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Preface

The last decade is characterized by an increased interest in all industrialized
countries to the problems of tribology, such as friction, lubrication, and wear. As a
result of friction and wear, the surfaces of the solid frictional units undergo
significant changes of their initial physical and mechanical properties. Therefore,
the tribology of fracture faces a more challenging tasks than the usual problems of
strength, it requires a consideration of wide range of factors, both in the study and
the calculation of the processes of friction, wear, and lubrication, and in creating a
reliable, durable economically and environmentally effective frictional units for
machines, appliances, and apparatuses of technological processes.

The engineering science entered into the twenty-first century with a clear
understanding of the importance of friction and need for its consideration in pro-
cesses of development and design of various machine units.

In the first half of the twentieth century, the engineers approached friction with
certain pragmatism, reducing the problem mainly to determining the coefficients of
friction for specific practical conditions. It can be said that the theory of friction did
not play any significant role for a long period of time. The second half of the
twentieth century can be deservedly called the golden age of the tribological
science; there was a significant interest to the theory of friction. The intensive
development of nanotechnologies and the technologies of surface hardening, the
emergence of new composites and nanomaterials could explain such interest to the
theory of friction. Starting from the 1980s, a fundamentally new mathematical and
physical methods were developed, which made possible to study the frictional
contacts at the microscopic and atomic levels. Physical meso-mechanics,
non-equilibrium thermodynamics, synergetics, fractals, nonlinear dynamics, and
others—it is not even a complete list of new horizons in tribology. An integrated
approach in finding correlations between tribological and strength properties of
materials and their characteristics of the interatomic interaction can be the basis for
an adequate description of the contact mechanism and also a prediction of tribo-
logical properties.

v



The development of mentioned scientific fields and their practical implementation
will expand the application area of human intelligence and energy. Specialists and
engineers will be able to calculate, diagnose, predict, and select appropriate materials
for frictional pairs, and also assign the optimal operation regime for tribocoupling.

Baku Ahad Kh. Janahmadov
2014
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Introduction

Prior to the beginning of the twentieth century, tribology had a long and interesting
path, even it did solved some practical problems which arisen with the techno-
logical progress, it merely had any effect on process itself. Since then, the
engineering science have a more clear understanding of tribology and its place in
design and development of machines, equipment, and various frictional units. The
theoretical solutions to the problems of the external friction provided a ground to
develop new construction materials, and the surface hardening technologies gave a
progress in macroelectronics and created micro- and nanotechnologies.

The big achievements of applied sciences and technology in last few decades are
owing to new results and methods developed by fundamental and applied physics
and mathematics. Tribology is no exception; the science of friction, wear, and
lubrication has made significant progress as well.

At the end of 1960s the German scientist Hermann Haken introduced a new
terminology “synergetics,” which translates as “joint action” from Greek, to
emphasize the role of a collective in the formation of dissipative structures. Today,
synergetics, as the theory of self-organization, is one of the most popular and
promising interdisciplinary approaches.

The offered monograph is written based on works of those exceptional authors
and explains tribology as the physical phenomena using synergetics and fractals.
This new direction in research aims to explore the general principles of evolution
and self-organization of complex systems in the different fields of knowledge on the
basis of the construction and the examination of nonlinear dynamic systems. It has
been determined by now that the resistance of metals and alloys to fatigue is defined
by the dynamic structure and requires the analysis of a deformable material as an
open system that exchanges energy and matter with medium. In tribology, both the
external layers and all internal boundary layers should be studied as independent
nonlinear planar subsystems, which are the leading functional subsystems of
deformable solids, with broken transmission invariants. The bulk of stresses caused
by friction are concentrated in close to the surface external layers of the frictional
elements. The restructuring of the external layer under the influence of external
thermal stresses precisely takes place during the formation of thermal field, and by
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the moment when the temperature reaches certain stability, it is already affected by
various residual stresses. Generally, there is a hierarchy within the levels of the
structural elements of the deformation in the form of Cayley tree. This hierarchy is
defined as the initial structure of medium, as the formation of dissipative structures
caused by the deformation defects.

The self-organizing in open systems dissipative structures are fractal that dictates
the necessity to combine theories of synergetics and fractals in the study of physical
and mechanical nature of fracture of materials. Synergetics has expanded the notion
of structure, giving it the versatility, and the theory of fractals has enabled the
introduction of new quantitative measure for structures in the form of the fractal
dimension. The founder of the theory of fractals, B. Mandelbrot, formed the
technical term “fractal” from the Latin word “fractus” meaning “broken,” i.e., to
create fragments of arbitrary shapes. The self-similarity, as the main characteristic
of fractals, means that it is more or less uniformly arranged in a wide range of
scales. Sometimes the scale invariance is referred to as self-similarity or auto-
modeling. Thus, the concept of fractals, as the quantitative measure of the dissi-
pative structure of the predestruction zone, creates a link between the fractal
dimension and the mechanical properties, as well as the critical deformation states
of metals and alloys.

Any real physical objects and signals, even possessing of self-similarity features,
quite rarely can be described by only one measure of the fractal dimension. That is
why the theory of multifractals, inhomogeneous fractal objects, has received a wide
spread analysis. The infinite spectrum of such dimensions, generally called the
fractal dimension or Rényi entropy, is required to characterize the multifractal
dimension. So by combining the principles of the self-organization of condensed
mediums and the theory of fractals for the hierarchically coordinated systems, we
get a possibility of the systemic analysis of the restructuring process of the defective
crystal lattice in solids and that combination also allows us to calculate the gen-
eralized fractal dimension of the fatigue fracturing by using the properties of the
super-stable bifurcation cycles during the transition from order to chaos, the
Feigenbaum scenario.

In monograph, the authors are trying to give a clear picture of a quite complex
topic, and they are well aware of all obstacles and difficulties that have to face,
especially when the terminology in the studied field is still evolving. The mono-
graph findings have a great importance for tribology itself and it opens possibilities
to develop new branches such as tribophysics, materials, mechanics, diagnostics,
and monitoring. The book is intended for a wide range of scientists, engineers who
specialize in the field of tribology, who face challenging problems in development
and operation of various types of machines and equipment.

The experimental results are provided with help and support from the Science
Fund at the State Oil Company of Azerbaijan Republic (SOCAR).

The authors will be grateful for any comments on the content of the monograph.
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Chapter 1
Key Features and Operating Conditions
of Tribocoupling

1.1 Friction, Wear, and Lubrication. Concepts
Development

The improvement of the machine reliability and durability is one of the most
challenging tasks of modern engineering. In most cases, the equipment longevity is
limited to the surface wear of individual friction parts, but the growing productivity
exposes machines to extreme stresses, heavy loading, fast speeds, and high tem-
peratures. So the wear resistance becomes highly dependent on mechanical,
physical, and chemical processes that take place in friction contacts. All that
comprise the foundation of modern tribology studying.

The economic losses due to the mechanical wear make 5.4 % of the national
income of developed countries. The friction resistance consumes 30–40 % of the
worldwide energy generated within a year. So energy generated by friction does not
just disappear, it gets converted into heat, which in its turn heats up mechanisms
and all related machine units. The excessive heat leads to failure and accidents.
Studies show that approximately 80–90 % of mechanical failures are caused by
wear of mechanical units and machine parts.

The behavior of materials, their frictional, and wear properties are largely
explained by the set of complex physical and chemical, mechanical, and electrical
and magnetic processes that take place in near-surface layers at friction.

According to I.V. Kragelsky, when studying and analyzing the friction process,
it is important to examine the surface contact between interacting bodies as a
three-stage process: the interaction on the friction surface—the changes taking
place in the friction surfaces—the destruction of surfaces. For these parameters, the
change in direction is defined by the Le Chatelier–Braun principle, according to
which any system, when it is subjected to external changes, evolve in way that to
maximally reduce those effects (i.e., to increase entropy). As a result of the tri-
bosystem readjustment to such loading conditions, microstructures, microrelieves,
and submicrorelieves are formed in the near-surface layers of the interacting bodies,

© Springer International Publishing Switzerland 2016
A.Kh. Janahmadov and M.Y. Javadov, Synergetics and Fractals in Tribology,
Materials Forming, Machining and Tribology, DOI 10.1007/978-3-319-28189-6_1

1



which along with the deformation of the secondary structures of various origin on
the frictional surfaces provide the minimization of the energy loss on friction
and the localization of the friction failure zone in the thin surface layer. Besides,
during the friction of solids, a “third” body is formed in the contacting surface
layers due to the thermo-mechanical loading with certain properties. The “third”
body exists only within the contacting time and has very “special properties”.
In reality, a new material is formed in the contact zone, which resists to failure
at friction.

The theoretical development of tribology can be divided into distinctive stages.
The first stage covers the period from ancient times till the beginning of twentieth
century. It is the stage when the human civilization began to accumulate the
knowledge and made great discoveries. This includes the discovery of fire through
friction, the creation of wheel, the first ball bearings, the first transmission through
friction, and the lubrication of frictional units. The second stage covers a period
from the beginning of twentieth century until 1970, and the third stage is everything
from middle of 1970s till present times. The last period is characterized by the
interdisciplinary interest from physicists, mechanical engineers, material specialists,
chemists, and tribologists to study and find correlations between atomic and
tribological properties and examine the interacting materials on nano-, micro-, and
mesoscopic structural levels.

In his fundamental monograph, the famous English scientist D. Dawson thor-
oughly detailed the history of tribology from ancient times to the end of the
nineteenth century and where he also expressed his views on its further develop-
ment. He noted that during the early civilizations, tribology had a positive impact
on the technological progress. The advantage of the rolling process over sliding
while moving heavy freight contributed to the invention of wheel and some
primitive carts. The first wheeled cart was discovered in the Kura-Araks valley (the
present territory of Azerbaijan), and it dated back to 4–3 millennium BC.

The history of tribology is enriched with famous scientists such as Leonardo da
Vinci, G. Amontons, Ch.O. deCoulomb, O. Reynolds, W.B. Hardy, N.P. Petrov,
P.A. Rebinder, B.V. Deryagin, F.P. Bowden, I.V. Kragelsky, M.M. Khrushchev,
A.V. Chichinadze, and many others, who made brilliant scientific and technological
discoveries. The Amontons–Coulomb law is the main achievement of tribology as
the science of friction, and it shows the dependence of the friction force on the
normal load. In subsequent studies, there were many attempts to experimentally
verify and theoretically justify that law. Owing to such great mathematicians as
L. Euler, G. Leibniz, J. Leslie, L. Gumbel, and others, the tribology laws were
taking shape as from the standpoint of mechanics as from engineering practice. The
elementary friction model is given in Fig. 1.1.

The scientists, such as J.T. Desaguliers, L.N. Brillouin, W.B. Hardy, and
G.A. Tomlinson, established the foundations of the molecular interaction for the
contacting surfaces of friction pairs.
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B.V. Deryagin developed the theoretical aspects of the molecular friction theory
and the binomial friction law. His concept is based on the notion of the discrete
atomic and molecular structures of material and additive properties of friction forces
for crystalline and amorphous solids. The Deryagin’s theoretical diagram is based
on the contact model of two sliding, ideal and identically oriented monocrystals
(Fig. 1.2). The contacting surfaces of friction pairs act as two rough surfaces with
protrusions and hollows due to their atomic structures. Friction, according to
Deryagin, is caused by the action of repulsive forces formed when the electron
shells of atoms approach each other.

V.D. Kuznetsov proposed the physical friction theory. And it was first time,
when friction was considered from the energy prospective. He indicates that when
assessing the friction material properties, the surface energy becomes the deter-
mining factor. He connects the coefficients of friction with the structural properties
of interacting bodies. In other words, every energy loss is assessed through the
sound phenomena that accompany the friction process, the electrification of friction
bodies, their heating, the abrasion, and the fragmentation of abrasive particles.

Tross and Fleischer developed the energy theory of friction and wear founded on
the energy conservation principle. Based on the energy theory of strength devel-
oped by Tross, Fleischer got his formulas for the energy relationships and he also
derived the energy balance equation. According to Fleischer, the energy density is
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Fig. 1.1 The elementary
friction model
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Fig. 1.2 The diagram of the
atom contacts and sliding that
forms the surface of two
monocrystals by Deryagin
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the ratio of the work required to overcome friction, to the volume of material that
receives the mechanical loading during friction.

The energy approach developed by Rabinovich states that if the energy accu-
mulated in particles much distant from the surface due to the elastic deformation is
greater than the energy stored in particles much closer to the surface due to adhesive
forces, then the free particles of wear are formed.

G.M. Bartnev proposed another physical theory of friction—the molecular
kinetic, applicable to the polymer amorphous materials.

The deformation theories of friction that based on the interaction of the contact
surfaces with respect to sliding, shear, cut, ousting of metal, formation of plastic
wave, plowing, grasping, etc., are explained by I.V. Kragelsky, F.P. Bowden,
B.I. Kostetsky, G.I. Epifanov, and many others.

I.V. Kragelsky in the form of molecular-mechanical theory developed the
adhesion–deformation theory of friction. I.V. Kragelsky was first to put forward
the model of the discrete contact of solid bodies at friction and the hypothesis of the
dual nature of the friction contacts of solid bodies, which were further developed
by his students N.B. Demkin, N.M. Mikhin, N.M. Dobychin, V.S. Kombalov, and
Y.F. Nepomnyaschiy.

It should be noted that the two most well-known adhesion–deformation theories
were almost simultaneously developed in the former USSR by I.V. Kragelsky and
in Great Britain by F.P. Bowden and D. Tabor. I.V. Kragelsky gave a special
attention to the deformation component, while F.P. Bowden gave a special attention
to the adhesive component of the coefficient of friction.

The great influence on the tribological processes has the heat emission in the
friction contact. The creation of calculation methods for assessing the heating due
to friction is associated with such name as H. Block, D. Eger, R. Holm,
M.V. Korovchinsky, A.V. Chichinadze, and others.

In the former USSR, A.V. Chichinadze and his students have created and
developed new scientific branch of tribology: thermal dynamics of friction and wear
of friction pairs with respect to dry friction and boundary lubrication. This new
theory has created modern methods for calculation and modeling of the friction
process, wear, and heat formation in the friction contact, by taking into account the
relationship between the dynamic processes in machines with heat formation in the
friction pairs.

Studies on one of the most dangerous types of wear—the abrasive, conducted by
M.M. Khruschev, M.M. Tanenbaum, G.M. Sorokin, and others, allowed to link the
process characteristics with the physical and mechanical properties of worn
materials. Other types of wear have been studied by A.P. Semenov, S.B. Ratner,
L.I. Pogodaev, S.P. Kozyrev, S.G. Chulkin, A.M. Gafarov, and others.

Thyssen and Rebinder, in their works, raised a special attention to the chemical
and tribochemical processes occurring friction in the metal bodies. In the phe-
nomenon of the selective transfer, discovered by I.V. Kragelsky D.N. Garkunov, it
turned out that the important role belongs to the chemical and electrochemical
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processes. Many studies are dedicated to the problems of the tribochemistry of
friction contact.

The significant progress in tribology was made when the fatigue and the
thermo-mechanical theory of wear were developed. The creation of these theories
associated with the names of I.V. Kragelsky, E.F. Nepomnyaschiy, G.M. Kharacha,
A.Kh. Janahmadov, and others. The basic concept of these theories is in necessity
of the multiple impacts on the frictional surfaces in order to weck them, where the
number of these impacts is quantitatively expressed and is dependent on the
thermo-stressed condition of the frictional contact.

Even the electrical and electromagnetic phenomena in tribology have been
known for while, however, no attempts were made to provide the theoretical
explanation. So the electro-thermo-mechanical theory developed by A.Kh.
Janahmadov and A.I. Volcheko is successfully developed and implemented by their
students.

The substantial contribution into theory of lubrication was made by G.A. Khirn,
N.A. Petrov, B. Tower, O. Reynolds, A.I. Zommerfeld, N.E. Zhukovsky,
R. Stribeck, M. Ghersi, A.S. Ahmatov, M.V. Korobchinsky, R.M. Matveevsky,
G.I. Fux, I.A. Buyanovsky, A.M. Ertel, A.I. Petrusevich, D. Dawson, S.D. Kodnir,
A.N. Grudin, and others.

Refinement of the electro-hydro-dynamic lubrication theory and its distribution
on the non-isothermal conditions of lubricant flow, the non-Newtonian behavior of
lubricants, and the consideration of friction surface roughness can be found in the
works of Yu.N. Drozdov, M.A. Galakhov, A.I. Petrusevich, D.S. Kondir, etc.

Since mid-1960s, the method of physical modeling of friction and wear is
developed under the guidance of E.D. Brown and A.V. Chichinadze.

The theory and practice of modeling of friction and wear were considerably
presented in the works of Yu.A. Evdokimov, A.Kh. Janahmadov, A.Yu.
Albagachiev, Yu.Ya. Izakson, and others.

The problem of seizure (jamming) in various friction units is covered in the
papers of B.I. Kostetsky, H. Block, A.P. Semenov, Yu.N. Drozdova, N.A. Boucher,
N.M. Alekseev, S.M. Zakharov, H. Winter, D. Buckley, etc.

A major contribution into the field of the tribotechnical materials science,
polymers, and into the development of effective methods of hardening surfaces of
machine parts are made by the works V.A. Belov, D.N. Garkunov, I.A. Gribovoy,
V.E. Panin, A.P. Semenov, W.V. Ignatev, V.Ya. Kerschenbaum, L.I. Kuksenov,
I.M. Lyubarsky, V.I. Kolesnikov, A.D. Kuritsyn, E.D. Brown, N.A. Boucher,
A.I. Sviridenek, etc.

The well-known scientists and engineer designers such as M.P. Aleksandrov,
G.M. Shahmaliev, A.V. Chichinadze, V.I. Kolesnikov, Yu.N. Drozdov, A.Kh.
Janahmedov, S.S. Kokonin, Yu.A. Evdokimov, A.I. Volchenko, M.M. Borodulin,
V.G. Inozemtsev, and others were working on problems of optimizing the design of
the frictional brakes and clutches, creating new composite materials for frictional
units that provide high friction.

1.1 Friction, Wear and Lubrication. Concepts Development 5



N.K. Myshkin, L.V. Markov, O.K. Kvoun, N. Kona, and others with their
original researches made enormous contribution in the field of tribodiagnostics and
monitoring.

The development of nanotechnology and the emergence of a new class of
devices with micro- and nanoelectromechanical systems made it necessary to
control tribological processes in micro- and nanoscales. This technique along with a
computer modeling and with the solutions to a number of specific nanotribology
problems provided a major breakthrough in friction, lubrication, and wear. The
rapid growth in the number of scientific publications indicates the exceptional
interest to the problems of nanotribology.

As mentioned above, tribology has the status of the interdisciplinary field of
knowledge by virtue of their specific relationships with other disciplines. The
behavior of friction materials and their wear–friction properties are largely driven
by a complex of physical, mechanical, electro-thermo-mechanical and physical–
chemical processes in the surface and near-surface layers of the frictional units. This
complex approach, on the one hand, makes professionals to analyze the physical
foundations of their science and formulate the problem at the junction of the
molecular and stochastic physics, and on the other hand, they scrutinize the fun-
damental problems of tribology, such as the relationship between adhesion and
deformation mechanisms of friction. We consider the discussing trends as the main
factors with various roles in the friction processes. Figure 1.3 provides the overview
of the contact interaction at friction, and it also shows a diagram of mutually
interacting various factors, depending on the current scale (macro, micro, nano) of
reviewing process.

If we analyze the known types of wear, it can be concluded that they are all
related with the components of the friction force. Thus, the fatigue wear manifests
itself mainly as the material deformation in friction, while the surface forces cause
the adhesive wear during the material destruction and its transfer between the
friction bodies. Furthermore, friction always occurs in a specific environment,
which affects the contacting pair through chemical reactions. These reactions
change the rate of the material deformation and also affect on the intensity of the
surface interactions.

In recent years, the publications on nanotribology contain significant information
not only about nanobiomechanics of joints, but also about the results of the specific
studies on the joint lubrication and the role of the synovial fluid and articular
cartilage in its existence.

The joints of the human body as a part of biological friction system can carry out
various kinds of motion (sliding, rotation, angular, and circular motions).

At present, there are liquid crystal formations of various fluids and tissues of
living beings and the fundamental role that state plays in the biointerface. With
regard to the role of the liquid crystalline state in the biological tribosystems, it is
not confined to the data that we do have at the moment. Further studies on the role
of the lyotropic lisomorphism not only provides new theoretical understanding of
liquid crystals, but also helps to explain many physiological processes in
nano-bio-tribological systems.
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The knowledge gained in this direction will undoubtedly contribute to the cre-
ation of new methods of treatment and prevention of pathological conditions of
human being.
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Fig. 1.3 The general diagram of the contact interaction at friction
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In recent years, the tribological system is considered as a self-organizing system
with provisions of non-equilibrium thermodynamics, synergetics, fractals, and
multifractals. Kinetics of fatigue cracks and formation of contact in details, simi-
larity and self-similarity of self-organizing processes, fractal geometry of fatigue
cracks formation, and many others were studied from this perspective.

It should be noted that the findings of non-equilibrium thermodynamics do not
contradict to the classical thermodynamics, since the reduction of entropy only
refers to the local system, being offset by the increase in entropy of the external
media, which is in interaction with that system. Bifurcation, i.e., split, is normal for
non-equilibrium systems.

The authors believe that synergetics and fractals in tribology will have a great
influence on the development of fracture mechanics and, in particular, on tribo-
materials science. Generalizing the accumulated large number of theoretical and
experimental materials at a new level will contribute to the development of new
technologies that will allow managing the structure of materials and obtaining set of
pre-defined properties. The authors hope that this project will help attracting
researchers to study new laws of the tribological processes at elastic, elastic–plastic,
plastic deformations, and fracture (wear) of materials using synergetic approaches
and fractals.

1.2 Performance Analysis of Oil Field Equipment
in Terms of Mechanical–Chemical Defectiveness

The distinctive feature of the equipment operating in the hostile environment,
leading to its malfunction, is the intensity of damages caused by the combined
action of the mechanical failures and the corrosive medium. The mechanical–
chemical damage of material (MCDM) has an impact on the equipment perfor-
mance and that is due to specifics of kinetics of the chemical reactions taking place
on the surfaces of the strained structural elements. This problem becomes more
exacerbated with increase in the level of the material strain and the corrosive
activity, and it is among of the less studied, complex, and topical problems.

The majorities of oil and gas machinery are made of the metal and are weight
loaded, and they also have a constant surface contact with the operating medium.
Examples of such kind of equipment are the downhole equipment, columns,
apparatus, and pipelines. Based on their middle surface geometry and stress state,
they belong to the general group of the hull-type equipment.

The monograph provides the analysis of methods for assessing the performance
of these types of equipment, taking into account the kinetics of MCDM, while the
efficiency of equipment is interpreted as the combination of material components
and the structural elements, ensuring the ability to perform specific functions under
the simultaneous influence of external loads and corrosively active medium.
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1.2.1 Assessment of the Level of Corrosive Mechanical
Fracture in Equipment

The operational damage is conventionally divided into three groups [1]: the initi-
ation of shallow cracks; the formation of cracks through unsealing; and the brittle
fracturing. The stress concentrators in the material and the non-stationary loading
usually initiate the first two groups of damages. The brittle fracturing usually forms
under the high strain constraint, the availability of the triple-axis residual stresses,
and low temperatures that are favorable to the material brittleness. The damages
caused by the corrosive media and the non-stationary loading are usually associated
with the corrosion mechanics fatigue.

The corrosion mechanics fatigue (CMF) is a major cause of failures (40 %) in oil
and gas equipment. The vast majority of the oil pipeline destructions are associated
with corrosion. The level of exposure to the aggressive media increases for
pipelines and equipment when the oil gathering and processing in refineries go
under the high temperatures. That is when corrosion becomes more active. The
destruction of the oil field equipment is associated [2] with the CMF phenomena,
which is part of the oil tribology studying.

The stress corrosion cracking (SCC) is particularly a dangerous type of the
corrosion mechanics fatigue (CMF); it is realized in the solutions of hydrogen
sulfide, acids, ammonia, chlorides, as well as hydrogen gas and other media [3–5].
The stress corrosion cracking is characterized by the absence of the significant
macro-plastic strains in fractures, which indicates the high-speed (avalanche) nature
of destruction.

SCC is formed under both the static and cyclic loading. It should be noted that
cracking is possible even in the absence of mechanical stresses—the intercrystalline
corrosion of some stainless steels and alloys [6–8]. Naturally, the intercrystalline
corrosion increases with the external loading.

Depending on the mechanism of the stress corrosion cracking, it should be
distinguished [9] between those caused by the brittleness (adsorption or hydrogen)
and those caused by the mechanical–chemical dissolution. Such a division has
somewhat an arbitrary character, since most of the stress corrosion cracking hap-
pens due to the simultaneous action of both mechanisms (brittleness and dissolu-
tion). Nevertheless, it becomes useful in the development of computational methods
for assessing the effects of the stress corrosion cracking.

The corrosive destruction should be considered in conjunction with kinetics of
the general corrosion, resulting in an increase of the nominal stress and a danger of
the stress corrosion cracking.

The phenomenon of strengthening of the metal corrosion under the influence of
mechanical stresses is called [9] the mechanical–chemical effect (MCE). MCE is
most strongly manifested itself in the dynamic plastic flow, which is observed in the
metal with overstrain at the cyclic–static loading.

The main provisions of the mechanical and chemical theory of metals are given
in [10]. The local chemical potential at the point of the crystal structure is
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determined by the spherical tensor ra, wherein the amount of the chemical potential
of atoms of the deformed metal does not depends on the sign of applied stresses. It
is proven [10] that the anode current of dissolution exponentially increases with the
growth of the absolute hydrostatic pressure Dp in the solid phase

I ¼ ia � expDpcRT
� ik; ð1:1Þ

where ia—the anode current of undeformed metal; ik—the cathode current; c—the
molar volume of metal; and R and T—the universal gas constant and the absolute
temperature. Moreover, the cathode current does not depend on the degree of the
metal stress.

The impact of stress on the metal corrosion penetration in the laboratory and real
operating conditions is reflected in Fig. 1.4.
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Fig. 1.4 The impact of stress on the corrosion penetration of metal specimens and oil tanks: 1 the
steel “D” in the carbon dioxide; 2 the cable steel in 3 % NaCl; 3 the oil tank; 4 the petrol tank;
5 the diesel tank. v0 and va—the rate of corrosion in strained and unstrained metal; DS—the
change in the wall thickness
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On the basis of formula (1.1), the stress and durability analysis of structural
elements under uniaxial state are performed in work [10]. It is shown that the
durability of the elastically strained structural elements essentially depends on the
initial strength properties of metal, the coefficient of efficiency of loading capacity,
and others.

The analyses of kinetic stresses and durability for the various hull-type con-
structions, operating under the strain and changeable loads, are given in work [11].
The results of those analyses are set as the basis for the strength calculation of
various structural elements of equipment operating in corrosion [12].

MCE intensifies during the plastic deformation as result of the initiation and
annihilation of dislocations. The greater the degree of the plastic deformation e, the
higher the density of mobile dislocations N, wherein

N ¼ �a � Deð Þm; ð1:2Þ

where a ¼ 109. . . 1011 disl=cm3, m ¼ 1� 0:5.
The chemical potential of the metal atoms lM is determined by the excessive

enthalpy due to dislocations. The difference between the chemical potential of the
metal atoms and the various densities of dislocations (N0 and N) makes

DlM ¼ RT ln
N
N0

� DpT : ð1:3Þ

Therefore, the hardening is equivalent to the additional excess pressure Dp at the
plastic deformation:

As ¼ DpR
R

�aR0m
; ð1:4Þ

where R0 ¼ kNmax; k—the Boltzmann constant; and Nmax—the maximum possible
number of dislocations per unit of volume. The factor R=�aR0m—a constant value for
material (for iron it is close to one).

Equation (1.4) shows the uniform distribution of dislocations per unit of volume.
Actually, the dislocations form the flat clusters from n0 coplanar dislocations
trapped in the areas of the planar aggregation which results in an increase of the
resistance to the plastic flow. The hardening during the plastic deformation makes
the excess pressure n0 times higher. Therefore, the increase of the chemical potential
of dislocations is equivalent to the increase of stress n0 times during the formation of
the coplanar clusters.

Kinetics of the mechanical activation of the corrosion process at the plastic
deformation is descried by the equation [10]:

I ¼ ia � exp n
0Ds
�aRT

� ik: ð1:5Þ
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In the mode of the dynamic plastic flow, the deformation increment of the disso-
lution current is linearly dependent on the rate of deformation [10]:

Dia ¼ ia
_e
_e0
� 1

� �
: ð1:6Þ

where _e—the rate of deformation at static loading.
Given the kinetic equations of the mechanical–chemical dissolution (MCD) of

metals form the basis of methods that determines the strength and the durability of
the structural elements of the oil field equipment and pipelines with the different
structural and technological stress concentrators at the different modes of the static
and cyclic loading.

Thus, under the simultaneous influence of the external loads and corrosive
environments, the metal structural elements, as a result of MCD, undergo a most
intensive stress corrosion cracking. The MCD degree exponentially depends on the
spherical tensor and proportionally depends on the growth rate of the plastic
deformation.

1.2.2 Mathematical Modeling of Mechanical–Chemical
Defectiveness and Calculations on Durability

Phenomenologically, the destruction is interpreted as the kinetic process of
the gradual damage accumulation. The dimensionless parameter P is introduced
as the measure of damage being equal to zero at the initial stage and one at the
limit [13, 14].

The complexity of the corrosive mechanical destruction is explained by the
variety of the operating environments with specific properties, as well as the
damage mechanisms in relation to the particular material.

Based on the provisions of the mechanics-chemistry of metal [10], as well as the
results on the mechanical activation of the corrosion processes, the mathematical
model of the mechanical chemical damage of material (MCDM) can be represented
through the components of the deformation tensor in the form [9]:

dP
dt

¼ V ¼ dP0

dt
KCT � ei � 1ð Þ � _ei

_ei0

� �Kg

exp KHwrei rið Þ½ �; ð1:7Þ

where _ei ¼ dei=dt—the rate of plastic deformation intensity ei; _ei0—the rate of plastic
deformation intensity at the short-term static stretching; ri—the stress intensity;
wr ¼ ra=ri, ra—the spherical tensor; P0—the measurement of damage of the
unstressed material; and KCT , Kg, and KH—constants, which depend on the
parameters and properties of material and environment.
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At the stage of the deformation (parabolic) hardening of material, as it is shown
in [9], the MCDM rate increases proportionally along with the preliminary plastic
deformation intensity. The coefficient KCT in Eq. (1.7) represents a tangent to the
experimental curve dP=dt ¼ f eið Þ, and it characterizes the sensitivity of the
pre-deformed material to mechanical and chemical damages. The coefficient Kg,
according to E.M. Gutman, J. Bockris, etc., can be equal to one for the carbon steel.
The experimental studies of mechanical and chemical deformations of carbon and
low-alloy steels at the elastic deformation show that values of KH for the purpose of
engineering calculations can be determined from Gutman’s formula

KH ¼ V
RT

;

where V—the metal molar volume; R—the universal gas constant.
The special MCDM estimates are followed from Eq. (1.7) for the elastic and

the elastic–plastic deformations [10, 11], as well as for the dynamic deformation
[13, 14].

Integrating the expression (1.7), and taking into account the equation of
mechanics for the deformed solid body and strength, it yields the function for the
measurement of damage P ¼ u t; . . .ð Þ, for which at Π = 1.0 the time is set before
the occurrence of one or another critical (durability) state of the constructional
element. The von Mises yield criterion is accepted as the critical condition of the
elastic deformation. The maximum durability is determined using the criteria of
mechanics of fracture. In general, the range of variables of the function u t; . . .ð Þ
includes the tensor components such as stress Tr, deformation Te, speed _Te, tem-
perature T , and others.

The obtained model of the mechanical–chemical damage of material allows us to
analyze the kinetics of stress changes and the destruction rate of elements at all
stages of loading, including failure, and analyze the various temperature–time
impact conditions of corrosively active environments.

1.3 Performance Analysis of Oil Field Equipment
in Terms of Non-stationary Loading

One of the main tasks of the modern machine building is to increase the longevity
of machine elements and aggregate while improving the strength and reducing the
metal consumption.

What matters most is the correct assessment of the ultimate stresses based on the
viscous, brittle, low-cycle, and high-cycle fatigue failures at stages of the crack
formation and development.

The strength calculations at low-cycle loading are carried out on the basis of the
low-cycle failure curves in the strains (or the conditional elastic stresses) taking into
account the mechanical properties of the employed construction materials (strength,
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ductility, the degree of hardening in the inelastic region with the single and
non-stationary loading), as well as the cycle asymmetries on stresses and
deformations.

Let us analyze the efficiency of oil field equipment under non-stationary loading
and study the mechanisms of the accumulation of damages in the materials of
machine parts.

The non-stationary loading leads to the accumulation of damages in metal and
then to fatigue failure. The low-cycle fatigue is more relevant to the oil field
equipment [1–12, 15] and is also accelerated in the corrosive environments [16].

The majority of the proposed low-cycle fatigue equations relate the number of
cycles before failure N with the amplitude of plastic deformations epl and ultimate
strain eu. These are the equations

Orowan : N � epl ¼ const; ð1:8Þ

Coffin�Manson : Nmc � eu ¼ Cc ð1:9Þ

where mc and Cc—constants. The constant Cc is associated with the ultimate
ductility of metal: Cc ¼ 0:5eu ¼ 0:5 ln 1

1�w, where ψ—the relative necking at the

breakage of specimen.
Langer and Gross [17] proposed to place into Eq. (1.9) the total strain amplitude

ea ¼ epl þ ee, where εe—the amplitude of elastic deformation. In this case, the
equation of durability takes the form

ea ¼ 0:25
ffiffiffiffi
N�mc

p
eu þ r�1

E
; ð1:10Þ

where r�1—the ultimate fatigue; E—Young’s modulus.
Sometimes, this equation is represented in the conditional stresses:

r�a ¼ ea � E ¼ 0:25 � E
ffiffiffiffi
N�mc

p
eu þ r�1; ð1:11Þ

The exponent mc in these equations depends on the mechanical characteristics of
metal. The steels with high mc are characterized by the low ratio of the ultimate
strength to the yield strength. The parameter mc is correlated with the coefficient of
hardening m. At m\0:15, mc ¼ 0:2; at m[ 0:15, mc ¼ 0:2þ 2:4ðm� 0:125Þ [18].

Manson suggested a more general equation of the low-cycle fatigue at the
amplitudes of the full deformations based on the deformation and the force criteria:

ea ¼ SN�s þ TNt; ð1:12Þ

where S, s, T , and t—the material constants, and for many materials,
s ¼ 0:12; S ¼ 3:5rt

E ; t ¼ 0:6; T ¼ ln 1
1�w :

Obviously, the differences in the strength properties of metals lead to the fact that
in Eqs. (1.10)–(1.12), the durability curves for various steels must intersect at the
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certain amplitude of strain ðea � 0:75 %) and durability (N ¼ 10;000. . .15;000).
This allows, on the one hand, the simplification in construction of the fatigue curves
and, on the other hand, the assessment in application of steels with the various
mechanical properties. Naturally, the steels with the high strength properties and the
lower plastic properties lose their advantage when are employed in the areas with
the high amplitudes of strain (at the high levels of stress concentrations).

Coffin–Manson equation reflects the kinetics of the damage accumulation in the
metal at the hard symmetric (alternating) loading. In terms of the soft symmetric
(alternating) loading, the kinetic equation for damage is similar in its form to the
equation of hard loading:

ea ¼ mN�m1 þ r�1

E
; ð1:13Þ

where m ¼ ln 1
1�wt

—the strain coefficient of hardening; wt—the uniform compo-

nent of total relative narrowing of specimen at breakage.
The exponent m1 depends on the ratio of the yield strength to the ultimate

strength Km; for the symmetric loading m1 ¼ 1:2Km � 0:35 [19]. Sometimes, at the
soft loading, the fatigue curve is presented as the power function [19]

rNc ¼ rtN
c
t ; ð1:14Þ

where Nt ¼ 10—the number of cycles before failure at ultimate strength; c—the
material constant ðc � 0:08).

The equations like Coffin–Manson reflect the kinetics of fatigue failure under the
uniaxial stress. The walls of hull-type equipment and pipelines are subjected more
to the planar stress rather than the volumetric stress. And the ratio of the main

stresses mr mr ¼ rz=rh

� �
varies over the wide range of values: 0\mr\1.

The durability especially depends on the stress diagram at the low-cycle fatigue
failure. Under the pressure, the durability decreases by up to 30 % during the
transition from the uniaxial stress to the biaxial stress [20].

The paper [21] shows the substantial differences of the metal fatigue curves
under the uniaxial stress and torsion. The low-cycle durability at the alternating
torsion, expressed through the amplitude of the equivalent plastic deformation, is
several times (more than two) greater than one occurring at the uniaxial stress. The
difference of the metal cycling failure at the different types of the cyclic deformation
is due to the fact that the ultimate plasticity depends on the voluminosity (stiffness)
of the stressed state, characterized by the ratio of the spherical tensor to the strain
deviator.

This factor can be included if the method developed by V.L. Kolmogorov is
applied [22]. It postulates that the metal failure occurs if the shear deformation k

exceeds some ultimate value kp: w ¼ k�
kp � 1:0, where w is interpreted as the usage

of reserved plasticity. The shear deformation is different from the deformation
intensity ei by the constant factor

ffiffiffi
3

p
T ¼ ffiffiffi

3
p

ei
� 	

. The parameter k depends on the
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temperature–velocity factors as well as the rigidity stress factor wr estimated by
the ratio of spherical tensor to deviator. In case of the pure shear, wr ¼ 0, and at

the axial tension, wr ¼ 1=3. The maximum value wr wr ¼ 2=3
� �

takes place at the

biaxial tension with the equal stress components mr ¼ 1:0.
The impact of the rigidity stress factor wr on the index of plasticity is estimated

by the following formula [9]

eiu ¼ ke � e 0ð Þ
u ; ð1:15Þ

where ke—the coefficient which depends on the parameter wr; e
0ð Þ
u —the ultimate

plasticity at the uniaxial tension.
The experiments show [23] that the value ke exponentially depends on the

parameter wr

ke ¼ exp Ce wr �
1
3

� �
; ð1:16Þ

where Ce—the constant.
Thus, the ultimate plasticity of metal exponentially decreases with an increase of

the rigidity stress factor. The assessment of the fatigue curve should be done taking
into account the stress diagram by substituting the value eu in the fatigue equa-
tion (1.10) with the ultimate plasticity eiu , found in the formula (1.9).

Some environments cause much stronger changes in the plasticity properties of
metals. Figure 1.5 shows the results of the mechanical experiments on specimens
from the low-carbon (20ЮЧ) and the low-alloy (16ГC) steels after exposing them
to the saturated solution of hydrogen sulfide.
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Fig. 1.5 Reduction in metal plasticity after exposure to a saturated solution of hydrogen sulfide:
1 20ЮЧ thermal; 2 16ГC hardening; 3 20ЮЧ annealing; 4 ГC
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There are significant decreases in the mechanical properties of specimens after
soaking them in corrosive medium, especially in the elongation δ and necking ψ.
The data in Fig. 1.5 suggest that in assessing the ultimate plasticity of metal, besides
the stressed state, it is also necessary to consider the impact of medium on
brittleness.

The influence of medium on the metal plasticity is estimated [9] by a coefficient

kkc kkc ¼ wkc=w

� �
, where wkc—the specimen necking in the corrosive medium.

Then,

eiu ¼ kkc � ke � e 0ð Þ
iu : ð1:17Þ

Substituting the value of eiu in the formula (1.15) into the equation of fatigue (1.10),
we obtain

ea ¼ 0:25
ffiffiffiffi
N�mc

p
� kkc � ke � eð0Þiu þ r�1

E
: ð1:18Þ

In the corrosive medium, at the short-term tension just before failure (e.g.,
sodium chloride), many grades of steel do not change their mechanical properties,
although the low-cycle fatigue curves pass much lower than values tested in air.
This demonstrates that when tested in the corrosive medium, the exponent of power
mc in Eq. (1.10) must be much greater than when tested in air (for most of
low-carbon and low-alloy steels mc ¼ 0:5). After the long maintenance in the
produced water, the mechanically tested pipe steels showed the basic mechanical
properties not lower than the original ones. This suggests that corrosive embrit-
tlement does not take place in such mediums.

Hence, the drop in durability for such corrosive mediums should be attributed to
the kinetics of corrosive dissolution of metal. Besides, if as the low-cycle durability
criteria we accept the number of cycles before the cracks initiation, then the fatigue
curves in mediums, that do not cause the metal embrittlement, should not be much
different than those in air. The impact of medium on durability becomes much
noticeable at the stage of the cracks spreading [16].

Thus, the low-cycle durability in such corrosive mediums can be estimated on
the basis of formula (1.10) by substituting the mc values in it with the value mcc

obtained through the cyclic tests in the corrosive medium. However, the diversity of
corrosive mediums and the variability of steels make it almost impossible to find the
experimental values of mcc.

In the presence of data on the steel resistance to the low-cycle fatigue, it is
advisable to build the low-cycle durability curves according to the following
technique [9].

For the given grade of steel, the boundary of endurance limit r�1 is set at
N0 N0 ¼ 106

� 	
, for example, based on the concept of the coefficient of effective

stress concentration ke:
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ke ¼ r�1

rðgÞ�1

¼ 1� q ar � 1ð Þ;

where r�1 and r gð Þ
�1—the fatigue strength of smooth specimen and specimen with

concentrator; g—the metal sensitivity to concentrators.
The cyclic failure depends not only on the theoretical stress concentration ar, but

also on the stress gradient �G �G ¼ G=rmax

� �
, where G ¼ dy=dx—the gradient of the

first main stress in the dangerous section of the viewed specimen; rmax—the
maximum value of that stress. Parameters ke, G, and ar are related by the rela-
tionship [24, 25]:

ke ¼ ar

1þ ffiffiffiffi
G

p � 10� 0:33þrT=712ð Þ : ð1:19Þ

Next, the assessment of the impact of the corrosive medium on the fatigue strength:
r�1k ¼ kr�1 � r�1, kr�1—the level of reduction in the fatigue strength as result of the

impact of medium kr�1 ¼ r�1k=r�1

� �
. The number of cycles before failure at the

ultimate stress level Nt may be equal to 10 [24]. Parameters r�1k , N0 and rt, Nt are
the reference points for the construction of the durability line in logarithmic
coordinates (log r; logN) (Fig. 1.6a).

Here, the equation of the fatigue curve is defined by formula (1.14). It shall be
noted that sometimes the value of Nt is significantly different from 10 (Fig. 1.6b).
The stress values corresponding to the intersection point on the durability curves
rcð Þ for the low-carbon and low-alloy steels are approximately 80 % of the ultimate
strength ru of metal. There are the durability curves possibly different from the
described ones (Fig. 1.6c, d).

Table 1.1 shows the properties of the fatigue curves for the low-carbon,
low-alloy, and stainless steels in the chloride solutions that are specific to the oil
field equipment.

The fatigue curves for carbon steels and the produced water are compared on
Fig. 1.6e.

As it is already known, the phenomenological fracture is divided into three
stages [9]: the cracks initiation; the distribution of major cracks; and fracture
(spontaneous distribution). The last two stages are evaluated by the methods of
fracture mechanics. Briefly concentrate on the assessment methods of the con-
struction elements durability (longevity) based on the distribution of major cracks.

Subjected to the conditions of self-similarity, the range of stress intensity factor
(SIF) K1 controls the crack distribution process: dl=dN ¼ Vcl ¼ f DK1ð Þ, where
l—the length (depth) of crack. When the function f DK1ð Þ is known, then the
integration of this function allows determining the durability of construction ele-
ment Nd . The middle section of the fracture strength diagram is approximated by
the Paris–Erdogan exponential function
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Vcl ¼ Cr � DKnr
1 ; ð1:20Þ

where Cr and nr—the material constants.
At the range of crack growth with the low rates Vc\10�8 m=cycles, the dura-

bility curve cuts a section with the length Kth, also called the SIF threshold. When
Kmax\K 0

th the crack does not develop during the test. At the range of the crack
growth with the high rates Vc [ 10�8 m=cycles, the durability curve asymptotically
approaches the line Kmax ¼ Kfc. The fracture of the construction element begins at
Kmax [Kfc. The critical values of SSC Kc and Kfc are ambiguous, but for the
tentative calculations, we take Kc � Kfc. The value of Kth is of the great practical
importance, since it allows setting the safety properties for the cyclic loading and
the crack dimensions. The parameter Kth depends on the initial mechanical prop-
erties of material, medium, and others. At the zero cycle (pulsed) of loading, the
value of Kth is linked to the yield stress r�1 through the following empirical
relationship [25]:

Kth ¼ 12:7� 0:006 � rT ; ð1:21Þ

where rT is measured in MPa. The diagram parameters Cr and nr are linked with
the specific work of failure Wc [26]:

Cr ¼ 0:000103 � 861; nr ¼ 5:065� 0:1168ð Þ � 0:00168� 0:0001ð ÞWc; ð1:22Þ

where Wc is measured in MJ=m3. The specific work of failure Wc is defined from
the stress–strain diagrams of the smooth specimens, in particular by formula [26]:

Table 1.1 The properties of the low-cycle corrosion fatigue for the carbon, low-alloy, and
stainless steels

Steel rt;
MPa

r�1;
MPa

r�1
rt

r�1k kr�1 c c kð Þ

Prod.
water

3 %
NaCl

Prod.
water

3 %
NaCl

Prod.
water

3 %
NaCl

10 340 180 0.53 115 – 0.65 0.28 0.055 0.095 –

20 420 190 0.45 115 50 0.60 – 0.07 0.11 0.185

Cт.3 450 200 0.44 112 48 0.56 0.24 0.07 0.12 0.194

Cт.35 580 275 0.47 – 70 – – 0.065 – 0.183

Cт.45 590 240 0.40 165 – 0.68 – 0.078 0.11 –

16ГC 504 196 0.39 137 69 0.70 0.35 – – –

17ГC 550 209 0.38 149 – 0.71 – – – –

17Г1C 560 218 0.39 160 81 0.73 0.37 – – –

09Г2C 500 200 0.40 138 – 0.69 – – – –

15 × 5 M 540 200 0.37 162 – 0.81 – – – –

12 × 18H10T 660 265 0.40 150 130 0.57 0.50 0.08 0.13 –
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Wc ¼ rT � Skð Þ � ln 1
1� w

; ð1:23Þ

where Sk—the true fracture strength; w—the relative necking. According to
M.P. Markov:

Sk ¼ rt 1þ 1:4wð Þ: ð1:24Þ

For the elastic–plastic models, the middle section of the cyclic fracture strength
diagram is described by N.A. Makhmutov’s equation:

Vc ¼ Cr � DKnr
1e ; ð1:25Þ

where K1e—the elastic–plastic stress intensity factor; constants Cr and nr are equal
to in (1.25):

Cr ¼ 2p�eiuð Þ�1; nr ¼ 2:0; ð1:26Þ

where �eiu ¼ ln 1=1� w � e�1
T ; eT—the yield strain.

The definition of parameters of the cyclic fracture strength diagram in the cor-
rosive active mediums is performed under special conditions, particularly at the
constant value pH of medium during the specimen testing [27]. Sometimes, the
cyclic fracture strength diagrams are built in Vc and J—interval coordinates [28].

The mechanism of the damage accumulation in the material of oil field equip-
ment is studied and their influence on performance of that equipment at the
non-stationary loading is analyzed.
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Chapter 2
Scientific Foundations of Stochastic
Tribomodeling

Modeling (simulation) is one of the most effective methods of knowledge. The
effectiveness of modeling (simulation) as a tool for learning is determined, above
all, by the ability to highlight the main (essential) and to abstract the minor
(inconsequential).

The solution of the adequate mathematical models in the complex technical
problems, such as tribotechnical, is the qualitative analysis primarily based on the
one of the main classification systems. Therefore, in the modeling (simulation), we
should progress from the object to the model. The current research provides a
systematic approach to the study of tribological applications. The importance of that
approach rises especially when the probabilistic–statistic methods are applied.

The objects, their properties, and relationships between those two define the
system. According to N.P. Fedorchenko, the part of the system objects are
the purpose, input, the process, output, the boundaries and the inverse connection.
The purpose of such a system is the achievement of optimal functioning of the
tribotechnical system and its further maintainability at the level of maximum sta-
bility. This goal has to be achieved by complying at least two restrictions: The
quantity of materials required for the manufacture of friction units should not
exceed the predetermined level, and the operational cost of the entire system must
not exceed the certain values.

Through the system analysis, we can determine the system class: deterministic or
stochastic (probabilistic). V.P. Trofimov defined that “the system is the rigidly
deterministic if under those initial conditions it transfers itself in a single state.
Accordingly, the system is stochastic (probabilistic) if under the same initial con-
ditions it can transfer itself into different states, with different probabilities.”

The division of system into the rigidly deterministic and stochastic (proba-
bilistic) is very objective. B.V. Gnedenko wrote that “the deterministic systems are
quite rare. Moreover, there is an established view in the modern physics that in
nature there is no purely deterministic laws, and all laws are of probabilistic nature.”
This statement is consistent with the fundamental research of V.V. Bolotin for
designing the structures using methods of theory of probability and reliability.

The issues of practical application of statistical modeling (simulation) in various
fields of scientific and technical research are well documented in numerous
literatures.

© Springer International Publishing Switzerland 2016
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2.1 Probability Analysis of Generalized Variables Based
on Stochastic Nature of Parameters

Studying the failure of friction bodies using the conventional methods makes
the task almost impossible. Therefore, the applications of new mathematical
methods such as physical–statistical and probabilistic methods are required for
tribology. The significant progress has recently been achieved in the related
problems [1–5].

The conventional mathematical methods applied in solving problems for even
simple friction processes are virtually ineffective, because besides the complexity of
analyzed process, there is also the stochastic nature of its functionality. So the
negligence of even a large number of random factors usually leads to the inaccurate
test results of the assessed process, even when there is a perfect mathematical
model.

At the present time, there is a wide range of literatures that analyze ideas and
practical implementation of probabilistic methods [6–9], which can be used to solve
many actual problems. The method of statistical test (Monte Carlo) in this sense is
of particular importance.

The evaluations of various loading conditions of friction devices and the
methods of stochastic description have received a lot of attention currently. The
evaluation of real load of friction devices is associated with both solving the
problem through theory of reliability and predicting its actual durability and
founding the optimal test modes [10].

The statistical characteristics of the loading indicators of machine usually vary
significantly for the different operation modes, so it is advisable to consider not the
impact of the individual values, but the complex values, called the generalized
variables (GV) (the similarity criteria). In reality, the technical systems are mainly
stochastically defined, and their parameters are subject to the random changes.
The GV, combining those system parameters, will also be subjected to the random
variations. The considerable interest is of studying the probability distribution of
GV and the definition of probability characteristics. Generally, the GV can be
represented as follows [11]:

pk ¼
Yn
i¼1

P�ai
i ; ð2:1Þ

where Pi—the parameters included in the GV and ai—the exponent parameters.
The parameters included in the GV are the random variables with their own

distributions, and the GV is the function of those random variables. It should be
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noted that the probability distribution of the Pi parameters is mainly known as a
result of the test or a priori data. To study the probability distribution of pk , we have
to analyze the dependence of the form:

pk ¼ u P�a1
1 ;P�a2

2 ; . . . ;P�an
n

� �
: ð2:2Þ

Due to the complexity of analytical solution, it is advisable to investigate the
problem through the method of statistical tests on a computer or by the analytical
approximation [12, 13].

The essence of statistical test for solving the problem is that parameters included
in GV are modelled through the specified distribution, and the array of data is
formed for the random values pk. On the basis of this array, the GV distribution is
determined and its statistical characteristics are calculated.

To analyze the expression (2.2), we represent the initial GV as a function of two
random variables—X1 and X2 and denote the GV by y:y ¼ u x1; x2ð Þ.

Given the probability density of random variables X1;X2ð Þ. Then, the distribu-
tion function of the random variable Y = GV can be determined based on the
probability density function of the individual random variables X1 and X2 [14].

F yð Þ ¼
ZZ

D
f x1; x2ð Þdx1 dx2;

where D—the region in the plane X1OX2 for which Y\y.
The probability density is:

f yð Þ ¼ d
dy

F yð Þ:

Consider some typical for GV (consisting of two parameters), the expressions of
the density distribution functions of the continuous random variables:

1. Y ¼ X1X2; f yð Þ ¼ R 1
x1

��� ���f1 x1ð Þf2 y
x1

� �
dx1 ¼

R
1
x2

��� ���f1 y
x1

� �
f2 x1ð Þdx2;

2. Y ¼ X1
X2
; f yð Þ ¼ R x2j jf1 yx2ð Þf2 x2ð Þdx2 ¼

R x1
y2

��� ���f1 x1ð Þf2 x1
y

� �
dx1:

(1) When the allocation of X1 and X2 follows the normal law, the density distri-
bution of Y for product [15] is:

f yð Þ ¼ 1
prx1rx2

K0
y

rx1rx2
;

where K0—the Macdonald function.
(2) When the allocation of X1 and X2 follows the uniform law within the interval

a; bð Þ, the density distribution for product will be:
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f yð Þ ¼
1

b�að Þ2 ln
y
a2 ; a2 � y� ab;

1
b�að Þ2 ln

a2
y ; ab� y� b2:

(

(3) When the allocation of X1 and X2 follows the normal law, the density distri-
bution of Y for the individual case is:

f yð Þ ¼ 1

p y2 þ rx1=rx2ð Þ2
h i � rx1

rx2

which complies with the Cauchy distribution.

If the function depends on many random variables, there is the determinant of
Ostrogradski–Jacobi for the transformation of random variables ðX1;X2; . . . ;XnÞ
into the random variables ðY1; Y2; . . . ; YnÞ.

f yð Þ ¼ @ x1; x2; . . . ; xnð Þ
@ y1; y2; . . . ; ynð Þ ¼

@x1
@y1

@x1
@y2

� � � @x1
@yn

@x2
@y1

@x2
@y2

� � � @x2
@yn

..

. ..
. ..

.

@xn
@y1

@xn
@y2

� � � @xn
@yn

����������

����������
and if this transformation is bijective, then

fy y1; y2; . . . ; ynð Þ ¼ Dj jfx x1; x2; . . . ; xnð Þ

where the quantities of x1; x2; . . .; xn are expressed through y1; y2; . . .; yn.
The task becomes more complex, when we deal with the multidimensional

system of random variables and with the calculation of multiple integrals.
Because of the complexity of determining the density distribution f yð Þ, in some

cases we can restrict the finding of numerical values. In this case, we assume that
the distribution of arguments or their numerical characteristics are given. Then, to
find the expectation and the variance of the functions of random variables, the
following expression is applied [14].

mu ¼ M u X1;X2; . . . ;Xnð Þ½ � ¼ Zþ1

�1
� � � Zþ1

�1
u x1; x2; . . . ; xnð Þ � f x1; x2; . . . ; xnð Þdx1; dx2; . . . ; dxn

D u X1;X2; . . . ;Xnð Þ½ � ¼ Zþ1

�1
� � � Zþ1

�1
u x1; x2; . . . ; xnð Þ � mu
� �2� f x1; x2; . . . ; xnð Þdx1; dx2; . . . ; dxn:

ð2:3Þ

Due to the necessity of studying the distribution of GV, it is of considerable
interest to determine the distribution of pk. In this paper, when the number of
variables is more than three, the most appropriate method for solving the problem
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should be the Monte Carlo method [16]. For the study, the GV of friction was taken
from the tribological nodes of oil equipment, obtained in [17].

Figure 2.1 shows the GV and the probability distribution histograms for normal
and uniformly distributed parameters. The parameter tolerance values are given
within ±(5–15) % of its baseline values. The calculations were performed on PC.
The algorithm for the GV probability distributions using the Monte Carlo method is
shown in Fig. 2.2. Tables 2.1 and 2.2 show the numerical characteristics of these
distributions and the normal and uniform distributions of Pi, respectively, where
p—the average value, r—the dispersion, Sp—the skewness (Sp ¼ l3=r3; l3—the
central point of the third order), Ep—the excess (Ep ¼ l4=r4; and l4—the
fourth-order central moment) for the random variable p.

To calculate the n-dimensional integrals, appearing in the second line of the
expressions (2.3), for the expectation and variance of the random variable functions
u X1; . . . ;Xnð Þ, we apply the Monte Carlo method [18, 19], which is used for the
approximation of integral

I ¼
Z
G

f x1; . . . ; x2ð Þp x1; . . . ; x2ð Þdx1 . . . dxn; ð2:4Þ

where p x1; . . . ; xnð Þ—the joint probability density function of the random variables
X1; . . . ;Xn, defined in G so thatZ

G

p x1; . . . ; x2ð Þdx1. . .dxn ¼ 1: ð2:5Þ

Here, G—the limited range of variation values X1; . . . ;Xn, since the variables Pi,
included in that we consider the GV of the form (2.1), are limited by their physical
meaning: 0\Pi\ci.

In (2.3), xi—the GV Pi, as f x1; . . . ; xnð Þ we adopt the function u x1; . . . ; xnð Þ,
and the probability density function pðx1; . . .; xnÞ is denoted by f x1; . . . ; xnð Þ.

To evaluate the integral (2.4) through the Monte Carlo method, we consider the
random point Q 2 G with the density p xð Þ, where x ¼ x1; . . . ; xnð Þ—the n-dimen-
sional random variable X ¼ X1; . . . ;Xnð Þ and we introduce the random scalar
variable Z ¼ f Qð Þ, the mathematical expectation of which is equal to the desired
integral (2.4)

MZ ¼
Z

f xð Þp xð Þdx ¼ I; ð2:6Þ

M the mathematical expectation. Recall that, by definition, the expectation MZ
exists if and only if there is M Zj j.
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Item Generalized 
variables

Expression Formal representation

Properties of probability 
distribution

When has a 
normal 

distribution

When has a 
uniform 

distribution

1. Hardness

2. Density

3.
Dynamic 
viscosity

4.
Macro-
geometry

5.
Single 
asperities

Fig. 2.1 The GV and the probability distribution histograms for normal and uniformly distributed
parameters
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Item Generalized 
variables

Expression Formal representation

Properties of probability 
distribution

When has a 
normal 

distribution

When has a 
uniform 

distribution

6.

Maximum 
height of 
asperity of 
rough surface

7.
Modulus of 
elasticity

8.

Shear strain 
of films on 
surface of 
friction

9.
Friction 
duration

10.
Thermal 
conductivity

Fig. 2.1 (continued)
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Generalized 
variables

Expression Formal representation

Properties of probability 
distribution

When has a 
normal 

distribution

When has a 
uniform 

distribution

11.
Coefficient 
of specific 
heat

12.
Coefficient 
of linear 
expansion

13. Acceleration

14.
Coefficient 
of heat 
transfer

15.
Work under 
breaking

P* - the value of empirical function of density
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No

Input Data:

Yes

2 Print of input data

3      Passing GV initial structure

4 Call RAND to generate 
uniformly distributed 
random numbers and 
simulation of GV output 
values

5 Implementation of random 
values for given GV 
structure  

6      Determination of GV group 
value scatter

7 Splitting variation series into 
intervals

8 Determination of GV 
numerical values

9 Calculation of theoretical 
frequency distribution

10   Comparison of consistency 
of experimental distribution 
with theoretical distribution 
based on Pearson criterion

12   Print GV theoretical values

13 Build GV distribution 
histogram

14 End of program

1

11

Fig. 2.2 The program algorithm for the GV probability distributions using the Monte Carlo
method

Table 2.1 The first 10 values of p3 (i)

i 1 2 3 4 5 6 7 8 9 10

i triple 1 2 10 11 12 20 21 22 100 101

p3 ið Þ triple 0.1 0.2 0.01 0.11 0.21 0.02 0.12 0.22 0.001 0.101

p3 ið Þ 1=3 2=3 1=9 4=9 7=9 2=9 5=9 8=9 1=27 10=27
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To find the value of I, we choose N independent and identically distributed (i.i.

d.) values of Zi ¼ f Q ið Þ� �
i ¼ 1; . . . ;Nð Þ Q ið Þ ¼ Q ið Þ

1 ; . . . ;Q ið Þ
n

� �� �
—ith value of

the n-dimensional random quantity Q ¼ Q1; . . . ;Qnð Þ and we calculate the arith-
metic mean

ZN ¼ 1
N

XN
i¼1

Zi; ð2:7Þ

Since the sequence of independent identically distributed random variables
Zif gi¼1;N , with the mathematical expectation, follows the law of large numbers

(theorem of A.Y. Khinchin [20]), the arithmetic mean of these values converges
with the expectation MZ ¼ I when N ! 1, i.e., for any e[ 0

P ZN � I
�� ��� e
	 
! 0: ð2:8Þ

Briefly, this is written as

Zn !P I: ð2:9Þ

Thus, for large N, the value of Zn 	 I and the evaluation (2.7) can be used in all
cases when there is MZ ¼ I, for which, as indicated above, it is necessary and
sufficient that the integral

M Zj j ¼
Z
G

f xj jj jp xð Þdx: ð2:10Þ

The existence of the integral (2.10) follows from restrictions

0\f xð Þ� c; ð2:11Þ

which comes from the definition of GV considered by us Pk k ¼ 1; . . . ; 15ð Þ (see
Fig. 2.1).

Let us say that there is the Monte Carlo method for calculating some scalar value
a, if there is a random variable g, where its expectation is equal to a:

Mg ¼ a; ð2:12Þ

and the estimate for a is the arithmetic mean

a 	 1
N

XN
i¼1

gi; ð2:13Þ
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Here g1; . . . ; gN—the independent values of g. With respect to the integral (2.4),
we have: a ¼ I; g ¼ Z; gi ¼ Zi; Zi ¼ f Qið Þ i ¼ 1; . . . ;Nð Þ.

Let us say that there is the Monte Carlo algorithm for calculating the value of a,
if, besides the formula (2.13), there is formula

g ¼ U c1; . . . ; cn;...
� �

; ð2:14Þ

which expresses the desired value of a through the independent uniformly dis-
tributed random numbers c1; . . . ; cn; . . ..

Definition 1 [19]. If the function Φ depends on n arguments

U ¼ U c1; . . . ; cnð Þ;

then we say that the constructive dimension (c.d.) of the algorithm (2.13)–(2.14) is
equal to n.

In this case, for the ith implementation of “test,” it is sufficient to choose the

n random numbers c ið Þ
1 ; . . . ; c ið Þ

n and based on them to calculate the values of

gi ¼ U c ið Þ
1 ; . . . ; c ið Þ

n

� �
. The constructive dimension of n is the maximum number of

random values that may be required to implement a test.
By condition, since each of the independent variables c1; . . . ; cn is uniformly

distributed in the interval (0; 1), the function U c1; . . . ; cnð Þ is defined in the unit n-
dimensional cube

Kn ¼ 0\y1\1; . . . ; 0\yn\1f g; ð2:15Þ

and the random n-dimensional value of Q ¼ c1; . . . ; cnf g is uniformly distributed
in the Kn: Its density is pQ y1; . . . ; ynð Þ ¼ 1 for y1; . . . ; ynð Þ 2 Kn. Therefore, the
desired value of a can be written in the form of the n-dimensional integral over Kn:

a ¼ Mg ¼ MU Qð Þ ¼
Z1
0

Z1
0

U y1; . . . ; ynð Þdy1 . . . dyn: ð2:16Þ

Thus, the common interpretation of the Monte Carlo algorithm is as follows: If
the structural dimension of the algorithm is n (c.d. = n), then the algorithm is the
approximation method for calculating the n-dimensional integral (2.16) with ran-

dom points Q ið Þ ¼ c ið Þ
1 ; . . . ; c ið Þ

n

� �
, evenly distributed in the Kn

Z
Kn

U Qð ÞdQ 	 1
N

XN
i¼1

U Q ið Þ
� �

: ð2:17Þ

Here and below, for brevity, we use the notation
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Z
Kn

U Qð ÞdQ 
 Z1
0

. . .
Z1
0

U y1; . . . ; ynð Þdy1 . . . dyn: ð2:18Þ

Formula (2.17) is equivalent to (2.13) and (2.14).
We assume that the domain G in (2.4) is the n-dimensional parallelepiped

Pn ¼ aj � xj � bj; j ¼ 1; . . . ; n
	 


, which can be easily reduced to the n-dimen-
sional cube (2.15) through the linear transformations

yj ¼ xj � aj
bj � aj

j ¼ 1; . . . ; nð Þ:

In the case of the integral (2.14) (with the proviso that n-dimensional random
quantity Q ¼ c1; . . . ; cnð Þ is evenly distributed in the cube Kn), we have U Qð Þ ¼
f Qð Þ and the formula (2.16) can be written in the form of

I ¼ Z1
0

. . .
Z1
0

f y1; . . . ; ynð Þdy1 . . . dyn; ð2:19Þ

where y1; . . . ; ynð Þ—the value of n-dimensional random variable Q.
The question naturally arises: Is it possible to specify a non-random sequence of

points P 1ð Þ; . . . ;P ið Þ; . . . of Kn such thatZ
Kn

U Qð ÞdQ ¼ lim
N!1

1
N

XN
i¼1

U Q ið Þ
� �

: ð2:20Þ

Definition 2 [19]. The sequence of points P 1ð Þ; . . . ;P ið Þ; . . . is uniformly dis-
tributed in the Kn, if (2.20) holds for any function U y1; . . . ; ynð Þ, integrable in Kn

according to Riemann.
Weyl introduced this notion in 1916 [21], and also produced examples of the

uniformly distributed sequences. Therefore, the sequence P ið Þ	 

, uniformly dis-

tributed by the Definition 2, is also called the Weyl equidistributed.
Recall that the Riemann integral is defined only for limited functions.
The comparison of the formulas (2.20) and (2.17) shows that for the imple-

mentation of Monte Carlo algorithms with c.d. = n, we can try to use instead of the
random points Q ið Þ the points of sequence P ið Þ	 


, which are Weyl equidistributed.

To do this, at the i-th step of “test” instead of random numbers c ið Þ
1 ; . . . ; c ið Þ

n

� �
we use the Cartesian coordinates yi1; . . . ; yin of the point P ið Þ. The relation (2.20)
guarantees the convergence of this calculation method for the majority, occurring in
practice, of the Monte Carlo algorithms.

The equality (2.20) is not violated if we change any finite number of points in the
sequence P ið Þ	 


. However, the convergence of arithmetic means toward the limit
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and, in this case, can become very slow. Therefore, in practice, not every the Weyl
equidistributed sequence is reasonable to use as pseudorandom points. Among all
uniformly distributed sequences, we should select “good” ones in some sense. Such
sequences are the sequence of Holton P� ið Þ and the ЛПτ sequence of Q� ið Þ, which
will be described below.

Let G denote an arbitrary n-dimensional domain that belongs to Kn and through
VG—its volume (n-dimensional). Next, let SN Gð Þ be the number of points with
numbers 1� i�N, belonging to G.

Theorem 1 (Weyl) For the sequence of points P 1ð Þ; . . . ;P ið Þ; . . . to be uniformly
distributed in the Kn (by Definition 2), it is necessary and sufficient that for every
G � Kn

lim
N!1

SN Gð Þ
N

� �
¼ VG: ð2:21Þ

This shows that for the large values of N, the number of points belonging to G,
among points P 1ð Þ; . . . ;P Nð Þ, is approximately proportional to the volume of VG.

Let us consider a random point C ¼ c1; . . . ; cnð Þ, uniformly distributed in the
Kn, and N of its independent realizations C 1ð Þ; . . . ;C Nð Þ: Since the probability is
P C 2 Gð Þ ¼ VG, the convergence of the hitting rate for these implementations in
G to the probability of hitting G means that

SN Gð Þ
N

� �
!P VG:

The comparison of this formula with (2.21) shows once again that the points

Q ið Þ ¼ Q ið Þ
1 ; . . . ;Q ið Þ

n

� �
of the non-random Weyl equidistributed sequence Q ið Þ	 


are the analogues of independent realizations C ið Þ of the uniformly distributed
random point C ¼ c1; . . . ; cnð Þ.

The “uniformity” of distribution of the non-random sequences can be evaluated
using the value called the deviation. To determine it, we choose in Kn some
arbitrary point P and it is denoted by PP parallelepiped with the diagonal OP and
sides parallel to the coordinate axes (Fig. 2.3).

The deviation of the group of points P 1ð Þ; . . . ;P Nð Þ is defined by

DN ¼ sup SN PPð Þ � N � VPPj j; P 2 Kn: ð2:22Þ

Theorem 2 [19]. For the sequence of points P 1ð Þ; . . . ;P Nð Þ; . . . to be uniformly
distributed in the Kn (in the sense of Weyl), it is necessary and sufficient that

lim
N!1

DN

N

� �
¼ 0:
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It is obvious that the faster the ratio DN=N decreases, the more evenly the
sequence is distributed. In the literature, the ratio DN=N is often referred to as a
deviation, as this is the upper bound of deviations of the empirical distribution
function SN PPð Þ=N for points P 1ð Þ; . . . ;P Nð Þ from the theoretical distribution
function of random point C in Kn, in which the point P is equal to VPP .

We can prove that 12 �DN �N, but it is unclear which is the best order growth of
DN at N ! 1. At the present time, there are only two known classes of sequences
of points in Kn, such that for all N

DN ¼ O lnn Nð Þ: ð2:23Þ

This sequence of Holton [22] and the ЛПτ sequences [23] are denoted by P�
i and

Q�
i , respectively. Examples of such sequences are listed below. Are there any

sequences for which DN ¼ O lnn Nð Þ for all N is unknown. However, for the points
Q� 1ð Þ; . . . ;Q� Nð Þ in the ЛПτ sequence with N ¼ 2m, the deviation is
DN ¼ O lnn�1 N

� �
.

Let us investigate in more detail the convergence of limit in (2.20). The
Eq. (2.20) holds for all Riemann integral functions U y1; . . . ; ynð Þ. If we consider
the more restricted classes of functions, then there can be an estimate error of this
formula. For example, the inequality

Z
Kn

U Pð ÞdP� 1
N

XN
i¼1

U P ið Þ
� �������

������� c Uð ÞDN

N
; ð2:24Þ

0 1

1

x 2

P

x1

p

Fig. 2.3 Parallelepiped with
the diagonal OP and sides
parallel to the coordinate axes
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where c Uð Þ does not depend on neither N, nor points P ið Þ being valid for all
P 1ð Þ; . . . ;P Nð Þ and for all functions U y1; . . . ; ynð Þ, which are continuous and
bounded in Kn along with their partial derivatives containing not more than one
differentiation with respect to each variable. All of these derivatives can be written
by the formula @kU



@yj1 . . .@yjk , where 1� j1\jk � n and k can take the values

1; 2; . . . ; n. The oldest among these derivatives is @nU=@y1 . . . @yn.
By the way, in the integral (2.4) with U y1; . . . ; ynð Þ ¼ f y1; . . . ; ynð Þ, the

above-mentioned conditions for the smoothness of U, where the inequality (2.23)
holds, are fulfilled for all considered GV pk k ¼ 1; . . . ; 15ð Þ, if their constituent
variables Pi satisfy the condition Pi [ 0 in the domain G.

If the sequence of Holton Pi ¼ P�
i or ЛПτ sequence Pi ¼ Q�

i is substituted into
(2.24), then according to (2.23) the right-hand side will be the order of
O N�1 lnn Nð Þ. Since for all sufficiently large N, the inequality lnn N\Ne (for any
fixed n� 1 and e[ 0) is valid, we can say that the error (2.24) decreases faster than
N� 1�eð Þ with any e[ 0. The accuracy of formula (2.20) with the “real” random
points is equal to N

1
2, i.e., much worse.

Definition 3 [24]. The numbers c1; . . . ; cn, which are calculated by any given
formula and resemble the random numbers with their statistical properties, are
called the pseudorandom numbers.

The “good” pseudorandom numbers are the terms of Holton sequence P�
i or the

terms of ЛПτ sequence Q�
i .

Definition 4 [19]. If in the r-ary r� 2ð Þ system the numeration is i ¼ amam�1. . .a2a1,
then again in the r-ary system

pr ið Þ ¼ 0; a1a2. . .am�1am:

The entire as are the r-ary digits, i.e., they are equal to one of the values 0,
1; 2; . . . ; r � 1.

In the decimal system, the last two formulas are as follows:

i ¼
Xm
S¼1

aSr
S�1; pr ið Þ ¼

Xm
S¼1

aSr
�s:

The first 10 values of p3 ið Þ are listed in Table 2.1.
Let r1; . . . ; rn be the pairwise prime numbers.

Definition 5 [19]. The sequence of Holton is a sequence of points in the unit cube
Kn (2.15) with the Cartesian coordinates.

pr1 ið Þ; . . . ; prn ið Þð Þ; i ¼ 1; 2; . . .:

The sequences were designed by Holton [22], and he also obtained values for
them (2.23). All such sequences are distributed uniformly in Kn (according to
Definition 2).
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Usually in practice, as r1; . . . ; rn, we choose the first n primes r1 ¼ 2; r2 ¼ 3; r3 ¼ 5; . . .

and use the n-dimensional points

P�
i ¼ p2 ið Þ; p3 ið Þ; p5 ið Þ; . . . ; prn ið Þð Þ; i ¼ 1; 2; . . .:

Definition 6 [19]. The points Qi ¼ qi1 ; . . . ; qi1ð Þ of the unit n-dimensional cube are
defined by the formula

Qi ¼ e1V1 � e2V2 � . . . � emVm: ð2:25Þ

where i ¼ emem�1 . . . e2e1—the binary representation of i (em 2 0; 1f g—the binary
digits) and Vs s ¼ 1; 2; 3; . . . ;mð Þ—the guiding points, the denominators of coor-
dinates of which are equal to 2s, and the numerators are defined in Table 2.2, called
the points of ЛПτ sequences studied in detail in [23].

Here, (*) denotes the bitwise addition modulo 2 in the binary system. As a rule,
all computers have a dedicated function to carry out operations (*): This is the
so-called function of “comparison” (in each digit, the numbers are added by the
rules 0þ 0 ¼ 1þ 1 ¼ 0, 0þ 1 ¼ 1þ 0 ¼ 1).

Here is an example of calculating the coordinates of Vs for s ¼ 3 and n ¼ 13

Vs ¼ 1
8
;
5
8
;
7
8
;
1
8
;
5
8
;
7
8
;
3
8
;
3
8
;
1
8
;
5
8
;
7
8
;
1
8
;
5
8

� �
:

Here, the denominator is 23 ¼ 8, and the numerators for s ¼ 3 are taken from the
third column of Table 2.2. If there is a need in a point of lower dimension n, then it
should be limited to the first n-numbers of the sth column.

Table 2.2 makes easy to calculate the points Q0;Q1; . . . ;Qn�1 that for any
N form, the “good” integration formula (2.20) can be written as

Z1
0

. . .
Z1
0

f y1; . . . ; ynð Þdy1 . . . dyn 	 1
N

XN�1

i¼1

f Q ið Þ
� �

: ð2:26Þ

For an explanation of the rule (2.25), let us calculate the point Q22 in
four-dimensional cube. In the binary system, the number 22 is written as 10110.
Therefore, in accordance with (2.25), we obtain Q22 ¼ V2 � V3 � V5.

The coordinates of point Q22 ¼ q22;1; q22;2; q22;3; q22;4
� �

are as follows:

q22;1 ¼ 1
4
� 1
8
� 1
32

¼ 0:01 � 0:001 � 0:00001 ¼ 0:01101 ¼ 13
32

;

q22;2 ¼ 3
4
� 5
8
� 17
32

¼ 0:11 � 0:101 � 0:10001 ¼ 0:1101 ¼ 29
32

;
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q22;3 ¼ 1
4
� 7
8
� 13
32

¼ 0:01 � 0:111 � 0:01101 ¼ 0:11001 ¼ 25
32

;

q22;4 ¼ 3
4
� 1
8
� 31
32

¼ 0:11 � 0:001 � 0:11111 ¼ 0:00011 ¼ 3
32

:

And so,

Q22 ¼ 13
32

;
29
32

;
25
32

;
3
32

� �
:

The number of operations made on a computer to calculate Qi increases along
with i, but slowly decreases as log2 i. It uses only the simplest (logical) operations
that are performed on computer faster than arithmetic operations.

The various coordinates of point Qi are unequal: The coordinates with lower
values are better distributed. Therefore, in the integrand function f y1; . . . ; ynð Þ, the
variables are better to be numbered so that the most significant coordinates have
smaller values.

The accuracy of formula (2.26) is better estimated, if instead of points Qi we use
nodes of the Ps mesh or the initial parts of ЛПτ sequence:

dk k 	 2n�1þ s

N
1
P

; ð2:27Þ

if the function f belongs to the linear space Sp.
The order of convergence (at N ! 1) in (2.27) is best. The space Sp is entered

using the function represented by the series of Haar:

f Pð Þ ¼ c1 þdX X
k1... ks

ci1... isk1... ksvk1 xi1ð Þ. . . vks xisð Þ ð2:28Þ

where

c1 ¼
Z
Kn

f Pð Þ dP;

ci1... isk1... ks ¼
Z
Kn

f Pð Þvk1 xi1ð Þ. . . vks xisð Þ dP ;

the indexes k1; . . . ; ks vary from 2 to 1. Each of the quantities in (2.27) located

under the sign of cP depends only on the variables xi1 ; . . . ; xis , and we can assume
that it is given on the verge of Ki1... is of cube Kn.

The Haar function v xð Þ of one variable x is defined by the formula
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f yð Þ ¼
2

m�1
2 at x 2 l�mj

�2
m�1
2 at x 2 lþmj

0 at x 62 lmj

8<: ; ð2:29Þ

where lmj ¼ j�1
2m�1 ;

j
2m�1

� �
, j ¼ 1; . . .; 2m�1ð Þ—the binary segments obtained by

dividing the 0; 1½ � interval into 2m equal parts m ¼ 1; 2; . . .ð Þ; l�mj and lþmj—the left
and right halves of the segment lmj.

Definition 7 [23]. The class SP Ai1... isð Þ is the set of functions f Pð Þ, represented in
the form of (2.28), and the coefficients of the Fourier–Haar satisfy the conditions:

Ai1... is
p fð Þ�Ai1... is ; ð2:30Þ

In any marked indexes 1� i1\i2\ � � �\is, 1� s� n; Ai1... is—constants;
1� p\1; the value Ai1...is

p fð Þ is associated with each term in the series (2.28)X
k1... ks

ci1... isk1... ksvk1 xi1ð Þ . . . vks xisð Þ ð2:31Þ

and it is defined as

Ai1... is
p fð Þ�

X
m

2
m1�1

2 þ ��� þ ms�1
2

X
j

cik
�� ��p( )1

p

; ð2:32Þ

where for short i ¼ i1; . . .; isð Þ, m ¼ m1; . . .;msð Þ, j ¼ j1; . . .; jsð Þ, k ¼ k1; . . .; ksð Þ.
The constants Ai1... is from (2.30) are called defining constants of class Sp Ai1... isð Þ.
The union of all classes Sp Ai1... isð Þ for all possible constants Ai1... is and substi-

tutions is. . . is � 1; 2; . . .; nð Þ will be denoted by Sp.
If 1\p\p0, then it follows:

S1 Ai1... isð Þ � SP Ai1... isð Þ � Sp1 Ai1... isð Þ: ð2:33Þ

For any function f Pð Þ on SP Ai1...isð Þ, the series (2.28) converges absolutely and
uniformly.

As it is known, for the functions f xð Þ of one variable x the Holder class functions
Ha (in particular, the differentiable function f xð Þ belongs to the class Ha with a ¼ 1)
are embedded in the class SP. This property can be generalized to the class of
functions f x1; . . .; xnð Þ.
Definition 8 [23]. The class of Holder functions Ha Li1...isð Þ is the set of functions
f Pð Þ, which satisfy the following conditions: If P ¼ x1; . . .; xnð Þ 2 Kn and
PþQ 2 Kn, where Q ¼ n1; . . .; nnð Þ, then for any 1� i1\i2\ � � �\in � n,
1� s� n
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Dni1
. . .Dnis f Pð Þ

��� ���� Li1... is ni1 . . . ni2
�� ��a; ð2:34Þ

where Dnis f Pð Þ ¼ f x1; . . . ; xis þ nis ; . . . ; xn
� � � f x1; . . . ; xnð Þ—the increment

operator of function f Pð Þ with respect to xis . The constants Li1...is are called defining
constants of class Ha Li1...isð Þ; the parameter is 0\a\1.

Just as in the one-dimensional case, if a\a0\1, then

H1 Li1... isð Þ � Ha0 Li1... isð Þ � Ha Li1... isð Þ: ð2:35Þ

The classes Ha Li1...isð Þ are the generalization of n-dimensional case of the class of
Holder functions with one variable Ha Lð Þ. However, it should be emphasized that
the condition (2.34) is different from the Holder multidimensional conditions used
in the theory of differential equations [25]:

f PþQð Þ � f Pð Þj j �
Xn
i¼1

Li nij ja; ð2:36Þ

For a function f Pð Þ satisfies (2.36) with a ¼ 1, it is sufficient that all its partial
derivatives @f =@xi were limited: @f =@xij j � Li. And to ensure that it satisfies (2.34)
with a ¼ 1, this is not enough: We must require that all partial derivatives
@sf =@xi1 . . . @xis were limited, as if @sf =@xi1 . . . @xisj j � Li1... is , then the equality

Dni1
. . .Dnis f Pð Þ ¼ Zni1

0

. . .
Znis
0

@sf Pþ Tð Þ
@xi1 . . . @xis

dti1 . . . dtis ;

where T ¼ 0; . . . ; 0; ti1 ; 0; . . . ; 0; ti2 ; 0; . . . ; 0; tis ; 0; . . . ; 0ð Þ, and it is easy to
obtain (2.34) with a ¼ 1.

Theorem 3 [23]. If ap[ 1, then Ha Li1... isð Þ � SP Ai1... isð Þ, where

Ai1... is ¼ 21þ a � 21þ
1
p

� ��s
Li1... is : ð2:37Þ

We denote the GV u x1; . . . ; xnð Þ in the first of formulas (2.3) through
f x1; . . . ; xnð Þ, and the probability density function f x1; . . . ; xnð Þ through
p x1; . . . ; xnð Þ. Assuming that the integrals in (2.3) after the above linear transfor-
mations lead to integrals over the unit cube Kn, on the basis of formula (2.19), we
have

mu ¼ Z1
0

. . .
Z1
0

f y1; . . . ; ynð Þ dy1. . . dyn: ð2:38Þ

besides the integral in (2.38) can be calculated from the approximate quadrature
formula (2.26), where as the nodes Qi ¼ yi1; . . .; y

i
n

� �
of the integration grid points
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are taken the points Q�
i ¼ yi1; . . .; y

i
n

� �
of the ЛПτ sequence (2.25), and not the

random points obtained through the random number generator.
Since the function f x1; . . .; xnð Þ for all 15 GV has the bounded partial derivatives

@sf =@yi1 . . .@yis , these functions also satisfy the conditions (2.34) with a ¼ 1 and
therefore belong to the class Sp, which allows to use the formula (2.27) for the error
approximation formula (2.26) in the case of the integral (2.38) for mu and the

corresponding integral for Du ¼ M u� mu

� �2h i
.

Unfortunately, the constants 2n�1þ s nð Þ increase along with n in the error esti-
mation (2.27). In any case, when n ¼ 2; 3; 4, these constants are equal to, respec-
tively, 2, 4, and 16 and can be considered small. Therefore, the use of non-random
nodes of the quadrature formula (2.26) in the form of ЛПτ sequences, defined by
(2.25), is recommended in [23] as a good method for the computation of integrals
with not too high multiplicity n� 4ð Þ from not too smooth functions, which can be
also useful if n[ 4.

As noted in [26], the existing generators of the pseudorandom numbers,
developed to model these distributions, perform this function well; however, an
attempt to consider the sequences generated by the generator (e.g., RANDU), as the
trajectories of a random sequence (or rather a sequence of independent identically
distributed random variables with corresponding distribution), is theoretically
incorrect and can lead to the false conclusions. The simulated process is obtained by
applying a model through filter F to the generator of white noise X tð Þ, and at the
same time, the researchers often assume the adequacy of the sequence generator of
white noise or the statistical uncorrelatedness of its successive observations X tð Þ.

Generating the pseudorandom numbers of satisfactory quality is a very com-
plicated process, since there are no algorithms that could produce sequences having
all the properties of random sequences.

In this regard, the above-described methods for the approximate calculation of
multidimensional integrals with the help of grid points in the unit cube forming Q�

i
points of the ЛПτ sequences are the virtually convenient way to calculate the
expectation and variance of the GV from Fig. 2.1.

If we approach the issue more closely, then it will be good to impose following
requirements on of pseudorandom numbers:

1. the asymptote of DN (2.22) is the best (or at least close to the best);
2. the constant in (2.23) is the best (or at least sufficiently small);
3. the value of DN=N is small even for small N;
4. the algorithm for calculating these points on a computer is simple enough.

Unfortunately, it is not currently possible to check all of these requirements; as for
DN , the best order of growth is not even known. However, the points of P�

i (terms
of the Holton sequence) and the points Q�

i (terms of the ЛПτ sequence) fully satisfy
the first condition. For small n, the points of Q�

i satisfy the second and third
requirements. Finally, the calculation time for the points Q�

i is of the same order as
the time for standard pseudorandom points Ci (unless there is a ready table
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for V Sð Þ
j ). To calculate the points P�

i , we need only n primes, but in comparison with
time to calculate Q�

i , it is approximately n times greater.
In the calculations performed on the points Q�

i , the actual error is often on the
order less than the probable error

rN ¼ 0:6745

ffiffiffiffiffiffi
Dg

N

r
: ð2:39Þ

where g—the random variable in (2.12).
We should not think that if the variance does not find an error, then all methods

aimed at reducing the variance [19, 27] are meaningless. Firstly, the algorithms with
a less variance correspond to the functions U in (2.14) with a little change, which,
generally speaking, are better to integrate. Secondly, the algorithms with a less
variance often correspond to the smooth functions U, satisfying the criteria (2.24).

We can expect higher convergence rate through a deterministic random number
by using the Monte Carlo methods [19].

Taking into account that in practice we do not require a high precision of
determination of the GV probability distribution, the evaluation approach to these
issues [11] becomes obvious. For the purposes to simplify the analysis of the GV
probability distribution, we represent the expression (2.1) in the form:

ln pk ¼
Xn
i¼1

ai lnPi: ð2:40Þ

Therefore, the probability distribution pk will tend to approach the lognormal
view; it can be used as the statistical model for the random variables. The value of
GV is obtained by multiplying a large number of small errors [28]. This premise
can be taken as the basis for studying the patterns of the probability distribution
of the parameters that are included in the GV. If deviations DPi do not exceed
(10–20) % of their nominal value Pi, then the expression (2.40) can be written as
follows:

ln pk ¼
Xn
i¼1

ai ln 1þ Pi � 1ð Þ½ � 	
Xn
i¼1

ai Pi � 1ð Þ; ð2:41Þ

i.e., to linearize the function (2.40) and take into account only the first term of the
expansion (2.41). In this case, the estimate of the variance is easily defined

D ln pkð Þ ¼
Xn
i¼1

a2i D Pið Þ:

Since the distribution Pi is accepted as normal, ln pkð Þ 	P ai Pi � 1ð Þ is also
distributed approximately normal.
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In general, the probability density function pk will be determined as follows (at
M ln pkð Þ ¼ 0):

P pk\pð Þ ¼ F pð Þ ¼ F ln pk\ ln pð Þ ¼ U
ln pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

i¼1 a
2
i D Pið Þ

p !
; ð2:42Þ

F pð Þ ¼ dP pk\pð Þ
dp

	 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2p
P

aiD Pið Þp expþ 1
2
� ln pPn

i¼1 aiD Pið Þ
� �

: ð2:43Þ

Let us consider the case with DPi ¼ �20 %, or

a ¼ 1
15

:

D ln pkð Þ ¼ 1
225

Xn
i¼1

a2i ;

and substitute in (2.43) the values of the various structures pk, shown in Fig. 2.1.
For any GV structure, we can write the corresponding expressions of the

probability density function pk .
For example, for GV 2, 12, and 13

F pð Þ 	 15ffiffiffiffiffiffiffiffi
50p

p u
15 ln pffiffiffiffiffi

50
p

� �
; F pð Þ 	 15ffiffiffiffiffiffi

4p
p u

15 ln pffiffiffi
4

p
� �

;

F pð Þ 	 15ffiffiffiffiffiffi
7p

p u
15 ln pffiffiffi

7
p

� � ð2:44Þ

These expressions can be used to define the GV range variation and also their
probability distributions. For example, asking the value of standard deviation r, we
can find the variation limits of pk.

For the practical purpose, we set P ¼ 0:95 in most cases. The calculations
showed that the value of p with probability P ¼ 0:95 is in that area.

Since the results of evaluation approach are compared with the results obtained
through the statistical tests, we need also to examine the probability distribution of
GV depending on the particular set of random numbers. It is obvious that the
probability distribution of the same GV, defined by statistical tests twice with the
same number of tests, will be somewhat different from each other. The conducted
comparative calculations show that the error of the results does not exceed 12 %.

It should be noted that the probability distributions of GV determined by the
evaluation procedure are within the range of the distributions obtained by the
statistical tests. The analysis of GV probability characteristics (Tables 2.3 and 2.4)
showed that the GV distribution curves are close to the lognormal distribution.
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All distribution curves are characterized by a positive value of the asymmetry
coefficient. The asymmetry of distribution curves increases when the parameter
tolerance increases and the presence of higher orders in the first parameters. At the
relatively lower values of tolerance, the distribution curves lie between normal and

Table 2.3 The analysis of GV probability characteristics

GV # p r Sp Ep pmin pmax

1 4.66 × 102 3.74 × 10 0.44 0.027 3.76 × 102 5.76 × 102

2 2.44 × 10−2 5.30 × 10−3 0.47 0.075 1.37 × 10−2 4.31 × 10−2

3 8.62 × 10 8.60 0.282 0.155 6.55 × 10 1.12 × 102

4 2.60 × 10 7.08 × 102 0.074 0.327 2.52 × 104 2.90 × 104

5 2.78 × 10−6 1.29 × 107 0.044 0.292 2.47 × 10−6 3.14 × 10−6

6 3.71 × 10−9 1.71 × 10−10 0.044 0.302 3.29 × 10−9 4.19 × 10−9

7 2.28 × 106 1.82 × 104 0.440 0.021 1.83 × 106 2.81 × 106

8 3.52 0.28 0.440 0.020 2.83 4.35

9 1.44 × 103 8.39 × 10 0.034 0.164 1.23 × 103 1.67 × 106

10 1.94 × 10−11 3.11 × 10−12 0.470 0.544 1.38 × 10−11 2.76 × 10−11

11 1.04 × 1016 1.23 × 1015 0.136 0.163 6.89 × 1015 1.38 × 1016

12 2.04 × 10−4 7.50 × 10−5 0.02 0.558 1.31 × 10−4 3.99 × 10−4

13 1.17 × 10−9 8.21 × 10−11 0.281 0.20 9.55 × 10−10 1.40 × 10−9

14 2.11 × 10−10 2.89 × 10−11 0.442 0.50 1.32 × 10−10 3.04 × 10−10

15 7.44 × 104 3.13 × 102 0.205 0.455 6.58 × 104 8.18 × 104

Table 2.4 The GV distribution curves

GV # p r Sp Ep pmin pmax

1 4.69 × 102 3.62 × 10 0.074 −0.679 3.84 × 102 5.61 × 102

2 2.41 × 10−2 5.40 × 10−3 0.472 −0.584 1.48 × 10−2 3.90 × 10−2

3 8.57 × 10 6.02 × 10−1 0.296 −0.350 6.58 × 10 1.09 × 102

4 2.68 × 104 6.66 × 102 0.079 −0.346 2.52 × 104 2.86 × 104

5 2.77 × 10−6 1.20 × 10−7 0.209 −0.617 2.50 × 10−6 3.05 × 10−6

6 3.69 × 10−9 1.58 × 10−10 0.123 −0.518 3.33 × 10−9 4.07 × 10−9

7 2.29 × 106 1.76 × 105 0.074 −0.684 1.87 × 106 2.74 × 106

8 3.54 2.27 × 10−1 0.074 −0.684 2.90 4.23

9 1.43 × 104 7.77 × 10 0.148 −0.603 1.26 × 104 1.67 × 104

10 1.97 × 10−11 3.00 × 10−13 0.386 −0.240 1.37 × 10−11 2.83 × 10−11

11 1.05 × 1016 1.27 × 1015 0.401 −0.287 8.16 × 1015 1.50 × 1016

12 1.93 × 10−4 7.01 × 10−5 0.047 −1.109 6.73 × 10−5 3.54 × 10−4

13 1.17 × 10−3 8.90 × 10−11 0.180 −0.642 1.0 × 10−3 1.40 × 10−9

14 2.09 × 10−10 2.75 × 10−11 0.503 −0.149 1.50 × 10−10 2.50 × 10−10

15 7.46 × 104 3.27 × 102 0.082 6.77 × 104 8.24 × 104
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lognormal. The distribution curves are characterized by the structure of GV and do
not depend on the numerical values of parameters.

At Pi, with the normal distribution, the GV has six or more parameters, and the
kurtosis of distribution curves would be somewhat larger (see Fig. 2.1, for GV 10,
14), when the uniform distribution is even less. When the product of parameters
describes the GV, the distribution curves get closer to theoretical normal and
uniform shapes, respectively (see Fig. 2.1, for GV 12). The GV distribution curves
with similar structures can be used in studying other the physical processes.
Applying the method of statistical tests or the evaluation techniques, we can find the
influence characteristics of parameters included in the GV of friction processes.
Based on the probability distributions of the process GV and applying the known
models of failure, it is possible to calculate the reliability and predict the possible
behavior of any particular friction unit.

2.2 Varying Generalized Variable When Planning
Experiments

The questions on the synthesis of the similarity theory and the mathematical theory
of experiment planning are highly relevant and promising [7, 12]. The application of
the theory of experimental planning to the analysis of criterion correlations (of the
GV) has a number of features associated with the fact that in this case there is no need
to operate with separate parameters, like it is done usually, but with generalized
parameters (the criterion of similarity) [11]. In those cases when the parameters are
only included in one of the GV, the definition of variation pitch and the construction
of the planning matrix can be carried out in accordance with [7]. The task becomes
much more complicated when the same parameter is entered into the several GV.

Let us consider one of the possible ways of varying the GV and building the
planning matrix. The experiment planning matrix (EPM), which contains the GV,
can be successfully used for the generalized regression equations in the analysis of
tribological problems.

Generally, in order to realize the full or fractional factorial experiment, we must
meet the following conditions:

XN
u¼1

Xiu ¼ 0;
XN
u¼1

X2
iu ¼ N;

XN
u¼1

XiuXju ¼ 0:

where u—the number of columns in matrix and N—the number of experiments.
These conditions correspond to the symmetry, normalization, and orthogonality of
the planning matrix.

The analysis of these conditions for the EPM, containing GV, shows that in the
EPM building, the GV plays the role of factors, consisting of a number of
parameters. Of course, while building the planning matrix in the form of GV, all the
mentioned conditions are fully hold, i.e.,
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XN
u¼1

piu ¼ 0;
XN
u¼1

p2iu ¼ N;
XN
u¼1

piupju ¼ 0:

The GV variation is achieved by varying the parameters included in it. If we
analyze the matrix columns, relating to one of GV, the following is noted:

XN
u¼1

Xiupiu ¼ 0;
XN
u¼1

Xiupiuð Þ2¼ N;
XN
u¼1

XiupiuXjupju ¼ �N:

where Xiupi—the parameter in the kth of GV, þN corresponds with multiplication,
and �N corresponds with division. It will be seen that the EPM has the orthogonal
and symmetric properties. In principle, there can be a variety of options of the GV,
as by a combination of parameters and as by a combination of structures.

For the convenience of presentation, the proposed method is used as an example
of variation of three GV:

p1 ¼ A
BC

; p2 ¼ DM
A

; p3 ¼ A
NK

:

The GV variation limits are defined by the specific deviation parameters. The
upper level is:

p1 þDp1 ¼ AþDAð Þ
BþDBð Þ C � DCð Þ ;

p2 þDp2 ¼ DþDDð Þ MþDMð Þ
A� DAð Þ ;

p3 þDp3 ¼ A� DAð Þ
N � DNð Þ K � DKð Þ :

The lower level is:

p1 � Dp1 ¼ A� DAð Þ
BþDBð Þ CþDCð Þ ;

p2 � Dp2 ¼ D� DDð Þ M � DMð Þ
AþDAð Þ ;

p3 þDp3 ¼ A� DAð Þ
NþDNð Þ K þDKð Þ :

Let us assume that in the first experiment, all A’s must be at the upper level. In
this case, the values of p1 and p3 have to be at the top level, and the values of p2 are

48 2 Scientific Foundations of Stochastic Tribomodeling



at the lower level. Of course, both these conditions are not feasible. In these cases,
the proposed parameters, occurring simultaneously in several GV, leave at the basic
level. This way, setting of the upper and lower levels is achieved through the
proportional changes of other parameters included in the GV. It is the propor-
tionality of changes of the remaining GV allows to objectively maintain the reg-
ularity in the relationship between the GV and the target function.

The planning matrix of the full factorial experiment (FFE) for this case is shown
in Table 2.5. The symbols used in the planning matrix are:

A, B, C, D, M, N, K—the baseline parameters; DB0, DC0, DD0, DM0, DK 0, DN 0—the
parameter increments to compensate for the necessary change of parameters in
order to achieve the levels of the corresponding changes of the GV, i.e., additional
increment;
DA, DB, DC, DD, DM, DK, DN—the parameter increments corresponding to
changes of the GV, i.e., major increments. The implementation of this matrix and
the corresponding processing of results will determine the regression equation of
the GV.

2.3 Application of Group Method of Data Handling
with Respect to Tribotechnical Problems

The method for creating the friction and wear mathematical models, using the
theory of similarity, dimensions, and the mathematical planning of experiment, is
progressive, since the transition to GV dramatically reduces the number of factors to
be considered, reduces the time and labor to carry out the experimental studies, and
provides reasonable enough values for output parameters.

Let us illustrate this by comparison. Suppose that we need to give a mathe-
matical description of process with one objective function and 8 variable parame-
ters. For the mathematical definition, in accordance with the theory of experimental
planning, it is necessary to have N ¼ 28 ¼ 256 experiments at the FFE, and an
average of two overlapping randomizations, and these are additional 512 experi-
ments. Thus, the total number of required tests becomes 768. We assume that these
variables are included in the three criteria of similarity. In this case, the mathe-
matical description will require N ¼ 23 ¼ 8 experiments. Consider that the dupli-
cation has the total number of required experiments equal to 24. Thus, the number
of experiments reduces by 32 times. The comparison shows a clear advantage of
combining the two methods—the theory of similarity and the experimental plan-
ning. The advisability of such a synthesis is obvious, since it leads to the optimal
use of the capabilities of each of the methods.

The comprehensive review of all the opportunities arising from the combination
of methods of the theory of similarity and the statistical methods seems to us very
important.
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2.3.1 Development of Mathematical Model with Initial
Variables

The modern statistical methods of planning and analysis of experiments are
increasingly used in the scientific research; with their help, we can significantly
improve the efficiency of researches, requiring the considerable financial costs and
long terms [7, 10, 29, 30]. The effect is especially significant in the study of
complex multifactorial processes such as friction and wear processes [1]. The action
of a large number of random factors usually leads to a fact that a proceeding of
deviation does not always become “low,” and they cannot be considered as cor-
rections. The introduction of the various “factors of ignorance” reduces the quality
of the calculations.

Most systems operate in accordance with the Pareto principle, which states that
in terms of the system performance, there are only few important factors out of
many. Indeed, in the most systems, the 20 % of factors define the 80 % of system,
and the remaining 80 % of factors determine only 20 % of the system properties.
Our task is to identify the significant factors [31]. To solve this problem, it is
advisable to use the methods of group data handling (MGDH), a priori factor
ranking, the rank correlation, the random balance, and others. The rational choice of
an appropriate method is determined by the presence of a priori information about
the tested process and the complexity of experiments.

At the present time to establish a connection between the input and output
parameters, and to obtain the mathematical model that is adequate to the studied
object, there are the widely used regression analysis and the method of group data
handling (MGDH) [32]. We set n input variables x1; x2; . . . ; xn and output variable
y. The search of the tribotechnical functional dependence y ¼ f x1; x2; . . . ; xnð Þ is
carried out in the class of polynomial functions, producing a sequential scan of the
input variables and their various combinations in order to choose the most appro-
priate which will allow the best way to describe the experimental data. Two criteria
determine the quality of description in MGDH, either the regularity criterion or
criterion of a minimum offset [32].

We choose the selection criterion matching the requirements of desired model.
The regularity is the main criterion, if the high accuracy is required from the model.

The model becomes more stable with respect to the initial experimental data
when using the minimum offset criterion; in other words, by gradually increasing
the complexity of model while changing the set of experimental data, the coeffi-
cients remained unchanged. The final mathematical model was presented as
follows:

y ¼ A0 þ
XS
n¼1

AiZi;
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where y—the output parameter; A0;A1; . . . ;AS—the coefficients of mathematical
model; Zi—the generalized factor, a kind of GV, which are included in the test
mode settings. The structure of the generalized factor is defined as follows:

Z1 ¼
Yn
n¼1

xkiji ; kij ¼ 0; 1; 2:

The experiment is designed in accordance with the selected model and the study
objectives. There are several ways of constructing the planning matrix of large
dimension [33]. Here, we used a FFE. The planning and implementation of FFE
consist of the following main steps: the selection of factors and levels and their
variation; the encoding of factors; drafting up the EPM; the randomization of tests;
and the implementation of the experiment plan.

There are literatures with a detail description on how to draft the EPM [34, 35].
In this work, we study the effect of sliding speed—V, loading—P, and braking
work—W on the coefficient of friction during braking. After selecting variables and
domain, there is a need to find a local area for the experiment. This procedure
involves the choice of levels of the varying factors.

In order to start encoding, we initially choose the starting area of experiment by
setting the upper and lower limits of change for each factor during the experiment.
The upper level corresponds to þ 1, the lower level corresponds to �1, and the
main is set at 0. It is easily done by using the formula that connects the values of
factors in the coded scale xið Þ with ones in the natural scale Xið Þ:

xi ¼ Xi � Xi0

DXi
:

Xi � Xi0 ¼ DXixi;

where DXi ¼ Ximax � Ximin=2—the variation interval; Xi0—the main level.
It should be noted that in the general case, the selection of the variation interval

depends on the given problem.
We present the planning matrix and the test results of the experimental planing

23 of the friction material ФК-24A (for other materials the planning matrix is
established in a similar way, see Table 2.6).

The three major classes of friction pad materials were tested (asbestos–resin,
asbestos–rubber, metal–ceramic) pairing with steel 40XH for the descending mode
of the drilling tool in accordance with the drafted planning matrix. After processing
the experimental data on the computer, the following mathematical model of the
studied object is obtained, i.e., the equation relating the coefficient of friction f with
predetermining factors:

for the friction material ФК-24A
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f1 ¼ 0:312� 0:0308
v �W2

P
þ 0:0045

P
v4

þ 4:785
v �W
P2 ;

for the friction material Б—42

f2 ¼ 0:336þ 0:873
v2

P
þ 0:000466

v4 �W
P

;

for the friction material MКБ—50

f3 ¼ 0:202þ 0:6017� 10�7 � P2W þ 0:92
1

v �W þ 27:596
1
P
:

The indicator of successful synthesis of modeling of complex processes is the
minimum depth of the basic selection criterion. All parameters of the calculated
MGDH algorithms, as well as the structure of these algorithms, are chosen by
selecting the number of options so as to obtain the deepest minimum. The modeling
will not be considered complete if it cannot get the deepest minimum.

Table 2.6 Planning matrix
and the test results

Factors v P W fe Fc

Main level 3.5 355 7.5

Upper level 4.2 430 9.5

Lower level 2.8 280 5.5

Variation
level

0.7 75 2.0

Code
designation

x1 x2 x3 ye yc

1 +1 +1 +1 0.26 0.301

2 +1 +1 –1 0.28 0.312

3 +1 –1 +1 0.30 0.297

4 +1 –1 –1 0.29 0.309

5 –1 +1 +1 0.34 0.332

6 –1 +1 –1 0.33 0.339

7 –1 –1 +1 0.31 0.320

8 –1 –1 –1 0.34 0.328

9 +R 0 0 0.35 0.300

10 −R 0 0 0.37 0.314

11 0 +R 0 0.36 0.319

12 0 −R 0 0.32 0.312

13 0 0 +R 0.28 0.300

14 0 0 −R 0.29 0.315

15 0 0 0 0.30 0.321
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As shown in [32], the allowable minimum depends on the intensity of noise and
it is 5–10 % for the usually occurring measuring accuracy of variables. The
resulting models adequately reproduce the studied braking process, since the error
of these equations according to the original sample is within 6–7 %, which is
acceptable.

The resulting tribological functional dependences (the mathematical models) for
various friction materials allow to reliably predict the behavior of the friction unit in
the braking regime. The concept of a generalized factor is introduced, and its
structure is formulated.

2.3.2 Development of Mathematical Model with Generalized
Variables

Studying the friction and wear of various parts of machines, it is advisable to obtain
a mathematical model, which is expressed as a tribotechnical functional relationship
of the main regime, design, and operational parameters which determine the nature
of the tested process. These dependencies can become main information that will be
used by designers to create new designs of friction devices and their further
operation.

However, the creation of mathematical models of friction and wear has a number
of difficulties: the uncertainty in setting up the initial information; its probabilistic
nature forces to conduct a large amount of experiments. In order to systematize the
results of experiments, to determine the main characteristics of communication, to
combine them into a general quantitative regularities it requires the experimental
planning and the determination of minimum number of experiments. The mathe-
matical model of process can be obtained using the modeling techniques and the
statistical methods of experiment design.

During the braking process, a number of variables become a crucial factor [1].
With a large number of variables, it is extremely difficult and even practically
impossible to bring the results into a specific system or to find the general quan-
titative regularities. Studying such a complex physical tasks, it is necessary to
introduce a lot of dissimilar variables, and each of these quantities is considered as
an independent variable.

Based on very general physical considerations, the multiplicity of relationships
is not a specific property of the studied problems defined by their physical nature
[11]. It is shown that the effect of individual factors, represented by the different
values, should not be not considered individually, but as a complex, and that in fact
it is necessary to consider not these individual values, but their combination defined
for each process. It is known the method of constructing such populations—a
method that allows the direct analysis of the problem formulation to find a con-
nection between the individual values and their groups, and to combine them in the
well-defined complexes of the specific form [11].
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Thus, the new variables are inherently generalized and their application gives the
whole analysis a generalized nature. The analysis prerequisite is the completeness
of the initial information given by the parameter list, drawn up on the basis of the
adopted process model by the researcher.

Since the studied process of friction is random, the task is, using the appropriate
GV defining the friction and wear process in the braking units of the oil drilling
equipment, to obtain the consolidate tribological functions for the qualitative and
quantitative evaluations of the tested processes on the basis of the mathematical
models.

The generalized equation obtained using the theory of dimensions for the
braking process during the descent of drilling tool is presented in [17]. The explicit
form of the generalized equation can be obtained by the statistical processing of the
individual results of experiments.

Drawing up the plan and the experimental techniques, the following GV are
selected to define the process:

the generalized thermal conductivity

pk ¼ p1 ¼ k1 � k2 � k3 � #
3
2
1 � #

3
2
2

P3 � v3 � K�1
2

C1
� K�1

2
C2

;

the generalized hardness

pHB ¼ p2 ¼
HB1 � HB2 � K

2
3
C1

� K2
3
C2

P2 ;

the generalized braking work

pw ¼ p3 ¼ WT:P:

P � K1
6
C1

� K1
6
C2

;

the generalized variable deceleration time

pt ¼ p4 ¼ v � t
K

1
6
C1

� K1
6
C2

:

Here, p1—the one of the main indicators of the material thermophysical prop-
erties; p2—the hardness parameter, included in the molecular-mechanical model of
friction, is the principal value; p3 and p4—the parameters defining the operation
regime that have a great influence on the brake.

The experiment planning and methodology to identify the quantitative relations
of the studied variables are described in detail in [17, 30]. Let us represent the
planning matrix and the experimental results for the FFE type 24 of the friction
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material ФК-24A (the planning matrix for other materials will be similar).
The MGDH is explicitly employed to build the generalized tribotechnical functions.

In order to establish the relationship between the friction process and the GV, the
test is conducted for the friction pad materials of three major classes (of asbestos
resin, of asbestos, rubber, metal–ceramic) paired with the steel 40XH for the
descending regime of the drilling tool in accordance with the planning matrix. The
generalized mathematical model was adopted as in Sect. 2.3.1 (Table. 2.7).

After processing the experimental data on the computer the following mathe-
matical model is obtained, i.e., the equation relating the coefficient of friction f with
its predetermined GV:

for the friction material ФК-24A

f1 ¼ 0:294� 0:1287� 10�5p1 � p3 � p4 þ 0:29� 10�9p2 � p3
þ 21:36

p1 � p4
p2

þ 0:86� 10�8 p
2
2 � p43
p2

þ 0:01546
p1 � p4
p2

� 3:21817
p22 � p33
p51 � p54

� 0:239
p31 � p53 � p34

p33
þ 0:4� 10�9p31 � p3;

for the friction material Б-42

f2 ¼ 0:413� 0:135� 10�6 p2
p23

� 0:163� 10�6p1 � p3 � p4 � 0:368� 10�8 p32
p21 � p23 � p24

� 0:321� 10�8 p32
p21 � p83 � p24

þ 0:367� 10�3 p
2
1 � p4

p2 � p33
þ 11:138

p22
p31 � p73 � p24

þ 0:825� 10�7 p
6
1 � p24

p32 � p63
þ 0:6693� 10�4 p2

p1
þ 0:189� 10�5 p

7
1 � p4

p42 � p33
þ 0:4275� 10�8 p

2
2 � p33
p21

;

for the friction material MКB-50

f3 ¼ 0:271þ 0:877� 10�8p21 � p4 þ 3:99
1

p23 � p4
� 0:1676� 10�6 p

6
1

p3

þ 17:79
p11

p2 � p83 � p54
� 0:7426� 10�8 p

2
1 � p4
p23

;

Table 2.7 The generalized
mathematical model

Factors p1 p2 p3 p4
Main level 2.5 × 103 16 × 106 3.3 11

Upper level 3 × 103 20 × 106 4.0 14

Lower level 2 × 103 12 × 106 2.0 8

Variation level 0.5 × 103 4 × 106 0.7 3

Code designation x1 x2 x3 x4
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As shown in Sect. 2.3.1, the problem of modeling will not be considered solved
if it does not get enough deep minimum, and only upon reaching it, the problem
will be solved, with the practical measurement accuracy equal to 5–10 %. The
resulting models adequately reproduce the studied friction process during braking,
and according to the original sample, the error of these equations is within 3–5 %,
which is acceptable.

The resulting generalized tribological functions (the mathematical models) for
the different friction materials allow us to reliably predict the behavior of friction
unit in the braking mode. They can also be used in the formulation of engineering
calculations associated with the estimation of the friction and wear characteristics.

The foregoing also demonstrates the undoubted benefits of combining the
methods of theory of similarity and the modeling methods with the experimental
design. Of course, such synthesis will be beneficial and, as shown above, lead to the
significant improvement of their individual application.

The results of obtained generalized description can be applied to all similar
processes.
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Chapter 3
Synergetic Model of Fracture
and Mechanics of Fatigue Cracks
During Friction

The difficulty with predicting the fatigue failure of metals and alloys is due to the
fact that the fatigue resistance depends on several factors: the type and condition of
loading, the stress state of node details, the asymmetry of loading cycle, the scale
factor, temperatures, the structural state of material, the media influence, and the
state of friction surface.

All this makes it very difficult to create a common synergetic model of the
fracture mechanics and the mechanics of fatigue cracks upon the contact of solids.
This is due to the introduction of new concepts, one of which relates to the
self-organization of the friction process. The basic principle of self-organization is
that the changes of external parameters or the method of loading cycles does not
cause a hierarchy of structures that can be formed by the system, but implements
the possible mechanism of destruction. Through time and space, the structures can
be complicated and move from a less ordered to a more ordered process of
self-organization.

The interpretation of the destruction phenomenon requires an involvement of
specialists from various fields of science, such as physics, mechanics, chemistry,
and design engineers—in the real world, the process of destruction is manifested
itself in a very multifaceted way. This is linked with the variety of the elementary
acts of destruction, the interpretation of which until recently dominated the model
representations, which are based on the simple geometric figures proposed by
Griffiths, Orovan, and others. However, it has become clear that the physics of
destruction requires a further development of the basic ideas. In recent years, there
have been attempts to use the nonlinear methods to develop the concept of broken
bonds, the models are developed for the elementary carriers of destruction, there are
methods of the theory of similarity and synergetics that are developed at the
macroscopic level. The development of the latest general physical concepts of the
theory of self-organization and the nonlinear phenomena have made it possible to
further understand the nature of fracture mechanics in the interacting contact of
solids.
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3.1 Synergetic Analysis of Plastic Deformation
and Fracture Using Bifurcation Doubling Model

Over the last fifty years, the solid strength science rapidly evolved into a new
direction, based on the kinetic thermo-activation approach to the mechanisms and
relationships of the plastic deformation (PD) and the fracture of real materials [1–3].

For a long time, the processes of PD were associated with the evolution of
various types of the crystal defects, which interacted with each other and affected by
the external fields, remained the independent structural formations specific to their
properties (the geometric configuration, the distribution of the elastic fields, etc.)
[4–6]. As part of this concept, PD seemed as a result of the ergodic behavior of the
system defects, the trajectory of which was filling the space over time.

Due to primarily works of S.N. Zhurkov, a new approach is developed to
understand the destruction—the kinetic approach. It is established [7–9] that the
destruction is not a critical event but a process developing over time, and the
decisive role in overcoming the potential barrier belongs to the thermal fluctuations,
and the external loading only slightly reduces the height of the potential barrier and
prevents the recombination of broken bonds.

The crack gets born and develops in the volume of materials which are prepared
for the destruction in the first period—the period of accumulation of various defects
and damages. Therefore, the problem of fracture mechanics which studies the
kinetics of crack growth is to inextricably link with the development of evaluation
method and account for the degree of damage (state) of a deformable element of
body with the kinetics of crack growth.

The solids, constituting element of whole structure, during its operation undergo
set of complex loading cycles varying in the level of frequency and duration. The
multifactorial situation with the material impact during the fatigue crack involves a
comprehensive synergetic analysis of process [10, 11].

The purpose of material self-organization and the kinetics of fatigue cracks are to
save the ability to resist the external cyclic exposure with a minimum expenditure
of energy on the creation of free surface per loading cycle.

The established by Ivanova [12], the discrete Δ-dependence on the kinetic
diagrams of the fatigue crack growth (FCG), on the temperature diagrams of the
yield strength, shows the implementation of the most simple bifurcation schemes in
the metal under load—the period-doubling schemes of Feigenbaum [13, 14].

There are many systems of different nature (from hydrodynamics to electronics),
undergoing a change at the control parameter hierarchy of the successive period
doubling, when with the increase of excitation in the system of nonlinear oscillators
along with the basis frequency appear the frequencies of 1/2, 1/4, 1/8, … of the
basis. This phenomenon, known as a period doubling, is typical for the
self-organizing systems [14]. This leaves the question on the physical conditions
open, the conditions under which the mechanism of period doubling is possible.
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In favor of the correctness of synergetic approaches to the analysis of FCG, i.e.,
a compliance with the requirements of self-organizing system that can serve the
following reasons [15]:

1. the system—sample loading device is a dynamic open system;
2. the system consists of a large number of stochastically described subsystems

(oscillators);
3. upon the excitation of crystal, the intensity of interaction between adjacent

oscillators increases and the interaction becomes increasingly nonlinear.

The entropy decreases dS\0ð Þ due to the pumping energy into the open non-
linear system, which is a clear sign of the self-organization [16]. Moreover, far from
the thermodynamic equilibrium, the behavior of nonlinear oscillators, which are
under the influence of the harmonic external force, can be described by the equa-
tions known as Duffing [17]

xi
:: þ a _xi þ bxi þ cx3i ¼ A0 þA1 sin x0tð Þ;

where a; b; c—the crystal constants and A0, A1, x0—the parameters of the external
periodic loading. The analysis of these equations shows that with an increase in the
control parameter A1, the sequential doubling of the period takes place [14].

In work [13], it is shown that the subharmonic half frequency, appearing after the
bifurcation, is less dense than the fundamental. After a large number of bifurcations,
the system behaves aperiodically, forming a continuous broadband spectrum.

As stated in [15], at least for the metals of cubic system, the frequency of
Einstein xEð Þ and Debye xDð Þ is related by the relationship xE � xD

2 . Now taking
into account that the function of the phonon density of F xð Þ has extremums in the
vicinity xD and xE, and F xDð Þ[F xEð Þ, we can assume that broadband phonon
spectrum of these metals is obtained with the fundamental frequency, for example
xD, due to a large number of period-doubling bifurcations.

Thus, the implementation of the successive period-doubling mechanism in the
system of nonlinear oscillators allows explaining the nature of discrete Δ-depending
of V.S. Ivanova. It is particularly worth noting that the model within the period of
doubling of Δ-dependence is not an approximation and it is accurate. The experi-
mentally observed deviations are made through the experimental error and by
blurring the frequency characteristic x�, which expresses the value of
dU ¼ const—a discrete decrease of the activation energy, the equivalent of phonon
absorption:

dU ¼ �hx�;

where �h—the Planck’s constant.
Depending on the temperature, there is distinction between the unsteady and

steady creep, respectively, characterized by the extremely slow (approximately
logarithmic) and by the linear increase of deformation over time. The first type of
creep is shown at temperatures T , making less than half of the value of the melting
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temperature Tm, and is characterized by falling of the strain rate to zero during the
time of the constant loading. The second type is observed at temperatures T [ Tk,
where Tk [ 0:5Tm, and it is characterized by the release of the strain rate as t ! 1 at
the final value of K rð Þ 6¼ 0, where r—the external loading. The consistent theory of
transient creep is developed by Olemski [18–20]. He proved that in the case of very
large values of the shear viscosity η, the chained process occurs forming a thermal
cluster, with probability P� exp � Q

T

� �
(where Q—the thermodynamic potential

(TP)) and the frustrons get together in pairs, and then with the same probability pairs
form a quartet, etc., which seems obvious in the form of a multitier “Cayley tree.”
The super defects are formed by the coherent communication in the lower structural
level of the tree. Since the tighter minimums are responsible for the TP dependence
on the configuration coordinates of the initial defects rather than the super defects,
the establishment of hierarchical subordination leads to the fractal structure distri-
bution of TP in the configuration space. The probability density w uð Þ of the chain
process of the frustrons clustering, separated by the distance u in the ultrametric
topology of the hierarchical structure, at the strong hierarchical subordination is
expressed by the degree of dependence w uð Þ� u�D, where D 0\D\1ð Þ—the
fractal dimension of the potential relief, that determines the height Q of the
TP values, which provides the slow logarithmic dependence for the probability P tð Þ
of lacking destruction at time t, i.e., it slows down the process of destruction. The
mentioned critical slowing takes effect only at the initial period t � smax, and when

t[ smax, the relation becomes following P tð Þ� exp � t
smax

� �
[21].

This phenomenon is consistent with the kinetic theory of damage [22, 23]. From
a thermodynamic point of view, all elementary acts of the PD process and the
fracture of real materials can be divided into two distinct groups with the different
kinetic regularities. The first group of the elementary acts of the atomic and
molecular rearrangements is associated with the origin and accumulation of various
defects and damages at obstacles. These elementary acts control the strain hard-
ening and the volumetric damage of material. The elementary acts of the second
group are associated with the origin, movement, and disposal of various elementary
defects at effluents. These microscopic processes control the quasi-viscous flow of
materials and dynamic recovery (rest), and they are responsible for the transfor-
mation (conversion) of the irreversible deformation energy into the thermal energy,
which is manifested itself in the form of the thermal effect of the PD.

Until recently, the methods of equilibrium statistical physics have been used in
the study of the condensed medium. This is due to the assumption that the con-
densed medium, under the influence, represents the equilibrium or slightly
non-equilibrium statistical system. However, there is a growing interest in phe-
nomena such as the behavior of statistical system of atoms in the condensed state
looses its usual applicability (the concept of phonons or the thermodynamic pictures
of the phase transitions) or requires a fundamental review. This behavior is
explained by the strong deviation of the atomic system from its equilibrium state, as
it is the case in the core of defected lattice or areas of the plastic flow and fracture.
The consistent pattern of the strongly non-equilibrium condensed medium requires
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the use of techniques that allow us to represent properties such as the non-ergodicity
of statistical ensemble, the emergence of hierarchical structures, the structural
relaxation, the mutual influence of subsystem undergoing the phase transition, and
the environment. The comprehensive study of the atomic state restructuring at a
considerable distance from equilibrium is achieved based on the synergetic pattern
representing the evolution of mutually agreed hydrodynamic modes parameterizing
system [24]. It is shown that the thermodynamic potential corresponding to the
different types of one-dimensional long-period structures has a fractal nature, so that
the movement of the hierarchical tree determines the evolution of the system. The
systems with a strongly pronounced hierarchy of one-dimensional long-period
structures are particularly stable or slowly relax from one type to another. The
presence of long-range one-dimensional long-stabilizing structures contributes to
the growth of their period.

Considering the macroscopic picture of destruction, in accordance with the variety
of manifestations of an ensemble of elementary carriers [25, 26], there are possible
different scenarios for the evolution of the system. They are defined by two limiting
regimes, the first of which corresponds to the usual picture of the formation and
growth of a new phase—the elementary carriers’ fluctuation combined into a hotbed
of destruction, which grows by the gradual influx of the lattice defects. In the other
limiting mode, the gradual union of destructors occurs—first the elementary carriers
form the clusters, i.e., joining into superclusters until the formation of the main crack.
This limiting mode is implemented in the process of fatigue failure. In this case, to
describe the evolution of defects, it is convenient to use the concept of ultraparametric
space with the hierarchical Cayley tree of the chain association of clusters [24].

The following is an analysis of the principles of synergy and fractal theory in the
study of the evolutionary process of restructuring of the condensed state of the
crystal structures under the intensive external influence, and the connections
between the micro-kinetics of process with its tribological problems are established.

It is considered that the destruction is possible if the flow of energy at the crack
tip Wi reaches a certain critical value [1], which implies the energy failure criterion

Wi �U0; ð3:1Þ

where U0—the maximum value of the density of the internal energy U.
Griffith’s theory and the destruction as a critical event are built on the concepts

of the classical mechanics, i.e., they require that the inequality (3.1) is to be held
and does not take into account the time of development process.

Over the past 50 years (primarily through the works of S.N. Zhurkov), a new
approach is developed for the destruction process—the kinetic and as shown by
numerous experiments [2, 7, 27]

Wi ¼ c � r � U0: ð3:2Þ
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Thus, Zhurkov laid the foundations for a new approach in the process of
destruction and experimentally proved the possibility of failure at Wi\U0. But at
the same time, which is quite natural from the kinetic approach, the time plays a
fundamental role in destruction process along with the external load and temper-
ature [2, 7, 8, 27]:

s ¼ s0 � exp U0 � cr
k0T

� �
; ð3:3Þ

here k0—the Boltzmann constant, determined as a result of the experiments by
Perrin. The Boltzmann constant is k0 ¼ 1:38� 10�23 J/K, where K—the temper-
ature in kelvin [28].

It is easy to see that the inequality (3.2) removes the contradiction of the
catastrophic development of a fatigue crack in one or more cycles, but requires a
review of the prevailing views on the process of fatigue failure. In particular,
Wi\U0 absorption spectrum of the energy supplied cannot be continuous [26].

On the other hand, over the past four decades V.S. Ivanova received and
compiled the experimental data on the discrete phenomena of the kinetics of fatigue
failure [29–31] that is unexplainable from the prospect of classical mechanics. The
synergetic approach to these phenomena is considered in [32, 33]. The essence of
this approach lies in the following considerations.

Let the fatigue crack, originated in the plate, develop along some axis 0x. We
partition the trajectory crack into the elementary segments Δx. At T ¼ const, the
first approximation of the growth for another crack is realized during Dxij

sij ¼ s0 � exp � Uij

k0T

� �
: ð3:4Þ

With an increase of fracture, the stress state at the top will increase and the
potential barrier Uij, according to [2], decreases by running through the series of
values of the continuous spectrum. The crack growth rate in the ij–segment is

Vij ¼ Dxij
sij

¼ s0 � exp � Uij

k0T

� �
: ð3:5Þ

It was established experimentally [28, 34] that Vij on the large plots of the
trajectory remains constant (Fig. 3.1).

From [7], it follows that within the j area containing a large number of ele-
mentary segments, Uij ¼ const and it changes abruptly at the transition to jþ 1ð Þ-
segment. This means that the values Uij form the discrete spectrum.

The simplest example of the potential barrier is the barrier in one dimension, as
shown in Fig. 3.2 [35]. The ordinate is the potential energy U xð Þ as the function of
particle in the coordinate x. At the point x0, the potential energy has the maximum
Um. All space �1\x\1 are divided at this point into two areas: x\x0 and
x[ x0, where U\Um.
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The meaning of “potential barrier” easily becomes clear if we consider the
motion of particle in the field U xð Þ on the basis of classical mechanics. The total
energy E of the particle is equal to
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Fig. 3.1 The scheme of the
length, velocity, and
acceleration of fatigue cycles
in a discrete growth
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Fig. 3.2 The potential barrier
in one dimension
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E ¼ p2

2l
þU xð Þ; ð3:6Þ

where p—the particle momentum and l—the particle mass. Solving (3.6) with
respect to the momentum, we obtain

p xð Þ ¼ 	
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2l E � U xð Þ½ 


p
: ð3:7Þ

The ± signs should be selected depending on the direction of the particle motion.
If the particle energy E is greater than the “height” of the barrier Um, and if the
initial momentum is p[ 0, then the particle will freely pass the barrier from left to
right, or it will go in the opposite direction if the initial momentum is p\0.

Let us assume that the particle moves from the left, with the total energy E less
than Um. Then, at some point x1 the potential energy U x1ð Þ ¼ E, p 1ð Þ ¼ 0 the
particle stops. All its energy will turn into the potential, and the movement will start
in the reverse order: x1 is a turning point. Therefore, when E\Um, the particle
moves from the left, passes through the region of the maximum capacity x ¼ x0ð Þ,
and does not enter into the second region x[ x0. Similarly, if the particle moves
from right to left, with E\Um, it will not penetrate into the region after the second
turning point x2, where U x2ð Þ ¼ E (Fig. 3.2). Thus, the potential barrier is “opaque”
partition for all particles with the energies less than Um (on the contrary, it is
“transparent” for the particles with energies E[Um). This explains meaning
behind the name “potential barrier.”

Quite different phenomena occur near the potential barriers when it comes to the
movement of microscopic particles in the microscopic field, which means the
movements which cannot ignore the quantum effects. In this case, in contrast to the
conclusions of classical mechanics, the particles with the energy E greater than the
barrier height Um are partially reflected from the barrier, and the particles with
energy less than Um are partially penetrated through the barrier. The phenomenon
of the particles with energy E\Um passing through the potential barrier is called
the tunnel effect. L.I. Mandelstam and M.A. Leontovich were first to consider this
phenomenon in connection with the quantum theory of anharmonic oscillator.

The passing of micro-particles through the potential barriers seems a paradox at
the first glance. This is due to the fact that the particle inside the potential barrier at
the full energy less than the height of the barrier Um should have the negative

kinetic energy K ¼ p2

2l, because the total energy in the classical mechanics is the
sum of the kinetic and potential energies (3.6). In the region where

U xð Þ[E; p2

2l\0, it becomes meaningless, because the momentum p is the true
value. Exactly these areas, as we know from the classical mechanics, are inacces-
sible for the particles. Meanwhile, according to the quantum mechanics, the particle
can be detected in these “forbidden” regions. Thus, it appears as if the quantum
mechanics leads to the conclusion that the kinetic energy of particle can be negative
and the momentum of imaginary. This is called the paradox of “tunnel effect.”
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Actually, there is no paradox, and the conclusion itself is wrong. The truth is that
the tunnel effect can only be viewed in terms of the quantum mechanics, since the
transmittance D, defined by the formula [35]

D ¼ D0 � e�2
�h

Zx2
x1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2l U xð Þ � E½ 


p
dx; ð3:8Þ

when �h ! 0 tends to zero. Here, �h ¼ 1:054� 10�27erg s—the Planck’s constant,
and in the older literature, the Planck’s constant is usually implied by the value
(denoted by h), 2p times greater, i.e., h ¼ 1:054� 10�27erg s. The transition from
the quantum to classical mechanics can be formally described as the passage to the
limit �h ! 0 (just as the transition from the wave to geometrical optics corresponds
with the transition of wavelength to the limit k ! 0) [36].

The total energy of particle can be considered as the sum of kinetic and potential
energies only on the basis of classical mechanics. The formula (3.6) implies that we
know the magnitudes of both the kinetic K and the potential U xð Þ energies. In other
words, we simultaneously assign a certain value to the particle coordinates x and its
momentum, which is contrary to the well-known principle of the quantum
mechanics, the Heisenberg uncertainty principle. The division of total energy into
the potential and kinetic in quantum mechanics does not make sense, so the paradox
based on the idea that the full energy E is the sum of the kinetic (the pulse function)
and potential energy (the coordinate function) energies is untenable.

Getting back to the kinetics of isothermal FCG, it should be noted that,
according to the results of [31, 34], changing the speed of FCG is subject to the Δ-
dependency of V.S. Ivanova [30]:

Vj

Vjþ 1
¼ D; ð3:9Þ

where Vj—the FCG speed at the stress levels rj; Δ—the generic parameter (per-
manent failure), which is the average value of ΔT characterizing the ratio of the
critical stress values Wcd and Wcv for shear and pull at temperature T . Since in the
interval of temperatures, from the room temperature and below, the value ΔT

weakly depends on the temperature, so the value ΔT will be wise to determinate by
calculating ΔT at T ¼ 273K. Since for many alloys of the same basis, ΔT is also
weakly dependent on the chemical composition, for practical purposes, it is suffi-
cient to calculate the average value ΔT for the group of alloys.

As it follows from (3.5), under the isothermal conditions for the relation (3.9) to
hold, it is sufficient that

Ujþ 1 � Uj ¼ dU ¼ const: ð3:10Þ
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Similarly, for the relation

Vj

Vjþ 1
¼ D

1
2 ð3:11Þ

it is sufficiently that

Ujþ 1 � Uj ¼ dU
2 j : ð3:12Þ

The value dU ¼ const—the discrete decrease of the activation energy, which
can be identified with the absorption of some phonon

dU ¼ �h � x�; ð3:13Þ

where �h—the Planck’s constant and x�—the characteristic frequency of phonon.
The phonons are the field quanta of sound waves in a macroscopic body.

Theoretically, they are entered in exactly the same way as photons during the
quantization of electromagnetic field [37].

Almost all concepts used in the application of photons, for example, the concept
of wave–particle duality, are equally well suited to phonons. The thermal vibrations
of atoms in crystals can be regarded as the thermal excitation of phonons, in
analogy with the thermal excitation of photons that makes up the blackbody
radiation.

At the finite temperatures, the atoms (ions) in the node of crystal lattice oscillate
at the certain frequency (the translational and rotational movements are impossible),
which are distributed throughout the crystal in the form of acoustic waves. With an
increase in the temperature, they oscillate at the high frequency and simultaneously
increase the intensity (amplitude) of already exciting oscillations. At the certain
temperature T ¼ h, all possible frequencies exist in the crystal. If we designate the
highest frequency through xmax, then that temperature is defined as

h ¼ �h
x�
k0

; ð3:14Þ

where k0 ¼ 1:38� 10�23 J/K ¼ 1:38� 10�16 erg/K—the Boltzmann’s constant
(K—the Kelvin temperature, 1J ¼ 107 erg), h—the so-called Debye temperature.

At temperatures above Debye T [ h, new frequencies do not form in the crystal,
and only the amplitude of existing fluctuations grows.

Let us clarify the nature of the oscillations of atoms (ions) in node of crystal
lattice sites. The oscillatory motion is either classical (the Newtonian mechanics) or
quantum (the Schrödinger quantum mechanics) nature.

We define these movements from the classical or quantum perspectives. It is
known that the movement s is referred to as classic when it is much greater than the
Planck’s constant �h:
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s � �h; ð3:15Þ

where s ¼ M � vx—the oscillating motion, M—the mass of the vibrating atoms, v—
the linear velocity, and s—the displacement from the equilibrium position. For
simplicity, we take x ¼ A � cosxt, and then v� _x�xx, where x� v

x, and hence

s� Mv2

x
: ð3:16Þ

If we consider that Mv2 � k0T , we obtain

s� k0T
x

: ð3:17Þ

If the condition (3.15) is rewritten for the highest frequency xmax, then the
condition for the classical vibration takes the form [38]

k0T
x

� �h or k0T � �h � xmax; ð3:18Þ

Thus, the oscillatory motion of the lattice can be considered classic only at
temperatures satisfying T � �h � xmax=k0 or T � h, i.e., at temperatures above the
Debye. At the low temperatures, T 
 h that condition (3.18) does not hold, and the
vibrational motion has the quantum nature.

The solids, which are built of the atoms forming the crystal lattice, are charac-
terized in the quantum mechanics by the Hamiltonian bH [36], i.e., the operator
corresponding to the classical mechanics �h ! 0ð Þ with the Hamiltonian function.
The Hamiltonian bH can be approximated by the sum of terms, each of which
represents a harmonic oscillator corresponding with the normal vibration of atoms.
This approximation is plausible to the extent where we can neglect the enharmonic
forces acting between the atoms causing the melt of the crystal lattice at the suf-
ficiently high temperatures. In the classical theory, the normal vibration is the wave
of deformations of lattice planes, i.e., the sound wave. In the quantum theory, the
normal vibrations generate the quanta, called phonons.

From above, it follows that the quantum state of the crystal lattice is close to the
main state and should be characterized by the number of available phonons with
different impulses. Consequently, at the low temperatures, the solids can be con-
sidered as a volume containing the gas of non-interacting phonons.

Since the phonon is the quantum of harmonic oscillator, it has the specific
frequency xi and the energy �hxi. The lattice state, characterized by the presence of
one phonon, corresponds to a sound wave, written in the form

eei kr�xtð Þ; ð3:19Þ
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and the wave vector k has a value of kj j ¼ x=c, where c—the speed of sound (for
simplicity, it is assumed that c is independent of the polarization vector e). The
polarization vector is not necessarily perpendicular to the wave vector k. Thus, the
polarization vector has three independent components corresponding to one of the
longitudinal oscillations—the compression wave and two transverse vibrations—
the shear waves. In the oscillated state, the harmonic oscillator can have any
number of quanta—the phonons, and their total number is not constant.

The solids consisting of N atoms have 3N normal vibrations. Therefore, it
should be 3N different phonons with the specific frequencies

x1;x2; . . .;x3N : ð3:20Þ

The values of these rates depend on the lattice properties. The Einstein model
assumes that all frequencies are equal in the lattice model. The Debye model is
the improvement of this model, only for the purpose to determine the frequency
(3.20) we approximate the solids as the elastic continuum with the volume V . The
frequencies (3.20) become 3N normal lower frequencies of such a system.

According to the Einstein’s model, the total energy of the crystal consisting of N
atoms can be represented as the total energy of 3N non-interacting harmonic
oscillators with the same frequency x0 [38]:

E ¼ 3Ne x0ð Þ ¼ 3N�hx0

e
�hx0
k0T � 1

ð3:21Þ

taking into account the proposed Planck’s quantum expression for the average
energy of the harmonic oscillator with linear frequency x:

e ¼ �hx

e
�hx0
k0T � 1

; ð3:22Þ

where k0—the Boltzmann’s constant.

At the high temperatures, when k0T � �hx, we have e�hx=k0T � 1þ �hx=k0T and
from (3.22) follows the well-known classical expression for the harmonic linear
oscillator e ¼ k0T .

From (3.21), it follows that the heat capacity CV ¼ @E=@T

� �
V
is equal to

CV ¼ 3N
�hx0

k0T

� �2 e
�hx0
k0T

e
�hx0
k0T � 1

� �2 : ð3:23Þ
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We introduce the concept of the specific Einstein temperature hE ¼ �hx0=k0T .
Then, the expression (3.23) takes the form

CE
V ¼ 3N

hE
T

� �2 e
hE
T

e
hE
T � 1

� �2 : ð3:24Þ

If the frequency is equal to x0 � 3� 1013 s�1, then the Einstein temperature will
be of the room temperature hE ¼ 300K. At the high temperatures, T � hEð Þ from
(3.24) there follows the well-known classical result for the solid specific heat
CV ¼ 3k0N ¼ 3R, where R ¼ 1:92 kal=K mol is the universal gas constant.

At the low temperatures, T � hEð Þ, if we neglect unity in the denominator
(3.24), then we obtain for the specific heat

CE
V ¼ 3N

hE
T

� �2

e
hE
T ; T � hE: ð3:25Þ

As it can be seen from (3.25) at the low temperatures T � hEð Þ, the heat
capacity is highly dependent on the temperature and at the extreme case
T ! 0Kð ÞCE

V it exponentially tends to zero. However, this dependence satisfies the
known Nernst’s principle (the different higher values of the system entropy S as
well as the entropy difference should be equal to zero at the absolute zero), but this
is consistent with the experiment only qualitatively. The numerous experiments
show that at the absolute zero, the function CV Tð Þ does not behave exponentially
and has the form of CV Tð Þ� T3.

This discrepancy between the theory and the experiment shows that despite the
fact that Einstein’s idea of the average energy for the quantum oscillator (3.22) is
true, but the proposed model does not reflect the reality at the low temperatures.

In this situation, the Einstein model requires the improvement, and the Debye
model provides that.

According to the Debye model, there is an elastic connection between the atoms
(ions) in the nodes of crystal lattice; therefore, the oscillations with the frequency x
arising in any node are distributed throughout the crystal in the form of the elastic
wave with the corresponding length k. For each crystal, there is a specific rela-
tionship, obtained by the approximate continuum (when a one-dimensional crystal
lattice (chain) is replaced by a continuous elastic string) [38]:

x qð Þ ¼ #0 � q; ð3:26Þ

where #0—the elastic wave speed and q—the wave number, equal to q ¼ 2p=k.
Given that the crystal has a discrete, but a periodic structure and the wave vector

and frequency vary in a finite interval 0
 q\qmax and 0
x\xmax, and they have
a finite number of values in this range; Debye proposed the crystal model in the
form of an ideal gas, consisting of 3N linear harmonic oscillators with the frequency
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varying in the range 0
x qð Þ\xmax. Specific for each rigid body, the Debye
temperature (denoted hD) is defined by (3.14).

According to (3.14), the Debye temperature has the following physical meaning:
hD—the temperature at which all possible frequencies acting x\xmaxð Þ in the
crystal. Each solid has its own maximum frequency xmax and hence the Debye
temperature. The value of the Debye temperature depends on the elastic properties
of the crystal and more specifically on the speed of sound #0 in the crystal lattice
and the lattice constant a ¼ V=N [15]. For the specific heat at the low temperatures,
T � hEð Þ, we obtain

CD
V ¼ 12p4

5
k0N

T
hE

� �3

; T � hD: ð3:27Þ

The Debye temperature hD, as the macroscopic parameter, defines the bound-
aries of the classical and quantum mechanics: at T � hD, the oscillatory motion of
atoms in the nodes of crystal lattice is a classic, and if T � hD, it becomes
quantum.

Referring back to the FCG model (3.9), we note that, as shown in [10, 15, 30,
31, 34], the full absorption spectrum is given by

Wn;m ¼ �hx� nþ m
2n�1

� �
; ð3:28Þ

where n 2 N (N—the set of natural numbers) is the principal quantum number;
m 2 Nn ¼ 1; 2; . . .; 2n�1

	 

is the sublevel quantum number. The full absorption

spectrum (3.28) is shown in Fig. 3.2. The basic levels m ¼ 0ð Þ are plotted as the
main lines, and sublevels m 6¼ 0ð Þ are plotted as the thin lines.
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Fig. 3.3 a The dependence of length, velocity, and acceleration of fatigue crack on the number of
cycles in a discrete growth (diagram). b The full absorption spectrum in the system of nonlinear
oscillators following the Feigenbaum period-doubling bifurcation
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From (3.28) and Fig. 3.3, it follows that with an increase of the principal
quantum number n, the number of sublevels between the main levels increases in
proportion equal to 2n�1, which leads at large n to the degeneration of the discrete
spectrum into the continuous, where the laws of the classical mechanics become
valid. Obviously, as the critical threshold of breakage, we can take a critical event
that satisfies the theory of Griffith, with the proviso thatWn;m tends to U0, remaining
smaller.

Thus, the kinetic approach does not reject the theory of Griffith, and on the
contrary, it actually contains it within as a limiting case for the high levels of
loading.

As it can be seen from the curves (3.5) and (3.28),

V1;0 ¼ C e
�U0��hx�

k0T

� �
; V2;0 ¼ C e

�U0�2�hx�
k0T

� �
; . . . ð3:29Þ

then

V1;0=V2;0 ¼ V1;0=V2;0 ¼ � � � ¼ e
�U0��hx�

k0T

� �
¼ DT : ð3:30Þ

At T ¼ 300K, we have

x� ¼ �300
k0
�h
lnD300: ð3:31Þ

Using the well-known relation for the quantum statistics �hx� ¼ k0h�, valid for
the specific T ¼ h� [1], the expression (3.31) can be written in a more convenient
form

h� ¼ �300 lnD300: ð3:32Þ

Moreover, in [30],

D300 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
GLm=EH300

q
; ð3:33Þ

where E—the elastic modulus, G—the shear modulus, Lm—the latent heat of
fusion, and H300—the heat from the heating to T ¼ 300K up to the melting
temperature.

Table 3.1 shows the values h� for some metals, as well as their Einstein and
Debye temperatures. The Einstein frequency xE is determined from the harmonic
approximation
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xE ¼
ffiffi
r

p
a

ffiffiffiffi
E
q

s
; ð3:34Þ

and the Debye frequency from the equality

xE ¼ 2p#0=a; ð3:35Þ

where a—the lattice constant, r—the number of atoms in the unit of volume a3, q—
the density, and #0—the speed of sound in the crystal. The calculations for the
hexagonal lattice are carried out by the method of the equivalent cubic lattice.

The Debye temperature is calculated by the formula

h ¼ �h � xmax=k0; ð3:36Þ

where k0—the Boltzmann constant k0 ¼ 1:38� 10�16 erg/K
� �

must only coincide
with the experimentally determined at very low temperatures (below about 5K—
depending on the type of crystal). The available little differences between the two
temperatures cannot be explained in the harmonic approximation, and it is due to
anharmonicity [39].

At the temperatures T [ 10K, the results of the Debye theory and the experi-
mental data can vary significantly. The true reason behind it lies in the fact that the
Debye theory uses a simple dispersion function (3.34) and following from that the
density function of frequency g xð Þ�x2. Such a dispersion function is relevant
when a simple crystal lattice (with a single atom or ion in the elementary cell) is
replaced by the elastic wave and then only for wavelengths k[ p � a, where a—the
lattice constant [38]. For the real crystals, the dispersion function x qð Þ and the

Table 3.1 The comparison of the specific temperatures with the Einstein and Debye temperatures
for some metals

Metal θ*, K (15) θD, K (16) θE, K (17) Metal θ*, K (15) θD, K (16) θE, K (17)

K 69 100 42 Ag 278 215 103

Na 125 150 78 Cu 268 315 158

Li 204 400 145 Ni 276 375 208

Fe 334 420 197 Au 282 – 76

Nb 306 275 115 Mg 245 318 137

Mo 313 380 193 Co 335 385 164

Ta 316 225 110 Y 352 256 92

W 302 310 156 Ti 340 380 144

Cr 335 460 217 Zr 307 250 104

V 334 390 165 Os 298 400 159

Pb 252 88 37 Zn 236 – 112

Al 224 394 195 – – – –
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density function of frequency g xð Þ are quite complicated due to the enharmonic
interaction between the atoms.

It follows from (3.28) that in the absorption spectrum, along with the funda-
mental harmonic x�, there are the subharmonics x�=2n�1. This phenomenon is
known as the period doubling, typical for the self-organizing systems [14].

In [17, 40], the different types of the elastic characteristics are viewed, as with
the soft k[ 0; c\0ð Þ, hard k[ 0; c[ 0ð Þ, zero k ¼ 0; c[ 0ð Þ, and negative
k\0; c[ 0ð Þ linear stiffness. We note that by shifting the origin of the Duffing
equation with k\0 and A0 6¼ 0, it is reduced to the form

�‘yþ a_yþ kyþ by2 þ cy3 ¼ B cosxt; ð3:37Þ

where k[ 0, i.e., the equation of nonlinear oscillator with the asymmetric elastic
characteristic and the symmetric external influence.

As with the soft and hard elastic characteristics, the chaotic oscillations exist for
the sufficiently large amplitude of the external force in the frequency range ω,
where the corresponding frequency response is ambiguous (the bistability region).
As the numerical experiments show, these oscillations occur by the sequence of
period-doubling bifurcations.

Transition W1;0 ! W2;0 in Fig. 3.3 is equivalent to a decrease in the value of the
potential barrier �hx�, and the next transition W2;0 ! W2;1 reduces the potential
barrier for another value �hx�=2, etc.

In the case of the isothermal FCG from (3.5) and (3.30), we obtain

V1;0=V2;0 ¼ exp ��hx�=kT
� �

¼ DT ;

V3;0=V2;1 ¼ exp ��hx�=2kT
� �

¼ D
1=2
T

V3;0=V3;1 ¼ exp ��hx�=4kT
� �

¼ D
1=4
T :

. . .

; ð3:38Þ

From (3.38), it follows that the distribution process (the discrete growth) of
fatigue crack is self-similar (scaling) in terms of Barenblat [41]. The scaling means
that during the process of fatigue deformation, only the average size of defect
changes (increases), but the shape of the defect distribution remains unchanged in
terms of its size. In other words, the geometric pattern of defects at the later stage in
the certain part of the sample (the size of which is much greater than the average
distance between the defects) represents (in a statistical sense) an enlarged copy of
the picture in the greater part of the sample at the earlier stage.

The hierarchy of the structural (scale) level of deformations is the base to find the
relationship between the micro- and macro-parameters of the PD and fracture.

Using the self-similarity function D
1=m
T m ¼ 1; 12 ;

1
4 ; . . .

� �
, we can set the funda-

mental relation between the parameters of the bifurcation controlling points (while
maintaining the same type of the dissipative structures) and the returning points
[42].
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In addition to the considered ordering phenomena of the Δ-discreteness of the
FCG, there are known other experiments, where the sharp macroscopic changes
were observed, and in all cases, these changes were ordered by the Δ-dependence of
Ivanova [30, 43, 44].

In [43], it was found that the voltage at the break points of the temperature
dependences of the strength properties is ordered and follows the Δ-dependence of
V.S. Ivanova. Most clearly, this ordering appears on the temperature dependences
of the yield strength r0;2 ¼ r0=rf2 where r0—the strength at T ! 0K and rf2—the
theoretical mechanical strength. As an example, Fig. 3.4 shows the dependence of
ln r0;2 from 1=T for technical copper by the dotted line corresponding to the dis-
crete levels j, varying according to

r0;2
� �

j

r0;2
� �

j1

¼ D 1=2ð Þ j ; ð3:39Þ

and the value of j increases at the low temperatures.
Thus, the appearance of the discrete Δ-dependence on the kinetic diagrams of the

FCG, on the temperature diagrams of the yield strength and others, shows the
formation of the self-organizing systems of the nonlinear oscillators in metals under
loading, the most simple mechanism of bifurcation is Feigenbaum's mechanism
of the period doubling. The cyclic loading is an optional condition, which leads to
the macroscopic appearance of the self-organization process. The linearly increasing
load leads to the same effect.

The transition of dynamic system from order to chaos, which is accompanied by
the infinite sequence of the period-doubling bifurcations in accordance with the
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Feigenbaum law, is generally described as a one-dimensional point mapping with the
smooth maximum at x ¼ 0 for which the successor function can be written as [40]

f xð Þ ¼ f � l xj jz; ð3:40Þ

where z[ 1; l—the bifurcation parameter. Then, the generalized Feigenbaum law
is [45]

l1 � ln � d�n; n ! 1; ð3:41Þ

where ln—the value of l, when the nth period-doubling bifurcation takes place

l1 ¼ lim
n!1ln:

Here, d—the constant depending on z (in the case of the quadratic mapping
z ¼ 2, d ¼ 4:6692. . .). Often the Feigenbaum law is written in the different form

xn � l1 � lnð Þt; ð3:42Þ

where xn ¼ 2p=Tn ¼ 2p T � 2nð Þ and t ¼ ln 2= ln d ¼ 0:4498. . .:
Thus, the function of parameter xn is similar to the corresponding functionality

in the case of the phase transition of type II with the critical index t. In contrast to
the conventional phase transitions, so-called type I, the type II phase transition is
called [37] the transition from one crystal modification into another, in which an
arbitrarily small displacement of the atoms from their original symmetrical
arrangement is sufficient that the symmetry of the crystal lattice immediately
changes.

At ln ! l1, dx=d l1 � lnð Þ� t= l1 � lnð Þ1�t! 1 on the other side of the
transition, and at l[ l1, we take any positive Lyapunov exponent k, or the
topological entropy h, or the synchronization threshold Bn as the parameter of
“disorder” [17]. Near l1 for the positive Lyapunov exponent k, the following
power dependence holds:

l1 � ln � d�n; n ! 1; ð3:43Þ

where t—the same critical exponent as in (3.42).
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3.2 Application of Generalized Golden Ratios to Control
Self-similarity and Stability Properties of Fractal
Structure Distribution in Fatigue Cracks of Solids

In the recent past, the main efforts of researchers on the fracture mechanics of
materials were aimed at establishing a link between their initial microstructure and
properties, but it is currently established [10, 46–48] that the fracture resistance of
metals and alloys is determined by the dynamic structure formed during the
deformation, and it requires the analysis of deformable material as an open system
exchanging the energy and matter with the environment. During the system evo-
lution associated with the accumulation of the fatigue damage under the cyclic
loading, the old structure gets destroyed and a new structure is formed. In this case,
it is required to establish the research of the cooperative interaction of the static (the
original) and dynamic (emerging under load) structures.

The formation of the actual microstructure of the crystalline solids is due to the
phenomena that are far from the equilibrium and take place in the self-trapped,
more non-equilibrium areas, existing even in the quasi-equilibrium condensed
media. In accordance with the general regularities of the non-equilibrium system
behavior [49], the deformed crystal should be viewed as the system in which during
the deformation the dissipative structure occurs (like the Bernard cells) that can
more effectively perform the macro-plastic flow in comparison with the motion of
individual dislocations. Exactly, from this point of view, the phenomenon of
fragmentation of deformable solids is now treated, and in the continuum mechanics,
the presence of structural element deformation is taken into account [50, 51]. There
is the hierarchy of its levels, defined as the initial structure of the medium, and the
formation of dissipative structures is related to deformation defects [19, 20].

The dissipative structures, self-organizing in the open systems, are fractal [10,
46], which calls for combining the approaches of synergy and fractal theory in the
studies of physical and mechanical natures of the material destruction. Synergetics
has expanded the concept of structure, giving it the versatility, and the theory of
fractals allowed introducing new quantitative structures in the form of fractal
dimension [12, 30, 41, 52].

During the contact interaction in material through the merger of macroscopic
damages, the micro-crack forms, and the stage of global destruction begins, which
is based on the fact that the destruction process in time is controlled by the growth
speed of such a crack from the ductile to brittle and then to the quasi-brittle fracture
and when the body is divided into parts. The transition phenomenon of the
deformable body from ductile to brittle is called the cold brittleness. It is associated
with the transition from the controlled impact to the destruction of mesocluster
instability (the ductile fracture) to the micro-cluster instability (the brittle fracture).
This determines the change in type of the surface fracture, defined by the change of
the fractal object and the fractal dimension of structure in the pre-fracture zone, and
the spontaneous change in the fractal dimension depending on the transverse
reduction [53].
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Let us define the possibility of applying the fractal geometry approaches to
studying the deformation process of pre-destruction and fracture (wear) of the metal
materials, to controlling the critical points of the mechanical state, and to fore-
casting the fatigue damage upon the contact and friction of the rough surfaces based
on the quantifying evaluation of the fractal dimension of the strain relief by the
method of vertical sections (MBC) using the self-similar relationship of the
perimeter to the square of the fractal closed profiles. The method of vertical sections
[54] is especially useful for studying the profiles of fracture surfaces using the
profilometer [55], which does not bring distortions into the object of study.
According to [9, 56, 57], the reliable characterization of the crack surface roughness
is obtained through the series of measurements of the profile length in two mutually
perpendicular directions—up and down the crack front.

The synergetic approach to the analysis of the processes of plastic deformation
(PD) and fracture, taking into account the collective effects and the
self-organization of the dissipative structures, establishes the hierarchy structure
(scaling) of the deformation levels, which are the basis for finding the connection
between the micro- and macro-parameters of the PD and fracturing - from the
prospects of the theory of fractals as the self-similar defects, and the fractal
dimension as the characteristics of the object dynamic structure. However, the
description of the self-similar growth of the dynamic objects requires the intro-
duction of self-similar functions.

The periodic nature of the destruction on micro- and macro-levels can be
described [30], using the function D1=m, where m changes exponentially
m ¼ 2; 4; 8; 16; . . .ð Þ, corresponding with the cycle of self-organizing systems.
Within one block of the intermediate asymptotic behavior, the transitions with the
period doubling for the threshold values of the crack length l1 have the form

I block: lI1=l
I
2 ¼ lI2=l

I
3 ¼ � � � ¼ lIi�1=l

I
i ¼ D1=m;

II block: lII1 =l
II
2 ¼ lII2 =l

II
3 ¼ � � � ¼ lIIi�1=l

II
i ¼ D1=m ð3:44Þ

etc., for m ¼ 2; 4; 8; 16; . . .1. So in each block, the ratio is lIIi�1=l
II
i ! 1 at m ! 1.

In general terms, this relationship can be written as [12]

lI1=l
II
1 ¼ lII1 =l

III
1 ¼ � � � ¼ DM=m; ð3:45Þ

where M—the number of the intermediate asymptotic blocks M ¼ 1; 2; 3; 4; . . .ð Þ.
It is shown that the self-similarity function can set the fundamental connections

between the parameters that control the bifurcation point (while maintaining the same
type of the dissipative structures) and responding to these points [12, 53]. For instance,
the self-similarity relation describes the alternation steps di of the fatigue grooves

di=diþ 1 ¼ D1=m; m ¼ 1; 2; 4; 8; 16; . . .; ð3:46Þ

3.2 Application of Generalized Golden Ratios to Control … 79



and the fractal cluster dimension at the self-similarity growth is expressed through
the relationship

r j0
� �

i�1= r j0
� �

i¼ D1=m; m ¼ 2; 4; 8; 16; . . .; ð3:47Þ

where r j0
� �

i�1 and r j0
� �

i—the previous and subsequent fractal cluster dimensions
following the crack direction.

If we consider the constants of the crack growth rate and/or the steps of the
fatigue grooves as the regularity of ordering the crack jumps under the loading
cycle, it is possible to carry out their systematization through the “quantum”
destruction and the universal constant of destruction Δ. As it will be shown below,
Δ retain the constant value for each metal separately, and this is its versatility. The
comparison of the identified levels of relations di=diþ 1 for alternating steps of
fatigue grooves shows [12] that they satisfy the values of D1=4;D1=8;D1=16;D1=32.

From (3.46), it follows that the theory of similarity [23, 41, 58–60] defines the
propagation process (the discrete growth) of the fatigue crack as self-similar
(scaling). According to the proposed hypothesis in [23], the process of the damage
accumulation (in terms of the quantitative measurement of damage x, first intro-
duced by Kachanov and Rabotnov [61, 62]) under the cyclic deformation is
self-similar.

The Eq. (3.47) defines the self-similarity property of the fractal clusters. It is
formulated as follows [63]. If within the neighborhood of point, occupied by a
cluster, we select the area of the relatively small volume, then the parts of cluster
falling into her will be similar in the physical sense.

The most important feature of function D1=m is the match of its value at m ¼ 2 to
the golden ratio Dp and at m ¼ 1 to the value D2

p. By definition [52], the set L is
self-similar with the similarity coefficient r Nð Þ and the self-similarity dimension of
Ds, if

r Nð Þ ¼ 1=Nð Þ1=Ds ; ð3:48Þ

where N—the number of fragments covering the initial set of L by its minimized
copies. The segment can contain the segments r Nð Þ ¼ 1=Nð Þ, and the rectangle can
contain the squares with sides r Nð Þ½ 
2¼ 1=N and the rectangular parallelepiped
— r Nð Þ½ 
3¼ 1=N.

To establish the connection between the numbers r, N, and Ds in [64, 65], we
used the generalized golden ratio, which is the golden section—“golden mean” that
follows the Fibonacci numbers [66]. A classic example of the golden ratio is the
segment division with respect to the average proportionality, when the whole part
relates to the most part, as the most relates to the smaller
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aþ b
b

¼ b
a
: ð3:49Þ

The analogue of the golden ratio (3.49) is the universal law of Feigenbaum and
the Fibonacci sequence, which forms a geometric progression

an ¼ a1q
n�1; n ¼ 1; 2; 3; . . .; ð3:50Þ

whose members satisfy

an ¼ an�2 þ an�1: ð3:51Þ

From (3.50) and (3.51), it follows that q is the root of the quadratic equation
q2 ¼ 1þ q. This equation has two roots: q1 ¼ 1:618 and q2 ¼ 0:618 that match the
golden ratio. In fact, assuming that aþ b ¼ 1 in (3.49), we find b ¼ 0:618, a ¼
0:382 and aþ b

b ¼ b
a ¼ 1:618.

It was promising to use the generalized golden p-proportions that express the
general law of the golden ratio—the ratio of the whole part to its parts. The
generalized golden p-proportion is called the positive root of the equation xpþ 1 ¼
xp þ 1 providing the infinite number of proportional division of the interval at
p ! 1. For p ¼ 1; 2; 3; 4; . . ., the solution of this equation yields the following
sequence of generalized golden p-proportions:

d1 ¼ 1:618 ! d2 ¼ 1:465 ! d3 ¼ 1:380 ! d4 ¼ 1:324 � � � ; ð3:52Þ

p—the golden ratio has the same properties as the 1st golden proportion: By
subtracting the unit, it goes to the reciprocal of their pth level, i.e., dp � 1 ¼ 1=dpp .
This means that sequence of the generalized golden p-proportions (3.52) corre-
sponds to the following series Dp ¼ 1=dpp of p-proportions:

D1 ¼ 0:618 ! D2 � 0:465 ! D3 � 0:380 ! D4 ¼ 0:324 � � � ð3:53Þ

By indicating the scale factor r Nð Þ in (3.48) through kr, we represent this
relation in the form

kDs
r ¼ 1=N: ð3:54Þ

If the line segment is divided into the segments with the length d ¼ 2�m, then
N ¼ 2m intervals will require to cover it, where m—the number of generations at
the binary partition of interval.

For this case, the Eq. (3.54) takes the form
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kDs
r � 2m ¼ 1: ð3:55Þ

This relationship implies that if one of the variables is constant (m ¼ const or
kr ¼ const), the self-similarity dimension of the set Ds depends only on one
parameter, namely on the scale factor kr when m ¼ const, and the number of
generations m at kr ¼ const. The relationship between Ds and kr in the first case and
between Ds and m in the second case, in accordance with Eq. (3.55), becomes

Ds ¼ M1

ln kr
; ð3:56aÞ

Ds ¼ mM2; ð3:56bÞ

at M1 ¼ �m ln 2, M1 ¼ � ln 2= ln kr. The formula (3.56a, b) can be obtained from
the equation Ds � ln kr ¼ �m ln 2, which is equivalent to the ratio (3.55). There is
inaccuracy in the corresponding formulas [53], where the “minus” sign was skipped
in the expressions for M1 and M2, which should provide a positive value for Ds.

The relations (3.56a, b) meet both the condition of self-similarity [41] and the
principle of subsidiarity in synergy [67]. In accordance with this principle, when the
system reaches the critical state, its subsequent behavior is controlled by one (or
more) variable, which is the parameter of order. The physical meaning of the
parameter of order in this case is following. At iteration (the transition from one
generation to the next one), the limit of the scale factor kr is reached, where we
cannot differentiate the previous generation from the later. The new stable state at
Ds ¼ const can be achieved only when the scale factor changes. The boundaries
that define Ds ¼ const at m ¼ varia are the change of kr within D

2
p 
 kr 
Dp, where

Dp is equal to one of the values of the generalized golden ratio (3.53).
The generalized golden ratio (3.53) permits to determine the interval of con-

stancy of the self-similarity dimension set Ds at values of m, following the geo-
metric progression: m ¼ 1; 2; 4; 8; . . . within the interval 0
Ds 
 3. This makes it
possible to calculate on the basis of relation (3.55) range of values Ds and charge
m ¼ 1; 2; 4; 8; . . . for the golden ratio ([53], Table 9). The value of DI

s (at m ¼ 1)
corresponds to the parameter of order D2

p, defined by the expression (3.55) for

kr ¼ D2
p. This means that the sequence of golden ratios D2

p meets the following set
of parameters of order:

0:382 ! 0:216 ! 0:144 ! 0:105. . .; ð3:57Þ

derived from the squared terms of the series (3.53).
The feature of spectrum Ds at Dp ¼ const is that the transition from one level to

another is realized through the sequence of doubling Ds, i.e., Diþ 1
s =Di

s (at i ¼
I; II; III; IV or what is the same, m ¼ 1; 2; 4; 8; . . .).
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Besides the spectrum Ds, the generalized golden ratios also control the stability
of the cluster at the deformation of the solids. The fractal properties of the object
cluster, appearing in the dynamic conditions, are attached at the bifurcation points
to the dissipative structures. The stability criterion of the cluster at the deformation
of solids is the condition [10]

Wd=Wv 
W c
d=W

c
v ; ð3:58Þ

where Wd, W c
d—the density of distortion energy (the shape change) and its critical

value; Wv, W c
v—the density of dilation energy (the volume change) and its critical

value. For the micro-clusters, Wd, W c
d can be expressed in terms of strains in the

form of

Wd ¼ s2

2G
; W c

d ¼ s2c
2G

; ð3:59Þ

Wv ¼ r2

2E
; W c

v ¼ r2c
2E

; ð3:60Þ

where G, E—the elastic and shear modulus (Young’s modulus) of the intact
material in the cluster; s, sc—the shear stress and its critical value; r, rc—the
separation stress and its critical value.

The ratio sc=rc shows the critical state of cluster when it reaches instability.
Considering such a cluster in terms of the percolation theory [68], we can talk about
the formation at s=r ¼ sc=rc of the infinite cluster corresponding to the phase
transition.

The critical dimensionless constants that control the stability of micro-clusters in
a deformed solid body, as well as the critical exponents in the percolation theory
(percolation), are interrelated. The relationship between them follows from (3.59)
and (3.60) for W c

d and W c
v , from which it follows that

sc
rc

¼ W c
d

W c
v
� G
E

� �1=2

: ð3:61Þ

From the energy analogue of melting and destruction [69], the equalities are
following W c

d ¼ Lm and W c
v ¼ HTs , where HTs—the internal energy density at the

melting temperature Ts associated with the vibrations of the atoms. She determined,
defined as

HTs ¼
ZTs
Tc

Cp Tð ÞdT ; ð3:62Þ

where Ts—the temperature below which the contribution of lattice of the atom
vibrations into the energy can be neglected. Then, (3.61) can be written as:
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sc
rc

¼ Lm
HTs

� G
E

� �1=2

: ð3:63Þ

Denoting

Lm
HTs

� G
E

� �
¼ DT : ð3:64Þ

we obtain the condition for the realization of the micro-split (or the rotational
stability) in the form

sc
rc

�D1=2
T :

The implementation of destruction through micro-shears with the accepted
assumptions occurs at W c

d ¼ W c
v ¼ Lm, while taking into account the relation

(3.61), we obtain

sc
rc

¼ G
E

� �1=2

:

By designating G=E through X, the realization condition of the non-translational
stability (arising when the critical shear stress sc is associated with the critical
energy density W c

d ) can be expressed as

sc
rc

�X1=2:

Thus, to describe the energy state of the local areas of metal undergoing the
critical PD at the micro-split, we can use the dimensionless ratio DT introduced by
Ivanova [70]. It combines the material elastic moduli (G and E) at the initial state,
and the thermodynamic constants (Lm and HTs ) that control the energy state of the
metal local volumes away from the thermodynamic equilibrium and determine the
critical conditions for the spontaneous outflow of entropy. The physical meaning
behind the dimensionless parameter DT is the ratio of the critical shear stress to pull
within the temperature intervals, where W c

v ¼ HTs is the energy characteristic to
achieve the critical dilatation and W c

d ¼ Lm—the critical distortions [71].
With this in mind, the relation (3.64) can also be written as

DT ¼ G
E

� �
� W c

d

W c
v

� �
: ð3:640Þ

For many metals, G=E � 0:4 (since tanu � 0:4). Therefore, the ratio (3.64′) can
be represented as
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DT ¼ 0:4 � W c
d

W c
v

� �
:

From the above analysis, we can conclude that the parameter DT for the given
material is proportional to the energy ratio for the critical dilatations and distortion
at the bifurcation point, characterizing the achievement of the critical level of the
stored energy in the local volume, in which the small fluctuations can occur under
the entropic forces to initiate the spontaneous process of the self-organization of the
dissipative structures. At this point, the enthalpy becomes equal to the entropy.
Since in the temperature range from the room temperature and below DT does not
depend on the temperature, the value of DT is wise to determinate by calculating the
value of DT at 273K. Since for many alloys of the same basis DT also weakly
depends on the chemical composition, it is suitable for the practical purposes to
calculate the average value of DT for the group alloys. These average values of DT

at the room temperature are denoted by Δ [71].
Then, (3.63) can be written as

sc
rc

¼ D1=2
T : ð3:65Þ

The relation (3.65) with (3.61) can be written as

W c
d

W c
v
¼ D

E
G
: ð3:66Þ

In [53], the formula corresponding to (3.66) is written incorrectly, on the
right-hand side instead of G=E it should be E=G.

Taking into account the Poisson ratio in the expression,

m ¼ E
2G

� 1: ð3:67Þ

(3.66) can be written as

W c
d

W c
v
¼ 2D 1þ mð Þ: ð3:68Þ

Thus, the similarity constant of the micro-cluster instability is

W c
d

W c
v

� �
=2 1þ mð Þ ¼ D: ð3:69Þ

The analysis of values Δ for the metals with the different crystallographic
structure made it possible to separate the metals into three groups ([53], Table 12),

in each of which the average (according to the group) Δ of the complex Lm
HTs

� GE
� �
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matches with one of the values of the golden ratio series relationships (either
D2
p ¼ 0:216, or D2

p ¼ 0:144 or D2
p ¼ 0:105). The value of Δ is separately constant

for each metal: for the steel Δ = 0.11; for the titanium alloys Δ = 0.12; for the
copper Δ = 0.17; and for the aluminum alloys Δ = 0.22.

It follows that the complex Lm
HTs

� GE
� �

for the metals and alloys is controlled by the

golden ratio. Knowing Δ and HTs , we can forecast the critical value of the distortion
energy density W c

d according to the formula (3.64).
The mechanism of destruction has the significant effect on the fractal dimension

of fracture; therefore, we should consider the changes in the fractal dimension when
transferring from one scale into another, and in other words, the destruction should
be considered as the multilevel multifractal process.

However, the actual materials and media often have the specific multilevel
heterogeneity of their internal structure (state) and the defectiveness at the various
hierarchical levels [72–75]. In this regard, along with the fluctuations of the micro-
and macro-stress distributions on these irregularities, the practice of getting the
specific properties for various materials based on the geometrically similar speci-
mens showed that, along with the factors supporting the law of similarity, there is
the significant deviation from it. Since this deviation is the consequence of the
geometric dimensions of the deformable solid bodies, the reason causing it is called
the scale factor and the phenomenon—the scale effect [76].

As it is shown in [41] for the continuously closed curve c, having the properties
of self-similarity and homogeneity, the power law holds

Lg ¼ k � g1�D ð3:70Þ

at the constant D (the Hausdorff dimension) along the curve; if D[ 1, the curve
becomes the fractal. Here, Lg—the length approximating this curve of the broken
line composed of the segments with the constant length g. The homogeneity
property of the curve means that all parts of the curve between the neighboring
vertices of the approximating polygonal with the units of length g generate the same
number of segments in the approximating polygonal with the units of length n\g
and the self-similarity property—the similarity of curve with its parts. So that the
number of segments of the broken line with the length n placed between the
adjacent vertices of the polygon with the unit length g depends only on the ratio
g=n, but not on g and n separately.

However, the properties of self-similarity and homogeneity of the curve are not
necessary for the continuous curve to be fractal, for that it is sufficient to have
significantly weaker properties of its local homogeneity and local self-similarity.
This means that for any point on the curve, we can specify the small neighborhood
Δ, where the curve has the following property. The principal term of the asymptotic
representation of the number of vertices Nng of the approximating broken line with
the length n between the two neighboring around Δ vertices of the polygon with the
unit length g depends only on the ratio g=n with g=n ! 1, i.e., for the fixed
relation g=n � 1 there is a relationship
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Nng ¼ f g=nð Þ: ð3:71Þ

For the lengths of the approximating broken lines within the neighborhood of
each point of the continuous curve, having the properties of local homogeneity and
local self-similarity, a fair degree of asymptotic relation is valid [41]

Ln ¼ gD � n1�D þ � � � ; ð3:72Þ

where the points denote the quantities comparatively small than the first member
(here also gets the input from the extreme parts, which may not be whole). If
everywhere on the curve D[ 1, it means that the considered curve is fractal.

The length of the broken line that approximates the continuous curve between
two of its points, spaced at a distance η, depends on two quantitative parameters: g
and the link length of the broken line n. From the dimensional analysis, we obtain

Lg ¼ g � U g=nð Þ: ð3:73Þ

For the smooth (or partially smooth) curve at n ! 1, i.e., at g=n ! 1, the
function U approaches the finite limit U 1ð Þ. By definition, the value of

L0 ¼ g � U 1ð Þ; ð3:74Þ

is the length of the segment of the smooth curve between two of its points, spaced at
the distance g. Thus, for the smooth curves, there is complete self-similarity in the
parameter g=n at g=n ! 1.

For the fractal curves there are no the finite limits of the function U g=nð Þ at
g=n ! 1, it is infinite. However, from the above asymptotic representation (3.72)
of Ln, it follows that at g=n ! 1, the function U g=nð Þ has the exponential
asymptotic representation

U g=nð Þ ffi g=nð ÞD�1; ð3:75Þ

i.e., there is the incomplete self-similarity on the parameter g=n at g=n ! 1. Thus,
moving from the geometric specimen to the actual physical objects, we can simply
compare the fractal and the incomplete self-similarity on the parameter.

In the framework of the linear mechanics of fracture, it is permissible [77] to
model the fractal cracks in the brittle materials based on the classical Griffith’s
criterion. It turns out that the stress intensity factor depends on the load, the average
size of the crack, and its fractal dimension [42, 78]. This approach is based on the
fact that the fracture or crack surfaces, emerging during the destruction of most
brittle materials, are very irregular and characterized by irregularities of all different
sizes such as peaks, jags, and rugs. Therefore, the real crack at friction is far from
the idealized crack with smooth sides, which is considered in the linear mechanics
of fracture. It has the “sawtooth” or “zigzag” type of structure at the different scales
of consideration of the Koch curve [79].
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In the case of the purely brittle fracture, there are such forces like the molecular
cohesion forces. Therefore, the forces G sð Þ are collectively called the cohesive
forces.

Thus, we need to take into account the additional dimensional characteristics: the
size of the crack head d, which is determined by the load and the material structure,
and the characteristic of the cohesive forces G0.

The analysis shows that for the large class of the practically important cases of
the brittle and quasi-brittle fractures, the following hypothesis conjectures are valid
[80]: (1) the smallness of size of the crack head d in comparison with the size of the
crack l d=l � 1ð Þ; (2) the autonomy of head, i.e., the similarity in the state of
dynamic equilibrium (and hence in generating cohesive forces) for all cracks within
material under the given environmental conditions. The maximum cohesive forces
cause the dynamic equilibrium, so that the slightest increase in the load makes the
crack to spread.

The autonomy of the crack head is due to the fact that the specific load applied to
the body is r0 times much smaller than the cohesive forces G0 r0=G0 � 1ð Þ.
Therefore, the theory of brittle (and quasi-brittle) destruction is intermediate
asymptotic, and it turns out that not every significant permanents d and G0 are
separate: The only material constant, in addition to the constants of the theory of
elasticity, is the cohesive module or the crack resistance:

K ¼
Zd
0

G sð Þdsffiffi
s

p ; K �G0

ffiffiffi
d

p
: ð3:76Þ

The cohesive module has the dimension FL�32. It characterizes the material
resistance to the crack distribution and is the independent characteristic of the
material strength properties. The values of cohesive module for some materials are
the structural steel—K� 2:5� 104 kg/cm3=2 and the duralumin—K� 104 kg/cm3=2.

The cohesive module K, introduced in [80], should be distinguished from the
material strength KIC introduced at the same time by Irwin [81] and determined by
the initial critical crack growth. The initial critical crack growth requires the
instability of mobile equilibrium state. At the beginning of the crack spread, the
unstable autonomous crack head may not enough have time to form. Hence, it
explains the large scattering of KIC.

The cohesive module (the crack resistance) is one of the crucial parameters in
formulating the similarity laws of the brittle and quasi-brittle fracture. The appear-
ance of one parameter K �G0

ffiffiffi
d

p
instead of two d and G0 is the typical manifes-

tation of the incomplete self-similarity on the parameter G0=r0 at G0=r0 ! 1.
There are three types of the loading parameters: the dimension stress r, the

tension (the force divided by the length) s, and the force S. The values of these
parameters, corresponding to the destruction rf , sf , Sf in the brittle or
the quasi-brittle fracture of body of the predetermined shape, are defined by
two dimensional parameters—the cohesive module K and the body dimension l.
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The dimensional elastic constants are not part of the governing parameters, because
when setting the loads, acting on the body, the stress field does not depend on them.

As it can be seen from the dimensional analysis, there is no similarity in defining
the parameters at the brittle and quasi-brittle fracture, and therefore,

Sf ¼ const � Kl3=2; sf ¼ const � Kl1=2; rf ¼ const � Kl�1=2: ð3:77Þ

Therefore, the constants in (3.77) can be determined from the test on the geo-
metrically similar model made of any material and fractured following the
quasi-brittle mechanism. The only requirement for the design is the similarity of its
geometrical model with the original, including the similarity of initial cracks.

If the PD of the material at the destruction is not concentrated near the crack, but
occupies the significant part of structure (in this case, the destruction is unsuccessful
called viscous), then there is a new dimension determining parameter, the yield
strength rv. Consequently, there is the similarity parameter

I ¼ rv �
ffiffi
l

p

K
; ð3:78Þ

which is called the parameter of Irwin because he [82] was the first to discover the
decisive influence of parameter, equivalent to I, on the ductile fracture and the
transition from the quasi-brittle fracture to the ductile.

Thus, to obtain the ductile fracture parameters, we have

Sf ¼ rvl2US Ið Þ; sf ¼ rclUs Ið Þ; rf ¼ rclUr Ið Þ: ð3:79Þ

3.3 Bifurcation Doubling Model (Feigenbaum Scheme)
for Fatigue Crack Growth

As it was noted in Sect. 3.1, the analysis of the FCG from the prospects of syn-
ergetics allows to consider the system of “specimen-loading device” as the dynamic
system consisting of the large number of nonlinear oscillators of Duffing (the
oscillators with cubic nonlinearity), in which the transition from order to chaos is
accompanied by the infinite sequence of the period-doubling bifurcations in
accordance with the Feigenbaum law [22, 83, 84].

We shall note that the appearance of the period-doubling bifurcation is the
threshold of synchronization, i.e., the beginning of the system complex behavior in
time of leaving the region of synchronization [40]. Under the synchronization
phenomenon, we refer to the periodic motion with a period multiplied by the period
of the external force.

The main question of the theory of chaos comes down to how to determine its
origin and predict the further course of the system evolution.
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3.3.1 Universality of the Feigenbaum Theory to Describe
the Behavior of Nonlinear Systems

Feigenbaum began his studying of the nonlinear system behavior by analyzing the
intervals between bifurcations (period doubling) in the orbit diagram for the
quadratic function.

y ¼ kx 1� xð Þ: ð3:80Þ

The dynamic system corresponding to this function is described by the quadratic
mapping, called the logistic mapping

xnþ 1 ¼ kxn 1� xnð Þ; ð3:81Þ

here xn—the dynamic variable and k—the parameter, which affects the dynamic
property. The basic meaning of the analysis carried out by Feigenbaum lies in its
versatility. He described the mechanism known as “getting chaos via period dou-
bling” occurring not only at the iteration of the function f xð Þ ¼ kx 1� xð Þ, but also
for the large class of the double-digit interval mapping within themselves, such as
x2 þ c, with sin px and cx2 sin pxð Þ, defined at the suitable intervals.

Appearing on the right-hand side of the Eq. (3.81), the function has the maximum
at x ¼ 1=2. If we count the variable from the point of extremum and assume that

X ¼ x�1
2

k
4�1

2
;

l ¼ k k
4 � 1

2

� �
;

ð3:82Þ

in the new notation, we obtain

Xnþ 1 ¼ 1� lX2
n : ð3:83Þ

This presentation form of the logistic mapping is convenient for the theoretical
analysis and will be further used in conjunction with the mapping

ynþ 1 ¼ y2n þ c; ð3:84Þ

obtained from (3.83) after the substitution

X ¼ 1
c
� y; l ¼ �c: ð3:85Þ

The simplest discrete dynamical system consists of the starting point x0
and the iterated function f : x0—the starting point, x1 ¼ f x0ð Þ,
x2 ¼ f x1ð Þ ¼ f f x0ð Þð Þ; . . .; xn ¼ f xn�1ð Þ ¼ f f . . . f x0ð Þð Þð Þ ¼ f n x0ð Þ, where f n x0ð Þ
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indicates nth iteration of the function f xð Þ (rather than nth power of f xð Þ). Let f xð Þ
be the continuous function of the real variable x 2 X � R1, R1 ¼ �1; þ1ð Þ,
mapping X in X, i.e., f 2 C X;Xð Þ. We shall consider the dynamical systems given
by the mapping

x ! f xð Þ; ð3:86Þ

when the phase space X is the interval on the line R1, with limit or limitless.
If x tð Þ is the solution of the equation

x tþ 1ð Þ ¼ f x tð Þð Þ; ð3:87Þ

t 2 Z þ (Z þ—the set of positive integers), then the graph of solution

gr x tð Þ ¼ x; tð Þ : x ¼ x tð Þ; t 2 Z þf g ð3:88Þ

is the countable set in the space X � Z þ . The mapping

x ! f xð Þ; t ! tþ 1f g ð3:89Þ

displays gr x tð Þ into itself. When designing graphics gr x tð Þ in the space X, we
obtain the set

x 2 X : x ¼ x tð Þ; t 2 Z þf g ¼ f t x0ð Þ; t 2 Z þf g; f 0 x0ð Þ ¼ x0:

This set is invariant under the mapping (3.86) and represents by itself passing
through x0 the trajectory of the dynamical system f nf g or, for brevity, the trajectory
of mapping (3.86). Thus, to solve the Eq. (3.87), it is equivalent to find the behavior
of corresponding trajectory mapping (3.86).

The sequence f n x0ð Þf g1n¼0 is also called the orbital of the initial point x0. The
fixed point of mapping f is defined as the point x satisfying f xð Þ ¼ x. The fixed
point x is called attracting if the point orbits within some neighborhood (possibly
very small) converge to it. The fixed point x is called repulsive if the point orbits
that sufficiently close to the point part away from it.

To investigate the fixed point x of mapping f xð Þ on the stability, it is necessary to
calculate the multiplier l xð Þ ¼ f 0 xð Þ, showing the changes of the small perturbation
for the cycle period.

If f 0 xð Þj j\1, then x is the attracting point, and if f 0 xð Þj j[ 1, then x is the
repulsive point. In the case where f 0 xð Þj j ¼ 1, a certain conclusion can be drawn:
The point x can be either attractive, or repulsive or neither one. The simplest
behaviors have the periodic orbits or cycles. The point x0 2 X is called periodic of
the period m, if f m x0ð Þ ¼ x0 and f i x0ð Þ 6¼ x0 at 0\i\m. Each point xi ¼ f m x0ð Þ,
i ¼ 1; 2; . . .;m� 1, is also periodic with the period m, and the points
x0; x1; . . .; xm�1 form the periodic trajectory or the cycle of period m.

The following will be mainly used for the mapping, defining the dynamical system
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x ! kx 1� xð Þ: ð3:90Þ

This mapping and other quadratic mapping, for example x ! x2 þ c and
x ! 1� c, which are reduced to (3.90) after changing the coordinates, are most
widely used. For f xð Þ ¼ kx 1� xð Þ, we have f 0ð Þ ¼ f 1ð Þ ¼ 0 and
max f xð Þ ¼ f 1=2ð Þ ¼ k=4, and then, at 0\k
 4, the interval x 2 I, I ¼ 0; 1½ 
 is
mapped into itself. The graph f xð Þ is the parabola with the peak at x ¼ 1=2.

One of the main objects is the periodic points and formed by them the cycles.
Naturally, two classes of cycles are distinguished among them: attracting and
repulsive. The cycle B ¼ b1; . . .; bmf g of mapping X ! X is attracting if there is a
neighborhood U of this cycle such as that fU � U and \ fU ¼ B. Hence, for each
point x 2 X, the trajectory f i xð Þf g1i¼0 splits into the m sequences converging to the
points b1; . . .; bm, respectively.

The cycle B is repulsive, if there is a neighborhood U, such as each point of U=B
departs U for a finite time, i.e., for each x 2 U=B, there is nx such as that
f nx xð Þ 62 U.

The sufficient conditions distinguishing the attracting and repulsive cycles are
well known, when f—the differentiable function [22, 85, 86]. The cycle B of the
period m is attractive if the spectrum of the differential Df m, calculated at one point
of the cycle, lies within the unit circle, and it is repulsive if the spectrum lies outside
the unit circle. In particular, if X � R1, the spectrum consists of a single cycle
multiplier

l Bð Þ ¼ d
dx

f m xð Þ
����
x2B

¼ f 0 b1ð Þ: ð3:91Þ

If l Bð Þj j\1, then the cycle B is attracting, and if l Bð Þj j[ 1, then the cycle B is
repulsive.

When the dynamic system depends on the parameters, their change can lead to
the various qualitative restructuring of the system, in particular the emergence of
new periodic orbits, the conversion of the attracting cycles into the repulsive and
vice versa, etc. In this case, we say that the bifurcations of periodic orbits take place
in the dynamic system. Let us consider the emergence of the bifurcation for
mapping (3.90).

1. 0\k
 4. In this case, I ¼ 0; 1½ 
, there is only one fixed point x ¼ 0, and it is
attracting. Since f xð Þ\x at x 2 I= 0f g, then

\1
n¼0

f n I= 0f gð Þ ¼ 0f g;

Whatever the point x 2 I= 0f g is, there is f n ! 0 at n ! 1. Consequently, each
trajectory f n xð Þf g1n¼0 is attracted by the fixed point x ¼ 0 (Fig. 3.5)
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2. 1\k
 3. When k[ 1 besides the fixed point X ¼ 0, another fixed point is
formed b1 ¼ 1� 1=k (Fig. 3.6). Since f 0 xð Þ ¼ k 1� 2xð Þ, the multiplier (3.91)
can be written in the form f 0 b1ð Þ ¼ 2� k, and hence, the fixed point x ¼ b1 at
1\k\3 is attractive. Whatever the point x0 2 0; 1ð Þ is, there is f n x0ð Þ ! b1 at

-0.5

< 3

x0.5

f(x)

-0.5

0.5

Fig. 3.6 The graph of the
bifurcation occurrence
(x ¼ b1)

f(x)

-1.0

< 1

x-0.5 0.5 1.0

-0.5

-1.0

0.5

1.0

Fig. 3.5 The graph of the
bifurcation occurrence (one
fixed point, x = 0)
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n ! 1. At k ¼ 3, the fixed point x ¼ b1 is still attractive, although l b1ð Þj j ¼ 1
(Fig. 3.6).

3. 3\k
 1þ ffiffiffi
6

p
. When the parameter k passes through k1 ¼ 3, there is a new

bifurcation: The fixed point x ¼ b1 transforms from attracting into repulsive
( l b1ð Þj j[ 1 for k[ 3), and it generates the attractive cycle of the period 2. The
way the mapping (3.90) changes within the neighborhood of x ¼ b1 is shown in
Fig. 3.7, and it shows the graph of the function y ¼ f f xð Þð Þ, when the parameter
k passes through the value k1 ¼ 3. The cycle of period 2 (Fig. 3.7) creates a
point

b 1ð Þ; 2ð Þ
1 ¼ kþ 1	

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 � 2k� 3

p
2k

: ð3:92Þ

The values b 1ð Þ
2 and b 2ð Þ

2 are defined as the roots of the equation f 2 xð Þ ¼ x and
are different from the roots of the equation f xð Þ ¼ x (from which we define the

fixed points of the function f xð Þ). Thus, for b 1ð Þ
2 , b 2ð Þ

2 , we obtain the equation
k2x2 � k kþ 1ð Þxþ kþ 1ð Þ ¼ 0, which gives (3.92). From (3.92), we see that
there is the cycle of the period 2, where k2 � 2k� 3[ 0, i.e., where k[ 3 or
k\� 1, but we consider only the positive values for k.
Figure 3.7 shows that the graph of f 2 xð Þ intersects the line y ¼ x in the triad of

points b 1ð Þ
2 ; b1; b

2ð Þ
2

� �
, where the point x ¼ b1 is repulsive, and points x ¼ b 1ð Þ

2

and x ¼ b 2ð Þ
2 are attracting.

Since

0 1

y =
f(

f(
x)

)

y

x

y=
x

2
(2)

2
(1)

1

y =
f(x

)

< 1+ 6

Fig. 3.7 The graph of the
function y ¼ f f xð Þð Þ
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l b 1ð Þ
2 ; b 2ð Þ

2

n o� �
¼ f 0 b 1ð Þ

2

� �
� f 0 b 2ð Þ

2

� �
¼ k2 1� 2b 1ð Þ

2

� �
1� 2b 2ð Þ

2

� �
¼k2 1� 2 b 1ð Þ

2 þ b 2ð Þ
2

� �
þ 4b 1ð Þ

2 � b 2ð Þ
2

h i
¼ 4þ 2k� k2;

then l b 1ð Þ
2 ; b 2ð Þ

2

n o� ���� ���\1 if 3\k
 1þ ffiffiffi
6

p � 3:449. At these values of k, the

cycle S2 ¼ b 1ð Þ
2 ; b 2ð Þ

2

n o
of the period 2 is attracting and stable according to

Lyapunov.
Whatever the point x0 2 In 0; 1f gð Þ= f�n b1ð Þf g1 is, the trajectory of f n x0ð Þ is

attracted by the cycles b 1ð Þ
2 ; b 2ð Þ

2

n on¼0
, so that the sequence f 2n x0ð Þ	 
1

n¼0 con-

verges at the point of the cycle b 2ð Þ
2

n o
, and the sequence f 2nþ 1 x0ð Þ	 
1

n¼0

converges at the point of the cycle b 1ð Þ
2

n o
.

4. 1þ ffiffiffi
6

p
\k\3:569. . .. While passing through k2 ¼ 1þ ffiffiffi

6
p � 3:449, next

bifurcation takes place (Fig. 3.8): The cycle b 1ð Þ
2 ; b 2ð Þ

2

n o
transforms from

attracting into repulsive (at k[
ffiffiffi
6

p
, we have b 1ð Þ

2 ;b 2ð Þ
2

��� ���[ 1), and it generates

the attracting stable cycle S4
	 


of the period 4: x4n ! b 1ð Þ
4 , x4nþ 1 ! b 2ð Þ

4 ,

x4nþ 2 ! b 3ð Þ
4 , x4nþ 3 ! b 4ð Þ

4 at n ! 1, and b 2ð Þ
4 ¼ f b 1ð Þ

4

� �
, b 3ð Þ

4 ¼ f b 2ð Þ
4

� �
,

b 4ð Þ
4 ¼ f b 3ð Þ

4

� �
, b 1ð Þ

4 ¼ f b 4ð Þ
4

� �
. If we keep increasing the parameter k further, at

0

y=f(f(x))

y

x

y=
x

= 3

Fig. 3.8 The graph of
generating new bifurcations
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k3 � 3:54 the cycle S4 of the period 4 also becomes repulsive, and from there, it
generates the attracting cycle of the period 8 (it attracts all points of the interval
I, with the exception of a countable set of points). The period doubling of the
attracting cycles will continue, while the parameter k keeps increasing until
k ¼ k� � 3:549.

Here is the table of successive values of kn, where the bifurcation takes place
(Table 3.2).

As is shown in Table 3.2, the sequence of the period-doubling bifurcation points
converges to the certain limit, which in analogue with the theory of the phase
transitions is also called the critical point.

The quality adjustments, occurring with cycles when the parameter k increases,
are convenient to present with the help of the bifurcation diagram (Fig. 3.9). This
kind of diagram is called the Feigenbaum tree. The graph provides the visual
representation on fragmenting the scale of the dynamic variable, and the presence of
the scaling properties, i.e., the scale invariance when the same element of the image
is repeated at the magnified scale.

Table 3.2 Successive values of kn

# The cycle type kn (the values of k when the cycles occur)

1 2-cycle 3.00

2 4-cycle 3.44948

3 8-cycle 3.54408

4 16-cycle 3.56872

5 32-cycle 3.5698912

1 Aperiodic attractor 3.5699456

-6 -3 0 6

0.2

0.8

1.0

0

x

0.6

0.4

-5 -4 -1-2 3 41 2 5

Fig. 3.9 The bifurcation
diagram (the Feigenbaum
tree)
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Here k1; k2; k3; . . .—the values of the parameter k, where the period doubling
takes place; K1, K2, K3—the values of parameter for which x ¼ 1=2 is the element
of the cycles S2; S4; S8 etc., (such cycles are called the ultrastable).

The definition becomes clear from the inequality l bð Þj j\1. The bifurcation

curves for b 1ð Þ
2 and b 2ð Þ

2 on the diagram spread as the branches of parabola
(in accordance with the formula (3.92), it follows that for

k ! k1 ¼ 3 b 1ð Þ
2 � b 2ð Þ

2

��� ��� ¼ 0
ffiffiffiffiffiffiffiffiffiffiffiffiffi
k� k1

p� �
, and the fixed point b1 very slowly drifts at

the same time: b1 kð Þ � b1 k1ð Þ ¼ 0 k� k1ð Þ. A similar situation occurs in the
vicinity of the subsequent bifurcation values k2; k3; . . ..

When the parameter k passes through k2 ¼ 3:4498, the function f 3 xð Þ intersects
the line y ¼ x at seven points b 1ð Þ

3 , b 1ð Þ
2 , b 2ð Þ

3 , b1, b
2ð Þ
3 , b 2ð Þ

2 , b 3ð Þ
3 . Where the points

b 1ð Þ
2 , b1, b

2ð Þ
2 are repulsive, and the remaining four points are attracting, which at the

next critical value of the parameter k, equal to k3 ¼ 3:56872, will become repul-
sive, etc. When k ¼ kn, corresponding to the appearance of the 2n-cycle, the
function f 2nþ 1 crosses the line y ¼ x at 2nþ 1 � 1 points, of which 2n points will be
attracting and the others are repulsive at k ¼ knþ 1.

As it was noted by Feigenbaum, if we calculate the values of kn quite accurately
and create relationships

dn ¼ kn � kn�1

knþ 1 � kn
; n ¼ 1; 2; . . .; ð3:93Þ

then dn ! d ¼ 4:669162. . . at n ! 1, i.e., the cycle occurrence rate for the period
doubling, with n increasing, is characterized by the single constant d ¼ 4:669162,
called the Feigenbaum constant.

The asymptotical (at large n) distance, separating the adjacent points of the
attractor S2

n
, decreases between two successive period doublings by the constant

factor. Besides, at each period doubling near x ¼ 1=2, the attractor element moves
from one side of the point x ¼ 1=2 to the other. Let dn be the algebraic distance
from x ¼ 1=2 to the nearest element of the attractor with the period 2n at k\kn.
Then,

lim
n!1

dn
dnþ 1

¼ �a; ð3:94Þ

where a ¼ 2:502907875. . .:
Instead (3.81), we consider another set of mapping xnþ 1 ¼ f xnþ 1; kð Þ with the

symmetric with respect to x functions f ; having one maximum in the interval 0; 1½ 

and another close to the top of a quadratic parabola. In these mappings, there is also
the infinite cascade of the period-doubling bifurcations when the parameter k
(particularly including the above logistic mappings (3.83) and (3.84)). It was found
that in any such model, the numbers a and b are the same. Moreover, regardless of
the type of function f , the limit is
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lim
n!1 �að Þnf 2n x� 0:5

�anð Þ ; kn

� �
ð3:95Þ

and it will be the same. It is called the universal function g0 xð Þ.
It is sufficient that depending on one-parameter function f x; kð Þ to be a smooth

function with a quadratic maximum (let it be the point x ¼ 0), it actually must be
symmetric with respect to this point even far from it.

The existence of constants a, d and the universal function g0 xð Þ was discovered
and explained by Feigenbaum in 1978. He proposed the functional equations
defining a, d, and g0 xð Þ. Because of the universality of numbers a, d, the function
g0 xð Þ, and other functions of this kind, this theory is called theory of universality.

The bifurcation diagram, or as it is also called the orbit diagram for the quadratic
function (3.80), looks almost the same as for the quadratic function y ¼ x2 þ c. It is
the graph in which the values are projected along the ordinate, and on each hori-
zontal line y ¼ c we insert points attracting the periodic orbits of x2 þ c.

We denote by c0; c1; c2; . . . the bifurcation points on the orbit diagram, i.e., those
points cn, where the function f xð Þ ¼ x2 þ c iteration replaces the attracting orbit of
period 2n with that attracting orbit of period 2nþ 1. These points are listed in
Table 3.3 [85].

At c[ 1=4, the mapping x2 þ c has no real fixed points. At 3=4\c\1=4, there
is the attracting orbit of the period 1. At �5=4\c\� 3=4, there is the attracting
orbit of the period 2, which turns into the attracting orbit of period 4, when c passes
through �5=4. This implies that c0 ¼ �3=4 and c1 ¼ �5=4. It becomes harder and
harder to define these bifurcation points as n increases. Other values of c0 up to
n ¼ 10 inclusive are shown in Table 3.3.

Table 3.3 The bifurcation point cn and the superattracting points c�n for the logistic mapping
x2 þ c

# cn cn�cn�1
cnþ 1�cn

c�n c�n�c�n�1
c�nþ 1�c�n

0 −0.75 – 0 –

1 −1.25 4.233738275 −1.0000000000000 3.21851142203809

2 −1.368989394 4.551506949 −1.31070264133683 4.38567759856834

3 −1.3940461566 4.645807493 −1.38154748443206 4.60094927653812

4 −1.3996312389 4.663938185 −1.39694535970456 4.65513049539190

5 −1.4008287424 4.668103672 −1.40025308121478 4.66611194782723

6 −1.4010852713 4.668966942 −1.40096196294484 4.66854858148123

7 −1.401140214699 4.669147462 −1.40111380493978 4.669060660577530

8 −1.401151982029 4.669199003 −1.40114632582695 4.66917155556749

9 −1.401154502237 4.66916224 −1.40115329084992 4.66919514619589

10 −1.401155041989 – −1.40115478254662 –
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Based on Table 3.3, we can make two important conclusions. The first one is
that the bifurcation points cn tend to the limit c1:

c1 ¼ lim
n!1 cn ¼ �1:401155: ð3:95Þ

The point c1 is called the Feigenbaum point. Within the interval c ¼ �1=4 and
c1, the period doubling occurs as c ! c1. The other area, where c[ c1, is called
the domain of chaos.

The second conclusion is that the ratio of the lengths of the successive intervals
to the bifurcation points has the limit

d ¼ lim
n!1

cn � cn�1

cnþ 1 � cn
¼ 4:669162. . .; ð3:96Þ

where d ¼ 4:669162. . .; is the Feigenbaum universal constant (3.93).
The constant d is used to forecast the beginning of chaos, if we take into account

that the interval between c0 and c1 is approximately equal to

d
d� 1

c1 � c0ð Þ:

As the numerical studies showed [51], the values of a and d, defined by (3.95)
and (3.96), do not depend on the particular form of the quadratic mapping. The
main thing is that they are unimodal (have one extremum) and that extremum must
be quadratic.

If near the maximum, which can be seen as located at x ¼ 0, the successor
function f xð Þ is written in the form (see Sect. 3.1)

f xð Þ ¼ 1� k xj jz;

where z[ 1, k—the bifurcation parameter and then the generalized Feigenbaum
rule can be written as [40]

k1 � kn n ! 1�
d�n;

Table 3.4 The parameters α
and δ at different z values

z δ α z δ α

1.0 2 1 5.0 8.345 1.556

1.5 3.8004 3.8889 6.0 9.31 1.468

2.0 4.6692 2.5029 7.0 10.18 1.405

2.5 5.4127 2.1368 8.0 10.98 1.35

3.0 6.0847 1.9277 9.0 11.72 1.32

3.5 6.7053 1.7895 10.0 12.48 1.29

4.0 7.2851 1.6903 11.0 13.15 1.27
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where kn—the value of parameter l, at which there is the nth period-doubling
bifurcation,

l1 ¼ lim
n!1ln;

d—the constant depending on the exponent z in the expression for f zð Þ.
The parameters a and d at different z values are shown in Table 3.4 [87].
The table shows that the value of d monotonically increases with an increase of

z. The value d ¼ 4:6692. . ., corresponding to z ¼ 2, is commonly referred as the
Feigenbaum constant. In the future, it is unless specifically stated, so under the
symbol d, we understand exactly that value.

The Feigenbaum rule can be written in another form [19]

xn n!1� k1 � knð Þm;

where xn ¼ 2pTn, Tn ¼ T � 2n (T—the oscillation period),
m ¼ ln 2= ln d ¼ 0:4498. . .:

The recorded in this form, the Feigenbaum rule is similar to the rule of change
xn for the phase transition of type II with the critical exponent m. Therefore, the
constant υ is called the critical index of transition to the stochasticity through the
sequence of the period-doubling bifurcations [88].

The process of broadening of the spectral lines of subharmonics exceeding the
threshold is called universal [89]

Dx ¼ c l� luð Þb;

where b ¼ 2:42 for the chaotic display xnþ 1 ¼ l� x2n ¼ f xn; lð Þ, which is the
one-parameter family of curves such as the inverted parabola with the quadratic
maximum at xn ¼ 0.

Due to the broadening of the spectral lines according to the above dependences
on the difference l� luð Þ outside the critical region l[ luð Þ with an increase of
the parameter l, the strange attractor gradually “swells,” continuously including
into the area of stochasticity, the elements of 2n-cycles n ¼ 1; . . .; k; k � 1; . . .; 0ð Þ.
The versatility of broadening of the spectral lines naturally leads to the universality
in the evolution of the integral power spectrum, which increases in the supercritical
region according to the rule [90]:

SI ¼ Zþ1

�1
S fð Þdf ¼ c l� l�ð Þr; r � 1:525;

where S fð Þ ¼ c fð Þj j2, c fð Þ—the amplitude of spectrum at the frequency f .
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It should be noted that in the real physical systems, where there is the external
noise, the bifurcation sequence might not be observed. The influence of noise on the
Feigenbaum scenario of the transition to the chaos will be considered separately
(Sect. 3.3).

It is quite difficult, if not impossible, to analytically determine the bifurcation
points cn for the particular function, such as x2 þ c. However, there is another way
to determine them using points c�n, lying between each pair of the bifurcation points
cn and cnþ 1, which have the superattracting orbit with the period 2n (Table 3.3).

The point x0, for which f 0 x0ð Þ ¼ 0, is called the critical point of the function
f xð Þ. For the value c ¼ c�n, the critical point of fc xð Þ, which determines the logistic
mapping with the parameter c (e.g., for fc xð Þ ¼ x2 þ c, will satisfy the equation
f nð Þ x0ð Þ ¼ x0. It has been proven that the Feigenbaum constant d is defined as

d ¼ lim
n!1

c�n � c�n�1

c�nþ 1 � c�n
: ð3:97Þ

The values of function c�n can be found numerically applying Newton’s method
to the function

u x0ð Þ ¼ f 2n�1ð Þ x0ð Þ � x0; ð3:98Þ

where x0—the critical point of fc xð Þ.
Finding the root of the equation u xð Þ ¼ 0 using Newton’s method starts with the

zero-order approximation r 0ð Þ and continues according to the formula

r nð Þ ¼ r n�1ð Þ � u rn�1ð Þ
u0 rn�1ð Þ : ð3:99Þ

If r 0ð Þ is sufficiently close to the root, then limr 0ð Þ ¼ r. From (3.97), it follows
that

c�n � c�n�1 þ
c�n�1 � c�n�2

d
: ð3:100Þ

The suitable initial value c� 0ð Þ
n for cn n� 2ð Þ can be obtained by substituting d

into d�n�1 in (3.100), where

d�n ¼
c�n�1 � c�n�2

c�n � c�n�1
; n ¼ 2; 3. . .; ð3:101Þ
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i.e.,

c� 0ð Þ
n � c�n�1 þ

c�n�1 � c�n�2

� �2
c�n�2 � c�n�3

; n ¼ 2; 3. . .: ð3:102Þ

In this case, there is a problem for the initial values c� 0ð Þ
n for n ¼ 2; 3, which we

solve by putting d�1 ¼ d�2 ¼ 4, while calculating c� 0ð Þ
n by the formula

c� 0ð Þ
n�1 � c�n�1 þ

c�n�1 � c�n�2

4
; n ¼ 2; 3. . .: ð3:103Þ

The values f 2n�1ð Þ
c x0ð Þ in (3.98) are calculated by the iteration of xk ¼ fc xk�1ð Þ,

i.e., f 2ð Þ
c x0ð Þ ¼ fc x1ð Þ, where x1 ¼ fc x0ð Þ, f 4ð Þ

c x0ð Þ ¼ fc f 3ð Þ
c x0ð Þ

� �
¼ fc f 2c x1ð Þ� � ¼

fc fc fc x1ð Þð Þð Þ.
The derivative u cð Þ is also computed by iterating. Let

zk ¼ d
dc

f kð Þ
c x0ð Þ:

Then, in the case fc xð Þ ¼ x2 þ c, it gives

zk ¼ 2xk�1zk�1 þ 1; ð3:104Þ

and for fc xð Þ ¼ cx 1� xð Þ, we obtain

zk ¼ xk�1 1� xk�1ð Þþ c 1� 2xk�1ð Þ � zk�1: ð3:105Þ

Found through Newton’s method, the superattracting points c�n for the function
fc xð Þ ¼ x2 þ c can for n[ 10 be equated to its bifurcation points cn and thereby
extend Table 3.2. From (3.82)–(3.85), we find k k

4 � 1
2

� � ¼ �c. Consequently, the
bifurcation points kn for function kx 1� xð Þ are associated with the bifurcation
points cn of function x2 þ c by the ratio

kn ¼ 1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4cn

p
; ð3:106Þ

because we consider only positive values of k.
Since dn in (3.94) is the distance between x ¼ 1=2 and the closest point of the

element of the 2n-cycle at k ¼ kn and the closest element is the 2n�1-iteration of the
point x ¼ 1=2 (this is so, because before the n-doubling cycle, providing the split,
these points are the same), we have

dn ¼ f 2
n�1 1

2
; kn

� ��1=2

: ð3:107Þ
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For the subsequent, it is convenient to perform, as in (3.95), the translation of
the coordinates x ¼ 1=2 ! x ¼ 0. After translation, the formula (3.107) takes the
form

dn ¼ f 2
n�1

0; knð Þ�1=2; ð3:108Þ

i.e., if the ratio (3.94) holds, the limit

lim
n!1 �að Þnf 2n 0; knþ 1ð Þ ð3:109Þ

must exist. In addition, there will be the limit function

g0 xð Þ ¼ lim
n!1 �að Þnf 2n x

�an
; knþ 1

� �
: ð3:110Þ

After the above translation of coordinates, the formula (3.95) can be written as

g0 xð Þ ¼ lim
n!1 �að Þnf 2n x

�anð Þ ; knþ 1

� �
: ð3:111Þ

In the theory of universality, we consider the space with mapping of the interval
�1; 1½ 
 into itself, such that f xð Þ 2 c2 �1; 1½ 
ð Þ and x ¼ 0 is the maximum point
f 0ð Þ ¼ 1. For such mapping, summarizing the relations (3.110) and (3.111), we can
define the family of versatile functions gr:

gr xð Þ ¼ lim
n!1 �að Þnf 2n x

�anð Þ ; knþ 1

� �
; r ¼ 0; 1; 2; 3; . . .: ð3:112Þ

M. Feigenbaum explained the universal nature of the quantitative rules of
transitions into chaos through the sequence of period-doubling bifurcations, and he
also created the theory of universality. To analyze the mapping of the logistic
parabola type, Feigenbaum applied the method of the renormalization group (RG),
the content of which is as follows.

Let the critical point k ¼ ku have the mapping

xnþ 1 ¼ f xnð Þ;

where f—the arbitrary unimodal function with the quadratic extremum at the point
x0 ¼ 0, where f x0ð Þ ¼ 1; k—the bifurcation parameter.

Applying this mapping twice, we obtain the mapping xnþ 1 ¼ f f xnð Þð Þ: We
rescale the variable x ! x=a0 so that the new mapping at the origin to be also
normalized in unity, i.e., a0 ¼ 1=f f 0ð Þð Þ, and denote the new mapping as
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xnþ 1 ¼ f1 xnð Þ ¼ a0 f xn=a0ð Þð Þ. Repeating this procedure many times, we obtain the
equation of renormalized group

fiþ 1 xð Þ ¼ aifi fi x=aið Þð Þ;

where ai ¼ 1=fi fi 0ð Þð Þ. At the critical point lu due to the self-similarity, there are
limits

lim
i!1

fi xð Þ ¼ g xð Þ; lim
i!1

ai ¼ a:

The function g xð Þ is the fixed point of the functional equation of Feigenbaum–
Cvitanovic

T̂g xð Þ ¼ ag g x=að Þð Þ ¼ g xð Þ;

where T̂—the doubling operator; a ¼ 1=g g 0ð Þð Þ. For the critical point corre-
sponding to the transition into chaos through the period doubling, the boundary
conditions for the last equation will be g 0ð Þ ¼ 1, g0x 0ð Þ ¼ 0. The function g xð Þ is
called universal because it does not depend on the particular shape of the original
map and is determined only by the extremum. It provides the asymptotic form 2k-
fold the applied evolution operator at the critical point when k ! 1. More
specifically, the following relationship is valid for the asymptotic on k

f 2 xð Þ ¼ f f f . . . xð Þ. . .ð Þð Þð Þ ffi g Akxð Þ
Ak

; Ak ¼ 1
f 2k 0ð Þ ffi const � ak:

The constant a, included in the equation of the fixed point, is also universal.
Feigenbaum found the numerical solution for the equation g xð Þ assuming the
quadratic extremum and the specified boundary conditions, and it is of the form

g xð Þ ¼ 1� 1:5276330x2 þ 0:1048152x4 þ 0:0267057x6 � 0:0035274x8

þ 0:0000816x10 þ 0:0000254x12 � 0:0000027x14:

The Feigenbaum universal constant aF is equal to 2:502907876. . ..
If we introduce a small perturbation of the evolution operator f xnð Þ, slightly

deviating l from the critical value, the doubling operator T̂ and the function g xð Þ
are also perturbed. Linearizing the operator T̂ at the point g xð Þ with l ¼ lu, we
obtain the operator L̂g, which determines the behavior of the perturbation, and the
equation for the eigen functions of h xð Þ and the eigenvalues of the linearized
operator q:
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L̂gh xð Þ � a g0
x
að Þ � h x

a

� �
þ h g

x
a

� �� �h i
¼ q � h xð Þ:

The decisive role in the perturbation behavior plays the eigenvalues that are
greater than ones in modulus. In the case of the quadratic extremum, there is one
such value corresponding to the crucial component of perturbation and it defines the
second Feigenbaum universal constant q1 ¼ d ¼ 4:6692016091. . .:

Mapping with the non-quadratic extremum z 6¼ 2ð Þ is characterized by the dif-
ferent values of the universal constants a and d (see Table 3.4). However, in the
numerical and actual experiments conducted for the variety of flow systems (in-
cluding the distributed systems) in accordance with the Feigenbaum scenario of
chaos, the scale factor a a ¼ �að Þ and the convergence rate of the bifurcation
sequence d within the experimental error were consistent with the values obtained
on the basis of Feigenbaum’s theory on the quadratic extremum [22]. Obviously,
the typical mapping is generated by the evolution operator of the streaming system
near the critical point and is close to the one-dimensional mapping with the
quadratic extremum, where other cases are atypical.

The universality of Feigenbaum’s scenario is also evident in the behavior of the
spectral amplitudes of the subharmonics arising in each period doubling. To see
this, we consider the logistic mapping for the cycle with period N ¼ 2k at the
critical point, and it corresponds to the sequence of values of the dynamic variable
x0; x1; x2. . .; xN�1. The Fourier series expansion and the inverse transformation are
defined by the expressions

xn ¼
XN�1

m¼0

cm exp
2pj
N

mn

� �
; cm ¼ 1

N

XN�1

n¼0

xn exp � 2pj
N

mn

� �
j ¼

ffiffiffiffiffiffiffi
�1

p� �
:

The value of f ¼ m=N is the frequency of the mth component, and for the
squared amplitude, we introduce the notation

S fð Þ ¼ S m=N
� � ¼ cmj j2:

At the limited transition to the infinitely large period, we obtain the following
approximations [91]:

S
f
2

� �
ffi 1þ a2

4a
þ 1

2a3
cos pf

� �
S fð Þ;

S
1
2
þ f

2

� �
ffi 1þ a2

4a4
� 1
2a2

cos pf
� �

S fð Þ;

where a ¼ �a, a ¼ 2:5029. . .—the first Feigenbaum universal constant. The

spectral intensities at the frequencies f ¼ f02�k f0 ¼ 1
2pT0

; T0��the periodf xð Þ
� �

are
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obtained by the successive application of the above relationship between S f
2

� �
and

S fð Þ. Since f ! 0 and cos pf ! 1, the conversion factor of intensities is equal to

q ¼ 1þ a2
� �

=4a4 þ 1
2a2

:

Therefore, S f02�k
� � ffi qk � S fð Þ. We introduce s fð Þ ¼ S fð Þ=f k , where

k ¼ log2 q ¼ 6:19. Then, we have s f � 2�k
� � � s fð Þ. The constant q is slightly

different from that empirically found value, which is explained by the approxi-
mations made in the derivation of the connection equations between S f

2

� �
and S fð Þ.

3.3.2 Bifurcation Doubling Process Forecasting

Let us define the local rescaling near the mth element of the 2n-cycle, i.e., the
distance between the mth iteration of the point x ¼ 0 and next element of this cycle.
If we denote this rescaling rule through the letter d, then

dn mð Þ ¼ dnþ 1ðmÞ
dnðmÞ ; ð3:113Þ

Comparing a with the definition according to the formula (3.94), we note that
dn 0ð Þ � �að Þ�1. It is easy to see that

dn mð Þ ¼ xm � f 2
n�1

xm; knð Þ; ð3:114Þ

where xm—the mth iteration of the point x0 ¼ 0. Taking into account the com-
mutative property of iterations

f n � f m ¼ f m � f n ¼ f mþ n; ð3:115Þ

(3.114) it can be written as

dn mð Þ ¼ f m 0; knð Þ � f m f 2
n�1

0; knð Þ; kn
� �

: ð3:116Þ

Let m ¼ 2n�r, then

dn 2n�rð Þ ¼ f 2
n�r

0; knð Þ � f 2
n�r

f 2
n�1

0; knð Þ; kn
� �

¼ f 2
n�r

0; k n�rð Þþ r

� �� f 2
n�r

f 2
n�1

0; knð Þ; k n�rð Þþ r

� �
:

ð3:117Þ

For r � n (but r � 1 for large n), using (3.112), we obtain
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dn 2n�rð Þ � �að Þ�ðn�rÞ gr 0ð Þ � gr �að Þn�rf 2
n�1

0; knð Þ
� �h i

or

dn 2n�rð Þ � �að Þ� n�rð Þ gr 0ð Þ � gr �að Þ�rþ 1g1 0ð Þ
� �h i

: ð3:118Þ

It implies that

d 2n�rð Þ � grþ 1 0ð Þ � grþ 1 �að Þ�rg1 0ð Þð Þ
gr 0ð Þ � gr �að Þ�rþ 1g1 0ð Þ

� � : ð3:119Þ

Finally, we rescale the axis of iteration in such way that between all 2nþ 1

iterations, f 1 0ð Þ; f 1 0ð Þ; . . .; f 2nþ 1 0ð Þ were the unit interval. We denote the resulting
axis through t, and then, the value of t in the mth element of the 2n-cycle time is

tn mð Þ ¼ m
2n

: ð3:120Þ

In particular, we have

tn 2n�rð Þ ¼ 2�r: ð3:121Þ

Naturally, to define d along the t-axis, we do the following:

d tn mð Þð Þ� dn mð Þ at n ! 1ð Þ: ð3:122Þ

Approximating the 2n-cycle, we need to calculate dn near 2n�r1 þ 2n�r2 þ � � �ð Þth
iteration of the point x ¼ 0, that is, in the element t of the 2n-cycle, which is the
rational number with the binary representation

t ¼ 2�r1 þ 2�r2 þ � � � ;

where r1; r2; . . .—the ranks of t 2 0; 1ð Þ, including the nonzero (single) values in
the binary representation of its fractional part. By (3.115), we have

f 2
n�r1 þ 2n�r2þ ��� ¼ f 2

n�r1 � f 2n�r2 � � � � ;

Therefore, the value of d at such t can be obtained through the formulas (3.113)
and (3.118) using the appropriate iterations of gr. For example, at
t ¼ 2�r1 þ 2�r2 þ � � � þ 2n�3, we have
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dn 2n�r1 þ 2n�r2 þ 2n�r3ð Þ ¼ dnþ 1 2n�r1 þ 2n�r2 þ 2n�r3ð Þ
dn 2n�r1 þ 2n�r2 þ 2n�r3ð Þ ; ð3:123Þ

where

dn 2n�r1 þ 2n�r2 þ 2n�r3ð Þ
¼ �að Þ� n�r3ð Þ gr3 �að Þn�r3 �að Þ� n�r2ð Þgr2 �að Þn�r2 �að Þ� n�r1ð Þgr1ð0Þ

� �� �h
�gr3 �að Þn�r3 �að Þ� n�r2ð Þgr2 �að Þn�r2 �að Þ� n�r1ð Þgr1ð �að Þ�r1 þ 1g1 0ð ÞÞ

� �� �i
;

ð3:124Þ

dnþ 1 2n�r1 þ 2n�r2 þ 2n�r3ð Þ
¼ �að Þ� n�r3ð Þ gr3 þ 1 �að Þn�r3 �að Þ� n�r2ð Þgr2 þ 1 �að Þn�r2 �að Þ� n�r1ð Þgr1 þ 1 0ð Þ

� �� �h
�gr3 þ 1 �að Þn�r3 �að Þ� n�r2ð Þgr2 þ 1 �að Þn�r2 �að Þ� n�r1ð Þgr1 þ 1 �að Þ�r1g1 0ð Þð Þ

� �� �i
:

ð3:125Þ

Summarizing the formulas (3.123)–(3.125), for any positive integer j� 1 and
t ¼ 2�r1 þ 2�r2 þ � � � þ 2�rj , we have [84]:

d 2�r1 þ 2�r2 þ � � � þ 2�rjð Þ ¼ dnþ 1 2n�r1 þ 2n�r2 þ � � � þ 2n�rjð Þ
dn 2n�r1 þ 2n�r2 þ � � � þ 2n�rjð Þ ; ð3:126Þ

where

dn 2n�r1 þ 2n�r2 þ � � � þ 2n�rjð Þ
¼ �að Þ� n�rjð Þ grj �að Þn�rj �að Þ� n�rj�1ð Þgrj�1 �að Þn�rj�1 �að Þ� n�rj�2ð Þgrj�2 . . .gr1 0ð Þð Þ

� �� �h
� grj �að Þn�rj �að Þ� n�rj�1ð Þ�

grj�1 �að Þn�rj�1 �að Þ� n�rj�2ð Þgrj�2

� . . .gr2 �að Þn�r2 �að Þ� n�r1ð Þgr1 �að Þ�r1 þ 1g1 0ð Þ
� �

. . .
��i

;

ð3:127Þ

dnþ 1 2n�r1 þ 2n�r2 þ � � � þ 2n�rj�1ð Þ
¼ �að Þ� n�rjð Þ grþ 1 �að Þn�rj �að Þ� n�rj�1ð Þgrj�1 �að Þn�rj�1 �að Þ� n�rj�2ð Þgrj�2 . . .gr1 0ð Þð Þ

� �� �h
� grjþ 1 �að Þn�rj �að Þ� n�rj�1ð Þ�

grj�1 �að Þn�rj�1 �að Þ� n�rj�2ð Þgrj�2

� . . .gr2 þ 1 �að Þn�r2 �að Þ� n�r1ð Þgr1 þ 1 �að Þ�r1g1 0ð Þ
� �

. . .
��i

:

ð3:128Þ
There is one last moment in the calculation of d. We know that d 0ð Þ ¼ �a�1.

Furthermore, dn 1ð Þ � a. But from (3.121), it follows that tn 1ð Þ ¼ 2�n ! 0 as

108 3 Synergetic Model of Fracture and Mechanics …



n ! 1. This implies that d is discontinuous at t ¼ 0; d 0� eð Þ ¼ �a�1 and
d 0� eð Þ ¼ a�2 e ! þ 0ð Þ. In fact, since x2n�r is always very close to x ¼ 0, each of
these points is converted quadratically. Therefore, (3.126) actually defines d t � eð Þ
for the rational t, whereas d t � eð Þ is obtained by replacing each gr in the numerator
and the denominator by its square g2r .

Thus, the function d tð Þ can be calculated for any value of t 2 0; 1½ 
. It is uni-
versal, because the procedure to calculate it depends only on the universal functions
gr xð Þ, defined by the formula (3.112) for all f xð Þ 2 C2 �1; 1½ 
 with the quadratic
maximum at x ¼ 0. The function d tð Þ is discontinuous at all rational points.
However, the larger the number of elements in the binary expansion of the rational
t, the smaller the gap d becomes.

Further, since in the limit at n ! 1 the finite number of iterations does not
change the value of t, the function d tð Þ must be continuous everywhere, except at
the rational points. Despite its pathological structures, d tð Þ has the following
approximate representation (Fig. 3.10)

d tð Þ ¼ 1=a at 0\t\1=4;
1=a2 at 1=4\t\1=2:

�
ð3:129Þ

It is easy to verify, using (3.114), that δ is periodic at t with the period 1. Besides

d tþ 1=2ð Þ ¼ �d tð Þ: ð3:130Þ

Therefore, only the interval 0\t\1=2 is essential.

1/2 t1/4 3/4 1

δ

0

-0.16

-0.4

0.16

0.4

Fig. 3.10 The diagram of
bifurcation process
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According to the theory of universality, the period doubling is universal for the
above class of mapping f xð Þ, and for such a mapping, there exists the unique
function d tð Þ, and its calculating method is described in detail above. Therefore,
measuring the x tð Þ at any particular cycle, we can completely predict the evolution
of the system toward chaos.

Let xn tð Þ—the Tn-periodic Tn ¼ 2nT0; T0 ¼ 1ð Þ obtained after the 2n iteration
of the function f t; ln�1ð Þ ¼ 1� ln�1 � t2, defined by the quadratic mapping
fl ¼ 1� l � t2, t 2 �1; 1½ 
, l 2 0; 2½ 
 (3.83). When l ¼ l0 ¼ 0:75, the first
period-doubling bifurcation occurs, and from the fixed point b1 0:75ð Þ ¼ 2=3, the
cycle of the period 2 is born. The successive bifurcation values, corresponding
to the emergence of cycles of the period 2n, n ¼ 2; 3; 4; . . ., are equal to
l1 ¼ 1:25, l2 ¼ 1:3681. . ., l3 ¼ 1:3940. . .. The sequence ln at n ! 1 tends to
l ¼ l1 ¼ 1:40155. . . such as that the mapping fl1 : �1; 1½ 
 ! �1; 1½ 
 has
cycles with the periods of all powers of two and has no other periods.

The values of ln are associated with the bifurcation points cn of mapping (3.84)
by the ratio ln ¼ �cn (3.85) and they can be calculated for n = 0–10 according to
Table 3.3. The ratio

dn ¼ ln � ln�1

lnþ 1 � ln

takes values

d1 ¼ 4:23; d2 ¼ 4:55; d3 ¼ 4:65; d4 ¼ 4:664; d5 ¼ 4:668;
d6 ¼ 4:669; . . .

The limit of the sequence dn at n ! 1, as well as for the family fk ¼ kx 1� xð Þ
(3.80), is equal to d ¼ 4:6692. . .. Let the behavior of dynamic systems be described
by the trajectory x tð Þ, with the quadratic maximum at t0 and being symmetric with
respect to the point t ¼ t0 within the local neighborhood of t ¼ t0. For identification
of x tð Þ as the quadratic function f t; lð Þ ¼ 1� lt2, we select on the trajectory x tð Þ
the experimental points ti; xið Þ, i ¼ 0; 1. . .Nð Þ (N—the even number), where
ti ¼ t0 þ i� N=2, xi ¼ x tið Þ. After the translation t ¼ t0 ! t ¼ 0, we obtain the
experimental points ti; xið Þ, where already ti ¼ i� N=2. From these points, we
construct the linear regression using OLS

x ¼ at2 þ 1: ð3:131Þ

The function graph (3.131) is the parabola with vertex at (0.1) and with branches
going down a\0ð Þ. OLS is the evaluation of parameter a:

â ¼ 2
Xn
i¼0

t2i xi � 1ð Þ
,Xn

i¼0

t2i : ð3:132Þ
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After the scaling transformation t ! t=a, a ¼ N=2, we obtain the function

x ¼ 1� lt2; l ¼ �â=a2; ð3:133Þ

corresponding to the quadratic mapping (3.83) Xjþ 1 ¼ 1� lX2
j and transforming the

interval �1; 1½ 
 into itself. Where ti ! 2
N � ti, i.e., the abscissas �N=2;�N=2þ 1. . .ð

0; 1. . .N=2Þ of the trajectory x tð Þ will pass through the points �1;�1þ 2=N. . .ð
0:2=N. . .1Þ. The mapping Xjþ 1 ¼ 1� lX2

j by substitution, inverse to (3.82)

x ¼ 1=2þ k=4� 1=2ð ÞX; k ¼ 1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4l

p
; ð3:134Þ

leads to the mapping (3.81): xjþ 1 ¼ kxi 1� xið Þ. We assume that the trajectory x tð Þ
of the system is described by the function x tð Þ ¼ kt 1� tð Þ, provided by the
experimental points ti; xið Þ i ¼ 0; 1. . .Nð Þ, where

ti ¼ 1=2þ k=4� 1=2ð Þ �1þ i � 2=Nð Þ 2 �1; 1½ 
;
xi ¼ x tið Þ ¼ kti ¼ 1� tið Þ ð3:135Þ

and xn tð Þ—the Tn-periodic function obtained after the 2n iterations of the function
f t; kð Þ ¼ kt 1� tð Þ from (3.135) and provided by the experimental points ti; xn tið Þð Þ,
where ti is defined in (3.135) and

xn tið Þ ¼ f 2
n
ti; kn�1ð Þ: ð3:136Þ

After replacing t̂ ¼ Tn=2 tþ 1ð Þ, the function xn tð Þ turns into the function x̂n t̂ið Þ,
provided by the experimental points t̂i; x̂n t̂ið Þð Þ, where

t̂ ¼ Tn=2 tþ 1ð Þ 2 0; Tn½ 
 i ¼ 0; 1. . .Nð Þ: ð3:137Þ

Let us perform the linear interpolation of the function x̂n t̂ið Þ on the interval
0; Tn½ 
, i.e., we approximate xn tð Þ by a broken line in the plane t; xð Þ with nodes at
the points t̂i; x̂n t̂ið Þð Þ. The function x̂n t̂ið Þ, defined on the whole interval 0; Tn½ 
, will
periodically continue at the period Tn through the whole real axis �1\t̂\1. We
denote the resulting periodic even function x̂n t̂ið Þ with the period Tn for brevity by
xn tð Þ. Considering the distance between the points of the function xn tð Þ at times
t and tþ Tn=2ð Þ, i.e., we define

dn tð Þ ¼ xn tð Þ � xn tþ Tn=2ð Þ: ð3:138Þ

the analog of dn values from (3.107). Since d tð Þ, by definition, is periodic with
period 1, we have
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dnþ 1 tð Þ� d tþ Tnþ 1ð Þdn tð Þ: ð3:139Þ

From (3.138), we have

dnþ 1 tð Þ ¼ xnþ 1 tð Þ � xnþ 1 tþ Tnþ 1=2ð Þ: ð3:140Þ

Since xnþ 1 tð Þ is the periodic even function with the period Tnþ 1, its Fourier
series contains only cosines:

xnþ 1 tð Þ� c0
2

þ
X1
k¼1

ck cos
kpt
Tnþ 1

; ð3:141Þ

where

ck ¼ 2

Tnþ 1
R Tnþ 1

0 xnþ 1 tð Þ
� cos kpt

Tnþ 1
k ¼ 0; 1; 2. . .ð Þ: ð3:142Þ

From (3.140) taking into account (3.141), we obtain

dnþ 1ðtÞ ¼
X1
k¼1

ð2 sin kp=4Þ � ck � sin kp tþ Tnþ 1=4ð Þ=Tnþ 1ð Þ: ð3:143Þ

This means that the function d̂nþ 1 tð Þ ¼ dnþ 1 t � Tnþ 1=4ð Þ has the Fourier series
made of sines

d̂nþ 1 tð Þ�
X1
k¼1

bk sin kpt=Tnþ 1ð Þ ð3:144Þ

with coefficients

bk ¼ 2
Tnþ 1

ZTnþ 1

0

d̂nþ 1 tð Þ � sin kpt
Tnþ 1

� �
dt: ð3:145Þ

Due to the partial differentiability of xnþ 1 tð Þ and dnþ 1 tð Þ, the Fourier series of
the functions converges to the functions themselves (Lipchitz’s principle) at any
point of t of the real axis t; and, therefore, in (3.144),

bk ¼ 2ðsin kp=4Þ � ckðk ¼ 1; 2; 3; . . .Þ: ð3:146Þ

This implies that for all k non-multiple of 4 (i.e., k 6¼ 4m)
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ck¼bk= 2 sin kp
4ð Þ ðk ¼ 1; 2; 3; . . .Þ: ð3:147Þ

To determine ck at k ¼ 4m, we use the equality

dnþ 1 tþ Tnþ 1=2ð Þ ¼ xnþ 1 tþ Tnþ 1=2ð Þ � xn�1 tþ Tnþ 1ð Þ
¼ xnþ 1ðtþ Tnþ 1=2Þ � xnþ 1ðtÞ ¼ �dnþ 1 tð Þ: ð3:148Þ

By analogy with (3.143), the function dnþ 1 tþ Tnþ 1=2ð Þ satisfies the
relationship

dnþ 1 tþ Tnþ 1=2ð Þ ¼
X1
k¼1

2 sin kp=4ð Þ � c�k sin kpðtþ Tnþ 1

4
Þ=Tnþ 1

� �
; ð3:149Þ

where c�k—the coefficients of Fourier series expansion on the cosine of the even
function xnþ 1 tþ Tnþ 1=2ð Þ, i.e.,

xnþ 1ðtþ Tnþ 1=2Þ ¼ c�0=2þ
X1
k¼1

c�k cos
kpt
Tnþ 1

� �
ð3:150Þ

with the coefficients

c�k ¼
2

Tnþ 1

ZTnþ 1

0

xnþ 1 tþ Tnþ 1

2

� �
� cos kpt

Tnþ 1

� �
dt: ð3:151Þ

From (3.149), it follows that function d̂�nþ 1 tð Þ ¼ dnþ 1 tþ Tnþ 1=2� Tnþ 1=4ð Þ is
the Fourier series of sines

d̂�nþ 1 tð Þ ¼
X1
k¼1

b�k sinðkpt=Tnþ 1Þ ð3:152Þ

with the coefficients

b�k ¼
2

Tnþ 1

ZTnþ 1

0

d̂�nþ 1 tð Þ � sin kpt
Tnþ 1

� �
dt: ð3:153Þ

Wherein

b�k ¼ 2 sinðkp=4Þ � c�k ð3:154Þ
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and due to (3.148)

bk ¼ �b�k k ¼ 1; 2; 3; . . .ð Þ: ð3:155Þ

Consequently, for all k, non-multiple of 4:

ck ¼ �c�k k 6¼ 4m; k ¼ 1; 2; 3; . . .ð Þ: ð3:156Þ

It is natural to assume that the Eq. (3.156) holds even at k being the multiples of
4, i.e.,

ck ¼ �c�k 8k ¼ 0; 1; 2; 3; . . .ð Þ ð3:157Þ

so how

ck � c�k ¼
2

Tnþ 1

ZTnþ 1

0

d̂�nþ 1 tð Þ � cos kpt
Tnþ 1

� �
dt: ð3:158Þ

Substituting (3.144) into (3.158), and taking into account (3.157) for all k 6¼ 4m
ðm ¼ 0; 1; 2; 3. . .Þ, we obtain

c4m ¼2
X1
k¼1

b2p�1 cosðð2p� 1Þp=4Þ

� 1
ð2p� 1þ 4mÞp þ 1

ð2p� 1� 4mÞp

 �

:

ð3:159Þ

However, according to the problem, only the function xn tð Þ is known, and
therefore, to calculate the coefficients ck based on the formulas (3.147) and (3.159),
it is not possible yet.

Let us consider the function ~dnþ 1 tð Þ, being equal to the right-hand side of
(3.139), i.e.,

~dnþ 1 tð Þ ¼ d t=Tnþ 1ð Þdn tð Þ; t 2 0; Tn½ 
; ð3:160Þ

where d tð Þ according to (3.129) and (3.130) is the piecewise continuous function:

d tð Þ ¼
0:4. . .0\t\1=4;

0:16. . .1=4\t\1=2;
�0:4. . .1=2\t\3=4;
�0:16. . .3=4\t\1:

8><>: ð3:161Þ
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We periodically extend the function ~dnþ 1 tð Þ with the period Tnþ 1 on the whole
real axis t (again denoting the resulting function as ~dnþ 1 tð Þ).

The function bdnþ 1 tð Þ ¼ ednþ 1 t � Tnþ 1=4ð Þ due to the asymptotic (for large n)
equality ednþ 1ðtÞ� dnþ 1ðtÞ and expansion (3.143) has the Fourier series on sines

bdnþ 1 tð Þ�
X1
k¼1

~bk sinðkpt=Tnþ 1Þ; ð3:162Þ

with the coefficients

~bk ¼ 2
Tnþ 1

ZTnþ 1

0

d̂nþ 1 tð Þ � sin kpt
Tnþ 1

� �
dt: ð3:163Þ

Since xn tð Þ at t 2 Tn; 2Tn½ 
 is the repetition of the broken line xn tð Þ, t 2 0; Tn½ 

and d t=Tnþ 1ð Þ is the piecewise constant, by (3.161) with the intervals of constancy

Dj ¼ j� 1ð Þ Tnþ 1

4
; j
Tnþ 1

4


 �
j ¼ 1:4; then

ebk ¼ 2
Tnþ 1

X4
j¼1

Z
Dj

ynþ 1:j;k tð Þdt ; ð3:164Þ

where

ynþ 1:j;k tð Þ ¼

0:4 � d̂nþ 1 tð Þ � sin kpt
Tnþ 1

� �
; t 2 D1;

0:16 � d̂nþ 1 tð Þ � sin kpt
Tnþ 1

� �
; t 2 D2;

�0:4 � d̂nþ 1 tð Þ � sin kpt
Tnþ 1

� �
; t 2 D3;

�0:16 � d̂nþ 1 tð Þ � sin kpt
Tnþ 1

� �
; t 2 D4:

8>>>>>><>>>>>>:
ð3:165Þ

To calculate the integrals in (3.164) over the interval Dj, it is convenient to use
the trapezoidal rule. For this purpose, we divide each of the intervals Dj of the

length Tnþ 4 into N0 ¼ 10m equal parts Dj;l ¼ tj;l;�tj;l
h i

l ¼ 1. . .N0ð Þ with the length

h ¼ Tnþ 1=ð4N0Þ. Then, according to the trapezoid formula, we will have
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Z
Dj

ynþ 1:j;k tð Þdt ¼
XN0

l¼1

Z�tj;l
tj;l

ynþ 1:j;k tð Þdt

¼
XN0

l¼1

h �
ynþ 1:j;k tj;l

� �
þ ynþ 1:j;k �tj;l

� �
2

:

ð3:166Þ

Substituting (3.166) into (3.164), we obtain

~bk ¼ 2
Tnþ 1

X4
j¼1

XN0

l¼1

h �
ynþ 1:j;k tj;l

� �
þ ynþ 1:j;k �tj;l

� �
2

: ð3:167Þ

Since the function d̂nþ 1 tð Þ is piecewise differentiable on �Tnþ 1; Tnþ 1½ 
 and at
the end of this segment it has equal values, then

~bk
�� ��\ek=k; ð3:168Þ

where ek [ 0 and the sequence
P1

k¼1 e
2
k converges, and the Fourier series for

~dnþ 1ðtÞ is uniform and absolute on the whole interval �Tnþ 1; Tnþ 1½ 
 and con-
verges to the function ~dkþ 1ðtÞ, where the remainder of this series

rs tð Þ ¼ ~dkþ 1 tð Þ � ~a0=2þ
Xs
k¼1

~ak cos ðkpt=Tnþ 1Þ
 !

is estimated as

rs tð Þj j\ gS
s
1
2

; ð3:169Þ

where the infinitesimal gS does not depend on t.
From (3.139), it follows that for large n, there is ~bk ¼ bk , and consequently, the

Fourier function coefficients of xnþ 1 tð Þ with k, non-multiple of 4, will be deter-
mined by the formula

ck ¼ bk
2
� sin kp

4

� �
k ¼ 1; 2; 3. . .ð Þ; ð3:170Þ

when k ¼ 4m m ¼ 0; 1; 2; 3. . .ð Þ from the expression (3.159), where b2p�1 is
replaced by ~b2p�1. The coefficients ~b2p�1 are calculated by the formula (3.167)
wherein d̂nþ 1ðtÞ is determined by ~dkþ 1ðtÞ t � Tnþ 1=4ð Þ, and ~dnðtÞ is expressed in
terms of dnðtÞ by the formula (3.160).
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When calculating the function xnþ 1 tð Þ by its Fourier series, it is enough to
confine the sth partial sum of the series, i.e.,

xnþ 1 tð Þ � ck=2þ
XS
k¼1

ck � cos kpt=Tnþ 1

� �
; ð3:171Þ

where s is determined by the estimate of the remainder (3.169) for the specific
forecast accuracy of the function xnþ 1 tð Þ. The more exact values of the coefficients
ck can be obtained if for the calculation d tð Þ we use the formula (3.126), where

f x; kð Þ ¼ kx 1� xð Þ, dn ¼ f 2n�1 0; knð Þ, and kn ¼ 1þ 1þ 4lnð Þ1=2 (see (3.85) and
(3.106)). Thus, for computing the functions gr xð Þ in the formula (3.112), first we
need to identify, using the above method, the mapping Xjþ 1 ¼ 1� lX2

j , and then

mapping xjþ 1 ¼ f xj; k
� � ¼ kxj 1� xj

� �
(see (3.134)).

The above approach to the prediction of the behavior of the 2nþ 1-cycle of the
dynamic system based on its behavior at the 2n-cycle is implemented as the set of
programs FEIGENBAUM.

After the infinite sequence of the doubling bifurcations, i.e., k ¼ k1 in the
quadratic mapping (3.81), the period of cycle becomes infinite. In this case, the
so-called Feigenbaum attractor appears in the logistic mapping, and it has the
Cantor structure and the dimension dF ¼ 0:548. . .. The logistic mapping with the
Feigenbaum attractor is not yet chaotic. It has cycles of the period 2m (and they are
not stable) and does not have cycles of other periods.

When k[ k1, the more and more cycles will be born in the logistic mapping,
including periods other than 2m. Moreover, in this case, at the certain values of the
parameter λ, it exhibits the chaotic properties. However, in the range k1\k\4, the
chaotic behavior punctuated with the gaps of periodicity, where the dynamics is
regular. For example, if k ’ 3:74 the steady cycle with the period five is observed
in the logistic mapping, and at k ¼ 1þ ffiffiffi

8
p ’ 3:83, the cycle with period 3.

Therefore, according to Sharkovski’s theorem [92], this mapping has cycles of all
periods.

3.3.3 Analysis of the Noise Impact on the Feigenbaum
Behavior

The Feigenbaum scenario of chaos is well confirmed by the numerous studies. The
sequences of the period-doubling bifurcations are found in many systems and
mappings (e.g., [40, 86, 93]), including ones in the Lorenz system for the large
values of r. A number of physical, chemical, and many other experiments also
exhibit these bifurcation properties and some signs of universality.

However, despite the fact that for the systems described by the one-dimensional
point mapping with the smooth maximum at k[ k1, there are always the stable
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limit cycles [94], and the calculations show [95, 96] that due to the inevitable
presence of small noise, these cycles, generally, do not appear near k1, i.e., when
the Lyapunov exponent kL satisfies the relationship

kL � k� k1ð Þm; ð3:172Þ

where m—the same critical index that summarizes the Feigenbaum rule (see
Sect. 3.3.1.). In the presence of the small external noise of intensity r2, the
Lyapunov exponent kL can be positive for k ¼ ku\k1 [97, 98]. In [94], it is shown
that for the quadratic mapping,

k1 � ku � r2; where q ¼ ln d= ln 2bð Þ ¼ 0:8217. . .;

b ¼
ffiffiffi
2

p
a2ffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ a2
p ¼ 3:287. . .;

where a and d—the universal constants of Feigenbaum.
Thus, in the real experiments and the numerical calculations, where there are

always physical noise or rounding errors, it is hard to observe the infinite sequence
of period-doubling bifurcations. Instead, after the few doubling bifurcations, the
movement once becomes chaotic.

In the study of transitions to chaos, under the context of the real physical systems
the fundamental importance have the noise impact that destroys the fine details of
the fractal structures in the phase space of parameters, the formation of which
actually constitutes the essence of transition.

Initially, the idea of using the RG method for the analysis of the noise exposure
at the chaos threshold was proposed in two papers published in 1981, in the same
journal Physical Review Letters [99, 100] and it was related to the problem of
transition to chaos through the sequence of the period-doubling bifurcations in the
models with discrete time. A new universal constant was introduced, which shows
how many times the amplitude of the noise impact on the system can be reduced
being able to monitor the next level of the fractal structure associated with the
period doubling.

Later, the similar approach was developed by the different authors with respect
to other types of the universal behavior at the birth threshold of chaos and the
strange non-chaotic attractor. The section of the site [98] contains the results of the
analysis of the RG and illustrates the properties of the scaling similarity associated
with the noise exposure for some of the known types of the critical behavior.

Below, there is the summary of the RG analysis of noise on the Feigenbaum type
of behavior, described in detail in [101].

We consider the mapping
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xnþ 1 ¼ g0 xnð Þþ kU0ðxnÞnn; ð3:173Þ

where g0 xð Þ—the quadratic mapping of kind g0 xð Þ ¼ 1� kcx2 with the critical
parameter kc ¼ 1:401155189092. . .; U0 xð Þ ¼ 1; nn—the sequence of statistically
independent random variables with zero mean, variance r2, and the intensity k.

Applying the mapping (3.173) twice and assuming the noise intensity parameter
k to be small, in the first order of smallness of this parameter, we obtain

xnþ 2 ¼ g0ðg0 xnð ÞÞþ k g00 g0 xnð Þð ÞU0ðxnÞ
�

nn þU0 g0 xnð Þð Þnnþ 1
:

Appearing in the square brackets, the expression will be interpreted as a new
random variable, denoting it by U1 xð Þn0n. The factor U1 xð Þ is chosen so that the
value of n0n has the same standard deviation r, as nn.

Since nn and nnþ 1 are statistically independent, the medium-squared values of
both terms of the sum are simply added. It follows that

U2
1 xð Þ ¼ a2 g00 g0 xð Þð Þ� �2

U2
0 xð ÞþU2

1 g0 xð Þð Þ
h i

:

Thus, the equation for the double iteration is reduced to the same form as the
original

xnþ 2 ¼ g1 xnð Þþ kU1 xnð Þnn;

but with new features

g1 xð Þ ¼ ag0 g0 x=a
� �� �

; U1 xð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 g01 g0 xð Þð Þ� �2

U2
0 xð ÞþU2

0 g0 xð Þð Þ
h ir

:

Applying the described procedure repeatedly, we obtain the sequence of func-
tions gk; Uk , satisfying the chain of recurrent functional equations

gkþ 1 xð Þ ¼ agk gk x=a
� �� �

;Ukþ 1 xð Þ

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 g0k gk xð Þð Þ� �2

U2
k xð ÞþU2

k gk xð Þð Þ
h ir

:
ð3:174Þ

According to the Feigenbaum theorem, the sequence gk converges to the limit—
the function g xð Þ, which is the fixed point of the functional equation of
Feigenbaum–Tsvitanovich

g xð Þ ¼ ag g x=a
� �� �

:

So, by considering the behavior of the solution of the second equation in (3.174)
for large k, g can be substituted instead of gk . If we look for the solution in the form
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Uk xð Þ ¼ ck
ffiffiffiffiffiffiffiffiffiffi
U xð Þ

p
;

we come to the problem of the eigen functions and eigenvalues

c2U xð Þ ¼ a2 g0 g xð Þð Þð Þ2U xð ÞþUðgðxÞÞ
h i

: ð3:175Þ

This problem can be solved numerically if the function g xð Þ and the constant a
are known. For the quadratic mapping, a ¼ 2:502907875 and g xð Þ—the known
function, the expression of which is found by Feigenbaum in the form of a poly-
nomial (see Sect. 3.3.1).

The solution of (3.175) with the largest eigenvalue c ¼ 6:619036513 and the
private function in the case of the quadratic mapping g0 xð Þ is shown in Fig. 3.11.

The universal constant c shows how many times the noise must be reduced, so
we can watch a new level of the period doubling.

A more general formulation of the large-scale properties of similarity (scaling) is
as follows.

Suppose that for some value of k, close to the Feigenbaum critical point, and at
the sufficiently low noise level k, there is some monitoring mode. At the deviation
of the critical point of the parameter k at d ¼ 4:6692. . . times smaller and at the
noise level k=c, the statistically similar regime will be implemented with the
characteristic timescale twice as large. In this case, the distribution of variable x
near the extremum will be similar to the original with the characteristic scale of x at
a ¼ �2:5029. . . less (with the reflection change of orientation x, which corresponds
to minus). In the region of small deviations from the criticality and at the low noise
level, the distribution, as it may be expected, is largely universal, i.e., it does not
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Fig. 3.11 The universal
mapping of function g0 xð Þ
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depend on the distribution details and the correlation properties of the initial noise
(as long as the correlation function decreases sufficiently quick).

3.4 Synergetics of the Restructuring of Crystal Structures
with Condensed State Under the Influence of External
Forces

The problem of describing the condensed atom state, exposed to the intense
external action, is the most important task of the modern physics. Over the past
decade, there have been significant achievements in this field. At the present time,
we better understand the main features of the microscopic behavior of atoms at the
structural phase transitions [45], as an example the ferroelectric transitions [102]
and the martensitic transformation [103].

Until recently, while studying the condensed matter, we used the methods of the
equilibrium statistical physics. This is due to an assumption that the influenced
condensed matter represents by itself the equilibrium or slightly non-equilibrium
statistical system. Recently, the interest is grown to the statistical system of atoms in
the condensed state where the usual concepts (such as the concept of phonons or the
thermodynamic pictures of the phase transitions) are inapplicable anymore or
require the fundamental changes. Such behavior is explained by the strong devia-
tion of the atomic system from equilibrium, as it is observed in the core of defects
within lattice or the areas of plastic flow and fracture. The strongly non-equilibrium
condensed state requires the use of techniques that allow us to represent such
features as the non-ergodicity of statistical system, the emergence of hierarchical
structures, the structural relaxation, the mutual influence of subsystem undergoing a
phase transition, and the environment.

To address the specific problems of the theory of condensed state [104], it was
proposed to use the potential relief, the distribution of which is given by the
synergetic potential. The readjustment parameter of the ionic subsystem is deter-
mined by the correlation changes of the potential relief at the macroscopic dis-
tances. The collective perturbations, possessing the critical behavior, are reduced to
the transverse acoustic branch phonons. At large distances, the collectiveness has
the dissipative character due to the viscous flow and at small distances—the
reactive character due to the elastic field. The full description is achieved by the
mutually explained behavior of the ion subsystem and the collectiveness. Within
the framework of the synergetic theory, it is achieved through the Lorenz system of
equations for the temporary evolution of the lattice nodes, trapped in the readjusted
potential relief, the shear deformation of the medium as a result of restructuring the
conjugated stress field.

At the strong perturbations of crystal, the determinism nature of the ion sub-
system becomes meaningless and the wave type of behavior is observed [105–107];
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therefore, it is more useful to consider the readjusted single-particle potential of the
perturbed crystal.

According to the modern concepts [108], at temperatures not exceeding Debye,
the macroscopic large group of atoms is involved in two types of motion. The first
one corresponds to the atom oscillations near the equilibrium state, which is
compared to the branches of collective perturbations—phonons. With the full

dispersion x nð Þ
ph

~k
� �

, where n ¼ 1; 2; 3—the branch index, x—the frequency, and

~k—the wave vector, the phonons are reactively perturbed. They have the acoustic
type at the hydrodynamic limit k ! 0

x nð Þ
ph

~k
� �

� Cn � k; ð3:176Þ

where Cn ¼
ffiffiffiffiffiffiffi
knq

p
—the sound wave velocity corresponding to the nth branch, q—

the medium density, and kn—the corresponding modulus of elasticity (for the
longitudinal waves kn—the compression modulus and kn—for the shear modulus).
Most clearly, the perturbed phonons are expressed in the low-temperature region,
where due to the uncertainty they do not disappear even at the absolute zero. The
presence of some low-energy excitations, such as phonons, is inherent to the
weakly condensed atoms corresponding with the conditions close to the
equilibrium.

The Bose condensate of the static phonons, following x nð Þ
ph ! 1, is the carrier of

the long-range elastic field [18]. The condensate of Bose or Bose–Einstein is the
physical matter mainly comprised of bosons, cooled to a temperature that is less
than millionth degree just above the absolute zero. At this strongly chilled medium,
the sufficiently large number of atoms is in their lowest possible quantum states, and
the quantum effects begin to appear at the macroscopic level. Based on Einstein’s
hypothesis, the cooling of atom—bosons (particles identical with the whole spin-
ning) up to the very low temperatures will force them to move (or, in other words,
to concentrate) at the lowest possible quantum state. As a result of such conden-
sation, it will be the emergence of a new matter.

By increasing the temperature (or other energy sources influencing the atom
system out of balance) in addition to increasing the number of phonons, we also
observe the restructuring of dispersion, and the other type of movement—diffusion
—becomes significant. The diffusion corresponding with the thermally activated
atoms that jump through the potential barrier separating their equilibrium position
has a purely imaginary dispersion

xd ¼ �iDk2; ð3:177Þ

where D—the coefficient of diffusion. Physically, this means that the diffusion is
responsible for the redistribution of the relaxation processes of the concentration
c ~r; tð Þ, characterized by the relaxation time sd � xdj j�1¼ 1

D k
2.
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The coefficient of diffusion D increases exponentially as the temperature
increases, leading to an increase in the imaginary frequency diffusion xd (reducing
the diffusion time sd). However, since the maximum value of the coefficient of
diffusion is bounded by c � a, where c—the specific speed of sound and a—the
interatomic distance, the condition xdj j � xph will always hold, meaning that the
impact of diffusion on the movement of atoms in comparison with the phonon is
negligent. Besides the provided strengthening of the diffusion mode, the increase in
temperature also changes the phonon branches, defined by the viscous flow.

In the long-wavelength limit, the most well-identified longitudinal sound

xl
~k
� �

¼ cl � k (cl—the velocity of longitudinal sound waves). As for the transverse

acoustic xl
~k
� �

, in the hydrodynamic limit ~k ! 0, it is a purely dissipative

xl
~k
� �

¼ �i=st; st ¼ g=l—the relaxation time, where l—the shear modulus and

g—the shear viscosity. In the language of quantum statistics, the elementary acts of
such reconstruction are presented as the emission and absorption of the virtual
excitations of atomic subsystem (relaxons) having the lifetime st and localized in
the size

k ¼ 4p
kt

¼ 4pctst ¼ 4p
g
qct

¼ 4pgffiffiffiffiffiffi
lq

p ; ð3:178Þ

where kt ¼ ctstð Þ�1—the specific wave number, ct ¼
ffiffiffiffiffiffiffiffi
l=q

p
—the speed of prop-

agation of the transverse sound waves, and q—the density of medium.

The transformation of the relaxation xt ¼ �i=st into the phonon regime xl ~k
� �

¼
cl � k transitioning from the long-wave region k\kt=2 to the short-wave region
k � kt physically means that in the small area with the size l � k, only the atom
vibrations have effect, and when the size is l[ k, the relaxation effects become
significant due to the restructuring of the atomic relief. Since the phonons are the
carriers of the elastic field, and the relaxation is associated with the flow, the value k
can be described as the elastic field penetration depth into the viscoelastic medium.
With an increase of the temperature and the loading up to the values Tm, rc, and the
effects of the medium flow take place resulting in the screening of the elastic field.
In this case, the dispersion of the transverse branches of phonon takes the form
[104]:

wt
~k
� �

¼ 	ctk
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� kt=2k

p
� i
2st

; ð3:179Þ

where the specific values are given by

ct ¼
ffiffiffiffiffiffiffiffi
l=q

p
; kt ¼ ðct � stÞ�1; st ¼ g

l
; ð3:180Þ
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where l—the shear modulus, q—the medium density, g—the dynamic shear vis-
cosity, and st—the decay time. If in the short-wave zone k � kt the dispersion
(3.179) reduces to the usual acoustic type, then in the long-wave zone k\kt=2ð Þ the
transverse phonons are rearranged in the dissipative regime xd ¼ �s�1

t corre-
sponding to the medium flow. In the macroscopic view, this means a complete
screening in the erosion of the elastic field at distances greater than the character-
istic length k, defined by (3.178). In the ideal elastic medium g ¼ 1ð Þ, the elastic
field, as expected, is of long-range k ¼ 1ð Þ, and with an increase of the temper-
ature and the loading, the value k� g T ; rð Þ decreases to the finite values [107].

Thus, considering the restructuring of the collective behavior of atoms in the
solids shows that there are characteristic scales of the spatial and temporal
behaviors of the system, undergoing the non-equilibrium structural transformation:
On the time axis, it is the macroscopic times sD (Debye time) and the macroscopic
st (the relaxation time of shear stresses), respectively, on the spatial axis—the
distance a (interatomic) and kt (the localization area of the elastic field).
Accordingly, the entire group of atoms of the solids can be divided into the atoms
responsible for the transfer of the elastic field (unexcited) and the atoms supporting
the processes of the viscoplastic flow (excited). As a result, the atomic states are
characterized by the fraction of n atoms in the excited state.

The transition from the long-wave region k\kt=2 into the short-wave region
k � kt essentially means the movement from the phonon spectrum to the fracton.
The fracton dimension, characterizing the spectrum of the natural oscillations of
fractals, was introduced by Alexander and Orbach in 1982 [109] and defined by the
formula

df ¼ 2D
2þ h

;

where D—the fractal dimension and h[ 0—the anomalous diffusion parameter (in
the case of an ordinary lattice h ¼ D).

The fracton dimension (also called the spectral dimension [110]) acts as the
space dimension in the low-frequency asymptotic density of the vibrational states.
Indeed, for the density of ordinary phonons in the usual d-dimensional regular
lattice from the last formula (based on h ¼ 0), we obtain the well-known equality
df ¼ d.

In the case of the real fractal materials, there is the maximum scale n, limiting the
region of the fractal behavior. At the scales exceeding n, and hence at the low
frequencies not exceeding the certain crossover frequency xc nð Þ, there is the usual
phonon spectrum. At the higher frequencies, there is the transition (crossover) to the
fractal spectrum [111]. The magnitude of the spectral dimension can be determined
even for the more general case: for the non-isotropic elastic forces [112] and for the
long-range interactions [113].

To explain the electrical and thermal conductivity of metals, we accept the
following model: The conductive metal consists of the crystal lattice formed by the
ions and electrons (electron gas), freely moving in the metal. The electron gas in
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metals is not an ordinary classical quantum gas, following the Fermi–Dirac dis-
tribution. The emergence of the free electron gas in metals is not related to the
temperature, and it is a purely quantum effect, i.e., the ionization of atoms (loss of
electrons) of metal is not due to thermal motion, but due to the overlap of the wave
functions of the valence electrons. The overlap of the wave functions leads to the
generalization of the valence electrons, and they do not belong to any specific node
of the crystal lattice and freely move between the nodes. For this reason, the metals
have the free electron gas at any temperature, even at temperatures close to the
absolute zero. Since the electron gas is the Fermi gas, using the thermodynamic
properties of the Fermi gas, the specific heat of the electron gas Cel

V can be written in
the two limiting cases:

Cel
V ¼ 3k0N

2
; T � Tel

0 ; ð3:181Þ

corresponding to the non-degenerate electron gas (the statistical properties of which
are described by the Boltzmann distribution), and

Cel
V ¼ p2

2
k0N

k0T
lel0

¼ p2

2
k0N � T

Tel
0
; T � Tel

0 ; ð3:181Þ

corresponding to the strongly degenerate electron gas, called the quantum gas (the
statistical properties of which are determined by the Fermi–Dirac or the Bose–
Einstein distributions).

Here,

Tel
0 ¼ lel0

k0
¼ �h2

2mk0

6p2

g0
n

� �2=3

the degeneration temperature of the free electron gas in metals, N—the number of
nodes in the metal lattice with volume V , n ¼ N=V—the gas concentration, m—the
electron effective mass in metal, and lel0—the limit Fermi energy, g0 ¼ 2.

Setting ten external thermal perturbation leads, as we know, to the qualitative
restructuring of the collective behavior of many systems [114]. In circumstances
where the excitation system is so small that it has time to relax into the equilibrium
state, to describe the behavior of the system it is enough to select a single hydro-
dynamic mode, the intensity of which is defined by the order parameter. The strong
excitation can part away the system from the equilibrium state that it can cause its
quality restructuring. In contrast to the thermodynamic, the description of the
kinetic transformation requires the allocation of the several hydrodynamic modes
and is based on, within the framework of the phenomenological approach, syner-
getics [14].

The description of readjustment of the monohydric states through the n excited
atoms is insufficient to study the core of crystal defects and the carriers of brittle
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fracture. As it is shown in [104], the main characteristic in determining the behavior
of atoms in the condensed state far from equilibrium is the single-atom potential
relief readjusting under the intense external influence.

For the correct definition of the potential relief, we consider the density distri-
bution of atoms [24]

n ~r; tð Þ ¼
X
a

Xad ~r �~raðtÞð Þ; ð3:182Þ

where the summation is taken over all atoms a, located at the points~raðtÞ at time t,
Xa—the volume of atom. Each distribution of atoms n r;!t

� �
has the certain atomic

system energy E tð Þ, and at each time t, the single-particle potential relief of atom,
according to Landau’s concept, is defined by

U r;!t
� � ¼ dEðtÞ

dn ~r; tð Þ : ð3:183Þ

From the known interaction potentials of the partial interaction Vi at each time t,
it is possible to find the form of relief U ~r; tð Þ, given by the distribution of atoms
n ~r; tð Þ, as the sum of infinite series:

U r;!t
� � ¼ V1 r; tð Þþ Z

V2 ~r;~r
0ð Þn ~r0; tð Þd2~r0t. . . : ð3:184Þ

With further consideration of the macroscopic properties, everywhere we carry
out the procedure of averaging the time t, responsible for the microscopic fluctu-
ations in the distribution of atoms n ~r; tð Þ. Following the ergodic hypothesis [115],
for such averaging instead of one relief U ~r; tð Þ, given by the macroscopically
defined time t, the group of smoothed, according to the time, effective relief U ~rð Þf g
is introduced. As the simple implementation, we can show the Gaussian group,
characterized by the probability density

P U ~rð Þf gv exp �W�2
Z

dU ~rð Þj j2d3~r
� �

; ð3:185Þ

where W—the parameter of relief variation around the mean

hU ~rð Þi ¼ Z
U ~rð ÞP U ~rð ÞdU ~rð Þf g; ð3:186Þ

dU r!� � ¼ U r!� �� hU r!� �i—the relief variation. The Gaussian group is imple-
mented at the chaotic, uncorrelated changing terrain. Indeed, using (3.185) for the
correlator
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S ~r;~r0ð Þ ¼ hdU ~rð ÞdU ~r0ð Þi; ð3:187Þ

we obtain S ~r;~r0ð Þv d ~r �~r0ð Þ the so-called “white noise”; the angle brackets—the
averaging over the distribution (3.185).

However, there are situations where the change of the potential relief in the
different (even macroscopically distant) points flows coherently. A good example is
the martensitic transformation, where the coherent displacement of the potential
minimums U ~rð Þ is self-consistently transferred through the elastic domain [22]. In
this case, in the change dU ~rð Þ of the potential reliefs, there are the long-range
correlations, characterized by the parameter

W ~rð Þj j2¼ lim
~r0�~rj j!1

S ~r;~r0ð Þ=S ~r0;~r0ð Þ: ð3:188Þ

In the coherent restructuring of the potential relief the parameter W, which
generally can be a nonzero complex number; alternatively, when with the change of
dU ~rð Þ there are proximal correlations, we have W ¼ 0.

To determine the functional distribution of reliefs P U ~rð Þf g, we assume that the
reconstruction of the potential relief is carried out according to the Langevin
equation

d _u ~r; tð Þ ¼ F du ~r; tð Þð ÞþR ~r; tð Þ; ð3:189Þ

where the dot denotes the differentiation with respect to time t and F du ~r; tð Þð Þ is the
regular component of the external influence. In the linear approximation, it has the
form

F du ~r; tð Þð Þ ¼ cdu ~r; tð Þ; ð3:190Þ

where c—the kinetic coefficient. The term R ~r; tð Þ describes the fluctuation contri-
bution given by the correlator

hR ~r; tð ÞR ~r; t0ð Þi ¼ h ~rð Þd t � t0ð Þ; ð3:191Þ

which is characterized by the intensity of h ~rð Þ. As a result, the density distribution
P U ~rð Þf g is described by the Fokker–Planck equation [116]:

_P U ~rð Þf gþ
Z

dJ U ~rð Þf g
dU ~rð Þ dr ¼ 0; ð3:192Þ

J U ~rð Þf g � F U ~rð Þf g � P U ~rð Þf g �
Z

h ~rð Þ dP U ~rð Þf g
dU ~rð Þ d~r: ð3:193Þ

where the equality (3.192) is the equation of continuity in the space for the
potentials U ~rð Þf g, J U ~rð Þf g—the corresponding flow, and the first component—the

3.4 Synergetics of the Restructuring of Crystal Structures … 127



drift and the second—the diffusion. In the stationary state, we have _P ¼ 0, where
for the closed stochastic system the condition J ¼ 0 follows, which leads to the
distribution

P U ~rð Þf g� exp �V U ~rð Þf g
h ~rð Þ

� �
; ð3:194Þ

V Uf g
h

� �
Z

F U ~rð Þf g
h ~rð Þ

� �
dU ~rð Þ: ð3:195Þ

We bring the linear approximation (3.190) to the time-dependent Gaussian
distribution

Pt U ~rð Þf g ¼ N pWtð Þ�1
2exp �

Z
dU ~rð Þ � Ut

Wt


 �2
d~r

( )
;

W2
t � h

c
1� e�2ct� �þw e�2ct; Ut ¼ u e�2ct; ð3:196Þ

where N—the total number of atoms; u, w—the arbitrary constants. Such case is
realized itself as the low impact on the atom system, when the characteristic
variation of the relief is small enough dU � hUið Þ. According to (3.196), at the
relaxation time t � c�1, the distribution of relief is determined by the fluctuation
dU ¼ ffiffiffiffiffiffiffi

h=c
p

near the average potential hU ~r; tð Þi. In general, the variation dU ~rð Þ is

P

1

U

Ue

0
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V

2

Fig. 3.12 The graph of the
synergetic potential (curve 1)
and the corresponding
distribution of the atoms
(curve 2), depending on the
atom potential energy
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given by the distribution function (3.194), the form of which is determined by the
synergy potential (3.195). The appropriate dependences are presented in Fig. 3.12,
which demonstrate that the minimums of the synergistic potential Ve (curve 1) set
the specified maximums of the probability Pe on curve 2.

The coherent distribution is also given by the same Eq. (3.194); however, the
synergy potential is not reduced to the integral (3.195), but to some function of the
order parameter. In the simplest way, this function is represented by the Landau
expansion used in the theory of phase transitions. The macroscopic inhomogeneity
can be taken into account by adding the gradient term, introduced by the Ginzburg–
Landau theory. As a result, the synergistic potential takes the form [24]

V W ~rð Þf g ¼
Z

A
2
� W ~rð Þj j2 þ B

4
W ~rð Þj j4

� �
þ b

2
rW ~rð Þj2��
 �

d~r; ð3:197Þ

where A;B; q ¼ const and the synergetic graph is reduced to the standard form of
the phase transitions [117].

To describe the macroscopic behavior of the atom system, we can partition
U ~r; tð Þ into two parts. The first one U ~rð Þ changes at the macroscopic time intervals,
much higher than Debye time st. The second one ~u ~r; tð Þ quickly fluctuates during
t � st. If at the weak excitation of the system T , r � Tm � rc we can neglect these
fluctuations, then at T , r� Tm � rc we have U ~r; tð Þj j � ~u ~r; tð Þ and the deterministic
description of the atom system loses its sense. Here, only the macroscopic view of
values becomes possible, averaged over the time interval � st.

Within the provided scheme, the parameterization of viscoelastic medium is
achieved by using the space–time dependences of the medium parameters w ~r; tð Þ,
which plays the role of the order parameter in the usual scheme of the phase
transformations, and the elastic component of the medium flow velocity is v ~r; tð Þ,
representing the spatial components of the vector potential of the calibrating field
coupled with the parameter w. Using the standard field-theoretical scheme for these
dependencies in the stationary case, we obtain the system of equations [18]:

n
k

� �2

r2w ¼ � 1� v2
� �

wþ wj j2w; ð3:198aÞ

r2v ¼ wj j2v; ð3:198bÞ

where the values w ~rð Þ, v ~rð Þ are referred to their maximum values, with
w r!� � ¼ W ~rð Þ=W0, W0 ¼

ffiffiffiffiffiffiffiffiffiffi�AB
p

, where A and B—the coefficients from (3.197);
the distances are measured in the units of length k; n—the correlation length,
indicating the scale of variation of w ~rð Þ in space.

According to the earlier described qualitative picture, in the absence of
restructuring of the medium w ¼ 0ð Þ, the Eq. (3.198b) gives the trivial solution
v ¼ 0 corresponding with the perfect elasticity. In the restructured environment
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w 6¼ 0ð Þ, the Eq. (3.198b) provides, as it should be, the dependence v ~rð Þ, expo-
nentially decreasing at distances � k.

The solution of the material Eq. (3.198a) is determined by v ¼ k=n. In the brittle
materials, which are used by the most practical applications, the penetration depth
of the elastic field k is much greater than the correlation length n of restructuring the
potential relief, and therefore, v � 1.

In the complete analogy with the superconductors of type 2 [118], we have the
auto-localized solutions for the Eq. (3.198a, b) using the Gross–Pitaevskii solitons.
It represents the axial formation with central gap of the parameter w ~rð Þ within the
radius � n and the field of flow velocity v ~rð Þ, localized at much greater distances
� k (Fig. 3.13a). Physically, this corresponds to the localized region with the radius
� n, where the flatness of potential relief is caused by the violation of the inter-
atomic bonds. The area is surrounded by the shell of plastic flow with the radius
� k (Fig. 3.13b). In the crystal lattice, the Gross–Pitaevskii solitons correspond to
the linear areas of violation of the crystal order, i.e., the disclinations—in the torsion
field and the dislocations—in the shift field.

Since the decrease of the parameter w ~rð Þ means the weakening of the interatomic
bonds, and the region of the plastic flow is always localized near the origin of
failure [15], it is normal to identify the found solution as the elementary carrier of
brittle fracture. Bearing in mind the violation of the interatomic bonds, it is
appropriate to call such formation as frustrons (originated from English for “frus-
tration”) [9].

r

2

a

r0

r

(a)

(b)

(c)

Fig. 3.13 The radial
distribution of the potential
relief (a), the parameter of its
readjustment and the field
flow (b), and the model of
frustrons (c)
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For the materials that satisfy the condition v � 1, the region of the frustron
existence corresponds to the external loads σ and included between the values

rC1 ¼ 2�1=2 ln
k
n
� rc; rC2 ¼ 2

1
2
k
n
� rc; ð3:199Þ

where rc—the critical value of r (see, e.g., [23]).
At r � rC1 , the frustrons are unstable, and if r[ rC2 , they merge to the

homogeneous “phase,” i.e., failure takes place.
As the elementary carriers of the brittle fracture, Zhurkov [119] proposed the

dilaton model, which is the stable fluctuation region of the increased dilatation of
lattice, realized through the anharmonicity of phonons.

The negative fluctuations of density, the dilatons, serve as the centers of the
micro-crack formation. Due to the lower density, they become traps for the acoustic
phonons. Under the favorable conditions, the nonlinear effects of the phonon
absorption by the dilatons lead to the parametric energy pumping, to the thermal
expansion, and to the disintegration of dilaton by forming the micro-cracks.

In the dilaton fracture model, the strength equation for solids can be represented
as

r� ¼ aE
K

e� � edð Þ;

where K—the length of the phonon average free run, the size of atom; E—the
elastic modulus; e� � 0:2—the tensile deformation of the interatomic bonds and
ed ¼ aT

3 ln s
s0
—the critical strain when dilaton disintegrates forming micro-cracks;

a—the linear thermal expansion coefficient; s0 � 10�13 s—the period of thermal
atom vibrations; s—the durability; and T—the absolute temperature. In this aspect,
the structural imperfections affect the strength through the dependence of K on the
atom impurity and the defects of deformed materials.

Because of the anharmonic effects, the crystalline dilaton is able to cumulate the
energy from the environment. The phonon pumping occurs, and as a result, the
dilaton deformation grows. Upon reaching the ultimate strain e�, the dilaton dis-
integrates, forming the embryonic cracks. The dilaton disintegration happens at a
greater speed, determined by the lifetime of fluctuations, sd ¼ K=s �
10�13 � 10�13ð Þ s (s—the speed of sound). At such short durations, the cumulative
process of the dilaton disintegration acquires the character of microburst, creating
an empty space of the microscopic size inside the body. The collapse of the
interatomic bonds within dilatons provides such an explosive mechanism, and it is
accompanied by the sound, light, and electrical emissions usually observed during
the destruction of solids. The energy required for such a violent microscopic pro-
cesses is taken from the work performed by the external forces breaking the body.

During the explosion, the pressure drops on the dilaton boundary. As a result, the
dilaton becomes not only the origin of the local failure, but also the point fluctuation
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source of dislocations. Thus, the basic mechanisms of the destruction and the PD
are interconnected and simultaneous.

However, the dilaton model cannot explain all the features of fracturing, because
it neglects the presence of shear and the PD. The above provided model of the
elementary carrier of strain in the form of frustrons, as it was proposed in [104], is
free from this shortage.

As it is shown in [24], the restructuring of the potential relief U ~rð Þ with the
height Q / ed (ed—the dilatation) under the pressure p / ed leads to the kinetic
transition into the non-equilibrium state at which the crystal flows like a liquid. In
this case, besides the weakly excited atoms, oscillating near the nodes of lattice,
there are the highly excited atoms, moving without activation over the Peierls
fluctuation relief and providing the transfer though drift. Just as the collective
excitement of phonons responds to the vibrations of weakly excited atoms, the
movement of highly excited atoms can be compared with the collective regime
associated with the drift. If phonons have the jet dispersion, then the mentioned
regime responds to the central type of the structured factor, provided by the
relaxation rule x ¼ itk2, where t—the kinetic viscosity and k—the wave number.
Here, it would be appropriate to call such excitations as relaxon. Within the
quasiparticle framework, the intensity of the drift flows is characterized by the
density distribution of the Bose condensate of relaxons along with the wave vector
~k0 (in the microscopic homogeneous case, ~k0 ¼ 0). In particular, the dilaton rep-
resents the localized area of condensate of size � k, the formation of which is
initiated by the dilatation fluctuations Dedj j[ ec,

ec �G�1 a
k
; ð3:200Þ

where G—the Grüneisen constant, a—the lattice parameter, and k—the length of
free run of the phonons emitted from dilaton and colliding outside of it.

Thus, the dilaton, representing the local area of the excited state, by itself cannot
be the elementary carrier of destruction, because the shear component of the
external stresses is reduced by the drift flows.

Under the influence of the external loading, when the difference between den-
sities Sl of strongly and weakly excited states exceeds the critical value Sc, the
stationary distribution of the Bose condensate of relaxons faces the soliton gaps,
imposed over the uniform background. This means the local deterioration of the
plastic properties, so these areas become the hubs of shear stresses determined by n
and monotonically changing with the pressure p. The relaxon vacuum density is
realized, if the interaction speed v� ¼ DWsj j=Dt of the elastic energy outflow of
shift Ws � la3 (l—the shear modulus, the lattice parameter) is not less than the rate
of inflow vþ ¼ Ws � xD because of the external load (xD—Debye frequency).
Assuming that for relaxons, DWs is determined by the Grüneisen formula for
phonons Des ¼ s � DWs=Wsð Þ, where es—the shear strain component (s—the
interaction parameter of relaxons defined by the Grüneisen constant G), and setting
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the interval Dt by the frequency xr ¼ mk2\m 2p
a

� �2
, we find the condition for the

frustron stabilization [24]

Des [ ef ; ef � k � s � Re; Re � a2xD

2pm
: ð3:201Þ

In contrast to the marginal dilatation ec, the boundary shear deformation ef is
determined not only by the anharmonicity, but also by the plastic properties of the
medium. By definition Desj j\1, and the effective Reynolds number Re satisfies
Re\s�1, corresponding to the laminar flow with relaxons. Physically, this condi-
tion means that the plastic flow does not wash away the elementary carriers of
destruction in the materials with the kinematic viscosity ν exceeding the critical
value

mc ¼ s � a2xD: ð3:202Þ

The condition (3.201) provides not only the frustron stabilization, but also the
possibility of clustering. Formally, it is expressed as the positive value of the
surface energy of such clusters, as the negative values correspond to the volume
component. This allows us to consider the evolution in analogue with the birth of
phase [118], where the role of atoms, limiting her formation, is performed by the
frustron, merging into the cluster of destruction. Such mechanism is implemented in
the brittle materials, where the kinematic viscosity exceeds the critical value
(3.202). In the opposite case m\mc, the plastic flow washes away the cluster of

NNc N0
2

F

0

Q

1

Fig. 3.14 The dependence of
the free energy rate on the
number of frustrons in the
cluster: 1 the small loading
g[ 0ð Þ; 2 the heavy loads
g\0ð Þ. The dashed lines are
obtained while neglecting the
surface terms
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frustrons, and the destruction does not occur as long as the shear stresses exceed the
tensile strength and the crack is formed in the material.

Such mechanism is implemented in the viscous materials, where it is impossible
to unify not only frustrons into the cluster, but also their very formation.

To estimate the characteristic time of the destruction, we consider the group of
elementary carriers of destruction (for brevity, we will only talk about the frus-
trons), which represents the non-equilibrium system. Provided by the formation of
the cluster of frustrons, the rate of change of the free energy F as the function of the
number N � 1 of frustrons is shown as the standard expression [117]

_F ¼ gN þ r � N2
3; ð3:203Þ

where g ¼ g pð Þ—the change of _F by adding one frustron and r[ 0—the surface
tension coefficient. At the low pressures, where g pð Þ[ 0, the cluster formation is
not possible as long as the condition g pð Þ ¼ 0 is not fulfilled, which corresponds to
the critical value pc. With the pressure increasing up to values p� pc, the depen-
dence _F Nð Þ becomes non-monotonic, curve 2 in Fig. 3.14.

As a result of the fluctuation growth of the cluster, the number of frustrons
exceeds the critical value Ne ¼ 2r= 3 gj jð Þð Þ3 that leads to the decrease in the dis-
sipation rate of the free energy _F. The elastic field of such a supercritical cluster
leads to the retraction of frustrons, until it reaches the limit N0 ¼ r= gj jð Þ3,
exceeding which the cluster becomes the power generator _F\0

� �
. This means the

transition to the autocatalytic regime of the crack propagation, i.e., the destruction.
Of course, the simple connection Ne=N0 ¼ 2=3ð Þ3 between the number of frustrons
at the critical and limiting sources of the destruction is the consequence of the
model (3.203). Changing the shape of the cluster with its growth, the quantities g
and r depend on N, and in fact, that bond is much more complex. However, on the
qualitatively level, the similar ratios reflect the main features of the evolution of the
destruction source.

The full time t of transition into the autocatalytic regime consists of the incu-
bation period sC, required for the fluctuation formation of the critical cluster, and
the time sg, required for its growth up to the limit number of frustrons N0. The last is
determined by multiplying the difference N0 � Nc with the time

s1 � T
rCl � ec � a �

N0

D � c ;

necessary to retract one frustron in the supercritical cluster [120]:

sg � N0 � Ncð Þs1 � N2
0

D � c �
T

rCl � ec � a : ð3:204Þ

Here, T—the temperature in the energy units, D—the effective diffusion coef-
ficient of frustrons, c� exp k2aðp� K � eCÞ=T

	 

—their equilibrium concentration,
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rCl—the characteristic value of the stress field, created by the clusters, and K—the
modulus of the volumetric compression. The incubation period sC is determined by
multiplying the time required to form one frustron sf �x�1

D

exp �k2a p� KeCð Þ=T	 

with the probability xc ¼ N�1

c exp �Q � s01Nc=T
	 


of the
critical cluster, where Q ¼ gNc=2—the corresponding growth rate of the free
energy and s01—the time required to merge two frustrons with the order s1, where
under rCl it should be understood the field r1, created by one of them. As a result,
the total time of transition into the autocatalytic regime takes the form [24]

s ¼ s0 � exp � k2a
T

p� Ka
Gk

� �� �
; ð3:205Þ

s0 ¼ xDNcð Þ�1� exp �Qs1Nc

T

� �
þ N2

0TGk
Da2rCl

; ð3:206Þ

where G—the Grüneisen constant.
In the Eq. (3.205), the exponent part represents the probability of forming the

frustron, recorded in the form of well-known Zhurkov’s formula, in which the
influence of the external environment is expressed through the exponential factor
[47, 74]. To fulfill such condition, it is necessary that the supercritical growth of
cluster acts as the major player, rather than its origin. Then, the second term
dominates in the pre-exponential factor (3.206), which is weakly dependent on the
state parameters T , r. In the opposite case, when the main role is played by the
cluster origin, the ratio

s1 / c�1 ¼ exp �k2a p� Kecð Þ=T	 
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leads to the double exponential dependence s0 T; rð Þ, much stronger than Zhurkov’s
exponent (3.205). Physically, this is due to the fact that Zhurkov’s kinetic formula
takes into account only the thermo-fluctuational formation of frustron in the stress
concentrator field, played by the critical cluster.

Thus, the process of brittle fracture is defined by the formation and evolution of the
group of the elementary carriers of destruction—frustrons. The latter are themesoscopic
areas of localization of the shear strain, surrounded by the superplastic shell. The
mechanism of brittle fracture is provided by the clustered frustrons in the supercritical
failure origin that requires the viscosity m exceeding the value in (3.202). In the viscous
materials, where the opposite condition is realized, the destruction proceeds
according to the dilaton mechanism [119, 121, 122], which is inherent in the
heterogeneous materials, where the presence of the stress concentrators results in the
tensile strength, the value of which is much lower than the theoretical limit [121].

The development of failure processes in time allows us to speak about the nature
of fatigue wear. The value of the accumulated internal energy as a result of the
deformation and hardening of the material surface layer can be the criterion of its
durability.

The dependence of the relative wear resistance

e ¼ Es

Ecp

� �0:5

; ð3:207Þ

on the hardening energy of the surface layer Es for the different steel grades (the
steel grade 25Л is adopted as the standard) is shown in Fig. 3.15 [123], where

Es ¼ Hl þHmax
l

� �
� DHmax

l ; Hl—the micro-hardness of the original surface;

DHmax
l ¼ Hmax

l � Hl—the maximum micro-hardness of the hardened surface
layers.
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Chapter 4
Fractal Kinetics of Fracture

4.1 The Concept of Fractal—Fractal Dimension

Fractals are called geometric objects: line, surface, spatial body having very jagged
shape, and self-similarity. The founder of the theory of fractals, Mandelbrot [1],
formed the term “fractal” from the Latin participle “fractus.” The corresponding
verb “frangere” translates as break or crush, i.e., to create fragments of irregular
shape [2]. The self-similarity as the main property of fractal means that it is more or
less uniformly arranged in the wide range of scales.

In mathematics, the fractal is the set of points whose Hausdorff-Besicovitch
dimension (fractal dimension) exceeds the Euclidean topological dimension. The
fractal dimension d characterizes any self-similar system, when the linear dimen-
sions change f times, the fractal dimension (e.g., the “length” of loop or the “area”
of surface) changes (at any f) f d times. From the nature of the fractal dimension, we
can see that it is not connected with the topology, but with the process of con-
structing the studying set [3].

Generally, the fractal objects are the set in the one-, two-, three-, etc. dimensional
spaces, which all have certain specific properties, there is no a rigorous definition.
We can only qualitatively indicate the typical features of fractal objects [4]:

• the existence of fine structure and “jaggedness” of arbitrarily small size parts;
• the object irregularity, not allowing them to be described within the framework

of the traditional geometrical (Euclidean) or topological spaces;
• the regular or stochastic similarity of fractal parts with whole fractal—the

self-similarity hierarchy of the object parts at the different scale levels;
• the manifestation through the simple recursive procedure or the algorithm,

leading to the gradual refinement or the enlargement of details (see, e.g., the
approach to build fractals based on the iterated function systems, proposed by
Hutchinson [5] and improved by Barnsley [6]—the detail description is pro-
vided in [7]).
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The objects with “sprawling,” sparse or increasingly complex structure are
considered as fractal, when the constituent patterns have the scaling invariance
property, often arising from the chaotic processes. When observing such objects, it
can be seen that with the growth they show the self-similarity property, repeated at
the different scaling levels.

The self-similarity (auto-scaling) is the property when the set of points have the
same geometrical structure through the different scaling levels.

The more rigorous physical definition is given in [8]: “Auto scaling is the special
symmetry of physical system, based on fact that the changes in scale of the inde-
pendent variables can be compensated by the similar transformations in other
dynamic variables. The auto scaling results leads to the effective reduction in the
number of independent variables.” This terminology is also associated with others
[9], such as the scale invariance (scaling)—the invariance property of equation
describing some physical theory or some physical process, while changing all the
distances and time intervals in exactly the same way. The scale invariance is
sometimes referred to as self-similarity or likeness. The specialists of solids physics
determine auto-scaling through the properties of similarity [10]: “Auto scaling is the
similarity property of the system characteristics distribution at different time
intervals.”

The fractal dimension plays an important role in describing the fractal properties.
Let us give the general definition of this measure. Let d be the normal dimension of
the Euclidean space, where the fractal object is placed (d = 1—line, d = 2—plane,
d = 3—ordinary three-dimensional space). Let us cover the entire object by the d—
dimensional “balls” with the radius l. Suppose that we need to do no less than NðlÞ
balls. Then, at sufficiently small l, NðlÞ changes with l according to the power rule

NðlÞ� 1=lD; ð4:1Þ

then D is called the Hausdorff-Besicovitch dimension, or the fractal dimension of
object.

Using the fractal dimension, Mandelbrot gave more rigorous definition of fractal.
According to his definition, the fractal represents by itself an object, whose
Hausdorff-Besicovitch dimension is greater than its surface topology (0 for points
displacement, 1 for the curve, 2 for the surface, 3 for the volume, etc.).

The formula (4.1) can be rewritten in the form

D ¼ � lim
l!0

lnNðlÞ
ln l

: ð4:2Þ

This is the general definition of the fractal dimension D. In accordance with it,
the value of D is the local characteristic of object. It is obvious that the same result
could have been obtained for the fractal dimension if we used the fractal covering
cubes (squares, if the fractal object is located on plane). Sometimes the covering is
carried out by elements that make up the fractal. In this case, the simplified version
of the formula (4.2) is used to determine the fractal dimension. Suppose that at
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some stage of the fractal covering we have to use, as a minimum, NðlÞ elements
with specific size l, and at the other stage N l0ð Þ element with specific size l0. Then
the fractal dimension D can be calculated by the formula

D ¼ �
ln N lð Þ

N l0ð Þ
� �
ln l

l0
� � : ð4:3Þ

By fractals, we shall note not only self-similar, but also self-affine objects. The
latter includes the geometric shapes, parts of which can be brought into the com-
pliance with whole shape using the similarity transformations carried out in the
different directions with the different coefficients of similarity. Further details on the
self-affine and self-similar sets can be found in Mandelbrot’s book [11] and in the
articles by Voss [12, 13].

The fractal dimension of even simplest self-affine fractals is not uniquely
determined [14, 15]. When analyzing the self-affine fractal curves, we should
distinguish between the local fractal dimension, defined by the equation D ¼ 2� H
(H—the Hurst parameter), and the global fractal dimension [13, 15].

4.2 Fractals in Condensed Matter Physics

Until recently, the methods of equilibrium statistical physics were used to study the
condensed medium. This is due to the assumption that the condensed medium
under the influence, preserving it as such, represents the statistical system in
equilibrium or slightly non-equilibrium.

Recently, there is a growing interest in the phenomenon, where the behavior of
the statistical group of atoms in the condensed medium becomes such that the usual
concepts (such as the concept of phonons or the thermodynamic phase transitions)
lose their applicability or require fundamental changes [16]. This behavior is due to
the strong deviation of the atomic system from equilibrium, e.g., in the core of
lattice defects or the areas of plastic flow and failure. The strongly
non-equilibrium-condensed medium requires the usage of techniques that allow us
to represent such features as the non-ergodicity of statistical group, the emergence
of hierarchical fractal structures, the structural relaxation, the mutual influence of
subsystem undergoing the phase transition in the medium, etc.

In the strong excitation conditions, the system changes dramatically, funda-
mentally new structural states and associated degrees of freedom may appear par-
ticularly. Therefore, the initial state can no longer be used for the description of a
highly excited crystalline lattice. Instead, the excited state itself must be considered
as the initial state, and the transition into equilibrium must be seen as the continuous
symmetry violation of that state with the condensation of corresponding Goldstone
modes. Under this approach, the phonon condensation transforms the highly
excited system into the balanced crystalline state forming the long-range
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displacements, the condensation of concentrated excitations determines the
long-range order of the atomic density, and the various configuration excitations
define the short-range order, the amorphous state at quenching, etc. Essentially, all
these phenomena correspond to the establishment of order in the system with the
spontaneous asymmetry, and in each case the mentioned dynamic excitation
determines the Goldstone mode [17].

In the highly excited state the crystal behaves nonlinearly, the mass transfer
effects occur at the velocity many times exceeding the jumping diffusion with the
possible plastic flow of the hydrodynamic character, generating the metastable
structures and phase. It is absolutely clear that new ideas are required to describe the
highly excited crystal since the perturbation theory for an ideal crystal is not
applicable anymore.

For the first time, such representations were developed in [18]. This book jus-
tifies the position that under the strong excitation as the initial state we should take
the maximum of the non-equilibrium thermodynamic potential (TP) for which the
distribution function of atoms in space is significantly different from that of an ideal
crystal. The new structural condition appears under the high excitation in the node
space along with the original crystal structural conditions vacant or occupied by the
highly excited atoms. New degrees of freedom get created in the crystal. The highly
excited crystal essentially becomes the superposition of several structures, and the
number of structural states in the system gets much higher than the number of
atoms. Such crystal states are called the atom-vacant. They explain the nonlinear
behavior of the highly excited crystal, the anomalous high velocities of mass
transfer in it (the atoms in such conditions can move through the internodes), and
the hydrodynamic flow. During the movement of the highly excited crystal, the
intermediate structures associated with the possibility of localization of the highly
excited atoms in new structural states can be created within it. In the final state, the
intermediate structures are metastable, but they provide the additional channels of
the energy dissipation through its creation process. The process is purely
dissipative.

Of particular interest is the application of the theory of highly excited states in
crystals to the plasticity and strength of solids. The principal disadvantage of
existing theories of physics and the solids mechanics is in the analysis of plastic
flow with respect to the original stable crystal, meanwhile neglecting the structural
deformation levels. As it is shown in [19, 20], the plastic deformation should be
considered through the behavior of inhomogeneous, highly non-equilibrium sys-
tems undergoing local structural changes, and achieving the equilibrium state by
moving elements of new structures through the crystal within the fields of stress
gradients. Rebuilding in relays between two adjacent structures, the deformable
crystal can contain in the local volumes the plastic flow running like the dissipative
process.

The creation of plastic shear is the local kinetic and structural transition and can
occur only in the local area of crystal due to the entropy. The mentioned structural
transformation is fundamentally different from the thermodynamic structural
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transition, and it should be described on the basis of non-equilibrium thermody-
namics [21].

It is fundamentally important that shear can only take place within one system of
sliding planes, where is the loss of shear stability, at each point of deformable
object. The simultaneous multiple sliding in one point is impossible that would
mean the loss of shear stability of whole crystal. The shear data, being anisotropic,
is always accompanied by the turn of material inside the structure deformation
element (SDE) (grains, blocks, and cells of dislocation structure), where the turn of
material in contrast to the crystallographic does not change the space orientation of
crystal lattice [20]. This causes torque at the boundary to the SDE from the sur-
rounding material. The rotary deformation modes drive the entire hierarchy of the
structural levels of deformable material. The structural elements begin to move as
whole, experiencing the translation and the crystallographic rotation. The field of
the rotational moments provides the rotational modes of deformation, and within
SED, the emergence of dislocations from their sliding planes and the formation of
disorientated cellular dislocation substructure, the subsequent involvement of
multiple sliding as the vortex of material turning of the crystallographic shears.

The organic relationships between shear and torque lead to the fact that the
elementary act of the plastic deformation is not shift, but the translational–rotational
vortex (TRV). With respect to the scaling factor, they can be micro-, meso-, and
macro-vortices. The hierarchy of structure deformation levels creates its own
hierarchy of vortices. At the plastic deformation, there may also occur
meso-vortices associated with the formation of the mesoscopic dissipative struc-
tures. The vortex nature of deformation sets in motion the whole hierarchy of the
structure deformation levels and ensures the organization of new channels of energy
dissipation, more efficient than one caused by the motion of individual dislocations.

The toque deformation regimes at the different scale levels are significantly
different from each other. Their evolution with an increase in the deformation
degree is reflected in the changes of fractal dimension, which can be used in many
theoretical and applied problems [22].

On the microscale level, only the multiple sliding can compensate the material
turning of the crystal lattice. Therefore, in the continuum mechanics and the dis-
location theory, the plastic flow is described as the superposition of shear on the 5–6
systems of sliding. The plastic deformation in such a description is purely trans-
lational process that is presented in the equations of mechanics by the components
of the distortion tensor. The emergence of dislocations from their sliding planes due
to the deformation of the disorientated dislocation structure is complicated because
of the large splitting of dislocations and the short-range order. As a result, the
creation of the adjacent planar clusters of opposite sign can only compensate the
strong material turning (Fig. 4.1). Such a planar dislocation dipole is actually the
volumetric meso-defects, the appearance of which is associated with the toque
deformation. Its Hausdorff-Besicovitch fractal dimension is significantly greater
than the topological dimension of a flat planar sliding.

The self-organization of single martensitic lamellae in the form of “chevrons” in
the plastic deformation of the intervals with thermo-elastic martensitic
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transformation is even more exemplar (Fig. 4.2). The pairs of single lamellae with
torques of different sign are linked in them. The martensitic lamella in the area of
stress concentration is associated with the collective rotation of lattice in the specific
direction and creates in the adjacent volume the field of torque moment of the
opposite sign. The low shear resistance of the original austenite lattice reveals the
zone of influence of the martensitic lamella in the form of conjugate lamella with
the opposite sign of rotation. The matching pair of the martensitic lamellae has the
Hausdorff-Besicovitch fractal dimension, significantly greater than the topological
dimension of the planar martensitic.

All varieties of meso-mechanisms deformation are due to the movement of the
volumetric structure elements with the pronounced bending-torsion effects in the
space. Experimentally, this is most clearly manifested itself in the high-temperature
deformation, creeping, and alternating loading. During the active tension at the
room temperature, the complex cross-sliding of dislocations and the small number
of sliding contribute to the effects of bending-torsion. Naturally, the
Hausdorff-Besicovitch fractal dimension in this case is very different from the
topological dimension of planar dislocations.

In general, by increasing the degree of deformation the role of large scale of
structural levels, the large-scale structural elements included in TRV, continuously
play a big role. Therefore, the fractal dimension of the deformable medium con-
tinuously increases. There is a good correlation between the curves of the plastic
flow phases and the corresponding curves of the fractal dimension. This is
explained by the inclusion of every new structural level into the deformation, which
determines the involvement of a new energy dissipation channel, inevitably

Fig. 4.1 The planar cluster of dislocations

Fig. 4.2 The diagram of self-organization of single martensitic lamellae in the form of “chevron”
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affecting the coefficient of hardening h ¼ dr=de or the plastic flow rate at creeping
[23]. Therefore, the study of the fractal dimension provides important information
about the plastic flow involvement into the hierarchy of structural levels of
deformation. Such information can be used to forecast the resource of loaded
constructions.

The plastic deformation also occurs upon contacting of solids [24]. To describe
this process, A.Kh. Janahmadov proposed a theory of thermo-mechanical wear [25]
and investigated the tribological problems of the oil–gas equipment operation [26,
27]. The application of fractal analysis to diagnose the type of contact (elastic,
elastic-plastic, and plastic) between solids under the external friction is considered
in [28].

4.3 Fractal Properties of Hierarchical Structures
of Potential Relief

Let the system state is determined by the parameter g. If the initial state is deter-
mined by the parameter gi, then before you get to the final gf system undergoes a
chain of transitions between neighboring minimums of the free energy U gð Þ

gi ! g1 ! g2 ! � � � ! gl ! � � � ! gf :

Each of the transitions is described by the probability SlðtÞ of transition from the l-
th minimum to lþ 1ð Þ-th. Its expression is given by the Arrhenius barrier height Ql:

sl ¼ gie
Ql=Tð Þ; ð4:4Þ

where T—the temperature, sl—the relaxation time.
The characteristic feature of such a chain of transitions is that all of the barrier

heights have the same order, due to the fact that the times Dt ¼ tlþ 1 � tl required to
overcome them are commensurable [29]. Therefore, during t � nsl the system with
the probability 1� S tð Þ overcomes n barriers with

S tð Þ ¼
Yn
l¼1

Sl ð4:5Þ

where

Sl ¼ e �Dtl=glð Þ; Dtn ¼ t � tn ð4:6Þ

is the Debye dependence of the probability of overcoming l-th barrier. When
n � 1, we can ignore the spread Dtl intervals, assuming Dtl ¼ t=n. Then (4.5) takes
the Debye form (4.6)
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S tð Þ ¼ e �t= sh ið Þ ð4:7Þ

with the average relaxation time sh i given by the equation

sh i�1¼ 1
n

Xn
l¼1

g�1
l : ð4:8Þ

Thus, the transition chain between the adjacent minimums of function U gð Þ (the
system metastable states) is reduced to the Debye relaxation with an average time
sh i. The sequential nature of process is reflected in the multiplicative elementary
probabilities Sl tð Þ and the additive inverse relaxation times. If, according to (4.4),
the value of s�1

l is proportional to the probability of the thermal fluctuation over-
coming the interphase barrier Ql, then the given additive means the independence of
fluctuations of microscopic quantities (e.g., energy phases).

If such a situation occurs at the macroscopic level, then the probabilities get
added rather than the microscopic quantities s�1

l . This means that the set of parallel
channels of relaxation operates independently. Each channel corresponds to the
statistical ensemble a, realized with the probability wa. The probability of transition
between a and b channels has the form

Sab tð Þ ¼ e �t=sabð Þ; sab ¼ s0e
Qab=Tð Þ: ð4:9Þ

The summary probability

S tð Þ ¼
X
a;b

wawbSab tð Þ ð4:10Þ

describes the relaxation provided by the full range of channels. Their parallel
connection exists if the probabilities of the various channels

wa / e �Ea=Tð Þ: ð4:11Þ

are comparable; Ea—the energy of a-channel. Such a situation requires the
degeneration with respect to the energy levels

Ea ¼
Z

U ~rð Þqa ~rð Þd~r; ð4:12Þ

where qa ~rð Þ—the distribution of structure units (e.g., atoms) in the a-channel
relaxation; U ~rð Þ—the potential relief of system.

From the condition of commensurability of the energy Ea, it follows that various
a channels should be compared with the minima of the potential relief U ~rð Þ, only
slightly differing from each other. On the other hand, the presence of spectrum of
relaxation times in (4.9) can only be achieved under the condition that the barriers
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separating the different minimums a, b are significantly different in the height Qab.
These conditions can only be met if the hierarchical structure of the potential relief
(Fig. 4.3a): on the large-scale minimums U ~rð Þ the more fine are imposed, then on
them even smaller, etc. At the end, we get the fractal dependence U ~rð Þ, strongly
reminding the coastline.

From Fig. 4.3, it is seen that the statistical ensembles a, b may be combined into
the clusters, each of which is characterized by the maximum height Qab of barrier
separating this cluster from other clusters. On the other hand, since the ensembles α,
β correspond to the nodes of Cayley tree (Fig. 4.3b), then it is possible to math them
with α, β from the ultrametric space, separated by the distance lab. Thus, the barrier
height Qab and with them the relaxation times sab are the distance functions lab of
the states in the ultrametric space. The parallel action of the different relaxation
channels is only provided in the hierarchical subordination of the set of corre-
sponding statistical ensembles. This situation occurs in the strongly
non-equilibrium thermodynamic systems such as highly deformed material [20, 21,
30], the polytypic and martensitic structures [31, 32].

In a hierarchical system, the fastest processes run first corresponding to the
barriers overcome with the minimum height Qab. So the merger of the smallest
statistical ensembles takes place, and the system moves to the higher hierarchical
level of Cayley tree (Fig. 4.3b). Then, we overcome the barriers with even greater
height Qab, at the end we get a super clusters which merge into the larger system
matching the following hierarchical level. Furthermore, this process can continue
indefinitely. Its hierarchical nature is reflected in the fact that until the channels with
the given relaxation time sl do not work, the parallel network of channels at next
level will not switch on, having the relaxation time slþ 1 � sl. This hierarchical
subordination is the cause of the critical deceleration of relaxation, which leads to
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r

r

U
1

U
2

U
3

n = 1

n = 2

n = 3

(a) (b)

Fig. 4.3 a The type of potential relief on the different structural levels; b The corresponding
hierarchical tree
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the transformation of the Debye exponential in (4.9) into more slowly decreasing
dependence.

The fractal nature of the hierarchical subordination system is manifested in the
coordinate dependence of U rð Þ potential energy of the system. This means that the
set of clusters of statistical ensembles will also have the fractal properties, repre-
sented by the points in the ultrametric space. We note here to avoid further
misunderstanding that the clusters of statistical ensembles in the ultrametric space
do not necessarily correspond to the clusters of structural units in the r-space.

The Cayley tree is represented in Fig. 4.3b by the number of hierarchical levels
n ¼ 3 and branching s ¼ 4. From the figure, it is shown that each node in the tree at
any level m m� nð Þ can be expressed by m numbers of al, where the index l runs
from 0 to m� 1, and the numbers themselves al vary from 0 to s� 1. In other
words, the coordinates of nodes of level m

alf gsm¼ a0a1. . .al. . .am�1; al ¼ 0; 1; . . .; s� 1: ð4:13Þ

where m—the digit numbers in the s-array numeric system.
They define the space with ultrametric topology, the characteristic property of

which is that its points can not form triangles with all the different parties [33]. This
property observed at a given level m assuming that the distance l between any nodes
of the Cayley tree is identified by the number of steps to the general order located at
m� l level. If two nodes are numbered by the set (4.13) of numbers al and bl, then
the distance between them depends on which number differs first from other. So, for
the tree shown in Fig. 4.3b, the distance is equal to 2, if a0 6¼ b0; and it is equal to 1
if a0 ¼ b0, but a1 6¼ b1. For an arbitrary combination of numbers m, s, the distance
between these points is equal to l ¼ 1; . . .;m, if the following equalities hold
ai ¼ bi, i ¼ 0; 1; . . .;m� l� 1, but am�l 6¼ bm�l. Here, m—the level of that num-
bers a and b, which is not higher than other number.

The ultrametric space concept is important because by reflecting the hierarchical
structure of the system, it implements the so-called logarithmic metrics for the
physically observable quantities. This means that in such a space the distance l is a
linear function of the logarithm of the observed q. Since the manipulation with ln q
is less convenient than with the linear dependence on l, then instead of the usual
values on the axis q it is convenient to introduce the corresponding ultrametric
space, characterized by the distance l, and conduct all the calculations in this space
[33–35].

To determine the dependence q lð Þ, we represent the value q in s-array notation
(4.13). This is done by the power series expansion

q a� bð Þ ¼ ða0 � b0Þsm þ a1 � b1ð Þsm�1 þ � � � þ am�l � bm�lð Þsl
þ � � � þ ðam�1 � bm�1Þsþðam � bmÞ;

ð4:14Þ

the first m coefficients are given by the m-valued numbers (4.13), and the latter
determines the origin of q.
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The beauty of expansion (4.14) is that at s � 1 only one term dominates in it.
Indeed, if the distance between the points of the ultrametric space is equal to l, then
the first m� l terms containing the maximum power of the large number s are equal
to 0, since by definition ai ¼ bi at i ¼ 0; 1; . . .;m� l� 1. The last l members of
series include the degrees of sk , k ¼ l� 1; l� 2; . . .; 0, the values of which are
negligible in comparison with sl. Thus, only one term am�1 � bm�1ð Þsl � slþ 1

remains, and with the logarithmic accuracy, the series (4.14) are reduced to the form

ln q � lþ 1ð Þ ln s � l � ln s; m; s; l � 1: ð4:15Þ

This equality represents the logarithmic metrics of the ultrametric space.
Everywhere above we meant the homogeneous Cayley tree, where the branching

is the same at all nodes. Obviously, the corresponding ultrametric space has the
dimension D ¼ 1. Indeed, assuming that there is the similarity parameter n ¼ s�1,
we obtain the elementary length ln s ¼ nn ¼ s�n, and the formula Nn ¼ sn for the
number of nodes at the level n, takes the form (4.1), where D ¼ 1.

It is easy to see that the fractional dimension D\1 is obtained, only if, at each
level n, and for part of nodes, the branching disappears. Such situation happens, for
example, with the Fibonacci sequence. From the Cayley tree shown in Fig. 4.4, it is

n = 1

n = 2

n = 3

n = 4

n = 5

n = 6

n = 7

b

a

ba

aba

baaa b

ababaaba

baabaababaaa b

Fig. 4.4 The irregular Fibonacci tree with varying branches
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evident that there is a non-periodic (but quite natural!) alternating nodes with
branching s ¼ 1; 2. . ..

Here, on each non-furcate node, there are double branching nodes, equaled to the
so-called the golden mean s ¼ ffiffiffi

5
p þ 1
� �

=2 � 1:618 [29]. It turns out that this leads
to the reduction of ultrametric space dimension corresponding to the Fibonacci tree
with a value D ¼ ln s= ln 2 � 0:694. Generally, the equality is given as

D ¼ ln q= ln s

where q—the number of furcate nodes s ¼ 2; 3. . . per one non-furcate node.
The above review refers to the rarefied ultrametric space, for which the fractal

dimension D is less than the topological d. The reversed case is available, if not
only the closest hierarchical level are connected, but also further away ones
(Fig. 4.5).

In other words, the condition D[ d is realized for the non-Markov hierarchical
systems with memory.

n = 1

n = 2

n = 3

n = 4

Fig. 4.5 The Cayley tree corresponding to the non-Markov scaling levels
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4.4 Kinetics of Fracture from Positions of the Theory
of Fractals

The numerous experimental data show that the cyclic loading applied at the first
stage of destruction forms the highly dispersed grooved structure, distributed in
accordance with the sample stress state [36]. If there is a stress concentrator (e.g.,
cut), then the growth of macro-cracks initiated by them happens at the expense of
abrupt joining individual grooves, presented as the frustron clusters and other
destruction carriers, grouped in accordance with the distribution of stress field.

In the homogeneous conditions, the grooves are formed in the larger particles,
for which, in particular, the transition occurs from the micro-separations to the
micro-shears. During its growth at this stage, the macro-crack instantly skips the
entire volume of metal, which are formed by the given cellular structure. This forms
the secondary cell structure on the background of already existing structures. This
stage, which takes place in the certain range of the stress intensity factor K� rl1=2

(r—the applied stress, l—the length of crack), grows into the macroscopic insta-
bility; as a result, there is a patching relief of fracture associated with the plastic
deformation.

According to the data on acoustic emission, the process of fatigue failure is
intermittent with the development of structural changes prior to the destruction, and
the sample emits short impulses of varying intensity and frequency [36].

Moving to the interpretation of this data, we shall note firstly that there are two
possible scenarios for the evolution of the group of elementary destruction carriers
—frustrons, dislocations, etc. In materials with the kinematic viscosity v, exceeding
the critical value, the brittle fracture mechanism is realized, and the crack growth
leads to the qualitative change of the behavior of the group of elementary
destruction carriers. Indeed, at the relatively low values of length l the coefficient of
stress intensity is so small that the height of the activation barrier Q / K2 / l,
overcoming at the frustron grouping, is sufficient for the probability PN � e �QN=Tf g

of fluctuation formation of the cluster, containing N � 1 frustrons. This process
occurs when the limit of N0 is achieved, and when the cluster becomes the energy
generator and the crack moves into the autocatalytic propagation regime. This
means the beginning of the brittle fracture.

By increasing the size of the crack l toward values at which the formation of cluster
N � 1 becomes practically impossible, this mechanism is replaced by the chain-like
process with the probability P1 � e �QN=Tf g of the frustrons pairing, then with the
same probability the pairs of the same order form a quartet, and so on (Fig. 4.6).

The transition to such a process is due to the fact that at small l the clustering,
consisting of N frustrons, leads to the multiplication of probabilities P1 PN ¼ PN

1

� �
,

while the chain-like process is characterized by their superposition, giving much
greater importance meaning to PN �N�2P�1. This leads to the change of the kinetic
process of destruction: If at time t the probability of absence of the fluctuation
formation of N-cluster is characterized by the Debye dependence P1 tð Þ� e �t=s0f g
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(where s0—the microscopic time), then for the commensurability of the equivalent
formation time of the cluster tN ¼ �s0 lnPN �Ns0 lnP�1

1 with the specific time for
the chain-like process � s0=PN , the kinetics of latter is given by the dependence
PN tð Þ� s0=t, which is quite different from the Debye ones. The application of the
fractal theory allows us to obtain this result and its generalizations.

To quantify the evolution of the group of frustrons [37], the hypothetical
coordinate x is introduced, the values of which correspond to the different frustron
clusters at time t. As shown in Fig. 4.6, within the described framework, the
grouping (doubling) of clusters occurs in the discrete points at time tj, the intervals
Dtj ¼ tj � tj�1 between them increase. Let the clusters in the interval Dt be char-
acterized by the set of coordinates xj

� �
. Then each elementary act of the pairwise

merging of clusters is the inverse process of the period-doubling process, described
by the Feigenbaum quadratic function (3.90).

The consecutive values of lm, where the bifurcation takes place, are given in
Table 3.2.

Corresponding to each lm, the values of dm are calculated for m ¼ 1; . . .; 10 by
the Eq. (3.108), and for m� 6 we take lm ¼ l1 ¼ 3:5699456:

t
0

x

t
t
1

t
n

Fig. 4.6 The diagram of chain-like grouping of the destruction carriers
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d1 ¼ 0:00035; d2 ¼ 0:000287; d3 ¼ 0:000226;

d4 ¼ 0:000901; d5 ¼ 0:000359; d6 ¼ 0:0009771;

d7 ¼ 0:02242; d8 ¼ 0:035545; d9 ¼ 0:090588; d10 ¼ 0:25:

ð4:16Þ

The magnitude of dm m ¼ 1; 2; . . .ð Þ will be used in Chap. 5 to determine the
spectrums of generalized fractal dimensions of the multifractal set, formed by the
pairwise merging of clusters of the solids micro-cracks.

In Sect. 3.3, the described qualitative transformation of the mapping dynamics
(3.90), as the parameter l changes, is a reflection of the scaling behavior of the
system of clusters, shown in Fig. 4.6 as the hierarchical “Cayley tree.” The nodes of
the tree at each point of time t correspond to the clusters of microstructure. The
merge of branches over time describes the union of these clusters in the process of
the structure evolution.

From the mathematical point of view [33], the Cayley tree is a one-dimensional
geometric image of the ultrametric space, where any three points can not have all
three distances, differing from each other. Given that the distance between nodes
corresponding to a specific time t is the number of steps to their common ancestor,
see Fig. 4.6, it is easy to find the ultrametric space property.

Of course, the actual chain-like clustering process is not so simple, as it is shown
in Fig. 4.6. In particular, there is a possibility of combining an arbitrary number of
clusters (wherein the Cayley tree branching s is not equal to 2). Besides, the
bifurcation point at the different branches of tree does not have to be bundled up for
verticals t0n ¼ const, as it is shown in Fig. 4.6. Finally, the clustering process can
happen in several Cayley trees, each of which has a certain probability. However, as
it is shown in [38], it does not lead to the qualitative changes of picture, as it was
discussed earlier based on the simplest example of a regular tree with s ¼ 2.

According to the definition, the distance u in the ultrametric space is given by the
smallest number of bifurcations in the Cayley tree, leading to the merger of the two
points between which u is measured (from Fig. 4.6, it is clear that the magnitude of
u is proportional to the number of steps n in the tree branches up to their coales-
cence). In the accepted framework, the chain clustering parameters, representing the
ensemble of frustrons, become the functions of distance u. Thus, the elementary
merging act of clusters is characterized by the Debye dependence

Pu tð Þ ¼ exp � t
sðuÞ

	 

ð4:17Þ

with the characteristic time

s uð Þ ¼ s0exp
QðuÞ
T

	 

ð4:18Þ

where s0—the microscopic time; Q uð Þ—the barrier height, separating the clusters,
with the distance u between them, and; T—the temperature in energy units. Then,
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assuming that the process of clustering distributed across the group of Cayley trees
in accordance with the rule p uð Þ, R p uð Þdu ¼ 1 for the probability of absence of the
fatigue failure at time t, we obtain

P tð Þ ¼
Z1

0

p uð Þ exp � t
sðuÞ

	 

du: ð4:19Þ

Taking the ultrametric space as homogeneous (i.e., the corresponding Cayley
tree has a constant number of branches), the quantitative description of
one-dimensional long-period structures (OLS), forming at an intermediate stage of
restructuring of the original (short-period) crystal lattice, can be defined by the
structuring factor (correlation factor) [39]:

Sk tð Þ ¼ Sk �
Z

p uð Þ exp � t
s uð Þ

	 

du ð4:20Þ

where k—the wave number, and Sk is expressed as follows:

Sk 	
X
a

pa � Sak ; Sak ¼
1
Na

X
Ri�Rj

Saije
�ik Ri�Rjð Þf g ð4:21Þ

Here, i and j—the layers index; Ri—the coordinate of the structure i-th layer; a—
the hierarchy levels, each of which corresponds to the volume of the group of
clusters Vaf g (in this case, the a� 1ð Þ-th group is equal to the subordinated, who,
in turn to aþ 1ð Þ-th, etc.); Na—the number of layers at a level; pa—the probability
distribution of the group Vaf g, P

pa ¼ 1; Saij—the fluctuation correlation
dani tð Þ ¼ nai tð Þ � na, nai tð Þ—the number of nodes in the i-th layer at time t, na—the
average number of nodes at a-level of the hierarchy.

To find the explicit form of the dependence Sk tð Þ in (4.20), it is required to set
distribution p uð Þ, s uð Þ in the ultrametric space. Their definition is reduced to the
microscopic problem within the phenomenological approach limited to the study of
the possible types of Sk tð Þ with acceptable majorants distributions p uð Þ, s uð Þ [39].
At the fixed temperature T, the relaxation time is given by the height of the potential
barrier U uð Þ according to the Arrhenius relation

s uð Þ ¼ s0exp
UðuÞ
T

	 

; ð4:22Þ

where s0 ¼ x�1
D , xD—the Debye frequency. To evaluate the possible dependencies

U uð Þ, we base on the fact that for the large cluster sizes the value of the TP is
proportional to their volume. Therefore, one step on the Cayley tree, corresponding
to the single s cluster union, will increase TP s times. The distance u corresponds to
l steps, and the change
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DU� sl ¼ e l ln sf g ¼ e const uf g;

Thus, in the thermodynamic limit, the strongest potential dependence U uð Þ and
the heights of TP are realized in the ultrametric space. For small clusters and the
presence of the long-range forces, the regular hierarchical relationship is broken,
and TP increases much slower with an increase in volume. Accordingly, it should
be expected that the dependence U uð Þ becomes weaker than the exponential.

We characterize the hierarchical object (the tree node) at level n with the intensity
Pn, which for the stochastic system is reduced to the probability density and increases
to the higher level n� 1. This fact is expressed through the recurrence relationship

Pn�1 ¼ Pn þN�1
n � w Pnð Þ ð4:23Þ

where w Pnð Þ—the unknown function of the hierarchical relationship, Nn—the
number of nodes at level n. For the simplest case of a regular tree, shown in
Fig. 4.7a, and the inherent to the fractal objects, the power dependence is realized as

Nn ¼ sn; ð4:24Þ

where s—the tree furcation indicator (in Fig. 4.7a, and we have s ¼ 2).
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Fig. 4.7 The main types of hierarchical trees (the level number is listed to the left, and the node
number is to the right): a the regular tree with s ¼ 2; b the degenerate tree with s ¼ 3; c the
Fibonacci tree; d the irregular tree for v ¼ 1, a ¼ 2
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For the degenerate tree, each level of which contains only one branching node
(Fig. 4.7b), and we have the linear relationship

Nn ¼ s� 1ð Þnþ 1 � s � n; ð4:25Þ

where the approximate equality corresponds to the case s � 1.
An interesting example is the Fibonacci tree shown in Fig. 4.7c. The number of

nodes at n-th level Nn ¼ F nþ 2ð Þ is determined by the Fibonacci number F nð Þ,
which satisfies the equation

F nþ 2ð Þ ¼ F nþ 1ð ÞþF nð Þ with F 1ð Þ ¼ F 2ð Þ ¼ 1:

Its solution for n � 1 gives F nþ 2ð Þ � f � sn, where f ¼ 1:17082,
s ¼ ffiffiffi

5
p þ 1
� �

=2 � 1:61803—the golden section. As a result, the number of nodes
in the Fibonacci tree is defined by

Nn ¼ f � sn; n � 1: ð4:26Þ

Finally, in general, the non-degenerate tree shown in Fig. 4.7d can be applied to
the power approximation

Nn ¼ m � na; m[ 0: ð4:27Þ

For the regular tree, the intensity P and the power of hierarchical bonds w in the
distance f from the ultrametric space have the following form [16]:

P ¼ W� 1
1�D 1� uð Þþ uef�f0

� �1
D; u ¼ DW

1
1�D

ln
s; f0n0 ln s; ð4:28Þ

w ¼ 1� uð Þþ uef�f0
� �D

; f� f0; ð4:29Þ

where n0—the total number of hierarchical levels; W ¼ w 1ð Þ—the positive
constant.

Equation (4.23) has the remarkable property of self-similarity, which is the main
feature of the hierarchical systems. Indeed, assuming that the intensity Pn � qn is
given by the similarity parameter q\1 and the bonding function satisfies the
homogeneity condition w pqð Þ ¼ qbw pð Þ, from (4.23), (4.24) for n � 1, when
Pn�1 �Pn, we get the usual bonding

b ¼ 1� D; D 	 ln s
ln q�1 ; ð4:30Þ

between the index b of physical characteristic and the fractal dimension D� 1 of
the self-similar object rugged by coastline [29].
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In equality (4.29) and further in text we assume that the function w fð Þ satisfies
the condition w f0ð Þ ¼ 1. Thus, for the regular tree with increasing the distance f to
the common ancestor of the dependence P fð Þ, w fð Þ shows an exponential increase
with the increments D�1 and D, respectively, where

D ¼ 1� D
D

; ð4:31Þ

According to (4.31), D ¼ 0 at D ¼ 1, when the system obtains an ideal hier-
archical bonding. Both of the decrements D�1 and D indefinitely increase at D ! 0.

From the comparison of Eqs. (4.24) and (4.26), it follows that when n � 1 the
hierarchical system, represented by the Fibonacci tree (Fig. 4.7c), reduces to the
regular tree (Fig. 4.7a) if the parameters s,W are replaced with s,W=f , respectively.
And the fractal dimension is D ¼ ln s= ln 2 � 0:6942 [29].

For the degenerate tree, we have [16].

P ¼ W�1=ð1�DÞ 1� u ln 1þ s� 1
ln s

f� f0ð Þ

 �� �1=D

; u 	 DW
1

1�D

s� 1
; ð4:32Þ

w ¼ 1� u ln 1þ s� 1
ln s

f� f0ð Þ

 �� �D

; ð4:33Þ

and for the irregular tree

P ¼ w�1=ð1�DÞ 1þ u 1� f
f0


 ��ða�1Þ" #1=D

; u 	 DW
1

1�Dn� a�1ð Þ
0

m a� 1ð Þ ; ð4:34Þ

w ¼ 1þ u 1� f
f0


 ��ða�1Þ" #D

; ð4:35Þ

Thus, the transition from the regular to the degenerate tree leads to the
replacement of exponential dependencies with the logarithmic ones, and in the case
of the non-degenerate tree, the intensity and power of the hierarchical bonding
exhibit the exponential behavior depending on the distance f. In all three cases (the
regular, degenerate, and irregular trees), the studied characteristics of both hierar-
chical systems—the intensity P and the power of bonding w—gradually decrease
with the distance f decreasing in the ultrametric space, which corresponds with the
transition to the lower hierarchical level at the large values of n. The regular tree is
especially underlined: The corresponding exponential behavior means the hierar-
chical bonding for the limited number, which is given as [16]:
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k ¼ D ln sð Þ�1¼ D 1� Dð Þ ln s½ 
�1; ð4:36Þ

In this sense, we can say that regular tree represents the weak hierarchical
bonding.

In the transition to the irregular trees, which is most widely spread, the hierar-
chical bonding provides the subordination of all levels and damps exponentially.
The slowest, logarithmic damping requires building of the degenerate hierarchy
(Fig. 4.10b). It carries out by the single object at each level and meets the selection
system. Both of these cases (the irregular and degenerate trees) inherent the strong
hierarchical bonding, which is carried out between all levels, resulting in that the
parameter D in (4.32) and (4.34) does not define the depth of bonding (4.31), but
the damping rate. In particular, at the ideal hierarchical subordination D ¼ lð Þ, we
have D ¼ 0, and as in the regular system the hierarchical bonding w fð Þ does not
damp. However, the intensity P fð Þ decreases with the indicator D�1 ¼ 1.

Thus, at the given configuration of the hierarchical tree the fractal dimension
D plays an important role, the value of which determines the strength of hierarchical
relationship w fð Þ. The fractal dimension in the pre-failure conditions is directly
related to the mechanical properties, as well as the critical states of deformation of
metals and alloys [40].

Above it is assumed that the power of the hierarchical relationship w fð Þ is
characterized by the fixed value D, i.e., the hierarchical system is monofractal.
However, in the non-stationary systems, the similarity parameter q varies with time,
so in accordance with the second Eq. (4.40) the value of D qð Þ also changes. In
addition, for the complex systems the hierarchical bonding has the multifractal
character, meaning that the spectrum of values q 2 �1; þ1ð Þ plays a significant
role, based on which the binding force wq fð Þ is distributed with the density q qð Þ. As
a result, its total value is determined by the equality

w fð Þ ¼
Zþ1

�1
wq fð Þq qð Þdq; ð4:37Þ

where as the core wq fð Þ the relationships (4.29), (4.33), (4.35) should be used with
the variable fractal dimension D qð Þ. The following dependence is solution to the
problem

q qð Þ ¼ D0 q0ð Þj j�1d q� q0ð Þ; ð4:38Þ

where the stroke denotes the derivative, q0—the root of the equation
D qð Þ ¼ const 	 D, d �ð Þ—the Dirac function. Defining the dependencies D qð Þ,
q qð Þ, which characterize the multifractal, is the separate problem.

It should be noted that these relationships define only the asymptotic behavior of
the hierarchical system within the limit 1 � f� f0.
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Considering that the distribution of the TP U uð Þ in the ultrametric space is
determined by the strength of the hierarchical bonding, and taking into account that
in the regular Cayley tree the hierarchical bonding varies exponentially and the
transition to the irregular and degenerate trees leads to the weakening of this
relationship down to the power and logarithmic, so let us approximate the depen-
dence of U uð Þ in (4.22) as the logarithmic, power, and exponential functions

Ul uð Þ ¼ Q ln
u
u0

; Up uð Þ ¼ Qua; Ue uð Þ ¼ Qe u=u0ð Þ ð4:39Þ

(the indices l, p, e correspond to the words logarithmic, power, exponential), the
constants Q, u0, a are determined by the parameters of state, Q—the characteristic
height of the barrier UðuÞ.

In the Formula (4.19), the first of characteristics that define PðtÞ (the probability
density pðuÞ at the distance u, affecting the clustering at the given e) determines the
nature of hierarchical subordination in the group of clusters. The minimal ones,
frustrons, group the initial stage. This process requires overcoming the minimal
barrier of the TP.

U uð Þ�K2 � mnð Þn � e
u
u0 ¼ const

(here, n—the coherent length).
Then, the number m of the merged clusters and the barrier height, overcome by

the system during its evolution, increase. Moreover, the hierarchical subordination
of the clustering process (the small ones fuse into the average ones, and then those
into the large ones, etc.) is reflected in the fractal structure of the potential relief; in
the configuration space of states, the dependence U uð Þ has the form of high and
wide maximum, overcome by the system, on which the smaller are imposed and the
latter, in turn, have even smaller, etc. During its evolution, the system of clusters
passes through the lowest barriers initially, and then next in the height and so on as
long as not overcome the tallest.

As for the function p uð Þ 	 pa, being the part of correlation (4.20) and deter-
mining the distribution of states Vaf g in the ultrametric space, then it must be
monotonic. Let us majorize its dependencies

ps uð Þ ¼ p�D; pw uð Þ ¼ exp � u
e

n o
ð4:40Þ

(the indices s and w correspond to the words strong and weak), where D 2 0; 1ð Þ—
the fractal dimension, e—the parameter that determines the depth of hierarchical
bonding.

Substituting the dependences (4.22), (4.39), and (4.40) into (4.20), by the
method of passage we find the asymptotes t ! 1 for the correlation Sk tð Þ, shown
in Table 4.1 from [16].

4.4 Kinetics of Fracture from Positions of the Theory … 161



As the dependences Sk tð Þ shown in Table 4.1, the critical process deceleration of
the crystal structure restructure, corresponding to the transition from the rapidly
damping exponential function to the smoothing power and logarithmic functions,
realizes for any fractal relief in the case of the strongly pronounced hierarchical
systems.

In the weakly hierarchical systems to ensure the critical deceleration, at least, the
exponential increase of the relief height in the ultrametric space is required.
However, it should be noted that the mentioned deceleration manifests itself only
up to the certain moment sM , and at t � sM the Debye dependence takes place
Sk tð Þ� e t=sMf g [41]. The physical reason of such behavior is due to the fact that
during the specified time the hierarchical bounding gets set at the distance uM , given
by the condition p uMð Þ ¼ s0=sM . This leads to overcoming the fractal relief height
UM 	 U uMð Þ. Consideration of (4.39), (4.40) and the dependencies U uð Þ, p uð Þ
gives the expression of the maximum time of the structure restructuring sM , listed in
Table 4.2 from [16].

First of all, we pay an attention to the increase of sM during the transition to less
pronounced dependences U uð Þ. The exponential growth of U uð Þ is responsible for
the TP growth being proportional to the volume, and the transition to smoother
dependences U uð Þp and Ul uð Þ is associated with the inhomogeneity and long-range
fields. On the other hand, as the comparison of different rows in Table 4.2 is shown,
the weakening of the hierarchical super-positioning leads to the increased depen-
dence on external factors that determine the parameters Q, u0, a of the fractal relief.
Taking their dependence in its simplest form Q / T � T0; T0, u0, a ¼ const, it is
not hard to notice that in the strongly hierarchical systems the dependent sM Tð Þ
takes the form of Vogel–Fulcher approximation [42] at the logarithmic distribution
of relief Ul uð Þ, and in the weakly hierarchical it is the power Up uð Þ. In the general
case, there are possibilities for the power and logarithmic dependences.

From a physical point of view, the TP fractal distribution in the state space is
defined, on the one hand, by the presence of volumetric and thermal effects of the

Table 4.1 The possible asymptotic behavior of the correlations Sk tð Þ at t ! 1
Sk tð Þ Ul uð Þ Up uð Þ Ue uð Þ
pw uð Þ e �tbf g;b ¼ 1þ Q

T

� ��1
exp � T

Q ln
t
s0

� �1
a

	 

T
Q ln

t
s0

� ��u0
a

ps uð Þ t�c; c ¼ 1þDð ÞT
Q T

Q ln
t
s0

� ��D
a u0 ln T

Q ln
t
s0

� �h i�D

Table 4.2 The destruction time sM for the hierarchical structure

sM Ul uð Þ Up uð Þ Ue uð Þ
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e
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� �1
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s0
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DUM
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structure transformation, and on the other hand, by the smallness of the inhomo-
geneity energy. Indeed, under these conditions, the implementation of structural
transformation in the minimal critical volume leads to an increase in the density of
TP that is responsible for the minimum barrier. The smallness of the inhomogeneity
energy causes a gradual growth of OLS clusters (one-dimensional long-period
structures), for which it is more meaningful to grow not by shifting borders, as in
the phase transitions of the first kind, but by correlating the clusters. This process
leads to an increase in the volume and thermal effects, and hence, to the filling of
deepest TP minimums.

As stated above, the slowly damping power distribution ps uð Þ of distances in the
ultrametric space is realized in the systems with the strong hierarchical bonding,
and exponential distribution pw uð Þ in the weak hierarchical systems. At the given
level of probability p0 � 1, it is expressed through the transformation of charac-

teristic distance u0 � p�1=D
0 with the power distribution in comparison with the

distance uw � e ln pej j at the exponential. According to Table 4.1, the systems with
the strong hierarchical bonding exhibit a slower kinetics than with the weak
bonding. For them, in particular, it may cause substantial complete freezing of the
process at all temperatures (in the case of the exponentially growing fractal relief
height).

With regard to the restructuring of the crystal structure, this means that the stable
long-period structures are implemented only in the strong hierarchical systems with
an exponential increase of the relief height. It is easy to see that such conditions can
be achieved through the presence of long-range forces. Indeed, if the value of su,
where s—the branching of Cayley tree, is compared with the cluster size L=n,
referred to the coherence length ξ, then for its formation the characteristic inter-

action radius must exceed the value L ¼ nsu0 � ns�p�1=D
0 . As for the condition of the

exponential growth of the relief height, it is obviously realized at the large sizes of
clusters and when the thermodynamic limit is reached U uð Þ / L / e u ln sf g.

If these conditions are not met, then over time there is one type of OLS
restructuring in the other. To clarify their natures, we consider the distribution of the
fractal relief heights corresponding to the set of structures that are solvable in this
experiment. Let it be given by the sequence U1\U2\ � � �\Un. Then, in the
microscopic time s0, long-period structure is a thermally formed, characterized by
the greatest value of Ul, satisfying the condition Ul � T . It will exist until the time
tlþ 1 ¼ s0eUlþ 1=T and until the thermo-fluctuational structure is formed, following
the hierarchical series. As a result, the duration Dtl ¼ tlþ 1 � tl of the long-period
structure existence is defined by

Dtl
tl

¼ exp
Ulþ 1 � Ul

T

	 

� 1 ð4:41Þ

The characteristic is that the value Dtl=tl depends on the ratio of the temperature
and nearest in the hierarchical series of the TP barriers.
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When the ratio Ulþ 1=Ul � 50, Ul=T � 1 in the first macroscopic level
tl � t0 � 10�13 sð Þ we have the characteristic time Dtl of the macrostructure stabi-
lization in the order of several tenth of years [43].

The above picture of fatigue failure in the form of the sequence of elementary
acts of merging clusters described in the ultrametric space with the dependence of
Pu tð Þ of type (4.17), with the characteristic time s uð Þ of type (4.18) is reduced to the
fractal kinetics of crystal structure readjustment, which takes into account the
impact force of hierarchical relationship on the distribution of the TP U uð Þ in the
ultrametric space. Thus, under the TP barrier height we should understand Q uð Þ. As
a result, the substitution of relations (4.39) and (4.40) into (4.17) and (4.18) leads to
the asymptotic behavior indicated in Table 4.1. It follows that at the power dis-
tribution ps tð Þ, applicable to the high hierarchical systems, the logarithmic increase
of relief Q uð Þ gives the power dependence with the probability P tð Þ (4.19), the
power relief gives the slow logarithmic dependence. Accordingly, in the rapidly
decreasing exponential distribution pw uð Þ, corresponding to the weak hierarchical
systems, we have the consistently stretched Kohlrausch exponential and the loga-
rithmic damping of the probability P tð Þ. Characteristically, in all cases the proba-
bility of failure P tð Þ � 1 is implemented over time

td � s0 exp
Q
T

	 

ð4:42Þ

and it is reduced to the main result of the kinetic theory [44].
Thus, the hierarchical clustering of frustrons, flowing through the chain-like

mechanism, leads to the significant slowdown of the destruction process. If the
behavior of the system is determined by rapidly damping the Debye exponential,
then the inclusion of the weak hierarchy [the exponential distribution pwðuÞ]
rebuilds it into the stretched Kohlrausch exponential, quasi-power, and logarithmic
dependences [in accordance with the type (4.49) of the function UðuÞ ¼ QðuÞ];
with the strong hierarchy, characterized by the power distribution ps uð Þ, there is
even the double logarithmic slowing, indicating the complete lack of destruction.

4.5 Relationship Analysis of the Fractal Dimension
of Pre-fracture Dissipative Structures with Mechanical
Properties and Critical States of Deformation
of Metals and Alloys

The influence of solids surfaces on their strength and ductility has been the subject
of a large number of studies over many decades. With development of the theory of
dislocations, the view began to form that the primary dislocations in the loaded
crystal arise on its surface. This idea was expressed in the middle of the last century
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by Gilman based on a study of the deformed crystal of LiF with etching pits [45].
Further researches in this area support Gilman’s idea [21, 46].

Whereas previously, the main efforts of researchers of fracture mechanics of
materials were focused on the link between their initial microstructure and prop-
erties, then by now it was established [21, 46, 47] that the resistance to fracture of
metals and alloys is determined by the dynamic structure forming in the defor-
mation process, and it requires analysis of the deformable material as an open
system, exchanging energy, and matter with the environment. During the evolution
of system, due to the accumulation of fatigue damages under the cyclic loading, the
old structure is destroyed and new one is created.

In this case, it is necessary to formulate the research of the cooperative inter-
action between the static (original) and the dynamic (emerging under load)
structures.

Formation of the real microstructure of crystalline solids is due to phenomena far
from equilibrium and takes place in the self-localized, non-equilibrium areas
existing even in the quasi-equilibrium-condensed media. In accordance with the
general laws of the non-equilibrium system behavior [45], the deformable crystal
should be viewed as the system, where the dissipative structure formed during the
deformation occurs (like the Bernard cells), capable of more effectively performing
the macro-plastic flow in comparison with the individual dislocations. Exactly, from
these positions the phenomenon of fragmentation of deformable solids is treated,
and in continuum mechanics the structural elements of deformation are taken into
account [21, 46]. In general, there is the hierarchy of its levels, defined as the initial
structure of the medium, and the formation of dissipative structures related with the
deformation defects [40, 47, 48].

The dissipative structures, self-organizing in the open systems, are fractal, which
calls for the combined approach of synergy and fractal theory in the study of
physical and mechanical nature of material fracture. Synergetics has expanded the
concept of structure, giving it the flexibility and the fractal theory allowed to
introduce new quantitative structures in the form of fractal dimension.

The synergetic approach to the tribological problems provides a solution to one
of the most important tasks—to establish the bond between the fractal dimension of
the dissipative zone of pre-fracture, and the mechanical properties and the critical
states of deformation of metals and alloys [40].

The following is the solution to this problem.
For the dissipative structures, which include the structure of pre-destruction

zone, the self-similarity dimension Ds is also the fractal dimension D. If we con-
sider the destruction as the non-equilibrium phase transition in the bifurcation
points, we should determine the fractal dimension of dissipative structures that
control the free destruction. Near the bifurcation points, the dissipative structures
are the dynamic set, having the property of universality and the scaling invariance,
and the ability of self-similar growth. These same properties are also characteristic
to the fractal structures. Therefore, it is natural to use the concept of fractals for the
qualitative description of the dissipative structures of the pre-fracture zone, and
establishing the bonds between its fractal dimension and the mechanical properties.
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The self-similar growth of the fractal cluster crack is described by using the
self-similarity in the form of:

r j0
� �

i�1

�
r j0
� �

i ¼ D1=m; m ¼ 2; 4; 8; 16; . . .;

where r j0
� �

i�1 and r j0
� �

i—the preceding and subsequent sizes of the fractal clusters
in the direction of crack motion; D—the universal constant of destruction.

Therefore, this growth can be represented as the blocks of the intermediate
asymptotes in which the following sequence of threshold sizes of fractal clusters is
observed [49]:

I block: rI01=r
I
02 ¼ rI02=r

I
03 ¼ � � � ¼ ri�1

01 =ri02
� �I

;

II block: rII01=r
II
02 ¼ rII02=r

II
03 ¼ � � � ¼ ri�1

01 =ri02
� �II ð4:43Þ

etc., so that during each iteration cycle

rI01=r
II
01 ¼ rII01=r

III
01 ¼ � � � ¼ rN�1

0j =rN0j ¼ D: ð4:44Þ

This means that at each exit from the block of intermediate asymptotic sizes of
the fractal cluster increases by an amount D�N , where N—the number of iterations
N ¼ 1; 2; 3. . .ð Þ. This allows us to use similar function D1=m as m ! 1 as a
function of self-similarity in the ratio of Mandelbrot, presenting it in the form

DDs ¼ 1=icr ð4:45Þ

Here, icr is the scale factor, which takes into account the ratio of the maximum
scale of observation to the minimum and characterizing the critical parameters of
crack—its maximum increase rmax

c as a result of self-similar growth of micro-cracks
with an initial length rc0. The value D in (4.44) is the universal constant, which is
determined by the sequence of golden ratios 0:382 ! 0:216 ! 0:144 ! 0:105
having the constant value for each metal.

The observation scale is the critical size of cluster, within which the density
function of the deformation energy dW=dVð Þc (W—the energy, V—the volume)
has the constant value equal to Wc. Within rc0, the energy dissipation processes are
associated with the non-equilibrium phase transitions of the crystalline phase in the
quasi-amorphous and from the quasi-amorphous into the destructive at the same
level of the density function of deformation energy Wc. The stability criterion of
zone rc0 is written as follows:

Wd=Wv �Wc
d=W

c
v

where Wd , Wc
d—the density function of distortion energy (changes in shape) and its

critical value; Wv, Wc
v—the density function of dilation energy (changes in volume)

and its critical value.
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Thus, the pre-fracture zone at the upper boundary of the crack growth following
the rift mechanism (type I) under the conditions of plain deformation at KI ¼ KIc

(KI—the stress intensity factor at the crack edge movement of type I and KIc—the
critical value of factor KI) can be characterized by two scaling parameters: the
cluster size capable to the self-similar growth rc0

� �
and the maximum size of the

pre-fracture zone at auto-scaling rmax
c

� �
, which determines the scaling factor

icr ¼ rmax
c =rc0. Then, (4.45) can be written as follows:

DDs ¼ rc0=r
max
c ð4:46Þ

Taking into account the expressions for rc0 and rmax
c

rc0 ¼ 1þ mð Þ 1� 2mð Þ=2pE½ 
 � K2
Ic=Wc

� �
; ð4:47Þ

rmax
c ¼ Kmax

IR =rT
� �2

1=2pð Þ ð4:48Þ

formula (4.46) can be written as follows:

DDs ¼ 1þ mð Þ 1� 2mð Þ=E Kmax
IR

� �2h i
� p��; ð4:49Þ

where p�� ¼ KIcrTð Þ2=Wc; rT—the yield stress; Kmax
IR —the dimensional constant

that controls the borders of self-similarity at this scaling level. The values of
constants Kmax

IR for alloys based on iron, nickel, titanium, and aluminum are given in
[50]; the values of KIc and Wc for different steel grades are given in [51].

From (4.49), we find

Ds ¼ ln
1þ mð Þ 1� 2mð Þ
E Kmax

IRð Þ2
" #

� p��
( ),

lnD; ð4:50Þ

from where it follows that the self-similarity dimension of the fractal clusters in the
pre-fracture crack zone (which is also the fractal dimension for the dissipative
structure) depends on the elastic constants E, m and the invariant set of mechanical
properties p��.

Taking into account the maximum value of the effective Poisson’s ratio, it is
accepted [51] in (4.50) to limit the fractal dimension Ds ¼ 2:95 and to discretely
shift the dependence (4.50) to a new level Ds � 1 at Ds [ 2:95. This shift corre-
sponds to the expression (4.50), presented in the form of the following:

DDs þM ¼ ln
1þ mð Þ 1� 2mð Þ
E Kmax

IRð Þ2
" #

� p��
( ),

lnD ð4:51Þ

where M ¼ 0 and M ¼ 1 for the quasi-brittle and viscous rifting, respectively. The
results of calculations using the formula (4.51) for the fractal dimension of the
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pre-fracture zone according to the complex mechanical properties of various steel
grades are given in [50, 51]. The existence of two values of the scaling factor
icr ¼ 985:4 and icr ¼ 985:8 for the steel grading 16ГMЮ4 at Ds ¼ const and DK ¼
KIC ¼ const is the reflection of the properties of synergistic systems—to express
few balanced states in the transition through the critical point. In this case, at the
same dissipative structure Ds ¼ constð Þ the system during the transition
“balance-instability-balance” chooses the optimal way of future energy dissipation
mechanism, either by forming the free rift surfaces (the unstable fracture) or by
doing the plastic deformation (the plastic instability). The first mechanism leads to
the limitation of durability or to the reduction of the scaling factor [M ¼ 0 in
Eq. (4.51)], the second to an increase of durability ðM ¼ 1Þ. This swaps to a new
dissipative structure preserving the macro-stable system. The steels with the fractal
dimension of dissipative structure corresponding to M ¼ 1 have a greater margin of
durability than the steels with M ¼ 0, since the scaling factor determines the
number of “quants” of emitted energy at the time of fracture instability.

As already mentioned, the maximum dimension Dmax of the self-similar objects
in the isolation should not exceed 2.95. This allows us to calculate the value of 1=icr ,
up to which the relation (4.45) is valid. Given the fact that for the steel D ¼ 0:11,
for the titanium alloys D ¼ 0:12, and for the aluminum alloys D ¼ 0:22, we obtain
1:49
 10�3, 1:92
 10�3, and 1:19
 10�2, respectively. The analysis of experi-
mental data from [50], obtained for the steels of different strength levels, shows that
the dependence (4.45) in should be represented as follows:

DDs þM ¼ 1=icr ð4:450Þ
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Fig. 4.8 The dependence of
the fractal dimension on the
scaling coefficient for steels
with different strength levels:
The continuous line is
calculated; the points are
experimental
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at M ¼ 1 and M ¼ 0. This means that in the transition from the dependence (4.45)
to (4.45′), the straight line D ¼ log 1=icr

� �
(Fig. 4.8) shifts at equal distance to the

left by the value D.
The jolting of the fractal dimension D of the dissipative structure at 1=icr ¼

1:49
 10�3 at the point Q in Fig. 4.11, corresponding to Dmax ¼ 2:95, is associated
with the structural elastic-plastic transition in which DDmax ¼ DDmin þ 1, giving
Dmin ¼ 1:95. Thus, at the rifting of type I, the fractal dimension of the grouped
dissipative structure varies within the interval 1:95�D� 2:95. The value of D,
complying the interval 0:95�D� 1:95, characterizes the fractal dimension of the
dissipative structure in the form of an ensemble of crystallographic micro-cracks.

The connection in DKI ¼ Kmax
Iq , corresponding to the transition of the

macro-cracks into the instability, is defined as [52]

Kmax
Iq ¼ Kmax

IR � D�1=2 nmax � nð Þ= nmax � nminð Þ½ 
: ð4:52Þ

This allows us to calculate D using rc0, calculated through the relation:

roc ¼
1þ mð Þ 1� 2mð Þ Kmax

IR

� �2
2pED �Wc

" #
nmax � nð Þ

nmax � nminð Þ
� �2

: ð4:53Þ

Here, the parameter n is a characteristic associated with the dynamic structure
that controls the destruction rate of the crack edge motion of the type I; the constant
values of nmax and nmin for the alloys based on iron, nickel, titanium, and aluminum
are given in [40].

On the other hand, at KI ¼ KIC the depth of zone hA under the crack with the
limiting density energy of deformation is associated with roc through relationship
[53]

roc ¼ 2hA
1þ mð Þ 1� 2mð Þ
2p 1� m2ð Þ

� �
: ð4:54Þ

So D can be determined either by KIC, rT and Wc [the ratio (4.47)], or by rT ,
n and Wc [the ratio (4.53)], or by rT and hA [the ratio (4.54)]. In [50], there is a
comparison of the values of D, calculated on the roc, determined using (4.47) and
(4.54). As shown in table, for many steel grades the discrepancies in obtained
values for D only occur in the second decimal places.

However, quantifying the fractal dimension of the dissipative structure is not
sufficient to describe the process energetics, as it is required by the bounds between
the scaling factor, the fractal dimension, and the energy “quantum” necessary to
develop the free destruction. To solve this problem, we use the concept of fractal
energy by Williford [54], according to which the fractal energy is represented in the
form:
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E ¼ k1 � gD; ð4:55Þ

where k1—the constant depending on the material properties; g—the scale
observations.

Based on Rosenfeld [55], we express E through the ratio (4.55) in terms of
energy per unit of crack length E ¼ GIC=2 for the maximum scale rmax

c , and for the
minimum scale of observation roc—through E ¼ GOC=2, where the GOC—the
minimum energy required for the free destruction with rift. Then, on the basis of
(4.55) we have

GIC ¼ kl � rmax
c

� �D
; GOC ¼ kl � rocð ÞD: ð4:56Þ

From (4.56), the following expression for the energy “quantum” of the free
destruction with rift:

GOC ¼ GIC
roc
rmax
c


 �D

: ð4:57Þ

Taking into account the expression that defines the critical velocity of energy
emission value GIC at the critical value of KI ¼ KIC, required for the crack edge
movement

GIC ¼ K2
IC � 1� m2ð Þ

E
; ð4:58Þ

from (4.57) with KI ¼ KIC, we will have
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Fig. 4.9 The relationship
between the relative energy of
free destruction and the fractal
dimension of the dissipative
structure during the rift for
various strength level steels
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K2
OC ¼ K2

IC
roc
rmax
c


 �D

: ð4:59Þ

Thus, the relative “quantum” energy for the initial free self-similar crack growth
and the scaling factor is related to each other (Fig. 4.9).

This allows using the fractal dimension to calculate the minimum energy GOC

for the micro-cracks self-similar growth. It is this energy that controls the beginning
of crack growth near the threshold of kinetic diagrams of fatigue failure.

The above analysis implies the possibility of a sharp increase in the informa-
tiveness of experimental data with regard to the mechanical properties during
transition to the fractal dimension analysis of the dissipative structures and the
fractal energy. The presence of the single bonding between the scaling factor, the
fractal dimension, and the relative energy of free destruction is the basis for
development of methods to predict the behavior of materials in products using the
indicators of dissipative properties in material.

As stated in [56], the fractal dimension D of the structural perturbation of
three-dimensional crystal lattices is determined by the ratio of the longitudinal and
shear stiffness:

2�D� E=Gð Þ ¼ 2 1þ mð Þ� 3: ð4:60Þ

Given the limits of Poisson’s ratio m for solids (mmax ¼ 0:475 and mmin ¼ 0:165),
established by Kuz’menko [57], the fractal dimension of dissipative structures
implemented in the viscous rift must meet the interval

1:95�D� 2:95: ð4:61Þ

As we know, the concentrated deformation precedes the viscous destruction of
materials, which is absent in the quasi-brittle destruction. The critical parameter in
both cases is the ultimate uniform deformation, the system in the form of
deformable solids becomes unstable, and so the bi-furcation point is reached. At the
transitions “balance-instability-balance,” there are two possibilities: It is either
destruction or plastic instability, accompanied by the transition into the concen-
trated strain (neck) (Fig. 4.10).

Therefore, the value of uniform deformation is not just a simple change of the
geometrical shape and size, but also the changes in the state of deformable material.
Since the transition from the uniform deformation to the concentrated is the
unbalanced phase transition, so there must be a relationship between the parameters
controlling this or the next point of instability.
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Based on the data analysis of the steel samples on the mechanical tests for tensile
in [58], the universal connection between mechanical properties is established:

1� w ¼ 1� wcð Þ 1� wnð Þ; ð4:62Þ

dn ¼ 0:23wn; ð4:63Þ

dn ¼ wc

1� wn
; ð4:64Þ

d ¼ dc þ dn; ð4:65Þ

where d, dc and dn—the complete, uniform, and necking relative residual elonga-
tion, respectively; w, wc and wn—the complete, uniform, and necking relative
residual, respectively.

d
0

d
n

(a) (b)

Fig. 4.10 Two types of instability deformable solids associated with the transition from the
threshold to the destruction of uniform strain (a), or plastic instability (concentrated strain) (b)
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Since the nature of destruction is determined by the type and the fractal
dimension of the dissipative structures in the pre-fracture area, controlling the
level of energy dissipation, then the ductile–brittle transition is the result of a
spontaneous change of dissipative structures due to the non-equilibrium (phase)
transition upon achieving the critical state of the lattice in the areas of accu-
mulation excessive energy, that is already reshaping it cannot be compensated
by the change in volume. This corresponds to the limit tensile strain at the
meso-level [59], and it is equal to

dc ¼ 1
D
; ð4:66Þ

where D ¼ Ds is defined by (4.45).
Then, on the basis of (4.64) and (4.66), we have

D ¼ 1� wc

wc
: ð4:67Þ

Taking into account the changes in the boundaries of D at the brittle fracturing
1�D� 2ð Þ, we can set the thresholds wc corresponding to wc ¼ w�

k ¼ 0:50 at
D ¼ 1, and wc ¼ wk2 ¼ 0:50 at D ¼ 1.

At destruction controlled by the plastic instability 2�D� 3, wc ¼ f wð Þ.
According to [59],

1.0

1.0

c

0.5

0.5

Fig. 4.11 The relationship
between the normalized
necking wc=w in the uniform
deformation area and the
marginal transverse
deformation for various yield
stress

4.5 Relationship Analysis of the Fractal Dimension … 173



wc

w
¼ 1:5 1� wð Þ: ð4:68Þ

This dependence on the upper boundary at wc=w ¼ 1 meets w ¼ 0:33 and at the
bottom—w ¼ 1.

Figure 4.11 compares the dependence obtained by setting the boundary condi-
tions with the experimental data. And they are in the perfect harmony.

The joint solution of Eqs. (4.67) and (4.68) gives

D ¼ 1
1:5w 1� wð Þ½ 


	 

� 1: ð4:69Þ

The Eq. (4.69) allows us to set the thresholds w at the neck fracture: w ¼ w�
k ¼

0:50 at D ¼ 1:67, w ¼ wk1 ¼ 0:67 at D ¼ 2, and w ¼ wk2 ¼ 0:79 at D ¼ 3, and
where wk3 corresponds with the transition into the quasi-viscous destruction, wk1—
to the ductile-brittle, and w�

k ¼ 0:50—to the quasi-brittle fracture. These transitions
are recorded in Table 4.3 [51].

Figure 4.12 shows dependencies D ¼ f wð Þ by (4.69) in the change intervals
1�D� 2 (curve 1) and 1:67�D� 3 (curve 2). A comparison of the dependences
(4.69) D ¼ f wð Þ and D ¼ f 1=icr

� �
, resulted from (4.61), shows their agreement.

The phenomenon of deformed metal transition from the viscous condition into
the brittle is called cold-brittleness. It is associated with the transition from the
controlled impact on the destruction of instable meso-clusters (the ductile fracture)
to the unstable micro-clusters (the brittle fracture). This determines the transfor-
mation of fractured surface, provided by the fractalness and the fractal dimension of
structure in the pre-fracture zone, and the spontaneous change of the fractal
dimension dependence on the lateral deformation (the transition from dependence
(4.68) to (4.69) at w�

k ¼ 0:50). The transformation of fractal object is characterized

Table 4.3 Recorded transitions

Type of
fracture

Fractal
dimension

Threshold values w Fractal object

Quasi-viscous D[ 3 wk3 ¼ 0:79 Fractured volume

Viscous 2�D� 3 wk1 ¼ 0:67 D ¼ 2ð Þ;
wk3 ¼ 0:79 D ¼ 3ð Þ

Fracture surface

Viscous-brittle 1:67�D� 2 w�
k ¼ 0:50 D ¼ 1:67ð Þ;

wk1 ¼ 1:67 D ¼ 2ð Þ
At w ¼ 0:5, the transition from
the fractal surface of fracture to
the fractal front of crack

Quasi-brittle 1�D� 2 w�
k ¼ 0:50 D ¼ 1ð Þ;

wk2 ¼ 0:33 D ¼ 2ð Þ
At w ¼ 0:5, the transition from
the fractal front of crack to the
structure elements of fracture

Brittle D� 1 w� 0:33 Structure elements at fracture
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by the transition at w�
k ¼ 0:50 for the fractal surface at 2�D� 3 to fractal front of

crack at 1�D� 2.
Thus, the ductile–brittle transition meets all the properties of the critical points at

w ¼ w�
k ¼ 0:50. This allows us to use the w�

k to determine the true transition
temperature t�k based on the temperature dependence. In addition, knowing the
threshold values w ¼ wk2 , wk1 and wk3 matching, respectively, to 0.33; 0.67; and
0.79, allows the temperature dependence of w ¼ w tð Þ, determined under the stan-
dard testing of smooth specimens in tension, and to establish tk1 and tk2 charac-
terizing the transition from ductile to ductile–brittle, and from ductile–brittle from
quasi-brittle fracture. The determination of transition temperature tk1 and tk2 is
provided in accordance with ГOCT 25.506-85.
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Chapter 5
Multifractal Analysis of Fatigue Failure

Various physical objects and signals even those with self-similarity very rarely can
be described with only one value—the fractal dimension. That is why analyses
based on the multifractal theory (inhomogeneous fractal objects) have received
widespread. The multifractal provides vast new possibilities of fractal analysis for
the complex stochastic processes. One fractal dimension is not enough to charac-
terize the multifractal; it requires an infinite range of dimensions. The idea of
multifractal analysis is to break down the studied sets with the complex statistics
into the multiple homogeneous sets with distinct fractal dimensions [1, 2].

In 1983, Grassberg, Hentchel and Procaccia [3, 4] introduced a family of gen-
eralized dimensions Dq in the nonlinear dynamics, referred as Rényi dimension
named after the Hungarian mathematician who proposed them earlier in a different
context.

Using the abilities of multiscale analysis for the complex stochastic processes to
identify their local singularities (singularities) based on the multifractal formalism,
we research the mechanism of fatigue fracture as the process reversed to the process
of the successive period-doubling bifurcations according to the Feigenbaum
scheme.

5.1 Key Concepts of Multifractal Analysis—Generalized
Fractal Dimensions

Let us give an overview of multifractal [5]. Consider the fractal object A, which
occupies some limited area G of size L in the Euclidean space with dimension
d. Suppose that at some stage of its construction, it represents the set of points
N � 1 somehow distributed in this area. We assume that at the end N ! 1.

The entire area G is divided into the cubic cells with sides e � L and volume ed .
Next, we will be interested only in those cells that contain at least one point. Let the
number of occupied cells i ranges i ¼ 1; 2. . .N eð Þ, where N eð Þ—the total number of
occupied cells, which is convergent and depends on the size of cell e.
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Let ni eð Þ—the number of points in cell with the cardinal number i, then

pi eð Þ ¼ lim
N!1

ni eð Þ
N

ð5:1Þ

represents the probability that a randomly chosen point from the set A comes from
the cell i. In other words, the probability pi characterizes the relative cell density.
From the normalization condition of probability, it follows that

XN eð Þ

i¼1

pi eð Þ ¼ 1: ð5:2Þ

The generalized multifractal analysis is based on the so-called the partial func-
tion (the generalized partition function) Z q; eð Þ, where the exponent q can take any
value within the range �1\q\þ1:

Z q; eð Þ ¼
XN eð Þ

i¼1

pqi eð Þ: ð5:3Þ

Characterizing the distribution of points in G, the spectrum of generalized
fractal dimensions Dq (Rényi dimensions) is determined by the relation

Dq ¼ s qð Þ
q� 1

; ð5:4Þ

where the nonlinear function s qð Þ (it is called the scaling exponent in the scientific
literature) has the form

s qð Þ ¼ lim
e!0

ln Z q; eð Þð Þ
ln e

: ð5:5Þ

If Dq ¼ D ¼ const, so it does not depend on q, then this set of points is a
conventional (regular) fractal, characterized by only one value—the fractal
dimension D. In contrast, if the function Dq somehow varies with q, this set of
points is considered multifractals.

Thus, the multifractal is generally characterized by scaling exponent s qð Þ, which
determines the behavior of the partition function Z q; eð Þ at e ! 1:

Z q; eð Þ ¼
XN eð Þ

i¼1

pqi eð Þ � es qð Þ: ð5:6Þ
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In the case of the regular fractal, there are equal number of points in each cell

ni ¼ N
N eð Þ : ð5:7Þ

so that the fractal is homogeneous. Then, the relative density of all cells,
pi eð Þ ¼ 1=N eð Þ, is also the same, and the generalized partition function takes the
form

Z q; eð Þ ¼ N1�q eð Þ: ð5:8Þ

According to the definition of the fractal dimension D, the number of occupied
cells at the sufficiently small ε behaves as the following

N eð Þ ¼ e�D: ð5:9Þ

Substituting this in (5.8) and comparing it with (5.6), we conclude that in the
case of normal fractal the function

s qð Þ ¼ q� 1ð ÞD ð5:10Þ

is linear. Then, all Dq ¼ D and really do not depend on q. The fractals, where all the
generalized fractal dimensions Dq coincide, are often referred by the term of
monofractal.

It follows from (5.9) that the formula for the fractal dimension of monofractal is

D ¼ � lim
e!0

logN eð Þ
log e

: ð5:11Þ

The quantity D, defined by the formula (5.11), is called Minkowski dimension of
set A and denoted by dimM Að Þ. This dimension is related to the Hausdorff
dimension (denoted by dimH Að Þ) in the inequality [6]

dimH Að Þ� dimM Að Þ: ð5:12Þ

In practice, we use the dimension dimM Að Þ to construct the fractal dimension of
monofractal (slightly inflated in comparison with dimH Að ÞÞ, calculated on computer
using the simple algorithms based on a point or cellular techniques [6]. The latter is
also called the “box method” [7, 8].

At q ¼ 0 from expression (5.3), it follows that

Z 0; eð Þ ¼ N eð Þ: ð5:13Þ
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On the other hand, according to the formulas (5.4) and (5.6)

Z 0; eð Þ � es 0ð Þ ¼ e�D0 : ð5:14Þ

Comparing these two equalities, we come to the relation N eð Þ � e�D0 . This
means that D0 represents the ordinary dimension dimM Að Þ, which is also called the
volumetric dimension [9].

At q ¼ 1, due to the normalization of probability (5.2), the partition function is
equal to

Z 1; eð Þ ¼ 1; ð5:15Þ

then from (5.6) we find that s 1ð Þ ¼ 0. Thus, the expression (5.4) at q ! 1 has the
uncertainty 0=0, and following L’Hospital’s rule, we find that

lim
q!1

Dq ¼ lim
q!1

s0 qð Þ: ð5:16Þ

Let us assume Z q; eð Þ in the form of obvious equality

Z q; eð Þ ¼
XN eð Þ

i¼1

pqi ¼
XN eð Þ

i¼1

pie q�1ð Þ ln p½ �:

Now, expanding the exponential in the neighborhood of q ¼ 1 and taking into
account the normalization condition (5.2), we obtain

Z q ! 1; eð Þ ¼
XN eð Þ

i¼1

pi þ q� 1ð Þpi ln pi½ � ¼ 1þ q� 1ð Þ
XN eð Þ

i¼1

pi ln pi;

from which it follows that

d
dq

Z q; eð Þjq¼1¼
XN eð Þ

i¼1

pi ln pi: ð5:17Þ

Taking into account (5.15) and (5.17), we obtain

d
dq

ln Z q; eð Þð Þjq¼1¼
d
dq Z q; eð Þ
Z q; eð Þ

������
q¼1

¼ d
dq

Z q; eð Þ
����
q¼1

¼
XN eð Þ

i¼1

pi ln pi: ð5:18Þ

Differentiating (5.5) at q ¼ 1 taking into account (5.18) and substituting the
expression found for s0 1ð Þ into (5.16), we obtain
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D1 ¼ lim
e!1

XN eð Þ

i¼1

pi
ln pi
ln e

: ð5:19Þ

With accuracy up to the sign, the numerator in this equation is the entropy of a
fractal set A

S eð Þ ¼ �
XN eð Þ

i¼1

pi ln pi:

Since the entropy is a measure of information required to determine the system at
a position i, we may say that the value D1 characterizes the information necessary to
locate a point in some cell. Because of property, the magnitude D1 is called the
informational dimension [9].

At q ¼ 2, the Dq is expressed as

D2 ¼ lim
e!0

ln
PN eð Þ

i¼1 p2i
ln e

: ð5:20Þ

The value D2 is closely linked to the behavior of the so-called the correlation
integral defined by the expression [10, 11]

I eð Þ ¼ lim
N!1

1
N2

X
n;m

h e� ~rn �~rmj jð Þ: ð5:21Þ

The summation take place across pairs of all fractal points of the set A with the
radius vectors~rn and~rm; h xð Þ—the Heaviside (step) function, h xð Þ ¼ 1 if x� 0, and
h xð Þ ¼ 0 if x\ 0. The sum in (5.21) determines the number of pairs of points in n,
m, for which the distance is less than e. Since the quantity p2i is the probability that
two points will get into the same cell i of size e, the distance between these two
points will be less or equal to e. Thus, with the accuracy of numerical coefficients,
and taking into account the equality (5.20), we obtain

I eð Þ �
XN eð Þ

i¼1

p2i � eD2 : ð5:22Þ

This shows that the generalized dimension D2 determines the dependence of the
correlation integral I eð Þ on e within the limit e ! 0. For this reason, D2 is called the
correlation dimension.

For any arbitrary exponent q, the generalized fractal dimension Dq always
monotonically decreases (or remains constant in extreme cases) as q increases
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Dq �Dq0 at q0 [ q: ð5:23Þ

The equality is valid, e.g., for a homogeneous fractal. The Dq reaches its
maximum value of Dmax ¼ D�1 at q ! �1, and the minimum value of Dmin ¼
Dþ1 at q ! þ1.

As it is already noted, one of the main characteristics of the multifractal is the
dependence of the probability pi on the size of cell e. This dependence has expo-
nential nature

pi eð Þ � eai ð5:24Þ

where ai is some exponent, generally different for various cells i (with respect to it,
the terms “singularity component” and “singularity exponent” are widely used in
the literature). The lower the value of ai, the more singular is the measure.

It is known that for the regular (homogeneous) fractal, all exponents of ai are the
same and equal to the fractal dimension D. Then,

pi ¼ 1
N eð Þ � eD: ð5:25Þ

However, for such a complex object as the multifractal, due to its heterogeneity,
the probability pi of filling up the cells is generally not the same, and the exponent
ai is different for cells with different values. Fairly, the typical situation is when
these values are continuously filling up a closed interval amin; amax½ �, and

pmin � eamin ; and pmax � eamax : ð5:26Þ

It is easy to show that

ds
dq

����
q!þ1

¼ Dþ1 ¼ amin;
ds
dq

����
q!�1

¼ D�1 ¼ amax: ð5:27Þ

So that the range of possible values α is defined by limits (at q ! 	1) of the
generalized fractal dimensions Dq.

Let us consider the nature of the probability distribution for the different values
of ai. Let n að Þda is the probability that ai is within the range from a to aþ da. In
other words, n að Þda represents the number of cells i with the same measure pi, and
ai lying in this range. In case of monofractal, where all ai are the same (and equal to
the fractal dimension D), this number is obviously proportional to the total number
of cells N eð Þ � e�D, exponentially dependent on the size of cell e. The fractal
dimension D determines the exponent in this equation.

However, this is not the same for multifractal, so the different values a not just
corresponds to the different values of the probability and D, but to the different
(depending on a) values of f að Þ in the exponent.
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n að Þ � e�f að Þ: ð5:28Þ

Thus, the physical meaning of the function f að Þ lies in the fact that it represents
the volumetric dimension (denoted by dc) of some homogeneous fractal subset Aa

from the original set A, characterized by the equal probabilities of filling up the cells
pi � ea. Since the fractal dimension of a subset is always less than or equal to the
fractal dimension of the original set D0, there is an important inequality for the
function f að Þ

f að Þ�D0: ð5:29Þ

So the set of different values of the function f að Þ (at different a) represents the
spectrum of the fractal dimensions of the homogeneous subsets Aa, derived from
the original set A. This explains the term “multifractal.” It can be understood as a
kind of union of different homogeneous fractal subsets Aa, each of which has its
own value of the fractal dimension f að Þ.

Since any subset owns only a fraction of the total number of cells N eð Þ, derived
from the original set A, the probability normalization condition (5.2), obviously,
does not sum up only on this subset. The sum of these probabilities becomes less
than one. Therefore, the probabilities pi themselves with the same value of ai are
obviously less (or equal to in extreme cases) than the value ef aið Þ, which is inversely
proportional to the number of cells, covering the given subset (recall that in the case
of monofractal pi � 1=N eð Þ). As a result, we arrive at the following important
inequality for the function f að Þ. Specifically, for all values of a

f að Þ� a: ð5:30Þ

As an example, the equality holds only for the completely homogeneous fractal,
where f að Þ ¼ a ¼ D:

Let us establish the connection between the function f að Þ and the previously
introduced function s qð Þ (the scaling exponent). For that, we calculate the partition
function Z q; eð Þ. Substituting for the expression (5.3), the probabilities pi � eai and
moving from summation over i to integration over a with probability density
function (5.28), we obtain

Z q; eð Þ ¼
XN eð Þ

i¼1

pqi �
Z

dan að Þeqa �
Z

dan að Þeqa�f að Þ: ð5:31Þ

Since e is very small, according to the saddle-point method the values of a will
have the greatest impact on the integral (5.31), corresponding to the minimum in the
subintegrand. Thus, the relations follow
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df
da

����
a¼a qð Þ

¼ q;
d2f
da2

����
a¼a qð Þ

\0: ð5:32Þ

Comparing the first relation in (5.32) with (5.36), we conclude that

s qð Þ ¼ qa qð Þ � f a qð Þð Þ: ð5:33Þ

Hence, with help of (5.4) we can find the function Dq:

Dq ¼ 1
q� 1

qa qð Þ � f a qð Þð Þ½ �: ð5:34Þ

Thus, if the function of multifractal spectrum f að Þ is known, then with help of
(5.34) and the first ratio in (5.32), the function Dq can be determined. Conversely,
knowing Dq, we can find the relationship a qð Þ using the equation

a qð Þ ¼ d
dq

q� 1ð ÞDq
� �

; ð5:35Þ

and then find from (5.34) the dependence f a qð Þð Þ. These two equations determine
(in parametric form) the function f að Þ.

Formally, the transition from the variables q; s qð Þf g to a; f að Þf g, defined by the
above relation, can be done using the Legendre transformation

a ¼ ds
dq

; f að Þ ¼ q
ds
dq

� s: ð5:36Þ

Equations (5.36) determine the dependence f a qð Þð Þ in the parametric form. The
inverse Legendre transformation is determined by formulas

q ¼ df
da

; s qð Þ ¼ a
df
da

� f : ð5:37Þ

For the homogeneous fractal Dq ¼ D ¼ const. Therefore, a ¼ ds=dq ¼ D and
f að Þ ¼ qa� sq ¼ qD� D q� 1ð Þ ¼ D. In this case, the “graph” of function f að Þ
on the plane a; f að Þð Þ consists of a single point D;Dð Þ.

5.2 Multifractal Nature of Micro-Cracks Merger

Numerous experimental data show [1] that during the cyclic loading at the first
stage of destruction the highly disperse groove is formed, and it is distributed in
accordance with a picture of the stress state of sample. If there is a stress con-
centrator (cut), then it initiates the growth of macro-cracks by the jumping union of
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individual grooves, which are obviously the clusters of failure carriers, combined in
accordance with the distribution of the stress field.

According to the data on acoustic emission, the process of fatigue failure is
leaped by its nature with the development of structural changes, preceding
destruction the sample emits short impulses of varying intensity and frequency [12].

There are two possible scenarios of evolution for the ensemble of elementary
destruction carriers—frustrons (characterizing the break of atomic bonds), dislo-
cations, etc. For not very high values of the shear viscosity g where the quasi-brittle
fracture takes place, the height of the activation barrier Qc, which the system has to
overcome in order to join frustrons, is not very high due to the relative smallness of
the characteristic values of the stress intensity Kc 
 rc ¼ k1=2 
 g1=2 Qc 
K2

c 
 g
� �

.

Therefore, with the feasible probability PN 
 e QN=Tð Þ the fluctuation of cluster
containing the large number of frustrons N becomes possible. This process is
studied in [13] within the framework of non-equilibrium thermodynamics. It is
shown that upon reaching a certain critical value the cluster of frustrons becomes an
energy generator, which means a transition of crack into an athermal mode, i.e., the
beginning of failure.

For the large values of g, when it becomes virtually impossible to form a
dedicated cluster N � 1, the chain process becomes as the most probable for the
formation of the athermal cluster: with the probability P1 
 e �Q=Tð Þ the frustrons
pair, and then with the same probability, and form pairs again, etc. [14, 15].

The transition to such a process due to the fact that at small t the formation of a
cluster consisting of N frustrons leads to multiplying the individual probabilities
P1 PN ¼ PN

1

� �
, while the chained process is characterized by their superposition,

giving much greater importance PN 
N�2 � P1. As a result, the kinetics of
destruction varies critically [15]: if the probability of a lack of fluctuation of cluster
formation at time t is characterized by the Debye dependence P1 tð Þ
 e �t=s0f g,
where s0—the microscopic time, then time of its emergence

tN � �s0 lnPn 
Ns0 lnP�1
1

is comparable with the characteristic scale of the chain process 
 s0=PN , if we
assume that kinetics of the latter is given by the dependence

PN tð Þ
 s0=t ð5:38Þ

quite different from the Debye one.
At step ~m (~m� k; k—the depth of hierarchical bounding of the elementary acts

of the cluster union), the dependence of the barrier height Q uð Þ ¼ U uð Þ on the
distance u ¼ ~m between the nodes at levels n ¼ k and n ¼ k � ~m is presented by
formula
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Q uð Þ ¼ Qe u=u0f g ð5:39Þ

where Q—the Gibbs thermodynamic potential, expressed through the free energy F
(Helmholtz potential), the pressure P and the volume V using the formula [16]

Q ¼ FþP � V : ð5:40Þ

Since Q—the height of the potential barrier before the beginning of chain
mechanism in within one elementary act ~m ¼ 1ð Þ of cluster merging, the thermo-
dynamic potential increases s times, from (5.39) we find

u0 ¼ 1= ln s: ð5:41Þ

For the free energy of phonon gas, we have [17]

F ¼ 3Nk0T ln 1� e�h=T
� �

� Nk0D h=Tð Þ ð5:42Þ

where h—the Debye temperature; N—the number of elementary cells in the simple
crystal lattice (in each unit cell is just one atom); D h=Tð Þ—the Debye function

D h=Tð Þ ¼ 3
T
h

	 
3Zh=T
0

x3dx
ex � 1

: ð5:43Þ

The Debye function has an asymptotic behavior:

D h=Tð Þ ¼ p4
s

T
h

� �3
; T � h for low temperaturesð Þ;

D h=Tð Þ ¼ 1� 3
8

h
T

� �þ 1
20

h
T

� �2
; T � h for high temperaturesð Þ: ð5:44Þ

The pressure P is expressed through

P ¼ 9
8
Nk0h
V

cG 1þ 8
3
T
h
D

h
T

	 
� �
; ð5:45Þ

where k0 ¼ 1:38
 10�23 J=K ¼ 1:38
 10�16 erg=K—the Boltzmann constant
(K—the temperature in Kelvin, 1 J ¼ 10�7 erg), h—the Debye temperature, cG—
the Grüneisen parameter (for one-dimensional linear crystal cG is constant, and
cG � 1, it does not depend on the temperature).

When considering the kinetics of fatigue crack growth according to V.S. Ivanova
[18], one of the main problems is the finding of length change regions for crack,
which contains the same micro-mechanism that controls the rate of crack growth, or
only the micro-mechanism of normal separation, or only the mechanism of
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cross-micro-shear, or only mechanism of longitudinal micro-shear. In general, the
fatigue process in accordance with the diagram of fatigue failure has several steps
(Fig. 5.1) [19].

O.I. Romaniv in his works [20, 21] based on the analysis of experimental kinetic
curves of the fatigue diagrams of structural materials showed that for the vari-
ous stages of the fatigue micro-cracks the following growth rate is implemented:
I—the phase of slow growth with the crack growth rate less than
10�6 � 5
 10�5 mm=cycle; II—the stage of stable growth with the speeds t,
varying in the range of 10�6 � 5
 10�5\t\10�3 mm=cycle; III—the stage of
accelerated growth or unstable with the speeds t[ 10�3 mm=cycle.

The diagrams of the temperature dependence of the structural strength Kc � r0;2
for various steels in logarithmic coordinates shows [21] the existence of the
threshold K�

c stress intensity factor (SIF), corresponding with the beginning of
change of the destruction micro-mechanism from micro-split (quasi-split) to
micro-viscous destruction, i.e., the transition from stage II to stage III. This con-
clusion is confirmed in [22, 23] by a more detailed analysis of the features of fatigue
fracture of structural materials at the bifurcation points using the temperature
dependences Kc ¼ f tð Þ as the linear fractional coordinates (Fig. 5.2)

g ¼ Kc0

Kc � Kc0ð Þ ; n ¼ T0
T � T0ð Þ ;

N
w

k
III

w

lnN

II

e

N
k
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i
k
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B
B`

C`

C

A`

I

Fig. 5.1 The fatigue failure graph according to V.S. Ivanova
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where Kc0 and T0 are, respectively, the values of the SIF and the experimental
temperature at the end of dependence Kc ¼ f tð Þ, and Kc and T are, respectively, the
current values of the SIF and the experimental temperature.

The characteristic time of beginning of the chain unification of the crack clusters
at the fatigue failure can be considered as the transition to the stage III or the
transition time of the micro-band width into the zone of mixed destruction ld .

The more complicated is the process of the material destruction at friction. In this
case, the destruction is caused by the contact interaction accompanied by the joint
action of the surface temperature and the temperature gradient, resulting in sig-
nificant thermal stresses in material of the friction element. A.Kh. Dzhanahmedov
[24, 25] proposed a theoretical model of the failure mechanism as a result of
thermo-mechanical loading at friction. This model supports the hypothesis on the
formation of the surface layer with a low dislocation density and the intense
fracturing in the subsurface layers, which is consistent with experimental results.
On the spot of the actual contact, the stress is proportional to the flash temperature
and causes strong heating in the thin surface layers, which leads to the formation of
burn marks, spots, and the thermal centers of micro-cracks. Therefore, we can
assume that it is in the surface layer in the case of heat when exposed to the flash
temperature Tfla the cracks are born, caused by thermal fatigue of material. The
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Fig. 5.2 The linear dependence Kc ¼ f tð Þ in the fractional linear coordinates for compact samples
of steel 16Г2АФ with 70 mm thickness
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further development of the crack is a result of the cooling of the surface layer and
occurrence of the gradient from the surface temperature T�, when the thermal
stresses in the surface layer reaches the highest value passing the maximum
(Fig. 5.3).

The analyses of friction pairs wear show that under cyclic heating and cooling,
the large impact on the emergence and development of cracks have as the multi-
phase structure as the thermal properties of individual phases. A specific role in
material destruction plays the distribution of cracks on the surface.

Since the flash temperature can quickly reach several hundred degrees, such a
jump in temperature can lead to plasticity of material when the resistance to friction
decreases. Since the actual contact spots interaction lasts 10�6 � 10�3 s, so the
static strength of surface layer of the material of the friction pair is not important,
but the properties of fatigue strength, given that the crystal lattice of the solid body
reacts to impact after 10�8 � 10�5 s. Therefore, the restructuring of surface layer
under the external heat loading occurs through setting the temperature field, and by
the time the temperature becomes steady the surface layer is already under the
influence of certain residual stresses (Fig. 5.4).

On Fig. 5.4 rz and rs are the surface tensions, caused by the gradient temper-
ature and the flash temperature, respectively, at deceleration.
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Fig. 5.3 The dependence of stress on deceleration time (both measureless) at the pulley cooling
for various values of Biot: 1 Bi = 0.5; 2 1.0; 3 0.5; 4 ∞. x = 0
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In view of the above, we can assume that the beginning of the chain process of
the crack merging at friction (with accuracy up to 10�5 s) is the time tc2 required to
reach the flash temperature Tfla.

The elementary act of the crack cluster merging is characterized by the Debye
dependence

Pu tð Þ ¼ e
� t

s uð Þ

n o
ð5:46Þ

with the specific relaxation time

s uð Þ ¼ s0e
Q uð Þ
Tf g: ð5:47Þ

where s0 ¼ 10�12 s—the microscopic time, Q uð Þ—the height of barrier separating
the clusters, the distance between which is equal to u, and T—the temperature in
energy units.

The formation of fractal set according to the Feigenbaum scenario, modeled on
the quadratic mapping, is described by the bifurcation chains m ¼ k � ~m, each of
which divide the set into two. This process moves downwards along the
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Fig. 5.4 Changes in the material surface tension of pulley caused by the temperature gradient and
the flash temperature at braking: 1 rz; 2 rs
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hierarchical branches of the regular Cayley tree with furcation s ¼ 2, starting from
the root at level n ¼ 0. With each step of the mapping iteration, there is a movement
from level on n nodes to level nþ 1 on nodes, which fits into the general picture of
the geometric description of arbitrary multifractal set [26]. It is formed as a result of
n ! 1 steps division of the original set Nn into i fractals with length
li ! 0 i ¼ 1. . .Nnð Þ.

With branching of the Cayley tree s ¼ 2 under the fragment, we will understand
the set of two nodes that share a common ancestor in the preceding level of tree.
Then, after the nth step of division, we receive numerous fragments Nn ¼

Sn
m¼1 Nm

where Nm consists of 2m�1 fragments and therefore, card Nn ¼ Nn ¼
2þ � � � þ 2n ¼ 2nþ 1 � 1 (card—the sign of power in set). Clearly, m ¼ k � ~m, as
the process of pairwise division is inverse to the process of pairwise merging of
clusters.

Let s~m—the time during which the hierarchical relationship is established at a
distance u ¼ ~m, given by the condition p ~mð Þ ¼ s0=s~m. This leads to the overcoming
the fractal relief with height U�U~m, bounded by U~m � U ~mð Þ. Then,

s~m ¼ s0
U~m

Q

	 
u0
k

: ð5:48Þ

Obviously, at ~m ¼ k s~m coincides with the expression for the time sM for the
destruction of hierarchical structure from Table 4.2 the case pw uð Þ and Ue uð Þ, i.e.,
the time of reaching the root of Cayley tree at level n ¼ 0, starting from the tree
nodes at level n ¼ k. After simple transformations, taking into account the
expression for Ue uð Þ from (Sect. 4.4), we find

s~m ¼ s0 � e~m=k ð5:49Þ

Since the process of cluster merging is inverse to the process of fractal set
formation according to the Feigenbaum scenario, considering formulas (5.39),
(5.41), (5.46), and (5.47), the probability of achieving at time s~m the nodes Cayley
tree, at u ¼ ~m away from the most deepest level of nodes n ¼ k in the ultrametric
space, moving upwards along the branches of tree, is equal to

P~m s~mð Þ ¼ exp � s~m
s0e Q ~mð Þ=Tð Þ þ

~m
k

	 

 �
; ð5:50Þ

where

Q ~mð Þ ¼ Qe �~m ln sf g: ð5:51Þ
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As we already know, the simplest model to study the Feigenbaum scenario is the
quadratic mapping

xnþ 1 ¼ f l; xnð Þ ¼ lxn 1� xnð Þ ð5:52Þ

Let in mapping (5.52), the value lm of the parameter l is chosen in such way so
that when passing through these values, the super steady cycles of period 2m are
formed. The possibility of choosing such values of lm is shown earlier. Let us find
out the distance (in the real physical space) dm between the pair of elements of the
super stable cycle of period 2m, which includes the point xc ¼ 1=2 as the fixed point
of 2m (see equality 4.16 for dm). We assume that the probabilities P~m ¼ P~m s~mð Þ
satisfy the relation

P~m ¼ la~m ~m ¼ 1. . .~m0; ~m0 � kð Þ; ð5:53Þ

where l~m ¼ d~m and a—the scaling parameter.
From the sequence of pairs ln P~mð Þ; ln l~mð Þ ~m ¼ 1. . .~m0ð Þ using the method of

least squares we find the parameter a.
As in the case with the monofractal, the original structure is the generating

function with the parameter q:

Mn qð Þ ¼
Xn
~m¼1

N ~mð ÞPq
~m: ð5:54Þ

Assuming the scaling dependence

N ~mð Þ / l�s
~m ; ð5:55Þ

where s—the corresponding parameter, then substituting (5.53), (5.55) into (5.54),
we obtain

Mn q; a; sð Þ ¼
Xn
~m¼1

Pq
~m

ls~m

	 

¼
Xn
~m¼1

lqa�s
~m ; l~m ! 0 at ~m ! 1: ð5:56Þ

At fixed values of n among all fragments of the set Nn produced after the nth step
of division, the value a is implemented for

Nn að Þ ¼ l�f að Þ
n ; ð5:57Þ

fragments, where the function f að Þ defines the dimension of the geometrical set (set
of segments li), which realizes the allocation of measurement (5.56). Using (5.57),
from (5.56) we obtain at given a:

Mn q; a; sð Þ ¼ lqa�f að Þ�s
n ; ð5:58Þ
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Considering the uniformity of values a, from the Eq. (5.58), we find

Mn q; sð Þ ¼
Zamax

amin

lqa�f að Þ�s
n q að Þda; ð5:59Þ

where the function q að Þ describes the density distribution of the fragments ln
according to the parameter a. Evaluating the integral in (5.59) by the saddle-point
method, and taking into account the equalities

df
da

����
a¼a qð Þ

¼ q;
d2f
da2

����
a¼a qð Þ

\0; ð5:60Þ

we obtain an estimate

Mn q; sð Þ � lqa qð Þ�f a qð Þð Þ�s
n : ð5:61Þ

By decreasing fragments ln ! 1, the measure (5.61) takes finite values, pro-
viding that the rate s reduces to s qð Þ, defined by conditions

s qð Þ ¼ qa qð Þ � f a qð Þð Þ; ð5:62Þ

where the dependence a qð Þ is defined by (5.60). The generalized fractal dimension
D qð Þ of the multifractal set A, formed by the chain process of pairwise merging of
frustron clusters with the geometric description in form of the Cayley tree, and
using formula (5.62), is defined by the equality

D qð Þ ¼ q� 1ð Þ�1 qa qð Þ � f a qð Þð Þð Þ: ð5:63Þ

From (5.62) and (5.63), it follows that

a qð Þ ¼ d
dq

q� 1ð ÞD qð Þ½ �; ð5:64Þ

s qð Þ ¼ q� 1ð ÞD qð Þ: ð5:65Þ

The substitution of (5.65) into (5.64) leads to the relationship

a qð Þ ¼ ds qð Þ
dq

: ð5:66Þ
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Let the solid body is subjected to the stress r ¼ r tð Þ; 0� t� sM . We introduce
an auxiliary parameter

q ¼ rc � r
rc

; r\rc; ð5:67Þ

where rc—the critical stress, defined by the theoretical critical strength of material.
At sufficiently large n from the condition

Mn q; a; sð Þ ¼
Xn
~m¼1

lqa�s
~m ¼ 1 ð5:68Þ

we find the dependence s qð Þ at fixed a. Now, using the relation (5.62)–(5.66) we
find the dependence D qð Þ and f að Þ:

The problem of failure at braking is investigated in [19, 24, 25]. According to the
proposed by A.Kh. Janahmadov the thermo-mechanical theory of wear, the thermal
stresses in elements of the friction pairs of brakes, are the consequence of thermal
hit on the frictional surface [27]. The rapid rise of temperature on the frictional
surface causes the thermal hit and all related significant stresses r, and the structural
changes of material in the surface layers of pair.

The sequence of values lm converges as the geometric progression, and starting
from some n ¼ n0 the mapping (5.52) generates sequence

xn0 þ 1 ¼ f l1; xn0ð Þ; xn0 þ 2 ¼ f l1; xn0 þ 1ð Þ; . . .; xn0 þ k

¼ f l1; xn0 þ k�1ð Þ. . . ð5:69Þ

where f l1; xð Þ ¼ l1x 1� xð Þ. A countable set of discrete points xn0 þ 1f gk ¼
1; 2. . .ð Þ has the topological dimension of zero, and its fractal dimension is within
interval 0; 1ð Þ (here under the fractal dimension we mean the Minkowski dimen-
sion, since the Hausdorff dimension for any countable set of Rn is zero [6]). The
higher D qð Þ, the closer to chaos is the process described by the sequence (5.69).
Due to mutually reciprocity of processes (5.69) and chain process of cluster
merging, the large values of a D qð Þ indicate closeness of the hierarchical structure
to destruction, i.e., the fatigue failure of material.

The probability analysis of durability curves under cyclic loading, and also the
distribution of micro-cracks across the length, showed that the slope of curves
controls the probability and the failure mechanism (cyclic, dynamic, and static). In
other words, the rate of change of probability or the number of fragments in
micro-cracks controls the kinetic process of destruction. Evaluation of this
parameter allows us to link the statistical and physical characteristics of destruction,
what cannot be done using the Weibull ratio to find the probability of failure.

Developed above multifractal formalism (see Sect. 5.1) can be expressed
through thermodynamics [26].

Assuming that in (5.56),
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P~m ¼ const � N�1
n ; ð5:70Þ

where Nn—the total number of fragments in set obtained by division after n ! 1
steps. The condition Mn q; sð Þ ¼ 1 yields

N�1
n ¼

X
~m

l�s
~m : ð5:71Þ

Let introduce the parameter of inverse temperature

b ¼ �s ð5:72Þ

and the analog of partition (5.6):

Z ¼
X
~m

lb~m ¼
X
~m

e�be~m ; ð5:73Þ

where the effective energy levels

e~m ¼ � ln l~m ð5:74Þ

are set through the distribution of lengths l~m. The thermodynamic potential
g ¼ g bð Þ, corresponding to one of n iterations, has the form

g ¼ � 1
n
ln Z ¼ � 1

n
ln
X
~m

lb~m; ð5:75Þ

where g is measured in units of temperature b�1. We also introduce the parameter l
according to the equation

Nn ¼ ln: ð5:76Þ

Then in view of (5.75), the condition (5.71) gives the expression

g ¼ �g ln l; ð5:77Þ

where the presence of logarithm indicates the entropic nature of the parameter l.
We assume that all the elements of set at nth step of iteration have the same

length

l~m ¼ nn; ð5:78Þ
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determined by the scale

n ¼ e�k; ð5:79Þ

the value of which is defined by the Lyapunov exponent k. To clarify the meaning,
we write the thermodynamic partition function (5.73) in the form

Zn ¼ Nnl
b
~m ¼ lne�nbk ¼ e n lnl
bkð Þ½ �; ð5:80Þ

which takes into account the equalities (5.76), (5.78), (5.79) and through ln are
denoted all equal to each other lengths of fragment at the nth step of division.
Substituting (5.80) into (5.75), we obtain the expression for the specific free energy

g ¼ bk� ln l; ð5:81Þ

It comes down to the usual definition of the free energy

G ¼ E � TS;

if as the free energy G, we understand the value of n=bð Þg, under the energy—the
value of E ¼ nk and introducing the entropy

S ¼ ns; s ¼ ln l; ð5:82Þ

Thus, thermodynamically the fractal set can be described by assuming the
number of iterations n ! 1 as the number of particles, the parameter b is the
inverse temperature (with the opposite sign), the Lagrange multiplier k—the
specific entropy of E=n, and s—the entropy. Their values are determined by (5.72),
(5.79), (5.82), and the energy spectrum e~m is given by the distribution of segment
lengths (5.74). Under this approach, b is the free parameter, and the equation of
state determines the dependence g bð Þ. Using the thermodynamic identity

k ¼ dg=db; ð5:83Þ

from the parameter b we can go to the conjugated field k [28]. Then, equalities
(5.81), (5.82) give the expression

s ¼ bg0ðbÞ � g bð Þ; g0 ¼ dg=db; ð5:84Þ

for entropy, the value of which is determined by the energy k.
To establish the connection between the geometric and thermodynamic

approaches, it is necessary to express the values s, q, a, f , D, introduced in the
multifractal analysis, through the parameters b, g. Determination of the first one s is
given through the identity (5.72). The expression for the second one
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q ¼ 1� d ln g bð Þ
d ln b

	 

ð5:85Þ

follows from (5.77), (5.82), and (5.84).
For a from Eq. (5.70) taking into account (5.76), (5.82), (5.78), and (5.79), it

yields

Pn ¼ ls=kn :

Comparing this result with the definition (5.24), we come to the desired equality

a ¼ b� g bð Þ=g0 bð Þ; ð5:86Þ

which takes into account (5.83) and (5.84). Using the definitions (5.24) and (5.57),
it is easy to note that the condition (5.70) means

a ¼ f ; ð5:87Þ

so that equality (5.86) sets the value of f . On the other hand, substituting (5.87) into
the definition (5.34), we find the last of the required geometric characteristics

D ¼ f ¼ a ¼ b� g bð Þ=g0 bð Þð Þ; ð5:88Þ

considering (5.86).
Thus, the representation of the fatigue failure of material in the inverse form

from the sequence of period-doubling bifurcation scheme of the Feigenbaum period
to the chaos provides the calculation formula for the generalized fractal dimension
of the multifractal structure formed by the chain process of pairwise merging
clusters of frustrons and reveals the extent of destruction. The geometric charac-
teristics of the multifractal structures have thermodynamic counterparts.

All of this poses the problem for further development of a new direction in
physics of metals—the fractal materials.

5.3 Multifractal Singularity Spectrum of Time Series

Many signals recorded in field experiments embody the paramount multifractals,
and for a number of practical problems, it is quite important to have the rigorous
mathematical approach to analyze the complexity of processes of different nature.
The simple, or monofractal, signals (i.e., 1=f—noise and Wiener random process)
are homogeneous in the sense that their scaling characteristics remain unchanged in
any scale range. The spectrum of signals S fð Þ
 f�b is unchanged over a wide
frequency range, i.e., b has a constant value. The multifractal processes permit an
expansion into zones with various local scaling properties [29]. Therefore, for the
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quantitative description of such processes a large number of characteristics are
required. Particularly, the spectrum of multifractal processes cannot be described by
power law distribution with a single exponent b.

There were several attempts to extend multifractals into the functional depen-
dencies (signals) [29, 30]. One of these attempts was made on the basis of structural
features, which were often used by different researchers. The approach received the
widespread use in studying problems of highly developed turbulence [29, 31].

The multifractal approach for signals can potentially characterize the broad class
of processes that are more complex than the processes described by one number
(singular values of the fractal dimension or the scaling characteristics describing,
for example, the frequency dependence of the spectral power density).

Analysis of the irregular functions, as well as the analysis of fractal measures, is
carried out in terms of “singularity spectrum.” However, when considering the
functional dependencies (of the irregular signals), there are changes in symbols.
Instead of the spectrum f að Þ, the analogous function D hð Þ is considered, the Holder
exponent h x0ð Þ characterizing the local singular behavior of g at point x0

g x0 þ lð Þ � g x0ð Þj j 
 lh x0ð Þ;

corresponds to a, and D hð Þ is the subset dimension for the analyzed data, charac-
terized by the local exponent h0.

There are several ways to calculate the singularity spectrum. As in the case of
fractal measures, the calculations are complicated due to the slow convergence, and
by the fact there can be other singularities in the local neighborhood of point x0
while considering the irregular behavior. The “imposing” multiple singularities will
lead to the significant errors in calculation of the scaling characteristics and the
unstable results in the algorithm of numerical analysis due to various parameters.
To improve the reliability of D hð Þ calculations, the statistical analysis is carried out
based on structural or partial functions (see Sect. 5.3.1).

Multiextreme functions have singularities (irregularities), the scaling parameters
of which cannot be described by monofractal with one scaling parameter. There can
be transient (crossover) time series scales sx, sharing modes with different scaling
exponents.

In other cases, the scaling behavior of the time series is even more complicated
and various terms of series may their own scaling parameters. Finally, the various
scaling parameters may overlap with each other (i.e., to form various mixtures) in
some fractal subsets of the time series. In this case, to get a full description of
scaling behavior of series, a large number of scaling parameters is required, which
makes the multifractal analysis important.

There are two distinct types of multifractality for the time series [32]: (1) multi-
fractality caused by the wide probability distribution (the density function) of terms
of the time series, such as the Levy distribution. In this case, the multifractality
cannot be eliminated by mixing terms of series; (2) multifractality caused by the
long-range correlations of small and large fluctuations. In this case, the probability
density function values may correspond to the regular distributions with finite
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moments, such as a Gaussian distribution. The appropriate mixed series will be
non-multifractal scaling behavior, since all long-range correlations are suppressed as
a result of the mixing procedure. The accidental mixing of the term positions is the
easiest way to generate a surrogate data; however, there are more effective alter-
natives that will be discussed below. In both described types of multifractality, the
mixed series will have weaker multifractality than the original series.

The multifractal analysis of time series can also detect the correlation of high
order. The multifractal scaling can be observed, for example, in 3- or 4-point
correlations differing from the standard 2-point correlation studied in the traditional
autocorrelation analysis. In addition, the multifractal scaling is also observed in
small and large fluctuations with different scaling behaviors. For example, the
extreme events can be more or less correlated than the typical events.

The simplest type of the multifractal analysis is based on the standard multi-
fractal formalism of partial functions, designed to study the multifractal properties
of normalized and stationary measures [30, 33–35]. Unfortunately, this standard
formalism did not provide correct results for the non-stationary time series due to
the strong influence of trends and the impossibility of their normalization.

Currently, there are two basic approaches to estimate the singularity of the time
series. The first method appeared earlier and is based on the analysis of chain of points
of modulus maxima of continuous wavelet transformation. The method of “modulus
maxima of wavelet transformation” (MMWT), proposed in the early 1990s by Muzy
et al. [36, 37], has a number of significant advantages: the ability to analyze a wide
class of singularities—not only the signals themselves, but also their derivatives, less
errors in calculation of scaling characteristics, etc. TheWTMM technique that can be
successfully used in studies of inhomogeneous processes of different nature is based
on the wavelet analysis [38, 39], called the mathematical “microscope” because of its
ability to maintain a good resolution at different scales. The second approach is closer
to the first technique based on the dependence of the standard deviation or variance
from the sample length [40]. Most recently, detrended fluctuation analysis
(DFA) was developed and widely applied to analyze fluctuations after eliminating
scale-dependent trends [41, 42]. The comparative analysis of methods shows that
DFA is more reliable and stable. At the same time, for the special types of self-similar
signals, which may include the range of constant values (such as the famous “devil’s
staircase” constructed on the basis of a Cantor set), DFA becomes inapplicable and
the wavelet transformation evaluation is more practical [40].

5.3.1 Standard Multifractal Formalism
and Singularity Spectrum

In the general multifractal formalism, a normalized measure l tð Þ, t 2 0; 1½ � is
considered, and the probability of cell hitting in the neighborhood of point t with
size (scale) s � 1 is determined by
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~ls tð Þ ¼
Ztþ s

2

t�s
2

l t0ð Þdt:

The multifractal approach is based on the partial function

Zq sð Þ ¼
X1s�1

m¼0

~lqs mþ 1
2

	 

s

� �

 ss qð Þ at s � 1; ð5:89Þ

where s qð Þ—the Rényi scaling parameter of and q—the material parameter can take
both positive and negative values. Sometime, the exponent s qð Þ has the negative
sign (see, e.g., [33]). The object is called monofractal (or self-affine) if the Rényi
scaling parameter s qð Þ linearly depends on q; otherwise, it is called multifractals.

The generalized fractal dimension Dq is associated with s qð Þ through the
equation Dq ¼ s qð Þ= q� 1ð Þ (see Eq. (5.4)), so that the fractal dimension of carrier
is equal to D0 ¼ �s 0ð Þ and the correlation dimension is equal to D2 ¼ �s 2ð Þ.

In the time series with terms xif g, i ¼ 1. . .N, there may also be negative
numbers. Therefore, assuming Ns ¼ N=s½ �, where a½ �—the whole part of number a,
and

X m; sð Þ ¼
Xs
i¼1

xmsþ i for m ¼ 0; 1; . . .;Ns � 1;

we can determine [33, 34]

Zq sð Þ ¼
XNs�1

m¼0

X m; sð Þj jq 
 ss qð Þ at s[ 1: ð5:90Þ

For each segment m ¼ 0; 1; . . .;N, we compute profile of series (the integrated
data)

Ym jð Þ ¼
Xj

i¼1

xmsþ i � xmsþ ih is
� � ¼Xj

i¼1

xmsþ i � j
s

Xs
i¼1

xmsþ i: ð5:91Þ

If the series has an average value xh i ¼ 0, then (5.91) takes form

Ym jð Þ ¼
Xj

i¼0

xmsþ i ð5:92Þ
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and the global profile, that is the cumulative sum has form

Y jð Þ ¼
Xj

i¼0

xi; j ¼ 0; 1; . . .;N: ð5:93Þ

The method of fluctuation analysis (FA) discusses the profile fluctuations at the
end of each segment m ¼ 0; 1; . . .;N � 1

F2
FA m; sð Þ ¼ Y msð Þ � Y mþ 1ð Þsð Þ½ �2 ð5:94Þ

and likewise for the segments m ¼ Ns; . . .; 2Ns � 1

F2
FA m; sð Þ ¼ Y N � m� Nsð Þsð Þ � Y N � mþ 1� Nsð Þsð Þ½ �2; ð5:95Þ

Averaging F2
FA m; sð Þ for all segments, we obtain the average fluctuation

F2 sð Þ ¼ 1
2Ns

X2Ns�1

m

F2
FA m; sð Þ

" #1
2


 sa: ð5:96Þ

For the uncorrelated values of x;F2 sð Þ is Fick’s diffusion and F2 sð Þ
 s1=2. In the
case of long-range correlations in series xkf g, when the correlation C sð Þ changes
according to the power law C sð Þ / s�c 0\c\1ð Þ;F2 sð Þ increases according to the
power law.

F2 sð Þ
 sa with a � H; ð5:97Þ

where the fluctuation exponent a coincides with the Hurst exponent H for the
monofractal data, and it is linked with b and c through equality

2a ¼ 1þ b ¼ 2� c; ð5:98Þ

where b—the scaling parameter of the power spectrum s fð Þ
 f�b.
Substituting into (5.90) Y jð Þ and FFA m; sð Þ from (5.93) and (5.94), respectively,

we obtain

Zq sð Þ ¼
XNs�1

m¼0

Y mþ 1ð Þsð Þ � Y msð Þ½ �2
n oq=2

¼
XNs�1

m¼0

Fq=2
FA m; sð Þ: ð5:99Þ

Comparing (5.98) with (5.96), we see that the multifractal formalism can be
regarded as the generalized version of the FA, where the exponent 2 is replaced by
q. For example (using the summation of partial sums of the second order),
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F2 sð Þ
 1
Ns

Z2 sð Þ
� �1

2


 s 1þ s 2ð Þ½ �=2 ) 2a ¼ 1þ s 2ð Þ ¼ 1þD2: ð5:100Þ

It follows that all research methods of (mono) fractal properties of time series are
based on the correlation dimension D2 ¼ 2a� 1 ¼ b ¼ 1� c (see Eq. (5.98)).

In addition, we can directly determine the generalized (multifractal) Hurst
exponent h qð Þ, which characterizes the scaling behavior of q-moment of fluctua-
tions [30, 35]

F2 sð Þ
 1
Ns

Z2 sð Þ
� �1

2


 s 1þ s 2ð Þ½ �=2 ¼ sh qð Þ ) h qð Þ ¼ 1þ s qð Þ
q

ð5:101Þ

with h qð Þ ¼ a � H.
Another characteristic of the multifractal time series is the singularity spectrum

f að Þ, which is related with s qð Þ by the Legendre transformation [33, 34]

a ¼ d
dq

s qð Þ and f að Þ ¼ qa� s qð Þ: ð5:102Þ

There a—the degree of singularity or the Hölder exponent, and f að Þ is the
dimension of subset series, characterized by the same a. From (5.101), we can
obtain the relationship between a and f að Þ with h qð Þ:

a ¼ h qð Þþ qh0 qð Þ and f að Þ ¼ q a� h qð Þ½ � þ 1:

There are also other versions of the multifractal analysis proposed by A.B.
Chabroy and R.V. Jensen [43]. These versions do not require the Legendre trans-
formation, they are based on following expressions to build the multifractal
spectrum

a qð Þ ¼ ds
dq ¼ lim

e!0

P
i
li qð Þ ln pi
ln e ;

f qð Þ ¼ qa qð Þ � s qð Þ ¼ lim
e!0

P
i
li qð Þ lnli qð Þ

ln e :
ð5:103Þ

There li qð Þ ¼ pqi
�P

i p
q
i and pi are probabilities that the studied set A hit the cell

i of size e of the hypothetically divided space to which the set A belongs to.
According to Eq. (5.103), we can construct an algorithmic function

f að Þ ¼ f q að Þð Þ, where q að Þ—the inverse function of a qð Þ. Thus, the obtained
singularity spectrum f að Þ with a high degree of accuracy coincides with the same
spectrum built on the basis of the standard procedure of multifractal formalism.
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5.3.2 Wavelet Transform Modulus Maxima Method

As it follows from the name of method, the wavelet transform is the decomposition
of signal on basis constructed from the soliton-like function (wavelet) with specific
properties by means of scaling changes and transformation. Each of these functions
characterizes a certain spatial or time frequency, and its location in physical space
or time.

The continuous wavelet transform of function g xð Þ is defined by the following
formula

W a; bð Þ ¼ 1ffiffiffi
a

p
Zþ1

�1
g xð Þw x� b

a

	 

dx; ð5:104Þ

where a—the scale parameter, b—the coordinates in space or in moment of time,
w—the soliton-like function (wavelet) with certain properties and constructed, for
example, on derivatives of Gaussian function:

w mð Þ ¼ �1ð Þm dm

dxm
e �x2

2

� �� �
; ð5:105Þ

Studying of local singularities of function g xð Þ is usually considered at m ¼ 1
(“WAVE” wavelet) or m ¼ 2 (“MHAT” wavelet). The higher-order derivatives are
rarely used. The choice of basis functions w is an important moment—we have to
choose such a wavelet that allows us to see the information we need. The different
functions can be interpreted as choosing microscope of right resolution; if the
chosen resolution allows us to see the necessary details, then the wavelet is suitable
for purpose. The subsequent choice of lenses does not provide anything new.

The Hölder exponent describes the singularity degree of function g. Its rigorous
mathematical definition can be defined as follows [11]. Let us consider the case where
the function g is differentiated n-times at point x0, the nþ 1ð Þ-th derivative does not
exist. We can use Taylor expansion from x to n inclusive for function g xð Þ. The
resulting series (the polynomial of degree n) is denoted byPn xð Þ. TheHölder exponent
at point x0 is called the greatest value of h, when the following inequality holds

g xð Þ � Pn x� x0ð Þj j �C x� x0j jh: ð5:106Þ

The greater h, the more regular (more “smooth”) is the function g. The inte-
gration of this function increases the value of h by 1, and the differentiation
decreases. Suppose that the analyzed singular functions within the neighborhood
x ¼ x0 can be represented in form of two terms

g xð Þ ¼ Pn xð ÞþC x� x0j jh x0ð Þ; ð5:107Þ
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i.e., as the sum of the regular component (the polynomial Pn) and some term that
defines the irregular behavior and represented by a non-whole number h x0ð Þ. One of
the features of wavelet transform, widely used to remove polynomial components
from signal, is that wavelets with first m nil moments

Zþ1

�1
xkw xð Þdz ¼ 0 k ¼ 1; . . .;mð Þ;

are the orthogonal polynomials with power m inclusive, and m� n:

Zþ1

�1
Pn xð Þw xð Þdx ¼ 0: ð5:108Þ

Therefore, the wavelet transform function g xð Þ takes form

W a; x0ð Þ ¼ Ca1=2
Zþ1

�1
w xð Þ axj jh x0ð Þdx:

In order to simplify the analysis in [44], it is suggested to slightly change the
definition of wavelet transform, by multiplying the expression (5.104) with 1=

ffiffiffi
a

p

W a; x0ð Þ ¼ 1
a

Zþ1

�1
w

x� x0
a

� �
g xð Þdx: ð5:109Þ

In this case, at a ! 1, there is a simple power law

W a; x0ð Þ
 ah x0ð Þ: ð5:110Þ

Thus, if the function g xð Þ has a singularity at point x ¼ x0, then its local singular
behavior is characterized by a power law of form (5.110). If this function is con-
tinuously differentiable up to order m at point x0, then a ! 1

W a; x0ð Þ
 am:

In problems of studying the signal structure, the function g xð Þ is analyzed more
frequently, rather its derivatives. The signal is locally characterized by the depen-
dence of the Hölder exponent on the signal point, and the Hölder exponent is easily
calculated from the rate of decrease of wavelet coefficients with the scale a. The
faster rates decrease at a → 0, the more regular function at this point.
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Thus, the values ofW a; xð Þ in the neighborhood of the local feature may differ or
abnormally decline at slow rate. Such behavior of wavelet coefficients permits the
detailed analysis of structure of singularities.

The WTMM algorithm assumes studying of the irregular behavior of the
function g xð Þ through two stages. In the first stage, the wavelet transform is
according to the formula (5.109). The result of wavelet transform can be interpreted
as a surface in 3-dimensional space. The most important information is included in
the “skeleton” or lines of local extreme surface coefficient W a; xð Þ, search of which
is performed at each scale a (Fig. 5.5).

The type of information extracted from g xð Þ determines the selection of basis
function. The required condition is that the selected wavelet should not be less
smooth than the analyzed signal. Selecting a parameter m (5.105), it should be
noted that, increasing m allows ignoring the large-scale polynomial components
(removing trend) and analyzing the small-scale variations of that function. On the
other hand, the repeated differentiation leads to an increase in the number of lines of
local extremums of wavelet coefficients and an emergence of a large number of
additional lines terminating at small scale. Such lines are short to assess the degree
of dependency of the form (5.110) and act as noises in the numerical analysis of
singularities. The wavelet transform is arranged in a such way that W a; x0ð Þ is a
regular function even when g xð Þ is irregular [45]. All information about g xð Þ,
including its localization at x0 and the indicator h x0ð Þ, is in the asymptotic behavior

0 x 1

Fig. 5.5 The skeleton or the lines of local extreme surface coefficients W a; xð Þ: the local
minimums (open circles) and maximums (filled circles)
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of the coefficients of W a; x0ð Þ at small a. If the coefficient diverge at small scales,
then g has a singularity at x0, and the Hölder exponent can be determined by
presenting dependence (5.110) in the double-logarithmic scale and calculating the
tangent of lnW a; x0ð Þ from ln a. If the coefficients of W a; x0ð Þ are close to zero
within x0 at small scales, then g is regular at this point. An important part of
calculating the Hölder exponents is that the desired characteristics are theoretically
independent from the basis functions of wavelet transform, which suggests that the
analysis of local irregularities in some sense, is universal (although the wavelet
decomposition on selected basis, of course, dependent).

Exposing the “skeleton” ends the first stage of the WTMM algorithm. The
theoretical analysis of the highlighted lines of local extremums of local maximums
of the wavelet transform modules allows us to calculate the Hölder exponent and
analyze the singularity of function g xð Þ. However, this approach is inaccurate—an
increase in scale affects on neighboring irregularities, leading to various errors.

In the multifractals theory, it is preferred to calculations based on statistical
functions allowing to get more reliable estimates of the calculated characteristics.
Therefore, the second stage of the WTMM is in construction of the function
Z q; að Þ, called statistical functions, according to the formula (compare with partial
functions from (5.3)):

Z q; að Þ ¼
X
l2L að Þ

W a; xl að Þð Þj jq; ð5:111Þ

where L að Þ—the set of all possible lines lð Þ of local modulus maxima of wavelet
coefficients existing at the scale a ; xl að Þ describes the location of maxima at that
corresponding to the line l. In this case, the key moment is that the modulus of
wavelet coefficients ensures the stability of method. Without it (including infor-
mation about the phases) the method would not get a stable solution. Generally, the
consideration of maxima can create problems in terms of stability of the method (it
is better to use averages). However, the wavelet transform involves the computation
of coefficients within the time-frequency framework that automatically provides
averaging. The definition (5.111) is not suitable for negative q, because of situation
when W a; xl að Þð Þ ¼ 0. Therefore, in practice, the different formula is used:

Z q; að Þ ¼
X
l2L að Þ

sup
a0 � a

W a0; xl a0ð Þð Þj j
 !q

; ð5:112Þ

that is the maximum value of the modulus coefficients of wavelet—transform is
selected along each line at the scale smaller than a predetermined value a. Usually,
the following relationship is done

Z q; að Þ
 as qð Þ; ð5:113Þ
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where the value of s qð Þ, defined for some q by calculating the slope between
ln Z q; að Þ and ln a, is called the scaling exponent, in analogy with the case of
singular measures. The variations of powers of q while constructing the partition
functions (5.112) yield the linear dependence s qð Þ for the monofractal objects
H ¼ ds=dq 6¼ constð Þ and the nonlinear dependence s qð Þ ¼ gh� D hð Þ with a large
number of Hölder exponents h qð Þ ¼ ds=dq 6¼ const for the multifractals.

For some values of q, the scaling exponents s qð Þ has a simple interpretation.
Thus, there is a bond between s 2ð Þ and the exponent b of the spectral power density
function S fð Þ
 1=f b

b ¼ 2þ s 2ð Þ:

Given the fact that the spectral power density function in turn is related to the
correlation function through the Fourier transform, knowing b allows us to deter-
mine the deceleration rate of correlation w sð Þ
 s�c, i.e., the index c. The rela-
tionship between the main variables, considered within the WTMM algorithm
framework, is determined by the Legendre transformation (compare (5.36) with
h ¼ a and D hð Þ ¼ f að Þ):

h ¼ ds
dq ;

D hð Þ ¼ gh� s qð Þ:

(
ð5:114Þ

Unlike the structural function method based on wavelet transform, the multi-
fractal analysis allows you to explore singularity for negative values of q. Statistical
functions Z q; að Þ for q\0 characterize the scaling features for the weak singular-
ities (the small fluctuations), and at q\0 for the strong singularities (the large
fluctuations).

The wavelet transform method setting the foundation of WTMM is the best tool
to study the self-similarity properties (in terms of wavelet coefficients that mean
exponential behavior of higher moments while scaling). The method is well suited
for solving physical problems, since it operates with features that already familiar to
physicists. In particular, the singularity spectrum contains information, on the one
hand, on the correlation properties of the analyzed process (which are among the
basic properties in the theory of stochastic processes), and, on the other hand, on the
degree of signal uniformity the quantitative measure of which is the width of the
function D hð Þ [46].

One feature of analyzing the local regularity of signal based on the coefficients of
wavelet transform is that the calculation of the Hölder exponent is theoretically
independent from the basic wavelet. In practice, however, this relationship is still
obvious. The most well-known works used “WAVE” or “MHAT” as the basis
functions (1st and 2nd derivatives of Gaussian function, respectively). If the
derivatives of high order are used to analyze wavelet, the number of additional short
lines of the local maximums W a; x0ð Þ increases, resulting in oscillating “tails” of
soliton-like functions w mð Þ. In this situation, it is necessary to find a compromise
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between ignoring the polynomial components (trend), where it is desirable to
increase the parameter m, and significant increase of number of short lines in local
maximums, which complicate the skeleton and lead to the deviations from the
power dependence in the small scales. In practice, it is recommend using a small m
(usually, m� 2) for the multifractal analysis.

The wavelet transform multifractal analysis can be considered as a method of
research of spectral-correlation properties of different processes, including
non-stationary. It follows, in particular, from (5.108), that slow non-stationary (the
polynomial trend) processes does not affect the result, if w is selected as the basis
function with the first few moments as zero. Besides the non-stationary problem,
WTMM can demonstrate another advantage over the classical spectral analysis
based on the Fourier transform. Being an instrument of “local” studies of the
structure of time functions, the multifractal analysis allows us to assess the corre-
lation properties of random processes at relatively short signals.

One of the limitations of multifractal analysis is that it assesses the upper skirt of
the real multifractal spectrum. This can lead to the erroneous interpretation of
results of numerical analysis. Firstly, if the true singularity spectrum D hð Þ is dis-
crete, that is, h takes only a discrete set of values, the skirt will include “false”
points while representing interpolation of the discrete spectrum D hð Þ. Second, the
skirt does not identify the “internal” points not included into the upper skirt of the
spectrum D hð Þ, if there is such (Fig. 5.6). The “bell” shape of spectrum of singu-
larities can be obtained even in the case, where WTMM is used for the signal
processing without multifractal properties. If the process is characterized by not a
continuous spectrum D hð Þ, but by a small set of discrete Hölder components, then
by obtaining the skirt similar to one shown in Fig. 5.6, in general, we cannot
certainly say whether there is a singularity, characterized by h equal to, for example,
0:63	 0:005.

In order to avoid difficulties in interpreting the results, it is better not to analyze,
finite, or infinite number of scaling characteristics, and consider WTMM as tool of
numerical analysis, which allows to evaluate the range of the Hölder exponents (the
degree of multifractality) and characterize the presence of various types of corre-
lations in the non-stationary random processes. Thus, we are able to carry out a
correlation analysis of the non-stationary signals of short duration and evaluate
quantitatively the homogeneity of random process.

5.3.3 Multifractal Fluctuation Analysis

The time series analysis is the basis for development and verification of macroscopic
models that allow in a consistent manner to represent the evolution of complex
systems on the basis of microscopic data [47]. Such an analysis is reduced to the
calculation of the correlation functions of the state vectors that represent the time
series characterizing the system. Being traditionally the part of statistics, the time
series analysis is based on the class of models of the harmonic oscillator that meet the
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simplest case of a Gaussian random process [48]. However, in reality it turns out that
the real time series matches the Levy flight than the Gaussian processes, which is its
individual case [49]. The truncated Levy flight in high-volume processing of n
converges to the Gaussian process, and the convergence is essentially controlled by
the third moment of the dynamic variable xj j [50]. The well-known feature of the
Levy flight is their invariance under scale transformations [51], and therefore, the
time series studies is the analysis of the self-similar stochastic processes, which are
presented by the (multi) fractal sets [33]. The statistical description of the self-similar
time series, based on the thermodynamic model [52], defines their global charac-
teristics by determining the predictability of changes of a random variable. However,
the local properties fall out of view, the understanding of which is achieved under the
multifractal fluctuation analysis (MFFA), or as it is called multifractal detrended
fluctuation analysis (MF-DFA) [41].

The multifractal fluctuation analysis (MF-DFA) method consists of five steps.
The first three steps are substantially identical to the detrended fluctuation analysis
(DFA) [53–58].

Consider the series xkf g with length N and a compact carrier. The carrier is
defined as a set of values k, where xk 6¼ 0. The carrier is considered compact if the
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Fig. 5.6 The illustrations show the limitations of multifractal formalism. The circles represent the
true multifractal spectrum, the dotted line—the result of applying the multifractal analysis. The
inside circle (white circle) cannot be identified from WTMM
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zero values of xk represent only a small part of the series, assuming that corre-
sponding values of k number is irrelevant.

Step 1. Define the “profile” of series

Y ið Þ �
Xi
k¼1

xk � xh i½ �; i ¼ 1; . . .;N: ð5:115Þ

Subtracting the average value xh i is not compulsory, because it is leveled
at detrending at the third step of algorithm.

Step 2. Let divide the profile Y ið Þ into Ns ¼ N=s½ � disjoint segments with equal
lengths s. Since the length N is not a multiple of the time scale s, at the end
of the profile after partition, there might remain a segment with length less
than s. In order to evaluate this part of the series, we repeat the partition
starting from the end of the series. Thus, we get 2Ns segments of the
partition.

Step 3. We calculate the local trend for each of 2Ns segments applying least
squares (OLS). Then, the variance of series is written as

F2 m; sð Þ � 1
s

Xs
i¼1

Y m� 1ð Þsþ i½ � � ym ið Þf g2 ð5:116Þ

for segments m ¼ 1; . . .;Ns, going straight forward, and how

F2 m; sð Þ � 1
s

Xs
i¼1

Y N � m� Nsð Þsþ i½ � � ym ið Þf g2 ð5:117Þ

for the inverse sequence m ¼ Ns þ 1; . . .; 2Ns. Here, ym ið Þ—the polynomial,
approximates the series at segment m. We can use linear, quadratic, cubic,
and higher-order polynomial, we call the appropriate procedure of
approximation as DFA1, DFA2, DFA3, … [53, 54, 59].
Since such detrending of time series is equivalent to the subtraction of
polynomial values from the profile, the DFA of different orders will have
different qualities to exclude the trend from series. Comparison of results
using DFA of different orders will help to assess the type of polynomial
trend in the series [56, 57].

Step 4. Enter the deformed dispersion

Fq sð Þ � 1
2Ns

X2Ns

m¼1

F2 m; sð Þ� �q
2

( )1
q

; ð5:118Þ

obtained by raising the expressions (5.116), (5.117) to the power of q and
then averaging across all segments (the case q ¼ 0 is considered separately
in Step 5). In order to establish how moments Fq sð Þ depends on the time

212 5 Multifractal Analysis of Fatigue Failure



scale s at different values of q, we must repeat steps 2–4 for different values
of s. Obviously, Fq sð Þ will increase while increasing s. Of course, Fq sð Þ is
dependent on the order of m of the DFA procedures. Due to the
construction, Fq sð Þ is defined only for s�mþ 2.

Step 5. Determine the dependence of the fluctuation function s on the change of
scale by analyzing the points Fq sð Þ; s� �

in the two-logarithmic coordinates.
If the studied series is reduced to self-similar sets, exhibiting the
long-range correlations, the fluctuation function Fq sð Þ represents the power
dependence

Fq sð Þ
 sh qð Þ at s � 1 ð5:119Þ

with the generalized Hurst exponent h qð Þ, the value of which is determined
by the parameter q. From the definitions (5.118) and (5.119), it follows that
for q ¼ 2 this parameter is reduced to the well known the Hurst parameter
H [48]. For the time series that match the monofractal set, the fluctuation
function F2 m; sð Þ is the same for all segments of m, and the Hurst parameter
h qð Þ ¼ H does not depend on the deformation parameter q. For the
multifractal series when q is positive, the main contributions to the
function Fq sð Þ are made by the segments with the great deviation F2 m; sð Þ,
and when q is negative, the segments with small variances are dominant.
As a result, we can conclude that for negative values of q the generalized
Hurst parameter h qð Þ describes the segments exhibiting small fluctuations,
and if positive—great.

For very large time scales s[N=4, the function Fq sð Þ loses its statistical
informativeness, due to a smallness of number Ns\4 of segments used in the
averaging. In addition, the systematic deviations from a scaling behavior (5.119) for
the function Fq sð Þ occur at very small time scales s � 10. Thus, carrying out this
procedure assumes the exclusion, on the one hand, of the large segments of
s[N=4ð Þ, and on the other—small ones s\10ð Þ.
Since at q ¼ 0, the Eq. (5.118) contains uncertainty and the ultimate expression

should be used instead

F0 sð Þ � exp
1
4Ns

X2Ns

m¼1

ln F2 m; sð Þ� �( )1
q


 sh 0ð Þ: ð5:120Þ

We note that h 0ð Þ cannot be determined for the time series with a fractal carrier,
because in that case h qð Þ diverges at q ! 0.

Typically, the large fluctuations are characterized by a smaller scaling parameter
h qð Þ for the multifractal series rather than small fluctuations. This is due to the
following reasons.
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For maximum scale s ¼ N, the fluctuation function Fq sð Þ does not depend on q,
since the sum in (5.118) goes through only two identical segments
Ns � N=s½ � ¼ 1ð Þ. For very small scale s � N, the averaging procedure goes
through several segments, and the average value of Fq sð Þ will dominate Fq sð Þ from
the segments with small (large) fluctuations if \0 q[ 0ð Þ. Thus, for s � N, the
values of Fq sð Þ at q\0 will be less than the value of Fq sð Þ at q[ 0, while when
s ¼ N these two values are equal. Therefore, if we assume a uniform scaling
behavior Fq sð Þ, following from (5.119), then the slope h qð Þ of the function Fq sð Þ
with respect to s in the two-logarithmic coordinates at q\ 0 is greater than at
q [ 0. Thus, h qð Þ for q\ 0 is greater than for q [ 0.

However, the MF-DFA method can be used only in case of the positive gen-
eralized Hurst parameter h qð Þ and becomes inapplicable for strictly uncorrelated
signals when h qð Þ is close to zero. In these cases, we should use a modified method
(MF-DFA). The easiest way to analyze such data is the preliminary integration of
the time series before MF-DFA. Therefore, we replace the single summation in
(5.115), which describes the profile of the primary data xk , by the double
summation

~Y ið Þ �
Xi
k¼1

Y kð Þ � Yh i½ �: ð5:121Þ

Following further the above procedure of MF-DFA, we obtain the generalized
fluctuation function ~Fq sð Þ, describing the scaling law in the Eq. (5.119), but with a
large parameter ~h qð Þ ¼ h qð Þþ 1

~Fq sð Þ
 s
~h qð Þ ¼ sh qð Þþ 1: ð5:122Þ

Thus, the scaling behavior can be determined even when h qð Þ, which is less than
zero (but greater than 1) for some values of q. Note that ~Fq sð Þ=s corresponds to
Fq sð Þ in the Eq. (5.119). If we subtract the mean values at each step of summation
in the Eq. (5.121), then the summation leads to the quadratic trend in the profile
~Y ið Þ. In this case, we have to use at least MF-DFA of the second order to eliminate
these artificial trends.

The bond between MF-DFA and the standard multifractal analysis is set as
following [42]. For the stationary normalized time series defining the measure with
the compact carrier, the multifractal scaling parameters of h qð Þ, given by the
Eq. (5.119), are directly connected, as it will be shown later, with the scaling
parameter s qð Þ (so-called the mass index), defined by the standard multifractal
formalism based on partial functions (see Sect. 5.3.1).

Assuming that the series xk with length N is fixed, positive and normalized
sequence, i.e., xk � 0 and
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XN
k¼1

xk ¼ 1:

Then, MF-DFA does not require the first 3 steps, because the studied does not
have a trend. Thus, in this case, DFA may be replaced by the standard FA, which is
identical to DFA, except for the simplified determination of the dispersion for each
segment m ¼ 1; . . .;Ns in Step 3 (see Eq. (5.117))

F2
FA m; sð Þ � Y msð Þ � Y m� 1ð Þsð Þ½ �2: ð5:123Þ

Substituting (5.123) into (5.118) and using (5.119), we obtain

1
2Ns

X2Ns

m¼1

Y msð Þ � Y m� 1ð Þsð Þj jq
( )1

q


 sh qð Þ: ð5:124Þ

For simplicity, we assume that the length of series N multiple of scale s, we have
Ns ¼ N=s, and therefore,XN=s

m¼1

Y msð Þ � Y m� 1ð Þsð Þj jq 
 sqh qð Þ�1: ð5:125Þ

It is obviously that the difference Y msð Þ � Y m� 1ð Þsð Þ in (5.125) is the sum of xk,
within each segment m of size s. This amount is the probability ps mð Þ of entering into
the cell (or box) in the standard multifractal formalism for the normalized series xk:

ps mð Þ �
Xms

k¼ m�1ð Þsþ 1

xk ¼ Y msð Þ � Y m� 1ð Þsð Þ: ð5:126Þ

The scaling parameter s qð Þ is usually determined by the partial function Zq sð Þ:

Zq sð Þ �
XN=s
m¼1

ps mð Þj jq 
 ss qð Þ; ð5:127Þ

where q—the real parameter, such as in MF-DFA. Sometimes, s qð Þ is defined with
the opposite sign (see [34]).

Taking into account (5.126), the Eq. (5.127) is equivalent to the Eq. (5.125), we
find the relation between the two sets of scaling parameters

s qð Þ ¼ qh qð Þ � 1: ð5:128Þ

So, the generalized Hurst parameter in the Eq. (5.119) for MF-DFA is directly
related to the classic multifractal scaling parameter s qð Þ.
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The results of application to the time series the methods of multifractal fluctu-
ation analysis (MF-DFA) and the wavelet transform maxima modulus (WTMM)
shows that MF-DFA has slightly greater sensitivity toward data [41, 42, 60]. In
particular, MF-DFA has a slight advantage at the negative values of q and short
series. In other cases, the results for both methods are approximately the same. The
main advantage of MF-DFA, as compared to WTMM, is the simplicity of algo-
rithm. However, MF-DFA is limited to the study of data with the one-dimensional
carrier, while WTMM does not have such restriction. Both methods are generalized
for the case of multidimensional data: MF-DFA [61] and WTMM [62].

5.3.4 Simple Multifractal Time Series Models

One of the simplest models of multifractal data, most commonly used in hydrology
for example [63], is the multifractal cascade model [30, 33, 41]. In this model, the
series xif g of length N ¼ 2nmax are constructed recursively. The generation of n ¼ 0
terms is constant in the series, i.e., xi ¼ 1 for all i ¼ 1. . .N.

The first half of the term is multiplied by a factor a, and the other half by b in the
first step of cascade (the generation n ¼ 0). This leads to xi ¼ a for i ¼ 1; . . .;N=2,
and xi ¼ b to i ¼ N=2þ 1; . . .;N. The factors a and b lie between zero and one,
0\a\b\1. For the model, it is not necessary that b ¼ 1� a, which is often used
in the literature [33]. In the second step (the generation n ¼ 2), the procedure from
Step 1 is used toward two successive terms, which leads to xi ¼ a2, for
i ¼ 1; . . .;N=4, xi ¼ ab for i ¼ N=4þ 1; . . .;N=2, xi ¼ ba ¼ ab for i ¼
N=2þ 1; . . .; 3N=4 and xi ¼ b2 for i ¼ 3N=4þ 1; . . .;N. In the nþ 1ð Þ-th step, the
elements obtained at step n are divided into two sequences of equal length, the first
half of xi is multiplied by a, and the other half by b. For example, at the generation
n ¼ 3 we get series of 8 elements: a3, a2b, a2b, ab2, a2b, ab2, ab2, ab3. After the
step nmax, it reaches the final generation, all subsequence of which that will have
length equal to 1 and they cannot be split any further split. The final elements can
be written as

xi ¼ anmax�n i�1ð Þ � bn i�1ð Þ: ð5:129Þ

where n ið Þ is the number of units in the binary representation of i, such as
n 13ð Þ ¼ 3, because 13 corresponds to a binary number of 1101.

For the multiplicative cascade model, the formula for s qð Þ can be established
immediately [30, 33, 41]

s qð Þ ¼ � ln aq þ bqð Þþ q ln aþ bð Þ½ �= ln 2 ð5:130Þ
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or

h qð Þ ¼ 1
q
� ln aq þ bqð Þ

q ln 2
þ ln aþ bð Þ

ln 2
: ð5:131Þ

Equation (5.131) follows from (5.128) and (5.130). In particular, when
a ¼ p; b ¼ 1� p we obtain formula [41]

s qð Þ ¼ � ln pq þ 1� pð Þqð Þ
ln 2

: ð5:132Þ

h qð Þ ¼ 1
q
� ln pq þ 1� pð Þqð Þ

q ln 2
: ð5:133Þ

Equations (5.132) and (5.133) describe the binary Cantor multifractal [33],
corresponding to it the binomial series is defined as

xi ¼ pn i�1ð Þ � 1� pð Þnmax�n i�1ð Þ: ð5:134Þ

where n ið Þ—the number of units in the binary code of number i, and the parameter
p determines the probability 0:5\p\1. Obviously, such series will consist of
N ¼ 2nmax members xi i ¼ 1; . . .;Nð Þ, the number of which is limited to the maxi-
mum rate nmax.

The binomial series (5.134) is usually used to test MF-DFA (see, e.g., [64]).
Generating it according to the definition (5.134), it is easy to find the multifractal
characteristics of s qð Þ and h qð Þ using MF-DFA and compare them with the exact
values from (5.132) and (5.133).

It is easy to see that the model (5.129) h 1ð Þ ¼ 1 for all a and b. Thus, at q ¼ 1
this model describes the process with the Hurst parameter H ¼ 1, which is deter-
mined from the R=S method.

In order to generalize the multifractal cascade process so that h 1ð Þwill take on any
value we must be subtracted from h qð Þ its difference Dh ¼ ln aþ bð Þ= ln 2 [65].
Constant difference Dh corresponds to the long-range correlations presented in the
multiplicative cascademodel. To get the processwithout differenceDh, we can rescale
the power spectrum series. Therefore, we calculate the fast Fourier transformation
(FFT) from the signal xif g transforming the simplemultiplicative cascade process into
the frequency domain. Then, we multiply all the coefficients in the Fourier series by
f�Dh, where f—the frequency. Then, the slope b of the power spectrum S fð Þ
 f�b to
the axis f will shift from values b ¼ 2h 2ð Þ � 1 ¼ 2 ln aþ bð Þ � ln a2 þ b2ð Þ½ �= ln 2 to
the lower values b0 ¼ 2 h 2ð Þ � Dh½ � �1 ¼ � ln a2 þ b2ð Þ= ln 2. Finally, by inverse
FFT we return the signal back into the time domain.

Let us consider another simple multifractal model—the so-called the bifractal
model that is well suited for data modeling, multifractality of which is without
doubt [66]. For the bifractal model, the exponents of Rényi is characterized by two
different slopes a1 and a2:
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s qð Þ ¼ qa1 � 1; q� qx
qa2 þ qx a1 � a2ð Þ; q[ qx



ð5:135Þ

or

s qð Þ ¼ qa1 þ qx a2 � a1ð Þ � 1; q[ qx
qa2 � 1; q� qx



: ð5:136Þ

Using (5.101), we find that h qð Þ is represented in the form of the plane stretching
from q ¼ �1 to qx and breaks down into hyperboles at q[ qx:

h qð Þ ¼ a1; q� qx
qx a1 � a2ð Þ 1q þ a2; q[ qx



ð5:137Þ

or vice versa

h qð Þ ¼ qx a2 � a1ð Þ 1q þ a1; q� qx
a2; q[ qx



: ð5:138Þ

Both versions of the bifractal model depend on three parameters a1, a2, and qx.
The multifractal spectrum (the singularities spectrum) is generated at two points a1
and a2 and its width is equal to Da ¼ a1 � a2.

Analysis of fractal and multifractal properties of time series is one of the
promising areas of data analysis. This is due to the ability of fractal analysis to
investigate the signals that from the standpoint of covariance and spectral theory are
nothing more than noise or Brownian motion.

A further generalization of Brownian motion with constant the Hurst parameter
H, 0\N\1 assumes the dependence of the Hurst parameter on time. Mandelbrot
was first to propose this generalization [67], and it is called the multifractal
Brownian motion, which is described by the function H tð Þ so-called the multifractal
singularity spectrum. The singularity spectrum is the informative statistics char-
acterizing the chaotic regime of fluctuations of observed value.

There are several methods of studying the multifractal characteristics of
non-stationary signals. Among them there are two main ones: the wavelet transform
modulus maxima (WTMM) method and the method of multifractal fluctuation
analysis (MFFA or MF-DFA), which found a widespread usage at the moment.
Both methods exclude the polynomial trends from the original time series, so that is
why they have advantages over other methods, for example, comparing with the
standard method based on the multifractal structural formalism based on the partial
functions [33], or with the autocorrelation functions of high-order [30]. In the case
of multidimensional data, MF-DFA method is generalized in [61], and the method
WTMM in [62].

One of the promising directions of development of methods of multifractal
analysis is the study of linear and especially nonlinear mutual correlative bonds
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between multiple time series. It is also of great interest to improve the methods
characterizing the cross-correlations and similar statistical relationships between
several non-stationary time series. Most existing methods are applicable only to
stationary series that are rare in real situations. In this regard, we shall note the
recently received results [68] of using the fractal method to analyze the
cross-correlation of non-stationary data.

It is noteworthy to study the time-dependent characteristics of large networks of
signals. In such networks, nodes present the signals, while bonds (possibly of the
certain direction) between each pair represent signals.

Finally, the practical use of fractal scaling parameters identified in time series is
of greatest interest. Particular attention should be paid to developing of methods for
forecasting time series and complex dynamical systems with an intention to adopt
preventive measures to stop dangerous and emergency situations.
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Chapter 6
Fractal Analysis of Fatigue Failure
of Kinematic Pair (Oil–Gas Xmas
Tree Valve)

One of the most important types of oil field equipment is Xmas tree, designed to
insulate the mouth of gushing oil and gas wells, as well as to regulate their oper-
ational modes.

Assuming that the most of the oil and gas exploitation are done using the
fountain method, and then, the importance of fountain operational equipment at the
mouth of well for the country’s economy becomes more obvious [1].

A lot of research has been in this field. However, existing structures of equip-
ment and extreme operational conditions linked with discovery of oil in most
remote and harsh environment as onshore and offshore requires the implementation
of new studies in wear resistance and reliability of mobile elements of the fountain
Xmas trees.

The performance in this direction made researches and development works
allowed the creation of variety of sizes Xmas trees operational under pressures 14,
21, 35, and 70 MPa, and with the well diameter 50, 65, 80, 100, and 150 mm.
However, all these equipment have certain drawbacks.

In this regard, the creation of wellhead equipment that meets the modern
requirements and international standards still has an important practical and sci-
entific significance. And this goal requires an amount of work aimed at studying the
existing structures of Xmas trees, an analysis of their operational performance and
failures, and more accurate assessments and design of existing and newly devel-
oped wellheads.

The operational experience of Xmas trees under different conditions shows that
the modern design of valves, the hermetical sealing of shutter (gate) which auto-
matically supply a special grease to the sealing surface, have a sufficiently long
lifetime. In this case, failures occur not only because of wear of the valve shutter
(gate), but also due to running pair consisting of spindle and spindle nut.
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6.1 Design Features and Operating Conditions
of Flow Control Devices

Valves on the Xmas tree and wellhead equipment, in general, are divided into two
groups:

• Flowing-type plug valves with sealing lubricants (KPPS/КППC);
• direct flow valves with single-plate (KhMS1/XMC1) and double-plate (ZMAD/

ЗMAД) shutter (gate) with manual or automatic lubrication, with manual or
pneumatic control.

The following coding is used for the specification of plug valves: KPPS/КППC
—direct flow plug valve with lubrication; the first number—the nominal width, in
mm, the second number—the working pressure, in MPa; KhL/XЛ—the modifi-
cation for cold climates. As an example, the direct flow plug valve, with lubrication,
with nominal diameters 65 mm, designed for working pressure 14 MPa, for cold
climates will be shown as KPPS-65×140KhL/КППC-65×140XЛ.

The following coding is used for the specification of gate valves: ZM/ЗM—the
valve with sealing gate “metal-on-metal”; S/C—or A/A—manually or automati-
cally lubricated; 1 or D/Д—the single or double plated; B/Б—the flangeless valve
body (if there is flange, then no letter is written); P/П—the pneumatic control; the
first number—the nominal diameter, in m; the second number—the working
pressure, in MPa; the corrosion resistance performance is similar to the Xmas tree.
For example, the valve with sealing “metal-on-metal,” with automatic lubrication,
with double-plate gate, with nominal width 50 mm, designed for working pressure
70 MPa with up to 6 % H2O and CO2 is indicated ZMAD-50×700K2/ЗMAД-
50×700К2 [2].

The plug valves with a pressure 14 MPa (Fig. 6.1) consist of a body and the
overlapping channels separated by the conical plug when the wheel is rotated at 90�.

Fig. 6.1 The plug valve
KPPS-65kh14/КППC-65×14
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The wheel regulates the gap between the plug and the body. The valve works
only with lubrication. The lubricant seals the valve and the thread of spindle, makes
the turn of plug easier, and also prevents corrosion of details. The lubricant is
supplied through the channel in the spindle with the pressure screw t, and then
through the check valve inside the body.

The valve (Table 6.1) is equipped with a special device to force the plug if it gets
jammed [3].

The direct flow valves like ZMS1 (see Table 6.1) with forced lubrication, with
manual control (Fig. 6.2a), and with nominal diameters of 65, 80, 100, and 150 mm,
designed for working pressure 21, 35 MPa. The air-tightness of gate is provided a
certain specific load on sealing components of gate and saddles. The preliminary

Table 6.1 Technical specifications of valves

Types of valves Control Dimensions Total weight
(asbl.), kgLength, L Width, W Height, H

KPPS-65×14
(КППC-65×14)

Manual 350 205 420 53

KPPS-65×14KhL
(КППC-65×14XЛ)

Manual 350 205 420 53

ZM-65×21 (ЗM-65×21) Manual 350 320 650 64

ZMS-65×35 (ЗMC-65×35) Manual 350 320 630 88

ZMS1-65×350
(ЗMC1-65×350)

Manual 350 320 630 88

ZMS-80×35 (ЗMC-80×35) Manual 470 360 885 130

ZMS1-65×35K2
(ЗMC1-65×35К2)

Manual 390 320 715 127

ZMS1-65P×35K2
(ЗMC1-65П×35К2)

Pneumatic 390 400 1150 237

ZMS1-80×35K2
(ЗMC1-80×35К2)

Manual 470 360 915 160

ZMS1-80Px35K2
(ЗMC1-80П×35К2)

Pneumatic 470 400 118 265

ZMS1-100×21
(ЗMC1-100×21)

Manual 510 450 1120 218

ZMS1-100×21K2I
(ЗMC1-100×21К2И)

Manual 510 450 1120 218

ZMS1-100P×21K2I
(ЗMC1-100П×21К2И)

Pneumatic 510 450 1400 390

ZMS-100×35
(ЗMC-100×35)

Manual 550 450 930 287

ZMS-100×35K1
(ЗMC-100×35К1)

Manual 550 450 930 287

ZMS1-100×35K2
(ЗMC1-100×35К2)

Manual 550 450 930 300

(continued)
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specific load is created by disk springs. The lubrication LZ-162/ЛЗ-162 or
“Armatol” provided through the discharge valve also helps to hermetically seal the
gate. A metal gasket along with tightening screws air-tighten between the gap
between the body and the lead. The regulating nuts align the passage between the
openings of gate and body.

To facilitate the control of valve, the support of running nut is designed on the
ball bearings, and valves with nominal diameters 80, 100, and 150 mm have a
balancing rod.

The threads of spindle and running nut are separated and outside of the contact
zone contact with environment, which improves their performance.

Sleeves act as sealants for spindle and rod. To improve the sealing ability, the
lubricant is supplied through the discharge valve.

Currently, instead of valves ZMS1/ЗMC1 (see Fig. 6.2a), the more modernized
versions of type ZM/ЗM and ZMS/ЗMC are produced [3].

The direct flow valves ZMAD/ЗMAД designed for pressure 70 MPa with
automatic lubrication and manual control are shown in Fig. 6.2b.

The opening hole alignments are regulated with screws. The oiler provides
lubrication of bearings.

Table 6.1 (continued)

Types of valves Control Dimensions Total weight
(asbl.), kgLength, L Width, W Height, H

ZMS1-100P35K2
(ЗMC1-100П×35К2)

Pneumatic 550 450 1400 406

ZMSB-150×21 (ЗMCБ-
150×21)

Manual 350 450 1485 353

ZMAD-50×70 (ЗMAД-
50×70)

Manual 500 355 980 196

ZMADP-50×70 (ЗMAДП-
50×70)

Pneumatic 500 355 1065 243

ZMAD-80×70 (ЗMAД-
80×70)

Manual 650 500 1117 328

ZMADP-80×70 (ЗMAДП-
80×70)

Pneumatic 650 500 1280 436

ZMAD-50×70K2 (ЗMAД-
50×70К2)

Manual 500 355 980 196

ZMADP-50×70K2
(ЗMAДП-50×70К2)

Pneumatic 500 355 1065 243

ZMAD-80×70K2 (ЗMAД-
80×70К2)

Manual 650 500 930 328

ZMADP-80×70K2
(ЗMAДП-80×70К2)

Pneumatic 650 500 1280 436

ZM-50×70 (ЗM-50×70) Manual 500 355 890 156

ZMADP-50×70 (ЗMAДП-
50×70)

Pneumatic 500 355 1065 203
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The chevron-type sleeves help to lubricate spindle and balancing. To improve
the sealing ability, the lubricant is supplied through a discharge valve.

The preliminary load on the sealing surfaces of units is created using six cylinder
coil springs mounted between the dies.

The automatic supply of lubricant to the gate is an important feature of the valve;
it is comprised of a cavity, pistons, and system of channels which lubricate the
cavity with ring channel on the sealing surface of cheeks and discharge valves
placed outside the body and designed for periodic injection of lubricant (every 10–
15 cycles latches) into the cavity. The operating pressure of medium within the
body is passed on the lubricant through pistons, which fills the cavity.

The valve ZMADP/ЗMAДП (see Table 6.1) with pneumatic control is signifi-
cantly different of the one with manual control due to the presence driving part.

The driving part consists of pneumatic cylinder and backup manual control, to
help control valve in case of failure of pneumatic system.

Controlling units are designed to manage the operational regimes of oil and gas
wells through throttles that regulate the fluid flow by changing the area of opening
channel.

The following coding is used for the specification of adjustable throttle where
DR/ДP—the adjustable throttle; the first number—the nominal diameter, in mm;
the second number—the working pressure, in MPa; the performance based on the
corrosion resistance similar to the Xmas tree and valves. For example, the

Fig. 6.2 The direct flow valves ZMS1/ЗMC1 (a) and ZMAD/ЗMAД (b) with manual control
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adjustable throttle with nominal diameters 65 mm, with working pressure 35 MPa,
for fluids containing up to 6 % CO2, is written as DR-65×350K1/ДP-65×350К1.

The adjustable throttle (Fig. 6.3) designed for pressure 35 MPa, consists of body,
wherein the fluid flow is diverted at right angle, housing with sleeves. A replaceable
nozzle is inserted into the sleeve [3].

The internal parts of throttle are sealed with O-rings. The position of spindle is
fixed with lock washer.

The technical specifications of adjustable throttle are given below.

Nominal diameter, mm—65,
Working pressure, MPa—35,
Dimensions, mm—343 × 320 × 605,
Assembled weight, kg—58.

The rotation of wheel translated into the movement of tip end, fastened to the
end of the spindle with nut.

The opening and closing degree of throttle is determined by the index showing
on the diameter of the cylindrical hole in mm, which is equivalent to the corre-
sponding area of the annular section. As the nozzle of regular section, we assume

Fig. 6.3 The regulated and
unregulated throttle
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the unregulated throttle. For that, the assembly consisting of spindle, sleeve, nuts,
and other items are replaced by gag.

To remove the body of nozzle, along with other accessories there is a
disassembler.

6.2 Contact Interaction Between the Bolt and Nut.
N.E. Zhukovsky Problem

The distribution of the axial forces between the threads could have been uniform if
the thread was made high accuracy and the thread ductility was considerably higher
ductility bolt and nut.

In reality, neither of conditions is plausible.
The influence of bolt ductility on the distribution of powers between the

leads/pitches of thread can be shown from tightening the screw into a large detail,
assuming it is not deformable. The force between each pair of contacting threads in
screw and nut is proportional to the elastic movements of the threads according to
Hooke’s law. Meanwhile, the elastic displacements of thread along the length of nut
are not identical. The thread displacements at the end of the nut vary from the
displacements along the length of nut (the screwing length).

We graphically represent each pair of thread in the form of beams, clamped
between the stem of bolt and the body of nut. Figure 6.4a shows the thread joint in
the non-loading condition: threads, depicted as beams, are not deformed.
Figure 6.4b shows the joint where the thread ductility is significantly higher than
one the stem of screw and the body of nut: All threads have nearly the same
displacement, and hence, they are equally loaded. The joint is shown in Fig. 6.4c;
the screw stem ductility is almost the same as thread ductility, so the lower parts of
thread receive more displacement than the upper ones [4].
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Fig. 6.4 The diagram of thread deformation at absolutely rigid nut
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The uneven distribution of load along thread is complicated by the fact that the
lead in the most extended part of the bolt is associated with thread located in the
most compressed part of the nut.

The problem of the distribution of forces between the threads is statistically
unsolvable.

The distribution of forces between the threads according to N.E. Zhukovsky for
nut with ten threads is shown in Fig. 6.5. The first thread gets the most of the load, it
is account for about 1/3 of the total force on the bolt, and the last tenth threads it is
less than 1/100 of the total force. The deformations in the thread associated with
profile errors, contact, and local plastic deformations somewhat reduce loading in
the first thread down to 1/3–1/4 of the total force [5].

The force field in bolt and nut (Fig. 6.6) shows a quite clearly unequal distri-
bution of forces between the threads. The direction of the field lines indicates the
direction of the principal stresses, the density of force lines characterizes the
intensity of stress.

With such a sharp uneven distribution of the load along the threads, a large
increase in the height of nut becomes unnecessary because of the danger of
sequential “chain” destruction of threads. The diagram of forces between the
threads at ductile nut, working or tension, and rigid stem of bolt looks like the one
on ordinary diagram.
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Fig. 6.5 The diagram of load distribution between the threads according to N.E. Zhukovsky
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In the thread connection with nut, working for tension, and with normal ductility
of bolt and nut, the diagram of pressure distribution between the threads with
minimum in the middle portion of the length of screwing is obtained.

6.3 Load Distribution on Screw of Kinematic Pair

The Xmas tree is one of the most important equipment in the oil and gas field,
designed to seal the mouth of the gushing oil and gas wells, to regulate the oper-
ation [6].

The valve devices in Xmas trees are the direct flow type with gate, the tightness
of which is ensured by the close contact between the gate and the saddles. The gate
of valve is driven by rising spindle of the rotating lead nut.

The overall performance of valve is largely dependent on the running pair. In the
running pair of valve, the spindle is subjected to the tension and the nut is mainly to
compression [7].

Considering that the load acting on the spindle of valve repeatable variable, the
practice and results of research show that the weakest part is the initial threads from
the supporting end of the nut, where the screw gets stretched, and the nut gets
compressed.

This is due to the fact that the most of the load is concentrated in the first thread.
Further distribution of the load is uneven, and that unevenness of load distribution
between the threads is complicated by the local concentrations of stress in the pitch
of thread and by tensile forces and stresses in the threads. As a result, the stress in
the first thread exceeds the stress of the normal tensile forces. Therefore, there is an
intensive wear of the initial threads of the running pair and subsequent wear of
following ones. As a result, a gap is formed between the nut and the spindle, which
is connected with closing device, and it eventually contributes to the overall valve

Fig. 6.6 The force field in
bolt and nut
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depressurization, which is not acceptable. Therefore, the schematic design of
spindle–nut plays an important role in terms of load distribution along the threads.

N.E. Zhukovsky was first to consider the distribution of loads along threads for
the rectangular profile [5].

Let us try using all the parameters of thread, to consider the load distribution in
diagrams: the spindle gets stretched, the nut gets compressed, and the spindle, just
like and the nut, get stretched together [8].

Consider the distribution of load along threads when the spindle is stretched and
the nut is compressed (Fig. 6.7).

When closing or opening the valve, the bend is formed on the thread due to the
load. The sum of projections on axis of the first and second threads, respectively, is

f1 ¼ 0:44H
2prt

þ 0:38H
2pr1t

� �
P
g
; ð6:1Þ

f2 ¼ 0:44H
2prt

þ 0:38H
2pr1t

� �
P1

g
; ð6:2Þ

P

H

Z

nut spindel

supp

D

Fig. 6.7 Estimating the
distribution of load along
threads when the spindle is
stretched and nut is
compressed
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where P, P1—the loading force along threads of the spindle and nut, the first and
second threads, respectively; 2prt, 2pr1t—the thread area for the spindle and nut,
respectively, m2; g—the coefficient of beveled threads under the pressure, N/m2;
H—the height of thread, m; t—the thread pitch, m; r, r1—the radii of thread inner
diameters of for the spindle and nut, respectively, m.

When nut moves, the tensile force is formed in the spindle, and the compressive
force is formed in the nut. Let us denote this force through G.

The spindle elongation and the nut compression due to this force are

f3 ¼ Gt
pr2E

; ð6:3Þ

f3 ¼ Gt

p r21 � r2
� �

E
; ð6:4Þ

where E, E1—the elasticity modules of materials for the spindle and nut.
The difference between (6.1) and (6.2) should be equal to the sum of (6.3) and

(6.4)

P� P1 ¼ G
2r1t2g 2r2 � r21

� �
rE Hr1 þH1rð Þ r2 � r21

� � ; ð6:5Þ

for the first and second threads, we can write

P1 � P2 ¼ G� P1ð Þ 2r1t2g 2r2 � r21
� �

rE Hr1 þH1rð Þ r2 � r21
� � ; ð6:6Þ

Solving together (6.5) and (6.6), we obtain the relationship between the forces
on the three threads

PþP2 ¼ P1 2þ 2r1t2g 2r2 � r21
� �

rE Hr1 þH1rð Þ r2 � r21
� � !

; ð6:7Þ

After simple transformations (6.7), we obtain

P1

P
¼ 1

2þF � P2
P1

; ð6:8Þ

where F ¼ 2r1t2g 2r2�r21ð Þ
rE Hr1 þH1rð Þ r2�r21ð Þ; P2—the load on the third thread.

Since the ratio of the acting forces on all threads is determined by such formulas,
we can write
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d ¼ 1
2þF � d

: ð6:9Þ

Solving the Eq. (6.9), we determine the root

d ¼ 1þ F
2

� �
� 1þ F

2

� �2

�1

" #0:5
: ð6:10Þ

Equation (6.5) can be converted into

P� Pd ¼ R� Pð ÞF;

here

P ¼ FR
1� dþF

: ð6:11Þ

This value can be determined from the sum of the infinitely decreasing geometric
progression

R ¼ P
1� d

ð6:12Þ

or

P ¼ 1� dð ÞR; ð6:13Þ

where R—the gravity force of closing part of valve and d—the denominator of
exponentially decreasing geometrical progression.

Taking into account (6.9), (6.11), and (6.12), they are identical.
Now consider the distribution of the loading forces along the thread, when the

spindle and nut are stretched simultaneously (Fig. 6.8).
If the tensile force of the spindle is G = R − P1, then we define the tensile force

of nut.
Since f1 � f2 ¼ f3 � f4, then

P� P1ð Þ H
2prtg

þ H1

2pr1tg1

� �
¼ Rt

pr2E
� R� Gð Þt
p r21 � r2
� �

E
:

Hence,

P� P1 ¼ FG� pRtE1 r21 � r2
� �� pr2Et R� Gð Þ� �

4t2gg1r1r

r2EE1 r21 � r2
� �

2pHr1g1tþ 2pH1rgtð Þ : ð6:14Þ
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A similar ratio will be for the other threads

P� P1 ¼ F G� P1ð Þ � pRtE1 r21 � r2
� �� pr2Et R� Gð Þ� �

4t2gg1r1r

r2EE1 r21 � r2
� �

2pHr1g1tþ 2pH1rgtð Þ : ð6:15Þ

Excluding G from (6.14) and (6.15), we obtain the connection between P, A,
and P2:

PþP2 ¼ P1ð2þFÞ: ð6:16Þ

Aswe seen from (6.16), the pressure force on the threads decreases by geometrical
progression; starting from the first thread and in the middle of the length it becomes
close to zero. The denominator of this progression is determined by formula (6.10).

The relationship between P and R is determined from (6.14)

P ¼ 2Gt2g
1þ dþFð ÞHEr : ð6:17Þ

Similarly, we can determine what will be the loading force in the next thread

P ¼ 2Gt2g1
1þ dþFð ÞHE1r1

: ð6:18Þ
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nutspindel

s

Fig. 6.8 Estimating the
distribution of load along
threads when the spindle and
nut are stretched
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If we form the sum of decreasing geometric progressions, which constitute the
subsequent loading on the threads of nut at both ends, and equating them to R, we
obtain

R 1� dð Þ ¼ QþQ1: ð6:19Þ

Formulas (6.10), (6.17), and (6.18) lead us to the identity. Therefore, it can be
concluded that the valves designed according to the load-sharing scheme on
Fig. 6.8 will be more durable than the one designed according to the load-sharing
scheme on Fig. 6.7.

Figure 6.9 shows the ratio between the distribution of load along threads and the
loading force of threads of nuts for the structural diagrams (Figs. 6.7 and 6.8).

As we can see from Fig. 6.9, the distribution factor of loading along threads is
advisable to select within the range from 0.5 to 0.985. When selecting lesser values
for the distribution factor (Fig. 6.10), the first two threads take up most of the tensile
force, which leads to the premature wear.

Figure 6.11 shows the graph of loading distribution along thread for valves
design by AzINMASh.

As we can see from Fig. 6.8, the loading along threads on this design is 2 times
less than the design on Fig. 6.7.
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Fig. 6.9 The influence of loading factor distribution along threads on the loading distribution. 1
the diagram where “the nut is compressed, the spindle is stretched”; 2 the diagram where “the
spindle and nut are both stretched”
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6.4 Study of Wear of the Valve Kinematic Pair
in the Elastic–Plastic Deformation Zone

Xmas trees are designed for sealing wellheads, to control and regulate their oper-
ation. The effectiveness of valves fixed on the fountain equipment depends largely
on the performance of its individual units, including a running pair [9]. The
complexity of this study is that on one side is a well-studied thread (the running
pair); on the other hand, the deformed state of thread pair of Xmas valve complies
with the well-known methods of calculation. The classical theory N.E. Zhukovsky
does not provide the even distribution of axial forces along thread within the elastic
range (Hooke’s law).

However, the experience has shown [7] that the running pair of the direct flow
valves has not only elastic, but also plastic deformations, and there is uneven wear
along threads. From the theoretical curve of N.E. Zhukovsky, we can conclude that
the maximum force occurs on the last thread. However, the pulsating effect of
pressure acting on the spindle from the bottom gate creates an additional dynamic
force on the thread [10], and the maximum loading starts along threads, due to this
the plastic deformation is redistributed not only on the first thread, but also in the
following threads and therefore, there is an effect of uneven wear.

This results in a radial displacement of points on the internal radius of thread of
nut from the residual deformation, even after removing load [11].

Let us consider the problem of interaction of running pair, undergoing the
elastic–plastic deformation in the polar coordinate system. For the argument pur-
pose, we introduce the coefficient of transverse strain [12].

We define the stresses and strains, as well as the boundaries between the elastic
and plastic zones at any time of deformation upon unloading. To this end, we
introduce into the calculation the coefficient of transverse deformation on the thread
of running nut.

To do this, first we write the equation of stress intensity [13]

ri ¼
ffiffiffi
2

p

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r1 � r2ð Þ2 þ r2 � r3ð Þ2 þ r1 � r3ð Þ2

q
; ð6:20Þ

where A, r2, r3—the principal stresses.
The intensity of the deformation

ei ¼
ffiffiffi
2

p

2 1þ l0ð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e1 � e2ð Þ2 þ e2 � e3ð Þ2 þ e1 � e3ð Þ2

q
; ð6:21Þ

where l0—the variable coefficient of the transverse strain; and e1, e2, and e3—the
main strains.

It is known [13] that for the uniaxial strain
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r2 ¼ r3 ¼ 0; r1 ¼ rx; e1 ¼ e2; e2 ¼ e3 ¼ �l0e1:

If we take into account the parameters in (6.20) and (6.21), we obtain

ri ¼ rx; ei ¼ ex:

It can also be written, according to [13]:

e1 � ‘

r1 � r
¼ e2 � ‘

r2 � r
¼ e3 � ‘

r2 � r
¼ w; ð6:22Þ

where ‘—the average elongation ‘ ¼ 1
3 h; h—the volumetric change.

h ¼ 1
3

e1 þ e2 þ e3ð Þ; ð6:23Þ

w ¼ 1
2G—some stress function; G—the shear modulus. The average stress is

determined in [14]

r ¼ 1
3

r1 þ r2 þ r3ð Þ: ð6:24Þ

From (6.20), (6.21) and (6.22), we obtain

w ¼ 1þ l0

ri
ei: ð6:25Þ

Taking into account (6.25) in (6.22),

e1 � ‘ ¼ 1þ l0ð Þ ei
ri

r1 � rð Þ;

e2 � ‘ ¼ 1þ l0ð Þ ei
ri

r2 � rð Þ;

e3 � ‘ ¼ 1þ l0ð Þ ei
ri

r3 � rð Þ:

ð6:26Þ

According to Hooke’s law,

h ¼ 1� 2l
E

r1 þ r2 þ r3ð Þ:

where l—the Poisson ratio and E—the modulus of elasticity of nut.
Then,

‘ ¼ 1
3
h ¼ 1� 2l

E
r: ð6:27Þ
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From (6.26) and (6.27), we obtain

e1 ¼ 1� 2l
E

� 1þ l0ð Þ ei
ri

	 

rþ 1þ l0ð Þ ei

ri
r1;

e2 ¼ 1� 2l
E

� 1þ l0ð Þ ei
ri

	 

rþ 1þ l0ð Þ ei

ri
r2;

e3 ¼ 1� 2l
E

� 1þ l0ð Þ ei
ri

	 

rþ 1þ l0ð Þ ei

ri
r3:

ð6:28Þ

From [13], it is known that l0 ¼ 1
2 � 1�2l

E
rx
ex
, where rx, ex—the stress and elon-

gation under the uniaxial deformation, and rx
ex
¼ ri

ei
. Then,

l0 ¼ 1
2
� 1� 2l

2E
ri
ei
: ð6:29Þ

From (6.28) and (6.29), we have

e1 ¼ 3
2
ei
ri

� 1� 2l
2E

	 

r1 � rð Þþ 1� 2l

E
r;

e2 ¼ 3
2
ei
ri

� 1� 2l
2E

	 

r2 � rð Þþ 1� 2l

E
r;

e3 ¼ 3
2
ei
ri

� 1� 2l
2E

	 

r3 � rð Þþ 1� 2l

E
r:

ð6:30Þ

We proceed to the polar coordinates (Fig. 6.12) r1 ¼ rh; r2 ¼ rr, and we
assume that the plane stress state is e1 ¼ eh; e2 ¼ er [13]

r ¼ 1
3

rr þ rhð Þ: ð6:31Þ

Taking into account (6.31), we have

er ¼ ei
ri

rr � 1
2
rh

� �
þ 1� 2l

E
rh;

eh ¼ ei
ri

rh � 1
2
rr

� �
þ 1� 2l

E
rr:

ð6:32Þ

For nut, i.e., any cylindrical bodies, the equilibrium equation [15] is

drr
dr

þ rr � rh
r

¼ 0 ð6:33Þ
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here

rr ¼ 1
r
du
dr

;

rh ¼ d2u
dr2

:

ð6:34Þ

where u ¼ u rð Þ—the stress function.
From (6.32) and (6.34), we get

er ¼ ei
ri

1
r
du
dr

� 1
2
d2u
dr2

	 

þ 1� 2l

E
d2u
dr2

;

eh ¼ ei
ri

d2u
dr2

� 1
2r

du
dr

	 

þ 1� 2l

E
1
r
du
dr

:

ð6:35Þ

We write the equation of deformation compatibility [15]

deh
dr

þ eh � er
r

¼ 0 ð6:36Þ

Then from (6.35) and (6.36), we get

ei
ri

d2u
dr2

þ 1
r
ei
ri

þ d
dr

ei
ri

� �	 

d2u
dr2

� 1
2r

d
dr

ei
ri

� �
þ 1

r2
ei
ri

	 

du
dr

¼ 0: ð6:37Þ
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Fig. 6.12 The calculation
diagram
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If we accept that w ¼ du=dr, then from (6.37) we have

ei
ri

dw
dr

þ 1
r
ei
ri

þ d
dr

ei
ri

� �	 

dw
dr

� 1
2r

d
dr

ei
ri

� �
þ 1

r2
ei
ri

	 

w ¼ 0: ð6:38Þ

Then, Eq. (6.34) in terms of w can be written as

rr ¼ w
r ;

rh ¼ dw
dr :

ð6:39Þ

Let us express ri and ei through w. From (6.20) and (6.34), we can write

ri ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w
r

� �2

þ dw
dr

� w
r
dw
dr

s
: ð6:40Þ

The characteristic Eq. (6.38) can be written as follows [13]

d2w
dr2

þ 1
r
dw
dr

� w
r
¼ 0: ð6:41Þ

We write the boundary conditions:

rr ¼ �P at r ¼ RB; rr ¼ 0 at r ¼ RH : ð6:42Þ

Consistently, we solve the Eq. (6.38). If we assume that the volume of the nuts
does not changed, then

er þ eh ¼ 0 ð6:43Þ

or

dU
r

þ U
r
¼ 0: ð6:44Þ

From (6.44), we get

U ¼ A
r
; ð6:45Þ

er ¼ � A
r2
; eh ¼ A

r2
: ð6:46Þ

At the constant volume of nuts, we can take l0 ¼ 1=2, and then from (6.46), we
have
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ei ¼ 2ffiffiffi
3

p A
r2
: ð6:47Þ

From (6.30), ez ¼ 0; rz ¼ rð Þ

ri ¼ 1
3

ri þ rj þ rhð Þ

or

ri ¼ 1
2

rj þ rhð Þ: ð6:48Þ

Then from (6.20), we obtain

ri ¼
ffiffiffi
3

p

2
rh � rrð Þ: ð6:49Þ

At the plastic state for the nut element, we can write [13]

ei ¼ er þ ri � rrð ÞE

or

ei ¼ rr 1� E1

E

� �
þE1ei: ð6:50Þ

From (6.47), (6.49) and (6.50), we obtain

rh � rr ¼ 2ffiffiffi
3

p rT 1� E1

E

� �
þ 4

3
E1

A
r3
: ð6:51Þ

From (6.33) and (6.51), we obtain

drr
dr

¼ 2ffiffiffi
3

p rT 1� E1

E

� �
1
r
þ 4

3
E1

A
r3
: ð6:52Þ

From (6.49) and (6.52)

rr ¼ 2ffiffiffi
3

p rT 1� E1

E

� �
ln

r
RB

� 2
3
E1

A
r3

þB: ð6:53Þ

rh ¼ 2ffiffiffi
3

p rT 1� E1

E

� �
1þ ln

r
RB

� �
þ 2

3
E1

A
r3

þB: ð6:54Þ
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The constants A and B are determined from the boundary conditions: rr ¼ �P at
r ¼ RB, where P—the specific load on nut. When r ¼ Rb from (6.53), we obtain

� 2
3
E1

A
R3
b
þB ¼ �P: ð6:55Þ

Going from the field of elastic deformation to plastic, with r ¼ RP

ri ¼
ffiffiffi
3

p

2
rh � rrð Þ ¼ rT : ð6:56Þ

For the boundary of the elastic deformation of the nut thread at r ¼ RP, we apply
the Lamé equation

rr ¼ �PRP

rh ¼ PRG R2
H þR2

Pð Þ
R2
H�R2

P

)
at r ¼ RP: ð6:57Þ

From (6.56) and (6.57), we obtain

rT ¼
ffiffiffi
3

p
R2
H

R2
H � R2

P
PRP :

From this expression,

�PRP ¼
rT R2

H � R2
P

� �ffiffiffi
3

p
R2
H

: ð6:58Þ

For the plastic region, according to (6.53)

2ffiffiffi
3

p rT 1� E1

E

� �
ln
RP

Rb
� 2
3
E1

A
r2

þB ¼ � rT R2
H � R2

P

� �ffiffiffi
3

p
R2
H

: ð6:59Þ

From (6.58) and (6.59),

2ffiffiffi
3

p rT 1� E1

E

� �
ln
RP

Rb
� 2
3
E1

A
C2 þB ¼ � rT R2

H � R2
P

� �ffiffiffi
3

p
R2
H

: ð6:60Þ

To determine the parameters A and B, we use the conditions of thread surface
displacement:
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For the elastic displacement,

U ¼ 1� l
E

PPR2
P

R2
H � R2

P
rþ 1þ l

E
PPR2

HR
2
P

R2
H � R2

Pð Þr ð6:61Þ

For the plastic region, U ¼ A=r. At r ¼ Rp

A
C
¼ 1� l

E
PPR2

P

R2
H � R2

P
RP þ 1þ l

E
PPR2

HR
2
P

R2
H � R2

Pð ÞRP
:

Hence,

A ¼ PRPR
2
HR

2
P

E R2
H � R2

Pð Þ 1� lð Þ R
2
P

R2
H
þ 1þ lð Þ

	 

: ð6:62Þ

From (6.58) and (6.62),

A ¼ rTR2
Pffiffiffi

3
p

E
1� lð Þ R

2
P

R2
H
þ 1þ lð Þ

	 

: ð6:63Þ

From (6.59), we have

B ¼ � rTffiffiffi
3

p
1� R2

P
R2
H

� �
þ 2 1� E1

E

� �
ln RP

RB

� 2
3
E1
E 1� lð Þ R2

P
R2
H
þ 1þ lð Þ

h i
8<:

9=;: ð6:64Þ

On the basis of Eqs. (6.53) and (6.54), the graphs are constructed for depen-
dencies of the radial and tangential stresses from the radius of thread of running
pairs (spindle–nut) for the following selected materials (Fig. 6.13): 1—the pair of
steels 30KhMA/30XMA–40KhN/40XH (elasticity modulus E ¼ 2:15� 105 MPa,
yield strength rT ¼ 800MPa, and Poisson’s ratio l ¼ 0:28 ); 2—the pair of steel
and bronze 30KhMA/30XMA–BrAMts9-2/БpAMц9-2 (E ¼ 1:15� 105 MPa,
rT ¼ 450MPa, l ¼ 0:32); and 3—the pair of steel and brass 30KhMA/30XMA–
LS-60/ЛC-60 (E ¼ 1� 105 MPa, rT ¼ 350MPa, l ¼ 0:35).

While selecting materials for the running pair, we base it on the fact that bronze
BrAMts9-2/БpAMц9-2 and brass LS-60/ЛC-60 have sufficient resistance to wear
and minimal friction coefficient.

As a result, the calculation established that all combinations of running pairs
after reaching the thread radius 11.14 mm, at the tangential stress rT , operate in the
elastic–plastic deformation.

The analysis of the influence of radial stresses shows that initially, the stress
gradually increases and after reaching the thread radius 11.75 mm and the sign
changes into the positive.

The statistical analysis and visual inspection of spindle shows that the areas of
maximum wear is in the top of the thread.

6.4 Study of Wear of the Valve Kinematic Pair … 245



The wear in the end of the thread is almost 2 times greater than the wear in the
root of spindle thread (Fig. 6.14).

In our view, the summation of the tangential and radial stresses in the top of the
thread confirms the satisfactory agreement between the analytical studies and
experimental results.

The further analysis of the research results found that when the running pair is in
the elastic–plastic deformation, it leads to the formation of scuffing on the surface.

The significant impact on scuffing has the presence of contact pressure in the
area of considerable friction prior to a sharp increase in the friction coefficient.

The stress state at the friction process (movement of the running pair) and the
elastic–plastic deformation may also occur in the local micro-volumes of material
even at the relatively low nominal loads, since the actual stresses in them reach
significant values.

The extension of the elastic–plastic deformation range occurs as a result of
soaring number of individual contacts due to an increase of the normal load and the
stress redistribution under the summary of tangential and radial stresses. Owing to
the combined action of the radial and tangential stresses in the surface layer of the

200

400

1000

1

-400

2

9.25 10.5 12.09.5 10.0 11.0 11.5 12.5

-200

0

600

800

3

1`

2`3`

T
r

Fig. 6.13 The dependence of tangential (1, 2, 3) and radial (1′, 2′, 3′) stresses from the radius of
thread of running pairs: 1 the pair of steels 30KhMA/30XMA–40KhN/40XH (E = 2.15 × 105 MPa,
rT = 800 MPa, μ = 0.28); 2 the pair of steel and bronze 30KhMA/30XMA–BrAMts9-2/
БpAMц9-2 (E = 1.15 × 105 MPa, rT = 450 MPa, μ = 0.32); 3 the pair of steel and brass
30KhMA/30XMA–LS-60/ЛC-60 (E = 1 × 105 MPa, rT = 350 MPa, μ = 0.35)
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material in friction, the volumetric stress state is created in which, as shown by
Grozin [16], even the high-strength materials exhibit sufficient ductility. In the
surface layers, the shear stresses include the resistance stresses to the dislocation
movements from the internal obstacles and from the surface layer.

The analysis of the research results and the calculations showed that the running
pair made of steel 30KhMA/30XMA (spindle) and bronze BrAMts9-2/БpAMц9-2
(nut) increases the performance according to the criteria on resistance to scuffing
and wear due to its low friction coefficient ðf ¼ 0:106Þ.

6.5 Assessment of Tribological Characteristics
of Kinematic Pair

The goal of this study develops the running pair of valves for Xmas tree with the
critical operational parameters, so we studied the effect of various factors on the
performance of running pair of valves with respect to the critical operating
parameters and the necessary prerequisites for designing running pairs.

The peculiarities of design features and its operating conditions demand a number
of specifications toward the material requirements for the details of running the pair.
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The material of running pair of valve must have the sufficiently high mechanical
properties, the resistance to general corrosion and hydrogen sulfide cracking,
manufacturability, and durability, and the pair should provide a minimal friction
coefficient.

The wear resistance for various types of surfaces is achieved by coating.
The presence of lubricant also increases the wear resistance of surfaces; in the

absence of lubricant, the various surface hardening methods can be used.
When choosing the material for the running pair of valve of Xmas trees,

designed to operated in the hostile environment, the necessary conditions are not
only wear, but also resistance to corrosion.

The details of running pair operating in environments with H2S and CO2 are
subject to the hydrogen sulfide cracking due to which the material must possess a
sufficient resistance to the hydrogen sulfide stress cracking.

Given the above, we chose the low-alloy structural steel ZOKhMA/ЗOXMA, the
high-alloy steel St40KhN/Cт40XH and non-ferrous metals (brass LS-60/ЛC-60,
bronze BrAMts9-2/БpAMц9-2).

These materials are chosen due to the following specifications:

• St40KhN/Cт40XH has sufficient resistance to the hydrogen sulfide stress
cracking, but subject to general corrosion in the highly aggressive environments;

• St30KhMA/Cт30XMA has a high resistance to cracking and the hydrogen
sulfide and practically is not subjected to the general corrosion in H2S and CO2;

• BrAMts9-2/БpAMц9-2 and LS-60/ЛC-60 are characterized by sufficient dura-
bility and minimal friction coefficient.

The durability study of materials was in the special laboratory facility developed
by AzINMASh [10].

In the first stage of the research, we determined the maximum contact load,
which leads to the appearance of scuffing on the surface of friction samples.

The tests were conducted by gradually increasing the load. Each experiment was
carried out with a new sample and in new portion of the experimental environment.
Before next experiment, the samples got degreased with gasoline or acetone and
dried out.

The scuff resistance of materials was evaluated by the critical contact pressure,
the value of which was determined by the magnitude of the contact pressure prior to
a sharp increase in the friction coefficient.

Samples were subjected to the metallographic analysis of friction zone.
As the scuffing analysis results show, the presence of environment in friction has

a significant impact on the maximum contact pressure on the formation of scuff. For
example, the presence of lubricant “Armatol-238” in friction the critical value of the
contact pressure increases twice in comparison with the dry friction.

The thickness of metal coating plays a significant role on their resistance to
scuffing. This is explained by the fact that for each coating there is an optimal
thickness within which we can find the best properties (the tensile strength, the
adhesion strength with the main metal).
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The results showed to coat the surface with the pyrolytic chromium carbide; the
most rational thickness is within 16 μm.

Given the impact of corrosion on metal surfaces, we explored its effect on
resistance to scuffing. For this purpose, the samples were selected with the coated
steel 30KhMA/30XMA “Coleman,” which were initially treated in the following
medium: the aqueous solution of 5 % NaCl, acidified with 0.5 % CH3COOH and
saturated with H2S up to a concentration of 2500 mg/l. The exposure time of
samples ranged from 24 to 624 h. The samples were tested on scuffing with the
contact loading 50 and 125 MPa in the medium of mentioned sealing lubricant.
During friction the maximum friction path was registered, which was taken from
the sample before scuffing.

The analysis of results shows that the contact time of the metal with the sulfureted
environment has a significant impact on its resistance to scuffing. The maximum
decrease in resistance to scuffing of metal is observed in up to 324 h of exposing.

The metallographic examination of samples showed that the decline in resistance
to scoring of metal is due to the softening of friction surface. This is a result of
hydrogen penetration into the metal. The chemically nickel-plated samples expe-
rience higher micro-hardness of the nickel layer and the softening of base metal
surface, which is also a reason of scuff reduction.

The friction coefficients of materials were determined through the 5-m friction
path at the different contact pressures and environments.

The analysis of results show that during friction in the sealing lubricant, the
friction coefficient for “Coleman” surfacing in comparison with dry friction is
reduced by almost 4 times. The friction coefficient for “stellate” surfacing during
friction in the sealing lubricant in comparison with dry friction is significantly
reduced in only at the contact pressures above 25 MPa. At the contact loads of
50 MPa, the friction coefficients of sample pairs from St30KhMA/Cт30XMA and
with the electrolysis nickeling in the sealing lubricant do not differ and are within
0.06–0.07. “Coleman” has the lowest coefficient of friction among tested samples in
the sealing lubricant “Armatol-238.”

Wear of samples were determined by the gravimetric method. The effect of the
metal hardness on their durability was also investigated. For St30KhMA/Cт30XMA,
it is found that with an increase of the alloy hardness its wear is reduced. The smallest
surface wear is observed for “Coleman” at a hardness of 50–55HRC.

The impact on the sulfureted environment on wear of the non-ferrous metals was
determined when it was paired with St30KhMA/Cт30XMA.

The pair was studied in the sealing lubricant “Armatol-238” at the contact
pressure 50 MPa. Thus, the wear resistance of samples was determined with the
prior exposure of sample to the hydrogen sulfide (324 h) and without impact. As the
hydrogen sulfide environment, we chose NACE. We also studied the impact of
hydrogen sulfide environment on the corrosion inhibitor “Visco-904NIK.”

The results of experiment are shown in Table 6.2.
The metallographic analysis of samples showed that during first 500 cycles of

experiment, the surface of samples from St30KhMA/Cт30XMA got smeared with
bronze. The wear of pair is minimal.
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The samples treated in NACE have greater durability. The analysis revealed that
this phenomenon is due to the emergence of a sulfide film made of bronze on the
sample surface. The micro-hardness of sulfide film is greater than that of bronze.
The wear resistance of samples after exposure to NACE with the corrosion inhibitor
“Visco-904NIK” is virtually unchanged. The metallographic analysis of these
samples showed the absence of friction on the surface of sulfide films.

Thus, the studies allowed establishing varying degrees of the hydrogen sulfide
influence on the metal wear. So if the durability of steels and alloys decreases, then
for the non-ferrous metals it conversely increases. The presence of corrosion
inhibitor excludes the impact of sulfureted environment on the wear-resistant of
steels, alloys, and non-ferrous metals.

Based on the results of laboratory tests, the full-scale details were manufactured.
The spindle and nut were made from the listed materials and in the following
combinations:

• St30KhMA + St40KhN (Cт30XMA + Cт40XH);
• St30KhMA + BrAMts9-2 (Cт30XMA + БpAMц9-2);
• St30KhMA + LS-60 (Cт30XMA + ЛC-60).

Tests were carried out on the actual parts of valve. This imitation of axial loading
for pair with the minimum pressure was achieved by using the blind (without holes)
saddles on both sides of the closing gate generating substantial friction.

The test pairs showed various performances.
For example, the running pair made of St30KhMA + St40KhN

(Cт30XMA + Cт40XH) after 40 test cycles got completely destroyed. The research
of friction surfaces of the pair displayed a complete destruction of the spindle thread
and considerable wear of thread of nut (Fig. 6.15).

The second pair made of St30KhMA + LS-60 (Cт30XMA + ЛC-60) for spindle
and nut, respectively, got destroyed only 42 test cycle. The research of friction
surfaces of the pair also showed considerable wear (Fig. 6.16).

The best results were obtained for the pair made of St30KhMA + BrAMts9-2
(Cт30XMA + БpAMц9-2) for spindle and nut, respectively. This pair completely

Table 6.2 The results of experiment

Testing conditions Pair
details

Mass wear of sample, g 10−9 (with
number of cycles)

500 1000 1500 2000

Without prior treatment in NACE M +0.1 +0.001 +0.001 +0.001

S 20 4.9 9.9 2.3

With prior treatment in NACE (324 h) M +0.8 +1.55 – –

S 6.1 7.7 – –

With prior treatment in NACE and
inhibitor “Visco-904NIK”

M +0.1 +0.001 +0.001 +0.001

S 23 5.0 10 2.4

Note M—the moving sample, St30KhMA/Cт30XMA; S—the stationary sample, BrAMts9-2/
БpAMц9-2; (+)—increase of sample weight
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preserved performance even after 1000 test cycles. The research of friction surfaces
of the pair showed much lower wear (Fig. 6.17).

While testing the valves, the torqueses on the wheel were also determined
(Table 6.3).

The analysis of test results (see Table 6.3) shows that the lowest torque is
observed for the third pair, St30KhMA + BrAMts9-2 (Cт30XMA + БpAMц9-2).

Based on these studies, we found that the running pair suitable to be used in
environments with H2S and CO2 up to 25 % of total volume, and pressures up to
105 MPa are the ones made of St30KhMA + BrAMts9-2 (Cт30XMA +
БpAMц9-2) for spindle and nut, respectively.

To verify the findings of result, we study the fractal properties of profilograms
for all three running pairs, as it is shown in Figs. 6.15, 6.16 and 6.17.

There are few fundamentally different definitions on geometrical dimension of
object. The main ones are the Minkowski dimension (the term “box dimension” is

Steel

Fig. 6.15 Profilogram—the photograph of working surface of running pair St30KhMA +
St40KhN (Cт30XMA + Cт40XH)

Brass

Fig. 6.16 Profilogram—the photograph of working surface of running pair St30KhMA + LS-60
(Cт30XMA + ЛC-60)

Bronze

Fig. 6.17 Profilogram—the photograph of working surface of running pair St30KhMA +
BrAMts9-2 (Cт30XMA + БpAMц9-2)
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used in English literature); the topological dimension and the Hausdorff dimension.
The topological dimension of set is always expressed as an integer; this does not
contradict to a notion that the curves are one-dimensional and the surfaces are
two-dimensional. The Hausdorff dimension is at the heart of the fractal theory. In
1975, Mandelbrot [48] defined fractals as set, the Hausdorff dimension of which is
strictly greater than the topological dimension. The Minkowski dimension can serve
as an analog of the Hausdorff dimension, which is convenient in the practical
applications. These dimensions are generally come with the similar values, but the
algorithm for the Minkowski dimension is much more efficient. Generally,

dimM Að Þ� dimH Að Þ;

where dimM Að Þ and dimH Að Þ are, respectively, the dimension of Minkowski and
Hausdorff for the set A.

Hausdorff Dimension The well-known formula for the radius r of sphere volume in
the Euclidean space of any (integer) number of dimensions d:

Vd ¼ c dð Þrd; d ¼ 1; 2; 3. . . ð6:65Þ

where c dð Þ ¼ C 1=2ð Þð Þd
C 1þ d=2ð Þ.

In particular, at d ¼ 3, we have C 1=2ð Þ ¼ ffiffiffi
p

p
;C 1þ 3

2

� � ¼ 3
2C

3
2

� � ¼
3
2C 1þ 1

2

� � ¼ 3
2 � 12C 1

2

� � ¼ 3
4

ffiffiffi
p

p
, so that V3 ¼

ffiffi
p

pð Þ3
3
4

ffiffi
p

p r3 ¼ 4
3 pr

3.

The first step in constructing a theory of fractional dimension is to determine the
d-measure of the ball with radius r in Euclidean n-dimensional Rn space, where d—
any nonnegative real number. This is achieved by distributing the formula (6.65) for
all real d[ 0. For example, the ball volume (measure) in the 3=2-dimensional
space is defined as

V3=2 ¼ c
3
2

� �
r
3
2 ¼ C 1

2

� �� �3
2

C 1þ 3
4

� � r32 ¼ p
ffiffiffi
p

p
0:517

r
3
2 ¼ 1:934p

ffiffiffi
p

p � r32:

Table 6.3 The analysis of test result

# Material (spindle + nut) Friction
medium

Torque,
N m

Friction
coefficient

1 St30KhMA + St40KhN
(Cт30XMA + Cт40XH)

No
lubrication

460–530 0.23

2 St30KhMA + St40KhN
(Cт30XMA + Cт40XH)

Lubrication 280–300 0.11

3 St30KhMA + LS-60
(Cт30XMA + ЛC-60)

Lubrication 160–170 0.08

4 St30KhMA + BrAMts9-2
(Cт30XMA + БpAMц9-2)

Lubrication 110–130 0.06

252 6 Fractal Analysis of Fatigue Failure of Kinematic Pair …



Note that the specific value of the coefficient c dð Þ in (6.65) does not play any
role in the further reasoning and it can be considered a constant.

The next step is to transfer the concept of d-measure from the ball to an arbitrary
set A � Rn. To do this, we consider a sequence of balls with radii ri\e, i ¼ 1; 2; 3. . .,
that cover A, and approximate d-measure of Hausdorff for set A with sum

X1
i¼1

c dð Þrdi :

Further, the value is entered

Sd;e Að Þ ¼ inf
X1
i¼1

c dð Þrdi ; ð6:66Þ

where inf (precise low boundary) is sought over all coverings of the set A with ri-
balls and ri\e. The d-measure outer dimensional of the set A is defined as

Sd Að Þ ¼ lim
e!0

Sd;e Að Þ ð6:67Þ

The following is true.

Theorem [49] For any set A � Rn there is a corresponding single number d,
called the Hausdorff dimension of the set A, for which the

e\d ) Se Að Þ ¼ 1;

e[ d ) Se Að Þ ¼ 0:

This number is denoted by dimH Að Þ, and satisfies

dimH Að Þ ¼ sup e : Se Að Þ ¼ 1f g ¼ inf e : Se Að Þ ¼ 1f g: ð6:68Þ

For the numerical implementation of the formula (6.68), it is necessary to
introduce sets M1, M2, M3 of sequences ekf g, ej


 �
and rif g, respectively, and first

calculate in (6.66) at d ¼ ek , e ¼ ej, ek 2 M1, ej 2 M2 inf for all ri\ej, ri 2 M3,
then find the limit (6.67) at d ¼ ek , e ¼ ej, ej ! 0, and finally calculate the sup and
inf, included in the right-hand side of (6.68). Obviously, such a procedure involves
intensive computation and can lead to significant errors in the obtained results.
Therefore, in practice instead of the Hausdorff dimension, the Minkowski dimen-
sion is used, which in most cases, as mentioned above, coincides with the first.

Minkowski Dimension The d-measure of the Minkowski dimension of the set A is
approximated by combining the balls of fixed radius r ¼ e and summing their
volumes.

6.5 Assessment of Tribological Characteristics of Kinematic Pair 253



Let N eð Þ is the minimal number of balls with radius e, necessary to cover the
compact set A. Then, the d-measure of A, is denoted by Bd Að Þ, satisfies (approx-
imately) the ratio

Bd Að Þ / N eð Þed :

Assuming that Bd Að Þ[ 0, for some c[ 0 we have

N eð Þ � c
ed
: ð6:69Þ

Applying logarithm to the left and right sides, we get (approximately)

logN eð Þ ¼ log c� d log e; ð6:70Þ

where log means logarithm with base 2 that means

d ¼ � logN eð Þ
log e

þ log c
log e

:

Since log e ! �1 at e ! 0, the Minkowski dimension being dimM Að Þ of A
must satisfy the equality

dimM Að Þ ¼ d ¼ � lim
e!0

logN eð Þ
log e

; ð6:71Þ

If the limit exists, then the expression (6.71) determines the Minkowski dimen-
sion of the set A.

As it is proved in [49], to determine the Minkowski dimension instead of the
balls in the Euclidean metrics (circles on the plane), you can use the cubes (squares
on the plane).

The physical methods of calculating the fractal dimension are presented in [50].
The computer algorithms for computing the Minkowski dimension d are usually
based on the ratio (6.70). The simplest way to calculate the Minkowski dimension
of fractal A is to apply a cell method that is based on the following.

We divide the area of A, into the square cells (the two-dimensional case) of
several sizes e. Then, we calculate the number of cells N eð Þ, necessary to cover A at
fixed e and substitute the obtained values into the ratio (6.70). The dependency
graph of logN eð Þ from log e—a straight line with slope d. Recall that N eð Þ denotes
the minimal number of cells with side e, necessary to cover the fractal. To deter-
mine the unknown parameters c and d (although the value of c is usually not
important), we need to evaluate N eð Þ for several values of e. With this purpose, for
the sequence ek k ¼ 1; . . .; k0ð Þ of values e, we construct sequences ykf g and xkf g,
where yk ¼ logN ekð Þ and xk ¼ log ek and using the method of least squares (MLS),
we calculate the regression coefficients
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y ¼ bþmx; ð6:72Þ

where m ¼ �d, b ¼ log c. According to the MLS estimates for b and m, we
evaluate

d̂ ¼ �m̂; ĉ ¼ e b̂f g: ð6:73Þ

We show the use of the cell method for calculating the Minkowski dimension on
the example of the working surface profilograms for spindle and nut as shown in
Figs. 6.15, 6.16, and 6.17. Previously, these profilograms were processed on a
computer using “Paint” software package to give them a kind of fine lines
(skeleton). As a result, we get the graphics of profilograms as shown in Figs. 6.18,
6.19, and 6.20 and corresponding Figs. 6.15, 6.16, and 6.17. Then, using the “Get
Data” software package on the monitor the meshes of different sizes L (instead of e
we use L) are applied and log L and logN Lð Þ are computed. The dependency graphs
of logN Lð Þ from log L for curves from Figs. 6.18, 6.19, and 6.20, and corre-
sponding linear regressions are shown in Figs. 6.21, 6.22, and 6.23.

Steel

Fig. 6.18 The graph of profilogram from Fig. 6.15

Brass

Fig. 6.19 The graph of profilograms from Fig. 6.16

Bronze

Fig. 6.20 The graph of profilograms from Fig. 6.17
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The results of calculation show that the fractal dimension d of the curves in
Figs. 6.18, 6.19 and 6.20, respectively, are equal to 1.204, 1.195, and 1.154.

This means that the most regular (less chaotic and fractal) is the curve in
Fig. 6.20 with d ¼ 1:154, which confirms the findings previously obtained by
experimental studies of torque and the friction coefficient for the considered running
pairs (Table 6.3).

The field tests of Xmas trees show that the main cause of violating the original
surface sealing in closing elements of valves is due to the presence of a significant
amount of sand (NGDU “Azizbekovneft”).

At the start of opening and at the end of closing, the sand grains get stuck in the
minimal gap between the sealing surfaces of valve, with a further move they scuff
the surface. The scratch crossing over the whole width creates some sort of grooves.
The product of well running with high turbulence through the valve results in
intense destruction of parts.

Considering that the opening and closing cycles are mainly repeated in
replacement of supporting sleeves, then the durability of valves depends on wear
resistance to the latter. This dependence is determined quantitatively with an
increase in wear resistance of sleeves by 10 times, the average durability of valves
increases on average by more than 3 times.

5.5

3.5

7.5

lo
g 

N
(L

)

log L

5.0
3.7 3.9 4.5 4.7

6.0

6.5

7.0
y=11.292 - 1.204x

4.1

linear regression dependence
actual dependence

4.3

Fig. 6.21 The graph of dependence of N Lð Þ from L in the bi-logarithmic coordinates for the curve
from Fig. 6.18
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Operational conditions of wellhead equipment have their own specific features
different from other machines and equipment:

• the same parts and components of valves, amounted at different parts of Xmas
perform under different conditions;

• the faulty valves are removed from tree, repaired and installed on any other
fittings that falls into the same category, but in completely different working
environment;

• the wells being transferred into different operational regime, Xmas tree gets
dismounted (even if it is still operational) and sent to workshop, for full
maintenance.

During the operational period of Xmas tree, factors affecting their reliability can
vary significantly.

The results of the statistical analysis from the operational data of 200 fountain
wells show that the closing parts of valves fail as a result of the combined action of
mechanical, corrosive-mechanical, abrasion, and other types of wear.

The wear resistance of valves substantially depends on the performance of disk
springs of the direct flow valves.
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Fig. 6.22 The graph of dependence of N Lð Þ from L in the bi-logarithmic coordinates for the curve
from Fig. 6.19
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The special study was conducted to improve performance of the disk springs,
and it helped to establish the main parameters of springs with regard to their
properties and dimensions of closing parts.

To ensure the reliable sealing of valve at the initial stage of operation, it is
required to have a specific pre-loading on the sealing surfaces of gate and saddle,
obtained through the deformation of disk spring. The valve performance depends
on the magnitude of that pre-deformation.

So to get stable characteristics of tribocoupling for gate–saddle it is necessary
that the disk springs do not have a thickness deviation, i.e., the thickness of spring
should have a close tolerance that should be kept in mind at the design stage.

Both in test and in operational conditions, the valves ofXmas treewere analyzed on
themechanism of wear in the contact surfaces of gate–saddle. Thus, it was established
the basic criteria of mechanism failure of the friction surface of gate–saddle manu-
factured from the high-strength and anti-corrosive materials such as “stellate.”

The most important of all the criteria of the mechanism of destruction of the
contacting surfaces proved to be: the formation of colored spots on the mirror
surface of gate–saddle; the increase in rate of spot size, and their localization in
separate areas; the process of surface crystalline destruction in the area of localized
spots; the appearance and nature of the uneven surface of gate seat [9].
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Fig. 6.23 The graph of dependence of N Lð Þ from L in the bi-logarithmic coordinates for the curve
from Fig. 6.20
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6.6 Mechanics of Frictional Conical Surfaces of Xmas
Tree Valves

In recent years of machine building, the manufactures cannot meet the growing
demand in Xmas trees not only in quantity but also in quality and technical level.

The low durability and wear resistance of the gate valves primarily used as the
closing devices led to the complication of the construction and weight of Xmas
trees because of the valve duplication designed for the operating pressure signifi-
cantly higher than the actual pressure of well, which in turn led to significant metal
consumption and use material resources [7].

The analysis of these studies showed that the Xmas trees with the conical closing
devices have the greatest prospects. AzINMASh successfully used these valves for
active oil and gas wells, not only in our country, but also abroad.

However, one of the major drawbacks of the conical plug valves is the jamming
in the body of valve and the high torque required to control valves.

Furthermore, under the impact of medium, the conical plug got pushed toward
the inlet, whereby there is a sufficiently high specific load on the contact surface
with the casing tube.

In this regard, we considered the problem to establish a specific relationship
between the load generated between the working surfaces of plugs and the valve
body and the contact pressure between the plug and the body due to the internal
pressure, in the case of one-sided sealing valve, in other words for the valve
operation in the mode of self-sealing given the physical and mechanical charac-
teristics of material [17].

It should be noted that these issues are still not studied sufficiently.
To solve this problem, we write the equation of the relationship between the

stress and strain assuming the condition r3 ¼ 0; that is, the plane stress state [18] is

r1 ¼ 1
1�l12l21

� ri1eil l1 þ l12l2ð Þ
r2 ¼ l12

l21
� 1
1�l12l21

� ri1eil l2 þ l21l1ð Þ

)
; ð6:74Þ

where r1, r2, and r3—the principal stresses; l12, l21—the coefficient of transverse
deformation; and eil—the intensity of deformation.

l1 ¼ ln
r0S0
rSU

; l2 ¼ ln
r
r0
: ð6:75Þ

where SU—the effective (actual) conical area of plug; S0—the nominal area; r0—
the small radius of the base; and r—the average radius of plug.

According to Kachanov [19], the intensity of deformation is determined by
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e2i1 ¼
1

l21 1� l12l21ð Þ l21l
2
1 þ 2l12l21l1l2 þ l12l

2
2

� �
: ð6:76Þ

Considering the hardening of material of contact surface of conical plug [18, 19],

ri1 ¼ keni1; ð6:77Þ

(where k—the constant characterizing the plasticity of material, k ¼ 0:5rT ), then
Eq. (6.74) can be written as

r1 ¼ k
1�l12l21

� en�1
i1 l1 þ l12l2ð Þ

r2 ¼ l12
l21

k
1�l12l21

� en�1
i1 l2 þ l21l1ð Þ

)
: ð6:78Þ

Taking into account (6.75)–(6.77), the Eq. (6.78) takes the following form:

r1 ¼ k
1�l12l21

� A�m ln r0S0
rSU

þ l12 ln
r
r0

� �
r2 ¼ l12

l21
� k
1�l12l21

� A�m ln r
r0
þ l21 ln

r0S0
rSU

� �
9=;; ð6:79Þ

where

A ¼ l21l
2
1 þ 2l12l21l1l2 þ l12l

2
2

� �
l21 1� l12l21ð Þ ; ð6:80Þ

�m ¼ n� 1
2

:

The specific load q can be defined as the following (see Fig. 6.19):

q ¼ �T2 cos a
r

; ð6:81Þ

where T2—the spherical unit force at the contact surface of the conical plug.
From the theory of shells [17, 19], we can write for T2:

T2 ¼ kSU l2 þ l21l1ð Þ
ym0 1� l12l21ð Þ �

l12
l21

; ð6:82Þ

where y0—the deformation function

y0 ¼ e21c þ 2l12e1ce2c þ �ll22c; ð6:83Þ

where e1c, e2c—the strain in the middle surface; and �l—the dimensionless coeffi-
cient of transverse deformation (Fig. 6.24).
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For constant volume [20],

e1c þ e2c ¼ 0: ð6:84Þ

With this arrangement, the equality (6.84) and assumption made on constancy of
volume the middle of the surface

l1 þ l2 ¼ 0 ð6:85Þ

are performed with an accuracy to the first approximation.
Taking into account (6.84) and (6.85), the Eq. (6.81) takes the form

�q ¼ SUkl12
r

l21 1� l12l21ð Þ½ 	m�1

� l2 þ l21l1ð Þ l21l
2
1 þ 2l12l21l1l2 þ l12l

2
2

� ��m
cos a:

ð6:86Þ

If Eq. (6.86) is expressed in terms of the original dimensions r0 and S0, then we
obtain

�q ¼ SUkl12
r

l21 1� l12l21ð Þ½ 	m�1

� l21l
2
1 þ 2l12l21l1l2 þ l12l

2
2

� ��m
e �2l2�l1ð Þ cos a:

ð6:87Þ
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Fig. 6.24 The design
diagram
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The intensity of load required for the valve sealing mainly depends on the
material and quality of sealing surfaces of friction, as well as the interaction force of
sealing surfaces. We should take into account that the actual load intensity should
not cause any significant plastic deformation or change the surface geometry of
friction pair (plug–body).

The direction of action line of the friction force at the beginning of plug
movement is important. In the case where the torque value reaches its maximum,
the action line of the friction force coincides with the circle tangent lying on the
contact surface. The friction force is determined as

F ¼ �T1 cos a; ð6:88Þ

where T1—the meridian force that can be determined [21]

T1 ¼ �Sklm21 1� l12l21ð Þm�1 ln
r0S0
rSU

þ l12 ln
r
r0

� �
� l21 ln

r0S0
rSU

� �2

þ 2l12l21 ln
r
r0

� �
ln
r0S0
rSU

� �
þ l21 ln

r
r0

� �2
" #�m

:

ð6:89Þ

Taking into account (6.89) in (6.88), we obtain

F ¼ �S0kl
m
21 1� l12l21ð Þm�1 ln

r0S0
rSU

þ l12 ln
r
r0

� �
� l21 ln

r0S0
rSU

� �2

þ 2l12l21 ln
r
r0

� �
ln
r0S0
rSU

� �
þ l21 ln

r
r0

� �2
" #�m

cos a:

ð6:90Þ

We define the force with which the sealing surface is pressed against one another
to allow the shutter to ensure reliable tightness.

It is necessary to maintain the necessary and sufficient condition which provides
the tightness

F�wrfq; ð6:91Þ

where w—the coefficient of pressure transmission in contact; and f—the coefficient
of friction metal-on-metal (plug–body).

These formulas enable us to characterize the causes and conditions of the phe-
nomena of the plug–jamming plug in body. On the basis of the established friction
laws on the conical surface, we define the conditions required to ensure a reliable
sealing at the design stage and the recommendations that can correct and prevent
jamming.
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As an example of applying the above techniques, we consider the plug valve
with the following elastic characteristics

w ¼ 0:85; k ¼ 0:5 � rT ¼ 0:5 � 800 ¼ 400MPa; m ¼ 0:41;

l12 ¼ l21 ¼ 0:39; f ¼ 0:4; d ¼ 80mm; D ¼ 80mm; a ¼ 17--23�:

The plug angle and the relative contact area varied.
Figure 6.25 shows the dependence of the friction force on the plug angle at

various ratios of the contact area derived from the analytical solution of the
Eq. (6.90), as well as on the basis of (6.91).

The analysis of Fig. 6.25 shows that for the considered conical plug, a real
solution to the problem exists between the angles 17–23°, and the condition of
inequality (6.91) holds for the relative values of the contact area 0.8. In order to
establish the optimal value of the plug angle, we used dependence (Fig. 6.25) with
the possible values of the relative contact area within 0.77–0.82 being equal to 0.8.
It was found the optimal plug angle is in the intersection of lines, which is a ¼ 19�.
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Fig. 6.25 The dependence of friction from plug angle at various ratios of the contact area
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6.7 Fractal Dimension and Analysis of Fatigue
Non-spreading Cracks of the Kinematic Pair of Valve

As it is known, the running pair is designed to move the gate while opening and
closing valves. The running pair operating at variable load, the destruction (wear)
often occurs as a result of fatigue cracks along the strain relief (or the cross section)
of the spindle. Less common is the destruction due to the cyclic shear of threads as a
result of the crack development curving these threads.

Fatigue cracks spread out from the pit, usually the first one, explained by the link
of the threads and the load impact on threads joints [22, 23].

The aim of this study is to analyze the factors stopping the growth of fatigue
non-spreading cracks along the running pair of valve taking into account the stress
intensity factor (SIF) value range up to the threshold value along the strain relief.

As samples we used the carbon structural steels 45 and 40Kh/40X, which are
often chosen as the primary material for spindles [24].

The experimental materials of study are presented by Azerbaijan Institute of
Petroleum Engineering (AzINMASh), where the tests were carried out on the
cylindrical samples with the metric thread M24 for bending with rotation.

The analysis of results on the cyclic fatigue shows that the surface non-spreading
cracks are the most “acute” stress concentrators, and therefore, the maximum depth
l0 will serve as the criterion of maximum allowable sizes of crack-like defects in the
given material. The conditions of fatigue cracks non-proliferation occur if the SIF
amplitude values do not exceed the threshold value DK [25]. Let us write the
expression for SIF as

DK ¼ r�1

ffiffiffiffiffiffi
pl0

p
¼ r�1kKr

ffiffiffiffiffiffi
pl0

p
¼ DKt; ð6:92Þ

where Kr—the effective SIF; and r�1k–the sample endurance limit.
The Eq. (6.92) determines the estimated depth of the non-proliferative crack

l0 ¼ DK2
t

r2�1k � K2
rp

: ð6:93Þ

According to the experimental data, a change in the strength of medium-carbon
steels by varying the carbon content from 0.3 to 0.5 % and the annealing tem-
perature in the range 500–700 °C have a little effect on the level of DKt [26], which
can be taken as being equal to 5:5MPam1=2. Then, the relationship (6.93) implies
that

l0 ¼ 9:65
r2�1

: ð6:94Þ

The value of l0 is the maximum size of non-proliferative cracks. Given that with
an increase of the asymmetry coefficient, the values of loading cycles DKt for the
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majority of steels begin to decrease [27] found from the formula (6.94) the values of
l0 can be considered as the maximum depth of non-proliferative cracks of
medium-carbon steels.

The typical character of kinetics of the short crack near the SIF threshold [28] is
shown in Fig. 6.26.

The obtained data in this study results suggest that the calculated and empirical
values of l0 coincide with 15 % accuracy. This confirms the validity of applying the
linear mechanics of fracture for calculation of non-proliferative cracks.

Due to the discrete nature of the crack growth rate distribution, i.e., the discrete
growth of level of nominal stresses with the discrete transition to the new values
from the range of plastic deformation, the grooves of fatigue cracks at different
levels of alternation of i follow the self-similarity relation [29]

di
diþ 1

¼ D1=m: ð6:95Þ

Using the universal constant D according to (6.95), we control the ratio of the
critical energy density distortions (change in shape) WC

d and dilation (change in
volume)WC

c . The value of D takes in average the value of �D for the group of metals,

coinciding with the generalized golden ratios D2
p.
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Fig. 6.26 The growth rate of near-threshold short cracks in thread, depending on the SIF range
(1 St40X/Cт40X, 2 St45/Cт45)
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It is also interesting to follow how the ratio WC
d =W

C
c behaves in the case of

non-proliferative cracks.
Taking into account the phasic and multiscale properties of the fatigue crack

growth, described by the kinetic diagram of fatigue fracture (KDFF) for the stage of
subcritical fatigue crack growth, the relation is fulfilled

dl
dN

¼ B
DK
K

� �g

; ð6:96Þ

which can also serve as a key for understanding the mechanism of hindering the
crack growth.

Taking into account the relationship between the fractal dimension of the
deformation structures of metals and the critical points of the mechanical condition
and the damage fatigue at the contact interaction and friction, we calculate the
dimensions of the profile D0, linked to the fractal dimension of the surface Df , using
the relationship [29]

D0 ¼ Df � 1:

We use the formula obtained by Mandelbrot

P dð Þ ¼ C � d1�D0
S dð Þ½ 	D0=2; ð6:97Þ

where P dð Þ and S dð Þ—the perimeter and area of the closed curve measured with the
small scale δ. Hence, the ratio

ln
P dð Þ
d

	 

¼ lnCþ D0

2
ln

S dð Þ
d2

	 

: ð6:98Þ

Consequently, in the bi-logarithmic coordinates ln S dð Þ
d2

h i
; ln P dð Þ

d

h i� �
the last

equation represents a straight line with a slope tanu ¼ D0=2, from which we find

P dð Þ ¼ C � d1�D0
S dð Þ½ 	D0=2:

In this way, we can calculate D0 and Df having an image of the surface
topography.

To apply the method of vertical sections (MVS), we must have the relief profiles
along and across the crack obtained by the vertical sections of the relief surface.
These profiles can be obtained using the profilometer that does not bring any
distortions in the study.

Knowing the parameter of damage P and its dimension D0, you can build the
regression dependence of residual life Nresid from the variables D and Df , where
Nresid—the number of residual (until destruction) loading cycles, in %, D—the
parameter of damage characterizing the surface saturation with traces of
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micro-plastic deformation; Df—the dimension, defined by the ratio of the cluster
perimeter to its area cluster in the strain relief.

The ratio of perimeter to area of the crack cluster, proposed by Mandelbrot in
(6.97), can be written as

P dð Þ
d

¼ C

ffiffiffiffiffiffiffiffiffi
S dð Þp
d

 !D

: ð6:99Þ

Taking the logarithm on both sides of (6.99), we obtain

ln
P dð Þ
d

	 

¼ lnCþ D

2
ln

S dð Þ
d2

	 

: ð6:100Þ

Here, d—the size of squared cells (the side of square), which fully covers the
shape bounded by the curve L.

y ¼ ln
P dð Þ
d

� �
; x ¼ ln

S dð Þ
d2

� �
;

lnC ¼ b0;
D
2
¼ b1:

Equation (6.100) is the equation of line in plane ðx; yÞ

y ¼ b0 þ b1x: ð6:101Þ

Applying the method of least squares (MLS), we estimate b1

b1 ¼
Pn

i¼1 xi � �xð ÞyiPn
i¼1 xi � �xð Þ2 ¼

Pn
i¼1 xi � �xð Þ yi � �yð ÞPn

i¼1 xi � �xð Þ2 ;

xi ¼ ln
S dið Þ
dið Þ2

( )
; yi ¼ ln

P dið Þ
di

� �
:

where

�x ¼ 1
n

Xn
i¼1

xi; �y ¼ 1
n

Xn
i¼1

yi:

As di we can take

di ¼ 0:01þ i� 1ð Þ � 0:01 i ¼ 1; . . .; 100ð Þ: ð6:102Þ

Defining b1, we find that D ¼ 2b1 is the Hausdorff fractal dimension. Doing
calculations by hand (or using calculator), we can get
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di ¼ 0:1þ i� 1ð Þ � 0:1 i ¼ 1; . . .; 10ð Þ:

The curvature perimeter can be measured approximately as following, fit the
broken lineL0 into the curve L, connect using line segments the intersection points of L
with the square grid. The length L0 � L dð Þ, and the area S � S0 dð Þ where S0 dð Þ—the
sum of the areas of squared cells lying entirely within the investigated shape.

Thus, the analysis of the evanescent fatigue cracks in the running pair of valve
and the fractal dimension of strain relief showed that the main cause of the fatigue
crack growth is the contacting interaction of the crack edges in the near-threshold
destruction. The areas of “antinode” occur in the half-cycle loading of sample,
along the front of crack, corresponding to the maximal opening of the fatigue crack
edges, as well as the areas “relaxation,” corresponding to the deformation of
material without its fracturing. In “relaxation,” that is, where the crack inhibits its
development and becomes evanescent. The more the heterogeneous material along
the front of developing crack, the greater the effects of micro-tunneling of fatigue
crack.

The inhibition of cracks near the side surfaces of samples leads to the fact that
beginning of the crack movement starts on the side surface occur at the significant
length in its middle layers of material, and this effect should be considered when
analyzing the evanescent cracks.

The analysis of experimental data of fatigue cracks tips at various asymmetries
of cycle in the samples of aluminum alloy [30] shows that the direction of crack
propagation at the certain intervals of length remains constant (Fig. 6.27) [31].
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Fig. 6.27 The functionality of crack tip opening U in changing the coefficient of maximum cycle
stress intensity factor Kmax in the aluminum alloy AU4GI-T3 at R ¼ 0, and values Fmax;H: 1 4.4; 2
3.6; 3 2.8
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There is an alternation in opening of the crack tip. The opening of crack is
proportional to its speed under the uniaxial loading of sample [32]. Therefore, the
alternation of the crack growth rate is provided by the crack opening, which
depends on the process of cracks tunneling and residual stresses, determined by the
size of the plastic deformation zone.

The conditions of preserving its dimension by the plastic deformation zone
through the development of fatigue crack can be determined by maintaining a
constant range of plastic deformation in the low-cycle fatigue. Measuring the
amplitude of plastic deformation while testing for the low-cycle fatigue with the
constant strain rate shows [33] that there is a discrete growth increment in the level
of nominal stresses with discrete transition to new range of values of plastic
deformation.

Further, the deformation amplitude remains constant at a slight increase in the
stress level, and then again, there is a discrete increase in stress and transition to
new constant value of plastic deformation.

Kmax;MPam0:5:

Crack is the system of self-collapsing zones that forms tunnels inside of which
before reaching the critical stress state the conditions of crack formation do not
change in the shock loading cycle, and during the extension of length, an increase
of summary energy at the front of crack is compensated by the discrete transitions at
discrete levels of metal stress state defining the alternation of crack jumps. The
acceleration of crack growth takes place in one particular area of the crack front (the
transition to a new level of alternation), while maintaining the alternation levels in
neighboring areas of failing metal unchanged. This demonstrates the synergy of
fatigue failure.

Thus, alternating the steps of fatigue grooves and fixing the values of crack
growth rate in the experiment is the result of uneven distribution of energy along the
crack front. The acceleration in crack development occurs alternately at the outer
surface and in the middle layers along the sample thickness. The plastic defor-
mation develops discretely in the local volumes of material determining the areas of
plastic deformation. Through a number of cyclic loading, the measures of the
plastic deformation zones are preserved, and upon reaching the critical conditions,
the discrete increase of measures begins. Accordingly, the pace of fatigue grooves is
unchanged in the specific length of the sample thickness, and after that, the pace
changes discretely.

The analysis of causes of detail failure in the operation and the morphology of
sample macro-pattern show that in some cases the products of fretting in form of
oxides and spherical particles are formed in the individual zones of fracture. Scot
and Mill were first to witness the spherical particles on the friction surface during
the slide of retaliatory parts of free surfaces [34]. Subsequently, the similar particles
were observed in the different friction conditions, including fretting corrosion [35].

Minakova and McEvily for the first time witnessed the mechanism of contact
interaction of the contour lines of the fatigue crack in near the threshold area [36].
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It was based on Otsuki’s perception on the predominant role of the transverse shear
KII of material in near the threshold area. As shown in [36], with spanning of the
stress intensity factor DK ¼ 10MPam0:5 the ratio of the maximum stress intensity
factor Kmax to the stress intensity factor of the crack opening K0 becomes equal to
Kmax=K0 � 0, and at DK ¼ 14MPam1=2, it is equal to Kmax=K0 � 0:7, that for the
aluminum alloys correspond to the self-similarity relation D1=m ¼ D1m [37].
Reducing the crack opening in the loading cycle proves the idea of increasing role
of the contact interaction of fatigue crack when the stress intensity factor approa-
ches the threshold value DKth.

Ritchie and Saresh [38] confirmed the inevitability of fretting occurrence with
the crack growth due to the micro-roughness of fracture terrain formed under the
joint actions of pulling and shear (scheme I + II). The geometric model of the crack
closing was proposed based on these ideas [39], taking into account the fractures
roughness and the specific interaction on the contour lines of cracks:

K0 ¼ Kmax

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2cx= 1þ 2cxð Þ

p
;

where x—the relative crack opening after releasing load; c—the ratio between the
height of roughness relief and the grain size.

The products of fretting in near the threshold values come as in the spherical as
in the cylindrical forms (called “sausages”). In the factorgrams as shown in [40] the
axis of cylindrical particles are oriented in the main direction of the fracture
development and they matched to the particles identified in the breakage near the
outer surface of sample where the stress state is close to plane tension.

Inclusions are one of the principal sources of anisotropy of the shifting level of
the plastic deformation along the fracture contour. On the one hand they provide the
greatest shifts of the plastic deformation with respect to the adjacent volumes of
metal, and, on the other hand, they prevent the crack to passage through because
they have a greater strength compare to the alloy matrix. Various researchers
repeatedly noted the breaking actions of inclusions. By creating obstacles for the
fracture development, they crushed the crack front and create conditions for its
micro-tunneling.

In addition to the inclusions, the micro-tunneling of fatigue cracks is also pro-
vided by the energy redistribution along the crack front, expended on the plastic
deformation and metal failure.

The spherical particles play a dual role in the growth of fatigue cracks. At the
bridge, where they are located, these particles serve as an interim body intended to
facilitate the mutual displacement of retaliatory parts of breakage. However, located
deep inside the material, they have a limited movement and thereby, inhibit the
crack opening. Therefore, during the formation of spherical particles at all stages of
the crack growth, the crack opening cannot be characterized by the rate of fatigue
crack growth. The formation of the spherical particles in the local areas of material
is the highly energy-intensive process. An increase in area along the crack front,
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subjected to the formation of spherical particles, will mainly contribute to the
absorption of the loading cycle energy inhibiting the crack development. Therefore,
in terms of managing the failure process of material and searching for possible ways
of distribution of the outside energy, it is necessary to create the special conditions,
where in the crack developing plane the longitudinal movements of its contour
assist in creating conditions for the emergence of spherical particles.

The pace of fatigue grooves d has the crack length l, and the crack growth in the
testing process is per cycle of loading, so in general, the value of Dl=DN and d is
related in following way (Fig. 6.28)

Dl=DN ¼ gv � d;

where gv—the proportionality factor in 1=cycle. Comparing the paces of fatigue
grooves with the growth of fatigue crack in loading cycle Dl=DN for various alloys,
we illustrate following [41]

gv ¼ 1; gv ¼ const; gv [ 1; gv\1:

The most paradoxical results are simultaneous comparison of the values d and
Dl=DN in the algorithmic testing the crack development along the sample side
surface [42–44]. These tests are characterized by formation of the fatigue grooves in
each loading cycle, and the crack development monitoring on sample’s side surface
shows no relationship between d and Dl=DN.

The repletion of stress along the crack front is due to the differences in the
material stress state. The biggest displacement of plastic deformation in the middle
of the sample leads to the fact that the crack get born and originally distributed in
the middle layers of material. Any inhibition of the cracks growth near samples’
side surfaces leads to the fact that the start of the crack movement along the side

zone B

x

Fig. 6.28 The general functionality of the groove pace d for the rectangular sample with height l
and width x in the zone B. The arrow points the direction of crack growth
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surface occurs at a significant length in its middle layers. Depending on the inho-
mogeneity of material properties and the homogeneity of loading conditions of
sample, the effect of crack macro-tunneling can be symmetrical or asymmetrical—
the crack development on one surface of sample advancing faster than that of on
another. The bending of crack as result of difference in the displacement of the
plastic deformation can be permanent in the direction of its growth. In this case, the
difference between the values of the pace of fatigue grooves and Dl=DN is char-
acterized by gv ¼ const 6¼ 1.

However, in most cases the crack tunneling effect increases in the direction of its
growth [45]. This situation corresponds with the change in differences between the
values of d and Dl=DN. The latter situation is characteristic for the initial stage of
the crack growth in the titanium alloys and steels. It means that after reaching the
side surface of sample the crack front gets aligned and retains straightness over a
substantial length. This is due to small differences of the deformation measures at
the crack tip, on the surface and at its depth. At the initial stage of fracture gv\1,
and then, gv ¼ 1. With an increase in the curvature of the crack front, the compared
dependences in the function of the stress intensity coefficient overlap [45, 46].
However, this discrepancy, considering the spread of measured values of the fatigue
grooves pace, is discounted, because in practice when calculating the period of the
fatigue crack growth their rate can be characterized by the size of pace of the fatigue
grooves with sufficient reliability.

It should be noted that the compliance of d and Dl=DN has a great practical
significance. The fact is that besides the micro-tunneling of fatigue crack there is a
possible impact from the contact interaction of the fatigue crack contours, leading to
the dissipation of the elastic strain energy. So the crack growth in the loading cycle
will be determined by the action of a specific failure mechanism, not by how the
large-scale process of the material destruction, which provides an averaged char-
acteristic of migration of the entire front, differs from the micro-process of the
material discontinuity.

Thus, the discrepancy between the macro- and micro-velocity of fatigue crack
growth should not be attributed to the mechanism of the formation of grooves in the
loading cycle, but to the terms of the plastic deformation flow and metal fracture
along the crack front [47]. The greater the effects of macro- and micro-tunneling on
cracks, as well as the formation of spherical particles, the more different, the rate of
a crack growth at the same distance from the source of fracture in the middle layers
and along the side surface of metal. Used in calculating the range of the stress
intensity factor DK for crack length describes the averaging destruction of material
on the considered crack length, which corresponds to an average growth rate of
crack on the sample surface. Taking into account the effect of macro-tunneling of
fatigue crack, the nomogram values of the pace of fatigue grooves, depending on
the width and thickness of the sample, allow us to conduct an appropriate adjust-
ment of length (Fig. 6.28), which is used to calculate the stress intensity factor in
the construction of kinetic diagrams with respect to the specific point of the crack
front.
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6.8 Improving Durability of the Kinematic Pair of Valve

The above literature analysis on studying the valves and field observations of the
available Xmas trees stocks at wells showed that the main criterion of the running
pair performance is its wear resistance [30]. The load applied to the threads of pair
is unevenly distributed, where first thread of nut (consisting of 10 threads),
accounting for about 30 % of the total load.

The main reasons causing the wear of running pair are the contact pressure on
the surfaces of friction pairs and operational environment. The impact of these
parameters on the running pair performance is studied for the first time.

It is established that the major drawback of the modern valves is that nut gets
compressed, as a result the loading on threads of spindle and nut increases, which
leads to the degradation of the initial threads from the supporting flange of nut and
further distribution of load between the threads gets exacerbated due to the concen-
tration of local stresses in the gaps of threading from the tensile forces and load in
threads. The voltage at the primary threads exceeds the normal operating tensile force.

As a result, there is an intensive wear of primary threaded and subsequent wear
of following threads. This gives a rise of gap between the nut and the spindle, which
contributes to the overall infringement of valve tightness.

The new design of valve allows the relatively even distribution of the load across
threads, improve overall sealing for the long period, and increase the operational
lifetime.

The main point of invention is that the thread starts at the lowest level of its
support, and the lowest end of the nut is unsupported. Such arrangement provides
that both the nut and spindle work only in tension, wherein the thread pitch is
determined by the formula

t ¼
H
r þ H1

r1

� �
1
d � 2þ d
� �

1
xE þ 1

x1E1

� �
g

;

where r and r1—the area of the main thread projections of spindle and nut, m2; H
and H1—the height of the threads, m; x and x1—the cross-sectional areas, m2; E1

and E—the modulus of elasticity, N/m2; d—the coefficient of load distribution
across threads; g—the factor of beveled threads due to pressure, N/m2.

The coefficient of load distribution across threads is selected according to the
criteria of wear resistance within the range d ¼ 0:5; . . .; 0:985.

The essential difference of the proposed technical solution is that the thread on the
nut starts at a lower level of support nuts and the lower end of the nut is unsupported.

As a result of the mentioned above is that during the forward movement of the
spindle, which is interconnected with the closing body, the uneven distribution of
the load across threads is significantly reduced and wear is more even across all
threads, which increases the service life of the valve. Fig. 6.29 shows the new
proposed design for the valves.
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6.9 Test Stand of the Kinematic Pair of Valve

In order to identify the causes of reduction of the running pair performance
(spindle–nut), the tests were conducted on three valves type ZMS/ЗMC in condi-
tions close to operating (i.e., the medium containing H2S and CO2 up to 6 % of
volume). Tests were carried out in AzINMASh measuring the torque required to
rotate the spindle and determining the force of friction on the running pair.

The basic premise of planning test bench chassis pair latches were as follows:

1. The probability of failure-free operation should be between 0.99 and 0.999, i.e.,
0:99\P tð Þ
 0:999;

2. The specified time t may be taken in accordance with the cycle of opening and
closing of running pair and the amount of its revolutions. In the course of the
valve operation, it should provide 500 revolutions (cycles of opening and
closing). If the valve life span is equal to the Xmas tree life span (9 years), the
revolution per each opening and closing should correspond to about seven days
in time t;

3. Depending on wear and durability of the pair spindle–nut, the number of rev-
olutions during the test can be taken from 200 to 250 in a stable loading regime;

4. After every 100 revolutions during the test, the thread wear on spindle and nut is
measured;

Fig. 6.29 The new design
valve
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5. Tests are carried out intermittently. Between each operation of 50 cycles, there
should be brake at least for 18–20 h;

6. The axial force and gap in the thread of running pair are determined through
calculations;

7. Each pair before tests must be subjected to the full checking for compliance with
the parameters of the test samples and technical documentation parameters;

8. At periodic disassembly of the tested valves, the wear of working surfaces of
thread for nut and spindle is determined, the dependence between the rate of
wear and the loading number is estimated, the change in roughness of the
working surfaces of the running pair is assessed;

9. The test results are periodically reviewed, and the conclusion is made on the
continuation of tests.

The serial production valves manufactured in full compliance with the technical
documentation were tested. The trapezoidal thread of nut matched the requirements
of TR 24X4-LH-7H. The thread pitch, the surface roughness, and the gap between
the nut and the spindle are given in Table 6.4.

The parameters of threads for the spindle and nut were measured with the
required accuracy and their compliance with the drawing standards was established.

The inner sleeve of running nut is made of bronze and fixed with metric thread to
the body of nut. The internal thread of sleeve is trapezoidal. The structure of
running nut (made of two metals) is designed and the necessary strength at its
various sections is established.

To rotate the sleeve inside the body of nut the threading joint sleeve–body is
secured with wedges on both sides.

The parameters of metric thread of the inner sleeve of running nut were provided
by the manufacture of engineering plant named after Sattarkhan.

When preparing the running pair of valve for testing, along with standard
measuring devices and instruments (optimeter, micrometers, calipers, dial gauges,
etc.), we developed a special tool to evaluate the gap in the running pair (Fig. 6.30).

Table 6.4 Dimensions of parts of running pair before test

Measured
section of
thread

Thread
pitch,
mm

Surface roughness of
thread windings Ra,
microns

Clearance between the
threads of lead nut and
spindle, mm

Additional
information

Thread size of lead nut

At entrance 5.0 6.4 0.02 Nut along
with
spindle

In middle 5.0 3.2 0.09

At exit 5.0 12.5 0.06

Thread size of spindle

At entrance 4.95 3.5 0.02 Nut along
with
spindle

In middle 4.99 3.5 0.09

At exit 4.98 6.3 0.06
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The displacement of the spindle cantilevered end is measured by the gauge of
clock type with a scale division of 0.002 mm. The distance Lk from the point A - the
point of the indicator, to the point B - the supports of thread of the nut (Fig. 6.30),
was taken different to determine the measurement error.

The gap h according to the average diameter of the thread davg, marked with the
letter l in the diagram (Fig. 6.30), is determined by the formula

h ¼ Hl
l
;

where h—the gap in thread of the running pair, according to the average diameter of
the thread, which characterizes the amount of wear on the measured portion of the
spindle, resulting from the valve test; H—the movement of cantilevered end of the
spindle at the point A; l—the distance between the reference point and the contact
point on the measured part of the spindle, taken with certain allowance, equal to the
average diameter of the thread davg; L—the distance between the support point of
thread on the measurement part and the cantilevered end of the spindle in the
contact point of the indicator tip with the spindle.

To obtain the numerical values of gap, that means the values of wear for various
designs of the running pair, we substitute Hl ¼ davg and L, which are determined by
measuring the details, and calculate the gap h according to the formula. The
obtained value is quite reliable to assess wear on thread during exploitation or
testing of valves.

The evaluation results of the running pair with 4 years of exploitation are
important, for which we obtained the following values of h at the thread root
corresponding to the open state of valve, and at the thread end corresponding to the
close state.
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Fig. 6.30 The measurement of the movement of the cantilever end of the spindle at the fixed gate
(with the combined nut) or the running nut
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At the thread root of spindle (the second thread from root)

hk ¼ Hkl
Lk

;

Hk ¼ 4:55mm; davg ¼ l ¼ 22:07mm; Lk ¼ 195mm; hk ¼ 0:5149mm:

As we can seen, the amount of wear in thread of the running pair for the given
section is significant (reaches up to 0.5 mm), that is unacceptable for the normal
operation of valve.

At the thread end of the spindle, the second thread from the end of the spindle

H ¼ 13:5mm; davg ¼ l ¼ 22:07mm; L ¼ 275mm; h ¼ 1:076mm:

Comparing wear on the spindle thread at the root and end (hk ¼ 0:5149, and
h ¼ 1:076) we found that, depending on the gate path in opening and closing of
valves and the magnitude of load acting on the thread, wear in threads varies within
wide range. In this case, wear at the end of the thread is almost two times greater
than the root (Fig. 6.14).

The gap assessment of thread of the running pair was also conducted after the
resource testing, where the end of the thread was subjected to the testing. Therefore,
one of the reasons of the significant gap in the thread end h ¼ 1:0926mmð Þ rather
in the root hk ¼ 0:5366mmð Þ is an intensive wear of that section. There could be
another reason—the original difference in thicknesses of the threads due to bending
in the spindle as manufacturing fault, which is not defined in these studies.

The survey and analysis of the thread wear for another type-size of the running
pair and the valve design showed the following results:

In the thread root (the second thread from root)

Hk ¼ 1:22mm; davg ¼ l ¼ 22:9975mm; Lk ¼ 100mm; hk ¼ 0:276mm;

in the end of the spindle thread (second thread from end),

H ¼ 1:6mm davg ¼ l ¼ 22:9975mm; L ¼ 158mm; h ¼ 0:296mm:

In this case, the resource testing was conducted in the short period of time and at
low loads. Therefore, the gaps in the root and end of the thread came out to be the
same.

Besides, the running pair designs of tested valves had significant differences.
For testing purposes, we used the testing stand (unit) of the 1st Department of

AzINMASh, created especially for this purpose. To test the running pair, every pair
was visually inspected, the measurements collected and then the assembled valve
was prepared for installation on the stand. This unit allows testing of the assembled
valve (the pairs spindle–nut and gate–saddle) with the motional drive and under
loading.
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In this case, the axial force acting on the spindle is created by the medium
pressure inside the valve and the friction force between the parts of gate (gate and
saddle). The medium pressure also creates the mentioned force of friction.

Setting up the test unit is to bring into operation the motional drive and provide
the required pressure inside the valve.

To create a uniform hydrostatic pressure of 35 MPa inside the valve, to the inlet
flange of valve we attached the output of the plunger pump.

The efficiency of the running pair is evaluated in accordance with the following
criteria:

• flexural strength of the nut threads;
• wear resistance of the contact surfaces of the nut threads;
• rigidness of the bronze sleeve with in the steel casing during testing;
• the gap between the threads of nut and spindle.

The first of these criteria was determined by calculation. The remaining three
criteria defined and measured during the test. According to the prepared test–
method, program within one working day of the pair was loaded with 50 cycles
back and forth (which corresponds to the opening and closing of valve) and after
every 50 cycles the overall condition, tightness, heating, noise of running pair were
established, and a decrease in the pair performance was also estimated.

On the stand, the rotation (back and forth) and reverse rotation are transmitted
through the driveshaft to the nut. The rotation of nut back and forth (left and right)
drives the spindle back and forth (back and forth along the axis). In this case, the
friction force is created on the spindle within the valve from the hydrostatic pressure
of pump. The frictional force in turn creates the axial force and torque in the
running pair. Influenced by this force for a certain time the spindle moves back and
forth. Each cycle (1 rotation) consists of three stages—forward, stop, and backward.

To determine the duration of the rotation cycle and to reduce measurement
errors, the measurements were taken three times: 1—the length of 1 revolution
(cycle) is measured; 2–5 revolutions; 3—10 revolutions. Accordingly, t1 ¼ 3min;
t2 ¼ 3:6min; t3 ¼ 3:8min. Accepting: tavg ¼ 3þ 3:6þ 3:8

3 ¼ 3:5min.
The overall rotation of running pair is 3 min 30 s that corresponds to the time of

opening and closing the valve. Within one day running, the pair makes 50 cycles
(revolutions). All this time, the valve is pressurized on the test unit.

Since tavg ¼ 3:5min, then the timing of 50 cycles is T ¼ 50� 3:5 ¼ 175min.
The observations show that during this time the valve lid heats up from 40 to 50 °C.

According to the program after every 100 revolutions, the following measure-
ments were taken from the running pair:

1. For the running nut,

• maximal diameter of thread;
• thread pitch;
• minimal diameter of thread;
• thread surface roughness.
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2. For spindle,

• maximal diameter of thread;
• thread pitch;
• minimal diameter of thread;
• thread surface roughness.

Results of the measurements of these parameters are given in the Table 6.5. To
enable comparison, the table also shows the results of measurements of parts to test
chassis pair. Note that despite the fact that the tested valve was examined every day
and every 50 cycles, taking into account small differences in the parameters,
the parts dimensions and the surface roughness were recorded after every 100
cycles (Table 4.2).

The thread roughness for the nut and spindle in the event of approximate
equality of height of threads in the area of extensive wear reaches its maximum.
However, in general that wear is negligible, the running pair performance is not
reduced substantially.

Since for the test period, the sleeve size of thread of the nut and the outer
diameter of thread of the spindle are unchanged, so they are not shown in Table 4.2.

It should be noted that the metallic gloss on the surface of the running pair varied
during the tests. The shining gloss on the surface of bronze thread of the nut
increased, while the shine on the threads of the spindle reduced. There were traces
of corrosion on the threads of spindle.

Table 6.5 The results of measurements of running pair during the test

Number of full
cycles (rotations)
before
measurement

Change
in thread
turn, mm

Surface
roughness of
thread turn
Ra, mm

Clearance
between the lead
nut and spindle,
mm

Additional
information

Thread of lead nut

0 0 12.5 0.020 Gap was measured
while nut and
spindle were
together

100 0.003 3.5 0.025

200 0.010 12.5 0.040

300 0.015 1.6 0.035

400 0.020 3.5 0.050

500 0.035 6.3 0.060

Thread of spindle

0 0 6.3 0.02 Gap was measured
while nut and
spindle were
together

100 0.005 12.5 0.025

200 0.015 12.5 0.040

300 0.025 10.0 0.035

400 0.030 6.3 0.050

500 0.050 3.5 0.060
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The presence of corrosion shows that the accelerated method has no impact on
the test results. For testing the upgraded running pair, the act of test results was
drafted, approved and submitted to the plant named after Sattarkhan.

The running nut along with spindle assembled in the valve were tested under
pressure, the test showed that the operational conditions of these parts are matched
with their design parameters.

The life span for the valve was established at from 9 to 10 years, providing 500
double strokes for the spindle. Within a year, the valve supposed to close and open
50 times in average (replacing nozzles or other processing operations). While
testing, this number of cycles was carried out within a day. The service life with
respect to the valve life cycling is approximately 365 times greater, and thus,
corrosion was found; the tests shown that the accelerated test method has no impact
on the results.

Thus, this study found that the increase of wear resistance of thread in the
running pair can be achieved by improving the pair design; its wear resistance; the
thread insulation reducing its contact with from its contact with the well products.

6.10 Choosing a Lubricant for the Direct Flow Valve
of Xmas Tree

Reinforcing lubricant is designed for sealing and tightening the various types of
valves: direct flow and plug valves of oil and gas wells, wellhead gas equipment
fittings.

The general requirements for reinforcing lubricants can be summarized as
following:

• provide a reliable sealing in the wide range of temperatures, matching the
temperature and climatic conditions;

• separate the friction details with the high-strength film withstanding the heavy
loads and preventing the contact surfaces from scuffing and wear;

• withstand the medium pressure and the contact load of the working in pair parts;
• provide a minimum torque, lightness, and fluidity of movement of the locking

element, screwing and unscrewing of the thread connection;
• do not interact and not being soluble in the working environment;
• have high mechanical and chemical stability, the long life span and storage;
• do not cause corrosion of the contact surfaces, have high barrier properties

protecting the contact surfaces from corrosion.

The shutoff valves of high-pressure lubrication should prevent leakage the gaps.
The limiting pressure, at which the lubricants retain sealing properties without
additives, ranges from 5 to 10 MPa [25]. At low pressures, the sealing ability
is proportional to the shear strength and viscosity of lubricants. At high pressures
(10–100 MPa), the rheological properties such as the oil type and the thickener
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concentration do not affect the lubricant sealing ability. By decreasing the gap, the
sealing of valve improves, but this increases the torque required to rotate the wheel
of valve.

Developing and applying the lubricant “Armatol-238” to the direct flow valves,
it is necessary to take into account the severe operating conditions. The lubricant
must be leakproof at pressures of up to 100 MPa, operate in a range of temperatures
from 50 to 120 °C, have a chemical stability, retain its rheological and physical and
chemical properties in the aggressive working environment, particularly in hydro-
gen sulfide and carbon dioxide with 25 % of volume. At the time of the lubricant
development, the domestic production did not have a lubricant fully matching all
the necessary requirements.

Thus, the lubricant LZ-162/ЛC-162 unusable in the aggressive environments
contains hydrogen sulfide and carbon dioxide, even at low temperatures. Where
hydrogen sulfide and hydrogen sulfide gas are present, the lubricant LZ-162/
ЛC-162 dramatically changes its physical, chemical, and rheological properties and
becomes unsuitable for sealing the valve gate of Xmas trees. At temperatures 35 °C
and below, which are often found in the northern regions (Siberia), the lubricant
becomes solidified around the gate and body, and the valve partially or completely
loses control.

The known domestic lubricants that are based on the soap, resistant to oil and
hydrocarbon gas mixtures when tested in media containing carbon dioxide gases,
but dramatically worsened their performance characteristics in hydrogen sulfide.
These include the following lubricants:

SGP/CГП (based on the petroleum oil and a lithium–barium soap of synthetic fatty
acids C17–C20, castor oil and asidola supplemented with lead powder) has a good
sealing and low-temperature properties and is intended to provide sealing for the
ball valves in pipelines of Far North;
AL-4/AЛ-4 (based on the petroleum oil and a lithium–zinc–lead soap of synthetic
fatty acids C17–C20, castor oil, rosin acids, and oil acids with fillers such as gra-
phite, alumina, and chrysotile asbestos of type M-5-65) is used to seal the pipe
hangers and the wellhead casing heads of existing oil, gas, and general valves of
anti-gushing manifolds equipment at pressures up to 70 MPa.

The narrow temperature range eliminates the use for the above purposes the
sealing lubricants resistant to oil and natural gas, such as a lubricant for the gas
valves obtained by the partial saponification of castor oil and calcium hydroxide
petrol-resistant lubricant (GOST 7171-78) applied for sealing the gasoline pipe
joints and thread connections, and obtained by thickening the resulting castor oil
with zinc soap of resin acid.

Due to the lack of high sealing properties, the pump grease, which is the oxi-
dized castor oil thickened with colloidal graphite of grade C-1, is not suitable as
closing valves of Xmas tress operated in harsh and extreme conditions.

The domestic chemical-resistant lubricants designed for operation in hostile
environments do not satisfy the high requirements of lubricants. The halocarbon
lubricant (lubricant #8, 10, SKF/CКФ, EF/ЭФ), having the chemical resistance to
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mineral acids, chlorine, hydrogen peroxide, and others are aggressive products, but
are not suitable for high temperatures (above 100 °C). The hydrocarbon lubricant
CIATIM-205/ЦИATИM-205 (GOST 8551-74) is designed to seal and prevent
caking of contacting thread and sealing connections that come into contact with
aggressive media, thickens at low temperatures (below −20 °C) and has a low upper
temperature limit (50 °C).

Silicone Lubricants VNIINP-279/BHИИH-279 (GOST 14296-78) and
VNIINP-287/BHИИH-287 (TU 38.101-83-76/TУ 38.101-83-76) have chemical
resistance, frost resistance, and low upper temperature range when they are used in
corrosive environments (up to 50 °C).

Perfluoro-alkyl-polyether Lubricants SK-2-06/CК-2-06 (TU 6-02-786-73/TУ 6-
02-786-73), VNIINP-282/BHИИHП-282 (TU 38.101274-78/TУ 38.101-274-78),
VNIINP-283/BHИИHП-283, SCHIPS-02/ЩИПC-02 (TU 38.101-501-74/TУ
38.101-501-74) meet the strict requirements of the lubrication for the locking
devices of wellhead; however, these lubricants are expensive and rare and have
insufficient sealing properties (no filler).

Testing the lubricant in media containing 25 % of hydrogen sulfide conducted on
a special testing stand (unit) in AzINMASh—on autoclave unit for 720 h. The test
conditions are as follows: the medium—an aqueous solution saturated with
hydrogen sulfide up to 25 % of volume; the working pressure—13.0–15.0 MPa;
and the fluid temperature—25–30 °C. After testing the lubricant, “Armatol-238”
has not changed the original color and texture, as well as its quality indicators
(Table 6.6).

While testing the reinforcing lubricants on the plane gate model in the unit under
high pressure, the obtained results indicate higher sealing properties than its foreign
analogues like lubricants of the company “McEvoy” (USA) (Fig. 6.31).

The low-temperature rheological properties of experimental samples of lubri-
cants were evaluated according to standard procedures VNIIPKneftehim in com-
parison with “Armatol-238.” Therefore, on the viscometer of constant flow the
values of equivalent viscosity were determined at three shear rates and temperatures
from 0 to 50 °C. The calculations on pumping resistance were done in accordance
to the hydraulic resistance methodology with regards to the triple-constant

Table 6.6 The lubricant “Armatol-238” after treatment with hydrogen sulfide

Parameters Initial
lubricant

After testing in 25 %
H2S

Dropping point temperature, °C 180 185

Colloid stability of pressed oil, % 14.2 1.8

Water weight content, % Absent

Free organic acid content, mg KOH/g 15 15

Corrosive effect on metals Hold

Effective viscosity at 50 °C and velocity gradient
10 s−1, Pa s

12.7 14.4

282 6 Fractal Analysis of Fatigue Failure of Kinematic Pair …



hydraulic rheological equation that is a generalization of the power law and the
linear model for the viscose-plastic liquid of Shvedov-Bingham.

Omitting any specific calculations, we present the results of calculating hydraulic
resistance for the pipe diameter of 20 mm and a length of 20 m when pumping
lubricants at a flow rate of 0.05 l/min (Table 6.7) and graphically processing the
data (Fig. 6.32). As seen from the data in this figure, the maximum pressure
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Fig. 6.31 The sealing capacities of reinforcing lubricants: 1 Armatol-238; 2 LZ-162/ЛC-162; 3
McEvoy

Table 6.7 The pressure
losses during the lubricant
pumping
Q ¼ 0:05 l/min; d ¼ 0:02m;ð
l ¼ 20mÞ

Temperature, °C Dp� 10�5; Pa

Armatol-238

0 42

−10 83.2

−20 177.4

−30 411

−40 1033

Lubritol

0 30

−10 30.5

−20 37.3

−30 50

−40 62
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corresponds to the pumping lubrication “Armatol-238,” which seems being less
useful at low temperatures. The minimum value of pumping pressure corresponds
to lubritol lubricants.

The tribological characteristics of lubricants (Table 6.8) were evaluated on
ChShM 3.2/ЧШM 3.2 in accordance with GOST 9490-75 and the friction machine
2070 SMT-1/2070 CMT-1 (the linear contact roller-on-roller for steel ShKh15/
ШX15 with diameter 40 mm, the sliding speed 0:314m s�1, the load of 1000N,
and the friction path 5600m).
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Fig. 6.32 The dependence of pressure drop from temperature: 1 Armatol-238; 2 Lubritol

Table 6.8 Tribotechnical characteristics of reinforcing lubricants

Parameters Armatol-238 Lubritol

Quadra-ball machine

Critical load, N 890 1600

Welding load, kN 5.3 5.6

Scuffing index 76 78

Wear scar diameter, mm for 1 h at load, N

400 0.9 0.8

1000 1.9 1.2

Friction machine 2070 SMT-1

Linear wear, mm – 1.6
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The testing on frost was done in AzINMASh on a specially designed “Programs
and methods of laboratory tests to determine comparative viscosity properties of
lubricants for lubricating sealing equipment at low temperatures.” The special tools
are filled with lubricant, loaded at positive and negative temperatures, and fixated
the time of shifting in piston.

The viscosity properties of lubricants characterizing their frost resistance,
depending on the test temperature, were estimated by the load applied to the piston
and causing the start of the lubricant extrusion (shift point), and according to the
lubricant extruded weight at a constant load, ensuring balanced extrusion, within
5 min.

The data analysis shows that libritol has the best viscosity properties at sub-zero
temperatures. This lubrication at temperatures −40 °C requires a load 20 times less
at the time of shift than “Armatol-238.”

The analysis of the performed researches and the results of organized controlled
by commercially available Xmas trees showed that along with the failure of valves
because problem with sealing there is also not less common the loss of control of
closing unit. The main reasons for loss of control are the spindle getting out
connection with the gate, the failure of the nut thread, and salt deposits.

It is shown that in light of the general performance increase of valves of Xmas
trees, especially working in the hostile environment (the presence of H2S and CO2

up to 6 % volume of reservoir fluid), the most promising direction is to increase the
durability of the running pair in valves.

Research on the worn parts of running pairs of failed valves of Xmas trees
provided new data on the characteristics of their work. Among the most important
of which is an increased wear of the initial threads starting from suspension of nut
(the first thread, consisting of 10 turns, accounts for about 50 % of the load). This is
due to the uneven distribution of the workload across threads on running nut, which
leads to the concentration of local stresses in the thread grooves from tensile forces.
As a result, in the running pair, the gap between the nut and the spindle increases,
which contributes to the overall depressurization of valve.

It is established that the uneven distribution of load across threads of running nut
is connected with the adopted scheme of the threads deformation in spindle and nut
under the applied load.

On this basis, we developed a method to solve the problem and to determine the
rational distribution of the load on threads of the running pair. It is proved that for
the distribution pattern of the applied load across thread, the preferred scheme is in
which the spindle and nut got stretched under load.

It is shown that the load distribution coefficient across threads is advisable to
select within the range from 0.5 to 0.985. By selecting small values of the load
distribution coefficient, the first two threads take up the most of tensile force, which
leads to a premature wear.

The values are defined for the load distribution coefficient across the thread of
the running pair, which provides a more uniform distribution of the tensile force,
which prevents the premature wear of the most highly loaded threads.
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We solved the problem of the contact interaction of the running pairs (spindle–
nut) subjected to the elastic–plastic deformation in the polar coordinate systems.

The analytical expressions for the determination of the tangential and radial
stresses of elastic–plastic contact are obtained.

The boundaries of the transition from elastic to plastic deformations are found
using the conditions of the surface displacement of the thread.

It was found that the production of the running pair from steel
30KhMA/30XMA (spindle) and bronze BrAMts9-2/БpAMц9-2 (nut) better pre-
serves the performance and resistance to scuffing and wear through the low coef-
ficient of friction f ¼ 0:06ð Þ.

Based on the results of experimental and theoretical researches on the level of
invention, we introduced a new design of valve, in which the uneven distribution of
load cross threads of the running pair is substantially reduced, which can signifi-
cantly increase the overall service life of the valve. In the proposed new structure,
the threads on nut are twice less loaded than in the existing structure (Patent I 2001
0113, year 2001).

The conducted test results confirmed the validity of making structural changes in
the performance of the running pair of the wellhead valves operating under the
pressure 70 MPa by the criterion of durability.

On the basis of experimental studies and in the high-pressure testing unit, the
gate is applied with armatol-238 which has higher sealing properties than its
analogues.
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Chapter 7
Fractal Fatigue Analysis of Valve Units
of Sucker Rod Pumps

7.1 Design and Analysis of Operating Conditions
of Valve Units

The valves are designed for periodic isolation of the bottom of the borehole pump
occupied by already received fluid from the pump-compressor tubing (PCT), where
this fluid flows. The valves are much more susceptible to wear than a
sleeve-plunger pair. Therefore, most of the round-trip operations during the well
operation are linked to the replacement of valve assemblies.

Among the various valves used in the sucker rod pumps (SRP), the most widely
used are the ball valves, as they have the greatest performance.

Depending on the shape of saddle, the ball valves are divided into the valves
with collar and the valves with a smooth outer surface. The latter are relatively
small in size and used as discharge valves.

The sealed contact between the ball and saddle is provided by the inner edge of
the upper surface of saddle, which has a chamfer. The main causes of wear of valve
units are as follows:

• corrosive environment, which has a greater impact on valves made of carbon
steel;

• abrasiveness related to the presence of sand in the produced fluid; causing the
metal corrosion, it is particularly intense in valves with wider gap between the
contacting surfaces;

• deformation of the saddle active surface, occurring when the ball hits the saddle;
• mechanical wear, explained by the friction between the ball and saddle, it

depends on the relative hardness of materials.

The valve closing process is very complex. Any delay in the valve closing has
adverse affects on the SRP filling coefficient, since the liquid flows from the dis-
charge into the suction chamber.
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A.Kh. Janahmadov and M.Y. Javadov, Synergetics and Fractals in Tribology,
Materials Forming, Machining and Tribology, DOI 10.1007/978-3-319-28189-6_7

289



This phenomenon is explained by the fact that the ball remains in a position of
equilibrium on an inclined surface of the saddle cut and does not rolls down due to
the ball roundness, because the ball does not move strictly along the geometric axis
of the valve, but vertically deviates. Moreover, the upward flow is distributed
unevenly in the valve cross section.

7.2 Analytical Dependencies for Assessing the Tightness
of Valve Units

The sucker rod pumps play a significant role in the modern oil industry. The most
of the wells, around 70 % of the existing oil wells, are operated using this method.

The design problems of the SRP elements that provide an increase in its dura-
bility and maintenance intervals depend on the hydrodynamic processes occurring
in these elements. The valve unit plays a big in these elements, where the move-
ment of fluid along with a ball, which serves as closing element of the valve. There
are many experimental and theoretical studies dedicated to the analysis of the valve
performance, as well as movement of the ball in upstream.

We consider based on the mathematical model of movement of fluid and ball in
the sucker rod pump body and show the causes of premature wear of the valve
saddle.

As it is known, in the incoming flow the ball, rising from a saddle chamfer,
provides a rotational movement around the valve axis. After a certain lifting height
of the ball, there is a violation of the axisymmetric vortex trail, thereby causing
separation of a single vortex. At separation of the single vortex, there are changes in
the circulation along the contour and the ball gets some momentum from the lifting
force by shifting in the direction of the low pressure, formed in the vortex breaking
spot. The ball displacement is accompanied by formation of eccentricity between
the ball and the cell axis.

Determining the role of this eccentricity in a premature wear of saddle, we
consider the speed of ball along with liquid (Fig. 7.1). To determine this function
for the ball with mass m, moving in the liquid, we express the speed �V of the ball in
the fixed coordinate system through the velocity �V0 of the translational motion of
the liquid and the speed �V1 of the moving ball in the coordinate system moving
along with the liquid

�V ¼ �V0 þ �V1: ð7:1Þ

290 7 Fractal Fatigue Analysis of Valve Units of Sucker Rod Pumps



The Lagrange function for the ball with mass m, which moves with the liquid,
has the form

DE ¼ m�V2

2
� Up: ð7:2Þ

Substituting (7.1) in (7.2), we obtain

DE ¼ m�V2
0

2
þm�V0 �V1 þ m�V2

1

2
� Up; ð7:3Þ

where Up—the liquid potential energy, the term m�V2
0=2 is the derivative �V0 on time

and it can be omitted.
Appearing in (7.3), the velocity �V1 is the derivative of the radius vector �r of the

ball over time in the coordinate system associated with the liquid that means

m0 �V0�V1 ¼ d
dt

m�V0�rð Þþm�r�V0: ð7:4Þ

Solving together the Eqs. (7.2) and (7.4), and taking into account (7.2) from
(7.4), we get

DE ¼ m�V2
1

2
þm�r �a� Up; ð7:5Þ

y

x
z

e

Fig. 7.1 The diagram of
calculation model
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where �a ¼ _�V0—the acceleration of the liquid translational motion. The speed �V1 is
a sum up of the rotational speed of the ball together along with the liquid and the
velocity �V , i.e.,

�V1 ¼ �V þ �x�r; ð7:6Þ

where �x—the angular velocity of the liquid. Substituting this in (7.5) with the
assumption that a ¼ 0, Up ¼ 0, x ¼ const, we get

DE ¼ m�V2

2
þm�V �x�r � m

2
�x�rð Þ2: ð7:7Þ

Substituting the total differential of the function (7.7) for each of the three
components, respectively, in the three Lagrange equations, we get

d
dt
@x
@ �V

¼ m _�V þm�x�V � m _�x_�r;

@DE
@�r

¼ m�V �xþm�r�x2 � @Up

@�r
;

drE ¼ m�V �x�rdþm�x2d�r2 � @Up

@�r
d�r ¼ m�V �xþ�r�x2 � @Up

@�r

� �
d�r: ð7:8Þ

From which we can determine the Lagrange equation

d
dt

@DE
@ �V

� �
¼ @DE

@�r
: ð7:9Þ

as

m _�V ¼ 2m�V �xþ �x2r � @Up

@�r
þm�r�x: ð7:10Þ

The potential energy in the gravity field is

Up ¼ g�r �m; ð7:11Þ

where �g—the vector of acceleration of gravity force, which is a component of the z-
axis, and equal to g.

Solving together the Eqs. (7.10) and (7.11), given the smallness of values of
terms containing the square of the angular velocity, and neglecting them, we write
the equation of motion in the form of

_�V ¼ 2�V �x� g: ð7:12Þ
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Solving (7.12) by the method of successive approximations, that is, assuming

that �V ¼ �V2 þ �V3, where �V2 is the solution of _�V2 ¼ ��g, we get

�V2 ¼ ��gtþ �VH ; ð7:13Þ

where �VH—the initial rate of the ball rise. Substituting �V2 into the original equation,
we define the derivative of �V3:

_�V3 ¼ 2�V2 �x ¼ �2t�g�xþ 2�VH �x

from whence

�V3 ¼ �t2�g�xþ 2t�V0 �x: ð7:14Þ

Then, �V ¼ �V2 þ �V3 ¼ �VH � �gt � t2�g�xþ 2t�VH �x. Integrating again, we find

�r ¼ hþ �VHt � �gt
2
� t3

3
�g�xþ t2�VH �x: ð7:15Þ

where h—the height of the ball lifting under which the latter begins to rotate (the
ball can rise higher anymore due to limitations).

Upon reaching the height h, the ball will have the following coordinates

z ¼ h� gt2

2
;

x ¼ t3

3
gx;

y ¼ t3

3
gx;

ð7:16Þ

If we choose the x-axis perpendicular to the rotating axis of the ball, the angle
between the rotation axis and the y-axis is a. Then, the projections of x on the axis
x; y; z, respectively, are

0;x cos a;x sin a:

Since the total rise of the ball within the time t ¼ ffiffiffiffiffiffiffiffiffiffi
2h=g

p
, the deviation of the

ball on the y-axis is equal to

e ¼ y ¼ 1
3

2h
g

� �3
2

gx cos a: ð7:17Þ
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It is known that to provide a passage for the fluid with minimal resistance
through the gap between the ball and saddle, it should be raised to the height

h ¼ 1
4
d;

and for normal sealing of the valve, the diameter of chamfer is selected as following

d ¼ 0:75; . . .; 0:8ð Þdb:

where d—the diameter of the saddle chamfer. Hence, we can determine the height
of the ball

h ¼ 0:2db: ð7:18Þ

taking into account Eq. (7.18), the Eq. (7.17) takes the form

e ¼ 1
3

0:2db
g

� �3
2

: ð7:19Þ

Thus, the focus is made on a model determining the angular velocity of the ball
together along with the liquid. As the liquid flowing around the ball gets both
translational and angular velocity, consider the relationship between the size of the
ball, and these speeds.

The resistance strength of the incompressible fluid flowing around the ball is
determined according to the Stokes formula and has a value

T ¼ 6plrbU; ð7:20Þ

as taking into account the dimensionless resistance coefficient, the same force is
equal to

F ¼ 1
2
qU2C0pr

2
b : ð7:21Þ

Solving together the Eqs. (7.20) and (7.21), we determine the total translational
velocity of the liquid and ball

U ¼ 12V
C0rb

; ð7:22Þ

where l and m—the dynamic and kinematic viscosities of the liquid, respectively;
q—the liquid density; rb—the ball radius; and C0—the drag coefficient.

Since the flow around the ball is the circulative and caused by the single vor-
ticity, the axis of which coincides with the axis of coordinates and it moves forward
along with the liquid, and then, the flow in the whole region is potential and the
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circulation is same at any distance from the vortex axis. The current line in this case
would be a circle, the velocity is tangential to the circle, and its radial component is
zero, i.e.,

U ¼ C
2pr

: ð7:23Þ

From the theory of vortices, we known that the circulation of vortex at the finite
dimensions is determined by the following formula:

C ¼ pr2X; ð7:24Þ

where r—the radius of the circle current line and X—the whirlwind. Since the
angular velocity

x ¼ 1
2
X; ð7:25Þ

then simultaneously solving (7.20) (7.23) (7.24), and (7.25), we can define the
angular velocity

x ¼ 12m
C0rrb

: ð7:26Þ

Since the radial liquid motion is limited by the cell inner diameter, we can write
r ¼ rk, where rk—the cell inner radius. The Eq. (7.26) takes a form

x ¼ 12m
C0rkrb

: ð7:27Þ

The Eq. (7.19) with (7.27) will have a form:

e ¼ 2
3

0:4db
g

� �3
2

g
12m

C0rkrb
cos a: ð7:28Þ

The Eq. (7.28) shows that for large and small valves, the eccentricity “e” has a
scale effect, i.e., due to friction between the ball and fluid for the small balls, the
greater the “e” the smaller the ball itself.

Multiplier standing before cos a shows that the angular velocity for the small
balls is larger than for the large balls. This is apparently due to the fact that the
kinematic viscosity of liquid is proportional to the angular velocity. The growth of
the latter, hence, increases the deviation of the ball from an ordinate of the fixed
coordinate system.

From the above, it follows that in wells where there are high-viscosity oil, the
use of small valves is undesirable not only due to the difficult pumping, but also
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because of the relatively large magnitude of the eccentricity “e” that would result in
premature wear of the valve saddle.

To prevent a premature wear of the valve saddle from unilateral hydrodynamic
shock, it is necessary to create a protective device that helps to achieve a uniform
seating of the ball in the saddle.

7.3 Wear and Its Determination in Valve Units

The operational conditions of valves in the sucker rod pumps are important for
studying wear and leakage through the worn area. Despite the large number of
theoretical and experimental works on this problem, there are not many works that
correctly describes the behavior of wear and leakage. In most of the carried out
experimental works, the researchers try to determine the relative durability of
pumps.

Let us provide the results of experimental studies on level of wear and fluid
leakage through the worn valve area of SRP [22].

Experiments to determine areas of wear and leakage were conducted on a spe-
cially designed testing unit, as shown in Fig. 7.2. The valve unit is installed in the
quick assembling unit 12 and the working fluid pumped into the tank 16 flowing
then through the valve 7 into the tank 10 for the hydraulic fluid. The vessels are
monitored by the pressure gauges 8 and 9, and the level of liquid in the vessel by
the Klinger glass, besides with the valves 4 and 6 are closed, after filling the tank 10
the valve 7 is closed. To supply the compressed air, the command is given from the
control unit 17 to open the electro-valves 2 and 3 and the containers management
unit.

The thermometer 11 controls the temperature of the liquid in the tank 10. The
created pleasure in the tank 10 will squeeze the liquid through the valve gap into the
measuring tank 15. When the control panel is on, the measurements are taken from
the stopwatch 18, the pressure gauge 9, the thermometer 11. As soon as the
measurements are taken, the commands are given from the control panel 17 to close
the above-mentioned closing devices, and the valves 4 and 6 are open for replacing
the working liquid with other physical–chemical properties.

The testing unit provides the following tasks: conducting experiments on liquids
with different physical properties; measuring the volumetric flow rate of leakage;
and measuring drainage time.

The unit has two operating lines: one to pump the working fluid, and another to
drain out when the task is accomplished. The liquid supply—the displacement by
supplying the liquid from tanks with compressed gas.

The gas reduction is a two-stage process, which provides highly stable pressure
supply for a long time. The measurement of the leakage average rate during spilling
in continuous operation is carried out by the weight method. The valve assembly is
mounted in the quick assembling unit at the lower part of the supply line. The
electronic measuring system enables the measurement of drainage time.
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The volumetric flow rate is determined by formula:

Q ¼ G
c � t

where G—the weight of liquid collected in the measuring tank for the time t; c—the
specific gravity of liquid.

We investigated the suction valves of the sucker rod pumps with diameters of
32, 43, and 56 mm. The valves were chosen in the field workshops from the
unsuitable for further use valves due to wear of saddles. The number of valves with

from pump

18

1 2

10

13 9

11

8

7

16

5 12

14

4

15

3
6

19

20

17

Fig. 7.2 The diagram of experimental unit: 1 gas supply line; 2, 3 locking device with electric
control; 4, 5, 6, 7 valves; 8, 9 pressure gauges; 10 tank for the hydraulic fluid; 11 thermometer; 12
quick assembling unit with the tested valve; 13 the Klinger glass; 14 discharge line; 15 measuring
tank; 16 tank for supplying liquid; 17 control panel; 18 timer; 19, 20 electrical communication
lines
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43 and 56 mm was 435 units, and the valves with 32 mm—367 units, which
provides the accuracy to the experiment.

The research was conducted on valves with the oil mixtures of the dynamic
viscosity coefficient l ¼ 0:01425 kg s=m2, the volumetric specific gravity of the
liquid c ¼ 0:86 kg=m3.

Since the measuring leakage rate is very small, so it is required the measuring
tool of high precision to eliminate random measurement errors. The random
measurement errors could be:

1. liquid loss through evaporation when draining and liquid remains on the walls of
measuring tank. The plastic bags were used as measuring tank, weighed with
accuracy to 0.1 g. Bags must be thoroughly dried after use;

2. errors caused by weighing inaccuracy, not exceeding 0.2 g. For weighing the
exemplary scale with weights of class III type 0.3—20, and weights of class I
type 1–20. Drainage time must be selected in such way that the amount of liquid
was not weighed less than 800 g;

3. error in determining the drainage time must be negligent, 0.2 s.

With an exclusion of systematic measurement errors, which is not provided in
this work, the maximum measurement error of the average flow rate was 0.05 %,
and the maximum summary error was 0.1 %.

Processing the results of observations based on the theoretical assumptions, the
consumption rate was defined by function depending on the height of the liquid
column HP;m; the specific volumetric weight of liquid c; kg=m3; the coefficient of
flow dynamic viscosity l; kg s=m2; the length of destruction of the saddle parts
l;m; and the area of destruction of the saddle parts F;m2.

The main functional relationship

Q ¼ HPc f l; l;Fð Þ; ð7:29Þ

is determined from the research results carried out under the above procedure.
Because the measurements were taken according to the parameters c, l, and l, then in
a first approximation through the linear regression the function has been defined as

Q ¼ K � HP � c: ð7:30Þ

The coefficient K is determined from the following formula:

K ¼
PN

i¼1 HPi � c
PN

i¼1 Qi � N
PN

i¼1 HPi � c � QiPN
i¼1 HPi

� �2�N
PN

i¼1 c
2 � H2

Pi

: ð7:31Þ

As a result, the dependence of the first approximation in the form

Q ¼ 0:2036� 10�3c � HP: ð7:32Þ
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At further calculations of the experimental data, the results were processed in
terms of the actual physical destruction of the saddle surfaces.

For this purpose, based on the destruction, the local failure chart was built, which
was used to determine the levels of saddle destruction.

Assuming that the function f l;Q;Fð Þ from Eq. (7.29) is the local measure of the
total area, which is sealed by the ball, the coefficient K from the Eq. (7.30) must be
expressed in terms of the gap area, the shape of which is unknown, and the flow
through these gaps must certainly satisfy the Poiseuille flow of liquid, as it is
supported by the results of research.

To establish the final model of leakage through the gap, we consider the flow
through the capillary tube based on the Poiseuille law, which is fully described by
the following relationship:

Q ¼ pDPd4

128ll
; ð7:33Þ

where DP—the pressure drop, l—the coefficient of liquid dynamic viscosity, l—
the tube length, and d—the capillary diameter.

If the numerator and denominator of the Eq. (7.33) is multiplied by p=16, after
some transformations we have

Q ¼ F2
1DP

25:12ll
¼ k1

F2
1DP
ll1

; ð7:34Þ

where F1—the capillary cross-sectional area and k1 ¼ 0:47� 10�1—the coefficient
of channel shape.

Processing the results of observations (these methods are not provided in this
book), we obtain the following relationship

K ¼ 0:0154 p2d4
16

le
; ð7:35Þ

where d—the diameter of a working facet of saddle.
The length of the destroyed part of the saddle was taken as 2.5 mm according to

the experimental results on failed saddles taken from wells for the pump size 32, 43,
and 56 mm. From Eq. (7.35), it is obvious that the maximum summary area of the
gap, as a result of destruction, is 0.0154 part of a squared area of the valve saddle
that means, the required area can be calculated as following

F ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:0154

p2d2

16

r
: ð7:36Þ
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Summarizing the results of research, the leakage flow through the gap formed by
the destruction of saddle can be determined by formula:

Q ¼ 0:95� 10�2 d
4cHP

ll
: ð7:37Þ

where 0:95� 10�2 is the coefficient of channel shape. Comparing (7.34) and (7.37)
shows that in overall they differ by the coefficient of channel shape.

By the finding through the method of local criterion the relationship between the
diameter of chamfer and the area of wear, we can analyze the process of physical
destruction from the dynamic impact. For this purpose, there is a need to study the
reaction of the saddles of above sizes to the pure dynamic impact. This experiment
made it possible to determine the parameters of failure without taking into account
the solid particles hitting between the saddle and ball, the impact of gas and
corrosive materials on the process of destruction.

This experiment was conducted using a hydraulic hammer. Studies using this
method have shown that the destruction of the saddle is accompanied by the plastic
deformation. However, there are three kinds of failure: plastic, shear, and mixture of
two. The last two types of failure are observed in the saddle with the flow part being
reinforced with a hard alloy.

Summarizing the results on defining the leakage through the SRP valves of all
sizes, we can write the following relationship

Qtotal ¼ 1
2
g D0 þDkð Þh 2g P3 þ Lck6� 2Hnð Þc½ �

10c

� �1
2

þ 0:95� 10�2 d
4

lc
cAn: ð7:38Þ

The data on wear of saddles retrieved from wells and destructed using the
hydraulic hammer are shown in Table 7.1.

The statistical data collected in the oil and gas fields number 1, 2, 3, 4 at NGDU
“Binagadineft” with intermaintenance period due to the destruction of SRP saddles
are shown in Table 7.2.

By applying the method of logarithmic regression, the dependence for the
average number of operational days of the pump in the well by the formula

T ¼ �4:71I � n � F: ð7:39Þ

where T—the number of operational days of pump before wear of saddles and F—
the total area of gap from the destruction of saddles. The calculated data for the
formula (7.36) is shown below in Table 7.3.

Table 7.1 The data on wear of saddles using the hydraulic hammer

Pump dimensions,
mm

Saddle extracted
from wells, m2

Saddle destroyed with
hydrohammer, m2

32 0.526 × 10−4 0.537 × 10−4

43 0.842 × 10−4 0.848 × 10−4

56 0.1885 × 10−3 0.1902 × 10−3
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According to the research results, we can conclude that the loading rate of ball
has a significant impact on the type of fracture. We can say that stress is defining
parameter of the destruction by shear. This is due to the fact that in the hard alloys,
the fracture resistance coefficient at the dynamic pressures is lower than at the static
pressures. Where in the valves, the saddles are made of a relatively soft material so
at the static pressures as well as dynamic pressures the plastic fracture occurs, so the
dynamic coefficient exceeds static one.

From the foregoing, it is obvious there is important to improve the life span of
valves by offloading dynamic impact on the ball by the opening of the discharge
valve.

7.4 Fluid Leakage and Its Determination in Valve Units

As it is known, one of the factors that significantly affect the pumps is the fluid
leakage in the valve units.

Table 7.2 The statistical data collected in the oil and gas fields number 1, 2, 3, 4

Field
number

Well
number

Pump size,
mm

Average number of days of pump operation for
period 1991–93, days

1 2 3 4

First 1247 32 45

Second 986 45.02

Third 344 44.8

362 45.3

1933 45.1

Third 926 43 43.1

279 42.6

296 42.9

356 43

Fourth 2602 43.4

Third 1932 56 39.7

1942 40.2

2745 40.1

2447 39.8

Table 7.3 The calculated
data

Pump dimension, mm Average number of days in well

32 44.6

43 44.42

56 38.8
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The fluid leakage in the valve consists of two forming components: the first one
is formed due to delay in closing of the suction and discharge valves, the second
one is formed due to wear and tear of the valve saddle. The amount of leakage for
the sucker rod pumps essentially depends on the dynamic properties of the flowing
liquid, determining the delay in time of the ball setting on the saddle.

The literature on studying the SRP valves only has a general idea with regard to
the fluid leakage in the valve units. At the same time designing and exploiting SRP
in the absence of concrete dependences on the constructive parameters and the
operational depth does not allow to predict and prevent premature wear of the valve
saddle.

In order to determine the fluid leakage in the valve units of the sucker rod
pumps, consider the following functional dependence

Q ¼ f g; h;Dp;Dð Þ;

where Q—the liquid loss through the gap between the saddle and ball; g—the
coefficient of fluid leakage; h—the height caused by the delay in landing the ball on
saddle of valve; Dp—the pressure drop across the valve; D—the chamfer diameter
of saddle.

Based on the theoretical analysis of the hydrodynamic flow in the pump valves,
it is revealed that wear depends on the ball movement inside the body.

In the deep-well pumps, the initial ball velocity is relatively large, and together
with the rotational effect of ball around the valve body axis, arising after lifting the
ball, the transient processes can significantly affect the movement at the time ball
landing (sealing) in his saddle.

In order to find the impact of the above-listed parameters on the valve tightness,
we established based on prior theoretical analysis that the liquid flow through the
gap between the saddle and ball in the transient processes could be represented by
the following formula

Q ¼ p
2
g D0 þDkð ÞH

ffiffiffiffiffiffiffiffiffiffiffi
2gDp
c

s
;

where h—the maximum lifting height of the ball: Dk and D0—the ball section
diameter, included between the perpendicular dropped from the ball center on the
facet diameter of the valve saddle at the current h and full H lift.

As the testing pumps we used SRP with a diameter of 43 and 32 mm. The
experiment was conducted to find the flow coefficient by studying 50 valves. The
experiment had following steps: while the ball landing on the saddle, its position
gets recorded every 0.1 mm and the liquid leakage get measured. As a criterion to
find the coefficient of liquid loss, we used the ratio of the lifting height of the ball
(fixed lift height of the ball) to the diameter of the valve facet. The experiment was
conducted on petroleum products with dynamic viscosity of l ¼ 1:095� 5:73Pa s.
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From this it follows that the coefficient of pump filling at higher viscosities is
greater than for lower viscosities.

Comparing the data, it showed that the discharge coefficient at the low vis-
cosities is greater than higher ones.

The experimental data were investigated through by regression analysis
according to

g ¼ b0
h
D

� �b1

;

b1 ¼
PN

i¼1 ln
h
D

� �
i

PN
i¼1 ln gð Þi�N

PN
i¼1 ln

h
D

� �
i

PN
i¼1 ln giPN

i¼1 ln
h
D

� �2
1�N

PN
i¼0 ln

h
D

� �2
1

;

b0 ¼ exp
1
N

XN
i¼1

ln gi � b1
XN
i¼1

ln
h
D

� �
i

 !" #
;

where N—the number of observations; g—the discharge coefficient, obtained
through observations.

After proper processing of the experimental data for the above pumps, we
determined that the coefficients of liquid loss could be expressed through
relationship

gp ¼ 0:2608
h
D

� ��1:4286

: ð7:40Þ

The data obtained during the study and calculated from formula (7.40) are
shown below:

h=D 0.1 0.12 0.14 0.16 0.18 0.22 0.25 0.3 0.36 0.42

g 6.8 5.25 4.2 3.47 2.9 2.2 1.84 1.4 1.09 0.87

gp 7.0 5.4 4.3 3.5 3.02 2.2 1.89 1.42 1.0 6.9

The height of the ball delay landing on the saddle was obtained experimentally.
The height of ball delay landing on the saddle, and the delay times were found with
sufficient accuracy using the thermocouple and an electronic stopwatch.

The pump inlet pressure can be determined by the formula

Pin ¼
HP � Hg
� �

c

10
; ð7:41Þ
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which HP—the depth of pump suspension; Hg—the dynamic level of liquid

Hg ¼ Lwell � 10P3

g
; ð7:42Þ

where Lwell—the well depth; P3—the pressure inside the well. Solving the
Eqs. (7.41) and (7.42), we obtain

Pin ¼ P3 � Lwellc
10

þ HPc
10

: ð7:43Þ

After some simple transformations of Eq. (7.38) with (7.43) in mind, we have

Q ¼ k
2
g D0 � Dkð Þh � 2g P3 þ Lwell � 2HPð Þc½ �

10c

� �
: ð7:44Þ

D0 and Dk are determined constructively.
At known parameters of well, pumped liquid, and valve, the formula (7.44)

permits to determine the leakage during the ball delay landing on saddle.
The leakage due to wear of saddle is subject of another research and therefore is

not considered in this book.
As a result of research into the causes of unstable operation of valves developed

and tested in field conditions the new design of valve assemblies is proposed,
positive results were obtained.

7.5 Recommendation for Improving the Wear Resistance
of Valve Units

To increase the wear resistance of the valve its components get a considerable
hardness, but the hardness of the ball surface must be much greater that saddle
hardness since the operability of pair is primarily determined by how during
operation ball retains its original shape and surface condition. Even small changes
in the ball shape and the surface smoothness can lead to loss of the valve tightness
and cause liquid loss. This is certainly not true for the saddle, the saddle facet can
greatly change in the shape and size during the process, and yet the valve will still
successfully retain its service ability, without leakage.

In new design valve, the deviation of ball from the strict spherical shape should
not exceed 1–4 micrometers for the different sizes of valves. Otherwise, we cannot
place the ball on the saddle. To improve the performance of valves offered, E.V.
Kostychenko offered the valve with a deeper and broader facet that really showed a
significantly higher efficiency in comparison with the conventional valves.
However, the Kostychenko valve had disadvantages like delays in closing down
and large hydraulic resistances. The first circumstance caused the need for a second
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ball, preventing an arbitrary movement of the main ball, thus preventing delay in
landing on a saddle.

Obviously, the valve performance depends on the pumping rate: at the same
pumping rate, the greater the number of strokes, the greater the wear inside the
valve. So long stroke-pumping regimes are more favorable to the valves.

The presence of free gas in the pumped fluid increases wear of the valve.
Corrosive wear in the modern valves is almost completely eliminated, since both

the ball and saddle are made of high-chromium steel, and the saddle can also be
made from the oil-resistant rubber.

A significant impact on the valve operation has their abrasive wear, especially
with free gas in the pumped liquid. The presence of sand in the pumped fluid often
leads to failure due to corrosion, primarily in saddle. The primary cause of wear is
slight distortions in tightness of the valve. Under the considerable pressure (after the
ball lands on the saddle), the liquid containing abrasive particles with high-velocity
flows through the gap between the ball and saddle and quickly (sometimes within a
few hours) disrupts the valve functionality. However, if the valve is completely
sealed, the pump can deliver the liquid with a high content of sand for a long time,
which is observed in reality.

The design of the suction and discharge valves is of great importance for the
work of sucker rod pumps, as they play an important role in providing the volu-
metric efficiency. The properties of the pumped liquid and the operating conditions
will vary greatly, therefore, to increase the efficiency of the valves during the design
we should take into account the following factors—the viscosity and specific
gravity of the pumped fluid, its corrosive and abrasive properties, and inlet and
outlet pressures. These factors influence the area, the gap between the ball and
saddle during lift, the landing area and the construction properties of materials.

Floating ball with the fixed lift height is probably the most effective element os
SRP. Their service life is considered long, due to a continuous rotation of the ball
wear does not concentrated in any of the critical points, if we ignore the occurrence
of eccentricity between the axis of the ball and saddle during lifting and rotation of
the latter. With such landing of the ball on the saddle, the saddle gets deformed
unilaterally, which decreases the valve reliability. It becomes practically impossible
to prevent wear of the saddle by changing its material or design.

Obviously, some of the challenges facing the SRP designers now and will
confront them in the future will be resolved only then when we develop a new
high-strength and wear-resistant materials for the valve components. However,
success in developing the valve units will greatly depend on the degree of pro-
tection of the saddles and designing a more detailed mathematical analysis to create
a protective device which will prevent premature wear and to ensure a reliable
operation of the valve assembly.

At the beginning of suction, the ball movement in the body is such that when the
ball gets separated from the saddle its rotation begins to intensify around its own
axis and about the axis of the saddle with a further deviation toward the periphery
of the flow. This produces an eccentricity between the axis of the ball and saddle.
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The above process is confirmed by mathematical analysis of the movement of
the ball and the liquid in the upstream as well as a pilot study using tachometer
photodevices.

The experimental results showed that there is a problem in studying the ball
movement and the liquid flow at the downstream. Since at the end of the com-
pression, the liquid, which place the ball on the saddle, can cause a hydrodynamic
shock of the ball and if it reaches the ball while it deviated from the central axis of
the saddle, the ball may not sit in the center of saddle, so that it can cause a
one-sided wear. In addition, such a hydrodynamic shock for a brittle material, than
a hard alloy, can have an adverse impact, so the saddle made of brittle materials will
not wear plastically, but shearing.

Experimental studies confirmed the validity of the above assumptions. In this
regard, it is proposed a protective device to reduce the hydrodynamic impact of the
liquid on the ball in the shape of parabolic cage. The experimental study of the
downstream valve assembly showed that the parabolic cage, by extending the flow
significantly, reduces the effect of hydrodynamic impact from the liquid, with the
ball evenly sitting on the saddle under its own weight causing only a moderate
plastic wear of the saddle, which increases the service life of the valve.

The design of the parabolic cage prevented the deterioration of facets of the
saddles by associated gas, which is available in conventional valves.

The proposed valve unit for the sucker rod pumps with the parabolic cage allows
increasing a turnaround time of the pump by 1.6 times.

7.6 Fractal Dimension Analysis of Cumulative Crack Area
of Valve Fracture

SRP installations play an important role in the modern oil industry. 70 % of the
existing stocks on oil wells are equipped with these settings. They are used in wells
with flow rates up to 50 m3 per day and with an average depth of 1000–1500 m.

The valve unit is the core element of pump; it provides flow of the liquid and
acts as sealing device. Operating modes of the SRP valve assemblies is one of the
important tasks in the study of wear and destruction. Therefore, issues related to the
determination of the amount of leakage from the sealing and pressure losses (hy-
draulic resistance) are of paramount importance. Despite the large number of the-
oretical and experimental work on this issue (see Bibliography of recent years [1, 2]
and earlier work in [3]), the ones, which correctly describe the degree of wear and
tear, are very small. The carried out experimental works determined the relative
wear and durability of SRP. The most general results of experimental studies on the
degree of wear and leakage of the SRP valves are given in [4].

The aim of this study is to analyze the degree of wear of sucker rod pump valves,
depending on the fractal dimension of the destruction surface and the total area of
gap formed by the destruction of valve [5].
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7.6.1 Measurement and Fractal Structure Analysis
of the Rough Surfaces

The surfaces of machine parts and equipment are never absolutely smooth; they are
always uneven, depending on the structure of the material and the nature of pro-
cessing and operational areas due to uneven wear of the rubbing bodies during the
operation [6].

Deviations from the regular geometric shape are divided into macro-deviation,
waviness, and roughness. The micro-deviations are made of singular, not regularly
repeating deviations from the nominal surface shape (convex, concave, taper, etc.).
The waviness is made of the set of periodic, recurring, and similar the size ups and
downs forming the unevenness with a distance much larger than the surface
roughness. The waveform is often close to the sine wave. The distance between the
vertices of irregularities (wave pitch) is in the range 0.25–300 microns, and the
height 0.03–500 microns.

By surface roughness, we understand the set of irregularities with a relatively
small pitch, considered within the area whose length is equal to the base length. The
basic length is the length of the conditional surface area, selected to determine the
roughness and allows ignoring the irregularities having a larger pitch. The pace
unevenness depends on the processing and varies 0.001–8 mm, and the height
0.03–300 microns.

Surface roughness can be measured by analyzing the surface height or profiles
[7].

In the first approach, we measure the surface height z at different points along a
certain direction of x. Having a large number of measurements on all available
surface areas, we can calculate the surface roughness by determining the depen-
dence r2 ¼ z2 xð Þ	 


. Here, the angle brackets denote the averaging over a series of
measurements of the surface topography. The reference point is vertically chosen so
that z xð Þh i ¼ 0.

An important measure of the statistical properties of the correlation function of
the surface is determined by a number of heights for stationary znf gN0 , zn [ 0, by
relationship

C mð Þ ¼ 1
N

XN
n¼0

znþmzn: ð7:45Þ

The Fourier transform of the covariance function C mð Þ gives the power spec-
trum G fð Þ of the random variable Z, defined by a number znf g:

G fð Þ ¼ 1
2N

XN
m¼�N

e�i2pmf C mð Þ; i ¼
ffiffiffiffiffiffiffi
�1

p
: ð7:46Þ
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Taking into account Euler’s formula e�ix ¼ cos x� i sin x, given the parity
function C mð Þ, we obtain

G fð Þ ¼ 1
N

XN
m¼0

cos 2pmf � C mð Þ; ð7:47Þ

Sayles and Thomas [8] suggested that the power spectrum of the surface height
has scaling properties and has the form

G fð Þ ¼ k
f 2
; ð7:48Þ

The spatial frequency f is related to the wavelength k of surface irregularities by
the equation f ¼ 1=k. The physical systems have a finite length Lmax and accord-
ingly the minimum spatial frequency fmin ¼ 1=Lmax. Assuming (7.48) the variance
of the random variable Z is

r2 ¼ z2 xð Þ	 
 ¼ Z1
fmin

G fð Þdf ¼ k
fmin

; ð7:49Þ

i.e., r2 ¼ kL0, L ¼ 1=fmin and the dispersion increases with the size of the surface,
as it is expected for Gaussian random processes. The approximation of the observed
spectral density by dependence (7.48) determines k and the normalization takes the
form G 1

k

� �
k ¼ k2.

Berry and Hannay [9] noticed that statistically isotropic surface, not allocated to
any scale and the level of which is well defined, but non-differentiable, can really
have the spectrum of fractal type

G fð Þ ¼ k
f a

¼ kf�2H�1: ð7:50Þ

As shown by Mandelbrot [10], the rate of H is equal to the fractal co-dimension
and is expressed as following by the fractal dimension of the surface D

D ¼ 3� H: ð7:51Þ

For Brownian surfaces that means in the case of the conventional Gaussian
statistics, we obtain (7.48), since for such surfaces, the Hurst exponent H is 0.5 and
D ¼ 2:5. For surfaces obtained from the generalized Brownian motion, introduced
by Mandelbrot and called the Fractal Brownian motion (FBD), the value of a in
(7.50), providing the best approximation of the power spectrum, is in the range of
1:07; . . .; 3:03 that corresponds to the values of the fractal dimension D ¼ 7� a=2
from 2 to 3. In response to the [9], Sayles and Thomas [11] conducted a new
approximation of their data and histograms of the spectral parameter estimates a,
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which received a values are grouped around the Gaussian value a, but distributed to
the permissible range of 1–3. This result is quite reasonable, since used in [9], the
experimental data were obtained from various sources (from the surfaces of ball
bearings from the airfield runways) and it is unlikely that a completely different test
surfaces have the same statistics.

Another approach to the measurement of surface roughness is based on the
analysis of the profiles offered by Mandelbrot et al. [12] in studying the fractal
structure of a rough and irregular surfaces formed by break of the metal body. They
studied the breaks of samples of the martensitic steel grade 300. These breaks first
nickel-plated and then polished parallel to the fault plane. As a result, the “islands”
of steel surrounded by a nickel were formed, with further polishing of the island
kept growing and eventually merged with each other. The length of “contour,” or
the perimeter L, and the area A of the islands were measured with a “measuring
standard” of length d ¼ 1:5625mm.

Mandelbrot previously showed that for the islands, the contour outlines of which
are similar satisfy the following relationship for the perimeter and area

L dð Þ ¼ Cd 1�Dð Þ A dð Þ½ �D2 : ð7:52Þ

These relationships for any measuring standard of the length d, small enough to
satisfactorily measure the smallest of islands, are the basis of a practical definition
of the fractal dimension of the outlines. In fact, we can write (7.52) in the form

L dð Þ
d

¼ C

ffiffiffiffiffiffiffiffiffiffi
A dð Þp
d

 !D

; ð7:53Þ

After taking the logarithm of both sides of (7.53), we obtain the bi-logarithmic
coordinates y ¼ ln L dð Þ=dð Þ and x ¼ ln A dð Þ=d2� �

equation of the line

y ¼ lnCþ D
2
x ð7:54Þ

with slope tanu ¼ D=2. How do we find D ¼ 2 tanu. The coefficients of
Eq. (7.54) are defined by a standard MLS (method of least squares) from the
measured values y; xð Þ at different sufficiently small d.

The fractal fracture surfaces should be characterized by the different laws of
similarity in the fault plane and across it. Therefore, the surface of fracture may be,
in the best case, self-similar with the local fractal dimension (valid for scales,
smaller than a certain critical).

By definition [13], the set S is self-similar with respect to the sequence of N of
the diagonal affine transformations an, if the equality holds

S ¼ UN
n¼1anS; ð7:55Þ
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and anS\ amS ¼ ; at n3m. That means S is divided into N parts (no two of them
do not intersect) each of which is obtained from one of the affine transformation
sequences.

Under the diagonal, we understand [13] an affine transformation, acting in the E-
dimensional affine space AE, which is defined by specifying a fixed point with
coordinates xm ¼ um and a set of transformation coefficients rm 0\m\Eþ 1ð Þ, and
acts according to the rule

xm ! um þ rm xm � umð Þ: ð7:56Þ

The coefficients rm may not be positive, and not all of them need to be equal, as
in this case the transformation degenerates into a similarity transformation
(homothety).

The simplest of self-similar surfaces proposed by Mandelbrot [10] as the model
of the earth surface—the fractional Brownian surface BH x; yð Þ of type FBM with
coordinate type x; yð Þ, located in the isotropic plane. All the properties of the surface
depends on a single parameter H and its Hausdorff–Besicovitch dimension
DHB ¼ 3� H. The vertical cross sections of this surface have both local and global
(valid for scales larger than the critical) properties. The horizontal sections are the
outlines of all islands, considered together. They are self-similar and have only one
dimension, which is also the local dimension of the vertical sections.

The intersection of self-similar fracture surface of the metal body with the
horizontal plane gives outlines that are self-similar and have a fractal dimension
D0 ¼ D� 1 [14, 15]. Therefore, we can use the relation (7.52) for definition of the
fractal dimension D0 and D ¼ D0 þ 1.

In [12] by approximating the dependence (7.52) the estimate D0 ¼ 1:28 is
obtained, from which it follows that in a prominent range of scales investigated by
authors the fracture surface has the fractal dimension D ¼ 2:28. Approximately, the
same value of the fractal dimension D ¼ 3� H ¼ 2:26 was found with the help of
(7.50) of the power spectrum of heights z of the fracture surface.

Thus, both sets of the approaches to evaluate the surface roughness give almost
the identical (up to two decimal places) values for the surface fractal dimension.

7.6.2 Durability Modeling of Submersible Pumps
Depending on Fractal Dimension of Surface Breakage
and Cumulative Crack Area of Valve Fracture

In the monograph [1], the results of experimental studies are provided on the degree
of wear and leakage of fluid through the wear area of the SRP valves.

The valve assembly studies were conducted on the oil mixtures with the coef-
ficient of dynamic viscosity l ¼ 0:01425 kg s=m2 and the specific gravity of the
liquid c ¼ 0:86 kg=m2.
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Figure 7.3 shows a photograph of the sucker rod pump valve with a fracture in
saddle; and on Fig. 7.4, there is a schematic drawing of the fractured surface.

Let a ¼ 2Hþ 1 and write the formula (7.50) in the form

G fð Þ ¼ kf�a;

where after taking the logarithm, we obtain

lnG fð Þ ¼ ln k � a ln f :

Fig. 7.3 The sucker rod
pump valve with a gap from
the saddle destruction
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Fig. 7.4 The fractured
surface of the sucker rod
pump valve
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In the notation y ¼ lnG fð Þ, x ¼ ln f , b ¼ ln k, m ¼ �a the last expression is
written in the form of linear regression model

y ¼ bþmx: ð7:57Þ

We divide the frequency range [0, 0.05] into equal segments of length 0.05 and
denote their right ends via fi i ¼ 1; . . .;Nð Þ (N—the total number of segments of the
partition). For a given sample yi; xif g i ¼ 1;N, yi ¼ lnG fið Þ,and xi ¼ ln fi we cal-
culate the coefficients b, of model m (7.63) by MLS (the method of least squares).
For this purpose, we used a computer program called EXEL LINEAR. From the
coefficient t, we find a ¼ �m, and then from the formulas H ¼ a� 1ð Þ=2 and
D ¼ 3� H, we determine the fractal dimension D.

The results of calculation show that the surface fracture is characterized by the
fractal dimension D ¼ 2:45, significantly different from the topological dimension
DT ¼ 2. Since the surface fractal dimension must satisfy the inequality 2\D\3,
the value D ¼ 2:45 means that the valve resource is exhausted almost by half.

The results can be used for plotting

T ¼ f D;Fð Þ; ð7:58Þ

where T—the number of operational days of the pump before wear of saddle, F—
the total area of the gap from the destruction of saddles, D—the fractal dimension of
the surface fracture. The dependence for T ¼ f Fð Þ was obtained earlier in [1]
(Fig. 7.5).
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7.7 Kinetics of Damage at Contact Fatigue of Parts
of Submersible Pump

The action of cyclic stresses promotes the phenomenon of material fatigue; it
already appears at relatively low stresses defined by the gradual accumulation of
damage. Fatigue damage upon the contact interaction of solids is the result of
repeated deformation of the surface layers, essential for the normal operation
friction pairs, and reduced to fracturing and loosening [16]. One of the forms of
appearing of the contact fatigue of the valve parts of submersible pump is wear by
friction [2].

We consider the process of fatigue wear from the position of the kinetic theory of
the damage accumulation [17, 18]. According to L.M. Kachanov [17], the damage
is described by a scalar 1�w� 0, which can be interpreted as the material conti-
nuity. In the absence of damage, w ¼ 1ð Þ during fatigue wear, the damage of
surface layers of the material increases with an increase in loading time t. Therefore,
a change in the continuity w of the surface layers can be described by the kinetic
equation, according to the ideas of statistical physics, and it has a form

dw
dt

¼ F w; . . .ð Þ; ð7:59Þ

here the function F depends on w and other variables that are essential for the wear
process. These variables are, in particular, the strain tensor, time, and also
parameters arising from friction and characterizing the orientation at the hardening
of the surface layer of material on the valve saddle.

Accounting all the selected variables is a very complex task and requires a
detailed analysis of the experimental data. At the same time, it is significant [18]
that the functions and parameters included in the equation of the form (7.59) could
be determined by relatively simple experiments.

Figure 7.6 schematically shows the typical kinetic curves of destruction k ¼ f tð Þ
with the parameter Pi ¼ const, defining the test conditions (load rate, temperature,
etc.). It can be seen that the fracture curves are similar until it reaches a certain
critical value Pc. When Pi ¼ Pc, the steady phase disappears on the kinetic curves
of destruction, and they become close to a straight line [18].

Many dependencies, as kinetic as parametric, are shown in Fig. 7.6 to describe
the deformation and failure characteristics similar to the curves. These curves are
creeping, stretching, wear, and also curve of internal friction and damageness of
material, etc. The initial stage I on the kinetic curves of destruction may be absent.
This is most likely due to the fact that the registration of extremely thin failure
curves may be absent. This is mainly explained by lack of registration tools for such
thin lines, than the registration of processes at the stages II and III. However, other
functionalities do hold. Stage II, when the parameter Pi changes in a fairly wide
range, is reduced to zero. Near the values Pc, the dependence of durability on the
parameter P increases, and its spread increases.

7.7 Kinetics of Damage at Contact Fatigue of Parts of Submersible Pump 313



In [19], as a result of X-ray analysis of structural changes of the friction surfaces,
it is established that an important role in the process of fatigue wears belongs to the
residual strain in the surface layer of material. Therefore, we consider here a simple
the kinetic Eq. (7.59), assuming the surface temperature and friction parameters
unchanged as the temperature in the wellbore, wherein the pump is installed, is
about 150 �C. In addition, we agree that the material aging (and other similar
events) does not occur over time. Then, the time does not explicitly enter into the
right-hand side of the Eq. (7.59).

Let us take as the basic parameters determining the degree of fatigue damage, the
intensity of the residual deformation eT in the surface layer with external friction for
loading time t	, corresponding to one cycle of loading and loading time t.

Then, the rate of decreasing the continuity w, which characterizes the formation
of defects, their growth, as well as changes in the properties of the surface layers of
the solid body due to wear, can be represented as a power dependence

dw
dt

¼ �A
eT
w

� �n

; ð7:60Þ

where A[ 0—the coefficient and n� 0—the rate of fracture. These dependence
should be interpreted only as a convenient approximation, but not as a physical law.
The rate of decrease of the material continuity can be described by other depen-
dencies [17]. Note also that the differential equation of the type (7.60) can pass
through its finite-difference analogue [18].
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At the initial state in the absence of damage in the valve saddle (eT ¼ 0 and
w ¼ 1) at the time of the destruction of the surface layer in the fatigue wear, the
continuity reaches its critical value wc, and at t ¼ tc:

wnþ 1
c ¼ 1� nþ 1ð ÞA

Ztc
0

ent dt: ð7:61Þ

On the other hand, w can be determined by extending the Eq. (7.61) in case of
failure (breakage) of the surface layer in the outer friction after a single loading
during time t	

wnþ 1
c ¼ 1� nþ 1ð ÞAent t	; ð7:62Þ

where ec—the critical intensity of material deformation of the valve saddle in
friction.

Equating the relationships (7.61) and (7.62), we obtain the equation of fatigue
wear in friction

Ztc
0

ent dt ¼ ent t
	: ð7:63Þ

Taking the independence of the intensity of deformation eT from the number of

loading cycles N ¼ t=t	, we obtain the equation eT � N1=n
c , which is structurally

identical to the experimentally established equation of friction fatigue, such as steel
45 [19] eT � N0:4

c ¼ 0:06, where Nc ¼ tc=t	—the critical number of loading cycles
corresponding to the destruction (damage) of the surface layer. Generally speaking,
adopting the independence of the variables eT from the number of loading cycles is
strictly valid only for the cyclically stabilizing material. For the cyclically hardening
and softening materials, the strain intensity eT varies with the number of loading
cycles (an account of this change can be made in accordance with the existing
guidelines [19]). Apparently, the phenomenon of hardening and softening of
materials during friction can be explained by their different durability, as well as
improving the durability of material after finishing it with anti-friction non-abrasive
processing.

The dependence of durability on values of the cyclic deformation is used in the
range less than the number of cycles 1; . . .; 5ð Þ103. The dependence of durability on
values of the cyclic elastic–plastic deformation is used throughout the range of
low-cycle range of numbers of loading cycles.

We now consider the laws of accumulation of damage during fatigue wear. To
this end, we rewrite the damage (7.60) as following:
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dwnþ 1

dt

� �
¼ �A nþ 1ð Þent : ð7:64Þ

From (7.61) at eT ¼ const, we obtain an expression for the critical time corre-
sponding to the destruction of the surface layer in friction, which is converted to the
form

dwnþ 1

dt

� �
¼ � 1� wnþ 1

c

� �
tc

: ð7:65Þ

From (7.65), it follows the principle of linear summation of damage in integral
form with the fatigue wear in case of sliding friction

ZNc

0

dN
Nc

¼ 1: ð7:66Þ

It takes into account the connection between the loading time and the number of
loading cycles.

The resulting functionalities of the kinetics damages and fatigue wear confirm
the general analytical relationships describing the destruction of materials at the
ordinary fatigue and friction. Consequently, the conventional equation of fatigue
should be legitimately used to assess the durability and service life span of the valve
saddle of submersible pump.

7.8 Contact Interaction Diagnosis of Solids at Friction
Using Fractal Analysis

Quality, reliability, and durability of developed structures depend to a great extent
on the processes taking place during the contact interaction between solids in
external friction and resulting in wear of the machine parts and devices with the
surface roughness and waviness caused by the parameter of pre-technological
treatment, as well as friction and wear. The contact is discrete, and the friction area
is just nominal. The interaction of surfaces at friction occurs on the actual contact
area; therefore, at the calculation of friction and wear, we must have parameters
characterizing the geometry and the physical and mechanical properties of the
contact. The photomicrographic characteristics of surface are based on a number of
parallel transverse profilograms taken from the investigated surface under study
[20].

The soviet scientist I.V. Kragelski proposed to explain the force interaction of
solids with external friction using the molecular-mechanical theory of friction [21].
Abroad, it is often referred to as the adhesion–deformation theory of friction
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[22, 23]. According to this theory, the introduction of more stringent
macro-roughness into the surface of the less hard counter in the actual contact areas
is due to the differences in the mechanical properties, their heterogeneity in some
parts of the bodies [16], and the geometric shapes in contacting areas [24].
Therefore, when one body relatively slides against another one, the deformation of
embedded irregularities of less rigid surface layer takes place. The resistance to
deformation of the surface layers in sliding (the so-called deformation or
mechanical component of the friction force) can be calculated from the mechanical
properties of the surface layers, the geometric shapes of micro-asperities, and the
stress in the contact area using the main provisions of continuum mechanics.

In addition to the deformation of the surface layers under external friction in the
contiguous close enough (10.7 cm) sections, there are notable intermolecular
interactions. As a result of these interactions, the resistances to slipping occurs, it is
often called the molecular component of the friction force. Very often, especially
abroad, this component of the friction force is called an adhesion, which is inac-
curate, since adhesion is the attraction, while the intermolecular interactions are
characterized by the presence of the forces of attraction and repulsion [25].

In reference [25], the contact interactions of solids are differentiated into the
following types: elastic (unsaturated and saturated), elastic–plastic, and plastic
(unsaturated and saturated), and the formulas are provided for the dependencies of
contour pressure and the magnitude of embedment of surface roughness.

The fractal dimension is a meta-characteristic of the complex systems instability.
The best application of the fractal theory is in the field of modern material science
to solve the problem of obtaining materials with desired properties [26, 27]. The
theory of fractals is combined with the limited representation of structures. We can
say that the theory of fractals is the basis for a quantitative description of dissipative
structures formed under conditions far from equilibrium. This approach allowed
identifying in the science of materials the main direction—the materials fractal,
which was proposed and developed at the Institute of Metallurgy and Materials
Science (ИMET PAH) [26, 28]. It becomes possible to establish links between the
composition, structure, and fractal properties of material, which is very important in
studying the processes of surface formation. Analysis of hidden patterns and finding
the fundamental parameters affecting the nature of the system dynamics allows in
terms of the fractal geometry to characterize some important features and charac-
teristics of its evolution [29, 30].

In this book, to change the values of the fractal dimension of curve of the
supporting surface of contacting solids we set thresholds that separate from each
other different types of contact and are characterized by the transition from one type
of contact into another.

Having established such a classification of zones of uniform contact, it is not
difficult to carry out the diagnosis of the contact type, i.e., the state of the contacting
surfaces of any two studied solids. It is sufficient to calculate the power spectrum
profilograms of their contact and from the known scaling relations [31, 32]
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connecting the power spectrum with the fractal dimension, to find the fractal
dimension of profilograms and compare them with the threshold values of the
fractal dimensions of the supporting surface curve.

7.8.1 Emergence of Fractal Structures Through
the Evolution of Complex Systems

In accordance with the general laws of non-equilibrium systems behavior [33], the
deformable crystal should be viewed as a system in which the deformation occurs in
the dissipative structure (similar to Benard cells), which is a transition from the
individual defects, especially dislocations, to their groups and more complex
entities. On this way, there is a growing role of collective effects in the defect
structure, which is the highest manifestation of the dislocation (or vacancy–dislo-
cation–disclination) ensemble. The substructure type, i.e., the structure and prop-
erties of the dislocation ensemble, largely irrespective of the way in which the
substructure was created, defines many factors of the plastic deformation and strain
hardening. It is from these positions the phenomenons of fragmentation of
deformable solids are now treated, and in continuum mechanics it takes into
account the strain structural elements. In general, there is a hierarchy of its levels,
defined as the initial structure of the medium and the formation of dissipative
structures related to the deformation defects [34, 35].

We assume that the density function u of a number of abnormal (having the
deformation defects) elements I of the less rigid body (hereinafter, referred to as the
system), consisting of a large number of elements N, upon contact of two solids at
the current time is described by the Fokker-Planck-Kolmogorov (FSP) from [29]

@u0

@t
¼ � @ A1uð Þ

@I
þ 0:5

@2 Buð Þ
@I2

; ð7:67Þ

corresponding the Langrage equation

@I
@t

¼ A1 Ið ÞþF tð Þ: ð7:68Þ

with the right side additively consists of A1 Ið Þ and the fluctuating force F tð Þ of
white noise. If DI is the change of the number of abnormalities for a small time
interval, the coefficients of diffusion B1ð Þ and drift A1ð Þ are defined as the corre-
sponding average.

Assuming the statistical stationary, the existence of many degrees of freedom
and the multifactorial process of the system functioning for interacting two solids,
we can expect from it the self-similarity properties, the scale invariance, and
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incomplete self-affinity [36]. The essence of these properties is in a constant ratio of
the relative changes in the density distribution and the number of anomalies

@u=u½ �= @I=I½ � ¼ a1: ð7:69Þ

The term of scale invariance—the fairly rigid limitation, among the most popular
distributions only the Pareto distribution satisfies it. A more general assumption is

@u=u½ �= @I=I½ � ¼ a1f Ið Þ; ð7:70Þ

where f Ið Þ is some function of I. This condition is satisfied by such distributions as
exponential, gamma, Erlang, and v2-distribution.

If the coefficients A1 Ið Þ and B1 Ið Þ of the FPK equation (7.67) are twice differ-
entiable on functions of I, it brings to a linear equation of the form [29]

@u
@t

¼ a1 � u; ð7:71Þ

where a1 is some function of I.
It is known [31] that in a significant number of applications of the FPK equation

reduces to the divergence form

@u
@t

¼ 0:5
@2 Buð Þ
@I2

; ð7:72Þ

which is associated with the performance of equality 0:5 @B1=@Ið Þ ¼ A1 in the
original FPK equation, following from the principle of detailed balance. As it is
shown in [29], and this is quite common variant the FPK equation comes to the
form (7.71) under the same conditions of self-affinity.

The process of changing the number of anomaly elements in the system is
random, and its evolution, obviously, can also be described by the equation FPK in
the space of anomalies I just not with respect to the distribution functions of the
latter, as before, but with respect to the distribution of the proportion of anomaly
elements of the system n=N (assuming that the total number of elements of the
system N is sufficiently large). Assumptions on the statistical stationary, availability
of many degrees of freedom and multifactorial process of operation of the large
system of N elements are appropriate in this space too. Therefore, we can expect the
appearance here of self-similarity, the scale invariance, and the incomplete
self-affinity [36]. Consequently, by analogy with (7.71), the equation FPK for the
ratio n=N looks like

@n
@t

¼ a2 � n; ð7:73Þ

here at the initial time n ¼ n0.
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Combining this equation with (7.71), it is easy to obtain the dependence for the
probability corresponding to a small interval n; nþ dnð Þ, in the form of a fractal

u ¼ cn�d; ð7:74Þ

where d[ 0.
The fractal (7.74) indicates the scale invariance in the n;uð Þ. The Eq. (7.73)

structures the system, turning it into a different space of a different (fractal)
dimension. This is important in order to clarify the creation mechanism of the
fractal structures, as well as for understanding the subsequent studies. Moreover,
(7.74) shows that fractals as a dynamic chaos can be generated by a relatively
simple systems. Where in analogy with the theory of chaos in the movement of
nonlinear dynamic systems [37], it should be expected that the large classes of
nonlinear phenomena show as the close qualitative behavior as the universal
quantitative laws of the fractal geometry.

The parameter d in (7.74) is usually called the fractal dimension. The fractal
dimension belongs to the generalized characteristics of set, reflecting its basic
properties transmitted by model. The fractal-structured sets are characteristic to the
systems having the stochastic regimes and complex temporary ordering. The fractal
dimensions, in some cases, allow allocating the order parameters and synthesizing a
hierarchy of simplified models. Knowing the dimension allows us to judge about
the system behavior. Therefore, the parameter d can be interpreted as an integral
characteristic of system [33, 37].

The fractal invariance on the scale is similar to the theory of deterministic chaos,
a link with which for the behavior of complex systems is not difficult to imagine.
The chaotic behavior has similar patterns in the variations of the different time-
scales, like fractals at different spatial scales (in this case the space of anomalies).

7.8.2 Dependence of Contour Pressure on Roughness
at Elastic and Plastic Contacts

The spherical model of rough surface is widely used as the calculation method for
the solids interaction during friction [38, 39]. In the area of embedment, where the
conditions of external friction stand the use of the spherical model of the elementary
uneven surface results in the following [40]: (1) FPK provides an error of no more
than 10 % in finding the actual contact area; (2) determining the mean normal stress
for the plastic deformation in the zones of contact an error does not exceed 4 %, and
for the coefficient of friction—3–7 %.

Considering that during the contact of the solids the embodiment of more rigid
areas into less rigid, and thus, the deformation of the rigid areas is negligible, we
can regard one of the bodies as absolutely rigid. The mutual influence of the
individual strain sources in the calculation of force interaction can be ignored, since
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the elastic deformation in the contact zones is small, and in the plastic it encounters
at e 
 0:5, in the area where the usual friction units do not work.

The force interaction of solids at the external friction significantly depends on
the form of deformations in the contact areas and the degree of the contact satu-
ration. In areas of the actual contact of the friction bodies, there can generally be
elastic, elastic–plastic, and plastic deformations. The most widespread deformation
is elastic–plastic. For the calculation purposes, we can assume that there are only
elastic (which is true for the contour pressures pc � 10MPa on the surfaces treated
for the 10th grade of roughness or higher) or plastic deformations (the surface
treated for 8th grade of roughness or the contour pressures pc � 10MPa) in the
contact zones. There are 14 grades of the surface roughness, according to GOST
2789-59 and they are given in [20].

The elastic contact occurs when the maximum stress at the most embedded
roughness is less than the Brinell hardness HBð Þ of a less rigid element of friction, it
corresponds to the embodiment value of

h
r
� 2:4 1� l2

� �2 HB
E

� �
; ð7:75Þ

The surface roughness is defined by

D ¼ Rmax

rb1=m
; ð7:76Þ

Rmax—the largest radius of the spherical indentation of a rigid element into a less
rigid. The constants b and m define the curve of the supporting surface in the relative
coordinates [20]

gs ¼ bec; ð7:77Þ

where gs—the relative cross-sectional area of material and e—the relative con-
vergence e ¼ h=Hmaxð Þ.

Given the relationship between the convergence h and the contour pressure pc
[25]

h ¼ Rmax

b1=m
2Pc

HB

� �
;

we obtain the following dependence on the embodiment value of h=r of pc:

h
r
¼ D � 2pc

HB

� �1
m

; ð7:78Þ
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from here it follows

pc ¼ HB �
h
r

� �m
2Dm : ð7:79Þ

From (7.75) to (7.78), it follows that the elastic contact occurs when the
inequality holds

pc
HB

� 1
2

2:4
D

� �m HB
E

1� l2
� �� �2m

: ð7:80Þ

For the most widespread in machine building, the mechanical roughness
m ¼ 2; b ¼ 2ð Þ (7.79) is written in the form

pc
HB

� 2:88

D2

HB
E

1� l2
� �� �4

: ð7:81Þ

Changing the ratio pc=HB, in which the elastic deformation pass into the
elastoplastic depending on the surface roughness of D for the different ratios of
HB=E, is shown in Fig. 7.7 [25].

The plastic contact occurs when the average normal stresses in the contact zones
of asperities reach the hardness values by Brinell of the deformable material. It will
be observed at embodiment

h
r
� 5:4 1� l2

� �2 HB
E

� �2

: ð7:82Þ
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Fig. 7.7 The dependence pc
on D: 1 HB=E ¼ 0:01,
l ¼ 0:3; 2 HB=E ¼ 0:05;
l ¼ 0:5; 3 HB=E ¼ 0:1,
l ¼ 0:5
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Using the formula (7.78), taking into account the relation (7.82), we obtain the
contour pressure, resulting in the plastic contact

pc � 5:4m

2Dm �
HB2mþ 1 1� l2ð Þ2m

E2m : ð7:83Þ

For the most widespread surface roughness used in machine building
m ¼ 2; b ¼ 2ð Þ

pc � 14:58 � 1

D2

HB5 1� l2ð Þ4
E4 : ð7:84Þ

Using (7.83), taking into account the relation (7.79), we find that for the plastic
contact the inequality

pc
HB

� 1
2

5:4
2D

HB
E

� �2

1� l2
� �2" #4

: ð7:85Þ

Changes for pc=HB depending on D for the different ratios HB 1� l2ð Þ=E are
shown in Fig. 7.8.

As we can see, there is the plastic contact at relatively low values of the contour
pressure for surfaces treated below the 8th grade of roughness. With an increase of
the surface finish, the contour pressure leading to the plastic deformation in the
contact area significantly increases reaching higher values for the 10th grade of
roughness and higher.
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Fig. 7.8 The dependence pc
on D: 1 HB=E ¼ 0:1,
l ¼ 0:5; 2 HB=E ¼ 0:05;
l ¼ 0:5; 3 HB=E ¼ 0:01,
l ¼ 0:3
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Due to the distribution of roughness according to their heights, some of them
with embodiment greater than defined by the formula (7.75) plastically deform the
countermaterial, roughness with the minimal embodiment defined by the formula
(7.82), deform the material elastically, and their embodiment varies within the range

2:4 1� l2
� �2� HB

E

� �2

� h
r
� 5:4 1� l2

� �2� HB
E

� �2

; ð7:86Þ

deforming the material elastic–plastically. Introducing limits (7.75) and (7.82), and
taking into account the relation (7.79), we correspond the variation of the contour
pressure

1
2

2:4
D

HB
E

1� l2
� �� �2

" #m
� pc

HB
� 1

2
5:4
D

HB
E

1� l2
� �� �2

" #m
: ð7:87Þ

Thus, there is no an ideal plastic contact of two solids with a surface roughness.
However, the calculations show [25] that for surfaces below the 9th grade of
roughness during the plastic contact the contribution of irregularities deforming
elastic and elastic–plastic materials and force interaction of solids is negligible in
comparison with the contribution of irregularities deforming the material plasti-
cally. The 10th grade of roughness usually works in the contact areas of the elastic
and elastic–plastic deformations. Therefore, in the first approximation, we can
assume that after reaching the contour pressures defined by the formula (7.85), there
is an ideal plastic contact between solids.

Thus, the occurrence of the elastic–plastic contact is characterized by the
dependence

pc
HB

¼ 1
2

2:4
D

HB
E

1� l2
� �� �2

" #m
ð7:88Þ

and the occurrence of the plastic contact is characterized by the dependence

pc
HB

¼ 1
2

5:4
D

HB
E

1� l2
� �� �2

" #m
: ð7:89Þ

7.8.3 Calculation of Fractal Dimension on Supporting
Surface Curve at Threshold Values of Injection

For the spherical model of the rough surface, we have Hmax ¼ Rmax and the relative
convergence of contacting solids is represented by the formula [20].
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e ¼ h=Rmax: ð7:90Þ

Then, taking into account (7.76) and (7.79), we find

e ¼ 2
b

� �1
m qc
HB


 �1
m
: ð7:91Þ

Then, the curve of supporting surface takes the following form

gs ¼ 2 � pc
HB

: ð7:92Þ

From (7.92), it follows that the fractal dimension (the Hausdorff dimension) of
curve gs Dð Þ is equal to the fractal dimension of curve pc

HB Dð Þ, where D—the surface
roughness. Since the graphics of curves pc

HB Dð Þ, shown in Figs. 7.7 and 7.8, are
shown in different scales on the axis pc

HB, it is convenient not to calculate the fractal
dimension of the graphs of functions (7.88) and (7.89) themselves, corresponding to
the threshold values of embodiment (defined by the left and right sides of the
bilateral inequality (7.91)), but the graphs of their inverse functions D pc

HB

� �
. The

latter, in the notation x ¼ pc
HB and y ¼ D, respectively, are written in the form

y ¼ x1=m

2:4 HB
E 1� l2ð Þ 12
� �2=m ð7:93Þ

and

y ¼ x1=m

5:4 HB
E 1� l2ð Þ 12
� �2=m ð7:94Þ

The results of the analysis for the stable slip bands (SSB), formed under the
cyclic loading, lead to the conclusion [26] that macro-bands topography is irregular
due to the superposition of the intrusion–extrusion process in the formation of
protrusions. Changes by the dislocations of substructure cause the stabilization of
protrusion heights with an increase in the number of loading cycles. The height of
protrusions in the SSB is linked to the width of macro-bands with a weak linear
dependence [46]. Therefore, the surface of macro-bands is a rough surface, the size
of the irregularities that slowly decreases with a decrease in the projected area of
roughness [47]. We can therefore assume that the surface of macro-bands is
self-similar and under the certain conditions a stochastic process of the SSB for-
mation is a curve of the fractal dimension.

The provided views in Sect. 7.6.1 with regard to the fractal properties of the
fracture surfaces suggest that the rough surface by contacting the metal bodies in
the process of friction also becomes self-similar.
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For the self-affine curves, which are the curves of supporting surface (7.93) and
(7.94) for various combinations of parameters l and HB=E (m ¼ 0:3,
HB=E ¼ 0:01; m ¼ 0:5, HB=E ¼ 0:05 and m ¼ 0:5, HB=E ¼ 0:1), the fractal
dimensions for transient contacts (from elastic to elastic–plastic and from elastic–
plastic to plastic contact) are listed in Table 7.4. The Minkowski dimension is taken
as the calculation method for the fractal dimension of the curves of supporting
surfaces [43].

7.8.4 Calculation of Power Spectrum of Roughness Profile
and Contact Regime Diagnosis of Metal Bodies

In practice, various average roughness characteristics (Ra;Rq, etc.) are used to
describe the surface roughness; the algorithms determine their typical values and
these regulated values are listed in national and international standards [48].
However, this approach cannot be considered satisfactory, since it cannot obtain a
clear functional relationship between the average surface roughness characteristics
and functional properties of these surfaces. This fact is connected ultimately with
poorness of specified averaging as such, since the same average values can cor-
respond to the fundamentally different (and including functionally) types of
roughness.

The development of computer technology and its widespread implementation in
practice made it possible to implement a quite different approach. Under this
approach, the roughness profiles are regarded as the implementation of a random
process (field), and their analysis involved instruments such as correlation func-
tions, structure functions, spectrum analysis, and wavelet analysis [49].

In work [50], the power spectrum of the profile roughness, as suggested in [31,
32], is used as the characteristic of the surface roughness. This characteristic is
thinner than conventionally used mentioned above the simple average roughness
characteristics, and yet macroscopic.

The fractal profile of roughness has the following property: At different levels of
magnification, it looks in a similar manner, namely the statistical properties of
surface are the scale invariant. Naturally, for the real surface this feature exists in a
limited range of the scale (or the spatial frequency). The connection between the
power spectrum and the fractal properties of the roughness profile is expressed
through the scaling relationship [31, 32]

Table 7.4 The fractal dimensions of curved bearing surfaces dð Þ
l ¼ 0:3;HB=E ¼ 0:01 l ¼ 0:5;HB=E ¼ 0:05 l ¼ 0:3;HB=E ¼ 0:1

Elastic !
elastic–plastic

1.0035836 1.0054545 1.0064359

Elastic–plastic
! plastic

1.0002506 1.0006126

326 7 Fractal Fatigue Analysis of Valve Units of Sucker Rod Pumps



S xð Þ� C
x5�2D ; x ! 0 ð7:95Þ

where C—the constant that depends on the amplitude of the surface roughness and
D—the fractal dimension of profile 1\D\2.

The Eq. (7.95) is not new and it follows as a consequence of the formulas
(7.50)–(7.51) with the equality D0 ¼ D� 1. Let a ¼ 5� 2D.

After taking the logarithm (7.95) and applying the OLS to the linear regression

y ¼ axþ b; ð7:96Þ

where y ¼ ln S xð Þ, x ¼ x, a ¼ �a, and b ¼ lnC; with the OLS estimation of the
coefficient a, we find â ¼ �â and the assessment D̂ of the parameter D

D̂ ¼ 5� â=2; ð7:97Þ

With the help of Table 7.4, it is easy to diagnose the type of contact for a given
profilogram (the roughness profile).

The construction algorithm consists of the following steps:

1. Assuming the observations V tkð Þf g k ¼ 1; . . .;Nð Þ for the profilograms V tð Þ, we
build its power spectrum S xð Þ, equal to the Fourier transformation of the
autocorrelation function.

2. Based on the sequence of frequencies close to zero, that is, the sequence xkf g
k ¼ 1; . . .; k1; k1 [ 10; k1 
 Nð Þ, we build regression

y ¼ axþ b b 6¼ 0ð Þ;
with coefficients a ¼ �a, where a—the constant of the scaling ratio
S xð Þ ¼ C � x�a.
By the method of least squares (OLS), we find the estimate �a of parameter a and,
accordingly, an assessment

â ¼ �a;

3. We calculate the estimate D̂ for the fractal dimension of the profilogram D,
using the relationship a ¼ 5� 2D

D̂ ¼ 5� â=2;
4. From the values of the parameters l and HB=E, we define the appropriate

column in Table 7.4 with the threshold parameters Du for various contact
regimes.

5. Select the row in which the estimate value of D̂ is closest to Du, thereby defining
the type of transient contact.
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Example Let roughness profile (profilogram) V tð Þ is set with the image on Fig. 7.9,
we construct the power spectrum S0 xð Þ of the signal V tð Þ.

The formula (7.97) is used to calculate the fractal dimension D of roughness
profile as shown in Fig. 7.9 and the schemes of the normal contact movement for
contacting surfaces of the parts.

The graph of the power spectrum of the profilograms in the bi-logarithmic
coordinates is shown in Fig. 7.10.

The fractal dimension of profilograms calculated using the formula (7.97) is
equal to 1.0029. Since the profilogram on Fig. 7.9 corresponds to l ¼ 0:5 and
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Fig. 7.9 The original diagram for the calculation of normal contact displacement: 1-1 starting
position of the adjacent surface; 2-2 positions of the adjacent surface with respect to the plastic
deformation of the protrusions; 3-3 the final position of the adjacent surfaces (Ι the profile of
macro-deviation; ΙΙ the profile of waviness; and ΙΙΙ the profile of roughness)

328 7 Fractal Fatigue Analysis of Valve Units of Sucker Rod Pumps



HB=E ¼ 0:05, in accordance with the 3rd column of Table 7.4, we find that the
study corresponds to the profile of the roughness of elastic–plastic contact regime.

The existing connection of the power spectrum with fractal characteristics is
particularly important for the fracture surfaces of metals, having in many cases, the
fractal nature.

Resulting in additional quantitative tools—the fractal dimension of the curves of
supporting surfaces and the profilograms, we can apply in the fractographic studies
as a new method of fractal material science.

On the basis of determining the fractal dimension of the curves of supporting
surfaces with the property of self-affinity for the transient contacts, we established
the range of fractal dimensions with the threshold values for the three types of
contacts: elastic, elastic–plastic, and plastic.

For the studied rough surface of the metal contact interaction on the calculation
formula that uses the connection of the power spectrum of profilograms with the
spatial frequencies in the region of small values, we calculate the fractal dimension
of profile, and based on the scale of fractal dimensions of the curves of supporting
surfaces, we diagnose the form of contact. It creates a database of the power
spectrum of the rough surface at the initial state after various kinds of deformations.
The power spectrum of roughness measured for particular loading of friction units is
compared with the data of the power spectrum of rough surfaces, and the results of
the comparison reveals the type of contact of the tested tribocoupling.
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Chapter 8
Flicker Noise Spectroscopy
(FNS) of Dynamics Signals and Its
Application in Wear of Oil-Field
Compressor Units (OFCU)

8.1 Analysis of Technical Manufacturing Characteristics
of Operating Oil-Field Compressor Units

The implementation of the new energy policy in Azerbaijan is impossible without
scientific–technical progress at all levels of the energy complex, which is improving
the energy efficiency and ensuring the environmental acceptability of energy
facilities.

The stock of compressor equipment is extensive, and the number of units
reaches more than 500 pieces with various capacities from 4 to 25 MW.
A significant part of stock is manufactured before 1970. This leads to an increase in
operating costs and above all the maintenance cost associated with repairing of the
aggregates.

The diagnosing of compressor operating modes is associated with the man-
agement control to provide a continuous performance at the programmed level,
determining conditions when to turn off from the optimal conditions, studying the
factors that affect on the equipment load, OFCU performance evaluation charac-
terizing mainly economy, efficiency, reliability, and so on. At the deep analysis of
theory and practice of the compressor equipment operational regimes, we can build
a strategy for improving the maintenance work, the selection of optimal opera-
tional–maintenance cycles, and the determination of residual resources that can be
used to improve the design or redevelopment.

The SOCAR gas pipeline system has been in operation for a long time, in order
to maintain the technical condition of the pipeline equipment, and more mainte-
nance (repair) hours and resources are required. The repair mainly supports the
technical condition of the equipment.

To prevent failures of the pipeline equipment, accompanied by accidents, we
need to maintain the technical and energy levels. The repair hardware resources are
assigned according to the specifications by its manufacture, and its further devel-
opment and adjustment can be done during operation.
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For example, in case of the forced emergency stop, followed by failures, acci-
dents, and downtime, the repair resources get corrected. To adjust these resources,
we employ various accident statistics and the diagnosis methods. There are
established methods of diagnosis: diagnostic inspection and diagnostics, based on
the analysis of operational modes of the pipeline equipment.

In the event of significant maintenance, the equipment must be under the great
attention to control operating modes and conditions. Along with the standard
diagnosis methods in recent years, specialized diagnostic techniques, such as flicker
noise spectroscopy (FNS), get well spread. The FNS requires technical–economic
justification and analysis of failure.

There is a lack of necessary statistical data in oil fields which can be used to
judge how the costs of the pipeline facility-specific equipment is associated with the
organization and analysis of failures, reduction of the overall production cost, and
the number of failures, including failures followed.

Currently, the much attention is directed toward the technical diagnostics of
compressor equipment in oil and gas industry and in pipelines particularly.

The main purpose of the FNS diagnosis method is to determine and analyze the
technical conditions of the compressor equipment so that to develop sound pro-
grams and strategies for repairing, restoration, modernization, and reconstruction of
parts and equipment in general.

According to Table 8.1, each factor influencing the reliability, quality is eval-
uated four levels. Thus, the factors affecting the reliability of the equipment shall be
considered as linguistic variables.

Grade values are as follows: I-1—not harsh; I-2—a little harsh; I-3—severe; I-4
—very severe; II-1—very good; II-2—good; II-3—the average; II-4—poor; III-1—
very good; III-2—good; III-3—poor; and III-4—very bad.

Using the data in Table 8.1, we can represent a qualitative assessment of the
reliability of the equipment on the basis of expert assessments. Along with this, it is
also possible to apply the quantitative evaluation of the reliability of the equipment
as a whole, using a point system. For this purpose, it is proposed to use the data
presented in Table 8.2.

The technical inspection of the equipment was carried on expert assessments of
all the above factors characterizing the reliability of the equipment as a whole. The
result of this survey found that conditions are assessed as severe—0.60. The
equipment conditions, taking into account the state-of-the-art developments and
manufacturing, are estimated as an average—0.65. The service level, taking into
account the number of found defects, not eliminated since the last overhaul, is
estimated as bad—0.60.

Table 8.1 The equipment reliability under operating conditions

Factor I grades Factor II grades Factor III grades

1 2 3 4 1 2 3 4 1 2 3 4
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Thus, the reliability of the inspected unit as a whole is as follows:

Htot ¼ Hcon � Htec � Htes ¼ 0:60 � 0:65 � 0:60 ¼ 0:234:

The technical inspection was done on the same unit at the compressor station after
the next major overhaul; it was established that process conditions have not changed,
the technical condition of it is at the same level, and the service level has improved,
which is reflected particularly in the elimination of a number of previously existing
faults and possibly to evaluate the service level with a good estimate—0.90.

Thus, the reliability of the resurveyed unit becomes equal to

Htot ¼ 0:60 � 0:65 � 0:90 ¼ 0:351;

At the same time, the quality of the equipment in operation is affected not only
by its technical condition, but also the amount of reserved capacity. The poor
technical condition affects the efficiency of equipment and the value of its working
power. These examples show the results of operational ranking and quality indi-
cators of a large group of compressor equipment in the overseas and domestic gas
transportation systems for many years on the operational parameters from the data
on the compressors performances.

8.2 Flicker Noise Spectroscopy—A New Approach
to Solving the Problem of Extracting Information
from Complex Dynamic Signals

The problem of extracting information from the chaotic signals has been relevant at
all times, if under information we understand a new knowledge required to solve
practical problems. Tasks varied from simple self-preservation in this world to
understanding the universe at all spatial and temporal levels of its organization.

Table 8.2 Quantitative evaluations of factors affecting the reliability of the equipment as a whole
under operating conditions

Factors determining the process conditions

Process conditions Mild Moderate Severe Harsh

0.9–1 0.7–0.9 0.4–0.7 <0.40

Factors determining the condition of changes in the technical condition of the equipment

Equipment conditions Excellent Good Average Poor

0.9–1 0.7–0.9 0.4–0.7 <0.40

Factors determining the level of maintenance and repair

Service conditions Excellent Good Average Poor

0.9–1 0.7–0.9 0.4–0.7 <0.40

8.1 Analysis of Technical Manufacturing Characteristics … 335



Today, the problem of establishing the content of chaotic signals (produced by
open nonlinear dissipative systems, including natural and experimentally obtained
time series, spatial mappings, energy series) is formed specifically. You have to
understand what kind of useful information is contained in the measured signals and
how to extract the information in the required amount for the solution of practical
problems.

The complexity of the problem is that the signals produced by the real open
systems enclosed to determine from the studied signals the full information about
signals, such as Shannon using an image “bits,” and it is basically impossible, as
extraction and further processing of any signal gets “digitized” and a set of “sample
rates” is a priori limited. Moreover, the signals are measured at some finite time
intervals and are unsteady in varying degrees: Input at the statistical averaging over
some time interval, the signal characteristics depend on the choice of the interval on
the time axis. These circumstances do not allow full use of many of the developed
mathematical methods for analyzing complex signals (Fourier analysis, Takens’
theorem on the topology of the strange attractor, and others).

The general difficulty of these and other theoretical approaches to the analysis of
signals produced by open systems, in order to obtain on their basis an adequate
information about the studied system, is linked to the need to allocate in this
analysis the contribution of “resonance” components. The number of functionally
important “resonances” in the real signals can reach several hundreds. At the same
time due to the relationships realized in vivo in the resonance system, and the
influence of external factors of different types, including casual produced by the
open systems, the signals are non-stationary. All these factors “masked” a purely
random signal components without allowing uniquely define the parameters of
“chaos.” Such a variety of dynamic factors cannot be considered within the model
framework.

Sometimes, in order to highlight the parameters of chaos in the complex pro-
cesses, fractal and multifractal analyses are applied. However, the applications of
these approaches in order to find the relevant parameters (in the theory of fractals—
the Hearst constants and the indicators of flicker noise dependences, in particular)
and the “resonance” components are also generally not allocated. In addition, we
should pay attention to one fundamental limitation inherent in such approaches—
the postulation of scaling self-similarity of the studied signals at every conceivable
scale. This is clearly not case for the real signals: The features of scaling
self-similarity are usually manifested itself at the best in 1.5–2 levels of changes in
studied dynamic variable.

A number of practical problems associated with the analysis of complex signals
are successfully solved using wavelet analysis. Nevertheless, only the qualitative
conclusions on the state of the tested processes can be made on basis of the wavelet
analysis. And it is not just the absence of physical sense in the used wavelet coef-
ficients (they reflect purely “mathematical” properties of signal by isolating the
intervals with the sharpest changes), but also the difficulties associated with the
adequate and sufficient parameterization of the obtained wavelet maps. It is
important to emphasize that success in applying the wavelet analysis for the specific
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range of practical problems (in particular, the problems of compression and pack-
aging of information, as well as being “decoration” of different images) should be
considered as additional [along with the concept of self-organized criticality (SOC)]
arguments in favor of information the significance of irregularities in the signal.

Problems of analysis of the real natural objects are associated primarily with the
uncertainty of the complete information contained in the structure of each of these
systems at all levels of its spatial organization, and in the complex, usually chaotic
behavior of dynamical variables V tð Þ, usually measured on finite time intervals T .
The task is complicated by the fact that investigated the dynamics of real systems,
along with random components inevitably present a wide and rebuilt during the
evolution of the spectrum of “resonance” constitute defining features of the struc-
tural organization of systems or side impact factors (considered open systems
whose evolution generally not stationary!).

It was found that internal sources of these features of the dynamics of complex
systems, including power laws, reflect the existence of extended in space and
prolonged in time (“infinite”—for flicker noise) correlations in the studied systems
with the external chaotic evolution or formed in the course of its structures asso-
ciated with the implementation of such systems in the complex (“multiparticle,”
nonlinear) interactions, the inevitable dissipative processes and the manifestation of
inertia.

That achievement of the nonlinear sciences, supported by numerous computer
calculations of the evolution of modeling systems and the dynamics of the for-
mation of complex structures, gives I. Prigozhin and I. Stengers a reason to write
about the potential readiness of science to start “A New Dialogue with Nature” [1],
although the development on the basis of the theory of cellular automata the
concept of “self-organized criticality” (SOC) [2] did not allowed to advance in
solving the practical problems of the parameterization of the dynamics of real
processes and structures to predict catastrophic changes in the evolution of complex
systems. The problem actually lies in how to establish and organize the initial
information contained in the time series V tð Þ, measured the dynamic variables, or
the “spatial” series h xð Þ, or “maps” obtained from the study of structures, and how
to use the input and output information to address specific problems.

Currently, the most developed approach to the analysis of the dynamics of the
complex systems is the nonlinear time series analysis—a methodology based on the
theory of deterministic chaos [3]. According to [4], the effects of nonlinear rela-
tionships in the dissipative system with only three degrees of freedom can already
give rise to the chaotic regime with an insensitive dependence of the system evo-
lution to the choice of the initial conditions at the asymptotic attraction of trajec-
tories in the phase space for a certain set—a strange attractor.

The strange attractor itself is characterized by the fractional dimension and has a
zero volume in this phase space of integral dimension, though its domain of
attraction is a finite (or even infinite) volume. It is necessary to emphasize the
fundamental difference between the systems with friction (dissipative) and the
systems without friction (conservative or Hamiltonian).
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It is the presence of internal friction (in the broadest sense) implies the existence
of the attractor as the asymptotic (at t ! 1) limit, which does not directly affect the
initial conditions: the trajectory, corresponding to different initial conditions outside
the attractor, by evolving “settles” down on the attractor.

The chaotic processes in the deterministic nonlinear dissipative systems are one
of the fundamental problems of the modern science. In such systems, the cause of
generation of complex oscillatory processes, which may not be different with
respect to the physical characteristics from the truly random, is not in a large
number of degrees of freedom, and not in the presence of fluctuations, as previously
thought, but in the exponential instability of modes, generating a sensitive depen-
dence on the accuracy of initial state of the system.

Studying the real evolutionary processes in natural science requires an expansion
and generalization of the classical notion of a dynamical system (DS). More general
notion of DS should include the impact of fluctuations and provide the possibility to
use as evolution equations of statistical theory. From a physical point of view, we
can talk about dynamic systems even if we cannot write the equations of DS,
although experimentally there is a process in changing the state of a physical system
through time. It is assumed that there is a continuous or discrete operator,
approximately describing its evolution (in time and/or space). Under the noise, we
can understood the internal or external fluctuations or the impact of a large number
of factors that have little effect on the behavior of the system and therefore not taken
into account when setting the state. Then, the minimum number of independent
coordinates sufficient to describe the state of the system, in a given approach, may
be called its dimension. Such systems are called the “real dynamic systems” (RDSs)
[5].

Let us clarify the concept of “chaos.” The classic phenomenon of Brownian
motion of particle gives us a clear idea of the physical chaos as an unpredictable,
random process. Thus, if we speak about the chaos, we mean that the time variation
of the state of the system is a random (it cannot be clearly predicted) and
non-reproducible (the process cannot be repeated) [6].

At first glance, the concepts of “determinism” and “chaos” seem to be the
opposite in terms of meaning. The determinism is associated with a unique full
predictability and reproducibility, where chaos—with complete unpredictability and
irreproducibility. The possible modes of deterministic chaos in nonlinear systems
with energy dissipation can be illustrated by the well-known three-dimensional
dynamic system called the modified generator with inertial nonlinearity [7]

_x ¼ mxþ y� xz;

_y ¼ �x;

_z ¼ �gzþ gl xð Þ � x2; I xð Þ ¼ 1; x[ 0;

0; x� 0:

� ð8:1Þ

Let us consider the solution of (8.1) for the control parameters m ¼ 1:5 and
g ¼ 0:2 for the initial conditions near the equilibrium state of the system at the
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origin of coordinates. Indeed, here the main principle of determinism works: The
future is uniquely determined by the initial state.

However, the evolution of the system over time is complex and aperiodic.
Outwardly, it is no different from random, but with a more detailed analysis a
significant difference is revealed between this process and random: This process is
reproducible! Indeed, by repeating the initial state once again, due to the deter-
minism, a computer again reproduces the same path regardless of its complexity. So
this aperiodic process is not chaotic according to the definition on chaos given
above. Yes, it is complicated, like a random, yet a deterministic process implements
the phenomenon of deterministic chaos.

In practice, it is quite often not possible to measure the time dependence of all
coordinates of the system state. A typical situation when only one of the charac-
terizing the process variables is available for the measurement, one of the coordi-
nates of the system state is a tð Þ. The dependence of variable describing the system
state by some independent variable, which is often either time or spatial coordi-
nates, is called a realization of the (observed) system. The time-dependent real-
ization discretized with some step Dt, called a one-dimensional time series
a iDtð Þ ¼ ai; i ¼ 1. . .N. The reconstruction of the dynamic system is actually a
restoration of the modeling system on the experimental time series ai.

Until 1980, it was thought that to describe nonlinear DS in terms of the phase
space, it is necessary to know the time dependences of all state coordinates. In
1980, the paper was [8], in which it was noted that the phase portrait of the
dynamical system could be restored to the scalar time series ai, as if for the missing
coordinates of the state vector the same series is used, taken with some delay.

In 1981, the paper [9] appeared, which proved a theorem (now known as
Takens’s theorem), claiming that the one-dimensional realization a tð Þ of the
dynamic system has an attractor A, owned by the smooth M-dimensional set, and
the delay method can obtain the n-dimensional reconstruction AR of the original
attractor as the set of vectors~x tð Þ in Rn

~x tð Þ ¼ Kn a tð Þ½ � ¼ a tð Þ; a tþ sð Þð Þ; . . .; a tþ n� 1ð Þsð Þ ¼ x1; x2; . . .; xnð Þ: ð8:2Þ

Here, n satisfies the condition of Mans theorem [10]

n� 2Mþ 1: ð8:3Þ

According to the Takens’ theorem, the mapping Kn: A ! AR is a smooth and
reversible on AR for almost any delay s (if N ! 1). The number n is called the
dimension of attachment.

This theorem is proved under conditions that the investigated dynamic system is
autonomous, not noise, and the time series is measured exactly and within an
infinite time interval, i.e., it is not formally applicable to real dynamic systems (e.g.,
for systems with noise) and the real experimental conditions (any time series can be
measured in a finite time interval and with a finite precision). Despite this, since the
beginning, it is used by the experimenters to restore the phase portraits and
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evaluation on its basis different characteristics of the DS attractors. Only in 1997,
Stark et al. [11] proved a theorem, which gave a spread for Takens’ theorem on
systems under the external influences and the system noise.

The emergence of Takens’ theorem opened opportunities for solving the prob-
lems on predicting the system behavior [12–14], calculating the metric [15, 16] and
dynamic [17, 18] characteristics of attractors. In 1987, the works were published
independently [19, 20], which proposed a method for recovery of the DS equations
on its one-dimensional implementation (the global reconstruction method).

It should be noted that the Takens’ theorem does not imply that the vectors~x tð Þ
of (8.2) always allow us to study the properties of a dynamic system for time series.
Such research is only possible as a rule, of which there are always exceptions (see
[21]). In the literature, we can find a lot of advice and ways to select a delay s and
embedding dimension n, for example, [22–24]. However, neither one of them
cannot be fully relied upon. It was found that there are not many experimental time
series, for which the apparatus of nonlinear dynamics could be effectively used. In
the simplest cases, the model (e.g., signals from the relatively simple electronic
circuits, chaotic oscillations in some lasers, separate, specially organized experi-
ments in fluid dynamics, and a few relatively simple signals in physiology) and the
methods of nonlinear dynamics usually work, but for some arbitrary a particular
pilot, time series results are often unintelligible.

It follows that some hope in solving complex natural parameterization signals
can be associated with the development of general phenomenological approach, not
focused on the modeling of processes and do not use artificial hypothesis.

We must have methods for processing complex signals that identify quantitative
changes in the study of complex systems; for establishing the relationship between
the individual subsystems of such systems; and for predicting the approach of
danger (catastrophic) event.

In this context, it is of considerable interest method of FNS, as a general phe-
nomenological approach to the analysis of the different nature of chaotic signals
[25].

8.3 Essence of Flicker Noise Spectroscopy

The emergence of the flicker noise in a complex dynamic system is associated with
the effect of intermittency, which is a change with respect to the long sections of
laminar or the regular time behavior characteristics of the non-equilibrium dynamic
system patches of the chaotic bursts and surges. The effect of intermittency, i.e.,
succession of the two above-mentioned conditions, is a paradigm of “self-organized
criticality” (SOC).

A basic way to extract information from complex signals in FNS method uses
the correlation function. For the classification of the information contained in the
correlation function, it is proposed to analyze the function itself is not, and some of
its transformation (“projection”), such as the power spectrum S fð Þ (f—frequency),

340 8 Flicker Noise Spectroscopy (FNS) of Dynamics Signals …



the time difference (“transitional structure function”), and the second order U 2ð Þ sð Þ.
The dependences characterized by the difference in momentum, are exclusively
formed by the irregular jumps, and the splashes and the jumps of dynamic vari-
able contribute to the formation of the power spectrum. The recovered by this way
the informational “passport data” of systems have the meaning of time correlation
and the characteristics of the “memory” loss (correlations) in these time correlations
—for irregularities such as “bursts” and “jumps.” In some cases, along with the
“passport parameters” to enter conveniently “passport patterns”—the specific
information “cliché,” formed on the basis of the power spectrum and transient
difference moments of analyzed chaotic series. The relevant characteristics for the
irregularities of the “gaps” are extracted from the power spectrum and difference
“moments” that are based on “quasi-derivative” original signal.

Due to the system inertia, each abrupt change in value of the dynamic variable
may be accompanied by the dynamic bursts—a sharp short-term increase V tð Þ with
a relaxation attenuation values on a subsequent “laminar” section, leading to dis-
continuities of related to “laminar” sections. The adoption of the irregularities of
dynamic variables as an information basis of the FNS methodology allows not only
in the most general phenomenological form to classify all contained in a chaotic
series information, but also to discernibly extract the necessary part.

Traditionally, the existing opinion about the identity of the information provided
in S fð Þ and U 2ð Þ sð Þ is valid only for sufficiently “smooth” functions, what the real
signals V tð Þb are not. The FNS methodology, focused on giving information entity
to the sequences of irregularities, hidden in the real signals, permits the above
information seeming inconsistency and “disengages” information contained in the
dependences S fð Þ and U 2ð Þ sð Þ, distinguishable features—the various types of
irregularities, “color information.” Thus, the averaging interval T acts as the “ac-
tive” parameter and its variation allow, in particular, identifying some of the factors
characterizing the real non-stationary processes.

The work [25] convincingly proves the legibility of information differences of
functions S fð Þ and U 2ð Þ sð Þ. This indicates a well-known result of the monograph by
Schuster [3], which was considered a stationary chaotic signal with intermittency:
the fields of slightly varying “laminar” phases punctuated by sharp chaotic
“comb-bursts.” Such a signal is approximated in [3] d-function of Dirac in the areas
of “combs” and obtain a sequence of d-functions with typical time intervals T0
between adjacent d-functions on macroscopic time intervals �T=2; T=2½ �
T0 � Tð Þ, and the power spectrum S fð Þ was calculated. It is shown [3] that this
artificially created signal in the low-frequency region of the spectrum at f � 1

2 pT0
can generate the flicker noise dependencies S fð Þ� f�n n 	 1ð Þ that means to be
informatively significant. It was therefore a hasty conclusion was made that for this
signal model, the function S fð Þ is only the informative indicator.

However, if in addition to the power spectrum S fð Þ of the sequence of d-
functions we consider the transient difference moments of order p
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U pð Þ sð Þ ¼ V tð Þ � V tþ sð Þj jph i; p ¼ 2; 3. . .ð Þ; ð8:4Þ

in particular, at p ¼ 2

U 2ð Þ sð Þ� V tð Þ � V tþ sð Þð Þ2 � 2 w sð Þ � w 0ð Þð Þ;

(the angle brackets denote averaging over time), it is easy to make sure that all
values U pð Þ sð Þ are zero, since the set of moments (“domain”), which is defined by a
sequence of d-functions, has a value of zero [26]. It is also easy to verify the
validity of this conclusion using as d-functions one of the known approximations
(e.g., Gaussian with variance r2), and then passing the limit r ! 1. The function
U pð Þ sð Þ for the given level of the hierarchy becomes different from zero, if the
sequence of irregularities in addition to d-functions shows h-Heaviside function. In
other words, the information contents of dependencies U 2ð Þ sð Þ and S fð Þ for the
considered by Schuster a modeling signal are different.

The FNS methodology used in the logic of introducing “various signs,” details
of which can be recovered in different ways from the dependencies S fð Þ and
U 2ð Þ sð Þ, p� 2, calculated on the basis of experimentally measured random series
(and because of this forms the basis of empirical knowledge of the system), fully
complies with the basic principles of “abstract theory of information” [27].

8.4 Flicker Noise and Self-similar Criticality

The name of the FNS method uses the term “flicker noise.” For a long time, almost
75 years, the low-frequency flicker noise (or 1=f -noise) was considered one of the
mysteries of nature. Johnson discovered the flicker noise (a name suggested by
Schottky [28]) in the mid-twenties of the last century [29] while studying the
thermionic emission current. The peculiarity of this noise is that its power spectral
density (PSD) increases with a decrease of frequency f by law, close to 1=f .

There are many researches about the flicker noise (see, e.g., [30, 31]). Variety of
metals, semi-metals, semiconductors, gases, liquids, electrolytes, radio-electronic
devices, uniform and non-uniform conductor at high and low temperature, the film
and contacts, animate and inanimate objects, and so on were subjected to studies.
As a result of the research, it became clear that the flicker noise—an extremely
common phenomenon— is the characteristic of many electrical, magnetic, elec-
tromagnetic, acoustic, sonar, hydro-physical, astrophysical, and other processes. In
the low-frequency dependence of PSD, the flicker noise frequency obeys 1=f b,
where b is the form factor of the spectrum (in connection with which the noise is
sometimes called 1=f b-noise).

The flicker noise can be focused not just about zero frequency, but, for example,
about the natural frequency of the oscillating circuit [32].
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An interest to the flicker noise is caused by the fact that its dispersion, which is
often independent of the observation time [30, 33], leads to the restriction of
accuracy. It was found [30, 34] that the dispersion of quartz resonators is connected
with Q by ratio 124 ln 2Q�4:3 (the empirical formula).

Studies have shown that in some cases, the flicker noise is close to the Gaussian
distribution. Sometimes (but not always), it is possible to consider a flicker noise as
a stationary process.

There is still no common understanding of what is the source of flicker noise.
Apparently, 1=f b-noises are caused by many different factors. According to some
researchers in solids, the flicker noise has the thermodynamic equilibrium nature.
However, an essential role, for example, is the presence of electrical noise and
movement of defects in conductors (the idea expressed by Schottky). There are
equilibrium and non-equilibrium flicker noises. PSD of first is usually described by
law close to 1=f , and second�1=f b, where the spectral power b[ 2 [31].

It is noted [32] that the flicker noise can have a fractal property—the property of
statistical self-similarity.

In general, under the flicker noise we understand the process PSD of which is
adequately described by a power function with an exponent b[ 0.

The electrical 1=f b-noise is the most thoroughly experimentally studied: The
dependence of the spectral density from the frequency 1=f b is traced to the fre-
quencies of the order 10�7 Hz, and almost always the value of b is in the range from
0.8 to 1.2 [35].

The system 1=f can be represented by a set of elements, in each of which there is
a gradual accumulation of energy, bringing an element to an unstable state. At some
point under the external influence, the element condition can change dramatically
and the stored energy is released (“discharge”), after which a new cycle of accu-
mulation discharge starts. Thus, the external exposure can lead to the
self-organization, and as a result, a non-equilibrium system goes into an ordered
state.

Like all phase transitions, the self-organization process requires an intensive
external influence. In recent years, however, we found many systems in which
self-organization occurs spontaneously. The most striking manifestation of this
behavior, known as the SOC, is earthquakes and avalanches. In addition, the SOC
regime expresses itself at the flow of bulk material on an inclined surface (the sand
pile model), the natural selection in biological systems, the forest fires, and the fluid
flow in porous media. The essential feature of SOC is discontinuous nature of the
process corresponding to the regime of intermittency: The most of time the dissi-
pation prevents a spontaneous accumulation of energy storage, and the system is in
a precritical condition; the uncompensated pumping of energy can occur sponta-
neously, which leads to the self-organization; then for a short time δ the discharge
of stored energy occurs, which is referred to as an avalanche of size s [36]. The
elements of system with the SOC regime are in the “wind-up” non-equilibrium
state, and besides some of them come close to the critical point, beyond which there
is a “discharge.”
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These elements are so weak that any push can cause a premature discharge. The
avalanche can be triggered by any shake-up, gust of wind, sharp sound, etc. If the
entire system is experiencing a push, then all elements on way to the critical point
(so-called active elements) respond to it, and in a short time, the release of energy
occurs, significantly surpassing the usual.

The open systems, consisting of a large number of simple components, capable
of cooperative interaction, spontaneously develop in a way that comes to the state
of SOC and have complex dynamics. The basic requirements for the system to
function in the SOC regime are next [37]:

1. the system must consist of a large number of elements capable of interacting
with its neighbors;

2. the storing of its current state is essential for each element; and
3. the constant supply of energy to the system is important, while all the local

interactions occur for far less time than the time between two disturbances
caused from outside.

The solution to the problem of assessing the possibilities of the phenomenon of
SOC in the concrete structures is generally difficult due to a poor knowledge, and
often lack of the formal procedures binding the model systems or their parameters
with the phenomenon of the flicker noise, which is, as it is clear from the foregoing,
described by the physical level of SOC. Finding the solution is facilitated by the
results of Shuster [3], Zaslavski and Sagdeev [38], Zaslavskogo et al. [39],
Akhromeeva et al. [40], Klimontovich [41] on the theory of intermittency of weak
chaos. This theory explains the appearance of flicker noise. Its essence lies in the
formal description of the appearance of the chaos (in the stochastic sea [38]) for
some values of the control parameters islands (windows) regular behavior. The
system condition, characterized by a random alternation of the long regular phases
and the relatively short random bursts, usually called the attractor type of noise
cycle [42]. G. Shuster phenomenon is called intermittency, linking it with the flicker
noise. On the basis of numerical experiments in [3], the values of the control
character rð Þ to display Feigenbaum are as follows [43]:

xnþ 1 ¼ rx 1� xnð Þ; ð8:5Þ

from which there may be the flicker noise. This value r should be slightly larger the
threshold value r1 ¼ 3:5699456. . .. The low-frequency power spectrum diver-
gence of the mapping characteristic of the flicker noise appears after exceeding r1
because the boxes (islands) of regularity (the area of intermittency) randomly
appear [3, 38]. In the range r1\r\4, which for the M. Feygenbaum display of
natural area is called a weak chaos, the regular structures of cycle 3 appears (the
stable oscillations of period 3), interrupted by chaos.

In [3], the solution of the emergence of SOC, or the flicker noise is associated
with the determination of the values of the fractal dimension (the Hausdorff
dimension) process described by one-dimensional mapping of the form xnþ f ¼
f xnð Þ (which is a particular type of the M. Feygenbaum mapping), in which the
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power spectrum display at a frequency f ! 0 has the power dependence 1=f b

b[ 0ð Þ. It is assumed that the mapping for 0\x\x
 has the regular and for x[ x


has the arbitrary decisions; here, x
 defines a border region that the return of mapping
from the area x[ x
 to 0\x\x
 comes with a nonzero probability. Then for f ! 0

S fð Þ�

f� 3�dHð Þ at 2\dH\3;
f� dH�1ð Þ at 1:5\dH\2;
ln fj j2
f 0:5

at dH ¼ 1:5;

f� 5�3dHð Þ at 1\dH\1:5;
f dH�1 at 0\dH\1:

8>>>>>><>>>>>>:
ð8:6Þ

where dH is the Hausdorff dimension.
This relationship is consistent with the physical concepts [37] that the large

islands of the regularity generating low frequencies occur with less probability than
the larger fractal dimension. For that it follows that, if under the flicker noise we
only understand the type of noise 1=f b when b[ 0, it corresponds to the fractal
dimension in the range of

2\dH\3; 1:5\dH\2; 1\dH\1:5; 0\dH\1:

Consequently, the systems with such dimension are expected to have a
self-organized critical phenomenon. Therefore, the asymptotic (as t ! 0) relation
(8.6) can be used as a criterion for the instability of complex systems.

The work [44] shows the possibility of applying the criterion (8.6) to the
evaluation of the geo-ecosystems instability on the example with the pollution of
the Caspian Sea by petroleum hydrocarbons.

In [45], we consider a system of N elements, each of which has a frequency of
discharges fi (e.g., for the avalanche frequency it is a slope of ith element). The
values of fi range from f1 to fN and with the equal intervals fi between the values.
The discharge energy of ith element is denoted by Ei. Let the energy accumulation
rate through all elements is the same, then Ei ¼ a=fi, where a is the constant. If the
discharges occur independently, and the intervals between them are random, the
system generates 1=f -noise. A required condition that the considered 1=f -system
has a high sensitivity to the higher influences is a quite large number of active
elements. In the semiconductor, they correspond to defects in the crystal structure,
which are mainly localized near the surface. The biggest impact the surface phe-
nomena have on the performance of the alloyed bipolar and metal-oxide-
semiconductor field-effect transistors (MOSFETs). It is no accident that it is in
the operators of noise on the basis of such semiconductor devices observed effects
associated with the remote human influence and the cosmic rhythms. In similar
devices with other types of semiconductors (the planar transistors, the field-effect
transistors with p�n junction, the zeners), the similar effects were not observed.
Apparently, this is due to not large enough value of N in these devices.
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Thus, considering even the simplest system of independent energy “accumula-
tors” generating 1=f -noise, we find its high sensitivity to the external influences at
sufficiently large number of active elements. Obviously, the real 1=f -systems are
much more complex: They manifest nonlinearity, a large number of conditions, the
element interaction, and the chain and avalanche processes. A variety of interesting
phenomena occurring in the non-equilibrium systems (“active media”) are studied
by the non-equilibrium thermodynamics [1, 46, 47]. The most important are the
emergence of ordered structures (e.g., auto-waves), as well as processes such as
predator–prey and “wandering around a strange attractor.” A theoretical analysis of
the last two processes shows that they lead to strong fluctuations of system
parameters that are easy to adapt to the rhythms of external influences (even very
weak). As an example of such adjustment are the fluctuations in the number of lynx
and hares with the 11-year cycle of solar activity [46].

The identification of nonlinear relationships in the studied systems, responsible
for the fluctuation dynamics (“deterministic chaos”) as well as the establishment of
specific “resonance”, can be the basis for further modeling of the dynamics of
complex systems or structures. Thus, there is a complex of open issues related to the
representation of dynamics in accordance with the Trieste theory by von
Weizsäcker [48]. According to this theory, the fact of the phenomenon actualization
is due to the irreversibility of transitions into a new state system. Thus, the idea of
evolution must include the realized discrete sequences of irreversible “steps–
events” or the intervals “now,” mating with Locke’s “moments.” The irreversibility
is introduced a priori a fixation of defined jump—the change in evolving system.
The key concept of this evolution is the interval bounded by two “events,
moments,” and not moments of times along the continuous time axis, as it is the
case in traditional science.

8.5 Conceptual Foundations of Flicker Noise Spectroscopy

According to the conceptual FNS framework [25] suggests that the most common
form of the evolution of a dynamic variable V tð Þ for the ith space–time level is
presented in the form of intermittency, when not all the intervals on the time axis
are informatively equivalent. Such dynamic, as it was mentioned above, is char-
acterized by (Fig. 8.1) relatively weak variable changes on the relatively extended
time intervals—the “laminar phases” with typical durations Ti

0 and the sharp
interruptions of this evolution, the jumpy changes in the dynamic variable in the
short intervals with duration st0 st0 � Ti

0

� �
.

Due to the system inertia, each such a jumpy change of the dynamic variable
may be accompanied by the dynamic bursts—the sharp short-term increase Vi tð Þ
with the relaxation attenuation up to the values on a subsequent “laminar” section,
leading to the discontinuation of the related adjacent “laminar” sections. The
magnitude and duration of these bursts are specific to each system, causing a
contribution to the corresponding power spectrum. Such jumps and breaks are
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provisionally allocated [25] to the first type of jumps and breaks of derivatives,
assuming that the variable Vi tð Þ can be characterized by sharp, at intervals si1 jumpy
changes of the “laminar” background, as shown in Fig. 8.1. For the typical time
intervals between such sharp jumps (they conditionally belong to the second type of
jumps), the designation Ti

1 is introduced (assumed that st1 � Ti
1). In addition, it is

assumed that all the basic information about the evolutionary process for the ith
hierarchical level is contained only in the jumps of the first and second type. All
these irregularities are considered as the main and only “markers” of the evolu-
tionary process.
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Fig. 8.1 The diagram of evolutionary dynamics of the complex system corresponding to the
change of dynamic variable at the same level of spatial time hierarchy

At the same time, the intervals between selected d-intervals (intervals st0 and st1)
are considered as informative, containing sequences smaller d-intervals of infor-
matively important for the smaller levels of the hierarchical organization system.
Such allocation of the smaller informatively significant intervals should be con-
tinued. Inside of each input ith level in the hierarchy of sequences of d-intervals,
there are dynamical variables of system, in general, that are bound by the infor-
mation relations of various types, carrying information about the system dynamics.

The term intermittency came into use in the context of dynamic after French
researchers Pomo and Manneville who published their work in 1980 [49]. In

8.5 Conceptual Foundations of Flicker Noise Spectroscopy 347



hydrodynamics, it has long been known as “intermittent turbulence,” when current
in a specific range is smooth and laminar, but they alternate with the areas of
irregular, turbulent regimes. Due to the turbulent areas move, change a shape,
appear and disappear, the intermittent nature of the relationship is also observed
values from time to time at a fixed point in space (Fig. 8.2).

Pomo and Manneville indicated a number of possible situations where there may
be intermittency in the dynamical systems (including those with a relatively small
dimension of the phase space) and outlined the classification by introducing three
types of intermittency. In particular, for the intermittency of type I and III, renor-
malization group analysis was developed, similar to the Feigenbaum theory [50].

The convenience of introducing the power spectrum S fð Þ—the Fourier trans-
form of the autocorrelation function w tð Þ ¼ V tð ÞV tþ sð Þh i (for the stationary signal
S fð Þ it coincides with the cosine Fourier transform Sc fð Þ), is that this dependence
present the most clear specifics for the analyzed signals—a set of m peaks, char-
acterizing the position foi, the half-widths ci and the partial weights A i ¼ 1. . .mð Þ.
These frequencies manifest themselves in the graph S fð Þ in the double logarithmic
coordinates (Fig. 8.3c) in the form of called “scallops” because of their apparent
continuity and correspond to the resonances characteristic of the evolutionary
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Fig. 8.2 The intermittent turbulence in the hydrodynamic flow
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dynamics of the systems reviewed under conditions of external influences, the
frequency spectrum of which may also contain a set of characteristic frequencies.
Therefore, the spectrum S fð Þ may contain the interference frequencies, resulting in
the addition of the resonant components of different nature. During the evolution of
open systems, the summary of these resonant frequencies and interference can be
reconstructed.
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Fig. 8.3 The dynamics of binary X-ray system GRS 1915 + 105 from January 1, 1996, to
December 31, 2005: a and b the structure functions U2 sð Þ of the signal: 1 the “experimental”
relationship; 2 the calculated dependence, determined by specific frequencies and contribution of
“irregular-jumps” at r ¼ 1:79 relative units; H1 ¼ 0:14; T1 ¼ 14Dtgrs; 3 the contribution of
specific frequencies; c the power spectrum of S fð Þ signal in the double logarithmic scale: 1 the
“experimental” dependency; 2 the calculated dependence, determined by specific frequencies and
contribution of “irregularities-jumps” and “irregularities-bursts”; 3 the contribution of specific
frequencies; 4 the contribution of “irregularities-bursts” at Ss 0ð Þ ¼ 3866 relative units; n ¼ 1:43;
T0 ¼ 14Dtgrs; 5 the contribution of “irregularities-jumps”; d the low-frequency part of the power
spectrum (100 frequency) of the signal
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In the future, all the specific frequencies that appear in the oscillatory nature of
the investigated dynamic variable V tð Þ, without regard to the genesis of such fre-
quencies, latched in the dependences S tð Þ, for the sake of convenience, we shall
define as “resonance.”

Figure 8.3 illustrates the dynamics of the X-ray binary system GRS 1915 + 105,
located in the constellation of Aquila and is a star donor, which revolves around a
rapidly rotating massive compact object—a black hole. The numeral 3 in Fig. 8.3
denotes the total power spectrum S tð Þ in the bi-logarithmic coordinates, which
reflects the contribution of specific frequencies with a pronounced “comb” in the
frequency range (0.005, 1).

8.6 Assessment of Irregularities-Bursts and Catastrophic
Changes in the State of Oil-Field Compressor Units

8.6.1 Formulation of the Problem and Solution Method

For the analysis of the individual elements of oil-field compressor units (OFCUs),
we selected the bearing of the piston compressor. We considered the output of
inductive counter of the bearing particle when testing the oil from the piston
compressors. While testing the samples N1 using the inductive particle counter in
the laboratory, we recorded the Babbitt wear particle with a size 200–1000 mkm.
The typical recorded signal at the output of the counter is shown in Fig. 8.4. The
registered pulse corresponds to the non-ferromagnetic metal particles (Babbitt
particles) of 500 and 30 μm.
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Fig. 8.4 The output signal of
the inductive particle counter
of the bearing when testing
the oil for the piston
compressors (the sample N1 is
selected before the bearing
failure)
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The inductive counter can reliably detect the initial moment of failure of the
bearing pad and ensure the timely adoption of measures to prevent the catastrophic
deterioration of the equipment.

The aim of studying is to assess the type of irregularities of type bursts and
disastrous wear during operation of the tested OFCU equipment. We will use the
FNS, which is used to estimate the parameters of the singular component of the
power spectrum of the signal and find significant changes in the dimensionless
parameters of unsteadiness providing an indication of the approaching moments of
a catastrophic deterioration of the equipment.

The FNS is a common phenomenological (non-model) approach to the analysis
of chaotic signals of the different nature [25]. The essence of the FNS approach is to
give an informative significance to correlations, which are implemented in the
signals of irregular sequences—bursts, jumps, breaks of the derivatives of various
orders—as the carrier of changes in information taking place in each space–time
level of the hierarchical organization of the studied dynamical system.

8.6.2 Parameterization of Singular Component of Signal
Power Spectrum

For the signal V tð Þ, defined on the interval 0; T½ � with the discrete steps Dt at points
tk ¼ k � Dt k ¼ 1. . .Nð Þ, N ¼ T=Dt½ �, we calculate its average value

V tð Þh i ¼ 1
N

XN
k¼1

V tkð Þ: ð8:7Þ

Further, we believe that the signal V tð Þ is stationary and

V tð Þh i ¼ 0: ð8:8Þ

The power spectrum of the signal S tð Þ is defined as the Fourier transform of the
autocorrelation function. When calculating the power spectrum S tð Þ, the autocor-
relation function is as follows:

wðsÞ ¼ VðtÞVðtþ sÞh i ð8:9Þ

and the moment difference of the second order is as follows:

U 2ð Þ sð Þ ¼ V tð Þ � V tþ sð Þj j2
D E

ð8:10Þ

we assume that

f � f 
 f 
 ¼ fmax; fmax ¼ 1=Dt; s� s
 s
 ¼ T=4ð Þð Þ; ð8:11Þ

where f is the frequency and s is the time delay setting.
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For the stationary signal S fð Þ ¼ Sc fð Þ, where Sc fð Þ is the cosine of Fourier
transform of the autocorrelation function.

In the discrete case, the “experimental” power spectrum Sc fð Þ is calculated by
the method of trapeze

Sc fð Þ ¼ 1
Dt

Sc qð Þ; ð8:12Þ

ScðqÞ ¼ wð0Þþw
M
2

� �
ð�1Þq

þ 2
XM2�1

m¼1

wðmÞ cos 2pqm
M

� �
ðq ¼ 0; 1. . .;M � 1Þ;

ð8:13Þ

q ¼ f � TM ; TM\T ; TM ¼ M � T
N

¼ M � Dt; ð8:14Þ

f ¼ q
TM

¼ q
MDt

¼ q=M
Dt

: ð8:15Þ

M ¼ TM
T � N� �

is an even number of points on the frequency axis.
For any m ¼ s=Dt½ � and N ¼ T=Dt½ �, the “experimental” autocorrelator is cal-

culated by the formula

w msð Þ ¼ 1
N � ms

XN�ms

k¼1

V kð ÞV kþmsð Þ ms ¼ 0; 1; . . .;M � 1ð Þ: ð8:16Þ

The number M must satisfy the relation

4
3
�M�N: ð8:17Þ

The power spectrum S fð Þ is the nonnegative even function of f with period 2p
[51]. From a parity and frequency, it follows that the core domain of S fð Þ can, if
necessary, take the interval 0; p½ �.

Note. Essentially, the formula (8.13) is a quadrature formula of trapezoid to
calculate the cosine of continuous type—the Fourier transform of the autocorrela-
tion function w sð Þ and coincides with the Blackman–Tukey method (the correlation
function method) to calculate the power spectrum density Sc fð Þ without smoothing
the autocorrelation function using the window filter [52]. In order to increase the
speed of calculation Sc fð Þ, we can use the known methods of finding the fast
Fourier transform (FFT). However, at a small number of lags, the FFT may not be
beneficial. In addition, when using the FFT, it may happen that the desired step
frequency is unattainable.
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For the considered signal V fð Þ in Fig. 8.4, the experimental spectrum S fð Þ is
shown in Fig. 8.5.

We denote by VR tð Þ and VF tð Þ, respectively, the low- and high-frequency
components of the signal. The isolation of high-frequency component is based on
the “relaxation” procedure [53] constructed by analogy with the solution of the
diffusion equation with the diffusion coefficient v

@V
@s

¼ v
@2V
@t2

; ð8:18Þ

and it is represented as the difference equation

Vjþ 1
k � V j

k

As
¼ v

V j
kþ 1 þV j

k�1 � 2V j
k

Dtð Þ2 : ð8:19Þ

corresponding to the simple difference scheme for numerical solutions.
From (8.19) we obtain

Vjþ 1
k ¼ V j

k þ
v � Ds
Dtð Þ2 V j

kþ 1 þV j
k�1 � 2V j

k

� �
: ð8:20Þ

Introducing the notation x ¼ v�Ds
Dtð Þ2, we rewrite the last equation in the form:

Vjþ 1
k ¼ xV j

kþ 1 þxV j
k�1 þ 1� 2xð ÞV j

k : ð8:21Þ
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Fig. 8.5 The experimental
power spectrum of S(f)
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From the theory of stability for difference schemes [54], it is known that the
difference scheme is absolutely stable at x\1=2. To use the Eq. (8.21) as a
smoothing procedure, we must set the boundary conditions. In this case, these terms
are defined as follows.

Let smoothing is carried out for a series of length M points. Then on each step of
the smoothing iteration, the extreme values are calculated at k ¼ 1 and k ¼ M as
follows:

Vjþ 1
1 ¼ 1� 2xð ÞV j

1 þ 2xV j
2 ; Vjþ 1

M ¼ 1� 2xð ÞV j
M þ 2xV j

M�1: ð8:22Þ

The iteration of these equations, i.e., calculating the new values of the signal
Vjþ 1
k at jþ 1th “relaxation” step through values V j

k (at j ¼ 0 we taken the signal
V tð Þ itself), provides the low-frequency component VR. Subtracting it from the
original signal, we receive the high-frequency component VF .

In fact, the above procedure of smoothing corresponds to the consecutive
reduction of the gradients of local variable “concentrations” with the mutual con-

vergence points in each of the considered triples Vjþ 1
kþ 1;V

jþ 1
k ;Vjþ 1

k�1

	 

. Splitting the

original signal V tð Þ into two components VR tð Þ and VFðtÞ allows counting the
functional dependencies S tð Þ and U 2ð Þ sð Þ, introduced above for each of the three
functions VJ tð Þ J ¼ R;F or Gð Þ, and the index G is used for calculations with the
initial signal V tð Þ, where R and F are the regular and chaotic signal components.

The described version of the “diffusion” smoothing is initially focused on
minimizing the “high-frequency” information in the “low-frequency” VR tð Þ part of
the signal, and vice versa—the minimization of “low-frequency” information in the
“high-frequency” part of the VF tð Þ signal. This conclusion follows from the dif-
fusive nature of the “relaxation,” in which the maximum speed is realized by
generating entropy [55, 56] and the relationship between entropy and information
[57, 58]. In the latter case, we talk about the Fischer information as the quantitative
measure of heterogeneity of the density distribution of the analyzed dataset.

We construct the image S fð Þ in the bi-logarithmic scale log S fð Þ; log fð Þ
(Fig. 8.6). If for some f we have S fð Þ\0, then instead of S fð Þ we consider S fð Þj j.

The following asymptotic representation is valid

S fð Þ ! 1=f n; if f � f0;
S 0ð Þ; if f � f0:

�
ð8:23Þ

The symbols “�” and “�” mean, respectively, “much more” and “much less.”
Here,

f ¼ 1
2
pT0; ð8:24Þ

T0 is the parameter defining some specific time within which the relationship of
measured dynamic variable V tð Þ is realized; the dimensionless parameter
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n effectively determines how this relationship is lost by decreasing the frequency to
the value f0. From Fig. 8.6, it is clear that f0 is approximately equal to the frequency
f 
0 , from which S tð Þ ceases to stabilize around some constant S 0ð Þ.

The singular component SS tð Þ of the experimental spectrum S tð Þ is calculated
according to formulas (8.12) and (8.13) by replacing w tð Þ in the autocorrelator
wS tð Þ, calculated by the formula [25]

wS msð Þ ¼ 1
N � ms

XN�ms

k¼1

VS kð ÞVS kþmsð ÞþVR kð ÞVS kþmsð Þ½

þVS kð ÞVR kþmsð Þ�; ms ¼ 0; 1; . . .;M � 1ð Þ:
ð8:25Þ

The graphic of the singular component SS tð Þ of the power spectrum S tð Þ for the
considered signal is shown in Fig. 8.7. Figure 8.8 shows simultaneously graphs for
S tð Þ and SS tð Þ, which in this case is little different from each other, because of its
regular part of the signal V tð Þ, which is not powerful enough (have a small
amplitude) (Fig. 8.4).

In the low-frequency limit 2pfT0 for the singular component SS tð Þ, it is conve-
nient to use an interpolation formula [25]

SS tð Þ 	 SS 0ð Þ
1þ 2pfT0ð Þn0 : ð8:26Þ

As an approximate parameter SS 0ð Þ in the low-frequency region of the function
graph S tð Þ (or S tð Þj j), preceding the frequency range in which there are significant

lo
g 

S(
f)

log f
log f0

lo
g 

S(
0)

Fig. 8.6 The asymptotic
behavior of the power
spectrum S(f) at the high and
low frequencies
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changes of this dependence revealed by the representation of S tð Þ (or S tð Þj j) in the
bi-logarithmic scale, we select some value S
 0ð Þ, which gives meaning to the
parameter SS 0ð Þ in the interpolation expression (8.26) [57]. We assume that
SS fð Þ\S
S 0ð Þ in 2pfT0\1.
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Fig. 8.7 The graphic of the
singular component SS tð Þ of
the power spectrum

0

100

0
5 15 30

20

80

25

40

60

10 20 35

S(f) S
S
(f)

Fig. 8.8 The graphs of SS tð Þ
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The parameters T0 and n0 in the interpolation dependence (8.26) for the con-
tribution of irregular bursts in S tð Þ (or S tð Þj j) are determined from the matching
conditions (using the least squares method) of the spectrum SS tð Þ on the right-hand
side of formula (8.26).

To do this, we use the following algorithm.

Algorithm 8.1 We introduce S
S 0ð Þ, RSS
1 ¼ 1010, λ = 0.

1. Assuming SS 0ð Þ := S
S 0ð Þ, we estimate T0 and n0. Consider the regression

y ¼ axþ b; ð8:27Þ

where y ¼ ln SS 0ð Þ
SS fð Þ
	 


; x ¼ ln 2pfð Þ; a ¼ n0; b ¼ n0 ln T0. According to OLS esti-

mates â, b̂, we find n0 ¼ â, T̂0 ¼ exp b̂
â

n o
.

2. We calculate from the regression (8.27)

RSS 1ð Þ
1 ¼

XM�1

m¼0

y� âxm þ b̂
� �� �2

;

where ym and xm correspond to frequencies fm ¼ m
MDt. If RSS 1ð Þ

1 \RSS
1, then

RSS
1 := RSS 1ð Þ
1 , n
0 := n̂0, T


0 := T̂0.

3. Assuming SS 0ð Þ := S
S 0ð Þ, n
0 := n̂0, we estimate T0. Consider the regression

y ¼ axþ b; b ¼ 0ð Þ; ð8:28Þ

where y ¼ SS 0ð Þ
SS fð Þ � 1
	 
 1

n0 , x ¼ 2pf , a ¼ T0. According to OLS estimation, we find

T̂0 ¼ â.

4. We calculate for the regression (8.28)

RSS 2ð Þ
1 ¼

XM�1

m¼0

ym � âxm½ �2:

If RSS 2ð Þ
1 \RSS
1, then RSS
1 := RSS 2ð Þ

1 , T

0 := T0.
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5. Assuming SS 0ð Þ := S
S 0ð Þ, T0 := T

0 , we evaluate n0. Consider the regression

y ¼ axþ b; b ¼ 0ð Þ: ð8:29Þ

where y ¼ SS 0ð Þ
SS fð Þ � 1
	 


, x ¼ ln 2pfT0ð Þ, a ¼ n0. According to OLS estimation â, we

find n̂0 ¼ â.

6. We calculate for the regression (8.29)

RSS 3ð Þ
1 ¼

XM�1

m¼0

ym � âxm½ �2:

If RSS 3ð Þ
1 \RSS
1, then RSS
1 := RSS 3ð Þ

1 , n0 :¼ n̂0.

7. Assuming T0:¼T

0 , n0 :¼ n̂0, we estimate SS 0ð Þ. Consider the regression

y ¼ axþ b b ¼ 0ð Þ; ð8:30Þ

where y ¼ SS fð Þ, x ¼ 1
1þ 2pfT0ð Þn0 , a ¼ SS 0ð Þ. According to OLS estimation â, we

find ŜS 0ð Þ ¼ â.

8. We calculate for the regression (8.30)

RSS 4ð Þ
1 ¼

XM�1

m¼0

y� âxm½ �2:

If RSS 4ð Þ
1 \RSS
1

	 
V
ŜS 0ð Þ� S
S 0ð Þ� �

, then RSS
1:¼RSS 4ð Þ
1 , S
S 0ð Þ:¼ŜS 0ð Þ,

k:¼kþ 1.

9. If k\10, then go to step 1.
10. Print S
S 0ð Þ, T


0 , n


0, RSS



1.

11. END

Thus, the formula (8.26) can be written as follows:

SS tð Þ 	 S
S 0ð Þ
1þ 2pfT


0

� �n
0 : ð8:31Þ

As a result, from the Algorithm 8.1 at the initial approximation SS 0ð Þ ¼ S
S 0ð Þ,
the following parameters SS 0ð Þ, T0, n0 are obtained:

S
S 0ð Þ ¼ 15; T

0 ¼ 0:051; n
0 ¼ 3:429: ð8:32Þ
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8.6.3 Precursor Calculation of System Catastrophic States

To identify the effects of unsteadiness in the investigated process, we study the
dynamics of changes in functions SS fð Þ and U pð Þ sð Þ with a sequential shift of the
tested interval tk; tk þ T½ �, where k ¼ 0; 1; 2; 3. . . and tk ¼ kDT along the entire
length Ttot of the available experimental data tk þ T\Ttot.

The phenomenon of the precursor of catastrophic events is naturally associated
with the most drastic changes in dependency of the power spectrum S fð Þ and the
difference between the moments of p-order

U pð Þ sð Þ ¼ V tð Þ � V tþ sð Þj jh i: ð8:33Þ

when approaching the upper limit of the time interval the averaging tk to the
moment tc of the catastrophic event, when the system is rearranged at all possible
spatial scales. It is clear that to speak of “precursor” only in the event that the
development time “harbinger” tk spaced from the moment tc not less than the
interval DT , i.e., DTsn ¼ tc � tk when performing inequality DTsn � Ttot.

Within the FNS framework in the non-stationary dynamics, as opposed to the
stationary case, the information about the system evolution extracted from the
analysis of the dynamics at different levels of the hierarchy (at the different fre-
quencies of discretization of the measured signal, in particular) may be different.
This means that in a non-stationary system, the system evolution is characterized by
a set of specific times Tsn of structural rearrangements for the appropriate set of
spatial organization of the system and the problem of forecasting in general
becomes multiparameter, oriented to search for at least some variables, “precursors”
of a catastrophic event, separated in time scale. Each of these “precursors” can be
detected in the analysis of time series of dynamic variables with the set of certain
period averaging T , not exceeding the duration of detectable value Tsn.

We consider “forerunners” based on the moment difference U pð Þ sð Þ and the
power spectrum SJ fð Þ, calculated on the basis of the high- and low-frequencies
component VJ fð Þ, where J ¼ R, F, or G (R—the regular and F—the chaotic
components; G—the entire signal V tð Þ). At the same time, we note that depen-

dencies U pð Þ
J sð Þ are reliably calculated only for the range 0; aT½ � of the argument s

being less than half of the averaging interval T , so that a\0:5. When calculating
dependencies SJ fð Þ for the boundaries of the frequency range, fmin; fmax½ � will
choose: fmin ¼ 1= 2pTð Þ and fmax ¼ 1=4ð Þ 1=tminð Þ, where tmin is the time interval
between adjacent values of the measured dynamic variables.

As the “precursors” of catastrophic events, we consider spikes of the indicators
of unsteadiness cJ tkþ 1ð Þ and DJ tkþ 1ð Þ determined by the dimensionless ratios,
created on the basis of the moment difference U 2ð Þ sð Þ and the power spectra SJ fð Þ
[53, 58]. In the discrete case, the precursor cJ tkþ 1ð Þ is defined by
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cJ tkþ 1ð Þ ¼ 2 � Q
J
kþ 1 � QJ

k

QJ
kþ 1 þQJ

k

�
DT
T
; ð8:34Þ

QJ
k ¼

1
N1

XN1

ns¼1

U pð Þ
J nsð Þ

h i
k

¼ 1
N1

XN1

ns¼1

1
N � ns

XN�ns þ kb½ �

m¼ 1þ kb½ �
VJ mð Þ � VJ mþ nsð Þj jp:

ð8:35Þ

Here

b ¼ DT=Dt½ �; N ¼ aN½ �:

The precursor DJ tkþ 1ð Þ in a continuous form is written as follows:

DJ tkþ 1ð Þ ¼ 2 �
R fmax

fmin
SJ fð Þdf

h iT þ kþ 1ð ÞDT

kþ 1ð ÞDT
� R fmax

fmin
SJ fð Þdf

h iT þ kDT

kDTR fmax

fmin
SJ fð Þdf

h iT þ kþ 1ð ÞDT

kþ 1ð ÞDT
þ R fmax

fmin
SJ fð Þdf

h iT þ kDT

kDT

,
DT
T
: ð8:36Þ

The lower and upper designations in brackets (8.36) show the boundaries of the
time intervals in which the power spectrums are calculated corresponding to the
component VJ fð Þ.

The precursors cJ tkþ 1ð Þ and DJ tkþ 1ð Þ are “non-stationary measure” of the
analyzed process when moving averaging interval T on the time axis by the amount
Dt, particularly, when approaching the upper boundary averaging of the time
interval tk to the time tc of a catastrophic event.

To calculate the integrals in (8.36), we used a quadrature formula for trapeze

Zb
a

f xð Þdx ¼ h
f að Þ
2

þ f aþ hð Þþ f aþ 2hð Þ
� �

þ � � � þ f b� hð Þþ f bð Þ
2

:

The graphs of precursors cG tkþ 1ð Þ and DG tkþ 1ð Þ are shown in Figs. 8.9 and
8.10, respectively.

From Fig. 8.9, it is clear that cG tkþ 1ð Þ varies significantly at t ¼ 10, heralding a
cataclysmic event after t ¼ 10. In fact, as it is shown in Fig. 8.4, at t ¼ 17 in the
dynamic signal V tð Þ, the irregular spike (release) appears. So, in spite of the
insensitivity of precursors DG tkþ 1ð Þ to this release, the precursor cG tkþ 1ð Þ proved
to be more sensitive and predicted a critical condition, what happened when tc ¼ 17
at moment tk , satisfying the required ratio tc � tk ¼ DT (taken into account DT ¼ 1,
i.e., shift of the window by unit with length T).
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8.7 Parameterization of Signal Regular Component

Defining the parameters of the chaotic signal given within the limited range T is
based on the method of the FNS [25], taking into account the contribution of the
“resonant components” into the autocorrelation function
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w sð Þ ¼ V tð ÞV tþ sð Þj jh i; ð8:37Þ

consequently, in the cosine transform

Sc fð Þ ¼
ZT=2

�T=2

w sð Þ cos 2pf sð Þds ð8:38Þ

and the moment difference of the second order

U 2ð Þ sð Þ ¼ V tð Þ � V tþ sð Þ2�� ��D E
: ð8:39Þ

where V tð Þ is a stationary signal V tð Þh i ¼ 0ð Þ; h�i—the symbol averaging.
Designed in [58], the parameterization method of the signal is based on the fact

that the input “irregularity bursts” and “irregularity-jumps” contribute to the dif-
ferent spectral regions according to S fð Þ. In fact, the first step of the irregularity
parameterization made in the previous section is to allocate “wavelet” (singular),
the most “high-frequency” (the so-called flicker noise tail) component of the signal
irregularities in the spectral dependence S fð Þ.

On the basis of the remaining (after the deduction of “wavelet” contribution)
spectral dependence, we can now determine the structure function U 2ð Þ sð Þ, a con-
tribution from the “jump” and slowly changing in its background “resonance”
components. The next steps are to parameterize the “higher frequency” (of the
remaining) “jumy” (regular) component using the method of least squares.

It must be borne in mind that in the solution of the signal parameterization,
problems are associated with the limited averaging interval T . For this reason, in
particular, the “experimental” (built on the basis of the observed signal V tð Þ)
dependent S fð Þ in some frequency intervals may be negative. Therefore, along with
S fð Þ in such cases we introduce S fð Þj j.

The parameterization procedure of the regular part of the signal is presented
below in the following sequence of operations.

Algorithm 8.2

1. From the “experimental” spectrum S fð Þ pin out the singular component SS fð Þ,
calculated by the interpolation formula (8.31) (the result is denoted by SrR fð Þ):

SrR fð Þ ¼ S fð Þ � SS fð Þ: ð8:40Þ
Here

SS fð Þ ¼ SS 0ð Þ
1þ 2pfT0ð Þn0 : ð8:41Þ
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The parameters SS 0ð Þ, T0, and n0 in this formula have been identified earlier.
The resulting difference represents the contribution of “resonance” components

Sr fð Þ and “irregularity-jumps” SR fð Þ in the general dependence S fð Þ. If in some
frequency ranges will be that SrR fð Þ\0, we assume that

SrR fð Þ := SrR fð Þ:

2. Take the inverse cosine Fourier transform of SrR fð Þ:

wrS sð Þ ¼ 2
Zfmax

0

SrR fð Þ cos 2pf sð Þdf s� s
 ¼ T=4ð Þ; ð8:42Þ

s ¼ k � Ds k ¼ 1; . . .; k0ð Þ; Ds ¼ T=4
k0

; k ¼ 500; fmax ¼ 1
4Dt

:

Let

a ¼ 0; b ¼ fmax; h ¼ fmax=n; n ¼ 100;

SrR fð Þ cos 2pf sð Þ ¼ g f ; sð Þ

and apply the trapezoidal ruleZb
a

gðf ; sÞdf ¼ h
gða; sÞ

2
þ gðaþ h; sÞþ gðaþ 2h; sÞ

� �

þ � � � þ gðb� h; sÞþ gðb; sÞ
2

;

3. Compute

Uð2Þ
rR ¼ 2½wrRð0Þ � wrRðsÞ�; s ¼ k � Dsðk ¼ 1; . . .; k0Þ:

4. Let

U 2ð Þ
r sð Þ ¼ U 2ð Þ

rR sð Þ:

5. Denote

~U
2ð Þ

sð Þ ¼ U 2ð Þ
r sð Þþ ~U

2ð Þ
R sð Þ:
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where ~U
2ð Þ
R sð Þ is given by the interpolation formula

~U 2ð Þ
R sð Þ ¼

2r21 � 1
C2 H1 þ 1ð Þ

s
T1

	 
2H1

; s � T1 ð1Þ

2r21 � 1� C�1 H1ð Þ s
T1

	 
H1�1
e �s=T1ð Þ


 �
; s � T1 ð2Þ

8><>: ð8:43Þ

Note. The expressions (8.431) and (8.432) are used to describe the relations (8.39)
obtained on the basis of the experimental time series V tð Þ in the case of the
stationary evolution. It identifies the parameters H1, T1, and r1, which can be
considered as one of the sets of “passport” characteristics of the considered sta-
tionary process, along with a set of characteristics SS 0ð Þ, T0, and n0, obtained earlier
for the singular component SS fð Þ of the power spectrum S fð Þ. We note here that the
parameter H1 is the Hearst constant, which characterize the rate of “forgetting” the
magnitude by the dynamic variable at times, less than the correlation time, and is
usually introduced to describe dependencies U 2ð Þ sð Þ at small s (see (8.46)).
However, the parameter H1 in (8.43) is somewhat different to the Hurst parameter.

Since S fð Þ and U 2ð Þ sð Þ are determined by the autocorrelation function w sð Þ, it
would be possible to believe that the relevant parameters T1 and T0, H1, and n are
connected, and the number of independent parameters, input through analysis of
U 2ð Þ sð Þ and S fð Þ, should decrease. However, the experience shows that for the time
series V tð Þ, corresponding to the evolution of the real processes, the expected ratios

T1 ¼ T0; 2Hþ 1 ¼ n

do not hold. It should be noted that the second of these relationships expresses the
famous image of the “fractal self-similarity” of the evolutionary processes. The
principal difference of the FNS method from the fractal analysis is that the latter has
a significant limitation—the postulating of scale self-similarity (scaling) at every
conceivable scale. In the case of the real signals, it is clearly not the case: The
features of a large-scale self-similarity, as it follows from [25, Chap. 3] results, are
usually appear at best in a half to two orders of the changes in the studied dynamic
variable.

The above-mentioned mismatch of the information parameters included in
dependencies S fð Þ and U 2ð Þ sð Þ can be attributed either to the “unsteadiness” of real
processes V tð Þ, or to the limited interval T, which provides the average. This raises
the question: Which of the dependences S fð Þ and U 2ð Þ sð Þ should be considered as a
base for an adequate parameterization of the real processes, which, of course, are
defined in the final time intervals T and may be “non-stationary.” Until recently, the
question remained open, and the analysis of a variety of chaotic signals relied
mainly on S fð Þ, rather than on U 2ð Þ sð Þ.

The solution of this problem was possible within the FNS framework based on
the generalization of the concept of the information contained in the complex
signals of different nature. The information contained under the FNS in S fð Þ and
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U 2ð Þ sð Þ varies, so to determine the appropriate structure of the parameters, in an
amount sufficient to solve specific problems, it is necessary to analyze the both
dependences.

6. Compare the function ~U
2ð Þ
R sð Þ with function

U 2ð Þ
R sð Þ ¼ U 2ð Þ sð Þ � U 2ð Þ

r sð Þ; ð8:44Þ

where U 2ð Þ sð Þ is the “experimental” structure function (8.39), calculated by the
autocorrelation

w msð Þ ¼ 1
N � ms

XN�m

k¼1

sV kð ÞV kþmsð Þ; ms ¼ s=Dt½ �: ð8:45Þ

A preliminary assessment of T

1 of the parameter T1 can be obtained using the

asymptotic representation of the structure function U 2ð Þ sð Þ (Fig. 8.11).

U 2ð Þ sð Þ ¼ s2H1 ; if s � T1
2r2; if s � T1

�
r2 ¼ V2� �� V2� �

: ð8:46Þ

As T

1 value, we take s for small delays for which U 2ð Þ sð Þ takes the maximum

value of U 2ð Þ sð Þ 	 2r2.

lo
g 

Φ
(2

) (
f)

log τ
log T

1

lo
g 

2σ
2

Fig. 8.11 The graph of
U 2ð Þ sð Þ in the bi-logarithmic
coordinates
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We introduce thresholds

RSS
1 ¼ RSS
2 ¼ 1010:

6:1. We define T1 ¼ T

1 and estimate the parameter r1. To this end, we regress

RSS
1 ¼ RSS
2 ¼ 1010: ð8:47Þ
where

y ¼ ln U 2ð Þ sð Þ � U 2ð Þ
r sð Þ

n o
; x ¼ ln

s
T1

� �
;

a ¼ 2H1; b ¼ 2 ln
r1

C H1 þ 1ð Þ :

the OLS estimation of â and b̂ is obtained from the sequence skf g
k ¼ 1; . . .; k1; k1 � k0ð Þ using the representation (8.43). According to the â
and b̂, we find

bH1 ¼ â
2
; r̂ ¼ e

b̂
2 � C bH1 þ 1

	 

:

Compute

RSS 1ð Þ ¼
Xk1
k¼1

yk � âxk þ bð Þ2
h i

:

(yk and xk correspond to sk).
If RSS 1ð Þ �RSS
1, then go to line 6.2. Otherwise, we assume

RSS
1 ¼ RSS 1ð Þ; r
1 ¼ r̂1;H


1 ¼ bH1:

6:2. By setting r1 ¼ r
1, we evaluate H1 and T1 at s � T1. Build a regression

y ¼ axþ b b 6¼ 0ð Þ; ð8:48Þ

a ¼ 2H1; b ¼ � lnC2 H1 þ 1ð Þ � 2H1 ln T1;

y ¼ ln
U 2ð Þ sð Þ � U 2ð Þ

r sð Þ
2r21

( )
; x ¼ ln s:

The OLS estimation of â and b̂ is obtained from the sequence skf g
k ¼ 1; . . .; k1; k1 � k0ð Þ. Compute

366 8 Flicker Noise Spectroscopy (FNS) of Dynamics Signals …



bH1 ¼ â
2
; T1 ¼ C2 H1 þ 1ð Þ� �� 1

2Ĥ1 �exp � b

2bH1

� �
;

RSS 2ð Þ ¼
Xk1
k¼1

yk � âxk þ bð Þ2
h i

:

If RSS 2ð Þ �RSS
1, then go to line 6.3. Otherwise, we assume

RSS
1 ¼ RSS 2ð Þ; r
1 ¼ r̂1;H

1 ¼ bH1:

6:3. By setting r1 ¼ r
1 and H1 ¼ H

1 , we evaluate T1 at s � T1. Build a regression

y ¼ axþ b b ¼ 0ð Þ; ð8:49Þ
where

y ¼ U 2ð Þ sð Þ � U 2ð Þ
r sð Þ

2r21=C
2 H1 þ 1ð Þ

 ! 1
2H1

; x ¼ s; a ¼ 1
T1

:

The OLS estimation of â is obtained from the sequence skf g
k ¼ 1. . .k1; k1 � k0ð Þ. We compute T̂1 ¼ 1=â.

6:4. Compute

RSS 3ð Þ ¼
Xk1
k¼1

yk � âxk½ �2:

If RSS 3ð Þ �RSS
1, then go to line 6.5. Otherwise, we believe

RSS
1 ¼ RSS 3ð Þ; T

1 ¼ T̂1:

6:5. Print r 1ð Þ
1 ¼ r
1 and H 1ð Þ

1 ¼ H

1 , we evaluate T 1ð Þ

1 ¼ T

1

6:6. By setting H1 ¼ H

1 and T1 ¼ T


1 , we evaluate r1 at s � T1. Build a
regression

y ¼ axþ b b ¼ 0ð Þ; ð8:50Þ
where

y ¼ U 2ð Þ sð Þ � U 2ð Þ
r sð Þ; x ¼ 1� C�1 H1ð Þ s

T1

� �H1�1

exp � s
T1

� �" #2
;

a ¼ 2r21:

We compute the OLS estimate of a according to the sequence
skf g k ¼ 1; . . .; k1; k1 � k0k1 	 20:ð We compute r1 ¼ a2 and find
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RSS 4ð Þ ¼
Xk1
k¼1

yk � âxk½ �2:

If RSS 4ð Þ �RSS
1, then go to line 6.7. Otherwise, we believe RSS
2 ¼
RSS 4ð Þ; r
1 ¼ r̂1 and go to line 6.7
Note. The value of C xð Þ can be calculated by using the package C xð Þ (x—any
complex number) in MATHCAD

C xð Þ ¼ C xþ 1ð Þ
x

¼ C xþ 1ð Þ
x xþ 1ð Þ ¼ � � � ¼ C xþ nð Þ

x xþ 1ð Þ. . . xþ n� 1ð Þ ð8:51Þ

and evaluate C xþ nð Þ for a sufficiently large n, using the asymptotic
representation of the gamma function at zj j ! 1, p� a\arg zð Þ\pþ a (a is
some arbitrarily small positive number) [59].

C zð Þ ¼ exp z� 1
2

� �
ln z� zþ 1

2
ln 2p

� �
1þO z�1� �� �

: ð8:52Þ

6:7. We assume that

exp � s
T1

� �
	 s

T1

� ��a

s � T1; a[ 0ð Þ ð8:53Þ

where a is the parameter to be determined.
By setting r1 ¼ r
1 and H1 ¼ H


1 , we evaluate T1 and r1. Imagine equality is
as follows:

U 2ð Þ sð Þ � U 2ð Þ
r sð Þ ¼ 2r21 1� C�1 H1ð Þ s

T1

� �H1�1�a
" #2

in the form of

C H1ð Þ 1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
U 2ð Þ sð Þ � U 2ð Þ

r sð Þ
2r21

s0@ 1A ¼ s
T1

� �H1�1�a

:

After taking the logarithm, we obtain

ln C H1ð Þ 1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
U 2ð Þ sð Þ � U 2ð Þ

r sð Þ
2r21

s0@ 1A24 35
¼ � H1 � 1� að Þ ln T1 þ H1 � 1� að Þ ln s:
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Denote

y ¼ ln C H1ð Þ 1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
U 2ð Þ sð Þ � U 2ð Þ

r sð Þ
2r21

s0@ 1A24 35; x ¼ ln s;

a ¼ H1 � 1� a; b ¼ � H1 � 1� að Þ ln T1;

We estimate the coefficients a and b of the regression

y ¼ axþ b b 6¼ 0ð Þ; ð8:54Þ

According to the OLS estimates â and b̂, we find

â ¼ â� H1 � 1; T̂1 ¼ exp � b̂
H1 � 1� a

( )
;

We compute

RSS 5ð Þ ¼
Xk1
k¼1

yk � âxk þ bð Þ½ �2; sk ¼ T � k:

If RSS 5ð Þ �RSS
2, then go to 6.8. Otherwise, we believe

RSS
2 ¼ RSS 5ð Þ; a
 ¼ â; T

1 ¼ T1:

6:8. By setting r1 ¼ r
1 and T1 ¼ T

1 , we find H1 and a.

We have

1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
U 2ð Þ sð Þ � U 2ð Þ

r sð Þ
2r21

s
¼ C�1 H1ð Þ s

T1

� �H1�1�a

:

After taking the logarithm, we obtain

ln 1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
U 2ð Þ sð Þ � U 2ð Þ

r sð Þ
2r21

s24 35 ¼ � ln C H1ð Þ½ � þ H1 � 1� að Þ ln s
T1

� �
:

Build a regression

y ¼ axþ b b 6¼ 0ð Þ; ð8:55Þ
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where

y ¼ ln 1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
U 2ð Þ sð Þ � U 2ð Þ

r sð Þ
2r21

s24 35; x ¼ ln T1;

a ¼ H1 � 1� a; b ¼ � ln C H1ð Þ½ �;

According to the OLS estimates â and b̂, we find b̂ from the equation

C bH1

	 

¼ exp �b̂

� �
n; ð8:56Þ

and

â ¼ H1 � 1� â; ð8:57Þ

We compute

RSS 6ð Þ ¼
Xk1
k¼1

yk � âxk þ bð Þ½ �2; sk ¼ T � k:

If RSS 6ð Þ �RSS
2, then go to 6.9. Otherwise, we believe

RSS
2 ¼ RSS 6ð Þ; a
 ¼ â; H

1 ¼ bH1:

6:9. Print r 2ð Þ
1 ¼ r
1 and H 2ð Þ

1 ¼ H

1 , we evaluate T 2ð Þ

1 ¼ T

1 .

6:10. END

Note. For the solution of (8.56), we proceed as following. Let x ¼ bH1 and
z ¼ xþ n. Let n ¼ 100, and we introduce the function as follows:

Q xð Þ ¼ C xþ nð Þ
x xþ 1ð Þ. . . xþ n� 1ð Þ : ð8:58Þ

The condition is 0\bH1\1. With the step of discreteness Dx ¼ 10�2, we iterate
in (8.58) the values xk ¼ k � Dx k ¼ 1; . . .; k0ð Þ, where xk0\1 and xk0 þ 1\1.

When k ¼ 1; . . .; k0, we compare the left-hand and right-hand sides of the
expression (8.58).

At a given accuracy of calculation of the quantity H1 (e.g., e ¼ 10�1) for the H1,
we will take the first value xk, in which

Q bH1

	 

� C bH1

	 
��� ���\e: ð8:59Þ
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If (8.59) does not hold for any value xk k ¼ 1; . . .; k0ð Þ, we believe that
Dx:¼ Dx=2 and repeat the comparison (8.59), going over the values xk ¼ k � Dx in
(8.58) with a new step Dx.

Thus, we get the values r 1ð Þ
1 ;H 1ð Þ

1 ; T 1ð Þ
1 and r 2ð Þ

1 ;H 2ð Þ
1 ; T 2ð Þ

1 of parameters
r1;H1; T1, respectively, for small s s � T1ð Þ and large s s � T1ð Þ and the value of
a, which is true in the asymptotic representation (8.53).

The results of calculation of values r 1ð Þ
1 ;H 1ð Þ

1 ; T 1ð Þ
1 and r 2ð Þ

1 ;H 2ð Þ
1 ; T 2ð Þ

1 of
parameters r1;H1; T1 are shown in Table 8.3.

The asymptotic representations (8.43) can now be written as follows:

~U
2ð Þ
R sð Þ ¼

2 r 1ð Þ
1

	 
2
� 1
C2 H 1ð Þ

1 þ 1ð Þ
s

T 1ð Þ
1

� �2H 1ð Þ
1

; if s � T

1 ð1Þ;

2 r 2ð Þ
1

	 
2
� 1� C�1 H 2ð Þ

1

	 

s

T 2ð Þ
1

� �H 2ð Þ
1 �1�a

" #2
; if s � T


1 ð2Þ:

8>>>><>>>>:
ð8:60Þ

To get the parameterization for ~U
2ð Þ
R sð Þ on the entire range of the delay, we apply

the method of matching asymptotic expansions described below in Sect. 8.8.

8.8 Joining Asymptotic Representations of the Structure

Function eUð2Þ
R sð Þ

According to (8.60), the structure function ~Uð2Þ
R sð Þ has two asymptotic represen-

tations: for small s, it is s � T1 and described by the branch (8.601), and for large

s � T1 by the branch (8.602). In Sect. 8.7, we obtained parameters r 1ð Þ
1 ;H 1ð Þ

1 ; T 1ð Þ
1

for the first node, and the parameters r 2ð Þ
1 ;H 2ð Þ

1 ; T 2ð Þ
1 for the second node.

In order to parameterize the function ~Uð2Þ
R sð Þ throughout the considered interval

of the delay s, we should apply the method of merging (stitching) asymptotic
(8.601) and (8.602) [60, 61].

Building a single solution is not a trivial task, which can be summarized as
follows: We know the behavior of f xð Þ in the zones I and III (in this case, the gaps
0� s� s1 s1 � T1ð Þ and s2 � s� T1 � 1 s2 � T1ð Þ), we need to finish it in the

Table 8.3 The parameters of
structural features for small
and large delays

Parameters (1) (2)

H1 0.2816 0.7613

r1 36.16424 3.91

T1 10 3.817288
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intermediate zone II s1 � s� s2. For this purpose, we can use the two-point Padé
approximant [62]. Let

f eð Þ ¼
X1
n¼0

cne
n at e ! 0; ð8:61Þ

f eð Þ ¼
X1
n¼0

c�ne
n at e ! 1: ð8:62Þ

Then, the two-point Padé approximant has the form [63, 64]

f eð Þ ¼
Pm

j¼0 aje
jPn

j¼0 bje
j
; ð8:63Þ

where the numerator and denominator are selected from the conditions of decom-
position of expression (8.63) at e ! 0 and e ! 1 and they must coincide with the
expressions (8.61) and (8.62), respectively.

Note that the Padé approximant has the remarkable property of auto-correction
[65]. The essence is in following to determine the numerator and denominator of
the Padé approximant, and it is necessary to solve a system of linear algebraic
equations. This operation is mathematically incorrect, i.e., when solving large
systems of linear algebraic equations, and we get the answer with a great inaccu-
racy. However, it appears that the error in determining the numerator and
denominator cancel out, and the fraction of Padé gives an answer with a high
accuracy, while the numerator and denominator are very inaccurate.

The series of the form (8.61) and (8.62) were first introduced by Poincare in the
“New methods of celestial mechanics” [66] and are, in general, the divergent series,
which converge at some finite n ¼ n0 and e ! e0. Such series are called the
asymptotic series, in contrast with the conventional series converging at e ¼ e0 and
n ! 1. The series (8.61) is asymptotic if there is n0 such as that for the function
fn0 ¼ c0 þ c1eþ � � � þ cn0e

n0 and it holds the limit equality

lim
e!0

f � fn0ð Þe�n0 ¼ 0;

The development of asymptotic mathematics led to the following experimental
result: The summation of asymptotic series to the smallest term ensures the
exponential accuracy [67]. In other words, the error in determining the value of the
function f over the interval of its asymptotic series takes up the least-largest term, is

as small as the exponent of a certain order, i.e., as e� 1=eð Þk for some integer k. It was
established experimentally also [60] that the smallest term is usually obtained when
n ¼ a 1=eð Þk, where a positive number a is determined by the task.
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Let s0 [ 0 is a small number s0 � T 1ð Þ
1 (in calculation we assume s0 ¼ 0:1). Let

s=T 1ð Þ
1 ¼ x, s0=T

1ð Þ
1 ¼ x0, and x� x0 ¼ e. The expansion of the function (8.601)

with respect to e and accuracy up to O e5
� �

can be written as follows:

f1 eð Þ ¼ c0 þ c1eþ c2e
2 þ c3e

3 þ c4e
4; e ! 0ð Þ ð8:64Þ

with coefficients

ck ¼ 1
k!

d
dsk

~U
2ð Þ
R sð Þ

����
s¼s0

k ¼ 0; 1; 2ð Þ;

where ~Uð2Þ
R sð Þ is given by expression (8.601). By calculating it, we obtain

c0 ¼
2 r 1ð Þ

1

	 
2
C2 H 1ð Þ

1 þ 1
	 
 s

T 1ð Þ
1

 !2H 1ð Þ
1

ck ¼
2 r 1ð Þ

1

	 
2
C2 H 1ð Þ

1 þ 1
	 
 � 1

k!
2H 1ð Þ

1

	 

2H 1ð Þ

1 � 1
	 


. . . 2H 1ð Þ
1 � kþ 1

	 
 s0

T 1ð Þ
1

 !2H 1ð Þ
1 �k

; k ¼ 1; 2. . .ð Þ:

ð8:65Þ

By setting m ¼ n ¼ 2, we write the Padé approximant for f1 eð Þ in the form

f eð Þ ¼ a0 þ a1eþ a2e2

b0 þ b1eþ b2e2
: ð8:66Þ

Using the known representation for infinitesimal x

1
1� x

¼ 1þ xþ x2 þ . . .;

we get with an accuracy up to O e2ð Þ the following expansion for f eð Þ in powers of e

f eð Þ ¼ a0 þ a1eþ a2e
2

� � � 1
b0

1� b1
b0

eþ b2
b0

e2
� �
 �

: ð8:67Þ

By equating in (8.64) and (8.67), the coefficients of the powers of e0, e1, and e2, we
obtain a system of nonlinear equations
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a0
b0

¼ c0;

a1
b0

� a0
b0

� b1
b0

¼ c1;

a2
b0

� a0
b0

� b2
b0

� a1
b0

� b1
b0

¼ c2:

9>>>>>>=>>>>>>;
; ð8:68Þ

Weassume that the signalV tð Þ is defined on the sufficiently large interval 0; T½ � and

s0 � T 2ð Þ
1 ; s0 � T

e.g., s ¼ T 2ð Þ
1 þ T

	 

=2. Then, in the notation s=T 2ð Þ

1 ¼ x and s0=T
2ð Þ

1 ¼ x0, the

limiting transition s ! T means that x� x0 ¼ e ! 1.
The expansion of the function (8.602) with respect to e and an accuracy up to

O e�5
� �

can be written as follows:

f2 e�1� � ¼ �c0 þ c�1eþ c2e
�2 þ c3e

�3 þ c4e
�4; e ! 1ð Þ: ð8:69Þ

The coefficients of the expansion (8.69) are given by

�c0 ¼ ~U
2ð Þ
R s0ð Þ; c�k ¼ dk

dxk
U 2ð Þ

R sð Þ
����
s¼s0

; k ¼ 1; 2. . .ð Þ

where ~U
2ð Þ
R sð Þ is defined by (8.602) and s0 ¼ T 2ð Þ

1 þ T
	 


=2.

Given the asymptotic representation (8.53), the coefficients �c0 and c�k

k ¼ 1. . .4ð Þ can be written as follows:

�c0 ¼ 2 r 2ð Þ
1

	 
2
1� C�1 H 2ð Þ

1

	 
 s0

T 2ð Þ
1

 !H 2ð Þ
1 �1�a

24 352

;

c�1 ¼ �4 r 2ð Þ
1

	 
2
1� C�1 H 2ð Þ

1

	 
 s0

T 2ð Þ
1

 !H 2ð Þ
1 �1�a

24 35
� C�1 H 2ð Þ

1

	 
H 2ð Þ
1 � 1� a

T 2ð Þ
1

s0

T 2ð Þ
1

 !H 2ð Þ
1 �2�a

24 35;
c�2 ¼ 4 r 2ð Þ

1

	 
2
C�1 H 2ð Þ

1

	 
H 2ð Þ
1 � 1� a

T 2ð Þ
1

s0

T 2ð Þ
1

 !H 2ð Þ
1 �2�a

24 358<:
� 1� C�1 H 2ð Þ

1

	 
 s0

T 2ð Þ
1

 !H 2ð Þ
1 �1�a

24 35
� C�1 H 2ð Þ

1

	 
 H 2ð Þ
1 � 1� a

	 

H 2ð Þ

1 � 2� a
	 


T 2ð Þ
1

	 
2 s0

T 2ð Þ
1

 !H 2ð Þ
1 �3�a

264
375
9>=>;;
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c�3 ¼ 4 r 2ð Þ
1

	 
2
3 C�1 H 2ð Þ

1

	 
H 2ð Þ
1 � 1� a

T 2ð Þ
1

s0

T 2ð Þ
1

 !H 2ð Þ
1 �2�a

24 358<:
� C�1 H 2ð Þ

1

	 
 H 2ð Þ
1 � 1� a

	 

H 2ð Þ

1 � 2� a
	 


T 2ð Þ
1

	 
2 s0

T 2ð Þ
1

 !H 2ð Þ
1 �3�a

264
375

� 1� C�1 H 2ð Þ
1

	 
 s0

T 2ð Þ
1

 !H 2ð Þ
1 �1�a

24 35
� C�1 H 2ð Þ

1

	 
 H 2ð Þ
1 � 1� a

	 

H 2ð Þ

1 � 2� a
	 


H 2ð Þ
1 � 3� a

	 

T 2ð Þ
1

	 
3 s0

T 2ð Þ
1

 !H 2ð Þ
1 �4�a

264
375
9>=>;;

c�4 ¼ 4 r 2ð Þ
1

	 
2
3 C�1 H 2ð Þ

1

	 
 H 2ð Þ
1 � 1� a

	 

H 2ð Þ

1 � 2� a
	 


T 2ð Þ
1

	 
2 s0

T 2ð Þ
1

 !H 2ð Þ
1 �3�a

264
375

8><>:
þ 3 C�1 H 2ð Þ

1

	 
H 2ð Þ
1 � 1� a

T 2ð Þ
1

s0

T 2ð Þ
1

 !H 2ð Þ
1 �2�a

24 35
� C�1 H 2ð Þ

1

	 
 H 2ð Þ
1 � 1� a

	 

H 2ð Þ

1 � 2� a
	 


H 2ð Þ
1 � 3� a

	 

T 2ð Þ
1

	 
3 s0

T 2ð Þ
1

 !H 2ð Þ
1 �4�a

264
375

� 1� C�1 H 2ð Þ
1

	 
 s0

T 2ð Þ
1

 !H 2ð Þ
1 �1�a

24 35
� C�1 H 2ð Þ

1

	 
 H 2ð Þ
1 � 1� a

	 

H 2ð Þ

1 � 2� a
	 


H 2ð Þ
1 � 3� a

	 

H 2ð Þ

1 � 4� a
	 


T 2ð Þ
1

	 
4 s0

T 2ð Þ
1

 !H 2ð Þ
1 �5�a

264
375
9>=>;:

The Padé approximant for f2 e�1ð Þ is obtained from (8.64) by dividing the
numerator and denominator on e2

f e�1� � ¼ a2 þ a1e�1 þ a0e�2

b2 þ b1e�1 þ b2e�2 : ð8:71Þ

With accuracy up to O e�3ð Þ, we obtain the following expansion of the function
(8.71) in powers of e�1:

f e�1� � ¼ a2 þ a1e
�1 þ a2e

�2� � � 1
b2

1� b1
b2

e�1 þ b0
b2

e�2
� �
 �

; ð8:72Þ

By equating the coefficients in (8.69) and (8.72) at the powers e�1ð Þ0, e�1 and
e�2, we obtain a system of equations:
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a2
b2

¼ �c0;

a1
b2

� a2
b2

� b1
b2

¼ c�1;

a0
b2

� a1
b2

� b1
b2

� a2
b2

� b0
b2

¼ c�2:

8>>>>>>><>>>>>>>:
ð8:73Þ

So we have a system of 6 nonlinear Eqs. (8.68) and (8.73) with respect to 6
unknowns a0; a1; a2; b0; b1; b2ð Þ.

The initial approximation for the unknown unknowns will be chosen as
following.

Comparison of the coefficients e3 and e4 in (8.64) and (8.67) gives a system of
equations:

b2c1 þ b1c2 þ b0c3 ¼ 0
b2c2 þ b1c3 þ b0c4 ¼ 0

�
; ð8:74Þ

which in matrix form is written as follows:

c1 c2
c2 c3

� �
b2
b1

� �
¼ �b0

c3
c4

� �
: ð8:75Þ

The entire set of coefficients a0; a1; a2; b0; b1; b2ð Þ is determined up to a com-
mon factor for certainty we can say b0 ¼ 1. Then, the system of Eq. (8.75) has a
solution

b1 ¼
c1c4 � c2c3
c22 � c1c3

; b2 ¼
c23 � c2c4
c22 � c1c3

: ð8:76Þ

and from (8.68), we find

a0 ¼ c0; a1 ¼ c1 þ b1c0; a2 ¼ c2 þ b1c1 þ b1 þ b2ð Þc0: ð8:77Þ

Comparison of the coefficients e�3 and e�4 in (8.69) and (8.72) gives a system of
equations

b0c�1 þ b1c�2 þ b2c�3 ¼ 0
b0c�2 þ b1c�3 þ b2c�4 ¼ 0

�
: ð8:78Þ

or in matrix form

c�3 c�2

c�4 c�3

� �
b2
b1

� �
¼ �b0

c�1

c�2

� �
:
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Assuming b0 ¼ 1, we obtain a solution

b1 ¼
c�2c�1 � c2�2

c2�3 � c�2c�4
; b2 ¼

c�4c�2 � c�3c�1

c2�3 � c�2c�4
: ð8:79Þ

and from (8.73), we find

a2 ¼ �c0 � b2;
a1 ¼ c�1 � b2 þ�c0 � b1;

a0 ¼ c�2 þ c�1 � b1 þ�c0 1þ b1
b2

� �
:

ð8:80Þ

Solution of the system of nonlinear Eqs. (8.68) and (8.73) is obtained by the
commands “Given” and “Find” in MATHCAD asking as initial approximations
b0 ¼ 1, and the remaining unknowns are determined either from (8.76), (8.77) or
(8.79), (8.80).

The results of calculation for the coefficients a0; a1; a2; b0; b1; b2ð Þ are shown in

Table 8.4. Figures 8.12 and 8.13 show the graphs of the structure function U 2ð Þ
R sð Þ,

respectively, for small s � T1ð Þ and large s � T1ð Þ delays s, and Fig. 8.14 shows
the graph of the corresponding matching asymptotic expansions.

Table 8.4 Coefficients of the
splice function

Coefficients 0 1 2

a 205.698 1.253 × 104 1.964 × 105

b 1 −50 833.333
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Fig. 8.12 The graph of the
structure function for small
delays
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Adoption of irregularities of dynamic variables as a data carrier allows not only
in the most general form of the phenomenological to classify all information
contained in a chaotic series, but also to discernibly extract the necessary part of it.
At the same time, the analyzed object may reveal different qualities and charac-
teristics in the distinguished different levels of the object organization. All detected
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Fig. 8.13 The graph of the
structure function for large
delays
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Fig. 8.14 The splicing of
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“passport information” naturally generates a single information unit (a set of
parameters, dimensional and dimensionless), defined as “information of dynamic
differences” (IDDs), which is the multivariable generalization of Kolmogorov’s
K-entropy—the rate of losing information that in the theory of deterministic chaos
is introduced as a scalar.

The need to “go beyond” the scope of the orthodox statistical physics is due to
the inability to solve problems based on her information extraction from complex,
including natural, signals.

It is an unorthodox approach, by rejecting the image of the ideal “thermostat,”
and the view of the evolutionary dynamics as a series of “steps–events” in the
Weizsäcker evolutionary scheme, originally irreversible at every level of evolution,
can solve this fundamental and important in terms of “expert knowledge” problem.
Therefore, we actually question the currently approved method by introducing into
the equation the dynamic time as a continuously changing variable.
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