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To Hiroko, Machiko, and Rieko



Preface

This book is based on my graduate-course lectures given at the Graduate School of
Mathematics of the University of Tokyo in October 2008 (at the invitation of
T. Funaki and M. Jimbo), at the Department of Physics of the University of Tokyo
in November 2010 (at the invitation of S. Miyashita), at the Department of
Mathematics of Tokyo Institute of Technology in December 2010 (at the invitation
of K. Uchiyama), at École de Physique des Houches (Les Houches Physics School)
in May 2011 (organized by C. Donati-Martin, S. Péché and G. Schehr), at the
Faculty of Mathematics of Kyushu University in June 2013 (at the invitation of
H. Osada and T. Shirai), and at the Graduate School of Arts and Sciences of the
University of Tokyo in July 2014 (at the invitation of A. Shimizu). First of all
I would like to thank those organizers for giving me such opportunities.

The purpose of my lectures is to introduce recent topics in mathematical physics
and probability theory, especially the topics on the Schramm–Loewner evolution
(SLE) and interacting particle systems related to random matrix theory. A typical
example of the latter systems is Dyson’s Brownian motion model. For this purpose
I have considered one story to tell the SLE and the Dyson model as ‘children’ of the
Bessel processes. The Bessel processes make a one-parameter family of
one-dimensional diffusion processes with parameter D, in which the D-dimensional
Bessel process, BES(D), is defined as the radial part of the D-dimensional Brownian
motion, if D is a positive integer. This definition implies that Bessel processes are
‘children’ of the Brownian motion, and hence, the SLE and the Dyson model are
‘grandchildren’ of the Brownian motion.

The organization of this book is very simple. In Chap. 1 the parenthood of
Brownian motion in diffusion processes is clarified and we define BES(D) for any
D� 1. There, the importance of two aspects of BES(3) is explained. SLE is intro-
duced as a complexification of BES(D) in Chap. 2. We show that rich mathematics
and physics involved in SLE are due to the nontrivial dependence of the Bessel flow
on D. In Chap. 3 Dyson’s Brownian motion model with parameter β is introduced
as a multivariate extension of BES(D) with the relation D ¼ βþ 1. We will con-
centrate on the case where β ¼ 2. In this case the Dyson model inherits the two
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aspects of BES(3) and has very strong solvability. That is, the process is proved to
be determinantal in the sense that all spatio-temporal correlation functions are given
by determinants, and all of them are controlled by a single function called the
correlation kernel.

Many parts of this book come from the joint work with Hideki Tanemura.
I thank him very much for the fruitful collaboration over 10 years. I would like to
thank Alexei Borodin, John Cardy, Patrik Ferrari, Peter John Forrester, Piotr
Graczyk, Kurt Johansson, Takashi Imamura, Christian Krattenthaler, Takashi
Kumagai, Neil O’Connell, Hirofumi Osada, Tomohiro Sasamoto, Grégory Schehr,
Tomoyuki Shirai, and Craig Tracy for giving me encouragement to prepare the
manuscript. I am grateful to Nizar Demni, Sergio Andraus, Syota Esaki, Ryoki
Fukushima, and Shuta Nakajima for careful reading of the draft and a lot of useful
comments. All suggestions given by two anonymous reviewers of this book are
very important and useful for improving the text and I acknowledge their efforts
very much. Thanks are due to Naoki Kobayashi and Kan Takahashi for preparing
several figures in the book.

I thank Masayuki Nakamura at the Editorial Department of Springer Japan for
his truly kind assistance during the preparation of this manuscript.

The research of the author was supported in part by the Grant-in-Aid for
Scientific Research (C) (No.21540397 and No.26400405) of the Japan Society for
the Promotion of Science.

Tokyo Makoto Katori
December 2015
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Chapter 1
Bessel Processes

Abstract Basic notions of probability theory and stochastic analysis are explained
using the Brownian motion and its functionals. The concepts of probability space
and filtration are introduced, and the strong Markov property and the martingale
property of Brownian motion are explained. A diffusion process is defined as a
stochastic process having a continuous path almost surely with the strong Markov
property. Quadratic variations and stochastic integrals are defined and Itô’s formula is
given which enables us to derive stochastic differential equations (SDEs) for diffusion
processes. A D-dimensional Bessel process is originally defined as the distance from
the origin of a D-dimensional Brownian motion for positive integers of D. By giving
the SDE and the transition probability density, we show that it can be defined for all
real values D ≥ 1. Concerning the behavior of the Bessel flow, there exist two critical
dimensions, Dc = 2 and Dc = 3/2. For the three-dimensional Bessel process, its two
aspects are emphasized: Aspect 1 as a radial part of the three-dimensional Brownian
motion, and Aspect 2 as a one-dimensional Brownian motion conditioned to stay
positive.

1.1 One-Dimensional Brownian Motion (BM)

We consider the motion of a Brownian particle in one-dimensional space R starting
from the origin 0 at time t = 0. At each time t > 0, the particle position is randomly
distributed, and each realization of its path (trajectory) is denoted by ω and called
a sample path or simply a path. Let Ω be the collection of all sample paths and we
call it the sample path space. The position of the Brownian particle at time t ≥ 0
in a path ω ∈ Ω is written as B(t,ω). Usually we omit ω and simply write it as
B(t), t ≥ 0.

We represent each event associated with the process by a subset of Ω , and the
collection of all events is denoted by F . The whole sample path space Ω and the
empty set ∅ are in F . For any two sets A, B ∈ F , we assume that A ∪ B ∈ F and
A ∩ B ∈ F . If A ∈ F , then its complement Ac is also in F . It is closed for any
infinite sum of events in the sense that, if An ∈ F , n = 1, 2, . . . , then ∪n≥1An ∈ F .
Such a collection is said to be a σ-field (sigma-field). The symbol σ is for ‘sum’.

© The Author(s) 2015
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2 1 Bessel Processes

A probability measure P is a nonnegative function defined on the σ-fieldF . Since
any element of F is given by a set as above, any input of P is a set; P is a set function.
It satisfies the following properties: P[A] ≥ 0 for all A ∈ F , P[Ω] = 1, P[∅] = 0,
and if A, B ∈ F are disjoint, A∩B = ∅, then P[A∪B] = P[A]+P[B]. In particular,
P[Ac] = 1 − P[A] for all A ∈ F . The triplet (Ω,F , P) is called the probability
space.

The smallest σ-field containing all intervals on R is called the Borel σ-field and
denoted by B(R). A random variable or measurable function is a real-valued func-
tion f (ω) on Ω such that, for every Borel set A ∈ B(R), f −1(A) ∈ F . Two events
A and B are said to be independent if P[A ∩ B] = P[A]P[B]. Two random variables
X and Y are independent if the events A = {X : X ∈ A} and B = {Y : Y ∈ B} are
independent for any A, B ∈ B(R).

The one-dimensional standard Brownian motion, {B(t,ω) : t ≥ 0}, has the
following three properties:

(BM1) B(0,ω) = 0 with probability one.
(BM2) There is a subset of the sample path space ˜Ω ⊂ Ω , such that P[˜Ω] = 1 and

for any ω ∈ ˜Ω , B(t,ω) is a real continuous function of t . We say that B(t)
has a continuous path almost surely (a.s., for short).

(BM3) For an arbitrary M ∈ N ≡ {1, 2, 3, . . . }, and for any sequence of times, t0 ≡
0 < t1 < · · · < tM , the increments B(tm) − B(tm−1), m = 1, 2, . . . , M, are
independent, and each increment is in the normal distribution (the Gaussian
distribution) with mean 0 and variance σ2 = tm − tm−1. It means that for any
1 ≤ m ≤ M and a < b,

P[B(tm) − B(tm−1) ∈ [a, b]] =
∫ b

a
p(tm − tm−1, z|0)dz,

where we define for x, y ∈ R

p(t, y|x) =
⎧

⎨

⎩

1√
2πt

e−(x−y)2/2t , for t > 0,

δ(x − y), for t = 0.

(1.1)

Unless otherwise noted, the one-dimensional standard Brownian motion is simply
abbreviated to BM in this lecture note. The probability measure P for the BM in par-
ticular is called the Wiener measure. The expectation with respect to the probability
measure P is denoted by E. We write the conditional probability as P[·|C], where C
denotes the condition. The conditional expectation is similarly written as E[·|C].

The third property (BM3) given above implies that for any 0 ≤ s ≤ t < ∞

P[B(t) ∈ A|B(s) = x] =
∫

A
p(t − s, y|x)dy (1.2)
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holds, ∀ A ∈ B(R),∀ x ∈ R. Therefore the integral kernel p(t, y|x) given by (1.1) is
called the transition probability density function of Brownian motion starting from x .
The probability that the BM is observed in a region Am ∈ B(R) at time tm for each
m = 1, 2, . . . , M is then given by

P[B(tm) ∈ Am , m = 1, 2, . . . , M] =
∫

A1

dx1 · · ·
∫

AM

dxM

M
∏

m=1

p(tm − tm−1, xm |xm−1),

(1.3)
where x0 ≡ 0.

By (BM3), we can see that, for any c > 0, the probability distribution of B(c2t)/c
is equivalent to that of B(t) at arbitrary time t ≥ 0. It is written as

1

c
B(c2t)

d= B(t), ∀c > 0,

where the symbol
d= is for equivalence in distribution. Moreover, (1.3) implies that,

for any c > 0, B(t), t ≥ 0 and its time-changed process with t 
→ c2t multiplied
by a factor 1/c (dilatation) follow the same probability law. This equivalence in
probability law of stochastic processes is expressed as

(B(t))t≥0
(law)=
(

1

c
B(c2t)

)

t≥0

, ∀c ≥ 0, (1.4)

and called the scaling property of Brownian motion.
For a > 0, let Ta = inf{t ≥ 0 : B(t) = a}. Then for any t ≥ 0,

P[Ta < t, B(t) < a] = P[Ta < t, B(t) > a], (1.5)

since the transition probability density (1.1) is a symmetric function of the increment
y − x . This property is called the reflection principle of BM. For {ω : B(t) > a} ⊂
{ω : Ta < t}, a > 0, the above is equal to P[B(t) > a].

The formula (1.3) also means that for any fixed s ≥ 0, under the condition that
B(s) is given, {B(t) : t ≤ s} and {B(t) : t > s} are independent. This independence
of the events in the future and those in the past is called the Markov property. A
positive random variable τ is called stopping time (or Markov time), if the event
{ω : τ ≤ t} is determined by the behavior of the process until time t and independent
of that after t . For any stopping time τ , {B(t) : t ≤ τ } and {B(t) : t > τ } are
independent. It is called the strong Markov property. A stochastic process which has
the strong Markov property and has a continuous path almost surely is generally
called a diffusion process.

For each time t ∈ [0,∞), we write the smallest σ-field generated by the BM up to
time t ≥ 0 as σ(B(s) : 0 ≤ s ≤ t) and define

Ft ≡ σ(B(s) : 0 ≤ s ≤ t), t ≥ 0. (1.6)
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By definition, with respect to any event in Ft , B(s) is measurable at every s ∈ [0, t].
Then we have a nondecreasing family {Ft : t ≥ 0} of sub-σ-fields of the original
σ-field F in the probability space (Ω,F , P) such that Fs ⊂ Ft ⊂ F for 0 ≤ s <

t < ∞. We call this family of σ-fields a filtration.
The BM started at x ∈ R, which is denoted by Bx (t), t ≥ 0, is defined by

Bx (t) = x + B(t), x ∈ R, t ≥ 0. (1.7)

We define Px [B(t) ∈ ·] = P[Bx (t) ∈ ·] and Ex [ f (B(t))] = E[ f (Bx (t))] for any
bounded measurable function f , t ≥ 0. The stopping time τ mentioned above can
be defined using the notion of filtration as follows: {ω : τ ≤ t} ∈ Ft ,

∀ t ≥ 0. The
strong Markov property of BM is now expressed as

E[ f (B(s + t))|Fs] = EB(s)[ f (B(t))], t ≥ 0, a.s., (1.8)

provided that s ≥ 0 is any realization of a stopping time τ and f is an arbitrary
measurable bounded function.

Since the probability density of increment in any time interval t − s > 0, p(t −
s, z|0), has mean zero, BM satisfies the equality

E[B(t)|Fs] = B(s), 0 ≤ s < t < ∞, a.s. (1.9)

That is, the mean is constant in time, even though the variance increases in time
as σ2 = t . Processes with such a property are called martingales. We note that for
0 ≤ s < t < ∞,

E[B(t)2|Fs ] = E[(B(t) − B(s))2 + 2(B(t) − B(s))B(s) + B(s)2|Fs ]
= E[(B(t) − B(s))2|Fs ] + 2E[(B(t) − B(s))B(s)|Fs ] + E[B(s)2|Fs ].

By the property (BM3) and the definition of Fs ,

E[(B(t) − B(s))2|Fs] = t − s,

E[(B(t) − B(s))B(s)|Fs] = E[B(t) − B(s)|Fs] B(s) = 0,

E[B(s)2|Fs] = B(s)2.

Then we have the equality

E[B(t)2 − t |Fs] = B(s)2 − s, 0 ≤ s < t < ∞, a.s. (1.10)

It means that B(t)2 − t is a martingale. (See Exercise 1.1.)
For the transition probability density of BM (1.1), it should be noted that

p(·, y|x) = p(·, x |y) for any x, y ∈ R, and ut (x) ≡ p(t, y|x) is a unique solu-
tion of the heat equation (diffusion equation)



1.1 One-Dimensional Brownian Motion (BM) 5

∂

∂t
ut (x) = 1

2

∂2

∂x2
ut (x), x ∈ R, t ≥ 0 (1.11)

with the initial condition u0(x) = δ(x − y). The solution of (1.11) with the initial
condition u f

0 (x) = f (x), x ∈ R is then given by

u f
t (x) = Ex [ f (B(t))] =

∫ ∞

−∞
f (y)p(t, y|x)dy, (1.12)

if f is a measurable function satisfying the condition
∫∞
−∞ e−ax2 | f (x)|dx < ∞ for

some a > 0. Since p(t, y|x) plays as an integral kernel in (1.12), it is also called the
heat kernel.

For 0 ≤ s < t < ∞, ξ ∈ R, consider E[e√−1ξ(B(t)−B(s))|Fs]. Using p, it is
calculated as follows:

∫ ∞

−∞
e
√−1ξz p(t − s, z|0)dz =

∫ ∞

−∞
e
√−1ξz e−z2/2(t−s)

√
2π(t − s)

dz

= e−ξ2(t−s)/2.

The obtained function of ξ ∈ R,

E[e
√−1ξ(B(t)−B(s))|Fs] = e−ξ2(t−s)/2, 0 ≤ s < t < ∞, (1.13)

is called the characteristic function of BM.

1.2 Martingale Polynomials of BM

For BM, we perform the following transformation with the parameter α ∈ C ≡ {z =
x + √−1y : x, y ∈ R}, B 
→ B̌α,

B̌α(t) = eαB(t)

E[eαB(t)] , t ≥ 0, (1.14)

which is called the Esscher transformation. It is easy to see that

E[eαB(t)] =
∫ ∞

−∞
eαx p(t, x |0)dx = eα2t/2, t ≥ 0.

Then the above is written as

B̌α(t) = Gα(t, B(t)), t ≥ 0
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with
Gα(t, x) = eαx−α2t/2. (1.15)

For 0 < s < t ,

E[Gα(t, B(t))|Fs] = E[eαB(t)|Fs]
E[eαB(t)]

= E[eαB(s)eα(B(t)−B(s))|Fs]
E[eαB(s)eα(B(t)−B(s))] .

By the definition of Fs and independence of increment of BM (the property (BM3)),
the numerator is equal to eαB(s)E[eα(B(t)−B(s))], and the denominator is equal to
E[eαB(s)]E[eα(B(t)−B(s))]. Hence the above equals eαB(s)/E[eαB(s)] = Gα(s, B(s)).
Therefore, Gα(t, B(t)) is a martingale:

E[Gα(t, B(t))|Fs] = Gα(s, B(s)), 0 ≤ s ≤ t. (1.16)

The function (1.15) is expanded as

Gα(t, x) =
∞
∑

n=0

mn(t, x)
αn

n! (1.17)

with

mn(t, x) =
(

t

2

)n/2

Hn

(

x√
2t

)

, n ∈ N0 ≡ {0, 1, 2, . . . }. (1.18)

Here {Hn(x)}n∈N0 are the Hermite polynomials of degrees n ∈ N0,

Hn(x) = (−1)nex2 dne−x2

dxn
(1.19)

=
[n/2]
∑

k=0

(−1)k n!
k!(n − 2k)! (2x)n−2k, (1.20)

where for a ≥ 0, [a] denotes the largest integer which is not larger than a (see
Exercises 1.2–1.4).

Lemma 1.1 The functions {mn(t, x)}n∈N0 satisfy the following.
(i) They are monic polynomials of degrees n ∈ N0 with time-dependent coefficients:

mn(t, x) = xn +
n−1
∑

k=0

c(k)
n (t)xk, t ≥ 0.
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(ii) For 0 ≤ k ≤ n − 1, c(k)
n (0) = 0. That is,

mn(0, x) = xn, n ∈ N0.

(iii) If we set x = B(t), they provide martingales:

E[mn(t, B(t))|Fs] = mn(s, B(s)), 0 ≤ s ≤ t, n ∈ N0. (1.21)

Proof By the definition (1.18) with (1.20), (i) and (ii) are obvious. Note that when n
is even (resp. odd), c(k)

n (t) ≡ 0 for odd (resp. even) k. Since Gα(t, B(t)), t ≥ 0 was
shown to be a martingale for any α ∈ C, the expansion (1.17) implies (iii). �

We call {mn(t, x)}n∈N0 the fundamental martingale polynomials associated with
BM [4] (see also [8]). For n = 2, (1.20) gives H2(x) = 4x2 −2, and then m2(t, x) =
x2 − t by (1.18). We already proved in (1.10) that m2(t, B(t)) = B(t)2 − t is a
martingale.

The Fourier transformation of Gα(t, x) with respect to the parameter α ∈ R is
calculated as

̂Gw(t, x) ≡
∫ ∞

−∞
e−√−1αw

2π
Gα(t, x)dα = e−(

√−1x+w)2/2t

√
2πt

. (1.22)

Owing to the factor e−w2/2t in ̂Gw(t, x), the following calculations are justified,

Gα(t, x) =
∫ ∞

−∞
e
√−1αw

̂Gw(t, x)dw

=
∞
∑

n=0

αn

n!
∫ ∞

−∞
(
√−1w)n

̂Gw(t, x)dw, (1.23)

which proves the integral representation of mn(t, x),

mn(t, x) =
∫ ∞

−∞
(
√−1w)n

̂Gw(t, x)dw

=
∫ ∞

−∞
(
√−1w)n e−(

√−1x+w)2/2t

√
2πt

dw, t ≥ 0, n ∈ N0. (1.24)

We define this type of integral transformation of a function f as

I [ f (W )|(t, x)] =
∫ ∞

−∞
f (

√−1w)̂Gw(t, x)dw. (1.25)

Then the above results are written as

mn(t, x) = I [W n|(t, x)], t ≥ 0, n ∈ N0. (1.26)
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In (1.24), we change the integral variable w → y by y = √−1x + w. Since the
integrand is an entire function of y, the obtained integral on y ∈ (−∞+i x,∞+i x) is
equal to that on y ∈ R by Cauchy’s integral theorem. For ̂G y−√−1x (t, x) = p(t, y|0)

with (1.1), we have

mn(t, x) =
∫ ∞

−∞
(x + √−1y)n p(t, y|0)dy, t ≥ 0, n ∈ N0.

Here we introduce BM, ˜B(t), t ≥ 0, which is independent of B(t), t ≥ 0 and
whose probability space is written as (˜Ω, ˜F ,˜P) with expectation˜E and the filtration
˜Ft = σ(˜B(s) : 0 ≤ s ≤ t), t ≥ 0. Then the above is written as

mn(t, x) =˜E[(x + √−1˜B(t))n], t ≥ 0, n ∈ N0. (1.27)

1.3 Drift Transformation

Let b be a real constant and consider the drifted Brownian motion

B(b)(t) = B(t) + bt, t ≥ 0. (1.28)

The constant b is called a drift coefficient. Its transition probability density should
be obtained by performing the Galilean transformation of (1.1) as

p(t, y − bt |x) = 1√
2πt

e−{x−(y−bt)}2/2t

= eb(y−x)−b2t/2 p(t, y|x).

We regard this as a transformation of function

p(t, y|x) 
→ p(b)(t, y|x) ≡ eb(y−x)−b2t/2 p(t, y|x) (1.29)

and call it the drift transformation.
Let P(b) be the probability law with respect to the drifted Brownian motion (1.28)

and E(b) be the expectation. Consider the characteristic function of the process

X (t) ≡ B(b)(t) − bt, t ≥ 0. (1.30)
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For ξ ∈ R, 0 ≤ s < t < ∞, it is given by

E(b)[e
√−1ξ(X (t)−X (s))|Fs]

=
∫ ∞

−∞
e
√−1ξ{z−b(t−s)} p(b)(t − s, z|0)dz

=
∫ ∞

−∞
e
√−1ξ{z−b(t−s)}ebz−b2(t−s)/2 p(t − s, z|0)dz. (1.31)

If we insert (1.1) and perform the Gaussian integral, we have

E(b)[e
√−1ξ(X (t)−X (s))|Fs] = e−ξ2(t−s)/2. (1.32)

It is the same as (1.13) and hence it implies that X (t), t ≥ 0 is a Brownian motion
under P(b). It should be so, since (1.28) and (1.30) give X (t) = (B(t) + bt) − bt =
B(t), t ≥ 0. On the other hand, the last line of (1.31) is rewritten as

E

[

e
√−1ξ{(B(t)−bt)−(B(s)−bs)} ebB(t)−b2t/2

ebB(s)−b2s/2

∣

∣

∣

∣

∣

Fs

]

, (1.33)

since p is the transition probability density of BM, B(t), t ≥ 0. The equivalence
between (1.32) and (1.33) implies the following statement: for any Ft -measurable
bounded function F , 0 ≤ s ≤ t < ∞,

E(b)[F(B(b)(t))|Fs] = E

[

F(B(t))
ebB(t)−b2t/2

ebB(s)−b2s/2

∣

∣

∣

∣

∣

Fs

]

. (1.34)

By (1.16), Gα+b(t, B(t)), t ≥ 0 is martingale for an arbitrary α ∈ C. We see
that

Gα+b(t, x) = e(α+b)x−(α+b)2t/2

= ebx−b2t/2Gα(t, x − bt)

=
∞
∑

m=0

ebx−b2t/2mn(t, x − bt)
αn

n! .

On the other hand, by the definition (1.25), we see that

∞
∑

n=0

I [ebW W n|(t, x)]α
n

n! = I [e(α+b)W |(t, x)]

=
∫ ∞

−∞
e
√−1(α+b)w

̂Gw(t, x)dw

= Gα+b(t, x),
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where (1.23) is used. Then, if we set

m(b)
n (t, x) ≡ ebx−b2t/2mn(t, x − bt)

= I [ebW W n|(t, x)], t ≥ 0, n ∈ N0, (1.35)

{m(b)
n (t, B(t))}n∈N0 are martingales with respect to the filtration Ft generated by

B(t), t ≥ 0 as (1.6). The functions {m(b)
n (t, x)}n∈N0 are drift transformations of the

fundamental martingale polynomials {mn(t, x)}n∈N0 associated with BM.

1.4 Quadratic Variation

Let X (t), t ≥ 0 be a one-dimensional diffusion process on the probability space
(ΩX ,FX , PX ), where the expectation is written as EX and the filtration is given
by the natural filtration of X : (FX )t = σ(X (s) : 0 ≤ s ≤ t), t ≥ 0. For each
time interval [0, t], t > 0, put n ∈ N and let Δn = Δn([0, t]) be a subdivision
of [0, t] with 0 ≡ t0 < t1 < · · · < tn−1 < tn ≡ t . Then we define QΔn (t) =
∑n

m=1(X (tm) − X (tm−1))
2. If there is a process Q(t), t ≥ 0 such that

lim
n→∞ PX [|QΔn (t) − Q(t)| > ε] = 0, ∀ε > 0 (1.36)

holds provided max1≤m≤n |tm − tm−1| → 0 as n → ∞, then we call Q(t), t ≥ 0, the
quadratic variation of X (t), t ≥ 0 and express it by 〈X, X〉t , t ≥ 0.

For BM, B(t), t ≥ 0, set n ∈ N, 0 ≡ t0 < t1 < · · · < tn−1 < tn ≡ t and put
QΔn

BM(t) =∑n
m=1(B(tm) − B(tm−1))

2. By the property (BM3), the mean is given by
E[QΔn

BM(t)] =∑n
m=1(tm − tm−1) = t. The variance of QΔn

BM(t)

σΔn
BM(t)2 ≡ E[(QΔn

BM(t) − t)2]

= E

⎡

⎣

{

n
∑

m=1

{

(B(tm) − B(tm−1))
2 − (tm − tm−1)

}

}2
⎤

⎦

is calculated as

n
∑

m=1

{

E[(B(tm) − B(tm−1))
4] − 2(tm − tm−1)E[(B(tm) − B(tm−1))

2]

+ (tm − tm−1)
2
}

=
n
∑

m=1

{

3(tm − tm−1)
2 − 2(tm − tm−1)

2 + (tm − tm−1)
2
}

= 2
n
∑

m=1

(tm − tm−1)
2 ≤ 2t max

1≤m≤n
|tm − tm−1|, (1.37)
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where independence of increments of BM mentioned in (BM3) and (1.124) in Exer-
cise 1.5 were used. By Chebyshev’s inequality (see Exercise 1.6), we have

P[|QΔn
BM(t) − t | > ε] ≤ σΔn

BM(t)2

ε2
, ∀ε > 0.

Provided that max1≤m≤n |tm − tm−1| → 0 as n → ∞, (1.37) gives limn→∞ σΔn
BM(t) =

0 and it proves
〈B, B〉t = t, t ≥ 0. (1.38)

For a stopping time τ , we put X τ (t) ≡ X (t ∧ τ ), t ≥ 0, where t ∧ τ ≡ min{t, τ }.
We define a diffusion process X (t), t ≥ 0 as a local martingale, if there exists
stopping times τn, n ∈ N such that (i) the sequence {τn}n∈N is nondecreasing and
limn→∞ τn = ∞ a.s., and (ii) for every n, the process X τn (t), t ≥ 0 is a martingale.
When X (t) is a local martingale, we can prove that a unique increasing continuous
process is given by 〈X, X〉t , t ≥ 0 such that 〈X, X〉0 = 0 and X (t)2−〈X, X〉t , t ≥ 0
provides a local martingale.1

Assume that X (t) and Y (t), t ≥ 0 are both local martingales. Then (X (t) +
Y (t))2 − 〈X + Y, X + Y 〉t and (X (t) − Y (t))2 − 〈X − Y, X − Y 〉t , t ≥ 0 are local
martingales. Therefore, their difference 4X (t)Y (t)−{〈X +Y, X +Y 〉t −〈X −Y, X −
Y 〉t }, t ≥ 0 is also a local martingale. For any pair of local martingales X (t) and
Y (t), t ≥ 0, we define the mutual quadratic variation (cross variation) process as

〈X, Y 〉t ≡ 1

4
{〈X + Y, X + Y 〉t − 〈X − Y, X − Y 〉t }, t ≥ 0. (1.39)

We can prove that (Exercise 1.7), if Bi (t), t ≥ 0, i = 1, 2, . . . , D are independent
BMs, then

〈Bi , B j 〉t = δi j t, 1 ≤ i, j ≤ D, t ≥ 0. (1.40)

For a continuous process A(t), t ≥ 0, here we consider the quantity

SΔn (t) =
n
∑

m=1

|A(tm) − A(tm−1)|

instead of QΔn (t), where Δn, n ∈ N is a subdivision of the time interval [0, t].
We can see that if Δn ⊂ Δn+1, then SΔn (t) ≤ SΔn+1(t),∀ t ≥ 0. Assume that
max1≤m≤n |tm − tm−1| → 0 as n → ∞. Let limn→∞ supΔn

SΔn (t) = S(t) ≤ ∞

1 Every martingale is a local martingale, but the converse is not true. If for every a > 0, the process
X τ (t), t ≥ 0, where τ ranges through all stopping times less than a with probability 1, is uniformly
integrable, then the process is said of class DL. It is proved that a local martingale is also a martingale
if and only if it is of class DL (see, for instance, Definition 4.8 in Chap. 1.4 of [3] and Proposition
1.7 in Chapter IV of [7]). BM is of class DL. We have already proved that 〈B, B〉t = t and B(t)2 − t
is a martingale.
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and call it the variation of A on [0, t]. If S(t) < ∞ for every t , then the process
A(t), t ≥ 0 is of finite variation. Let SBM(t), t ≥ 0 be the variation of BM. We have

QΔn
BM(t) ≤ sup

1≤m≤n
|B(tm) − B(tm−1)|SBM(t), t ≥ 0, n ∈ N.

By the property (BM2), the RHS becomes 0 a.s. as n → ∞ if SBM(t) is finite. On
the other hand, we have proved QΔn

BM(t) → 〈B, B〉t as n → ∞ in probability and
the fact (1.38). Hence SBM(t) = ∞ a.s. ∀t > 0.

1.5 Stochastic Integration

Assume that there is a strictly increasing sequence of times {tm}∞m=0 with t0 = 0
and limm→∞ tm = ∞. Let {ζm(ω)}∞m=0 be a sequence of random variables such that
supm≥0 |ζm(ω)| ≤ C with a nonrandom constant C < ∞ for every ω ∈ Ω , and ζm is
Ftm -measurable for every m ≥ 0. Let 1(ω) be an indicator function for a condition
(or an event) ω defined by

1(ω) =
{

1 if ω is satisfied (occurs),
0 otherwise.

(1.41)

We consider a process given by

X (t,ω) = ζ0(ω)1(t=0) +
∞
∑

m=0

ζm(ω)1(t∈(tm ,tm+1]), t ≥ 0, ω ∈ Ω. (1.42)

A process given in the form (1.42) is called simple and the class of all simple processes
is denoted by L0. By definition, every sample path of X is left-continuous.

For such a simple process X = {X (t) : t ≥ 0}, we consider

I [X ](t) ≡
n−1
∑

m=0

ζm(ω)(B(tm+1,ω) − B(tm,ω)) + ζn(ω)(B(t,ω) − B(tn,ω))

=
∞
∑

m=0

ζm(B(t ∧ tm+1) − B(t ∧ tm)), t ≥ 0, (1.43)

where n in the first line is the unique integer such that tn ≤ t < tn+1, and we omit ω
in the second line and below. It is obvious from the definition, I [X ](t), t ≥ 0 is a
martingale. That is, I transforms a given simple process X to the unique martingale.
We write this martingale transformation as

I [X ](t) =
∫ t

0
X (s)d B(s) (1.44)
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and call it a stochastic integral of X with respect to B.
Assume that tn ≤ s < tn+1 ≤ t� ≤ t < t�+1 and consider

E[{I [X ](t) − I [X ](s)}2|Fs] = E

[

{

ζn(B(tn+1) − B(s))

+
�−1
∑

m=n+1

ζm(B(tm+1) − B(tm)) + ζ�(B(t) − B(t�))
}2
∣

∣

∣

∣

Fs

]

. (1.45)

By the property (BM3) of BM, the increments of BM in different time intervals are
independent from each other and have mean 0. Then the above is equal to

E[ζ2
n (B(tn+1) − B(s))2|Fs] +

�−1
∑

m=n+1

E[ζ2
m(B(tm+1) − B(tm))2|Fs]

+ E[ζ2
� (B(t) − B(t�))

2|Fs].

Since the variance of BM in each time interval is equal to the time duration of interval
by the property (BM3), this is calculated as

E[ζ2
n |Fs](tn+1 − s) +

�−1
∑

m=n+1

E[ζ2
m |Fs](tm+1 − tm) + E[ζ2

� |Fs](t − t�)

= E

[

ζ2
n (tn+1 − s) +

�−1
∑

m=n+1

ζ2
m(tm+1 − tm) + ζ2

� (t − t�)

∣

∣

∣

∣

∣

Fs

]

.

It defines E
[

∫ t
s X (r)2dr

∣

∣

∣Fs

]

and thus (1.45) is equal to

E

[∫ t

0
X (r)2dr −

∫ s

0
X (r)2dr

∣

∣

∣

∣

Fs

]

= E

[∫ t

0
X (r)2dr

∣

∣

∣

∣

Fs

]

−
∫ s

0
X (r)2dr, a.s.

On the other hand, the LHS of (1.45) is written as

E
[

{I [X ](t) − I [X ](s)}2
∣

∣

∣Fs

]

= E
[

I [X ](t)2 − I [X ](s)2 − 2(I [X ](t) − I [X ](s))I [X ](s)
∣

∣

∣Fs

]

= E
[

I [X ](t)2 − I [X ](s)2
∣

∣

∣Fs

]

= E[I [X ](t)2|Fs] − I [X ](s)2, a.s.

Then, we have the equality

E

[

I [X ](t)2 −
∫ t

0
X (r)2dr

∣

∣

∣

∣

Fs

]

= I [X ](s)2 −
∫ s

0
X (r)2dr, a.s.,
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that is, I [X ](t)2 − ∫ t
0 X (r)2dr, t ≥ 0 is a martingale. Since I [X ](t) is a martingale,

its quadratic variation 〈I [X ], I [X ]〉t , t ≥ 0 is the unique increasing continuous
process such that 〈I [X ], I [X ]〉0 = 0 and I [X ](t)2 − 〈I [X ], I [X ]〉t , t ≥ 0 gives a
local martingale. Therefore, we can conclude that for the stochastic integral (1.44)
of the simple process (1.42), its quadratic variation is given by

〈I [X ], I [X ]〉t =
∫ t

0
X (s)2ds, t ≥ 0.

The above results for the BM and X ∈ L0 can be generalized as follows [3, 7].
The stochastic process X = {X (t) : t ≥ 0} is said to be adapted to the filtration
{Ft : t ≥ 0} if, for each t ≥ 0, X (t) is an Ft -measurable random variable. If
X is adapted to {Ft : t ≥ 0} and every sample path is left-continuous (or right-
continuous), then X can be said to be progressively measurable with respect to
{Ft : t ≥ 0}. Let L ∗ denote the set of all progressively measurable processes
satisfying

∫ T

0
X (t)2dt < ∞, ∀T > 0.

If a martingale M = {M(t) : t ≥ 0} satisfies E[M(t)2] < ∞ for every t ≥ 0,
it is said to be square-integrable. The set of all square-integrable and continuous
martingales is denoted by M c

2 . For M ∈ M c
2 and X ∈ L ∗, the stochastic integral

of X with respect to M

I [X ](t) =
∫ t

0
X (s)d M(s)

can be defined and we have the following properties:

I [X ](0) = 0, (1.46)

E[I [X ](t)|Fs] = I [X ](s), 0 ≤ s < t < ∞, (1.47)

〈I [X ], I [X ]〉t =
∫ t

0
X (s)2d〈M, M〉s, t ≥ 0, (1.48)

where d〈M, M〉t = 〈d M, d M〉t , and

I [αX + βY ](t) = αI [X ](t) + β I [Y ](t), t ≥ 0, (1.49)

for α,β ∈ C, X, Y ∈ L ∗.
Moreover, if M, N ∈ M c

2 and X, Y ∈ L ∗, the mutual quadratic variation of

I [X ] =
∫ t

0
X (s)d M(s) and J [Y ] =

∫ t

0
Y (s)d N (s)
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is given by

〈I [X ], J [Y ]〉t =
∫ t

0
X (s)Y (s)d〈M, N 〉s, t ≥ 0. (1.50)

The differential form is

d〈I [X ], J [Y ]〉t = X (t)Y (t)d〈M, N 〉t , t ≥ 0. (1.51)

1.6 Itô’s Formula

Let N ∈ N and {X1(t), . . . , X N (t)}, t ≥ 0 be a set of diffusion processes. Put
X(t) = (X1(t), . . . , X N (t)). Let F be a real function of (t, x) ∈ [0,∞) × R

N ,
which is bounded and has a bounded first-order derivative with respect to t and
bounded first- and second-order derivatives with respect to x j , 1 ≤ j ≤ N , and we
denote this by F ∈ C1,2

b . We know that, in order to describe the statistics of a function
of several random variables, we have to take into account the ‘propagation of error’.
For the process F(t, X(t)) that is defined as a function of t as well as a functional of
processes X1(t), . . . , X N (t), t ≥ 0, Itô’s formula gives an equation which governs
the differential of F(t, X(·)) as

d F(t, X(t)) =
N
∑

i=1

∂F

∂xi
(t, X(t))d Xi (t) + ∂F

∂t
(t, X(t))dt

+ 1

2

∑

1≤i, j≤N

∂2 F

∂xi∂x j
(t, X(t))d〈Xi , X j 〉t , t ≥ 0. (1.52)

The integral form of Itô’s formula is expressed by

F(t, X(t)) = F(0, X(0)) +
N
∑

i=1

∫ t

0

∂F

∂xi
(s, X(s))d Xi (s) +

∫ t

0

∂F

∂t
(s, X(s))ds

+ 1

2

∑

1≤i, j≤N

∫ t

0

∂2 F

∂xi∂x j
(s, X(s))d〈Xi , X j 〉s, t ≥ 0. (1.53)

A continuous process X given by the sum of a local martingale M and a finite-
variation process A, X (t) = M(t) + A(t), t ≥ 0, is called a semimartingale.
When Xi (t) = Mi (t) + Ai (t), t ≥ 0, 1 ≤ i ≤ N , are semimartingales, the local
martingale part of F(t, X(t)), t ≥ 0, is given by

∑N
i=1

∫ t
0 ∂F/∂xi (s, X(s))d Mi (s),

t ≥ 0, which is derived from the second term in the RHS of (1.53). Other terms
in the RHS of (1.53) including

∑N
i=1

∫ t
0 ∂F/∂xi (s, X(s))d Ai (s), t ≥ 0, give the

finite-variation part for F(t, X(t)), t ≥ 0. We will use the fact that if the continuous
process F(t, X(t)), t ≥ 0 is a local martingale, then its finite-variation part should
vanish, and vice versa. (See Exercise 1.8.)
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1.7 Complex Brownian Motion and Conformal Invariance

The complex Brownian motion is defined by

Z(t) = B(t) + √−1˜B(t), t ≥ 0. (1.54)

Its probability space is a product of the space (Ω,F , P) for B and the space
(˜Ω, ˜F ,˜P) for ˜B, and it is written as (ΩZ ,FZ , PZ ) with expectation EZ . Both of
the real and imaginary parts are real martingales and so Z(t), t ≥ 0 is a complex
martingale. Since 〈B, B〉t = 〈˜B, ˜B〉t = t and 〈B, ˜B〉t = 0 by (1.40), we see that

〈Z , Z〉t = 〈B + √−1˜B, B + √−1˜B〉t

= 〈B, B〉t − 〈˜B, ˜B〉t + 2
√−1〈B, ˜B〉t = 0.

It implies that Z(t)2, t ≥ 0 is a martingale.
If F is a complex function of z = x + √−1y with x, y ∈ R, which is in C2

b as a
function of x and y and it does not depend on t explicitly, then Itô’s formula (1.52)
gives

d F(Z(t)) = ∂F

∂z
(Z(t))d Z(t) + ∂F

∂z
(Z(t))d Z(t) + 1

4
ΔF(Z(t))d〈Z , Z〉t ,

(1.55)

where z = x − √−1y denotes the complex conjugate of z = x + √−1y, x, y ∈ R,
and Δ = ∂2/∂x2 +∂2/∂y2 = 4∂2/∂z∂z. Therefore, if F is harmonic (i.e., ΔF(z) =
0), F(Z(t)), t ≥ 0 is a local martingale, and if F is holomorphic (i.e., a function of
z but not of z), then

F(Z(t)) = F(Z(0)) +
∫ t

0
F ′(Z(s))d Z(s), t ≥ 0.

Moreover, we can prove that, if F is an entire and non-constant function, then
F(Z(t)), t ≥ 0 is a time change of a complex Brownian motion. That is, if we
set X (t) = �F(Z(t)), Y (t) = �F(Z(t)), t ≥ 0, then there is a complex Brownian
motion ̂Z in (ΩZ ,FZ , PZ ) such that

F(Z(t)) = F(Z(0)) + ̂Z(〈X, X〉t ), t ≥ 0,

where 〈X, X〉t = ∫ t
0 |F ′(Z(s))|2ds = 〈Y, Y 〉t is a strictly increasing function and

〈X, X〉∞ = ∞. This result is known as the conformal invariance of complex Brown-
ian motion.

F(z) = zn, n ∈ N0 are entire and non-constant functions. Then (Z(t))n, n ∈ N0

are time-changed complex Brownian motions and thus martingales:

EZ [Z(t)n|(FZ )s] = Z(s)n, 0 ≤ s ≤ t, n ∈ N0, a.s.
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By taking the expectation with respect to ˜B(·) of both sides in this equation, we
obtain

E[˜E[(B(t) + √−1˜B(t))n]|Fs] =˜E[(B(s) + √−1˜B(s))n],

which gives (1.21) through (1.27).

1.8 Stochastic Differential Equations for Bessel Processes

Let D ∈ N denote the spatial dimension. For D ≥ 2, the D-dimensional BM in R
D

starting from the position x = (x1, . . . , xD) ∈ R
D is defined by the D-dimensional

vector-valued diffusion process,

Bx(t) = (Bx1
1 (t), Bx2

2 (t), . . . , BxD
D (t)), t ≥ 0, (1.56)

where {Bxi
i (t)}D

i=1, t ≥ 0 are independent one-dimensional BMs.
The D-dimensional Bessel process is defined as the absolute value (i.e., the radial

coordinate) of the D-dimensional Brownian motion,

Rx (t) ≡ |Bx(t)| =
√

Bx1
1 (t)2 + · · · + BxD

D (t)2, t ≥ 0, (1.57)

where the initial value is given by Rx (0) = x = |x| =
√

x2
1 + · · · + x2

D ≥ 0. See
Fig. 1.1. By definition Rx (t) is nonnegative, Rx (t) ∈ R+ ∪ {0}, where R+ ≡ {x ∈
R : x > 0}. We will abbreviate the D-dimensional Bessel process to BES(D).

Fig. 1.1 The D-dimensional
Bessel process Rx (t) is
defined as the radial part of
the BM in the D-dimensional
space. The initial value x of
the Bessel process is the
distance between the origin
and the position where the
BM is started. The figure
shows the case where D = 3

0

x1

x2

x3

R x(t)

x
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By this definition, Rx (t) is a functional of D-tuples of diffusion processes
{Bxi

i (t)}D
i=1, t ≥ 0. Now we apply Itô’s formula (1.52) to BES(D) (1.57). Assume

x = |x| > 0. In this case

Rx (t) = F(B(t)), t ≥ 0 with F(y) =
√

√

√

√

D
∑

i=1

y2
i . (1.58)

We see that

∂F

∂t
= 0,

∂F

∂yi
= yi

F
,

∂2 F

∂yi∂y j
= δi j

F
− yi y j

F3
, 1 ≤ i, j ≤ D.

From (1.40), we have d〈Bi , B j 〉t = 〈d Bi , d B j 〉t = δi j dt , 1 ≤ i, j ≤ D, t ≥ 0.
Then, the third term of (1.52) for BES(D) becomes

1

2

∑

1≤i, j≤D

{

δi j

F(B(t))
− Bi (t)B j (t)

F(B(t))3

}

δi j dt = D − 1

2

1

F(B(t))
dt = D − 1

2

dt

Rx (t)
.

On the other hand, the first term of (1.52) for BES(D) is

1

Rx (t)

D
∑

i=1

Bi (t)d Bi (t). (1.59)

It seems to be complicated, but (1.51) enables us to calculate its quadratic variation as

〈

1

Rx

D
∑

i=1

Bi d Bi ,
1

Rx

D
∑

j=1

B j d B j

〉

t

= 1

Rx (t)2

D
∑

i=1

D
∑

j=1

Bi (t)B j (t)〈d Bi , d B j 〉t

= 1

Rx (t)2

D
∑

i=1

D
∑

j=1

Bi (t)B j (t)δi j dt = dt,

where the independence of BMs (1.40) and the definition, Rx (t)2 = ∑D
i=1 Bi (t)2,

have been used. That is, (1.59) is equivalent in probability law with an infinitesimal
increment of a diffusion process with quadratic variation dt . Then, by introducing a
BM, Bx (t), t ≥ 0, which is different from Bxi

i (t), t ≥ 0, xi ∈ R, i = 1, 2, . . . , D
and is started at x = |x| > 0, (1.59) is identified with d Bx (t), t ≥ 0. We have thus
obtained the following equation for BES(D),

d Rx (t) = d Bx (t) + D − 1

2

dt

Rx (t)
, x > 0, 0 ≤ t < T x , (1.60)

where T x = inf{t > 0 : Rx (t) = 0}.
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The first term of the RHS, d Bx (t), denotes the infinitesimal increment of BM
starting from x > 0 at time t = 0. This martingale term gives randomness to the
motion. On the other hand, if D > 1, for dt > 0, the second term in the RHS of
(1.60) is positive definite. It means that there is a drift to increase the value of Rx (t).
This drift term is increasing in D and decreasing in Rx (t). Since as Rx (t) ↓ 0, the
drift term ↑ ∞, it seems that a ‘repulsive force’ is acting to the D-dimensional BM,
Bx(t), |x| > 0 to keep the distance from the origin be positive, Rx (t) = |Bx(t)| > 0
and avoid a collision of the Brownian particle with the origin. A differential equation
such as (1.60), which involves a random fluctuation term and a drift term is called a
stochastic differential equation (SDE). The integral form is written as

Rx (t) = x + B(t) + D − 1

2

∫ t

0

ds

Rx (s)
, x > 0, 0 ≤ t < T x . (1.61)

What is the origin of the repulsive force between the D-dimensional BM and the
origin? Why does Bx(t) starting from a point x �= 0 not want to return to the origin?
Why is the strength of the outward drift increasing in the dimension D > 1?

There is no positive reason for Bx(t) to avoid visiting the origin, since by the
definition (1.56) all components Bxi

i (t), 1 ≤ i ≤ N enjoy independent BMs. As the
dimension of space D increases, however, the possibility not to visit the origin (or any
specified point) increases, since among D directions in the space only one direction
is toward the origin (or toward the specified point) and other D − 1 directions are
orthogonal to it. If one knows the second law of thermodynamics, which is also called
the law of increasing entropy, one will understand that we would like to say here
that the repulsive force acting from the origin to the Bessel process is not a usual
force treated in mechanics but an ‘entropy force’. (Note that the physical dimension
of entropy [J/K] is different from that of force in mechanics [N] ≡ [J/m].) Anyway,
the important fact is that, while the fluctuation (quadratic variation) of the BM is
given as 〈B, B〉t = t , t ≥ 0, independently of D, the strength of repulsive drift is
increasing in D. Then, the return probability of Rx (t), x > 0 to the origin should
be a nonincreasing function of D.

The following equivalence in probability law is established for arbitrary x > 0,

(

1

x
Rx (x2t)

)

t≥0

(law)= (R1(t))t≥0. (1.62)

It inherits (1.4) and is called the scaling property of the Bessel process (Exercises
1.9 and 1.10).

1.9 Kolmogorov Equation

Let X (t), t ≥ 0 be a one-dimensional diffusion in (ΩX ,FX , PX ), which satisfies
the following SDE:
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d X (t) = σ(X (t))d B(t) + b(X (t))dt, X (0) = x . (1.63)

Here B(t), t ≥ 0 is BM and the functions σ, b : R 
→ R satisfy the condition that
∃K ≥ 0, s.t. |σ(x) − σ(y)| ≤ K |x − y|, |b(x) − b(y)| ≤ K |x − y|, x, y ∈ R. (This
is called the Lipschitz continuity.) Put

u(s, x) = Ex [ f (X (T − s))], 0 ≤ s < T < ∞, (1.64)

with an (FX )T -measurable bounded function f . By the Markov property (1.8), for
0 ≤ s < t < T < ∞,

u(s, x) = Ex
[

EX (t−s)[ f (X (T − t))]
]

= Ex [u(t, X (t − s))]. (1.65)

Assume that u(s, x) ∈ C1,2
b , i.e., bounded and having bounded first-order derivative

with respect to time s and bounded first-order and second-order derivatives with
respect to space x . Then by Itô’s formula (1.52),

u(t, X (t − s)) − u(s, x) =
∫ t−s

0

(

∂u

∂s
+ Lu

)

(s + r, X (r))dr

+
∫ t−s

0
σ(X (r))

∂u

∂x
(s + r, X (r))d B(r), (1.66)

where

(L f )(x) = 1

2
a(x)

d2

dx2
f (x) + b(x)

d

dx
f (x) (1.67)

with
a(x) = σ(x)2. (1.68)

Since (1.65) holds, taking expectation of (1.66) gives

Ex

[∫ t−s

0

(

∂u

∂s
+ Lu

)

(s + r, X (r))dr

]

= 0,

where the expectation of the second term in the RHS of (1.66) vanished, for it is a
martingale. Set h = t − s, divide both sides of the above equation by h and take the
limit h → 0. Then we have

∂u(s, x)

∂s
+ Lu(s, x) = 0. (1.69)
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Since L acts as a differential operator with respect to the initial value x , it is called
the backward Kolmogorov equation. The differential operator (1.67) is called the
generator of the diffusion process.

The SDE for BES(D) is given by the equation (1.63) with σ(x) ≡ 1 and b(x) =
(D − 1)/(2x). Then the generator of BES(D) is obtained as

L(D) = 1

2

∂2

∂x2
+ D − 1

2x

∂

∂x
. (1.70)

Let p(D)(t − s, y|x) be the transition probability density of BES(D) from x at
times s ≥ 0 to y at times t ≥ s. For any t ≥ s, y ∈ R+, p(D)(t − s, y|x), x > 0
solves (1.69) with (1.70) under the condition lims↑t p(D)(t − s, y|x) = δ(x − y). In
other words, p(D)(t, y|x) solves

∂

∂t
p(D)(t, y|x) = L(D) p(D)(t, y|x) (1.71)

under the initial condition p(D)(0, y|x) = δ(x − y), which is called the backward
Kolmogorov equation for BES(D).

Let Iν(z) be the modified Bessel function of the first kind defined by

Iν(z) =
∞
∑

n=0

1

Γ (n + 1)Γ (n + 1 + ν)

( z

2

)2n+ν

(1.72)

with the gamma function

Γ (z) =
∫ ∞

0
e−uuz−1du, �z > 0. (1.73)

The function Iν(z) solves the Bessel differential equation

d2w

dz2
+ 1

z

dw

dz
−
(

1 + ν2

z2

)

w = 0. (1.74)

Then we can show that

p(D)(t, y|x) =

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

1

t

yν+1

xν
e−(x2+y2)/2t Iν

( xy

t

)

, t > 0, x > 0, y ≥ 0,

y2ν+1

2ν tν+1Γ (ν + 1)
e−y2/2t , t > 0, x = 0, y ≥ 0

δ(y − x), t = 0, x, y ≥ 0,

(1.75)
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where the index ν is specified by the dimension D as

ν = D − 2

2
⇐⇒ D = 2(ν + 1). (1.76)

This fact that p(D)(t, y|x) is expressed using Iν(z) gives the reason why the process
Rx (t) is called the Bessel process (see Exercise 1.11).

1.10 BES(3) and Absorbing BM

When D = 3, ν = 1/2 by (1.76), and we can use the equality I1/2(z) = √
2/πz sinh z

= (ez − e−z)/
√

2πz. Then (1.75) gives

p(3)(t, y|x) = y

x

{

p(t, y|x) − p(t, y| − x)
}

(1.77)

for t > 0, x > 0, y ≥ 0, where p(t, y|x) is the transition probability density of BM
started at x given by (1.1). If we put

qabs(t, y|x) = p(t, y|x) − p(t, y| − x), (1.78)

we see that qabs(t, 0|x) = 0 for any x > 0, since the transition probability density
of BM, p(t, y|x), is an even function of y − x .

In Fig. 1.2a, one realization of a Brownian path from x > 0 to y > 0 is represented
by a red curve and denoted by path A, which visits the nonpositive region R− ∪ {0},
where R− ≡ {x ∈ R : x < 0}. The first time the path A hits the origin is denoted by
τ . Path B, which is represented by a black curve, is a mirror image of path A with
respect to the origin x = 0, which is running from −x < 0 to −y < 0. Path C (blue

t

x

− x

y

− y

x

− x

y

τ

A

C

B

A

C

(b)(a)

Fig. 1.2 Brownian path from x > 0 to y > 0 contributing to p(t, y|x) and that from −x < 0 to
y > 0 contributing to p(t, y| − x)
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curve) is then defined as the concatenation of the part of path B from time zero up to
time τ and the part of path A after τ such that it runs from −x < 0 to y > 0. By the
reflection principle of BM (1.5) applied at time τ , we see that there exists a bijection
between path A and path C, which have the same probability weight as Brownian
paths. Since the Brownian path A contributes to p(t, y|x) and the Brownian path
C contributes to p(t, y| − x), such a path from x > 0 to y > 0 that visits R− is
cancelled in qabs(t, y|x) given by (1.78). In Fig. 1.2b, a path from x > 0 to y > 0
which stays in the positive region R+ is considered (path A). In this case there is no
path that perfectly cancels the contribution of path A to (1.78) as path B does in the
case (a). In summary, qabs(t, y|x) = p(t, y|x) − p(t, y| − x) gives the total weight
of Brownian paths which do not hit the origin.

We consider the situation where an absorbing wall is put at the origin and, if the
Brownian particle starting from x > 0 arrives at the origin, it is absorbed there and
the motion is stopped. Such a process is called the absorbing Brownian motion in
R+. Its transition probability density is given by qabs.

By absorption, the total mass of paths from x > 0 to y > 0 is then reduced, if we
compare the original BM and the absorbing Brownian motion in R+. The factor y/x
appearing in the transition probability density (1.77) of BES(3) is for renormalization
so that

∫

R+ p(3)(t, y|x)dy = 1,∀ t > 0,∀ x > 0 (see Exercises 1.12 and 1.13). We

regard this renormalization procedure from qabs to p(3) as a transformation. Since x is
a one-dimensional harmonic function in a rather trivial sense Δ(1)x ≡ d2x/dx2 = 0,
we say that the BES(3) is a harmonic transformation (h-transformation) of the one-
dimensional absorbing BM in the sense of Doob [2]. This implies the following
equivalence [5] (see Exercise 1.14).

BES(3) ⇐⇒ one-dimensional Brownian motion conditioned to stay positive

Let Ex
BES(3) denote the expectation with respect to BES(3), (R(t))t≥0, started at x ∈

R+. For an independent BM, (B(t))t≥0 started at the same point x ∈ R+, let τ =
inf{t > 0 : B(t) = 0}. Then the above equivalence is written as follows: for any
Ft -measurable bounded function F , t ≥ 0,

E
x
BES(3) [F(R(t))] = Ex

[

F(B(t))1(τ>t)
B(t)

x

]

, t ≥ 0, (1.79)

where Ex is an expectation with respect to BM started at x ∈ R+. If F is an even
function: F(−x) = F(x), the above gives

E
x
BES(3)[F(R(t))] = Ex

[

F(B(t))
B(t)

x

]

, t ≥ 0, (1.80)

since by the reflection principle of BM (1.5), all contribution from paths {ω : τ ≤ t}
should be canceled out (see Exercise 1.15).
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Here we emphasize the obvious fact that p(3)(t, 0|x) = 0,∀ x > 0. It implies that
BES(3) does not visit the origin. When D = 3, the outward drift is strong enough to
avoid any visit to the origin. Moreover, we can prove that for any x > 0, Rx (t) → ∞
as t → ∞ with probability 1 and we say the process is transient (see Theorem 1.1
(ii) below).

1.11 BES(1) and Reflecting BM

When D = 1, ν = −1/2 by (1.76) and we use the equality I−1/2(z)= √
2/πz cosh z =

(ez + e−z)/
√

2πz. In this case (1.75) gives

p(1)(t, y|x) = p(t, y|x) + p(t, y| − x) (1.81)

for t > 0, x, y ≥ 0. As illustrated by Fig. 1.3, the one-dimensional BM visits the
origin frequently (see Theorem 1.1 (iv) below). For a Brownian path starting from
x > 0 represented by a red curve (path A), its mirror image with respect to the origin
is represented by a blue curve (path B), which starts from −x < 0. If we observe
the motion only in the nonnegative region R+ ∪ {0}, the superposition of Brownian
paths A and B gives the path of a reflecting Brownian motion, where a reflecting wall
is put at the origin. (Note that the transition probability density p(1) is the duplicate
of p as (1.81), but the space is halved as x, y ∈ R 
→ x, y ∈ R+ ∪ {0}.) Then the
equality (1.81) implies the following equivalence:

BES(1) ⇐⇒ one-dimensional reflecting Brownian motion.

This is of course a direct consequence of the definition of Bessel process (1.57), since
it gives Rx (t) = |Bx (t)| in D = 1.

x

− x

A

B

Fig. 1.3 A typical path of one-dimensional Brownian motion starting from x > 0 and its mirror
image. They visit the origin frequently
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The important fact is that the one-dimensional BM starting from x �= 0 visits the
origin frequently and we say that the one-dimensional Bessel process is recurrent.
Remark that in Eqs. (1.60) and (1.71), the drift terms vanish when D = 1. So we have
to assume the reflecting boundary condition at the origin when we discuss BES(1)

instead of the one-dimensional BM.

1.12 Critical Dimension Dc = 2

Now the following question is addressed: At which dimension does the Bessel process
change its property from being recurrent to transient?

Before answering this question, here we would like to extend the setting of the
question. Originally, the Bessel process was defined by (1.57) for D ∈ N. We find
that, however, the modified Bessel function (1.72) is an analytic function of ν for
all values of ν. So we will be able to define the Bessel process for any value of
dimension D ≥ 1 as a diffusion process in R+ such that the transition probability
density function is given by (1.75), where the index ν ≥ −1/2 is determined by
(1.76) for each value of D ≥ 1. (Another characterization of BES(D) for fractional
dimensions D is given by Lamperti’s relation (1.130) in Exercise 1.16.)

For BES(D) starting from x > 0, denote its first visiting time at the origin by

T x = inf{t > 0 : Rx (t) = 0}. (1.82)

The answer to the above question is given by the following theorem.

Theorem 1.1 (i) D ≥ 2 =⇒ T x = ∞,∀ x > 0, with probability 1.
(ii) D > 2 =⇒ lim

t→∞Rx (t) = ∞, ∀x > 0, with probability 1, i.e. the process

is transient.
(iii) D = 2 =⇒ inf

t>0
Rx (t) = 0, ∀x > 0, with probability 1.

That is, BES(2) starting from x > 0 does not visit the origin, but it can visit any
neighborhood of the origin.

(iv) 1 ≤ D < 2 =⇒ T x < ∞, ∀x > 0, with probability 1, i.e. the process is
recurrent.

Proof For 0 < x1 < x < x2 < ∞, let

σ = inf{t > 0 : Rx (t) = x1 or Rx (t) = x2},

and define
φ(x) = φ(x; x1, x2) = P[Rx (σ) = x2].

By definition,
φ(x1) = 0, φ(x2) = 1. (1.83)
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Consider a process
M(t) = φ(Rx (t ∧ σ)).

It is also written as M(t) = E[φ(Rx (σ))|Ft ]. By the definition of filtration,

E[M(t)|Fs] = E[E[φ(Rx(σ))|Ft ]|Fs]
= E[φ(Rx(σ))|Fs] = M(s), 0 ≤∀ s ≤ t, (1.84)

that is, M(t) is a martingale. Provided that φ(x) ∈ C2
b, we apply Itô’s formula using

SDE (1.60) of BES(D) and obtain

M(t) = φ(x) +
∫ t∧σ

0
φ′(Rx (s))

[

d B(s) + D − 1

2

ds

Rx (s)

]

+
∫ t∧σ

0

1

2
φ′′(Rx (s))〈d B, d B〉s

= φ(x) +
∫ t∧σ

0
φ′(Rx (s))d B(s) +

∫ t∧σ

0

1

2

[

φ′′(Rx (s)) + D − 1

Rx (s)
φ′(Rx (s))

]

ds.

Since M(t) is a martingale, the drift term should be zero. Hence we obtain the
following differential equation:

φ′′(x) + D − 1

x
φ′(x) = 0, x1 < x < x2. (1.85)

It is equal to

(

d

dx
+ D − 1

x

)

φ′(x) = 0, then with a constant c it is integrated as

φ′(x) = cx−(D−1). With the first of the boundary conditions, φ(x1) = 0 in (1.83), it
is again integrated as

φ(x) =

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

c
∫ x

x1

y−(D−1)dy = c

2 − D
(x2−D − x2−D

1 ), if D �= 2,

c
∫ x

x1

dy

y
= c(log x − log x1), if D = 2.

By imposing the second boundary condition φ(x2) = 1 of (1.83), the integral constant
c is determined and we have

φ(x) = φ(x; x1, x2) =

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

x2−D − x2−D
1

x2−D
2 − x2−D

1

, if D �= 2,

log x − log x1

log x2 − log x1
, if D = 2.

(1.86)
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(i) If D > 2, then 2 − D < 0 and for any x2 = L > x the upper equation in
(1.86) gives

φ(x; 0, L) ≡ lim
x1→0

φ(x; x1, L)

= lim
x1→0

x2−D − x2−D
1

L2−D − x2−D
1

= 1.

It implies that BES(D) starting from x > 0 will arrive at any positive point L > 0
before arriving at the origin with probability 1. Then T x = ∞. For D = 2, the lower
equation in (1.86) gives

φ(x; 0, L) = lim
x1→0

log x − log x1

log L − log x1
= 1.

Then we also see that T x = ∞.
(ii) Let xk = αk x, k ∈ N with α > 1. When D > 2, put β = 2 − D < 0. The upper
equation in (1.86) gives

φ(xk; xk−1, xk+1) = xβ
k − xβ

k−1

xβ
k+1 − xβ

k−1

= αkβ − α(k−1)β

α(k+1)β − α(k−1)β

= αβ − 1

α2β − 1
= 1

αβ + 1
>

1

2
.

Now we consider an asymmetric simple random walk on Z starting from a site n > 0
such that in each step the probability to go right is given by p = 1/(αβ + 1) > 1/2
and the probability to go left is 1− p < 1/2. Since such an asymmetric random walk
is transient, by comparing it we can conclude that Rx (t) → ∞ as t → ∞, ∀x > 0
with probability 1.
(iii) In the lower equation for D = 2 in (1.86), put x1 = 1/n and x2 = en , n ∈ N.
Then for x1 < x < x2,

φ(x; 1/n, en) = log x + log n

n + log n
−→ 0 as n → ∞.

It means that for any n ∈ N, Rx (t), t ≥ 0 can approach 1/n and the statement is
concluded.
(iv) If 1 ≤ D < 2, then limx1→0 x2−D

1 = 0. Then the upper equation in (1.86) gives

φ(x; 0, L) = x2−d

L2−d
−→ 0 as L → ∞.

It implies that T x < ∞ with probability 1. �
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1.13 Bessel Flow and Another Critical Dimension Dc = 3/2

In the previous subsection we defined the BES(D) for continuous values of dimension
D ≥ 1 and studied the dependence of the probability law of this process on D.
Theorem 1.1 states that we have a critical dimension,

Dc = 2,

for competition between the two effects acting on the Bessel process, the ‘random
force’ (the martingale term) and the ‘entropy force’ (the outward drift term) in (1.60);
when D > Dc, the latter dominates the former and the process becomes transient,
and when D < Dc, the former is relevant and recurrence to the origin of the process
is realized frequently.

Here we show that there is another critical dimension [6],

Dc = 3

2
.

In order to characterize the transition at Dc, we have to investigate the dependence
of the behavior of Rx (t) on its initial value, x > 0. We call the one-parameter family
{Rx (t) : t ≥ 0}x>0 the Bessel flow for each fixed D > 0.

For 0 < x < y, we trace the motions of two BES(D)’s starting from x and y by
solving (1.60) using the common BM, B(t), t ≥ 0,

Rx (t) = x + B(t) + D − 1

2

∫ t

0

ds

Rx (s)
,

Ry(t) = y + B(t) + D − 1

2

∫ t

0

ds

Ry(s)
, 0 ≤ t < T x . (1.87)

We will see that

x < y =⇒ Rx (t) < Ry(t), 0 ≤ t < T x with probability 1

=⇒ T x ≤ T y with probability 1.

The interesting fact is that in the intermediate fractional dimensions, Dc < D <

Dc, it is possible to have a situation where T x = T y even for x < y. See Fig. 1.4.
The main theorem in this section is the following [6].

Theorem 1.2 For 0 < x < y < ∞,

(i) 1 ≤ D ≤ 3/2 =⇒ T x < T y with probability 1.
(ii) 3/2 < D < 2 =⇒ P[T x = T y] > 0.

In order to prove the theorem, we first verify the following lemma.
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Fig. 1.4 In the intermediate
fractional dimensions,
3/2 < D < 2, there is a
positive probability that two
Bessel processes starting
from different initial
positions, 0 < x < y < ∞,
return to the origin
simultaneously, T x = T y

0

+

time

x

T x =T y

y

Lemma 1.2 Let 0 < x < y. The event {ω : T x = T y} is the same as the event

{

ω : sup
0≤t<T x

Ry(t) − Rx (t)

Rx (t)
< ∞

}

. (1.88)

up to an event of probability 0.

Proof For x ≤ y put
q(x, y) = P[T x = T y].

By the scaling property (1.62) of BES(D), we see that

q(x, y) = q(1, y/x).

Since limr→∞ P[T r < t] = 0 for any t > 0,

lim
r→∞ q(1, r) = 0. (1.89)

Note that

event (1.88) ⇐⇒
{

ω : Ry(t) − Rx (t)

Rx (t)
≤∃ c < ∞, 0 ≤ t < T x

}

⇐⇒ {

ω : Ry(t) ≤ (1 +∃c)Rx (t), 0 ≤ t < T x
}

.

Then Rx (t) = 0 =⇒ Ry(t) = 0; that is, if (1.88) holds, then T x = T y . Hence, in
order to prove the lemma, it is sufficient to show that the event where T x = T y but
(1.88) does not hold has probability 0. For r > 0 let

pr = P

[

T x = T y and sup
0≤t<T x

Ry(t) − Rx (t)

Rx (t)
≥ r

]

.
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Assume that the time τr = inf{0 < t < T x : (Ry(t) − Rx (t))/Rx (t) = r} < ∞, at
which Ry(t)/Rx (t) = 1+ r . We consider the BES(D) started at this time. The strong
Markov property of the Bessel process implies that the probability to have T x = T y

is given by q(1, 1+r) for this restarted Bessel process. The probability pr is defined
for the event that T x = T y and τr < ∞, then

pr ≤ q(1, 1 + r).

On the other hand, (1.89) states limr→∞ q(1, 1 + r) = 0. Then

p∞ = lim
r→∞ pr = P

[

T x = T y and sup
0≤t<T x

Ry(t) − Rx (t)

Rx (t)
= ∞

]

= 0.

The proof is completed. �

Now we prove the theorem.
Proof of Theorem 1.2. For 0 < x < y, consider a process

Z(t) = log

(

Ry(t) − Rx (t)

Rx (t)

)

, t < T x , (1.90)

where Rx (t) and Ry(t) belong to the same Bessel flow and satisfy (1.87). Application
of Itô’s formula (1.52) leads to (Exercise 1.17)

d Z(t) = −d B(t)

Rx (t)
+
[(

3

2
− D

)

+ D − 1

2

Ry(t) − Rx (t)

Ry(t)

]

dt

Rx (t)2
. (1.91)

Now we perform the random time change t 
→ t̃ by

t̃ =
∫ t

0

ds

Rx (s)2
⇐⇒ dt̃ = dt

Rx (t)2
. (1.92)

For 1 ≤ D < 2, we can prove that (Exercise 1.18)

∫ T x

0

ds

Rx (s)2
= ∞ with probability 1. (1.93)

It implies that T x is mapped to ∞ by this time change. We put

˜B(t̃) = −
∫ t

0

d B(s)

Rx (s)
,

which gives

d〈˜B, ˜B〉t̃ = d〈B, B〉t

Rx (t)2
= dt

Rx (t)2
= dt̃,
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and thus ˜B(t̃) is a BM. So we write ˜Z(t̃) = Z(t), ˜R(t̃) = R(t), and obtain the SDE as

d˜Z(t̃) = d˜B(t̃) +
[(

3

2
− D

)

+ D − 1

2

˜Ry(t̃) − ˜Rx (t̃)
˜Ry(t̃)

]

dt̃ . (1.94)

(i) Assume that 1 ≤ D ≤ 3/2. In this case 3/2 − D ≥ 0 and

˜Ry(t̃) − ˜Rx (t̃)
˜Ry(t̃)

> 0, 0 ≤ t̃ < ∞.

Then the coefficient of drift term in (1.94) is positive, and thus

sup
0≤t̃<∞

˜Z(t̃) = ∞ ⇐⇒ sup
0≤t<T x

eZ(t) = sup
0≤t<T x

Ry(t) − Rx (t)

Rx (t)
= ∞.

By Lemma 1.2, P[T x = T y] = 0 is concluded.
(ii) Assume 3/2 < D < 2. Choose D′ ∈ (3/2, D) and put ε = 2(D − D′)/(D −1).
Consider the case where y = (1 + ε/2)x and let

σ̃ = inf
{

t̃ > 0 : ˜Ry(t̃) − ˜Rx (t̃) = ε˜Ry(t̃)
}

.

Then, for 0 ≤ t̃ < σ̃, (˜Ry(t̃) − ˜Rx (t̃))/˜Ry(t̃) ≤ ε, and hence the coefficient of drift
term in (1.94) is bounded from above as

(

3

2
− D

)

+ D − 1

2

˜Ry(t̃) − ˜Rx (t̃)
˜Ry(t̃)

≤
(

3

2
− D

)

+ D − 1

2
× 2(D − D′)

D − 1
= 3

2
− D′.

Consider the stochastic process ˜Z∗(t̃) solving the SDE

d˜Z∗(t̃) = d˜B(t̃) +
(

3

2
− D′

)

dt̃, ˜Z∗(0) = ˜Z(0) = log
ε

2
. (1.95)

Then
˜Z(t̃) ≤ ˜Z∗(t̃), 0 ≤ t̃ < σ̃.

Since we have assumed D′ > 3/2, the coefficient of drift term in (1.95) is negative,
and there is a positive probability that ˜Z∗(t̃) started at log(ε/2) never reaches log ε.
On this event, ˜Z(t̃) < log ε. The process ˜Z is just a time change of the process Z ,
and so we can conclude that with a positive probability

log

(

Ry(t) − Rx (t)

Rx (t)

)

< log ε ⇐⇒ Ry(t) − Rx (t)

Rx (t)
< ε.
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The event (1.88) then holds and by Lemma 1.2

P[T x = T y] = q
(

x,
(

1 + ε

2

)

x
)

= q
(

1, 1 + ε

2

)

> 0.

The proof is completed. �

1.14 Hypergeometric Functions Representing Bessel Flow

In Theorem 1.2 (ii) we proved P[T y = T x ] > 0 for 0 < x < y < ∞, when
3/2 < D < 2. A striking fact is that this probability can be explicitly expressed
using Gauss’s hypergeometric function [6]. Here Gauss’s hypergeometric function
is defined by

F(α,β, γ; u) =
∞
∑

n=0

(α)n(β)n

(γ)n

un

n! ,

where the Pochhammer symbol, (c)0 = 1, (c)n = c(c + 1) · · · (c + n − 1), n ≥ 1,

is used (see, for instance, Chap. 2 of [1]). It is a fundamental solution at u = 0 of
Gauss’s hypergeometric equation

u(1 − u)F ′′ +
{

γ − (α + β + 1)u
}

F ′ − αβF = 0. (1.96)

The following is known as Gauss’s summation formula,

F(α,β, γ; 1) = Γ (γ)Γ (γ − α − β)

Γ (γ − α)Γ (γ − β)
, �γ > 0,�(Γ − α − β) > 0. (1.97)

Proposition 1.1 For 3/2 < D < 2, 0 < x < y < ∞,

P[T x = T y] = 1 − P[T x < T y], (1.98)

with

P[T x < T y] = Γ (D − 1)

Γ (2D − 3)Γ (2 − D)

∫ (y−x)/y

0

du

(1 − u)D−1u2(2−D)
(1.99)

= Γ (D − 1)

Γ (2(D − 1))Γ (2 − D)

(

y − x

y

)2D−3

×F

(

2D − 3, D − 1, 2(D − 1); y − x

y

)

. (1.100)
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Fig. 1.5 Probabilities
P[T x = T y] are plotted as
functions of the dimension D
for x ≡ 1 and y = 1.1
(black), 2.0 (blue), 10
(green), and 100 (red),
respectively
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Numerical values of P[T x = T y] are plotted in Fig. 1.5 as functions of the dimen-
sion D for several values of x and y.
Proof of Proposition 1.1. By the scaling property of Bessel process (1.62), we can
replace the variables as x → 1 and y → 1 + x, x > 0 without loss of generality.
For x > 0 consider a process

S(t) = R1+x (t) − R1(t)

R1(t)
, t ≥ 0. (1.101)

Itô’s formula (1.52) gives (Exercise 1.19)

d S(t) = − S(t)

R1(t)
d B(t) +

[

3 − D

2

1

S(t)
− D − 1

2

1

S(t)(1 + S(t))

](

S(t)

R1(t)

)2

dt.

(1.102)

Here we perform the random time change t → t by

t =
∫ t

0

(

S(s)

R1(s)

)2

ds. (1.103)

If we set

B(t) = −
∫ t

0

S(s)

R1(s)
d B(s), (1.104)

it is a BM. Hence, if we set S(t) = S(t), then we obtain the following SDE,

d S(t) = d B(t) +
[

3 − D

2

1

S(t)
− D − 1

2

1

S(t)(S(t) + 1)

]

dt

= d B(t) +
[

2 − D

S(t)
+ D − 1

2

1

S(t) + 1

]

dt . (1.105)
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Let
ψ(x) = P[T 1 = T 1+x ] = q(1, 1 + x), (1.106)

and consider the process

M(t) = ψ(S(t)) = P
[

T 1 = T R
1+x

(t)/R
1
(t)
]

, (1.107)

where R
x
(t) = Rx (t), t ≥ 0. By Itô’s formula (1.52) with (1.105), we obtain the

SDE for (1.107) as

d M(t) = ψ ′(S(t))d B(t) + ψ ′(S(t))

[

2 − D

S(t)
+ D − 1

2

1

S(t) + 1

]

dt + 1

2
ψ ′′(S(t))dt .

(1.108)

On the other hand, the scaling property of the Bessel process (1.62) gives

(

RR
1+x

(t)/R
1
(t)(t)
)

t≥0

(law)=
(

1

c
R1+x (c2t)

)

t≥0

with c = 1 + x

R
1+x

(t)/R
1
(t)

for any t ≥ 0, and thus M(t) is a martingale

E[M(t)|Fs] = M(s), 0 ≤∀ s < t . (1.109)

Then the drift term in (1.108) should be zero and a differential equation for ψ(x) is
obtained:

1

2
ψ ′′(x) +

[

2 − D

x
+ D − 1

2

1

x + 1

]

ψ ′(x) = 0. (1.110)

If we set ϕ(x) = ψ′(x), (1.110) becomes

ϕ′(x) = −
[

2(2 − D)
1

x
+ (D − 1)

1

1 + x

]

ϕ(x),

which is solved by ϕ(x) ≡ 0 and

ϕ(x) = 1

x2(2−D)(1 + x)D−1
.

Hence, we obtain the two solutions of (1.110): ψ(x) = 1 and

ψ(x) =
∫ x

0

dy

y2(2−D)(1 + y)D−1
=
∫ x/(1+x)

0

du

(1 − u)D−1u2(2−D)
,

where we have assumed ψ(0) = 0 for the latter solution and set y = u/(1 − u) in
the integral. Then the general solution of (1.110) is given by
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ψ(x) = c1 + c2

∫ x/(1+x)

0

du

(1 − u)D−1u2(2−D)
.

By the conditions

ψ(0) = P[T 1 = T 1] = 1,

ψ(∞) = lim
x→∞ P[T 1+x = T 1] = 0,

we obtain

ψ(x) = 1 − Γ (D − 1)

Γ (2D − 3)Γ (2 − D)

∫ x/(1+x)

0

du

(1 − u)D−1u2(2−D)
,

where we have used the integral formula

∫ 1

0
u p−1(1 − u)q−1du = Γ (p)Γ (q)

Γ (p + q)
, �p > 0, �q > 0. (1.111)

By putting 1/(1+ x) → x/y, (1.99) is obtained. For (1.100), we change the variable
in (1.110) as x → u with

x = u

1 − u
⇐⇒ u = x

1 + x
,

and put ˜ψ(u) = ψ(x). Then we have the equation

u(1 − u)˜ψ′′(u) +
{

2(2 − D) − (3 − D)u
}

˜ψ′(u) = 0. (1.112)

It is a special case of Gauss’s hypergeometric equation (1.96) with setting parameters

α = 0, β = 2 − D, γ = 2(2 − D). (1.113)

For Gauss’s hypergeometric equation, we can adopt {F(α,β, γ; u), u1−γ F(1 − γ +
α, 1 − γ + β, 2 − γ; u)} as a fundamental system of solutions at u = 0. Under
(1.113), the former is 1 and the latter is u2D−3 F(2D − 3, D − 1, 2(D − 1); u), and
hence the solution will be expressed by

˜ψ(u) = c̃1 + c̃2u2D−3 F(2D − 3, D − 1, 2(D − 1); u)

with constants c̃1 and c̃2. By the conditions

˜ψ(0) = ψ(0) = P[T 1 = T 1] = 1,

˜ψ(1) = ψ(∞) = lim
x→∞ P[T 1+x = T 1] = 0, (1.114)
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they are determined as

c̃1 = 1

c̃2 = −F(2D − 3, D − 1, 2(D − 1); 1)−1 = − Γ (D − 1)

Γ (2(D − 1))Γ (2 − D)
,

where (1.97) is used. We change the variable u → x = u/(1 − u), and then replace
1/(1+x) by x/y. The formula (1.100) is thus obtained and the proof is completed. �

Exercises

1.1 Using the transition probability density function (1.1), the LHS of (1.10) is
written as

∫∞
−∞(y2 − t)p(t − s, y|x)dy, under the condition B(s) = x . Show that it

is equal to x2 − s and directly prove (1.10).

1.2 Consider the integrals Inm = ∫∞
−∞ e−x2

Hn(x)Hm(x)dx , n, m ∈ N0.
(i) By (1.19), they are written as

Inm = (−1)n
∫ ∞

−∞
dne−x2

dxn
Hm(x)dx, n, m ∈ N0. (1.115)

Suppose n > m. Then prove that Inm = 0.
(ii) Show that Inn = 2nn!√π.
The above proves that {Hn(x)}n∈N0 have the orthogonality property

∫ ∞

−∞
e−x2

Hn(x)Hm(x)dx = 2nn!√πδnm, n, m ∈ N0. (1.116)

1.3 Derive the formula ∞
∑

n=0

Hn(z)
sn

n! = e2sz−s2
(1.117)

from (1.17) with (1.15) and (1.18). Show the following contour integral representa-
tions of the Hermite polynomials,

Hn(z) = n!
2π

√−1

∮

C(δ0)

dη
e2ηz−η2

ηn+1
, n ∈ N0, (1.118)

where C(δ0) is a closed contour on the complex plane C encircling the origin 0 once
in the positive direction.
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1.4 Let F(s, z) = e2sz−s2
.

(i) Show that F(s, z) satisfies

∂F

∂s
− (2z − 2s)F = 0, (1.119)

∂F

∂z
− 2s F = 0. (1.120)

(ii) Using the formula (1.117), derive the following recurrence relations:

Hn+1(z) − 2zHn(z) + 2nHn−1(z) = 0, (1.121)

H ′
n(z) = 2nHn−1(z), n ∈ N, (1.122)

where H ′
n(z) = d Hn(z)/dz.

(iii) From (1.121) and (1.122), derive the equations

H ′′
n (z) − 2zH ′

n(z) + 2nHn(z) = 0, n ∈ N0.

That is, {Hn(z)}n∈N0 satisfy the differential equation

u′′ − 2zu′ + 2nu = 0. (1.123)

This is known as the Hermite differential equation.

1.5 Show
E[(B(t) − B(s))4] = 3(t − s)2, 0 ≤ s ≤ t. (1.124)

1.6 For any random variable X with |E[X ]| < ∞, prove Chebyshev’s inequality,

P[|X − E[X ]| > ε] ≤ 1

ε2
E[|X − E[X ]|2], ∀ε > 0.

1.7 Let Bi (t), t ≥ 0, i = 1, 2, . . . , D be independent BMs. Prove that 〈Bi , B j 〉t =
δi j t , 1 ≤ i, j ≤ D, t ≥ 0.

1.8 For n ∈ N0, let m̂n(t, x) = (t/2)n/2un(x/
√

2t), (t, x) ∈ [0,∞) × R. Assume
that un(z) ∈ C2

b. Let B(t), t ≥ 0 be BM. By applying Itô’s formula (1.52), show that
m̂n(t, B(t)), t ≥ 0 is a local martingale, if and only if un(z) satisfies the Hermite
differential equation (1.123).

1.9 Prove the scaling property (1.62) for BES(D).

1.10 For x > 0, let τ x
1 = inf{t > 0 : Rx (t) = x/2} and τ x

2 = inf{t > 0 : Rx (t) =
x/22}. Define

I1 =
∫ τ x

1

0

dt

Rx (t)2
, I2 =

∫ τ x
2

τ x
1

dt

Rx (t)2
.
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Prove that I1 and I2 are independently and identically distributed (i.i.d.).

1.11 Confirm that p(D)(t, y|x) given by (1.75) satisfies the backward Kolmogorov
equation (1.71) with (1.70) for BES(D).

1.12 Show that, for x ∈ R+, t > 0, p(3)(t, y|x) given by (1.77) is well-normalized
as
∫

R+ p(3)(t, y|x)dy = 1.

1.13 Take the limit x → 0 in (1.77) and obtain the formula

lim
x→0

p(3)(t, y|x) = 2

t
y2 p(t, y|0) ≡ p(3)(t, y|0). (1.125)

It coincides with the result obtained from the middle formula in (1.75) by putting
D = 3 ⇔ ν = 1/2, since Γ (3/2) = √

π/2.

1.14 Consider an absorbing Brownian motion started at x > 0 with an absorbing
wall at the origin. Let τ be the time the BM is absorbed: τ = inf{t > 0 : Bx (t) = 0}.
For given T > 0, the probability that the BM is not yet absorbed and thus survives
at that time T is given by Px [τ > T ] = ∫∞

0 qabs(T, y|x)dy, which will be called the
survival probability up to time T .
(i) Prove the long-term asymptotics of the survival probability,

Px [τ > T ] ∼
√

2

π
xT −1/2 as T → ∞. (1.126)

(ii) Consider the absorbing Brownian motion under the condition that it survives
up to a given time T > 0. In other words, it is the one-dimensional Brownian motion
conditioned to stay positive up to time T . For 0 < t < T , the transition probability
density of such conditional process started at x > 0 at time 0 and arriving at y > 0
at time t will be given by

ppositive
T (t, y|x) = qabs(t, y|x)Py[τ > T − t]

Px [τ > T ] . (1.127)

Take the limit T → ∞ of this transition probability density function.

1.15 The RHS of (1.34) is a special case of the Girsanov transformation [7],

E

[

F(B(t)) exp

{∫ t

s
ϕ(B(u))d B(u) − 1

2

∫ t

s
ϕ(B(u))2du

}∣

∣

∣

∣

Fs

]

(1.128)

with ϕ(x) ≡ b. Set s = 0, B(0) = x ∈ R+ and put

ϕ(x) = 1

x
. (1.129)

Show that (1.128) then gives the RHS of (1.80).
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1.16 Let ν ∈ R and consider a BM with a constant drift ν, B y(t) + νt , which starts
from y ∈ R at time t = 0. The geometric Brownian motion with drift ν is defined
as exp(B y(t) + νt), t ≥ 0. For each t ≥ 0, we define the random time change
t 
→ A(t) by A(t) = ∫ t

0 exp{2(B y(s)+νs)}ds, and let Rx (A(t)) be the BES(D) with
D = 2(ν + 1) at time A(t) starting from x = ey . Prove that

(Rx (A(t)))t≥0
(law)= (

exp(B y(t) + νt)
)

t≥0 . (1.130)

This formula is called Lamperti’s relation (see (1.28) in Chap. 11 of [7]).

1.17 Derive (1.91) by applying Itô’s formula to (1.90) with (1.87).

1.18 Prove (1.93) for 1 ≤ D < 2 following the instructions below.
(i) For x > 0, let τ x

0 = 0, τ x
n = inf{t > 0 : Rx (t) = x/2n}, n ∈ N, and

In =
∫ τ x

n

τ x
n−1

ds

Rx (s)2
, n ∈ N.

Prove that In, n ∈ N are i.i.d.
(ii) For 1 ≤ D < 2, conclude (1.93).

1.19 Derive (1.102) by applying Itô’s formula to (1.101).
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Chapter 2
Schramm–Loewner Evolution (SLE)

Abstract We consider the Loewner chain, which is a time evolution of a conformal
transformation defined on the upper-half complex plane. The chain is driven by a
given continuous real function of time t and it determines a path γ in the upper half-
plane parameterized by t . Schramm–Loewner evolution (SLE) is a stochastic version
of the Loewner chain such that the driving function is given by a time change of one-
dimensional Brownian motion and thus the path becomes stochastic. We introduce the
SLE as a complexification of the Bessel flow studied in Chap. 1. Then the parameter κ

of SLE, which is originally introduced to control the time change of Brownian motion
driving the SLE, is related to the dimension D of Bessel process. Corresponding to
the existence of two critical dimensions Dc = 2 and Dc = 3/2, the appearance of
three different phases of the SLE path is clarified. Moreover, based on the detailed
analysis of the Bessel flow in Dc < D < Dc given in Chap. 1, Cardy’s formula
for the critical percolation model is derived. We give a list showing correspondence
(up to a conjecture) between lattice paths studied in statistical mechanics and SLE
paths describing their scaling limits.

2.1 Complexification of Bessel Flow

In the sequel we consider an extension of the Bessel flow {Rx (t) : t ≥ 0}x>0 defined
on R+ to a flow on the upper-half complex plane H = {z = x +√−1y : x ∈ R, y >

0} and its boundary ∂H = R. Let H = H∪R. We set Z z(t) = X z(t)+√−1Y z(t) ∈
H \ {0}, t ≥ 0 and complexificate (1.60) as

d Z z(t) = d B(t) + D − 1

2

dt

Z z(t)
(2.1)

with the initial condition

Z z(0) = z = x + √−1y ∈ H \ {0}.

© The Author(s) 2015
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Fig. 2.1 A schematic picture
of ‘complexificated Bessel
flow’ on H \ {0} for D > 2

x Re z

Im z

The crucial point of this complexification of Bessel flow is that the BM remains
real, B(t) ∈ R, t ≥ 0. Then, there is an asymmetry between the real part and the
imaginary part of the flow in H,

d X z(t) = d B(t) + D − 1

2

X z(t)

(X z(t))2 + (Y z(t))2
dt, (2.2)

dY z(t) = − D − 1

2

Y z(t)

(X z(t))2 + (Y z(t))2
dt. (2.3)

Assume D > 1. Then as indicated by the minus sign in the RHS of (2.3), the flow is
downward in H. If the flow goes down and arrives at the real axis, the imaginary part
vanishes, Y z(t) = 0, then Eq. (2.2) is reduced to be the same equation as Eq. (1.60)
for the BES(D), which is now considered for R \ {0} = R+ ∪ R−. If D > Dc = 2,
by Theorem 1.1 (ii), the flow on R \ {0} is asymptotically outward, X z(t) → ±∞
as t → ∞. Therefore, the flow on H will be described as shown by Fig. 2.1. The
behavior of flow should be, however, more complicated when Dc = 3/2 < D < Dc

and 1 < D < Dc.
For z ∈ H \ {0}, t ≥ 0, let

gt(z) = Z z(t) − B(t). (2.4)

Since Bx (t) and Z z(t) are stochastic processes, they are considered as functions of
time t ≥ 0, where the initial values x and z are put as superscripts (B(t) ≡ B0(t)). On
the other hand, as explained below, gt is considered as a conformal transformation
from a domain Ht ⊂ H to H, and thus it is described as a function of z ∈ Ht ; gt(z),
where time t is a parameter and put as a subscript.

Then, Eq. (2.1) is rewritten for gt(z) as

∂gt (z)

∂t
= D − 1

2

1

gt(z) + B(t)
, t ≥ 0 (2.5)

http://dx.doi.org/10.1007/978-981-10-0275-5_1
http://dx.doi.org/10.1007/978-981-10-0275-5_1
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with the initial condition

g0(z) = z ∈ H \ {0}. (2.6)

For each z ∈ H \ {0}, set

T z = inf{t > 0 : Z z(t) = 0}
= inf{t > 0 : gt (z) + B(t) = 0}, (2.7)

and then the solution of Eq. (2.5) exists up to time T z . For t ≥ 0 we put

Ht = {z ∈ H : T z > t}. (2.8)

This ordinary differential equation (2.5) involving the BM is nothing but the
celebrated Schramm–Loewner evolution (SLE) [13, 17]. It is known that [13], for
each t ≥ 0, the solution gt(z) of (2.5) gives a unique conformal transformation from
Ht to H:

gt (z) : Ht 
→ H, conformal,

such that

gt(z) = z + a(t)

z
+ O

(

1

|z|2
)

, z → ∞

with

a(t) = D − 1

2
t.

The usual parameter for the SLE is given by κ > 0 [13, 17], which is related
to D by

κ = 4

D − 1
⇐⇒ D = 1 + 4

κ
. (2.9)

If we set ĝt(z) = √
κgt (z) in (2.5), we have the equation in the form [17]

∂ ĝt(z)

∂t
= 2

ĝt(z) − Ut
(2.10)

with

Ut = −√
κ B(t), t ≥ 0. (2.11)
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In the complex analysis, given a real function Ut of t ≥ 0, a one-parameter family
of conformal transformations (gt)t≥0 defined by the unique solution of (2.10) under
g0(z) ≡ z ∈ H is called the Loewner chain driven by (Ut )t≥0. Note that

(−√
κ B(t))t≥0

(law)= (B(κt))t≥0

by the left-right symmetry and the scaling property (1.4) of BM. The parameter
κ > 0 is the diffusion constant and it ‘speeds up’ (as κ ↑) and ‘slows down’ (as κ ↓)
the one-dimensional Brownian motion which drives the stochastic Loewner chain.
In the present book, however, we will discuss the SLE using the parameter D > 1,
since we would like to discuss it as a complexification of the D-dimensional Bessel
flow.

The inverse map

ft (z) ≡ g−1
t (t), : H 
→ Ht , t ≥ 0, (2.12)

is also conformal. The equation of ( ft (z))t≥0 is then obtained as (Exercise 2.1)

∂ ft (z)

∂t
= − D − 1

2

∂ ft (z)

∂z

1

z + B(t)
, t ≥ 0. (2.13)

We call this partial differential equation the backward SLE. For (2.10), the inverse
map ̂ft (z) ≡ ĝ−1

t (z) satisfies

∂ ̂ft (z)

∂t
= −∂ ̂ft (z)

∂z

2

z − Ut
, t ≥ 0 (2.14)

with (2.11).
By the definition of T z , (2.7), for each z ∈ H, Z z(t) = gt (z) + B(t) → 0

as t ↑ T z . (In this limit the Eq. (2.5) becomes ill-defined.) Set ζ = gt (z) + B(t)
provided t < T z ⇐⇒ z ∈ Ht . In this case gt(z) ∈ H, B(t) ∈ R, and hence ζ ∈ H.
Therefore, an approach Z z(t) → 0 corresponds to a limit ζ → 0, ζ ∈ H. Since
ζ = gt(z) + B(t) ⇐⇒ z = g−1

t (ζ − B(t)), the behavior of Z z(t) → 0 will be
represented by the limit

γ (t) ≡ lim
ζ→0,
ζ∈H

g−1
t (ζ − B(t)). (2.15)

Using properties of BM and the conformal transformation generalized by the
Loewner chain (2.5), Rohde and Schramm [16] proved that γ = γ [0,∞) ≡ {γ (t) :
t ∈ [0,∞)} ∈ H is a continuous path with probability 1 running from γ (0) = 0 to
γ (∞) = ∞. The path γ obtained from the SLE with the parameter D > 1 is called
the SLE(D) path. (See Exercise 2.2.)

http://dx.doi.org/10.1007/978-981-10-0275-5_1
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2.2 Schwarz–Christoffel Formula and Loewner Chain

In mathematical physics, the Schwarz–Christoffel formula may be more popular than
the Loewner chain, when conformal transformations are studied. In this section, we
discuss the Loewner chain from the viewpoint of the Schwarz–Christoffel formula
using a simple example of conformal transformation. We will use the Schwarz–
Christoffel transformation in Sect. 2.4, where Cardy’s formula in Carleson’s form is
given for an equilateral triangular domain.

Let Γ be a polygon having vertices w1, w2, . . . , wn and interior angles α1π, α2π ,
. . . , αnπ in the counterclockwise direction and D be the interior of Γ as shown in
Fig. 2.2. The following theorem is known as the Schwarz–Christoffel formula [8].

Theorem 2.1 Let ̂f be any conformal map from H to D with ̂f (xi ) = wi , 1 ≤ i ≤
n − 1, and ̂f (∞) = wn, where xi ∈ R, 1 ≤ i ≤ n − 1. Then

d ̂f (z)

dz
= C

n−1
∏

i=1

(z − xi )
αi −1, (2.16)

where C is a complex constant.

As an application of this formula, we consider a conformal map ̂f from H to the
upper-half complex plane with a straight slit starting from the origin: H \ {a slit}.
Let 0 < α < 1. As shown by Fig. 2.3, the angle between the slit and the positive

x1 x2 x3 w1

α1π
^

x4 w2

w3 w4
α2π

α3π
α4π

Fig. 2.2 The conformal map ̂f from H to D with ̂f (xi ) = wi , 1 ≤ i ≤ 4 and ̂f (∞) = w5 ≡ ∞

x1 0 x2 x3

2π

απ
(1-α)π

^

0

Fig. 2.3 The conformal map ̂f from H to H \ {a slit}, where the angle between the slit and the
positive direction of the real axis is απ , α ∈ (0, 1)
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direction of the real axis is supposed to be απ . Since the region H \ {a slit} can be
regarded as a polygon with the interior angles (1 −α)π on the left side of the origin,
2π around the tip of the slit, and απ on the right side of the origin, for any length of
a slit, the formula (2.16) gives

d ̂f (z)

dz
= C(z − x1)

−α(z − x2)(z − x3)
α−1, (2.17)

where x1 < 0, x1 < x2 < x3, and x3 > 0. We assume that ̂f (x1) = ̂f (x3) = 0 and
̂f (x2) gives the tip of the slit. If we impose the condition on the asymptotics as

̂f (z)

z
→ 1 as z → ∞,

the solution of (2.17) is uniquely determined as

̂f (z) = (z − x1)
1−α(z − x3)

α, (2.18)

where the following relation should be satisfied,

x3 − x2 = α(x3 − x1). (2.19)

Using (2.18), the Schwarz–Christoffel differential equation (2.17) is rewritten as

d ̂f (z)

dz

2

z − x2
= 2 ̂f (z)

(z − x1)(z − x3)
. (2.20)

We then introduce a parameter t ≥ 0 and assume xi = xi (t), i = 1, 2, 3, and put
̂ft (z) = (z − x1(t))1−α(z − x3(t))α . The differential of ̂ft with respect to t is given as

∂ ̂ft (z)

∂t
= − 2At (z)

(z − x1(t))(z − x3(t))
̂ft (z) (2.21)

with

At (z) = 1

2

{

(1 − α)(z − x3(t))
dx1(t)

dt
+ α(z − x1(t))

dx3(t)

dt

}

.

Let x1(t) = −2ctβ, x3(t) = (2/c)tβ with constants c, β > 0. Then we find that, if
and only if

c =
√

α

1 − α
, β = 1

2
, (2.22)
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At (z) becomes independent both of z and t ; At (z) ≡ 1. In this case (2.20) and (2.21)
give the equation

∂ ̂ft (z)

∂t
= −∂ ̂ft (z)

∂z

2

z − x2(t)
, t ≥ 0 (2.23)

with

x2(t) =
{√

κt, if α ≤ 1/2,

−√
κt, if α > 1/2,

(2.24)

where

κ = κ(α) = 4(1 − 2α)2

α(1 − α)
. (2.25)

Equation (2.23) can be regarded as the backward Loewner evolution (2.14) driven
by (2.24). The obtained conformal transformation

̂ft (z) =
(

z + 2

√

α

1 − α

√
t

)1−α
(

z − 2

√

1 − α

α

√
t

)α

(2.26)

is a solution of the Schwarz–Christoffel equation (2.17) and the backward Loewner
evolution (2.23). The corresponding Loewner path is a straight slit starting from the
origin growing upward in H with a tip

γ (t) = ̂ft (x2(t)) = 2

(

1 − α

α

)1/2−α

e
√−1απ

√
t, t ≥ 0. (2.27)

Note that the quadratic variation of (2.11) is

〈U, U 〉t = κ〈B, B〉t = κt, t ≥ 0.

It is identified with x2(t)2, if κ is given by (2.25). SLE will be considered as a
randomization of the time-dependent conformal map (2.26).

2.3 Three Phases of SLE

The dependence on D of the Bessel flow given by Theorems 1.1 and 1.2 is mapped
to the feature of the SLE(D) paths so that they exhibit three phases.

[Phase 1] When D ≥ Dc = 2 (i.e., 0 < κ ≤ κc ≡ 4), the SLE(D) path is a
simple curve, i.e., γ (s) �= γ (t) for any 0 ≤ s �= t < ∞, and γ (0,∞) ∈ H (i.e.,
γ (0,∞) ∩ R = ∅). In this phase,

http://dx.doi.org/10.1007/978-981-10-0275-5_1
http://dx.doi.org/10.1007/978-981-10-0275-5_1
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γ (t)

0

gt

gt(γ (t)) = −B(t)

(b)(a)

Fig. 2.4 a When D ≥ 2, the SLE(D) path is simple. b By gt , the SLE(D) path is erased from H.
The tip of the SLE(D) path, γ (t), is mapped to gt (γ (t)) = −B(t) ∈ R. The flow associated with
this conformal transformation is represented by arrows

γ (t) 0

gt

gt(γ (t)) = −B(t)

(b)(a)

t

Fig. 2.5 a When 3/2 < D < 2, the SLE(D) path can osculate the real axis. The SLE hull is denoted
by Kt . b The SLE hull is swallowed. This means that all the points in Kt are simultaneously mapped
to a single point −B(t) ∈ R, which is the image of the tip of SLE(D) path, γ (t)

Ht = H \ γ (0, t], t ≥ 0.

For each t ≥ 0, gt gives a map, which conformally erases a simple curve γ (0, t]
from H, and the image of the tip γ (t) of the SLE path is a BM, −B(t) ∈ R = ∂H,
as given by (2.15). As shown by Fig. 2.4, it implies that the ‘SLE flow’ in H is
downward in the vertical (imaginary-axis) direction and outward from the position
−B(t) in the horizontal (real-axis) direction. Since Z z(t) = gt(z)+ B(t) by (2.4),
if we shift this figure by B(t), we will have a similar picture to Fig. 2.1 for the
complexificated version of Bessel flow for D > 2.

[Phase 2] When Dc = 3/2 < D < Dc = 2 (i.e., κc = 4 < κ < κc ≡ 8),
the SLE(D) path can osculate the real axis, P(γ (0, t] ∩ R �= ∅) > 0,∀ t > 0.
Figure 2.5a illustrates the moment t > 0 such that the tip of SLE(D) path just
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γ (t)

0

gt

gt(γ (t))

(b)(a)

gs(γ (t))

(c)

gs(γ (s))

γ (s)

gs

gs
−1

Fig. 2.6 The event that the SLE(D) path osculates R is equivalent to the event that the SLE(D) path
makes a loop

osculates the real axis. The closed region encircled by the path γ (0, t) and the
line [γ (t), 0] ∈ R is called an SLE hull at time t and denoted by Kt . In this phase

Ht = H \ Kt , t ≥ 0.

That is, gt (z) is a map which erases conformally the SLE hull from H. We can
think that by this transformation all the points in Kt are simultaneously mapped
to a single point −B(t) ∈ R, which is the image of the tip γ (t). (We say that the
hull Kt is swallowed. See Fig. 2.5b.) By the definition (2.8), the moment when Kt

is swallowed is the time T z at which the equality Z z(t) = gt(z)+ B(t) = 0 holds
∀z ∈ Kt . (Then the RHS of (2.5) diverges and all the points z ∈ Kt are lost from
the domain of the map gt .) Theorem 1.2 (ii) states that, when Dc < D < Dc, two
BES(D)’s starting from different points 0 < x < y < ∞ can simultaneously return
to the origin. In the complexificated version, all Z z(t) starting from z ∈ Kt + B(t)
can arrive at the origin simultaneously (i.e., they are all swallowed).

Osculation of the SLE path withRmeans that the SLE path has loops. Figure 2.6a
shows the event that the SLE path makes a loop at time t > 0. The SLE hull Kt

consists of the closed region encircled by the loop and the segment of the SLE
path between the origin and the osculating point, and it is completely erased by
the conformal transformation gt from H as shown by Fig. 2.6b. Let 0 < s < t and
consider the map gs , which is the solution of (2.5) at time s. Assume that γ (s) is
located in the middle of the loop of γ [0, t] as shown by Fig. 2.6a. The segment
γ [0, s] of the SLE path is mapped by gs to a part ofR. Since γ (t) osculates a point
in γ [0, s], its image gs(γ (t)) should osculate the real axisR as shown by Fig. 2.6c.

http://dx.doi.org/10.1007/978-981-10-0275-5_1
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(a) (b) (c)

Fig. 2.7 Schematic pictures of SLE(D) paths in a Phase 1 (D ≥ Dc = 2 ⇔ 0 < κ ≤ κc = 4),
b Phase 2 (Dc = 3/2 < D < Dc = 2 ⇔ κc = 4 < κ < κc = 8), and c Phase 3 (1 < D ≤ Dc =
3/2 ⇔ κ ≥ κc = 8)

This is the same situation as the one shown in Fig. 2.5a. Since g−1
s is uniquely

determined from gs , the above argument can be reversed. Then the equivalence
between the osculation of the SLE path with R and the self-intersection of the
SLE path is concluded.

In this intermediate phase Dc < D < Dc,

SLE(D) path γ is self -intersecting, and
⋃

t>0

Kt = H but γ [0,∞) ∩ H �= H with probability 1.

[Phase 3] When 1 < D ≤ Dc = 3/2 (i.e., κ ≥ κc = 8), Theorem 1.2 (i) states
for the Bessel flow that the ordering T x < T y is conserved for any 0 < x < y. It
implies that in this phase the SLE path should be a space-filling curve:

γ [0,∞) = H.

(Otherwise, a swallowing of regions occurs, contradicting Theorem 1.2 (i).)

Figure 2.7 summarizes the three phases of SLE paths.
The SLE paths are fractal curves and their Hausdorff dimensions d(D)

H are deter-
mined by Beffara [2] as

d(D)
H =

⎧

⎪

⎨

⎪

⎩

2 if 1 < D < Dc = 3

2
,

2D − 1

2(D − 1)
if D ≥ Dc = 3

2
.

(2.28)

http://dx.doi.org/10.1007/978-981-10-0275-5_1
http://dx.doi.org/10.1007/978-981-10-0275-5_1
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We note that a reciprocity relation is found between D and d(D)
H in [Phase 1] and

[Phase 2],

(D − 1)(d(D)
H − 1) = 1

2
, D ≥ Dc = 3

2
. (2.29)

The stochastic Loewner chain (gt)t≥0 as well as the SLE path γ = (γ (t))t≥0

are functionals of BM. Therefore for each D > 1 we have a statistical ensemble of
random curves {γ (ω)} in the probability space (Ω,F , P) of BM. It is a statistical
ensemble of SLE paths {γ (ω)} in the upper half plane H, in which they start from
the origin: γ (0, ω) = 0, and approach infinity: limt→∞ γ (t, ω) = ∞. We write the
probability law of {γ (ω)} in such a geometrical setting as P(H;0,∞). In general, the
probability law of SLE paths {γ (ω)} in an simply connected domain D ⊂ C, D �= C

with γ (0, ω) = a ∈ ∂D and limt→∞ γ (t, ω) = b ∈ ∂D will be denoted by P(D;a,b).
The important consequence from the facts that BM is a strong Markov process with
independent increments and that gt gives a conformal transformation is the following
[13].

(SLE1) The SLE path γ has the following kind of stationary Markov property,

P(H;0,∞)[ · |γ (0, t]] = P(H\γ (0,t];γ (t),∞)[ · ], ∀t ≥ 0. (2.30)

This is called the domain Markov property.
(SLE2) Let f be a conformal transformation which maps H to a domain D =

f (H). Then

P(H;0,∞)[ · ] = P(D; f (0), f (∞))[ · ]. (2.31)

That is, the probability law of γ has conformal invariance. Here it should be
remarked that the dependence on the geometry of an event should be properly
mapped by f . For example, if the event of γ measured by P(H;0,∞) depends on a
domain A ⊂ H, the corresponding event of γ measured by P(D; f (0), f (∞)) should
be considered so that it depends on the domain f (A).

2.4 Cardy’s Formula

Let

T[1,∞) = inf{t > 0 : γ (t) ∈ [1,∞)}.

If D ≥ 2, the SLE(D) path is in [Phase 1] and γ does not touch the real axis R with
probability 1. Therefore

T[1,∞) = ∞, D ≥ 2 with probability 1.
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If 1 < D ≤ 3/2, the SLE(D) path is in [Phase 3], in which γ is a space-filling curve
in H. Then

γ (T[1,∞)) = 1 with probability 1.

When 3/2 < D < 2, which corresponds to [Phase 2], γ (T[1,∞)) has a nontrivial
distribution on [1,∞) as follows.

Proposition 2.1 Suppose γ is an SLE(D) path with 3/2 < D < 2. Then, for x > 0

P(H;0,∞)

[

γ (T[1,∞)) < 1 + x
]

= Γ (D − 1)

Γ (2D − 3)Γ (2 − D)

∫ x/(1+x)

0

du

(1 − u)D−1u2(2−D)
(2.32)

= Γ (D − 1)

Γ (2(D − 1))Γ (2 − D)

(

x

1 + x

)2D−3
F

(

2D − 3, D − 1, 2(D − 1); x

1 + x

)

.

(2.33)

Proof By (2.7) and (2.15), we see the equivalence between the events

{ω : γ (T[1,∞)) < 1 + x} ⇐⇒ {ω : T 1 < T 1+x }.

Then the probability is just obtained from (1.99) and (1.100) in Proposition 1.1 by
setting x → 1 and y → 1 + x . Then (2.32) and (2.33) are obtained. ��

When D = 5/3 (i.e., κ = 6), (2.32) gives

P(H;0,∞)

[

γ (5/3)(T[1,∞)) < 1 + x
]

= Γ (2/3)

Γ (1/3)2

∫ x/(1+x)

0

du

(1 − u)2/3u2/3
. (2.34)

This formula has the following meaning, and it is called Cardy’s formula [3, 4].1

Let � be a domain in C whose boundary is the equilateral triangle with vertices
w1 = 0, w2 = 1 and w3 = eπ

√−1/3. The conformal map f� from H to � satisfying
the conditions

f�(0) = w1, f�(1) = w2, f�(∞) = w3 (2.35)

is given by (Exercise 2.3)

f�(z) = Γ (2/3)

Γ (1/3)2

∫ z

0

du

u2/3(1 − u)2/3
, z ∈ H. (2.36)

1The original work by Cardy was given on a rectangular domain, but the statement is conformally
invariant [3, 4]. The formula becomes particularly easy for an equilateral triangular domain as
shown here, and is called Cardy’s formula in Carleson’s form [19]. See Sects. 6.7 and 6.8 in [13].

http://dx.doi.org/10.1007/978-981-10-0275-5_1
http://dx.doi.org/10.1007/978-981-10-0275-5_1
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Fig. 2.8 Red curve
describes an SLE(5/3) path,
γ (5/3) = (γ (5/3)(t))t≥0, in �
starting from w1 and
approaching w3 as t → ∞.
The point at which γ (5/3)

first touches the line segment
[w2, w3] is marked by a red
dot, which is given by
γ (5/3)(T[w2,w3]). In this case
γ (5/3)(T[w2,w3]) ∈ [w2, w]
for a given w ∈ [w2, w3]

w1 w2

w3

w

We take the branches in the integrand in (2.36) so that (Exercise 2.4)

f�(−x) = eπ
√−1/3 Γ (2/3)

Γ (1/3)2

∫ x/(1+x)

0

du

u2/3(1 − u)2/3 , 0 < x < ∞, (2.37)

f�(x) = Γ (2/3)

Γ (1/3)2

∫ x

0

du

u2/3(1 − u)2/3 , 0 ≤ x ≤ 1, (2.38)

f�(1 + x) = 1 + e2π
√−1/3 Γ (2/3)

Γ (1/3)2

∫ x/(1+x)

0

du

u2/3(1 − u)2/3 , 0 < x < ∞. (2.39)

Now we consider the SLE(5/3) path, γ (5/3)(t), t ∈ [0,∞) in � starting from w1

and approaching w3 as t → ∞. Denote the line segment connecting w2 and w3 by
[w2, w3]. Let

T[w2,w3] = inf{t > 0 : γ (5/3)(t) ∈ [w2, w3]}.

See Fig. 2.8. For w ∈ [w2, w3], we write the line segment between w2 and w on
[w2, w3] as [w2, w] and the distance between w2 and w as |w−w2|. By the conformal
invariance (SLE2) of SLE(D),

P(�;w1,w3)

[

γ (5/3)(T[w2,w3]) ∈ [w2, f�(1 + x)]
]

= P(H;0,∞)

[

γ (5/3)(T[1,∞)) < 1 + x
]

.
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Since (2.35) and (2.39) hold, the RHS given by (2.34) is equal to

f�(1 + x) − w2

e2π
√−1/3

= | f�(1 + x) − w2|.

Then we can conclude the following.

Proposition 2.2 Let γ (5/3) be the SLE(5/3) path in � from w1 to w3. Then the distri-
bution of γ (5/3)(T[w2,w3]) is uniform on [w2, w3]. That is,

P(�;w1,w3)

[

γ (5/3)(T[w2,w3]) ∈ [w2, w]
]

= |w − w2| for any point w ∈ [w2, w3].
(2.40)

2.5 SLE and Statistical Mechanics Models

The highlight of the theory of SLE would be that, if the value of D is properly chosen,
the probability law of γ realizes that of the scaling limit of important lattice paths
studied in a statistical mechanics model exhibiting critical phenomena or describing
interesting fractal geometry defined on an infinite discrete lattice.

The following is a list of the correspondence (up to a conjecture) between the
SLE(D) paths with specified values of D, and the names of lattice paths (with the
names of models studied in statistical mechanics and fractal physics), whose scaling
limits are described by the SLE(D) paths.

SLE(3/2) ⇐⇒ random Peano curve (uniform spanning tree) [14]
SLE(5/3) ⇐⇒ percolation exploration process (critical percolation model) [19]
SLE(7/4) ⇐⇒ FK–Ising interface (critical Ising model) [6, 20]

SLE(2) ⇐⇒ random contour curve (Gaussian free surface model) [18]
SLE(7/3) ⇐⇒ Ising interface (critical Ising model) [6, 7]
SLE(5/2) ⇐⇒ self-avoiding walk [conjecture]

SLE(3) ⇐⇒ loop-erased random walk [14]

It is obvious from (2.9) that D = 3/2, 5/3, 7/4, 2, 7/3, 5/2, and 3 correspond to
κ = 8, 6, 16/3, 4, 3, 8/3, and 2, respectively.

The SLE(D) path has the following special property if and only if D = 5/3: for
any A ⊂ H such that 0 /∈ ∂A,∞ /∈ ∂A,

P(H;0,∞)[ · , γ (5/3)(0, t] ∩ A = ∅] = P(H\A;0,∞)[ · ], t ≥ 0.

This is called the locality property. The lattice path called the percolation exploration
process {γ per} defined on the Bernoulli site percolation model [11, 12] studied in
statistical mechanics has this property. Cardy conjectured that the scaling limit of
{γ per} obtained from the critical percolation model satisfies (2.40) [3]. It was proved
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by Smirnov [19] for the critical site percolation model on a triangular lattice by
showing the conformal invariance of its scaling limit.

The SLE(D) path has another special property called the restriction property, if
and only if D = 5/2 (κ = 8/3) [13]: if D ⊂ H, 0 ∈ ∂D,∞ ∈ ∂D, then

P(H;0,∞)[ · , γ (5/2)(0,∞) ⊂ D] = P(D;0,∞)[ · ].

We can see that the self-avoiding walk (SAW) [15], which is defined on a lattice
and has been studied as a model for polymers, has this property. The conformal
invariance of the scaling limit of SAW is, however, not yet proved. If this holds true,
then it would imply the equivalence in probability law between the scaling limit of
SAW and the SLE(5/2) path. See [9, 10] for more details and other conjectures.

The relationship between the SLE and the conformal field theory (CFT) is dis-
cussed in [1, 5]. The central charge c and the scaling dimension h of the CFT are
given as functions of D as

c = (3D − 5)(5 − 2D)

D − 1
, h = 3D − 5

4
, D > 1. (2.41)

Exercises

2.1 Derive (2.13) from (2.5).

2.2 Consider the deterministic case where B(t) ≡ 0 in (2.5) and

∂gt(z)

∂t
= D − 1

2

1

gt(z)
, t ≥ 0. (2.42)

(i) Solve the equation (2.42) under the initial condition (2.6).
(ii) Determine γ (t), t ≥ 0 by setting −B(t) ≡ 0 in (2.15).

2.3 As an application of the Schwarz–Christoffel formula given by Theorem 2.1,
prove that (2.36) is the conformal map from H to � satisfying (2.35).

2.4 Derive the expressions (2.37) and (2.39) from (2.36).

References

1. Bauer, M., Bernard, D.: 2D growth processes: SLE and Loewner chains. Phys. Rep. 432,
115–221 (2006)

2. Beffara, V.: The dimension of the SLE curves. Ann. Probab. 36, 1421–1452 (2008)
3. Cardy, J.: Critical percolation in finite geometries. J. Phys. A 25, L201–L206 (1992)
4. Cardy, J.: Lectures on conformal invariance and percolation. (2001). arXiv:math-ph/0103018

http://arxiv.org/abs/math-ph/0103018


56 2 Schramm–Loewner Evolution (SLE)

5. Cardy, J.: SLE for theoretical physicists. Ann. Phys. 318, 81–118 (2005)
6. Chelkak, D., Duminil-Copin, H., Hongler, C., Kemppainen, A., Smirnov, S.: Convergence of

Ising interfaces to Schramm’s SLE curves. C. R. Acad. Sci. Paris, Sér. I Math. 352, 157–161
(2014)

7. Chelkak, D., Smirnov, S.: Universality in the 2D Ising model and conformal invariance of
fermionic observables. Inv. Math. 189, 515–580 (2012)

8. Driscoll, T.A., Trefethen, L.N.: Schwarz-Christoffel Mapping. Cambridge University Press,
New York (2002)

9. Duminil-Copin, H., Smirnov, S.: Conformal invariance in lattice models. In Probability and
Statistical Physics in Two and More Dimensions. Proceedings of the Clay Mathematics Insti-
tute Summer School and XIV Brazilian School of Probability, Buzios, Brazil, July 11-August
7, 2010, D. Ellwood, C. Newman, V. Sidoravicius, and W. Werner (editors), Clay Math.
Inst./Amer. Math. Soc. (2011)

10. Duminil-Copin, H.: Parafermionic Observables and their Applications to Planar Statistical
Physics Models. Ensaios Matemáticos 25, pp. 1–371, Brazilian Math. Soc. (2013)

11. Grimmett, G.: Percolation, 2nd edn. Springer, Berlin (1999)
12. Grimmett, G.: The Random-Cluster Model. Springer, Berlin (2006)
13. Lawler, G.F.: Conformally Invariant Processes in the Plane. American Mathematical Society,

Providence (2005)
14. Lawler, G.F., Schramm, O., Werner, W.: Conformal invariance of planar loop-erased random

walks and uniform spanning trees. Ann. Probab. 32, 939–995 (2004)
15. Madras, N., Slade, G.: The Self-Avoiding Walk. Birkhäuser, Boston (1993)
16. Rohde, S., Schramm, O.: Basic properties of SLE. Ann. Math. 161, 883–924 (2005)
17. Schramm, O.: Scaling limits of loop-erased random walks and uniform spanning trees. Israel

J. Math. 118, 221–228 (2000)
18. Schramm, O., Sheffield, S.: The harmonic explorer and its convergence to SLE(4). Ann. Probab.

33, 2127–2148 (2005)
19. Smirnov, S.: Critical percolation in the plane: conformal invariance, Cardy’s formula, scaling

limits. C. R. Acad. Sci. Paris, Sér. I Math. 333, 239–244 (2001)
20. Smirnov, S.: Conformal invariance in random cluster models. I. Holomorphic fermions in the

Ising model. Ann. Math. 172, 1435–1467 (2010)



Chapter 3
Dyson Model

Abstract Dyson’s Brownian motion model is a one-parameter (β > 0) family of
interacting Brownian motions in one dimension. A repulsive force acts between any
pair of particles, whose strength is given by the inverse of distance of particles multi-
plied by β/2. We regard this model as a multivariate extension of the D-dimensional
Bessel process with D = β + 1. We concentrate on the special case where β = 2
and call it simply the Dyson model, which inherits the following two aspects from
the three-dimensional Bessel process: the Dyson model is the eigenvalue process of
a Hermitian-matrix-valued Brownian motion (Aspect 1), and it is also constructed as
a system of Brownian motions conditioned never to collide with each other (Aspect
2). The notion of determinantal martingale representation is introduced, which leads
Aspect 2 into the determinantal property in the sense that all spatio-temporal corre-
lation functions are given by determinants controlled by a single function called the
correlation kernel. This strong solvability enables us to construct the Dyson model
with an infinite number of particles both in equilibrium and in nonequilibrium. The
Tracy–Widom distribution is discussed for the Dyson model.

3.1 Multivariate Extension of Bessel Process

Here we consider the stochastic motion of two particles (X1(t), X2(t)) in one dimen-
sion R satisfying the following SDEs,

d X1(t) = d B1(t)+ β

2

dt

X1(t)− X2(t)
,

d X2(t) = d B2(t)+ β

2

dt

X2(t)− X1(t)
, (3.1)

with the initial condition x1 = X1(0) < x2 = X2(0) for 0 ≤ t < inf{t > 0 :
X1(t) = X2(t)}, where B1(t) and B2(t), t ≥ 0 are independent BMs and β > 0 is
the ‘coupling constant’ of the two particles. The second terms in (3.1) represent the
repulsive force acting between two particles, which is proportional to the inverse of
the distance between them, X2(t)− X1(t). Since it is a central force (i.e., depending

© The Author(s) 2015
M. Katori, Bessel Processes, Schramm–Loewner Evolution, and the Dyson Model,
SpringerBriefs in Mathematical Physics 11, DOI 10.1007/978-981-10-0275-5_3
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only on distance, and thus symmetric for two particles), the ‘center of mass’ Xc(t) ≡
(X2(t) + X1(t))/2 is just a time change of BM; we can calculate the quadratic
variation as d〈Xc, Xc〉t = 〈d Xc, d Xc〉t = 〈(d B1 + d B2)/2, (d B1 + d B2)/2〉t =
dt/2, since d〈B1, B1〉t = 〈d B1, d B1〉t = dt , d〈B2, B2〉t = 〈d B2, d B2〉t = dt and
d〈B1, B2〉t = 〈d B1, d B2〉t = 0. Then

(Xc(t))t≥0
(law)=

(

1√
2

B(t)

)

t≥0
(law)= (B(t/2))t≥0,

where B(t) is a BM independent from B1(t) and B2(t). On the other hand, if we
define the relative coordinate by X r(t) ≡ (X2(t)− X1(t))/

√
2, it satisfies the SDE

d X r(t) = d˜B(t)+ β

2

dt

X r(t)
(3.2)

for 0 < t < inf{t > 0 : X r(t) = 0}, where ˜B(t), t ≥ 0 is a BM independent from
B1(t), B2(t), B(t), t ≥ 0 (Exercise 3.1). It is nothing but the SDE for BES(D) with
D = β + 1:

(X r(t))t≥0
(law)= (R(t))t≥0, D = β + 1.

Dyson [38] introduced N -particle systems of interacting Brownian motions in R
as a solution X(t) = (X1(t), X2(t), . . . , X N (t)) of the following system of SDEs:
with β > 0 and the condition x1 < x2 < · · · < xN for initial positions xi =
Xi (0), 1 ≤ i ≤ N ,

d Xi (t) = d Bi (t)+ β

2

∑

1≤ j≤N ,
j �=i

dt

Xi (t)− X j (t)
, t ∈ [0, T x), 1 ≤ i ≤ N , (3.3)

where {Bi (t)}N
i=1, t ≥ 0 are independent BMs and

T x
i j = inf{t > 0 : Xi (t) = X j (t)}, 1 ≤ i < j ≤ N ,

T x = min
1≤i< j≤N

T x
i j .

It is called Dyson’s Brownian motion model with parameter β [3, 5, 45, 101, 133].
As shown above, in the case where N = 2, Dyson’s BM model is a composition

of a BM (the center of mass) and a BES(β+1) (the relative coordinate). In this sense,
Dyson’s BM model can be regarded as a multivariate (multidimensional) extension
of BES(β+1), β > 0.
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We can prove that, for any x ∈ R
N with x1 < x2 < · · · < xN , T x < ∞ if

β < 1, and T x = ∞ if β ≥ 1 [52, 117]. The critical value βc = 1 corresponds to
Dc = βc + 1 = 2 of BES(D).1

In [6, 7] Dyson’s BMmodel and the related processes are discussed as the special
cases of the Dunkl processes (see, for instance, [32, 45]).

In particular, we study the special case of Dyson’s BM model with parameter
β = 2. We call this special case simply the Dyson model [51, 63, 105, 127]. As
shown above, the case where β = 2 corresponds to a BES(D) with D = 3. In
Chap.1, we have shown that BES(3) has two aspects: [Aspect 1] as a radial coordinate
of three-dimensional Brownian motion, which was used to define the Bessel process
in Sect. 1.8, and [Aspect 2] as a one-dimensional Brownian motion conditioned to
stay positive as explained in Sect. 1.10. We show that the Dyson model inherits these
two aspects from BES(3) [86].

3.2 Dyson Model as Eigenvalue Process

Dyson introduced the processes (3.3)withβ = 1, 2, and 4 as the eigenvalue processes
ofmatrix-valued stochastic processes in order to realize the point processes in equilib-
riumcalled theGaussian orthogonal ensemble (GOE), theGaussian unitary ensemble
(GUE), and the Gaussian symplectic ensemble (GSE) [3, 5, 38, 45, 101, 133].

Precisely speaking, Dyson considered the Ornstein–Uhlenbeck processes such
that as stationary states they realize the eigenvalue distributions of random matrices
in GOE, GUE, and GSE. Here we consider matrix-valued Brownian motions instead
of the Ornstein–Uhlenbeck processes. Then the variances increase in proportion to
time t ≥ 0. In the following, wewill use the stochastic calculus introduced in Chap.1
in order to explain the Dysonmodel, but we do not assume any knowledge of random
matrix theory.

For β = 2 with given N ∈ N, we prepare N -tuples of BMs {Bxi
ii (t)}N

i=1, t ≥
0, each of which starts from xi ∈ R, and N (N − 1)/2-tuples of pairs of BMs
{Bi j (t), ˜Bi j (t)}1≤i< j≤N , t ≥ 0, starting from the origin. Here, there is a total of
N + 2 × N (N − 1)/2 = N 2 BMs, each of them independent from the rest. Then
consider an N × N Hermitian-matrix-valued Brownian motion,

Bx(t) =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

B
x1
11 (t)

B12(t)+
√−1˜B12(t)√
2

· · · B1N (t)+
√−1˜B1N (t)√
2

B12(t)−
√−1˜B12(t)√
2

B
x2
22 (t) · · · B2N (t)+

√−1˜B2N (t)√
2

· · · · · · · · · · · ·
B1N (t)−

√−1˜B1N (t)√
2

B2N (t)−
√−1˜B2N (t)√
2

· · · B
xN
N N (t)

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

. (3.4)

1The existence of a strong and pathwise unique noncolliding solution of SDEs (3.3) for general
initial conditions x1 ≤ x2 ≤ · · · ≤ xN was conjectured by Rogers and Shi [117]. It was proved
by Cépa and Lépingle [27] using multivalued SDE theory and by Graczyk and Małecki [53] by
classical Itô calculus. See also [33].

http://dx.doi.org/10.1007/978-981-10-0275-5_1
http://dx.doi.org/10.1007/978-981-10-0275-5_1
http://dx.doi.org/10.1007/978-981-10-0275-5_1
http://dx.doi.org/10.1007/978-981-10-0275-5_1
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Remember that when we introduced BES(D) in Sect. 1.8, we considered the
D-dimensional vector-valued Brownianmotion inRN , (1.56), by preparing D-tuples
of independent BMs for its elements. Here we consider the space of N×N Hermitian
matrices denoted byH (N ). Since the dimension of this space is dimH (N ) = N 2,
we need N 2 independent BMs for elements to describe a Brownian motion in this
space H (N ). Hence we can regard the process Bx(t), t ≥ 0 defined by (3.4) as a
‘Brownian motion inH (N )’. By definition, the initial state of this Brownian motion
is the diagonal matrix

Bx(0) = diag(x1, x2, . . . , xN ). (3.5)

We assume x1 ≤ x2 ≤ · · · ≤ xN .
In the usual Gaussian random matrix ensembles, the mean is assumed to be zero.

The corresponding matrix-valued BMs are then considered to be started from a zero
matrix, i.e., xi = 0, 1 ≤ i ≤ N in (3.5). In random matrix theory, the general
case where means are non-zero (i.e., xi �= 0) is discussed with the terminology
‘random matrices in an external source’ [11, 16, 22, 145]. From the viewpoint of
stochastic processes, imposing external sources to break the symmetry of the system
corresponds to changing the initial state.

Corresponding to calculating the absolute value (1.57) of Bx(t), by which BES(D)

was introduced, here we calculate the eigenvalues of Bx(t). For any t ≥ 0, there is a
family of N × N unitary matrices {U(t)} which diagonalize Bx(t),

U∗(t)Bx(t)U(t) = diag(λ1(t), . . . , λN (t)) ≡ Λ(t), t ≥ 0.

Here for a matrix M = (Mi j )1≤i, j≤N , we define its Hermitian conjugate by M∗ =
(M ji )1≤i, j≤N , where z denotes the complex conjugate of z ∈ C. Consider a subspace
of RN defined by

W
A
N ≡ {x = (x1, x2, . . . , xN ) ∈ R

N : x1 < x2 < · · · < xN }, (3.6)

which is called the Weyl chamber of type AN−1 in representation theory. If we impose
the condition (λi (t))N

i=1 ∈W
A
N , U(t) is uniquely determined at each time t ≥ 0.

The main theorem of this section is the following.

Theorem 3.1 The eigenvalue process (λi (t))N
i=1, t ≥ 0 of the Hermitian-matrix-

valued Brownian motion (3.4) started at (3.5) satisfies the SDEs,

dλi (t) = d Bxi
i (t)+

∑

1≤ j≤N ,
j �=i

dt

λi (t)− λ j (t)
, t ≥ 0, 1 ≤ i ≤ N , (3.7)

where (Bxi
i (t))

N
i=1, t ≥ 0 are independent BMs different from the N 2-tuples of BMs

used to define Bx(t) in (3.4). That is, this process realizes the Dyson model.

http://dx.doi.org/10.1007/978-981-10-0275-5_1
http://dx.doi.org/10.1007/978-981-10-0275-5_1
http://dx.doi.org/10.1007/978-981-10-0275-5_1
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The correspondence between BES(3) and the Dyson model in terms of equivalent
processes is summarized as follows.

[Aspect 1]
radial coordinate of

BES(3) ⇐⇒ D = 3 vector-valued
Brownian motion

the Dyson model eigenvalue process of
with N particles ⇐⇒ N × N Hermitian-matrix-valued

Brownian motion

Dyson derived (3.7) by applying the perturbation theory in quantum mechanics
[38]. Since (λi (t))N

i=1, t ≥ 0 are functionals of {Bxi
ii (t), Bi j (t), ˜Bi j (t)}1≤i< j≤N , t ≥

0, we can use Itô’s formula to prove Theorem 3.1. A key point to prove the theorem is
applying Itô’s rule for differentiating the product of matrix-valued semimartingales
[5, 23, 24, 28, 52, 80, 117, 133]: If X(t) = (Xi j (t)) and Y(t) = (Yi j (t)) are N × N
matrices with semimartingale elements, then

d(X∗(t)Y(t)) = dX∗(t)Y(t)+ X∗(t)dY(t)+ 〈dX∗, dY〉t , t ≥ 0, (3.8)

where 〈dX∗, dY〉t denotes an N × N matrix-valued process, whose (i, j)th element
is given by the finite-variation process

∑

k〈d Xki , dYk j 〉t , 1 ≤ i, j ≤ N .
In order to demonstrate that Itô’s rule for matrix-valued semimartingales is

very powerful, we consider the following general setting so that the above result
is derived as a special case [80]. Let H(t) = (Hi j (t))1≤i, j≤N , t ≥ 0 be an
N × N Hermitian-matrix-valued diffusion process, where the diagonal elements
H xi

ii (t), 1 ≤ i ≤ N , t ≥ 0 are real-valued continuous semimartingales starting
from xi ∈ R and the off-diagonal elements Hi j (t), 1 ≤ i < j ≤ N , t ≥ 0 are
complex-valued continuous semimartingales starting from the origin. The diagonal-
matrix-valued processΛ(t) = diag(λ1(t), . . . , λN (t)) and the unitary-matrix-valued
process U(t) = (Ui j (t)), t ≥ 0 are defined so that they satisfy

U∗(t)H(t)U(t) = Λ(t), t ≥ 0. (3.9)

Define Γi j (t), 1 ≤ i, j ≤ N , by

Γi j (t)dt = 〈

(U∗dHU)i j , (U∗dHU) j i
〉

t
, (3.10)

where dH(t) = (d Hi j (t))1≤i, j≤N . The finite-variation part of (U∗(t)dH(t)U(t))i i ,
t ≥ 0 is denoted by dΥi (t), t ≥ 0 for 1 ≤ i ≤ N .

Theorem 3.2 The eigenvalue process (λi (t))N
i=1, t ≥ 0 starting from x ∈ W

A
N

satisfies the SDEs,
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dλi (t) = d Mi (t)+ d Ji (t), t ≥ 0, 1 ≤ i ≤ N , (3.11)

where (Mi (t))1≤i≤N , t ≥ 0 are local martingales with quadratic variations

〈Mi , Mi 〉t =
∫ t

0
Γi i (s)ds, t ≥ 0, 1 ≤ i ≤ N , (3.12)

and (Ji (t))1≤i≤N , t ≥ 0 are the finite-variation processes satisfying

d Ji (t) =
N

∑

j=1

1

λi (t)− λ j (t)
1(λi (t)�=λ j (t))Γi j (t)dt + dΥi (t), t ≥ 0, 1 ≤ i ≤ N .

(3.13)

Before giving the proof ofTheorem3.2,we explain howwecan concludeTheorem
3.1 from this general theorem, and give a remark.

Proof of Theorem 3.1. When H(t), t ≥ 0 is the Hermitian-matrix-valued Brownian
motion, Bx(t), t ≥ 0 as given by (3.4), we have

〈d Hi j , d Hk�〉t = δi�δ jkdt, 1 ≤ i, j, k, � ≤ N , t ≥ 0, (3.14)

and (3.10) gives Γi j (t) ≡ 1, 1 ≤ i, j ≤ N (Exercise 3.2). Moreover, we see that
dΥi (t) ≡ 0, t ≥ 0, 1 ≤ i ≤ N in this case. Then we obtain (3.7). ��
Remark 3.1 In general, equations (3.11), (3.12) and (3.13) for the eigenvalue process
(λi (t))N

i=1, t ≥ 0 depend on the unitary-matrix-valued process U(t), t ≥ 0 through
(Γi j (t))1≤i, j≤N and (Υi (t))1≤i≤N , t ≥ 0. The equations are written in the form

dλi (t) =
∑

j

αi j

(

t, (λk(t))
N
k=1

)

d B j (t)+ βi

(

t, (λk(t))
N
k=1

)

dt, t ≥ 0, 1 ≤ i ≤ N .

(3.15)
Even if the coefficientsαi j andβi are functions not only of (λk(t))N

k=1 but also of other
variables, they are generally called SDEs in [58] (see Definition1.1 with Eq. (1.1) in
Chapter4). In the special case in which these coefficients only depend on (λk(t))N

k=1,
the equations are given in the form

dλi (t) =
∑

j

σi j

(

(λk(t))
N
k=1

)

d B j (t)+ bi

(

(λk(t))
N
k=1

)

dt, t ≥ 0, 1 ≤ i ≤ N ,

(3.16)

and they are said to be of the Markovian type (see Eq. (2.11) in Chap.4 of [58]). The
condition that the SDEs of the eigenvalue processes be reduced to the Markovian
type means that the Hermitian-matrix-valued process H(t), t ≥ 0 must be unitary
invariant in distribution [80]. By virtue of the properties of Brownian motions, the
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Hermitian-matrix-valued Brownian motion B(t), t ≥ 0 defined by (3.4) is unitary
invariant in distribution, and thus the obtained SDEs of the Dyson model are of the
Markovian type as (3.7).

The rest of this section is devoted to the proof of Theorem 3.2.

Proof of Theorem 3.2. Define a matrix-valued processA(t) = (Ai j (t))1≤i, j≤N , t ≥ 0
as a solution of the SDE

dA(t) = U∗(t)dU(t)+ 1

2
〈dU∗, dU〉t , t ≥ 0 (3.17)

under the initial condition A(0) = 0. Since U∗(t)U(t) = I for each time t , where I
denotes the N × N unit matrix, Itô’s rule (3.8) gives

0 = d(U∗(t)U(t)) = dU∗(t)U(t)+ U∗(t)dU(t)+ 〈dU∗, dU〉t .

Then the Hermitian conjugate of (3.17) is written as

dA∗(t) = dU∗(t)U(t)+ 1

2
〈dU∗, dU〉t

= −U∗(t)dU(t)− 1

2
〈dU∗, dU〉t

= −dA(t),

that is, dA(t) is anti-Hermitian matrix-valued. We also see that

− 〈dA, dA〉t = 〈dU∗U,U∗dU〉t = 〈dU∗, dU〉t , (3.18)

since 〈dU∗U,U∗dU〉t = 〈dU∗,UU∗dU〉t and U(t)U∗(t) = I. Then by multiplying
U(t) from the left to (3.17), we have

dU(t) = U(t)
(

dA(t)+ 1

2
〈dA, dA〉t

)

. (3.19)

Applying Itô’s rule (3.8) to (3.9), we have

dΛ(t) = dU∗(t)H(t)U(t)+ U∗(t)dH(t)U(t)+ U∗(t)H(t)dU(t)

+ 〈dU∗, dHU〉t + 〈dU∗,HdU〉t + 〈U∗dH, dU〉t
= U∗(t)dH(t)U(t)+

{

Λ(t)U∗(t)dU(t)+ (Λ(t)U∗(t)dU(t))∗
}

+
{

〈U∗dH, dU〉t + 〈U∗dH, dU〉∗t
}

+ 〈dU∗,HdU〉t .
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Using (3.19), the terms in the RHS are rewritten as

Λ(t)U∗(t)dU(t) = Λ(t)dA(t)+ 1

2
Λ(t)〈dA, dA〉t ,

〈U∗dH, dU〉t = 〈U∗dH,UdA〉t ,

and

〈dU∗,HdU〉t = 〈dA∗,U∗HUdA〉t = 〈dA∗,ΛdA〉t .

Then we have the equality

dΛ(t) = U∗(t)dH(t)U(t)+Λ(t)dA(t)+ (Λ(t)dA(t))∗

+ 1

2
Λ(t)〈dA, dA〉t + 1

2
(Λ(t)〈dA, dA〉t )∗

+ 〈U∗dH,UdA〉t + 〈U∗dH,UdA〉∗t + 〈dA∗,ΛdA〉t . (3.20)

The i th diagonal element of (3.20) gives

dλi (t) =
∑

k,�

Uki (t)U�i (t)d Hk�(t)

+ 2λi (t)dγi i (t)+ dφi i (t)+ dφi i (t)+ dψi i (t), 1 ≤ i ≤ N , (3.21)

and the (i, j)th off-diagonal element of (3.20) gives

0 =
∑

k,�

Uki (t)U�j (t)d Hk�(t)+ λi (t)d Ai j (t)+ λ j (t)d A ji (t)+ λi (t)dγi j (t)

+ λ j (t)dγ j i (t)+ dφi j (t)+ dφ j i (t)+ dψi j (t), 1 ≤ i < j ≤ N , (3.22)

where we have used the abbreviations

dγi j (t) ≡ 1

2
(〈dA, dA〉t )i j = 1

2

∑

k

〈d Aik, d Ak j 〉t = dγ j i (t),

dφi j (t) ≡ (〈U∗dH,UdA〉t )i j =
∑

k,�,m

Uki (t)U�m(t)〈d Hk�, d Amj 〉t , (3.23)

dψi j (t) ≡ (〈dA∗,ΛdA〉t )i j

=
∑

k

λk(t)〈d Aki , d Ak j 〉t = −
∑

k

λk(t)〈d Aik, d Ak j 〉t .

Since (γi j (t))1≤i, j≤N , (φi j (t))1≤i, j≤N , (ψi j (t))1≤i, j≤N , t ≥ 0, are finite-variation
processes, (3.21) gives
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d〈Mi , Mi 〉t ≡ 〈dλi , dλi 〉t =
〈

(U∗dHU)i i , (U∗dHU)i i
〉

t

=
∑

k,�

∑

m,n

Uki (t)U�i (t)Umi (t)Uni (t)〈d Hk�, d Hmn〉t .

By the definition (3.10) of Γi j (t), this proves (3.12).
On the other hand, since dA(t) is anti-Hermitian-valued, (3.22) gives

(λ j (t)− λi (t))d Ai j (t) =
∑

k,�

Uki (t)U�j (t)d Hk�(t)

+ (λi (t)+ λ j (t))dγi j (t)+ dφi j (t)+ dφ j i (t)+ dψi j (t).

This implies

∑

k,�

Uki (t)U�j (t)d Hk�(t) = (λ j (t)− λi (t))d Ai j (t)+ (finite-variation processes),

(3.24)
and we can rewrite (3.23) as

dφi j (t) =
∑

k,�,m

Uki (t)U�m(t)〈d Hk�, d Amj 〉t

=
∑

k

(λk(t)− λi (t))〈d Aik, d Ak j 〉t .

Then the second line of the RHS of (3.21) is written as

2λi (t)dγi i (t)+ dφi i (t)+ dφi i (t)+ dψi i (t)

=
∑

j

{

λi (t)+ 2(λ j (t)− λi (t))− λ j (t)

}

〈d Ai j , d A ji 〉t

=
∑

j

(λ j (t)− λi (t))〈d Ai j , d A ji 〉t

=
∑

j

1

λi (t)− λ j (t)
1(λi (t)�=λ j (t))

∑

k,�,m,n

Uki (t)U�j (t)Umj (t)Uni (t)〈d Hk�, d Hmn〉t ,

where (3.24) was used in the last equality. By the definitions of Γi j (t) and dΥi (t),
the finite-variation part of (3.21) is equal to (3.13). The proof is completed. ��

3.3 Dyson Model as Noncolliding Brownian Motion

In this section, we extend the formula (1.77) for BES(3) to the Dyson model.

http://dx.doi.org/10.1007/978-981-10-0275-5_1
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First we rewrite (1.78) as follows. Consider a set of two operations, identity (σ1 =
id) and reflection (σ2 = ref), such that for x ∈ R, σ1(x) = x and σ2(x) = −x , and
signatures are given as sgn(σ1) = 1 and sgn(σ2) = −1, respectively. Then we have

qabs(t, y|x) =
∑

σ∈{id,ref}
sgn(σ )p(t, y|σ(x))

=
∑

σ∈{id,ref}
sgn(σ )p(t, σ (y)|x), x, y ∈ R, t ≥ 0. (3.25)

Then we consider the set of all permutations of N indices {1, 2, . . . , N }, which is
denoted by SN , and put the following multivariate function

∑

σ∈SN

sgn(σ )
N
∏

i=1
p(t, yσ(i)|xi ) = det

1≤i, j≤N
[p(t, yi |x j )] (3.26)

of x = (x1, . . . , xN ) ∈W
A
N and y = (y1, . . . , yN ) ∈W

A
N with a parameter t ≥ 0.

As a multidimensional extension of the absorbing Brownian motion in R+ with
an absorbing wall at x = 0, we consider the absorbing Brownian motion Bx(t) =
(Bx1

1 (t), . . . , BxN
N (t)) in W

A
N . The starting point x is assumed to be in W

A
N . We

put absorbing walls at the boundaries of WA
N . When Bx hits any of the walls, it

is absorbed and the process is stopped. In other words, the Brownian motion Bx

started at x ∈ W
A
N is killed when it arrives at the boundaries of WA

N . We define
qN (t, y|x) for x, y ∈ W

A
N , t ≥ 0 as the probability density for the event such that

this absorbing Brownian motion starting from x at time t = 0 ‘survives’ up to time
t and arrives at y at the time t . Note that the boundaries of WA

N are the hyperplanes
xi = x j , 1 ≤ i < j ≤ N in R

N . Then, if we interpret x ∈ R
N as a configuration of

N particles on a line R, this absorbing Brownian motion in W
A
N can be regarded as

an N -particle system such that each particle executes BM when distances between
neighboring particles are positive, but when any two neighboring particles collide,
the process is stopped. This process is a continuum limit (diffusion scaling limit)
[78, 79] of the vicious walker model on Z introduced by Fisher [43] (see also [9, 10,
26, 30, 39, 41, 64, 74, 91]).

The following is known as the Karlin–McGregor formula [67]. See also [61, 88,
121]. Note that the discrete analogue is known as the Lindström–Gessel–Viennot
formula [50, 93].

Lemma 3.1 The transition probability density of the absorbing Brownian motion
in W

A
N is given by (3.26). That is,

qN (t, y|x) = det
1≤i, j≤N

[p(t, yi |x j )], x, y ∈W
A
N , t ≥ 0. (3.27)

Proof By the property (BM2) and the definition of the transition probability density
of BM, p(t, y|x) gives the total probability mass of the Brownian path π [0, t] from
x to y with time duration t . Let Πt (x, y) denote the collection of all Brownian

http://dx.doi.org/10.1007/978-981-10-0275-5_1
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paths from x ∈ R to y ∈ R with time duration t ≥ 0. We will interpret (3.26) as
a generating function for (N + 1)-tuples, (σ, π1, . . . , πN ), where σ ∈ SN , πi =
πi [0, t] ∈ Πt (xi , yσ(i)), 1 ≤ i ≤ N . Under the assumption x ∈W

A
N , let

τ = inf{t > 0 : Bx(t) /∈W
A
N }. (3.28)

Assume that τ < t and Bxk
k (τ ) = Bx�

� (τ ). For a pair of paths (πk, π�), we define
(π ′k, π

′
�) by exchanging the Brownian paths of πk, π� after t = τ :

π ′k[0, t] = πk[0, τ ] ∪ π�(τ, t], π ′�[0, t] = π�[0, τ ] ∪ πk(τ, t].

We define π ′i = πi for i �= k, � and σ ′ = σ ◦ σk�, where σk� denotes the exchange of
k and �. Then the operation (σ, π1, . . . , πN ) �→ (σ ′, π ′1, . . . , π ′N ) is an involution.
By this operation, the absolute value of the contribution to the generating function
(3.26) is not changed because of the strong Markov property (1.8) and the reflection
principle of BM (1.5), but the sign is changed. So the contribution of any such
pairs {(σ, π1, . . . , πN ), (σ

′, π ′1, . . . , π ′N )} is canceled out. The remaining non-zero
contributions in (3.26) are from N -tuples of nonintersecting Brownian paths. Since
x, y ∈ W

A
N , σ = id and so sgn(σ ) = sgn(id) = 1 for nonintersecting paths. Hence

(3.26) gives the total probability mass of N -tuples of nonintersecting Brownian paths
from x to y with time duration t and is identified with qN (t, y|x) for the absorbing
Brownian motion inWA

N . ��
For an initial configuration x ∈ W

A
N , the survival probability of the absorbing

Brownian motion inWA
N up to time t ≥ 0 is then given by

Px[τ > t] =
∫

W
A
N

qN (t, y|x)dy, t ≥ 0, (3.29)

where dy = ∏N
i=1 dyi .

Now we consider an N -variate extension of BES(3), which is the N -particle sys-
tem of BMs in R conditioned never to collide with each other, that is, they do not
collide even during the time interval (t,∞). We simply call this process the noncol-
liding Brownian motion with N particles. The transition probability density function
pN (t, y|x) of this process from x ∈W

A
N to y ∈W

A
N with time duration t ≥ 0 should

be obtained by the following limit (cf. (1.127) in Exercise 1.14),

pN (t, y|x) = lim
T→∞

qN (t, y|x)Py[τ > T − t]
Px[τ > T ] . (3.30)

Let
hN (x) =

∏

1≤i< j≤N

(x j − xi ). (3.31)

Then the following are proved.

http://dx.doi.org/10.1007/978-981-10-0275-5_1
http://dx.doi.org/10.1007/978-981-10-0275-5_1
http://dx.doi.org/10.1007/978-981-10-0275-5_1
http://dx.doi.org/10.1007/978-981-10-0275-5_1
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Proposition 3.1 (i) The transition probability density of the noncolliding Brownian
motion with N particles is given by

pN (t, y|x) = hN (y)
hN (x)

qN (t, y|x), x, y ∈W
A
N , t ≥ 0, (3.32)

where qN is the Karlin–McGregor determinant (3.27).

(ii) Let |x| =
√

∑N
i=1 x2

i . Then

pN (t, y|0) ≡ lim|x|→0
pN (t, y|x)

= t−N (N−1)/2
∏N−1

n=1 n! hN (y)
2

N
∏

i=1
p(t, yi |0), y ∈W

A
N , t ≥ 0. (3.33)

Before giving the proof of this proposition, we will present the main statement in
this section [51].

Theorem 3.3 The noncolliding Brownian motion is equivalent in probability law
with the Dyson model.

Proof Denote the N -dimensional Laplacian with respect to the variables x =
(x1, . . . , xN ) by Δ(N ) ≡ ∑N

i=1 ∂2/∂x2
i . Provided x, y ∈ W

A
N , we can verify that

(3.32) satisfies the following partial differential equation (PDE),

∂

∂t
pN (t, y|x) = 1

2
Δ(N ) pN (t, y|x)+

∑

1≤i, j≤N ,
i �= j

1

xi − x j

∂

∂xi
pN (t, y|x) (3.34)

with the initial condition pN (0, y|x) = δ(y − x) ≡ ∏N
i=1 δ(yi − xi ) (Exercise 3.3).

It can be regarded as the backward Kolmogorov equation of the stochastic process
with N particles, X(t) = (X1(t), . . . , X N (t)), which solves the system of SDEs,

d Xi (t) = d Bxi
i (t)+

∑

1≤ j≤N ,
j �=i

dt

Xi (t)− X j (t)
, t ≥ 0, 1 ≤ i ≤ N . (3.35)

Equation (3.35) is identifiedwith the casewhere β = 2 in (3.3). Then the equivalence
between the Dyson model and the noncolliding Brownian motion is proved [51]. ��

As already noted in Sect. 1.10, h1(x) ≡ x is a positive harmonic function in
R+ = (0,∞) which satisfies the condition h1(0) = 0. Similarly, we can see that

Δ(N )hN (x) = 0, (3.36)

http://dx.doi.org/10.1007/978-981-10-0275-5_1
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and
hN (x) > 0, if x ∈W

A
N , and hN (x) = 0, if x ∈ ∂WA

N . (3.37)

Proposition 3.1 (i) states that the noncolliding Brownian motion is the
h-transformation of the absorbing Brownian motion in W

A
N , in which the harmonic

function is given by (3.31) [34, 51].
The formula (3.33) given in Proposition 3.1 (ii) can be regarded as a multivariate

extension of p(3)(t, y|0) given by (1.125) in Exercise 1.13. The transition probability
density (3.33) determines an entrance law from the configuration 0 (i.e., the state
with all particles at the origin) for the Dyson model (3.35), which will be discussed
in Sect. 3.8 (see (3.105)). See also the footnote on p. 59.

The analogy of [Aspect 2] between BES(3) and the Dyson model is summarized
as follows.

[Aspect 2]
BES(3) ⇐⇒ h-transformation of absorbing BM in R+

⇐⇒ BM conditioned to stay positive

the Dyson model ⇐⇒ h-transformation of absorbing BM in W
A
N⇐⇒ noncolliding BM

In the rest of this section, we will explain how to prove Proposition 3.1. By the
multilinearity of determinants, (3.27) with (1.1) gives (Exercise 3.4)

qN (t, y|x) = 1

(2π t)N/2
e−(|x|

2+|y|2)/2t det
1≤i, j≤N

[eyi x j /t ]. (3.38)

The following Maclaurin expansion is well-known,

eyi x j /t =
∞
∑

n=0

( yi x j

t

)n 1

n! . (3.39)

Here we want to expand the multivariate function det1≤i, j≤N [eyi x j /t ] by polynomials
of {xi }N

i=1 and {yi }N
i=1. A useful basis of symmetric polynomials in {xi }i≥1 is given

by Schur functions [48, 95, 128]. They are labeled by partitions μ = (μ1, μ2, . . . ),
which are sets of nonnegative integers in decreasing order μ1 ≥ μ2 ≥ · · · . The
nonzero μi ’s in a partition μ are called parts of μ, and the number of parts is called
length of μ and denoted by �(μ). The Schur polynomial of {xi }N

i=1 labeled by μwith
�(μ) = N ∈ N0 is defined by

sμ(x) =
det

1≤i, j≤N
[xμi+N−i

j ]
det

1≤i, j≤N
[x N−i

j ] . (3.40)

http://dx.doi.org/10.1007/978-981-10-0275-5_1
http://dx.doi.org/10.1007/978-981-10-0275-5_1
http://dx.doi.org/10.1007/978-981-10-0275-5_1
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Here the denominator is especially called the Vandermonde determinant, which is
equal to the product of differences (Exercise 3.5),

VN (x) ≡ det
1≤i, j≤N

[x N−i
j ] =

∏

1≤i< j≤N

(xi − x j ).

It is easy to see that VN (x) = (−1)N (N−1)/2hN (x). We can show that the ratio of two
determinants in (3.40) indeed gives a symmetric polynomial of {xi }N

i=1 (Exercises
3.6 and 3.7). By the definition (3.40), we see that for 0 = (0, 0, ...),

sμ(0) =
{

1, if μ = ∅,
0, otherwise,

(3.41)

where the null partition is denoted by ∅ = (0, 0, . . . ).
Now we prove the following. Here x/

√
t = (x1/

√
t, . . . , xN/

√
t).

Lemma 3.2 For x, y ∈ R
N ,

det
1≤i, j≤N

[exi y j /t ]

= hN (x/
√

t)hN (y/
√

t)
∑

μ,�(μ)≤N

1
∏N

i=1(μi + N − i)! sμ(x/
√

t)sμ(y/
√

t)

= t−N (N−1)/2
∏N−1

n=1 n! hN (x)hN (y)×
{

1+ O

( |x|√
t

)}

as
|x|√

t
→ 0. (3.42)

Proof By the Maclaurin expansion (3.39) and the multilinearity of determinants, we
have

det
1≤i, j≤N

[exi y j /t ] = det
1≤i, j≤N

[ ∞
∑

n=0

( xi y j

t

)n 1

n!

]

=
∑

n=(n1,n2,··· ,nN )∈NN
0

N
∏

k=1

1

nk ! det
1≤i, j≤N

[( xi y j

t

)ni
]

. (3.43)

We can see that for any symmetric function f (n) of n ∈ N
N
0 ,

∑

n∈NN
0

f (n) det
1≤i, j≤N

[( xi y j

t

)ni
]

=
∑

n∈NN
0

f (n)
1

N !
∑

σ∈SN

det
1≤i, j≤N

[( xi y j

t

)nσ(i)]

,

(3.44)
and we can prove that (Exercise 3.8)

∑

σ∈SN

det
1≤i, j≤N

[( xi y j

t

)nσ(i)] = det
1≤i, j≤N

[(

xi√
t

)n j
]

det
1≤k,�≤N

[(

yk√
t

)n�]

. (3.45)
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Since det1≤i, j≤N [(xi/
√

t)n j ] = 0 if n j1 = n j2 for any pair 1 ≤ j1 �= j2 ≤ N , (3.43)
equals

∑

n∈NN
0 ,0≤n1<n2<···<nN

N
∏

m=1

1

nm ! det
1≤i, j≤N

[(

xi√
t

)n j
]

det
1≤k,�≤N

[(

yk√
t

)n�]

.

Now we change the variables in the summation from {ni } to {μi } by μi = ni − N +
i, 1 ≤ i ≤ N . Using (3.40) we obtain the first line of (3.42). By (3.41), the estimation
in |x|/√t → 0 is given as the second line of (3.42). ��

By this lemma, we have the following asymptotics,

qN (t, y|x) = 1

CN
t−N 2/2hN (x)hN (y)e−|y|

2/2t ×
{

1+ O

( |x|√
t

)}

as
|x|√

t
→ 0

(3.46)
with CN = (2π)N/2 ∏N−1

n=1 n!. The integral formula for a > 0, γ > 0,

∫

RN

e−a|x|2 |hN (x)|2γ dx = (2π)N/2(2a)−N (γ (N−1)+1)/2
N
∏

i=1

Γ (1+ iγ )

Γ (1+ γ )
, (3.47)

is found in [101] (Eq. (17.6.7), p. 321) as a variation of the Selberg integral [122],
whose proof was given in [94]. Using the special case of this Selberg–Mehta–
Macdonald equality, we obtain the following.

Lemma 3.3 Let C ′
N = 2N/2 ∏N

i=1 Γ (i/2). Then for x ∈W
A
N , t > 0,

Px[τ > t] = C ′
N

CN
t−N (N−1)/4hN (x)×

{

1+ O

( |x|√
t

)}

as
|x|√

t
→ 0. (3.48)

Proof If we set in (3.47) γ = 1/2, a = 1/2t and note that the integral over RN

can be replaced by the integral over WA
N multiplied by N !, since the integrand is

symmetric in x, we have

∫

W
A
N

e−|x|
2/2t hN (x)dx = C ′

N t N (N+1)/4. (3.49)

Then (3.29) with (3.46) proves the lemma. ��

Proof of Proposition 3.1. (i) Fix x, y ∈W
A
N and t ∈ [0,∞). Then Lemma 3.3 proves

that (3.30) is given by (3.32).
(ii) The asymptotics (3.46) of qN implies
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lim|x|→0
pN (t, y|x) = t−N 2/2

CN
hN (y)2e−|y|

2/2t .

This gives the expression (3.33). ��
We can apply the argument given in this section also for processes associated

with Weyl chambers of other types [51, 80, 89]. See [37, 75] for the noncolliding
Brownian motion associated with the Weyl alcoves.

3.4 Determinantal Martingale Representation (DMR)

As [Aspect 2], the Dysonmodel is constructed as the h-transformation of the absorb-
ing Brownian motion inWA

N . Therefore, at any positive time t > 0 the configuration
is an element of WA

N ,

X(t) = (X1(t), X2(t), . . . , X N (t)) ∈W
A
N , t > 0, (3.50)

and hence there are no multiple points at which coincidence of particle positions,
Xi (t) = X j (t), i �= j , occurs. We can consider, however, the Dyson model starting
from initial configurations with multiple points. In order to describe configurations
with multiple points, we represent each particle configuration by a sum of delta
measures in the form

ξ(·) =
∑

i∈I
δxi (·) (3.51)

with a sequence of points inR, x = (xi )i∈I, where I is a countable index set. Here for
y ∈ R, δy(·) denotes the deltameasure such that δy({x}) = 1 for x = y and δy({x}) =
0 otherwise. Then, for (3.51) and A ⊂ R, ξ(A) = ∫

A ξ(dx) = ∑

i∈I:xi∈A 1 =
�{xi , xi ∈ A}.

If the total number of particles N is finite, then I = {1, 2, . . . , N }, but we would
like to also consider the cases where N = ∞ later. The measures of the form
(3.51) satisfying the condition ξ(K ) < ∞ for any compact subset K ⊂ R are
called the nonnegative integer-valued Radon measures on R and we denote the
space they form byM. The set of configurations without multiple points is denoted
byM0 = {ξ ∈M : ξ({x}) ≤ 1,∀ x ∈ R}. There is a trivial correspondence between
W

A
N and M0. We call x ∈ R

N a labeled configuration and ξ ∈ M an unlabeled
configuration.

We introduce a sequence of independent BMs, Bx(t) = (Bxi
i (t))i∈I, t ≥ 0, in

(Ω,F ,Px) with expectation written as Ex.
In this section we assume that ξ = ∑

i∈I δxi ∈M0, ξ(R) = N ∈ N and consider
the Dyson model as an M0-valued diffusion process,
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Ξ(t, ·) =
N

∑

i=1
δXi (t)(·), t ≥ 0, (3.52)

starting from the initial configuration ξ = ∑N
i=1 δxi , where X(t) = (X1(t), · · · ,

X N (t)) is the solution of (3.35) under the initial configuration x = (x1, . . . , xN ) ∈
W

A
N . We write the process as (Ξ,Pξ ) and express the expectation with respect

to the probability law P
ξ of the Dyson model by E

ξ [ · ]. We introduce a filtra-
tion {(FΞ)t }t∈[0,∞) on the space of continuous paths C([0,∞) → M) defined by
(FΞ)t = σ(Ξ(s), s ∈ [0, t]), where σ denotes the smallest σ -field.

[Aspect 2] of the Dyson model is expressed by the following equality: for any
(FΞ)t -measurable bounded function F , 0 ≤ t ≤ T <∞,

E
ξ [F(Ξ(·))] = Ex

[

F

(

N
∑

i=1
δBi (·)

)

1(τ>T )
hN (B(T ))

hN (x)

]

, (3.53)

where τ is defined by (3.28) and we have assumed the relations ξ = ∑N
i=1 δxi ∈

M0, x = (x1, . . . , xN ) ∈W
A
N and (3.52).

In the following lemma, we claim that even if we delete the indicator 1(τ>T ) in
the RHS of (3.53), still the equality holds. It is a multivariate extension of the claim
by which we replaced (1.79) by (1.80) in Sect. 1.10.

Lemma 3.4 Assume that ξ = ∑N
i=1 δxi ∈ M0, x = (x1, . . . , xN ) ∈ W

A
N . For any

(FΞ)t -measurable bounded function F, 0 ≤ t ≤ T <∞,

E
ξ [F(Ξ(·))] = Ex

[

F

(

N
∑

i=1
δBi (·)

)

hN (B(T ))
hN (x)

]

. (3.54)

Proof It is sufficient to consider the case where F is given as

F (Ξ(·)) =
M
∏

m=1
gm(X(tm)) (3.55)

for an arbitrary M ∈ N, and an arbitrary subdivision ΔM([0, T ]) with 0 ≡ t0 <

t1 < · · · < tM−1 < tM ≡ T < ∞ with bounded measurable functions gm on R
N ,

1 ≤ m ≤ M . Since the particles are unlabeled in the process (Ξ,Pξ ), gm’s are
symmetric functions. Now we consider the following specified form for (3.53):

E
ξ

[

M
∏

m=1
gm(X(tm))

]

= Ex

[

1(τ>tM )

M
∏

m=1
gm(B(tm))

hN (B(tM))

hN (x)

]

. (3.56)

http://dx.doi.org/10.1007/978-981-10-0275-5_1
http://dx.doi.org/10.1007/978-981-10-0275-5_1
http://dx.doi.org/10.1007/978-981-10-0275-5_1
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We introduce the stopping times

τi j = inf{t > 0 : Bi (t) = B j (t)}, 1 ≤ i < j ≤ N .

Let σi j ∈ SN be the permutation of (i, j), 1 ≤ i, j ≤ N . For x = (xk)
N
k=1, we write

σi j (x) = y = (yk)
N
k=1 such that yi = x j , y j = xi , and yk = xk, k �= i, k �= j . Note

that in a configuration y, if yi = y j , i �= j , then σi j (y) = y, and the processes B and
σi j (B) are identical in distribution under the probability measure Py. By the strong
Markov property of the processB(t), t ≥ 0 and by the fact that hN is anti-symmetric,
while gm, 1 ≤ m ≤ M are symmetric,

Ex

[

1(τ=τi j<tM )

M
∏

m=1
gm(B(tm))

hN (B(tM))

hN (x)

]

= 0, 1 ≤ i < j ≤ N .

Since Px(τi j = τi ′ j ′) = 0 if (i, j) �= (i ′, j ′), and τ = min1≤i< j≤N τi j ,

Ex

[

1(τ<tM )

M
∏

m=1
gm(B(tm))

hN (B(tM))

hN (x)

]

= 0.

Hence, (3.56) gives the equality

E
ξ

[

M
∏

m=1
gm(X(tm))

]

= Ex

[

M
∏

m=1
gm(B(tm))

hN (B(tM))

hN (x)

]

.

The statement is proved. ��
In Sect. 1.2, we introduced the fundamental martingale polynomials associated

with BM, {mn(t, x)}n∈N0 . Since they are monic polynomials, we see that (Exercise
3.9)

hN (y)
hN (x)

= 1

hN (x)
det

1≤i, j≤N
[yi−1

j ]

= 1

hN (x)
det

1≤i, j≤N
[mi−1(t, y j )] (3.57)

for an arbitrary t ∈ [0,∞). This implies that (hN (B(t))/hN (x))t≥0 is a martingale.
Here we extend the integral transformation defined by (1.25) with (1.22) in

Sect. 1.2 to a linear integral transformation of multivariate functions as follows.
When F (i)(x) = ∏N

j=1 f (i)j (x j ), i = 1, 2 are given for x = (x1, . . . , xN ) ∈ R
N ,

then

I
[

F (i)(W)
∣

∣{(t�, x�)}N
�=1

] =
N
∏

j=1
I

[

f (i)j (W j )

∣

∣

∣ (t j , x j )
]

, i = 1, 2,

http://dx.doi.org/10.1007/978-981-10-0275-5_1
http://dx.doi.org/10.1007/978-981-10-0275-5_1
http://dx.doi.org/10.1007/978-981-10-0275-5_1
http://dx.doi.org/10.1007/978-981-10-0275-5_1
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and

I
[

c1F (1)(W)+ c2F (2)(W)
∣

∣{(t�, x�)}N
�=1

]

= c1I
[

F (1)(W)
∣

∣{(t�, x�)}N
�=1

]

+ c2I
[

F (2)(W)
∣

∣{(t�, x�)}N
�=1

]

,

c1, c2 ∈ C, for 0 < ti < ∞, 1 ≤ i ≤ N , where W = (W1, . . . ,WN ) ∈ R
N . In

particular, if t� = t, 1 ≤ ∀� ≤ N , we write I [·|{(t�, x�)}N
�=1] simply as I [·|(t, x)]

with x = (x1, . . . , xN ). Then (3.57) is further rewritten as

hN (y)
hN (x)

= 1

hN (x)
det

1≤i, j≤N

[

I [(W j )
i−1|(t, y j )]

]

= I

[

1

hN (x)
det

1≤i, j≤N
[(W j )

i−1]
∣

∣

∣

∣

(t, y)
]

= I

[

hN (W)

hN (x)

∣

∣

∣

∣

(t, y)
]

, (3.58)

where the multilinearity of determinants has been used.
Now we use the following determinant identity [73, 87, 90].

Lemma 3.5 For x = (x1, . . . , xN ) ∈W
A
N , z = (z1, . . . , zN ) ∈ C

N ,

hN (z)
hN (x)

= det
1≤i, j≤N

[

Φ
xi
ξ (z j )

]

, (3.59)

where

Φu
ξ (z) =

∏

1≤k≤N ,
xk �=u

z − xk

u − xk
(3.60)

for ξ = ∑N
i=1 δxi ∈M0 z, u ∈ C.

Proof Let

H(x, z) = det
1≤i, j≤N

⎡

⎣

∏

1≤k≤N ,k �=i

(z j − xk)

⎤

⎦ .

It is a polynomial function of xi , zi , 1 ≤ i ≤ N with degree N (N − 1) satisfying
the conditions that H(x, x) = (−1)N (N−1)/2hN (x)2, and H(x, z) = 0, if xi = x j

or zi = z j for some i, j with 1 ≤ i < j ≤ N . Hence we have H(x, z) =
(−1)N (N−1)/2hN (x)hN (z). By the definition (3.60), the RHS of (3.59) is equal to
H(x, z)/(−1)N (N−1)/2hN (x)2 for ξ ∈M0, and then we obtain (3.59). ��
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Then (3.58) is written as

hN (y)
hN (x)

= I

[

det
1≤i, j≤N

[Φxi
ξ (W j )]

∣

∣ (t, y)
]

= det
1≤i, j≤N

[M xi
ξ (t, y j )], (3.61)

where

M x
ξ (t, y) = I [Φx

ξ (W )|(t, y)], x, y ∈ R, t ≥ 0. (3.62)

Proposition 3.2 Assume that ξ = ∑N
i=1 δxi ∈ M0. The following are satisfied by

(3.62).

(i) (M xi
ξ (t, B(t)))t≥0, 1 ≤ i ≤ N are continuous martingales.

(ii) For any time t ≥ 0, M xi
ξ (t, y), 1 ≤ i ≤ N are linearly independent functions

of y.
(iii) For 1 ≤ i, j ≤ N, limt↓0 Exi [M x j

ξ (t, B(t))] = δi j .

Then for any (FΞ)t -measurable bounded function F, 0 ≤ t ≤ T <∞, the equality

E
ξ [F(Ξ(·))] = Ex

[

F

(

N
∑

i=1
δBi (·)

)

Dξ (T,B(T ))

]

(3.63)

holds, where

Dξ (t, y) = det
1≤i, j≤N

[M y j

ξ (t, yi )], y = (y1, . . . , yN ) ∈W
A
N , t ≥ 0. (3.64)

Proof For each 1 ≤ i ≤ N , Φxi
ξ (z) is a polynomial of z with degree N − 1.

Then it can be written as Φxi
ξ (z) =

∑N−1
n=0 anzn , where the coefficients an ∈ R

are functions of ξ (i.e., x j , 1 ≤ j ≤ N ). By the definition (3.62) and (1.26) in
Sect. 1.2, M xi

ξ (t, x) = ∑N−1
n=0 anmn(t, x), where the functions {mn(t, x)}n∈N0 are

the fundamental martingale polynomials given by (1.18). Then (i) follows from
Lemma 1.1 (iii). Since ξ ∈ M0 is assumed, the set of zeroes of Φxi

ξ (z) is differ-

ent from that of Φ
x j

ξ (z), if i �= j , and the condition (ii) is satisfied. By (3.60),

Φ
x j

ξ (xi ) = δi j , 1 ≤ i, j ≤ N . Thus the condition (iii) is also satisfied. The equality
(3.63) with (3.64) is obtained from (3.54) of Lemma 3.4 together with (3.61). ��

We remark that Dξ (t,B(t)), t ≥ 0 is indeed a continuous martingale by part (i)
and is not identically zero by part (ii) of Proposition 3.2. We callDξ (t,B(t)), t ≥ 0
a determinantal martingale and the equality (3.63) the determinantal martingale
representation (DMR) of noncolliding Brownian motion [73].

http://dx.doi.org/10.1007/978-981-10-0275-5_1
http://dx.doi.org/10.1007/978-981-10-0275-5_1
http://dx.doi.org/10.1007/978-981-10-0275-5_1
http://dx.doi.org/10.1007/978-981-10-0275-5_1
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Since Φu
ξ (z) given by (3.60) is a polynomial of z, the argument given in Sect. 1.7

provides

M u
ξ (t, B(t)) =˜E[Φu

ξ (Z(t))], t ≥ 0, (3.65)

where Z(t), t ≥ 0 is a complex Brownian motion defined by (1.54) and˜E denotes
the expectation with respect to the imaginary part of Z(t), JZ(t) = ˜B(t).

For each Bxi
i (t), i ∈ I, we introduce an independent one-dimensional BM starting

from the origin, ˜Bi (t), and define a complex Brownian motion as Zi (t) = Bi (t) +√−1˜Bi (t), i ∈ I. We write the expectation with respect to {˜Bi (t)}i∈I as˜E and define
Ex = Ex ⊗˜E. Then the DMR (3.63) is rewritten as follows.

Lemma 3.6 Assume that ξ = ∑N
i=1 δxi ∈M0. For any (FΞ)t -measurable bounded

function F, 0 ≤ t ≤ T <∞, the following equality holds,

E
ξ [F(Ξ(·))] = Ex

[

F

(

N
∑

i=1
δ�Zi (·)

)

det
1≤i, j≤N

[

Φ
xi
ξ (Z j (T ))

]

]

. (3.66)

This is a special case of DMR [73] and it was called the complex Brownian motion
representation in [87].

Aswe have seen in Sect. 1.7, the complexBrownianmotion is conformal invariant,
and each Φx

ξ (Z j (t)), x ∈ R is a time change of a complex Brownian motion, Z j (·).
Then the expectation is conserved,

Ex [Φx
ξ (Z j (t))] = Ex [Φx

ξ (Z j (T ))], 0 ≤∀ t ≤ T <∞, (3.67)

for x ∈ R. That is, for x ∈ R, {Φx
ξ (Z j (t))}1≤ j≤N are independent conformal local

martingales (see, for example, Sect. 5.2 of [116]).
Lemma 3.6 means that any observables of the Dyson model are calculated by a

system of independent complex Brownian motions, whose paths are weighted by a
multivariate complex function det1≤i, j≤N [Φxi

ξ (Z j (T ))], which is a conformal local
martingale.

3.5 Reducibility of DMR and Correlation Functions

For n ∈ N, an index set {1, 2, . . . , n} is denoted by In . Fixing N ∈ N with N ′ ∈ IN ,
we write J ⊂ IN , �J = N ′, if J = { j1, . . . , jN ′ }, 1 ≤ j1 < · · · < jN ′ ≤ N . For x =
(x1, . . . , xN ) ∈ R

N , put xJ = (x j1 , . . . , x jN ′ ). In particular, we write xN ′ = xIN ′ , 1 ≤
N ′ ≤ N . (By definition xN = x.) A collection of all permutations of elements in J

is denoted by S (J). In particular, we writeSN ′ = S (IN ′), 1 ≤ N ′ ≤ N .

http://dx.doi.org/10.1007/978-981-10-0275-5_1
http://dx.doi.org/10.1007/978-981-10-0275-5_1
http://dx.doi.org/10.1007/978-981-10-0275-5_1
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The following shows the reducibility of the determinantal martingale in the sense
that, if we observe a symmetric function depending on N ′ variables, N ′ ≤ N , then
the size of determinantal martingale can be reduced from N to N ′.

Lemma 3.7 Assume that ξ = ∑N
i=1 δxi =

∑

i∈IN
δxi with x ∈W

A
N . Let 1 ≤ N ′ ≤ N.

For 0 < t ≤ T <∞ and an (FΞ)t -measurable symmetric function FN ′ on R
N ′

,

∑

J⊂IN ,�J=N ′
Ex [

FN ′(BJ(t))Dξ (T,B(T ))
]

=
∫

W
A
N ′
ξ⊗N ′

(dv)Ev [

FN ′(BN ′(t))Dξ (T,BN ′(T ))
]

. (3.68)

Proof By the definition (3.64) the LHS of (3.68) is equal to

∑

J⊂IN ,�J=N ′
Ex

[

FN ′(BJ(t)) det
i, j∈IN

[M x j

ξ (T, Bi (T ))]
]

=
∑

J⊂IN ,�J=N ′
Ex

⎡

⎣FN ′(BJ(t))
∑

σ∈SN

sgn(σ )
N
∏

i=1
M

xσ(i)
ξ (T, Bi (T ))

⎤

⎦

=
∑

J⊂IN ,�J=N ′

∑

σ∈SN

sgn(σ )

× Ex

⎡

⎣FN ′(BJ(t))
∏

i∈J
M

xσ(i)
ξ (T, Bi (T ))

∏

j∈IN \J
M

xσ( j)

ξ (T, B j (T ))

⎤

⎦

Since (Bi (t))t≥0, 1 ≤ i ≤ N are independent, it is equal to

∑

J⊂IN ,�J=N ′

∑

σ∈SN

sgn(σ )Ex

⎡

⎣FN ′(BJ(t))
∏

i∈J
M

xσ(i)
ξ (T, Bi (T ))

⎤

⎦

×
∏

j∈IN \J
Ex [

M
xσ( j)

ξ (T, B j (T ))
]

. (3.69)

By the property (i) ofMξ in Proposition 3.2,

∏

j∈IN \J
Ex [

M
xσ( j)

ξ (T, B j (T ))
] =

∏

j∈IN \J
Ex [

M
xσ( j)

ξ (t, B j (t))
]

, ∀t ∈ [0, T ],

and by the property (iii) of Mξ in Proposition 3.2, this is equal to
∏

j∈IN \J δ jσ( j).
Then (3.69) becomes
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∑

J⊂IN ,�J=N ′

∑

σ∈S (J)

sgn(σ )Ex

⎡

⎣FN ′(BJ(t))
∏

i∈J
M

xσ(i)
ξ (T, Bi (T ))

⎤

⎦

=
∑

J⊂IN ,�J=N ′
Ex

[

FN ′(BJ(t)) det
i, j∈J

[M x j

ξ (T, Bi (T ))]
]

=
∫

W
A
N ′
ξ⊗N ′

(dv)Ev
[

FN ′(BN ′(t)) det
i, j∈IN ′

[M x j

ξ (T, Bi (T ))]
]

,

where equivalence in probability law of (Bi (t))t≥0, 1 ≤ i ≤ N is used. This is the
RHS of (3.68) and the proof is completed. ��

In order to show applications of DMR, we will derive the density function at a
single time and the two-time correlation function below. Let Cc(R) be the set of all
continuous real-valued functions with compact supports.

3.5.1 Density Function ρξ (t, x)

The density function at a single time for (Ξ,Pξ ), ξ ∈ M0 is denoted by ρξ (t, x). It
is defined as a continuous function of x ∈ R for 0 ≤ t ≤ T < ∞ such that for any
test function, χ ∈ Cc(R),

E
ξ

[∫

R

χ(x)Ξ(t, dx)

]

=
∫

R

dx χ(x)ρξ (t, x). (3.70)

The test function χ is symmetrized as

g(x) =
N

∑

i=1
χ(xi ),

which is applied as F to the DMR (3.63), and we obtain the equality

E
ξ

[

N
∑

i=1
χ(Xi (t))

]

= Ex

[

N
∑

i=1
χ(Bi (t))Dξ (T,B(T ))

]

, 0 ≤ t ≤ T <∞.

(3.71)
The LHS of (3.71) gives

E
ξ

[

N
∑

i=1
χ(Xi (t))

]

= E
ξ

[∫

R

χ(x)Ξ(t, dx)

]
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by (3.52). On the other hand, the RHS of (3.71) is reduced by Lemma 3.7 as

N
∑

i=1
Ex[χ(Bi (t))Dξ (T,B(T ))] =

∫

R

ξ(dv)Ev[χ(B(t))M v
ξ (t, B(t))]

=
∫

R

ξ(dv)
∫

R

dx χ(x)p(t, x |v)M v
ξ (t, x).

By Fubini’s theorem, we can rewrite it as
∫

R
dx χ(x)Gξ (t, x; t, x), where

Gξ (s, x; t, y) =
∫

R

ξ(dv)p(s, x |v)M v
ξ (t, y). (3.72)

Then (3.70) gives

ρξ (t, x) = Gξ (t, x; t, x), x ∈ R, t ≥ 0. (3.73)

3.5.2 Two-Time Correlation Function ρξ (s, x; t, y)

For 0 ≤ t1 < t2 ≤ T <∞, set

g1(x) =
N

∑

i=1
χ1(xi ), g2(x) =

N
∑

i=1
χ2(xi ),

where χm ∈ Cc(R),m = 1, 2, and put

F(Ξ(·)) =
2

∏

m=1
gm(X(tm)).

If we apply this to DMR, (3.63), we obtain the equality

E
ξ

⎡

⎣

N
∑

i=1

N
∑

j=1
χ1(Xi (t1))χ2(X j (t2))

⎤

⎦

= Ex

⎡

⎣

N
∑

i=1

N
∑

j=1
χ1(Bi (t1))χ2(B j (t2))Dξ (T,B(T ))

⎤

⎦, 0 ≤ t ≤ T <∞. (3.74)
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The LHS of (3.74) defines the two-time correlation function ρξ (s, x; t, y) as

E
ξ

⎡

⎣

N
∑

i=1

N
∑

j=1
χ1(Xi (t1))χ2(X j (t2))

⎤

⎦ =
∫

R2
dx1dx2 χ1(x1)χ2(x2)ρξ (t1, x1; t2, x2).

(3.75)
On the other hand, the RHS of (3.74) gives

N
∑

i=1

N
∑

j=1
Ex[χ1(Bi (t1))χ2(B j (t2))Dξ (T,B(T ))]

=
∑

1≤i, j≤N ,
i �= j

Ex[χ1(Bi (t1))χ2(B j (t2))Dξ (T,B(T ))]

+
∑

1≤i≤N

Ex[χ1(Bi (t1))χ2(Bi (t2))Dξ (T,B(T ))].

By the reducibility of DMR given by Lemma 3.7, the last expression becomes

∫

R2
ξ⊗2(dv)

× E(v1,v2)
[

χ1(B1(t1))χ2(B2(t2)) det

(

M v1
ξ (T, B1(T )) M

v1
ξ (T, B2(T ))

M v2
ξ (T, B1(T )) M

v2
ξ (T, B2(T ))

)]

+
∫

R

ξ(dv)Ev[χ1(B(t1))χ2(B(t2))M
v
ξ (T, B(T ))]

If we use the martingale property (i) ofM v
ξ in Proposition 3.2, it is written as

∫

R2
ξ⊗2(dv)

× E(v1,v2)
[

χ1(B1(t1))χ2(B2(t2)) det

(

M v1
ξ (t1, B1(t1)) M

v1
ξ (t2, B2(t2))

M v2
ξ (t1, B1(t1)) M

v2
ξ (t2, B2(t2))

)]

+
∫

R

ξ(dv)Ev[χ1(B(t1))χ2(B(t2))M
v
ξ (t2, B(t2))].

By Fubini’s theorem, this is equal to (see Exercise 3.10)
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∫

R2
dx1dx2 χ1(x1)χ2(x2) det

(

Gξ (t1, x1; t1, x1) Gξ (t1, x1; t2, x2)
Gξ (t2, x2; t1, x1) Gξ (t2, x2; t2, x2)

)

+
∫

R2
dx1dx2 χ1(x1)χ2(x2)Gξ (t1, x1; t2, x2)p(t2 − t1, x2|x1)

=
∫

R2
dx1dx2 χ1(x1)χ2(x2)

× det

(

Gξ (t1, x1; t1, x1) Gξ (t1, x1; t2, x2)
Gξ (t2, x2; t1, x1)− p(t2 − t1, x2|x1) Gξ (t2, x2; t2, x2)

)

.

Since this is equal to (3.75), the two-time correlation function is determined as

ρξ (s, x; t, y) = det

(

Kξ (s, x; s, x) Kξ (s, x; t, y)
Kξ (t, y; s, x) Kξ (t, y; t, y)

)

(3.76)

for 0 ≤ s < t <∞, x, y ∈ R, where

Kξ (s, x; t, y) = Gξ (s, x; t, y)− 1(s>t) p(s − t, x |y). (3.77)

3.6 Determinantal Process

In the previous section, the density function at a single time ρξ (t, x) and the two-
time (and two-point) correlation function ρξ (s, x; t, y) were defined by (3.70) and
(3.75), respectively. In order to give a general definition of spatio-temporal cor-
relation functions here we consider the Laplace transformations of the multitime
joint distribution functions of (Ξ,Pξ ). For any integer M ∈ N, a sequence of times
t = (t1, . . . , tM) ∈ [0,∞)M with 0 ≤ t1 < · · · < tM < ∞, and a sequence of
functions f = ( ft1 , . . . , ftM ) ∈ Cc(R)

M , let

Ψ t
ξ [f] ≡ E

ξ

[

exp

{

M
∑

m=1

∫

R

ftm (x)Ξ(tm, dx)

}]

. (3.78)

By (3.52), if we set test functions as

χtm (·) = e ftm (·) − 1, 1 ≤ m ≤ M, (3.79)

we can rewrite (3.78) in the form

Ψ t
ξ [f] = E

ξ

[

M
∏

m=1

N
∏

i=1
{1+ χtm (Xi (tm))}

]

. (3.80)
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We expand this with respect to test functions and define the spatio-temporal corre-
lation functions {ρξ } as coefficients,

Ψ t
ξ [f] =

∑

0≤Nm≤N ,
1≤m≤M

∫

∏M
m=1 WNA

m

M
∏

m=1
dx(m)Nm

Nm
∏

i=1
χtm

(

x (m)i

)

ρξ

(

t1, x(1)N1
; . . . ; tM , x(M)

NM

)

,

(3.81)

where x(m)Nm
denotes (x (m)1 , . . . , x (m)Nm

) and dx(m)Nm
= ∏Nm

i=1 dx (m)i , 1 ≤ m ≤ M . Here the
empty products equal 1 by convention and the term with Nm = 0, 1 ≤ ∀m ≤ M is
considered to be 1. The previous two examples ρξ (t, x) and ρξ (s, x; t, y) are special
cases in which we set M = 1, t1 = t, N1 = 1, x (1)1 = x , and M = 2, t1 =
s, t2 = t, N1 = N2 = 1, x (1)1 = x, x (2)1 = y, respectively. The function Ψ t

ξ [f] is a
generating function of correlation functions.

Assume that the two processes Ξ(t), t ≥ 0 and ˜Ξ(t), t ≥ 0 are defined in the
same probability space and both are started at the same configuration ξ . If they have
the same generating function of correlationsΨ t

ξ [f] for any M ∈ N, t ∈ [0,∞)M with
0 ≤ t1 < · · · < tM <∞, and f ∈ Cc(R)

M , then these two processes are specified by
the same correlation functions. In this case, we say that the processes Ξ(t), t ≥ 0
and ˜Ξ(t), t ≥ 0 are equivalent in the sense of finite-dimensional distributions.

Given an integral kernel,K(s, x; t, y), (s, x), (t, y) ∈ [0,∞)×R, and a sequence
of functions (χt1 , . . . , χtM ) ∈ Cc(R)

M , M ∈ N, theFredholm determinant associated
with K and (χtm )

M
m=1 is defined as

Det
(s,t)∈{t1,...,tM }2,

(x,y)∈R2

[

δstδx ({y})+K(s, x; t, y)χt (y)
]

=
∑

0≤Nm≤N ,
1≤m≤M

∫

∏M
m=1 WA

Nm

M
∏

m=1
dx(m)Nm

Nm
∏

k=1
χtm

(

x (m)k

)

det
1≤i≤Nm ,1≤ j≤Nn ,

1≤m,n≤M

[

K(tm, x (m)i ; tn, x (n)j )

]

.

(3.82)

If we consider the simplest case where M = 1 and t1 = t ∈ [0,∞) in (3.82), we
have

Det
(x,y)∈R2

[

δx ({y})+K(t, x; t, y)χt (y)
]

=
N

∑

N ′=0

∫

W
A
N ′

dxN ′
N ′
∏

k=1
χt (xk) det

1≤i, j≤N ′[K(t, xi ; t, x j )].

Given v = (v1, . . . , vN ) ∈ W
A
N , put χt (x) = ∑N

�=1 χ̂�δv� (x) with χ̂� ∈ R, 1 ≤ � ≤
N . In this case the above is equal to

N
∑

N ′=0

∑

J⊂IN ,�J=N ′

∏

k∈J
χ̂k det

i, j∈J
[Ki j ]
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with Ki j = K(t, vi ; t, v j ), 1 ≤ i, j ≤ N . This is obtained as the Fredholm expansion
formula of det1≤i, j≤N [δi j + Ki j χ̂ j ] (Exercise 3.11). For this reason, (3.82) is called
the Fredholm determinant. See, for instance, Chap. 21 in [101], Chap. 9 in [45], and
Chap.3 in [5] for more details of Fredholm determinants.

Definition 3.1 If any moment generating function (3.78) is given by a Fredholm
determinant, the process (Ξ,Pξ ) is said to be determinantal. In this case all spatio-
temporal correlation functions are given by determinants as

ρξ

(

t1, x(1)N1
; . . . ; tM , x(M)

NM

)

= det
1≤i≤Nm ,1≤ j≤Nn ,

1≤m,n≤M

[

Kξ (tm, x (m)i ; tn, x (n)j )

]

, (3.83)

0 ≤ t1 < · · · < tM < ∞, 1 ≤ Nm ≤ N , x(m)Nm
∈ R

Nm , 1 ≤ m ≤ M ∈ N. Here the
integral kernel, Kξ : ([0,∞)×R)2 �→ R, is a function of the initial configuration ξ
and is called the correlation kernel.

Remark 3.2 If the process (Ξ,Pξ ) is determinantal, then, for each specified time
0 ≤ t <∞, all spatial correlation functions are given by determinants as

ρξ (xN ′) = det
1≤i, j≤N ′[K(xi , x j )], 1 ≤ N ′ ≤ N , (3.84)

with K(x, y) = Kξ (t, x; t, y). In general a random integer-valued Radon measure in
M (resp. M0) is called a point process (resp. simple point process). A simple point
process is said to be a determinantal point process (or Fermion point process) with
kernel K, if its spatial correlation functions exist and are given in the form (3.84).
When K is symmetric, i.e., K(x, y) = K(y, x), x, y ∈ R, Soshnikov [126] and
Shirai and Takahashi [123] gave sufficient conditions for K to be a correlation kernel
of a determinantal point process (see also [3, 5, 57]). The notion of determinantal
process given by Definition 3.1 is a dynamical extension of the determinantal point
process [20, 82].

Here we give a lemma concerning the relevant part of the correlation kernel of a
determinantal process.

Lemma 3.8 Let Ξ and ˜Ξ be determinantal processes with correlation kernels K

and ˜K, respectively. If there is a function G(s, x), which is continuous with respect
to x ∈ R for any fixed s ∈ [0,∞), such that

K(s, x; t, y) = G(s, x)

G(t, y)
˜K(s, x; t, y), (s, x), (t, y) ∈ [0,∞)× R, (3.85)

then Ξ and ˜Ξ are equivalent in the sense of finite-dimensional distributions. In
other words, any rational factor of the form given in (3.85) for correlation kernels
is irrelevant, when we discuss correlation functions for determinantal processes.
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Proof In general, the determinant of an N × N matrix M = (mi j )1≤i, j≤N , N ∈ N,
is defined by

∑

σ∈SN
sgn(σ )

∏N
i=1 miσ(i). Any permutation σ consists of exclusive

cycles. If we write each cyclic permutation as

c =
(

a b · · · ω
b c · · · a

)

and the number of cyclic permutations in a given σ as �(σ ), then sgn(σ ) =
(−1)N−�(σ ) and the determinant of M is expressed as [101]

det M =
∑

σ∈SN

(−1)N−�(σ ) ∏

ci :1≤i≤�(σ )

(

mabmbc . . .mωa

)

.

It implies that, with given a1, a2, . . . , aN , even if each element mi j of the matrix
M is replaced by mi j × (ai/a j ), the value of determinant is not changed. Then by
Definition 3.1 of determinantal process, the present lemma is readily concluded. ��

By Proposition 3.2, (3.80) has the DMR

Ψ t
ξ [f] = Ex

[

N
∏

m=1

N
∏

i=1
{1+ χtm (Bi (tm))}Dξ (T,B(T ))

]

, (3.86)

where T ≥ tM and ξ = ∑N
i=1 δxi . The following equality is established.

Lemma 3.9 Let x ∈ W
A
N and ξ = ∑N

i=1 δxi . Then for any M ∈ N, 0 ≤ t1 < · · · <
tM ≤ T <∞, χtm ∈ Cc(R), 1 ≤ m ≤ M, the equality

Ex

[

M
∏

m=1

N
∏

i=1
{1+ χtm (Bi (tm))}Dξ (T,B(T ))

]

= Det
(s,t)∈{t1,...,tM }2,

(x,y)∈R2

[

δstδx ({y})+Kξ (s, x; t, y)χt (y)
]

(3.87)

holds, where Kξ is given by (3.77) with (3.72).

Proof The LHS of (3.87) is an expectation of a usual determinant Dξ multiplied by
test functions, while the RHS is a Fredholm determinant. Note that the expectation
in the LHS will be calculated by performing integrals using the transition probability
density p of BMs, (Bi (t))t≥0, 1 ≤ i ≤ N , as an integral kernel, while p is involved
in the integral representation (3.72) for the correlation kernel Kξ for the Fredholm
determinant in the RHS. Therefore, quite simply, this equality is just obtained by
applying Fubini’s theorem and changing the order of integrals. Since the quantities
in (3.87) are multivariate and the multitime joint distribution is considered, however,
we also need combinatorial arguments to prove the equality. Since the full proof was
given in [73], here we omit it. ��
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Now we arrive at the following characterization of the Dyson model (Ξ,Pξ ).

Theorem 3.4 For any finite and fixed initial configuration without multiple points,
that is, for ξ ∈M0, ξ(R) = N ∈ N, the Dyson model is determinantal. Its correlation
kernel is given by

Kξ (s, x; t, y) = Gξ (s, x; t, y)− 1(s>t) p(s − t, x |y), (s, x), (t, y) ∈ [0,∞)× R

(3.88)
with

Gξ (s, x; t, y) =
∫

R

ξ(dv)p(s, x |v)M v
ξ (t, y). (3.89)

Remark 3.3 We note that, for each chosen series of times t = (t1, . . . , tM), M ∈ N,
Ξt ≡ ∑

t∈t δt ⊗ Ξ(t) can be regarded as a determinantal point process on the
spatio-temporal field t × R with the kernel Kξ (s, x; t, y), (s, x), (t, y) ∈ t × R.
(It is called a determinantal M-component system in Sect. 5.9 of [45].) It should
be remarked that the present correlation kernels (3.88) with (3.89) are asymmetric,
Kξ (s, x; t, y) �= Kξ (t, y; s, x) due to the second terms −1(s>t) p(s − t, x |y). Such
form of asymmetric correlation kernels is said to be of the Eynard–Mehta type [20,
40, 84]. From the viewpoint of statistical physics, such asymmetry is necessary to
describe nonequilibrium systems developing in time [59, 65, 114, 118]. General
mathematical theory to give sufficient conditions for an asymmetric integral kernel
to be a determinantal correlation kernel on t × R is, however, not yet known.

Derivations of the Eynard–Mehta type correlation kernels via DMRs were
reported in [73] for the noncolliding squared Bessel process and the trigonomet-
ric extension of the Dyson model, in [75] for the elliptic extension of the Dyson
model of type A, and in [39, 74] for the discrete-time and continuous-time systems
of noncolliding random walks (the vicious walker models).

3.7 Constant-Drift Transformation of Dyson Model

Let b a real constant.We consider the Dysonmodel with constant drift (drifted Dyson
model), which is given by the following system of SDEs,

d Xi (t) = d Bxi
i (t)+ bdt +

∑

1≤ j≤N ,
j �=i

dt

Xi (t)− X j (t)
, t ≥ 0, 1 ≤ i ≤ N . (3.90)

Let

h(b)N (t, x) =
N
∏

i=1
ebxi−b2t/2hN (x), x ∈W

A
N , t ≥ 0, (3.91)
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where hN (x) is given by (3.31). Then we can prove that the transition probability
density of the drifted Dyson model is given by

p(b)N (t − s, y|x) = h(b)N (t, y)

h(b)N (s, x)
qN (t − s, y|x), x, y ∈W

A
N , 0 ≤ s ≤ t, (3.92)

where qN is the Karlin–McGregor determinant given by (3.27) (Exercise 3.12).
By the multilinearity of determinants, we see that

h(b)N (t, y) = det
1≤i, j≤N

[m(b)
j−1(t, yi )]

= det
1≤i, j≤N

[

I [ebW W j−1|(t, yi )]
]

,

where (1.35) was used. Therefore, the linearity of the integral transformationI and
Lemma 3.5 give

h(b)N (t, y)

h(b)N (0, x)
= I

[

N
∏

k=1
eb(Wk−xk )

hN (W)

hN (x)

∣

∣

∣

∣

∣

(t, y)

]

= I

[

N
∏

k=1
eb(Wk−xk ) det

1≤i, j≤N
[Φxi

ξ (W j )]
∣

∣

∣

∣

∣

(t, y)

]

= det
1≤i, j≤N

[M xi ,b
ξ (t, y j )],

with ξ = ∑N
i=1 δxi and

M x,(b)
ξ (t, y) = I [eb(W−x)Φx

ξ (W )|(t, y)], x, y ∈ R, t ≥ 0. (3.93)

The above results imply the following.
Let (Ξ(b),Pξ,(b)) be the Dyson model with constant drift (3.90), where the expec-

tation with respect to P
ξ,(b) is written by E

ξ,(b) and the filtration generated by
{Ξ(b)(s) : s ≤ t} is denoted by (FΞ(b) )t , t ≥ 0.

Proposition 3.3 The Dyson model with constant drift (3.90) has the following DMR:
for any (FΞ(b) )t -measurable bounded function F, 0 ≤ t ≤ T <∞,

E
ξ,(b)[F(Ξ(b)(·)] = Ex

[

F

(

N
∑

i=1
δBi (·)

)

D (b)
ξ (T,B(T ))

]

, (3.94)

where ξ = ∑N
i=1 δxi and

D (b)
ξ (t, y) = det

1≤i, j≤N
[M y j ,(b)

ξ (t, yi )], y ∈W
A
N , t ≥ 0 (3.95)

http://dx.doi.org/10.1007/978-981-10-0275-5_1
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with (3.93).

Following the argument given in Sect. 3.6, we can conclude the following.

Proposition 3.4 For any ξ ∈ M0, ξ(R) = N ∈ N, the drifted Dyson model with a
constant drift coefficient b, (3.90), is determinantal. Its correlation kernel is given by

K
(b)
ξ (s, x; t, y) = G (b)

ξ (s, x; t, y)−1(s>t) p(s−t, x |y), (s, x), (t, y) ∈ [0,∞)×R,

(3.96)
with

G (b)
ξ (s, x; t, y) =

∫

R

ξ(dv) p(s, x |v)M v,(b)
ξ (t, y). (3.97)

We note that (3.93) is related to the martingale function of the Dyson model
without drift M x

ξ as (Exercise 3.13)

M x,(b)
ξ (t, y) = eb(y−x)−b2t/2M x

ξ (t, y − bt), x, y ∈ R, t ≥ 0. (3.98)

Then (3.96) is rewritten as

K
(b)
ξ (s, x; t, y) = e−bx+b2s/2

e−by+b2t/2
˜K
(b)
ξ (s, x; t, y)

with

˜K
(b)
ξ (s, x; t, y) =

∫

R

ξ(dv) p(b)(s, x |v)M v
ξ (t, y − bt)− 1(s>t) p(b)(s − t, x |y),

(3.99)

where p(b) is the drift transformation (1.29) of p. By Lemma 3.8, the correlation
kernel (3.96) in Proposition 3.4 can be replaced by (3.99). For p(b)(s, x |v) = p(s, x−
bs|v) and p(b)(s − t, x |y) = p(s − t, x − bs|y − bt), we arrive at the following
result.

Theorem 3.5 The correlation kernel of the drifted Dyson model with a constant
drift coefficient b is given by

Kξ (s, x − bs; t, y − bt), (s, x), (t, y) ∈ [0,∞)× R. (3.100)

That is, the constant-drift transformation of the Dyson model with a drift coefficient
b is obtained by performing the Galilean transformation with a constant velocity b,
(t, x)→ (t, x − bt), in the spatio-temporal coordinates of the Dyson model without
drift.

http://dx.doi.org/10.1007/978-981-10-0275-5_1


3.7 Constant-Drift Transformation of Dyson Model 89

The case where the drift coefficients of N particles depend on individual particles
and are given as b = (b1, . . . , bN ) ∈W

A
N is discussed in [14, 71]. See [130, 131] for

the connection with the biorthogonal ensembles of random matrix theory [18, 102]
and the Chern–Simons theory [31, 96, 97, 134].

3.8 Generalization for Initial Configuration
with Multiple Points

For general ξ = ∑N
i=1 δxi ∈ M with ξ(R) = N < ∞, define supp ξ = {x ∈ R :

ξ(x) > 0} and let ξ∗(·) = ∑

v∈supp ξ δv(·). For s ∈ [0,∞), v, x ∈ R, z, ζ ∈ C, let

φv
ξ ((s, x); z, ζ ) = p(s, x |ζ )

p(s, x |v)
1

z − ζ

N
∏

i=1

z − xi

ζ − xi
, (3.101)

and

Φv
ξ ((s, x); z) = 1

2π
√−1

∮

C(δv)

dζ φv
ξ ((s, x); z, ζ )

= Res
[

φv
ξ ((s, x); z, ζ ); ζ = v

]

, (3.102)

where C(δv) is a closed contour on the complex plane C encircling the point v
once in the positive direction. This function (3.102) is entire with respect to z ∈ C

parameterized by (s, x) ∈ [0,∞) × R in addition to v ∈ C, ξ ∈ M. Remark that
the polynomial function Φu

ξ (z) defined by (3.60) is parameterized only by u ∈ C

and ξ ∈ M0. In the paper [84], this entire function was constructed by combin-
ing the multiple Hermite polynomials of type I and type II [60] using their inte-
gral representations [17]. Here we start from this entire function and consider its
I -transformation,

M v
ξ ((s, x)|(t, y)) = I

[

Φv
ξ ((s, x);W )

∣

∣

∣(t, y)
]

, (s, x), (t, y) ∈ [0,∞)× R,

(3.103)

which provides a martingale, if we put y = B(t), t ≥ 0. Then it is easy to see that
(3.88) with (3.89) is rewritten as

Kξ (s, x; t, y) =
∫

R

ξ∗(dv)p(s, x |v)M v
ξ ((s, x)|(t, y))− 1(s > t)p(s − t, x |y),

(3.104)
(s, x), (t, y) ∈ [0,∞)× R (Exercise 3.14).
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We note that the kernel (3.104) with (3.103) is bounded and integrable also for
ξ ∈M\M0. Therefore, the spatio-temporal correlations are given by (3.83) for any
0 ≤ t1 < · · · < tM < ∞, M ∈ N and the finite-dimensional distributions are
determined.

Proposition 3.5 Also for ξ ∈ M\M0, the determinantal processes with the corre-
lation kernels (3.104) are well-defined.

The complete proof of this proposition was given in Sect. 4.1 of [84]. The above
extension will provide the entrance laws for the processes (Ξ(t), t > 0,Pξ ) in the
sense of Sect. 12.4 in [116].

In order to give an example of Proposition 3.5, here we study the extreme case
where all N points are concentrated on an origin,

ξ = Nδ0 ⇐⇒ ξ∗ = δ0 with ξ({0}) = N . (3.105)

For (3.105), (3.101) and (3.102) become

φ0
Nδ0((s, x); z, ζ ) = p(s, x |ζ )

p(s, x |0)
1

z − ζ

(

z

ζ

)N

= p(s, x |ζ )
p(s, x |0)

∞
∑

�=0

zN−�−1

ζ N−� ,

and

Φ0
Nδ0

((s, x); z) = 1

p(s, x |0)
∞
∑

�=0
zN−�−1 1

2π
√−1

∮

C(δ0)
dζ

p(s, x |ζ )
ζ N−�

= 1

p(s, x |0)
N−1
∑

�=0
zN−�−1 1

2π
√−1

∮

C(δ0)
dζ

p(s, x |ζ )
ζ N−� , (3.106)

since the integrands are holomorphic when � ≥ N .
For BM with the transition probability density (1.1), (3.106) gives

Φ0
Nδ0((s, x); z) =

N−1
∑

�=0
zN−�−1 1

2π
√−1

∮

C(δ0)
dζ

exζ/s−ζ 2/2s

ζ N−�

=
N−1
∑

�=0

(

z√
2s

)N−�−1 1

2π
√−1

∮

C(δ0)
dη

e2(x/
√
2s)η−η2

ηN−�

=
N−1
∑

�=0

(

z√
2s

)N−�−1 1

(N − �− 1)!HN−�−1
(

x√
2s

)

,

where we have used the contour integral representation of the Hermite polynomials
(1.118). Thus its integral transformation is calculated as

http://dx.doi.org/10.1007/978-981-10-0275-5_1
http://dx.doi.org/10.1007/978-981-10-0275-5_1


3.8 Generalization for Initial Configuration with Multiple Points 91

I
[

Φ0
Nδ0((s, x);W )

∣

∣ (t, y)
]

=
N−1
∑

�=0

1

(N − �− 1)!HN−�−1
(

x√
2s

)

1

(2s)(N−�−1)/2
I [W N−�−1|(t, y)]

=
N−1
∑

�=0

1

(N − �− 1)!HN−�−1
(

x√
2s

)

1

(2s)(N−�−1)/2
m N−�−1(t, y)

=
N−1
∑

�=0

1

(N − �− 1)!2N−�−1

(

t

s

)(N−�−1)/2
HN−�−1

(

x√
2s

)

HN−�−1
(

y√
2t

)

,

wherewe have usedLemma1.1 and (1.26) in Sect. 1.2. Thenwe obtain the following,

M 0
Nδ0((s, x)|(t, B(t))) =

N−1
∑

n=0

1

n!2n
mn(s, x)mn(t, B(t))

= √
πex2/4s+B(t)2/4t

N−1
∑

n=0

(

t

s

)n/2

ϕn

(

x√
2s

)

ϕn

(

B(t)√
2t

)

, (3.107)

where

ϕn(x) = 1
√√

π2nn!Hn(x)e
−x2/2, x ∈ R, n ∈ N0, (3.108)

are the Hermite orthonormal functions on R,

∫

R

dx ϕn(x)ϕm(x) = δnm, n,m ∈ N0. (3.109)

(See (1.116).) The following expression for the transition probability density (1.1)
of BM is known as Mehler’s formula (Exercise 3.15), for s ≥ t ,

p(s − t, x |y) = e−x2/4s

e−y2/4t

1√
2s

∞
∑

n=0

(

t

s

)n/2

ϕn

(

x√
2s

)

ϕn

(

y√
2t

)

. (3.110)

Since mn , n ∈ N0 are the fundamental martingale polynomials associated with
BM, the process (3.107) is a continuous martingale. Then we see that

E
[

M 0
Nδ0((s, x)|(t, B(t)))

] = E
[

M 0
Nδ0((s, x)|(0, B(0)))

] = 1

for (s, x) ∈ [0,∞)× R, 0 ≤ t <∞.

http://dx.doi.org/10.1007/978-981-10-0275-5_1
http://dx.doi.org/10.1007/978-981-10-0275-5_1
http://dx.doi.org/10.1007/978-981-10-0275-5_1
http://dx.doi.org/10.1007/978-981-10-0275-5_1
http://dx.doi.org/10.1007/978-981-10-0275-5_1
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By the formula (3.104), we obtain the correlation kernel as

KNδ0(s, x; t, y) = p(s, x |0)M 0
Nδ0((s, x)|(t, y))− 1(s > t)p(s − t, x |y)

= e−x2/4s

e−y2/4t
K(N )

Hermite(s, x; t, y) (3.111)

with

K(N )
Hermite(s, x; t, y) = 1√

2s

N−1
∑

n=0

(

t

s

)n/2

ϕn

(

x√
2s

)

ϕn

(

y√
2t

)

− 1(s > t)
1√
2s

∞
∑

n=0

(

t

s

)n/2

ϕn

(

x√
2s

)

ϕn

(

y√
2t

)

.

=

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

1√
2s

N−1
∑

n=0

(

t

s

)n/2

ϕn

(

x√
2s

)

ϕn

(

y√
2t

)

for s ≤ t,

− 1√
2s

∞
∑

n=N

(

t

s

)n/2

ϕn

(

x√
2s

)

ϕn

(

y√
2t

)

for s > t,

(3.112)

where Mehler’s formula (3.110) was used. By Lemma 3.8, the factor e−x2/4s/e−y2/4t

in (3.111) is irrelevant for determinantal processes. The kernel K(N )
Hermite is known as

the extended Hermite kernel (see, for instance, Exercise 11.6.3 in [45]).
The equal-time correlation kernel

K(N , t)
Hermite(x, y) ≡ K(N )

Hermite(t, x; t, y)

= 1√
2t

N−1
∑

n=0
ϕn

(

x√
2t

)

ϕn

(

y√
2t

)

has the following expression (see Exercises 3.16 and 3.17),

K(N , t)
Hermite(x, y) =

√

N

2

ϕN (x/
√
2t)ϕN−1(y/

√
2t)− ϕN−1(x/

√
2t)ϕN (y/

√
2t)

x − y
,

if x �= y, (3.113)

K(N , t)
Hermite(x, x)

= 1√
2t

[

N

{

ϕN

(

x√
2t

)}2

−√

N (N + 1)ϕN−1
(

x√
2t

)

ϕN+1
(

x√
2t

)

]

.

(3.114)

This spatial correlation kernel is a special case of the Christoffel–Dorboux kernel
(see, for instance, Chap. 9 in [45] and Chap.3 in [5]). It is called the Hermite kernel



3.8 Generalization for Initial Configuration with Multiple Points 93

and defines the determinantal point process [123, 124, 126] on R such that a spatial
correlation function is given by

ρ
(N , t)
Hermite(xN ′) = det

1≤i, j≤N ′

[

K(N , t)
Hermite(xi , x j )

]

(3.115)

for any 1 ≤ N ′ ≤ N and xN ′ = (x1, . . . , xN ′) ∈ R
N ′
, t > 0. We write the probability

measure of this determinantal point process as P(N , t)
Hermite.

3.9 Wigner’s Semicircle Law and Scaling Limits

In this section, we consider a determinantal process with the extended Hermite ker-
nel K(N )

Hermite given by (3.112), where N is the number of particles. The correlation
functions are denoted by {ρ(N )Hermite(·)}.

3.9.1 Wigner’s Semicircle Law

The density function at time t ≥ 0 and position x ∈ R is given by

ρ
(N )
Hermite(t, x) = K(N , t)

Hermite(x, x)

= 1√
2t

N−1
∑

n=0
ϕn

(

x√
2t

)2

= 1√
2t

[

NϕN

(

x√
2t

)2

−√

N (N + 1)ϕN−1
(

x√
2t

)

ϕN+1
(

x√
2t

)

]

.

(3.116)

It is easy to verify that
∫ ∞

−∞
ρ
(N )
Hermite(t, x)dx = N

by the orthonormality (3.109) of {ϕn(x)}n∈N0 . We will obtain estimations for the
asymptotics at N →∞. The following formulas are derived from Theorem 8.22.9
(a) and (b) in Chap.8 of [129]. Let ε and ω be fixed positive numbers. We have

(i) ϕN

(√
2N + 1 cosφ

)

= 1√
π sin φ

(

2

N

)1/4

×
{

sin

[(

N

2
+ 1

4

)

(sin 2φ − 2φ)+ 3

4
π

]

+ O

(

1

N

)}

, ε ≤ φ ≤ π − ε
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(ii) ϕN

(√
2N + 1 cosh φ

)

= 1√
2π sinh φ

(

1

2N

)1/4

× exp

[(

N

2
+ 1

4

)

(2φ − sinh 2φ)+ 3

4
π

]{

1+ O

(

1

N

)}

, ε ≤ φ ≤ ω.

Using these expressions, we have the asymptotics of the density profile at N →∞,

ρ
(N )
Hermite(t, x) �

⎧

⎪

⎪

⎨

⎪

⎪

⎩

1

π
√
2t

√

2N − x2

2t
, if − 2

√
Nt ≤ x ≤ 2

√
Nt,

0, otherwise.

(3.117)

The distribution of N particles has a finite support, whose interval ∝ √N , and thus
ρ
(N )
Hermite(t, x) ∼ √

N →∞ as N →∞ for fixed 0 < t <∞. If we set x = 2
√

Ntξ ,
we see that

lim
N→∞

1

N
ρ
(N )
Hermite(t, 2

√
Ntξ)dx =

⎧

⎪

⎨

⎪

⎩

2

π

√

1− ξ 2 dξ, if − 1 ≤ ξ ≤ 1,

0, otherwise,

(3.118)

which is known as Wigner’s semicircle law [101].
In the following, we consider the scaling limits, in which the long-term limit

t →∞ is taken at the same time with N →∞.

3.9.2 Bulk Scaling Limit and Homogeneous Infinite System

First we consider the central region x � 0 in the semicircle-shaped profile of particle
density in the scaling limit

t � N

π2
→∞. (3.119)

In this limit the system becomes homogeneous also in space with a constant density
ρ = 1. We call this the bulk scaling limit.

Proposition 3.6 For any M ∈ N, any sequence {Nm}M
m=1 of positive integers, and

any strictly increasing sequence {sm}M
m=1 of positive numbers,
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lim
N→∞ ρ

(N )
Hermite

(

N

π2
+ 2s1, x(1)N1

; · · · ; N

π2
+ 2sM , x(M)

NM

)

= det
1≤i≤Nm ,1≤ j≤Nn ,

1≤m,n≤M

[

Ksin(sm, x (m)i ; sn, x (n)j )
]

≡ ρsin

(

s1, x(1)N1
; · · · ; sM , x(M)

NM

)

, (3.120)

where

Ksin(s, x; t, y) =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

∫ 1

0
du e−π

2u2(s−t) cos{πu(x − y)}, if t > s,

Ksin(x, y), if t = s,

−
∫ ∞

1
du e−π

2u2(s−t) cos{πu(x − y)}, if t < s,

(3.121)

with

Ksin(x, y) = 1

2π

∫

|k|≤π
dk e−k2t/2+√−1k(x−y) = sin{π(x − y)}

π(x − y)
, x, y ∈ R.

(3.122)

Proof For any u ∈ R, the formulas

lim
�→∞(−1)

��1/4ϕ2�

(

u

2
√
�

)

= 1√
π
cos u,

lim
�→∞(−1)

��1/4ϕ2�+1
(

u

2
√
�

)

= 1√
π
sin u (3.123)

are known (see Eq. (8.22.8) in Chap.8 of [129]). We note that

(

tn
tm

)α

=
(

N/π2 + 2sn

N/π2 + 2sm

)α

=
{

(

1+ 2π2sn

N

)N (

1+ 2π2sm

N

)−N
}α/N

� e−2π
2α(sm−sn)/N

for N � 1 with a fixed number α. Then (3.112) with s = tm = N/π2 + 2sm ≤ t =
tn = N/π2 + 2sn is evaluated at N →∞ as
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K(N )
Hermite(tm, x; tn, y) � 1

N

N/2−1
∑

�=0
e−2π

2�(sm−sn)/N

×
√

N

2�

{

cos

(

π

√

2�

N
x

)

cos

(

π

√

2�

N
y

)

+ sin

(

π

√

2�

N
x

)

sin

(

π

√

2�

N
y

)}

� 1

2

∫ 1

0

dλ√
λ

e−π
2λ(sm−sn)

{

cos(π
√
λx) cos(π

√
λy)+ sin(π

√
λx) sin(π

√
λy)

}

=
∫ 1

0
du e−π

2u2(sm−sn) cos{πu(x − y)}.

In particular, when tm = tn , i.e., sn − sm = 0, the integration is readily performed
to have

∫ 1
0 du cos{πu(x − y)} = sin{π(x − y)}/π(x − y). A similar evaluation at

N →∞ can be done also for (3.112) with s = tm > t = tn . ��
The correlation kernel (3.121) is called the extended sine kernel. Since it is a

function of s − t and x − y, the determinantal process obtained by the bulk scaling
limit is a temporally and spatially homogeneous process with an infinite number of
particles, which we write as (Ξ,Psin). Let Psin be a stationary probability measure
on R, which is a determinantal point process [123, 124, 126] such that the spatial
correlation function is given by

ρsin(xN ) = det
1≤i, j≤N

[

Ksin(xi , x j )
]

(3.124)

for any N ∈ N, xN = (x1, . . . , xN ) ∈ R
N , where Ksin is given by (3.122). The

determinantal process (Ξ,Psin) is reversible with respect to Psin.

3.9.3 Soft-Edge Scaling Limit and Spatially Inhomogeneous
Infinite System

Next we consider the scaling limit

t � N 1/3 and x � 2N 2/3. (3.125)

Since (3.125) gives x2/2t � 2N , this scaling limit allows us to zoom into the right
edge of the semicircle-shaped profile (3.117), and we obtain a spatially inhomoge-
neous infinite particle system. Following randommatrix theory [101], we call (3.125)
the soft-edge scaling limit.

In order to describe the limit, we introduce the Airy function
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Ai(x) = 1

π

∫ ∞

0
dk cos

(

k3

3
+ kx

)

. (3.126)

It is the solution of the equation

d2

dx2
Ai(x) = xAi(x), (3.127)

which obeys the asymptotics given by

Ai(x) � 1

2
√
πx1/4

exp

(

−2

3
x3/2

)

,

Ai(−x) � 1√
πx1/4

cos

(

2

3
x3/2 − π

4

)

as x →∞. (3.128)

In the proof of the following theorem, we will use the formula

lim
�→∞ 2−1/4�1/12ϕ�

(√
2�+ x√

2
�−1/6

)

= Ai(x) for x ∈ R, (3.129)

which is obtained from Theorem 8.22.9 (c) in Chap.8 of [129]. Let

aN (s) = 2N 2/3 + N 1/3s − s2

4
, (3.130)

and aN (s)+ xN ′ = (aN (s)+ x1, aN (s)+ x2, · · · , aN (s)+ xN ′).

Proposition 3.7 For any M ∈ N, any sequence {Nm}M
m=1 of positive integers, and

any strictly increasing sequence {sm}M
m=1 of positive numbers

lim
N→∞ ρ

(N )
Hermite

(

N 1/3 + s1, aN (s1)+ x(1)N1
; · · · ; N 1/3 + sM , aN (sM)+ x(M)

NM

)

= det
1≤i≤Nm ,1≤ j≤Nn ,

1≤m,n≤M

[

KAiry(sm, x (m)i ; sn, x (n)j )
]

≡ ρAiry

(

s1, x(1)N1
; · · · ; sM , x(M)

NM

)

, (3.131)

where

KAiry(s, x; t, y) =

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

∫ ∞
0

du eu(s−t)/2Ai(x + u)Ai(y + u), if t ≥ s,

−
∫ 0

−∞
du eu(s−t)/2Ai(x + u)Ai(y + u), if t < s.

(3.132)
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Proof Replacing the summation index in (3.112) by N − p − 1 for the case where
m ≤ n, we have

KN (tm, x; tn, y)

=
(

tn
tm

)(N−1)/2 1√
2tm

N−1
∑

p=0

(

tn
tm

)−p/2

ϕN−p−1
(

x√
2tm

)

ϕN−p−1
(

y√
2tn

)

.

When we set tm = N 1/3 + sm , we see that

aN (sm)+ x√
2tm

= √
2N + x√

2
N−1/6 + O(N−1/2), (3.133)

and we can use the formula (3.129):

ϕN−p−1
(

x√
2tm

)

� ϕN−p−1
(√

2N + x√
2

N−1/6
)

� ϕN−p−1
(

√

2(N − p − 1)+ 1√
2
(N − p − 1)−1/6

{

x + p

N 1/3

}

)

� 21/4N−1/12Ai
(

x + p

N 1/3

)

.

For

(

tn
tm

)−p/2

=
[

(

1+ sn/N 1/3

1+ sm/N 1/3

)N 1/3/2
]−p/N 1/3

� ep(sm−sn)/2N 1/3
as N →∞,

we have, for n ≥ m,

K(N )
Hermite(N

1/3 + sm, aN (sm)+ x; N 1/3 + sn, aN (sn)+ y)

∼ 1

N 1/3

N−1
∑

p=0
ep(sm−sn)/2N 1/3

Ai
(

x + p

N 1/3

)

Ai
(

y + p

N 1/3

)

�
∫ ∞

0
du eu(sm−sn)/2Ai(x + u)Ai(y + u) as N →∞.

Note that the factor (tn/tm)(N−1)/2 was omitted in the second line in the above equa-
tions, since it is irrelevant in calculating determinants by Lemma 3.8. A similar
evaluation at N →∞ of (3.112) can be done also for m > n. ��

The infinite system obtained by the soft-edge scaling limit (3.125) is tempo-
rally homogeneous, but spatially inhomogeneous as shown by the correlation kernel
KAiry, (3.132).We callKAiry the extended Airy kernel [77, 106] andwrite this station-
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ary determinantal process as (Ξ,PAiry). Prähofer and Spohn [114] and Johansson
[65] studied the rightmost path in the present system and called it the Airy process
(A(t))t≥0. For a given t > 0, A(t) follows the celebrated Tracy–Widom distribution,
which is governed by the Painlevé II equation as shown in Sect. 3.11 [136, 137].
(See [62] for the original work on the relationship between the Painlevé transcendent
and interacting particle systems.) Tracy and Widom also derived a system of PDEs,
which govern (A(t))t≥0 [139]. See also [2, 42, 140].

Let PAiry be the stationary probability measure on R, which is a determinantal
point process [123, 124, 126] such that the spatial correlation function is given by

ρAiry(xN ) = det
1≤i, j≤N

[

KAiry(xi , x j )
]

(3.134)

for any N ∈ N, xN = (x1, . . . , xN ) ∈ R
N , where

KAiry(x, y) = KAiry(t, x; t, y)

=
∫ ∞

0
du Ai(x + u)Ai(y + u). (3.135)

The Airy kernel KAiry is also written as (Exercise 3.18)

KAiry(x, y) = Ai(x)Ai′(y)− Ai′(x)Ai(y)
x − y

, x �= y, (3.136)

KAiry(x, x) = Ai′(x)2 − xAi(x)2. (3.137)

3.10 Entire Functions and Infinite Particle Systems

A function which is represented by a power series of the form

f (z) =
∞
∑

n=0
cnzn, z ∈ C

with limn→∞ |cn|1/n = 0, is analytic in the whole complex plane and is called an
entire function. The class of entire functions includes all polynomials.Aspolynomials
are classified by their degree indicating their growth as |z| → ∞, entire functions
are classified by the order of growth ρ f defined by

ρ f = lim sup
r→∞

log log M f (r)

log r
for M f (r) = max|z|=r

| f (z)|. (3.138)
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Note that (3.138)meansmax|z|=r | f (z)| ∼ exp(σ f zρ f ) as z →∞,where the constant
σ f is called the type: σ f ≡ lim supr→∞ log M f (r)/rρ f .

For ξ = ∑N
i=1 δxi ∈M0 with p ∈ N0, we consider the product

Πp(ξ, z) =
∏

1≤i≤N ,xi �=0
G

(

z

xi
, p

)

, z ∈ C,

where

G(u, p) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

1− u, if p = 0,

(1− u) exp

[

u + u2

2
+ · · · + u p

p

]

, if p ∈ N.

(3.139)

The function G(u, p) is called the Weierstrass primary factor with genus p. With
α > 0, we consider

ζξ (α) =
∫

{0}c
1

|x |α ξ(dx) =
∑

i,xi �=0

1

|xi |α . (3.140)

For a configuration with an infinite number of particles, ξ = ∑

i ∈ M0 with
ξ(R) = ∞, we put ξ ∩ [−L , L] ≡ ∑

i,xi∈[−L ,L] δxi for L > 0. We define

ζξ (α) = lim
L→∞ ζξ∩[−L ,L](α), (3.141)

if the limit finitely exists. If ζξ (p + 1) <∞ for some p ∈ N0, the limit

Πp(ξ, z) = lim
L→∞Πp(ξ ∩ [−L , L], z) =

∏

i,xi �=0
G

(

z

xi
, p

)

, z ∈ C, (3.142)

finitely exists. This infinite product is called the Weierstrass canonical product of
genus p [92].

The Hadamard theorem [92] claims that any entire function f of finite order
ρ f <∞ can be represented by

f (z) = zmePq (z)Πp(ξ f , z), (3.143)

where the genus p satisfies the inequality

p ≤ ρ f . (3.144)
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Here Pq(z) is a polynomial in z of degree q ≤ ρ f , m is the multiplicity of the root at
the origin, and ξ f is the distribution of zeros of the entire function f except for the
origin:

ξ f =
∑

x∈ f −1(0),x �=0
δx . (3.145)

The relation (3.144) between the genus p and the order of growth ρ f implies that,
if an entire function f grows very rapidly, then its zeros are arranged very densely.
One of the main subjects of the theory of entire functions is to clarify the relationship
between the growth of an entire function and the distribution of its zeros. We use this
theory to construct and analyze determinantal processes with an infinite number of
particles [83–85].

3.10.1 Nonequilibrium Sine Process

The function f (z) = sin(π
√

z)/π
√

z is entire and of order ρ f = 1/2 with zeros
f (0)−1 = {n2 : n ∈ N}. According to the Hadamard theorem, we have

sin(π
√

z)

π
√

z
=

∞
∏

n=1

(

1− z

n2

)

, z ∈ C,

since f (0) = 1. By replacing z by z2, we obtain

sin(π z) = π z
∏

n∈Z,
n �=0

(

1− z

n

)

, z ∈ C. (3.146)

Define

Φ�
ξZ
(z) ≡

∏

n∈Z,
n �=�

z − n

�− n
= sin{π(z − �)}

π(z − �)

= 1

π(z − �)

sin(π z)

sin′(π�)
, z ∈ C, � ∈ Z, (3.147)

where the second equality is given by (3.146) and the third one is verified by noting
that sin{π(z − �)} = sin(π z) cos(π�) and sin′(π�) = cos(π�) = (−1)� for � ∈ Z.
It can be regarded as an extension of the polynomial given by (3.60) to an entire
function Φ�

ξ Z (z), z ∈ C, where � ∈ Z and ξZ is the configuration in which every
point of Z is occupied by one particle:

ξZ(·) =
∑

n∈Z
δn(·). (3.148)
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(The last expression of Φ�
ξZ
(z) in (3.147) will be compared with the definition of

̂Ψ
a�
ξA
(z) given by the first equality in (3.176) [83].) The function (3.147) has the

following integral representation,

Φ�
ξZ
(z) = 1

2π

∫

|k|≤π
e
√−1k(z−�)dk, z ∈ C, � ∈ Z. (3.149)

The martingale function (3.62) with (1.25) corresponding to (3.149) will be

M �
ξZ
(t, y) = I [Φ�

ξZ
(W )|(t, y)]

=
∫

R

dwΦ�
ξZ
(
√−1w)

e−(
√−1y+w)2/2t

√
2π t

= 1

2π

∫

|k|≤π
dk

∫

R

dw e
√−1k(

√−1w−�) e−(
√−1y+w)2/2t

√
2π t

= 1

2π

∫

|k|≤π
dk etk2/2+√−1k(y−�). (3.150)

Since the integrand of (3.150) is equal to G√−1k(t, y−�), where Gα(t, x) is given by
(1.15), M �

ξZ
(t, B(t)), t ≥ 0, � ∈ Z are indeed martingales. Then following (3.89),

we put

GξZ(s, x; t, y) =
∑

�∈Z
p(s, x |�)M �

ξ Z (t, y)

= 1

2π

∫

|k|≤π
dk

1√
2πs

∑

�∈Z
e−(x−�)

2/2s+tk2/2+√−1k(y−�). (3.151)

Here we introduce the Jacobi theta function defined by

ϑ3(z, τ ) =
∑

�∈Z
e2π

√−1z�+π√−1τ�2 , z ∈ C, Jτ > 0. (3.152)

Then (3.151) is written as

1

2π

∫

|k|≤π
dk ek2(t−s)/2+√−1k(y−x)ϑ3

(

1

2π
√−1s

(x −√−1ks),− 1

2π
√−1s

)

× e−π
√−1(x−√−1ks)2/2π

√−1s

√ √−1
2π
√−1s

.

http://dx.doi.org/10.1007/978-981-10-0275-5_1
http://dx.doi.org/10.1007/978-981-10-0275-5_1
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We use the functional equation satisfied by ϑ3(z, τ ),

ϑ3(z, τ ) = ϑ3

(

z

τ
,−1

τ

)

e−π
√−1z2/τ

√√−1
τ

, z ∈ C, Jτ > 0,

which is called Jacobi’s imaginary transformation (see, for example, Sect. 10.12 in
[8]). Then we have

GξZ(s, x; t, y) = 1

2π

∫

|k|≤π
dk ek2(t−s)/2+√−1k(y−x)ϑ3(x −

√−1ks, 2π
√−1s).

Following (3.88), we set

KξZ(s, x; t, y) = GξZ(s, x; t, y)−1(s>t) p(s− t, x |y), (s, x), (t, y) ∈ [0,∞)×R.

(3.153)

By the procedure above, it is expected that this gives the correlation kernel of the
determinantal process starting from the configuration (3.148) with an infinite number
of particles. See Fig. 3.1. This is a fact, and the following statement was proved in
[84].

Theorem 3.6 Consider the system of SDEs for the Dyson model with an infinite
number of particles,

d Xi (t) = d Bi (t)+
∑

j∈Z,
j �=i

dt

Xi (t)− X j (t)
, t ≥ 0, i ∈ Z. (3.154)

Fig. 3.1 Consider the Dyson
model starting from the
configuration in which every
point of the integers Z is
occupied by one particle.
This nonequilibrium
determinantal process shows
a relaxation phenomenon to
the stationary state Psin

t
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For the initial configuration ξZ given by (3.148), the solution of this infinite system
of SDEs is given by a determinantal process (Ξ,Pξ

Z

) whose correlation kernel is
given by (3.153).

The correlation kernel (3.153) is divided into two parts,

KξZ(s, x; t, y) = Ksin(s, x; t, y)+ RξZ(s, x; t, y), (3.155)

where Ksin is the extended sine kernel given by (3.121) and

RξZ(s, x; t, y)

= 1

2π

∫

|k|≤π
dk ek2(t−s)/2+√−1k(y−x)

{

ϑ3(x −
√−1ks, 2π

√−1s)− 1
}

=
∑

n∈N
e−2π

2sn2 1

π

∫

|k|≤π
dk ek2(t−s)/2+2πksn cos[2πxn + k(x − y)],

(s, x), (t, y) ∈ [0,∞)× R. For any T > 0, we can see that

∣

∣

∣RξZ(s + T, x; t + T, y)
∣

∣

∣

≤
(

eπ
2(t−s)/2 ∨ 1

)
∑

n∈N
e−2π

2(s+T )n2 1

π

∫

|k|≤π
dk e2πk(s+T )n

≤ eπ
2(t−s)/2 ∨ 1

2π2(s + T )
≤ C

T
, (s, x), (t, y) ∈ [0,∞)× R,

where a ∨ b = max{a, b}. Here C > 0 depends on s and t , but not on T . Then we
can conclude that for any fixed s, t > 0,

lim
T→∞KξZ(s + T, x; t + T, y) = Ksin(s, x; t, y) (3.156)

uniformly on any compact subset of R2. The convergence of the correlation kernel
implies the following.

Proposition 3.8 The Dyson model (3.154) with an infinite number of particles start-
ing from ξZ, (Ξ,Pξ

Z

), shows a relaxation phenomenon to the determinantal process
(Ξ,Psin), which is specified by the extended sine kernel Ksin obtained by the bulk
scaling limit from the extended Hermite kernel.

A relaxation phenomenon is a typical phenomenon observed in nonequilibrium
dynamics and we call the determinantal infinite-particle system (Ξ,Pξ

Z

) specified
by K

ξZ the nonequilibrium sine process. The determinantal process (Ξ,Psin) with
the correlation kernelKsin(s, x; t, y) is the equilibrium dynamics, which is reversible
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with respect to Psin. The relaxation exhibits slow dynamics. As a matter of fact, we
can find that the particle density function ρξZ(t, x) shows a power-law behavior

ρξZ(t, x)− 1 = 1

π2t

∑

n∈N

cos(2πnx)

n
sinh(2π2nt)e−2π

2n2t

� cos(2πx)

2π2

1

t
, x ∈ R, t →∞, (3.157)

in approaching the uniform equilibrium state ρsin(x) ≡ 1.

3.10.2 Nonequilibrium Airy Process

The Airy function defined by (3.126) as a real function allows us to define it as an
entire function by

Ai(z) = 1

2π
√−1

∫

C
ek3/3−zkdk, z ∈ C, (3.158)

where the contour C starts at e−2π
√−1/3∞ and finishes at e2π

√−1/3∞, following the
corresponding rays asymptotically, staying in the sector −2π/3 < argz < 2π/3
[142]. As suggested by (3.128), the order of growth is

ρAi = 3

2
(3.159)

with type σAi = 2/3;

max|z|=r
|Ai(z)| ∼ exp

(

2

3
r3/2

)

as r →∞. (3.160)

The zeros of the Airy function are located only on the negative part of the real axisR,

A ≡ Ai−1(0) =
{

an, n ∈ N : Ai(an) = 0, 0 > a1 > a2 > · · ·
}

, (3.161)

with the values [1] a1 = −2.338 . . . , a2 = −4.087 . . . , a3 = −5.520 . . . , a4 =
−6.786 . . . , a5 = −7.944 . . . , and they admit the asymptotics [1, 142]

an � −
(

3π

2

)2/3

n2/3 as n →∞. (3.162)
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Then the average density of zeros of the Airy function around x , denoted by ρA (x),
behaves as

ρA (x) � 1

π
(−x)1/2 →∞ as x →−∞. (3.163)

Let

ξA =
∑

a∈A
δa =

∞
∑

n=1
δan ∈M0. (3.164)

By (3.163), the ‘Airy zeta function’ [142] gives ζξA (1) =
∑

a∈A 1/|a| = ∞, but

ζξA (2) =
∑

a∈A

1

|a|2 = d 2
1 <∞ (3.165)

with

d1 = Ai′(0)
Ai(0)

= −31/3Γ (2/3)

Γ (1/3)
= −35/6(Γ (2/3))2

2π
= −0.7290 . . . , (3.166)

where Ai′(z) = dAi(z)/dz. According to the Hadamard theorem, Ai(z) is expressed
using the Weierstrass canonical product of genus p = 1 as

Ai(z) = ed0+d1zΠ1(ξ
A , z)

= ed0+d1z
∞
∏

n=1

{(

1− z

an

)

ez/an

}

, z ∈ C, (3.167)

where

d0 = logAi(0) = − log(32/3Γ (2/3)) = 1.035 . . . . (3.168)

First we show that the Airy function is related to the drifted Brownian motion of
the form

B(t)+ t2

4
, t ≥ 0. (3.169)

The transition probability density is given by

pt2/4(t, y|s, x) ≡ p(t − s, y − t2/4|x − s2/4)

= 1√
2π(t − s)

exp

[

− (y − x)2

2(t − s)
+ (t + s)(y − x)

4
− (t − s)(t + s)2

32

]

. (3.170)
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Let

pAi(t, y|x) ≡
∫

R

du eut/2Ai(x + u)Ai(y + u), x, y ∈ R, t ≥ 0, (3.171)

and

g(t, x) ≡
∫

R

dz pAi(t, z|x) = exp

(

− t x

2
+ t3

24

)

. (3.172)

Then the following relation is established,

pAi(t − s, y|x) = g(t, y)

g(s, x)
pt2/4(t, y|s, x), x, y ∈ R, 0 ≤ s ≤ t. (3.173)

When s = 0, g(0, x) = 1 and (3.173) becomes

pAi(t, y|x) = g(t, y)pt2/4(t, y|0, x), x, y ∈ R, t ≥ 0. (3.174)

Corresponding to the drift (3.169), the kernel of the integral transformation ̂Gw(t, x)
given by (1.22) is replaced by ̂Gw(t, x − t2/4) and we consider the integral transfor-
mation

I [ f (W )|(t, x − t2/4)] =
∫ ∞

−∞
dw f (

√−1w)̂Gw(t, x − t2/4). (3.175)

Now we consider the nonequilibrium determinantal process with an infinite num-
ber of particles starting from the Airy zeros (3.164). We write it as (Ξ,Pξ

A
). The

following one-parameter family of entire functions {̂Ψ a�
ξA
(z)}�∈N is considered:

̂Ψ
a�
ξA

(z) ≡ 1

z − a�

Ai(z)

Ai′(a�)
= ed1(z−a�)

∞
∏

m=1
e(z−a�)/am

∏

n∈N,
n �=�

z − an

a� − an

= exp

[(

d1 +
∞
∑

n=1

1

an

)

(z − a�)

]

̂Φ
a�
ξA

(z), � ∈ N, z ∈ C, (3.176)

where

̂Φx
ξ (z) =

∏

n∈N,
xn �=x

z − xn

x − xn
for ξ =

∑

n∈N
δxn . (3.177)

http://dx.doi.org/10.1007/978-981-10-0275-5_1
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The function (3.176) seems to be similar to the integrand eb(W−x)Φx
ξ (W ) found in

(3.93), but we should note that

d1 +
N

∑

n=1

1

an
� −

(

12

π2

)1/3

N 1/3 →−∞ as N →∞, (3.178)

and ̂Φx
ξA
(z) = ∞. Nevertheless, {̂Ψ a�

ξA
(z)}�∈N defined by (3.176) are entire func-

tions. The one-parameter family of martingale functions {M a�
ξA
(t, y)}�∈N should be

obtained by

M a�
ξA
(t, y) = I

[

̂Ψ
a�
ξA
(W )

∣

∣

∣(t, y − t2/4)
]

= I
[

e[d1+
∑∞

n=1(1/an)](W−a�)
̂Φ

a�
ξA
(W )

∣

∣

∣(t, y − t2/4)
]

, (3.179)

� ∈ N, y ∈ R, t ≥ 0.
The following integral representations of the entire functions are available (Exer-

cise 3.19),

̂Ψ
a�
ξA
(z) = 1

Ai′(a�)2

∫ ∞

0
du Ai(z + u)Ai(a� + u) (3.180)

for a� ∈ A , z �= a�. Then

M a�
ξA
(t, y) = 1

Ai′(a�)2

∫ ∞

0
du Ai(a� + u)I [Ai(W + u)|(t, y − t2/4)].

Here we can prove that (Exercise 3.20)

I [Ai(W + u)|(t, y − t2/4)] = g(t, y)e−ut/2Ai(y + u), (3.181)

and thus we have

M a�
ξA
(t, y) = g(t, y)

Ai′(a�)2

∫ ∞

0
du e−ut/2Ai(a� + u)Ai(y + u), � ∈ N.

Then the correlation kernel is given by

∑

�∈N
pt2/4(s, x |0, a�)M

a�
ξA
(t, y)− 1(s>t) pt2/4(s, x |t, y)

= g(t, y)

g(s, x)
KξA (s, x; t, y)
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with

KξA (s, x; t, y) =
∑

�∈N

pAi(s, x |a�)
Ai′(a�)2

∫ ∞

0
du e−ut/2Ai(a� + u)Ai(y + u)

−1(s>t) pAi(s − t, x |y),

where (3.173) and (3.174) were used.
Based on the above calculations, the following statement was proved in [83].

Theorem 3.7 Under the initial configuration ξA given by all zeros of the Airy
functions, the infinite system of SDEs

d Xi (t) = d Bxi
i (t)+

t

2
dt

+ lim
N→∞

⎛

⎜

⎜

⎝

d1 +
N

∑

k=1

1

ak
+

∑

1≤ j≤N ,
j �=i

1

Xi (t)− X j (t)

⎞

⎟

⎟

⎠

dt, (3.182)

i ∈ N, t ≥ 0, has a solution. The solution is given by a determinantal process
(Ξ,Pξ

A
), whose correlation kernel is given by

KξA (s, x; t, y) =
∑

�∈N
pAi(s, x |a�) ˜M a�

ξA
(t, y)− 1(s>t) pAi(s − t, x |y),

(s, x), (t, y) ∈ [0,∞)× R (3.183)

with

˜M a�
ξA
(t, y) = 1

Ai′(a�)2

∫ ∞

0
du e−ut/2Ai(a� + u)Ai(y + u). (3.184)

We call (Ξ,Pξ
A
) the nonequilibrium Airy process, because it exhibits the follow-

ing relaxation phenomenon.

Proposition 3.9 The infinite particle system (Ξ,Pξ
A
) starting from the zeros of

the Airy function shows a relaxation phenomenon to the determinantal process
(Ξ,PAiry), which is specified by the extended Airy kernel KAiry obtained by the
soft-edge scaling limit from the extended Hermite kernel.
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Proof By (3.171), (3.183) is written as

KξA (s, x; t, y)

=
∫ ∞

0
du

∫

R

dw e−ut/2+ws/2Ai(y + u)Ai(x + w)
∑

�∈N

Ai(u + a�)Ai(w+ a�)

Ai′(a�)2

− 1(s>t) pAi(s − t, x |y).

The functions {Ai(x + a�)/Ai′(a�)}�∈N form an orthogonal basis for f ∈ L2(0,∞)

(see Sect. 4.12 in [135]) and the completeness is also established as

∑

�∈N

Ai(x + a�)Ai(y + a�)

Ai′(a�)2
dy = δx ({y})dy, x, y ∈ (0,∞). (3.185)

Then we have the decomposition

KξA (s, x; t, y) = KAiry(s, x; t, y)+ RξA (s, x; t, y)

with the extended Airy kernel KAiry given by (3.132) and

RξA (s, x; t, y) =
∫ ∞

0
du

∫ 0

−∞
dw e−ut/2+ws/2Ai(u + y)Ai(w+ x)

×
∑

�∈N

Ai(u + a�)Ai(w+ a�)

Ai′(a�)2
.

Since for any fixed s, t > 0 limT→∞ |RξA (s + T, x; t + T, y)| → 0 uniformly on
any compact subset of R2,

lim
T→∞KξA (s + T, x; t + T, y) = KAiry(s, x; t, y)

holds in the same sense. This completes the proof. ��
A Dirichlet form approach has been developed to construct equilibrium dynam-

ics of interacting infinite-particle systems [47, 109, 127, 132, 144]. Equilibrium
determinantal processes including the sine process (Ξ,Psin) and the Airy process
(Ξ,PAiry) with infinite numbers of particles are studied by Osada in [110–112].
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3.11 Tracy–Widom Distribution

3.11.1 Distribution Function of the Maximum
Position of Particles

Consider a determinantal point process (Ξ,P)with an infinite number of particles on
R such thatΞ = ∑

i∈I δXi ∈M0, where I denotes an infinite index set. Assume that
the correlation kernel is given by K(x, y), (x, y) ∈ R

2 [123, 126]. Two examples,
(Ξ,Psin) with the sine kernel Ksin and (Ξ,PAiry) with the Airy kernel KAiry, were
given in Sects. 3.9.2 and 3.9.3, respectively. With a test function χ ∈ Cc(R) the
generating function of spatial correlation functions defined by

Ψ [χ ] = E

[

∏

i∈I
{1+ χ(Xi )}

]

, (3.186)

is expressed by a Fredholm determinant

Ψ [χ ] = Det
(x,y)∈R2

[

δx ({y})+ K(x, y)χ(y)
]

. (3.187)

If we set χ(x) = −1(x≥s) with a parameter s ∈ R, (3.186) becomes

Ψ [−1(·≥s)] = E

[

∏

i∈I
{1− 1(Xi≥s)}

]

= E

[

∏

i∈I
1(Xi<s)

]

= P
[

Xi < s,∀ i ∈ I

]

= P

[

max
i∈I

Xi < s

]

.

This is the distribution function of themaximum position of particles, and by (3.187),
it has the Fredholm determinantal expression

P

[

max
i∈I

Xi < s

]

= Det
(x,y)∈R2

[

δx ({y})− Ks(x, y)
]

, (3.188)

where

Ks(x, y) = K(x, y)1(y≥s), x, y, s ∈ R. (3.189)

For integrable functions fi (x, y), i ∈ N, (x, y) ∈ R
2, we use the following

notations,

[ f1 f2 · · · fn](x1, xn+1) =
∫

Rn−1
f1(x1, x2) f2(x2, x3) · · · fn(xn, xn+1)dx2 . . . dxn,
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n ∈ {2, 3, . . . }, x1, xn+1 ∈ R. We regard f1 f2 · · · fn as an operator such that its
(x, y)-element is given by [ f1 f2 · · · fn](x, y), (x, y) ∈ R

2. The trace of an operator
f is defined by

Tr f =
∫

R

f (x, x)dx, (3.190)

and if Tr f < ∞, f is said to be a trace class operator [125]. Put 1(x, y) = δ(x −
y), (x, y) ∈ R

2. The resolvent of Ka is defined by

ρa =
∞
∑

n=0
Kn

a ≡ (1− Ka)
−1. (3.191)

Let

Ra ≡ ρaKa =
∞
∑

n=0
Kn+1

a , (3.192)

and

r(a) = Ra(a, a) ≡ lim
y→x

Ra(x, y)
∣

∣

∣

x=a
, a ∈ R. (3.193)

The correlation kernels K of determinantal point processes are trace class opera-
tors and the following exponential expression for (3.188) is proved (see, for instance,
Lemmas 2.1 and 2.2 in [123]).

Lemma 3.10 If r is integrable,

P

[

max
i∈I

Xi < s

]

= exp

(

−
∫ ∞

s
da r(a)

)

, s ∈ R. (3.194)

Proof The explicit expression of (3.188) is

Det
(x,y)∈R2

[

δx ({y})− Ks(x, y)
]

= 1+
∞
∑

n=1

(−1)n

n! In(s)

with

In(s) =
∫

Rn

dxn det
1≤i, j≤n

[Ks(xi , x j )].
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Using the Maclaurin expansion

log(1− x) = −
∞
∑

n=1

xn

n
, (3.195)

we can show that (Exercise 3.21)

log

(

1+
∞
∑

n=1

(−1)n

n! In(s)

)

= −
∞
∑

n=1

1

n
Tr Kn

s . (3.196)

We rewrite this as

Tr

(

−
∞
∑

n=1

1

n
Kn

s

)

=
∫ ∞

s
da

∂

∂a
Tr

( ∞
∑

n=1

1

n
Kn

a

)

=
∫ ∞

s
da Tr

( ∞
∑

n=1
Kn−1

a

∂Ka

∂a

)

=
∫ ∞

s
da Tr

(

ρa
∂Ka

∂a

)

.

Here

∂Ka

∂a
(x, y) = ∂

∂a

{

K(x, y)1(y≥a)
}

= K(x, y)
∂

∂a
1(y≥a) = −K(x, y)δ(y − a),

and hence

Tr

(

ρa
∂Ka

∂a

)

=
∫

R

dx

[

ρa
∂Ka

∂a

]

(x, x)

=
∫

R

dx
∫

R

dy ρa(x, y)
∂Ka

∂a
(y, x)

= −
∫

R

dy ρa(a, y)K(y, a) = −Ra(a, a).

The proof is completed. ��
For (x, y) ∈ R

2, as a →∞, Ka(x, y) = K(x, y)1(y≥a) → 0. Then the definition
(3.192) gives Ra(x, y) � Ka(x, y) = K(x, y)1(y≥a) in a → ∞ for (x, y) ∈ R

2. If
we put x = y = a, we have

r(a) � K(a, a) as a →∞. (3.197)
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Note that, by definitions (3.191) and (3.192), ρa = 1+ Ra and hence

ρa(x, y) = δ(x − y)+ Ra(x, y), (x, y) ∈ R
2. (3.198)

3.11.2 Integrals Involving Resolvent of Correlation Kernel

Let N ∈ N, t ∈ (0,∞). Now we assume

K(x, y) = K(N , t)
Hermite(x, y), (x, y) ∈ R

2. (3.199)

The formula (3.113) is simply written as

K(x, y) = A(x)B(y)− B(x)A(y)

x − y
, x �= y, (3.200)

with

A(x) =
(

N

2

)1/4

ϕN

(

x√
2t

)

, B(x) =
(

N

2

)1/4

ϕN−1
(

x√
2t

)

. (3.201)

We can prove the following (Exercise 3.22).

Lemma 3.11 Let

Pa(x) =
∫

R

dz ρa(x, z)B(z) = [ρa B](x),

Qa(x) =
∫

R

dz ρa(x, z)A(z) = [ρa A](x). (3.202)

Then

r(a) =
[

d Qa(x)

dx
Pa(x)− d Pa(x)

dx
Qa(x)

]

x=a

. (3.203)

Using (3.201) and (3.202), we define the following integrals,

w(a) =
∫

R

dx Pa(x)1(x≥a)B(x) =
∫ ∞

a
dx Pa(x)B(x), (3.204)

u(a) =
∫

R

dx Qa(x)1(x≥a)A(x) =
∫ ∞

a
dx Qa(x)A(x). (3.205)
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Then the following is proved (Exercise 3.23).

Lemma 3.12 The following equations hold:

d Pa(x)

dx
= x

2t
Pa(x)−

(
√

N

t
+ w(a)

t

)

Qa(x)+ Ra(x, a)Pa(a),

d Qa(x)

dx
= − x

2t
Qa(x)+

(
√

N

t
− u(a)

t

)

Pa(x)+ Ra(x, a)Qa(a), (3.206)

and

Ra(x, x) =
{

− x

t
Pa(x)Qa(x)+

(
√

N

t
− u(a)

t

)

Pa(x)
2 +

(
√

N

t
+ w(a)

t

)

Qa(x)
2

+ Ra(x, a){Qa(a)Pa(x)− Qa(x)Pa(a)}
}

1(x≥a). (3.207)

3.11.3 Nonlinear Third-Order Differential Equation

Let

p(a) = Pa(a), q(a) = Qa(a), a ∈ R. (3.208)

By the definition (3.193), (3.207) gives

r(a) = −a

t
p(a)q(a)+

(
√

N

t
− u(a)

t

)

p(a)2 +
(
√

N

t
+ w(a)

t

)

q(a)2. (3.209)

Its derivative is

r ′(a) = −1

t
p(a)q(a)− a

t
p′(a)q(a)− a

t
p(a)q ′(a)

− u′(a)
t

p(a)2 + 2

(
√

N

t
− u(a)

t

)

p(a)p′(a)

+ w′(a)
t

q(a)2 + 2

(
√

N

t
+ w(a)

t

)

q(a)q ′(a). (3.210)

We find the following system of differential equations (Exercise 3.24).
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Lemma 3.13 For a ∈ R,

p′(a) = a

2t
p(a)−

(
√

N

t
+ w(a)

t

)

q(a), (3.211)

q ′(a) = − a

2t
q(a)+

(
√

N

t
− u(a)

t

)

p(a), (3.212)

w′(a) = −p(a)2, (3.213)

u′(a) = −q(a)2. (3.214)

Inserting (3.211)–(3.214) into (3.210) gives a remarkably simple equation,

r ′(a) = −1

t
p(a)q(a). (3.215)

Moreover, Tracy and Widom derived the following result [136, 137].

Proposition 3.10 The function r(a) solves the following nonlinear third-order dif-
ferential equation,

r ′′′(a)−
(

a2

t2
− 4N

t

)

r ′(a)+ a

t2
r(a)+ 6r ′(a)2 = 0. (3.216)

Proof By (3.211) and (3.212), we have

(p(a)q(a))′ = p′(a)q(a)+ p(a)q ′(a)

=
(
√

N

t
− u(a)

t

)

p(a)2 −
(
√

N

t
+ w(a)

t

)

q(a)2. (3.217)

On the other hand, (3.213) and (3.214) give

(
√

N

t
(u(a)− w(a))+ 1

t
u(a)w(a)

)′

=
√

N

t
(u′(a)− w′(a))+ 1

t
(u′(a)w(a)+ u(a)w′(a))

=
(
√

N

t
− u(a)

t

)

p(a)2 −
(
√

N

t
+ w(a)

t

)

q(a)2. (3.218)
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Then, we find the equality

(p(a)q(a))′ =
(
√

N

t
(u(a)− w(a))+ 1

t
u(a)w(a)

)′
. (3.219)

For finite x , 1(x≥a) → 0 as a →∞, and A(a)→ 0, B(a)→ 0 as a →∞. Therefore
p(a), q(a),w(a) and u(a) all become zero as a →∞. By integrating both sides of
(3.219) from a to∞, we obtain the equality

p(a)q(a) =
√

N

t
(u(a)− w(a))+ 1

t
u(a)w(a). (3.220)

If we use (3.217), the derivative of (3.215) is written as

r ′′(a) = −1

t

{(
√

N

t
− u(a)

t

)

p(a)2 −
(
√

N

t
+ w(a)

t

)

q(a)2
}

,

and then

r ′′′(a) = − 2

t2
p(a)2q(a)2 − a

t2

{(
√

N

t
− u(a)

t

)

p(a)2 +
(
√

N

t
+ w(a)

t

)

q(a)2
}

+ 4

t
p(a)q(a)

[

N

t
− 1

t

{
√

N

t
(u(a)− w(a))+ 1

t
u(a)w(a)

}]

, (3.221)

where (3.211)–(3.214) were used. By (3.209) and (3.220), (3.221) is rewritten as

r ′′′(a) = − a

t2
r(a)−

(

a2

t3
− 4N

t2

)

p(a)q(a)− 6

t2
(p(a)q(a))2.

By combining it with (3.215), we obtain (3.216). This completes the proof. ��

3.11.4 Soft-Edge Scaling Limit

For N ∈ N, t ∈ (0,∞), we perform the variable transformation a → u by

a = 2
√

Nt +√t N−1/6u ⇐⇒ u = (a − 2
√

Nt)t−1/2N 1/6. (3.222)

Since ∂/∂a = t−1/2N 1/6∂/∂u, if we set r̃(u) = t1/2N−1/6r(a) with (3.222), (3.216)
is transformed into

r̃ ′′′(u)− 4ur̃ ′(u)+ 2̃r(u)+ 6̃r ′(u)2 − N−2/3u{ur̃ ′(u)− r̃(u)} = 0.
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On the other hand, (3.194) is written as exp(− ∫∞
(s−2√Nt)t−1/2N 1/6 du r̃(u)). Let x =

(s − 2
√

Nt)t−1/2N 1/6. Then

max
1≤i≤N

Xi (t) < s ⇐⇒
max
1≤i≤N

Xi (t)− 2
√

Nt

t1/2N−1/6 < x .

Therefore, we have the following limit,

lim
N→∞ P(N , t)

Hermite

⎡

⎣

max
1≤i≤N

Xi (t)− 2
√

Nt

t1/2N−1/6 < x

⎤

⎦ = exp

(

−
∫ ∞

x
du r̃(u)

)

, (3.223)

where r̃(u) solves the equation

r̃ ′′′(u)− 4ur̃ ′(u)+ 2̃r(u)+ 6̃r ′(u)2 = 0. (3.224)

With (3.222), the BM scaling variable a/
√
2t behaves as

a√
2t
= √

2N + 1√
2

N−1/6u,

which is the same as (3.133). Then the present limit N →∞ realizes the soft-edge
scaling limit discussed in Sect. 3.9.3. By Proposition 3.7, we can conclude that the
left-hand side of (3.223) is equal to [44]

PAiry

[

max
i∈N

Xi < x

]

= Det
(u,v)∈R2

[

δu({v})− KAiry(u, v)1(v≥x)

]

, x ∈ R,

where theAiry kernel, KAiry, is given by (3.136). Since PAiry is a stationary probability
measure, this distribution obtained in the limit (3.223) does not depend on time
t ∈ (0,∞).

3.11.5 Painlevé II and Limit Theorem of Tracy and Widom

Let

r̃(u) =
∫ ∞

u
dv f (v)2. (3.225)

Then (3.224) is written as

f ′(u)2 + f (u) f ′′(u)− 2u f (u)2 −
∫ ∞

u
dv f (v)2 − 3 f (u)4 = 0.
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If we differentiate this equation by u, we obtain

{

f (u)
d

du
+ 3 f ′(u)

}

{

f ′′(u)− u f (u)− 2 f (u)3
}

= 0.

Here we consider the equation

f ′′(u) = u f (u)+ 2 f (u)3, (3.226)

which is a special case of the Painlevé II equation (see, for instance, Chap. 21 and
Appendix A.45 in [101], Chap. 8 in [45], Chap. 3 in [5], and Chap.9 in [3]). Since
(3.225) gives

∫ ∞

x
du r̃(u) =

∫ ∞

x
du

∫ ∞

u
dv f (v)2

=
∫ ∞

x
dv f (v)2

∫ v

x
du =

∫ ∞

x
dv (v − x) f (v)2,

the RHS of (3.223) is written as exp(− ∫∞
x dv (v − x) f (v)2).

By (3.197), in the soft-scaling limit, we find

r̃(u) � KAiry(u, u) as u →∞.

We note that the integral representation of KAiry (3.135) gives

KAiry(u, u) =
∫ ∞

0
dwAi(u + w)2 =

∫ ∞

u
dvAi(v)2.

Comparing this with (3.225), we can conclude that

f (u) � Ai(u) as u →∞. (3.227)

Hastings and McLeod [56] proved that the Painlevé II equation (3.226) has a unique
solution fHM(u), which satisfies (3.227).

Nowwearrive at the following limit theorem for themaximumpositionof particles
of the Dyson model with an infinite number of particles.

Theorem 3.8 For any t ∈ (0,∞), the probability

lim
N→∞ P(N , t)

Hermite

⎡

⎣

max
1≤i≤N

Xi (t)− 2
√

Nt

t1/2N−1/6 < x

⎤

⎦ = PAiry

[

max
i∈N

Xi < x

]

, x ∈ R,

(3.228)
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has the following two expressions,

FTW(x) = Det
(u,v)∈R2

[

δu({v})− KAiry(u, v)1(v≥x)

]

(3.229)

= exp

(

−
∫ ∞

x
dv (v− x) fH M(v)

2

)

, x ∈ R. (3.230)

Here the former is the Fredholm determinantal expression, and the latter is the
expression in terms of the Hastings–McLeod solution fH M of the Painlevé II equation
(3.226).

The probability distribution function (3.230) is called the Tracy–Widom distribu-
tion [136, 137]. It has the probability density function

pTW(x) = d FTW(x)

dx
, x ∈ R. (3.231)

Numerical values of the mean, variance, skewness, and kurtosis are the following
(see [138], Sect. 9.4.2 in [45], and [115]),

μTW =
∫ ∞

−∞
xpTW(x)dx = −1.771086807,

σ 2
TW =

∫ ∞

−∞
(x − μTW)

2 pTW(x)dx = 0.813194792,

STW =
∫ ∞

−∞

(

x − μTW

σTW

)3

pTW(x)dx = 0.224084203,

KTW =
∫ ∞

−∞

(

x − μTW

σTW

)4

pTW(x)dx − 3 = 0.093448087. (3.232)

Figure3.2 shows the comparison between pTW(x) and the probability density
function of the Gaussian distribution

pG(x) = 1√
2πσ 2

e−(x−μ)
2/2σ 2

, x ∈ R, (3.233)

with the same values of mean and variance as the Tracy–Widom distribution given by
(3.232) (μ = μTW, σ 2 = σ 2

TW). The difference between pTW and pG can be shown
better, if we represent them in the semi-log plots as given by Fig. 3.3.
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Fig. 3.2 The probability density function of the Tracy–Widom distribution (3.231) is shown by
a red curve. The black curve shows the probability density function of the Gaussian distribution
(3.233) with the same values of mean and variance as the Tracy–Widom distribution given by
(3.232) (μ = μTW, σ 2 = σ 2

TW)
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Fig. 3.3 The semi-log plots of the probability density function of the Tracy–Widom distribution
(3.231) (the red curve) and that of the Gaussian distribution (3.233) with the same values of mean
and variance (the black curve)
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3.12 Beyond Determinantal Processes

In this last chapter, we have discussed the interacting particle system (3.35), which
is the special case where β = 2 for Dyson’s Brownian motion model (3.3). Only
with this special choice of parameter, [Aspect 1] (see Sect. 3.2) and [Aspect 2] (see
Sect. 3.3) are established and the interacting particle system (3.35) can be constructed
as a multivariate extension of the one-dimensional diffusion process BES(3). In par-
ticular, [Aspect 2] makes the Dyson model (3.35) a solvable model in the sense that
any generating function of correlation functions is given by a Fredholm determinant,
and hence all spatio-temporal correlation functions are expressed by determinants
which are controlled by a single continuous function called the correlation kernel.
We have called interacting particle systems having such strong solvability determi-
nantal processes [82, 84]. In order to link [Aspect 2] and the solvability, we have
introduced the notion of determinantal martingale representation (DMR) and proved
useful formulas, (3.88) with (3.89) for the initial configuration ξ ∈M0 and (3.104)
for ξ ∈M \M0, which give the correlation kernels Kξ , using the martingale func-
tions {M v

ξ : v ∈ supp ξ}. One of the highlights of determinantal structures is the
appearance of the Tracy–Widom distribution, which has the Fredholm determinantal
expression (3.229) as well as the expression (3.230), using the Hastings–McLeod
solution of the Painlevé II equation.

There are many directions in recent developments of the theory. The following
are some of them.

(1) We have assumed that the initial configuration ξ = ∑N
i=1 δxi ∈M is determin-

istic. For σ ∈ R, β ≥ 1, let

μ
(β)

N ,σ 2(ξ) = σ−N {β(N−1)+2)/2

C (β)

N

e−|x|
2/2σ 2 |hN (x)|β

with

C (β)

N = (2π)N/2

N !
N
∏

i=1

Γ (iβ/2+ 1)

Γ (β/2+ 1)
,

and |x|2 = ∑N
i=1 x2

i . If ξ is distributed with the probability density μ(2)
N ,σ 2 which

has unitary symmetry with variance σ 2, the determinantal structure of multitime
correlation functions is maintained but the correlation kernel is replaced by the
time shift t �→ t + σ 2 of the correlation kernel for the special initial configuration
ξ = Nδ0 [76]. In [69], it was shown that if the distribution of ξ has the probability
density μ(1)

N ,σ 2 with orthogonal symmetry, the system becomes a Pfaffian process,
in which all spatio-temporal correlation functions are given by Pfaffians. Here the
Pfaffian is defined for a skew-symmetric 2N × 2N matrix A = (ai j ), N ∈ N as

Pf(A) = 1

N !
∑

σ

′
sgn(σ )aσ(1)σ (2)aσ(3)σ (4) · · · aσ(2N−1)σ (2N ),
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where the summation
∑

σ
′ is extended over all permutations σ ∈ S2N with the

restriction σ(2k − 1) < σ(2k), k = 1, 2, . . . , N . See [20, 46, 77, 81, 98, 103,
104, 106] for Pfaffian processes.
(2) Even though the system is not determinantal, if we properly choose the initial
condition, then some observables can have useful Fredholm determinantal expres-
sions. An important example is found in the asymmetric simple exclusion process
(ASEP) defined on the one-dimensional integer lattice Z. It is not determinantal,
but Tracy andWidom [141] proved that in the case of the step initial configuration,
ξ = ∑

n∈N δn , the probability distribution function of particle positions is given
by an integral whose integrand involves a Fredholm determinant. Using this result
as a starting point, Sasamoto and Spohn [119, 120] and Amir et al. [4] obtained an
exact solution of the stochastic partial differential equation introduced by Kardar
et al. [66] to describe growing interfaces in 1+1 dimensions,

∂h(t, x)

∂t
= ν

∂2h(t, x)

∂x2
+ λ

2

(

∂h(t, x)

∂x

)2

+√DẆ (t, x), (3.234)

where h(t, x) is the height profile at time t ≥ 0 and x ∈ R, ν, λ, D are positive
parameters, and {Ẇ (t, x)}t≥0,x∈R denotes the space-time Gaussian white noise,
having the covariance

E[Ẇ (s, x)Ẇ (t, y)] = δ(s − t)δ(x − y), (s, x), (t, y) ∈ [0,∞)× R.

The equation (3.234) is called the Kardar–Parisi–Zhang (KPZ) equation. The
mathematical justification of such a nonlinear stochastic differential equation itself
is an important research subject [13, 19, 49, 55]. The solution obtained by [4, 119,
120] shows that the fluctuation of the KPZ interface exhibits a crossover from the
Gaussian distribution at short time to the Tracy–Widom distribution at long times.
The universality of Tracy–Widom distributions was also clarified by the replica
method with the Bethe ansatz [25, 35, 36].
(3) Besides [Aspect 1] and [Aspect 2], the following aspect of BES(3) is known
as Pitman’s theorem [113]. Let (R0(t))t≥0 be a BES(3) started at 0, (W (t))t≥0 be
a BM started at 0, and M(t) = max0≤s≤t W (s), t ≥ 0. Then

(R0(t))t≥0
(law)= (2M(t)− W (t))t≥0. (3.235)

Let X N (t), t ≥ 0 denotes the rightmost particle of the Dyson model started
at ξ = Nδ0. As a multivariate extension of (3.235), the following equality is
established,

(X N (t))t≥0
(law)=

(

max
ΔN ([0,t])

N
∑

i=1
{Wi (ti )− Wi (ti−1)}

)

t≥0
, (3.236)
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where {Wi (t)}N
i=1, t ≥ 0 are independent BMs started at 0, and the maximum is

taken over all subdivisions ΔN ([0, t]) of [0, t] with 0 ≡ t0 < t1 < · · · < tN−1 <
tN ≡ t . This equality was first proved for each fixed time t ≥ 0 by Gravner
et al. [54] and Baryshnikov [12], and then the equality in probability law at the
level of processes was proved by Bougerol and Jeulin [21] and O’Connell and Yor
[108] (see also [14, 15, 29]). Moreover, Warren [143] gave a new construction
of the Dyson model started at ξ = Nδ0, (Ξ,PNδ0), which can be regarded as a
generalization of (3.236). Matsumoto and Yor generalized Pitman’s theorem by
considering exponential functionals of BM [99, 100] and its multivariate version
was introduced by O’Connell [107]. The O’Connell process is a softened ver-
sion (a geometric lifting) with a parameter a > 0 of the Dyson model (i.e. the
noncolliding Brownian motion), Ξ(t) = ∑N

i=1 δXi (t), t ≥ 0, such that neigh-
boring particles can change the order of positions in one dimension within the
characteristic length a. Construction of the O’Connell process as a system of con-
ditional Brownian motions was given in [68, 70, 71]. This process, here denoted
by Ξ a = ∑N

i=1 δXa
i (t), t ≥ 0, is not determinantal. Under a special entrance law,

however, Borodin and Corwin [19] gave a Fredholm determinant expression for
the expectation of an observable,

Θa(Xa
N (t)− x) ≡ exp

[−e−{X
a
N (t)−x}/a

]

, x ∈ R,

which is a smoothing of the indicator function 1(X N (t)>x), x ∈ R of the rightmost
particle of the Dyson model. For this special observable, a DMR is given in [72].
Beyond determinantal processes, Borodin and Corwin proposed a general family
of interacting particle systems called the Macdonald process [19]. This family has
a hierarchical structure and the Dyson model and the O’Connell process (which is
also called the Whittaker process) are located at the lowest and the second lowest
level, respectively.

Exercises

3.1 Prove that the SDE of the relative coordinate defined by X r(t) = {X2(t) −
X1(t)}/

√
2 for the two-particle system (3.1) is given by (3.2).

3.2 (i) Prove (3.14) for the Hermitian-matrix-valued Brownian motion H(t) =
Bx(t), t ≥ 0 given by (3.4).
(ii) Show that Γi j (t) = 1, 1 ≤ i, j ≤ N in this case.

3.3 (i) Prove that qN (t, y|x) satisfies the N -dimensional diffusion equation

∂

∂t
qN (t, y|x) = 1

2
Δ(N )qN (t, y|x). (3.237)
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(ii) Show the following equalities:

∂

∂xi

1

hN (x)
= − 1

hN (x)

∑

1≤ j≤N ,
j �=i

1

xi − x j
, 1 ≤ i ≤ N . (3.238)

(iii) Prove
∑

1≤i, j,k≤N ,
i �= j,i �=k, j �=k

1

(xi − x j )(xi − xk)
= 0. (3.239)

(iv) Show that (3.32) satisfies the PDE (3.34) with the initial condition pN (0, y|x) =
δ(x − y) for x, y ∈W

A
N .

3.4 For an N × N matrix A = (ai j )1≤i, j≤N , the determinant det A is defined by

det A = det
1≤i, j≤N

[ai j ] =
∑

σ∈SN

sgn(σ )
N
∏

i=1
aiσ(i). (3.240)

(i) Prove the following:

det
1≤i, j≤N

[ai j b j ] = det
1≤i, j≤N

[bi ai j ] =
N
∏

k=1
bk × det

1≤i, j≤N
[ai j ]. (3.241)

This property is called the multilinearity of determinants.
(ii) Prove the equality (3.38).

3.5 Let VN (x) = det1≤i, j≤N [x N−i
j ]. Prove the equality

VN (x) =
∏

1≤i< j≤N

(xi − x j ). (3.242)

3.6 For each partition μ = (μ1, μ2, . . . ), let |μ| = ∑

i≥1 μi . Prove that sμ(x)
defined by (3.40) is a homogeneous polynomial of x1, . . . , xN of degree |μ|.
3.7 Write down the Schur polynomials sμ(x) for the following cases:
(i) N = 2, μ = (1). (ii) N = 3, μ = (2, 1).

3.8 Prove the equality (3.45).

3.9 For n ∈ N0, assume that Mn(x) is a polynomial of degree n, Mn(x) =
∑n

i=0 bn,i x i , bn,n �= 0. Then prove the equality det1≤i, j≤N [M j−1(xi )] = ∏N
i=1

bi−1,i−1 × hN (x). In particular, if {Mn}n∈N0 are monic, i.e., bn,n = 1,∀ n ∈ N0,
then det1≤i, j≤N [M j−1(xi )] = hN (x).
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3.10 Remember that Gξ is defined by (3.72), where p is the transition probability
density (1.1) of BM.

(i) Show the equality

∫

R2
ξ⊗2(dv)

× E(v1,v2)
[

χ1(B1(t1))χ2(B2(t2)) det

(

M v1
ξ (t1, B1(t1)) M

v1
ξ (t2, B2(t2))

M v2
ξ (t1, B1(t1)) M

v2
ξ (t2, B2(t2))

)]

=
∫

R2
dx1dx2 χ1(x1)χ2(x2) det

(

Gξ (t1, x1; t1, x1) Gξ (t1, x1; t2, x2)
Gξ (t2, x2; t1, x1) Gξ (t2, x2; t2, x2)

)

. (3.243)

(ii) Show the equality

∫

R

ξ(dv)Ev[χ1(B(t1))χ2(B(t2))M
v
ξ (t2, B(t2))]

=
∫

R2
dx1dx2 χ1(x1)χ2(x2)Gξ (t1, x1; t2, x2)p(t2 − t1, x2|x1). (3.244)

3.11 Let I = (δi j )i, j∈IN be the N × N unit matrix. For an N × N matrix M =
(mi j )i, j∈IN , the characteristic polynomial is defined by

fM(x) = det(x I+M) = det
1≤i, j≤N

[xδi j + mi j ], x ∈ R.

Prove the equality

fM(x) =
N

∑

N ′=0
x N−N ′ ∑

J⊂IN ,�J=N ′
det

i, j∈J
[mi j ]. (3.245)

In particular, if we set x = 1 and mi j = Ki j χ̂ j , 1 ≤ i, j ≤ N , we obtain the
Fredholm expansion formula

det
1≤i, j≤N

[δi j + Ki j χ̂ j ] =
N

∑

N ′=0

∑

J⊂IN ,�J=N ′

∏

k∈J
χ̂k det

i, j∈J
[Ki j ].

3.12 (i) Let q(b)N (t−s, y|x) = det1≤i, j≤N [p(b)(t−s, yi |x j )], x, y ∈W
A
N , 0 ≤ s ≤ t ,

where p(b) is given by (1.29). Prove that

− ∂

∂s
q(b)N (t − s, y|x) = 1

2
Δ(N )q(b)N (t − s, y|x)+ b

N
∑

i=1

∂

∂xi
q(b)N (t − s, y|x). (3.246)

http://dx.doi.org/10.1007/978-981-10-0275-5_1
http://dx.doi.org/10.1007/978-981-10-0275-5_1
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(ii) The backward Kolmogorov equation for the drifted Dyson model (3.90) is given
by

− ∂

∂s
p(b)N (t − s, y|x) = 1

2
Δ(N ) p(b)N (t − s, y|x)+ b

N
∑

i=1

∂

∂xi
p(b)N (t − s, y|x)

+
∑

1≤i, j≤N ,
i �= j

1

xi − x j

∂

∂xi
p(b)N (t − s, y|x), x, y ∈W

A
N , 0 ≤ s < t. (3.247)

Assume that p(b)N (t−s, y|x) = c(y) f (x)q(b)N (t−s, y|x)with a differentiable function
f of x. Derive the equation for f (x).
(iii) Show that f (x) = 1/hN (x) satisfies the above equation.
(iv) Prove that

p(b)N (t − s, y|x) = hN (y)
hN (x)

q(b)N (t − s, y|x) (3.248)

is the unique solution of (3.247) satisfying the condition lims↑t p(b)N (t − s, y|x) =
δ(y− x).
(v) Show that (3.248) is equal to (3.92).

3.13 Prove the equality (3.98).

3.14 Show that, if ξ ∈ M0, that is, ξ has no multiple points, (3.104) is equal to
(3.88) with (3.89).

3.15 Let

S(x, y; a) =
∞
∑

n=0

Hn(x)Hn(y)

2nn! an, |a| < 1, x, y ∈ R. (3.249)

(i) Show that S satisfies the following equations:

∂S

∂x
= 2ayS − a

∂S

∂y
, (3.250)

∂S

∂y
= 2ax S − a

∂S

∂x
. (3.251)

(ii) From (3.250) and (3.251), derive the equation

∂ log S

∂x
= 2ya − 2xa2

1− a2
. (3.252)
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(iii) Show that the solution of (3.250) and (3.251) is given in the form

S(x, y; a) = c(a)e[2xya−(x2+y2)a2]/(1−a2) (3.253)

and determine c(a).
(iv) Prove (3.110).

3.16 Following the instructions below, prove the equality

N−1
∑

n=0
ϕn(x)ϕn(y) =

√

N

2

ϕN (x)ϕN−1(y)− ϕN−1(x)ϕN (y)

x − y
(3.254)

for x �= y by mathematical induction with respect to N ∈ N. Equation (3.254)
is called the Christoffel–Darboux formula for the Hermite orthonormal functions
{ϕn(x)}n∈N0 .
(i) Prove (3.254) for N = 1.
(ii) Assume that (3.254) holds for a given N ∈ N. Then show

(RHS) of (3.254)

= −ϕN (x)ϕN (y)+
√

N + 1

2

ϕN+1(x)ϕN (y)− ϕN (x)ϕN+1(y)
x − y

. (3.255)

This implies that (3.254) holds even if we replace N by N + 1.

3.17 (i) Assume that A and B are differentiable functions and

F(x, y) = A(x)B(y)− B(x)A(y)

x − y
, x �= y. (3.256)

Show that

F(x, x) = lim
y→x

F(x, y) = A′(x)B(x)− B ′(x)A(x). (3.257)

(ii) Derive (3.114) from (3.113) by taking the limit y → x .

3.18 (i) Derive (3.136) from (3.135).
(ii) Derive (3.137) by taking the limit y → x in (3.136).

3.19 Using the expression (3.136) for (3.135) with x �= y, derive the expression
(3.180).

3.20 Prove (3.181) by following the instructions below.
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(i) Show

I [Ai(W + u)|(t, y − t2/4)] = e(y−t2/4)2/2t 1

2π

∫

C
dk ek3/3−uk

× 1√
2π t

∫

R

dw exp

[

−w2

2t
−
√−1

t

(

y − t2

4

)

w−√−1kw

]

,

where C is the same contour as that for (3.158).
(ii) Perform the integral over w to give

I [Ai(W + u)|(t, y − t2/4)] = 1

2π

∫

C
dk e f (k) (3.258)

with

f (k) = k3

3
− t

2
k2 −

(

y − t2

4
− u

)

k. (3.259)

(iii) Complete a cube in (3.259) to prove (3.181).

3.21 Show that

log

(

1+
3

∑

n=1

(−1)n

n! In(s)

)

= −
3

∑

n=1

1

n
Tr Kn

s + (correction terms), (3.260)

s ∈ R.

3.22 Prove Lemma 3.11 following the instructions below.
(i) Let M be an operator which multiplies a variable, M(x, y) = xδ(x − y), x, y ∈
R. Then [M f ](x, y) = ∫

R
xδ(x − z) f (z, y)dz = x f (x, y), and [ f M](x, y) =

f (x, y)y. We introduce the commutator [U, V ] = U V −V U . Using (3.198), derive
the equality

[M, ρa](x, y) = (x − y)Ra(x, y). (3.261)

(ii) If we use the definition of the resolvent ρa given by (3.191),

[M, ρa] = M(1− Ka)
−1 − (1− Ka)

−1M. (3.262)

Derive the equality

[M, ρa] = ρa[M,Ka]ρa . (3.263)
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(iii) Using (3.200), derive the expression

[M, ρa](x, y) = Qa(x)
∫

R

dz B(z)1(z≥a)ρa(z, y)

− Pa(x)
∫

R

dz A(z)1(z≥a)ρa(z, y). (3.264)

(iv) Using the symmetry K(x, y) = K(y, x), prove the equalities

∫

R

dz B(z)1(z≥a)ρa(z, y) = Pa(y)1(y≥a),

∫

R

dz A(z)1(z≥a)ρa(z, y) = Qa(y)1(y≥a). (3.265)

(v) Combination of (3.264) with (3.265) gives the equation

[M, ρa](x, y) = {Qa(x)Pa(y)− Pa(x)Qa(y)}1(y≥a).

By identifying the above with (3.261), prove (3.203).

3.23 Prove Lemma 3.12 following the instructions below.
(i)We introduce the differential operatorD(x, y) = δ(x−y)∂/∂y, x, y ∈ R. Assume
that f (x, z)→ 0, g(z, y)→ 0 as z →±∞. Show

[ f D](x, y) = −∂ f (x, y)

∂y
. (3.266)

(ii) Using (3.200), show that [D,Ka](x, y) is equal to

A′(x)B(y)− B ′(x)A(y)+ A(x)B ′(y)− B(x)A′(y)
x − y

1(y≥a) + K(x, y)δ(y − a).

(3.267)

(iii) Using the recurrence relations for the Hermite orthonormal functions (3.108)
obtained from (1.121) and (1.122), derive the equation

[D,Ka](x, y) = − 1

2t
{A(x)B(y)+ B(x)A(y)}1(y≥a) + K(x, y)δ(y − a). (3.268)

(iv) Using (3.268), derive the equation

[D, ρa](x, y) = − 1

2t
{Qa(x)Pa(y)+ Pa(x)Qa(y)}1(y≥a) + Ra(x, a)ρa(a, y).

(3.269)

http://dx.doi.org/10.1007/978-981-10-0275-5_1
http://dx.doi.org/10.1007/978-981-10-0275-5_1
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(v) Using the differential operator D, the derivatives of (3.202) are written as
d Pa(x)/dx = [Dρa B](x), d Qa(x)/dx = [Dρa A](x). We insert commutators so
that

d Pa(x)

dx
= [[D, ρa]B](x)+ [ρaDB](x),

d Qa(x)

dx
= [[D, ρa]A](x)+ [ρaDA](x).

Applying (3.269) to the above, we obtain

d Pa(x)

dx
= −Qa(x)w(a)

2t
− Pa(x)v(a)

2t
+ Ra(x, a)Pa(a)+ P(1)

a (x)

2t
−

√

N

t
Qa(x),

d Qa(x)

dx
= −Qa(x)v(a)

2t
− Pa(x)u(a)

2t
+ Ra(x, a)Qa(a)− Q(1)

a (x)

2t
+

√

N

t
Pa(x),

(3.270)

where v(a) = ∫

R
dy Pa(y)1(y≥a)A(y) =

∫∞
a dy Pa(y)A(y),

P (1)
a (x) =

∫

R

dy ρa(x, y)y B(y), Q(1)
a (x) =

∫

R

dy ρa(x, y)y A(y). (3.271)

Note that v(a) is also given by v(a) = ∫

R
dy Qa(y)1(y≥a)B(y) =

∫∞
a dy Qa(y)B(y).

Derive the equalities

P (1)
a (x) = x Pa(x)− Qa(x)w(a)+ Pa(x)v(a),

Q(1)
a (x) = x Qa(x)− Qa(x)v(a)+ Pa(x)u(a), (3.272)

and prove the lemma.

3.24 Prove Lemma 3.13 following the instructions below.
(i) By (3.202),

∂Pa(x)

∂a
=

[

∂ρa

∂a
B

]

(x). (3.273)

Consider the identity ρ−1a ρa = (1 − Ka)ρa = 1. Differentiation with respect to a
gives −(∂Ka/∂a)ρa + (1 − Ka)(∂ρa/∂a) = 0 and thus ∂ρa/∂a = ρa(∂Ka/∂a)ρa .
Show that this gives

∂ρa

∂a
(x, y) = −Ra(x, a)ρa(a, y). (3.274)
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Then (3.273) gives

∂Pa(x)

∂a
= −Ra(x, a)

∫

R

dz ρa(a, z)B(z) = −Ra(x, a)p(a). (3.275)

(ii) We should regard p(a) = Pa(a) as Pa(I (a)) with I (a) = a. Then

p′(a) = d I (a)

da

∂Pa(x)

∂x

∣

∣

∣

x=a
+ ∂Pa(x)

∂a

∣

∣

∣

x=a

= ∂Pa(x)

∂x

∣

∣

∣

x=a
+ ∂Pa(x)

∂a

∣

∣

∣

x=a
,

since I ′(a) = 1. Noting this, prove the lemma.
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Tracy–Widom distribution, 120
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