filter of width � D 0:1 m from
Fig. 2.13. From the upper left corner, clockwise: � D 0ı, f D 0:2 m�1, � D �45ı , f D 0:1 m�1,
� D 90ı, f D 0:1 m�1, � D �60ı , f D 0:2 m�1, � D all angles, f D 0:15 m�1, � D �45ı,
f D 0:2 m�1
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Fig. 2.16 Rebecca Kinkead, White Horse (on white) oil on wax and linen, 64 � 58 in, Gallery
Mar, Park City, UT. Original painting ©Rebecca Kinkhead LLC, http://www.rebeccakinkead.com/,
by courtesy of the Artist

2.5 Framed Versus Non-Framed

Imagine a peaceful view of the ocean on a calm and cloudless day at Daytona Beach,
Florida. The view can be visually simplified as two parallel horizontal lines, one
separating the beach from the ocean, and the other separating the ocean from the sky.
While the solid beach and gaseous sky are motionless, the water is in a continuous,
yet predictable state of motion. The sand and the sky have the same color and known
pattern, and even the ocean’s tidal elevation is a periodic and bounded function
of time. The wave’s wavelength and amplitude and their angle with respect to the
shoreline are the same. Now visualize yourself inside a fine arts museum, while in
front of you is a large painting with the same ocean landscape we have just imagined.
Does this painting generate the same perceptions in our brain? Does it create the
same feelings, thoughts, or state of mind?

The answer is: not quite, and we will try to analyze why. Obviously, there
is a significant component of sensorial information which is missing in the case
of the painting of the ocean, like the sound of waves, the breeze, the smell of
salt water and seaweed, and the heat of the sun. All these are important, but the
essential difference is that the painting is bounded, while the real scenery is not.

http://www.rebeccakinkead.com/
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Fig. 2.17 One of Magritte’s favorite themes, namely the ‘window painting’ and the ‘painting
within a painting’, presents a cycle in which the viewer must choose one as real and the other
as representation. The painter also uses bounds for the real scenery in order to eliminate all the
differences. The Human Condition, 1945. René Magritte (Belgian, 1898–1967). Watercolor, crayon
over graphite, ink, and gouache; 42:2 � 32:2 cm. Courtesy of The Cleveland Museum of Art.
Bequest of Lockwood Thompson 1992.274

A frame sends a supplementary visual message to the brain, but no matter how
smooth the frame is, and how well it fits the painting, it still introduces a significant
discontinuity in the distribution of scales in the painting. In Fig. 2.17, we reproduce
one of René Magritte’s favorite themes, the cyclicity of real versus fabricated, as
a possible artistic response to this question. The artist’s answer is that a framed
reality (the sea seen through the arcade) becomes indiscernible from any of its
possible representations, one being for example, a frameless painting. The black
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ball can easily roll in either direction of this indifferent balance between reality and
representation.

2.5.1 The Necessity of a Frame

Matisse felt that “the four sides of a frame are among the most important parts of
a picture”, similar to attending a concert, where listeners can experience different
effects according to the shape and dimensions of the hall (from The Contingent
Nature of any Act of Framing, Henri Matisse 1943). While describing Clement
Greenberg’s criticism, Welchman claims the frame to be finally understood as the
fitting condition of the shape of the canvas. He calls the frame a ‘morphological
impress’ (John C. Welchman, In and Around the Second Frame, in [26]).

The natural world is believed to present all possible scales, patterns, and spatial
frequencies with a 1=f type of distribution (see Sect. 2.6). The frame breaks this
natural distribution because it cuts the continuous infinite extension of the landscape
into a finite window. Any finite piece of an infinitely extended mathematical wave,
or any compactly supported signal generates a totally different Fourier spectrum
than a similar but infinitely extended signal. An example is shown in Fig. 2.46,
which will be analyzed in the sections below.

The power spectrum of the compactly supported signal, i.e., the distribution of
intensities of the frequencies contained in the signal, is wider since it contains a
richness of lower frequencies and a long decaying tail of higher frequencies. It
also holds weak resonances at some discrete frequencies with a potential relation
between the scales in the signal and its size. The same phenomenon happens when
we compare the real landscape, unbounded and infinitely extended in the retinal
space, with a 2D framed image. What is bounded always has a richer spectrum.
This phenomenon is a direct consequence of the relation, or a general principle,
of uncertainty between the size of an original signal and the size of its integral
transformation or representation.

In Sect. 2.6, we describe an interesting example of pattern selection (performed
by the visual brain) from the painted image which will support our point of view
regarding the importance of the frame for a painting. It is known from foveated
vision that the angular distribution of the spatial resolution of the human visual
system, i.e., the acuity to detect periodic patterns, decreases rapidly with the angle
measured from the center of the crystalline-retina optical axis [8, 30]. In order to
accommodate this behavior, the visual cortex resolves rather longer wavelength
patterns towards the peripheral angles, as opposed to a richer spectrum of patterns
towards the center of the visual axis. In other words, out of a multi-scale wavelength
image, finer details are lost over longer wavelengths, by the visual brain, towards the
boundaries of the perceived image. The information concentrated in finer details
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(higher spatial wavelengths) is lost in the peripheral vision regions, while the
information encoded in longer wavelengths is more equally detected over the whole
visual field. A typical example of this effect is illustrated by the way one perceives
the famous and hidden smile from Leonardo da Vinci’s painting Mona Lisa, dating
to 1503–1506 [8].

Coming back to the relation between image perception, pink noise, and Bayesian
explanations, we note that the perception of the spatial frequency description of a
painting is ambiguous, because it depends on the distance between the viewer and
the painting, and also on the viewer’s eye position (variable spatial resolution of
retina with respect to the foveal point). In nature the spatial frequency distribution is
similar to a 1=f noise distribution of frequencies, so a natural image is dominated by
low frequencies. In art, some painters prefer to maintain a certain ambiguity in the
visual interpretation. We refer back to da Vinci’s Mona Lisa, where the ambiguity
of the facial emotion results from the superposition of two conflicting sources of
information in two different spatial frequency bands: the smile is visible in low
spatial frequencies, while a neutral emotion appears in higher spatial frequencies
[8]. Similarly, in Slave Market with the Disappearing Bust of Voltaire, by Dali (oil
on canvas 1940) a disproportionate bust of the philosopher Voltaire can be noticed
only if the viewer focuses on a larger and coarser scale, while alternatively, two
small nun figures are seen when the viewer focuses visually on a finer scale [45].
Mamassian [9] points to another explanation for this kind of ambiguity, namely
from the interpretation (or observation) of the shadows or dark surface material.
Paintings have very different frequency distributions from natural images, and the
convention on spatial frequency is a characteristic of their style. Another example
is provided by the experiments of Intriligator and Cavanagh [46] showing that
spatial frequency perception is equally a function of the focus of the attention point,
the resolution limit of attentional selection, and the grain of attention, which are
themselves inhomogeneous across the visual field.

In his 1970 article No Thought Exists Without a Sustaining Support, Mel
Bochner (see, for example, [47]) emphasized that boundaries, or enclosures, are
described ‘conditions of positions’ and hence reflexively reliant upon language. In
his art installation Theory of Boundaries, presented in 1969–1970 at the National
Gallery of Art, in the East Building Concourse Gallery 29F (Fig. 2.18), Bochner
demonstrates the interest of visual arts in the physical and mechanical processes
that involve their creation. Through his constructions, Bochner invites viewers
to reflect on the most basic cognitive process involved in seeing the structural
relations between objects. These painted frames (see Fig. 2.18) connect the space
with the linguistic prepositions describing space. In our opinion, parts of his work
accomplished in 1968–1970 raise purely mathematical questions, e.g., under what
circumstances does the image of a boundary remain a boundary? In his essay based
on an interview with Bochner, Kranjec [48] asks rhetorically whether some species-
specific human abilities, like analogy and metaphor, are possible because of the
deployment of those specific relational language prepositions, deeply grounded in
relational cognitive domains, like space and time.
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Fig. 2.18 Examples of art installations which point toward spatial, numerical, and linguistic
themes, and relate (at least in an abstract way) the objects one to the other rather than to the
objects themselves. The frames painted on the walls represent more than boundaries. They are
co-boundaries between the space itself and the semantic of prepositions describing space, or
even more abstract conceptual categories like emotions or morality. Mel Bochner, Theory of
Boundaries, chalk on pigment on wall, 1970, size determined by installation. National Gallery
of Art, Washington, D.C. ©Mel Bochner, http://www.melbochner.net/ by courtesy of the Artist

Artists show how they invest in the process and the structures of their art, and how
viewers can emphasize the logic determining the relationships between the colored
surface, the border, and the quality of enclosure in each of the four squares in the
Theory of Boundaries, what Bochner calls a ‘language fraction’. He explains the
language fraction as the ratio between the existence of the (tangential) relationship
of the image to the border, and the image position in regard to the sense of enclosure
(enclosure considered as condition of position). Minimalists Robert Ryman, or Fred
Sandback, for example, take this language to an extreme. In Ryman’s Midland series
(1976), he spins threads around four nails in the shape of a rectangle. Sandback
hangs long parallel lengths of colored yarn from the ceiling. Each artist presents
the frame as the spatial component of the overlap between the artwork and the
environment where the work is presented. In this approach, the frame is part of
the complete artistic concept rather than a formal edge or the mechanical bound.
These artistic trends show parallels with some recent research results in empirical
cognitive neuroscience and the semantics of space [48].

2.5.2 Framed Paintings of Canvases

The frame holding a painting separates our real world from the painter’s imagined
world. But paint a mirror reflecting our world and this neat division breaks down:
many items depicted in the mirror should realistically be presented in the real world,
but of course they are not. Clearly, artists can break the physics of mirrors and still
display a convincing mirror. At this point, the viewer might ask, which rules are
required to successfully depict mirrors and which rules are optional (see Fig. 2.19)?

http://www.melbochner.net/
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Fig. 2.19 A perfect example of the artistic play between required rules and optional rules in
depicting mirrors. Pierre Bonnard, Dressing Table and Mirror, oil on canvas (1913). Permission
by courtesy of the © 2015 Artists Rights Society (ARS), New York/ADAGP, Paris

Cavanagh says “even very abstract painting can convey a striking sense of space
and light, despite the remarkable deviations from realism” [49]. Cavanagh describes
this characteristic by suggesting that our visual brain may use an ‘alternative
physics’, simpler than physics, and a reduced model of reality to understand the
world. A painting that gives an unhindered sense of the space and objects within it,
despite physical impossibilities in the depiction, says something about the way our
brain processes physics.
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In paintings depicting water and glass, significant deviations from the laws of
reflection and refraction are not noticed by the viewer, indicating that the visual
brain only computes a small set of the possible physical properties of a transparent
material when assessing whether or not a surface is transparent [49]. For example,
even if there is no optical distortion of a lemon in a glass of water, the glass and the
water appear convincingly transparent in Margaret Preston’s Implement Blue (oil on
canvas on paperboard, 1927, Art Gallery of New South Wales).

By following these liberal physical licenses, the artist can also use a frame to
orient the viewer’s perspective relative to the subject being depicted. The frame
provides a metaphorical window into another world which is disconnected from
the viewer in space and time. For example, Paul Klee, in his Ad Marginem (1930),
paints precious, delicate vegetation, herbaceous umbels, and birds upside down on
and around the frame, and by doing so, creates an unusual proliferation of objects
repelling each other from the center. There is an unknown source of light, centered in
his painting, but it is hidden by an eldritch central object. His technique “interrogates
the modern subject through its frame”, as Louis Marin would say [26]. The frame
transforms a painting into a reflecting pool placed on the floor, similar to Pollock’s
style of drip painting, or like the framed frames in Frank Stella’s Gran Cairo (1962),
where we may represent a pyramid seen from the top. Sometimes the painting and
the frame are one and the same thing, as in Middlebrook’s painted maple planks (see
Fig. 2.20). Middlebrook uses various approaches to consider the complex interplay
between humankind and the environment. This ecological angle is achieved through
various juxtapositions in natural and man-made materials, as well as in line and
color.

2.5.3 Eliminating Frame Effects

The most important developments for the digital era are building faster computers,
providing more memory with more portability, and creating a frameless and
interactive display. Together with research on optimization of the shape of the
windshield in automobiles, airplanes, and reading glasses, this topic is one of the
most modern debates in visual science. In 2005, Pinhanez and Podlaseck published
a paper in which they conclude from visual design theory that “a frame creates and
indicates spatial disruptions” [50]. Their main hypothesis is that frameless displays
connect with the surrounding environment and objects better than framed displays,
by contextualizing the information presented within them.

Some impressionist painters used tricks like demolishing the illusion of perspec-
tive in order to better submerge their paintings into the same space as the viewer.
Rauschenberg, Luis Sottil, and Johns enhanced the presence of their paintings by
integrating physical objects into the canvas, while Kaprow (with his Environment
or Happenings) or Burden (Extreme Measures) totally removed the visual frame,
creating works that are sometimes indistinguishable from the physical reality of the
viewer [50].
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Fig. 2.20 Total diffusion and identification between the ‘painting’ and the frame: Jason Middle-
brook’s maple planks, Breakthrough, acrylic on maple plank (2012). Photograph by the author
included with permission by the Artist

In one of his essays Kaprow observed that, just as visual phenomena establish
a presence or embodiment, or at least the possibility of occurring in principle at
the same time and place in the reality of the viewer, by frame elimination, their
participatory status increases. He also notes that this is the present consensus among
computer theorists.

A. Morton very clearly advocates the importance of framing for depth perception
and the three-dimensionality illusion in his study A New Frame of Mind at the
website of the International Institute for Frame Study, where he quotes a museum
curator explaining a carved sixteenth-century Venetian frame for a fifteenth-century
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Giovanni Bellini painting: “This frame actually adds to the illusion that you see
Bellini’s figures in three-dimensional space with the frame forming a wonderful
window.”

While advocating that virtual or digital frameless displays should be used in
everyday life, Pinhanez and Podlaseck further suggested that frameless displays
create a strong sensation of direction by projecting direction cues (arrows, footsteps)
along already existing real directional channels. At the same time they argue that
frameless displays suppress perspective and depth perception, because without a
frame there are no more references to vanishing points, making it harder for the
viewer to understand perspective.

An interesting effect of the biological vision function in humans is boundary
extension. The viewer’s memory of a possible extent of the borders tends to
include additional scene information. In other words, after viewing a certain picture,
subjects remember it as having a wider angle than it really had. The complementary
effect, called spatiotemporal boundary formation, is the mental construction of
illusory boundaries generated by consistent local changes. For example, if a certain
detail is eliminated partially or totally, the viewer projects an imaginary and invisible
wall that hides that detail.

The artist’s need is to free the art work from the frame’s rigidity. For example,
the artwork of architect Frederick J. Kiesler is not a reaction of minimization of
the importance of the boundaries, but rather the enzyme that frees the painting and
dissolves it into the spectator’s space.

Boundaries as Vacuum, Darkness, and Without Information

There are many examples where the boundary consists of darker regions, or shadows
around the image. Such regions give 3D depth to an otherwise flat image. Of course,
the region should be completely dark since otherwise the brain does not recognize
it as a frontier. Good examples are still-life subjects presented in a dark room (see
Fig. 2.21). Scientific studies on the perception of shadows support earlier discoveries
made by painters.

Shadows below the nose, eyebrows, and chin define the depth of a face. If the
painted shadows do not obey optical rules, the face loses its stable 3D appearance.
Studies of lighting configurations support artists’ understanding that, as long as
shadows are perceived as the boundaries of a lit surface, they contribute to a
realistically accurate artistic message. Google video, for example, has the feature
of reading face shapes by adding designs and shadows in order to move the face.

Boundaries as Lines

In the real world, lines do not divide objects from their backgrounds. This raises
the question as to why line drawings work so well for our visual brain? In
conventional line drawings, the lines trace the contours characterizing a shape. More
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Fig. 2.21 In some paintings the boundary consists of darker regions around a central image,
enhancing the 3D depth effect. Lamp Study, watercolor (2006). Original painting ©Delia Krimmel,
by courtesy of the Artist

Fig. 2.22 Three lines do not necessarily create depth perception. The image can instead be
interpreted as a symbol

important than simple lines are lines that cross. Figures 2.22, 2.23, and 2.24 present
three situations where the same intersection of three simple straight lines provides
different depth perceptions: non-framed lines (no depth perception), framed lines
but line not extended to the frame (weak depth perception), and line intercepted by
the frame (best depth illusions). In the study The Art of Transparency [51], Sayim
and Cavanagh describe experiments by Metelli that have shown how these crossings
or X-junctions are critical cues for the successful depiction of transparency. When
the X-junctions are misaligned, the impression of transparency is lost (see Fig. 2.25).
Actually, in this painting, Hopper masters another artistic feature of the use of
boundary: the frame-within-a-frame technique.
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Fig. 2.23 The same line
structure as in Fig. 2.22, but
in a frame. There is some
sense of depth

Fig. 2.24 Frame in action:
the same drawing as in
Fig. 2.23 with the horizontal
line extended to the edge of
the frame. We now experience
the greatest depth perception

Boundaries as Smooth Continuations of the Image

Here is my experience of seeing an original impressionist painting for the first time.
I was in London for collaborative work on thermonuclear plasma, and during a late
and cold evening I decided to take a break and enjoy some fine art. I visited the
impressionist paintings at the National Gallery of Art, and I found myself face-to-
face with Monet’s Water-Lily Pond (see Fig. 2.27). After a very long day of staring at
oscilloscope screens in my lab, I found myself unable to make sense of the painting’s
visual information. I noticed the arc of a bridge, but under the bridge, I simply saw
a random sea of colors without any correlation, shape, or realism. What I saw in
these first few moments was just a combination of parts without global structure,
perspective, or depth, like the detail presented in Fig. 2.26. It was only after some
time that my brain suddenly triggered, and instantly processed all the information. I
saw the water, the bushes and grass by the shore, the reflections of the willows, the
water lilies, the ripples . . . in short everything (look at Fig. 2.27 again). It took some
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Fig. 2.25 Crossings or X-junctions are critical cues for the depiction of transparency. The strength
of the effect depends on the alignment of the X-junctions. An example is provided by the dark
background window across the street: the blue-white triangle. It enhances the perception of a view
through three panes of glass, one of Hopper’s special skills. Edward Hopper , Nighthawk, 1942, oil
on canvas. Reproduced with permission of the Art Institute of Chicago

Fig. 2.26 Isolating a certain area with constant distribution of pattern size from Water-Lily Pound
by Claude Monet (1899, oil on canvas) prevents the conscious image-recognition centers from
firing, and depth perception is weak. Only by including the whole distribution of patterns and
scales does the landscape become recognizable and acquire depth, as we observe in the complete
painting (see Fig. 2.27). Reproduced with permission of the National Gallery, London

time for my visual brain to integrate, compare, and extrapolate, and whatever other
operations it did, until it finally found the reality matching the painting.

In modern technology, through enhanced perceptual linkage like 3DTV, the
boundaries between observer space and display space become blurred, supporting
an illusion of non-mediation [52]. IJsselsteijna et al. have introduced the concept
of presence as a measurement of the perceptual linkage between the observer
and the mediated environment. The weaker the illusion of non-mediation, the
greater the presence factor. In experiments where right brain activity was observed,
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Fig. 2.27 The impressionist painting connects better to emotional centers because its patchwork
of brush strokes and mottled coloring distract conscious vision [49, 52]. The pattern of reflection
on water does not have to match the actual scene around it, only the average properties of natural
scenes [49]. This is why, in the detail from Fig. 2.26 of the same painting, it is difficult to gather
what it represents. Water-Lily Pond by Claude Monet (1899, oil on canvas 140 � 150 cm).
Reproduced with permission of the National Gallery, London

researchers found that people presented with faces expressing fear respond strongly
to a blurry version of the same faces. Brain areas responsible for face recognition
respond weakly to blurry faces, but strongly to detailed faces. IJsselsteijna and co-
authors believe that impressionist painters connect better to emotional centers than
to conscious image-recognition areas “because the unrealistic patchwork of brush
strokes and mottled coloring distract conscious vision”.

Elimination of Boundaries by Expanding the Field of the Image

In comparison to painting or photography, our awareness of offscreen space in the
cinema exists largely through sound, because it gives offscreen events the same
correlation as onscreen events [53]. In contrast to a painting or photograph, a
projected image does not have a physical surface: only the screen on which the
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image is projected has a surface. The movement of the projected moving image
lends a particular kind of presence to that surfaceless image. Because the image is
moving, objects within appear to enter and leave the frame of the image.

Offscreen space can be understood as an extension of the dramatic space of the
image, and it is supported by the soundtrack, which emphasizes both the presence of
the image and the continuum between onscreen and offscreen space. A precondition
for projective illusion is thus established.

Cavanagh considers that almost anything can be put in a reflection as long as it
is bright and curves appropriately for the reflecting surface curvature [49]. A survey
of medieval, Flemish, and modern paintings reveals a number of extraneous items
in reflections that should not logically be where they are painted.

We close this section by presenting Jeffry Dell’s artistic solution for transcending
the boundaries of a visual artwork, selected from his Boundary Extension solo
exhibition of screen prints in the Art Palace Gallery in Houston, TX 2015. The term
‘boundary extension’ comes from a cognitive phenomenon in which the observer
perceives the frame of an image as being stretched out, exceeding the art work,
and apparently including information not derived from sensory input. This cognitive
phenomenon is usually revealed by a subsequent memory error when we confidently
misremember the extended scene instead of the original. Dell’s work relies on the
viewer’s ability to coherently read the principles of occlusion, physics, and memory.
When Dell applies the concept of boundary extension to an ephemeral motif like
spirals, bows (Fig. 2.28), screens, and stripes (Fig. 2.29), the vivid palette of color
captured by sharp edges “adopts a striking split-personality’. Dell’s work teaches the
viewer how perception, even lacking certainty, contains an abundance of emotional
aptitude. Yet, when one sees his spirals and stripes, one cannot help but think of
multi-valued complex functions and branch cuts.

Psychological experiments show [54] that a reliable boundary extension effect is
expected in about 11% of adults, that it depends on the test size, and is accentuated
in people suffering from PDD disorders, like Asperger’s syndrome. It has also
been shown that the boundary extension in memory for a picture occurs when that
picture’s boundary is understood as limiting or truncating a continuous view that
would otherwise extend beyond the frame of the picture.

Boundary extension is believed to be an automatic brain process, because when
participants are explicitly instructed about it prior to experimental trials, the effect
is not diminished or eliminated [54]. This result supports the idea that frames are
somehow ontogenetically and phylogenetically part of our natural habitat. It is also
believed, and Dell’s artwork supports this belief in a creative way, that boundary
extension results from anticipatory extrapolation of what might be encountered in
the next moment of time following the moment of time when the image was taken or
created. In this regard, the frame breaks the original image symmetry and deforms
this symmetry towards the direction of an anticipated motion, or fall, or any potential
future action. For example, a photograph of a real ball taken against some simple and
uniform natural background, framed by a round boundary will still be remembered,
through the boundary extension process, as elongated vertically downwards where
the viewer expects the ball to fall due to gravity.
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Fig. 2.28 Jeffrey Dell, Flat Bow Orange 2015, 3;� 23 in, screenprint. Reproduced with permis-
sion of the Artist

2.5.4 Frameless: Greek Pottery, Vermeer, and Feynman

The medium of painting imposes certain inherent limits on innovation, and the
artist’s work depends to a large extent on the knowledge and expectations of his
or her viewers and fellow painters. Painting on vases and pottery is technically
a transition between painting on flat surfaces and sculpture (see Fig. 2.30). Some
attempts at visual narrative appear in Mycenaean vase painting from the late Bronze
Age, although human subjects are rarely depicted.

Painted Greek vases are known from the second millennium B.C. until near the
end of the first century B.C. Greek vase painters were greatly influenced in their
subjects by epic poetry and by oratory and lyric versions of stories, tragedy, and
local folklore. Lowenstam shows [55] that the painters not only depicted newer
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Fig. 2.29 Jeffrey Dell, Green Stripe Array 2015, 23 � 34, screenprint. Reproduced with permis-
sion of the Artist

Fig. 2.30 Khantaros is an ancient Greek pottery cup using the red-figure technique. Here we have
an interesting combination between round surface media and sculpture. ©Ken Backer/dreamstime

versions of stories, but combined all of the various sources in their expositions. For
example, Lowenstam found that the Iliad and Odyssey myths are presented in Greek
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Fig. 2.31 Amphora for wine
or oil, with red-figure
painting, depicting the Greek
goddess Aphrodite with the
mirror and winged Eros.
©elmm/shutterstock

vases before the end of the sixth century B.C. in multiple and distinct versions, some
of them quite different from the well known written versions.

An artist’s creativity goes beyond the tribute to specific stories, creating fresh
aspects or even new subjects not originally depicted. Figures 2.30 and 2.31 (sixth
to third centuries B.C.) show the change of style in vase painting, and the transition
from archaic Greek pottery painting to Athenian vase painting. According to von
Bothmer [56], this technique gave the vase its maximum potential of expression.
The curvature of the vase is enhanced by the extra 3D visual cue, namely, light.
Moreover, the painted faces can be seen from greater distances. With the red-
figure technique, the contour of the vase is less eroded by decoration and the vase’s
spherical attribute is re-established, with proper emphasis on the profile silhouette
of the vase. These re-established vase paintings prove that artists acknowledged the
presence of unboundedness on a vase as opposed to flat painting, and then exploited
and enhanced it.

The special medium offered by the unboundedness of the vase has had a strong
influence on the subjects to be painted. As Bazant says in [57], “in Athenian vase
painting [. . . ] there are numerous so called scenes of reality [. . . ] scenes of myth,
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evocations of distant past, social fantasies, political propaganda, etc. Nevertheless,
the conviction that sixth century B.C. Athenians started to paint what they saw
around them is holding astonishingly well.” We detect here once again the same
starting point for abstract vase painting and geometric discovery. We can see what
would happen to a painted vase if it were broken up ‘artistically’. Its geometric
infiniteness and unboundedness effects can actually be enhanced in this way, as we
can see in the modern ceramic art experiment of Eberle, shown in Fig. 2.32.

The ancient Greeks were able to take advantage of the spatiality of the vase in
paintings because they had the concept of geometry, in contrast to the Mayas, for
example, whose pottery paintings lack spatiality and geometry. The Maya didn’t
have the concept of dimension or understand the relations between length and
width. In order to represent 3D objects in 2D media, the Maya repeatedly used
artificial tricks with a form of hieroglyphical structure, rather than visual illusions
[58]. Archaic Greek vase painting, and especially the red-figure technique, ranks so
well because it developed simultaneously with Greek mathematics and geometry,
from roughly the seventh century B.C. to the fourth century A.D.

According to Jünger’s classification [57], art describes two types of memory:
communicative and cultural. The first type, the ‘communicative’, is casual, infinitely
increasing, and diversifying in time, a function of the individual relative experience.

Fig. 2.32 Enhancement of
the unboundedness effects of
archaic vase painting when
multi-dimensionality is
brought in through modern
ceramic experiments. Firehat
and Fool Moon, 2002,
porcelain © Edward S.
Eberle. Photo courtesy of the
artist
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It is mainly inspired by and related to sympotic Greek events, like a newspaper.
The second type, the ‘cultural’, is classical, traditional, and tends to freeze into
structures and principles. The two different artistic memories are two different
codes with settings. Communicative memory is neither stored or communicated in
a correct technical language, nor intended as an educational tool. As Bazant says,
a pedagogical ideal would bring an asymmetry (student/teacher) that would cut its
two-way flow of communication. Recollections cannot be taught, they are co-equal
and plurally expandable. Athenian vase painting after the sixth century contains
these communicative memories: the vase is infinite and bi-directional, reversible,
like these recollections. An Athenian vase could be compared to a photograph taken
today with your cellular phone. In the many ways a cell phone is useful, so is the
Athenian vase: it is a decoration, a drinking device, an object of art, a storage
vessel, and a recollection of stories. Greek pottery painting, including sympotic
poetry, created a niche in the art world between sculpture, painting, poetry, drama,
etc. [59]. At the end of his article, Neer [60] stresses a basic point about Athenian
vase painting: it is intimately related to material life, expressed in its own complex
language.

Let us take the ‘frame/no frame’ dilemma to the seventeenth century and study
Vermeer’s Woman in Blue Reading a Letter (see Fig. 2.33). This painting is proof of
how dramatic it can be when an image is robbed of its frame’s power of focus and
comment. In his article Posed Spaces: Framing in the Age of World Picture [26],
John Gillies argues that the painting’s depiction of a world map is truncated by the
physical frame and serves to dim and dispel the theatrical effect arising from the
fact that there is a map in the painting.

The 1960s saw the development of the nouveau realism movement, minimalism
(Mondrian), science fiction, American conceptualism, and graffiti, all trying to
exceed or dissolve the boundaries of the classical artistic subject. We witness the
relinquishment of limits by Kaprow and Beuys, who profess an anthropological
practice and understanding of art by expanding the margins of framing. Attenuation,
dissolution, formlessness, and relational disfiguration are expressions of the general
‘breaking-the-frame’ artistic trend of the modern painting, as in Fig. 2.34. Summing
up Greenberg’s positions on these trends, Welchman writes: “The frame is a virus
in the machine of formalism, a sort of double agent functioning as a necessary
part of the system, but also as the gateway to its dissolution.” Mel Bochner [47],
reviewing the 1966 Primary Structures exhibition, claims that “art need no longer
pretend to be about life. Art is, after all, nothing [and] invisibility is an object” (see
Welchman’s essay in [26]). We may want to correlate these revolutionary trends
in the visual arts of the 1960s and 70s with the great mathematical developments
in understanding space itself, viz., the final proof of the four-color theorem,
Donaldson’s breakthrough work on the particularly unique space R

4 (in which we
live after all), knot theory, sheaf theory, graph theory, singularity theory, and chaos
theory (all about space and its properties). In theoretical physics, at about the same
time, we had the trigger for unification of field interactions, a deeper understanding
of higher dimensional spaces and gauge theories (Wigner, Schwinger, Feynman,
Gell-Mann). Maybe the artists of the 1960s did not want to move away from life and
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Fig. 2.33 The painting’s depiction of a world map is truncated by the physical frame and
dims the theatricality effect of the map’s existence in the painting. Johannes Vermeer, Woman
in Blue Reading a Letter (about 1663–1664, oil on canvas, 18 5/16 � 15 3/8 in). Pub-
lic Domain: https://commons.wikimedia.org/wiki/File:Vermeer,_Johannes_-_Woman_reading_a_
letter_-_ca._1662-1663.jpg

nature painting, but began to understand the implications of pure space, the vacuum,
and spontaneous breaking of symmetry, and tried to represent these concepts in their
own language.

Alloway [61] mentions that “there is all the difference in the world between a
compact zone, such as a painting establishes, and a boundless field, the continuous
space of the world”. What is this affirmation but an artistic expression of the
difference between a compact set and an unbounded set, the differences in their
resonance frequencies, the principle of uncertainty for Fourier series? Aesthetics
figured out, finally, that the existence of a frame actually implies the compactness
of the 2D artwork together with all its topological, geometrical, and functional
consequences, and hence all its signal perception and neurological consequences,
too.

https://commons.wikimedia.org/wiki/File:Vermeer,_Johannes_-_Woman_reading_a_letter_-_ca._1662-1663.jpg
https://commons.wikimedia.org/wiki/File:Vermeer,_Johannes_-_Woman_reading_a_letter_-_ca._1662-1663.jpg
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Fig. 2.34 Innovative use of frames. Margret Hofheinz-Döring, Landschaft mit Berg und Kirche
(1983, oil, WV-Nr.3799). Public domain: https://commons.wikimedia.org/wiki/File:Landschaft_
mit_Berg_und_Kirche,_Margret_Hofheinz-D%C3%B6ring,_%C3%96l,_1983_%28WV-Nr.
3799%29.JPG

2.6 Perception of Image Boundaries

The presence of boundaries and frames surrounding images influences how we
perceive orientation and shape. This sounds plausible because it is known that we
perceive the visual world primarily by reading barcodes [62]. When our eyes read
a framed painting and move from one side to the other in different directions, our
neurons detect and recognize lines, orientation, and patterns, and most importantly,
they feel the break of continuity from the inside space condensed by the frame. The
frame generates a very localized visual signal which, by the uncertainty principle,
cannot be accommodated in our visual brain by a narrow Fourier spectrum, so
it generates a wide range of extra frequencies and scale. All these reactions are
gathered under the common feeling and perception of boundary.

W. Kemp says that “the frame is the necessary condition for structural perception
being possible”. In Christian art of the late antiquity and the Middle Ages, the role
of the frame was neither to create an excerpt, as in the cinema, nor to constitute

https://commons.wikimedia.org/wiki/File:Landschaft_mit_Berg_und_Kirche,_Margret_Hofheinz-D%C3%B6ring,_%C3%96l,_1983_%28WV-Nr.3799%29.JPG
https://commons.wikimedia.org/wiki/File:Landschaft_mit_Berg_und_Kirche,_Margret_Hofheinz-D%C3%B6ring,_%C3%96l,_1983_%28WV-Nr.3799%29.JPG
https://commons.wikimedia.org/wiki/File:Landschaft_mit_Berg_und_Kirche,_Margret_Hofheinz-D%C3%B6ring,_%C3%96l,_1983_%28WV-Nr.3799%29.JPG
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the esthetic border of a picture, but rather to provide an organizational operator for
visual material. It holds the elements together and guarantees their connectivity.
Following Nicolas Poussin’s ideology (1594–1665), the most important role of
the frame is in the construction of meaning, namely “the rays of the eye are
focused and do not become distracted by the impression of other neighboring
objects”. For Poussin, as Duro comments [26], the frame is both a conceptual
marker of limits and an aid to representation. The frame’s significance is twofold:
it actively participates in the construction by linking the representations of the
objects in a non-contradictory way, while on the other hand it offers the artist a
way to prove competence in handling perspective and other technical principles (see
Fig. 2.35). According to the principles of the French Royal Academy of Painting
and Sculpture (founded 1648), academic painting should be considered deeply
related to the sciences, even to mathematics, through perspective, and the frame
of a painting would very much play a catalytic role. Frames become a condition
of intelligibility and create a useful pictorial vocabulary when similarity or likeness
between symbols can create confusion. In this context, Rico Franses [26] gives the

Fig. 2.35 Importance of frames as an organizational operator of the visual field in ceiling murals.
Charles Le Brun, ca. 1860, Salon de Venus, Versailles. Public domain: https://commons.wikimedia.
org/wiki/File:Salon_de_V%C3%A9nus.jpg

https://commons.wikimedia.org/wiki/File:Salon_de_V%C3%A9nus.jpg
https://commons.wikimedia.org/wiki/File:Salon_de_V%C3%A9nus.jpg
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example represented by the framed single-episode scenes in Giotto’s fresco, a ploy
used more generally in the Renaissance and beyond (see, for example, Fig. 2.8).

2.6.1 Illusions and Frames

Hebert et al. [63], for example, conducted experiments on the effect of such
frames on the perception of bilateral symmetry in dot patterns. The rod-and-frame
illusion and the processes of pattern perception and recognition are examples of
real situations where frames provide extra cues to the images. Boundaries and
frames also influence the way we perceive symmetries, because they supply a visible
reference that directs the selection of the symmetry axis. Hebert and his co-authors
noticed that the symmetry detection effect of the frame actually slows down the
process of detecting symmetry.

There is experimental evidence that shape information within a given image
is processed by working from the outside, from frame to center. It is also true
that the opposite effect can counterbalance: a large amount of factual background
information is usually detected before a central target. If we order the detection
steps, the first is detection of a general shape, followed by proportions and
orientation of the frame, then a dominant background (if present), then details and
their symmetry.

The visual geometric illusion known as the HV (horizontal–vertical) illusion,
which is an overestimate of the vertical line relative to a horizontal line of equal
length, is known to have an explanation resembling framing [64]. It relies on the
observation that a line enclosed in a large frame appears to be shorter than a line
of equal length in a small frame. This effect is explained theoretically through the
elliptic shape of the visual field (retinal anisotropy): the ends of the vertical line are
closer to the visual field boundary than the ends of the horizontal line of the same
length. Mamassian also shows [65] that the HV illusion is strongly affected by the
figure orientation in the image plane, and hence the orientation with respect to its
prior frame. Williams and Enns actually proposed that the HV illusion is generated
by multiple causes, among which the frame theory is the most important. The frame,
according to Enns, plays a game of contrast/assimilation with the viewer’s eye.

The interdependence between vision and touch or motion may become enhanced
by the existence of a frame as partially belonging to the landscape, and partially
belonging to the spectator’s real and tangible world. When considering more than
one sense at a time, Kennett et al. show [66] how modern research on sensory
perception reveals a great interdependence between vision, touch, and body motion.

In his FACADE theory of 3D vision from a neural network point of view [67],
Grossberg argues that long wavelengths (low spatial frequencies) selectively process
nearby objects, while short wavelengths selectively process more remote objects. In
his theory, this happens because of the so-called size–disparity correlation, viz.,
retinal images increase in size and disparity as the distance to the object decreases.
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It has been hypothesized that short wavelength patterns may appear closer and
may be fused, while long wavelength patterns appear more distant and prominent
(Weisstein effect or the size–disparity correlation, Fig. 2.36). For example, painters
can use luminance and chrominance, not necessarily for matching natural condi-
tions, but just to produce special effects. Patterns equiluminant with the background,
even of different color, may create difficulties in identifying the boundaries and
position of the patterns, and can be used to suggest motion, for example.

The explanation for the Weisstein effect may stem from the way the visual
brain perceives a spherical patterned surface (see Fig. 2.37): a pattern closer to the
viewer appears larger in size, while further away from the viewer, it looks smaller.
Moreover, while shrinking the widths of patterns, the visual brain also notices that
this domain is close to the boundaries, so it tends to associate narrower patterns with

Fig. 2.36 Longer wavelengths appear closer in a 2D monocular picture, in contrast to shorter
wavelengths. Density plot of a sine function with linearly increasing frequency

Fig. 2.37 Tiled spherical surface showing that wider patterns are closest and narrower wave-
lengths are related to the boundaries of the shape in our visual experience. Boundaries are chirped



2.6 Perception of Image Boundaries 55

Fig. 2.38 Spatial chirp generated by a density plot of a function sin8
�
.1 C x/x

�
, with a linear

increase in frequency from right to left. The illusion of wider patterns being closer persists

Fig. 2.39 Spatial chirp generated by the density plot for a cnoidal wave function with linearly
increasing frequency. The illusion of a wider pattern becoming closer is not as powerful, but rather
it is superseded by a depth perception in three dimensions. The stripes now look like white bars

boundaries of objects, and vice-versa. The effect appears to be independent of the
speed of variation, the slope of the wavelength, or the type of luminosity oscillations
(see Figs. 2.38 and 2.39).

In contrast to this property, another experiment demonstrates that, if regions
filled with relatively short wavelength patterns are adjacent to regions containing
longer wavelength patterns (see Figs. 2.40 and 2.41), the regions with the shorter
wavelength appear closer in depth than those containing the longer wavelength.

Grossberg’s explanation of the Weisstein effect can be related to how we perceive
boundaries, especially when they are filled with patterns. The shorter wavelength
patterns have higher values for the luminance gradients. Higher luminance gradients
excite wider receptive fields, and the vertically oriented complex cells (which
are activated by shorter wavelengths) inhibit the neighboring vertically oriented
hypercomplex cells (the ones activated by long wavelengths).

As a consequence, gaps begin to form around the short wavelength stripes, giving
the sensation of edges and boundaries, that is, a “boundary web of form-sensitive
boundary activations”.
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Fig. 2.40 Alternating stripes of two-wavelength patterns for a sine function. According to
Grossberg’s theory, stripes with higher luminance gradients should appear closer, even if the
wavelength is the same. In reality, any stripe looks closer if we look directly at it

Fig. 2.41 Alternating stripes of two-wavelength patterns for a cnoidal function. None of the stripes
stand out unless one looks for and focuses on them

This is the same process that makes us understand that the tiled spherical surface
ends and has a boundary separating it from the background where the pattern
becomes denser and richer in short wavelengths.

However, if we look carefully at the alternating two-wavelength stripes in
Figs. 2.40 and 2.41, we notice a different optical illusion than the one described and
explained by Grossberg. Each type of stripe appears closer to the viewer if looked
at directly. In other words, independently of being shorter or longer wavelength
patterns, the different parallel stripes which we focus on will always seem closer
to us. This effect is an example of an older ‘figure-ground’ paradigm. Hence the
explanation in the foveal type of vision: the lateral field always perceives larger
patterns and tends to be blind to narrower patterns. In addition, from attention
experiments [46], the resolution limit of attentional selection is inhomogeneous
across the visual field. The limit is scaled with eccentricity, coarser in the upper
visual field, and coarser along radial lines from fixation. Consequently, the visual
brain receives the signal that the stripe we are looking at has the narrowest pattern,
so it should be prominent in the image and closer to us, and because its boundaries
have shorter wavelengths (higher frequency patterns), it appears closer. This effect
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becomes more obvious in Fig. 2.41. It is also interesting to mention that while
moving the eyes and attention from one type of stripes to another, and unconsciously
trying to understand the images it “feels” like a discontinuity, or a sort of a phase
transition in the perception process.

It is somewhat surprising that there is no mention in the literature of as simple
and natural a visual occurrence of the 1=f pattern distribution as the surface of
a sphere. Consider a spherical surface of radius R and center O, observed by a
monocular vision so that the visual axis points towards the center of the sphere (see
Fig. 2.42). The spherical surface is uniformly tiled with constant patterns, like those
in Figs. 2.37 or 2.43, and consists of uniformly distributed patterns on the surface,
all elementary cells having the same angular measure d' on the surface. We choose
one such spherical square denoted MN, as in Fig. 2.43, shifted at angle ' from the
visual axis rE D OE. In the visual field, represented in the figure as a circle of
radius E (the eye being placed at distance d D jOEj from the center of the sphere),
this spherical rectangle has a width d� D AB. In the disk shown to the right of the
figure, we present an example of a circular crown of such equal patterns of constant
width d� D jABj, as seen from the eye E. The width of the crown is the pattern
width, and its radius is � D R sin'. When the angle ' scans the visible surface
of the sphere from 0 to �=2, we see different scales of patterns, from the original

Fig. 2.42 Uniformly tiled (d' D const:, d�sphere D jMNj D Rd' D const.) sphere of center O
and radius R, observed from a distant point E. The visual field is represented through a dashed
circle of center E, and it is also shown to the right of the figure, where the sphere image is a disk of
center E. The patterns appear to have a different wavelength function of their angular (') position
on the sphere. For example, those perceived in the circular crown in the right-hand image have the
same apparent wavelength d� D jABj, where � D R sin', and ' runs from 0 to �=2
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Fig. 2.43 Spectral power distribution versus frequency as perceived in monocular vision when
gazing at a uniformly tiled and uniformly lit sphere (see the inset). For most of the spectrum, the
distribution is a pure 1=f pink noise distribution

pattern size directly punctured by the visual axis, down to zero pattern size towards
the boundary of the sphere.

We calculate the density of the distribution of patterns of different spatial
frequencies f (f D 1=� with wavelength d�) on the apparent spherical surface
as they appear to the eye. Then we plot this power spectrum distribution versus
the spatial frequency, or in other words, we plot the number of patterns of a given
spatial frequency f versus the spatial frequency. This plot shows the visual power
spectrum of the perceived patterns and their scales as seen by an eye in monocular
vision gazing centrally at the uniformly tiled sphere. We have

d� D jABj D
���.rN � rM/�

�
.rN � rM/�e

�
e
��� ;

where

e.'/ D rM � rE

krM � rEk
is the unit vector along the line of sight, with E D OE. It follows that

d� D
2R

�
R cos

d'

2
� d cos

�
' C d'

2

��
sin

d'

2p
d2 C R2 � 2dR cos.' C d'/

: (2.2)
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All the patterns of perceived wavelength d� form a circular crown in the visual field
of area

dA D 2��d� ;

and we hypothesize that the visual power or surface density of these patterns is
proportional to this area, i.e., dP � dA, where we do not take into account the
Lambertian reflection law (the cosine law of decrease of the light intensity with the
angle between the line of sight and the normal to the surface), because we are not
concerned with the light intensity here, but rather with the number of patterns of a
certain perceived width. In the following, we study the dependence

dP D dA.f / D 2�R
sin'

f
D 2�R

sin '

1=d�
;

as a function of f D 1=d�. The graph of this function, which represents the spectral
power distribution versus frequency of perceived patterns, is presented in Fig. 2.43.
The result is surprising, because the distribution obtained theoretically is exactly the
celebrated 1=f type of pink noise distribution. As proof we note that, from (2.2), in
the limit d' ! 0, d! R, which is the close view limit, we have the behavior

sin ' � 1 � O

�
1

f

�
;

and in the limit d' ! 0, R=d! 0, which is the remote view limit, we also have the
behavior

sin ' � 1 �O

�
1

f

�
:

Consequently, in both limits, and hence in the whole visual range, the expression
for the spectral power can be approximated very well by

dP � const.

f
;

which is exactly the power distribution for 1=f pink noise.
This kind of noise naturally occurs in many physical, meteorological, astro-

physical, biological (heart beats, neural activity, DNA sequences), and economic
systems (long-term memory effect). It can be humanly generated in sandpile
models, or it can be related to a mathematical convergence theorem for statistical
processes characterized by a variance-to-mean power law. More importantly for
our study, pink noise describes the statistical structure of many natural images
[68]. Mamassian’s explanation [9] using the scale approach to the visual brain is
based on the fact that, in the visible world, the pattern scales, also called ‘spatial
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frequencies’ by psychologists, neuroscientists, and artists, are available with a pink
noise type of distribution. In this case, natural images are dominated by large spatial
scales (coarse blobs), while smaller scales (finer details) are gradually less present.
It is likely that the human visual system has adapted to these statistics of the
natural environment and that the 1=f spatial frequency distribution is the observer’s
expected outcome when he/she looks at an image.

We also mention an artistic practice of locally altering the contrast in paintings
in order to enhance depth perception and better separate objects of different
depths. This is especially visible in the art of Dali, Picasso, Seurat, and Matisse.
The success of such an artificial procedure (or such an artistic convention, to
eliminate ambiguities induced by the flatness of the painting, as Mamassian would
explain it) was recently demonstrated by Luft et al. [69] using their computational
method to achieve special effects for images that contain depth information (‘depth
darkening’). Basically, Luft and colleagues use a depth buffer, and on top of it apply
a toon shading, and a haloed contour, which in the end enhances the local contrast
and the depth perception. This procedure adds a high spatial frequency component
to the image near the boundaries of objects placed at different depths. By this means,
the distribution of spatial frequencies in the image is closer to the pink noise power
law for frequencies, which is known to play a role as a depth cue. The procedure can
be seen working in a practical way in Brischler’s paintings of geometric abstraction,
and color fields, as shown, for example, in Fig. 2.44.

Fig. 2.44 In order to provide a strong depth cue, the spatial frequencies in the image are distributed
close to a pink noise power law. Andrew Brischler, Sacrilege, (2013, acrylic, flash, marker, and
colored pencil on canvas). Courtesy of the artist and Gavlak, Los Angeles
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2.6.2 Biocybernetics

Why and how our visual perception of 2D images is influenced by frames is still an
open question. Several biocybernetics models have of course been developed, along
with ideas that could be used to answer to these questions [70]. A frame around
a coherent image represents a discontinuity in the smooth distribution of patterns
and scales in the image. Therefore, it may be useful to understand how the brain
perceives pattern discontinuities. We will discuss below the two mathematical ideas
which may help clarify the question.

One way to understand how our visual brain perceives framed 2D images is in
terms of multi-resolution analysis. In this context there are four essential degrees
of freedom in an image: two for position and size, one for orientation, and one
for spatial frequency. In contrast to Fourier analysis, multi-resolution analysis uses
wavelet decomposition of the signal. Wavelets are in general bases of compactly
supported functions, or rapidly decreasing functions, with self-similarity properties.
One very efficient wavelet procedure is the Gabor filter, and interestingly enough,
it seems that the visual brain analyzes images in a similar way. Filters and wavelets
are now widely modelled with Gabor functions in computing, image coding,
pattern recognition, and texture analysis applications because of their mathematical
convenience and their important theoretical properties concerning localization in
space and in frequency [71]. A plot of the excitatory or inhibitory effect of a small
flashing light or dark spot on the firing rate of a simple cell, as a function of the
.x; y/ location of the stimulus, was fitted with 2D Gabor functions. The residual
error between the measured response profile of each cell and the theoretical Gabor
filters was indistinguishable from random error [44].

The hypercomplex cells in the visual cortex are able to process inter-scale
interactions. At the end of a uniform area, the cells with higher spatial frequency
receptivity will have a stronger response than those with lower spatial frequency, and
they will be able to excite the hypercomplex cells. At other points across the uniform
signal, both high and low spatial frequency cells are equally excited, and in the
process, the response of the hypercomplex cell is inhibited. In addition, the simple
cells in the visual cortex are selective to four coordinates: the .x; y/ retinal location
in the visual field, and the two polar spectral variables for pattern orientation and
spatial frequency. It is well known [44] that the first three of these variables are
sampled in a systematic way by striate simple cells and there is evidence for a
systematic sampling of the fourth variable as well. There is a division of labor
among simple cells for the resolution of information along the different axes of
the information hyperspace. Some cells, for example, favor orientation selectivity at
the expense of spatial resolution in one direction, and so on.

The second way of understanding the perception of framed images is to take into
account the limitations imposed by the universal (Fourier) principle of uncertainty.
Simply stated, a narrow structure needs wider representation in harmonics, as
compared to a more extended structure with the same pattern. This principle works
for any pattern, scale fitting, interpolation, regression, Fourier decomposition, or
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wavelet analysis, etc. This is why static and noise penetrates through any filter, and
this is why, in a dynamical process, steep changes in a pattern generate new patterns
at different scales. In musical language, in order to reproduce a pure note played
for an infinitely long time, we need only one frequency. The same thing happens
when reproducing mathematically a uniformly distributed pure color. However, if
the same signal (short note or colored spot) is bounded by a finite region, we need
more components, harmonics, and frequencies to reproduce it (see the examples
in Fig. 2.46). We rely in the following development on the minimal mathematical
background introduced in Sect. 2.4.

The visual brain is believed to process the light input through interrelated
sequences of sampling, differentiation, and integration. Electromagnetic radiation
is projected on the retina and is filtered and distributed by different types of
specialized sensorial neurons (photoreceptors). The last process at this retinal level
is the transmission of the signal to the optical nerve by the retinal ganglion cells.
From about 100 million photoreceptors in the retina, the signals are compressed
in the retinal ganglions and in the optic nerve by a factor varying from 1=2 in
the fovea, up to 1=100 in the rest of the retina (about 100 photoreceptors for one
retinal ganglion cell). Inside the ganglions, the image is processed by a type of
differentiation process. The retinal ganglions analyze the signals from multiple
sensorial neurons and detect phase shifts in time and space, that is, they analyze the
modulation and contrast (identify the edges). What is seen by one ganglion inside
its receptive field [72] triggers the ganglion to fire in a particular way: excitatory or
inhibitory. The receptive field of the retinal ganglion consists in two concentric disks
(antagonistic center-surround system). If the larger disk is uniformly illuminated
the ganglion does not fire or it has a weak response. If the center area is irradiated
with a different amount of intensity than the peripheral area, the ganglion fires a
strong signal. Some ganglions fire a strong signal if the center of their receptive
field has greater illumination intensity (on-center retinal ganglions), and some other
ganglions fire a strong signal in the opposite case (off-center retinal ganglions).
The receptive fields thus favor the analysis of boundaries, contours, and movements
of the image. In addition to this dotted structure, the responses have different
wavelength sensitivities for different types of cone cells. There are three important
types: S, M, and L types, spectrally sensitive to short (blue), medium (yellow–
green), and long (red) wavelengths.

Each ganglion cell forms a fiber in the optical nerve through which the signal
is transmitted to the LNG (lateral geniculate nucleus) made of a sort of relay cells,
which is a part of the thalamus. In the LNG the information is processed, then further
distributed to the primary visual cortex. At this level the simple cells, discovered in
the 1950s by Hubel and Wiesel, respond to primitive visual elements like edges,
gratings, and bars, and decode information responsible for orientation of patterns.
The simple cells re-transmit information to the rest of the cerebral cortex, and to
the extrastriate cortical cells, which integrate the visual information from large
receptive fields and fire when they recognize complex patterns like meshes, lattices,
limbs, or buildings. Our perception of faces works in terms of first decomposing a
face into smiley faces, surprised faces, emoticons, etc. [44]. This is possibly why
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Fig. 2.45 Patches of monkey
visual cortex. Colors indicate
the preferred orientation of
the neurons. Photo by
courtesy of M. Schneider, R.
Little, and M. Schneider,
Pittsburgh Supercomputing
Center, 1995

kids love cartoons. It is on this level that our visual brain hypothetically works in a
similar way to a Gabor filter. Different such cells cover receptive fields of different
sizes and different orientations, similar to the scale tuning and the sine function
phase and direction modulation in the Gabor filter (see Fig. 2.45). This way, the
extrastriate cortical cells perform a polar-separable decomposition in the frequency
domain, thus allowing independent representation of scale and orientation.

The retina generates an 8-dimensional time-dependent scalar field with its four
layers of photoreceptors (S, M, and L cone cells and rods) distributed across a 2D
and almost hemispheric surface. The signals from the photoreceptors are mixed
in the retinal ganglions mapping the scalar signal from each retinal point into
a quaternion space of components (off-center, on-center, excitatory, inhibitory).
Actually, the retinal vision system delivers a decomposition of the projected image
on a 4-dimensional (L, M, S, rods) self-similarity base of circular Gaussian-like
scaling functions ˚ (on-center receptivity), �˚ (off-center receptivity) of minimal
width given by the minimal diameter of the retinal field. When these signals are
further sent to the simple, complex, and hypercomplex cells, the time dependence,
space modulation, and elongation asymmetries are taken into account.

Boundary Effect

In this section we describe a possibly new physiological effect triggered by the
boundary of an image. The phenomenon may originate from rapidly browsing
between the framed painting and the surrounding blank ambient. While performing
this motion, the visual brain records a steep change in the complexity and structure
of patterns, from an excitative stimulus to an inhibitory one.

In the literature, there are several examples of psychophysical phenomena
generated by such rapid variations of visual stimuli. For instance, we have the
after-image, flash-drag, flash-lag, and flash-grab effects [73], as well as the very
interesting and still intriguing pattern induced flicker colors (PIFCs, or simply the
subjective color effect) [74–76]. PIFCs occur if a rapid change in an achromatic
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stimulus produces the sensation of colors. The neurological interpretation is a side-
effect of a neural mechanism providing color constancy under normal stimulus
conditions [76]. A simple way to demonstrate this phenomenon is Fechner’s pattern,
or Benham’s disk [74, 77]. The latter is a pattern of concentric arcs of black circles
of different radii and different angles drawn on a white half-disk, rotated at 5–
10 Hz in alternation with a dark half-disk. A good computer realization can be
viewed under the Project LITE heading at the Boston University site (2005). This
effect and the others mentioned above are basically initiated by rapid and localized
changes in image patterns at a certain location on the retina (see an illustration in
Fig. 2.48). Of course, through the principle of relativity, the effects must also occur
if the visually localized pattern is constant in time, but the gaze is moved over the
pattern fast enough [78]. In this interpretation, we expect that, by looking alternately
inside and outside of the framed image, it must trigger a similar sensation which
adds, in a nonlinear way, to the overall sensation produced by the image itself. In
order to investigate this possible effect, we shall look more closely at some current
explanations of the physiology behind the PIFC effect.

Several interpretations have been put forward to explain the PIFC effect. They all
agree that the effect of color sensation is triggered rather by the temporal modulation
of patterns, and not necessarily by the motion of the patterns in the visual field. One
interesting explanation based on neuronal anatomic structure [76] was developed
by Schramme, Tritsch, and von Campenhausen. Their model assumes a highly
interconnected neural structure attached to the L, M, and S cone bases. This structure
consists of ‘horizontal cells’ connecting laterally different types of cones in a
plane parallel to and underneath the retinal plane, and ‘bipolar cells’ (on-center
and off-center) vectoring the neural channels perpendicular to the retinal plane,
and connecting the cones and the horizontal cells with the retinal ganglions. The
horizontal cells mediate the phase-sensitive lateral interaction between excitations
and are responsible for the PIFC phenomenon. In other words, excitation/inhibition
of different cones (space resolution) and at different moments of time (phase
resolution) can be measured by the horizontal cells and communicated to the retinal
ganglions, which interpret the phase-shifted signals as colors.

Two very important consequences emerge from this model. On the one hand,
von Campenhausen and his collaborators found [76] that the horizontal and bipolar
ganglion triad placed at the base of the cones (and rods) is the site of a phase
sensitive lateral interaction, and this triad acts pretty much like a system of low-pass
filters retaining fundamental frequencies and lowest harmonics of the modulated
patterns. This structure is present in humans (primates) and honey bees, and recent
studies show the possibility of such structures in homing pigeons. It becomes
obvious that this model favors the idea that retinas work like a multiple Fourier
transform in the space of visual patterns. Hence, a steep change in visual stimulus,
like gazing quickly over the boundary or frame of a coherent image, will generate
a wide spectrum of signals in the retinal structure, and this spectrum will be
recorded by the retinal ganglions and relayed forward to the LGN and the visual
cortex. According to this model, we should perceive a special input when jumping
over the visual boundaries. In a simple numerical experiment, one can study the
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Fig. 2.46 The density plot of spectral distribution versus time (horizontal axis) and frequency
(vertical axis) of a finite duration signal. The left-hand frame contains a pure sine signal with its
frequency narrowly limited by a horizontal stripe. However, at the beginning and end of the signal,
the spectrum explodes into a broader spectrum shown by the diffusion of the yellow color. This is
the frame effect applied to a 1D image (yellow rectangle) surrounded by dark brown: at its ends, the
spectrum is deformed and extended. In the right-hand frame, the sine signal is perturbed by white
Gaussian noise, and consequently its spectrum is extended up and down to multiple frequencies.
In this case, the frame effect is weaker

wavelet transform of a finite duration signal and measure the spectral effects of
the boundaries (see Fig. 2.46). A more complete simulation of this frame effect is
presented in Fig. 2.47, where the extended spectrum at the boundaries is artificially
enhanced around a photography by including the wavelet decomposition of the
image: yellow color bleeding out of the neat image is what a Gabor wavelet model
of the visual brain would notice in a quick glance at this landscape.

On the other hand, there is always the question as to whether such a PIFC
mechanism is the result of evolution, and if not, why it is present. In nature, it is
rather an exception than the rule to have time-modulated visual stimuli with such a
large space gradient in the phase shift. It indicates that, without selection pressure,
there would be no biological purpose for the PIFCs. However, the effect may be
related in an indirect way to a true evolutionarily generated ability, namely color
constancy. The visual brain and retina have developed a specific ability to operate in
the range of natural variations of the daylight spectrum. If we map these variations
in a 3D vector space of base S, M, and L cone sensitivity, we obtain an almost
flat surface, or a plane generated by the S and M C L directions, the so called
S=.M C L/ opponent channel. Surprisingly, the spectrum of the PICF phenomenon
lies entirely in this plane [74, 76]. So according to the Schramme, Tritsch, and von
Campenhausen model, the PIFC phenomenon is an indirect consequence of our
evolutionary adaptability to the variation of natural daylight.

A more mathematical approach to the explanation of the PIFC effect is provided
by the Grunfeld–Spitzer model [75], which accounts for the time variation as well
as the space variation of the rotating patterns. According to this second model,
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Fig. 2.47 Frame effect artificially enhanced around a photography by including the wavelet
decomposition of the image. The yellow color outside of the (blue) frame represents a Gabor
wavelet analysis made at the boundaries of the picture

the ultimate cause of the effect is the nonlinear response of the neurons (retinal
ganglions). The stimuli responsible for the different colors elicited are determined
by the arc lengths and the location of the black circular patterns. Grunfeld and
Spitzer explained the phenomenon using a nonlinear physiological mechanism
called the rebound response.

Under some conditions, if a neuron is maintained deactivated for a long time, for
example by keeping it in a hyperpolarization state, when the inhibition is turned off
suddenly, a depolarization wave of Ca2C ions is triggered and travels in the form
of a train of spikes. The rebound responses associated with the three color cells
(cells having different response parameters) yield different responses at the color
pathways and thus provide a quantitative explanation for subjective colors, such
as those induced by the Benham disk. Thus, the rebound response enables cells to
detect spatial and temporal edges, without a complete loss of information about the
duration of the stimulation.

Along the same lines, we may mention a recent study on the nonlinear nature
of the propagation of the nerve pulse as an acoustic soliton induced by a phase
transition in the axon membrane [79]. The authors provide experimental evidence
for the occurrence of doublet or triplet trains of spikes along the nerve. These
trains of spikes are believed to be solitary wave solutions traveling along the axons
through a thermomechanical mechanism that is parallel to and independent of the
well known ion channel electrochemical propagation. It is well accepted, [80], that
there are four types of spatial cells in the hippocampal formation: (1) place cells
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responsible for sensing regions, (2) head direction cells responsible for directional
moving, (3) grid cells responsible for regular patterns and (4) boundary cells
responsible for sensing boundaries [81]. The boundary cells are really special: they
are formed in the medial entorhinal cortex in the earliest days of life, in rats for
example, and are related to the first tendencies of the animal to move freely around.
Most recent models, [82], introduce a new input layer in the hypothalamus made
of boundary vector cells that fire when the animal senses remote environment
boundaries. These studies infer that in the earliest stable of life the very cues to
location are supported only by the boundary cells, and only later the place and grid
representations develop and interact.

Local Nonretinotopic Geometry

When we watch one object subjected to change, motion, and/or small deformations,
our visual systems not only let us see and record various images of an object, but
make us believe in its existence, stability, invariance, constancy, etc., once the object
is identified and recognized. The visual brain is capable of building more abstract
representations that allow the integration of different instances of an object into a
single category and at the same time, segregate instances of different objects into
different categories.

The visual brain may associate the trajectory of the object’s motion with its
classification, meaning, and definition. Instead of analyzing in a one-to-one mapping
of the object’s retinotopic image, higher levels of our visual brain (from V3 up) tend
to deform and adapt to the otherwise local, uniform, and isotropic retinotopic space
that closely surrounds the object. In analogy with general relativity, when a mass
locally deforms its surrounding spacetime, in our visual brain, the occurrence of the
catalogued object image induces local deformation of its surrounding retinotopic
space using the repeated occurrence of the same object, and this simultaneously in
all of its elements. This may explain why we cannot easily find a lost object, even if
it is manifestly visible, when it is placed in a location not related to its meaning. This
effect can generally be described as a sort of local spacetime causality developed in
our brain when we see simultaneous events.

In a long series of research papers including [73], Cavanagh and Anstis show
that, when an object moves back and forth, not only does its trajectory appear
significantly shorter than it actually is, but if a light signal is emitted at the endpoint
of the trajectory, this flash is mentally ‘grabbed’ by the object, and it is seen at
the perceived endpoint of the trajectory, rather than the physical endpoint. This
discovery is important because it proves that our visual brain overlaps the flash with
the object at the moment of motion reversal, even if there is no causal, structural, or
congruence relation between them, apart from the spacetime simultaneity of their
occurrences. The occurrence of such a local nonretinoptic geometry is identified by
Intriligator and Cavanagh, too [46]. They found that the visual selection mechanism
acts by pointing to the spatial coordinates (or cortical coordinates) of items of
interest, rather than by holding a representation of the items themselves.
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There are many observations converging towards such a conclusion. A moving
object viewed through a narrow slit is still perceived as a spatially extended shape
moving behind the slit rather than an incoherent pattern confined to the region of
the slit, a phenomenon called anorthoscopic perception [83]. If we watch an ellipse
moving behind a narrow slit it appears compressed because the trailing edge of the
stimulus is perceived to move faster than its leading edge, similarly to the flash-
grab effect described in the paragraphs above. The Ternus–Pikler test (illusion of
group motion versus individual motion of patterns) also demonstrates that motion
establishes a reference frame according to which nonretinotopic computations take
place.

It is already known from metacontrast masking experiments [83] that the
presence of a retinotopic image is not a sufficient condition for the perception of
form. This effect refers to the reduced visibility of a target stimulus due to the
presence of a second stimulus, namely, a spatially non-overlapping mask. Although
the target is fully visible when presented without the mask, the spatially and
retinotopically non-overlapping mask can render it completely invisible.

There are more arguments in favor of the local geometry of the images in
the higher level of perception than the simplistic retinotopic image mapping. For
example, under normal viewing conditions, visible persistence is approximately
120 ms, so one would expect moving objects to appear highly smeared, much as
in Fig. 2.48, but that is not the case. In the presence of occlusions, we do not
perceive a set of fragmented parts; rather, the occluded object appears as a whole,
a phenomenon known as amodal completion. All these effects show that at some
level of perception the visual brain recognizes that points belonging to the same

Fig. 2.48 Photographic illustration of the effects of rapid motion of patterns on our image
perception. Image taken at a shutter speed of 1/15–1/60 s, that is, an exposure time of 17–66 ms.
Photograph courtesy of ExposureGuide.com (2013)
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entity (i.e., the image of a recognized object) move with the same velocity, and then
the visual brain places the representation of the object in a relatively moving frame.

These effects can be given an explanation based on nonretinotopic representa-
tions, viz., a local geometry with a velocity-dependent metric. Öğmen and Herzog
consider the existence of local manifolds created by motion segmentation as having
a metric based on relative motion vectors. Such a model involves replacing the
spatial Riemannian manifold model of images in the brain with a non-Riemannian
spacetime manifold. A possible candidate would be a Finsler type of geometry
where the metric depends on the arc length and on the tangent [84]. This geometry
non-trivially generalizes the Riemannian manifolds in the sense that they are not
necessarily infinitesimally Euclidean, and loosely speaking the metric depends on
the curve’s arc length and velocity.

Color, Form, and Frame

A familiar and very important property of visual perception is its sensitivity to
context. For example, the strong influence of surrounding regions on the size or
color of a target region has been known for centuries [85], as illustrated by the
Ebinghaus–Titchener illusion. In their review, Shapley and Hawken present an
experiment where several squares of identical wavelength spectra (red) are placed
at the center of different surrounds (green, gray, reddish, black) (see Fig. 2.49). The

Fig. 2.49 The central square has the same color spectrum in each of the four large squares, yet it
appears to have a drastically different color depending on its environment
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Fig. 2.50 Artwork illustrating how the form, color, and depth of the objects link up in our visual
cortex and generate special visual perception. James Little, Juju Boogie Woogie, (2013, mixed
media, oil and wax on canvas). Reproduced with permission of the Artist

edge integration concept [86] also indicates that the perceived lightness or color of
a surface cannot be determined simply by information derived from the edges of the
surface itself.

Depending on the surrounding color, the different central squares appear either
intensely red, pink, and even almost white [87]. Therefore, the appearance of these
physically identical targets is very strongly affected by the color and brightness of
the surrounding area. Psychophysical and perceptual studies have established that
form, color, depth, and motion are inextricably linked as properties of objects in
visual perception and in the visual cortex. This fact is known and utilized by artists,
as can be seen from the example in Fig. 2.50.

Many different neuroscience laboratories have found that responses of the visual
cortex strongly link multiple visual properties like depth, motion, lightness contrast,
color, shape, frame, texture, and orientation. This is a consequence of a fact well
known among neurophysiologists that the visual performance of the visual cortical
neurons is mainly dependent on their receptive fields. The visual part of the brain is
the cerebral cortex responsible for processing visual information, and it is located
in the occipital lobe. It refers to the primary visual cortex (or striate cortex) V1, and
extrastriate visual cortical areas: V2 (less involved in color processing but acting
as a buffer between V1 and the other V’s), V3 (coherent motions and complex
images), V4 (integrates color and form information for perception), and V5 (motion
perception). The V1 region of the brain plays an important role in color perception
through the combined activity of two kinds of color-sensitive neurons, single-
opponent and double-opponent cells. The single-opponent cells, which work in a
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similar way to the LGN cells, respond to large areas of color. The spatio-chromatic
sensitivity function of the receptive field can be expressed as the red–green jL�Mj,
and the blue–yellow S � .LCM/ opponent channels, respectively:

RSOred–green.x; y; �/ D L.�/rL.
p

x2 C y2/ �M.�/rM.
p

x2 C y2/ ;

RSOblue–yellow.x; y; �/ D aLL.�/rL.
p

x2 C y2/C aMM.�/rM.
p

x2 C y2/

�.aL C aM/S.�/rS.
p

x2 C y2/ : (2.3)

Here L.�/, M.�/, and S.�/ are the spectral response functions of the L, M, and S
cones, and rL.

p
x2 C y2/, etc., are the spatial sensitivity distributions for each cone

input. The single-opponent cells are circularly symmetric, hence orientation-blind.
The double-opponent neurons are affected by oppositely signed inputs from

different cones (cone opponency), and also oppositely signed inputs from cone-
opponent inputs at different locations in the cell’s receptive field (spatial oppo-
nency). The spatio-chromatic sensitivity function of the receptive field reads

RDO.x; y; �/ D aLL.�/rL.x; y/C aMM.�/rM.x; y/C aSS.�/rS.x; y/: (2.4)

The double-opponent is strongly responsive to high spatial frequency color patterns,
but poorly or non-responsive to color stimuli of low spatial frequency. Moreover,
the double-opponent cells’ receptive fields rL.x; y/, etc., are non-symmetric, in fact,
rather elliptic elongated in shape, so they can detect orientation (see Fig. 2.45).

The sensitivity functions (2.3) and (2.4) of the simple and the double-opponent
cells are not simply products of functions depending on the wavelength and the
spatial coordinates, but are linear combinations of mixed terms, each depending on
both parameters. This feature amply proves the phenomenon of correlation between
spatial orientation of patterns and color in our visual perception.

2.6.3 Representations of Boundaries in the Left and Right
Cerebral Hemispheres

At first glance, the two cerebral hemispheres look like the mirror image of one
another, both anatomically and structurally [88]. However, in spite of this apparently
symmetric brain organization, the supposed fifty–fifty cross control of the left and
right sides of the body, morphological asymmetries exist along with suggested
functional ones. Anatomically, the brain is not symmetric: the Sylvian fissure,
temporal planum, prefrontal, and venous system asymmetries evidently confirm the
nonsymmetrical shape. Basically, the right frontal-parietal lobes are larger, and the
left parietal-occipital lobes are larger, showing a center of mass median directed at
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about 40ıNE in the horizontal mid-section plane. As expected, these morphological
asymmetries involve functional brain asymmetries.

It is interesting to try to discover how the brain supports recognition, space
orientation, boundary sense, and artistic thinking, for example, based on the
topology of the brain region where these functions are generated. In principle, it is
known that the left hemisphere is more responsible for language functions, while
the right hemisphere cares more for nonverbal functions. Studies show that the
left brain is the logical brain, responsible for notions (concepts), symbols, words,
representation of objective space geometry, distant space, sections through space,
and linearity [89].

Recently, fascinating results on the dynamics of drawing abilities in humans
undergoing unilateral electroconvulsive shock therapy (ECT) have been reported in
[89–91]. In clinical experiments, patients were asked to draw a house, a person,
a tree, a cube, a bridge over the river, or rails stretching to the horizon, before
the shock, and several times subsequently, at successive intervals of 10–20 min,
until the impacts of ECT were completely removed. Since the brain hemisphere
subjected to the shock is temporarily inhibited and then gradually gets back to
normal, the evolution of the sketches reveals the changing balance of interaction
between the inhibited and active hemispheres. In particular, it was demonstrated
that patients recovering from right-ECT with active left hemisphere draw iconic
representations of objects, by merely sketching their boundaries, and connecting
them in a hieroglyphic way. Later, over time, the patients gradually return to a
realistic transfer of the visual images.

Studies of drawings by patients with focal lesions in the right or left hemisphere
have helped us to understand how artistic thinking is supported by brain structures
[89]. The role of the right hemisphere is significant at the early stage of the creative
process, and it operates with images placed in a visual space as icons. Only by
ulterior activation transfer from the right hemisphere to the left can the expression
and artistic act be completed by a conscious effort.

The role of the right hemisphere is significant in the early stage of the creative
process, in the stage of conception. Drawings made by patients with left hemisphere
damage show somewhat ‘impossible’ postures, like those in the paintings of Picasso,
Matisse, and Leget. Such drawings were also noticed in the pictures of 5- and 6-
year old children, or at the dawn of human civilization, in the Stone Age, or in the
representation of mythological characters and creatures, such as griffins, winged
horses, and sphinxes.

For a healthy adult living in modern times, the images created in the ‘inner’ space
by the right hemisphere need to be transferred into an essentially different language,
i.e., the left hemispheric language of words, which operates with a finite number of
discrete units. Somehow, the images have to be moved from the subjective geometric
spaces into algebraic, finite, and discrete (words) representations. The transfer, once
initiated, develops oscillating feedback between the two hemispheres. Obviously,
the act of creation requires a continuous dialogue between the hemispheres.

Studies made with right hemispheric suppression show that drawing representa-
tions of the objective space geometry created by the left hemisphere were schematic
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and body-less. These results suggest the hypothesis that the left hemisphere is
modeling objective space in an analytic way by sectioning it into discrete parts
according to the principle of opponent definitions [90].

The real geometry of material objects is a typical function of the right hemi-
sphere. During right hemisphere suppression, the mechanisms of stereo viewing are
altered and 3D objects are represented as flat. Right hemisphere suppression results
in the loss of the direct visualized character of visual perception. Representations
of objective space geometry created by the active left hemisphere are schematic,
showing abstract simplified forms, such as boundaries like a rectangle to designate
different objects. The image of a concrete object is replaced by its contours [91].
These experiments, corroborated by the results showing that the left hemisphere is
orientated toward remote regions where the space is more body-less, suggest that
the left hemisphere is responsible for our enhanced understanding of boundaries.
That may be because of the logical and organized way the left hemisphere tries to
program activities in terms of frames, schedulers, tables, hence contours, limitations,
deadlines, frontiers, and boundaries.

2.7 René Magritte and Bernhard Riemann

The boundaries between the natural and art worlds are central foci in René
Magritte’s work [92], and so too is the frame. His obsession with the balance
between reality and fiction is often found in representations, enframings, and
boundary game studies. Probably the most outstanding example is his La condition
humaine (see Fig. 2.51 left). The easel’s position in front of the window opening
up to a landscape, with the easel mimicking the same landscape, is a statement of
disruption of reality by art. The edges almost vanish, the outside becomes inside
and vice-versa. The real world and the artistic creation become one on the easel:
just two different representations—and the accuracy of the painting tells us these
are very faithful representations—of another truth, beyond vision and perception.
The presented theme is reminiscent of the etymology of frame and boundary from
the word ‘echo’ (bombitire, budina) in Vulgar Latin (see Chap. 1). The easel reminds
us of the primordial definition of the frame as skeleton and introduction. Whatever
the viewer’s interpretation, it is a display of a Rilke-type of philosophy on questions
that are more important than their answers.

All of these elements have a key, yet there is a detail which stands out: the
vertical white dotted line to the right of the canvas. It obviously has a realistic
interpretation, but why is it placed so dissonantly compared to the calm of the
landscape? Almer thinks it is a motif, similar to Heidegger’s riss or Umriss, standing
for a contour. However, it cuts the holistic illusion of the landscape. The line
“interrogates the question of what has been framed: is it the painting within the
painting, is it the outline of the canvas, or is it the boundary, the frame, the limit of
the landscape and its representability? This line creates a joint, a hinge on a door,
which simultaneously opens and closes.”
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Fig. 2.51 The duality between reality and its representations presented artistically (left) and
mathematically (right). Left: Framed reality and its framed representation. René Magritte, La
condition humaine (1933, oil on canvas). Taken from the public domain internet pages of the
National Gallery of Art, Washington, D.C. Right: A 3D plot of a Riemann surface Z D p

z. The
attempt to fit the graph of a complex function with .2C2/ dimensions in a 3D space representation
generates undesired non-uniqueness which must be removed by branch cuts between different
sheets. Note the disappearing white vertical dotted line in Magritte’s landscape, and how similar
it is to the line of intersection of the green and purple surfaces: the location in our mind (left) or
space (right) is the same, but it hides a repetition of multiple realities

Inspired by Almer’s words regarding the dotted line, we can see a deep
connection between Magritte’s persistent questions here, and the duality inherent
in the double reality of the Riemann surfaces. In the complex plane (considered
as a 2D Euclidean plane in which the horizontal axis is real and the vertical axis
is ‘imaginary’), we can define functions that overlap one another and repeat this
foliation to infinity, like a spiral stairway. One example is the complex square root
Z D pz. In the right-hand frame of Fig. 2.51, we show the second leaf of this
complex square root function. Using Riemann surface theory, it is easy to show how
the two leaves overlap.

Regardless of whether a smooth surface is self-intersecting or not in an arbitrary
parameterization, if we want to plot it locally as a function z D f .x; y/, it must
satisfy the vertical line criterion, that is, uniqueness of the value of z for each point
.x; y/: any vertical line should intersect the graphs z D f .x; y/ at one point only.
Otherwise the function f must be declared multi-valued and another geometrical
parameterization must be chosen if we care about uniqueness of the realization.
Such situations were a little bit tricky until the 1850s, but it was Riemann’s merit
to solve the problem in an elegant way by introducing the concept of a ‘branch
cut’. Branch points are the points where various sheets of a multi-valued function
intersect. For example, the function

p
xC iy has two branches: one where the square

root has the plus sign, and the other where it has the minus sign. A branch cut is a
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Fig. 2.52 In the painting Evening falls, the shattered glass still contains the image that you
see through the window. Magritte questions the 2D representation of a framed 3D world, and
the possibility of understanding a higher dimension through combinations of flat images. René
Magritte, Evening Falls (Le soir qui tombe), 162 � 130 cm, oil on canvas. Courtesy of the Menil
Collection, Houston

curve in the complex plane which makes it possible to define a single analytic branch
of a multi-valued function on the plane when that curve is removed.

To sum up, a Riemann surface is a multi-valued 2D smooth manifold that can
be represented as a union of 2D real single-valued sheets connected together by the
branch cut curves. Locally, the Riemann surface is homeomorphic to the complex
plane (in any of its sheets), but globally it has a complex topology, different from that
of the complex plane. It represents multiple repetitions of the same type of object.
The only rule that can make the difference between the connected sheets, and that
can also label them correctly, is the branch cut curve (see Fig. 2.51 right). Magritte’s
white dotted line in Fig. 2.51 (left) may be understood as the concept of ‘branch cut’
adapted to his own realm, connecting (or separating) multiple landscapes. He needs
to separate two identical representations, and only one cut is necessary.

In Le soir qui tombe (Fig. 2.52), Magritte shows the same duplication of a painted
reality, this time manifestly transparent, but broken. His question may be similar to
that of Matisse and Rothko, namely, after the glass is broken, do we see something
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Fig. 2.53 The central theme of the frame and enframed world in René Magritte’s painting La belle
captive (1931, oil on canvas). Permission for reproduction from © 2015 C. Herscovici, Artists
Rights Society (ARS), New York

new or do we just see what we have already seen? The frames multiply in the room:
real frame, wall, curtain, floor/ceiling, lower and upper window, and so on. The view
through the empty window is obviously flat and almost fake. Magritte approaches
the frame theme in many paintings, among which we mention only a few here.

In La condition humaine (Fig. 2.51), Le soir qui tombe (Fig. 2.52), and La belle
captive (Fig. 2.53), Magritte presents the reality/representation duality by using
the motif of duplication of the landscape, and separation of the two images by
the frame. In almost every such painting, the duplication is an almost perfect
isometry. Especially in Evening Falls, this one-to-one mapping is underlined by the
occurrence of the centered upper sun in the window’s frame, and in the break. It is as
if the force of the real, that sun, has guaranteed not only the appearance and veracity
of that representation, but simultaneously ruined and frozen its apparatus. Both solar
disks are perfectly circular and thick, painted with the same bright orange, like in
the situation of the afterimage created by looking at an intense light source, such
as the sun. The idea of duplication and repetitions of a landscape is taken further
than shattering one of the images. In Les charmes du paysage shown in Fig. 2.54,
Magritte completely empties the frame of any image, except of the floor line left
there to enhance the emptiness of the frame. By replacing the eye’s iris with a cloud-
filled sky in La faux miroire shown in Fig. 2.55, Magritte questions what we see and
what we think we know. Regardless of whether the sky is a reflection of what the eye
is seeing, or the eye is an opening into another reality, one thing is certain: Magritte
offers an invitation to look at the world only through frames.
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Fig. 2.54 The theme of the frame, whether filled with the image of a landscape or empty, as in this
painting, is abundant in Magritte’s paintings. René Magritte, Les charmes du paysage (1928, oil
on canvas). Permission for reproduction from © 2015 C. Herscovici, Artists Rights Society (ARS),
New York

Fig. 2.55 In this painting, the eye may be an opening into another reality, or a peek at an inner
vision. One thing is certain: René Magritte’s The False Mirror is an invitation to look at the
world through frames of different kinds. La faux miroire (1928, oil on canvas). Permission for
reproduction from © 2015 C. Herscovici, Brussels/Artists Rights Society (ARS), New York



Chapter 3
Boundaries in Social Systems

Over the last few years, the concept of boundary has been at the center of influential
research agendas in anthropology, political science, social psychology, sociology,
and economics [93]. Perhaps the most serious and pressing challenge in the social
sciences is to find a working mathematical representation for social systems.
Universal models for social systems must be defined in very high-dimensional
spaces, with complicated structures, which have very little to do with the physical
space. Nevertheless, if such systems are related to a certain physical territory,
they can coexist and overlap. Studying social and economic systems in relation
to the dynamics of their boundaries, and consequently considering the interactions
occurring at the level of their boundaries, adds value and understanding to the
research, particularly when one is concerned with the study of relational processes.

There is a lively contemporary scholarly activity in the field of social boundaries.
For a review of the literature see the introduction to [94], for example. Social bound-
aries are far from being uniquely defined. The multi-dimensionality in collective
identity formation and the diversity of social networks determine the existence
of multiple, interacting boundaries. One can define social boundaries through
ethno-racial characteristics, spatial and demographic distribution of institutions, job
markets, immigration processes, nationalistic characteristics, or even as aesthetic
boundaries, or through concepts like gender, sexuality, religion, health, or simply
the dynamics of risk.

3.1 Social Science Approach to Boundaries

How do boundaries work in social relations? How do their existence and dynamics
generate feedback in social relations? Social boundaries are generated and survive
through a multitude of mechanisms, tangible processes, or concepts. Well known
examples of such mechanisms are: cultural capital and membership, racial and
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ethnic group positioning, professional jurisdictions and controversies, social and
collective identity, group structure, residency and civil rights, and even cognition. In
some studies, such as Ethnic Groups and Boundaries [95], the author embarks on
a systematic classification of boundaries in three levels of abstraction: territorial,
social, and categorical. Donaldson and Wood consider that categorization (or
classification) processes are central to both the practice and understanding of control
[96]. And the use of categories is connected to the existence of boundaries, because
the category concept stems from the concept of boundaries that delineate one
category from another.

There are two important mechanisms known to generate boundaries for a social
system, and the structures of these boundaries are shaped by the balance between
these mechanisms. The mechanisms are:

– conceptual distinctions (or interpretations),
– institutionalized social differences.

Each of these mechanisms can generate its own boundaries, viz., symbolic bound-
aries and social boundaries, respectively. These two categories have a nonempty
overlap. For example, crossing a nation’s frontiers, a social boundary, may some-
times be a symbolic gesture, too. The symbolic boundaries are created and agreed
upon by the social actors in order to define reality. Even play or humor can be testing
procedures for symbolic boundaries. They represent the boundaries between groups
of people, fellowships, or similarity classes. They can be crossed by members in an
effort to acquire social status or resources. A typical example of crossing symbolic
boundaries is the act of prejudice [97].

In contrast, social boundaries divide social systems according to access to
resources and opportunities. It is rather the exception than the rule when symbolic
boundaries become social boundaries. This may occur when a high degree of
coherence or collective interaction or consensus exists between the same social
actors within the same symbolic domain. Sometimes symbolic boundaries enforce
social boundaries, and sometimes they contest the meaning of social boundaries.
Cross-cultural differences may change the way symbolic boundaries are linked to
social boundaries.

In Sects. 3.1.1–3.1.4, we present the main mechanisms of social boundary
formation, listed here from the micro to macro levels of analysis [93, 98].

3.1.1 Social and Collective Identity

The pressure to evaluate one’s own group positively leads to the self-differentiation
of social groups. As a consequence, the perception of group boundaries as imperme-
able will make social change more likely for low-status groups who engage in social
competition. Direct exclusion, over-selection (as in very competitive educational
institutions), self-exclusion, and lower level tracking are key mechanisms in the
generation and stabilization of social (symbolic) boundaries.
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3.1.2 Class, Ethnic, and Gender Inequality

Cultural practices have classificatory effects that shape social positions by defining
class boundaries. Dominant groups generally succeed in legitimizing their own cul-
ture, exercising ‘symbolic violence’ by imposing a specific meaning as legitimate.
In this case the symbolic distinction ends up producing boundary closure. Cultural
boundaries are usually semi-permeable. While a certain cultural enclosure is valid
for a social group of a determined cultural level, the same enclosure may disappear
for an individual with a higher level of culture.

Mobility has always been configured by borders and boundaries composed of a
multiplicity of hybrid objects, from infrastructure and technology to law and culture
[99]. These boundaries are permeable to different degrees, hence creating a society
that is differentiated by speed and access.

In his anthology, Fredrik Barth [95] makes a clear distinction between the ethnic
boundary of a group, and the cultural stuff that it encloses. The ethnic boundary is a
social boundary, even if it may sometimes have some territorial counterparts. Barth
defines the interior of the ethnic boundary, the ethnic group, through a relation of
equivalence between people. Two people belong to the same ethnic group if:

– they have the same criteria for evaluation, judgment of value, and performance,
– these criteria do not change when a member interacts with other non-members.

There is a manifest mathematical analogy for this definition. According to this
analogy, an ethnic group is either a class of equivalent systems of reference sharing
the same laws, or a fiber bundle where the base space is the set of members and the
standard fiber is the set of criteria understood as a subset of all possible criteria of all
cultures. Two members of the same ethnic group may see things differently, but they
can always find a transformation with some degree of smoothness and faithfulness
that maps one’s judgment into the other’s judgment. There are interactions between
members of different ethnic groups, and the corresponding transformation functions
between their different judgments and evaluations are expected to have singularities,
defects, and gaps. Only members of the same ethnic group can be connected by
‘smooth’ transformations of criteria and judgments. It follows that the boundary
of the ethnic group is actually the boundary of the set of smooth transformations
preserving the quality of membership of that ethnic group.

3.1.3 Professions, Science, and Knowledge

The notion of boundary is also an essential tool to describe how models of
knowledge are diffused across countries, and how they impact local institutions
and identities. In this context, boundaries may become means of communication
as opposed to divisions, thus becoming essential to the circulation of knowledge
and information across social worlds. For example, scientists want to distinguish
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themselves from amateurs and charlatans by establishing the ‘boundaries of real
science’.

3.1.4 Communities, National Identities, and Spatial
Boundaries

These can be large-scale collectivities where members are linked primarily by
common identities, but minimally by networks of directly interpersonal relation-
ships. Examples include nations, races, classes, and genders [94]. In some studies,
community borders are seen as interstitial zones, largely dominated by processes
of globalization and transnationalization that have increasingly deteriorated and
hybridized national identities. For example, the border between two countries
induces more subdivisions than just the two nations. To the east and west of the
Romanian–Hungarian border at Bors, there are Romanian communities in Hungary,
Hungarian communities in Romania, and the names of some of the cities are
mirrored in the two places: Santion becomes Szentianosh, and Szentpeterszeg is
mirrored into Santpatru, etc. The border between these two nations generates three
separate sub-borders. Immigration, migration (including members of transnational
and professional elites), refugees, and displaced and stateless persons become
generators in redrawing the boundaries of national identities.

3.2 Social Boundaries and Networks

We are entering a new type of society, the network society, and a new type of
economy is without any doubt one of its features. Following this line, it is easy to
predict that the new technological paradigm will allow the formation of new types of
social organizations and social interactions through electronically based information
networks. A second feature is globalization, given the technological capacity of
certain systems to work as a unit in real time on a planetary scale [100]. Interactive
hypertext is definitely another important feature of this new type of society. In this
developing new world dominated by markets and networks, the state and the family
are entering a crisis. Castells [100] believes that the key themes of traditional society
(religion, nation, ethnicity, locality, nation, family) will tend to break up in favor of
value-founded communes.

The new society is made up of interactive information networks, so it becomes
important to determine how networks interact, and what determines their bound-
aries. The individual becomes secondary to its position, and is reduced to the degree
of a node in several networks. It is less and less important where you live or where
you graduated, and more and more important how many ‘friends’ you have on
Facebook, or how many ‘followers’ you have in professional internet networks.
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The spatial structure of social systems is transformed. Territorial contiguity as a
condition for the existence of social practices is being transformed into totally
different concepts, such as network bandwidth and internet connectivity. The
intrinsic geometry of social systems changes because ‘spaces of places’ now
transform into ‘spaces of flows’ [100]. The new type of city, the ‘global city’, for
example, is a network of noncontiguous domains embedded in all the big cities of
the world.

Theoretical approaches to social systems through classical network methods
are amended by limitations. Although the society of networks is one of the most
modern approaches in sociology, it suffers from a number of flaws. Firstly, people
still live in houses, and houses involve the existence of physical space. In addition,
people still travel, while the age of suburban development and freeway commuting
are no longer sustainable models [101]. There are other criteria which, at least
for now, remain independent of the development of information technology: basic
needs of life, climate, ecology, and health. The new information technology era has
irrevocably and irreversibly reconfigured our space and time. There is an urgent
need to accommodate a new type of social model, in a new type of spacetime, and
in particular, to allow the interaction between various networks of humans and of
nonhumans, within the constraint of keeping the possibilities of human individuals
constant throughout their real time existences.

In some specific social domains, there are local solutions trying to accommodate
this new paradigm. For example, in social urbanism, the current response to
increasing density is mixed use, allowing new residents and new jobs to maintain a
harmonious balance. The mixed-use building (‘pixelated urbanism’, see Fig. 3.1)
is part of the ‘smart growth’ alternative, a solution to suburban sprawl, urban

Fig. 3.1 Pixelated urbanism. A mixed-use strategy for urban density and neighborhood develop-
ment, by Adrienne Watkins (2013 Thesis, University of Washington). Reproduced with permission
of the artist
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traffic, and inner-city decay [101]. The vast majority of such local solutions show
a tendency towards poly-culturalization, diversification, niche-formation of friendly
economic structures, and greater collective interaction, with the consequence that
more complex types of boundaries interface such pixelated configurations and
fractal networks. In modern urbanistics, the approach to such phenomena is broken
down into several stages. A first stage called ‘marking space’ [102] involves the
actant’s modifications or enhancements of distinctions that are already present.
The next stage in architectural actions, the ‘filled space’, refers to complete
transformations of the physical world by human interaction with the material
environment. The marked space stage occurs in a space otherwise unaffected by
human presence, making use of its already existing properties, while in the filled
space stage, its physical properties are continuously contained and transformed by
human interaction. According to Vis’ article [102], social systems create boundaries
from the inside towards their outside, continuously processing the shape of the social
world by taking place in space.

3.3 Impact of Social Boundaries in Social Relations

According to Wood and Graham [99], there are two fundamental problems in the
study of societies: firstly “the way in which long-lasting social structures appear out
of social interactions; secondly the method by which power can act at a distance”.
These questions sound familiar to a mathematical-physicist’s ear. The first is similar
to the problem of understanding how stable patterns can occur from local and
nonlinear interactions. The second problem of social systems is closely related to
the fundamental issue of grand unification of field theories.

Any theory of social systems should attempt to find plausible answers to these
questions. A modern social theory should then contain equations involving more
than just humans or groups of humans. Given the present context of the industri-
alized societies, a unifying social theory must take into account all the complex
systems. For example, the recent actor–network theory (ANT) [103] adds to the
interactions between humans, the interactions between humans and inhumans (other
living beings, natural processes), and nonhumans (man-made systems), all of these
three categories being called actants. The fundamental principle of ANT consists in
accepting a generalized role for the actants, which is not only limited to developing
and accomplishing a program of action, but also involves the enrolment of other
actants in fulfilling those programs. Thus, nonhumans can be conceptualized as a
social mode of ordering, not fundamentally about control of the person, but about
control of information and activity. Wood and Graham therefore conclude in [99]
that nonhumans (like surveillance systems for example) can be seen through a
topological perspective as a technological operator for generating boundaries as
a form of territoriality, and for controlling mobility through the construction of
boundaries.
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According to this theory, and to what we mentioned in the introduction to this
chapter, complex systems whose functioning is based on software, and whose
power decisions are taken on the basis of categorizations can therefore deliberately
delineate between areas based on prior categorical work. Things that are allowed to
pass through the boundary, and the nature of the spaces separated by the boundary,
will result from the classification processes [99]. Nonhuman complex systems can
therefore be conceptualized as a social mode for ordering information and activity.

Using an interesting example, Sloterdijk [104] describes how electronic road tolls
allow a smoother flow of traffic by providing a bounded exclusive space for the
‘kinetic elite’, with slower and congested traffic outside of this boundary, where the
‘cash poor–time rich’ are relegated. The same process happens for the ‘kinetic elite’
transgressing national borders, while ‘illegal’ migrants and refugees find that such
borders become more inaccessible.

The world is definitely moving more towards the software-sorting type of social
(or at least symbolic) boundary-generation direction. There is one socio-political
problem, however, when following such a direction. So far, the software is still
designed by humans. Hence, the potential for discrimination, and consequently for
selective mobility and permeability of boundaries, belongs to the software architects
who may be able to embody their prejudices in the architecture itself, in spite of the
commercially postulated infallibility of computer systems. On the other hand, there
is another direction on the IT market: the trend toward self-programming software.
Very soon software-based nonhumans will use learning systems that are not based
on simple algorithms, but possess algorithms that enable the writing of additional
new algorithms to cope with new knowledge and new situations. In this case,
nonhuman boundary actants will be able to make judgements beyond the binary,
moving towards heuristic boundary generation.

Inhuman systems can also affect boundaries. An extended flood following a
major weather front can isolate a certain geographical community and totally change
its social structures. An example is provided by hurricanes Rita and Katrina which
hit the city of New Orleans between 29 August and 5 October 2005. Among several
long-lasting social effects generated by these inhuman events are the permanent
migration of populations to large distances, and the neat process in which new
social boundaries are generated. A large part of the population whose houses were
destroyed by the hurricanes in New Orleans was represented by economically
challenged families, whose lives merged very well in the impoverished pre-Katrina
local diversity. The hurricanes displaced similar groups of people (about 800 000) in
other states, including in developed industrial areas like Houston, Baton Rouge, or
Dallas. In this situation new symbolic boundaries appeared in these areas, and soon
enough they became social boundaries, especially through the interaction with local
(mainly illegal) immigrant populations.

Lamont and Molnár consider [98] that the concept of social boundary has become
one of our most fertile thinking tools because it captures a fundamental social
process, that of relationality. The boundaries of social systems are definitely a
complex subsystem of the social system, and they form an interesting subject for
social topology and socioeconomic dynamics. There is no other example, except
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maybe the envelope of the biological cell, which has such transforming, vanishing,
gluing, and branching dynamics as social system interfaces.

For example, the European Union (EU) is defined as an economic, social,
and political system constructed as a union of states, transcending national and
governmental frontiers. The EU boundary is in continuous change, depending on
its development and purposes. Initially, the EU was created as a political system
to defend European peace: it included only Western Europe. Later on, it became a
system of coal and steel users, and its boundaries changed accordingly, including
Belgium, France, Italy, Luxembourg, the Netherlands, and West Germany (see
Fig. 3.2). Later on, the EU was restructured as the Eurozone, and even later it
became the Schengen area. The EU went on reshaping its boundaries according to
its economic or trade relations. However, other more realistic conceptual boundaries
overlap these institutionalized boundaries. Initially, all EU countries offered facil-
ities for individuals to become permanent residents after residing in the EU for a
specified time interval. However, reports from the European Commission show that
these rights exist more in theory than in reality. The cross-border mobility rights
under the directive failed, with some countries limiting these rights to only one: no
need to apply for an entry visa for the EU when setting up in a new country. Of the
almost one million third-country nationals with EU rights, only around 100 per year
were able to make use of the freedom of labor provision across the whole of Europe.
Van Houtum and Pijpers describe this phenomenon as “hiding in a gated community
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in order to protect this comfort zone and trying to exclude outsiders” [105]. Such
situations generate changes in the definition of social boundaries, including quick
metamorphoses from deterministic to chaotic, and from smooth to fractal.

The natural identity criteria, or equivalence relations between the actors of
a social system (individuals, groups), can be generated by a long list of social
partition factors: ethnic, racial, gender, profession, knowledge, cultural membership,
religion, community affiliation, and national identity. The study of the nature and
properties of social system boundaries reveals several interesting subjects, among
which the relationship between social and symbolic boundaries, the mechanisms
for the generation of boundaries, difference and hybridity balance, and group
classifications. At the same time these ideas require the development of new
mathematical tools studying boundaries in non-traditional formalized fields like
social sciences, arts, or economics.

Last but not least, understanding social system boundaries can help to improve
daily life, e.g., by designing better immunization protocols for cell phone networks
or human communities against the spread of viruses [106]. In addition, knowing
the nature of the interfaces between different systems and networks would facilitate
early detection and prevention of joint blackouts, undesirable community and social
changes, or propagation of crises between systems.

3.4 Mathematical Approaches to Social Boundaries

Mathematical models for social systems developed in mathematical sociology try
to connect the data from sociology (surveys, percentages, tables, etc.) with rigorous
formal analysis in terms of differential equations, invariants, and theorems. Deriving
such equations from assumptions about chances directs the focus of research to the
field of stochastic processes. At the present time, all the mathematical approaches
to social systems are statistical/stochastic, or network and graph theory based, or
approached by reduction of the dimensionality of the data set in order to present
intuitive 3D images.

Recently, mathematical sociology has developed highly formalized theories like
the agent-based models, where social life is modeled as a function of interactions
among adaptive agents who influence one another in response to the influence they
receive. In comparison with variable-based approaches using stochastic differential
equations, agent-based simulation offers the possibility of modeling individual
heterogeneity, representing agents’ decision rules explicitly, and situating agents
in a geographical or another type of space [107]. It allows modelers to represent
in a natural way multiple scales of analysis, the emergence of structures at the
macro or societal level from individual action, and various kinds of adaptation and
learning, none of which is easy to do with other modeling approaches. These models
allow sociologists to understand how simple and predictable local interactions
between agents can generate familiar global patterns of social structure. They can
also be used to perform virtual experiments that test macrosociological theories by
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manipulating structural factors like network topology, social stratification, or spatial
mobility.

Agent-based models consist of agents that interact within an environment. The
philosophy of the model is of cellular automaton type. Agents are parts of a program
that are used to represent social actors or individual people, organizations, or bodies
such as nations. They are programmed to react to the computational environment in
which they are located, where this environment is a model of the real environment in
which the social actors operate. The most traditional models are opinion dynamics,
consumer behavior, industrial networks, supply chain management, urban models,
and electricity markets. The last two are spatially explicit computational models and
generate patterns, contour levels, and boundaries on a map.

Another large class of mathematical models for social systems is the network
approach. For a recent review, see for example [108]. A social network is a
social structure composed of individuals (or organizations) called nodes, which are
connected by one or more specific types of interdependency, such as friendship,
kinship, financial exchange, dislike, sexual relationships, or relationships of beliefs,
knowledge, or prestige. In social network analysis, the groups are not necessarily
the building blocks of society: the approach is open to studying less-bounded
social systems, from non-local communities to networks of exchange. The model
focuses on how the structure of ties affects and constitutes individuals and their
relationships. Network analysis looks at the extent to which the structure and
composition of ties affect norms, as opposed to other models which assume that
socialization into norms determines the behavior. Through the network model, it is
easier to implement more modern features like small world theory, fractal geometry,
scale-free networks, global network analysis, or complexity theory.

Social system networks can be exemplified by the different types of infra-
structures our daily lives depend on, viz., the means of transporting goods,
energy, or information through communication networks, epidemics, rumors, and
opinions through social networks, electrical power through the power grid, and land
transportation through road and railway networks, etc. There is a strong interaction
between the structure of these networks and their mobility properties (capacity,
bottleneck structure, delays). One consequence of using the network model is the
possibility of analyzing the propagation of the risk of failure through the coupling
between systems. All the relevant infrastructures for daily life are interdependent,
and failures in one network are very likely to propagate to the others, leading to
large scale phenomena. An example of such a real situation is the 2003 blackout
affecting Italy and Switzerland [106].

In order to detect boundaries, patterns, and non-random structures in a social
system some recent studies used the method of exponential random graph modeling
(or p� modeling) [109]. Together with the multiple regression quadratic assignment
procedure, the ERGM represents a well-developed statistical technique, used exten-
sively in the social sciences, that enables examination of the underlying mechanisms
of network factors and processes that generate non-random network structures. A
recent version of these methods is the deconstructing networks (or motif analysis)
method. This consists in decomposing networks into subcomponents and comparing
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the relative frequencies of occurrence of these subcomponents across networks. A
network can be deconstructed into sets of dyads, triads, or n-node subgraphs. The
frequency of occurrence of each such type of subgraph is compared with similar
frequencies from other empirical networks, or models of random networks. For
example, in [109] these methods were used to study animal social structures and
sociality.

Another traditional procedure for studying social systems by network theory is
to use statistical models. The aim of the statistical model is to represent the main
features of the data set (the network) by a small number of parameter estimates and
to express the uncertainty of those estimates by standard errors, distributions, etc.,
which give an indication of how different these estimates might be if the researcher
were to repeat them [108].

In [110], the authors use a general Markov chain model of network evolution that
operationalizes the aversion aspect of the Schelling segregation model: actors within
a social network “may not strictly prefer forming homogeneous networks”, but such
structures can emerge if actors are “subject to a small bias against interaction with
partners who are dissimilar from themselves.” This model predicts pretty well the
segregation process and non-homogeneous clusterization mediated by the rewiring
of an initially random network. Even if not discussed explicitly, the boundaries of
the network change, following a clear pattern of clusterization.

Among various statistical models some particular models, of interest for our
book, are the distance models. Such metric models, with roots in network and graph
topology theories, have to face two challenges: on the one hand one should find a
sociological definition for distance, and on the other, the mathematical formalization
of this definition should find harbor in some rigorously defined metric space.

3.5 Social Distance: Euclidean Metric

The social distance describes the degree of separation, according to some stated
criteria, between different groups of society, and in general has very little in common
with the Euclidean distance. The social distance should include all social differences
such as social class, race/ethnicity, or culture, but also the fact that the different
groups have impermeable boundaries, i.e., they do not mix.

For example, Bogardus, who actively promotes the use of metric spaces in
sociology, introduces the concept of social distance scale [111], defining social
distance as a function of the affective distance between the members of two groups.
For him, social distance is essentially a measure of how much or how little sympathy
the members of a group feel for another group. His social distance involves the
concept of affectivity in its definition.

Another metric approach views social distance as a normative category, referring
to the norms in terms of ‘who is an insider’ and ‘who is an outsider’. This normative
distance is the social topological concept closest to a rigorous definition of a social
boundary. Normative social distance, sometimes called psychological distance,
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generally differs from affective social distance. For example, the psychological
distance is large between individuals influenced by different cultures, especially
when there is no meeting point between the two. The consequence is, in general,
the generation of prejudices that various cultural groups assume to be true for other
social groups.

Another definition of social distance is related to the frequency and intensity of
interactions between two groups: the more the members interact, the closer they
are socially. This communication distance becomes useful in sociological network
theory, where the frequency of interaction can determine the ‘strength’ of the edge
between two nodes.

Route planning exercises have also hinted at a conceptual link between social
distance and physical distance. When asked to draw a route on a map, people tend
to draw routes closer to friends they pass along the way and further away from
strangers. This distance effect is robust, even after controlling for how easy it is for
the people passing one another to communicate. Here, social relationships influence
the way participants reason about physical distance, and it supports the notion
that social distance, defined here as friendship, and physical distance are, again,
conceptually linked. There is some evidence that reasoning about social distance
and physical distance draw on shared processing resources in the human parietal
cortex.

With the growing popularity of social networking sites, social network visual-
ization has become a tool to improve user experience or to condense information
into a friendly and intuitive format. The main procedure used in such mapping of
data is inspired by network theory, namely the social distance and the frequency of
communications between the social actors. A successful application of this type of
visualization is sociomapping [112]. This procedure uses the landscape metaphor
to display complex multi-dimensional data in a 3D map, where actors are localized
in such a way that their Euclidean distance on the map corresponds to their social
distance inferred from the original data, and their elevation corresponds to their
social status or average frequency of communication.

Originally developed as a tool to prevent conflicts within teams of military
personnel, the use of sociomapping was extended to long duration spaceflight sim-
ulations, and later on it was successfully used in business environments to analyze
relationships within management teams. The basic principle of sociomapping (see
an example of a sociomap in Fig. 3.3) is to map the data collected from a number
of social actors into an artificial 3D landscape map. Transformation of the data is a
matter of choosing some multi-dimensional social metric that could be reasonably
interpreted as distance, and mapping it into a 2D coordinate system through an
optimization procedure.

The algorithm for data transformation is based on a nonlinear dimension-
ality reduction technique. For example, nonlinear principal component analysis
(NLPCA) uses backward propagation of errors (back-propagation procedures) to
train a multi-layer artificial neural network (a perceptron) to fit a manifold. In
general, the back-propagation method calculates the gradient of a loss function with
respect to all the weights in the network. Then the gradient becomes input for the
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Fig. 3.3 An example of a sociomap. The elevation shows on average how actively each team
member communicates, while the distance between individuals illustrates the intensity of mutual
communication

optimization method, which in turn uses it to update the weights, in an attempt to
minimize the loss function. Consequently, the NLPCA method updates both the
weights and the inputs, which are thus considered latent values. After training, the
latent inputs are a low-dimensional representation of the observed vectors, and the
multi-layer neural network maps from that low-dimensional representation to the
high-dimensional observation space.

Besides the distances between the group members, the sociomap method shows
additional variables coded in the height and color of the subject (see Fig. 3.3). The
height may represent the social status, performance indicators of the subjects, and
usually the average communication frequency. For large systems and populations,
sociomapping is a data mining approach based on visual pattern recognition. The
social data associates a preference vector to each social actor and hence determines
a position on the map. The weight for a social actor is found by calculating a sort of
norm of its vector of preferences.

There are other similar methods providing visually interpretable model-based
representations of network relationships. In [113], for example, the authors describe
the probability of initiating relations between the social actors through their
positions in an ‘unobserved social space’.
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Apparently, the connection between the physical space (or Euclidean geometry)
and social network geometry and topology (especially in the case of networks
describing linguistics, psychology, or behavior relationships) is rather a convenient
metaphor, or a highly visual means of presenting data. On the other hand, non-
Euclidean geometries are more successful in the mathematical modeling of social
networks, as we will show in the following section. In a highly intriguing paper,
a group of computational neuroscientists from Japan [114] demonstrated that
“neuronal activity in the human parietal cortex (see Fig. 3.4), which is involved in
the spatial processing of self-referential physical distance, seems to be associated
with the evaluation of social distance between self and others.” Their study proved
that the human parietal cortex is a member of the social brain network. The authors
performed experiments which involved arranging dolls on a stage. Subjects showed
a tendency to think of social compatibility as a Euclidean distance from a “self-
representing doll that brought their egocentric viewpoints.” This research suggests
that we have an ability to judge human relationships in terms of spatial relations.
Another positive identification of how the way our ontological brain used to process
the physical world has evolved into an extended function in human social cognition.

Fig. 3.4 The domain of the brain called the posterior parietal cortex, the light blue area in the
figure, seems to be responsible not only for spatial sense, navigation, and touch, but also for social
networking
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3.6 Social Distance: Ultrametric

In spite of the unprecedent degree of connectivity of long-distance events through
multiple parallel modern means of travel and sophisticated communication media,
Expert et al. consider that the ‘death of distance’ has been greatly exaggerated [115].
The entangling of physical and virtual worlds, which happens also in economic
and biological networks, does not exclude a spatial embedding which strongly
influences their topological organization. Consequently, a metric- or distance-based
social network theory should have some roots in the physical space. It is possible
that a Euclidean metric may not work very well for social systems. At the same time,
a social distance must not be defined in terms too remote from traditional Euclidean
types of metric [114].

The axioms of metric spaces are too general to describe the complexity of
social systems. Szell et al. show in [116] that networks with a positive connotation
(friendship, private messages, trades) are strongly reciprocal, and their node pairs
rather form bidirectional connections, whereas networks with a negative connotation
(enmity, attack, bounty) all show significantly lower reciprocity.

In order to create more realistic models, Freeman proposed [108, 117] the use of
non-Archimedean spaces, and consequently the use of an ultrametric instead of a
metric based on the triangle inequality. The ultrametric space has a distance u.x; y/
defined by the properties

u.x; y/ � 0 ; u.x; y/ D u.y; x/ ; u.x; y/ � max
z

˚
u.x; z/; u.z; y/

	
;

where the last relation is the so-called strong triangle inequality. The benefit of
using ultrametric distances is that, for every given k, the graph with edge set
Ek D f.x; y/j0 < u.x; y/ � kg is a perfectly transitive graph, meaning that it consists
of a number of mutually disconnected cliques (the same advantage for which the
Markov models are also preferred statistical social models). Snijders [108] notes that
ultrametrics are useful structures for representing the transitivity of social networks.

In an ultrametric space, several interesting things can happen. Triangles are
always isosceles with the unequal side being shortest, and every point in a given
‘disk’ is a center of that disk. Two disks can intersect only by having one completely
contained in the other (actually a ‘disk’ in this space is the closed subgraph emerging
from one given node). Holly [117] imagines an ultrametric space as having its
points on a tree. The ultrametric distance between two points x and y (see Fig. 3.5)
is defined by the differences between their heights in the (inverted) tree and the
height of their common generic node. The distance u.x; y/ is greater if they originate
from farther nodes. For example, in Fig. 3.5, x and y are at level 4, and their closest
common node is at level 1, so u.x; y/ D 3. Indeed, if we choose for z any of the other
nodes, a, b, c, d, e, or f , we can check directly that the strong triangle inequality
holds.

Apparently, the ultrametric property of social distance arises from its binary tree
graph structure. However, from a topological perspective, the points representing
the actors are still in the Euclidean plane, except that they are not allowed to be



94 3 Boundaries in Social Systems

Fig. 3.5 Example of a binary tree. The set of the end nodes a; : : : ; y is structured like an ultrametric
space

Fig. 3.6 The same ultrametric space as in Fig. 3.5, except that it is not now generated by a tree
graph, but as a multiply connected domain

connected by the shortest Euclidean distances, but only through the graph paths.
The same structure can be realized in another way. We can neglect the mandatory
tree paths, and instead carry out the construction as in Fig. 3.6. In this case, the
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points a; : : : ; y can be connected by any smooth paths lying anywhere in the plane,
while the strong triangle inequality is still satisfied. Moreover, the former binary tree
graph generates an obstacle pattern which is similar to a Cantor set, itself a generator
of multi-fractal structures. We consider this geometric intuition to be closer to the
essence of the social system topology, and also related to the concept of social
boundaries. The ultrametric distance occurs in this way as a consequence of the
topology of the social space itself, and not through a forced graph-like relational
constraint.

3.7 Social Topological Boundaries

The working topological space for social systems with boundary cannot be the set
of actors or actants, because even if we include large populations, we still have a
finite set, and any topology ends up being trivial. Very few social models approach
the concept of social boundary from a mathematical perspective, and while some
models involve this concept, the way it is represented is through interface migration
processes. Some social models use the term social periphery in conjunction with
social distance, whatever definition is used for distance. In general, it refers to
people’s distance with regard to social relations, especially in urban sociology. For
example, it is often implied that the social distance is measured from the dominant
city elite. In such a context, the social periphery of a city is rather its center.
Another often used term in social urbanistics, especially true for global cities, is
the locational periphery, which describes places physically distant from the heart of
the city. These places often include suburbs and are socially close to the core of the
city. It is even noted that, for practical purposes, the centers of two cities are often
closer to each other than to their own peripheries.

In order to understand the function of the social boundary in a social mathemati-
cal model, the best approach is the topological one. In Chap. 4, and in particular in
Sects. 4.2 and 4.3, we define the boundary concept from the mathematical point of
view, in terms of topology and geometry, respectively. The geometrical definition of
the boundary involves the concept of smooth manifold, and consequently needs to
relate the working social space to a real n-dimensional space. Such an assimilation
is not always possible, and it would induce limitations on the mathematical social
model. The topological boundary, on the other hand, does not necessarily relate
to the property of finite dimensionality of a space: it can be equally well defined
for infinite-dimensional spaces. This constraint immediately eliminates spaces of
actors from such a definition of the boundary, because the number of actors in a
social system will always be finite, and we elaborated on this above. Let us recall
the definition of the topological boundary:

Definition 1 For a set A in a topological space X, the point a 2 A of this set belongs
to its boundary, a 2 Fr A, if a is not an interior point for A.
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Definition 2 A point a 2 A of the set A is interior to A if it has a neighborhood
included in A, that is, 9V.a/ � A.

In order to use the concept of topological boundary in social systems, we have
to introduce rigorous definitions for topology and neighborhoods (or open sets).
Consider a social system and take s to be a very well defined and without any doubt
social and human entity. For example s can be a social act, a social event, some
group of people, a judgment, social constraint, planning, a social actor, etc. Let X
be the set of all these possible entities s, s 2 X, and let us call this set a social space.
We assume that a social space satisfies the basic Boolean rules from set theory:
existence of an empty set, belonging relationship, inclusion, union, intersection, and
complement of a set with respect to the social space. In order to define a topological
structure on a social space X, we need to associate to each of its points s a system (a
collection) of subsets called neighborhoods of s, denoted N.s/, having the following
properties:

1. The element s belongs to each of its neighborhoods, i.e., s 2 N.s/.
2. Any set which includes a neighborhood of s is a neighborhood of s itself.
3. The intersection of two neighborhoods of s is also a neighborhood of s.
4. For any neighborhood N.s/ of s, there is a proper subset M � N.s/ containing s,

but distinct from fsg, such that N.s/ is a neighborhood for all points of M.

The first three constraints are trivial for almost any system of sets in a social space,
while the last, the most difficult to satisfy, involves the transcendence to infinity of
the collection of neighborhoods.

Let us present an example of the construction of such a social space and its
topology defined by a process of contraction. For example, we choose a certain
society, observe it during a given time interval, and note every single social act
related to it, realistic, hypothetical, historical, planned, possible, etc. These entities
form the social space X. Choose an element of it, let us say a D‘school’. We define
a neighborhood N.a/ by the set of all social entities related to any possible or real
school in that society. Obviously, the set of real events related to a school, that
actually happened in that society, form a subset of N.s/, and s belongs to this subset,
being itself the concept of school. But any school built in that society is itself a
social event of type ‘school’, so N.s/ is also its neighborhood. By applying any type
of contraction on the general concept of school we generate neighborhoods of a.

Let us practise the concept of topological social boundary. We build DB as the set
of all social events and social entities related to a city, for example Daytona Beach
in Florida, USA. Let us denote by bw the social event known under the name ‘Bike
Week’, which is a ten-day motorcycle event and rally held annually in Daytona
Beach, when approximately 500 000 motorcyclists gather from almost everywhere.
During this week the motorcyclists gather day and night, generally along Main
Street. Let BW be the set of all possible social events in Daytona Beach related
to this Bike Week element, bw 2 BW � DB. Food preparation and management
for this week are examples of neighborhoods of bw. Very close to Main Street there
is ‘Papa John’s Pizza’ restaurant. Of course, during Bike Week, this restaurant is
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open, and the restaurant is deeply related to the event through its many motorcyclist
customers, so we can consider the element pjp D‘eating at Papa John’s Pizza’ as
belonging to the set BW, i.e., pjp 2 BW: “while going to the Bike Week we will eat
every evening, and have a good time at Papa John’s Pizza.”

At the same time, the social life at Papa John’s Pizza is always at the center
of other social entities, like supplies, banks, financial events, cleaning teams,
paychecks, photographs, kitchen accidents, birthday parties, etc. There are always
customers, waitresses, and drivers deeply related socially to this restaurant who
do not join the Bike Week. None of the above-listed social entities, points of the
space DB, belong to the Bike Week. Any neighborhood of Papa John’s Pizza social
life contains events and entities not related to Bike Week, so any neighborhood of
Papa John’s Pizza has a part completely disjoint from the set BW. In other words,
there is no neighborhood of the pjp element which is completely in the set BW.
So pjp is not an interior point of BW, and it is thus on the topological boundary of
BW. All restaurants involved geographically in the Bike Week event are actually at
the boundary of this event from the topological point of view. Such restaurants, as
well as other similar organizations, companies, associations or institutions form the
topological boundary of the BW set. We thus see that social systems may have their
boundaries geographically densely embedded in them.

The same reasoning is applied, for example, by Castells [100] when he talks
about the global city. A global city extends to spaces located in many cities around
the world, and it is made up of territories from different cities connected socially
in global information networks: “Thus, a few blocks in Manhattan are part of the
global city, but most of New York, in fact most of Manhattan, is very local, not
global. These globalized segments of Manhattan are linked to other spaces around
the world, which are connected in networks of global management, while being
loosely connected to their territorial hinterlands.” The global city is a union of
disconnected territories.

3.8 Social Topological Patterns

Social or economic boundaries involve patterns in the social landscape. Economic
and sociological spatiotemporal patterns belong to the class of phenomena far from
thermodynamic equilibrium, among other ubiquitous natural processes like turbu-
lence in fluids, interface and growth problems, chemical reactions, and biological
systems [118].

3.8.1 Growth Models

In order to model the dynamics of a social boundary we can apply the growth model.
Such a model is .1C 1/-dimensional, involving one space and one time dimension.
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In this mathematical model, the domain consists of a pile of identical rigid blocks,
all stacked in columns. The boundary is represented by the upper line delimiting
the last blocks added. In other words, it is the height profile of the pile of blocks at
a given moment. The growth is driven by an independent Poisson process for each
column of blocks falling from above and accumulating on top of the growing stacks
of blocks (as in a simple ‘Tetris’ game with identical, non-rotating blocks). We apply
the growth model by assuming that a certain social group can be represented by a
connected 2D bounded domain in the plane, divided into equal regular cells, i.e.,
squares, and that the curve describing its boundary is an interface that can grow
by addition of new cells. Each such cell represents a member of the social group.
Assume that new people are approaching the group from a given direction and try
to join it. These people will be represented by a set of new cells coming from
outside the domain and approaching it along different, yet unchanging directions,
all directions pointing towards the center of gravity of the domain. From the way
we model the procedure of affiliation and acceptance of new members into the social
group, we have three main types of social boundaries:

1. Superficial Social Boundaries. It is enough for an outside person to contact any
member of the group only once in order to be accepted. The rest of the group
relations adapt and the new member’s connections propagate by transitivity. In
this case, we can apply the ballistic deposition growth model. In this model, a
new block sticks to the first block it touches: in full frontal edge-to-edge contact,
through a corner touch to its left, or through a corner touch to its right. For
example, a block can stick to the corner of a tall column even if it was falling
directly over a low column immediately underneath it. A sudden modification of
height can occur like that, and it breaks the independence of the column heights,
so it introduces spatial correlation. The social boundary grows with inclusion
of holes, but grows about the same way everywhere. The social group is more
fragile, yet grows faster and more uniformly (see Fig. 3.7 middle row). Large
irregularities in the group boundary are rapidly filled and the interfaces smooth
out quickly. This type of boundary is spacetime uncorrelated.

2. Non-Interactive Social Boundaries. When a new member arrives along a
certain direction with respect to the group, it continues advancing along this
direction until it reaches the boundary of the social group. The new member does
not deviate from its initial direction, i.e., it does not diffuse. However, it stops
only at a terminal stop, and not at the first contact. This process can be modeled
by the random deposition growth model. Such a process is realized when the
blocks fall vertically, and stop only on top of the first frontally encountered
column (see Fig. 3.7 upper row). This boundary is highly irregular, nonuniform,
and generates fractal patterns [119].

3. Structured Social Boundaries. A new member can arrive from a given direction
and intersect the group at some point. However, it will not stop at the first
intersection. Instead, it will try to find a close niche and advance as far as
possible towards the center of the group, without changing its incoming direction,
and without jumping or crossing other members. The assimilation of each new
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Fig. 3.7 Right: Examples of social boundaries described using growth models. Left: City silhou-
ettes similar to the corresponding growth model on the right

member is a long time-scale process during which the new member gradually
diffuses into the group until it finds the most appropriate, or compatible position
for itself, depending on the local balance between individual identity, motivation,
and resistance. This is related to the random deposition with relaxation growth
model: blocks fall vertically, temporarily stop on top of the first frontally
encountered column, but then keep trying to advance by diffusion towards the
center of gravity of the group, if the neighboring column has a lower height.
The new member keeps advancing like this until it reaches the deepest available
position inside the group. In terms of our free fall example, that means until the
new member reaches the lowest possible height (see Fig. 3.7 bottom row). This is
the most stable social group. It is very homogeneous and its boundary is smooth.
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3.8.2 Cooperation and Patterns

Complex systems in life and human sciences are collections of many living
individuals interacting in a nonlinear manner. Examples are vehicular traffic,
crowds, swarms, clews, flocking phenomena, animal epidemics, complex biological
phenomena, and social dynamics. Cooperation is a key force in evolution, present
at all scales of organization, from unicellular organisms to complex modern human
societies. The presence of structure means that each individual interacts not only
with every neighbor, but also with a small subset of the population which constitutes
its neighborhood, and it is connected according to an underlying network of
relationships [120]. The current view on the influence of spatial structure, as a
particular case of population structure, is that it usually promotes cooperation.

It is generally thought that any form of associative interactions which include
spatial structure would favor the evolution of cooperation. Such an association
can lead to the formation of clusters of cooperators that can maintain cooperation
against defecting invaders at the cluster boundaries. Evolutionary spatial games
assume randomly interacting populations. These types of game are played on a 2D
square lattice. Each position is occupied by either a cooperator or a defector. In
each generation, the payoff of a certain individual is the sum over all interactions
with the eight nearest neighbors and with its own site. The game is deterministic,
and its outcome depends on the initial configuration and the parameters of the
interaction matrix. Defectors can invade a population of cooperators or vice versa,
and this competition generates surprising patterns. An interesting sequence of
patterns emerges if a single defector invades a world of cooperators. Spatial chaos,
dynamic fractals, kaleidoscopes, royalty, crowns, crosses, and lys de France are
observed (see Fig. 3.8).

Of course, in real life the cooperation dynamics is more complex, and less ideal
laws act upon populations and systems. The dynamics of collective systems of living
individuals often involves clear boundaries. For example, flocking birds establish a
swarming behavior with well-defined boundaries holding the birds in. The same
behavior is noticed in schools of fish, where the boundary is even more structured
into different layers. The dynamics of flocks or schools can be analyzed either in
terms of flow equations for fluid-like behavior, or (as it has been shown recently)
in terms of shattered brittle solids. An interesting real example of cooperation in
terms of geometry and the laws of physics is provided by a clew of living tubifex
(or red) worms. In the aquarium department of a pet shop, one may find live food
for aquarium fish. Among a wide variety of products, they may offer little piles
of tubifex worms. Normally, especially in winter time, the worms are entangled
in a clew. The worms are relaxed, or ‘sleeping’, and the clew assumes a Gauss
bell shape due to gravity, water adhesion, and entanglement. If someone wants to
buy such a clew, the rule is that they must knock the table in order to ‘wake up’
the worms and check whether they are alive. What is interesting is that, when the
worms are woken up like that, they immediately adopt the shape of a perfect sphere,
sitting on the table like a ball, with the plane of the table as tangent (see Fig. 3.9).
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Fig. 3.8 Games played on a 2D lattice where cells are occupied by a cooperator or by a defector,
and the payoff is the sum over the nearest neighbors. This competition generates surprising patterns

The explanation may be this: when woken up, the worms feel insecure and want
to shrink and reduce their interface with the environment. Through an interesting
collective behavior, the whole clew adopts a minimum surface area and so becomes
spherical. It is interesting to model the propagation of the minimal area constraint of
an individual, through entanglement interaction, towards the external shape of the
system.

3.8.3 Multivariate Networks

Complex social systems (like human societies) are characterized by the superposi-
tion of their relations defined on the same set of social actors (nodes). Each type of
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Fig. 3.9 A clew of living red worms. They are relaxed, or ‘sleeping’. If their bed is vibrated,
the worms ‘wake up’ and act in defense: shrink and reduce their area, their interface with the
environment. This individual behavior has a spectacular collective effect on the geometry of the
clew. The worm clew adopts a spherical shape, as though they ‘know’ that this is the minimal
exposure area

relation spans a different social sub-network of its own, and all these individual
sub-networks co-construct each other. Their superposition, called a multiplex or
multivariate network, determines the final topology of the whole network, for
the shape of each sub-network influences the topologies of the others by acting
as a constraint, inhibitor, or catalyst [116]. This multi-dimensionality of human
relationships makes the multivariate social network into a structure embedded in
a very high-dimensional geometric space.

When the number of dimensions of the space increases greatly, and if the
shape under discussion remains bounded, like for example the phase space of a
thermodynamic system in equilibrium, the points in the bounded domain begin to
display a peculiar behavior, viz., they stick to a hypersurface. In some sense, the
higher the dimension of the space, the closer the points are to their topological
boundary. It is easy to exemplify this behavior by using the sphere example in a
Euclidean space of dimension n. The volume and the area of such a sphere of radius
R (see, for example, Sect. 3.2 in [121]) satisfy the equations

Vn D �n=2Rn

�

n

2
C 1

� ; An D 2�n=2Rn�1

�

n

2

� : (3.1)

If we consider the points embedded in a spherical shell of thickness dR at the
boundary of the sphere, their volume dVn is given by

dVn

Vn
D n

dR

R
: (3.2)

At the same time, if we sample the sphere of radius R into smaller spheres of radius
r 	 R, the ratio between the number N˙;n of small spheres lying on the outermost
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layer of the big sphere and the total number Nn of small spheres lying inside the big
sphere is

N˙;n
Nn
' r

R
D constant : (3.3)

Consequently, for very high dimensions, the volume of the outer layer of a sphere
approaches the total volume of the sphere [see (3.2)]. We conclude that almost all
inside points tend to be at the surface. At the same time, using another way of
counting the number of external participants [see (3.3)], this ratio is independent of
the number of dimensions.

These observations point towards the same conclusion as the results from the
theory of clustering of high-dimensional data with the indefinite growth of the
number of dimensions of the data set. It has been proved [122, 123] that the concept
of distance becomes less precise as the number of dimensions d increases, since the
distance between any two points in a given data set converges. The discrimination
of the nearest and farthest point becomes meaningless:

lim
d!1

max D �min D

min D
D 0 ;

where D is the distance between any two points in the data set.
Landherr et al. in [124] performed a series of numerical tests on various social

networks, and the results are in agreement with the conclusions inferred from our
simple evaluations in (3.2) and (3.3). These authors analyzed five different centrality
measures and showed that four of the studied centrality measures have these
properties, namely, the value of centrality decreases on average with the addition
of supplementary edges/relationships. Only one out of four types of centrality
measures has a different (monotonic) behavior.

This result, confirmed in several numerical experiments by Landherr et al.
[124], and confirmed by our simple asymptotical evaluations in (3.2) and (3.3),
is rather surprising since intuitively one might expect centrality to increase when
supplementary relationships are added. In other words, the hypothesis that any
centrality measure increases monotonically with the increase in the number of extra
paths and relationships, for almost all types of social network, has been disproved
by several systematic numerical experiments. The behavior of common geometrical
network properties from very intuitive at low dimensionality to counter-intuitive at
higher dimensionality is of great interest. As Landherr et al. conclude, “decision-
makers should not uncritically rely on intuitively obvious statements from the
application of centrality measures.”
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3.8.4 Pattern Formation in Unstable Social Systems

At large population levels, e.g., nations, the contemporary processes of globalization
and integration are partly responsible for unleashing new types of social struggle,
between centrifugal and centripetal forces that are far from stabilizing the social
system. Such situations happen all over the world. This is exemplified by certain
European countries which have become “post-modern states, freely pooling part
of their sovereignty” [125]. The European Union is a complex system defined
by a large number of mutual channels of interference in each others’ domestic
affairs. For example, the Scottish and Catalonian independence movements are
predominantly driven by centripetal forces, towards unification, because European
unity could provide an escape from their controlling national governments, while
equal representation in the EU would cut out the ‘middle men’ (formation of NGOs).
This is a process of fragmentation within unification which is typical in pattern
formation structures.

Social morphogenesis and pattern selection in such complex systems involve
the existence of at least two opposite interactions. On the one hand, for example,
we have a limitative threshold against further fragmentation. The continuous
fragmentation of nation states would increase the tensions within the unified
system’s decision-making system, risking sclerosis. On the other hand, we have
the fragmentation tendency, driven by citizens’ increasing demands for more
democratic control at the sub-national level, which has the effect of suppressing
the importance of national borders. When these two main tendencies, together with
many smaller driving forces, fail to reach equilibrium, phase transitions occur,
causing new patterns and new boundaries to form. This instability model can
contribute to our modern understanding of pattern formation in such large and
complex social systems.

Morphogenesis models can be borrowed from nonequilibrium physics and
applied to complex social systems, with varying degrees of success. For example,
the dynamical systems theory predicts that, if some control parameters change, a
steady solution of the equation of motion around an attractor (a fixed point) may
lose its stability, and one or more new stable attractors may appear. Thus, the
system can pass through bifurcations to different symmetries and different patterns
and cells with opposite symmetries. Another possible mechanism of morphogenesis
is ‘dendritic growth’ controlled by diffusion and shape instabilities, the so-called
Mullins–Sekerka instability which is a typical trigger for pattern formation. This
involves the formation of bumps on the boundaries and solidification fronts that
grow into fingers and dendrites.

Another prevalent theory of pattern formation is ‘solvability theory’. This asserts
that patterns are generated when a diffusion type of process contains a singular
perturbation which completely changes the mathematical nature of the problem, no
matter how infinitesimally weak it may be.

One major cause of pattern generation is also related to situations where the
amplitudes of some disturbances increase to a level where nonlinear effects take
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over, leading to chaotic dynamics in which many degrees of freedom are active.
After an instability has produced such a growing disturbance, there must be an
intrinsically nonlinear mechanism by which the system moves towards the new
state. The system then evolves in entirely new directions determined by its nonlinear
dynamics. For example, the economic crisis that began in 2008 has accelerated
the opposing forces of centralization and regionalism in the EU, sharpened the
conflicts between richer and poorer regions, and generated new social patterns
and boundaries, e.g., the north–south divide in Italy, the Flemish and Walloons,
Hungarians and Romanians.

The instability and nonlinearity effects are responsible not only for pattern gener-
ation, but for even larger scale phenomena. For example, increased stress in granular
materials forms localized stress chains, where forces are carried primarily by a
small fraction of the total number of constituents. The equivalent in social system
dynamics would be a situation where a widely available and affordable technology
has broken the government monopoly on the management of information. In this
way, the number of players who matter is increased, while the number of individuals
commanding great authority is reduced. Another typical effect occurring in highly
nonlinear systems is the ‘jamming’ effect, where constituents are locked into local
configurations from which they are temporarily unable to escape.

Given such a variety of effects that can trigger variability and pattern formation,
a legitimate question is: how is it possible that nations, countries, and large
organizations with so many degrees of freedom can still be ruled, especially since
nonlinear effects ultimately lead to chaotic dynamics, where more and more degrees
of freedom interact and become active? The theory of bifurcations in dynamical
systems can help us to understand such an intriguing situation. The center manifold
theorem indicates that, when a bifurcation occurs, the unstable trajectories move
away from the originally stable solution only within a low-dimensional subspace.
In other words, the relevant degrees of freedom of the bifurcation are rather few. It
is enough to describe pattern formation processes through only a small number of
dynamical variables. In sociological language, this important property of nonlinear
systems can be expressed through the ‘law of conservation of social energy’, which
says that nothing disappears in social (and political) life until its replacement has
already been discovered and is functioning effectively.



Part II
Mathematical Language

The difficulties are almost always at the boundary

Gilbert Strang

In the second part of this book, having explored the concept of boundary and its
importance for the human experience from the perspectives of art and society,
we move from this humanistic point of view toward the mathematical concept of
boundary and the associated mathematical language. However, in order to maintain
an interdisciplinary approach throughout the book, we shall as far as possible use
non-deductive reasoning rather than deductive proofs. This approach will not only
be able to render the ideas more amenable to self-experimentation, but following
the explosion of the computational era, we believe that present-day mathematics
relies more and more on the use of ‘mathematical experiments’, visualization, and
Bayesian approaches. Van Bendegem argues in his essay [126] that mathematical
explanation is ‘as nasty as any part of la condition humaine’. Here, by ‘nasty’ or
‘ugly truth’, he means that mathematics should be understood in the context of
general science, and not as being orthogonal to the difficulties and disappointments
generated by everyday experimentation. In the spirit of Martin Heidegger and Con-
stantin Noica, who would classify the dispute between considering mathematical
concepts as real-life or ideal as a third type of adversity, where neither side can
claim to uphold the truth, we will present the mathematics of the boundary from an
empirical mathematical point of view.

The aim with this approach is not to restrict the importance of the concept of
boundary to a unilateral ‘Platonist’ view, considering boundary as a real existing
thing, separate from any physical world features. We rather want to present
boundary as a distillate of human thinking, as a response to experience of the real
world, indeed an approach in which the concept of boundary is rather a socio-
cultural construct, as Hersh1 would identify it [127].

According to ‘Intuitionists’ our mind is ontogenetically and phylogenetically
tributary to our senses, and mainly to the senses of sight (continuum: geometrical,
topological) and hearing (discrete: algebraic, numeric). The presence of an internal

1According to Hersh, mathematics lies somewhere between a human construction and the real
world: the number � is not only in our imagination, but transcends the individual mind, while
remaining in a human world.
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structure hosting algebraic-geometric judgments in our brain is suggested by
several experimental results, like the spatial-numerical association of response codes
(SNARC) effect and its relation to the spatial and verbal working memory. Namely,
the occurrence of a faster reaction for left-side placed small numbers, and right-side
place large numbers, and vice versa. For example, Brouwer, who is regarded as the
creator of intuitionism [128], considers mathematical approaches to be languageless
creations of the mind. The intuitionist approach to mathematics thus justifies the
existence of only two types of proof: geometric and algebraic. Even if this is
not quite correct, such a perspective will always help us to understand better the
mathematical questions and answers. It should not be forgotten that seeing and
hearing are the only long range senses, so the geometric and algebraic approaches
must be able to offer an integral, global picture of each problem. This observation
reminds us of the Indian story of the blind men and the elephant, in which a group
of blind men (or men in the dark) touch an elephant to find out what it is like. When
they compare their observations later on, they disagree completely, and this happens
because each had a local (non-visual, non-acoustic, hence not long range integral)
approach to the problem.

Following this idea, we divide this part of the book into two chapters, dealing
with the elements of continuous and discrete mathematics as they relate to the
analysis of boundaries. It would be difficult to produce a comprehensive list of all the
questions and general areas relevant to the concept of boundary, and which should
be covered in a book such as this. In order to present a fair number of interesting
mathematical ideas relating to the definitions and properties of boundaries, in the
16 sections of Part II we have gathered together a selection of definitions, theorems,
and examples from pure and applied mathematics that we feel are important in their
own right when read together, and also useful in providing an adequate introduction
to Part III, which contains supporting examples of the importance of the boundary
concept in the sciences.

The division of this part into two chapters is a natural consequence of the two
major approaches in mathematics: topology, analysis, and geometry in the first part,
and discrete mathematics in the second. Of course, an overlap of these two subjects
is unavoidable in applications, so we have added a final section connecting some of
the concepts from discrete and continuous mathematics. The concept of continuity
is related in one’s cognition with an intuition of an unbroken or uninterrupted whole,
like the sky or a sheet of metal. In a way, opposed to continuity is discreteness: to be
separated, like grains of sand, chairs in a room, or the leaves on a tree. Continuity
connotes unity; discreteness, plurality.

Continuous mathematics is classical and well established, while discrete math-
ematics is often identified with specific application areas like combinatorics,
graphs, networks, or computer science. The key structures and methods of these
two faces of mathematics are basically different (neighborhoods and limits in
continuous mathematics and induction in discrete mathematics). The present state
of mathematics is the product of a strong intrinsic logic, but also of historical events
[129].
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In Chap. 4, we present the elements of topology, analysis, and differential
geometry. Section 4.1 introduces basic topology using simple examples, and we
then discuss in more detail the main topological properties which are invariant under
homeomorphisms: separation, compactness, and connectedness. Since the concept
of boundary embodies a multitude of connections, we have developed some of these
interesting relationships in the following sections.

Section 4.2 is dedicated to the definition of boundary from the point of view
of topology, without considering a particular distance, metric, or norm. Then in
Sect. 4.3, we present an analytic and geometrical definition of the boundary using
the theory of manifolds. The central part of this chapter is unfolded in Sect. 4.4,
where we present the elements of analysis in terms of differential forms, defining
and explaining the Lie derivative and presenting some of its properties.

Section 4.5 reviews the theory of fiber bundles and the definition of the covariant
derivative. A summary of the main properties and formulas which will be useful
in subsequent applications are provided in this section. In Sect. 4.6, we present
a detailed example inspired by theoretical hydrodynamics, of the differences, the
similarities, and the specific uses of the Lie and covariant derivatives. Section 4.7 is
devoted to the effect of perturbations of the boundaries in boundary-value problems,
while Sect. 4.8 discusses a few interesting aspects of differential topology and
cobordism theory.

Chapter 5 provides some of the elements of graph theory, especially those
concerning boundary. In Sect. 5.1, we introduce graph structures relating to concepts
of discrete mathematics. As pointed out in the introduction, a strong emphasis is
placed on the relation between a graph and its boundary. This topic is continued in
Sect. 5.2 with a presentation of some of the main results and theorems. In Sect. 5.3,
we combine the discrete approach with the continuous one in the study of graphs.
The graph content of this chapter is closed by the comprehensive Sect. 5.4, where we
enumerate and discuss the main results from graph theory which have connections
with the properties of their boundaries. There we discuss graph properties in terms
of the number of nodes and links, the volume, the diameter, the girth, and so on.

Section 5.5 introduces some elements of algebraic topology, namely simplex
theory and homology. Algebraic topology is a twentieth century field of mathe-
matics, but it can trace its origins and connections back to the ancient beginnings
of mathematics. Its content brings together continuous geometric phenomena as
understood by discrete invariants. This topic is continued in Sect. 5.6, where we
discuss more advanced aspects of homology and cohomology, and in Sect. 5.7,
where we introduce triangulations and CW complexes. The chapter concludes
with Sect. 5.8, in which we summarise the continuous and discrete mathematical
approaches with a discussion of their interconnections and applications.

This part of the book can be completed with additional literature in order to
deepen some of the concepts or to obtain a better grasp of the methods. As a good
motivational introduction, we recommend supplementing the concepts presented
in the first sections of this part by some of the literature in the philosophy of
mathematics, such as [130], or an introduction to topology and geometry for
physicists like [131]. The important topological definitions and theorems can be
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found in greater detail in [132], and many of their applications in the field of
functional analysis can be found in [133] or [134]. For current technical formulas
and relations, we recommend [135]. A good introduction to three-dimensional
differential geometry would be [136] or [137]. For extensive developments in
differential geometry, one can refer to [138], and to [139] for differential geometry
as applied to surfaces and curves. For specific topics in the theory of fiber bundles,
we recommend [140]. For applications to theoretical physics, we recommend [141],
while for traditional applications of geometry in mechanics and fluid dynamics, we
recommend [142, 143]. These mathematical approaches can be completed with an
intuitive work on hydrodynamics such as [144]. For a mathematical approach to
the kinematics and dynamics of free fluid interfaces, we recommend [145] and also
[146]. The topics presented in this chapter can be completed with the more recent
ideas to be found in [121, 147, 148].



Chapter 4
Continuous Mathematics

A boundary is that which is an extremity of anything

Euclid

4.1 Intuitive Introduction to Topology

Besides its essential role in the development of calculus, analysis, geometry, and
algebraic geometry, topology has major direct applications and contributions in the
study of image reconstruction and recognition, modeling, graphs, and networks,
fluid mechanics, protein folding, robotics, and fundamental physics. Topology is the
part of mathematics that investigates space from a qualitative point of view, roughly
speaking without using the concept of distance. It may seem counter-intuitive to do
geometry in a metric-free world, but the habitual dualities small/large, or near/far,
etc., are more complicated than they appear because they need a comparison relation
with a unit of measurement, and the order relation in the set of positive real numbers.
Topological intuition does not need these concepts. It is to geometry what logic is
to algebra. In his book on topology, Pavel Alexandrov says [149]: “The specific
attraction and in large part the significance of topology lies in the fact that its
most important questions and theorems have an immediate intuitive content and
thus teach us in a direct way about space which appears as the place in which
continuous processes occur.” An example is given in Fig. 4.1, where a mug is
smoothly deformed into a zero volume surface, the Klein bottle.

The reader is considered to have a sensus communis of the following concepts: set
of points, element of (2), and inclusion (�), as well as the basic operations with sets,
viz., union ([), intersection (\), Cartesian product (�), and complement (C). There
will be no need to use axiomatic set theory. We also consider known the concepts of
function, domain of definition, and range, denoting all this by f W D ! R. A useful
set operation for topology is the disjoint union of two sets A;B, defined by

A t B D
n
.x; i/ji D 1 if x 2 A; i D 2 if x 2 B

o
� .A [ B/ � f1; 2g : (4.1)

Topology begins with the introduction of an abstract set X of points x, and we write
this as x 2 X. Inside X, we can define subsets of points A;B; : : : , grouped by various
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Fig. 4.1 Example of topological deformation and homeomorphism. Courtesy of AKME Klein
Bottle at www.kleinbottle.com/index.htm

criteria, and we write A � X, B � X. So far, the only property we have from this
subset structure is that we can enumerate elements or subsets which are all parts
of X.

The boolean algebra of the subsets can be further enriched by introducing more
structures. This is possible in two ways: either by defining relationships between
the elements (algebraic structure), or by defining relationships between the subsets
(topological structure). The set X endowed with such a structure becomes a space
(algebraic structure or topological space, respectively). We can even simultaneously
define both types of structure on the set, but in this case we need to satisfy
compatibility relations between the structures.

Working with spaces instead of sets is a mathematical habit that proves valuable
for the investigation of more complicated structures. For example, one can compare
a newly defined space Y with a model space X by defining a morphism M W X ! Y
from X to Y, which induces in Y a structure similar to the model one in X, i.e.,
the morphism M preserves the structure of X. If the structure is topology, then
the map is a homeomorphism, and if the structure is algebraic, then the map is a
homomorphism. A homeomorphism between two topological spaces is expected to
preserve all intrinsic topological properties.

Topologists often say that there is no difference between a pretzel and a
doughnut, or between a coffee mug and a doughnut (see again Fig. 4.1). Under
the procedure of building homeomorphisms, one can study properties that are
independent of distance, size, or shape. Among different types of topological
structures defined on a given set, the most useful is the point set topology. We build
a topological space from a set X by arbitrarily choosing a family of subsets � of X,
including the empty set and the set itself, which is stable under finite intersection
and finite or infinite union. The set X becomes a topological space .X; �/ and the
subsets in � are called open sets. The complement of any open set is called a closed
set. The total space and the empty set are the only sets that are open and closed
simultaneously. In particular, if the set X is finite, like a graph or a network, all
unions and intersections are finite which makes its topology even simpler: no need
for infinite unions. Then it is easier to count how many distinct topologies can be
constructed on a network.

www.kleinbottle.com/index.htm
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Fig. 4.2 Example of different degrees of separation in topology. Overlapping Circles by Jonathan
Butler. Courtesy of the artist www.j-butler.com

An artist’s view of a topological space might look like Fig. 4.2. The circles and
their intersections are all open sets. Any set containing an open set which contains
the point x is called a neighborhood of x, and this is denoted by V.x/:

A 2 � ; x 2 X ; x 2 A � V.x/ :

If the topological space also has a distance defined on it, whence it is a metric space,
we can always introduce a distance-based system of neighborhoods called �-ball
neighborhoods. We define such a ball neighborhood for the point x to be the set of
points placed within a distance � from x.

A point is said to be adherent, or a limiting point, to a set A if all its
neighborhoods have nonempty intersection with A. A closed set contains all its
adherent points. An adherent point is the generalization of the concept of limit,
and a point which is not adherent to a set is said to be isolated. The interior Å of
a set A � X is the largest (in the sense of inclusion) open set still contained in A,

www.j-butler.com
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while its closure, denoted NA, is the smallest closed set containing A, so that

Å 
 A 
 NA :

If the left inclusion is an identity, A is open, and if the right inclusion is an identity,
A is closed. The topological boundary of the set A is

@A D NA � Å :

The boundary of a disk in the plane is its circumference, and the boundary of a
finite set of points is the set itself. If we have two sets A � B � X with the property
A D B, we say that A is dense in B. The set of rational numbers is dense in the
set of real numbers. A function defined on X with values in Y is continuous if the
inverse image of any open set in Y is open in X. A one-to-one (bijective) continuous
function is called a homeomorphism.

4.1.1 Separation

A topological structure .X; �/ provides a way to ‘measure’ the degree of separation
of x; y 2 X, because there are in fact many degrees of separation apart from just
having x ¤ y. There is a very large set of different axioms of separation, each useful
for a certain application in functional analysis. Below, we list only five separation
criteria as a minimal meaningful set for our purpose:

– A space is T0 or Kolmogorov if, for any two of its points, one of them has a
neighborhood which does not contain the other one.

– A space is T1 or Fréchet if, for any two of its points, we can find distinct
neighborhoods.

– A space is T2 or Hausdorff if, for any two of its points, we can find disjoint
neighborhoods.

– A space is T3 or regular if, for any point and any closed set not containing the
point, we can find disjoint neighborhoods for both of them.

– A space is T4 or normal if any two disjoint closed sets can be included in two
disjoint neighborhoods.

In Fig. 4.2, let us define a topology in the figure frame by considering all colored
circles, all their intersections, and all their unions as open sets. The points belonging
to only one circle are not separated. Let us choose the two, green and pink,
intersecting circles in the lower left corner, and let p be the center of the pink circle,
g the center of the green circle, and i a point included in their intersection. We see
that p and i are T0 separated, and not T1 separated, or indeed separated in any of
the other ways. However, p and g are T1 separated, and p and the center of any blue
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Fig. 4.3 The function sin.1=x/ and the rectangle .�0:05; 0	�Œ�1; 1	 are disjoint, but not separated

circle are even T2 separated. In Fig. 4.3, we present an example of two sets that are
disjoint but not separated.

The concept of separation provides a way to study problems in which one cannot
build or write down an explicit solution of an equation, but may be able to discuss
the qualitative properties of any solution. The separation of a topological space tells
how many distinct solutions may exist for a given equation, and so the separation
criteria are essential in identifying uniqueness of solutions. The most trivial example
concerns the uniqueness of the limit of a convergent sequence, e.g.,

1 ;
1

2
;
1

3
; : : : ;

1

n
; : : : :

The numbers in the sequence get smaller and smaller, but they remain positive as
they approach zero. In the limit when n is very large, zero is a good candidate for
the limit of the sequence. Indeed, any open interval centered at zero contains all the
numbers in the sequence except for a finite number. This observation makes zero
an adherent point of the sequence, hence a limiting point. But this is not enough to
declare that zero is the only limiting point of this sequence, and it is only the type
of topology which dictates whether the limit is unique.

Here is another example of a topological space: My neighbor has the most
replete mechanics workshop in the neighborhood. Let T be the set of all his tools,
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and construct a basis of open sets of tools � from sets of tools performing only
specialized types of operations. My neighbor calls them ‘tool kits’, but they are the
open sets of his workshop’s topology. The set of all screwdrivers S, for example, is
an open set and the set of electrical tools ET is also an open set. The intersection of
these two sets constitutes the set of screwdrivers with insulated handles, those that
can be used only on screws in electrical installations, so S

T
ET 2 � . Unions of

open sets of tools are also open sets because they represent larger tool kits, for more
complex operations. My neighbor’s garage with his tools organized in open sets is a
topological space.

My neighbor would not keep two identical tools. He decides that two tools A and
B are redundant, that is ‘not separated’, if any tool kit that contains A also contains B,
and conversely. Take any two tools from his garage, say two hammers, and then pick
a rubber mallet and a splitting maul. My neighbor confirms that the mallet belongs
to the auto repair kit, and he has another kit of lumber tools that contains the splitting
maul, but these two kits have nothing in common. So he has two disjoint open sets
that each contain only one of the two hammers. Consequently, the two hammers are
separated, and he can keep them both. His garage is a Hausdorff topological space,
or a T2 separated space.

My neighbor is working on a ‘universal tool’, i.e., one that can carry out any
repair. The question is whether he can patent it, so that in essence the tool is
unique. Let us pretend he has built this tool UT. It thus belongs to all open sets
in T by definition. It follows that any sequence of tools converges to the limit UT,
no matter how my neighbor labels his tools in sequences. Pretend by reductio ad
absurdum that this universal tool is not unique and that there is another universal
tool UT 0 ¤ UT. If these two universal tools are distinct according to my neighbor’s
rule, he should find two disjoint open sets of tool kits each containing only one of
the universals. But each universal tool is contained in every open set so the above
assumption is false. There is no second distinct universal tool in his garage, so
we have exemplified a version of the theorem according to which the limit of any
convergent sequence in a Hausdorff space is unique.

The following is an example of a non-Hausdorff space. In the real plane R
2,

consider the union of three semiaxes: x � 0 and y D �1, x � 0 and y D 1, and x < 0
and y D 0. Let us induce a topology on this space as follows: a set of points .x; y/ �
R � f�1; 0; 1g is open if x belongs to an open interval of the real axis. We note that
the points .0;�1/ and .0; 1/ are distinct but they have no disjoint neighborhoods.
Indeed, any open set of these two points will contain negative x numbers, which
means numbers on the third semiaxis x < 0; y D 0, so their intersection is never
empty.

Here is another example of a non-Hausdorff space. Let .X; �/ be a space such
that each point has a countable neighborhood basis. For each point x 2 X there
exists a sequence V1;V2; : : : , of neighborhoods of x such that, for any neighborhood
V.x/ of x, there exists an integer i with Vi contained in V . We call such a space
first-countable. Let us have two distinct points x ¤ y in X that cannot be separated
by open neighborhoods. Each such point has its own basis of open neighborhoods
V1.x/;V2.x/; : : : , and, U1.y/;U2.y/; : : : , respectively. For each i, we have Vi.x/ \
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Ui.y/ ¤ ;, because the points are not Hausdorff separated. We choose a sequence
zi 2 Vi.x/\ Ui.y/. Such a sequence converges to both x and y.

4.1.2 Compactness

The simplest functions are the integer powers and their linear combinations, the
polynomials. It is easy to calculate polynomials and computers can do this quickly.
Nevertheless, polynomials contain enough complexity to be able to fit almost any
complicated function, under some topological restrictions. The Weierstrass theorem
and its generalizations [132, 133] state that every continuous function defined on
a closed and bounded real interval can be approximated as closely as desired by
polynomial functions:

Theorem 1 For any continuous real-valued function f defined on the real interval
Œa; b	 and for every � > 0, there exists a polynomial P.x/ such that, for all x 2 Œa; b	,
we have j f .x/ � P.x/j < �.
The real axis with topology defined by open intervals is Hausdorff separated. What
are the essential ingredients that contribute to this powerful approximation? There
are two: continuity of the function and closure and boundedness of the interval.
Boundedness, as one of the key concepts, is related to distance for the real axis, but
in topology one can use a more general concept called compactness. A set C � X
is compact if, from any open covering of it, i.e., any set of open sets whose union
includes C, we can extract a finite sub-covering.

It is easy to provide an example of a noncompact set. The real axis is noncompact
because, if we cover it with open intervals of length 1, it is impossible to select a
finite subset of such intervals which still cover all the reals.

4.1.3 Connectedness and Connectivity

A topological space X is connected if it is not the disjoint union of two or more
nonempty open sets. Otherwise the space is disconnected. Connected spaces have
a very interesting property: the only sets with empty boundaries are the total space
and the empty set. If any closed continuous curve mapping the unit circle 
 W Œ0; 1	�
S1! X into a topological space X can be continuously deformed to a point, then the
space is called simply connected or 1-connected. Otherwise, the space is multiply
connected. The algebraic properties of the sets describing multiple connectivity of a
space in terms of classifying curves (or generalized curves and surfaces embedded
in the topological space) that are contractible to a point are the subject of algebraic
topology and homotopy theory.

Connectivity and connectedness are important for practical applications, such
as the numerical geometrical analysis of patterns. In the past decade, radar systems
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Fig. 4.4 Application of topology to weather prediction. Upper: Spatial patterns in precipitation
fields and the use of topological connectivity (left to right Euler characteristics �14;�1;�1).
Lower: Details of connectivity in precipitation fields, describing the occurrence of clusters
and isolated structures (left to right Euler characteristics 2; 0;�1). Courtesy of the Journal of
Hydrometeorology [150], image obtained from Memphis Next Generation Weather Radar station

and satellites have provided detailed information on spatial patterns of precipitation,
e.g., for the prediction of rainfall fields, and the methods of digital topology give
fairly accurate results. Figure 4.4 shows images of digitized rainfall patterns which
can be classified according to the number of connected components n and the
degree of multiple connectivity (i.e., the number of holes h), through the Euler
characteristic for the plane, which is calculated as E D n� h. In hydrometeorology
studies that use digital topology, it may happen that very different images have the
same Euler characteristics (see, for example, the last two frames in the upper row of
Fig. 4.4). Hydrometeorologists prefer to use another figure of merit describing a 2D
rainfall distribution digitized in f0; 1g, namely the connectivity index

Cindex D 1 � nh� 1p
AC nh

;

where A is the percentage of dark area in the image. Figure 4.5 presents a series
of abstract distributions of 0s and 1s with different topological characteristics,
mentioning the Euler characteristic and the Cindex under each case in order to
understand to what extent one or the another description can be useful in classifying
connectivity and connectedness.

Homeomorphisms between sets and spaces conserve openess/closure, separation,
compactness, and connectedness properties.
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Fig. 4.5 Digitized abstract patterns with different topological aspects, described in brackets under
each frame by .E;Cindex/. In the first row, the three figures have completely different structures,
and both numbers are indeed different. In the lower row, while the Euler number is almost the same
for the first three frames, the connectivity index makes a better separation of pattern structures

4.2 Topological Boundary

In a topology .X; �/, the topological boundary Fr.M/ of a set M � X is the set of
points in the closure of M, but not belonging to its interior:

Fr.M/ D M � ı
M ; or M D M [ Fr.M/ : (4.2)

An element of the topological boundary is called a boundary point of M. The
topological boundary of a set is closed. Furthermore, x is a boundary point of a
set if and only if every neighborhood of x contains at least one point in the set and
at least one point not in the set. A set is closed if and only if it contains its boundary,
and open if and only if it is disjoint from its topological boundary. One of the most
peculiar properties of the topological boundary is expressed by the theorem:

Theorem 2 The topological boundary of a topological boundary of M is included
in (equal to) the original topological boundary:

FrFr.M/ 
 Fr.M/ ; FrFr.M/ D FrFrFr.M/ D � � � D Fr : : :Fr.M/ :

In other words, the topological boundary operator is weakly idempotent.
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In the following we will observe a big difference between the topological
boundary Fr.M/ and the manifold boundary @M, to be defined later. While the
former obeys Theorem 2, the latter has an immediate nilpotent property @@M D ;.
The reason for this major difference can be found in the definition (4.2), because
once a set no longer has an interior, its chain of topological boundaries generates
the same set: the topological boundary of a set without interior is the set itself.

For example, the intersection between an open set A � .X; �/ and a closed set
B � X is open in the topology .B; � 0/. In the plane, the intersection between an open
disk and a curve is an open set in the line topology. The topological boundary of the
disk D2 is the circle S1 D Fr.D2/ (its circumference), and as a topological space, the
circle is both closed and open. The topological boundary of the circle FrFr.D2/ D
Fr.S1/ � Q is not the empty set. It is a countable set of points dense in the circle, just
as the rational numbers are dense in the real axis. The double topological boundary,
the circle, has no interior, and according to the definition in (4.2), no matter how
many times we apply the topological boundary operator, the result will be the
same.

4.3 Manifold Boundary

In order to study manifold boundaries, we follow the definitions and notations
from the books by Kosinski [151] and Milnor [152]. We define an n-dimensional
differential manifold of class Ck with boundary to be a set M with three properties:

1. It is a Hausdorff separated topological space.
2. It has a countable basis of open sets, i.e., it is a second countable topological

space.
3. It has a Ck structure defined on it, as follows:

The Ck structure is a maximal Ck atlas on M, that is a maximal (against set union
and inclusion) set of charts f.U˛; h˛/g, where h˛ W U˛ ! R

n are homeomorphisms
defined each on a set from the open covering fU˛g of M onto open sets in R

n or RnC,
where R

nC D f.x1; : : : ; xn/jxn � 0g is a real n-dimensional half-space. In addition,
the transition maps hˇh�1

˛ are Ck on h˛.U˛ \Uˇ/. If the transition maps are defined
on R

nC, the differentiability property is understood in the sense of a local restriction
of a differential map on R

n.
In simple terms, an n-dimensional differential manifold with boundary is a

‘well-behaved’ topological space which is locally homeomorphic to some finite-
dimensional real space or half space, such that we can assign local real coordinates,
and all coordinate charts in the covering atlas are compatible through differentiable
maps. The differential structure so defined on M is borrowed from R

n and R
nC. If

k!1, the differential structure is said to be smooth.
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There is a minimal type of reasoning for why a smooth manifold (with or without
boundary) should be defined as above. Here we try to list the important topological
properties associated with a smooth n-dimensional manifold:

1. The R
n local charts endow M with the property of local compactness. The

model Rn is locally compact by construction, and this induces the property on
any neighborhood of M. Local compactness means that any point of M has
a compact neighborhood, or that M behaves locally like a compact space. In
general, a topological space is locally compact if it is Hausdorff and compact.
This property is a good enough balance between local separation properties and
global compactification properties of a space. Simpler situations include the case
where the space is only compact (and then any closed set is compact), or if the
space is only Hausdorff (and then any compact set is closed). Local compactness
is very useful. It allows compactification of the space with just one point, as in the
case of the stereographic projection. This one-point compactification property
allows the construction of the Riesz representation theorem, which lies at the
heart of functional analysis and dual space theory. It also allows the possibility
of integrating functions on groups, just as the definition of the Lebesgue integral
on R helps us to construct harmonic analysis.

2. M is a second-countable space. In other words M has a countable basis of open
sets. It follows that M is separable and any set dense in M is countable.

3. M is paracompact. This follows automatically from the properties of Haus-
dorffness and second countability [151]. It means that every open cover has an
open refinement that is locally finite. The most important feature of paracompact
Hausdorff spaces is that they admit differentiable partitions of unity subordinate
to any open cover. Such spaces can be separated not only in the Hausdorff sense,
but also by continuous functions. Partitions of unity are useful because they often
allow one to extend local constructions to the whole space. For instance, the
integral of differential forms on paracompact manifolds is first defined locally
(where the manifold looks like Euclidean space and the integral is well known),
and this definition is then extended to the whole space via a partition of unity.
There are other consequences of paracompactness, e.g., it allows a Riemannian
metric structure, and every vector bundle on M is isomorphic to its dual bundle.

4. M is a normal topological space. The main significance of normal spaces lies in
the fact that they admit ‘enough’ continuous real-valued functions: for any two
disjoint closed subsets, there exists a continuous real function which is zero on
one of the sets and one on the other set. Disjoint closed sets are not only separated
by neighborhoods, but also separated by functions.

5. The Stone–Weierstrass theorem applies to any closed subset of M. Any continu-
ous function f W M ! R

n, smooth on a closed subset K, can be arbitrarily well
approximated with smooth functions g W M ! R

n, which agree with f on K,
gjK � f jK .

6. If M is connected, any 2 of its points can be joined by a smooth curve. By
connectedness, any two points can be joined by piecewise smooth curves that
can be completely smoothed out through item 4 above.
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If the determinant of the Jacobian of the transition maps is positive everywhere, then
we have an oriented differential structure on M and the atlas is oriented. An oriented
manifold with boundary also has an oriented boundary.

For two differential manifolds M;N, the map f W M ! N is smooth if there
are atlases .U˛; h˛/ on M and .Vˇ; gˇ/ on N, such that gˇfh˛ are smooth for all
˛; ˇ wherever they are defined, and f is a diffeomorphism if it is smooth and has an
inverse. Similarly, with the concept of oriented manifolds, the map f is orientation
preserving if the determinant of the Jacobian of any of the maps gˇfh˛ is positive
everywhere.

We define the manifold boundary @M of M to be the closed subset of M made
up of points belonging to charts modeled on R

nC. Obviously, all the intersections
U˛ \ @M and the restrictions of h˛ on these intersections form a maximal Ck atlas
on @M. The boundary of an n-dimensional manifold inherits from M the structure
of an .n � 1/-dimensional differential manifold without boundary. If @M D ;, we
say that M is closed.

4.4 Forms and the Lie Derivative

A collection of intersecting differentiable curves at any point of a smooth manifold
X defines a linear space. Here, we use the same convention of calling class C1
objects smooth. Let 
 W I ! X be a smooth curve from an open I � R on the
n-dimensional manifold X. In local coordinates, the curve is parameterized by n
smooth functions 
.t/ D .x1.t/; : : : ; xn.t//. At each point x D 
.t/, the curve has an
n-dimensional unit tangent vector defined by the derivative 
 0.t/, viz.,

v D 
 0.t/ D
nX

iD1

dxi

dt

@

@xi
;

in local coordinates. We use the symbols @=@xi to represent the local basis for the
components of this tangent vector at x [153]. The collection of all tangent vectors to
all possible parameterized curves passing through a given point x 2 X is the tangent
space to X at x, denoted by TxM. The collection of all tangent spaces corresponding
to all points of X is the tangent bundle, and it is denoted by

TX D
[
x2X

TxX :

A differentiable function v W X ! TxX is a smooth vector field on the smooth
manifold X. A vector field is nothing but a differential operator acting on functions
on the manifold. In the geometry of surfaces, this operator is called the directional
derivative [137]. We can show the action of a vector field v D .� i/ on a
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differentiable function f W X ! R
m by

v. f /.x/ D � i.x/
@f .x/

@xi
:

This formula shows the action in local coordinates. Geometers prefer to use
coordinate-free formulas. In this case, it would read

Dvf .x/ D v � r f .x/ :

The map between two manifolds would create a similar action at the level of their
tangent spaces. For example, a homeomorphism between two open sets would gen-
erate an isomorphism at the tangent space level. We can express this in a more rig-
orous language by saying that, for any smooth map f W X ! Y , there is a linear map

df W TxX ! Tf .x/Y ; (4.3)

called the tangent map (or the differential map), defined in terms of its action on
tangent vectors v D .� i/ 2 TxX in the local coordinates:

df .v/ D � i @f j

@xi

@

@y j
2 TyDf .x/Y ; (4.4)

where .xi/ and .y j/ are local coordinates in X and Y, respectively. In this context, the
tangent map is the Jacobian matrix J. f / of the map f at x, acting as a linear transfor-
mation on the tangent vectors. Any canonical local basis in TxX is mapped by df into
the basis f@f=@x1; : : : ; @f=@xng in Tf .x/Y. The relation between the tangent map of a
map f , the action of a vector field v, and its directional derivative can be expressed by

df .v/ D Dvf .x/ D v. f / : (4.5)

At each point of the manifold x 2 X, we can choose an orientation of the basis
of vectors in TxX, that is, a mapping df W TxX ! R

n which locally (in a chart)
preserves the orientation and maps it into the standard orientation of the canonical
basis in R

n. If we do this for any point x, the manifold is an oriented manifold.
If X is smooth, orientable, and connected, it has precisely two orientations.

Moreover, an orientation in X can induce an orientation in its boundary @X (if it
has a boundary) as follows: at any point on the boundary, we choose a positively
oriented basis fv2; : : : ; vng for TxX in such a way that fv2; : : : ; vng are tangent to the
boundary and v1 is an outward vector. Then fv2; : : : ; vng determines the required
orientation for @X (see Fig. 4.6).

Now consider two oriented n-dimensional manifolds, X compact and Y con-
nected, both without boundary, and a smooth map f W M ! N. Let x 2 X be a
regular point of f , that is, dfx W TxX ! Tf .x/Y is a linear isomorphism between the
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Fig. 4.6 How to orient a
boundary

two oriented tangent vector spaces. Define the sign of dfx to beC1 or �1 according
as dfx preserves or reverses the orientation. For any regular value y 2 Y, we define

deg . f I y/ D
X

xDf �1.y/

sign dfx : (4.6)

Since X is orientable, the integer deg. f I y/ is a locally constant function of y.
Moreover, it can be shown that it does not depend on the specific choice of y and it
represents only the properties of f . Consequently, it is called the degree of f .

At any x2X, we can define the dual of the tangent space, the cotangent space
T�

x X. The space of skew-symmetric covariant tensors of rank 1 on X is a linear
subspace ˝1T�

x X � T�
x X of the cotangent space. Its elements !.x/ are called 1-

forms. In local coordinates .xi/, the 1-form is denoted by ! D !idxi, where the dxi

form an abstract skew-symmetric local basis for the cotangent space. The 1-form is
precisely defined by its action on differential vector fields:

.!I v/ D
�
!jdx jI � i @

@xi

�
D

nX
iD1

!i�
i :

This definition can be generalized to differentiable k-forms, that is, skew-symmetric
covariant tensor fields of rank 0 6 k 6 n defined on X :

! D !i1i2:::ik dx1 ^ dx2 ^ : : : ^ dxk :
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Here the wedge symbol ^ represents the skew-symmetric exterior product. A 0-
form is a differentiable function on X, a 1-form is a covariant vector field, and a
maximal dimension n-form is the volume element

! D !i1;:::;in dxi1 ^ : : : ^ dxin D !.x/Ei1;:::;in dxi1 ^ : : : ^ dxin 2 ˝nT�
x ;

where Ei1;:::;in is the Levi-Civita permutation symbol.
One of the main reasons the cotangent bundle rather than the tangent bundle is

used in the constructions of differential geometry (like the Lie derivative) is that
differential forms can be pulled back by smooth maps, while vector fields cannot be
pushed forward by smooth maps unless the map is a diffeomorphism. So differential
forms can be moved from one manifold to another using a smooth map. If we have a
smooth map between two manifolds f W X ! Y, we can capture in X the behavior of
the forms on Y relative to f . For an arbitrary smooth map f , it is not usually possible
to push forward a vector field on X using f to obtain a vector field on Y, unless the
map is a diffeomorphism. If the map is not surjective, there is no natural way to
define such a push-forward outside the image of f , and if the map is not injective,
there is no unique choice to define a push-forward at a given point.

We define the dual of the tangent map at x, denoted df � W Tf .x/Y ! TxX, and
called it the pull-back (or codifferential) of f . The action of the pull-back on k-forms
is given by

˚� W ˝kT�
f .x/Y ! ˝kT�

x X : (4.7)

The pull-back is related to the tangent map between X and Y by the following
expression:

�
!I df .v/

 D � f �.!/I v ; (4.8)

meaning that k-forms in Y act on the derivative df .v/ of the vector field v on X in
the same way as the pull-back f �.!/ of the form in X acts on vector fields v on X.

The generalization of a function, or of an infinitesimal surface or volume element,
is the differential k-form defined as a differential skew-symmetric covariant tensor
field on X, with entries in the k-times exterior product of the cotangent space of the
n-dimensional manifold X [131].

A differential form can couple many vectors together. This is the geometric way
to construct area elements from arc length, volume elements from infinitesimal
areas, and so on. For a given set of k vector fields on X, we have the action of
the k-form on these fields given by

.!I v1; : : : ; vk/ D !i1i2:::ik v
i1
1 : : : v

ik
k : (4.9)

A k-form ! and an r-form � can be combined into a new .kC l/-form by the exterior
product, through the ^ operation. For example, if !; � 2 ˝1 D T�X are 1-forms on
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the n-dimensional differentiable manifold X, we have

! ^ � D .!i�j � !j�i/dxi ^ dx j ; i; j D 1; 2; : : : ; n :

Here is another example, for ! a 2-form and � a 1-form:

! ^ � D .!12�3 � !13�2 C !23�1/dx1 ^ dx2 ^ dx3 :

We can also define the interior product between a vector field and a k-form !, this
operation yielding a .k � 1/-form. For example, @x ? dx^dy D dy. The action of
the interior product is given by

.v ? !I v1; : : : ; vk�1/ D .!I v; v1; : : : ; vk�1/ : (4.10)

The last operator we need for our purposes is the exterior derivative.
This is perhaps the most intriguing property of differentiable forms. Here we

differentiate a differential form and obtain a higher order form, but the key point is
that we can do this only once! Every time we differentiate a form twice in this way,
we obtain zero. This is a consequence of the algebra: the skew-symmetry of the
form combines with the symmetry of the derivative operator in a destructive way.
More precisely, for a k-form !, we define the linear external derivative operator
d W ˝kT�

x X ! ˝kC1T�
x X acting on ! to produce a .kC 1/-form:

d! D
X

i;I

@!I

@xi
dxi ^ dxI ;

where I is the increasing ordered multilabel specifying the components of !.
The exterior derivative is linear, commutes with the pull-back map, and most

importantly, has the closure property

d.d!/ D d2! D 0 : (4.11)

For a given vector field v.x/ on X and a certain geometrical object !.x/ defined
on X (like another vector field or a k-form), it is natural to ask how ! changes
along the integral curves of v. Since at different points e�vx the quantity !.x/ takes
values in different spaces of a fiber bundle˝X over X (e.g., the tangent bundle TX,
cotangent bundle T�X, tensor bundle T j

k X, etc.), we have to compare the values of
!.x/ 2 ˝xX with the pulled-back values of !.e�vx/ 2 ˝e�vx. This technique leads
to the Lie derivative.

Let T be a smooth tensor field and v a smooth vector field (i.e., a smooth
section of the tangent bundle TM). Then we can define the Lie derivative of T
along v as follows. Let � W X � R ! X be the one-parameter semigroup of local
diffeomorphisms of X induced by the vector flow of v. For each sufficiently small
real jtj 	 1, �.x; t/ is a diffeomorphism from a neighborhood in X to another



4.4 Forms and the Lie Derivative 127

neighborhood in X, and �.x; 0/ is the identity diffeomorphism. The Lie derivative
of T is defined at a point x by

v.T /x D d

dt

ˇ̌
ˇ̌
tD0

h
�.x;�t/�.T�.x;t//

i
;

where �.x;�t/� is the pull-back of � between the corresponding tensor spaces, i.e.,
at �.x; t/ and at x. There are two rigorous definitions of a Lie derivative, based on
the concepts of affine connection and geodesic, or on Lie groups and Lie algebras,
respectively, that can be extended to all the tangent and cotangent bundles over X.
However, the definition above, although it is local, serves the goals of the following
formulas very well.

The Lie derivative of a function is

v. f /.x/ D � i @f

@xi
:

The Lie derivative of a vector field w is

v.w/ D Œv;w	 D
nX

iD1

nX
jD1

�
v j @wi

@x j
� w j @v

i

@x j

�
@

@xi
: (4.12)

The Lie derivative of a k-form ! D !i1;i2;:::;ik dxi1 ^ dxi2 ^ � � � ^ dxik 2 ˝kX is

v.!/ D v.!i1;i2;:::;ik /dxi1 ^ dxi2 ^ � � � ^ dxik (4.13)

C
kX

jD1
!i1;i2;:::;ij;:::;ik dxi1 ^ � � � ^ v.dxij/ ^ : : : dxik ;

where we can use the formula v.dxij/ D dvij D .@vij=@xk/dxk. For example, if
k D 2, we find the Lie derivative of a 1-form by knowing its action on vector fields,
viz.,

.v.!/Iw/ D v.!Iw/� .!I Œv;w	/ : (4.14)

In components, given a vector field

v.x; y/ D �.x; y/ @
@x
C .x; y/ @

@y
;

the Lie derivative of a 2-form ! D !12dx ^ dy is

v.!/ D
�
�
@!12

@x
C @!12

@y
C !12

�
@�

@x
C @

@y

��
dx ^ dy :
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The following relation is called Cartan’s formula. Let v; ! be a smooth vector field
and form, respectively. Then,

v.!/ D v ? d! C d.vI!/ : (4.15)

As a corollary, we have

dv.!/ D v.d!/ :

One important geometric consequence of the properties of differentiable forms is
the Maurer–Cartan equation

d! C 1

2
Œ!; !	 D 0 ; (4.16)

where the bracket is the Lie bracket of the Lie algebra. In the second case, the form
d! C ! ^ ! represents the curvature 2-form of a linear connection, also called the
first Cartan structure equation.

A space is contractible if there is a deformation homeomorphism that contracts
m to one of its points. A closed form ! is a differential form with the property that
d! D 0. An exact p-form � 2 ˝p has the property that there exists a .p � 1/-
form  2 ˝p�1 such that d D �. With these definitions, we have the famous
Poincaré lemma: if a manifold M is contractible to a point, then all closed forms on
M are exact. This lemma is a generalization of the fact that, on simply connected
domains, a total exact differential is integrable and its path integral does not depend
on the path. For example, in R

3, the Poincaré lemma is the underlying cause for the
following important vector analysis relations:

r � r˚ D 0 ; r � .r � V/ D 0 ;
r � V D 0 H) 9˚ such that V D r˚ ;

r � V D 0 H) 9W such that V D r �W :

Next, we present a property of forms which becomes useful in the hydrodynamics of
incompressible fluids. Consider an n-dimensional smooth manifold M, and let ! 2
˝nM be a volume form. In particular, if M D R

n, we have ! D dx1^dx2^ : : :^dxn.
It can be easily shown that the Lie derivative of the volume form is

v.!/ D
nX

kD1

�
@vk

@xk

�
dx1 ^ : : : ^ dxn D .div v/dx1 ^ : : : ^ dxn :

It follows that the Lie derivative along v of a volume form is the divergence of the
vector field times the volume form:

v.dx1 ^ : : : ^ dxn/ D .div v/dx1 ^ : : : ^ dxn : (4.17)



4.5 Fiber Bundles and Covariant Derivative 129

It is natural now to remark that, if we want a smooth map f W M ! M to preserve
the volume form ! 2 �n.T�M/, that is f �! D !, this will be true if and only if
det J. f / D Df D 1, that is, if and only if the Jacobian of f is unity. Indeed,

. f �!I v1; : : : ; vn/ D
�
!I df .v1/; : : : ; df .vn/

 D det J. f / :

4.5 Fiber Bundles and Covariant Derivative

In the mathematical literature, the motivation for introducing fiber bundles consists
usually in mentioning the existence of manifolds that are only locally a Cartesian
product, not globally, like the Möbius band or the Klein bottle. In this section, we
motivate with some examples chosen from everyday life.

Consider a driver who lives in small rural community A in continental Europe
and drives his car only in his town, where there are only narrow one-way roads, so
that he is not aware of the existence of two-lane roads or of driving on a specific
side of the road. Then one day, this person decides to visit the UK. He puts his car
on a ferry and has it delivered directly to a British harbor B where his friend lives,
a place which also happens to have a one-way road. But the visitor from the initial
town doesn’t realize this. A conflict would occur only if he were to drive along a
two-lane road. Then he would see that drivers steer onto a specific side of the road.
We label the drivers on the right side in a chart containing A, and on the left side on a
chart containing B. In order to drive correctly from A to B, he has to adapt his charts,
so now he is driving along a non-trivial fiber bundle. His town and his friend’s town
trivialize the fiber bundle. The moral is that as long as he moves locally, he is in a
Cartesian product conserving orientation, but when he travels, the global orientation
of the charts is no longer preserved. What made the roads become a fiber bundle was
the introduction of an extra dimension, the width of the road. Or rather the edge, the
boundary of the road, for a set has no center unless it has boundaries.

A fiber bundle E.X; �;F;G/ is topological space E that can be projected onto
another topological base space X by a canonical projection� W E! X. For any base
point x 2 X, the sets ��1.x/C Ex � F are all homeomorphic and the representative
of their equivalence class is called a standard fiber F. There is an open covering U˛

of the base space and a family of coordinate functions ˚˛ W U˛ ! E such that the
inverse image ��1.U˛/ is homeomorphic to U˛ �F and � ı˚˛ D Id X [138, 140].

The way the coordinates are assigned to a fiber F at a point x 2 X is handled by
the structure group of homeomorphisms of F. The maps U˛ � F are glued together
(where the coordinate neighborhoods overlap) in different ways across X, and the
structure group G controls the gluing operations between local parts of the total
space of the fiber bundle. A cross-section in a bundle is a differentiable injective
map � W X ! E such that �� D Id X. A cross-section is in a way a generalization
of the graph of a function defined on the base space with values in the fiber bundle. A
cross-section is a geometric object similar to the graph of a real function f W R! R,
that is, G D f.x; f .x//g, except for one big difference. While in the real graph case
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Table 4.1 Typical examples of fiber bundles

E X F G Application

Möbius band S1 Œ0; 1	 O.2;R/

Tangent bundle ˙ surface T0˙ GL.n;R/ �.x/ are vector
fields

Frame bundle A Riemannian
vector bundle E

Orbits of G GL.n;R/ Ordered bases

Orthonormal
frame bundle

A vector bundle E O.n;R/ GL.n;R/ Orthonormal
bases

the points y D f .x/ 2 R belong to the same space R, for all x, in the case of a cross-
section ˚ , the second coordinate of the pair

˚�
x; ˚.x/

	
, namely ˚.x/, takes values

in different spaces for different values of x 2 X. Indeed,˚.x/ belongs consecutively
to different homeomorphisms of the standard fiber.

Let us clarify this observation with a simple example. Think about the motion of
a football during a long ball down the field. At different moments of time, the ball
can be watched by other spectators placed at appropriate points along its path. The
record of the football’s motion through one TV video camera would be a real graph,
but a description of this motion through the opinions of all the individual spectators
in the tribunes would require a cross-section in the stadium fiber bundle (where the
standard fiber would be a row of seats, for example). Standard examples of fiber
bundles are presented in Table 4.1.

Many differential geometry objects originate directly from the theory of Lie
groups and algebras. Let g be an n-dimensional Lie algebra associated with the Lie
group G, and A;B; : : : 2 g. A Lie group is simultaneously a group and a differential
manifold, with the property that the group operations are differentiable in the
manifold structure. The Lie algebra is nothing but the tangent bundle to the manifold
of the Lie group. A function defined on a Lie group is said to be left invariant if it
commutes with the left group translations, or with their adjoint representation. A
Lie group G can act on other manifolds than itself, and induce orbits. However, the
Lie algebra g is ‘local’, i.e., it cannot act at different points on a manifold, as G
does, except on G itself. In order to repair this frozen action, we need to enrich the
structure of the manifold, and make it into a fiber bundle. In a fiber bundle there
is more ‘freedom’, and we will introduce vertical and horizontal displacements by
using the covariant derivative and the connection form, respectively.

Consider a base manifold X and a Lie group G acting upon it. For any element
A 2 g, we can construct a fundamental vector field A� W X ! TX, defined by

x0 2 X �! A� D d.etAx0/

dt
2 Tx0X :

The vector field is thus tangent to the one-parameter Lie subgroups generated by A
and the fundamental vector field is tangent to each fiber at each point of P.
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The vector–frame duality can be understood in the best way by using a 1-form
called the canonical form � 2 ˝1.FX/ on the bundle of frames FX with values
in the standard fibre F. The action of the canonical form on a vector X 2 TFX is
.� IX/ D u�1 ı d�.X/ 2 F.

If X is an n-dimensional affine space, then a point x 2 X is represented
by a position vector r D xiei, whose components are given in a certain frame
feigiD1;:::;n D u 2 ��1.x/ 2 FX. The question is: how does this position vector
change with dr under an infinitesimal motion of the frame? The answer is given by
the canonical form, or by

dr D .� IX/ D .� i;X/ei ; (4.18)

where X 2 TuFX describes this infinitesimal motion of the frame in the tangent
space to the bundle of frames.

The bundle of frames does not provide a recipe for the way frames transform
when the base point moves through the base space. In order to provide such a law,
we need a further construction, which is the connection on X. A connection should
provide the infinitesimal transformation of a point in the vector bundle when we
perform an infinitesimal move in the base. Since the infinitesimal transformations
are described by vectors in the tangent space, a connection should map a point (to
be moved) in the vector bundle to a vector in the tangent bundle to the vector bundle
(how this point transforms), a map depending on a vector in the tangent space of the
base (the direction of the movement).

A connection � in a fiber bundle E is the assignment of a G-invariant subspace
Hp G TpE, for any p 2 E and depending differentiably on p, called the horizontal
subspace. The orthogonal complement of Hp is called the vertical subspace, denoted
by Vp, and we have

Tp D Vp ˚ Hp :

Any vector V 2 TpE can be uniquely decomposed into two orthogonal components,
viz., V D vV C hV, each in the corresponding subspace vV 2 Vp, hV 2 Hp. A
horizontal lift of a vector field on X is the unique horizontal vector field on P such
that the differential of the canonical projection d� W TE ! TX maps it to the initial
vector field. Any parameterized curve in X, and any point p 2 E, provide a lift of this
curve to a unique horizontal curve in E (with horizontal tangent vectors), to which
it canonically projects.

The existence of a connection allows us to ‘flag’ elements of E and watch their
evolution according to a certain law imposed by this connection, when we move
along some curve in the base space. This law is called parallel displacement along a
certain curve in the base space. We consider the starting point x0 of a parameterized
curve 
 � X, and its local fiber ��1.x0/ � E. Through any point p0 in this fiber, we
can build a unique horizontal lift of 
 which canonically maps back onto 
 . When
we move to a different point on 
 , the intersection between the fiber over this new
point and the horizontal lift of 
 through p0 is a unique point of this new fiber. Doing
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this transport now for various p0 2 ��1.x0/ is like mapping all the points p0 of a
fiber into all points of another fiber following the curve. This mapping is actually a
fiber isomorphism, and it is called the parallel displacement of the fibers along the
curve.

Later, we will need the definition of a normal bundle. Let M be a compact and
smooth manifold with or without boundary, and V � M a compact submanifold
whose boundary is contained in the boundary of M in such a way that V meets
the boundary of M transversely, that is, the tangent spaces to V and to @M at the
same point generate together the tangent space of the ambient manifold. The normal
bundle of V � M is a particular kind of vector bundle, complementary to the tangent
bundle, and coming from the canonical embedding i W V ! M. In other words, the
normal bundle for V is constructed by taking the quotient space of the tangent space
on M by the tangent space on V , that is i�.TM/=TV . The notation for the normal
bundle of V � M is

i W V ,! M ; or �.V ,! M/ : (4.19)

One important result in differential geometry is that, for each connection � , we
can associate a g-valued 1-form on E called the connection form ! such that, for
each V 2 TpE, we have

.!IV/ D
n
A 2 g j A� D vX

o
:

In other words, a connection form maps a vector field V on E to a Lie algebra
vector whose fundamental vector field is exactly the vertical component of V. In
the language of physics a connection form is a vector field defined on a bundle of
frames such that its directional derivatives in any direction provide one-dimensional
Lie algebras of symmetry (flows) in the vertical component of those directions.

For a differentiable r-form � on E, we can introduce the exterior covariant
derivative as an .rC 1/-form D� whose action on vector fields in E is

D� D .d�/PrH ;

where d is the exterior derivative and PrH is the projection on the horizontal space of
the vector fields. The exterior covariant derivative d! D ˝ of the connection form
is called the curvature form, and we have the structure equation

d! D �1
2
Œ!; !	C˝ ; (4.20)

acting on any pair of vector fields on E. The proof is immediate and it is based on the
vertical/horizontal direct sum properties, and can be found in [138]. A connection
is flat if and only if its curvature form is null.
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In order to build the covariant derivative of a cross-section ' W X ! TX in the
X 2 TX direction, we have to lift this last vector to its horizontal component X� 2
H � TFX. Following the projections, we have FX 3 u! x D �.u/! '.x/, which
actually defines a cross-section in FX. We can thus apply the directional derivative
X�.'.x.u/// D rX', and this is the desired covariant derivative. Basically, it is the
horizontal component of the directional derivative.

By expressing the connection form in coordinates, we obtain the explicit action
of the covariant derivative on the basis of covariant vectors:

r@=@x j
@

@xi
D � k

ji

@

@xk
: (4.21)

Equation (4.21) and the linearity of the covariant derivative yield the coordinate
expression for the covariant derivative of a vector field V D Vi@=@xi defined on X
with respect to the directions of the local frame:

rjVi D @Vi

@x j
� � k

ij Vk : (4.22)

We illustrate these constructions with an example. Consider a unit radius
spherical surface X D S2 embedded in R

3 with coordinates x1 D � 2 Œ0; �	,
x2 D � 2 Œ0; 2�/. The tangent space is TS2, generated by the basis vectors fe� ; e�g.
The bundle of orthonormal frames OS2 has coordinates .�; �; OR.˛//, where the last
one represents an element of the Lie structure group O.2;R/, i.e., a rotation of the
tangent frame through an angle ˛ around the normal to the sphere. The covariant
derivatives have the form

re� e� D 0 ; re�e� D e� cot � ; re�e� D e� sin � cos � ;

and the horizontal lift of the basis vectors is

e�
� D e� � n cos � ; e�

� D e� � n sin � cos � :

We can check by noticing that, at � D �=2, the covariant derivatives cancel, as
do the vertical projections, which is correct since this equatorial circle is actually
a geodesic and its tangent vectors are parallel transported along it. If we want to
find how a tangent vector field is parallel transported [137], we can choose a vector
which is e� at an initial point and transport it along a parallel to the sphere at � D �0,
parameterized by t 2 Œ0; 2�/. The resulting parallel-translated vector is

V.t/ D sin.�0/ sin.t cos �0/e� C cos.t cos �0/e� ; re�V D 0 :

In the next section, we draw attention to a few similarities and differences between
the Lie derivative and the covariant derivative.
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4.6 Is the Lagrangian Derivative a Lie or a Covariant
Derivative?

The answer is: both. Consider a volume of ‘fluid’ material comprising a very large
number of small moving particles, ‘densely’ enough distributed to allow us to model
a differentiable manifold structure on the set of their positions. We imagine the fluid
enclosed in a rigid boundary container. Let us take a snapshot of these particles
showing, not the particles themselves, but only their instantaneous velocity vectors.
The picture is taken with a camera placed in the container’s system of reference, and
it is taken in total darkness so that nothing else shows in it (like walls, surrounding
objects, etc.). Using only this picture, it is impossible to predict the future state
of motion of the fluid. We cannot predict the evolution of any of the vectors from
the snapshot, and we do not know what vector is attached to which particle. This
snapshot is (a representation of) the tangent bundle of the fluid manifold.

To find out more about the system’s states, we take more such snapshots at
different times. Even by building this album of snapshots, we are still unable to
compare velocities represented by different vectors in different snapshots. Are two
vectors in two snapshots the velocities of the same particle at different moments, or
do they represent the velocities of two different particles (see Fig. 4.7)?

In order to try to understand the ‘dynamics’ of such a fluid, we can carry out
two other operations. One procedure (called LALI from Lagrange–Lie) is to collect
sets of snapshots taken at different moments of time, but separated by very small

Fig. 4.7 Vectors belonging to different tangent planes to the same manifold without a connection.
It is impossible to compare any two vectors, or carry out any operation on them
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time intervals, so that we can follow the motion of each vector frame by frame, in
other words, such that the shift in the origin of each vector from one snapshot to
the next is always much smaller than the average minimum distance between any
two particles. In this way, we can associate any point moving in space with a certain
curve, i.e., a path of the flow defined to be tangent to all of the vectors belonging
to the same particle. Then we can compare vectors along the same (almost) smooth
curve. This comparison will represent the change in time of the velocity of one
labeled particle, so what we record is the Lagrangian derivative of its velocity. The
comparison of vectors in this procedure is then generalized by considering all the
paths, over the whole flow, and over the whole manifold. This is known as the Lie
derivative approach.

The Lie derivative of the velocity vector in the fluid motion is the story of
one particle in the movie of the flow. Actually, such procedures are quite possible
experimentally, using so-called particle imaging velocimetry (PIV) systems. These
seed the fluid with highly reflecting microscopic particles that move everywhere
with the fluid elements, then apply two consecutive laser flashes while recording
with a rapid-photography camera. A computer software creates a ‘particle’ for each
pair of consecutive vectors with origins close enough, and builds the velocity vector
field. We do not need to see any exterior structure (walls, container, lab frame,
etc.) in order to know the dynamics of this system. The complete set of path lines
represents the fluid, and the most isolated of the paths describe the fluid boundaries
(see Fig. 4.8).

Fig. 4.8 Example of the action a Lie derivative. Path lines in a fluid motion, built by joining
vectors with closest origins. We can evaluate the rate of change of a vector associated with one
particle by following the vector along one path
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There is a second procedure to analyze (and predict) the dynamics of the system,
which can be called ECO (from Eulerian–covariant). In order to proceed, the
snapshot needs to include elements from the fixed boundaries for the fluid, or
elements of the container, or geometrical objects in the environment that do not
move with the fluid. We build the geometry of the fixed environmental elements
and their laws of transformation from location to location. For example, we collect
information about the tank shape, the geometry of the walls, etc. Then we measure
the vectors associated with each local subset of fluid particles using the geometry
borrowed from the fixed surrounding environment. We measure any particle’s vector
with respect to its local environment. Knowing how to connect and transform the
results of measurements performed at different locations from one to the other,
we induce a law of transformation for each vector at any point in the fluid. In
other words, we place all vectors in the same system of coordinates by considering
their transformations from point to point with respect to the transformation of the
environment. Only in this way can we compare any two vectors anywhere in the
fluid (see Fig. 4.9 for an example).

This second approach is the covariant derivative or Euler approach. We do not
need the flow of the fluid, we do not need the paths, but we need to select one
universal system of reference which is called the reference fiber, or to know how to
refer the vectors at different points to such a model system of reference, which is the
procedure called connection. The covariant derivative sees different tangent planes
at different points, and it can compare them, even if these planes do not represent
the same particle at different times in its motion. In principle, both the Lie derivative
and the covariant derivative can describe the Lagrangian time derivative [154].

Moving fluids have a very particular property, namely an interesting time
dependence of scalars and tensor fields on the observer’s point of view, in a

Fig. 4.9 Example of a Cartan connection: we know how strongly the wind blows at different
locations because we compare the bending of different stems with an out-of-the-wheat-field fixed
frame provided by the sky, the earth, the vertical direction, etc., everywhere
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different way than a general global Galilean or Lorentz transformation. When we
change from a laboratory frame of reference (Euler) to a moving-together-with-
the-fluid observer’s point of view (Lagrange), extra nonlinear terms arise in the
time variation. These are terms containing the velocity, something which does not
happen in the case of Galilean or Lorentz transformations represented by the group
of transformations GL.3;R/. A detailed discussion can be found in Chaps. 4, 8,
and 9 of [121]. This peculiar transformation from the Euler to Lagrange point of
view is known for the particle velocity field in its traditional form

Dv

Dt
D dcv

dt
D dv

dt
D @v

@t
C .v � r/v :

From left to right, these expressions are the Lagrangian derivative, also called the
total derivative, the convective, convected, advective, substantial, material, particle,
or covariant time derivative. The Lagrangian derivative can act on any scalars,
vectors, and tensors that can be associated with the flowing particles, or with the
fluid flow in general (see [121, 155] and references therein):

@!

@t
D dc˝.�; t/

dt
D @˝

@t
C vE.˝/ ;

where vE is the Eulerian velocity vector,˝ is any tensorial quantity in the Eulerian
frame, ! is the same quantity observed in the Lagrangian frame, .�; t/ are the
Eulerian coordinates, and the last term on the right-hand side is the Lie derivative of
˝ .

It is natural to use a Lie derivative for the rate of change of a geometric object
carried along by the flow, because the Lie derivative is a method for computing a
directional derivative with respect to the flow of the vector field. Let the totality
of fluid particles describe a smooth manifold smoothly embedded in R

3. We know
already that the directional derivative of real-valued functions on a manifold already
gives meaning to measurements of the change of objects in a direction specified by
a vector. Any tangent vector v 2 TpM to a given manifold M at p 2 M (e.g., the
fluid volume manifold) is by definition an operator that acts on a smooth function
f to give a number v � rf .p/ that we interpret as a directional derivative of f at p.
This number can also be interpreted as the ordinary derivative of f along any curve
whose initial tangent vector is v at p.

The generalization of this rate of change measurement to directional derivatives
along a given vector field w.p/ on M requires a little more caution than the
same problem in a Euclidean space, since values cannot be compared directly. By
replacing the vector v 2 TpM with a vector field, we can use the flow of the vector
field to push values of w back to p and then differentiate. The result is the Lie
derivative of f with respect to the given vector field w.

Let us consider the position manifold for some fluid to be a 3D Euclidean space,
and an absolute Cartesian frame of reference in it labeled by .xi; t/. We introduce
a curvilinear orthogonal system of coordinates, also time dependent, parameterized
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by coordinates .� i; t/, i D 1; 2; 3, and express the coordinate transformation through
the diffeomorphisms � i D � i.x; t/ with Jacobian

Nc j
i .x; t/ D

@� j

@xi
: (4.23)

A particle moving with the fluid will have velocity v D dx=dt in the Cartesian
system, and the velocity u D d�=dt in the curvilinear system. The transformation
of the velocity components from one frame to another obeys the transformation law
of a contravariant vector:

ui D Nci
jv

j ; vi D ci
ju

j ; and ci
k Nck

l D ıi
l : (4.24)

This can be proved using (4.23) and the definitions of the velocities. We are now
looking for a derivative with respect to t, the so-called intrinsic derivative D=Dt
[145, 156], which measures the total variation of a tensor quantity along the curve
due to an infinitesimal change in t. This should preserve the tensorial character when
the coordinate system is changed. In Cartesian coordinates, the derivative D=Dt
reduces to the material derivative.

As a test, let us choose an arbitrary parallel covariant vector field Ai with
constant components in the Cartesian coordinates .x; t/, and let NAi represent its
transformation to the curvilinear space .�; t/. Consider a curve describing the path
of a particle in the fluid parameterized by xi.t/ and by � i.t/ in the two coordinate
systems, respectively. From the requirement of having constant components along
the t curve in the curvilinear system, we must have

D NAi

Dt
D d NAi

dt
D 0 ;

because its covariant derivative (along the curve), and also its total time derivative,
should vanish, since physically, A represents the same constant parallel vector field
as NA [156]. It follows that

d NAi

dt
D dNc j

i

dt
Aj C Nc j

i

dAj

dt
D 0 : (4.25)

Multiplying (4.25) on the left by ci
p and considering the orthogonality relation

in (4.24), we have

ci
p
PNc j

i Aj C dAp

dt
D 0 ; (4.26)

and according to the arguments presented above, we can write

DAp

Dt
D dAp

dt
C Ajc

i
p

dNc j
i

dt
D @Ap

dt
C Ajc

i
p

dNc j
i

dt
; (4.27)



4.6 Is the Lagrangian Derivative a Lie or a Covariant Derivative? 139

since Ap.xi; t/ and xi do not depend on t. The components Ai represent the vector
field in the Cartesian system, and since the particle follows the t path in this
space, (4.27) must represent the covariant derivative of Ai. Using

d

dt
D dx j

dt

@

@x j
;

for the derivative along the t path, we can apply (4.27) to write the covariant
derivative acting on this covariant vector field in the form

rjAp D @Ap

@x j
C Akci

p

@Nck
i

@x j
; (4.28)

from which we obtain the Christoffel symbols for this transformation of coordinates
in the form

� k
pj D �ci

p

@Nck
i

@x j
: (4.29)

We can express the covariant derivative in (4.27) and (4.28) in terms of the physical
parameters, rather then the transformation matrices. In order to do this, we will
choose as specific vector field the covariant components of the velocity of the fluid
Ap D vp. From (4.27), we have

Dvp

Dt
D @vp

dt
C vjc

i
p

dNc j
i

dt
: (4.30)

Using the definition in (4.23), the coefficient of the velocity in the last term of (4.30)
can be rewritten in the form

ci
p

dNc j
i

dt
D ci

p

d

dt

@� j

@xi
D ci

p

d

dt

@�i

@xj
; (4.31)

where we simultaneously switched the covariant/contravariant labels and denom-
inator and numerator, and by orthogonality, nothing changes. Because �i depends
only on the independent variable xj and t, the derivatives commute, and we have

ci
p

d

dt

@�i

@xj
D ci

p

@

@xj

d�i

dt
D ci

p

@ui

@xj
: (4.32)

The matrix ci
p represents the transformation from the curvilinear coordinates back

to the Cartesian ones, and it does not depend on xi. In consequence, we can write

ci
p

@ui

@xj
D @

@xj
ci

pui D @vp

@xj
: (4.33)
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In the following, we combine this last result with (4.27) for Ap D vp, and we obtain

Dvp

Dt
D @vp

dt
C vjc

i
p

dNc j
i

dt
D @vp

dt
C vj

@vp

@xj
: (4.34)

That is,

Dvp

Dt
D @vp

dt
C
�
vj
@

@xj

�
vp ; (4.35)

which is nothing but the well known convective derivative in the Navier–Stokes
equation (for the covariant components, in this case):

Dv

Dt
D @vp

dt
C vjc

i
p

dNc j
i

dt
D @v

dt
Crvv : (4.36)

In this way, we have shown that the Lagrangian time derivative can be understood
as a covariant derivative, too.

4.7 Deformation of the Boundary

A deeper mathematical understanding of problems related to boundaries must
involve and relate different approaches, because of the special nature of this system.
In many situations, for example, the combined use of geometric and algebraic
approaches helps to provide the required intuition. The properties of a surface
become better understood if we can classify it according to algebraic criteria, just
as some algebraic problems can be better understood when their solutions are
represented in a graphic mode. There are several ways to pair dual approaches
between geometry and algebra in the study of boundaries: algebraic topology,
algebraic geometry, differential algebra, etc. There is even more advantage in
using such dual approaches when a problem is very well understood within one
formalism and parts of this conceptual understanding can be transferred to another
formalism.

We exemplify this transfer in the following. One very well studied field in
mathematical physics concerns boundary value problems. In principle, such a
problem is formulated by giving a certain space region D with smooth boundary
˙ D @D, a differential or integral operator defined on this region, an equation
involving the operator, an unknown function and possibly other source functions,
and time dependent or independent boundary conditions for the unknown function
on ˙ . Solutions for such problems are very well developed thanks to the gallery
of integral formulas generated by the Poincaré lemma, and various representation
formulas. The behavior of the solutions is known within specific classes of
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operators, boundaries, and source functions. Technically, the problems are solved
by reducing them to Sturm–Liouville type problems (eigenvalues and eigenvector
problems) with homogeneous boundary conditions (unknown function and/or its
derivatives required to be zero on the boundary) and are classified in terms of the
type of operator (elliptic, parabolic, hyperbolic, nonlinear, etc.). For such classes
of solutions, called Green functions or fundamental solutions, the only variability
is determined by the geometry of the boundary. Through this dependence, the final
output of the analytic formalism, the eigenfunctions and eigenvalues, can be used
to characterize the geometry of the boundaries. The operator spectrum resulting
from the Dirichlet problem for a specific boundary depends to some extent on that
boundary.

For example, if we choose a Dirichlet type of problem for the Laplace operator
on a test region with surface, the eigenvalue problem is represented by a Helmholtz
equation4˚ D �˚ . For Dirichlet (homogeneous) boundary conditions, we obtain
different spectra for different geometries of the surface: sum of squares of two
integers for a square, Bessel function roots for a disk, while the spectrum is
an algebraic expression involving powers and square roots in the case of a 3D
sphere.

In spite of the differences generated by the geometry and topology of the
boundary, the spectra have some common features. The Laplace operator spectra for
any 2D convex region are discrete, monotonic, and divergent (�1 < �2 < : : : �n <

: : : ), and the eigenvalues satisfy special algebraic relations like the Payne–Pólya–
Weinberger inequalities, viz.,

�nC1
�n
� 3 ; (4.37)

or the Hile–Protter or Yang inequalities [157], viz.,

�nC1 � 3

n

nX
kD1

�k : (4.38)

With this type of rational inequality, it makes sense to start a comparative study of
the geometry of the boundary by evaluating the relative changes of the eigenvalues
when the boundary deforms from one known surface to another, less well known
geometry [158]. In addition to (4.37) and (4.38), we have available the famous
Faber–Krahn inequality, which relates the smallest Laplace eigenvalue to the
volume of the region:

�1 �
�2˛20;1

jDj ;

where ˛0;1 � 2:4048 is the first positive zero of the Bessel function j0.x/, and jDj is
the area/volume of the region D. In a series of papers [159], Ashbaugh and Benguria
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have proved the fundamental inequalities for the Laplace operator spectrum in two
dimensions:

�2

�1
�
�
˛1;1

˛0;1

�2
; (4.39)

where ˛0;1; ˛1;1 are the first zeros of the Bessel functions j0.x/ and j1.x/, respec-
tively.

The question is to what extent the change in the spectrum can be accounted for by
the change in the boundary? In other words, can two differently shaped drums give
different sounds? Unfortunately, in general, the answer is negative [160]. There are
calculations showing that one can find totally different shapes generating practically
the same spectrum. Knowing the sound of a drum, determined by the eigenvalues
of the Laplace operator in a Dirichlet type problem, that is, the frequencies of the
fixed membrane assuming the shape of this drum, one can find information about its
shape only in some particular situations. The eigenvalues of the Laplace eigenvalue
problem for Dirichlet type boundary conditions can indeed be used as a reliable
feature descriptor for shapes, if the shape is a ‘small’ deformation of a shape with
known spectrum. In other words, we can identify shape variations of a drum by
listening to its Laplace spectrum if the drum is close to a disk. In more colorful
language, referring to (4.39), Marc Kac states [161] that “one can hear a convex
drum if its first eigenvalue, or ratio of the first and second eigenvalues, are close to
those of a disk”.

Along the same line of research, it has been shown that all eigenvalues of the
Laplace operator are region-monotonic, i.e.,

�n.D1/ � �n.D2/ ;

if D1 � D2, and have the scaling property

�n.cD/ D �n.D/

c2
; c > 0 :

These relations show that the smaller the domain D, the larger the absolute values of
the eigenvalues. In other words, it takes more geometric energy to confine a system
in a narrower region of space, or the well known fact that a larger drum generates a
lower pitch.

In the field of shape recognition, for example, scientists use the ratios of
eigenvalues of the Laplace operator for a Dirichlet type of boundary condition, to
identify certain features of shapes [160]. Shape analysis is a key component in object
recognition, matching, registration, and analysis, and works by generating a feature
vector that attempts to uniquely characterize the silhouette of an object. There are
an increasing number of studies on eigenvalue-based shape recognition methods,
especially related to translation-, rotation-, and size-invariant shape recognition,
with robustness and tolerance to shape deformation and noise [162]. The general
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procedure is to study the change in some ‘feature descriptors’ with the deformation
of the shape of a region D. The feature descriptors used by shape analysis scientists
are ratios of eigenvalues in the form

F1.D/ D
�
�1

�n

�

nD2;:::
; (4.40)

F2.D/ D
�
�n�1
�n

�

nD2;:::
: (4.41)

In [160], the authors study simple classes of shapes like ellipses, rectangles, or
circular symmetric images with a certain number of lobes, versus separability and
variations like geometric noise (change on the boundary of the shape), topological
noise (re-connections or holes), or hand-drawn shapes. They show a class separabil-
ity of 96% or greater, and a clear distinction between their F1 or F2 descriptor series.
For example, the values of the first descriptors in F1 change from 0.48 to 0.54 when
they change from 4-lobe to 5-lobe shapes, regardless of rotations and translations.
Other applications include face recognition [162], or the impact of offshore wave
farms on the near-shore wave climate [163].

The qualitative analysis presented above raises two questions. Firstly, whether
there is a possible analytic way to obtain a quantitative, measurable correspondence
between the change in the spectrum and the change in the shape, and secondly,
whether there is a mathematical intuition behind the fact that such a correspondence
is not one-to-one, but it is rather a global average dependence. An answer can be
obtained by using the implicit function theorem together with the chain rule and
some geometric technicalities like the transversality theorem. A complete study can
be found in Henry’s book [164].

The problem of the effect of the perturbation of the boundary on the associate
eigenproblem and spectrum has attracted well known mathematicians, starting at
the end of the nineteenth century. Rayleigh (1894) and Hadamard (1908) mentioned
the problem for the first time in independent articles, while Courant and Hilbert
and Polya and Szëgo detailed it in their well known books [165], and research has
continued up to recent work like [166].

A rigorous mathematical way to evaluate the effects on the solutions and
spectrum of a boundary problem when the boundary is deformed, or at least
perturbed, would need to consider a space whose independent variable is the domain
of definition of the boundary value problem.

The study of deformations of surfaces occurs in a natural way in the hydrodynam-
ics of liquid drops, shells, and bubbles. In [167–169], the authors consider a liquid
drop with free liquid boundary determined by a closed hypersurface˙ , element of a
set S of closed surfaces in R

3 diffeomorphic to the boundary of a reference region D
and enclosing the same volume as D. In the vast majority of situations, the reference
region is a D3 ball, but there are cases where the reference region does not have a
regular boundary or is not simply connected, as for example in the case of boiling
Leidenfrost drops (see Sect. 9.7). A variation •˙ of the boundary˙ can be defined
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as the infinitesimal variation of ˙ in its normal direction N, having zero value for
its integral. This condition obviously leads to a serious loss of the generality in the
variations because it involves only divergence-free deformations. On the other hand,
from the physical point of view, a fluid which is compressible has no special free
surface, and no surface tension properties, so it is not so interesting.

More rigorously, let us define the deformation of the region D by a diffeomor-
phism  W D ! D˙ � R

3 which preserves the volume (divergence-free) and has a
smooth boundary˙ . If we denote by C the manifold of all these volume-preserving
diffeomorphisms, we can associate a tangent space TC and a cotangent space T�

 C
with any  2 C. In this formalism the variation • of the domain boundary is an ele-
ment of the tangent space. For any function F W ˙ ! R, we can define its functional
derivative •F=•˙ with respect to the variations of the boundary in the form

Z
˙

•F

•˙
•˙dA D D˙F � •˙ ; (4.42)

where the symbol D˙F.x/ is the differential of F.x/ with respect to the variation of
the boundary defined in the Fréchet sense, viz.,

D˙F.x/ D d

d�

ˇ̌
ˇ̌
�D0

F.x�/ ;

and x� is a curve based on x 2 ˙ and tangent to the normal N.x/ to ˙ at x.
This definition of the variation of the boundary is useful when we investigate the
dynamics of a physical system with free boundary, like a liquid drop. Based on this
variation, one can define functional derivatives with respect to the boundary and
with respect to the other parameters of the system (like the fluid velocity or pressure
fields), introduce a well defined Poisson bracket, and finally introduce a Hamiltonian
formalism for the free boundary. The process is presented in more detail in Sect. 9.6.
One physical advantage in using (4.42) for the differential of the boundary is
that it leads to a Poisson bracket structure in C which organizes the equations
for a liquid drop with surface tension into a Hamiltonian form. Another physics
advantage is that the motion of the boundary in the Lagrangian representation can be
reconstructed from that in the Eulerian representation, and conversely. The integral
curves of the corresponding canonical Hamiltonian describe the motion in the space
of shapes and in the space of fluid velocities.

However, the most important result obtained from this definition of the variation
of the boundary is a geometric one, namely, the existence of an intimate connection
between any arbitrary change of boundary and the additional field of velocities
induced in the fluid by this change. All the geometric elements needed to understand
this construction can be found in Sect. 4.5. This is the way it works. We consider
B to be the manifold of all possible boundaries ˙ of a region with constant
volume (area), that is, boundaries diffeomorphic to D˙ , which is the boundary
of the reference region D. If we consider B to be a base space, we can build a
fiber bundle upon it (called a principal bundle) which is exactly C, the material
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configuration space, i.e., the manifold of all volume-preserving diffeomorphisms 
of the reference region.

Indeed, the projection�./ of a region diffeomorphism onto B is the boundary of
the reference region from which this diffeomorphism was initiated. That is �./ D
@..D//. Furthermore, the Lie group of volume-preserving diffeomorphisms of D
acts along the standard fiber, so C is a principal bundle. In order to endow this
principal bundle with geometric structure, we have to introduce a connection, that
is a horizontal subspace H at each  2 C.

Any harmonic function f defined on .D/ can be interpreted as a potential for
the velocity of the fluid. The gradients of all such functions generate the horizontal
subspace of C, i.e.,

H D
n
rf ..D//

ˇ̌
f harmonic in .D/

o
:

Such a connection, which is actually called the Ehresmann connection, prescribes
a manner for lifting curves from the base manifold B into the total space of the
fiber bundle C so that the tangents to the curves are horizontal. These horizontal lifts
represent the parallel transport for this formalism. For each  2 C, this horizontal
lift is given by

h W T�./B �! TC :

Physically, h.•˙/may be thought of as the velocity field of flow determined by the
boundary variation •˙ . Of course, the geometric construction requires only volume-
preserving flows and only irrotational velocity fields.

In the following, we provide a few practical examples and quantitative evalua-
tions concerning the perturbation of a boundary. Let us assume we have a reference
domain D � R

3 which is connected and simply connected, with smooth boundary
˙ , and suppose we deform it by a diffeomorphism .D/. Any smooth vector-valued
function f W D! R

3 defined on this region will suffer a pull-back �f .x/ D f ..x//
for any point x 2 D. We assume in addition that f satisfies certain differential
equations (in general nonlinear) with the form L.x; f / D 0, where L is a differential
operator acting on some space of smooth enough functions defined on D. When the
region D is deformed, so is the differential operator, and we have

L.D/ W .D/ � .domain of f / �! R
3 ;

whenever the differential operator has a Eulerian form, where the coordinates are
functions of the deformation parameter (for example, time) in a fixed coordinate
system. On the other hand,

�L.D/
��1 W D � .domain of �f / �! R

3 ;

is the Lagrangian form. The advantage of the Lagrangian form over the Eulerian
form in terms of handling differential operators consists in the fact that the operators
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act in spaces which do not depend on , facilitating the use of the implicit function
theorem, for example. In a simpler language, we can say that the Eulerian formalism
is related to the geography, while the Lagrangian formalism is related to the history
of the system.

More detail of the formalism and analysis of the Eulerian and Lagrangian points
of view can be found in Sects. 4.6, 9.1, and 9.5, and in even more detail in [121, 155]
and the references therein.

In order to make a quantitative evaluation of the change in the boundary and
the variation of any function depending on the boundary, we need to use either the
Fréchet derivative along a curve in the space C of deformations as above, or just
parameterize the deformations with a one-parameter Lie group of deformations,
e.g., denoting y D .t; x/ and D.t/ D .t;D/, with t � 0 and .0; x/ D x. We
can also calculate

V.t; .t; x// D @

@t
;

recalling that N˙.t/ is the unit normal to the deformed boundary ˙ . Considering a
smooth function defined on the reference domain f .t; x/ W Œ0; tmax	 � D ! R, let us
calculate the variation of the integral quantity

d

dt

Z
D.t/

f .t; y/dy : (4.43)

We can consider the variation of the domain as a regular smooth change of variables,
so we apply the substitution formula for the triple integral:

d

dt

Z
D.t/

f .t; y/dy D d

dt

Z
D

f .t; .t; x//

ˇ̌
ˇ̌D.y/
D.x/

ˇ̌
ˇ̌dx ; (4.44)

where J D jD.y/=D.x/j is the coordinate transformation Jacobian. Performing the
calculations and using the Jacobi formula, the derivative of the Jacobian is

dJ

dt
D Tr

�
Adj

�
D.y/

D.x/

�
d

dt

D.y/

D.x/

�
D Jr � V ;

where Adj is the adjugate of the coordinate transformation matrix, i.e., the inverse
of the matrix times its determinant, and Tr is the trace of the matrix. Using the
divergence theorem, we obtain the final formula for the rate of change of the integral
quantity as

d

dt

Z
D.t/

f .t; y/dy D
Z

D.t/

@f

@t
dyC

Z
˙.t/

f V � N˙.t/dAy ; (4.45)

where dAy is the area element for the deformed boundary.
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More important though is to calculate the variation of an integral quantity over
the boundary itself, viz.,

d

dt

Z
˙.t/

f .t; y/dAy : (4.46)

We can use the divergence theorem once again, convert the surface integral into a
volume integral, apply (4.45) to this volume integral, and use the formula r � N D
2H from differential geometry for the divergence of the unit normal, which tells us
that it is equal to twice the mean curvature (see Appendix 1 in Chap. 9). We thus
obtain

d

dt

Z
˙.t/

f .t; y/dAy D
Z
˙.t/

�
@f

@t
C V � N

�
N � r f /

�C 2H˙.t/f V � N
�

dAy ;

(4.47)
where N means N˙.t/, and the gradient and the area element are calculated in
the deformed coordinates y. This equation shows that the variation of the mean
boundary value of a function relative to the change in the boundary has a term
dependent on the changes in f generated by the variation of the region, and one term
proportional to the mean curvature, both also proportional to the normal velocity
of the deformed boundary. Again, there is a physical interpretation of (4.47): the
right-hand term actually represents the balance between the convective change in
momentum of the boundary and the surface tension induced by the mean curvature.

In the following, we present two concrete examples to show how (4.45)
and (4.47) work. The first example is chosen from the theory of elasticity. Let
u.x/ W D � R

2 ! R be the strain function of a cross-section D of a uniform cylinder
under constant and uniform torsion [164]. The dimensionless equation expressing
the equilibrium of forces and torques implies

4ujD D �1 ; uj˙ D 0 ; (4.48)

where as always ˙ D @D is the boundary curve of the flat 2D region D. The
torsional rigidity is defined as

R.D/ D
Z

D
jruj2dx ; (4.49)

and we want to calculate how the torsional rigidity depends on the variation of the
boundary of the cross-section. We expand the deformation functions in a Taylor
series

.t; x/ D xC tV.x/CO.t2/ ; u
�
.t; x/

 D u0.x/C tu1.x/CO.t2/ : (4.50)
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Using the Jacobi formula, we obtain

dR

dt
D
Z

D
.u1 C u0r � V/dx : (4.51)

The divergence term allows us to transform the domain integral into a contour
integral, and by repeatedly using the boundary conditions, we obtain the final form

d

dt
R
�
.t; x/

ˇ̌ˇ̌
tD0
D
Z
˙

VN

�
@u0
@N

�2
dA ; (4.52)

where differentiation with respect to N means differentiating along a straight line
following the local normal to the boundary, in a neighborhood of the boundary.
Equation (4.52) shows an important result: the rate of change of the torsional rigidity
integral depends, for small deformations (i.e., in a neighborhood of t ' 0) only on
a contour integral and on the normal speed N � V D VN of deformation of the
boundary, and the rate of variation of the function along the normal to the square.

Our second example shows how the spectrum of a Dirichlet type of problem
in a region changes with a change in the boundary. We introduce the Dirichlet
eigenproblem

4uC �u D 0 in D ; uj˙ D 0 ; (4.53)

and we ask how the spectrum �..t;D// changes with the deformation of the bound-
ary. By differentiating the eigenproblem equation with respect to the deformation
parameter, and by consecutive applications of (4.44) and (4.47), one obtains the
fundamental result, for simple eigenvalues and normalized eigenfunctions [164],

d

dt
�
�
D.t/

 D
Z
˙.t/

V � N˙.t/

"
@u
�
t; .t; x/



@N

#2
dAy ; (4.54)

and

d2

dt2
�
�
D.t/

ˇ̌ˇ̌
tD0
D �

Z
˙

2N � V
@u0
@N

�
@ Pv
@N
� 2N � VH

@u0
@N

�
; (4.55)

where we use the same notation convention for u as in (4.50). In (4.54) and (4.55),
the variation of the eigenvalues induced by the variation of the boundary depends
on the rate of change of the eigenfunction in the normal direction. This does not
imply that, if the normal derivative of the eigenfunction is zero, the eigenvalues
are constant. These formulas apply for the Dirichlet conditions only, viz., (4.53).
Imposing zero normal derivative on top of the homogeneous Dirichlet condition
will reduce the eigenfunction to zero, the trivial solution, anyway.

The calculations presented in this section have theoretical value, and in addition
they provide excellent modern tools in various applied fields. For example, morpho-
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metric studies of brain structures were successfully measured using properties of the
Laplace–Beltrami eigenvalue spectra. Such spectral geometry analyses were used
to yield shape descriptors capable of localizing geometric properties and detecting
shape differences between patients [170].

All the constructions described above were inspired by fluid dynamics. Of
course, in order to bring more intuition to the concept of variation of a boundary, one
needs a real world example. However, these constructions can be extended to greater
mathematical abstraction without relying on hydrodynamic intuition and fluid flows.
This leads to the notion of cobordism. In addition, the cobordism equivalence
relation replaces the volume-preserving group of diffeomeorphisms by a simpler
and more elegant structure. This, however, is the subject of the next section.

4.8 Differential Topology of Boundaries: Cobordism

Cobordism is essentially an equivalence relation between compact manifolds of the
same dimension, set up using the concept of the boundary of a manifold.

Definition 3 Two manifolds of equal dimension are cobordant if their union is the
boundary of a compact manifold one dimension higher.

Cobordisms are studied both for the equivalence relation that they generate and as
objects in their own right. Cobordism is a much coarser equivalence relation than
diffeomorphism of manifolds, and is easier to study and compute. An example is
presented in Fig. 4.10. Cobordisms are the subject of study in geometric topology
and algebraic topology, being intimately connected with singularity and critical
point theory (Morse theory), and in surgery theory. This concept is also one of the
fundamental tools of study in topological quantum field theory. An n-manifold M is

Fig. 4.10 An example of a
cobordism C in R

3 between a
disk M D D1 and a double
disk manifold N
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said to be null-cobordant if there is a cobordism between M and the empty manifold,
that is, if M is a boundary of some .nC 1/-dimensional manifold. A circle or an n-
sphere are null-cobordant since they are boundaries of disks. Furthermore, every
orientable surface is null-cobordant, because it is the boundary of a handle body (a
sphere with two handles).

Definition 4 An .nC 1/-dimensional cobordism W between n-dimensional mani-
folds M and N is an h-cobordism if the maps

M ,! W and N ,! W

are homotopy equivalences.

Two topological spaces are homotopy equivalent if there exist two continuous maps
from one space to the other, and conversely, such that their compositions are the
identity maps in both directions. In other words, two spaces are homotopy equivalent
if they can be transformed into one another by continuous maps. For example, a solid
disk or solid ball is homotopy equivalent to a point, and the plane without a point
is homotopy equivalent to the unit circle S1. As a comment, we mention that even
if they are homotopic (one can deform the disk smoothly to a single point), a solid
disk and one of its points are not homeomorphic since there is no bijection between
them. Spaces that are homotopy equivalent to a point are said to be contractible.

Among other useful results, cobordism can provide a good classification tool
for compact manifolds. The task of classifying compact manifolds of higher
dimension by diffeomorphisms is a formidable one. It is possible to classify 2-
and 3-manifolds up to diffeomorphism because these manifolds are geometrizable.
Compact manifolds of dimension 4 are wild mathematical objects with highly exotic
and unique properties. Higher-dimensional compact manifolds can be classified
only using surgery, handle-body decomposition, and cobordism theories. We will
elaborate more on this subject at the end of Sect. 5.8.

In order to simplify the presentation of this section, we consider all manifolds
to be infinitely differentiable and embedded in some n-dimensional Euclidean
space. We follow the introduction to cobordism in Milnor’s book [152]. In order to
introduce manifolds with boundary, we define the m-dimensional closed half-space

Hm D
n
.x1; : : : ; xm/ 2 R

n j xm � 0
o
:

The boundary of this half-space is the set @Hm defined by the hyperplane R
m�1 �

R
m. Then we can define:

Definition 5 A subset X � R
n is called a smooth m-manifold with boundary if

for each of its points we can find a neighborhood U and a neighborhood V of Hm

such that U and V are diffeomorphic. The boundary of X is the set @X of points
corresponding to points on @Hm under such a diffeomorphism.

The boundary @X is itself a smooth .m � 1/-manifold.
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We can now introduce a more precise definition of cobordism. Consider two
compact n-dimensional submanifolds N and N0 of a larger manifold M of dimension
m, and assume that all their boundaries are empty @N D @N0 D @M D ;. The
difference of dimensions m � n is called the codimension of the submanifolds.

Definition 6 We say that N is cobordant to N if the subset

N � Œ0; t/ [ N0 � .1 � t; 1	 � M � Œ0; 1	

can be expanded to a compact manifold X � M � Œ0; 1	 so that

@X D N � f0g [ N0 � f1g ;

in such a way that X does not intersect M � f0g [ M � f1g except at the points of
@X. Here t is a real parameter in Œ0; 1	.

Cobordism is a fundamental equivalence relation on the class of compact manifolds
of the same dimension, set up using the concept of the boundary of a manifold.
Two manifolds of the same dimension are cobordant if their disjoint union is the
boundary of a compact manifold one dimension higher. One of the most important
facts of topology and geometry is that the boundary of an m-dimensional manifold
M is an .m� 1/-dimensional manifold @M that is closed, i.e., with empty boundary.
In general, a closed manifold need not be a boundary: cobordism theory is the study
of the difference between all closed manifolds and those that are boundaries.

A first very important result about boundaries is that there is no smooth map
from a manifold with boundary onto its boundary that leaves its boundary fixed. In
other words, there is no smooth map f W X ! @X such that f .@X/ D @X, that is,
the boundary cannot be a fixed set (made of fixed points) for a contraction of the
whole region inside. In Milnor’s words, the identity map of a sphere Sn cannot be
extended smoothly to a map DnC1 ! Sn. The proof is unexpectedly simple. Let
us assume there is such a smooth map f W D2 ! S1 (see Fig. 4.11). Then for a

Fig. 4.11 Proof that the D2

disk cannot be mapped
smoothly onto its boundary,
the circle S1, in such a way
that the circle is a collection
of fixed points for this map
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point y 2 @X, its inverse image f �1.y/ must be a compact manifold of dimension
2 � 1 D 1, so it must be either a collection of segments with two boundary points,
or a collection of circles without boundaries. So the number of boundary points of
f �1.y/ in X must be even. At the same time, if we want y in the boundary to be a
fixed point of f , its inverse image must be the unique point y, so the inverse image
must have only one boundary point, which contradicts the affirmation about an even
number of boundary points.

Let us now present a few examples of how the theory of boundaries can help
with the task of classifying manifolds. Consider a smooth manifold with non-empty
boundary and consider the differential of the canonical inclusion � W @M ! M.
Because the differential of this map [see (4.3) and (4.4)] is injective by construction,
the image of Tp.@M/ is a well defined .m � 1/-dimensional subspace of TpM. This
further implies that the vectors in Tp.@M/ viewed as vectors in TpM have their
last component equal to zero, independently of the chart. This has geometrical
consequences. The tangent space of the boundary divides the tangent space of the
manifold into two subspaces. In addition, any tangent vector to any curve touching
the boundary has its last component non-negative, and positive inside M, which
means that a vector from the inside tangent space points towards the inside if its last
coordinate is positive.

A first result in the classification of manifolds according to their boundaries is
the following theorem:

Theorem 3 If the boundary of a compact smooth manifold M can be expressed as
the disjoint union of two of its subsets, @M D V0[V1, and if we can define a smooth
real function f on the manifold which attains its maximum and minimum values
only on these two subsets, respectively, and in addition it has nonzero differential
everywhere, then the manifold is diffeomorphic to a hollow cylinder V0 � Œ0; 1	 (see
Fig. 4.12).

The idea of the proof is to create a smooth vector field defined on M as the gradient
of this function f W M ! Œ0; 1	. It can be shown that there is always a smooth
function g on M as the solution of the differential equation generated by this field,
which maps one of the boundaries diffeomorphically, say V0 as initial condition,
throughout M.

Indeed, since the smooth function f has no extremal values in the interior of M,
df .M/ ¤ 0, it attains its maximum and minimum values on M, and we can always

renormalize it to have f .V0/ D 0, f .V1/ D 1, and 0 < f .
ı

M/ < 1. We consider the
vector field

X D rf

krfk2 ;

and let g.p; t/ W M � R ! M be the solution of the differential equation dg=dt D
dgp;t=@t D Xf .p;t/ with initial condition g.V0; 0/ D 0. We have

d

dt
fg D rf � dg

dt
D rf � dg

@t
D rf � X D rf � rf

krfk2 D 1 :
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Fig. 4.12 A compact 2D
manifold with boundary
formed by two S1 circles, the
tips of the ears, is
diffeomorphic to a finite
cylinder

It follows by integration with respect to t that fg.p; t/ D t C f .p/. Because M is
compact and the resulting function fg is smooth, and because g.p; t/ cannot ‘stop’
inside M, it follows that t will assume all possible values when p runs over the
whole of M, that is, t D fg.p; t/ � f .p/ 2 � � f .p/; 1 � f .p/

�
. In particular, the

map g.p; t/ W V0 � Œ0; 1	 ! M is well defined, smooth, and invertible, so it is a
diffeomorphism. Hence, when p covers one of the boundaries, say V0, the parameter
t maps this boundary all over M, and M is therefore a cylinder (see Fig. 4.12).

Another important result obtained directly from cobordism theory is the Hopf
degree theorem:

Theorem 4 A connected, oriented manifold M without boundary is smoothly
homotopic to a sphere Sn if and only if they have the same degree.
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Fig. 4.13 A torus of genus 2
(left) and the graph of its
critical points (red and right).
Each contour determines an
equivalence class which is
represented in the critical
point graph by a single point

One immediate consequence is:

Theorem 5 Any smooth connected one-dimensional manifold is diffeomorphic
either to the circle S1 or to some interval on the real axis.

The degree is calculated using (4.6). These results illustrate the scope of differential
techniques before homotopy classification became primarily a project of algebraic
topology. The degree of the map somehow measures the number of critical points of
the boundary, because a change in the sign of df is in general associated with a zero,
that is, a critical point, if the manifold is smooth and connected. The connection
between the degree and the boundary shape revealed by the Hopf degree theorem
has many applications. For example, in the case when the boundary is represented
by the graphic of a real function z D f .x; y/, the type of topological changes on the
surface are determined by the type of critical points, which is given by the number of
negative eigenvalues of its Hessian. In this way, it is possible to extract a topological
graph based on points, edges, and faces (what is known in algebraic topology as a
CW complex). Figure 4.13 exemplifies this for a double torus surface that can be
represented by a simple graph whose nodes are the critical points of the surface.

The graph representation of a surface through its critical points and the arcs
between them is rather simple and can represent the main topological properties
of a boundary. Because this property ensures efficient topological control in the
compression and simplification of boundaries, it can be used to study the meta-
morphosis (morphing) of objects. This field of application needs a mathematical
treatment that produces a rapid topological detection, classifies the common shape
features, and preserves the low-level geometrical information. Such a representation
has to allow for direct transformation and modification on the model and give an
effective theoretical support. In fact, morphing is a technique used to analyse the
evolution and metamorphosis from one image to another [171]. The idea is to get a
sequence of intermediate configurations which, when put together with the original
surface, would represent the change from one to the other. Applications include
shape recognition, metamorphosis processes, ocean surface wave reconstruction,
and space missions.



Chapter 5
Discrete Mathematics

There is no problem in the whole of mathematics which cannot
be solved by direct counting

Ernst Mach

The revolutionary growth of experimental data in the sciences, and the availability of
unprecedented computing power shape and challenge all the fields of mathematics,
from traditional to contemporary, and from continuous to discrete. New fields
like computational algebraic topology and computational geometry have appeared,
combining efforts to develop mathematical tools for a broad new perspective of
research. To enumerate only a few: the topological and statistical analysis of shapes,
images, and high-dimensional data sets; algorithms for motion planning and the
study of configuration spaces of mechanical systems; stochastic topology and the
study of large growing systems; the theory of concurrent computation and computer
networks, etc.

The fundamental relation between continuous and discrete mathematics is not
the sole result of the computer revolution, and somehow the concept of boundary
mediates the transition from continuous to discrete. There is an interesting relation
between the topological boundary (a continuous concept) and the concept of
dimension (a discrete concept). Indeed, based on the fact that in any n-dimensional
Euclidean space the boundaries of n-dimensional disks have dimension n � 1,
one can define the dimension of a space in an inductive manner in terms of the
dimensions of the boundaries of suitable open sets. Put simply, we can define
an inductive dimension counting up from �1, the dimension of the empty set,
by induction. The inductive dimension of a set X is the smallest natural number
n D ind.X/ such that any point in X has an open neighborhood included in X whose
boundary has inductive dimension less than or equal to n � 1.

In this chapter we want to correlate the recent results of research with the
importance of the boundary for graph and network theories. In order to take
advantage of the numerous quantitative results relating parameters describing the
boundaries of a graph or network (like volume, girth, etc.) with the type of graph,
we shall introduce here some basic definitions and properties of abstract graphs.
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5.1 Structured Finite Sets

A finite set of points can be structured by equivalence and order relations, and more
importantly by directed and undirected links. Such objects usually fall into the broad
category of graphs and networks. Graph and network theory is one of those areas
of high interest and applicability where one can easily move from the geometric
meaning to the algebraic and statistical one. In its most general sense, a graph is
a category where objects are called nodes and morphisms between them are called
edges. Functors between the graph categories would be modes of understanding
graphs, and these come in various ways, depending on the reader’s familiarity with
a certain area of knowledge in computer science.

A possible interpretation of a graph can be the description of the states of a
system, that is, a functor between a category of thermodynamical states and a
drawing. We may gather all the states of the system as elements of an abstract space.
Scientists like to introduce a state space injectively into some geometric space,
for example some n-dimensional real affine space. This map associates with each
state or configuration a point in the real affine space called a node. The system can
perform transitions from one state to another, or even from one state to more than
one state, the last possibility being understood as ‘in principle’. As in the case of
an ice crystal warmed up by an energy pulse: it can transform into a drop of water,
it can vaporize, it can be ionized into a cloud of plasma, or it can be transformed
into a shower of elementary particles. If we know all possible states, and we list the
possible and impossible transitions, we build a graph with the states as nodes, and
transitions as edges.

Another simple interpretation consists in selecting a natural number n and
building an abstract set of cardinality n called the set of nodes. Next, we build a
square matrix with zero for all its entries and size equal to the number of nodes.
This matrix will be defined more exactly in Sect. 5.3. If we start to convert some of
the entries of this matrix into 1s in some manner, we obtain a graph in which the
coordinates of the 1 determine the labels of nodes connected by edges.

We divide this chapter into three sections as follows. In Sect. 5.2, we introduce
the prerequisites for the formal theory of graphs, including definitions and classifi-
cations, with a few examples and some basic bounding theorems. In Sect. 5.3, we
introduce algebraic approaches to graphs, the operators and matrices associated with
a graph, their spectra and the relation between eigenvalues, and some topological,
mainly boundedness, properties. Finally, in Sect. 5.4, we discuss the main topologi-
cal properties of graphs relating to their boundaries.

5.2 Formal Theory of Graphs

Any set A described in this chapter is considered finite, and we denote the number
of its elements card.A/ D jAj. An abstract graph G.N;E/ is a finite set of points
(nodes, vertices) submerged in a finite-dimensional Euclidean space and denoted
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N.G/. We also introduce a set of continuous curves E.G/ joining the nodes and
called edges or links. The set E.G/ is always a subset of N.G/�N.G/�diag

�
N.G/�

N.G/

. The number of nodes of a graph is called the order of the graph, and it is

denoted by jGj D jN.G/j, while the number of edges is denoted kGk D jE.G/j. An
edge e 2 E.G/ has two end nodes i; j 2 N.G/, called adjacent or neighbor nodes. If
two nodes fi; jg 2 N.G/ represent the end points of an edge, we can write i � j or
.ij/ D eij 2 E.G/. We denote the edge by its end nodes e D .ij/ 2 E.G/. The set
of all edges connected to a node i 2 N.G/ is denoted E.i/ � E.G/, and the degree
of the node i (or its valency) is defined as jE.i/j D d.i/. All the nodes connected
to this node by an edge are called its neighbors. If for any two nodes .ij/ D . ji/,
the graph is called undirected, and directed otherwise, and examples of graphs are
shown in Figs. 5.1 and 5.2. A graph G0.N0;E0/ is subgraph of a graph G.N;E/ if
N0.G0/ � N.G/ and E0.G0/ � E.G/, and if any two nodes are connected the graph
is said to be connected.

If all the nodes have the same degree k, then we call G a k-regular graph (see
the enumeration below). We define the average degree and the volume of a graph by
[172]:

hdi � 1

jGj
X

i2N.G/

d.i/ D vol.G/

jGj D 2
kGk
jGj : (5.1)

The sum of all degrees vol.G/ D P
i2N.G/ d.i/ stands for the volume of the graph.

The density of a graph is 2kGk=jGj.jGj�1/. An open path, or simply a path between

Fig. 5.1 Example of a graph with jGj D 10, kGk D 62. The graph’s nodes are generated
randomly and different edges are colored according to the length, in order from black, red, blue,
to green. The nodes can represent geographic locations, while edges of different colors represent
routes with different means of transportation



158 5 Discrete Mathematics

Fig. 5.2 A graph with
jGj D 40, kGk D 247 which
has the graph in Fig. 5.1 as a
subgraph. In addition to that
previous graph, we have
added more distant nodes and
more edges to connect at
greater distances (green)

nodes i and j in a graph is a connected subgraph P containing i; j as nodes of order 1,
and having all the other nodes of order 2. We denote by P.i; j/ the set of all possible
paths P D P.i; j/ joining the nodes i; j in G. In a path, the nodes do not repeat,
unless the end nodes coincide, in which case the closed path P is a cycle Z with all
its nodes of order 2. Furthermore, a cycle can have two orientations! The number
of all cycles in a graph is given by the Euler formula kGk � jGj C jCCj, where we
denote by jCCj the number of its connected components.

Definition 7 We define the distance between two nodes as the minimum number of
edges between the two nodes i; j 2 G :

d.i; j/ D min kpath i! jk ;

and we define the diameter of G as

dia.G/ D max
i;j2N.G/

d.i; j/ :

We can further introduce the eccentricity of G as

ecc.G/ D max
i;j2N.G/

d.i; j/ :

The length of the shortest/longest cycle in a graph is the girth/circumference of the
graph.

A walk is a connected union of paths with only 0 or 2 end nodes. In a walk, we
can repeat the nodes, and the length of a path/cycle is the number of its edges,
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jPj D cardf.i; j/=.i; j/ 2 P.i; j/g. We denote a k-path (path of length k) by Pk and
a k-cycle (cycle of length k) by Zk. Consequently, the sets of all paths, walks, and
cycles are ordered sets. A graph G is Hamiltonian if there exists a path including all
its nodes. Two paths in a graph are disjoint if they have in common at most their end
points, and a hop is an operator allowing the motion from one node to a neighboring
one.

Among all the many types of graphs, we would like to mention some special ones
that provide interesting body–boundary relationships. A complete graph denoted
KjGj has all its nodes adjacent to each other, and all nodes have the same maximum
degree dmaxjGj � 1. A k-regular graph has all nodes of the same degree k. A 2-
regular graph has its nodes aligned along a circle and has the maximum girth. A
planar graph is an embedding in a compact and connected set in the real plane
such that nodes correspond to points and edges correspond to arcs between points
without multiple intersections. The bipartite graph has its nodes divided into two
disjoint sets. A k-node connected graph has the property that, if we remove any k
or fewer of its nodes, the graph remains connected. Random graphs are constructed
by associating a certain probability criterion with a certain property of the graph,
e.g., the probability of occurrence of an edge between any two arbitrary nodes is a
random number between zero and one.

In the following, we present some quantifiers describing the topology of graphs.
All topological definitions are based on the existence of a minimum (infimum) or
maximum (supremum) of the set of distances in the graphs. We define the distance
between two connected nodes d.i; j/ as the length of the shortest path between them
in G :

d.i; j/ D infP.i;j/2P.i;j/jP.i; j/j :

For any node i in G, the longest path starting from it is called the eccentricity of the
node:

�.i/ D supj2N.G/d.i; j/ :

The radius of a graph G is defined as the number R.G/ D rad.G/, defined as the
shortest of all its eccentricities, for all the nodes in the graph. In other words the
radius of a graph is the shortest longest distance over the whole of G, i.e.,

R.G/ D rad.G/ D infi2N.G/supj2N.G/d.i; j/ :

The diameter of G is the greatest distance between any two nodes in G (see an
example of such a diameter path in Fig. 5.3):

D.G/ D dia.G/ D supi;j2N.G/d.i; j/ :

The length of the shortest cycle in G is the girth g.G/ of G, while the length of
the longest cycle is the circumference circ.G/ of G. The two numbers are always in
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Fig. 5.3 Example of a
diameter path. Courtesy of
igraph 0.4

the relation g.G/ � circ.G/. A node which is placed such that its longest distance
to all other nodes is equal to the radius of the graph is called a central node. The
radius and diameter of a graph are not in an exact algebraic relation, but they satisfy
a sort of monotony: if one is larger (smaller) the other is also larger (smaller). This
happens because

rad.G/ � dia.G/ � 2rad.G/ : (5.2)

We characterize different types of connected and undirected graphs by using two
dimensionless parameters 1 � D=R � 2 and 0 � g=circ � 1 (see, for example,
Fig. 5.4). The radius, diameter, and degree provide a first description of the topology
of a graph. They are interconnected through some relations which we present here.

Theorem 6 A graph G with radius and degree bounded from above, i.e., R � Rmax,
supi2N.G/ d.i/ � dmax � 3, has an upper bound for its number of nodes:

jGj � dmax.dmax � 1/Rmax

dmax � 2 :

The proof can be found in [172]. There is also a lower bound theorem for the number
of nodes [172]:
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Fig. 5.4 Four types of graphs
having extreme values for the
ratios D=R and g=circ.
Clockwise from bottom right:
A linear graph
D ' 2R D jGj and g D 0; a
Pappus graph D ' R and
g D 3 < circ; a ring graph
R D D D n=2 and g Dcirc; a
combination of linear and
ring D D 2R, g Dcirc

Theorem 7 A graph G with average degree and girth bounded from below has a
lower bound for G. That is, if d.G/ � dmin and g.G/ � gmin, then

jGj �

8̂
ˆ̂̂<
ˆ̂̂̂
:

1C dmin

r�1X
iD0
.dmin � 1/i for g.G/ D 2rC 1 ;

2

r�1X
iD0
.dmin � 1/i for g.G/ D 2r :

In other words, scarcity of nodes in a graph involves either a low degree or narrow
cycles. A regular graph with a minimum number of nodes for its given girth and
degree is called a cage graph. We also mention the cornerstone of graph theory,
known as Menger’s theorem [172]:

Theorem 8 For an undirected graph G and for any two arbitrary sets of nodes
N1;2 � N.G/, the minimum number of nodes separating N1 from N2 in G is equal to
the number of disjoint paths in G beginning at N1 and ending at N2.

It is interesting to attempt to classify graphs in terms of the topology and geometry
of their boundaries, when these concepts can be applied. In the case of planar graphs,
we can mention the following important types of graphs [173–176]. Graphs with a
regular polygon for boundary are called wheel graphs WN , and are constructed as
graphs with jGj D N � 4 nodes in such a way that one node of degree n � 1 is
connected with all other nodes of degree 3 which form one .n�1/-cycle. The wheel
graphs have diameter 2 and girth g D 3. The class of graphs with spherical shape
includes regular graphs of higher degree than 3, small-world networks, and cage
graphs. Cubic graphs have nodes of degree 3 and their boundaries take the shape of
a polyhedron, or a crystal lattice.
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5.3 Algebraic Theory and Spectra of Graphs

Graphs can be studied fairly comprehensively by using linear algebra. In this
section, we introduce these algebraic properties, especially the graph spectra, while
in Sect. 5.4, we discuss graph topology and boundaries. The main philosophy of the
connection between graph spectra and graph topology, and in particular a graph’s
boundary, size, shape, etc., is this: the first two (the smallest) and the last two (the
largest) of the eigenvalues of the spectrum of the normalized or non-normalized
Laplacian control its size and topology, while the central part of the spectrum is
of little relevance here. With (5.16), we will show how adding edges to a graph
increases both the density and the length of these spectra. But adding edges may
not change the graph topology at all. It is not so much how the spectrum looks, but
rather its end eigenvalues that control the topology, a fact which will be abundantly
exemplified in the following discussion.

For any undirected connected graph with n D jGj nodes labeled from 1 to n, and
m D kGk edges, we can build six important matrices associated with the graph:
the adjacency matrix An�n, the incidence matrix Bn�m, the diagonal matrix �n�n,
the Laplacian matrix Ln�n, the signless Laplacian matrix Qn�n, and the normalized
Laplacian matrix Ln�n.

The graph matrix with the most properties is the adjacency matrix, which
acts in the space of nodes and describes how the nodes are connected. In order
to understand how this matrix works, we associate the n-dimensional real space
v 2 f0; 1gn with the graph, and also associate with each node a basis vector from the
canonical basis in this vector space. Every time we apply the matrix A to the left of a
basis vector i, the resulting vector has ones at the positions of the nodes connected to
i. Recurrent application of A shows how connectivity propagates through the graph
from the node i, making the graph work like an actual network. For example, in
Figs. 5.5, 5.6, 5.7, we show the repeated action of A upon the vector associated with
node 1.

The diagonal matrix � has the form .ıijd.i// and it measures the degree of each
node. The incidence matrix B is no longer square, and it describes what edges are
connected to what nodes and how. A way to understand the action of B is to label
and order the edges by their end nodes in lexicographic order, i.e.,

.e1; e2; : : : ; e˛; : : : / D .ei;j; ei;iCj; : : : ; eiCl;iClCn; eiCl;iClCnCm; : : : / ;

with i; j; l; n;m > 0. The incidence matrix is the most interesting for our approach
in this book, because it is nothing but the boundary operator from homology theory
in its discrete version (see also Sect. 5.4). The matrix B also plays the role of a
conservation law because it acts on the space of edges and has values in the space
of nodes. It is practically identical to Kirchhoff’s second law for electrical networks
[172, 173]. Sometimes, especially when undirected graphs are used, one uses instead
the matrix R D .jBi;˛j/.
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Fig. 5.5 Action of operator A on a complete graph with 10 nodes starting from node 1. It took just
two iterations to complete the graph. (a) A.1; 0; 0; 0; 0; 0; 0; 0; 0; 0/. (b) A2.1; 0; : : : ; 0/ D K10
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Fig. 5.6 Another example of propagation through the graph by the action of the matrix A. The
graph is strongly connected, with size 10 nodes, and the initial vector is .1; 0; 0; 0; 0; 0; 0; 0; 0; 0/. It
took three steps to complete the graph with the operator A, as compared with eight steps to complete
the graph in the previous figure. (a) A.1; 0; : : : ; 0/. (b) A2.1; 0; : : : ; 0/. (c) A3.1; 0; : : : ; 0/ D N.G/



164 5 Discrete Mathematics

12

(a)
1 2 3

(b)

1

2

3

4 6

7

(c)

1 2
3

4

6

7

5

8

(d)

1 2
3

4

6

7

5

8
9

(e)

Fig. 5.7 Another example of propagation through the graph by the action of the matrix A.
The graph is weakly connected, almost a single path, with size 9 nodes, and the initial vector
is still .1; 0; 0; 0; 0; 0; 0; 0; 0; 0/. It took 6 steps to complete the graph. (a) A.1; 0; : : : ; 0/. (b)
A2.1; 0; : : : ; 0/. (c) A3.1; 0; : : : ; 0/. (d) A4.1; 0; : : : ; 0/. (e) A5.1; 0; : : : ; 0/

The next three matrices are built from A, B, and� :

L D � � A ; the Laplacian ; (5.3)

Q D �C A ; the signless Laplacian ; (5.4)

L D

8̂
<̂
ˆ̂:

1 if i D j ;

� 1p
d.i/d. j/

if .ij/ 2 E.G/ ;

0 otherwise ;

the normalized Laplacian : (5.5)

The matrix L is also called the Kirchhoff matrix (it is useful in electrical network
studies), or the admittance matrix, while the matrix Q is also called the co-Laplacian,
and the matrix L is also called the correlation or transition matrix because it plays
an important role in the study of random walks.

Except for the matrix B, all the operators defined above are symmetric and
positive-definite, so they have real, discrete, and bounded spectra. In the literature,
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one labels the eigenvalues of the three fundamental graph matrices in the form:

Au D �iu ; �1 � �2 � � � � � �n ;

Lu D �iu ; 0 D �1 � �2 � � � � � �n ;

Lu D N�iu ; 0 < N�1 � N�2 � � � � � N�n ; and always 0 � N�i � 2 ;
Qu D �iu ; �1 � �2 � � � � � �n :

(5.6)

The largest eigenvalue of A is called the degree of G. The normalized Laplacian
eigenvalues are all bounded between 0 and 2, its spectrum is symmetric with respect
to 1, and a high multiplicity for the eigenvalue 1 may show duplications in the graph.
Furthermore, the high density of its eigenvalues near 2 is a sign that the graph is
bipartite or close. There are relations between these matrices, viz., Q D BBt;TrQ D
TrL, and L D ��1=2L�1=2 D BBt.

All these matrices act like operators on functions g W N.G/ ! R defined on
nodes. For example, the normalized Laplacian acts in the form [175, 176]

Lg.i/ D 1p
d.i/

X
ij2E.G/

"
g.i/p
d.i/
� g. j/p

d. j/

#
: (5.7)

The incidence matrix has a profound topological meaning, because it acts like
a boundary operator in homology, whence it is itself called the graph boundary
operator. The boundary operator B transforms kGk-dimensional vectors u 2
f0; 1gkGk, i.e., vectors describing subsets of edges, into jGj-dimensional vectors
v 2 f0; 1gjGj, i.e., vectors identifying subsets of nodes. If applied to a chain of edges
(we can use the C1 notation of a one-dimensional cycle from the graph considered
as a simplicial complex), it generates its boundaries (the corresponding C0 set of
points), that is, the nodes describing the beginning and end of the cycle B.C1/! C0,
C1  BtC0. Figure 5.8 shows an example of a simple directed graph with incidence
matrix in the form

B D

0
BBBBB@

�1 0 0 �1 0 0

1 �1 0 0 �1 0

0 1 �1 0 0 0

0 0 1 0 0 �1
0 0 0 1 1 1

1
CCCCCA
: (5.8)

If we apply the boundary matrix B on the cycle .1; 0; 0;�1; 1; 0/ � E.G/, that is the
cycle .125/, we obtain no boundary, or an empty set of nodes .0; 0; 0; 0; 0/ � N.G/.
If we apply B on the chain .1; 1; 1; 0; 0; 1/ � E.G/, we obtain the boundary 1 and 5
of this chain, namely the nodes .�1; 0; 0; 0; 1/.

The Laplacian matrix acting on functions of nodes acts in the same way as
the Laplace–Beltrami operator acts on functions defined on oriented Riemannian
manifolds (see Sect. 4.3) [175]. The theorem for the Rayleigh quotient and the
minimum eigenvalue can be used rather as an approximation in the Riemannian
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3

4 5

2

1

Fig. 5.8 A directed graph with edges labeled in the order 12; 23; 34; 15; 25; 45. If we apply its B
matrix to the cycle .125/, we obtain the null boundary set. If we apply B to the chain of nodes
f1; 2; 3; 4; 5g, we obtain the boundary ‘from’ 1 ‘to’ 5

manifold case, while in graph theory where all norms are finite sums, this theorem
becomes a rigorous and important tool.

For a Dirichlet boundary problem, it is known that the solutions form a discrete
bounded spectrum 0 < �1 � �2 � � � � � �max, and the following principle of the
minimum eigenvalue holds:

min RQ D �1 ; (5.9)

where RQ is the Rayleigh quotient. The equivalent of the principle of the minimum
eigenvalue can be translated in terms of graph theory and enables us to write

N�1 D vol.G/ inff

P
i�j.f .i/ � f . j//2P

i�j.f .i/ � f . j//2d.i/d. j/
;

N�n�1 D supf RQGŒ f 	 ;

(5.10)

where f runs through the orthogonal complement of the vector with components�
d.1/; d.2/; : : : ; d.jGj/, and where 0 < N�1 � N�2; : : : ;� N�n are the eigenvalues of

the normalized Laplacian L.
We mention that such calculations become useful for example in conformal field

theory [176], where one is interested in calculating the partition function as an
integral of a negative exponential of the Hamiltonian over a set of state functions
f defined on the graph with prescribed values � on the node boundary of a subgraph
S of a larger lattice. We have

Z.�/ D
Z

f
e�cHŒ f ;S	 ;
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where c is a positive constant, HŒ f ; S	 D hf ;Lf i, L is the normalized Laplacian of
the lattice graph, the scalar product is taken on the nodes of S, and the integration is
taken over all the functions f having the value � on •S.

5.3.1 Relations Between Eigenvalues and the Diameter

In order to find the exact relations between the graph spectrum and its diameter,
we need an exact definition for the diameter. Definition 7 is the traditional one: the
maximum over all ordered pairs .i; j/ of the shortest path from i to j [172–176]. For
example, in [177], the authors proposed a definition based on the average distance in
a graph, namely the length of the shortest path between two nodes averaged over all
ordered pairs .i; j/. The difficulty here is that, according to this second definition, a
single disconnected pair has an infinite average distance which completely changes
the results. Moreover, as emphasized in [178], a large network like the web is rife
with such pairs, so discarding a few outliers before taking this average would not
help the situation. In order to avoid such problems, recent literature uses a revised
definition where either the max or sup operators, or the average, are taken only over
pairs of connected nodes. Obviously, in the case of a connected graph there will be
no need for such a special amendment.

For a finite and connected graph where the diameter can be calculated exactly,
it has been shown that the value of the diameter is strongly related to its Laplacian
spectrum, and there are a number of interesting bounding relationships between the
diameter of a graph and the smallest and largest Laplacian eigenvalues [174, 175].
The general findings prove that the diameter cannot be smaller than a limit imposed
by the smallest eigenvalue of its normalized Laplacian and by the graph volume
[175]:

dia.G/ � 1

N�1vol.G/
:

The lower bound shown above can also be re-expressed in terms of the second
smallest eigenvalue of the Laplacian:

dia.G/ �
�

4

jGj�2
�
; (5.11)

where the square bracket in this equation and the next one represents the integer
part. Among the relations providing upper bounds for the diameter of a graph [176],
we have the Alon–Milman inequality which relates the diameter to the smallest
Laplacian eigenvalue:

dia.G/ �
"s

2dmax

�2
log2 jGj

#
C 1 : (5.12)



168 5 Discrete Mathematics

If G is not a complete graph, then

dia.G/ � 1C ln.jGj � 1/
ln
�n C �2
�n � �2

: (5.13)

Let G be an undirected k-regular graph having all its A eigenvalues smaller in
magnitude that a certain eigenvalue of the Laplacian, i.e., j�ij < �, for all i D
1; 2; : : : ; n. Then the diameter is bounded above by the relation

dia.G/ � ln.jGj � 1/
ln.k=�/

: (5.14)

Finally, for a connected graph G with f�i;migiD1;:::;] distinct Laplacian eigenvalues
together with their multiplicities, we have [173]

dia.G/ � jGj � 1 �
]X

iD1
.mi � 1/ :

This relation shows that graphs with a large diameter have Laplacian eigenvalues
with small multiplicities, i.e., the majority of the Laplacian eigenvalues are distinct.
In the following paragraph, we introduce diameter bounds for special types of
graphs. A Moore graph is the regular graph with the maximal number of nodes
for a given diameter and given degree. For Moore graphs we have girth.G/ D
2 dia.G/C 1 [174]. For a generalized polygon graph, we have girth.G/ D 2dia.G/.

A very particular graph, having the smallest diameter for a given number of nodes
and degrees, is shown in Fig. 5.9. This is a Kautz graph, KnC1

d , of degree m and
dimension jGj D n [176]. It has .n C 1/mn nodes and .d C 1/dnC1 edges. It is a
directed graph, constructed from a finite alphabet with mC1 symbols, whose nodes

BA AB CB

CA BC

AC

CBA

ABA BAB

ABCCAB

ACA

BAC CAC CBC ACB

BCB

BCA

Fig. 5.9 Example of a Kautz graph
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are all possible words of length n C 1 symbols written with this alphabet, without
adjacent repetitions of symbols in the same word.

5.3.2 Relations Between Eigenvalues and Connectivity

The connectivity of a graph is related to its Laplacian spectrum, too. The second
smallest eigenvalue �2 of the Laplacian matrix for a graph is called its algebraic
connectivity and denoted by a.G/. The number of connected components of a graph
is equal to the multiplicity of its � D 0 null Laplacian eigenvalue. For a regular
graph of degree k, the multiplicity of its largest Laplacian eigenvalue gives the
number of its connected components [173–176].

5.3.3 Relations Between Eigenvalues and the Topology
of a Graph

A graph is almost always finite. The counterexample would be provided by infinite
networks, which are in fact no longer fictional theoretical examples, especially in
light of the last counting of Facebook social Internet documents and registered users:
1.1–1.3 billion in 2013! Nevertheless, it is a little strange to study the topology of
a graph. Such a study can be done in terms of connectivity, as we presented above,
or in terms of excision or removal theorems. A graph cannot have holes of the kind
we have in traditional homotopy and homology theory, but we can remove parts of
it, and check how this surgery changes the graph spectra. Through such procedures,
we can identify what limitations are introduced by the graph spectra with regard to
how large, or how separated, etc., such subsets can be.

A bipartite graph definitely has a specific type of topology. The criterion for
having a bipartite graph is to arrange for its Laplacian and its signless Laplacian to
have identical spectra, and conversely [175]. Furthermore, for a bipartite graph we
have �1 C �n D 0.

If a graph is k-regular then the second largest eigenvalue of the incidence matrix
A satisfies the Alon–Boppana formula [173]

�2 � 2
p

k � 1
�
1 �O

�
ln.k � 1/

ln k

��
:

There is a strong result concerning the maximal size of disconnected subsets
of a given graph [173]. Let us choose two disjoint subsets of nodes of a graph,
X;Y � N.G/, X

T
Y D ;, such that they are completely separated (there is no edge
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between their respective elements). Then we have

jXj jYj
.jGj � jXj/.jGj � jYj/ �

�
�n � �2
�n C �2

�2
; (5.15)

where n D jGj, and of course �2; �n are the smallest nonzero and largest eigenvalues
of the Laplacian spectrum, respectively. This theorem explains that the sizes of two
disjoint sets of nodes (disjoint and not being neighbors of one another) is limited by
the spacing of the Laplacian spectrum. The left-hand side of the in equation (5.15)
is a strictly increasing function of the size of each of the subsets, so the larger the
right-hand bound, the larger the separated sets that can be selected inside the graph.
It is known from the Zhang–Luo–Anderson–Morley theorem that [173, 176, 179]

jGj
jGj � 1dmax � �n � min.jGj; 2dmax/ ;

and

4

dia.G/ � n � �2 �
jGj
jGj � 1dmin :

A contour plot of the right-hand term of the inequality (5.15) reveals that, for large
enough n (e.g., n > 50), the range of the maximal degree and the diameter of G are
not much relevant, while the minimum degree of the graph drastically changes the
ranges of the right-hand term. A lower value for the minimum degree increases the
value of the right-hand term towards its maximum value of 1, while higher values
of the minimum degree in a graph allow much lower values for the right-hand term.
Consequently, graphs with higher values for their minimum (hence average) degree
are less likely to be partitioned into disjoint and separated subsets than those with
lower values for the minimum degree. Figure 5.10 exemplifies a separation analysis
for a graph with 100 nodes.

5.3.4 Relations Between Eigenvalues and Paths

A path is a connected non-repeating subset of edges of a graph such that the
intersection of any two of these edges is either empty or a common node, and the
intersection of three edges is the empty set. A walk is a parameterized connected
subset of edges of a graph. Both paths and walks can be open or closed, and in the
latter case, the path is called a cycle.
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Limitation in subsets size

Low minimumdegree graph

High minimumdegree graph
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Fig. 5.10 Plot of the left-hand term in the inequality (5.15) versus the size of a subset X disjoint
and separated from another fixed size subset Y of the same 100 node graph. For the thin dashed
curve, the subset Y has 4 nodes, while in the thicker dashed curve, Y has 40 nodes. For a given X; Y,
the abscissa of the plotted curves represent the admissible �2;n eigenvalue limitation. For example,
a highly connected graph with minimum degree 40 has, for the right-hand side of the inequality,
the limit indicated by the blue horizontal line, hence showing that the maximum size of the set X
is around 38 for jYj D 40. A graph with minimum degree 4 involves the limit indicated by the red
line, hence showing that the maximum size of the set X is around 76 for the same jYj D 40. The
conclusion is that it is harder to build large separated sets in a highly connected graph

The cardinality of the set Pk of independent closed walks of length k in G is
given by

cardfPkg D
jGjX
iD1
.�i/

k ;

also called the k th spectral moment of G. For example, there are jGj D n closed
walks of length zero, kGk=2 closed paths of order 1, jGjhdi closed walks of length
2, etc.

5.3.5 Other Relations Between Eigenvalues

This is a summary of useful inequalities and relationships between eigenvalues of a
graph. For example, it is known that the second smallest eigenvalue of the Laplacian,
�2, is (the algebraic connectivity) superadditive with respect to unions of graphs.
For a k-regular graph, its degree k is equal to the largest eigenvalue of the matrix A.
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Otherwise, we have [173]

kmin � hdi � max.�A/ < kmax :

Furthermore, �n � �1, and equality holds for bipartite graphs. If a graph is
connected, the largest A eigenvalue �1 has multiplicity 1. This eigenvalue itself
measures the average degree hdi of the graph:

max
�hdi;

p
dmax

 � �1 D �max � dmax ;

and therefore we have maxj�ij � maxi2N.G/d.i/.
The number �1 D �max is called the degree of G, and we have

hdi � �1 D �max � max d :

For a bipartite graph, we have �1 D ��n, and for a regular graph, we have �n D n.
There is a very important theorem on the Laplacian spectrum related to reduction

or growing of a graph. Consider G with L-spectrum �i. Then if e 2 E.G/, consider
the smaller subgraph G0 D G � feg with its L0-spectrum �0

i. We have

0 D �0
1 D �1 � �0

2 � �2 � : : : �0
n � �n ; (5.16)

which means that the roots of the two corresponding characteristic polynomials for
matrices L and L0 alternate, in exactly the same way as the zeros of orthogonal
polynomials of different orders, or zeros of derivatives of functions.

The spectrum �1 � �2 � � � � � �n of the adjacency matrix A provides a number
of important inequalities between the number of edges and the degrees of the nodes
[174]:

�1 � 1

kGk
X
i�j

p
d.i/d. j/ ; (5.17)

�1 �
s

kGkP
ij2E.G/ 1=d.i/d. j/

; (5.18)

�1 �
sPn

iD1
�
d.i/

�2
jGj ; (5.19)

�1 � 1

2

�p
8kGk C 1 � 1 ; (5.20)

�1 � max
ij2E.G/

p
d.i/d. j/ : (5.21)
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We also have the inequalities [175]

nX
iD1
N�i � jGj ; N�1 � jGj

jGj � 1 ;
N�n�1 >

jGj
jGj � 1 ;

where 0 < N�i are the eigenvalues of the normalized Laplacian L, labeled in
increasing order.

5.4 Graph Topology and Boundaries

The past thirty years have seen increasingly rapid advances in the field of topological
methods in the study of graphs and networks. During these years a considerable
amount of literature has been published on topological quantifiers for graphs, espe-
cially emphasizing the relationships between topology and spectra. Traditionally,
the topology of a graph has been assessed by evaluating a certain number of
topological quantifiers based on edges (connectedness) or on the distance between
nodes (radius, eccentricity, diameter), or the path structure (average path length),
not to mention cycles or other closed substructures (girth, circumference, clustering
coefficients), separability of subgraphs (isoperimetric number, expanders, Colin de
Verdière number, Cheeger constant), boundaries, embeddability, etc.

In spite of there being so many topological tools, there are still difficulties with
graph and network topology when attempting to implement results from traditional
continuous topology, homotopy, and homology. Such limitations arise from the
fact that one can apply topological concepts on different levels when modeling or
attempting to understand discrete structures. For example, there is a ‘data level’
representing the way data initiated at a node is actually forwarded to other nodes.
Topologies based on the data level reflect physical nodes and connections, but these
topology graphs are hard to create and even harder to validate for correctness and
completion. There is also a ‘control level’ representing policies for sending data,
and this topology is based rather on the structure of edges than nodes. Different
types of graph topologies have become a well defined area of research.

5.4.1 The Graph Topology and the Diameter

The difference between this section and Sect. 5.3.1 consists in the criteria used
to evaluate the diameter. Here we wish to relate the diameter to the possibility
of separating disjoint subsets of the graph, which is rather a topological than an
algebraic property. All these inequalities are upper bounds for the diameter and all
depend on the logarithm of the size jGj of the graph. This phenomenon has been
known for a long time [180–182] from statistical studies on large-scale networks or
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Fig. 5.11 The bounds of the
radius and diameter of a
graph versus its number of
nodes jGj

from theoretical studies on random graph models. For example, in [183], the same
behavior was noticed on a very large regular graph. In [184], the authors proved
that, even for regular networks with just a little bit of randomness, the logarithmic
upper bound of the diameter is a stable phenomenon.

Figure 5.11 presents a synthetic view based on various theorems concerning the
graph diameter with upper and lower bounds. From the large number of available
studies for small connected graphs, one can conclude that the diameter is bounded
below by a constant divided by jGj, and bounded above by another constant times
the natural logarithm of jGj. There is, however, another result [180, 185] arising
form large computer simulations performed on some special graphs with large
sizes (random networks), in which the upper bound for the diameter is given by
log jGj= log.log jGj/.

When the size of a graph increases, by increasing its number of nodes and
edges, the diameter value is bounded between the lower hyperbolic limit and the
upper logarithmic (loglog, normalized logarithmic) limit. Complete graphs and
alphabetic combinatorial graphs (like the Kautz graph) lie around the lowest limit
for the diameter, while scale-free networks approach the upper logarithmic limit. If
we could interpret the number of nodes to be proportional to the ‘area’ or even
the volume of the graph, the upper bound logarithmic dependence suggests an
exponential area dependence on the radius: dia.G/ � ln jGj ! jGj � edia.G/. Even
in a very high number of dimensions, there is no such geometrical dependence. This
exponential increase in the ‘area’ of the graph with its diameter rather suggests a
combinatorial or even multi-fractal type of geometry.

We begin our analysis from the Van Dam–Haemers relation relating the diameter
to the two largest Laplacian eigenvalues [174, 175]:

dia.G/ �
�

log2.jGj � 1/
log2.
p
�n C

p
�n�1/ � log2.

p
�n �

p
�n�1/

�
: (5.22)
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A similar inequality is provided by the Mohar inequality, which involves another
topological invariant of a graph:

dia.G/ � 2
log2
jGj
2

log2
dmax C hG

dmax � hG

: (5.23)

Here hG is the Cheeger constant, also known as the isoperimetric constant. We
will introduce this constant later on [see (5.25) in Sect. 5.4]. In [175], the authors
obtained another type of upper bound for the diameter. In terms of the Laplacian
eigenvalue, it reads

dia.G/ �

2
664

ln.jGj � 1/
ln

1

N�1 � 1

3
775 ;

while in terms of the normalized Laplacian, it reads

dia.G/ �
"

cosh�1.jGj � 1/
cosh�1 �. N�jGj�1 C N�1/. N�jGj�1 � N�1/�1

�
#
;

which is somehow understandable since inverse hyperbolic functions are actually
logarithms. This last inequality has important implications for developing more
general topological quantifiers of separation. If we choose two disjoint subgraphs
X;Y � N.G/, we can generalize the concept of distance from two nodes to two
sets:

d.X;Y/ D min
n
d.x; y/jx 2 X; y 2 Y

o
:

In the study in [175], it was shown that, with the notation NX D N.G/ � X for
the complementary set, one can write an upper bound for the separation distance
between the sets:

d.X;Y/ �

2
64

cosh�1
q

vol. NX/ vol. NY/
vol.X/vol.Y/

cosh�1 �. N�jGj�1 C N�1/. N�jGj�1 � N�1/�1
�

3
75 :

One can generate various formulas measuring the separation between two disjoint
subsets X;Y of a graph in terms of the spectrum of its (normalized) Lapla-
cian, variations being induced by choosing different measures on the subsets
[175]. All such definitions obey a certain pattern, generally in the form N�1 �
F
�
�.X/; �.Y/; d.X;Y/


, where F is a continuous decreasing function in all three
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arguments. More interestingly, if the distance between the sets can be explicitly
solved from this inequality, one obtains an upper bound for the distance between
any two disjoint subsets of a graph in terms of their measures and the first (smallest)
eigenvalue of the normalized Laplacian matrix. In general, this upper bound has a
logarithmic decreasing dependence on the measure of X and Y if they are ‘small’

compared to G, and it is rather constant and proportional to 1=
pN�1 if the sets are

the ‘largest’ possible, that is, if they grow up to ‘half of G’.
If the smallest eigenvalue of the normalized Laplacian is arbitrarily close to zero,

there is no strict limitation on how large and disjointed the sets can be that we cut
out of the graph. However, if this eigenvalue is bound from below and away from
zero, such sets are limited in size. This is the case for small diameter graphs that
also have large edge or node expansions. Explicit examples are random graphs, or
k-regular random graphs where the diameter can be approximated by dia.G/ �
logk�1 jGj C logk�1 ln jGj.

5.4.2 Embeddings

For a loopless graph G (i.e., i œ j for any pair of nodes), we define a graph
embedding by mapping the nodes one-to-one into points in R

n, and by having an
injective map of the edges into continuous curves in R

n, intersecting only at the
images of the graph nodes. Obviously, any finite graph can be embedded in R

3 by
mapping its nodes in arbitrary order along a line segment called the node axis, and
connecting the corresponding nodes with edges such that each edge is embedded
into another Euclidean plane from a family of planes mutually intersecting in the
node axis, as in Fig. 5.12. Of course, some non-intersecting edges can be mapped
into the same plane.

The simplest type of graphs from the embedding classification point of view is
the outerplanar graph. A graph is outerplanar if it can be drawn in the plane without
crossings, in such a way that all of the nodes belong to the boundary of the drawing,
that is, no vertex is totally surrounded by edges. Put more simply, it can be drawn
without intersecting edges in a plane in such a way that all nodes can be placed on
the circle, and all edges are inside this circle. The outerplanar graphs are related to
electrical circuit design, and especially to series–parallel graphs.

An even more complex graph which is very important for applications is the
planar graph, i.e., one that can be embedded in the Euclidean plane. The planar
graph and the so-called planarization problem are studied in relation to the design of
printed circuit boards and the routing of very large scale integration circuits. There
are sophisticated algorithms for finding the near-maximal planar subgraph from a
given in general non-planar graph.
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Fig. 5.12 Embedding a graph in R
3 as a ‘book’. The nodes are mapped along a real segment

like a book spine, and each edge is embedded into a different page of the book. Sometimes non-
intersecting edges that form locally planar subgraphs are mapped onto the same page

A more complex and particular type of graph is the linklessly embeddable graph.
This has the property that no pair of its cycles (that is, their images in R

n) are linked.1

The embedding properties (like being planar, outerplanar, linklessly embeddable,
or embeddable in some type of surface) are closed under taking graph minors
(Robertson theorem [173]). A minor version of a given graph is the smaller graph
obtained by removing isolated nodes, or removing edges and merging the two
remaining nodes. The planarity of a graph can be easily checked by using graph
minors and the Kuratowski–Wagner theorem [173]: a finite graph is planar if and
only if all its minors include neither the complete graph on five vertices, nor a
complete bipartite graph on six vertices (see Fig. 5.13).

One of the most important exact results on the question of classification of graphs
according to the simplest manifold in which they can be embedded concerns the
Colin de Verdière parameter �.G/ [173, 186]. This parameter can classify graphs
according to their embedding properties. More surprisingly, it has deep implications
in Riemannian geometry problems like the spectrum of the Laplace–Beltrami
operator for Dirichlet problems, Cheng’s eigenvalue comparison theorem, or even
in physics problems related to mesoscopic type II superconductivity, the spectrum
of the magnetic Schrödinger operator, and solutions of Diophantine equations.

1Two disjoint Jordan curves are linked in R
3 if there is no sphere S2 separating them.
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Fig. 5.13 The complete graph with 5 nodes (K5) on the left, and the ‘utility’ graph with 6 nodes
on the right are the only graphs preventing a larger graph to be planar if it contains one of them as
minors

As mentioned above, the introduction of this parameter was motivated by the
study of the maximum multiplicity of the second eigenvalue of certain magnetic
Schrödinger operators. A major problem in applications involving these operators is
that they need to be defined on Riemann surfaces because the magnetic Schrödinger
equation very well describes the Landau–Ginzburg model for superconductivity, and
the superconducting materials come in compact objects like disks, pellets, spheres,
cylinders, etc. It turned out that in the study of these operators one can approximate
the surface by a sufficiently densely embedded graph G, in such a way that �.G/
is the maximum multiplicity of the second eigenvalue of the operator, or a lower
bound to it. Yet again, we see the importance of the second (largest) eigenvalue of a
discrete bounded spectrum.

The parameter �.G/ can be described fully in terms of properties of matrices
related to G, mainly the adjacency matrix A, its spectrum, and in particular its second
largest eigenvalue �2. Even if the �.G/ parameter is defined on the basis of purely
linear algebra, explicit calculation for a given graph involves a tedious and as yet
unsatisfactory amount of work.

For a given integer N, consider the set of symmetric N � N matrices with real
entries, viz., M D .Mij/ 2 R

N�N . We can always regard such a matrix as a linear
operator acting on vectors from R

N and it is easy to identify the null space ker.M/ of
any such matrix, i.e., the vector space of vectors mapped to the null element by this
operator. The linear dimension of this null space dim

�
ker.M/


is called the co-rank.

Given a graph G.N;E/, we can construct a set of special matrices M by a sort of
generalization of the adjacency matrix obeying three rules.

The first rule requires M to have the same structure as the negative adjacency
matrix �A for the graph G, except that it can have any elements (even nonzero) on
the diagonal, and the 1 entries are generalized to any arbitrary negative numbers. In
other words the off-diagonal elements of these matrices .Mij/ are simply negative
numbers if i � j in G, and zero otherwise. There is no specification regarding its
diagonal elements. The second rule requires M to have only one negative eigenvalue
of multiplicity 1. Here is an example showing how easily this works: choose N D 3
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and G as the graph with 1 � 2, 2 � 3. We can easily find a matrix M satisfying the
first two rules above:

M D
0
@
0 �1 �2
�1 1 0

�2 0 1

1
A :

This matrix also has one eigenvalue 1, and the other two .1 ˙ p21/=2, so only
one eigenvalue is negative and has multiplicity 1. However, there is a third rule
which minimizes the possibilities for M, namely, that it should satisfy the strong
Arnold property [187]: any square matrix X of the same dimension N�N, with zero
diagonal, having zero entries in every place where M has nonzero entries, and in
addition such that MX D 0 is zero, must itself be zero, viz., X D 0. In other words,
the kernel (the null space) of M has zero intersection with any matrix X orthogonal
to M in the direct product sense. Continuing with our example, we can find a matrix

X D
0
@
0 0 0

0 0 x
0 y 0

1
A

which is constructed according to the above prescriptions, except that, in order to
satisfy MX D 0, we need to set x D y D 0.

Finally, let us pretend we have found for a given graph several examples of such
matrices M satisfying all three rules. The matrix with the largest co-rank among all
these matrices M provides the constant �.G/, and this constant is its co-rank. In our
3 � 3 example presented above, the co-rank is 1.

The Colin de Verdière number of a graph has several surprising graph-theoretical
properties. The most basic is that �.G/ is minor-monotone, i.e., if H is a minor of
G, then �.H/ � �.G/. Furthermore, the number is subadditive, that is, if G;H are
two graphs, then �.G C H/ D maxf�.G/; �.H/g. For a complete graph of order
k this number is k � 1. If its value is less than 1, then the graph must be a disjoint
union of paths. If it is less than 2, the graph is outerplanar, and if it is less than 3,
the graph must be planar. Finally, if the number is less than 4, the graph is linklessly
embeddable [186].

5.4.3 Isoperimetric Problems

The typical isoperimetric problem in planar geometry, especially when we need to
find the maximum area for a given perimeter, can be translated into graph theory
as the problem of finding the maximum jGj in a set with a boundary of prescribed
cardinality.
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For any two disjoint subsets of nodes of a graph, S;T � N.G/, S \ T D ¿, we
define the set of the edges connecting them by

E.S;T/ D
n
.ij/ 2 E.G/ji 2 S; j 2 T

o
:

We define the edge boundary of a subset of nodes S by @S D E.S;N.G/ X S/, that
is, the set of edges emerging from S towards nodes that are not in S.

We define the isoperimetric number (or conductance) of a graph

i.G/ D min
0<jSj�jGj=2

j@Sj
jSj : (5.24)

The isoperimetric number has the following properties:

i.G/ � 2kGk �jGj=2�

jGj.jGj � 1/ ;

i.G/ � a.G/

2
;

i.G/ D min
xtLx
xtx

;

where the minimum is taken in the set of all vectors x 2 f0; 1gjGj such that 1 �
kxk2 � jGj=2.

Here we present the point of view developed in [175] on isoperimetric problems.
The authors of this work define a cut in a graph as a subset of the set of edges which
disconnects G, i.e., which make N.G/ into a disconnected set. There are two types of
cut: edge cuts and node cuts, and consequently, there are two types of isoperimetric
problem for the two types of boundary measure. Both cuts deal with the question
of finding the subgraph of given volume (chosen to be less than the volume of its
complement, in order to avoid redundancy) which guarantees the minimum measure
for its boundary.

The edge cut around a subgraph S 2 N.G/ is made through the edge boundary
for S, namely @S D f.ij/ji � j; i 2 S; j ¤ Sg. If we denote the complement of S with
respect to the graph by NS D N.G/� S, we have @S D @NS D E.S; NS/. The measure of
this type of boundary can be expressed in two different ways:

hG.S/ D jE.S; NS/j
min

˚
vol.S/; vol.NS/	 ; h0

G.S/ D
jE.S; NS/j

min
˚jSj; jNSj	 : (5.25)
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The advantage of these definitions is that they allow the introduction of an
overall characterization of any graph (and hence its spectrum) in the context of
isoperimetric problems. We have

hG D min
S

hG.S/ ; h0
G D min

S
h0

G.S/ ; (5.26)

where both minima are taken over all subsets S of node numbers containing no
more than half of the nodes of the original graph, and the numbers hG; h0

G are
called the Cheeger constant(s) of G [175]. The difference between prime (also
called modified Cheeger constants) and non-prime constants consists in the way one
decides to normalize the boundary: versus the volume which implies the degree, or
only versus the number of nodes. This also involves the use of either the Laplacian
or the normalized Laplacian, respectively. As mentioned above, this constant bears
some relationships with the graph eigenvalues [175]:

2hG � N�1 ; N�1 � h2G
2
; N�1 > 1 �

q
1 � h2G ;

but

2h0
G � �2 ;

because the case of the modified Cheeger constant involves Laplacian eigenvalues,
and �1 D 0.

The node cut is built with the help of the node boundary for S, that is, •S D fi ¤
N.S/j ji 2 E.G/; j 2 N.S/g, which represents the set of all nodes which are not in
S, but are neighbors of S. Similarly with the Cheeger constant, one can define two
equivalent parameters for the node boundary:

gG.S/ D vol.•S/

min
˚
vol.S/; vol.NS/	 ; g0

G.S/ D
j•Sj

min
˚jSj; j.NS/j	 ; (5.27)

with the corresponding parameters defined independently of the test cut S :

gG D min
S

gG.S/ ; g0
G D min

S
g0

G.S/ : (5.28)

Again, the only difference between prime and non-prime definitions consists, as
above, in the way one decides to normalize the measure of the boundary: versus
degree and nodes, or just versus nodes, respectively. These two parameters bear
their own relationships with the graph spectrum [175]:

gG � hG ; 2gG � N�1 ; N�1 > g2G
4dmax C 2dmaxg2G

:
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5.4.4 Separations

The problem of separation is to find the most efficient cut in a graph, i.e., to identify
the minimum set S which can generate a cut in the graph through its maximal
boundary. The concept and subsequent formulas are very useful for evaluating
graphs and networks. Another possible question: what is the maximum set of cuts
that completely separate the network into two disjoint sub-networks? The edge
boundary has the property [174]

�2
jSj jN.G/X Sj

jGj � j@Sj � �n
jSj jN.G/X Sj

jGj ; (5.29)

where � are the eigenvalues of the Laplace operator. Equation (5.29) expresses the
fact that the span �n��2 of the Laplacian spectrum provides the admissible relative
range for the size of the edge boundary with respect to the size of its inside S. For a
given graph and a subgraph of given size jSj (the size of jN.G/ � Sj is prescribed,
too), the boundary of the subgraph cannot be smaller or larger than a certain limit.
We can rewrite (5.29) in the form

�2 � j@Sj
jSj

jGj
jN.G/ X Sj � �n :

For graphs whose Laplacian spectrum has a narrow range, the edge boundary of any
subgraph has almost constant size, which explains why algorithms based on cuts
have good results on random graphs. Furthermore, there are upper and lower limits
for the edge boundary size [174]:

max j@Sj � jGj�n

4
;

minjSjDŒjGj=2	 j@Sj �

8̂
ˆ̂̂<
ˆ̂̂̂
:

jGj
4
�2 if jGj D even ;

jGj2 � 1
4jGj �2 if jGj D odd ;

(5.30)

also referred to as the bipartite width of the graph. We present example applications
of (5.29) and (5.30) for @S in Fig. 5.14. In the limiting cases of strongly or weakly
connected graphs, the range provided by the formula for a given jSj D 4 subgraph
does not change if we add an extra isolated node or change the shape of the graph.
The upper limit for the size of the edge boundary is always dictated by the number of
edges kGk. However, for a regular lattice type of graph, where the standard deviation
of the average degree is small, the size of the edge boundary is mostly controlled
by the node number jGj. It almost seems that the formulas in (5.29) and (5.30) are
not really useful for practical purposes, because they give a very wide range. We
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Fig. 5.14 Examples to evaluate the size of the edge boundary of a subgraph with jSj D 4, cut out
from four different types of graphs: strongly connected (upper left), strongly connected with one
extra weakly connected node (upper right), a weakly connected almost path graph (bottom left),
and a square lattice graph (bottom right). Under each graph we indicate the nodes, edges, average
degree, and range of boundary size

find that a strongly connected graph is more likely to accept a sophisticated (even
fractal) shape for the boundary of a given cut (removal of a subgraph of fixed size)
than other types of graphs. Put simply, regular graphs as opposed to random graphs,
offer better optimized solutions for isoperimetric problems.

We define the node cut or node boundary: for a given subgraph S of G, •S is
defined as the set of all nodes outside of S which are adjacent to S. We have the
following relations between the two measures of the boundary of a subgraph [174]:

j•Sj � j@Sj � dmaxj•Sj ; (5.31)
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and

j.G/ D min
1�jSj�ŒjGj=2	

j•Sj
jSj : (5.32)

The expression j.G/ is called the node expansion of a graph, and it bears the
following relationship with the algebraic multiplicity: if a.G/ � � > 0, then

j.G/ � 2�

dmax C 2� ;

and conversely, if j.G/ � c > 0, then

a.G/ � c2

4C 2c2
:

5.4.5 Expanders

A connected and undirected graph G is called an expander if, for any subset S �
N.G/, the number of nodes in G n S placed at distances less than or equal to one
hop from S (we denote this number of nodes by P) is greater than a constant times
jSj [188]. In other words G is an expander if there exists a positive constant � such
that P � �jSj: the larger the set, the larger the node boundary, and in a proportional
way. Expanders are useful due to their role in procedures for sorting networks [173].
Figure 5.15 shows such an expander graph. The set P n S is called the adjacent set
to S. We have the following (Tanner [173]) theorem: if G is a k-regular undirected
graph so that there is an eigenvalue of the Laplacian which is an upper bound for the
moduli of all adjacency matrix eigenvalues, i.e., k ¤ j�ij � � for any i D 1; 2 : : : ; n,
then for any subset of nodes R � N.G/ having its adjacent set QR � N.G/, we have

j QRj
jGj �

jRj=jGj
jRj
jGj C

�2

k2

�
1 � jRjjGj

� : (5.33)

This inequality tells us that the size of any adjacency set is bounded from below, or
that the boundary for any subset in such a graph is always large. Figure 5.16 plots
the ratio of the size of the boundary j QRj to the size of the inside jRj against the size
of the inside, for different orders k of regular graphs and different eigenvalues of the
Laplacian. When the size of the graph increases indefinitely, the ratio approaches
unity, while for more than n=2 neighbors, the ratio is practically 1 for any size of
graph.
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Fig. 5.15 An expander graph. If we consider the set of nodes f4; 8; 9g encircled by the red line,
the set P of nodes placed at distance one hop or less is f1; 2; 3; 5; 6; 10g [ S, so jPj=jSj D 3. If we
consider for S the set encircled with green, we have for the same ratio 8=3 D 2:6.6/, and so on. It
is straightforward to check that this ratio has a minimum value of � D 1:.09/
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Fig. 5.16 Ratio of the size of the boundary to the size of the inside, plotted against the size of the
inside, for three different orders k of regular graphs and two different eigenvalues of the Laplacian
[see (5.33)]
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5.5 Algebraic Topology

Algebraic topology is the branch of mathematics which serves as a bridge between
discrete and continuous mathematics. A major strength of algebraic topology has
always been its wide degree of applicability to other fields: physics, differential
geometry, algebraic geometry, and number theory. Modern algebraic topology is
the study of the global properties of spaces by means of algebra. Poincaré was the
first to link the study of spaces to the study of algebra by means of the fundamental
group.

In order to emphasize the way continuous mathematics, for example, differential
geometry, interacts with algebraic topology, we can think of the example provided
by a sphere. One way of telling that we live on a sphere is to measure the sum
of the three angles of a triangle. For a small triangle, it is slightly more than
180ı, but for a large triangle, it is much more. This non-constancy property of the
sum of the angles of a triangle, and the proportionality relationship between the
size of the triangle and the sum of its angles tells us that we live on a surface
with (nonzero) positive curvature. But since we can use small triangles, this is
a differential geometry property, because it is a local one. Algebraic topology is
concerned with the whole surface and points to the obvious fact that the surface
of a sphere is a finite area with no boundary, while the flat plane does not have
this property. So far all these concepts are related to continuous mathematics, but
there are also discrete mathematics ideas that characterize the difference between the
plane and the sphere: the plane has no holes in it, while a sphere surrounds a three-
dimensional hole. And since the number of holes in a geometric object is a discrete
quantity, a theory like algebraic topology describing the number and properties of
these holes must have a discrete counterpart.

Algebraic topology deals with the differences between the plane and the sphere
by assigning groups. Indeed, it assigns special groups, with invariance properties
against deformations, to any space. These groups are called homotopy and homol-
ogy groups. The groups are invariant under homeomorphisms, that is, against the
continuous deformation of space. The sphere is assigned an infinite group which is
a measure of the fact that the sphere has a hole in it, while the plane is assigned
the zero group because it does not. The fact that these groups are different tells
us that the spaces are fundamentally different from a global vantage point. And of
course, algebraic topology is not confined to the study spaces of dimension three,
but includes the study of higher-dimensional spaces as well.

In algebraic geometry, the connection between discrete and continuous math-
ematics is obtained by combining finite numbers of smooth geometrical objects
(simplices, cells, spheres, disks, planes, etc.), each having established topological
and differential properties, in a finite-dimensional algebraic structure like a complex,
or CW complex, and inducing an algebraic structure on the set of homeomorphisms
between these geometric elements. For example, a torus T1 embedded in R3 can
be cut around its two circles (major and minor) and then mapped into a rectangle,
providing an equivalence relation between its edges and corners. This rectangle is
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further divided into a finite number of triangles (simplices), whose simple properties
are very well known (this process is known as triangulation).

The fundamental construction in algebraic topology is the simplex. Consider a set
of pC 1 distinct points in an n-dimensional Euclidean space En, denoted as affinely
independent vertices fu0; u1; : : : ; upg, that is, the vectors uj � u0, j D 1; 2; : : : ; p are
linearly independent. The p-simplex generated by this set of points is

�p D Œu0; u1; : : : ; up	 D
(

pX
iD0

�iui

ˇ̌
ˇ̌ ui � 0;

pX
iD0

�i D 1
)
� E

n : (5.34)

The convex hull of the vertices of a p-simplex is called a face of the simplex. Faces
are . p� 1/-simplices themselves, the 0-faces are the vertices, the 1-faces are called
the edges, and the . p� 1/-faces are called the facets. A line segment is a 1-simplex,
a triangle in the plane is a 2-simplex, a tetrahedron is a 3-simplex, and so on.

Given a collection of simplices of different orders, we call it a simplicial complex
K if the collection satisfies the conditions:

Definition 8 The union of a collection of simplices forms a simplicial complex K
if and only if:

1. any face of a simplex from K is also in K,
2. the intersection of any two simplices �1; �2 2 K is a face of both �1 and �2.

The set-theoretic union of all simplices from K, when viewed as a subset of Rd,
is called a polytope. If a subset X of Rd is homeomorphic to a polytope, we say
X is triangulated by K. The procedure to construct a simplicial complex associated
with (homeomorphic to) a given topological space is triangulation. We need to find
the set of simplices which combine in a complex to describe the given space. The
general procedure is to puncture the topological space and remove the point. Then,
starting from that hole, apply a series of cuts in the original topological space and in
the end flatten out the resulting surface over a plane. In order to respect the positions
of all points before the cuts were performed, we have to label points which used to
coincide before the cut with the same label. Then, we start to divide the resulting
geometrical figure with lines and planes until all the edges and nodes of all the
simplices satisfy the axioms of the simplicial complex (see Definition 8).

An example of triangulation of a 2-torus (S1 � S1) is presented in Fig. 5.17.
The four numbers 7 show that these corners first have to join together to form a
cylinder, which is then bent and glued into a toroidal surface. We draw a diagonal
(the one containing 5; 6), and in this way we divide the square into two 2-simplices
which have a common edge, and also two common vertices, which is forbidden by
Definition 8. The next step is to divide the square with lines, for example the edges
3–6 and 6–1, and continue this procedure until all the triangles we draw satisfy the
axioms of the simplicial complex in Definition 8.

Note that the empty set is a face of every simplex. See also the definition of
an abstract simplicial complex, which loosely speaking is a simplicial complex
without an associated geometry. A simplicial complex together with its topology and



188 5 Discrete Mathematics

Fig. 5.17 Example of a
triangulation of a torus, which
needs 14 triangles to satisfy
the simplicial complex
axioms of Definition 8. The
two initial cuts on the torus
surface map it to a square
whose corners were joined,
and which are now all labeled
7. In order to satisfy all the
requirements of the complex,
we have to divide the square
into more 2-simplices

closure properties can be considered a CW complex, although the latter is a more
general and more abstract structure. More precisely, by a result due to Milnor, the
geometric realization of a locally finite simplicial complex is a CW complex. The
main difference, besides level of generality, is that a CW complex is not necessarily
ordered, as the simplices in a simplicial complex are.

In the following, we present an inductive constructive definition of a CW
complex:

1. Begin with a discrete space X0 whose points are called zero-dimensional cells.
2. Suppose we have already constructed Xn�1. For every element j of an index set

Jn, take a map fj W @Dn
j ! Xn�1 and define

Xn D
[

j

.Xn�1 [fj Dn
j / :

The interiors of the disks Dn
j are the n-dimensional cells denoted by en

j .
3. We can stop the construction for some n and put X D xn, or proceed to infinity

and put

X D
1[

nD0
Xn ;

where in the latter case X is equipped with the inductive topology, which
means any topological affirmation is true if it is valid for any of the topological
subspaces Xn.
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For example, if X0 is a set of 2k points, k 2 Z, we introduce a set of 1D disks D1
j ,

which are just a collection of segments, and map their end points, i.e., the @D1
j , to

the set X0. In this way, any pair of points in X0 has a line segment associated with
it, which together with X0 form X1. The construction continues. The sphere Sn is a
CW complex with one cell e0 of dimension 0, one cell en of dimension n, and the
constant map f W Sn�1 ! e0.

In any simplicial complex K, or in any CW complex, we can introduce a group
structure by defining the addition of p-simplices to form the chain group Cp. In the
following, in order to present the contents efficiently and briefly, we demonstrate the
concepts on simplicial complexes only. Its elements consist of p-chains, the linear
combination of a finite number of oriented p-simplices cp D ai�

p
i with integer,

rational, or real number coefficients ai, a negative coefficient representing reversal
of the orientation of the simplex.

Consider a simplicial complex K containing simplices of all orders up to n. We
introduce the boundary operator

@p W Cp ! Cp�1 ;

acting on K with values in K as a linear operator that maps a p-simplex onto the
oriented sum of all . p � 1/-simplices in its boundary:

@pŒx0; x1; : : : ; xp	 D Œx1; x2; : : : ; xp	 � Œx0; x2; : : : ; xp	

C � � � C .�1/pŒx0; x1; : : : ; xp�1	 :

The action of the boundary operator on the chain groups leads to the definition of
three more groups. Firstly, the image of @p is a subgroup of Cp�1 called the boundary
group Bp�1. Secondly, the set of all p-chains that have empty boundary forms the
group of k-cycles Zp. These two groups are related by the fact that the boundary of a
boundary is empty. This is the fundamental property of the boundary operator, viz.,
@p@p�1 D 0. It implies that Bp is a subgroup of Zp. Figure 5.18 presents an example
of the action of the boundary operator on a 3D cube c3 2 R

3.
The homology groups are defined as the quotient groups Hp D Zp=Bp, also

denoted Hp./. This means that two p-cycles wp and zp belong to the same homology
class if their difference is the boundary of some chain, i.e., zp�wp D @pC1vpC1 (see
an illustration of these exact chains in Fig. 5.19). Finally, the number of distinct
equivalence classes of Hp is the p th Betti number ˇp, which effectively counts
the number of p-dimensional holes in X. When p D 0, the Betti number counts
the number of path-connected components of X. With the Betti numbers, we can
calculate the Euler characteristics �E of the simplicial complex K of dimension n
(maximal rank of its simplices) in the form

�E.K/ D
nX

pD0
.�1/p rank Hp.K/ :
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0 ∂∂c3 ∂c3
c3

c3

∂ ∂

Fig. 5.18 Example of the action of the boundary operator @ on a cube c3 submerged in R
3. From

right to left: The first action of the boundary operator generates a 2D cube surface, whose boundary
is the null set. However, if we decompose this surface into square faces, i.e., 2D cells, each such
face has its boundaries, which are the square frames. Their boundaries are the null set, too. In
the picture, we notice the essence of the way algebraic topology works: divide any complicated
geometric object (in this example c3) into simpler geometric objects with known differential
properties, and structure these simpler cells algebraically

Fig. 5.19 The key picture of homology. The chain group Cp is a set of p-dimensional simplices,
the cycles Zp are chains without boundary, and boundary cycles Bp are cycles, but they are also
boundaries of higher order chains. The boundary operator @p homeomorphism connects all these
homology structures in an exact sequence, that is, the image of one homomorphism equals the
kernel of the next

For subsets of R3, we can interpret ˇ1 as the number of independent tunnels, and ˇ2
as the number of enclosed voids. For example, the solid torus D1 � D1 has ˇ0 D 1,
ˇ1 D 1, and ˇ2 D 0, whereas the surface of a torus T2 D S1 � S1 has ˇ0 D 1,
ˇ1 D 2, and ˇ2 D 1. The latter calculation shows that a T2 torus (a 2-torus) has 2
holes, out of which one is 2D (the large circle) and one is 3D (the inside). In other
words �E.T2/ D 1 � 2C 1 D 0. This affirmation can be written

rank Hp.T
2/ D

�
2

p

�
;
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and in general,

rank Hp.T
k/ D

�
k
p

�
:

If we have a sub-complex A � X , we can define the relative homology group
as Hp.X ;A/, which is constructed in the same way as Hp.X /, except that we use
simplices from X � A only. The special thing about the relative homology is that
we can write an exact sequence2:

� � � �! Hp.A/ �! Hp.X / �! Hp.X ;A/ �! Hp�1.A/ �! � � � : (5.35)

The homology groups are the basis for a system of theorems which allow us to
calculate the algebraic topological properties of any complex (simplicial or CW). In
the following we will denote the simplicial complexX associated with a topological
subspace X simply by X. One important theorem is the excision theorem, which
states that, if we have a sequence of topological subspaces C 
 A 
 X and the
closure of C is included in the open part of A, then we have a group of isomorphisms

Hp.X � C;A � C/ Š Hp.X;A/ : (5.36)

Let X be a disjoint union of simplicial complexes. Then we have

X D
G
i2I

Xi �! Hp.X/ Š
M
i2I

Hp.Xi/ : (5.37)

From these equations, it is possible to calculate all the relative homology groups
for a wide variety of topological spaces. For example, for the spheres and disks, we
have

rank H0.S
n/ D

�
2 if n D 0 ;
1 if n > 0 ;

rank Hp.S
n/ D

�
0 if 0 < p < n; or p > n ;
1 if p D n ;

rank Hp.D
n; Sn�1/ D ıpn ;

where ıpn is the Kronecker delta symbol. In addition to the description and
classification of topological spaces, other applications of homology include fixed

2A sequence of group morphisms is exact if the image of each map is the kernel for the following
morphism, as in Fig. 5.19.
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point theorems, homeomorphism theorems, calculations of the degree of maps, and
the Künneth formula for direct sums of groups.

The most valuable mixture of algebraic and differential geometry (topology)
methods with the most prolific results is frame bordism theory. This theory
developed mainly because the algebraic problems are more tractable and their
solutions lead to geometric consequences [152]. We introduce here a few elements
of frame bordism inspired by Davis and Kirk’s course in algebraic topology [189].
Let M be a compact and smooth manifold with or without boundary, and V � M a
compact submanifold whose boundary is contained in the boundary of M in such a
way that V meets the boundary of M transversely, that is, the tangent spaces to V and
to @M at the same point generate together the tangent space of the ambient manifold.
In the following, we need the definition of the normal bundle of V from Sect. 4.5,
denoted by �.V ,! M/ [see (4.19)]. We define the tubular neighborhood of the
submanifold V as the embedding f W �.i/! M which restricts to the identity on V .
In other words, we associate with every point of the submanifold V the orthogonal
complement of its corresponding tangent space, and then we canonically project this
orthogonal complement in M. We introduce two definitions:

Definition 9 We define a framing of a submanifold Vk�n � Mk to be an embedding
˚ W V � R

n ! M such that ˚. p; 0/ D p for all p in V . We call the pair .V; ˚/ a
framed submanifold.

Definition 10 If .WkC1�n; �/ is a framed submanifold of M�I, then the two framed
submanifolds of M given by intersecting W with M � f0g and M � f1g are frame
bordant.

We denote by˝k�n;M the set of frame bordism classes of .k�n/-dimensional framed
submanifolds of M.

For any framed submanifold, we can construct the collapse map, defined on M
with values in R

n � f1g Š Sn, sending any point in M which is not in the range of
˚ to the point at1. Further, for any point of M which is an image of some . p; v/ 2
V�Rn, the collapse map sends it to v. This map, also known as the Pontrjagin–Thom
construction, introduces the translation from bordism, as a concept in differential
topology, to algebraic topology through the following theorem [151, 152]:

Theorem 9 The collapse map induces a bijection between ˝k�n;M and the set of
classes of equivalence modulo homotopy of maps from M to Sn.

We understand by the homotopy class between two submanifolds the set of all maps
between the two submanifolds which can be smoothly deformed one into the other.
Theorem 9 states that, if we can map the total manifold Mk into a sphere Sn in several
ways, and we structure these ways modulo homotopy (two ways in which we can
map are indiscernible if they can be smoothly mapped one into the other), then the
same algebraic structure is obtained if we classify all possible .k � n/-dimensional
submanifolds Vk�n of M modulo frame bordism. Put simply, Theorem 9 shows that
the study and classification of the framing submanifolds of M is an essential property
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of M, because it tells us the structure of all possible maps of M into spheres of
different orders.

Here is an example (without proof) to provide some geometric insight: any
framed circle in S2 is frame bordant to the empty set (so called null-bordant). Take
for V the equator with the framing along its intersecting meridians. The equator is
an S1 submanifold which is the boundary of the D2 disk in the ball D3, and hence
contractible to a point. It can be mapped to just a point of the sphere. In this way,
the structure induced by homotopy classes of the equator in the S2 sphere is in one-
to-one relation with the structure induced by frame bordant classes of the 2D disk
in the 3D ball.

As we can see, algebraic topology is not only a traditional chapter in mathe-
matics, but it forms the background for several new areas of application-oriented
mathematical research. The last few decades have shown a growing number of con-
nections between continuous and discrete mathematics, including emerging fields
like computational algebraic topology, topological robotics, stochastic topology, and
combinatorial algebraic topology and concurrency.

5.6 Classification of Continuous Structure by Discrete
Criteria

Mathematics, like any other scientific creation, be it generated in our brain or
acknowledged and understood through our brain, has an inner duality between
its discrete (digital, additive, musical) and continuous (analog, geometric, visual)
counterparts, spiced with flavors from statistical methods and stochastic systems.

The continuous part of mathematics, initially constructed as geometry, has
developed in modern times into the more abstract topology and calculus. Its funda-
mental building blocks are topological spaces, maps, continuity and differentiability
(smoothness), and the discipline where they all combine into the most continuous
of all mathematics is manifold theory (see Fig. 5.20).

Manifolds are spaces with continuous properties, and depending on continu-
ity/smoothness criteria, they can be studied in four main classes:

1. TOP. Topological manifolds are among the weakest continuous structures. They
do not necessarily admit a linear or differential structure, and if such a structure
is defined on them, it is not necessarily unique (Hauptvermutung, i.e., the main
conjecture).

2. Handles. These are topological manifolds admitting a topological decomposition
into handles.

3. PL. Piecewise linear manifolds (formerly called combinatorial) are topological
manifolds together with a piecewise linear structure defined by means of an atlas,
such that one can pass from chart to chart in the manifold by piecewise linear
functions. This category is slightly stronger than the topological procedure of
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Fig. 5.20 Different areas of topology, algebra, and geometry and their interactions

triangulation. However, PL do not always have smooth structures, and are not
always smoothable.

4. DIFF. Differentiable (smooth) manifolds. These have canonical PL structures
and they are uniquely triangulable (Whitehead’s theorem on triangulation, 1940).

Smoothness properties are strongly dependent on the number of dimensions of the
manifold. For dimensions less than or equal to 3, the TOP, PL, and DIFF properties,
if satisfied, are simultaneously satisfied.

In any dimension other than 4, a compact topological manifold has only a
finite number of essentially distinct PL or smooth structures. In dimension 4,
compact manifolds can have a countably infinite number of non-diffeomorphic
smooth structures. Four is the only dimension for which a manifold can have an
exotic smooth structure. A 4-manifold has an uncountable number of exotic smooth
structures [190].

One of the methods used to study topological manifolds is based on the
representation of a manifold as a union of topological balls with non-intersecting
interiors and with boundaries intersecting in a special way.

A handle decomposition is to a manifold what a triangulation is to a topological
space. In many regards, the purpose of a handle decomposition is to have a language
analogous to triangulations (or CW complexes, we will see about these shortly), but
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adapted to the world of smooth manifolds. Thus a handle in the world of differential
manifolds is a smooth analogue of a cell in a triangulated (CW complex) world.

The problem of decomposition of topological manifolds into handles is relatively
complicated. It is known that any closed topological manifold of dimension higher
than 4 can be decomposed into topological handles. Manifolds of dimension less
than 4 are combinatorially triangulable, and so can be decomposed into handles. It
has been proved that there exists a manifold of dimension 4 which does not admit
a handle decomposition, because 4-manifolds have a handle-body decomposition if
and only if they are smoothable [191].

Moreover, there is a close relationship between smooth handle decompositions of
manifolds and smooth functions defined on these manifolds having non-degenerate
points, the so-called Morse functions [192].

5.7 Triangulations and CW Complexes

At the manifold level of complexity, discrete mathematics interferes with conti-
nuity properties mainly through the attempt to linearize the manifold in order to
simplify it. Making a manifold look like a vector space, at least locally, makes
it much simpler to study. One traditional procedure for intertwining discrete and
continuous approaches by linearization is the triangulation of manifolds, that is,
approximating them with linear algebraic spaces, and mapping them into linear
geometric quantities, like simplices, polygons, or polyhedra. A triangulation of a
topological space is the construction of a simplicial complex homeomorphic to
the manifold, together with that homeomorphism [193]. Triangulation is useful
for determining the algebraic properties of a topological space, and consequently
for determining the algebraic structure of its topological invariants. For example,
one can compute homology and cohomology groups of a triangulated space
using simplicial homology and cohomology theories rather than more complicated
theories [194].

For topological manifolds, there is also a stronger notion of triangulation: a
piecewise-linear triangulation. This is one with the extra property that the link of
any simplex is a piecewise-linear sphere [194, 195].

Definition 11 The link of a simplex � in a simplicial complex K is a sub-simplicial
complex U � K consisting of the simplices � that are:

1. disjoint from � ,
2. such that both � and � are faces of some higher-dimensional simplex in K.

For instance, in a 2D piecewise-linear manifold formed by a set of vertices, edges,
and triangles, the link of a vertex v consists of the cycle of vertices and edges
surrounding v: if � is a vertex in this cycle, it and v are both endpoints of an edge
of K, and if � is an edge in this cycle, it and v are both faces of a triangle of K. This
cycle is homeomorphic to a circle, which is a 1D sphere. In any simplicial complex
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homeomorphic to a manifold, the link of any simplex can only be homeomorphic to
a sphere. As we can see, there is a strong correlation between algebra (graphs) and
topology (spheres) through the concept of link.

Differentiable manifolds admit a piecewise-linear triangulation, technically by
passing via the PL category. Topological manifolds of dimensions 2 and 3 are always
triangulable by an essentially unique triangulation. Any of their triangulations is a
piecewise linear triangulation. In dimension 4, there are examples of compact man-
ifolds having an infinite number of triangulations, all piecewise-linear inequivalent.
In dimensions greater than 4, there are manifolds that do not have piecewise-linear
triangulations.

When combining algebraic and topological methods (see Fig. 5.20), one very
productive method is to use graph theory. For example, one procedure of triangu-
lation of a surface is the embedding of a graph onto the surface in such a way
that the faces of the embedding are exactly the cliques of the graph (the Whitney
triangulation). In this way every face is a triangle, every triangle is a face, and the
graph is not itself a clique. The clique complex of the graph is then homeomorphic
to the surface [193–196].

The simplest way to analyze a manifold is to triangulate it towards a simplicial
complex, that is, to build a simplicial complex homeomorphic to the manifold. A
simplicial complex is a topological space of a certain kind, constructed by ‘gluing
together’ points, line segments, triangles, and their n-dimensional counterparts (see
Sect. 5.5). For example, any compact topological manifold of dimension greater
than 4 which has a piecewise linear (PL) structure is triangulable to a simplicial
complex. There is a well-developed technique based on the Kirby–Siebenmann
invariant which tells us whether or not a topological manifold admits a PL structure
[193, 197]. However, there are topological manifolds which do not admit any PL
structure, but are still homeomorphic to some simplicial complex.

Simplicial complexes are rich in algebraic properties. Basically, a simplicial
complex is a hypergraph with a closure property. For example, they have order-
preserving morphisms between ordered finite sets. Simplicial complexes should not
be confused with the more abstract notion of a simplicial set appearing in modern
simplicial homotopy theory. The purely combinatorial counterpart to a simplicial
complex is an abstract simplicial complex. Simplicial complexes are very often used
in combinatorics.

A more sophisticated algebraic-topological structure is the CW complex, which
is a type of topological space introduced to meet the needs of homotopy theory
(see Sect. 5.5). This class of spaces is broader, and it has some better categorical
properties than simplicial complexes, yet retains a combinatorial nature that allows
for computation. The notion of CW complex has a natural adaptation to smooth
manifolds through the handle decomposition, which is closely related to surgery
theory. A CW complex is made of basic building blocks called cells. The precise
definition given in Sect. 5.5 prescribes the way the cells may be topologically glued
together [198]. CW complexes have good topological properties: they are Hausdorff,
they are locally contractible, the product of two CW complexes can be made
into a CW complex, and they are paracompact. Graphs, polyhedra, differentiable
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Fig. 5.21 Examples of structures from algebra and topology with good behavior

manifolds, and algebraic and projective varieties all have the homotopy-type of
CW complexes. The ‘Hawaiian earring’ is an example of a topological space that
does not have the homotopy-type of a CW complex. An infinite-dimensional Hilbert
space is also not a CW complex (see a helpful diagram in Fig. 5.21).

In addition to simplices and CW complexes, mathematicians have invented a
useful structure called a simplicial set, which is a (purely algebraic) model capturing
those topological spaces that can be built up from simplices and their incidence
relations. A simplicial set is a combination of elements from algebraic topology
(because simplicial sets with ordered vertices are useful in algebraic topology) and
geometric topology (by using simplicial sets one can generalize triangulations).

Simplicial sets work in a similar way to CW complexes in modeling topological
spaces, with the crucial difference that simplicial sets are purely algebraic and do
not carry any actual topology (see Fig. 5.21). A simplicial set is a collection of
simplices of different orders and a collection of morphisms between simplices of
different orders, like shrinking down to faces, or expanding into a higher order
degeneracy. In a simpler language, a simplicial set is a CW complex made of
simplices. These simplices can be glued to themselves or multiply glued to each
other. The corners of each simplex are consistently locally ordered. Moreover, every
generalized triangulation with consistently locally ordered vertices is represented by
a unique simplicial set.

Simplicial sets should not be confused with abstract simplicial complexes,
which generalize simple undirected graphs rather than directed multigraphs. While
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algebraic topologists largely continue to prefer CW complexes, there is a growing
contingent of researchers interested in using simplicial sets for applications in
algebraic geometry, where CW complexes do not naturally exist.

5.8 Connecting Discrete and Continuous

Algebraic geometry, algebraic topology, differential topology, and geometric topol-
ogy form a frontier between topology, differential geometry, and algebra. Their
main tools include studies of homotopy, homology, and cohomology defined on CW
complexes. The ordinary homology theories satisfy the ‘dimension axiom’, viz., the
homology of a point vanishes in dimensions other than 0. They are determined by
an abelian group G. In addition to these theories, we have the K-theories, which
are related to vector bundles over topological spaces. Different sorts of K-theory
correspond to different structures that can be put on a vector bundle. The next tier
up is represented by bordism and cobordism theories which study manifolds. Here
is where the boundary reaches its greatest theoretical importance because in these
theories a manifold is regarded as trivial if it is the boundary of another compact
manifold. The cobordism classes of manifolds form a ring algebraic structure that
is usually related to some generalized cohomology theory, and to the Thom spaces
of certain groups. Finally, on top of all these theories, we have the theory of elliptic
curves.

Quantum field theories, which have important applications in string theory,
statistical mechanics, and condensed matter physics, are mainly studied using
tools from algebraic topology. In 2 dimensions, for example, where there is an
infinite-dimensional group of local conformal transformations, physicists like to use
conformal field theories. Each conformal or superconformal field theory is labeled
by two integers which are the genus and the number of punctures of some Riemann
surface, what topologists call a ‘pair of pants’. Each distinct way to sew such
Riemann surfaces together from pairs of pants corresponds to a different Lagrangian
description of the theory, and a Lagrangian description is weakly coupled in the
region of the parameter space where the pairs of pants are sewn together by long
tubes. Each tube represents an SU.2/ gauge group, and each pair of pants represents
a block of matter hypermultiplets. The sewing of the Riemann surface encodes the
detailed structure of the matter representations. Basic topological operations have
a direct translation in the language of these field theories. Sewing two Riemann
surfaces together, or adding a handle to a Riemann surface, corresponds to gauging
two flavor symmetries at the two sewn-together punctures.



Part III
Applications

In this third part, we match the theoretical fields presented in Part II with selected
applications in interesting areas of science.

Much effort has been devoted in the literature [199] to understanding synchro-
nization phenomena and critical phenomena in complex networks, in biological
systems, or in computer science. This includes both extensive numerical work as
well as analytic approaches. Studies of the statistical properties of large real-world
networks have revealed their highly inhomogeneous and hierarchical structure. In
addition, comparative analysis has been carried out on large networks from different
fields, in which real-world networks were compared with large scale-free random
graphs. It has been found that in, contrast to random scale-free graphs, real-world
networks can be characterized by correlations in the node degrees, a small-world
property, by the specific motifs, short cycles, and communities of nodes that are
linked together in densely connected groups [199].

The local structure of a graph influences the size and shape of its boundary. For
example, in undirected networks, the high density of short loops (high clustering
coefficient) together with small graph diameter gives rise to the small-world effect.
In directed networks, the correlation between the numbers of incoming and outgoing
edges modulates the expected number of short loops. If the two opposite directions
in an edge are not correlated, the number of short loops is significantly reduced as
compared to the case where the degrees are positively correlated. Such differences
between directed and undirected networks can explain the shape of very large
networks, like the structure of the tissue in nervous systems and bone marrow, the
Internet, or large social networks.

The geometry and topology of graphs have a deep influence on the physical
properties of dynamical processes defined on complex networks. It is interesting
to identify the geometrical and topological properties of graphs which might affect
the dynamical behavior of a model. For example, increases in urban populations can
lead to problems of urban decay, such as widespread poverty, high unemployment,
and rapid changes in the racial composition of neighborhoods, inducing social
movements in response. Theoretical network methods can be used to identify
isolated neighborhoods in big cities with a complex web of roads, walkways, and
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public transport systems [199]. Estimates of the size of the boundaries of isolated
neighborhoods can provide good solutions for urban planning.

This part is divided into five chapters. Chapter 6 introduces some ideas regarding
the importance of boundaries in the philosophy of science. Then Chap. 7 reviews
the literature on networks and their relations to boundaries. Section 7.1 deals with
complex networks, and this is pursued in a natural way with Sect. 7.2, dedicated
to world networks. Section 7.3 approaches an interesting new problem, namely the
shape of the Internet, discussing findings which have emerged from the analysis
of graphs and networks using topological and geometrical tools. Finally, Sect. 7.4
approaches the topic of the previous section, the shape and boundary of very large
networks, from the standpoint of spaces with high dimensions.

Chapter 8 describes and discusses the very modern topic of big data and their
handling from different mathematical perspectives. Section 8.1 describes how to
frame big data sets in a geometrical structure which allows convenient and efficient
study. The methods of algebraic topology presented in Part II and the results
obtained from them are applied in Sect. 8.2, which is devoted to special homology
methods for handling big data sets. The topological analysis of big data sets
continues in Sect. 8.3, where we describe ways of handling situations in which data
sets contain gaps and holes.

Chapter 9 presents some physical applications to free liquid boundaries. In
the introduction, we review the main implications of the existence of a boundary
for a mass of fluid, then list and comment upon the dimensionless numbers
and parameters important for fluid dynamics. In Sect. 9.1, we apply the concepts
introduced in Sects. 4.5 and 4.6 on fibre bundles and discuss the formal approach
to hydrodynamics from this mathematical perspective. Since this section focuses
mainly on fluid kinematics, we devote Sect. 9.2 to a differential geometry approach
to the Navier–Stokes equations and fluid dynamics.

Section 9.3 contains an almost complete mathematical description of 2D soap
films with boundary, presenting the main uniqueness theorems for shapes. In
Sect. 9.4, we return to full 3D liquid systems with boundary, namely drops, and
discuss their Hamiltonian properties and stability. In Sect. 9.5, we specifically study
the rotation of 3D liquid drops, and the various equilibrium shapes one can obtain
from different regimes. Then in Sect. 9.6, we return to 2D drops and apply the
same Hamiltonian principles in order to study their stability. Moving even further
into the subject, Sect. 9.7 presents very recent results concerning patterns generated
by 2D drops, such as Leidenfrost systems. Section 9.8 is devoted to the rotation
and shapes of such 2D drops, and presents both the experimental aspects and the
theoretical approaches. A summary of the main findings and of the principal issues
and ideas which have arisen in the previous chapters and sections is provided
in Sect. 9.9, which is probably one of the key sections of the book. We draw
attention to the similarity between 2D rotating fluid systems at different scales and
in different physical systems, emphasizing the universality of their behavior through
the dynamics of their boundaries.
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Chapter 9 contains three appendices (Appendices 1–3) treating in more detail the
second fundamental form for surfaces embedded in R

3, the calculus of variations,
and n-dimensional spheres in rotation.

The last chapter of Part III (Chap. 10) aims to unify the ideas presented
throughout the book, from such different angles of human knowledge. Towards the
end of the chapter, we present a pioneering idea, namely the hypothetical importance
of other senses and perceptions (for example, taste and olfaction) that are not
supported by theoretical models in the artistic or mathematical approaches.



Chapter 6
The Boundary in the Philosophy of Science

Anything worthy of the name boundary will effect
set-theoretically describable divisions, even if more complex
ones than the simple twofold division envisaged by traditional
philosophy

Mark Sainsbury

In [200] Nancy Cartwright elaborates on the idea that the picture of the world offered
us by physicists and mathematicians is governed by a few simple general laws,
a vision that would have been familiar to David Hume in the eighteenth century.
Observable regularities in nature allow us to infer causal connections. However, the
fact that up to now a certain event has always been observed to go in a certain cause-
and-effect way does not necessarily mean that it will always do the same thing in
the future. For what guarantees that nature will not change tomorrow? Physical laws
assert what are supposedly eternal regularities, but there is nothing necessary about
them.

If one accepts this fear, the world in which we live, unlike the one inside the
laboratory, is an unpredictable place, marked by discontinuities and catastrophes.
Cartwright does not deny the essence of the laws, but makes a point about limitations
to the confidence we must have in laws when they apply outside lab boundaries. The
confidence scientists have in their laws comes from the fact that, unlike for example
climatologists, medical doctors, or economists, physicists are able, in the closed
world of the laboratory, to ensure that the outcomes they predict are in fact attained.
Physicists create very restrictive conditions under which their predictions will come
true. As the econometrician Tyrgve Haavelmo commented: “physicists confine their
predictions to the outcomes of their experiments.” When it comes to predicting
things in the real world, the results are trickier. So science has an inherent boundary
of applicability: the more precise and deterministic the law, the less applicable it
becomes outside of laboratory boundaries.

The laws of physics are constructed in such a way that they can operate only at
a high level of abstraction. It is because of this that they are remote from reality.
Take, for example, the first law of dynamics, the law of inertia. In order to apply it,
one has to be in a place far away from any type of interaction, completely isolated,
which contradicts the possibility of verifying the law, since to observe the behavior,
one needs a measurement device which will induce an interaction in the system.

© Springer-Verlag Berlin Heidelberg 2016
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For example, a paradigm of scientific knowledge for Cartwright is exemplified
by propositions of the form: ‘Aspirins cure headaches’. By this we do not mean that
aspirins always cure headaches: sometimes they do, sometimes they do not. What
must be said is only that the property of being an aspirin carries with it the capacity
to cure headaches. Another boundary for applied science observed by Cartwright
is the concern that science has no potentiality to change the world. For example,
quantum mechanics, instead of representing a step forward in our knowledge of the
atomic world, actually involves a decrease in our knowledge, being severely limited
in its scope of operation. Quantum physics works only in specific situations when
classical physics fails, and vice versa, in a way without reason and cause.

6.1 Boundaries in Epistemology

In epistemology, the concept of boundary is used abundantly in various contexts,
yet none of them can be seen as purely epistemic [201]. There are disciplinary
boundaries, temporal boundaries (real or assumed), linguistic boundaries, generic
boundaries, medium boundaries (oral versus written), etc. Lehoux believes that all
these boundaries can acquire a place in the spotlight, when we look closely at the
creation myth of science, or philosophy, but “the epistemic moral should perhaps be
held in that same suspension as the causes invoked by any other good fiction” [201].

The authors in [202] argue that, in drawing epistemic boundaries between science
and non-science, we have to look at how boundaries between science and pseudo-
science have been constructed historically and the ways in which these boundaries
have been put to use by scientists trying to secure resources and credibility while
denying them to others. The question of how to draw boundaries between science
and non-science is sociological rather than philosophical. Philosophers like Karl
Popper believe it is possible to draw a line separating science and non-science, yet
other scholars studying science now talk about a multitude of boundaries. Once
firm boundaries, like those between science and the public, and between religion
and science, have become increasingly difficult to pin down, and new boundaries
have emerged within science itself.

One way to investigate the boundaries in science is to focus on their particular
‘epistemic communities’, that is, from where to where a certain domain of science
appears to be true for a certain community. Disciplinary boundaries in science
have always been ontological: what a biologist can explain differs from what a
physicist can explain. Hence, the objects of science become epistemically unstable
when they move across boundaries. In order to understand the historical meaning
of an object, Delbourgo believes [202] that we must pay attention not just to the
boundaries that are being crossed, but also to the particular modes of transfer. The
question is how the particular dynamics of the epistemic conversion can be induced
and by whom. What cultural practices did some successful scientists bring to the
established community of scientists? Does it concern the completeness of these
new observations? Or could elements of this process be understood using the idea
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of a trading zone? This includes the idea of ‘creolization’, the process by which
new languages and cultural practices develop as formerly distinct cultures intermix,
and the idea of the hybrid, the notion that every individual’s identity is in fact
fractured. According to Baus [202], there are four complementary dimensions in
the formation of new scientific communities: the construction of a communicative
space, the formation of new institutions, the flow of symbols in the form of texts and
instruments, and the migration of individual scientists between communities.

An exotic and new type of boundary in the philosophy and history of science
relates to ‘conspiracy theories’ [203]. Even dismissed in social sciences as irrational,
bad science, religious belief, scientific communities practise a sort of persistent
disqualification which is a form of boundary work, e.g., the exclusion of lay
knowledge by scientific experts forming a global power elite. Given their critique,
which resonates with social scientific understandings of science, it is concluded that
conspiracy theorists compete with (social) scientists in complex epistemological
battles [203].

6.2 Triadic Classifications, Complexity, and Boundaries

Boundaries can be created by or between different groups of scientists. According to
Spee and Jarzabkowski [204], there are three such types of knowledge boundaries:
syntactic, semantic, and pragmatic. Syntactic boundaries are the simplest, providing
that there is a common syntax and assuming that knowledge can be transferred
between scientists. A semantic boundary is more complex because common mean-
ings need to be developed in order to translate knowledge. Pragmatic boundaries are
the most socially and politically complex, as common interests need to be developed
to transform knowledge at a pragmatic boundary. For example, during periods of
strategic uncertainty, groups of scientists within different labs might have different
political interests about what constitutes the appropriate course of strategic action.
Boundary objects assist in the transfer, translation, and transformation of knowledge
across the different syntactic, semantic, and pragmatic strategies.

At present the market success of a new research project is influenced, if not
determined, by its content of neoteric concepts like sustainable development,
quantum computers, complex systems, globalization of information, the information
society, big data, computational science and engineering, the knowledge society,
the knowledge economy, and nanoneurotechnology, etc. But what made these
terms win out over other phrases? It may well be because of a diversification of
disagreements, or an increase in cooperation between different fields of knowledge.
This is an explanation borrowed from the science of complex systems. In particular,
when analyzing such interactions between traditional fields, we need to explain the
existence (and dynamics) of their boundaries.

According to Eugene Gendlin, and in the spirit of Heidegger and Husserl, there
are three main types of interactions involving living systems: (1) the battle, or
absolute adversity when one disappears, as in the case of the immune response;
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(2) the contention or the relative adversity when only one can win, as in niche
segregation in natural selection; and (3) the debate, or complex adversity when
nobody wins, but a new state (truth) is born. In the same spirit, in his book
The Structure of Scientific Revolutions from 1962, Thomas S. Kuhn distinguishes
three types of incommensurabilities in the theory of evolution and revolution:
(1) methodological, when there is no common measure because the methods
of comparison change; (2) perceptual/observational, when observational evidence
cannot provide a common basis for theory comparison, since perceptual experience
is theory-dependent; (3) semantic, when the languages of theories from different
periods of normal science may not be inter-translatable from old to new theories.

By induction, there may be at least three different approaches for understanding
and partially breaking down a complex system into its minutest parts and their
boundaries. One way is to begin from a particular complex system and to address
a variety of questions coming from that particular domain and its points of view.
This approach uses causality constraints, analytic tools, similarities, and induction,
which basically means a search for functions.

The second approach almost eliminates the deterministic point of view and
uses statistical theories like random matrices, Bayesian theory, computational
information, or statistical complexity. This way, patterns and rules can be detected,
and the method searches for structure. These two traditional procedures have been
successful, but are still tributary to some reminiscences of linear thinking.

The third approach to complex systems and their boundaries cuts across particu-
lar domains, dissolves the formal and traditional boundaries, and most importantly,
thanks to modern technology, shrinks things down to the nanoscale where the
complexity clearly arises from nonlinear interactions, preventing us from obtaining
a realistic description of a system by dissecting it into its components [205].

While the first two approaches lead to domain-specific cross-disciplinary fields,
the third is responsible for the interdisciplinary type of inquiry. This approach
starts from fundamental questions relevant to all domains, and searches for rigorous
methods to solve particular open problems.

This third approach is handy when we deal with nonlocal mathematizable models
with multiplicity properties, but which are nevertheless robust and flexible. It is
widely used in classic semantic theories where a predicate has meaning through
its extension only. Concepts are boundary drawers in semantic theories. A good
example to mention here are the endless attempts to predict laminar flow and tur-
bulence through smooth solutions to the Navier–Stokes equations (one of the Clay
Millennium Problems). New interdisciplinary and transdisciplinary solutions then
seem necessary, in particular to treat challenging problems like correlations between
phenomena at different levels, self-organization, robustness and flexibility of the
system, evolutionary memory systems, and growth of supplementary structures. In
order to be able to construct such solutions, we need to understand the boundaries
of the disciplines, the boundaries of different phenomena, of systems, and even the
boundaries of the methods. The dynamics of these boundaries can provide shortcuts
and simpler solutions, by choosing cross-examples from a wide variety of topics and
disciplines. Boundaries are what count, because a solution to a complex problem
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must use its boundary to segregate the consequences which fall under it from the
consequences which do not.

6.3 Boundarylessness as the Philosophy of Vagueness

Finally, the question is: how can we handle diversity and interaction by avoiding
such an intense study of the boundaries? The vast majority of concepts classify
by setting boundaries, but there are some that do not. We can make the difference
between two types of boundaries.

1. Separating boundaries. These are the boundaries between different subsystems
or distinct phases of one system. In this case we have a total complex system
which, in some of its regions, usually hyper-subsystems having one dimension
less than the dimension of the system, behaves completely different. The
properties of the system tend to change so abruptly across these regions, and in
that violate the systems laws, that we have to give these regions special attention
and laws. The boundary may separate same type of sub-systems, or totally
different ones. Such boundaries usually involve transfers and interaction between
the regions they separate. These boundaries occur in classificatory processes.
Examples are benthic regions, cell membranes, phase separation surfaces, scenes
or acts in performing arts, national boundaries, concepts.

2. Defining Boundaries. They define the system, contain or surround the system
and isolate it from the void outside. These boundaries occur in constructive
processes, in boundary-drawing descriptions. As examples we enumerate a
painting on wall, a liquid drop in vacuum, a network, the boundary of a geometric
object, moral or legal concepts.

According to Sainsbury [206], there are concepts that can be classified without set-
ting (‘sharp’) boundaries. Examples of boundaryless concepts are traditionally con-
sidered to be vague, e.g., red, heap, child, bald. Because there are objects for which
the classification of being red is well posed, impossible, or relative. Hence there is no
set of red things, and red does not draw boundaries. Sainsbury’s theory of unsharp
boundaries does not use previous attempts to describe boundarylessness as vague-
ness, as happens in the theory of categories, fuzzy logic, or supervaluation theory.

Philosophers are interested in vagueness especially because of the fascination,
and threat, posed by the so-called sorites paradoxes: does a non-bald person become
bald by gradually losing a single hair at a time? And if so, when? A situation where
there is no longer any hair loss marks the transition, so there can be no transition,
hence no sharp boundary. How can this problem be avoided? In [207], the solution
to this question is to consider vague concepts, that is, ones without boundary.

According to Sainsbury’s ideas, a vague boundary divides things into an infinite
number of sets with the cardinality of the continuum. This can be proved by
induction. Let us assume that we can define a vague boundary by three sets: one for
which an action, property, or predicate can be proved positively true (the positive
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extension), one for which it can be proved positively false (the negative extension),
and one for which the proof has a borderline conclusion (the penumbral extension).
But an action or predicate which effects such a threefold partition is no longer vague,
so we have a contradiction. The same contradiction would occur if we tried to use
fuzzy logic or supervaluation, because these theories also divide the actions into
three sets: the 1s, the 0s, and the ones in-between 0 and 1. In conclusion, if we
understand boundarylessness as the absence of borderlines, we end up in vagueness.
Boundarylessness cannot be described sharply.

Sainsbury gives an example with the ‘set’ of strawberries, which apparently
draws boundaries because there are no borderline cases of strawberries. But this is
just an accident, because there could be plants having common features between
strawberries and raspberries, and if there are not yet, this fact may well soon
be amended by progress in genetic engineering. Concepts like strawberries do
not impose boundaries, but constitute a system of contrary boundaryless concepts
(Locke used to call these boundary-defying monsters). It would be interesting to
find possible future applications of such boundaryless concepts, e.g., in the cognitive
sciences, where one can try to discover ways of making a machine understand the
purely human concept of vagueness. Other examples can be found in the fields of
law, morality, or history.

It seems that some concepts classify by setting boundaries, but some do not.
According to the classical philosophical or linguistic picture, the job of classificatory
concepts is to sort or segregate things into classes by providing a system of pigeon-
holes, by placing a grid over reality, by demarcating areas of logical space. When
trying to define boundaries, may be a helpful question to ask is ‘what is vagueness?’

Such classification of boundaries may compel us to try to classify all concepts
and systems through their boundaries. This sounds a lot like trying to explain the
world through the set theory, which direction was investigated and was proven to be
a dead end.

It is a well posed question to look for the boundaries of a well-defined system
or concept. This happens because well-defined concepts must use a boundary to
segregate. The reciprocal, however, is not always true. According to Sainsbury some
concepts classify by setting boundaries, but some concepts do not classify by setting
boundaries [208]. Sainsbury asks if instead of trying to find exact definitions for
boundaries, we should rather solve the preliminary question of ‘what is vagueness?’
Philosophers have been interested in vagueness for centuries. One reason is the
fascination, and threat, posed by paradoxes. Nevertheless, vagueness may be of
interest independently of the paradoxes, and it can be a tool for the definition
of unclassifiable entities. Sainsbury says ‘concepts can classify without setting
boundaries.’ For example, the concepts ‘childhood’ or ‘red’ are vague because they
do not classify in a sharp way other concepts. There are things for which ‘red’ is
neither true nor false, for which being ‘red’ or not doesn’t make sense. In Sainsbury
system, such vague concepts like ‘children’ are concepts without boundaries.

From a mathematical-epistemological angle it seems more natural to solve
Sainsbury’s problem on vagueness and on the non-existence on boundaries for some
concepts by using a fundamental theorem in geometry: the boundary of a boundary
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is empty. By using pure math in this epistemological context there is always the
risk of shifting the initial problem of ‘definitions through boundaries’ into classical
semantics. However, instead of simply using the set theory we can follow the
geometrical fact that a boundary has no boundary. From here we can infer that
vague concepts are themselves the boundary of the sets of exactly defined concepts.
We illustrate this idea in the case of the entities ‘children’ and ‘children now in
this room,’ Fig. 6.1. In the left side of this figure we show the concept of ‘children
present now in this room’ by points inside as a solid disk each point representing
such a gathering of children. The rest of all possible gathering of children relative
to this moment and this room are presented as exterior points from the disk. For
the concept of ‘children’ in general we can use the boundary of the disk, separating
the two clearly defined situations. The entity ‘children’ in this case is represented
by a boundary, and hence itself has no boundary as in Sainsbury’s entities with
vagueness. On the contrary, the way Sainsbury sees the structure of vagueness is
presented in the right side of Fig. 6.1. There are situations when the children can be
clearly defined and classified with respect to a moment of time and a room. However,
according to Sainsbury the ‘children’ entity floats over the classified entities without
structure, limits or bounds.

Fig. 6.1 Geometric and Sainsbury representation of the entity ‘children.’ Left: The concept of
‘children present now in this room’ represented as points inside as a solid disk, each point
representing such a specific gathering of children. The rest of all classifiable gathering of children
relative to this moment and this room are presented as exterior points from the disk. The entity
‘children’ in general is represented by the disk boundary, and hence itself has no boundary. Right:
The Sainsbury vagueness of the entity ‘children.’ There are classifiable situations, and vague
situations like ‘children’ which float uncertain over the classified entities.



Chapter 7
Networks and Their Boundaries

The idea for the topic in this chapter came from the following question: what is
the shape of the Internet? Or, more generally, does a very large network have a
boundary, and if so, how can we define it? There is definite interest in the literature
for these questions. Callon, for example, discusses boundaries (of socioeconomic
networks) in the context of actor network theory (ANT), defining them through
the level of convergence of the network [209]. The network boundaries are built
by classification/elimination of their elements. In his approach, an element lies
outside of a network if it weakens the alignment and coordination (that is the
convergence) of the latter when moved into the network. Alignment, as opposed to
disalignment, is a measure of the network’s commensurability, while coordination
refers to the process of imposing local rules that stabilize connections. The stronger
the coordination, the more predictable the network.

In the Internet case, convergence can be evaluated by crawling procedures,
among many others. Figure 7.1 presents the result of a simple experiment of network
crawling: searching one word and measuring the number of resulting links and
the duration of the search, all on the same standard machine. The horizontal axis
represents the number of links on a logarithmic scale, and the vertical axis is the
search time in milliseconds. In addition to the mosaic of significations obtained, we
notice that the center of mass of the positions of the words tends to remain on a
horizontal line, implying that the search time is independent of the number of links
browsed and found. This result is a naive finding in favor of the argument that the
Internet, or at least the way the Google search engine works in 2014, is indeed a
‘small world’ network: all links are placed at about the same distance.
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Fig. 7.1 Result of a Google search for different one-part words versus the number of viewable
links and the duration of the search. Red curve: Average center of mass of the positions of the
words in this plane

7.1 Complex Networks

Networks are present in many aspects of everyday life, from river basins to veins,
the lymph and nervous systems, ground communication cables, electric power grids,
and Internet. In all these cases, the network properties work together to optimize
some ‘cost function’, such as the number of points connected with respect to the
length of the web [210].

Let us introduce some quantifiers used in the description of nodes and edges
in networks. Among the parameters describing the centrality of a node, we have
the betweenness, which represents the number of shortest paths between all other
possible nodes that pass through that node. Betweenness is a global parameter, and
its local version is the betweenness centrality of a node. The betweenness of a node
i is defined as the sum over pairs of nodes of the ratios between the number of
shortest paths crossing i between any two nodes, divided by the number of shortest
paths between those two nodes all in all.

The assortativity is the degree variance. The coreness k of a node is the integer
showing that this node belongs to a subgraph where all the nodes have at least degree
k, and it does not belong to any subgraph of higher coreness.

In connected networks, we define the farness of a node as the sum of its distances
to all other nodes, and its closeness as the reciprocal of the farness. Closeness is a
measure of how many edges it will take to spread information from this node to all
other nodes in the network.

The closeness centrality of a node is defined as the reciprocal of the sum of the
shortest paths from that node to any other node. The global clustering coefficient is
the ratio between the number of closed triplets in the network and the total number
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of triplets in the network. The local clustering coefficient 
i for a node i is (2 times
according to some authors) the number of edges between its neighbors divided by
the number of all possible edges that may exist between its neighbors. We also recall
the concept of a clique, which represents any complete subgraph; a maximal clique
cannot be extended to a larger clique by adding any of its neighbors. An important
clique is the triangle which plays a role in the definition of the clustering properties
of networks. An example of a highly clustered network is the so-called ‘caveman’
network, which is a disjoint union of cliques.

Another important parameter of a network is the hub number of G, which is the
minimum size of a hub set. A hub set is a subset in a graph containing a part of a
path between any two nodes of the graph outside the hub set. A subset of nodes in a
graph which is adjacent to all nodes of the graph is dominating, and in a connected
graph, any dominating set is also a hub.

Large graphs are generally classified according to their statistical properties. A
few important prototypes are described in the following section.

7.2 World Networks

A very large graph (the number of nodes exceeding hundreds) with a high degree
of connectivity may qualify for the definition of a network. However, a network in
its most general sense is a large graph together with some dynamics, including real-
time graph modifications and transfer of information from node to node. A network
can be highly organized and ordered, if it has as substrate a regular or random graph,
and is stochastic if it is constructed (and keeps growing or changing) according to
some random and probabilistic principles. In addition to this crude classification, a
network may also be classified or analyzed through many different approaches, from
psychiatric, neurological, social, linguistic, industrial, astrophysical, biochemical, to
computing. I remember asking my math professor in college what an operator is?
“Anything can be an operator,” he replied, “this train passing by can be an operator.”
So, similarly to an operator, I mention that anything can become, or be understood
as, a network.

However, the most interesting dynamical and unpredictable networks are gener-
ated by complex systems, so they are complex networks whose behavior is hard to
understand and describe in traditional rigorous mathematical terms. The complex
networks scale from millimeters in the case of the central nervous system, up to
hundreds of thousands of kilometers in the case of the satellite communication
web. Probably the oldest complex network ever identified is provided by a fossil,
estimated to be 520 million years old, which has revealed the earliest known
central nervous system of an animal [211]. The three-centimeter-long fossil (a
megacheiran) is a distant relative of spiders, scorpions, and horseshoe crabs. It
contains a pair of long, forceps-like extensions from the head. This may have been
one of the first successful complex networks built by nature, unless we count the first
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metabolic process on Earth, believed by a group of biogeochemical astrobiologists
from UCLA to have been formed 3.85 billions years ago [212].

Among the complex networks, probably the most useful to understand in our
daily lives are the social networks made ‘of the people, by the people, for the
people’. Real world social networks are difficult to model because they have highly
non-local dynamics, and their complexity grows with size. Apparently, there is
still no reliable mathematical theory for such social networks, in spite of dozens
of existing theoretical models. All the social network models try hard to match
the increasing complexity with network size by creating scaling laws and size-
invariant network laws, e.g., random networks, small-world networks, and scale-free
networks. As of this moment, none of these models can generate the vast complexity
of features and high levels of unpredictability in a real world network.

One interesting and intriguing result is the famous ‘six degrees of separation’
phenomenon occurring in some special social networks, believed to exist even
in some natural networks. The theory is that a person can be connected to any
randomly selected individual in the whole world through just five or six intermediary
individuals. The concept was first mentioned in the short story Chains, by Frigyes
Karinthy in 1929, probably following the impact of Guglielmo Marconi’s Nobel
Prize speech from 1909. Later on, Stanley Milgram conducted experiments to prove
this theory, which he termed the small world problem. In the 1960s, he conducted
landmark studies in order to quantify the typical distance between actors (i.e., nodes)
in a social network and to show that one should expect it to be small. His series
of experiments attempted to test the idea that the world had become increasingly
interconnected thanks to growing globalization.

Interest in this topic has led to research and it has recently become one of the key
fields of study in social and biological networks. From many experiments, we know
that almost all random networks (i.e., built by adding edges to existing nodes, or
by bringing new nodes in a stochastic way) share two global properties: they have
a similar value for their diameters (for sufficiently high values of the degree) and
are likely to spread. That is, when we count the neighborhood of each node in the
neighborhood of a fixed initial node, and keep doing this recursively further and
further away, we are likely to find new nodes that are not included in the initial
neighborhood. In addition, random networks have low values for the clustering
coefficient and the average distance between nodes is small. This can be summarised
as follows:

dia Grandom D diamax.jGj/ ;
jAjC1vij > jAjvij ; 8i; j ;
hdrandomi � dmin.jGj/ ;
h
randomi � 
min.jGj/ ;

where vi D .0; 0; : : : ; 0; 1; 0; : : : ; 0/. But how are these global properties reflected
in local properties, and which are more interesting and useful for the individual? It
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is legitimate to ask what people really want from a web query, or how individuals
can find short paths in a social network using only local information [213].

An interesting construction, although it does not directly answer the questions
above, emerges from the small-world model for networks. A small world network
can be built according to many recipes [185, 214, 215]. It is definitely known
that one can construct a sort of hybrid, or superposition, of a network with high
diameter and high clustering coefficient and a random network. The construction
is possible by adding new edges between hubs in a random manner. By randomly
connecting highly disconnected clusters, the average distance between nodes and
the clustering coefficient start to decrease. One can find an intermediate situation
where the diameter starts to drop quickly to small values (like the famous 5–6
number), while the clustering coefficient is still large. If such a mixed situation can
be obtained before both of these parameters drop to their smallest values, then the
corresponding network is called a small world [215].

Among other consequences, in a small-world network, the average value of the
distance between any two nodes is polynomially dependent on the logarithm of the
number of nodes, i.e., hd.i; j/i � .log jGj/ j, so the number of edges to be crossed in
going from one node to another is exponentially smaller than the number of nodes.
Further, we have jGSWk;mj D n and (see Sect. 5.3 for the relevant definitions)

N�1 D
sin

�.m � 1/.2kC 1/
n

sin
�.m � 1/

n

(7.1)

and

�nC1�m D 2k � N�m ; (7.2)

where N� and � are the normalized Laplacian and adjacency matrices, respectively.
Small worlds are hybrids between highly clustered networks and random networks.

The small-world network model has a problem finding a decentralized algorithm
(whose decisions are based solely on local information) and can produce paths
of small expected length relative to the diameter of the network. Moreover, as
efficient as it appears to be, the small-world model of networks, especially social
and biological networks, fails to answer an important question: how is meaningful
information extracted from document streams? In a highly connected world, the
problem is to defend oneself from wrong information, and to somehow select
only good information. Kleinberg addressed these types of problem in his studies
on algorithmic issues at the interface between networks and information theory,
especially in social and information networks [213]. So the problem is to identify the
‘most relevant’ nodes (web pages, documents, immune responses, etc.) following a
given broad query, and what is needed is an automated way to filter out the most
‘authoritative’ nodes. Kleinberg’s solution is to understand and model the networks
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as systems with an infinite-dimensional phase space, where bursts of activity are
phase transitions.

White and Houseman demonstrated the existence of cohesive islands or com-
munities with boundaries [216] by removing the bridges between clusters and
making the cohesive clusters more apparent. They found that multi-level networks,
including hierarchies of cohesive subgroups in networks like islands within islands,
are critically related to issues of self-organization.

An interesting network dynamics occurs in some models trying to generate
small worlds by an optimization process. Mathias and Gopal [217] introduced an
optimization model for networks based on the minimization of a Lagrangian as a
linear combination between the average network distance and the total length of
all edges (like a normalized wiring cost). In contrast to previous work focusing on
small-world behavior, they succeeded in showing that, by considering what arises
as a result of the random rewiring of a few edges with no constraint on the length of
the edges [185, 213–215] and subsequently introducing this constraint, they could
obtain an alternate route towards a small-world network through the formation of
hubs. While the node at each hub center serves to contract the distance between
each pair of vertices within the hub, the introduction of a hub center into each
neighborhood serves to maintain the clustering coefficient at its initially high value.
The procedure used by Mathias et al. consists in starting with a regular network
of some degree, using a certain high value of the wiring cost as phase transition
parameter. As the wiring price is slowly decreased, some hubs emerge and grow
in size and number. An increase in the range and number of inter-hub links is
subsequently observed, together with a reduction in the number of hubs, and a
trend toward the formation of a universal hub. The process is illustrated in Fig. 7.2.
This study provides an interesting example of the shape and boundary variability
of networks. Just by following certain optimization steps, the network changes
dramatically from a typical ring shape for a regular network.

Fig. 7.2 Random graph with n D 100 and no hubs. Evolution of hubs for the same n D 100, but
k D 4 optimized network. Note the emergence of hubs and their variation in size and number
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Sporns and Honey, and Bassett et al. [218] have found strong evidence for the
existence of functional networks exhibiting small-world attributes in the human
brain. Using wavelet analysis on magnetoencephalography recordings acquired
from human subjects, they obtained patterns of functional connectivity across a large
number of recording sites. The correlations between signals in wavelet space express
a statistical association between recording sites. The matrix of wavelet correlations
obtained for different frequency bands was mapped to a binary matrix which was
ultimately interpreted as an undirected graph and analyzed using network analysis
tools that measure clustering, path length, centrality, and synchronizability. They
found that the global topology of the functional networks at different frequency
bands was both highly clustered and highly integrated, forming a small-world type
of network.

7.3 The Shape of the Internet

Network models provide the conceptual tools for systematically and clearly repre-
senting social relations [219, 220]. Social networks can be studied, like any network,
through graph theory methods. The graph model of the social network represents
individuals or members by vertices and relationships between society members by
edges. A fairly comprehensive yet concise review of quantitative methods for graph-
based models of Internet topology can be found in [221].

As an example of a social network, see Fig. 7.3, where we represent the
association between location and time of burglaries in a city. The upper graph
represents areas where the time of day of the event was not relevant for the statistics.
The lower four connected graphs represent burglaries happening during the night,
and a few disconnected events during the mornings.

One question we would like to raise in this section concerns the boundary of the
Internet as a (social) network. Is it as in Fig. 7.4, Fig. 7.5, or Fig. 7.6? And does it
actually have a shape, or is it blurred?

In a recent monograph [220], the author explains that social network analysis
shows that the associated graph model is usually clustered, as in the case of small
worlds where everybody knows almost everybody through a few connections, but
where the boundaries of the cluster are as yet unclear.

The main problem for a sociologist, psychologist, or biologist is to identify
individuals and classify them according to their group identity on the basis of
relational information alone. If this ‘kinematic’ task can be accomplished, the next
problem is to find and explain the cohesion that binds a certain group together.
There are procedures, and among them the topological approach, and especially
boundary types of approaches, are the most efficient. In this section, we will discuss
such procedures and results concerning the explanation of social cohesion and
clusterization in social networks, based on their boundaries and separations.

First, we introduce elements of the Internet social network. As a graph or
network, the web is not only a fascinating subject of academic study. It also yields
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Fig. 7.3 Burglary crime analysis in Daytona Beach, FL 2010 [222], courtesy of DBPD and
Master Thesis, Dan Antolosh 2012. The nodes represent burglary locations and the edges represent
correlations by the same time of day for the crime. The upper connected graph represents burglaries
during daytime, while the lower four connected graph components represent nighttime events in
the same city

Fig. 7.4 Visual representation of the Internet topology at a macroscopic scale in 2013 for IPv4 AS
Core. Courtesy of www.caida.org

www.caida.org
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Fig. 7.5 Jelly fish aspect of the world wide web in 2013. Courtesy of www.caida.org

valuable insights into algorithms for searching and identifying communities, and
sociological phenomena which characterize its evolution (see, for example, [178],
or the recent analysis in [223]). For a very recent mapping of the Internet network,
see Figs. 7.4 and 7.5. The connections between users and providers are modeled
as branches of a tree. Models of the Internet social network mimic or are inspired
by natural systems like blood vessels or river networks. The study of this type of
network is not only of scientific relevance; it also addresses technological questions
such as finding which cost function has to be minimized in order to improve net
features. For the Internet social network, this should help us to extend wiring
to developing countries, and improve the quality of net connections in countries
already connected [210].

www.caida.org
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Fig. 7.6 Example of a graph modeling the Internet network in 2011. Courtesy of Steve Jurvetson

There are different models for the Internet network, including stochastic, fractal,
small-world, scale-free, etc. (see Fig. 7.5). Almost all these models show the same
complexity at different scales. These properties are defined between the size of a
single node up to the whole network.

According to [177], the Internet can be modeled by a very large directed graph
whose nodes are the documents, and whose edges are the links (URLs). The
topology of the graph determines its connectivity, and consequently its internal
effectiveness. Concerning the scale of web traffic, the Visual Networking Index
estimates that by 2015, 3�1018 bytes (3 exabytes) of information will be transferred
every day through the Internet, with a rate of increase of more than 1020 bytes/year
(100 exabytes/year). Current estimates (at the end of 2013) evaluate the Internet
as having about 50 � 109 web pages and 2.2–2.3 billion users, wherein it carries
some 2�1018 bytes (2 exabytes) of information per day, citing the World Wide Web
Foundation.

The continuously changing documents and links make it impossible to com-
pletely catalog all nodes and edges. With the data to hand, the Internet can be
regarded as a graph with jGj D 2 � 4 � 1010, kGk D 5 � 1010, which results in
an average length hdi ' 3. It is also assumed that a web page is linked (on average)
with 60 other pages. By comparison the human brain has around 1011 neurons, and
each neuron fires on average thousands of other neurons. If the present rate of growth
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of the Internet network is constant or even increases (see Fig. 7.9), it will not take
long until its volume is one order of magnitude greater, with the possibility that the
connectivity will grow by one order of magnitude, too. At that stage, the Internet
will be only one order of magnitude less complex than the brain!

There have been many attempts to evaluate the large scale topology of the
Internet network and associated graph. For example, in 1999, Barabasi et al. [177]
measured the connectivity of the Internet by building a robot that collected all
URLs found on a document and recursively followed them to retrieve the related
documents and URLs. This research has shown that the probability of a document
having k outgoing/incoming links follows a power law over several orders of
magnitude. This law appears to be quite different from the Poisson distribution
predicted by the classical theory of random graphs [224], but also from the bounded
distribution associated with random network models, e.g., as found by Watts and
Strogatz [185]. The power law matching their research has the approximate form:

ln P.k/ ' �49 050 ln k � 9:01 ;

where P.k/ ' Pout.k/ ' Pin.l/ represents both incoming and outgoing probabilities.
Its tail indicates that the probability of finding documents with a large number of
links is still significant. This also implies that the network connectivity is dominated
by highly connected web pages. According to the conclusions presented in [177],
and in spite of the apparent freedom of web page authors to choose the number
of links on a document and the addresses to which they point, it appears that the
Internet obeys a ‘flocking’ type of sociology based on scaling laws. These laws are
characteristic of highly interactive self-organized systems and critical phenomena.

This model shows that the average distance is given by the empirical formula

hdi D 0:35C 2:06 ln N ;

where N D N.GInternet/. This conclusion also places the Internet graph model in the
category of small-world networks. However, the conclusion in [177] shows that the
average distance in 1990 was in the range 20–40 and was slowly increasing, while
the latest evaluations show that, in 2013, the average distance is even closer to a
small-world model, namely, hdi ' 4.

In a study in 2012 [225], the authors investigate the topological connectivity
of the Internet, and compare it with the US highway and railroad systems.
Their findings show that, if we are to compare the Internet network with other
theoretically studied networks, the closest theoretical model would be grid and mesh
networks, as opposed to star or tree networks. The authors used the normalized
Laplacian spectrum of (5.6) and the multiplicities of the eigenvalues to compare the
distribution of the normalized Laplacian eigenvalue densities versus the eigenvalue
for some standard networks: star, linear, tree, ring, grid, and mesh. Comparisons
were made between these spectra and the topological properties calculated from
these spectra and the distribution for realistic networks such as Internet (AT&T,
Sprint), US railroads, and US interstate. These findings further support the idea that
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the topology of the ‘logical’ Internet network (the Internet connections between
documents) is similar to the grid or mesh networks, while the ‘physical’ Internet
network topology, as well as the topologies of the US railroads and highways are
rather similar to bipartite networks.

A paper by Broder et al. [178] presents a study made by a team of computer
researchers from northern California, in which they found, contrary to expectations,
a significantly different topological structure for the web, unlike other traditional
Internet network models like those supporting the jellyfish, small-world, ultra-small-
world, scale-free [226], hub-dominated, k-shell [227], and other models (see, for
example, Fig. 7.6). Their model became known as the bow tie model. It is based on
studies of local and global properties of the web graph using ‘AltaVista’ crawls with
over 200 million pages and 1.5 billion links.

The model divides the Internet network into four, almost equal in size, disjoint,
and directed sub-networks: strongly connected core, IN, OUT, tendrils, plus a
smaller number of tubes and even smaller disconnected components (see Fig. 7.7).
Like the jellyfish model, there is a strongly connected core of about 56 million nodes
and two other large groups, IN and OUT, of roughly 44 million nodes. IN consists
of all pages that link to the strongly connected core, but have no links from the core
towards outside, to reach back to these links. The counterpart to this is the OUT
group, consisting of all pages that the strongly connected core links to, but which
have no links back towards the core. The fourth group, containing 44 million nodes,

Fig. 7.7 The ‘bow tie’ model for the connectivity of the web [178] has a strongly connected
central core, bounded by two directed IN and OUT subgraphs. These finger out into many tendrils
containing nodes that are reachable in the opposite direction from the central directions. Some
tendrils coming out of IN may be hooked into others entering OUT, thereby forming a passage
from IN to OUT without using the core (a tube)
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Fig. 7.8 Cross-section of the spinal cord and its connection to the spinal nerves. In one human
spinal cord, there are about 32 million neurons, almost the same number of nodes as are found
in the central core of the bow tie model of Internet. From http://biol251.wikispaces.com/Ch_13-
SpinalCord (http://creativecommons.org/licenses/by-sa/3.0/)

is represented by all other disconnected pages that neither link to the core, nor are
pointed at from the core. They can be represented as directed tendrils that always
run towards OUT and away from IN (see Fig. 7.7). Some tendrils can accidentally
grow and reconnect outside the core, allowing information to flow, but not through
the core. There may also be a certain number of smaller, completely disconnected
groups.

The procedure followed to obtain this result was accomplished by studying
the power law distributions of the nodes and pages. According to Broder et al.,
two interesting and useful insights were obtained from the analysis. First, the
connectivity of the Internet is extremely resilient and does not depend on the
existence of hubs or high degree nodes. Second, the high rank nodes (highly ranked
web pages, also called ‘authorities’) were almost all found to be embedded in a very
well connected core.

The shape found by Broder et al. [178] for the Internet network has a strong
visual similarity with the cross-section of the spinal cord (see Fig. 7.8). Moreover,
in one human spinal cord segment there are almost the same number of neurons (32
million) as nodes in the central core of the bow tie model of the Internet.

It is worth noting that the fundamental topological and geometrical properties
of the Internet network like its shape and non-homogeneity and its self-similar
or scale-free structure do not restrict or even significantly control the dynamics
of information, friend selection, or stability and efficiency of the network. Large
networks are nevertheless complex systems and their features cannot really be
inventoried in a topological or geometrical nutshell. For example, the work of

http://biol251.wikispaces.com/Ch_13-SpinalCord
http://biol251.wikispaces.com/Ch_13-SpinalCord
http://creativecommons.org/licenses/by-sa/3.0/
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Kaltenbrunner focuses on the impact of the geometric distance of online social
interaction and shows that, even if geometric distance strongly constrains the way
social links are established, there seems to be a uniform effect on all user inter-
actions, unrelated to the geographic length they span [228]. A similar conclusion
was obtained by Hu et al. in [229], showing that the distribution of geographic
distance between friendship is inversely proportional to the geometric distance. In
other words, no matter what the topology, the spatial structure of the Internet social
network is scale invariant, and the network is equally and uniformly navigable. It
may be true that people tend to make friends if they are a shorter distance from each
other, but once a remote friend is acquired at a greater distance, this connection will
be equally stable.

Results on scale-free characteristics of the Internet network and signatures of its
self-organization are put forward in [230]. Here it was found that the probability f
that a document has d outgoing (incoming) links follows a power law over many
orders of magnitude. In graph theory language, this means that the fraction of nodes
with degree d has power law dependence over the whole of its domain N.G/:

f .d/ � 1

d
;

where  is a positive constant in the range 2.1–3.0. Moreover, the authors found,
in agreement with several other studies, that the average distance between pairs of
nodes follows the law

hdi D C1 C C2 ln jGj ;

where C1;2 are constants to be determined by extrapolation data, indicating that the
web forms a small-world network of a kind known to characterize social or bio-
logical systems. In 2000, Barabási et al. found hdwwwi D 19 [230]. A consequence
is that, whenever the network grows, there will be preferential attachment, because
there is a higher probability that a new node will be linked to a node that already has
a large number of connections.

Facebook is the largest online social network ever used by people to articulate
existing offline social connections, as well as to forge new ones [231]. It enables
its users to present themselves with an online profile, accumulate ‘friends’, and
view each other’s profiles. Users can also join virtual and common interest groups.
Today, Facebook has more than 1.2 billion registered users and it is the space on the
web where the most networking takes place with respect to total page views (see
Fig. 7.9).

In [232], the authors examine the use of an online social networking site
created by Michigan State University students and its relationship to social capital
formation and integration into college life. The authors showed that participants
of a social network that is geographically delimited will be less likely to play
with their identities (and therefore to verify others’) due to the bounded nature
of the site [232]. The comparative study of the history and properties of this
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Fig. 7.9 The time dependence of the number of registered Facebook users versus time over a
period of 8 years is shown by a thick solid line. The thin dot-dash curve represents an exponential
model which fits the first part of the dynamics. The three curves (dashed, thin solid, and dotted)
represent interpolations for the late time interval, namely, polynomial, power law, and linear,
respectively

network’s connectivity showed that the number of stable connections doubled in
time owing to the existence of geographic limitations (all members belong to a
bounded community where almost everybody knows everybody). In that situation,
the existence of superimposed physical (space, location) boundaries on top of a
virtual social network can enhance the openness of the exchange of information.
Consequently, a bounded network doubled by another channel of communication
enhances the network bound and a nonlinear cooperative effect can result.

When online and offline social networks overlap, the direction is from online to
offline: online connections result in online meetings; connections made online rarely
stay there, and we may wonder whether this is one cause for its instability.

If an online social network serves or is defined through a geographically based
community, then its bound coincides with the community’s bounds.

Below we list three of the most important parameters that can be used to describe
quantitatively an online social network:

1. Temporal evolution of the network’s nodes and connections. This is the study
of the average lifetime of use of a node or a connection, measured by the
amount of transferred information, the time spent by a node when the network
is used, the use of various network features, the purposes and motivations for
using the network, and the perceived critical mass around a certain node or
connection. Several studies show that the temporal evolution of one node is
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history dependent, e.g., when Facebook users keep their high school nickname
as a replacement for their legal name on their Facebook account. In addition to
these features, one may consider the measurement of users’ perceptions that the
people with whom they communicate are also social network users.

2. Local parameters around a node. The need for networking and the need for
(bridging and bonding) social capital.

3. Global parameters. Bridging social capital allows diffusion of information or
links to external assets.

In [232], the authors found that members of bounded online social networks (like
the one based on geographical association) have a tendency to use links to offline
connections rather than grow bridging social capital. It may be that unbounded
online social networks have a tendency toward ‘poor get richer’ as opposed to ‘rich
get richer’, as usually happens in other types of social networks. For example, users
with low self-esteem tend to increase their bridging social capital by using online
networking rather than offline (geographic) networking.

In a recent article [223], the authors show that the neighborhood function N.h/
representing the percentage of user pairs that are within n hops of each other has the
form of a sigmoid function of Gompertz type on a logarithmic scale:

N.h/ D 100 tanh.0:022h0:698/ :

7.4 Internet Is a Boundary

Let us model the Internet as a network with a very high degree of connectivity, a
hypothesis which works if the network is of small-world type. This also means that
almost all nodes are separated on average by the same number of steps. The question
is whether it is possible to embed this network in a high-dimensional Euclidean
space E

n in such a way that the average Euclidean distance between two nodes is
given by the average number of steps between these nodes. In such a space, almost
all points representing the network are placed at the same relative distance, like the
4 vertices of a regular tetrahedron in R

3.
Let us consider a system of N points Pi in E

n such that the distance d.Pi;Pj/ D
d0 between any two of them is constant for any i; j D 1; : : : ;N. This constraint
determines a system of N.N � 1/=2 equations. It has a solution if the following
inequality holds:

Nn � n � n.n � 1/
2

� N.N � 1/
2

;

where on the left we have the maximum number of free parameters of N points in
a space with n coordinates, minus the arbitrariness of the network origin position,
minus the maximum number of possible rotations in the space under which the
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geometric structure of the network is invariant. From the solution of this inequality,
it follows that the maximum number of points that can be placed at equal relative
distance in E

n is given by N D n C 1. This result also shows that, if we want to
provide a geometric meaning for the average number of steps between any two
nodes, for a very large, highly interconnected small-world type of network, we
must embed it in a space with a number of dimensions equal to the number of
its nodes minus one. On the other hand, if we place all the nodes inside a spherical
hypersurface in E

n of radius R � N, we evaluate the ratio between the number
of nodes placed on the hypersurface N˙ and the total number of nodes inside the
hypersphere NV using the formula

N˙
NV
D k

N1=n
;

where k is a constant independent of the number of dimensions of the space, and of
the order of unity. Since all the nodes are separated by the same average distance
and we have n � N ! 1, it follows that the right-hand side of the last equation
approaches a constant limit k. This in turn means that the fraction of nodes on the
left-hand side approaches k, which is almost unity. We are forced to the conclusion
that, for a network with such a large number of nodes, almost all the nodes which are
separated by the same distance (defined as the number of steps in R

3 and Euclidean
distance in E

n) are placed on the surface of a hypersphere of radius n in a space with
n dimensions. Consequently, such a network, and this includes the Internet, is its
own boundary if the number of nodes increases indefinitely. The Internet is its own
boundary.



Chapter 8
Big Data Systems

In the Spring, I have counted 136 different kinds of weather
inside of 24 hours

Mark Twain

When your search for hotels and your website becomes busy with promos for car
rentals, or when your smart-phone app identifies your location and you receive
offers from nearby restaurants, you are in the middle of big data science and data
mining in action. In the last decade, the handling of vast amounts of information
shifted from the sole responsibility of astronomers and high-energy physicists to
that of the life scientist. Starting with fields like meteorology, petroleum exploration,
and astronomy, the essential jump in the emergence of big data came in 2003, when
the first human genome was completed and a new type of science, big data science,
came into being [233].

The sequencing centers, high-throughput analytical facilities and individual
laboratories, produce vast amounts of nucleotide and protein sequences, protein
crystal structures, gene-expression measurements, protein and genetic interactions,
and phenotype studies. For example, a new field of research emerged in biology,
viz., biocuration, defined as the activity of organizing, representing, and making
biological information accessible to both humans and computers. The same situation
happened in social networking, in business and communications, where big data
science became useful to identify fraud in real time, to score medical patients
for health risk, to identify consumer sentiment landscapes, or to explore network
relationships. The Human Connectome Project collects advanced imaging data in
order to explain how spontaneous activity in the brain correlates between different
brain regions. The Citizen Science or Galaxy Zoo projects approach big data in
a different manner. For example, in astronomy, Galaxy Zoo relies on statistics,
multiple viewers, and logic to process and check data by feeding images to
volunteers who do basic classifications of galaxies. If the proportion of viewers who
agree on the classification of a certain galaxy is constant as more and more people
see it, the galaxy would be withdrawn from viewing.

It is estimated that Walmart collects more than 2.5 petabytes of data every hour
from its customer transactions. In 2012, almost every day, Google alone processed
24 petabytes of data, but only a small amount of this information is formatted in
conventional databases. To have a feeling for the magnitude of this flow of data,
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we mention that the European Bioinformatics Institute in Hinxton, UK, one of the
largest biological data repositories in the world, stores all in all about the same
amount of data (20 petabytes D 2 � 1016 bytes), and this number almost doubles
every year [234]. The exponential growth in the amount of available data in science
and media (biology, sociology, knowledge networks, etc.) means that revolutionary
measures are needed in the science of curating data, data management, data mining,
analysis, and accessibility.

A petabyte is the equivalent of about 20 million filing cabinets’ worth of text. To
comprehend this amount of information in terms of a more tangible concept, we can
convert it into substantial mass. Consider this 24 petabytes of information stored
at some point on a magnetic device. The average volume of such a storage device
would be, with today’s technology performance, about V � 0:05 m3. Consider
that the bytes are stored through magnetic dipole–dipole interactions in some high
quality magnetic material, and consider that writing this information is performed
using a spin-transfer torque technology. If the blank memory is taken to have zero
potential energy reference level, the encryption of the information will result in
an almost random sequence of binaries across the memory. We can evaluate the
total magnetic energy needed to write this information to be about 10 GeV. For
comparison, this is how much electromagnetic radiation we receive in one second
through one square meter on the Earth’s surface from the star Alpha Centauri. If we
convert this energy into rest mass through mc2, we obtain the mass equivalent of
1010 carbon atoms, which is about the average mass of one human cell.

Big data science, especially when it employs the methods of exploratory
data mining and cluster analysis, is becoming more and more useful in many
fields, including bioinformatics, DNA microarray technology, information retrieval,
pattern recognition, image analysis, and machine learning. The topic is encountered
especially in the field of clustering high-dimensional data, where the data set can
reach several thousands of dimensions. A straightforward example is provided by
clustering of text documents where a word-frequency vector lies in a space with a
number of dimensions equal to the size of the vocabulary [235]. Data mining is the
set of software algorithms that aim to extract information from huge sets of data.

8.1 Data Dimensionality

The dimensionality of a data set is, loosely speaking, the minimum number
of independent variables needed to represent the data without information loss.
According to a definition introduced by Fukunaga in the early 1980s [236], a data
set ˝ � R

d has intrinsic dimensionality ID D m < d if its elements lie entirely
within an m-dimensional subspace of Rd. The effective computation of ID can be
done using the Fukunaga–Olsen algorithm, which is a local method. If the data
vectors were embedded in a linear subspace, ID as defined above would be equal
to the number of non-zero eigenvalues of the covariance matrix. In order to use this
property, one has to divide the data set into a Voronoi tesselation by means of a
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Fig. 8.1 A Voronoi tesselation

clustering algorithm. We remind the reader that a Voronoi tesselation is a special
partition of a given domain in a metric space, determined by the initial selection of
a collection of L points in the domain, Pk; k D 1; : : : ;L. For each k, we define a
Voronoi set Rk, k D 1; : : : ;L, as the set of points in the domain whose distance to
the point Pk is not greater than the distance to any other point Pj, j ¤ k, from the
collection (see Fig. 8.1). In each such Voronoi set, the surface in which the vectors
lie is approximately linear and the eigenvalues of the local covariance matrix are
computed and normalized by dividing them by the largest one. Then ID is obtained
as the number of normalized eigenvalues that are larger than a chosen threshold.

As for the clustering algorithms acting on a given set of data points, this
involves grouping them into disjoint subsets called clusters, based on some chosen
equivalence relation called similarity, and usually inspired by a metric criterion.
For example, a hierarchical clustering algorithm starts by considering clusters of
the points themselves, and then repeatedly combining the two nearest clusters. The
nearness criterion is the distance between the centroids of the clusters, and the
clustering algorithm may stop when the points to be added to a given cluster are
farther than a given limit. The process continues until some optimization criterion
(such as the Bradley–Fayyad–Reina criterion) is satisfied, and the clusters are
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Fig. 8.2 Application of an NLPCA procedure to a 2D data set. The directions v1;2 are the principal
directions of maximum and minimum data variance

‘cohesive’ (that is, they satisfy a certain criterion of connectivity, or density, or
centroid distribution).

In contrast to local methods, global methods for evaluating ID can be divided
into projections, scaling, and fractal methods. The most efficient projection method
is nonlinear principal component analysis (NLPCA) [236]. The method is not at all
new in mathematics or physics, but the computer and software science community
has given it a different flavor when applied to large sets of data. The data table
regarded as a high-dimensional tensor, or generalized matrix X, is mapped into
coordinates of a high-dimensional affine space, and the resulting set of affine points
is studied using the idea of principal axes of inertia for a 3D solid (see Fig. 8.2).
In this high-dimensional space, a program finds the direction of the largest possible
data variance, and then orthogonal directions are constructed. Since the quantity to
be maximized can be expressed as a Rayleigh quotient, an eigenvalue procedure can
be used. The eigenvector corresponding to the largest eigenvalue is chosen to be the
principal direction, and the procedure continues with the other non-zero eigenvalues.

This procedure can be explained very simply as follows. Let v be the direction in
which X has its maximum variance, that is, vtXv, which is the variance in direction
v, must be maximum. Since v is a unit vector, we need to find extremals of the
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functional

vtXvC �.vtv � 1/ ;

where � is a Lagrange multiplier. Differentiating, we obtain

Xv � �v D 0 ;

which is the eigenproblem to be solved. As a practical application, a data set can be
embedded in a high-dimensional linear space, a number of principal directions may
be constructed (smaller than the space dimension), and the coordinates along these
principal directions become the new parameters of the data set. A reduction in the
number of degrees of freedom can then be identified. The procedure is similar in
some ways to the procedure of finding the nonlinear normal modes of oscillations
(NNM) of a coupled nonlinear mechanical system. The normal frequencies of such
a dynamical system depend on the energy and on the initial conditions, because the
system is nonlinear. An energy–frequency chart of all possible modes of oscillations
can then be mapped and the normal modes identified.

The multidimensional scaling method (MDS) is an ordination method, i.e., a
procedure for mapping data as points in a space with axes chosen so that the
clusterization of data becomes evident and manifest. This procedure is more closely
connected to data visualization techniques. Among possible applications, we may
mention scientific visualization in cognitive science, psychophysics, psychometrics,
marketing, and ecology, and ordination of autonomous wireless nodes in real time.

In the following, we present an example where this method has been successful.
Traditionally, the nuclear chart is understood by plotting boxes, each of which
represents a unique stable nuclear species, in the periodic table of elements (see
Fig. 8.3). No clustering or other structure of data is visible in this traditional
representation. However, in nuclear physics, the boundaries for nuclear particle
stability are conceptualized as drip lines. Inspired by this phenomenon, plotting
nuclear data on a graph where the number of neutrons is increasing on the abscissa
(horizontal axis) and the number of protons is increasing along the ordinate (vertical
axis) generates a totally different landscape. It is easy now to observe the tendency
of the nuclei to cluster along the drip line of nuclear stability. Figure 8.4 is a good
illustration of the advantage of using the NLPCA method illustrated in Fig. 8.2, and
confirms the importance of this method.

Fractal-based techniques are global methods that have been successfully applied
to estimate the attractor dimension of the underlying dynamic system generating
time series [236]. In contrast to other global methods, they can provide non-
integer values as ID estimates, which is why these methods are called fractal.
From nonlinear dynamics, box-counting and the correlation dimension are the most
popular methods that have been imported into big data global methods.
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Fig. 8.3 Representation of stable nuclei (atomic nuclei) in the traditional periodic table of
elements. The data show no observable clustering tendency when presented like this

Fig. 8.4 The same nuclear data as in Fig. 8.3, ordered according to their nuclear stability along the
neutron drip line. The dark squares are stable nuclei, known in nature. Yellow: Domain of nuclear
metastability. Green: Domain of exotic, superheavy nuclei and new types of nuclear matter
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8.2 Topology of Big Data: Persistent Homology

The use of algebraic and differential topology and geometry tools in a given
scientific field does not need any justification. The richness of operations and
structure in geometry has had a powerful influence in science, and at the same
time the specific development to meet the needs of physical sciences has led to
the identification of new and useful geometrical structures. In particular, algebraic
topology, and its more recent cousin, computational algebraic topology, have found
a wide field of applications in problems of feature detection and shape recognition
in high-dimensional data.

Among other essential mathematical tools used in big data investigations, one
important procedure goes by the name of persistent homology, i.e., the application
of homology theory to point-cloud data sets and the representations of this algebraic
characterization using barcodes. In the introduction to his paper [237], Ghirst
asks the rhetorical question: “How does a topologist visualize a four-dimensional
object?” and he writes his response in the form of a Socratic rejoinder: “How do you
visualize a three-dimensional object?” Neuroscientists studying the early childhood
brain have shown that, in the first year of life, we learn how to infer 3D spatial data
from paired planar projections. Years of practice, continues Ghirst, have tuned a
remarkable ability to extract global structure from representations in a strictly lower
dimension. As a peripatetic would say: Nihil est in intellectu quod non prius in
sensu.1

Another possible answer to the above question is relative homology, Künneth
theorems, and cobordism. Put simply, if we know the topology of a lower-
dimensional space, that is, if we know all the homology and homotopy groups
classifying its structure, number and types of holes, etc., then we can use one of
the Künneth theorems to calculate the homology groups of product spaces between
these lower-dimensional spaces and a line segment. This is pretty much as simple
as constructing a 3D cylinder from the product between a 2D disk and a 1D
segment. This is followed by factorizing (shrinking) the cylinder lids into points, and
thereby obtaining a 3D disk from a similar 2D one. Both the disk and the segment
are contractible, whence a certain chain of homology groups becomes exact and
provides the required homeomorphism, and consequently the desired transfer of
topological properties (homology) from 2 to 3 dimensions. In this way, a 4D disk
(and a 4D sphere as its boundary) can be imagined as the inflation of one point in
the 3D space into a 3D sphere, up to a certain radius, followed by its retraction back
to a point, in time, for example. In this example, we embed the line segment of the
fourth dimension in the time axis, as the fourth axis.

Data is represented in general as an unordered sequence of points in some
Euclidean space, .x˛/ 2 E

n. This data can be generated by time series from
sensors, point cloud data from scanned 3D objects, motion capture data, etc. The

1There is nothing in the intellect that has not previously been in the senses.
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collection of points will generate the vertices of a combinatorial graph whose edges
are determined by proximity, e.g., two vertices placed at a distance less than a certain
threshold will generate an edge. The graph is then completed to a simplicial complex
(see Definition 8 in Sect. 5.5).

Starting from the simplicial complex generated by the data cloud, we can
generate a continuous family of topological spaces parameterized by a positive
number � whose topological properties change in a discontinuous manner with
�. The vast majority of these topological properties appear and disappear with
increasing �, and are called topological ‘noise’. If, however, some of the algebraic
topology properties of this family of spaces remain unchanged over a broad range
of variation of �, we call these properties ‘persistent’ and they can pretty accurately
describe the hidden reduced dimensionality of the data set.

To put this simply, imagine a large number of points in the plane placed very
close to a circle, i.e., the mean distance from the points to the circle is much smaller
than the circle radius. Then start to draw little disks of radius � around each point,
considering the intersection of all these disks as a simplicial complex, and keep
increasing �. Initially, the resulting set has a disconnected topology, but eventually
some of the disks overlap and generate here and there some particular shapes.
However, beginning from a certain value of �, and up to very large values of �,
all circles overlap in an annulus shape, so the algebraic topology of the resulting
simplicial complex is pretty much unchanged over a broad range of values for �.
We say that the data topology has a persistent property. It takes very large values
for �, compared to the radius of the original surrounding circle, to close the annular
simplicial complex into one disk. Since for this large range of � values the data
topology remains the topology of the circle S1, we can say that these data have
ID D 1.

Based on the data cloud of points X D fx˛g 2 E
n, and for any � � 0, we

introduce two types of complex. The Čech complex C� is defined as the abstract
simplicial complex whose k-simplices are determined by unordered .k C 1/-tuples
of points fx˛gk0 for which closed �=2-ball neighborhoods have a point of common
intersection. The Čech theorem states that C� has the homotopy type of the union
of closed �=2-balls about the point set X D fx˛g. This means that C� behaves like a
subset of En: a point cloud fattened by balls [237].

The Vietoris–Rips complex R� is defined as the abstract simplicial complex
whose k-simplices correspond to unordered .k C 1/-tuples of points fx˛gk0 that are
pairwise within distance �. Two overlapping disks form a 2-simplex (a segment), 3
overlapping disks form a 3-simplex (a triangle), and so on (see Fig. 8.5).

Consider a sequence of Vietoris–Rips complexes Ri associated with a data cloud
for an increasing sequence of parameter values �i. There are natural inclusion maps

� W R1 ,! R2 ,! � � � ,! Ri ,! � � � ,! RN�1 ,! RN :

This sequence generates the maps �� W HkRi ,! HkRj, for all i < j, where Hk is the
homology group of a certain order k. We have the following Lemma [237, 238]:
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Fig. 8.5 A sequence of Vietoris–Rips complexes for a point cloud data set representing an
annulus. Upon increasing �, holes appear and disappear. The only persistent structure which truly
describes the data cloud is the upper right C� . This has the same homology as the circle. All the
other complexes for the other values of � contain noise holes. R. Ghrist [237]. Reproduction by
courtesy of Bull. Am. Math. Soc.

Lemma 1 For any �i > 0, there is a chain of inclusion maps

Ri ,! Cp
2�i
,! Rj ; (8.1)

with �j D
p
2�i.

Lemma 1 shows that the topological features that persist under the inclusion map
� W Ri ,! Rj are in fact shared with the topological features of C�j if �j �

p
2�i.

Consequently, the homology of the inclusion �� W HkRi ,! HkRj reveals information
that is not otherwise easy to notice from HkRi or HkRj alone.

By way of illustration, Robins [239] shows how to quantify these topological
features using the concept of �-persistent Betti numbers. We define

ˇ
i;j
k D rank .ZkRi/� rank

�
��.ZkRi/\ BkRj

�
:

In other words, the �-persistent Betti number ˇi;j
k is the number of non-equivalent,

non-bounding k-cycles in HkRj that are the image of a k-cycle from HkRi. Geo-
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metrically, ˇi;j
k is the number of holes in Ri that do not get filled in by taking a

coarser-grain (‘fatter’) Rj (see again the sequences in Fig. 8.5).
Robins’ final theoretical approach in determining the topological structure of the

data cloud is to use the inverse limit systems of shape theory and the Čech homology
[240]. In order to accomplish this goal, she generalizes Lemma 1 by introducing,
instead of �j D

p
2�i, a continuous parameterization for the finer grain �j > �i. The

next step is to choose two sequences satisfying

�i ! 0 ; and �i < �j ! 0 ;

and to evaluate the limit ˇi;j
k ! ˇ

0;j
k .

These ˇ0;jk , called 0-persistent Betti numbers, describe the homology of Ri that
genuinely comes from the homology of X, and we have ˇ0;jk � ˇi;j

k for any �i � �j.
From the continuity of the Čech homology [237, 239, 240], we also know that the
0-persistent Betti numbers of Ri converge to those of the original data cloud space,
i.e., ˇ0;jk ! ˇk.X/, if X is compact. In order to apply this hole analysis based on
persistent Betti number theory to data sets given by finite point patterns, one has to
‘fatten’ or coarse-grain the set by overlaying a digital mesh and attaching spheres of
radius �i at each point. An appropriate level of coarse-graining can be chosen on the
basis of physical reasons. The Betti numbers are then computed using a triangulation
that has the same topology as the Ri complex.

Figure 8.6 reproduces such an analysis result from [239] on a fractal set of points
obtained by an iterated function system, i.e., similarity transformations of a unit
square with contraction ratio 1=2. The fractal shown in the left frame of Fig. 8.6
is disconnected, and consists of infinitely many line segments. Topologically,
therefore, there are no loops in this fractal. However, the homology of the Vietoris–
Rips �-complex creates holes in the �-neighborhoods.

The disconnected nature of the data is seen in the staircase growth of ˇ0 (the blue
curve in the right-hand frame of the figure), which counts the number of connected
components. In the limit � ! 0, this Betti number approaches the exact number of
line segments in the original fractal data cloud. The graph of the number of holes,
i.e., ˇ1 (the red curve), shows that more holes are resolved as � ! 0. One can see
towards the � ! 0 limits that three holes remain in the data set, and they are shown
by the persistent ˇ1 Betti number in the right-hand frame.

In Fig. 8.7, we consider a simplicial Čech complex constructed on a collection
of 416 points randomly distributed in the Euclidean plane around a figure-eight
knot, which has ˇ1 D 5. Different insets in the figure represent, from left to right,
increasing values for �-ball neighborhoods. The curves represent the Betti numbers
calculated for these complexes, namely, ˇ0 in blue and ˇ1 (scaled 10:1) in orange.
The straight lines represent the exact values.

The main shape is concentrated around this knot, so we have ID D 1. The
ˇ0 parameter pretty well describes the evolution of the complex, and ranges from
almost the total number of data points to nearly 1, the topological characteristic of
a path-connected curve. However, when we compute the loop homology H1 of this
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Fig. 8.6 Left: Example of a Vietoris–Rips complex with � � 0:1, associated with a disconnected
fractal made of 104 line segments. The original data cloud has no loops. However, the � � 0:1

complex creates three artificial holes. Right: Betti numbers ˇ0 in blue and ˇ1 in orange, on
logarithmic axes. There are spikes due to the geometry of the fractal, but they are non-persistent
holes. The three artificial non-persistent holes are also revealed by the orange curve. Reproduced
from K.R. Mecke and D. Stoyan (Eds), Lect. Notes Phys. 600 (2002) p. 274, by courtesy of
Springer-Verlag
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Fig. 8.7 Examples of different �-complexes built around 416 points that describe a figure-eight
curve plus white noise. In the main window, we plot the number of connected components ˇ0.�/ in
blue and the number of holes ˇ1.�/ in orange. Homology persistence occurs only after exceeding
a certain threshold in �
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Fig. 8.8 Annulus shape data. When � varies, more simplices are generated (see new colored
triangles) and topological features like connectivity, Betti numbers, or holes appear or disappear.
The features that persist for a long stretch are considered to be real; the small ones are called
topological noise. This type of analysis is called persistent homology, and its representation in
the bottom frame is called the ‘data barcode’. The Betti numbers, i.e., ranks of HkRi, equal the
number of intervals in the barcode for HkR intersecting the (dashed) line � D �i. Image from
[237], courtesy of Bull. Am. Math. Soc.

complex for small � values (left part of the graphics), it yields Betti numbers ˇ1
oscillating between zero and two, randomly including noise holes and too sparse
to circumvent the real loops of the figure-eight knot. In the middle range for �, the
computational homology provides more accurate values for ˇ1, even intersecting
its correct value of 5 loops. There is still the presence of noise, as can be seen for
larger radii of the disks when ˇ1 � 12. Intuitively, we regard this large number
of holes as coming from faulty sampling or other errors in the recovery of the data.
Towards even larger �, the ˇ1 curve tends to stabilize, and most likely asymptotically
approaches an almost correct value. In principle, one could then argue that a correct
choice of the parameter � generates a complex with the right connectivity structure.

The dependence of the Betti numbers on the parameter � inspires a visual
snapshot in the form of a ‘barcode’ (see Fig. 8.8), that is, a graphical representation
of HkRi as a collection of horizontal line segments in a plane whose horizontal axis
corresponds to the � parameter and whose vertical axis represents an (arbitrary)
ordering of homology generators. Figure 8.8 gives an example of barcode represen-
tations of the homology associated with point sampling in an annulus.
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So far we have presented families of simplicial complexes parameterized by a
single parameter �, but there may be other situations when multiple parameters can
prove useful, e.g., if we study the probability distribution which gave rise to a point
cloud [238]. One way to do this is to estimate the density function using a density
estimator. The new parameter � will be a percentage parameter, and X.�/ � X is
the subset of points which lie within the � th percentile of density as measured by
the given density estimator. Then it is interesting to study the topological evolution
as � changes.

8.3 Topology of Big Data: Regions with Holes

There may be issues when applying persistent methods in cases where big data
cloud shapes are not directly topological. If the cloud can still be embedded in a
differential manifold, one can study the filtration on the manifold through the value
of the scalar curvature, and the evolution of the topology of the level sets of this
filtration can reflect interesting properties of the shape (see [238, 241] and references
therein). In such cases, one needs to find discrete versions of the curvature and to use
multiple persistence theory based simultaneously on a geometric quantity related to
curvature, for example, and the scale parameter �. Such cases are investigated using
a mathematical formalism based on graded modules, but the analysis becomes too
deeply involved in algebraic calculations, and hence strays too far from the purpose
of our study of the boundary of big data sets in this chapter.

Here, we present an example where simpler, non-homological topological meth-
ods can help us to understand and classify big data sets. The Geographic Information
System (GIS) is a geoinformatics computer/software network and institution which
deals with models of geographical reality and describes geographical objects and
spatial relations of the kind ‘San Marino is surrounded by Italy’ or ‘the South
Florida Everglades graminoid marshes are straddled between sawgrass marshes and
sloughs’.

Sometimes homology methods are not sufficient, and in order to study geo-
graphic systems or ecosystems, one should use different scales, i.e., different
topologies, for one may consider the effect of one boundary on another (e.g., surge
or flood effects on rural populations in south Louisiana, or the effects of coherent
oscillations in car traffic at peak times between two large neighboring areas in
Houston, etc.), or the effect of one species on another, on a group of other species, or
on the whole ecosystem. Network analysis must also be involved in the GIS studies
in order to compare ecosystems with different spatial extents, and to understand the
different patterns and dynamics that arise (for a review, see [242] and references
therein).

The topology of these objects is in general irregular since it contains topological
singularities as holes and separations. In order to study the topological relations
between such 2D objects with arbitrary holes, connected boundaries, and connected
interiors, a few bivalent computational topology models have been developed [242].
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Among them, a traditional approach is the ‘4-intersection’ model, in which regions
containing holes are generalized using the union between the region and the interior
of its holes, and the closure of each hole. Hence, for a region A with holes hi � A,
i D 1; : : : ; n, we define the generalized region

A� D A [
 

n[
iD1
Nhi

!
: (8.2)

The topological relation between two such generalized regions with holes, A� and
B�, is expressed through the 4-intersection matrix defined by

0
@@A \ @B @A \ ı

B
ı
A \ @B

ı
A [ ı

B

1
A ; (8.3)

where the circle over a set denotes the interior (an open set). The entries of the matrix
in (8.3) can be empty or non-empty, so there are eight possible cases. Egenhofer
et al. have shown in [242] that, for two regions with n and m holes, respectively,
the total number of topological relations that can be specified between the objects
(regions and their holes) is � D .mC nC 2/2, and this number includes redundant
relations, too. The next step in the analysis of large data clouds associated with such
regions, each determined by large sets of points in the plane, is to develop algorithms
to minimize the number of necessary relations. The software works using a language
based on words describing the only independent possibilities, i.e., disjoint, meet,
equal, inside, contains, covers, covered by, and overlap.

The literature in the field of information geometry, and specifically in the
computational topology and geometry of big data sets, is vast and increasing by
the week. More and more methods are being developed and it is difficult to keep
track of them all. A very good source of inspiration for such models is [123], for
example. This book lists the main open trends and questions to be tackled, including
bivariate families, neighborhoods of Poisson randomness and the duality between
independence and randomness, cosmological voids and galactic clustering, amino
acid clustering in protein chains, cryptography and signal clustering, stochastic fiber
networks, stochastic porous media and applications in hydrology and industry, and
quantum chaology.

To end this chapter, we may quote Steve Lohr’s wise and documented words
from his article The Age of Big Data in The New York Times of 11 February 2012.
He asks: “So what is big data?” We can add another question: “And how is big data
connected to boundaries?” For sure, Lohr says, big data is a marketing term, but
also a term in technology that helps us to find new approaches to understanding the
world and making decisions. Data increases all the time, more than doubling every
two years, and this does not only concern more streaming, but new types of data,
e.g., the continuous improvements and inventions created to link sensors in cars,
houses, weather stations, airplanes, offices, etc., to computing intelligence.
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There is an increasing realization of the enormous potential of data-driven
computational social science. The availability of unprecedented amounts of data
about human interactions in different social spheres or environments opens the
possibility of using those data to leverage knowledge about social behavior. Big data
also presents many formidable challenges to governments and citizens, precisely
because data technologies are becoming so pervasive, intrusive, and difficult to
understand [235]. This is what Adam Jacobs calls The Pathology of Big Data. Naive
or brute-force incorporation of large-scale data into simulation models may not lead
to the expected results in terms of achieving progress in social science. While it
is apparent that analysis of the data will certainly contribute to our understanding
of mechanisms, it is also clear that further input will often be needed, in particular
input obtained from mathematical, geometrical, topological, and other models. As a
rapidly developing and successful field, computational social science must be aware
of the need to develop its theoretical premises [233].

Lohr comments that “one witnesses the rise of what is called the Internet of
Things or the Industrial Internet”. Improved access to information also contributes
to the growth of big data itself, for data is not only becoming more available, but
also more understandable to computers.



Chapter 9
Physical Boundaries

When you see a fish you don’t think of its scales, do you? You
think of its speed, its floating, flashing body seen through the
water : : : If I made fins and eyes and scales, I would arrest its
movement : : : I want just the flash of its spirit : : : What is real is
not the external form, but the essence of things : : : it is
impossible for anyone to express anything essentially real by
imitating its exterior surface.

Constantin Brâncusi

What Brâncusi intended was not to diminish the importance of shape and bound-
aries. He probably meant that there is more to a boundary than just the appearance
of its shape (see Fig. 9.1). The shape can actually represent, through its freedom and
its intangible majesty, the essence of reality. Shape is important, it is even essential,
and sometimes, as Brâncusi said, it is hard to distinguish the reality it describes, as
we can see in Fig. 9.2. Antoine de Saint Exupéry said (Citadelle 1948): “A rock pile
ceases to be a rock pile the moment a single man contemplates it, bearing within
him the image of a cathedral.” In other words, even though the content, the internal
structure, and the density may be the same, what makes the difference here is the
external shape.

In this chapter, we shall describe some examples illustrating the importance of the
free boundary, or interface, for the physics of liquids described from a differential
geometry point of view. For more detail on the importance of free boundaries for
liquid masses, one can consult [121, Chap. 3].

Regular liquids have three interesting properties of great interest for pure and
applied mathematics: they experience a wide class of geometrical deformations,
they can have free surfaces, and inside their free surface boundaries, they exhibit the
property of being incompressible to a very large extent. Incompressibility together
with the existence of boundaries results in one of the most fascinating phenomena
in the mathematically-explained world, namely, a system of a given dimensionality
(and complexity) can be explained by a part of lower dimensionality (complexity),
i.e., the overall body dynamics can be inferred from the dynamics of the shape alone.
In the following sections, we will ignore the existence of phase changes, or chemical
or electromagnetic interactions.

The dynamics of a liquid drop is modeled by considering the internal liquid
matter, mostly incompressible, surrounded by its boundary, which performs
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Fig. 9.1 Two artistic representations of a fish. Left: Chinese statue of Arowana fish. Right:
Fish (bronze, metal and wood sculpture, 1926, Tate Modern, London) by Constantin Brâncui.
Public domain: https://commons.wikimedia.org/wiki/Category:Constantin_Br%C3%A2ncu%C5
%9Fi#/media/File:%27Fish%27_by_Constantin_Br%C3%A2ncusi,_Tate_Modern.JPG

Fig. 9.2 When art copies nature: which sculpture represents what natural object? Clockwise from
top left: Crystal glass vase, bohemian crystal vase, cut glass bowl, Swarowski pineapple art object,
50�s collapse of a cavity in water created through impact of a disc, and a crystal vase. The water
cavity image is reproduced from Fig. (1b) from reference [243] with permission by the authors and
the journal

oscillatory or rotational motion mediated by surface effects, plus external field
forces (gravitational, centrifugal, electric forces, magnetic traps, etc.). Interaction
of the drop surface with surrounding fluids, or solids like supporting surfaces,
containers, or pipes, etc., can also be considered. Even if it does not quite qualify
as a complex system, a drop is a complicated nonlinear system. If the macroscopic
and microscopic drop properties are combined in one interactive model, a drop can
become a complex system, e.g., coupling the fluid mechanics of the drop with its

https://commons.wikimedia.org/wiki/Category:Constantin_Br%C3%A2ncu%C5%9Fi#/media/File:%27Fish%27_by_Constantin_Br%C3%A2ncusi,_Tate_Modern.JPG
https://commons.wikimedia.org/wiki/Category:Constantin_Br%C3%A2ncu%C5%9Fi#/media/File:%27Fish%27_by_Constantin_Br%C3%A2ncusi,_Tate_Modern.JPG
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thermal properties. This way one can easily obtain complexity signatures like
pattern generation, fractal surfaces, chaotic behavior, and symmetry bifurcations.
If the drop geometry is coupled with external non-mechanical fields, as in the
Ginzburg–Landau model for mesoscopic superconductors where vortices can
interact with the drop geometry, the resulting system is complex, too.

One feature common to all these drop models is the existence of a surface
tension which always acts as restoring force against various shape deformations and
internal flows. Surface tension arises in any drop model, from the Planck scale to the
cosmological scale, due to the imbalance of forces between the internal constituents
of the drop and those at the surface. Particles in the interior receive equal forces from
the surrounding particles, whereas the surface particles receive a net force directed
towards the interior of the material. The droplet tends toward an equilibrium if the
forces between the particles are balanced, but if the droplet is displaced from this
equilibrium, oscillations and waves occur as the forces adjust to move the droplet
back towards equilibrium.

The interesting behavior of drops consists in the huge variety of shapes they
can adopt during this tendency to restore equilibrium, viz., spherical, axisymmetric
drops, or multi-lobed drops. A deep understanding of the existence and coexistence
of these galleries of shapes results from a deep understanding of the mathematical
insights given by the drop model.

When studied in bounded forms, liquids with free boundaries can be modeled
by smooth and compact geometrical surfaces which endow them with the privilege
of being described by very rich mathematical objects like spectral theory, bounded
operators, mode expansions, functional variational principles and stability criteria,
etc. We can divide bounded liquid bodies with free boundaries into two main classes:
films and drops (where we also include liquid shells, bubbles, bubble clusters, and
antibubbles). Liquid films can simply be modeled by surfaces spanned by curves,
so even one more step down in complexity from two dimensions to just one. The
system under study is 2D and it has a rigid curve as imposed boundary. Drops and
bubbles are 3D systems with 2D free boundaries. The boundary is compact, and in
general, a homeomorphism of embedded spheres and/or tori, unless they merge into
clusters [244].

Liquid film and drop dynamics include interesting phenomena like oscillations
(or irregular vibrations or waves crossing their bulk and boundary), rotations,
topological transitions (transitions from simple connections to annular shapes),
breaking (transitions from connected to disconnected domains), and splashing
(transitions in the dimensionality of the supporting manifold). Consequently, we
organize this chapter into the following sections: liquid drops in general, 3D drops,
and 2D drops.

In order to cover the dimensionless analysis of hydrodynamic equations in this
book, Table 9.1 presents the dimensionless ratios between the most important
driving terms occurring in the dynamical equations of fluid mechanics (electromag-
netic, chemical, and thermodynamic terms are not considered). In the columns and
rows, we enumerate expressions proportional to these driving terms: the hydrostatic
pressure P, gravitational force �gh, dynamical pressure (kinetic energy density)
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Table 9.1 First order dimensionless numbers in fluid mechanics

P �gh �V2 �V�=L ˝2L2 �

�gh To

�V2 Eu Bos, Fr, Ri

�V�=L Poi Ga
Re Re

˝2L2�  Rigidity Ek, Wo, Go,
p

Ro

H
 La �c, Bo, Eo We Capillary,
Mg
Re , Re

La , Re
Oh Pt

We consider only macroscopic mechanical effects, and do not include here thermal (equilibrium
or non-equilibrium), electromagnetic, chemical, or elastic effects

�V2, viscous force �V�=L, centrifugal force ˝2L2�, and surface tension H
 . At
the intersection of the columns and rows, we identify the dimensionless number
associated with the relative importance of the corresponding driving terms.

The symbols listed in the table represent the dimensionless numbers in fluid
mechanics as follows:

– To D Torricelli law
– EuD Euler number
– BosD Boussinesq number
– Fr D Froude number
– Ri D Richardson number
– Ga D Galilei number
– Re D Reynolds number
– EkD Ekman number
– Wo DWomersley number
– Go D Görtler number
– Ro D Rossby number
– La D Laplace number
– Bo D Bond number
– EoD Eötvös number
– �c D capillary length
– We DWeber number
– CapillaryD capillary number
– MgDMarangoni number
– Oh D Ohnesorge number

The dimensionless number  D R˝2=g represents the ratio of the maximum
centrifugal and gravitational accelerations, as given, for example, in [245]. We also
introduce a rigidity term for the rotation of a deformable body through the ratio
between how much its rotation has the same angular velocity everywhere (rigid
body rotation) and how much its rotation follows other rules, e.g., gravitational or
electrostatic rotation, etc. We refer to the drag as the ratio between the drag force and
the driving pressure. An example of a second order dimensionless ratio of driving
terms is Archimedes’ number defined by Ar D Ri � Re2.
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The only dimensionless numbers which are not often described in the literature,
but which we would like to introduce here are the Poiseuille number Poi and the
Plateau number Pt defined as follows. The number

Poi D 
P

�V�=L
(9.1)

represents the ratio between the pressure drop at the ends of a cylinder, and the drag
force combined with the flow rate of the fluid through the pipe, at hydrodynamic
equilibrium, i.e., the Hagen–Poiseuille law. The Plateau number is defined by

Pt D 
HL

��V
D Mg

Re
; (9.2)

and represents the ratio between the surface curvature pressure generated by the
surface tension and the centrifugal force density. The Plateau number describes the
relative contribution of the surface tension effects versus the centrifugal effects in a
rotating drop. A small value for the Plateau number indicates a large centrifugal
effect that exceeds the restoring tendency of the surface tension and introduces
high instability, super-deforms the drop, or even breaks it. In practice, a large
Plateau number indicates an almost spherical drop where the rotation effects can
be neglected as compared with a stronger surface tension.

The dynamics of liquid droplets displaced from equilibrium are of interest not
only from a purely scientific point of view, but also for the impact they have
on human-related activities, various industrial applications, and natural physical
processes. Rainfall [246], air pollution [247], printing [248], painting [249], phar-
maceutics [250], mixing [251], flying [252], vortices in distillation [253], absorption
[254], fermentation [255], liquid–liquid extraction [256], and spray drying [257]
are only a few of the phenomena and operations where drops play a primary role.
Drop physics is important at every scale, from heavy nuclei models [258] and exotic
radioactivity [259], to Bose–Einstein condensate drops [260], quark matter droplets
and quark–gluon plasma drops [261, 262], to nanofluidics [263] and labs-on-a-chip
[264], to swimming motile cells [265] and cell division [266], to oceanography
[267] and tsunami studies [268], when parts of the ocean can be modeled as drops,
all the way to astrophysics [269] and neutron stars [270]. Less traditional structures
have also been observed like double bubbles, antibubbles, walking bubbles, bubble
clouds, etc. [271–278].

9.1 Geometry of Inviscid Fluids

A natural way to model pattern generation and wave propagation phenomena is
through conservative models, i.e., based on local conservation laws from which
solutions can be derived using symmetries. A typical example is the study of
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conservative partial differential equations where the powerful geometric methods
of Hamiltonian mechanics work very efficiently. By extension, many attempts have
been made to apply the methods of Hamiltonian mechanics to problems from
incompressible fluid dynamics (a detailed discussion is provided, for example, in
[279]), thanks to the simplicity of the fluid equations in such a case.

Traditionally, the fluid equations can be written in a closed form in terms of
velocity, density, and entropy (with pressure given as a function of entropy and
density through some equation of state) in the Eulerian frame of reference. In the
case of classical mechanics, the dynamics of all dependent variables (all particle
paths) are coupled so it is impossible to reduce the configuration space to a smaller
subset. In contrast, in the case of incompressible flow, the Eulerian field formalism
provides an extraordinarily simple tool for the study of many-particle systems.
This advantage has its roots in a special symmetry property of the fluid particle
Hamiltonian, namely its invariance under relabeling particles with the same density
and entropy.

The particle-relabeling property corresponds to a Noetherian conservation law
which actually expresses vorticity conservation. It is thus interesting that all the
results obtained using vorticity theorems and formalism are deeply related to the
existence of an approach using an Eulerian reference system. At the same time,
the vorticity laws (like the circulation theorem or free surface boundary conditions)
describe the properties, and the locations, of labeled fluid particles, which relate the
concept of vorticity to the Lagrangian frame approach. This example suggests the
existence of an (epistemological) principle of uncertainty for fluid dynamics, even
at pre-quantum levels. As a consequence of this principle of uncertainty, the price
to pay when choosing one frame rather than another is a matter of personal choice.

However, there is a certain bias: a Hamiltonian approach brings many advan-
tages. We may mention succinctness of the formalism, the connection between
symmetries and conservation laws, and independence of the form of the laws
with respect to any special choice of coordinates. Unfortunately, there is a serious
impediment when one tries to use the traditional Hamiltonian method (as inspired
by classical mechanics) in fluid dynamics: the Eulerian variables are not canonical.
It is geometric Hamiltonian mechanics, together with its new developments, which
allows the use of Hamiltonian structure without the need for canonical variables
[280–284]. As Salmon writes in his introduction to [279]: “From the geometric
viewpoint, the statement that noncanonical (e.g., Eulerian) variables are sometimes
useful even though the underlying dynamics is Hamiltonian is closely analogous
to the more obvious statement that non-Cartesian (e.g., spherical) coordinates are
sometimes useful, even though the underlying geometry is Euclidean.”

During the last few decades of the twentieth century, a considerable amount of
literature was published by a number of researchers: Bridges, Benjamin, Marsden,
Montgomery, Ratiu, Salmon, and Shepherd, to name only a few [167–169, 279–
281, 285]. They use a theoretical approach based on differential geometry for
the equations of water waves and outline the critical role of multi-Hamiltonian
and multisymplectic structures, especially when associated with the equations
of incompressible fluids with free boundary. Such structures contain variational
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principles in a natural (geometric) way, and this is essential for the study of pattern
formation and wave instability [169], as mentioned earlier.

The main result of all these contributions can be synthesized in the observation
that the classical problem of incompressible flow is equivalent to a purely geometric
problem of finding a path of minimum length in a multi-dimensional ‘landscape’
that conserves local volume. Mathematically, this problem can be expressed as
the geodesic problem for smooth bijective volume-preserving maps defined on a
smooth manifold. These diffeomorphisms can be interpreted as transformations of
positions of particles lying in a manifold, under local volume conservation. The
diffeomorphisms can be composed, like any other maps, and such a composition law
induces a Lie group structure in the space of the diffeomorphisms. The connection
between hydrodynamics and the construction of the Lie group of diffeomorphisms
is made by specifying an invariant metric on the tangent space to the manifold,
and considering the corresponding volume element induced in the manifold by this
metric. In other words, for a given smooth vector field defined on the manifold, the
geodesic flow of this field satisfies the Euler equation for an incompressible fluid
on this manifold. The pressure becomes a scalar field that can be obtained from this
flow. The geodesic flow is tangent to the boundary of the manifold, if the manifold
has a boundary, and the flow parameters can be adjusted to satisfy smooth initial
conditions.

This intriguing but straightforward hydrodynamics construction in terms of Lie
groups enables a unified approach to an even broader variety of dynamical systems,
from the equation of rotation of a rigid solid to the Navier–Stokes equations for
hydrodynamics. There is, for example, a famous application of this theory to
the question of non-existence of long-term reliable weather forecasts. Arnold’s
estimates [286], related to curvatures of diffeomorphism groups, show that the
weather is essentially unpredictable after two weeks, as the error in the initial
condition grows by a factor of 105 over this period.

The topological approach to incompressible fluid dynamics [284, 285] contrasts
with that of classical Hamiltonian fluid dynamics by using a Lagrangian frame
formalism. The theory begins by defining a configuration space M which is a domain
with a smooth boundary embedded in the 3D Euclidean space where the fluid
particles move. In general, M can be a smooth compact Riemannian n-dimensional
manifold with smooth boundary, and it is called the reference fluid container.
Because of the incompressibility property, the initial domain occupied by the fluid
is in one-to-one correspondence with the cloud of fluid particles at any moment of
time, so one can label the particles by their initial positions. The shape of the fluid
domain changes, but its local and global volume forms are conserved.

In the following, we construct a fiber bundle formalism for the topological fluid
dynamics theory (see Sect. 4.5). Figure 9.3 presents a sketch of the concept. The
base space will be M � R made of material points representing events in space and
time .x; t/ D .xi; t/ 2 X. On top of X, we construct a fiber bundle Y whose standard
fiber is the manifold M itself, this time labeled by coordinates .yi/ 2 M called
spatial points. The canonical projection is ��1.xi; t/ D yi D xi. The coordinates of
a point in the Y bundle are .xi; t; y j/. In this way, the base space is the reference (or
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Fig. 9.3 The Euler point of view in the flow bundle. Particles are labeled by the axis X � M, and
t 2 R is the time axis. The vertical axis is vertical fiber direction and different F curves are different
fibers. At t0, the particle labeled x0 occupies the position .x0; t0/ 2 X and y0 2 ��1.x0; t0/ � F.
We let this particle go, but make measurements at the same space position at different moments of
time. We apply g 2 G transformations to y0 and some of the images g.y0/ intersect other fibers at
the flow �.X/, e.g., at y1 D g1.y0/. We project �.y1/ on X to obtain the new particle labeled x1
which passes through the same fixed space position y0 at t1, and so on

initial) configuration of fluid particles, and its extra dimension in the base labels the
time evolution. The bundle Y becomes the particle placement field and any smooth
section � W X ! Y , � j.xi; t/ in the bundle describes later configurations of the fluid.
The sections in this bundle represent all possible physical flows. The tangent space
to each point of a section is called the first jet bundle and it is denoted by J1TY�.x;t/.
If we consider the first jet bundle as a fiber bundle on top of Y, the coordinates of
this super-bundle are .xi; t; yi; vi

j/ with vi
j D @j�

i.x; t/.
For a given flow, i.e., a section �, the Lagrangian point of view for the fluid is

determined by the restriction �.x0; t/, x D x0 D const:, namely, the positions yi.x0/
occupied in the particle position space (in the bundle Y) by the particle labeled x0
(or, in other words, by the particle which was initially at the given fixed point x0 in
the base space).

The Euler point of view is described by the structure group of the bundle Y.
Because we want to observe the flow (the section) at the same position for any
moment in time, we need to transport this fixed space position through all the frames
at all moments in time. This means smoothly moving some initial point from the
intersection of the initial fiber with the section, viz., .x0; t0; y0/ D ��1.x0; t0/ 2
F \ �.X/, to another fiber, by the action of the structure group of the bundle. This
way, the position in the spatial position space is maintained constant. When we apply
all the group elements g 2 G in the structure groups to y0, the resulting points g.y0/
touch all the other fibers, but not all points belonging to the section image �.X/ (see
Fig. 9.3). We choose only those points which belong to the section image, taking
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them in order of increasing times. The uniqueness of each such point is guaranteed
by the smooth fiber bundle structure. The resulting curve

n
.x; t; g.y0// 2 �.X/jg 2 G

o

lies entirely on the �.X/ section image, so represents the flow. Moreover, since all
the points g.y0/ belong to the same relative position in each fiber, they represent
observations made at the same position in the reference container. This is the Euler
point of view of the flow. The projection of the curve

˚
g.y0/ 2 �.X/jg 2 G

	
represents the particles that intersect this fixed position at various times.

Now we can define the two types of fluid velocities. The Lagrangian (material)
velocity is

vL D v.x; t/ D �.x; t/

dt
;

while the (spatial) Euler velocity is

vE D v.y; t/ D
y



x
�
��1.y/


; t
�

dt
:

In order to write the dynamical equations for the fluid, we introduce the incompress-
ibility criterion in the form of invariance of the Lie derivative of the volume form.
In the following, we denote the Euler (spatial) velocity components by v :

Lv˝ D 0 ; (9.3)

where Lv is the Lie derivative in the direction of the fluid velocity field and ˝ is
a differential 3-form, the volume form, possibly induced by the Riemannian metric
on M. In principle, on 3D domains, ˝ D dx ^ dy ^ dz D const:, but when looking
for more complicated solutions for liquid drop or soap film bubbles, it may be
convenient to use a non-constant volume form, and this makes (9.3) non-trivial.

The dynamical equation for an incompressible force-free inviscid fluid has the
form

dv

dt
Crvv D �dP ; (9.4)

where rv is the covariant derivative along the flow field direction, and the 0-form P
is the fluid pressure, defined by

P D �C 1

2
.˘ I v; v/ ;
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with � the Lagrange multiplier needed in the Lagrangian form in order to consider
the volume conservation constraint, and ˘ the second fundamental form, defined
on the tangent bundle of the flow, that is, on T�.X/.

We mention that similar expressions can be obtained if one includes external
force fields (potential fields are of course easier to handle) and viscosity, since
the viscous drag operator is introduced through a linear elliptic operator (Laplace
operator on flat manifolds, and Laplace–Beltrami operator on Riemannian mani-
folds), which can be absorbed in the differential geometry formalism. There are of
course more details defining these equations in the most rigorous form, but such an
elaborate geometrical approach would exceed by far the topics studied in this book.
More references can be found in [167–169, 279, 282, 283, 286].

We mention that if the flow is bounded by a fixed boundary @M, then the field v

must be tangent to the boundary. The section describing the flow in the flow bundle
Y is defined by the Euler velocity field and one can write

@�.x; t/
@t

D v
�
t; �.x; t/


;

with initial condition �.x; 0/ D x, that is F � M. The chain rule applied to the
above equation allow us to write the Euler equation in the form

@2�.x; t/
@t2

D �dP
�
�.x; t/; t


:

From the last form of the Euler equation, we notice that the acceleration of the flow
(curvature of the section) is an exact form and that it is orthogonal (in some scalar
product induced by the Riemannian metric) to the tangent space of the volume-
preserving diffeomorphisms, namely, the divergence-free fields. This means that the
fluid motion is a geodesic in the set of such diffeomorphisms. The same equation
describes the motion of an ideal incompressible fluid filling an arbitrary Riemannian
manifold M equipped with a volume form [286]. In the latter case, v is a divergence-
free vector field on M, while rvv stands for the Riemannian covariant derivative of
v in its own direction.

We mention that the differential geometry/topological formalism as applied to
incompressible hydrodynamics has promoted research directions that might not
otherwise have been easily discovered. This description of the Euler equation as
a geodesic flow on a Lie group and its resulting Hamiltonian formulation reveals
new knowledge and investigation in geometry and topology, especially in the case
of infinite-dimensional spaces. One famous problem is long-time existence and
uniqueness for the Cauchy problem of 3D Euler hydrodynamics, one of the six
unsolved Clay Millennium Problems. Such situations in which the new mathemati-
cal tools needed to solve physical problems have returned to pure mathematics with
enriched results have happened before. To give an example, during the early 1930s,
the development of Dirac’s approach to quantum mechanics brought revolutionary
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new concepts to the theory of distributions, not to mention linear operators and their
representations.

Regarding the differential geometric/topological description of incompressible
fluids, the invariants of the Lie group of diffeomorphisms (which are more easily
calculated as Casimir elements) provide a source of first integrals for the Euler
equation, which in their turn help us to find new criteria for stability of flows, onset
of turbulence, and long lifetime analytic solutions. In the case of 3D manifolds M,
the invariants are, of course, the energy integral

E.v/ D
Z

M
.rv;rv/d! ;

the helicity (Hopf) invariant

J.v/ D
Z

M
.r � v; v/d! ;

which describes the mutual linking between the trajectories of the vorticity field
r � v. However, for 2D flows, there is an infinite number of such invariants. They
are called enstrophy invariants and are expressed in the form

Jk.v/ D
Z

M2

.r � v/kdx ^ dy :

Serre, Tartar, Ovsienko, Khesin, and Chedanov explained in a series of independent
articles (see, for example, the review in [286]) that having an infinite number of
invariants is a property of this type of volume-form-conserving flow in manifolds
with an even number of dimensions. A very simple explanation is that, in odd
dimensions, the vorticity field is frozen into the fluid and transported with the
flow, while in even dimensions, the fluid transport of the infinitesimal invariants
is pointwise. Indeed, these are very interesting mathematical speculations, but
there will never be an experimental observation of an n-dimensional fluid in this
observable universe. There is not enough evidence for realistic systems of this kind,
and even if such a higher-dimensional fluid manifold were to model some physical,
biological, or social system, the evidence that the laws of such systems will still be
Newton’s laws, and in particular that they will obey the law of inertia, is very slim.

Finally, we note that the differential geometry of volume-preserving diffeomor-
phisms of a bounded domain of a 2D manifold differs drastically from that of higher
dimensions. This difference occurs because, in more than two dimensions, there
is enough space for particles to move to their final positions without hitting each
other. But the motion of the particles in the plane might necessitate the braiding of
particles into much longer paths, in spite of the boundedness of the domain. The
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diameter of the group of all possible diffeomorphisms of a bounded manifold with
n > 2 dimensions is given by the Shnirelman theorem:

dia
�
SDiff.M/

 � 2p
3

n1=2 ; n > 2 :

In other words, the set of all such paths has no infimum (there is no shortest path).
Actually, the diameter of the group of diffeomorphisms on a manifold of dimension
2 is infinite (there is no longest path).

9.2 Geometry of Viscous Fluids

In this section, we present a geometrical approach to the Navier–Stokes equations
in the absence of external forces ( f D 0). This differential geometry formalism is
based on solution representation formulas. The advantage of this formalism over
other mathematical approaches is that it generates a direct and compact formula to
work with, and also that it brings a geometrical intuition to the solution. In contrast
with other mathematical models for fluids that cannot describe domains with
boundary, the topic we are concerned with in this book, the geometric representation
model presented here can handle flows with either fixed or free boundaries. The
trick is to modify the Navier–Stokes equations in order to keep the boundary as an
invariant set for the velocity field. Such methods are described in detail in [282, 283],
where the authors use contact topological methods on domains with boundary. For
free boundaries, the procedure is to allow the shape of the boundary to vary rather
than to vary the metric. Formally, this approach is still an open problem.

The equation of continuity and Navier–Stokes equation without external forces
have the local form

@�

@t
Cr � .�v/ D 0 ; @v

@t
C .v � r/v D �1

�
rPC �4v ;

for a fluid velocity field v.r; t/, pressure P.r; t/, density �.r; t/, and kinematic
viscosity � > 0. The traditional way to express the Navier–Stokes equations in a
differential form approach leads to the Navier–Stokes equation in its global form

Lv� D 0 ; @v

@t
Crvv D �dH ;

where Lv is the Lie derivative in the direction of the flow, and rv is the covariant
derivative along v, which also depends on the metric g. Here H is the energy
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0-form obtained from Cartan’s formula (4.15) (see Sect. 4.4, and also Friedlander
and Serre’s basic book [287]):

H D 1

�
PC �

2
� v � vg ;

where � represents the dual operation transforming vector fields into dual 1-forms,
and g denotes the metric of the space.

In order to use the representation formalism, we limit ourselves to the study of
the linearized Navier–Stokes equation and incompressible fluids. The generalization
of this approach to compressible flows (based on the geometric form of the equation
of continuity Lv) is just a matter of more extensive calculations. However, it is
more challenging to approach the full nonlinear Navier–Stokes equations using this
representation method [287], and we will not present this aspect here.

We consider the linearized incompressible Navier–Stokes equation for a force-
free fluid (� D const:, r � v D 0, f D 0):

@v

@t
D �1

�
rPC �4v : (9.5)

A solution of (9.5) can be given in the form (see [288, 289] or [121, Chap. 10]):

v D C
�r � r � .rˇ/Cr � .r˛/�Cr˚ ; (9.6)

P D ��@˚
@t

; (9.7)

where C is a constant and ˛.r; t/, ˇ.r; t/, and ˚.r; t/ are smooth functions satisfying

�4˛ D @˛

@t
; �4ˇ D @̌

@t
; 4˚ D 0 :

The proof is by straightforward calculation. We will study the solution in more detail
and try to explain it in a more geometric way.

Because of the incompressibility condition, the last term can be written in the
form

@v

@t
C 1

�
rP D �4v D ��r � r � v :

Let us study the first term in the solution (9.6). It can be rewritten in the form

r � r � .rˇ/ D �2C r � r � rr � rˇ D Oˇ ; (9.8)

where we have denoted this action on the function ˇ with a generic solution
operator O. This term, when plugged into the Navier–Stokes equation, generates
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the Laplacian of the velocity on the right-hand side of the equation. The total lack
of symmetry of the solution expressed as in the second term of (9.8) is somehow
surprising. This property of being a solution of O can be written

ŒO;4	 D 0 ; (9.9)

that is, the solution operator O commutes with the Laplacian operator. In a way,
this is the meaning of a solution as an eigenvector, since the Laplace operator works
like the Hamilton function, and the solution operator like a conservation law. More
symmetries of the operator O can be revealed if we rewrite this solution operator in
terms of differentiable forms.

Let us consider ˇ as a 0-form on D � R
3, with D connected, contractible (i.e.,

we can find a smooth family of smooth maps defined on D which can shrink D
smoothly to a point), and compact. We assume the existence of the canonical scalar
product of vectors h ; i in R

3, which is also the Riemannian metric. Consider

rcov D xidxi ;

which are the components of a closed 1-form on D. Indeed,

drcov D d.xidxi/ D @xi

@xk
dxk ^ dxi D ıikdxk ^ dxi D 0 :

If ı D ��d� is the codifferential operator acting on k-forms defined on D, 0 � k �
3, � the Hodge operator [a linear operator on the exterior algebra of forms mapping
k-forms into .3 � k/-forms, as described below], and Lr the Lie derivative in the
direction of the smooth contravariant vector field

r D xi @

@dxi

on D, then we have

.2C r � r � rr�/rˇ D .1C Lr C rcovı/dˇ D .1C Lr/dˇ C rcov4ˇ ; (9.10)

where we have used the definition 4 D �d � d for the Laplace operator. This is
a highly symmetric form and shows explicitly the Lie derivative transport and the
Laplace representation of a solution.

To prove this geometric expression, we use the definition of the Hodge operator
and the action of the Lie derivative on a k-form ! given by the Cartan formula

Lr! D r ? d! C d.rI!/ ;
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where . I / is the action of a vector field on a form, by definition. In this case, setting
! D ˇ in the above relation, we can finally write

.r � r/rˇ D d.r ? dˇ/ D d
�
Lrˇ � d.rIˇ/� D d.Lrˇ/ D Lrdˇ ;

which proves the middle term in brackets in (9.10).
In a similar way, the second term in the solution (9.6) can be rewritten in the form

r � .r˛/ D �r � d˛ D �rcov ^ d˛ :

Finally, we can express the Navier–Stokes linearized force-free equation for incom-
pressible flow and one of its solutions in completely geometrical form:

Lv D �1
�

dP � � � d � d.v/ ; (9.11)

which has the solution

v.˛; ˇ;˚; r/ D C
� � rcov ^ d˛ C .1C Lr C rcovı/dˇ

�C d˚ : (9.12)

9.3 Soap Films with Boundary

The problem of finding the area-minimizing surface with a given boundary was
posed by Lagrange in 1760, and investigated by the Belgian scholar J.A.F. Plateau
(1801–1883) [290] in the second half of the nineteenth century. For his experiment,
Plateau used soapy water mixed with glycerine and dipped wire contours into
it, noting that the surfaces formed were minimal surfaces. Mathematically, the
problem was tackled by Weierstrass, Riemann, and Schwarz, and finally solved in
an acceptable way by Douglas and Radó, and later enriched and fully solved by
Jenny Harrison [291]. The experiments initiated by Plateau showed that an area
minimizing surface can be obtained in the form of a film of incompressible liquid
stretched on a rigid frame (the so-called soap film system).

Apparently, there is a straightforward way to evaluate the stationary equilibrium
condition for a soap film from thermodynamic considerations. In the stationary case
v D 0, for a fluid with free boundary˙ , the Euler equation reads

� 1
�
rPC f D 0 ; (9.13)

where � is the fluid density, P is the pressure, and f is the mass density of the force
field acting inside the fluid. If the force field derives from a potential, i.e., f D �r˚ ,
the stationary Euler equation reduces to the simplest Bernoulli type of equation, viz.,
P D P0 � �˚ .
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Let us treat the separating surface as a parameterized regular geometrical surface
r.u; v/ W U � R

2 ! ˙ with outward unit normal n.u; v/. We consider a normal
variation of this surface (see the appendix in Appendix 1):

rt.u; v; t/ D r.u; v/ � th.u; v/n.u; v/ ;

where h.u; v/ is a real differentiable function. For each value of t, the map
rt W U � .�"; "/! R

3 is a regular parameterized surface, and for t D 0, the normal
variation reduces to the original surface. If the surface suffers a normal variation
determined by the function h.u; v/, there will be some work produced by the
compression in any elementary volume in the vicinity of the surface:

Wvol D �t
Z

NU
Ph
p

EG � F2 du dv ;

where P is the change in pressure across the surface. The total change in the free
energy of the system is given by •Wvol plus the work associated with the variation
of the area of the separating surface, that is, the surface energy given by the product
between the coefficient of surface pressure 
 and the variation of the area •A. The
total variation in the free energy becomes

•F D �t
Z

NU
Ph
p

EG � F2 du dv C 
 •A :

From the equilibrium condition •F D 0, we obtain the expression for the surface
tension across the surface

P˙ D �
.�1 C �2/ D �2
H ;

where �1;2 are the two principal curvatures of the surface at p and H is the mean
curvature calculated using the convention wherein the sphere S2 has HS2 D �1. The
above equation is the Young–Laplace formula for the capillary pressure.

Now, we know that soap films spanned by embedded curves are represented by
surfaces with boundary, so the surrounding pressure is the same at any point, and in
consequence, such surfaces must be minimal surfaces. If the soap film is represented
by a surface without boundary (like drops, bubbles, shells, double bubbles, bubble
clusters, or antibubbles), the pressure inside is different from the pressure outside
the surface. However, in a stationary equilibrium situation, the pressures inside and
outside are uniform and constant, so the surface must be described by a constant
mean curvature (CMC) surface. Minimal surfaces and Delaunay surfaces are good
examples.

The equilibrium condition for static soap films can be expressed in a simpler
form if the coordinate system used to parameterize the surface˙ is orthogonal, i.e.,
if F D ru �rv D 0. It is always possible to choose such an orthogonal parametrization
for a regular surface. Moreover, if in addition we have ru � ru D rv � rv and ru � rv D 0,
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the surface is said to be isothermal. Isothermal parameterized surfaces are endowed
with orthogonal, but not normalized curvilinear coordinates.

If the surface ˙ parameterized by r.u; v/ is isothermal, the mean curvature is
expressed by a simple equation of the form

H D Hn D � 1

2ru�ru
4˙r ;

where 4˙ D @uu C @vv is the Laplace–Beltrami operator in the curvilinear
coordinates on the surface.

It follows that the study of soap films with boundary is the study of minimal
surfaces H.˙/ D 0, and for a closed soap film without boundary, it reduces to
the study of CMC surfaces. Minimal surfaces have a lot of interesting topological
properties. The zeros of the Gaussian curvature of a minimal surface are isolated. In
other words, there is no straight line on a minimal surface. Furthermore, there are
no compact minimal surfaces, because all the points of a regular minimal surface
are hyperbolic. It follows that all (regular) minimal surfaces are unbounded. In
addition, if ˙ is a regular closed minimal surface and not a plane, the image of
the Gauss map is dense in the sphere S2. If ˙ is minimal and has no planar points
(KGauss.˙/ ¤ 0), then the angle of intersection of any two curves on ˙ and the
angle of intersection of their spherical images through the tangent map to the Gauss
map are equal up to a sign. This means that the directional derivatives of the pressure
along two perpendicular directions of the tangent plane are also perpendicular.

Under deeper analysis, Plateau’s original problem of finding the minimal surface
involves some geometrical issues which occur when one tries to solve this problem
with a unique solution. The main mathematical question becomes the existence and
uniqueness of the solution, and the question is whether there exists a surface with
minimal area ˙ that spans a prescribed smoothly embedded closed curve 
 2 R

3.
The most recent systematic study of this problem was reported by Harrison in [291].
She explains that the existence and uniqueness of solutions depend on the definitions
of surface, area, and span. From previous reports, the following set of questions were
raised:

1. Does there always exist a surface ˙ spanning a given curve 
?
2. Is the infimum of these areas (of surfaces spanning the curve) nonzero? Figure 9.4

gives an example of a non-spanning surface of the unit circle.
3. Does there exist a surface ˙0 spanning 
 with prescribed area m?
4. What is the structure of ˙0 away from its boundary 
 and near the boundary?

The results in the study [291] provide exact answers to the first three questions above
by proving the following theorem:

Theorem 10 Given a smoothly embedded closed curve 
 W S1 ! R
3, there exists

a surface ˙0 spanning 
 with minimal area j˙0j. This surface is an element of a
large set of surfaces which includes representatives of all types of observed soap
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Fig. 9.4 A non-spanning
surface of the unit circle.
Figure inspired by Harrison
[291]

films as well as all smoothly immersed surfaces of all genus types, orientable or
nonorientable, including those with possibly multiple junctions.

This result not only closes a 250 year old problem, but it provides an elegant
geometrical solution which eliminates the ambiguity and traps of previous attempts.
Despite the tedious constructions [244, 291], we shall try to take the reader through
the key concepts, but only for the 3D case, since the general case is too complicated
to be examined in this book.

Let U be an open subset of R
n and ˝R an open .n � 1/-sphere of radius R,

containing the origin. We define a k-element in U, denoted by .pI˛/, to be a pair
comprising a point p 2 U and a finitely supported section of the k th exterior algebra
of the tangent bundle of U at p, ˛ 2 �k.Tp.U//, 0 � k � n. In other words a k-
element can be a function, a vector, or a contravariant skew-symmetric tensor of
order k with a given orientation, which is different from zero only at a finite number
of points. For example, if n D 3, a 1-element can be .0IX/ with 0 D .0; 0; 0/ and
X D .x; y; z/ as a vector with origin at p D .0; 0; 0/ and end at X. A 2-element
can be

�
.0; 0; 1/;X ^ Y


with X D .x; y; z/ and Y D .x0; y0; z0/, where X ^ Y is the

oriented parallelogram X � Y, and so on.
A Dirac k-chain in U is a formal sum A DP.piI˛i/ of k-elements, each term of

the sum being defined at a different point pi of U (see Fig. 9.5 upper left frame for an
example with n D 3, k D 2). All the differential objects defined in this section and
all the continuous operators have these topological and calculus properties based on
special technical choices of the norms which can only be introduced and described
through long procedures that go beyond our present scope. We refer the reader to
the classic papers on this topic (see [244, 291] and the references therein for more
detail).

The closure of the vector space of all the Dirac k-chains of U can be structured
as a Banach space OBr

k.U/ with a Fréchet-type norm k � kr defined by uniform
boundedness on each directional derivative, up to a certain order r. The elements
of this Banach space are called differentiable k-chains of class Br in U. The dual
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Fig. 9.5 Clockwise from upper left: Example of a differential 2-chain A in R
3 with 5 elements;

application of the extrusion operator EX.A/ on it; pictorial representation of (9.15) applied to the
differential k-chain A; left-hand side of the equation, and right-hand terms

is the space Br
k.U/ of differentiable k-forms on U. The two spaces are dual and

canonically isomorphic by the integral pairing

Z
A
! D !.A/ ; (9.14)

where ! 2 Br
k.U/ and A 2 OBr

k.U/, and the right-hand side is defined in the sense of
the action of differentiable forms on vector fields defined in Sect. 4.4 [see (4.9)].

In the following paragraphs, we skip the upper index r which indicates the degree
of smoothness or boundedness, and in addition we shall not mention the open U in
brackets, but consider them as understood.

In order to study integration theory using differentiable k-chains, we need the
equivalent of a simplicial complex from algebraic topology. So we define an affine
n-cell in R

n, denoted by � , as the intersection of finitely many affine half-spaces in
R

n, whose closure is compact. This is basically a prism. A cell is not necessarily
closed or open, and in general an affine k-cell in R

n, 0 � k � n, is an affine k-cell
in the subspace R

k of Rn. An oriented cell has a given orientation for its edges and
faces, like any simplex. Below, we introduce one of the major elements in the proof
of the existence and uniqueness of a non-trivial solution for the Plateau problem:
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Theorem 11 If � is an affine oriented k-cell in R
n, then there is a unique

differentiable k-chain Q� 2 OBk such that

Z
Q�
! D

Z
�

! ;

for any differentiable k-form ! 2 Bk, where the right-hand side of the above
equation is taken in the Riemann integral sense.

Proof of Theorem 11 can be found in [244, 291]. This theorem says that, instead
of the Riemann integration on complexes made of affine hyperplanes, i.e., cells, we
can use the formalism of duality and integral pairing for k-chains, e.g., from (9.14).
If n D 3 and we have a 2-cell in the shape of a rectangle, then Q� D Œ0; 2	 � Œ0; 3	
in the .x; y/ plane. If we apply the area 2-form ! D dx ^ dy (to the right-hand side
of the above equation) to the vectors v D .2; 0; 0/ and w D .0; 3; 0/ generating this
cell, we have

!.v ^ w/ D .dx ^ dyI v;w/ D .dx ^ dy/v1w2 D 6 dx^ dy ;

which is exactly the left-hand side of the formula above, namely, an area of 6 units.
We define the support of a differentiable k-chain J to be the set

supp A D jAj D inf

�
E � U j

Z
A
! D 0;8! 2 Bk; supp .!/\ E D ;

�
:

Obviously, the support of any differentiable k-chain exists, and it is unique.
Below, we combine a differentiable k-chain with a vector field and define four

primitive geometric operators acting on differentiable chains: extrusion, retraction,
boundary operator, and prederivative. If X represents a differentiable vector field on
U, we define a continuous bilinear map called the extrusion operator as acting on
differentiable k-chains A by (see Fig. 9.5 upper right)

EX.A/ D EX

�X
i

.piI˛i/

�
D
X

i

�
piIX.pi/ ^ ˛i


;

which maps from OBk to OBkC1 and has the integral property

Z
EX.A/

! D
Z

A
.! ? X/ ; (9.15)

for any .k C 1/-differentiable form in Bk (see bottom row of Fig. 9.5). Again, ?
represents the interior product between a vector field and a differentiable form. This
is called the change of dimension I integral formula between the matching pairs
.A; !/ (see Fig. 9.5).
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The operator called retraction is also defined with the help of a vector X. The
operator acts on any differentiable k-chain A D P

.piI˛i/ 2 OBk, but it is easier
to show its action on a differentiable k-element .pI˛/ and then extend the action
by linearity. We denote the skew-symmetric exterior product of vectors ˛ by ˛ D
v1 ^ : : : ^ vk. We then have

E�X.pI˛/ D
kX

jD1
.�1/ jC1hX; vji.pI Ǫ j/ ; (9.16)

where we denote Ǫ j D v1 ^ vj�1 ^ vjC1 ^ : : : ^ vk. The retraction operator lowers

the degree of the k-chain, i.e., E�X W OBk ! OBk�1 (see Fig. 9.6).
The prederivative operator, denoted by PX W OBk ! OBk, is determined by an

arbitrary vector field X and its action upon a k-element .pI˛/ according to

PX.pI˛/ D lim
t!0

��
pC tXI ˛

t

�
�
�

pI ˛
t

��
: (9.17)

Note that the prederivative does not change the order of a differentiable k-chain.
Here we calculate a simple example to see how the prederivative operator works
(see also Fig. 9.7).

With the help of the prederivative, we further introduce the boundary operator
acting on differentiable k-chains, denoted @, which can be expressed in the form of a
sum of directional boundary operators along all directions of an orthonormal basis
in R

n :

@ D
nX

iD1
Pei E

�
ei
W OBk ! OBk�1 ; (9.18)

Fig. 9.6 Action of the retraction operator on a 3-chain with 5 elements, with X D .0; 0; 1/
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Fig. 9.7 Action of the
prederivative upon a 2-chain
in R

3, as obtained
through (9.20)

where feigiD1;:::;n is an orthonormal basis in R
n, while Pei are the prederivative

operators of (9.17) along these basis directions, and E�ei is the retraction operator
of (9.16).

The boundary and prederivative operators allow one to write down various useful
constructions, including the generalized Stokes theorem:

Theorem 12 For any differentiable k-chain A 2 OBk and any differentiable k-form
! 2 Bk�1, we can define a continuous boundary operator @ by the equations

Z
@A
! D

Z
A

d! ; and @ � @ D @2 D 0 : (9.19)

If a differentiable k-chain A has the property @A D 0, it is called a differentiable
k-cycle in U.

Moreover, there is a reverse definition of the prederivative operator obtained from
the boundary operator, known as Cartan’s magic formula for differentiable chains:

PX D EX@C @EX : (9.20)

Equation (9.20) actually defines the prederivative as the dual of the Lie derivative
(presented in Sect. 4.4), through the Cartan formula (4.15), between a vector field X
and a differentiable form ! :

X.!/ D X ? d! C d.XI!/ ;

or written in another common notation, LX.!/ D iXd! C d.iv/ � !.
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Finally, using all the above definitions, we can write the dual relation between
the prederivative and the Lie derivative in the form

Z
PX.A/

! D
Z

A
X.!/ ; (9.21)

or in another commonly used notation,

Z
PX.A/

! D
Z

A
LX.!/ ;

where A 2 OBk and ! 2 A 2 Bk once again. The prederivative is a way
to ‘geometrically’ differentiate a differentiable k-chain A in some infinitesimal
direction determined by a vector field X, even if the support of the differentiable
chain is highly non-smooth, like the sharp edges of cells, or corners, etc. In Fig. 9.7,
we represent such an action in the space R

3.
With these prerequisites, we can now approach the Plateau problem. Consider

a closed and smoothly embedded curve 
 W S1 ! ˝R � R
3, with two points

q; p 2 ˝R, p 2 
 , but q not on 
 . We construct the differentiable vector field

Y.p; q/ D q � p

kq � pk ;

in a (tubular) neighborhood of any point p of the 
 curve. The construction of
the minimal area surface is based on two important constraints. The first refers
to the definition of ‘spanning’. Here, Harrison defines the surface ˙ spanning 

as a surface whose boundary operator @˙ generates the prederivative of a 1-chain
representing 
 along the vector field Y.p; q/. That is,

@˙ D PY.p;q/ Q
 ; (9.22)

where Q
 is a differentiable 1-chain representing 
 in the integral duality sense of
Theorem 11. The second constraint introduced in this theory is to insist that, for
any smoothly embedded curve 
 0 2 ˝R linking with 
 with linking number 1, ˙
should be such that 
 0 \ j˙ j ¤ ;. In other words, a surface ˙ qualifies for a
Plateau solution if it is punctured at least at one point by any smoothly embedded
closed curve which links the given curve 
 once. The second constraint does not
consider Plateau solutions behaving like the annulus torus in Fig. 9.4. We present
some examples in Fig. 9.8.

Now we gather the theorems and definitions previously discussed in this section
and come up with a complete construction. First, we have a closed and smoothly
embedded curve 
 W S1 ! ˝R. Such curves cannot be a simple point (smooth
image of S1 which is not contractible to a point) and cannot be unbounded because
they are contained in the sphere of radius R. Next, we identify an arbitrary point q in
the sphere, but not on the curve, and construct the differentiable vector field Y.p; q/,
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Fig. 9.8 For the smoothly embedded closed curve 
 presented in the upper left corner, we can
create 2-cells Q� based on various points q [see (9.22)]. However, there exists a unique surface
(bottom right corner) ˙ spanning the curve 
 with minimal area and such that any other curve 
 0

linking 
 only once will intersect it at least once

p 2 
 . Then we define the set of all differentiable 2-cells Q� (which are nothing but
smoothly embedded surfaces with a boundary) having the dual cell of the 
 curve
as topological boundary, i.e.,

@topological Q� D Q
 : (9.23)

Let � be the dual differential 2-chain associated with the 2-cell Q� through Theo-
rem 11, and consider the same duality between Q
 � 
 .

The next step is to find a procedure for calculating the areas of these differentiable
2-chains Q� , and to find the properties of the resulting areas. Let us apply the
prederivative operator along Y.p; q/ on the boundary (9.23), which converted into
the corresponding differential chains reads

PY.p;q/@� D PY.p;q/
 :

From Cartan’s magic formula (9.20), we observe that

@PY D @EY@C 0 ; and PY@ D 0C @EY@ ;
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so the boundary operator and the prederivative operator commute, that is, @PY D
PY@. If we use this property on the formula we have obtained, it follows that
PY.p;q/@� D @.PY.p;q/�/ D PY.p;q/
 . In other words, we have built an object PY.p;q/�

whose mapping under the boundary operator is the prederivative of the differential
1-chain dual to the supporting curve 
 . For each � , we define this geometric object
PY.p;q/� , which is a differential 2-chain, the starting set for the solution of the Plateau
problem, and denote it by˙ . Of course, it is not unique, because on the one hand the
chain–cell duality relations do not provide uniqueness, and on the other hand there
is a whole set of differentiable 2-chains � spanning 
 to start with. We mention that
the elements ˙ have the property

@˙ D PY.p;q/
 ;

and because all the operators involved in this closed equality relation are continuous,
we know that the set of ˙s is a closed set under the topology of the norms k � kr

defined and used throughout this section.
In order to define the area of these elements ˙ , we introduce a differentiable

2-form ! and write

A.˙/ D
Z

PY.p;q/�

! D
Z
�

Y.p; q/.!/ D
Z
�

LY.p;q/.!/ ;

where we have used (9.21) and where LY.p;q/ is the Lie derivative. To continue, using
the property of the volume form dV and the properties of the vector field Y.p; q/
defined correspondingly, we have LY.p;q/.!/ D Y.p; q/.!/ D dV ? Y.p; q/. By
substituting this last relation in the integral equation above, we have finally

A.˙/ D
Z
�

Y.p; q/.!/ D
Z
�

dV ? Y.p; q/ D
Z

EY.p;q/.�/

dV ; (9.24)

where in the last integral we used (9.15). This last integral is the volume of the
differential 3-cell obtained by extrusion of the differentiable 2-cell with the vector
field Y.p; q/, and it is a Riemann volume integral. Hence, it is a continuous bounded
operator, and consequently the area of the˙ object is a continuous function of˙ , so
the set of areas of all such possible˙ objects is closed and positive (it is defined by
positively oriented area forms). Such a set of positive numbers always has a lower
bound, so according to the theory of real numbers, it has a greatest lower bound
(an infimum) and this one is unique. Again, by continuity, the element ˙ which
guarantees this infimum area is itself unique.

We have sketched the proof and construction of the existence and uniqueness
of the surfaces ˙ minimizing the area of all surfaces spanning the given curve

 . There are a few more technical details for a complete and rigorous proof,
e.g., for any closed curve 
 0 linking with 
 with link number 1, the ‘second’
constraint (mentioned above) requires 
 0 to intersect the support of such surfaces
at a point. This constraint prevents this area A from being zero, so it eliminates
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the trivial empty solution. In addition, a complete proof should show that all these
constructions are independent of the choice of the point q.

9.4 3D Drops

The best theoretical models and lab experiments for the study of free interfaces
are liquid droplets. In all their possible forms, viz., drops, shells, bubbles, and
antibubbles, they represent a fruitful symbiosis of topological, geometrical, and
dynamical features in one compact system. Drops can be studied through simple
physical models endorsed by innumerable natural examples, and from a theoretical
standpoint, they provide favorable working spaces for mathematical approaches.
The drop surface is in general smooth, compact, non-self-intersecting, and regular.
Liquid drops, as well as bubbles and liquid shells, have always been a good source
of inspiration and a straightforward experimental resource.

Through the help of topological fluid dynamics (see Sect. 9.1), researchers have
discovered that Lie group constructions enable a unified approach to a wide variety
of different hydrodynamical systems, from the deformation of the water surface in a
rotating bucket to the Euler equation, to mixing problems, chaos, and turbulence.
Other more recent applications include extinct neutron stars or accelerators in
plasma dynamics.

Drops offer a natural framework for studying flows in Riemannian manifolds
with free boundary, with or without force fields (spherically symmetric like self-
gravity or electrostatic, axisymmetric like rotating drops, or uniform like gravity,
etc.). The flow in such domains with boundaries involves modification of the
governing Euler equations in order to keep the boundary an invariant set for the
velocity field. The mathematical procedure when approaching flows within free
boundaries is to handle the variation of the metric through the variation of the shape
of the boundary [164, 286, 287].

The minimal ingredients of most general drop models are a smooth, compact,
and connected manifold with boundary, embedded in physical space (usually R

n),
and the existence of a flow inside this manifold, tangent to the boundary and with the
property of incompressibility. These ingredients are enough to build a mathematical
model that can classify the allowable boundaries, showing that the flow inside
depends only on the boundary and that the boundary can be obtained from stability
and extremum principles.

The fundamental mathematical features of liquid drops can be found in the
developments of modern geometrical hydrodynamics during the 1980s. As Modin
and coauthors show in [284], beginning in 1966 [142, 292], Arnold and his followers
demonstrated that Euler’s equation for an ideal fluid is the geodesic equation on the
group of volume-preserving diffeomorphisms with respect to the right invariant L2

metric.
The differential geometry model of 2D and 3D incompressible liquid drops were

established in rigorous Hamiltonian form by sustained work due to Zakharov [293],
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Miles, Benjamin, Arnold, Marsden, Ratiu, Lewis, Shepherd, Bridges, Crawford,
and others. More information can be found in the two main articles [167, 294].
A comprehensive review of the topic is given in Morrison’s paper [295]. Good
support for Hamiltonian systems, bifurcations, and Lyapunov procedures can be
found in [296] (a more differential geometry orientation), or in the book [297] (a
more functional analysis orientation) and [169].

In order to introduce a Hamiltonian structure for free surface incompressible
fluids (essentially free drops), one needs to generate a Poisson bracket. The dynamic
variables for this free surface Hamiltonian system are the Euler (spatial) divergence-
free velocity field v.r; t/, r � v D 0, and the boundary itself as a compact surface
without boundary smoothly embedded in R

3, denoted by ˙ and with unit normal
n. The free surface is the boundary of a compact domain ˙ D @D˙ . Let us denote
their space by N D fv; ˙g. According to the Weyl–Hodge theory [167], we can
always express

v D wCr˚ ; r � w D 0 ; .w � n/˙ D 0 ; 4˚ D 0 ; @˚

@n
D .v;n/ :

We have N D N 0 D fw; ˚;˙g. For any function F W N ! R, we define the
following functional derivatives:

DvF � •v D
Z

D˙

�
•F

•v

ˇ̌
ˇ̌
˙

; •v

�
d3x ; (9.25)

•F

•˚
D
�
•F

•v
;n
�
; (9.26)

D˙F � •˙ D
Z
˙

•F

•˙
•˙ dA ; (9.27)

where the subscript ˙ inside the volume integral means that the functional
derivative holds ˙ fixed. •˙ is the normal variation of ˙ (see the Appendix 1),
and by the incompressibility condition, we also have

Z
˙

•˙ dA D 0 :

In these and future equations mentioned in Sect. 9.4, we use the scalar product in
the L2.D˙/;L2.˙/ sense, with the symbol .� ; �/.

The Hamiltonian considered for the liquid drops is the traditional kinetic energy
plus surface potential energy, viz.,

HŒv; ˙	 D �

2

Z
D˙

jvj2d3xC 

Z
˙

dA ; (9.28)
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where 
 is the coefficient of surface tension and � a constant density. The functional
derivatives of the Hamiltonian have the form

•H

•v
D v ;

•H

•˚
D
�
•H

•v
;n
�
D .v;n/ ;

and

•H

•˙
D �

2
jvj2 C 2
H :

It is straightforward to prove that the Hamilton equation for (9.28) has the form of
the Euler equation for incompressible flow:

@v

@t
C v � rv D �rP ; r � v D 0 ; (9.29)

together with the kinematic boundary conditions:

@˙

@t
D .v;n/ ; (9.30)

and dynamic boundary condition

P˙ D 2
H ; (9.31)

where H is the mean curvature of the surface oriented inwards. A similar Poisson
structure can also be introduced in terms of the independent variable w; ˚;˙ .

9.5 Rotation of 3D Drops

If we look for the origins of interest in rotating liquid surfaces, we find that there
is probably no lower bound on the fluid research timeline. The subject probably
became of interest with Newton’s model for the shape of the Earth (1687) as a
homogeneous gravitating liquid drop. He proposed the oblate spheroid as the shape
of a gyrostatic equilibrium configuration. But Plateau was the first to raise the
problem of finding the minimal area surface supported by a given curve, i.e., soap
film problems [290], stationary or in rotation. The starting point for this investigation
was observation of the evolution of rotating drops of oil in a mixture of water and
alcohol, some time around 1840 (Plateau was nearly blind and he was interested in
the physics of eyes and colors).

A large number of studies came in the wake of Plateau’s experiments, seeking
to clarify the dynamics and stability of rotating liquid droplets. On its 150th
anniversary, the problem of finding equilibrium configurations for a rotating mass
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of liquid shows a record of continuous progress, initially motivated by genesis of
the Earth, eye and color studies, and later on, understanding the nuclear fission
(and radioactivity) of heavy nuclei. More progress came with investigations into the
evolution of stars, and later the study of neutron star dynamics and black holes, not
to mention the development of nanoscience and nanofluids, printing technologies,
and finally the field of hot dense nuclear matter, and especially the shapes of quark–
gluon drops. However, in the last decade, the problem was still receiving new and
unexpected geometrical solutions, motivated by rigorous mathematical questions
from geometric analysis, as well as huge computer codes [291, 298–300].

The drop shapes initially considered were axisymmetric and simply connected,
while later on non-axisymmetric shapes and non-simply-connected (toroidal)
shapes were discovered to be stable. Pioneering papers from Plateau, Lord
Rayleigh [290], Chandrasekhar [301], Ross [302], Brown and Scriven [303],
and Ungar and Brown [304], etc., made numerical studies of the stability of
different rotating drop shapes and compared their results with more and more
sophisticated experiments. The experimental challenges of isolating the drop in
rotation were met by suspending drops in buoyancy-free liquids at the price of
increasing viscosity interactions, diamagnetic or acoustic levitation, gravity-free
experiments in space labs, and now contemporary experiments on Leidenfrost
drops. Current reviews and the latest results in computation and experiments can be
browsed in [291, 299, 300, 305, 306].

In this section, we limit our study to the description of equilibrium shapes
of liquid drops in rotation without considering gravitational (self or exterior) or
electromagnetic forces, evaporation, or other nonlinear surface effects. In the case
of the drop, shapes are governed by the equation of equilibrium at the interface
between internal pressure, surface tension, and centrifugal forces. It is known that
no steady motion can exist unless the liquid rotates as a rigid body with a constant
angular velocity ˝ , so we will only consider this case. We also note that it has
been proved in several papers (see, for example, [307]) that the full dynamics of a
3D axisymmetric Euler system (inviscid liquid) in which the fluid does not move
like a rigid solid, and any solution initiated from axisymmetric smooth initial data,
blows up in finite time at points on the axis of rotation. This situation arises mainly
because the radial pressure increment is not consistent with the global regularity of
the classical solution. The Euler equation for axisymmetric flow can be rewritten as
a complex Riccati type of equation plus pressure term for v D vrerCvzez ! vrCivz,
whose derivative in the radial direction blows up in a finite amount of time. But we
will not consider these situations in the remainder of this book.

Before continuing with globally rotated drops, we recommend the reader to begin
with a simple study, namely a liquid in a rotating cylinder [245]. The physics is the
same as in the drop case, except that the geometry is simple (planar 2D), but even in
this case the ordinary differential equation for the liquid shape cannot be integrated
exactly, and numerical computations are necessary. The axisymmetric gyrostatic
shapes obtained are stable, as opposed to the vast majority of rotated drops, where
the shapes are unstable.
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As a general criterion it has been proved [298, 302, 303] that the drop shape
is symmetric with respect to a plane perpendicular to the axis of rotation, usually
intersecting the center of mass of the drop. This results from the need of the
curvature to have absolute extremum points at all points placed farthest from the
rotation axis. In the following, we denote by � the difference4� D �liquid � �gas, if
the drop is surrounded by a gas. We will obtain the equation for the equilibrium
surface of a gravity-free incompressible drop in uniform rotation with angular
velocity˝ . Let us parameterize the drop surface˙ with a smooth function .u; v/!
r.u; v/ 2 ˙ � R

3. According to the equation for the second fundamental form in
differential geometry (see more details in the Appendix 1 at the end of this chapter)
we can compute the mean curvature of the surface as

H D �1
2

Tr.dN/ D eG � 2fF C gE

2.EG� F2/
; (9.32)

where Tr is the trace of the matrix representing the linear operator dN, considering
the unit normal as a smooth map N W ˙ ! S2 (the so-called Gauss map).

Let us assume the existence of another surface ˙� , which is an infinitesimal
‘normal’ deformation from the original surface ˙ along its normal, that is, a
diffeomorphism

r�.u; v; �/ D r.u; v/C �h.u; v/N.u; v/ ;

with 0 < � 	 1 a small parameter and 0 < jh.u; v/j < 1 a smooth bounded function
defined on the original surface. After a short calculation, we obtain the area element
of the deformed surface in the form

E�G� � .F�/2 D .EG � F2/
�
1 � 4�hH CO.�2/

�
:

The last equation is just another expression of the formula for the first variation of
area:

d

dt
dA D HdA ;

where t, in this case, labels a smooth flow of the surface directed everywhere in the
direction of the normal. In other words, the relative rate of change of the area as the
surface evolves in the outward normal direction is the mean curvature.

From the thermodynamics side, it is known that the variation •U of the
total energy U of the liquid drop (for our case in the absence of gravitational,
electromagnetic, chemical, and phase transition effects) is given by

•U D T•S � P•V C •U˙ C •Ucf ;
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where T; S;P;V are temperature, entropy, pressure, and volume, respectively. The
last two terms are responsible for the surface and centrifugal potential energies,
respectively. With 
 the coefficient of surface tension, we have •U˙ D 
•A.
In the (noninertial) system of reference of the rotating drop, the fluid mass is
subjected to the inertial centrifugal force dFi D �aidm and dFi D ˝2r?dm,
where r? is the distance from the rotation axis to the elementary mass dm, e.g.,
given in spherical coordinates (r; �; �) by r? D r sin � . Because the effective
centrifugal potential energy is minus the work done by the centrifugal force, which
is dWcf D ˝2d.r2?/dm, we have

Ucf D ˝2

Z
�dV

�
�
Z r?

0

r?dr?
�
D �˝

2

2

Z
�r2?dV :

When the drop shape changes infinitesimally, what drives the variation of different
terms in the energy of the drop is mainly concentrated at the drop surface, as
a consequence of incompressibility and isentropy. Therefore, it makes sense to
express all integral quantities of the energy in terms of surface integrals, and for
arbitrary local shape variations to infer from there a differential condition holding
at the drop surface. The procedure is based on the exterior derivative applied to the
volume element dV , namely �dA D d � dV , where � is the Hodge dual operator.

Since the normal deformation of the surface is directed along the normal at any
point of the surface, the fluid is incompressible, and changes of shape are rapid
(adiabatic, dS D 0), it follows that

•U D �•
Z

PdV C 
•
Z

dA� •
Z
˝2r2?�dV

2
;

and from here the total energy for an incompressible adiabatic drop is

U D 

Z
˙

dA� ˝
2

2

Z
r2?�dV : (9.33)

We can convert the volume integral into a surface integral:

•

Z
PdV D

“
�hP
p

EG � F2 du dv :

At the same time,

•U˙ D 

Z
.dA� � dA/ ;

•U˙ D
“ p

EG � F2

p

1 � 4�hH � 1
�

du dvCO.�2/ :
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Combining all of these variations under the surface integral, at equilibrium
(•U D 0), we obtain the Young–Laplace equation for the rotating (incompressible,
gravity-free) liquid drop surface:

�
PC 2H
 C 1

2
˝2r2?�

�

˙

D 0 ; (9.34)

where for P one can take the value of the pressure difference across the drop surface
at the point r? D 0 [302, 303].

Note that, according to the above definition (9.32) of the mean curvature, its
value is negative for a convex surface, i.e., H < 0, and the mean curvature vector
always points into the direction in which the area becomes smaller by deformation
(i.e., towards the center if the surface is spherical [121]). From here, a common
confusion occurs in almost all physics literature when (9.34) has a different sign in
front of the term 2
H D 
.�1C�2/, but we can resolve it in the following equation.

We introduce the scaling parameters L0 and V0 for distance and velocity,
respectively, so that x D QxL0, V D QVV0. Then we have t D QtL0=V0, and we
can rescale the pressure P D QP.�V2

0 / (or P D QP.��V0/=L0) and the angular
momentum L D QL.2R3

p
2
�R/. Consequently, we can rewrite the Laplace–Young

equation (9.34) in the dimensionless form

QPj˙ D 2

We
j QHj �

Q̋ 2
2
. Qr?/2˙ ; (9.35)

where

We D
ˇ̌
ˇ̌�V2


H

ˇ̌
ˇ̌ D �V2

0L0


D �˝2

0L30



� ˝2
0m



(9.36)

is the dimensionless Weber number (see Table 9.1), defined as a measure of the
relative importance of the fluid’s inertia compared to its surface tension. We also
mention that the Weber number is We D 8˙ , with ˙ the rotational Bond number
used in traditional analysis of rotational shapes [301, 304]. In the rotational case,
the third term on the right-hand side of (9.36) actually shows proportionality with
the mass m of the drop. This quantity is useful in analyzing thin film flows and the
formation of droplets and bubbles.

For slowly rotating (2 Hz) water drops of diameter around R D 10mm, we
have We D 10�2 and surface tension dominates (9.35), so the drops are pretty
spherical. At 10 Hz, we have We D 10, and at 100 Hz, we have We D 200, in
which case the centrifugal term almost completely balances the surface energy and
the shapes become highly deformed. Similarly, bigger drops have stability shapes
shifted towards less symmetric configurations.

In order to study the stability of different rotating shapes, one needs to introduce
volume conservation through a Lagrange multiplier, and also to emphasize the
imposed condition of constant rotation, in which the angular momentum of the drop
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is not conserved and the Lagrangian functional is the one given by (9.33) plus the
Lagrange multiplier term, viz.,

L˝ D 

Z
˙

dA� �˝
2

2

Z
r2?dV � k

�Z
dV � V0

�
: (9.37)

Here, k is to be determined from the minimization procedure and V0 is the initial
(constant) volume of the drop. According to [303], the Lagrange parameter k
from (9.37) represents the pressure difference across the drop surface at the axis of
rotation, and the whole volume difference term �k.V � V0/ measures the pressure
energy of the liquid in the drop.

However, if the drop is in free rotation (as in gravity-free experiments in space,
drops suspended by magnetic or ultrasonic levitation, or maintained frictionless by
a flow of air, or Leidenfrost drops), the angular momentum L is conserved, and the
Lagrangian functional to be minimized is no longer the one in (9.37). It must be
changed to the corresponding Routhian [303] by a Legendre transform

L0 D L˝ �˝@L˝
@˝
D 


Z
˙

dAC L2
2I � k

�Z
dV � V0

�
; (9.38)

where the angular momentum is

L D ˝�
Z

r2?dV ;

and the moment of inertia is given by

I D �
Z

r2?dV :

It is simpler to study the energy expressions and their Lagrange multipliers in
dimensionless form. In the fluid mechanics of rotating drops, the most important
dimensionless parameter is the Weber number

We

23=2
D
s
�˝2R3

8

;

where R is the mean radius of the undeformed drop, and ˝ is the angular velocity
of rotation of the drop as a solid body.

If we consider the rotation of a free drop involving the conservation of its angular
momentum

L D ˝�R5

5

Z 2�

0

d�
Z �

0

Qf 5 sin3 � d� ; (9.39)
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we need to reduce the dimension of the angular momentum by dividing it by
2R3
p
2
�R, that is,

QL D 1

5

s
�˝2R3

8


Z 2�

0

d�
Z �

0

Qf 5 sin3 � d� D We

10
p
2

Z 2�

0

d�
Z �

0

Qf 5 sin3 � d� :

By (9.38), the dimensionless Routhian becomes

QL0 D 1

4R2

Z
˙

dAC L2
8
R2

�
�

Z
r2?dV

��1
� Qk

�
1

R3

Z
dV � QV0

�
; (9.40)

where the term .: : : /�1 is the moment of inertia of the drop. In spherical coordinates,
the Routhian reads

QL0 D 1

4

Z 2�

0

d�
Z �

0

Qf
q
. Qf 2 C Qf 2� / sin2 � C Qf 2� d�

C5 QL2
�Z 2�

0

d�
Z �

0

Qf 5 sin3 � d�

��1

� Qk
3

�Z 2�

0

d�
Z �

0

Qf 3 sin � d� � 4�
�
: (9.41)

In order to study the stability configurations of the drop, one needs to apply
the calculus of variations to the resulting Lagrangian and/or Routhian, using the
formulas from Appendix 2. To accomplish this, one must apply Theorem 16
and calculate the first Gâteaux (or the Euler equation) and the second Gâteaux
differentials of these functionals, then study the conditions

QL0

˝ D 0 ; h QL
00

˝Œu	h; hi � 0 ; (9.42)

or

QL0

0 D 0 ; h QL
00

0 Œu	h; hi � 0 ; (9.43)

for any h in a given space of functions and for u a solution of the corresponding
Euler equation (9.35). Rotational shapes obtained by (9.42) and (9.43) have been
studied in different ways in the literature.

One of the first rigorous approaches was introduced by Ross in his article
[302], mainly based on Lord Rayleigh’s earlier results in [290]. Ross considered
only axisymmetric shapes, but he kept the possibility of having multiply-connected
shapes. For a drop rotating around the z-axis at a fixed angular velocity ˝ , his
procedure is to choose a finite set of single-valued functions r D fj.z/ to describe
the single-valued components of the vertical cross-section through the drop. Here
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Fig. 9.9 Axisymmetric shapes of rotating drops. In the upper right frame the drop is concave at
its poles, the Weber number is larger, and the pressure is negative at the poles. The bottom row
represents a toroidal shape when the drop is one-connected

.r; z; �/ are the polar coordinates versus the rotation axis (see Fig. 9.9). From the
first condition in (9.42), he obtained the nonlinear ordinary differential equation

1p
1C f 02 D

kf

2

C �˝2f 3

8

� A

f
; (9.44)
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where A is an integration constant which becomes zero if the free surface intersects
the axis of rotation. In this equation, k is again the Lagrange multiplier from (9.37),
which is equal to the pressure change across the drop surface at the intersection
between the rotation axis and the drop (at the poles). There are two mathematically
distinct cases. One is when the drop is simply connected, the rotation axis has
nonempty intersection with the drop volume, and A D 0 (presented in the upper
row in Fig. 9.9). The second case is when the drop is multiply-connected (see the
bottom row in Figs. 9.9 or 9.12) and the rotation axis does not intersect the drop. In
this case, we have (A ¤ 0) and we will discuss it further in this section.

In the upper drawing of Fig. 9.9, when the drop contour physically intersects the
rotation axis, the condition of uniqueness of the intersection point with the z-axis
results in the occurrence of a Lagrange multiplier k D P, with the physical meaning
of the external pressure at that point. Different solutions of this differential equation
can be classified with the help of the Weber number. The pressure across the drop
surface at its poles (intersection with the rotation axis) satisfies the condition

P D 
.8 �We2/

4fmax
; (9.45)

where fmax is the largest radius of the drop, usually in its middle equatorial plane.
For We < 23=2, the pressure at the poles is positive and the drop surface at the poles
is convex, similar to an oblate ellipsoid (see Fig. 9.9 upper left). For Weber numbers
greater than 23=2, the pressure at the poles is negative, so the drop is concave in a
neighborhood of its intersection with the axis, and if the Weber number increases,
it tends to break up (see Fig. 9.9 upper right or Fig. 9.11). This study is rather
qualitative and does not investigate the specific stability of various shapes. However,
some important conclusions can still be inferred from such a simple model.

By solving (9.44) for A D 0, one obtains the following four important numerical
observations:

1. There exists one surface of revolution corresponding to each angular momentum,
with less than a critical value:

Lc D 2:8506�
q
2�
r70 ; with V0 D 4�r30

3
:

2. The maximum angular speed occurs when the difference between kinetic and
surface energies is minimal, and this limit depends only on constants determined
by the material and the drop volume. Ross observed the following:

˝max D 0:7540
s
8


�r30
:
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3. For each value of the angular velocity less than its maximum, but greater than
the limit

˝c D �

4

s
�r30


;

there are two possible surfaces of revolution.
4. The kinetic energy increases with increasing angular momentum and the drop

collapses when its kinetic energy becomes

Kc D 4:0316�
r20 :

When the drop does not intersect the rotation axis, we have A ¤ 0 and the shape
becomes toroidal (see the lower row in Figs. 9.9 or 9.12). Let r1 be the radius of the
hollow part of the drop (major torus radius), and r2 the maximum equatorial radius
of the drop (major radius plus minor diameter). According to Ross, the condition
for the breakup of a simply-connected drop into a toroidal shape is given by

We2
�
1 � r1

r2

��
1C r1

r2

�2
< 32 :

A more detailed numerical investigation for driven and isolated rotating drops,
also considering non-axisymmetric shapes, is presented in [303], where stability is
taken into consideration through (9.42) and (9.43). Brown and Scriven numerically
tested the stability of various shapes by describing them in polar coordinates using
a set of orthonormal functions ˚ i.�; �/ generated by a Hermite bicubic basis. They
proved that, as the angular velocity rises, the shapes evolve from the perfect sphere,
when the drop is at rest, through oblate shapes to biconcave shapes. The results of
the stability calculations in the case of drops rotated with constant angular velocity
are shown in Fig. 9.10. They identify three bifurcation points and two turnaround
points. Hence, the points on the solid curve of increasing angular velocity are
shapes stable to axisymmetric perturbations. The points indicated by dashed curves
are unstable to axisymmetric deformations that shift liquid away from the axis of
rotation and therefore increase the angular momentum, at constant angular velocity.
Two such branches meet in a turning point at a certain maximum value of the angular
momentum (Lmax), where the axisymmetric equilibrium shape is neutrally stable
to a certain axisymmetric perturbation. There are limits in angular velocity above
which all axisymmetric shapes become unstable to two-lobe perturbation, three-
lobe perturbation, and so on, toward higher lobe multiplicities. Still within this limit
for angular velocity, but for angular momentum values higher than Lmax III, the drop
becomes unstable to multiply-connected shapes like the torus.

When the drops are isolated and there is conservation of angular momentum,
the axisymmetric perturbations that cause instability on the descending solid-line
branch in Fig. 9.10 at fixed values of the angular velocity do not conserve angular
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Fig. 9.10 Shape families, their stability and bifurcations for drops with a constant angular velocity
are presented in an angular momentum–angular velocity diagram. From data in [298, 303]

momentum, and so do not arise on an isolated drop. However, the isolated drop also
proves to be unstable to the two-, three-, and four-lobed perturbations. The lower
limit of the unstable multiple-lobe shapes points toward breakup of the drop, but
these limiting situations are not studied in the papers cited above. It seems that,
without including viscosity, it is difficult to prove the breakup limit theoretically
[308].

According to Brown and Scriven’s calculations [303], none of these perturbations
change either the angular momentum or the moment of inertia of the drop, so
they leave its angular velocity unaltered. Results show that the stability criteria
for these perturbations for axisymmetric shapes are identical. The dashed curves
that primarily bifurcate under the main axisymmetric shapes (solid curve) show
secondary bifurcation points connecting shapes with different numbers of lobes.
These types of predicted shapes for rotating drops (see, e.g., Figs. 9.11 and 9.12)
have been observed since the 1980s and previously recorded [298, 305], including
studies of the flattening of slowly rotating drops and the generation of toroidal and
multi-lobed shapes at higher rotation rates.

A recent and strictly analytical proof for the bifurcation behavior of the equations
governing the rotating droplets problem shows that there is an interesting and
rich variety of solution families [299]. Some of the results are also presented in
Figs. 9.16, 9.17, 9.18, and 9.19. In [299], ˝ is used as bifurcation parameter,
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Fig. 9.11 Experiments with
rotating drops of castor oil:
peanut shape. Photo courtesy
of the ACE-REU Program,
Georgia Institute of
Technology

Fig. 9.12 Experiments with
rotating drops of castor oil:
toroidal shape. Photo
courtesy of the ACE-REU
Program, Georgia Institute of
Technology

and (9.42) and (9.43) are used to compute stationary points of L˝ and L0. The
dynamical equilibrium condition for the rotating surface in (9.34) can be rewritten
in the form

2H
 D �
4˙ D �k � 1
2
˝2r2?� ; (9.46)

where we use the relation between the mean curvature and the surface Laplace
operator, and the fact that the pressure evaluated at the poles is the Lagrange
multiplier k used for the volume change. The first variation of the two functionals in
question, i.e., L˝;L0, in the Gâteau differential sense (see Appendix 2) is calculated
by considering that the Lagrangian and the Routhian are functionals depending on
the shape of the drop ˙ (or its parameterization function ˚ W D � R

2 ! ˙ � R
3)

and the Lagrange multiplier k, so that we have L˝Œ˙; k	 and L0Œ˙; k	, respectively,
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while˝ is the bifurcation parameter. For an infinitesimal variation 0 < �	 1 of ˚
with a deformation �', and kC �K, we have

L
0

˝ D
d

d�
L˝
�
˙.˚ C �'/; kC �K�

�D0 (9.47)

D �
Z
˙

�

4˙˚ � ' C �˝2r2?

2
'? C k'?

�
dA � K

3

�Z
˙

˚?dA � 4�
�
;

and as shown previously, a stationary solution .˙; k/ also satisfies the associated
(nonlinear) Young–Laplace equation (9.34), or (9.46). In a similar fashion, one
can calculate the second variation with respect to two orthogonal perturbations
'; ;K; J with ' �  D 0 :

L
00

˝ D �

Z
˙

 � 4˙.'/dA� 2

Z
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Z

?
H ?'?

�
2H � 1

2
�˝2r2? � k

�
dA ; (9.48)

where n is the unit normal to ˙ . Actually, the last integral on the right-hand side
of the last equation is zero if the second variation is evaluated for a solution to the
Young–Laplace equation. Similar formulas hold for the first and second variation of
the Routhian functional, but we do not present them here since they can be found in
detail in [299].

Using several numerical algorithms, the authors in [299] obtained a large
collection of most intriguing and nonlinear drop shapes, sub-bifurcating from one
another in an almost fractal cascade. For each calculation, the perturbations apply
to some initial type of shape, which can be spheroidal or multi-lobed. The results
obtained by starting with a unit sphere shape are shown in Fig. 9.13. From the
‘main’ axisymmetric branch (as it is called in [299]), several branches bifurcate, and
further sub-bifurcate into sub-branches. In this article, the authors found multi-lobe
shapes that were not identified by previous researchers, because in those previous
studies the authors considered (artificially) only shapes with meridional reflective
symmetry. Moreover, it seems likely that six lobes is the highest lobe asymmetry
for rotating drops, because all numerical computations show no more intersections
with the seven-lobe branch than any other branch or sub-branch.

A little bit below the value QL D 2, the two-lobed sub-branch sub-bifurcates
around Q̋ D 0:3–0.4 into an attractor configuration having non-axisymmetric
shapes with one-lobe only, like the one exemplified in Fig. 9.16, a situation called
‘winding-up’. The studies [303] reported reconnections of the peanut-shaped branch
to the two-lobed branch (shapes looking like the example in Fig. 9.17) at a smaller
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Fig. 9.13 Bifurcation diagrams for the spheroidal family in the (dimensionless angular
momentum–dimensionless angular velocity) phase diagram . Q̋ ; QL/. In this figure, Q̋ is denoted
by !. From Fig. 7 in [299], by permission of Oxford University Press (Oxford Journals)

value of the angular velocity. In the same way, in [299], it was shown that a similar
bifurcation further branches off towards larger values of ˝ .

Like the two-lobed branch, the three-lobed (Fig. 9.14) and higher-lobed branches
each seem to approach a singular limit consisting of spheres of equal size, as ˝
tends to zero, pretty much following the conjecture made in [303]. Of more interest
is the behavior of the sub-branch which bifurcates from the three-lobed family at
Q̋ � 0:42. This sub-branch leads to both smaller and larger values of ˝ and seems

to be tangential to the three-lobed branch in the . Q̋ ; QL/ phase diagram. The sub-
branch repeats its winding behavior toward the sub-branch of the two-lobed family.

The five-lobed (Fig. 9.18) and six-lobed (Fig. 9.19) bifurcations differ from the
two-, three-, and four-lobed variants because they do not seem to approach limit
surfaces consisting of spheres of equal size. Instead, they wind up in the phase space
of Fig. 9.13, similarly to the two-lobed sub-branch. The six-lobed shape intersects
itself at the bifurcation point: the spheroidal family can be extended past its meeting
point with the annular family where the thickness of the drops at the axis of rotation
approaches zero. Past that point on the main spheroidal branch, the upper half of the
drops reaches below the equatorial plane and intersects the lower half.

These multi-lobed shapes obtained numerically bear a strong resemblance to
experimental shapes of 2D rotating drops and splash events of liquid drops, like
those presented in Figs. 9.16, 9.18, and 9.19.
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Fig. 9.14 A part of the bifurcation diagram Fig. 9.13 which shows a sub-sub-branch of the three-
lobed family breaking the meridional reflective symmetry. From Fig. 13 in [299], by permission of
Oxford University Press (Oxford Journals)

In addition to simply-connected shapes, the same approach generates a multitude
of new toroidal or annular shapes (see Fig. 9.15). We also mention a remarkable new
type of shape called the pearl necklace, i.e., the ring of tangential spheres shown in
Fig. 9.15. According to a conjecture stated in [299], it keeps dividing into more and
more tangential spheres until it reaches a singular limiting surface.

Equilibrium rotating shapes like those obtained by numerical computations (and
presented in Figs. 9.16, 9.17, 9.18, and 9.19) have a similar purely theoretical
counterpart in the mathematical paper by Kapouleas [300]. He provides analytical
proof of the existence of shapes for small enough angular momentum [close to
the origin of the . Q̋ ; QL/ phase plane] with an aspect of multiple spherical lobes
connected by thin necks. Such shapes belong to the same class as the one with
three tangent spheres shown in the phase diagram of Fig. 9.14 for Q̋ D 0:0488, or
the pearl necklace shape appearing with the annular shapes in the phase diagram
of Fig. 9.15. This study provides a rigorous proof for the existence of even more
complicated equilibrium configurations, all symmetric with respect to the plane
orthogonal to the axis of rotation.

These exotic shapes look like a central spherical lobe around which m strings,
each containing n spherical lobes, are symmetrically distributed. These shapes are
said to be of type .m; n/ (see Fig. 9.20). In order to prove that such .m; n/ surfaces
with 1 � m � 6, n � 1 exist as solutions of the equilibrium equation (9.34),
one needs to use building blocks made of pieces of spheres and necks that form
together so-called Delaunay surfaces, i.e., surfaces with constant mean curvature.
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Fig. 9.15 Bifurcations from the axially symmetric family of annular shapes. The meeting point
of the annular and spheroidal families where the inner radius of the torus approaches 0 occurs at
Q̋ D p

2=2 (denoted ! in this figure). From Fig. 15 in [299], by permission of Oxford University
Press (Oxford Journals)

Fig. 9.16 Non-axisymmetric shape with one lobe. Courtesy of the Drop Gallery of Dr. Claus-
Justus Heine and Dr. Gerd Dzuik, Albert-Ludwigs-University of Freiburg, Dept. Applied Mathe-
matics

These shapes are then combined with transitional ‘annuli’ of zero mean curvature,
and finally the parameters are adjusted to satisfy the equilibrium equation (9.34). We
use the same notation˙ for the drop surfaces andD for the domain defining the drop
body,˙ D @D, also j˙ j for the area of the drop surface, and V0 D jDj D 4�R3=3
for the constant drop volume. In order to simplify the calculations, we rewrite
the Young–Laplace equation in a slightly different dimensionless form, using the
angular momentum instead of the angular velocity:

�H.r/ D P

2

C L2�
4I2
 r2? ; (9.49)
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Fig. 9.17 Two-lobed shapes. Courtesy of the Drop Gallery of Dr. Claus-Justus Heine and Dr. Gerd
Dzuik, Albert-Ludwigs-University of Freiburg, Dept. Applied Mathematics

Fig. 9.18 Five-lobed shapes. Courtesy of the Drop Gallery of Dr. Claus-Justus Heine and Dr. Gerd
Dzuik, Albert-Ludwigs-University of Freiburg, Dept. Applied Mathematics

where I is the moment of inertia of the drop configuration about the rotation axis,
and the rest of the terms have the same meaning as before, i.e., H is the mean
curvature with the convention that H D �1 for the unit sphere, L is the angular
momentum, P is the pressure across the drop at its poles, and r? is the distance
from the rotation axis to the point r 2 ˙ .

The theorem in [300], which proves that the lobe-plus-neck surfaces are solutions
to the Young–Laplace equation, does not contain an explicit procedure for construct-
ing the solutions. More details and the expressions for the solutions in terms of
coordinates can be found in [309]. Let us denote by M the first approximant surface
for the solution of (9.49), parameterized as an immersion X W ˙ ! R

3, and by
� 2 C1.M/ a smooth deformation of ˙ in the direction of the normal to ˙ . If we
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Fig. 9.19 Six-lobed shapes.
Courtesy of the Drop Gallery
of Dr. Claus-Justus Heine and
Dr. Gerd Dzuik,
Albert-Ludwigs-University of
Freiburg, Dept. Applied
Mathematics

Fig. 9.20 Unstable
gyrostatic equilibrium shapes
of type .3; 2/. See [300]

introduce this new surface equation XC �n W ˙ ! R
3 in (9.49) and if we restrict to

linear terms in L2=I2 and �, we obtain

4˙� C j˘ j2� D L2�
2I2
 r2? C 2H C P



; (9.50)
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where j˘ j2 D M2C2M2CN2 is the square of the length of the second fundamental
form

˘.V;W/ D LkVk2 C 2M.V;W/C NkWk2

on ˙ (see Appendix 1 for more detail). A more complete proof of this linearized
formula can be found in [309, Appendix E]. The procedure to build solutions
for (9.50) as .m; n/ surfaces as in Fig. 9.20 can be briefly explained by the following
steps:

1. Denote the expression L2�=.2I2
/ < 1=4 by a parameter � and consider it to be
small.

2. Build a family of Delaunay surfaces DS.�/ embedded in R
3, each with mean

curvature �1 (equal to a unit sphere S2), with rotational symmetry, and also
satisfying a specified reflection symmetry. These surfaces are basically diffeo-
morphisms of the unit sphere S2, and of catenoids (surfaces of revolution of
hyperbolic cosine curves), glued together in a differentiable way by circles where
the Gauss curvature passes through zero.

3. Show that there are infinitesimal homothety transformations (expansion or
dilation with respect to a fixed point p0, p ! p0 C sdp0p, s 2 R, where dp0p

is the displacement vector from point p0 to point p) of these surfaces which
preserve their geometric properties, viz., the spectrum of the Laplace–Beltrami
operator on the surfaces, their symmetries, and the property of having constant
mean curvature.

4. The spectrum of the linearized left-hand side of (9.50), as an operator acting
on deformation functions, is obtained for some infinitesimal deformations of
the Delaunay surfaces. In a next step, it is shown that, in the limit of small
eigenvalues, one can choose a space of eigenfunctions orthogonal to the right-
hand side of the same equation.

5. We need to define a functional mapping (9.50) from its value initially calculated
from the geometry defined in (2) above, to a new value calculated for a
hypothetical solution satisfying the Young–Laplace equation.

6. When one performs homothety transformations on the initial shapes as pre-
scribed in (2) and (3) above, the functional defined in (5) must have all the
necessary smoothness and isometric properties to be a contraction, so that it has
a fixed point on a compact and convex set of hypothetical solutions.

7. From this procedure, we obtain a series of inequalities proving that the functional
defined in (5) does indeed have a fixed point which is the solution of the required
equation. These inequalities are valid if the control parameter � is small enough.

In conclusion, the main result can be expressed as follows:

Theorem 13 For an incompressible liquid drop of density �, volume V0, and
surface tension coefficient 
 in rigid rotation ˝ around a fixed axis, in the absence
of any other forces, and for any value of the magnitude of its angular momentum
less than a given limit L < NL.V0; �; 
/, there is a family of shapes of type
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.m; n/ (see Fig. 9.20) and a deformation of these shapes followed by a homothety
until the resulting shape contains the volume V0 and satisfies the Young–Laplace
equation (9.50).

This rotating drop is in unstable gyrostatic equilibrium. The stability of gyrostatic
equilibrium shapes can be studied using the same Gâteau second differential
equations (9.43) and (9.48) for the dimensionless Routhian in (9.40), since the drops
in question are free drops:

QL0 D 1

4R2

Z
˙

dAC L2
8
R2I2 �

Qk
�
1

R3

Z
dV � QV0

�
(9.51)

D j˙ j
4R2
C L2
8
R2I2 �

Qk
� jDj

R3
� QV0

�
: (9.52)

The second variation of the Routhian has the form

QL00

0 D
Z
˙

�


�jr˚ j2 �˚2j˘ j2C L2�

I2 ˚
2.r � n/

�
dAC L2�

I3

�Z
˙

˚r2?
�2
> 0 ;

(9.53)

where r 2 ˙ is the surface parameterization and n is the unit normal on ˙ .
Rigorously mathematical, the surface ˙ is an immersion in a 3D Euclidean space
with n its Gauss map. The test functions ˚ are defined on ˙ and must satisfy
the following constraints: they must have zero mean on the surface, have compact
support, and be square integrable and continuously differentiable on ˙ . In other
words, they must belong to the Sobolev space ˚ 2 H1

0.˙/. By following a long
sequence of inequalities, it can be proved that the second Gâteau variation in (9.53)
has negative value, so the solutions are unstable. Moreover, we may mention an
interesting kind of behavior here: the more complicated the drop (the larger the
number of lobes), the more linearly independent functions violating the stability
can be found. This means that the larger the number of lobes, the more unstable the
drop is.

It is interesting to estimate the limiting value of the angular momentum below
which such .m; n/ lobe–neck structures are expected to form. The smallness
parameter � can be extracted from [300] and from the dimensionless formulas (9.35)
and (9.49):

2H
 D PC �L2
2I2 r2? ;

which can be written, after the homothetic expansion, in the form

H D 1C �r2? :
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Table 9.2 Estimates for the maximum allowable angular velocity for several physical systems
involving gyrostatic states

Physical ˝max ˝exp Occurrence

system from theory Œs�1	 experimental Œs�1	 of .m; n/ shapes

Water drops 104 10� 100 Possible

Mercury drops 106 100� 103 Possible

Heavy nuclei 1044 1021 Possible

Neutron stars 10�11 100 Impossible

It follows that � D �L2=4
I2, but at the same time P=2
 must be of the order of
unity. The term

P

2

� volume energy density

2 � surface area energy
� j˙ j

V0
� 1

R
� 1 ;

which asks for the distances to be measured roughly in units of the radius of the
drop. Because � has dimensions m�3, its limiting value obtained from the main
theorem concerning existence of the solution must be scaled with O.R3/. In [300],
no procedure is given to obtain the minimum value for � , but in principle one can
choose � < 0:1 from the average limitations of the majority of the lemmata, and
from here we have ˝ < ˝max D

p
2
=5�. In Table 9.2, we present estimates

for the maximum allowable angular velocity for several physical systems involving
such gyrostatic states.

9.6 Rotation of 2D Drops

In comparison to 3D drops, 2D drops have a stronger tendency to bifurcate their
shapes from one symmetry to another, especially if they are in rotation. The stability
and symmetry breaking of systems are studied using bifurcation equations that arise
from the Hamiltonian formalism. It is well known, and we provide many examples
in this book, that the higher the angular velocity, the more unstable the shape
becomes. This situation can be proved with great accuracy in terms of mathematical
theorems using, for example, the energy–Casimir method and singularity theory
[167, 294]. The final result of this sophisticated analysis is neither unexpected, nor
comprehensive, but it is exact. It applies only to rigidly rotating axisymmetric 2D
drops.

For example, an axisymmetric (rather oblate) spheroidal drop of radius R in rigid
rotation with angular velocity ˝ becomes unstable as soon as ˝2 > 12
=.�r3/.
Hence, for a millimeter-size raindrop, rotational instability breakup would occur
around˝ � 10–50 Hz, while for a soap bubble it would occur for a slightly higher
value, towards the kilohertz range, and for a heavy nucleus liquid drop model,
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in the range ˝nucl � 2 � 1021 s�1, which gives a nuclear angular momentum
in the range of Lnucl � 200„. Actually, this theoretical limit is close to recent
experimental measurements on superdeformed/hyperdeformed nuclei. The 132Cs
nucleus is known to have a terminating rotational velocity at angular momentum
78„.

In order to apply the energy–Casimir method, we recall the concepts introduced
in Sect. 9.4 on the Hamiltonian description of a free boundary liquid drop in
rotation about the Oz axis. Let the Hamiltonian of the drop be described by the
Hamiltonian (9.28). The energy–Casimir method seeks to find another conserved
quantity C satisfying fH;Cg D 0, where the Poisson brackets are as defined in
Sect. 9.4. If C is chosen to be a functional depending on the vorticity ! D r � v,
this guarantees that the Poisson bracket will commute with the Hamiltonian. Let this
function be ˚.!/ which, given the rigid type of rotation and spherical shape (hence
major limitations of this model), is just a function of the constant angular velocity
˝ , i.e., ˚.˝/. In addition, one can always add the angular momentum to C, as this
is conserved for such rigidly rotating drops. We now have the modified Hamiltonian
in the form

HC D H C C D
Z

D˙

h�
2
jvj2 � �.x � v/z C ˚.!/

i
d3xC 


Z
˙

dA ; (9.54)

where � is an arbitrary parameter for the moment. By computing the first variation
for this modified Hamiltonian [see (9.25) and the appendix in Appendix 2], we
obtain the equilibrium condition at the critical point of the modified Hamiltonian
determined by d˚.˝/=d˝ D 0. Therefore, at the critical points, we can always
choose this function to be constant or even zero, i.e., ˚ D 0.

In order to determine the stability, we need the positive definition of the second
variation, given in (9.25) and Appendix 2. After some vector algebra, neglecting the
quadratic terms and retaining only linear terms in •˙ (another loss of generality in
the model), we obtain for the second variation the approximate form




Z
˙

�
� 1

R2
.•˙/2 � .4•˙/•˙

�
dA >

�
˝

2�

�2
R
Z
˙

.•˙/2dA ; (9.55)

for all normal infinitesimal variations •˙ of the area, all preserving the volume (the
surface mean normal variation is zero). The eigenvalues of the Laplace operator on
the circle (2D drop) are given by

�k D k2

R2
; k 2 Z ;
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and by choosing the smallest eigenvalue of the first deformed shape k D 2 (since
k D 1 is just a translation of the sphere), we obtain the constraint for stability

˝ <

s
12


�R3
: (9.56)

Above this value for the angular velocity bifurcation, a new branch of solutions
bifurcates from the axisymmetric solutions. Actually, the latest results show that
there is a whole tree of ramifications and branches of star-shaped or bead-shaped
2D drops, as we will show in the following sections.

9.7 Leidenfrost Drops1

There are three reasons why the 2D drop-like systems are now so widely studied:
they lead to the greatest variety of patterns and waves on the free surface, they
are relatively easy to handle theoretically, and experimental procedures are readily
available [271–278]. The understanding of the formation, propagation, stability,
bifurcation, breakup, and clustering of waves, patterns, and shapes on compact
fluid boundaries of isolated drops are of fundamental importance in fluid dynamics
problems, printing and painting technologies, and design in the medical and
pharmaceutical industries. This field generates an equally diverse array of uses that
include paint applications, drug delivery, point-of-care diagnostic chips, neutron star
tides, organic synthesis, and droplet-based microfluidics [310]. More generally, the
study of the nonlinear and complex dynamics of almost incompressible systems
with free surface can help us to understand phenomena in tsunamis and tides,
mixing problems, atmospheric dynamics, Bose–Einstein condensates, cosmology,
brain structure, motile cells swimming, shear flows, etc.

The first systematic studies on liquid drop oscillations and rotations were
reported around the same time as the introduction of differential geometry and
topology in hydrodynamics, i.e., in the 1960s and 1970s, in the historical work of
Eben, Marsden, Arnold, Kato, Abraham, Smale, Foias, and many others [167–169,
279–281, 285]. Topological fluid dynamics, still a young mathematical discipline
even today, is most likely the best theoretical approach for the study of the
complex features of flows with complicated trajectories. The theoretical power
of differentiable topological methods is consistently supported by more and more
experimental results on drop-like systems.

Ideal theoretical models that can be used to test the predictions of the exact
Hamiltonian formalism require total isolation of the fluid from any type of external
interaction: containers, surrounding walls, or other contact surfaces. Consequently,
experiments able to test the Hamiltonian theories need gravity-free labs and

1Section written with, and experiments performed by Ajay Raghavendra and Benjamin Dillahunt
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completely isolated liquid surfaces. Such experiments can be performed either
in parabolic zero-gravity flights and in labs in Earth orbit, or by isolating drops
using diamagnetic levitation, ultrasound levitation, air cushion flow from beneath,
etc [311].

An alternative experimental method for isolating liquid drops has emerged
recently. It consists in using 2D drops wrapped in their own ‘hot’ vapors. Such drops
tend to shrink to disk shapes under their gravity, and the 2D free surface is replaced
by the simpler 1D dynamics of the contour. For such systems, the contribution of
gravity becomes trivial because of the low dimensionality of the system. The liquid
in such a drop is maintained separated from the solid interface for long enough to
treat the drop as isolated.

These drops have fully free liquid surface and levitate on their own vapor
cushion when brought into the neighborhood of a hot solid, the so-called Leidenfrost
phenomenon. This is a dynamical and transient effect in which the vapors press
against the weight of the drop and the adhesion and friction forces. The absence of
solid/liquid contact provides unique mobility for the levitating liquid, contrasting
with the usual situations in which contact lines induce viscous forces. Leidenfrost
drops of different sources exhibit a frictionless motion with the possibility of
bouncing after impact. During the rapid rotation, the resulting instability can lead to
polygonal shapes, star-like shapes, and oscillations with various exotic shapes (see
Fig. 9.21).

The effect was studied scientifically for the first time in 1756 by the German
physician Johann Gottlob Leidenfrost, who published a treatise in which he
described the remarkable behavior of liquid drops on a very hot plate, such as water
on steel at 300ıC [312]. His drops were very mobile, they did not boil, and they
lasted a long time despite the very high temperature of the substrate. All this happens
because the liquid drop sits on a cushion of its own vapors which prevents contact
with the solid surface. For example, a millimetric water drop has a lifetime of several

Fig. 9.21 Leidenfrost star. Water on a hot superhydrophobic surface
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minutes on a substrate kept at 250ıC, while it evaporates in less than one second
when deposited on the same substrate at 150ıC (for a very good and recent review,
see [313]). The effect has actually been known since earlier times, from Herman
Boerhaave’s experiments in Leiden in 1732. He reported that alcohol poured on a hot
plate does not catch fire, but instead forms “a gleaming drop resembling quicksilver”
[313]. Interesting and instructive, the effect is also discussed in literature such as
Jules Verne’s Michel Strogoff (1876) and Marcel Proust’s Swann’s Way (1913).

In spite of its early discovery in the nineteenth century, the Leidenfrost phe-
nomenon is still the subject of numerous studies. We may mention at least four
important reasons leading to this special interest.

The first is related to the engineering of droplet-based microfluidic systems
compatible with many chemical and biological reagents and capable of performing
a variety of ‘digital fluidic’ operations that can be rendered programmable and
reconfigurable [264, 314]. Thanks to their dimensional scaling benefits and the
possibility of rapid mixing of fluids in a droplet reactor (resulting in decreased
reaction times), shape controlled droplets, coupled with the precise generation
and repeatability of droplet operations, have made the droplet-based microfluidic
system a potent platform for biomedical research and applications. Ranging from
the nano- to femtoliter range, droplet-based systems are also used to directly
synthesize particles and encapsulate many biological entities for biomedicine and
biotechnology applications.

The second reason is the design of self-propelling fluidic devices that have
received special attention over the past few years because of their unique ability
to displace liquid at small scales without an external force. These devices can be
used to chemically treat a solid, to direct and concentrate liquid, for example in
condensers, or to drive compounds, as observed with the phalarope, a bird that drives
its prey mouthward encapsulated in water.

The third reason is based on the property of a Leidenfrost drop to oscillate
spontaneously. For each elementary rebound, part of the kinetic energy can be
transferred from the vertical to the horizontal direction because of the asymmetries
in the neighboring surfaces.

The fourth reason consists in the ability of Leidenfrost systems to simulate the
behavior of super-non-wetting materials. Such non-wetting systems have attracted
a lot of attention because they lead to unusual behavior of liquids: a drop impinging
on such a solid bounces off, and the film of vapor allows a significant slip of a drop
along the solid, which dramatically reduces its friction (see Fig. 9.22, for example).

When a drop of liquid is deposited on a hot solid (in a gravitational field and
normal atmosphere), with temperature around the boiling point of the liquid in that
atmosphere, the drop boils and quickly vanishes. However, if the solid temperature
is much higher than the boiling point, the drop is no longer in contact with the solid,
but levitates above its own vapor layer, hence evaporates at a slower rate, remaining
at an almost constant and uniform temperature equal to the normal boiling point.
This is the essence of the Leidenfrost effect. The system is also similar to the
situation of a drop moving over a superhydrophobic layer. This effect does not
necessarily require high temperatures; it is all about the temperature difference.
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Fig. 9.22 Water Leidenfrost droplets at 280ıC, recorded with an AOS Rapid Camera 1000 fps
at 1 Mp and a mirror system. From upper left corner, clockwise: Dipole, triangle, concave square,
concave pentagon, concave hexagon, and concave octopole shapes. Experiments performed in 2014
at the Wave Motion Lab at Embry-Riddle Aeronautical University by Ajay Raghavendra

Fig. 9.23 Large pool of liquid nitrogen on a glass plate at room temperature, viewed from above.
Several bubbles rise and burst at the upper surface if the liquid surface is large enough. The black
toroidal rubber gasket has external diameter 20 mm

Liquid nitrogen generates perfect Leidenfrost drops on a simple glass surface at
room temperature (see Figs. 9.22 and 9.23).
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Theoretical models involve equations for the balance between surface tension
and the Poiseuille flow in the vapor layer. The appearance of star shapes can be
explained by the temporal modulation of the eigenfrequency of the drop, due to
external forcing, thereby inducing a parametric instability: a first instability leads to
a vertical oscillation of the drop, which through a secondary, parametric instability,
leads to the formation of oscillating stars. The droplets have a maximum radius
beyond which they transform into a torus by the process of a hole nucleation and
expansion at their center. Azimuthal oscillating capillary waves on the surface of
Leidenfrost drops generate large amplitude star-like undulation. The frequency of
oscillations has been shown to be close to the frequency of Rayleigh capillary waves
in the droplets. Drops with faceted shapes have also been observed in other drop
systems excited by periodic forces with frequency close to the eigenmodes of the
drops. Such star shapes arise for drops on vertically vibrated hydrophobic substrates,
acoustically levitated drops with low-frequency modulated pressure, liquid metal
drops subjected to an oscillating magnetic field, or drops on a pulsating air cushion.

It is shown in [315] that a liquid drop of radius R < lc placed on a solid surface
will be in contact (domain of flattened bottom of the drop) with the solid across a
circular domain of diameter

� � R2

lc
;

where lc D
p

ls=�lg is the capillary length with 
ls the coefficient of surface tension

between the liquid and solid, g the acceleration due to gravity, and �l the density of
the liquid. If the drop has radius larger than the capillary length, the liquid forms
pools of height about h � 2lc [315]. For example, a Leidenfrost drop of water
(
 D 0:059N/m, �l D 980Kg/m3, lc D 2:5mm) at t D 150ıC (the Leidenfrost
temperature for water at which the lifetime is the longest) forms a pool of height
h D 5:0–5.1 mm (see Fig. 9.23).

If the pool is larger, a gas bubble may form at the lower contact surface, close to
the center of the pool, and spring out to the surface. It is believed that these bubble
bursts are a consequence of a Rayleigh–Taylor instability at the lower surface.
Fluctuation and impurities create the germ of a bubble. Then the balance between
the surface tension and the buoyancy force generates an unstable equilibrium
because the bubble that is trying to exist creates higher local curvature, hence higher
pressure. Using a simple energy estimate, it is found that the minimum radius of the
pool satisfies a law of the form � � 3:84lc � 1:92 h.

The vapor layer under the drop (if it is large enough to form a pool) lies in the
range e D 10–100�m, and interestingly enough, increases with increasing drop
size. For an ideal stationary regime, one can estimate the height of the vapor layer
under the drop using the Fourier law of heat conduction and the Poiseuille flow law.
On the one hand, we can write

�
dm

dt
D �

L

4T

e

��2

4
;
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where � is the latent heat of evaporation, dm=dt is the rate of evaporation, � is the
thermal conductivity of the vapor, L is the latent heat of evaporation, and4T is the
temperature difference between the solid and the boiling temperature. We also have

dm

dt
D �g

2�e3

3g
4P ;

where �g is the vapor density, g is the kinematic viscosity of the vapor, and 4P
is the gas pressure difference between the layer under the drop and the surrounding
atmosphere. Combining these last two equations, we obtain an estimate of the drop
height:

e �
�
3�4TgR2

4L�v�lglc

�1=4
:

All the above characteristics can be combined to create devices in which self-
propulsion is obtained, using asymmetric textures on hot solid surfaces. Such
self-moving non-wetting Leidenfrost drops are very quick, owing to the highly
reduced friction. In 2006, Linke et al. [316] discovered such a system for self-
propelling drops when asymmetric teeth are present on the supporting solid. The
teeth have millimetric lengths and the solid is heated well above the Leidenfrost
temperature at which the vapor film builds up, so that the tips of the teeth do not
induce boiling. Drops on these hot ratchets accelerate up to a constant velocity.
They follow a direction in which they climb steps.

Many effects may be responsible for the propulsion. First, the base of the drop
is deformed by the presence of the ratchet below, and this induces a modulation of
its curvature and consequent Laplace pressure gradients. Second, a wave propagates
from the trailing edge to the leading edge of the drop, allowing transport of matter
in the direction of motion. Third, the Marangoni effect, related to temperature
differences, might cause a displacement, as seen in Marangoni levitating drops
heated asymmetrically using a light source. Fourth, as the drop loses material, this
gas flow might cause motion, provided it is made directional (or rectified) by the
presence of the teeth. It is crucial to note that all four possibilities above are related
to the deformability of the surface of the moving body, whence the importance of
the free boundary for this new phenomenon.

Under some special experimental settings, Leidenfrost drops can provide local-
ized solitary wave excitations rotating around the drop boundaries, like for example
the “rotons” obtained in liquid nitrogen inside a circular space [121], or the
“oscillons” in [317].
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9.8 Spinning Polygons

Models for the oscillations, wave patterns, and various motions of the Leidenfrost
drops are based on numerical solutions of the Navier–Stokes equations, with
corresponding free surface boundary conditions. In general, given the flat aspect
ratio of these drops, 2D models are sufficient to describe the main characteristics.
Fully 3D models require stronger simplifying hypotheses in order to be able to
provide predictions and generate compact solutions. For example, in [318], the
authors design a 3D incompressible model based on the Bernoulli potential flow
equation. They obtain numerical solutions for a Leidenfrost drop suspended on a
cushion of compressed air injected from below.

The reduction of theoretical models to two dimensions is supported by specific
experimental configurations, as in the case of [314], where the authors designed
a 2D model for water drops sandwiched between two substrates separated by a
distance h. Another similar flat configuration is the lab-on-chip device, based on
digital microfluidics [264], where the authors analyzed 2D patterns and oscillations.
In [319], the authors investigate theoretically the behavior of Leidenfrost droplets
inserted in a Hele–Shaw cell (between two parallel transparent surfaces whose gap is
smaller than the capillary length). In order to have high quality image recordings one
needs to keep the droplets as fixed as possible. The drop takes the shape of a flattened
saucer-like disc which floats between two vapor layers. These drops are quasi-
thermally isolated from the surface by the evaporating vapor layers and they display
undulating star-like shapes. For the theoretical model, Pomeau et al. [319] used a 2D
‘lubrication approximation’ model and numerically obtained shapes for the droplets
that matched experiment. They show evidence of capillary azimuthal oscillating
modes, and in the hydrodynamic stability limit, they noticed the occurrence of a
sudden transition from a flattened disc to an expanding torus.

In the following, we present experiments and a model describing a different type
of 2D Leidenfrost system: drops trapped inside a fixed ring and forming a spinning
hole at their center (see, for example, Figs. 9.24–9.26, or earlier experiments and
discussions in [121]). The ring acts as a rigid, imposed external boundary, while
the free liquid surface is inside the drop. The ring, usually a regular toroidal rubber
gasket of larger diameter 2 cm and smaller diameter 3 mm, is placed on a horizontal
glass plate, and liquid nitrogen is poured inside. The patterns are recorded using
a custom-built AOS rapid-photography camera recording 1 000 frames per second
from a short distance. When poured, the liquid fills the inside of the ring and some
of it spills over the outside, but remains in contact with the outside of the ring thanks
to its own capillarity and cohesion forces. Of course, as this liquid is in a Leidenfrost
regime, it is not in direct mechanical contact with the ring or the glass, because it is
surrounded by a thin vapor layer.

Two independent liquid systems are formed, one outside the ring and one inside.
Both these layers oscillate, generating rotational waves and spinning patterns, but at
the same time evaporating quickly. Their volumes and sizes continuously decrease
and as a consequence all patterns and wave structures have a short lifetime. A given
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Fig. 9.24 Liquid nitrogen inside a rubber ring placed on a horizontal glass plate. Hollow
Leidenfrost drops form and generate spinning squares. We present such squares with rapid
photography taken at different moments. All internal diameters are 2 cm and the height of the
drops is h D 3mm. A Leidenfrost layer is formed outside of the ring, too, but in these experiments
shows chaotic behavior. The squares have edges measuring almost 1 cm, and they always spin
counterclockwise with angular velocity ! D 220–360 rad/s

wave or pattern becomes stable at a certain moment, but only for a short while,
engaging in regular motion before being replaced by other stable patterns for the
new diminished sizes, and so on until full evaporation.

In the beginning, a high frequency wave forms inside the ring, while the
flow outside is chaotic and dominated by boiling of undetermined shape (see
Figs. 9.23, 9.25 upper right, or 9.26 upper right). In a couple of seconds, the
rotating wave inside is replaced by the formation of rigidly rotating polygons:
first there are hexagons, then pentagons, then squares, and occasionally triangles
(see Figs. 9.24 and 9.25). The transitions between different spinning polygons are
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Fig. 9.25 Liquid nitrogen rotating Leidenfrost polygons of order five and six, taken by rapid
photography at different moments, inside a toroidal rubber gasket identical with the one in
Fig. 9.24. The pentagons/hexagons have edges of length about 1.3 cm, and they spin at ! D 320–
400 rad/s. The external liquid displays organized flow, viz., denser rotational waves of small radial
amplitude and wavelength, with •r � 2mm, � � 1:8–2.5 mm, and ! � 600–1 000 rad/s

mediated by short intervals of chaotic flow inside the drop. About the time when the
liquid inside the ring ceases to form stable rotational polygons, the outside liquid
generally provides a high frequency rotational wave with small amplitude, spinning
fast around the exterior of the drop (see Figs. 9.25 bottom row and Fig. 9.26 upper
left). After the vanishing of this last pattern, the liquid completely evaporates and
water ice from the moisture in the room freezes on the ring and glass. In some
configurations the inside polygons are convex, and in some they are concave.

In order to identify the type of motion of the inner patterns, we mixed small
fluorescent particles into the liquid nitrogen (e.g., Cosperics commercial powder
with beads of diameter between 10 and 200 �m). Rapid photography reveals that
both the inside and outside motions only involve geometric waves (energy waves),
and no matter waves. For a ring diameter of R D 2 cm, the motion of each bead
is almost radial, and confined to a range of 3–4 mm about its mean position. Such
beads can be observed, for example, in Figs. 9.24 (upper row) or 9.26 (upper right
and bottom left). These observations allow one to introduce a suitable theoretical
model of shallow-water hydrodynamics with non-slipping boundary conditions,
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Fig. 9.26 Leidenfrost liquid shells inside a rubber gasket on flat horizontal glass. Concave rotating
polygons of order five and six are obtained, together with higher multipolar patterns in the form of
stable rotating waves of order up to 9 vertices

rather than a rigid rotator model, as in the case of regular Leidenfrost drops
discussed in the literature.

The most stable patterns of hollow rotating polygons obtained experimentally
were squares (see Fig. 9.24). Less accurate patterns were obtained for pentagons
and hexagons (see Fig. 9.25) and concave polygons of order five and six, or simply
stable rotational waves including up to 9 wavelengths along the inner contour (see
Fig. 9.26).

Theoretical Model

The theoretical model is 2D, neglects convective vertical motion of the fluid and
gravity, and takes into account only rotating waves and spinning patterns with
constant angular velocity. This model aims to provide explanations for the formation
and stability of such patterns. It assumes all calculations to be performed at a time
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Fig. 9.27 2D model for rotating polygons in Leidenfrost shells. The left image shows the drop seen
from above, the largest circle R is the gasket, and the blue line, of equation 
.�; t/ and perimeter
L, is the inner boundary of the Leidenfrost shell. The dashed circle at r0 represents the static
equilibrium shape in the absence of motion. The right image shows the same shell seen in a vertical
cross-section and the shell has an average height h. The upper and lower horizontal interfaces of
the shell are denoted by ˙ and the inner vertical surface is denoted by � . An example of such a �
is presented in Fig. 9.28

t when the liquid shell has mass m and volume V . Because of the fast evaporation,
the mass and volume of the liquid shell decrease in time, and the model must use
different input parameters to be able to predict the dynamics at later times, for
different geometries.

We consider the liquid Leidenfrost shell lying horizontal and flat, and confined
by a rigid toroidal gasket of large radius R and small diameter h. The parameter h
also represents the height of the liquid shell (see Fig. 9.27). In principle, it is enough
to consider h equal to the small diameter of the toroidal ring, but we can in fact
evaluate the thickness of the Leidenfrost shell as well as the curvature of the inner
contour from optical deformation of a rectangular grid placed under the drops. In
the small red circle in Fig. 9.29, we show the optical deformation of the grid lines
that allows us to evaluate the true depth and curvature and implement the correct
h D 2:98mm.

When at rest, the shell has volume V D h�.R2 � r20/h and mass m D �0V . We
assume that the model works for a limited amount of time dt centered around t, such
that the volume and mass can be considered constant over dt. In polar coordinates,
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the inner contour of the shell is given by the function r D 
.�; t/ and instantaneous
volume conservation (during dt) requires

V D �h.R2 � r20/ D h

�
�R2 � 1

2

Z 2�

0


2.�; t/ d�

�
: (9.57)

In addition to the area and volume, we also need the length of the inner curve
bounding the shell:

L D
Z 2�

0

q



02 C 
2 d� : (9.58)

In cylindrical coordinates, the equation of continuity plus the incompressibility
condition for the shell liquid gives the divergence-free condition for the velocity
field, i.e., r � V D 0 :
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where the velocity field is given by V.r; �; z; t/ D .ur; u� ; uz/ in cylindrical coor-
dinates. The Navier–Stokes equations in cylindrical coordinates have the general
form
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where the force density is given by f .r; �; z/ D . fr; f� ; fz/, the pressure by P.r; �; z/,
�0 > 0 is the constant density, and � > 0 is the dynamic viscosity. Here we have
used the Laplace operator in cylindrical coordinates:
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and the total time derivative operator
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In order to predict the rotating polygonal holes in the middle of the Leidenfrost
shells, it is enough to restrict to 2D motion, as we mentioned above, and we denote
the components of the flat Eulerian liquid velocity by .ur; u� / D .v; u/. The degree
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of freedom of the Leidenfrost shell associated with the third (vertical) dimension
is somehow taken into account on average by the value of h, the shell height. It
is assumed that, in the first order of approximation, the shell will take the height
enforced by the small diameter h of the rubber ring.

Because we are studying rotating waves, we introduce the coordinates .r; �; t/!
.r; � D � � !t/, where the constant angular velocity ! is a parameter of the model,
and because we discuss only ‘rigidly’ rotating patterns inside the shell, volume
conservation is automatically assumed. However, when we study the transition from
one pattern to another, this process must consider volume conservation.

In this model we assume the flow to be incompressible, irrotational, and inviscid.
These simplifications are reasonable for the range of parameters of the liquid used
in our experiments (liquid nitrogen), and for the corresponding Reynolds number
associated with our experiments (R � 2000, so the flow is laminar). The equation of
continuity and the Navier–Stokes equation along the horizontal components become
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The potential flow enables us to generate the velocity from a velocity potential
˚.r; �; t/:

v D @˚
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; (9.67)

while this potential satisfies the Laplace equation
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The boundary condition at the external contour provided by the flat rigid rubber ring
requires the normal velocity component to cancel, i.e.,

vjrDR D 0 ; (9.69)

while the free surface boundary condition, the so-called kinematic free surface
condition, at the inner contour is given by

S D 0 ;
�

v � rSC @S

@t

�

SD0
D 0 ; (9.70)

where S D 0 represents the geometric definition of the inner contour (the blue
line in Fig. 9.27). In our 2D model, we can write S D r � 
.�; t/ D 0 and
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consequently (9.70) can be written in the form
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There is no other boundary constraint because, by definition, Leidenfrost drops are
surrounded by a thin layer of vapor and there is no kind of tangential constraint on
the velocity, such as no-slip conditions. From the Navier–Stokes equations (9.65)
and (9.66) written in the potential and inviscid case, we obtain the Bernoulli
equation
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Evaluated at the free inner surface and differentiated with respect to �, this results
in the equation
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where the subscript˙ indicates that the quantity carrying it is evaluated at the inner
contour. The surface tension at any point of the free liquid surface is given by the
well known formula [121]

P˙ � P0 D �2�H ; (9.74)

where � denotes here the surface tension coefficient and H the mean curvature of
the surface (see the definitions in Chap. 4). The two parallel horizontal surfaces have
zero mean curvature and the surface around the rubber gasket has constant shape, so
these surface elements do not contribute directly to the field of velocity dynamics.
However, later on in the development of the model, we consider the potential energy
associated with these surfaces, in a process of minimization of the total energy,
because the horizontal parts of the surfaces may change through the change in height
of the drop and volume conservation.

In order to evaluate the pressure term along the inner contour, we assume that
the shape of this surface is a half-tube of small radius h=2 following the path of
the contour curve 
.�; t/ (see Fig. 9.28). This surface is parameterized by r.�; �/,
where � 2 Œ0; �	 represents the variation along the vertical direction and describes
the small half-circle. We have [137–139]
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Fig. 9.28 Example of inner
surface of a 2D Leidenfrost
liquid shell model (see the
notation � in Fig. 9.27). In
this example, the inner
contour is given by

 D r0

�
1C � sin.6�/

�
, with

� D 0:01. In general, the
equation for this surface is
given by (9.75), while its
mean curvature is given
by (9.76)

We need the expression for the mean curvature H from (9.32), calculated from the
first and the second fundamental forms of this surface. Performing the calculations
and introducing (9.75) into the expressions for the two fundamental forms, the
normal and the mean curvature, we obtain the final form for the mean curvature
of the inner surface, depending on the contour 
 and the height h as follows:
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where 

0 D d
=d�, etc. Equation (9.76) describes the mean curvature depending

on the vertical coordinate �, which is not actually part of the 2D model. In order
to eliminate this dependence, we use the average value of H over the height of the
drop, viz.,

H.�; �/ �! H.�/ D 1

�

Z �

0

H.�; �/ d� : (9.77)

By implementing the mean curvature expression of (9.77) into the surface tension
as given by (9.74), and this one into the Bernoulli equation (9.73), we have a system
of two partial differential equations (PDE) provided by (9.71) and (9.73). Together
with the free surface boundary condition of (9.71), we have altogether three PDEs in
the two components of the velocity and the shape of the contour, i.e., three unknown
functions.
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The typical approach at this stage is to use the Laplace equation, solve it in terms
of a series, and implement this result in a perturbative way in the PDEs. Because the
shape of the inner contour cannot be too different from the equilibrium value at rest,
i.e., 
.�; t/ ' r0 (see Fig. 9.27), we can expand the velocity potential in a power
series

˚.r; �; t/ D
X
l	0
.r � r0/

lfl.�; t/ ; (9.78)

or simply
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X
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lfl.�/ :

By introducing this formal series into the Laplace equation (9.68), rewriting the
terms r2 as Œ.r� r0/C r0	2, etc., and identifying the same powers of the radial terms,
we obtain the following recursion relations:

flC2 D �r0.lC 1/.2lC 1/flC1 � l2fl � f
00

l

r20.lC 2/.lC 1/
; (9.79)

for l � 0. This relation can generate all the coefficient functions fl in the expression
for the velocity potential if we know the expressions for the first two of them, f0
and f1.

The boundary condition (9.69) at the rigid ring becomes an infinite series
equation for the coefficient functions fl.�/ :

X
l	0

l.R � r0/
l�1fl D 0 : (9.80)

This equation cannot be solved simultaneously with (9.79) for a compact solution,
so at this point we need to truncate the series in (9.80) and use an approximation up
to order f3 for (9.80):

f1 C 2.R� r0/f2 C 3.R � r0/
2f3  0 : (9.81)

By combining the last Eq. (9.81) with the recursion equation (9.79), we can
determine f0 as a function of f1 by integrating the resulting ordinary differential
equation:
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with the solution

f0.�/  r0.R � r0/2

6R2 C 10r20 � 16Rr0
f1.�/ � r0

5R2 C 11r20 � 14Rr0
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dx
Z x

f1.y/dy ;

(9.83)

and from (9.83) and (9.79), we have all the coefficient functions fl depending only
on the first one f1.

Equation (9.82) has a special importance. We notice that there is a threshold
value for the inner liquid volume given by r0 D 3R=5, when the right-hand side
of the differential equation cancels. In this situation, the solutions for f1.�/ are real
exponential functions of � and t. In this case, all the coefficient functions in the
series describing the velocity potential, and also the velocities, either blow up to
infinity, which is a non-realistic solution, or damp to zero, which means that all
inner waves, modes, and patterns with

r0 � 3

5
R

are unstable (see Fig. 9.27). When the inside of the ring is filled with liquid nitrogen
and the liquid evaporates, the flow is chaotic until the inner layer is shallow enough,
by the above limit, to allow formation of stable waves and patterns.

At this point in the calculations, the model depends on two independent and
arbitrary functions 
.�/; f1.�/ and on four parameters !; h;R; r0, which are all
constrained by the inner contour free surface boundary condition (9.71), and the
modified Bernoulli equation and its surface tension expression in (9.73). The
problem now consists in a well-posed system of two ordinary differential equations
in the periodic variable � and must have a unique solution for each set of parameters.
We write these two ODEs at the inner contour r D 
.�/ and obtain from the
boundary condition (9.71)
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and from (9.73)

� !.U
/0 C VV 0 C U



.U
/

0 � U2




 0 D � 1

�0
P0 ; (9.85)

where we have denoted the two velocity components evaluated at the inner
contour by
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and

V.�/ D v˙ D v.
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To second order in .r � r0/=r0, these velocity components can be approximated by
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We substitute in all the coefficient functions fl in terms of f1 according to (9.83). We
introduce the notation
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and by using once again the recursion relation (9.83) and (9.79), we can write to
second order
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Finally, we implement the above expressions for the velocities in the inner contour
boundary condition (9.84) to obtain the differential equation for F, which reads to
second order

F  !
 0 6R2 C 10r20 � 16Rr0
5R2 C 11r20 � 14Rr0

CO2 : (9.86)
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This is a typical dependence of the term of order zero in the velocity potential
on the expression for the free surface in nonlinear dynamical systems governed
by a modified Korteweg-de Vries (mKdV) type of equation. In the following, we
use this expression for F from (9.86) and implement it in the modified Bernoulli
equation (9.85). In the last step, we succeed in obtaining one nonlinear ordinary
differential equation for the contour 
 . The expression for this ordinary differential
equation is long and tedious and we will not present it in full here. We mention,
however, that, in the same second order of approximation, the equation has the
generic form



00  C0 C 
C1 C 
3C3 CO2 :

This is similar to the equation for the Jacobi elliptic function dn.�; �/, where the
parameter � is its elliptic modulus � 2 Œ0; 1	 and depends on the constants C0;1;3,
which themselves depend on R, r0, and h. This cnoidal wave solution is doubly
periodic with periods K.�/ and K.

p
1 � �2/, where K is the complete elliptic

integral of the first kind. In the limit � D 0, the solution 
 � dn .�; �/ approaches a
constant, while in the limit � D 1, dn.�; 1/ D sech.�/, which generates a sech type
of soliton as solution. In Fig. 9.29, we present a comparison between the theoretical
model and one of the experiments. It is interesting that, in addition to the excellent
match, we can model the shape of the inner contour with a four-fold trigonometric
function, and the match with experiment is still good. What makes the difference

Fig. 9.29 Comparing experiment and theory. The black contour in the right-hand frame is
calculated with linear waves of order 4, while the gray contour is a nonlinear cnoidal wave. It
is difficult to choose one model in favor of the other from this experiment. The small red circle in
the left-hand frame shows how we evaluated the thickness of the Leidenfrost drop and its curvature
towards the inner contour
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Fig. 9.30 Liquid nitrogen multiple neck formation and oscillations in the convex (outer) zones of
the rubber gaskets. The necks bifurcate in double necks, and oscillate for several tens of seconds

and decides which theoretical model is most valid will be the study of the stability
of these cnoidal rotating wave solutions.

For different values of the parameters, the cnoidal function can match all the
polygons observed experimentally, namely the triangles, pentagons, or hexagons.
The higher frequency and angular velocity rotational waves observed experimen-
tally on the outside of the ring can be modeled in a similar way, and the results will
be presented elsewhere or in a further edition of this book.

We should mention that, while observing the behavior of the outer liquid, we
noticed an interesting type of low frequency oscillation when several rings almost
touch, and the liquid tends to join adjacent rings and form ‘necks’ between the
outside contours of the rings. For example, we present the image of such a neck
between the two upper left rings in Fig. 9.30: in the left frame, the neck has a
narrow configuration and is simply connected, while in the right frame, after several
seconds, the neck breaks into two sub-necks and forms a hole in the middle. Later
on, the two sub-necks join together and the oscillations repeat for several tens of
seconds.

Stability Analysis

We cannot infer from this model what exactly causes the rotation of the inner waves
or patterns, or why the angular velocity has a certain value, but we can build a
stability diagram for the Hamiltonian associated with this model, and study the
continuity and branching of different patterns in this parameter space. We will use
the stability analysis based on the Lagrangian of the system, viz., (9.38), which was
discussed in Sect. 9.5 for 3D drops.
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For a given setting of the parameters R; h; r0, we choose a polygonal pattern class

n.�/ of order n given by


n.�/ D r1

n�1X
kD0

cos
�

n

cos

�
�

n
� � � 2k�

n

���
2k�=n ; 2.kC1/�=n
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where � is the characteristic function of the interval, i.e., �Œ0;1	.�/ D 1 if 0 �
� � 1 and zero otherwise. This function describes in polar coordinates a regular
n-polygon inscribed in a circle of radius r1. In addition to this exact polygonal
function, we also use as test solutions the cnoidal waves that fit this model polygon,

 D a1 C a2dn.a3�; �/, and the n-multiple angle trigonometric functions 
 D
b1 C b2 cos.n�/ that fit the polygons. For example, in the case n D 4, we use

 D 0:67C 0:29dn.4:7�; 0:99/, and 
 D 0:8C 0:12 cos.4�/, which are presented
in Fig. 9.29. With these functions for the inner contour, we calculate the potential
energy of the rotating wave which is actually the total area of the liquid in contact
with vapor times the coefficient of surface tension:
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Here, � is the surface tension coefficient between nitrogen liquid and vapor. The
total Lagrangian functional of (9.38) is the total energy of the liquid, namely,

L D EpŒn; r1; r0; h;R	C �0
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�
u2.r; �/C v2.r; �/�r dr d� : (9.87)

The velocity components in the kinetic energy term above are obtained from (9.67)
with the help of all equations from (9.78) to (9.83), by implementing all the
constraints and approximations used. For a fixed experimental configuration charac-
terized by the parameters �0; �;R; h, and for a given initial volume of the Leidenfrost
shell given by the parameter r0 (and also h), we calculate the Lagrange functional
L from (9.87) in terms of the free parameters .n; !/, and apply the stability criteria
discussed in Sect. 9.6.

We conclude this section with the observation that the surface flow plays an
important role for the polygon states, as can be seen in the top row of Fig. 9.25.
Indeed, if fluorescent nanospherical seeding particles are progressively added to the
surface of a dry hollow polygon, the corners first straighten out, and the system is
finally forced back to the circular state. The tendency of the particles to gather near
the center gives them a significant influence on the surface flow near the contact
line and through the thin films in the corners of the polygon. By blocking this
flow, the polygon is destroyed. A similar result was obtained for rotated liquids
in a cylindrical container in [320, 321].
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Fig. 9.31 Results from the stability calculations

The results from the stability calculations are summarized in Fig. 9.31. In the
plane .n; !/, that is, the number of edges of the polygonal rotating pattern versus
angular velocity, we sketch the corresponding polygon for each stability island.
The solid arrows show the existence of a continuous domain of stability for the
corresponding shape. For example, we determine that squares are stable for !4 
8:76–11.33 rad/s and hexagons in the range !6  5:70–8.27 rad/s. The islands
of stability for triangles, pentagons, and polygons with more than 6 edges are
reduced compared to squares and hexagons, which dominate the stability domain.
The dashed arrows represent metastable states where the Leidenfrost shell does
not present a stable rotating pattern, but the inner contour oscillates continuously
between two such limiting patterns. We have such connections between squares and
concave squares, between hexagons and concave hexagons, and directly between
squares and hexagons. The concave/convex pentagons are also related by such
oscillations, but the Lagrangian functional shows high barrier values between these
configurations. From this model, it follows that there is unlikely to be a transition
from n D 3, to n D 4, to n D 5, and this result is confirmed experimentally by
hundreds of hours of rapid photography recordings.
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9.9 Universality in Rotating Fluid Patterns

If knowledge be compared to a fruit and the realization of that
knowledge to the consumption of the fruit, then a universal
statement is to be compared to a hard shell filled with fruit. It is,
obviously, of some value, however, not as a shell by itself, but
only for its content of fruit. It is of no use to me as long as I do
not open it and actually take out a fruit and eat it.

Hermann Weil,

On the New Foundational Crisis in Mathematics (1998)

The free surface patterns generated in rotating flows contained in compact con-
finements, either spontaneous as in the previous section, or forced, are not only
of fundamental and wide practical interest. Indeed, they also exhibit coherent
structures that resemble ones observed in nature or technology [322]. Similar
polygonal patterns of rotation occur at very different physical scales. At microscopic
scales (10�9 m), such structures have been identified in hadron gases and strongly
interacting matter, and in Bose–Einstein condensates, while polygonal soliton
clusters are generated by necklace-ring beams in dissipative systems [323–325].
At the lab scale, polygons have been observed in liquid nitrogen Leidenfrost drops
(10�3 m), and water spinning in cylindrical tank experiments (10�1 m). At the
macroscopic scale, polygonal patterns have been recorded inside hurricane eyes
(104 m) and in the six-sided jet stream at Saturn’s north pole (108 m).

The common behavior of these processes proves their independence of specific
dimensions, it allows them to be measured from a limited set of experimental
setups, and then used to predict other processes, with the aid of factorization and
perturbative calculations. In a word, we have here a signature of universality. The
existence of surface polygons seems to be connected with the fact that the flow is
turbulent. In fact, switching transitions are observed between different numbers of
edges [320, 321] in similar but smaller systems where the flow irregularly switches
between a weakly deformed, rotationally symmetric state and a strongly deformed
state with two corners (see also the figures in Sect. 9.8). Transitions between
different patterns must be linked with a transition to turbulence, as predicted in
[121, Sect. 12.6].

9.9.1 Hollow Polygons on a Rotating Fluid Surface

One traditional way to study such structures is the swirling flow generated by the
rotation of one of the end walls in a cylindrical container [320, 326] (see Fig. 9.32).
The free surface of the fluid in a circular container with a rotating bottom plate
can undergo a surprising instability through which the surface shape spontaneously
breaks the rotational symmetry and turns into a rotating polygon (see Fig. 9.33).
These shapes were first noticed by Vatistas in 1990 [327] and the polygon rotation
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Fig. 9.32 Experiments with a rotated water column contained in a cylinder, viewed from the top.
Left: Squares with Görtler vortices spiraling at the corners. Right: Pentagons. Regular polygons
with 3–6 edges form spontaneously because of the instability of the inner fluid surface. The number
of edges depends on the height, radius, and angular frequency: the shallower the cylinder and the
faster it is rotated, the more edges are generated. Courtesy of Phys. Rev. Lett. 96 (2006)

was subsequently analyzed in terms of waves rotating around a vortex core in [328,
329]. The surface polygons are nearly invariant in a frame rotating at a considerably
slower rate than the bottom plate and also more slowly than the mean azimuthal flow
of the water around the polygon. The instability in such a flow leads to spontaneous
symmetry breaking where the vortices formed due to the strong shear flow play
the most important role. It is well known that steady patterns of vortices can form
in two-dimensional and circular shear flows due to Kelvin–Helmholtz instability
[328–331]. The instability in the present system is less well understood since the
shear flow in this case is fully three-dimensional and the strength and width of the
shear zone are not easily determined as a function of the control parameters.

In a crude model, Mougel and collaborators [332] performed an analysis of the
instabilities in rotating free surface flows for an inviscid and incompressible case,
neglecting the surface tension, for linearized Euler equations and a linearized free
surface boundary condition. In this model, where a cylinder of radius R and height
H rotates with constant angular velocity ˝ , two types of flow are identified: a
solid body rotation (as in Newton’s bucket) and a potential flow. The instability of
rotational patterns can be parameterized by the Froude number Fr D ˝

p
R=g (see

Table 9.1). The equilibrium solutions are found numerically for both cases using a
finite-element method. The solutions are then perturbed with a small amplitude term
in modal form:

�ei.m��t!/ ;

where m is the azimuthal wave number of the rotating pattern and ! is the complex
frequency.
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Fig. 9.33 Clockwise from the top left corner: Rotating liquid experimental setup for a cylinder
of radius 19.4 cm and the PIV system; example of polygon (triangle) formation; measurement
of the profile of the free surface; reconstruction of the 3D free liquid surface shape. PIV stands
for particle image velocimetry, an optical method for reconstructing the velocity field of a
microscopically seeded flow, by taking high frequency sequences of laser pictures and analyzing
the displacements of the reflections from the seed particles. Courtesy of J. Fluid Mechanics 679,
Cambridge University Press (2011). See the article in [321]

The first configuration, the solid motion of the fluid, occurs if Fr < 2
p

H=R
and as a qualitative characterization, the bottom of the cylinder remains wet. By
implementing the �-exponential perturbation in the linearized Euler equations and
in the equation of continuity, the equation for the perturbation � is reduced to a
Poincaré equation for the pressure p, in cylindrical coordinates .r; �; z/ :

@2p

@r2
C 1

r

@p

@r
� m2p

r2
C .! � m˝/2 � 4˝2

.! � m˝/2
@p

@z
D 0 : (9.88)
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Even in the solid motion, we distinguish three possible situations. For j! �
m˝j > 2˝ , (9.88) is elliptic and regular solutions exist. The maximum pressure
levels are located along the free surface. These solutions are gravity waves, and in
the limit of vanishing rotation (Fr D 0), their frequencies match with those of the
pure sloshing modes in a cylindrical container with flat surface [332]. The stability
condition j!�m˝j > 2˝ requires the body of liquid to rotate either faster or more
slowly than the container.

The most interesting case occurs if 0 	 j! � m˝j < 2˝ , and conse-
quently (9.88) becomes hyperbolic. In this situation, regular solutions are not
expected to correspond to singular inertial modes. Such modes are found to exhibit
a striking ray-like structure, similar to the patterns observed in other configurations
such as spherical shells, or rotating stars [321, 329–332] (see Fig. 9.33). In a third
possible situation of solid motion, when 0 � j! � m˝j, the perturbations are
almost stationary with respect to the rotating frame ˝ . In this case, (9.88) becomes
degenerate and the Euler equations reduce to the geostrophic equilibrium. In such a
quasi-geostrophic context, variations in the height of liquid are known to allow for
the possibility of a type of slow wave called Rossby waves.

The second configuration predicted by this model is potential flow, occurring
for higher rotation flows, where the fluid leaves dry a central domain at the bottom
of the cylinder of radius � < R. In this configuration, two different kinds of surface
waves occur: gravity waves, where the restoring force responsible for them is gravity
acting on the external part of the free surface, and centrifugal waves, for which the
restoring force is the centrifugal effect acting on the inner part of the free surface
where it is nearly vertical.

Experimental results [320] indicate that, while the motion is close to a solid-
body rotation in the central region of the container, the outer zone experiences
a potential flow, a situation known as a Rankine vortex. The symmetry-breaking
transitions observed when switching between different numbers of edges have the
characteristics of a low-dimensional linear instability. This situation occurs when
a new unstable manifold breaks out from an almost stable rotationally symmetric
state. While triangles clearly show dominant vortex structures, for higher order
polygons, a point vortex model alone is insufficient to account for the flow or the
rotation rate of the polygon.

In conclusion, this type of linear model predicts wave patterns in the inner region
where the fluid revolves like a solid body, surrounded by an outer annular sector in
which the rotation rate is much less important. The waves can be interpreted in terms
of Kelvin normal modes. Kelvin modes are, in general, any normal modes associated
with the rotation of the fluid in a stable vortex. They often describe possible small
deformations of the vortex. The first configuration, the solid uniform rotation of the
fluid, emerging from this linearized model is the simplest Kelvin mode. The waves
obtained from (9.88) are hence called Kelvin waves. The Kelvin modes form a
basis, so all the deformations of the free surface can be expressed in terms of the
Kelvin modes. For the second type of flow configuration of this linearized model,
the potential flow or Rankine vortex, the Kelvin modes satisfy similar properties.
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In contrast to the linear model presented above, Amaouche and collaborators
[329] explain the formation of the dry central shape (hollow core) and corresponding
polygonal patterns through a nonlinear formalism, obtaining cnoidal waves as
solutions of a nonlinear equation of the Korteweg–de Vries type rather than linear
Kelvin modes. Such nonlinear oscillations are observed at the free surface of the
fluid in the case of shallow water, at a sufficiently high driven rotational frequency
(i.e., a fast spinning disk at the bottom), for large amplitude distortions of the free
surface.

In this nonlinear model, the Euler equations are used to describe the inviscid
fluid, too, and this option is justified by the high value of the Reynolds number in
these experiments (� 104). The model predicts the excitation of inertial waves at
the free surface (at the hollow core) as nonlinear disturbances superimposed on a
solid body rotation induced by the uniform rotation of the bottom plate. A circular
dry region of radius r0 is considered at the center of the bottom, and the free surface
at the bottom has the equation

rdry.�; t/ D r0 C ��.�; t/ ;

where � is the deviation from the circular shape. The main assumption made is that
the � component of the fluid velocity v has expression

v D ˛.r/�.�; t/CO2.�/ ;

where ˛ is a function to be determined within the model. By combining the above
hypotheses with the Euler equations, the equation of continuity, and the free surface
boundary condition, and by considering the nonlinear terms up to order two in a
smallness parameter �, and still neglecting the surface tension, the authors in [329]
obtain for � the equation

@�

@t
C
�
1C ˇ � B.r0/C 1

r0
�

�
@�

@�
C C.r0/

@3�

@�3
D 0 ; (9.89)

where r0 is the radius of the dry region at the center of the bottom in the absence of
any waves or disturbances,

ˇ D �
hq

ln2.r0/� ln.r0/C ln.r0/
i
;
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and

C.r0/ D �A.r0/

2

�
1C 1

ˇ
ln.r0/

��1
;

with

A.r/ D 1

r0

Z r0

1

dr

r

Z r

r0

dr

r

Z r

1

˛.r/dr :

Equation (9.89) is known to have traveling periodic cnoidal wave solutions, similar
to the spinning polygon solutions obtained for Leidenfrost drops in Sect. 9.8, in the
form

� � sn2.k� � !t/C const. ; (9.90)

where the constants are determined from the problem parameters. These solutions
are compared with the contour of the observed patterns and with sinusoidal
harmonics with the same spatial period, troughs, and crests as the cnoidal solutions.
It is interesting to mention that both cnoidal and sinusoidal solutions follow the
contours of the observed patterns fairly well, exactly as was noticed in the case of
hollow rotating polygons for Leidenfrost drops (see Fig. 9.29). The better agreement
of both with the observations for the higher modes is due to the diminution of the
wave amplitude. In the opinion of the authors in [329], the good match between the
cnoidally shaped nonlinear waves and the linear sine solutions comes from the fact
that the modulus of the Jacobi elliptic functions is relatively small. Given the good
experimental match of all the models presented above, there remains the question
of whether the real physical flow is linear or nonlinear.

Studying the same type of rotational fluid systems, the authors in [330] intro-
duced the term surface switching. At low rotation rates, the flow is symmetrical,
but the symmetrical shape breaks down at Reynolds numbers around 2000. In this
regime, the deformation of the free surface is quite small, but at high rotation rates,
the deformation becomes comparable to the scale of the vessel, and the free surface
may become polygonal. It is these temporally periodic or non-periodic oscillations
of the surface shape between differently deformed surface shapes with polygonal
cross-sections that has been called surface switching. The flow transition of the
boundary layer plays the role of a trigger for the initiation of turbulent flow, and
the coupling between the flow transition and change in surface shape is a key factor
in the surface switching mechanism [333].

More insight, and clarification regarding the physical mechanisms triggering the
instability in such rotational systems, was brought by Lopez et al. through their
Navier–Stokes 3D numerical model and experiments [334]. The authors observed
two distinct physical mechanisms responsible for symmetry breaking, depending
on the ratio of fluid depth to cylinder radius. For deep systems, the rotating wave
results from the instability of the near-wall jet that forms as the boundary layer
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on the rotating bottom end wall turns in toward the interior. In this case, the 3D
perturbations vanish at the air–water interface. For shallow systems, the fluid at
radii less than about half the cylinder radius is in solid rotation, whereas the fluid
at larger radii has a strong meridional circulation. The interface between these two
regions of flow is unstable to azimuthal disturbances and the resulting rotating wave
persists all the way to the air–water interface.

9.9.2 Polygonal Eyewalls in Hurricanes

Although considerable insight into the physics of tropical cyclones has been
acquired using axisymmetric theory and models, fundamental questions remain
concerning the role of asymmetric processes in the cyclone life cycle. Questions
associated with asymmetric potential vorticity redistribution in tropical cyclones can
be studied with a hierarchy of dynamical models [335–338]. Formation of polygonal
eyewalls, mesovortices, asymmetric eye contraction, and vorticity redistribution are
natural phenomena whose dynamics is still far from being fully understood.

In [335], the authors performed numerical simulations in which a ring of elevated
vorticity was perturbed with azimuthally broadbanded initial conditions. The
simulations shown in this article indicate that the barotropic instability associated
with annular regions of relatively high vorticity results in polygonal shapes before
an ultimate rearrangement into a nearly circular vortex (see Figs. 9.34 and 9.35).
In the eyewall of a hurricane, frictional convergence and moist convection act
to concentrate high vorticity there, thus satisfying the necessary condition for

Fig. 9.34 Lower fuselage radar image of triangular and pentagonal patterns in the eyewalls of
hurricane Rita. The eyewalls are about 2–4 km in size. Courtesy of NOAA, Hurricane Research
Division, 28–29 August 2005
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Fig. 9.35 An image of Hurricane Isabel (2003) as seen from the International Space Station,
showing a well-defined square eye at the center of the storm. Courtesy NASA

barotropic instability. Natural convective asymmetries near the eyewall provide the
perturbations that allow these instabilities to grow. And as they grow, the vorticity
pools into a small number of pockets, creating the appearance of a polygon on the
inner edge of the original annular region. These pools or pockets are also likely to
be responsible for mesovortices.

In [337], the authors used a model with a higher level of complexity regarding
the real atmosphere, namely, a shallow-water model. This model is based upon the
forced dissipative divergent barotropic (shallow water) equations. The governing
equations are Navier–Stokes equations with extra force terms, including the Coriolis
force f , the mass sink effect (deep convective heating simulated in the model by
a force density proportional to the depth h of the shallow-water model and the
rate of mass sink Q), and Rayleigh friction terms (horizontal force of friction
proportional to the velocity). The equations are written in terms of the vorticity,
and by eliminating the vorticity divergence term from these equations, one obtains

DP

Dt
D PQ � ��

h
C �

h
.4� � P4h/ ; (9.91)
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where D=Dt is the Lagrangian (material) derivative, � is the kinematic viscosity, �
is the Rayleigh coefficient of friction, � is the vorticity of the plane velocity field,
and P is the potential vorticity defined by P D . f C �/=h. Equation (9.91) is solved
numerically with initial and boundary conditions.

The results of the simulations provide extensive explanations of the dynamics of
the whole shallow-water model with very high chances of realistic interpretations.
For example, the results show that axisymmetric heating makes a dominant contri-
bution in the heating region. This happens because the mass sink Q produces more
potential vorticity and concentrates vorticity, whence the circulation is increased
in this region. An imbalance occurs for the vorticity between the inner and outer
regions of the mass sink. As the potential vorticity ring breaks down during
barotropic instability, potential vorticity is transferred asymmetrically from the
eyewall to the eye, and a polygonal contour appears.

Another example of polygonal eyewall structure was provided by Hurricane
Dolly (2008) before its landfall on the Texas–Mexico border. This hurricane
exhibited dynamical inner-core structural variability, with an eyewall of highly
asymmetric form, azimuthal wave number m D 4–7 measured by radar reflectivity,
and prominent mesovortex and polygonal signatures [336]. When the diameter of
the eyewall is approximately 45–50 km, the eyewall shape starts to vacillate between
wave number patterns 4–6. On many occasions, the inner edge of the eyewall shows
straight-line segments and polygonal shape.

To confirm that the origin of the Dolly asymmetries was dynamic instability of
the eyewall, numerical simulations were conducted with a shallow-water model
in [336]. The most likely cause of the high wave number asymmetries was a
convectively modified form of dynamic instability in a thin potential vorticity ring.

In 2003, Hurricane Isabel revealed similar elaborate patterns within the clouds
of its eye [339] (see Fig. 9.35). Through satellite images, it was a surprise for the
tropical cyclone science community to observe a pentagonal pattern resembling a
starfish in Isabel’s eye due to the presence of six distinct mesovortices, one in the
center and five others arranged symmetrically around it, a situation that remained
fairly steady for a few hours while rotating cyclonically within the eye. From the
theoretical standpoint, a two-dimensional barotropic flow model can resemble a
vortex sheet supporting barotropic instability at high azimuthal wave numbers and
fast growth rates.

9.9.3 From the Lab to Saturn

The ‘hexagon’ in Saturn’s northern hemisphere was first noted in images taken by
the Voyager spacecraft in 1988 (see Fig. 9.36 left frame), but it has also been studied
more recently during different seasons using the Hubble Space Telescope. The
polygon shows a long persistence, lasting several decades, indicating independence
of seasonal variations due to solar forcing [340]. The basic ingredients known from
rotating fluids or hurricane eyes are present in this case, too: existence of prominent



9.9 Universality in Rotating Fluid Patterns 325

Fig. 9.36 Left: Six-sided jet stream at Saturn’s north pole known as the hexagon. Courtesy of
Cassini imaging, NASA. Right: Plasma experiment

vortices at the corners, the rotation from the bottom, and a major change in the
rotation rate from a rapidly rotating center to an almost stagnant outer layer.

The latest research results tend to consider the possibility that the hexagon forms
as the result of the nonlinear development of a predominantly barotropic instability
coming from a strong zonal jet. In [340], the authors conducted a linear stability
analysis of the flow, on the barotropic assumption. By solving the eigenvalue
problem for the linearized barotropic vorticity equation for an inviscid flow, the
authors obtained the growth rate of the radius of the flow as a function of zonal
wave number for barotropic instabilities of the north polar jet on Saturn. For an
appropriate observed radius of 2500 km, the speed of the eigenmode m D 6 is close
to that of the zonal wind at the hexagon’s latitude, and the position of the peak
of the fastest growing mode relative to the jet coincides with the hexagon position
relative to the jet, as observed experimentally. Moreover, for the polar jet in the
southern hemisphere, this stability analysis predicts a growth rate that does not peak
at finite wave numbers, and is weaker, which seems consistent with the absence of
a polar hexagon counterpart at the south pole. Analysis of the observations from
laboratory experiments (see Fig. 9.36 right frame), where there is instability of
quasi-geostrophic barotropic jets and shear layers, supports the hypothesis that the
long-lived polygonal structures correspond to wave modes caused by the nonlinear
equilibration of barotropically unstable zonal jets.

Every year, new physical systems are discovered and studied at different
scales, exhibiting symmetric rotational patterns, self-propulsion, compact liquid–
gas structures, or high deformation of shapes as adaptive feedback to specific flow
conditions. For example at the nanometer level, when electrons are injected into
liquid helium, they force open a cavity free of helium atoms, referred to as an
electron bubble [341]. The shape of the electron bubble is strongly dependent on
the state of the electron and its quantum pressure (the gradient of the electron wave
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function), which must balance the surrounding helium surface pressure. Under some
conditions the electron bubble develops a neck and breaks up. At the micron level,
blood micro-vesicles exhibit exotic shape transitions and aggregation. As the blood
flow velocity increases, the fluid vesicle deforms from a biconcave disk shape into
parachute and slipper-like shapes [342]. At higher scales, on the millimeter level,
new types of levitated Leidenfrost liquid tori with polygonal rotating holes have
been experimented [343]. Another example is the crown splash produced by the
impact of a circular disc on a free liquid surface with generation and breakup of
a splash wave created after the impact [344]. Brim waves on Leidenfrost drops
and a special resonance at f D 26 Hz have been obtained recently. These waves
are initiated by evaporation and lubricating flow which induce constant frequency
capillary waves beneath the drop, and pressure oscillations under the drop that
couple parametrically to the azimuthal star oscillations [345]. Recently, studies
have been performed on droplet self-propulsion and spontaneous motion generated
by their internal flow [346]. This inner flow changes the distribution of chemical
reactivity inside the drop and consequently generates a surface tension gradient
which produces the drop motion. The motion changes the drop geometry, and this
symmetry breaking enhances the motion in a feedback effect.

9.10 Boundary of Axons and Nerve Pulse Propagation

When a thermodynamic system is forced out of its equilibrium state, the conser-
vation of entropy requires a propagation phenomenon. This observation results
from the fact that the nonequilibrium extension of Gibbs thermodynamics equations
takes the form of a Fokker-Planck kinetic equation for the local balance of entropy
and density. According to this equation, any external supply of entropy must be
balanced by a combination of diffusive entropy flux at microscopic scale, and a
macroscopic mass flux, the latest describing the local triggering of a system of
waves. A thermodynamic system which is not in equilibrium is driven towards
equilibrium by thermodynamic forces like chemical reactions, diffusion processes,
electrical currents, and phase transitions. In far-from-equilibrium type of processes,
Prigogine and Mazur have shown how local equilibrium can still be recovered when
all of the relevant degrees of freedom (e.g. positions and velocities) are considered
at the same level as the spatial coordinate.

Nerve impulses may provide a frame for such an interesting situation. The
most relevant nerve function is the occurrence of the so called action potential as
traveling waves generated and propagating along the axonal membrane (the cellular
membrane of the elongated part of a nerve cell, the axon). More interestingly,
experimental evidence of oscillations of temperature with zero sums of heat
exchanges during passing of action potentials indicates an adiabatic process. There
have been successful efforts to quantitatively describe the dynamics of the nerve
pulses as an electrically driven phenomenon, namely the famous the Hodgkin-
Huxley model. There have been also many attempts to describe the nerve pulses
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as mechanically and thermodynamic driven, or at least to consider a minimal
mechanical-thermal interaction.

The nervous impulse propagation was well established to be a membrane bound
phenomenon where, although the cellular machinery and cytoskeleton structure
certainly have a role, they are in no way required or necessary for nerve pulse
propagation [347]. It was proved as early as 1909 by Einstein that the air bounded
liquid interface, and in particular the capillary effect, is thermodynamical decoupled
from the bulk, since the application of a Carnot cycle to a free surface requires
a nonzero interface heat capacity and water interface entropy. Recent experiments
and calculations show as well that a lipid monolayer at air-water interface has its
own entropy, and therefore can be considered as an independent thermodynamic
system. The hydrodynamic impedance mismatch between the bulk and the interface
is another argument in favor of this boundary/bulk thermodynamic decoupling. Both
approaches are based on the natural observation that a membrane which is the
boundary of an incompressible medium reduces the dynamics of the bulk to the
dynamics of the boundary.

A new perspective on the theory of pulse propagation in nerve is represented
by a macroscopic thermodynamic model in which the action potential is regarded
as an electro-mechanical solitary wave or soliton [79, 347, 348]. There is experi-
mental and theoretical evidence of mechanical/acoustical waves propagating in the
biomembrane, and these acoustic waves are reversible adiabatic transformations
governed by entropy conservation. Measurements of real nerves in vitro prove
that the travel of the action potentials is accompanied by localized mechanical
deformation of the axon, namely in the axonal radius, axonal volume, and shortening
of the axon at its terminus.

The critical fact though is that there is a liquid-gel phase transition of the
biomembrane in the neighborhood of the equilibrium density, temperature and
pressure, Fig. 9.37. From thermodynamics we know that the speed of sound (in
the membrane, too) depends on the compressibility and density of the medium,
the membrane. By including this phase transition in the speed of propagation of
acoustic waves in the biomembrane one obtains a nonlinear dynamics similar to
the dynamics of Boussinesq or Korteweg-de Vries solitons. From this nonlinear
equations it emerges the existence of localized traveling waves (as nerve pulses)

Fig. 9.37 Representation of a solitary wave traveling along the membrane of a nerve fiber. Small
local changes in thickness are caused by pressure-induced order transitions in the membrane. Red
regions correspond to ordered lipids in the otherwise liquid (green) lipid membrane. Courtesy of
Thomas Heimburg, Niels Bohr Institute 2015
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in the geometrical variables, and in density and electric potential. Not only this
solitary waves and the corresponding nonlinear membrane model for nerve pulses
explain more experimental results, but they also predict the elastic collision of such
membrane solitons in a nerve. In addition, the soliton model for nerves is at present
the only biophysics model that can explain and provide a quantitative description of
the laws of anesthesia [349].

Appendix 1: Second Fundamental Form

Apart from the treatment of the geometry of graphs and networks, this book
discusses surfaces embedded in R

3, like the surface of a liquid drop. We thus present
here some details of the differential geometry of smooth parameterized 2D surfaces
embedded in R

3. Moreover, when we discuss the expressions for the Hamiltonian
or Lagrangian of free liquid surfaces, we use the concept of normal variation of
a surface. In the following, we present a formal introduction to the variation of
smooth parameterized compact surfaces embedded in R

3. The discussion follows
the work of Verpoort and Verstraelen [350]. The reader can supplement this section
using various sources [136–140, 151, 152, 351, 352], where many more physical
examples and abstract constructions can be found.

We consider a deformation of a compact surface ˙ � R
3 (in the following, we

consider only smooth 2D parameterized surfaces embedded in R
3) to be a smooth

‘deforming’ map � W .��; �/ � ˙ ! R
3, .t; p/ ! �.t; p/, p 2 ˙ , �.0; p/ D p,

and ˙t D �.t; ˙/. Let X .˙/ be the 3D vector bundle over ˙ and let Zp 2 X .˙/
defined by

Zp D @

@t

ˇ̌
ˇ̌
tD0
�.t; p/

be the deformation vector field, i.e., the tangent vector describing the trajectories
traced out by the point p when the surface begins to be deformed. We can generalize
this operator to any geometrical object defined on ˙ , and for any deformation field
Z. So we define the variation of a tensor T along the deformation vector field Z by

•ZT D @

@t

ˇ̌
ˇ̌
tD0

T
�
�.t; p/


:

We define the shape operator S by its action on vector fields V 2 X .˙/:

S W X .˙/! X .˙/ ; S.V/ D �V.n/ D Œn;V	 ;

where n is the inner unit normal to ˙ , that is, the (negative) derivative of the
unit normal in the V direction. Its eigenvalues are the principal curvatures and
its eigenvectors are the principal directions in the surface. It is easy to check that
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the tangent variations of the mean and Gauss curvature are given by their Lie
derivatives, i.e., if V 2 T.˙/, then •VH D VH and •VK D VK. Another interesting
relationship in terms of S and H is r � S D 2rH.

A deformation prescribed by the formula �.t; p/ D p C tZp is called a linear
deformation. Examples are translation of a plane or uniform expansion of a sphere.
There is a very nice lemma [350] for the variation of the shape operator. Let X 2
X .˙/ and let Z be a linear deformation. Then,

•ZS.W/ D �W.•Zn/ � S.W/Z D Œ•Zn;W	C �Z; Œn;W	
�
: (9.92)

The variation of the mean curvature under a linear deformation is

•H D �1
2
4f C .K � 2H2/f C Zt.H/ ;

where we make the decomposition Z D f n C Zt. As a corollary, we have a
fundamental integral formula:

Theorem 14 Let ˙ be a compact surface, d! the volume form, and X a smooth
vector field defined on it. Then,

Z
˙

divX d! D 0 :

For a surface˙ parameterized by the function r.u; v/, we have the integral formulae
of Jellett and Minkowski:

j˙ j D �
Z
˙

.n; r/Hd! ;

Z
˙

Hd! D �
Z
˙

.n; r/Kd! :

In [350], the author gathers four different geometric definitions for the second
fundamental form on a surface, viz., ˘ W X .˙/ � X .˙/ ! C1.˙/. We present
these below and exemplify in Fig. 9.38.

Definition 12 Let˙ be a surface, � .t/ a smooth curve parameterized by t lying on
it, V the tangent vector to � at a point p 2 � � ˙ , and W another vector belonging
to the tangent plane at p, V;W 2 Tp.˙/. Then,

˘.V;W/ D �
�

d

dt
n.t/;W

�
;

where n.t/ is the inner unit normal to the surface along the curve � parameterized
by t. This is illustrated in Fig. 9.38 (upper left).
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Fig. 9.38 Four definitions of the second fundamental form of a surface. Upper left: Variation of
n along a curve in dot product with a tangent vector. Upper right: Normal curvature �n of a curve
� .t/ lying on the surface M. The principal curvature of � is represented by �. Bottom left: The
second fundamental form also measures the distance between a point on the tangent plane and the
surface. Bottom right: When a surface is deformed along its normal, the second fundamental form
measures the rate of change of the area element

Definition 13 Let � .t/ be a parameterized curve lying on ˙ , with � its tangent
vector and �n its normal curvature on˙ . Then we have

�n D ˘.�;�/ � n :

This is illustrated in Fig. 9.38 (upper right).

Definition 14 Consider a point p 2 ˙ and a tangent vector to the surface at p,
V 2 Tp.˙/. Draw the line sV along this vector. Then,

d.sV; ˙/ D � s2

2
˘.V;V/CO.s3/ ;

where d is the distance from a point to the surface. This is illustrated in Fig. 9.38
(bottom left).
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Definition 15 The most widely used definition is

•nI D �2˘ :

The second fundamental form is thus a measure of the variation of the first
fundamental form (surface area element) along a normal deformation (see Fig. 9.38
bottom right).

As one can see, since the first fundamental form measures the element of area on
the surface, whence it is an intrinsic characteristic of the surface (independent of
its embedding), the second fundamental form is a measurement of how bent and
twisted the surface is in some embedding in a higher-dimensional space, whether
it be described by the behavior of its normal (Definitions 12 and 13), or by how
much deviates from its tangent plane (Definition 14), or finally, by how much its
area shrinks (Definition 15).

An infinitesimal deformation is an infinitesimal congruence if the displacement
of any point of˙ is along the normal at p to first order in the deformation parameter.
An infinitesimal deformation is said to be isometric if the lengths of curves on the
surface are stationary under the deformation. Then we have the Liebmann theorem
which proves that any infinitesimal isometric deformation of the unit sphere is an
infinitesimal congruence.

Appendix 2: Calculus of Variations

In the following V is a subset of the real vector space R
n with its canonical scalar

product h ; i, and � � 0 a real non-negative parameter. The set V is convex if for
any two of its points x; y 2 V the whole line segment from one to the other belongs
to V , i.e., �x C .1 � �/y 2 V , 8� 2 Œ0; 1	. A function f W V ! R is a (strictly)
convex function if

f
�
�xC .1 � �/y � �f .x/C .1 � �/f .y/ ; 8� 2 Œ0; 1	 ;

where for strict convexity we have strict inequality.
The function f has a global (local) minimum in V at x0 2 V if 8x 2 V (in V

intersected with some neighborhood of x0), f .x0/ � f .x/, and we say that x0 defines
a strict global (local) minimum, if the strict inequality holds 8x 2 V , x ¤ x0. If a
strictly convex function on a convex set has a minimum, this minimum is unique on
that set. Moreover, for the same function and 8x; y 2 V , we have

f .y/ � f .x/ � hrf ; y � xi ;
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Fig. 9.39 The domain
between the two straight
cones is the local tangent
cone for the parabolic cone
presented in-between

and

hH. f /.x/y; yi � 0 ; y 2 T.V; y/ ;

that is, the function’s Hessian is semi-positive definite at all points belonging to
the local tangent cone T.V; y/ of V at y. By this cone, we understand the following
construction (see Fig. 9.39). We define the cone of normals to V at y to be the closure
of the set

N.V; y/ D
n
z 2 R

nj�z 2 rdV.y/
o
;

for some � 2 .0;1/, where dV.y/ D minv2V jy � vj is the distance from the
point y to the set V , and the gradient is calculated with respect to y. Then the local
tangent cone T.V; y/ of V at y is the orthogonal set to the cone of normals of V
at y. Put loosely, the local tangent cone is the set of all half-lines starting from y
which intersect the domain whose boundary contains V at least once. If x0 is a local
minimum of f in V , then for any point z in the local tangent cone of V at x0, we have
hrf ; zi � 0, for all z 2 T.V; x0/. In addition, if f 2 C2.V/, we have

rf D 0 ; hH. f /I z; zi � 0 ; for all z 2 V ;

where H is the Hessian matrix of f viewed as a bilinear form. Actually, it can be
proved that hH. f /I z; zi=hz; zi is the first (smallest) non-negative eigenvalue of the
matrix H. f /. Finally, we have the Kuhn–Tucker condition in the following form: if
x0 is a local minimizer of f in V , and V is defined by a system of equations gj.x/ D 0,
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j D 1; : : : ;m such that frgjgjD1;:::;m is linearly independent, then there exists a set
of parameters 0 � �j 2 R such that

rf C
mX

jD1
�jrgj D 0 ;

mX
jD1

�jgj D 0 ;

and L D f CPm
jD1 �jgj is called the Lagrange function.

In the following, we move from finite dimensions to variation of functionals. Let
u.x/ 2 B � C1Œa; b	 be functions, k�kB a certain norm on C1Œa; b	, and EŒu	 W B! R

a functional. The functional E is Gâteaux differentiable at u in direction h if there
is a bounded linear operator E0Œu	 W B ! R defined by E0Œu	 D ˚ 0

u;h.0/, where
˚u;h.t/ D EŒuC th	. We define the first and second Gâteaux variations of E at u in
direction h 2 B by

•EŒu	.h/ D d

dt
EŒuC th	

ˇ̌
ˇ̌
tD0

; •2EŒu	.h/ D d2

dt2
EŒuC th	

ˇ̌
ˇ̌
tD0

: (9.93)

If E is Gâteaux differentiable, then we have

•EŒu	.h/ D hE0Œu	; hi ; (9.94)

•2EŒu	.h/ D •hE0Œu	; hi D hE00Œu	; hi C hE0Œu	; h0i : (9.95)

Furthermore, we say that EŒu	 is Fréchet differentiable at u 2 B if there exists a
bounded linear functional DE W B! R such that

EŒuC h	 D EŒu	CDEŒh	CO.khkB/ ; as khkB ! 0 :

If the functional is Fréchet differentiable then it is also Gâteaux differentiable, and
E0Œu	 D DEŒu	.

If u 2 B is a local minimizer for E in B, then hE00Œu	h; hi � 0 for all h in B. We
now present the two main theorems of variational calculus.

Theorem 15 If u 2 ˚
u 2 B=u.a/ D u1; u.b/ D u2; u1;2 2 R fixed

	
is a local

minimizer of the functional

E D
Z b

a
f .x; u; u0/ dx

in B, then u satisfies the Euler differential equation

d

dx
fu0 D fu :
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The theorem works equally for vector functions, i.e., u W Œa; b	 ! R
n, whence the

Euler equation becomes a system

d

dx
fu0

j
D fuj ; j D 1; : : : ;m :

Theorem 16 If u is a weak (strong) solution of the Euler equation (or system of
equations), and if hE00Œu	h; hi � 0 for all h 2 B, then u is a weak (strong) local
minimizer of E in B.

By ‘weak’ or ‘strong’ in the theorem above, we mean satisfying the equation or the
inequation in the weak sense, that is, in the C1Œa; b	 norm, or pointwise.

Appendix 3: n-Dimensional Rotating Drops

The stability of a rotating incompressible liquid drop, unaffected by gravity and
cohered by surface tension, was the focus of an astonishing series of experimental
and theoretical investigations starting with Joseph Plateau, the father of soap film
studies, and pursued in the study of nuclear fission (the conjecture of Bohr and
Wheeler in the model of heavy atomic nuclei), all the way to n-dimensional
differential geometry generalizations.

In the following, we present a differential geometry model based on variational
techniques and the implicit function theorem and which can be used to derive upper
limits for the angular velocity as well as the existence, regularity, and stability of an
energy minimizing family of rotating liquid drops in a neighborhood of the closed
unit ball [353, 354].

We work in the n-dimensional Euclidean space R
n with coordinates x D .xi/,

and we define an incompressible liquid drop model as the class of compact and
connected subsets of E � R

n, n � 2, with finite prescribed volume jEj D ˝n

in the Hausdorff measure. Initially, the drop may have a unit sphere shape, that is
jxjE.t D 0/ D 1. We recall that the volume of the n-dimensional ball (disk) Dn � R

n

in this measure is

jEj D ˝n D �n=2

� .n=2C 1/ : (9.96)

In addition, we require the drop to have a class C3 boundary @E D M and to have
its center of mass (or barycenter) placed at the origin and at rest:

Z
E

xi dx D 0 ; 8i D 1; : : : ; n : (9.97)

For any positive angular speed ˝ , we define the energy functional of the rotating
drop model as the sum of the surface potential energy and the negative centrifugal
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kinetic energy:

F˝.E/ D
Z

M
dAM � ˝

2

2

Z
E
j�Rn�1 .x/j2dx ; (9.98)

where dA is the area form and �Rn�1 .x/ is the orthogonal projection of the position
vector centered at the center of mass onto the hyperplane xn D 0 perpendicular to
the rotation direction. For star-shaped drops, the set E is a star-shaped region (that
is, any straight line joining any point x in E to the origin belongs to E) and we chose
a class C3.Sn�1/ map from the unit sphere parameterized by s to the boundary of E,
viz., X.s/ W Sn�1 ! N � R

n. With this notation and jXj D r.s/, the drop surface
is a compact Riemannian manifold with metric induced by the standard Euclidean
metric on the sphere g0ij.s/ :

gij.s/ D r2g0ij.s/Crirrjr : (9.99)

The mean curvature of the drop surface is

H.r/ D n � 1 � jrNrj2 � r4Nr

r
p
1 � jrNrj2 ; (9.100)

where rN and 4N are the tangent to the N surface gradient and the Laplace–
Beltrami operator, respectively [136–138, 353, 354].

By calculating the critical points of the first variation of the energy under the
constraints of volume preservation and constant position of the center of mass, we
obtain the corresponding Euler–Lagrange equations for the rotating drop:

H.r/� ˝
2

2
j�Rn�1 .x/j2 D Xj.s/

Z
E

�
H.r/ � ˝

2

2
j�Rn�1 .x/j2

�
Xidx

�
Z

N
Xi.s/Xj.s/dA ; (9.101)

where r D r.s/, x 2 E on the left-hand side, and the two integrals are taken in the
sense of L2.E/ and L2.N/, respectively. The left-hand side represents the variation of
the energy and the right-hand side the Lagrange multipliers of the two constraints.
In [353, 354], it is proved that, for any � > 0, (9.101) is solvable and has a smooth
solution r˝.s/ bounded by a closed neighborhood NB� of 0 for ˝ < �.

If r.s/ is a solution for the rotating drop with angular velocity ˝ , and if we find
� > 0 such that maxs2Sn�1 jr.s/� 1j � �, there is a bounded function f .n/ such that
the solution is stable if

˝ <
nC 1
2

�
1 � �f .n/� : (9.102)
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Fig. 9.40 Contour plot of the maximum angular speed of rotation ˝max.n; �/ (in arbitrary units)
for stable smooth solutions for the rotating liquid drop versus the number of dimensions of the
space n, and the maximum deviation from the unit sphere of the drop shape. Smaller space
dimensions and a more highly deformed shape decrease stability and the upper rotational limit

The stability is understood in the sense of the solutions corresponding to stable
energy minimizers of the energy (9.98) of the rotating drop. This theorem is proved
using a Rayleigh quotient operator weakly identical to the second variation of the
energy functional in the Fréchet derivative sense. A sketch of the dependence of the
upper bound of the angular speed for stable solutions is presented in Fig. 9.40.

There is an interpretation of rotations in more than three dimensions if we
consider the phase space of a system containing a large number of particles, like
a statistical or thermodynamic system, where n approaches the value of Avogadro’s
number. Consider a distribution function with compact and connected support in
the phase space of a Hamiltonian dynamical system. According to the Liouville
theorem, the motion of the density function through the phase space is a fluid flow
of system points with zero convective derivative, that is, an incompressible flow
[355]. In addition, the constant position constraint on the center of mass is satisfied
simultaneously in both configuration and momentum space, so a system with its
center of mass at rest will be represented by a phase space distribution whose center
will also be at rest.

In principle, we can create the equivalent of a liquid drop in the phase space
satisfying the constraints (9.96) and (9.97). We can induce a phase space rotation of
the drop if this distribution is a Wigner distribution of a Gaussian wave packet in a
quadratic trapping potential, like a harmonic oscillator. It is well known that the flow
of the Wigner distribution follows circular paths in the phase space. It is also known



9.10 Boundary of Axons and Nerve Pulse Propagation 337

that a straight motion in the phase space is equivalent to a Galilean transformation
in the configuration space. This means that the states of a Galilean invariant many-
body system constrained to have cyclic dynamics will perform liquid drop rotations
in the phase space, with a property of inertia (tendency to conserve straight uniform
translations in the phase space). In this context, we can assimilate the fluid motion
in the phase space as the rotation of a liquid drop with constant volume, constant
center of mass position, and a centrifugal field of forces.

Such a virtual motion can be examined formally by the above theoretical
approach for n-dimensional drops in rotation. If we accept this model, we can
infer from the stability criterion for the rotating drop shape presented above that an
increase in the number of particles will allow rotations with higher angular speeds
to remain stable. The more particles in a statistical system forced to oscillate, the
higher the eigenfrequencies of its stable oscillations.

This observation may work like a universality principle for large amplitude high
frequency oscillations in many-body systems: more particles and hence more col-
lective interactions allow higher frequencies of stable oscillations. This observation
is in agreement with many current models, theories, and experiments, like the
Langumir waves (plasma oscillations in which the plasma frequency increases as
the square root of the electron density), the oscillation frequencies of the collective
excitations of a trapped Bose–Einstein condensate (the leading corrections to the
frequencies are proportional to the number of atoms in the condensate to the power
1/5 [356]), the frequency of the collective oscillations of a trapped Fermi gas (the
frequency is proportional to the square root of the electron concentration [357]), the
self-maintained coherence effect in collective neutrino oscillations (the frequency
increases with the neutrino gas density [358]), etc.



Chapter 10
Conclusions

The perspective in this book arises from several decades of experience studying
the importance of boundaries for various dynamical or complex systems: drops,
clusters, exotic nuclei, swimming cells, etc. We have tried to present a coherent
view of the common features of the boundary in the arts and sciences, mainly
using a mathematical language. The list of topics demanding a serious study of
the dynamics of boundaries is much longer than we have presented here. Among
many intriguing new domains of research not mentioned here, we could consider
fractal boundaries [119, 359], the dependence of the shape of the boundary of a
collectivity as a function of the strength of the interaction between its members, the
importance of the axon membrane in memory processes, biological systems with
free boundaries, patterns in the universe, tumor growth, coating flows, boundaries
of pseudo-manifolds and non-manifolds (for example, systems that are partially 3D
and partially 2D, or even 1D), biological morphogenesis, dynamics of the benthic
boundary layer modeled as a framed bordism, and so on.

The evolution of societies unfolds in space, time, and basic needs (the principles
of Glaser’s choice theory). The interrelations between these directions develop
specific metrics adapted for normal human scales: tools, means of existence,
storage. Time was historically measured in terms of the ‘human scale’: natural
cycles, life/death, etc. Social relations were initially structured topologically, locally
connected and compact (family, tribe). Later on, societies tried to extend the scales
of time, space, and human activity: the struggle for large spatial scales (travel,
discovery, astronomy, cosmology), understanding life and trying to prolong it,
and improving living and working conditions through buildings, cities, hospitals,
schools, and empires. With success in these essential struggles, other parallel
struggles grew in importance for societies. The struggle toward smaller scales
in medicine and pharmacy, clocks, miniature art, atoms, molecular biology, and
elementary particles. These struggles in space and time have caused societies
to move faster (rapid photography, relativity), or more slowly (cosmological
time, quality of life). In the social communication direction, scaling was initially
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determined by biological criteria like the human senses (distance for talking, range
for signaling, smelling, tasting), but later, these scales were expanded by exploiting
electromagnetism, telephone networks, radio networks, TV, and the Internet.

While the history of human creation has always recorded races towards the
expansion of various scales, it is true that many scales or directions have been
shown to be bounded by some fundamental limit: the speed of light, the mass of
the universe, the Planck scale, and so on. Somehow, mathematics tells us that this
spontaneous occurrence of boundaries should not come as a surprise. We know from
topology that any topological space, even if it is unbounded, open, and not compact,
can be embedded in a compact space. Topologists call this compactification. There
are quite a few methods for compactifying a space. One of the most common, the
Alexandroff compactification, works by adding one extra point called1 to the non-
compact space. This is exactly how Einstein and Minkowski brought in the speed
of light in vacuum, and changed the unbounded Galilean transformations into the
compact Lorentz pseudo-rotations. In general, one can add a new point ‘at infinity’
in any direction where an infinite space tends to escape. In real life, in the observable
universe, we may be able to prove that any type of expansion of natural or social
scales can be embedded in a sort of compactification. Compactness, or the presence
of boundaries and frames, are not always easy to establish. Deleuze and Guattari
wrote [360, p. 189]: “It has been said that sound has no frame”. At first sight this
makes sense: sounds, music, and language seem unbounded. Further on, however,
they note that “music [. . . ] embodies the frame even more powerfully.” It seems the
boundaries and frames are not always visible, but may become visible when one
changes the system in which one embeds them.

In order to predict the future directions of expansion of social scales, we may
need to comprehend what other new dimensions need to be introduced in addition
to space, time, behavioral needs, and communications. More importantly, we need
to see what coordinates can describe such new dimensions, and what scales will
correspond to those associated with the traditional human struggles for ‘larger’,
‘smaller’, ‘faster’, ‘slower’, etc. Maybe some of these new dimensions will contain
questions relating to the largest intelligent memory, maximum computer storage and
transfer speed (no matter what medium is used for this), the most general theory,
Virilio’s information bomb or his accident theory, etc. Maybe the gaming part of
the brain will become more commonly used in everyday life, or maybe the rapid
communication environment and global knowledge will change our perspective on
boundaries.

From our present experience we can infer that in the evolution of any system there
is a correlation between its degree of complexity, the nonlinearity of its response,
and the use of its boundaries. Whether this correlation is subjected to some sort
of uncertainty principle is not quite clear. For example, physicists have found that
humans can discriminate a sound’s frequency and timing more than 10 times better
than the limit imposed by the Fourier uncertainty principle, a result which rules
out the majority of auditory processing algorithms that have been proposed for the
brain, since only a few models can match this impressive human performance [361].
Maybe, of all the senses, olfaction will prove to be the sense most firmly connected
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to the existence of external boundaries. While vision and hearing have a strong
spectral dependence and what is a boundary for one wavelength may not be for
another, olfaction is strongly related to the material support of odorous substances.

There is experimental evidence that some quantitative descriptor of human
evolution and civilization dynamics tends to follow certain analytic laws, such as
Moore’s law conjecturing that, during the history of computer hardware, the number
of transistors in a dense integrated circuit will double approximately every two
years. There are other similar conjectures on the exponential dynamics of human
products, such as Rock’s law which predicts that the capital cost of a semiconductor
fabrication plant will increase exponentially over time. Furthermore, there are
conjectures concerning the dynamics of hard disk drive area density, network
capacity, cost of pixels, DNA sequencing technologies, the Malthusian growth
model for populations, and library expansion, or the very recent self-replicating
colloidal cluster model [362].

All these conjectures have in common an exponential or power law time
behavior, accelerating change, and no predictions of the existence of a limitation
or plateau. It is very likely that models for the dynamics of these parameters of
human civilization will not follow an analytic shape or indeed be generated by
a time-dependent dynamic differential equation. At the same time, the existence
of fundamental limits for these time variable parameters seems to be a realistic
hypothesis. The occurrence of such limiting asymptotic behavior and the levelling
out of the time evolution must be related to the existence of a fixed point (such as
the speed of light in vacuum for the Lorentz transformations), which at the same
time must be related to the compactness of the system and the contraction property
of the evolution operators.

Another possibility would be to hypothesize that there may be time-local
dynamical laws governing the evolution, but laws that themselves change. For
example, the order of differentiation may change with time in a differential equation.
More interestingly, we may conjecture that the order of differentiation of the
dynamical prediction itself changes with time, according to some other law. This
conjecture would require the use of fractional derivatives and fractional calculus.
A lot of progress has been made in this field and there are already existence
and uniqueness theorems for the solutions of ordinary differential equations with
fractional derivatives [363]. Consequently, it may not be too exotic to consider the
evolution of such quantities as governed by differential equations in which the order
of differentiation is itself an independent variable, together with the time.

As mentioned at the beginning of Chap. 2, the peripatetic principle is able to
relate human sensorial perceptions to mathematical cognition. There is a large
body of evidence from experimental and observational studies that mathematical
knowledge arises from rudimentary knowledge acquired by perception. It is known
[364] that both foundations of mathematics, that is, arithmetic and geometry, have
developed brain structures by extensive ontogenetic and phylogenetic perception
experiences related to hearing and motion on the one hand, and sight and touch
on the other. There is a fundamental relationship between visual perception and
geometric abstractions, since simple objects from everyday life can be mentally
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decomposed into points, lines, angles, surfaces, and more general abstract shapes
[83]. Öğmen and Herzog found that geometry is the appropriate branch of mathe-
matics for understanding how information is represented and processed in the visual
system. Conversely, the visual part of our brain is the part responsible for allowing
us to discover and use geometry. There is also recent evidence that both humans
and primates have the capacity to predict and represent auditory sequences using a
mechanism that is similar to, and co-located in the brain with the one that deals with
arithmetic abilities [365].

Further support for the existence of a primordial type of mathematics in our
brain can be found in studies by Bressloff and coworkers (see, e.g., [366]), where
they prove that the geometrical structure of the primary visual cortex is responsible
for the entoptic shapes of ‘form constants’ which appear in cave art, or are seen
when a subject is suffering from sensory deprivation, exposed to rhythmic music or
flickering lights, or has ingested hallucinogenic drugs, for example. Such geometric
visual hallucinations are not images of external visual objects, but rather patterns of
neural firing which constitute a new state of equilibrium which the brain triggers by
reacting to the above-mentioned stress agents.

In this natural bijection (sight+touch $ geometric intuition, and hearing $
algebraic and spoken language intuition), there is a dilemma raised by dance and
ballet, by rhythmic motion of the hands when humming, or singing or listening
to music, or by conducting an orchestra, because we have a mixture of visual and
auditive information. However, on a closer analysis, we note that the mechanics of
hand motion and even whole body motions is represented by a finite-dimensional
space, and by a finite-dimensional number of degrees of freedom, namely 230. At
the same time, visual information is mediated by the electromagnetic field, which
is a physical system with an infinite number of degrees of freedom, through the
visual system, but also counts 75–150 million rods in the retina, and 1.1–1.2 million
nerve fibers in the optic nerve. So even visually perceived, acts of ballet, dance and
conducting, are rather connected to hearing and music, hence to the algebraic proto-
structures in the brain, rather than to geometry and the visual system. The body
motions are purely mechanical motions of a deformable solid system, and these
motions can be faithfully represented by a time series for the evolution of a vector
in some finite-dimensional space. Even the dance figures of a ballet company would
be describable through a time-dependent vector with a finite number of components,
that is, just the motion of one point in an n-dimensional space. In contrast, image and
painting arrive in the brain instantaneously as a huge field of data. Vision dynamics
is a field theory type of dynamics, with infinite-dimensional degrees of freedom.

The question about the importance of frame in a general context can be addressed
to every type of art. Forty million olfactory receptor neurons are responsible for the
sense of smell, but there is no formal development for the art of olfaction. In a
2014 article in Style about Chandler Burr, the curator for New York’s Museum of
Art and Design, Afsun Qureshi writes: “By any reasonable and rational definition
that applies to an art medium, scent is one.” At the same time, our long olfactory
experience must have developed some special structures and abilities in the brain,
similar to the way mathematical abilities (arithmetic and geometry) have developed
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by hearing and sight. For humans, the latter are the most highly developed senses,
but for other animals, olfaction is in many cases the most important sense [367].
Through olfaction, we would expect animals to have developed other cognitive
abilities relating to a ‘different’ type of mathematics, and not ‘our mathematics’,
which is based on knowledge of quantities and their algebraic and geometrical
relations. Cognitive ethology and behavioral ecology have developed a growing
body of evidence that members of many species can judge proportions, amounts,
sounds, time intervals, smells, and so on.

It may be that the field of ethological and cognitive science investigates the
comparison between animal and human abilities only to the extent of reasoning
in terms of numbers or paths and shortcuts, but not beyond. It still lacks an adequate
language for a comparative analysis through other types of reasoning based on
olfaction [368]. If there is a certain type of olfactory cognition and reasoning, it
would be interesting to understand what might be the representation of topology
and boundaries in this language.

Another unusual example of the importance of frames is seen in culinary art,
where objects are always bounded by tables, platters, or plates. In the Western
tradition, a meal typically contains one piece of meat, a salad, a side of vegetables,
and maybe a tray with spices, all bounded by an imaginary horizontal frame
delimiting the consumer space at the table. In Japanese cuisine, sushi confers a
different topological structure. We can define a sushi plate (SP) by starting from a
Western plate (WP) followed by a compression C, and then a linear combination
of translated (T) versions of this compression, pretty much as in the wavelet
decomposition:

SP D
nX

kD1
ckTkC .WP/ :

This formula shows us that the frame around an image can generate unique effects
in the perception and processing of an image, with consequences for the cognition,
recognition, and decisions of an observer. To quote Cavanagh [49], “the artist can
take shortcuts, presenting cues more economically : : : to suit the message of the
piece rather than the requirements of the physical world.”
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Flash-grab effect, 63
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Flow, 252
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Fourier spectrum, 51
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Foveal vision, 56
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Frame bordism, 192
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