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Abstract

This thesis is devoted to the investigation of differences between the predictions of
classical and quantum theory. More precisely, we shall analyze such differences
starting from their consequences on quantities with a clear empirical meaning, such
as probabilities, or relative frequencies, that can be directly observed in
experiments.

Different kinds of classical probability theories, or hidden variable theories,
corresponding to different physical constraints imposed on the measurement sce-
nario are discussed, namely, locality, noncontextuality, and macroscopic realism.
Each of these theories predicts bounds on the strength of correlations among dif-
ferent variables, and quantum mechanical predictions violate such bounds, thus
revealing a stark contrast with our classical intuition.

Our work starts with the investigation of the set of classical probabilities by
means of the correlation polytope approach, which provides a minimal and optimal
set of bounds for classical correlations. In order to overcome some of the com-
putational difficulties associated with it, we develop an alternative method that
avoids the direct computation of the polytope and we apply it to Bell and non-
contextuality scenarios showing its advantages both for analytical and numerical
computations.

A different notion of optimality is then discussed for noncontextuality scenarios
that provide a state-independent violation: Optimal expression are those maxi-
mizing the ratio between the quantum and the classical value. We show that this
problem can be formulated as a linear program and solved with standard numerical
techniques. Moreover, optimal inequalities for the cases analyzed are also proven to
be part of the minimal set described above.

Subsequently, we provide a general method to analyze quantum correlations in
the sequential measurement scenario, which allows us to compute the maximal
correlations. Such a method has a direct application for computation of maximal
quantum violations of Leggett–Garg inequalities, i.e., the bounds for correlation in
a macroscopic realist theories, and it is relevant in the analysis of noncontextuality
tests, where sequential measurements are usually employed.
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Finally, we discuss a possible application of the above results for the con-
struction of dimension witnesses, i.e., as a certification of the minimal dimension
of the Hilbert spaces needed to explain the arising of certain quantum correlations.
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Supervisor’s Foreword

The founding fathers of quantum mechanics, Einstein, Bohr, Schrödinger,
Heisenberg, to mention only a few, who struggled to come up with the “definitive”
theory we use nowadays, were well aware of the strangeness of the theory and the
necessity for an interpretation of it. The result was the so-called Copenhagen
interpretation: a set of rules to extract quantitative predictions for well-defined
experimental situations and avoid some of the idealization implicit in the classical
theory. Such an attitude towards quantum theory has been summarized by Mermin
in the (in)famous “Shut up and calculate!”. According to him, the bad reputation of
foundational problems started with the subsequent generation of physicists that
were “firmly—at times even ferociously—committed to the position that there is
really nothing peculiar about the quantum world at all”.

The most important open problem is arguably the hidden variable problem,
formulated by Einstein, Podolsky and Rosen (EPR) in their 1935 paper. This
concerns the possibility of completing quantum mechanics with additional hidden
variables, in order to reinterpret quantum probabilities as averages on a phase space,
in a manner reminiscent of classical statistical mechanics. EPRs original argument
was developed further by Bell who showed that any completion of quantum
mechanics with a hidden variable theory satisfying the locality assumption, i.e., the
existence of a finite speed at which causal influences can travel, must also obey
some bounds on the possible strength of correlations. These bounds are nowadays
known as Bell inequalities and they are violated in quantum mechanics, showing a
contradiction between testable predictions of quantum mechanics and local hidden
variable theories. A similar work of the same years is the one by Kochen and
Specker, who showed a contradiction between noncontextual hidden variable the-
ories, where the value of a certain physical quantity is independent of the mea-
surement context, and quantum mechanics. A third fundamental result is the one by
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Tsirelson, who introduced a Bell-like inequality for quantum correlations, showing
that also quantum mechanics obeys fundamental limitations with respect to more
general post-quantum theories.

Such results have been largely ignored by the physics community for several
years, until the 1980s when the information theoretic revolution was brought into
quantum theory. Then, the “spooky” quantum effects of Einstein, Schrödinger, and
Bell became useful resources for new approaches to information processing tasks.
The rise of quantum-information ideas was accompanied by an enormous progress
in the experimental control and manipulation of physical system at the quantum
level, such as single atoms and photons, opening realistic possibilities for appli-
cations such as quantum computation, quantum simulation and secure communi-
cation, as well as for quantum-enhanced measurements.

Costantino Budroni joined our group in spring 2012, and focused his PhD on
these fundamental problems of quantum mechanics and quantum information. This
written thesis presents a coherent set of original and outstanding results published
as ten articles in various journals. All of them are devoted to the investigation of
differences between quantum theory, classical probability theories, and possible
post-quantum theories, together with their applications for information processing
tasks.

The first part of the work focuses on the stark contrast between the correlations
in the outcomes of measurements predicted by quantum theory and the corre-
sponding sets of correlations allowed in theories satisfying different sets of physical
constraints, namely, locality (as considered by Bell), noncontextuality (as consid-
ered by Kochen and Specker) and macroscopic realism (as considered by Leggett
and Garg). Here the correlation polytope approach is adopted to characterize
minimal and optimal sets of bounds for classical probabilities. In order to overcome
the associated computational difficulties, the thesis presents new approaches, pro-
ven to be advantageous in both analytical and numerical computations.

In the second part, a characterization of quantum probabilities is given for the
temporal scenario, namely, for sequences of projective measurements performed on
the same system. As mentioned above, an important problem is to understand how
and why correlations are limited. The problem has been extensively investigated in
multipartite Bell scenarios, with the discovery of fundamental limitations like the
Tsirelson bound and has given rise to a lively debate on the origin of it. The thesis
work on the existence of fundamental bounds for temporal correlations, closely
related to multipartite scenarios, but with fundamental differences (e.g., in some
cases, they depend on the dimension), opens a new line of research for identifying
the fundamental principles of quantum correlations in general scenarios.

Finally, some applications of the above results, such as quantum dimension
witnesses, are discussed. The thesis ends with a brief chapter in which all the main
results are coherently connected and summarized.
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In my opinion, this is an excellent thesis which contains some important original
results that will have long standing influence in the fields of foundations of quantum
theory and quantum information. This thesis has been awarded the prize for
international young researchers from the University of Siegen in 2014, and I am
happy that it appears now in the renowned book series Springer Theses.

Siegen Prof. Otfried Gühne
September 2015
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Chapter 1
Introduction

The notion of probability is intimately related to the not ion of uncertainty, and the
latter arises in the description of physical systems at various levels and in different
ways. In particular, the probabilistic structure arising in quantum mechanics (QM)
has been recognized to be of a rather different kind with respect to its classical
counterpart.

The formalism of classical mechanics is based on physical quantities which are
assumed to have a clear empirical meaning (e.g., position and velocity of a point
particle) and uncertainty only arises as a consequence of practical limitations (e.g.,
finite precision ofmeasurement apparatuses) and can also be included in a systematic
way in the description of a physical system, as it happens in statistical mechanics.
More precisely, this is done by means of a probability measure, namely, an average
over states with precisely determined values for all the physical quantities, describing
the relative frequencies for appearance of such values on systems that have been
subjected to the same preparation.

The situation is much more complex in QM. In fact, a problem of interpreta-
tion arises as a consequence of the lack of an apparent and unambiguous empirical
meaning of the elements of formalism, e.g., self-adjoint operators and state vectors.
An interpretation provides a set of rules allowing for a derivation of experimental
predictions from the formalism, e.g., rules associating self-adjoint operators with
experimental apparatuses, state vectors with preparation procedures, eigenvalues
with outcomes of experiments. In particular, the predictions are restricted to well-
defined experimental situations, avoiding some of the idealizations implicit in clas-
sical mechanics. An illustrative example of this attitude is given by Peres’ claim that
“quantum phenomena do not occur in a Hilbert space, they occur in a laboratory” [1].

Such a separation between formalism and interpretation is ultimately due to dif-
ficulties of a realistic description of quantum phenomena, i.e., a description in terms
of an “actual state of affairs”. Whether such an interpretative caution is justified, i.e.,
whether QM can be formulated in terms of classical probability theory, is still an
open question, known as the hidden variable problem.

© Springer International Publishing Switzerland 2016
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2 1 Introduction

The necessity of such a completion of QMwith additional hidden variables (HV),
able to identify a dispersion free state and thus responsible for the randomness in
the measurements results, was firstly advocated by Einstein, Podolsky, and Rosen
(EPR) [2]. Their original argument was subsequently developed by Bell who showed
that any completion of QM with a hidden variable theory satisfying the locality
assumption of EPR, i.e., the existence of a finite speed at which causal influences
can travel, must also obey some bounds on the possible strength of correlations,
bounds nowadays known as Bell inequalities [3]. Such bounds are violated in QM,
thus showing a contradiction between testable predictions of QM and local hidden
variable theories. The possibility of such experimental tests distinguishes Bell’s no-
go theorem from many previous attempts (see discussion in [4]).

Another fundamental result on the impossibility of a HV completion of QM is
Kochen-Specker theorem [5]. Here the assumption of locality is substituted by the
more general notion of noncontextuality, i.e., independence of the measurement
context. To define precisely such a notion, we first need the notion of compatible
measurements. Two or more measurements are said to be compatible if they can be
performed jointly on the same system without disturbing each other. They can be
performed jointly or sequentially, in any order, and must always reproduce the same
result. In QM this notion correspond to the case of mutually commuting projective
measurements. A measurement context is then defined as a set of compatible mea-
surements. Noncontextuality clearly coincides with locality in the case of spacelike
separated observables.

Analogously to Bell inequalities, noncontextuality inequalities can be defined as
constraints on the possible ranges for classical probabilities under noncontextuality
assumption. For a given measurement scenario, it has been proven [6, 7] that there
exists a finite set of such constraints giving necessary and sufficient conditions for
the existence of a noncontextual hidden variable theory.

A third class of hiddenvariable theory, is that ofmacroscopic realist theories, intro-
duced by Leggett and Garg [8]. Here the usual assumption of realism, but this time
applied only tomacroscopic quantities, is combined with the assumption of noninva-
sive measurability, namely, the possibility of determining the value of such macro-
scopic quantities with an arbitrary small perturbation to their subsequent dynamics.
The aim of the authors was to investigate and detect macroscopic coherence, i.e., the
quantum superposition of macroscopically distinct states.

As can be intuitively seen already from the definition, the noninvasivemeasurabil-
ity assumption resembles the assumption of context independence, in the sense that
each measurement should not affect the measurement that may be performed subse-
quently. Here this assumption is physically motivated by the macroscopic nature of
the involved quantities and our experience with everyday objects. A similar analy-
sis of such hidden variable models in terms of linear inequalities, the Leggett-Garg
inequalities [8], is possible also in this case.

Besides the foundational problems, it is well known that the nonclassical features
of quantum systems can be exploited to perform information processing tasks in
a more efficient way [9]. Two prominent examples are given by Shor’s factoring
algorithm [10] and quantum simulation algorithms [11]. It is therefore a fundamental
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question to identify and quantify the resources needed for quantum information
processing tasks. For instance, in quantum communication tasks, the impossibility
of a local hidden variable description, also named nonlocality, has been proven to be
a fundamental resource for secure quantum key distribution among distant parties
[12]. From the point of view of quantum computation, e.g., in the measurement-
based quantum computation model, such a locality restriction is unnecessary. In this
framework, contextuality, i.e., the impossibility of a noncontextual hidden variable
model, has been proven to be a fundamental resource for computation [13, 14].

In this thesis, we consider the problem of characterizing the ranges of values for
probabilities in different kinds of hidden variable theories as well as in QM, with
particular emphasis on the temporal scenario, and discuss possible applications of
the results (e.g., dimension witnesses).

More in details, the thesis is structured as follows. In the present chapter, we first
recall the basic definitions and properties of the three main hidden variable theories
mentioned above, namely, local, noncontextual, and macroscopic realist theories,
and how their corresponding ranges for probabilities can be computed in the unified
framework of Pitowsky’s correlation polytope [7, 15]. Such a method provides a set
of necessary and sufficient conditions for the existence of a hidden variable model,
expressed in terms of a system of linear inequalities, as a solution of a geometrical
problem known as the hull problem. Similarly, we discuss an approach for computing
quantum bounds for the Bell and contextuality scenarios.

Despite the full generality of Pitowsky’s method, and the existence of algorithms
for solution of the hull problem, computing such a minimal set of conditions is a non
trivial task. In fact, the complexity of the polytope grows rapidly with the number of
measurement settings and outcomes (e.g., the number of vertices is exponential in
the number of settings), and a direct computation has been performed only in simple
cases.

To overcome this problem, in Chap.2 we develop an alternative method based on
the analysis of probability models for subsets of variables that are subsequently com-
bined imposing some consistency conditions on their intersection. We then proceed
to show the advantages of ourmethod, both for analytical and numerical computation,
in some non-trivial scenarios.

In Chap.3, we analyze the case of contextuality scenarios where each state gives
rise to the same violation of a given noncontextuality inequality, also known as state-
independent contextuality (SIC) scenarios. Due to the high number of measurement
settings involved in such scenario, the correlation polytope approach is usually inap-
plicable. We then define optimal inequalities, for a given SIC scenario, in terms of
the maximal ratio between the quantum and the classical value, and show that such
an optimization can be solved via linear programming, and thus efficiently with stan-
dard numerical techniques and with the optimality of the solution guaranteed. We
discuss the most fundamental SIC scenarios and we found that the corresponding
optimal inequalities are also facets of the associated correlation polytope.

In Chap.4, we discuss the computation of quantum bounds for temporal correla-
tions, namely, for sequences of quantum projectivemeasurements.We provide a gen-
eral method for computing such bounds that is based on semidefinite programming.

http://dx.doi.org/10.1007/978-3-319-24169-2_2
http://dx.doi.org/10.1007/978-3-319-24169-2_3
http://dx.doi.org/10.1007/978-3-319-24169-2_4
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Analogously to linear programming, such maximization procedure can be efficiently
performed with standard numerical techniques and the optimality of the solution
guaranteed.

In Chap.5, we discuss the application of previous results as dimension witnesses,
namely as a certification of the minimal dimension of the Hilbert space necessary to
reproduce a set of correlations as a measurement on a quantum system. We provide
dimension witnesses based on noncontextuality and Leggett-Garg inequalities for
different dimensions and we discuss their robustness under noise and imperfections.

Finally, we present a discussion and outlook of the results of the thesis.

1.1 Hidden Variable Theories

The necessity for a completion of quantum mechanics advocated by Einsten, Podol-
sky, andRosen (EPR) [2] resulted in thehidden variableprogram, namely, the attempt
to reinterpret quantummechanical predictions as averages on a phase space, in aman-
ner reminiscent of classical statistical mechanics. More precisely, the introduction
of additional (hidden) variables allows all physical quantities to have a definite value
(e.g., position and velocity of a point particle) and uncertainty only arises as a con-
sequence of practical limitations (e.g., finite precision of measurement apparatuses).
Uncertainty is thus included in the description of a physical system by means of a
probability measure, namely, an average over states with precisely determined values
for all the physical quantities, describing the relative frequencies for appearance of
such values on systems that have been subjected to the same preparation procedure.

Mathematically, such a representation amounts to a classical probability the-
ory defined by Kolomogorov’s axioms [16] and described by a probability space
(�,�,μ), where � is a set, � its σ-algebra of μ-measurable subsets, with Boolean
operations (∩,∪,c ), and μ a normalizedmeasure on�, i.e., μ(�) = 1. In this frame-
work, each point of the probability space determines the value of all the relevant phys-
ical quantities, which are described by classical random variables f : � → σ, where
σ is the set of their possible values. The randomness only arises as a consequence of
practical limitations preventing us from preparing a state with zero uncertainty, i.e.,
a Dirac δ measure.

In quantummechanics (QM), we know such a representation is possible for single
observables, namely, the expectation value and the single-outcome probabilities can
be computed via the Born rule and the spectral theorem. The simplest example is
that of a discrete observable A with spectral decomposition A = ∑

i λi Pi , we have

〈A〉ψ = 〈ψ|A|ψ〉, and pi ≡ Prob(A = λi ) = 〈ψ|Pi |ψ〉 (1.1)

where, pi ≥ 0 and
∑

i pi = 1, giving rise to the classical probabilistic interpretation
of the numbers pi . The same reasoning can be applied to a pair of commuting observ-
ables A, B, with A = ∑

i λi Pi and B = ∑
j μ j Q j with probabilities defined as

http://dx.doi.org/10.1007/978-3-319-24169-2_5


1.1 Hidden Variable Theories 5

pi j ≡ Prob(A = λi , B = μ j ) = 〈ψ|Pi Q j |ψ〉, (1.2)

where pi j satisfy pi j ≥ 0 and
∑

i j pi j = 1, and again can be interpreted as proba-
bilities.

Such an interpretation in terms of classical probabilities actually holds in the
general case, i.e., for arbitrary subalgebras of commuting observables with arbitrary
spectra, as a consequence of the generality of the spectral theorem [17].

A natural questions is the following: Is it possible to embed such a collection
of classical probabilities, arising from the spectral theorem, in a single “global”
probability space, i.e., in a single hidden variable theory? There have been various
attempts to introduce hidden variable theories [4, 5, 18, 19] and various impossibility
proofs of their existence [3, 5, 20–22]. The difference resides in the conditions
one assumes to be satisfied by a “reasonable” hidden variable theory. Two trivial
constructions are possible:

(A) The global probability space is defined as a product of single-observable prob-
ability spaces.

(B) The global probability space is defined as a product of probability spaces asso-
ciated with maximal contexts (maximal commuting subalgebras)

A possible objection to the model (A) is that no functional relation (between
commuting observables) is satisfied, all observables are represented as independent
variables (e.g., σz ⊗ 1, 1 ⊗ σx and σz ⊗ σx are represented by three independent
randomvariables).On the other hand, the problemwithmodel (B) is that, even though
the functional relations are satisfied, each observable is represented by many random
variables, one for each context. The problems associated with such constructions will
be apparent in the following, in particular when we will associate a precise physical
meaning to QM formal notion of commuting observable.

We shall analyse three different kinds of hidden variable theories and their asso-
ciated impossibility proofs, namely

(i) local hidden variable theories (LHV),

(ii) non-contextual hidden variable theories (NCHV),

(iii) macrorealist hidden variable theories (MRHV).

Each of the above qualities associated with a hidden variable theory (local, non-
contextual, macrorealist) refers to specific physical constraints that must be satisfied
by the theory and that translate into conditional statistical independence relations
among the classical random variables reproducing the measurement outcomes. We
shall discuss in detail each of the above theories in the following sections.

Notice that the classical probabilistic description (�,�,μ), contains both an
algebraic part, the algebra �, which encodes the logical relations between events,
and a measure-theoretic part μ, which encodes the probabilistic structure. With the
exception of one class of NCHV theories, where one wants the classical logical
structure to reproduce the algebraic relations among commuting projectors, the most
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unconstrained classical logical structure can be assumed, thus reducing the problem
only to the probabilistic description. More details can be found in Sect. 1.3.

In the analysis of the quantum versus classical predictions that follows, we shall
consider only the case of projective measurement. The reason is that, while the
generalization to positive-operator valued measure (POVM) can be easily done for
locality scenarios, for the other two cases it is certainly problematic. In fact, for
noncontextuality scenarios the correct notion of compatiblemeasurements for POVM
is still under debate [23] and for macrorealist theories the use of POVM explicitly
contradicts the noninvasive measurability assumption [24–26].

1.2 Local Hidden Variables and Bell’s Theorem

Local hidden variable theories are classical theories that attempt to describe the
statistics of measurements performed on distant systems. The locality condition,
therefore, amounts to a statistical independence for the probabilities for outcomes
on separated systems once conditioned on the hidden variable.

1.2.1 Local Hidden Variables

To better introduce the main ideas involved, let us discuss the simplest measurement
scenario. Consider two experimenters, Alice and Bob, performing measurements
on two distant system. Alice can chose between two measurements, let us denote
them as x ∈ {0, 1}, with outcome a ∈ {−1, 1}, and similarly for Bob, i.e., two
measurements y ∈ {0, 1} with outcome b ∈ {−1, 1}. A schematic representation of
the measurement scenario is given in Fig. 1.1.

A LHV model is defined as probability distribution for the joint probabilities
P(ab|xy), i.e., the probability of getting the outcomes a and b given that Alice
measure x and Bob measure y, of the form

P(ab|xy) =
∫

�

P(λ)P(a|x,λ)P(b|y,λ) dλ. (1.3)

Fig. 1.1 Schematic representation of a Bell measurement scenario. A source S produces two
entangled particles that travel to two experiment sites, A and B. The two experimenters, Alice and
Bob, can choose their measurement settings, respectively, x and y, and get an outcome, respectively,
a and b
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Once the hidden variable is known, the joint probability for outcomes a and b
factorizes, implying that the two variables are independent once conditioned on λ.
Without loss of generality, since λ can be chosen arbitrarily, all the indeterminacy
left in the variables a and b after conditioning on λ can be removed by redefining
the variable λ to include it. As a consequence, P(a|x,λ) and P(b|y,λ) can be seen
as deterministic functions of λ.

Notice also that in Eq. (1.3) it is implicitly assumed that the probability distribution
for the hidden variable λ does not depend on the choice of the measurement settings
x, y, an assumption is usually called free will. The origin of the name can be easily
understood by noticing that, by the definition of conditional probability,

P(λ|x, y) = P(λ) for all λ, x, y ⇐⇒ P(x, y|λ) = P(x, y) for all λ, x, y. (1.4)

Equation (1.4) implies that the experimenter is free to choose the to measure x
and y, i.e., her choice is not “influenced” by the hidden variable λ. The free will
assumption implies that λ, and consequently the a and b, must be interpreted as
statistical properties of the system that are (partially) revealed by the measurement
apparatus.

To summarize, the assumptions defining a LHV theory are the following

R Realism: Observables represent well defined properties of the system, which
are just revealed by the measurement process. In the probabilistic description
of Eq. (1.3), they are fixed once the hidden variable λ is fixed.

Loc Locality: There is a maximum speed at which information propagates. Events
in space-like separated regions cannot be in a relation of causal influence. In the
probabilistic description of Eq. (1.3), probabilities for measurements on distant
systems are statistically independent once conditioned on the hidden variable λ.

FW Freewill: The experimenter is able to choose themeasurement settings “freely”,
or, in simpler terms, the source of randomness used for the choice of the mea-
surement settings is independent of the source of randomness of the system
preparation. In the probabilistic description of Eq. (1.3), the probability distrib-
ution of the hidden variable λ is independent of the choice of the measurement
settings.

1.2.2 CHSH Inequality and Bell’s Theorem

The form (1.3) for the probability distribution allows us to compute bounds, usually
expressed as linear inequalities, on the correlations among different outcomes. The
most celebrated is the Clauser-Horne-Shimony-Holt (CHSH) inequality [27]. Let us
denote by A0, A1 the {−1, 1}-valued measurement settings for Alice, and by B0, B1
the {−1, 1}-valued measurement settings for Bob, the CHSH inequality reads

〈B〉 = 〈A0B0〉 + 〈A0B1〉 + 〈A1B0〉 − 〈A1B1〉 ≤ 2 (1.5)
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where 〈Ai B j 〉 denotes the correlation between Ai and B j , i.e., the expectation value
of the product of their outcomes.

Such a bound can be easily proven as follows. Let us define for Alice’s measure-
ments f Ax (λ) = P(+1|x,λ) − P(−1|x,λ), and similarly fBy for Bob’s measure-
ment. The functions f Ax , fBy are, therefore, deterministic functions of λ that fix the
measurement outcomes ±1 (note that P(+1|x,λ) + P(−1|x,λ) = 1, and similarly
for Bob). Equation (1.5), can therefore be rewritten using Eq. (1.3) as

〈A0B0〉 + 〈A0B1〉 + 〈A1B0〉 − 〈A1B1〉 =
∫

�
P(λ) f A0 (λ) fB0 (λ) dλ +

∫

�
P(λ) f A0 (λ) fB1 (λ)dλ

+
∫

�
P(λ) f A1 (λ) fB0 (λ) dλ −

∫

�
P(λ) f A1 (λ) fB1 (λ)dλ

=
∫

�
P(λ)

[
f A0 (λ) fB0 (λ) + f A0 (λ) fB1 (λ) + f A1 (λ) fB0 (λ) − f A1 (λ) fB1 (λ)

]
dλ

=
∫

�
P(λ)

[
f A0 (λ)( fB0 (λ) + fB1 (λ)) + f A1 (λ)( fB0 (λ) − fB1 (λ))

]
dλ

≤
∫

�
P(λ)max

λ

{
f A0 (λ)( fB0 (λ) + fB1 (λ)) + f A1 (λ)( fB0 (λ) − fB1 (λ))

}
dλ = 2

∫

�
P(λ) dλ = 2

(1.6)

We can finally state the following

Theorem (Bell 1964) No local hidden variable theory can reproduce all the pre-
dictions of quantum mechanics.

Proof SinceEq. (1.5) has been derived from the assumption of a local hidden variable
theory, it is sufficient to provide some quantummechanical correlations violating the
bound.

Consider two spin-1/2 particles in the singlet state

|ψ〉 = 1√
2
(|01〉 − |10〉), (1.7)

where |0〉, |1〉 denote the eigenstate of σz . By defining Alice’s observables A0 = σ
(1)
z

and A1 = σ(1)
x , where the superscript (1) denotes the action of the operator on the first

particle, and Bob’s observables B0 = 1√
2
(σ

(2)
z + σ

(2)
x ) and B1 = 1√

2
(σ

(2)
z − σ

(2)
x ),

we obtain

〈A0B0〉 + 〈A0B1〉 + 〈A1B0〉 − 〈A1B1〉 = 4√
2

= 2
√
2 > 2 (1.8)

�
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1.2.3 Experimental Tests

The experimental progress in quantum optics during the 1960s, in particular the pos-
sibility of created pairs of photons entangled in polarization using atomic cascades,
allowed for the first tests of Bell inequalities. In 1972, three year after Clauser-Horne-
Shimony-Holt original proposal [27], Freedman and Clauser performed the first test
and reported a violation of the CHSH inequality by six standard deviations [28].

Freedman and Clauser’s experiment was followed by others [29–31] that share
all the same problem: The experiments were performed with a static setup in which
the polarized were held fixed. In this scenario, one can design a local hidden variable
modelwhere the detector on one side is “aware” of themeasurement setting chosen on
the other side (see the discussion on the free will assumption above). This possibility,
preventing a definite answer to the LHV problem, has been named locality loophole.

To overcome this problem, Aspect et al. [32] introduced time-varying polarization
analyzers in the experiment. With this setup, the settings were changed during the
flight of the particle in such a way that the change of orientation on one side and
the detection event on the other side were separated by a spacelike interval. This,
together with the use of independent source of randomness for the change of the
settings, justifies the free will assumption and close the locality loophole.

All the above experiments, however, were subjected to the detection loophole,
namely, the possibility of a local hidden variable model explaining the observed
correlations in terms of the statistics of the undetected events. More precisely, given
the low efficiency of photon detectors (typically around 10–20%), one can refute
local hidden variable theories only by assuming that the fraction of detected events is
a valid representative of the whole sample (the so-called fair sampling assumption),
or, equivalently, that the probability of detecting is independent of choice of the
measurement settings.

The detection loophole in Bell experiments has been first closed by Rowe et al.
with entangled trapped ions [33], however, such an experiment was still subjected
to the locality loophole. Recently, by using highly efficient photon detectors, the
detection loophole has been closed in a photon experiment [34], thus showing that
photons can, in principle, allow for a loophole-free Bell test, albeit such a test has
not been performed yet.

1.3 Noncontextual Hidden Variables and Kochen-Specker
Theorem

Bell’s theorem strongly constraints the interpretation of measurements as reveal-
ing preexisting properties of physical systems. A natural question is whether such
a behaviour of quantum correlations appears also in more general measurement
scenario, where measurements are not necessarily performed on separated sys-
tems. As previously discussed, QM allows joint measurements also for commuting,
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or compatible, observables and the corresponding predictions are described by a
classical probability theory, but a much stronger property holds: Commuting mea-
surements can be performed in sequence in any order and repeated multiple times,
and the outcomes of each measurement are confirmed by the subsequent ones. This
phenomenon suggests the idea that compatible measurements do not disturb each
other and that each measurement apparatus should behave in the same way, indepen-
dently of which other compatible measurements are performed together.

We already know, from Bell’s theorem, that despite such properties a description
in terms of noncontextual hidden variable is, in general, impossible. However, such
an approach allows to investigate new phenomena arising from single systems, with
potential new applications [13, 14].

In mathematical terms, QM predictions for each set of compatible observ-
ables C = {B1, . . . , Bk} have a classical probabilistic representation given by
((�C, �C,μC), fB1 , . . . , fBk ), where the functions fBi : �C → σ(Bi ), with σ(Bi )

the spectrum of Bi , are classical random variables reproducing the expectation values
for {B1, . . . , Bk}, namely,

〈B1 . . . Bk〉 =
∫

�

fB1(λ) . . . fBk (λ)dμ(λ). (1.9)

The whole set of QM predictions can be therefore seen as a collection of classical
probabilities, one for eachmeasurement context. For the sake of simplicity, and since
our analysis will always involve only a finite number of events (e.g., a finite number
of measurements and outcomes), it is sufficient to take a finite set � and � the finite
Boolean algebra of its subsets.

Equation (1.9) resembles Eqs. (1.3), (1.6), in fact, a similar formal definitions can
be given for NCHV in terms of assumptions R, FW, and NC (noncontextuality) sub-
stituting LOC, as shown below. However, this approach assumes an unconstrained
logical structure for the HV theory, whereas, historically, quantum contextuality was
introduced by Kochen and Specker [5] as the impossibility of the embedding of the
logical structure, i.e., Boolean algebras, of subsets of commuting projectors into a
single global logical structure.

We shall first discuss the unconstrained approach to the problem, the one followed
by, e.g., Klyachko, Can, Binicioğlu, and Shumovsky (KCBS) [35], which is simpler
to introduce in analogy with Bell’s approach. Then, the original Kochen and Specker
problem and the relation among the two approaches will be discussed. Finally, we
shall discuss a new phenomenon, absent in Bell scenarios, which is that of state-
independent contextuality (SIC).

1.3.1 Noncontextual Hidden Variable Theories

In the case in which one assumes no constraint on the logical structure of the HV
theory, a definition of NCHV theory similar to the one presented above for LHV
theory can be given as follows
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R Realism: Observables represent well defined properties of the system, which
are just revealed by the measurement process.

NC Noncontextuality: The value of an observable is independent of the measure-
ment context, compatible measurements cannot be in a relation of causal influ-
ence.

FW Free will: The experimenter is able to choose the measurement settings freely,
i.e., the probability distribution of the hidden variable is independent of the
choice of the measurement settings.

In the above framework, (KCBS) [35], proposed the following inequality

〈A0A1〉 + 〈A1A2〉 + 〈A2A3〉 + 〈A3A4〉 + 〈A4A0〉 ≥ −3 (1.10)

where Ai are measurements with outcomes −1 and 1, and the measurements in the
same mean value 〈 〉 are compatible, i.e., are represented in quantum mechanics by
commuting operators. The classical bound 3 can be proven, in analogy with the
CHSH case above, just by trying all possible ±1 noncontextual assignments to the
observables Ai .

As opposed to Bell inequalities, there is no bipartition of the set of observables
such that every observable in one part is compatible with every observable of the
other. Consequently, Eq. (1.10) cannot be interpreted as a Bell inequality: The mea-
surements must be performed on a single system.

On a three-level system Eq. (1.10) can be violated up to 5 − 4
√
5 ≈ −3.94 with

state |ψ〉 = (1, 0, 0) and measurement settings A j = 2|v j 〉〈v j | − 1 as depicted in
Fig. 1.2, namely, |v j 〉 = (cos θ, sin θ cos[ jπ4/5], sin θ sin[ jπ4/5]) with cos2 θ =
cos(π/5)/(1 + cos(π/5)).

Fig. 1.2 The set of vectors
v j giving the dichotomic
observables
A j = 2|v j 〉〈v j | − 1 form a
pentagram, with orthogonal
vectors connected by an
edge, and the state ψ is
directed along its symmetry
axis.
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1.3.2 Kochen and Specker’s Original Problem

Kochen andSpecker’s original approach [5] focused on amore strict notion ofNCHV.
More precisely, it focused on reproducing also the state-independent predictions
of QM, namely, those given by functional relations between commuting quantum
observables.

As opposed to Birkhoff and von Neumann’s approach to quantum logic [36], but
rather following the same approach as Gleason [22], Kochen and Specker discussed
the possibility of reproducing just the logical relations between compatible measure-
ments, since such relations can be tested in joint measurement scenario and have a
clear experimental meaning. A discussion of this point can be found in [4].

In mathematical terms, the above notion of NCHV is captured by Kochen and
Specker’s definition of partial Boolean algebra [5], and its subsequent extension to
include probabilistic predictions [37]. Without loss of generality, we can consider
only prediction for projectors, since the outcome probabilities for any observable
can be recovered from those of its spectral decomposition. We refer to the definitions
given in [37].

A partial Boolean algebra (PBA) is a set X together with a non-empty family F
of Boolean algebras, F ≡ {Bi }i∈I , such that

⋃
i Bi = X , that satisfy

(P1) for everyBi ,B j ∈ F ,Bi ∩ B j ∈ F and the Boolean operations (∩i ,∪i ,
ci ),

(∩ j ,∪ j ,
c j ) of Bi and B j coincide on it.

Without loss of generality we can also assume the property

(P2) for allBi ∈ F , each Boolean subalgebra of Bi belongs to F .

By (P1), Boolean operations, when defined, are unique and will be denoted by
(∩,∪,c ); we shall denote a partial Boolean algebra by (X, {Bi }i∈I ), or simply by
{Bi }i∈I . In the following we shall consider only finite partial Boolean algebras.

Given a partial Boolean algebra (X, {Bi }), a state is defined as a map f : X −→
[0, 1], such that f|Bi

is a normalized measure on the Boolean algebra Bi for all i .
Equivalently, a state is given by a collection of compatible probability measures {μi },
i.e., measures coinciding on intersections of Boolean algebras, one for each Bi .

A partial probability theory (PPT) is a pair ((X, {Bi }); f ), where (X, {Bi })
is a partial Boolean algebra and f is a state defined on it. Equivalently, a partial
probability theory can be denotedwith ((X, {Bi }); {μi }), whereμi = f|Bi

, or simply
by ({Bi }; {μi }).

So far, such a definition just constrain PPTs to behave as classical probabilities
when restricted to contexts, and to have a noncontextual definition of their elements.
Such a definition is basically the same as that of nonsignalling theories for Bell
scenario [38], or, nondisturbing for noncontextuality scenario [39]. In their original
formulation Kochen and Specker [5, 40] proposed the following additional property
as a definition of PBA
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(PS) if A1, . . . , An are elements of X such that any two of them belong to a common
algebra Bi , then there is aBk ∈ F such that A1, . . . , An ∈ Bk .

In other words, if n elements are mutually compatible, then they are also glob-
ally compatible. Such a property, afterwards named Specker’s principle [41], has
been shown to play a fundamental role in ruling out possible post-quantum theories
[42–44].

It can be easily checked that the above properties are satisfied by the set of all
orthogonal projections in a Hilbert space of arbitrary dimension, with Boolean oper-
ations defined by

P ∩ Q ≡ P Q, P ∪ Q ≡ P + Q − P Q, Pc ≡ 1 − P, (1.11)

for all pairs P, Q of commutingprojections. If one considers afinite set of projections,
the result of the iteration of the aboveBoolean operations (on commuting projections)
is still a finite set and a partial Boolean algebra.

Moreover, given a set of projections, the corresponding predictions given by a
QM state define a PPT on the generated PBA. In fact, given a PBA of projections on
a Hilbert space H, by the spectral theorem, a quantum mechanical state ψ defines a
state fψ on it, given by fψ(P) = (ψ, Pψ). The generalization to density matrices is
obvious.

In this framework, given a partial probability theory ({Bi }; {μi }), a NCHV theory
extending it is given by a Boolean algebraB together with a normalized measure μ
such that Bi is a subalgebra ofB for all i , and μi = μ|Bi

.
The above implies that such an embeddingmust not only reproduce the probability

structure of QM predictions, i.e., the measure μ, but also the logical structure, i.e.,
the Boolean algebra of events �. The impossibility of embedding of QM PBAs into
a single Boolean algebra, as we shall discuss below, is precisely the statement of the
Kochen-Specker theorem.

For a better understanding of the above notions, let us consider a simple example.
Consider a three dimensional Hilbert space H and three projectors associated with
three orthogonal directions, say P1, P2, P3, and let us denote the generated Boolean
algebra B123. Their Boolean relations can be written as follows

(a) Pi ∩ Pj = 0 for any i �= j ,
(b) Pc

1 ∩ Pc
2 ∩ Pc

3 = 0.

In terms of truth-value assignments, they read

(a′) Pi and Pj cannot be simultaneously “true”
(b′) Not all three can be simultaneously “false”

In the next section, we shall see how such conditions cannot be simultaneously
satisfied for some particular sets QM projectors.
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1.3.3 Kochen-Specker Theorem

Consider a collection of orthogonal triads {(i jk)}, and the associated partial Boolean
algebra, {Bi jk}. Independently of the probabilistic predictions induced by a quantum
state, a necessary condition for the existence of a NCHV theory is the existence of
an embedding {Bi jk} ↪→ B, into a single Boolean algebra B.

Kochen and Specker proved (Ref. [5] Th. 0) that a necessary and sufficient condi-
tion for the existence of such an embedding is the existence of “enough” consistent
truth-value assignments, e.g., respecting rules (a′), (b′) above, to the set of proposi-
tions. They then proceed to show a partial Boolean algebra admitting no consistent
truth-value assignment.

Kochen and Specker’s original proof has been subsequently simplified [45–47]. A
simple proof, based on Peres’ argument for dimension 4, was then proposed by Peres
and Mermin [48, 49]. By translating logical relations (a′), (b′) into multiplicative
rules for ±1-valued assignments, the argument is greatly simplified. The proof is
based on the following set of observables known as the Peres-Mermin (PM) square

A = σz ⊗ 1, B = 1 ⊗ σz, C = σz ⊗ σz,

a = 1 ⊗ σx , b = σx ⊗ 1, c = σx ⊗ σx ,

α = σz ⊗ σx , β = σx ⊗ σz, γ = σy ⊗ σy .

(1.12)

Each observable commutes, and it is therefore jointly measurable, with the other
observables in the same row and with those in the same column. Moreover, the
product of the observables on each row, i.e., ABC , abc, αβγ, gives the identity
1, the same for the columns, except for the last one Ccγ, which gives −m1. This
implies that in each joint or sequential measurement of the observables in a row or
a column, the outcomes must also satisfy similar rules. For instance, let us denote
the outcomes of a measurement as v(A), v(B), . . . , v(γ), then such values satisfy
v(A)v(B)v(C) = 1, v(C)v(c)v(γ) = −1 and so on.

Let us assume it is possible to assign a value ±1 to each observable indepen-
dently of the measurement contexts, i.e., independently of whether it is measured
together with the other observables in the same row or in the same column. Then by
multiplying the values along the rows we get

[v(A)v(B)v(C)] × [v(a)v(b)v(c)] × [v(α)v(β)v(γ)] = 1 × 1 × 1 = 1, (1.13)

whereas along the columns we get

[v(A)v(a)v(α)]×[v(B)v(b)v(β)]×[v(C)v(c)v(γ)] = 1×1×(−1) = −1, (1.14)

which gives us a contradiction since the v(·) are numbers.
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1.3.4 State-Independent Contextuality

The interpretation of rules (a), (a′), (b), (b′) above in terms of logical constraints and
truth-value assignments for propositions in the corresponding HV model is justified
by the fact that such relations holds for any quantum state, i.e., for any possible
preparation. One might argue that it is a strong constraint to require a NCHV theory
to reproduce also such a quantum logical structure, and, as discussed above, onemight
relax such an assumption and attempt to reproduce only the probabilistic predictions
for a given quantum state assuming for the NCHV the most unconstrained classical
logical structure, i.e., a free Boolean algebra [50].

Such a procedure is common in Bell scenarios, where one can easily show that
the corresponding PBA of projectors can be embedded in a free Boolean algebra
[37]. In this framework, noncontextuality for K-S scenarios can be tested experi-
mentally in the same way as the KCBS inequality. In fact, each KS set, i.e., a set
of projectors not admitting a noncontextual truth-assignment and thus giving rise
to a proof of KS theorem, also provides a violation of a specific NC inequality for
any quantum state [51, 52]. This phenomenon has been named state-independent
contextuality (SIC). Conversely, it has been proven that if a NCHV model, in the
above unconstrained sense, i.e., assuming only a free Boolean algebraic structure,
exists for “enough” quantum states, then also the embedding of the initial PBA of
projectors can be obtained via a quotient induced on the free Boolean algebra by the
classical probability assignments [37].

One simple example of SIC is given by the PM-square. Let us consider the expres-
sion [51],

〈χPM〉 =〈ABC〉 + 〈abc〉 + 〈αβγ〉 + 〈Aaα〉 + 〈bBβ〉〈Ccγ〉,

where the measurements in each of the six sequences are compatible. Then, for
NCHV theories the bound

〈χPM〉 NCHV≤ 4 (1.15)

holds. This can be easily proven by trying all 29 noncontextual±1-value assignments
to the above observables. In a four-dimensional quantum system, however, one can
take the observables in Eq. (1.12). These observables lead for any quantum state to
a value of 〈χPM〉 = 6, demonstrating state-independent contextuality. The quantum
violation of Eq. (1.15) has been observed in several recent experiments [53–55].

However, SIC has been proven not to be an exclusive property of KS proofs. A
first preliminary result was given in Ref. [37] where was shown that SIC can also
appear for sets of projectors that admit some noncontextual truth-assignments, and
thus do not provide a proof ofKS theorem, but still are not embeddable into aBoolean
algebra. A stronger statement was then proven by Yu and Oh [56], that provided a
PBA of projectors embeddable into a Boolean algebra, but that also provide SIC.
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Table 1.1 Set of vectors giving rise to observables of the Yu and Oh’s scenario

v1 = (1, 0, 0) v5 = (1, 0,−1) vA = (−1, 1, 1)

v2 = (0, 1, 0) v6 = (1,−1, 0) vB = (1,−1, 1)

v3 = (0, 0, 1) v7 = (0, 1, 1) vC = (1, 1,−1)

v4 = (0, 1,−1) v8 = (1, 0, 1) vD = (1, 1, 1)

v9 = (1, 1, 0)

Fig. 1.3 Graph of the
orthogonality relations
among the vectors listed in
Table1.1

Yu and Oh’s argument uses the vectors in C
3 listed (not normalized for sim-

plicity) in Table1.1, and the corresponding set of projectors |v〉〈v| and ± 1-valued
observables Ai ≡ 2|vi 〉〈vi | − 1. The compatibility relations among observables Ai

follows from the orthogonality relations of the corresponding vectors, and are sum-
marized in the graph in Fig. 1.3.

Each pair of observables Ai A j such that i j is an edge of the graph, is therefore
jointly measurable. One can therefore write the following NC inequality

∑

i

〈ai 〉 − 1

2

∑

edges

〈ai a j 〉 ≤ 8, (1.16)

where ai are classical noncontextual random variables and the NCHV bound 8 is
computed by trying all possible 213 noncontextual value assignments forai . However,
using the explicit expression in Table1.1, one can easily compute the quantum value
for the operator

L =
∑

i

Ai − 1

2

∑

edges

Ai A j = 25

3
1, (1.17)

giving

〈L〉ρ = 25

3
> 8, (1.18)

for any quantum state ρ.
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The arising of a state-independent violation of a noncontextuality inequality, even
for a PBA admitting an embedding into a Boolean algebra can be understood as
follows. In quantum mechanics, the projectors associated with nodes A, B, C, D
sum up to a multiple of the identity, namely

|vA〉〈vA| + |vB〉〈vB | + |vC 〉〈vC | + |vD〉〈vD| = 4

3
1. (1.19)

This implies that for any quantum state the sum of their probabilities is 4
3 > 1.

On the other hand, from the orthogonality relations among the vectors {vi }, which
corresponds to exclusivity of the corresponding proposition, i.e., empty intersection
of the corresponding Boolean elements, implies that the proposition associated with
nodes A, B, C, D are also exclusive.

This can be easily proven as follows. Consider the nodes A and B, and denotes
the corresponding Boolean elements as X A and X B . From the graph in Fig. 1.3, one
can easily see that X A ∩ X8 = X A ∩ X4 = ∅, or equivalently, that X A ⊂ Xc

8 and
X A ⊂ Xc

4. Similarly, X B ⊂ Xc
5 and X B ⊂ Xc

7. We, thus, have that

X A ∩ X B ⊂ Xc
4 ∩ Xc

7 = X1,

X A ∩ X B ⊂ Xc
8 ∩ Xc

5 = X2,

=⇒ X A ∩ X B ⊂ X1 ∩ X2 = ∅,

(1.20)

where we used that the PBA elements represented in the graph as nodes in a triangle
sum up to the Boolean algebra identity, as in rules (b), (b′) of Sect. 1.3.2.

To summarize, even if the nodes A, B, C, D are not connected in the graph in
Fig. 1.3, the Boolean relations with other compatible elements imply that such ele-
ments must be disjoint and thus the sum of their probabilities is bounded by one,
whereas is QM such a bound does not hold.

1.4 Macrorealist Theories and Leggett-Garg Inequalities

An approach analogous to Bell and Kochen-Specker has been proposed by Leggett
and Garg [8] to investigate the possibility of realization and detection ofmacroscopic
coherence, i.e., the quantum superposition of macroscopically distinct states.

More precisely, the two authors introduce the notion of a macrorealist hidden
variable theory via a list of properties that we expect to be satisfied for a classical
macroscopic system. They then proceed to derive a Bell-like inequality for sequential
measurements of a single property of the system evolving in time, and show its
violation by QM predictions.
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1.4.1 Macrorealist Theories

The first step is, as always, to define precisely the properties we intuitively expect
from a theory describing a classical macroscopic system. Leggett and Garg proposed
the following:

MR Macroscopic realism: A system with two or more macroscopically distinct
states available to it will at all times be in one of them,

NIM Non-invasive measurability: It is possible, in principle, to determine the state
of the system with an arbitrary small perturbation to its subsequent dynamics.

As the previous examples, LHV and NCHV, we have the hypothesis of realism,
namely, that the measurement reveals a well defined property of the system. The sec-
ond assumption plays a role similar to locality and noncontextuality in the derivation
of Leggett-Garg inequality, but it is peculiar of a macroscopic system, namely, the
possibility of measuring its properties with an arbitrary small perturbation.

Themeasurement scenario is depicted in Fig. 1.4. A dichotomic variable Q = ±1,
representing a macroscopic property of the system, is measured at fixed instants in
time to obtain the two-time correlators Ci j = 〈Q(ti )Q(t j )〉, with ti < t j , defined as
the expectation value of the product of the two outcomes, namely,

〈Q(ti )Q(t j )〉 =
∑

xi ,x j =±1

xi x j Pr(Q(ti ) = xi , Q(t j ) = x j )

=
∑

xi ,x j

xi x j Pr(Q(t j ) = x j |Q(ti ) = xi )Pr(Q(ti ) = xi ).
(1.21)

The Leggett-Garg inequality is then defined as

K3 ≡ 〈Q(t1)Q(t2)〉 + 〈Q(t2)Q(t3)〉 − 〈Q(t1)Q(t3)〉 ≤ 1. (1.22)

Fig. 1.4 Schematic
representation of the
Leggett-Garg scenario. The
system is prepared in the
initial state  and a sequence
of measurements is
performed at fixed instants in
time, namely, t1, t2 and t3, to
obtain the correlators
〈Q(ti )Q(t j )〉
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As for CHSH inequality, the proof is straightforward: By MR we can assign a
definite value, +1 or −1, to each Q(ti ) in every run of the experiment, independent
of whether Q(ti ) is measured or not. By NIM such a value must be independent of
which other measurement are performed before or after ti . The bound K3 ≤ 1 is
given by a maximization over all possible ±1 assignments for Q(ti ) respecting the
above conditions in a way analogous to Eq. (1.6), namely

max K3 = max
Q(ti )=±1

{Q(t1)Q(t2) + Q(t2)Q(t3) − Q(t1)Q(t3)} = 1 (1.23)

1.4.2 Continuous Variables

It is interesting to notice that, for the case of a bounded continuous variable measure-
ment, which we can always normalize as Q(ti ) ∈ [−1, 1], the same bound applies.
Obviously, analogous arguments apply also the the case of LHV and NCHV bounds.
Since in Chap.5 we will consider the Leggett-Garg inequality in the limit of an
infinite number of outcomes, it is interesting here to show in detail that even in the
continuous limit the classical bound does not change.

The correlator Ci j can be defined as

〈Q(ti )Q(t j )〉 =
∫

xi ,x j ∈[−1,1]
xi x jρ(xi , x j )dxi dx j , (1.24)

where xi , x j ∈ [−1, 1] represent the continuous-variable outcomes for Q(ti ), Q(t j )

and ρ(xi , x j ) is the corresponding joint probability distribution.
The difference is that the maximummust be calculated over a the interval [−1, 1],

but the bound remains the same, namely,

max|Q(ti )|≤1
{Q(t1)Q(t2) + Q(t2)Q(t3) − Q(t1)Q(t3)} = 1. (1.25)

The maximum is taken on the three-dimensional cube {|Q(ti )| ≤ 1 | i = 1, 2, 3}, it
can be proven that such a maximum is obtained at the vertices of the cube as follows.
The function f = xy + yz − xz we want to maximize is a harmonic function (i.e.,
∇2 f = 0), so its maximumon a compact set, the cube |x |, |y|, |z| ≤ 1, is achieved on
the boundaries of the set. One can then check the maximum on each face of the cube,
which corresponds to fixing one coordinate, let us say x , to ±1. We have, therefore a
new function f̃ (y, z) on a square. Again, f̃ is harmonic, so we just have to check the
boundaries, so we either fix y = ±1 or z = ±1. We then have an harmonic function
on a segment, which achieves its maximum on the boundary points.

http://dx.doi.org/10.1007/978-3-319-24169-2_5
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Equation (1.25) fixes the value for deterministic assignments, expectation values
are given by

K3 = 〈Q(t1)Q(t2)〉 + 〈Q(t2)Q(t3)〉 − 〈Q(t1)Q(t3)〉 =
∫

f (x, y, z)ρ(x, y, z)dxdydz ≤

max | f (x, y, z)|
∫

ρ(x, y, z)dxdydz = 1, (1.26)

where ρ is a classical probability distribution for x, y, z, i.e., Q(t1), Q(t2), Q(t3),
and f is defined as above.

1.4.3 Quantum Violations

For dichotomic measurements, temporal correlations appearing in LG inequality can
be computed as follows. Given a ±1-valued measurement Q, with spectral decom-
position Q = �+ − �−, and assuming Lüders rule for the state update after the
measurement [57, 58], namely, ρ → �±ρ�±, up to a normalization factor and
depending on the outcome ±1, the value of the temporal correlation can be written
as

〈Q(ti )Q(t j )〉 =
∑

a,b=±
qaqbtr(�bU ji�aUi0ρ0U †

i0�aU †
j i ), (1.27)

where qa represent the outcome, ±1, associated with �a , ρ0 is the initial state of the
system and U ji = U (t j − ti ) = e−i H(t j −ti ) is the unitary time-evolution operator
for some Hamiltonian H .

Already for a two level system undergoing coherent oscillations between two
states, associated with values +1 and −1 for the property Q, one can reach the value

〈Q(t1)Q(t2)〉 + 〈Q(t2)Q(t3)〉 − 〈Q(t1)Q(t3)〉 = 3

2
, (1.28)

thus violating the bound (1.22).
Leggett and Garg original proposal was to test their inequality on rf-SQUID flux

qubit [8]. Thefirst experimental verificationwas performed25years later byPalacios-
Laloy et al. [59] on a similar system, a superconducting qubit of the trasmon type, but
with continuous weak measurements instead of projective ones. Many experiments
followed, on a wide range of different systems such as photons [60–63], defect center
in diamonds [64, 65], and nuclear magnetic resonance [66, 67].
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1.5 Correlations Polytopes

In the previous sections we have seen the derivation of specific inequalities giving
necessary conditions for the existence of classical hidden variable theories. Actually,
inequalities (1.5), (1.10) and (1.22) are part of a set of necessary and sufficient
conditions, each one for the specific scenario, for the existence of the corresponding
HV theories.

A first result in this direction was proven by Fine [6], who showed that the CHSH
inequality, together with its variations given by all possible outcome relabelling,
i.e., Ai → −Ai , B j → −B j , provide necessary and sufficient conditions for the
existence of LHV model for such a scenario.

Such ideas were subsequently generalized by Pitowsky [7, 15] into a systematic
approach to the characterization of sets of classical correlations, the correlation
polytope approach. Notice that, even though the correlation polytope approach was
originally discussed for Bell scenario, it can be easily adapted to Kochen-Specker
and Leggett-Garg scenarios.

The main idea at the basis of Pitowsky’s approach is that classical probability
assignments are defined as convex combinations of deterministic assignments. Thus,
representing deterministic assignments for a set of events as vectors, the correspond-
ing set of classical probabilities will be a convex polytope, i.e., a set generated by
convex combinations of afinite set of vectors.ByWeyl-Minkowski theorem (see, e.g.,
[15]), each convex polytope has a double description: One as the convex hull of its
vertices uε, i.e., the V-representation, and one as a (finite) intersection of half-spaces
which generates it, each one given by a linear inequality, i.e., the H-representation.

1.5.1 Definition

We shall provide rigorous definitions and discuss some simple examples to clarify the
concepts involved. We use the definition of correlation polytope given in [68], which
is the natural generalization of Pitowsky’s notion [15] to higher order correlations.

Given a set of propositions G = (A1, . . . , An) and a family I of subsets of G,
I ⊂ 2G , we define the sets Sk , k = 2, . . . , m with m ≤ n, as the sets of logical
conjunctions

Sk = {Ai1 ∧ · · · ∧ Aik | i j �= i j ′, {Ai1, . . . , Aik } ∈ I }. (1.29)

The lines of the truth table associated to the above set of propositions and logical
conjunctions between them, namely the 2n vectors of R|G|+|S2|+...+|Sm |,

uε = (ε1, . . . , εn, . . . , εiε j , . . . , εi1εi2 · · · εim , . . .), (1.30)
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where ε = (ε1, . . . , εn) ∈ {0, 1}n , are called the vertices of the correlation polytope.
Their convex hull, i.e., the set of points generated by their convex combinations, is
called the correlation polytope associated with I and denoted as COR(I).

It is convenient to introduce the following notation which makes apparent the
correspondence between coordinates and joint probabilities. The coordinates of a
point p ∈ R

|G|+|S2|+...+|Sm | will be denoted as

p = (p1, . . . , pn, . . . pi j , . . . , pi1...im , . . .). (1.31)

In general, the set I will be different from 2G , since the vector (1.31) must contain
only the joint probabilities that are actuallymeasured, namely, for jointmeasurements
of different subsystems in Bell scenarios, for compatible measurement in noncon-
textuality scenarios, and for sequential measurements in Leggett-Garg scenarios.

Linear inequalities now arise as a consequence ofWeyl-Minkowski theorem [15]:
Each convex polytope, i.e., the convex hull of a finite set of vertices, is also a convex
polyhedron, i.e., a bounded set described by a finite set of linear inequalities, and
vice-versa. From each set of inequalities, a minimal set of non redundant, i.e., not
implied by the others, can be extracted. Geometrically, such a minimal set is given by
the inequalities tangent to the facets of the polytope, also known as tight inequalities.
We recall that a face F of a polytope P is a subset F ⊂ P such that for any x ∈ F ,
every decomposition x = αy + (1 − α)z for y, z ∈ P , implies y, z ∈ F . Facets are
defined as the (d − 1)-dimensional faces of a d-dimensional polytope.

As a consequence, an inequality is tight if and only if it is valid, i.e., satisfied by
all points of the polytope, and it is saturated by a set of vertices generating a (d −1)-
dimensional affine subspace. A schematic representation of the above notions is
given in Fig. 1.5.

Pitowsky’s main result [7] can be stated as follow

Theorem ([7]) Given a measurement scenario described by the set I, the vector of
measurable probabilities p belongs to the corresponding correlation polytope if and
only if there exists a classical probability space representation for p.

The basic idea is that every probability assignment, represented here as a vector,
is a convex combination of deterministic assignments, the vertices of the polytope.

Fig. 1.5 Schematic
representation of tight and
non-tight inequalities
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Deterministic assignments will therefore be the points of the probability space, i.e.,
the atomic events, and the coefficients of convex combination will give the relative
frequencies at which such events can happen.

1.5.2 Examples

It is instructive to consider a simple example: The correlation polytope for two
propositions, A1, A2, and their logical conjunction A1 ∧ A2. The four vertices of the
polytope correspond to the rows of the following truth table for (A1, A2, A1 ∧ A2)

A1 A2 A1 ∧ A2

0 0 0
0 1 0
1 0 0
1 1 1

(1.32)

As can be easily deduced from Fig. 1.6, vertices in Eq. (1.32) form the tetrahedron
with the following facet inequalities

p1 − p12 ≥ 0,

p2 − p12 ≥ 0,

p12 ≥ 0,

1 − p1 − p2 + p12 ≥ 0, (1.33)

with the coordinate labelling as in Eq. (1.31).
The next example, which is directly related to HV models, is the CHSH scenario

of Sect. 1.2. To make the notation consistent with the above definitions, let us denote
Alice’s measurements as A1 and A2, with outcome 0, 1, and Bob’s measurements
as A3 and A4, again with outcome 0, 1. The set of propositions is, therefore, G =
(A1, A2, A3, A4). Moreover, the measurements associated with Ai and A j , for i =

Fig. 1.6 Correlation polytope for the truth Eq.1.32. The four vertices correspond to the rows of
Eq.1.32 and coordinates are labelled consequently. Inequalities (1.33) correspond to the four faces
of the tetrahedron: The plane p12 = 0 is the plane tangent to vertices (0, 0, 0), (1, 0, 0) and (0, 1, 0),
the plane p1 − p12 = 0 is the one tangent to the vertices (0, 0, 0), (0, 1, 0), and (1, 1, 1), and so on
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1, 2 and j = 3, 4, can be performed jointly and, consequently, it makes sense to
consider the following set of logical conjunctions S2 = {A1 ∧ A3, A1 ∧ A4, A2 ∧
A3, A2 ∧ A4}. The associated polytope is described by 24 = 16 vertices in R

8,
namely

uε = (ε1, ε2, ε3, ε4, ε1ε3, ε1ε4, ε2ε3, ε2ε4), εi ∈ {0, 1}, (1.34)

where εi represents a classical {0, 1}-valued assignment to proposition Ai and εiε j

the classical assignment for the logical conjunction Ai ∧ A j .
The convex hull of vertices (1.34) gives a set of linear inequalities constraining

the coordinates of a generic point in R8, which we denote by

p = (p1, p2, p3, p4, p13, p14, p23, p24). (1.35)

The interpretation of such a geometrical object is the following: Given a vec-
tor belonging to the polytope, each component represents the joint probability for
the corresponding subset of propositions, e.g., p13 represents the joint probability
Prob(A1 ∧ A3), namely Prob(A1 = 1, A3 = 1). The whole polytope gives possible
ranges for such joint probabilities if the underlying probabilistic structure is assumed
to be classical, i.e., given by a probability space or, equivalently (since the number
of proposition is finite) by a normalized measure on a finite Boolean algebra.

The CHSH polytope is then given by the following inequalities [15]

0 ≤ pi j ≤ pi , 0 ≤ pi j ≤ p j , i = 1, 2, j = 3, 4 (1.36)

pi + p j − pi j ≤ 1, i = 1, 2, j = 3, 4, (1.37)

−1 ≤ p13 + p14 + p24 − p23 − p1 − p4 ≤ 0, (1.38)

−1 ≤ p23 + p24 + p14 − p13 − p2 − p4 ≤ 0, (1.39)

−1 ≤ p14 + p13 + p23 − p24 − p1 − p3 ≤ 0, (1.40)

−1 ≤ p24 + p23 + p13 − p14 − p2 − p3 ≤ 0. (1.41)

The inequalities (1.38)–(1.41) are different variants, obtained via a permutation of the
measurement settings, of the Clauser-Horne inequality [69]. They are obtained from
the CHSH inequality, and corresponding variants, via a relabelling of the outcomes,
i.e., {−1,+1} → {0, 1}.

Via the correlation polytope method, the problem of finding necessary and suffi-
cient conditions for the existence of a HV model for a given measurement scenario
amounts to the geometric problem known as the hull problem. Algorithms solving
the hull problem are known, and different implementation are available (e.g., cdd
[70], lrs [71], and porta [72]). However, the running time of such algorithms
grows exponentially in the number of vertices of the polytope and the number of ver-
tices grows exponentially with the number of measurement settings. The problem,
therefore, becomes rapidly computationally intractable, even in the bipartite case the
membership problem (deciding whether p belongs to COR(I)) is NP-complete [73].
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1.6 Tsirelson Bound

Bell, noncontextuality, and Leggett-Garg inequalities bound the possible correla-
tions in, respectively, LHV, NCHV and MRHV theories. A similar approach can be
pursued for quantum theory by asking whether there exist similar bounds for quan-
tum correlations. The answer was given by Tsirelson [74], who developed a general
framework for treating such a problem in Bell scenarios and proved an inequality
bounding the quantum correlations in the CHSH scenario.

1.6.1 Original Argument

The following simple proof of Tsirelson bound has been presented by Landau [75].
The Bell operator of Eq. (1.5) can be written as

B = A0B0 + A0B1 + A1B0 − A1B1 = A0(B0 + B1) + A1(B0 − B1), (1.42)

then taking the square and using that A2
i = B2

j = 1 we obtain

B2 = 41 − [A0, A1][B0, B1]. (1.43)

Since we are dealing with ±-valued observables, ‖Ai‖ = ‖B j‖ = 1, which implies
‖[A0, A1]‖ ≤ 2 and ‖[B0, B1]‖ ≤ 2, and ‖[A0, A1][B0, B1]‖ ≤ 4. The quantum
value for the CHSH scenario can, thus, be bounded by

〈B〉2 ≤ 〈B2〉 ≤ 8 =⇒ 〈B〉 ≤ 2
√
2. (1.44)

Tsirelson’s original result was derived by proving the correspondence between
quantum correlations for observables of norm bounded by 1 and scalar product of
vectors in a Euclidean vector space. It is instructive to recall this result since it will
play a fundamental role in the redefinition of the problem as a semidefinite program.

Theorem ([74]) The following conditions for real numbers ci j , i = 1, . . . , n, j =
1, . . . , m are equivalent.

(1) There exist a C∗-algebra with identityAand self-adjoint elements A1, . . . , An,
B1, . . . , Bn, and a state f on A such that

[Ai , B j ] = 0, ‖Ai‖ ≤ 1, ‖B j‖ ≤ 1, f (Ai B j ) = ci j (1.45)

(2) There are unit vectors x1, . . . , xn, y1, . . . , ym in a (n+m)-dimensional Euclid-
ean vector space such that

xi · y j = ci j , (1.46)

where · denotes the Euclidean scalar product.
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1.6.2 Semidefinite Programming Approach

Wehner’s Approach

Such a correspondence allows us to reformulate the problem as a maximization
problem over the set of positive semidefinite matrices in the following way [76].
For the CHSH scenario, we construct the Gram matrix G of scalar products of
vectors xi , y j ,which eventuallywewant to associatewith the correspondingquantum
correlations,

G =

⎛

⎜
⎜
⎝

x1 · x1 x1 · x2 x1 · y1 x1 · y2
x2 · x1 x2 · x2 x2 · y1 x2 · y2
y1 · x1 y1 · x2 y1 · y1 y1 · y2
y2 · x1 y2 · x2 y2 · y1 y2 · y2

⎞

⎟
⎟
⎠ . (1.47)

We recall that given k vectors v1, . . . , vk , their Gram matrix is defined as the k × k
matrix whose entry i j is given by the scalar product vi · v j . By construction the
matrix is symmetric and positive semidefinite, i.e., vGv ≥ 0 for all vectors v, which
we denote as G � 0. In fact, G can be written as At A, where the columns of A
are given by the vectors vi . Conversely, every positive semidefinite matrix can be
written as a Gram matrix, just by taking as corresponding vectors the columns of the
decomposition At A, where A can be, e.g., the square root of the original matrix.

The quantum bound for the CHSH scenario can be, therefore, computed via the
maximization

maximize:
∑

i j

λi j Gi j , (1.48)

subjected to: G = GT � 0 and for all i , Gii = 1.

for a suitable choice of the coefficients λi j that singles out the expression

x1 · y1 + x1 · y2 + x2 · y1 − x2 · y2 . (1.49)

The above maximization problem is known as semidefinite program (SDP) [77], a
class of optimization problems that are known to be efficiently solvable numerically,
with the optimality of the solution certifiable up to an arbitrary precision. A similar
approach has also been investigate by other authors [78] andfinally a general solution,
based on SDP and valid for arbitrary number of measurement settings and outcomes
in Bell and noncontextuality scenarios, has been provided by Navascués, Pironio and
Acín (NPA) [79, 80], as we shall discuss below.

Navascués-Pironio-Acín Method

NPA method allows one not only to calculate the quantum violation of a given Bell
inequality, but also to test the membership of a set of correlation with respect to the
quantum set, in an analogous way as the correlation polytope membership test.
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NPA method, for the simple case of a two-party Bell scenario, can be briefly
described as follows. Let us denote by �(r |s) the projector operator associated with
the result r for the measurement of the setting s. The set of indices is partitioned
in two disjoint sets, A and B, representing, respectively, Alice’s and Bob’s settings.
Such projectors satisfy

�(r |s) = �(r |s)†, (Hermiticity),

�(r |s)�(r ′|s) = δrr ′�(r |s), (Orthogonality),
∑

r

�(r |s) = 1, (Completeness),

[�(r |s),�(r ′|s′)] = 0 if s ∈ A and s′ ∈ B, (Commutativity).

(1.50)

We can define a sequence of measurement results and settings as a vector (r|s) =
(r1, . . . , rk |s1, . . . , sk) and define the corresponding sequence of projectors as
�(r|s) = �(r1|s1)�(r2|s2) . . . �(rk |sk), where, by definition, �((r|s) = 1 for
the sequence of length zero. For a given set of sequences S = {(r|s)}, we introduce
the |S| × |S| matrix of moments

Mr|s;r′|s′ = tr(ρ�(r|s)†�(r′|s′)). (1.51)

As a consequence of equations (1.50), the entries of M satisfy a set of lin-
ear constraints. Moreover, M is positive semidefinite. In fact, given a vector v,
v†Mv = tr(ρC†C) ≥ 0, where C = ∑

r|s∈S vr|s�(r|s).
The maximization problem can be therefore written as

maximize:
∑

i j

λi j Mi j , (1.52)

subjected to: M � 0 and linear constraints implied by (1.50),

Notice that, in general, M is a Hermitian complex matrix, but if the coefficients
λi j are real, than for any solution M of the problem (1.52), the complex conjugate
M∗ is also a solution, and, consequently, the combination (M + M∗)/2. Without a
loss of generality, we can therefore consider only real matrices M .

As opposed to the problem (1.48) and, more generally, the analysis of quan-
tum bounds for expressions containing only pair correlations observables, where
Tsirelson theorem gives an explicit correspondence between vector of the Gram
matrix, i.e., the solution of the SDP, and the quantum observables to be measured,
in the more general framework of NPA method it is not always possible to recon-
struct the quantum observables attaining the bound computed via SDP. In general,
the problem (1.52) gives only an upper bound to the maximum quantum violation of
a given Bell or noncontextuality inequality. However, NPA proved that by extending
the matrix M to include longer sequences S = {(r|s)} one gets stricter upper bounds
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and in the limit |S| → ∞ the SDP bound coincide with the quantum bound. A more
detailed discussion of this mechanism can be found in Chap. 4.

Cabello-Severini-Winter Method

An alternative SDP-based approach to the computation of quantum bounds has been
proposed by Cabello, Severini, and Winter [81, 82]. The starting point is the obser-
vation that correlations in Bell and noncontextuality inequality can be written as
a positive linear combination of probabilities of events. For instance, the KCBS
inequality (5.3) can be equivalently written as

SKCBS =
4∑

i=0

P(−1,+1|i, i + 1)
NCHV≤ 2, (1.53)

where P(−1,+1|i, i + 1) ≡ Prob(Ai = −1, Ai+1 = 1) and the sum is taken
modulo 4. In QM, such events are represented projectors, e.g., P(−1,+1|i, i +1) =
tr(ρ�+

i �−
i+1), and mutually exclusive events correspond to orthogonal projectors,

e.g., �+
i �−

i = 0.
The authors noticed the similarity between Eq. (1.53) and the definition of the

Lovász number of a graph G = (V, E) [83, 84], namely

ϑ(G) = max
vi ,ψ

∑

i∈V

|〈ψ|vi 〉|2, (1.54)

where the sum is take over all vectors |ψ〉 and over all vectors |vi 〉 forming an orthog-
onal representation (OR) of Ḡ, namely a set of vectors in R

d , such that 〈vi |v j 〉 = 0
whenever i, j ∈ V are adjacent vertices, i.e., {i j} ∈ E .

The maximum of the expression SKCBS in QM can be in fact written as

max
ρ,�±

i

∑

i

tr(ρ�+
i �−

i+1) = max
vi ,ψ

∑

i∈V

|〈ψ|vi 〉|2, (1.55)

where each vertex of the graph G = (V, E) correspond to a projector appearing on
the l.h.s. of (1.55) and two vertices are adjacent if the corresponding projectors are
non orthogonal. Notice that the use of a pure state |ψ〉 instead of ρ is no restriction
since, by a convexity argument, the maximum of SKCBS is always obtained with a
pure state, and the same for the use of one-dimensional projectors |vi 〉〈vi |, since
〈ψ|�|ψ〉 = |〈ψ|vi 〉|2 where |vi 〉 = �|ψ〉/√〈ψ|�|ψ〉.

Initially introduced as an upper bound on the Shannon capacity of a graph [83],
the Lovász number is a well studied object in graph theory. It can be efficiently
computed via semidefinite programming.

http://dx.doi.org/10.1007/978-3-319-24169-2_4
http://dx.doi.org/10.1007/978-3-319-24169-2_5
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1.7 Linear and Semidefinite Programming

To conclude the introductionwe discuss two classes of convex optimization problems
that can be efficiently solved via numerical methods, namely, linear programming
and semidefinite programming. More details can be found in Refs. [77, 85].

Definition of a Semidefinite Program

In general terms, a semidefinite program can be defined as a minimization of a linear
function of the variable x ∈ R

m subjected to a matrix inequality

minimize: c · x, (1.56)

subjected to: F(x) ≡ x0 +
m∑

i=1

xi Fi � 0,

where the problem data are the vector c ∈ R
m and m + 1 symmetric n × n real

matrices F0, F1, . . . , Fm , · denotes the Euclidean scalar product as above, and the
symbol � denotes the fact that F is positive semidefinite, i.e., vF(x)v ≥ 0 for all
v ∈ R

n . We say that x is feasible if F(x) � 0.
Notice that the optimization is performed over a convex set since given F(x) � 0

and F(y) � 0, for all λ such that 0 ≤ λ ≤ 1,

F(λx + (1 − λ)y) = λF(x) + (1 − λ)F(y) � 0. (1.57)

Semidefinite programs are therefore a subclass of the more general convex opti-
mization problems [85].

Definition of a Linear Program

A linear program is defined as a minimization of a linear function over a convex
polyhedral set, more precisely,

minimize: c · x, (1.58)

subjected to: Ax + b ≥ 0,

where A is a n × m real matrix, b a n-dimensional vector and the inequality sign ≥
is intended componentwise.

It can be easily verified that the linear program (1.58) can be written as the semi-
definite program (1.56) by defining

F0 = diag(b), Fi = diag(ai ), for i = 1, . . . , m, (1.59)

where diag(b) denotes the diagonal n × n matrix with diagonal entries the entries
of b, and ai are the columns of the matrix A. Semidefinite programming can, in
fact, be regarded as a generalization of linear programming obtained by replacing
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the componentwise inequalities bymatrix inequalities, i.e., positive-semidefiniteness
conditions.

Duality and Numerical Computation

Given a semidefinite program of the form (1.56), one can define the dual problem as

maximize: −tr(Z F0), (1.60)

subjected to: tr(Z Fi ) = ci , for all i = 1, . . . m

Z � 0, (1.61)

where the maximization is over the variable Z , a n × n real symmetric matrix. The
original problem (1.56) is called the primal problem.We say that a real and symmetric
matrix Z is dual feasible if tr(Z Fi ) = ci , for all i = 1, . . . m, and Z � 0.

One can prove that the problem (1.60) can be rewritten as (1.56), and, thus, every
the dual of a semidefinite program is still a semidefinite program.

The fundamental property of the dual semidefinite program is that it gives bounds
to the optimal value of the primal problem, and viceversa. In fact, suppose x is primal
feasible and Z is dual feasible, then

c · x + tr(Z F0) =
m∑

i=1

tr(Z Fi xi ) + tr(Z F0) = tr(Z F(x)) ≥ 0, (1.62)

where we used that tr(AB) ≥ 0 for A = At � 0 and B = Bt � 0. Equation (1.62)
implies

− tr(Z F0) ≤ c · x, (1.63)

namely, that the dual objective value of every feasible dual point Z gives a lower
bound on the primal objective value of any primal feasible point x .

Let us denote the optimal value of the primal problem (1.56) as

p∗ = inf{c · x | F(x) � 0 } (1.64)

and the optimal of the dual problem (1.60) as

d∗ = sup{−tr(Z F0) | Z � 0, tr(Z Fi ) = ci , for all i = 1, . . . m }. (1.65)

From Eq. (1.63) it follows that for any primal feasible vector x and dual feasible
matrix Z

− tr(Z F0) ≤ d∗ ≤ p∗ ≤ c · x, (1.66)

We can now state the main theorem on duality for SDP [77]
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Theorem We have p∗ = d∗ if either of the following condition holds.

(i) The primal problem is strictly feasible, i.e., there exists x with F(x) ≥ 0.
(ii) The dual problem is strictly feasible, i.e., there exists Z with Z � 0 and tr(Z Fi ) =

ci for all i = 1, . . . , m.

Moreover, if both conditions hold, p∗ and d∗ are, respectively, the minimum and the
maximum of the sets appearing in Eqs. (1.64), (1.65).

The above results implies that a numerical solution of a SDP gives the interval in
which the exact solution lies. In fact, what the numerical algorithms do is to computed
a feasible point for the primal problem, let us denote it as pnum, and a feasible point
for the dual problem, let us denote it as dnum, thus giving

dnum ≤ d∗ ≤ p∗ ≤ pnum. (1.67)

The exact solution can then be, in principle, approximate up to an arbitrary precision.
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Chapter 2
Noncontextuality Inequalities from Variable
Elimination

In this chapter we present a general method for deriving complete sets of Bell and
noncontextuality inequalities alternative to the direct solution of the hull problem for
correlation polytopes, discussed in the previous chapter, which provides some com-
putational advantages and allows for a complete characterization of the correlation
polytope even for scenarios with an arbitrary number of settings. The main results
of this chapter have been published in Refs. [1, 2].

Our method is based on the application of Fourier-Motzkin (FM) method of vari-
able elimination for systems of linear inequalities to conditions derived in Ref. [3]
as consistency conditions for putting together partial extensions of quantum prob-
abilities in order to obtain a classical probability description.More precisely, such
conditions are expressed in terms of a systems of linear inequalities where also corre-
lations between incompatible observables appear as variables: A classical probability
space representation exists for a given set of QM predictions if and only if the corre-
sponding system of linear inequalities admits a solution; Bell, or noncontextuality,
inequalities are obtained by eliminating the variables associated with correlations
between incompatible observables.

Our approach can be seen as a generalization of Fine’s derivation of the Clauser-
Horne-Shimony-Holt (CHSH) polytope [4]. It provides a generalization of the result
obtained by Śliwa [5] and Collins and Gisin [6], namely, the appearance of only
a finite number of families of Bell inequalities in measurement scenarios where
one experimenter is allowed to choose between an arbitrary number of different
measurements, and it allows for a complete characterization of a specific n-setting
noncontextuality scenario.

In the following, we shall present the general method and discuss it more in
details by means of simple examples. We then proceed to analyze some Bell and
noncontextuality scenarios, providing in some cases analytical results, and showing
the computational advantage in others.

© Springer International Publishing Switzerland 2016
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36 2 Noncontextuality Inequalities from Variable Elimination

2.1 Extension of Measures and Consistency Conditions

First we need a result on extension of probability measures which will be the basis
of our approach to the computation of H-representation for correlation polytopes.
More details can be found in Ref. [3].

Proposition 1 Consider any set of probabilities pi on a set of yes/no (i.e., {0, 1}-
valued) observables Ai and correlations pi j on a subset of pairs Ai , A j , defining
a probability on each pair Ai , A j , with pi = 〈Ai 〉, p j = 〈A j 〉, pi j = 〈Ai A j 〉;
describing observables Ai as vertices and the above pairs as edges in a graph, any
set of predictions associated with a tree graph, i.e., a graph without closed loops,
admits a classical representation.

We call such a graph representation a compatibility graph. Some examples of
compatibility graphs are given in Figs. 2.1, 2.2, 2.3, 2.4, and examples of tree graphs
are given by Fig. 2.1b, c, d.

Proposition 1 can then be generalized as follows [3].

Proposition 2 the same holds with yes/no observables Ai substituted by free
Boolean algebras Ai , pi by probabilities on Ai , pi j by probabilities on the Boolean
algebra freely generated by the union of the sets of generators of Ai and A j .

We recall that a Boolean algebra is freely generated by n generators B1, . . . , Bn

if such generators are as much unconstrained as possible, i.e., they satisfy no con-
ditions except those necessary conditions defining a Boolean algebra (e.g., distrib-
utive law). Since all Boolean algebras freely generated by n < ∞ generators are
isomorphic, for the sake of simplicity, we can think of the the algebra of subsets
2X of the set X = {0, 1}n , with set theoretic operations (∩,∪,c ); then the subsets
Bi = {(x1, . . . , xn) ∈ X | xi = 1 }, for i = 1, . . . , n, can be taken as free generators.
In terms of propositions and truth assignments, the free Boolean algebra assumption
amounts to the assumption that each possible {0, 1}-valued assignment to proposi-
tions is admissible. For more details see [7]. Notice that this is precisely the way how
we define the 2n vertices of the correlation polytope in Eq. (1.30).

The above results suggest a general method for the computation of H-represen-
tation for correlation polytopes, based on exploiting the automatically existing classi-
cal representations for subsets of observables with compatibility relations described
by tree graphs, as in Propositions 1 and 2 above. Conditions for classical repre-
sentability arise as consistency (i.e., coincidence on intersections) conditions for
putting together partial extensions associatedwith subgraphs, giving rise to a descrip-
tion of the initial compatibility graph as a tree graph on such extended nodes. Such
consistency conditions are expressed in terms of the existence of a solution for a set
of linear inequalities. One of the main application of Fourier-Motzkin algorithm is
precisely deciding whether a system of inequalities has a solution. It is thus suffi-
cient to solve the hull problem for a smaller polytope, i.e., compute the single partial
extensions, then constructing a higher dimensional polytope from that solution, i.e.,

http://dx.doi.org/10.1007/978-3-319-24169-2_1


2.1 Extension of Measures and Consistency Conditions 37

impose the consistency conditions, and finally apply FM algorithm, i.e., derive the
conditions for the existence of a solution.

We recall that the Fourier-Motzkin method consists in eliminating a variable
from a system of linear inequalities by summing, after a proper normalization, all
inequalities where it appears with plus signwith all inequalities where it appears with
minus sign. From a geometric point of view, since the system of linear inequalities
can represent a polytope (more generally, a cone), the above operation amounts to
a projection onto the coordinates associated to the remaining variables; for more
details see [8].

Although our method is general, different strategies are possible corresponding
to different partitions of the initial graph into subgraphs. We shall introduce the
details of our method by means of some simple examples. The first example is the
derivation of the CHSH polytope. It is interesting to notice that it is analogous to that
presented by Fine [4]; our method can be seen as a generalization of his idea to an
arbitrary number of observables. We shall then discuss more complex Bell scenarios
and some related computational results, and finally the complete characterization of
the correlation polytope for the n-cycle noncontextuality scenario.

2.2 Bell Inequalities

2.2.1 CHSH Polytope from Bell-Wigner Polytope

The CHSH polytope is generated by the following set of vertices

uε = (ε1, ε2, ε3, ε4, ε1ε3, ε1ε4, ε2ε3, ε2ε4), εi ∈ {0, 1}. (2.1)

As previously discussed, it is associated with a bipartite measurement scenario in
which Alice can choose between two measurements, associated with propositions
A1 and A2, and Bob can choose between two measurements, associated with propo-
sitions A3 and A4.

As already recognized by Fine [4] and discussed also in [3, 9], the existence of a
classical description for the four observables is equivalent to the existence of classical
descriptions for the two subsystems, {A1, A2, A3} and {A1, A2, A4}, coinciding on
{A1, A2}. In fact, the two classical descriptions would give rise to an extension
of the probability assignment to the four observables satisfying the hypothesis of
Proposition 2 (see Fig. 2.1a, b, c).

The constraints on the subsystem {A1, A2} imposed by the third observable, A3
or A4, are described by the Bell-Wigner polytope [10], i.e., the correlation polytope
associated with three proposition and their pairwise logical conjunctions, which is
given by the following inequalities:
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(a) (b) (c) (d)

Fig. 2.1 a Graph of the compatibility relations between the observables in the CHSH scenario.
b Partition in two subset of three observables with intersection {A1, A2}. c Tree graph obtained by
extending the probability measure on the algebra generated by A1, A2. d Asymmetric case with
additional observables on Bob’s side

0 ≤ pi j ≤ pi , 0 ≤ pi j ≤ p j , i j = 12, 1s, 2s, (2.2)

pi + p j − pi j ≤ 1, i j = 12, 1s, 2s, (2.3)

1 − p1 − p2 − ps + p12 + p1s + p2s ≥ 0, (2.4)

p1 − p12 − p1s + p2s ≥ 0, (2.5)

p2 − p12 − p2s + p1s ≥ 0, (2.6)

ps − p1s − p2s + p12 ≥ 0, (2.7)

for fixed s = 3 or 4.
Classical representability forQMprediction in theCHSHscenario amounts, there-

fore, to the existence of a common solution for the two systems of linear inequalities,
namely, it amounts to the existence of a value for p12 consistent with the constraints
imposed by classical descriptions for the two subsystems of three observables.

As a consequence of general properties of Fourier-Motzkin method (see [8]), a
system of inequalities admits a solution if and only if the projected system, i.e., the
system obtained by eliminating one or more variables, admits a solution. It follows
that the above set of measurements admits a classical description if and only if
measured correlations, i.e., correlations between compatible observables, satisfy the
system of inequalities obtained by eliminating p12.

In order to eliminate p12, we just apply Fourier-Motzkinmethod:We sum inequal-
ities where p12 appears with opposite sign and keep inequalities where it does not
appear. A posteriori, we realize that only redundant inequalities arise from (2.2) and
(2.3) and the combination of inequalities with the same index s.

The only interesting, i.e., non redundant, inequalities are those obtained from the
combination of (2.4)–(2.7) for different s, namely

− 1 ≤ p13 + p14 + p24 − p23 − p1 − p4 ≤ 0, (2.8)

−1 ≤ p23 + p24 + p14 − p13 − p2 − p4 ≤ 0, (2.9)

−1 ≤ p14 + p13 + p23 − p24 − p1 − p3 ≤ 0, (2.10)



2.2 Bell Inequalities 39

−1 ≤ p24 + p23 + p13 − p14 − p2 − p3 ≤ 0, (2.11)

that, together with the Eqs. (2.2), (2.3) in which p12 does not appear, give the H-
representation of the CHSH polytope.

2.2.2 Bipartite (2, n) Scenario

An analogous argument applies to the scenario in which Alice can choose between
two measurements and Bob can choose among n > 2 measurements, associated
with propositions A3, . . . , An+2: The initial system of inequalities is still given by
(2.2)–(2.7), but with s taking values in {3, 4, . . . , n + 2} (see Fig. 2.1d).

Since only one variable (i.e., p12) has to be eliminated, at most two inequalities
with different index s can be combined to give a valid inequality. Therefore, the final
set of inequalities is given by (2.8)–(2.11) with the pair 3, 4 substituted by any pair
i, j with i, j ∈ {3, . . . , n + 2} and i < j . This is precisely the result obtained in
Refs. [5, 6].

2.2.3 Two Parties, Three Settings

Now consider the bipartite scenario in which Alice can choose among three mea-
surements, associated with propositions A1, A2 and A3, and Bob can choose among
three measurements, associated with propositions A4, A5 and A6.

Analogously to the previous case, see Fig. 2.2, the existence of a classical descrip-
tion for the six observables is equivalent to the existence of classical descriptions
for the three subsystems, {A1, A2, A3, A4}, {A1, A2, A3, A5} and {A1, A2, A3, A6},
coinciding on {A1, A2, A3}. A probability on {A1, A2, A3} is completely defined
once the probabilities p1, p2, p3, p12, p13, p23, p123 are given.

It is therefore sufficient to calculate the correlation polytope associated with
probabilities p1, p2, p3, ps , p1s, p2s, p3s, p12, p13, p23, p123, then consider the sys-
tem given by all the above inequalities for s = 4, 5, 6 and eliminate the variables
p12, p13, p23, p123.

Fig. 2.2 a Graph of the
compatibility relations
between the observables in
the bipartite (3, 3) scenario.
b Tree graph obtained by
extending the measure on the
algebra generated by
A1, A2, A3

(a) (b)
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2.2.4 Bipartite (3, n) Scenario

Again, by adding observables only on Bob’s side, one just obtains more copies of the
initial system of inequalities, but with different indices s. The situation is analogous
to that depicted in Fig. 2.1d, but with A12 substituted by A123.

In particular, since four variables have to be eliminated, at most 24 = 16 inequali-
ties with different indices s can be combined. As a result, all families of valid inequal-
ities for the general case (3, n) already arise in the case in which Alice performs 3
measurement and Bob 16.

2.2.5 Multipartite (m, . . . , m, n) Scenario

The above argument can be extended to the case of p parties in which the first p − 1
can choose among m measurements, while the last one can choose among n > m
measurements: All families of inequalities can be obtained by studying the case in
which the last experimenter performs 2k measurements, where k is the number of
variables to be eliminated.

2.2.6 Computational Results

We have presented an alternative method for the computation of half-space repre-
sentation for correlation polytopes based on algebraic conditions and variable elim-
ination. Besides the explicit calculations presented above, a reasonable question is:
Does ourmethod provide any computational advantagewith respect to existingmeth-
ods? In order to show the advantages of the tree graph method, we have computed
the H-representation for some simple polytopes, with (i) our tree graph method
using existing software implementing the Fourier-Motzkin algorithm; specifically,
we used porta [11], and (ii) using standard software for solving the hull problem;
specifically, we used cdd.

For simple cases like the (2, 2) (i.e., the CHSH) and (3, 3) scenarios, the compu-
tation is equally fast with bothmethods. However, remarkably, our tree graphmethod
is noticeably faster to compute asymmetric scenarios:

For the (3, 4) scenario, the tree graph method implemented with porta com-
pleted the calculation in ≈11min, while cdd needed ≈20min. The 11min include
the time (seconds) required to calculate the initial polytope (see Sect. 2.2.3).

For the (3, 5) scenario, the tree graph method implemented with porta com-
pleted the calculation in ≈72min, while cdd was still running after a week and we
had to stop it.

All computations were performed on the same machine with an Intel Xeon CPU
running at 3.20 GHz.
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2.3 Noncontextuality Inequalities: The n-Cycle Scenario

The n-cycle contextuality scenario is given by n observables X0, . . . , Xn−1 and the
set of maximal contexts.

Cn = {{X0, X1}, . . . , {Xn−2, Xn−1}, {Xn−1, X0}}. (2.12)

This scenario is the natural generalization of CHSH and KCBS scenarios, the
most fundamental scenarios for, respectively, nonlocality and contextuality. From
the point of view of contextuality scenarios, the n-cycle scenario for odd n has been
investigated by Liang, Spekkens, and Wiseman [12], who derived the inequality
(2.17) for odd n and discuss the maximal quantum violation. As a bipartite Bell
scenario, i.e., for even n, it has been investigate by Braunstein and Caves [13], who
derived the inequality (2.17) for even n, later the maximal quantum violation was
discussed [14].

In this section we give a complete characterization of the n-cycle polytope for any
n, proving that the only facets inequalities of the polytope are given by Eqs. (2.13a)–
(2.13d) together with Eq. (2.17).

A compatibility graph representation for the n-cycle scenario is given in Fig. 2.3.
Here, it is convenient to use ±1-valued variables instead of 0/1-valued. The corre-
sponding correlations, i.e., expectation values of the product of the outcomes, are
related to probabilities by the affine invertible transformation defined as

4p(+ + |Xi Xi+1) = 1 + 〈Xi 〉 + 〈Xi+1〉 + 〈Xi Xi+1〉, (2.13a)

4p(+ − |Xi Xi+1) = 1 + 〈Xi 〉 − 〈Xi+1〉 − 〈Xi Xi+1〉, (2.13b)

4p(− + |Xi Xi+1) = 1 − 〈Xi 〉 + 〈Xi+1〉 − 〈Xi Xi+1〉, (2.13c)

4p(− − |Xi Xi+1) = 1 − 〈Xi 〉 − 〈Xi+1〉 + 〈Xi Xi+1〉. (2.13d)

As a consequence, the analysis of the correlation polytopes (i.e., number of vertices
and facets, tightness of a given inequality) defined in terms of ±1-valued or 0/1-
valued variables are equivalent.

The n-cycle correlation polytope is then defined by the following 2n vertices

(x0, . . . , xn−1, x0x1, . . . , xn−1x0), xi ∈ {−1, 1}. (2.14)

Fig. 2.3 Graphs associated to the compatibility relations among the observables Xi for n =
3, 4, 5, 6. C4 corresponds to CHSH case with the labelling of nodes A1, B1, A2, B2, in the usual
notation for Alice and Bob observables, and C5 corresponds to KCBS case with the labelling
X0, . . . , X4
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In order to differentiate thiswith the probability case,weuse the followingnotation
for a general vector

(〈X0〉, . . . , 〈Xn−1〉, 〈X0X1〉, . . . , 〈Xn−1X0〉). (2.15)

A set of tight inequalities is already given by the positivity conditions on the terms
in Eq. (2.13), namely

1 + 〈Xi 〉 + 〈Xi+1〉 + 〈Xi Xi+1〉 ≥ 0 (2.16a)

1 + 〈Xi 〉 − 〈Xi+1〉 − 〈Xi Xi+1〉 ≥ 0 (2.16b)

1 − 〈Xi 〉 + 〈Xi+1〉 − 〈Xi Xi+1〉 ≥ 0 (2.16c)

1 − 〈Xi 〉 − 〈Xi+1〉 + 〈Xi Xi+1〉 ≥ 0. (2.16d)

one can easily proved that they are saturated by a set of affinely independent vertices
(2.14). Such conditions are trivially satisfied in QM since they involve only pairs of
jointly measurable observables.

The remaining facets of the n-cycle polytope are given by the 2n−1 inequalities

� =
n−1∑

i=0

γi 〈Xi Xi+1〉 NCHV≤ n − 2, (2.17)

where γi ∈ {−1, 1} such that the number of γi = −1 is odd.
Our proof is based on the fact that the existence of a classical probabilitymodel for

the observables {X0, . . . , Xn−1} is equivalent to the existence of classical models for
{X0, . . . , Xn−2} and {X0, Xn−1, Xn−2}, coinciding on their intersection {X0, Xn−2},
see Fig. 2.4a, b, c. More precisely, if the two subsets of observables in Fig. 2.4b
(n − 1)-cycle and 3-cycle, admit a classical representation, i.e. all the corresponding
inequalities are satisfied, then the set of probabilities can be extended, following

Fig. 2.4 a n-cycle scenario. b subsets of observables that can be associated with the (n − 1)-
cycle and 3-cycle scenario by considering the “unmeasurable correlation” 〈X0Xn−2〉 (dashed line)
c Extended classical model that can be obtained if the two subset admits a classical representation
coinciding on their intersection. Such a model is automatically classical as it can be depicted as a
tree graph
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Propositions 1 and2, as in Fig. 2.4c, i.e. two classicalmodel for {0, 1, . . . , n−3, n−2}
and for {0, n −1, n −2} coinciding on their intersection {0, n −2}. By Proposition 2,
such a set already admits a classical representation.

Such a consistency condition for the intersection is written in terms of the “unmea-
surable correlation” 〈X0Xn−2〉, i.e., a correlation between observables that are not
in a context and therefore cannot be jointly measured, but have nevertheless a well-
defined correlation in every classical model [9]. The final set of inequalities must not
contain the variable 〈X0Xn−2〉, whichmust be removed by applying Fourier-Motzkin
(FM) elimination.

We can now proceed by induction on n. The case n = 3 is known. For the
inductive step, following the above argument, we calculate the n-cycle inequalities
by combining the (n − 1)-cycle inequalities for the subset {X0, . . . , Xn−2} with the
3-cycle inequalities for {X0, Xn−1, Xn−2}. We apply FM elimination on the variable
〈X0Xn−2〉 from the whole set of inequalities. All inequalities in (2.17) are obtained
by combining one inequality, of the same form, for the (n − 1)-cycle with one
for the 3-cycle, and are in the right number. In fact, in half of the (n − 1)-cycle
inequalities, 〈X0Xn−2〉 appears with the + sign, and in half with the − sign, and the
same for the 3-cycle. The number of possible combination is, therefore, given by
2n−3 · 2 + 2n−3 · 2 = 2n−1.

Combining two inequalities for the (n − 1)-cycle, or two for the 3-cycle gives
a redundant inequality, as happens for combination of positivity conditions (2.16)
with inequalities of the form (2.17), the latter being obtainable as a sum of n − 1 (or
3) positivity conditions. There are no other inequalities.

Tightness can be proved by showing that inequalities (2.17) correspond to facets of
the 2n-dimensional correlation polytope, i.e., they are saturated by 2n noncontextual
vertices which generate an affine subspace of dimension 2n − 1. First, focus on the
inequality of the odd n-cycle for which all γi = 1. It is saturated by 2n vertices which
can be written as (±vi , wi ), for i = 0, . . . , n −1, where vi is a n-dimensional vector
given by a cyclic permutation of the components of vn−1 = (+1,−1,+1, . . . ,+1)
and wi ’s components are given by the corresponding products, of vi ’s components,
namely, one component equal to 1 and n − 1 components equal to −1. Up to a
reordering of the vectors, it holds vi + vi+1 = 2ei+1, with addition modulo n and
e0, . . . , en−1 the canonical basis of Rn , and wi + (1, 1, . . . , 1) = 2ei . As a conse-
quence, {(±vi , wi )}i=1,...,2n is a basis ofR2n , and, therefore, such vectors generate an
affine subspace of dimension 2n − 1. Since all the other vertices and inequalities are
obtained from this one via themapping Xi �→ −Xi , we are done for the odd case. For
the even case, the proof is slightly different: Take the inequality which has γ0 = −1
and all the other γi = 1. Again, it is saturated by 2n vertices which can be written as
(±vi , wi ), for i = 0, . . . , n − 1, with v0 = ∑n−1

k=0(−1)kek , w0 = −∑n−1
k=0 ek and

vi = e0 + e1 +
∑

2≤k≤i

(−1)kek +
∑

i<k≤n−1

(−1)k+1ek, (2.18)

wi = e0 + ei −
∑

k =0,i

ek, for i = 1, . . . , n − 1. (2.19)
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The above vectors satisfy vn−1 − v0 = 2e0, v1 − v0 = 2e1, and vi − vi+1 =
(−1)i+1ei+1, for i = 1, . . . , n −2, andwi +w j −2w0 = 4e0,wi −w0 = 2(e0+ei )

for i, j = 1, . . . , n −1. Again, this implies that the vertices are affinely independent,
and all the other vertices and inequalities are generatedvia the relabelling Xi �→ −Xi .

2.4 Discussion

We developed an alternative method for the computation of the correlation polytope
associated with Bell and noncontextuality scenarios based on results on automatic
extension of probability measures and Fourier-Motzkin algorithm of variable elimi-
nation for systems of linear inequalities.

We applied our method to different Bell and noncontextuality scenarios. For the
Bell scenario, we derive some result on the minimal computation needed for a com-
pletely characterization of asymmetric scenarioswhere one experimenter has an arbi-
trary number of settings, thus generalizing a result by Śliwa [5] and Collins-Gisin
[6]. Moreover, we performed some explicit computations to show the advantages
with respect to usual algorithms solving directly the hull problem.

For noncontextuality scenario, we are able to give a complete characterization,
i.e., the complete set of tight inequalities, for the n-cycle scenario, which is the natural
generalization of the two most fundamental scenarios, respectively, for nonlocality
and contextuality, namely, theCHSHandKCBS scenario. To complete the discussion
on the n-cycle scenario, in Chap.4, we will compute the quantum bound by means
of Cabello-Severini-Winter method [15, 16].
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Chapter 3
Optimal Tests for State-Independent
Contextuality

In the previous chapter, we discussed the problem of finding tight inequalities for
a given measurement scenario and the computational difficulties associated with it.
The design of tests of quantum versus HV theories usually involves as a first step
the derivation of tight inequalities, i.e., the optimal inequalities corresponding to the
boundaries of the classical set of probabilities, and subsequently the search for a
quantum state and observables giving the maximal violation.

Despite the existence of alternative approaches, still in many relevant cases such
inequalities cannot be computed and the optimization over the set of states and
observables cannot be performed. In particular for SIC scenarios, even the simplest
case, i.e., Yu and Oh’s [1] scenario, is too complex to allow for such an approach.

In this chapter, we approach the problem from a different perspective. Our idea
comes from the observation that for SIC scenarios the set of measurements is known,
thus there is no need for an optimization over the set of observables, and the vio-
lation is the same for any state, thus there is no need for an optimization over the
set of quantum states. The result is an optimization method for noncontextuality in-
equalities based on linear programming that provides inequalities with the maximal
quantum violation. Such a problem can be solved efficiently with standard numerical
techniques and with the optimality of the solution guaranteed.

We shall apply our method to some of the most important SIC scenarios showing
the advantages of our improved inequalities. Once such inequalities are computed,
one can easily checked for their tightness, i.e., whether they correspond to facets
of the associated polytope. We find that in all the cases we analyzed, our optimal
inequalities, in the sense of amaximal quantumviolation, are also tightwith respect to
the associated polytope. We also discuss a possible generalization of the method that
search for inequalities violated by any state, but with a different degree of violation.
We shall also discuss the proper way of performing such texts experimentally. The
results of this chapter have been published in Ref. [2], a brief discussion of the
meaning of experimental test for contextuality have been presented in [3].

© Springer International Publishing Switzerland 2016
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3.1 Optimization Method

Given the increased complexity of the measurement scenarios in the case of SIC, we
need a more compact notation with respect to the simple one used in the previous
chapter. In addition, in order to have a direct comparison between the original SIC
inequality proposed by previous authors and our improved version, we shall consider
±1-valued observables instead of 0/1-valued, as we did for the n-cycle scenario in
Sect. 2.3. Given some dichotomic quantum observables A1, A2, . . . , An , we denote
with c a context, i.e., a set of indices, such that Ak and A� are compatible whenever
k, � ∈ c, i.e., [Ak, A�] = 0. Notice that valid contexts are also those defined by a
single observable, i.e., with |c| = 1.

As we shall see below, it may be interesting to consider only a certain admissible
subset C of the set of all possible contexts {c}. The contextuality scenario will be
definedby the observables A1, . . . , An , togetherwith the list of admissible contextsC.

The set of all (contextual as well as noncontextual) correlations for such a scenario
can be represented by the standard construction in terms of vectors �v = (vc | c ∈ C),
where vc is the expectation value of the product of the values of the observables
indexed by c.

In a NCHV model, each observable has a fixed assignment �a ≡ (a1, . . . , an) ∈
{−1, 1}n for the observables A1, . . . , An , and accordingly each entry in �v is exactly
the product of the assigned values, i.e., vc = ∏

k∈c ak . The most general noncontex-

tual HV model predicts fixed assignments �a(i) with probabilities pi , and hence the
set of correlations that can be explained by a noncontextual HV models is charac-
terized by the convex hull of the models with fixed assignments, thus forming the
noncontextuality polytope.

Then, a noncontextuality inequality is an affine bound on the noncontextuality
polytope, i.e., a real vector �λ such that η ≥ �λ · �v for all correlation vectors v that
originate from a noncontextual model:

η ≥
∑

c∈C
λc

∏

k∈c

ak, (3.1)

for any assignment �a ≡ (a1, . . . , an) ∈ {−1, 1}n .
In quantum mechanics, in contrast, the measurement of the entry vc corresponds

to the expectation value 〈∏k∈c Ak〉ρ, where ρ specifies the quantum state. Thus the

value of �λ · �v predicted by quantum mechanics is given by 〈T (�λ)〉ρ, with

T (�λ) =
∑

c∈C
λc

∏

k∈c

Ak . (3.2)

If the expectation value exceeds the noncontextual limit η, then the inequality demon-
strates contextual behaviour, yielding the quantum violation

http://dx.doi.org/10.1007/978-3-319-24169-2_2
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V = maxρ 〈T (�λ)〉ρ
η

− 1. (3.3)

For a given contextuality scenario, we can define optimal inequalities in the sense of
a maximal value for the parameter V . We shall discuss the relation between such a
notion of optimality with the usual notion of tightness.

We recall that, in general, this optimization is difficult to perform and it is not
always clear that an optimal inequality also yields the most significant violation
[4]. However, if we require a state independent violation of the inequality, without
loss of generality, T (�λ) = 1 and hence the optimization over the quantum state �
vanishes. Then, the coefficient vector �λ and the noncontextual bound η are optimal
if η is minimal under the constraint T (�λ) = 1 and if the inequalities in Eq. (3.1) are
satisfied. That is, we ask for a solution (η∗, �λ∗) of the optimization problem

minimize: η,

subject to: T (�λ) = 1 and

η ≥
∑

c∈C
λc

∏

k∈c

ak, for all �a.
(3.4)

This optimization problem is a linear program and such programs can be solved
efficiently by standard numerical techniques and optimality is then guaranteed. We
implemented this optimization using CVXOPT [5] for Python, which allows us to
study inequalities with up to n = 21 observables and |C| = 131 contexts. Note that
this program also solves the feasibility problem, whether a contextuality scenario
exhibits SIC at all. This is the case, if and only if the program finds a solution with
η < 1 and thus V > 0.

The optimal coefficients �λ∗ are, in general, not unique but rather form a polytope
defined by the system of inequalities

η∗ ≥
∑

c∈C
λc

∏

k∈c

ak, (3.5)

for any �a ≡ (a1, . . . , an) ∈ {−1, 1}n and the maximal value η∗. This leaves the
possibility to find optimal inequalities with further special properties. There are at
least two important properties that one may ask for. Firstly, from an experimental
point of view, it would be desirable to have some of the coefficients λc = 0, since
then the context c does not need to be measured. In general, it will depend on the
experimental setup, which coefficients λc = 0 yield the greatest advantage. For the
sequential measurement schemes it is natural to choose the longest measurement
sequences. Secondly, there might be tight inequalities among the optimal solutions:
An inequality is tight, if the affine hyperplane given by the solutions of η = �λ · �x
is tangent to a facet of the noncontextuality polytope. This property can be readily
checked using Pitowsky’s construction [6]: Denote by d the affine dimension of the
noncontextuality polytope and choose those assignments �a, for which Eq. (3.1) is
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saturated. Then, the inequality is tangent to a facet if and only if the affine space
spanned by the vertices �v ≡ (

∏
k∈c ak | c ∈ C) is (d − 1)-dimensional.

Furthermore, we mention that the condition of state independence might be loos-
ened to only require that the quantum violation is at least V for all quantum states.
This corresponds to replacing the condition T (�λ) = 1 by the condition that T (�λ)−1
is positive semidefinite, namely

minimize: η,

subject to: T (�λ) − 1 ≥ 0 and

η ≥
∑

c∈C
λc

∏

k∈c

ak, for all �a.
(3.6)

Then, the linear program in Eq. (3.4) becomes the semidefinite program (3.6), which
still can be solved by standard numerical methods, e.g., CVXOPT [5] for Python,
with optimality of the solution guaranteed. However, for the examples that we con-
sider in the following, the semidefinite and the linear program yield the same results,
namely, that the every state gives rise to the same violation of the inequality.

3.2 Applications

3.2.1 Yu and Oh

We now apply our method to the SIC scenario for a qutrit system introduced by Yu
and Oh [1]. Qutrit systems are of fundamental interest, since no smaller quantum
system can exhibit a contextual behavior [7, 8]. It has been shown that this scenario
is the simplest possible SIC scenario for a qutrit [9, 10].

For a qutrit system, we consider dichotomic observables of the form

Ai = 1 − 2|vi 〉〈vi |, (3.7)

and in the Yu-Oh scenario, there are 13 observables defined by the 13 unit vectors
|vi 〉 provided in Fig. 3.1.

In the according graph, each operator is represented by node i ∈ V of the graph
G = (V, E) and an edge (i, j) ∈ E indicates that |vi 〉 and |v j 〉 are orthogonal,
|v j 〉〈vi | = 0, so that Ai and A j are compatible. The original inequality takes into
account all contexts of size one and two, CYO = {{1}, . . . , {D}} ∪ E and the coef-
ficients were chosen to λc = −3/50 if c ∈ E and λc = 6/50 else. This yields an
inequality with a state-independent quantum violation of V = 1/24 ≈ 4.2%.

With the linear program we find that the maximal violation for the contexts CYO
is V = 1/12 ≈ 8.3% and thus twice that of the inequality in Ref. [1]. Interestingly,
among the optimal coefficients �λ∗ there is a solution which is tight and for which
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Fig. 3.1 Graph of the
compatibility relations
between the observables for
the Yu-Oh scenario. Nodes
represent vectors |vi 〉, or the
observables Ai defined in
(3.7), and edges represent
orthogonality, or
compatibility, relations

the coefficients λ4,7 vanishes, cf. Table3.1, column “opt2” for the list coefficients.
We find that up to symmetries, λ4,7 is the only context that can be omitted while still
preserving optimality.

The maximal contexts in the Yu-Oh scenario are of size three, and hence it is
possible to include also the corresponding terms in the inequality, i.e., we extend the
contexts CYO by the contexts {1, 2, 3}, {1, 4, 7}, {2, 5, 8}, and {3, 6, 9}. Since this
increases the number of parameters in the inequality, there is a chance that this case
allows an even higher violation. In fact, themaximal violation isV = 8/75 ≈ 10.7%.
Again, it is possible to find tight inequalities with vanishing coefficients, and in
particular the context {1, 2, 3} can be omitted; the list of coefficients is given in
Table3.1, column “opt3”.

Table 3.1 Coefficients λc of inequalities for the Yu-Oh scenario

c YO opt2 opt3 c YO opt2 opt3 c YO opt2 opt3

1 2 2 1 A–D 2 1 2 3, 9 −1 −2 −1

2 2 3 1 1,2 −1 −1 −2 4, 7 −1 0 −1

3 2 3 1 1,3 −1 −1 −2 5, 8 −1 −2 −1

4 2 1 1 1,4 −1 −1 −1 6, 9 −1 −2 −1

5 2 2 1 1,7 −1 −1 −1 ∗,A–D −1 −1 −2

6 2 2 1 2,3 −1 −2 −2 1,2,3 – – 0

7 2 1 1 2,5 −1 −2 −1 1,4,7 – – −3

8 2 2 1 2,8 −1 −2 −1 2,5,8 – – −3

9 2 2 1 3,6 −1 −2 −1 3,6,9 – – −3

The column c labels the different contexts, YO the coefficients in the inequality of Ref. [1], opt2
an optimal tight inequality with contexts of maximal size 2, opt3 an optimal tight inequality with
contexts of all sizes. For compactness, the coefficients in the column YO have been multiplied by
50/3, for the column opt2 by 52/3 and for the column opt3 by 83/3. The row labelled “A–D”
shows the coefficients for the contexts {A}, {B}, {C}, {D} and the row labelled “∗,A–D” shows the
coefficients for {4, A}, {8, A}, {9, A}, {5, B}, {7, B}, {9, B}, {6, C}, {7, C}, {8, C}, {4, D}, {5, D},
{6, D}
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Using Pitowsky’s approach, checking the tightness of an inequality amounts to a
problem of affine independence that can be easily transformed in a linear indepen-
dence problem and solved efficiently, e.g., by Gaussian elimination. We verified that
the inequalities opt2 and opt3 are tight with respect to the corresponding correlation
polytope, wheareas YO is not tight.

3.2.2 Extended Peres-Mermin Set

The extended Peres-Mermin set uses as observables all 15 products of Pauli opera-
tors on a two-qubit system. Observables and compatibility relations are depicted in
Fig. 3.2. The original SIC inequality proposed for this scenario [11] is given by

∑

c∈C+
〈
∏

k∈c

Ak〉 −
∑

c∈C−
〈
∏

k∈c

Ak〉 ≤ 9, (3.8)

where C+ is the set of contexts denoted by black lines in Fig. 3.2, i.e., contexts such
that the product of the observables gives +1, and C− is the set of contexts denoted
by cyan lines, i.e., such that the product of the observables gives −1.

In the language used above, the optimal violation isV = 2/3, where only contexts
of size three need to be measured and, with the proper normalization, λc = 1/15,
except λxx,yy,zz = λxz,yx,zy = λxy,yz,zx = −1/15. We verified that (3.8) is optimal

Fig. 3.2 The set of observables represented by two-fold tensor products of Pauli matrices except
for the identity has 15 observables (represented by points in the graph; the notation is X I = σx ⊗1)
which can be grouped in 15 sets of compatible observables (represented by lines; collinear points
correspond to compatible observables). Each point is on three lines and each line is incident with
three points. (Black cyan lines) represent sets in which the product of all the matrices is 1 (−1). It
is impossible to assign noncontextual results −1 or +1 to all the 15 observables in agreement with
the predictions of QM: The product of the results of a black (cyan) line must be +1 (1)
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and among the optimal solutions no simpler inequality exists. Also in this case the
inequality is corresponds to a facet of the associated polytope.

3.2.3 Cabello, Estebaranz, and García-Alcaine’s
18-Vector Proof

TheKSset providedbyCabello et al. [12], uses a four-level systemand18observables
derived as in Eq. (3.7) for the 18 (unnormalized) vectors depicted in Fig. 3.3. For
contexts up to size 2 the maximal violation is V = 1/17 ≈ 5.9% and is given by the
inequality (cf. [13]),

∑

i

〈Pi 〉 − 1

2

∑

i j

〈Pi Pj 〉 ≤ 4, (3.9)

where Pi = |vi 〉〈vi | for the (normalized) vectors vi of Fig. 3.3, and the sum is over
all possible contexts of size 2.

Including all contexts the maximal violation is V = 2/7 ≈ 28.6% and is given
by the inequality (cf. [14])

∑

maximal c

〈
∏

i∈c

Ai 〉 ≤ 7, (3.10)

where Ai = 2Pi −1, and the sum is over the 18maximal contexts of four observables
depicted in Fig. 3.3.

Both inequalities (3.9), (3.10) can be proven to be tight.
The situation where only contexts up to size 3 are admissible has not yet been

studied and we find numerically a maximal violation of V ≈ 14.3%.

Fig. 3.3 Graphical
representation for the
contexts in the 18-vector KS
set of Ref. [12]. Each side of
the regular hexagon and each
square represent a context,
vectors in each context are
mutually orthogonal

v =(1,0,0,0)12

v =(0,1,0,0)18v =(0,0,0,1)28

v =(0,1,1,0)29 v =(0,0,1,1)17

v =(0,0,1,-1)16v =(0,1,-1,0)23

v =(1,-1,0,0)67v =(1,0,0,1)39

v =(1,1,1,-1)37 v =(1,1,-1,-1)69

v =(1,1,1,1)56v =(-1,1,1,1)34

v =(1,1,-1,1)47

v =(1,0,1,0)48 v = )0,1-,0,1(58

v =(1,-1,1,-1)59

v =(0,1,0,-1)45
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3.3 Experimental tests

The main motivation for the introduction of the notions of compatible measurements
and contexts is given by the property of commuting observables. As we discussed in
Chap.1, compatible observable not only can bemeasured jointly, but also in sequence
in any order and repeatedly multiple times always giving, in the ideal case, the same
result as the initial measurement.

For an experimental test of noncontextuality, two possible measurement schemes
naturally arise, namely

(a) the joint measurement,
(b) the sequential measurement.

The possible advantages and disadvantages of both methods from the point of
view of experimental tests have been discussed in Ref. [15], we briefly recall here
the main argument of the authors.

In the joint measurement scenario, each single device corresponds to an entire
context, and the outcomes must specify the outcome of each of the observables that
is jointly measured. The only way to argue that such single-observable outcomes
are independent of the device used is to repeat multiple times and in different order
the joint measurement and the single-observable measurement. Precisely because
such a single-observable device is able to reproduce the result of the corresponding
joint measurements, i.e., those involving such an observable, there is good reason to
assume that the outcome is independent of the joint measurement performed, i.e., of
the context.

In the sequential measurement scenario, the experimenter starts already with
single-observable measurements. Such measurement device can be tested directly
in a similar way as above, i.e., by repeating the measurements many times and in
different order and verify whether the results are unchanged.

The physical motivation for unchanged results in the sequential measurement
scenario is much stronger since the devices used are identical in different contexts.
On the other hand, the joint measurement device might correspond to a completely
different experimental setup even for the unchanged setting of a context, so it is more
difficult to maintain that the outcome for the unchanged setting is unchanged.

Moreover, in the sequential measurement scheme it is possible to discuss the
influence from one measurement to the subsequent, and it also possible to perform a
test (albeit limited) of such influence, and to include it in the analysis as correction
terms to ideal NCHV bound, as discussed in Ref. [15].

Independently of the chosen measurement scheme, it is clear from the above
discussion that it is a fundamental requirement for any experimentalist to convinc-
ingly argue that the devices used in the experiment produce a context-independent
outcome.

An indicative example of this approach is given by the experiment of Kirchmair
et al. [16], where the Peres-Mermin inequality is tested via sequential measurements.
Here, each observable is implemented by an experimental procedure, namely, a

http://dx.doi.org/10.1007/978-3-319-24169-2_1
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sequence of non-local unitaries and flourescence detection, which is always the same
in everymeasurement context.Analogously, the state preparation procedure is always
the same independently of the sequence ofmeasurements to be performed afterwards.

Another example, where such context-independent experimental procedures are
not carefully followed, is given by the test of Yu and Oh’s inequality by Zu et
al. [17]. Here, observables are implemented by different experimental procedures,
depending on the measurement context, and even the initial state is changed in a
context-dependent way. In particular, the measurement of each of the observables
AA, AB , AC , AD of Fig. 3.1 is performed always in a different way. See also the
discussion in [3].

Another test of the Yu and Oh’s inequality, performed with trapped ions and
following the same procedure as Ref. [16], has then been performed by Zhang et al.
[18]. Notice, however, that the first preprint submitted to the arXiv [19] presented
the same problems as the experiment in Ref. [17].

3.4 Discussion

Among themost striking aspectswhere contextuality ismore general than nonlocality
is that the former can be found to be independent of the quantum state. For this state-
independent scenario, we showed that the search for the optimal inequality reduces
to a linear program, which can be solved numerically with optimality guaranteed.
We studied several cases of this optimization and find that in all those instances one
can construct noncontextuality inequalities with a state independent violation that
are, in addition, tight. This is in particular the case for the most fundamental scenario
of state independent contextuality [1] and we presented two essentially different
inequalities—one involves at most contexts of size two, the other of size three. We
hence lifted the Yu-Oh scenario to the same fundamental status as the CHSH Bell
inequality [20, 21], which is the simplest scenario for nonlocality.
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Chapter 4
Quantum Bounds for Temporal
Correlations

The assumptions of realism and locality lead to bounds on the correlations between
observable quantities—the Bell inequalities, and these bounds are violated in quan-
tummechanics. Interestingly, this quantumviolation is limited formanyBell inequal-
ities and does not reach the maximal possible value. For instance, the CHSH inequal-
ity bounds the correlation [1]

B = 〈A1 ⊗ B1〉 + 〈A1 ⊗ B2〉 + 〈A2 ⊗ B1〉 − 〈A2 ⊗ B2〉, (4.1)

where Ai and B j are measurements on two different particles. On the one hand,
local realistic models obey the CHSH inequality B ≤ 2, which is violated in quan-
tum mechanics. On the other hand, the maximal quantum value is upper bounded
by Tsirelson’s bound [2] B ≤ 2

√
2. Whereas this bound holds within quantum

mechanics, it has turned out that hypothetical theories that reach the algebraic maxi-
mum B = 4 without allowing faster-than-light communication are possible [3]. This
raises the question of whether the bounded quantum value can be derived on physi-
cal grounds from fundamental principles. Partial results are available, and principles
have been suggested that bound the correlations [4–8] (see also the discussion in
Ref. [9]).

The question of how and why quantum correlations are fundamentally limited has
been discussed mainly in the scenario of bipartite and multipartite measurements.
What happens, however, if we shift the attention from spatially separated measure-
ments to temporally ordered measurements? There is no need to measure on distinct
systems as in Eq. (4.1), but rather, we may perform sequential measurements on the
same system. Then, an elementary property of quantum mechanics becomes impor-
tant: The measurement changes the state of the system. In fact, this allows us to
temporally “transmit” a certain amount of information [10], and one would expect
that the correlations in the temporal case can be larger than in the spatial situation.

We stress that sequential measurements also have been considered in the analy-
sis of quantum contextuality (the Kochen-Specker theorem [11]) and macrorealism
(Leggett-Garg inequalities [12]). The research in this fields has triggered experiments
involving sequential measurements. For demonstrating such a contradiction between
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58 4 Quantum Bounds for Temporal Correlations

classical and quantum physics, e.g., the KCBS correlation, appearing in Eq. (1.10),

S5 =〈A1A2〉seq + 〈A2A3〉seq + 〈A3A4〉seq + 〈A4A5〉seq
− 〈A5A1〉seq (4.2)

has been considered [13, 14]. Here, 〈Ai A j 〉seq denotes a sequential expectation value
that is the average of the product of the value of the observables Ai and A j when first
Ai is measured, and afterwards A j . One can show that for macrorealistic theories as
well as for noncontextual models the boundS5 ≤ 3 holds, but in quantummechanics,
this can be violated.

Here however, we are rather interested in the fundamental bounds on the temporal
quantum correlations, with no assumption about the compatibility of the observables.
Special cases of this problem have been discussed before: For Leggett-Garg inequal-
ities, maximal values for two-level systems have been derived [14, 15], and temporal
inequalities similar to the CHSH inequality have been discussed [10, 16].

In this chapter, we provide a method that allows us to compute the maximal
achievable quantum value for an arbitrary inequality and thus we solve the problem
of bounding temporal quantum correlations. First, we will discuss a simple method,
which can be used for expressions as in Eq. (4.2), where only sequences of two
measurements are considered. Then, we introduce a general method which can be
used for arbitrary sequential measurements, resulting in a complete characterization
of the possible quantum values. Interestingly, our methods characterize temporal
correlations exactly, whereas for the case of spatially separated measurements only
converging approximations are known.

For the convenience of the reader, the technical details are collected in Sect. 4.5.
The results of this chapter have been published in [17].

4.1 Sequential Projective Measurements

When determining the maximal value for sequential measurements as in Eq. (4.2)
we consider projective measurements, as these are the standard textbook exam-
ples of quantum measurements. The underlying formalism has been established by
von Neumann [18] and Lüders [19]. According to Lüders’ rule, an observable A
with possible results ±1 is described by two projectors �+ and �− such that
A = �+ − �−. If the observable A is measured, the quantum state is projected
onto the space of the observed result, namely,

� �→ �±��±/tr(��±). (4.3)

For the moment, we restrict to rule (4.3). We shall see in the next chapter, the
consequences of using amore general state-update rule, e.g., vonNeumann’s original
proposal [18], and how such different state-update rules for projective measurements
can be exploited to construct dimension witnesses.

http://dx.doi.org/10.1007/978-3-319-24169-2_1
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Applying the above scheme to the case of sequential measurements, one finds that
the sequential mean value can be written as

〈Ai A j 〉seq = tr(��i+�
j
+�i+)+tr(��i−�

j
−�i−)−tr(��i−�

j
+�i−)−tr(��i+�

j
−�i+)

(4.4)
With the substitution �

i, j
± = (1 ± Ai, j )/2, it becomes

〈Ai A j 〉seq = 1

2
[tr(�Ai A j ) + tr(�A j Ai )]. (4.5)

It is interesting to notice that for pairs of ±1-valued observables such a mean
value does not depend on the order of the measurement [10].

4.2 The Simplified Method

We first show how the maximal quantum mechanical value for an expression such
as S5 in Eq. (4.2) can be determined. First, we consider a setA = {Ai } of ±1-valued
observables and a general expression C = ∑

ij λij〈Ai A j 〉seq. The correlations given
in Eq. (4.2) are just a special case of this scenario. Then, we consider the matrix built
up by the sequential mean values Xij = 〈Ai A j 〉seq. This matrix has the following

properties: (i) it is real and symmetric, X = X T , (ii) the diagonal elements equal
one, Xii = 1, and (iii) the matrix has no negative eigenvalue (or vT Xv ≥ 0 for
any vector v), denoted as X 
 0 (see Sect. 4.5.2). A similar construction for the
matrix X , together with the optimization problem below, has been considered before
in relation with Bell inequalities [20]. However, our method involves a different
notion of correlations, namely that given by Eq. (4.5).

The main idea is now to optimize the expression C = ∑
ij λij Xij over all matrices

with the properties (i)–(iii) above. Hence, we consider the optimization problem

maximize:
∑

ij

λij Xij, (4.6)

subjected to: X = X T 
 0 and for all i , Xii = 1.

Since all matrices X that can originate from a sequence of quantum measurements
will be of this form, one performs the optimization over a potentially larger set. Thus,
the solution of this optimization is, in principle, just an upper bound on the maximal
quantum value of S5. Note that the optimization itself can be done efficiently and
is assured to reach the global optimum since it represents a so-called semidefinite
program [21]. In the case of S5, this optimization can even be solved analytically
and gives

S5 ≤ 5

4

(
1 + √

5
)

≈ 4.04. (4.7)



60 4 Quantum Bounds for Temporal Correlations

It turns out that appropriately chosen measurements on a qubit already reach this
value [14]. Hence, this upper bound is tight. More generally, one can prove (see
Sects. 4.5.2 and 4.5.4) that each matrix X with the above properties has a sequential
quantum representation. Finally, note that if the observables in each sequence are
required to commute, then the maximal quantum value forS5 is known to be�QM =
4
√
5 − 5 ≈ 3.94 [22, 23].

4.3 The General Method

The above method can only be used for correlations terms of sequences of at most
two ±1-valued observables. In the following, we discuss the conditions allowing
a given probability distribution to be realized as sequences of measurements on a
single quantum system in the general setting. We label as r = (r1, r2, . . . , rn) the
results of an n-length sequence obtained by using the setting s = (s1, s2, . . . , sn). The
ordering is such that r1, s1 label the result and the setting for the first measurement
etc. The outcomes of any such sequence are sampled from the sequential conditional
probability distribution

P(r|s) ≡ Pseq(r1, r2, . . . , rn|s1, s2, . . . , sn). (4.8)

In the case of projective quantum measurements, each individual result r of any
setting s is associatedwith a projector�s

r , which altogether satisfy two requirements:
For each setting the operators must sum up to the identity, i.e.,

∑
r �s

r = 1, and they
satisfy the orthogonality relations �s

r�
s
r ′ = δrr ′�s

r , where δrr ′ is the Kronecker
symbol. Finally, after the measurement with the setting s and result r , the quantum
state is transformed according to Lüders rule � �→ �s

r��s
r/P(r |s).

In the following, we say that the a conditional probability distribution P(r|s) has
a sequential projective quantum representation if there exists a suitable set of such
operators �s

r and an appropriate initial state � such that

P(r|s) = tr[�(r|s)�(r|s)†�], (4.9)

with the shorthand �(r|s) = �
s1
r1�

s2
r2 · · · �sn

rn .
Whether a given distribution P(r|s) indeed has such a representation can be

answered via a so-called matrix of moments, which often appears in moment prob-
lems [20, 24–26]. This matrix, denoted as M in the following, contains the expec-
tation value of the products of the above-used operators �(r|s) at the respective
position in the matrix. In order to identify this position we use as a label the abstract
operator sequence r|s for both row and column index. In this way the matrix is
defined as

Mr|s;r′|s′ = 〈�(r|s)�(r′|s′)†|.〉 (4.10)
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Whenever this matrix is indeed given by a sequential projective quantum repre-
sentation, the matrix M satisfies two conditions: (a) linear relations of the form
Mr|s;k|l = Mr′|s′;k′|l′ if the underlying operators are equal as a consequence of
the properties of normalization and orthogonality of projectors, (b) M 
 0 since
v†Mv ≥ 0 holds for any vector v, because such a product can be written, by defining
C = ∑

r|s vr|s�(r|s), as the expectation value 〈CC†〉� ≥ 0, which is non-negative
for any operator C . Finally, note that certain entries of this matrix are the given
probability distribution, for instance, at the diagonal Mr|s;r|s = P(r|s). The main
point, however, is the converse statement: Given a moment matrix with properties (a)
and (b) above, the associated probability distribution P(r|s) always has a sequential
projective quantum representation (see Sect. 4.5.4).

Hence, the search for quantum bounds represents again a semidefinite program.
The fact that this characterization is sufficient is in stark contrast with the analogue
technique in the spatial Bell-type scenario [25], where one needs to use moment
matrices of an increasing size n to generate better superset characterizations which
only become sufficient in the limit n → ∞. However, indirectly, the sufficiency of
our method has already been proven in this context [25] (see Sect. 4.5.4 for details).

4.4 Applications

To demonstrate the effectiveness of our approach, we discuss four examples. First,
we consider the original Leggett-Garg inequality

S = 〈M(t1)M(t2)〉seq + 〈M(t2)M(t3)〉seq
−〈M(t1)M(t3)〉seq ≤ 1. (4.11)

This bound holds for macrorealistic models, and it has been shown that in quan-
tum mechanics values up to S = 3/2 can be observed [12, 14, 15]. Our methods
allow us not only to prove that this value is optimal for any dimension and any
measurement, provided the state-update rule is the one of Eq. (4.3), but also to, for
instance, determine all values in the three-dimensional space of temporal correlations
〈M(ti )M(t j )〉, which can originate from quantum mechanics. The detailed descrip-
tion is given in Fig. 4.1, and the calculations are given in the Sect. 4.5.1. We shall see
in the next chapter, that more general state-update rules allow for a higher value.

Second,we consider the case of sequentialmeasurements for the N -cycle scenario
of Chap.2, namely, the expression

SN =
N−2∑

i=0

〈Ai Ai+1〉seq − 〈AN−1A0〉seq. (4.12)

http://dx.doi.org/10.1007/978-3-319-24169-2_2
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Fig. 4.1 Complete characterization of the possible quantum values for the simplest Leggett-Garg
scenario, with dichtomic measurements and Lüders rule (4.3). In this case, three different times
are considered, resulting in three possible correlations 〈M(t1)M(t2)〉seq, 〈M(t1)M(t3)〉seq, and
〈M(t2)M(t3)〉seq. In this three-dimensional space, the possible classical values form a tetrahedron,
characterized by Eq. (4.11) and variants thereof. The possible quantum mechanical values form a
strictly larger set with curved boundaries

For this case, everything can be solved analytically (see Sect. 4.5.1 for the general
sequential bound, and Sect. 4.5.4 for the quantum bound for compatible measure-
ments) leading to the bound

SN ≤ N cos
( π

N

)
, (4.13)

which can be reached by suitably chosen measurements. This value has already
occurred in the literature [14], but only qubits have been considered. Our proof
shows that it is valid in arbitrary dimension. Note that the fact that the maximal
value is obtained on a qubit system is not trivial, although the measurements are
dichotomic. For Kochen-Specker inequalities with dichotomic measurements exam-
ples are known, where the maximum value cannot be attained in a two-dimensional
system [27] and also for Bell inequalities this has been observed [28, 29].

As a third application, we consider the noncontextuality scenario recently discov-
ered byYu andOh [30]. There, thirteenmeasurements on a three-dimensional system
are considered, and a noncontextuality inequality is constructed, which is violated
by any quantum state. It has been shown that this scenario is the simplest situation
where state-independent contextuality can be observed [31], so it is of fundamental
importance. We can directly apply our method to the original inequality by Yu and
Oh, as well as recent improvements [32] and compute the corresponding Tsirelson-
like bounds. We recall that our results are not directly related to the phenomenon
of quantum contextuality, since no compatibiliy of the measurements is assumed,
but they show the effectiveness of our method even on complex scenarios, namely,
inequalities containing 37 or 41 terms, that involve sequential measurements. Our
results are summarized in Table4.1.
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Table 4.1 Bounds on the quantum correlations for the Kochen-Specker inequalities in the most
basic scenario

Ineq. NCHV bound State-independent
quantum value

Algebraic
maximum

Sequential bound

Yu-Oh 16 50/3 ≈ 16.67 50 17.794

Opt2 16 52/3 ≈ 17.33 52 20.287

Opt3 25 83/3 ≈ 27.67 65 32.791

Three inequalities were investigated: First, the original inequality proposed in Ref. [30] and the opti-
mal inequalities from Ref. [32] with measurement sequences of length two (Opt2) and length three
(Opt3). For each inequality, the following numbers are given: The maximum value for noncontex-
tual hidden variable (NCHV)models, the state-independent quantum violation in three-dimensional
systems (obtained in Refs. [30, 32]), the algebraic maximum and the maximal value that can be
attained in quantum mechanics for the sequential measurements. The latter bound is higher than
the state independent quantum value, since the observables do not have to obey the compatibility
relations occurring in the Kochen-Specker theorem. Notice that the sequential bound is obtained as
a maximization over the set of possible observables and states, thus it is in general state-dependent.
Interestingly, in all cases the maximal quantum values are significantly below the algebraic
maximum

Another class of inequalities is given by the guess-your-neighbor’s-input inequal-
ities [33], which if viewed as multipartite inequalities, show no quantum violation
but a violation with the use of postquantum no-signalling resources. We calculate
the sequential bound for the case of measurement sequences of length three, instead
of measurement on three parties. We consider

P(000|000) + P(110|011) + P(011|101)
+ P(101|110) ≤ �C,Q ≤ �S ≤ �N S,

(4.14)

with the notation P(r1, r2, r3|s1, s2, s3) as before, and possible results and settings
ri ∈ {0, 1} and si ∈ {0, 1}. We find that

�S ≈ 1.0225, (4.15)

while it is known that�C,Q = 1 and�N S = 4
3 ,where the indicesC, Q, S, N S label,

respectively, the classical, quantum, sequential and no-signalling bounds. So, in this
case, the bound for sequential measurements is higher than the bound for spatially
separated measurements. This also highlights the greater generality of our method
in comparison with the results of Ref. [10]: There, only temporal inequalities with
sequences of length two have been considered, where in addition the measurements
can be split in two separate groups. In this case it turned out that the bounds were
always reached with commuting observables. Our examples show that this is usually
not the case, when longer measurement sequences are considered.
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4.5 Details of the Calculations

4.5.1 Discussion of the Simplest Leggett-Garg Scenario

In this part we provide some further details about how to determine the set of pos-
sible quantum values for the simplest non-trivial Leggett-Garg scenario as shown in
Fig. 4.1. Here it is assumed that one can measure an observable M at three different
time instances t1, t2, t3, which gives rise to three different observables Ai = M(ti )
with i = 1, 2, 3.

However, rather thanbeing interested in determining the full sequential probability
P(r|s) for all possible combinations we are here only interested in some limited
information, namely only for the correlation space. This means that from a general
distribution we only want to reproduce the correlations terms 〈Ai A j |〉seq with 1 ≤
i < j ≤ 3 each defined by

〈Ai A j 〉seq = P(ri = r j |i, j) − P(ri �= r j |i, j). (4.16)

Thus we want to characterize the set

〈S〉qm = {qij ∈ R
3 : qij = 〈Ai A j 〉seq,

〈Ai A j 〉seq has projective quantum rep.}. (4.17)

For this we refer to problem given by (4.6), with

X =
⎡

⎣
1 〈A1A2〉seq 〈A1A3〉seq

〈A1A2〉seq 1 〈A2A3〉seq
〈A1A3〉seq 〈A2A3〉seq 1

⎤

⎦ . (4.18)

Any matrix of this form has a sequential projective quantum representation if and
only if X is positive semidefinite. However a matrix satisfies X 
 0 if and only if
the determinant of all principal minors are non-negative. This gives

Sqm = {qij ∈ R
3 : |qij| ≤ 1,

1 + 2q12q13q23 ≥ q2
12 + q2

13 + q2
23}. (4.19)

which is the plotted region of Fig. 4.1.
We mention that via the general method one can also in principle determine the

achievable probability distribution of a general scenario. However, this requires the
solution of a SDP with some unknown entries, and hence an analytic solution is in
general not accessible.
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4.5.2 Detailed Discussion of Sequential Bounds
for the N-cycle Inequalities

We first need the general form [23] for Eq. (4.12)

SN (γ) =
N−1∑

i=0

γi 〈Ai Ai+1〉seq, (4.20)

where the indices are taken modulo N and γ = (γ0, . . . , γN−1) ∈ {−1, 1}N with an
odd number of −1. Since any two assignments γ and γ′ can be converted into each
other via some substitutions Ai → −Ai , the quantum bound does not depend on the
particular choice of γ. For the case of odd N , we can consider the expression

SN = −
N−1∑

i=0

〈Ai Ai+1〉seq, (4.21)

with index i taken modulo N . The optimization problem in Eq. (4.6), therefore, can
be expressed as

maximize:
1

2
tr(W X)

subjected to: X = X T 
 0 and Xii = 1 for all i,
(4.22)

where W is the circulant symmetric matrix

W = −

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 1 . . . 0 1
1 0 1 0
... 1 0

. . .
...

0
. . .

. . . 1
1 0 . . . 1 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (4.23)

The condition X 
 0, i.e., vT Xv ≥ for any real vector v, follows from the fact that
〈Ai A j 〉seq = 1

2 tr[�(Ai A j + A j Ai )] and the fact that the matrix Y = tr[�(Ai A j )]
fulfils vT Yv ≥ for any real vector v, and X is the real part of Y .

By using the vector λ = (λ1, . . . ,λN ), the dual problem for the semidefinite
program in Eq. (4.22) can be written as (see Ref. [21] for a general treatment and
Ref. [20] for the discussion of a similar problem)

minimize: tr(diag(λ))

subjected to: − 1

2
W + diag(λ) 
 0, (4.24)

where diag(λ) denotes the diagonal matrix with entries λ1, . . . ,λN .
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Let us denote with p and d optimal values for, respectively, the primal problem
in Eq. (4.22) and the dual problem in Eq. (4.24). Then d ≥ p. We shall provide a
feasible solution for the dual problem with d = N cos( π

N ) and a feasible solution
for the primal problem with p = d, this will guarantee the optimality of our primal
solution.

We start by finding the maximum eigenvalue for W . Since W is a circulant matrix,
its eigenvalues can be written as [34]

μ j = −2 cos

(
2π j

N

)

(4.25)

for j = 0, . . . , N − 1, and μmax = 2 cos
(

π
N

)
the maximum eigenvalue.

For a pair of Hermitianmatrices A, B, it holdsμmin(A+B) ≥ μmin(A)+μmin(B),
where μmin denotes the minimum eigenvalue. Therefore, λ = (cos

(
π
N

)
, . . . , cos

(
π
N

)
) is a feasible solution for the dual problem and tr[diag(λ)] = N cos

(
π
N

)
, and

p ≤ N cos
(

π
N

)
.

Now consider the matrix X ′
ij = (xi , x j ), with x1, . . . , xN unit vectors in a 2-

dimensional space such that the angle between xi and xi+1 is N+1
N π, and (·, ·) denot-

ing the scalar product. Clearly, X ′ is positive semidefinite. Since X ′
i,i+1 = − cos

(
π
N

)
,

it follows that p = d = N cos
(

π
N

)
and the solution X ′ is optimal.

In order to prove that X ′ can be obtained as matrix of expectation values for
sequential measurements, we define for a 3-dimensional unit vector �a the observable
σa ≡ �σ · �a, where �σ denots the vector of the Pauli matrices. Then, by Eq. (4.5),
〈σaσb〉seq = �a · �b, independently of the initial quantum state �. In fact, explicit
observables reaching this boundhave alreadybeendiscussed in the literature [14, 27].

For the case N even, we can consider the expression

SN =
N−2∑

i=0

〈Ai Ai+1〉seq − 〈A0AN−1〉seq, (4.26)

and the maximization problem can be expressed as a SDP as in Eq. (4.22), with
the proper choice of the matrix W . Such a SDP has been solved in Ref. [20]. The
solution is analogous to the previous one: A set of observables, for a two-level
system, saturating the bound, again, independently of the quantum state, is given
by observables Ai = �σ · �xi , where the vectors xi are on a plane with an angle π

N
separating xi and xi+1.

As opposed to the odd N case, such a bound can be also reached with commuting
operators, this corresponds to thewell knownmaximal violation of Braunstein-Caves
inequalities [20].

The above results prove that the bound computed in Ref. [27] for sequential mea-
surements on qubits, coincidingwith the value explicitly obtained inRef. [14], is valid
for any dimension of the quantum system on which measurements are performed.
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Finally, we stress that the construction of the above set of observables from the
solution of theSDP, i.e., thematrix X or the set of vectors {xi } such that Xij = (xi , x j ),
is general. We recall that the vectors {xi } can be obtained, e.g., as the columns of the
matrix

√
X and, therefore, the dimension of the subspace spanned by them is equal

to the rank of the matrix X . In the previous case, since we were dealing with vectors
in dimension d ≤ 3, we used the property of Pauli matrices

{σa,σb} ≡ σaσb + σbσa = 2(�a · �b)1. (4.27)

For matrices X with higher rank, the corresponding vectors {xi } will span a real
vector space V of dimension d > 3. Now for general complex vector spaces V with
a symmetric bilinear form ( , ), an analogue of Eq. (4.27), namely

{Av, Au} = 2(v, u)1, for any u, v ∈ V (4.28)

can be established by a representation of associated Clifford algebra, cf. Ref. [35, 36]
As a consequence, for every positive semidefinite real matrix X with diagonal

elements equal to 1, one can find a set of unit vectors {xi } giving Xij = (xi , x j ) and
a set of ±1-valued observables {Ai }, associated with {xi }, such that

〈Ai A j 〉seq = tr

[
1

2
�(Ai A j + A j Ai )

]

= (xi , x j ), (4.29)

for all quantum states �. In particular, if the rank of X is d, such operators can be
chosen as 2d × 2d Hermitian matrices [37]. This shows the completeness of the
simplified method.

4.5.3 Completeness of the General Method

In this part we shortly comment on the completeness of the presented generalmethod.
As pointed out, this has already been proven indirectly in the context of the spatial
bipartite case [25].

At first let us change slightly the notation in order to make it closer to the one used
in Ref. [25]. In the following, we do not explicitly consider the matrix M , but rather
a slightly smaller matrix where one erases some trivial constraints. In the following
the set {Ei } contains all projectors �s

k , but one of the outcomes k from each setting
s is left out. We also use a single subscript to identify setting and outcome. Then the
matrix

χn
uv = tr[E(u)E(v)†ρ] (4.30)

with u = (u1, u2, . . . , ul) is built from all products E(u) = Eu1 Eu2 · · · Eul of the
operators {Ei } of at most length l ≤ n, and the single extra “sequence” u = 0 of the
identity operator, E(0) = 1. Again this matrix has to satisfy linear relations parsed
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as χn
uv = χn

u′v′ , if the operators fulfil E(u)E(v)† = E(u′)E(v′)† as a consequence
of the orthogonality properties of projectors, and that χn 
 0.

That this matrix is positive semidefinite can be verified as follows: Let us first
assume that there exists a sequential projective quantum representation. Consider the
operator C = ∑

u cu E(u)† with arbitrary cu ∈ C and evaluate the expectation value
of CC†, which provides

tr(CC†�) =
∑

u,v

cutr[E(u)†E(v)�]c∗
v (4.31)

=
∑

u,v

cuχn
uvc∗

v ≥ 0. (4.32)

The final inequality holds because CC† 
 0 and ρ 
 0 are both positive semidef-
inite operators. Since cu ∈ C are arbitrary the condition given by Eq. (4.32) means
that χn 
 0 is positive semidefinite.

For the reverse one needs a way to construct an explicit sequential projective
quantum representation out of the matrix χn satisfying the above properties. For this,
clearly more difficult part, we refer to Ref. [25] and just mention the solution. For
the given positive semidefinite matrix χn one associates a set of vectors {|eu〉} by the
relation χn

uv = 〈eu||ev〉. From this set of vectors one now constructs an appropriate
state and corresponding projectivemeasurements by Ĥ = span({|eu〉}), ρ̂ = |e0〉〈e0|,
and Êi = proj(span({|eu〉 : u1 = i})) where proj means the projector onto the given
subspace. That these solution satisfies all the required constraints is shown in the
proof of Theorem 8 of Ref. [25]. An analogous mathematical result, valid only for
the case of dichotomic observables, has been presented also in Ref. [38].

In the spatial case considered in Ref. [25], some of these operators, additionally,
have to commute since they should correspond to measurements onto different local
parts. This cannot be inferred, in general, by a finite level χn and this is eventually
the reason why in the spacial case arbitrary high order terms have to be considered.
However, luckily, since in our situation the measurements of different settings may
well fail to commute we can rely on a finite level n.

4.5.4 Quantum Bounds for Compatible Measurements
in the N-cycle Scenario

We now complete the discussion of the N -cycle noncontextuality scenario by com-
puting, by means of the CSWmethod, the quantum bound for the inequalities (4.12)
in the case of sequence of compatible measurements.
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Such bounds are given by

�QM =
⎧
⎨

⎩

3n cos( π
N )−N

1+cos( π
N )

for odd N ,

N cos
(

π
N

)
for even N .

(4.33)

Let us first discuss the case of odd N . As in the above case of general sequen-
tial measurements, without loss of generality, we can restrict our discussion to the
inequalities in which γi = −1 for all i , namely,

SN = −
N−1∑

i=0

〈Ai Ai+1〉seq, (4.34)

Using that

± 〈Ai Ai+1〉 = 2
[

p(+ ± |Ai , Ai+1) + p(− ∓ |Ai , Ai+1)
]

− 1, (4.35)

we can rewrite SN as 2� − N , where � is a sum of probabilities.
In quantum mechanics, any sum of probabilities is bounded from above by the

Lovász ϑ-function, ϑ(G), of the graph G in which nodes are the arguments of the
probabilities and edges link exclusive events (e.g., (+ + |A0, A1) and (−−|A1, A2))
[39, 40].

If N is odd, the graph G associated to � is the prism graph of order N , YN (see
Fig. 4.2). We shall prove that its ϑ-function is

ϑ(YN ) = 2N cos
(

π
N

)

1 + cos
(

π
N

) , (4.36)

therefore, if N is odd, the quantum bound for compatible measurements �QM is
bounded from above by 2ϑ(YN ) − N . The following quantum state and observ-
ables saturates this bound [22]: |ψ〉 = (1, 0, 0) and A j = 2|v j 〉〈v j |v j − 1, where
|v j 〉 = (cos θ, sin θ cos[ jπ(N − 1)/N ], sin θ sin[ jπ(N − 1)/N ]) and cos2 θ =
cos(π/N )/(1 + cos(π/N )).

Equation (4.36) can be proven as follows. An orthonormal representation (OR)
for a graph G = (V, E) is a set of unit vectors {vi } associated with vertices V = {i}
such that two vectors are orthogonal if the corresponding vertices are adjacent, i.e.

Fig. 4.2 Graphs associated
to the sum of probabilities �

in the N -cycle inequalities
for N = 3, 4, 5, 6
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(i, j) ∈ E . Lovász ϑ function is defined as the maximum, over all OR, of the norm of
the operator given by sum of the unidimensional projectors associated with vectors
[41, 42]. Notice that different vertices can be mapped onto the same vector, but
then the corresponding projector appears in the sum once for each vertex associated
with it.

For the prism graph YN , in general, it holds ϑ(YN ) ≤ 2ϑ(CN ) = 2N cos( π
N )

1+cos( π
N )

since

a graph consisting in two copies of CN , let us denote it as G, can be obtained from
YN by removing the edges connecting vertices of the outer cycle with those of the
inner cycle.

Consider an OR for CN , say v0, . . . , vN−1, which gives the maximum value for
the norm of the corresponding sum of projectors, i.e. ϑ(CN ). Clearly, the 2N vectors
vi , v

′
i , with v′

i = vi , for i = 0, . . . , N −1, form a OR for G, giving ϑ(G) = 2ϑ(CN ).
To show that ϑ(YN ) = ϑ(G) = 2ϑ(CN ), it is sufficient to notice that the above
vectors are also an OR for YN . Such an OR is obtained by associating vi with the i th
vertex of the outer cycle and the vector v′

i+1 with the i th vertex of the inner cycle.
This completes the discussion for the case of odd N .

For even N , the proof can be obtained simply by noting that such inequalities
are closely related to the Braunstein-Caves inequalities [43], whose Tsirelson bound
was found in [20]. The following quantum state and observables saturates the bound
for general sequential measurements given in Eq. (4.13) |ψ〉 = (0, 1/

√
2,−1/

√
2, 0)

and A j = Ã j ⊗1 for even j and A j = 1⊗ Ã j for odd j , where Ã j = cos( jπ/N )σx +
sin( jπ/N )σz and σx ,σz are Pauli matrices.

4.6 Discussion

In this chapter, we presented a general method to compute tight bounds for quantum
correlations in the sequential measurement scenario.

For interpreting our results, let us note that our scenario is more general than the
scenarios considered byLeggett andGarg andKochen and Specker. Leggett andGarg
consider measurements of the same observable on a system subjected to the time evo-
lution �(t) = U (t)�(0)U †(t),withU (t) = e−i Ht for someHamiltonian H , which is
mapped onto the observables in the Heisenberg picture. In our case, the observables
can be connected via unitaries. In fact, since the bound is independent of the dimen-
sion, one can always extend the Hilbert space and the corresponding observables, but
without increasing the rank of the density matrix, such that all observables have the
same eigenvalues with the same degeneracy. However, such unitaries, in general, do
not correspond to a time evolution of the form U (t) = e−i Ht for some self-adjoint
operator H , i.e., they do not form a strongly-continuous one-parameter group [44].
Compared with the Kochen-Specker scenario, our approach is more general since
it does not assume that the measurements in a sequence are commuting. Neverthe-
less, if one wishes to connect existing noncontextuality inequalities to information
processing tasks, it is important to know the maximal quantum values (also if the
observables do not commute), in order to characterize the largest quantum advantage
possible.
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Furthermore, we emphasize that in our derivation it was assumed that the mea-
surements are described by projective measurements and this condition is indeed
important. In fact, this sheds light on the role of projective measurements: One can
easily construct classical devices with a memory, which give for sequential mea-
surements as in Eq. (4.2) the algebraic maximum S5 = 5. These classical devices
must also have a quantum mechanical description. Our results show, however, that
in this quantum mechanical description a more general dynamical evolution than the
Lüders rule is required. From this perspective, our results prove that the memory that
can be encrypted in quantum systems by projective measurements is bounded.

Our results lead to the question of why quantum mechanics does not allow us to
reach the algebraic maximum of temporal correlations, as long as projective mea-
surements are considered.

In the next chapter, we consider a more general measurement scheme that still
involves projective measurements but a state-update rule more general than Lüders
rule and closer to vonNeumann’s original proposal [18]. Itwill be shown that the alge-
braicmaximumcan actually be reached, but only in the limit of a infinite-dimensional
system.

We believe that proper generalizations of information-theoretic concepts such
as communication complexity [6], information causality [7], the E-principe [4], or
Local Orthogonality [5] might play a role here, but we leave this question for further
research. A first step in explaining quantum mechanics from information theoreti-
cal principles lies in the precise characterization of all possible temporal quantum
correlations, and our work presents an operational solution to this problem.
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Chapter 5
Dimension Witnesses

The recent progress in the experimental control andmanipulation of physical systems
at the quantum level opens new possibilities (e.g., quantum communication, com-
putation, and simulation), but, at the same time, demands the development of novel
theoretical tools of analysis. There are already tools which allow us to recognize
quantum entanglement and certify the usefulness of quantum states for quantum
information processing tasks [1, 2]. However, on a more fundamental level, there
are still several problems which have to be addressed. For example, how can one
efficiently test whether measurements actually access all the desired energy levels
of an ion? How to certify that the different paths of photons in an interferometer
can be used to simulate a given multi-dimensional quantum system? Similar ques-
tions arise in the analysis of experiments with orbital angular momentum, where
high-dimensional entanglement can be produced [3, 4], or in experiments with elec-
tron spins at nitrogen-vacancy centers in diamond, where the quantumness of the
measurements should be certified [5].

The challenge is to provide lower bounds on the dimension of a quantum system
only from the statistics of measurements performed on it. More precisely, one cer-
tifies lower bounds on the dimension of the underlying Hilbert space, where the
measurement operators act on. Such bounds can be viewed as lower bounds on
the complexity and the number of levels accessed by the measurement devices: If the
measurement operators act non-trivially only on a small subspace, then all measure-
ments results can bemodeled by using a low-dimensional quantum system only. Note
that this is not directly related to the rank of a density matrix. In fact, a pure quantum
state acting on a one-dimensional subspace only can still give rise to measurement
results, which can only be explained assuming a higher-dimensional Hilbert space.

The problem of estimating the Hilbert space dimension has been considered in
different scenarios, and slightly different notions of dimension were involved. Brun-
ner and coworkers introduced the concept of quantum “dimension witnesses” by
providing lower bounds on the dimension of composite systems from the violation
of Bell inequalities [6, 7]. The nonlocal properties of the correlations produced are
clearly the resource used for this task. As a consequence, even if the experimenter is
able to access and manipulate many levels of her systems locally, but she is not able
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74 5 Dimension Witnesses

to entangle those levels, the above test fails to certify such a dimension. Such a task
can therefore be interpreted as a test of the type of entanglement and correlations
produced, namely, how many levels or degrees of freedom the experimenter is able
to entangle.

In a complementary scenario, several different states of a single particle are pre-
pared and different measurements are carried out [8–10]. This approach has also
recently been implemented using photons [11, 12]. In this situation, the dimension
of the system can be interpreted as the dimension of the set of states the experimenter
is able to prepare.

As a third possibility, also the continuous time evolution can be used to bound the
dimension of a quantum system [13]. In this case, the relevant notion of dimension
is that of the set of states generated by the dynamical evolution of the system.

In this chapter we focus on sequential measurements on a single system, a type of
measurements used in tests of quantum versus classical theories, e.g., contextuality
and Leggett-Garg inequalities, and we show how they can be used to provide lower
bounds on the dimension of quantum systems. We recall that quantum contextuality
is a genuine quantum effect leading to theKochen-Specker theorem,which states that
quantum mechanics is in contradiction to non-contextual hidden variable (NCHV)
models [14–18]. In fact, already in the first formulation of the theorem the dimension
plays a central role [17].

In Sect. 5.1, we derive bounds for the several important noncontextuality inequal-
ities for different dimensions and scenarios. More precisely, we analyze the KCBS
inequality both for the case of compatible and incompatible measurements, in Sects.
5.1.1 and 5.1.2. In Sects. 5.1.3 and 5.1.4, we apply the same analysis to the Peres-
Mermin inequality. Finally, we discuss the case of imperfect measurements and
interpret some experimental data from a contextuality experiment in our framework,
in Sects. 5.1.5 and 5.1.6. The possibility of an application of the same analysis to
different noncontextuality inequalities is then discussed in Sect. 5.1.7.

The experimental violation of these bounds automatically provides a lower bound
on the dimensionof the system, showing that noncontextuality inequalities can indeed
be used as dimension witnesses. Remarkably, contextuality can be used as a resource
for bounding the dimension of quantum systems in a state-independent way.

In the second part of the chapter, namely, Sect. 5.2, we focus on a single inequality,
the original Leggett-Garg inequality, but with a more general measurement scheme.
Different bounds can be derived, which depend on the dimension of the underlying
quantum system. Analogously to the previous case, the experimental violation of
such bounds in sequential measurement scenario provides a lower bound on the
dimension of the system.

This illustrates clearly the difference with the existing schemes: Dimension wit-
nesses derived according to Refs. [9, 10] certify the minimum classical or quantum
dimension spanned by a set of preparations. They distinguish between classical and
quantum dimension d, but, in general, not between quantum dimension d and classi-
cal dimension d +1. They require at least d +1 preparations to certify a dimension d.
On the other side, dimension witnesses based on Bell’s theorem or contextuality cer-
tify the minimum quantum dimension accessed by the measurement devices acting
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on a system prepared in the a single state. Contrary to the Bell scenario [6, 7], in
our approach the initial state and its nonlocal properties play no role and the result
of our test can directly be interpreted as the minimal number of levels accessed and
manipulated by the measurement apparatus.

Technical details are presented separately in Sect. 5.3, the uninterested reader can
skip this part. The results of this chapter have been published in Refs. [19, 20].

5.1 Noncontextuality and Dimension Witnesses

In this section, we shall discuss the application of noncontextuality inequalities as
dimension witnesses. We shall analyze the usual scenario for contextuality tests, and
a more general scenario involving imperfect measurements.

5.1.1 The KCBS Inequality

We first turn to the state-dependent case. The simplest system showing quantum
contextuality is a quantum system of dimension three [17]. The simplest noncon-
textuality inequality in three dimensions is the KCBS inequality [21]. For that, one
considers

〈χKCBS〉 = 〈AB〉 + 〈BC〉 + 〈CD〉 + 〈DE〉 + 〈EA〉, (5.1)

where A, B, C, D, and E are measurements with outcomes −1 and 1, and the mea-
surements in the same mean value 〈· · ·〉 are compatible [22], i.e., are represented
in quantum mechanics by commuting operators. The mean value itself is defined
via a sequential measurement: For determining 〈AB〉, one first measures A and then
B on the same system, multiplies the two results, and finally averages over many
repetitions of the experiment.

The KCBS inequality states that

〈χKCBS〉 NCHV≥ −3, (5.2)

where the notation “
NCHV≥ −3” indicates that−3 is theminimumvalue for anyNCHV

theory. As we have seen, a value of 〈χKCBS〉 = 5 − 4
√
5 ≈ −3.94 can be reached

on a three-dimensional quantum system, if the observables and the initial state are
appropriately chosen. This quantum violation of the NCHV bound does not increase
in higher-dimensional systems [18, 23], and the violation of the KCBS inequality
has been observed in recent experiments with photons [24, 25].
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Given the fact that quantum contextuality requires a three-dimensional Hilbert
space, it is natural to ask whether a violation of Eq. (5.2) implies already that the
system is not two-dimensional. The following observation shows that this is the case:

Observation 1 Consider the KCBS inequality where the measurements act on a
two-dimensional quantum system and are commuting, i.e., [A, B] = [B, C] =
[C, D] = [D, E] = [E, A] = 0. Then, the classical bound holds:

〈χKCBS〉
2D,com.≥ −3. (5.3)

Proof of Observation 1 First, if two observables A and B are compatible, then
|〈A〉 ± 〈AB〉| ≤ 1 ± 〈B〉. This follows from the fact that A and B have common
eigenspaces and the relation holds separately on each eigenspace. Second, in two
dimensions, if [A, B] = 0 = [B, C], then either B = ±1 or [A, C] = 0. The reason
is that, if B is not the identity, then it has two one-dimensional eigenspaces. These
are shared with A and C , so A and C must be simultaneously diagonalizable.

Considering the KCBS operator χKCBS, the claim is trivial if A, . . . , E are all
compatible, because then the relation holds separately on each eigenspace. It is
only possible that not all of them commute if there are two groups in the sequence
{A, B, C, D, E} of operators separated by identity operators. Without loss of gener-
ality, we assume that the groups of commuting operators are {E, A} and {C} so that
B = b1 = ±1 and D = d1 = ±1. This gives

〈χKCBS〉 = b〈A〉 + b〈C〉 + d〈C〉 + d
(〈E〉 + d〈E A〉)

≥ b〈A〉 + b〈C〉 + d〈C〉 − 1 − d〈A〉
= (b − d)〈A〉 + (b + d)〈C〉 − 1 ≥ −3 (5.4)

and proves the claim. In this argumentation, setting observables proportional to the
identity does not change the threshold, but in general it is important to consider this
case, as this often results in higher values. �

It should be added that Observation 1 can also be proved using a different strategy:
Given two observables on a two-dimensional system, one can directly see that if they
commute, then either one of them is proportional to the identity, or their product is
proportional to the identity. In both cases, one has a classical assignment for some
terms in the KCBS inequality and then one can check by exhaustive search that the
classical bound holds. Details are given in Sect. 5.3.1.

Furthermore, Observation 1 can be extended to generalizations of the KCBS
inequality with more than five observables, i.e., the N -cycle scenario [23]: For that,
one considers

〈χN 〉 =
N−1∑

i=1

〈Ai Ai+1〉 + s〈AN A1〉, (5.5)
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where s = +1 if N is odd and s = −1 if N is even. For this expression, the classical
bound for NCHV theories is given by 〈χN 〉 ≥ −(N − 2). In fact, the experiment in
Ref. [24] can also be viewed as measurement of 〈χ6〉.

The discussion of the possible mean values 〈χN 〉 in quantum mechanics differs
for even and odd N . If N is odd, the maximal possible quantum mechanical value is
〈χN 〉 = �N ≡ −[3N cos(π/N ) − N ]/[1 + cos(π/N )] and this value can already
be attained in a three-dimensional system [18, 23]. The proof of Observation 1 can
be generalized in this case, implying that for two-dimensional systems the classical
bound 〈χN 〉 ≥ −(N − 2) holds. So, for odd N , the generalized KCBS inequalities
can be used for testing the quantum dimension.

If N is even, the scenario becomes richer: First, quantum mechanics allows to
obtain values of 〈χN 〉 = �N ≡ −N cos(π/N ), but this time this value requires a
four-dimensional system [23]. For two-dimensional quantum systems, the classical
bound 〈χN 〉 ≥ −(N − 2) holds. For three-dimensional systems, one can show
that if the observables Ai in a joint context are different (Ai 	= ±Ai+1) and not
proportional to the identity, then still the classical bound holds (for details see Sect.
5.3.2).However, if twoobservables are the same, e.g., A1 = −A2, then 〈A1A2〉 = −1
and 〈χN 〉 = −1+〈χN−1〉. In summary, for even N , we have the following hierarchy
of bounds

〈χN 〉 2D,com.≥ −(N − 2)
3D,com.≥ −1 + �N−1

4D,com.≥ �N . (5.6)

Here, the notation
2D,com.≥ etc. means that this bound holds for commuting observ-

ables in two dimensions. All these bounds are sharp. This shows that extended KCBS
inequalities are even more sensitive to the dimension than the original inequality.

5.1.2 The KCBS Inequality with Incompatible Observables

In order to apply Observation 1 the observables must be compatible. Since this
condition is not easy to guarantee in experiments [26], we should ask whether it
is possible to obtain a two-dimensional bound for the KCBS inequality when the
observables are not necessarily compatible. We can state:

Observation 2 If the observables A, . . . , E are dichotomic observables but not nec-
essarily commuting, then, for any two-dimensional quantum system,

〈χKCBS〉 2D≥ −5

4
(1 + √

5) ≈ −4.04. (5.7)

This bound is sharp and can be attained for suitably chosen measurements. A
general proof, i.e., valid for any dimension, of the above bound has been given
in Chap.4. However, since in this case we are dealing only with two-dimensional

http://dx.doi.org/10.1007/978-3-319-24169-2_4
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system, it is interesting to present a simpler proof of this statement that will also give
introduce some of the techniques and ideas that we will use in the rest of the chapter.

The strategy of proving this bound is the following: If the observables are not
proportional to the identity, one can write A = |A+〉〈A+| − |A−〉〈A−| and B =
|B+〉〈B+| − |B−〉〈B−|, and express |A+〉〈A+| and |B+〉〈B+| in terms of their Bloch
vectors |a〉 and |b〉. Then, one finds that

〈AB〉 = 2|〈A+||B+〉|2 − 1 = 〈a||b〉. (5.8)

This property holds for all projective measurements on two-dimensional systems
and is, together with a generalization below (see Eq. (5.15)) a key idea for deriving
dimension witnesses. Note that it implies that the sequential mean value 〈AB〉 is
independent of the initial quantum state and also of the temporal order of the mea-
surements [27]. Equation (5.8) allows us to transform the KCBS inequality into a
geometric inequality for three-dimensional Bloch vectors. Additional details of the
proof are given in Sect. 5.3.3.

Observation 2 shows that the bound for NCHV theories can be violated already
by two-dimensional systems, if the observables are incompatible. This demonstrates
that experiments, which aim at a violation of Eq. (5.2) also have to test the compati-
bility of the measured observables, otherwise the violation can be explained without
contextuality.

It must be added that Observation 2 cannot be used to witness the quantum dimen-
sion, since we showed in the previous chapter that Eq. (5.7) holds for all dimensions.
As we see below, this difficulty can be surmounted by considering NC inequalities
in which quantum mechanics reaches the algebraic maximum.

5.1.3 The Peres-Mermin Inequality

In order to derive the state-independent quantumdimensionwitnesses, let us consider
the sequential mean value [28],

〈χPM〉 =〈ABC〉 + 〈bca〉 + 〈γαβ〉 + 〈Aαa〉 + 〈bBβ〉
− 〈γcC〉, (5.9)

where the measurements in each of the six sequences are compatible. Then, for
NCHV theories the bound

〈χPM〉 NCHV≤ 4 (5.10)

holds. In a four-dimensional quantum system, however, one can take the following
square of observables, known as the Peres-Mermin square [29, 30]
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A = σz ⊗ 1, B = 1 ⊗ σz, C = σz ⊗ σz,

a = 1 ⊗ σx , b = σx ⊗ 1, c = σx ⊗ σx ,

α = σz ⊗ σx , β = σx ⊗ σz, γ = σy ⊗ σy .

(5.11)

These observables lead for any quantum state to a value of 〈χPM〉 = 6, demon-
strating state-independent contextuality. The quantum violation has been observed in
several recent experiments [31–33]. Note that the sequences in Eq. (5.9) are defined
such that each observable occurs either always in the first or always in the second
or always in the third place of a measurement a sequence. This difference to the
standard version does not matter at this point (since the observables in any row or
column commute), but it will become important below.

The PM inequality is of special interest for our program since it is violated up to
the algebraic maximum with four-dimensional quantum systems and the violation
is state-independent. Therefore, this inequality is a good candidate for dimension
witnesses without assumptions on the measurements. First, we can state:

Observation 3 If the measurements in the PM inequality are dichotomic observ-
ables on a two-dimensional quantum system and if the measurements in each mean
value are commuting, then one cannot violate the classical bound,

〈χPM〉 2D, com.≤ 4. (5.12)

If one considers the same situation on a three-dimensional system, then the vio-
lation is bounded by

〈χPM〉 3D, com.≤ 4(
√
5 − 1) ≈ 4.94. (5.13)

These bounds are sharp.
The idea for proving this statement is the following: If one considers the three

commuting observables in each mean value and assumes that they act on a three-
dimensional system, then three cases are possible: (a) one of the three observables is
proportional to the identity, or (b) the product of two observables is proportional to
the identity, or (c) the product of all three observables is proportional to the identity.
One can directly show that if case (c) occurs in some mean value, then the classical
bound 〈χPM〉 ≤ 4 holds. For the cases (a) and (b), one can simplify the inequality
and finds that it always reduces to a KCBS-type inequality, for which we discussed
already the maximal quantum values in different dimensions (see Eq.5.6). Details
are given in Sect. 5.3.3.

5.1.4 The PM Inequality with Incompatible Observables

Let us now discuss the PM inequality, where the observables are not necessarily
compatible. Our results allow us to obtain directly a bound:
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Observation 4 Consider the PM operator in Eq. (5.9), where the measurements are
not necessarily commuting projective measurements on a two-dimensional system.
Then we have

〈χPM〉 2D≤ 3
√
3 ≈ 5.20. (5.14)

Proof One can directly calculate as in the proof of Observation 2 that for sequences
of three measurements on a two-dimensional system

〈ABC〉 = 〈A〉〈BC〉 (5.15)

holds. Here, 〈A〉 = tr(�A) is the usual expectation value, and 〈BC〉 is the state-
independent sequential expectation value given in Eq. (5.8). With this, we can write:

〈χPM〉 =〈A〉(〈BC〉 + 〈αa〉) + 〈b〉(〈ca〉 + 〈Bβ〉)
+ 〈γ〉(〈αβ〉 − 〈cC〉). (5.16)

Clearly, this is maximal for some combination of 〈A〉 = ±1, 〈b〉 = ±1, and
〈γ〉 = ±1. But for any of these choices, we arrive at an inequality that is discussed in
Proposition 5 in Sect. 5.3.3. Note that due to Eq. (5.15) the order of themeasurements
matters in the definition of 〈χPM〉 in Eq. (5.9). This motivates our choice; in fact, for
some other orders (e.g., 〈χ̃PM〉 = 〈ABC〉+〈bca〉+〈βγα〉+〈Aαa〉+〈βbB〉−〈γcC〉)
Eq. (5.14) does not hold, and one can reach 〈χ̃PM〉 = 1 +

√
9 + 6

√
3 ≈ 5.404. �

The question arises whether a high violation of the PM inequality also implies
that the systemcannot be three-dimensional andwhether a similar bound asEq. (5.14)
can be derived. While the computation of a bound is not straightforward, a simple
argument shows already that measurements on a three-dimensional systems cannot
reach the algebraic maximum 〈χPM〉 = 6 for any quantum state: Reaching the
algebraic maximum implies that 〈ABC〉 = 1. This implies that the value of C is
predetermined by the values of A and B and the value A of determines the product
BC . As this holds for any quantum state, it directly follows that A, B, C (and all the
other observables in the PM square) are diagonal in the same basis and commute, so
the bound in Observation 3 holds. From continuity arguments it follows that there
must be a finite gap between the maximal value of 〈χPM〉 in three dimensions and
the algebraic maximum.

5.1.5 Imperfect Measurements

In actual experimental implementations the measurements may not be perfectly pro-
jective. It is therefore important to discuss the robustness of our method against
imperfections.

Notice that, since we are considering sequential measurements, another possibil-
ity for maximal violation of the above inequalities is the use of a classical device
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with memory, able to keep track of the measurement performed and adjust the out-
comes of the subsequent measurements accordingly in order to obtain perfect cor-
relations or anti-correlations. However, as proved in Ref. [27] and also discussed in
Ref. [34], such a classical device cannot be simulated in quantummechanics via pro-
jective measurements, more general positive operator valued measures (POVMs) are
necessary.

We therefore limit our analysis to some physically motivated noise models. A
noisy projective measurement A may be modelled by a POVM with two effects of
the type E+ = (1 − p)1/2 + p|A+〉〈A+| and E− = (1 − p)1/2 + p|A−〉〈A−|.
Then, the probabilities of the POVMcan be interpreted as coming from the following
procedure: With a probability of p one performs the projective measurement and
with a probability of (1 − p) one assigns a random outcome. For this measurement
model, one can show that Observation 4 is still valid. Details and a more general
POVM are discussed in Sect. 5.3.5. We add that the proof strongly depends on the
chosen measurement order in 〈χPM〉 and that in any case assumptions about the
measurement are made, so the dimension witnesses are not completely independent
of the measurement device.

The above discussion shows that it is extremely important to test the extent to
which the measurements are projective and whether they are compatible. This can
be achieved by performing additional tests. For instance, one canmeasure observable
A several times in a sequence 〈AAA〉 to test whether the measurement is indeed pro-
jective. In addition, one may measure the sequence 〈ABA〉 and compare the results of
the two measurements of A, to test whether A and B are compatible. For noncontex-
tuality inequalities it is known how this information can be used to derive correction
terms for the thresholds [26], and similar methods can also be applied here.

5.1.6 Experimental Results

To stress the experimental relevance of our findings, let us discuss a recent ion-
trap experiment [31]. There, the PM inequality has been measured with the aim to
demonstrate state-independent contextuality. For our purpose, it is important that
in this experiment also all permutations of the terms in the PM inequality have
been measured. This allows also to evaluate our 〈χPM〉 with the order given in
Eq. (5.9). Experimentally, a value 〈χPM〉 = 5.36 ± 0.05 has been found. In view of
Observation 3, this shows that the data cannot be explained by commuting projective
measurements on a three-dimensional system. Furthermore, Observation 4 and the
discussion above prove that, even if the measurements are noisy and noncommuting,
the data cannot come from a two-dimensional quantum system.
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5.1.7 Generalizations

Generalizations of our results to other inequalities are straightforward: Consider a
general noncontextuality inequality invoking measurement sequences of length two
and three. For estimating the maximal value for two-dimensional systems (as in
Observations 2 and 4) one transforms all sequential measurements via Eqs. (5.8)
and (5.15) into expressions with three-dimensional Bloch-vectors, which can be
estimated. Also noise robustness for the discussed noise model can be proven, as
this follows also from the properties of the Bloch vectors (cf. Proposition 10 in the
Sect. 5.3.5). In addition, if a statement as in Observation 3 is desired, one can use
the same ideas as the ones presented here, since they rely on general properties
of commuting observables in three-dimensional space. Consequently, our methods
allow to transformmost of the known state-independentNC inequalities (for instance,
the ones presented in Refs. [28, 35–37]) into witnesses for the quantum dimension.

5.2 Sequential Measurements and Leggett-Garg Inequality

In this section, by considering a broader class of projective measurements than hith-
erto considered, we show that the maximum quantum violation of the Leggett-Garg
inequality can exceed the usual bound of 3/2. More precisely, we shall show that
such a bound strongly depends on the number of levels N that can be accessed by
the measurement apparatus via projective measurements. We provide exact bounds
for small N that exceed the known bound for the Leggett-Garg inequality, and we
show that in the limit N → ∞ the Leggett-Garg inequality can be violated up to its
algebraic maximum.

We discuss the application of the Leggett-Garg inequality as dimension witness
as well as the implication of our results for the tests of macrorealist versus quantum
theory.

Let us now be more concrete and recall the simplest Leggett-Garg inequality
which, for dichotomic observable Q = ±1, reads

K3 ≡ C21 + C32 − C31 ≤ 1, (5.17)

whereCβα = 〈Q(tβ)Q(tα)〉 is the correlation function of variable Q at the two times
tβ ≥ tα. For a two-level system, the maximum quantum value of K3 is Kmax

3 = 3
2

[38], whichwe shall refer to as the Lüders bound, KLüders
3 = 3

2 , for reasons to become
clear shortly. As we showed in the previous chapter, for measurements given by just
two projectors, �+ and �−, onto eigenspaces associated with results Q = +1 and
Q = −1, themaximum quantum value of K3 is the same as for the qubit, irrespective
of system size [34]. This has been reflected in several studies: The experiment of
[39] on a three-level system obtained a maximum value less than 3

2 ; on the theory
side, multi-level quantum systems such as a large spin [40], optoelectromechanical
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systems [41] and photosynthetic complexes [42] have also been observed to obey
K3 ≤ KLüders

3 . From this, one might conclude that nothing new is to be gained
from considering higher dimensional systems. Were this the case, the bound for the
qubit would apply in all generality and KLüders

3 could be identified with the relevant
temporal Tsirelson bound. However, as we will show, with a more general projective
measurement scheme, violations of (5.17) for multi-level systems can exceed the
qubit value.

Other than in an invasive scenario (where the algebraic maximum is trivially
achieved, e.g., a classical device with memory or its quantum realization via POVMs
[27]), the only hint that a violation of (5.17) greater than KLüders

3 is possible has
come in the recent work by Dakić et al. [43]. There, however, the excess violation
was claimed to stem fromcorrelations beyond quantum theory. In contrast, our excess
violations are found within the standard framework of quantum theory and projec-
tive measurements. This we achieve by considering measurements on an N -level
system that can project the state in one of M different subspaces, 2 ≤ M ≤ N , with
outcomes that are nevertheless associated with either Q = +1 or Q = −1. From
a macroscopic-realist point-of-view, this leaves (5.17) unchanged. From a quan-
tum perspective, however, the choice of M determines the state-update rule under
projective measurement: For M = 2 the projection is onto one of two subspaces,
corresponding to Lüders rule for dichotomic measurements [44]; whereas M = N is
the case of a complete degeneracy-breaking measurement, as initially proposed by
vonNeumann [45] (see also Ref. [46] for a discussion). These additional possibilities
for state reduction are ultimately responsible for the increased violations.

In the present section, we use the example of a large spin precessing in a magnetic
field to demonstrate that violations K3 > 3

2 are possible and that the algebraic bound
K3 = 3 can be reached. We then discuss the exact upper bounds for small M ≤ 5,
and how they may be obtained with few-dimensional systems with N ≤ 9.

Our results emphasize even more the value of sequential measurement scheme
as dimension witnesses. Similarly to noncontextuality inequalities, also the Leggett-
Garg inequality, combined with such a more general class of projective measure-
ments, provides lower bounds on the dimension of quantum systems.

In addition, our results reveal a stark contrast between spatial and temporal cor-
relations. In fact, we discuss how a similar modification to the spatial Bell sce-
nario does not lead to an increase in the Tsirelson bound for the corresponding Bell
inequality [47].

On the basis of the discussion of the previous chapter, and given the formal
symmetry between Bell and Leggett-Garg inequalities [48, 49] and the general trend
towards unification between temporal and spatial correlations [50–53], one would
expect that the Tsirelson bound for the Leggett-Garg inequality holds analogously
to the spatial case. Surprisingly, we prove that this is not the case.

Moreover, we discuss how our results can be used in the discrimination of Lüders
and von Neumann state-update rules [54], i.e., which one, if any, correctly represents
the measurement scenario.
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5.2.1 The Measurement Scheme

We consider measurements of a property Q, which can take values ±1, on a
N -level quantum system, with each level associated with a definite value of Q.
From a macrorealist point-of-view, the fact that different levels are associated with
the same value of Q is irrelevant: Theymay be considered asmicroscopically distinct
states that have the same macroscopic property Q. Macrorealism and non-invasive
measurability imply that at each instant of time, the system has a definite value of
Q, which is independent of measurements previously performed on the system and,
therefore, that the bound for Eq. (5.17) in macrorealist theories remains the same.

Fromaquantummechanical perspective, the fact that the systemhasmore than two
levels, allows for many possible state-update rules. According to Lüders’ rule [44],
the state is updated as ρ → �±ρ�±, up to normalization, depending on the outcome
of the measurement. On the opposite side, von Neumann’s original proposal [45] is a
state-update ρ → ∑

k �
(k)
± ρ�

(k)
± , where �

(k)
± are one-dimensional projectors. Both

state-update rules are plausible, and the choice of the correct one depends on the
particulars of the interaction between the system and the measurement apparatus
(see Ref. [46] for a discussion).

More generally, we consider all possible intermediate cases, namely, state-update
rules given by M different projectors, with 2 ≤ M ≤ N , associated with either +1
or −1 outcome. The correlation functions are therefore given by

Cβα =
∑

l,m

qlqm tr(�mUβα�lUα0ρ0U †
α0�lU

†
βα), (5.18)

where ql represent the outcome ±1 associated with �l , ρ0 is the initial state of the
system and Uβα = U (tβ − tα) = e−i H(tβ−tα) is the unitary time-evolution operator
for some Hamiltonian H .

5.2.2 A Simple Example

Consider a quantum-mechanical spin of length j in a magnetic field oriented in the
x-direction. We write its Hamiltonian (� = 1) as

H = �Jx , (5.19)

with� the level spacing and Jx the x-component of the angular momentum operator.
Let us choose to measure the spin in the z direction such that the measurement
projectors are �

j
m = |m; j〉〈m; j |m; j with |m; j〉 eigenstates of the Jz operator. In

this example, we only consider the von Neumann limit, M = N = 2 j + 1, and
choose the measurement values to be q j

m = 1− 2δm,− j , such that the lowest energy
state is associated with the value −1, and the rest with +1.
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Calculating the correlation functions Cβα for this setup, several differences with
the qubit case are immediately apparent. Most importantly, the correlation functions
here depend on both times, not just their difference. As corollary, the correlation
functions depend on the initial state. A further difference is that, for the projectively-
measured correlation functions discussed here, the order of themeasurements tβ > tα
is important. This is not the case for M = 2, where we have seen that, for arbitrary N ,
the projectively-measured correlation functions are equal to the expectation value of
the symmetrised product 1

2

{
Q j , Qi

} = 1
2 (Q j Qi + Qi Q j ), where the operators Q

have spectral decomposition Q = �+ −�−, with�± the projectors associated with
the eigenvalues ±1.

We initialise the system so that at time t = 0 it is in state |ψ(t = 0)〉 = |− j;− j〉
and set the measurement times as �t1 = π, t2 − t1 = t3 − t2 = τ . For N = 2 we
obtain the familiar qubit result. For N = 3, the LGI parameter reads:

K3 = 1

16
+ 2 cos (�τ ) − 5

4
cos (2�τ ) + 3

16
cos (4�τ ) , (5.20)

which exhibits the key property in which we are interested—as Fig. 5.1 shows, this
quantity shows amaximumof Kmax

3 = 1.7565, clearly in excess of the Lüders bound.
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Fig. 5.1 The Leggett-Garg quantity K3 for a spin of length j = (N − 1)/2 precessing in magnetic
fieldwithmeasurement times�t1 = π, t2−t1 = t3−t2 = τ . Themeasurement ismadewith M = N
projectors (von Neumann scheme) in the the z-direction. Inset K3 as a function of measurement
time τ for various values of N . For N = 2, the maximum is familiar qubit or Lüders bound
Kmax
3 = 3

2 (solid line). For N = 3, however, the maximum value is 1.7565, and this increases
with increasing N . Main panel The black circles show the maximum value Kmax

3 as a function of
system size N = 2 j + 1 for the spin precession model with measurement times as above. The blue
diamonds show the value of K3 with τ fixed �τ = π/2 and the solid line shows the asymptotic
behaviour Kmax

3 ∼ 3 − √
2/π j . In the limit N → ∞, Kmax

3 tends to the algebraic bound of 3
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5.2.3 Asymptotic Limit

Figure5.1 further shows that the maximum value of K3 for this model increases as
a function of system size, N . In the limit N → ∞, the maximum possible violation
is Kmax

3 = 3, as we now show. With measurement times �τ = 1
2π, the correlation

functions read (see Sect. 5.3.6 for details)

C31 = −1; C21 = 1 − 21−2 j ;
C32 = 1 − 2

1

22 j
+ 4

1

24 j
− 2

(4 j)!
42 j [(2 j)!]2 . (5.21)

The corresponding value of K3 as a function of N is shown in Fig. 5.1. For finite N ,
this choice of measurement time does not give themaximum violation. However, this
result serves to bound Kmax

3 from below and, for large j , the asymptotic behaviour is

K3 → 3 −
√

2

π j
. (5.22)

Thus, at least in the limit that the dimension of the system becomes infinite, the
K3 LGI can be violated by quantummechanics all the way up to the algebraic bound.

5.2.4 Maximum Violations

While the precessing spin model reveals violations greater than the qubit case can
occur, the violations for this system are not the maximum possible violations at a
given N and M . Again, this is in contrast with the M = 2 case where the Rabi
oscillation of the qubit provides the maximum violation.

To investigate the truemaximum violations as a function of N and M , we combine
two different methods. The maximum value for a given M can be obtained by means
of the maximization method for temporal correlations presented in the previous
chapter and based on semidefinite programming. This method provides an upper
bound valid for any N , which is attained for any N ≥ Nmin . However, the exact value
for Nmin cannot be extracted from the solution, even though the method provides a
state and a set of observables attaining the maximum quantum value.

We also pursue a complementary approach in which, for explicit values of N
and M , we numerically maximise K3 over time-evolution operators Uβα treated as
general N × N unitary matrices. The results from these calculations are summarized
in Table5.1 and Fig. 5.2. We observe that the M = 3 and M = 4 bounds from
semidefinite programming are saturated at relatively small system sizes, N = 5 and
N = 8 respectively.



5.2 Sequential Measurements and Leggett-Garg Inequality 87

Table 5.1 Themaximum value of the LGI parameter K3 as a function of system size N and number
of projectors M

SDP MAX

M Kmax
3 M N Kmax

3 M N Kmax
3 M N Kmax

3

2 3
2 3 3 2.1547 4 4 2.3693 5 5 2.5166

3 2.211507 3 4 2.1736 4 5 2.3877 5 6 2.5312

4 2.454629 3 5 2.2115 4 6 2.4181 5 7 2.5459

5 2.579333 3 6 2.2115 4 7 2.4315 5 8 2.5506

6 2.656005 3 7 2.2115 4 8 2.4545 5 9 2.5545

The leftmost results are from the semi-definite programming (SDP) approach, whilst the rest are
from direct maximisation (MAX)with fixed N and M . Here the value assignments qm = 1−2δm,− j
were used. In general, the bound changes for different assignments, but except for the case M = 6,
the above choice was found to give the maximum violation
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Fig. 5.2 A plot of the data in Table 5.1. The maximum values for each M (from SDP) are shown
as straight lines

5.2.5 Temporal Versus Spatial Correlations

Leggett-Garg inequalities are often referred to as ‘Bell inequalities in time’; in addi-
tion, it is known the Lüders bound for the n-term generalization, for even n, of the
original Leggett-Garg inequality (5.17) coincides with the Tsirelson bound [34] for
the corresponding Bell inequalities [55, 56], and noncontextuality inequalities [23].
It is therefore a natural question whether the above general measurement scheme
can provide excess quantum violation of Bell inequalities. The answer, however, is
negative as can be easily deduced directly from the Tsirelson’s proof of the quantum
bound [47] or bynoticing that the commutativity of themeasurements, evenwhenper-
formed sequentially as in contextuality tests, makes irrelevant the post-measurement
state and therefore which state-update rule is used.
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5.3 Details of the Calculations

5.3.1 Alternative Proof of Observation 1

For an alternative proof of Observation 1, we need the following Proposition:

Proposition 3 If two dichotomic measurements on a two-dimensional quantum sys-
tem commute [Ai , Ai+1] = 0, then either

(a) one of the observables is proportional to the identity, Ai = ±1 or Ai+1 = ±1
or,

(b) the product of the two observables is proportional to the identity, Ai Ai+1 = ±1.

Proof This fact can easily be checked: The observables Ai and Ai+1 are diagonal in
the same basis and the entries on the diagonal can only be ±1. Then, only the two
cases outlined above are possible. �

Alternative proof of Observation 1.With the help of Proposition 3 one can consider
each term of the KCBS inequality and make there six possible replacements. For
instance, the term 〈AB〉 may be replaced by 〈AB〉 → ±〈B〉 (if one sets A → ±1)
or 〈AB〉 → ±〈A〉 (if one sets B → ±1) or 〈AB〉 → ±1. This results in a finite
set of 65 = 7776 possible replacements. Some of them are contradictory and can be
disregarded, e.g., if one sets B → 1 from the term 〈AB〉 and C → 1 from the term
〈CD〉, then one cannot set 〈BC〉 → −1 anymore. For the remaining replacements,
one can directly check with a computer that the 〈χKCBS〉 reduces to the classical
bound. �

5.3.2 Detailed Discussion of the N-Cycle Inequalities

First, we prove the following statement:

Proposition 4 Consider the generalized KCBS operator

〈χN 〉 =
N−1∑

i=1

〈Ai Ai+1〉 − 〈AN A1〉 (5.23)

for N even, where the Ai are dichotomic observables on a three-dimensional system,
which are not proportional to the identity. Furthermore, the commuting pairs should
not be equal, that is Ai 	= Ai+1. Then, the bound

〈χN 〉 ≥ −(N − 2) (5.24)

holds.
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Proof From the conditions, it follows that the observables have to be of the form Ai =
±(1− 2|ai 〉〈ai |) with 〈ai ||ai+1〉 = 0. This implies that the sequential measurements
can be rephrased via Ai Ai+1 = ±(1−2|ai 〉〈ai |−2|ai+1〉〈ai+1|). Let us first assume
that the signs in front of the Ai are alternating, that is, Ai = +(1 − 2|ai 〉〈ai |) for
odd i and Ai = −(1 − 2|ai 〉〈ai |) for even i . Then, a direct calculation leads to

〈χN 〉 = −(N − 2) + 4〈
N−1∑

k=2

|ak〉〈ak |〉. (5.25)

From this, 〈χN 〉 ≥ −(N − 2) follows, since the operator in the sum is positive
semidefinite.

A general distribution of signs for the Ai results in a certain distribution of signs
for the Ai Ai+1. If I denotes the set of index pairs (k, k + 1), where Ak Ak+1 =
+(1−2|ak〉〈ak |−2|ak+1〉〈ak+1|), then I has always an odd number of elements. We
can then write:

〈χN 〉 = −(N − 2) + 2(|I | − 1) + 4〈
N∑

k=1

αk |ak〉〈ak |〉 (5.26)

where αk = 1 if both (k, k + 1) /∈ I and (k − 1, k) /∈ I , αk = 0 if either (k, k + 1) ∈
I, (k −1, k) /∈ I or (k, k +1) /∈ I, (k −1, k) ∈ I , and αk = −1 if both (k, k +1) ∈ I
and (k − 1, k) ∈ I .

It remains to show that the last two terms are non-negative. Themain idea to prove
this is to use the fact that an operator like X = 1− |ai 〉〈ai | − |ai+1〉〈ai+1| is positive
semidefinite, since |ai 〉 and |ai+1〉 are orthogonal.

More explicitly, let us first consider the case where the index pairs in I are con-
nected and distinguish different cases for the number of elements in I . If |I | = 1,
there are no k with αk = −1, so 2(|I | − 1) + 4〈∑N

k=1 αk |ak〉〈ak |〉 ≥ 0. If |I | = 2,
then I = {(i − 1, i), (i, i + 1)} and there is a single αi = −1. In this case, one
has 2|I | + 4〈∑N

k=1 αk |ak〉〈ak |〉 ≥ 0. This is not yet the desired bound, but it will be
useful later.

If |I | = 3, then I = {(i − 1, i), (i, i + 1), (i + 1, i + 2)} and we have
αi = αi+1 = −1. But now, the fact that X = 1−|ai 〉〈ai |− |ai+1〉〈ai+1| ≥ 0 directly
implies that 2(|I |−1)+4〈∑N

k=1 αk |ak〉〈ak |〉 ≥ 0. If |I | = 4 there are threeαk = −1
and we can use X ≥ 0 two times, showing that again 2|I |+4〈∑N

k=1 αk |ak〉〈ak |〉 ≥ 0.
All this can be iterated, resulting in two different bounds, for |I | odd and |I | even.

To complete the proof, we have to consider a general I which does not necessarily
form a single block. One can then consider the different blocks and, since |I | is odd,
at least one of the blocks contains an odd number of index pairs. Then, summing up
the bound for the single blocks leads to 2(|I | − 1) + 4〈∑N

k=1 αk |ak〉〈ak |〉 ≥ 0. �
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Finally, in order to justify Eq. (5.6) for the three-dimensional case, we have to
discuss what happens if one of the observables is proportional to the identity. How-
ever, then the mean value 〈χN 〉 reduces to inequalities which will be discussed later
(see Proposition 7 in Sect. 5.3.4).

5.3.3 Detailed proof of Observation 2

For computing theminimal value in two-dimensional systems, we need the following
proposition. Note that the resulting value has been reported before [57], so the main
task is to prove rigorously that this is indeed optimal.

Proposition 5 Let |ai 〉 ∈ R
3 be normalized real three-dimensional vectors and

define

χN =
N∑

i=1

〈ai ||ai+1〉 for N odd, (5.27a)

χN = −〈a1||a2〉 +
N∑

i=2

〈ai ||ai+1〉 for N even. (5.27b)

Then we have

χN ≥ −N cos(
π

N
). (5.28)

Proof We write |ai 〉 = {cos(αi ), sin(αi ) cos(βi ), sin(αi ) sin(βi )} and then we have

χN =
N∑

i=1

[±]
[
cos(αi ) cos(αi+1)

+ cos(βi − βi+1) sin(αi ) sin(αi+1)
]
, (5.29)

where the symbol [±] denotes the possibly changing sign of the term with i = 1.
Let us first explain why the minimum of this expression can be obtained by setting
all the βi = 0. Without losing generality, we can assume that |a1〉 points in the
x-direction, i.e., α1 = 0 and sin(α1) = 0. Then, only N − 2 terms of the type
sin(αi ) sin(αi+1) remain and all of them have a positive prefactor. For given values
of βi we can choose the signs of α2, . . . ,αN−1 such that all these terms are negative,
while the other parts of the expression are not affected by this. Then, it is clearly
optimal to choose β2 = β3 = . . . = βN = 0. This means that all the vectors lie in
the x-y-plane.
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Having set all βi = 0, the expression is simplified to χN = ∑N
i=1[±] cos(αi −

αi+1).We use the notation δi = αi −αi+1 and minimize
∑N

i=1[±] cos(δi ) under the
constraint

∑N
i=1 δi = 0. Using Lagrange multipliers, it follows that [±] sin(δi ) = λ

for all i .
If N is odd, this means that we can express any δi as δi = π/2 ± ϑ + 2πki with

ϑ ≥ 0. From cos(π/2 + ϑ + 2πki ) = − cos(π/2 − ϑ + 2πki ), it follows that the
sign in front of the ϑ should be identical for all δi , otherwise, the expression is not
minimized. Let us first consider the case that all signs a positive. From the condition∑N

i=1 δi = 0, it follows that N (π/2) + Nϑ + 2πK = 0, with K = ∑N
i=1 ki . Since

we wish to minimize χN , the angles δi should be as close as possible to π, which
means that |ϑ − π/2| should be minimal. This leads to the result that one has to
choose K = −(N ±1)/2. Computing the corresponding ϑ leads to ϑ = π/2±π/N ,
which results in Eq. (5.28). If the signs in front of all ϑ are negative, one can make
a similar argument, but this time has to minimize |δi + π| or |ϑ − 3π/2|. This leads
to the same solutions.

If N is even, one has for i = 2, . . . , N again δi = π/2 ± ϑ + 2πki and the first
δ1 can be written as δ1 = −π/2± ϑ + 2πk1. One can directly see that if the signs in
front of ϑ is positive (negative) for all i = 2, . . . , N it has to be positive (negative)
also for i = 1. A direct calculation as before leads to ϑ = π/2± π/N and, again, to
the same bound of Eq. (5.28). �

Proof of Observation 2. Let us first assume that none of the observables is pro-
portional to the identity, and consider a single sequential measurement 〈AB〉 of two
dichotomic noncommuting observables A = |A+〉〈A+| − |A−〉〈A−| = P A+ − P A−
and B = |B+〉〈B+| − |B−〉〈B−| = P B+ − P B− . We can also express |A+〉〈A+| and
|B+〉〈B+| in terms of their Bloch vectors |a〉 and |b〉. Then, we have that

〈AB〉 = 2|〈A+|B+〉|2 − 1 = 〈a|b〉. (5.30)

Note that this means that the mean value 〈AB〉 is independent of the initial
quantum state. To see this relation, we write 〈AB〉 = tr(P B+ P A+ �P A+ P B+ ) −
tr(P B− P A+ �P A+ P B− ) − tr(P B+ P A− �P A− P B+ ) + tr(P B− P A− �P A− P B− ). Using the fact that
in a two-dimensional system |〈A+|B+〉|2 = |〈A−|B−〉|2 and |〈A−|B+〉|2 =
|〈A+|B−〉|2 holds, and tr(�) = 1, this can directly be simplified to the above expres-
sion. Using the above expression, we can write 〈χKCBS〉 = ∑5

i=1〈ai |ai+1〉. Then,
Proposition 5 proves the desired bound.

It remains to discuss the casewhere one ormore observables in theKCBS inequal-
ity are proportional to the identity. Let us first assume that only one observable, say
A1 is proportional to the identity. Then, if the Bloch vector of � is denoted by |r〉 a
direct calculation shows that the KCBS operator reads

〈χKCBS〉 = 〈r|a2〉 +
4∑

i=2

〈ai |ai+1〉 + 〈a5|r〉, (5.31)
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and Proposition 5 proves again the claim. If two observables Ai and A j are propor-
tional to the identity, the same rewriting can be applied, if Ai and A j do not occur
jointly in one correlation term. This is the case if j 	= i ± 1. In the other case (say,
A1 = 1 and A2 = −1), one has 〈A1A2〉 = −1 and can rewrite

〈χKCBS〉 = −1 − 〈r|a2〉 +
4∑

i=3

〈ai |ai+1〉 + 〈a4|r〉, (5.32)

and Proposition 5 implies that 〈χKCBS〉 ≥ −4 cos(π/4) − 1 = −2
√
2 − 1 >

−5 cos(π/5) = −5(1+√
5)/4. If more than two observables are proportional to the

identity, the bound can be proven similarly. �

5.3.4 Proof of Observation 3

We need a whole sequence of Propositions:

Proposition 6 If one has three dichotomic measurements Ai , i = 1, 2, 3 on a three-
dimensional quantum system which commute pairwise [Ai , A j ] = 0, then either

(a) one of the observables is proportional to the identity, Ai = ±1 for some i or,
(b) the product of two observables of the three observables is proportional to the

identity, Ai A j = ±1 for some pair i, j or,
(c) The product of all three observables is proportional to the identity, A1A1A3 =

±1.

Note that these cases are not exclusive and that for a triple of observables several
of these cases may apply at the same time.

Proof This can be proven in the same way as Proposition 3, since all Ai are diagonal
in the same basis. �

Proposition 7 For sequences of dichotomic measurements the following inequalities
hold:

ηN ≡ 〈A1〉 +
N−1∑

i=1

〈Ai Ai+1〉 − 〈AN 〉 ≤ N − 1. (5.33)

Here, it is always assumed that two observables which occur in the same sequence
commute. Moreover, if we define

ζN ≡
N∑

i=1

〈Ai Ai+1〉 − 〈AN A1〉, (5.34)
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then we have
ζN ≤ N − 2 (5.35)

in two-dimensional systems, while for three-dimensional systems.

ζ3 ≤ 1; ζ4 ≤ 2, (5.36)

ζ5 ≤ √
5(4 − √

5), ζ6 ≤ 1 + √
5(4 − √

5) = 4(
√
5 − 1),

holds.

Proof If we consider ηN for N = 2 both observables commute and the claim 〈A1〉+
〈A1A2〉 − 〈A2〉 ≤ 1 is clear, as it holds for any eigenvector. The bounds for general
ηN follow by induction, where in each step of the induction 〈AN AN+1〉−〈AN+1〉 ≤
1 − 〈AN 〉 is used, but this is nothing but the bound for N = 2.

The bounds for ζN are just the ones derived for the generalizedKCBS inequalities,
see Eq. (4.12) in Sects. 5.1.1 and 5.3.2. �

Proposition 8 Consider the PM square with dichotomic observables on a three-
dimensional system, where for one column and one row only the case (c) in
Proposition 6 applies. Then, one cannot violate the classical bound and one has
〈χPM〉 ≤ 4.

Proof Let us consider the case that the condition holds for the first column and the
first row, the other cases are analogous. Then, none of the observables A, B, C, a,α
is proportional to the identity since, otherwise, case (a) in Proposition 6 would apply.
These observables can all be written as

A = ±(1 − 2|A〉〈A|), (5.37)

with some vector |A〉, and the vector |A〉 characterizes the observable A up to the
total sign uniquely. In this notation, two observables X and Y commute if and only if
the corresponding vectors |X〉 and |Y 〉 are the same or orthogonal. For our situation,
it follows that the vectors |A〉, |B〉, and |C〉 form an orthonormal basis of the three-
dimensional space, since if two of them were the same, then for the first row also the
case (b) in Proposition 6 would apply. Similarly, the vectors |A〉, |a〉 and |α〉 form
another orthonormal basis of the three-dimensional space. We can distinguish two
cases:

Case 1: The vector |B〉 is neither orthogonal nor parallel to |a〉. From this, it
follows that |B〉 is also neither orthogonal nor parallel to |α〉 and similarly, |C〉 is
neither orthogonal nor parallel to |a〉 and |α〉 and vice versa.

Let us consider the observable b in the PM square. This observable can be pro-
portional to the identity, but if this is not the case, the corresponding vector |b〉 has
to be parallel or orthogonal to |B〉 and |a〉. Since |B〉 and |a〉 are neither orthogonal
nor parallel, it has to be orthogonal to both, which means that it is parallel to |A〉.
Consequently, the observable b is either proportional to the identity or proportional
to A. Similarly, all the other observables β, c, and γ are either proportional to the
identity or proportional to A.

http://dx.doi.org/10.1007/978-3-319-24169-2_4
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Let us now consider the expectation value of the PM operator 〈χPM〉 for some
quantum state �. We denote this expectation value as 〈χPM〉� in order to stress the
dependence on �. The observable A can be written as A = P+ − P−, where P+ and
P− are the projectors onto the positive or negative eigenspace. One of these projectors
is one-dimensional and equals |A〉〈A|, the other other one is two-dimensional. For
definiteness, let us take P+ = |A〉〈A| and P− = 1 − |A〉〈A|.

Instead of �, we may consider the depolarized state σ = p+�+ + p−�−, with
�± = P±�P±/p± and p± = tr(P±�P±). Our first claim is that, in our situation,

〈χPM〉�=〈χPM〉σ = p+〈χPM〉�+ + p−〈χPM〉�− . (5.38)

It suffices to prove this for all rows and columns separately. Since the observables
in each column or row commute, we can first measure observables which might be
proportional to A. For the first column and the first row the statement is clear: We
first measure A and the result is the same for � and σ. After the measurement of A,
however, the state � is projected either onto �+ or �−. Therefore, for the following
measurements it does not matter whether the initial state was � or σ. As an example
for the other rows and columns, we consider the second column. Here, we can first
measure β and then b and finally B. If β or b are proportional to A, then the statement
is again clear. If both β and b are proportional to the identity, then themeasurement of
〈βbB〉� equals ±〈B〉�. Then, however, one can directly calculate that 〈B〉� = 〈B〉σ ,
since B and A commute.

Having established the validity of Eq. (5.38), we proceed by showing that for for
each term 〈χPM〉�+ and 〈χPM〉�− separately the classical bound holds. For 〈χPM〉�+
this is clear: Since P+ = |A〉〈A|, we have that �+ = |A〉〈A| and |A〉 is an eigenvec-
tor of all observables occurring in the PM square. Therefore, the results obtained
in 〈χPM〉�+ correspond to a classical assignment of ±1 to all observables, and
〈χPM〉�+ ≤ 4 follows. For the other term 〈χPM〉�− , the problem is effectively a
two-dimensional one, and we can consider the restriction of the observables to the
two-dimensional space, e.g., Ā = P− AP−, etc. In this restricted space we have that
Ā, b̄, β̄, c̄, and γ̄ are all of them proportional to the identity and, therefore, result in
a classical assignment ±1 independent of �−. Let us denote these assignments by
Â, b̂, β̂, ĉ, and γ̂. Then, it remains to be shown that

Z = Â
[〈B̄C̄〉�− + 〈ᾱā〉�−

] + b̂ĉ〈ā〉�−

+β̂γ̂〈ᾱ〉�− + b̂β̂〈B̄〉�− − ĉγ̂〈C̄〉�− ≤ 4 (5.39)

for all classical assignments and for all states �−. For observables B̄ and C̄ we
have furthermore that B̄C̄ = ±1 (see Proposition 3), hence B̄ = ±C̄ and similarly
ā = ±ᾱ. If one wishes to maximize Z for the case Â = +1, one has to choose
B̄ = C̄ and ā = ᾱ. Then, the product of the four last terms in Z equals −1, and
Z ≤ 4 holds. For the case Â = −1 one chooses B̄ = −C̄ and ā = −ᾱ, but still the
product of the four last terms in Z equals −1, and Z ≤ 4. This finishes the proof of
the first case.
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Case 2: The bases |A〉, |B〉, |C〉 and |A〉, |a〉, |α〉 are (up to some permutations
or signs) the same. For instance, we can have the case in which |B〉 = |a〉 and
|C〉 = |α〉; the other possibilities can be treated similarly.

In this case, since |B〉 and |α〉 are orthogonal, the observable β has to be either
proportional to the identity or proportional to A. For the same reason, c has to be
either proportional to the identity or to A.

Let us first consider the case inwhich one of the observablesβ and c is proportional
to A, say β = ±A for definiteness. Then, since |β〉 = |A〉 and |B〉 are orthogonal, b
can only be the identity or proportional to C. Similarly, γ can only be the identity or
proportional to C. It follows that all nine observables in the PM square are diagonal
in the basis |A〉, |B〉, |C〉, and all observables commute. Then, 〈χPM〉 ≤ 4 follows,
as this inequality holds in any eigenspace.

Second, let us consider the case in which β and c are both proportional to the
identity. This results in fixed assignments β̂ and ĉ for them. Moreover, B and a differ
only by a sign μ̂ (that is, a = μ̂B) and C and α differ only by a sign ν̂ (i.e., α = ν̂C).
So we have to consider

X = 〈ABC〉 + μ̂ν̂〈ABC〉 + β̂〈Bb〉
+μ̂ĉ〈Bb〉 + ν̂β̂〈Cγ〉 − ĉ〈Cγ〉. (5.40)

In order to achieve X > 4 one has to choose μ̂ = ν̂, β̂ = μ̂ĉ, and ĉ = −ν̂β̂.

However, the later is equivalent to β̂ = −ν̂ĉ, showing that this assignment is not
possible. Therefore,X ≤ 4 has to hold. This finishes the proof of the second case. �

Proposition 9 Consider the PM square with dichotomic observables on a three-
dimensional system, where for one column (or one row) only the case (c) in
Proposition 6 applies. Then, one cannot violate the classical bound and one has
〈χPM〉 ≤ 4.

Proof We assume that the condition holds for the first column. Then, none of the
observables A, a, andα are proportional to the identity, and the corresponding vectors
|A〉, |a〉, and |α〉 form an orthonormal basis of the three-dimensional space.

The idea of our proof is to consider possible other observables in the PM square,
which are not proportional to the identity, but also not proportional to A, a, or α. We
will see that there are not many possibilities for the observables, and in all cases the
bound 〈χPM〉 ≤ 4 can be proved explicitly.

First, consider the case that there all nontrivial observables in the PM square are
proportional to A, a, or α. This means that all observables in the PM square are
diagonal in the basis defined by |A〉, |a〉, and |α〉, and all observables commute. But
then the bound 〈χPM〉 ≤ 4 is clear.

Second, consider the case that there are several nontrivial observables, which are
not proportional to A, a, or α.Without losing generality, we can assume that the first
of these observables is B. This implies that |B〉 is orthogonal to |A〉 and lies in the
plane spanned by |a〉 and |α〉, but |a〉 	= |B〉 	= |α〉. It follows for the observables
b and β that they can only be proportional to the identity or to A (see Case 1 in
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Proposition 8). We denote this as b = b̂[A], where [A] = A or 1, and b̂ denotes the
proper sign, i.e., b = b̂A or b = b̂1. Similarly, we write β = β̂[A].

Let us assume that there is a second nontrivial observablewhich is not proportional
to A, a, or α (but it might be proportional to B). We can distinguish three cases:

(i) First, this observable can be given by C and C is not proportional to B. Then,
this is exactly the situation of Case 1 in Proposition 8, and 〈χPM〉 ≤ 4 follows.

(ii) Second, this observable can be given by C . However, C is proportional to B.

Then, c = ĉ[A] and γ = γ̂[A] follows. Now the proof can proceed as in Case 1
of Proposition 8. One arrives to the same Eq. (5.39), with the extra condition that
B̄ = ±C̄ , which was deduced after Eq. (5.39) anyway. Therefore, 〈χPM〉 ≤ 4 has to
hold.

(iii) Third, this observable can be given by c.Then, it cannot be proportional to B,
since |B〉 is not orthogonal to |a〉. It first follows that C = Ĉ[a] and γ = γ̂[a].
Combined with the properties of B, one finds that C = Ĉ1 and b = b̂1 has to hold.
Then, the PM inequality reads

Y = 〈Aαa〉 + 〈B(AĈ + b̂β̂[A])〉
+β̂γ̂〈α[A][a]〉 + 〈c(b̂a − Ĉ γ̂[a])〉. (5.41)

In this expression, the observables B and c occur only in a single term and a single
context. Therefore, for any quantum state, we can obtain an upper bound on Y by
replacing B → ±1 and c → ±1 with appropriately chosen signs. However, with
this replacement, all observables occurring in Y are diagonal in the basis defined by
|A〉, |a〉, and |α〉, and Y = 〈χPM〉 ≤ 4 follows.

In summary, the discussion of the cases (i), (ii), and (iii) has shown the following:
It is not possible to have three nontrivial observables in the PM square, which are all
of them not proportional to A, a, or α. If one has two of such observables, then the
classical bound has been proven.

It remains to be discussed what happen if one has only one observable (say, B),
which is not proportional to A, a, or α. However, then the PM inequality can be
written similarly as in Eq. (5.41), and B occurs in a single context. We can set again
B → ±1 and the claim follows. �

Finally, we can prove our Observation 3:
Proof of Observation 3. Proposition 8 solve the problem, if case (c) in one column

or row happens. Therefore, we can assume that in all columns and all rows only the
cases (a) or (b) from Proposition 6 apply. However, in these cases, we obtain a
simple replacement rule: For case (a), one of the observables has to be replaced with
a classical value ±1 and, for case (b), one of the observables can be replaced by
a different one from the same row or column. In both cases, the PM inequality is
simplified.

For case (a), there are six possible replacement rules, as one of the three observ-
ables must be replaced by±1. Similarly, for case (b), there are six replacement rules.
Therefore, one obtains a finite number, namely (6+6)6 possible replacements. As in
the case of the KCBS inequality (see the alternative proof of Observation 1 in Sect.
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5.3.1), some of them lead to contradictions (e.g., one may try to set A = +1 from
the first column, but A = −1 holds due to the rule from the first row). Taking this
into account, one can perform an exhaustive search of all possibilities, preferably
by computer. For all cases, either the classical bound holds trivially (e.g., because
the assignments require already, that one row is −1) or the PM inequality can be
reduced, up to some constant, to one of the inequalities in Proposition 6. In most
cases, one obtains the classical bound. However, in some cases, the PM inequality is
reduced to 〈χPM〉 = ζ5 + 1 or 〈χPM〉 = ζ6. To give an example, one may consider
the square

⎡

⎣
A B C
a b c
α β γ

⎤

⎦ =
⎡

⎣
A 1 C
a b 1
1 β γ

⎤

⎦ , (5.42)

which results in 〈χPM〉=ζ6 for appropriately chosen Ai .Therefore, fromProposition 7
follows that in three dimensions 〈χPM〉 = 4(

√
5 − 1) ≈ 4.94 holds and can indeed

be reached. �

5.3.5 Imperfect Measurements

In this section we discuss the noise robustness of Observation 4. In the first subsec-
tion, we prove that Observation 4 also holds for the model of noisy measurements
explained above. In the second subsection, we discuss a noise model that reproduces
the probabilities of the most general POVM.

Noisy measurements
In order to explain the probabilities from a noisy measurement, we first consider the
following measurement model: Instead of performing the projective measurement
A, one of two possible actions are taken:

(a) with a probability pA the projective measurement is performed, or
(b) with a probability 1 − pA a completely random outcome ±1 is assigned inde-

pendently of the initial state. Here, the results +1 and −1 occur with equal
probability.

In case (b), after the assignment the physical system is left in one of two possible
states �+ or �−, depending on the assignment. We will not make any assumptions
on �±.

Before formulating and proving a bound on 〈χPM〉 in this scenario, it is useful to
discuss the structure of 〈χPM〉 for the measurement model. A single measurement
sequence 〈ABC〉 is split into eight terms:With a prefactor pA pB pC one has the value,
which is obtained, if all measurements are projective; with a prefactor pA pB(1− pC )

one has the value, where A and B are projective, and C is a random assignment, etc.
It follows that the total mean value 〈χPM〉 is an affine function in the probability pA

(if all other parameters are fixed) and also in all other probabilities pX for the other



98 5 Dimension Witnesses

measurements. Consequently, the maximum of 〈χPM〉 is attained either at pA = 1 or
pA = 0, and similarly for all the measurements. Therefore, for maximizing 〈χPM〉 it
suffices to consider the finite set of cases where, for each observable, either always
possibility (a) or always possibility (b) is taken. We can formulate:

Proposition 10 Consider noisy measurements as described above. Then, the bound
from Observation 4

〈χPM〉 ≤ 3
√
3 (5.43)

holds.

Proof As discussed above, we only have to discuss a finite number of cases. Let
us consider a single term 〈ABC〉. If C is a random assignment, then 〈ABC〉 = 0,
independently how A and B are realized. It follows that if C,β or a are random
assignments, then 〈χPM〉 ≤ 4.

On the other hand, if A is a random assignment, then 〈ABC〉 = 0 as well:
(i) If B and C are projective, then the measurement of B and C results in the state
independent mean value 〈BC〉. This value is independent of the state �± remaining
after the assignment of A, hence 〈ABC〉 = 〈AB〉 − 〈AB〉 = 0. (ii) If B is a random
assignment, one can also directly calculate that 〈ABC〉 = 0 and the case that (iii) C
is a random assignment has been discussed already. Consequently, if A, b, or γ are
random assignments, then 〈χPM〉 ≤ 4.

It remains to discuss the case that B, c, or α are random assignments while all
other measurements are projective. First, one can directly calculate that if A, C are
projective, and B is a random assignment, then

〈ABC〉 = tr(�A)tr(C X), (5.44)

with X = (�+ − �−)/2. If X is expressed in terms of Pauli matrices, then the
length of its Bloch vector does not exceed one, since the Bloch vectors of �± are
subnormalized.

The estimate of 〈χPM〉 can now proceed as in the proof of Observation 4, and
one arrives at the situation of Proposition 5 in Sect. 5.3.3, where now the vec-
tors are subnormalized, and not necessarily normalized. But still the bound from
Proposition 5 is valid: If the smallest vector in χ6 has a length ω, one can directly
see that χ6 ≥ ω[−N cos(π/N )] − (1 − ω)4. This proves Proposition 10. �

More general POVMs
Nowwe consider a general dichotomic positive operator valuedmeasure (POVM) on
a qubit system. This is characterized by two effects E+ and E−, where E++E− = 1
and the probabilities of the measurement results are p+ = tr(�E+) and p− =
tr(�E−).

These effects have to commute and one can write E+ = α|0〉〈0| + β|1〉〈1| and
E− = γ|0〉〈0| + δ|1〉〈1| in an appropriate basis. We can assume that α ≥ β and
consequently δ ≥ γ. Furthermore, it is no restriction to choose β ≤ γ. Then, the
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effects can be written as E+ = β1 + (α − β)|0〉〈0| and E− = β1 + (γ − β)1 +
(α − β)|1〉〈1|. This means that one can interpret the probabilities of the POVM
as coming from the following procedure: With a probability of 2β one assigns a
random outcome, with a probability of γ − β one assigns the fixed value −1, and
with a probability of (α − β) one performs the projective measurement.

This motivates the following measurement model: Instead of performing the pro-
jective measurement A, one of three possible actions are taken:

(i) with a probability pA
1 the projective measurement is performed, or

(ii) with a probability pA
2 a fixed outcome±1 is assigned independently of the initial

state. After this announcement, the state is left in the corresponding eigenstate
of A, or

(iii) with a probability pA
3 a completely random outcome ±1 is assigned indepen-

dently of the initial state.

As above, in case (iii), the physical system is left in one of two possible states �+ or
�−, but we will not make any assumptions on �±. For this measurement model, we
have:

Proposition 11 In the noise model described above, the PM operator is bounded by

〈χPM〉 ≤ 1 +
√

9 + 6
√
3 ≈ 5.404. (5.45)

Proof As in the proof of Proposition 10, we only have to consider a finite set of cases.
Let us first discuss the situation, where for each measurement only the possibilities
(i) and (ii) are taken.

First, we have to derive some formulas for sequential measurements. The reason is
that, if the option (ii) is chosen, then theoriginal formula for sequentialmeasurements,
Eq. (5.8), is not appropriate any more and different formulas have to be used.

In the following, we write A = (±)A if A is a fixed assignment as described in
possibility (ii) above. If not explicitly stated otherwise, the observables are measured
as projective measurements. Then one can directly calculate that

〈ABC〉 = (±)A〈BC〉 if A = (±)A, (5.46a)

〈ABC〉 = tr(�A)〈BC〉 if B = (±)B, (5.46b)

〈ABC〉 = (±)C 〈AB〉 if C = (±)C , (5.46c)

Note that in Eq. (5.46b) there is no deviation from the usual formula Eq. (5.15).
Furthermore, we have

〈ABC〉 = (±)A(±)B tr(C |B±〉〈B±|) = (±)A〈BC〉
if A = (±)A and B = (±)B, (5.47a)

〈ABC〉 = (±)A(±)C tr(B|A±〉〈A±|) = (±)C 〈AB〉
if A = (±)A and C = (±)C , (5.47b)
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〈ABC〉 = (±)B(±)C tr(�A)

if B = (±)B and C = (±)C . (5.47c)

In Eqs. (5.47a) and (5.47b), |B±〉 and |A±〉 denote the eigenstates of B and A, which
are left after the fixed assignment.

Equipped with these rules, we can discuss the different cases. First, from
Eqs. (5.46a), (5.46b), and (5.47a) it follows that the proof of Observation 4 does not
change, if fixed assignments are made only on the observables which are measured
at first or second position of a sequence (i.e., the observables A, b, γ, B, c, and α).

However, the structure of the inequality changes if one of the last measurements
is a fixed assignment. To give an example, consider the case that the measurement β
is a fixed assignment [case (ii) above], while all other measurements are projective
[case (i) above]. Using Eq. (5.46c) we have to estimate

X = 〈A〉〈BC〉 + 〈A〉〈αa〉 + 〈b〉〈ca〉
+ 〈bB〉(±)β + 〈γα〉(±)β − 〈γ〉〈cC〉. (5.48)

On can directly see that it suffices to estimate

X ′ = 〈B|C〉 + 〈α|a〉 + 〈�|b〉〈c|a〉
+ 〈b|B〉 + 〈γ|α〉 − 〈�|γ〉〈c|C〉, (5.49)

where all expressions should be understood as scalar products of the corresponding
Bloch vectors. Then, a direct optimization over the three-dimensional Bloch vectors
proves that here

X ′ ≤ 1 +
√

9 + 6
√
3 ≈ 5.404 (5.50)

holds. In general, the observables β, C , or a are the possible third measurements in a
sequence. One can directly check that, if one or several of them are fixed assignments,
then an expression analogue to Eq. (5.48) arises and the bound of Eq. (5.50) holds.
Finally, if some of the β, C , or a are fixed assignments and, in addition, some of the
A, b, γ, B, c, and α are fixed assignments, then the comparison between Eq. (5.46c)
and Eqs. (5.47b) and (5.47c) shows that no novel types of expressions occur.

It remains to discuss the case where not only the possibilities (i) and (ii) occur, but
for one ormoremeasurements also a random assignment [possibility (iii)] is realized.
As in the proof of Proposition 10, one finds that only the cases where the second
measurements (B, c, and α) are random are interesting. In addition to Eq. (5.44) one
finds that 〈ABC〉 = (±A)tr(C X) if B is random and A is a fixed assignment, and
〈ABC〉 = 0 if B is random and C is a fixed assignment. This shows that no new
expressions occur, and proves the claim. �

Finally, we would like to add two remarks. First, it should be stressed that the
presented noise model still makes assumptions about the measurement, especially
about the post measurement state. Therefore, it is not the most general measurement,
and we do not claim that the resulting dimension witnesses are device-independent.
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Second, we would like to emphasize that the chosen order of the measurements
in the definition in Eq. (5.10) is important for the proof of the bounds for noisy
measurements: For other orders, it is not clear whether the dimension witnesses are
robust against imperfections. In fact, for some choices one finds that the resulting
inequalities are not robust against imperfections: Consider, for instance, a measure-
ment order, where one observable (say, γ for definiteness) is the second observable in
one context and the third observable in the other context. Furthermore, assume that
γ is an assignment [case (iii) above], while all other measurements are projective.
Then, we have to use Eq. (5.46b) for the first context of γ, and Eq. (5.46c) for the sec-
ond context. In Eq. (5.46b) there is no difference to the usual formula, especially the
formula does not depend on the value assigned to γ. Eq. (5.46c), however, depends
on this value. This means that, for one term in the PM inequality, the sign can be
changed arbitrarily and so 〈χPM〉 = 6 can be reached.

5.3.6 Asymptotic Value of the Leggett-Garg Correlator
for the Precessing Spin Model

We here derive the expression for the correlation functions for the spin model with
measurement times �t1 = π, �t2 = 3

2π and �t3 = 2π. Defining R = e−i π
2 Jx ,

the relevant time-evolution operators can be written U (t1) = R2, U (t2) = R3,
and U (t2 − t1) = U (t3 − t2) = R. Starting in state |− j〉 (we use the shorthand
|m〉 ≡ |m; j〉 here), the correlation functions read

C21 =
j∑

n,m=− j

qnqm |〈m|R|n〉|2|〈n|R2| − j〉|2;

C31 =
j∑

n,m=− j

qnqm |〈m|R2|n〉|2|〈n|R2| − j〉|2;

C32 =
j∑

n,m=− j

qnqm |〈m|R|n〉|2|〈n|R3| − j〉|2. (5.51)

The matrix R2 has matrix elements such that R2|− j〉 = (−i)2 j |+ j〉 and
R2|+ j〉 = (−i)2 j |− j〉. Thus, we obtain

C21 =
j∑

m=− j

qm |〈m|R| j〉|2; C31 = −1

C32 =
j∑

n,m=− j

qnqm |〈m|R|n〉|2|〈n|R3| − j〉|2. (5.52)
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Using the explicit representation of measurement assignments, qm = 1 − 2δm,− j ,
we can write

C21 =
⎛

⎝
j∑

m=− j

|〈m|R| j〉|2
⎞

⎠ − 2|〈− j |R| j〉|2

= 1 − 2|〈− j |R| j〉|2. (5.53)

The relevant matrix elements are

|〈n|R| − j〉| = 1

2 j

√(
2 j

n + j

)

, (5.54)

such that

C21 = 1 − 21−2 j . (5.55)

The final term can evaluated as

C32 = 1 − 2|〈− j |R3| − j〉|2
+4|〈 j |R| − j〉|2|〈− j |R3| − j〉|2
−2

∑

n

|〈− j |R|n〉|2|〈n|R3| − j〉|2

= 1 − 2
1

22 j
+ 4

1

24 j
− 2

(4 j)!
42 j [(2 j)!]2 . (5.56)

We have therefore

K3 = 3 − 41− j + 41−2 j − 21−4 j (4 j)!
[(2 j)!]2 . (5.57)

For large j , the latter term can be approximated as−√
2/π j which then dominates

the j-dependence. In the large-spin limit, we have therefore

K3 ∼ 3 −
√

2

π j
, (5.58)

which obviously reaches the value 3 in the j → ∞ limit.
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5.4 Discussion

In the first part of the chapter, we have shown that the two main noncontextuality
inequalities—the KCBS inequality (Observation 1) and the Peres-Mermin inequal-
ity (Observations 3 and 4)—can be used as dimension witnesses. In particular,
Observation 4 shows that the the Peres-Mermin inequality can be used to certify
the dimension of a Hilbert space independently of the state preparation and in a
noise robust way. Our methods allow the application of other inequalities, showing
that contextuality can be used as a resource for dimension tests of quantum systems.
The resulting tests are state-independent, in contrast to the existing tests. This can
be advantageous in experimental implementations, moreover it shows that one can
bound the dimension of quantum systems without using the properties of the quan-
tum state.

In the second part of the chapter, we applied a similar analysis to the Leggett-Garg
inequality. First, we showed that higher violations of the Leggett-Garg inequality are
possible within the framework of standard quantum theory plus projective measure-
ments. Independently of its application as dimension witness, this is of fundamental
importance since classical theories reproducing, or exceeding, the quantum corre-
lations for temporal scenarios are conceivable and they do not violate any physical
principle, as opposed to Bell scenarios where such classical theories involve faster-
than-light communication between space-like separated experiments. In fact, in a
temporal scenario a classical device with memory, keeping track of the performed
measurements and outcomes, can easily saturate the algebraic bound. However, such
a device cannot be considered in Leggett-Garg tests since it contradicts the hypothesis
of non-invasiveness of the measurement: The memory must be stored on a (possibly
auxiliary) physical system, in such a way that the subsequent dynamics is evidently
modified. The same argument applies also to the quantum mechanical description of
such a device, which is only possible with POVMs [27]. Such measurement schemes
are, therefore, not meaningful in a Leggett-Garg test.

From an information-theoretic perspective, it is interesting to relate temporal cor-
relations to the amount of information transmitted through sequential measurements
[27]. While classical devices with memory, and their quantum counterparts based
on POVMs, can easily saturate the algebraic bound K3 = 3, the amount of infor-
mation transmitted trough sequential projective measurements, subjected to Lüders
rule, has been proven to obey stricter bounds, independent of the system size. Our
analysis shows that degeneracy-breaking projective measurements, as those in von
Neumann’s scheme, are able to transmit more information, which is encoded in the
different evolution paths in the set of quantum state, and can give rise to perfect cor-
relations (or anticorrelations) in the limit of an infinite number of projectors. This is
in stark contrast with Bell inequalities, which do not show any higher violation when
tested with more general type of quantum measurements and are typically saturated
only in the framework of post-quantum theories [58].

Again, here we propose the application of our results a a dimensionwitness [6]: an
experimenter can certify that she is able to manipulate at least M levels of a quantum
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system, if she can violate the bound for M − 1. Obviously, also the condition of
projective measurement must be verified.

In contrast to the analysis of Sect. 5.1, and also the other proposal of dimension
witnesses based on Bell inequalities [6] and the prepare-and-measure scenario [9],
where specific inequalities violated only by high-dimensional systems and involving
more complex measurement schemes must be found, here we need only the simplest
Leggett-Garg inequality.

We also recall that, a further interesting application of the result of this section is
the discrimination between Lüders’ and von Neumann’s state-update rules [54], i.e.,
which one, if any, correctly represents the measurement scenario. A violation of the
bound corresponding to M = 2 shows a contradiction with Lüders rule. Intermediate
cases are possible and can also be investigated with our method.
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Chapter 6
Conclusions

In this thesis we discussed the characterization of sets of classical and quantum
probabilities for differentmeasurement scenarios and different, physicallymotivated,
hidden variable models. More precisely, we discussed local [1], noncontextual [2]
and macrorealist [3] hidden variable models and the characterization of their corre-
sponding sets of allowed probabilities, whereas in the quantum case we focused on
the characterization of probabilities arising from sequences of projective measure-
ments.

In the classical case, the possible values for probabilities form a convex polytope
whose vertices are given by the deterministic assignments, i.e., the {0, 1}—valued
probability measures. Notwithstanding the existence of algorithms for completely
characterizing a convex polytope starting from its vertices, the time required for such
a computation grows exponentially in the number of settings of the measurement
scenario and it can be directly performed only in the simplest cases.

In Chap. 2, we developed an alternative method for the characterization of poly-
topes arising in the analysis of hidden variable models based on some results on the
extension of probability measures. We then applied our method to several Bell and
noncontextuality scenarios providing both computational and analytical results and
showing the advantages of our method with respect to the existing ones.

In Chap. 3, we analyzed the measurement scenarioswhere quantum correlations
are stronger than noncontextual ones for every quantum state (state-independent
contextuality). Given thecomplexity of such scenarios, a direct computation of the
corresponding noncontextual polytope is not feasible. We exploited the fact that for
such scenarios the measurement settings are usually known (e.g., they come from
a proof of the Kochen-Specker theorem) and developed a method for computing
optimal inequalities, in the sense of the maximal gap between classical and quantum
predictions. Our method is based on linear programming, which allows optimal
inequalities to be efficiently computed. Moreover, we applied our method to the
most fundamental noncontextuality scenarios and showed that, for all the examples
considered, our optimal inequalities are also facets inequalities of the corresponding
noncontextual polytope.
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In Chap. 4, we considered quantum probabilities arising in the temporal scenario.
Namely, the possible strength of correlations among sequence of projective
measurements performed on the same system. Such a scenario is relevant for the test
of noncontextuality aswell as Leggett-Garg inequalities.We developed amethod that
provides a complete characterization of themaximal correlations allowedbyquantum
mechanics in the sequential measurement scenario. Our method is based on semi-
definite programming and, thus, maximal correlations can be efficiently computed.
We applied our method to the most fundamental Leggett-Garg and noncontextuality
scenarios.

In Chap. 5, we discussed possible application of the previous results as dimension
witness, namely, as a certification of the minimal dimension of the Hilbert space
needed to explain the arising of certain quantum correlations. As opposed to previ-
ous approaches based on Bell inequalities (spatial scenario), or prepare-and-measure
scenario, we focused on the sequential measurement scenarios and tests of noncon-
textuality and Leggett-Garg inequalities. We analyzed the most fundamental non-
contextuality inequalities, both with state-dependent and state-independent quantum
violations, and show how they can be used to discriminate between different dimen-
sions of the Hilbert space. Most notably, noncontextuality inequalities allows for the
implementation of dimension witnesses that do not require the preparation of any
specific state. We also discussed the robustness of our dimension witnesses against
experimental imperfections. We then applied a similar analysis to the Leggett-Garg
inequality, but considering a more general measurement scheme that may be inter-
preted as a coarse-graining of the measurement outcomes. Our analysis, not only
provides new dimension witnesses, but also clarifies the role of the dimension in the
temporal scenario. In fact, in the spatial scenario, it is known that quantum correla-
tions, e.g., those appearing in a Bell inequality, obey a fundamental bound known
as Tsirelson bound [4], which is independent of the dimension of the system. On
the other hand, we proved that temporal correlations obey similar bounds, but such
bounds strongly depend on the dimension D of the system, and they can reach the
maximal algebraic value in the limit D → ∞.

We believe that our results on the existence of fundamental bounds for temporal
correlations closely related to the Tsirelson bound for spatial correlations, but with
fundamental differences (e.g., the dependence on the dimension), open the possibil-
ity for the investigation of physical or information-theoretic principles explaining
their existence. The principles proposed to explain the existence of quantum bounds
for Bell and noncontextuality inequalities within the framework of general propob-
abilistic theories are certainly an interesting starting point (cf. [5–8]). We leave this
question for further research. Moreover, we hope that our results will be a catalyst
for the experimental tests on high-dimensional systems, both for the our dimension
witnesses and for the tests of macrorealist versus quantum theory, i.e., the Leggett-
Garg inequality. In fact, so far all tests of the Leggett-Garg inequality, even when
performed on highly-dimensional systems, have been designed and performed to
reach the quantum bound that we now know to be valid only for two-dimensional
systems.
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