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Preface

The present book, although theoretical, deals with experience. It questions how to
draw conclusions from random events. Combining ideas from Bayes and Laplace
with concepts of modern physics, we answer some aspects of this question.

The book combines features of a textbook and a monograph. Arguments are
presented as explicitely as possible with the aid of of appendices containing lengthy
derivations. There are numerous examples and illustrations, often taken from
physics research. Problems are posed and their solutions provided.

The theory presented in the book is conservative in that the most widely-known
Gaussian methods of error estimation remain untouched. At the same time, some
material is unconventional. The non-informative prior is considered the basis of
statistical inference and a unique definition is given and defended. Not only does
the prior allow one to find the posterior distribution, it also provides the measure
one needs to construct error intervals and make decisions.

The example of binomial distribution — sketched on the book-cover — repre-
sents 300 years of statistics research. It was the first clearly formulated statistical
model and the first example of statistical inference. We hope to convince the reader
this subject is not yet closed.

Heidelberg, Germany Hanns Ludwig Harney
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Chapter 1
Knowledge and Logic

Science does not prove anything. Science infers statements about reality. Sometimes
the statements are of stunning precision; sometimes they are rather vague. Science
never reaches exact results. Mathematics provides proofs but it is devoid of reality.
The present book shows in mathematical terms how to express uncertain experience
in scientific statements.

Every observation leads to randomly fluctuating results. Therefore the conclu-
sions drawn from them must be accompanied by an estimate of their truth, usually
expressed as a probability. Such a conclusion typically has the form: “The quantity
ξ inferred from the present experiment has the value α ± σ.” An experiment never
yields certainty about the true value of ξ. Rather the result is characterised by an
interval in which the true value should lie. It does not even lie with certainty in that
interval. A more precise interpretation of the above interval is: “The quantity ξ is in
the interval [α − σ,α + σ] with the probability K = 0.68.” Trying to be even more
precise one would say: “We assign a Gaussian distribution to the parameter ξ. The
distribution is centered at α and has the standard deviation σ. The shortest interval
containing ξ with the probability K = 0.68 is then α ± σ.” In simplified language,
the standard deviation of the assumed Gaussian distribution is called “the error” of
the result, although “the” error of the result cannot be specified. One is free to choose
the probability K and thus the length of the error interval.

The present book generalises the well-known rules of Gaussian error assignments
to cases where the Gaussian model does not apply. Of course, the Gaussian model
is treated too. But the book is animated by the question: How to estimate the error
interval when the data follow a distribution other than Gaussian, for example, a
Poissonian one? This requires us to answer the following general questions: What is,
in any case, the definition of an error interval? How do we understand probability?
How should the observed events x be related to the parameter ξ of interest?

© Springer International Publishing Switzerland 2016
H.L. Harney, Bayesian Inference, DOI 10.1007/978-3-319-41644-1_1
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2 1 Knowledge and Logic

1.1 Knowledge

The parameter that one wants to know is never measured directly and immediately.
The true length of a stick is hidden behind the random fluctuations of the value that
one reads on a meter. The true position of a spectral line is hidden in the line width
that one observes with the spectrograph. The fluctuations have different causes in
these two cases but they cannot be avoided. One does not observe the interesting
parameter ξ. Rather, one observes events x that have a distribution p depending on
ξ. Data analysis means to infer ξ from the event x , usually on the basis of a formally
specified distribution p that depends parametrically on ξ. This parameter is also
called the hypothesis that conditions the distribution of x . The connection between x
and ξ is given by p(x |ξ), in words, “the distribution p of x , given ξ.” It must depend
on ξ in such a way that different hypotheses entail different distributions of x so that
one can learn from x about ξ.

Inferring ξ is incomplete induction. It is induction because it is based on obser-
vation, as opposed to logical deduction based on first principles. It is incomplete
because it never specifies the true value. Note that even an experiment that produces
a huge amount of data does not yield all possible data, and its repetition would pro-
duce a different event and thus a different estimate of ξ. For this reason, no experiment
yields the true value of ξ, and inference of ξ means to assign a distribution to ξ. One
assumes, of course, that all the events are in fact conditioned by one and the same
true value of ξ. Thus the a posteriori distribution P(ξ|x) assigned to ξ represents the
limited knowledge about ξ.

There has been a long debate as to whether this procedure - Bayesian inference -
is justified and is covered by the notion of probability. The key question was: can
one consider probability not only as the relative frequency of events but also as a
value of truth assigned to the statement, “ξ lies within the interval I”? We take it for
granted that the answer is “Yes”, and consider the debate as historical.

For the founders of statistical inference, Bayes1 [1] and Laplace2 [2, 5], the notion
of probability has carried both concepts: the probability attached to a statement3 ξ
can mean the relative frequency of its occurrence or the state of knowledge about ξ.

This “or” is not exclusive; it is not an “either or”. It allows statements ξ that
cannot be subjected to a “quality test,” revealing how often they come true. Such
a test is possible for the statement, “The probability that the coin falls with head
upward is 1/2.” However, the statement, “It is very probable that it rains tomorrow,”
is not amenable to the frequency interpretation, not because the qualitative value
“very probable” is vague but because “tomorrow” always exists only once. So the

1Thomas Bayes, 1702–1761, English mathematician and Anglican clergyman. In a posthumously
published treatise, he formulated for the first time a solution to the problem of statistical inference.
2Pierre Simon Marquis de Laplace, 1749–1827, French mathematician and physicist. He con-
tributed to celestial and general mechanics. His work Mécanique céleste has been considered to
rival Newton’s Principia. He invented spherical harmonics and formulated and applied Bayes’
theorem independently of him.
3We do not distinguish between the quantity ξ and a statement about the value of ξ.



1.1 Knowledge 3

latter statement can only be interpreted as evaluating the available knowledge. A fine
description of these different interpretations has been given by Cox [6, 7]. See also
Chaps. 13 and 14 of Howson and Urbach [8]. A taste of the above-mentioned debate
is given by the polemics in [9].

We speak of probability in connection with statements that do not allow the
frequency interpretation. However, we require a mathematical model that quantifies
the probability attached to a statement.

We think that the distinction is only an apparent one, because the interpretation
of probability as a value of the available knowledge cannot be avoided. This can be
seen from the following examples.

Somebody buys a car. The salesman claims to be 95% sure that the car will run
the first 100 000km without even minor trouble. This praise states his knowledge
about or his belief in the quality of the product in question. However, there could
be a statistical quality test which would turn this personal belief into a frequency of
breakdown. But even if the praise by the salesman becomes objective in this sense,
it becomes a personal belief for the interested client into the quality of his or her car,
the one car that he or she decides to buy.

Let us try to translate this into the language of measurement. The quantity ξ was
measured as α ± σ. Hence, with 68% probability it is in that interval. Setting aside
systematic errors, one can offer a frequency interpretation to this statement: if one
were to repeat the measurement, say 100 times, the result should fall into the interval
with the frequency of 68%. This is right but does not well describe the situation. If
one actually had 100 more measurements, one would reasonably use them to state
one final result of considerably higher precision than the first one. How to do this is
described in Chap.2. The final result would again be a single one [11, 12].

There does not seem to be a clear distinction between the cases which allow the
frequency interpretation of probability and the cases which allow only its interpre-
tation as a value of knowledge. The latter one is the broader one, and we accept it
here. But we insist on mathematically formulated distributions. Some of them are
presented in Chaps. 4 and 5.

As a consequence, it may be practical but it is not necessary to distinguish the
statistical from the systematic error of an experiment. The statistical error is the
consequence of the finite amount of data and can in principle be demonstrated by
repeating the experiment. The systematic error results from parameters that are not
precisely known, although they are not fluctuating randomly. These two types of error
correspond ratherwell to the above two interpretations of probability.Accepting them
both as possible interpretations of a unique concept, one can combine both errors
into a single one. This is indeed done for the graphical representation of a result or
its use in related experiments; see Sect. 4.2.1 of the Review of Particle Physics [13].

http://dx.doi.org/10.1007/978-3-319-41644-1_2
http://dx.doi.org/10.1007/978-3-319-41644-1_4
http://dx.doi.org/10.1007/978-3-319-41644-1_5


4 1 Knowledge and Logic

1.2 Logic

Because probability can be interpreted as the value of the available knowledge, it
can also be considered the implementation of non-Aristotelian logic into scientific
communication [14]. Jaynes has simply termed it the logic of science [15, 16]. It even
serves everyday communication as certain weather forecasts show. In philosophy, it
is called the logic of temporal statements [17]: “temporal” because the value of truth
estimates the future confirmation of the statement. Without this relation to time, a
statement must be either true or false.

The probability attached to the statement ξ can be considered the value of truth
assigned to ξ. The continuum of probability values is then a manifold of values
of truth situated between “false” and “true”. This introduces the tertium which is
excluded in Aristotelian logic by the principle tertium non datur, which says that a
third qualification - other than “true” and “false” - is not available.

Logical operations in a situation where other qualifications are available must be
done in such a way that they are consistent with Aristotelian logic in the following
sense: probabilities must be quantified. The calculus of probability must be part of
mathematics. Mathematics is based on Aristotelian logic. The rules of mathematical
logic can be laid down in terms of symbolic logic. Therefore the rules of handling
probabilities (i.e. continuous values of truth) must be consistent with symbolic logic.

From this consideration, there follow certain conditions which must be observed
when values of truth are assigned to statements like, “from ξ follows x”. This value
of truth is the conditional probability p(x |ξ), that is, the probability to find x when
ξ is given. Cox [6] showed in 1946 that consistency between non-Aristotelian and
mathematical logic requires the following two rules.

1. Let ξ and x be statements that possibly imply each other. The values of truth
μ, p, and w of the statements “ξ holds”, “x follows from ξ”, and “x ∧ ξ holds”,
respectively, must be defined such that the product rule

w(x ∧ ξ) = p(x | ξ)μ(ξ) (1.1)

holds. Here, the operator ∧means the logical “and”. This relation implies Bayes’
theorem. Cox’s result is not simply a consequence of the principle that the proba-
bility to obtain x ∧ ξ is the product of the probability to obtain x and the probability
to obtain ξ. This “principle” is obvious only if x and ξ are statistically independent
variables. But this is not the case because p(x | ξ) states that the distribution of x
is conditioned by ξ. Cox’s result implies the assumption that there is a convincing
definition of the prior distributionμ(ξ), independent of x . The present book shows
that there is such a definition provided that x is conditioned by ξ via a symmetry
property of p which we call form invariance.

2. Conditional distributions - such as p(x |ξ) and P(ξ|x) - must be proper and nor-
malised so that ∫

dξ P(ξ|x) = 1 . (1.2)
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Here, the integral without indication of the limits of integration extends over
the entire domain of definition of ξ. This rule is necessary in order to assign a
probability to a negation. The probability of the assertion “ξ is not in the interval
[ξ<, ξ>]” is the integral over the complement of the interval [ξ<, ξ>]. The integral
over the complement exists because P is required to be proper. The assignment of
unit probability to the statement that ξ is somewhere in its domain of definition,
is a convention. Not only the posterior P but also conditional distributions must
be normalised. Equation (1.2) holds analogously for the model p(x |ξ). Without
this requirement, the dependence of p(x |ξ) on the parameter ξ would not be
clearly defined. One could multiply it with any nonnegative function of ξ without
changing the distribution of x . Hence, inferring ξ from the event x is possible only
if (1.2) holds. Nevertheless, in the present book, distributions are admitted that
cannot be normalised, provided that they are unconditional. Such distributions
are called improper. One cannot assign a value of truth to a negation on a quantity
with an improper distribution. Even in that case, however, one can assign a value
of truth to a statement that contains the logical “and”.We return to this in Sect. 2.1.

The joint distribution of the multiple event x1 ∧ x2 ∧ · · · ∧ xN is discussed often.
The interested reader should derive it from the logical rule (1.1) under the assumption
that xk follows the distribution p(xk |ξ) (The solution can be found in Sect.A.1). The
logical operator ∧ is never written in what follows. Instead, the multiple event is
called x1, . . . , xN or simply x = (x1, . . . , xN ).

An immediate consequence of the rules (1.1, 1.2) is Bayes’ theorem discussed in
Chap.2. This theorem specifies the posterior probability P of x , given ξ. By the same
token, the error interval of ξ is given. It is the smallest interval in which ξ lies with
probability K . We call it the Bayesian interval B(K ). To find the smallest interval,
two things must exist: a measure in the space of ξ and a “most likely” value of ξ. A
measure allows assigning a length or a volume to a subset of the domain of definition
of ξ. The measure is identified with the “prior distribution” μ appearing in Eq. (1.1).

1.3 Ignorance

Into the definition of P(ξ|x) enters a distribution μ(ξ) which is independent of the
event x . This distribution can be interpreted as a description of ignorance about ξ, and
is called the a priori distribution. All methods of inference described in the present
book rely on Bayes’ theorem and a definition of μ.

The definition starts from a symmetry principle. In Chaps. 6, 8, and 11, models
p(x |ξ) are considered that connect the parameter ξ with the event x byway of a group
of transformations. This symmetry is called form invariance. The invariant measure
of the symmetry group, which we explain in Chap.6, is the prior distribution μ. This
procedure is inspired by the ideas of Hartigan [18], Stein [19], and Jaynes [21].

http://dx.doi.org/10.1007/978-3-319-41644-1_2
http://dx.doi.org/10.1007/978-3-319-41644-1_2
http://dx.doi.org/10.1007/978-3-319-41644-1_6
http://dx.doi.org/10.1007/978-3-319-41644-1_8
http://dx.doi.org/10.1007/978-3-319-41644-1_11
http://dx.doi.org/10.1007/978-3-319-41644-1_6
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The invariant measure is not necessarily a proper distribution; see Sect. 2.5. It can
be obtained, without any analysis of the group, as a functional of the model p. The
functional is known as Jeffreys’ rule [22]. Here, it is introduced in Chap.9.

By accepting the interpretation of probability as a value of truth, we include the
“subjective” or “personal” interpretations presented in [23–27]. However, we do
not go so far as to leave the prior distribution at the disposal of the person or the
community analyzing given data. This is done in Chap.14 of Howson and Urbach
[8] and in the work by D’Agostini [28–30]. Instead, we adhere to a formal general
definition of the prior distribution in order to avoid arbitrariness.

Form-invariant distributions offer more than a plausible definition of the prior
distribution. Form invariance helps to clarify the dependence of parameters on each
other. This allows us to devise a scheme where one parameter ξ1 is inferred indepen-
dently of the other parameters ξ2, . . . , ξN in the sense that ξ1 refers to an aspect of
the event x that is separate from the aspects described by the other parameters; see
Chap.12. This scheme is useful because the extraction of ξ1 is often linked to and
dependent on other parameters that must be included in the model even though they
are not interesting. A Gaussian model involves two parameters: its central value and
its variance. Often the interest is focused on the central value only.

Form invariance is usually considered to occur so rarely that one cannot found the
definition of the prior distribution on it. See Sect. 6.9 of [31] and [32]. Chapter 11
of the present book shows that there are more form-invariant distributions than were
previously believed.

Still, Bayesian inference cannot be restricted to form-invariant distributions.When
this symmetry is lacking, one considers the square root of the probability p(x |ξ) -
that is, the amplitude ax - as a component of a vector that depends parametrically on
ξ. This is the parametric representation of a surface in a vector space. The measure
on the surface is the prior distribution. To understand this, one needs some differen-
tial geometry [33–35], which is explained in Chap.9. The differential geometrical
measure is again given by Jeffreys’ rule [22].

Differential geometry by itself cannot establish Jeffreys’ rule as the generally
valid measure. One must show that the surface a(ξ) is to be considered in the space
of the amplitudes, not of the probabilities or of a function other than the square root
of the probabilities. This, however, is indicated by the form-invariant models.

Beyond the observed event x , information on ξ is often available that should be
incorporated into Bayesian inference and that will let the Bayesian interval shrink.
The order of magnitude of ξ is usually known. A fly is neither as small as a microbe
nor as large as an elephant. One knows this before measuring a fly. Such information
can be built into the prior distribution which thereby changes from the ignorance
prior μ to an informed prior μinf . An informed prior may simply be the posterior of
a preceding experiment. It may also be generated by entropy maximisation, given
previous information. Jaynes [36, 37] has transferred this method from thermody-
namics into the analysis of data. This idea has found much interest and has led to
a series of conferences [38–51] and many publications [52]. We take this method
as well known and do not treat it in the present book. Note, however, that entropy
maximisation cannot replace the definition of the ignorance prior μ. According to
Jaynes [21], the method uses μ.

http://dx.doi.org/10.1007/978-3-319-41644-1_2
http://dx.doi.org/10.1007/978-3-319-41644-1_9
http://dx.doi.org/10.1007/978-3-319-41644-1_14
http://dx.doi.org/10.1007/978-3-319-41644-1_12
http://dx.doi.org/10.1007/978-3-319-41644-1_11
http://dx.doi.org/10.1007/978-3-319-41644-1_9
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1.4 Decisions

Bayesian inference chooses from the family of distributions p(x |ξ) the one that best
reproduces the observed event x . This does not mean that any one of the distributions
is satisfactory. How does one decide whether the model p(x |ξ) is satisfactory in the
sense that it contains a distribution consistent with the available data?

When x follows aGaussian distribution, this is decidedby the chi-squared criterion
described in Chap.13. It turns out that to make the decision, one needs a measure in
the space of ξ. Again we identify this measure with the prior distribution μ.

Hence, the definition of a measure is essential for practically all conclusions
from statistical data. One needs a measure - the prior distribution - in order to infer a
parameter and to construct an error interval; seeChap. 2.One needs ameasure in order
to decide whether the given value of a parameter is probable or rather improbable;
see Chap.3. One needs a measure in order to decide whether a given set of events is
compatible with a predicted distribution; see Chap.13.
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Chapter 2
Bayes’ Theorem

In Sect. 2.1, Bayes’ theorem is derived. The prior distribution that it contains must
be defined so that it transforms as a density. Transformations of densities and func-
tions are discussed in Sect. 2.2. A symmetry argument can define the prior. This
is described in Sects. 2.3 and 2.4. Prior distributions are not necessarily proper. In
Sect. 2.5, we comment on improper distributions because it is unusual to admit any
of them. In Sect. 2.6, we discuss the information conveyed by a proper distribu-
tion. Several problems are suggested to be solved by the reader. Their solutions are
given in Sect. A.2.

2.1 Derivation of the Theorem

The logical connection “x and ξ” is equivalent to “ξ and x”. Therefore, the distribution
w of (1.1) can also be factorised in the form

w(x ∧ ξ) = P(ξ | x)m(x) . (2.1)

This relation does not mean that, for a given w, the factorisation must be obvious.
This relation means that whenever two of the three distributionsw, P,m are defined,
the third one is given by this equation. Combining (1.1) with (2.1) yields

p(x |ξ)μ(ξ) = P(ξ|x)m(x) . (2.2)

Both of the statements x and ξ refer to numerical variables, so that the precise form
of the statements is, “The event has the coordinate x” and “The hypothesis has the
coordinate ξ”. Nobody really speaks that way. One simplifies to speak of the event
x and the hypothesis ξ.

© Springer International Publishing Switzerland 2016
H.L. Harney, Bayesian Inference, DOI 10.1007/978-3-319-41644-1_2

11

http://dx.doi.org/10.1007/978-3-319-41644-1_1
http://dx.doi.org/10.1007/978-3-319-41644-1_1
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In Chap.1 we have given reasons for ascribing probabilities to both an event that
statistically fluctuates and the hypothesis that is unknown. Indeed, Sect. 2.2 combines
distributions of x and ξ. For practical reasons - not for reasons of logic - we introduce
a notational difference. Events are always denoted by Latin letters and hypothesis
parameters by Greek letters. We write p(x |ξ) for a distribution of x , conditioned by
ξ. This distribution is also called the “statistical model” or simply the “model”. The
unconditioned distribution μ is called the prior distribution of the hypothesis. We
write capitals, especially P , for the distribution of the parameter conditioned by the
event. It is called the posterior. The distributions of ξ are derived in the present book.

Conditional distributions must be proper. For every ξ one has

∫
dx p(x |ξ) = 1 , (2.3)

and for every x , one requires

∫
dξ P(ξ|x) = 1 . (2.4)

Integrals that do not show the limits of integration, extend over the full range of
definition of the integration variable. The integral over x is to be read as a sum if x
is a discrete variable. The hypothesis shall always be continuous.

By use of the normalisation Eq. (2.4), one obtains

m(x) =
∫

dξ p(x | ξ)μ(ξ) (2.5)

from (2.2). We require the existence of this integral. The posterior distribution then
is

P(ξ|x) = p(x |ξ)μ(ξ)∫
dξ′ p(x |ξ′)μ(ξ′)

. (2.6)

This relation is Bayes’ theorem. It relates the distribution of x , given ξ, to the distri-
bution of ξ, given x . Thus it allows one to infer the parameter ξ from the observation
x provided the prior μ is defined and the integral (2.5) exists.

Bayes’ theorem suggests that one can attribute μ to the parameter ξ “before”
any observation x is available. This is the reason for the name. The prior describes
ignorance about ξ. Laplace [1, 4, 5] set μ(ξ) ≡ const. Bayes, hesitatingly, made the
same ansatz, knowing that he had no sufficient argument. We show that ignorance
cannot be represented in an absolute way. Its representation depends on the context.
The context is given by the model p. In Chaps. 6, 9, and 11, we show that it allows
one to define μ. The existence of the integral (2.5) is a consequence of the form
invariance of p; see Chap.6.

The requirements (2.3) and (2.4) entail that w(x ∧ ξ) can be integrated over x or
ξ. However, w may be improper, that is, cannot be integrated over x and ξ, because

http://dx.doi.org/10.1007/978-3-319-41644-1_1
http://dx.doi.org/10.1007/978-3-319-41644-1_6
http://dx.doi.org/10.1007/978-3-319-41644-1_9
http://dx.doi.org/10.1007/978-3-319-41644-1_11
http://dx.doi.org/10.1007/978-3-319-41644-1_6
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we admit μ to be improper. The prior may, for example, be constant all over the real
axis.

The form (2.6) of Bayes’ theorem does not depend on themathematical dimension
of x or ξ. They may be one-dimensional or multidimensional variables. The event x
may be continuous or discrete. We assume the parameter ξ to be continuous.

The rule (2.1) cannot be used to factorise every given distribution of a multidi-
mensional variable [6, 7]. Let ξ = (ξ1, ξ2) be a two-dimensional parameter. The
rule (2.1) could lead one to factorise P(ξ|x) into a distribution of ξ1 conditioned by
ξ2, x , and an unconditioned distribution of ξ1. However, the condition specifies the
implication: given x , the distribution of ξ follows. If ξ2 were a condition for ξ1 then
the value of ξ2 would, together with x , imply the distribution of x1. Yet a given value
of ξ2 does not imply the distribution of ξ1. We cannot separate Eq. (2.1) from our
starting point (1.1) which specifies that ξ1 and ξ2 imply the distribution of the events;
they do not imply each other.

2.2 Transformations

The prior μ cannot be universally defined as μ ≡ const because the uniform distri-
bution is not invariant under reparameterisations. By a reparameterisation, we mean
the transition from ξ to another variable η through a transformation T that is,

η = T ξ . (2.7)

A transformation is an invertible mapping. Inasmuch as ξ is continuous, μ(ξ) is a
density. The transformation toμT (η) is made such that probabilities remain the same,
not densities. This means

μT (η)dη = μ(ξ)dξ (2.8)

or

μT (η) = μ(ξ)

∣∣∣∣dξ

dη

∣∣∣∣ . (2.9)

The absolute value | . . . | appears because the probability densities are never negative.
If ξ is a multidimensional variable, the derivative in (2.9) must be replaced by the
Jacobian determinant ∣∣∣∣∂ξ

∂η

∣∣∣∣ ≡
∣∣∣∣det ∂ξ

∂η

∣∣∣∣ . (2.10)

Of course, Eq. (2.8) can be interpreted not only as (2.9) but also as

μ(ξ) = μT (η)

∣∣∣∣∂η

∂ξ

∣∣∣∣ . (2.11)

The Eqs. (2.9) and (2.11) are consistent with each other because

http://dx.doi.org/10.1007/978-3-319-41644-1_1
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det
∂ξ

∂η
=

(
det

∂η

∂ξ

)−1

. (2.12)

Equation (2.9) means that a transformation changes the uniform distribution into
a nonuniform one. Transforming, for example, the real variable ξ to η = ξ2, one
obtains μT (η) ∝ η−1/2. As another example, consider μ(ξ1, ξ2) ≡ const, depending
on the Cartesian coordinates ξ1, ξ2. If μ is transformed to polar coordinates where
the radius is η = (ξ21 + ξ22)

1/2 and the angle is φ, one obtains μT (η,φ) ∝ η. Hence,
one cannot universally represent ignorance by the uniform distribution.

In contrast to a density, a function f (ξ) transforms as

fT (η) = f (ξ) . (2.13)

Here, the values of f and fT at corresponding points ξ and η are equal. Therefore,
the constant function is invariant under all transformations; the uniform density is
not.

Bayes’ theorem transforms properly under reparameterisations of ξ or x . The
interested reader should convince himself or herself of this fact.

If ξ is one-dimensional, one can always find a transformation such that the prior
becomes uniform. This transformation is

η =
∫ ξ

dξ′ μ(ξ′) (2.14)

for any lower limit of the integration. The proof is left to the reader.
If ξ is multidimensional it is not always possible to transform ξ such that the prior

becomes uniform.
Bayesian inference was forgotten or even fell into disrepute in the century that

followed Laplace. The distribution of ignorance remained undefined; see the descrip-
tions of history by [8, 9, 11–13]. In the twentieth century, Bayes’ theorem was redis-
covered [14–21]. The original article was reprinted [22], a series of conferences on
its application have taken place [23–29], and current textbooks on statistics mention
Bayes’ theorem [30].

The definition of the prior, however, remained controversial. One attempt to solve
the dilemma is to declare that - for continuous ξ - the prior cannot be objectively
defined. It then becomes an unavoidably subjective element in the interpretation of
data. Although certain logical rules have to be respected [31–36], it is up to the
experienced researcher to make an ansatz for μ within a framework of historically
grown conventions.

Scientific judgments are possibly conditioned by their cultural context. We think
that this is not relevant for the Bayesian prior distribution. Otherwise one could,
strictly speaking, draw any conclusion from a given event. We adhere to a formal
definition [16] of μ.
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2.3 The Concept of Form Invariance

In order to get an idea of the theory developed in Chaps. 6, 8, and 11, let us consider
a model that depends on the difference between x and ξ only, that is,

p(x |ξ) = w(x − ξ) , (2.15)

such as the Gaussian

p(x |ξ) = 1√
2π σ

exp

(
− (x − ξ)2

2σ2

)
(2.16)

centered at ξ. The quantity σ (called the standard deviation) is considered to be given
and not to be inferred. For this reason, it is not listed among the hypotheses of the
model p.

The distribution centred at ξ = 0 is given in Fig. 2.1. The standard deviation σ
characterises its width. It is not the width at half maximum; the value of 2σ is the
width of the central interval that contains 68% of the events. This means that the
shaded area in the figure has the size of 0.68. The distribution (2.16) is normalised
to unity.

From (2.15), x and ξ have the same physical dimension (as, e.g., a length), and
the event x seems a good estimate for the parameter ξ. We can say more than that:
such a model suggests that the distribution of ξ is centred at x and has the same form
as the distribution of x . This amounts to the surmise

P(ξ|x) = p(x |ξ) (2.17)

Fig. 2.1 The Gaussian
distribution (2.16) centred at
ξ = 0. The standard
deviation σ has been chosen
equal to unity

http://dx.doi.org/10.1007/978-3-319-41644-1_6
http://dx.doi.org/10.1007/978-3-319-41644-1_8
http://dx.doi.org/10.1007/978-3-319-41644-1_11
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which holds if
μ(ξ) ≡ const . (2.18)

Indeed, this is true by the theory of Chap.6. The idea is as follows. The model (2.16)
depends on the difference x −ξ. Thus x and ξ have the same physical dimension; they
are defined on the same scale. This requires that a given difference x − ξ must mean
an interval of one and the same length whatever the value of ξ. Thus the measure

μ = distance

difference of parameters

must be uniform. Now the model (2.16) connects x and ξ via a translation. The
parameter ξ labels a translation of the possible values of x . Translating x and ξ by
the same value leaves (2.16) unchanged. This defines a symmetry between x and ξ
because the set of all possible translations is a mathematical group. The invariant
measure μ of the group converts a difference of parameters into a distance. The
invariant measure of the group of translations is constant. The only density that is
invariant under the translations is the uniform density (see Chaps. 6 and 7). We call
the symmetry between event and parameter “form invariance”. This notion is taken
from the present example. The form of the distribution of x remains the same for all
ξ. For more details see Chap.6.

Let ξ be transformed to T ξ = η in the model p of (2.15). Translational symme-
try continues to exist with respect to ξ, not with respect to η (unless T is itself a
translation). Thus the symmetry picks up the parameterisation in which the prior is
uniform.

We do not restrict ourselves to models that are form invariant. This symmetry,
however, provides the paradigmatic cases from which one can learn about the tools
and the phenomena in statistical inference.

The models (2.15) yield the simplest possible application of Bayes’ theorem.
Equation (2.17) togetherwith (2.16) leads to thewell-knownGaussian error intervals;
compare Sect. 3.2. Therefore, this example shows that the arguments of the present
book do not contradict, but instead generalise Gaussian error estimation. This is also
borne out by the fact that the error deduced from N observations is ∝ N−1/2, as we
calculate now.

2.4 Many Events

Instead of only one, we now consider N observations (x1, . . . , xN ). All xk are drawn
from the same distribution p(x |ξ). They are conditioned by the same value of ξ,
but they are statistically independent. This means that their joint distribution is the
product

p(x1, . . . , xN |ξ) =
N∏

k=1

p(xk |ξ) (2.19)

http://dx.doi.org/10.1007/978-3-319-41644-1_6
http://dx.doi.org/10.1007/978-3-319-41644-1_6
http://dx.doi.org/10.1007/978-3-319-41644-1_7
http://dx.doi.org/10.1007/978-3-319-41644-1_6
http://dx.doi.org/10.1007/978-3-319-41644-1_3
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of the distributions of the xk (see ProblemA.1.1). One can also say that all the xk have
been drawn from the same ensemble. The prior should not depend on the number N
of events. This is indeed the case as we prove in Chaps. 6 and 9. Bayesian inference
from N events then yields

P(ξ|x1, ..., xN ) =
μ(ξ)

N∏
k=1

p(xk |ξ)
∫

dξ′ μ(ξ′)
N∏

l=1

p(xk |ξ′)

. (2.20)

One can interpret this formula as an “iteration” of Bayes’ theorem. The posterior
P can be obtained by introducing the distribution PN−1(ξ|x1, . . . , xN−1), obtained
from N − 1 events, as an “informed prior” into the analysis of the N th event. The
reader is asked to show this in detail.

Let us use the Gaussian model (2.20) to exemplify Bayesian inference from N
events. In order to write down (2.19), we introduce the notation 〈. . . 〉 for the average

〈 f (x)〉 = N−1
N∑

k=1

f (xk) (2.21)

of a function f (xk). This means, in particular, that

〈x〉 = N−1
N∑

k=1

xk . (2.22)

With this notation, one finds

p(x1, ..., xN | ξ) = (2πσ2)−N/2 exp

(
− N

2σ2
(〈x〉 − ξ)2

)

× exp

(
− N

2σ2

[〈x2〉 − 〈x〉2]
)

. (2.23)

The reader should verify this result. With the prior distribution (2.18), one obtains
the posterior

P(ξ | x1, ..., xN ) =
(

N

2πσ2

)1/2

exp

(
− N

2σ2
(ξ − 〈x〉)2

)
, (2.24)

a Gaussian centred at the average 〈x〉 of the events. Thus the multidimensional event
(x1, . . . xN ) leads to a posterior of the same symmetry and very much the same
form as the one-dimensional event, provided that one replaces x by 〈x〉. This is a
consequence of the form invariance of the model (2.16). The quantity 〈x〉 is called

http://dx.doi.org/10.1007/978-3-319-41644-1_6
http://dx.doi.org/10.1007/978-3-319-41644-1_9
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Fig. 2.2 Posterior
distribution of the Gaussian
model (2.16) with N
observations. See text
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the estimator of ξ. Its general definition is given in Sect. 3.3. It differs, in general,
from the average over the events.

The posterior (2.24) has the standard deviation N−1/2σ. This is the usual Gaussian
error estimate for N observations. It yields the error interval

ξ = 〈x〉 ± N−1/2σ . (2.25)

This is the Bayesian interval in which ξ is found with the probability of 68% (see
Chap.3).

In Fig. 2.2, the parameter ξ is inferred from an increasing number N of events.
The model (2.16) is used with σ = 1. We assume that the experimenter knows the
precision of her measuring device. The events have been drawn with the help of a
random generator with the true value of ξ set to unity. In reality, of course, one does
not know the true value; one infers it. Note that the posterior distributions narrow
down with increasing N but also jump back and forth. The process of approaching
the true value is itself random.

In the next three figures, the exponential model

p(t |τ ) = τ−1 exp(−t/τ ) (2.26)

is used to show qualitatively that the posterior approaches a Gaussian function for
large N even if the model is not Gaussian. The exponential model is described in
Sect. 4.2. The prior is

μ(τ ) ∝ τ−1 (2.27)

as we show in Sects. 3.2 and 7.2. By use of a random number generator, the events
t were drawn [37] from the exponential distribution with τ = 3 given in Fig. 2.3.
The posteriors for N = 3 and N = 10 events are represented in Fig. 2.4. The curves
are not symmetric under reflection. For N=50,100,300, the posteriors in Fig. 2.5
become more and more symmetric and, in fact, approximately Gaussian.

http://dx.doi.org/10.1007/978-3-319-41644-1_3
http://dx.doi.org/10.1007/978-3-319-41644-1_3
http://dx.doi.org/10.1007/978-3-319-41644-1_4
http://dx.doi.org/10.1007/978-3-319-41644-1_3
http://dx.doi.org/10.1007/978-3-319-41644-1_7
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Fig. 2.3 The exponential
distribution (2.26) with the
parameter τ = 3. See text

Fig. 2.4 Posteriors of the
exponential model from N
observations. See text
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If one reparameterises τ such that the prior becomes uniform (i.e. according to
Eq. (2.14)) the Gaussian approximation becomes valid at smaller values of N .

The model p should be such that the posterior approaches a Gaussian for large
N . As a counterexample, we discuss an ill-defined model. Consider the rectangular
distribution

p(x |ξ) =
⎧⎨
⎩
0 for x − ξ < −1/2
1 for −1/2 < x − ξ < 1/2
0 for x − ξ > 1/2 .

(2.28)

We have set the true value of ξ equal to unity and let a random number generator
draw N = 8 events from the distribution given in the upper part of Fig. 2.6. The
events are marked as dots on the abscissa of the lower part. The model is of the type
(2.15). Therefore the prior is uniform, and the posterior is



20 2 Bayes’ Theorem

Fig. 2.5 Posteriors of the
exponential model from N
observations. See text
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Fig. 2.6 The rectangular
distribution and its posterior.
See text

P(ξ|x1 . . . xN ) =
⎧⎨
⎩

0 for ξ < xmax − 1/2
(1 − xmax + xmin)

−1 for xmax − 1/2 < ξ < xmin + 1/2
0 for ξ > xmin + 1/2 .

(2.29)

Here, xmin, xmax are the lowest and highest events, respectively. The posterior from
the eight events is displayed in the lower part of the figure. It is rectangular, and never
approaches a Gaussian.
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A reasonable feature of the posterior (2.29) is the fact that, as w increases, it
will be more and more concentrated around its maximum. This is so because the
interval (xmax − 1/2, xmin + 1/2), where P differs from zero, shrinks. This happens
because xmax and xmin will be found closer and closer to their limits 1/2 and 3/2,
respectively. This concentration of the distribution can be interpreted and quantified
via the Shannon information [38] conveyed by P; see Sect. 2.6 below.

An increase of information is expected. Nevertheless, the model (2.28) is unrea-
sonable. The shortest interval containing ξ with a given probability K does not exist;
that is, the Bayesian interval, introduced in Sect. 1.2, is not well defined. Instead,
there is a manifold of intervals containing ξ with the probability K . We require the
existence of the Bayesian interval. This is assured if the model p(x |ξ) is a regular
function of ξ and possesses a unique absolute maximum. The expression (2.28) has
neither property.

Both the uniform prior of the Gaussian (2.16) and the prior (2.27) of the expo-
nential model are improper. This deserves a discussion. In the following section, we
comment on improper distributions.

2.5 Improper Distributions

In general, one requires probability distributions to be normalised. Every axiomatic
foundation of probability theory asks for proper distributions. See Sect. 1.1 of the
book by Lee [39] or Sect. 4.8 in Kendall’s handbook [18]. However, we do not do so
and admit improper distributions, where the integral

∫
dξμ(ξ)

does not exist. The central value ξ of theGaussianmodel (2.16) is defined everywhere
on the real axis. The prior is uniform and thus improper.

Nevertheless such distributions are useful. One can calculate the probability

w1 =
∫
I1

dξ μ(ξ) , (2.30)

that ξ is contained in the compact interval I1 and compare it with the probability that
ξ is in another compact interval I2. However, one cannot assign a probability to the
statement, “ξ is not in I1.” This requires that the integral over the complement of I1
exists. If one wants to assign a probability to every logically possible statement, one
must require the normalisation (2.3), (2.4) for every distribution.

In the derivation of Bayes’ theorem, no negation is used. Therefore, no inconsis-
tencies appear if improper priors are admitted. They are defined only up to an arbitrary
factor. By requiring the normalisation of the posterior, this arbitrariness drops out

http://dx.doi.org/10.1007/978-3-319-41644-1_1
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Fig. 2.7 The distribution of
the leading significant digits
of measured half-lives of
radioactive species. The
prediction (2.32) is shown by
the crosses. The histogram
represents the measured data

of Bayes’ theorem. More generally, we require that all conditional distributions are
proper.

The improper distribution
μ(ξ) ∝ ξ−1 (2.31)

has caused some astonishment. It answers the question: “What is the distribu-
tion of all measured half-lives of radioactive nuclides?” This seems surprising
[13, 40, 41]. However, (2.31) is the only possible answer, if the question is mean-
ingful. The question does not say in which units the half-lives shall be considered:
seconds, years? If we take this omission seriously, the answermust be invariant under
any change of scale. We show in Chaps. 6 and 7 that the only distribution with this
property is (2.31).

One can test (2.31) against the data by evaluating the distribution q of the leading
digit a . From (2.31), it follows that

q(a) = log
a + 1

a
. (2.32)

The reader should convince himself of this. In Fig. 2.7, this distribution is compared
[13] with the leading digits of a set of 1203 measured half-lives. The agreement is
impressive. Whether it really confirms (2.31) cannot be answered precisely because
the distribution (2.32) contains no parameter to optimise the agreement with the data.

In the following section, we define Shannon’s information mentioned above.

http://dx.doi.org/10.1007/978-3-319-41644-1_6
http://dx.doi.org/10.1007/978-3-319-41644-1_7
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2.6 Shannon Information

The information conveyed by the statement, “x has the distribution w(x),” has been
defined by Shannon [38] to be

S =
∫

dx w(x) lnw(x) . (2.33)

This expression exists for every proper distributionw(x). It is related to Boltzmann’s
definition of entropy.1

The expression S is most easily understood in the case where x takes discrete
values xk , and the integration in (2.33) amounts to a summation. The distribution w
is normalised to unity. Then w(xk) is a nonnegative number between 0 and 1. For
a given k, the product w(xk) lnw(xk) is minimal at w(xk) = 1/2; it tends to zero
for w → 0 and for w → 1. Therefore the expression (2.33) is usually negative. It
becomes minimal if w = 1/2 everywhere. It increases if w comes closer to unity
at some places and closer to zero at other ones. Hence, S measures the degree of
concentration of the distribution of x . The maximum value of S is S = 0 which is
reached when w(xk) equals unity for one k and zero for all other ones. Then the
information is complete because one is sure about any coming event.

If x is a continuous variable then the information can never be complete. The
distribution can be evermore concentrated, and the information can grow indefinitely.
The variable ξ is continuous in the context of the present book. Thus the Shannon
information on ξ can grow indefinitely.

In the next Chap.3, we show that decisions require a measure and the existence
of the “Bayesian interval” which serves as an error interval.
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Chapter 3
Probable and Improbable Data

In Sect. 3.1, the Bayesian interval is defined. It contains the probable values of a
parameter ξ and serves as the “error interval” of ξ. It is the basis of decisions because
it allows distinguishing between probable and improbable data. It requires a measure
μ(ξ) to be defined in the space of ξ. Examples are discussed in Sect. 3.2. The con-
struction of the Bayesian interval is described in Sect. 3.3. In Sect. 3.4 we formulate
a condition for the existence of the Bayesian interval. Its existence is necessary in
order to infer ξ. The solutions of the problems suggested to the reader are given in
Sect. A.3.

3.1 The Bayesian Interval

The conclusions that we draw from perceptions are based on the assignment of
probabilities. A text that one reads may be spoiled; one still grasps its message with
a reasonably high probability. If the text is ruined, the message becomes ambiguous.
Waiting for a friend who is late, one may initially assume that he or she has the usual
problems with traffic. When too much time elapses, one assumes that the friend will
not come at all. A radioactive substance that emits on average one particle per second
should not allow a break of one hour during which no radiation is registered. If that
happens, one seeks a flaw in the apparatus. Although the time between two events is
random, a break of one hour seems extremely improbable in this case.

What is an improbable event? The examples show that its definition is the basis
of decisions. If there is a theory predicting ξpre, and ξpre turns out to be improbable,
one rejects the theory. Let Q(ξ) be a proper distribution of the real parameter ξ. The
value ξpre is improbable if it is outside an interval B(K ) containing the probable
events. One is free to choose the probability K with which the probable events fall
into B. It has the property ∫

B
dξ Q(ξ) = K . (3.1)
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28 3 Probable and Improbable Data

There is a manifold of areas that fulfil this equation. We require that the smallest one
exists and is unique. This is B(K ). We call it the Bayesian interval or more generally
the Bayesian area [1].

The construction of the smallest area requires the definition of the length or more
generally the volume

V =
∫
I
dξ μ(ξ) (3.2)

of an area I. A measure μ is needed in order to define the volume such that it is
independent of reparameterisations. The interested reader should show that V is not
changed by the transformation (2.7). Only in combination with a measure is the
“smallest interval” a meaningful notion. Decisions and error intervals require a mea-
sure. Themeasure is identified with the prior distribution μ(ξ) defined systematically
in Chaps. 6, 9, and 11.

Why do we consider the smallest interval B(K ) to be the error interval? There
are innumerable areas in which ξ is found with probability K . For the Gaussian
distribution (2.16), (2.17) they may extend to infinity. An error interval that extends
to infinity does not convey much information about ξ. An error interval larger than
B yields less information than does B.

Note that 1 − K is the probability that ξ is outside B(K ). To reject a theory
because ξpre falls outside the Bayesian area is erroneous with probability 1 − K .
Hence, K should be chosen reasonably close to unity. One cannot choose it equal
to unity without losing the possibility to decide. Every decision remains a risk. The
reader should discuss why this is so!

3.2 Examples

3.2.1 The Central Value of a Gaussian

Let ξ be the central value of the Gaussian (2.16). The measure μ is uniform and the
distribution of ξ is the posterior P of (2.17), which is again the Gaussian (2.16).
Owing to the reflection symmetry of this function, the Bayesian interval is centred
at the observed x and can be described as B(K ) = [x − �ξ(K ), x + �ξ(K )]. The
notation �ξ shall say that this is an interval in the space of the parameter ξ. The
observed event x does not have an error. It is what it is. The parameter ξ that one
infers has an error.

One usually chooses �ξ to be a simple multiple of the standard deviation σ of
the Gaussian. When K = 0.68 then �ξ = σ. The value of �ξ is given for several
values of K in Table3.1. The value of �ξ is displayed in Fig. 3.1 in units of σ.

The ubiquitous occurrence of the Gaussian distribution in measurement uncer-
tainty is explained in Chap.4. The results of the present subsection reproduce the
well-known and widely-used Gaussian error assignments.

http://dx.doi.org/10.1007/978-3-319-41644-1_2
http://dx.doi.org/10.1007/978-3-319-41644-1_6
http://dx.doi.org/10.1007/978-3-319-41644-1_9
http://dx.doi.org/10.1007/978-3-319-41644-1_11
http://dx.doi.org/10.1007/978-3-319-41644-1_2
http://dx.doi.org/10.1007/978-3-319-41644-1_2
http://dx.doi.org/10.1007/978-3-319-41644-1_2
http://dx.doi.org/10.1007/978-3-319-41644-1_2
http://dx.doi.org/10.1007/978-3-319-41644-1_2
http://dx.doi.org/10.1007/978-3-319-41644-1_4
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Table 3.1 Bayesian intervals
for the Gaussian model

K �ξ

0.6827 1.000σ

0.8000 1.282σ

0.9000 1.645σ

0.9500 1.386σ

0.9545 2.000σ

0.9973 3.000σ

1 − 6.3 × 10−5 4.000σ

Fig. 3.1 The Bayesian
interval for the Gaussian
model. The relation between
1 − K and the half-length
�ξ of the Bayesian interval
is given in units of σ

3.2.2 The Standard Deviation of a Gaussian

Suppose that the central value of the Gaussian is known to be zero and that the
standard deviation σ is to be inferred from the event x ; that is, the model is

p(x |σ) = 1√
2πσ2

exp

(
− x2

2σ2

)
; x real, σ > 0 . (3.3)

An example of this model occurred in experiments on parity violation in highly
excited nuclear states [2, 3]. The parity mixing matrix elements were measured for
many states close to the neutron threshold [4]; see Fig. 3.2. These matrix elements
fluctuate statistically with the mean value zero. The parameter of interest - which
yields information on the strength of the parity violating force as well as the reaction
mechanism - is the standard deviation of the matrix elements. We encounter this
example again in Chap.10, where the central value of the Gaussian is inferred in
addition.

In the case of the model (3.3), the measure is

μ(σ) ∝ σ−1 . (3.4)

http://dx.doi.org/10.1007/978-3-319-41644-1_10
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Fig. 3.2 Parity violating matrix elements from 115In. The data on this figure are from [5, 6]. The
asymmetry of the absorption cross-section of longitudinally polarised neutrons is shown. Its root
mean square deviation from zero is the quantity of interest. The discussion in the present section
disregards the systematic errors indicated by the error bars

This yields the posterior distribution

P(σ|x) =
(
2

π

)1/2

xσ−2 exp

(
− x2

2σ2

)
, x > 0 , (3.5)

for a single event of the experiment in Fig. 3.2. It is conditioned by the absolute
value of the observed x . The interested reader should show that this distribution is
normalised to unity.

Before we discuss the Bayesian interval of σ, let us justify the measure (3.4). We
use the argument of Sect. 2.3 about distributions of the form (2.15). One can bring
(3.3) into this form, invariant under translations, by help of the transformation

η = ln σ2 (3.6)

whichwill yield the uniformmeasure if (3.4) is correct.At the same timewe substitute

y = ln(x2/2) (3.7)

and obtain

pT (y|η) =
(
1

π

)1/2

exp

(
1

2
[y − η] − ey−η

)
. (3.8)

This result1 depends on the difference y − η only. Therefore the measure is uni-
form with respect to the parameter η, and the ansatz (3.4) is correct. We note that

1The corresponding expression (3.8) in the first edition of the present book contains an error.
Together with the figures showing this distribution, the error is corrected in the present Eq. (3.8).

http://dx.doi.org/10.1007/978-3-319-41644-1_2
http://dx.doi.org/10.1007/978-3-319-41644-1_2
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(3.8) is a version of the chi-squared distribution with 1 degree of freedom. See the
discussion in Sect. 4.1.3.

These arguments can be generalised to find the measure μ(σ) of any model with
the structure

q(x |σ) = σ−1w
( x

σ

)
, (3.9)

where w(y) is a normalised distribution of y. The interested reader is asked to work
out the prior (3.4) from the above arguments. The generalway to find the prior is given
in Chap.9. As an application, the reader should answer the following question. Is it
possible to infer the mean lifetime of a radioactive substance from the observation
of a single event? The model of radioactive decay is given by Eq. (4.40) in Sect. 4.2.
The question has been debated in the published literature [7].

Let us return to the problem of inferring the standard deviation σ. In the para-
meterisation of Eqs. (3.6), (3.7), the model and the posterior are given by the same
expression,

PT (η|y) = pT (y|η) , (3.10)

whence the posterior distribution is proper. It is displayed in Fig. 3.3 for the event
x = 1; that is, y = 0. The Bayesian interval obviously exists. The maximum of PT
is at η = y or σ = x . Unlike the Gaussian distribution, PT is not symmetric with
respect to this point. It falls off faster to the left than to the right-hand side. For
K = 0.90, the limits of B are indicated in the figure.

The transformation from (3.3) via (3.6), (3.7) to (3.8) has led us to the structure
of the model (2.15) in Sect. 2.3. Thus the model (3.3) provides another example of
form invariance.

In the case of a multidimensional x = (x1, . . . , xN ) and σ to be inferred, the
Gaussian model (2.23) turns into

p(x1, ..., xN | σ) = (2πσ2)−N/2 exp

(
− N

2σ2
〈x2〉

)
, xk real , (3.11)

Fig. 3.3 The construction of
a Bayesian interval. The
distribution PT (η|y) of Eqs.
(3.8), (3.10) is shown. The
event is y = − ln 2 or
equivalently x = 1; that is, y
is such that the maximum of
the curve occurs at ηML = 0.
The shaded area amounts to
K = 0.90. The Bayesian
interval is [η<, η>]. The
borders are found by the
intersection of a suitable
level C with the curve

< >

0.2

K = 0.91

P T

0.1

0
-2 0 2 4 6 8

http://dx.doi.org/10.1007/978-3-319-41644-1_4
http://dx.doi.org/10.1007/978-3-319-41644-1_9
http://dx.doi.org/10.1007/978-3-319-41644-1_4
http://dx.doi.org/10.1007/978-3-319-41644-1_2
http://dx.doi.org/10.1007/978-3-319-41644-1_2
http://dx.doi.org/10.1007/978-3-319-41644-1_2
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if we assume that ξ = 0 is known. The prior distribution of σ is given in (3.4), and
the posterior is

P(σ|x1, . . . , xN ) = 2

�
(
N
2

)
[
N

2
〈x2〉

]N/2

σ−N−1 exp

(
−N

2

〈x2〉
σ2

)
. (3.12)

This distribution is normalised to unity as one recognises via the substitution

σ → τ = N

2

〈x2〉
σ2

and the integral representation (B.23) of the � function in Chap. B.4. The interested
reader may verify Eq. (3.12).

We introduce the “likelihood function”

L(σ|x) = P(σ|x1, . . . , xN )

μ(σ)

= p(x1, . . . , xN |σ)

m(x1, . . . , xN )
. (3.13)

It transforms like a function with respect to both variables, the event x and the
parameter ξ. In contrast, the model p(x |ξ) transforms like a distribution with respect
to x and like a function with respect to ξ, whereas the posterior P(ξ|x) transforms
like a distribution with respect to ξ and like a function with respect to x . The quantity
m(x) transforms like the distribution p; it is defined by Eq. (2.5). For the definition
of the Bayesian interval or area in Sect. 3.3 the numerical value of m is important.
For other uses of L such as the determination of the ML estimator (see below) and
the definition of the geometric measure (see Chap. 9) only logarithmic derivatives
of L with respect to parameters (not to x) are needed; then m is immaterial and we
restrict ourselves to define L in the form of L ∝ p(x |σ).

The likelihood function possesses a maximum. By requiring the derivative of ln L
to vanish we find the maximum of (3.13) at

σML(x1, . . . , xN ) = (〈x2〉)1/2 . (3.14)

For this purpose L can be defined as

L(σ|x) ∝ p(x1, . . . xN |σ) . (3.15)

The quantity σML is called the “maximum likelihood estimator” or briefly the “ML
estimator” for the parameter σ. The reader is asked to verify Eq. (3.14).

Substituting σ according to Eq. (3.6) and setting

y = ln

(
N

2
〈x2〉

)
, (3.16)

http://dx.doi.org/10.1007/978-3-319-41644-1_2
http://dx.doi.org/10.1007/978-3-319-41644-1_9
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the posterior (3.12) takes the form

PT (η|y) = 1

�(N/2)
exp

(
N

2
[y − η] − ey−η

)
. (3.17)

This is a generalisation of the distribution (3.8) depending on the difference y − η
between event and parameter variables. It is form invariant with translational sym-
metry.

The event variable y of the posterior (3.17) is a function of 〈x2〉 according to Eq.
(3.16). Thus, for the multidimensional x , the transformed posterior PT is conditioned
by a function of 〈x2〉 and only by this function of the N events. Indeed, the ML
estimator of η turns out to be

ηML = ln〈x2〉 . (3.18)

The interested reader is asked to prove it. Form invariance guarantees that the ML
estimator supplies the sufficient statistic; see Sect. 6.7. Generally, however, it is not
possible to write it down as a function of x in a closed and simple form, as was done
in the present example.

We note that (3.12) and (3.17) are equivalent versions of the posterior of the
chi-squared distribution with N degrees of freedom. The chi-squared distribution is
defined in Sect. 4.1.3.

Note that in Fig. 3.3 the Bayesian interval is limited by the intersections of the
function PT with a horizontal line. This should be so according to a rule given in the
next section.

3.3 Contour Lines

Consider the posterior distribution (3.8). Because it depends exclusively on the dif-
ference between event and parameter, the measure with respect to η is uniform. Then
there is a positive number C = C(K ) such that the Bayesian interval B(K ) consists
of the points η that have the property

PT (η|y) > C(K ) . (3.19)

In Fig. 3.3, this interval is indicated. The borders are η< and η>.
With the help of Fig. 3.4, we can show that B(K ) has the minimum length out

of all intervals in which η occurs with probability K . Replace B(K ) by the interval
[a, b]. Because ∫ b

a
dη PT (η|y) = K , (3.20)

the integrals over the intervals A and B are equal. In A, the value of PT is everywhere
larger than in B. Therefore the interval [η<, a], which has been cut away from B, is

http://dx.doi.org/10.1007/978-3-319-41644-1_6
http://dx.doi.org/10.1007/978-3-319-41644-1_4
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Fig. 3.4 Proof that the
Bayesian interval has the
minimum length. The curve
is the same as in Fig. 3.3. The
integrals over the intervals A
and B are equal. The length
of A is smaller than the
length of B

shorter than the interval [η>, b], which has been added to B, and therefore [a, b] is
longer than B.

If one uses the parameterisation (3.5) - or any other one - then the likelihood
function of Eq. (3.13) becomes

L(σ|x) = P(ξ|x)
μ(ξ)

= PT (η|x)
μT (η)

. (3.21)

It transforms as a function, not as a distribution, with respect to both its variables.
Therefore the Bayesian interval B(K ) consists of all points ξ with the property

P(ξ|x)
μ(ξ)

> C(K ) , (3.22)

and neither the ML estimator nor the Bayesian interval change their places under the
transformation.

Let us adapt these arguments to a case where the parameter ξ = (ξ1, ξ2) is two-
dimensional. We speak of the “Bayesian area” because it is a surface in this case.

Consider the normalised distribution Q(ξ) and suppose that the measure μ(ξ) is
known. In more than one dimension, one cannot be sure of finding a reparameterisa-
tion such that the measure becomes uniform. Yet with the help of Fig. 3.5, we show
that there is a positive number C(K ) such that the Bayesian area B(K ) consists of
the points ξ with the property

Q(ξ)

μ(ξ)
> C(K ) , (3.23)

that is, the points where the likelihood function is larger than C .
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Fig. 3.5 Proof that the
Bayesian area has the
minimum size. The contour
plot of the likelihood
function (3.23) is given. The
integrals over the shaded
areas A and B are equal. The
area of A is smaller than the
area of B

Figure3.5 is a contour plot of the likelihood function (3.23). The contour lines are
the placeswhere likelihoodQ/μ assumes a constant value. This definition ensures that
contour lines are invariant under reparameterisations. The interested reader should
show this. Consider the contour line labelled 3 which encloses a domain B such that
ξ is in B with probability K . We show that B is the domain with minimum area. For
this we modify B by taking away the area A and adding B. The modified domain is
again required to contain ξ with the probability K , whence

∫
A
dξ Q(ξ) =

∫
B
dξ Q(ξ) . (3.24)

The area of A is
∫
A
dξ μ(ξ) =

∫
A
dξ

μ(ξ)

Q(ξ)
Q(ξ)

= μ(ξa)

Q(ξa)

∫
A
dξ Q(ξ) , (3.25)

where ξa is a suitable point inside A. Similarly, we have

∫
B
dξ μ(ξ) = μ(ξb)

Q(ξb)

∫
B
dξ Q(ξ) , (3.26)

where ξb is inside B. Inasmuch as the likelihood function in A is larger than in B,
the area of B is larger than the area of A, whence the area of the modified domain is
larger than that of B.

One can summarise these results by saying: the limit of a Bayesian area B(K ) is
a contour line.

We require that there is a point ξ = ξML, where L assumes an absolute maximum.
This point, the ML estimator ξML, belongs to any Bayesian interval of Q. The reader
should show that ξML does not change under reparameterisations.
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3.4 On the Existence of the Bayesian Area

In Sect. 2.4, we have discussed the model (2.28) which did not allow constructing
the Bayesian interval. This happened because the posterior P(ξ|x) equalled the
measure μ(ξ), wherever P differed from zero. Thus the likelihood function L(ξ|x)
was constant; it did not possess a maximum.

The likelihood function must nowhere be independent of ξ because the model
p shall allow us to infer ξ from the observed x . Form invariance guarantees that a
maximum of the likelihood function exists. We show this for one-dimensional ξ.

Let ξ be one-dimensional. Thenwe can find a transformation such that themeasure
is μ ≡ const. We suppose that this is given. If there were an interval of ξ where the
likelihood function is constant then themodel p(x |ξ)wouldbe independent of ξ there.
In that interval of its domain of definition the parameter ξ could not be inferred.

When the measure is uniform and the model is form invariant, the posterior P will
depend on the difference x − ξ and only on it. The event x amounts to a translation
of the parameter ξ. All translations are allowed. Because P is normalised, it must
possess a maximum. We assume that there is a unique absolute maximum. The
general definition of form invariance is given in Chap.6.

Although the point of maximum likelihood lies within every Bayesian interval, it
would not be a good estimator if it were found at the edge of the Bayesian intervals.
This cannot happen because we require the likelihood function to be regular. A
counterexample is given by the Pareto model [8]

q(x |ξ) =
{

α
ξ

(
ξ
x

)1+α

for x > ξ

0 for x < ξ
, (3.27)

where ξ > 0 and α > 0. In Fig. 3.6, we show q for α = 3/2 and ξ = 1.

Fig. 3.6 The Pareto
distribution for α = 3/2 and
ξ = 1

http://dx.doi.org/10.1007/978-3-319-41644-1_2
http://dx.doi.org/10.1007/978-3-319-41644-1_2
http://dx.doi.org/10.1007/978-3-319-41644-1_6
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This is a model of the type (3.9). The prior is (3.4). The posterior

Q(ξ|x) =
{

3
2ξ

1/2 for ξ < 1
0 for ξ > 1

(3.28)

is given in Fig. 3.6 for α = 3/2 and x = 1. The likelihood function is

L(ξ|x) =
{

ξ3/2 for ξ < 1
0 for ξ > 1

. (3.29)

The point of maximum likelihood is at ξML = 1. This is the upper border of every
Bayesian interval. Thus the estimator is intuitively not satisfactory. It should be a
point where the derivative of Q vanishes. We ascribe this failure to the fact that
there is a discontinuity in the dependence of the Pareto model on its parameter. The
likelihood L should be a regular function of ξ. Then there will be a point ξML, where
L is maximal. This point will not be at the border of the domain of definition of
ξ. Because the prior μ is monotonic, the posterior Q will be maximal at ξML, too
(Fig. 3.7).

TheParetomodel has played a role in econometric investigations [9].Distributions
of wealth tend to be quite different fromGaussian. They have no reflection symmetry
and decrease slowly with increasing wealth. An unusual example is Abul-Magd’s
study of wealth in ancient Egypt [10]. From excavations at Tell el-Amarna in Middle
Egypt he obtained a distribution of the area A of houses in the fourteenth century B.C.
The excavations concerned a city called Akhetaten at its time. For religious reasons
this city existed for only about 18 years starting from 1372 B.C. So the distribution of
A served as the distribution of wealth at onemoment in ancient Egypt. The histogram
of the data is shown in Fig. 3.8. Abul-Magd tries to fit the data with the Pareto model

Fig. 3.7 The posterior
(3.29) of a Pareto distribution
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Fig. 3.8 The distribution of
wealth in ancient Egypt
according to Ref. [10]. The
fit to the histogram is shown
by the curve. This curve is a
version of the chi-squared
distribution with 3.8 degrees
of freedom; see Sect. 4.1.3

but he does not find the discontinuity in the data and therefore replaces the model
(3.27) by

w(A|α) ∝ A−1−α exp
(

− 1

τ A

)
, (3.30)

where τ is a positive number. For large A this distribution behaves as the Pareto
distribution, but there is no discontinuity for A > 0. The parameter α is found to be
α = 3.76 ± 0.19. The statistical error has not been obtained via Bayesian statistics.
Our interest in Ref. [10] is due to the fact that the author had to look for a model that
depends regularly on its parameter(s).

Let us note that the distributionw becomes a chi-squared distribution with N = α
degrees of freedom by transforming A to A−1. The chi-squared model is treated in
Sect. 4.1.3.
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Chapter 4
Description of Distributions I: Real x

In the present chapter, some important distributions are defined and described. The
event variable x is real, as opposed to discrete; that is, the distributions are probability
densities. In Sect. 4.1, we describe Gaussian models. The exponential distribution
is described in Sect. 4.2. The Cauchy and Student’s t-distribution are defined in
Sect. 4.3. Section A.4 gives the solutions of the problems suggested to the reader.

4.1 Gaussian Distributions

TheGaussian1 distributionwhich seems to have been discovered byA. deMoivre,2 is
themost frequently used statisticalmodel. Its simplest version is treated in Sect. 4.1.1;
the multidimensional Gaussian is introduced in Sect. 4.1.2 and the family of chi-
squared distributions in Sect. 4.1.3.

4.1.1 The Simple Gaussian

The Gaussian distribution of a single event variable x has two parameters, the central
value ξ and the variance σ. It is given by

q(x |ξ,σ) = (2πσ2)−1/2 exp

(
− (x − ξ)2

2σ2

)
, (4.1)

1Carl Friedrich Gauß, 1777–1855, German mathematician, astronomer, and physicist. He con-
tributed to number theory, celestial and general mechanics, geodesy, differential geometry, mag-
netism, optics, the theory of complex functions, and statistics.
2Abraham deMoivre, 1667–1754, Frenchmathematician, emigrated to England after the revocation
(1685) of the tolerance edict of Nantes.
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and is represented in Fig. 2.1. The event x and the parameter ξ are defined on the
whole real axis. The normalising factor is obtained from the integral

Z(a) =
∫ ∞

−∞
dx exp

(−a(x − ξ)2
)

= √
π/a ; (4.2)

compare Problem A.3.3. The interested reader should convince himself or herself
that the mean value x is equal to ξ.

The variance of a random variable x , is the mean square deviation from x ; that
is,

var(x) = (x − x)2 . (4.3)

Here, the overlines denote expectation values with respect to the distribution of x .
The square root of the variance is called the standard deviation or root mean square
deviation. It quantifies the fluctuations of x about its mean value. A transformation
y → T x , however, changes the value of the standard deviation. The interested reader
should show that the variance can also be expressed as

var(x) = x2 − x2 . (4.4)

The reader is asked to prove that, for the Gaussian distribution (4.1), one has

var(x) = σ2 ,

(x − ξ)4 = 3σ2 . (4.5)

To calculate the moments (x − ξ)2n , it is helpful to consider the derivatives of the
function Z(a) of (4.2).

The prime importance of the Gaussian distribution is a consequence of the central
limit theorem. This theorem can be stated as follows. Let there be N randomvariables
x1, . . . , xN that follow the distribution w(xk). Then the distribution W (z) of their
average z = 〈x〉 tends to a Gaussian for N → ∞, if the mean value xk and the
variance x2k − xk

2 exist. The notation 〈. . . 〉 is defined in Eq. (2.21).
Thus for large N , one obtains the approximation

W (z) ∝ exp

(
− (z − A)2

2B2

)
, (4.6)

where the central value A and the variance B2 are approximately

A ≈ 〈x〉 (4.7)

http://dx.doi.org/10.1007/978-3-319-41644-1_2
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and
B2 ≈ 〈x2〉 − 〈x〉2 , (4.8)

compare Sect. 2.5.
We do not prove the central limit theorem here, but we illustrate it below. Based

on this theorem, the Gaussian model is invoked whenever the observable x can be
considered as the sum of several contributions that all follow the same or similar
distributions. Examples are given by the logarithm of the joint probability of several
independent events, the noise in an instrument of measurement, the amplitude of
waves in the oceans. To assume the Gaussian model can be misleading because the
central limit theorem does not specify how large N must be in a given context. A strict
application of the Gaussian distribution to the amplitudes of waves would practically
exclude the occurrence of monster waves in the oceans: a wrong result.

The central limit theorem is illustrated in Fig. 4.1. In each of the four parts of the
figure, a histogramwith 100 bins is shown. The binning corresponds to an equidistant
partition of the interval [0, 1]. By use of a random number generator, the xk have
been drawn from the distribution w which is uniform on the interval [0, 1]. This
gives

A = 0.5 ,

B = (12N )−1/2 (4.9)

Fig. 4.1 Illustration of the central limit theorem. Shown is the distribution of the average z of N
random variables xk . The xk are drawn from a uniform distribution w

http://dx.doi.org/10.1007/978-3-319-41644-1_2
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The height of each bar is the number of cases in which the variable z has fallen
into the corresponding bin. For each part of the figure, 5 × 104 values of z have
been drawn. The part with N = 1 shows the uniform distribution w. The part with
N = 2 displays a triangular distribution. For N = 3, the distribution of z starts
to resemble a Gaussian. For N = 12, the Gaussian is given in the figure; it closely
follows the histogram. This figure was inspired by Fig. 4.1 of [1]. Note, however, that
the Gaussian approximation may require N to be much larger than N = 12 when
w decreases too slowly towards the ends of its domain of definition: in other words,
when it conveys little information.

Very often, the statistical fluctuations of an observable are the sum of many con-
tributions. Because of the central limit theorem, the Gaussian model can be used to
describe the fluctuations. In the present book, the Gaussian approximation is applied
to the logarithm of a likelihood function L(ξ|x1, . . . , xN ) which results from a large
number N of events given by one and the same model p(x |ξ). Then ln L will display
a single strong peak in the domain, where it is “essentially different from zero,” and
it will be approximated by a Gaussian.

The quantity A of Eq. (4.7) is given by the ML estimator ξML; compare Sect. 3.2.
The Gaussian approximation is justified by the observation that the likelihood func-
tion is proportional to the product

P(ξ|x)
μ(ξ)

∝
N∏

k=1

q(xk |ξ) , (4.10)

of the probabilities to obtain xk , whence it is a function of the sum over the logarithms
ln p(xk |ξ) of the probabilities. Thus the ML estimator is a function of their average
〈ln q〉which is assumed to have a Gaussian distribution. The information about ξ will
increase with increasing N in that the peak in L will become narrower and narrower.
Eventually, the measure μ — even if it depends on ξ — can be considered constant
within the domain, where L is essentially different from zero. Then L becomes a
Gaussian function of ξ and P aGaussian distribution. Therefore theBayesian interval
for the parameter ξ derived from a sufficiently high number N of observations is
usually given as the Gaussian “error interval”, that is, the root mean square value
B of the assumed Gaussian distribution. The inverse of B2 is given by the second
derivative of the logarithm of the likelihood function (3.13),

B−2 = lim
N large

− ∂2

∂ξ2
ln

P(ξ|x1, . . . , xN )

μ(ξ)

∣∣∣∣
ξ=ξML

= lim
N large

−
N∑

k=1

∂2

∂ξ2
ln q(xk |ξ)

∣∣∣∣∣
ξ=ξML

. (4.11)

For large N the sum in the second line of this equation can be replaced by an
integration over the distribution of the xk and we obtain

http://dx.doi.org/10.1007/978-3-319-41644-1_3
http://dx.doi.org/10.1007/978-3-319-41644-1_3
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B−2 = NF(ξML) , (4.12)

where

F(ξ) = −
∫

dz q(z|ξ) ∂2

∂ξ2
ln q(z|ξ) (4.13)

is called the Fisher3 [2] function of the model q(z|ξ). It is also called the “Fisher
information” on the parameter ξ. Note, however, that the value of F changes when
the parameter ξ is transformed. Thus F is not a property of the distribution q; it is a
property of the specific parameterisation of q.

4.1.2 The Multidimensional Gaussian

The Gaussian model (4.1) can be generalised to the n-dimensional event

x =
⎛
⎜⎝
x1
...

xn

⎞
⎟⎠ (4.14)

We similarly introduce the vector

ξ =
⎛
⎜⎝

ξ1
...

ξn

⎞
⎟⎠ . (4.15)

The multidimensional Gaussian reads

p(x|ξ) = Z−1 exp
(−(x − ξ)†(2C)−1(x − ξ)

)
. (4.16)

Here, x and ξ are vectors in a Cartesian4 space; that is, their components are real
numbers and themetric applieswhich says that

√
x†x is the length of the vector x. The

symbol x† stands for the transpose of x. The quantity C in (4.16) is a symmetric n-
dimensional matrix with positive eigenvalues, called the correlation matrix. Because
all eigenvalues are positive, the expression x†C−1x is positive for every vector x 	= 0.
The normalising factor in Eq. (4.16) is

3Sir Ronald Aylmer Fisher, 1890–1962, British statistician and geneticist. He introduced statistical
arguments into the design of scientific experiments. Fisher’s work prepared the rediscovery of
Bayesian inference in the twentieth century.
4René Descartes, 1596–1650, French philosopher, mathematician, and physicist. His “Discours de
la méthode pour bien conduire sa raison et chercher la vérité” is a foundation of scientific thinking.
His work “La géométrie” founded the formalism of analytical geometry.
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Z(C) =
∫

dx1 . . . dxn exp
(−x†(2C)−1x

)

= (
(2π)n detC

)1/2
(4.17)

as the interested reader can verify with the help of a transformation that diago-
nalises C. In (4.17), the translation by −ξ that appears in (4.16) has been omitted
because the integral extends over the whole real axis in each variable and is therefore
independent of the shift. Very much as in the one-dimensional case of Sect. 4.1.1,
the parameter ξν is the expectation value of xν .

The correlation matrix is the generalisation of the variance σ2 that appears in the
one-dimensional Gaussian. Indeed, the elements of C are

Cνν ′ = (xν − ξν)(xν ′ − ξν ′)

=
∫

dx1 . . . dxn (xν − ξν)(xν ′ − ξν ′) p(x|ξ) (4.18)

as we prove in Sect.B.1. The expectation value of (xν − ξν)(xν ′ − ξν ′) is also called
the correlation between (xν −ξν) and (xν ′ −ξν ′), whenceC is termed the “correlation
matrix”.

The multidimensional Gaussian has a very convenient property: the integration
over any number of the event variables xν yields a result that is known by a simple
rule. Let us integrate Eq. (4.16) over xn; the result

∫
dxn p(x|ξ) = ((2π)n−1 det K )−1/2

× exp
(

−
n−1∑

ν,ν ′=1

(xν − ξν)(2K )−1
ν,ν ′(xν ′ − ξν ′)

)
(4.19)

is again a multidimensional Gaussian and its correlation matrix K has the elements

Kν,ν ′ = Cν,ν ′ for ν, ν ′ = 1, . . . , n − 1 , (4.20)

that is, the (n − 1)-dimensional matrix K is obtained from C by simply omitting the
last row and the last column of C. This procedure can be repeated until only x1 and
ξ1 are left so that

p↓(x1|ξ1) = (2πC1,1)
−1/2 exp

(
− (x1 − ξ1)

2

2C1,1

)
. (4.21)

The rule formulated by Eqs. (4.19) and (4.20) is proven in Sect.B.2.
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4.1.3 The Chi-Squared Model

Let the quantity xk , k = 1, . . . , N be distributed according to the Gaussian

w(xk |σ) = (2πσ2)−1/2 exp

(
− x2k
2σ2

)
. (4.22)

We ask for the distribution χsq of the sum

T =
N∑

k=1

x2k . (4.23)

This quantity (or a proportional one) was called χ2 - in words, “chi-squared” - in
earlier publications on statistical inference, whence the title of the present section
and the symbol χsq used below for the desired distribution.

As a first step, we substitute the variables x2k by the positive definite variables rk .
The normalised distribution of rk is

w̃(rk |σ) = (2πσ2)−1/2 r−1/2
k exp

(
− rk
2σ2

)
, rk > 0 . (4.24)

This amounts to the model treated in Sect. 3.2.2. In physics, this distribution is called
the Porter-Thomas distribution. More steps are necessary in order to generalise w to
the case where N > 1.

We introduce the variables T and tk via

rk = T tk, k = 1, . . . N . (4.25)

Equation (4.23) says that
N∑

k=1

tk = 1 , (4.26)

which means that the tk are not independent of each other. One can, for example,
express tN by t1, . . . , tN−1. Yet it is possible to substitute the variables r1, . . . , rN by
the variables T, t1, . . . , tN−1. This transformation recalls the introduction of polar
coordinates in N dimensions, where the Cartesian vector x is replaced by its radius
R and trigonometric functions of angles. The present variable T equals R2. The
present variables tk are restricted to nonnegative values 0 ≤ tk ≤ 1. The Jacobian
determinant of the transformation is

∣∣∣∣ ∂(r1, . . . , rN )

∂(T, t1, . . . , tN−1)

∣∣∣∣ = T N−1 (4.27)

as we show in Sect.B.3. Thus the joint distribution

http://dx.doi.org/10.1007/978-3-319-41644-1_3
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W (r1, . . . , rN |σ) =
N∏

k=1

w̃(rk |σ) (4.28)

of the rk takes the form

W̃ (T, t1, . . . tN−1|σ) ∝ T N−1
N∏

k=1

w̃(rk |σ)

∝ T N−1

(
N∏

k=1

(T tk)
−1/2

)
exp

(
− T

2σ2

)

∝ T N/2−1

(
N∏

k=1

t−1/2
k

)
exp

(
− T

2σ2

)
. (4.29)

This result says that W̃ factorises into a distribution of T and a distribution of
t1, . . . , tN−1. The latter does not depend on σ. Therefore the variable T is statis-
tically independent of the variables t1, . . . , tN−1 . The distribution of T is

χ
sq
N (T |σ) ∝ T N/2−1 exp

(
− T

2σ2

)
. (4.30)

We write
τ = 2σ2 (4.31)

and obtain

χ
sq
N (T |τ ) = Z−1T N/2−1 exp

(
−T

τ

)
. (4.32)

The factor

Z =
∫ ∞

0
dT T N/2−1 exp

(
−T

τ

)

= τ N/2 �(N/2) (4.33)

which normalisesχsq
N to unity, can be foundwith the help of the integral representation

of the � function given in Sect.B.4. This yields the chi-squared model5 with N
degrees of freedom

χ
sq
N (T |τ ) = 1

�(N/2)
τ−1

(
T

τ

)N/2−1

exp

(
−T

τ

)
. (4.34)

5The present definition (4.34) of the chi-squared distribution differs from the corresponding
Eq. (4.38) in the first edition of this book: the Fourier transform of (4.34) has a convenient property.
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Fig. 4.2 The chi-squared
distribution (4.34) for
various degrees of freedom
N . We have set τ = 2/N .

Then the expectation value T
equals unity for every N .

When N becomes large, the
chi-squared distribution
tends to the Gaussian with
the parameters given by
(4.35) and (4.36)

For some values of N , it is displayed in Fig. 4.2. Note that N cannot be inferred; it
must be known. For this reason we do not list it among the parameters of the model
but rather write it as an index to the letter χ. The scaling factor τ can be inferred via
Bayesian inference. In the present case, the number of degrees of freedom equals
the number of terms in the sum (4.23) because every term x2k has a chi-squared
distribution with one degree of freedom which is given by Eq. (4.24). A sum over N
quantities, each of which obeys a chi-squared distributionwith f degrees of freedom,
possesses a chi-squared distributionwith N f degrees of freedom; see Sect.H.2. Here,
f can be any positive real number.
The chi-squared distribution (4.34) of T has the mean value

T = N

2
τ (4.35)

and the variance

(T − T )2 = N

2
τ 2 . (4.36)

The interested reader should verify (4.35) and (4.36). One can do so with the help
of the normalising factor Z in (4.33). By differentiating Z with respect to 1/τ one
obtains the moments of the chi-squared distribution.

For every number of degrees of freedom, the chi-squared model has the structure
of Eq. (3.9) discussed in Sect. 3.2.2. Thus the prior distribution is

μ(τ ) = τ−1 , (4.37)

and we expect that there is a transformation that brings the model (4.34) into a
form corresponding to (3.8), where it depends on the difference between event and
parameter. Indeed, the transformations

http://dx.doi.org/10.1007/978-3-319-41644-1_3
http://dx.doi.org/10.1007/978-3-319-41644-1_3
http://dx.doi.org/10.1007/978-3-319-41644-1_3


50 4 Description of Distributions I: Real x

y = ln T ,

η = ln τ (4.38)

yield the somewhat unusual form

χ̃
sq
N (y|η) = 1

�(N/2)
exp

(
N

2
[y − η] − ey−η

)
(4.39)

of the chi-squared model with N degrees of freedom. It is used in Chap. 13 to obtain
a Gaussian approximation to the chi-squared model. This form shows that the chi-
squared distribution is proper for every positive N . (The number of degrees of free-
dom need not be an integer). When N decreases, the convergence for y → −∞
occurs ever more slowly. Then the distribution becomes less and less concentrated.
This concentration is quantified by the Shannon information introduced in Sect. 2.6.
Thus with decreasing N the information conveyed by χ

sq
N decreases. Indeed, the χ

sq
N

are a family of distributions with adjustable Shannon information. Their analytical
properties are well known, and they can be used to approximate distributions that
are difficult to handle. This is worked out in Chap.13.

4.2 The Exponential Model

The exponential model

p(x |ξ) = ξ−1 exp(−x/ξ) , x, ξ > 0 , (4.40)

is the lawof radioactive decay. Less obvious is the fact that it describes the distribution
of the distance between independent random events that occur at the constant mean
distance ξ. This is realised, for example, by a radioactive source that emits quanta at
a (approximately) time-independent rate. The difference x of the times of arrival of
two successive particles in a detector is distributed according to (4.40). The event x
and the parameter ξ are defined on the positive real axis. Note that the exponential
distribution equals the chi-squared distribution with N = 2 degrees of freedom.

The event has the expectation value

x = ξ (4.41)

and the variance
var(x) = ξ2 . (4.42)

The reader is asked to use the properties of the � function given in Sect.B.4 to prove
this.

http://dx.doi.org/10.1007/978-3-319-41644-1_13
http://dx.doi.org/10.1007/978-3-319-41644-1_2
http://dx.doi.org/10.1007/978-3-319-41644-1_13
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4.3 Student’s t-Distribution

The model

p(t |γ) = B−1γ−1

(
1 + t2

γ2

)−ν

, t real, γ > 0 , ν > 1/2 , (4.43)

is called the Student’s t-distribution; compare Sect. 3.3 of [3]. By number 3 of
Sect. 3.194 of [4], the normalising factor is the beta function

B = B(1/2, ν − 1/2) (4.44)

defined in Sect.B.5. We have taken t to be defined on the whole real axis.
For the nth moment of the t-distribution to exist, the value of ν must be larger

than (n + 1)/2. Hence, for ν ≤ 3/2, the second moment does not exist, and random
numbers drawn from (4.43) do not conform to the central limit theorem. This means
that the t-distribution models random numbers with large fluctuations. They occur,
for example, in financial time series [5–8].

For ν ≤ 1, not even the mean t exists. This is true especially for the Cauchy
distribution

p(t |γ) = (πγ)−1

(
1 + t2

γ2

)−1

(4.45)

obtained from (4.43) with ν = 1. In both classical and quantum mechanics this
function turns out to be the shape of a resonance line. To physicists, it is known
under the name of the Lorentzian or Breit–Wigner distribution. It violates the central
limit theorem: if the variables tk for k = 1, . . . , N follow one and the same Cauchy
distribution p(t |γ), their average

z = 1

N

N∑
k=1

tk (4.46)

again follows a Cauchy distribution, albeit with a smaller value of γ; that is, the
distribution becomes narrower with increasing N . Still the variable z never follows
a Gaussian distribution.

In Fig. 4.3, the Cauchy distribution (4.45) is compared to the Gaussian

pGauss(t |σ) = (2π)−1/2σ−1 exp

(
− t2

2σ2

)
(4.47)

For the comparison, the values of γ and σ must be chosen such that the unit of length
along the t-scale is the same for both models. This becomes clear from Sects. 6.4
and 9.2, where the geometric measure in the space of a parameter is discussed. With

http://dx.doi.org/10.1007/978-3-319-41644-1_6
http://dx.doi.org/10.1007/978-3-319-41644-1_9
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Fig. 4.3 The Cauchy
distribution (4.45) with
γ = 2−1/2 compared to the
Gaussian (4.47) with σ = 1

γ = 2−1/2 = 0.7071 and σ = 1 both models yield the same unit of length in the
space of t . The slow decay of the Cauchy distribution is conspicuous.

The variable z of Eq. (4.46), in connection with the Cauchy distribution, remains
a quantity with large fluctuations for any N . However, the ML estimator for the
parameter γ from N events is different from z and the posterior distribution allows
for fewer and fewer fluctuations with growing N . We give an argument for this. The
model (4.45) is of the type (3.9), whence the prior distribution is μ(γ) ∝ γ−1, and
the posterior distribution

P(γ | t1, . . . , tN ) ∝ γ−N−1
N∏

k=1

(
1 + t2k

γ2

)−1

. (4.48)

vanishes as γ−N−1 for |γ| → ∞.

A generalisation of the Student’s t-distribution is

p(t |γ) = B−1γ−1

(
t2

γ2

)μ−1/2

(
1 + t2

γ2

)ν , t real , γ > 0 , ν > μ . (4.49)

As with (4.43) this distribution decays algebraically according to t2μ−2ν−1 for large t.
It is again a distribution with large fluctuations. In Eq. (4.49), the normalising factor
is the beta function

B = B(μ, ν − μ) , (4.50)

and t is defined on thewhole real axis. The integral representation of the beta function
is found in Sect.B.5.

http://dx.doi.org/10.1007/978-3-319-41644-1_3
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Chapter 5
Description of Distributions II: Natural x

In the present chapter, distributions are described in which the event x is a number of
hits or a count rate; that is, x is a natural number. Therefore the distribution p(x |ξ)
is not a probability density but, rather, a probability. The parameter ξ, however, is
real. In Sect. 5.1, the binomial distribution is presented. In Sect. 5.2, the multinomial
model follows. The Poisson distribution is introduced in Sect. 5.3. Section A.5 gives
the solutions to the problems suggested to the reader.

5.1 The Binomial Distribution

Historically, the binomial distribution is the root of all probability distributions [1].
It served to define precisely the frequentist notion of probability. It was the first
example used to discuss statistical inference [2, 3].

The binomial model describes the distribution of the results obtained from a
simple alternative. Let η be the probability of winning in drawing lots, and 1− η the
probability of drawing a blank. This describes the odds when one lot is drawn. The
probability of winning x times when N lots are drawn is

p(x |η) =
(
N
x

)
ηx (1 − η)N−x ; x = 0, 1, 2, . . . , N ; 0 ≤ η ≤ 1 . (5.1)

This expression is normalised; that is, one has

N∑
x=0

p(x |η) = 1 (5.2)

by virtue of the binomial theorem. This theorem states

© Springer International Publishing Switzerland 2016
H.L. Harney, Bayesian Inference, DOI 10.1007/978-3-319-41644-1_5

55



56 5 Description of Distributions II: Natural x

(η1 + η2)
N =

N∑
x=0

(
N
x

)
ηx
1η

N−x
2 . (5.3)

The binomial distribution is represented in Fig. 5.1 for several values of the
parameter η.

We want to evaluate the moments x and x2 of the binomial distribution. In order
to obtain x , the identity

x = ∂

∂ζ
ζx

∣∣∣∣
ζ=1

(5.4)

is useful. It shows that

Fig. 5.1 The binomial distribution (5.1) for several mean values η
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x =
N∑

x=0

x p(x |η)

= ∂

∂ζ

∑
x

(
N
x

)
ζxηx(1 − η)N−x

∣∣∣∣∣
ζ=1

= ∂

∂ζ
(ζη + 1 − η)N

∣∣∣∣
ζ=1

= Nη . (5.5)

The third line of this equation is obtained with the help of the binomial theorem. The
derivative with respect to ζ must be taken before η is set equal to 0 or 1. The result
of the last line, however, is meaningful for η = 0, 1 too.

The last line of Eq. (5.5) illustrates the frequency interpretation of probability:
from N drawings one expects to obtain a number of hits equal to N multiplied with
the probability to win in one drawing. For this reason, the parameter η has been called
a probability.

The frequency interpretation can be verified by drawing a large number of lots. The
fluctuations of the result should then become small as compared to the expectation
value (5.5). We can estimate the fluctuations by the variance of x . In order to obtain
the variance, we use the identity

x(x − 1) = ∂2

∂ζ2
ζx

∣∣∣∣
ζ=1

(5.6)

and proceed as in (5.5). This yields

x2 = N (N − 1)η2 + Nη (5.7)

and

var(x) = x2 − x2

= Nη(1 − η) . (5.8)

The normalised variance

var(x)

x2
= 1 − η

Nη
; η > 0 (5.9)

is of the order of N−1. This was called the law of large numbers by de Moivre and
Laplace [4].

In the next section, the simple alternative is generalised to the M-fold alternative.
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5.2 The Multinomial Distribution

The multinomial distribution generalises the binomial distribution to an alternative
that offers M possibilities instead of two. We call this an M-fold alternative. The
possible outcomes of one drawing are called the bins k = 1 . . .M. The probability
that the kth bin is obtained in one drawing is represented by ηk An “alternative”
means that one of the bins must be chosen; therefore

M∑
k=1

ηk = 1 . (5.10)

The probability of hitting the first bin x1 times and the second bin x2 times, and so
on, in N drawings, is

p(x1, . . . , xM−1|η1, . . . , ηM−1) = N !
M∏
k=1

ηxk
k

xk ! ; 0 ≤ ηk ≤ 1 . (5.11)

This is the multinomial model. Every xk may take the values xk = 0, 1, . . . , N such
that the set x = (x1, . . . , xM) has the property

M∑
k=1

xk = N . (5.12)

This means that we can express xM in terms of the variables x = (x1, . . . , xM−1).

An analogous situation applies for the hypothesis parameters η = (η1, . . . , ηM−1).

The quantity ηM is defined by (5.10). The multinomial model (5.11) is normalised
according to ∑

x

p(x |η) = 1 . (5.13)

The normalisation is a consequence of the multinomial theorem which states that

(
M∑
k=1

ηk

)N

= N !
∑
x

M∏
k=1

ηxk
k

xk ! . (5.14)

Note that η0
k = 1 and that 0! = 1 according to Sect.B.4.

We want to calculate the moments xk and xkxk ′ of the multinomial distribution.
Similarly to what we did in Sect. 5.1, the identity (5.4) yields
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xk = ∂

∂ζ

∑
x

ζxk p(x |η)
∣∣∣∣∣
ζ=1

= ∂

∂ζ
(ζηk − ηk + 1)N

∣∣∣∣
ζ=1

= Nηk . (5.15)

The second line of the equation is obtained with the help of the multinomial theorem.
Again the last version corresponds to the frequency interpretation of probability.

To obtain the second moments, the identities (5.4) and (5.6) are used once more.
We find

xkxk ′ = N (N − 1) ηkηk ′ + δkk ′ Nηk (5.16)

which is the generalisation of (5.7). The interested reader should work out the details.
The quantity

xkxk ′ − xk xk ′ = Nηk(δkk ′ − ηk ′) (5.17)

is called the correlation between xk and xk ′ (see Sect. 4.1.2). The xk are correlated
with each other because they respect the sum rule (5.12). The ratio

xkxk ′ − xkxk ′

xk xk ′
= δkk ′ − ηk ′

Nηk ′
; ηk, ηk ′ �= 0 , (5.18)

is called a correlation coefficient. It is a generalisation of (5.9) and is of the order
of N−1.

5.3 The Poisson Distribution

The Poisson1 distribution gives the probability of counting x events when nothing
but the mean value λ is specified. It can be obtained from the binomial model if the
number N of trials is taken to infinity and the probability of success in one trial is
η = λ/N . In this limit, the binomial distribution tends towards

p(x |λ) = λx

x ! exp(−λ) ; x = 0, 1, 2, . . . , 0 ≤ λ ; (5.19)

which is the Poisson distribution. The proof is left to the interested reader. From the
Taylor expansion of the exponential function, one can recognise that p is normalised
according to

1SiméonDenis Poisson, 1781–1840, Frenchmathematician and physicist. He contributed to the the-
ory of electrostatic and magnetic potentials, the theories of Fourier series and differential equations,
and to statistics.

http://dx.doi.org/10.1007/978-3-319-41644-1_4
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∞∑
x=0

p(x |λ) = 1 . (5.20)

With the help of (5.4), one can verify the mean value

x = λ . (5.21)

With the help of (5.6), one finds

x2 = λ(λ + 1) . (5.22)

Fig. 5.2 The Poisson distribution (5.19) for several values of the mean λ
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Hence, both the mean value and the variance of x are equal to λ. The Poisson
distribution is given in Fig. 5.2 for several values of λ.

We note that the model of the histogram is given by the count rates x1, . . . , xM in
M bins when xk follows the Poisson distributionwith themean λk for k = 1, . . . ,M .

This means that the count rates xk are independent of each other and that their joint
distribution is the product of the Poisson distributions in every bin. The histogram
together with its posterior distribution is considered in Sect. 13.3.
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Chapter 6
Form Invariance I

Ignorance about the hypothesis ξ cannot in general be expressed by the uniform prior.
This is a consequence of the transformation law of a probability density discussed in
Sect. 2.2. Under a reparameterisation of the hypothesis, the uniform density generally
changes into another one that is no longer uniform. If there were a distribution
invariant under all transformations, it would be the universal ignorance prior. Such
a distribution does not exist. However, there are distributions that remain invariant
under a group of transformations. If the group “describes” a symmetry of the model
p, we consider the invariant distribution to be the prior. In more technical language,
we can say that if the group of transformations is the symmetry group of the model,
the prior is required to be invariant under the group. Symmetries and, in particular,
the symmetries of form-invariant models are discussed below.

The present chapter owes much to the work of Hartigan [1, 2], Stein [3], and
Jaynes [4]; their work was extended by by Villegas [5–8]. For context, consult the
review article by [11].

What is symmetry? The snowflake crystals [12, 13] in Fig. 6.1 are all different
from each other but every one has the property: if one rotates the crystal by 600

or π/3 rad, its appearance is not changed. This is not the only rotation leaving the
crystal invariant. A multiple nπ/3 of the elementary rotation again leads to the same
appearance. Here, n is an integer number, and rotations in the positive as well as the
negative sense are admitted. Also admitted is n = 0, that is, the identity. Actually,
one need only consider the rotations given by n modulo 6, because the rotation by 2π
is equivalent to the identity. Hence, there are 6 transformations with n = 0 . . . 5 of the
snowflake which leave its appearance unchanged. This “group” of transformations is
the mathematical essence of the symmetry that we perceive in Fig. 6.1. Many more
beautiful examples can be found in the booklet [14] by Hermann Weyl.

The notion of a mathematical group is defined in Sect. 6.1. The symmetry of form
invariance is introduced in Sect. 6.2. The invariantmeasure (i.e. the prior distribution)
is defined inSect. 6.3. InSect. 6.4,we compare the invariantmeasurewith themeasure
of differential geometry. Finally, in Sect. 6.5, it is shown that form invariance of the

© Springer International Publishing Switzerland 2016
H.L. Harney, Bayesian Inference, DOI 10.1007/978-3-319-41644-1_6
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Fig. 6.1 Snowflakes are
invariant under a symmetry
group that contains six
different rotations. This
figure is due to the collection
of [12]; see also p. 125 of
[13]
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model p(x |ξ) entails form invariance of the posterior P(ξ|x). In Sect. 6.6, we define
themaximum likelihood estimator of the parameter ξ of amodel p(x |ξ), andwe show
in Sect. 6.7 that this estimator is the sufficient statistic for the parameter. Section A.6
gives the solutions to the problems suggested to the reader.

6.1 Groups

The mathematical groups G considered in the present context are sets of transforma-
tions Gξ of the events x . A group has the following four properties:

1. If Gξ and Gξ′ are in G, then the product GξGξ′ is defined and is contained in G.
This product is the transformation obtained by first applying Gξ′ and then Gξ .

2. The product is associative; that is, one has Gξ(Gξ′Gξ′′) = (GξGξ′)Gξ′′ .
3. The identity 1 is in G. It is also called the unit element of G and carries the

index ε.
4. For any element Gξ , the group contains an inverse G−1

ξ . The inverse has the

property G−1
ξ Gξ = 1.

Note that these axioms do not require the commutativity,

GξGξ′ = Gξ′Gξ . (6.1)

Compare Chap.1 of [15]. Below in the present section, an example is given of a group
with elements that do not commute. If (6.1) holds for any pair of transformations in
G, the group is called Abelian.1

The properties of a group entail that every element of the group can be considered
the “origin” of the group: let ξ run over all values of the group parameter and Gτ be
an arbitrary but fixed element of the group. Then

Gρ = GξGτ (6.2)

runs over all elements of the group exactly once; that is, the multiplication by Gτ is
a one-to-one mapping of the group onto itself. The proof is left to the reader. In a
generalised sense, this mapping can be called a “shift” of the index ξ.

The symmetries of conditional probabilities considered beloware not described by
finite groups nor by groups with a countable number of elements but rather by groups
with a manifold of elements. That is to say, the index ξ that labels the transformations
Gξ in the group G, is a real number or even a vector of real numbers. We call this
a Lie group.2 Inasmuch as the symmetries we consider are given by Lie groups,

1Niels Henrik Abel (1802–1829), Norwegian mathematician. He investigated the question of which
algebraic equations are solvable. He founded the general theory of integrals of algebraic functions.
2Marius Sophus Lie (1842–1899), Norwegian mathematician. He developed the theory of contin-
uous transformation groups which nowadays carry his name.
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they unfortunately cannot be visualised as nicely as the symmetry of snowflakes in
Fig. 6.1.

A simple example of a Lie group is given by the set of transformations

Gφ =
(
cosφ , − sin φ
sin φ , cosφ

)
,

0 ≤ φ < 2π , (6.3)

which rotate the plane by the angle of φ about the origin. The symmetry of the circle
is described by this group or - in other words - this is the symmetry group of the
circle in the sense that the circle does not change its appearance when it is rotated
about its center. See Fig. 6.2. As is well known,

a(φ) = Gφ

(
1
0

)
(6.4)

is a parametric representation of the circle. Here, a is the two-dimensional vector

a =
(
a0
a1

)
. (6.5)

Why do the rotations (6.3) with 0 ≤ φ ≤ π no longer form a group? The domain of
definition of the group parameter is important.

Another example of a Lie group is given by the hyperbolic transformations

Gφ =
(
cosh φ , sinh φ
sinh φ , cosh φ

)
,

−∞ < φ < ∞ . (6.6)

Fig. 6.2 The parametric
representation (6.4) of the
circle. The transformations
(6.3) form the symmetry
group of the circle

a1

a

a 2

0.60.2-0.2

0.2

-0.6

0.6

-0.6 1
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Fig. 6.3 The parametric
representation (6.4) of the
hyperbola. The
transformations (6.6) form
the symmetry group of the
hyperbola

The interested reader may show that (6.4) is a parametric representation of the hyper-
bola of Fig. 6.3, if Gφ is taken from (6.6). The group of transformations (6.6) is the
symmetry group of the hyperbola.

However, the hyperbolic symmetry (6.6) will not occur among the form- invariant
statistical models defined below in Sect. 6.2 because we consider transformations
that conserve the normalisation (2.3) and (2.4) of a given statistical model. We show
in Sect. 8.4 that this requires conserving the absolute value a†a of the vector a in
Eq. (6.5). Here, the dagger † denotes the conjugate or transpose of a. In other words
we consider orthogonal transformations. They are defined by the property

GφG
†
φ = 1 (6.7)

The rotations (6.3) are orthogonal; the hyperbolic transformations (6.6) are not.
The abstract structure of a group is contained in the multiplication function � =

�(ξ′; ξ) which labels the product

G� = GξGξ′ . (6.8)

According to general usage in group theory, the order of the arguments of � is the
reverse of the order of the corresponding operators in (6.8) (see e.g. Chap. 8 of [15]
or Chap.4 of [16]). Thus, in terms of the multiplication function, axiom 2 above,
stipulating that the product of the group elements is associative, reads

�(�(ξ′′; ξ′); ξ) = �(ξ′′;�(ξ′; ξ)) . (6.9)

The reader may show that for both of the groups (6.3) and (6.6), the multiplication
function is

�(φ′,φ) = φ + φ′ . (6.10)

http://dx.doi.org/10.1007/978-3-319-41644-1_2
http://dx.doi.org/10.1007/978-3-319-41644-1_2
http://dx.doi.org/10.1007/978-3-319-41644-1_8
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Hence, the groups are Abelian. In the case of the circle, the domain of definition of
φ′,φ,�, given in Eq. (6.3), must be understood modulo 2π.

The translations
Gξ x = x + ξ , (6.11)

where x and ξ are real, form an Abelian group. The multiplication function corre-
sponds to (6.10). The interested reader should show that the dilations

Gσ x = σx, 0 < ξ < ∞ , (6.12)

form an Abelian group, and that

�(σ′;σ) = σ σ′ (6.13)

is itsmultiplication function.Note that groupswith oneparameter are alwaysAbelian.
This is explained in Sect. 8.4.

The combination
Gξ,σ x = ξ + σx (6.14)

of translation and dilation, where

− ∞ < ξ < ∞ and 0 < σ < ∞ , (6.15)

presents an example of a non-Abelian group. It contains the subgroup of the transla-
tions Gξ,1 as well as the subgroup of the dilations G0,σ. The notation Gξ,σ means

Gξ,σ = G0,σGξ,1 , (6.16)

that is, the translation by the amount ξ is performed first and yields the mapping

x −→ Gξ,1x = ξ + x . (6.17)

The subsequent dilation of x leads to

x −→ G0,σGξ,1x = ξ + σx . (6.18)

The reader may work out the multiplication function3

�(ξ′,σ′; ξ,σ) = (ξ′ + ξσ′;σσ′) . (6.19)

3In the first edition of the present book, a confusion has occurred about the order of the operations of
translation and dilation. The multiplication function given in Eqs. 6.15 and (A.81) of that edition is
incorrect, whereas Eq.7.16 is correct. The present Eqs. (6.16)–(6.18)make clear that every operation
acts on the event variable x , not on the result of the foregoing operation. ThusG0,σ , acting on ξ+x ,
generates ξ + σx not σ(ξ + x).

http://dx.doi.org/10.1007/978-3-319-41644-1_8
http://dx.doi.org/10.1007/978-3-319-41644-1_7
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of the transformations defined by (6.14). The readermay convince herself that revers-
ing the order of translation and dilation changes both the definition (6.14) and the
multiplication function (6.19). For later use we note that the inversion G−1

ξ,σ inter-

changes the order of the operations and replaces ξ,σ by the inverse translation ξ = −ξ
and the inverse dilation σ = σ−1. We obtain

G−1
ξ,σ x = G−1

ξ,1G
−1
0,σ x

= Gξ,1G0,σ

= x − ξ

σ
. (6.20)

Any group of transformations Gξ acting on x , induces a group of transformations
G̃ξ acting on the domain of definition of the index (or the set of indices) ξ. Let ρ be
one such index; we define the transformation G̃ξ by the mapping

G̃ξ ρ = �(ρ; ξ) . (6.21)

This is a transformation of the domain of definition of the indices. The interested
reader should convince himself of this. The set of transformations obtained by letting
ξ run over all values of the group parameter is a group G̃ that is “isomorphic” to G ;
that is, it has the same multiplication function as the group G. The proof is left to the
reader. Therefore, and because it will always be clear from the context whether we
mean the transformation Gξ of x or the transformation G̃ξ of the group indices, the
tilde will henceforth be omitted.

As a consequence of this isomorphism, there is exactly one transformation Gξ

which takes a given τ to a given ρ, so that

ρ = Gξτ . (6.22)

Letting ξ run over all indices, one obtains a reparameterisation of the group G. The
mapping τ → ρ can be called a “shift” of the index ξ.

For more examples of Lie groups and a deeper insight into the fascinating realm
of group theory, consult textbooks such as [15–22].

In the next section, the symmetry of form invariance of a conditional probability
is defined. It is not tied to a definite group. The above Lie groups and other ones may
occur as the symmetry group.

6.2 The Symmetry of Form Invariance

We consider a model p(x |ξ) where both the event x and the parameter ξ, are real
numbers or sets of real numbers. The model is called form invariant if the domain
of definition of the parameter ξ labels a group G of transformations of x such that



70 6 Form Invariance I

p remains invariant under simultaneous application of a group element Gρ to x and
to ξ,

p(x |ξ) = p(Gρx |Gρξ)

∣∣∣∣∂Gρ x

∂x

∣∣∣∣ . (6.23)

Because p is a probability density the transformation of x entails the multiplication
with the determinant of the Jacobian matrix of the transformation.

This definition of form invariance is equivalent to the statement that for every ξ
the distribution p emerges from one common “form” w(x) such that

p(x |ξ) = w(G−1
ξ x)

∣∣∣∣∣
∂G−1

ξ x

∂x

∣∣∣∣∣ , (6.24)

and the set of transformations Gξ is the group G. The interested reader should show
that w is normalised and can be stated as

w(x) = p(x |ξ = ε) . (6.25)

Remember that Gε is the unit element of the group G.

In Sect. 2.3, the simplest examples of form invariance were introduced, namely
the models with the structure

p(x |ξ) = w(x − ξ) , −∞ < x, ξ < ∞ , (6.26)

depending on the difference of x and ξ (and only on this difference). One also says
that x and ξ are defined “on a common scale”. The Gaussian of (2.16) is such a
model. The group (6.11) of translations is its symmetry group. The measure μ on the
common scale must be uniform (i.e. constant) so that the difference x − ξ refers to
a distance which is independent of the values of x and ξ. The “invariant measure”
μ, introduced in the next section, is indeed uniform for the group of translations. In
Eq. (6.26) the negative sign of ξ recalls the inverse G−1

ξ in (6.24). Examples of other
symmetry groups are given in Chap. 7.

When N events x1, . . . , xN from the same form-invariant distribution q(xk |ξ) are
observed then the joint distribution

p(x1, . . . , xN |ξ) =
N∏

k=1

q(xk |ξ) (6.27)

is form invariant too, and the symmetry group is independent of N . This is obvious
because the symmetry property

p(Gρx1, . . . ,GρxN |Gρξ) =
N∏

k=1

(
q(Gρxk |Gρξ)

∣∣∣∣∂Gρ xk
∂xk

∣∣∣∣
)

(6.28)

http://dx.doi.org/10.1007/978-3-319-41644-1_2
http://dx.doi.org/10.1007/978-3-319-41644-1_2
http://dx.doi.org/10.1007/978-3-319-41644-1_7
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is an N -fold repetition of the elementary symmetry (6.23). The transformations

⎛
⎜⎝

x1
...

xN

⎞
⎟⎠ −→

⎛
⎜⎝

G−1
ξ x1
...

G−1
ξ xN

⎞
⎟⎠ (6.29)

of the vector x form a group which is isomorphic to G. Up to this isomorphism, the
symmetry group does not depend on N .

A Lie group defines an “invariant measure” in the space of the group parameter.
This is described in the next section.

6.3 The Invariant Measure

There is a measure μ(ξ) which is left unchanged under all transformations Gρ ∈ G
that is,

μ(ξ) = μ(Gρ ξ)

∣∣∣∣∂Gρ ξ

∂ξ

∣∣∣∣ . (6.30)

With this measure, the volume

V =
∫
A

μ(ξ) dξ (6.31)

of an area A in the space of ξ does not change when A is “shifted” to GρA by any
Gρ of the group. By the “shift” we mean that the image of every point ξ in A is
obtained by applying Gρ to it; in other words, ξ ∈ A is mapped onto ξ′ = �(ξ; ρ) .

The mapping A → GρA is then a generalisation of the translation of an interval in
the space of real numbers. A reasonable definition of the length of the interval must
be invariant under translations. Indeed, one has

V =
∫
GρA

μ(Gρ ξ) dGρ ξ

=
∫
GρA

μ(ξ) dξ , (6.32)

when μ satisfies the invariance property (6.30). The first line of this equation is
obtained from (6.31) by a change of the integration variables. The second line results
from the invariance property (6.30).

Because ε is the value of the group parameter that labels the unit element, the
invariant measure can be written
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μ(ξ) = μ(ε)

∣∣∣∣∂�(τ ; ξ)

∂τ

∣∣∣∣
−1

τ=ε

(6.33)

as we show in Sect.C.1. In group theory, this expression is called the “left” invariant
Haar measure [23]. It vanishes nowhere; in analogy to the transformation (6.21) of ξ,
the mapping τ → �(τ ; ξ) is a transformation of τ . Therefore the Jacobian in (6.33)
does not vanish. Hence, the invariant measure exists and is everywhere different from
zero. The factor μ(ε) is an arbitrary positive number.

There exists also a “right” invariant Haar measure. It satisfies the equation

V =
∫
A

μr (ξ)dξ

=
∫
A′

μr (ξ) dξ , (6.34)

if A′ is obtained by mapping ξ ∈ A onto ξ′ = Gξρ = �(ρ; ξ). The right invariant
measure has been proposed [3, 7, 24–35] as a prior distribution because it seemed to
allow a frequentist interpretation of the Bayesian areaB(K ). However, in the context
of Bayesian statistics, a decision between the left and right invariant measures is not
possible, because the label ξ of the group elements Gξ can be redefined such that the
right invariant measure (in terms of the original labels) is obtained from expression
(6.33). This transition from the left to the right invariant measure occurs when a
reparameterisation interchanges the order of the operations implied by the index
ξ. Remember that we are assigning to ξ a dimension higher than 1, because a 1-
dimensional ξ implies an Abelian group. The order of operations labelled by ξ is
inverted, for example, by reparameterising according to ξ → ξ. Compare Reference
[3]. Now, the definition of the symmetry group G can be taken either from Eq. (6.23)
or from Eq. (6.24); that is, it can be given by the set of transformations Gξ implying
the multiplication function � or by the set of transformations G−1

ξ implying the

multiplication function �. The left invariant measure (6.33) will be interchanged
with the (former) right invariant measure. We have no argument to prefer one over
the other.

Here, we take the definition of the symmetry group from Eq. (6.23) and identify
the left invariant measure (6.33) with the prior distribution postulated by Bayes.
Henceforth, we simply speak of “the invariant measure”. Examples of invariant
measures are given in Chap.7.

In the next section, an alternative definition of the measure is taken from differ-
ential geometry. In Chap.9, it is shown that the invariant measure agrees with the
geometric one up to the constant factor μ(ε) in Eq. (6.33). This factor is left free in
group theory; it is well defined in differential geometry.

http://dx.doi.org/10.1007/978-3-319-41644-1_7
http://dx.doi.org/10.1007/978-3-319-41644-1_9
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6.4 The Geometric Measure

Consider a model p(x |ξ), where x assumes only two possible values, x = 0 and x =
1. The normalisation p(0|ξ)+ p(1|ξ) = 1 entails that we may write p(0|ξ) = sin2 ξ
and p(1|ξ) = cos2 ξ. Let us replace the probabilities by the probability “amplitudes”

ax (ξ) = √
p(x |ξ) (6.35)

and define the transformation of the events x by the linear transformation (6.3) of
the vector a so that Eq. (6.4) holds; that is,

a(ξ) =
(
cos ξ
sin ξ

)
. (6.36)

This is a parameter representation of a curve - a circle - in the plane. Thus a0, a1 are
Cartesian coordinates in the plane. When ξ runs over the interval A, then a(ξ) runs
over an arc with the length

V =
∫
A
dξ

((
da0
dξ

)2

+
(
da1
dξ

)2
)1/2

. (6.37)

This is a well-known result of simple differential geometry. It means that the geo-
metric measure μg on the curve is given by

(
μg(ξ)

)2 =
(
da0
dξ

)2

+
(
da1
dξ

)2

=
(

∂

∂ξ
a(ξ)

)† (
∂

∂ξ
a(ξ)

)
. (6.38)

Here, we have written the dagger † to denote the transpose of a vector. Taking a(ξ)
from (6.36) one finds

μg(ξ) ≡ 1 . (6.39)

This does not contradict the invariant measure (6.33) because, in analogy to (6.10),
the multiplication function is �(ξ, ξ) = ξ + ξ and we find

μ(ξ) ≡ μ(ε) . (6.40)

However, the invariant measure (6.33) is defined up to a factor only while the geo-
metric measure yields a well-defined value of μ. The invariant measure agrees with
the geometric measure in that both are constant functions of ξ (in the present case).
This holds for every linear transformation of ξ. A unique definition of μ requires,
for example, the additional condition that ξ must be transformed such that μ(ξ) ≡ 1.
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Then Eq. (6.37) yields V = 1 for the length of the straight line between

(
0
0

)
and

(
1
0

)
,

that is, μ is in agreement with the notion of length in a two-dimensional Cartesian
space.

Because of the identity

∂

∂ξ
ax = 1

2

√
p(x |ξ) ∂

∂ξ
ln p(x |ξ) , (6.41)

the geometric measure can be written in terms of probabilities, without explicitly
introducing probability amplitudes. Equation (6.41) allows us to express the geomet-
ric measure in the form of

μ2
g(ξ) = 1

4

∑
x

p(x |ξ)
(

∂

∂ξ
ln p(x |ξ)

)2

. (6.42)

This can be rewritten as

μ2
g(ξ) = −1

4

∑
x

p(x |ξ) ∂2

∂ξ2
ln p(x |ξ) . (6.43)

The last form is a consequence of the fact that p(x |ξ) is normalised to unity for every
value of ξ. The interested reader is asked to prove it.

In Chap.9, the geometric measure (6.38) will allow us to define the prior distri-
bution of models p(x |ξ) that are not form invariant. The idea to use the geometric
measure as the prior distribution was introduced by Kass [36, 37] and Amari [38].

The introduction of the probability amplitudes (6.35) has allowed us to ascribe
the linear representation (6.4) to the symmetry of the binomial model introduced
in the text at the beginning of this section. Chapter8 extends the subject of linear
representations to the case where x is a continuous variable.

Form invariance of a model p entails an analogous symmetry of the posterior P .
This is described in the following section.

6.5 Form Invariance of the Posterior Distribution

As a consequence of the symmetries (6.23) and (6.30) of p and μ, the distribution
m(x) is invariant under the group G, thus it is an invariant measure in the space of
x . One sees this by rewriting the definition (2.5) of m in several steps:

http://dx.doi.org/10.1007/978-3-319-41644-1_9
http://dx.doi.org/10.1007/978-3-319-41644-1_8
http://dx.doi.org/10.1007/978-3-319-41644-1_2
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m(x) =
∫

p(x |ξ)μ(ξ)dξ

=
∫

p(x |ξ)μ(Gρ ξ) dGρ ξ

=
[∫

p(Gρx |Gρ ξ)μ(Gρξ) dGρ ξ

] ∣∣∣∣∂Gρx

∂x

∣∣∣∣
=

[∫
p(Gρx |ξ)μ(ξ)d ξ

] ∣∣∣∣∂Gρ x

∂x

∣∣∣∣
= m(Gρ x)

∣∣∣∣∂Gρ x

∂x

∣∣∣∣ . (6.44)

One proceeds from the first to the second line of this equation by the invariance
property of μ(ξ). The invariance of p(x |ξ) yields the third line, and a change of the
integration variable the fourth line. By use of the definition ofm, one obtains the last
line. Hence, m is invariant under all transformations in G ; that is, m is an invariant
measure.

However, m is not the invariant measure in the space of x because in general it is
impossible to map x on ξ one to one. Not even the dimension of x has anything to do
with the dimension of ξ. Indeed, for N events the dimension of x is at least N whereas
the number n of hypothesis parameters is independent of N . The symmetries of p
and μ and m entail

P(ξ|x) = P(Gρ ξ|Gρ x)

∣∣∣∣∂Gρ ξ

∂ξ

∣∣∣∣ . (6.45)

The proof is left to the reader. Hence, P is form invariant.
We have derived the invariance of the measure m under the transformations in

G, but we have not yet shown that m exists in the sense that the integral (2.5) exists
which defines m. This is discussed in Sect. 6.6 which deals with the existence of the
ML estimator. Section6.7 reveals an important property of the ML estimator: the
function ξML(x) is the sufficient statistic of the model p(x |ξ).

6.6 The Maximum Likelihood Estimator

In Chap.2, after Eq. (2.24), we noticed that a well-known model p(x |ξ) possesses a
maximum as a function of the parameter ξ. This value of ξ is called the estimator
ξML, more precisely, the maximum likelihood (ML) estimator, of ξ given the event
x . In Eq. (3.13) of Chap.3 the likelihood function was defined as

L(ξ|x) = P(ξ|x)
μ(ξ)

. (6.46)

http://dx.doi.org/10.1007/978-3-319-41644-1_2
http://dx.doi.org/10.1007/978-3-319-41644-1_2
http://dx.doi.org/10.1007/978-3-319-41644-1_3
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This expression transforms like a function with respect to ξ and x , and, by virtue of
the symmetries of P and μ, it has the symmetry property

L(x |ξ) = L(Gρx |Gρξ) . (6.47)

We require that for any given x the likelihood function have a unique absolute
maximum as a function of ξ. The value of ξ, where L is maximal, is denoted ξML =
ξML(x). In Sect. 3.4, we have argued that form invariance entails the existence of
the ML estimator because L(ξ|x) cannot be independent of ξ, not even piecewise.
For |ξ| → ∞ it must vanish because P is normalised. Therefore it must have a
maximum. Any finite domain of definition of ξ can be transformed to an infinite
domain of definition. See also the argument following Eq. (4.10). We are aware of
the fact that these arguments at best are a sketch of a proof for the existence of ξML.

Therefore, to the best of our present knowledge, the existence of the ML estimator
is a requirement in addition to the form invariance of p(x |ξ).

If the ML estimator exists, then the value L(ξML(x)|x) of L at ξ = ξML is
independent of x . This is a consequence of the symmetry property (6.47) of L as we
show in the following discussion.

Given the existence of the ML estimator, one can introduce classes of events:
we consider all values of x that lead to the same ξML(x), as belonging to the same
class of values. The class is defined and called by the value of ξML. The classes are
equivalent in the sense that they can be mapped onto each other. For this, we consider
the epsilon-class {x |ξML(x) = ε}. We map it onto the class ρ via the transformation
x → x ′ = Gρx . For two different elements x1, x2 from the epsilon class, the images
x ′
1, x

′
2 are different from each other because Gρ is a transformation; that is, it is

reversible. Hence, the epsilon and rho classes are equivalent. Hence, every x can
uniquely be expressed by its ML estimator ξML(x) and its correspondent in the
epsilon class which is

x (ε) = G−1
ξML(x) x . (6.48)

In other words, the mapping

T x = (ξML(x), x (ε)(x)) . (6.49)

is a transformation of the space of events.
The coordinates T x are chosen such that the application of anyGρ from G touches

the first part of T x only,

Gρ(ξ
ML, x (ε)(x)) = (Gρξ

ML, x ε(x))

= (�(ξML; ρ), x (ε)(x)) . (6.50)

The coordinates x (ε)(x) remain unaffected by Gρ. The value of ξML is a point in the
n-dimensional parameter space. Thus the ξ space has become a subspace, possibly
curved, in the x space. The coordinates x (ε)(x) complement the coordinates ξ so

http://dx.doi.org/10.1007/978-3-319-41644-1_3
http://dx.doi.org/10.1007/978-3-319-41644-1_4
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that every point x is obtained exactly once. The transformation x → T x lets the
integration over ξ become an integration over a subspace of the x space. Inasmuch
as p(x |ξ) is assumed to be proper (i.e. its integral over all x exists), the integral m,
which extends over ξ, exists too. An additional argument is needed to show that the
measure μ(ξ) is compatible with this expectation. The argument is given in Sect.C.2.

6.7 The Sufficient Statistic

The transformation T of Eq. (6.49) entails that the ML estimator ξML(x) is the suf-
ficient statistic of the model p(x |ξ). This says that the function ξML summarises all
that can be known from the multidimensional x on the parameter ξ, because ξML(x)
completely determines the posterior distribution P(ξ|x).

Let x be an event that leads to the estimator ξML(x) = ε. Its posterior distribution
is

P(ξ|x)dξ = L(ξ|x)μ(ξ)dξ . (6.51)

For ξ = ε, the maximum value L(ε|x) of the likelihood function is reached. This
holds for every x belonging to the class ε defined in Sect. 6.6. Now consider an event
from the class ρ. By definition there is an x belonging to the class ε such that the
class ρ event is given by Gρx . The posterior distribution of the latter is given by

P(ξ|ε)dξ = L(ξ|Gρx)μ(ξ)dξ

= L(G−1
ρ ξ|x)μ(G−1

ρ ξ)dG−1
ρ ξ

= L(G−1
ρ ξ|x)μ(ξ)dξ . (6.52)

Here, the second line results from the symmetry property of P , and the third line
from the symmetry of μ. The maximum of the likelihood function is at G−1

ρ ξ = ε

or ξML = Gρε = ρ. The consequence of shifting the event from x to Gρx is to shift
ξML from ε to ρ. At the same time the distribution P of ξ is shifted such that ξ is
replaced by G−1

ρ ξ .

Alternatively, this argument can be phrased as follows. Let x be an arbitrary event
foreseen by the model p(x |ξ). It leads to theML estimator ξML(x)which is generally
not equal to ε. With the help of the likelihood function the posterior distribution is
written as in Eq. (6.51). The symmetry property

L(ξ|x) = L(Gρξ|Gρx) , for Gρ ∈ G , (6.53)

leads to
P(ξ|x)dξ = L(G−1

ξML(x)ξ|G−1
ξML(x)x)μ(ξ)dξ . (6.54)

We transform x to T x defined in Eq. (6.49). The resulting likelihood function is
called LT . This gives
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P(ξ|x)dξ = LT

(
G−1

ξML(x)ξ|ε, x ε(x)
)
μ(ξ)dξ (6.55)

and shows that the posterior depends on ξ, albeit “shifted“ via the transformation
G−1

ξML(x). This is a generalisation of the model w(x − ξ) considered in Eqs. (2.15) and

(6.26).
In summary: for all events x that lead to one and the same estimator ξML, the

posterior distribution is the same. Two events leading to different estimators produce
the same form of the posterior; only the positions of the maxima of the likelihood
function differ. Hence, the knowledge of ξML(x) suffices to know the posterior dis-
tribution; the ML estimator is the sufficient statistic.

6.8 An Invariant Version of the Shannon Information

The Shannon information has been introduced in Sect. 2.6. We are interested in
the information on the parameter ξ given by the event x in the framework of the
model p(x |ξ). Thus we are interested in the information conveyed by the distribution
P(ξ|x). In the context of the present book ξ is a continuous variable. Unfortunately
Shannon’s expression

S =
∫

dξ P(ξ|x) ln P(ξ|x)

changes its value when the integration variable ξ is transformed to T ξ. This happens
because ln P(ξ|x) does not transform like a function; see Sect. 2.2.

The Shannon information remains invariant under transformations of ξ when the
above expression is replaced by

S =
∫

dξ P(ξ|x) ln P(ξ|x)
μ(ξ)

, (6.56)

where μ is the measure in the space of ξ. The interested reader is asked to show this.
In the sequel Equation (6.56) is considered to define the Shannon information.

This renders S invariant under transformations of ξ ; it does not well define the
absolute value of S. As long as the factor μ(ε) in Eq. (6.33) remains free, the infor-
mation S in Eq. (6.56) is defined only up to the additive constant − ln μ(ε). For the
posterior distribution, the factor μ(ε) is immaterial. In the context of the Shannon
information we make use of the geometric measure μg. The absolute value of the
geometric measure is well defined; see Sect. 6.4; it allows us to define the absolute
value of the Shannon information.

In the next chapter, examples of form-invariant models p(x |ξ) are given together
with the appropriate prior distributions.

http://dx.doi.org/10.1007/978-3-319-41644-1_2
http://dx.doi.org/10.1007/978-3-319-41644-1_2
http://dx.doi.org/10.1007/978-3-319-41644-1_2


References 79

References

1. J. Hartigan, Invariant prior distributions. Ann. Math. Statist. 35, 836–845 (1964)
2. J.A. Hartigan, Bayes Theory (Springer, New York, 1983)
3. C.M. Stein. Approximation of improper prior measures by proper probability measures. In

Neyman and Le Cam [9], pp. 217–240
4. E.T. Jaynes. Prior probabilities. IEEE Trans. Syst. Sci. Cybern., SSC-4(3):227–241, (1968)
5. C. Villegas. On Haar priors. In Godambe and Sprott [10], pp. 409–414
6. C. Villegas, On the representation of ignorance. J. Am. Statist. Assoc. 72, 651–654 (1977)
7. C. Villegas, Inner statistical inference. J. Am. Statist. Assoc. 72, 453–458 (1977)
8. C. Villegas, Inner statistical inference II. Ann. Statist. 9, 768–776 (1981)
9. J. Neyman, L.M. Le Cam (eds.), Bernoulli, Bayes, Laplace. (Proceedings of an International

Research Seminar. Statistical Laboratory. Springer, New York, 1965)
10. V.P. Godambe, D.A. Sprott (ed.), Foundations of Statistical Inference. Waterloo, Ontario 1970,

Toronto, 1971. Holt, Rinehart & Winston
11. R.E. Kass, L. Wasserman, The selection of prior distributions by formal rules. J. Am. Statist.

Assoc. 91, 1343–1370 (1996)
12. W.A. Bentley, W.J. Humphreys. Snow Crystals (Dover, New York, 1931). Reprinted in 1962

and 1980
13. M. Eigen, R. Winkler. Das Spiel. Piper, München, 1975. See p. 125 for the snowflakes
14. H. Weyl. Symmetry (Princeton University Press, Princeton, NJ, 1952). A German edition was

published 1955 by Birkhäuser, Basel, under the title of Symmetrie
15. M. Hamermesh. Group Theory and its Application to Physical Problems (Addison-Wesley,

Reading, Massachusetts, 1962). Reprinted by Dover Publications, New York, 1989
16. B.G. Wybourne, Classical Groups for Physicists (Wiley, New York, 1974)
17. H. Weyl, Gruppentheorie und Quantenmechanik. Wissenschaftliche Buchgesellschaft, Darm-

stadt, Reprint of the, 2nd edn. (Hirzel, Leipzig, 1967). 1931
18. H. Weyl. The Classical Groups: Their Invariants and Representations (Princeton University

Press, Princeton, NJ, 1953). Reprinted 1964
19. E.P. Wigner. Group Theory and Its Application to the Quantum Mechanics of Atomic Spectra

(Academic Press, New York, 1959). Translated from the German by J.J. Griffin.– Expanded
and improved edition

20. R. Gilmore, Lie Groups, Lie Algebras, and Some of Their Applications (Wiley, New York,
1974)

21. J. Hilgert, K.H. Neeb, Lie-Gruppen und Lie-Algebren (Vieweg, Braunschweig, 1991)
22. W. Lucha, F. Schöberl, Gruppentheorie - Eine elementare Einführung für Physiker (B.I.

Hochschultaschenbuch, Mannheim, 1993)
23. A. Haar, DerMaßbegriff in der Theorie der kontinuierlichen Gruppen. Ann.Math. 34, 147–169

(1933)
24. B.L. Welch, H.W. Peers, On formulae for confidence points based on integrals of weighted

likelihood. J. R. Statist. Soc. B 25, 318–329 (1963)
25. M. Stone, Right Haar measure for convergence in probability to quasi posteriori distributions.

Ann. Math. Statist. 36, 440–453 (1965)
26. H.W. Peers, On confidence points and Bayesian probability points in the case of several para-

meters. J. R. Statist. Soc. B 27, 9–16 (1965)
27. B.L. Welch, On comparisons between confidence points procedures in the case of a single

parameter. J. Royal Statist. Soc. B 27, 1–8 (1965)
28. H.W. Peers, Confidence properties of Bayesian interval estimators. J. R. Statist. Soc. B 30,

535–544 (1968)
29. J.A. Hartigan, Note on confidence-prior of Welch and Peers. J. Royal Statist. Soc. B 28, 32–44

(1966)
30. T. Chang, C. Villegas, On a theorem of Stein relating Bayesian and classical inferences in group

models. Can. J. Statist. 14(4), 289–296 (1986)



80 6 Form Invariance I

31. R. Mukerjee, D.K. Dey, Frequentist validity of posteriori quantiles in the presence of nuisance
parameter: Higher order asymptotic. Biometrika 80(3), 499–505 (1993)

32. A. Nicolaou, Bayesian intervals with good frequentist behaviour in the presence of nuisance
parameters. J. R. Statist. Soc. B 55, 377–390 (1993)

33. G.S. Datta, J.K. Gosh, On prior providing frequentist validity for bayesian inference. Bio-
metrika 82, 37–45 (1995)

34. O.A. Al-Hujaj. Objektive Bayessche Statistik. Theorie und Anwendung. Master’s thesis,
Fakultät für Physik und Astronomie der Universität Heidelberg, Max-Planck-Institut für Kern-
physik, D-69029 Heidelberg, 1997

35. O.-A. Al-Hujaj, H.L. Harney, Objective Bayesian statistics. Technical report, Max-Planck-
Institut für Kernphysik, 1997. See arXiv:physics/9706025

36. R.E. Kass, The Riemannian Structure of Model Spaces: A Geometrical Approach to Inference
(PhD thesis, University of Chicago, 1980). See especially pp. 94–95

37. R.E. Kass, The geometry of asymptotic inference. Stat. Sci. 4, 188–219 (1989)
38. S.I. Amari, Differential Geometrical Methods in Statistics, vol. 28, Lecture Notes in Statistics

(Springer, Heidelberg, 1985)

http://arxiv.org/abs/physics/9706025


Chapter 7
Examples of Invariant Measures

In the present chapter, the symmetry groups of several form-invariant models p(x |ξ)
are given together with their invariant measures. We restrict ourselves to probability
densities of the kind described in Chap. 4. Symmetry groups of models with discrete
events are discussed in Chap.11. Section A.7 gives the solutions to the problems
suggested to the reader.

7.1 Form Invariance Under Translations

Translational invariance has been used in Chap.2 to convey the idea of form invari-
ance. Models with the structure

p(x |ξ) = w(x − ξ) , −∞ < x < ∞ , (7.1)

have the symmetry group of the translations

Gξ x = x + ξ , −∞ < ξ < ∞ . (7.2)

Figure7.1 illustrates the essential features of this symmetry. Themultiplication func-
tion of the group is

�(ξ; ξ′) = ξ + ξ′ , (7.3)

and therefore the invariant measure (6.33) is uniform, that is,

μ(ξ) ≡ μ(ε) . (7.4)

This is also true if x and ξ are n-dimensional vectors of variables.

© Springer International Publishing Switzerland 2016
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Fig. 7.1 Translational symmetry. The model p(x |ξ) is obtained from the group of translations of
the common form w

Form invariance under translations in one direction is found in theGaussianmodel
(2.16) and the Cauchy model

p(x, ξ) = �

2π

1

(x − ξ)2 + �2/4
. (7.5)

For the n-dimensional vectors

x =
⎛
⎜⎝
x1
...

xn

⎞
⎟⎠ , ξ =

⎛
⎜⎝

ξ1
...

ξn

⎞
⎟⎠ , (7.6)

the n-dimensional Gaussian distribution

p(x |ξ) = (2π)−n/2 detC−1/2 exp
(−(x − ξ)†(2C)−1(x − ξ)

)
(7.7)

is form invariant under the translations in n directions. This is an n-fold repetition
of (7.2) and it is an Abelian symmetry group. The correlation matrix C is discussed
in Sect. 4.1.2.

7.2 Form Invariance Under Dilations

Models of the structure

p(x |σ) = σ−1 w
( x

σ

)
, 0 < x < ∞ , (7.8)

are often said to be scale invariant. They have the symmetry group of the dilations

Gσ x = σx , 0 < ξ < ∞ . (7.9)

http://dx.doi.org/10.1007/978-3-319-41644-1_2
http://dx.doi.org/10.1007/978-3-319-41644-1_4
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The multiplication function is

�(σ,σ′) = σσ′ , (7.10)

see (6.13). From (6.33), this yields the invariant measure

μ(σ) = μ(1)σ−1 . (7.11)

Examples are the Gaussian model (3.3) and the exponential model (4.40).
It was shown in Sect. 3.2.2 that the model (7.8) can be reparameterised so that it

takes the form (7.1). Hence, on an abstract level, form invariance under translations
and form invariance under dilations have the same symmetry. It is, however, not
always possible to express form invariance as translational invariance with respect
to all parameters. The example in the next section shows this.

7.3 Form Invariance Under the Combination
of Translation and Dilation

The model

p(x |ξ,σ) = σ−1 w

(
x − ξ

σ

)
, −∞ < x < ∞ , (7.12)

is form invariant under the group of transformations

Gξ,σ x = ξ + σx (7.13)

These transformations combine a translation by the value of ξ with a dilation by
the value of σ. The parameters are defined within the domains −∞ < ξ < ∞ and
0 < σ < ∞. The translation is performed first and is followed by the dilation. The
group has been introduced in Eq. (6.14). Note that

G−1
ξ,σ x = x − ξ

σ
(7.14)

is the inverse of the transformation (7.13). This exemplifies a non-Abelian group.
The multiplication function is

�(ξ′,σ′; ξ,σ) = (ξ′ + ξσ′;σσ′) , (7.15)

see (6.19). It is left to the reader to show that the invariant measure (6.33) is

μ(ξ,σ) = μ(0, 1)σ−1 . (7.16)

http://dx.doi.org/10.1007/978-3-319-41644-1_6
http://dx.doi.org/10.1007/978-3-319-41644-1_6
http://dx.doi.org/10.1007/978-3-319-41644-1_3
http://dx.doi.org/10.1007/978-3-319-41644-1_4
http://dx.doi.org/10.1007/978-3-319-41644-1_3
http://dx.doi.org/10.1007/978-3-319-41644-1_6
http://dx.doi.org/10.1007/978-3-319-41644-1_6
http://dx.doi.org/10.1007/978-3-319-41644-1_6
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This prior distribution1 should not be interpreted as the product of the measures (7.4)
and (7.11) of the one-dimensional models of translation (7.1) and dilation (7.8):
the measure of a non-Abelian group need not be equal to the product of measures
of its one-dimensional subgroups (cf. Sect. 12.2). The expectation that the measure
μ(ξ,σ) be given by the measures of the subgroups has led to controversy [1, 2] in
the published literature.

Examples of the present symmetry are the Gaussian model

p(x |ξ,σ) = (2πσ2)−1/2 exp

(
− (x − ξ)2

σ2

)
(7.17)

as well as the model

p(x |ξ,σ) = B−1σ−1

(
1 +

(
x − ξ

σ

)2
)−ν

. (7.18)

The latter is the Student’s t-distribution (see Eq. (4.43)). The normalising factor is
the Beta function

B = B

(
1

2
, ν − 1

2

)
, (7.19)

see Sect. B.5. With ν = 1, expression (7.18) becomes a Cauchy distribution; see
Sect. 4.3. The Gaussian (7.17) is studied in Chap.10.

It is impossible to reparameterise the model (7.12) such that its symmetry is the
group of translations in two directions. A reparameterisation maps the symmetry
group onto an isomorphic one. The group of two-dimensional translations is Abelian
whereas the present symmetry group is non-Abelian; these two groups are not iso-
morphic. Hence, the present symmetry is really different from the preceding ones.

7.4 A Rotational Invariance

Let us consider the two-dimensional Gaussian distribution

w(x) = (2πσ1σ2)
−1 exp

(−x† (2C)−1 x
)

, (7.20)

where x is the vector

x =
(
x1
x2

)
, (7.21)

1The corresponding result in Eq. (7.17) of the first edition of the present book is not consistent with
the (correct) multiplication function (7.16) given there. The error is due to incorrect multiplication
functions in Eqs. (6.15) and (A.82) of that edition. In the present edition, Eqs. (6.16)–(6.18) make
clear in which way and in which order the operations of translation and dilation are carried out.
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Fig. 7.2 Scatterplot of a two-dimensional Gaussian distribution without correlation between x1
and x2

and C is the diagonal correlation matrix

C =
(

σ1 0
0 σ2

)
. (7.22)

In this form the distribution does not correlate the variables x1 and x2; see Sect. 4.1.2.
It is illustrated inFig. 7.2.We introduce a correlation via an orthogonal transformation
of the event. If we take

Gφ =
(
cosφ − sin φ
sin φ cosφ

)
, (7.23)

the model

p(x |φ) = w(G−1
φ x)

= (2πσ1σ2)
−1 exp

(
−x†

(
2GφCG†

φ

)−1
x

)
(7.24)

is constructed. Note that the Jacobian of the orthogonal transformation is unity. The
parameter φ rotates the distribution (7.20), as is illustrated by Fig. 7.3. We have seen
in Sect. 6.1 that the rotations (7.23) form a group for 0 ≤ φ < 2π. Themodel (7.24) is
form invariant. The invariant measure μ(φ) is uniform, by the discussion in Sect. 6.4.

In the present case, the prior distribution is proper; that is, the volume

V =
∫ 2π

0
μ(φ) dφ

= 2π μ(0) (7.25)

http://dx.doi.org/10.1007/978-3-319-41644-1_4
http://dx.doi.org/10.1007/978-3-319-41644-1_6
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Fig. 7.3 Scatterplot of a two-dimensional Gaussian with correlated x1, x2

Fig. 7.4 A two-dimensional
distribution that - in contrast
to the Gaussian model (7.24)
- is not symmetric under
reflection at the origin

w x x1

x

x

no symmetry
under reflection

of the whole space of ξ exists. The interested reader should show that the volume
of the space does not depend on the parameterisation. If the integral (7.25) does not
exist, then this is again true for every parameterisation.

The domain of definition of φ is only 0 ≤ φ < π, because the distribution (7.24)
does not change when it is rotated by π. However, the transformations (7.23) do not
form a group under this restriction of φ; see Problem A.6.2. Rotational invariance is
truly present only if w is as sketched in Fig. 7.4, which requires 0 ≤ φ < 2π. This
shows that the symmetry of form invariance is an idealisation, and in practical cases,
it is necessary to define the measure μ in a more general way than via the symmetry
group. In Chap.9, we define it as a geometric measure.

http://dx.doi.org/10.1007/978-3-319-41644-1_9
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7.5 Special Triangular Matrices

A correlation can be introduced in a way other than that chosen in the preceding
section. Let x be distributed as in (7.20) but with the correlation matrix equal to the
unit matrix; that is,

C = 1 . (7.26)

Again there is no correlation between x1 and x2. However, the variables

y1 = x1 + γx2 ,

y2 = x2 (7.27)

are correlated, and the correlation equals γ. We write this transformation in the form

y = Gγ x . (7.28)

The transformation is achieved by the triangular matrix

Gγ =
(
1 γ
0 1

)
, −∞ < γ < ∞ . (7.29)

Let us construct the model p by transforming the events of the model (7.20) with
(7.26) according to

p(x |γ) = w(G−1
γ x)

∣∣∣∣∣
∂G−1

γ x

∂x

∣∣∣∣∣ . (7.30)

The Jacobian in this equation is the determinant of G−1
γ ; that is, it is unity. Therefore

one obtains
p(x |γ) = (2π)−1 exp

(
−x†

(
2GγG

†
γ

)−1
x
)

. (7.31)

One can easily verify that the matrices (7.29) form an Abelian group and have the
multiplication function

�(γ′, γ) = γ + γ′ . (7.32)

Hence, the model (7.31) is form invariant and the invariant measure μ(γ) is uniform.

7.6 Triangular Matrices

In order to find the general two-dimensional correlation matrix, let us replace the
special triangular matrix (7.29) by
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Gξ =
(

α γ
0 β

)
(7.33)

and replace the model (7.30) by

p(x |ξ) = w(G−1
ξ x)

∣∣∣∣∣
∂G−1

ξ x

∂x

∣∣∣∣∣ , (7.34)

where w(x) is given by (7.20) with (7.26). Here, ξ stands for the three variables
in the matrix (7.33): that is, ξ = (α, γ,β) and Gξ = Gα,γ,β . The order of the
parameters says that the transformation labelled α is applied first; it is followed by
the transformations labelled γ and finally β. These three transformations are

G1,0,β =
(
1 , 0
0 , β

)
, β > 0 ,

G1,γ,1 =
(
1 , γ
0 , 1

)
, −∞ < γ < ∞ ,

Gα,0,1 =
(

α , 0
0 , 1

)
, α > 0 . (7.35)

Each of these matrices forms a one-dimensional group of transformations. Their
combination

Gα,γ,β = G1,0,β G1,γ,1 Gα,0,1

=
(

α , γ
0 , β

)
(7.36)

forms a three-dimensional group G. The combination is a group because the product

Gα,γ,βGα′,γ′,β′ =
(

α , γ
0 , β

) (
α′ , γ′
0 , β′

)

=
(

αα′ , αγ′ + γβ′
0 , ββ′

)
(7.37)

is contained in G. The unit element of has the index

ε = (1, 0, 1) . (7.38)

The inverse of Gα,γ,β is given by

G−1
α,γ,β = Gα−1,−γ(αβ)−1,β−1 . (7.39)
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The interested reader is asked to confirm this. Thus the set of transformations (7.33)
is a group and therefore the model (7.34) with (7.33) is form invariant.

By Eq. (7.37) the multiplication function of the group is

�(α′, γ′,β′ ;α, γβ) = (αα′,αγ′ + γβ′,ββ′) . (7.40)

From this we obtain the invariant measure

μ(ξ) = μ(ε)

∣∣∣∣∣∣
α , 0 , 0
0 , α , γ
0 , 0 , β

∣∣∣∣∣∣
−1

= μ(ε) (α2β)−1 (7.41)

according to Eq. (6.33). The interested reader is asked to verify this result. It agrees
with Formula (2.7) of [3].

This group is not Abelian. One recognises this in the second entry on the r.h.s. of
the multiplication function (7.40). This entry is altered when the primed quantities
are interchanged with the unprimed ones.

The Jacobian in (7.34) is the determinant of the matrix G−1
ξ and is thus equal to

(αβ)−1. Therefore one obtains

p(x |ξ) = (2παβ)−1 exp

(
−x†

(
2GξG

†
ξ

)−1
x

)
. (7.42)

The correlation matrix is

Cξ = GξG
†
ξ

=
(

α2 + γ2, βγ
βγ, β2

)
. (7.43)

It is not difficult to convince oneself that it is positive definite; that is, it has positive
eigenvalues for 0 < α, β < ∞ and −∞ < γ < ∞.

The parameters α and β essentially control the variances of x1 and x2 and γ con-
trols their correlation. If one combines the rotation (7.23) with the diagonal matrices
in (7.35) - depending on α and β - one does not obtain a form-invariant model. This
combination does not yield a group. We aim at form-invariant models because the
posterior will have the same form for every event x ; only the position of the ML
estimator will depend on x . See Chap.6. This allows us to think that one and the
same property is extracted from the data although the quantity of that property varies.

http://dx.doi.org/10.1007/978-3-319-41644-1_6
http://dx.doi.org/10.1007/978-3-319-41644-1_6
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Chapter 8
A Linear Representation of Form Invariance

According to the principles of group theory, every group G of transformations Gρ

can be represented by an isomorphic group GL of linear transformations Gρ of a
vector space. The transformations of event and parameter, introduced in Chap.6, are
nonlinear. The probability distributions p and w are not elements of a vector space.
Is it possible to define form invariance in terms of linear transformations of a vector
space? This would give the possibility of distinguishing classes of transformations,
such as orthogonal or unitary ones, that can occur in form invariance, from other
ones that cannot occur. Section6.4 has given a hint of the way of constructing lin-
ear representations: one must express probabilities by probability amplitudes. The
present chapter pursues this route and defines linear representations of models with
the symmetries of translation and dilation.

It is not a mathematical glass bead game1 to look for a linear representation of
the symmetry of form invariance. The results of the present chapter prepare us for
the generalisation of form invariance needed in Chap.11. Indeed, form invariance as
defined in Sect. 6.2 can be found for probability densities only: it requires that the
event variable x be continuous. In this case there are transformations Gξ of x which
are arbitrarily close to the identity Gε. They allow one to shift x by an infinitesimally
small amount. If the event variable is discrete, it cannot be shifted infinitesimally.
Then one must look for a more general notion of form invariance. It is found in the
form invariance of probability amplitudes.

Technically a linear representation of a group G is a one-to-one mapping of the
elements Gξ in G onto a group GL of linear transformations Gξ of a vector space
such that the multiplication function remains the same. In other words: a linear
representation is an isomorphismbetweenG and a groupGL of linear transformations.

In Sect. 8.1, we take a short look at linear transformations of a space of functions in
analogy to transformations of a vector space. In Sect. 8.2, orthogonal transformations
of probability amplitudes are discussed. In Sect. 8.3, the linear representation of form
invariance is described in a general way. Sections8.4 to 8.6 treat the examples of

1See the introductory chapter of Hermann Hesse’s novel.
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symmetry under translation, dilation, and the combination of both. Section A.8 gives
the solutions to the problems suggested to the reader.

8.1 A Vector Space of Functions

The concept of a vector space of functions is introduced here together with linear
operators acting on it. We do not enter into the mathematical foundations but, rather,
pragmatically use the notions mentioned below, as mathematics is often used by
physicists.

Consider the space of real square integrable functions that are defined on the
domain of definition of the event variable x . We may write the function f of x not
in the usual way, f (x), but rather as fx , inasmuch as we consider it as a vector with
the components fx labelled by x . The space is endowed with the inner product

f †g =
∫

dx fxgx . (8.1)

Note that we use the superscript † to denote the adjoint of an element of the space as
well as that of an operator, even if these objects are real and no complex conjugation
is implied. From (8.1), it is therefore not obvious why the dagger is used at all to
denote the inner product. In fact, the dagger distinguishes the inner product f †g from
the dyadic product g f †. The first product is a number; the second one is an operator.

A linear operator T acting on the elements of the space can be characterised by its
“matrix of coefficients” Txx ′ . This matrix is usually called an integral kernel because
the action of T on the function f in the space is defined as the integral

(T f )x =
∫

dx ′ Txx ′ fx ′ . (8.2)

Here, (T f )x is the element x of the vector that results from the action of T on f . The
kernel must be such that T f belongs to the function space when f is an element of
that space. We do not enter into the details of this question. The kernel of the dyadic
product is

(g f †)xx ′ = gx fx ′ , (8.3)

and the integral kernel of the product of two operators T and S is

(TS)xx ′ =
∫

dy TxySyx ′ . (8.4)

The adjoint T† has the integral kernel

(T†)xx ′ = Tx ′x . (8.5)
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An orthogonal operator O has the property that it conserves the inner product of
any pair of real functions f, g which means

f †g = (O f )† Og

=
∫

dy
∫

dx Oyx f (x)
∫

dx ′ Oyx ′g(x ′)

= f †O†Og . (8.6)

One proceeds from the second to the third line of this equation by changing the order
of the integrations. Equation (8.6) holds for any pair of functions f, g if and only if
O†O is equal to the unit operator 1. The integral kernel of the unit operator is Dirac’s2

δ-distribution3; that is,
1xx ′ = δ(x − x ′) . (8.7)

Hence, the definition of an orthogonal operator O is equivalent to

(O†O)xx ′ = δ(x − x ′) . (8.8)

All of this generalises the notion of an N -dimensional vector space, where the
variable x labels the components of the vectors. In that case, x is discrete and runs
over N values. In the present section, x is continuous and runs over an uncountable
set of values.

8.2 An Orthogonal Transformation of the Function Space

We now introduce an orthogonal transformation T of the function space.
Let f be an element of the space of functions considered in the preceding section,

and let T be an arbitrary—not necessarily linear—transformation of x . We introduce
the mapping of f onto T f such that

(T f )x =
∫

dx ′ Txx ′ fx ′

= f (T−1x)

∣∣∣∣∂T
−1x

∂x

∣∣∣∣
1/2

. (8.9)

This means that (T f ) emerges from f by shifting the component fx to the place
x ′ = T−1x . The function f could be, for example, the square root of the common

2PaulA.M.Dirac, 1902–1984,British physicist andNobel laureate.He contributed to the foundation
of quantum mechanics. He found a relativistically invariant form of it.
3The δ distribution is often called the δ function. However, under a reparameterisation, it behaves
as a distribution, not as a function.
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form w of Eq. (6.24). Given a transformation acting on x , its linear representation
acts on f and must produce the result of Eq. (8.9).

The interested reader should show that T f is a square integrable function and
thus belongs to the space under consideration. The mapping is linear, because one
obviously has

T( f + g) = T f + Tg (8.10)

as well as
T(c f ) = cT f , (8.11)

when f and g are square integrable functions and c is the number. The operation T
can be inverted. One can see this by replacing T−1 with T in the definition (8.9) to
obtain a linear transformation, which we call T−1. Applying this transformation to
T f yields

T−1T f = f (T T−1x)

∣∣∣∣∂T T
−1 x

∂T−1 x

∣∣∣∣
1/2 ∣∣∣∣∂T

−1 x

∂x

∣∣∣∣
1/2

= f (x) . (8.12)

Hence, T−1 is indeed the inverse of T. It follows that T is a transformation of the
function space.

Furthermore, T is an orthogonal transformation. In order to see this, the reader
may verify that its integral kernel is

Txx ′ = δ(x ′ − T−1x)

∣∣∣∣∂T
−1x

∂x

∣∣∣∣
1/2

. (8.13)

By replacing T−1 with T in this formula, we can show thatT−1 is equal to the adjoint
of T. In doing so, one must observe that the δ-distribution is transformed according
to (2.9). This yields

(T−1)xx ′ = δ(x ′ − T x)

∣∣∣∣∂T x∂x

∣∣∣∣
1/2

= δ(T−1 x ′ − x)

∣∣∣∣∂T
−1 x ′

∂x ′

∣∣∣∣
∣∣∣∣∂T x∂x

∣∣∣∣
1/2

= δ(T−1 x ′ − x)

∣∣∣∣∂T
−1 x ′

∂x ′

∣∣∣∣
1/2

= Tx ′x . (8.14)

The step from the first to the second line is performed by a transformation of the
δ distribution. Observing that the delta distribution enforces x to equal T−1x ′ and
by consequence T x to equal x ′, one proceeds from the second to the third line. The

http://dx.doi.org/10.1007/978-3-319-41644-1_6
http://dx.doi.org/10.1007/978-3-319-41644-1_2
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result of the third line is obtained from (8.13) by interchanging x with x ′. The last
line is equivalent to (8.8) and, hence, T is orthogonal.

We show that a group of transformations Gξ acting on x leads, via Eq. (8.9), to a
group of linear transformations Gξ acting on f .

8.3 The Linear Representation of the Symmetry Groups

Let G be a group of transformations Gξ (generally nonlinear) of the domain where
the event x is defined. The set GL of the orthogonal transformations

(
Gξ f

)
x = f (G−1

ξ x)

∣∣∣∣∣
∂G−1

ξ x

∂x

∣∣∣∣∣
1/2

, (8.15)

obtained by letting ξ run over all values of the group parameter of G, is a group
of linear transformations of the function space. The group GL is isomorphic to the
group G.

We verify that GL is a group by reviewing the axioms of Sect. 6.1. The product
GξGξ′ is obtained by applying Gξ to Gξ′ f . When doing so, note especially that the
operation G−1

ξ is applied to the variable x . We find

(
GξGξ′ f

)
x

= Gξ f (G−1
ξ′ x)

∣∣∣∣∣
∂G−1

ξ′ x

∂x

∣∣∣∣∣
1/2

= f (G−1
ξ′ G−1

ξ x)

∣∣∣∣∣
∂G−1

ξ′ G−1
ξ x

∂G−1
ξ x

∣∣∣∣∣
1/2 ∣∣∣∣∣

∂G−1
ξ x

∂x

∣∣∣∣∣
1/2

= f (G−1
ξ′ G−1

ξ x)

∣∣∣∣∣
∂G−1

ξ′ G−1
ξ x

∂x

∣∣∣∣∣
1/2

= f ((GξGξ′)−1x)

∣∣∣∣∂(GξGξ′)−1x

∂x

∣∣∣∣
1/2

. (8.16)

This transformation is an element of GL because GξGξ′ is in G. Products of the linear
transformations Gξ are associative because products of the transformations Gξ are
associative. It was shown in Sect. 8.2 that G−1

ξ exists together with Gξ . The unit
element is in GL and has the parameter ε. Hence GL is a group. The last version of
Eq. (8.16) shows that GL and G have the same multiplication function, whence both
groups are isomorphic and GL is a linear representation of G.

Let w(x) be the common form of the model (6.23). We consider the function

fx = √
w(x) . (8.17)

http://dx.doi.org/10.1007/978-3-319-41644-1_6
http://dx.doi.org/10.1007/978-3-319-41644-1_6
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This function is square integrable, because w is normalised and thus f belongs to
the function space. By applying Gξ , one obtains

(
Gξ f

)
x

=
√

w(G−1
ξ x)

∣∣∣∣∣
∂G−1

ξ x

∂x

∣∣∣∣∣
1/2

= √
p(x |ξ) . (8.18)

This is a probability amplitude. It deserves a notation of its own; throughout the
present book, we write

ax (ξ) = √
p(x |ξ) . (8.19)

The element of the function space that has these components is called a(ξ).
The probability amplitude is an object with richer properties than the probability;

the amplitude may have both signs. It may therefore change sign at the places where
p vanishes. One may even consider complex probability amplitudes and thus turn
the function space into a Hilbert space.

The definition of a(ξ) allows us to write (8.18) in the form

a(ξ) = Gξ a(ε) . (8.20)

The symmetry defined by (6.23) is therefore equivalent to the fact that the amplitude
vectors a(ξ) are obtained from a common form a(ε) by a group of linear transfor-
mationsGξ according to (8.15) and (8.20). Thus the symmetry of form invariance is
a symmetry of the probability amplitudes as well as a symmetry of the probabilities.
The consequence of this is explored in Chap.11.

The action of an element Gρ of GL on a(ξ) can be expressed as

Gρ a(ξ) = GρGξ a(ε)

= a(�(ξ; ρ)) , (8.21)

where � is the multiplication function introduced in Sect. 6.1. Using the transforma-
tion of ξ defined by (6.21), one brings the last equation into the form

Gρ a(ξ) = a(Gρξ) . (8.22)

This relation expresses the form invariance of the probability amplitudes.
We have shown that the symmetry defined by (6.23) and (6.24) can be expressed

by (8.20). The reverse is not true. One cannot express every group of orthogonal
transformations of an amplitude vector as a group of transformations of the event
variable x . When x is discrete, this cannot be done. Thus the concept of probability
amplitudes allows us to generalise form invariance beyond the concept of Chap.6.
We define: the model p(x |ξ) is called form invariant if the amplitude vector a(ξ)
emerges from a common form a(ε) by a group of orthogonal linear transformations

http://dx.doi.org/10.1007/978-3-319-41644-1_6
http://dx.doi.org/10.1007/978-3-319-41644-1_11
http://dx.doi.org/10.1007/978-3-319-41644-1_6
http://dx.doi.org/10.1007/978-3-319-41644-1_6
http://dx.doi.org/10.1007/978-3-319-41644-1_6
http://dx.doi.org/10.1007/978-3-319-41644-1_6
http://dx.doi.org/10.1007/978-3-319-41644-1_6
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Gξ . This generalisation is important in Chap. 11. In any case, the prior distribution
of form-invariant models is the invariant measure of the symmetry group.

In the following sections we especially study the linear representations of trans-
lation and dilation. We show that their linear operators Gξ can be expressed by an
exponential function of a “generating operator” g.

8.4 The Linear Representation of Translation

The simplest example of form invariance was considered in Sects. 2.3 and 6.2; it
exhibits translational symmetry such as

p(x |ξ) = w(x − ξ) , −∞ < x, ξ < ∞ . (8.23)

The transformation of the probability amplitude fx = √
w(x) to

√
w(x − ξ) can be

written as the Taylor expansion

√
w(x − ξ) =

∞∑
k=0

(−ξ)k

k!
∂k

∂xk
fx . (8.24)

The shift from x to x − ξ is an operation on x like the operations T−1 in Eq. (8.9)
and G−1

ξ in Eq. (8.15). The Taylor expansion (8.24), however, can be understood -
and shall be understood - as an operation on the function f as a whole; at every place
x it replaces the value fx by the value at x − ξ as is illustrated in Fig. 7.1.

We write the sum on the r.h.s. of the last equation as an exponential of the differ-
ential operator ∂/∂x ; that is, we introduce

Gξ = exp

(
−ξ

∂

∂x

)

=
∞∑
k=0

(−ξ)k

k!
∂k

∂xk
. (8.25)

This is a linear operator because every differentiation in the sum (8.25) is a lin-
ear operation. In fact, this is an explicit formula for the linear operator evoked in
Eq. (8.15). It shifts the events of the model with the common form w(x) = p(x |ε)
from x to x − ξ; that is, it changes p(x |ε) to p(x |ξ). Note that the translation implies
∂G−1

ξ x/∂x ≡ 1.
From group theory it is expected that a linear representation of a (one-parametric)

Lie group can be characterised by one single operator, the generator of the group.
Every element Gξ of the group is given by the exponential function of ξ times the
generator g. Equation (8.25) says that, for the translation, the generator is given by
the differential operator ∂/∂x . However, it is not simply equal to this; we must take

http://dx.doi.org/10.1007/978-3-319-41644-1_11
http://dx.doi.org/10.1007/978-3-319-41644-1_2
http://dx.doi.org/10.1007/978-3-319-41644-1_6
http://dx.doi.org/10.1007/978-3-319-41644-1_7
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care of the following finesse. The translation is an orthogonal operator; when applied
to f it conserves the norm f † f . One knows from the theory of linear operators that
a unitary operator U can be written as the exponential function

U = exp(i H) (8.26)

of a Hermitian matrix H multiplied with the imaginary unit i . This means that an
orthogonal operator (which is real) requires H to be purely imaginary and therefore
antisymmetric. The operator ∂/∂x is antisymmetric in the present context. Transla-
tional symmetry requires x and ξ to be defined on the entire real axis. Whence, the
normalisation ∫ ∞

−∞
dx f 2x = 1 (8.27)

requires fx to vanish with x → ±∞ . This is true for any other probability amplitude
gx as well. Therefore we obtain

∫ ∞

−∞
dx fx

∂

∂x
gx =

[
fxgx

]∞
−∞

−
∫ ∞

−∞
dx

(
∂

∂x
fx

)
gx

= −
∫ ∞

−∞
dx gx

∂

∂x
fx . (8.28)

For this reason the generator of translation is the Hermitian operator

gt = i
∂

∂x
, (8.29)

and we write Gξ in the form
Gξ = exp(iξgt ) . (8.30)

The generator g is also called the “infinitesimal operator” of the group because it
yields the approximation

Gξ ≈ 1 + iξg (8.31)

to the first order in ξ.
In the following section, the linear representation of the symmetry of dilation is

derived.

8.5 The Linear Representation of Dilation

We can use the linear operator of translation to construct the linear operator of
dilation. Consider again the model with the structure of (3.9),

p(x |σ) = σ−1w
( x

σ

)
, 0 < σ . (8.32)

http://dx.doi.org/10.1007/978-3-319-41644-1_3
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To begin we assume the event variable x to be positive; this assumption can be
dropped later on.

We want to bring the linear transformation of the probability amplitude (8.17) of
this model into a form similar to Eq. (8.30). We show in Chap.9 that this requires
the measure μ of the parameter to be uniform, whence σ must be transformed
according to

η = ln σ , (8.33)

see Eq. (2.14). This brings the model (8.32) into the form

p(x |η) = exp(−η)w(x exp(−η)), −∞ < η < ∞ , (8.34)

and for η = 0 the probability amplitude is

fx = ax (ε)

=
(
w(x)

)1/2
. (8.35)

For Gηx = x eη the linear transformation Gη has to respect Eq. (8.18); that is,

(
Gη

)
x

=
(
w(G−1

η x)
)1/2 ∂G−1

η x

∂x

=
(
w(G−1

η x)
)1/2

exp(−η/2) . (8.36)

The linear operator Gη acts on x . One can transform x such that Gη becomes the
operator of translation considered in Sect. 8.4. For this, x must be transformed to y
such that the measure m(y) becomes uniform and equal to the measure μ(η). The
measure m of the event variable has been defined in Eq. (2.5). In the present case the
required transformation is

y = ln x . (8.37)

Then the model (8.33) becomes

p̃(y|η) = exp(y − η)w (exp(y − η)) (8.38)

and its probability amplitude f̃ y = ãy(ε) reads

f̃ y = exp(y/2)
(
w(exp y)

)1/2
. (8.39)

In this parameterisation, the linear operator G̃η is just the operator that translates y
to y − η; that is,

http://dx.doi.org/10.1007/978-3-319-41644-1_9
http://dx.doi.org/10.1007/978-3-319-41644-1_2
http://dx.doi.org/10.1007/978-3-319-41644-1_2
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G̃η = exp

(
iη

∂

∂y

)
(8.40)

as considered in Sect. 8.4.
Now we can express the generator i ∂

∂y of Eq. (8.40) by a differential operator
that acts on the variable x . The variable y is a unique function of x . Therefore the
amplitude f̃ implicitly is the function f of x . Its differentiation with respect to x is

∂

∂y
f̃ = dx

dy

∂

∂x
f

=
(
dy

dx

)−1 ∂

∂x
f

= x
∂

∂x
f . (8.41)

This means that

gd = i x
∂

∂x
(8.42)

is the generator of the linear representation of the transformation of the amplitude
(8.35). Thus we obtain

ax (η) = G̃η ax (ε)

= exp(iηgd) ax (ε)

=
(
w(x e−η)

)1/2
. (8.43)

From Eq. (8.42) one sees that the generator gd remains well defined if the event
variable x changes sign. Therefore the requirement x > 0 can be dropped.

8.6 Linear Representation of Translation Combined
with Dilation

The combination of translation with dilation means “translation followed by dila-
tion”. A model which is invariant under this combination is also invariant under a
dilation followed by a translation. However, the two ways of looking at the sym-
metry group imply different multiplication functions � und thus different measures
μ; see Chap.6. In either of the two cases the set of combined transformations is a
mathematical group G. One therefore expects that the product gdgt as well as the
product gtgd can be expressed by the generators gt of translation and gd of dilation.
This means that the first product differs from the second one by a linear combination
of the generators gt and gd multiplied by the imaginary unit i ; in other words: the
commutator

http://dx.doi.org/10.1007/978-3-319-41644-1_6
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[gt , gd ] = gtgd − gdgt (8.44)

must be a linear combination of gt and gd multiplied by i . The factor i is due to
Eq. (8.26).

This is indeed the case for the generators (8.29) of translation and (8.42) of dilation,
as is shown below. Consider again the model (2.16). It is now conditioned by both
parameters, x and ξ,

p(x |ξ,σ) = 1√
2π σ

exp

(
− (x − ξ)2

2σ2

)
, (8.45)

where−∞ < x < ∞ and 0 < σ < ∞. To obtain the linear operator of the combined
group, each parameter (when considered to be the only parameter of the model) must
be defined such that its measure μ is uniform. For the parameter ξ of translation this
is already the case. The parameter σ of dilation must be transformed according to
Eq. (8.37), as is explained in Sect. 6.5. This brings (8.45) into the form

p(x |ξ, η) = (2π)−1/2 e−η exp

(
−

(
(x − ξ)e−η

)2
/2

)

= (2π)−1/2 e−η exp

(
−

(
G−1

ξ,ηx
)2

/2

)
(8.46)

The operation G acting on x is

Gξ,η x = x eη + ξ , (8.47)

and the index of the unit operator is

ε = (0, 0) . (8.48)

Equation (8.46) yields the amplitude

fx = ax (ε)

= (2π)−1/4 exp(−x2/4) . (8.49)

The linear transformation of the amplitude is

Gξ,η = Gη,0G0,ξ x

= exp(iηgd) exp(iξgt ) x . (8.50)

The set of operators Gξ,η, obtained when ξ and η run over the real axis, forms a
group because the commutator of the generators is

http://dx.doi.org/10.1007/978-3-319-41644-1_2
http://dx.doi.org/10.1007/978-3-319-41644-1_6
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[gt , gd ] = − ∂

∂x
x

∂

∂x
+ x

∂

∂x

∂

∂x

= − ∂

∂x
− x

∂2

∂x2
+ x

∂2

∂x2

= igt (8.51)

which indeed is a linear combination of the generators gt , gd multiplied by i . We
note that a combination of groups, the generators of which commute, certainly forms
a group.

In the next chapter, the prior distribution is defined for models that lack form
invariance.



Chapter 9
Going Beyond Form Invariance:
The Geometric Prior

There is a formula that yields the invariant measure of a form-invariant model p(x |ξ)
in a straightforward way without analysis of the symmetry group, in particular with-
out knowledge of the multiplication function. This is useful because the analysis
of the symmetry group may be difficult. This is even of basic importance, because
the formula allows one to generalise the definition of the prior μ to cases where
form invariance does not exist or is not known to exist. Thus we do not require form
invariance for the application of Bayes’ theorem.

In Sect. 9.1, the formula is given and we show that it does yield the invariant
measure (in case that form invariance exists). The formula is shown in Sects. 9.2 and
9.3 to be proportional to the geometric measure μg on a curved surface. Examples
of geometric measures are given in Sect. 9.4. Section A.9 gives the solutions to the
problems suggested to the reader.

Differential geometry has been introduced into statistics by Kass [1, 2], Amari
[3], and others [4–9]; see also the collection [12].

9.1 Jeffreys’ Rule

The measure μ(ξ) in the parameter space of a model p is given by the determinant
of the so-called Fisher matrix [13] F such that

μ(ξ) = (det F)1/2 . (9.1)

This is called Jeffreys’ rule.

© Springer International Publishing Switzerland 2016
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104 9 Going Beyond Form Invariance: The Geometric Prior

For n-dimensional ξ = (ξ1, . . . , ξn), as in (4.15), the Fisher matrix is
n-dimensional. Its elements1 estimate the second derivatives of ln p,

Fν,ν ′ = −
∫

dx p(x |ξ)
∂2

∂ξν∂ξν ′
ln p(x |ξ)

=
∫

dx p(x |ξ)

(
∂

∂ξν
ln p(x |ξ)

)
∂

∂ξν ′
ln p(x |ξ) . (9.2)

The two lines of this equation are equal to each other because p is normalised to
unity for every ξ; see Sect.D.1. Equation (9.1) was suggested by Jeffreys [14, 15]
because under reparameterisations it behaves as a density. The proof is left to the
reader. Jeffreys did not refer to a symmetry of p; he emphasised that (9.1) can be
interpreted as a geometric measure.

Equation (6.41) allows us to write the Fisher matrix in terms of the vector a(ξ) of
probability amplitudes

ax (ξ) = √
p(x |ξ) , (9.3)

see also Sect.D.1. We find

1

4
Fν,ν ′ =

∫
dx

(
∂

∂ξν
ax (ξ)

)
∂

∂ξν ′
ax (ξ)

=
(

∂

∂ξν
a(ξ)

)† (
∂

∂ξν ′
a(ξ)

)
. (9.4)

The last expression will yield the geometric measure as is explained in Sect. 9.2. The
interested reader should show that the eigenvalues of F are nonnegative. Hence, the
square root in (9.1) is real. If ξ is one-dimensional, F1/2 equals the inverse statistical
error that is conventionally assigned to the estimated value ξML.

The measure (9.1) is invariant [1] under the transformations Gξ in the symmetry
group G if the model p is form invariant. We prove this. Some notational conventions
are needed. The Jacobian matrix

∂Gρξ

∂ξ

of derivatives is introduced. It has the elements
(

∂Gρξ

∂ξ

)
νν ′

= ∂(Gρξ)ν ′

∂ξν
. (9.5)

1The present definition (9.2) of the Fisher matrix differs from the definition given in Eq. (9.2) in
the first edition of this book. The present definition is commonly used; it defines F to be larger by
a factor of 4 than the definition in the first edition.

http://dx.doi.org/10.1007/978-3-319-41644-1_4
http://dx.doi.org/10.1007/978-3-319-41644-1_6
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Furthermore we use the vector of partial derivatives

(
∂

∂ξ

)
=

⎛
⎜⎝

∂/∂ξ1
...

∂/∂ξn

⎞
⎟⎠ . (9.6)

The dyadic product ( ∂

∂ξ

) ( ∂

∂ξ

)†

is the matrix of second derivatives
(( ∂

∂ξ

) ( ∂

∂ξ

)†
)

νν ′
= ∂

∂ξν

∂

∂ξν ′
. (9.7)

By help of these notations the Fisher matrix (9.4) can be written

1

4
F =

( ∂

∂ξ

) ( ∂

∂ξ′
)†

a†(ξ)a(ξ′)
∣∣
ξ=ξ′ . (9.8)

An implicit derivation with respect to the components of ξ is expressed as

( ∂

∂ξ

)
= ∂Gρξ

∂ξ

( ∂

∂Gρξ

)
. (9.9)

With these conventions the invariance of (9.1) under the group G can be shown in a
few steps.

μ(ξ) = det

(( ∂

∂ξ

)( ∂

∂ξ′

)†
a†(ξ)G†

ρGρa(ξ′)
)1/2

∣∣∣∣∣
ξ=ξ′

= det

(( ∂

∂ξ

)( ∂

∂ξ′

)†
a†(Gρξ)a(Gρξ

′)
)1/2

∣∣∣∣∣
ξ=ξ′

= det

(( ∂

∂Gρξ

)( ∂

∂Gρξ′

)†
a†(Gρξ)a(Gρξ

′)

)1/2
∣∣∣∣∣∣
ξ=ξ′

det

(
∂Gρξ

∂ξ

)

= μ(Gρξ)

∣∣∣∣∂Gρξ

∂ξ

∣∣∣∣ . (9.10)

In all of this chain of equations, ξ is set equal to ξ′ after the differentiations. The first
line of (9.10) is obtained from (9.8) because the transformation Gρ is orthogonal.
For the second line, form invariance, as formulated in (8.21), has been used. Then
(9.9) has been used. The notation |A| means the absolute value of the determinant

http://dx.doi.org/10.1007/978-3-319-41644-1_8
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of the matrix A. As a result, μ is invariant under all transformations in G. Therefore
it is the invariant measure μ of the symmetry group of a form-invariant model p,
compare Refs. [1, 16].

Expression (9.1) uses only the local properties of p with respect to ξ, not the
global properties of a group; see the discussion in Sect. 7.4. There, a definition of the
prior distribution was asked for that would not require form invariance but would be
compatible with the invariant measure if form invariance existed. Expression (9.1)
achieves this.

We note that the Fishermatrix (9.2) is not only used to define the prior distribution,
it is also used to define the correlation matrix of the Gaussian approximation to the
posterior of p(x |ξ). When the posterior can be considered Gaussian then the Fisher
matrix is

Fν,ν ′ =
∫

dx p(x |ξ) ∂2

∂ξν∂ξ′
ν ′

(
(x − ξ)†(2C)−1(x − ξ′)

)∣∣∣∣
ξ=ξ′

= (
C−1

)
ν,ν ′ , (9.11)

whence, F then is the inverse of the correlation matrix C .

9.2 Geometric Interpretation of the Prior μ

Equation (9.8) is a generalisation of the geometric measure (6.38). The two expres-
sions are identical if a is two-dimensional and depends on a one-dimensional para-
meter ξ. In order to justify the generalisation, we use some ideas of differential
geometry in the present section.

Whether a is an element of a function space or an element of a vector space is
immaterial in what follows. In the case of a vector space, the variable x that labels
the components of a, is discrete. In connection with geometry we prefer to speak
of the vector or even of the point a because these are familiar notions of analytical
geometry.

The set of points a(ξ) that is obtained when ξ runs over all its values, is a curve for
one-dimensional ξ, and it is a surface for two-dimensional ξ, and it is a hypersurface
for n-dimensional ξ. We call it a surface in all cases here. It is embedded in the space
wherein the vectors a are defined.

To derive the measure on the surface we consider, in the space of the parameters
ξ, the cube

[ξν, ξν + dξν] , ν = 1, . . . , n .

http://dx.doi.org/10.1007/978-3-319-41644-1_7
http://dx.doi.org/10.1007/978-3-319-41644-1_6
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It is imaged onto an n-dimensional parallelepiped by the mapping ξ → a(ξ). Let us
define the infinitesimal shift

�ν = (0, . . . 0, dξν, 0, . . . 0) , ν = 1, . . . , n .

The parallelepiped is spanned by the vectors

a(ξ + �ν) − a(ξ) ≈ ∂a(ξ)

∂ξν
dξν ,

ν = 1, . . . , n . (9.12)

These n vectors are tangential to the surface. They span the tangent space at a(ξ). We
want to calculate the volume of the parallelepiped. When the dimension of the space
in which a(ξ) is defined, were n, then the vectors (9.12) could form an n-dimensional
matrix J , and its determinant

|J | dξ1 . . . dξn

would be equal to the volume of the parallelepiped. Here, the vectors

∂a(ξ)

∂ξν
, ν = 1, . . . , n .

would be the columns of the matrix J . However, the dimension of a(ξ) is higher than
n; it is infinite. In this case we cannot write down the matrix J but we can obtain the
matrix J J † by the following arguments.

Let us introduce a system of orthonormal vectors eν , ν = 1, . . . , n, that spans
the tangent space at a(ξ). One then has

∂a

∂ξν
=

∑
ν ′

eν ′e†ν ′
∂a

∂ξν
,

ν = 1, . . . , n , (9.13)

which means that the ν ′th expansion coefficient Jνν ′ of the νth tangent vector is

Jνν ′ = e†ν ′
∂a

∂ξν
. (9.14)

From this follows

(
J J †

)
νν ′ =

∑
ν ′′

∂a†

∂ξν
eν ′′e†ν ′′

∂a

∂ξν ′

= ∂a†

∂ξν

∂a

∂ξν ′
. (9.15)
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For the first line of this equation, we have used the identity a†e = e†a in order to
rewrite the inner product of two real vectors. The second line results from the fact
that ∑

ν

eνe
†
ν = 1n (9.16)

is the unit operator in the n-dimensional tangent space at a(ξ). The matrix with the
elements (9.15) takes the form

J J † =
( ∂

∂ξ

)( ∂

∂ξ′

)†
a†(ξ)a(ξ′)

∣∣∣∣
ξ=ξ′

= 1

4
F (9.17)

in the notation used in (9.8). The volume of the parallelepiped is

(
det(J J †)

)1/2
dξ1 . . . dξn ,

and the measure on the surface consisting of the points a(ξ) is

μg(ξ) =
(
det(J J †)

)1/2

= det
(1
4
F

)1/2

= det
( ∂

∂ξ
a†(ξ)

∂

∂ξ′ a
(ξ′)

∣∣∣∣
ξ=ξ′

)1/2
. (9.18)

ByEq. (9.17) it is consistent with Eq. (9.1). In this sensewe confirm Jeffreys’ claim of
a geometric measure [1, 2, 8] on the surface with the parameter representation a(ξ).

Note that the geometric measure is exactly determined; there is no arbitrary factor
as there is in the invariant measure (6.33). This is due to the basis vectors eν of
the tangent space which are normalised to unity. We have made use of the absolute
definition of the geometric measure in connection with Fig. 4.3.

As an example, consider the representation a(ω) of the surface of a sphere of unit
radius in an M-dimensional space; that is,

a1 = ξ1 ,

a2 = ξ2 ,

...

aM =
(
1 −

M−1∑
k=1

ξ2k

)1/2

. (9.19)

http://dx.doi.org/10.1007/978-3-319-41644-1_6
http://dx.doi.org/10.1007/978-3-319-41644-1_4
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Here, the parameter ξ has the M − 1 components ξ1, . . . , ξM−1. The measure on the
surface of the sphere is

μ(ξ) =
(
1 −

M−1∑
k=1

ξ2k

)−1/2

. (9.20)

The interested reader may prove this result. A determinant given in Sect.D.2 is help-
ful. We find this measure as the prior distribution of the models treated in Sect. 9.4.
The surface of a sphere is finite, and (9.20) is a proper measure.

Often the measure on the surface of a sphere appears in another parameterisation.
Let the set of parameters be

ηk = ξ2k
k = 1, . . . , M − 1 . (9.21)

Through this transformation, the measure (9.20) becomes

μT (η) = 2
M∏
k=1

(1
2
η

−1/2
k

)
, (9.22)

where

ηM = 1 −
M−1∑
k=1

ηk . (9.23)

The interested reader should derive this form of the measure.

9.3 On the Geometric Prior Distribution

We have taken the form-invariant models as the starting point and have identified the
prior distribution with the invariant measure of the symmetry group. The prior of a
model without form invariance must be a generalisation of this: it shall merge into
the invariant measure when form invariance exists. This is achieved by using (9.1)
to define the prior.

Still, the discussion of form invariance is necessary. The notion of geometric
measure is not well defined by itself. It is a measure on a curved surface. We need
to define the space in which this surface is embedded. Form invariance has led us to
conclude that this surface consists of the “points” a(ξ) in the linear space of square
integrable functions.

From now on we do not ask whether the prior distribution is an invariant measure
or a geometric measure, unless the context requires this distinction. Expression (9.1)
is the general definition of the prior.
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In Chap.2, we required that the model p(x |ξ) be proper so that it is normalised to
unity for every ξ. This ensures that the geometric measure exists. Indeed, it follows
that a†(ξ)a(ξ′) exists. This entails the existence of the Fisher matrix (9.8) when we
take for granted that the amplitude ax (ξ) is a regular or even analytical function of
the parameters ξ.

From Sect. 6.4, we know that the invariant measure does not vanish. When there
is no form invariance, wemust require that the geometric measure not vanish, neither
identically nor at isolated points. At such a point it would not depend on all of its
parameters.

Form invariance favors the existence of the ML estimator σML(x) for every x
foreseen by the model p. Whether or not p is form invariant, we require the existence
of σML(x).

Jeffreys’ rule yields the geometric measure of models with continuous event vari-
able x and of models with discrete x . Equation (9.8) is the geometric measure on the
surface a(ξ) irrespective of whether the inner product a†a involves an integration
or a summation over x . For continuous x we have shown in Sect. 9.1 that Jeffreys
rule agrees with the invariant measure when form invariance is given. In the case of
discrete x , we - in Chap.11 - define form invariance such that expression (9.8) again
yields the invariant measure.

9.4 Examples of Geometric Priors

The geometric priors of two models are calculated. The models are similar in that
both of them contain an expansion of a probability amplitude in terms of orthogonal
vectors. The expansion coefficientsων are the hypothesis parameters. Themodels are
different in that the first one has a continuous event variable x , whereas the second
one has a discrete x .

9.4.1 An Expansion in Terms of Orthogonal Functions

Let the model
p(x |ω) = a2x (ω) , x real , ω = (ω1, . . . ,ωn) , (9.24)

be defined as the square of the amplitude

ax (ω) =
n∑

ν=1

ωνcx (ν) . (9.25)

Here, x is continuous. Equation (9.25) is an expansion of a into the n basis functions
c(ν). The expansion coefficients ων are inferred from the events. One can think of

http://dx.doi.org/10.1007/978-3-319-41644-1_2
http://dx.doi.org/10.1007/978-3-319-41644-1_6
http://dx.doi.org/10.1007/978-3-319-41644-1_11
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an expansion in terms of trigonometric functions or orthogonal polynomials. One
cannot infer an infinity of parameters; therefore an infinite basis of the expansion
does not make sense.

The parametersων depend on each other because they are normalised according to

n∑
ν=1

ω2
ν = 1 (9.26)

which guarantees the normalisation of p(x |ω) provided that the basis functions c(ν)

are orthogonal to each other.
The model (9.24), (9.25) is not form invariant. The prior is the geometric measure

(9.18). The Fisher matrix is evaluated in Sect.D.3 with the result

1

4
Fνν ′ = δνν ′ + ωνων ′

ω2
n

ν , ν ′ = 1, . . . , n − 1 . (9.27)

This is the sum of the unit matrix and a dyadic product. With the help of a rule
established in Sect.D.2, one obtains

μ(ω1, . . . ,ωn−1) =
(
1 −

n−1∑
ν=1

ω2
ν

)−1/2

. (9.28)

This is the geometric measure on the surface of a sphere in n-dimensional space;
see (9.20). The result is not surprising in view of the normalisation (9.26). Note that
(9.28) is the measure on a sphere of unit radius in n-dimensional space when we
interpret ω1, . . . ,ωn as the Cartesian coordinates of the points on the sphere. The
ων are restricted to the domain |ων | ≤ 1. When we look for a linear representation
of the present model then Eq. (8.30) lets us expect that there should not be any
such restriction of the domain of definition of the parameters. Indeed, the ων can be
expressed by trigonometric functions of a set of angles. Their periodicity removes
the above restriction although it respects the restriction in the sense that shifting an
angular parameter by one period leaves the model unaltered.

The next subsection shows that the prior of themultinomial distribution is formally
identical with this result.

9.4.2 The Multinomial Model

The multinomial model, introduced in Sect. 5.2, is an M-fold alternative. It gives the
joint probability

http://dx.doi.org/10.1007/978-3-319-41644-1_8
http://dx.doi.org/10.1007/978-3-319-41644-1_5
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p(x1, . . . , xM−1|η1, . . . , ηM−1) = N !
M∏
k=1

ηxk
k

xk ! (9.29)

to find the kth state realised xk times, k = 1, . . . , M , when N events are collected.
The hypothesis η specifies the probabilities ηk, k = 1, . . . , ηM−1, for an event to
realise the state k. One of the M choices must be realised so that (5.10) holds. This
relation defines ηM .

We introduce the amplitudes

βk = √
ηk

k = 1, . . . , M . (9.30)

These amplitudes form the M-dimensional vector β. In analogy with the last sub-
section, we expand β in a system of n ≤ M basis vectors c(ν) , ν = 1, . . . , n, so
that

βk =
n∑

ν=1

ωνck(ν) . (9.31)

Hence, the model now reads

p(x |ω) = N !
M∏
k=1

β2xk
k

xk ! , (9.32)

where the βk are linear functions of the hypothesis parameters according to (9.31).
The analogy with the model (9.24), (9.25) is obvious.

The system of basis vectors c(ν) is required to be orthonormal; that is,

c†(ν)c(ν) = δνν ′ ,

ν, ν ′ = 1, . . . , n , (9.33)

so the normalisation (5.10) is ensured when (9.26) holds. This relation defines ωn .
The quantities ω = (ω1, . . . ,ωn−1) are considered as the parameters of (9.32).

This model is not form invariant. The prior distribution is given by the geometric
measure (9.18). The Fisher matrix F is found in Sect.D.4 to have the elements

1

4
Fνν ′ = N

(
δνν ′ + ωνων ′

ω2
n

)
,

ν, ν ′ = 1, . . . , n − 1 . (9.34)

http://dx.doi.org/10.1007/978-3-319-41644-1_5
http://dx.doi.org/10.1007/978-3-319-41644-1_5
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Using the determinant calculated in Sect.D.2, we obtain the prior

μ(ω) =
(
1 −

n−1∑
ν=1

ω2
ν

)−1/2

(9.35)

in formal agreement with the result of the last subsection. The similarity lies in the
expansions (9.25), (9.31), and the normalisation condition (9.26).

In the special case where all the probabilities for the M basic states of the alter-
native shall be inferred, one obtains the prior distribution (9.35) with n = M . When
this is transformed to the parameters η of Eq. (9.29), one obtains (9.22).

In the following chapter, we turn again to a form-invariant model.
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Chapter 10
Inferring the Mean or the Standard Deviation

We assume that a set of events x1, . . . , xN is given. Neither the mean ξ nor the
standard deviation σ of the data is known. They are to be inferred. It is assumed that
the Gaussian model

q(x |ξ,σ) = (2πσ2)−1/2 exp

(
− (x − ξ)2

2σ2

)
(10.1)

of Eq. (4.1) applies for the distribution of every xk . In Sect. 10.1 of the present chapter,
inference of both parameters is described. Often, however, one is not interested in
both parameters of the model but in only one of them, say the mean ξ. The model
p, however, depends on σ too. The data allow us to determine ξ and σ, but our
interest is focused on ξ, whatever the value of σ. This case is treated in Sect. 10.2. In
Sect. 10.3, the standard deviation σ is inferred, whatever the value of ξ. Section10.4
treats an argument intended to reveal an inconsistency of the ML estimator [1]. In
the framework of Bayesian statistics the inconsistency disappears.

10.1 Inferring Both Parameters

Figure10.1 shows some data from nuclear physics [2, 3]; compare Sect. 3.2.2. Longi-
tudinally polarised neutrons have been captured into a long-lived state, a resonance.
The absorption cross-section is found to depend on the sign of the polarisation. This
violates parity conservation and is therefore interesting. The asymmetry

x = a+ − a−

a+ + a−

between the absorption cross-sections a± for the two polarisations is given at 24
resonances. The abscissa specifies the neutron energies at which the resonances are
found. It was expected that x would have a mean value of zero [4]. Only the variance
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Fig. 10.1 The parity
violating asymmetry x for
the absorption cross-sections
of longitudinally polarised
neutrons [2]. According to
the statistical theory of
nuclear reactions, the 24
events should be described
by the Gaussian model
(10.1). The error bars refer to
systematic errors; they are
not considered in the present
context

seemed interesting. However, the figure shows that x is more frequently positive than
negative. This caused a discussion about both parameters. The data are not analysed
here, but the formalism is described.

According to Chap.6, the model (10.1) is form invariant. The symmetry group is
a non-Abelian combination of the translation and the dilation groups. In Chap. 7, the
invariant measure was found to be

μ(ξ,σ) ∝ σ−1 . (10.2)

As in (2.23), the distribution of N events is written in the form

p(x|ξ,σ) =
N∏

k=1

q(xk |ξ,σ)

= (2πσ2)−N/2

× exp

(
− N

2σ2

[
(ξ − 〈x〉)2 + V

])
, (10.3)

where
V = 〈x2〉 − 〈x〉2 . (10.4)

Here, 〈x2〉 and 〈x〉 are averages over the x2k and xk as defined in Eq. (2.21). This gives
the posterior distribution

P(ξ,σ|x) = N (N+1)/2

π1/2 2(N−1)/2 �(N/2)
V N/2

×σ−N−1 exp

(
− N

2σ2

[
(ξ − 〈x〉)2 + V

])
. (10.5)

http://dx.doi.org/10.1007/978-3-319-41644-1_6
http://dx.doi.org/10.1007/978-3-319-41644-1_7
http://dx.doi.org/10.1007/978-3-319-41644-1_2
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Fig. 10.2 Posterior of
N = 21 events drawn from
the distribution (10.1). A
random number generator
was used with the true values
of ξ and σ set to 1 and 0.5,
respectively
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The normalisation is verified in Sect.E.1 as well as ProblemA.3.9. The properties
of the � function can be found in Sect.B.4.

We have simulated themodel (10.3) by a computer experiment. A random number
generator was used to draw 101 events from the distribution (10.1) with ξ set equal to
1 and σ equal to 0.5. Of course, in a real experiment, these true values are unknown.
They are to be inferred. From the first N = 21 events of the computer experiment,
we find the posterior distribution (10.5) displayed in Fig. 10.2. The result from the
first N = 51 events is shown in Fig. 10.3. The posterior obtained from all N = 101
events is given in Fig. 10.4. These three figures show how the result improves with
increasing N in a case of two-parameter inference. The distribution contracts in both
dimensions. It tends towards a two-dimensional δ function at the position of the true
parameter values. From the result for N = 21 events, one clearly sees that for finite
N , the distribution is not necessarily centered at the true values. It is centered at the
coordinates (ξML,σML). This describes the maximum of the likelihood function.

Fig. 10.3 Posterior of
N = 51 events drawn from
the distribution (10.1) as in
Fig. 10.2
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Fig. 10.4 Posterior of
N = 101 events drawn from
the distribution (10.1) as in
Fig. 10.2
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The likelihood function L is defined inEq. (6.46). TogetherwithEqs. (10.2), (10.3)
we obtain

L(ξ,σ|x) ∝ σ−N exp

(
− N

2σ2

(
(ξ − 〈x〉)2 + V

))
(10.6)

for the model (10.3). The system of ML equations is

0 = ∂

∂ξ
ln L ,

0 = ∂

∂σ
ln L . (10.7)

Their solution determines the two-dimensional ML estimator (ξML,σML). We find
the set of ML equations

0 = N

σ2
(ξ − 〈x〉) ,

0 = −N

σ
+ NV

σ3
(10.8)

which yields

ξML = 〈x〉 ,

(σML)2 = V . (10.9)

The Bayesian area - defined in Chap.3 - is bordered by a contour line of the
likelihood function L = P/μ. Hence, in any one of the present cases, the border
of the Bayesian area will be close to one of the ellipsoidal curves in Figs. 10.2,
10.3 and 10.4. This means that in higher dimensions, the error “interval” is a rather

http://dx.doi.org/10.1007/978-3-319-41644-1_6
http://dx.doi.org/10.1007/978-3-319-41644-1_3
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complicated object. A rectangle of the kind of [ξML ± �ξ,σML ± �σ] is too rough
an approximation.

Often one is not interested in knowing both parameters but instead only one of
them, say ξ; then one can think of projecting the two-dimensional distribution P
onto the ξ-axis. This projection is called the “marginal distribution”

P↓(ξ|x) =
∫

dσ P(ξ,σ|x) . (10.10)

This usually is hard to obtain. However, for a sufficiently large number N of events
a Gaussian approximation to the posterior helps. Its marginal distributions can be
obtained by use of the “simple rule” stated in Sect. 4.1.2 and proven in Sect.B.1. Thus
multidimensional distributions can be handled analytically when they are approxi-
mated by a Gaussian. This is described in what follows.

10.1.1 Multidimensional Gaussian Approximation
to a Posterior Distribution

The Gaussian approximation to a one- or more-dimensional posterior distribution is
given by setting the inverse of the correlation matrix C equal to the Fisher matrix
F of the model. When F depends on the parameters of the model then these are
set equal to their ML estimators and F is considered constant for the sake of the
approximation. The ML estimator has been introduced in Sect. 6.6 and discussed in
Sect. 6.7.

The Fisher matrix has been defined in Sect. 9.1. It generalises the Fisher infor-
mation introduced by Eq. (4.13). The latter one estimates the inverse variance of a
one-dimensional distribution as explained in Sect. 4.1.2. The estimation is valid for
sufficiently large values of the number N of events. When there is more than one
parameter the Fisher matrix estimates the inverse C−1 of the correlation matrix of
the Gaussian approximation to the distribution. Again the approximation is valid for
sufficiently large N .

The elements of the Fisher matrix equal the expectation values of the negative
second derivatives of ln q(x |ξ,σ) with respect to the parameters. Here, q is the
elementary model which for the present case is given in Eq. (10.1). The expectation
values are taken with respect to the event variable x .

For the case at hand we find

− ln q = 1

2
ln(2π) + ln σ + (x − ξ)2

2σ2
. (10.11)

http://dx.doi.org/10.1007/978-3-319-41644-1_4
http://dx.doi.org/10.1007/978-3-319-41644-1_6
http://dx.doi.org/10.1007/978-3-319-41644-1_6
http://dx.doi.org/10.1007/978-3-319-41644-1_9
http://dx.doi.org/10.1007/978-3-319-41644-1_4
http://dx.doi.org/10.1007/978-3-319-41644-1_4
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The first derivatives are

− ∂

∂ξ
ln q = ξ − x

σ2
,

− ∂

∂σ
ln q , = 1

σ
− (x − ξ)2

σ3
. (10.12)

The second derivatives are given by

− ∂2

∂ξ2
ln q = 1

σ2
,

− ∂2

∂ξ∂σ
ln q = 2

σ3
(x − ξ) ,

− ∂2

∂σ2
ln q = − 1

σ2
+ 3

σ4
(x − ξ)2 . (10.13)

The expectation values of the second derivatives turn out to be

− ∂2

∂ξ2
ln q = 1

σ2
,

− ∂2

∂ξ∂σ
ln q = 0 ,

− ∂2

∂σ2
ln q = 2

σ2
. (10.14)

Thus the Fisher matrix of the elementary model q is

F = −
∫

dx q(x |ξ,σ)

⎛
⎝

∂2

∂ξ2
ln q , ∂2

∂ξ∂σ
ln q

∂2

∂ξ∂σ
ln q , ∂2

∂σ2 ln q

⎞
⎠

= 1

σ2

(
1 0
0 2

)
. (10.15)

The Fisher matrix of the model (10.3) is N times this result. For this reason
the a posteriori distribution contracts in the directions of all its parameters with
growing N .

Because F = F(σ) is not constant but rather depends on σ, one sets F(σ) =
F(σML) and, for the Gaussian approximation, one considers F as independent of the
variables ξ,σ.

P(ξ,σ|x) ∝ exp

(
−(ξ − ξML ,σ − σML)

(
1

2
NF(σML

) (
ξ − ξML

σ − σML

))
.

(10.16)
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Note that, by Eq. (9.1), the prior distribution μ is constant when the Fisher matrix is
constant. Then μ drops out of the posterior; see Eq. (2.6).

Inverting NF leads to the correlation matrix

C = (σML)2

N

(
1 0
0 1/2

)
(10.17)

for the Gaussian (10.16).

10.2 Inferring the Mean Only

In the sequel the “interesting” parameter is called structural and the “uninteresting”
one is called incidental. With this nomenclature we follow previous publications
on the subject, such as Refs. [1, 5]. For the present section let ξ be the structural
parameter of the model (10.3) and σ the incidental one.

The posterior of ξ is obtained as the marginal distribution (10.10) of the Gaussian
approximation (10.16) to P(ξ,σ|x). In this way the problem of the so-called mar-
ginalisation paradox is avoided, a problem encountered in the literature [6–10] as
well as in the first edition of the present book. With the help of the rule given in
Sect. 4.1.1 we obtain

P↓(ξ|x) ≈ (2π)−1/2 N
1/2

σML
exp

(
− (ξ − ξML)2

2(σML)2

)
. (10.18)

The ML estimators are given in Eq. (10.9).
In the next section we interchange the roles of the parameters ξ and σ.

10.3 Inferring the Standard Deviation Only

Let now σ be the structural and ξ the incidental parameter. We project the Gaussian
approximation (10.16) onto the σ-axis and obtain the posterior distribution

P↓(σ|x) ≈ π−1/2 N
1/2

σML
exp

(
−N (σ − σML)2

(σML)2

)
(10.19)

of σ.
This approximation to the posterior of σ can be improved. We can transform σ

such that the diagonal element ∂2

∂σ2 ln q becomes independent of the (transformed)
parameter. Then the Gaussian approximation will be useful already at a lower value
of N than before: the distribution (10.19) must not be as narrow as to make the
dependence of F on σ negligible. In other words: P↓ is already Gaussian before we
replace σ by σML.

http://dx.doi.org/10.1007/978-3-319-41644-1_9
http://dx.doi.org/10.1007/978-3-319-41644-1_2
http://dx.doi.org/10.1007/978-3-319-41644-1_4
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The necessary transformation is

σ = eη , (10.20)

compare Sect. 2.2. Note that η is defined on the entire real axis, whereas σ is positive.
Thus η serves a Gaussian approximation more easily than does σ.

The transformation leads to the second derivatives

− ∂2

∂ξ2
ln q = e−2η ,

− ∂2

∂ξ∂η
ln q = 2(ξ − x)e−2η ,

− ∂2

∂η2
ln q = 2(x − ξ)2e−2η (10.21)

and further to the Fisher matrix

F =
(
e−2η 0
0 2

)
, (10.22)

where the second diagonal element is independent of the parameters. The interested
reader is asked to verify this.

There exists no transformation that would render the Fisher matrix independent
of both parameters, ξ and σ (or η), inasmuch as the symmetry group of the model
(10.1) is not Abelian. The best one can achieve is to make every diagonal element of
the Fisher matrix independent of the parameter whose second derivative enters into
it. For the model at hand this is achieved in Eq. (10.22).

10.4 The Argument of Neyman and Scott Against ML
Estimation

Neyman and Scott [1] have raised a widely discussed argument against the ML
estimator; see Ref. [11]. The argument is indended to show that an ML estimator
does not necessarily converge towards the true value of its parameter, when the
number of observations increases indefinitely. The argument is as follows.

Consider N series i = 1, . . . , N of observations xi, j . Every series i comprises n
observations xi, j with j = 1, . . . , n from a Gaussian distribution

q(xi, j |ξi ,σ) = (2π)−1/2σ−1 exp
(

− (xi, j − ξi )
2/2σ2

)
. (10.23)

Different series i �= i ′ have been obtained in different experiments with possibly
different ξi �= ξi ′ . Yet every series is conditioned by the same value of the variance

http://dx.doi.org/10.1007/978-3-319-41644-1_2
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σ2. This is the structural parameter. The centers ξi of the distributions q are the
incidental parameters. The joint distribution of all xi, j is the product

p(x|ξ,σ) =
N∏
i=1

n∏
j=1

q(xi, j |ξi ,σ)

= (2π)−Nn/2σ−Nn

× exp

(
− 1

2σ2

N∑
i=1

(
(ξi − 〈x〉i )2 + Vi

))
. (10.24)

SectionE.2 shows how to bring the product in the first line of this equation into the
form of the second line.

The likelihood function of the model p is

L(ξ,σ|x) ∝ σ−Nn exp

(
− 1

2σ2

N∑
i=1

(
(ξi − 〈x〉i )2 + Vi

))
. (10.25)

Here, we have set
Vi = 〈x2i, j 〉 − 〈xi, j 〉2 (10.26)

and used averages taken for a given i ,

〈x〉i = n−1
n∑
j=1

xi, j

〈x2〉i = n−1
n∑
j=1

x2i, j . (10.27)

The ML equations require that the logarithmic derivatives of L with respect to
the parameter vanish; that is,

0 = ξi − 〈x〉i , i = 1, . . . , N ,

0 = −Nn

σ
+ 1

σ3

N∑
i=1

(
(ξi − 〈x〉i )2 + Vi

)
. (10.28)

From these ML equations one obtains

ξML
i = 〈x〉i , i = 1, . . . , N ,

(σML)2 = 1

nN

N∑
i=1

(〈x2〉i − 〈x〉2i ) . (10.29)
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The authors of Ref. [1] calculated the expectation values of these estimators with
respect to the distribution p of x. For the structural parameter they find

(σML)2 = σ2(1 − 1/n) , (10.30)

when σ is the true value. This result is independent of the number N of experiments.
From every series of observations the ML value of σ2 seems to underestimate the
true value by the factor of 1 − 1/n. This bias is not removed for any number N
of experiments. Therefore the ML estimation of σ was called inconsistent in many
publications; see the review [11]. The interested reader may confirm Eq. (10.30). In
doing so it is useful to observe that the distribution (10.23) implies that

σ2 = x2i, j − xi, j
2 ,

= x2i, j − ξ2i . (10.31)

Our point of view is: the expectation value (10.30) of (σML)2 need not be equal to
the true value of σ2. The bias noticed by Neyman and Scott is not a valid argument
against ML estimation.

We have seen in Sect. 10.3 that the width of the Bayesian posterior of σ shrinks
with increasing N . The likelihood function (10.25) explains why this is so: the sum
over i in the exponent is of the order of N .

The quantity σML does not run away with N → ∞; in other words the Bayesian
procedure converges. It is not bound to converge towards the expectation value
(10.30). The difference between σML and the expectation value (10.30) changes
when σ is transformed, for example, via Eq. (10.20). One can transform it in such a
way that the difference vanishes. There is no “natural” parameterisation ofσ, thus one
cannot require σML to converge towards any given expectation value. By definition,
the Bayesian posterior distribution is the probability density of the place, where the
true value lies. The scale of the posterior is free to transformations. Thus Bayesian
statistics requires that σML converges with N → ∞. It does not require that σML

converges towards its expectation value. The value to which σML converges is the
true value by definition. In order to show that an ML estimator is not consistent, one
would have to show that it does not converge for N → ∞.
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Chapter 11
Form Invariance II: Natural x

In the present chapter, the symmetry of form invariance - introduced in Chap. 6 - is
generalised to discrete event variables x . In Chap.6 it was assumed that both x and the
hypothesis parameter ξ were real. If x is discrete and ξ is real, form invariance cannot
exist in the sense of (6.23) because there is no transformation of x that can account for
an infinitesimal transformation of ξ. Hence, the definition of form invariance given
in Chap.6 does not cover the case of discrete x . The linear representation (8.20) of
form invariance found in Chap.8 provides the starting point for the more general
definition.

Let the model p(x |ξ) be given with discrete x and real (continuous) ξ. Let a(ξ)
be the vector with the components

ax (ξ) = √
p(x |ξ) . (11.1)

The model is form invariant if a(ξ) is obtained from a(ε) by way of a linear trans-
formation Gξ; that is,

a(ξ) = Gξ a(ε) , (11.2)

and the set of Gξ is a group. The invariant measure of the group is the prior μ(ξ).
Can one give examples of models p(x |ξ) that are form invariant in this sense?

Yes! We discuss two examples, the binomial model in Sect. 11.1 and the Poisson
distribution in Sect. 11.2. The latter one is a limiting case of the binomial model.
Section A.11 gives the solutions to the problems suggested to the reader.

There is a field of research where results from the binomial model have found
widespread attention; this is item response theory (IRT). It is the conceptual basis of
the so-called PISA studies. We devote Chap.12 to IRT.
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11.1 The Binomial Model

The binomial distribution was introduced in Chap.5. It describes simple alternatives.
Each of N observations yields an answer out of two possible ones such as right or
wrong, up or down. In Sect. 11.1.1 the basic binomial model is discussed, where
one answer to a simple alternative is observed: how to define the parameter ξ of the
model? What is the measure on the scale of ξ? In Sect. 11.1.2 the more general case
is treated when N answers are observed to the same alternative. The “same” means
that it is conditioned by the same value of ξ. Of course, N is a natural number.

11.1.1 The Basic Binomial Model

The event variable x takes two values x = 0, 1. The result x = 1 shall be encountered
with probability η, the value x = 0 with probability 1 − η; see Sect. 5.1. Setting

η = sin2 ξ ,

1 − η = cos2 ξ , (11.3)

the binomial model reads

q(x |ξ) = sin2x ξ cos2(x−1) , x = 0, 1 . (11.4)

The two-dimensional vector of amplitudes is

a(ξ) =
(
sin ξ
cos ξ

)
; (11.5)

the amplitude a0 for the event x = 1 is sin ξ and a1 for x = 0 is cos ξ.
The value of ε in Eq. (11.2) is ξ = 0; that is,

a(ε) =
(
0
1

)
. (11.6)

One obtains Eq. (11.2) with the linear transformation

Gξ =
(

cos ξ sin ξ
− sin ξ cos ξ

)
; (11.7)

and the matrix Gξ can be expressed as

Gξ = exp(iξg) , (11.8)

http://dx.doi.org/10.1007/978-3-319-41644-1_5
http://dx.doi.org/10.1007/978-3-319-41644-1_5
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where

g = i

(
0 −i
i 0

)
(11.9)

is the generating operator. This one is Hermitian, whenceGξ is unitary. Because iξg
is real,Gξ is real and orthogonal. The interested readermay show that the expressions
(11.7) and (11.8) agree. For this the power series of the exponential function as well
as those of the trigonometric functions are used.

The expressions (11.7) and (11.8) show that the binomial model with N = 1 is
form invariant. The reader is asked to state the reasons. The multiplication function
of the group of matrices Gξ is

�(ξ; ξ′) = ξ + ξ′ (11.10)

as the interested reader may show. Hence, the invariant measure on the scale of ξ is
uniform.

The geometric measure of Eq. (9.18) is

μg(ξ) =
[

1∑
x=0

(
∂

∂ξ
ax (ξ)

)2
]1/2

= [
sin2 ξ + cos2 ξ

]1/2
≡ 1 . (11.11)

11.1.2 The Binomial Model for N Observations

Now N observations x = (x1, . . . xN ) are given by the binomial model (11.4). Every
xk equals either 0 or 1. All values are conditioned by one and the same value of the
parameter ξ. The distribution of the set of xk is the product

p(x|ξ) =
N∏

k=1

q(xk |ξ) (11.12)

of values given by the model q.
Let the event x contain n times the value xk = 1 and (N − n) times the value

xk = 0. The order of the xk is of no importance because they are all conditioned by
the same ξ. By renumbering them one reaches that

xk = 1 for k = 1, . . . , n ,

xk = 0 for k = n + 1, . . . , N . (11.13)

http://dx.doi.org/10.1007/978-3-319-41644-1_9
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In this way one finds (
N
n

)
− times

the value of sin2n ξ for the product in Eq. (11.12) as well as

(
N

N − n

)
− times

the value of cos2(N−n) ξ. Given the number N of observations the event can be
characterised by n and the distribution p can be written

p(n|ξ) =
(
N
n

)
sin2n ξ cos2(N−n) ξ, n = 0, 1, . . . , N . (11.14)

The sum over all n is

N∑
n=0

p(n|ξ) =
(
N
n

)
sin2n ξ cos2(N−n) ξ

= (
sin2 ξ + cos2 ξ

)N
= 1 (11.15)

as it should be.
The ML estimator ξML(n) of the event n of Eq. (11.13) is the solution of the

equation
∂

∂ξ
ln p(n|ξ)

∣∣∣∣
ξ=ξML(n)

= 0 . (11.16)

We place the estimator into the interval 0 < ξML < π/2. Then the logarithm

ln p(n|ξ) = ln

(
N
n

)
+ 2n ln sin ξ + 2(N − n) ln cos ξ (11.17)

exists and the ML Eq. (11.16) becomes

0 = n
cos ξ

sin ξ
− (N − n) ln

sin ξ

cos ξ
. (11.18)

The solution is
sin2 ξML(n) = n

N
. (11.19)

The interested reader is asked to check this.
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The sin function is periodic and we have to define the interval in which the
condition ξ of the model (11.4) is considered. The ML estimator (11.19) is well
defined for n = 0, 1, . . . , N , where ξ takes values between 0 and π/2. The parameter
η of Sect. 5.1 lies in the interval 0 ≤ η < 1 which seems to restrict ξ to 0 ≤ ξ < π/2.
Especially, negative values of ξ do not seem to be required inasmuch as the sign of
ξ cannot be inferred by counting events. Yet we insist on the probability amplitudes
(11.5) which can be analytically continued to negative values of ξ (and even to any
value of the real parameter ξ). What can be the use of this? This is useful when we
do not infer only one interesting parameter but several or many that are located at
different places on the scale of ξ. The item response theory described in Chap.12
provides an example. When ξ quantifies some phenomenon which is circular by its
nature then ξ is an angle and it is defined between zero and 2π. Negative values of sin ξ
are not inferred by counting events at one setting of the observing apparatus but by
relating the results from several or many settings. To measure an angle, the apparatus
will be moved in small steps of an angle. In this way even negative values of ξ are
inferred, by analytical continuation. The latter is an expression from themathematics
of functions that can be expanded into power series. In practical measurement it
means to trust into a strong continuity of the results obtained at distinct settings of
the apparatus. Then even negative values of a parameter ξ become meaningful.

It happens that one infers parameters requiring an infinite continuous scale
although they are based on the binomial model with its circular symmetry. This
happens, for example, when at every setting of the measuring apparatus one counts
answers to simple alternatives, although the apparatus is moved along a distance
without an end. Attempts to measure human competence provide an example; see
Chap.12.

11.2 The Poisson Model as a Limit of the Binomial Model
for N � n

11.2.1 The Prior and Posterior of the Poisson Model

Let N events be collected that follow the binomial model and all are conditioned by
one and the same parameter ξ which then ranges within 0 < ξ < π/2. With growing
N , ever smaller values of ξML become accessible. The corresponding events are
characterised by N � n. We restrict ourselves to such events. More precisely, we let
n/N become small by increasing N and construct the distribution of n in this limit.
This corresponds to the transition from the binomial model to the Poisson model as
described in Sect. 5.3. Thus the desired model is

p(n|λ) = λn

n! exp(−λ) , n = 0, 1, 2, . . . ; λ > 0 . (11.20)

http://dx.doi.org/10.1007/978-3-319-41644-1_5
http://dx.doi.org/10.1007/978-3-319-41644-1_12
http://dx.doi.org/10.1007/978-3-319-41644-1_12
http://dx.doi.org/10.1007/978-3-319-41644-1_5
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Note that 0! = 1. We use the results of Sect. 5.3 to obtain the measure on the λ scale
and then transform to the parameter ξ such that

ξ2 = λ . (11.21)

With respect to ξ the measure will be constant. Put differently, the λ scale is a
transformation of the ξ scale: we distinguish the distributions of λ by the index T .

The amplitudes of the model (11.20) are

an = λn/2

√
n! exp(−λ/2) . (11.22)

According to Eq. (9.18) the geometric measure is given by

(μT (λ))2 =
∞∑
n=0

(
∂

∂λ
an(λ)

)2

. (11.23)

This can be rewritten as

(μT (λ))2 = 1

4

∞∑
n=0

p(n|λ) (n/λ − 1)2

= 1

4
(n/λ − 1)2 . (11.24)

The overline in the second line of this equation denotes the expectation value with
respect to n. The interested reader may confirm this result. The expectation values
given in Eqs. (5.21) and (5.22) lead to the measure

μT (λ) = 1

2
λ−1/2 . (11.25)

This yields the posterior

PT (λ|n) = 1

�(n + 1/2)
λn−1/2 exp(−λ)

= χ
sq
f (λ|τ = 1) (11.26)

of (11.21). It is a chi-squared distribution with f = 2n + 1 degrees of freedom;
compare Eq. (4.34). Figure11.1 shows two examples of PT (λ|n).

The announced transformation from λ to ξ according to Eq. (11.21) gives

μ(ξ) = μT (λ)

∣∣∣∣dλdξ
∣∣∣∣

≡ 1 . (11.27)

http://dx.doi.org/10.1007/978-3-319-41644-1_5
http://dx.doi.org/10.1007/978-3-319-41644-1_9
http://dx.doi.org/10.1007/978-3-319-41644-1_5
http://dx.doi.org/10.1007/978-3-319-41644-1_5
http://dx.doi.org/10.1007/978-3-319-41644-1_4


11.2 The Poisson Model as a Limit of the Binomial Model for N � n 133

Fig. 11.1 The posterior
(11.26) of the Poisson model
for n = 2 counts and for
n = 10 counts. The ML
estimator is equal to n. The
prior distribution is not
constant, whence the
maximum of the distribution
is shifted with respect to λML

This agrees with Eq. (11.11) which is satisfying because the Poisson model (11.20)
has been obtained as a limiting case of the binomial model (11.4).

Using the parameter ξ, the model (11.20) reads

p(n|ξ) = ξ2n

n! exp(−ξ2) , −∞ < ξ < ∞, n = 0, 1, 2, . . . . (11.28)

Its posterior distribution is

P(ξ|n) = ξ2n

�(n + 1/2)
exp(−ξ2) . (11.29)

This version of the chi-squared distribution with 2n + 1 degrees of freedom is mirror
symmetricwith respect to ξ = 0 as is the posterior of the basic binomialmodel (11.4).
See Fig. 11.2.

The value of ξ = 0 is contained in the domain of definition of ξ; andwhen the event
n = 0 is given, one obtains the estimator ξML = 0. Thus the estimator recommends
ξ = 0 which, when given as a condition, entails

p(n|0) = δn,0 , (11.30)

that is, n = 0 for sure. The interested reader may verify Eq. (11.30). However, the
event n = 0 does not entail ξ = 0 because no Bayesian interval contains the point
ξ = 0; see Fig. 11.2. This makes sense. When one has observed N times the event
n = 0 there is still the possibility to find n = 1 in a further observation. Even a very
large N is not infinite. Every measurement is finite.
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Fig. 11.2 The posterior
(11.29) of the Poisson model
for n = 1, 2, 3 - full lines -
together with a Gaussian
approximation given as
dotted lines. This graph
demonstrates the superior
quality of the Gaussian
approximation when applied
on the ξ scale which has a
uniform measure; compare
P(ξ|2) to PT (λ|2) in
Fig. 11.1

n

11.2.2 The Poisson Model is Form Invariant

Very much as in Sect. 8.4, we can define a matrix g which generates a group of linear
transformations of the amplitude vector a of the Poisson model. This procedure
shows that the Poisson model is form invariant.

We start from the parameterisation (11.28) of the Poisson model. The amplitudes
are

an(ξ) = ξn√
n! exp(−ξ2/2) , −∞ < ξ < ∞ , n = 0, 1, 2, . . . . (11.31)

The derivative of an can be written as a linear combination of an−1 and an+1; one
finds

http://dx.doi.org/10.1007/978-3-319-41644-1_8
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∂

∂ξ
an(ξ) = 1√

n!
(
nξn−1 − ξn+1

)
exp(−ξ2/2)

=
(√

n
ξn−1

√
(n − 1)! − √

n + 1
ξn+1

(n + 1!)
)
exp(−ξ2/2)

= √
n an−1 − √

n + 1 an+1 . (11.32)

This linear combination is obtained by applying the Hermitian matrix

g = i

⎛
⎜⎜⎜⎜⎜⎝

0 1 0 0 0 0
−1 0

√
2 0 0 0

0 −√
2 0

√
3 0 0

0 0 −√
3 0

√
4 0

. . . −√
4

. . .
. . .

⎞
⎟⎟⎟⎟⎟⎠

(11.33)

to the vector a(ξ). Thus we obtain

∂

∂ξ
ax (ξ) = ig a(ξ) . (11.34)

This operator allows for an infinitesimal shift of the parameter ξ because

a(ξ + dξ) = a(ξ) + ∂

∂ξ
a(ξ)dξ

= a(ξ) + ig a(ξ)dξ . (11.35)

The operators
Gξ = exp (iξg) (11.36)

shift the parameter value of a given a to any other one when ξ runs over all real num-
bers; compare Sect. 8.4. The operator (11.36) is orthogonal, because the generator
g is Hermitian. Therefore the operator (11.36) conserves the norm of the vector to
which it is applied. The dimension of the vector a(ξ) as well as the dimension of the
operators g and Gξ is infinite. The operators Gξ form a group G and the invariant
measure on the scale of ξ is uniform. We conclude that the Poisson model is form
invariant and that every amplitude vector a(ξ) is obtained exactly once by applying
all the elements Gξ of the group G to the element

a(0) =

⎛
⎜⎜⎜⎝

1
0
0
...

⎞
⎟⎟⎟⎠ . (11.37)

http://dx.doi.org/10.1007/978-3-319-41644-1_8
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This vector predicts zero counts with probability 1. One can call it the “vacuum”
of events. In Section F it is shown that the generator g is the difference between a
“creation operator” A† and the corresponding destruction operator A. With the help
of their commutation relation one can show that the nth component of the vector

a(ξ) = Gξ a(0) (11.38)

is indeed1 given by Eq. (11.31).
With the uniform prior one obtains the posterior

P(ξ|x) = ξ2x

�(x + 1/2)
exp(−ξ2) , (11.39)

of the Poisson model. The normalisation can be verified with the help of Section
B.1. The distribution P is symmetric under reflection at ξ = 0. Bayesian intervals
have the same property. They contain two equivalent ML estimators at ±√

x . For
every event n > 0 the posterior P vanishes at ξ = 0. Therefore this value is excluded
from any possible Bayesian interval. Hence, when any event has been recorded, the
vacuum state (11.37) is excluded.

In the following chapter a widely used application of the binomial model is
described. To test the competence of persons one asks questions (called “items”
in that context) and registers whether the answers are right or wrong. From suffi-
ciently many of these alternatives a parameter of competence is deduced. Within the
PISA studies this serves to rank different nations according to the competence of
their students.

1The fact that g is related to the creation and destruction operators of events from the Poisson model
(11.28) had been treated quite extensively in the first edition of the present book. Here as well as
in Section F, it is mentioned more as a remarkable curiosity. It would require entering into a new
realm of mathematics, not really needed to explain form invariance of distributions.



Chapter 12
Item Response Theory

Item response theory1 IRT tries to construct a statistical model of measurement in
psychology. Themost frequently usedmodel of IRTcarries the nameofGeorgRasch2

[1–6]. He discovered the principle of “specific objectivity”. This requires assigning
ability parameters θ to persons and difficulty parameters σ to the questions asked
in a test such that differences of abilities do not depend on the specific questions,
and vice versa such that differences of difficulties do not depend on the persons who
establish the difficulty parameters. This requirement attempts to define the notion of
“measurement” in general.

In Sect. 12.1 specific objectivity is described more precisely and some terminol-
ogy of IRT is introduced. In Sect. 12.2 the idea of specific objectivity is used to
construct a form-invariant version of IRT, the trigonometric model, in the frame-
work of Bayesian inference. In Sect. 12.3 “typical” data are analysed and discussed.
Section12.4 establishes the statistical errors of theML estimators. SectionA.12 gives
the solution to the problem suggested to the reader.

1In the first edition of the present book, the place of the present chapter was used to discuss
the independence of parameters in the context of form invariance with a non-Abelian symmetry
group. Such symmetries make it difficult to integrate the posterior distribution over incidental
parameters. Here, we solve the problem with the help of a Gaussian approximation to the posterior;
see Chap.10. Every posterior can be approximated by a Gaussian if the number N of events is
large enough. Marginal distributions of a Gaussian are obtained easily; see Sect. B.2. The Gaussian
approximation requires, however, that the ML estimators of all parameters exist for every event.
This is one of the premises here. The considerations in the former chapter twelve are no longer
needed.
2Georg Rasch, 1901–1980, Danish mathematician, professor at the University of Copenhagen.
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12.1 The Idea of and Some Notions Akin to Item Response
Theory

In the framework of IRT the questions that compose a test are simply called “items”.
A test that allows comparing person parameters as well as item parameters indepen-
dently of its specific items and specific persons, is called specifically objective by
G. Rasch [1, 3, 5, 6] and G.H. Fischer [7–9]. Both authors see specific objectivity
realised when (i) the model “compares” every competence parameter to every diffi-
culty parameter and when (ii) one of the parameter classes can be eliminated from
the model and the other class is estimated. Both requirements concern the Rasch
model. In its framework the comparison between competence and difficulty para-
meters is achieved by introducing the differences (and only the differences) of the
parameters into the model. In the framework of the Rasch model the elimination can
be achieved by considering a subset of the data such that the sufficient statistic for
the eliminated parameters is constant. The sufficient statistics of the Rasch model
are the scores (defined below in Sect. 12.3.1) of both the persons and the items. The
sufficient statistic for a person parameter is held constant by considering data with a
given person score. Under this condition Andersen [10–12] determines the estima-
tors of the item parameters. His method is called an estimation under “conditional
maximum likelihood” (CML). It is described, for example, in the book by Rost [13],
p. 126, and the Ph.D. thesis by Fuhrmann [14], Sect. 3.1.

The Rasch model has found a large-scale application of even political relevance
in the so-called PISA3 studies that ranks school education almost worldwide; see,
for example, [15–20].

Details of the Rasch model are not described in the present work. A comparison -
in terms of philosophical as well as mathematical arguments - between the Rasch and
trigonometric models is given in the Ph.D. thesis [14] by Fuhrmann. The formalism
of the trigonometric model is described here in Sect. 12.2.

The present approach aims at specific objectivity, too. In the framework of
Bayesian inference we consider a model specifically objective if (i) it depends on the
differences between person and item parameters and (ii) the measure on the scale
of the parameters is uniform. Otherwise the meaning of a difference would change
from one place on the scale to another one. A constant measure was requested in
References [21, 22], too. The subject of a measure on the parameter scale does not
appear in Rasch’s work because he did not use Bayesian inference. This holds also
for [7–12].

We derive the measure from the property of form invariance. It is defined by its
invariance under a group of linear transformations of the probability amplitudes;
see Chap.8 and especially Eq. (8.20). One can say that Rasch’s scale maps relations

3PISAmeans a “Programme for International Student Assessment” set up by the OECD, the Organ-
isation for Economic Co-Operation and Development in Paris. Since the year 2000 the competence
of high school participants has been measured and compared in most member states of the OECD
as well as a number of partner states.

http://dx.doi.org/10.1007/978-3-319-41644-1_3
http://dx.doi.org/10.1007/978-3-319-41644-1_8
http://dx.doi.org/10.1007/978-3-319-41644-1_8
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between conditional probabilities whereas the trigonometric scale maps relations
between probability amplitudes.4

The binomial model

q(x p,i |θp,σi ) = [
R(θp − σi )

]x p,i
[
1 − R(θp − σi )

]1−x p,i
. (12.1)

is the basic element of IRT because IRT is based on decisions within binary alter-
natives. The function q is the probability of obtaining the answer x p,i of the pth
person to the i th item. There are two possible answers x p,i = 0, 1 which are inter-
preted as the alternative of false and true. The interested reader is asked to obtain the
expectation values x2, x(1 − x) and (1 − x)2 from the binomial model.

An item response model is defined by the product

p(x|θ,σ) =
NP∏
p=1

NI∏
i=1

q(x p,i |θp,σi ) (12.2)

of the binomialmodels for NP persons and NI items. The fact that p factorises into the
elementary models q expresses the assumption that x p,i is statistically independent
of x p′,i ′ for (p, i) �= (p′, i ′). We use the notation

θ =
⎛
⎜⎝

θ1
...

θNP

⎞
⎟⎠ , σ =

⎛
⎜⎝

σ1
...

σNI

⎞
⎟⎠ (12.3)

for the vectors of the person and item parameters as well as

x = (x p,i ) ; p = 1, . . . , NP ; i = 1, . . . , NI (12.4)

for the matrix of the answers x p,i . When R is given, the model (12.2) depends
parametrically on the person parameters θ and the item parameters σ. This allows
us to infer the parameters from the data matrix x. The function R is called the item
reponse function (IRF).

Inasmuch as the model depends on the differences θp −σi , it remains unchanged
if one adds the same constant to each of its parameters. This freedom is removed by
a convention; we set

NI∑
i=1

σi = 0 . (12.5)

4The author is indebted to Prof. Andreas Müller at the Université de Genève for his proof that
probability amplitudes allow a geometric representation of the symmetry of a statistical model.
This is described in Sects. 4.13 and 4.14 of Ref. [14]. Here in Chap.9, we have seen that the
amplitudes provide the geometric measure.

http://dx.doi.org/10.1007/978-3-319-41644-1_9
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12.2 The Trigonometric Model of Item Response Theory

The item response function R in Eq. (12.1) completes the definition of a model of
IRT. Rasch [1] used the so-called logistic function

R(logi)(θp − σi ) = exp(θp − σi )

1 + exp(θp − σi )
, (12.6)

and the trigonometric model is defined by introducing the IRF

R(θp − σi ) = sin2(π/4 + θp − σi ) (12.7)

into the model of Eqs. (12.2) and (12.1). As in Sect. 4.3 of [14], a shift of π/4 in
the argument of the sin2 function places the point θp − σi = 0 at the center of the
region of monotonic increase of the IRF. A trigonometric IRF was first suggested in
[23, 24].

The function (12.7) turns the binomial model (12.1) into

q(x p,i |θp,σi ) = [
sin2(π/4 + θp − σi )

]x p,i
[
cos2(π/4 + θp − σi )

]1−x p,i (12.8)

so that the trigonometric model is

p(x|θ,σ) =
NP∏
p=1

NI∏
i=1

[
sin2(π/4 + θp − σi )

]x p,i
[
cos2(π/4 + θp − σi )

]1−x p,i
.

(12.9)
The vector a of probability amplitudes of the binomial model is now

a(ξ) =
(
sin(π/4 + θp − σi )

cos(π/4 + θp − σi )

)
. (12.10)

In Chap.11 we have seen that this parameterisation guarantees a uniform measure.
As is shown by Eq. (11.11), the geometric measure is identically equal to unity.

The trigonometric model yields the ML estimators as solutions of the system of
equations

0 =
NI∑

i=1

[
x p,i cot

(
π/4 + θp − σi

)
− (1 − x p,i ) tan

(
π/4 + θp − σi

)]
,

p = 1, . . . , NP ;

0 =
NP∑
p=1

[
x p,i cot

(
π/4 + θp − σi

)
− (1 − x p,i ) tan

(
π/4 + (θp − σi

)]
,

i = 1, . . . , NI (12.11)

obtained by requiring the logarithmic derivatives of p to vanish.

http://dx.doi.org/10.1007/978-3-319-41644-1_11
http://dx.doi.org/10.1007/978-3-319-41644-1_11
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On the trigonometric scale the estimators roughly follow the scores of the persons
as well as the items. On the whole, but not in the details, we shall find: the smaller the
number of correctly solved items (i.e. the person score), the smaller is the competence
parameter of a person. The analyses of (artificially generated) data in Sect. 12.3 will
show it. They also show that the estimators are all placed on the increasing part of
the sin function.

12.3 Analysing Data with the Trigonometric Model

12.3.1 The Guttman Scheme

The most schematic set of data that one can imagine to arise from a competence test
is given by a data matrix x which allows us to order persons and items according
to the numbers of correct answers obtained. An example for N = NP = NI = 10
is given in Table12.1. The persons p = 1, . . . , 10 are ordered according to the
decreasing number of correct answers. This number is called the score of a person.
The items i = 1, . . . , 10 are ordered with an increasing number of correct solutions.
This number is called the score of an item. The data matrix of Table12.1 is called
a Guttman scheme [25]. The possibility of ordering persons and items according to
their scores lets a sharp transition from false to correct answers appear at the diagonal
of x. Below the diagonal one finds false answers, above it the correct answers. Such
a data matrix may be a very improbable result from a test. We discuss it because
one can analytically write down the ML estimators that it entails. The estimators are
linear functions of the respective scores. This is shown by Fuhrmann in Sect. 4.8.2
of his work [14]. There is more than that. Even for tests with a gradual instead of a
sharp transition from false to correct, the ML estimators approximately follow the
linear functions of the scores obtained from Guttman data. The numerical iteration
procedure that solves the ML Eq. (12.11) can be started with the estimators of a
Guttman scheme; see Sect. 4.8.3 of [14]. This allows a fast and safe solution of the
nonlinear Eq. (12.11).

Given the data of Table12.1, the ML estimators are

θML
p =

(
tp − N

2

)
�, for p = 1, . . . , N ,

σML
i =

(
N + 1

2
− si

)
�, for i = 1, . . . , N . (12.12)

Here,

tp = N + 1 − p ,

si = i (12.13)
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Table 12.1 Guttman ordered x with dimension N = 10. The estimators of the person parameters
are given in the last column; the estimators of the item parameters are listed in the last line

i=1 i=2 i=3 i=4 i=5 i=6 i=7 i=8 i=9 i=10 θML
p

p=1 1 1 1 1 1 1 1 1 1 1 0.79

p=2 0 1 1 1 1 1 1 1 1 1 0.63

p=3 0 0 1 1 1 1 1 1 1 1 0.47

p=4 0 0 0 1 1 1 1 1 1 1 0.31

p=5 0 0 0 0 1 1 1 1 1 1 0.16

p=6 0 0 0 0 0 1 1 1 1 1 0.00

p=7 0 0 0 0 0 0 1 1 1 1 −0.16

p=8 0 0 0 0 0 0 0 1 1 1 −0.31

p=9 0 0 0 0 0 0 0 0 1 1 −0.47

p=10 0 0 0 0 0 0 0 0 0 1 −0.63

σML
i 0.71 0.55 0.39 0.24 0.079 −0.079 −0.24 −0.39 −0.55 −0.71

are the scores of the persons and items, respectively. The step width

� = π

2N
(12.14)

is given by the length π/2 of the monotonically increasing part of the sin function
and the number N = 10 of available scores. See Sect. G.1 for the proof that the
expressions (12.12) solve the ML Eq. (12.11).

It is possible to modify the Guttman scheme such that NP � NI whereas the data
can still be characterised entirely by the scores.

We note that the Rasch model - whose sufficient statistics are the scores - does not
allow analysis of the Guttman scheme, whose data are characterised by the scores.
See [24] and Sect. 3.1.7 of [14].

12.3.2 A Monte Carlo Game

We have said that a data matrix x showing a gradual transition from false to correct
answers leads to ML estimators that approximately follow linear functions of the
scores. The trigonometric model generates such a gradual transition. The deviations
of the estimators from those linear functions are now studied. For this a data matrix
x has been generated by a Monte Carlo simulation of the trigonometric model.

The simulation comprises NP = 500 persons and NI = 20 items. The “true
values” of both parameters, θp and σi , were chosen between−π/2 and+π/2. In this
interval the sin function is monotonically increasing. The parameters were given at
constant steps of θp+1−θp and constant steps of σi+1−σi . These values were fed into
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a random number generator5 which produced the x p,i according to the distribution
(12.8).

Figure12.1 visualises one fifth of the simulated data matrix, the part with the
most competent persons. There is a black square for a correct answer x p,i = 1 and
an empty square for a false answer x p,i = 0. The persons p label the rows of the
matrix. They are ordered according to the values of the estimators θML

p . The most
competent person is given in the top row. Thus the persons are ordered such that the
ML estimators decrease with increasing index p. The items label the columns. The
most difficult item is given in the left-hand column,whence the items are ordered such
that their ML estimators again decrease with increasing index i . The ML estimators
have been found by numerically solving6 the ML Eq. (12.11).

One observes that the order of the ML estimators basically corresponds to the
order of the scores. The person p = 1 with the highest parameter solves all items
correctly. There is no “hole” within the black of the topmost row of Fig. 12.1. The
following rows p = 2, . . . , 12 each contain one hole. These persons all have the
score tp = 19. They are followed by 17 persons p = 13, . . . , 29 where one sees two
holes: that is, score tp = 18, and so on.

Looking at the total of Fig. 12.1 we observe the characteristic difference to the
Guttman scheme treated in Sect. 12.3.1. There is no sharp boundary between the
black area of correct answers and the white area of false answers. The trigonometric
model entails a diffuse transition from one area to the other one.

The diffuseness is not entirely structureless; one recognises systematic features
within the region of transition from false to correct answers. Look at the persons
within a group of the same score, for example, the group of persons p = 2, . . . , 12
with tp = 19. A sequence of white holes appears within the black area such that
the holes move deeper and deeper into the black as p increases. In other words, the
person score remaining constant, the person parameter decreases as the unsolved
item becomes easier. This still allows us to interpret the ML estimator as an ability
parameter. A similar structure is observed for the two holes that characterise the
group p = 13, . . . , 29 with tp = 18, and so on. Thus the ability estimator, although
it essentially is a monotonic function of the score, is fine-tuned by the difficulty
of the items: the more difficult the solved items, the higher is the estimator. The
trigonometric model unravels the order beyond the score which is present in the
individual patterns of the data matrix.

Sometimes the “fine-tuning” overrules the order of the scores. One finds “intrud-
ers”, that is, persons lying within a group of the neighboring score. The person
p = 61 with two holes, that is, score 18, is found within the group of three holes,

5The Monte Carlo simulation has been executed in the framework of EXCEL 2003. This system
provides the function RAND to generate random numbers. It is described under http://support.
microsoft.com/kb/828795/en-us. The author is endebted to Dr. Henrik Bernshausen, University of
Siegen (Germany), Fachbereich Didaktik der Physik, for carrying out the Monte Carlo simulation.
6The solution of the ML equations has been obtained with the help of the “Euler Math Toolbox”. It
provides the same routines as “R” or “STATA” to deal with matrices. Details are given in Sections
B and C of the Ph.D. thesis [14]. The author is indebted to Dr. Christoph Fuhrmann, Bergische
Universität Wuppertal (Germany), Institut für Bildungsforschung, for the numerical calculations.

http://support.microsoft.com/kb/828795/en-us
http://support.microsoft.com/kb/828795/en-us
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Fig. 12.1 Data matrix given
by a Monte Carlo simulation.
A black (empty) square
denotes a correct (false)
answer. The test comprises
NP = 500 persons and
NI = 20 items. The most
competent 100 persons are
displayed (i.e. one fifth of the
entire data matrix is shown).
Both, person and item
parameters, decrease with
increasing index
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that is, score 17. One of the items unsolved by p = 61 lies beyond the center of the
black area. This holds also for the intruder p = 84 having score t83 = 17 within
the group of score 16. The existence of the intruders shows that the trigonometric
model does not only provide information in addition to that given by the scores; it
may modify the order of the scores.

We conclude: the ML estimators of the trigonometric model depend on the indi-
vidual patterns of answers in a way that allows for a meaningful interpretation of the
person parameters as measures of ability.

The itemparameters cannot be discussed likewise because, in the present example,
their number NI is much smaller than the number NP of persons. Whence, there is
more than one person for every possible person score, and the possible item scores
do not all occur even once.

It is obvious from Fig. 12.1 that the scores are not the sufficient statistics of the
trigonometric model. Nevertheless one finds the estimators θML

p to be approximately
given by a linear function of the scores. The difference between this linear function
and the actual value of θML

p is not merely random; it contains information on the
individual strengths or weaknesses of the person p.

12.4 The Statistical Errors of the ML Estimators of Item
Response Theory

In Sect. 10.1.1 we have explained that the uncertainty of estimated parameters is
derived from a Gaussian approximation to the posterior distribution of these para-
meters. The statistical model yields the Fisher matrix F. Its inverse is the correlation
matrix C = F−1 of the Gaussian. The diagonal elements of C are the variances
of the parameters. The square root of a variance is the “root mean square value”
or Gaussian error of the respective parameter. The present section is devoted to the
calculation of the Gaussian errors of both the person and the item parameters of the
trigonometric item response theory.

In Sect. G.2 the Fisher matrix is derived under the assumption that the convention
(12.5) may be replaced by setting the item parameter σNI equal to zero. This is
valid because we show that the statistical errors do not depend on the values of
the parameters θp,σi . Thus the errors do not change when one shifts the system of
parameters, obtained under the condition σNI = 0, such that the convention (12.5)
is met.

In this way we show in Sect. G.2 that the Fisher matrix of the trigonometric model
is an (NP + NI − 1)-dimensional matrix with the structure

F = 4

(
a , s
r , b

)
, (12.15)

http://dx.doi.org/10.1007/978-3-319-41644-1_10
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where the submatrices a and b are diagonal and refer to the person and item para-
meters, respectively. The diagonal matrix

a = NI 1NP (12.16)

is proportional to the unit matrix in NP dimensions. The matrix

b = NP 1NI −1 (12.17)

is proportional to the unit matrix in NI − 1 dimensions. The reduction from NI

to NI − 1 dimensions is due to the fact that one of the item parameters is given
independently of the data. The matrix s is rectangular; it has NP rows and NI − 1
columns. Its elements

s =
⎛
⎜⎝

−1, . . . , −1
...

...

−1, . . . , −1

⎞
⎟⎠ (12.18)

are all equal to −1. The matrix
r = s† (12.19)

is the transpose of s.
Note that all elements of F are independent of the parameters (θ, σ) of the

trigonometric model. Therefore the prior distribution of every parameter is uniform;
that is, the measure on its scale is uniform. This is what we had required in the
beginning of Sect. 12.1 for a statistical model of IRT. This requirement has led to the
trigonometric IRF (12.7).

Let us calculate the determinant of F. It is needed to obtain the inverse of F as
well as to check whether theML estimators of all the parameters of the trigonometric
model are well defined. We start by rewriting the matrix in Eq. (12.15) as

(
a, s
r, b

)
=

(
1NP , s
0, b

)(
1NP − sb−1ra−1, 0

b−1ra−1, 1NI

)(
a, 0
0, 1NI

)
. (12.20)

The determinant of a triangular block matrix equals the product of the determinants
of the blocks found in the diagonal. This rule yields the determinant of F as

det(F) = 4NP +NI −1 det(a) det(b) det
(
1NP − sb−1ra−1

)

= 4NP +NI −1N NP
I N NI −1

P det
(
1NP − N−1

I N−1
P sr

)
. (12.21)

By introducing the NP -dimensional vector
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|e〉 =

⎛
⎜⎜⎜⎝

1
1
...

1

⎞
⎟⎟⎟⎠ (12.22)

as well as its transpose
|e〉† = 〈e| , (12.23)

one sees that
N−1

I N−1
P sr = N−1

I N−1
P |e〉〈e| . (12.24)

Here, |e〉〈e| is the dyadic product of the vector (12.22) with itself. The determinant
of a combination of the unit matrix with a dyadic product is

det
(
1 − |e〉〈 f |

)
= 1 − 〈 f |e〉 ; (12.25)

whence we obtain

det(F) = 4NP +NI −1N NP
I N NI −1

P

(
1 − N−1

I N−1
P (NI − 1)NP

)

= 4NP +NI −1N NP −1
I N NI −1

P . (12.26)

This does not vanish. Hence, all NP + NI −1 parameters of the trigonometric model
can be estimated and the inverse of F exists.

To write down the Gaussian approximation to the posterior of the model of
Eqs. (12.2)–(12.3), we construct the (NP + NI − 1)-dimensional vector

ζ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

θ1
...

θNP

σ1
...

σNI −1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

(12.27)

of all parameters of the model. Then the Gaussian approximation is given by the
expression

P(ζ|x) ≈ (2π)−(NP +NI −1)/2(det C)−1/2

× exp
(−(ζ − ζML)†(2C)−1(ζ − ζML)

)
. (12.28)

To obtain the Gaussian errors

�ζk = √
Ck,k , k = 1, . . . , (NP + NI − 1) (12.29)
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of the estimators, we have to know the diagonal elements Ck,k of the correlation
matrix C = F−1; that is, we have to invert the Fisher matrix.

The diagonal elements of F−1 are given by

Ck,k = det(F (k,k))

det(F)
. (12.30)

Here, the matrix F (k,k) is obtained by omitting the kth row and the kth line from F ;
see, for example, Sects. 13.116, 13.117, and 14.13 of [26]. In Sect. G.3 it is shown
that

det(F (p,p)) = 4NP +NI −2 N NP −2
I N NI −2

P (NI +NP −1) , p = 1, . . . , NP (12.31)

for the elements that refer to the person parameters. Together with Eq. (12.26) one
obtains

C p,p = 1

4

(
1

NP
+ 1

NI
− 1

NP NI

)
, p = 1, . . . , NP . (12.32)

For the Gaussian approximation to hold, the numbers NP and NI of persons and
items must be large campared to 1. Then the last result can be approximated by

C p,p ≈ 1

4

(
1

NP
+ 1

NI

)
, p = 1, . . . , NP . (12.33)

When the number of persons is large compared to the number of items then this
reduces to

C p,p ≈ 1

4NI
for NP � NI (12.34)

which means that the Gaussian error of the person parameters depends only on the
number of items answered. This is reasonable because in that limit (as we show) the
error of the item parameters becomes small as compared to the error of the person
parameters; that is, the item parameters can be considered to be known exactly.
Equation (12.34) was obtained in Eq. (81) in Sect. 4 of Ref. [14].

The diagonal elements of C referring to the item parameters are

CNP +i,NP +i = det(F (NP +i,NP +i))

det(F)

= 4NP +NI −2 2N NP −1
I N NI −2

P

det(F)
, i = 1, . . . , NI − 1 . (12.35)

The second line of this equation is proven in Sect. G.3. Together with (12.26) one
obtains
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CNP +i,NP +i = 1

2NP
, i = 1, . . . , NI − 1 . (12.36)

The fact that the result CNP +i,NP +i for the item parameters is not obtained from the
result C p,p for the person parameters by interchanging NP with NI , is due to the
convention about one of the item parameters. Yet Eq. (12.33) agrees with (12.36) in
the case where NP = NI .

In Sect. 4.4 of his work [14], Fuhrmann shows that the statistical errors of the
estimators obtained from the Rasch model are larger or at best equal to the errors
obtained from the trigonometric model.
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Chapter 13
On the Art of Fitting

13.1 General Remarks

Fitting a set of observations x = (x1, . . . , xN ) means that one hopes to have a theo-
retical understanding of the observations and wants to see whether theory and data
fit to each other. The theory is expressed by a family of distributions p(x|ξ) which
parametrically depends on ξ = (ξ1, . . . , ξn). The parameters are “optimised” such
that the theory comes as close as possible to the observations. This procedure is a
subject of the present book anyway: parameters are optimised by determining their
ML estimators ξML. The existence of the estimators is required.

The observations are supposed to be events from a statistical model. Is this really
necessary? The answer is, “Yes”: a fit is immediately followed by the question, “Is the
fit satisfactory?” This question is answered1 by looking at the observations, noting
their deviations from the theory and deciding whether the sum over the deviations
is acceptable. When any deviation between fit and observation is tolerated then the
observations must be statistically distributed, and their distribution must be known.

In Sect. 13.2 an example is discussed where the observations follow a Gaussian
distribution. The decision about the validity of the fit is taken on the basis of a so-
called chi-squared criterion. Section13.3 discusses the case where the observations
are given in terms of natural numbers. In this case, not the distribution of the events
but rather its posterior - which is a chi-squared distribution - becomes the basis of
the decision. So the decision is again obtained by a chi-squared criterion. If it were
possible to approximate every distribution of one real parameter by a chi-squared
distribution, then one could base every decision about the validity of a fit on a chi-
squared criterion. This possibility is worked out in Sect. 13.4. Section A.13 gives the
solutions to the problems suggested to the reader.

1The present chapter replaces and summarises Chaps. 13–16 of the first edition of this book.

© Springer International Publishing Switzerland 2016
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13.2 The Chi-Squared Criterion

Figure13.1 illustrates the question: “Do the points and the curve fit to each other?”
The graph presents results from experiments designed to verify the principle of
detailed balance which says that, except for factors due to the relevant phase spaces,
the probability for a certain reaction to occur equals the probability for the inverse
reaction. The notion of detailed balance is taken from chemistry. The example of
Fig. 13.1 is taken from nuclear physics. The fluctuating curve shows the cross-section
of a (p,α) reaction. This curve can be considered as the “theory” because it has been
measured to much higher precision than the points which refer to the inverse reaction
(α, p).Are the cross-sections of forward and backward reaction compatiblewith each
other?

We label the points by the index k = 1, . . . , N . The corresponding ordinate is the
event xk . At the same abscissa the curve shall have the ordinate ξk . The error bars in
Fig. 13.1 give the root mean square values σk of the Gaussian distributions

q(xk |ξk) = (2πσ2
k )

−1/2 exp

(
− (xk − ξk)

2

2σ2
k

)

k = 1, . . . , N . (13.1)

of each point. The variances σ2
k shall be known.

Fig. 13.1 Experimental
verification of the principle
of detailed balance. A piece
of excitation function of the
nuclear reaction
27Al(p,α)24Mg is given by
the curve. The reverse
reaction 24Mg(α, p)27Al is
represented by the points
with error bars. The
experiment [1] showed that
the cross-sections of both
reactions agree to a high
precision; see also [2, 3]
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The sum of the squared differences, divided by σ2
k ,

T =
N∑

k=1

(xk − ξk)
2/σ2

k , (13.2)

has the chi-squared distribution

χ
sq
N (T |τ ) = 1

�(N/2)
τ−1

(
T

τ

)N/2−1

exp

(
−T

τ

)
(13.3)

with N degrees of freedom; see Sect. 4.1.3. The scaling parameter is

τ = 2 . (13.4)

The decision whether the theory fits the data is obtained by considering the dis-
tribution of the quantity T . According to Eq. (4.35) it has the expectation value

T = N

2
. (13.5)

If T is much larger than this, one shall reject the hypothesis that theory and observa-
tions fit to each other. The limit T>, where the rejection occurs is chosen such that
the probability 1 − K to find T > T> is small. Then the rejection of the hypothesis
is justified with the probability K close to unity. The precise value of T> depends on
the choice of K left to the experimenter.

In the framework of Bayesian statistics one can just as well ask whether the
value (13.4) of the parameter τ is compatible with the event T . The decision will
be the same. This amounts to basing the decision on the posterior of the model
(13.3) rather than the distribution of T . The possibility to interchange T with τ
becomes most conspicuous when we transform the chi-squared distribution such
that its symmetry becomes translational as in Eq. (2.15). One such possibility is
given by the transformations

y = ln T ,

η = ln τ (13.6)

that lead to Eq. (4.39),

χ̃
sq
N (y|η) = 1

�(N/2)
exp

(N

2
[y − η] − ey−η

)
. (13.7)

The geometric measure (9.18) on the scale of η is uniform; its value is

μg(η) =
(N

8

)1/2
, (13.8)

http://dx.doi.org/10.1007/978-3-319-41644-1_4
http://dx.doi.org/10.1007/978-3-319-41644-1_4
http://dx.doi.org/10.1007/978-3-319-41644-1_2
http://dx.doi.org/10.1007/978-3-319-41644-1_4
http://dx.doi.org/10.1007/978-3-319-41644-1_9
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see Sect. H.1. This measure is common to η and y, whence the expression (13.7) is
the probability density of the difference between y and the known value

η = ln 2 . (13.9)

Unfortunately, the position of the maximum of the likelihood (13.7) depends on the
number of degrees of freedom. One has

ηML = y − ln(N/2) . (13.10)

The interested reader may want to verify this estimate.
A Gaussian approximation to the distribution (13.7) is most meaningful when η

is defined such that ηML does not depend on N . This is reached if one shifts the
parameter η to

η′ = η + ln(N/2) (13.11)

which turns the chi-squared model into

χ̃
sq
N (y|η′) = 1

�(N/2)
exp

(N

2
[y − η′ + ln(N/2)] − ey−η′+ln(N/2)

)

= (N/2)N/2

�(N/2)
exp

(N

2
[y − η′ − ey−η′ ]

)
, (13.12)

and the maximum is now given
η

′ML = y (13.13)

for any degree of freedom.
The parameterisation (13.12) is the best possible one for a Gaussian approxima-

tion. The Fisher function (or the inverse variance of the Gaussian) is

F = N

2
. (13.14)

Thus the Gaussian approximation to the chi-squared model is

χ̃
sq
N (y|η) ≈

( N

4π

)1/2
exp

(
− N

4
(y − η′)2

)
. (13.15)

Here, η′ is given by Eqs. (13.6) and (13.11), and y is given by Eqs. (13.2) and (13.6).
The interested reader is asked to verify the approximation (13.15).

The distributions (13.12) or (13.15) can be used to find the Bayesian intervalB(K )

(see Chap.3) in which the difference

y − η′ = ln(T/N ) (13.16)

is found with the probability K close to 1.

http://dx.doi.org/10.1007/978-3-319-41644-1_3
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If y − η′ is in B(K ), one accepts the hypothesis that the theory fits the data. If
y − η′ is outside B(K ), the hypothesis is rejected. This is what we call the chi-
squared criterion. It resembles the popular chi-squared test, often applied to decide
whether a fit is reasonable; one finds it in Chap.11 of [4], in Sect. 9.1.2 of [5], or in
Chap.12 of [6]. However, the chi-squared criterion and the chi-squared test are not
the same. For the criterion, we transform via Eqs. (13.6) and (13.11) to a scale on
which the measure is uniform. This allows for the Gaussian approximation (13.15)
at the lowest possible number N of events.

The Bayesian interval B(K ) of the variable (13.16) is such that the hypothesis is
accepted for y − η′ = 0, where the maximum of the likelihood (13.12) occurs. For
y − η′ > 0 the value of T is larger than its expected value N/2. For y − η′ < 0 the
value of T is smaller than N/2. For y − η → −∞ the value of T approaches zero,
where the observations xk coincide with the theory ξk; see Eq. (13.2). Close to this
limit one cannot reject the hypothesis that the theory fits the data. One rather would
try to simplify the theory. This can be done on the basis of a philosophical argument
frequently used in the natural sciences. “Occam’s razor”2 helps to avoid unnecessary
complication: among the models compatible with the observations x, the one with
the smallest number of parameters is considered the best.

In the following sections the chi-squared criterion is generalised to cases where
the observations xk do not follow a Gaussian distribution, especially where the xk
are natural numbers.

13.3 A Histogram of Counts

Figure13.2 shows three resonances in elastic proton scattering off 54Fe.The abscissa
gives the energy of the protons incident on the target. The ordinate is the scattering
cross-section. The points are the observed events. They stand for the counted numbers
of recorded protons (before the counts are converted to the cross-section with the unit
mb/sr). This example is rooted in quantum mechanics, because the intensity of the
radiation comes in quanta. The number nk recorded in the kth bin of the histogram
is an event from the Poisson model

q(nk |λk) = λnk
k

xk ! e
−λk , nk = 0, 1, 2, . . . ;λk > 0, (13.17)

2William Occam (or William of Occam), c.1285–c.1349, English philosopher, theologian, and
political writer. He developed a critical epistemology that influenced modern science via Leibniz
and Kant.
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Fig. 13.2 Resonances in
elastic proton scattering on
54Fe. Three resonances
appear on each part of the
figure. They are viewed
under different scattering
angles �L AB on the four
parts. See text. The figure is
from [7]

compare Sect. 11.2. The parameter λk is the expectation value of nk; compare
Sect. 5.3. Thus the histogram in Fig. 13.2 is distributed according to the model

p(n|λ) =
N∏

k=1

q(nk |λk)

=
N∏

k=1

λnk
k

nk ! exp(−λk) . (13.18)

http://dx.doi.org/10.1007/978-3-319-41644-1_11
http://dx.doi.org/10.1007/978-3-319-41644-1_5
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In Fig. 13.2, the deviations between the points and the line are due to this distribution
of n provided that the theory, represented by the line, fits the observed points. We
want to decide whether this is the case.

For this decision we introduce the prior (11.25) of the model (13.17) and obtain
its posterior

Q(λk |nk) = 1

�(nk + 1/2)
λ
nk−1/2
k e−λk

= χ
sq
fk
(λk |τ = 1) . (13.19)

It is a chi-squared distribution with

fk = 2nk + 1 (13.20)

degrees of freedom; the notation follows Eq. (11.26). For the desired decision we
introduce a scaling parameter sk and thus generalise the distribution (13.19) to the
chi-squared model

Q(λk |nk) = χ
sq
fk
(λk |sk)

= 1

�( fk/2)
s−1
k

(λk

sk

) fk/2−1
exp

(
− λk

sk

)
,

0 < λk, sk < ∞, (13.21)

with fk degrees of freedom, where fk is given by Eq. (13.20). The scaling parameter
sk is given by the ordinate of the curve in Fig. 13.2. This curve is the result of
fitting three resonances and a slowly varying background to the points in the figure.
Each resonance is characterised by three parameters: its position, its width, and its
strength. The resonances interfere with the background. For this reason the measured
intensity may drop below the level of the background. The mathematical model of
scattering theory, used to describe the three resonances plus background, has about
a dozen parameters which are determined by the procedure of fitting. The number
of observed points, that is, the number of bins in the histogram in Fig. 13.2, is about
100. Therefore it is by no means clear that the set of sk fits the observations. This is
decided by answering the question: “Are the ratios λk/sk as a whole compatible with
the numbers nk?”

The answer is given by the fact that the sum

T =
N∑

k=1

λk/sk (13.22)

has a chi-squared distribution with

http://dx.doi.org/10.1007/978-3-319-41644-1_11
http://dx.doi.org/10.1007/978-3-319-41644-1_11
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f tot =
N∑

k=1

(2nk + 1) (13.23)

degrees of freedom. This is the sum over the degrees of freedom fk assigned to every
bin. The proof is given in Sect. H.2. By consequence the quantity T follows the
distribution

P(T |n) = χ
sq
f tot (T |τ ) . (13.24)

The scaling parameter τ in this model is chosen such that the expectation value of T
agrees with the expectation value of the sum in Eq. (13.22); that is,

T =
N∑

k=1

λk/sk . (13.25)

The distribution (13.21) of λk yields

λk = fk
2
sk . (13.26)

Compare Eq. (4.35). By Eqs. (13.20) and (13.25) the expectation value of T is

T = 1

2

N∑
k=1

(2nk + 1)

= f tot

2
. (13.27)

By a further use of Eq. (4.35) the scaling parameter is

τ = 1 . (13.28)

Thus the distribution of T is

P(T |n) = χ
sq
f tot (T |τ = 1)

= 1

�( f tot/2)
T f tot/2−1 exp(−T ) . (13.29)

The number

f tot = 2
( N∑

k=1

nk
)

+ N (13.30)

of degrees of freedom can be seen as a generalisation of Eq. (13.20): the sum over the
nk is the (total) number of counts, and N is unity if only a single bin is considered.

http://dx.doi.org/10.1007/978-3-319-41644-1_4
http://dx.doi.org/10.1007/978-3-319-41644-1_4
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As in Sect. 13.2 we transform T to

y = ln T

= ln
( N∑

k=1

λk

sk

)
(13.31)

and τ to

η = ln τ

= 0 . (13.32)

This leads to a distribution χ̃sq as given by Eq. (13.7); that is, the distribution of y is

χ̃
sq
f tot (y|η = 0) = 1

�( f tot/2)
exp

( f tot

2
y − ey

)
. (13.33)

The measure μg on the scale of y is uniform; its value is given by Eq. (13.8); that is,

μg =
( f tot

8

)1/2
. (13.34)

Thus (13.32) is a likelihood function. The position of its maximum depends on f tot

in analogy to the result (13.10). Therefore we shift η to

η′ = η − ln
f tot

2

= − ln
f tot

2
(13.35)

in analogy to (13.11). This turns the distribution of y into

χ
sq
f tot (y|η′) = ( f tot/2) f tot/2

�( f tot/2)
exp

( f tot

2
[y − η′ − ey−η′ ]

)
, (13.36)

where Eq. (13.13) applies.
This Fisher function of (13.35) is

F = f tot

2
(13.37)

which yields the Gaussian approximation

χ̃
sq
f tot (y|η′) ≈

( f tot

4π

)1/2
exp

(
− f tot

4
(y − η′)2

)
(13.38)

in analogy to (13.15). Here, η′ is given by Eq. (13.34) and y by Eq. (13.30).
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As in Sect. 13.2, the distributions (13.35) or (13.37) can be used to find the
Bayesian interval B(K ) in which

y − η′ = ln
T

f tot
(13.39)

is found with probability K .

13.4 The Absolute Shannon Information

The last Sect. 13.3 has shown that when one were able to approximate every (one-
dimensional) posterior by a chi-squared distribution then one could devise a chi-
squared criterion about the validity of every fit. In the present section we hope to
present a reasonable way to achieve this approximation. The Shannon information of
a given distribution will determine the number of degrees of freedom that the desired
approximation must provide.

The Shannon information S has been introduced in Sect. 2.6. However, the expres-
sion (2.33) does not provide a well-defined, unique value. It depends on the para-
meterisation of the distribution w. A transformation of the integration variable x in
Eq. (2.33) generally changes the value of S. This is due to the logarithm in the inte-
grand. It does not transform like a function in the sense of Sect. 2.2. In Sect. 13.4.1
we modify the definition of the Shannon information such that S becomes invariant
under transformations of its integration variable. In this way, an absolute value of the
Shannon information is obtained. By the same token the Shannon information of the
(posterior of) a form-invariant model becomes independent of its parameter value.

The absolute Shannon information for chi-squared distributions is given in
Sect. 13.4.2 as a function of the number N of degrees of freedom. By numerically
calculating the (absolute) Shannon information of any posterior one can assign an
“effective” number of degrees of freedom to it and in this way approximate it by a
chi-squared distribution.

13.4.1 Definition of the Absolute Shannon Information

Let p(x |η) be a form-invariant model with the geometric measure μg(η) on the one-
dimensional scale of η.Weconsider the Shannon information of the posterior P(η|x).
The conventional information S fromEq. (2.33) would change under transformations
of η. In other words, S would depend on η. We suggest the definition

S =
∫

dη P(η|x) ln P(η|x)
μg(η)

. (13.40)

http://dx.doi.org/10.1007/978-3-319-41644-1_2
http://dx.doi.org/10.1007/978-3-319-41644-1_2
http://dx.doi.org/10.1007/978-3-319-41644-1_2
http://dx.doi.org/10.1007/978-3-319-41644-1_2
http://dx.doi.org/10.1007/978-3-319-41644-1_2
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The value of S remains unchanged under any transformation of the variable η; see
Sect. 6.4. Then it is immaterial whether one calculates the Shannon information from
the version (4.34) or the version (4.39) of the chi-squared model with N degrees of
freedom. The result is the same provided that compatible measures are used in the
two calculations. Remember that the invariant measure (6.33) is determined only up
to an arbitrary factor. In the definition (13.40), we use the geometric measure μg of
Eq. (9.18) which is uniquely defined. Therefore we call (13.40) the absolute Shannon
information.

13.4.2 The Shannon Information Conveyed
by a Chi-Squared Distribution

The absolute Shannon information of the chi-squared distribution (4.39),

χ̃
sq
N (y|η) = 1

�(N/2)
exp

(N

2
[y − η] − ey−η

)
, (13.41)

is now calculated. The geometric measure is found from the second line of Eq. (9.18),

μ2
g(η) = 1

4
F , (13.42)

where F is the Fisher function of the model (13.41). This leads to

μ2
g(η) = −1

4

1

�(N/2)

∫
dy exp

(N

2
(y − η) − ey−η

) ∂2

∂η2

[N
2

(y − η) − ey−η
]

= 1

4

1

�(N/2)

∫
dy exp

(N

2
(y − η) − ey−η

)
ey−η

= 1

4

1

�(N/2)

∫
dy exp

(
(
N

2
+ 1)y − ey

)

= 1

4

�(N/2 + 1)

�(N/2)
. (13.43)

The step from the third to the last line of this equation is done by virtue of the
normalisation of the distribution (13.41). The property (B.24) of the � function
gives

μ2
g(η) = 1

4

N

2

= N

8
. (13.44)

http://dx.doi.org/10.1007/978-3-319-41644-1_6
http://dx.doi.org/10.1007/978-3-319-41644-1_4
http://dx.doi.org/10.1007/978-3-319-41644-1_4
http://dx.doi.org/10.1007/978-3-319-41644-1_6
http://dx.doi.org/10.1007/978-3-319-41644-1_9
http://dx.doi.org/10.1007/978-3-319-41644-1_4
http://dx.doi.org/10.1007/978-3-319-41644-1_9
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The geometric measure

μg(η) =
(N

8

)1/2
(13.45)

must be used in (13.40).
Then the Shannon information becomes

S = 1

�(N/2)

∫
dy exp

(N

2
y − ey

) [
− ln

(
�(N/2)

)
+ N

2
y − ey − 1

2
ln(N/8)

]

= − ln
(
�(N/2)

)
− 1

2
ln(N/8) + 1

�(N/2)

∫
dy exp

(N

2
y − ey

)[N
2
y − ey

]

= − ln
(
�(N/2)

)
− 1

2
ln(N/8) − �(N/2 + 1)

�(N/2)

+ N/2

�(N/2)

∫
dy exp

(N

2
y − ey

)
y (13.46)

The third line of this equation is obtained by again using the normalisation of the
distribution (13.41). The last integral can be obtained from [8] after the substitution

y = ln x (13.47)

which gives

∫
dy exp

(N

2
y − ey

)
y =

∫ ∞

0
dx xN/2−1e−x ln x

= ∂

∂ν
�(ν)

∣∣∣∣
ν=N/2

(13.48)

with the help of entry 5 in Sect. 4.358 of Ref. [8]. From Sect. 8.360 of [8] we take
the definition

ψ(ν) = ∂

∂ν
ln�(ν) (13.49)

of the ψ function. Thus the Shannon information of a chi-squared distribution with
N degrees of freedom takes the form

S = − ln�(N/2) − 1

2
ln(N/8) + N

2

(
ψ(N/2) − 1

)
. (13.50)

This expression is given as a function of N in Fig. 13.3. It diverges towards −∞
for N → 0, and it asymptotically approaches the value −0.7258 for N → ∞. Its
value is negative everywhere for N > 0.

This graph helps to solve the task announced in the beginning of the present
section. We want to approximate any given distribution of one real variable by a chi-
squared distribution. When the Shannon information has been numerically obtained
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Fig. 13.3 The absolute Shannon information (13.50) for chi-squared distributions as a function of
the number N of degrees of freedom. This graph helps to approximate any given distribution (of
one real variable) by a suitable chi-squared distribution. For this the Shannon information is to be
numerically obtained by Eq. (13.40). The suitable number of degrees of freedom can be found from
the present graph. See text

via Eq. (13.40), the effective number of degrees of freedom that characterises the
chi-squared distribution can be found from Fig. 13.3. We comment on this in the
following section.

13.4.3 Assigning Effective Numbers of Freedom

The Gaussian distribution in Fig. 4.3,

PGauss = 1√
2π

exp
(

− t2

2

)
, (13.51)

has the Fisher function
F ≡ 1 . (13.52)

According to Eq. (9.18), the geometric measure on the scale of t is

μGauss
g ≡ 1

2
. (13.53)

http://dx.doi.org/10.1007/978-3-319-41644-1_4
http://dx.doi.org/10.1007/978-3-319-41644-1_9
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By Eq. (13.40) the Shannon information of the Gaussian is

SGauss =
∫

dt pGauss(t |σ = 1) ln
pGauss(t |σ = 1)

μGauss
g

= −1

2
ln(2π) − 1

2
+ ln 2

= −0.7258 . (13.54)

However, there is no chi-squared distribution which would equal a Gaussian. The
distribution χ̃

sq
N of Eq. (13.12) tends towards a Gaussian for N → ∞. Hence, the

value of SGauss = −0.7258 is reached asymptotically in Fig. 13.3.
Without proof wemention that the Cauchy distribution, compared to the Gaussian

in Fig. 4.3, has the effective number N ≈ 0.25 of degrees of freedom.
The item response theory treated in Chap.12, is built onto the binomial model

q(x |ξ) = sin2x ξ cos2(x−1) ξ , x = 0, 1 , (13.55)

introduced in Sect. 5.1; it provides the geometric measure

μbinom
g ≡ 1 (13.56)

as given in Sect. 6.4. The posterior of the model (13.55) is

Q(ξ|x) = 2

π
sin2(ξ − ξML) , 0 ≤ ξ < π . (13.57)

Within the given range of ξ this is normalised to unity as one confirms via partial
integration.

In order to establish a chi-squared criterion on the applicability of Eq. (13.55) or
the item response model (12.2), one would like to approximate the posterior Q by a
chi-squared distribution. Then one could proceed in analogy to Sect. 13.3.

The absolute Shannon information conveyed by the posterior (13.57) is

Sbinom = 2

π

∫ π

0
dξ sin2 ξ

[
ln

2

π
+ ln sin2 ξ

]

= ln
2

π
+ 8

π

∫ π/2

0
dξ sin2 ξ ln sin ξ . (13.58)

According to entry 9 in Sect. 4.384 of [8] this gives

Sbinom = ln
2

π
+ 1 − ln 4

= −0.8379 . (13.59)

http://dx.doi.org/10.1007/978-3-319-41644-1_4
http://dx.doi.org/10.1007/978-3-319-41644-1_12
http://dx.doi.org/10.1007/978-3-319-41644-1_5
http://dx.doi.org/10.1007/978-3-319-41644-1_6
http://dx.doi.org/10.1007/978-3-319-41644-1_12
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With the help of Fig. 13.3 one obtains the effective number of degrees of freedom

Nbinom = 2.9 (13.60)

for the distribution (13.57).The chi-squareddistribution χ̃
sq
Nbinom

approximates (13.57).
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Chapter 14
Summary

We characterise the starting points of the present book in Sect. 14.1. Its main results
are summarised in Sect. 14.2. Several questions that one would like to have answered
but that remain open, are collected in Sect. 14.3.

14.1 The Starting Points of the Present Book

During the last two and a half centuries much effort has been devoted to the definition
of the Bayesian prior distribution. It is the basis of Bayesian inference although it
drops out of the posterior distribution when a sufficiently large amount of events is
given. As long as the prior remains undefined, one cannot tell how many events are
needed to make the posterior independent of the prior. If the prior remains arbitrary,
one can generate any posterior.

In the present book, the prior has been defined by combining symmetry arguments
with differential geometry. There are models that connect the event variable with
the hypothesis parameter by way of a group of transformations of the event. This
well-known symmetry has been called form invariance. We have taken the invariant
measure of the symmetry group as the prior distribution. It is possible to represent
the above transformations of the event as linear transformations of the vector of
probability amplitudes. This is a vector with entries equal to the square root of
the probability attributed to the event x . The vector parametrically depends on the
hypothesis ξ. This amounts to a parameter representation of a surface in the space of
the probability amplitudes. When the parameter has n components, the surface is n-
dimensional. The geometric measure on the surface is compatible with the invariant
measure of the symmetry group. This shows how to proceed if the symmetry is
lacking: the prior is defined as the geometric measure on the surface of probability
amplitudes. It is given by a functional known as Jeffreys’ rule. It exists if the model
is proper; that is, it exists for every reasonable model.
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Theposterior distribution, by itself, does not allowus to draw the usual conclusions
fromdata.Onewants to give an error interval, that is, a suitable areaB(K ) inwhich the
parameter ξ is foundwith the preselected probability K . This allows one to decide, for
example, whether some predicted value ξpre is compatible with the observed events,
that is, whether the distribution p(x |ξpre) is compatiblewith x .We have definedB(K )

to be the smallest area in which ξ is found with the probability K and have called it
the Bayesian area. The notion of the smallest area requires a measure in the space of
ξ. We have identified this measure with the prior distribution. This identification is
not necessary, however. It is in the spirit of Occam’s razor, because by making this
identification one avoids introducing yet another object into the theory of inference.

14.2 Results

Bayesian inference, together with the above definition of the prior distribution, yields
the most widely known rules of Gaussian error estimation and error propagation.
These rules are formulated without reference to a prior distribution. In the present
framework, one can show that the prior distribution for the central value of aGaussian
is uniform and therefore drops out of Bayes’ theorem. In this way, the present theory
of inference conserves the most widespread method of statistics. However, it gener-
alises Gaussian statistics and allows one to infer the hypothesis parameters of any
proper distribution.

The chi-squared test, although it is based on a Gaussian distribution of the events,
is not exactly retrieved in the present framework. The test is widely used to assess the
quality of a fit. It rejects predictions that come too close to observation. In particular,
it rejects a fit that reproduces the observed x point by point. The present method
yields a chi-squared criterion that is similar to the conventional test. However, the
criterion does not reject “overfitting”. The complete fit is not less reasonable than
any acceptable model. Within the present formalism, there is no reason to reject it.
One can do so by Occam’s argument: the simplest interpretation of reality is the best
interpretation. This requires one to reduce the number of parameters to the point
where the model is barely accepted.

The chi-squared test is conventionally applied to judge the quality of a fit even
to a histogram. However, the test requires a Gaussian distribution of the data not a
Poissonian one. Hence, when applied to a histogram, it fails when the count rates
are low. The present framework allows us to work out a criterion that applies to
histograms. This criterion is valid for all count rates; for low rates it is a new tool for
making decisions.

There is a phenomenon in statistical inference that may cause confusion when
one tries to infer one parameter out of several. Two equally natural routes may lead
to different results. One can jointly infer all parameters and subsequently integrate
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over the uninteresting ones. It is also possible to infer the uninteresting parameters,
treating the interesting one as silent. Integration over the uninteresting parameters
leads to a model that is conditioned by the interesting parameter only. Inferring
the interesting parameter from it leads to a posterior that generally differs from the
abovemarginal distribution. In the literature onBayesian inference, this phenomenon
is called the marginalisation paradox. We circumvent the paradox by the assumption
that the number N of events is large enough to allow for a Gaussian approximation to
the posterior distribution. Every parameter ξk, k = 1, . . . , n,must be transformed to
a scale most suited for this approximation. The most suited scales reduce the number
N to the smallest possible value at which the approximation works reasonably.

The Gaussian approximation to the posterior needs the existence of the maximum
likelihood estimators ξML

k . The ML estimators had not been discussed in the first
edition of the present book. Here, we require that they exist and we show that they
provide the sufficient statistic for the parameter ξk .

The so-called Neyman-Scott problem is an argument against the ML estimators.
It is intended to show that ξML

k does not always converge against the true value of ξk
when N is taken to infinity. We show that the Neyman-Scott problem disappears in
the framework of Bayesian inference.

Some of our results recall principles of quantum mechanics. Statistical models
represent one aspect of reality which can be moved to different places or subjected
to similarity transformations. Both groups of transformations can be represented as
linear transformations acting on a vector of amplitudes. The dynamics of quantum
states is represented in just this way: the evolution as a function of time is given
by a linear transformation of the initial vector of amplitudes. Amplitudes are not
necessarily positive. They can interfere; that is, their sum can increase or decrease
the local intensity. The interference patterns of three resonances displayed in Fig. 13.2
provide an example.

14.3 Open Questions

The analogies with quantummechanics suggest accepting not only real but also com-
plex probability amplitudes in a theory of inference. This would require considering
different symmetry groups and generalising the geometric measure. This has not
been done. Therefore the extraction of parameters from the interference phenomena
in scattering systems is not adequately treated with the present methods. Figure13.2
shows resonances interfering with each other and with an essentially constant back-
ground. This example is described in quantummechanics with the help of a complex
scattering amplitude. It incorporates a fourfold alternative of possible sources of
every event: three resonances and the background. The four sources interfere with
each other. One can call this a coherent alternative.

It is possible that one has to introduce the concept of density matrices in order
to treat incoherent alternatives appropriately. We have hesitated to do so. It would
make the mathematical arguments even more demanding than they are already now.

http://dx.doi.org/10.1007/978-3-319-41644-1_13
http://dx.doi.org/10.1007/978-3-319-41644-1_13


170 14 Summary

It would destroy the possibility to define uniquely the prior distribution by Jeffreys’
rule. Not withstanding some lengthy mathematical arguments, we have come to
rather simple and universal rules of inference within the present treatment.

There are experimental results [1–3] which indicate a possibility of circumventing
the density matrix: when, for example, a spectral line is observed in the presence of
an incoherent and essentially constant background, then the Fourier transformation
of the spectrum may allow the separation of the line from the background. The
statistical properties of the Fourier coefficients need further investigation.

Within the present treatment, surprisingly, it is not possible to judge the agreement
or disagreement of datawith a parameter-free distribution. The curve labelled “GOE”
in Fig. 14.1 gives an example which is important for chaotic quantum systems. The
distribution is known as Wigner’s surmise and is given by the expression

w(s) = πs

2
exp

(
−πs2

4

)
. (14.1)

It is not conditioned by any parameter. It describes the distribution of the energy
difference s between a given level and its nearest neighbour. It is certainly a great
intellectual achievement to find [6] that this quantity has a universal distribution no
matter whether the eigenvalues occur in chemistry or in nuclear physics [4] or in elec-
tromagnetic resonators [8]. At the same time, the attempt to verify it experimentally
leads into the following dilemma. One decides on the compatibility between (14.1)
and data with the help of the arguments that lead to the chi-squared criterion. One
uses every datapoint sk to infer a parameter ξk of the distribution of sk and decides

Fig. 14.1 Wigner’s surmise:
the distribution (14.1) of the
nearest-neighbour spacings
in a chaotic quantum system
[4]. It is labelled “GOE” and
is compared to two sets of
data taken from a neutron
scattering on 166Er or b the
so-called nuclear data
ensemble. This figure is
found in Ref. [5]

(a)

(b)
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whether the multidimensional distribution of the sk is compatible with one and the
same value ξ = ξk for all the k. The lack of any parameter in (14.1) precludes this
procedure. One could think of asking whether the multidimensional event formed
by the sk is very improbable from the point of view of the joint distribution of the
sk . However, this requires a measure in the space of sk . The methods of the present
book yield a measure in the space of a parameter, not in the space of the event.

Important work has been done to make plausible that Wigner’s surmise does
describe the available nuclear data. The authors of [5] have collected a large amount
of data, sorted them into a histogram, and compared the histogram to the distribution
(14.1). Figure14.1 seems to show impressive agreement. This figure has become
influential because it is one of the justifications of the so-called random matrix
theory of chaotic quantum systems [10]. However, the binning of the data is artificial
because the events sk are experimentally determined with a precision much better
than the width of the bin into which sk falls. The result of the comparison will
depend on the binning. Arguing strictly, there is no quantified comparison between
the parameterless distribution and the data.

Is it possible that we have to consider this dilemma a result rather than a ques-
tion left open in the present book? If no parameter is specified, one does not know
where to look for a deviation between the theoretical and the experimental distrib-
utions. If one were to establish that for large s where both the experimental and the
predicted distribution have strongly decayed, there is a discrepancy, would that be
important enough to reject the surmise? Is the decision impossible if the distribution
is parameter-free? For the example at hand, this would mean that one must introduce
a model p(x |ξ) that interpolates between the distributions expected for a chaotic
system, labelled “GOE” in Fig. 14.1, and a system without chaos, labelled “Pois-
son”. Such an interpolation would have a parameter ξ that measures the deviation
from chaos. Without binning the data, one could then decide whether the data are
compatible with chaos.

However, we hope to have come close to a solution of the dilemma by showing that
the posterior of a histogram of counts is the chi-squared distribution with a number
of degrees of freedom uniquely given by the total number of counts in the histogram.
This should allow us to devise a chi-squared criterion about the possible agreement
between Eq. (14.1) and the data in Fig. 14.1. This criterion would be independent of
the binning; that is, one would use the data as they have been obtained and not apply
any additional binning. When the level spacings have been measured very precisely,
then the “original histogram” may foresee so many bins that most of them show zero
counts. Still the posterior of the histogram as a whole would be the above-mentioned
chi-squared distribution.

The motto in front of the present book refers to the mystery that probability
distributions are ordered by a symmetry although their events do not know of each
other. They happen independently.
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Appendix A
Problems and Solutions

In the present appendix, we give the solutions or hints to the solutions of the problems
that have been posed within the main text of the book.

A.1 Knowledge and Logic

A.1.1 The Joint Distribution

The joint distribution of x1, . . . , xN shall be derived when xk follows the distribution
p(xk |ξ) for all k.

By (1.1), the distribution of x1 ∧ x2 is

p(x1 ∧ x2|ξ) = p(x1|x2 ∧ ξ)p(x2|ξ) . (A.1)

By assumption, the distribution of x1 is not conditioned by x2. Therefore one obtains

p(x1 ∧ x2|ξ) = p(x1|ξ)p(x2|ξ) . (A.2)

We simplify the notation and replace the logical symbol ∧ by a comma. A proof by
induction yields

p(x1, . . . , xN |ξ) =
N∏

k=1

p(xk |ξ) . (A.3)
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A.2 Bayes’ Theorem

A.2.1 Bayes’ Theorem Under Reparameterisations

We convince ourselves that Bayes’ theorem behaves properly under reparameterisa-
tions.

Let the parameter ξ be expressed by η via (2.7). The value of the integral (2.5)
remains unchanged. The posterior distribution (2.6) transforms as the prior; see (2.9),
that is, as a density. This is satisfactory.

Let x be continuous. The reparameterisation

x ′ = T x (A.4)

transforms p(x |ξ) in both the numerator and the denominator of (2.6), according to
(2.9). The Jacobians drop out. Therefore, in this case P(ξ|x) transforms as a function,
not as a density. Again, this is satisfactory.

A.2.2 Transformation to the Uniform Prior

Show that one obtains the uniform prior μT (η) ≡ const if η is an indefinite integral
of μ(ξ).

According to (2.9), one has

μT (η) = μ(ξ)

∣∣∣∣
dη

dξ

∣∣∣∣
−1

. (A.5)

The claim follows from ∣∣∣∣
dη

dξ

∣∣∣∣ = μ(ξ) . (A.6)

A.2.3 The Iteration of Bayes’ Theorem

Interpret (2.20) as an iteration of Bayes’ theorem.
Let PN−1(ξ|x1 . . . xN−1) be given by (2.20). One then has to use N − 1 events

instead of N in this expression. We construct P(ξ|x1 . . . xN ) by introducing PN−1 at
the place of μ into Bayes’ theorem (2.6). This leads to

P(ξ|x1 . . . xN ) ∝ μ(ξ)p(xN |ξ)
N−1∏

k=1

p(xk |ξ) (A.7)

and agrees with (2.20) after normalisation.

http://dx.doi.org/10.1007/978-3-319-41644-1_2
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A.2.4 The Gaussian Model for Many Events

Convince yourself that (2.23) is the joint distribution of N Gaussian events.
From (2.19) follows

p(x1 . . . xN |ξ) = (2πσ2)−N/2 exp

(
− 1

2σ2

N∑

k=1

(xk − ξ)2

)
. (A.8)

One rearranges the sum

N∑

k=1

(xk − ξ)2 =
∑

k

(x2k − 2ξxk + ξ2)

= N (ξ2 − 2ξ〈x〉 + 〈x2〉)
= N (ξ − 〈x〉)2 + N (〈x2〉 − 〈x〉2) (A.9)

and obtains (2.23).

A.2.5 The Distribution of Leading Digits

Show that

q(a) = log
a + 1

a
(A.10)

is the probability for the number ξ to have the leading digit a when ξ is distributed
according to (2.31).

One has

q(a) ∝
∫ a+1

a
dξ μ(ξ)

∝ ln
a + 1

a
. (A.11)

Normalising this distribution, one obtains (A.10).

http://dx.doi.org/10.1007/978-3-319-41644-1_2
http://dx.doi.org/10.1007/978-3-319-41644-1_2
http://dx.doi.org/10.1007/978-3-319-41644-1_2
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A.3 Probable and Improbable Data

A.3.1 The Size of an Area in Parameter Space

Show that the size

V =
∫

I
dξ μ(ξ) (A.12)

of an area I does not change under the reparameterisation

η = T ξ . (A.13)

Substituting η for ξ in (A.12) yields

V =
∫

TI
dη μ(ξ)

∂ξ

∂η

=
∫

TI
dη μT (η) . (A.14)

Here, the transformation (2.9) of a density has been used. We have written TI for
the image of I in the space of η. Equation (A.14) shows that the volume does not
change when it is mapped onto another parameter space. This statement is equivalent
to the differential law (2.9) of transformation.

Let the proper distribution Q(ξ) be given, and let B(K ) be a Bayesian area.
It remains to show that the transformation TB of B is the Bayesian area of the
transformed distribution QT (η). Because every area in the space of ξ has an image
in the space of η and because their volumes do not change under the mapping, the
volumes can be compared in η as well as in ξ. Therefore the smallest area of a certain
set of areas defined in ξ, is mapped onto the smallest area TI of the corresponding
set in η. Hence, the Bayesian interval is independent of the parameterisation.

A.3.2 No Decision Without Risk

The statement that every decision is a risk is now discussed.
Let Q(ξ) be a normalised distribution and B(K ) a Bayesian area and let the value

ξpre of the parameter ξ be predicted. If ξpre is not in B, one rejects the prediction.
However, with probability 1 − K , the distribution Q allows ξpre to be outside B(K ).
Therefore the decision is wrong with probability 1 − K .

If one chooses K = 1, then B covers the space of ξ. Every value is then accepted,
and there is nothing to decide. One does not obtain any information from the fact
that ξpre is in B because one knows it anyway.

http://dx.doi.org/10.1007/978-3-319-41644-1_2
http://dx.doi.org/10.1007/978-3-319-41644-1_2
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A.3.3 Normalisation of a Gaussian Distribution

Show that the posterior distribution (3.5) is normalised to unity.
The substitution

y = x/σ (A.15)

yields

∫ ∞

0
dσ xσ−2 exp

(
− x2

2σ2

)
=

∫ ∞

0
dy exp

(
− y2

2

)

=
(π

2

)1/2
(A.16)

which proves the statement.
The last version of (A.16) is a consequence of

∫ ∞

−∞
dx exp(−x2) = √

π . (A.17)

This equation is implied by the normalisation of the Gaussian (2.16). In order to
prove it, one considers the square of the integral (A.17); that is,

∫ ∞

−∞
dx exp(−x2)

∫ ∞

−∞
dy exp(−y2) =

∫ ∞

−∞
dx

∫ ∞

−∞
dy exp

(−(x2 + y2)
)

=
∫ 2π

0
dφ

∫ ∞

0
dr r exp(−r2)

= π

∫ ∞

0
dz exp(−z)

= π . (A.18)

One comes from the first to the second version of this equation by introducing polar
coordinates.

A.3.4 The Measure of a Scale-Invariant Model

Find the measure μ(ξ) of the model

p(x |ξ) = ξ−1 w

(
x

ξ

)
, (A.19)

where x, ξ are real and positive, and w(y) is any normalised density.
One transforms x via

y = ln x (A.20)

http://dx.doi.org/10.1007/978-3-319-41644-1_3
http://dx.doi.org/10.1007/978-3-319-41644-1_2
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and the law (2.9). At the same time, one reparameterises

η = ln ξ (A.21)

keeping in mind that p transforms as a function with respect to ξ (cf. Chap.2). This
gives

pT (y|η) = x

ξ
w

(
x

ξ

)

= exp(η − y) w (exp(η − y)) , (A.22)

which is a function of the difference η − y. According to the argument of Sect. 2.3,
the measure

μT (η) ≡ const (A.23)

is uniform with respect to η. With the help of (2.9), one finds

μ(ξ) ∝ ξ−1 . (A.24)

A.3.5 A Single Decay Event

The model of radioactive decay is

p(t |τ ) = τ−1 exp (−t/τ ) ; (A.25)

see Sect. 4.2. Here, t is the time of observation of the event after the experiment has
been started at t = 0. The parameter τ is the mean lifetime. According to (3.4), the
prior is

μ(τ ) ∝ τ−1 . (A.26)

The posterior is
P(τ |t) = N−1τ−2 exp(−t/τ ) (A.27)

with the normalising factor

N =
∫ ∞

0
dτ τ−2 exp(−t/τ )

=
∫ ∞

0
dλ exp(−tλ)

= t−1 . (A.28)

http://dx.doi.org/10.1007/978-3-319-41644-1_2
http://dx.doi.org/10.1007/978-3-319-41644-1_2
http://dx.doi.org/10.1007/978-3-319-41644-1_2
http://dx.doi.org/10.1007/978-3-319-41644-1_2
http://dx.doi.org/10.1007/978-3-319-41644-1_4
http://dx.doi.org/10.1007/978-3-319-41644-1_3
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Fig. A.1 Inferring the mean
lifetime of a radioactive
substance from a single
observation. This figure
complements the Figs. 2.4
and 2.5 in Chap.2

Hence, the posterior exists and is

P(τ |t) = t−1τ−2 exp(−t/τ ) . (A.29)

It is given in Fig.A.1. One can indeed infer τ from a single observation.

A.3.6 Normalisation of a Posterior of the Gaussian Model

Show that the distribution (3.12) is normalised to unity.
The normalising factor N of the distribution

P(σ | x) = N−1σ−N−1 exp

(
−N

2

〈x2〉
σ2

)
(A.30)

is determined. It is given by

N =
∫ ∞

0
dσ σ−N−1 exp

(
− b

σ2

)
, (A.31)

where

b = N

2
〈x2〉 . (A.32)

Substituting σ by τ = σ−2 one obtains

N = 2−1
∫ ∞

0
dτ τ N/2−1 exp(−bτ ) . (A.33)

http://dx.doi.org/10.1007/978-3-319-41644-1_2
http://dx.doi.org/10.1007/978-3-319-41644-1_2
http://dx.doi.org/10.1007/978-3-319-41644-1_3
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By help of the substitution τ ′ = bτ , this takes the form

N = 2−1b−N/2
∫ ∞

0
dτ ′ τ ′N/2−1 exp(−τ ′)

= 2−1b−N/2�(N/2) . (A.34)

The last line of this equation is due to Eq. (B.23) in Sect.B.4.

A.3.7 The ML Estimator from a Gaussian Likelihood
Function

The ML estimator is obtained from the likelihood function L(σ | x) by requiring

∂

∂σ
L(σ | x) = 0 . (A.35)

With the help of Eq. (3.13) together with (3.4) and (3.12) this leads to the requirement

∂

∂σ

(
−N ln σ − N 〈x2〉

2σ2

)
= 0 . (A.36)

Its solution is given by
(σML)2 = 〈x2〉 . (A.37)

A.3.8 The ML Estimator from a Chi-Squared Model

Show that Eq. (3.18) is the ML estimator of the likelihood function given by the
posterior (3.17).

The likelihood function is

L(η|y) ∝ exp

(
N

2
[y − η] − ey−η

)
, (A.38)

because the prior distribution of the posterior (3.17) is uniform. This yields

∂

∂η
L = −N/2 + ey−η . (A.39)

The ML estimator solves the equation

∂

∂η
L = 0 . (A.40)

http://dx.doi.org/10.1007/978-3-319-41644-1_3
http://dx.doi.org/10.1007/978-3-319-41644-1_3
http://dx.doi.org/10.1007/978-3-319-41644-1_3
http://dx.doi.org/10.1007/978-3-319-41644-1_3
http://dx.doi.org/10.1007/978-3-319-41644-1_3
http://dx.doi.org/10.1007/978-3-319-41644-1_3


Appendix A: Problems and Solutions 181

This gives

exp(ηML) = 2

N
ey (A.41)

or

ηML = ln

(
2

N
ey

)

= ln〈x2〉 . (A.42)

The second version of this equation is obtained by help of Eq. (3.16).

A.3.9 Contour Lines

Show that contour lines are invariant under reparameterisations.
Both Q(ξ) and μ(ξ) transform under the reparameterisation (2.8) according to the

law (2.9). The Jacobian |∂ξ/∂η| drops out of the definition (3.23) which therefore
holds for the transformed distributions QT (η),μT (η) in the same way.

A.3.10 The Point of Maximum Likelihood

Show that the point ξ = ξML, where the likelihood function L of Eq. (3.23) assumes
a maximum, does not change under reparameterisations.

Both densities Q and μ are transformed from ξ to

η = T ξ (A.43)

via (2.9). The Jacobian |∂ξ/∂η| drops out of L . Hence, L transforms as a function;
that is,

LT (η) = L(ξ) . (A.44)

The value ξML is a solution of
d

dξ
L(ξ) = 0 . (A.45)

We consider a neighborhood in the space of ξ where there is only one solution. By
virtue of (A.44), the last equation can be written

dLT (η)

dη

∣∣∣∣
dη

dξ

∣∣∣∣ = 0 . (A.46)

http://dx.doi.org/10.1007/978-3-319-41644-1_3
http://dx.doi.org/10.1007/978-3-319-41644-1_2
http://dx.doi.org/10.1007/978-3-319-41644-1_2
http://dx.doi.org/10.1007/978-3-319-41644-1_3
http://dx.doi.org/10.1007/978-3-319-41644-1_3
http://dx.doi.org/10.1007/978-3-319-41644-1_2
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Because η(ξ) is a transformation, the derivative dη/dξ does not vanish. Therefore
the point in η, where dLT /dη vanishes, is T ξML. This is meant by saying that the
place of the maximum does not change under the transformation.

A maximum of the distribution Q(ξ), however, is no longer found at its original
place after the transformation to QT (η).

A.4 Description of Distributions I: Real x

A.4.1 The Mean of a Gaussian Distribution

Convince yourself that the mean value x of the distribution (4.1) is equal to ξ.
All the odd moments of a Gaussian vanish; that is, one has

∫ ∞

−∞
dx x2n+1 exp

(
− x2

2σ2

)
= 0 . (A.47)

One sees this by the transformation x −→ −x . The substitution x ′ = x + ξ yields

0 =
∫

dx (x − ξ) exp

(
− (x − ξ)2

2σ2

)
, (A.48)

and this is equivalent to
0 = x − ξ . (A.49)

A.4.2 On the Variance

Prove the equivalence of the expressions (4.3), (4.4) for the variance.
The expectation value f (x) of a function f is linear with respect to f. Therefore

one obtains

(y − y)2 = y2 − 2yy + y2

= y2 − y2 . (A.50)

A.4.3 Moments of a Gaussian

Prove that (4.5) holds for the Gaussian model (4.1).

http://dx.doi.org/10.1007/978-3-319-41644-1_4
http://dx.doi.org/10.1007/978-3-319-41644-1_4
http://dx.doi.org/10.1007/978-3-319-41644-1_4
http://dx.doi.org/10.1007/978-3-319-41644-1_4
http://dx.doi.org/10.1007/978-3-319-41644-1_4
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The function Z(a) of (4.2) has the property

(−)n
dn

dan
Z =

∫
dx (x − ξ)2n exp

(−a(x − ξ)2
)

. (A.51)

Therefore the variance is

var(x) = − (2πσ2)−1/2 d

da
Z(a)

∣∣∣∣
a=(2σ2)−1

= (2πσ2)−1/2π1/22−1(2σ2)3/2

= σ2 . (A.52)

Similarly, the fourth moment is

(x − ξ)4 = (2πσ2)−1/2 d2

da2
Z(a)

∣∣∣∣
a=(2σ2)−1

= (2πσ2)−1/2π1/2(3/4)(2σ2)5/2

= 3σ4 . (A.53)

This proves (4.5).

A.4.4 The Normalisation of a Multidimensional Gaussian

Prove the normalisation (4.17) of the multidimensional Gaussian.
The result (4.17) is easy to understand ifC is diagonal. Then (4.16) factorises into

n one-dimensional Gaussian distributions. ItC is not diagonal, there is an orthogonal
transformation O that diagonalises it; that is,

OCOT = Cdiag . (A.54)

The same transformation diagonalises C−1. The normalising integral then takes the
form

Z =
∫

dx exp
(− [O(x − ξ)]† (2Cdiag)

−1 [O(x − ξ)]
)

. (A.55)

One changes the integration variables to

x ′ = Ox . (A.56)

The Jacobian of this transformation is | det O| = 1. This procedure yields

http://dx.doi.org/10.1007/978-3-319-41644-1_4
http://dx.doi.org/10.1007/978-3-319-41644-1_4
http://dx.doi.org/10.1007/978-3-319-41644-1_4
http://dx.doi.org/10.1007/978-3-319-41644-1_4
http://dx.doi.org/10.1007/978-3-319-41644-1_4
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Z(C) = (
(2π)n detCdiag

)1/2

= (
(2π)n detC

)1/2
. (A.57)

A.4.5 The Moments of the Chi-Squared Distribution

Prove the results (4.35, 4.36) for the moments of the chi-squared distribution.
Because the distribution (4.34) is normalised to unity, the equation

∫
dT T N/2−1 exp(τ ′T ) = �(N/2)τ ′−N/2 (A.58)

holds. The parameter τ in (4.34) has been replaced by τ ′ = τ−1. We differentiate
both sides of (A.58) with respect to τ ′ and obtain

∫
dT T T N/2−1 exp(τ ′T ) = �(N/2)(N/2)τ ′−N/2−1 . (A.59)

This yields

T =
∫

dT T χsq(T |τ ′)

= N

2
τ ′−1 . (A.60)

The second moment of the chi-squared distribution is obtained from the second
derivative of Eq. (A.58).

A.4.6 Moments of the Exponential Distribution

Calculate the mean value and the variance implied by the exponential distribution.
The exponential model (4.40) leads to the mean value

x = ξ−1
∫ ∞

0
dx x exp(−x/ξ)

= ξ−1ξ2 �(2)

= ξ (A.61)

with the help of the properties of the� function given in Appendix B.4. Analogously,
one finds the second moment

http://dx.doi.org/10.1007/978-3-319-41644-1_4
http://dx.doi.org/10.1007/978-3-319-41644-1_4
http://dx.doi.org/10.1007/978-3-319-41644-1_4
http://dx.doi.org/10.1007/978-3-319-41644-1_4
http://dx.doi.org/10.1007/978-3-319-41644-1_4
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x2 = ξ−1
∫ ∞

0
dx x2 exp(−x/ξ)

= ξ2 �(3)

= 2 ξ2 . (A.62)

This yields the variance
var(x) = ξ2 (A.63)

given in (4.42).

A.5 Description of Distributions II: Natural x

A.5.1 The Second Moments of the Multinomial Distribution

Prove that the second moments of the multinomial distribution are given by (5.16).
In the case of l �= l ′, one can use (5.4) to write

xl xl ′ = ∂2

∂ζ∂ζ ′
∑

x

ζxl ζ ′xl′ p(x |η)

∣∣∣∣∣
ζ,ζ ′=1

= ∂2

∂ζ∂ζ ′ N !
∑

x

ζxl ζ ′xl′
M∏

k=1

ηxk
k

xk !

∣∣∣∣∣
ζ,ζ ′=1

= ∂2

∂ζ∂ζ ′

⎛

⎝ζηl + ζ ′ηl ′ +
∑

k �=l,l ′
ηk

⎞

⎠
N
∣∣∣∣∣∣∣
ζ,ζ ′=1

= ∂2

∂ζ∂ζ ′
(
ζηl − ηl + ζ ′ηl ′ − ηl ′ + 1

)N
∣∣∣∣
ζ,ζ ′=1

= ∂

∂ζ ′ Nηl(ζ
′ηl ′ − ηl ′ + 1)N−1

∣∣∣∣
ζ ′=1

= N (N − 1)ηlηl ′ . (A.64)

For the step from the second to the third line of this equation, themultinomial theorem
has been used.

If l = l ′, one uses (5.6) to find

xl(xl − 1) = ∂2

∂ζ2

∑

x

ζxl p(x |η)

∣∣∣∣∣
ζ=1

http://dx.doi.org/10.1007/978-3-319-41644-1_4
http://dx.doi.org/10.1007/978-3-319-41644-1_5
http://dx.doi.org/10.1007/978-3-319-41644-1_5
http://dx.doi.org/10.1007/978-3-319-41644-1_5
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= ∂2

∂ζ2
N !

∑

x

ζxl
M∏

k=1

ηxk
k

xk !

∣∣∣∣∣
ζ=1

= ∂2

∂ζ2

⎛

⎝ζηl +
∑

k �=l

ηk

⎞

⎠
N
∣∣∣∣∣∣∣
ζ=1

= ∂2

∂ζ2
(ζηl − ηl + 1)N

∣∣∣∣
ζ=1

= N (N − 1)η2
l . (A.65)

Here, too, the multinomial theorem has been used to obtain the third line of the
equation. One thus obtains

x2l = N (N − 1)η2
l + Nηl . (A.66)

Finally, putting (A.64) and (A.66) together, one finds

xl xl ′ = N (N − 1)ηlηl ′ + δll ′ Nηl (A.67)

which is (5.16).

A.5.2 A Limit of the Binomial Distribution

Prove that the Poisson distribution (5.19) is the limit of the binomial distribution
(5.1) for N → ∞ if η → λ/N .

In this limit, one obtains

ηx (1 − η)N−x = exp
(
x ln(λ/N ) + (N − x) ln(1 − λ/N )

)

exp
(
x ln λ − x ln N − (N − x)λ/N

)

−→ exp (x ln λ − x ln N − λ)

−→ λx N−x exp(−λ) . (A.68)

The binomial coefficient approaches the limit

(
N
x

)
= N !

x !(N − x)!
= 1

x !
(
N (N − 1) · · · (N − x + 1)

)

http://dx.doi.org/10.1007/978-3-319-41644-1_5
http://dx.doi.org/10.1007/978-3-319-41644-1_5
http://dx.doi.org/10.1007/978-3-319-41644-1_5
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= 1

x !N
x
(
1 · (1 − 1/N ) · · · (1 − x − 1

N
)
)

−→ Nx

x ! . (A.69)

Hence, the binomial distribution approaches

p(x |λ) = λx

x ! exp(−λ) (A.70)

which is the Poisson distribution.

A.6 Form Invariance I

A.6.1 Every Element Can Be Considered the Origin
of a Group

The multiplication
Gρ = Gξ Gτ (A.71)

of all elements Gξ in G by a fixed Gτ is a one-to-one mapping of the group onto
itself.

From (A.71) follows
Gξ = Gρ G

−1
τ . (A.72)

Hence, for every Gρ, one can find Gξ. This means that every element of the group is
reached by the mapping. It is reached only once because the pair of equations

Gρ = Gξ Gτ

= Gξ′ Gτ (A.73)

entails
Gξ = Gξ′ . (A.74)

A.6.2 The Domain of Definition of a Group Parameter
Is Important

Why do the rotations

Gφ =
(
cosφ − sin φ
sin φ cosφ

)
(A.75)
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with
0 ≤ φ < π (A.76)

not form a group?
In this set of transformations, there is no inverse of Gφ when φ > 0.

A.6.3 A Parameter Representation of the Hyperbola

Show that

a(φ) = Gφ

(
1
0

)
(A.77)

is a parameter representation of the hyperbola of Fig. 6.2 when

Gφ =
(
cosh φ sinh φ
sinh φ cosh φ

)
,

−∞ φ < ∞ .

(A.78)

One has

a(φ) =
(
x1
x2

)

=
(
cosh φ
sinh φ

)
, (A.79)

and one eliminates φ by forming the expression x21 − x22 . This gives

x21 − x22 = 1 . (A.80)

This is the equation of the hyperbola. Actually, this equation allows for two branches
placed symmetrically to the x2-axis. The parameter representation (A.77) produces
only the right-hand branch.

A.6.4 Multiplication Functions for the Symmetry Groups
of the Circle and the Hyperbola

Show that for both groups, (A.75) and (A.78), the multiplication function is

�(φ′,φ) = φ + φ′ . (A.81)

http://dx.doi.org/10.1007/978-3-319-41644-1_6
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For the rotations (A.75), the trigonometric formulae

cos(φ + φ′) = cosφ cosφ′ − sin φ sin φ′ ,
sin(φ + φ′) = sin φ cosφ′ + cosφ sin φ′ (A.82)

yield

Gφ Gφ′ =
(
cos(φ + φ′) − sin(φ + φ′)
sin(φ + φ′) cos(φ + φ′)

)

= Gφ+φ′ . (A.83)

This proves (A.81) for the example of the rotations.
For the hyperbolic transformation, the formulae

cosh(φ + φ′) = cosh φ cosh φ′ + sinh φ sinh φ′

sinh(φ + φ′) = cosh φ sinh φ′ + sinh φ cosh φ′ (A.84)

yield

Gφ Gφ′ =
(
cosh(φ + φ′) sinh(φ + φ′)
sinh(φ + φ′) cosh(φ + φ′)

)
. (A.85)

This proves (A.81) for the group of hyperbolic transformations.

A.6.5 The Group of Dilations

Show that the dilations

Gσ x = σx , 0 < σ < ∞ , (A.86)

form an Abelian group and that

�(σ′,σ) = σ σ′ (A.87)

is its multiplication function.
Themultiplication function is obvious. It shows that the multiplication ofGσ with

Gσ′ images the usual multiplication of the positive real numbers. Therefore the set
of transformations Gσ endowed with the multiplication rule (A.87) is isomorphic to
the positive real numbers endowed with their usual multiplication. By checking the
axioms in Sect. 6.1 one easily verifies that these numbers form a group.

http://dx.doi.org/10.1007/978-3-319-41644-1_6
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A.6.6 The Combination of Translations and Dilations

Consider the group of transformations

Gξ,σ x = ξ + σx (A.88)

with
− ∞ < ξ < ∞ and 0 < σ < ∞; (A.89)

Work out the multiplication function and show that translations in general do not
commute with dilations.

The product of transformations yields

G�(ξ′,σ′;ξ,σ) = Gξ,σ Gξ′,σ′ x

= Gξ,σ (ξ′ + σ′x)

= G0,σ

(
ξ′ + σ′(ξ + x)

)

= ξ′ + σ′ξ + σσ′x . (A.90)

From this, one sees that

�(ξ′,σ′; ξ,σ) = (ξ′ + ξσ′,σσ′) . (A.91)

The translation (ξ′,σ′ = 1) followed by the dilation (ξ = 0,σ) yields

�(ξ′, 1; 0,σ) = (ξ′,σ) . (A.92)

Reversing the operations leads to

�(0,σ; ξ′, 1) = (σ, ξ′) . (A.93)

The two results are generally different.

A.6.7 Reversing the Order of Translation and Dilation

Show that in Eq. (6.14) reversing the order of translation and dilation changes both
Eq. (6.14) and the multiplication function (6.19).

After the interchange, Eq. (6.14) reads

Gσ,ξ x = Gξ,1G0,σ x

= σ(ξ + x) . (A.94)

http://dx.doi.org/10.1007/978-3-319-41644-1_6
http://dx.doi.org/10.1007/978-3-319-41644-1_6
http://dx.doi.org/10.1007/978-3-319-41644-1_6
http://dx.doi.org/10.1007/978-3-319-41644-1_6
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The product Gσ,ξ Gσ′,ξ′ applied to x yields

Gσ,ξ Gσ′,ξ′ x = Gσ,ξ

(
σ′(ξ′ + x)

)

= Gξ,1G0,σ

(
σ′(ξ′ + x)

)

= Gξ,1

(
σ′(ξ′ + σx)

)

= σ′
(
ξ′ + σ(x + ξ)

)

= σ′ξ′ + σσ′ξ + σσ′x

= σσ′
(ξ′

σ
+ ξ + x

)
. (A.95)

From this follows the multiplication function

�(σ′, ξ′; σ, ξ) =
(
σσ′,

ξ′

σ
+ ξ

)
. (A.96)

A.6.8 A Transformation of the Group Parameter

Show that the mapping
G̃τ ξ = �(ξ; τ ) (A.97)

is a transformation of the domain in which ξ is defined.
This is another version of problem Sect.A.6.1. However, the fixed and the run-

ning transformations are multiplied in reverse order. Still the solution is completely
analogous to that of problem Sect.A.6.1.

A.6.9 A Group of Transformations of the Group Parameter

Show that the transformations G̃τ form a group G̃ when τ runs over all values of the
group parameter of G; show also that G̃ and G are isomorphic.

We check the four axioms laid down in Sect. 6.1: The problem Sect.A.6.8 shows
that G̃τ is a transformation of ξ. Therefore the inverse G̃−1

τ exists. Let ε be the value
of ξ that labels the unit element Gε = 1 of the group G. Because

�(ξ; ε) = ξ , (A.98)

the group G̃ also contains a unit element and its label is ε. The multiplication of the
elements of G is associative, therefore the multiplication function has the property

�(�(ξ; τ ′); τ ) = �(ξ;�(τ ′; τ )) . (A.99)

http://dx.doi.org/10.1007/978-3-319-41644-1_6
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This shows that together with G̃τ and G̃τ ′ the product G̃τ G̃τ ′ is in G̃ and that the
product is labelled �(τ ′; τ ). This means that G and G̃ have the same multiplication
function, whence they are isomorphic. The associativity of the multiplication in G̃ is
a consequence of the isomorphism.

A.6.10 The Model p Is Normalised when the Common Form
w Is Normalised

Show that

p(x |ξ) = w(G−1
ξ x)

∣∣∣∣∣
∂G−1

ξ x

∂x

∣∣∣∣∣ (A.100)

is normalised to unity for all ξ when w is normalised.
Bya changeof variables one comes from thefirst to the secondoneof the equations

∫
dx p(x |ξ) =

∫
w(G−1

ξ x)

∣∣∣∣∣
∂G−1

ξ x

∂x

∣∣∣∣∣ dx

=
∫

w(G−1
ξ x) dG−1

ξ x . (A.101)

One integrates over the full range of x becauseG−1
ξ is a transformation of the domain

in which x is defined. By renaming the integration variable in the second version,
one comes to the result

∫
dx p(x |ξ) =

∫
dx w(x)

= 1 . (A.102)

A.6.11 Two Expressions Yielding the Measure μ

It is proven that the expressions (6.42) and (6.43) yield the same result.
We reformulate the second derivative of ln p in

∑

x

p(x |ξ) ∂2

∂ξ2
ln p(x |ξ) =

∑

x

p(x |ξ) ∂

∂ξ

∂
∂ξ

p

p

=
∑

x

⎛

⎝ ∂2

∂ξ2
p(x |ξ) − p(x |ξ)

(
∂
∂ξ

p

p

)2
⎞

⎠

http://dx.doi.org/10.1007/978-3-319-41644-1_6
http://dx.doi.org/10.1007/978-3-319-41644-1_6


Appendix A: Problems and Solutions 193

= ∂2

∂ξ2

∑

x

p(x |ξ)

−
∑

x

p(x |ξ)
(

∂

∂ξ
ln p(x |ξ)

)2

. (A.103)

The derivative of the first sum on the r.h.s. of the last line vanishes because the sum
equals unity for every ξ. The remaining term establishes the identity which was to
be proven.

A.6.12 Form Invariance of the Posterior Distribution

Show that the posterior distribution of a form-invariant model is form invariant, too.
The symmetries of p and μ and m imply that

P(ξ|x) = p(x |ξ)μ(ξ)

m(x)

= p(Gρ x |Gρ ξ)μ(ξ)

m(x)

∣∣∣∣
∂Gρ x

∂x

∣∣∣∣

= p(Gρ x |Gρ ξ)μ(ξ)

m(Gρ x)

= p(Gρ x |Gρ ξ)μ(Gρ ξ)

m(Gρ x)

∣∣∣∣
∂Gρ ξ

∂ξ

∣∣∣∣

= P(Gρ ξ|Gρ x)

∣∣∣∣
∂Gρ ξ

∂ξ

∣∣∣∣ . (A.104)

Form invariance of p brings one from the first to the second line of this equation
when Gρ ∈ G. The invariance of m leads to the third and the invariance of μ to the
fourth line. By the definition of P , one arrives at the last line. It is analogous to
(6.23); we therefore call it the form invariance of P.

A.6.13 Invariance of the Shannon Information

Show that the value of S in Eq. (6.56) does not change when ξ is substituted by

η = T ξ . (A.105)

Both the distribution P and the measure μ transform as densities; that is,

http://dx.doi.org/10.1007/978-3-319-41644-1_6
http://dx.doi.org/10.1007/978-3-319-41644-1_6


194 Appendix A: Problems and Solutions

P(ξ|x) = P(T−1η|x)
∣∣∣∣
∂η

∂ξ

∣∣∣∣

μ(ξ) = μ(T−1η)

∣∣∣∣
∂η

∂ξ

∣∣∣∣ . (A.106)

Compare Sect. 2.2. It follows

S =
∫

dξ P(ξ|x) ln P(ξ|x)
μ(ξ)

=
∫

dξ P(T−1η|x)
∣∣∣∣
∂η

∂ξ

∣∣∣∣ ln
P(T−1η|x)|∂η/∂ξ|
μ(T−1η)|∂η/∂ξ|

=
∫

dξ P(T−1η|x) ln P(T−1η|x)|
μ(T−1η)

(A.107)

which says that the substitution of the integration variable boils down to renaming
it. This does not affect the value of the integral.

A.7 Examples of Invariant Measures

A.7.1 The Invariant Measure of the Group
of Translation-Dilation

Show that the group (7.13)—the combination of translation and dilation—has the
invariant measure

μ(ξ,σ) ∝ σ−1 . (A.108)

The multiplication function (7.15) is

�(ξ′,σ′; ξ,σ) = (ξ′ + ξσ′;σσ′) . (A.109)

The Jacobian matrix of the derivatives of � with respect to its primed variables is

∂�(ξ′,σ′; ξ,σ)

∂(ξ′,σ′)
=

(
1 0
ξ σ

)
. (A.110)

By (6.33), it yields the invariant measure

μ(ξ,σ) = μ(0, 1)

∣∣∣∣
1 0
ξ σ

∣∣∣∣
−1

= μ(0, 1)σ−1 . (A.111)

http://dx.doi.org/10.1007/978-3-319-41644-1_2
http://dx.doi.org/10.1007/978-3-319-41644-1_7
http://dx.doi.org/10.1007/978-3-319-41644-1_7
http://dx.doi.org/10.1007/978-3-319-41644-1_6
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A.7.2 Groups of Finite Volume

The group of transformations Gφ has a finite volume (7.25). Show that the volume
V of the space of φ does not depend on the parameterisation. When the integral over
φ does not exist, show that this fact is again independent of the parameterisation.

Let us reparameterise via the transformation

η = Tφ . (A.112)

The transformed measure is

μT (η) = μ(φ)

∣∣∣∣
∂φ

∂η

∣∣∣∣ . (A.113)

Therefore the volume

V =
∫

μ(φ) dφ (A.114)

of the space of φ can be rewritten

V =
∫

μT (η) dη (A.115)

by the change (A.112) of integration variables. Thus V has one and the same value
in all parameterisations. By consequence: when the integral over φ does not exist,
then the integral over η will not exist either.

A.7.3 The Inverse of a Triangular Matrix

Show that the inverse of the matrix

Gα,γ,β =
(

α , γ
0 , β

)
(A.116)

has the index (α−1,−γ(αβ)−1,β−1).
By Eq. (7.38) the index of the unit element is

ε = (1, 0, 1) . (A.117)

We obtain the inverse of Gα,γ,β from the multiplication function (7.40). This inverse
has the index (α′, γ′,β′) which solves the equation

(1, 0, 1) = (αα′,αγ′ + γβ′,ββ′) . (A.118)

http://dx.doi.org/10.1007/978-3-319-41644-1_7
http://dx.doi.org/10.1007/978-3-319-41644-1_7
http://dx.doi.org/10.1007/978-3-319-41644-1_7
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For α′ and β′ the solutions obviously are

α′ = α−1 ,

β′ = β−1 . (A.119)

For γ′ we solve αγ′ + γβ′ = 0 and obtain

γ′ = −γ(αβ)−1 . (A.120)

Thus Eq. (7.39) is correct.

A.7.4 The Invariant Measure of a Group of Triangular
Matrices

Show that the invariant measure of the group of matrices (A.116) is given by the
determinant in Eq. (7.41).

We use Eq. (6.33) to find the invariant measure. The matrix in (7.41) contains the
partial derivatives with respect to the primed quantities in the multiplication function
(7.40). The derivatives with respect to α′ are written in the first column of the matrix;
the derivatives with respect to γ′ and β′ follow in the next two columns. This yields
the matrix as well as its inverse determinant that are given in Eq. (7.41).

A.8 A Linear Representation of Form Invariance

A.8.1 Transforming a Space of Square-Integrable Functions

Show that

T f = f (T x)

∣∣∣∣
∂T x

∂x

∣∣∣∣
1/2

(A.121)

is a square-integrable function.
In the context of Sect. 8.2, the function f is square integrable and T is a transfor-

mation of x . By making a change of the integration variable from x to T x one sees
that T f is square integrable.

A.8.2 An Integral Kernel

Verify that

Txx ′ = δ(x ′ − T−1x)

∣∣∣∣
∂T−1x

∂x

∣∣∣∣
1/2

(A.122)

is the integral kernel of the operator T.

http://dx.doi.org/10.1007/978-3-319-41644-1_7
http://dx.doi.org/10.1007/978-3-319-41644-1_7
http://dx.doi.org/10.1007/978-3-319-41644-1_6
http://dx.doi.org/10.1007/978-3-319-41644-1_7
http://dx.doi.org/10.1007/978-3-319-41644-1_7
http://dx.doi.org/10.1007/978-3-319-41644-1_7
http://dx.doi.org/10.1007/978-3-319-41644-1_8
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This is a consequence of the properties of the δ distribution. We have

∫
dx ′ Txx ′ f (x ′) =

∫
dx ′ δ(x ′ − T−1x)

∣∣∣∣
∂T−1x

∂x

∣∣∣∣
1/2

f (x ′)

= f (T−1x)

∣∣∣∣
∂T−1x

∂x

∣∣∣∣
1/2

= T f (A.123)

for every element f of the function space.

A.9 Beyond Form Invariance: The Geometric Prior

A.9.1 Jeffreys’ Rule Transforms as a Density

Show that Eq. (9.1) transforms as a density.
According to Eq. (9.4) we can write Jeffreys’s rule in the form

μ(ξ) ∝ det

(( ∂

∂ξ

)( ∂

∂ξ′

)†
a†(ξ)a(ξ′)

∣∣∣∣
ξ=ξ′

)1/2

(A.124)

and we express ξ via a transformation

η = T ξ (A.125)

by the parameter(s) η. This gives

μ(ξ) = det

(( ∂

∂T−1η

)( ∂

∂T−1η′

)†
a†(T−1η)a(T−1η′)

∣∣∣∣
η=η′

)1/2

= det

(( ∂

∂η

)( ∂

∂η′

)†
a†(T−1η)a(T−1η′)

∣∣∣∣
η=η′

)1/2 ∣∣∣∣
∂η

∂ξ

∣∣∣∣

= μT (η)

∣∣∣∣
∂η

∂ξ

∣∣∣∣ . (A.126)

We proceed from the first to the second line of this equation with the help of the
rule (9.9) and by factorising the determinant into a product of two determinants. The
third line is obtained when we observe that the first factor of the second line is the
result of Jeffreys’ rule when the model p is considered to be conditioned by η. As a
result, Jeffreys’ rule transforms in agreement with (2.9).

http://dx.doi.org/10.1007/978-3-319-41644-1_9
http://dx.doi.org/10.1007/978-3-319-41644-1_9
http://dx.doi.org/10.1007/978-3-319-41644-1_9
http://dx.doi.org/10.1007/978-3-319-41644-1_2
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A.9.2 The Fisher Matrix Is Positive Definite

Show that the eigenvalues of the matrix F of Eq. (9.4) with the elements

Fν,ν ′ = 4
∫

dx

(
∂

∂ξν
ax (ξ)

)(
∂

∂ξν ′
ax (ξ)

)
(A.127)

are not negative.
The matrix is real and symmetric. Hence, there is an orthogonal transformation

O that diagonalises it according to

F[diag] = O†FO . (A.128)

This means that the elements of F[diag] can be written

(
O†FO

)

κ,κ′
= 4

∫
dx

n∑

ν=1

Oν,κ

( ∂

∂ξν
ax (ξ)

) n∑

ν ′=1

Oν ′,κ′
∂

∂ξν ′
ax (ξ) . (A.129)

One cannot diagonalise F with the same transformation O at every ξ ; the transfor-
mation O depends on ξ. However, the differentiations acting on a(ξ) do not act on
O . For a given ξ the elements in the diagonal of F[diag] are the eigenvalues of F .
We obtain

F[diag]κ,κ = 4
∫

dx
( n∑

ν=1

Oν,κ
∂

∂ξν
ax (ξ)

)2

> 0 . (A.130)

The integrand in this equation is not only nonnegative, it is positive because we
require all eigenvalues of F to be nonzero.

A.9.3 The Measure on the Sphere

Prove that the geometric measure on the surface of an M-dimensional sphere with
unit radius is given by (9.20).

Let us set

ωM =
(
1 −

M−1∑

k=1

ω2
k

)1/2

. (A.131)

From (9.19), we obtain the matrix of tangential vectors

http://dx.doi.org/10.1007/978-3-319-41644-1_9
http://dx.doi.org/10.1007/978-3-319-41644-1_9
http://dx.doi.org/10.1007/978-3-319-41644-1_9
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∂a

∂ω
=

⎛

⎜⎜⎜⎝

1 0 0 . . . −ω1/ωM

0 1 0 −ω2/ωM
...

. . .

0 1 −ωM−1/ωM

⎞

⎟⎟⎟⎠ . (A.132)

This matrix has M − 1 rows and M columns.
The desired measure is

μ(ω) = det

(
∂a

∂ω

(
∂a

∂ω

)†
)1/2

. (A.133)

We find the product of matrices to be

∂a

∂ω

(
∂a

∂ω

)†

= 1M−1 + ω̂(ω̂)† . (A.134)

This is the sum of a unit matrix and a dyadic product. The vector ω̂ is

ω̂ = ω−1
M

⎛

⎜⎝
ω1
...

ωM−1

⎞

⎟⎠ (A.135)

According to Sect.D.2 the determinant of (A.134) is

det

(
∂a

∂ω

(
∂a

∂ω

)†
)

= 1 + (ω̂)†ω̂

=
(
1 −

M−1∑

k=1

ω2
k

)−1

. (A.136)

This proves (9.20).

A.9.4 Another Form of the Measure on the Sphere

Show that (9.22) is the measure on the sphere in terms of the parameters η introduced
by (9.21).

The transformation (9.21) implies the Jacobian determinant

∣∣∣∣
∂ω

∂η

∣∣∣∣ =
M−1∏

k=1

(1
2
η

−1/2
k

)
. (A.137)

http://dx.doi.org/10.1007/978-3-319-41644-1_9
http://dx.doi.org/10.1007/978-3-319-41644-1_9
http://dx.doi.org/10.1007/978-3-319-41644-1_9
http://dx.doi.org/10.1007/978-3-319-41644-1_9
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Therefore the transformation brings the measure (9.22) into the form

μT (η) = μ(ω)

M−1∏

k=1

(1
2
η

−1/2
k

)

= 21−M
(
1 −

M−1∑

k=1

ηk

)−1/2 M−1∏

k=1

η
−1/2
k

= 21−Mη
−1/2
M

M−1∏

k=1

η
−1/2
k

= 2
M∏

k=1

(1
2
η

−1/2
k

)
, (A.138)

where ηM is defined in (9.23).

A.10 Inferring the Mean or the Standard Deviation

A.10.1 Calculation of a Fisher Matrix

Verify Eq. (10.22).
We have to calculate the expectation values of the second derivatives given in

Eq. (10.21). The expression e−2η is independent of x . Therefore

− ∂2

∂ξ2
ln q =

∫
dx q(x |ξ, η)e−2η

= e−2η . (A.139)

Here, q is given by Eq. (10.1). The expectation value of x − ξ vanishes and

− ∂2

∂ξ∂η
ln q = 0 . (A.140)

The expectation value of (x − ξ)2 equals σ2 = e2η and

− ∂2

∂η2
ln q = 2 . (A.141)

This yields the Fisher matrix (10.22).

http://dx.doi.org/10.1007/978-3-319-41644-1_9
http://dx.doi.org/10.1007/978-3-319-41644-1_9
http://dx.doi.org/10.1007/978-3-319-41644-1_10
http://dx.doi.org/10.1007/978-3-319-41644-1_10
http://dx.doi.org/10.1007/978-3-319-41644-1_10
http://dx.doi.org/10.1007/978-3-319-41644-1_10
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A.10.2 The Expectation Value of an ML Estimator

The expectation value is calculated of the ML estimator (σML)2 given in Eq.10.30.
The expectation value

(σML)2 = 1

N

N∑

i=1

(
〈x2〉i − 〈x〉2i

)

= 1

N

N∑

i=1

⎛

⎝1

n

n∑

j=1

x2i, j −
(1
n

n∑

j=1

xi, j
)2

⎞

⎠ (A.142)

is considered. In the second line of this equation, the expectation values—indicated
by overlines—are taken with respect to the distribution (10.23). This distribution
entails Eq. (10.30) from which we take

x2i, j = σ2 + ξ2i . (A.143)

It thus follows

(σML)2 = 1

N

∑

i

(
n−1

∑

j

(σ2 + ξ2) − n−2
∑

j, j ′
xi, j xi, j ′

)

= 1

N

∑

i

(
σ2 + ξ2i − n−2

∑

j �= j ′
xi, j xi, j ′ − n−2

∑

j

x2i, j

)

= 1

N

∑

i

(
σ2 + ξ2i − n−2n(n − 1)ξ2i − −n−2

∑

j

(σ2 + ξ2i )
)

= 1

N

∑

i

(
σ2 + ξ2i − n−1(n − 1)ξ2i − n−1(σ2 − ξ2)

)

= 1

N

∑

i

σ2(1 − n−1)

= σ2(1 − n−1) . (A.144)

This proves Eq. (10.30).

A.11 Form Invariance II: Natural x

A.11.1 The Identity of Two Expressions

Show that the expression (11.7) agrees with (11.8).

http://dx.doi.org/10.1007/978-3-319-41644-1_10
http://dx.doi.org/10.1007/978-3-319-41644-1_10
http://dx.doi.org/10.1007/978-3-319-41644-1_10
http://dx.doi.org/10.1007/978-3-319-41644-1_10
http://dx.doi.org/10.1007/978-3-319-41644-1_11
http://dx.doi.org/10.1007/978-3-319-41644-1_11
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This means to prove the equation

exp(iξg) =
(

cos ξ sin ξ
− sin ξ cos ξ

)
. (A.145)

Some powers of iξg are

iξg = ξ

(
0 1

−1 0

)
,

(iξg)2 = ξ2
(−1 0

0 −1

)
,

(iξg)3 = ξ3
(
0 −1
1 0

)
,

(iξg)4 = ξ4
(
1 0
0 1

)

(iξg)5 = ξ5ig ,

(iξg)6 = ξ6(ig)2 . (A.146)

One recognises the rule
(ig)k = (ig)(kmodulo 4) . (A.147)

This leads to

exp(iξg) =
∞∑

k=0

ξk

k!
(

0 1
−1 0

)k

(A.148)

=
(
1 0
0 1

)
+ ξ

(
0 1

−1 0

)
+ ξ2

2!
(−1 0

0 −1

)

+ξ3

3!
(
0 −1
1 0

)
+ ξ4

4!
(
1 0
0 1

)
+ . . .

=
( ∑

k(−)k xi2k

(2k)!
∑

k(−)2k+1 ξ2k+1

(2k+1)!
−∑

k(−)2k+1 xi2k+1

(2k)!
∑

k(−)k xi2k

(2k)!

)

=
(

cos ξ sin ξ
− sin ξ cos ξ

)
, (A.149)

where the sums over k extend from 0 to ∞. One obtains the result to be proven.

A.11.2 Form Invariance of the Binomial Model

Show that the binomial model is form invariant.
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If the amplitude vector a(ξ) is obtained from an initial one a(ε) via a linear
transformation

a(ξ) = Gξ a(ε) (A.150)

and the set of transformationsGξ forms a group, then themodel is form invariant. The
binomial model fulfils this condition, because all vectors (11.5) are obtained from
(11.6) via the transformations (11.7) exactly once if one takes care of the periodicity
of ξ. The unit element is among theGξ . Equation (11.8) shows that the productGξGξ′

of any two Gξ,Gξ′ is among the Gξ . This equation also shows that the product is
associative.

A.11.3 The Multiplication Function of a Group of Matrices

Show that the multiplication function of � of the group of matrices (11.7) is

�(ξ; ξ′) = ξ′ + ξ . (A.151)

According to Eq. (11.8) the product of two matrices is

GξGξ′ = exp(iξg) exp(iξ′g)

= exp(i(ξ + ξ′)g) . (A.152)

This proves (A.151).

A.11.4 An ML Estimator for the Binomial Model

Show that theML estimator from the event n obtained by the binomial model (11.14)
is given by

sin2(ξML(n)) = n

N
. (A.153)

The ML equation is given in (11.18). It entails

0 = n cos2 ξ − (N − n) sin2 ξ

= n(1 − sin2 ξ) − (N − n) sin2 ξ

= n − N sin2 ξ (A.154)

from which (A.153) immediately follows.

http://dx.doi.org/10.1007/978-3-319-41644-1_11
http://dx.doi.org/10.1007/978-3-319-41644-1_11
http://dx.doi.org/10.1007/978-3-319-41644-1_11
http://dx.doi.org/10.1007/978-3-319-41644-1_11
http://dx.doi.org/10.1007/978-3-319-41644-1_11
http://dx.doi.org/10.1007/978-3-319-41644-1_11
http://dx.doi.org/10.1007/978-3-319-41644-1_11
http://dx.doi.org/10.1007/978-3-319-41644-1_11
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A.11.5 A Prior Distribution for the Poisson Model

Verify Eq. (11.24).
The derivative of an(λ) is

∂

∂λ
an(λ) =

(
n

2
√
n! − λn/2

2
√
n!

)
exp(−λ/2)

= 1

2
an(λ)(nλ−1 − 1) . (A.155)

This gives (
∂

∂λ
an(λ)

)2

= 1

4
p(n|λ)

(n
λ

− 1
)2

(A.156)

and

(μT (λ))2 =
∞∑

n=0

p(n|λ)
(n
λ

− 1
)2

(A.157)

which is Eq. (11.24).

A.11.6 A Limiting Case of the Poisson Model

Verify Eq. (11.30).
In Eq. (11.28) the value of ξ = 0 entails p(n|ξ) = 0 for every n �= 0. If n = 0 one

obtains
p(0|0) = 1 (A.158)

because 00 = 1 as well as 0! = 1.

A.12 Item Response Theory

A.12.1 Expectation Values Given by the Binomial Model

Find the expectation values x2 and x(1 − x) and (1 − x)2 from the binomial model
(12.1).

The expectation value of a function f (x) is

http://dx.doi.org/10.1007/978-3-319-41644-1_11
http://dx.doi.org/10.1007/978-3-319-41644-1_11
http://dx.doi.org/10.1007/978-3-319-41644-1_11
http://dx.doi.org/10.1007/978-3-319-41644-1_11
http://dx.doi.org/10.1007/978-3-319-41644-1_12
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f (x) =
1∑

x=0

q(x |θp,σi ) f (x)

=
1∑

x=0

[R(θp,σi )]x [1 − R(θp,σi )]1−x f (x) . (A.159)

The expression x2 q equals zero for x = 0; it equals R(θp,σi ) for x = 1. Hence,
one obtains

x2 = R(θp,σi ) . (A.160)

The product x(1 − x) q vanishes for x = 0 as well as for x = 1. This gives

x(1 − x) = 0 . (A.161)

The product (1 − x)2 q equals R for x = 0 and vanishes for x = 1. Thus one gets

(1 − x)2 = R(θp, σi ) . (A.162)

A.13 On the Art of Fitting

A.13.1 A Maximum Likelihood Estimator

Show that for the model (13.7) the ML estimator of the parameter η is given by
(13.10).

The common scale of y and η in the model (13.7) has a uniform measure. There-
fore the distribution χ̃

sq
N is a likelihood function. See the definition of likelihood in

Eq. (3.13). We determine the place of its maximum by solving the ML equation

0 = ∂

∂η
ln χ̃

sq
N (y|η) . (A.163)

This leads to the equation

0 = −N

2
+ ey−η (A.164)

which is solved by
ηML = y − ln(N/2) . (A.165)

http://dx.doi.org/10.1007/978-3-319-41644-1_13
http://dx.doi.org/10.1007/978-3-319-41644-1_13
http://dx.doi.org/10.1007/978-3-319-41644-1_13
http://dx.doi.org/10.1007/978-3-319-41644-1_3
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A.13.2 Gaussian Approximation to a Chi-Squared Model

Show that the Gaussian approximation to the distribution χ̃
sq
N (y|η′) in Eq. (13.12) is

given by Eq. (13.15).
According to Eq. (13.13) the maximum of the likelihood lies at η′ = y. Therefore

the Gaussian approximation is a function of the difference y − η′. The inverse vari-
ance of the Gaussian equals the Fisher function F . Equation (9.18) shows that F/4
equals the square of the geometric measure (13.8). This gives

F = N

2
(A.166)

in agreement with (13.14). Therefore the variance σ2 of the Gaussian (4.1) is set
equal to 2/N and we obtain the approximation

χ̃
sq
N (y|η′) ≈ 1√

2π

(N

2

)1/2
exp

(
− N

2

(y − η′)2

2

)

≈
( N

4π

)1/2
exp

(
− N

4
(y − η′)2

)
. (A.167)

http://dx.doi.org/10.1007/978-3-319-41644-1_13
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Appendix B
Description of Distributions I: Real x

B.1 The Correlation Matrix

We show that the matrix C that appears in the multidimensional Gaussian model
(4.16) has the elements

Cνν ′ = (x − ξ)ν(x − ξ)ν ′ . (B.1)

Here, the expectation value is taken with respect to the distribution (4.16), (4.17).
In order to prove Eq. (B.1) we consider the function

L(ξ) = ln p(x|ξ) . (B.2)

Its derivative with respect to ξν is

∂

∂ξν
L(ξ) =

∑

ν ′
(C−1)νν ′(xν ′ − ξν ′)

= (
C−1(x − ξ)

)
ν

. (B.3)

If we define the n-dimensional vector of derivatives

( �∂ L
)

=
⎛

⎜⎝
∂/∂ξ1 L

...

∂/∂ξn L

⎞

⎟⎠ , (B.4)

Equation (B.3) can be written as

C �∂ L = x − ξ (B.5)
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and (B.1) takes the form

Cν,ν ′ =
∫

dnx p(x|ξ)
(
(C �∂L)(C �∂L)†

)

ν,ν ′
. (B.6)

Here,

(C �∂L)† = ( �∂L)†C†

= ( �∂L)†C (B.7)

is the transpose of the vector C �∂L because C is symmetric. One arrives at

Cν,ν ′ =
∫

dnx p(x|ξ)
(
C �∂L( �∂L)†C

)

ν,ν ′
. (B.8)

Now we use the identity

∫
dnx p(x|ξ)

(
∂

∂ξν
ln p

)(
∂

∂ξν ′
ln p

)
= −

∫
dnx p(x|ξ)

∂2

∂ξν∂ξν ′
ln p . (B.9)

To derive it, one uses the fact that p(x |ξ) is normalised to unity for every value of ξ.
This can be rewritten as

∫
dnx p(x|ξ)

( �∂L( �∂L)†
)

ν,ν ′
= −

∫
dnx p(x|ξ)

(
∂2L

)
ν,ν ′ (B.10)

when ∂2L means the matrix of second derivatives of L . This brings (B.8) into the
form

Cνν ′ = −
∫

dnx p(x|ξ)
(
C(∂2L)C

)
νν ′ . (B.11)

The matrix of second derivatives of the logarithm of the Gaussian distribution (4.16)
equals the matrix −C−1. The matrix C is independent of x and ξ so that the r.h.s of
(B.11) is equal to Cν,ν ′ . This was to be proven.

B.2 Projecting the Multidimensional Gaussian

We prove the rule formulated at the end of Sect. 4.1.2 which says that the integration
over one of the event variables xν of the Gaussian model (4.16) yields a Gaussian
model whose correlation matrix K is obtained by omitting the νth row and the νth
column of the original correlation matrix C .

http://dx.doi.org/10.1007/978-3-319-41644-1_4
http://dx.doi.org/10.1007/978-3-319-41644-1_4
http://dx.doi.org/10.1007/978-3-319-41644-1_4
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The numerical value of the vector ξ in Eq. (4.16) is immaterial for what follows.
We set it equal to zero and consider the Gaussian model

p(x|0) = ((2π)n detC)−1/2 exp
(−x†(2C)−1x

)
. (B.12)

In order to integrate over the variable xn the expression x†(2C)−1x is rewritten as
follows

x†(2C)−1x =
n∑

ν,ν ′=1

xν(C
−1)ν,ν ′xν ′

=
n−1∑

ν,ν ′=1

xν(C
−1)ν,ν ′xν ′

+ 2xn

n−1∑

ν=1

(
C−1)

n,ν
xν + x2n

(
C−1)

n,n

=
n−1∑

ν,ν ′=1

xν

(
C−1

)
ν,ν ′ xν ′

+ (
C−1

)
)n,n

(
xn +

∑n−1
ν=1(C

−1)n,νxν

(C−1)n,n

)2

−
(∑n−1

ν=1(C
−1)n,νxν .

)2

(C−1)n,n
. (B.13)

Integrating the exponential function of this expression over xn removes the term
containing xn in the third version of this equation. This is the only term to depend
on xn and the shift of ∑n−1

ν=1(C
−1)n,νxν

(C−1)n,n

is immaterial. Thus the integration leads to

p↓ ∝ exp

(
−

n−1∑

ν,ν ′=1

xν(K
−1)ν,ν ′xν ′

)
, (B.14)

where the matrix K−1 has the elements

(K−1)ν,ν ′ = (C−1)ν,ν ′ − (C−1)n,ν(C−1)n,ν ′

C−1
n,n

. (B.15)

http://dx.doi.org/10.1007/978-3-319-41644-1_4
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The eigenvalues of K are all positive; otherwise one could not integrate expression
(B.13) over x1, . . . , xn−1. This integral exists, however, because (B.12) is a proper
distribution. This shows that p↓ is a multidimensional Gaussian distribution.

The expectation value of xνxν ′ for ν, ν ′ < n is the same with respect to both
p(x|0) and p↓ ; that is,

∫
dx1 . . . dxn xνxν ′ p(x|0) =

∫
dx1 . . . dxn−1 xνxν ′ p↓ . (B.16)

According to Sect.B.1 this entails

Cν,ν ′ = Kν,ν ′ for ν, ν ′ = 1, . . . , n − 1 , (B.17)

which was to be shown.

B.3 Calculation of a Jacobian

The Jacobian J of the transformation from (r1, . . . , rN ) to (T, r1, . . . , rN−1) defined
by Eqs. (4.25) and (4.26), and also used in (12.7, 12.8), is calculated.

The Jacobian is the determinant

J =
∣∣∣∣

∂(r1, . . . , rn)

∂(T, t1, . . . tN−1)

∣∣∣∣

=

∣∣∣∣∣∣∣∣∣∣∣

t1 t2 t3 . . . tN
T 0 0 . . . −T
0 T 0 . . . −T

0
. . .

0 . . . 0 T −T

∣∣∣∣∣∣∣∣∣∣∣

. (B.18)

Here, in the first line one finds the derivatives of the rk with respect to T ; the second
line contains the derivatives of the rk with respect to t1 ; in the third line there are the
derivatives of the rk with respect to t2 ; and so on. In the last line, the derivatives with
respect to tN−1 are given. By extracting the factor T from N − 1 lines, one finds

J = T N−1

∣∣∣∣∣∣∣∣∣∣∣

t1 t2 t3 . . . tN
1 0 0 . . . −1
0 1 0 . . . −1
...

. . .

0 . . . 0 1 −1

∣∣∣∣∣∣∣∣∣∣∣

. (B.19)

The determinant in (B.19) is equal to unity. One shows this by expanding it with
respect to the last column; that is,

http://dx.doi.org/10.1007/978-3-319-41644-1_4
http://dx.doi.org/10.1007/978-3-319-41644-1_4
http://dx.doi.org/10.1007/978-3-319-41644-1_12
http://dx.doi.org/10.1007/978-3-319-41644-1_12
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J T−N+1 = tN +

∣∣∣∣∣∣∣∣∣∣∣

t1 t2 t3 . . . tN−1

0 1 0 . . . 0
0 0 1
...

. . .

0 . . . 0 1

∣∣∣∣∣∣∣∣∣∣∣

−

∣∣∣∣∣∣∣∣∣∣∣

t1 t2 t3 . . . tN−1

1 0 0 . . . 0
0 0 1 0

. . .

0 0 1

∣∣∣∣∣∣∣∣∣∣∣
+ . . .

+(−)N−1

∣∣∣∣∣∣∣∣∣∣∣

t1 t2 t3 . . . tN−1

1 0 0 . . . 0
0 1 0 . . . 0

. . .

0 1 0

∣∣∣∣∣∣∣∣∣∣∣

. (B.20)

The first determinant on the r.h.s. has the value of t1. The following ones are found
by expanding them with respect to the second, third, and so on, column. This yields

J T−N+1 = tN +
N−1∑

k=1

tk

= 1 (B.21)

and proves (4.27).

B.4 Properties of the � Function

The � function is the analytical continuation of the factorials,

�(n) = (n − 1)! . (B.22)

It has the integral representation

�(z) =
∫ ∞

0
dt t z−1 exp(−t) ; (B.23)

http://dx.doi.org/10.1007/978-3-319-41644-1_4
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given by Euler1; compare Sect. 8.310 of [2]. It satisfies the functional equation

�(z + 1) = z�(z) . (B.24)

Special values are

�(1/2) = √
π ,

�(1) = 1 ,

�(2) = 1 . (B.25)

The logarithm of the � function can be calculated with the help of a MacLaurin
formula based on the Euler procedure of differences; see pp. 269 and 396 of [3]. We
choose the version

ln�(z) ≈ z ln z − z − 1

2
ln z + ln

√
2π

+
n−1∑

k=1

B2k

2k(2k − 1)z2k−1
+ Rn(z) . (B.26)

for positive�zwhich is given inSect. 8.344 [2]. In this expression, Rn is the remainder
of the series. For real z, it satisfies the inequality

|Rn(z)| <
|B2n|

2n(2n − 1)z2n−1
. (B.27)

The B2k are the Bernoulli numbers

B2 = 1

6

B4 = − 1

30
, (B.28)

see Sect. 9.71 of [2].
The present Eqs. (B.26), (B.27) are confirmed by a few examples in TableB.1,

where the equations have been used with n = 2; that is,

ln�(z) ≈ z ln z − z − 1

2
ln z + ln

√
2π + 1

12z
+ R2(z) . (B.29)

1Leonhard Euler, 1707–1783, Swiss mathematician, associate of the St. Petersburg Academy of
Science (since 1727), member of the Berlin Academy (since 1741). He achieved for modern geom-
etry what Euclid’s Elements had done for ancient geometry [1]; but he formulated it no longer
in terms of points and lines but rather via arithmetical and analytical relations. He discovered the
exponential function and the natural logarithm. He found the identity eiθ = cos θ + i sin θ.
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Table B.1 An Euler–MacLaurin Series

z �(z) ln�(z) Eq. (B.29) � 1/(360z3)

1 1 0 2.273 × 10−3 −2.273 × 10−3 2.78 × 10−3

1.5 0.886227 −0.120782 −0.120036 −7.44 × 10−4 8.23 × 10−4

2 1 0 3.27 × 10−4 −3.27 × 10−4 3.47 × 10−4

3 2 0.693147 0.693248 −1.00 × 10−4 1.03 × 10−4

4 6 1.791760 1.791802 −4.28 × 10−5 4.34 × 10−5

1/2 1.772454 0.572365 0.252272 0.320 0.022

and

R2(z) <
1

360z3
. (B.30)

The fifth column of TableB.1 gives the difference � between the correct value of
ln�(z) and the approximation (B.29) without the remainder R2. The last column
shows the upper limit (B.30) of �. For the values with z ≥ 1 given in the table, the
approximation (B.26) is seen to be valid.

B.5 The Beta Function

The Beta function is defined as

B(x, y) = �(x)�(y)

�(x + y)
; (B.31)

compare Sect. 8.384 of [2]. The integral representation

B(μ, ν − μ) = βμ

∫ ∞

0
dx

xμ−1

(1 + βx)ν
, (B.32)

given in Sect. 3.194 of [2], yields the normalisations of (4.43) and (4.49).
For μ = 1/2 and ν = 1, the substitution βX = t2γ−2 yields the integral

∫ ∞

−∞
dt

(
1 + t2

γ2

)−1

= γ B(1/2, 1/2)

= γπ (B.33)

which normalises the Cauchy distribution (4.45).

http://dx.doi.org/10.1007/978-3-319-41644-1_4
http://dx.doi.org/10.1007/978-3-319-41644-1_4
http://dx.doi.org/10.1007/978-3-319-41644-1_4
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Appendix C
Form Invariance I

C.1 The Invariant Measure of a Group

We show that expression (6.33) is an invariant distribution; that is, it possesses the
symmetry (6.30).

The proof essentially relies on the fact that the multiplication of group elements
is associative. We rewrite μ(Gρ ξ) in a series of steps starting from Eq. (6.33),

μ(Gρ ξ) = μ(ε)

∣∣∣∣
∂�(τ ;Gρ ξ)

∂τ

∣∣∣∣
−1

τ=ε

= μ(ε)

∣∣∣∣∣∣

∂�
(
τ ;�(ξ; ρ)

)

∂τ

∣∣∣∣∣∣

−1

= μ(ε)

∣∣∣∣∣∣

∂�
(
�(τ ; ξ); ρ

)

∂τ

∣∣∣∣∣∣

−1

. (C.1)

In all the lines of this equation, it is understood that after the differentiation with
respect to τ , one sets τ = ε. The definition of Gρ ξ leads from the first to the second
line. The associativity of the multiplication of group elements brings one to the third
line. More steps are needed. We write

ϕ = �(τ ; ξ) (C.2)

to obtain

μ(Gρ ξ) = μ(ε)

∣∣∣∣
∂�(ϕ; ρ)

∂ϕ

∣∣∣∣
−1

ϕ=�(τ ;ξ)

∣∣∣∣
∂�(τ ; ξ)

∂τ

∣∣∣∣
−1
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= μ(ε)

∣∣∣∣
∂�(ξ; ρ)

∂ξ

∣∣∣∣
−1 μ(ξ)

μ(ε)

=
∣∣∣∣
∂Gρ ξ

∂ξ

∣∣∣∣
−1

μ(ξ) . (C.3)

By differentiating an implicit function one obtains the first line of (C.3) from the last
line of (C.1). With τ → ε the second line of (C.3) is reached. This leads to the last
line which expresses the claimed symmetry of μ(ξ).

C.2 On the Existence of the Measure m(x) in the Space
of the Events

To show that themeasurem(x), defined byEq. (2.5), exists, takes a somewhat lengthy
argument. It is presented here.

The transformation T of (6.49) maps the space of events x onto the space of
parameters ξML and further coordinates x ε,

x −→ T x =
(
ξML(x), x ε(x)

)
, (C.4)

such that a transformation Gρ ∈ G, when applied to T x , acts only on the value of
ξML, not on x ε,

Gρ(ξ
ML, x ε) = (Gρξ

ML, x ε) . (C.5)

Because
Gρ ξML(x) = ξML(Gρx) , (C.6)

the transformations T and Gρ commute with each other.
We start from the definition (2.5) of the measurem(x) and rewrite it with the help

of the form invariance of the model p,

m(x) =
∫

dξ p(x |ξ)μ(ξ)

=
∫

dξ p(G−1
ξ x |ε)

∣∣∣∣∣
∂G−1

ξ x

∂x

∣∣∣∣∣μ(ξ) . (C.7)

Inasmuch as m(x) is a density, it transforms according to

m(x) dx = mT (T x) dT x , (C.8)

http://dx.doi.org/10.1007/978-3-319-41644-1_2
http://dx.doi.org/10.1007/978-3-319-41644-1_6
http://dx.doi.org/10.1007/978-3-319-41644-1_2
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whence, in terms of the coordinates T x , Eq. (C.7) reads

m(x) dx =
[∫

dξ p(G−1
ξ T x |ε)

∣∣∣∣∣
∂G−1

ξ T x

∂T x

∣∣∣∣∣μ(ξ)

]
dT x

=
⎡

⎣
∫

dξ p(G−1
ξ ξML, x ε|ε)

∣∣∣∣∣∣

∂
(
G−1

ξ ξML, x ε
)

∂(ξML, x ε)

∣∣∣∣∣∣
μ(ξ)

⎤

⎦ dT x . (C.9)

We write
G−1

ξ ξML = �(ξML; ξ) (C.10)

and use the fact that the Jacobian matrix within Eq. (C.9) is blockwise diagonal; that
is,

∂
(
G−1

ξ ξML, x ε
)

∂(ξML, x ε)
=

(
∂�(ξML;ξ)

∂ξML , 0
0 1

)
. (C.11)

In the upper left part, there is an n-dimensional Jacobian matrix; in the lower right
part, there is an (N − n)-dimensional unit matrix, if the x space is N -dimensional
and the ξ space is n-dimensional. The structure of the matrix (C.11) turns the last
line of Eq. (C.9) into

m(x)dx =
[∫

dξ p
(
�(ξML; ξ), x ε|ε

) ∣∣∣∣∣
∂�(ξML; ξ)

∂ξML

∣∣∣∣∣μ(ξ)

]
dT x . (C.12)

Without loss of generality, we can choose the parameterisation of the group G such
that the event x has led to the ML estimator ξML(x) = ε. Then we obtain

m(x)dx =
⎡

⎣
∫

dξ p(ξ, x ε|ε)
∣∣∣∣∣
∂�(ξML; ξ)

∂ξML

∣∣∣∣∣
ξML=ε

⎤

⎦ dT x . (C.13)

The Jacobian determinant in this expression is the (inverse of) the invariant measure
(6.30) albeit given as a function of ξ, not ξ. Themapping ξ → ξ will not be among the
transformations that leave (6.30) invariant. Therefore the (inverse of) the Jacobian
in (C.13) is proportional to μ̃(ξ), where μ and μ̃ are related via

μ(ξ)dξ = μ̃(ξ)dξ . (C.14)

This brings (C.13) into the form

m(x)dx =
[∫

dξ p(ξ, x ε|ε)μ(ε)μ(ξ)

μ̃(ξ)

]
dT x

http://dx.doi.org/10.1007/978-3-319-41644-1_6
http://dx.doi.org/10.1007/978-3-319-41644-1_6
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=
[
μ(ε)

∫
dξ p(ξ, x ε|ε)

]
dT x

=
[
μ(ε)

∫
dξ p(ξ, x ε|ε)

]
dT x . (C.15)

The second line of this equation is an application of (C.14). The last line simply
renames the integration variable.

The result says that the transformation ofm(x) from the variables x to the variables
T x leads to the integration of p(x |ξ) over a surface within the x space. Because p
is normalised to unity, its integral over the entire space of x exists. Therefore the
integral, that defines m(x), exists.



Appendix D
Beyond Form Invariance: The Geometric Prior

D.1 The Definition of the Fisher Matrix

The definition of the Fisher matrix in Eq. (9.2) can be rewritten in the following way.

Fν,ν ′ = −
∫

dx p(x |ξ) ∂2

∂ν∂ν ′
ln p(x |ξ)

=
∫

dx p(x |ξ)
( ∂

∂ξν
ln p(x |ξ)

) ∂

∂ξν ′
ln p(x |ξ) −

∫
dx

∂2

∂ξν∂ξν ′
p(x |ξ)

=
∫

dx p(x |ξ)
( ∂

∂ξν
ln p(x |ξ)

) ∂

∂ξν ′
ln p(x |ξ) . (D.1)

The second line of this equation is reached by calculating the second derivatives of
ln p. The third line is a consequence of the fact that

∫
dx p(x |ξ) equals unity for

every ξ.
This result can be expressed by the amplitudes

ax (ξ) = √
p(x |ξ) (D.2)

because
∂

∂ξν
ax (ξ) = 1

2

∂

∂ξν
ln p(x |ξ) . (D.3)

We obtain

Fν,ν ′ = 4
∫

dx
( ∂

∂ξν
ax (ξ)

) ∂

∂ξν ′
ax (ξ) . (D.4)

© Springer International Publishing Switzerland 2016
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D.2 Evaluation of a Determinant

The determinant of a matrix, which is the sum

F = 1 + f f † , (D.5)

of the unit operator and the dyadic product f f †, is now calculated.
One uses the identity

det F = exp(tr ln F) (D.6)

valid for any matrix F . One can verify this equation by diagonalising F . Hence, the
determinant of the matrix (D.5) is given by

det F = exp
(
tr ln(1 + f f †)

)

= exp

(
tr

∞∑

l=1

(−1)l+1

l
( f f †)l

)

= exp

( ∞∑

l=1

(−1)l+1

l
( f † f )l

)

= exp
(
ln(1 + f † f )

)

= 1 + f † f (D.7)

The second line of this equation is obtained by the Taylor expansion of the matrix
ln(1 + f f †). The third line results from the identity

tr( f f †)l = ( f † f )l , for l ≥ 1 . (D.8)

The fourth line evaluates the sum over l. The procedure holds for | f † f | < 1. In an
analogous way, we find the result

det(F−1) = 1 − f † f . (D.9)

D.3 Evaluation of a Fisher Matrix

TheFishermatrix (9.8) is calculated for themodelwith the amplitudes (9.25). The ele-
ments of F are given by

1

4
Fνν ′ = ∂

∂ων

∂

∂ω′
ν ′

∫
dx

( n∑

ρ=1

ωρcx (ρ)
)( n∑

ρ′=1

ωρ′cx (ρ
′)
)
∣∣∣∣∣∣
ω=ω′

http://dx.doi.org/10.1007/978-3-319-41644-1_9
http://dx.doi.org/10.1007/978-3-319-41644-1_9
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= ∂

∂ων

∂

∂ω′
ν ′

n∑

ρ=1

ωρω
′
ρ

∣∣∣∣∣∣
ω=ω′

. (D.10)

Thematrix F is (n − 1)-dimensional; that is,ν, ν ′ = 1, . . . , n − 1.The second line of
this equation is due to the orthonormality of the basis functions c(ρ) for ρ = 1, . . . , n.
The coefficients ωρ are related to each other via the normalisation (9.26). We define

ωn =
(
1 −

n−1∑

ρ=1

ω2
)1/2

. (D.11)

This allows us to rewrite the elements of the Fisher matrix

1

4
Fνν ′ = ∂

∂ων

∂

∂ω′
ν ′

⎛

⎝
n−1∑

ρ=1

ωρω
′
ρ +

√
1 −

∑

ρ

ω2
ρ

√
1 −

∑

ρ′
ω′

ρ′
2

⎞

⎠

∣∣∣∣∣∣
ω=ω′

= ∂

∂ων

(
ωρ − (1 − ∑

ρ ω2
ρ)

1/2

(1 − ∑
ρ′ ω′2

ρ′)1/2
ω′

ν ′

)∣∣∣∣∣
ω=ω′

= δνν ′ + (1 −
∑

ρ

ω2
ρ)

−1/2 (1 −
∑

ρ′
ω′2

ρ′)
−1/2 ων ′ω′

ν

∣∣∣∣∣∣
ω=ω′

= δνν ′ + ωνων ′

ω2
n

. (D.12)

By the rule derived in Sect.D.2, the determinant of the Fisher matrix is

det
(1
4
F
)

= 1 +
n−1∑

ν=1

ω2
ν

ω2
n

= ω−2
n

(
ω2
n +

n−1∑

ν=1

ω2
ν

)

= ω−2
n , (D.13)

whence we obtain the prior distribution (9.28). It is a geometric measure.

D.4 The Fisher Matrix of the Multinomial Model

The Fisher matrix (9.2) of the multinomial model (9.32) is now found.
Let us write the Fisher matrix in the form of the third line of (D.16). This gives

http://dx.doi.org/10.1007/978-3-319-41644-1_9
http://dx.doi.org/10.1007/978-3-319-41644-1_9
http://dx.doi.org/10.1007/978-3-319-41644-1_9
http://dx.doi.org/10.1007/978-3-319-41644-1_9
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1

4
Fν,ν ′ = 1

4

∑

x1...xM

p(x |ω)
( ∂

∂ων
ln p(x |ω)

) ∂

∂ων ′
ln p(x |ω)

= 1

4

∑

x1...xM

p(x |ω)

(
∂

∂ων

M∑

k=1

ln β2xk
k

)
∂

∂ων ′

M∑

k ′=1

ln β
2xk′
k ′

=
∑

x1...xM

p(x |ω)

(
M∑

k=1

xk
∂

∂ων
ln βk

)
M∑

k ′=1

xk ′
∂

∂ων ′
ln βk ′

=
M∑

k,k ′=1

xkxk ′

(
∂

∂ων
ln βk

)
∂

∂ων ′
ln βk ′ . (D.14)

Here, xkxk ′ is the expectation value

xkxk ′ =
∑

x1...xM

p(x |ω) xkxk ′ (D.15)

treated in Eq. (5.16). According to Eq. (9.31) the βk are given by

βk =
n∑

ν=1

ωνck(ν).

For (9.2) to be valid we assume that none of the βk vanishes. From (9.26) we take

ωn =
(
1 −

n−1∑

ρ=1

ω2
ρ

)1/2
. (D.16)

This yields the derivative

∂

∂ων
ln βk = β−1

k

(
ck(ν) − ων

ωn
ck(n)

)
. (D.17)

In the present context, the result (5.16) of Chap.5 reads

xkxk ′ = N (N − 1)β2
kβ

2
k ′ + Nβ2

k δkk ′ . (D.18)

Thus the last line of (D.14) can be written

1

4
Fν,ν ′ =

M∑

k,k ′=1

(
N (N − 1)β2

kβ
2
k ′ + δkk ′ Nβ2

k

)

×(βkβk ′)−1
(
ck(ν) − ων

ωn
ck(n)

)(
ck ′(ν ′) − ων ′

ωn
ck ′(n)

)

http://dx.doi.org/10.1007/978-3-319-41644-1_5
http://dx.doi.org/10.1007/978-3-319-41644-1_9
http://dx.doi.org/10.1007/978-3-319-41644-1_9
http://dx.doi.org/10.1007/978-3-319-41644-1_9
http://dx.doi.org/10.1007/978-3-319-41644-1_5
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= N (N − 1)

(
M∑

k=1

βk

(
ck(ν) − ων

ωn
ck(n)

)) M∑

k ′=1

βk ′
(
ck ′(ν ′) − ων ′

ωn
ck ′(n)

)

+N
M∑

k=1

(
ck(ν) − ων

ωn
ck(n)

)(
ck(ν

′) − ων ′

ωn
ck(n)

)
. (D.19)

From the orthogonality of the c(ν) follows that the first term on the r.h.s. of the last
line of this equation vanishes. For this we consider

M∑

k=1

βk

(
ck(ν) − ων

ωn
ck(n)

)
=

M∑

k=1

⎛

⎝
n∑

ρ=1

ωρck(ρ)

⎞

⎠
(
ck(ν) − ων

ωn
ck(n)

)

=
n∑

ρ=1

ωρ

M∑

k=1

(
ck(ρ)ck(ν) − ων

ωn
ck(ρ)ck(n)

)

=
n∑

ρ=1

ωρ

(
δρν − ων

ωn
δρn

)

= ων − ων

= 0 . (D.20)

Therefore the Fisher matrix becomes

1

4
Fν,ν ′ = N

M∑

k=1

(
ck(ν) − ων

ωn
ck(n)

)(
ck(ν

′) − ων ′

ωn
ck(n)

)

= N
(
δνν ′ + ωνων ′

ω2
n

)
. (D.21)

The second line of this equation is obtained because ν, ν ′ = 1, . . . , n − 1 which
entails that c(ν) and c(ν ′) are both orthogonal to c(n). The second line was to be
proven.
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Inferring Mean or Standard Deviation

E.1 Normalising the Posterior Distribution of ξ,σ

The normalisation of the distribution (10.5) is verified; that is, the integral

m(x1 . . . xN ) =
∫ ∞

−∞
dξ

∫ ∞

0
dσ σ−N−2 exp

(
− N

2σ2

[
(ξ − 〈x〉)2 + V

])
(E.1)

must be calculated. The integral over ξ is given by the normalisation of the simple
Gaussian of Problem Sect.A.3.3. The integral over σ is obtained with the help of the
substitution

λ = σ−2 ,

dλ = −2σ−3dσ . (E.2)

One finds

m(x) = (2π/N )1/2
∫ ∞

0
dσ σ−N−1 exp

(
−NV

2σ2

)

= (2π/N )1/2 2−1
∫ ∞

0
dλλ(N−2)/2 exp

(
−NV

2
λ

)
. (E.3)

By Appendix B.4, this integral yields a � function, namely

m(x) = π1/22(N−1)/2N−(N+1)/2 V−N/2 �(N/2) . (E.4)

From this result, (10.5) immediately follows.
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E.2 Rewriting a Product of Gaussian Models

We show that the first line of Eq. (10.24) agrees with the second line.
For this the double sum over the squared differences (xi, j − ξi )

2 is rewritten as
follows

N∑

i=1

n∑

j=1

(xi, j − ξi )
2 =

N∑

i=1

n∑

j=1

(x2i, j − 2ξi xi, j + ξ2i )

=
∑

i

∑

j

x2i, j + 2(
∑

i

ξi )(
∑

j

xi, j ) +
∑

i

nξ2i . (E.5)

Making use of the notation defined by Eq. (10.27) this turns into

N∑

i=1

n∑

j=1

(xi, j − ξi )
2 = n

∑

i

(
〈x2〉i − 2ξ〈x〉i + ξ2

)

= n
∑

i

(
〈x2〉i + (ξi − 〈x〉i )2 − 〈x〉2i

)
. (E.6)

with the definition of Vi in Eq. (10.26) we obtain the second line of Eq. (10.24).
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Appendix F
Form Invariance II: Natural x

It is shown in which way the generator g of (11.33) is related to creation and destruc-
tion operators. For this we introduce the operator

A =

⎛

⎜⎜⎜⎜⎜⎝

0 1 0 0 0 0
0 0

√
2 0 0 0

0 0 0
√
3 0 0

0 0 0 0
√
4 0

0
...

...
...

. . .
. . .

⎞

⎟⎟⎟⎟⎟⎠
(F.1)

Its elements are
Ax,x ′ = √

x ′δx+1,x ′ , x = 0, 1, 2, . . . . (F.2)

Thus the operator g of (11.33) can be expressed as

g = i(A† − A) , (F.3)

where A† is the transpose of A and has the elements

A†
x,x ′ = √

xδx,x ′+1 . (F.4)

In order to interpret these operators we look at their products

(AA†)xx ′ =
∑

x ′′
Axx ′′A†

x ′′x ′

=
∑

x ′′

√
x ′′δx+1,x ′′

√
x ′′δx ′′,x ′+1

= (x + 1)δx,x ′ (F.5)
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and similarly
(A†A)x,x ′ = xδx,x ′ . (F.6)

The difference of the last two equations is the commutator

[AA†, A†A] = AA† − A†A

= δx,x ′ , x, x ′ = 0, 1, 2, . . . (F.7)

or simply
[AA†, A†A] = 1 . (F.8)

This means that the operators A and A† are destruction and creation operators,
respectively. Such operators are a basic tool of quantum field theory. In the present
context they destroy and create events of the Poisson distribution.

Note that the diagonal operator

A†A =

⎛

⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 . . . 0
0 1 0 . . . 0
... 0 2 0

0 0 3
. . .

...
...

. . .
. . .

⎞

⎟⎟⎟⎟⎟⎟⎟⎠

. (F.9)

shows in its diagonal elements all possible events of the Poisson model. It is called
the number operator.



Appendix G
Item Response Theory

G.1 ML Estimators from Guttman Data

We want to prove that the ML estimators for the Guttman scheme of Table12.1 are
given by

θML
p =

(
tp − N

2

)
�, p = 1, . . . , N ,

σML
i =

(
N + 1

2
− si

)
�, i = 1, . . . , N , (G.1)

where the Guttman scheme yields the scores

tp = N + 1 − p ,

si = i . (G.2)

The value of the step width

� = π

2N
(G.3)

is given in Eq. (12.14).
The data matrix x of Table12.1 is characterised by

xp,i = 1 for i ≥ p ,

= 0 for i < p . (G.4)

This turns the ML equations (12.11) into
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0 =
N∑

i=p

cot
(
π/4 + θp − σi

)
−

p−1∑

i=1

tan
(
π/ + θp − σi

)
, p = 1, . . . , N ;

0 =
i∑

p=1

cot
(
θp − σi

)
−

N∑

p=i+1

tan
(
π/4 + θp − σi

)
, i = 1, . . . , N (G.5)

From Eqs. (G.1), (G.2) and (G.3) follows

θp − σi = (i + 1/2 − p)
π

2N
. (G.6)

The first of the ML equations (G.5) then reads

0 =
N∑

i=p

cot
(
π/4 + θp − σi

)
−

p−1∑

i=1

tan
(
π/ + θp − σi

)
. (G.7)

We use the identity
cot α = − tan(α − π/2) (G.8)

to express the cot function in (G.7) by a tan function. Together with Eq. (G.6) this
turns Eq. (G.7) into

0 =
N∑

i=p

tan
(
−π/4 + (i + 1/2 − p)

π

2N

)
+

p−1∑

i=1

tan
(
π/4 + (i + 1/2 − p)

π

2N

)
.

(G.9)
Substituting in the first sum on the r.h.s. the index of summation by

i ′ = i − p − N/2 (G.10)

and
i ′′ = i − p + 1/2 (G.11)

we obtain

0 =
−p+N/2∑

i ′=−N/2

tan
(
(i ′ + 1/2)

π

2N

)
+

−1+N/2∑

i ′′=1−p+N/2

(
(i ′′ + 1/2)

π

2N

)

=
N/2−1∑

i ′=−N/2

tan
(
(i ′ + 1/2)

π

2N

)
(G.12)

The substitution
i = i ′ + 1/2 (G.13)
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turns this into

0 =
N/2−1/2∑

i=−N/2+1/2

tan
(
i

π

2N

)
. (G.14)

In theGuttman scheme of Sect. 12.3.1 the number N is even; therefore the summation
index i takes half-integer values in steps of unity. Any two terms in the sum that have
indices of opposite sign cancel eachother. Therefore the sumon the r.h.s. ofEq. (G.14)
is indeed equal to zero.

This proves that the ML estimators (12.12) satisfy the first of the ML equations
(12.11). In an analogous way one proves that they satisfy the second ML equation
too.

G.2 The Fisher Matrix of the Trigonometric Model

It is shown that the Fisher matrix of the trigonometric model (12.2)–(12.4) has the
structure described in Eqs. (12.15)–(12.19).

The element p, p′ in the upper left block a of the Fisher matrix is defined by

Fp,p′ =
NP∑

k,k ′=1

NI∑

l,l ′=1

(
∂

∂θp
ln q(xk,l |Rk,l)

)
∂

∂θp′
ln q(xk ′,l ′ |Rk ′,l ′)

p, p′ = 1, . . . , NP . (G.15)

Here, Rk,l stands for the IRF given in Eq. (12.7)

Rk,l = R(θk − σl)

= sin2(π/4 + θk − σl) . (G.16)

The overline means the expectation value with respect to the event variables x. The
variable xk,l is statistically independent of xk ′,l ′ for (k, l) �= (k ′, l ′). In this case the
expectation value of the product of derivatives in (G.15) equals the product of the
expectation values of the derivatives. However, one has

∂

∂θp
ln q(xp,l |Rp,l) = ∂

∂θp

1∑

x=0

q(x |Rp,l)

= 0 . (G.17)

This derivative vanishes because the distribution q is normalised to unity for every
value of its parameter. Hence, Eq. (G.15) simplifies to
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Fp,p′ =
NP∑

k=1

NI∑

l=1

(
∂

∂θp
ln q(xk,l |Rk,l)

)
∂

∂θp′
ln q(xk,l |Rk,l) . (G.18)

For the partial derivatives in this equation to be different from zero, the indices p
and p′ must be equal to k. Thus the last equation simplifies further to

Fp,p′ = δp,p′

NI∑

l=1

(
∂

∂θp
ln q(xp,l |Rp,l)

)2

= δp,p′

NI∑

l=1

(
∂Rp,l

∂θp

)2 ( xp,l
Rp,l

− 1 − xp,l
1 − Rp,l

)2

. (G.19)

In Sect.A.12.1 the expectation values

xp,l = Rp,l ,

x2p,l = Rp,l ,

xp,l(1 − xp,l) = 0 ,

(1 − xp,l)2 = 1 − Rp,l (G.20)

are derived. Their use turns Fp,p′ into

Fp,p′ = δp,p′

NI∑

l=1

(
∂Rp,l

∂θp

)2 1

Rp,l(1 − Rp,l)

= 4δp,p′ NI ;
p, p′ = 1, . . . , NP . (G.21)

Following the analogous way one obtains for the lower right block b of F the
result

FNP+i,NP+i ′ = 4δi,i ′ NP , i, i ′ = 1, . . . , (NI − 1) . (G.22)

The elements of the upper right block s of F are

Fp,NP+i =
NP∑

k=1

NI∑

l=1

(
∂

∂θp
ln q(xk,l |Rk,l)

)
∂

∂σi
ln q(xk,l |Rk,l) ,

p = 1, . . . , NP ,

i = 1, . . . , (NI − 1) . (G.23)

Here, the argument that led from Eqs. (G.15) to (G.18) has been used. Because Rk,l

depends on θk and σl , and only on these parameters, the last equation simplifies to
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Fp,NP+i =
(

∂

∂θp
ln q(xp,i |Rp,i )

)
∂

∂σi
ln q(xp,i |Rp,i )

= ∂Rp,i

∂θp

∂Rp,i

∂σi

(
xp,i
Rp,i

− 1 − xp,i
1 − Rp,i

)2

. (G.24)

By way of Eq. (G.20) this becomes

Fp,NP+i = ∂Rp,i

∂θp

∂Rp,i

∂σi

1

Rp,i (1 − Rp,i )

= −4 ,

p = 1, . . . , NP ,

i = 1, . . . , NI . (G.25)

Thus the elements of the Fisher matrix are as given by Eqs. (12.15)–(12.19).

G.3 On the Inverse of the Fisher Matrix
of the Trigonometric Model

Aiming at the Gaussian approximation (12.28) to the posterior of the trigonometric
model, we look for the inverse F−1 = C of the Fisher matrix F . The latter one is
given by Eqs. (12.15–12.19). This inverse equals the correlation matrix C of the
desired Gaussian. Actually, we restrict ourselves to calculate the diagonal elements
of C . Via Eq. (12.29) they give access to the Gaussian errors of the parameters.
Equation (12.30) shows that the determinants of the matrices F (k,k) and F must be
calculated; the determinant of F is already known by Eq. (12.26). So the present
section is devoted to the determinant of F (k,k).

The matrix F (k,k) is obtained by omitting the kth row and the kth column from
F . This produces a matrix of the same structure as F . Let the index p = 1, . . . , NP

refer to the competence parameters of the persons. Then one has

F (p,p) = 4

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎝

−1, . . . , −1

NI1NP−1
...

...

−1, . . . , −1
−1, . . . , −1,

...
... NP1NI−1

−1 . . . , −1,

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (G.26)

The essential difference to the matrix (12.15) occurs in the upper left block: It is pro-
portional to the unit matrix in only NP − 1 dimensions. To calculate the determinant
of (G.26) one uses the same procedure as described in Sect.G.2 for the determinant
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of F and one finds

det
(
F (p,p)

)
= 4NP+NI−2 NNP−2

I N NI−2
P (NI + NP − 1) . (G.27)

According to Eq. (12.30) this leads to the result (12.32).
The errors of the item parameters i = 1, . . . , NI are given by the diagonal ele-

mentsCNP+i,NP+i of the correlationmatrix. Thematrix F (NP+i,NP+i) has the structure

F (NP+i,NP+i) = 4

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎝

−1, . . . , −1

NI1NP

...
...

−1, . . . , −1
−1, . . . , −1,

...
... NP1NI−2

−1 . . . , −1,

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (G.28)

The essential difference to the matrix (12.15) is seen in the lower right block which
is proportional to the unit matrix in only NI − 2 dimensions. The determinant of
(G.28) is

det
(
F (NP+i,NP+i)

)
= 2 × 4NP+NI−2 NNI−2

P N NP−1
I . (G.29)

Via Eq. (12.30) one obtains the result given in Eq. (12.36).
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On the Art of Fitting

H.1 The Geometric Measure on the Scale of a Chi-Squared
Distribution

According to the second line of Eq. (9.18) the geometric measure on the scale of η is

μg(η) = 1

2

[
F(η)

]1/2
, (H.1)

where F is the Fisher function given in Eq. (9.2), which means

F(η) = −
∫

dy χ̃
sq
N (y|η)

∂2

∂η2
ln χ̃

sq
N (y|η) . (H.2)

Here, χ̃sq
N (y|η) is the model (13.7). This yields

F(η) = − 1

�(N/2)

∫
dy exp

(N

2
[y − η] − ey−η

) ∂2

∂η2

(N

2
[y − η] − ey−η

)

= 1

�(N/2)

∫
dy exp

(N

2
[y − η] − ey−η

)
ey−η

= 1

�(N/2)

∫ ∞

−∞
dy exp

(
(
N

2
+ 1)[y − η] − ey−η

)

= �(N/2 + 1)

�(N/2)

= N

2
. (H.3)

For the step from the third to the fourth line of this equation, one uses the fact that
χ̃
sq
N is normalised to unity. The last line follows from Eq. (B.24) in AppendixB. By
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Eq. (H.1) one obtains

μg(η) =
(N

8

)1/2
. (H.4)

H.2 Convoluting Chi-Squared Distributions

Let a set of positive numbers tk , k = 1, . . . , N , be given so that each one follows a
chi-squared distribution (4.34). The distribution of tk ,

qk(tk) = 1

�( fk/2)
t fk/2−1
k exp(−tk) , (H.5)

shall have the number fk of degrees of freedom. The fk are positive; they need not
be integer. For k �= k ′ the number fk may be different from fk ′ . We show that the
quantity

T =
N∑

k=1

tk (H.6)

follows a chi-squared distribution with

f tot =
N∑

k=1

fk (H.7)

degrees of freedom. This is a consequence of the convolution theorem. We explain
the notion of “convolution” and state the theorem. It describes the structure of the
Fourier2 transform of a convolution. From this follows the distribution of T ; see
Sect.H.4. The Fourier transformation is defined in Sect.H.3.

A convolution q1 ◦ q2 of the functions q1 , q2, defined and integrable over the real
axis, is

q1 ◦ q2 (x) =
∫

dt2 q1(x − t2)q2(t2)

=
∫

dt1dt2 δ(x − t1 − t2)q1(t1)q2(t2) , (H.8)

where δ(x) is Dirac’s δ distribution. Integrating q1 ◦ q2 over x from 0 to ∞ yields
unity because the distributions qk are normalised to unity. The N -fold convolution is

2Joseph Fourier, 1768–1830, French mathematician and physicist, member of the Académie des
Sciences. He studied the transport of heat in solids. In this context he discovered the possibility to
expand distributions into the series which nowadays carries his name.

http://dx.doi.org/10.1007/978-3-319-41644-1_4
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q1 ◦ q2 ◦ · · · ◦ qN (T ) =
∫

dt1 . . . dtN δ(T −
N∑

k=1

tk)
N∏

k=1

qk(tk) . (H.9)

This distribution is again normalised to unity.
The Fourier transform of qk is called

Fk(ξ) = 1√
2π

∫ ∞

−∞
dtk qk(tk)e

iξtk . (H.10)

Here, we have set qk(tk) = 0 for negative values of tk in order formally to obtain the
integration from −∞ to ∞ required by the definition of the Fourier transform. For
all further transforms in the present section this is also done. Note that

Fk(0) = 1√
2π

(H.11)

because the distribution qk is normalised to unity.
Let F1◦2 be the Fourier transform of q1 ◦ q2. Then the convolution theorem says

that
F1◦2(ξ) ∝ F1(ξ)F2(ξ) , (H.12)

that is, the Fourier transform of the convolution q1 ◦ q2 is proportional to the product
of the transforms of q1 and q2. Again the proportionality constant is such that

F1◦2(0) = 1√
2π

(H.13)

because q1 ◦ q2 is normalised to unity.
This can be generalised to the statement: the Fourier transform F1◦···◦N (ξ) of the

N -fold convolution (H.9) is proportional to the product of the N Fourier transforms
Fk ; that is,

F1◦···◦N (ξ) ∝
N∏

k=1

Fk(ξ) . (H.14)

The proportionality constant is again such that

F1◦···◦N (0) = 1√
2π

. (H.15)

Equation (H.32) yields the Fourier transform

Fk(ξ) = 1√
2π

1

(1 − iξ) fk/2
(H.16)
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of the distribution qk in Eq. (H.5). By Eq. (H.12) the Fourier transform of q1 ◦ q2 is

F1◦2(ξ) = 1√
2π

1

(1 − iξ)( f1+ f2)/2
. (H.17)

Generally, the Fourier transform of the N -fold convolution q1 ◦ q2 ◦ · · · ◦ qN is

F1◦2◦...N (ξ) = 1√
2π

1

(1 − iξ) f tot/2
, (H.18)

where

f tot =
N∑

k=1

fk . (H.19)

Inverting the Fourier transformation that has given (H.18), one finds

1√
2π

∫ ∞

−∞
dξ F1◦2···◦N (ξ)e−iT ξ = 1

2π

∫ ∞

−∞
dξ

1

(1 − iξ) f tot/2
e−iT ξ

=
{ 1

�( f tot/2)T
f tot/2−1 e−T ,

0 for T < 0 ,
(H.20)

See Eqs. (H.33) and (H.30). This shows that the quantity T of Eq. (H.6) follows a
chi-squared distribution with f tot degrees of freedom which was to be shown.

H.3 Definitions of Fourier Transforms

Let f (x) be a real function which can be integrated over the whole real axis; that is,
the integral ∫ ∞

−∞
dx f (x)

exists.Wedonot require the function f (x) to be regular at all x . TheFourier transform

F(ξ) = 1√
2π

∫ ∞

−∞
dx f (x)eiξx (H.21)

exists for all real ξ. This definition of F follows Sect. 17.31 of [1].
The Fourier transform is an expansion of f in terms of the orthogonal functions

1√
2π

eiξx .
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They are orthogonal in the sense that

1

2π

∫
dx ei(ξ−ξ′)x = δ(ξ − ξ′) . (H.22)

The inversion of the Fourier transform is given by

f (x) = 1√
2π

∫ ∞

−∞
dξ F(ξ)e−iξx . (H.23)

The so-called Fourier sine and Fourier cosine transforms are

Fs(ξ) =
( 2
π

)1/2
∫ ∞

0
dx f (x) sin(ξx) (H.24)

and

Fc(ξ) =
( 2
π

)1/2
∫ ∞

0
dx f (x) cos(ξx) , (H.25)

See Sect. 17.31 of [1]. The symmetric and antisymmetric parts of f (x) - in the sense
of a reflection at the origin - are picked up by the cosine and sine transformations.
The symmetric part is

f S(x) = 1

2

(
f (x) + f (−x)

)
(H.26)

whereas

f A(x) = 1

2

(
f (x) − f (−x)

)
(H.27)

is the antisymmetric part. This leads to

F(ξ) = 1√
2π

∫ ∞

−∞
dx

[
f S(x) + f A(x)

][
cos(ξx) + i sin(ξx)

]

= 1√
2π

∫ ∞

−∞
dx

[
f S(x) cos(ξx) + i f A(x) sin(ξx)

]
(H.28)

because the integrals over products of a symmetric function with an antisymmetric
one vanish. It follows

F(ξ) =
( 2
π

)1/2
∫ ∞

0
dx

[
f S(x) cos(ξx) + i f A(x) sin(ξx)

]
. (H.29)
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H.4 The Fourier Transform of the Chi-Squared
Distribution

We are interested in the Fourier transform F(ξ) (see H.21) of a chi-squared distrib-
ution (see H.5). This means that the function f (x) in (H.21) is

f (x) =
{ 1

�(ν)
xν−1e−x for x > 0 ,

0 for x < 0 .
(H.30)

Then f S and f A in Eqs. (H.25, H.26) both equal f (x)/2 for x > 0. In this case
Eq. (H.28) yields

F(ξ) = 1

2

[
Fc(ξ) + i Fs(ξ)

]
. (H.31)

According to entry 16 in Sect. 17.33 as well as entry 7 in Sect. 17.34 of [1] the Fourier
transform (H.31) is

F(ξ) = 1√
2π

1

(1 + ξ2)ν/2

[
cos(ν tan−1 ξ) + i sin(ν tan−1 ξ)

]

= 1√
2π

(1 + ξ2)−ν/2 exp(iν tan−1 ξ)

= 1√
2π

[√
1 + ξ2 exp(−iν tan−1 ξ)

]−ν

= 1√
2π

1

(1 − iξ)ν
. (H.32)

The inversion (H.23) of this Fourier transformation yields the function in Eq. (H.30),

1

2π

∫ ∞

−∞
dξ

e−iξx

(1 − iξ)ν
= f (x) , (H.33)

from which we started the transformations.
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Dyadic product, 92

E
Econometrics, 37
Ensemble, 17
Error interval, 44
Estimator, 18, 75
Expectation value, 42
Exponential distribution, 50

F
Fisher function, 45
Fisher information, 45
Fisher matrix, 219, 231, 233
Fitting data, 151, 235
Form invariance, 4, 5, 15, 16, 69, 91, 167
Fourier transform, 238, 240
Frequency interpretation of probability, 2, 57
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