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Introduction



Chapter 1
The Why and How of Dynamic Modeling

1.1 Introduction

Few tasks are nobler than those that improve the length and quality of life of humans
and their fellow species. And few tasks are more difficult to accomplish. To be suc-
cessful, we must assess the vulnerabilities of individuals to attacks on their health
and well-being, we must understand the interactions of individuals with each other
and their environment, and we must anticipate the likely consequences of all these
factors in an ever-changing world—individual vulnerabilities change, new diseases
and pests emerge, old ones reappear, new means are developed to detect and com-
bat adverse influences on health and well-being, and new standards for health and
quality of life are applied.

There are many drivers behind the spread of diseases and pests. Climate change
may create new temperature and precipitation regimes conducive to diseases and
pests that would otherwise be irrelevant for particular locations. West Nile fever,
malaria and encephalitis, for example, are increasingly of concern to public health
officials. Other drivers are related to our use of technology in a globalizing world.
For example, ballast water used in ships can carry with it organisms and spread
them to ever more far-flung places. Increased travel of people around the globe can
promote dispersal of viruses, bacteria, fungi, and other “agents” that affect the health
and well-being of species and ecosystems.

Strategies for controlling the spread of diseases and pests, and especially chang-
ing the root causes for a spread to occur, have created a multi-billion-dollar industry
involving the full gamut of societal defenses—from detection and monitoring, to
chemical and pharmaceutical products, to medical care, to ecosystem design and
restoration. Sound knowledge of the dynamics of diseases and pests and an un-
derstanding of the changing roles and relationships among the drivers and the
constraints on their spread are needed to make wise choices among the various in-
tervention options.

This book provides an introduction to dynamic modeling of diseases and pests—
the various forms of insult to the health and well-being of species, both human and

B. Hannon and M. Ruth, Dynamic Modeling of Diseases and Pests, 3
Modeling Dynamic Systems,
c© Springer Science+Business Media LLC 2009



4 1 The Why and How of Dynamic Modeling

animal. We draw on insights from biology, epidemiology, and related disciplines to
identify key components of, and influences on, human and environmental systems.
We use the graphical programming language STELLA to organize these insights
into formal models that can be run on a computer; we then use these models to in-
vestigate the dynamics of pestilence and explore alternative scenarios for outside
intervention into the systems’ dynamics. In particular, we look for emergent prop-
erties of the model—those results that we did not expect.

We consider this kind of modeling as a subtle craft, an art form that is intended
to help us understand the future. And because of the complexity of dynamic sys-
tems, the use of formal models and numbers is essential—they help us dispel the
complexity of many real-world processes and force us to be specific. Good dynamic
modeling is an art. It requires modeling experience that draws upon modeling analo-
gies for the creation of new and useful models.

Modeling dynamic systems is central to our understanding of real-world phe-
nomena. We all create dynamic mental models of the world around us, dissecting
our observations into cause and effect. Such mental models enable us, for exam-
ple, to cross a busy street or hit a baseball successfully. But we are not mentally
equipped to go much further. The complexities of social, economic, or ecological
systems and their interactions force us to use aids if we want to understand much of
anything about them.

With the advent of personal computers and graphical programming, everyone
can create more sophisticated models of the phenomena in the world around us. As
Heinz Pagels noted in Dreams of Reason in 1988, the computer modeling process is
to the mind what the telescope and the microscope are to the eye. We can model the
macroscopic results of microphenoma, and vice versa. We can simulate the various
possible futures of a dynamic process. We can begin to explain and perhaps even to
predict.

In order to deal with these phenomena, we abstract from details and attempt to
concentrate on the larger picture—a particular set of features of the real world or the
structure that underlies the processes that lead to the observed outcomes. Models are
such abstractions of reality. Models force us to face the results of the structural and
dynamic assumptions that we have made in our abstractions.

The process of model construction can be rather involved. However, it is possible
to identify a set of general procedures that are followed frequently. These general
procedures are shown in simplified circular form (Figure 1.1).

Models help us understand the dynamics of real-world processes by mimicking
with the computer the actual but simplified forces that are assumed to result in a
system’s behavior. For example, it may be assumed that the number of people con-
tracting a disease is directly proportional to the size of the infected and susceptible
populations. In a simple version of this epidemic model, we may abstract away
from a variety of factors that impede or stimulate the spread of a disease in addi-
tion to factors directly related to the different population sizes and distance. Such
an abstraction may leave us with a sufficiently good predictor of the known infec-
tion rates, or it may not. If it does not, we reexamine the abstractions, reduce the
assumptions, and retest the model for its new predictions. Models help us in the
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organization of our thoughts and data and in the evaluation of our knowledge about
the mechanisms that lead to the system’s change.

Some people raise philosophic questions as to why one would want to model
a system. As pointed out earlier, we all perform mental models of every dynamic
system we face. We also learn that in many cases, those mental models are inade-
quate. With a formal model at hand—a model that is transparent enough for others
to understand and critique, and one that can be run over and over again to reveal its
behavior under different assumptions—we can specifically address the needs and
rewards of modeling.

Throughout this book, we encounter a variety of nonlinear, time-lagged feedback
processes, some with random disturbances that give rise to complex system behav-
ior. Such processes can be found in a large range of systems. The variety of models
in the companion books of this series naturally span only a small range—but the
insights on which these models are based can (and should) be used to inform the
development of models for systems that we do not cover here.

It is our intention to show you how to model, not how to use models, nor how to
set up a model for someone else’s use. The latter two are certainly worthwhile ac-
tivities, but we believe that the first step is learning the modeling process. In the fol-
lowing section, we introduce you to the computer language that is used throughout
the book. This computer language will be immensely helpful as you develop an un-
derstanding of dynamic systems and use that understanding to solve new problems.

1.2 Static, Comparative Static, and Dynamic Models

Most models fit in one of three general classes. The first type consists of models that
represent a particular phenomenon at a point of time—these are static models. For
example, a map of the United States may depict the location and size of a city or
the rate of infection with a particular disease, each in a given year. The second type
is the set of comparative static models that compare some phenomena at different
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points in time. This is like using a series of snapshots to make inferences about the
system’s path from one point in time to another, without explicitly modeling that
process.

Other models describe and analyze the very processes underlying a particular
phenomenon. An example of this would be mathematical models that describe host-
parasite interactions. Such models could capture population dynamics of hosts and
parasites, where at any point in time the population size of one depends on its size
during an earlier time period and on the size of the other population. These are
dynamic models. Dynamic models try to reflect changes in real or simulated time
and take into account that the model components are constantly changing as a result
of previous conditions and current influences.

With the advent of easy-to-use computers and software, everyone can build on the
existing descriptions of a system and carry them further. While a static or compara-
tive static assessment may be adequate for many purposes, the world itself changes
all the time. Models that treat a system in a static or comparative static fashion may
be misleading and become obsolete. We can now investigate in great detail and with
great precision the system’s behavior over time. However, the longer the time frame
over which we make such investigations, the more likely it may be that new forces
that influence the system’s dynamics will come into play. For example, if we model
the spread of a disease without considering mutation of disease-causing agents, our
model results may be perfectly valid for time frames that are small enough to render
mutation irrelevant. In the long run, however, virulence may change as a result of
mutation; and thus the dynamics of the disease itself may become different; and thus
our results are a less than adequate representation of what we should expect in the
long run. Conversely, including the effects of mutation on the spread of a disease
may be irrelevant to short-term dynamics.

1.3 Model Complexity and Explanatory Power

What can we do to ensure that a model could produce a sufficiently good predictor of
the dynamics of pestilence? If the model does not appear to be a good predictor, we
can reexamine it. Did our abstractions eliminate any important factors? Were all our
assumptions valid? We can revise the model, based on the answers to these ques-
tions. Then, we can test the revised model for its “predictions” of historic events
before asking it to project into the real future. We should then have an improved
model of the system we are studying. Even better, our understanding of that system
will have grown. For example, we may have found out that our model’s behavior is
virtually unchanged over a relevant time frame of interest, given reasonable assump-
tions about the mutation of a disease-causing agent. We can now better determine
whether we asked the right questions, included all the important factors in that sys-
tem, and represented those factors properly. We might find that certain of the model
parameters have particularly high leverage on important variables while changes in
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other parameters produce little such change. This knowledge tells us where to put
our research effort into refining parameter values.

Elementary to modeling is the idea that a model should be kept simple, even
simpler than the cause and effect relationships it studies. Add complexities to the
model only when it does not produce the real effects. Remember that models are
sketches of real systems and are not designed to show all of a system’s many facets.
Models aid us in understanding complicated systems by simplifying them.

Models study cause and effect; they are causal. The modeler specifies initial con-
ditions and relations among these elements. The model then describes how each
condition will change in response to changes in the others. In the example of host-
parasite interactions, a larger population of hosts could provide more opportunities
for parasites to grow, reproduce, and spread—which could affect the health of hosts,
reduce the growth rate of their population, and thus negatively impact growth of the
parasite population.

Key to model design is the decision on system boundaries—what to explicitly
model and what to consider as given. Open models are models whose workings are
influenced by a large number of outside influences that are not explicitly modeled.
For example, your model of the spread of a disease may consider birth and death
rates as given, contact rates of infected with susceptible individuals fixed, and any
number of other parameters not the actual subject of your model itself. In that case,
you have an open model. As you explain more how birth, death, or contact rates
change in response to factors that are part of the model, you “internalize” these
factors and “close” your model. As you approach a closed model, its complexity is
likely to increase as ever more components are influenced by each other.

The initial or starting conditions from which a model runs could be actual mea-
surements (the number of people in a city in a given year) or estimates (the number
of people there in four years, given normal birth rate and other specified conditions).
Such estimates are designed to reflect the process under study, not to provide precise
information about it. Therefore, the estimates could be based on real data or the rea-
sonable guesses of a modeler who has experience with the process. At each step in
the modeling process, documentation of the initial conditions, choice of parameters,
presumed relationships, and any other assumptions is always necessary, especially
when the model is based on the modeler’s guesses.

Dynamic models have an interesting interpretation in the world of dynamical
statistics. The entire dynamic model in STELLA might be considered as a single
regression equation, and it can be used that way in a statistical analysis of the best
parameter choice for optimization of a performance measure1, such as maximizing
the effectiveness of a vaccine by choosing the best fraction of the population to
be vaccinated. It replaces the arbitrary functional form of the regression equation
used in statistical analysis. Thinking of the dynamic model in this way lets one
imagine that because more actual system form and information is represented in the

1 Personal paper: Twenty-Five Years (Isolated) Behind Enemy Lines: Do economists and statis-
ticians have anything new to offer Systems Dynamics? George Backus, Policy Assessment Cor-
poration, 14604 West 62nd Place, Arvada, Colorado 80004, George Backus@Energy2020.com,
2003.
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dynamic model, that model will produce more accurate results. This is probably so
if the same number of parameters are used in both modeling processes. If this is not
a constraint, the statistical dynamics process known as co-integration can produce
more accurate results. But one can seldom determine in physical terms what aspect
of the co-integration model accounted for its accuracy; we are left with a quandary.

If we wish modeling to do more than simulate a complex process—that is, if
we want a model to help us understand how to change and improve a real-world
process—we prefer to use dynamic modeling. Statistical analysis is not involved in
optimizing the performance measures to complete the dynamic modeling process;
it is key to finding the parameters for the inputs to these models. For example, we
may use a normal distribution to describe the daily mean temperature to determine
the growth rate of bacteria in rivers or lakes throughout the course of a year. Statis-
tical analysis is essential in determining the mean and standard deviation of these
temperatures from the temperature record. Thus using statistical analysis, we com-
press years of daily temperature data into a single equation that is sufficient for our
modeling objectives.

1.4 Model Components

Model building begins, of course, with the properly focused question. Then the mod-
elers must decide on the boundaries of the system that contains the question, choose
a meaningful time horizon over which to explore system behavior, select an ap-
propriate time increment or “time step” (minutes, days, months, year, decade) for
which system change is modeled, and choose an adequate level of detail. But these
are verbal descriptions. Sooner or later the modeler must get down to the business
of actually building the model. The first step in that process is the identification of
the state variables, those variables that will indicate the status of this system through
time. These variables carry the knowledge of the system from step to step through-
out the run of the model—they are the basis for the calculation of the rest of the
variables in the model.

Generally, the two kinds of state variables are conserved and nonconserved. Ex-
amples of conserved variables are the population of an island or the water behind a
dam. They have no negative meaning. Examples of nonconserved state variables are
temperature or price, and they might take on negative values (temperature) or they
might not (price).

Control variables are the ones that directly change the state variables. They can
increase or decrease the state variables through time. Examples include birth (per
time period) or water inflow or outflow (to and from a reservoir).

Transforming or converting variables are sources of information used to change
the control variables. A transforming or converting variable might be the result of
an equation based on still other transforming variables or parameters. Birth rate,
contact rate, or mutation rate are examples of transforming variables.
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The components of a model are expected to interact with each other. Such inter-
actions engender feedback processes. Feedback describes the process wherein one
component of the model initiates changes in other components, and those modi-
fications lead to further changes in the component that set the process in motion.
For example, everything else equal, an increase in the size of a population leads
to increases in the number of births, which in turn leads to an increase in the size
of the population. In positive feedback, the original modification leads to changes
that reinforce the component that started the process and typically lead the system
away from its initial state. The resulting dynamics are often referred to as “explosive
dynamics”—a phrase frequently used in modified forms, such as when we refer to
a “population explosion.”

Feedback is said to be negative when the modification in a component leads other
components to respond by counteracting that change. For example, an increase in
a medication dosage may help fight a disease initially, such that lower doses of
medication are required later. Negative feedback is often the engine that drives a
system toward a steady state. The word negative does not imply a value judgment—
it merely indicates that feedback tends to negate initial changes.

People from different disciplines perceive the role and strength of feedback
processes differently. Economists, for example, are typically preoccupied with mar-
ket forces that lead to equilibrium in the system. Therefore, the models are dom-
inated by negative feedback mechanisms, such as price increases in response to
increased demand. The work of ecologists and biologists, in contrast, is frequently
concerned with positive feedback, such as that leading to insect outbreaks or the
dominance of hereditary traits in a population.

Most systems contain both positive and negative feedback; these processes are
different and vary in strength. For example, as more people are born in a rural area,
the population may grow faster (positive feedback). However, as the limits of avail-
able arable land are reached by agriculture, the birth rate slows, at first perhaps for
psychological reasons but eventually for reasons of starvation (negative feedback).

Nonlinear relationships complicate the study of feedback processes. An example
of such a nonlinear relationship would occur when a control variable does not in-
crease in direct proportion to another variable but changes in a nonlinear way. Non-
linear feedback processes can cause systems to exhibit complex—even chaotic—
behavior.

A variety of feedback processes engender complex system behavior, and some of
these will be covered later in this book. For now, we develop a simple model, which
illustrates the concepts of state variables, flows, and feedback processes. Discussion
will then return to some “principles of modeling” that will help you to develop the
model building process in a set of steps.

Besides feedback, two other real-world properties make purely mental models
truly impractical. They are delays and randomness. The response to an action is
often delayed in time with the delayed effect arriving sometimes at the most in-
opportune time or too late for real effect. The time between the recognition of the
onset of a serious contagious disease and the implementation of a vaccine program
to stave off its worst effects can be great—so great that the negative effects of the
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vaccine only add to the overall maladies. Randomness exists in all living systems.
For example, the effect that air temperature has on the birth rate of mosquitoes car-
rying West Nile virus can be dramatic. However, trying to predict the critical air
tomorrow or over the next two weeks, a long time in the world of the insect, is best
modeled using historic temperatures with an added random increment. Then one
can examine the range of possible outcomes due to this randomness.

Not only is randomness something that one must deal with in models but it is
the source, for good or bad, of the new. Treating the need to consider randomness
in models as necessary when one wanted to represent the variations of say weather,
or temperature – the kinds of variables for which one could not and need not pro-
vide explicit models but whose behavior may appropriately be described by varia-
tion around some mean values. But randomness has a more important aspect: The
epistemologist Gregory Bateson has remarked that we could not have music and
the creation of novel forms unless we had a background of noise, of uncommitted
potential in randomness and disorder that awaited selection in the ordering of the
creative act. “All that is not information, not redundancy, not form and not restraints
– is noise, the only possible source of new patterns.”

1.5 Modeling in STELLA

STELLA2 was chosen as the computer language for this book on Dynamic
Modeling of Pestilence because it is a powerful, yet easy-to-learn tool. Readers
are expected to familiarize themselves with the many features of the program. Some
introductory material is provided in the appendix. Careful reading of the Help File
that accompanies the program is advised. Experiment with the STELLA software
and become thoroughly familiar with it.

To explore modeling with STELLA, we will develop a basic model of the dy-
namics of a contagious disease in a human population. Assume that initially, only
10 people are sick and that the contagion rate is 5 percent per day; that is, each day,
5 people become sick for every 100 sick people. For simplicity, assume also that
none of the sick people die. How many sick people will we have after 80 days?

In building the model, utilize all four of the graphical “tools” for programming
in STELLA. The appendix has a “Quick Help Guide” to the software. The appendix
also describes how to install the STELLA software and models of the book. Follow
these instructions. Then, double-click on the STELLA icon to open it.

On opening STELLA, you will be faced with the “High-Level Mapping Layer,”
which is provided to help you develop user interfaces for an existing model as you
become more experienced. For now, go to the “Diagram Layer”—that layer in which
we actually develop an executable model—and click on the downward-pointing ar-
row in the upper left-hand corner of the frame (Figure 1.2):

2 All models in this book were made with STELLA complete version 9.
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Fig. 1.2

The Diagram Layer displays the following symbols, “building blocks,” for
stocks, flows, converters, and connectors (information arrows), shown in Figure 1.3:

Fig. 1.3

Click on the globe (Figure 1.4) to access the modeling mode:

Fig. 1.4

In the modeling mode you can specify your model’s initial conditions and func-
tional relationships. The following symbol (Figure 1.5) indicates that you are now
in the modeling mode:

Fig. 1.5

Begin with the first tool, a stock (rectangle). In this example model, the stock will
represent the number of fish in your pond. Click on the rectangle with your mouse,
drag it to the center of the screen, and click again. Type in the word SICK. This is
what you see (Figure 1.6):

Fig. 1.6



12 1 The Why and How of Dynamic Modeling

This is the first state variable in the model. This is where you indicate and docu-
ment a state or condition of the system. In STELLA, this stock is known as a reser-
voir. In this model, the stock represents the number of sick people. This variable will
be updated at every step of time (DT) for which STELLA carries out a calculation
and stored in the computer’s memory throughout the duration of the model.

The SICK population is a stock, something that can be contained and conserved
in the reservoir. There are nonconserved state variables in other kinds of models,
for example temperature or price.

Inside the rectangle is a question mark. This is to remind you that you need
an initial or starting value for all state variables. Double-click on the rectangle. A
dialogue box will appear. The box is asking for an initial value. Add the initial value
you choose, (in our case, 10) using the keyboard or the mouse and the dialogue
keypad. When you have finished, click on OK to close the dialogue box. Note that
the question mark has disappeared.

Decide next what factors control (that is, add to or subtract from) the number of
sick individuals in the population. Because an earlier assumption was that the SICK
in your POPULATION never die, you have one control variable: GETTING SICK.
Use the flow tool (the right-pointing arrow, second from the left) to represent the
control variable, so named because they control the states (variables). Click on the
flow symbol, then click on a point about 2 inches to the left of the rectangle (stock)
and drag the arrow to SICK, until the stock becomes dashed, and release. Label the
circle GETTING SICK. This is what you will have (Figure 1.7):

Fig. 1.7

Here, the arrow points only into the stock, which indicates an inflow. But, you
can get the arrow to point both ways if you want it to. You do this by double-clicking
on the circle in the flow symbol and choosing “Biflow.” Biflow enables you to add
to the stock if the flow generates a positive number and subtract from the stock if
the flow is negative. In this model, of course, the flow GETTING SICK is always
positive and newly sick people flow only into SICK. The control variable GETTING
SICK is a uniflow: new sick per day.

It is a good practice to name the state variables as nouns (e.g., SICK) and the
direct controls of the states as verbs (e.g., GETTING SICK). The parameters are
most properly named as nouns. This somewhat subtle distinction keeps the flow and
stock definitions foremost in the mind of the beginning modeler.

Next you must know how the people in this population become sick—not the
biological details, just how to accurately estimate the number of new sick per an-
num. One way to do this is to look up the contagion rate for the particular disease on
the website of the Centers for Disease Control or recent publications in the scien-
tific literature. Suppose that we find the CONTAGION RATE is 5 percent per day, a
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number that can be represented as a transforming variable. A transforming variable
is expressed as a converter, the circle that is second from the right in the STELLA
toolbox. (So far GETTING SICK is a constant; later the model will allow this rate to
vary.) The same clicking and dragging technique that brought the stock to the screen
will bring up the circle. Open the converter and enter the number of 0.05 (5/100).
Down the side of the dialogue box is an impressive list of built-in functions that are
useful for more elaborate models. We’ll use some of these built-in functions later on
in the book.

At the right of the STELLA toolbox is the connector (information arrow). Use the
connector to pass on information (about the state, control, or transforming variable)
to a circle, to the control (the transforming variable). In this case, you want to pass
on information about the CONTAGION RATE to GETTING SICK. Once you draw
the information arrow from the transforming variable CONTAGION RATE to the
control and from the stock SICK to the control, open the control by double-clicking
on it. Recognize that CONTAGION RATE and SICK are two required inputs for the
specification of GETTING SICK. Note also that STELLA asks you to specify the
control: GETTING SICK = . . . “Place right-hand side of equation here.”

Click on CONTAGION RATE, then on the multiplication sign in the dialogue
box, and then on SICK to generate the equation

GETTING SICK = CONTAGION RATE ∗ SICK (1.1)

Click on OK, and the question mark in the control GETTING SICK disappears.
Your STELLA diagram should now look like Figure 1.8:

SICKGETTING SICK

CONTAGION RATE

Fig. 1.8

Next, set the temporal (time) parameters of the model. These are DT (the time
step over which the stock variables are updated) and the total time length of a model
run. Go to the RUN pull-down menu on the menu bar and select Time Specs. A
dialogue box will appear in which you can specify, among other things, the length
of the simulation, the DT, and the units of time. For this model, choose DT = 1,
length of time = 20, and units of time = days.

To display the results of the model, click on the graph icon and drag it to the
diagram. If you wanted to, you could display these results in a table by choosing
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the table icon instead. The STELLA icons for graphs and tables (Figure 1.9) are,
respectively,

Fig. 1.9

When you create a new graph pad, it will open automatically. To open a pad
that had been created previously, just double-click on it to display the list of stocks,
flows, and parameters for the model. Each one can be plotted. Select SICK to be
plotted; with the � arrow, add it to the list of selected items. Then set the scale
from 0 to 80 and check OK. You can set the scale by clicking once on the variable
whose scale you wish to set and then on the arrow next to it. Now you can select the
minimum on the graph, and the maximum value will define the highest point on the
graph. Rerunning the model under alternative parameter settings will lead to graphs
that are plotted over different ranges. Sometimes these are a bit difficult to compare
with previous runs, because the scaling automatically changes unless fixed by the
modeler.

Would you like to see the results of the model so far? Run the model by selecting
RUN from the pull-down menu. You should see the following (Figure 1.10):
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Fig. 1.10

The graph shows exponential growth of the sick population in your population.
This is what you should have expected. It is important to state beforehand what
results you expect from running a model. Such speculation builds your insight into
system behavior and helps you anticipate (and correct) programming errors. When
the results do not meet your expectations, something is wrong and you must fix it.
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The error may be either in your STELLA program or your understanding of the
system that you wish to model—or both.

What do you really have here? How does STELLA determine the time path of the
state variable? At the beginning of each time period, starting with time = 0 days (the
initial period), STELLA looks at all the components for the required calculations.
The values of the state variables will form the basis for these calculations. Only
the variable GETTING SICK depends on the state variable SICK. To estimate the
value of GETTING SICK after the first time period, STELLA multiplies 0.05 by the
value SICK (at time = 0) or 10 (provided by the information arrows) to arrive at 0.5.
From time = 1 to time = 2, the next DT, STELLA repeats the process and continues
through the length of the model. When you plot your model results in a table, you
find that, for this simple model, STELLA calculates fractions of SICK from time =
1 onward. This problem is easy to solve; for example, by having STELLA round the
calculated number of SICK—there is a built-in function that can do that—or just by
reinterpreting the population size as “thousands of SICK.”

This process of calculating stocks from flows highlights the important role
played by the state variable. The computer carries that information—and only that
information—from one DT to the next, which is why it is defined as the variable
that represents the condition of the system.

You can drill down in the STELLA model to see the parameters and equa-
tions that you have specified and how STELLA makes use of them. Click on the
downward-pointing arrow at the left of your STELLA diagram.

The equations and parameters of your models are listed here. The model equations
are also listed at the end of each chapter of this book so you can more easily recreate
the models. Note how the SICK population in time period t is calculated from the
population one small time step, DT, earlier and all the flows that occurred during
that DT.

The model of the SICK population dynamics is simple. So simple, in fact, that
it could be solved with pencil and paper, using analytic or symbolic techniques.
The model is also linear and unrealistic. Next, add a dimension of reality—and
explore some of STELLA’s flexibility. This may be justified by the observation that,
as populations get large, mechanisms set in that influence the rate of GETTING
SICK.

To account for feedback between the size of the SICK population and its rate of
GETTING SICK, an information arrow is needed to connect SICK with CONTA-
GION RATE. The connection will cause a question mark to appear in the symbol
for CONTAGION RATE. The previous specification is no longer correct; it now
requires SICK as an input. We will make this input indirectly. First we construct
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another converter called AWARENESS LEVEL. This level is a function of the num-
ber of SICK, let’s say, equal to 0.1 times the number of SICK. This AWARENESS
LEVEL then affects the CONTAGION RATE, the greater the awareness of the dis-
ease as determined by the sheer number of SICK, the lower the CONTAGION RATE
(Figure 1.11).

SICK
GETTING SICK

?

CONTAGION RATE AWARENESS LEVEL

Fig. 1.11

Open CONTAGION RATE. Click on the required input AWARENESS LEVEL.
The relationship between AWARENESS LEVEL and CONTAGION RATE must be
specified in mathematical terms, or at least, you must make an educated guess about
that relationship. An educated guess about the relationship between two variables
can be expressed by plotting a graph that reflects the anticipated effect one variable
(AWARENESS LEVEL) will have on another (CONTAGION RATE). The feature
used for this is called a graphical function.

To use a graph to delineate the extended relationship between CONTAGION
RATE and AWARENESS LEVEL, open CONTAGION RATE and enter AWARE-
NESS LEVEL as the graph driver. Click on “Become Graphical Function” and set
the limits on the AWARENESS LEVEL at 0 and 10. Set the corresponding limits
on the CONTAGION RATE at 0 and 0.10, to represent a change in this rate when
the AWARENESS LEVEL is between 0 and 10. (These are arbitrary numbers for a
made-up model.) Finally, use the mouse arrow to draw a curve from the maximum
CONTAGION RATE an AWARENESS LEVEL of 0 to the point of 0 birth rate an
AWARENESS LEVEL of 10.

Suppose a survey of the AWARENESS LEVEL and CONTAGION RATE were
taken at three points in time. The curve you just drew goes through all three points.
You can assume that, if a census had been taken at other times, it would show a
gradual transition through all the points (Figure 1.12). This sketch is good enough
for now. Click on OK.

Before you run the model again, consider what the results will be. Think of the
graph for SICK through time. Generally, it should rise, but not in a straight line. At
first the rise should be steep: the initial population is only 10, so the initial CONTA-
GION RATE should be high. Later it will slow down. Then, the population should
level off at 100 (10 times the maximum AWARENESS LEVEL), when SICK would
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Fig. 1.12

be so great that new contagion tends to cease. Run the model. Indeed, the results
(Figure 1.13) are consistent with our expectation—and so they should be!
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Fig. 1.13

This problem has no analytic solution, only a numerical one. You can continue to
study the sensitivity of the answer to changes in the graph and the size of DT. You
are not limited to a DT of 1. Generally speaking, a smaller DT leads to more accurate
numerical calculations for updating state variables and, therefore, a more accurate
answer. Choose “Time Specs” from the RUN menu to change the DT. Change the
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DT to reflect ever-smaller periods until the change in the critical variable is within
measuring tolerances. The best guide in the determination of the proper modeling
time step (DT) is the “half rule.” Run the model with what appears to be an ap-
propriate time step, then halve the DT and run the model again, comparing the two
results of important model variables. If these results are judged to be sufficiently
close, the first DT is adequate. One might try to increase the DT if possible to make
the same comparison. The general idea is to set the DT to be significantly smaller
than the fastest time constant in the model, but it is often difficult to determine this
constant. There are exceptions. Sometimes the DT is fixed at 1 as the phenomena
being modeled occur on a periodic basis and data are limited to this time step. For
example, certain insects may be born and counted on a given day each year. The DT
is then 1 year and should not be reduced. The phenomenon is not continuous.

You may also change the numerical technique used to solve the model equa-
tions. Euler’s method is chosen as a default. Two other methods, Runge–Kutta-2
and Runge–Kutta-4, are available to update state variables in different ways. These
methods will be discussed later.

Start with a simple model and keep it simple, especially at first. Whenever pos-
sible, compare your results against measured values. Complicate your model only
when your results do not predict the available experimental data with sufficient ac-
curacy or when your model does not yet include all the features of the real system
that you wish to capture. For example, we realize that the SICK do not remain so
forever. Assume that they are sick for 25 days (SICK TIME) and then they get well.
What is the new steady state level of SICK under these circumstances? To find the
answer to this question, define an outflow from the stock SICK and name it GET-
TING WELL, the number of SICK who recover per day. There are at least two ways
to evaluate this part of the model. We could just add the outflow GETTING WELL
and then feed the SICK into it, and define GETTING WELL as 1/25 times the cur-
rent level of SICK. This means that each day, 1/25th of the current level of SICK get
well, and therefore, roughly, the average person would be sick for 25 days. Let us
make this form of the addition first. Your model should look like this (Figure 1.14):

SICK
GETTING SICK

~
CONTAGION RATE AWARENESS LEVEL

GETTING WELL

SICK TIME

Fig. 1.14
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Now the SICK disappear from the stock into a “cloud.” You are not explicitly
modeling where they go. Run the model again and find that the steady state number
of SICK has dropped to 77 after about 90 days.

Now let us find a way to run a more accurate form of the model by converting
our stock of SICK into a conveyor. A conveyor is really a symbol for a long series
of connected stocks, in our case each with a one-day residence time. A conveyor
must have the time spent in it, the Transit Time explicitly defined (here, 25 days).
Use the dynamite symbol in the STELLA menu to remove the connector from SICK
to GETTING WELL and the converter SICK TIME. When you dynamite a model
component, put the fuse of the dynamite precisely over the object to be removed.
For information arrow removal, put the fuse directly over the circle at the end of the
arrow.

Open the stock SICK and click on conveyor, and then set Transit Time equal to
25. The initial value of the conveyor is set at 10, and STELLA will distribute this
value evenly over its 25 time periods. If you want a more specific initial distribution,
you must enter a value for each of the time periods, separated by a comma. For
example, a conveyor with initial values of 2,1,3,.. would have a 2 as its initial value
for the first time interval, a 1 for the second time interval, a 3 for the third, and so on.

Here is how your model should look now (Figure 1.15):

SICK
GETTING SICK

~
CONTAGION RATE AWARENESS LEVEL

GETTING WELL

Fig. 1.15

Run the model and note the surprising result: damped cycling of the number
of SICK. This is due to the explicit time delays introduced by the conveyor. Such
delays are ever-present in the real world and introduce great complexity into the
results of dynamic models. Here is a long-term picture of the results showing a
long-term steady state of about 79 SICK, slightly higher than our previous, less
accurate model (Figure 1.16):

The stock can also be turned into a queue or an oven. An oven allows entities
to remain in a stock for a predetermined duration before they get released into a
flow, and queues allows them to be queued up in their order of arrival. Each of
these state variable forms is explained in the STELLA help file that comes with the
full-implementation program.

You can of course continue to expand the model indefinitely, and the process is
so easy and rewarding that you will be inclined to do so. But the goal of model is to
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create the simplest model that answers the questions you posed before you began!
Otherwise, you will likely be adding unneeded complexity (and valuable effort and
processing time) to your model.

As the model grows, it will contain an increasing number of submodels, or mod-
ules. You may want to protect some of these modules from being changed. To do
this, click on the “Sector” symbol (to the left of the “A” in the next set of pictures)
and drag it over the module or modules you want to protect. To run the individual
sectors, go to “Sector Specs” in the RUN pull-down menu and select the ones that
you wish to run. The values of the variables in the other sectors remain unaffected.

By annotating the model, you can remind yourself and inform others of the as-
sumptions underlying your model and its submodels. This is important in any model,
but especially in larger and more complicated models. To do this, click on the “Text”
symbol (the letter A) and drag it into the diagram. Then type in your annotation.
Notes can be left in the graph as well. Just click the “?”.

The tools mentioned here are likely to prove useful when you develop more com-
plicated models and when you want to share your models and their results with
others. STELLA contains many helpful tools, which we hope you will use exten-
sively. You will probably want to explore such features as “Drill Down” (visual
hierarchy), “Space Compression,” “High-Level Mapping Layer,” “Arrays,” and the
“Authoring” features of STELLA. The appendix provides a brief overview of these
and other features.

Make thorough use of your model, running it over again and always checking
your expectations against its results. Change the initial conditions and try running
the model to its extremes. At some point, you will want to perform a formal sensi-
tivity analysis. The excellent sensitivity analysis procedures available in STELLA
are discussed later.
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1.6 Analogy and Creativity

If necessity is mother to invention, then analogy is father. Many new insights are
generated by learning something from the structure or behavior of one entity, which
is well understood, about another entity of which we have less knowledge. Leonardo
da Vinci’s observations of the forms and function of bones, tendons, and muscles of
the human body, illustrated in his anatomical drawings, is analogous to the beam-
bending device with supports and levers that he invented3. Newton’s discovery of
the law of gravity is thought to have been spurred by the realization that the ap-
ple and the moon are victims of the same forces, each within a different situation.
Charles Babbage’s invention of the “difference engine” that ultimately gave rise to
the computer evoked images of a thinking machine4. Observations of the micro-
scopic hierarchies of biological materials, ranging from the architecture of minerals
and proteins in rats to the layers in chitin fibers in beetles are now used as biolog-
ical analogues in the development of new, biomimicked materials or construction
methods5. Recent attempts to generate artificial intelligence, using insight about the
workings of the human brain, could be seen as still another extension of the human–
machine analogy, this time in the realm of information processing rather than the
purely material world6.

Much of human reasoning is based on sparse data and the identification and com-
parison of patterns, instead of logical inference. We look at a new experience and
try to match it with similar experiences in the past. A set of experiences and the
patterns they form provide the basis for generalizations that then influence our deci-
sions. Formation of analogies is a method to establish and organize correspondences
among experiences and make them available for retrieval in the creative problem
solving process.

There is often no strong logical base for mental models—at a deeper level, it is
claimed, all thinking is metaphorical7.

The interpolation and extrapolation among analogous patterns help form men-
tal models that are often inadequate to provide a comprehensive perspective on the
many interrelated aspects of systems and to anticipate their behavior—especially

3 Mazlish, B., The Fourth Discontinuity: The Co-evolution of Humans and Machines, Yale
University Press, New Haven, Connecticut, 1993.
4 Penrose, R., The Emperor’s New Mind: Concerning Computers, Minds, and the Laws of Physics,
Penguin Books, 1989.
5 Amato, I., Heeding the Call of the Wild, Science, Vol. 253, 1991, pp. 966–968.
Rubner, M. Synthetic Sea Shells, Nature, Vol. 423, 26 June 2003, pp. 925–926.
6 Newby, T.J., P.A. Ertmer, and D.A. Stepich, Instructional Analogies and the Learning of Con-
cepts, Educational Technology Research and Development, Vol. 48, No. 1, 1995, pp. 5–18.
7 Lakoff, G. and M. Johnson, Metaphors We Live By, University of Chicago Press, Chicago, 1981,
and:

—————, Philosophy in the Flesh: The Embodied Mind and Its Challenge to Western
Thought, Basic Books, New York, 1999.
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when we encounter novel situations8. While it is easy to show that mental models
can be quite inaccurate, most of us do trust them in a wide range of (inappropriate)
settings. This is why we must develop formal models. We must complement our
thought processes and to reflect upon the workings and outcomes of formal mod-
els to sharpen our thinking. Formal models are based on an expressed logic, and
they can form an analogic base—a repertoire of relationships on which to draw for
problem solving.

Unfortunately, at least in their early years of education and employment, most
people lack the analogic base of experience to draw on for their problem solving.
This presents a kind of dilemma: if analogy is useful in problem solving and prob-
lem solving is fostered by drawing on analogies, how does one get the experience
to build the analogic repertoire? The dilemma suggests an education plan where
the analogic process itself is taught along with carefully structured problem solv-
ing. One may be exposed to classes of problems, each capable of being solved by
generally the same analogic form. Later, the flaws of following the analogy too far
can be pointed out and perhaps multiple analogies—each leading to a good solution
form—can be demonstrated.

In any event, our book is structured to offer you a large set of modeling expe-
riences, hoping that this set forms a sufficient experience base to launch you well
into the world of modeling. With this set of modeling experiences, new problems
can at first be broken into pieces that suggest analogies to items in this experience
base. For example, our earlier models have analogies with water held temporarily
in lakes, with the stock of capital in an industry, with a general population growth
model, with a mechanical production line—the list seems endless. Once analogies
are formed, the new problem begins to look solvable. As the model matures, the ex-
act connection to the original analogies may be forgotten and a new modeling form
may have been created.

1.7 STELLA’s Numeric Solution Techniques

In this section we provide a brief description of, and basic mathematical background
information on, the numeric techniques available in STELLA to solve the equations
that define a model. Knowing about these techniques will be important in under-
standing how the computer arrives at model results, the accuracy of your results,
and methods to improve accuracy.

From the models above we have seen that STELLA calculates the value of a
stock in a given time period t based on the value of that stock a time step earlier plus
the net of the inflows and outflows that occur over that time step. Generally, if X(t)
is the stock in time period t, F(t, X(t), .) are net flows that depend on time, the size
of the stock X(t) itself and possibly other parameters in the model (denoted by . ),
and small time steps DT then

8 Tversky, A. and D. Kahneman, The Framing of Decisions and the Psychology of Choice, Science,
Vol. 211, 1981, pp. 453–458.
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X(t) = X(t−DT)+F(t,X(t), ·) ∗ DT (1.2)

Given an initial value X(0), we can calculate X(t) at any point in time as the sum of
all the flows that occurred over all the small time steps DT between t = 0 and t:

X(t) = X(0)+∑t
i=0 F(t,X(t), ·) ∗ DT (1.3)

For example, in these models the number of SICK individuals today is a function of
the population size one small time step earlier and the net additions that took place
over that time step. This is the essence of equation (1.2). Equation (1.3) states that
the number of SICK individuals after 140 days is the original population size plus
all the net additions over the entire course of 140 days.

In these models, we chose DT = .25 and we specified in the Time Specs menu
the “Numeric Method” to be Euler’s method. Choosing Euler’s method means that
we used an equivalent to equation (1.2) to update the population size four times over
the course of each day (see, for example, equation (1.3)).

Besides Euler’s method, two other numeric solution techniques are available in
STELLA. One of them is Runge-Kutta 2. With this method, stocks are updated in
two steps as follows. First, a net flow F1 over the interval DT is calculated as with
Euler’s method:

F1 = F(t,X(t), ·) ∗ DT (1.4)

Next, a second estimate F2 is generated by moving a small time step DT into the
future:

F2 = F(t+DT,X(t)+F1, ·) ∗ DT (1.5)

These two estimates are then used to calculate the stock X(t) as

X(t) = X(t−DT)+1/2 (F1+F2) (1.6)

The second alternative to Euler’s method that is available in STELLA for numeric
approximation of flows and the updating of stocks is Runge-Kutta 4. Analogously to
Runge-Kutta 2, Runge-Kutta 4 uses a set of four intermediate estimates to calculate
F(t, X(t), ·):

F1 = F(t,X(t), ·) ∗ DT (1.7)
F2 = F(t+DT/2,X(t)+1/2F1, ·) ∗ DT (1.8)
F3 = F(t+DT/2,X(t)+1/2F2, ·) ∗ DT (1.9)
F4 = F(t,X(t)+F3, ·) ∗ DT (1.10)

A weighted sum of those four estimates is then used to calculate the stock:

X(t) = X(t-DT)+1/6 (F1+2 ∗ F2+2 ∗ F3+F4) (1.11)

Numeric solution techniques such as the ones described above are often also
called solution algorithms. How do these three algorithms compare with each other,
and how does the choice of algorithm influence model results? Before we give an
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answer to this question, note that equation (1.6) can be used to express the net flow
F(t, X(t), .) that occurs over a small time interval DT as the difference between the
stock size at the beginning and end of a period of time. For example, equation (1.2)
yields:

X(t)−X(t−DT)
DT

= F(t, X(t), ·) (1.12)

Equation (1.12) is known as a difference equation. It assumes that the stock X is
updated over a discrete time interval DT.

Let us now define

limDT→0 =
X(t)−X(t−DT)

DT
≡ dX

dt
(1.13)

then
for DT → 0 we have

dX
dt

= F(t,X(t), ·) (1.14)

A calculation of dX/dt such as in (1.13) assumes an infinitesimally small time inter-
val, and is known as a differential equation. The differential equation can be used to
define the change in a stock X(t) as

dX = F(t,X(t), ·)dt (1.15)

Analogously to equation (1.3), the stock X(t) in time t can be calculated for a given
initial value of X(0) by summing up all the flows that occurred between time t = 0
and t:

x(t) = X(0)+
t∫

0

F(u,X(u), ·)du (1.16)

With these mathematical insights in mind, let us return to the comparison of the
different numeric solution methods available in STELLA. If your model deals with
changes in a system that is defined over continuous time, then a choice of DT sig-
nificantly smaller than DT = 1 is required. Ideally, one would want DT to become
infinitesimally small to do justice to the fact that time changes continuously, in in-
finitesimally small steps.

STELLA requires DT > 0 and will therefore solve all differential equations as
difference equations. However, making DT very small gets us closer to a represen-
tation of changes in continuous time. Unfortunately, for a given numeric solution
method and a given length of simulation the number of calculations needed to up-
date the stocks increases as the size of DT is reduced.

If a system contains nonlinearities such as in Figure 1.17 and the DT is signifi-
cantly larger than zero, approximation errors occur simply because the model keeps
“jumping ahead in time” faster than is appropriate to keep track of the changes in
system behavior that occur over the length of a DT. A smaller DT will minimize
these errors but slow down the run of the model.

At a given DT, the Runge-Kutta 2 and Runge-Kutta 4 solution methods are typi-
cally more accurate than Euler’s method because of the intermediate estimates made
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of F(t). Euler’s method is fastest and Runge-Kutta 4 is slowest, however. This is
because at a given choice of DT, more computational steps are needed with Runge-
Kutta 4 then with Runge-Kutta 2, and more with Runge-Kutta 2 than with Euler’s
method.

F(t, X(t), ⋅) 

Estimated value for
F(t, X(t), ⋅) over a length
of DT

 

Estimated value for
F(t, X(t), ⋅) over a
length of DT

DT

Time

Fig. 1.17

Given the number of equations in each of the models of this book and given the
use of state-of-the art computers, computation time is often not much of an issue.
But if your computer is slow and your model is large, the choice of DT and solution
method may have a significant impact on computation time. Your choice of DT and
solution method will likely depend on the level of accuracy that you are willing
or able to sacrifice for computation time. As we have mentioned before, a rule of
thumb for this choice is to continue to decrease DT (or at a given DT switch to
a more accurate solution method) until the changes in the results of your model
fall within an acceptable limit. If for example, you reduce the DT of your model
from .25 to .125 and the results of your model differ by less than a percent, while
your input parameters are accurate only to about ± 5% and the model takes now
twice as long to run, you may decide that cutting the DT was not worth the extra
computational effort.

If your model is defined over discrete time, then you should choose a DT that is
consistent with the length of the discrete time step. Experiment then with the choice
of solution method to improve model accuracy.

Let us return to the disease model of Section 1.5 and investigate the sensitivity of
the model results to the frequency at which we update the stock SICK in that model.
Assume that the specification of this model presumes that the equations are defined
over continuous time. The equations for GETTING SICK and GETTING WELL
are thus differential equations (albeit they will be solved for DT > 0 and therefore
be treated by STELLA as difference equations). For the model runs above, DT was
set to .25. Generally speaking, a smaller DT leads to more accurate numerical cal-
culation for updating state variables and, therefore, a more accurate answer. Also
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remember that if the flow equations must be understood as differential equations,
DT needs to be sufficiently small.

Choose Time Specs from the RUN menu to change DT. Change DT to reflect
ever-smaller periods until the change in the critical variable is within acceptable
tolerances. Start with a DT = 1 and reduce it to 0.5, 0.25, 0.125 and so forth for
subsequent runs, each time cutting it into half of its previous value. Before each run
note the values of your state variable at the end of the previous run, as STELLA
will erase the graphs if the DT is changed. To lock graphs, and thus not lose model
results when you change the DT, click on the lock in the lower right-hand corner
of the graph pad. This preserves the results. Then double-click on the graph pad to
open its dialog box, click on the upward-pointing triangle to generate a new page for
the graph pad, and select the variable(s) to be plotted. Now, one page of the graph
pad contains the results for one choice of DT; the other contains the results after
changing DT.

To get an even more accurate reading of your model results at each point in time,
create a table. Choose the table icon in STELLA, place it in the model diagram,
double-click anywhere on the table and select SICK as the input, then double-click
on the head of the column where it reads “SICK” and choose “Free Float” as the
“Precision.” With this specification, your table will report the results with an accu-
racy of more than the two decimal places that would otherwise be listed. (In this
case, though, reporting the number of individuals who are sick with more accuracy
than whole numbers makes little sense, unless the unit of measurement is, for exam-
ple, in millions of people.) However, irrespective of the level of precision at which
you report the results, the computation itself is not affected by that choice. Click
OK and run the model. Note the results (perhaps lock the results of this page of
the table, much as you would lock results on a page of a graph), and then proceed
to change the DT to a smaller value. Compare the results from one model run to
the next. Repeat this process for different solution methods, and observe changes in
model errors. Other sources of errors are discussed in more detail in the following
section.

1.8 Sources of Model Error

Error is associated with virtually every aspect of a model. As we have discussed
above there are errors involved in the algorithms—and sometimes even at the hard-
ware level of the computer—used to numerically solve the model. A set of errors
is also associated with the conceptualization of the model and is the topic of this
section9.

Any model is an abstraction. In the process of making this abstraction, a limited
set of system components and their interactions are considered. Features that are
irrelevant to the system’s dynamics over the temporal and spatial range or to the

9 The discussion of sources of errors presented in this section follows Westervelt (2001).
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questions that the model addresses are disregarded. Errors of exclusion come from
overlooking a particular system feature that does have a relevant influence on the
dynamics of the system components that are explicitly modeled, and thus has a rel-
evant influence on the results of the model. A model of the impacts of a disease on
the dynamics of an animal population may assume constancy of the environment
within which the animals live. However, the population itself may alter its environ-
ment, such as through removal of prey species. As a consequence, an increase in
morbidity or mortality in the population on which our model concentrates may trig-
ger fundamental changes in the ecosystem and possibly make the various parameters
on which the model is based inadequate to capture what is really going on.

Errors of inclusion are associated with explicitly modeling aspects of the system
that are irrelevant for understanding its dynamics, and have no bearing on model
result. Unnecessary effort goes into those parts without corresponding gain. At a
given modeling budget or time frame available for the completion of the model,
including unnecessary parts may mean that the important parts are not modeled to
their fullest detail or extent, and that those essential parts are therefore more prone
to inaccuracies or errors.

Models are often based on scientific facts that have been established on the basis
of controlled experiments, as we have discussed in the previous chapter. Models
may also include less formal knowledge of stakeholders, derived on the basis of
their personal experience, anecdotal information, or collective heritage. In either
case, the resolution or temporal scale to which the formal or informal knowledge
applies may be inconsistent with the resolution and scale of the computer model.
Errors of interpolation and extrapolation may exist by applying formal or informal
knowledge outside the domains for which the knowledge has been established.

There are two main errors of inappropriate temporal specification. One is caused
from not running the model long enough. When the model contains nonlinearities
and time lags, some of the dynamics may not unfold within a short time frame.
Running the model over an extended temporal range can easily reduce errors of
inappropriately truncating model dynamics.

The other main error associated with the temporal specification of the model is
related to the choice of DT. Frequently, scientific studies of marine systems make
use of differential equations and assume that DT is infinitesimally small. The choice
of differential equations is driven by the desire to solve for key system properties,
such as their steady state conditions. Those solutions are derived analytically by
applying calculus of variations. Using differential equations from scientific studies
within a computer model that numerically solves for the system states at each period
of time means that DT > 0. This leads to inconsistencies with the original studies on
which the model is based, and to approximation errors as discussed above. Choosing
very small DT for modeling differential equations and exploring model sensitivity
to the choice of DT can help reduce errors of inappropriate choice of DT.

Similar to errors of inappropriate temporal specifications, there are two main
errors of inappropriate spatial specification—spatial boundary effects and inappro-
priate spatial resolution. Boundary effects are related to errors of exclusion and are
caused by assuming that what lies outside the boundaries drawn around the modeled
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area does not influence the dynamics within the area. This assumption is obviously
quite critical if we wish to model, for example, a nature preserve that is temporar-
ily visited by highly mobile species. The value that the preserve provides for those
species may be rather limited if residence times within the preserve are small and
human-induced mortality rates outside the preserve are very high. To reduce errors
from spatial boundary assumptions, spatial modelers often draw spatial boundaries a
bit larger than they know they actually need or set up special rules for the processes
along the boundary (to mimic the interactions between the system that is explicitly
modeled with what lies outside that system).

Errors of inappropriate spatial and temporal resolution can be related to each
other. For example, a model used to trace the movement of individuals in a popu-
lation may subdivide the area into adjacent grid cells and then specify the decision
rules by which movement from one cell to the next occurs. If the population is
highly mobile, movement in a given time step can be further than the resolution of
the space, and errors of spatial resolution result.

The computer model requires that initial conditions and parameter values be
specified for a point in time. Those initial conditions and parameter values are of-
ten derived on the basis of field or laboratory measurements, and they are typically
fraught with errors. Good empirical work should report confidence intervals for the
measurements, and a good model should explore a system’s dynamics at least within
the reported range of confidence intervals to minimize errors of model inputs.

Once the model is specified, the difference equations are solved by the computer
in a specific order. To see the order for execution of equations in your STELLA
model, navigate with the downward-pointing triangle to the model’s equation win-
dow, then choose “Equation Prefs” from the Equation pull-down menu and select
“Order of Execution.” There is nothing you can do to influence this order within
STELLA once all your equations are defined, but note that the choice of order may
introduce errors of aninappropriate order of execution. For example, if in a spatial
model of migrating individuals the death rate is a function of population density and
density is computed before migration occurs, then death rates (deaths per time unit)
will be different from the case in which density is calculated after migration. Keep
this in mind when you specify your model, and if necessary introduce time lags to
achieve the desired order in calculations.

Your modeling effort should start with a clear question in mind. The choices of
system components that you wish to model, spatial and temporal resolution, data
sources, solution method, and DT should be driven by that question. Avoid having
these choices be driven by the answer that you expect and wish to generate.

At some point of your modeling career, you may find that you are so excited by
your model results that you overextend the conclusions; for example, by describing
the dynamics you see with words such as never or always. Even if you have done
all you can to base your model on the best available knowledge, earlier discussion
of the various sources of errors should highlight the danger of making errors by
drawing inappropriate conclusions.

The following section provides a set of guidelines designed to facilitate model
development and help you avoid errors. An important recommendation is to explore
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the sensitivity of model results to different model specifications. Later chapters will
take up the issue of sensitivity analysis in more detail.

If enough data are available, check your model’s ability to use known initial
data and “predict” known recent data for the same variables. This calibration and
verification step lets you project scenarios with greater certainty.

1.9 The Detailed Modeling Process

Following is a set of easy-to-follow but detailed modeling steps. These steps are not
sacred: they are intended as a guide to get you started in the process. You will find
it useful to come back to this list once in a while as you proceed in your modeling
efforts.

1. Define the problem and the goals of the model. Frame the questions you want
to answer with the model. If the problem is a large one, define subsystems of
it and goals for the modeling of these subsystems. Ask yourself: Is my model
intended to be explanatory or predictive?

2. Designate the state variables. (These variables will indicate the status of the
system.) Keep it simple. Purposely avoid complexity in the beginning. Note the
units of the state variables.

3. Select the control variables—the flow controls into and out of the state variables.
(The control variables are calculated from the state variable in order to update
them at the end of each time step.) Note to yourself which state variables are
donors and which are recipients with regard to each of the control variables.
Also, note the units of the control variables. Keep it simple at the start. Try to
capture only the essential features. Put in one type of control as a representative
of a class of similar controls. Add the others in step 10.

4. Select the parameters for the control variables. Note the units of these parame-
ters and control variables. Ask yourself: Of what are these controls and their
parameters a function?

5. Examine the resulting model for possible violations of physical, economic, and
other laws (for example, any continuity requirements or the conservation of
mass, energy, and momentum). Also, check for consistency of units. Look for
the possibilities of division by zero, negative volumes or prices, and so forth.
Use conditional statements if necessary to avoid these violations.

6. To see how the model is going to work, choose some time horizon over which
you intend to examine the dynamic behavior of the model, the length of each
time interval for which state variables are being updated, and the numerical
computation procedure by which flows are calculated. (For example, choose in
the STELLA program Time Step = 1, time length = 24.) Set up a graph and
guess the variation of the state variable curves before running the model.

7. Run the model. See if the graph of these variables passes a “sanity test.” Are
the results reasonable? Do they correspond to known data? Choose alternative
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lengths of each time interval for which state variables are updated. Choose al-
ternative integration techniques. (In the STELLA program, for example, reduce
the time interval DT by half and simulate the mode again to see if the results
are the same.)

8. Vary the parameters to their reasonable extremes and see if the results in the
graph still make sense. Revise the model to repair errors and anomalies.

9. Compare the results to experimental data. This may mean shutting off parts of
your model to mimic a lab experiment, for example.

10. Revise the parameters, perhaps even the model, to reflect greater complexity
and to meet exceptions to the experimental results, repeating steps 1–10. Frame
an enlarged set of further questions. Consider the analogies to your model. Can
these analogies further inform your model?

Do not worry about applying all of these steps in this order as you develop your
models and improve your modeling skills. Do check back to this list now and then
to see how useful, inclusive, and reasonable these steps are.

You will find that modeling has three possible general uses. First, you can experi-
ment with models. A good model of a system enables you to change its components
and see how these changes affect the rest of the system. This insight helps you ex-
plain the workings of the system you are modeling. Second, a good model enables
prediction of the future course of a dynamic system. Third, a good model stimulates
further questions about the system behavior and the applicability of the principles
that are discovered in the modeling process to other systems.

Remember the words of Walter Deming: “All models are wrong. Some are use-
ful.” To this we add: “No model is ever complete.”

1.10 Questions and Tasks

1. We have stated that the key attributes of a model aspiring to reality are feedbacks,
delays, and randomness. The earlier models show the feedbacks and delays. Can
you add uniform randomness to the multiplier in AWARENESS LEVEL?

2. Add an explicit delay in the GETTING SICK control variable in Figure 1.14.
Try different levels of delay to see if you can get a permanent cycle in the SICK
population.

3. Suppose that AWARENESS was a function in part of the SICK TIME. How
would you represent such a possibility in the model in Figure 1.15?



Chapter 2
Basic Epidemic Models

2.1 Basic Model

In this chapter we follow up on our discussion from Chapter 1 and model the spread
of a disease through a population, gradually adding new features. Epidemics, such
as the one modeled here, are of great concern to human societies. The complex
interrelationships of biological, social, economic and geographic relationships that
drive or constrain an epidemic make dynamic models an invaluable tool for the
analysis of particular diseases. The model developed here is fairly idealized but can
be applied easily to real populations affected by a disease1.

Assume that an initial population of 1,000,000 (per 100 square miles) is not im-
mune to a contagious disease. The rate at which they become sick is assumed to be a
function of the product of the nonimmune population times the contagious plus sick
population. This equation for contagion is the simplest form that meets the obvious
requirements that the contagion rate must be zero if either the immune or the con-
tagious populations are zero. The contagious population is assumed to become the
sick population for a week and then, with a survival rate of 0.9, the survivors join
the immune population. The nonimmune population is augmented with a constant
birth rate of 5000/week. The people in this model do not die of other causes.

Setting the contagion rate proportional to the product of the nonimmune and
the contagious and sick population is arbitrary. The form is suspiciously similar

1 See Spain, J.D. 1982. BASIC Microcomputer Models in Biology, Addison-Wesley, Reading,
Massachusetts, p. 118. For some realism, see the data on the Black Death in 1300s Italy (Curtis H.
and N. Barnes. 1985. Invitation to Biology, Worth Publishers, New York.) These data show a
declining peak as people became aware of the vector, or those most likely exposed to the vec-
tor died off, or the naturally immune were selected for and that immunity was inheritable. The
four occurrences of the plague in that century had a period of about eleven years. For chaotic epi-
demics, see: Schaffer, W. 1985. Can Nonlinear Dynamics Elucidate Mechanisms in Ecology and
Epidemiology, IMA Journal of Mathematics Applied in Medicine and Biology, Vol. 2, pp. 221–252.
Schaffer shows how a cyclic contact coefficient can produce chaos in this form of epidemic model.

B. Hannon and M. Ruth, Dynamic Modeling of Diseases and Pests, 31
Modeling Dynamic Systems,
c© Springer Science+Business Media LLC 2009



32 2 Basic Epidemic Models

to the way chemical reactions can be specified with the law of mass action2—the
concentration of a chemical product (e.g. number of moles of a substance per cubic
meter air) is computed as the product of the concentrations of the reactants and
a reaction rate. Here, we convert the currently nonimmune population into a sick
population:

SICK RATE = CONTACT RATE * (CONTAGIOUS+SICK) * NONIMMUNE.
(2.1)

The structure of the complete model is shown in Figure 2.1. Initialize this
model so you have a starting populations of NON IMMUNE = 1000000,
CONTAGIOUS = 1, SICK = 0, and IMMUNE = 0. Assume a fixed number of
births of 5000 per week and a contact rate of .000002. Also, assume that individuals
who contract the disease will on average be moving around for one week before
they are bedridden and that they are contagious during that time as well as the time
during which they are confined to bed. The same contact rate applies to both subsets
of the population. Furthermore, as noted above, assume that every week 90 percent
of those sick individuals, who are confined to their beds, will recover and become
permanently immune; the remainder of them die.

The outcome for such a simple model (Figure 2.2) is interesting. It would be
difficult to predict that the simple equation for GET SICK would yield the remark-
ably authentic series of diminishing pulses. In many ways, the appearance of these
pulses is an emergent property of the model, and it is realistic. The initial epidemic
is the most severe and converts 90% of the population to an immune condition.

NON IMMUNE

BIRTHS

CONTAGIOUS

CONTACT RATE

SICK

STAY IN BED

IMMUNE

RECOVER DIE

GET SICK

Fig. 2.1

2 See, for example, Hannon, B. and M. Ruth. 2001. Dynamic Modeling, 2nd Edition, Springer
Verlag, New York.
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Ensuing epidemics occur with regular frequency and are increasingly less severe,
finally reaching a steady-sized nonimmune population. (Can you explain why this is
so?) The disease has become endemic. At this steady state, the immune population is
growing at the birth rate, and the contagion rate is constant and equal to the birth rate.

BASIC MODEL

CONTAGIOUS(t) = CONTAGIOUS(t− dt) + (GET SICK−STAY IN BED) * dt
INIT CONTAGIOUS = 1 {Individuals}
INFLOWS:
GET SICK = CONTACT RATE * (CONTAGIOUS + SICK) * NON IMMUNE
{Individuals per Time Period}
OUTFLOWS:
STAY IN BED = CONTAGIOUS {Individuals per Time Period}
IMMUNE(t) = IMMUNE(t − dt) + (RECOVER) * dt
INIT IMMUNE = 0 {Individuals}
INFLOWS:
RECOVER = .9 * SICK {Individuals per Time Period}
NON IMMUNE(t) = NON IMMUNE(t − dt) + (BIRTHS − GET SICK) * dt
INIT NON IMMUNE = 1000000 {Individuals}
INFLOWS:
BIRTHS = 5000 {Individuals per Time Period}
OUTFLOWS:
GET SICK = CONTACT RATE * (CONTAGIOUS + SICK) * NON IMMUNE
{Individuals per Time Period}
SICK(t) = SICK(t − dt) + (STAY IN BED − RECOVER − DIE) * dt
INIT SICK = 0 {Individuals}
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INFLOWS:
STAY IN BED = CONTAGIOUS {Individuals per Time Period}
OUTFLOWS:
RECOVER = .9 * SICK {Individuals per Time Period}
DIE = .1 * SICK {Individuals per Time Period}
CONTACT RATE = .000002 {1/(Number of Contagious + Sick) *
Nonimmune) per Time Period}

2.2 Epidemic Model with Randomness

Let us assume for the model of the previous section that the contact rate at any given
week may be somewhere between .000001 and .000003. Thus, instead of fixing
the contact rate to .000002, as we have done before, we now let it vary randomly
between its two extremes. The built-in function RANDOM can be used to specify
the contact rate accordingly. Open CONTACT RATE and choose RANDOM from
the list of built-in functions, or type it into the dialog box. Then specify the upper
and lower bounds, separating the entries by a comma. The model should now read:

CONTACT RATE = RANDOM(.000001, .000003) (2.2)

The rest of the model should stay the same, as in Figure 2.1. Will this change in
model specification significantly affect the periodicity or severity of the epidemic
outbreaks? See the results in Figure 2.3 and note that the behavior of the disease is
virtually the same for the first outbreak of the disease, but that the randomness of
the contact rate has a much more noticeable impact for smaller outbreaks, which on
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some occasions occur later, on others earlier. Also, their severity varies. Can you
explain why this is so?

The results in Figure 2.3 are for five model runs. We have checked the “Compar-
ative” box in the graph pad to enable multiple runs to be displayed in the same page
of the graph pad. Do you expect the model results for a large number of runs—on
average—yield the same pattern as we observed in the previous section?

If you wish to let a parameter vary from run to run along a normal distribution
with known mean and standard deviation, choose the built-in function NORMAL
and specify a mean and standard deviation. Other specifications of random variables
are available as well. Make use of them as you see fit.

Both the RANDOM and NORMAL built-ins allow for the option to specify a
“seed,” which ensures that STELLA uses for subsequent runs the same sequence of
random numbers as it does the first time the model is run with a seed. For example,
if you have two parameters that are specified as random numbers, say A and B, and
you specify

A = RANDOM(0,1,1) (2.3)
B = RANDOM(0,1,2) (2.4)

then subsequent runs of the model use the “first” strings of random numbers (all
between zero and one) generated for A and the “second” string of random numbers
(also between zero and one) generated for B. If you do not specify a seed, then all
subsequent runs will differ simply because different random numbers will be cho-
sen. While this may be informative in some cases, as for Figure 2.3, it is sometimes
difficult to see whether changes in a model’s results stem the mere fact that the
model uses different random numbers or whether they stem from the fact that the
model itself was changed.

EPIDEMIC WITH RANDOMNESS

CONTAGIOUS(t) = CONTAGIOUS(t − dt) + (GET SICK −
STAY IN BED) * dt
INIT CONTAGIOUS = 1 {Individuals}
INFLOWS:
GET SICK = CONTACT RATE * (CONTAGIOUS + SICK) * NON IMMUNE
{Individuals per Time Period}
OUTFLOWS:
STAY IN BED = CONTAGIOUS {Individuals per Time Period}
IMMUNE(t) = IMMUNE(t − dt) + (RECOVER) * dt
INIT IMMUNE = 0 {Individuals}
INFLOWS:
RECOVER = .9 * SICK {Individuals per Time Period}
NON IMMUNE(t) = NON IMMUNE(t − dt) + (BIRTHS − GET SICK) * dt
INIT NON IMMUNE = 1000000 {Individuals}
INFLOWS:
BIRTHS = 5000 {Individuals per Time Period}
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OUTFLOWS:
GET SICK = CONTACT RATE * (CONTAGIOUS + SICK) * NON IMMUNE
{Individuals per Time Period}
SICK(t) = SICK(t − dt) + (STAY IN BED − RECOVER − DIE) * dt
INIT SICK = 0 {Individuals}
INFLOWS:
STAY IN BED = CONTAGIOUS {Individuals per Time Period}
OUTFLOWS:
RECOVER = .9 * SICK {Individuals per Time Period}
DIE = .1 * SICK {Individuals per Time Period}
CONTACT RATE = RANDOM(.000001,.000003) {1/(Number of Contagious +
Sick) * Nonimmune) per Time Period}

Recall that the three major aspects of any model for which reality is claimed
should have feedback, randomness, and delays. Our model now has all of these as-
pects: feedback from the CONTAGIOUS to GETTING SICK, randomness in the
CONTACT RATE, and delays in STAYING IN BED and RECOVERING. The use
of stocks for CONTAGIOUS and SICK provide automatic one-week delays in each
of these stocks since the outflows are divided by one; to increase this type of de-
lay, we could divide these outflows by larger numbers. We could also change these
stocks into conveyors as we did in Chapter 1.

2.3 Loss of Immunity

How will the dynamics of our epidemic change if people lose immunity? Let us
assume for the model of Section 2.1 above that in any given week, 10 percent of the
immune population loses their immunity. All other assumptions are as before. The
corresponding model is shown in Figure 2.4.

NON IMMUNE

BIRTHS

CONTAGIOUSGET SICK

LOSE IMMUNITY

CONTACT RATE

SICK

STAY IN BED

IMMUNE RECOVER DIE

Fig. 2.4
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The model results are shown in Figure 2.5. The loss of immunity dampens the
effect of the disease—outbreaks after the first occurrence are less severe and in the
long run, the number of sick people is constant. That number is typically larger than
would be the case of permanent immunity.

LOSS OF IMMUNITY

CONTAGIOUS(t) = CONTAGIOUS(t− dt) + (GET SICK−STAY IN BED) * dt
INIT CONTAGIOUS = 1 {Individuals}
INFLOWS:
GET SICK = CONTACT RATE * (CONTAGIOUS + SICK) * NON IMMUNE
{Individuals per Time Period}
OUTFLOWS:
STAY IN BED = CONTAGIOUS {Individuals per Time Period}
IMMUNE(t) = IMMUNE(t − dt) + (RECOVER − LOSE IMMUNITY) * dt
INIT IMMUNE = 0 {Individuals}
INFLOWS:
RECOVER = .9*SICK {Individuals per Time Period}
OUTFLOWS:
LOSE IMMUNITY = .1*IMMUNE
NON IMMUNE(t) = NON IMMUNE(t − dt) + (BIRTHS +
LOSE IMMUNITY − GET SICK) * dt
INIT NON IMMUNE = 1000000 {Individuals}
INFLOWS:
BIRTHS = 5000 {Individuals per Time Period}
LOSE IMMUNITY = .1*IMMUNE



38 2 Basic Epidemic Models

OUTFLOWS:
GET SICK = CONTACT RATE * (CONTAGIOUS + SICK)*NON IMMUNE
{Individuals per Time Period}
SICK(t) = SICK(t − dt) + (STAY IN BED − RECOVER − DIE) * dt
INIT SICK = 0 {Individuals}
INFLOWS:
STAY IN BED = CONTAGIOUS {Individuals per Time Period}
OUTFLOWS:
RECOVER = .9 * SICK {Individuals per Time Period}
DIE = .1 * SICK {Individuals per Time Period}
CONTACT RATE = .000002 {1/(Number of Contagious + Sick) *
Nonimmune) per Time Period}

2.4 Two Population Epidemic Model

Many diseases can affect different species and be spread from one species to another.
Notable examples include AIDS and Ebola. To concurrently capture the spread of
a disease within and between species, we will use a simplified version of our basic
model of Section 2.1 above. Let’s first lump the CONTAGIOUS and SICK popula-
tions into one stock, and call it INFECTED and then define a SURVIVAL RATE,
which we set to 0.065. The flows SURVIVE and DIE are specified as

SURVIVE = SURVIVAL RATE∗ INFECTED (2.5)
DIE = (1−SURVIVAL RATE)∗ INFECTED (2.6)

This is a rather lethal disease compared to the one in Section 2.1. The new model
is shown in Figure 2.6 and its dynamics are shown in Figure 2.7.

NON IMMUNE INFECTED

BIRTHS

GET SICK
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SURVIVAL RATECONTACT RATE

Fig. 2.6
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To capture the spread of disease in the second population, duplicate the model
of Figure 2.6 by first clicking outside its boundaries and dragging the Hand over
the entire model diagram. Then select Copy from the Edit pull-down menu. Then
click well below the existing model diagram and select Paste from the Edit pull-
down menu. Here is what you should get—two virtually identical versions of the
model, with the names of the second model automatically changed to avoid con-
fusion (Figure 2.8). Change the value of SURVIVAL RATE 2 to 0.20 and that of
CONTACT RATE 2 to 0.003 to reflect the assumptions that the rate of contact
among individuals of this second species are higher but the death rate lower than
for the first species. This is the case, for example for some strains of the AIDS and
Ebola viruses, which seem, at least until these viruses evolve, to have more detri-
mental effects on humans than monkeys.

The two parts of the model in Figure 2.8 are not yet connected with each other.
Create a new contact rate to reflect interaction between the two populations, and
assume that the disease gets passed on from the second to the first population, i.e.

GET SICK = CONTACT RATE * NON IMMUNE * INFECTED
+CONTACT RATE 1 2 * NON IMMUNE * INFECTED 2

(2.7)
Use this contact rate to establish a logical connection between the two parts of the
model. Figure 2.9 shows incorporation of that new contact rate and the correspond-
ing connections between GET SICK and the nonimmune population of the second
species.

If you set CONTACT RATE 1 2 to 0, then the dynamics of the disease in the
first population should be as before (i.e. as in Figure 2.7). For subsequent runs ex-
plore how the results change under different assumptions about the rate of contact
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Fig. 2.8

between the two populations. You can “automate” this process by choosing Sensi
Specs under the Run pull-down menu. Then select CONTACT RATE 1 2 to learn
how sensitive the model results are to different parameter values. Select Incremental
and specify the start value for your sensitivity analysis as .001 and your end value
as 0.0014. If the number of sensitivity runs is set to 3, then STELLA will run the
model first with the start value, second with a value that lies equidistant between
your start and end value (i.e. 0.0012 in our case), and last with the end value you
specified. Click OK. Then run the model. Note how STELLA now shows S-Run in
the Run pull-down menu to indicate that this will be a sensitivity run. The results
are shown in Figure 2.10. The first two runs yield period outbreaks of the disease,
where the second run shows less frequent but more severe outbreaks. Also, while
the severity of the outbreaks for the first run slightly declines in the long term, it
increases for the second run. In contrast to these results, the disease disappears for
the third model run. The contact rate for interactions between the two populations
is so high that the disease “burns out” after the first outbreak.

If you wish for a sensitivity analysis to let parameters vary from run to run
along a normal distribution with known mean and standard deviation, choose the
“Distribution” option (Figure 2.11) instead of “Incremental.” When you specify
“Seed” as a positive integer, you ensure the ability to replicate a particular ran-
dom number sequence in subsequent sensitivity runs, just like we have done in
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Fig. 2.11

Fig. 2.12

Section 2.2. If you do not wish to make use of the normal distribution of the random
numbers used in the sensitivity analysis, click on the bell curve button.

This button will change its appearance (Figure 2.12), and you now need to specify
a minimum, maximum, and seed for your sensitivity analysis.

A final choice for the specification of sensitivity runs in STELLA is not to change
parameters in incremental intervals or along distributions. You can specify ad hoc
values for each of the consecutive runs.

TWO POPULATION EPIDEMIC MODEL

INFECTED(t) = INFECTED(t − dt) + (GET SICK − SURVIVE − DIE) * dt
INIT INFECTED = 1

INFLOWS:
GET SICK = CONTACT RATE * NON IMMUNE * INFECTED +
CONTACT RATE 1 2 * NON IMMUNE * INFECTED 2
OUTFLOWS:
SURVIVE = SURVIVAL RATE * INFECTED
DIE = (1 − SURVIVAL RATE) * INFECTED
INFECTED 2(t) = INFECTED 2(t − dt) + (GET SICK 2 − DIE 2 −
SURVIVE 2) * dt
INIT INFECTED 2 = 20

INFLOWS:
GET SICK 2 = CONTACT RATE 2 * INFECTED 2 * NON IMMUNE 2
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OUTFLOWS:
DIE 2 = (1 − SURVIVAL RATE 2) * INFECTED 2
SURVIVE 2 = SURVIVAL RATE 2 * INFECTED 2
NON IMMUNE(t) = NON IMMUNE(t − dt) + (BIRTHS − GET SICK) * dt
INIT NON IMMUNE = 1000000

INFLOWS:
BIRTHS = 5000
OUTFLOWS:
GET SICK = CONTACT RATE * NON IMMUNE * INFECTED +
CONTACT RATE 1 2 * NON IMMUNE * INFECTED 2
NON IMMUNE 2(t) = NON IMMUNE 2(t − dt) + (BIRTHS 2 −
GET SICK 2) * dt
INIT NON IMMUNE 2 = 1000

INFLOWS:
BIRTHS 2 = 10
OUTFLOWS:
GET SICK 2 = CONTACT RATE 2 * INFECTED 2 * NON IMMUNE 2
CONTACT RATE = .000001
CONTACT RATE 1 2 = 0.00015
CONTACT RATE 2 = .003
SURVIVAL RATE = .065
SURVIVAL RATE 2 = .2

2.5 Epidemic with Vaccination

The model of this section introduces a number of features that make the model more
meaningful. Among these features are

• the explicit inclusion of birth rates (instead of applying a fixed number of births
each period);

• death rates that are not only influenced by the disease but that result also from
natural mortality;

• a vaccination program that allows the population to become immune to the dis-
ease without having to first be sick;

• mutations in the disease that result in immune people not staying immune for-
ever; and

• ignorance of a fixed portion of the contagious population. These people are as-
sumed to be unaware that they carry the disease. Consequently, we assume that
ignorance would increase the rate at which the disease gets passed on from the
infective to the susceptible population.

The birth and natural death rates are specified graphically in this model as shown in
Figures 2.13 and 2.14.
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Fig. 2.13

Fig. 2.14

The CONTRACTION is a function of susceptible, healthy people coming into
contact with people who are aware that they are contagious or people that are un-
aware that they are contagious, or people who come into contact with sick people.
BETA is the corresponding contact rate:

CONTRACTION = BETA∗((CONTAGIOUS-UNAWARE CONTAGIOUS)∗3/5
+UNAWARE CONTAGIOUS+SICK/2)∗NONIMMUNE

(2.8)
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The VACCINE flow is specified as

VACCINE = NON IMMUNE∗(1−CONTRACTION) (2.9)

and contains the number of people vaccinated. A flow from IMMUNE to NON-
IMMUNE, captures 1.5 percent of immune people that lose their immunity
(Figure 2.15).

Consistent with the models of Sections 2.1 and 2.3, there are a series of epi-
demic outbreaks (Figure 2.16). Due to the additional features of this model, how-
ever, the numbers of immune and nonimmune people tends to stabilize and so does
the number of sick. Even though an effective immunization program is in place,

BED RATEBIRTHS

BETA

SICK DEATH

POPULATION

RECOVERY RATE

CONTRACTION

CONTAGIOUS

IMMUNE

NONIMMUNE

SICK

NONIMMUNE CONTAGIOUS

IMMUNE SICK

~
NAT DEATH RATE

~
BIRTH RATE

UNAWARE I

UNAWARE I

POPULATION

IMMUNE LOSS

NONIMMUNE DEATH

~

NAT DEATH RATE CONTAGIOUS DEATH

POPULATION

IMMUNE DEATH

VACCINE

Fig. 2.15



46 2 Basic Epidemic Models

Time

1:

1:

1:

2:

2:

2:

3:

3:

3:

4:

4:

4:

1: CONTAGIOUS 2: IMMUNE 3: NON IMMUNE 4: SICK

1
1

1 1

2

2

2 2

3

3 3 3

4 4 4 4

0.00

250000.00

500000.00

0.00

500000.00

1000000.00

0.00
0.00 75.00 150.00 225.00 300.00

250000.00

500000.00

Fig. 2.16

some sick people are always present because the disease is assumed to undergo
mutations.

EPIDEMIC WITH VACCINATION

CONTAGIOUS(t) = CONTAGIOUS(t − dt) + (CONTRACTION −
BED RATE − CONTAGIOUS DEATH) * dt
INIT CONTAGIOUS = 1 {People}
INFLOWS:
CONTRACTION =
BETA * ((CONTAGIOUS − UNAWARE CONTAGIOUS) * 3/5 +
UNAWARE CONTAGIOUS + SICK/2) * NONIMMUNE {People per Week}
OUTFLOWS:
BED RATE = CONTAGIOUS − CONTAGIOUS DEATH {People per Week}
CONTAGIOUS DEATH = CONTAGIOUS * NAT DEATH RATE/52 {People
per Week}
IMMUNE(t) = IMMUNE(t − dt) + (RECOVERY RATE + VACCINE −
IMMUNE DEATH − IMMUNE LOSS) * dt
INIT IMMUNE = 0 {People}
INFLOWS:
RECOVERY RATE = 0.9 * SICK {People per Week}
VACCINE = NONIMMUNE * (1 − CONTRACTION) {People per Week}
OUTFLOWS:
IMMUNE DEATH = IMMUNE * NAT DEATH RATE/52 {People per Week}
IMMUNE LOSS = .015 * IMMUNE {People per Week}
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NONIMMUNE(t) = NONIMMUNE(t − dt) + (BIRTHS + IMMUNE LOSS −
CONTRACTION − NONIMMUNE DEATH − VACCINE) * dt
INIT NONIMMUNE = 1000000 {People}
INFLOWS:
BIRTHS = POPULATION * BIRTH RATE/52 {People per Week}
IMMUNE LOSS = .015 * IMMUNE {People per Week}
OUTFLOWS:
CONTRACTION =
BETA * ((CONTAGIOUS − UNAWARE CONTAGIOUS) * 3/5 +
UNAWARE CONTAGIOUS + SICK/2) * NONIMMUNE {People per Week}
NONIMMUNE DEATH = NAT DEATH RATE/52 * NONIMMUNE {People
per Week}
VACCINE = NONIMMUNE * (1 − CONTRACTION) {People per Week}
SICK(t) = SICK(t − dt) + (BED RATE − RECOVERY RATE −
SICK DEATH) * dt
INIT SICK = 0 {People}
INFLOWS:
BED RATE = CONTAGIOUS-CONTAGIOUS DEATH {People per Week}
OUTFLOWS:
RECOVERY RATE = 0.9 * SICK {People per Week}
SICK DEATH = (.1 * SICK) + (NAT DEATH RATE/52 * SICK) {People per
Week}
BETA = 0.000002 { + SINWAVE(0.0000005,52 ) }
POPULATION = NONIMMUNE + CONTAGIOUS + IMMUNE + SICK
{People}
UNAWARE CONTAGIOUS = CONTAGIOUS/3 {A third of the contagious
persons are unaware of being contagious; People}
BIRTH RATE = GRAPH(POPULATION)
(0.00, 0.00), (166667, 0.0115), (333333, 0.023), (500000, 0.0325), (666667,
0.041), (833333, 0.0525), (1000000, 0.061), (1.2e + 06, 0.0705), (1.3e + 06,
0.076), (1.5e + 06, 0.076), (1.7e + 06, 0.0735), (1.8e + 06, 0.066), (2e + 06,
0.045)
NAT DEATH RATE = GRAPH(POPULATION)
(0.00, 0.0005), (208333, 0.005), (416667, 0.0102), (625000, 0.0153), (833333,
0.0204), (1e + 06, 0.0249), (1.2e + 06, 0.0294), (1.5e + 06, 0.033), (1.7e + 06,
0.0363), (1.9e + 06, 0.0387), (2.1e + 06, 0.0411), (2.3e + 06, 0.0426), (2.5e +
06, 0.0432)

2.6 Questions and Tasks

1. Try running the models of Sections 2.1 and 2.2 with different time steps and
explain why the results differ.
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2. Similarly to the chemistry models using the law of mass action, you may want
to change the “reaction rate” by, e.g., introducing an exponent α such that
SICK RATE = CONTACT RATE * (CONTAGIOUS+SICK) *NON IM-
MUNE. Vary α in consecutive runs, for example, set α = 0.9, α = 1.1, α = 1.3.
How do the model results differ? (Presumably, the basic form α = 1.0 has
shown some historical veracity; i.e., the form has been sufficiently fit with
historical data.)

3. For the model of Section 2.1, connect the birth rate with the immune population
and try to reach a steady-state immune population.

4. Does the disease die out of the population?
5. Is it possible to wipe out the population with a variation in the parameters in

this form of the model?
6. Does your answer change if you allow for randomness of the contact rate?
7. Suppose that it takes anywhere between 1 and 5 days for someone to get so sick

that they choose to stay in bed. Should that variation be reflected in the model
as a random variable or be changed from model run to run?

8. Can you introduce an optimum (minimum number of sick) vaccination program
to stabilize the disease in this latter form of the model?

9. Can you model how the disease can frustrate the vaccination program through
mutation?

10. a) Can you break the population into age groups with different contact rates,
death rates, birth rates, initial populations, and disease-induced death rates for
each?
b) Show how some of these folks seem to be more resistant to the disease and
skip from contagious to immune directly.
c) Show how the result changes when immunity is slowly lost. (Note that in real-
ity, the immunes mingle with the nonimmunes and therefore dilute the original
effect of the contact rate coefficient. Can you fix this problem?)

11. Develop an epidemics model that captures the same population but distin-
guishes two regions. Immune and contagious people can travel but sick indi-
viduals cannot. People from the two regions have different contact rates and are
affected by the disease differently, i.e. the recovery rate differs between the two
subgroups of the population. What are the implications for an optimal vaccina-
tion program that does not restrict travel between the regions?

12. Let the virus in the model of Section 2.4 evolve to a less deadly form in humans
and show the impacts of this evolution.

13. Introduce a spatial component into the model of Section 2.5 by considering two
regions with different contact rates and different vaccination programs. Inves-
tigate the implications of travel restrictions imposed by one of the regions on
individuals originating in the other region.

14. Introduce longer delays in the CONTAGIOUS and SICK populations and elab-
orate on the effects of each on the trajectory of the IMMUNE population.

15. Show how the disease could be eliminated by reducing the CONTACT RATE
1 2 in the model of Section 2.5.



Chapter 3
Insect Dynamics

In this chapter we develop three different models of insect dynamics. From the
perspective of “dynamic modeling of pestilence,” insects surely need special
attention—they are the carriers of many of the viruses that affect the health of
humans and other animals, and they cause billions of dollars of damage to food
supplies around the world every year. We try to control their population levels,
having long ago realized they multiply and evolve too fast for elimination.

Insects are among the major vectors of disease. They provide an excellent way
to understand the dynamic modeling of a complicated disease vector composed of
different age classes.

From a modeling perspective, insect dynamics can be used to effectively illus-
trate a set of techniques and skills that will prove important for gaining a deeper
understanding of

(a) the challenges of matching laboratory and field experiments to models,
(b) the underlying mechanisms by which living systems evolved and adjust to their

external environment,
(c) the distinct roles that different life stages or age cohorts may play in the trans-

mission of, or infection with a disease.

The following three sections of this chapter respectively address these issues. Later
chapters either explicitly or implicitly make use of the insights gained here.

3.1 Matching Experiments and Models of Insect Life Cycles

To better understand the dynamics of insect populations, we model the life cycle of
an insect, simplified into two stages, egg and adult. Typically, the data used in un-
derstanding insect population dynamics come from laboratory experiments in which
one watches each egg and notes when it dies or hatches. Data from such an exper-
iment (at constant temperature) might look like that shown in Table 3.1 of the life
history of 100 new insect eggs. Note how the final number of survivors must equal
the total number hatched.

B. Hannon and M. Ruth, Dynamic Modeling of Diseases and Pests, 49
Modeling Dynamic Systems,
c© Springer Science+Business Media LLC 2009



50 3 Insect Dynamics

Table 3.1

Time Died Survived Hatched Time*Survived Time*Hatched

0 1 99 0 0 0
1 3 96 0 96 0
2 3 93 2 186 4
3 4 89 3 267 9
4 5 84 21 336 84
5 5 79 9 395 45
6 6 73 7 438 42
7 6 67 5 469 35
8 7 60 3 480 24
9 8 52 2 468 18

Col. Sum = 45 52 3135 261
3135/45/100 = 261/52 =
0.697 = ESF 5.02 = T

Time is measured in days in this case, with data displayed for the beginning
of the next day (the result of the previous day). This table yields two important
averaged numbers, the experimental survival fraction, ESF (0.699, say 0.7), and the
experimental maturation time, T, (5.019, say 5 days). How can we use such data to
parameterize a model, when the model time step is dramatically different from this
experimentally found maturation time?

We must develop a new concept: the model survival fraction, MSF. In ecological
experiments, the instantaneous survival rate cannot be measured. But the survival
rate can be measured over some real time period, the maturation time, by counting
the number of eggs surviving to maturation. A problem arises when we wish to
model the system at a shorter time step than the real one. We need to model at these
shorter times because the characteristic time of the system may be shorter than the
shortest feasible measurement time of some particular part of the system. So we
have the experimental time step (the maturation time) and the model time step (DT)
and we must devise a conversion from experiment to model.

That conversion is based on the assumption that the survival fraction is a declin-
ing exponential, with ESF and T as its mean point.1

ESF(t) = N(t+DT)/N(t) = EXP(−m∗ t) (3.1)
= the dimensionless experimental survival fraction

as a function of time.

N is the population size. Later, when we attempt to confirm the experimental data
with our model, we will shut off the birth and hatch rate and observe the (necessarily
exponential) decline in egg population due to death. The resulting instantaneous

1 We are constrained here to the assumption of exponential decline since both the DEATH and
HATCH flows in the model are arranged as exponential decays.
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survival fraction is determined with the constant m. Using the experimental data,
we solve this equation for −m:

−m = LOGN(ESF)/T. (3.2)

The model survival fraction (based on our choice of the time step DT) is derived as
follows:

MSF = ESF(t+DT)/ESF(t) = EXP(−m∗DT). (3.3)

When the expression for −m is substituted into (3.3), we get

MSF = EXP(LOGN(ESF)/T∗DT), (3.4)

which is the basic equation for the model survival fraction. We now have the instan-
taneous survival fraction, and those surviving will mature or hatch at the maturation
or HATCH rate

HATCHING = EGGS/T∗MSF, (3.5)

that is, the survivors hatch at the rate, EGGS/T. Remember, eggs do not have to hatch
or die. They may simply wait. When they do die, they are claimed at the model death
rate

DYING = EGGS∗(1−MSF)/DT, (3.6)

the multiplier fraction being the model death rate per egg.
Such life table data can be used to determine the death rate of the adults, a nor-

mal demographic application. If we were to watch 100 new adults, we could calcu-
late the experimental adult survival fraction, EASF, and adult survival time (mean
length of adult life), TA. Let us say that we found these numbers to be 0.8 and 1.0,
respectively. These numbers are used in a parallel way to obtain the equivalent of
equation 3.6 for ADULTS.

The layout for the egg–adult model is shown in Figure 3.1, with an EGG LAY
RATE of 0.5 (eggs per adult per day) and the model results are shown in the graph of
Figure 3.2. We realize that insect egg laying rate is not constant but either declining
with time or pulsed. These concepts could be incorporated in more sophisticated
versions.

Now turn off the BIRTHING and HATCHING flows and put 100 eggs in EGGS.
Run the model to verify that it reproduces the experimental mean maturation rate,
T, and the experimental survival fraction at T. This must be so, since our modeling
process is one of exponential decay for both the DYING and HATCHING flows.
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TWO STAGE INSECT POPULATION MODEL

ADULTS(t) = ADULTS(t − dt) + (HATCHING − ADULTS DYING) * dt
INIT ADULTS = 0
INFLOWS:
HATCHING = EGGS/T*MSF
OUTFLOWS:
ADULTS DYING = ADULTS*(1 − MASF)/DT

EGGS(t) = EGGS(t − dt) + (BIRTHING − EGGS DYING − HATCHING) * dt
INIT EGGS = 50
INFLOWS:
BIRTHING = EGG LAY RATE*ADULTS
OUTFLOWS:
EGGS DYING = EGGS * (1 − MSF)/DT
HATCHING = EGGS/T * MSF

EASF = .8* EGG LAY RATE = .5
ESF = .7
MASF = EXP(LOGN(EASF) * DT/TA)
MSF = EXP(LOGN(ESF)/T * DT)
T = 5
TA = 1

EGG LAY RATEADULTS DYING

MSF

MASF

BIRTHING

EGGS DYING

T HATCHING

ESF

EASF

ADULTS

EGGS

TA

Fig. 3.1
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3.2 Optimal Insect Switching

Few attempts are made to consider anything in nature other than humans as be-
having in some optimal way. We are loathe to consider any kind of optimal
behavior in plants or animals since we think that such behavior requires intelli-
gence. . . intelligence of the kind we believed to be the sole domain of humans.

We need not think of intelligence as a prerequisite of optimal behavior at all.
It is well known in engineering that the configuration of a structural member can
be accurately calculated from a theory stating that the member deforms in such a
way as to minimize its internal strain energy. A steel beam can do this, without
knowledge of differential equations or modeling!

Yet in some real sense, we accept that evolution produces certain forms of effi-
cient behavior. The idea that energy is most efficiently used in nature is an example.
We can find such efficiencies in the field. Following millennia of evolution, a plant
possesses an optimal switching time between time spent growing roots, stems, and
leaves, and time spent growing seed. We can imagine that the plant that behaves this
way would have the most offspring in the next generation and so be the most likely
plant present in future times. But it is surely not only the amount of offspring that a
species produces that determines their prevalence in the future. The care with which
each offspring is produced and engendered must have some effect as well. Think of
the oak tree compared to the maple. The oak produces relatively few, well-packaged
seeds while the maple sends thousands of relatively unclad seeds into the wind. Here
we examine one species in our search for the first indications of an optimal strategy.

Precisely what are we suggesting when we say that a plant or an animal switches
optimally? We are really admitting that such behavior does not require intelligence
of any kind. We are saying that evolution favors efficient strategies. Our problem
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is to figure out what that strategy is and how it operates. We are able to show that
some plants act as though they know when to optimally switch from vegetation
to seed production2. Here we assume that insects might employ a similar kind of
optimal strategy in switching egg maturation times to maximize the number of eggs
produced.

Consider two forms of a particular insect whose life cycle was described in
Chapter 3.1: EGGS and ADULTS. As before, let them each have an experimen-
tal survival fraction and an average maturation time and let the ADULTS have a
particular egg-laying rate. Start the model with no adults and 50 eggs. Now suppose
that the life span of these adults was only 24 days and suppose that they could some-
how adjust the egg average maturation time. Think of the insect species as originally
having a variety of maturation rate responses to a given temperature. Assume that
the most successful insect subspecies is the one whose average egg maturation time
maximizes the number of eggs at the end of the 24-day adult life period. What is
this optimum average egg maturation time?

We set up a sensitivity analysis and vary T to find the largest egg clutch in 24
days. The optimal average egg maturation time for our imagined insect species is
1.54 days (unrealistically short, except perhaps for certain mosquito species), as
one can find in the table with the actual model. That such an optimal T exists for
this model when the remaining parameters are fixed leads us to ask if that species
has evolved to an optimal T. We would be assuming that the model structure was
accurate and that the parameters were accurately measured. If not, then our model
could be wrong or the insect might have another goal. In any case, it should be clear
that such a model allows us to address very interesting questions about the insect,
questions that could not be framed without such modeling.

Still another value of the average maturation time may someday be found in a
model. Suppose that an insect was a link in a disease transmission. We could study
the effect of introducing genetically modified insects such that the disease link is
broken by extended or shortened average maturation time. In this way, the modified
insect would occupy the critical ecological niche but produce an under- or over-
supply of eggs, restricting the spread of the disease.

3.3 Two-Age Class Parasite Model

Now that we have modeled in more detail the dynamics of an insect population,
let us turn to the spread of disease within different cohorts of an insect popula-
tion, such as asexually reproducing aphids, consisting of two life stages—nymphs
2 Cohen, D. 1971. Maximizing final yield when growth is limited by time or by limiting resources,
J. Theo. Biol. 33, 299–307.

Chiariello, N. and J. Roughgarden. 1984. Storage allocation in seasonal races of an annual
plant: optimal vs. actual allocation, Ecology 65–4, 1290–1301.

Kozlowski, J. and R. Wiegert. 1986. Optimal allocation of energy to growth and reproduction,
Theo. Pop. Biol. 29, 16–37.

Hannon, B. 1993. The optimal growth of Helianthus Annus, J. Theo. Biol. 165, 523–531.
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and adults. The model has two parts, one for the healthy population and one for
the diseased population. Diseased nymphs can infect healthy nymphs and become
diseased adults. Diseased adults cannot infect healthy adults or nymphs but can pro-
duce infected nymphs. Note how these features are expressed in the model by the
appropriate flows and links.

Assume that the infection coefficient is based on an exponential model:

INFECTION COEF = 1−EXP(−.3∗NYMPHS∗NYMPHS D) (3.7)

NYMPHS and NYMPHS D refer to the population sizes of healthy and infected
nymph populations, respectively. The INFECTION RATE is calculated as the prod-
uct of the INFECTION COEF, the number of healthy nymphs, divided by the model
maturation rate for survivors, MNSF/TN

INFECTION RATE = MNSF/TN∗ INFECTION COEF∗NYMPHS (3.8)

with

MNSF = Model Nymph Survival Fraction
= EXP(LOGN(ENSF)/TN∗DT)

(3.9)

where TN is the experimental nymph maturation rate and ENSF is the dimensionless
experimental nymph survival fraction. When there are no sick nymphs or healthy
nymphs, the probability of becoming infected equals zero. The specification of the
INFECTION COEF translation variable is a purely empirical formulation but it
gives the correct value at the extremes: 0 when the number of diseased nymphs
is zero or when the number of healthy nymphs is zero, and near 1 when either at
least one of the stocks NYMPHS or NYMPHS D is very large.

Note well the specification of the MATURING function in the model, which en-
sures that the total rate of change from nymphs to adults here is still U1*NYMPHS:

MATURE = MNSF/TN∗NYMPHS∗(1 − INFECTION COEF) (3.10)

Figure 3.4 shows the proportions of healthy nymphs and adults, and the number
of diseased nymphs and adults. Similar to the previous section of this chapter, we
find distinct phases for the outbreak of a disease.

These newly diseased nymphs are converted to diseased adults rather than
directly into diseased nymphs in an effort to reflect the fact that these nymphs, who
contract rather than acquire the disease, have the normal nymph survival rate. In
addition, they are unable to convey the disease to other healthy nymphs.
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TWO-AGE CLASS PARASITE MODEL

ADULTS(t) = ADULTS(t − dt) + (MATURING − ADULT DYING) * dt
INIT ADULTS = .10 {Individuals}
INFLOWS:
MATURING = MNSF * NYMPHS*(1 − IC)/TN {Individuals per Day}
OUTFLOWS:
ADULT DYING = ADULTS * (1 − EXP(LOGN(EASF)/TA * DT))/DT
{Individuals per Day}
ADULTS D(t) = ADULTS D(t − dt) + (MATURING D + I R −
D ADULT DYING) * dt
INIT ADULTS D = .10 {Individuals}
INFLOWS:
MATURING D = MNSF D*NYMPHS D/TN D
I R = INFECTION RATE {Individuals per Day}
OUTFLOWS:
D ADULT DYING = ADULTS D * (1 − EXP(LOGN(EASF D)/TA D *
DT))/DT {Individuals per Day}
NYMPHS(t) = NYMPHS(t − dt) + (BIRTHING − DYING − MATURING −
INFECTION RATE) * dt
INIT NYMPHS = 0 {Individuals}
INFLOWS:
BIRTHING = LAY RATE*ADULTS {Individuals per Day}
OUTFLOWS:
DYING = (1 − MNSF)*NYMPHS/DT
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MATURING = MNSF * NYMPHS*(1 − IC)/TN {Individuals per Day}
INFECTION RATE = MNSF*IC*NYMPHS/TN
NYMPHS D(t) = NYMPHS D(t − dt) + (BIRTHING D − DYING D −
MATURING D) * dt
INIT NYMPHS D = 0 {Individuals}
INFLOWS:
BIRTHING D = D LAY RATE * ADULTS D {Individuals per Day}
OUTFLOWS:
DYING D = (1 − MNSF D)*NYMPHS D/DT
MATURING D = MNSF D * NYMPHS D/TN D
D LAY RATE = .35 {Experimental laying fraction. Eggs per Adult per Day}
EASF = .8
EASF D = .65 {Experimental daily adult survival fraction per stage,
dimensionless.}
ENSF = .7 {Experimental egg survival fraction, dimensionless, per stage. Stage
= 1/F1, i.e., 70 eggs per 100 eggs survive each 1/F1 days, as noted in the
experiment.}
ENSF D = .5 {Experimental egg survival fraction, dimensionless, per stage.
Stage = 1/F1, i.e., 70 eggs per 100 eggs survive each 1/F1 days, as noted in the
experiment.}
IC = 1 − EXP(−.3*NYMPHS*NYMPHS D)
DOCUMENT: INFECTION COEFFICIENT

LAY RATE = .6 {Experimental laying fraction. Eggs per Adult per Day}
MNSF = EXP(LOGN(ENSF)/TN*DT)
MNSF D = EXP(LOGN(ENSF D)/TN D * DT)
TA = 1
TA D = 1
TN = 5
TN D = 5

3.4 Questions and Tasks

1. Suppose we are uncertain about the exact egg experimental fraction in the model
of Section 3.2. We may suspect that using literature data is not good enough, and
think that this number is within ±10%. We can conduct an experiment to find
this number if the total number of adults in 24 days is within ±10%.

2. Insert a larval stage into the model of Section 3.2 with a larval survival fraction
of 0.8 in 3 days maturation time. Why does the stock of adults in this model fail
to grow as is did in the previous version?

3. (a) For the model in Section 3.2, change the egg-laying rate from 0.5 to 0.45 and
find the new optimal egg-laying rate.
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(b) Are any of the other parameters in this model susceptible to such an optimal-
ity analysis, that is, do any of the other parameters show any particular value
other than an extreme that leads to a maximum number of eggs at the end of
the season?

4. For the model in Section 3.3, vary the separate birth and death rates and the
infection coefficient and note the effect on the relative size of the healthy and
diseased portions of the populations. Can you identify some relationship between
these parameters that enable you to judge the effects on the relative size of the
healthy and diseased portions of the populations?



Part II
Applications



Chapter 4
Malaria and Sickle Cell Anemia

4.1 Malaria

4.1.1 Basic Malaria Model

Malaria is one of the most severe human diseases, causing more than 300–500
million cases today1, leading to an estimated 2.7 million deaths worldwide with
80–90% of those occurring in the section of Africa below the Sahara Desert. Chil-
dren ages one to four are most vulnerable to malaria due to their immature im-
mune systems. Malaria is caused by a parasite transmitted to humans or animals by
the Anopheles mosquito. The human parasite, Plasmodium falciparum, digests the
hemoglobin found in red blood cells (RBCs) and breaks down the adhesive proper-
ties of the cells. Therefore the RBCs may become stuck to the walls of capillaries.
When this occurs in the cerebral section of the brain, cerebral malaria develops,
and blood clots in the brain occlude the vessels. Symptoms of malaria increase in
severity each time an RBC bursts and releases more parasites. These symptoms can
include high fever, chills, and uncontrollable shaking/shivering, also called rigors.
Severe headache, vomiting, muscle pain, and extreme tiredness may accompany
these symptoms as well. To combat the disease, many countries use an insecticide
called DDT to control mosquito populations. Different medications have also been
developed to treat and prevent malaria. These include chloroquine, doxycycline, and
mefloquine.

Several variables are implicated in the epidemiology of this disease. In this chap-
ter we develop a simplified model to investigate the dynamics of the spread of
malaria in a closed ideal region without human immigration. We further assume
that humans are the most important hosts and disregard other possible hosts aside
from the mosquitoes, which pick up the malaria parasites when they feed on the
blood of an infected human. Upon receipt of malaria parasites (Plasmodium sp.),

1 Martens, P., R.S. Kovats, S. Nijhof, P. de Vries, M.T.J. Livermore, D.L. Bradley, J. Cox, and A.J.
Mitchel. 1999. Climate change and future populations at risk of malaria. Global Environmental
Change. 9:S89–S107.
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Fig. 4.1

the parasites reproduce in the gut of mosquitoes. Subsequently, malaria parasites
are returned through the mosquitoes’ salivary glands to humans as the mosquitoes
feed on red blood cells.

The mosquito hosts cannot be just “any” mosquito but must be of the genus
Anopheles. Many species of mosquito in the genus Anopheles are vectors, and we
will use information on the one that is the most widespread in South and Central
America, A. messae2. Among the four species of parasites, we will concentrate on
Plasmodium vivax; this species presents the most extensive geographical spread and
is present both in tropical and temperate zones.

The STELLA model of the malaria life cycle is divided into several interrelated
modules, which we visually separated into “sectors.” Sectors enable us to organize
parts of a model by grouping model components. They also add functionality, as
they allow entities in a sector to be moved as a whole, or run separately from the
rest of a model. To create a sector, choose the Sector Frame among STELLA’s tools
(Figure 4.1), place it in the model diagram, and drag it over those components of
a model that you wish to group together. Clicking on the “lock” in the upper right
hand side of a sector fixes all elements in that sector so you can move them as a
whole. Once you have sectors specified, the Run pull-down menu gives you the
option of running an entire model or specific sectors. If you run sectors individually,
then values of parameters from other sectors, which do not run, will be assumed as
given and fixed.

All of the modules of this chapter’s model are grouped into individual sectors,
mainly to keep the model organized and its structure transparent. One of the modules
is used to calculate reproduction of parasites (Figure 4.2). This module contains the
various parameters affecting the basic reproductive rate, Ro, which is modeled here
as the average number of new cases of the disease that would arise from a single
infectious host introduced into a population of susceptible hosts. It is a function of
the probability of transmission of parasites from infected vertebrates to uninfected
vertebrates (TR), the proportion of vectors to human hosts (M) and the vector daily
survival rate3,4:

Ro = (TR ∗ M)/(−LOGN(DAILY SURVIVAL VECTOR)) (4.1)

2 Jetten, T.H. and W. Takken. 1994. Anophelism with malaria in Europe: a review of the ecology
and distribution of the genus. Anopheles in Europe. Wageningen Agricultural University Press,
Wageningen.
3 Anderson, R.M. and R.M. May. 1991. Infectious diseases of humans: dynamics and control.
Oxford University Press, Oxford.
4 Begon, M., J. Harper, and C.R. Townsend. 1996. ECOLOGY. 3rd edition.
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where the transmission rate TR is defined as

TR = (BITING RATE VECTOR∧2) ∗ VERT TO VECTOR
∗VECTOR TO VERT ∗ (DAILY SURVIVAL VECTOR∧T)

(4.2)

where VERT TO VECTOR and VECTOR TO VERT are, respectively, the probabil-
ity of transmission of parasites from infected vertebrates to uninfected vectors, and
from vectors to vertebrates5. For the model, these probabilities are assumed to be
fixed. In reality, though, these probabilities depend on absolute and relative vector
and vertebrate population densities.

M is the proportion of vectors to human hosts:

M = (VECTOR INFECTED+VECTOR UNINFECTED)/
(INFECTED POP+UNINFECTED POP)

(4.3)

The mosquito daily biting rate, in turn, is

BITINGRATEVECTOR = HBI ∗ MEAL VECTOR/REPELLENTS (4.4)

5 Rogers, D.J. and S.E. Randolph. 2000. The global spread of malaria in a future, warmer world.
Science 289:1763–1766.
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We assume that the rate at which mosquitoes bite humans (BITING RATE VEC-
TOR) is the product of the frequency with which a vector takes a blood meal (MEAL
VECTOR) and the proportion of these meals that are taken from humans—the “hu-
man blood index” (HBI in the model). Following,1 values for HBI may lie in the
range from 0.005 to 0.63. By choosing alternative values for the converter REPEL-
LENTS, contact among vectors with humans, and thus the rate of transmission of
the disease, can be changed.

The MEAL VECTOR depends on temperature,

MEALVECTOR = D/(TEMP−Tmin), (4.5)

where D is the number of the degree days required for the completion of develop-
ment (36.5 days), Tmin is a minimum temperature requirement for parasite devel-
opment (9.9 degrees C), and TEMP is average assumed temperature for the tropics.1

Similarly, the length of incubation T of parasites in vectors, measured in days, is
a function of the temperature threshold Tmin, a minimum number of degree days
required for development, Dm, and average temperatures.

T = Dm/(TEMP−Tm). (4.6)

Following6 we assume that 105 degree days are needed for the development of the
parasite.

The female mosquito has to live long enough for the parasite to complete its de-
velopment if transmission is to occur. Longevity of the mosquito vector depends on
the species, humidity, and availability of hosts and temperature. Actual transmis-
sion intensity also depends on vector abundance, which is not modeled here. The
daily survival of vectors is calculated from the survival probability, Y, during one
gonothrophic cycle, and length of the cycle, X(1,3) as

DAILYSURVIVALVEC = X∧(1/Y) (4.7)

The second module (Figure 4.3) focuses on the spread of the infection in the vectors.
To be infectious, an uninfected vector must get the parasite from a human host. The
development of the parasite in the vector requires certain temperatures included in
the model. Most of the steps followed in this module of vector birthing, hatching,
and dying are based on the insect life stages model developed in7.

The third module (Figure 4.4) uses, for illustrative purposes, population numbers
from Venezuela (U.S. Census Bureau) as well as data from the literature to simulate
the recovery rate of infected people and their loss of immunity. This module follows
the structure of the basic epidemic models developed in Chapter 2. Loss of immunity
is related to the transmission rate. If the transmission rate is high and humans are still

6 MacDonald, G. 1957. The epidemiology and control of malaria. Oxford University Press,
London, UK.
7 Hannon, B. and M. Ruth. 1997. Modeling dynamic biological systems. Springer-Verlag, New
York.
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being bitten, their loss of immunity is low (Figure 4.5). The death rate of infected
people is higher than the natural rate, especially among children. We use an average
death rate for different cohorts to calculate the death rate of infected people.

Let us now explore a set of scenarios for this model. In the first scenario, we
assume a value for HBI = 0.0005 and set the value for repellents = 10. This means
a small biting rate vector. For this, we change the vector control between 0.1 (very
low control of vectors, and thus high survival rate of vectors) and 1.2 (high control
of vectors, and thus low survival rate of vectors). The results are shown in Figure 4.6
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and indicate, as expected, a more prolonged persistence of malaria (a larger infected
population) in the long run, when controls are low. Similarly, more extensive use of
repellents reduces human exposure and thus the size of the infected population. This
is shown in Figure 4.7, where HBI = 0.0005, Vector Control = 1.0, and the variable
Repellents increases from 10 to 30, and finally to 50 for the last run.

The last set of model runs assume Repellents = 10, Vector Control = 1.0 and HBI
increases from run to run by an order of magnitude, starting with 0.0005 and ending
with 0.05. The results are shown in Figure 4.8. Higher HBI yield, in the long run,
larger infected populations.
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4.1.2 Questions and Tasks

1. How would the behavior of the model change if we include resistance of the
vectors against repellents and insecticides?

2. How can we include the influence of socioeconomic factors into the formula,
such as increased education about causes and transmission of malaria, and in-
duced behavioral changes, or improved health care (such as expanded availability
of drugs)?

3. How would the spread of the disease be affected by a global climatic change?
4. How may rains affect the spread of the disease?

BASIC MALARIA MODEL

Human Population
IMMUNE POP(t) = IMMUNE POP(t − dt) + (RECOVERING −
DR IMMUNE − LOSING IMMUNITY) * dt
INIT IMMUNE POP = 0

INFLOWS:
RECOVERING = RECOVERY RATE*INFECTED POP
OUTFLOWS:
DR IMMUNE = IMMUNE POP*NAT DR
LOSING IMMUNITY = IMMUNITY LOSS * IMMUNE POP
INFECTED POP(t) = INFECTED POP(t − dt) + (INFECTING HUM −
RECOVERING − DR IN) * dt
INIT INFECTED POP = 377000

INFLOWS:
INFECTING HUM = TRANSM RATE*UNINFECTED POP *
INFECTED POP
OUTFLOWS:
RECOVERING = RECOVERY RATE * INFECTED POP
DR IN = INFECTED POP * INFECTED DR
POP1530(t) = POP1530(t − dt)
INIT POP1530 = 8676000

UNINFECTED POP(t) = UNINFECTED POP(t − dt) +
(LOSING IMMUNITY + BIRTHING − DR UN − INFECTING HUM) * dt
INIT UNINFECTED POP = 23706000

INFLOWS:
LOSING IMMUNITY = IMMUNITY LOSS * IMMUNE POP
BIRTHING = POP1530 * BR
OUTFLOWS:
DR UN = UNINFECTED POP * NAT DR
INFECTING HUM = TRANSM RATE*UNINFECTED POP *
INFECTED POP
BR = 0.021
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INFECTED DR = 0.1127
LAG INF = DELAY(INFECTED POP, 0.03)
NAT DR = 0.005
RECOVERY RATE = 0.0125
TRANSM RATE = VECTOR INFECTED*LAG INF * TR
IMMUNITY LOSS = GRAPH(TR)
(0.00, 0.955), (1.00, 0.595), (2.00, 0.335), (3.00, 0.18), (4.00, 0.055), (5.00,
0.025), (6.00, 0.015)

REPRODUCTION RATE Ro
BITING RATE VECTOR = HBI * MEAL VECTOR/REPELLENTS
DAILY SURVIVAL VECTOR = X∧(1/Y)
DD = 36.5
Dm = 105
HBI = .05
M = (VECTOR INFECTED+VECTOR UNINFECTED)/(INFECTED POP +
UNINFECTED POP)
MEAL VECTOR = DD/(TEMP-TMIN)
REPELLENTS = 10
Ro = (TR * M)/(−LOGN(DAILY SURVIVAL VECTOR))
T = Dm/(TEMP − Tm)
TEMP = 25
Tm = 15
TMIN = 9.9
TR = (BITING RATE VECTOR∧2) * VERT TO VECTOR *
VECTOR TO VERT * (DAILY SURVIVAL VECTOR∧T)
VECTOR TO VERT = 1
VERT TO VECTOR = 1
X = 0.61
Y = 3

Vector
EGGS(t) = EGGS(t − dt) + (EGGING − HATCHING − EGG DYING) * dt
INIT EGGS = 1000

INFLOWS:
EGGING = EGG RATE * (VECTOR UNINFECTED +
VECTOR INFECTED)
OUTFLOWS:
HATCHING = EGGS * HATCH
EGG DYING = EGGS * EGG DR
VECTOR INFECTED(t) = VECTOR INFECTED(t − dt) + (INFECTING −
DYING INFECTED VECTOR) * dt
INIT VECTOR INFECTED = 1000

INFLOWS:
INFECTING = INFECTION RATE TEMP * VECTOR UNINFECTED
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OUTFLOWS:
DYING INFECTED VECTOR = VECTOR DR * VECTOR INFECTED
VECTOR UNINFECTED(t) = VECTOR UNINFECTED(t − dt) +
(HATCHING − DEATH − INFECTING) * dt
INIT VECTOR UNINFECTED = 1500

INFLOWS:
HATCHING = EGGS * HATCH
OUTFLOWS:
DEATH = VECTOR DR * VECTOR UNINFECTED
INFECTING = INFECTION RATE TEMP * VECTOR UNINFECTED
Base temp = 15
Daily mean Temp = 25 + 15 * SIN(2 * PI * TIME/12)
DDAY = if Daily mean Temp + 15 < Base temp or Daily mean Temp + 15 >
Top Temp then 0 else (Daily mean Temp + 15 − Base temp)/2
EGG DR = (1 − (EXP(LOGN(SURVIVAL PB) * MATURE R * DT)/DT))
EGG RATE = 0.6
HATCH = MATURE R * EXP(LOGN(SURVIVAL PB) * DT * MATURE R)
INFECTION RATE = BITING RATE VECTOR * PP of INFECTED POP *
VERT TO VECTOR * VECTOR TO VERT * PREVALENCE
INFECTION RATE TEMP = if DDAY > Base temp or Base temp < Top Temp
then INFECTION RATE else 0
MATURE R = 0.2
PP of INFECTED POP = INFECTED POP/UNINFECTED POP
PREVALENCE = 0.0186
SURVIVAL PB = RANDOM(0.5, 0.7)
Top Temp = 30
VECTOR CONTROL = 1
VECTOR DR = (1 − (EXP(LOGN(VECTOR SURVIVAL PB))))/DT
VECTOR SURVIVAL PB = Random(0.6,0.8)/VECTOR CONTROL

4.2 Sickle Cell Anemia and Malaria in Balance

4.2.1 Sickle Cell Anemia

Sickle cell disease is an inherited disorder of the red blood cells. It is inherited as an
autosomal recessive trait. Someone who inherits hemoglobin S from one parent and
the normal hemoglobin A from the other parent will have the sickle cell trait. In an
unaffected individual, red blood cells are doughnut-shaped and contain hemoglobin,
the oxygen carrying protein. In a person who has sickle cell anemia, however, the
hemoglobin is in the shape of a sickle. As a result, the cells function abnormally and
cause small blood clots by sticking to each other on the walls of the bloodstream.
These clots give rise to recurrent painful episodes called “sickle cell pain crises.”
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A few symptoms of sickle cell anemia are joint pain, fatigue, breathlessness, delayed
growth, jaundice, abdominal pain, and susceptibility to infections.

Hemolytic crisis, sequestration crisis, and aplastic crisis are three different types
of episodes. Hemolytic crisis is a result of damaged red blood cells that break down
and is one of many life-threatening consequences of having sickle cell anemia.
Sequestration crisis is due to the spleen enlarging and trapping the blood cells.
Aplastic crisis is an infection that causes the bone marrow to stop producing red
blood cells. Without proper medical attention, individuals with this disease often
die at an early age.

Although no cure exists for this disease, a few steps can be taken to help prevent
people from inheriting sickle cell anemia in the future. Prenatal diagnosis of sickle
cell anemia and genetic counseling are available. As for the future fight against
this disease, improvements continue to be made, and as the medical community
continues to advance so will the health and lives of those with sickle cell anemia.

People with the sickle cell trait, a genetic condition, are not as easily infected
with malaria. Heterozygous individuals having no or slight sickle cell anemia are
more resistant to malaria because the parasite is unable to grow in red blood cells
with sickle cell hemoglobin.

The following model mimics the balance between sickle cell anemia and malaria
in developing African countries. We will use this model to explore the effects of
antimalaria drugs and medical treatment on the frequency of sickle cell anemia.
Specifically, the model focuses on the genetic balancing act between sickle cell ane-
mia in a representative African population that has no immigration or emigration.
Malaria infection is assumed to be largely endemic.

Infectious disease population model components are set up individually for the
three possible genotypes (AA, AS, or SS), with susceptible (SUSC), infectious
(INF), and immune stocks for each (Figures 4.9–4.11). The rate of infection is de-
pendent on the number of susceptibles in the particular genotype, the total number
of infectious individuals following a lag due to a latent period (A DELAY), and a
transmission coefficient (Trans), which is a function of a transmission rate (TR) and
the level of infected vectors.

The level of infected vectors is complex and could be modeled separately, but
since we are modeling an endemically infected population, this parameter is simpli-
fied by providing only seasonal variability and a degree of randomness. The AS and
SS genotypes have a lower transmission rate TR than the AA genotype since these
individuals have partial resistance to malaria, unlike the AA individuals.

All of the stocks have a death rate associated with them. Most have a natural death
rate, while the infectious stocks have a higher death rate due to malaria. Also, the
SS genotype stocks have an additional death rate due to sickle cell anemia (Anemia
DR). Individuals recover at a certain rate, and immunity is lost at a certain rate.

The total number of each genotype and allele, as well as the frequencies of each,
are calculated in the genetic portion of the model (Figure 4.12). The allelic frequen-
cies at each time step are used to determine the genotype of individuals born into the
population and therefore which of the three diseased population models individuals
will enter.
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The source for each parameter value is given in the document section of the pa-
rameter menus. After entering parameter values from the literature, the normal TR
and S allele TR were determined empirically. First, we adjusted both equally to a
value that caused epidemics of reasonable size before the disease becomes endemic
as the model runs. When the two TRs were equal, the S allele frequency decreased
over time and eventually approaches zero. Then we reduced the S allele TR to ac-
count for the fact that carriers of this allele are more resistant to malaria. This TR
was adjusted to a value that resulted in 16% frequency of the S allele. With these
empirical values, any initial stock values can be used, and the model will come to
an equilibrium in the frequency of the S allele and the level of malaria infection.

Antimalaria drugs would decrease the death rate due to malaria and increase the
recovery rate, so in the model, we changed the INF DR from 0.1127 to 0.05 and
increased the RECOV R from 0.0125 to 0.1. This resulted in the S allelic frequency
reducing over time rather than leveling off at 16%. After 1,000 cycles, the frequency
is at 2.6%. This would be expected, since a reduced malaria infection level would
no longer make the individuals with the AS genotype have an advantage over the
individuals with the AA genotype (Figure 4.13). The corresponding numbers of
susceptible, infected, and immune is shown in Figure 4.14.

If sickle cell anemia treatment becomes available, affected individuals will live
longer and reproduce. If the Anemia DR is decreased, the equilibrium S allelic
frequency increases. Figure 4.15 shows a sensitivity run with the Anemia DR
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decreasing from 0.5. Runs 1 through 5 have the following Anemia DRs: 0.5, 0.25,
0.1, 0.05, and 0.02. Since individuals with the S allele still have an advantage due to
the malaria, as the Anemia DR approaches the natural DR, the S allelic frequency
increases above 50%.

4.2.2 Questions and Tasks

1. How would you include the possibility for mutation in the model, and how would
the prevalence of malaria and sickle cell anemia change in the light of mutation?
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2. In this model, how would you reflect the effects of mosquito repellents and
malaria prophylaxis medication, which we investigated in Section 4.1?

3. Reformulate the model to reflect different age cohorts and introduce different
age-specific recovery rates from malaria. What are the effects on the prevalence
of malaria and sickle cell anemia?

4. If the vector and its infection level were included, would this affect the results?
Would this allow the model to be used on other populations, such as those that
do not have an endemic malaria problem?
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BALANCE OF MALARIA AND SICKLE CELL ANEMIA

Blood Carrier (AS) Malaria Infection
AS IMMUNE(t) = AS IMMUNE(t − dt) + (AS RECOV − AS IM LOSS −
AS IM D) * dt
INIT AS IMMUNE = 1

INFLOWS:
AS RECOV = AS INF*RECOV R
OUTFLOWS:
AS IM LOSS = AS IMMUNE*Immunity Loss
AS IM D = AS IMMUNE*Nat DR
AS INF(t) = AS INF(t − dt) + (AS INFECT − AS RECOV − AS I D) * dt
INIT AS INF = 12

INFLOWS:
AS INFECT = AS SUSC*Trans AS * INF LAG
OUTFLOWS:
AS RECOV = AS INF * RECOV R
AS I D = AS INF * INF DR
AS SUSC(t) = AS SUSC(t − dt) + (AS birth + AS IM LOSS − AS INFECT
− AS S D) * dt
INIT AS SUSC = 10

INFLOWS:
AS birth = AS births
AS IM LOSS = AS IMMUNE * Immunity Loss
OUTFLOWS:
AS INFECT = AS SUSC * Trans AS * INF LAG
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AS S D = AS SUSC * Nat DR
S allele TR = 0.00066
Trans AS = Infected Vector * S allele TR

Conversions
AA Total = AA IMMUNE + AA INF + AA SUSC
AS Total = AS IMMUNE + AS INF + AS SUSC
INFECTED = AA INF + AS INF + SS INF
Percent Infected = INFECTED/Total People
SS Total = SS IMMUNE + SS INF + SS SUSC
TOTAL IMMUNE = AA IMMUNE + AS IMMUNE + SS IMMUNE
TOTAL SUSC = AA SUSC + AS SUSC + SS SUSC

Genetic Model
AA births = A FREQ∧2 * Total People * BR
AA FREQ = AA Total/Total People
AS births = 2 * A FREQ * S FREQ * Total People * BR
AS FREQ = AS Total/Total People
A alleles = AA Total * 2 + AS Total
A FREQ = A alleles/Total Alleles
BR = 0.03969
SS births = S FREQ∧2 * Total People * BR
SS FREQ = SS Total/Total People
S alleles = SS Total * 2 + AS Total
S FREQ = S alleles/Total Alleles
Total Alleles = A alleles + S alleles
Total People = AS Total + SS Total + AA Total

Normal Blood (AA) Malaria Infection
AA IMMUNE(t) = AA IMMUNE(t − dt) + (AA RECOV − AA IMM LOSS
− AA IM D) * dt
INIT AA IMMUNE = 1

INFLOWS:
AA RECOV = AA INF * RECOV R
OUTFLOWS:
AA IMM LOSS = AA IMMUNE * Immunity Loss
AA IM D = AA IMMUNE * Nat DR
AA INF(t) = AA INF(t − dt) + (AA INFECT − AA RECOV − AA I D) * dt
INIT AA INF = 36

INFLOWS:
AA INFECT = AA SUSC*Trans AA * INF LAG
OUTFLOWS:
AA RECOV = AA INF * RECOV R
AA I D = AA INF * INF DR
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AA SUSC(t) = AA SUSC(t − dt) + (AA birth + AA IMM LOSS −
AA INFECT − AA S D) * dt
INIT AA SUSC = 94

INFLOWS:
AA birth = AA births
AA IMM LOSS = AA IMMUNE * Immunity Loss
OUTFLOWS:
AA INFECT = AA SUSC * Trans AA * INF LAG
AA S D = AA SUSC * Nat DR
Infected Vector = 1 + SINWAVE(0.5,1) + RANDOM(-0.2, 0.2)
INF DR = 0.1127
INF LAG = DELAY(INFECTED, 0.0274)
Nat DR = 0.01391
normal TR = 0.001
Trans AA = Infected Vector * normal TR
IMMUNITY LOSS = GRAPH(Percent Infected)
(0.00, 0.955), (0.167, 0.66), (0.333, 0.45), (0.5, 0.23), (0.667, 0.1), (0.833,
0.055), (1, 0.045)

Sickle Cell (SS) Malaria Infection
SS IMMUNE(t) = SS IMMUNE(t − dt) + (SS RECOV − SS IM LOSS −
SS IM D) * dt
INIT SS IMMUNE = 0

INFLOWS:
SS RECOV = SS INF*RECOV R
OUTFLOWS:
SS IM LOSS = SS IMMUNE*Immunity Loss
SS IM D = SS IMMUNE*Anemia DR
SS INF(t) = SS INF(t − dt) + (SS INFECT − SS RECOV − SS I D) * dt
INIT SS INF = 0

INFLOWS:
SS INFECT = SS SUSC * Trans SS * INF LAG
OUTFLOWS:
SS RECOV = SS INF * RECOV R
SS I D = SS INF * INF DR+SS INF * Anemia DR
SS SUSC(t) = SS SUSC(t − dt) + (SS birth + SS IM LOSS − SS INFECT −
SS S D) * dt
INIT SS SUSC = 1

INFLOWS:
SS birth = SS births
SS IM LOSS = SS IMMUNE * Immunity Loss
OUTFLOWS:
SS INFECT = SS SUSC * Trans SS * INF LAG
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SS S D = SS SUSC * Anemia DR
Anemia DR = 0.5
RECOV R = 0.0125
Trans SS = Infected Vector * S allele TR



Chapter 5
Encephalitis

A virus transmitted between hosts, most commonly by mosquitoes and ticks, causes
encephalitis. The disease is kept extant by a complicated transmission process be-
tween humans and a vertebrate host such as a horse. Humans and domestic animals
are terminal hosts. They suffer from the disease but do not spread the disease them-
selves. Several paths of transmission and several variants of the virus are known.
Most often, the transmitting vector (mosquito or tick, for example) will pass the
virus to his or her own offspring.

Four distinct types of mosquito-transmitted encephalitis are found in the United
States: western equine, eastern equine, St. Louis, and La Crosse. The time period
for appearance of the disease is from June through September and even into winter
in the warm parts of the country. The virus causes flu-like symptoms that are seldom
fatal. Currently, antibiotics and vaccines approved by the Food and Drug Adminis-
tration are ineffective. The disease is best prevented in humans by the use of specific
pesticides and protective clothing and by avoiding the transmitting insects.

Detailed data for this serious public health problem have been collected in many
parts of the country. Yet, relatively few models of the disease have been made. We
offer one such model of St. Louis encephalitis in Illinois. Models of this disease are
useful as public health instruments as they enable better prediction of the conditions
for its appearance, and because they can be used to evaluate the effectiveness of
intervention programs.

The combination of good models, an aware public, and an alert and efficient
public health service can combine to effectively control this disease.

5.1 St. Louis Encephalitis

St. Louis encephalitis is the most common form of this disease in the United States,
occurring in 48 states. Few infected people display symptoms, yet nearly 3,000
cases are reported annually. The older one is, the more likely one is to suffer or die
from the infection, with an overall death rate of around 10 percent. Surveillance and
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control of this disease costs about $150 million per year. The Centers for Disease
Control predicts that global warming and the deterioration of the inner city could
increase the prevalence of the disease1.

Our model is based on St. Louis encephalitis in Illinois with much of the data
coming from the work of Dr. Thomas Monath, adjunct of the Harvard School of
Public Health2. The central guiding question is: How do different mosquito de-
velopmental thresholds affect the incidence of St. Louis encephalitis in the human
population?

Generally, we had to model three populations—humans, birds, and mosquitoes—
with the mosquito acting as the connection vector between the other two. Due to
rapid changes in the mosquito populations, the emigration schedules of birds, and
the rapidly changing temperatures, we chose a daily modeling time step with a
Julian calendar for seasonal change, precipitation, and the timing of temperature
changes. Temperature and available mosquito breeding sites (standing water) are
the conditions that determine the reproduction success of the mosquito population.
We created a simple model to produce a realistic but stochastic representation of
temperature (Figure 5.1) and standing water (Figure 5.2).
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1 CDC website, Division of Vector-Borne Diseases, Domestic Arboviral Encephalitis, St. Louis
Encephalitis, 13 July 2001.
2 Monath, T.P. 1993. Arthropod-borne viruses. In: Morse, S.S., (Ed.). Emerging Viruses, Oxford
University Press, New York, pp. 138–148. See also his volume by CRC on Arboviruses, 1989.
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The variable Annual Temp Cycle uses the STELLA built-in SINEWAVE function
to reflect seasonality. This SINEWAVE function was adjusted to produce a max-
imum temperature on Julian Date 228 (Aug. 16) and a minimum on JD 45 (Feb.
14). The temperature range for the year is set at +/- 50 degrees F. The high and low
temperatures, set independently from normal distributions, were: high = the aver-
age daily temperature + 1.5 * a standard deviation and low subtracting 1.5 * the
same standard deviation from the mean. This method gave a variable but realistic
temperature variation for Illinois.

Standing water is necessary for mosquito production. We include both rain events
and evapotranspiration in the model as functions of the high and low temperature
(Figure 5.2). We assume there is no probability of rain occurring when the difference
between the high and low temperatures is greater than some threshold. We set that
threshold at 8 degrees. If the daily temperature difference is below 8 degrees F, we
choose a rain event from a normal distribution with an average of 0.8 inches of rain
and a standard deviation of 0.4 inches. We find this result to be compatible with
rain events in Illinois. Precipitation is accumulated to provide standing water, and
standing water is removed from the system using a simple drying equation (Average
Daily Temperature / 75 degrees) mimicking evaporation.

While the model allows for development of three species with different devel-
opmental thresholds, we implemented only one species (the third, indicated by the
number 3 in the variable names) in the transmission cycle for this presentation with
cool season development beginning at 50 degrees F. The corresponding module is
shown in Figure 5.3.

Daily degree-day accumulations are used to schedule mosquito development
when standing water is present. The mosquito population is divided into three age
classes (eggs, larvae, and adults), and all have the same developmental temperature
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threshold. Research on mosquito development3 indicated that species differ in the
proportion of their total life span spent in each age class. Some species spend over
half their life as larvae while others have very short larval periods relative to their
total life span (as measured in degree days). We believe this may be an important
component of examining transmission with respect to the period of time when stand-
ing water is available in the environment. A short larval period allows for very quick
response to the availability of breeding sites. Consequently, we chose to define mos-
quito development by the duration of the larval period as a proportion of the entire
life span. We then assumed that egg duration is one-third the remaining life span
and adult duration is two-thirds the remaining life span. The model can be refined,
as more becomes know about the life span of particular mosquitoes.

Although there is evidence that arboviruses like St. Louis encephalitis and West
Nile are present in other vertebrates (domestic horses, raccoons, and even reptiles),
the titers detected in bird populations correspond best to the transmission of the
disease to humans. Passeriforme (warblers, jays, crows, etc.) and Columbiforme
(pigeons and doves) orders are specifically identified in the geographical spread and
the amplification of the virus during the summer months4. We developed a simple
seasonal reproduction bird model for susceptible birds assuming that most repro-
duction occurs on or around the spring equinox (Julian Date = 80). Avian repro-
duction appears to be timed to this annual date. Mortality begins immediately as an
exponential decrease of the population at a rate that yields approximately the same
bird population by Julian Date 80 of the following year (Figure 5.4). The popula-
tions and rates in this portion of the model are necessarily speculative and should

3 See footnote 2.
4 See footnote 2.
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be investigated in greater detail before drawing any practical conclusions from the
model. We do know that the impact of the disease on the bird death rate is very
small.

We divided the human population into cohorts by the degree of immunity and
sickness and different ages, represented by the arrays in the module of Figure 5.5.
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This module shows the human population according to their susceptibility to
encephalitis, the number with the disease at any given time, and the number of
immunes, with each of these elements of the population inflows of people either
through birth (Susceptibles) or inflows from a previous category. We sized the
population for Illinois using U.S. Bureau of Census data for 2000.

Two infection rates are calculated (Figure 5.6). A bird infection rate is calculated
as the product of the population of infectious birds, mosquito population, suscepti-
ble bird population, and coefficient of infection (adjusted to achieve transmission).
Similarly, a human infection rate is calculated as the product of susceptible humans,
mosquito population, infectious birds, and a coefficient of infection (adjusted to
achieve human transmission). The variable Total Susceptible is the sum of the array
of Human Susceptibles.

Several complications arise when matching the virus transmission rates to data
on human infection and mortality. Monath5 indicates that the ratio of asymptomatic
to symptomatic infections may be as high as 338:1, and that transmission rates of
the virus typically do not differ between the age cohorts of the human population
even though the disease generally affects the elderly most. Actual mortality among
symptomatic humans ranges from 0% (age 10–14) to 18% (age 75+). Mortality
attributed to viral infection is highly correlated to the incidence of hypertension.
Since cardiovascular disease increases with age, this may be the determining factor
for mortality following viral infection. We did not model the incidence of hyperten-
sion in the population to determine the incidence of death. Instead, we chose to use
the mortality rates for each human age cohort relative to symptomatic infection as
reported by the Centers for Disease Control in Monath. Modeling the actual causes
of mortality is far more complicated and will require considerably more research.

The annual known human infection rate for Illinois is also obtained from CDC
data6 (Table 5.1):

5 See footnote 2.
6 http://www.cdc.gov/ncidod/dvbid/arbor/arbocase.htm
Arboviral Encephalitis Cases Reported in Humans, by Type, United States, 1964-2000, CDC,
Atlanta, GA.
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Table 5.1

Year Infected

1964 44
1965 1
1968 23
1974 6
1975 581
1976 14
1977 13
1980 5
1982 2
1983 2
1988 1
1993 2

Days

1:

1:

1:
1: infected annually

1 1
1

10
1.00 2921.00 5841.00 8761.00 11681.00

400

800

Fig. 5.7

In another report7 an attack rate of 15.2 per 100,000 and case fatality of 9.7% is
revealed. We adjusted the Monath human death rate factor (with a single coefficient)
to get the death rate at about 10 percent of the death rate.

From Figure 5.7, we can see that the human infection rate was high in the first
cycle of the two years of results even though the breeding potential for mosquitoes
was equally high in both years. This difference in human impact is due to the large
number of immunes in the population by the second summer of the model run
(Figure 5.8). Note in Figure 5.8 that the bulk of the time for standing water does

7 Hopkins, C.C., F.B. Hollinger, R.F. Johnson, H.J. Dewlett, V.F. Newhouse, and R.W.
Chamberlain. 1975. The Epidemiology of St. Louis Encephalitis in Dallas, Texas, 1966. American
Journal of Epidemiology 102: 1–15.
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Fig. 5.8

not coincide with the peak in mosquito degree-days. Also note that the standing
water peak does not coincide with the temperature peak in Illinois.

When running the model, we adjusted the HIRate Coef (Human Infection Rate
Coefficient) and the BIRateCoef (Bird Infection Rate Coefficient) until we achieved
an approximation of the infection rates over a 30-year period. While we could find
30-year periods where the model gave a reasonable approximation of the infection
rate data, results from subsequent runs of the same model over the same period
varied greatly, ranging from very few infections to a death rate exceeding 1,000.
These results give us pause as to the effectiveness of the model and the possibility
that the state has yet to experience its worst outbreak.

5.2 Questions and Tasks

1. One aspect of human behavior that is not included in the model is the fact that
the state’s Public Health Department has an effective warning/publicity policy.
When an infection such as St. Louis encephalitis or West Nile virus begins early
in the year, residents are continually warned about the dangers, and many modify
their behavior to avoid mosquitoes. Include an early warning system in the model
and re-run it. Interpret your results.

2. In the model created for this chapter, we assume that most mosquito-transmitted
diseases will eventually become endemic in the population of birds and humans.
However, we are interested in the short-term seasonal epidemics that may occur
and what temporal control possibilities are feasible for prevention of epidemics
in the human population. We think that this model is a good start in that direction.
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Eventually, a more robust model would be able to address the potential effects of
warmer, rainier climates and the extent of disease spread across the country.

a. How should such a model be set up?
b. Gradually change the climate in the model and observe the results.
c. Introduce more dramatic climatic changes (e.g. by including an increase in

mean temperature, a decrease in precipitation, and increases in the standard
deviation around the means.) How do your results differ from those obtained
in part b?

3.a. Suppose that the typical annual confirmed case rate was 150 with 15 deaths.
Adjust the model to approximately duplicate this result.

3b. Suppose global warming sets in. Illinois is expected to become drier and
warmer. The mean temperature used in the annual cycle is 40 degrees F. As-
sume it is 50 degrees F due to global warming in 30 years. Let the mean raining
event drop to .6 (see rainfall variable in the model) and run the calibrated model
to assess the changes in human St. Louis encephalitis mortality due to global
warming.

ENCEPHALITIS

ALL Controls
Annual Temp Cycle = (SIN((TIME+228)/58.1)*Annual Temp Range)+40
Annual Temp Range = 50
Fall = 264
Julian Date = MOD(TIME, 365)
M1 = 90
M2 = 80
M3 = 90
M3 as Larvae = 0.8
M3 LS Adult = Mosq3 Life Span * ( 1 − M3 as Larvae ) * 2 / 3
M3 LS Egg = Mosq3 Life Span * ( 1 − M3 as Larvae ) / 3
M3 LS Larvae = M3 as Larvae*Mosq3 Life Span
Min Temp Range = 8
Mosq3 Life Span = 499
Spring = 80
Std of Temp = 6
T1 = 65
T2 = 60
T3 = 50
Year = INT(TIME/365) + 1

Bird Population Dynamics
Bird Infected(t) = Bird Infected(t − dt) + (Bird Infection + Inf Migra In −
Bird Disease Death − Inf Migra Out) * dt
INIT Bird Infected = 0.001
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INFLOWS:
Bird Infection = if time > 0 then Bird Suceptible*Bird Infection Rate else 0
Inf Migra In = DELAY(Inf Migra Out,183)
OUTFLOWS:
Bird Disease Death = if time > 0 then Bird Infected*0.002 else 0
Inf Migra Out = If Year 2=Year 2 then if Julian Date = Fall then Bird Infected
* Percent Migration else 0 else 0
Bird Suceptible(t) = Bird Suceptible(t − dt) + (Bird Reprod + Migration In −
Bird Infection − Regular Death − Migration out) * dt
INIT Bird Suceptible = 100

INFLOWS:
Bird Reprod = If Julian Date > 0 then IF Julian Date = (Spring + 1 ) then 3 *
(Bird Infected+Bird Suceptible) else 0 else 0
Migration In = DELAY(Migration out,183)
OUTFLOWS:
Bird Infection = if time > 0 then Bird Suceptible*Bird Infection Rate else 0
Regular Death = If time > 0 then Bird Suceptible*0.001 else 0
Migration out = If Year 2=Year 2 then if Julian Date 2 = Fall 2 then
Bird Suceptible * Percent Migration else 0 else 0
Fall 2 = 264 {Fall Equinox – Sept 21st}
Julian Date 2 = if time < 0 then 0 else MOD(TIME,365)
Percent Migration = .75
Year 2 = INT(TIME/365) + 1

Calculate Infection
BIRate Fudge = 1 / (10 ˆ 7)
Bird Infection Rate = Bird Suceptible * Bird Infected * Mosq3 Adults *
BIRate Fudge
HIRate Fudge = 1 / (10 ˆ 13 )
Human Infection Rate = Total Susceptible * Mosq3 Adults * Bird Infected *
HIRate Fudge

Human Population
Disease Deaths[Dim Name 1 1](t) = Disease Deaths[Dim Name 1 1](t − dt) +
(Dying[Dim Name 1 1] − New Year[Dim Name 1 1]) * dt
INIT Disease Deaths[Dim Name 1 1] = 0

INFLOWS:
Dying[Age 0 to 4] = Infected[Age 0 to 4]*Mortality Rates[Age 0 to 4]/365
Dying[Age 5 to 9] = Infected[Age 5 to 9]*Mortality Rates[Age 5 to 9]/365
Dying[Age 10 to 14] =
Infected[Age 10 to 14]*Mortality Rates[Age 10 to 14]/365
Dying[Age 15 to 24] =
Infected[Age 15 to 24]*Mortality Rates[Age 15 to 24]/365
Dying[Age 25 to 34] =
Infected[Age 25 to 34]*Mortality Rates[Age 25 to 34]/365
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Dying[Age 35 to 44] =
Infected[Age 35 to 44]*Mortality Rates[Age 35 to 44]/365
Dying[Age 45 to 54] =
Infected[Age 45 to 54]*Mortality Rates[Age 45 to 54]/365
Dying[Age 55 to 64] =
Infected[Age 55 to 64]*Mortality Rates[Age 55 to 64]/365
Dying[Age 65 to 74] =
Infected[Age 65 to 74]*Mortality Rates[Age 65 to 74]/365
Dying[Age 75 plus] =
Infected[Age 75 plus]*Mortality Rates[Age 75 plus]/365
OUTFLOWS:
New Year[Dim Name 1 1] = IF Julian Date = 0 then
ARRAYSUM(Disease Deaths[*]) else 0
Immunes[Dim Name 1 1](t) = Immunes[Dim Name 1 1](t − dt) +
(Surviving[Dim Name 1 1] + Moving In 2[Dim Name 1 1] −
Moving Out 2[Dim Name 1 1] − Death Rate 2[Dim Name 1 1]) * dt
INIT Immunes[Dim Name 1 1] = 0

INFLOWS:
Surviving[Age 0 to 4] = DELAY(Infected[Age 0 to 4] − Dying[Age 0 to 4],5)
Surviving[Age 5 to 9] = DELAY(Infected[Age 5 to 9] − Dying[Age 5 to 9],5)
Surviving[Age 10 to 14] =
DELAY(Infected[Age 10 to 14] − Dying[Age 10 to 14],5)
Surviving[Age 15 to 24] =
DELAY(Infected[Age 15 to 24] − Dying[Age 15 to 24],5)
Surviving[Age 25 to 34] =
DELAY(Infected[Age 25 to 34] − Dying[Age 25 to 34],5)
Surviving[Age 35 to 44] =
DELAY(Infected[Age 35 to 44] − Dying[Age 35 to 44],5)
Surviving[Age 45 to 54] =
DELAY(Infected[Age 45 to 54] − Dying[Age 45 to 54],5)
Surviving[Age 55 to 64] =
DELAY(Infected[Age 55 to 64] − Dying[Age 55 to 64],5)
Surviving[Age 65 to 74] =
DELAY(Infected[Age 65 to 74] − Dying[Age 65 to 74],5)
Surviving[Age 75 plus] =
DELAY(Infected[Age 75 plus] − Dying[Age 75 plus],5)
Moving In 2[Age 0 to 4] = Immunes[Age 0 to 4]*0
Moving In 2[Age 5 to 9] = Immunes[Age 0 to 4]*0.2/365
Moving In 2[Age 10 to 14] = Immunes[Age 5 to 9]*0.2/365
Moving In 2[Age 15 to 24] = Immunes[Age 10 to 14]*0.1/365
Moving In 2[Age 25 to 34] = Immunes[Age 15 to 24]*0.1/365
Moving In 2[Age 35 to 44] = Immunes[Age 25 to 34]*0.1/365
Moving In 2[Age 45 to 54] = Immunes[Age 35 to 44]*0.1/365
Moving In 2[Age 55 to 64] = Immunes[Age 45 to 54]*0.1/365
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Moving In 2[Age 65 to 74] = Immunes[Age 55 to 64]*0.1/365
Moving In 2[Age 75 plus] = Immunes[Age 65 to 74]*0.1/365

OUTFLOWS:
Moving Out 2[Age 0 to 4] = Immunes[Age 0 to 4]*0.2/365
Moving Out 2[Age 5 to 9] = Immunes[Age 5 to 9]*0.2/365
Moving Out 2[Age 10 to 14] = Immunes[Age 10 to 14]*0.2/365
Moving Out 2[Age 15 to 24] = Immunes[Age 15 to 24]*0.1/365
Moving Out 2[Age 25 to 34] = Immunes[Age 25 to 34]*0.1/365
Moving Out 2[Age 35 to 44] = Immunes[Age 35 to 44]*0.1/365
Moving Out 2[Age 45 to 54] = Immunes[Age 45 to 54]*0.1/365
Moving Out 2[Age 55 to 64] = Immunes[Age 55 to 64]*0.1/365
Moving Out 2[Age 65 to 74] = Immunes[Age 65 to 74]*0.1/365
Moving Out 2[Age 75 plus] = Immunes[Age 75 plus]*0
Death Rate 2[Age 0 to 4] = Immunes[Age 0 to 4] * 0.0088/365
Death Rate 2[Age 5 to 9] = Immunes[Age 5 to 9]*.0088/365
Death Rate 2[Age 10 to 14] = Immunes[Age 10 to 14]*.0088/365
Death Rate 2[Age 15 to 24] = Immunes[Age 15 to 24]*.0088/365
Death Rate 2[Age 25 to 34] = Immunes[Age 25 to 34]*.0088/365
Death Rate 2[Age 35 to 44] = Immunes[Age 35 to 44]*.0088/365
Death Rate 2[Age 45 to 54] = Immunes[Age 45 to 54]*.0088/365
Death Rate 2[Age 55 to 64] = Immunes[Age 55 to 64]*.0088/365
Death Rate 2[Age 65 to 74] = Immunes[Age 65 to 74]*.0088/365
Death Rate 2[Age 75 plus] = Immunes[Age 75 plus]*.0088/365
Infected[Dim Name 1 1](t) = Infected[Dim Name 1 1](t − dt) +
(Infecting[Dim Name 1 1] − Surviving[Dim Name 1 1] −
Dying[Dim Name 1 1]) * dt
INIT Infected[Dim Name 1 1] = 0

INFLOWS:
Infecting[Dim Name 1 1] =
Human Infection Rate*Susceptible[Dim Name 1 1]

OUTFLOWS:
Surviving[Age 0 to 4] = DELAY(Infected[Age 0 to 4] − Dying[Age 0 to 4],5)
Surviving[Age 5 to 9] = DELAY(Infected[Age 5 to 9] − Dying[Age 5 to 9],5)
Surviving[Age 10 to 14] =
DELAY(Infected[Age 10 to 14] − Dying[Age 10 to 14],5)
Surviving[Age 15 to 24] =
DELAY(Infected[Age 15 to 24] − Dying[Age 15 to 24],5)
Surviving[Age 25 to 34] =
DELAY(Infected[Age 25 to 34] − Dying[Age 25 to 34],5)
Surviving[Age 35 to 44] =
DELAY(Infected[Age 35 to 44] − Dying[Age 35 to 44],5)
Surviving[Age 45 to 54] =
DELAY(Infected[Age 45 to 54] − Dying[Age 45 to 54],5)
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Surviving[Age 55 to 64] =
DELAY(Infected[Age 55 to 64] − Dying[Age 55 to 64],5)
Surviving[Age 65 to 74] =
DELAY(Infected[Age 65 to 74] − Dying[Age 65 to 74],5)
Surviving[Age 75 plus] =
DELAY(Infected[Age 75 plus] − Dying[Age 75 plus],5)
Dying[Age 0 to 4] =
Infected[Age 0 to 4]*Mortality Rates[Age 0 to 4]/365
Dying[Age 5 to 9] =
Infected[Age 5 to 9]*Mortality Rates[Age 5 to 9]/365
Dying[Age 10 to 14] =
Infected[Age 10 to 14]*Mortality Rates[Age 10 to 14]/365
Dying[Age 15 to 24] =
Infected[Age 15 to 24]*Mortality Rates[Age 15 to 24]/365
Dying[Age 25 to 34] =
Infected[Age 25 to 34]*Mortality Rates[Age 25 to 34]/365
Dying[Age 35 to 44] =
Infected[Age 35 to 44]*Mortality Rates[Age 35 to 44]/365
Dying[Age 45 to 54] =
Infected[Age 45 to 54]*Mortality Rates[Age 45 to 54]/365
Dying[Age 55 to 64] =
Infected[Age 55 to 64]*Mortality Rates[Age 55 to 64]/365
Dying[Age 65 to 74] =
Infected[Age 65 to 74]*Mortality Rates[Age 65 to 74]/365
Dying[Age 75 plus] =
Infected[Age 75 plus]*Mortality Rates[Age 75 plus]/365

Susceptible[Age 0 to 4](t) = Susceptible[Age 0 to 4](t − dt) +
(Moving in[Age 0 to 4] − Infecting[Age 0 to 4] − Moving Out[Age 0 to 4] −
Death Rate[Age 0 to 4]) * dt
INIT Susceptible[Age 0 to 4] = 876549

Susceptible[Age 5 to 9](t) = Susceptible[Age 5 to 9](t − dt) +
(Moving in[Age 5 to 9] − Infecting[Age 5 to 9] − Moving Out[Age 5 to 9] −
Death Rate[Age 5 to 9]) * dt
INIT Susceptible[Age 5 to 9] = 929858

Susceptible[Age 10 to 14](t) = Susceptible[Age 10 to 14](t − dt) +
(Moving in[Age 10 to 14] − Infecting[Age 10 to 14] −
Moving Out[Age 10 to 14] − Death Rate[Age 10 to 14]) * dt
INIT Susceptible[Age 10 to 14] = 905097

Susceptible[Age 15 to 24](t) = Susceptible[Age 15 to 24](t − dt) +
(Moving in[Age 15 to 24] − Infecting[Age 15 to 24] −
Moving Out[Age 15 to 24] − Death Rate[Age 15 to 24]) * dt
INIT Susceptible[Age 15 to 24] = 1744845
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Susceptible[Age 25 to 34](t) = Susceptible[Age 25 to 34](t − dt) +
(Moving in[Age 25 to 34] − Infecting[Age 25 to 34] −
Moving Out[Age 25 to 34] − Death Rate[Age 25 to 34]) * dt
INIT Susceptible[Age 25 to 34] = 1811674

Susceptible[Age 35 to 44](t) = Susceptible[Age 35 to 44](t − dt) +
(Moving in[Age 35 to 44] − Infecting[Age 35 to 44] −
Moving Out[Age 35 to 44] − Death Rate[Age 35 to 44]) * dt
INIT Susceptible[Age 35 to 44] = 1983870

Susceptible[Age 45 to 54](t) = Susceptible[Age 45 to 54](t − dt) +
(Moving in[Age 45 to 54] − Infecting[Age 45 to 54] −
Moving Out[Age 45 to 54] − Death Rate[Age 45 to 54]) * dt
INIT Susceptible[Age 45 to 54] = 1626742

Susceptible[Age 55 to 64](t) = Susceptible[Age 55 to 64](t − dt) +
(Moving in[Age 55 to 64] − Infecting[Age 55 to 64] −
Moving Out[Age 55 to 64] − Death Rate[Age 55 to 64]) * dt
INIT Susceptible[Age 55 to 64] = 1040633

Susceptible[Age 65 to 74](t) = Susceptible[Age 65 to 74](t − dt) +
(Moving in[Age 65 to 74] − Infecting[Age 65 to 74] −
Moving Out[Age 65 to 74] − Death Rate[Age 65 to 74]) * dt
INIT Susceptible[Age 65 to 74] = 772247

Susceptible[Age 75 plus](t) = Susceptible[Age 75 plus](t − dt) +
(Moving in[Age 75 plus] − Infecting[Age 75 plus] −
Moving Out[Age 75 plus] − Death Rate[Age 75 plus]) * dt
INIT Susceptible[Age 75 plus] = 727778

INFLOWS:
Moving in[Age 0 to 4] = (Birthing Females + Susceptible[Age 15 to 24] +
Susceptible[Age 25 to 34] + Susceptible[Age 35 to 44]) *
(Human Birth Rate/365)
Moving in[Age 5 to 9] = Susceptible[Age 0 to 4]*0.2/365 +
( Birthing Females * Human Birth Rate * 0 )
Moving in[Age 10 to 14] = Susceptible[Age 5 to 9]*0.2/365+
( Birthing Females * Human Birth Rate * 0 )
Moving in[Age 15 to 24] = Susceptible[Age 10 to 14]*0.2/365 +
( Birthing Females * Human Birth Rate * 0 )
Moving in[Age 25 to 34] = Susceptible[Age 15 to 24]*0.1/365 +
( Birthing Females * Human Birth Rate * 0 )
Moving in[Age 35 to 44] = Susceptible[Age 25 to 34]*0.1/365 +
( Birthing Females * Human Birth Rate * 0 )
Moving in[Age 45 to 54] = Susceptible[Age 35 to 44]*0.1/365 +
( Birthing Females * Human Birth Rate * 0 )
Moving in[Age 55 to 64] = Susceptible[Age 45 to 54]*0.1/365+
( Birthing Females * Human Birth Rate * 0 )
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Moving in[Age 65 to 74] = Susceptible[Age 55 to 64]*0.1/365 +
( Birthing Females * Human Birth Rate * 0 )
Moving in[Age 75 plus] = Susceptible[Age 65 to 74]*0.1/365 +
( Birthing Females * Human Birth Rate * 0 )

OUTFLOWS:
Infecting[Dim Name 1 1] =
Human Infection Rate*Susceptible[Dim Name 1 1]
Moving Out[Age 0 to 4] = Susceptible[Age 0 to 4]*0.2/365
Moving Out[Age 5 to 9] = Susceptible[Age 5 to 9]*0.2/365
Moving Out[Age 10 to 14] = Susceptible[Age 10 to 14]*0.2/365
Moving Out[Age 15 to 24] = Susceptible[Age 15 to 24]*0.1/365
Moving Out[Age 25 to 34] = Susceptible[Age 25 to 34]*0.1/365
Moving Out[Age 35 to 44] = Susceptible[Age 35 to 44]*0.1/365
Moving Out[Age 45 to 54] = Susceptible[Age 45 to 54]*0.1/365
Moving Out[Age 55 to 64] = Susceptible[Age 55 to 64]*0.1/365
Moving Out[Age 65 to 74] = Susceptible[Age 65 to 74]*0.1/365
Moving Out[Age 75 plus] = Susceptible[Age 75 plus]*0
Death Rate[Dim Name 1 1] = Susceptible[Dim Name 1 1]*.0088/365
Birthing Females = (Infected[Age 15 to 24]+Infected[Age 25 to 34]+
Infected[Age 35 to 44])+(Immunes[Age 15 to 24]+
Immunes[Age 25 to 34]+Immunes[Age 35 to 44])/2
Human Birth Rate = 0.068
Mortality Rates[Age 0 to 4] = 0.0256
Mortality Rates[Age 5 to 9] = 0.0169
Mortality Rates[Age 10 to 14] = 0
Mortality Rates[Age 15 to 24] = 0.0148
Mortality Rates[Age 25 to 34] = 0.0056
Mortality Rates[Age 35 to 44] = 0.0179
Mortality Rates[Age 45 to 54] = 0.0596
Mortality Rates[Age 55 to 64] = 0.0674
Mortality Rates[Age 65 to 74] = 0.0955
Mortality Rates[Age 75 plus] = 0.1803
Total Deaths = ARRAYSUM(Disease Deaths[*])
Total Immune = ARRAYSUM(Immunes[*])
Total Infected = ARRAYSUM(Infected[*])
Total Population = Total Immune+Total Infected+Total Susceptible
Total Susceptible = ARRAYSUM(Susceptible[*])

Mosquito Population Dynamics
Mosq3 Adults(t) = Mosq3 Adults(t − dt) + (Mosq3 Eclosing − Mosq3 Death)
* dt
INIT Mosq3 Adults = 0

INFLOWS:
Mosq3 Eclosing = Mosq3 Larvae * ( Mos3DD / M3 LS Larvae )
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OUTFLOWS:
Mosq3 Death = IF Low < 32 then 0.8 * Mosq3 Adults else Mosq3 Adults *
( Mos3DD/ M3 LS Adult ) * 0.5
Mosq3 Eggs(t) = Mosq3 Eggs(t − dt) + (Ovipositing + Fudge −
Mosq3 Hatching −
Mosq3 Egg Mortality) * dt
INIT Mosq3 Eggs = 100

INFLOWS:
Ovipositing = Mosq3 Adults * Mosq3 Egg # * (Mos3DD/ M3 LS Adult) *
Standing Water
Fudge = IF Julian Date = Spring and Mosq3 Eggs < 100 then 100 −
Mosq3 Eggs else 0

OUTFLOWS:
Mosq3 Hatching = Mosq3 Eggs * (Mos3DD / M3 LS Egg)
Mosq3 Egg Mortality = if SMTH1(Mos3DD,30) = 0 then
(Mos3DD/M3 LS Egg) * 0.1 * Mosq3 Eggs else (Mos3DD/M3 LS Egg) *
0.3 * Mosq3 Eggs
Mosq3 Larvae(t) = Mosq3 Larvae(t − dt) + (Mosq3 Hatching −
Mosq3 Eclosing − Mosq L Death) * dt
INIT Mosq3 Larvae = 0

INFLOWS:
Mosq3 Hatching = Mosq3 Eggs * ( Mos3DD / M3 LS Egg )

OUTFLOWS:
Mosq3 Eclosing = Mosq3 Larvae * ( Mos3DD / M3 LS Larvae )
Mosq L Death = if SMTH1(Mos3DD,30)= 0 then 0.1 * Mosq3 Larvae else
(Mos3DD / M3 LS Larvae ) * 7 * Mosq3 Larvae
Mosq3 Egg # = 100
Mosq3 Oviposition Rate = 100

Precipitation
Cum Precip(t) = Cum Precip(t − dt) + (Events − Dump) * dt
INIT Cum Precip = 0

INFLOWS:
Events = Raining

OUTFLOWS:
Dump = IF INT(TIME()/365)*365 = TIME then Cum Precip else 0
Standing Water(t) = Standing Water(t − dt) + (Raining − Drying) * dt
INIT Standing Water = 0

INFLOWS:
Raining = IF Rain Event < 1 then Normal(0.8,0.4) else 0

OUTFLOWS:
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Drying = Standing Water*((High+Low)/2)/75
Rain Event = (HIGH − LOW)/Min Temp Range
Temperature − Mosquito Development
M1CumDD(t) = M1CumDD(t − dt) + (Mos1Dev − ClearM1) * dt
INIT M1CumDD = 0

INFLOWS:
Mos1Dev = If Mos1DD<0 then 0 else Mos1DD
OUTFLOWS:
ClearM1 = If (INT(TIME/365)*365)=TIME then M1CumDD else 0
M2CumDD(t) = M2CumDD(t − dt) + (Mos2Dev − ClearM2) * dt
INIT M2CumDD = 0

INFLOWS:
Mos2Dev = If Mos2DD<0 then 0 else Mos2DD
OUTFLOWS:
ClearM2 = If (INT(TIME/365)*365)=TIME then M2CumDD else 0
M3CumDD(t) = M3CumDD(t − dt) + (Mos3Dev − ClearM3) * dt
INIT M3CumDD = 0

INFLOWS:
Mos3Dev = If Mos3DD<0 then 0 else Mos3DD
OUTFLOWS:
ClearM3 = If (INT(TIME/365)*365)=TIME then M3CumDD else 0
High = NORMAL(Annual Temp Cycle+1.5*Std of Temp,Std of Temp)
Low = NORMAL(Annual Temp Cycle−1.5*Std of Temp,Std of Temp)
Mos1DD = IF (HIGH < T1 OR LOW > M1) then 0 else
IF (HIGH < M1 AND LOW > T1) then (High+Low)/2 − T1 else
IF (HIGH > M1 AND LOW > T1) then (M1+Low)/2 − T1 else
IF (HIGH < M1 AND LOW < T1) then (HIGH+T1)/2 − T1 else 0
Mos2DD = IF (HIGH < T2 OR LOW > M2) then 0 else
IF (HIGH < M2 AND LOW > T2) then (High+Low)/2 − T2 else
IF (HIGH > M2 AND LOW > T2) then (M2+Low)/2 − T2 else
IF (HIGH < M2 AND LOW < T2) then (HIGH+T2)/2 − T2 else 0
Mos3DD = IF (HIGH < T3 OR LOW > M3) then 0 else
IF (HIGH < M3 AND LOW > T3) then (High+Low)/2 − T3 else
IF (HIGH > M3 AND LOW > T3) then (M3+Low)/2 − T3 else
IF (HIGH < M3 AND LOW < T3) then (HIGH+T3)/2 − T3 else 0



Chapter 6
Chagas Disease

Chagas disease, also called American Trypanosomiasis, is one of the most promi-
nent vector-borne diseases in Latin America. It is caused by the protozoan para-
site, Trypanosoma cruzi, and transmitted by blood-feeding triatomine bugs. Infec-
tion occurs not by the biting of the bugs, but by infiltration of the feces of infected
bugs during blood feeding.

In rural areas of Argentina, for example, most people acquire infection in their
homes because the cracks in the walls of their houses and the thatched roofs under
which people live tend to be shelters for triatomine bugs. Furthermore, domestic and
peridomestic animals, such as dogs and chickens, often occupy people’s bedrooms,
thus providing sufficient blood sources for the bugs. Human-to-human transmission
is generally impossible, but a few infants are infected by their mothers, who already
have Chagas disease, and in rare cases people can contract Chagas disease through
blood transfusions. Because of the central role of animal-to-human transmission,
more focus on Trypanosomiasis infestans as a main vector of the Chagas disease in
domestic housing of Argentina1 is expected, even though many species of triatomine
bugs transmit Trypanosomiasis cruzi throughout the geographic region.

Currently, neither vaccine nor prophylaxis is available. An effective drug treatment
is used for humans only in the acute and early chronic phase of infection. People
cannot develop immunity for Chagas disease even after recovering from the infection.

Possible control measures for Chagas disease are 1) improving housing, 2) an-
nual spraying of insecticides and killing of triatomine bugs, 3) providing early pre-
vention for infants born to infected mothers through congenital surveillance and
treatment of infected infants, 4) excluding reservoir animals from human housing,
and 5) blood screening.

1 Cecere, M.C., Castanera, M.B., Canale, D.M., Chuit, R. and E. Gurtler. 1999. Trypanosoma
cruzi infection in Triatoma infestans and other triatomines: long-term effects of a control program
in rural northwestern Argentina. Pan Am J Public Health, 5(6), 392–399.
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6.1 Chagas Disease Spread and Control Strategies

The model of this chapter can be used to explore how Chagas disease spreads in a
closed human population and how pursuing one or more of the following control
strategies might affect spread of the disease. These control strategies include the
following: improved housing structures, annual spraying, reservoir control, and con-
genital surveillance. The model consists of two sectors, one for the human popula-
tion showing the transmission of T. cruzi among humans. The second module shows
the life cycle of vector insects, and the transmission of T. cruzi from adults to in-
fected vectors.

The human population module (Figure 6.1) is based on 2002 estimated
Argentina’s population size2, BIRTHRATE, and OVERALL DEATH RATE (NAT-
URAL DEATH RATE). We estimated the REPRODUCTIVE POPULATION from
the total population and also estimate the age and sex distribution of the population.
The initial number of SUSCEPTIBLE and INFECTED HUMANS is calculated
from the total population and prevalence rate of T. cruzi in Argentina3.

A human may acquire infection if borne to an infected mother. CONGENITAL
INFECTION RATE is calculated as the product of PREVALENCE OF T. CRUZI
AMONG PREGNANT MOTHERS (0.055) and CONGENITAL TRANSMISSION
RATE (0.067)4. The majority of infected persons become infected by infected tri-
atomine bugs. The HUMAN INFECTION RATE is the probability that susceptible
humans become infected from these infection vectors:

HUMAN INFECTION RATE = 1− (1−TRBH)∧(CONT INF B), (6.1)

where TRBH is the probability that feeding of a bug on an uninfected human will
cause the human to acquire infection at a rate of 0.00085.

CONT INF B is the average number of times an infected bug has had feeding
contact with a human. It is the product of the NUMBER OF INFECTED VEC-
TORS and the AVERAGE NUMBER OF FEEDINGS PER BUG EACH YEAR (5
times per year) divided by (TOTAL BLOOD SOURCE).5 INFECTED HUMAN is
obtained from the product of HUMAN INFECTION RATE and SUSCEPTIBLE
HUMAN.

2 http://www.cia.gov/cia/publications/factbook/geos/ar.html
3 Gurtler, R.E., Cecere, M.C., Castanera, M.B., Canale, D., Lauricella, M.A., Chuit R., Cohen, J.E.
and E.L. Segura. 1996. Probability of infection with Trypanosoma cruzi of the vector Triatoma
infestans fed on infected humans and dogs in northwest Argentina. Am J Trop Med Hyg, 55(1),
24–31.
4 Blanco, S.B., Segura, E.L., Cura, E.L., Chuit, R., Tulian, L., Flores, I., Garbarino, G., Villalonga,
J.F. and R.E. Gurtler. 2000. Congenital transmission of Trypanosoma cruzi: an operational outline
for detecting and treating infected infants in northwestern Argentina. Trop Med Int Health, 5(4),
293–301.
5 Cohen, J.E. and R.E. Gurtler. 2001. Modeling household transmission of American Trypanoso-
miasis. Science, 293, 694–698.
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Infected people become infectious to others after a 10-day (0.03) lag time6 Of
those infected, 14–44% die of Chagas disease. This range of case fatality depends
on the person’s age, when infection occurs, and the stage of infection. In this model,
however, we treated fatality as a random variable, in part because of a lack of data
on disease incidence by the various age cohorts of the population.7 Approximately
60% of infected people recover once treated, although the recovery rate of the dis-
ease varies according to age of infected person and progression of the disease8.
Additionally, we assume that there is no human infection via transfusion of conta-
minated blood.

The vector population module shows the life cycle of vector insects, and the
transmission of T. cruzi from adults to infected vectors (Figure 6.2). The initial
number of adult insects was estimated from the total human population and house-
hold bug density based on a field study (1,299 bugs/34 household)9. This household
bug density was obtained on the assumption that these households had poor hous-
ing condition with no previous insecticide exposure. We also assumed that only
uninfected bugs exist at the initial time step. Other parameters used to explain the
life cycle of T. cruzi infesting bugs were based on laboratory experiments10 as fol-
lows: The maximum number of uninfected and infected adult bugs that the physical
infrastructure of each household will support, given an unlimited food supply (the
carrying capacity) is K=500.5 The monthly egg reproduction rate of each bug (EGG
LAY RATE) is 1.64 and the egg survival fraction (ESF) is 0.57. NYMPH SUR-
VIVAL RATE and ADULT SURVIVAL RATE are 0.175 and 307.5/365 per year,
respectively.

Environmental effects, such as temperature and humidity, upon the survival of
insects at each stage were not considered since the human housing provides a stable
environment for bugs. Also, it was assumed that all bugs mature to the next stage,
unless they die. Adult bugs become infected with T. cruzi through feeding contact
with infected blood sources.

T. cruzi infestans are not mobile insects. Once sheltered at domiciliary areas,
these bugs are not likely to move outside of the area to feed themselves. Thus, we
assumed that bugs feed on vertebrate animals found in domiciliary areas. Humans
and family dogs that are easily accessible to human housing are all-season blood
sources for triatomine bugs, while chickens are blood sources only during relatively
cold seasons. In addition, bugs feed on dogs and chickens approximately three times

6 Markell E.K., John D.T. and W.A. Krotoski. 1999. Medical Parasitology. 8th Ed. Other Blood-
and Tissue dwelling protozoa. (pp.134–146). PA: WB Saunders.
7 Guhl, F. and G.A. Vallejo. 1999. Interruption of Chagas disease transmission in the Andean
Countries: Colombia. Mem Inst Oswaldo Cruz, Rio de Janeiro, 94(supple.1), 413–415.
8 Cancado, J.R. 1999. Criteria of Chagas disease cure. Mem Inst Oswaldo Cruz, Rio de Janeiro,
94(supple.1), 331–335.
9 Gurtler, R.E., Cohen, J.E., Cecere, M.C., Lauricella, M.A., Chuit, R. and E.L. Segura. 1998.
Influences of humans and domestic animals on the household prevalence of Trypanosoma cruzi
and Triatoma infestans in northwest Argentina. Am J Trop Med Hyg, 58(6), 748–758.
10 Guarneri, A.A., Carvalho Pinto, C.J., Schofield, C.J. and M. Steindel. 1923. Population biology
of Rhodnius domesticus (Hemiptera: Reduviidae) under laboratory conditions. Departamento de
Microbiologia e Parasitologia, Universidade Federal de Santa Catarina, 93(2), 273–276.
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as much as on humans, since it is not likely to be interrupted by these animals during
feeding11. Therefore, we obtained BLOOD SOURCES of bugs as follows:

BLOOD SOURCE
= TOTAL HUMANS (SUSCEPTIBLE + INFECTED HUMANS)

+R∗ (TOTAL DOGS + CHICKENS),
when TEMPERATURE < 70
and
BLOOD SOURCE = TOTAL HUMANS + R∗ (TOTAL DOGS),
when TEMPERATURE <= 70, (6.2)

11 Gurtler, R.E., Cohen, J.E., Cecere, M.C. and R. Chuit. 1997. Shifting host choices of the vector
of Chagas disease, Triatoma infestans, in relation to the availability of hosts in houses in northwest
Argentina. J Appl Ecology, 34, 699–715.
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where R = 3 is the relative feeding index of dogs and chickens as sources of feed-
ing contacts compared to humans and the temperature follows a sine wave with an
annual average temperature of Argentina of 63 degrees F and a temperature range
of 52 to 72 degrees.

The initial number of dogs and chickens are estimated from the total human
population. We assumed that each household is comprised of 5 people, 2 dogs, and 2
chickens that are accessible to each human house.

Transmission of T. cruzi among insect vectors was determined as follows:

VECTOR INFECTION RATE = 1 − (1 − TR B)∧(CONT INF HOST), (6.3)

where

TR B = ((TR HB∗ INF HU)+(TR DB∗ INF DOG))/BLOOD SOURCE (6.4)

TR HB is the probability that, in one feeding by an initially uninfected bug on an
infected (seropositive) human, the bug acquires infection. It is 0.03.5 TR DB is
the probability that, in one feeding by an initially uninfected bug on an infected
(seropositive) human, the bug acquires infection. It is 0.49.5 INF DOG is the number
of infected dogs, calculated from the TOTAL DOGS and PREVALENCE OF T.
CRUZI AMONG DOGS (0.84)12.

CONT INF HOST is the average number of times an adult bug has had feeding
contact with an infected blood source:

CONT INF HOST =N FEEDING∗ (INF HU + R∗ INF DOG)/
BLOOD SOURCE

(6.5)

However, chickens are not included in infected blood sources because they are not
infected with T. cruzi.

The fatalities from T. cruzi among humans and the vector population dynamics
are shown in Figures 6.3 and 6.4, respectively. When there is no control of T. cruzi,
vector prevalence and the number of people dying of Chagas disease tend to increase
through time.

When cracked and unplastered walls are plastered well, household bug density
is decreased from 38 bugs to 0.43 bugs per household13. Since housing improve-
ments are a one-time event, their introduction in the model changes the initial bug
density and decreases the carrying capacity (K) from an assumed 500 to 200. This
demonstrates the effects of housing improvements and is displayed in Figures 6.5
and 6.6. House improvement itself decreases the insect population and human

12 Gurtler, R.E., Cecere, M.C., Rubel, D.N., Petersen, R.M., Schweigmann, N.J., Lauricella, M.A.,
Bujas, M.A., Segura, E.L. and C. Wisnivesky-Colli. 1991. Chagas disease in northwest Argentina:
infected dogs as a risk factor for the domestic transmission of Trypanosoma cruzi. Transactions of
the Royal Society of Tropical Medicine and Hygiene, 85, 741–745.
13 Gurtler, R.E., Cecere, M.C., Rubel, D.N. and J. Schweigmann. 1992. Determinants of the domi-
ciliary density of Triatoma infestans, vector of Chagas disease. Medical and Veterinary Entomol-
ogy, 6, 75–83.
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infection rate and thus, decreases the number of deaths due to Chagas disease.
Chagas disease cannot be eliminated solely by housing improvements, however.

The outflows from ADULT INSECT and INFECTED VECTOR were added to
test the effect of annual insecticide spraying. Annual spraying was known to kill
93% of bugs in domiciliary areas.12 The effect of annual spraying, together with
improved housing, is displayed in Figures 6.7 and 6.8. The results show that regular
insecticide use can eliminate the triatomine bugs from human housing as long as
these bugs do not have the ability to develop resistance to insecticide.

Chickens and dogs are the two major blood sources besides humans. To see the
effects of chickens and dogs on the spread of the disease, we decreased the number
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of chickens per household to zero, and the number of dogs per household to one.
Also, the Prevalence of T. cruzi among dogs was changed from 0.84 to 0.21 based
on the assumption that T. cruzi prevalence among dogs decreased through dog sur-
veillance programs.13 The effects of reservoir controls are displayed Figure 6.9. The
Figure 6.9 indicates that the exclusion of chickens and dogs means that bugs are left
only to feed on humans; therefore, the infection of humans with T. cruzi increases.

The effectiveness of T. cruzi treatment varies according to age at which infec-
tion occurs and the stage of the infection. Early detection of congenitally infected
infants ensures a recovery rate of over 90%.4 The effects of congenital surveillance
were tested by decreasing the CONGENITAL INFECTION RATE by 90%. This
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assumes that congenital surveillance programs were successfully implemented, and
the infected infants were treated with highly effective drugs. The effects of con-
genital surveillance are displayed in Figure 6.10. Congenital surveillance slightly
decreases the HUMAN INFECTION RATE and the number of people dying of this
disease. However, the impact is slight in terms of eliminating the disease.

Now that we have seen the impacts of different disease control strategies that are
carried out individually, we can explore the effects of an aggressive control strategy
that includes all of the control strategies previously detailed. The effects of the com-
bined control strategy are displayed in Figure 6.11. The combined strategy causes
almost the same effect on disease transmission as annual insecticide use. From this,
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we may conclude that annual insecticide use is the strongest measure of control that
can be used to combat the transmission of Chagas disease in endemic areas.

6.2 Questions and Tasks

1. If triatomine bugs develop resistance to insecticide, how would the transmission
of Chagas disease be affected?

2. Modify the model above to make different age cohorts of humans be affected by
Chagas disease in different ways. For example, distinguish differences in recov-
ery and mortality rates. What are the implications for transmission?



6.2 Questions and Tasks 111

Years

1:

1:

1:

0 75.00 150.00 225.00 300.00

1: DYING D

1

1 1 10

10000

20000

Fig. 6.11

3. How would the number of people living in the household affect the transmission
of Chagas disease?

4. If temperature and relative humidity were factored into the model, would there
be a significant effect in transmission?

CHAGAS DISEASE

HUMAN POPULATION
INF HU(t) = INF HU(t − dt) + (W INF + INFECTING − RECOVERING −
DYING D) * dt
INIT INF HU = 12931983

INFLOWS:
W INF = New borns*CON INF R
INFECTING = SUS*HU INF R*LAG
OUTFLOWS:
RECOVERING = REC RATE*INF HU
DYING D = CFR*INF HU
New borns(t) = New borns(t − dt) + (BIRTHING − W INF − WO INF) * dt
INIT New borns = 0

INFLOWS:
BIRTHING = REP POP*BR
OUTFLOWS:
W INF = New borns*CON INF R
WO INF = New borns*(1-CON INF R)
SUS(t) = SUS(t − dt) + (WO INF + RECOVERING − INFECTING −
DYING N) * dt
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INIT SUS = 24880834

INFLOWS:
WO INF = New borns*(1-CON INF R)
RECOVERING = REC RATE*INF HU
OUTFLOWS:
INFECTING = SUS*HU INF R*LAG
DYING N = DR N*SUS
BL SOURCE = IF TEMP >= 70 THEN TOT HU + R*TOT DOGS ELSE
TOT HU+R*(TOT DOGS+CHICKENS)
BR = 18.23/1000
CFR = random(0.14/1000,0.44/1000)
CHICKENS = TOT HU/5*2
CONT INF VEC = INF VEC*N FEEDING/BL SOURCE
CON INF R = PREV MOM*TR CON
DR N = 7.57/1000
HU INF R = 1 − (1 − TR BH)∧CONT INF VEC
LAG = DELAY(INF HU,0.03)
N FEEDING = 5
PREV MOM = 0.055
R = 3
REC RATE = 0.6
REP POP = TOT HU*0.3*0.5
TEMP = SINWAVE(63,10)
TOT DOGS = TOT HU/5*2
TOT HU = SUS + INF HU
TR BH = 0.0008
TR CON = 0.067

VECTOR POPULATION
ADULTS(t) = ADULTS(t − dt) + (MATURING − ADULT DYING −
VEC INFECTING) * dt
INIT ADULTS = 288934408

INFLOWS:
MATURING = NYMPHS
OUTFLOWS:
ADULT DYING = (1 − ADULT SUV)*ADULTS
VEC INFECTING = ADULTS*V INF RATE
EGGS(t) = EGGS(t − dt) + (BIRTHS − HATCHING − EGG DYING) * dt
INIT EGGS = 0

INFLOWS:
BIRTHS = IF K<= 500 THEN EGG LAY RATE*ADULTS ELSE 0
OUTFLOWS:
HATCHING = EGGS
EGG DYING = (1 − INS EGG SURV)*EGGS
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INF VEC(t) = INF VEC(t − dt) + (VEC INFECTING − INF VEC DYING) *
dt
INIT INF VEC = 0

INFLOWS:
VEC INFECTING = ADULTS*V INF RATE
OUTFLOWS:
INF VEC DYING = (1 − ADULT SUV)*INF VEC
NYMPHS(t) = NYMPHS(t − dt) + (HATCHING − MATURING −
NYMPH DYING) * dt
INIT NYMPHS = 0

INFLOWS:
HATCHING = EGGS
OUTFLOWS:
MATURING = NYMPHS
NYMPH DYING = NYMPH DR*NYMPHS
ADULT SUV = .84
CONT INF HOST = N FEEDING*(INF HU + R*INF DOG)/BL SOURCE
EGG LAY RATE = 1.64
INF DOG = PR D*TOT DOGS
INS EGG SURV = .57
K = (ADULTS + INF VEC)/(TOT HU/5)
NYMPH DR = .175
PR D = 0.84
TR B = ((TR HB*INF HU)+(TR DB*INF DOG))/BL SOURCE
TR DB = 0.49
TR HB = 0.03
V INF RATE = 1 − (1 − TR B)ˆCONT INF HOST



Chapter 7
Lyme Disease1

7.1 Lyme Disease Model

Over the past 20 years since Lyme disease was first diagnosed, it has been identi-
fied as the most common vector-borne disease in the United States. The repopula-
tion of white-tailed deer in the United States of America has been associated with
the emergence of this disease. The tick vector, Ixodes scapularis, harbors Borre-
lia burgdorferi (B.b.), the organism responsible for Lyme disease2. The larval and
nymphal stages feed on intermediate hosts, which are mostly small mammals and
birds. The adult tick prefers to feed on deer, but will also feed on dogs and people.
The main intermediate host in the northeast United States is the white-footed mouse.
Mice and chipmunks may serve as reservoirs for B.b. in nature since they maintain
active infections for at least 3 to 4 months. In the Midwest, however, it has been
determined that the eastern chipmunk may be equally important as an intermediate
host. The ticks appear to follow the migration of deer but deer may be simply an
amplification host; they are able to clear infection from B.b. within a few days.

To investigate the ecology of Lyme disease, we model a 1-hectare (0.1 kmˆ2)
oak forest and run that model on a weekly time interval, beginning with the first
week of spring (T = 0), and DT = 0.5. In our model we concentrate on the inter-
relationships among acorn production, white-footed mice (Peromyscus leucopus),
white-tailed deer (Odocoileus virginianus), and the blacklegged tick (Ixodes scapu-
laris). Specifically, we explore a hypothesis recently put forth by Ostfeld, Jones,
and Wolff,3 which states that the risk for human Lyme disease, due to increases in
nymphal tick activity, should be greater approximately two years following a large
mast event.

1 Thanks to M. Roberto Cortinas for helping develop the model of this chapter.
2 Randolph, S.E. General Framework for Comparative Quantitative Studies on Transmission of
Tick-Borne Diseases Using Lyme Borreliosis in Europe as an Example. J. Med. Entom. 32(6)1995,
767–77.
3 Ostfeld, Richard S., Clive G. Jones, and Jerry O. Wolff. 1996. Of mice and mast. Bioscience 46,
5: 323–330.
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This hypothesis was developed based on the white-footed mouse population re-
search performed by Wolff,4 showing that summer mouse populations correlate with
acorn production. Accordingly, if the summer mouse density increases following a
large masting event, then larval ticks should not have any difficulty finding mice
on which to obtain a blood meal—the authors seem to assume that the mouse den-
sity establishes the carrying capacity for larval ticks. Thus, many larvae will be
able to complete molting into the nymphal stage and reappear the following spring
(1.5 years after the masting event).

Unfed larvae generally do not carry the Lyme disease bacterial organism B.d.
and so the active larvae season (summer into fall) is not correlated with human
cases of Lyme disease. Larvae generally get the infection from mice that had been
infected earlier in the year by the other generation’s active nymphal stage (spring
into summer). After winter stasis and early spring molting, the unfed nymph is ready
for a blood meal and is likely to transmit the Lyme disease agent to an intermediate
host or to a dead-end host, such as humans. Additionally, the unfed nymphal stage is
the most dangerous, for it is the infected stage most likely to feed on human blood.
Based on these facts, we should expect that if the population density of mice is
high and many larvae can acquire a blood meal, the following spring should see a
significant increase in active nymphs and an increase in human Lyme disease cases.

One key component of the ecology of Lyme disease is the production of acorns
(Figure 7.1). We assume that acorns can be produced by two different species of oak
trees, the white oak (Quercus alba) and the black oak (Quercus velutina). Based on
the work by Sork et al.5 in east-central Missouri, we have been able to simulate the
average yearly acorn production for each tree species, as well as simulate the pro-
duction of the large acorn mast event associated with the two species. The acorn
production is normally distributed and nonnegative. The white oak has large acorn
production about every three years, whereas the black oak has a large mast event
every two years.

Based on the amount of total acorns produced, we have developed an assump-
tion about ACORN MAST INDEX—an index that is ideally calculated on the basis
of field observations by counting the number of acorns on a series of randomly se-
lected branches on a series of randomly selected trees. However, we did not want to
extrapolate how many branches a tree has. Instead, we assumed that if acorn pro-
duction is zero, then the mast index is zero. Additionally, acorn mast indices above
200 seem to be rare, so we set the highest acorn production possible in our model to
correlate with a mast index of 200. We assumed a linear relationship between acorn
production and mast index. Because of this relationship and because the mast index
is not a measure of a particular tree but a measure applied to several branches of sev-
eral trees, we do not require a real value for the number of trees in our model, but a
proportion of trees. Figure 7.2 shows an example model run for a 50% composition
of both oak species in our forest patch.

4 Wolff, Jerry O. 1996. Population fluctuations of mast-eating rodents are correlated with produc-
tion of acorns. Journal of Mammology 77, 3: 850–856.
5 Sork, Victoria L., Judy Bramble, and Owen Sexton. 1993. Ecology of mast-fruiting in three
species of North American deciduous oaks. Ecology 74, 2: 528–541.
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Based on the work by Wolff, we used a linear regression equation that relates the
summer white-footed mouse density (mice per hectare) to the acorn mast index:

SUMMER MOUSE POPULATION DENSITY =
7.28+0.60 ∗ ACORN MAST INDEX (7.1)

Thus, the minimum mouse population density is 7.28, and mouse population density
increases with an increase in the acorn mast index.

The mouse population dynamics are based on the acorn mast index (Figure 7.3).
In order to use the above equation, we assumed the summer mouse population den-
sity to be the carrying capacity (K) for mice. Additionally, the reason for the increase
in population (N) during the summer following a large mast event is due to an ad-
ditional litter being born in the winter. White-footed mouse females generally have
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two litters per year, but when the acorn mast is substantial some may have three.
Because of this additional litter event, the natural rate of increase (R) for the pop-
ulation can vary based on the acorn mast production. Thus, we have assumed R to
vary with changes in K. Since K is mast index-derived, R will also be driven by
mast index due to its relationship with K. Nevertheless, the R value when K = 20 is
based on Wolff’s work.

Though we have made many assumptions that may not reflect the actual con-
ditions in the mouse population, we have modeled a population that reaches the
predicted density the summer following a mast event. Figure 7.4 shows the time-
varying behavior of the mouse population size N, the carrying capacity, and the
acorn mast index using Wolff’s summer mouse population correlation equation.
Figure 7.5 displays the relationship of R and the acorn mast index.

Changes in deer population dynamics are handled differently in the model from
the ways in which we specified changes in mouse population (Figure 7.6). Based
on the work by McShea and Schwede6, we assumed deer respond to the variation
in acorn crops by spending more or less time in particular parts of their habitats.
The authors showed that deer are more likely to use the oak forest habitat if acorn
production is good, and the percentage of habitat use is correlated with acorn pro-
duction. Based on McShea and Schwede’s data, we assumed an average 3.5 deer/ha.
Their study area was approximately 60% nonforested and 40% forested. Thus, we
could assume for the purpose of this model that if our model was placed in 1 kmˆ2
of their study area, 4 ha would be forested and one of those hectares would be our
model. Assume a deer had 50% habitat use in the forest. Since our model is 1/4
of the total forest, we assumed that the percentage of habitat used by deer in our
model is 12.5% (1/2 * 1/4 = 1/8). We were able to roughly correlate the increases

6 McShea, William J., and Georg Schwede. 1993. Variable acorn crops: Responses of white-tailed
deer and other mast consumers. Journal of Mammology 74, 4: 999–1006.
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in home range and forest habitat use with the acorn mast indices reported by Wolff.
Both studies took place in Virginia at the same time, so it was good to see that
when Wolff reported high acorn mast years, McShea and Schwede’s data indicated
increases in percent habitat use.
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Because DEER PERCENT HABITAT USE is a function of the presence of
acorns in the forest, we modeled acorn fall by using a sine function (Figure 7.6).
As soon as the acorn production is randomly selected in the oak-acorn sector (dur-
ing the last week of summer) and the acorn mast index is generated, a sine wave
of acorn availability develops, peaks during late September into October, and then
declines. Since we roughly correlated the percent habitat use with the acorn mast
index, we have assumed that acorn availability is proportional to the acorn mast
index.

Based on the appearance and disappearance of acorns, the deer increase and then
decrease their numbers in our model forest during the fall. Additionally, the max-
imum deer number is based on acorn production. In large mast years, more deer
should come into our model. Figure 7.7 displays the acorn mast index in the late
summer, and the subsequent autumnal acorn availability. Figure 7.8 shows the rela-
tionship between acorn mast index and deer wondering through our model.

Tick burdens on mice and deer are important, for we assumed that they represent
the carrying capacity for our tick stage populations. Tick burdens on mice were
assumed to be related to the number of tick larvae and nymphs found on mice during
the spring and summer seasons. We used data collected from the 1990 and 1992–
1997 seasons in Castle Rock State Park, Illinois. The data provided a mean number
of larvae and nymphs on mice for a particular sampling day during a particular
month. In order to ascertain what the tick burden would be for a particular week, we
considered the biology of tick feeding. For example, larvae require about 4 days to
successfully feed, whereas nymphs require about 4.5 days. In order to acquire the
weekly larval tick burden for this part of the model (Figure 7.9) we specified the
following relationship:
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WEEKLY LARVAL TICK BURDEN =
N ∗ DAILY LARVAL TICK BURDEN ∗ 7/4 (7.2)

For a daily larval tick burden of 5 larval ticks and 20 mice, 175 larval ticks could
successfully feed per week (instead of 700 for a 1-day feeding time). The same
mathematical assumption was applied to the weekly nymphal tick burden per mouse
(Figure 7.9).

Figure 7.10 displays the relationship between mouse population density and the
weekly larval and nymphal tick burdens. Note the seasonal distribution of nymphs
and larvae. We used this seasonal information to regulate the appearance of unfed
larvae and unfed nymphs. Although we omitted an environmental basis for the emer-
gence of the nymphal and larval stages, including such factors as microclimate of
the litter layer and humidity would make the model more realistic.

We assumed that the number of adult ticks entering and leaving our model
was equal; consequently, we made no concessions to tick migration on deer.
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Additionally, we assumed that deer were host to approximately 30 adult ticks
per day. Since the feeding period for an adult female is 7 days, we assumed 30 adult
ticks per week on a deer (Figure 7.11).

Figure 7.12 shows the seasonal variation in adult tick burdens in our 1-hectare
forest.

The population dynamics of the blacklegged tick illustrate the two different pop-
ulations that are active during particular seasons (Figures 7.13 and Figures 7.14).
We assumed that the ticks cannot immigrate or emigrate from the model (or im-
migration = emigration). In nature, ovipositing and egg development are based on
cumulative degree days. In lieu of good data on which to model temperature de-
pendence, we approximated the development of eggs by employing a sine wave
function. Average area under the curve is equal to the average success of hatching,
and length (in weeks) is appropriate to the occurrence of hatching in the wild.

Ticks move in sequential fashion from egg to larva, to nymph, to adult during
a 2-year period in which they are in resting stages prior to molting to the next
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life stage. Conveyors have been used to simulate the rest periods. Additionally, we
assumed that intermediate and definitive host densities account for the carrying ca-
pacity and feeding success of the tick stages dependent on a blood meal to molt.

Figures 7.15–7.17 show, respectively, the populations of larvae, nymphs, and
adult ticks. The latter indicates that the adult tick population numbers are not yet
limited by deer numbers.

Now that all the pieces of the model are in place, we can calculate the number of
active tick nymphs. By accumulating the number of ticks that are successfully molt-
ing from larval to nymphal form, we set up a reservoir that can provide the number
of active nymphs per year. This variable can then be compared to the magnitude of
the acorn mast index 2 years prior to see if the hypothesis holds true.
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Based on the results shown in Figure 7.18, it seems that nymphal activity in-
creases almost 2 years following a large mast event. However, the increase is pro-
portional to the difference between the mast event responsible for the increase and
the mast event that occurred almost 4 years prior to the nymphal increase. Thus, we
could make predictions about the danger of Lyme disease associated with a masting
event.

Another interesting question we can address with our model is whether the oak
species composition has a population effect on the two different tick populations.
I. scapularis has a lifespan of two years in the wild. If the populations are responsive
to acorn mast production, and excessive mast acorn production happens only every
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two years, one population of ticks may crash or remain very low, whereas the other
population maintains high numbers. As you run the model, you can see that pop-
ulation 1 benefits from the black oak mast, whereas population 2 maintains lower
population numbers or crashes.

How about a combination? Because black oak masts are larger than white oak
masts, a 50-50 species composition may still favor the tick population synchronous
with the 2-year black oak mast. Even with white oak at 75%, population 2 crashes.
At 100% white oak composition, you can see that the 3-year cycle of large masts
benefits both tick populations. However, also note the beneficial effect on active
nymphs not only 2 years after the mast event, but 3 years after the mast event.
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7.2 Questions and Tasks

1. Could residual benefits occur from the large mast event that carried over because
the tick burden carrying capacities were not limiting?

2. What would happen if mice and/or deer were excluded from the model forest?
3. What would happen if the deer population density changed in response to disease,

predation, and harvesting?
4. What would happen if mice were allowed to emigrate / immigrate into the model?
5. The tick burdens on mice for the model of this chapter are based on Illinois data,

and mouse tick burdens are higher on the East Coast. What if the model employed
higher daily tick burdens on mice?

LYME DISEASE

Deer Movement
DEER(t) = DEER(t − dt)
INIT DEER = 35 {deer per 10 ha}
ACORNS AVAILABLE =
ABS(SINWAVE(ACORN MAST STORE NUMBER,(38 − 25)*2))*2
DEER FOREST = DEER*DEER PERCENT HABITAT USE/100
DEER MODEL FOREST = IF PROB IN MODEL Ha < 0 THEN 0 ELSE
DEER FOREST * PROB IN MODEL Ha
PROB IN MODEL Ha = 0.25 {Deer are in 10 ha = 1 sq. km, 6 ha nonforested,
4 ha forested. Model is in 1 of the 4 forested hectares, so there is a 1 in 4 (25%)
probability of being in the model forest.}
DEER PERCENT HABITAT USE = GRAPH(ACORNS AVAILABLE)
(0.00, 7.00), (10.0, 12.5), (20.0, 18.0), (30.0, 24.0), (40.0, 30.5), (50.0, 37.0),
(60.0, 44.0), (70.0, 50.5), (80.0, 57.5), (90.0, 64.0), (100, 70.5)

Mouse Population Dynamics

MOUSE K SUMMER CAP(t) = MOUSE K SUMMER CAP(t − dt) +
(MOUSE S TO S SUMMER CAP − MOUSE CHANGE S TO S CAP) * dt
INIT MOUSE K SUMMER CAP = 20
INFLOWS:
MOUSE S TO S SUMMER CAP =
MOUSE NEXT SUMMER POP DENSITY
OUTFLOWS:
MOUSE CHANGE S TO S CAP = IF (TIME<25) THEN 0 ELSE IF
(WEEK COUNTER=25) THEN MOUSE K SUMMER CAP ELSE 0

N(t) = N(t − dt) + (dN) * dt
INIT N = 2
INFLOWS:
dN = R*N*(1-(N/K)) {Individuals per Week}
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K = MOUSE K SUMMER CAP
R = R K DEP/N
R K DEP = GRAPH(K)
(0.00, 0.00), (12.0, 1.40), (24.0, 2.80), (36.0, 3.50), (48.0, 4.20), (60.0, 4.90),
(72.0, 5.50), (84.0, 6.00), (96.0, 6.50), (108, 6.90), (120, 7.30)
Oak − Acorn Production
ACORN MAST STORE NUMBER(t) =
ACORN MAST STORE NUMBER(t − dt) +
(ACORN MAST STORE IN − ACORN MAST STORE OUT) * dt
INIT ACORN MAST STORE NUMBER = 0
INFLOWS:
ACORN MAST STORE IN = ACORN MAST INDEX
OUTFLOWS:
ACORN MAST STORE OUT = IF WEEK COUNTER>38 THEN
ACORN MAST STORE NUMBER ELSE 0
BLACK OAK ACORN MAST = If (BLACK OAK AMP RATE < 0) THEN 0
ELSE BLACK OAK PROPORTION*BLACK OAK AMP RATE
BLACK OAK AMP RATE = IF (TWO YEAR COUNTER = 77) THEN
(NORMAL(3259,2983)) ELSE IF (TWO YEAR COUNTER<>77) AND
(WEEK COUNTER=25) THEN (NORMAL(1059,834)) ELSE 0
BLACK OAK PROPORTION = IF WHITE OAK PROPORTION > 1
OR WHITE OAK PROPORTION < 0 THEN 1/0 ELSE
(1-WHITE OAK PROPORTION)
MOUSE NEXT SUMMER POP DENSITY = IF (WEEK COUNTER = 25)
THEN (.60*ACORN MAST INDEX + 7.28) ELSE 0 {Number of mice the
following summer in one hectare}
THREE YEAR COUNTER = COUNTER(0,156)
TOTAL ACORN MAST =
BLACK OAK ACORN MAST+WHITE OAK ACORN MAST
TWO YEAR COUNTER = COUNTER(0,104)
WEEK COUNTER = COUNTER(0,52)
WHITE OAK ACORN MAST = IF (WHITE OAK AMP RATE < 0) THEN 0
ELSE WHITE OAK PROPORTION*WHITE OAK AMP RATE
WHITE OAK AMP RATE = IF (THREE YEAR COUNTER=129) THEN
(NORMAL(2441,1526)) ELSE IF (THREE YEAR COUNTER<>129) AND
(WEEK COUNTER = 25) THEN (NORMAL(700,480)) ELSE 0
WHITE OAK PROPORTION = 1
ACORN MAST INDEX = GRAPH(TOTAL ACORN MAST)
(0.00, 0.00), (1000, 20.0), (2000, 40.0), (3000, 60.0), (4000, 80.0), (5000, 100),
(6000, 120), (7000, 140), (8000, 160), (9000, 180), (10000, 200)

Tick Burden on Deer
TICK PER DEER PER DAY = IF (WEEK COUNTER>=27) AND
(WEEK COUNTER<=38) THEN 30 ELSE 0
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WEEKLY ADULT TICK BURDEN DEER = DEER MODEL FOREST*
TICK PER DEER PER DAY*(7/7)

Tick Burden on Mice
WEEKLY LARVAL TICK BURDEN =
N*WEEKLY LARVAL TICK BURDEN MICE
WEEKLY LARVAL TICK BURDEN MICE =
DAILY LARVAL TICK BURDEN* (7/4) {convert successful biting period per
day to week}
WEEKLY NYMPH TICK BURDEN =
N*WEEKLY NYMPH TICK BURDEN MICE
WEEKLY NYMPH TICK BURDEN MICE =
DAILY NYMPH TICK BURDEN * (7/4.5) {convert successful biting period
per day to week}
DAILY LARVAL TICK BURDEN = GRAPH(WEEK COUNTER)
(0.00, 0.00), (2.00, 3.33), (4.00, 3.33), (6.00, 4.80), (8.00, 4.80), (10.0, 9.90),
(12.0, 9.90), (14.0, 9.90), (16.0, 5.30), (18.0, 5.30), (20.0, 8.70), (22.0, 8.70),
(24.0, 4.40), (26.0, 4.40), (28.0, 1.80), (30.0, 1.80), (32.0, 0.00), (34.0, 0.00),
(36.0, 0.00), (38.0, 0.00), (40.0, 0.00), (42.0, 0.00), (44.0, 0.00), (46.0, 0.00),
(48.0, 0.00), (50.0, 0.00), (52.0, 0.00)
DAILY NYMPH TICK BURDEN = GRAPH(WEEK COUNTER)
(0.00, 1.35), (2.00, 2.67), (4.00, 2.67), (6.00, 1.10), (8.00, 1.10), (10.0, 0.6),
(12.0, 0.6), (14.0, 0.6), (16.0, 0.3), (18.0, 0.3), (20.0, 0.1), (22.0, 0.1), (24.0, 0.1),
(26.0, 0.1), (28.0, 0.1), (30.0, 0.1), (32.0, 0.00), (34.0, 0.00), (36.0, 0.00), (38.0,
0.00), (40.0, 0.00), (42.0, 0.00), (44.0, 0.00), (46.0, 0.00), (48.0, 0.00), (50.0,
0.00), (52.0, 0.00)

Tick Population Dynamics
ADULT FED(t) = ADULT FED(t − dt) + (ADULT FEED RATE −
ADULT REST RATE) * dt
INIT ADULT FED = 0
INFLOWS:
ADULT FEED RATE =
if (WEEKLY ADULT TICK BURDEN DEER>=ADULT UNFED) then
WEEKLY ADULT TICK BURDEN DEER else (ADULT UNFED)
OUTFLOWS:
ADULT REST RATE = ADULT FED

ADULT OVIPOSITION(t) = ADULT OVIPOSITION(t − dt) +
(ADULT EMERGENCE RATE − ADULT OVIPOSITION RATE) * dt
INIT ADULT OVIPOSITION = 300
INFLOWS:
ADULT EMERGENCE RATE = CONVEYOR OUTFLOW
OUTFLOWS:
ADULT OVIPOSITION RATE = ADULT OVIPOSITION
ADULT REST(t) = ADULT REST(t − dt) + (ADULT REST RATE −
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ADULT EMERGENCE RATE) * dt
INIT ADULT REST = 0

TRANSIT TIME = 18
INFLOW LIMIT = ∞
CAPACITY = ∞

INFLOWS:
ADULT REST RATE = ADULT FED
OUTFLOWS:
ADULT EMERGENCE RATE = CONVEYOR OUTFLOW

ADULT UNFED(t) = ADULT UNFED(t − dt) + (N MOLT −
ADULT FEED RATE − ADULT UNFED DEATH) * dt
INIT ADULT UNFED = 0
INFLOWS:
N MOLT = CONVEYOR OUTFLOW
OUTFLOWS:
ADULT FEED RATE =
IF (WEEKLY ADULT TICK BURDEN DEER>=ADULT UNFED) THEN
WEEKLY ADULT TICK BURDEN DEER ELSE (ADULT UNFED)
ADULT UNFED DEATH = (1-ADULT SURVIVAL RATE) *
ADULT UNFED

EGGS(t) = EGGS(t − dt) + (EGG EMERGENCE RATE − EGG HATCH −
EGG FAILURE) * dt
INIT EGGS = 0
INFLOWS:
EGG EMERGENCE RATE = CONVEYOR OUTFLOW
OUTFLOWS:
EGG HATCH =
(EGGS*EGG SURVIVAL*EGG ENVIRONMENTAL FACTOR 2)
EGG FAILURE = IF (EGG ENVIRONMENTAL FACTOR 2=0) THEN EGGS
ELSE (1 − EGG SURVIVAL)*EGGS

EGGS REST(t) = EGGS REST(t − dt) + (EGG OVIPOSITION −
EGG EMERGENCE RATE − EGG REST FAILURE) * dt
INIT EGGS REST = 0

TRANSIT TIME = 9
INFLOW LIMIT = ∞
CAPACITY = ∞

INFLOWS:
EGG OVIPOSITION =
ADULT OVIPOSITION*ADULT FEMALE POPULATION RATIO*
EGG MAX
OUTFLOWS:
EGG EMERGENCE RATE = CONVEYOR OUTFLOW
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EGG REST FAILURE = LEAKAGE OUTFLOW
LEAKAGE FRACTION = IF (EGG ENVIRONMENTAL FACTOR 2=0)
THEN 1 ELSE (1-EGG FECUNDITY)
NO-LEAK ZONE = 0

LARVAE ACTIVE(t) = LARVAE ACTIVE(t − dt) + (EGG HATCH −
LARVAE DEATH − LARVAE FEED) * dt
INIT LARVAE ACTIVE = 0
INFLOWS:
EGG HATCH =
(EGGS*EGG SURVIVAL*EGG ENVIRONMENTAL FACTOR 2)
OUTFLOWS:
LARVAE DEATH = IF (WEEKLY LARVAL TICK BURDEN=0) THEN
LARVAE ACTIVE ELSE (1-LARVAE SURV RATE)*LARVAE ACTIVE
LARVAE FEED = IF (LARVAE ACTIVE >=
WEEKLY LARVAL TICK BURDEN) THEN
WEEKLY LARVAL TICK BURDEN ELSE (LARVAE ACTIVE)

LARVAE FED(t) = LARVAE FED(t −
dt)+ (LARVAE FEED−LARVAE MOLT − LARVAE FED DEATH) * dt
INIT LARVAE FED = 0

TRANSIT TIME = 40
INFLOW LIMIT = ∞
CAPACITY = ∞

INFLOWS:
LARVAE FEED = IF (LARVAE ACTIVE >=
WEEKLY LARVAL TICK BURDEN) THEN
WEEKLY LARVAL TICK BURDEN ELSE (LARVAE ACTIVE)
OUTFLOWS:
LARVAE MOLT = CONVEYOR OUTFLOW
LARVAE FED DEATH = LEAKAGE OUTFLOW
LEAKAGE FRACTION = (1−LARVAE SURV RATE)
NO-LEAK ZONE = 0

NYMPHS ACTIVE(t) = NYMPHS ACTIVE(t − dt) + (LARVAE MOLT −
N DEATH − N FEED) * dt
INIT NYMPHS ACTIVE = 0
INFLOWS:
LARVAE MOLT = CONVEYOR OUTFLOW
OUTFLOWS:
N DEATH = IF (WEEKLY NYMPH TICK BURDEN=0) THEN
NYMPHS ACTIVE ELSE (1−NYMPH SURVIVAL RATE) *
NYMPHS ACTIVE
N FEED = IF (NYMPHS ACTIVE >= WEEKLY NYMPH TICK BURDEN)
THEN WEEKLY NYMPH TICK BURDEN ELSE (NYMPHS ACTIVE)



7.2 Questions and Tasks 133

NYMPH FED(t) = NYMPH FED(t − dt) + (N FEED − N MOLT -
NYMPH FED DEATH) * dt
INIT NYMPH FED = 0

TRANSIT TIME = 26
INFLOW LIMIT = ∞
CAPACITY = ∞

INFLOWS:
N FEED = IF (NYMPHS ACTIVE >= WEEKLY NYMPH TICK BURDEN)
THEN WEEKLY NYMPH TICK BURDEN ELSE (NYMPHS ACTIVE)
OUTFLOWS:
N MOLT = CONVEYOR OUTFLOW
NYMPH FED DEATH = LEAKAGE OUTFLOW
LEAKAGE FRACTION = (1-NYMPH SURVIVAL RATE)
NO-LEAK ZONE = 0

TOTAL ACTIVE NYMPHS YEAR(t) =
TOTAL ACTIVE NYMPHS YEAR(t − dt) +
(TOTAL ACTIVE NYMPHS IN − TOTAL ACTIVE NYMPHS OUT) * dt
INIT TOTAL ACTIVE NYMPHS YEAR = 0
INFLOWS:
TOTAL ACTIVE NYMPHS IN = LARVAE MOLT
OUTFLOWS:
TOTAL ACTIVE NYMPHS OUT = IF LARVAE MOLT = 0 THEN
TOTAL ACTIVE NYMPHS YEAR ELSE 0

ADULT FEMALE POPULATION RATIO = 0.5
ADULT SURVIVAL RATE = .92
EGG ENVIRONMENTAL FACTOR = (SIN(2*PI/52*TIME))*1.632
EGG ENVIRONMENTAL FACTOR 2 =
IF (EGG ENVIRONMENTAL FACTOR<0) THEN 0 ELSE
EGG ENVIRONMENTAL FACTOR
EGG FECUNDITY = 1
EGG MAX = 3000 {Max number of eggs per oviposition}
EGG SURVIVAL = .0336
LARVAE SURV RATE = .37
NYMPH SURVIVAL RATE = .92

Tick Population Dynamics 2
AADULT FED 2(t) = AADULT FED 2(t − dt) + (ADULT FEED 2 −
ADULT REST RATE 2) * dt
INIT AADULT FED 2 = 0
INFLOWS:
ADULT FEED 2 =
IF (WEEKLY ADULT TICK BURDEN DEER>=ADULT UNFED 2)
THEN WEEKLY ADULT TICK BURDEN DEER ELSE
(ADULT UNFED 2)
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OUTFLOWS:
ADULT REST RATE 2 = AADULT FED 2

ADULT OVIPOSITION 2(t) = ADULT OVIPOSITION 2(t − dt) +
(ADULT EMERGENCE RATE 2 − ADULT OVIPOSITION DEATH 2) * dt
INIT ADULT OVIPOSITION 2 = 0
INFLOWS:
ADULT EMERGENCE RATE 2 = CONVEYOR OUTFLOW
OUTFLOWS:
ADULT OVIPOSITION DEATH 2 = ADULT OVIPOSITION 2

ADULT REST 2(t) = ADULT REST 2(t − dt) + (ADULT REST RATE 2 −
ADULT EMERGENCE RATE 2) * dt
INIT ADULT REST 2 = 0

TRANSIT TIME = 18
INFLOW LIMIT = ∞
CAPACITY = ∞

INFLOWS:
ADULT REST RATE 2 = AADULT FED 2
OUTFLOWS:
ADULT EMERGENCE RATE 2 = CONVEYOR OUTFLOW

ADULT UNFED 2(t) = ADULT UNFED 2(t − dt) + (NYMPH MOLT 2 −
ADULT FEED 2 − ADULT UNFED DEATH 2) * dt
INIT ADULT UNFED 2 = 0
INFLOWS:
NYMPH MOLT 2 = CONVEYOR OUTFLOW
OUTFLOWS:
ADULT FEED 2 =
IF (WEEKLY ADULT TICK BURDEN DEER>=ADULT UNFED 2)
THEN WEEKLY ADULT TICK BURDEN DEER ELSE
(ADULT UNFED 2)
ADULT UNFED DEATH 2 = (1-ADULT SURVIVAL RATE) *
ADULT UNFED 2

EGGS 2(t) = EGGS 2(t − dt) + (EGG EMERGENCE RATE 2 −
EGG HATCH 2 − EGG FAILURE 2) * dt
INIT EGGS 2 = 0
INFLOWS:
EGG EMERGENCE RATE 2 = CONVEYOR OUTFLOW
OUTFLOWS:
EGG HATCH 2 =
(EGGS 2*EGG SURVIVAL*EGG ENVIRONMENTAL FACTOR 2)
EGG FAILURE 2 = IF (EGG ENVIRONMENTAL FACTOR 2=0) THEN
EGGS 2 ELSE (1-EGG SURVIVAL)*EGGS 2

EGG REST 2(t) = EGG REST 2(t − dt) + (EGG OVIPOSITION 2 −
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EGG EMERGENCE RATE 2 − EGG REST FAILURE 2) * dt
INIT EGG REST 2 = 0

TRANSIT TIME = 9
INFLOW LIMIT = ∞
CAPACITY = ∞

INFLOWS:
EGG OVIPOSITION 2 = ADULT OVIPOSITION 2*
ADULT FEMALE POPULATION RATIO*EGG MAX
OUTFLOWS:
EGG EMERGENCE RATE 2 = CONVEYOR OUTFLOW
EGG REST FAILURE 2 = LEAKAGE OUTFLOW
LEAKAGE FRACTION = IF (EGG ENVIRONMENTAL FACTOR 2=0)
THEN 1 ELSE (1−EGG FECUNDITY)
NO-LEAK ZONE = 0

LARVAE ACTIVE 2(t) = LARVAE ACTIVE 2(t − dt) + (EGG HATCH 2 −
L DEATH 2 − LARVAE FEED 2) * dt
INIT LARVAE ACTIVE 2 = 0
INFLOWS:
EGG HATCH 2 =
(EGGS 2*EGG SURVIVAL*EGG ENVIRONMENTAL FACTOR 2)
OUTFLOWS:
L DEATH 2 = IF (WEEKLY LARVAL TICK BURDEN=0) THEN
LARVAE ACTIVE 2 ELSE
(1-LARVAE SURV RATE)*LARVAE ACTIVE 2
LARVAE FEED 2 = IF (LARVAE ACTIVE 2 >=
WEEKLY LARVAL TICK BURDEN) THEN
WEEKLY LARVAL TICK BURDEN ELSE (LARVAE ACTIVE 2)

LARVAE FED 2(t) = LARVAE FED 2(t − dt) + (LARVAE FEED 2 −
LARVAE MOLT 2 − LARVAE FED DEATH 2) * dt
INIT LARVAE FED 2 = 0

TRANSIT TIME = 40
INFLOW LIMIT = ∞
CAPACITY = ∞

INFLOWS:
LARVAE FEED 2 = IF (LARVAE ACTIVE 2 >=
WEEKLY LARVAL TICK BURDEN) THEN
WEEKLY LARVAL TICK BURDEN ELSE (LARVAE ACTIVE 2)
OUTFLOWS:
LARVAE MOLT 2 = CONVEYOR OUTFLOW
LARVAE FED DEATH 2 = LEAKAGE OUTFLOW
LEAKAGE FRACTION = (1−LARVAE SURV RATE)
NO-LEAK ZONE = 0
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NYMPH ACTIVE 2(t) = NYMPH ACTIVE 2(t − dt) + (LARVAE MOLT 2 −
N DEATH 2 − NYMPH FEED 2) * dt
INIT NYMPH ACTIVE 2 = 350
INFLOWS:
LARVAE MOLT 2 = CONVEYOR OUTFLOW
OUTFLOWS:
N DEATH 2 = IF (WEEKLY NYMPH TICK BURDEN=0) THEN
NYMPH ACTIVE 2 ELSE (1-NYMPH SURVIVAL RATE) *
NYMPH ACTIVE 2
NYMPH FEED 2 = IF (NYMPH ACTIVE 2 >=
WEEKLY NYMPH TICK BURDEN) THEN
WEEKLY NYMPH TICK BURDEN ELSE (NYMPH ACTIVE 2)

NYMPH FED 2(t) = NYMPH FED 2(t − dt) + (NYMPH FEED 2 −
NYMPH MOLT 2 − NYMPH FED DEATH 2) * dt
INIT NYMPH FED 2 = 0

TRANSIT TIME = 26
INFLOW LIMIT = ∞
CAPACITY = ∞

INFLOWS:
NYMPH FEED 2 = IF (NYMPH ACTIVE 2 >=
WEEKLY NYMPH TICK BURDEN) THEN
WEEKLY NYMPH TICK BURDEN ELSE (NYMPH ACTIVE 2)
OUTFLOWS:
NYMPH MOLT 2 = CONVEYOR OUTFLOW
NYMPH FED DEATH 2 = LEAKAGE OUTFLOW
LEAKAGE FRACTION = (1-NYMPH SURVIVAL RATE)
NO-LEAK ZONE = 0

TOTAL ACTIVE NYMPHS YEAR 2(t) =
TOTAL ACTIVE NYMPHS YEAR 2(t − dt) +
(TOTAL ACTIVE NYMPHS IN 2 −
TOTAL ACTIVE NYMPHS OUT 2) * dt
INIT TOTAL ACTIVE NYMPHS YEAR 2 = 0
INFLOWS:
TOTAL ACTIVE NYMPHS IN 2 = LARVAE MOLT 2
OUTFLOWS:
TOTAL ACTIVE NYMPHS OUT 2 = IF LARVAE MOLT 2 = 0 THEN
TOTAL ACTIVE NYMPHS YEAR 2 ELSE 0



Chapter 8
Chicken Pox and Shingles

Chicken pox, a microparasitic infection caused by the varicella zoster virus, is an
example of a highly infectious childhood disease. This virus can be spread either
through direct contact with infected individuals or through the air. After exposure to
the virus, the incubation period before an individual becomes contagious is approx-
imately seven days. Individuals are contagious for about seven days during which
symptoms including fever and blisters appear, and then remain sick for an additional
fourteen days. Once an individual recovers, he or she develops a natural immunity
and is unlikely to get the disease again.

However, the virus remains in the body and later in life, it manifests itself in the
form of shingles in about 15 percent of the population that contracted chicken pox.
Shingles has symptoms that are similar to chicken pox but strikes mostly individuals
over the age of 50 that are fatigued or under stress. It takes approximately 10 days
to recover from shingles and during this time susceptible individuals can contract
chicken pox from those suffering from shingles.

New vaccines are becoming available to immunize people against chicken pox.
The target population for immunization typically is children, because they comprise
the highest infectious class. Immunizing children would help to reduce occurrence
of chicken pox. However, no vaccination program can reliably cover 100 percent
of a population. Consequently, as childhood vaccination takes place, fewer cases of
chicken pox among children occur but the age of first infection increases. Since
older individuals have more difficulty dealing with chicken pox than young individ-
uals, vaccination programs may shift the burden from the young to the old.

The following model addresses several interrelated questions: How are different
population age cohorts affected by chicken pox in the absence of immunization and
shingles? What are the effects of immunization on the average age of first contraction
of chicken pox? What are the effects of shingles on the average age of first contraction?

To answer these questions, we first explore the effects of chicken pox on different
age cohorts in a given population. We then investigate what happens to the same
population when the effects of shingles are factored into the model. Finally, we
turn to the effects of childhood immunization on the average age at which a person
contracts the disease.

B. Hannon and M. Ruth, Dynamic Modeling of Diseases and Pests, 137
Modeling Dynamic Systems,
c© Springer Science+Business Media LLC 2009
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8.1 Model Assumptions and Structure

For illustrative purposes, we initialize our model with population data from the 1990
U.S. Census and group them into six age cohorts. The first five cohorts span 10 years
(3,650 days) each, and the last comprises the population of 50 years and older. By
assumption, individuals in the last cohort remain a maximum of 30 years (10,950
days) in that cohort. The total initial population is 245,704, measured in thousands
of individuals. For simplicity, we assume that only 50 percent of individuals in the
10- to 19-year age cohort may reproduce, and that the total reproductive population
includes them as well as all individuals in the 20- to 39-year cohort. Further, we
assume a uniform and constant death rate of .000027 per day.

Following research on infections with chicken pox1, the average number of in-
fections with chicken pox by an infected individual is assumed to be

RsubZero = 10 (8.1)

and individuals are removed from the infective stock at a rate of

V = 1/7. (8.2)

The general form for the transmission coefficient is2

Beta = RsubZero ∗ V/Population. (8.3)

With an initial population of 245,704 and V = 1/7, Beta is .0000058.
A general representation of the transmission rate is

Transmission Rate = Beta∗Total Infective∗Susceptible (8.4)

Since transmission rates for chicken pox vary among age cohorts, we weight the
transmission coefficient for different age cohorts:

Transmission Rate = (Beta Weight∗Beta)∗Total Infective∗Susceptible (8.5)

Individuals are most likely to contract chicken pox when they are young. This is
because children are typically kept in close contact with each other in places such
as school and daycare. We choose a Beta Weight of 1 for the first age cohort, thus
making the virus have its full effect in transmission. As people get older, however,
they are not as likely to come into contact with the virus. Therefore, lower weights
are used. The weight for the 10- to 19-year age cohort is set at .8. These individ-
uals continue to be in close contact with each other, but a large percentage of the

1 Hethcote, H.W. “Qualitative analyses of communicable disease models.” Mathematical Bio-
sciences from Mathematical Models in Biology.

May, Robert M. 1983.“Parasitic Infections as Regulator of Animal Populations.” American Sci-
entist. 71: 36–45 in Mathematical Models in Biology.
2 Edelstein-Keshet, Leah. 1988. Mathematical Models in Biology. Random House: New York.
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individuals they come into contact with are already immune to chicken pox. For the
four older age cohorts, the weights are decreased, taking on values of 0.5 for the
10- to 19-year cohort, 0.25 for the 20- to 29-year cohort, 0.1 for the 30- to 39-year
cohort and 0.05 for the 50-year cohort.

We assume that the virus is present at the beginning of the model run. Specif-
ically, we postulate that 20 percent of the population have contracted chicken pox
by the age of 4; 65 percent by the age of 9; 88 percent by the age of 19; 95 percent
by the age of 29; 97 percent by the age of 39; 98 percent by the age of 49; and 99
percent by age 50 or older3. The initial susceptible population in each age cohort,
measured in thousands of individuals, is shown in Table 8.1. Initially, no individual
in either age cohort is assumed to be within the incubation period, and the incubation
time for all age cohorts is 7 days.

Initial infective stocks (measured in thousands of individuals) are given in
Table 8.1. Since chicken pox is mainly a childhood disease, the assumption is made
that the largest infective stock would be Infective 1, for the age cohort of 0 to 9
years. The infective stock was then decreased for each subsequent age cohort.

The total number of infective individuals includes those who are infected with
shingles. By assumption, only individuals in the last age cohort may be afflicted
with shingles, and at the beginning of the model no one suffers from shingles. To
model the contraction with shingles, we invoke a “shingle rate” of 0, which allows
us to study its effects when increased. For subsequent runs, we assume 0.15 cases
of shingles per thousand individuals, and a recovery time of 10 days. In contrast, the
number of days it takes individual to recover from chicken pox is 14.

The model is shown in Figure 8.1. It contains a flow to reflect immunization, cal-
culated as the product of the number of individuals who are susceptible to chicken
pox and an immunization rate. For the model runs discussed below, we varied immu-
nization rates, starting at zero and increasing it for subsequent runs to reflect more
prevalent childhood immunization. The total stock of infective individuals is shown
as the sum of all individuals with chicken pox and with shingles. The total force of
infection is simply defined as the (unweighted) transmission coefficient multiplied
by the total number of infective individuals. From this, we can calculate the average
age of first infection as the inverse of the force of infection, divided by 365 days.

Table 8.1 Initial Values of Stocks (Thousands of Individuals)

Cohort Susceptibles Infective Immune

0–9 20,710 40 15,252
10–19 93,961 8 29,035
20–29 1927 1 36,604
30–39 1254 1 40,541
40–49 654 0 32,044
50 Plus 637 0 63,033

3 Finger, Reginald, Jeffrey Hughes, Barry J. Meade, Andrew R. Pelletier, and Clarkson T. Palmer.
“Age-Specific Incidence of Chickenpox.” Public Health Reports. Nov/Dec 1994: 750–755.
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Model results without immunization and without the effects of shingles (i.e. the
“shingle rate” set to zero instead of 0.15), are shown in Figure 8.2 for the first five
cohorts. The sixth cohort—individuals of 50 years and older—are virtually unaf-
fected by chicken pox over the simulated 20-yeartimeframe. Overall, the number
of individuals sick from chicken pox declines, in part because the population in
the long run is declining (Figure 8.3). As the population ages and no vaccination
takes place, older parts of the population are relatively more affected by chicken
pox (Figure 8.3), and the average age of first infection increases (Figure 8.4).
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Figure 8.5 compares the previous results where there are no shingles in the popu-
lation to the case where the elderly are affected by shingles. The presence of shingles
leads to less pronounced impacts of the disease on the average age of infection and
clearly alleviates the cyclical nature of infection in the population as a whole. These
results are the consequence of having a larger infective population that can pass the
virus to young and old, and of having different timeframes during which the virus
can be passed to the susceptible population.
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The results shown in Figures 8.6 and 8.7 compare the effects of four alternative
immunization rates—0, 0.0005, 0.001, 0.0015, and 0.002. In all cases, we consider
also the effects of shingles on the spread of chicken pox. Higher immunization rates
reduce the number of people getting sick, but higher immunization rates also have
higher ages of first infection associated with them.

Although fewer people overall will get chicken pox, the health risks are greater
for those who contract it because they will be older4. Chicken pox can be especially

4 Wolinsky, Howard. “Its Effect on Shingles Is Studied.” Chicago Sun-Times. May 7, 1995: 62+.
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dangerous for pregnant women and their unborn children. Pregnant women are
likely to be in the same age bracket as the average age of first infection under the
three more aggressive immunization policies shown as lines 2, 3, and 4 in Figure 8.7.
Even with a less aggressive immunization policy, the average age at which individ-
uals contract the disease is still high enough to cause a health risk to individuals.
Therefore, the establishment of a vaccination policy for chicken pox must be given
careful consideration.

8.2 Questions and Tasks

1. Explore the effects of different Beta Weights on model results. Choose larger
weights for younger age cohorts.

2. Explore the effects of different vaccination rates on model results.

a. Choose the same vaccination rate for the entire population.
b. Choose different vaccination rate for different age cohorts.

3. Assume an increasing total population and determine the effects of the dynamics
of chicken pox, especially the average age of first infections.

CHICKEN POX AND SHINGLES

After Shingles(t) = After Shingles(t − dt) + (S Recover −
Death After Shingles) * dt
INIT After Shingles = 0

INFLOWS:
S Recover = Shingles/S Rec Time {people per day}
OUTFLOWS:
Death After Shingles = After Shingles*Death Rate
Age 0 to 9(t) = Age 0 to 9(t − dt) + (Births - Aging 1 − Transmission1 −
Immunization − Deaths 1) * dt
INIT Age 0 to 9 = 20710 {people}
INFLOWS:
Births = Birth Rate*Reproductive Pop {births per day}
OUTFLOWS:
Aging 1 = Age 0 to 9/Aging Time {people per day}
Transmission1 = (Beta Weight 0 9*Beta)*Age 0 to 9*Total Infective
{people exposed per day}
Immunization = Age 0 to 9*Immunization Rate {people per population per
day}
Deaths 1 = Age 0 to 9*Death Rate {deaths per day}
Age 10 to 19(t) = Age 10 to 19(t − dt) + (Aging 1 − Transmission 2 −
Aging2 − Deaths 2) * dt
INIT Age 10 to 19 = 3961 {people}
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INFLOWS:
Aging 1 = Age 0 to 9/Aging Time {people per day}
OUTFLOWS:
Transmission 2 = (Beta Weight 10 19*Beta)*Age 10 to 19*Total Infective
{people exposed per day}
Aging2 = Age 10 to 19/Aging Time {people per day}
Deaths 2 = Age 10 to 19*Death Rate {deaths per day}
Age 20 to 29(t) = Age 20 to 29(t − dt) + (Aging2 − Transmission 3 − Aging3
− Deaths 3) * dt
INIT Age 20 to 29 = 1927 {people}
INFLOWS:
Aging2 = Age 10 to 19/Aging Time {people per day}
OUTFLOWS:
Transmission 3 = (Beta Weight 20 29*Beta)*Age 20 to 29*Total Infective
{people exposed per day}
Aging3 = Age 20 to 29/Aging Time {people per day}
Deaths 3 = Age 20 to 29*Death Rate {deaths per day}
Age 30 to 39(t) = Age 30 to 39(t − dt) + (Aging3 − Transmission 4 −
Aging 4 − Deaths 4) * dt
INIT Age 30 to 39 = 1254 {people}
INFLOWS:
Aging3 = Age 20 to 29/Aging Time {people per day}
OUTFLOWS:
Transmission 4 = (Beta Weight 30 39*Beta)*Age 30 to 39*Total Infective
{people exposed per day}
Aging 4 = Age 30 to 39/Aging Time {people per day}
Deaths 4 = Age 30 to 39*Death Rate {deaths per day}
Age 40 to 49(t) = Age 40 to 49(t − dt) + (Aging 4 − Transmission 5 −
Aging 5 − Deaths 5) * dt
INIT Age 40 to 49 = 654 {people}
INFLOWS:
Aging 4 = Age 30 to 39/Aging Time {people per day}
OUTFLOWS:
Transmission 5 = (Beta Weight 40 49*Beta)*Age 40 to 49*Total Infective
{people exposed per day}
Aging 5 = Age 40 to 49/Aging Time {people per day}
Deaths 5 = Age 40 to 49*Death Rate {deaths per day}
Age 50 Plus(t) = Age 50 Plus(t − dt) + (Aging 5 - Transmission 6 − Deaths 6)
* dt
INIT Age 50 Plus = 637 {people}

INFLOWS:
Aging 5 = Age 40 to 49/Aging Time {people per day}
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OUTFLOWS:
Transmission 6 = (Beta Weight 50 Plus*Beta)*Age 50 Plus*Total Infective
{people exposed per day}
Deaths 6 = Age 50 Plus*Death Rate {deaths per day}
Immune 1(t) = Immune 1(t − dt) + (Recover 1 + Immunization − Aging 1A −
Deaths 1A) * dt
INIT Immune 1 = 15252 {people}
INFLOWS:
Recover 1 = Sick 1/Rec Time {people recovered per day}
Immunization = Age 0 to 9*Immunization Rate {people per population per
day}
OUTFLOWS:
Aging 1A = Immune 1/Aging Time {people per day}
Deaths 1A = Immune 1*Death Rate {deaths per day}
Immune 2(t) = Immune 2(t − dt) + (Recover 2 + Aging 1A − Aging 2A −
Deaths 2A) * dt
INIT Immune 2 = 29035 {people}
INFLOWS:
Recover 2 = Sick 2/Rec Time {people recovered per day}
Aging 1A = Immune 1/Aging Time {people per day}
OUTFLOWS:
Aging 2A = Immune 2/Aging Time
Deaths 2A = Immune 2*Death Rate {deaths per day}
Immune 3(t) = Immune 3(t − dt) + (Recover 3 + Aging 2A − Aging 3 A −
Deaths 3A) * dt
INIT Immune 3 = 36604 {people}
INFLOWS:
Recover 3 = Sick 3/Rec Time {people recovered per day}
Aging 2A = Immune 2/Aging Time
OUTFLOWS:
Aging 3 A = Immune 3/Aging Time {people per day}
Deaths 3A = Immune 3*Death Rate {deaths per Day}
Immune 4(t) = Immune 4(t − dt) + (Recover 4 + Aging 3 A − Aging 4A −
Deaths 4A) * dt
INIT Immune 4 = 40541 {people}
INFLOWS:
Recover 4 = Sick 4/Rec Time {people recovered per day}
Aging 3 A = Immune 3/Aging Time {people per day}
OUTFLOWS:
Aging 4A = Immune 4/Aging Time {people per day}
Deaths 4A = Immune 4*Death Rate {deaths per day}
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Immune 5(t) = Immune 5(t − dt) + (Recover 5 + Aging 4A − Aging 5A −
Deaths 5A) * dt
INIT Immune 5 = 32044 {people}
INFLOWS:
Recover 5 = Sick 5/Rec Time {people recovered per day}
Aging 4A = Immune 4/Aging Time {people per day}
OUTFLOWS:
Aging 5A = Immune 5/Aging Time {people per day}
Deaths 5A = Immune 5*Death Rate {deaths per day}
Immune 6(t) = Immune 6(t − dt) + (Recover 6 + Aging 5A − Get Shingles −
Deaths 6A) * dt
INIT Immune 6 = 63033 {people}
INFLOWS:
Recover 6 = Sick 6/Rec Time {people recovered per day}
Aging 5A = Immune 5/Aging Time {people per day}
OUTFLOWS:
Get Shingles = Immune 6*Shingle Rate/S Aging Time {people getting shingles
per day}
Deaths 6A = Immune 6*Death Rate {deaths per day}
Incubation1(t) = Incubation1(t − dt) + (Transmission1 − GetPox1) * dt
INIT Incubation1 = 0 {people}
INFLOWS:
Transmission1 = (Beta Weight 0 9*Beta)*Age 0 to 9*Total Infective {people
exposed per day}
OUTFLOWS:
GetPox1 = Incubation1/Incubation Time {people breaking out in chicken pox
per day}
Incubation 2(t) = Incubation 2(t − dt) + (Transmission 2 − GetPox 2) * dt
INIT Incubation 2 = 0 {people}
INFLOWS:
Transmission 2 = (Beta Weight 10 19*Beta)*Age 10 to 19*Total Infective
{people exposed per day}
OUTFLOWS:
GetPox 2 = Incubation 2/Incubation Time {people breaking out in chicken pox
per day}
Incubation 3(t) = Incubation 3(t − dt) + (Transmission 3 − GetPox 3) * dt
INIT Incubation 3 = 0 {people}
INFLOWS:
Transmission 3 = (Beta Weight 20 29*Beta)*Age 20 to 29*Total Infective
{people exposed per day}
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OUTFLOWS:
GetPox 3 = Incubation 3/Incubation Time {people breaking out in chicken pox
per day}
Incubation 4(t) = Incubation 4(t − dt) + (Transmission 4 − GetPox 4) * dt
INIT Incubation 4 = 0 {people}
INFLOWS:
Transmission 4 = (Beta Weight 30 39*Beta)*Age 30 to 39*Total Infective
{people exposed per day}
OUTFLOWS:
GetPox 4 = Incubation 4/Incubation Time {people breaking out in chicken pox
per day}
Incubation 5(t) = Incubation 5(t − dt) + (Transmission 5 − GetPox 5) * dt
INIT Incubation 5 = 0 {people}
INFLOWS:
Transmission 5 = (Beta Weight 40 49*Beta)*Age 40 to 49*Total Infective
{people exposed per day}
OUTFLOWS:
GetPox 5 = Incubation 5/Incubation Time {people breaking out in chicken pox
per day}
Incubation 6(t) = Incubation 6(t − dt) + (Transmission 6 − GetPox 6) * dt
INIT Incubation 6 = 0 {people}
INFLOWS:
Transmission 6 = (Beta Weight 50 Plus*Beta)*Age 50 Plus*Total Infective
{people exposed per day}
OUTFLOWS:
GetPox 6 = Incubation 6/Incubation Time {people breaking out in chicken pox
per day}
Infective 1(t) = Infective 1(t − dt) + (GetPox1 − Contagious 1) * dt
INIT Infective 1 = 40 {people}
INFLOWS:
GetPox1 = Incubation1/Incubation Time {people breaking out in chicken pox
per day}
OUTFLOWS:
Contagious 1 = Infective 1*V {people contagious per day}
Infective 2(t) = Infective 2(t − dt) + (GetPox 2 − Contagious 2) * dt
INIT Infective 2 = 8 {people}
INFLOWS:
GetPox 2 = Incubation 2/Incubation Time {people breaking out in chicken pox
per day}
OUTFLOWS:
Contagious 2 = Infective 2*V {people contagious per day}
Infective 3(t) = Infective 3(t − dt) + (GetPox 3 − Contagious 3) * dt
INIT Infective 3 = 1 {people}
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INFLOWS:
GetPox 3 = Incubation 3/Incubation Time {people breaking out in chicken pox
per day}
OUTFLOWS:
Contagious 3 = Infective 3*V {people contagious per day}
Infective 4(t) = Infective 4(t − dt) + (GetPox 4 − Contagious 4) * dt
INIT Infective 4 = 1 {people}
INFLOWS:
GetPox 4 = Incubation 4/Incubation Time {people breaking out in chicken pox
per day}
OUTFLOWS:
Contagious 4 = Infective 4*V {people contagious per day}
Infective 5(t) = Infective 5(t − dt) + (GetPox 5 − Contagious 5) * dt
INIT Infective 5 = 0 {people}
INFLOWS:
GetPox 5 = Incubation 5/Incubation Time {people breaking out in chicken pox
per day}
OUTFLOWS:
Contagious 5 = Infective 5*V {people contagious per day}
Infective 6(t) = Infective 6(t − dt) + (GetPox 6 − Contagious 6) * dt
INIT Infective 6 = 0 {people}
INFLOWS:
GetPox 6 = Incubation 6/Incubation Time {people breaking out in chicken pox
per day}
OUTFLOWS:
Contagious 6 = Infective 6*V {people contagious per day}
Shingles(t) = Shingles(t − dt) + (Get Shingles − S Recover) * dt
INIT Shingles = 0 {people}
INFLOWS:
Get Shingles = Immune 6*Shingle Rate/S Aging Time {people getting shingles
per day}
OUTFLOWS:
S Recover = Shingles/S Rec Time {people per day}
Sick 1(t) = Sick 1(t − dt) + (Contagious 1 − Recover 1) * dt
INIT Sick 1 = 0 {people}
INFLOWS:
Contagious 1 = Infective 1*V {people contagious per day}
OUTFLOWS:
Recover 1 = Sick 1/Rec Time {people recovered per day}
Sick 2(t) = Sick 2(t − dt) + (Contagious 2 − Recover 2) * dt
INIT Sick 2 = 0 {people}
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INFLOWS:
Contagious 2 = Infective 2*V {people contagious per day}
OUTFLOWS:
Recover 2 = Sick 2/Rec Time {people recovered per day}
Sick 3(t) = Sick 3(t − dt) + (Contagious 3 − Recover 3) * dt
INIT Sick 3 = 0 {people}
INFLOWS:
Contagious 3 = Infective 3*V {people contagious per day}
OUTFLOWS:
Recover 3 = Sick 3/Rec Time {people recovered per day}
Sick 4(t) = Sick 4(t − dt) + (Contagious 4 − Recover 4) * dt
INIT Sick 4 = 0 {people}
INFLOWS:
Contagious 4 = Infective 4*V {people contagious per day}
OUTFLOWS:
Recover 4 = Sick 4/Rec Time {people recovered per day}
Sick 5(t) = Sick 5(t − dt) + (Contagious 5 − Recover 5) * dt
INIT Sick 5 = 0 {people}
INFLOWS:
Contagious 5 = Infective 5*V {people contagious per day}
OUTFLOWS:
Recover 5 = Sick 5/Rec Time {people recovered per day}
Sick 6(t) = Sick 6(t − dt) + (Contagious 6 − Recover 6) * dt
INIT Sick 6 = 0 {people}
INFLOWS:
Contagious 6 = Infective 6*V {people contagious per day}
OUTFLOWS:
Recover 6 = Sick 6/Rec Time {people recovered per day}
Aging Time = 3650 {days}
Average Age of First Infection = (1/Per Capita Force of Infection)/365 {years}
Beta = RsubZero*V/Inital Pop {Transmission Coefficient}
Beta Weight 0 9 = 1
Beta Weight 10 19 = .8
Beta Weight 20 29 = .5
Beta Weight 30 39 = .25
Beta Weight 40 49 = .1
Beta Weight 50 Plus = .05
Birth Rate = .000078 {births per reproductive population per day}
Death Rate = .000027 {deaths per population per day}
Immunization Rate = .000 {children immunized per population per day}
Incubation Time = 7 {days}
Inital Pop = 245704 {people}
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Per Capita Force of Infection = Beta*Total Infective {1/days}
Rec Time = 14 {days}
Reproductive Pop = .5*(Age 10 to 19+Incubation 2+Infective 2+Sick 2+
Immune 2)+Age 20 to 29+
Incubation 3+Infective 3+Sick 3+Immune 3+Age 30 to 39+Incubation 4+
Infective 4+Sick 4+Immune 4+Sick 4 {people}
RsubZero = 10 {average number of infections caused by one infected individual}
Shingle Rate = .15 {cases of shingles per population per day}
S Aging Time = 10950 {days}
S Rec Time = 10 {days}
Total Immune = Immune 1 + Immune 2 + Immune 3 + Immune 4 +
Immune 5 + Immune 6
Total Infective = Infective 1+Infective 2+Infective 3+Infective 4+Infective 5+
Infective 6+Shingles {people}
Total Population = Age 0 to 9 + Age 10 to 19 + Age 20 to 29 +
Age 30 to 39 + Age 40 to 49 + Age 50 Plus + Immune 1 + Immune 2 +
Immune 3 + Immune 4 + Immune 5 + Immune 6 + Incubation1 +
Incubation 2 + Incubation 3 + Incubation 4 + Incubation 5 + Incubation 6 +
Infective 1 + Infective 2 + Infective 3 + Infective 4 + Infective 5 + Infective 6
+ Shingles + Sick 3 + Sick 4 + Sick 5 + Sick 6
Total Sick = Sick 1 + Sick 2 + Sick 3 + Sick 4 + Sick 5 + Sick 6
V = 1/7 {removal rate from the infective stock (1/time)}



Chapter 9
Toxoplasmosis1

9.1 Introduction

Toxoplasmosis is a parasitic infection caused by the protozoan Toxoplasma gondii.
Humans can become infected by ingestion of raw or undercooked meat that con-
tains tissue oocysts (the reproductive cell), or by direct contamination from the en-
vironment contaminated by infected cat feces. Although toxoplasmosis is most often
asymptomatic in humans, it can cause serious illness in immune-compromised in-
dividuals and in fetuses. At this time, there is no cure for the disease; prevention is
the only method of control.

This model examines the principal factors that influence the spread of the disease
from animals to humans on a case study of 43 Illinois swine farms. Most of the data
for this model were obtained from2,3, and4. Some of the references are given in the
model variable icons.

The main questions we wish to answer with this model are: How is the prevalence
of Toxoplasma gondii in people on swine farms in Illinois affected by exposure to
cats, ingestion of infected food, and the handling of dirt? Which one of these factors
affects the prevalence most? How would the prevalence be affected if we vaccinated
the cats, and which rate would be optimal?

1 This chapter is condensed from the work of Nohra Mateus-Pinilla, Illinois Natural History Survey,
Champaign, IL.
2 Frenkel, J.K. et al., 1981. “Endemicity of Toxoplasmosis in Costa Rica,” Am. J. Epidemiology,
v113:254–269.
3 Smith, J.L 1993. “Documented Outbreaks of Toxoplasmosis: Transmission of Toxoplasma gondii
to Humans,” J. Food Protection, v56:630–639.
4 Weigel, et al., 1997. “Risk Factors for Infection with Toxoplasma gondii for Residents and Work-
ers on Swine Farms in Illinois,” Vet. Biosciences Dept., University of Illinois, Urbana IL, unpub-
lished.
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9.2 Model Construction

The life cycle of the T. gondii parasite has three stages: cyst, oocyst, or tachyzoite.
A cat may eat cysts in infected rodents or birds, or other raw meat; then the organ-
isms will begin to multiply in the wall of the small intestine, producing the second
stage, oocysts. These are excreted in the feces for 2 to 3 weeks. Then they may
become spores and become infectious to other animals, including humans. Most
exposed cats shed oocysts during acute Toxoplasma infection, but not after. Oocysts
are very hardy and can survive in moist, shaded soil or sand for months. They can
be passed on directly to animals and humans, as well as indirectly to humans who
consume meat that is undercooked.

To capture the toxoplasmosis dynamics, we need information on the growth and
infection of the human population (by gender), the cat population, and the rat popu-
lation. Total human population on these farms was 174, (77% male). We begin our
model with knowledge that the mean prevalence of the disease in humans is a sur-
prising 31%. We assume the human birth rate is a normal distribution, centered on a
mean of 16 births per 1,000 residents. The natural human death rate is also a normal
distribution, centered on a mean of 0.85%. Infected humans have a higher death rate
of 2%. The infection rate for female humans is described by:

Human IR = (Percent Raw Food∗Pig Prev∗1)+(Inf Cat Density∗0.003)
+(Dirt Handling∗0.005), (9.1)

which shows the effects of eating raw or incompletely cooked pork, being around
infected cats, and handling dirt that could contain infective oocysts. The prevalence
in pigs, in turn, is dependent on the density of infected cats.

We assume that the percent of raw/undercooked food eaten by humans is 1%.
We also assume the infection rate four times higher for males than females. The
resulting human growth and infection model is given in Figure 9.1.

We assume the initial rat population is 200, with a 10% birth rate (Figure 9.2).
The initial value for the number of infected rats is based on a mean prevalence of
10%. The rat infection rate is 0.008 rats per year. Infected rats die at a rate that is de-
pendent on the cat population, with the infected rats dying at rate that is 20% higher.

We assume an initial cat population of 200 with a 10% birth rate. The cat
infection rate is dependent on both the number of infected cats and the number
of infected rats.

The relationship for the spread among cats is based on the law of mass action
so that the infection rate equals 1% of the product of infected and healthy cats plus
an additive effect from the presence of infected rats (0.01*Inf rat density). The cats
can then either become infected or become vaccinated. Infected cats stay contagious
for 2 years, after which they become immune, a process which is represented by a
conveyor. The infected cats die at a rate of 10%, while healthy cats die at a rate that
is dependent on the total cat population. The cat population and infection process
model is shown in Figure 9.3.

The small auxiliary models can be found in the model file.
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9.3 Results

Figure 9.4 shows the numbers of healthy and infected people, as well as the preva-
lence of the disease in the humans over 25 years, with no vaccination of cats.

Figure 9.5 shows the effect of a 50% cat vaccination rate on the human prevalence
compared to no vaccinations. Vaccinating the cats does have a significant impact in
reducing the prevalence.

Figure 9.6 shows a sensitivity analysis of different cat vaccination rates of 40%,
50%, 60%, 70%, and 80%. A significant decrease in prevalence occurs between
40% and 50% vaccination rates.

Further runs of the model show that dirt handling had only a slight impact on
the disease in humans but that the effect of thorough meat cooking is extremely
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important. In summary, both vaccinating cats at a rate greater than 52% and decreas-
ing the amount of raw/undercooked meat that is eaten would significantly decrease
the human prevalence of T. gondii.

9.4 Questions and Tasks

1. Include age differences in infection rates for humans in the model. What are the
likely results, and how are the general conclusions in the earlier model affected?
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2. Exert an exogenous shock onto the model by removing or adding a significant
number of cats from the system at some random point in time. How are the
results different? Are the results qualitatively different (aside from their opposite
impacts) for additions and subtractions of cats? Explain your answer.

TOXOPLASMOSIS

Cats(t) = Cats(t − dt) + (Births − Vaccinations − Cat Inf − Nat Deaths) * dt
INIT Cats = 150

INFLOWS:
Births = Cat Pop*0.1
OUTFLOWS:
Vaccinations = Cats*Cat Vac Rate
Cat Inf = Cats*0.01*Inf Cats + Inf Rat Density*0.01
Nat Deaths = Cats*Cat DR
Healthy Females(t) = Healthy Females(t − dt) + (Female Births −
Female Infections − Healthy Fem Deaths) * dt
INIT Healthy Females = 27

INFLOWS:
Female Births = Total Human Pop*Human Birth Rate/2
OUTFLOWS:
Female Infections = Healthy Females*Human IR
Healthy Fem Deaths = Healthy Females*Nat Death Rate
Healthy Males(t) = Healthy Males(t − dt) + (Male Births − Male Infections −
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Healthy Male Deaths) * dt
INIT Healthy Males = 92

INFLOWS:
Male Births = Human Birth Rate*Total Human Pop/2
OUTFLOWS:
Male Infections = Healthy Males*Human IR*4
Healthy Male Deaths = Healthy Males*Nat Death Rate
Healthy Rats(t) = Healthy Rats(t − dt) + (Rat Births − Rat Infection −
Nat Rat Deaths) * dt
INIT Healthy Rats = 200

INFLOWS:
Rat Births = 0.1*(Healthy Rats + Infected Rats)
OUTFLOWS:
Rat Infection = Rat Inf Coefficent*Healthy Rats*Infected Rats
Nat Rat Deaths = Healthy Rats*Rat DR
Immune Cats(t) = Immune Cats(t − dt) + (Vaccinations + Recovery −
Immune Deaths) * dt
INIT Immune Cats = 0

INFLOWS:
Vaccinations = Cats*Cat Vac Rate
Recovery = CONVEYOR OUTFLOW
OUTFLOWS:
Immune Deaths = Immune Cats*Cat DR
Infected Females(t) = Infected Females(t − dt) + (Female Infections +
Inf Female Babies − Inf Fem Deaths) * dt
INIT Infected Females = 13

INFLOWS:
Female Infections = Healthy Females*Human IR
Inf Female Babies = Human Birth Rate*(Infected Females*.1)/2
OUTFLOWS:
Inf Fem Deaths = Infected Females*Inf Death Rate
Infected Males(t) = Infected Males(t − dt) + (Male Infections +
Inf Male Babies − Inf Male Deaths) * dt
INIT Infected Males = 42

INFLOWS:
Male Infections = Healthy Males*Human IR*4
Inf Male Babies = Infected Females*.1*Human Birth Rate/2
OUTFLOWS:
Inf Male Deaths = Infected Males*Inf Death Rate
Infected Rats(t) = Infected Rats(t − dt) + (Rat Infection − Rat Deaths) * dt
INIT Infected Rats = 20
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INFLOWS:
Rat Infection = Rat Inf Coefficent*Healthy Rats*Infected Rats
OUTFLOWS:
Rat Deaths = Infected Rats*Rat DR*1.2
Inf Cats(t) = Inf Cats(t − dt) + (Cat Inf − Recovery − Inf Deaths) * dt
INIT Inf Cats = 50

TRANSIT TIME = 2
INFLOW LIMIT = ∞
CAPACITY = ∞

INFLOWS:
Cat Inf = Cats*0.01*Inf Cats + Inf Rat Density*0.01
OUTFLOWS:
Recovery = CONVEYOR OUTFLOW
Inf Deaths = LEAKAGE OUTFLOW

LEAKAGE FRACTION = 0.10
NO-LEAK ZONE = 0

Cat Pop = Cats + Immune Cats + Inf Cats
Cat Vac Rate = {0.52}0
Dirt Handling = 0.1
Healthy Pop = Healthy Females + Healthy Males
Human Birth Rate = NORMAL(16/1000, 0.005)
Human IR = (Percent Raw Food*Pig Prev*1) + (Inf Cat Density*0.003) +
(Dirt Handling*0.005)
Human Prevalence = Infected Pop/Total Human Pop
Infected Pop = Infected Females + Infected Males
Inf Cat Density = Inf Cats/Total Area
Inf Death Rate = 0.02
Inf Rat Density = Infected Rats/Total Area
Nat Death Rate = NORMAL(1700/200000, 0.0005)
Percent Raw Food = 0.01
Rat Inf Coefficent = 0.0002
Rat Prev = Infected Rats/(Infected Rats+Healthy Rats)
Total Area = 100
Total Human Pop = Healthy Females + Healthy Males+Infected Females +
Infected Males
Cat DR = GRAPH(Cat Pop)
(0.00, 0.0022), (50.0, 0.017), (100, 0.03), (150, 0.0382), (200, 0.051), (250,
0.069), (300, 0.0818), (350, 0.0968), (400, 0.113), (450, 0.128), (500, 0.148)
Pig Prev = GRAPH(Inf Cat Density)
(0.00, 0.01), (0.05, 0.065), (0.1, 0.245), (0.15, 0.29), (0.2, 0.32), (0.25, 0.265),
(0.3, 0.285), (0.35, 0.27), (0.4, 0.29), (0.45, 0.265), (0.5, 0.275)
Rat DR = GRAPH(Cat Pop)
(0.00, 0.002), (50.0, 0.002), (100, 0.004), (150, 0.004), (200, 0.044), (250,
0.065), (300, 0.077), (350, 0.09), (400, 0.096), (450, 0.105), (500, 0.105)



Chapter 10
The Zebra Mussel1

10.1 Introduction

The zebra mussel (Dreissena polymorpha) is a small bivalve mollusk native to
Europe. The mussel was first observed in North American lakes only recently. Initial
colonization may have occurred in 1986, probably from larvae discharged in ballast
water. The zebra mussel is a potentially serious pest. In high densities, it presents
major problems for both human-made structures and for the ecology of infested bod-
ies of water. One of the most harmful impacts is the colonization of intake cribs and
pipes serving water treatment plants, power generating stations, and industries. At-
tracted to swift-moving water carrying large amounts of nutrients, mussels quickly
colonize and block these intake pipes. As an efficient feeder, the zebra mussel is
capable of removing large amounts of seston from the water. A benthic (bottom
dwelling) organism, the zebra mussel effectively removes nutrients from the water
column and deposits them on the bottom of the lake, river, or estuary in which it
lives. In addition to diverting primary productivity from the plankton to the benthos,
zebra mussels may also cover substrates used by other organisms and foul sedentary
benthic organisms.

10.2 Model Development

There is concern about the long-term effects of shifting large amounts of organic
matter from the pelagic to benthic zones. Effects of these dramatic changes in water
clarity and energy distribution on invertebrate, aquatic plant, and fish communities
have yet to be determined. Therefore, let us develop a model to investigate the po-
tential impact that the introduction of zebra mussels will have on a small lake in
Northern America and forecast the potential growth of the zebra mussel in some

1 This chapter is based on a project developed by Julie Sweitzer and Frederic Pieper for one of our
classes on dynamic modeling. We thank them for their contribution.
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small lake. The questions to be answered by the model are: If zebra mussels are in-
troduced into the lake, how will the population grow over time? What are the critical
parameters that influence the size of the population? How significant an impact will
the equilibrium mussel population have on the lake’s ecosystem?

In order to enhance the understanding of the model, we split it up into three
parts, or modules, that are interrelated and together comprise the critical dynamic
aspects of the questions being addressed. Partitioning a model into individual, easily
comprehensible parts is always helpful in making the model structure transparent.
In the model of the zebra mussel, the growth module captures the growth processes
of the zebra mussel population. The sustainability module determines the long-term,
sustainable level of the population by incorporating some key physical parameters.
The filtration module yields a relative indication of the impact of the population on
the lake by computing the frequency with which the total population filters the entire
water volume of the lake. An explanation of the structure of each of these modules
and the data and assumptions that were used to construct them follows.

The growth module in Figure 10.1 is made up of four population cohorts (one
juvenile and three adult). The average life span of a zebra mussel appears to vary
between populations in different areas. We chose a life span of four years, which
seemed most appropriate for the analysis. Zebra mussel populations typically re-
produce once a year (usually sometime during the summer) according to a mass
synchronous spawning behavior. Therefore, each cohort represents one generation
of mussels. The juvenile cohort represents all those mussels that have successfully
attached to some suitable substrate and have grown to a certain average size by the
end of the first year. These individuals are not yet sexually mature. The three adult
cohorts are the populations of each generation that has reached sexual maturity and
survived to the end of years two, three, and four.

The number of individual mussels that enter the juvenile cohort in a certain year
is a function of the number of adult female zebra mussels and their fecundities.
Although fecundities are high (30,000–40,000 larvae per female), larval mortality
rates are fairly high as well. The survival rate (.008) represents the percent of larvae
that attach to a substrate and grow to a certain size by the end of the year.

The survival potential is then the number of mussels that reach the juvenile cohort
under normal circumstances (no limiting conditions). However, the actual number of
mussels that survive the first year depends on whether or not the overall population is
close to or above the sustainable population of the lake. The sustainable population
is determined in the sustainability module described in detail below. So, the actual
number that survive is calculated as follows: if the total population is less than the
sustainable population in any year, then SURVIVE equals the smaller of the survival
potential, SURVIVE POT, and the difference between SUSTAINABLE POPULA-
TION and TOTAL POPULATION. If the total population is greater than or equal
to the sustainable population, then SURVIVE equals SURVIVE POT times a factor
that is less than one and decreases exponentially as total population gets larger. The
result is that the more the total population exceeds the sustainable population, the
smaller the number of juveniles that survive during that year.
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At first glance, it appears that the sustainable population will not be exceeded.
However, due to the way in which the populations move between cohorts, the total
population does, in fact, overshoot the sustainable level in certain years. Adult pop-
ulations die at certain rates between years; the surviving population grows to a new
average size and enters the next cohort. At the end of the fourth year, it is assumed
that the entire generation dies out. The sustainability module of the model is shown
in Figure 10.2.

The sustainability module determines the equilibrium population level that is
expected to be reached over the long term. The key parameter that determines this
level is the availability of suitable substrate material upon which the mussels can
attach. Zebra mussels require hard substrates and cannot live in muddy conditions.
Other potentially limiting factors, such as calcium deficiency or extremes in water
temperature or nutrient availability, are not considered here.
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Available hard substrate is calculated by multiplying the total area of the lake
bottom by the percent of the lake bottom that is hard. This percentage can only be
estimated, and its initial value is given. To determine the sustainable population at
any point in time, the average density and distribution of the population must also be
known. Observed density figures vary widely in the literature. Therefore, we have
chosen a range over which we run our model. Our expected density figure is taken
to be that density which is sustainable over the long term.

The expansion percent parameter shows the percent of the lake that has been
colonized over time and is represented in graphical form. We are assuming that
infestation occurs at a specific point (as from an infested bait bucket dumped over-
board) and spreads from there. Zebra mussel larvae are distributed via lake currents
as well as boat traffic. We assume that in the first month, 20% of the lake is infested
with the mussel. The expansion percentage increases drastically during the first few
months and reaches a maximum of 100% by the end of the first year. The percentage
expansion remains at that level for the relevant future. For simplicity, we assume the
values shown in Figure 10.3.

Try experimenting with the expansion rate in alternative runs of the model. For
example, assume that the expansion percentage is reduced to 20% at the begin-
ning of each year, and increases toward 100% over the course of the year. This
processes is then repeated each year. Toward that end, the EXPANSION PERCENT
can be modeled with the built-in function “MOD.” MOD(TIME,12)+1 converts
simulation time into months, starting at 1. After 12 months of simulation time,
MOD(TIME,12)+1 will reset itself to 1.

In the filtration module of Figure 10.4, LAKE TURNOVER is calculated. This
serves as a relative indication of how great an impact the population will have on
the current lake ecosystem. LAKE TURNOVER is the number of times per day
that the total mussel population filters the total volume of water in the lake. The
filtration rate of an individual mussel is a function of its shell length and is named
here FILTER1, FILTER2, and so forth, for the respective age classes 1, 2, and so
on. An initial shell length, LENGTH1, LENGTH2, and so forth, is assumed for the
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juvenile population, and shell length grows each year as a function of the previous
year’s length.

The amount of water filtered by each cohort is calculated by multiplying the
individual filtration rates times the population of each cohort. Daily lake turnover
is the sum of the daily filtration volumes of each cohort divided by the total lake
volume. In addition, the number of days per complete lake turnover is calculated by
dividing the daily lake turnover into one complete turn.
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10.3 Model Results

Now the model is complete and can be used to develop a base case model of zebra
mussel growth in our lake. The base case model uses average values for model
parameters published in the literature2. You will find that data in the model equations
at the end of the chapter.

The results of the base case model can be compared with alternative scenarios to
determine the impact and sensitivity of various parameters on the growth patterns.
Such a procedure is important if some data are unknown or unavailable, or if there
is uncertainty surrounding parameter estimates.

For a sensitivity analysis, vary the value for SUBSTRATE PERCENT between
50% and 90% and the death rates for the first three age classes within the intervals
listed in Table 10.1:

Change only one parameter value at a time.
The base case growth, density, and lake turnover pathways are shown in

Figure 10.5. We have assumed that the initial invading population consists of
100 juveniles. In the early years, population grows exponentially and reaches a
total population peak of 8.08∗108 mussels in year thirteen. The population then
oscillates with decreasing extremes toward a steady state population of 7.79∗108.
Population density follows the same pattern as total population growth. Density
peaks at 834mussels/m2 and stabilizes at 772mussels/m2.

Table 10.1

Minimum Maximum

DEATH RATE 1 0.06 0.12
DEATH RATE 2 0.09 0.15
DEATH RATE 3 0.18 0.18

2 See, for example: Bij de Vaate, A. 1991. Distribution and Aspects of Population Dynamics
of the Zebra Mussel, Dreissena polymorpha (Pallas, 1771), in the Lake Ijsselmeer Area (The
Netherlands). Oecologia Vol. 86, pp. 40–50; Griffiths, R.W., W.P. Kovalak, and D.W. Schloesser.
1989. The Zebra Mussel, Dreissena polymorpha, in North America: Impact on Raw Water Users,
in Proceedings: EPRI Service Water System Reliability Improvement Seminar. Electric Power Re-
search Institute, Palo Alto, CA, pp. 11–27; Griffiths, R.W., D.W. Schloesser, J.H. Leach, and
W.P. Kovalak. 1991. Distribution and Dispersal of the Zebra Mussel (Dreissena polymorpha) in the
Great Lakes Region, Canadian Journal of Fisheries and Aquatic Science, Vol. 48, pp. 1381–1388;
Haag, W.R. and D.W. Garton. 1992. Synchronous Spawning in a Recently Established Popula-
tion of the Zebra Mussel, Dreissena polymorpha, in Western Lake Erie, USA., Hydrobiologia,
Vol. 234, pp. 103–110; Kryger, J. and H.U. Riisgard. 1988. Filtration Rate Capacities in 6 Species
of European Freshwater Bivalves., Oecologia, Vol. 77, pp. 34–38; Mackie, G. 1991. Biology of
the Exotic Zebra Mussel, Dreissena polymorpha, in Relation to Native Bivalves and its Potential
Impact in Lake St. Clair, Hydrobiologia, Vol. 219, pp. 251–268; Strayer, D.L. 1991. Projected
Distribution of the Zebra Mussel, Dreissena polymorpha, in North America, Canadian Journal of
Fisheries and Aquatic Science, Vol. 48, pp. 1389–1395.
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Similarly, lake turnover (Figure 10.6) closely follows the population pattern since
lake turnover is directly related to the number of zebra mussels in the lake, but it is
slightly lagged. Lake turnover peaks in year fourteen at 0.37 (total lake turnover per
day) and stabilizes at 0.33. This variable is more intuitive if presented as the number
of days required for the mussel population to filter the entire volume of the lake. In
the peak of the base case, year fourteen, the mussel population filters the volume of
the lake in 2.69 days. This rate changes as population drops and stabilizes at 2.99
days/turnover.
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10.4 Questions and Tasks

1. Explore the impacts of extreme weather conditions (e.g. a period of extreme
summer temperatures or drought) on zebra mussel dynamics.

2. How would you introduce the impacts of a chemical eradication program on
zebra mussels? Can you get rid of all the mussels from the lake? If so, for how
long?

ZEBRA MUSSEL MODEL

ADULT 1(t) = ADULT 1(t − dt) + (GROWTH 1 − GROWTH 2 −
DEATH A1) * dt
INIT ADULT 1 = 0 {Number of Individuals}
INFLOWS:
GROWTH 1 = (1 − DEATH RATE 1)*JUVENILE {Individuals per Month}
OUTFLOWS:
GROWTH 2 = (1 − DEATH RATE 2)*ADULT 1 {Individuals per Month}
DEATH A1 = DEATH RATE 2*ADULT 1 {Individuals per Month}
ADULT 2(t) = ADULT 2(t − dt) + (GROWTH 2 − GROWTH 3 −
DEATH A 2) * dt
INIT ADULT 2 = 0 {Number of Individuals}
INFLOWS:
GROWTH 2 = (1 − DEATH RATE 2)*ADULT 1 {Individuals per Month}
OUTFLOWS:
GROWTH 3 = (1 − DEATH RATE 3)*ADULT 2 {Individuals per Month}
DEATH A 2 = DEATH RATE 3*ADULT 2 {Individuals per Month}
ADULT 3(t) = ADULT 3(t − dt) + (GROWTH 3 − DEATH A3) * dt
INIT ADULT 3 = 0 {Number of Individuals}
INFLOWS:
GROWTH 3 = (1 − DEATH RATE 3)*ADULT 2 {Individuals per Month}
OUTFLOWS:
DEATH A3 = 1.0*ADULT 3 {Individuals per Month}
JUVENILE(t) = JUVENILE(t − dt) + (SURVIVE − GROWTH 1 − DEATH J)
* dt
INIT JUVENILE = 100 {Number of Individuals}
INFLOWS:
SURVIVE = IF (TOTAL POPULATION<SUSTAINABLE POPULATION)
THEN MIN(SURVIVE POT,SUSTAINABLE POPULATION-TOTAL
POPULATION)
ELSE ((1 − (TOTAL POPULATION-SUSTAINABLE POPULATION)/
TOTAL POPULATION)ˆ2)*SURVIVE POT {Number of Individuals per
Month}
OUTFLOWS:
GROWTH 1 = (1 − DEATH RATE 1)*JUVENILE {Individuals per Month}
DEATH J = DEATH RATE 1*JUVENILE {Individuals per Month}



10.4 Questions and Tasks 169

ATTACH RATE = .8*.01 {20% larval mortality in veliger stage, 99% mortality
post-veliger; Bij de Vaate 1991 p.46; Percent of Larvae Which Successfully
Attach to Suitable Substrate and Survive at Least to the End of the Year}
DAYS PER TURNOVER = 1/LAKE TURNOVER {number of days for
complete lake turnover}
DEATH RATE 1 = .09
{Bij de Vaate, 1991,p.10}
DEATH RATE 2 = .12
DEATH RATE 3 = .15
EXPECTED DENSITY = 1000
{sq m-2; Strayer; Ch 43}
FECUNDITY 1 = 30000 {Mackie, 1991; Larvae per Female}
FECUNDITY 2 = 35000 {Larvae per Female}
FECUNDITY 3 = 40000 {Mackie, 1991; Larvae per Female}
FILTER 1 = JUVENILE*(6.82*(1.54E − 5*LENGTH 1ˆ2.42)ˆ.88)
{L/hr; Kryger and Rilsgard, 1988}
FILTER 2 = ADULT 1*(6.82*(1.54E − 5*LENGTH 2ˆ2.42)ˆ.88)
{L/hr; Kryger and Rilsgard, 1988}
FILTER 3 = ADULT 2*(6.82*(1.54E − 5*LENGTH 3ˆ2.42)ˆ.88)
{L/hr; Kryger and Rilsgard, 1988}
FILTER 4 = ADULT 3*(6.82*(1.54E − 5*LENGTH 4ˆ2.42)ˆ.88)
{L/hr; Kryger and Rilsgard, 1988}
HARD SUBSTRATE = LAKE BOTTOM*SUBSTRATE PERCENT
{sq. m}
LAKE BOTTOM = (1.3*1E+6+0.142*1E+6)
LAKE TURNOVER =
(FILTER 1+FILTER 2+FILTER 3+FILTER 4)*24/LAKE VOLUME
{total lake turnover per day}
LAKE VOLUME = 8524472*1000 {liters(cubic meters * 1000L/cu.M); BLA}
LENGTH 1 = 5 {mm}
LENGTH 2 = LENGTH 1+(.006*(LENGTH 1ˆ2)-.56*LENGTH 1+12.1)
{Bij de Vatte, 1991; mm}
LENGTH 3 = LENGTH 2+(.006*(LENGTH 2ˆ2)−.56*LENGTH 2+12.1)
{mm}
LENGTH 4 = LENGTH 3+(.006*(LENGTH 3ˆ2)−.56*LENGTH 3+12.1)
{mm}
POPULATION DENSITY = TOTAL POPULATION/HARD SUBSTRATE
SEX RATIO = .6
{Mackie, 1991,p.255}
SUBSTRATE PERCENT = .70
SURVIVE POT =
ATTACH RATE*(SEX RATIO*(FECUNDITY 1*ADULT 1+
FECUNDITY 2*ADULT 2+FECUNDITY 3*ADULT 3)) {Number of
Individuals}
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SUSTAINABLE POPULATION = EXPANSION PERCENT*
HARD SUBSTRATE*EXPECTED DENSITY {Number of Individuals}
TOTAL POPULATION = JUVENILE+ADULT 1+ADULT 2+ADULT 3
{Number of Individuals}
EXPANSION PERCENT = GRAPH(TIME)
(1.00, 0.2), (2.00, 0.215), (3.00, 0.24), (4.00, 0.28), (5.00, 0.33), (6.00, 0.435),
(7.00, 0.64), (8.00, 0.78), (9.00, 0.89), (10.0, 0.945), (11.0, 0.98), (12.0, 1.00)



Chapter 11
Biological Control of Pestilence

Throughout this book we have hinted at—or explicitly modeled—strategies that
interfere with the dynamics of pests and diseases, such as using repellents in the
malaria model or vaccination in the case of chicken pox. In this chapter, we focus
on such interferences and concentrate on biological methods to control pests. The
subsequent chapter then explores the effects of disease resistance.

11.1 Herbivory and Algae

11.1.1 Herbivore-Algae Predator-Prey Model

The first of our biological pestilence control models uses a simple predator–prey
model to show that even without migration, the system can exhibit a wide range of
responses. Assume that the prey are algae in a pond on which an herbivore grazes.
The data for this problem have been invented. (Normally, input data, parameters,
and initial conditions would be determined by experiment.)

The model consists of two main parts: one is for the change in the algae popula-
tion, and one is for the herbivore. The growth rate is a function of the algal density,
ALGAE. This function is monotonic and declining (Figure 11.1). Algal growth is
calculated as the product of the density and the growth rate.

The algae density is reduced through consumption by the herbivore. The con-
sumption per head is a nonlinear function of the algal density: the greater the den-
sity, the higher the consumption per head (Figure 11.2). The consumption rate is
simply the product of the number of herbivore and the consumption per head.

The herbivore death rate is determined by their average life span, which is a
nonlinear function of the consumption per head: the higher the consumption per
head, the longer the life span, within limits (Figure 11.3). Indirectly, the denser the
algae, the lower the herbivore death rate.

B. Hannon and M. Ruth, Dynamic Modeling of Diseases and Pests, 171
Modeling Dynamic Systems,
c© Springer Science+Business Media LLC 2009
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Fig. 11.1

Fig. 11.2

The herbivore growth rate is a product of the herbivore stock and the fractional
herbivore growth rate, FCN HERB GROW (Figure 11.4). To increase realism of the
model, we make FCN HERB GROW a function of the algae density in the previous
time period. This is done by producing an additional stock called ALGAE DELAY.
In general, it makes sense to represent herbivore behavior in this way. Herbivore
gestation time reflects the origin of this lagged behavior.
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Fig. 11.3

Fig. 11.4

The combination of the assumptions shown in Figures 11.1 through 11.4, to-
gether with the basic alga and herbivore population model, is shown in Figure 11.5.

Figure 11.6 shows the wide swings in algal density and herbivore population over
time. Figure 11.7 presents a plot of algal density against the herbivore population
and exhibits the limit cycle resulting from this particular choice of the variables.
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11.1.2 Questions and Tasks

1. Can you make the herbivore of this model crash and not reemerge?
2. Try to maximize the herbivore population. Can you do this by adjusting only

the variable FCN HERB GROW, without changing the maximum and minimum
rates?
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HERBIVORE-ALGAE MODEL

ALGAE(t) = ALGAE(t − dt) + (ALGAE GROWTH − CONSUMPTION) * dt
INIT ALGAE = 210 {Algae per Area}
INFLOWS:
ALGAE GROWTH = ALGAE * GROWTH RATE {Algae per Area per Time
Period}
OUTFLOWS:
CONSUMPTION = HERBIVORE * CONSUMP PER HD {Algae per Area
per Time Period}
HERBIVORE(t) = HERBIVORE(t − dt) + (HERB GROWTH RATE −
DEATH RATE) * dt
INIT HERBIVORE = 45 {Individuals}
INFLOWS:
HERB GROWTH RATE = HERBIVORE * FCN HERB GROW {Individuals
per Time Period}
OUTFLOWS:
DEATH RATE = HERBIVORE/LIFESPAN {Individuals per Time Period}
ALGAE DELAY = DELAY(ALGAE,2) {Individuals}
CONSUMP PER HD = GRAPH(ALGAE)
(0.00, 0.00), (100, 0.25), (200, 0.6), (300, 0.83), (400, 1.06), (500, 1.24), (600,
1.41), (700, 1.61), (800, 1.77), (900, 1.89), (1000, 1.98)
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FCN HERB GROW = GRAPH(ALGAE DELAY)
(0.00, 0.00), (100, 0.0035), (200, 0.0075), (300, 0.019), (400, 0.065), (500, 0.13),
(600, 0.163), (700, 0.181), (800, 0.19), (900, 0.195), (1000, 0.198)
GROWTH RATE = GRAPH(ALGAE)
(0.00, 0.21), (100, 0.168), (200, 0.112), (300, 0.0902), (400, 0.0781), (500,
0.066), (600, 0.0572), (700, 0.0462), (800, 0.0363), (900, 0.0198), (1000, 0.00)
LIFESPAN = GRAPH(CONSUMP PER HD)
(0.00, 0.00), (0.2, 2.16), (0.4, 4.32), (0.6, 6.96), (0.8, 9.48), (1.00, 12.1), (1.20,
14.9), (1.40, 17.3), (1.60, 20.2), (1.80, 22.6), (2.00, 23.8)

11.2 Bluegill Population Management

11.2.1 Bluegill Dynamics

The small game fish population in human-made reservoirs is a continual problem.
Without a balanced set of predators and their prey and without natural conditions in
the reservoirs, fish stocked in the reservoirs tend to either disappear or to produce a
very large number of undersized fish. The demise of fish has two main causes: death
due to natural causes (predation, disease) and fishing. Fishing pressure is the main
reason for the disappearance of the larger members of the game species. The man-
agement of fishing provides a method to produce a more balanced fish population,
and here we demonstrate how to model such regulations for the bluegill in Illinois
reservoirs.

We are interested in modeling1 the effects of various factors influencing size
structure of a bluegill population over a 50-year period. We wish to simulate pop-
ulation dynamics on a temporal scale in an effort to provide fishery managers with
information necessary to manage bluegill populations in Illinois reservoirs. This
model could serve as a tool to test proposed management regulations on a given
reservoir to provide insight into the changes resulting from the proposed regulations.

The model is developed to answer the following questions:

1. How do bluegill populations change through time when no fishing occurs?
2. How do bluegill populations behave through time when fishing is allowed and

there are no fishing regulations?
3. How does implementation of management regulations, such as a creel limit and

a size limit, affect the bluegill population?
4. Are there differences in the way in which male and female bluegill populations

respond to such management scenarios?
5. Is the overall bluegill population sensitive to changes in the female bluegill pop-

ulation?

1 We thank Brian Herwig and Derek Aday for their contributions to this model.
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We have created a model that explores factors influencing the growth, removal,
and size structure of bluegill populations. These factors include density dependent
growth, natural mortality (a variable that accounts for losses due to predation, dis-
ease, winterkill, and starvation), and finally, losses due to removal via recreational
angling (the variable of interest in this model). Often these processes are size and sex
specific. To account for this, we divided the bluegill population into seven 30-mm
size categories from a 0- to 30-mm cohort up to a 180- to 210-plus-mm cohort. To
account for difference between sexes, we split the population into a male compo-
nent and a female component to give our model further resolution (Figure 11.8). We
added a section to account for egg production and the resulting fry production of
the population. Following the fry stage of the model, we included a component to
determine the sex and life history strategy of the fry. The sex ratio of the population
was assumed to be 50:50. The life history component was determined through a sub-
model, which bases life history of male fry on the proportion of adult males in the
population (the greater the density of adult males, the greater the proportion of male
fry that become “sneakers”). Sneakers are male bluegills that adopt a cuckoldry life
history strategy. The numbers used throughout the model were averages from data
collected from numerous fish populations around the Midwest. Numbers for para-
meters that were not available from empirical data were estimated from discussions
with fishery biologists in the Illinois Natural History Survey in 1997.

To address the questions listed above we ran the model three ways:

1. With no fishing mortality and with just growth and natural mortality occurring,
to establish a baseline with which to test the effects of management regulations
on the population.

2. With growth and natural mortality plus mortality due to fishing, where fishing is
unregulated and set by the number of anglers, hours fished, and the catchability
of fish in the cohort.

3. With growth and natural mortality plus mortality due to fishing, but where fishing
is regulated such that a creel is set for selected fishable cohorts, establishing an
effective size limit and maximum number of fish that can be removed from the
population per year.

In the case where there is no fishing mortality, similar patterns emerge for similar
size classes for both males and females (Figures 11.9 and 11.10). There are a greater
number of individuals (150,000 to 200,000) in the smaller size classes (0 to 30 mm
and 30 to 60 mm), and a smaller number of fish (70,000 to 90,000) in the larger size
classes (>90 mm). This represents a typical size distribution found in many lakes.
After some initial fluctuation, the selected cohorts stabilize around the ranges stated
earlier, but increase slightly through time.

Note that in these graphs and in all the following ones, a period of approximate
6 years is required for the population to come to equilibrium. This is due to the
initially stocked cohort of fry moving through all of the size classes before reaching
equilibrium. Also note that the youngest size class (0 to 30 mm) is increasing most
rapidly.
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11.2.2 Impacts of Fishing

When fishing mortality is imposed in the model, the fishable cohorts (60 to 90 mm
through 180 to 210 mm), after some initial fluctuation, settle into equilibrium at
population levels considerably lower than when fishing did not occur (55,000 to
63,000 with fishing compared to 70,000 to 90,000 without fishing). As before, more
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fish are always in the smaller size classes. Note that the two largest cohorts are the
lowest and are proportionately lower than those without fishing. These size classes
are particular susceptible to fishing mortality because of their increased vulnerability
and because anglers prefer to keep larger the larger fish (Figures 11.11 and 11.12).

Notice that the female population (Figure 11.12) is not as affected by fishing
mortality as the male population (Figure 11.11). This is due to the fact that the
catchability of females is not as high as males. Males generally remain higher in
the water column and possess more aggressive behavioral characteristics that cause
them to be more susceptible to fishing.
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To demonstrate the effect of a creel limit on the population of fish, we imposed
a 100 fish limit on the following sizes of fish - 60 – 90 mm; 150 – 180 mm; 180 –
210 mm (the smallest and two largest fishable size classes). The result is that the
entire fish population is affected (Figure 11.13).This is expected, because leaving
adult fish (capable of reproduction) in the population results in more egg production
and fertilization, and subsequently more fish in each size class. The numbers of
fish actually return to levels similar to the case when there was no fishing mortality
(70,000 – 90,000 fish).

In terms of sneaker males, an interesting result occurs. When a creel limit is
imposed, the number of sneaker males increases (Figure 11.14). This is due to the
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fact that more large males remain in the population—the greater the population
density of males, the greater the proportion of sneakers. When no creel limit is
imposed, the proportion of sneakers drops, due to the decreased number of large
males (Figure 11.15). This is an important finding, because the number of sneaker
males in a population of bluegill is a concern to fishery managers. Large proportions
of sneaker males in the population results in smaller sized fish and greater abundance
of stunted fish as a result of evolutionary and genetic changes in the population.
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11.2.3 Impacts of Disease

Disease was added to the model, and its results are shown in Figure 11.16. The
impact of the disease is arbitrarily chosen to demonstrate the impact. If the adult
density exceeded a limit (750,000∗ random(.8,1.2) then the disease occurs, multi-
plying the natural mortality rate by a random increase between 1 and 3. With fishing
regulations in place, the adult density (total number of fish in this fishery) fluctuates
rather widely.
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The disease decimates some of the cohorts but the population quickly recovers
due to the hardiness of those in the reproductive age classes. The total adult density
seems to fluctuate around a value of about 1 million, down from a disease-free adult
density of about 1.2 million.

This model replicates the complex interaction between the sneaker male
and adult male population, and demonstrates the trade-off between successfully
managing for adult bluegill while trying to keep the sneaker population to a
minimum. This model allows resource managers to test the effect of creel lim-
its on the population of sneaker males before actually integrating the solutions
in the management plan of a natural population. Could the model be made more
instructive by splitting natural mortality into its components (i.e., winterkill, pre-
dation, disease, and so forth)? Although the precision of the model may increase
due to accuracy of these measurements, would the complexity be increased to the
point that the model is not useful? The reader is encouraged to expand the model in
this way.

11.2.4 Questions and Tasks

1. a) Introduce a size limit on catch and observe its results.
b) Can you find size restrictions (maximum and/or minimum allowable size of

the catch) that stabilize the bluegill population for a given fishing pressure?
2. Assume the disease introduced in earlier discussion only affects juveniles. What

are the effects on the size of the population as a whole, and on the average size
of fish in the population?

BLUEGILL FISHERY MANAGEMENT

FEMALE 030(t) = FEMALE 030(t − dt) + (FRYADULT − F GROWTH 1 −
F NAT MORT 1) * dt
INIT FEMALE 030 = 1000000

INFLOWS:
FRYADULT = FEMALE FRY
OUTFLOWS:
F GROWTH 1 = FEMALE 030 * GROW1
F NAT MORT 1 = FEMALE 030 * F NATURAL MORT RATE 1
FEMALE FRY(t) = FEMALE FRY(t − dt) + (FEMALE − FRYADULT) * dt
INIT FEMALE FRY = 1000000

INFLOWS:
FEMALE = FRY * (1 − PROPORTIONMALE)
OUTFLOWS:
FRYADULT = FEMALE FRY
FRY(t) = FRY(t − dt) + (FRY PRODUCTION − FRY MORTALITY −
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FEMALE − MALE) * dt
INIT FRY = 200000

INFLOWS:
FRY PRODUCTION = OVERALL EGG PRODUCTION * 0.000065
OUTFLOWS:
FRY MORTALITY = FRY MORTALITY RATE * FRY
FEMALE = FRY * (1−PROPORTIONMALE)
MALE = FRY * PROPORTIONMALE
F 120150(t) = F 120150(t − dt) + (F GROWTH 4 − FISH5 −
F GROWTH 5 − F NATMORT 5) * dt
INIT F 120150 = 30000

INFLOWS:
F GROWTH 4 = F 90120 * GROWADULT
OUTFLOWS:
FISH5 = IF F ONOFF 5 = 1 THEN (IF F CATCH 5 * F TOT EFFORT 5 >
CREEL 5 THEN CREEL 5 ELSE F CATCH 5 * F TOT EFFORT 5) ELSE IF
F ONOFF 5 = 0 THEN F CATCH 5 * F TOT EFFORT 5 ELSE 0
F GROWTH 5 = F 120150 * GROWADULT
F NATMORT 5 = F NATMORTRATE 5 * F 120150
F 150180(t) = F 150180(t − dt) + (F GROWTH 5 − F MORT 6 −
F GROWTH 6 − F NATMORT 6) * dt
INIT F 150180 = 10000

INFLOWS:
F GROWTH 5 = F 120150 * GROWADULT
OUTFLOWS:
F MORT 6 = IF F ONOFF 6 = 1 THEN (IF F CATCH 6 * F TOT EFFORT 6
> CREEL 6 THEN CREEL 6 ELSE F CATCH 6 * F TOT EFFORT 6) ELSE
IF F ONOFF 6 = 0 THEN F CATCH 6 * F TOT EFFORT 6 ELSE 0
F GROWTH 6 = F 150180 * GROWADULT
F NATMORT 6 = F 150180 * F NATMORTRATE 6
F 180210(t) = F 180210(t − dt) + (F GROWTH 6 − F MORT 7 −
F NATMORT 7) * dt
INIT F 180210 = 1000

INFLOWS:
F GROWTH 6 = F 150180 * GROWADULT
OUTFLOWS:
F MORT 7 = IF F ONOFF 7 = 1 THEN (IF F CATCH 7 * F TOT EFFORT 7
> F CREEL 7 THEN F CREEL 7 ELSE F CATCH 7 * F TOT EFFORT 7)
ELSE IF F ONOFF 7 = 0 THEN F CATCH 7 * F TOT EFFORT 7 ELSE 0
F NATMORT 7 = F NATMORT RATE 7 * F 180210
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F 3060(t) = F 3060(t − dt) + (F GROWTH 1 − F GROWTH 2 −
F NATMORT2) * dt
INIT F 3060 = 10000

INFLOWS:
F GROWTH 1 = FEMALE 030 * GROW1
OUTFLOWS:
F GROWTH 2 = F 3060 * GROW2
F NATMORT2 = F 3060 * F NATMORT RATE 2
F 6090(t) = F 6090(t − dt) + (F GROWTH 2 − FISH3 − F GROWTH 3 −
F NATMORT3) * dt
INIT F 6090 = 30000
INFLOWS:
F GROWTH 2 = F 3060 * GROW2
OUTFLOWS:
FISH3 = IF F ONOFF 3 = 1 THEN (IF F CATCH 3 * F TOT EFFORT 3 >
CREEL3 THEN CREEL3 ELSE F CATCH 3 * F TOT EFFORT 3) ELSE IF
F ONOFF 3 = 0 THEN F CATCH 3 * F TOT EFFORT 3 ELSE 0
F GROWTH 3 = GROWADULT * F 6090
F NATMORT3 = F 6090 * F NATMORTRATE 3
F 90120(t) = F 90120(t − dt) + (F GROWTH 3 − FISH4 − F GROWTH 4 −
F NATMORT 4) * dt
INIT F 90120 = 50000
INFLOWS:
F GROWTH 3 = GROWADULT * F 6090
OUTFLOWS:
FISH4 = IF F ONOFF 4 = 1 THEN (IF F CATCH 4 * F TOT EFFORT 4 >
CREEL 4 THEN CREEL 4 ELSE F CATCH 4 * F TOT EFFORT 4) ELSE IF
F ONOFF 4 = 0 THEN F CATCH 4 * F TOT EFFORT 4 ELSE 0
F GROWTH 4 = F 90120 * GROWADULT
F NATMORT 4 = F NATMORTRATE 4 * F 90120
MALE120150(t) = MALE120150(t − dt) + (GROWTH 4 − FISHING5 −
GROWTH 5 − NATMORT5) * dt
INIT MALE120150 = 30000
INFLOWS:
GROWTH 4 = MALE90120 * GROWADULT
OUTFLOWS:
FISHING5 = IF ONOFF5 = 1 THEN (IF
CATCHABILITY 5 * TOTAL EFFORT 5 > CREEL5 THEN CREEL5 ELSE
CATCHABILITY 5 * TOTAL EFFORT 5) ELSE IF ONOFF5 = 0 THEN
CATCHABILITY 5 * TOTAL EFFORT 5 ELSE 0
GROWTH 5 = MALE120150 * GROWADULT
NATMORT5 = MALE120150 * NAT MORT RATE 5
MALE150180(t) = MALE150180(t − dt) + (GROWTH 5 − FISHING6 −
GROWTH 6 − NAT MORT6) * dt
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INIT MALE150180 = 10000
INFLOWS:
GROWTH 5 = MALE120150 * GROWADULT
OUTFLOWS:
FISHING6 = IF ONOFF6 = 1 THEN (IF
CATCHABILITY 6 * TOTAL EFFORT 6 > CREEL6 THEN CREEL6 ELSE
CATCHABILITY 6 * TOTAL EFFORT 6) ELSE IF ONOFF6 = 0 THEN
CATCHABILITY 6 * TOTAL EFFORT 6 ELSE 0
GROWTH 6 = MALE150180 * GROWADULT
NAT MORT6 = MALE150180 * NAT MORT RATE 6
MALE180210(t) = MALE180210(t − dt) + (GROWTH 6 − FISHING7 −
NATMORT7) * dt
INIT MALE180210 = 1000

INFLOWS:
GROWTH 6 = MALE150180 * GROWADULT
OUTFLOWS:
FISHING7 = IF ONOFF7 = 1 THEN (IF
CATCHABILITY 7 * TOTAL EFFORT 7 > CREEL7 THEN CREEL7 ELSE
CATCHABILITY 7 * TOTAL EFFORT 7) ELSE IF ONOFF7 = 0 THEN
CATCHABILITY 7 * TOTAL EFFORT 7 ELSE 0
NATMORT7 = MALE180210 * NAT MORT RATE 7
MALE3060(t) = MALE3060(t − dt) + (GROWTH1 − NAT MORT 2 −
GROWTH 2) * dt
INIT MALE3060 = 10000

INFLOWS:
GROWTH1 = GROW1 * MALE 030
OUTFLOWS:
NAT MORT 2 = MALE3060 * NAT MORT RATE 2
GROWTH 2 = MALE3060 * GROW2
MALE6090(t) = MALE6090(t − dt) + (GROWTH 2 − NAT MORT 3 −
GROWTH 3 − FISHING 3) * dt
INIT MALE6090 = 30000

INFLOWS:
GROWTH 2 = MALE3060 * GROW2
OUTFLOWS:
NAT MORT 3 = NAT MORT RATE 3 * MALE6090
GROWTH 3 = MALE6090 * GROWADULT
FISHING 3 = IF ONOFF3 = 1 THEN (IF
CATCHABILITY 3 * TOTAL EFFORT 3 > CREEL 3 THEN CREEL 3 ELSE
CATCHABILITY 3 * TOTAL EFFORT 3) ELSE IF ONOFF3 = 0 THEN
CATCHABILITY 3 * TOTAL EFFORT 3 ELSE 0
MALE90120(t) = MALE90120(t − dt) + (GROWTH 3 − FISHING 4 −
GROWTH 4 − NATMORT4) * dt
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INIT MALE90120 = 50000

INFLOWS:
GROWTH 3 = MALE6090 * GROWADULT
OUTFLOWS:
FISHING 4 = IF ONOFF4 = 1 THEN (IF
CATCHABILITY 4 * TOTAL EFFORT 4 > CREEL4 THEN CREEL4 ELSE
CATCHABILITY 4 * TOTAL EFFORT 4) ELSE IF ONOFF4 = 0 THEN
CATCHABILITY 4 * TOTAL EFFORT 4 ELSE 0
GROWTH 4 = MALE90120 * GROWADULT
NATMORT4 = MALE90120 * NAT MORT RATE4
MALE 030(t) = MALE 030(t − dt) + (PARENTAL MALE −
NAT MORT 1 − GROWTH1) * dt
INIT MALE 030 = 1000000

INFLOWS:
PARENTAL MALE = MALE FRY − SNEAKER
OUTFLOWS:
NAT MORT 1 = NAT MORT RATE * MALE 030
GROWTH1 = GROW1 * MALE 030
MALE FRY(t) = MALE FRY(t − dt) + (MALE − PARENTAL MALE −
SNEAKER) * dt
INIT MALE FRY = 1000000

INFLOWS:
MALE = FRY * PROPORTIONMALE
OUTFLOWS:
PARENTAL MALE = MALE FRY − SNEAKER
SNEAKER = PROP SN * MALE FRY
SNEAKER 030(t) = SNEAKER 030(t − dt) + (SNEAKER −
SN MORT 1 − SN GROWTH 1) * dt
INIT SNEAKER 030 = 9000

INFLOWS:
SNEAKER = PROP SN * MALE FRY
OUTFLOWS:
SN MORT 1 = SNEAKER 030 * SM MORT 1 RATE
SN GROWTH 1 = SN1GROW * SNEAKER 030
SN 3060(t) = SN 3060(t − dt) + (SN GROWTH 1 − SN GROWTH 2 −
SN MORT 2) * dt
INIT SN 3060 = 1500

INFLOWS:
SN GROWTH 1 = SN1GROW * SNEAKER 030
OUTFLOWS:
SN GROWTH 2 = SN2GROW * SN 3060
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SN MORT 2 = SN 3060 * SM MORT 2 RATE
SN 6090(t) = SN 6090(t − dt) + (SN GROWTH 2 − SN MORT 3) * dt
INIT SN 6090 = 500

INFLOWS:
SN GROWTH 2 = SN2GROW * SN 3060
OUTFLOWS:
SN MORT 3 = SN 6090 * SM MORT 3 RATE
ADULT DENSITY = ADULT FEM DENS + ADULT MALE DENS
ADULT FEM DENS = F 120150 + F 150180 + F 180210 + F 6090 +
F 90120
ADULT MALE DENS = MALE120150 + MALE150180 + MALE180210 +
MALE6090 + MALE90120
ANGLERS = 75
CREEL3 = 100
CREEL4 = 100
CREEL5 = 100
CREEL6 = 100
CREEL7 = 100
CREEL 3 = 100
CREEL 4 = 100
CREEL 5 = 100
CREEL 6 = 100
DISEASE = IF ADULT DENSITY > 750000 * RANDOM(.8,1.2) THEN
RANDOM(1,3) ELSE 1
EGG 1 = F 90120 * 50000
EGG 2 = 50000 * F 120150
EGG 3 = F 150180 * 100000
EGG 4 = F 180210 * 100000
FRY MORTALITY RATE = .995 * DISEASE
F CREEL 7 = 100
F NATMORTRATE 3 = .0005 * DISEASE
F NATMORTRATE 4 = .0005 * DISEASE
F NATMORTRATE 5 = .0005 * DISEASE
F NATMORTRATE 6 = .0005 * DISEASE
F NATMORT RATE 2 = .65 * DISEASE
F NATMORT RATE 7 = .9 * DISEASE
F NATURAL MORT RATE 1 = .98 * DISEASE
F ONOFF 3 = 1
F ONOFF 4 = 1
F ONOFF 5 = 1
F ONOFF 6 = 1
F ONOFF 7 = 1
F TOT EFFORT 3 = ANGLERS * ROD HOURS
F TOT EFFORT 4 = ANGLERS * ROD HOURS
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F TOT EFFORT 5 = ANGLERS * ROD HOURS
F TOT EFFORT 6 = ANGLERS * ROD HOURS
F TOT EFFORT 7 = ANGLERS * ROD HOURS
JUV DENSITY = FEMALE 030 + F 3060 + MALE3060 + MALE 030
NAT MORT RATE = .98
NAT MORT RATE4 = .0005 * DISEASE
NAT MORT RATE 2 = .65 * DISEASE
NAT MORT RATE 3 = .0005 * DISEASE
NAT MORT RATE 5 = .0005 * DISEASE
NAT MORT RATE 6 = .0005 * DISEASE
NAT MORT RATE 7 = .9 * DISEASE
ONOFF3 = 1
ONOFF4 = 1
ONOFF5 = 1
ONOFF6 = 1
ONOFF7 = 1
OVERALL EGG PRODUCTION = EGG 4 + EGG 3 + EGG 2 + EGG 1
PROPORTIONMALE = 0.5
ROD HOURS = 75
SM MORT 1 RATE = 0.85 * DISEASE
SM MORT 2 RATE = 0.10 * DISEASE
SM MORT 3 RATE = 0.1 * DISEASE
TOTAL EFFORT 3 = ANGLERS * ROD HOURS
TOTAL EFFORT 4 = ANGLERS * ROD HOURS
TOTAL EFFORT 5 = ANGLERS * ROD HOURS
TOTAL EFFORT 6 = ANGLERS * ROD HOURS
TOTAL EFFORT 7 = ANGLERS * ROD HOURS
CATCHABILITY 3 = GRAPH(MALE6090)
(0.00, 0.004), (10000, 0.042), (20000, 0.062), (30000, 0.082), (40000, 0.128),
(50000, 0.158), (60000, 0.202), (70000, 0.258), (80000, 0.298), (90000, 0.342),
(100000, 0.386)
CATCHABILITY 4 = GRAPH(MALE90120)
(0.00, 0.048), (10000, 0.058), (20000, 0.078), (30000, 0.114), (40000, 0.15),
(50000, 0.194), (60000, 0.234), (70000, 0.274), (80000, 0.314), (90000, 0.346),
(100000, 0.394)
CATCHABILITY 5 = GRAPH(MALE120150)
(0.00, 0.086), (10000, 0.106), (20000, 0.134), (30000, 0.146), (40000, 0.174),
(50000, 0.226), (60000, 0.262), (70000, 0.29), (80000, 0.318), (90000, 0.34),
(100000, 0.4)
CATCHABILITY 6 = GRAPH(MALE150180)
(0.00, 0.162), (10000, 0.178), (20000, 0.206), (30000, 0.23), (40000, 0.262),
(50000, 0.29), (60000, 0.326), (70000, 0.342), (80000, 0.364), (90000, 0.376),
(100000, 0.4)
CATCHABILITY 7 = GRAPH(MALE180210)
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(0.00, 0.356), (10000, 0.383), (20000, 0.477), (30000, 0.549), (40000, 0.585),
(50000, 0.594), (60000, 0.626), (70000, 0.675), (80000, 0.761), (90000, 0.824),
(100000, 0.9)
F CATCH 3 = GRAPH(F 6090)
(0.00, 0.01), (10000, 0.036), (20000, 0.076), (30000, 0.108), (40000, 0.144),
(50000, 0.176), (60000, 0.208), (70000, 0.244), (80000, 0.27), (90000, 0.326),
(100000, 0.398)
F CATCH 4 = GRAPH(F 90120)
(0.00, 0.03), (10000, 0.054), (20000, 0.082), (30000, 0.108), (40000, 0.144),
(50000, 0.18), (60000, 0.224), (70000, 0.262), (80000, 0.322), (90000, 0.362),
(100000, 0.4)
F CATCH 5 = GRAPH(F 120150)
(0.00, 0.09), (10000, 0.128), (20000, 0.164), (30000, 0.18), (40000, 0.2), (50000,
0.212), (60000, 0.236), (70000, 0.272), (80000, 0.3), (90000, 0.332), (100000,
0.398)
F CATCH 6 = GRAPH(F 150180)
(0.00, 0.174), (10000, 0.196), (20000, 0.22), (30000, 0.248), (40000, 0.27),
(50000, 0.28), (60000, 0.302), (70000, 0.322), (80000, 0.336), (90000, 0.366),
(100000, 0.396)
F CATCH 7 = GRAPH(F 180210)
(0.00, 0.374), (10000, 0.414), (20000, 0.509), (30000, 0.594), (40000, 0.63),
(50000, 0.662), (60000, 0.684), (70000, 0.725), (80000, 0.783), (90000, 0.815),
(100000, 0.9)
GROW1 = GRAPH(JUV DENSITY)
(0.00, 1.00), (400000, 0.91), (800000, 0.835), (1.2e + 06, 0.65), (1.6e + 06,
0.57), (2e + 06, 0.555), (2.4e + 06, 0.515), (2.8e + 06, 0.49), (3.2e + 06, 0.45),
(3.6e + 06, 0.4), (4e + 06, 0.205)
GROW2 = GRAPH(ADULT DENSITY)
(0.00, 0.98), (10000, 0.87), (20000, 0.77), (30000, 0.69), (40000, 0.67), (50000,
0.665), (60000, 0.655), (70000, 0.65), (80000, 0.59), (90000, 0.53), (100000,
0.475)
GROWADULT = GRAPH(ADULT DENSITY)
(0.00, 1.00), (200000, 0.945), (400000, 0.915), (600000, 0.885), (800000, 0.865),
(1e + 06, 0.845), (1.2e + 06, 0.82), (1.4e + 06, 0.72), (1.6e + 06, 0.67),
(1.8e + 06, 0.625), (2e + 06, 0.59)
PROP SN =
GRAPH(MALE120150 + MALE150180 + MALE180210 + MALE90120)
(0.00, 0.0187), (50000, 0.0248), (100000, 0.0315), (150000, 0.036), (200000,
0.0398), (250000, 0.045), (300000, 0.051), (350000, 0.0593), (400000, 0.0727),
(450000, 0.0818), (500000, 0.0968)
SN1GROW = GRAPH(JUV DENSITY)
(0.00, 0.445), (500000, 0.38), (1e + 06, 0.4), (1.5e + 06, 0.37), (2e + 06, 0.345),
(2.5e + 06, 0.315), (3e + 06, 0.325), (3.5e + 06, 0.22), (4e + 06, 0.21),
(4.5e + 06, 0.16), (5e + 06, 0.125)
SN2GROW = GRAPH(ADULT DENSITY)
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(0.00, 0.4), (400000, 0.4), (800000, 0.375), (1.2e + 06, 0.345), (1.6e + 06, 0.33),
(2e + 06, 0.315), (2.4e + 06, 0.285), (2.8e + 06, 0.26), (3.2e + 06, 0.235),
(3.6e + 06, 0.21), (4e + 06, 0.18)

11.3 Wolly Adelgid

11.3.1 Infestation of Fraser Fir

Fraser fir populations have been decimated in the Mt. Mitchell area of Yancey
County, North Carolina by the Balsam woolly adelgid, Adelges piceae. Fraser fir is
a high altitude fir native to North America. A. piceae was introduced from Europe.
Since its first detection in 1959, it has been responsible for the loss of over 2 million
trees. Most impacted sites have been unable to recover fully. A. piceae is an external
feeder on bark and new growth spirals. This feeding causes abnormal growth, even-
tually killing trees and adversely impacting the timber industry. A mature Fraser fir
is estimated to support 50,000 A. piceae. Once this critical level is achieved, death
of the tree is inevitable within two years. Death of a tree results in the loss of the
pests on that tree from the entire park population.

In an attempt to prolong the life of the Fraser fir populations, 20 mature Fraser
fir trees were moved from their natural habitat on Mt. Mitchell to a nearby city
park on Grandfather Mountain, North Carolina. The city park will act as a botanic
zoo producing a viable seed bank and maintaining genetic diversity in the Fraser
fir. Unknowingly, a population of Adelges piceae was moved to the city park along
with the Fraser fir. Unchecked, these insects may decimate the small population of
Fraser fir moved to the park as part of a conservation measure.

Since the pest insect and host plant are now located in a city setting as opposed
to a forest habitat, the options for control are much greater. However, the public
perception of pesticide use in the city may make its use questionable politically.
Considering the cost already invested to the Fraser fir conservation program, it is of
great importance to preserve this city park population of Fraser fir. Using the model
of Adelges piceae population dynamics and other associated model parameters, how
does an uncontrolled population of Adelges piceae affect the Fraser fir population?
When should pesticides be applied to ensure the greatest control over the pest pop-
ulation? How do varying levels of pesticide control affect the Adelges piceae and
Fraser fir populations?

11.3.2 Adelgid and Fir Dynamics

The basis of this model is the population dynamics of the pest, A. piceae, modeled
mathematically by2. The backbone of these dynamics is shown in Figures 11.17

2 Dale, V.H., R. H. Gardner, and D.L. DeAngelis. 1991. Elevation-mediated effects of balsam
woolly adelgid on southern Appalachian spruce-fir forests. Can. J. For. Res. 21: 1639–1648.
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Fig. 11.17

through 11.19. Temperature is a large component to determining the development
of the pest, so a temperature model (Figure 11.17) was built based on weather data
from Grandfather Mountain, North Carolina3.

Developmental rates of A. piceae have been previously modeled in the litera-
ture and are used here between life stages. Developmental rates were previously
calculated in days and driven by temperature. Because of the habitat temperature
fluctuations (altitude effect) this model includes daily temperature variation and
developmental rates in hours. The temperature model thus gives hourly tempera-
ture on a 24-hour daily cycle. Changes in seasons are shown in Table 11.1.

Adelges piceae has five life stages—egg, adult, and three larval instars—and a
stock are modeled for each stage (Figure 11.18). The adult reaches reproductive age
in three weeks, so a conveyor is constructed for both pre- and reproductive adults.
Development is modeled with flows from each stock, and egg laying is modeled with
an inflow to the egg stock. Adelges piceae can overwinter only as first instar larvae,

3 Washington Post. 1997. Weather Post, Grandfather Mountain, NC. http://www.weatherpost. com/
wp-srv/weath...orical/data/grandfather mountain nc.htm
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Table 11.1

Start date End date

Winter 355 80
Spring 81 171
Summer 172 263
Fall 264 354

Reproductive Adults

Eggs Larva 1

Larva 2

Larva 3 Adult

Eggs to 1st

First to Second

Second to Third Third to Adult

Hourly Temp

Maturation

Adult Death

Egg Laying

Reproductive Adults

Larva 1

Day Accumulation

Hourly Temp

Rate 2\3

Rate 1

Egg Death

Larva 1 Death

Larva 2 Death

Larva 3 Death

Day Accumulation

Hourly Temp

Pesticide

Rate 2\3

Hourly Temp

Fig. 11.18

and the model is currently evaluated based on an initial overwintering population
of 10,000 first instar larvae. Death rates for each life stage have been constructed to
simulate field population dynamics.

To model the effects of Adelges piceae on the Fraser fir population, we con-
structed a counter (Figure 11.19). The Sucker Adder counts the Total Suckers at
each DT, and sums the change. Since each Fraser fir tree can host 50,000 A. piceae
before it reaches death, the Sucker Adder was set to empty at this value. Thus, for
every value of 50,000A. piceae, a value of one was sent to the Sum of Damage stock,
and in turn, one tree was infected.

The uninfected Fraser fir population began at 19 (1 infected tree arrived at our
site), and this population quickly decreased as the uncontrolled A. piceae population
grew and spread to new hosts (Figure 11.20).
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Fig. 11.19

As Figure 11.21 shows, the pest population grew exponentially. Without any pes-
ticide control, A. piceae infected every tree within approximately 1.5 years. Since
complete death of the tree takes between 1 and 2 years (accounted for by using the
infected population conveyor), all of the trees would be decimated in less than 4
years. Given a longer running time, all 20 Fraser fir trees would be accounted for in
the Fir Death stock.

Since biological control of the Adelges piceae has proven ineffective, chemical
control is necessary to ensure a healthy Fraser fir population4,5. To model the effects
of a pesticide control program, we altered the Adelges piceae death rate. By creat-
ing a pesticide “kill rate,” we could easily manipulate the pest population. However,

4 Mitchell, R.G. 1962. Balsam woolly aphid predators native to Oregon and Washington. Agricul-
tural Experiment Station, Oregon State University, Technical Bulletin 62, 63pp.
5 Hastings, F.L., F.P. Hain, A. Mangini, and W.T. Huxster. 1986. Control of the balsam woolly
adelgid (Homoptera: Adelgidae) in Fraser fir Christmas tree plantations. J. Econ. Entomol. 79:
1676–1680.
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before we could begin observing the affects of the pesticide, we had to determine
the optimal application time. This was found to be on day 80, the last day of win-
ter. In addition, the only remaining pests surviving the harsh conditions are those in
the Larva 1 population. Thus, day 80 is the best time to apply pesticides because it
is when the initial pest populations are the lowest. We experimented with different
kill rates (which represent varying pesticide intensities) and found the minimum in-
tensity of control necessary to maintain our original Fraser fir population. This is
essential in a park setting, as this level will minimize environmental and other neg-
ative externalities. We experimented with the following pesticide kill rates: 98%,
11%, 10%, and 5% (Figures 11.22 through 11.25) and found that the optimal kill
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rate for the desired results fell between 10% and 11%. At 11%, the Fraser fir popula-
tion suffered no casualties (other than the originally infected tree). However, with a
10% kill rate, the Fraser fir population showed signs of steady decline and eventual
demise. This indicated that a 10% kill rate was not large enough to control our pest
population.

An 11% reduction appears to keep the Adelges piceae numbers relatively sta-
ble, as they are no longer infecting new hosts. Also, there is virtually no difference
between a 98% kill rate and a much lower one, such as 11%. In contrast, a 5%
kill rate would require an inadequate amount of pesticide, negatively affecting both
populations without significant gain on the pest control front.
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11.3.3 Questions and Tasks

1. What are the environmental concerns of pesticide use (groundwater contamina-
tion, deleterious effects on other populations, and so forth) and how could those
be included in the model?

2. What are the monetary costs of the modeled pesticide program? Are other meth-
ods of control more feasible (hand removal, temperature treatment, and other
strategies)?
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WOOLY ADELGID

Adult(t) = Adult(t − dt) + (Third to Adult − Maturation) * dt
INIT Adult = 0
TRANSIT TIME = 504
INFLOW LIMIT = ∞
CAPACITY = ∞

INFLOWS:
Third to Adult = Larva 3 * (1/(72 * (10.0 + 50 * (EXP(−0.25 *
(Hourly Temp − 4))))))
OUTFLOWS:
Maturation = CONVEYOR OUTFLOW
Day Accumulation(t) = Day Accumulation(t − dt) + (Convert to Days −
Empty Days) * dt
INIT Day Accumulation = 0
INFLOWS:
Convert to Days = IF Day Adder = 23 THEN 1 ELSE 0
OUTFLOWS:
Empty Days = IF Day Accumulation = 364 THEN Day Accumulation ELSE IF
Day Accumulation = 2 * 364 THEN Day Accumulation ELSE IF
Day Accumulation = 3 * 364 THEN Day Accumulation ELSE IF
Day Accumulation = 4 * 364 THEN Day Accumulation ELSE IF
Day Accumulation = 5 * 364 THEN Day Accumulation ELSE 0
Day Adder(t) = Day Adder(t − dt) + (Hours In − Convert to Days − Empty) *
dt
INIT Day Adder = 0
INFLOWS:
Hours In = 1
OUTFLOWS:
Convert to Days = IF Day Adder = 23 THEN 1 ELSE 0
Empty = IF Day Adder = 23 THEN Day Adder ELSE 0
Eggs(t) = Eggs(t − dt) + (Egg Laying − Eggs to 1st − Egg Death) * dt
INIT Eggs = 0
INFLOWS:
Egg Laying = IF Day Accumulation>=81 AND Day Accumulation< = 171
THEN Reproductive Adults * 10 ELSE IF Day Accumulation> = 172 AND
Day Accumulation<=263 THEN Reproductive Adults * 5 ELSE 0
OUTFLOWS:
Eggs to 1st = Eggs * (1/(24 * (5.0 + 100 * (EXP(−0.10 *
(Hourly Temp − 4))))))
Egg Death = Eggs * 0.016
Fir Death(t) = Fir Death(t − dt) + (Death Time) * dt
INIT Fir Death = 0
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INFLOWS:
Death Time = CONVEYOR OUTFLOW
Infected Population(t) = Infected Population(t − dt) + (Infection −
Death Time) * dt
INIT Infected Population = 1
TRANSIT TIME = 10000
INFLOW LIMIT = ∞
CAPACITY = ∞

INFLOWS:
Infection = IF (INT(Change in Damage > 0)) AND (Uninfected Fraser Fir > 0)
THEN (1) ELSE 0
OUTFLOWS:
Death Time = CONVEYOR OUTFLOW
Larva 1(t) = Larva 1(t − dt) + (Eggs to 1st − First to Second −
Larva 1 Death) * dt
INIT Larva 1 = 10000
INFLOWS:
Eggs to 1st = Eggs * (1/(24 * (5.0 + 100 * (EXP(−0.10 * (Hourly Temp −
4))))))
OUTFLOWS:
First to Second = IF Day Accumulation>=226 AND Day Accumulation<=80
THEN 0 ELSE Larva 1 * (1/(72 * (10.0 + 50 * (EXP(−0.25 * (Hourly Temp
− 4))))))
Larva 1 Death = IF (Day Accumulation = 80) THEN Pesticide ELSE (Larva 1
* Rate 1)
Larva 2(t) = Larva 2(t − dt) + (First to Second − Second to Third −
Larva 2 Death) * dt
INIT Larva 2 = 0
INFLOWS:
First to Second = IF Day Accumulation>=226 AND Day Accumulation<=80
THEN 0 ELSE Larva 1 * (1/(72 * (10.0 + 50 * (EXP(−0.25 * (Hourly Temp
− 4))))))
OUTFLOWS:
Second to Third = Larva 2 * (1/(72 * (10.0 + 50 * (EXP(−0.25 *
(Hourly Temp − 4))))))
Larva 2 Death = Larva 2 * Rate 2\3
Larva 3(t) = Larva 3(t − dt) + (Second to Third − Third to Adult −
Larva 3 Death) * dt
INIT Larva 3 = 0
INFLOWS:
Second to Third = Larva 2 * (1/(72 * (10.0 + 50 * (EXP(−0.25 *
(Hourly Temp − 4))))))
OUTFLOWS:



200 11 Biological Control of Pestilence

Third to Adult = Larva 3 * (1/(72 * (10.0 + 50 * (EXP(−0.25 *
(Hourly Temp − 4))))))
Larva 3 Death = Larva 3 * Rate 2\3
Reproductive Adults(t) = Reproductive Adults(t − dt) + (Maturation −
Adult Death) * dt
INIT Reproductive Adults = 0

TRANSIT TIME = 240
INFLOW LIMIT = ∞
CAPACITY = ∞

INFLOWS:
Maturation = CONVEYOR OUTFLOW
OUTFLOWS:
Adult Death = CONVEYOR OUTFLOW
Sucker Adder(t) = Sucker Adder(t − dt) + (Suckers In − Adder Out −
Damage to Trees) * dt
INIT Sucker Adder = 10000

INFLOWS:
Suckers In = (Total Suckers − DELAY(Total Suckers, DT))
OUTFLOWS:
Adder Out = IF (Sucker Adder >= 50000) THEN (50000 *
(INT(Sucker Adder / 50000))) ELSE 0
Damage to Trees = IF (Sucker Adder >= 50000) THEN (INT(Sucker Adder /
50000)) ELSE 0
Sum of Damage(t) = Sum of Damage(t − dt) + (Damage to Trees) * dt
INIT Sum of Damage = 0

INFLOWS:
Damage to Trees = IF (Sucker Adder >= 50000) THEN (INT(Sucker Adder /
50000)) ELSE 0
Uninfected Fraser Fir(t) = Uninfected Fraser Fir(t − dt) + (−Infection) * dt
INIT Uninfected Fraser Fir = 19

OUTFLOWS:
Infection = IF (INT(Change in Damage > 0)) AND (Uninfected Fraser Fir > 0)
THEN (1) ELSE 0
Change in Damage = (Sum of Damage − DELAY(Sum of Damage, DT))
Hourly Temp =
(Monthly Temp Amplitude * SIN(2 * PI * TIME/24)) +
Monthly Temp Baseline
Pesticide = IF (Day Accumulation = 80) THEN (Larva 1 * .11) ELSE 0
Rate 1 = IF Hourly Temp<=4 THEN 0.0003 ELSE 0.0001
Rate 2\3 = IF Hourly Temp<=4 THEN 1/72 ELSE 0.0001
Total Suckers = Adult + Larva 1 + Larva 2 + Larva 3 + Reproductive Adults
Monthly Temp Amplitude = GRAPH(Day Accumulation)
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(0.00, 4.50), (1.00, 4.50), (2.01, 4.50), (3.01, 4.50), (4.01, 4.50), (5.01, 4.50),
(6.02, 4.50), (7.02, 4.50), (8.02, 4.50), (9.02, 4.50), (10.0, 4.50), (11.0, 4.50),
(12.0, 4.50), (13.0, 4.50), (14.0, 4.50), (15.0, 4.50), (16.0, 4.50), (17.0, 4.50),
(18.0, 4.50), (19.1, 4.50), (20.1, 4.50), (21.1, 4.50), (22.1, 4.50), (23.1, 4.50),
(24.1, 4.50), (25.1, 4.50), (26.1, 4.50), (27.1, 4.50), (28.1, 4.50), (29.1, 4.50),
(30.1, 4.50), (31.1, 4.50), (32.1, 4.50), (33.1, 4.50), (34.1, 4.50), (35.1, 4.50),
(36.1, 4.50), (37.1, 4.50), (38.1, 4.50), (39.1, 4.50), (40.1, 4.50), (41.1, 4.50),
(42.1, 4.50), (43.1, 4.50), (44.1, 4.50), (45.1, 4.50), (46.1, 4.50), (47.1, 4.50),
(48.1, 4.50), (49.1, 4.50), (50.1, 4.50), (51.1, 4.50), (52.1, 4.50), (53.1, 4.50),
(54.1, 4.50), (55.2, 4.50), (56.2, 4.50), (57.2, 4.50), (58.2, 4.50), (59.2, 4.50),
(60.2, 4.50), (61.2, 4.50), (62.2, 4.50), (63.2, 4.50), (64.2, 4.50), (65.2, 4.50),
(66.2, 4.50), (67.2, 4.50), (68.2, 4.50), (69.2, 4.50), (70.2, 4.50), (71.2, 4.50),
(72.2, 4.50), (73.2, 4.50), (74.2, 4.50), (75.2, 4.50), (76.2, 4.50), (77.2, 4.50),
(78.2, 4.50), (79.2, 4.50), (80.2, 4.50), (81.2, 4.50), (82.2, 4.50), (83.2, 4.50),
(84.2, 4.50), (85.2, 4.50), (86.2, 4.50), (87.2, 4.50), (88.2, 4.50), (89.2, 4.50),
(90.2, 4.50), (91.3, 5.00), (92.3, 5.00), (93.3, 5.00), (94.3, 5.00), (95.3, 5.00),
(96.3, 5.00), (97.3, 5.00), (98.3, 5.00), (99.3, 5.00), (100, 5.00), (101, 5.00), (102,
5.00), (103, 5.00), (104, 5.00), (105, 5.00), (106, 5.00), (107, 5.00), (108, 5.00),
(109, 5.00), (110, 5.00), (111, 5.00), (112, 5.00), (113, 5.00), (114, 5.00), (115,
5.00), (116, 5.00), (117, 5.00), (118, 5.00), (119, 5.00), (120, 5.00), (121, 4.50),
(122, 4.50), (123, 4.50), (124, 4.50), (125, 4.50), (126, 4.50), (127, 4.50), (128,
4.50), (129, 4.50), (130, 4.50), (131, 4.50), (132, 4.50), (133, 4.50), (134, 4.50),
(135, 4.50), (136, 4.50), (137, 4.50), (138, 4.50), (139, 4.50), (140, 4.50), (141,
4.50), (142, 4.50), (143, 4.50), (144, 4.50), (145, 4.50), (146, 4.50), (147, 4.50),
(148, 4.50), (149, 4.50), (150, 4.50), (151, 4.50), (152, 4.50), (153, 4.00), (154,
4.00), (155, 4.00), (156, 4.00), (157, 4.00), (158, 4.00), (159, 4.00), (160, 4.00),
(161, 4.00), (162, 4.00), (163, 4.00), (164, 4.00), (165, 4.00), (166, 4.00), (167,
4.00), (168, 4.00), (169, 4.00), (170, 4.00), (171, 4.00), (172, 3.50), (173, 3.50),
(174, 3.50), (175, 3.50), (176, 3.50), (177, 3.50), (178, 3.50), (179, 3.50), (180,
3.50), (181, 3.50), (183, 3.50), (184, 3.50), (185, 3.50), (186, 3.50), (187, 3.50),
(188, 3.50), (189, 3.50), (190, 3.50), (191, 3.50), (192, 3.50), (193, 3.50), (194,
3.50), (195, 3.50), (196, 3.50), (197, 3.50), (198, 3.50), (199, 3.50), (200, 3.50),
(201, 3.50), (202, 3.50), (203, 3.50), (204, 3.50), (205, 3.50), (206, 3.50), (207,
3.50), (208, 3.50), (209, 3.50), (210, 3.50), (211, 3.50), (212, 3.50), (213, 3.50),
(214, 3.50), (215, 3.50), (216, 3.50), (217, 3.50), (218, 3.50), (219, 3.50), (220,
3.50), (221, 3.50), (222, 3.50), (223, 3.50), (224, 3.50), (225, 3.50), (226, 3.50),
(227, 3.50), (228, 3.50), (229, 3.50), (230, 3.50), (231, 3.50), (232, 3.50), (233,
3.50), (234, 3.50), (235, 3.50), (236, 3.50), (237, 3.50), (238, 3.50), (239, 3.50),
(240, 3.50), (241, 3.50), (242, 3.50), (243, 3.50), (244, 3.50), (245, 3.50), (246,
3.50), (247, 3.50), (248, 3.50), (249, 3.50), (250, 3.50), (251, 3.50), (252, 3.50),
(253, 3.50), (254, 3.50), (255, 3.50), (256, 3.50), (257, 3.50), (258, 3.50), (259,
3.50), (260, 3.50), (261, 3.50), (262, 3.50), (263, 3.50), (264, 3.50), (265, 3.50),
(266, 3.50), (267, 3.50), (268, 4.00), (269, 4.00), (270, 4.00), (271, 4.00), (272,
4.00), (273, 4.00), (274, 4.00), (275, 4.00), (276, 4.00), (277, 4.00), (278, 4.00),
(279, 4.00), (280, 4.00), (281, 4.00), (282, 4.00), (283, 4.00), (284, 4.00), (285,
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4.00), (286, 4.00), (287, 4.00), (288, 4.00), (289, 4.00), (290, 4.00), (291, 4.00),
(292, 4.00), (293, 4.00), (294, 4.00), (295, 4.00), (296, 4.00), (297, 4.00), (298,
4.00), (299, 4.00), (300, 4.00), (301, 4.00), (302, 4.00), (303, 4.00), (304, 4.00),
(305, 4.00), (306, 4.00), (307, 4.00), (308, 4.00), (309, 4.00), (310, 4.00), (311,
4.00), (312, 4.00), (313, 4.00), (314, 4.00), (315, 4.00), (316, 4.00), (317, 4.00),
(318, 4.00), (319, 4.00), (320, 4.00), (321, 4.00), (322, 4.00), (323, 4.00), (324,
4.00), (325, 4.00), (326, 4.00), (327, 4.00), (328, 4.00), (329, 3.00), (330, 3.00),
(331, 3.00), (332, 3.00), (333, 3.00), (334, 3.00), (335, 3.00), (336, 3.00), (337,
3.00), (338, 3.00), (339, 3.00), (340, 3.00), (341, 3.00), (342, 3.00), (343, 3.00),
(344, 3.00), (345, 3.00), (346, 3.00), (347, 3.00), (348, 3.00), (349, 3.00), (350,
3.00), (351, 3.00), (352, 3.00), (353, 3.00), (354, 3.00), (355, 3.00), (356, 3.00),
(357, 3.00), (358, 3.00), (359, 3.00), (360, 3.00), (361, 3.00), (362, 3.00), (363,
3.00), (364, 3.00)
Monthly Temp Baseline = GRAPH(Day Accumulation)
(0.00, −2.50), (1.00, −2.50), (2.01, −2.50), (3.01, −2.50), (4.01, −2.50), (5.01,
−2.50), (6.02, −2.50), (7.02, −2.50), (8.02, −2.50), (9.02, −2.50), (10.0,
−2.50), (11.0, −2.50), (12.0, −2.50), (13.0, −2.50), (14.0, −2.50), (15.0,
−2.50), (16.0, −2.50), (17.0, −2.50), (18.0, −2.50), (19.1, −2.50), (20.1,
−2.50), (21.1, −2.50), (22.1, −2.50), (23.1, −2.50), (24.1, −2.50), (25.1,
−2.50), (26.1, −2.50), (27.1, −2.50), (28.1, −2.50), (29.1, −2.50), (30.1,
−2.50), (31.1, −2.50), (32.1, −1.50), (33.1, −1.50), (34.1, −1.50), (35.1,
−1.50), (36.1, −1.50), (37.1, −1.50), (38.1, −1.50), (39.1, −1.50), (40.1,
−1.50), (41.1, −1.50), (42.1, −1.50), (43.1, −1.50), (44.1, −1.50), (45.1,
−1.50), (46.1, −1.50), (47.1, −1.50), (48.1, −1.50), (49.1, −1.50), (50.1,
−1.50), (51.1, −1.50), (52.1, −1.50), (53.1, −1.50), (54.1, −1.50), (55.2,
−1.50), (56.2, −1.50), (57.2, −1.50), (58.2, −1.50), (59.2, −1.50), (60.2, 2.50),
(61.2, 2.50), (62.2, 2.50), (63.2, 2.50), (64.2, 2.50), (65.2, 2.50), (66.2, 2.50),
(67.2, 2.50), (68.2, 2.50), (69.2, 2.50), (70.2, 2.50), (71.2, 2.50), (72.2, 2.50),
(73.2, 2.50), (74.2, 2.50), (75.2, 2.50), (76.2, 2.50), (77.2, 2.50), (78.2, 2.50),
(79.2, 2.50), (80.2, 2.50), (81.2, 2.50), (82.2, 2.50), (83.2, 2.50), (84.2, 2.50),
(85.2, 2.50), (86.2, 2.50), (87.2, 2.50), (88.2, 2.50), (89.2, 2.50), (90.2, 2.50),
(91.3, 7.00), (92.3, 7.00), (93.3, 7.00), (94.3, 7.00), (95.3, 7.00), (96.3, 7.00),
(97.3, 7.00), (98.3, 7.00), (99.3, 7.00), (100, 7.00), (101, 7.00), (102, 7.00), (103,
7.00), (104, 7.00), (105, 7.00), (106, 7.00), (107, 7.00), (108, 7.00), (109, 7.00),
(110, 7.00), (111, 7.00), (112, 7.00), (113, 7.00), (114, 7.00), (115, 7.00), (116,
7.00), (117, 7.00), (118, 7.00), (119, 7.00), (120, 7.00), (121, 11.5), (122, 11.5),
(123, 11.5), (124, 11.5), (125, 11.5), (126, 11.5), (127, 11.5), (128, 11.5), (129,
11.5), (130, 11.5), (131, 11.5), (132, 11.5), (133, 11.5), (134, 11.5), (135, 11.5),
(136, 11.5), (137, 11.5), (138, 11.5), (139, 11.5), (140, 11.5), (141, 11.5), (142,
11.5), (143, 11.5), (144, 11.5), (145, 11.5), (146, 11.5), (147, 11.5), (148, 11.5),
(149, 11.5), (150, 11.5), (151, 11.5), (152, 15.0), (153, 15.0), (154, 15.0), (155,
15.0), (156, 15.0), (157, 15.0), (158, 15.0), (159, 15.0), (160, 15.0), (161, 15.0),
(162, 15.0), (163, 15.0), (164, 15.0), (165, 15.0), (166, 15.0), (167, 15.0), (168,
15.0), (169, 15.0), (170, 15.0), (171, 15.0), (172, 15.0), (173, 15.0), (174, 15.0),
(175, 15.0), (176, 15.0), (177, 15.0), (178, 15.0), (179, 15.0), (180, 15.0), (181,



11.3 Wolly Adelgid 203

16.5), (183, 16.5), (184, 16.5), (185, 16.5), (186, 16.5), (187, 16.5), (188, 16.5),
(189, 16.5), (190, 16.5), (191, 16.5), (192, 16.5), (193, 16.5), (194, 16.5), (195,
16.5), (196, 16.5), (197, 16.5), (198, 16.5), (199, 16.5), (200, 16.5), (201, 16.5),
(202, 16.5), (203, 16.5), (204, 16.5), (205, 16.5), (206, 16.5), (207, 16.5), (208,
16.5), (209, 16.5), (210, 16.5), (211, 16.5), (212, 16.5), (213, 16.5), (214, 16.5),
(215, 16.5), (216, 16.5), (217, 16.5), (218, 16.5), (219, 16.5), (220, 16.5), (221,
16.5), (222, 16.5), (223, 16.5), (224, 16.5), (225, 16.5), (226, 16.5), (227, 16.5),
(228, 16.5), (229, 16.5), (230, 16.5), (231, 16.5), (232, 16.5), (233, 16.5), (234,
16.5), (235, 16.5), (236, 16.5), (237, 16.5), (238, 16.5), (239, 16.5), (240, 16.5),
(241, 16.5), (242, 16.5), (243, 13.5), (244, 13.5), (245, 13.5), (246, 13.5), (247,
13.5), (248, 13.5), (249, 13.5), (250, 13.5), (251, 13.5), (252, 13.5), (253, 13.5),
(254, 13.5), (255, 13.5), (256, 13.5), (257, 13.5), (258, 13.5), (259, 13.5), (260,
13.5), (261, 13.5), (262, 13.5), (263, 13.5), (264, 13.5), (265, 13.5), (266, 13.5),
(267, 13.5), (268, 13.5), (269, 13.5), (270, 13.5), (271, 13.5), (272, 8.00), (273,
8.00), (274, 8.00), (275, 8.00), (276, 8.00), (277, 8.00), (278, 8.00), (279, 8.00),
(280, 8.00), (281, 8.00), (282, 8.00), (283, 8.00), (284, 8.00), (285, 8.00), (286,
8.00), (287, 8.00), (288, 8.00), (289, 8.00), (290, 8.00), (291, 8.00), (292, 8.00),
(293, 8.00), (294, 8.00), (295, 8.00), (296, 8.00), (297, 8.00), (298, 8.00), (299,
8.00), (300, 8.00), (301, 8.00), (302, 8.00), (303, 4.00), (304, 4.00), (305, 4.00),
(306, 4.00), (307, 4.00), (308, 4.00), (309, 4.00), (310, 4.00), (311, 4.00), (312,
4.00), (313, 4.00), (314, 4.00), (315, 4.00), (316, 4.00), (317, 4.00), (318, 4.00),
(319, 4.00), (320, 4.00), (321, 4.00), (322, 4.00), (323, 4.00), (324, 4.00), (325,
4.00), (326, 4.00), (327, 4.00), (328, 4.00), (329, 4.00), (330, 4.00), (331, 4.00),
(332, 4.00), (333, 0.00), (334, 0.00), (335, 0.00), (336, 0.00), (337, 0.00), (338,
0.00), (339, 0.00), (340, 0.00), (341, 0.00), (342, 0.00), (343, 0.00), (344, 0.00),
(345, 0.00), (346, 0.00), (347, 0.00), (348, 0.00), (349, 0.00), (350, 0.00), (351,
0.00), (352, 0.00), (353, 0.00), (354, 0.00), (355, 0.00), (356, 0.00), (357, 0.00),
(358, 0.00), (359, 0.00), (360, 0.00), (361, 0.00), (362, 0.00), (363, 0.00), (364,
0.00)



Chapter 12
Indirect Susceptible-Infected-Resistant Models
of Arboviral Encephalitis Transmission∗

12.1 Modeling West Nile Virus Dynamics Emily Wheeler
and Traci Barkley

West Nile virus (WNV) is an arthropod borne, or arboviral, disease historically en-
demic to Africa. In Africa, the disease circulates between populations of wild birds
and mosquitoes, but only occasionally results in significant disease outbreaks in
wildlife1. After emerging in North America in 1999, however, WNV spread rapidly
through avian communities, causing unexpected mortality in many bird species and
encephalitis epidemics in secondary hosts, such as horses and humans. WNV is
one of a number of related flaviviral encephalitides, including eastern equine en-
cephalitis, Japanese encephalitis, and La Cross encephalitis. These diseases are all
transmitted among hosts by mosquitoes and can result in symptoms ranging from
mild malaise to severe neurological disease and death2.

Dynamic modeling of emerging diseases like WNV benefits understanding of
the diverse interactions of EXTRINSIC drivers, such as weather, seasonal demo-
graphics or habitat types, on INTRINSIC host and vector interactions that deter-
mine the severity, location, and timing of disease amplification and transmission
(Figure 12.1). While complicated by these extrinsic drivers, the intrinsic compo-
nents of an arboviral encephalitis system like WNV can be reasonably described by
extension of a classical epidemiological model, the common Susceptible-Infectious-
Resistant (SIR) model. With a few simple changes, this model can be extended to
accommodate indirect disease transmission among two or more interacting popu-
lations of hosts and vectors. After building this base indirect SIR model, extrinsic
drivers can be added to show how the outbreak might change with this increased
complexity.

∗ This model was developed by Emily Wheeler and Tracy Barkley.
1 Jupp, P. 2001. The ecology of West Nile virus in South Africa and the occurrence of outbreaks in
humans. West Nile Virus: Detection, Surveillance, and Control Annals of the New York Academy
of Science. 951: 143–152.
2 Center for Disease Control and Prevention. West Nile Virus [cited 2007 September 9]. Available
from http://www.cdc.gov/ncidod/dvbid/westnile/index.htm.

B. Hannon and M. Ruth, Dynamic Modeling of Diseases and Pests, 205
Modeling Dynamic Systems,
c© Springer Science+Business Media LLC 2009
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Fig. 12.1

In this chapter we build from a simple, population-dynamic SIR model of a con-
tagious disease to an indirectly transmitted arboviral disease model with explicit
population and seasonal dynamics. We use these models to qualitatively explore
how host and vector natural history and population dynamics might change predic-
tions as to how the disease outbreak will behave over time.

12.2 Susceptible-Infected-Resistant (SIR) Models
in Dynamic Populations

12.2.1 Model Structure and Behavior

3established the value of including host population dynamics in models of bacterial
and viral disease outbreaks. They first incorporated changes in population density
to the classical SIR model, allowing for more ecologically based modeling of dis-
ease outbreaks in changing populations. While long used in a population-static form

3 Anderson, R.M. and R.M. May. Population biology of infectious diseases: Part I. Nature 1979a;
280: 361–367.
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for the study of limited disease outbreaks, expansion of the SIR model to dynami-
cally changing populations allowed for the study of more complex disease dynamics
where addition of new susceptible individuals can change predictions about disease
persistence (Figure 12.2).

Whether population-dynamic or population-static, in an SIR model each stock
holds the number of individuals of a certain disease status—the NUMBER SUS-
CEPTIBLE to infection with the disease, the NUMBER INFECTED and capable
of passing the disease to others, and the NUMBER RECOVERED from the disease
(a state often assumed to be immune to re-infection for some period of time or per-
manently, depending on the disease). Rates of transition between susceptible and
infected status depend on the TRANSMISSION EFFICACY—or what proportion
of contacts between susceptible and infected individuals result in transmission of
the disease—and the rate of contact between infected and susceptible individuals,
which is determined by multiplying the proportions of individuals in the INFECTED
and SUSCEPTIBLE categories. BIRTHING and DYING are built into the model as
a simple density independent growth equation where each compartment has a back-
ground DEATH RATE. In this model, we assume a disease that causes only mor-
bidity (not mortality) so the DZ MORTALITY RATE is set to zero. Should we wish
to model a fatal disease, then the death rate for the infected individuals would be
elevated from the population’s average DEATH RATE to the background DEATH
RATE plus the DZ MORTALITY RATE.

Some disease outbreaks may be temporally or spatially limited such that popula-
tion level changes have little effect on the epidemic. For example, an influenza out-
break at a convalescent center or hospital may reasonably be modeled in terms of a
closed population of potentially exposed individuals who transition through suscep-
tible, infected, and resistant status. The outbreak ends when the relative proportion
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Fig. 12.3

of susceptible individuals is low enough that contacts between infected individuals
and the remaining susceptible individuals are rare enough that transmission declines
to zero. If we run our simple dynamic SIR model with both the BIRTH RATE and
DEATH RATE set to zero, we get the classical population-static form of the model,
which produces a classical epidemiological curve for a limited disease outbreak
(Figure 12.3). Note how the TOTAL POPULATION (light gray) stays constant and
the outbreak ends when the majority of the population is immune to the disease (i.e.
majority of individuals are RECOVERED).

However, many infectious diseases occur over time periods in which the addition
of new susceptible individuals through births might drastically alter the course of the
disease. What happens to the epidemic curve when the population is no longer static,
but growing steadily? (Figure 12.4). With the constant addition of new susceptible
individuals, the disease persists in the population instead of going “extinct,” as in
the previous run of the model. Note how population size (light grey) is increasing
with a slow exponential curve. In the population-static model the disease disappears
around day 50. In the population-dynamic SIR model, however, a disease can cycle
or become a persistent element where the model reaches a stable equilibrium in
which the disease persists at low prevalence, depending on the rate of population
growth.

12.2.2 Questions and Tasks

As we saw in this section, population dynamics can alter the course of the disease,
resulting in persistence in the population.
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1. What other factor(s) might also contribute to persistence of a disease in a pop-
ulation? (Hint: How might you model an evolving pathogen that can rapidly re-
infect and cause disease in previously exposed individuals?)

2. How would you model migration of new susceptible individuals from a neighbor-
ing population and what impact would migration have on the outbreak dynamics?

SIMPLE POPULATION-DYNAMIC SIR MODEL

NUMBER INFECTED(t) = NUMBER INFECTED(t − dt) + (INFECTING −
RECOVERING − I DYING) * dt
INIT NUMBER INFECTED = 3

INFLOWS:
INFECTING = NUMBER SUSCEPTIBLE * INFECTION RATE
OUTFLOWS:
RECOVERING = NUMBER INFECTED * RECOVERY RATE
I DYING = DEATH RATE*NUMBER INFECTED +
DZ MORTALITY RATE*NUMBER INFECTED
NUMBER RECOVERED(t) = NUMBER RECOVERED(t− dt) +
(RECOVERING − LOSING IMMUNITY − R DYING) * dt
INIT NUMBER RECOVERED = 0

INFLOWS:
RECOVERING = NUMBER INFECTED * RECOVERY RATE
OUTFLOWS:
LOSING IMMUNITY = NUMBER RECOVERED*IMMUNITY LOSS RATE
R DYING = NUMBER RECOVERED * DEATH RATE
NUMBER SUSCEPTIBLE(t) = NUMBER SUSCEPTIBLE(t − dt) +
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(LOSING IMMUNITY + BIRTHING − INFECTING − S DYING) * dt
INIT NUMBER SUSCEPTIBLE = 97

INFLOWS:
LOSING IMMUNITY = NUMBER RECOVERED*IMMUNITY LOSS RATE
BIRTHING = BIRTH RATE * TOTAL POPULATION
OUTFLOWS:
INFECTING = NUMBER SUSCEPTIBLE * INFECTION RATE
S DYING = NUMBER SUSCEPTIBLE * DEATH RATE
BIRTH RATE = 0.014
DEATH RATE = 0.011
DZ MORTALITY RATE = 0
IMMUNITY LOSS RATE = 0
INFECTION RATE = PROPORTION INFECTED *
PROPORTION SUSCEPTIBLE * TRANSMISSION EFFICACY
PROPORTION INFECTED = NUMBER INFECTED/TOTAL POPULATION
PROPORTION RECOVERED =
NUMBER RECOVERED/TOTAL POPULATION
PROPORTION SUSCEPTIBLE =
NUMBER SUSCEPTIBLE/TOTAL POPULATION
RECOVERY RATE = 1/8
TOTAL POPULATION = NUMBER SUSCEPTIBLE +
NUMBER RECOVERED + NUMBER INFECTED
TRANSMISSION EFFICACY = 1

12.3 Base WNV SIR Model with a Dynamic Vector Population

12.3.1 Base Model Structure and Behavior

With a few simple modifications, a population-dynamic SIR model can also be ap-
plied to diseases with indirect transmission through a vector4. Complexity certainly
increases when we consider dynamically changing host and vector population den-
sities, even as these populations interact with one another through disease transmis-
sion feedbacks. Further, the disease transmission cycle may negatively feedback on
population growth rates, reducing reproductive output of infected or even recovered
individuals. This is especially true for the host population if illness can result in per-
manent or slow-healing damages, such as chronic neurological deficits, which may
alter reproductive behaviors or physiology. In this chapter, we will make the sim-
plifying, but unrealistic assumption that neither the host nor the vector reproductive

4 Anderson, R.M. and R.M. May. Population biology of infectious diseases: Part II. Nature 1979b;
280: 455–461.
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rates are altered by disease status, but this type of feedback certainly has interesting
implications to consider (e.g. see 5).

For a contagious disease, transmission rate depends on the probability of a sus-
ceptible individual coming into close contact with an infected individual and the
efficacy of those interactions in relaying the disease. However, vector transmitted
diseases like WNV have at least two separate populations that transition through the
stages of disease exposure via a positive feedback loop between susceptible individ-
uals of each population with the infected individuals of the other population. Over-
lying this feedback loop are the intrinsic population dynamics that contribute new
susceptible individuals to the host and vector populations. Adding a final layer of
complexity is the fact that hosts and vectors often have highly divergent reproductive
time scales, with vector populations turning over many times a month while their
avian targets may suffer the bites of these generations of vectors over the course of
months to years. How might these different time scales affect disease transmission
dynamics over short and long time scales?

6published a model that describes a model of the intrinsic factors in WNV, fo-
cusing on the interactions of a static avian population and a dynamic vector popu-
lation within a single season. This eight-compartment model includes avian hosts
transitioning among BIRD SUSCEPTIBLE, BIRD INFECTED, BIRD RECOV-
ERED, and BIRD DEAD with a static population structure that ignores births and
deaths outside of disease mortality. The mosquito vector population is modeled with
a combined demographic and disease transition structure with production of new
LARVAL individuals by existing adults of all categories. They transition via devel-
opment to the adult MOSQUITO SUSCEPTIBLE. It is assumed that there is no ver-
tical transmission of the disease from an infected female mosquito to larva through
the ovary in this model. Adult mosquitoes transition from MOSQUITO SUSCEP-
TIBLE to MOSQUITO EXPOSED and then to MOSQUITO INFECTED status, at
which time they can transmit the disease back to BIRD SUSCEPTIBLE individu-
als. The MOSQUITO EXPOSED stock represents mosquitoes that have bitten an
infected host, but are not yet competent to transmit the disease. Transition from
MOSQUITO SUSCEPTIBLE to MOSQUITO EXPOSED relies on encountering
and biting an infected individual, while transition from MOSQUITO EXPOSED to
MOSQUITO INFECTED relies on amplification of the virus within the vector to
levels at which the disease is transmitted during feeding on the host.

Parameter values for this model general follow from the model based on
American crows developed by.6 However, as the goal of this chapter is not to
quantitatively analyze WNV per se but rather to explore the interactions that may

5 Dobson, A., I. Cattadori, R.D. Holt, R.S. Ostfield, F. Keesing, K. Krichbaum, J.R. Rohr, S.E.
Perkins, and P.J. Hudson. 2006. Sacred cows and sympathetic squirrels: The importance of biolog-
ical diversity to human health. PLOS Medicine. 3: 714–718.
6 Wonham, M., T. de-Camino-Beck, and M. Lewis. 2004. An Epidemiological model for West Nile
Virus: invasion analysis and control applications. Proceedings of the Royal Society of London. 271:
501–507.
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drive observed patterns in this disease system, some parameters were varied within
the ranges provided by6 to help clarify interesting patterns that emerge from these
models.

The RECOVERY RATE, for example, was set to 0.05 individuals recovering per
day to generalize the model to the broader avian community. Unlike the American
crow, in which the disease has a high fatality rate7, other avian species demonstrate
variable survival8. The BITE RATE was set to the high end of the estimated range
for American crows,6 which is still likely an underestimation of the total bite rate on
a complete avian community. Finally, unlike in the original model, a seasonal “on-
off” switch (using an if–then statement) was added to the BITE RATE, MOSQUITO
DEATH RATE, and OVIPOSITION RATE to qualitatively mimic the basic seasonal
dynamics during which temperature alters annual mosquito activity. Figures 12.5
and 12.6 demonstrate the structure of this base model in STELLA for the host and
vector, respectively.

WNV has been shown to persist in overwintering mosquitoes, and many re-
searchers believe that this contributes to the persistence of the virus through the

Fig. 12.5

7 Yaremych, S., R. Warner, P. Mankin, J. Brawn, A. Raim, and R. Novak. 2004. West Nile Virus
and High Death Rate in American Crows. Emerging Infectious Diseases. 10(4): 709–711.
8 Komar, N., Langevin, S. Hinten, S., Nemeth, N. Edwards, E., and D. Hettler et al. 2003. Ex-
perimental Infection of North American Birds with the New York 1999 strain of West Nile Virus.
Emerging Infectious Diseases. 9: 311–22.
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winters in northern areas of the United States9. Using estimates of the proportion of
overwintering mosquitoes infected with WNV to initiate the transmission cycle, the
small PERCENT MOSQUITOES INFECTED in the overwintering mosquito pop-
ulation (which were used to initiate the transmission cycle) begins to rise in early
summer when the mosquitoes emerge to begin breeding and biting hosts. This rise
is accompanied by a rise in the PERCENT INFECTED BIRDS, or disease preva-
lence in the host population (Figure 12.7). Since very few studies of WNV have the
resources to test birds directly for viremia, we can also evaluate the simulated out-
break in terms of SEROPREVALENCE, or the proportion of individuals that test
positive for disease exposure by the presence of antibodies to the disease in their
bloodstream. This value includes not only currently infected individuals, but also
recovered individuals who can no longer transmit the disease but have been exposed
at some time in the past.

12.3.2 Questions and Tasks

It has been proposed that vertical trans-ovarial transmission—the passage of WNV
from female mosquitoes to larva through the ovary—may contribute to overwinter-
ing and early season amplification of WNV10.

1. How would you include vertical transmission into the model structure?
2. How might the addition of trans-ovarial transmission affect disease transmission?

9 Bugbee, L. and L. Forte. 2004. The discovery of West Nile Virus in overwintering Culex pipiens
(Diptera: Culicidae) mosquitoes in Lehigh County, Pennsylvania. Journal of the American Mos-
quito Control Association. 20(3): 326–327.
10 Baqar, S., C.G. Hayes, J.R. Murphy, and D.M. Watts. 1993. Vertical transmission of West
Nile virus by Culex and Aedes species mosquitoes. American Journal of Tropical Medicine and
Hygiene. 48: 757–762.
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3. What field data would help with estimating the rate of trans-ovarial transmission
of WNV in mosquitoes? (Hint: Which sex does not bite?)

WNV BASE MODEL (DERIVED FROM)(6)

BIRD INFECT(t) = BIRD INFECT(t − dt) + (BIRD INFECTING −
Bird I to R − BI DYING WNV) * dt
INIT BIRD INFECT = 0
INFLOWS:
BIRD INFECTING = BITE RATE*TRANSMISSION EFFICACY M TO B *
BIRD SUSC/TOTAL BIRD POPULATION * MOSQ INFECT
OUTFLOWS:
Bird I to R = BIRD INFECT * BIRD RECOVERY RATE
BI DYING WNV = BIRD INFECT * WNV DEATH RATE
BIRD RECOV(t) = BIRD RECOV(t − dt) + (Bird I to R −
IMMUNITY LOSING) * dt
INIT BIRD RECOV = 0
INFLOWS:
Bird I to R = BIRD INFECT * BIRD RECOVERY RATE
OUTFLOWS:
IMMUNITY LOSING = BIRD RECOV * IMMUNITY LOSS RATE
BIRD SUSC(t) = BIRD SUSC(t - dt) + (IMMUNITY LOSING −
BIRD INFECTING) * dt
INIT BIRD SUSC = 1000

INFLOWS:
IMMUNITY LOSING = BIRD RECOV * IMMUNITY LOSS RATE
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OUTFLOWS:
BIRD INFECTING = BITE RATE*TRANSMISSION EFFICACY M TO B *
BIRD SUSC/TOTAL BIRD POPULATION * MOSQ INFECT
MOSQ EXPOS(t) = MOSQ EXPOS(t − dt) + (MOSQ INFECTING −
INCUBATION − ME DYING) * dt
INIT MOSQ EXPOS = 0

INFLOWS:
MOSQ INFECTING = BITE RATE*TRANSMISSION EFFICACY B TO M *
MOSQ SUSCEP/TOTAL ADULT MOSQ*BIRD INFECT
OUTFLOWS:
INCUBATION = MOSQ EXPOS*TRANSITION RATE
ME DYING = MOSQ EXPOS*MOSQ DEATH RATE
MOSQ INFECT(t) = MOSQ INFECT(t − dt) + (INCUBATION −
MI DYING) * dt
INIT MOSQ INFECT = 10000 * 0.01

INFLOWS:
INCUBATION = MOSQ EXPOS * TRANSITION RATE
OUTFLOWS:
MI DYING = MOSQ INFECT * MOSQ DEATH RATE
MOSQ LARVA(t) = MOSQ LARVA(t − dt) + (MOSQ BIRTHING −
MOSQ DEVELOPING − LARVAL DYING) * dt
INIT MOSQ LARVA = 0

INFLOWS:
MOSQ BIRTHING = If time>130 then
OVIPOSITION RATE*TOTAL ADULT MOSQ else 0
OUTFLOWS:
MOSQ DEVELOPING = MOSQ LARVA * MATURATION RATE
LARVAL DYING = MOSQ LARVA * LARVAL DEATH RATE
MOSQ SUSCEP(t) = MOSQ SUSCEP(t − dt) + (MOSQ DEVELOPING −
MOSQ INFECTING − MS DYING) * dt
INIT MOSQ SUSCEP = 10000 − 10000 * 0.01

INFLOWS:
MOSQ DEVELOPING = MOSQ LARVA * MATURATION RATE
OUTFLOWS:
MOSQ INFECTING = BITE RATE*TRANSMISSION EFFICACY B TO M*
MOSQ SUSCEP/TOTAL ADULT MOSQ * BIRD INFECT
MS DYING = MOSQ SUSCEP * MOSQ DEATH RATE
WNV DEAD(t) = WNV DEAD(t − dt) + (BI DYING WNV) * dt
INIT WNV DEAD = 0

INFLOWS:
BI DYING WNV = BIRD INFECT*WNV DEATH RATE
BIRD % INFECTED = Birds Infected/ Total Bird Population
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BIRD % RECOVERED = BIRD RECOV/TOTAL BIRD POPULATION
BIRD RECOVERY RATE = 0.05
BITE RATE = If time>150 then 0.20 else 0
IMMUNITY LOSS RATE = 0
LARVAL DEATH RATE = 1.191
MATURATION RATE = 0.07
MOSQ % INFECTED = MOSQ INFECT/TOTAL ADULT MOSQ
MOSQ DEATH RATE = If time>130 then 0.03 else 0.001
OVIPOSITION RATE = 0.5
SEROPREVALENCE = (BIRD INFECT + BIRD RECOV)/
TOTAL BIRD POPULATION
TOTAL ADULT MOSQ = MOSQ EXPOS + MOSQ INFECT +
MOSQ SUSCEP
TOTAL BIRD POPULATION = BIRD SUSC + BIRD RECOV +
BIRD INFECT
TRANSITION RATE = 0.1
TRANSMISSION EFFICACY B TO M = 0.2
TRANSMISSION EFFICACY M TO B = 0.9
WNV DEATH RATE = 0.05

12.4 Avian Population Effects and Seasonal Dynamics

12.4.1 Modifications to the Base Model

To further explore the role of host and vector population dynamics in this arboviral
encephalitis system, we add model elements to incorporate host population growth
and to more explicitly model seasonal dynamics. Figures 12.8 and 12.9 demonstrate
the full model structure for the avian and mosquito components, respectively. Start-
ing with the base model as described above, we incorporate a BIRD BIRTHING
flow, which adds new individuals to the population through a simple exponen-
tial growth equation, and a background death rate with flows from each of the
bird stocks, also modeled using the simple exponential population growth model.
BIRTH RATE and DEATH RATE are conservatively estimated for a mixed bird
community as 2.5 offspring per breeding season per individual (0.025 offspring per
day with BIRD BIRTHING restricted to an estimated 3-month breeding season).
BIRD DEATH RATE is set to produce similar peak population sizes each season
for a 3-year simulation. MOSQUITO DEATH RATE is also calibrated to produce
similar peak numbers during each simulated breeding season (Figure 12.10). This
was done so that differences in disease prevalence in both the host and vector across
the simulated seasons can be attributed to differences in disease transmission and
not to major differences in peak populations. We address the role of inter-seasonal
difference in population growth rates in disease transmission in section 12.3.
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Seasonal dynamics are imposed on the system using a simple graphical function
for BIRD BREEDING SEASON, which modifies the rate of BIRD BIRTHING as a
proportion of the maximum birth rate (0.025 offspring per day per individual) rang-
ing from 0 to 1. MOSQUITO BREEDING SEASON is set similarly as a proportion
changing over time to influence the rates of MOSQUITO BIRTHING, MOSQUITO
EXPOSING, and BIRD INFECTING. These graphical functions allow for affected
flows to operate between April and September for birds and between May and
September for mosquitoes, a season typical of the central Midwestern United States.
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12.4.2 Avian Demography and Disease Persistence

As we saw in our simple SIR model in section 12.3.1, a disease like WNV might
easily sweep through a population rapidly and be extinguished without the addition
of new susceptible individuals (Figures 12.7 and 12.8). Juvenile birds have been
speculated to be key players in persistence of WNV in wild bird populations both
due to their immunological naivety to the disease and due to an increased suscep-
tibility to mosquito bites until they develop a full adult plumage11. If we run our
expanded WNV model with the avian demographic rates (BIRD BIRTH RATE and
BIRD DEATH RATE) set to zero, not surprisingly, we see a sharp rise in seropreva-
lence in the first year of exposure, with extinction of the disease due to lack of
susceptible hosts in the second season (Figure 12.11). Alternatively, with seasonal
avian population growth, we see seasonal reductions in seroprevalence due to the
influx of new susceptible juveniles, followed by increasing eroprevalence as that
season’s outbreak progresses (Figure 12.12).

A sensitivity analysis of BIRD BIRTH RATE (with values ranging from 0.005 to
0.05 offspring per individual per day) demonstrates the effect of avian reproductive
output on disease transmission. At the high end of the reproductive range (number
6 in Figures 12.13 and 12.14), seroprevalence in the host remains low while the
infection prevalence in mosquitoes reaches high levels. At a low reproductive rate,
seroprevalence in the avian hosts increases quickly resulting in low disease preva-
lence in the mosquito vector (Figures 12.13 and 12.14).

11 Scott, T.W. and J.D. Edman 1991. Effects of avian host age and arbovirus infection on mos-
quito attraction and blood-feeding success. In: Bird-Parasite Interactions: Ecology, Evolution, and
Behavior. Loye, J.E., and M. Zuk, eds. New York: Oxford University Press. 179–204.
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12.4.3 Weather as an Extrinsic Driver of Outbreak Severity

Variations in seasonal weather patterns are a major driver of variation in WNV
incidence among years12. This is primarily because mosquitoes require minimum
temperatures to begin host seeking and oviposition. What happens if spring tem-
peratures arrive earlier or later than average, changing the timing and duration

12 Andreadis, T.G., J.F. Anderson, C.R. Vossbrinck, and A.J. Main. 2004. Epidemiology of West
Nile virus in Connecticut: A five-year analysis of mosquito data 1999–2003. Vector-Borne and
Zoonotic Disease. 4: 360–378.
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of mosquito activity? To investigate this question, we shifted the MOSQUITO
BREEDING SEASON graph to begin one month earlier (Line 2 in Figures 12.15
and 12.16) or to begin one month later (Line 3 in Figures 12.15 and 12.16). Line
1 in these figures is the base seasonal onset of activity (from approximately April
to September) as was used in the previous section. What we see is that an earlier
onset of mosquito activity results in a longer period during which to amplify the
disease through the host-vector feedback loop. This affects the host as a higher cu-
mulative exposure (peak SEROPREVALENCE) for birds which occurs earlier in
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the season (Figure 12.15, Line 2). This occurs because of the earlier onset of expo-
nential growth for the mosquito population (Figure 12.16, Line 2) resulting in high
mosquito numbers during the peak time of disease transmission.

The ecology of vector-borne, multi-host diseases like WNV poses a true chal-
lenge for modelers to balance model transparency and simplicity with the many lay-
ers of interaction that contribute to disease persistence and transmission. But these
efforts have great potential to help public health officials, researchers, and policy
makers better manage current disease concerns and prepare for the next emerg-
ing pathogen. The models presented here, as is often the case, are but a rudimen-
tary attempt to simulate the dynamics of vastly more complicated disease ecology.
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However, even in this relatively crude state, these models are useful tools that can
offer great insight and help in formulating hypotheses about the behavior of disease
outbreaks in the real world.

12.4.4 Questions and Tasks

5 describe a phenomenon where species diversity may serve to reduce disease risk
to humans. Some studies suggest that the number of human cases of WNV is de-
creased in areas of high bird diversity because the bird hosts, which develop the
highestviremia and transmit the disease most efficiently when bitten by a mosquito,
are a lower relative proportion of the total population.

1. How would you explore the potential effects of avian community diversity on
human risk of disease in this model? (Hint: Try a sensitivity analysis and graph
MOSQUITO % INFECTED).

WNV EXPANDED SEASONAL MODEL

BIRD INFECT(t) = BIRD INFECT(t − dt) + (BIRD INFECTING −
Bird I to R − BI DYING − BI DYING WNV) * dt
INIT BIRD INFECT = 0

INFLOWS:
BIRD INFECTING =
BITE RATE*TRANSMISSION EFFICACY M TO B*BIRD SUSC/
TOTAL BIRD POPULATION * MOSQ INFECT *
MOSQ BREEDING SEASON
OUTFLOWS:
Bird I to R = BIRD INFECT * BIRD RECOVERY RATE
BI DYING = BIRD INFECT * BIRD DEATH RATE
BI DYING WNV = BIRD INFECT * WNV DEATH RATE
BIRD RECOV(t) = BIRD RECOV(t − dt) + (Bird I to R −
IMMUNITY LOSING − BR DYING) * dt
INIT BIRD RECOV = 0

INFLOWS:
Bird I to R = BIRD INFECT*BIRD RECOVERY RATE
OUTFLOWS:
IMMUNITY LOSING = BIRD RECOV*IMMUNITY LOSS RATE
BR DYING = BIRD RECOV*BIRD DEATH RATE
BIRD SUSC(t) = BIRD SUSC(t − dt) + (IMMUNITY LOSING +
BIRD BIRTHING − BIRD INFECTING − BS DYING) * dt
INIT BIRD SUSC = 1000

INFLOWS:
IMMUNITY LOSING = BIRD RECOV*IMMUNITY LOSS RATE
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BIRD BIRTHING =
BIRD BIRTH RATE*TOTAL BIRD POPULATION*
BIRD BREEDING SEASON
OUTFLOWS:
BIRD INFECTING =
BITE RATE*TRANSMISSION EFFICACY M TO B*
BIRD SUSC/TOTAL BIRD POPULATION*MOSQ INFECT*
MOSQ BREEDING SEASON
BS DYING = BIRD SUSC*BIRD DEATH RATE
MOSQ EXPOS(t) = MOSQ EXPOS(t − dt) + (MOSQ INFECTING −
INCUBATION − ME DYING) * dt
INIT MOSQ EXPOS = 0

INFLOWS:
MOSQ INFECTING = BITE RATE*TRANSMISSION EFFICACY B TO M*
MOSQ SUSCEP/TOTAL ADULT MOSQ * BIRD INFECT *
MOSQ BREEDING SEASON
OUTFLOWS:
INCUBATION = MOSQ EXPOS * TRANSITION RATE
ME DYING = MOSQ EXPOS * MOSQ DEATH RATE
MOSQ INFECT(t) = MOSQ INFECT(t − dt) + (INCUBATION −
MI DYING) * dt
INIT MOSQ INFECT = 10000*0.01

INFLOWS:
INCUBATION = MOSQ EXPOS * TRANSITION RATE
OUTFLOWS:
MI DYING = MOSQ INFECT * MOSQ DEATH RATE
MOSQ LARVA(t) = MOSQ LARVA(t − dt) + (MOSQ BIRTHING −
MOSQ DEVELOPING − LARVAL DYING) * dt
INIT MOSQ LARVA = 0

INFLOWS:
MOSQ BIRTHING = OVIPOSITION RATE*TOTAL ADULT MOSQ*
MOSQ BREEDING SEASON
OUTFLOWS:
MOSQ DEVELOPING = MOSQ LARVA * MATURATION RATE
LARVAL DYING = MOSQ LARVA * LARVAL DEATH RATE
MOSQ SUSCEP(t) = MOSQ SUSCEP(t − dt) + (MOSQ DEVELOPING −
MOSQ INFECTING − MS DYING) * dt
INIT MOSQ SUSCEP = 10000 − 10000*0.01

INFLOWS:
MOSQ DEVELOPING = MOSQ LARVA * MATURATION RATE
OUTFLOWS:
MOSQ INFECTING = BITE RATE*TRANSMISSION EFFICACY B TO M*
MOSQ SUSCEP/TOTAL ADULT MOSQ * BIRD INFECT*
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MOSQ BREEDING SEASON
MS DYING = MOSQ SUSCEP * MOSQ DEATH RATE
WNV DEAD(t) = WNV DEAD(t − dt) + (BI DYING WNV) * dt
INIT WNV DEAD = 0

INFLOWS:
BI DYING WNV = BIRD INFECT * WNV DEATH RATE
BIRD % INFECTED = Birds Infected/ Total Bird Population
BIRD % RECOVERED = BIRD RECOV/TOTAL BIRD POPULATION
BIRD BIRTH RATE = 0.025
BIRD DEATH RATE = 0.005
BIRD RECOVERY RATE = 0.10
BITE RATE = 0.3
IMMUNITY LOSS RATE = 0
LARVAL DEATH RATE = 1.191
MATURATION RATE = 0.07
MOSQ % INFECTED = MOSQ INFECT/TOTAL ADULT MOSQ
MOSQ DEATH RATE = If MOSQ BREEDING SEASON>0 then 0.015
else 0.002
OVIPOSITION RATE = 0.5
SEROPREVALENCE = (BIRD INFECT + BIRD RECOV)/
TOTAL BIRD POPULATION
TOTAL ADULT MOSQ = MOSQ EXPOS + MOSQ INFECT +
MOSQ SUSCEP
TOTAL BIRD POPULATION = BIRD SUSC + BIRD RECOV +
BIRD INFECT
TRANSITION RATE = 0.1
TRANSMISSION EFFICACY B TO M = 0.3
TRANSMISSION EFFICACY M TO B = 0.9
WNV DEATH RATE = 0.05
BIRD BREEDING SEASON = GRAPH(TIME)
(0.00, 0.00), (31.3, 0.00), (62.6, 0.00), (93.9, 0.00), (125, 0.1), (156, 0.4), (188,
1.00), (219, 1.00), (250, 0.4), (282, 0.1), (313, 0.00), (344, 0.00), (375, 0.00),
(407, 0.00), (438, 0.00), (469, 0.1), (501, 0.4), (532, 1.00), (563, 1.00), (594, 0.4),
(626, 0.1), (657, 0.00), (688, 0.00), (720, 0.00), (751, 0.00), (782, 0.00), (813,
0.00), (845, 0.1), (876, 0.4), (907, 1.00), (939, 1.00), (970, 0.4), (1001, 0.1),
(1032, 0.00), (1064, 0.00), (1095, 0.00)
MOSQ BREEDING SEASON = GRAPH(TIME)
(0.00, 0.00), (31.3, 0.00), (62.6, 0.00), (93.9, 0.00), (125, 0.3), (156, 1.00), (188,
1.00), (219, 1.00), (250, 0.3), (282, 0.00), (313, 0.00), (344, 0.00), (375, 0.00),
(407, 0.00), (438, 0.00), (469, 0.00), (501, 0.3), (532, 1.00), (563, 1.00), (594,
1.00), (626, 0.3), (657, 0.00), (688, 0.00), (720, 0.00), (751, 0.00), (782, 0.00),
(813, 0.00), (845, 0.00), (876, 0.3), (907, 1.00), (939, 1.00), (970, 1.00), (1001,
0.3), (1032, 0.00), (1064, 0.00), (1095, 0.00)



Chapter 13
Chaos and Pestilence

Before the advent of modern computer technology and software, many modeling ef-
forts and scientific experiments were designed for linear, often static systems, which
had the advantage of being analytically solvable. The ways of thinking about system
behavior and the tools applied to describe that behavior was rooted deeply in clas-
sical mechanics. This science was used to describe the behavior of whole classes of
moving objects, such as pendulums, falling rocks, or projectiles. The scientific par-
adigms associated with classical mechanics were not only applied in the realm of
the natural sciences but increasingly influenced models of economic and ecological
systems as well.

The strength of these paradigms lies in their view of systems as predictable, well-
described entities that can be analyzed with available mathematical tools. Students
were told that nonlinear systems are generally unsolvable and that such systems are
exceptions. The first of these statements is true; nonlinear systems, some of which
we modeled in the previous chapters, generally do not have an explicit mathematical
solution. However, the second statement, that nonlinear systems are exceptions, is
false. Rather, many real systems are governed by nonlinearities. These systems fre-
quently exhibit characteristics that were previously unanticipated or misidentified.

The emergence of chaos theory made us aware of the importance of nonlinear-
ities, a lack of predictability that is inherent in many of these nonlinear systems,
the sensitivity of model results to small changes in initial conditions, and therefore,
the need for increased computer modeling efforts. Today, chaos theory begins to
influence thinking in modern natural sciences as well as in the social sciences. In
the following sections of this chapter, we develop models with potentially chaotic
behavior first in the context of the spread of a disease—akin to the simple mod-
els in Chapter 2—and then in the context of insect dynamics and associated host–
parasitoid interactions, which we touch on throughout the book.

B. Hannon and M. Ruth, Dynamic Modeling of Diseases and Pests, 225
Modeling Dynamic Systems,
c© Springer Science+Business Media LLC 2009
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13.1 Basic Disease Model with Chaos

13.1.1 Model Set-up

Assume the size of the sick population affects its awareness about a disease
(Figure 13.1) and thus its behaviors and rate at which individuals in the popu-
lation become contagious (Figure 13.2). GETTING SICK is the product of the
CONTAGION RATE and the stock of SICK people. GETTING WELL, similarly,
is a function of a “sick time coefficient” and the stock. However, to allow for the
emergence of chaos, we have specified the relationship as a nonlinear equation:

GETTING WELL = SICK∧ 2/SICK TIME COEFF (13.1)

Running the model with a CONTAGION RATE as in Figure 13.2, but setting
the maximum value to .2 instead of 2 yields the results shown in Figure 13.3. The
number of sick initially increases and comes to a steady state. Changing the maxi-
mum CONTAGION RATE to 1.2 can lead to an initial overshoot and ultimate steady
state (Figure 13.4). Increasing the CONTAGION RATE maximum further (and/or
giving your curve of Figure 13.2 more curvature) can yield periodic oscillations
(Figure 13.5) and ultimately chaos (Figure 13.6). The results in Figure 13.6 are de-
rived for the relationship between AWARENESS LEVEL and CONTAGION RATE
of Figure 13.2.

While the chaotic time path of Figure 13.6 does not show any order—no pattern
repetitions are seen in the behavior of our state variable—a neat relationship exists
nonetheless between the values of the state variable at any given period of time
and the value it took on a DT earlier. This relationship is shown in Figure 13.7,
and emergence of the pattern depicted there can be used as a heuristic means when
trying to detect chaos.

~
CONTAGION RATE

AWARENESS LEVEL
SICK TIME COEFF

SICK
GETTING SICK

LAG SICK

GETTING WELL

Fig. 13.1
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13.1.2 Detecting and Interpreting Chaos

The only way to technically determine the presence of chaos in our model is to be
able to calculate the so-called Lyapunov exponent for the model. If this exponent is
greater than zero, the model is chaotic. The exponent can be calculated using data
from the model on the rate of separation of nearest neighboring points though time.
It seems that at our level of modeling, however, we can observe the model results.
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Sensitivity of the nonlinear model to initial conditions is an attribute of chaotic
models. Models that show chaos may not show it for all combinations of the para-
meters and detecting the advent of chaos becomes the issue. In these cases, we can
examine a scatter plot of the state against the one-DT lagged value of that state. If
we see the formation of a pattern, such as a curve, where the successive points are
landing on opposite sides of that curve (each time in a different place), we have a
model with chaos. If this graph show oscillation between opposite sides of the curve
but always between the same two points, we have a model in oscillation. If the
curve shows progression to a point, we have a model at steady state. Some models
will start off oscillating and then dampen down to a steady state. These descriptions
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of the appearance of chaos in models can be helpful to the beginning modeler. The
key idea is to recognize when one has chaos and when one has random variation.
In a time series,plot both will appear to be random. However, in the scatter plot, the
model’s randomness appears as a uniform randomness across the range of the plot.
If random variation appears in a time series plot of a model containing no random
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functions, the model is either in chaos or (more likely), the choice of DT is too large.
The DT choice in the latter case is a longer time than the critical time of the model.
Shortening the DT will cause such a model to behave with at least some smooth
curves. For the most part, these smooth curves will have continuous derivatives. Pa-
rameter change can bring a return of chaotic behavior, and in the nonchaotic model,
bring back of return of random behavior. The best test here is an examination of the
model in the scatter plot and a check on the sensitivity to initial condition changes.

At this point we should ask if chaos occurs in nature. We find that, indeed, it does.
Chaos is evident in the variations of heartbeats and brainwaves or the irregularity
of water dripping from a faucet. Both living and nonliving systems seem to show
chaos. Why? To what advantage is such a result to these systems? Stuart Kaufman,1

among others, has proposed that all systems seem to evolve toward higher and higher
efficiencies of operation. Many systems are so highly disturbed by variations in their
environment that their efficiencies are rarely high. However, if these disturbances
can be held to a minimum, then the evolution of the system becomes more complete
and more efficient but closer to the border of chaotic behavior.

Earthquakes and avalanches are examples of energy-storing systems that contin-
uously redistribute the incoming stresses more and more efficiently until a breaking
point is reached and the border to chaos is opened. Does this mean that the brain
and the heart have somehow evolved closer to some maximum efficiency for such
organisms? We do not know the answer. We do know that the scale of measurement
matters. For example, if we were to watch the pattern on a patch of natural forest
over many centuries, we would see the rise and sharp fall of the biomass levels, un-
predictably. Forest fires and insects find ample host in such forest patches once they
have developed a large amount of dry biomass bound up in relatively few species.
The patch evolves or succeeds to greater and greater efficiency of light energy con-
version by getting larger and fewer species. But the patch also becomes more vul-
nerable to fire and pests, and eventually collapses. Yet if we look at the total biomass
on a large collection of such biomasses, whose collapses are not synchronized, this
total biomass remains relatively constant. Thus, chaotic-like behavior in the small
is not seen in the large. Could this mean that natural systems have “found” chaos in
their search for greater efficiencies and have “learned” to stagger the chaotic events,
allowing faster rebound and large-scale stability? We do not know the answers, but
we think the implications are fascinating.

13.1.3 Questions and Tasks

1. Re-create the model described in this chapter, but try to find chaos in a different
way. Instead of increasing the maximum value for the CONTAGION RATE for
subsequent runs in the graph of Figure 13.2, set that maximum to 1.4 and increase
the curvature of the graph. Can you make chaos occur? What does this mean for
the underlying mechanisms behind this epidemic?

1 Kaufman, S. 1993. The Origins of Order: Self-Organization and Selection in Evolution,
New York, Oxford University Press.
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2. Introduce a vaccination program into your chaotic epidemic model. How would
the program need to be structured to prevent “chaos” (in the modeling sense)?

3. In the model, can you find chaos for a fixed (constant) contagion rate simply by
varying SICK TIME COEFF? Interpret your results.

4. Change the exponent in the GETTING WELL equation to values

a. less than 2
b. larger than 2.

Interpret your findings.

BASIC EPIDEMIC MODEL WITH CHAOS

SICK(t) = SICK(t − dt) + (GETTING SICK − GETTING WELL) * dt
INIT SICK = 10

INFLOWS:
GETTING SICK = CONTAGION RATE * SICK
OUTFLOWS:
GETTING WELL = SICK∧2/SICK TIME COEFF
AWARENESS LEVEL = .1 * SICK
LAG SICK = DELAY(SICK,DT)
SICK TIME COEFF = 150
CONTAGION RATE = GRAPH(AWARENESS LEVEL)
(0.00, 1.99), (1.00, 1.92), (2.00, 1.84), (3.00, 1.73), (4.00, 1.58), (5.00, 1.41),
(6.00, 1.19), (7.00, 0.94), (8.00, 0.7), (9.00, 0.32), (10.0, 0.00)

13.2 Chaos with Nicholson-Bailey Equations2

13.2.1 Host-Parasitoid Interactions

In Chapter 3, we modeled the spread of a parasitic infection in an insect population
of two life stages. The focus of that model was the spread of the infection. Therefore,
we ignored the fate of the parasitoid. In this chapter however, we model explicitly
the interactions between the host and the parasitoid populations. Rather than setting
up our model in terms of population sizes, we specify host–parasitoid interactions
in terms of population densities.

In order to model the host–parasitoid interactions, we abstract away from the
fact that only specific life cycle stages exhibit those interactions. After you worked
through this chapter, you may want to refine the model to account for the fact that,

2 This chapter follows L. Ederstein-Keshet, Mathematical Models in Biology, Random House,
1988, 79–85, and D. Brown and P. Rothery, Models in Biology: Mathematics, Statistics and Com-
puting, Wiley, NY, 1993, pp. 399–406.
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for example, adult parasitoids lay their eggs in the pupae of hosts, but not in the eggs
of their hosts or with the larvae or adults.

Denote, respectively, H(t) and P(t) as the host and parasitoid densities in time
period t, and F(H(t), P(t)) as the fraction of hosts that is not parasitized. Then

H(t+1) = λ∗H(t)∗F(Ht),P(t)) (13.2)

P(t+1) = C ∗ H(t)∗ [1−F(H(t),P(t))] (13.3)

where λ(H(t)) is the host growth rate and C is the parasitoid fecundity.
Let us assume that the fraction of hosts that become parasitized depends on

the density-dependent rate of encounter of parasitoids and hosts. Encounters oc-
cur randomly, allowing us to invoke the law of mass action that we used extensively
throughout this book to model the spread of disease from contagious to susceptible
populations. Accordingly, the number of encounters of hosts HE with parasitoids is

HE(t) = A∗H(t)∗P(t) (13.4)

where A is the searching efficiency of the parasitoids.
Unlike the models of the spread of a disease from an infected to a nonimmune

population, subsequent encounters of individuals in the two populations do not al-
ter the rate at which parasitoids are propagated. Therefore, we need to modify the
law of mass action to account for the fact that only the first encounter of hosts and
parasitoids is significant in propagating the parasitoid. Once a host carries the par-
asitoid’s eggs, subsequent encounters with parasitoids will not change the number
of parasitoid progeny that hatch from the host. We need only to distinguish be-
tween hosts that had no encounter and hosts that had at least one encounter with
parasitoids.

The Poisson distribution describes the occurrence of such discrete, random events
as encounters of hosts and parasitoids. We can make use of the Poisson probability
distribution to calculate the probability that there is no attack of parasitoids on a host
within a certain time period. In general, therefore

P(X) =
EXP

(
−HE(t)

H(t)

)(
HE(t)
H(t)

)X

X!
(13.5)

is the probability of X attacks. This probability depends on the average number of
attacks in the given time interval, HE/H. From equation (13.4) we know

HE(t)/P(t) = A∗P(t) (13.6)

Thus, for zero attacks by the parasitoids, equation (13.5) yields
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P(0) =
EXP(−A∗P(t))(A∗P(t))0

0!
=

EXP(−A∗P(t))∗1
1

= EXP(−A∗P(t))
(13.7)

Equations (13.2) and (13.3) can therefore be re-written as

H(t+1) = H(t)∗λ∗EXP(−A∗P(t)) (13.8)

P(t+1) = C∗H(t)∗ [1−EXP(−A∗P(t))] (13.9)

Let us also assume that without parasitoids, the hosts will grow toward a carrying
capacity K set by the environment. To capture growth of the host population up to
a density H(t) = K and decline of the host population for H(t) > K, we replace in
equation (13.8) the growth rate λ(H(t)) with

λ = EXP(R∗
(

1− H(t)
K

)
(13.10)

where R is the maximum host growth rate. Thus, the equation governing the size of
the host population in time t+1 becomes

H(t+1) = H(t)∗EXP
(

R∗
(

1− H(t)
K

)
−A∗P(t)

)
(13.11)

and after subtracting the respective state variables in time period t from equations
(13.9) and (13.11), we have a set of differential equations that capture the change of
host and parasitoid densities from time period t to t + 1:

∆H(t) = H(t)∗EXP
(

R∗
(

1− H(t)
K

)
−A∗P(t)

)
−H(t) (13.12)

∆P(t) = C∗H(t)∗ [1−EXP(−A∗P(t))]−P(t) (13.13)

We can now see the dynamics exhibited by this model (Figure 13.8). These equa-
tions describing changes in the host and parasitoid densities can yield a variety of
results, from the production of steady state conditions for the host and parasitoid, to
their lock in a limit cycle, to chaos.

The following graphs result from the parameters and initial conditions in the
table, and a DT = 1:

13.2.2 Questions and Tasks

1. We have modeled in this section of Chapter 13 one type of species interaction that
is almost exclusively found among insects. Typically, both the parasitoid and host
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Table 13.1

Figure Description R A K H(t = 0) P(t = 0)

13.9 Steady State 0.50 0.20 14.5 10.00 1.00
13.10 Limit Cycle 2.00 0.20 21.5 10.00 1.00
13.11 Chaos 2.65 0.20 25.0 10.00 1.00

H
²H

P
²P

A

R

K

Fig. 13.8

have a number of life cycle stages—eggs, larvae, pupae, and adults—and their
interaction is limited to a subset of these.

a. Can you modify the model to account for the fact that it is typically only the
larvae of the host that get parasitized by adult parasitoids?

b. How does this disaggregation of the parasitoid and host population affect your
results?

c. Can you find parameters and initial values that generate alternatively steady
state, limit cycles, or chaos?

d. What is the appropriate DT to use here and how are the results affected by its
choice?

2. Try reducing the DT. In the earlier graphs, DT is set at 1.00. A smaller DT yields
a completely different answer. What is going on here? Is the DT of 1.00 required
by the host or the parasitoid? (The Nicholson-Bailey model views t = 1 as one
generation and all the dynamics for one DT go on inside that time period of 1.00.
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Fig. 13.9
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0.00 12.00 24.00

Fig. 13.10

It is as though the whole new generation of the two populations is formed just
before the beginning of that generation. So in this model, a DT less than 1.00 has
no meaning.)

3. Do a sensitivity analysis on the initial values of H and P, on R, A, and K.



236 13 Chaos and Pestilence

P

H

1:  H v P
18.00

9.00

0.00
0.00 18.00 36.00

Fig. 13.11

NICHOLSON-BAILEY HOST–PARASITOID MODEL

H(t) = H(t − dt) + (∆H) * dt
INIT H = 10

INFLOWS:
∆H = H * EXP(R * (1 − H/K) − A * P) − H
P(t) = P(t − dt) + (∆P) ∗ dt
INIT P = 1

INFLOWS:
∆P = C * H * (1 − EXP(−A * P)) − P
A = .2
C = 1
K = 14.5
R = .5



Chapter 14
Catastrophe and Pestilence

14.1 Basic Catastrophe Model

If a large number of real systems exhibit dynamics that bear the potential for chaos,
why do we not see more chaos in real-world processes? Fortunately, the domains
over which stability of the system occurs can be relatively large. But once in a while,
systems may move “toward the edge of stability” and little nudges to the system
may move it from stability to instability—that is, into a catastrophe. Subsequently,
reorganization of system components may occur to bring the system back into a
stable domain—a kind of evolutionary process. This stable domain, however, may
not be the same as the one prior to the disturbance.

The system undergoes a catastrophic event in the sense that it is moved from
an initial state of stability through a dramatic phase of reorganization and back to
some degree of stability. Examples for such catastrophic events include landslides,
avalanches, earthquakes, and pest outbreaks in ecosystems. In each case, small
changes in the system occur that individually may not be critical to the system’s
behavior. Collectively, however, they lead to the evolution of the system toward a
critical state. This is apparent, for example, in the case of avalanches. Each individ-
ual snowflake potentially adds to the instability of the system. When a critical point
is reached, the next snowflake may trigger an avalanche that affects a large part of
the system. Temporary stability is quickly reached if the avalanche is not too dra-
matic. Even if not of a large scale, the avalanche adds to the “stress” of the system
downhill, making it more susceptible to further avalanches as more snow falls at
those regions or as additional small avalanches are received from higher on the hill.
Ultimately, a large-scale, catastrophic event may occur, which affects the entire sys-
tem, not just individual regions. The system components re-group and finally enter
a phase of new, temporary stability.

So, evolutionary processes are at work making the system more “efficient” in
some sense. This is evolution toward catastrophe. A system in such a state can re-
merge to a stable state by another process of evolution, likely faster than the first
kind, and this new stable state may be inefficient. Large living natural systems are

B. Hannon and M. Ruth, Dynamic Modeling of Diseases and Pests, 237
Modeling Dynamic Systems,
c© Springer Science+Business Media LLC 2009
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likely constrained from operating at or near peak efficiency by random intervention
of uncoordinated external processes at the regional levels.

In this chapter, we develop first a simple model of catastrophe and return then
to modeling pest outbreaks. Let us start by considering the following figure1that
illustrates the surface defined by the following equation:

X3—ALPHA∗X—BETA = 0 (14.1)

α

ß

α

ß
X(   ß)α,

A

B

Imagine a stationary ball placed at the top of this surface, at point A. Small
nudges away from its equilibrium point A will lead to a new equilibrium. After
a series of such small perturbations, however, the ball will roll off the top part of
the surface, and a priori, it is difficult for us to determine exactly where it will end
up. All we know for certain is that the new equilibrium position is somewhere at the
bottom of the surface, say point B.

Small nudges to the ball in B will again move it slightly away from B. And if we
kick it hard enough, we can propel the ball through the fold, or “cusp,” to the upper
part of the surface again. Where exactly will it end up? To give a precise answer
requires exact knowledge of the shape of the surface, the properties of the ball, and
the magnitude and direction of the force exerted on the ball. In more complicated,
real-life systems, some variables to describe the system and the forces incident upon
them are unknown. As a result, we may only know stability domains rather than
specific locations.

The STELLA model for equation (14.1) is given in Figure 14.1. We slightly vary
X with each simulation time step. Solve equation (14.1) for BETA. Set DT = .0025
and define X, for example, as

1 See Beltrami, E. 1987. Mathematics for Dynamic Modeling, Academic Press, Inc., Boston.
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X BETA

ALPHA

Fig. 14.1

BETA

X

-2.00
-8.00 0.00 8.00

0.00

2.00
1: BETA v. X

Fig. 14.2

X = TIME—2, (14.2)

then run the model.
For positive ALPHA, the cusp or fold appears in the X vs. BETA plot. For

ALPHA = 0 and negative ALPHA, the “S” curve appears. The cases for nega-
tive, zero and positive values of ALPHA are shown in Figures 14.2 to 14.4, re-
spectively. For illustration, we chose ALPHA = −3 in Figure 14.2 and ALPHA =
+3 in Figure 14.4.

BASIC CATASTROPHE MODEL

ALPHA = −3
BETA = X∧3—ALPHA * X
X = TIME—2
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Fig. 14.4

14.2 Spruce Budworm Catastrophe

A classical example for the implications of catastrophes for ecosystem manage-
ment is the spruce budworm dynamics. Spruce budworm is a caterpillar that feeds
on spruce and fir forests in the northeastern United States and eastern Canada. For
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many years, population sizes of spruce budworm remain low and have little impact
on trees. When forest stands reach maturity, however, spruce budworm populations
explode, seriously affecting the forest by defoliating the trees. As a result of defoli-
ation, trees are weakened and ultimately may die. With the death of trees comes a
loss of the food source for spruce budworm and a consequent population crash.

The cycle of low spruce budworm population densities, followed by population
explosions and catastrophic collapse tends to repeat over the course of years. The
resulting damage and death of trees negatively affects the timber and paper pulp
industries of the region. Frequently, forest managers decided to spray forest stands
to control budworm populations. The dynamics inherent in the system, however,
lead it to follow its own path, making ever more extensive pest control necessary.
If those controls fail, outbreaks will be more severe and devastating than if the sys-
tem had been left to control itself, as recent experiences in the United States and
Canada show.

One of the most unused natural system controls in forestry relates to the idea
of patch size. Natural systems no doubt avoid large catastrophes because they op-
erate in patches, where the degree of maturity of adjacent patches is nearly always
different. Consequently, pests and fires find difficulty in spreading beyond a patch,
and the size of the catastrophe is kept small. Current forestry practice seems to be
disconnected from such natural system behavior.

To model the spruce budworm catastrophe2 let us denote B as the budworm pop-
ulation size, K as the carrying capacity, S as habitat size, and GR as the budworm’s
natural rate of increase. Thus,

dB
dt

= GR∗B∗
(

1− B
K∗S

)
(14.3)

would describe the population dynamics for a fixed carrying capacity and no preda-
tory influences on population growth. This is the logistic growth equation that we
have used in this book many times before. Let us introduce the effects of predation
with a maximum predation rate C, which is assumed to be constant. At small pop-
ulation densities, predation has an insignificant effect on the budworm population
because they are well hidden in a relatively dense canopy. As population densities
increase, however, predators may increasingly feed on budworm that partially or to-
tally defoliated the trees and are then easy prey. A predation term that captures such
interactions is

C∗B2

A2 +B2 (14.4)

with A as a scalar that captures the effectiveness of the predators to spot and prey
on spruce budworm. In an immature forest, predation is easier than in a mature
forest with a diverse and dense canopy. Thus, A may be assumed to increase with
increased maturity of the forest, i.e. habitat size S

2 This model follows closely the model laid out in Beltrami, E. 1987. Mathematics for Dynamic
Modeling, Academic Press, Inc., Boston, pp. 189—-196.
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A = K1∗S (14.5)

and thus
C∗B2

A2 +B2 =
C∗B2

(K1∗S)2 +B2
, (14.6)

with K1 as a constant.
Combining predation with the logistic growth function yields

∆B =
dB
dt

= GR∗B∗
(

1− B
K∗S

)
− C∗B2

(K1∗S)2 +B2 (14.7)

which is the equation used in the model to drive spruce budworm population
changes, ∆B.

Changes in habitat size are assumed to also follow the logistic growth curve, with
RS as the natural rates of increase and KS as carrying capacity:

∆S =
dS
dt

= RS∗S∗
(

1− S
KS∗E

)
(14.8)

E is the percentage of foliage on trees. The more healthy the forest, the higher E.
The percentage of foliage on trees is assumed to decrease as the average budworm
density per habitat size B/S increases. To model diminishing stress as budworm pop-
ulations decrease, we multiply B/S by E2. The combined effect of logistic growth in
foliage and budworm-induced foliage losses is

∆E =
dE
dt

= RE∗E∗
(
−P∗B∗E2

S

)
(14.9)

with RE the rate of foliage increase and P a proportionality factor.
Let us consider the case of B �= 0 and introduce the following notation:

R′ =
R∗K1∗S

B
(14.10)

Q =
K
K1

(14.11)

and rewrite
B = K1∗S∗X (14.12)

It can be shown3 that the nontrivial equilibria of equation (14.7) fulfill

R′
(

1− X
Q

)
= G(X) (14.13)

with
G(X) =

X
1+X2 (14.14)

3 Beltrami, E. 1987. Mathematics for Dynamic Modeling, Academic Press, Inc., Boston.



14.2 Spruce Budworm Catastrophe 243

R

Q

R

Q

R

Q

F(X), G(X)F(X), G(X)F(X), G(X)

a b c

Fig. 14.5

R

Q

R

Q

F(X), G(X) F(X), G(X)

a b

Fig. 14.6

The left side of equation (14.13) is a straight line F(X) with slope −R′/Q. Equilibria
occur where this line intersects with G(X).

S and R increase with increases in Q. At first, there is a single equilibrium, corre-
sponding to the situation shown in Figure 14.5(a). After some time, the line becomes
tangent to the curve, as shown in Figure 14.5(b). With further increases in the slope,
two points that “attract” system behavior emerge (Figure 14.5(c))—these are the
two outer points.

As the slope of R increases even further, another point of tangency is realized,
(Figure 14.6(a)) and from thereon, only one point of intersection (Figure 14.6(b)), a
stable attractor, persists:

The cusp of the spruce budworm dynamics is shown schematically in the R-Q
plane of Figure 14.7. The upper part of the surface corresponds to an outbreak level
while the lower part corresponds to a subsistence level.

The modules to solve for the dynamics of the spruce budworm population are
shown in Figures 14.8 to 14.10.

We drive changes in the model by setting X = TIME. The functions G(X) and
F(X) generated by our STELLA model are shown in Figures 14.11 and 14.12.
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For KS = 2.5, the corresponding values of X are 0.69, 2.0, and 7.32. These cor-
respond to B = 0.173, 0.500, and 1.83, respectively (see equation (14.12)). These
B values represent the steady states of B. However, only two of these extrema are
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stable: the middle value represents an unstable extremum. All initial values of B
within a given range will lead to the same, single steady state for B, one of the two
(see Figures 14.13 to 14.16. There are two such given ranges for initial Bs, given
the way that the main model is set up—initial values of B greater and less than 1/2.
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Fig. 14.11

Fig. 14.12
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14.3 Questions and Tasks

1. In the spruce-budworm model of Section 14.2, recognize that the choice of KS is
a crucial one. So is the choice of Q. They determine whether one, two, or three
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extrema solutions for B exist. Run a series of sensitivity tests on KS and Q to
explore their impact on the system’s dynamics.

2. (a) Change the initial conditions for the spruce-budworm dynamics model in a
series of sensitivity runs. Explain the results.

(b) Introduce an exogenous shock into your model that (at a random time) re-sets
the budworm population to its initial condition. What are the impacts on the
overall results? Explain your findings.

SPRUCE BUDWORM DYNAMICS

B(t) = B(t − dt) + (∆B) * dt
INIT B = 3 {Spruce Budworm per Unit Area}
INFLOWS:
∆B = GR * B * (1 − B/K/S) − C * B∧2/((K1 * S)ˆ2 + B∧2) {Spruce Budworm
per Unit Area per Time Period}
E(t) = E(t − dt) + (∆E) * dt
INIT E = .95 {Percentage of Foliage Cover}
INFLOWS:
∆E = RE*E*(1 − E) − P * B * Eˆ2/S {Change in Percentage of Foliage Cover
per Time Period}
S(t) = S(t − dt) + (∆S) * dt
INIT S = 2.5 {Habitat Density}
INFLOWS:
∆S = RS * S * (1 − S/KS/E) {Habitat Density Change per Time Period}
C = 1
F = R′ * (1 − X/Q)
G = X/(1+X∧2)
GR = 2 {Spruce Budworm per Unit Area per Spruce Budworm per Unit Area per
Time Period}
K = 1
K1 = .1
KS = 2.5
P = .01
Q = K/K1
R = GR * K1 * S/C
R′ = GR * K1 * KS/C
RE = 2 {Change in Percentage of Foliage Cover per Percentage Foliage Cover
Time Period}
RS = 3 {Habitat Density Change per Habitat Density Change per Time Period}
X = TIME



Chapter 15
Spatial Pestilence Dynamics

15.1 Diseased and Healthy Immigrating Insects

This chapter expands and refines some earlier models, which included life stages
of insects, by specifically distinguishing two cohorts of a population infected with
a disease. The two populations modeled here are insects that suffer from a disease
that increases mortality for the infected nymphs and adults and also decreases their
egg-laying rate. Unlike the previous chapters, we assume two populations of insects
living in two fields. One of the fields has generally better living conditions than the
other, although a current year’s carrying capacities are randomly generated and there
is some overlap in the ranges within which carrying capacities fluctuate.

The carrying capacities of the two fields have a direct effect on birth rates. The
carrying capacities of the two fields are defined as

K1 = IFCARRY R1 > .666THEN2
ELSE IF CARRY R1 < .333THEN.5
ELSE1

(15.1)

and
K2 = IFCARRYR2 > .666THEN4

ELSE IF CARRY R2 < .333THEN1
ELSE2

(15.2)

respectively, with CARRY R1 and CARRY R2 as random numbers between 0 and 1.
These random numbers are calculated in the following module with

RCOUNT1 = IFMOD(TIME,52) = 0 THEN RANDOM(0,1)/DT ELSE 0
(15.3)

and

R COUNT2 = IFMOD(TIME,52) = 0 THEN RANDOM(0,1)/DT ELSE 0.
(15.4)

B. Hannon and M. Ruth, Dynamic Modeling of Diseases and Pests, 251
Modeling Dynamic Systems,
c© Springer Science+Business Media LLC 2009
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DUMP1 DUMP2R COUNT1 R COUNT2

CARRY R1 CARRY R2

Fig. 15.1

where MOD is the built-in function that computes the remainder (modulo) of a
division—in our case the division of TIME by 52 (Figure 15.1). We make use of
the MOD function here to set up a recurring counter. Note that with some DT val-
ues, whose fractional representation does not have n2 in the denominator, STELLA
rounds the remainder in the MOD function; so the re-starting values of R COUNT1
and R COUNT2 for each new year are not exactly zero.

When overcrowding develops, healthy adult insects leave their home field and
join the other population. Furthermore, it is assumed that 10% of healthy adults
migrate under all circumstances. Changes in population sizes are no longer only
dependent on births and on deaths but additionally on migration.

The model is composed of the following additional modules. The first captures
the population dynamics of healthy insects in the first field (Figure 15.2).

The second module is set up to calculate the change in nymph and adult popula-
tion in field 1 that are affected by the disease (Figure 15.3).

A virtually identical second set of these modules captures the dynamics of the
populations in field 2. Parameters relevant to both healthy and diseased insects in
both fields are calculated in the following modules. They include

• a calculation of the total number of adults in each fields, ALL ADULTS 1 and
ALL ADULTS 2;

• the ratio of the total number of adults in each region to the carrying capacity of
the respective region, FRXNL CAP1 and FRXNL CAP2;

• experimental maturation rates for healthy and diseased insects, F1 H, F1 D;
• model maturation rates U1 H, U1 D;
• experimental laying rates A2 H, A2 D;
• experimental daily adult survival fractions per stage, S2 H , S2 D; and
• adult mortality rates B1 H, B1 D, B2 H, B2 D.

The latter are calculated in the module of Figure 15.4, using the following exponen-
tial functions:

B1H = (1−EXP(LOGN(S1H)∗F1H∗DT))/DT (15.5)

B1D = (1− EXP(LOGN(S1D)∗F1D∗DT))/DT (15.6)
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Fig. 15.4

B2H = (1−EXP(LOGN(S2H)∗DT/1))/DT (15.7)

B2D = (1−EXP(LOGN(S2D)∗DT/1))/DT (15.8)

Figure 15.5 shows the combined result of the population dynamics due to natural
increases and deaths as well as migration. Over the long run, the population of each
field is clearly responding to changes in the local carrying capacity. Numbers are
slow to build up in both fields when the start is 0.1 healthy and diseased adults in
each field. Surprisingly, neither field’s total population hugs the carrying capacity
very well in this graphed run, although that effect was evident in some other runs.
Clearly factors other than carrying capacity are important. While we have required
that 10% of healthy adults migrate, we are not seeing the diseased population expand
to fill that gap.



15.1 Diseased and Healthy Immigrating Insects 255

0 52 104 156 208
Weeks

1:

1:

1:

2:

2:

2:

3:

3:

3:

4:

4:

4:

1: ADULTS D1 2: ADULTS D2 3: ADULTS H1 4: ADULTS H2

1 1 1 12 2

2 2

3

3

3

3
4

4

4 4

0.00

3.00

6.00

Fig. 15.5

15.1.1 Questions and Tasks

1. Note how ensuing runs of the model in this chapter—which use the same para-
meters and initial conditions—are significantly different. Why is this difference
occurring?

2. In the model, the diseased insects are at a “disadvantage.” What would you
change (within the realm of the biologically likely) to favor the diseased pop-
ulation?

3. Is it possible that we can provide a more useful means for biological control by
studying insect population dynamics from an ecological perspective? Can you
implement such a control in the model?

4. Introduce additional factors, such as seasonality, into the population model.

DISEASED AND HEALTHY IMMIGRATING INSECTS

ADULTS D1(t) = ADULTS D1(t − dt) + (MATURE D1 + I R1 −
DEATHS DA1) * dt
INIT ADULTS D1 = .1 {Initial diseased adults.}
INFLOWS:
MATURE D1 = U1 D * NYMPHS D1 {Individuals per Time Period}
I R1 = INFECTION 1 {Individuals per Time Period}
OUTFLOWS:
DEATHS DA1 = ADULTS D1 * B2 D {Individuals per Time Period}
ADULTS D2(t) = ADULTS D2(t − dt) + (MATURE D2 + I R2 −
DEATHS DA2) * dt
INIT ADULTS D2 = .1 {Initial diseased adults.}
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INFLOWS:
MATURE D2 = U1 D * NYMPHS D2 {Individuals per Time Period}
I R2 = INFECTION 2 {Individuals per Time Period}
OUTFLOWS:
DEATHS DA2 = ADULTS D2 * B2 D {Individuals per Time Period}
ADULTS H1(t) = ADULTS H1(t − dt) + (MATURE H1 + INCOMING 1 −
DEATHS HA1 − IMMIG 1 TO 2) * dt
INIT ADULTS H1 = .1 {Initial healthy adults}
INFLOWS:
MATURE H1 = U1 H * NYMPHS H1 * (1 − INFECTION COEF1)
{Individuals per Time Period}
INCOMING 1 = ARRIVE 2 TO 1 {Individuals per Time Period}
OUTFLOWS:
DEATHS HA1 = ADULTS H1 * B2 H {Individuals per Time Period}
IMMIG 1 TO 2 = IF ADULTS H1 − (.1 * ADULTS H1 + .9 *
FRXNL CAP1)
> 0 THEN (.1 * ADULTS H1 + .9 * FRXNL CAP1) ELSE IF ADULTS H1
> 0 THEN ADULTS H1 ELSE 0 {Individuals per Time Period; Only healthy
adults migrate. At least 10% of the healthy adults always migrate. Under the
noted conditions the 10% healthy and an additional fraction of the healthy adults
based empirically on the total number of adults also migrate. Note well the order
of the nested IF statement; the first one is checked first and if the condition holds,
the first statement is executed and the program goes no further. Otherwise all the
adults flee. This same statement is also true of the adults in the other field.}
ADULTS H2(t) = ADULTS H2(t − dt) + (MATURE H2 + INCOMING 2 −
DEATHS HA2 − IMMIG 2 TO 1) * dt
INIT ADULTS H2 = .1 {Initial healthy adults}
INFLOWS:
MATURE H2 = U1 H * NYMPHS H2 * (1 − INFECTION COEF2)
{Individuals per Time Period}
INCOMING 2 = ARRIVE 1 TO 2 {Individuals per Time Period}
OUTFLOWS:
DEATHS HA2 = ADULTS H2 * B2 H {Individuals per Time Period}
IMMIG 2 TO 1 = IF ADULTS H2 − (.1 * ADULTS H2 + .9 *
FRXNL CAP2)
> 0 THEN (.1 * ADULTS H2 + .9 * FRXNL CAP2) ELSE IF ADULTS H2
> 0 THEN ADULTS H2 ELSE 0 {Individuals per Time Period}
CARRY R1(t) = CARRY R1(t − dt) + (R COUNT1 − DUMP1) * dt
INIT CARRY R1 = 0
INFLOWS:
R COUNT1 = IF MOD(time,52) = 0 THEN RANDOM(0,1)/DT ELSE 0
OUTFLOWS:
DUMP1 = IF MOD(time,52) = 0 THEN CARRY R1/DT ELSE 0 {Insures a
new number between 0–1 each integer time step.}
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CARRY R2(t) = CARRY R2(t − dt) + (R COUNT2 − DUMP2) * dt
INIT CARRY R2 = 0 {See note in Carry R.}
INFLOWS:
R COUNT2 = IF MOD(time,52) = 0 THEN RANDOM(0,1)/DT ELSE 0
OUTFLOWS:
DUMP2 = IF MOD(time,52) = 0 THEN CARRY R2/DT ELSE 0
LEAVE 1 TO 2(t) = LEAVE 1 TO 2(t − dt) + (IMMIG 1 TO 2 −
DIE 2 TO 1 − ARRIVE 1 TO 2) * dt
INIT LEAVE 1 TO 2 = 0

INFLOWS:
IMMIG 1 TO 2 = IF ADULTS H1 − (.1 * ADULTS H1 + .9 *
FRXNL CAP1)
>0 THEN (.1 * ADULTS H1 + .9 * FRXNL CAP1) ELSE IF ADULTS H1 >
0 THEN ADULTS H1 ELSE 0 {Individuals per Time Period; Only healthy
adults migrate. At least 10% of the healthy adults always migrate. Under the
noted conditions the 10% healthy and an additional fraction of the healthy adults
based empirically on the total number of adults also migrate. Note well the order
of the nested IF statement; the first one is checked first and if the condition holds,
the first statement is executed and the program goes no further. Otherwise all the
adults flee. This same statement is also true of the adults in the other field.}
OUTFLOWS:
DIE 2 TO 1 = .25 * LEAVE 1 TO 2 {Individuals per Time Period}
ARRIVE 1 TO 2 = .75 * LEAVE 1 TO 2 {Individuals per Time Period}
LEAVE 2 TO 1(t) = LEAVE 2 TO 1(t − dt) + (IMMIG 2 TO 1 − DIE 2TO1
− ARRIVE 2 TO 1) * dt
INIT LEAVE 2 TO 1 = 0

INFLOWS:
IMMIG 2 TO 1 = IF ADULTS H2 − (.1 * ADULTS H2 + .9 *
FRXNL CAP2)
>0 THEN (.1 * ADULTS H2 + .9 * FRXNL CAP2) ELSE IF ADULTS H2 >
0 THEN ADULTS H2 ELSE 0 {Individuals per Time Period}
OUTFLOWS:
DIE 2TO1 = .25 * LEAVE 2 TO 1 {Individuals per Time Period}
ARRIVE 2 TO 1 = .75 * LEAVE 2 TO 1 {Individuals per Time Period}
NYMPHS D1(t) = NYMPHS D1(t − dt) + (BIRTHS D1 − DEATHS DN1 −
MATURE D1) * dt
INIT NYMPHS D1 = 0 {Initial diseased eggs}

INFLOWS:
BIRTHS D1 = IF (K1 − ALL ADULTS 1) > 0 THEN A2 D * ADULTS D1
ELSE 0 {Individuals per Time Period}
OUTFLOWS:
DEATHS DN1 = B1 D * NYMPHS D1 {Individuals per Time Period}
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MATURE D1 = U1 D * NYMPHS D1 {Individuals per Time Period}
NYMPHS D2(t) = NYMPHS D2(t − dt) + (BIRTHS D2 − DEATHS DN2 −
MATURE D2) * dt
INIT NYMPHS D2 = 0 {Initial diseased eggs}
INFLOWS:
BIRTHS D2 = IF (K2 − ALL ADULTS 2) > 0 THEN A2 D * ADULTS D2
ELSE 0 {Individuals per Time Period}
OUTFLOWS:
DEATHS DN2 = B1 D * NYMPHS D2 {Individuals per Time Period}
MATURE D2 = U1 D * NYMPHS D2 {Individuals per Time Period}
NYMPHS H1(t) = NYMPHS H1(t − dt) + (BIRTHS H1 − DEATHS HN1 −
MATURE H1 − INFECTION 1) * dt
INIT NYMPHS H1 = 0 {Initial Healthy eggs}
INFLOWS:
BIRTHS H1 = IF (K1 − ALL ADULTS 1) > 0 THEN A2 H * ADULTS H1
ELSE 0 {Individuals per Time Period}
OUTFLOWS:
DEATHS HN1 = B1 H * NYMPHS H1 {Individuals per Time Period}
MATURE H1 = U1 H * NYMPHS H1 * (1 − INFECTION COEF1)
{Individuals per Time Period}
INFECTION 1 = INFECTION COEF1 * MATURE H1 {Individuals per Time
Period}
NYMPHS H2(t) = NYMPHS H2(t − dt) + (BIRTHS H2 − DEATHS HN2 −
MATURE H2 − INFECTION 2) * dt
INIT NYMPHS H2 = 0 {Initial Healthy eggs}
INFLOWS:
BIRTHS H2 = IF (K2 − ALL ADULTS 2) > 0 THEN A2 H * ADULTS H2
ELSE 0 {Individuals per Time Period}
OUTFLOWS:
DEATHS HN2 = B1 H * NYMPHS H2 {Individuals per Time Period}
MATURE H2 = U1 H * NYMPHS H2 * (1 − INFECTION COEF2)
{Individuals per Time Period}
INFECTION 2 = INFECTION COEF2 * MATURE H2 {Individuals per Time
Period}
A2 D = .35 {Experimental laying rate. DISEASED EGGS PER ADULT PER
DAY.}
A2 H = .75 {Experimental laying rate. EGGS PER ADULT PER DAY.}
ALL ADULTS 1 = ADULTS H1 + ADULTS D1
ALL ADULTS 2 = ADULTS H2 + ADULTS D2
B1 D = (1 − EXP(LOGN(S1 D) * F1 D * DT))/DT {Egg mortality rate,
1/DAY. Instantaneous survival fraction + instantaneous mortality fraction = 1.}
B1 H = (1 − EXP(LOGN(S1 H) * F1 H * DT))/DT {Egg mortality rate,
1/DAY. Instantaneous survival fraction + instantaneous mortality fraction = 1.}
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B2 D = (1 − EXP(LOGN(S2 D) * DT/1))/DT {Adult mortality rate, 1/day. One
day = T = 1 = experimental period for which adult mortality is measured.
Instantaneous survival fraction + instantaneous mortality fraction = 1.}
B2 H = (1 − EXP(LOGN(S2 H) * DT/1))/DT {Adult mortality rate, 1/day. One
day = T = 1 = experimental period for which adult mortality is measured.
Instantaneous survival fraction + instantaneous mortality fraction = 1.}
F1 D = .2 {Experimental maturation rate, 1/DAY, i.e., 20 eggs per 100 eggs
mature each day, as noted in the experiment. In other words, a surviving egg
matures on the average in five days under the experimental conditions.}
F1 H = .2 {Experimental maturation rate, 1/DAY, i.e., 20 eggs per 100 eggs
mature each day, as noted in the experiment. In other words, a surviving egg
matures on the average in five days under the experimental conditions.}
FRXNL CAP1 = ALL ADULTS 1/K1
DOCUMENT: This fraction is the degree to which both healthy and diseased
adults have reached their carrying capacity.

FRXNL CAP2 = ALL ADULTS 2/K2
INFECTION COEF1 = 1 − EXP(−.3 * NYMPHS H1 * NYMPHS D1)
{Constructed function giving the desired 0 to 1 probability.}
INFECTION COEF2 = 1 − EXP(−.3 * NYMPHS H2 * NYMPHS D2)
{Constructed function giving the desired 0 to 1 probability.}
K1 = IF CARRY R1 > .666

THEN 2
ELSE IF CARRY R1 < .333

THEN .5
ELSE 1 {This is the carrying capacity of the area the insects are in}

K2 = IF CARRY R2 > .666
THEN 4

ELSE IF CARRY R2 < .333
THEN 1

ELSE 2 {This is the carrying capacity of the area the insects are in}
S1 D = .5 {Experimental diseased egg survival fraction, dimensionless, per
stage. Stage = 1/F1, i.e., 30 eggs per 100 eggs survive each 1/F1 days, as noted in
the experiment.}
S1 H = .7 {Experimental egg survival fraction, dimensionless, per stage. Stage
= 1/F1, i.e., 70 eggs per 100 eggs survive each 1/F1 days, as noted in the
experiment.}
S2 D = .65 {Experimental daily diseased adult survival fraction per stage,
dimensionless.}
S2 H = .8 {Experimental daily adult survival fraction per stage, dimensionless.}
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U1 D = F1 D * EXP(LOGN(S1 D) * F1 D * DT) {Model maturation rate for
survivors, 1/DAY. Hatch rate = instantaneous survival fraction * maturation
rate.}
U1 H = F1 H * EXP(LOGN(S1 H) * F1 H * DT) {Model maturation rate for
survivors, 1/DAY. Hatch rate = instantaneous survival fraction * maturation
rate.}

15.2 The Spatial Dynamic Spread of Rabies in Foxes1

15.2.1 Introduction

A spatially explicit computer model is developed to examine the dynamic spread
of fox rabies across the state of Illinois and to evaluate possible disease control
strategies. The ultimate concern is that the disease will spread from foxes to humans
through the pet population. We are also concerned about the significant loss of an
indigenous species.

Modeling the population dynamics of rabies in foxes requires comprehensive
ecological and biological knowledge of the fox and pathogenesis of the rabies virus.
Variables considered, including population densities, fox biology, home ranges, dis-
persal rates, contact rates, and incubation periods, can greatly affect the spread of
disease. Accurate reporting of these variables is paramount for realistic construction
of a spatial model. The spatial modeling technique utilized is a grid-based approach
that combines the relevant geographic condition of the Illinois landscape (typically
described in a georeferenced database system) with a nonlinear dynamic model of
the phenomena of interest in each cell, interactively connected to the other appro-
priate cells (usually adjacent ones).

The resulting spatial model graphically links data obtained from previous mod-
els, fox biology, rabies information, and landscape parameters using various hierar-
chical scales and makes it possible to follow the emergent patterns. It also facilitates
experimental stimulus/result data collection techniques. Results from the model in-
dicate that the disease would likely spread among the native healthy fox population
from east to west and would occur in epidemiological waves radiating from the
point of introduction; becoming endemic across the state of Illinois in about 15 to
20 years. Findings also include the realization that while current hunting pressures
can potentially extirpate the Illinois fox population, some level of hunting pressure
could be used to control the disease.

Spatially explicit modeling of complex environmental problems is essential
for developing realistic descriptions of past behavior and the possible impacts of

1 Condensed from: A Dynamic Model of the Spatial Spread of an Infectious Disease: The Case of
Fox Rabies in Illinois, with Brian Deal, Cheryl Farello, Mary Lancaster, Thomas Kompare, Bruce
Hannon, Environmental Modeling and Assessment, 5:47–62, 2000.
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alternative management policies2. Past ecosystem-scaled model development has
been limited by the conceptual complexity of formulating, building, and calibrating
intricate models. This has led to a general recognition of the need for collabora-
tive modeling projects3. A graphically based, spatial modeling environment (SME)
has been developed at the University of Maryland to address the conceptual com-
plexity and collaborative barriers to spatio-temporal ecosystem model development.
The modeling environment links icon-based graphical modeling environments (e.g.
STELLA) with parallel supercomputers and a generic object database4. It allows
users to create and share modular, reusable model components, and utilize advanced
parallel computer architectures without having to invest unnecessary time in com-
puter programming or learning new system.

The reader could run this complex model after learning the associated special
software. However the process is somewhat complex and requires special hardware
as well. Nevertheless, the model is included here in part as a demonstration of ad-
vanced modeling of diseases and pests that builds on the lessons from previous
chapters in this book and to prompt exploration of more complex spatial dynamics
that underlie many disease and pest issues.

15.2.2 Fox Rabies in Illinois

The epidemiology of fox rabies is intimately linked with fox behavior. Foxes pro-
duce their young in spring and juveniles migrate each fall and early winter. Adults
will also migrate out of their home range if their population density is sufficiently
high. This migratory behavior becomes the vehicle for widespread transmission of

2 Risser, P.G., J.R. Karr, and R.T. Foreman. 1984. “Landscape Ecology: Directions and Ap-
proaches.” Illinois Natural History Survey special publication; no. 2, Illinois Natural History
Survey.

Costanza, R., F.H. Sklar, and M.L. White, 1990. BioScience 40 91–107.
Sklar, F.H. and R. Costanza. 1991. Quantitative Methods in Landscape Ecology, eds. M.G.

Turner and R. Gardner, Springer-Verlag, New York, NY. pp. 239–288.

3 Goodall, D.W. 1974. The Hierarchical Approach to Model Building, The First International
Congress of Ecology, Wageningen, Netherlands, Center for Agricultural Publishing and Docu-
mentation.

Acock B. and J.F. Reynolds. 1990. Process Modeling of Forest Growth Responses to Envi-
ronmental Stress, eds. R.K. Dixon, R.S. Meldahl, G.A. Ruark, and W.G. Warren, Timber Press,
Portland, OR.
4 Costanza, R. and T. Maxwell,. 1991. Ecological Modeling 58 159–183.

Maxwell, T. and R. Costanza. 1994. Toward Sustainable Development: Concepts, Methods,
and Policy, vol. 58, eds. J. Van den Bergh and J. Van der Straaten, Island Press, Washington, D.C.
pp. 111–138.

Maxwell, T. and R. Costanza. 1995. International Journal of Computer Simulation: Special
Issue on Advanced Simulation Methodologies 5 247–262.

SME, http://kabir.cbl.umces.edu/SME3/index.html, International Institute for Ecological Eco-
nomics, Center for Environmental Science, University of Maryland System (1999).
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disease because the behavior of the infectious animal becomes erratic and combat-
ive, and the disease is then spread during contact with healthy foxes through biting.
The incubation period for fox rabies varies from 14 to 90 days, ending in clinical
illness. An animal may be infectious for up to a week before the onset of symptoms
and remains infectious until death. Model parameters such as the effective biting
rate and the actual length of the infected and infectious periods are difficult to deter-
mine in the field. We have used the best available data and determined an effective
biting coefficient by trial and error comparisons of fox densities gained from the
literature cited below.

A complete model of the fox and fox behavior might include a set of sex dif-
ferentiated age cohorts. We found however, that the history of the disease and of
fox behavior could be adequately represented by a simple four stock model of both
healthy and sick juveniles and adults. The model includes both deterministic and
stochastic components and can be adapted to any disease that possesses spatial dy-
namics by simply adjusting the input data. The results of our epidemic model indi-
cate that the incidence of fox rabies can be decreased with an intervention strategy
such as hunting. However, the results also indicate that the current fox hunting pres-
sures, coupled with the introduction of the rabies disease, would lead to elimination
of the fox in Illinois. Our results suggest that a reduced hunting pressure can leave a
sustainable fox population in spite of the occasional introduction of the disease from
surrounding areas. The disease can also be controlled by aerial deposition of baited
vaccines over a large area. The model indicates the spatial dynamics of diseased
foxes, and thus allows the most judicious and least expensive aerial deployment of
the vaccine.

15.2.3 Previous Fox Rabies Models

Dynamic models of rabies in wildlife populations have been proposed by others5.
These models have focused on the spatial spread of disease and potential impact
of various control measures. But the addition of a spatial component to the disease
dynamic is, in our opinion, a critical component. Spatial components can more eas-
ily explain variation in the rate of disease spread through a population6, as well
as provide a more holistic view of the dynamic interaction of animal, disease, and
landscape. Since wildlife populations are not indolent and are typically in a perpet-
ual state of flux, contact rates between diseased and healthy animals depend to some

5 David, J.M., L. Andral, and M. Artois. 1982. Ecological Modeling 15 107–125.
Bacon, P.J. 1985. Population Dynamics of Rabies in Wildlife, Academic Press, New York, NY.
White, P.C.L., S. Harris, and G.C. Smith. 1995. Journal of Applied Ecology 32 693–706.
Murray, J.D., E.A. Stanley, and D.L. Brown. 1986. Proceedings of the Royal Society of London

B229 111–150.
Gardner, G., A. Leslie, R.T. Gardner, and J. Cunningham 1990. Verlag der Zeitschrift fur Natur-

forschung 45c 1230–1240.
6 Bacon, P.J. and D. MacDonald,. 1980. Nature 289 634–635.
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extent on spatially derived information. David et al. (1982) proposed a simple model
of vulpine rabies that included much of the same biological components we utilize
in our model: reproduction, dispersal, and spatial distribution. The spatial compo-
nent of the David model is not linked to habitat resources however, and the display
mechanisms of the SME offer a much more explicit depiction of possible scenarios.

Vulpine rabies poses a serious problem in Europe due to increasingly large fox
populations and its zoonotic potential, increasing the probability of human contact
in heavily populated areas7. Fox densities in Bristol, England for example, range
from 1.82 to 3.64 foxes per square kilometer over a home range size of 0.45 square
kilometers8. In comparison, densities in the United States are lower: 0.15 foxes per
square kilometer over a larger home range size of 9.6 square kilometers9. In the
United States, rabies in the red fox, Vulpes vulpes, has reached epidemic levels in
western Alaska and northern New York.

Previous linear models using data collected from European fox populations show
a dramatic decrease in the number of foxes when rabies is introduced into a healthy
population. These decreases reduce the population below an apparent disease thresh-
old, and the disease is shown to die out10. These models typically demonstrate an
inversely proportional relationship between infected and healthy foxes when rabies
is first introduced into the population. As the disease becomes established, the num-
ber of infectious foxes increases and the susceptible fox population decreases11.
Murray (1987) describes these density decreases as “breaks,” where the population
becomes too low for the disease to persist in the environment. Gardner et al. (1990)
concluded that the disease could be eradicated from a fox population when fox num-
bers are reduced to a critical level below the carrying capacity. Most rabid epizootics
do not drive fox populations to extinction however.

Several models demonstrated that both healthy and infected fox populations sta-
bilized over a period of 20 to 30 years12. At this time, healthy populations reached
levels that were half of the total carrying capacity and infected foxes were reduced
below 10 percent of the total population13. Other models have concluded that rabies,
a cyclical virus, can reemerge between 3.9 to 5 years after a period of quiescence14.

We concluded that vulpine rabies could be viewed as a cyclical, nonlinear dis-
ease. When a susceptible population becomes infected, it decreases the healthy pop-
ulation but does not eliminate it. When the population rebuilds to a critical mass the
disease is then able to reestablish, and the cycle begins again. In this way, vulpine

7 Steck, F. and A. Wandeler. 1980. Epidemiologic Reviews 2 71–96.
8 Trewhella, W.J., S. Harris, and F.E. McAllister. 1988. Journal of Applied Ecology 25 423–434.
9 Storm, G.L., R.D. Andrews, R.L. Phillips, R.A. Bishop, D.B. Siniff, and J.R. Tester. 1976.
Wildlife Monograph 49 1–81.
10 White, et al. 1995; Murray, et al. 1986; Gardner, et al. 1990; Bacon and MacDonald. 1980; and:
Murray, J.D. 1987. American Scientist 75 280–284.
11 Murray, et al. 1986; Murray 1987; Gardner, et al. 1990.
12 Gardner, et al. 1990; R.M. Anderson, H.C. Jackson, R.M. May, and A.M. Smith. 1981. Nature
289 765–771.
13 Murray 1987; Anderson, et al. 1981.
14 Murray et al. 1986; Gardner et al. 1990.
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rabies is an epidemiological disease. This concept is important for the development
of a spatial model that describes the spread of the disease over a landscape and for
the evaluation of possible control measures.

15.2.4 The Rabies Virus

Canine rabies transmitted to humans has been reduced in the United States, although
it is still a factor in over 75,000 human cases worldwide and is still considered
a human health issue15. The disease, like many communicable diseases, appears to
occur in cyclical waves. Its spread can best be understood through comprehensive
study of the behavior of its mammalian hosts and the pathogenesis of the virus16.
Typical host populations are heterogeneous in nature and field studies are difficult.
There appears to be a hierarchy of susceptibility to rabies, with foxes, wolves, and
coyotes being the most susceptible17. The fox adds to this complexity with shy
and elusive behavior18. Although foxes do not typically interact with humans as
frequently as other medium-sized mammals, they do come in contact with feral
felines and canines. This contact increases the risk of stray cats and dogs contracting
the rabies virus, and that risk places humans and domestic pets at risk.

The primary mode of rabies transmission is through the bite of an infected an-
imal. To a lesser extent, scratching and licking can also transmit the disease. The
virus replicates at the site of entry and once it reaches a sufficient titer the virus
travels via the neural pathways to the brain19. The virus titer is defined as the small-
est amount of virus per unit volume capable of producing infection20. The virus then
travels from the central nervous system via peripheral nerves to the salivary glands,
where it continues to multiply. Shedding of the virus in the saliva may occur before
the appearance of clinical signs21. The incubation period, the time from inoculation
to the appearance of clinical signs, can vary depending on the site of entry and its
proximity to the central nervous system as well as the amount of virus entering the

15 Fenner, F.J., E. Paul, J. Gibbs, F.A. Murphy, R. Rott, M.J. Studdert, and D.O. White, 1993.
Veterinary Virology, Academic Press, New York, NY, 2nd ed.

Rupprecht, C.E., J.S. Smith, M. Fekadu, and J.E. Childs., Emerging Infectious Diseases 1.
1995. 107–114.
16 Kaplan, C. , G.S. Turner, and D.A. Warrell. 1986. Rabies: The Facts, Oxford University Press,
Oxford, England, ed. 2.
17 MacDonald, D.W. 1980. Rabies and Wildlife: A Biologist’s Perspective, Oxford Univ. Press,
Oxford, UK.

Fields, B.N., D.M. Knipe, R.M. Chanock, M.S. Hirsch, J.L. Melnick, T.P. Monath, and
B. Roizman. 1990. Virology, Raven Press, New York, NY, 2nd ed.
18 MacDonald. 1980.
19 Scherba, G. April 1998. Presentation to Ecological Modeling Group, Associate Professor of
Veterinary Virology, University of Illinois.
20 Fields et al. 1990; Scherba 1998; G.P. West, 1973. Rabies in Man and Animals, Arco Publishing
Co, New York, NY.
21 West 1973.
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wound site22. Early clinical signs may be subtle and depend on where the virus is
most concentrated in the central nervous system. Two clinical forms of rabies are
known. The furious form affects the limbic system and, thus, the animal’s behav-
ior23. The dumb or paralytic form causes depression and lack of coordination24.
Once clinical signs of rabies develop, death usually occurs in 7–10 days25.

After the onset of clinical disease, foxes exhibit such overt behavioral changes as
restlessness, pacing, and loss of appetite followed by either aggression or confusion,
depending on the clinical form of the virus. The furious form of rabies will result in
aggressive behavior, which encourages transmission of the disease. A fox with the
paralytic form of rabies will become lethargic and confused and may only bite if
provoked or approached by others. The final stages of either form of the disease are
seizures and coma, followed by death. Normal foxes may “shy away” from rabid
foxes thereby reducing their risk of infection26.

15.2.5 Fox Biology

The red fox, Vulpes vulpes, is distributed throughout much of North America. Within
the United States, the red fox has extended its range into forested areas where wolves
and coyotes have been reduced or eliminated and where forests have been cleared27.

The basic social unit of the red fox is typically a group of three or four breeding
adults, and their juvenile offspring28. In cases where a territory includes several
adults, one male and a variable number of closely related vixens are typically in a
unit29. Average litter size is six pups and four pups generally survive until the time
of dispersal30.

Foxes are solitary, nocturnal foragers. They exploit the available food supply
within a fairly well defined home range. Members of a group tend to follow each
other from one resource patch to another and will eventually end up very close to
the original point of departure toward the end of each night31. The vixens have indi-
vidual ranges that overlap with each other and are encompassed by the home range

22 Fields et al. 1990.
23 West 1973.
24 MacDonald 1980.
25 Bacon, P. and D. MacDonald. 1980. New Scientist 28).
26 Baer, G.M. 1975. The Natural History of Rabies: Volume I, Academic Press, New York, NY.
27 Storm et al. 1976; T.G. Scott. 1955. Illinois Natural History Survey Division, Biological Notes.
No. 35.
28 Doncaster, C.P. and D.W. MacDonald 1997. Journal of Zoology 241 73–87.
29 MacDonald 1980.
30 Storm et al. 1976.
31 Doncaster, C.P. and D.W. MacDonald. 1997. Journal of Zoology 241 73–87.
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of the male fox, which essentially defines the territory of the group. Juveniles will
exploit a limited number of resource patches close to their dens and within the home
range of their parents, gradually expanding their ranges and separating themselves
through the late summer until the time of dispersal32. Group ranges inevitably over-
lap to some degree, since an individual fox will normally cover less than half of its
range in one night33. Encounters between foxes of different social groups in these
overlapping areas will undoubtedly result in territorial conflicts when they occur at
resource nodes.

Foxes that disperse from their home territories will normally travel in a relatively
straight line until they find another territory that is available for occupancy34. If
they are unable to find another territory within the dispersal season they become
transients, forced to move continually. Hunting is the primary source of fox mortal-
ity, accounting for approximately 80% of deaths35. Hunting pressure is the primary
mechanism for producing available territory during dispersal; that is when a major-
ity of young foxes establish a home range. Hunting season in the state of Illinois
extends from early November through the end of January.

Rabid foxes typically remain in their territories, but they do spend time resting
at the peripheries, where they are more likely to come in contact with foxes from
neighboring groups. Fox contact behavior however remains the most important un-
known parameter in the spread of fox rabies36. Foxes exhibit different social behav-
iors, which may be density dependent. At lower densities, animals may be solitary
or live in pairs. At higher densities, loose family groups occur and are generally
comprised of one male, several females, and their offspring. Data from Sheldon37

indicates that females determine the home range of a family group and that males
are residents for only part of the year.

15.2.6 Model Design

A self-explanatory simplified flow chart of the spatial modeling procedure used in
the development of the fox rabies model can be seen in Figure 15.6.

In this grid-based approach, each 6-mile square cell defined by the GIS maps
is considered a typical fox home range. Each grid cell contains a highly nonlinear
STELLA model that simulates the dynamic interaction and movement of foxes in
one-month increments. The cellular model includes variables describing the propen-
sity for fox immigration and emigration (based on fox population density) between
adjacent cells. Each cellular model is automatically parameterized using the GIS

32 Storm et al. 1976.
33 Doncaster 1997.
34 Storm et al. 1976.
35 Storm et al. 1976.
36 White, P.C.L. and S. Harris. 1994. Journal of Animal Ecology 63 315–327.
37 Sheldon, W.G. 1950. Journal of Wildlife Management 14 33–42.



15.2 The Spatial Dynamic Spread of Rabies in Foxes 267

map
preparation

compile

model
trasnslator

create
cellular
model

define
inter-cell
variable
movemnt

S T E L L A

S M E

G R A S S

r u n

S T E L L A

S M E S M E

output

G R A S S

Fig. 15.6

maps for the area of concern. The GIS maps in our case referenced land-use condi-
tions in Illinois that were used to develop fox carrying capacities in each of 1,610
cells that describe the state. Georeferenced maps were also used for the initial in-
troduction of three diseased foxes along the state’s eastern boundary (the disease
appears to be spreading from east to west in the United States). The model collec-
tion is then run on a workstation computer for a model run-time of 25 years.

15.2.7 Cellular Model

A simplified STELLA model of fox population dynamics is shown in Figure 15.7.
The four main variables measured—adult foxes, juvenile foxes, adult sick foxes, and
juvenile sick foxes are represented as stock variables. The flow variables regulate
the additions and subtractions to the stocks that take place at each time step (in this
model, one month) and the rate variables help determine the amount of flow and
changes in the flow variables. For the population dynamics model, flows and rates
include: births of juvenile foxes, a death rate for each stock, emigration (out of)
and immigration (into) each stock from adjoining cells, and a maturation of juvenile
foxes into adulthood. A more detailed explanation of the model follows.

Details of the fox birth rates, maturation rates, infection rates, mortality rates,
and migration rates are given in Deal et al. (2000)38.

38 Deal, B., C. Farello, M. Lancaster, T. Kompare and B. Hannon. 2000. A Dynamic Model of
the Spatial Spread of an Infectious Disease: The Case of Fox Rabies in Illinois, Environmental
Modeling and Assessment, Vol. 5, pp. 47–62.



268 15 Spatial Pestilence Dynamics

JU
V

E
N

IL
E

A
D

U
L

T
M

A
T

U
R

E

D
E

A
T

H
S 

A
D

U
L

T

B
IR

T
H

B
IR

T
H

 R
A

T
E

A
D

U
L

T
A

D
U

L
T

 D
E

A
T

H

JU
V

E
N

IL
E

 D
E

A
T

H
M

O
N

T
H

JU
V

E
N

IL
E

 G
E

T
 S

IC
K

A
D

U
L

T
 S

IC
K

A
D

U
L

T
 G

E
T

 S
IC

K
JU

V
E

N
IL

E
 B

IT
E

 C

JU
V

 S
IC

K

A
D

U
L

T
 B

IT
E

 C

A
D

U
L

T
 S

IC
K

JU
V

 S
IC

K

M
O

N
T

H

A
D

U
L

T
 I

N

A
D

U
L

T
 S

IC
K

 I
N

JU
V

E
N

IL
E

 I
N

JU
V

 S
IC

K
 I

N

JU
V

 O
U

T J 
E

M
IG

R
A

T
E

JS
 E

M
IG

R
A

T
E

JU
V

 S
IC

K
 O

U
T

A
 E

M
IG

R
A

T
E

A
D

U
L

T
 S

IC
K

 O
U

T

A
D

U
L

T
 O

U
T A

S 
E

M
IG

R
A

T
E

J 
SU

R
V

IV
A

L
 C

O
E

FF
A

 S
U

R
V

IV
A

L
 C

O
E

FF

JU
V

 S
IC

K
 D

R
A

D
U

L
T

 S
IC

K
 D

R

D
E

A
T

H
S 

JU
V

Fi
g.

15
.7



15.2 The Spatial Dynamic Spread of Rabies in Foxes 269

15.2.8 Model Assumptions

As with all complex models, a series of assumptions is required. Here are ours:

1. There is no significant difference in the behavior of males and females regarding
interaction outside the family unit and dispersion. The behavior of foxes is not
significantly different when foxes outside the family unit are encountered.

2. Large rivers are not barriers to migration; it is assumed that foxes will use
bridges, swim, or walk across the frozen surface during the winter.

3. Rabies is always fatal; every fox that contracts rabies will die39.
4. All rabid foxes are equal sources of infection; all foxes during the rabid phase

will behave similarly.
5. Rabies incubation and infectious periods are the same length of time; there is no

significant difference in the time periods of incubation and being infectious.
6. All surviving juvenile foxes mature to adulthood at 11 months.
7. There is no significant difference in the amount of resources each fox uses, re-

gardless of age.
8. The fox population has a definable maximum. We used the maximum densities

of foxes found in Great Britain40.
9. The model starts with 3 rabid foxes along the Illinois/Indiana border.

15.2.9 Georeferencing the Modeling Process

Red foxes live in a variety of habitats41. According to the Illinois Natural History
Survey, foxes avoid forested areas and interior urban areas42. Foxes use forested
areas for migration but forests are commonly avoided due to coyote predation. In
general, red foxes are found in open croplands, grasslands, or pasture, using sloped
areas for den sites. Urban edge areas and farmsteads are important habitats for the
red fox due to the abundance of prey and forage in these areas. Gosselink estimated
the average east-central Illinois red fox density at three adult foxes per 10 square
miles; a breeding pair, plus one nonbreeding (juvenile) fox43. An average litter size
is estimated at six pups, so approximately nine foxes are estimated to occupy every
10 square miles in Illinois.

This estimate of the average healthy carrying capacity in the state helped to create
a habitat-weighted fox carrying capacity map for the state of Illinois. This was done
using data collected by the Illinois Natural History Survey in the Land Cover of

39 Bacon and MacDonald 1980.
40 Anderson et al. 1981.
41 Storm et al. 1976.
42 Gosselink, T. March 1988. Personal Communication, Illinois Natural History Survey,
Champaign, IL.
43 Gosselink 1998.
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Illinois GIS based mapping projects44. Urban edge cells were assigned a fox habitat
value of 5 (urban edge is defined as any areas within 0.5 kilometers of an urban–non-
urban interface) and all interior urban cells were assigned a value of 0. Forest cells
were assessed a value of 1 and remaining cells, including wetlands, croplands, and
grass/pasture lands were assigned a range of values from 2 to 3 depending on slope.

The Land Cover of Illinois map data was aggregated into 6- by 6-mile cells,
statewide. In this new carrying capacity map, the minimum healthy carrying
capacity cell value is 21.50 foxes per cell and the maximum healthy carrying
capacity cell value is 70.84 foxes per cell. This map was exported into a GRASS
raster based format and imported into the Spatial Modeling Environment (SME) for
use with the STELLA fox model.

15.2.10 Spatial Characteristics

Adult foxes do not always remain in the territory they chose during juvenile disper-
sal. Adults are known to disperse only in the fall and winter, as juveniles do, so it
is possible for incoming juveniles to displace some adult foxes. To simulate these
characteristics and to simplify intercellular movement, the spatial model randomly
assigns the direction of travel and limits travel to the four main compass directions.
A fox that moves into a habitat cell that is at the carrying capacity (as derived from
the map) forces the movement of a fox out of the same cell.

Emigration is a function of the spatial resource limits of each cell. In this model,
the carrying capacity of a cell is a fixed amount and has been determined by land
use cover characteristics. The relative population of foxes in each cell fluctuates
with births, deaths, and immigration/emigration. Foxes emigrate when the calcu-
lated population of foxes in the cell exceeds the carrying capacity of that cell. This
simulates the relationship between fox populations and resource availability. When
the relative fox population of an area exceeds the resources available, there is pres-
sure for a part of the population to move.

Once the total number and type of emigrants for each stock is determined, di-
rectional preferences must be calculated. Foxes sometimes travel great distances to
find suitable and available habitat. It appears however, that in most instances foxes
choose home ranges based on availability and not attractiveness. For this reason, a
directional preference was assigned randomly for each group of emigrants. These
random assignments occur only when certain landscape and time considerations are
met. The directional assignment ratios are then applied to the stocks to determine
the number and direction of foxes moving out of each cell at each time step.

Immigration, driven primarily by the emigration function, is the number of foxes
in each of the four primary stocks that have been added to the cell at each compu-
tational time step. If the incoming foxes, plus foxes in the cell, exceed the carrying

44 Luman, D. , M. Joselyn, and L. Suloway. 1996. ”Illinois Scientific Survey Joint Report #3”
Illinois Natural History Survey.
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capacity of the cell then the emigration function is re-activated and the movement
process begins anew. If the carrying capacity has not been exceeded then there is no
pressure for any foxes to leave the base cell and none will emigrate.

15.2.11 Model Constraints

The following are the key constraints imposed on our model:

A. There is no interaction with the external geography of the model; foxes may not
come or go beyond the model’s defined boundaries.

B. Foxes may only migrate to another cell in the four cardinal directions.
C. The rabies disease may only be transmitted to another cell by a migrating fox.

This implies that home ranges may only exist wholly within a cell, and may not
overlap cell boundaries. There are no fractional home ranges within a cell.

D. There is no edge interaction between cells other than migration. Unlike, adja-
cent home ranges within cells, adjacent home ranges that happen to be in two
different cells do not interact, unless migration occurs.

15.2.12 Model Results

The spatial dynamics of the spread of the fox rabies disease in Illinois provides an
interesting picture. Figure 15.8 displays four maps produced from the full 25-year
run of the model. The maps show the spread of the disease among the originally
healthy, un-hunted fox population.

Since the disease has yet to hit the state, the only model calibration available
was the historic rate of spread of the disease, about 24 miles per year45. The critical

Fig. 15.8

45 Gosselink (1998).
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unknown parameter, the “Bite Coefficient”—the parameter that multiplies the prod-
uct of the sick and healthy population,—was adjusted to give this rate of spread.

Moving from left to right, the initial map depicts the state of the system at
present—that is, the initial number of healthy foxes across the state of Illinois—
black areas are indicative of cells with low fox populations. The initial map also
gives the reader an indication of the scale of the typical fox home range (each pixel
in the picture represents the 6-square-mile cell size in the model) and the complexity
of the computational problems involved.

The second map shows the incipient waves of disease that are created by the
introduction of just three rabid foxes in the first month of the model run (these three
rabid foxes are introduced into the model only once). Easily visible at the eastern
border of the state, the dark areas in this map are areas of minimal fox survival. The
map displays the dramatic impact that rabies can have on a healthy population.

After 2.6 years, the advance of the first wave of disease is clearly recognized. In
the third map, the disease has spread halfway across the state, and is calculated to
be advancing at about 24 miles per year. Also visible at this point is the reintroduc-
tion of the disease at its origin. This wave phenomena has also been noted in the
construction of other dynamic epidemic disease models46.

The fourth panel (7 years) describes a mature disease, and the wave of disease is
in its epizootic stage. The traveling wave is continuously repeated, with each suc-
cessive wave peak of the disease more spatially diffused in the east-west direction
of the advance. This traveling epizootic wave can be seen as the slow cycle on the
annual cycle in Figure 15.9. The successive waves develop because the disease does
not eradicate the entire population and some of the disease remains viable in the sur-
viving foxes. The disease is unable to move at this point, however, because the pop-
ulation of available foxes is not large enough to encourage much migration. Once
the population builds to critical mass however, migratory behavior resumes and the
disease begins to spread again. Perhaps augmented by the occasional healthy im-
migrant from Indiana, they re-grow to a substantial healthy population but again
are infected by the strays heading east from the disease front. The epidemic builds
more slowly in each ensuing repetition, since it begins with a smaller healthy popu-
lation each time. Finally, although difficult to display in a static format, the disease
becomes endemic—without epidemic pulse. In this stage, the number of diseased
foxes in the state is nearly constant (5,586).

Mapped images are extremely powerful for displaying the spatial interactions
and dynamic movement of the rabies disease. Although difficult to represent in sta-
tic format, the animations of these images provide a strong case for the use of spa-
tial simulation modeling for numerous applications. The mapped images will also
become important in future work regarding the most efficient disease control strate-
gies. A more quantified approach for displaying the results of our calibrated model
runs follows.

46 Hannon and Ruth 1997.
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15.2.13 Rabies Pressure

Although hunting pressure now exists on an apparently declining Illinois fox popu-
lation, we thought the presentation of our results would be clearer if we started the
model with the fox population at or near the 1970 estimated mean level of about
88,000. We lowered the initial population in the model, but the long-term results of
subsequent runs were unaffected by this kind of change in the initial conditions. For
the first part of our model runs, we choose to suspend the effects of hunting to allow
us to gauge the impact of the disease alone.

Healthy fox populations were set initially at 80% of the carrying capacity of
the cell. The model results show that the healthy, un-hunted population settles to
a reasonable fluctuation between 40,000 and 118,000, with a mean level of 79,000
(Figure 15.4). The total population cycle shown in this figure is caused by the birth
of a large number of juveniles every March and the automatic redefinition of the
surviving juveniles to adults in the ensuing January.

15.2.14 The Effects of Disease Alone

Our next step was to introduce the disease to a healthy, cyclically stable, un-hunted
fox population. Since rabies is noted to be spreading westward from Pennsylvania,
we choose to introduce three rabid adult foxes in the first month of the 25-year run.
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We choose to separate the effects of hunting from those of the disease. The results
are shown in Figure 15.9. Note that the fox population declines to an average steady
cycle with a mean of about 22,000 foxes, this is a 72 percent reduction from initial
population levels. From this model run, our estimate of the effect of rabies is that
the population will suffer a severe setback (a reduction to one-quarter of the healthy
mean) but the fox does not disappear from the landscape. To ecologists, this is the
good news: the fox is not eliminated by the disease. To public health officials, the
news is not so good: diseased foxes remain in the state, albeit at much reduced lev-
els; therefore, some threat of spread of the disease into the pet population remains.

15.2.15 Hunting Pressure

We then introduced the full effect of the estimated current level of hunting. The
results indicate that the healthy fox population disappears over a 25-year period at
current rates. Our hunting rates are constant from year to year however, an assump-
tion which cannot be totally accurate. Some of the fox hunting is for pelts, and that
portion (unknown) of the hunting pressure would fluctuate with the price of pelts
and the availability of foxes.

The Illinois fox population, subjected to current hunting pressures, declines to
essentially zero over the ensuing 25 years with the concurrent introduction of the
disease. We made several more runs with the hunting pressure reduced to one-half
and then one-quarter of the full-scale current hunting pressure. As one reduces the
hunting pressure, the fox population approaches the no-hunting, cyclic result dis-
cussed earlier, , with most of the recovery made when the hunting pressure was
halved. It was possible to show that a small amount of hunting will reduce the num-
ber of rabid foxes in the endemic stage of the disease.

15.2.16 Controlling the Disease

Control of wildlife disease is often expensive. Evaluation of control measures in dy-
namic modeling facilitates decision making and gives policy makers additional in-
formation and insight into the effects of the control measures tested. Use of dynamic
models in the study of wildlife diseases also identifies areas where information is
lacking.

Control attempts without clear knowledge of the spatial qualities of the studied
population or disease can produce less than optimal results47. Bögel et al. suggested
that methods used in advance of a rabies epizootic would not be effective in con-
trolling the spread of the disease once the epizootic has begun48. Additional work

47 Cowan, I.M. 1949. Journal of Mammalogy 30 396–398.
48 Bögel, K., H. Moegle, W. Krocza, and L. Andral. 1981. Bulletin of the World Health Organiza-
tion 59 269–279.
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by Bögel, et al. resulted in a proposed method to evaluate populations and rabies
control in the wild.

Anderson, et al. evaluated culling, vaccination, and culling combined with vacci-
nation as control measures for vulpine rabies. Their model revealed that population
dynamics, most notably reproduction, limited the effectiveness of culling alone49.
Vaccination of foxes is a commonly chosen control method, but again, has had lim-
ited success, particularly in areas of high animal density and good habitat50. It is
estimated that nearly 100% vaccination is required in areas of good habitat and
greater than 15 foxes per square kilometer51.

So vaccine programs (the current preferred method of control) are expensive and
potentially ineffective. The cost-effectiveness of an airdrop, vaccinated bait program
could be increased dramatically by more precise knowledge of the location and rate
of spread of the disease. A modeling process such as this one should be of great
help, assuming proper monitoring of the current status of the disease. The model
presented can describe a reasonable estimate of the location and rate of spread of the
disease front. The model would need to include some additional temporal variability,
such as lags in reporting the appearance of rabid foxes, in the initiation of the vaccine
drop, and between vaccine drop and discovery by the foxes, as well as the effective
life of the bait. The model could be expanded to become effective in this arena if
appropriate data were found.

FOX RABIES MODEL – BASIC MODEL COMPONENT

Adult Density Dependent Mortality

DEATHS ADULT = IF CELL POP > MIGRATORY CC THEN
DR DD ADULT ELSE DR NAT * ADULT + DR HUNT * ADULT
DR DD ADULT = IF CELL POP > 0 THEN DDD * ADULT/CELL POP +
(DR NAT + DR HUNT) * (CELL POP − DDD * DT) * ADULT/CELL POP
ELSE 0

Fox Population Dynamics

ADULT(t) = ADULT(t − dt) + (MATURING + A EMIGRATING −
ADULT DYING − ADULT SICKENING) * dt

INIT ADULT = (MIGRATORY CC * .8)

INFLOWS:

MATURING = If (MONTH =1) AND (JUVENILE > JUVENILE DEATH)
then (JUVENILE − JUVENILE DEATH) else 0

A EMIGRATING = (ADULT IN − ADULT OUT)

49 Anderson et al. 1981.
50 Baer, G.M., M.K. Abelseth, and J.G. Debbie. 1971. American Journal of Epidemiology 93 487–
490. Black, J.G. and K.F. Lawson. 1973. Canadian Veterinary Journal 14 206–211.
51 Anderson et al. (1981).
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OUTFLOWS:
ADULT DYING = (DEATHS ADULT)
ADULT SICKENING = (ADULT * ADULT SICK * ADULT BITE C) +
(JUV SICK * ADULT * ADULT BITE C)
ADULT SICK(t) = ADULT SICK(t − dt) + (ADULT SICKENING +
AS EMIGRATING − ADULT SICK DYING) * dt
INIT ADULT SICK = MAP INFECTED

INFLOWS:

ADULT SICKENING = (ADULT * ADULT SICK * ADULT BITE C) +
(JUV SICK * ADULT * ADULT BITE C)
AS EMIGRATING = (ADULT SICK IN − ADULT SICK OUT)
OUTFLOWS:
ADULT SICK DYING = ((ADULT SICK * A SURVIVAL COEFF) −
ADULT SICKENING)
JUVENILE(t) = JUVENILE(t − dt) + (BIRTHING + J EMIGRATING −
JUV SICKENING − JUVENILE DEATH − MATURING) * dt
INIT JUVENILE = 0

INFLOWS:

BIRTHING = if MONTH = 3 then BIRTH RATE else 0
J EMIGRATING = (JUVENILE IN − JUV OUT)
OUTFLOWS:
JUV SICKENING = (JUVENILE * JUV SICK * JUVENILE BITE C) +
(ADULT SICK * JUVENILE * JUVENILE BITE C)
JUVENILE DEATH = (DEATHS JUV)
MATURING = If (MONTH =1) AND (JUVENILE > JUVENILE DEATH)
then (JUVENILE − JUVENILE DEATH) else 0

JUV SICK(t) = JUV SICK(t − dt) + (JUV SICKENING + JS EMIGRATING
− JUV SICK DYING) * dt
INIT JUV SICK = 0

INFLOWS:

JUV SICKENING = (JUVENILE * JUV SICK * JUVENILE BITE C) +
(ADULT SICK * JUVENILE * JUVENILE BITE C)
JS EMIGRATING = (JUV SICK IN − JUV SICK OUT)
OUTFLOWS:
JUV SICK DYING = (JUV SICK * J SURVIVAL COEFF) −
JUV SICKENING
ADULT BITE C = .015
A SURVIVAL COEFF = .33
BIRTH RATE = ((0.95 * ADULT/2) * NORMAL(6.5, 0.5))
JUVENILE BITE C = .015
J SURVIVAL COEFF = .33
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MONTH = MOD(time, 12) +1

Incoming Populations

ADULT IN = A GO E@W + A GO N@S + A GO S@N + A GO W@E
ADULT SICK IN = AS GO E@W + AS GO N@S + AS GO S@N +
AS GO W@E
AS GO E@W = 0
AS GO N@S = 0
AS GO S@N = 0
AS GO W@E = 0
A GO E@W = 0
A GO N@S = 0
A GO S@N = 0
A GO W@E = 0
JS GO E@W = 0
JS GO N@S = 0
JS GO S@N = 0
JS GO W@E = 0
JUVENILE IN = J GO E@W + J GO N@S + J GO S@N + J GO W@E
JUV SICK IN = JS GO E@W + JS GO N@S + JS GO S@N + JS GO W@E
J GO E@W = 0
J GO N@S = 0
J GO S@N = 0
J GO W@E = 0

Juvenile Density Dependent Mortality

DDD = IF GAP POP >0 THEN CELL POP/MAX DENSITY CC *
GAP POP/3 ELSE 0
DEATHS JUV = IF (CELL POP > MIGRATORY CC) THEN (DR DD JUV)
ELSE (DR NAT * JUVENILE) + (DR HUNT * JUVENILE)
DR DD JUV = IF CELL POP > 0 THEN DDD * JUVENILE/CELL POP +
(DR NAT + DR HUNT) * (CELL POP − DDD * DT) *
JUVENILE/CELL POP ELSE 0

Natural Mortality

DR HUNT = DR HUNT ADD * HUNT
DR MULT = 1
DR NAT = DR NO HUNT * DR MULT
HUNT = 1
DR HUNT ADD = GRAPH(MONTH)
(1.00, 0.2), (2.00, 0.085), (3.00, 0.014), (4.00, 0.004), (5.00, 0.004), (6.00,
0.003), (7.00, 0.001), (8.00, 0.002), (9.00, 0.005), (10.0, 0.029), (11.0, 0.052),
(12.0, 0.318)
DR NO HUNT = GRAPH(MONTH)
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(1.00, 0.022), (2.00, 0.015), (3.00, 0.014), (4.00, 0.039), (5.00, 0.025), (6.00,
0.028), (7.00, 0.015), (8.00, 0.014), (9.00, 0.028), (10.0, 0.114), (11.0, 0.209),
(12.0, 0.136)

Outgoing Direction Assignment

AM EAST = IF AM TOTAL > 0 THEN ARE/AM TOTAL ELSE 0
AM NORTH = IF AM TOTAL > 0 THEN ARN/AM TOTAL ELSE 0
AM SOUTH = IF AM TOTAL > 0 THEN ARS/AM TOTAL ELSE 0
AM TOTAL = ARE + ARN + ARS + ARW
AM WEST = IF AM TOTAL > 0 THEN ARW/AM TOTAL ELSE 0
ARE = RANDOM(0,1)
ARN = RANDOM(0,1)
ARS = RANDOM(0,1)
ARW = RANDOM(0,1)
ASM EAST = IF ASM TOTAL > 0 THEN ASRE/ASM TOTAL ELSE 0
ASM NORTH = IF ASM TOTAL > 0 THEN ASRN/ASM TOTAL ELSE 0
ASM SOUTH = IF ASM TOTAL > 0 THEN ASRS/ASM TOTAL ELSE 0
ASM TOTAL = ASRE + ASRN + ASRS + ASRW
ASM WEST = IF ASM TOTAL > 0 THEN ASRW/ASM TOTAL ELSE 0
ASRE = RANDOM(0,1)
ASRN = RANDOM(0,1)
ASRS = RANDOM(0,1)
ASRW = RANDOM(0,1)
JM EAST = IF JM TOTAL > 0 THEN JRE/JM TOTAL ELSE 0
JM NORTH = IF JM TOTAL > 0 THEN JRN/JM TOTAL ELSE 0
JM SOUTH = IF JM TOTAL > 0 THEN JRS/JM TOTAL ELSE 0
JM TOTAL = JRE + JRN + JRS + JRW
JM WEST = IF JM TOTAL > 0 THEN JRW/JM TOTAL ELSE 0
JRE = RANDOM(0,1)
JRN = RANDOM(0,1)
JRS = RANDOM(0,1)
JRW = RANDOM(0,1)
JSM EAST = IF JSM TOTAL > 0 THEN JSRE/JSM TOTAL ELSE 0
JSM NORTH = IF JSM TOTAL > 0 THEN JSRN/JSM TOTAL ELSE 0
JSM SOUTH = IF JSM TOTAL > 0 THEN JSRS/JSM TOTAL ELSE 0
JSM TOTAL = JSRE + JSRN + JSRS + JSRW
JSM WEST = IF JSM TOTAL > 0 THEN JSRW/JSM TOTAL ELSE 0
JSRE = RANDOM(0,1)
JSRN = RANDOM(0,1)
JSRS = RANDOM(0,1)
JSRW = RANDOM(0,1)

Outmigration/Population Totals

ADULT PCT = IF CELL POP >0 THEN ADULT/CELL POP ELSE 0
ADULT SICK PCT = If CELL POP > 0 then ADULT SICK/CELL POP else 0



15.2 The Spatial Dynamic Spread of Rabies in Foxes 279

CELL POP = ADULT + ADULT SICK + JUVENILE + JUV SICK
EM ADULT = (ADULT PCT * TOTAL MIGRANTS)
EM ADULT SICK = (ADULT SICK PCT * TOTAL MIGRANTS)
EM JUV = (JUV PCT * TOTAL MIGRANTS)
EM JUV SICK = (JUV SICK PCT * TOTAL MIGRANTS)
JUV PCT = IF CELL POP >0 THEN JUVENILE/CELL POP ELSE 0
JUV SICK PCT = if CELL POP>0 then JUV SICK/CELL POP else 0
TOTAL MIGRANTS = IF (CELL POP − MIGRATORY CC) <= 0 THEN 0
ELSE CELL POP − MIGRATORY CC

Quantifying the Outgoing Rates

ADULT OUT = IF (MONTH >=9) AND (MONTH <= 11) THEN
EM ADULT ELSE 0
ADULT SICK OUT = {If ADULT SICK < 3 and ADULT SICK >1 then 0
else} (ADULT SICK/3)
AS GO E = (ADULT SICK OUT * ASM WEST)
AS GO N = (ADULT SICK OUT * ASM SOUTH)
AS GO S = (ADULT SICK OUT * ASM NORTH)
AS GO W = (ADULT SICK OUT * ASM EAST)
A GO E = (ADULT OUT * AM WEST)
A GO N = (ADULT OUT * AM SOUTH)
A GO S = (ADULT OUT * AM NORTH)
A GO W = (ADULT OUT * AM EAST)
JS GO E = (JSM WEST * JUV SICK OUT)
JS GO N = (JSM SOUTH * JUV SICK OUT)
JS GO S = (JSM NORTH * JUV SICK OUT)
JS GO W = (JSM EAST * JUV SICK OUT)
JUV OUT = IF (MONTH >=9) AND (MONTH <= 11) THEN EM JUV
ELSE 0
JUV SICK OUT = IF (MONTH >=9) AND (MONTH <= 11) THEN
EM JUV SICK ELSE 0
J GO E = (JM WEST * JUV OUT)
J GO N = (JM SOUTH * JUV OUT)
J GO S = (JM NORTH * JUV OUT)
J GO W = (JM EAST * JUV OUT)

Spatial Resource Limits

GAP POP = CELL POP − MIGRATORY CC
MAP BOUNDARY = 0
MAP CARRYING CAPACITY = 0
MAP INFECTED = 0
MAP MULTIPLIER = 2.234
MAX DENSITY CC = MIGRATORY CC * 2.3
MIGRATORY CC = MAP CARRYING CAPACITY * MAP MULTIPLIER
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Chapter 16
Conclusion

Being able to better understand how diseases and pests are propagated and how
they may be contained requires knowledge of the many factors that influence their
success or failure. The combination of chance events, time delays, and nonlinearities
in complex social and environmental settings make predicting spread of diseases and
pests a daunting task. Yet, some method for sorting through the myriad of factors
and influences and for anticipating future dynamics is required to meet dual goals
of improving the state of human welfare and maintaining healthy ecosystems.

In this book we provided one particular, and very powerful, way of looking at
the world. We concentrated on the forces that underlie different dynamic systems.
Others, with different educational or cultural backgrounds, may choose a different
approach and may develop different models. The potential diversity of perspec-
tives and approaches in modeling is a challenge for all of us and should be perceived
as an opportunity to engage in cross-disciplinary and cross-cultural dialogue about
the world in which we live.

STELLA, through its use of graphics, is an excellent tool to organize and com-
municate model assumptions, structure, and results among individuals with differ-
ent backgrounds. You will soon find that your models become increasingly detailed.
Frequently, model efforts become large-scale multidisciplinary endeavors. STELLA
is sufficiently versatile to enable development of complex, large-scale dynamic
models. Such models can include a variety of features that are typically not dealt
with by an individual modeler. Through easy incorporation of new modules into
existing dynamic models and flexibility in adjusting models to specific real-world
problems, STELLA fosters dialog and collaboration among modelers. It is a superb
organizing and knowledge-capturing device for model building in an interdiscipli-
nary arena. Individuals can easily integrate their knowledge into a STELLA model
without “losing sight” of, or influence on, their particular part of the model.

Even though the models developed in this book were guided toward an explana-
tion of real-world phenomena, empirical applications are not the focus of this book.
Nevertheless, once we developed sufficiently elaborate models, we made intensive
use of real-world data. These and other models illustrate the applicability to real-
world data and, in general, the power of the dynamic modeling approach chosen

B. Hannon and M. Ruth, Dynamic Modeling of Diseases and Pests, 283
Modeling Dynamic Systems,
c© Springer Science+Business Media LLC 2009
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in this book. We strongly encourage you to take up and refine some of the models
presented in this book to further accommodate data from real systems.

We selected a variety of different systems, spanning the disciplines of physics,
genetics, biology, ecology, economics, and engineering, to illustrate the power of
dynamic modeling and the multitude of possible applications. Other dynamic mod-
eling books geared specifically toward some of these and other disciplines are pub-
lished in this book series.

With this book, and the series as a whole, we wish to initiate a dialogue with
(and among) you and other modelers. We invite you to share with us your ideas,
suggestions, and criticisms of the book, its models, and its presentation format. We
also encourage you to send us your best STELLA models. We intend to make the
best models available to a larger audience, possibly in the form of books, acknowl-
edging you as one of the selected contributors. The models will be chosen based
on their simplicity and their application to an interesting phenomenon or real-world
problem. Keep in mind that these models are mainly used for educational purposes.

So register now by sending us your name, address, and possibly something about
your modeling concerns. Invite your interested colleagues and students to also reg-
ister with us now. We can build a modeling community only if we know how to
make, and maintain, contact with you. We believe that the dynamic modeling en-
thusiasm, the ecolate skill, spreads by word of mouth, by people in groups of two or
three sitting around a computer doing this modeling together, building a new model
or reviewing one by another such group. Share your thoughts and insights with us,
and through us, with other modelers. Information for writing to us follows:

Bruce Hannon
Jubilee Professor
University of Illinois
220 Davenport Hall, MC 150
607 S. Mathews Avenue, Urbana, IL 61801
Phone: 217 333-0348, Fax: 217 244-1785, Email: bhannon@uiuc.edu

and

Matthias Ruth
Roy F. Weston Chair in Natural Economics
University of Maryland
2101 Van Munching Hall
College Park, MD 20782
Phone: 301 405-6075, Fax: 301 403-4675, Email: mruth1@umd.edu
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