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Preface

Results from LHC, the Large Hadron Collider at CERN, relativistic heavy–ion
collision experiments as well as various cosmological observations are expected
to shed much light on several aspects of particle physics in the years to come.
Study of the formation of the Quark Gluon Plasma in high temperature and
high density environments can, for example, lead to a better understanding of
strong interactions. In turn, QCD effects have to be understood well to correctly
interpret collider results at the electroweak scale. Higher energy processes can
be studied in the laboratory of the Universe and particle cosmology can teach
us much about issues such as the number of light neutrinos and the effective
Lagrangian on GUT scales.

This volume includes reviews that cover various topics in strong interac-
tion physics, anomalies and particle cosmology and are based on lectures that
were delivered at the XXI and XXII SERC Main School in Theoretical High
Energy Physics held at the Physical Research Laboratory, Ahmedabad and the
University of Hyderabad from February 11 - March 3, 2006 and January 18 -
February 7, 2007 respectively. We believe that these reviews will be of value
to any student of particle physics who is keen on understanding issues in these
important areas.

The SERC Schools in Theoretical High Energy Physics have been held
regularly since 1985 and provide Ph.D. students with an introduction to im-
portant topics in High Energy Physics. The Ahmedabad School covered courses
on Cosmology for Particle Physicists, Quark Gluon Plasma, Black Hole Physics
and Flavour Physics. Each course consisted of nine lectures, and nine tutorial
sessions in which certain concepts and problems were discussed. The lectur-
ers and the tutors for the courses were Urjit A. Yajnik (Indian Institute of
Technology Bombay, Mumbai) and L. Sriramkumar (then at Harish-Chandra
Research Institute (HRI), Allahabad), Ajit M. Srivastava (Institute of Physics,
Bhubaneswar) and (late) Abhee K. Dutt-Mazumder (Saha Institute of Nuclear
Physics (SINP), Kolkata), Soumitra Sengupta (Indian Association for the Cul-
tivation of Science, Kolkata) and Sumati Surya (Raman Research Institute,
Bangalore), and Sreerup Raychaudhuri (then at Indian Institute of Technol-
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ogy Kanpur) and Anirban Kundu (Calcutta University, Kolkata). This volume
contains the lectures on Cosmology for Particle Physicists and Quark Gluon
Plasma.

The Hyderabad School had four courses with the following topics and lec-
turers and tutors: Wilsonian RG and Effective Field theory by Shiraz Minwalla
and S. Lahiri (Tata Institute of Fundamental Research, Mumbai), Perturba-
tive QCD by V. Ravindran (then at HRI, Allahabad) and P. Mathews (SINP,
Kolkata), An Introduction to Anomalies by Dileep Jatkar and Sumathi Rao
(HRI, Allahabad) and Electro-Weak symmetry Breaking Scenarios by Gautam
Bhattacharyya and Probir Roy (SINP, Kolkata). This volume contains the lec-
tures on Perturbative QCD and Anomalies.

We thank all the lecturers, tutors and students for their dedication and
enthusiasm which contributed greatly to the success of the Schools, and also
to the preparation of this volume. While this book was being prepared, Abhee
Dutt-Mazumder passed away. His lectures on thermal field theory at Ahmed-
abad were greatly appreciated and we dedicate this book to his memory.

Raghavan Rangarajan M. Sivakumar
Physical Research Laboratory University of Hyderabad
Ahmedabad Hyderabad

x
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1

Quark-Gluon Plasma: An

Overview

Ajit Mohan Srivastava

1.1 Introduction

The physics of the Quark Gluon Plasma (QGP) is being actively investigated
presently theoretically as well as experimentally. The motivation for this comes
from the cosmos as well as from attempts to understand the phase diagram
of strongly interacting matter. The universe consisted of quark-gluon plasma
during the early stages when the age of the universe was less than a few mi-
croseconds. It is also believed that the cores of various compact astrophysical
objects, e.g. neutron stars, may be in the QGP phase. Laboratory experiments
consisting of collision of heavy nuclei at ultra-relativistic energies are being
carried out in an attempt to create a transient phase of QGP in tiny regions
of space. These lectures will provide an overall picture of QGP starting with a
basic understanding of Quantum Chromo Dynamics (QCD) which is the theory
of strong interactions.

Let us start by recalling the four basic interactions: Electromagnetic,
Weak, Strong, and Gravity. We know that the first two of these are unified
into an “Electroweak Interaction”. There are attempts to unify the electroweak
and strong interactions into an, as yet unknown, Grand Unified Theory (GUT).
Unification of all the four basic forces is attempted in String Theories. How well
do we understand these forces individually?

1© Springer Science+Business Media Singapore 2016 and Hindustan Book Agency 2014
R. Rangarajan and M. Sivakumar (eds.), Surveys in Theoretical
High Energy Physics - 2, Texts and Readings in Physical Sciences 15,
DOI 10.1007/978-981-10-2591-4_1



2 1. Quark-Gluon Plasma: An Overview

Electromagnetism: The theory of Electromagnetism is provided by
Quantum Electrodynamics (QED). This theory is well understood and its pre-
dictions have been verified in experiments with very high accuracy.

Electroweak Theory: Of course, the complete theory of Electromag-
netism is given only when unified with weak interactions. The Electroweak
theory is also well understood, and its predictions are verified in experiments.
One major “missing part” of the theory was the Higgs boson which plays a
crucial role in the formulation of the theory (spontaneous symmetry breaking
leading to massive W and Z bosons which are responsible for the “weakness”
of the weak force). Recent experiments at CERN have confirmed detection of
a Higgs-like boson.

Gravity: Gravitational interactions are very well understood at the clas-
sical level in terms of Einstein’s General Theory of Relativity. However, at
present there is no theory of Quantum Gravity. There are various attempts
towards Quantum Gravity. The most popular approach is in terms of String
Theories. There are other approaches within conventional frameworks, e.g. us-
ing canonical quantization (Loop Quantum Gravity), etc.

Strong Interactions: Let us now discuss strong interactions which will be
the subject of these Lectures. The theory for strong interactions is believed to
be Quantum Chromo Dynamics (QCD). The basic ingredients for QCD were
proposed by studying properties of hadrons which are supposed to be made up
of the basic degrees of freedom in QCD, namely quarks. Interactions between
quarks are mediated by gluons (in the same way as photons mediate interactions
between electrons).

Theoretical investigations of QCD show a remarkable property of strong
interactions. At very high energies, the strength of the interaction between
quarks becomes smaller. In other words, the effective coupling constant of
strong interactions becomes smaller at large energies, eventually approaching
zero. This is known as “asymptotic freedom”. This behavior is the opposite
of the behavior in QED where the coupling constant increases with energy.
Asymptotic freedom (for which there was already evidence from deep inelastic
scattering experiments) is well tested in experiments to a high accuracy. How-
ever the understanding of QCD in the domain of low energy remains poor. This
is the domain where hadrons form, and quarks are confined in these hadrons.
Recall that it was the study of these hadrons which led to the formulation of
QCD.

Apart from this “confinement” there is another domain where QCD is
not well understood. This is the domain of high temperature and high density
of matter. From the theoretical side it is expected, based on asymptotic free-
dom, that at high temperatures the interactions between quarks will become
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weak. Does that mean we should get an ideal gas of quarks and gluons at high
temperatures?

Some of these questions led to the search for the so called “Quark Gluon
Plasma” phase of QCD. From general physical arguments one expects that at
sufficiently high temperatures (at T > Tc ∼ 170 MeV, the deconfinement tem-
perature) and densities, quarks and gluons are no more confined. Essentially
at such high temperatures and/or densities, one has overlapping hadrons, so
it makes no sense to talk about quarks and gluons confined inside individual
hadrons. However, it should be clear that at high T or high density ρ, one
is inevitably dealing with many body effects. Here the understanding obtained
from deep inelastic scattering experiments may not be directly applicable. Also,
it appears that the interactions between partons are not weak at temperatures
achievable in the laboratory (in relativistic heavy ion collisions). At present, we
also do not have theoretical tools to properly analyze the behavior of QCD in
these domains using analytic calculations (except possibly at ultra high tem-
peratures). Lattice QCD is the only theoretical tool we know for understanding
this domain. Results so far lead to interesting behavior of quarks and gluons in
this QGP phase.

A direct motivation for understanding this high T , ρ domain comes from
cosmology and astrophysics. In the standard Big Bang theory of the universe,
the temperature of the universe was very high initially. When the age of the
universe was less than 10−6 sec, its temperature was higher than about 200
MeV. So we expect that the universe was filled with QGP at those early times.
To understand the evolution of the universe at those early times one must
understand the properties of the QGP phase at high T . Further expansion and
cooling of the universe converts QGP to hadrons. This is expected to be a phase
transition (or, more likely, a crossover) at a critical temperature of about 170
MeV. If it is a first order transition then it could have consequences for different
primordial element abundances in the universe.

In the present day universe, there are heavy and superdense objects known
as neutron stars. These form at the end of fusion reaction chains of regular
stars which undergo supernova explosion. The mass density in a neutron star
is about 1014 gm/cm3. At the center of these neutron stars the density may be
even higher, of the order of several times the nuclear density. It is expected that
in the cores of neutron stars hadrons (neutrons/protons) may be closely packed
so that quarks and gluons may no more be confined, leading to high density
(not high temperature) QGP. Various properties of neutron stars (maximum
mass, spin, etc.) depend crucially on the properties of this type of core.

All of these are theoretical consideration. Even neutron stars are accessible
only through indirect observations. The universe at the age of less than 10−6

sec is in the distant past and no experiments are possible for observing that.
So, how do we test our theoretical modeling of QGP at high T and/or high ρ
which is relevant for these cases?

Relativistic heavy ion collisions allow us the possibility for doing this.
For example, at the Relativistic Heavy Ion Collider (RHIC) at Brookhaven,
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USA, beams of Au-Au are collided at 200 GeV per nucleon pair center of mass
energy. We first discuss, briefly, the physics of these experiments - a detailed
discussion will be provided later. As the nuclei are accelerated to very high
energies, spherical nuclei get Lorentz contracted. (Note that Lorentz factor ∼
100 but the Lorentz contracted width is not less than 1 fm due to quantum
effects.) At such high energies nuclei, or even protons and neutrons, lose their
identity and the interaction between nuclei becomes effectively quark-quark
interactions. Due to asymptotic freedom, this interaction is also weak, so most
of the quarks go through each other, creating secondary partons in the middle.
The density of these secondary partons grows due to multiple scatterings and
the system thermalizes. This central thermalized system cools as it expands.
If its initial temperature is above 200 MeV, we expect that it should be in an
equilibrated QGP state. On subsequent expansion it should undergo a phase
transition to a hadronic system. Note that the resulting system is just like
what was present in the early universe (apart from some differences like the
expansion rate, etc.). Thus investigation of this system allows us to probe a
part of the early history of our universe.

Experiments at lower energies (such as AGS and future GSI experiments
in Germany) have higher baryon densities in the center (as the quark-quark in-
teraction is stronger at lower energies), though lower temperature. This matter
is similar to neutron star core matter and could help us in understanding this
domain of QCD.

Above all, studying the creation of QGP and the subsequent phase tran-
sition to hadrons helps us in better understanding confining forces between
quarks because the process of hadron formation at the transition stage depends
crucially on that.

We will discuss these relativistic heavy-ion collision experiments in these
lectures. Through these experiments we can probe different parts of the QCD
phase diagram. The phase boundaries in the QCD phase diagram are obtained
from several symmetry arguments, or in effective low energy models. Lattice
calculation also give us some handle on these (especially for zero or small baryon
chemical potential).

The plan of the lectures is as follows. First we will provide a general
introduction to QCD leading to the concepts of asymptotic freedom and running
coupling constant. The discussion is mostly taken from the books in ref. [1] and
for further details these books should be consulted. Since the whole discussion
is based on QCD, we will discuss important aspects of QCD including its basic
structure in detail. Then we will sketch steps to give a basic understanding of
running coupling constant and asymptotic freedom for QCD.

Next we discuss the prediction of the QGP phase of QCD. This discussion
is primarily based on refs. [2, 3]. We will see how general arguments lead us
to the prediction of QGP phase of QCD. We will discuss arguments based on
the running coupling constant as well as more detailed ones based on the Bag
model of hadrons leading to the expectation that QGP phase should exist at
high temperature as well as high density.
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Following this we will discuss QGP formation and evolution in relativistic
heavy-ion collisions [4]. We will discuss the Bjorken picture for the evolution
and various signals of QGP [6]. We will then discuss various topics such as the
deconfinement-confinement phase transition, etc.

1.2 QCD

Our approach will not be historical. We will list the requirements, from experi-
mental evidence, for the theory of strong interactions and then argue that QCD
satisfies these requirements.

1.2.1 Basic Contents

1. We know that there are six quarks.(
u
d

)
,

(
c
s

)
,

(
t
b

)
u, c, t quarks have charges + 2

3e while d, s, b have charges − 1
3e, where −e

is the electron charge.

Quark masses Current quark mass Constituent quark mass

d 15 MeV 330 MeV

u 7 MeV 330 MeV

s 200 MeV 500 MeV

c 1.3 GeV 1.5 GeV

b 4.8 GeV 5 Gev

t 170 GeV -

Note: No free quarks are seen, and we do not list constituent quark mass
for the t quark as no hadrons involving the t quark are known yet. The
current quark mass is what enters in the QCD Lagrangian. The constituent
quark mass tells us how the quark behaves inside hadrons (i.e., it accounts
for the confining forces).

2. Quarks are spin 1/2 fermions and have an internal quantum number called
color. Hadron spectroscopy implies that there are 3 colors for each quark
and that hadrons are color singlets (the color wave function is totally
antisymmetric). This is known as color confinement and is required by
the fact that no isolated quarks are observed. They only appear inside
hadrons. There are two types of hadrons made up of quarks – Mesons (qq̄
systems) and Baryons (qqq systems), and their antiparticles.

With the above quark content, we need an interaction between
quarks with the following properties:
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3. The interaction should lead to color confinement. Thus the interaction
should correspond to the color charges of quarks. Following the success of
QED, we want to construct a “gauge theory” of color interactions.

4. Deep-inelastic scattering of leptons with nucleons shows Bjorken scaling
which implies that at short distances quarks are almost free: this is the
‘asymptotic freedom’. Thus, we need a theory where the coupling constant
becomes small at large energies. In 4 dimensions, only Yang-Mills theories
show this type of behavior. These are gauge theories with a non-Abelian
gauge group.

Combining the requirement of asymptotic freedom with that of color
charge interaction (with 3 different colors), we come to a theory of strong
interactions based on the SU(3) color gauge group. This is called Quantum
Chromo Dynamics (QCD) and is believed to be the correct theory of
strong interactions.

To understand this theory, we will first recall the basics of QED
which is a gauge theory based on the Abelian gauge group U(1). We will
then generalize the construction to QCD.

1.2.2 QED

First recall the Lagrangian for a free electron field ψ(x),

L0 = ψ(x)(iγμ∂μ −m)ψ(x)

L0 has a global U(1) symmetry under the transformation

ψ(x) → ψ′(x) = e−iαψ(x)

ψ(x) → ψ
′
(x) = eiαψ(x)

Here α is the parameter of the symmetry transformation. α is independent of x
and t and hence the transformation is called a global symmetry transformation.
We generalize this symmetry to a local gauge symmetry when α depends on x
and t, so α → α(x). The motivation for this is simply that we know that this
way we can write down the theory of electromagnetic interactions of charged
particles.

With α→ α(x) one says that the symmetry is gauged. So, now we consider
the following transformation

ψ(x) → ψ′(x) = e−i α(x)ψ(x)

ψ̄(x) → ψ̄′(x) = eiα(x)ψ̄(x)
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With L0 = ψ̄(x)(iγμ∂μ−m)ψ(x) we see that the mψ̄ψ term is invariant under
this transformation, but the derivative term is not invariant.

ψ̄(x)∂μψ(x) → ψ̄′(x)∂μψ′(x)

= ψ̄(x)eiα(x)∂μ

(
e−iα(x)ψ(x)

)
= ψ̄(x)∂μψ(x)− iψ(x) (∂μα(x))ψ(x)

The second term on the r.h.s. spoils the invariance. If instead of ψ(x)∂μψ(x),
we had a term ψ(x)Dμψ(x) where Dμψ(x) has simple transformation rule

Dμψ(x) → [Dμψ(x)]
′
= e−iα(x)Dμψ(x)

(i.e. Dμψ(x) transforms in the same way as ψ(x)), then ψ(x)Dμψ(x) will be
gauge invariant. Dμψ(x) is called the gauge-covariant derivative (or simply
covariant derivative) of ψ(x).

One can realize this requirement of Dμψ(x) by enlarging the theory by
including a new vector field Aμ(x), the gauge field. With this,

Dμψ(x) = (∂μ − ieAμ)ψ(x)

One can easily check that the requirement

[Dμψ(x)]
′
= e−iα(x)Dμ(x)ψ(x)

implies the following transformation property for the gauge field:

A′
μ(x) = Aμ(x)− 1

e
∂μα(x)

With Aμ transforming like this, the derivative term becomes invariant

ψiγμ (∂μ − ieAμ)ψ → ψ
′
iγμ

(
∂μ − ieA′

μ

)
ψ′

= ψeiα(x)iγμ (∂μ − ieAμ + i∂μα(x)) e
−iα(x)ψ(x)

= ψiγμ (∂μ − ieAμ)ψ(x)

Thus, the extra term from the gauge transformation of Aμ precisely cancels
the extra term when ∂μ acts on e−iα(x)ψ(x). This will be important when we
discuss QCD. Our Lagrangian L0 changes now to

L = ψiγμ (∂μ − ieAμ)ψ −mψψ

Aμ is the gauge field for the electromagnetic interaction. To include dynamics
of Aμ, we add

LA = −1

4
FμνF

μν , Fμν = ∂μAν − ∂νAμ
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This leads to the Maxwell equations. With the -14 normalization one gets the
equation

∂μF
μν = −eJμ

where Jμ = ψγμψ is the conserved matter current. One can easily check
directly that Fμν is gauge invariant.

Exercise: Verify that

[DμDν −DνDμ]ψ = −ieFμνψ

(This equation has a nice geometric meaning in terms of curvature.)
Using this and the transformation property of Dνψ one can show that

Fμν is gauge invariant. We thus get the final QED Lagrangian

L = ψiγμ (∂μ − ieAμ)ψ −mψψ − 1

4
Fμν .F

μν

Note the following:

1. A term like m2AμA
μ is not gauge invariant, so the photon is massless.

This will remain true for all gauge theories including QCD.

2. The coupling of the photon to the electron is contained in the Dμψ term.
It is called the ‘minimal coupling’. This will also be used in QCD

3. The QED Lagrangian does not have a gauge field self coupling, i.e., there
are no terms like AAA, or AAAA. This is because the photon does not
carry charge. This will not be true for QCD. Gluons (which are the analogs
of the photon) carry color charges and hence self interact. Let us now write
down the Lagrangian for QCD with 2 colors (a hypothetical case).

1.2.3 Non-Abelian Gauge Symmetry: Yang-Mills theory

We first consider a theory with the symmetry group SU(2) (it was U(1) for
QED which is Abelian). SU(2) is a non-Abelian group. Let the fermion fields
be a doublet (fundamental representation of SU(2)):

ψ =

(
ψ1

ψ2

)
Note that each component ψi will be a four component Dirac Spinor. Under
an SU(2) transformation, ψ will transform as

ψ(x) → ψ′(x) = exp

{
−i	τ .	θ

2

}
ψ(x)

≡ Uψ(x)
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where 	τ = (τ1, τ2, τ3) are the usual Pauli matrices, satisfying the Lie algebra of
SU(2), v.i.z., [τi

2
,
τj
2

]
= iεijk

τk
2

i, j, k = 1, 2, 3

and 	θ = (θ1, θ2, θ3) are the SU(2) transformation parameters.
We write the Lagrangian

L = ψ(x) (iγμ∂μ −m)ψ(x)

This is again invariant under the above global SU(2) transformation with 	θ
being independent of 	x and t.

ψ → ψ′ = Uψ

ψ → ψ
′

= ψ U † where U †U = 1

Now we gauge this symmetry, i.e., make θi space-time dependent. Then

ψ(x) → ψ′(x) = U(θ(x))ψ(x)

with

U(θ(x)) = exp

{
−i

	τ

2
.	θ(x)

}
Again we can easily see that the mass term mψ̄ψ in L is invariant under this
symmetry transformation but the derivative term is not. To make the deriva-
tive term also invariant we will again construct a covariant derivative Dμ by
introducing new gauge fields (like Aμ was introduced for QED).

Note that the derivative term which spoils gauge invariance has a term
proportional to ∂μU(θ), i.e.,

∂μ

{
exp

(
−i

τa

2
θa(x)

)}
∼ τa∂μθ

a(x) exp(...)

for a = 1, 2, 3. It is this term which spoils the invariance of L when θa depend
on 	x and t. Using gauge fields we have to compensate for these derivatives.
Since τa, a = 1, 2, 3 are linearly independent, to cancel each derivative, such
as τ1∂μθ

1, one will need a gauge field. That is, we will need a term like τaAa
μ,

a = 1, 2, 3 with each gauge field transforming with the appropriate θ (as we
see below). Thus the number of gauge fields to be introduced = number of
generators = 3 for SU(2).

Note: When we construct a gauge theory for SU(3), i.e. real QCD, then we
need the number of gauge fields = number of generators of SU(3) = 8. (For
SU(N) , the number of generators is N2−1 for N �= 1). Each gauge field is like
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an independent photon. These are the gluons (massless gauge bosons). Thus
we will need 8 gluons for QCD.

We go back to the case of 2 color QCD with the gauge group SU(2). Again,
to have the derivative term gauge invariant, we need the following transforma-
tion property for the covariant derivative:

Dμψ(x) → [Dμψ(x)]
′
= U(θ)Dμψ(x)

where ψ(x) → ψ′(x) = U(θ)ψ(x). Clearly, with ∂μ replaced by Dμ we get

L = ψ(x) (iγμDμ −m)ψ(x)

which will be gauge invariant. We write Dμψ(x) as

Dμψ(x) =

[
∂μ − ig

τa

2
Aa

μ

]
ψ(x)

where g is the coupling constant. One can check that the requirement of
[Dμψ(x)]

′ = U(θ)Dμψ(x) implies the following transformation properly for
the gauge fields:

τa

2
Aa′

μ = U(θ)
τa

2
Aa

μU(θ)−1 − i

g
[∂μU(θ)]U−1(θ)

Recall that for QED also, we had

ψ(x) → ψ′(x) = e−iα(x)ψ(x)

≡ U(α)ψ(x)

The transformation of Aμ is then analogously

A′
μ = U(α)AμU

−1(α)− i

e
[∂μU(α)]U−1(α)

= Aμ − i

e
(−i∂μα(x)) = Aμ − 1

e
∂μα(x)

which is the familiar transformation for QED.

Self Interactions of Gauge Fields

One crucial difference between QED and Yang-Mills gauge theories is that for
the non-Abelian case gauge fields have self interactions whereas in QED photons
do not have self interactions. To understand the basic physical reason for this,
let us go back to the SU(2) gauge theory case and consider an infinitesimal
gauge transformation for the vector potentials.

For θ(x) � 1 we write

U(θ) = exp

{
−i

	τ

2
.	θ(x)

}
� 1− i

	τ .	θ(x)

2
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Exercise: Using this in the transformation law for Aa
μ, and neglecting θ2 terms,

show that one gets

τ c

2
A′c

μ =
τ c

2
Ac

μ + θa(x)Ab
με

abc τ
c

2
− 1

g

τc
2
∂μθ

c(x).

Since τa are linearly independent, we get

A′c
μ = Ac

μ + εabcθaAb
μ − 1

g
∂μθ

c

εabc comes from [
τa

2
,
τ b

2

]
= iεabc

τ c

2

Consider global transformations, so ∂μθ
c = 0, we get

A′c
μ = Ac

μ + εabcθaAb
μ

This shows that Ac
μ transforms in the adjoint representation of SU(2). Several

important results follow from this expression. Recall Noether’s theorem which
implies that one can calculate a symmetry current and the associated charge.
For example, recall the case of QED.

ψ → ψ′(x) = e−iα(x)ψ(x)

Aμ → A′
μ(x) = Aμ(x)− 1

e
∂μα(x)

For global transformations, α(x) = α and we get

ψ′(x) = e−iαψ(x) andA′
μ(x) = Aμ(x)

So, under a global U(1) (continuous) symmetry transformations, ψ(x) trans-
forms non-trivially. The associated charge is the ”electric charge” of the field
ψ(x). However, Aμ(x) transforms trivially under global U(1) transformations.
So in QED, the photon does not carry any electric charge (the symmetry cur-
rent will give zero charge). As the photon does not have electric charge, it does
not have self couplings like AAA or AAAA. Now, for the SU(2) case we saw
that the transformation of Aa

μ for constant SU(2) transformations is

A′c
μ = Ac

μ + εabcθaAb
μ

Thus, under global SU(2) transformations, Aa
μ transforms non-trivially. Hence

there will be a non-zero Noether charge associated with Ac
μ. Due to this we

expect self couplings. Indeed, we will see that for every Yang-Mills theory there
are self couplings like AAA and AAAA.

Note : So far we have the Lagrangian for the SU(2) case

L = ψ(x) (iγμDμ −m)ψ(x)
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We are missing a term analogous to FμνF
μν for the QED case. To write such

a term we recall the following relation from QED

(DμDν −DvDμ)ψ(x) = −ieFμνψ(x)

We will use this type of expression for defining the appropriate expression for
Fμν for the SU(2) case. Since

Dμψ =

(
∂μ − ig

	τ

2
. 	Aμ

)
ψ

involving Pauli matrices, we extend the earlier relation appropriately as

[DμDν −DνDμ]ψ ≡ −ig

(
τa

2
F a
μν

)
ψ

This expression is used to define F a
μν .

Exercise: Show that the evaluation of the l.h.s. gives

F c
μν = ∂μA

c
ν − ∂νA

c
μ + gεcabAa

μA
b
ν

This is the expression for the field strength F c
μν for the non-Abelian case. We

can write

Aμ ≡ Aa
μ

τa

2
and Fμν ≡ τa

2
F a
μν and Fμν = ∂μAν − ∂νAμ − ig [Aμ, Aν ]

Exercise: In QED, Fμν was gauge invariant. Show that under an SU(2) gauge
transformation

τaF a
μν → τaF a′

μν = U(θ)τ bF b
μνU(θ)−1.

Thus, to construct the analog of FμνF
μν term here, we write

Tr
{(

	τ . 	Fμν

)
(	τ .Fμν)

}
This will be gauge invariant due to the cyclic properly of the trace. Note that

Tr
{
τaF a

μντ
bF bμν

}
= Tr τaτ bF a

μνF
bμν = 2F a

μνF
aμν

using Tr[τaτ b] = 2δab.
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Now, we can write down the complete gauge invariant Lagrangian for the
SU(2) color gauge theory with the doublet field ψ as

L = −1

4
F a
μνF

aμν + ψiγμDμψ −mψψ

Generalization to other Lie Groups

One can generalize this construction to any other Lie group. Essentially, one
has to replace τ i by appropriate generators and εabc by corresponding structure
constants.We will first discuss the general case of a simple Lie Group and then
write down the Lagrangian for QCD with 3 colors. Suppose G is a simple Lie
Group (essentially meaning that it is not a direct product of other groups). Let
F a be the generators of the group, satisfying the Lie algebra[

F a, F b
]
= ifabcF c

where fabc are totally antisymmetric structure constants (fabc are real). For
SU(2) we had [

τa

2
,
τ b

2

]
= iεabc

τc
2

Suppose ψ transforms under some representation of G with representation ma-
trices T a, i.e., under a gauge transformation

ψ(x) → ψ′(x) = exp
{
−i	T .	θ(x)

}
ψ(x)

≡ U(θ)ψ(x)

Thus [
T a, T b

]
= ifabcT c

Recall that for the SU(2) case, 	T were �τ
2 and fabc was εabc. The covariant

derivative then is

Dμψ =
(
∂μ − igT aAa

μ

)
ψ

The field strength tensor is

F a
μv = ∂μA

a
ν − ∂νA

a
μ + gfabcAb

μA
c
ν

The gauge transformation for Aa
μ is

	T . 	Aμ(x) → 	T . 	A′
μ(x) = U(θ)	T . 	AμU

−1(θ)− i

g
[∂μU(θ)]U−1(θ)

Again, all these are exactly the same as the SU(2) case with the replacement

	τ

2
→ 	T and εabc → fabc
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Also the number of Aa
μ is equal to the number of generators T a. We can write

the complete Lagrangian as

L = −1

4
F a
μνF

aμν + ψ (iγμDμ −m)ψ

Self Interactions

Note that F a
μνF

aμν term has the following types of terms

g ∂νA
a
μf

abcAμbAνc

and

g2fabcfalmAb
μA

c
νA

μlAνm

The corresponding Feynman diagrams have three point and four point vertices.
Thus, every gauge theory with a non-Abelian gauge group has self couplings
for the gauge fields. This was expected since we saw that gauge bosons here
carry charges. In contrast, in QED (Abelian Group U(1)) photons have no self
interaction.

It is straightforward now to write the Lagrangian for QCD. We have six
types of quarks (flavors u, d, s, etc). The gauge group is SU(3) color. Each quark
comes in 3 colors. That is, quarks are taken to transform as the 3-dimensional
fundamental representation of the SU(3) color group. SU(3) has 8 generators,
so we need 8 gauge fields Aa

μ, a = 1, ...8. These are associated with 8 gluons.
We can write down the Lagrangian

LQCD = −1

4
F a
μνF

aμν +
∑
α

ψα (iγμDμ −mα)ψα

where α = u, d, c, s, t, b is the flavor index for quarks.
As ψα is taken to be in the 3-dimensional fundamental representation of

SU(3)c, we may represent it as, for example,

ψα =

⎛⎝ ψred

ψblue

ψgreen

⎞⎠
α

Thus, we take the following representation for the generators of SU(3)

T a =
λa

2
, a = 1, 2...8
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where λa are the Gell-Mann matrices

λ1 =

⎛⎝ 0 1 0
1 0 0
0 0 0

⎞⎠ , λ2 =

⎛⎝ 0 −i 0
i 0 0
0 0 0

⎞⎠
λ3 =

⎛⎝ 1 0 0
0 −1 0
0 0 0

,

⎞⎠ , λ4 =

⎛⎝ 0 0 1
0 0 0
1 0 0

⎞⎠
λ5 =

⎛⎝ 0 0 −i
0 0 0
i 0 0,

⎞⎠ , λ6 =

⎛⎝ 0 0 0
0 0 1
0 1 0

⎞⎠
λ7 =

⎛⎝ 0 0 0
0 0 −i
0 i 0

⎞⎠ , λ8 =

⎛⎝ 1/
√
3 0 0

0 1/
√
3 0

0 0 −2/
√
3

⎞⎠
Also, [

T a, T b
]
= ifabcT c

is the Lie algebra of SU(3) with antisymmetric structure constants fabc given

by

f123 = 1, f458 = f678 =
√
3/2, f147 = −f156 = f246 = f257 = f345 = −f367 = 1/2.

With T a = λa

2 , the covariant derivative is

Dμψα =
(
∂μ − igsT

aAa
μ

)
ψα

gs is the strong interaction coupling constant. The expressions for F a
μν etc. are

the same as given for the general case of group G with T a = λa

2 . We thus
conclude that gluons carry color charges and hence they have self interactions.

1.2.4 Symmetries of QCD

Apart from the gauge SU(3) symmetry of QCD, which is exact, QCD possesses
the following approximate global symmetries.

Isospin Symmetry

This played a crucial role in the early stages of development of QCD in terms
of hadron spectroscopy. If mα � m for certain α, say α = u, d, s, then we can
write

ψ =

⎛⎝ u
d
s

⎞⎠ ψ =
(
u d s

)
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L = ψ (iγμDμ −m)ψ +
∑
β

ψβ (iγ
μDμ −mβ)ψβ β = c, t, b

This is invariant under an SU(3) global symmetry transformation acting on⎛⎝ u
d
s

⎞⎠
This invariance is known as the isospin flavor symmetry and originally it led to
the discovery of the quark model.

Chiral Symmetry

This is a very important symmetry of QCD which arises if mα � 0 for certain α,
leading to decoupled left handed and right handed components of the massless
quarks.

1.2.5 Feynman Rules for QCD

Essentially, the only difference from the case of QED is that for QCD we have
color factors (color states C and C†) and λ matrices. Also, in QCD we have
3-gluon and 4-gluon vertices which are not there in QED. The Feynman rules
for QCD (in the Lorenz gauge) are given below.

1. The gluon propagator: Recall that the propagator in QED for the photon
is

−i
gμν

q2

The Feynman rule for the gluon propagator is

q

= −i
gμν

q2
δab

where a, b = 1, 2, .., 8 are color indices for gluons. Note that one may
expect 9 gluon states : 3⊗3, rr, rb, rg, etc. However 3⊗3 = 1+8, where
1 is a color singlet. The gluon cannot be a color singlet, otherwise it does
not interact via the color interaction. Hence there are only 8 (an octet of)
gluons. Color states C for quarks are given by a 3 vector

C :

⎛⎝ 1
0
0

⎞⎠ ∼ red,

⎛⎝ 0
1
0

⎞⎠ ∼ blue,

⎛⎝ 0
0
1

⎞⎠ ∼ green
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Similarly, we have an eight element column vector for gluons

A :

⎛⎜⎜⎜⎜⎜⎜⎝
1
.
.
.
:
0

⎞⎟⎟⎟⎟⎟⎟⎠ for |1〉, ....

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
0
.
;
0
1
0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
for |7〉, etc.

2. Quark propagator:

q = i
(γμqμ +m)

q2 −m2
δαβ

where α, β = 1, 2, 3 are color indices for quarks. Apart from δαβ the above
is the same as in QED for electrons.

3. Quark-gluon vertex: The quark-gluon interaction term in the QCD La-
grangian is

Lint = ψgs
λa

2
γμA

aμψ

(a is the color index). Thus the quark-gluon vertex is given by

a, μ

= igs
λa

2
γμ

In QED, the electron-photon vertex is ieγμ.

4. Three gluon vertex: The relevant term in L is

−gs
(
∂μA

a
ν − ∂νA

a
μ

)
fabcAbμAcν

The vertex is

b, ν

a, μ

c, λ

k1

k2
k3

=

gsf
abc [gμν(k1 − k2)λ

+ gνλ(k2 − k3)μ

+ gλμ(k3 − k1)ν ]
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5. Four gluon vertex: The relevant interaction term in L is

−g2sf
abcAb

μA
c
νf

adeAdμAeν

So, the vertex is

c, λ

a, μ b, ν

d, ρ

=

−ig2s
[
fabe f cde (gμλgνρ − gμρgνλ)

+face f bde (gμνgλρ − gμρgνλ)

+fade f bce (gμνgλρ − gμλgνρ)
]

6. External quarks and anti-quarks: External quark with momentum p, spin
s, and color C:

• Incoming quark: u(s)(p)C, while for QED we have u(s)(p).

• Outgoing quark: u(s)(p)C†, while for QED we have u(s)(p).

For an external antiquark:

• Incoming antiquark: v(s)(p)C†, while for QED we have v̄s.

• Outgoing antiquark: v(s)(p)C, while for QED we have vs. Here C
represents the color of the corresponding quark.

7. External gluon:

• Incoming gluon of momentum p, polarization ε, color a: εμ(p)A
a,

while for QED (photon) we have εμ(p).

• Outgoing gluon of momentum p, polarization ε, color a: ε∗μ(p)A
a†,

while for QED (photon) we have ε∗μ(p).

In addition there are Feynman rules for unphysical ghost particles corre-
sponding to the longitudinal polarization of virtual gluons. Feynman rules for
the same can be found in, e.g. the first reference in ref. [1].

1.3 Running Coupling Constant in QCD

1.3.1 Physical Picture

Let us recall how a ‘screened’ charge appears in an ordinary dielectric medium
like water. A test charge +q in a polarisable dielectric medium is screened from
outside. There will be an induced dipole moment 	P per unit volume, and the



1.3. Running Coupling Constant in QCD 19

effect of 	P on the resultant field is the same as that produced by a volume
charge density equal to -	∇. 	P . For a linear medium, 	P is proportional to 	E, so
	P = χεo 	E. Gauss’s law is then modified from

	∇. 	E = ρfree/εo

to

	∇. 	E =
ρfree − 	∇. 	P

εo

Taking χ to be approximately constant, we get

	∇. 	E =
ρfree
εo

− χ	∇. 	E

or, 	∇. 	E =
ρfree
ε

where ε = (1 + χ)εo is the dielectric constant of the medium (εo being that of
vacuum). Thus, the electric field is effectively reduced by the factor (1 + χ)−1.

However, this is a macroscopic treatment with the molecules being re-
placed by a continuous distribution of charge density, −	∇. 	P . For very small
distances (∼ molecular distances), the screening effect will be reduced. Thus,
we expect that ε should be a function of the distance r from the test charge.
In general, the electrostatic potential between two test charges q1, and q2 in a
dielectric medium can be represented phenomenologically by

V (r) =
q1q2

4πε(r)r

where ε(r) varies with r. We can define an effective charge

q′ =
q√
ε(r)

for each test charge.

Effective Charge in QED

In quantum field theory, the polarisable medium is replaced by the vacuum. We
know about the polarization of the vacuum arising from vacuum fluctuations
which are always there. Virtual e+e− pairs align in the presence of a test charge.
Thus, near a test charge, in vacuum, charged pairs are created. They exist for
a time Δt ∼ �/mc2. They can spread to a distance of about cΔt (i.e. the
Compton wavelength λc). This distance gives a measure of the equivalent of the
molecular diameter for a dielectric medium. Virtual e+e− pairs are effectively
dipoles of length λc ∼ 1

m . Again, due to the screening effects of these vacuum
fluctuations, the effective charge will depend on the distance.
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Meaning of the Familiar Symbol e

This is simply the effective charge as r → ∞, or in practice, the charge relevant
for distances much larger than the particle’s Compton wavelength. For example,
it is this large distance value of the charge which is measured in Thomson
scattering. The distance (or momentum) dependent coupling constant is called
the ‘Running coupling constant’. It arises due to renormalization which we
discuss in the next section.

1.3.2 β Function in QFT

We will see that due to renormalization in QFT, one gets a running coupling
constant g(t) where t is the momentum (distance−1) scale. The behavior of g(t)
as a function of t is determined by the β function

t
dg(t)

dt
= β(g) .

Once we know the β function of a theory, we can immediately get the running
coupling constant of the theory.

How does one calculate β(g)? Let us sketch the important steps for a scalar
theory. We will then discuss results for QED and QCD. Note that renormalized
g arises due to vacuum fluctuations. The latter also lead to divergences. Hence
the two are intimately connected.

Divergences and Renormalization in QFT

First take the case of scalar field theory with a φ4 interaction,

L =
1

2
∂μφ∂

μφ− m2

2
φ2 − g

4!
φ4

The Feynman rules for the propagator and vertex of this theory are given by

i

p2 −m2
and − ig

Divergences arise from loop integrals. For example, the self energy contribution
at the one loop level to the free particle propagator is

g

∫
d4q

(2π)4
1

q2 −m2

This is ultraviolet divergent as there are 4 powers of q in the numerator and 2
in the denominator.

Similarly, consider the 1-loop contribution to the 4-point vertex function.

g2
∫

d4q

(2π)4
1

(q2 −m2)
(
[p1 + p2 − q]

2 −m2
)
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Here there are 4 powers of q in both numerator and denominator, so we have
a logarithmic divergence.

1PI Diagrams

For studying renormalization we focus on the one particle irreducible (1PI)
diagrams. These are the connected Feynman diagrams, which cannot be dis-
connected by cutting any one internal line. Correspondingly, we define the 1PI
Green’s function Γ(n) (p1, ..pn) which have contributions from 1PI diagrams
only. The reason for selecting 1PI diagrams is that every other diagram can be
decomposed into 1PI diagrams without further loop integration. So, if we know
how to take care of the divergences of 1PI diagrams, we can then handle other
diagrams also.

1.3.3 Regularization

One needs to isolate the divergences in these divergent integrals and regularize
them or make them finite. Eventually, these divergences are absorbed by re-
defining various parameters of the theory, i.e. by renormalization. There are
various techniques for regularizing a divergent Feynman diagram.

• Pauli-Villars regularization

Here the propagator is modified to

1

p2 −m2
− 1

p2 −M2
=

m2 −M2

(p2 −m2) (p2 −M2)

As the propagator now behaves as 1
p4 , integrals usually converge. When

we take M2 → ∞, the original theory is restored.

• Cut-off regularization

One can use a cut off Λ in the momentum integral. Eventually the
Λ → ∞ limit is taken.

The above methods become problematic when non-Abelian gauge
theories are considered.

• Dimensional Regularization

This is the most versatile regularization technique. Here the action
is generalized to arbitrary dimensions d where there are regions in the
complex d space in which the Feynman integrals are all finite. Then as
we analytically continue d to 4, the Feynman graphs pick up poles in d
space, allowing us to absorb the divergences of the theory into physical
parameters.
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1.3.4 Scalar Theory

Let us consider dimensional regularization for the scalar theory

L =
1

2
∂μφ∂

μφ− m2

2
φ2 − g

4!
φ4

We first generalize this theory to arbitrary d dimensions. As S =
∫
Lddx is

dimensionless (S should have units of � = 1), we have, from the first term in
L,

1

L2
Ld[φ]2 = 1

⇒ [φ] = L
2−d
2

where L denotes the length dimension (same as mass−1 dimension in natural
units). So the mass dimension of φ is d

2 − 1.
The gφ4 term has mass dimension [g] M2d−4. This needs to be [M ]d. To

keep g dimensionless, we need to introduce a factor μ4−d to cancel the (2d−4−d)
mass dimension in

∫
gφ4ddx. Thus we get

L =
1

2
∂μφ∂

μφ− m2

2
φ2 − μ4−dg

4!
φ4

Note the presence of the arbitrary mass scale μ. With this L we can calculate
the divergent 1-loop diagrams. The self energy is∑

=
1

2
gμ4−d

∫
ddp

(2π)d
1

p2 −m2

These integrals can be calculated using the gamma function.

∑
=

−ig

32π2
m2

(
4πμ2

m2

)2−d/2

Γ (1− d/2)

The gamma function Γ has poles at zero and negative integers, so, we see that
the divergence of the integral manifests itself as a simple pole as d → 4. Using
ε = 4− d

Γ(1− d/2) = Γ
(
−1 +

ε

2

)
=

−2

ε
− 1 + γ +O(ε)

where γ = 0.577 is the Euler-Mascheroni constant. Thus expanding the above
expression about d = 4 using aε = 1 + ε ln a +...., we get

1

i
Σ =

igm2

16π2ε
+

igm2

32π2

[
1− γ + ln

(
4πμ2

)
m2

]
+O(ε)

=
igm2

16π2ε
+ finite
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Similarly, the 4-point function to order g2 is

1

2
g2(μ2)4−d

∫
ddp

(2π)d
1

(p2 −m2)

1

[(p− q)2 −m2]

Again using the Γ function one can get

ig2με

16π2ε
− finite part

We can now obtain the vertex functions (with amputated legs). The 2-
point function is given by

Γ(2)(p) = p2 −m2 −
∑

(p2)

= p2 −m2
(
1− g

16π2ε

)
neglecting the finite term

Apart from the inverse of the bare propagator, Γ(2) contains only 1PI graphs.
The 4-point function is given by

Γ(4)(pi) = −igμε

(
1− 3g

16π2ε

)
+ finite ≡ −igR

Renormalization

Consider now the vertex functions Γ(2) and Γ(4) to one loop approximation.

Γ(2)(p) = p2 −m2 −
∑

∑
=

−gm2

16π2ε

where ε = 4− d and we have ignored finite parts. We can rewrite it as

Γ(2)(p) = p2 −m2
1

where

m2
1 = m2

(
1− g

16π2ε

)
=

m2

(1 + g/16π2ε)

m1 is taken to be finite, representing the physical mass. This is called the
renormalized mass.

∑
is divergent (with ε → 0) so m (the bare mass) is taken

to be appropriately divergent so that m1 is finite.
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The renormalized mass m1 is given by

m2
1 = −Γ(2)(0)

Note that this is the renormalization condition where the physical mass is
defined at p = 0. It could very well have been defined at some other value of p.

Similarly, consider Γ(4) where

iΓ(4)(pi) = gμε − g2με

16π2

[
3

ε
+ Γ̃(pi)

]
where Γ̃(pi) is finite. Define a new parameter g1, the renormalized coupling
constant, by

g1 = gμε − g2με

16π2

[
3

ε
+ Γ̃(0)

]
Again, note here that g1 is being defined at pi=0. An alternative is to define it
at the symmetrical point, p2i = m2, so s, t, u = 4m2/3.

These are the results up to the 1-loop level. It turns out that when 2-loop
diagrams are calculated then using renormalization of the m and g parameters,
Γ(4) is finite, but Γ(2) remains divergent. This is due to overlapping divergences
at the 2-loop level. So, coupling constant and mass renormalization do not re-
move this additional divergence at the 2-loop level. It is removed by absorption
in a multiplication factor and we define a renormalized 2-point function

Γ(2)
r = Zφ(g1,m1, μ)Γ

(2)(p,m1, μ)

Γ
(2)
r is now finite with Zφ infinite.

√
Zφ is called the wave function (or field)

renormalization constant. Field renormalization is φ = Z
−1/2
φ φ0, where φ0 is

the unrenormalized field. So, the 2-point function is

〈0|Tφ(x1)φ(x2)|0〉 = Z−1
φ 〈0|Tφ0(x1)φ0(x2)|0〉

where the 2-point functions on the l.h.s. and the r.h.s. are G
(2)
R (x1, x2) and

G
(2)
(0)(x1, x2) respectively.

Thus, in general, the renormalized field φ defines the renormalized Green’s

functions G
(n)
R which are related to the unrenormalized ones by

G
(n)
R (x1....xn) = 〈0|Tφ(x1)...φ(xn)|0〉

= Z
−n/2
φ 〈0|Tφ0(x1)...φ0(xn)|0〉

= Z
−n/2
φ G

(n)
0 (x1...xn)
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In momentum space, we get

G
(n)
R (p1..pn) = Z

−n/2
φ G

(n)
0 (p1...pn)

Now, to go from the connected Green’s functions given above to the 1PI (am-
putated) Green’s function, we have to eliminate the one-particle reducible di-
agrams. But more importantly for us, we have to remove the propagators for
the external lines in the 1PI Green’s functions (to get amputated Green’s func-

tions). Thus, we need to remove ΔR (pi) from G
(n)
R (p1..pn) and Δ(pi) from

G
(n)
0 (pi). Now

ΔR(pi) = Z−1
φ Δ(pi)

where the propagators on the l.h.s. and r.h.s. are G
(2)
R and G

(2)
0 respectively.

Thus, we get

Γ
(n)
R (pi) = [ΔR(pi)]

−n
G

(n)
R (pi)

= Zn
φ (Δ(pi))

−n
Z

−n/2
φ G

(n)
0 (pi)

or, Γ
(n)
R (pi) = Z

n/2
φ [Δ(pi)]

−n
G

(n)
0 (pi)

= Z
n/2
φ Γ

(n)
0 (pi)

Thus, finally using renormalized quantities, we can write

Γ
(n)
R (p1, ..pn; gR,mR, μ) = Z

n/2
φ Γ

(n)
0 (p1..pn, g0,m0)

Note that Γ
(n)
0 (pi, g0,m0) will be divergent. Some divergences will be removed

by using renormalized mR and gR, the remaining divergence will be removed

by multiplying by Z
n/2
φ .

1.3.5 Renormalization Group

We have

Γ
(n)
R (pi, gR,mR, μ) = Z

n/2
φ Γ

(n)
0 (pi, g0,m0)

or, Γ
(n)
0 (pi, g0,m0) = Z

−n/2
φ Γ

(n)
R (pi, gR,mR, μ)

Now the unrenormalized vertex function Γ
(n)
0 should be independent of μ, so

μ
d

dμ
Γ
(n)
0 = 0

(Note that Γ0 is divergent; here it is used with proper regularization, e.g. di-
mensional regularization with ε �= 0. Γ0 diverges in the ε → 0 limit.) We get

μ
d

dμ

[
Z

−n/2
φ Γ

(n)
R (pi, gR,mR, μ)

]
= 0
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where gR and mR depend on μ. This implies

−n

2
Z

(−n/2−1)
φ μ

∂Zφ

∂μ
Γ
(n)
R + Z

(−n/2)
φ

[
μ
∂

∂μ
+ μ

∂gR
∂μ

∂

∂gR
+ μ

∂mR

∂μ

∂

∂mR

]
Γ
(n)
R = 0

Multiplying the above with Z
n/2
φ gives[

−nμ
∂

∂μ
ln
√

Zφ + μ
∂

∂μ
+ ...

]
Γ
(n)
R = 0

Define

μ
∂

∂μ
ln
√
Zφ = γ(g)

β(g) = μ
∂g

∂μ

mγm(g) = μ
∂m

∂μ

We then get the renormalization group (RG) equation:[
μ

∂

∂μ
+ β(g)

∂

∂g
− nγ(g) +mγm(g)

∂

∂m

]
Γ(n) = 0

β(g) is called the β function of the theory. The renormalization group equation
expresses how the renormalized vertex functions change when we change the
arbitrary scale μ.

We are interested in knowing the behavior of coupling constants, etc.
under the change of the momentum scale, because we want to understand the
behavior of the theory at high energies. We therefore make the following scale
transformations and desire a slightly different constraint on the vertex function.
Consider pi → tpi, i.e. rescaling of all momenta by t. Then

Γ(n)(tpi, g,m, μ) = tDΓ(n)
(
pi, g, t

−1m, t−1μ
)
,

where D is the mass dimension of the vertex function Γ(n), or

Γ(n) (tpi, g,m, μ) = μDf

(
g,

t2p2i
mμ

)
≡ μDf(g, α)

This is because Γ is Lorentz invariant, and hence can only be a function of
various dot products pi.pj . To create a dimensionless quantity, we divide by μm.
The overall scaling quantity μD means that the function has mass dimension
D. Let us calculate

μ
∂

∂μ
Γ(n) (tpi, g,m, μ) = μDμD−1f + μD+1 ∂f

∂α

(−t2p2i
mμ2

)
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Similarly,

t
∂Γ

∂t
= tμD ∂f

∂α

(
2tp2

mμ

)
m

∂Γ

∂m
= mμD ∂f

∂α

(−t2p2

m2μ

)

Summing all these terms, we get[
t
∂

∂t
+m

∂

∂m
+ μ

∂

∂μ
−D

]
Γ(n) = μD ∂f

∂α

[
− t2p2

mμ
+

2t2p2

mμ
− t2p2

mμ

]
= 0

We now have two different equations for Γ(n). Note that for the RG equation
also, we can consider Γ(n) (tp, g,m, μ). We can eliminate μ ∂

∂μ term from the
above equation and the RG equation. We get[

β(g)
∂

∂g
− nγ(g) +mγm(g)

∂

∂m
− t

∂

∂t
−m

∂

∂m
+D

]
Γ(n) = 0

or[
β(g)

∂

∂g
− t

∂

∂t
− nγ(g) +m (γm(g)− 1)

∂

∂m
+D

]
Γ(n)(tp, g,m, μ) = 0

This equation directly gives the effect of scaling up the momenta by a factor t.
This equation expresses the fact that a change in t (i.e. momentum scale) may
be compensated by a change in m and g and an overall factor. Thus, we expect
that there should be functions g(t),m(t) and f(t) such that

Γ(n)(tp,m, g, μ) = f(t)Γ(n)(p,m(t), g(t), μ).

Differentiating this with respect to t we get (m and g also depend on the scale t)

t
∂

∂t
Γ(n)(tp,m, g, μ) = t

df(t)

dt
Γ(n)(p,m(t), g(t), μ)

+tf(t)

[
∂m

∂t

∂

∂m
+

∂g

∂t

∂

∂g

]
Γ(n)(p,m(t), g(t), μ)

Then using

Γ(n)(tp,m, g, μ) = f(t) Γ(n)(p,m(t), g(t), μ)

we get [
−t

∂

∂t
+

t

f(t)

df

dt
+ t

∂m

∂t

∂

∂m
+ t

∂g

∂t

∂

∂g

]
Γ(n)(tp,m, g, μ) = 0

Comparison of this equation with the previous equation gives

t
∂g(t)

∂t
= β(g)
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We also get

t
∂m

∂t
= m [γm(g)− 1]

This gives the change in mass. Furthermore,

t

f

df

dt
= D − nγ(g)

The solution of this equation is

f(t) = tD exp

[
−
∫ t

0

nγ(g(t))dt

t

]

Recall that Γ(n)(tp,m, g, μ) = f(t)Γ(n)(p,m(t), g(t), μ). Here tD gives the
canonical mass dimension of the vertex function Γ(n). The exponential term
gives the ‘Anomalous Dimension’ for the vertex function arising entirely due to
renormalization effects.

1.3.6 β Function

We have

t
∂g(t)

∂t
= β(g)

where g(t) is called the ‘running coupling constant’. Knowledge of the function
β(g) enables us to find g(t), and of particular interest is the asymptotic limit
of g(t), as t → ∞.

We now consider the possible behavior of g(t) as t → ∞, i.e. at large
momentum (and assuming that the above equation is still valid there).

1. Suppose β(g) has the following behaviour. It is zero at g = 0. Then, as
g increases, it increases first and then starts decreasing, crossing the g
axis at g0 and becomes negative after that. The zeros of β at g = 0 and
g = g0 are called ‘fixed points’ (as g does not evolve there). For g near g0
if g < g0, β > 0. So g increases with increasing t and is driven towards
g0. Similarly, if g > g0, then β < 0 and dg

dt < 0, so g decreases towards g0
with increasing t.

Thus, g0 is an ultraviolet (large t) stable fixed point and g(∞) = g0.
Note that g0 is an infrared unstable fixed point. Because for g < g0, β > 0
so g decreases away from g0 with decreasing t. Similarly, for g > g0, β < 0,
so decreasing t takes g away from g0. By the same arguments, g = 0 is an
infrared stable fixed point.

2. Now consider the other possibility. Suppose β(g) is zero at g = 0. But
now, as g increases, it decreases first and then starts increasing, crossing
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the g axis at g0 and becoming positive after that. Here g0 is an infrared
stable fixed point while g = 0 is an ultraviolet fixed point. This is because
if g > 0 near g = 0 then β < 0 so when t increases then g(t) decreases
towards 0. So, g(t → ∞) → 0. This is called asymptotic freedom. For
theories with g = 0 as an ultraviolet fixed point, the perturbation theory
gets better and better at higher energies and in the infinite momentum
limit, the coupling constant vanishes.

We will see that QCD is an asymptotically free theory, with a negative β
function.

1.3.7 β Function for a Scalar φ4 theory

Recall the definition of the β function,

β(g) = μ
∂gR
∂μ

At the 1-loop level, we recall that the renormalized coupling

g1 = gμε − g2με

16π2

[
3

ε
+ finite term

]

Defining the bare coupling as gB ≡ gμε, we have

g1 = gB − g2Bμ
−ε

16π2

[
3

ε
+ finite term

]
Hence, μ

∂g1
∂μ

= ε
g2Bμ

−ε

16π2

[
3

ε
+ finite term

]
� 3

16π2
g21

in the ε → 0 limit ignoring terms of order g3 and higher corresponding to the
2-loop level and higher. So, keeping terms only up to the 1-loop level (i.e. of
order g2) one gets the β function by taking the ε → 0 limit as

β(g1) ≡ μ
∂g1
∂μ

=
3g21
16π2

> 0

From the above discussions about the fixed points we see that g = 0 is an
infrared stable fixed point and that φ4 theory is not asymptotically free. Recall
that

t
∂g(t)

∂t
= β(g(t)) =

3g(t)2

16π2

We can rewrite this equation as

dg(t)

g2
=

3

16π2

dt

t
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which implies

g =
g0

1− 3g0
16π2 ln t/t0

This gives us the running coupling constant. As t increases, g increases.

1.3.8 Running Coupling Constant in QED

We start with the Lagrangian in d dimensions,

L = iψγμ∂μψ −mψψ + eμ2−d/2Aμψγμψ − 1

4
(∂μAν − ∂νAμ)

2 − 1

2
(∂μA

μ)
2

where the last term on the r.h.s. is the gauge fixing term. With this, one gets
the Maxwell equation as ∂ν∂

νAμ = 0 (in Lorenz gauge with ∂μAμ = 0).
The vertex graph at the one loop level leads to the renormalized coupling

constant e, related to the bare coupling eB as,

eB =

(
1 +

1

12

e2

π2ε

)
eμε/2

Using ∂eB
∂μ = 0 we can show that β(e) = μ ∂e

∂μ = e3

12π2 . So, in QED also, the β
function is positive and there is no asymptotic freedom. Using

t
∂e(t)

∂t
= β(e) =

e3

12π2

we get

de

e3
=

dt

12π2t

or, e2(t) =
e2(t0)

1− e2(to)
6π2 ln(t/t0)

Defining α = e2/(4π),

α(t) =
α(t0)

1− 4α(t0)
6π ln(t/t0)

Note: The Landau singularity occurs at

t � t0 exp
(
6π2/e2(t0)

) � t0 exp

(
6π

4πα(t0)

)

If t0 ∼ 1 MeV then t ∼ 1080 MeV. But note that for energies higher that 100
GeV one should use the Electroweak theory.



1.3. Running Coupling Constant in QCD 31

1.3.9 Asymptotic Freedom in QCD

The quark gluon vertex function leads to the renormalized coupling constant g
at one loop level, which is related to the bare coupling gB as

gB = gμε/2

[
1− g2

16π2ε

(
11− 2nF

3

)]
Here the factor of nF comes from the field renormalization factor ZA for vacuum
polarization. Using ∂gB

∂μ = 0, we get

β(g) = μ
∂g

∂μ
= −εμ−ε g3

16π2ε

(
11− 2nF

3

)
(Corrections are at higher loop order.) So

β(g) = − g3

16π2

[
11− 2nF

3

]
For the number of quark flavors nF < 16 (we have only 6) we have β(g) < 0, i.e.,
a negative β function. This implies that g decreases with increasing momentum
scale and the theory is asymptotically free. g = 0 is an ultraviolet fixed point.

From

t
∂g

∂t
= β(g) = − g3

16π2

[
11− 2nF

3

]
we can solve for g and using g2

4π = αs, we get

α =
4πα0

4π + α0

(
11− 2nF

3

)
lnQ2

Q2
0

with Q2/Q2
o = t2/t2o , where Q is the momentum. Another way of writing α is

to define (
11− 2

3
nF

)
α0 lnQ

2
0 − 4π =

(
11− 2

3
nF

)
α0 ln Λ2

Then we get

αs

(
Q2

)
= 4π/

(
11− 2nF

3

)
lnQ2/Λ2

Λ is the QCD scale fixed by various scattering processes (e.g. high en-

ergy e+e− → hadrons). One has αs

(
(100GeV)

2
)

= 0.2 which implies Λ =

112MeV for nF = 6. The current value of Λ in the literature ranges from 100
MeV to 300 MeV.

Decrease of αs with Q2 in QCD is due to antiscreening from colored gluons.
qq̄ pairs however still give the usual screening [1]. That is why for a sufficiently
large value of nF there is no asymptotic freedom.
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1.3.10 Running of αs with Momentum Scale

Implications of running coupling constant in QCD and QGP
We have seen that the coupling constant in QCD becomes smaller at

large energy scales and the theory is asymptotically free. This means that the
interactions between quarks and gluons become weaker at very higher energies,
while they are strong at lower energies.

Thus a collection of quarks and gluons interacting with each other with
typical momentum transfer much larger than Λ should constitute a weakly in-
teracting system of particles. As we mentioned earlier, the typical value of Λ
(from scattering experiments) is about 200 MeV.

Thus, we expect that if a system of quarks and gluons is at a temperature
much higher than several hundred MeV, then the coupling constant will be
small and the system should behave as an ideal gas. In such a system we do
not expect the effects of confinement of the QCD interaction to survive. This
system of quarks and gluons where quarks and gluons are no more confined
within the region of a hadron (∼ 1 fm size) is called the quark-gluon plasma
(QGP).

In the other limit, when quark and gluons have small energies, say they are
at low temperatures, then we expect the coupling constant to become strong.
This is the domain where confinement takes place and all quarks and gluons
are confined inside hadrons.

We expect that the transition between this low energy hadronic domain
to the high energy (high temperature) QGP domain is a phase transition. This
is called the deconfinement-confinement phase transition, or, the quark-hadron
phase transition.

1.3.11 High Density Behavior

At sufficiently high density (compressed baryonic matter) we expect that
hadrons should be almost overlapping. For example, in neutron star cores very
high baryon densities are achieved. At such densities, the typical separation
between constituent quarks of different hadrons become much less than 1 fm
or (200 MeV)−1. Again, the effective coupling constant for the quark-gluon in-
teraction should become very small at such high densities. We can then expect
that a state like QGP may exist at very high densities also.

One needs to be careful here as at such high densities many body quantum
effects can play an important role if temperatures are not very high. One expects
exotic states like the color superconductor to form at very high baryon densities.

In this section we saw that at the asymptotic freedom of QCD suggests
that a system of hadrons heated to very high temperatures (much above few
hundred MeV) should transform to a weakly interacting system of quarks and
gluons, i.e. QGP. This expectation is strongly supported by lattice calculations
and other phenomenological approaches, and we will now discuss some of these.
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What we need is to study the system of quarks and gluons at high temperatures.
That is QCD at finite temperatures.

1.4 Field Theory at Finite Temperature

In the following, we will discuss the basic formalism for finite temperature field
theory [3]. We will then specialize to our requirement of a system of fermions
(quarks) and bosons (gluons) at finite temperature. Further details of finite
temperature QCD will be discussed when and where required.

1.4.1 The Partition Function

We know that all thermodynamic properties for a system in equilibrium can be
derived once we know its partition function

Z = Tr e−βH β =
1

T

where Tr stands for the trace, or the sum over the expectation values in any
complete basis. Thus

Z =

∫
dφa〈φa|e−βH |φa〉

We now recall the expression for the transition amplitude in the path integral
formalism

〈φ1|e−iH(t1−t2)|φ2〉 � 〈φ(	x1, t1)|φ(	x2, t2)〉
= N ′

∫
DφeiS

where φ is the basic quantum field variable, N ′ is an irrelevant normalization
constant and S is the action.

S[φ] =

∫ t1

t2

dt

∫
d3xL

where L is the Lagrangian density of the system. The functional integral (path
integral) is defined over paths which satisfy

φ(	x1, t1) = φ1, and φ(	x2, t2) = φ2

φ1 and φ2 are the fixed end points. There is no integration over these fixed end
points.

From the expression of the partition function we can easily see that Z can
be written in terms of a path integral if we identify t1 − t2 with −iβ. Then

Z(β) = Tr e−βH =

∫
dφ1〈φ1|e−βH |φ1〉

= N ′
∫

Dφe−SE
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where SE is the Euclidean action (t → it),

SE =

∫ β

0

dτ

∫
d3xLE

Furthermore, in view of the trace, we require that in the path integral the inte-
gration is done only over those field variables which satisfy periodic boundary
conditions

φ(	x, β) = φ(	x, 0)

Note that here the end points are also being integrated over as there is a sum
over states in Tr e−βH . We will see that for fermions one gets antiperiodic
boundary conditions. Boundary conditions on field variables can be seen by
examining the properties of the thermal Green’s function defined by

G(x, y; τ, 0) = Z−1Tr
(
e−βHT [φ(x, τ)φ(y, 0)]

)
where T is the imaginary time ordering operator. We have for bosons

T [φ(τ1)φ(τ2)] = φ(τ1)φ(τ2)θ(τ1 − τ2) + φ(τ2)φ(τ1)θ(τ2 − τ1)

whereas for fermions we have

T [ψ(τ1)ψ(τ2)] = ψ(τ1)ψ(τ2)θ(τ1 − τ2)− ψ(τ2)ψ(τ2)θ(τ2 − τ1)

from the anticommuting properties of fermions. For bosons we see, using the
cyclic property of the trace that

G(x, y; τ, 0) = Z−1Tr
[
e−βHφ(x, τ)φ(y, 0)

]
= Z−1Tr

[
e−βHeβHφ(y, 0)e−βHφ(x, τ)

]
= Z−1Tr

[
e−βHφ(y, β)φ(x, τ)

]
where

φ(y, β) = eβHφ(y, 0)e−βH

in analogy with the realtime Heisenberg time evolution

φ(y, t) = eiHtφ(y, 0)e−iHt

Thus,

G(x, y; τ, 0) = Z−1Tr
(
e−βHT [φ(x, τ)φ(y, β)]

)
or, G(x, y; τ, 0) = G(x, y, τ, β)

This implies the periodic boundary condition for bosons is

φ(y, 0) = φ(y, β).
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It is then straightforward to see that for fermions we will get

G(x, y; τ, 0) = −G(x, y; τ, β)

and, ψ(x, 0) = −ψ(x, β)

The important lesson for us is that in the functional integral representation for
the partition function, the integration over the field variables is restricted to
those fields which are

1. Bosons : periodic in (imaginary) time with period β

2. Fermions : antiperiodic in (imaginary) time with period β

This will be important for us when we discuss the deconfinement-confinement
phase transition and the Polyakov loop order parameter for that transition.

We now come back to discussing a system of bosons or fermions. We are
familiar from the standard results from statistical mechanics that

1. For one bosonic degree of freedom (one state of energy ω):

E = ωN , and

N = 1
eβ(ω−μ)−1

(Bose-Einstein distribution)

where N ranges continuously from zero to ∞ and μ is the chemical

potential.

2. For fermions

N = 1
eβ(ω−μ)+1

(Fermi-Dirac distribution)

N ranges from 0 to 1

One can rederive these expressions using finite temperature field the-

ory methods. With these, we can obtain various thermodynamic properties

of a system consisting of fermions or bosons.

Quarks

Let us write down the expressions for the energy density and pressure for a
system consisting of a relativistic gas of fermions (quarks). The number of
quarks in a volume V with momentum p within the interval dp is

dNq = gqV
4πp2dp

(2π)3
1

1 + e(p−μq)/T

This is the Fermi-Dirac distribution. μq is the chemical potential (same as the
quark Fermi energy) and gq = NcNsNf is the number of independent degrees
of freedom of quarks (degeneracy of quarks). Let us take the case of μq = 0, so
the density of quark and antiquarks is the same.
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We can now write down the energy of the massless quarks in the system
of volume V and temperature T .

Eq =
gqV

2π2

∫ ∞

o

p3dp

1 + ep/T
for massless quarks with E � p

=
gqV

2π2
T 4

∫ ∞

o

z3dz

1 + ez

=
gqV

2π2
T 4

∫ ∞

o

z3dze−z
∞∑

n=0

(−1)ne−nz

=
gqV

2π2
T 4Γ(4)

∞∑
n=0

(−1)n
1

(n+ 1)4

where Γ is the gamma function. It is easy to show that

∞∑
n=0

(−1)n
1

(n+ 1)4
= (1− 2−3)ζ(4)

where ζ(4) is the Riemann zeta function.

ζ(4) =
∑

m=1,2..

1

m4
=

π4

90

Thus, we get

Eq =
7

8
gqV

π2

30
T 4

We know that for massless fermions and bosons, the pressure is related to the
energy density ρ = E/V as

P =
1

3
ρ

Hence, the pressure due to quarks is

Pq =
7

8
gq

π2

90
T 4

Similarly, the pressure due to antiquarks is given by the same expression with
gq → gq.

We can also obtain the number density of the quarks and antiquarks as

nq = nq =
gq
2π2

∫ ∞

0

p2dp

1 + ep/T

=
gq
2π2

T 3 3

2
ζ(3)

where ζ(3) = 1.20206.
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Gluons

Let us now write down the energy of gluons in a system of volume V and
temperature T using the Bose-Einstein distribution for bosons

Eg =
ggV

2π2

∫ ∞

o

p3dp

(
1

ep/T − 1

)
where gq is the gluon degeneracy. gg = number of different gluons × number of
polarizations = 8× 2 = 16.
We get

Eg =
ggV

2π2
T 4

∫ ∞

o

z3dz

ez − 1

Following earlier steps, we get

Eg =
ggV

2π2
T 4

∫ ∞

o

z3dze−z
∞∑

n=0

e−nz

=
ggV

2π2
T 4Γ(4)

∞∑
n=0

1

(n+ 1)4
=

ggV

2π2
T 4Γ(4)ζ(4)

or, Eg = ggV
π2

30
T 4

Note the absence of factor 7
8 for bosons compared to fermions.

Again, using P = 1
3ρ, we get the pressure for the gluon gas as

Pg = gg
π2

90
T 4

The number density of gluons is

ng =
gg
2π2

∫ ∞

o

p2dp

(
1

ep/T − 1

)
=

gg
2π2

T 3Γ(3)ζ(3) = 1.20206
gg
π2

T 3

The net energy density of a system of quarks and gluons at temperature T is

ρQGP = ρqq + ρg

=

[
7

8
(gq + gq) + gg

]
π2

30
T 4

gq = gq = NCNSNF = 3× 2× 6

NC , NS and NF are the number of color, spin and flavor states of the quarks
and gg = 16, so

ρQGP =

(
7

8
× 72 + 16

)
π2

30
T 4
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Of course, this assumes that all the quark flavors can be treated as massless at
the temperature T. So, the above expression is valid only for T � mtop � 170
GeV.

Let us calculate ρQGP near the expected transition temperature of few
hundred MeV, say at T = 200 MeV. At this temperature, only u and d quarks
can be taken to be approximately massless. Thus, for T = 200 MeV

gq+q = 2× 3× 2× 2 = 24

where the factors correspond to q and q̄, NC , NS and NF= u, d. So

ρQGP =

(
7

8
× 24 + 16

)
π2

30
T 4

or ρQGP =
37π2

30
T 4

For T = 200 MeV and using 1 fm = (200 MeV)−1, we get ρQGP �
37
3 (200 MeV)4 � 2.5GeV/fm3. This is the energy density of a system of quarks
and gluons in thermal equilibrium at a temperature of about 200 MeV. Thus,
if we are able to create a dense system of partons (quarks and gluons) with an
energy density much above this and one can argue for thermal equilibrium to
exist then we should expect that a state of QGP will be achieved. This is what
is expected to happen in relativistic heavy-ion collision experiments where the
nuclei colliding at ultra high energies create quarks, antiquarks and gluons with
a central density which is expected to be much above 3 GeV/fm3.

We saw how asymptotic freedom in QCD leads us to believe in the exis-
tence of a QGP state at high temperatures (and high densities). We will now
briefly discuss here how the prediction of the QGP phase arises in the context of
phenomenological models of QCD which were used very successfully to account
for different properties of hadrons.

1.5 Quark Confinement

We know that quarks cannot be isolated, and are confined inside hadrons. On
the other hand, the asymptotic freedom of QCD implies that at very short
distances (or large energies) the quark-gluon coupling goes to zero, so quarks
become almost free. There have been many phenomenological models which
incorporate these two features and try to calculate properties of hadrons [2].

1.5.1 Potential Models

Here one assumes a contribution of a Coulombic potential (− 1
r ) and a confining

potential (+λr) between quarks and calculates the spectrum. (We will discuss
this later for the J/ψ suppression signal.) These models work well for heavy
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quarks but for light quarks the properties of bound states with a confining
potential become difficult to calculate.

1.5.2 String Model of Quark Confinement

Here one takes hadrons to be string like objects where quarks are bound by
‘strings’ or tubes of color flux. This model arose from a certain property of
hadrons known as Regge trajectory behavior where it is seen that hadrons
seem to lie on lines given by J ∼ M2 in the J vs M2 plane. Here J is the spin
and M is the mass of the hadron. It can be shown that a relativistic rotating
string leads to this type of relationship between J and M2. This gave birth to
the string model of hadrons.

It was this string model whose attempted quantization and subsequent
development eventually led to the modern string theory where every elementary
particle is supposed to correspond to a fundamental string. In the present form
it does not have anything in common with the initial string model of hadrons.
(Though, it has been recently suggested that these may be intimately connected
at a deeper level.)

The string model of hadrons still provides a good description of certain
properties of hadrons and of hadron production. For example, in scattering
experiments, the production of hadrons is often modeled using a phenomeno-
logical string model. As q and q̄ created in e+ e− annihilations separate with
ultrahigh energies, a string stretches between them. After some stretching, it
becomes unfavorable for the string to stretch further and it breaks by creating
a q q̄ pair. Now the individual string pieces keep stretching and further keep
breaking. Eventually relative velocities between a q q̄ pair connected to a
single string segment becomes very small so that no further string breaking
is possible. The resulting system consists of hadrons.The creation of qq and
q q pairs by string breaking leads to the formation of baryons. Such string
models of hadron formation are usually called fragmentation models and are
widely used in various Monte Carlo programs simulating hadron production in
e+ e− or hadron-hadron scattering experiments. These models are especially
successful in describing the production of jets in these experiments.

Note:

1. In the string model of confinement, the potential energy of a q q̄ pair
increases with distance as λr, where λ is the mass per unit length of the
string. This is exactly like the linear term in the potential models. So for
a q q̄ system

V (r) = −a

r
+ λr

2. QCD strings to fundamental strings : The appearance of a spin-2 mass-
less particle in the spectrum of strings could be possibly understood as
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a certain pomeron excitation in QCD. But there were problems with the
requirement of 26 dimensions for the QCD string model. For fundamen-
tal string theory models this spin-2 massless particle provided additional
motivation as it could be identified with the graviton. Thus the funda-
mental string could naturally incorporate gravity along with other types
of elementary particles.

1.5.3 Bag Models

We now discuss another class of phenomenological models which accounts for
the confinement of quarks inside hadrons as well as the physics of asymptotic
freedom. We will then use these models to reach a definite quantitative predic-
tion of the transition to a QGP state.

There are many different versions of the Bag model. Here we will describe
the MIT Bag model which contains the essential characteristics of the phe-
nomenology of quark confinement [5]. We will also use it to understand the
circumstances of how quarks can become deconfined in the new QGP phase.
In this model one assumes that quarks are confined within a sphere of radius
R. Quarks are assumed to be free inside the sphere, which is in the spirit of
asymptotic freedom. (R will be less than 1 fm, so the coupling constant should
be small for such short distances.) It is further assumed that quarks cannot
go outside this sphere, i.e. they are infinitely heavy outside. This captures the
physics of confinement of quarks inside hadrons (the coupling constant is large
for large distances).

One therefore solves the Dirac equation for a free fermion of mass m

iγμ∂μψ(x) = mψ(x)

This equation is solved in a spherical region of space of radius R. By using
appropriate boundary conditions, i.e. no current flows across the surface of
such a sphere, we get quantized energy levels

ω =

(
m2 +

x2

R2

)1/2

Here x � 2.04 for the lowest level with l = 0, where l is the orbital angular
momentum. For a system of several quarks with different flavors and masses
mi, the total energy of the quark system is

E =
∑
i

(
m2

i +
x2
i

R2

)1/2

Ni

where Ni is number of quarks of the same type. We note that this energy can
be lowered by increasing R. Thus, there is no automatic confinement in the
model, unless one artificially fixes the value of R.

To prevent an increase in R one introduces a ‘pressure’ term B which sta-
bilizes the system. This is the essential feature of the MIT Bag model [5]. This
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bag pressure is directed inwards, and is a phenomenological quantity introduced
to take into account the non-perturbative effects of QCD. Quarks and gluons
are all confined inside the bag. In this description, the total matter inside the
bag must be colorless by virtue of Gauss’s law. We know that this allows for
qqq and qq states inside the bag.

With this bag pressure, the total energy becomes

E(R) =
∑
i

Ni

(
m2

i +
x2
i

R2

)1/2

+
4πR3

3
B

One can now minimize E(R) with respect to R to get the equilibrium configu-
ration. Since u, d are light, we may set mu = md = 0 and get

E(R) =
2.04

R
N +

4πR3

3
B

(Recall, 1
R is the characteristic momentum and hence the energy for a massless

particle confined in a region of size R.) Then

∂E

∂R
= 0 ⇒ −2.04

R2
N + 4πR2B = 0

or,

R =
(N × 2.04)1/4

(4πB)1/4

Putting this back into the expression for E(R) we get

E =
4

3
(4πB)1/4(N × 2.04)3/4

From the relation between R and B, if we take the confinement radius to be
0.8 fm for a 3 quark system in a baryon then we get (say for uud or udd, i.e.
proton or neutron)

B1/4 = 206 MeV

The value of B1/4 ranges from about 145 MeV to 235 MeV depending on specific
details of the models.

1.5.4 Transition to the QGP State in the Bag Model

The physics of the Bag model implies that if the pressure of the quark matter
inside the bag is increased, there will be a point when the pressure directed
outward will be greater than the inward bag pressure. When this happens,
the bag pressure cannot balance the outward quark matter pressure and the
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bag cannot confine the quark matter contained inside. A new phase of matter
containing the quarks and gluons in an unconfined state is then possible. This
is the QGP phase.

The main condition for a new phase of quark matter (QGP) is the oc-
currence of a large pressure exceeding the bag pressure B. A large pressure of
quark matter arises in two ways:

1. When the temperature of the matter is high (this is when QGP forms at
high temperature, as in the early universe).

2. When the baryon density is high (this is when QGP forms at high baryon
density, as possibly in the cores of neutron stars).

QGP at High Temperature

Let us recall the pressure of a quark-gluon system at temperature T . The total
pressure is

P = gtotal
π2

90
T 4

gtotal =

[
gg +

7

8
× (gq + gq)

]
By taking only light u and d quarks, we have seen that gtotal= 37, so we get

P = 37
π2

90
T 4

By equating it to the bag pressure B, we can get an estimate of the critical
temperature for the transition to QGP state

37
π2

90
T 4
c = B

⇒ Tc =

[
90

37π2

]1/4
B1/4

For B1/4 = 206 MeV, we get Tc � 144 MeV.
We will later discuss that the current estimates for Tc from lattice com-

putations are near 170 MeV. Note that this is of the same order as expected
from the running coupling constant argument when αs becomes small near
q2 ∼ (200MeV)2.

QGP with High Baryon Density

We now discuss the possibility where the pressure inside a bag can be large
enough to lead to the deconfined QGP state even at T = 0 due to high baryon
density. In this case the pressure arising from the Fermi momentum of quarks
will be large enough to balance the bag pressure, leading to the QGP state. Since
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this situation arises when the baryon number density is very high, we neglect
effects of antiquarks and gluons. Again, the number of states in a volume V
with momentum p within the momentum interval dp is

gqV

(2π)3
4πp2dp

As each state is occupied by one quark, the total number of quarks, up to the
quark Fermi momentum μq (i.e. the chemical potential) is

Nq =
gqV

(2π)3

∫ μq

0

4πp2dp

=
gqV

6π2
μ3
q

Thus the number density of quarks (N/V ) is

nq =
gq
6π2

μ3
q

Note that

dpnq =
gq

(2π)3
4πp2dp

[
1 + exp

(
p− μq

T

)]−1

dpnq =
gq

(2π)3
4πp2dp

[
1 + exp

(
p+ μq

T

)]−1

Consider the case of very large value of μq,
μq

T � 1. Then we see that

nq dp � gq

(2π)
3 4πp

2dp

⎛⎝ 1

1 + exp
(

p−μq

T

)
⎞⎠

The factor in bracket is 1 for p <
μq

T and approximately 0 for p >
μq

T , whereas
nq dp � 0 always as p > 0. Thus, for the case of complete degeneracy, i.e.
μq

T � 1, we have (starting with a Fermi-Dirac distribution),

nq dp � gq
(2π)3

4πp2 dp for p < μq

� 0 for p > μq

and nq dp � 0 always.

The energy of the quark gas in volume V is

Eq =
gqV

(2π)3

∫ μq

0

(4πp3)dp

=
gqV

8π2
μ4
q
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So the energy density is

ρq =
gq
8π2

μ4
q

Again, for massless quarks, the pressure is

P =
1

3
ρ =

gq
24π2

μ4
q

The transition to the QGP state will be achieved at a critical value of μq � μc

when this pressure is balanced by the bag pressure. This gives

P = B =
gq

24π2
μ4
c

which implies

μc =

[
24π2

gq

]1/4
B1/4

Using this for nq, we get a critical number density of quarks as

ncritical
q = 4

( gq
24π2

)1/4

B3/4

The corresponding critical baryon density becomes

ncritical
B =

4

3

( gq
24π2

)1/4

B3/4

Again, taking only u and d flavors, we take gq = 3× 2× 2 = 12 for 3 colors, 2
spins and 2 flavors.

Using B1/4 = 206 MeV we get ncritical
B = 0.72/fm3 corresponding to the

critical value of the chemical potential μc = 434 MeV. These values for the
transition to the QGP state should be compared with the nucleon number den-
sity nB = 0.14/fm3 for normal nuclear matter in equilibrium. Thus, the critical
baryon density is about 5 times the normal nuclear matter density. When the
density of baryons exceeds this critical density, the baryon bag pressure is not
strong enough to withstand the pressure due to the degeneracy of quarks and
a transition to a new deconfined QGP state is possible. Note that all these
estimates for Tc, nc, μc, are based on the phenomenological Bag model and
not from detailed calculations from QCD. Such calculations are possible from
lattice gauge theories and they show that these estimates are roughly correct.

We are now in a position to have a rough picture of the phase diagram of
strongly interacting matter. For low temperatures T and chemical potential μb

we have hadronic matter while at high temperatures and/or μb we get QGP.
Later we will discuss this QCD phase diagram in more detail and discuss various
interesting phases and expected phase transitions. At present we note that
our search for the QGP state leads us to consider where one can create high
temperature and/or high density matter.
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1.6 Relativistic Heavy-Ion Collisions

We will now discuss relativistic heavy-ion collisions where conditions for QGP
are expected to arise [4]. Let us first discuss some useful variables which will
be needed to describe particle production and evolution in relativistic heavy-
ion collision experiments (RHICE). (We will reserve RHIC for the Relativistic
Heavy Ion Collider at Brookhaven National Laboratory, USA.)

1.6.1 Rapidity Variable

Rapidity is a very useful variable to describe particle production in scattering
experiments. It is defined as

y =
1

2
ln

(
P0 + Pz

P0 − Pz

)
where P0 and Pz are time and z components of the momentum of the particle.
The z-axis is typically taken along the beam direction. Depending on the spin
of Pz, y can be positive or negative.

Exercise: Check that in the non-relativistic limit the rapidity of a particle
traveling in the longitudinal direction (we take this to be along z axis) is equal
to v/c.

Exercise: y depends on the reference frame in a simple manner. Show that under
a Lorentz transformation from the laboratory frame F to a new coordinate
frame F ′ moving with a velocity β in the z-direction, the rapidity y′ of the
particle in the new frame F ′ is related to the rapidity y in the old frame F by

y′ = y − yβ where yβ =
1

2
ln

(
1 + β

1− β

)
.

yβ is called the rapidity of the moving frame.
For a free particle which is on mass-shell, its four momentum has only

three degrees of freedom and can be represented as (y, 	PT ), where 	PT is the
transverse momentum (transverse to the z-axis). The z-axis will later be chosen
to be along the beam direction in RHICE. We can relate the 4-momentum:
(P0, 	P ) and (y, 	PT ) as below. From the definition of rapidity, we have

ey =

√
P0 + Pz

P0 − Pz
and e−y =

√
P0 − Pz

P0 + Pz

Adding these equations we get

P0 = mT cosh y

where mT is the transverse mass of the particle

m2
T = m2 + P 2

T
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Subtracting the above two equations gives

Pz = mT sinh y

Thus, the information contained in (P0, 	P ) is all contained in (y, 	PT ).
We saw that the rapidity of a particle in a moving frame is equal to the

rapidity in the laboratory frame minus the rapidity of the frame. This is quite
like the law of addition of velocities in Galilean relativity. Thus, it is often
useful to treat the rapidity variable as a relativistic measure of the velocity of
the particle.

1.6.2 Pseudorapidity Variable

To characterize the rapidity of a particle, it is necessary to measure two proper-
ties of the particle, such as its energy and its longitudinal momentum. In many
experiments it is only possible to measure the angle of the detected particle rel-
ative to the beam axis. In that case, it is convenient to utilize this information
by using the pseudorapidity variable η to characterize the detected particle. η
is defined as

η = −ln[tan(θ/2)]

where θ is the angle between the particle momentum 	P and the beam axis. In
terms of the momentum, the pseudorapidity variable can be written as

η =
1

2
ln

[
| 	P | +PZ

| 	P | −PZ

]
By comparing the expression for the rapidity y, we see that η coincides with
y when the momentum is large, i.e. when |	P | � P0. By transforming variables

from (y, 	PT ) to (η, 	PT ) we can transform rapidity distributions and pseudora-
pidity distributions to each other.

Mandelstam Variables

For a scattering process, AB → C D, the Mandelstam variables s, t, u are
defined as

s = (PA + PB)
2
, t = (PA − PC)

2

u = (PA − PD)2

√
s is the center of mass energy. For the center of mass (CM ) frame, 	PB = −	PA.

So

s = (PA + PB)μ (PA + PB)
μ

= (EA + EB)
2 −

(
	PA − 	PA

)2

= 4E2 if MA = MB

or,
√
s = 2E
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If A and B have the same mass, say M , then the laboratory energy Elab (where
one particle is at rest) is related to ECM by

Elab =
E2

CM

2M
−M

For RHICE, M should be the mass of a single proton. Then

ECM =
√
s =

√
2M2 + 2M Elab �

√
2M Elab

For example, for 200 GeV 206Pb on 206Pb collisions in the laboratory frame

ECM =
√
2× 1GeV × 200GeV � 20 GeV

In the laboratory frame much of the energy goes in generating the momenta of
the final particles, whereas in the center of mass frame the entire energy can
be spent in creating final particles which can have even zero momenta. That is
why beam-beam collisions are preferred.

1.7 Bjorken’s Picture of Relativistic Heavy-Ion

Collisions

Bjorken gave a simple picture of QGP formation in relativistic heavy ion colli-
sion experiments [6]. As we mentioned earlier, at ultra-high energies the initial
nucleons, containing the initial quarks, primarily go through each other due
to asymptotic freedom. As Lorentz contracted nuclei go through each other,
the intermediate region is filled with secondary partons that are produced. The
early evolution is dominated by longitudinal expansion. Note that the strictly
longitudinal expansion assumption is valid only for t � R, the nucleus size.
Overlap of the nuclei is taken to be at time t = 0 in the center of mass frame.
This results in a longitudinally expanding plasma with the fluid in the middle
being at rest. Net baryon number is contained near the receding nuclei. At the
simplest level we assume that during the collision each of the nucleons in one
nucleus has undergone a collision. Essentially, one can sit in the rest frame of
one nucleus, and see each nucleon being struck as the other highly Lorentz
contracted nucleus passes through it. Produced partons equilibrate in a certain
time scale t0 and the system thermalizes. The value of t0 is extremely crucial
for the estimate of the energy density and further evolution.

1.7.1 Estimates of the Central Energy Density

We will make an estimate of the energy density arising in the central region
by assuming that partons in this region simply arise from individual nucleon -
nucleon collisions. That is, we just add the contribution of all the nucleons to
get the particle density and energy density in the central region. To do that,
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we need to know the behavior of particle production in individual nuclear-
nuclear collisions. The essential feature of the hadron production in, for exam-
ple, proton-proton collisions is that at high energy, (e.g.

√
s ∼ 200 GeV), there

exists a “Central Plateau” structure in the particle density as a function of
the rapidly variable. This central plateau region plays a central role in devel-
oping an elegant picture of the evolution of QGP in Bjorken’s boost invariant
hydrodynamic model.

We note that the rapidity variable in a moving frame y′ is related to the
rapidity y in the original frame by y′ = y + yframe where yframe is the frame
rapidity yβ

yβ =
1

2
ln

(
1 + β

1− β

)
Due to the central plateau structure, we note that particle production (i.e.
dNch

dy ) will appear the same to different Lorentz observers as long as y′ and y

remain in ‘the central rapidity region’ (discussed later). In this central rapidity
region, the description of QGP (in terms of density, etc.) will be invariant under
a Lorentz boost. This is called Bjorken’s boost invariant model.

Recall now the relation between (P0, 	P ) for a particle and (y, 	PT ),

Pz = mT sinh y

m2
T = m2 + P 2

T

and P0 = mT cosh y

The velocity of the particles in the longitudinal direction is therefore

vz =
Pz

P0
= tanh y

For a particle starting from the origin z = 0 at t = 0 (x, y are arbitrary), we
have z

t
= vz = tanh y

From these relations one can show that

z = τ sinh y and t = τ cosh y

where τ is the (fluid) proper time variable defined by τ =
√
t2 − z2. Note that

this is the proper time for the fluid element and not for individual particles
which have nonzero PT . We can also show that

y =
1

2
ln
t+ z

t− z
=

1

2
ln
1 + vz
1− vz

as below.
Firstly,

z

τ
=

z

t

t

τ
= tanh y

t√
t2 − z2

tanh y
1√

1− z2/t2
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Now,

1− z2

t2
= 1− tanh2 y =

1

cosh y2

Therefore,

z

τ
=

sinh y

cosh y
cosh y

or, z = τ sinh y

Furthermore,

t

τ
=

1√
1− z2/t2

= cosh y

Finally,

t+ z

t− z
=

τ(cosh y + sinh y)

τ(cosh y − sinh y)

=
ey + e−y + ey − e−y
ey + e−y − ey + e−y

=
2ey

2e−y
= e2y

which implies

y =
1

2
ln
t+ z

t− z

or, y =
1

2
ln
1 + vz
1− vz

This is like frame rapidity, though here we have particle velocity.

Central Rapidity Region

In the center of mass system, the region of small rapidity is called “the central
rapidity region”. We have z = τ sinh y � τy for y � 1. This means for a given
proper time τ , a small value of rapidity y is associated with a small value of z.
Hence the central rapidity region is associated with the central spatial region
around z ∼ 0 where the nucleon-nucleon collision has taken place.

With a relation like z = τ sinh y, the rapidity distribution dN
dy of particles

can be transcribed as a spatial distribution from which the initial energy density
can be inferred.

It is easier to measure the pseudorapidity variable

η = −ln[tan(θ/2)]

For ultra relativistic particles η � y.
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Energy Density Estimate

In the center of mass frame the fluid is at rest at z = 0. The volume of the region
under consideration is S × Δz where S is the transverse area of the Lorentz
contracted nuclei. We consider the proper time τ0 at which a QGP system may
have formed by equilibration. So τ0 is the time at which the initial system of
quarks and gluons achieves thermal equilibrium. It is a very important quantity
for which various estimates exist. This plays a crucial role in the evolution of
plasma.

The number density of particles in this region at time τ0 is

ΔN

SΔz
|z=0 =

1

S

dN

dy

dy

dz
|y=0

where dN
dy refers to the observed hadrons (number of particles) per unit rapidity.

From z = τ sinh y we have

dy

dz
|z=0 =

1

τ0 cosh y
|y=0 at τ = τ0

So the number density at τ = τ0 is

n0 =
1

S

dN

dy

1

τ0 cosh y
|y=0

We have seen that the energy of a particle P0 is

P0 = mT cosh y

where mT = (m2 + PT
2)1/2 is the transverse mass. So the energy density at

time τo is

ε0 = ρ0 n0 =
mT

Sτ0

dN

dy
|y=0

This estimate was first given by Bjorken. Here one can either estimate dN
dy by

combining the expected dN
dy resulting from each nuclear-nuclear collision, or,

one can take dN
dy |y=0 from some experiment and from that deduce ε0 at time

τ0. From that estimate one can then decide whether a QGP state is expected
to have formed at τ0 (for example if ε0 > 2.5GeV/fm3 from the Bag model).

Estimates of τ0 range from those based on cross section calculations to
those coming from Monte Carlo simulations. It is expected that for collisions
at higher center of mass energy τ0 will be smaller. For the SPS experiment at
CERN in the collisions of 16O on Au at 200 GeV (laboratory frame),

dNch

dη
∼ dNch

dy
� 160

Various estimates give τ0 ∼ 0.4 fm for these energies and mT � 400 MeV. Then

ε0 � 0.4GeV × 160

0.4 fm S
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For a nucleus of mass number A the radius is given by

r � 1.2A1/3fm

So the area S = (1.2)2A2/3 fm2. Substituting this value we get

ε0 ∼ 3− 4GeV/fm3

This energy is high enough that we expect that QGP may have formed. Now
one sees the importance of τ0. If τ0 is larger by a factor 3, say τ0 ∼ 1.2 fm, then
ε0 ∼ 1GeV/fm3 and one does not expect QGP.

1.7.2 Evolution of QGP

Bjorken’s picture respects boost invariance for boosts along the z axis. So phys-
ical quantities should depend only on proper time τ . That is, we say that the
energy density ε(τ) has a value ε0 at τ = τ0. Recall that τ =

√
t2 − z2. So

a given τ0 is achieved at different values of t at different z (where t is the
laboratory time, or the proper time measured at z = 0).

We can then write down a picture of the evolution of QGP in Bjorken’s
model. The QGP is modeled as an ideal fluid with 4-velocity uμ (uμu

μ = 1).
The energy momentum tensor is

Tμν = (ε+ P )uμuν − gμνP

where ε = ε(τ) and P = P (τ) are the energy density and pressure (they only de-
pend on τ). The energy-momentum conservation equation is (neglecting effects
of viscosity),

∂Tμν

∂xμ
= 0

with initial conditions ε(τ0) = ε0, and uμ(τ0) =
1
τ0
(t, 0, 0, z).

Exercise: Show that the energy density evolves as

dε

dτ
= −ε+ P

τ

Using the relation P = ε
3 we get ε(τ) ∼ τ−4/3 and using the ideal gas equation

we find T (τ) ∼ τ−1/3. Further, one can show that

d

dτ

(
dS

dy

)
= 0

where ds
dy is the entropy per unit rapidity which is constant under evolution.

As the QGP system expands, it cools and eventually hadronizes at τ = τh
when its temperature falls below the quark-hadron transition temperature Tc

(present lattice estimates suggest a value of about 170 MeV for Tc). Note that
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we only get hadrons from the freeze out surface, i.e., after the proper time
when hadrons stop interacting. From these hadrons we have to deduce about
the transient stage of QGP between τ0 < τ < τh. This is almost like looking at
the cosmic microwave background photons from the surface of last scattering.
We have to deduce what happened during inflation, etc. from these photons.

This now brings us to the issue of signals of QGP.

1.8 QGP Signals

We need signals of the intermediate, transient stage of QGP. This can only be
in terms of some special properties of the finally detected particles [4]. We will
discuss some important signals which have been proposed for the detection of
QGP.

1.8.1 Production of Dileptons and Photons in QGP

The Drell-Yan process is

qq → γ∗ → l+l−

The lepton interaction with quarks in the QGP is electromagnetic and the cross

section ∼
(

α√
s

)2

(with α = 1
137 and

√
s the center of mass energy) and is much

smaller than the strong cross section. Therefore leptons after production do not
further interact with the QGP and directly reach the detector.

On the other hand, the production rate and the momentum distribution of
the produced l+l− pairs depend on the momentum distribution of quarks and
antiquarks in the plasma, which are governed by the thermodynamic condition
of the plasma. Therefore, l+l− pairs carry information on the thermodynamic
state of the medium at the moment of their production and can help us to
detect whether a QGP state has been achieved.

Particle production also happens by hadronic interactions. So, one needs
to calculate all contributions and then compare with the data. Photons are
produced via

q + q → γ + g

qq → γγ has a smaller cross section compared to qq → γg by a factor
(

αe

αs

)
.

Detection of the photon gives similar information as dileptons because photons
also do not further interact with the QGP after their production.

1.8.2 J/ψ Suppression

J/ψ particle is a bound state of the cc quark-antiquark system (charmonium
states). As the c quark is heavy, the bound state has a small radius. (Recall
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mc ∼ 1.3 GeV.) These charmonium states are well described by a potential
model where the potential between c and c is taken as

V (r) = −αeff

r
+Kr

Fitting with cc states gives αeff = 0.52,K = 0.926 GeV/fm with mc = 1.84
GeV. When these states are formed during the early stages of collision, they
have to survive through a QGP state if they have to be finally detected.

We know that quarks are not confined in the QGP phase so all hadrons
should disappear. But that depends on the temperature scale of the QGP and
the time available before the QGP hadronizes. In the QGP phase the QCD
string disappears so there is no Kr term in V (r). However the Coulomb part
could still let the cc system remain bound. However, this Coulomb interaction
is modified because of Debye screening of charges in the plasma

V (r) ∼ e−r/λd

r

where λd is the Debye screening length. If λd < rbound where rbound is the
bound state size for the cc state, then the Coulomb attractive part between
the cc pair is also greatly modified. (Recall that the Kr part has anyway
disappeared due to the QGP.) In that case the cc state will melt away. This
will lead to the suppression of J/ψ production.

Note: If the QGP never forms then this suppression mechanisms will not be
operative and one should expect a larger number of J/ψ particles.

Also for lighter mesons (made up of u, d, s) this type of signal can not
be used since they are abundantly produced in thermal processes near T ∼ Tc.
The cc are too heavy to be produced like that.

1.8.3 Elliptic Flow

This signal has yielded very useful and surprising information about the equa-
tion of state of matter achieved at RHIC showing that it is like an ideal liquid.
For non-central collisions with non-zero impact parameter, one gets a QGP
formed which is not spherical but has an ellipsoidal shape. After thermaliza-
tion there is some central pressure while P = 0 outside the QGP region. Clearly
the pressure gradient is larger along the smaller dimension of the ellipsoid. This
forces the plasma to undergo hydrodynamic expansion at a faster rate in that
direction compared to the other (transverse) direction. Thus particles produced
have larger momentum in that direction than in the other direction. In other
words, the spatial anisotropy gets transferred to a momentum anisotropy due
to hydrodynamical flow. This clearly depends crucially on the equation of state
relating pressure to energy density. Thus, the observed momentum anisotropy
of the particle distribution can be used to extract useful information about
hydrodynamic flow at very early stages probing directly the equation of state
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of the QGP. If thermalization is delayed by a time Δτ , any elliptic flow would
have to build on a reduced spatial deformation and would come out smaller.

The data seems to be in very good agreement with the prediction of ideal
fluid hydrodynamics pointing to a very low viscosity of the QGP produced. The
QGP does not behave as a weakly interacting quark-gluon gas as suggested by
naive perturbation theory, nor does it behave like viscous honey (as suggested
by some calculations). This is termed as Strongly Coupled QGP (sQGP), with
a strong non-perturbative interaction.

1.9 Phase Transitions

Note that the signals discussed above depend on the existence of the QGP
phase. We know that as the QGP expands it undergoes a phase transition
to the hadronic phase. Such a phase transition can have its own interesting
signatures on the final particle (hadron) distribution. For such signals we should
understand the nature of the phase transition expected as the QGP hadronizes.

From the partition function we get the free energy as

F = −T lnZ

Now we consider different types of phase transitions.

1.9.1 First Order Phase Transition

Here the free energy F is continuous but ∂F
∂T is discontinuous at the phase

transition temperature. Recall that

F = E − TS, S =
∂F

∂T

ε =
E

V
=

F + T ∂F
∂T

V

As F is continuous but ∂F
∂T is discontinuous, we conclude that the energy den-

sity ε is discontinuous as a function of temperature during a first order phase
transition. The difference in the energy density ε at the discontinuity gives the
value of the latent heat.

1.9.2 Second Order Phase Transition

Here the free energy F and ∂F/∂T are continuous while ∂2F/∂T 2 is discontin-
uous (or divergent) at the phase transition temperature. Because the specific

heat at constant volume is related to ∂E
∂T or ∂2F

∂T 2 , a second order phase tran-
sition is characterized by a continuous free energy and energy density but a
discontinuous (or divergent) specific heat at constant volume.

Second order transitions are also called as continuous phase transitions.
Here the order parameter (discussed below) goes to zero continuously as T →
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Tc, the phase transition temperature. In contrast, the order parameter changes
discontinuously as T → Tc for a first order transition.

1.9.3 Order Parameter

The order parameter is a quantity (thermodynamic variable) which is typically
zero in one phase, the disordered phase which has higher symmetry, and is
non-zero in the ordered phase having lower symmetry. (It may happen that
the symmetry does not change during a phase transition, as in a liquid-gas
transition.)

The free energy density plot for a second order phase transition has the
minimum of the free energy for zero order parameter for T > Tc while for
T < Tc the minimum of the free energy shifts continuously away from the zero
order parameter value. (This is most often the case. However it is also possible
to have the reverse situation, that is the symmetry may be restored at low
temperatures and spontaneously broken at high temperatures. This happens
to be the case for the center symmetry for QCD, as we will discuss in Sect.
1.9.7.) An example is given by the following free energy density,

F = −aφ2 + bφ4

where a < 0 for T > Tc while a > 0 for T < Tc.
For a first order transition the order parameter changes discontinuously

through Tc. Here the transition proceeds via bubble nucleation. An example of
the free energy density for this case is

F = aφ2 + bφ3 + cφ4

where a, c > 0 and b changes sign through Tc, being positive for high T .

1.9.4 Landau Theory of Phase Transitions

This is a phenomenological theory. This postulates that one can write down a
function L known as the Landau free energy which depends on the coupling
constants Ki and the order parameter η. L has the property that the state of
the system is specified by the absolute (i.e. global) minimum of L with respect
to η. L has dimensions of energy, and is related to the Gibbs free energy of the
system. Importantly it is not the same as the Gibbs free energy, hence there is
no requirement for it to be a convex function of the order parameter.

We assume that thermodynamic functions of state can be computed by
differentiating L, as if it were indeed the Gibbs free energy. To specify L it is
sufficient to use the following constraints on L (it is not certain whether all
these are necessary).
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1. L has to be consistent with the symmetries of the system.

2. Near Tc, L can be expanded in a power series in η, i.e., L is an analytic
function of both η and the parameters [K]. In a spatially uniform system
of volume V , one can express the Landau free energy density L as

L =
L

V
=

∞∑
n=0

an([K], T )ηn

3. In an inhomogeneous system, with a spatially varying order parameter
profile η(r), L is a local function, i.e. it depends only on η(r) and a finite
number of derivatives.

4. In the disordered phase of the system, the order parameter η = 0, while it
is small and non-zero in the ordered phase, near the transition point. Thus,
for T > Tc, η = 0 solves the minimisation equation for L; for T < Tc, the
minimum of L corresponds to η �= 0. Thus, for a homogeneous system:

L =
4∑

n=0

an([K], T )ηn

where we have expanded L to O(η4) in the expectation that η is small,
and all the essential physics near Tc appears up to this order. Whether
or not the truncation of the power series for L is valid will turn out to
depend on both the dimensionality of the system and the co-dimension of
the singular point of interest.

1.9.5 Construction of L

Consider

∂L

∂η
= a1 + 2a2η + 3a3η

2 + 4a4η
3 = 0

Since for T > Tc, η = 0, therefore a1 = 0. Note that this is not true when
the symmetry is also broken explicitly in which case the order parameter never
completely vanishes. If η → −η is a symmetry of the free energy, then a3 =
a5 = a7 = .. = 0. Then

L = a0([K], T ) + a2([K], T )η2 + a4([K], T )η4

Note that the requirement that L be analytic in η precludes terms like |η| in
L. Also note that finiteness of L requires a4 > 0.

Coefficients an([K], T ): a0([K], T ) is simply the value of L in the high temper-
ature phase, and we expect it to vary smoothly through Tc. It represents the
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degrees of freedom in the system which are not described by the order parame-
ter, and so may be thought of as the smooth background, on which the singular
behavior is superimposed. It may be said that L− a0 represents the change in
the Gibbs free energy due to the presence of the ordered state, apart from the
fact that L is not exactly the Gibbs free energy.

For discussing the order parameter, one may set a0 = 0. We expand a4 as

a4 = a04 + (T − Tc)a
1
4 + ...

It will be sufficient to just take a4 to be a positive constant. The temperature
dependence of this equation will turn out not to dominate the leading behavior
of the thermodynamics near Tc. We expand a2 as

a2 = a02 +

(
T − Tc

Tc

)
a12 +O

(
(T − Tc)

2
)

Note that a02 can be absorbed in the definition of Tc. For a continuous phase
transition L is of the form

L = atη2 + bη4

where

t =
T − Tc

Tc

and a and b are constants. For a first order transition

L = atη2 + bη4 − cη3

1.9.6 Deconfinement-Confinement Transition

Consider the case of SU(3) gauge theory at finite temperature without dynam-
ical quarks. We will calculate the free energy for this system with a single,
infinitely heavy, test quark at position r0. (In this section we follow the dis-
cussion in ref. [7].) We start with the evolution equation for the field operator
ψ(r0, t) of this static quark (suppressing the color label),(

−i
∂

∂t
− gA0(r0, t)

)
ψ(r0, t) = 0

where A0 ≡ T.A0 (T i are the generators of SU(3); see Sect. 2.3.1 of ref. [7]).
This equation gives

ψ(r0, t) = T exp

(
ig

∫ t

0

dt′A0(r0, t
′)
)
ψ(r0, 0).

Here T denotes time ordering. Now, the partition function for this system is
given by

Z = e−βF (r0) =
1

N

∑
s

〈s|e−βH |s〉
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where the 1/N factor is introduced to compensate for the color degeneracy
factor for the static quark (N equals 3 for QCD and is the number of colors),
and the sum is over all the states of the system with the infinitely heavy quark
at r0. Using the quark field operator ψ(r0, t), we can write it as

e−βF (r0) =
1

N

∑
sg

〈sg|ψ(r0, 0)e−βHψ†(r0, 0)|sg〉

where, now, the sum is over all states |sg〉 with no quarks, that is, over states
of pure glue theory. Recall, from Sect. 1.4.1, that for Euclidean time t,

eβHψ(r0, 0)e
−βH = ψ(r0, β)

Thus, we get

e−βF (r0) =
1

N

∑
sg

〈sg|e−βHψ(r0, β)ψ
†(r0, 0)|sg〉

We introduce the Wilson line,

L(r) =
1

N
TrT exp

(
ig

∫ β

0

dtA0(r0, t)

)
.

With this, using the solution ψ(r0, t) of the time evolution equation above, and
the equal time anti-commutation relation of the fermion fields (with discrete
space labeling, for simplicity), we can write

e−βF (r0) = Tr [e−βHL(r0)]

where the trace is over all states of the pure glue theory. Dividing this by the
free energy without any heavy fermion, we get the difference in the free energy,
ΔFq, due to introduction of the infinitely heavy quark at r0 as

e−βΔFq = 〈L(r0)〉
where 〈..〉 denotes the thermal expectation value. 〈L(r0)〉 is an order parameter
for the deconfinement - confinement phase transition.

Confining phase: We expect the free energy with an isolated quark to diverge,
i.e. ΔF = ∞, and thus 〈L〉 = 0.

Deconfining phase: Here isolated quarks can exist, leading to a finite change
in the free energy with respect to the pure glue background, i.e. ΔF is finite,
which implies 〈L〉 = e−βΔF �= 0.
Thus 〈L〉 is an order parameter for the deconfinement - confinement (D-C)
phase transition.

Recall that A0(r0, t) must be periodic in the Euclidean time t.

A0(r0, 0) = A0(r0, β)

Thus the dt integral in the expression for the Wilson line is actually a loop
integral. This is also called as the ‘Polyakov Loop’.
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1.9.7 D-C Transition as a Symmetry Breaking Transition

Recall the gauge transformation

Aμ → UAμU
−1 + iU∂μU

−1

where U(x, t) ∈ SU(N) and Aμ � Aμ
λa

2 . Under the gauge transformation, the
Wilson line

L ∼ Tr

[
T exp

(
ig

∫ β

0

dτA0(x, τ)

)]
� TrΩ(x)

will transform as

L(x) → TrU(x, β)Ω(x)U †(x, 0)

This can be checked by expanding the time ordered exponential. Thus L is
invariant when U is periodic,

U(x, 0) = U(x, β)

(using the cyclic property of the trace).
However, we note that the Euclidean action

SF =
1

4

∫
d3x dτ F a

μν F aμν

is in fact invariant under a larger group than the periodic gauge transforma-
tions. The only physically important constraint is that Aμ (	x, t) remain periodic
in τ when gauge transformed. Consider, e.g.,

Aμ(x, 0) = Aμ(x, β)

Under a gauge transformation

A′
μ(x, 0) = U(x, τ)Aμ(x, 0)U

−1(x, τ) + iU(x, τ)∂μU
−1(x, τ)|τ=0

Similarly,

A′
μ(x, β) = U(x, τ)Aμ(x, β)U

−1(x, τ) + iU(x, τ)∂μU
−1(x, τ)|τ=β

= U(x, τ)Aμ(x, 0)U
−1(x, τ) + iU(x, τ)∂μU

−1(x, τ)|τ=β

First take U(x, β) = U(x, 0) due to the identification of points τ = 0 and τ = β.
Then,

A′
μ(x, β) = U(x, τ)Aμ(x, 0)U

−1(x, τ) + iU(x, τ)∂μU
−1(x, τ)|τ=0 = A′

μ(x, 0)

Hence A′
μ also remains periodic and hence single valued.
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Now note that in the above argument we could take

U(x, β) = ZU(x, 0)

where Z ∈ SU(3) (or Z ∈ SU(N) in general) such that Z U = U Z for every
U ∈ SU(N) (so that U AU−1 → Z U AU−1Z−1 = U AU−1) and Z is space
time independent. Thus, as long as Z commutes with every element of SU(N),
Aμ

′ remains periodic in τ if Aμ is.
Elements Z constitute the center of SU(N) by definition.

Z = exp

(
2π i n

N

)
∈ ZN

where ZN is the cyclic group of order N and n = 1, 2...N . n = N corresponds
to the identity of SU(N). Note that

DetZ = exp

(
2πin

N
×N

)
= 1

So Z ∈ SU(N) (clearly Z†Z = 1). For QCD we have

Z ∈ Z3

Thus, we conclude that finite temperature SU(N) gauge theory (Euclidean ac-
tion) has ZN symmetry (Z3 for QCD) as the Euclidean action (or the partition
function and hence the free energy) is invariant under ZN transformations of
the basic variables Aμ(x). This is called as the center symmetry. (Quarks break
this ZN symmetry explicitly because fermions obey an antiperiodic boundary
condition ψ(x, β) = −ψ(x, 0).)

Though the Euclidean action is invariant under this extra ZN transfor-
mations, the order parameter L(x) is not. Recall that L(x) = TrΩ(x). Under
the gauge transformation U(x, τ) we have

L(x) → L′(x) = Tr[U(x, β)Ω(x)U−1(x, 0)].

If U(x, β) = Z U(x, 0), we get

L′(x) = Z Tr[U(x, 0)Ω(x)U−1(x, 0)] = Z Tr Ω(x) = Z L(x)

So, while under a periodic gauge transformation (Z = 1), L → L, under an
aperiodic gauge transformation L → Z L.

We now study the confining and deconfining phases of the SU(3) gauge
theory.

Confining Phase: With 〈L〉 = 0 (corresponding to e−βΔF ,ΔF = ∞), the
system respects Z3 symmetry as 〈L〉 = 0 is invariant under L → Z L transfor-
mation.
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Deconfining Phase: With 〈L〉 �= 0, the system is NOT invariant under Z3

transformations. There are 3 equivalent phases characterized by 〈L〉, 〈Z L〉,
and 〈Z2 L〉 which all correspond to physically the same deconfining phase.
We conclude that in the deconfining phase the Z3 symmetry is spontaneously
broken.

Here the symmetry restored phase is the low temperature confining phase.
This is in contrast to most cases, where the symmetry restoration happens in
the high temperature phase. The symmetries of the order parameter can be
used to characterize the phase transition in the Ginzburg-Landau approach.

The order parameter for the SU(2) gauge theory has the same symmetry
as the Ising model which has a global Z2 symmetry. In 3 + 1 dimensions, the
Ising model undergoes a second order transition. Hence we expect that the
SU(2) gauge theory exhibits a second order transition.

Similarly, Z(3) spin models in 3 + 1 dimensions display a first order tran-
sition. Hence we expect that pure SU(3) QCD will have a first order transition.
Lattice calculations confirm these expectations.

Clearly, for QCD, L3 → Z3L3 = L3. Thus, in the construction of L and
free energy, one can write down

V (L) = a|L|2 + b|L|4 + C(L3 + L∗3)

The L3 term makes the transition first order. Note that for the SU(2) gauge
theory this term cannot be written down. One can write down a term Re L2

which makes the transition second order.

1.9.8 Deconfinement-Confinement Transition with Dynamical

Quarks

As mentioned above, with quarks, the ZN symmetry is broken explicitly (similar
to the explicit breaking of chiral symmetry, in some sense). 〈L〉 is non-zero even
in the confined phase. The deconfinment-confinement transition which is first
order for pure gauge theory, is smoothed into a crossover when light quarks are
present. Lattice results seem to suggest no first order transition. An important
point to note is that with quarks, no appropriate order parameter is known. In
closing we mention that in discussing different phase transitions in QCD one
is invariably in the non-perturbative regime, where reliable calculations cannot
be performed. Hence one either has to do lattice calculations, or use effective
models using symmetry considerations (as we did above for the D-C transition).
Thus, many theoretical discussions about the nature of the phase transition
in QCD are based on the Landau theory of phase transitions. Especially the
investigations of phase transition at finite baryon density has difficulties even in
the lattice approach, though special techniques have been developed to handle
these. Most of the knowledge in this regime of QCD comes from specific effective
models such as chiral quark models, random matrix models, etc.
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2

An Introduction to Thermal

Field Theory

Abhee K. Dutt-Mazumder

2.1 Introduction

Thermal Field Theory (TFT) is a combination of all three basic branches of
modern physics, namely quantum mechanics, the theory of relativity, and sta-
tistical physics. Therefore one could also call it statistical quantum field theory.

Within TFT, two classes of formalism can be distinguished: one is the
imaginary time (Euclidean) formalism (ITF) and other is the real time formal-
ism (RTF). Matsubara was the first to build a TFT by incorporating a purely
imaginary time variable into the evolution operator. His name is associated
with the discrete energy frequencies. The RTF formulation however is more
appropriate for studying transition processes than ITF since no analytical con-
tinuation is necessary to reach the physical region. The two formalisms agree in
the calculation of the self-energy and the thermodynamic potential with which
we are presently concerned. Though ITF has difficulties, as it involves frequency
summations, whereas RTF is free of such problems, nevertheless, for our pur-
pose here, we restrict our discussion to ITF to calculate thermal self-energies
and thermodynamic quantities.

Another important application of TFT is to study gauge theories at fi-
nite temperature. This has applications both in the context of early universe
cosmology and laboratory based heavy ion collisions where the properties of
Quantum Chromo Dynamics (QCD) at finite temperature can be studied.

We know quantum field theories have difficulties in dealing with loops be-
cause of divergences. At finite temperature no additional ultraviolet divergence

63© Springer Science+Business Media Singapore 2016 and Hindustan Book Agency 2014
R. Rangarajan and M. Sivakumar (eds.), Surveys in Theoretical
High Energy Physics - 2, Texts and Readings in Physical Sciences 15,
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appear as the higher momentum modes are cut off by the distribution func-
tions. However, new infrared divergences do appear in dealing with the massless
bosonic field. In ITF this would correspond to the zero Matsubara mode; in
the RTF formalism this is even easier to understand. In the soft momentum
limit, the Bose distribution brings in a factor of T/k which cancels one power
of momentum from the numerator. Therefore new infrared divergences may ap-
pear and divergences which were already there might get worse. For instance, a
logarithmic divergence in vacuum may become a quadratic divergence at finite
temperature.

2.2 Green’s Function

The most important quantity in perturbative field theory is the 2-point Green’s
function or propagator. How do propagators looks like at non-zero temperature?
Here we discuss scalar field theory, which we shall use in the following as a
simple model to study the different techniques in TFT. At zero temperature
the bare propagator is given by the vacuum expectation value of the time
ordered product of two fields at different space time points

iΔ(X − Y ) = 〈0|T{φ(X)φ(Y )}|0〉

=

∫
d4K

(2π)4
e−iK.(X−Y )

K2 −m2 + iη
(2.1)

where |0〉 denotes the vacuum state of the non-interacting theory and Δ de-
scribes the free propagation of a free scalar particle from Y to X for x0 > y0
(creation at y, destruction at x) and from X to Y for y0 > x0. At finite tem-
perature the vacuum is replaced by a ground state having real particles. Stated
differently, the destruction operator acting on the vacuum at finite tempera-
ture T does not annihilate the vacuum to gives zero. Thus vacuum expectation
values have now to be replaced by quantum statistic expectation values, i.e.

〈A〉 ≡ Tr(DA)

=
1

Z
Tr(Ae−βH)

=
1

Z

∑
n

〈n|A|n〉e−βEn (2.2)

where A is an arbitrary quantum operator, β = 1
T , D is the density operator

and Z is the partition function. Applying eq. (2.2) for non-zero T to the scalar
propagator yields

iΔ(X − Y ) =
1

Z

∑
n

〈n|T{φ(X)φ(Y )}|n〉e−βEn (2.3)

where En and |n〉 are the eigenvalues and eigenstates of the non-interacting
Hamiltonian.
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2.2.1 The Imaginary Time Green’s Function

The non-interacting Hamiltonian operator H0 is usually expressed in terms of
creation and annihilation operator a and a†. Thus the calculation of Z reduces
to the expectation value of time ordered products of such operators.

The possible propagators ∼ 〈T ak(τ1) a
†
k(τ2)〉, 〈T ak(τ1) ak(τ2)〉 or

〈T a†k(τ1) a
†
k(τ2)〉 since H0 =

∑
εka

†
kak and a†kak = N where N is the num-

ber operator. As H0 commutes with N , only the first among the three possible
propagators listed above will enter the perturbative expansion. We define time
dependent creation and annihilation operators in the interaction picture as (see
Appendix I)

a†k(τ) ≡ eτH0a†k(0)e
−τH0 = eεkτa†k(0) (2.4)

ak(τ) ≡ eτH0ak(0)e
−τH0 = e−εkτak(0) (2.5)

The Green’s function or propagator is defined as (to focus on temporal
properties all the spatial coordinates have been suppressed).

Gk(τ1 − τ2) = 〈T ak(τ1)a
†
k(τ2)〉

= e−εk(τ1−τ2)
[
Θ(τ1 − τ2)〈aka†k〉 ±Θ(τ2 − τ1)〈a†kak〉

]
= e−εk(τ1−τ2)

[
Θ(τ1 − τ2)〈1± a†kak〉 ±Θ(τ2 − τ1)〈a†kak〉

]
= e−εk(τ1−τ2) [Θ(τ1 − τ2)(1±Nk)±Θ(τ2 − τ1)Nk] (2.6)

where ± signs are for bosons and fermions respectively. We also have used
[ak, a

†
k] = 1 for bosons and {ak, a†k} = 1 for fermions.

Nk ≡ 〈a†kak〉 =
1

eβεk∓1
(2.7)

(Here ± signs are for fermions and bosons respectively ). Using eq. (2.6) for
bosons, with τ = τ1 − τ2 we have

Gk(τ − β) = e−εk(τ−β) [Θ(τ − β)(1 +Nk) + Θ(−τ + β)Nk] (2.8)

When 0 ≤ τ ≤ β we obtain

Gk(τ − β) = e−εkτeεkβNk

= e−εkτeεkβ
(

1

eβεk−1

)
= e−εkτ (1 +Nk)

≡ Gk(τ)

(2.9)

and when−β ≤ τ ≤ 0 we obtain

Gk(τ + β) = e−εkτe−εkβ(1 +Nk)

= e−εkτNk

≡ Gk(τ) (2.10)
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Thus

Gk(τ − β) = Gk(τ) for 0 ≤ τ ≤ β,

Gk(τ + β) = Gk(τ) for − β ≤ τ ≤ 0, (2.11)

or the imaginary time Green’s function obeys the periodicity condition. Since
Gk(τ − β) = Gk(τ) where (0 ≤ τ ≤ β), i.e. the Green’s function is defined
within a finite time interval maintaining the periodicity condition, this allows
us to represent Gk(τ) by a Fourier series:

Gk(τ) =
1

β

∑
n

e−iωnτGk(iωn)

Gk(iωn) =

∫ β

0

dτeiωnτGk(τ) (2.12)

where ωn = nπ/β with n = 0,±1,±2, . . .. Even though all integer modes
are allowed in the Fourier expansion, because of the periodicity (boson) or
antiperiodicity (fermion) condition satisfied by Gk, only even integer modes
contribute to the bosonic Green’s function while only the odd integer modes
contribute for fermionic Green’s function. This can be easily proved by

Gk(iωn) =
1

2

∫ 0

−β

dτeiωnτGk(τ) +
1

2

∫ β

0

dτeiωnτGk(τ)

= ±1

2

∫ 0

−β

dτeiωnτGk(τ + β) +
1

2

∫ β

0

dτeiωnτGk(τ)

= ±1

2

∫ β

0

dτeiωn(τ−β)Gk(τ) +
1

2

∫ β

0

dτeiωnτGk(τ)

=
1

2
(1± e−iωnβ)

∫ β

0

dτeiωnτGk(τ)

=
1

2
(1± e−inπ)

∫ β

0

dτeiωnτGk(τ)

=
1

2
{1± (−1)n}

∫ β

0

dτeiωnτGk(τ) (2.13)

This shows that Gk(iωn) contribute for bosons when n is even and contributes
for fermions when n is odd. Thus we conclude that

Gk(τ) =
1

β

∑
n

e−iωnτGk(iωn)

Gk(iωn) =
1

2

∫ β

−β

dτeiωnτGk(τ) (2.14)
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where

ωn =
2nπ

β
for bosons

=
(2n+ 1)π

β
for fermions. (2.15)

These are commonly referred to as the Matsubara frequencies.
The spatial coordinates, on the other hand, are continuous just as in the

case of zero temperature field theory and therefore, there is nothing new in
their Fourier decomposition. Thus including all the coordinates we can write
the free propagator as

G0(τ, x) =
1

β

∑
n

∫
d3k

(2π)3
e−i(ωnτ−k.x)G0(iωn, k)

G0(iωn, k) =

∫ β

0

dτ

∫
d3xei(ωnτ−k.x)G0(τ, x) (2.16)

where we have assumed 4 spacetime dimensions and the allowed frequencies are
as defined in eq. (2.15). Now in the case of Klein-Gordon field theory, the zero
temperature Green’s function satisfies (in Minkowski spacetime with signature
(+, −, −, −))

(∂μ∂
μ +m2)G0(t, x) = −δ(t)δ3(x)(

∂2

∂t2
−∇2 +m2

)
G0(t, x) = −δ(t)δ3(x) (2.17)

Going over to imaginary time, t → −iτ (by rotating to Euclidean space or
imaginary time), the above equation leads to{−(−iωn)

2 − (ik)2 +m2
}
G0(τ, x) = δ(τ)δ3(x)

(
ω2
n + k2 +m2

) 1

β

∑
n

∫
d3k

(2π)3
e−i(ωnτ−k.x)G0(iωn, k)

=
1

β

∑
n

∫
d3k

(2π)3
e−iωnτeik.x

Then

G0(iωn, k) =
1

ω2
n + k2 +m2

=
−1

K2 −m2

=
1

ε2k + ω2
n

(2.18)
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where K = (iωn, k) and εk =
√
k2 +m2. This is the momentum space Greens

function or propagator. Here We have also used

δ(τ) =
1

β

∑
n

e−iωnτ (2.19)

and

δ3(x) =

∫
d3k

(2π)3
eik.x (2.20)

The important thing to note is that, unlike the zero temperature case,
here the Green’s function do not have singularities for real values of the energy
and momentum variables. Finite temperature Green’s function calculations are
completely parallel (at least qualitatively) to the zero temperature case. Only
the exact form of the propagator is different from the zero temperature one and
it carries the temperature dependence via the Matsubara frequency (ωn).

2.3 Thermodynamic Potential and Pressure

In this section we will show how to calculate pressure perturbatively. For a
scalar field theory with a φ4 interaction the dynamics is governed by the fol-
lowing Hamiltonian

H =
Π2

2
+

1

2
(∇φ)2 +

1

2
m2φ2 +

λ

4!
φ4 (2.21)

The thermodynamic potential or free energy is given by

Ω = − 1

β
lnZ (2.22)

Since

Z = Z0

〈
Texp

{
−
∫ β

0

dτH1(τ)

}〉
(2.23)

we get

Ω = Ω0 − 1

β
ln

〈
Texp

{
−
∫ β

0

dτH1(τ)

}〉
(2.24)

Ω0 is the thermodynamic potential for the non-interacting fields that we eval-
uate in the following subsection.
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2.3.1 Non-interacting Case

If the Hamiltonian is given the partition function becomes

Z0 = Tr e−βH0

=
∏
r

{
e−

1
2βεr

∑
nr

e−βnrεr

}

=
∏
r

e−
1
2βεr

∏
r

1

1− e−βεr

(2.25)

Then

lnZ0 = −1

2
β
∑
r

εr −
∑
r

ln(1− e−βεr )

Ω0 =
1

2

∑
k

ωk +
1

β

∑
k

ln(1− e−βωk) (2.26)

In the continuum limit,
∑

k → V
∫

d3k
(2π)3 and the free energy looks like

Ω0 = V

∫
d3k

(2π)3

[
1

2
ωk +

1

β
ln(1− e−βωk)

]
(2.27)

The first term in the square bracket is temperature independent and leads to
a divergent integral. The infinite result is of course nothing other than the
zero-point energy of the vacuum, which can be subtracted off, since it is an
unobservable constant, although differences in the zero-point energies can be
observed. Ignoring the zero-point energy and setting m = 0, we have

Ω0 =
V

2π2β

∫ ∞

0

k2dk ln(1− e−βk)

= − V

6π2β4

∫ ∞

0

(βk)3d(βk)

eβk − 1

= − V π2

90β4
(2.28)

The pressure becomes

P = − ∂Ω0

∂V
=

π2T 4

90
(2.29)

This result for the pressure is that of an ultra relativistic ideal gas of spinless
particles.
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2.3.2 Interacting Case: Perturbative Method

In this subsection we briefly review the formalism of thermal field theory in
equilibrium. We shall in particular recall how perturbation theory can be used
to calculate the partition function

Z ≡ Tr exp {−βH} =
∑
n

exp {−βEn} , (2.30)

from which all the thermodynamical functions can be obtained.
The simplest formulation of perturbation theory for thermodynamical

quantities is based on the formal analogy between the partition function
(2.30) and the evolution operator U(t, t0) = exp{−i(t − t0)H}, where the
time variable t is allowed to take complex values. Specifically, we can write
Z = TrU(t0 − iβ, t0), with arbitrary (real) t0. More generally, we shall define
an operator U(τ) ≡ exp(−τH), where τ is real, but often referred to as the
imaginary time (τ = i(t− t0) with t− t0 purely imaginary). The evaluation of
the partition function (2.30) by a perturbative expansion involves the splitting
of the Hamiltonian into H = H0 +H1, with H1 � H0.

We then set

U(τ) = exp (−τH)

= exp (−τH0) exp (τH0) exp (−τH)

= U0(τ)UI(τ), (2.31)

where U0(τ) ≡ exp(−H0τ). The operator UI(τ) is called the interaction repre-
sentation of U . We also define the interaction representation of the perturbation
H1,

H1(τ) = eτH0H1e
−τH0 , (2.32)

and similarly for other operators. Now

d

dτ
UI(τ) = eτH0H0e

−τH − eτH0He−τH

= eτH0(H0 −H)e−τH

= −eτH0H1e
−τH (2.33)

H1(τ)UI(τ) = eτH0H1e
−τH (2.34)

Thus it is easily verified that UI(τ) satisfies the following differential equation

d

dτ
UI(τ) +H1(τ)UI(τ) = 0, (2.35)

with boundary condition

UI(0) = 1. (2.36)
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The solution of the above differential equation, with the boundary condition
UI(τ1, τ1) = 1, can be written formally in terms of the time ordered exponential
as

UI(τ1, τ2) = Tτ exp

(
−
∫ τ1

τ2

dτH1(τ)

)
(2.37)

The symbol Tτ implies an ordering of the operators on its right, from left to
right in decreasing order of their imaginary time arguments. For our case

e−βH = e−βH0e−βH1

= e−βH0 Tτ exp

{
−
∫ β

0

dτH1(τ)

}
= e−βH0UI(β, 0) (2.38)

Now

d

dτ
UI(τ, 0) = H1(τ)UI(τ, 0) (2.39)

Integrating from τ = 0 to τ = β we obtain

UI(β, 0)− UI(0, 0) = −
∫ β

τ=0

dτH1(τ)UI(τ, 0)

UI(β, 0) = 1−
∫ β

τ=0

dτH1(τ)UI(τ, 0) (2.40)

To solve this we substitute the equation itself inside the integral on the right
hand side to yield,

Tτ exp

{
−
∫ β

0

dτH1(τ)

}
= UI(β, 0)

= 1−
∫ β

0

dτH1(τ)

[
1−

∫ τ1

0

dτ2H1(τ2)UI(τ2, 0)

]
= 1−

∫ β

0

dτH1(τ) +

∫ β

0

dτ1

∫ τ1

0

dτ2 H1(τ1)H1(τ2) + · · ·

= 1−
∫ β

0

dτH1(τ) +
1

2

∫ β

0

dτ1dτ2 Tτ [H1(τ1)H1(τ2)] + · · · (2.41)

Due to the presence of time ordering we have to include 1
2 outside the second

integral.
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Using eq. (2.38), one can rewrite Z in the form

Z = Tr (e−βH)

= Tr

[
e−βH0 Texp

{
−
∫ β

0

dτH1(τ)

}]

= Z0

〈
T(τ) exp

{
−
∫ β

0

dτH1(τ)

}〉
, (2.42)

where, for any operator O,

〈O〉 ≡ Tr

(
e−βH0

Z0
O
)
. (2.43)

2.4 φ4 Theory at Finite Temperature

2.4.1 One Loop Mass Correction

We have already seen that in the imaginary time formalism the only differ-
ence between the zero temperature and the finite temperature field theories
lies in the form of the propagator which carries all the temperature depen-
dence. The vertices at finite temperature are exactly the same as those at
zero temperature. Thus, given any quantum field theory, we can carry out cal-
culations of thermodynamic variables perturbatively by calculating Feynman
diagrams.

Let us consider a self-interacting φ4 theory described by the Lagrangian
density

L =
1

2
∂μφ∂

μφ− 1

2
m2φ2 − λ

4!
φ4 (2.44)

According to our discussion, if we want to calculate quantities at finite tem-
perature, we should treat time as an imaginary parameter in which case the
theory becomes a Euclidean theory LE = L.

LE =
1

2
∂μφ∂μφ+

1

2
m2φ2 +

λ

4!
φ4 (2.45)

The diagrammatic calculation is analogous to that of the zero temperature
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case; the only difference is that since the energy values are now quantized,
the intermediate energy integrals have to be replaced by sums over discrete
values ∫

d4k

(2π)4
→ i

β

∑
n

∫
d3k

(2π)3
(2.46)

The mass correction becomes

−iΠ ≡ −iΠ =
iλ

2!

i

β

∑
n

∫
d3k

(2π)3
i

ω2
n + ε2k

Π =
λ

2β

∑
n

∫
d3k

(2π)3
Δ(iωn, k)

=
λ

2β

∑
n

∫
d3k

(2π)3

∫ β

0

dτeiωnτΔ(τ, k)

=
λ

2

∫
d3k

(2π)3

∫ β

0

dτΔ(τ, k)
1

β

∑
n

eiωnτ

=
λ

2

∫
d3k

(2π)3

∫ β

0

dτΔ(τ, k)δ(τ)

=
λ

2

∫
d3k

(2π)3
Δ(0, k) (2.47)

In the above 2! is due to the symmetry factor at the vertex.

Figure 2.1: One loop mass correction

From eq. (2.8)we have

Δ(τ, k) = e−εk(τ) [Θ(τ)(1 +Nk) + Θ(−τ)Nk]

Δ(0, k) =
1

2ωk
[1 + 2Nk] (2.48)

Π =
λ

2

∫
d3k

(2π)3

[
1 + 2Nk

2ωk

]



74 2. An Introduction to Thermal Field Theory

The first term corresponds to the zero temperature part and the second term
represents explicit temperature dependence. For m = 0, the second term is

λ

2

∫
4πk2 dk

(2π)3k[eβk − 1]
=

λ

(4π)2

∫
dk

k

eβk − 1
=

λ

24β2
(2.49)

The total self energy or mass correction at finite temperature thus becomes

Π =
λ

4

∫
d3k

(2π)3
1

ωk
+

λT 2

24
(2.50)

The divergences in the expression for the mass correction is entirely contained
in the zero temperature part. The temperature dependent part is free from
ultraviolet divergences. Therefore the zero temperature counterpart is sufficient
to renormalize the theory. We see here that temperature induces a mass for the
bosons analogous to a particle moving in a medium and the mass is positive.

Figure 2.2: Mass counterterm

In eq. (2.50) the first term is temperature independent but ultraviolet
divergent. To avoid this divergence one uses the mass counterterm in the La-
grangian, 1

2δm
2φ2; this is known as mass renormalization.

δm2 +
λ

2

∑
k

1

2ωk
= 0

2.5 Pressure in φ4 Theory

We have shown that the pressure for the scalar field is given by eq. (2.29). But a
well known problem at high temperatures is the breakdown of the conventional
perturbative expansion at some order in the coupling constant (λ). Therefore,
to compute consistently to a given order in λ, we have to take into account all
the relevant higher loop graphs— these usually form an infinite set.

First order correction: To go beyond leading order, one must compute two loop
(and higher) diagrams in the effective expansion.

Figure 2.3: First order correction to pressure
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λ

4!
3

[∫
d3k

(2π)3
Δ(0, k)

]2
=

3λ

4!

[∫
d3k

(2π)3
1

2ωk
+

∫
d3k

(2π)3
Nk

ωk

]2
=

3λ

4!

[{∫
d3k

(2π)3
1

2
√
k2 +m2

}2

+

{∫
d3k

(2π)3
1

ωk

1

eβωk − 1

}2

+ 2

∫
d3k

(2π)3
1

2ωk

∫
d3k′

(2π)3
1

ωk′

1

eβωk′ − 1

]
(2.51)

The first term is the zero temperature contribution having an ultraviolet diver-
gence and the second term is the temperature dependent part. The third term
is potentially dangerous; it is divergent and temperature dependent.

Figure 2.4: Counterterm contribution to the pressure

The counterterm contribution to the pressure is obtained by folding
fig. (2.2) as shown in fig. (2.4). Mathematically this is given by

1

2
δm2

(∑
k′

1 + 2Nk′

2ωk′

)

=
1

2

(
−λ

2

∑
k

1

2ωk

)(∑
k′

1 + 2Nk′

2ωk′

)

= −λ

8

∑
k

1

2ωk

∑
k′

1

ωk′
− λ

4

∑
k

1

2ωk

∑
k′

Nk′

ωk′
(2.52)

Thus the mass renormalization term cancels the potentially dangerous term
in the first order correction to the pressure in eq. (2.51) which is temperature
dependent and also ultraviolet divergent. After cancellation of that term there
is still the first term of the above equation which is ultraviolet divergent. But
this is temperature independent and thus harmless. One elegant way to avoid
this term is to define the renormalized free energy

ΩR(T,m
2, λ) = Ω(T,m2, λ)− Ω(T = 0,m2, λ) (2.53)
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From this renormalized potential one obtain the correction of order λ to the
pressure of the ideal gas in the m = 0 case

P = − 1

β

∫
d3k

(2π)3
ln(1− e−βωk)− λ

8

(∫
d3k

(2π)3
Nk

k

)2

(2.54)

The first term (already calculated) equals π2T 4

90 and the second term is
π2T 4

90 (− 5λ
64π2 ). Thus the pressure up to first order in λ is

P =
π2T 4

90

(
1− 5λ

64π2

)
(2.55)

Second order correction: Mathematically the second order correction to the
pressure is given by{

λ

2

∫
d3k′

(2π)3
Δ(0, k′)

}2∑
k,n

{Δ(iωn, k)}2

=
λ2

4

(∑
k′

1

2ωk′
+

Nk′

ωk′

)2∑
k,n

(
1

ω2
k + ω2

n

)2

(2.56)

Now the second factor can be written as

Figure 2.5: Second order correction to the pressure

∑
k,n

(
1

ω2
k + ω2

n

)2

=
∑

k,n=0

1

ω4
k

+
∑
n�=0

∑
k

(
1

ω2
k + ω2

n

)2

(2.57)

where we have separated the n = 0 and n �= 0 terms. For the m → 0 case

(ω2
k → k2), and defining

∑
k

= V

∫
d3k

(2π)3
, we get

∑
k

1

ω4
k

→
∫

d3k

(2π)3
1

k4
→

∫
dk

k2
→ ∞ for k → 0 (2.58)

i.e. this term has an infrared divergence. From eq. (2.56) the first term is the
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same as that obtained in the first order correction. Thus, as the n �= 0 term is
non-divergent, the divergence becomes worse and worse as we go to higher and
higher order.

2.5.1 Infrared Divergence and resummation of ring diagrams

In order to see if the perturbation series is well behaved, it is necessary to look
at higher orders. In the previous section we have seen that higher order rings,
as in fig. (2.5), are infrared divergent as in eq. (2.58). In scalar field theories,
it is known that the dominating infrared contributions to the self energy come
from the so-called ring diagrams. Ring diagrams consist of loop diagrams of
various orders forming an infinite series, and each of them is infrared divergent.
When summed over, this series gives us a finite result as shown in eq. (2.62).
It is to be noted here that the entire sum for the n = 0 mode contributes to
the order λ3/2, while each term is of higher order in λ. Thus higher order loops
contribute to the pressure at lower order in coupling after summing the series. In
effect, this implies a reorganization of the perturbation series where a particular
class of diagrams are summed over in a definite way. This reorganisation of the
perturbation series is known as resummation.

For two loops with two propagators the renormalized free energy is given
by

ΩR = − V

2β

1

2

∑
k,n

{−Π(iωn, k)Δ(iωn, k)}2 (2.59)

Here the first 2 factor in the denominator is the symmetry factor at each vertex
and the second 2 arise from 2 loops. For the ring diagrams, the renormalized
free energy is given by

Figure 2.6: Ring diagram

ΩR = − V

2β

∑
k,n

∞∑
N=2

1

N
{−Π(iωn, k)Δ(iωn, k)}N

=
V

2β

∑
k,n

{ln[1 + Π(iωn, k).Δ(iωn, k)]−Π(iωn, k).Δ(iωn, k)}



78 2. An Introduction to Thermal Field Theory

The factor of 1
N is a symmetry factor which can be understood in the following

way: there is a factor of 3! for connecting two lines at each vertex, a factor of
2 for how the remaining two lines at each vertex are connected to the adjacent
vertices, a factor of 1

2 (N − 1)! for the number of ways of ordering the vertices
along the circle, and a factor of 1

N ! from the expansion of the exponential of the
interaction in the partition function. The summation over N begins at N = 2
because in case of the single loop (N = 1) the self energy contribution from the
temperature dependent part, λT 2/24, is already calculated as part of the first
order correcion.

ΩR =
V

2β

⎡⎣∑
k,n

Π(iωn, k).Δ(iωn, k)− 1

2

∑
k

(
λ

2

nk

ωk

)2∑
k,n

(Δ(iωn, k))
2
+

· · · − ∑
k,n Π(iωn, k).Δ(iωn, k)

⎤⎦ (2.60)

Now

∑
k,n

(Δ(iωn, k))
2 =

∑
k,n

(
1

ω2
k + ω2

n

)2

=
∑
k

1

ω4
k

+
∑
n�=0

∑
k

(
1

ω2
k + ω2

n

)2

(2.61)

The separated n = 0 term is infrared divergent for m = 0 and the n �= 0 term
is proportional to 1/

(
k2 + 4n2π2T 2

)
and is non-divergent for k → 0 due to the

existence of the 4n2π2T 2 term. Thus divergences become worse and worse as
we go to higher and higher order terms. Since the n �= 0 term does not diverge,
we only consider the n = 0 term for the m → 0 case (see Appendix II).

ΩR =
V

2β

∫
d3k

(2π)3)

[
ln

(
1 +

λT 2

24

1

k2

)
− λT 2

24

1

k2

]
= − V

2β

1

6πβ3

(
λ

24

) 3
2

P =
1

12πβ4

(
λ

24

) 3
2

(2.62)

Thus the correction is of order λ
3
2 , not of order λ2 as would have been expected.

This arises from the infrared singular behavior of the propagator.
The expression for the pressure considering upto the ring diagram is

P =
π2T 4

90

[
1− 5λ

64π2
+

90

12π3

(
λ

24

) 3
2

+ · · ·
]

=
π2T 4

90

[
1− 15

8

(
λ

24π2

)
+

15

2

(
λ

24π2

) 3
2

+ · · ·
]

(2.63)
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The first term is the pressure for a free boson gas. The second term is from
the first order correction and the third term is from the ring diagram. Thus if
one restricts oneself to the n = 0 term, i.e. the static mode, the total result
exhibits a breakdown of perturbation theory due to the infrared divergence.
Infrared divergences come from the static modes only, as ωn = 2πnT acts as
a mass term in the propagator for n �= 0. Thus the results obtained in naive
perturbation theories can be incomplete in the order of the coupling constant
since higher order diagrams after resummation can contribute to lower order
in the coupling constant.

2.6 Appendices

2.6.1 Interaction picture creation and annihilation operators

a†k(τ) ≡ eτH0a†k(0)e
−τH0 (2.64)

ak(τ) ≡ eτH0ak(0)e
−τH0 (2.65)

These give

d

dτ
ak(τ) = eτH0H0ak(0)e

−τH0 − eτH0ak(0)H0e
−τH0

= eτH0 [H0, ak(0)]e
−τH0

= [H0, ak(τ)]

=
[∑

εk′a†k′(τ)ak′(τ), ak(τ)
]

= −εk′δk′kak′(τ)

= −εkak(τ)

ak(τ) = e−εkτak(0) (2.66)

Similarly

a†k(τ) = eεkτa†k(0) (2.67)

2.6.2 Ring diagram calculation for zero Matsubara frequency

For the ring diagram calculation the actual equation is

ΩR =
V

2β

∫
d3k

(2π)3

[
ln

(
1 +

λ

24

1

β2k2

)
− λ

24

1

β2k2

]
(2.68)
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To solve the above we solve the equation below,

I =

∫
dx x2

(
ln

(
1 +

λ

x2

)
− λ

x2

)
=

1

3
ln

(
λ

x2
+ 1

)
x3 − λ x

3
− 2

3
λ

3
2 tan−1

(
x√
λ

)
(2.69)

lim
x→∞ I = −1

3
λ

3
2π +

λ2

2x
− 1

9
λ3

(
1

x

)3

+O

{(
1

x

)4
}

� −1

3
λ

3
2π (2.70)

lim
x→0

I = −λx+

(
ln λ

3
− 2 ln λ

3
+

2

9

)
x3 +O(x4)

� 0 (2.71)

Thus using eq. (2.70) and eq. (2.71),we get

I =

∫ ∞

0

dx x2

(
ln

(
1 +

λ

x2

)
− λ

x2

)
= −1

3
λ

3
2π (2.72)

Thus

ΩR = − V

2β

(
λ

24

) 3
2 1

6πβ3
(2.73)

2.6.3 Problems

1. (a) Define the creation and annihilation operator in the interaction picture
as

a†k(τ) ≡ eτH0a†k(0) e
−τH0

ak(τ) ≡ eτH0ak(0) e
−τH0

Then show that

ak(τ) = e−εkτak(0)

a†k(τ) = e+εkτa†k(0)

(b) The non-interacting partition function for bosons is given by Z0 =
Tre−βH0 where H0 = n1ε1 + n2ε2 + ..... Prove the following identities:

(i) 〈a†sas〉 = f(εs)

(ii) 〈(a†sas)2〉 = f(εs)[f(εs) + 1] + [f(εs)]
2

where f(εs) is the Bose distribution function.
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2. Prove that

(i)

∫ ∞

0

dx
xn

eβx − 1
=

1

βn+1
ζ(n+ 1)Γ(n+ 1) (for bosons)

(ii)

∫ ∞

0

dx
xn

eβx + 1
=

1

βn+1

(
1− 1

2n

)
ζ(n+ 1)Γ(n+ 1)) (for fermions)

3. Prove the Kubo-Martin-Schwinger condition

〈A(t)B(t′)〉 = 〈B(t′)A(t+ iβ)〉

Here the angular brackets represent thermal averages.

4. Prove that for a free gas the pressure becomes

P =

(
nB +

7

8
nF

)
π2T 4

90

where nB and nF are the degeneracies for bosons and fermions.
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3

Perturbative Quantum

Chromodynamics

V. Ravindran

3.1 Structure of Hadrons

Quantum Chromodynamics (QCD) is the theory of strong interaction force
among hadrons. It is a gauge theory based on a non-Abelian gauge group
namely SU(3). In the following, I will describe the perturbative aspects of
QCD that is relevant for studying high energy scattering processes involving
hadrons.

Strong interaction force is responsible for binding the nucleons inside the
nucleus. It is a short range force which is effective within few Fermi (of the
order of 10−13cm). Thus, the typical cross section for the process mediated by
strong interaction is of the order of square of few Fermi which is 10−26cm2

(10 milli-barn (mb)). The characteristic energy scale of strong interaction force
is of the order of few hundred million electron volt (MeV) and the life time
of any excitation will be around inverse of few hundred MeV. However, its
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interaction strength is several hundred times larger than those of weak (wk)
and electromagnetic (em) forces(α ≈ 1/137).

Hadrons such as baryons (proton, neutron, Λ,Δ,Ω, etc. having 1/2 integer
spins) and mesons (π0, π±,K, ρ having integer spins) being composite objects
are classified in terms of their constituents: quarks and anti-quarks. They are
spin-1/2 point-like particles carrying fractional charges. There are six types of
quarks with different flavour quantum numbers denoted by up (u), down (d),
charm (c), strange (s),top (t) and bottom (b). The u, c, t quarks carry 2/3 and
d, s, b carry −1/3 units of electron charge. In addition to flavour quantum num-
ber, these quarks carry three colour quantum numbers, namely red (R), blue

(B) and green (G). We denote them by states namely qfi where f = u, d, c, s, t, b

and i = R,B,G. These states qfi transform like a vector in the fundamental rep-
resentation of SU(nf ) group, called flavour group with nf number of flavours.
SU(nf ) is a set of nf × nf unitary matrices denoted by U satisfying the con-
dition detU = 1. These transformations are space-time independent, usually
called global or phase transformations. In addition, these states transform like
a vector under SUc(3) group, called colour group. Hadrons by themselves can
carry definite flavour quantum number and hence the hadronic wave functions
can be non-singlets under SU(nf ) transformation. On the other hand, there
is so far no experimental evidence for a hadron with non-zero colour quan-
tum number. Hence, hadronic wave functions are always singlets under SUc(3)
transformations. Mesonic states can be obtained by combining quark and anti-
quark states, i.e.,

∑
i q

f1
i qf2i can be a meson with an effective flavour quantum

number obtained using f1, f2 and they are colour singlets. Baryonic states are
obtained by combining three quark states, i.e.,

∑
ijk εijkq

f1
i qf2j qf3k where εijk

is anti-symmetric tensor in i, j, k. They are again colour singlets with definite
flavour. The anti-symmetrization of colour indices in the baryonic wave func-
tions is needed in order to preserve the Pauli exclusion principle in the states
with three spin-1/2 quarks.

Though, the static properties of hadrons can be obtained using the flavour
quantum numbers of the their constituents, the nature of strong interaction
force can not be explained by models based only on global continuous sym-
metries such as SU(nf ). Understanding the dynamics of the strong interaction
force in terms of the constituents is an important task in hadronic physics. The
task is to look for a suitable gauge theory that describes the dynamics of these
constituents and also the mechanism behind the binding force.

The crucial inputs to construct a suitable theory of strong interaction
force come from various elastic and inelastic experiments involving hadrons.
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Elastic scattering of lepton on a hadron provides low energy description of
hadrons, namely the electric and magnetic charge distributions inside the
hadrons. Consider an elastic scattering process:

e−(k) + P (p) → e−(k′) + P (p′) (3.1)

where the incoming electron e− and proton P carry momenta k and p respec-
tively, k′ and p′ are their momenta after the scattering. The scattering takes
place by exchanging a virtual photon of momentum q = k′−k which is space-like
(q2 < 0). This is the lowest order process in quantum electrodynamics (QED)
where photon interacts with charged particles. The interaction vertex of the
photon with the electron and its propagator are known from QED. It is given
by −iejμA

μ where jμ is the electro-magnetic current of the electron and Aμ is
the photon field. In QED, the electromagnetic current is given by jμ = ψγμψ
where, ψ is the wave function of the electron. On the other hand the wave
function of the proton and proton-photon interaction vertex are not known.
They can be obtained by first modeling them based on the symmetries and
then by fitting against the experiments. In other words, one first parameterises
the current of the hadron that couples to the photon in terms of trial wave
functions denoted by Ψ(p) and Ψ(p′) and a set of form factors F̃i(q

2), (i = 1, 2)
multiplying suitable vectors constructed out of pμ, p

′
μ, γμ. In momentum space,

the typical interaction term is given by

eÃμ(q)Ψ(p′)

[
F̃1(Q

2) γμ +
κ

2MP
F̃2(Q

2) iσμνq
ν

]
Ψ(p) (3.2)

where σμν = i[γμ, γν ]/2, κ the anomalous magnetic moment and MP the mass

of the proton. The scalar functions F̃i(Q
2) parameterise the structure of the

hadron in terms of the scale Q2 = −q2. The elastic cross section is found
to be

d2σ

dΩedE′ =
4α2E

′2

q4

{
G2

E(Q
2) + Q2

4M2
P
G2

M (Q2)

1 + Q2

4M2
P

cos2
θ

2

− Q2

2M2
P

G2
M (Q2) sin2

θ

2

}
δ

(
ν − Q2

2MP

)
(3.3)
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where dΩe is the solid angle of the scattered electron in the laboratory frame,
E′ its energy. We have

α =
e2

4π
, Q2 = 4EE′ sin2

θ

2
, ν = p.q/MP

GE(Q
2) = F̃1(Q

2)− κQ2

4M2
P

F̃2(Q
2)

GM (Q2) = F̃1(Q
2) + κF̃2(Q

2) (3.4)

where κ depends on the magnetic moment. The elastic form factors (F̃i(Q
2),

equivalently Gi(Q
2), i = E,M) describe the electric charge and magnetic mo-

ment distributions of the proton as a function of a scale denoted by Q of the
photon that probes the proton. Experimentally, one finds that GE(Q

2) and
GM (Q2)/(1 + κ) decrease as 1/Q4 when Q increases. This implies the elas-
tic scattering cross section falls off rapidly at large angles. The distribution of
these charges in terms of energy easily translates to a spatial picture of the
proton.

We will now study a different kind of experiment called (deep) inelastic
scattering in which the proton is bombarded with very high energetic photon
that breaks the proton into pieces. That is, we consider e−(k)+P (p) → e−(k′)+
X(pX) where X are final state hadrons carrying momentum denoted by pX .
We restrict ourselves to inclusive cross section where all the final states but the
scattered lepton are summed over. To lowest order in em, the differential cross
section can be written as a product of leptonic part Lμν , and a hadronic part
Wμν :

d2σ

dΩedE′ =
E′

E
Lμν(k, q)

α2

Q4
Wμν(q, p) (3.5)

where

Lμν(k, q) =
1

2

∑
s1,s2

(u(k′, s2)γμu(k, s1)) (u(k′, s2)γνu(k, s1))
∗

(3.6)

Wμν(q, p) =
1

8MPπ

∑
pX ,s

〈p, s|Jμ(0)|pX〉〈pX |Jν(0)|p, s〉

(2π)4δ(4)(q + p− pX) (3.7)
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The lepton part is fully computable in QED. On the other hand the hadronic
part requires the knowledge of the matrix element of electromagnetic cur-
rent Jμ between proton states. Jμ is Hermitian and conserved. Using trans-
lational invariance, Jμ(x) = eip̂·xJμ(0)e−ip̂·x and the completeness relation∑

pX
|pX〉〈pX | = 1,

Wμν(q, p) =
1

4MPπ

∫
d4xeiq·x

1

2

∑
s

〈p, s|Jμ(x)Jν(0)|p, s〉. (3.8)

Since ∫
d4xeiq·x

∑
s

〈p, s|Jν(x)Jμ(0)|p, s〉 = 0 (3.9)

which follows from energy conservation along with the condition q0 > 0, we
find

Wμν(q, p) =
1

4MPπ

∫
d4xeiq·x

1

2

∑
s

〈p, s|
[
Jμ(x), Jν(0)

]
|p, s〉 (3.10)

This commutator vanishes for x2 < 0, so the integral has support only for
x2 > 0. To proceed further with the hadronic tensor Wμν(q, p), we exploit the
symmetries at our disposal such as Lorentz covariance (that is, second rank
nature) of Wμν(q, p), qμW

μν(q, p) = qνW
μν(q, p) that follows from the current

conservation ∂μJ
μ(x) = 0 and finally parity and time reversal invariance of the

interaction. To this end we parameterise the hadronic tensor as

Wμν(q, p) =
(
− gμν +

qμqν
q2

)
W1(q

2, p2, p · q)

+
(
pμ − p · q

q2
qμ

)(
pν − p · q

q2
qν

) 1

M2
P

W2(q
2, p2, p · q) (3.11)

where Wi, i = 1, 2 are called structure functions which are functions of Lorentz
invariants q2 = −Q2, p2 and p · q. Since p2 = M2

P , we suppress obvious p2

dependence in the rest of the analysis. The summation over spin in the lep-
tonic tensor gives traces over gamma matrices which can be easily evaluated.
Substituting the resultant Lμν and Wμν in eqn.(3.5), we get in the laboratory
frame,

d2σ

dΩedE′ =
4α2E

′2

Q4

[
W2(Q

2, p · q) cos2 θ

2
+ 2 W1(Q

2, p · q) sin2 θ

2

]
(3.12)
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In the above formula, the structure functions Wi (i = 1, 2) are still unknowns.
Using this formula and measuring the differential cross section, these structure
functions can be extracted for various values of Q2 and p · q. Alternatively, the
qualitative feature of these functions can be obtained by studying them in the
infinite momentum frame. The study of the hadronic tensor in the infinite mo-
mentum frame where pz component of the proton tends to very large value(say
∞) reveals much simplified form for these structure functions. In particular,
when Q2 → ∞ with the ratio Q2/2p · q fixed, usually called Björken limit
(denoted by Bj), one finds

lim
Bj

MPW1(Q
2, p · q) = F1(xBj)

lim
Bj

p · q
MP

W2(Q
2, p · q) = F2(xBj) (3.13)

where xBj = Q2/2p·q. In the Björken limit, the structure functions are no longer
functions of two invariants Q2 and p · q but the ratio xBj = Q2/2p · q,called
Björken variable. The deep inelastic scattering cross section following form

lim
Bj

d2σ

dΩedE′ =
4α2E

′2

Q4

[
MP

p · qF2(xBj) cos
2 θ

2
+

2

MP
F1(xBj) sin

2 θ

2

]
(3.14)

implying “scaling” behavior of appropriately normalised cross section in terms
of the the variable xBj . Such a scaling is called Björken scaling and deep inelas-
tic scattering experiments at SLAC, Stanford confirmed it. We will come back
to the physical interpretation of this scaling after we study the hadronic tensor
in the Björken limit using a more rigorous approach called operator product
expansion (OPE).

3.2 Operator Product Expansion and Parton Model

We have already seen that the hadronic tensor Wμν(q, p) has support only for
x2 > 0. Now we will show that the dominant contribution to the hadronic
tensor in the Björken limit comes from the light-cone region x2 = 0. Let us first
find out how this limit can be applied to the integral in eqn.(3.10). Note that

q · x ≈ p · q
MP

(x0 − x3)− Q2MP

4p · q (x0 + x3) (3.15)

This implies that it diverges in the Björken limit provided x0 − x3 is very
different zero. If so, the exponential of i q · x will be highly oscillatory leading
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to vanishing integral. This oscillation gets suppressed only in the position space
x, when x0 − x3 ≤ MP /p · q and x0 + x3 ≤ const.p.q/Q2. This corresponds to
the region where x2 ≤ x2

0 − x2
3 ≈ 0. The region where x2 ≈ 0 is called light-

cone region. The summary of the above simple exercise is that the dominant
contribution to Wμν(q, p) in the Björken limit comes from the light-cone region
of the integral.

The hadronic tensor Wμν(q, p) can be written as

Wμν(q, p) =
1

2πi

[
Tμν(q

0 + iε)− Tμν(q
0 − iε)

]
(3.16)

where

Tμν(q, p) =
i

2MP

∫
d4xeiq·x

1

2

∑
s

〈p, s|T (Jμ(x)Jν(0)) |ps〉 (3.17)

In this representation, we can easily apply Björken limit as can be shown be-
low. The task now is to study the time ordered product of two electromagnetic
currents on the light cone, that is, limx2≈0 T (Jμ(x)Jν(0)). It is understood that
the currents are already normal ordered. In quantum field theory, care is needed
to define the product of quantum field operators, the composite operators (nor-
mal ordered product of quantum field operators) at the same space-time point.
Same is true for the product of such operators on the light cone. The reason
is that they are often singular and ill-defined and a prescription is needed to
define them. Wilson proposed a systematic method to organise such product of
quantum field operators and composite operators as a series expansion in terms
of well defined local operators with appropriate singular coefficients organised
in such a way that the most singular/dominant terms appear first and the less
singular and regular terms appear successively in the expansion. This goes un-
der the name operator product expansion (OPE). We can now apply OPE to
T (Jμ(x)Jν(0)) on the light cone. Since incoming leptons are unpolarised, the
leptonic tensor Lμν is symmetric in the indices μ, ν and hence only symmetric
part of Tμν will be considered for our study below:

lim
x2≈0

T (Jμ(x)Jν(0)) = (∂μ∂ν − gμν∂
2)OL(x, 0)

+
(
gμλ∂ρ∂ν + gρν∂μ∂λ − gμλgρν∂

2

−gμν∂λ∂ρ

)
Oλρ

2 (x, 0) (3.18)
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where the operators Oi(x, 0), i = L, 2 are given by

OL(x, 0) =
∑
a,n

Ca
L,n(x

2)xμ1 · · · xμnOa
L,μ1,···,μn

(0)

Oλρ
2 (x, 0) =

∑
a,n

Ca
2,n(x

2)xμ1 · · · xμnOaλρ
2,μ1,···,μn

(0) (3.19)

The local operators Oa
L,μ1,···,μn

(0) and Oaλρ
2,μ1,···,μn

(0) are well-defined in the
sense that their matrix elements between physical states are finite. On the
other hand, the coefficients Ca

i,n(x
2), i = L, 2 are singular when x2 ≈ 0. These

coefficients are called Wilson’s coefficients. Using OPE on the light cone, the
symmetric part of Tμν becomes,

lim
x2≈0

T{μν} = −i
(
qμqν − q2gμν

)1
2

∑
s

〈p, s|Oa
L,μ1,···,μn

(0)|p, s〉

×
∑
a,n

∫
d4xeiq·xxμ1 · · · xμnCa

L,n(x
2)− i

(
gμλqρqν + gρνqμqλ

−gμλgρνq
2 − gμνqλqρ

)1
2

∑
s

〈p, s|Oaλρ
2,μ1,···,μn

(0)|p, s〉

×
∑
a,n

∫
d4xeiq·xxμ1 · · · xμnCa

2,n(x
2) (3.20)

It can be simplified further using the method of tensor decomposition as follows:

∫
d4xeiq·xxμ1 · · · xμnCa

L,n(x
2) = −i

(
− 2

q2

)n+1

qμ1 · · · qμn Ĉa
L,n(−q2)

+i

(
− 2

q2

)n+1

q2
{
gμ1μ2qμ3 · · · qμn

}
S
C̃a

L,n(−q2)

+ · ·· (3.21)

where the subscript S means symmetrisation of all the indices inside the paren-
thesis. A similar expansion defines Fourier coefficients Ĉa

2,n(−q2), C̃a
2,n(−q2), · · ·

for the Wilson’s coefficient Ca
2,n(x

2). The operator matrix elements can be writ-
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ten as

1

2

∑
s

< p, s|Oa
L,μ1,···,μn

(0)|p, s > = Âa
L,n(p

2)pμ1 · · · pμn

+B̂a
L,n(p

2)p2
{
gμ1μ2pμ3 · · · pμn

}
S

+ · · ·
1

2

∑
s

< p, s|Oaλρ
2,μ1,···,μn

(0)|p, s > = Âa
2,n+2(p

2)
{
pλpρpμ1 · · · pμn

}
S

+B̂a
2,n(p

2)p2
{
gμ1μ2p

λpρpμ3 · · · pμn

}
S

+ · ·· (3.22)

On the light cone, terms proportional to metric tensor in the eqns. (3.21,3.22)
are suppressed because they give contributions that are proportional to x2 or
p2/Q2. Hence only Ĉa

L,n(−q2), Ĉa
2,n(−q2) and Âa

L,n(p
2), Âa

2,n(p
2) contribute to

T{μν}(q, p):

T{μν} = 2
∑
i,n

wn

[
eμνÂ

a
L,n(p

2)Ĉa
L,n(−q2) + dμνÂ

a
2,n(p

2)Ĉa
2,n(−q2)

]
(3.23)

where

w =
2p · q
Q2

, eμν = gμν − qμqν
q2

dμν = −gμν − pμpν
q2

(p · q)2 +
pμqν + pνqμ

p · q (3.24)

Translation invariance implies,

T{μν}(−w) = T{μν}(w) (3.25)

It is clear from eqn.(3.23) that T{μν}(w) has a branch cut |w| > 1. If T{μν}(w)
is analytically continued to a complex plan spanned by complex w, then branch
cuts will be along Re(w) ≥ 1 and Re(w) ≤ −1. Consider a contour C enclosing
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the origin and leaving the branch cuts outside. Then,∫
C
dw

T{μν}(w)
w

=
1

iπ

∫ ∞

1

dw
T{μν}(w + iε)− T{μν}(w − iε)

wm

=
2

π

∫ 1

0

dξξm−2Wμν(ξ,Q
2) (3.26)

where ξ = 1/w. Using the identity (2πi)−1
∫
C w

n−mdw = δn,m−1, we find∫ 1

0

dxBjx
m−1
Bj Wμν(xBj , Q

2) =
∑
a

[
eμνÂ

a
L,m−1(p

2)Ĉa
L,m−1(Q

2)

+dμνÂ
a
2,m−1(p

2)Ĉa
2,m−1(Q

2)
]

(3.27)

The structure functions satisfy the following relation:∫ 1

0

dxBjx
N−1
Bj Fi(xBj , Q

2) =
∑
a

Âa
i,N (p2)Ĉa

i,N (Q2), i = L, 2 (3.28)

The structure functions Fi(xBj , Q
2) are in general functions of p2, Q2 and p · q.

Using OPE, we have shown here that in the Björken limit, the Nth moment
of the structure functions with respect to xBj factorises into product of purely

p2 dependent functions Âa
i,N (p2) and functions Ĉa

i,N (Q2) that depend only Q2.

The hadronic matrix elements, Âa
i,N (p2), parametrise the long distance physics

of the process. On the other hand the Wilson’s coefficients Ĉa
i,N (Q2) capture all

the short distance part of the process. The scaling behaviour of the structure
functions in the Björken limit now corresponds to situation in which the Wil-
son’s coefficients become Q2 independent when Q2 → ∞. Hence, any candidate
model or a theory for strong interaction force should result in Q2 independent
Wilson’s coefficients for the structure functions Fi(xBj , Q

2).
Let us now express the differential cross given in eqn.(3.14) in the Björken

limit in terms of these structure functions:

lim
Bj

d2σ

dΩedE′ =

∫ 1

0

dy

∫ 1

0

dzyF2(y)
[4α2E

′2

Q4

2MP

Q2
cos2

θ

2
δ(1− z)

]
δ(xBj − yz)

+

∫ 1

0

dy

∫ 1

0

dzF1(y)
[4α2E

′2

Q4

2

MP
sin2

θ

2
δ(1− z)

]
δ(xBj − yz)

(3.29)
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The above result offers an elegant interpretation: let us recall the expression
for the elastic scattering cross section for a point like particle, that for the for
process, e+ μ → e+ μ, we have

d2σ

dΩedE′ =
4α2E

′2

Q4

[
2MP

Q2
zδ(1− z) cos2

θ

2
+

2

MP
δ(1− z) sin2

θ

2

]
(3.30)

where the dimensionless variable z = Q2/2pμ · q. Comparing eqn.(3.29) with
the eqn.(3.30), we find that the inelastic scattering in the Björken limit can be
thought of as the weighted sum (integration) of elastic scattering cross sections.
The weight factors here are nothing but the structure functions that depend
on the variable y = xBj/z. Since the cross sections are basically probabilities,
the weight factors can be interpreted as some probabilities. This simple minded
interpretation of the deep inelastic hadronic cross section in the Björken limit
in terms of elastic scattering cross sections of point like particles leads to a
picture of hadrons at high energies (Björken limit belongs to this category)
which goes under the name Parton Model. In this model, the hadrons at high
energy or equivalently at short distances are described in terms of what are
called free partonic states. These states correspond to elementary point-like
particles, called partons that constitute the hadrons. These free partons can
interact with other standard model particles through electromagnetic (em) or
weak interactions. For example an electrically charged parton can interact with
a photon through em interaction and with Z boson through weak interaction.
Since the model does not contain any mechanism for the binding of nucleons
at low energies, the corresponding long distance physics of these partons is
parametrised in terms of some unknown quantities which are usually extracted
from the experiment. The above picture of hadrons in terms of free partonic
states can be easily justified by studying the inelastic cross section of hadrons
in the rest of frame of the virtual photon. In this frame, the hadron is Lorentz
boosted which leads to length contraction of its size along the boosted direc-
tion. This reduces the distance traversed by the electron during the scattering.
In addition, the internal interaction of the partonic states, which is responsible
for binding the partons inside the hadron, is time dilated. This means that
the partonic states live longer than the time scales associated with the inter-
action of an electron(i.e., the virtual photon) with the single partonic state.
Therefore, the electron or equivalently the virtual photon scatters off on only
a single partonic state. The scattering cross section is then proportional to the
probability of finding this partonic state in the proton. Hence, the hadronic
cross section is incoherent sum of cross sections of various partonic states of
the hadron with appropriate probabilities. If we denote f̂a/h(y), the probability
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of finding a partonic state a inside the proton with momentum fraction y of the
proton momentum and dσ̂ea(z,Q

2) the elastic cross section of an electron on
the partonic state, then the inelastic cross section in the Björken limit is given
by

lim
Bj

dσeh(xBj , Q
2) =

∑
a

∫ 1

0

dy

∫ 1

0

dzf̂a/h(y)dσ̂ea(z,Q
2)δ(xBj − yz) (3.31)

Note that the above formula is a generalisation of the result given in eqn.(3.29)
with Fi replaced by fa/h and terms within the square brackets replaced by

dσ̂ea. Here f̂a/h(y) is called parton distribution function. It depends only the
type of parton a and the hadron h and they are process independent. These
functions can not be calculable within the model and hence should be extracted
from the experiments. On the other hand, dσ̂ea(z,Q

2), called partonic cross
sections, which result from the scattering of point-like partons with electron
through electromagnetic and/or through weak interactions. The above formula
reproduces the scaling behaviour of the deep inelastic scattering in the Björken
limit given in eqn(3.29). It is straightforward to relate the hadronic structure

functions Fi(y) with the partonic distribution functions f̂a/h(y). In the case of
proton, the structure functions can be expressed as

F1(xBj) =
1

2

∑
a=u,d

e2af̂a/P (xBj) (3.32)

F2(xBj) = xBjF1(xBj) (3.33)

where we have assumed that the proton is made up of ”up”(u) and ”down”(d)
type partons inspired by the classification of hadrons in terms of quarks.

3.3 Gauge Symmetry

In this section we will study the role played by gauge symmetry in constructing
classical actions that can describe various forces of nature. Let us first study
the theory of electrons and electromagnetic fields. The classical Lagrangian that
describes free electrons is given by,

Lψ = ψ(x)[i �∂ −m]ψ(x) (3.34)

where ψ is a 4-component Dirac field, m their mass and �∂ = γμ∂
μ. This La-

grangian is invariant under global (space time independent) transformation
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given by:

ψ(x) → eieλψ(x) (3.35)

eieλ is an element of a one parameter unitary group denoted by U(1). However,
it does not have local U(1) symmetry. The local symmetry corresponds to
replacing the parameter λ by the one which depends on both space and time,
i.e., λ → λ(x). Because of the derivative which can now act on λ(x), the free
fermion Lagrangian is no longer invariant under this local U(1) transformation.
The local U(1) invariant (ie., gauge invariant) Lagrangian can be constructed
provided one introduces local vector fields Aμ(x) (also called electromagnetic
gauge field) with the transformation law under local U(1) given by

Aμ(x) → Aμ(x) + ∂μλ(x). (3.36)

The following Lagrangian with these gauge fields

ψ[i( �∂ − ie �A)−m]ψ (3.37)

is invariant under the combined transformations, given by eqns. (3.35,3.36),
usually called U(1) gauge transformations. Notice that the second term in the
eqn.(3.37) describes the interaction of electrons with the gauge fields with the
interaction strength given by e. In the quantised version of this theory, the
gauge fields will correspond to photons. The kinetic part of the gauge fields can
be obtained from the following gauge invariant Lagrangian:

−1

4
FμνF

μν (3.38)

where

Fμν = ∂μAν − ∂νAμ (3.39)

The U(1) gauge invariant Lagrangian describing the theory of electrons and
the em gauge fields is given by

LQED = ψ[i( �∂ − ie �A)−m]ψ − 1

4
FμνF

μν (3.40)

We would now like to study how the above construction can be generalised to
cases where the gauge symmetry is SU(N). In other words, we will construct,
in the following, a local SU(N) gauge invariant action. Before we do this, let
us very briefly review the groups U(N) and SU(N).
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Set of N × N unitary matrices forms a group called U(N). Elements
of U(N) satisfying detU = 1 form a sub group called SU(N). An element
of SU(N) group depends on N2 − 1 (unitarity gives N2 real constraints and
unit determinant given one real constraint) independent real parameters. An
element of group can be obtained by parametrising it infinitesimally close to
its identity element. For example, we can write this element as

U = I − iεω

Here ε is a small real parameter and ω is an N ×N matrix. Unitarity of these
elements give

U†U = I + iε(ω† − ω) +O(ε2)

which implies that ω is hermitian, ω† = ω. The condition detU = 1 implies
that ω is traceless. Since one requires N2 − 1 independent real parameters to
parametrise each element of the group, we can expand ω as

εω =
N2−1∑
a=1

εaT a

= εaT a

These matrices, T a, are called generators of the group and they are nor-
malized as

Tr(T aT b) = Tfδ
ab.

where Tf = 1/2 and they form Lie algebra given by

[T a, T b] = ifabcT c

Here fabc are called structure constants which are real and anti-symmetric in
all the indices (abc).

We will take ψ to transform under fundamental representation of SU(N)
so we require N fermionic fields ψi(x) with i = 1, . . . , N . The transformation
of these fields under SU(N) is given by

δψi(x) = ψ′
i(x)− ψi(x) = −i

N2−1∑
a=1

N∑
j=1

εa(T a)ijψj(x) (3.41)

In the following we will use the summation convention for both i and a. It
is easy to see that the following Lagrangian is invariant under global SU(N)
symmetry,

ψ(i�∂ −mI)ψ (3.42)
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where we have introduced matrix notation for the fermionic fields:

ψ(x) =

⎛⎜⎝ ψ1(x)
...

ψN (x)

⎞⎟⎠ , ψ†(x) =
(
ψ†
1(x), . . . , ψ

†
N (x)

)
(3.43)

The local gauge invariant Lagrangian with N fermionic fields can be achieved
by introducing N2 − 1 gauge fields denoted by Aa

μ with a = 1, . . . , N2 − 1 with
the transformation property

δAd
μ = − 1

gs
∂με

d − fdabAa
με

b (3.44)

It is a straightforward exercise to show that the Lagrangian given by

ψ[i(I�∂ − igs �AaT a)−mI]ψ (3.45)

is invariant under the local SU(N) transformations given by eqns. (3.41,3.44).
Analogous to the tensor field Fμν(x) given in eqn.(3.38), the kinetic energy part
of the SU(N) gauge fields can also be constructed using N2 − 1 second rank
tensor fields given by

F a
μν = ∂μA

a
ν − ∂νA

a
μ + gsf

abcAb
μA

c
ν (3.46)

Since F a
μν transforms as

δF a
μν = F

′a
μν(x)− F a

μν(x) = −fabcF b
μν(x)ε

c(x) (3.47)

under the transformation given by eqn.(3.44), the following action

−1

2
Tr[F a

μνT
aFμνbT b] (3.48)

is invariant under gauge transformations.
The complete SU(N) gauge invariant action is given by

LYM = −1

2
Tr[F a

μνT
aFμνbT b] + ψ[i(I�∂ − igs �AaT a)−mI]ψ (3.49)

The above Lagrangian is usually called the Yang-Mills (YM) Lagrangian. Since
SU(N) is a non-Abelian group, the SU(N) gauge symmetry is called a non-
Abelian gauge symmetry and the gauge fields are called non-Abelian gauge
fields. Notice that the action describes not only the interaction of N fermions



98 3. Perturbative Quantum Chromodynamics

with N2 − 1 gauge fields, but also describes the interaction of gauge fields
among themselves. The interaction of gauge fields among themselves comes
from terms proportional to F a

μν(x) in the action eqn.(3.49) which contains a

term gsf
abcAb

μ(x)A
c
ν(x) (see 3.46). This feature is characteristic of theories with

non-Abelian gauge symmetry. Since the theory of electrons and em gauge fields
has an invariant Abelian symmetry i.e., U(1), the em gauge fields do not interact
with each other. We will show that the non-Abelian Yang-Mills Lagrangian with
N = 3 can describe strong interaction dynamics. In the following we describe
the quantization of classical Yang-Mills action:

SYM =

∫
d4xLYM (Aa

μ(x), ψ(x), ψ(x),m, gs) (3.50)

In the canonical formalism of quantization, one replaces the classical fields
by operators and their canonical commutation relations with their conjugates.
The equations of motion that result from the least action principle and their
solutions in the Fourier space, subjected to the canonical commutation rela-
tions, lead to set of operators that can create and annihilate single particle
states. Using this approach one can compute propagation of the quantum par-
ticles and their interaction in terms of the scattering matrix, called S matrix.
The S matrix elements are nothing but the residues of vacuum expectation
value of time ordered product of quantum field operators on the mass-shell. An
alternate approach to quantization is the path integral formulation, in which
the quantum fields are treated as commuting variables/functions. The quantum
vacuum expectation value of time order product of quantum field operators is
given by

〈0|T (Φj1(x1) . . .Φjn(xn)) |0〉 ≡ 〈Φj1(x1) . . .Φjn(xn)〉

where

Φi(x) = {ψ(x), ψ(x), Aa
μ(x)}

|0〉 denotes the vacuum, and T means time ordering of the operators. It is also
called Green’s function in the literature. The path integral formalism provides
a prescription to compute these Green’s functions:

〈Φj1(x1) . . .Φjn(xn)〉 =
∫ ∏

i DΦi Φj1(x1) . . .Φjn(xn)e
iS[{Φ}]∫ ∏

i DΦi eiS[{Φ}]
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1 The momentum space Green’s functions can also be obtained using path
integrals as

〈Φ̃j1(k1) . . . Φ̃jn(kn)〉 =
∫ ∏

i DΦ̃i Φ̃j1(k1) . . . Φ̃jn(kn)e
iS̃[{Φ̃}]∫ ∏

i DΦ̃i eiS̃[{Φ̃}]

where the Fourier components Φ̃i(k) are defined by

Φ̃i(k) =

∫
d4xeik·xΦi(x)

The generating functional to compute the Green’s functions is given by

Z({J̃}) =
∫ ∏

i

DΦ̃iexp

[
iS̃(Φ̃) + i

∫
d4k

(2π)
4 J̃j(−k)Φ̃j(k)

]

where J̃i are the source fields. Using,

δJ̃i(k1)

δJ̃j(k2)
= (2π)4δ(4)(k1 − k2)δij

we obtain,

〈Φ̃j1(k1) . . . Φ̃jn(kn)〉 =
1

Z[0]

(
−i(2π)4

δ

δJ̃i1(−k1)

)
. . .

(
−i(2π)4

δ

δJ̃in(−kn)

)

×Z({J̃})
∣∣∣∣∣
{J̃i}=0

(3.52)

1The path integral measure
∫ DΦi can be visualised if we replace the continuous the space-

time by a 4-dimensional lattice with a lattice constant a (distance between two neibouring

lattice points). That is,

xμ → (a n0, a n1, a n2, a n3)

where a is real and ni are integers. We will suppress the label i on Φi for notational clarity.

The fields are given by

Φ(x) → Φn0,n1,n2,n3 , (3.51)
∫

d4x → a4
∑

n0,n1,n2,n3

and the measure
∫ DΦ takes the form

∫
DΦ →

∫ ∏

n0,n1,n2,n3

dΦn0,n1,n2,n3
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We will interrupt the discussion of Yang-Mills theory to exemplify the calcu-
lation of the Green’s function by the path integral method in a simpler case
of a real scalar field and calculate the 2-point Green function G̃2(p1, p2). This
2-point function is also called propagator of the theory if it only involves the
free part and does not include the interaction terms.
The free part of the action is

S0 =

∫
d4x

[
1

2
φ(x)(−∂2 −m2)φ(x) + J(x)φ(x)

]
(3.53)

where we have introduced the source field J(x) and m is the mass parameter in

the Lagrangian. To express action in φ̃, the Fourier transform of φ, we substitute

φ(x) =

∫
d4k

(2π)
4 e

−ik·xφ̃(k),

J(x) =

∫
d4k

(2π)
4 e

−ik·xJ̃(k)

in the above expression. We can do the integral over x using the definition of
Dirac delta function∫

d4x e−i(k1+k2)·x = (2π)4δ4(k1 + k2),

and use this delta function to integrate out one of the momenta and obtain

S0 =
1

2

∫
d4k

(2π)
4

[
φ̃(−k)M(k)φ̃(k) + 2J̃(k)φ̃(−k)

]
=

1

2

∫
d4k

(2π)
4

[
−J̃(−k)M−1(k)J̃(k)

+
(
φ̃(−k) + J̃(−k)M−1(k)

)
M(k)

(
φ̃(k) + J̃(k)M−1(k)

)]
where M(k) = k2 −m2. Note that M(k) = M(−k). We can now do a change
of variable by defining

φ̃′(k) = φ̃(k) +M−1J̃(k)

φ̃′(−k) = φ̃(−k) +M−1J̃(−k)

This gives finally

S0 =
1

2

∫
d4k

(2π)
4

[
φ̃′(−k)M(k)φ̃′(k)− J̃(−k)M−1(k)J̃(k)

]
.
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Substituting this in the expression of generating functional and doing the path
integral over the fields we obtain for Z0,

Z0[J̃ ] = N exp

[
− i

2

∫
d4k1
(2π)4

∫
d4k1
(2π)4

(2π)4δ4(k1 + k2)

×J̃(−k1)M
−1(k1)J̃(−k2)

]
where N is a normalization factor. From this we can obtain the two point Green
function.

G̃2(p1, p2) =
1

Z0[0]

(
−i(2π)4

δ

δJ̃(−p1)

)(
−i(2π)4

δ

δJ̃(−p2)

)
Z[J̃ ]

∣∣∣∣∣
J̃=0

= i(2π)4δ4(p1 + p2)M
−1(p1)

Substituting M−1 = 1/(k2 −m2) we get

G̃2(p1, p2) =
i

k2 −m2
(2π)4δ4(p1 + p2). (3.54)

With this experience let us now continue with Yang-Mills theory. To proceed
further with the path integral approach, we split the Lagrangian as

S [{Φ}] = S0 [{Φ}] + SI [{Φ}] (3.55)

where the first term S0 contains terms which are quadratic in Φ̃, for example
it contains terms of the form Φ̃i(k)Φ̃i(k

′). SI contains the rest. In the case of
YM Lagrangian, the S0 is given by

S0

[
ψ, ψ,Aa

μ

]
=

∫
d4x

[
ψ(x) (i/∂ −m)ψ(x)

−1

4

(
∂μA

a
ν(x)− ∂νA

a
μ(x)

)
(∂μAνa(x)− ∂νAμa(x))

]
(3.56)

and SI is given by

SI

[
ψ, ψ,Aa

μ, gs,m
]
= Sψ,A

[
ψ,ψ,Aa

μ, gs
]
+ SA3

[
Aa

μ, gs
]
+ SA4

[
Aa

μ, gs
]
(3.57)

where Sψ,A describes the interaction of fermions with the gauge bosons and
SA3 and SA4 are triple and quartic gauge boson interaction terms.
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The free action S0 can be expressed in terms of Fourier components of the
fields as

S̃0

[
ψ̃, ψ̃, Ãa

μ

]
= i

∫
d4k

(2π)4

[
ψ̃(−k)(/k −m)ψ̃(k)

+
1

2
Ãa

μ(−k)
(
kμkν − k2gμν

)
Ãa

ν(k)

]
(3.58)

Notice that the above integral exists only if (/k − m) and (kμkν − k2gμν) are
invertible. The fermionic part Mψ(k) = /k−m has an inverse /k +m/(k2−m2).
On the other hand the corresponding part of the gauge fields given by

MA(k) ∝ 1

2

(
kμkν − k2gμν

)
(3.59)

does not have inverse since dotting it with kν gives zero, and hence the path
integral for the gauge fields is ill-defined.

3.4 Gauge Fixing

In the previous section, we found that the path integral for the gauge fields
is ill-defined. We will now try to understand the reason behind this. This will
also help us to construct well defined Green’s functions of the gauge fields.
In the following we restrict ourselves to physically relevant quantities such as
expectation value of the product of gauge invariant operators

∏
l Ol(xl). Few

examples of Ol(xl) are F a
μν(x)F

μνa(x), ψ(x)i(/∂ − igs/A
a(x)T a)ψ(x). Since the

fermionic part of the action does not play much role in the following discussion
we drop them and keep only gauge fields in the action. Now, in the Fourier
space, we have〈

ΠlÕl

(
k, Ãb

μ

)〉
=

∫ DÃa
μe

iS̃A[Ãb
μ]
∏

l Õl(k, Ã
b
μ)∫ DÃa

μe
iS̃A(Ãb

μ)
(3.60)

The gauge field Aa
μ(x) and the gauge transformed Aaθ

μ (x) given by

Aθ
μ(x) = − i

gs
(∂μU)U † + UAμ(x)U

† (3.61)

obtained by the finite SU(N) gauge transformation U(θ) = exp(−igsθ
a(x)T a)

are said to be in the same gauge orbit. Since they describe same physics, Aμ(x)
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and Aθ
μ(x) are called gauge equivalent gauge field configurations. Notice that

the action as well as the composite operator Õl(k, Ã
a
μ) are gauge invariants.

On the other hand the measure does depend on the gauge parameter. We can
write the measure as

DÃa
μ ≈ DAa

μ|ineqDÃa
μ|θorbit (3.62)

then we observe that the integral over DÃa
μ|θorbit part of the measure in the

numerator (Ñ ) as well as in the denominator (D̃)of the eqn.(3.60) gives di-
vergent contributions. This is the reason why we obtained an ill-defined path
integral for the gauge fields earlier. Notice that even though the Ñ and D̃ are
individually divergent, the ratio Ñ/D̃ is well defined and finite. If we can man-

age to factor out the divergent (ill-defined) parts from both Ñ and D̃ of the
eqn.(3.60), cancel them, then the remaining numerator and denominator are
finite. The resultant path integral is well defined and suitable for computation
of gauge invariant objects. This can be achieved by the method called ”gauge
fixing”. Gauge fixing involves path integration over inequivalent gauge orbits.
One has to do this in such a way that the result is independent of the choice
of the path. It can be achieved by doing the integrations over the path that
intersects the gauge orbits only once. we know that each point in the group
space is parametrised by N2 − 1 independent variables. Hence, we need N2 − 1
conditions to define a path in the group space. Also, these conditions have to
be gauge dependent. The gauge fixing conditions can be written as

Ga(Aμ(x)) = Ba(x), a = 1, · · ·N2 − 1 (3.63)

where Ga(Aμ(x)) are single valued functions of Aa
μ(x). The choice

Ga(Aμ(x))) = ∂μA
μ(x) is called Lorenz gauge and Ga(Aμ(x))) = nμA

μ(x)
(where n is an arbitrary vector), the axial gauge. We have to implement the

gauge fixing conditions to both Ñ and D̃ of the eqn.(3.60) in such a way that

the numerical value of Ñ/D̃ is unaffected.
Let us first prove the following identity:∫
dx1

∫
dx2δ (f1(x1, x2)) δ (f2(x1, x2))

[
det

(
∂ 	f

∂	x

)]
x1=x0

1,x2=x0
2

= 1 (3.64)

where,

det

(
∂ 	f

∂	x

)
=

∣∣∣∣∣ ∂f1
∂x1

∂f2
∂x1

∂f1
∂x2

∂f2
∂x2

∣∣∣∣∣
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and (x0
1, x

0
2) is the unique solution to the equations f1 = 0, f2 = 0. The identity,

eqn.(3.64), can be easily proved by defining

f1(x1, x2) = u, f2(x1, x2) = v

and using the Jacobian of the transformation:

dudv =

[
det

(
∂ 	f

∂	x

)]
dx1dx2

If (x0
1, x

0
2) are the unique solutions to the equations

f1(x
0
1, x

0
2) = 0, f2(x

0
1, x

0
2) = 0

then, the eqn.(3.64) becomes∫
du

∫
dvδ(u)δ(v) = 1 (3.65)

The generalisation of the above identity is given by∫ N∏
i

(dxiδ (fi(	x)))

[
det

(
∂ 	f

∂	x

)]
�x=�x0

= 1 (3.66)

where 	x0 is the unique solution to the equations 	f(	x) = 0. The above identity
involving parametric integrals can be generalised for functional integrals:∫

Dθ̃a
∏
a,k

δ
(
G̃a

(
k, Ãa

μθ

)
− B̃a(k)

)
det

⎛⎝∂ 	̃G(Ãa
μθ)

∂	̃θ

⎞⎠ = 1 (3.67)

Inserting the above identity in eqn.(3.60), we find for the numerator,

Ñ =

∫
Dθ̃a

∫
DÃa

μ

∏
l

Õl

(
k, Ãa

μ

)
eiS̃A[Ãa

μ]

×
∏
a,k

δ
(
G̃a

(
k, Ãa

μθ

)
− B̃a(k)

)
det

[
K
(
Ãa

μθ

)]
(3.68)

where,

K
(
Ãa

μθ

)
=

⎛⎝∂ 	̃G(Ãa
μθ)

∂	̃θ

⎞⎠ (3.69)
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Since

DÃa
μ = DÃa

μθ, Õl(k, Ã
a
μ) = Õl(k, Ã

a
μθ), S̃A

[
Ãa

μ

]
= S̃A

[
Ãa

μθ

]
(3.70)

the eqn.(3.68) becomes,

Ñ =

∫
Dθ̃a

∫
DÃa

μθ

∏
l

Õl

(
k, Ãa

μθ

)
eiS̃A[Ãa

μθ]

×
∏
a,k

δ
(
G̃a

(
k, Ãa

μθ

)
− B̃a(k)

)
det

[
K
(
Ãa

μθ

)]
(3.71)

Since Aa
μθ is dummy variable inside the functional integral, we can make the

replacement: Aa
μθ → Aa

μ which gives,

Ñ =

[∫
Dθ̃a

] ∫
DÃa

μ

∏
l

Õl

(
k, Ãa

μ

)
eiS̃A[Ãa

μ]

×
∏
a,k

δ
(
G̃a

(
k, Ãa

μ

)
− B̃a(k)

)
det

[
K
(
Ãa

μ

)]
(3.72)

Notice that
∫ Dθ̃a has factored out from the rest of the integral. Similar exercise

for the denominator also results in an integral where the same θ dependent
measure factors out and hence we can cancel this in the ratio Ñ/D̃.

We use the following integral representation for detK so that we can apply
standard techniques of path integration formalism.

det
(
K(Ãa

μ)
)

=

∫
Dχ̃

aDχ̃bexp

(∫
d4k1
(2π)4

∫
d4k2
(2π)4

× χ̃c(k1)Kcd

(
k1, k2, Ã

a
μ

)
χ̃d(k2)

)
(3.73)

where χ̃a and χ̃a are anti-commuting variables called Grassmanian variables.
We also insert the identity,

C(ξ)
∫

DB̃aexp

(
− i

2ξ

∫
d4k

(2π)4
B̃a(−k)B̃a(k)

)
= 1 (3.74)



106 3. Perturbative Quantum Chromodynamics

to express the Dirac delta function in a form suitable for computation. Here
ξ is an arbitrary parameter but our final results do not depend on it. Using
eqn.(3.73,3.74), we find 〈∏

l

Õl

(
Ãa

μ

)〉
=

N
D (3.75)

where N = Ñ/Dθ̃a and D = D̃/Dθ̃a. Hence

N =

∫
DÃa

μ

∫
Dχ̃

aDχ̃b
∏
l

Õl

(
k, Ãa

μ

)

× exp

[
i

(
S̃A

[
Ãa

μ

]
+ S̃GF

[
Ãa

μ, χ̃
a
, χ̃b

]
+ S̃GH

[
Ãa

μ

])]
(3.76)

D =

∫
DÃa

μ

∫
Dχ̃

aDχ̃b

× exp

[
i

(
S̃A

[
Ãa

μ

]
+ S̃GF

[
Ãa

μ, χ̃
a
, χ̃b

]
+ S̃GH

[
Ãa

μ

])]
(3.77)

The various pieces of the action are given by

S̃GF

[
Ãa

μ

]
= − 1

2ξ

∫
d4k

(2π)4
G̃a(−k, Ãa

μ(−k))G̃a(k, Ãa
μ(k)) (3.78)

S̃GH

[
Ãa

μ, χ̃
a
, χ̃b

]
= −i

∫
d4k1
(2π)4

∫
d4k2
(2π)4

χ̃c(k1)Kcd

(
k1, k2, Ã

a
μ

)
χ̃d(k2)

(3.79)

Let us now compute Kcd for the gauge fixing condition:

Ga(Aa
μ) = ∂μA

μa(x) (3.80)

This implies

δGa
(
Aa

μθ

)
= ∂μδAa

μθ(x) (3.81)

where

∂μδAa
μθ(x) = ∂2δθa(x)− gsf

abc∂μ
(
Ab

μθ(x)δθ
c(x)

)
(3.82)
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In the momentum space we find,

δG̃a
(
k, Ãa

μθ

)
= k2δθ̃a(k) + igsf

abckμ
∫

d4k1
(2π)4

Ãb
μθ(−k1 + k)δθc(k1) (3.83)

This implies

Kcd(k, k
′, Ãa

μθ) =
δG̃c(k)

δθd(k′)
= k2(2π)4δ(4)(k − k′)δcd

+igsf
cadkμÃa

μθ(−k′ + k) (3.84)

Substituting the gauge fixing condition in the momentum space given by

G̃a(k, Ãa
μ) = −ikμÃa

μ(k) (3.85)

in the eqn.(3.78), we get

S̃GF

[
Ãa

μ

]
= − 1

2ξ

∫
d4k

(2π)4
Ãa

μ(−k)kμkνÃa
ν(k) (3.86)

This additional term modifies the quadratic part of the path integral action as

Mμν
A = −k2gμν +

(
1− 1

ξ

)
kμkν (3.87)

which is invertible. Hence, using the method of gauge fixing, the propagator of
the gauge fields can be computed. In fact, the entire path integral in terms of
N and D is well defined and now suitable for further computation.

Substituting Eq. (3.84) in Eq. (3.79), we get

S̃GH

[
Ãa

μ, χ̃
a
, χ̃b

]
= −i

∫
d4k1
(2π)4

∫
d4k2
(2π)4

χ̃c(k1)

[
k21(2π)

4δ(4)(k1 − k2)δcd

+igsf
cadkμ1 Ã

a
μθ(−k2 + k1)

]
χ̃d(k2) (3.88)

The fields appearing in the eqn.(3.73) are anti-commuting variables, usually
called Grassman variables or fields. The first term in the above equation de-
scribes the kinetic part of the Grassman fields χ̃c and χ̃d. Even though these
fields are anti-commuting (fermonic fields), their propagation is bosonic in na-
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ture. Hence they are called ghost fields. The second term describes the inter-
action of the ghost fields with the gauge fields.

3.5 Regularisation and Renormalisation of YM

Theory with nf Fermions

In the last section, we demonstrated the quantization of YM theory using path
integral approach. We also derived Feynman rules to compute gauge invariant
products of quantum field operators. Using these Feynman rules, it is straight-
forward to compute observables such as scattering cross sections, decay rates
etc. We can apply the standard techniques of perturbation theory treating the
coupling constant gs as an expansion parameter,

We know from quantum electrodynamics, the quantum corrections that
enter via loops are often divergent. It comes from the large momentum region of
the loop momenta and is called ultra-violet (UV) divergence. This remains to be
the case for quantised YM theory as well. The standard approach to deal with
UV divergences and to make reliable predictions involves two important steps:
regularization and renormalization. Regularisation involves modifying the the-
ory by introducing a suitable regulator so that the loop integrals appearing in
the quantum corrections are made finite. The next step involves redefinition of
fields and parameters of the regularised theory in such a way that the physical
predictions of the theory are finite when the regularization (regulator) is re-
moved, this is called renormalization. This redefinition is allowed because the
parameters and fields appearing in the Lagrangian are not physical observables.

We will use dimensional regularization as it preserves all the symmetries
of the theory. Here, the space-time dimension is taken to be n = 4 + ε with
ε < 0 which regularises the UV divergences appearing in the loop integrals.
The renormalization is carried out by writing the original Lagrangian in n
dimensions as follows:

L = LR

[
ψR, ψR, A

a
μ,R, χ

a
R, χ

a
R, gsn,R,mR, ξR, n, μR

]
+Lc

[
ψR, ψR, A

a
μ,R, χ

a
R, χ

a
R, gsn,R,mR, ξR, n, Zi, μR

]
(3.89)

where, LR is obtained by simply replacing all the parameters and fields by the
respective ones with the subscript denoted by R. That is,

LR(ΦR, αR, n, μR) = L(Φ → ΦR, α → αR, n, μ → μR) (3.90)
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with Φ = {ψ, ψ,Aa
μ, χ

a, χa} and α = {gs,m, ξ}. Lc is so chosen that it preserves
all the symmetries of the theory. We define,

Lc = (Z2 − 1)ψR(i�∂ −mR)ψR − Z2(Zm − 1)mRψRψR

+(Z1/2
g Z2Z

1/2
3 − 1)gsn,RψR �Aa

RT
sψR

−1

4
(Z3 − 1)(∂μA

a
ν,R − ∂νA

a
μ,R)(∂

μAνa
R − ∂νAμa

R )

−1

2

(
Z

1
2
g Z

3
2
3 − 1

)
gsn,Rf

abc(∂μA
a
ν,R − ∂νA

a
μ,R)A

μb
R Aνc

R

−1

4

(
ZgZ

2
3 − 1

)
g2sn,Rf

abef cdeAa
μ,RA

b
ν,RA

μc
R Aνd

R

+(Z̃3 − 1)i ∂μχa
R∂μχ

a
R

−
(
Z̃

1
2
g Z̃3Z

1
2
3 − 1

)
igsn,Rf

abc∂μχa
Rχ

b
RA

c
μ,R (3.91)

In n-dimension, the coupling constant has mass dimension [M ](4−n)/2. We de-
note this dimensionful coupling constant by gsn,R. This can be written in terms
of a dimensionless coupling constant using

gsn,R = μ
4−n
2

R gs,R(μ
2
R) (3.92)

where μR is an arbitrary mass scale and gs,R(μ
2
R) is a dimensionless coupling

constant. It is straightforward to show that after rescaling all the fields and the
parameters as

Z
1/2
3 Aa

μ,R = Aa
μ, Z

1/2
2 ψR = ψ,

Z̃
1/2
3 χa

R = χa, Z̃
1/2
3 χa

R = χa,

Z1/2
g gsn,R = gs(μ

2)μ
4−n
2 , Z

1/2
3 ξR = ξ, ZmmR = m (3.93)

we reproduce the original Lagrangian in n dimensions,

LR + Lc = L (
ψ, ψ,Aa

μ, χ
a, χa, gs,m, ξ, n, μ

)
(3.94)

In the above we have introduced a scale μ so that gs is dimensionless in n-
dimensions. In the following we will use the Feynman rules derived from LR
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and Lc to compute the Green’s functions. The difference in this approach is that
we will be computing all the Green’s functions in terms of the renormarlised
parameters and fields and the results will explicitly contain the unknown con-
stants Zi and Z̃i, which are called renormalization constants. Our next step is
to make various Green’s functions finite, which were originally UV divergent, by
adjusting the Zi and Z̃i suitably. We determine some of these renormalization
constants order by order in perturbation theory in what follows.

In the following we will restrict ourselves to the determination of the
renormalization constant Zg which defines the renormalised coupling constant.

This is done by computing Z2, Z3 and the combination (ZgZ3)
1
2Z2. Z2 and Z3

are computed using one-loop corrected self energy of the fermionic fields and the
vacuum polarization of gauge fields respectively. The combination (ZgZ3)

1
2Z2

is determined from the one loop corrected fermion-antifermion-gauge boson
vertex.

The vertex contribution comes from two different Feynman diagrams,
namely

igsn,RΓ
μ
1ij = g3sn,R (T aT cT a)ij I

μ
1 (3.95)

where,

Iμ1 =

∫
dnk

(2π)n
γα �kγμ(�k + �p1 + �p2)γα

k2(k + p1)2(k + p1 + p2)2
(3.96)

and

igsn,RΓ
μ
2ij = −ig3sn,Rf

bca
(
T aT b

)
ij
Iμ2 (3.97)

where

Iμ2 =

∫
dnk

(2π)n
γα( �k + �p2)γβΓβμα

3 (k, p1 + p2,−k − p1 − p2)

k2(k + p2)2(k + p2 + p1)2
(3.98)

with

Γβμα
3 (k1, k2, k3) =

[
gβμ(k1 − k2)

α + gμα(k2 − k3)
β + gαβ(k3 − k1)

μ
]

(3.99)

Using Feynman parametrisation and integration in n dimension give∫
dnk

(2π)n
kμkν

k2(k + p1)2(k + p2 + p1)2
= IμνUV + IμνIR (3.100)
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where

IUV
μν = − i

16π2

(−2p1 · p2
4π

)n/2−2
Γ(3− n/2)Γ2(n/2− 1)

Γ(n− 2)

×
[

gμν
(n− 2)(n− 4)

]
(3.101)

IIRμν = − i

16π2

(−2p1 · p2
4π

)n/2−2
Γ(3− n/2)Γ2(n/2− 1)

Γ(n− 2)

× 1

p1 · p2

[
p1μp1ν

(
−2(n− 3)

(n− 4)2
+

3

2(n− 4)

)
+ p2μp2ν

(
− 1

2(n− 4)

)

+(p1μp2ν + p1νp2μ)

(
− 1

n− 4
+

1

2(n− 2)

)]
(3.102)

Using these results we obtain,

Iμ1,UV = − i

16π2

(−2p1 · p2
4π

)n/2−2
Γ(3− n/2)Γ2(n/2− 1)

Γ(n− 2)

n− 2

n− 4
γμ

= − i

16π2
f12fn

n− 2

n− 4
γμ

Iμ2,UV =
−i

16π2
f12fn

(
2n

(n− 2)(n− 4)
+

2

n− 4

)
(3.103)

where

f12 =

(−2p1 · p2
4π

)n/2−2

Γ(3− n/2), fn =
Γ2(n/2− 1)

Γ(n− 2)
(3.104)

Using the identities

(T aT cT a)ij =

(
T c

(
−1

2
CA + T aT a

))
ij

, f bca(T aT b)ij =
i

2
CA(T

c)ij

(3.105)
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where CA = N , we get

igsn,RΓ
μ,c
ij,UV = igsn,R

(
Γμ,c
1ij,UV + Γμ,c

1ij,IR

)
(3.106)

igsn,RΓ
μ,c
ij,UV = g3sn,Rγ

μ

(
− i

16π2
f12fn

)[
n− 2

n− 4

(
T c

(
−1

2
CA + T aT a

))
ij

+

(
2n

(n− 2)(n− 4)
+

2

n− 4

)
1

2
CA(T

c)ij

]
(3.107)

The gauge boson contribution to vacuum polarization is given by

Πg
μν,ab = −1

2
f cadfdbcg2sn,R

∫
dnk

(2π)n
1

k2(k + p)2

×Γ3,λμσ(k, p,−k − p)Γσ λ
3,ν (k + p,−p,−k) (3.108)

Using,∫
dnk

(2π)n
kμkν

k2(k + p)2
= − i

16π2
fpfn

(
−p2

gμν
n

+ pμpν

)( n

2(n− 1)(n− 4)

)
∫

dnk

(2π)n
kμ

k2(k + p)2
= − i

16π2
fpfnpμ

(
− 1

n− 4

)
∫

dnk

(2π)n
1

k2(k + p)2
=

i

16π2
fpfn

(
− 2

n− 4

)
(3.109)

where

fp =

(
− p2

4π

)n/2−2

(3.110)

we obtain,

Πg
μν,ab =

(
− i

16π2

)
g2sn,Rf

cadfdbcfpfn

(
1

n− 4

)
1

2(n− 1)

× [
gμν(−p2)(6n− 5) + pμpν(7n− 6)

]
(3.111)
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The fermionic contribution to vacuum polarization is given by

Πq
μν,ab = −g2sn,R(T

aT b)ii

∫
dnk

(2π)n

[
Tr (γν �kγμ( �k + �p))

k2(k + p)2

]

=
i

16π2
g2sn,R(T

aT b)iifpfn

(
4

n− 4

)

×
(
−n− 2

n− 1

)[−p2gμν + pμpν
]

(3.112)

The ghost loop contribution to the vacuum polarization is

Πgh
μν,ab = g2sn,Rf

acdf bdc

∫
dnk

(2π)n

[
kμ(k + p)ν
k2(k + p)2

]

= − i

16π2
fpfng

2
sn,Rf

acdf bdc 1

2(n− 1)(n− 4)

× [
gμν(−p2) + pμpν(2− n)

]
(3.113)

We finally arrive at

Πμν,ab = Πgh
μν,ab +Πq

μν,ab +Πg
μν,ab

= − i

16π2
fpfng

2
sn,R

1

(n− 1)(n− 4)

[
nf (T

aT b)ii(8− 4n)(−p2gμν + pμpν)

+fcadfdbc(3n− 2)(−p2gμν + pμpν)
]

(3.114)

where nf is the number fermion flavours in the theory. To compute Z1 we need
to compute the self energy of the fermion:

Σij = −g2sn,R(T
aT a)ij

∫
dnk

(2π)n
γμ �kγμ

k2(k + p)2

= − i

16π2
fpfng

2
sn,R(T

aT a)ij �p
(
2− n

n− 4

)
(3.115)

The renormalization constants Zi and Z̃i in Lc are fixed by demanding that all
the Green’s functions of the theory are finite. There is of course orbitraryness in
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determining these constants because they can contain finite terms in addition
to UV divergences when the regularization is removed. This leads to various
renormalization prescriptions or schemes. We will use modified minimal sub-
traction (MS) scheme in the following. We can use fermion-antifermion-gauge
boson vertex, gauge boson propagator and the fermion propagator computed
to one loop level along with the contribution coming from the Lagrangian Lc

to determine the renormalization constants Zg, Z2 and Z3. We find

δab (Z3 − 1) =

{
g2sn,R
16π2

fpfn
1

(n− 1)(n− 4)

[
nf

(
T aT b

)
ii
(4n− 8)

+f cadfdbc(3n− 2)

]}
MS

δij (Z2 − 1) =

{
g2sn,R
16π2

fpfn

[(
n− 2

n− 4

)
(T aT a)ij

]}
MS

T c
ij

(
Z

1
2
g Z

1
2
3 Z2 − 1

)
=

{
g2sn,R
16π2

fpfn

[(
T c

(
−1

2
CA + T aT a

))
ij

n− 2

n− 4

+
1

2
CA (T c)ij

(
2n

(n− 2)(n− 4)
+

2

n− 4

)]}
MS

(3.116)

In the above, the subscript MS means that only those terms that diverge in
the limit n → 4 and those terms proportional to log(4π) and Euler’s constant
γE are kept and rest of the terms are set to zero. This prescription defines the
renormalization constant in MS scheme. We find

Z3 = 1 +
gs,R(μ

2
R)

16π2

(
8

3
nfTf − 10

3
CA

)
1

ε̂

Z2 = 1 +
gs,R(μ

2
R)

16π2
(2CF )

1

ε̂

Z
1
2
g Z2Z

1
2
3 = Z1 = 1 +

gs,R(μ
2
R)

16π2
(2CA + 2CF )

1

ε̂
(3.117)

where

1

ε̂
=

1

ε

(
1 +

ε

2
(− ln(4π) + γE)

)
(3.118)
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This implies

Z
1
2
g =

Z1

Z2Z
1
2
3

= 1 +
g2s,R(μ

2
R)

16π2

(
11

3
CA − 4

3
nfTf

)
1

ε̂
(3.119)

Notice that in MS scheme, the renormalization constant contains a finite piece
(− ln(4π) + γE)/2 along with a divergent piece 1/ε in four dimensions.

Recall that the renormalised coupling constant gs,R(μ
2
R) is related to

gs(μ
2) through Zg as follows:

gs(μ
2)μ− ε

2 = Z
1
2
g

(
gs,R(μ

2
R),

1

ε

)
gs,R(μ

2
R)μ

− ε
2

R (3.120)

In the next section, we will study the scale dependence of the coupling constant
using renormalization group equation.

3.6 Asymptotic Freedom

In the last section, we derived the renormalization constant Zg in MS scheme
using dimensional regularization. If we define âs(μ

2) and as(μ
2
R) by

âs(μ
2) =

g2s(μ
2)

16π2
, as(μ

2
R) =

g2s,R(μ
2
R)

16π2
(3.121)

we find from eqn.(3.120)

âs(μ
2)μ− ε

2 = Zg

(
as(μ

2
R),

1

ε

)
as(μ

2
R)μ

− ε
2

R (3.122)

The fact that the left hand side of the above equation is independent of the
renormalization scale μR, gives what is called renormalization group (RG) equa-
tion. Since

μ2
R

dâs
dμ2

R

= 0 (3.123)

we get

μ2
R

das(μ
2
R)

dμ2
R

= as(μ
2
R)

(
ε

2
− μ2

R

d lnZg

dμ2
R

)
(3.124)
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Defining the beta function β(as(μ
2
R)) through,

μ2
R

das
dμ2

R

= β(as(μ
2
R))

= −
∞∑
i=0

ai+2
s (μ2

R)βi (3.125)

and using the one loop result for the Zg given in eqn.(3.119), we can compute
β0 as:

β0 =
11

3
CA − 4

3
nfTf (3.126)

The solution to eqn.(3.125) is given by

as(Q
2) =

as(μ
2
0)

1 + β0as(μ2
0) ln(Q

2/μ2
0)

+O(a2s(μ
2
0)) (3.127)

The renormalised mass m(μ2
R) is related to m̂(μ2) and is given by

m̂(μ2) = Zm

(
as(μ

2
R),

1

ε

)
m(μ2

R) (3.128)

The renormalization group equation for m(μ2
R) is given by

μ2
R

d lnZm

dμ2
R

+ μ2
R

d lnm

dμ2
R

= 0 (3.129)

We now define

μ2
R

d lnZm

dμ2
R

= γm(as(μ
2
R))

=

∞∑
i=1

γ(i)
m a(i)s (μ2

R) (3.130)

where γm is the anomalous dimension of the mass m. To order as(μ
2
R) one finds,

Zm = 1− 6

ε
CF as(μ

2
R) +O(a2s)

lnZm = −6

ε
CFas(μ

2
R) (3.131)
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This implies

μ2
R

d lnZm

dμ2
R

= −6CF

ε
β(as)

= −6CF

ε
as

(
ε

2
− μ2

R

d lnZg

dμ2
R

)
= −3CFas(μ

2
R) +O(a2s) (3.132)

From this result, we find,

γ(0)
m = −3CF (3.133)

The solution to the eqn.(3.130) to leading order is given by

m(Q2) = m(μ2
0)

(
as(Q

2)

as(μ2
0)

)3CF /β0

+O(a2s(μ
2
0)) (3.134)

In M̄S scheme, the renormalization constant takes the following form:

Zg

(
as(μ

2
R, ξ),

1

ε
, ξ

)
= 1+

Z−1

(
as(μ

2
R, ξ), ξ

)
ε

+
Z−2

(
as(μ

2
R, ξ), ξ

)
ε2

+. . . (3.135)

where, ξ is the gauge fixing parameter. Differentiating eqn.(3.135) with respect
to ξ, we get

das
dξ

+
1

ε

(
dZ−1

dξ
as + Z−1

das
dξ

)
+

1

ε2

(
dZ−2

dξ
as + Z−2

das
dξ

)
+ . . . = 0

where we have suppressed the arguments of Z−i and as for simplicity. Compar-
ing the coefficients of 1/ε on both sides, we obtain,

das
dξ

= 0,
dZ−i

dξ
= 0, i = 1, 2, · · · (3.136)

Hence Zg is independent of gauge fixing parameter. Suppose, we choose a renor-

malization scheme in which the coupling constant renormalization Z̃g has the
following expansion:

Z̃g

(
αs(μ

2
R, ξ),

1

ε
, ξ

)
= Z̃0

(
as(μ

2
R, ξ), ξ

)
+

Z̃−1

(
as(μ

2
R, ξ), ξ

)
ε

+
Z̃−2

(
as(μ

2
R, ξ), ξ

)
ε2

+ . . . (3.137)



118 3. Perturbative Quantum Chromodynamics

Differentiating eqn.(3.137) with respect to ξ, we get(
dZ̃0

dξ
as + Z̃0

das
dξ

)
+
1

ε

(
dZ̃−1

dξ
as + Z̃−1

das
dξ

)

+
1

ε2

(
dZ̃−2

dξ
as + Z̃−2

das
dξ

)
+ . . . = 0 (3.138)

This implies that the renormalization constant Z̃g is gauge dependent.

The general structure of the renormalization constant Zi and Z̃i can be
found in MS scheme in terms of βi and the corresponding anomalous dimen-
sions (γi for Zi and γ̃i for Z̃i).

μ2
R

d lnZi

dμ2
R

= γi(as(μ
2
R)), μ2

R

d ln Z̃i

dμ2
R

= γ̃i(as(μ
2
R)) (3.139)

We first determine the structure of Zg

Zg = 1 + as
Z

(1)
−1

ε
+ a2s

(
Z

(2)
−2

ε2
+

Z
(2)
−1

ε

)
+ . . . (3.140)

lnZg = as
Z

(1)
−1

ε
+ a2s

[
Z

(2)
−2

ε2
+

Z
(2)
−1

ε
− 1

2ε2
(Z

(1)
−1 )

2

]
(3.141)

μ2
R

d lnZg

dμ2
R

= as
Z

(1)
−1

2
+ a2s

[
Z

(2)
−1 +

1

ε

(
Z

(2)
−2 − (Z

(1)
−1 )

2
)]

(3.142)

On the other hand,

μ2
R

d lnZg(μ
2
R)

dμ2
R

=

(
ε

2
− β

(
as(μ

2
R)
)

as(μ2
R)

)

=
ε

2
+

∞∑
i=0

ai+2
s (μ2

R)βi (3.143)

Comparing the powers of as(μ
2
R) in eqns. (3.142,3.143) we find

Z
(1)
−1 = 2β0, Z

(2)
−1 = β1, Z

(2)
−2 = 4β2

0 (3.144)

Hence,

Zg = 1 + as(μ
2
R)

2β0

ε
+ a2s(μ

2
R)

(
4β2

0

ε2
+

β1

ε

)
+ . . . (3.145)
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3.7 Wilson Coefficients

In this section we will study the renormalization group equation satisfied by
the Wilson coefficients given in eqn.(3.28). Defining

Fi,N (Q2) =

∫ 1

0

dxBjx
N−1
Bj Fi(xBj , Q

2) i = L, 2 (3.146)

In quantum field theory (QFT), the composite operators (say those ap-
pearing in Âa

i,N (p2)) require an over-all renormalization in addition to renor-
malization of the parameters and fields through the renormalization constants
Zi, Z̃i that appear in the Lagrangian. The over-all renormalization constants
for the composite operators are computed in the same way one computes Zi, Z̃i.
We can use dimensional regularization to regulate the new divergences that
emerge from the local nature of the composite operators and renormalise them
using MS scheme. The renormalization introduces a scale at which these op-
erators are renormalised. This scale is analogous to the renormalization scale
and there exists no compelling reason for them to be same. This new scale
is called the factorization scale, μF . Let us denote these new set of renormal-
ization constants by Zab,N (μ2

F , 1/ε). Hence, the renormalised operator matrix
elements are defined by

Âa
i,N (p2) = Zab,N

(
μ2
F ,

1

ε

)
Ab,i,N (p2, μ2

F ) (3.147)

This implies

Fi,N (Q2) =
∑
a,b

Zab,N

(
μ2
F ,

1

ε

)
Ab

i,N (p2, μ2
F )Ĉ

a
i,N (Q2), i = L, 2 (3.148)

The fact that the left side of the above equation is finite implies,

Cb
i,N (Q2, μ2

F ) =
∑
a

Zab,N

(
μ2
F ,

1

ε

)
Ĉa

i,N (Q2), (3.149)

is finite. Hence the eqn.(3.28) now becomes,

Fi,N (Q2) =
∑
a

Aa
i,N (p2, μ2

F )C
a
i,N (Q2, μ2

F ), i = L, 2 (3.150)

To summarise, in QFT, the separation of long distance part denoted by a set of
operator matrix elements Âa

i,N (p2) and the short distance part usually called



120 3. Perturbative Quantum Chromodynamics

Wilson’s coefficients Ĉa
i,N (Q2) is arbitrary upto a scale that separates them.

This scale is called the factorization scale. Notice that the observable Fi,N (Q2)
does not depend on the scale μF . That is,

μ2
F

d

dμ2
F

Fi,N (Q2) = 0 i = L, 2 (3.151)

This implies∑
a

Ca
i,N (Q2, μ2

F )

(
μ2
F

d

dμ2
F

Aa
i,N (p2, μ2

F )

)
= −

∑
a

Aa
i,N (p2, μ2

F )

(
μ2
F

d

dμ2
F

Ca
i,N (Q2, μ2

F )

)
(3.152)

Since

μ2
F

d

dμ2
F

Âa
i,N (p2) = 0, (3.153)

μ2
F

d

dμ2
F

Aa
i,N (p2, μ2

F ) =
∑
b

Pab,N (μ2
F )Ab,i,N (p2, μ2

F ) (3.154)

where, Pab,N (μ2
F ) is defined as∑

c

Z−1
ac,Nμ2

F

d

dμ2
F

Zcb,N (μ2
F ) = −Pab,N (μ2

F ) (3.155)

Substituting eqn.(3.154) in eqn.(3.152), we get∑
a

(
Iμ2

F

d

dμ2
F

+ PN (μ2
F )

)
ab

(
Ci,N (Q2, μ2

F )
)a

= 0 (3.156)

where we introduce a matrix notation in which Pab,N (μ2
F ) is the ab-th matrix

element of a matrix PN (μ2
F ) and Ca

i,N (Q2, μ2
F ) is a component of a-th vector de-

noted by Ci,N (Q2, μ2
F ). We would like to find out the behavior of Ci,N (Q2, μ2

F )
when Q2 is large for fixed value of N and μ2

F . It is computable using perturba-
tive method. We can write Ci,N as a series expansion in as,

Ci,N (Q2, μ2
F ) =

∞∑
j=0

ajs(μ
2
R)C

(j)
i,N

(
Q2, μ2

F , μ
2
R

)
(3.157)
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The RHS of the above equation is independent of the renormalization scale μR.
Hence we can choose μR = μF for the rest of the analysis. Since the coefficient
is dimensionless,

Ci,N (Q2, μ2
F ) = Ci,N

(
Q2

μ2
F

, as(μ
2
F )

)
(3.158)

The total derivative with respect to μ2
F gives

μ2
F

d

dμ2
F

= μ2
F

∂

∂μ2
F

+ β(as(μ
2
F ))

∂

∂as(μ2
F )

(3.159)

Parametrising Q2 = etQ
2
with Q fixed, we find

∂

∂t
Ci,N

(
et
Q

2

μ2
F

, as(μ
2
F )

)
= et

Q
2

μ2
F

∂

∂λ
Ci,N

(
λ, as(μ

2
F )
)

μ2
F

∂

∂μ2
F

Ci,N

(
et
Q

2

μ2
F

, as(μ
2
F )

)
= −et

Q
2

μ2
F

∂

∂λ
Ci,N

(
λ, as(μ

2
F )
)

(3.160)

This implies(
− ∂

∂t
+ β(as(μ

2
F ))

∂

∂as(μ2
F )

+ P (as(μ
2
F ))

)
Ci,N

(
et
Q

2

μ2
F

, as(μ
2
F )

)
= 0 (3.161)

We will solve the above equation by introducing an auxiliary function
as(t, as(μ

2
F )) which depends on t as well as as(μ

2
F ) satisfying

d

dt
as
(
t, as(μ

2
F )
)
= β

(
as
(
t, as(μ

2
F )
))

(3.162)

with the boundary condition

as
(
t = 0, as(μ

2
F )
)

= as(μ
2
F ) (3.163)

This is called running coupling constant. Using the eqn.(3.162), we obtain(
− ∂

∂t
+ β(as(μ

2
F ))

∂

∂as(μ2
F )

)
as
(
t, as(μ

2
F )
)

= 0 (3.164)

which implies that any arbitrary function Ci,N depending on t and as(μ
2
F ) only

through the axillary function as
(
t, as(μ

2
F )
)
will also satisfy(

− ∂

∂t
+ β(as(μ

2
F ))

∂

∂as(μ2
F )

)
Ci,N

(
Q

2

μ2
F

, as
(
t, as(μ

2
F )
))

= 0 (3.165)
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Hence, the solution to eqn.(3.161) takes the form:

Ci,N

(
et
Q

2

μ2
F

, as(μ
2
F )

)
= exp

(∫ as(μ
2
F )

0

dα

β(α)
PN (α)

)

×Ci,N
(
Q

2

μ2
F

, as
(
t, as(μ

2
F )
))

(3.166)

Rewriting the argument of the exponential as

∫ as(μ
2
F )

0

dα

β(α)
PN (α) =

∫ as(t,as(μ
2
F ))

0

dα

β(α)
PN (α) +

∫ as(μ
2
F )

as(t,as(μ2
F ))

dα

β(α)
PN (α)

=

∫ as(t,as(μ
2
F ))

0

dα

β(α)
PN (α)−

∫ t

0

dt′PN

(
as(t

′, as(μ2
F ))

)
(3.167)

we obtain,

Ci,N

(
et
Q

2

μ2
F

, as(μ
2
F )

)
= exp

(∫ as(t,as(μ
2
F ))

0

dα

β(α)
PN (α)

)

× exp

(
−
∫ t

0

dt′PN

(
as(t

′, as(μ2
F ))

))

×Ci,N
(
Q

2

μ2
F

, as
(
t, as(μ

2
F )
))

(3.168)

We can determine C as follows: at t = 0, we get

Ci,N

(
Q

2

μ2
F

, as(μ
2
F )

)
= exp

(∫ as(μ
2
F )

0

dα

β(α)
PN (α)

)

×Ci,N
(
Q

2

μ2
F

, as(μ
2
F )

)
(3.169)
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Replacing as(μ
2
F ) by as(t, as(μ

2
F )) in the above equation, we get

Ci,N
(
Q

2

μ2
F

, as(t, as(μ
2
F ))

)
= exp

(
−
∫ as(t,as(μ

2
F ))

0

dα

β(α)
PN (α)

)

×Ci,N

(
Q

2

μ2
F

, as
(
t, as(μ

2
F )
))

(3.170)

Substituting the above equation in the eqn.(3.168), we obtain

Ci,N

(
et
Q

2

μ2
F

, as(μ
2
F )

)
= exp

(
−
∫ t

0

dt′PN

(
as(t

′, as(μ2
F ))

))

×Ci,N

(
Q

2

μ2
F

, as
(
t, as(μ

2
F )
))

(3.171)

Notice that the t dependence of the Wilson coefficients is controlled by the
running coupling constant as(t, as(μ

2
F )). The solution to its renormalization

group equation (eqn.(3.162)) with the boundary condition as(t = 0, as(μ
2
F )) =

as(μ
2
F ) is given by

as(t, as(μ
2
F )) =

as(μ
2
F )

1 + tβ0as(μ2
F )

+O(a2s(μ
2
F )) (3.172)

If we restrict ourselves to non-singlet combinations of structure functions such
as F ep

2 − F en
2 or F νP

2 − F νP
2 where p and n are proton and neutron targets

respectively, then only the non-singlet operator defined by

Oa
μ1···μn

=
in−1

n!

{
ψT aγμ1Dμ2 · · ·Dμnψ

}
S

(3.173)

will contribute. Here, Dμ = ∂μ − igsA
a
μT

a.
As expected the running coupling constant vanishes at large t. Using

PN (α) =

∞∑
j=1

αjP
(j−1)
N

Ci,N

(
Q

2

μ2
F

, α

)
=

∞∑
j=0

αjC
(j)
i,N

(
Q

2

μ2
F

)
(3.174)
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where C
(0)
i,N

(
Q

2
/μ2

F

)
= C

(0)
i,N is independent of Q

2
and μ2

F , we obtain

lim
t→∞Ci,N

(
et
Q

2

μ2
F

, as(μ
2
F )

)
= C

(0)
i,N (3.175)

which is independent of Q
2
as well as μ2

F and depends only N . This implies

that if we invert N dependent result C
(0)
i,N into xBj we will find that the Wilson

Coefficients will depend only on xBj . In other words, one recovers scaling at
large t (equivalently large Q2). This behavior is attributed to the vanishing of
running coupling constant at large energy scales. As we have already discussed
in the previous section, this behavior of the coupling constant is the important
feature of YM theory with certain number of fermions.

3.8 Infrared Safe Observables

In the last section we studied the behavior of Wilson coefficients of non-singlet
structure function in the Björken limit. Thanks to operator product expansion
and the asymptotic freedom , we can compute them as a power series expansion
in as(μ

2
R) using the perturbation theory and also make predictions that can be

tested in the experiments. In fact we can demonstrate the scaling in the Björken
limit. The logarithmic pattern of scaling violation, an important prediction
of the theory, has been verified by deep inelastic experiments confirming the
correctness of the theory.

In this section, we will study a completely new process namely hadropro-
duction in e+e− annihilation. Here the cross section corresponds to summing
all the final states involving hadrons in the e+e− collision. To lowest order in
strong coupling constant, the leading contribution comes from the production
of a pair of quark (q) and an anti-quark (q). To order as, real gluons emitted
from the quark and anti-quark states and virtual gluons in the loops contribute
to the cross section (see Fig. (3.1)). These quarks,anti-quarks and gluons will
eventually hadronize to produce hadrons which are then summed. Naively one
would expect the cross section for producing these partonic states is identical
to that for producing hadronic states because the sum over all the final states is
carried out. To this order in as and α (electromagnetic coupling constant), only
s channel processes contribute. The tree level cross section e+ + e− → q + q is
straight forward to compute, we denote this by σ̂(0). To order as, there are two
types of processes that contribute to the total cross section: gluon emissions



3.8. Infrared Safe Observables 125

and virtual corrections to the tree level process. They are given by

e+ + e− → q + q + g (3.176)

e+ + e− → q + q + one loop (3.177)

Let us begin with the computation of virtual gluon contribution. This involves

(b) (c)(a) p1

p1

p2p2p2

p3

p1

p3

Figure 3.1: Feynman diagrams for the process γ∗ → qq̄ with quantum corrections.

Real diagrams are shown in (a), (b) and virtual diagrams in (c).

computation of an integral given by

I =

∫
d4k

(2π)
4

N (k)

k2(k + p1)2(k − p2)2
(3.178)

where one finds N (k) is regular at k0 = |	k|. The above integral does contain UV
divergence which can be dealt with using standard renormalization procedure
discussed in the beginning of the course. We will demonstrate here the appear-
ance of new type divergences in certain regions of the momentum k. Partial
fractioning the gluon propagator and using Cauchy’s integral formula:

1

k2 + iε
=

1

2|	k|

(
1

k0 − |	k|+ iε
− 1

k0 + |	k| − iε

)
,

∫
dk0
k0

f(k)

k0 − |	k|+ iε
= −2πi

f(k)

2π

∣∣∣∣∣
k0=|�k|

, (3.179)

we get

I = − i

32π2p10p20

∫ ∞

0

d|	k|
|	k|

∫ 1

−1

dcosθ
N (k)|k0=|�k|
1− cos2θ

(3.180)
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We observe that the above integral∫ ∞

0

d|	k|
|	k|

: diverges logarithmically in the soft limit |	k| → 0.∫ 1

−1

dcosθ

1− cos2θ
: diverges logarithmically in the collinear limit θ → 0.

Similarly, we will now show that similar divergences do appear in the processes
where real gluons are emitted from the quark and anti-quarks. The matrix
elements for the real gluon emission processes shown in Fig. (3.1) are

M1 = ūi(p1)(ieqγλ)
i(−�p2 − �p3)
(p2 + p3)2

(igsn,RγαT
a
ij)vj(p2)ε

α∗(p3)

M2 = ū(p1)(igsn,RγαT
a
ij)

i(�p1 + �p3)
(p1 + p3)2

(ieqγλ)vj(p2)ε
α∗(p3)

Using equations of motion:

�p2γα = 2p2α − γα �p2 ; �p2v(p2) = 0 and γα �p1 = 2p1α − �p1γα ; ū(p1)�p1 = 0

taking the soft limit (p3 → 0), we obtain

Msoft
1λ =

ieqgsn,R
2p2.p3

ūi(p1)γλT
a
ijvj(p2)ε

∗
α(p3)(2p

α
2 )

Msoft
2λ =

−ieqgsn,R
2p1.p3

ūi(p1)γλT
a
ijvj(p2)ε

∗
α(p3)(2p

α
1 ) (3.181)

The sum gives

Msoft
1λ +Msoft

2λ = M0λijT
a
ijgsn,R

(
pα2

p2.p3
− pα1

p1.p3

)
ε∗α(p3) (3.182)

where M0λij = ūi(p1)ieqγλvj(p2) is the matrix element for the Born diagram
for the process γ∗ → qq̄. The amplitude squared after multiplying−gλλ′ (virtual
photon propagator ) becomes∣∣∣(Msoft

1λ +Msoft
2λ

)
ελ(q)

∣∣∣2 = M0λijM∗
0λ′i′j′(−gλλ

′
)T a

ijT
a
i′j′

×g2sn,R

∣∣∣∣(p2.ε
∗(p3)

p2.p3
− p1.ε

∗(p3)
p1.p3

)∣∣∣∣2 (3.183)
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The transition rate for the above process is obtained by integrating the matrix
element squared over the three body phase space given by∫

dPS3 =
3∏

i=1

∫
d3pi

(2π)32pi0
(2π)4δ(4)(q − p1 − p2 − p3)

The soft limit of the above 3-body phase space is given by∫
soft

dPS3 =

∫
d3p3

(2π)32p30

[
2∏

i=1

∫
d3pi

(2π)32pi0
(2π)4δ(4)(q − p1 − p2)

]

The p3 integral over the soft part of the matrix elements squared is given by∫
d3p3

(2π)32p30

∑
pol

∣∣∣(Msoft
1λ +Msoft

2λ

)
ελ(q)

∣∣∣2
= |M0|2 Tr(T aT a)g2sn,R

∫
d3p3

(2π)32p30

∑
pol

∣∣∣∣(p2.ε
∗(p3)

p2.p3
− p1.ε

∗(p3)
p1.p3

)∣∣∣∣2
Rewriting the integrand as∣∣∣∣(p2.ε

∗(p3)
p2.p3

− p1.ε
∗(p3)

p1.p3

)∣∣∣∣2 =

(
pα2

p2.p3
− pα1

p1.p3

)(
pβ2

p2.p3
− pβ1

p1.p3

)

×
∑
pol

ε∗α(p3)εβ(p3) (3.184)

and summing gluon polarizations, we get

= |M0|2 Tr(T aT a)g2sn,R

(−2p1.p2
|	p1||	p2|

)
1

2(2π)3

∫
d3p3
|	p3|

1

| 	p3|2
1

1− cos2θ

= |M0|2 Tr(T aT a)g2sn,R

(−2p1.p2
|	p1||	p2|

)
1

2(2π)3

∫ p2max

0

d| 	p3|
|	p3|

×
∫ 2π

0

dφ

∫ 1

−1

dcosθ
1

1− cos2θ
(3.185)

The above integral diverges in the soft limit (p3 → 0). In addition, we find
an additional divergence as cosθ → ±1 This is called collinear singularity.
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This happens when two massless particles become collinear to each other. To
summarise, we have shown that both virtual gluon contribution as well as real
gluon emission processes contain soft and collinear divergences. In the following
we will demonstrate that the total cross section where all the virtual and real
gluon contributions are included is free of any of these divergences.

Since these processes are individually divergent, we first regulate them
using dimensional regularization similar to the way UV divergences were reg-
ulated. We evaluate all the matrix elements in n dimensions and both loop
as well as phase space integrals are performed in n dimensions. The matrix
element corresponding to the one loop correction is given by

MV
λ = ū(p1)ieqΓλv(p2) (3.186)

where

Γλ = −ig2sn,R(T
aT b)

∫
dnk

(2π)n
γα �kγλ( �k − �p1 − �p2)γα

k2(k − p1)2(k − p1 − p2)2
(3.187)

where k is the loop momentum. In n dimensions we have

γμ �a �b �cγμ=−2�c �b �a+ (4− n) �a �b �c, and ū(p1) �p1 = 0; �p2v(p2) = 0 (3.188)

The loop integrals that we require are given by

Jμ1···μn =

∫
dnk

(2π)n
kμ1 · · · kμn

k2(k − p1)2(k − p1 − p2)2
(3.189)

where

Jμν = − 1

2(2− n)
B0(p1 + p2)gμν +

1

4p1 · p2 (3B0(p1 + p2)

+4p1 · p2C0(p1, p2)) p1μp1ν − 1

4p1 · p2B0(p1 + p2)p2μp2ν

− n

4(n− 2)p1 · p2B0(p1 + p2)(p1μp2ν + p1νp2μ)

Jμ =
1

2p1.p2
(B0(p1 + p2) + 2p1 · p2C0(p1, p2)p1μ)

− 1

2p1.p2
B0(p1 + p2)p2μ

J = − 1

p1.p2

n− 3

n− 4
B0(p1 + p2) = C0(p1, p2) (3.190)
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where,

B0(q) = − i

(4π)n/2
(−q2)(n−4)/2 2

n− 4

Γ(3− n/2)Γ2(−1 + n/2)

Γ(n− 2)
(3.191)

Using the above results, we find

Γλ = −g2sn,R
16π2

(T aT a) γλ (−2p1.p2)
ε/2

(
8

ε2
+

2

ε
+ 2

)
Γ(1− ε/2)Γ(1 + ε)

Γ(2 + ε)

(3.192)

where n = 4 + ε is used. The interference of the one loop corrected amplitude

with the Born level amplitude after phase space integrations of the two body

final states is found to be∫
dPS2

∑
a,spin

Mλ(Mv
λ′)∗(−gλλ

′
) = 2ŝ σ(0) g2sn,R

16π2
CF Re(−q2)(ε/2)

×
[
−16

ε2
− 4

ε
− 4

]
Γ(1− ε/2)Γ2(1 + ε/2)

Γ(2 + ε)

(3.193)

where

2ŝσ(0) = αem e2q N

[
(2 + ε)

Γ(1 + ε/2)

Γ(2 + ε)
(q2)ε/2

]
(3.194)

Notice that the result has double as well as single poles in four dimensions.
The double pole terms come from the integration region where the gluons in
the loop that are collinear to quark or anti-quark become soft. The single poles
can originate from soft gluons which are not collinear to quark or anti-quark.
They can also result from hard gluons that are collinear to quark or anti-quark.
Notice that the double and single poles persist even if we do not integrate out
the final state quark and anti-quark.

We now compute the contributions coming from the real emission dia-
grams shown in Fig. (3.1). The matrix elements are given by

M1λ = ū(p1)(ieqγλ)
i(−�p2 − �p3)
(p2 + p3)2

(igsn,RγαT
a)v(p2)ε

∗α(p3)

M2λ = ū(p1)(igsn,RγαT
a)

i( �p1 + �p3)
(p1 + p3)2

(ieqγλ)v(p2)ε
∗α(p3)
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We compute the matrix element squared in n = 4 + ε dimensions:

∑∣∣(M1λM2λ) ε
∗λ(q)

∣∣2 = g2sn,Re
2
qNCFnf

[
(4n2 − 24n+ 32)

= Dc

(
1

Da
+

1

Db
+

Dc

DaDb

)
(8n− 16)

=

(
Da

Db
+

Db

Da

)
(2n2 − 8n+ 8)

]

where Da = (p1 + p3)
2, Db = (p2 + p3)

2, Dc = (p1 + p2)
2. The three body

phase space in n dimensions is given by

dPS3 =

3∏
i=1

dn−1pi
(2π)n−12 pi0

(2π)nδn(q − p1 − p2 − p3) (3.195)

=
q2

16(2π)3

(
q2

4π

)n−4
1

Γ(n− 2)

∫ 1

0

dx

∫ 1

0

dv xn−3(1− x)
n−4
2

×(v(1− v))
n−4
2 (3.196)

where x = (2p1.q)/q
2, (2p1.p3)/q

2 = vx, (2p2.p3)/q
2 = 1 − x. Using the

following integral,∫
dPS3

1

Dα
aD

β
b D

γ
c

=

[
q2

16(2π)3

(
q2

4π

)ε
1

Γ(2 + ε)

]
(q2)1−α−β−γ

×Γ(1 + ε/2− α)Γ(1 + ε/2− β)Γ(1 + ε/2− γ)

Γ(3 + 3ε/2− α− β − γ)
(3.197)

we obtain∫
dPS3

∑∣∣(M1λ +M2λ) ε
∗λ(q)

∣∣2 = 2ŝσ(0)
g2sn,R
16π2

CF (q
2)ε/2

×
(
16

ε2
+

32

ε
+ 22 + 7ε+ ε2

)

× 4

2 + ε

Γ2(1 + ε/2)

Γ(3 + 3ε/2)
(3.198)



3.9. QCD Predictions Beyond Leading Order 131

Notice that the above result also contains double and single poles in four dimen-
sions. The origin of these poles can be traced to the existence of soft gluon as
well as of hard gluon that are collinear to quarks or anti-quarks. The poles exist
even if we do not integrate over the phase space of the quark and anti-quark
states.

Even though the virtual correction to the Born process and real emission
processes are independently divergent in four dimensions, their sum is found to
be finite.

2ŝ
(
σ(0) + σv + σR

)
= 2ŝσ(0)

[
1 +

g2s,R
16π2

CF (3)

]
(3.199)

The integration over all the final states involving quarks, anti-quarks and glu-
ons means that we are summing over all possible final states of these particles.
Such a sum washes away not only the nature of these particles and also the
way in which they fragment into final state hadrons. Hence, the sum over fi-
nal state quarks, anti-quarks and gluons is equivalent to sum over all possible
hadronic final states. Hence the total cross section that we have computed with
final states involving quarks, anti-quarks and gluons corresponds to produc-
tion of hadrons in the e+e− annihilation. Hence the total cross section in e+e−

annihilation with hadrons in the final state is infra-red finite.

3.9 QCD Predictions Beyond Leading Order

In a theory with massless fields, transition rates are free of both soft and
collinear divergences provided the summation over the initial and final de-
generate states is carried out. This is called Kinoshita-Lee-Nauenberg (KLN)
theorem. Let us elaborate on what we mean by degenerate states. These are
eigen states having same energy. The states |qgsoft〉 are said to be degenerate
to |q〉 because of the soft gluons carry zero energy. Such states are called soft
degenerate states. The states |{qg}collinear〉 are degenerate to either |q〉 or |g〉.
Such states are called collinear degenerate states. These soft and collinear de-
generate states are the potential sources of divergences in the transition rate.
The theorem ensures that such divergences cancel out if we perform summation
over initial as well as final degenerate states. We found that the cross section
for the hadroproduction in e−e+ annihilation is infra-red finite because we car-
ried out the summation over all the final states that include both degenerate
states. This is in conformity with the KLN theorem. We can construct other
infra-red finite observables for the e+e− annihilation process (see Fig. (3.2)).
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Oe−e+

S =

∫
dPS2 |M |2e−e+→qq̄ S2(p1, p2)

+

∫
dPS3|M |2e−e+→qq̄g S3(p1, p2, p3)

+

∫
dPS4|M |2e−e+→qq̄gg S4(p1, p2, p3, p4)

+ . . . . .

+σe
+
e
−

tot
=

∑
qq̄ −→ |q q̄〉s,c

−→ |qc q̄c gs,c〉

is finite.

s - soft

c - collinear

+ . . .

2

2

+
∑

qq̄g

e+ q

q̄

e+ q

q̄

e+ e+

e−

q

e−

e−

q̄

+

g

g

e−

+ . . .

q

q̄

Figure 3.2: The total cross section for the process e+e− → qq̄ is finite after summing

over all the degenerate states.

The functions Si(p1, .., pi) are chosen in such a way that the observable Oe+e−

is infra-red finite. A choice, Si(p1, ..., pi) = 1 gives

dOe−e+ = σe−e+

tot (3.200)

which is finite.
The Si(p1, ..., pi) are symmetric and the cancellation of soft and collinear

divergences is guaranteed by the following constraints on them:

S3(p1, (1− λ)p2, λp2) = S2(p1, p2); S3((1− λ)p1, p2, λp1) = S2(p1, p2)
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where λ = 0, 1 correspond to the soft region and λ > 0 to the collinear region.
Of course, one can construct different choices of Si and they will give different
infra-red finite observables.

Even though we describe the scattering processes in terms of quarks and
gluons, what one observes experimentally are hadrons in the initial and/or
final states. For example, in the e+e− annihilation process, one observes energy
deposits of hadrons in the hadron calorimeters. We have not been successful
in explaining the mechanism of how the quarks and gluons produced in an
experiment will convert into hadrons. All we know is that all the energy and
momentum of these quarks and gluons produced in the scattering experiments
will be transfered to hadrons. Using these energy and momentum variables,
one can construct and compute observables that do not require the knowledge
of how these quarks and gluons hadronise. For example, in e+e− annihilation,
define an event by a probability that a definite set of energy and momentum is
deposited in the calorimeter. Different sets can give different events. Calculate
the sum of events where in each event, all the center of mass energy of e+e−

collisions but a small fraction ε of it goes to a pair of oppositely directed cones
of hadrons of half angle δ.

Oe+e−
εδ =

∫
dPS2|M |2e−e+→qq̄S2(ΩJ1

,ΩJ2
)

+

∫
dPS3|M |2e−e+→qq̄gS3(ΩJ1 ,ΩJ2 , ε, δ) (3.201)

S3 = 1 if (a) angle between any of (q, q̄, g) particles is less than δ or (b) any
of the particles (q, q̄, g) has energy less than εE and it is outside of any of the
cones with half angle δ. S3 = 0 otherwise. Out of three particles, let us say two
of them make two oppositely directed cones.
(a) If the third particle lies inside one of the cones, it will have both soft and
collinear divergent contributions. These divergences will cancel against those
coming from e+e− → qq̄ + oneloop.
(b) If the third particle is outside the cone, it is free of collinear divergence.
But it can be soft producing soft divergence. This is again canceled against
e+e− → qq̄ + oneloop. Hence, the above observable is infra-red finite. It is
dependent on ε and δ. These events are called Sterman-Weinberg jets.

In the following, we will discuss how the naive parton model can be im-
proved so that it can be used to computer various observables incorporating
higher order radiative corrections in a systematic way (see Fig. (3.3)). Let us
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recall the result of naive parton model for deep inelastic scattering:

lim
Bj

dσeh(xBj , Q
2) =

∑
a

∫ 1

0

dy

∫ 1

0

dzf̂a/h(y)dσ̂ea(z,Q
2)δ(xBj − yz)

=
∑
a

f̂a/h(xBj)⊗ dσ̂ea(xBj , Q
2) (3.202)

where the convolution ⊗ symbol has been introduced for the integrations. The
sum over a corresponds to summing over all the partons that contribute to the
partonic scattering process. Using this, the hadronic structure functions can be

px

p

i

2

=

e(k′)

=

2

z1p z1p z1p z1p

px − px1

∑
incoherent{i}

px − px1

z1p
= ˆf(z1)

e(k)

k′, px

ψa

i
ψ̄a

′

j′

Figure 3.3: The schematic diagram showing that the deep inelastic scattering cross

section can be expressed in terms of the incoherent sum of the partonic cross sections

and the parton densities f(z).

expressed in terms of partonic structure functions Fa
i (xBj, Q

2) as

Fi(xBj, Q
2) =

∑
a

f̂a/h(xBj)⊗Fa
i (xBj, Q

2). (3.203)

The partonic structure functions are computed from the partonic cross sections
σ̂a(z,Q2) as follows:

Fa
i (z,Q

2) = Pμν
i σ̂a

μν(z,Q
2) (3.204)
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where

σ̂a
μν(z,Q

2) =
1

2ŝ

∫ M∏
i=1

(
dn−1pi

(2π)n−12p0i

)
(2π)nδ(n)

(
p+ q −

M∑
i

pi

)∑
|Ma|2μν ,

(3.205)

ŝ = (p + q)2, Pμν
i are projectors and Ma is the matrix element of the process

e+a → e+X involving a parton of type a. To leading order O(a0s), only quarks
and anti-quarks interact with the lepton through electromagnetic interactions:

e+ q → e+ q, e+ q → e+ q (3.206)

We denote the sum of these contributions to the cross section by σ̂q,(0)(z,Q2).
At order as(μ

2
R), the contributions come from two distinct sources. The first one

comes from real gluon emission and virtual gluon corrections through one-loop
to the tree level process given in eqn.(3.206),

e+ q → e+ q + g, e+ q → e+ q + g

e+ q → e+ q + one− loop, e+ q → e+ q + one− loop (3.207)

We denote the resulting partonic cross section by σ̂q,(1)(z,Q2, μ2
R). The second

second source is the contribution coming from the gluon initiated processes:

e+ g → q + q (3.208)

The corresponding partonic cross section is denoted by σ̂g,(1)(z,Q2, μ2
R). Hence

σ̂q(z,Q2) = σ̂q,(0)(z,Q2) + as(μ
2
R)σ̂

q,(1)(z,Q2, μ2
R) +O(a2s) (3.209)

σ̂g(z,Q2) = as(μ
2
R)σ̂

g,(1)(z,Q2, μ2
R) +O(a2s) (3.210)

Since we have used the renormalised parameters and fields, the partonic cross
sections expressed in terms of as(μ

2
R) are UV finite . Notice that the left hand

side of eqns. (3.209,3.210) are renormalization group invariants and hence the
right hand side is independent of μR provided the sum over entire series is
carried over. The truncated perturbative expansion is of course μR dependent.

Notice that in QCD , the running mass parameter vanishes at high ener-
gies. The higher order partonic cross sections denoted by σ̂a,(i) for i > 0 at high
energies often get contributions from large logarithms of the form log(m2

R/Q
2)

that can spoil the reliability of the perturbative expansion. These large loga-
rithms come from the phase space regions of partons where massless partons
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are collinear to each other. Hence, the higher order partonic cross sections
with mass parameter put equal to zero are collinear singular. The predictions
from the perturbative methods can make sense only if we resum these large
logarithms to all orders. A systematic way to organise and resum these large
logarithms is accomplished by the procedure called mass factorization. If the
collinear singularities are regularised by dimensional regularization, that is,
the space time dimension is taken to be n = 4 + εIR:

F̂a(xBj, Q
2) = F̂a

(
xBj, Q

2,
1

εIR

)
(3.211)

The collinear divergences that appear as poles in εIR factorise as

F̂a(xBj) =
∑
b

Zab

(
xBj,

1

εIR
, μ2

F

)
⊗Δb(xBj, Q

2, μ2
F )

Now defining,∑
a

f̂a/h(xBj)⊗Zab

(
xBj,

1

εIR
, μ2

F

)
= fb(xBj, μ

2
F )

and substituting in eqn.(3.203), we find

Fi(xBj, Q
2) =

∑
a

fa/h(xBj, μ
2
F )⊗Δa

i (xBj, Q
2, μ2

F ). (3.212)

Here fa/h(xBj, μ
2
F ) and Δe−q(xBj, μ

2
F ) are called collinear renormalised parton

distribution functions and cross sections respectively. f̂a/h(xBj) is μ
2
F indepen-

dent:

μ2
F

d

dμ2
F

f̂a/h(xBj) = 0

which implies (suppressing the subscripts in the Z and f)(
μ2
F

dZ−1

dμ2
F

)
⊗ f + Z−1 ⊗ μ2

F

df

dμ2
F

= 0

If we define,

P (y, μ2
F ) = −Z ⊗ μ2

F

dZ−1

dμ2
F



3.9. QCD Predictions Beyond Leading Order 137
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Figure 3.4: Tevatron is a proton anti-

proton collider. Large Hadron Collider is

a proton proton collider. At the LHC, the

center of mass energy is 14 TeV.
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Figure 3.5: LHC is capable of producing

Higgs through gluon fusion

which is finite, we find

μ2
F

d

dμ2
F

⎛⎝ fq(z, μ
2
F )

fg(z, μ
2
F )

⎞⎠ =

∫ 1

z

dy

y

⎛⎝ Pqq(y, μ
2
F ) Pqg(y, μ

2
F )

Pgq(y, μ
2
F ) Pgg(y, μ

2
F )

⎞⎠⎛⎝ fq(
z
y , μ

2
F )

fg(
z
y , μ

2
F )

⎞⎠
The above equation is called the Dokshitzer-Gribov-Lipatov-Altarelli-Parisi
(DGLAP) evolution equation. The function Pab are called splitting functions
which are computable in perturbative QCD as

Pab = as(μ
2
F )P

(0)
ab (z) + a2s(μ

2
F )P

(1)
ab (z) + · · ·

These splitting functions P
(i)
ab are known upto three loop level.

Typical processes where the QCD improved parton model can be ap-
plied for phenomenlogical study at hadron colliders namely Tevatron and Large
Hadron Collider are given in Figs. (3.4–3.7). The QCD improved parton model



138 3. Perturbative Quantum Chromodynamics
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Figure 3.6: New particles predicted by var-

ious models such as those with Z′, extra
dimensions , Supersymmetry can be pro-

duced due to energy available at LHC.

P2

PX1

PX2

P1

Black holes !

Figure 3.7: Short lived black holes can also

be produced at the hadron colliders.

can be used to compute various observables at these colliders using

dσP1P2 =
∑
ab

∫
dx1

∫
dx2f a

P1

(
x1, μ

2
F

)
f b

P2

(
x2, μ

2
F

)
dσ̂ab

(
x1, x2, {pi}, μ2

F

)
,

(3.213)

where fa(x, μ
2
F ) are parton distribution functions inside the hadron P and

are on-perturbative and process independent. σ̂ab(xi, {pi}, μ2
F ) are the partonic

cross sections and are perturbatively calculable. μR and μF are renormaliation
and factorisation scales. The partonic cross sections are computed as a power
series expansion in strong coupling constant. Using the parton distribution func-
tions extracted from other experiments, one can make predictions of various ob-
servables at hadron colliders which can serve to confirm and/or rule out models.
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4

Introduction to Anomalies

Dileep P. Jatkar

4.1 Introduction

Anomalies are important in quantum field theories, particularly in the gauge
field theories because they determine quantum consistency of the theory. The
word anomaly, in fact, is bit of a misnomer, and a more accurate description of
anomaly is quantum mechanical symmetry breaking. Symmetries of a classical
field theory can be broken in various different ways. One of them is explicit
symmetry breaking, which corresponds to adding a term to the Lagrangian
density which does not respect the symmetry. Another way of breaking the
symmetry is what is called the spontaneous symmetry breaking. In this case
the classical Lagrangian density has a symmetry which is not respected by
the ground state. In both the cases listed above symmetry is broken at clas-
sical level. The situation in the case of anomalies is different. The symmetry
of the theory is intact at classical level but quantum mechanical effects do
not respect the symmetry. It is in this sense that the word ‘anomaly’ is a
misnomer.

More specifically, consider the action S of a classical field theory. Let us
assume that this action is invariant under transformations of classical fields
under a symmetry group G. The symmetry group G is anomalous if the full
quantum theory does not respect this symmetry. Thus anomalous symmetries

141© Springer Science+Business Media Singapore 2016 and Hindustan Book Agency 2014
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High Energy Physics - 2, Texts and Readings in Physical Sciences 15,
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are legitimate symmetries of the classical field theory but fail to survive when
quantum effects are taken into account. Nature of the anomaly and its effects
on the physics of the quantum theory depend on the role of the symmetry group
G in the theory. For example, G can be a continuous group or a discrete group.
Similarly, G can be a global symmetry of the theory or it could be a local gauge
symmetry.

Anomaly in the global symmetry has interesting physical consequences
like the neutral pion decay (π0 → γγ). Anomaly in the local gauge symmetries
implies violation of the gauge invariance of the theory. The lack of gauge invari-
ance means the theory is nonunitary. Any gauge theory with anomalous gauge
group is therefore quantum mechanically inconsistent. The only way we know,
as of now, to make sense of such theories is to adjust matter content of such
theories so that the anomaly is canceled. This restores gauge invariance of the
theory at the quantum level. A classic example of this is the Standard model
of particle physics. For a generic matter content as well as charge assignment
the Standard model is potentially anomalous. However, it turns out that the
anomaly is canceled if we have equal number of quark and lepton families. This
is one of the nontrivial consistency checks of the Standard model of particle
physics.

In these lectures, we will begin our discussion of anomalies by studying
the Schwinger model, i.e., the two dimensional electrodynamics. We will see
that the anomaly in this model is due to the level crossing as one changes
the background gauge field. In this model we have two classically conserved
currents, the vector current and the axial vector current. The anomaly due to
level crossing implies that in the quantum theory we cannot have simultaneous
conservation of both the currents. Since the vector current is coupled to the
gauge field we will preserve conservation on the vector current. This in turn
means the axial vector current is not conserved. We will illustrate this computa-
tion using the point splitting regularization method as well as the Pauli-Villars
regularization method. The reason for doing this computation in two different
regularization scheme is to show that the anomaly is independent of the choice
of regularization scheme. We will then discuss vacuum degeneracy by studying
n-vacua as well as θ-vacua in this model. After studying the anomaly in the
Schwinger model, we will consider anomalies in four dimensional gauge theories.
We will begin the discussion with the abelian gauge theory and then discuss
the non-abelian gauge theory. Path integral formalism is briefly introduced so
that derivation of anomalies can be carried out using path integral methods.
Finally we will apply it to the Standard model of particle physics and establish
the criterion for the model to be anomaly free.
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4.2 Two Dimensional Gauge Theory

Let us start with a toy model, the Schwinger model on a circle. The Schwinger
model is a two dimensional U(1) gauge theory coupled to a massless Dirac
fermion. The Lagrangian density is given by

L = − 1

4e2
FμνF

μν + Ψ̄iγμDμΨ, (4.1)

where, Ψ is a two component spinor field and

Fμν = ∂μAν − ∂νAμ, Dμ = ∂μ + iAμ. (4.2)

The gamma matrices are: γ0 = σ2, γ
1 = iσ1 and γ5 = σ3. We define the chiral

fermions ΨL and ΨR as

ΨL =

(
ψ1

0

)
, ΨR =

(
0
ψ2

)
; ΨL = γ5ΨL, ΨR = −γ5ΨR. (4.3)

In the two dimensional electrodynamics, there are no transverse degrees of
freedom for Aμ(the photon), however, the Coulomb interaction does exist. The
Coulomb interaction in two dimensions grows linearly with the distance. This
leads to the confinement of charged particles for any non-zero value of the
coupling constant e. Here we are not interested in studying the confinement in
this model. Our interest is to study possible anomaly in this theory.

To minimize the effect of the Coulomb potential, let us consider the model
defined on a circle. We will take the circumference of the circle to be L. If we
choose L in such a way that eL � 1 then the Coulomb interactions never
become large. We can then ignore the Coulomb interactions in the first approx-
imation and can include them perturbatively.

Let us impose following boundary conditions on the fields

Aμ

(
x = −L

2
, t

)
= Aμ

(
x =

L

2
, t

)
,Ψ

(
x = −L

2
, t

)
= −Ψ

(
x =

L

2
, t

)
.

(4.4)
Using these boundary conditions we can expand Aμ and Ψ in terms of the
Fourier modes as

Aμ(x, t) =
∞∑

k=−∞
aμ(k, t) exp

(
2πikx

L

)

Ψ(x, t) =

∞∑
k=−∞

bk(t) exp

(
2πi(k + 1

2 )x

L

)
. (4.5)
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The Lagrangian density is invariant under the local gauge transformation

Ψ(x, t) → exp(iα(x, t))Ψ(x, t), Aμ(x, t) → Aμ(x, t)− ∂μα(x, t). (4.6)

Using the periodic boundary condition, we can write A1(x, t) as

A1(x, t) =
∑
k

a1(k, t) exp

(
2πikx

L

)
(4.7)

If we choose

α(x, t) =
∑
k

L

2πik
a1(k, t) exp

(
2πikx

L

)
, (4.8)

then we can gauge away A1(x, t) except for the zero mode, i.e., k = 0 mode
of A1(x, t). The gauge parameter α(x, t) in (4.8) is periodic on the circle and
therefore it is a legitimate gauge transformation. Since only k = 0 mode of
A1(x, t) cannot be gauged away, it implies A1(x, t) is independent of x. Thus
only non-trivial gauge field component that we need to consider is a constant
mode.

However, the gauge transformation (4.6) does not cover all possible gauge
transformations. That is, after fixing this gauge, we are left with a residual
gauge symmetry. This residual gauge symmetry comes from the non-periodic
gauge transformations,

α(x, t) =
2π

L
nx, n = ±1,±2, · · · (4.9)

This gauge transformation parameter(4.9) does not obey the periodicity of
the spatial direction, but ∂α/∂x = constant, and ∂α/∂t = 0 as a result the
periodicity of Aμ(x, t) is still preserved.

Recall that the fermion wavefunction picks up a local phase, exp(iα(x, t)),
under the gauge transformation. In the interval x ∈ [−L

2 ,
L
2 ], the phase picked

up by the fermion wavefunction is exp(iα(x = L, t)) = exp(2πin), where n is an
integer. Therefore the fermion wavefunction is left invariant by this non-periodic
gauge transformation(4.9). We thus conclude that the gauge field component
A1(x, t) does not take values in the interval (−∞,∞) but is valued between
[0, 2π] with points A1, A1 ± 2π/L, A1 ± 4π/L, · · · being identified due to the
linear non-periodic gauge transformation(4.9).

In addition to the local gauge symmetry, the Lagrangian density is invari-
ant under the global gauge transformation,

ψ(x, t) → exp(iα)ψ(x, t). (4.10)
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This invariance corresponds to conservation of the electric charge. Using the
Noether procedure we can write the conserved current,

Jμ = ψ̄γμψ, ψ̄ = ψ†γ0, (4.11)

with ∂μJμ = 0, using the equations of motion.
The conserved charge is

Q =

∫
dxψ†ψ . (4.12)

The Lagrangian(4.1) is invariant under another symmetry transformation,

ψ(x, t) → exp(iαγ5)ψ(x, t). (4.13)

The conserved current corresponding to this symmetry is

J5
μ = ψ̄γμγ

5ψ, (4.14)

with ∂μJ5
μ = 0, again using the equations of motion and the conserved charge

is

Q5 =

∫
dxψ†γ5ψ . (4.15)

Notice that for the massive fermions, the current J5
μ is not conserved.

∂μJ5
μ = 2imψ̄γ5ψ, (4.16)

where, m is the mass of the fermion. We have chosen gamma matrix convention
in such a way that γ5 = σ3. Therefore, Q5 charge of ψL is +1 and that of ψR

is −1. The conservation of Q and Q5 for massless fermions implies separate
conservation of

QL =
Q+Q5

2
, and QR =

Q−Q5

2
. (4.17)

We can decompose the interaction term in the Lagrangian density, namely
ψ̄γμψAμ as

ψ̄γμψAμ = ψ†
LψL(A0 +A1) + ψ†

RψR(A0 −A1). (4.18)

This implies that within the perturbation theory, the photon does not change
the chirality of fermions. This would lead us to conclude that both Q and
Q5 are conserved in the quantum theory. However, the exact answer is more
interesting, we will see that only one of these two classical symmetries survive
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in the quantum theory. Before we embark on this, let us first observe that in
two dimensions, Jμ and J5

μ are related to each other.

J5
μ = εμνJ

ν , (4.19)

where, εμν is the Levi-Civita tensor in two dimensions.
However, conservation of Jμ does not imply conservation of J5

μ and vice
versa.

We will now ‘derive’ the anomaly using a heuristic argument. For simplic-
ity we will assume A0 = 0. This, to be precise, is not correct, because electric
charges in two dimensions feel only the Coulomb interactions, which implies
A0 �= 0. However, if we take the circumference of the spatial circle small, i.e.,
eL � 1, then A0 = 0 is a good approximation. This is because the Coulomb
potential A0 = e|x|, which gives rise to linear confinement of electric charges
does not take significant value for −L/2 ≤ x ≤ L/2. Therefore, to the leading
order we are justified in setting A0 = 0. We cannot set the gauge field com-
ponent A1 to zero. Periodicity of A1 implies any value of A1 is identified with
A1 + 2πn/L, n ∈ Z. Only the constant mode of A1 along the spatial direction
is relevant because this spatially constant mode cannot be gauged away.

We will now look at the fermion dynamics in this gauge field background.
The Dirac equation is[

i
∂

∂t
+ σ3(i

∂

∂x
−A1)

]
ψ(x, t) = 0. (4.20)

Let us look for the stationary state solutions,

ψ(x, t) = exp(−iEkt)ψk(x). (4.21)

The Dirac equation then becomes

Ekψk(x) = −σ3

(
i
∂

∂x
−A

)
ψk(x). (4.22)

On the spatial circle, we have imposed the anti-periodic boundary condition on
the fermion wavefunction. The spatial part of the wavefunction consistent with
this boundary condition is

ψk(x) ∼ exp[2πix(k + 1/2)], k ∈ Z. (4.23)

Using this wavefunction we can write the energy spectrum for the left moving
and the right moving fermions

Ek(L) =

(
k +

1

2

)
2π

L
+A1, Ek(R) = −

(
k +

1

2

)
2π

L
−A1 (4.24)
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−3π/2
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3π/2
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−π/2

Figure 4.1: Level crossing for the left moving fermion (solid lines) and that for the

right moving fermion (dashed lines).

At A1 = 0 and A1 = 2πn/L, the left moving and the right moving fermion
energy levels are degenerate(4.24) (Also see figure 4.1).

Due to the gauge invariance, points A1 = 0 and A1 = 2π/L are identified,
but this identification occurs in a nontrivial way. By the time we move from
A1 = 0 to A1 = 2π/L , all the left moving fermion energy states(4.24) have
moved upwards by one unit and all the right moving fermion energy states(4.24)
have moved downwards by one unit. We will now see that this rearrangement
of fermion energy levels is responsible for the chiral anomaly.

To see this we will switch from the single particle state formulation to the
field theory. First thing that we need to do is to define the fermion vacuum.
Let us denote the unoccupied states by |0L,R; k〉 and the occupied states by
|1L,R; k〉. For A1 ≈ 0, we define the fermion vacuum as

Ψ
(0)
ferm =

⎛⎝ ∏
k=−1,−2,···

|1L; k〉
⎞⎠⎛⎝ ∏

k=0,1,2,···
|0L; k〉

⎞⎠
×

⎛⎝ ∏
k=−1,−2,···

|0R; k〉
⎞⎠⎛⎝ ∏

k=0,1,2,···
|1R; k〉

⎞⎠ . (4.25)

Notice that for all the left moving particles negative energy levels correspond
to k < 0 and for the right moving particles negative energy levels correspond
to k ≥ 0 for A1 ≈ 0.
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Now we will vary A1 slowly until it becomes A1 = 2π/L. At A1 = 2π/L,
we see that one negative energy level of the left moving fermion has moved
up and one negative energy level of the right moving fermion(hole) has moved
down. Thus at A1 = 2π/L, we have a particle-hole pair over the vacuum defined
at A1 ≈ 0. As far a the electromagnetic charge Q is concerned, this state with
a particle-hole pair is still electrically neutral, i.e., ΔQ = 0. However, this is
not true for the charge Q5, because the Q5 charge of a right moving hole is the
same as that of the left moving particle. Therefore, ΔQ5 = 2. The Q5 charge of
the fermion vacuum at A1 ≈ 0 is zero by construction. Therefore we find that
slow variation of A1 from A1 = 0 to A1 = 2π/L takes us from Q5 = 0 state to
Q5 = 2 state. Using this fact we can write

ΔQ5 =
L

π
ΔA1. (4.26)

Treating this as an adiabatic variation of the axial charge, we get

dQ5

dt
=

L

π

dA1

dt
⇒ d

dt

(
Q5 − L

π
A1

)
= 0. (4.27)

Thus we find that the conserved charge is modified and is given by∫
dx

(
J0
5 − 1

π
A1

)
. (4.28)

The current corresponding to this conserved charge is

J̃μ
5 = Jμ

5 − 1

π
εμνAν . (4.29)

This new current J̃μ
5 is conserved,

∂μJ̃
μ
5 = 0 ⇒ ∂μJ

μ
5 =

1

2π
εμνFμν . (4.30)

While the new conserved charge is gauge invariant under small gauge trans-
formations, the new conserved axial current is not gauge invariant. Another
point to notice is that the original axial current, which is gauge invariant, is
not conserved anymore.

Thus we find ourselves in a situation where the conserved axial current
is not gauge invariant and the gauge invariant axial current is not conserved.
Since the gauge invariance is important to maintain consistency of the quantum
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theory, we give up on conservation of the gauge invariant axial current. Thus

∂μJ
μ
5 =

1

2π
εμνFμν . (4.31)

This is the axial anomaly in the Schwinger model. In this picture we see that
the axial anomaly is a statement of crossing of the zero energy levels.

In this derivation we have implicitly assumed some ultraviolet cutoff of
the theory. We have also assumed that whenever a state crosses zero energy
level and appears on the positive energy side, one state exits the ultraviolet
cutoff on the positive energy side and one state enters the ultraviolet cutoff on
the negative energy side. Although we have used infrared methods for counting
number of levels crossing zero energy, in most practical applications we need to
use the ultraviolet regularization method to derive the anomaly. This is because
many gauge theories, including the QCD, are much harder to analyze in the
infrared limit. The asymptotic freedom in these theories make the ultraviolet
analysis easy to carry out.

Let us now use the ultraviolet regularization to derive the axial anomaly.
There are various ways by which we can see the need for the ultraviolet regula-
tor. One way to see this is to notice that the fermion vacuum state with filled
Dirac sea involves an infinite product of fermion levels |1L; k〉 and |1R; k〉. Thus
the energy of the fermion vacuum is

E ∼ −
∞∑
k=0

(
k +

1

2

)
2π

L
. (4.32)

This is a divergent sum. To make sense of E we need to regularize this sum. If we
choose a regularization procedure which throws away states with |k| > |kmax|
then we get a finite answer for E but this regularization is not gauge invariant.
If we violate the gauge invariance, it would lead to the non-conservation of the
electric charge. We can instead choose to regulate this sum by restricting the
values of p+A. This would be a gauge invariant regulator. We will implement
this using the point splitting regularization. Another way to see the need to
use the ultraviolet regulator is to notice that the classical conserved currents
are written in terms of products of fields defined at a coincident space-time
point. In a quantum field theory, a product of two or more fields at a coin-
cident space-time point is ill-defined. Such a product gives rise to the short
distance singularities. These singularities are taken care of in the quantum field
theory using the ultraviolet regularization method. The regulated currents are
defined by writing the fields at non-coincident points and at the same time en-
suring that they continue to remain gauge invariant. This is the point-splitting
regularization procedure.
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4.3 The Point-Splitting Regularization Method

We define regulated expressions for the classically conserved currents using the
point-splitting regularization method as follows:

JReg
μ = ψ̄(x+ ε, t)γμψ(x, t) exp

(
−i

∫ x+ε

x

A1dx
′
)

J5Reg
μ = ψ̄(x+ ε, t)γμγ

5ψ(x, t) exp

(
−i

∫ x+ε

x

A1dx
′
)
. (4.33)

The exponential factor ensures that the regularized expression of currents is
gauge invariant. The regularized expressions for Q and Q5 obtained from the
regularized currents is

Q =

∫
dxJReg

0 (x, t) and Q5 =

∫
dxJ5Reg

0 (x, t). (4.34)

The charge QL = (Q + Q5)/2 measures the left moving fermion charge and
QR = (Q−Q5)/2 measures the right moving fermion charge. We will now mea-
sure QL and QR charge of the Dirac vacuum state. The regularized expressions
for QL and QR are

QL =

∫
dxψ†

L(x+ ε, t)ψL(x, t) exp

(
−i

∫ x+ε

x

A1dx
′
)

QR =

∫
dxψ†

R(x+ ε, t)ψR(x, t) exp

(
−i

∫ x+ε

x

A1dx
′
)
. (4.35)

The fermion wavefunctions with appropriate normalization on a circle of cir-
cumference L are

ψk(x, t) =
1√
L
exp

(
−iEkt+ i

2π

L

(
k +

1

2

)
x

)
. (4.36)

We can expand ψL and ψR in terms of this basis. However, to evaluate QL and
QR on the Dirac vacuum state we do not need full decomposition of ψL and
ψR in terms of ψk. Only information we need is that in the vacuum state, the
left moving particles occupy states with negative k values and the right moving
particles occupy states with non-negative k values. Thus positive k modes of
ψL do not contribute to vacuum value of QL and negative k modes of ψR do
not contribute to vacuum value of QR. Expressions for QL and QR therefore
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are

QL =
1

L

∑
k<0

∫ L/2

−L/2

dx exp

(
−2π

L
i

(
k +

1

2

)
(x+ ε)

)
×

exp

(
2π

L
i

(
k +

1

2

)
x

)
exp

(
−i

∫ x+ε

x

A1dx
′
)
, (4.37)

QR =
1

L

∑
k≥0

∫ L/2

−L/2

dx exp

(
−2π

L
i

(
k +

1

2

)
(x+ ε)

)
×

exp

(
2π

L
i(k +

1

2
)x

)
exp

(
−i

∫ x+ε

x

A1dx
′
)
. (4.38)

Since A1 is independent of x we can simplify these expressions by explicitly
carrying out integration over x.

QL =
∑
k<0

exp

[
−iε

(
2π

L

(
k +

1

2

)
+A1

)]
(4.39)

QR =
∑
k≥0

exp

[
−iε

(
2π

L

(
k +

1

2

)
+A1

)]
, (4.40)

where k ∈ Z. Although expressions for QL and QR look the same, the sum over
k is over different values. The range of values of k in the summation are chosen
for |A1| < π/L.

Let us first notice that in the ε → 0 limit, both QL and QR reduce to
an infinite series

∑
k 1. Although k takes different values for QL and QR, this

fact is irrelevant for this infinite series, which is divergent. Point splitting is a
covariant regulator because it cuts off states with |p1 +A1| ≥ 1/ε.

Both QL and QR are written in terms of geometric series. It is easy to
sum both of them.

QL =
exp[−iε( πL +A1)]

exp[−2iπε
L ]− 1

, QR =
exp[−iε( πL +A1)]

1− exp[−2iπε
L ]

. (4.41)

Expanding these sums in terms of a power series in ε gives

QL = − L

2iπε
+

L

2π
A1 + o(ε) (4.42)

QR =
L

2iπε
− L

2π
A1 + o(ε). (4.43)

The first term in both the expression diverges as we take the limit ε → 0. This
is just a reflection of the fact that original series were divergent.
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It is easy to see that the electric charge of the vacuum state,

Q = QL +QR = 0, (4.44)

in spite of the fact that QL and QR are individually divergent quantities.
Though QL and QR depend explicitly on A1, the electric charge Q is indepen-
dent of A1 once we remove the regulator, i.e., ε → 0. This ensures conservation
of electric charge.

The axial charge, on the other hand, has two contributions,

Q5 = QL −QR =
L

iπε
+

L

π
A1 + o(ε). (4.45)

The first term is divergent as ε → 0, however, this divergence can be removed
by defining normal ordered expression for Q5. The second contribution is finite
as ε → 0, and it shows that the regularized axial charge depends on A1. Thus
as A1 goes from 0 to 2π/L, Q5 changes by two units. This result is identical to
the one obtained by counting the number of levels crossing zero energy in the
earlier computation.

If we change A1 adiabatically then

dQ5

dt
=

L

π

dA1

dt
⇒ ∂μJ

μ
5 =

1

2π
εμνFμν . (4.46)

We have got the anomaly equation with correct normalization. Recall in the
infrared picture we got non-conservation of axial charge due to crossing of zero
energy level. This time around we have obtained the anomaly by imposing
ultraviolet cutoff. Non-conservation of the axial charge is now understood as
follows. As we change A1 adiabatically from A1 = 0 to A1 = 2π/L, one right
moving fermion level exits the Dirac sea from its lower boundary, i.e., −1/|ε|
and one left handed fermion level enters the Dirac sea from the same boundary.

In fact, both infrared and ultraviolet phenomena occur simultane-
ously. Compatibility of these two methods of determining axial charge non-
conservation is stated in terms of ’t Hooft consistency condition. ’t Hooft’s
consistency condition states that singularities of the amplitudes computed in
the ultraviolet theory should be reproducible from the amplitudes computed in
the infrared theory.

4.4 The Pauli-Villars Regularization Method

We will compute this anomaly one more time. This time we will use Pauli-
Villars regularization scheme. The reason for doing this computation once again
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is to show that the axial anomaly computed using point-splitting regularization
method is not an artifact of specific choice of the regularization scheme. In other
words, anomaly equation is independent of regularization scheme.

Since anomaly is intrinsically quantum mechanical, its manifestation is
seen at loop level in the perturbation theory. Loop diagrams are generically di-
vergent and we will use Pauli-Villars regularization method to evaluate loop in-
tegrals. For simplicity we will use background field method, i.e., we will assume
a fixed gauge field background and evaluate loop integrals in this background.
The relevant diagrams for computation of axial anomaly in the Schwinger model
are

μ   5
X X

γ γ

ψ χ

γ  γ γ  γ
μ   5

First graph is a one-loop contribution from the massless fermion, and the
second graph is one-loop contribution from the Pauli-Villars regulator fermion
χ with mass M0. γμγ5 corresponds to axial current vertex for both ψ and
χ. In the Pauli-Villars regularization procedure, loop of the regulator fermion
does not pick up negative sign. The regulator fermion thus cancels all high
frequency modes of the fermion ψ in the loop. This cancellation occurs for all
frequencies ω > M0. The regulator is removed by taking M0 to infinity. For all
low frequency modes of ψ, M0 acts as a gauge invariant cutoff. The regularized
axial current is

Jμ
5 = ψ̄γμγ5ψ + χ̄γμγ5χ. (4.47)

Due to existence of massive fermion we do not expect conservation of the axial
current. Equations of motion for ψ and χ are

D/ψ = 0, and D/χ = −iM0χ. (4.48)

Using these equations of motion we can evaluate divergence of the axial current,

∂μJ
μ
5 = 2iM0χ̄γ5χ. (4.49)

We will now evaluate the vacuum expectation value of ∂μJ
μ
5 in the background

field formalism. If the current is conserved then this vacuum expectation value
should vanish as we remove the regulator, i.e., take M0 → ∞. To evaluate the
vacuum expectation value of the divergence of the axial current, it is easiest to
work with the right hand side expression in the coordinate space representation.

2iM0〈χ̄(x, t)γ5χ(x, t)〉 = 2iM0〈Tr(γ5χ(x, t)χ̄(x, t))〉. (4.50)
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In spite of having χ and χ̄ defined at the same space-time point, the vacuum
expectation value 〈χ(x, t)χ̄(x, t)〉 gives a formal coordinate space propagator
for χ. The coordinate space propagator satisfies the Green’s function equation

(iD/−M0)S(x, y) = iδ2(x− y). (4.51)

Due to coincident space-time point, momentum space representation of S(x, x)
is

S(x, t;x, t) = i

∫
d2p

(2π)2
1

Π/−M0
, Πμ = pμ +Aμ. (4.52)

Notice the exponential factor in the expression of propagator is missing. The
momentum p serves as the loop momentum. Let us list a few standard manip-
ulations

•
1

Π/−M0
=

Π/+M0

Π/Π/−M2
0

=
Π/+M0

Π2 −M2
0 − i

2ε
μνFμνγ5

(4.53)

• [Πμ,Πν ] = −[Dμ, Dν ] = iFμν .

• In two dimensions γμγν = ημν + εμνγ5 .

Using these relations vacuum expectation value of ∂μJ
μ
5 can be written as,

〈∂μJμ
5 (x, t)〉 = −2M0

∫
d2p

(2π)2
Tr

(
γ5

Π/−M0

)
= −2M0

∫
d2p

(2π)2
Tr

[
γ5

(Π/+M0)

Π2 −M2
0 − i

2ε
μνFμνγ5

]
. (4.54)

Expanding the denominator in a power series gives,

〈∂μJμ
5 (x, t)〉 = −2M0

∫
d2p

(2π)2
Tr

[
γ5(Π/+M0)

×
(

1

Π2 −M2
0

+
1

Π2 −M2
0

(
i

2
εμνFμνγ5

)
1

Π2 −M2
0

+ · · ·
)]

(4.55)

It is easy to see that the first term vanishes due to trace of the integrand. Third
term onwards all terms drop out as M0 → ∞. Only relevant term is the second
term and therefore the effective one loop integral is

〈∂μJμ
5 (x, t)〉 = −2iM2

0

∫
d2p

(2π)2
εμνFμν

(Π2 −M2
0 )

2
(4.56)

A few comments are in order at this point.
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• Π/ does not contribute because trace vanishes.

• We get a factor of 2 because Tr 12×2 = 2.

We will now replace Πμ by pμ and neglect Aμ. we can do this because terms
proportional to Aμ are not divergent as p → ∞ and hence can be dropped when
computing the anomaly. The loop integral now becomes

〈∂μJμ
5 (x, t)〉 = −2iM2

0

∫
d2p

(2π)2
εμνFμν

(p2 −M2
0 )

2
. (4.57)

We will evaluate this integral by first performing Wick rotation in the momen-
tum space, i.e., (p0, p1) → (ip2, p1). Define p2E = p21 + p22. Substituting this in
the loop integral gives

〈∂μJμ
5 (x, t)〉 = 2M2

0

∫
dpEpE
2π

εμνFμν

(p2E +M2
0 )

2

= −M2
0

2π
εμνFμν

1

p2E +M2
0

∣∣∣∣∞
pE=0

=
εμνFμν

2π
. (4.58)

Thus we see that the Pauli-Villars regularization procedure for removing ultra-
violet divergences gives the same anomaly equation as the one derived using
level crossing and point-splitting method. We therefore argue that the anomaly
is independent of choice of regularization scheme.

4.5 n-vacua and θ-vacua

It is now time to check if our assumptions are consistent with the results we
have obtained. Let us first recall what is our working hypothesis. We have
assumed that fermions are fast variables and gauge field is a slow variable. We
have taken eL � 1 and neglected A0. In the absence of A0, the gauge kinetic
term becomes

− 1

4e2
FμνF

μν =
1

2e2
Ȧ2

1. (4.59)

Since A1 is independent of x, contribution of the kinetic term to the effective
Lagrangian is LȦ2

1/2e
2.

Let us now look at the fermion Hamiltonian

H = −
∫

ψ†(x, t)σ3(i
∂

∂x
−A1)ψ(x, t)dx. (4.60)
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We will regularize this Hamiltonian using the point-splitting method.

H = −
∫

dxψ†(x+ ε, t)σ3(i
∂

∂x
−A1)ψ(x, t) exp

(
−i

∫ x+ε

x

A1dx
′
)
. (4.61)

Since σ3 is the γ5-matrix we can split the energy spectrum into EL and ER.
Using Fourier modes (4.36) we can determine the energy of the Dirac sea

EL =

−∞∑
k=−1

Ek(L) exp(−iεEk(L)) (4.62)

ER =
∞∑
k=0

Ek(R) exp(iεEk(R)), (4.63)

where, Ek(L) and Ek(R) are given in eq.(4.24). These are regulated expressions
and are valid for |A1| < π/L. If we take ε → 0 then we will get divergent sums.

Let us now notice that expressions for EL and ER can be obtained by
differentiating QL and QR (see eq.(4.37) and (4.38)) with respect to ε. Thus
energy of the Dirac sea is

E0 = EL + ER = i
∂

∂ε
(QL −QR). (4.64)

Since QL = QR = {i exp(−iεA1)}/{2 sin(πε/L)}(see eq.(4.41)),

E0 = i
∂

∂ε

(
i exp(−iεA1)

sin(πε/L)

)
=

L

2π

(
2A2

1 −
π2

L2
+

1

ε2

)
. (4.65)

After dropping the constant term and soaking up the divergent term in the
normal ordering prescription we find that the energy of the Dirac sea generates
an effective potential for A1. The effective Lagrangian for A1 degrees of freedom
is

L =
L

2e2
Ȧ2

1 −
L

π
A2

1. (4.66)

This is just the harmonic oscillator problem with the spring constantK = 2L/π,
mass m = L and � = e. The energy spectrum is,

E =

(
n+

1

2

)√
2

π
e. (4.67)

Thus we see that characteristic energies of A1 quanta is EA ∝ e whereas char-
acteristic energies of ψ quanta is Eψ ∝ 1/L. Therefore EA/Eψ ∼ eL � 1. This
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implies A1 quanta are low energy or slowly varying variables compared to ψ
quanta. This justifies our procedure of studying ψ quanta in the adiabatically
varying A1 background. It is easy to determine the ground state wavefunction
of the gauge field problem, since it is a harmonic oscillator problem

Ψ0(A1) ∝ exp

(
− LA2

1√
2πε2

)
. (4.68)

Thus the total vacuum wavefunction is

Ψ0(A1, ψ) = Ψ
(0)
fermΨ0(A1)

∝
⎛⎝ ∏

k=−1,−2,···
|1L; k〉

⎞⎠⎛⎝ ∏
k=0,1,2,···

|0L; k〉
⎞⎠

×
⎛⎝ ∏

k=−1,−2,···
|0R; k〉

⎞⎠⎛⎝ ∏
k=0,1,2,···

|1R; k〉
⎞⎠

× exp

(
− LA2

1√
2πε2

)
, (4.69)

provided |A1| < π/L. This wavefunction is invariant under small gauge trans-
formations. Recall small gauge transformations imply A1 is independent of x.
Small gauge transformations therefore shift the centre of the A1 harmonic os-
cillator slightly away from A1 = 0. Note that small gauge transformations, by
definition, are those which transform the initial configuration, say, |A1| < π/L
to the gauge transformed configuration |Ã1| < π/L.

Large gauge transformations are the ones which take A1 to A1 + 2πk/L,
where (k = ±1,±2, · · · ). The vacuum wavefunction is not invariant under large
gauge transformations. Although A1 ≈ 0 and A1 ≈ 2π/L are related by gauge
transformation, we know from our study of the fermion energy levels that the
fermion vacuum at A1 ≈ 0 is different from that at A1 ≈ 2π/L. In particular,
at A1 ≈ 2π/L we have fermion spectrum containing a particle-hole pair. This
state is a gauge transform of the fermion vacuum at A1 ≈ 0. Clearly a particle-
hole pair over vacuum is not a legitimate vacuum state at A1 ≈ 2π/L. In
other words, the correct vacuum state of fermions at A1 = 2π/L has a different
description in the neighbourhood of A1 = 0. It is certainly not the fermion
vacuum at A1 = 0. From the level crossing picture, we know that as we increase
A1, left moving fermion energy states move upwards and right moving fermion
energy states move downwards. The fermionic energy spectrum, nevertheless, is
identical for A1 and A1 +2πn/L (n ∈ Z). Level crossing affects the occupation
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number of these energy states. The fermion vacuum state at A1 appears as
a state with n left moving fermionic particles and n right moving fermionic
holes.excited over the Dirac sea at A1 + 2πn/L with n > 0. However, we want
to define fermionic vacuum at every value of n, and we will describe this state
in terms of the fermionic state defined in the interval −π/L < A1 < π/L.

Suppose we want to define fermionic vacuum at A1 ≈ 2π/L. It is now
obvious from the level crossing argument (see Fig.4.1) that the state at A1 ≈ 0
which evolves into a fermionic vacuum at A1 ≈ 2π/L is

Ψ
( 2π

L )

ferm =

⎛⎝ ∏
k=−2,−3,···

|1L; k〉|0R; k〉
⎞⎠

×
⎛⎝ ∏

k=−1,0,1,···
|0L; k〉|1R; k〉

⎞⎠ . (4.70)

This state gives correct description of the Dirac sea at A1 = 2π/L. It is now
easy to write down the full vacuum wavefunction

Ψ1(A1, ψ) =
∏

k=−2,−3,···
|1L; k〉|0R; k〉

×
∏

k=−1,0,1,···
|0L; k〉|1R; k〉Ψ0(A1 − 2π/L). (4.71)

This argument can be generalized in a straight forward manner to write down
the fermionic state describing the Dirac sea at A1 ≈ 2πn/L. This implies we
have degenerate ground states labeled by an integer n corresponding to a large
gauge transformation A1 → A1 + 2πn/L, n ∈ Z. Appropriate vacuum wave-
function for nth sector is

Ψ1(A1, ψ) =
−∞∏

k=−1−n

|1L; k〉|0R; k〉

×
∞∏

k=−n

|0L; k〉|1R; k〉Ψ0

(
A1 − 2πn

L

)
, (4.72)

where n ∈ Z. A large gauge transformation takes us from Ψn to Ψn′ . Therefore
these wavefunctions are not invariant under large gauge transformations. These
degenerate vacua are called “n-vacua”. It is, in fact, possible to write down a
new vacuum state which is invariant, up to an overall phase, under large gauge
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transformations. Define

Ψ
(0)
θ (A1, ψ) =

∑
n

Ψn(A1, ψ) exp(inθ). (4.73)

This state depends on a continuous parameter θ, which is called the vacuum
angle.

Let us now see the effect of a large gauge transformation on the new vac-

uum state Ψ
(0)
θ (A1, ψ). For illustration, consider a large gauge transformation

which takes A1 to A1+2π/L. From the expression of n-vacuum state, it is clear
that this large gauge transformation takes us from Ψn to Ψn−1. This in effect
means

Ψ
(0)
θ → exp(iθ)Ψ

(0)
θ . (4.74)

This overall phase is not observable. The state Ψ
(0)
θ is not unique because for any

angle θ it is invariant under large gauge transformations. The states represented

by Ψ
(0)
θ (A1, ψ) is called the “θ-vacuum”. All physical quantities obtained by

averaging over θ-vacua are invariant under all gauge transformations.
Existence of θ-vacua can be incorporated in the Lagrangian density by

adding a term

Lθ =
θ

2π
εμνFμν , (4.75)

to the original Lagrangian density. This quantity is called the topological den-
sity. Since Lθ is a total derivative, addition of it to the original Lagrangian
density does not affect equations of motion. Classical physics is therefore unal-
tered. The topological density contributes only if∫

dt

∫ L/2

−L/2

dx
dA1

dt
�= 0∫ L/2

−L/2

dx[A1(x, t = ∞)−A1(x, t = −∞)] �= 0. (4.76)

Partition function of the Schwinger model in the Lagrangian formulation and
with the inclusion of the topological density is

Z =
∑

{A,ψ}
exp

(
i

∫
d2x(L+ Lθ

)
, (4.77)

where the summation is over all field configurations of ψ and Aμ. The original
Lagrangian density is invariant under both small and large gauge transfor-
mations. Invariance of the partition function under all gauge transformations
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means the topological density should change by a factor 2π× integer. Since we
are looking at adiabatic variation of the gauge field, integral of the topological
density itself must be 2π× integer. Thus we need∫ L/2

−L/2

dx[A1(x, t = ∞)−A1(x, t = −∞)] = 2πn. (4.78)

Using small gauge transformation we can set A1 to be independent of x. We
can then choose A1 varying adiabatically from A1 at t = −∞ to A1 + 2πn/L
at t = ∞. Thus,

A1(x, t = ∞)−A1(x, t = −∞) =
2π

L
n. (4.79)

Putting this back into the integral (4.78) and noticing that it is independent of
x and carrying out the integral gives us the desired answer. However, A1 and
A1 + 2πn/L, n ∈ Z are related by a large gauge transformation. That means
our final gauge field configuration is a gauge transform of our initial gauge field
configuration.

A1(x, t = ∞) = A1(x, t = −∞)− ∂αn

∂x
, (4.80)

where, αn = −2πnx/L. The topological density therefore can be written as∫ L/2

−L/2

dx[A1(x, t = ∞)−A1(x, t = −∞)] = −
∫ L/2

−L/2

dx
∂αn

∂x
. (4.81)

We are now in a position to understand why we call Lθ, a topological density.
Spatial direction in our model is periodic with periodicity L. The gauge field
component A1 is also periodic with periodicity 2π/L. As we traverse x from
−L/2 to L/2, αn changes by −2πn and as a result A1 changes from A1 to
A1 + 2πn/L. Since both x and A1 are periodic we can treat them as variables
parametrizing a circle. The circle parametrized by x has a circumference L
whereas the circle parametrized by A1 has circumference 2π/L. Going around
x circle once takes us around A1 circle n times. αn defines a map from x-circle
to A1-circle. Maps from x-circle to A1-circle which wind the A1-circle n times
are not continuously connected to the maps that wind A1-circle m times for
m �= n.

Thus these maps are divided into different equivalence classes according
to number of times they wrap the A1-circle. These wrappings are parametrized
by an integer called the winding number. Mathematically, maps from a circle
to a circle are classified by the first homotopy group or the fundamental group
π1. Windings parametrized by an integer is a statement π1(S

1) = Z. It is easy
to see that π1(S

1) forms a group.
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• For every element which gives a map with winding number n, there exists
a map of winding number −n. Composition of these two maps gives a map
with winding number zero.

• A map with winding number zero is in the equivalence class of identity
maps.

• A map with winding number n and a map with winding number m can
be composed together to get a map with winding number m+ n.

π1(S
1) is an abelian group.
Why do we need θ-vacua? The n-vacuum, denoted by Ψn, is invariant

under small gauge transformations and that is sufficient to ensure conservation
of electric charge. We can then ignore the fact that Ψn is not invariant under
large gauge transformations. If we are going to work within the perturbation
theory then we will not see such a large change in the field configuration anyway.

The problem with this line of argument is that Ψn violates the cluster
decomposition property of the quantum field theory. Suppose we are studying
vacuum expectation value of the time ordered product of some local operators,
then the cluster decomposition property implies that this vacuum expectation
value is reducible to the sum over intermediate states including the vacuum
state and all the excitations over it. The fact that Ψn would violate this property
is easy to see. Consider a two point function of the operator

O(t) =

∫
ψ̄(x, t)(1 + γ5)ψ(x, t)dx, (4.82)

G2(t) = 〈Ψn|T{O†(t)O(0)}|Ψn〉. (4.83)

We are evaluating this two point function in Ψn state. The operator O changes
the axial charge by minus two units. We therefore expect that G2(t) will be
non-vanishing. Now if we use the cluster decomposition property then we can
insert complete set of states between O† and O. If we restrict ourselves to Ψn

sector then G2(t), by cluster decomposition property depends on 〈ψ̄(1+ γ5)ψ〉.
Since ψ̄(1+ γ5)ψ changes Ψn to Ψn+1, 〈ψ̄(1+ γ5)ψ〉 = 0 in the Ψn sector. This
contradicts our earlier expectation that G2(t) is non-vanishing. If, instead of

Ψn, we use Ψ
(0)
θ then the cluster property is restored. This is because in the

θ-vacuum we can have non-diagonal vacuum expectation value.

〈Ψn+1|ψ̄(1 + γ5)ψ|Ψn〉 ∝ 1

L
exp

(
iθ − (2π)3/2

eL

)
. (4.84)

Violation of cluster property leads to violation of causality as well as violation
of unitarity. It is therefore imperative that we work with θ-vacua and not with
an n-vacuum.
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4.6 Four Dimensional Gauge Theory

We will start with the four dimensional abelian gauge theory coupled to a
massless Dirac fermion. The classical action for this theory is given by

S =

∫
d4x

(
−1

4
FμνF

μν + Ψ̄iD/Ψ

)
, (4.85)

where, Dμ = ∂μ − ieAμ and D/ = γμDμ. Our conventions are

gμν = gμν = diag(1,−1,−1,−1); γμ = (γ0, γi), γμ = (γ0,−γi)

γ0 =

(
0 1
1 0

)
, γi =

(
0 σi

−σi 0

)
(4.86)

γ5 = iγ0γ1γ2γ3 =

( −1 0
0 1

)
.

Since the fermion is massless, we can write it in terms of left handed and right
handed components.

ΨL =
1

2
(1 + γ5)Ψ, ΨR =

1

2
(1− γ5)Ψ. (4.87)

Let us also consider four dimensional non-abelian gauge theory with gauge
group SU(N) coupled to nf massless fermions. The classical action for this
theory written in terms of left handed and right handed components of the
fermion is

S =

∫
d4x

(
−1

4
Ga

μνG
aμν +

nf∑
m=1

Ψ̄mLiD/ΨmL +

nf∑
m=1

Ψ̄mRiD/ΨmR

)
, (4.88)

where, Ga
μν = ∂μA

a
ν − ∂νA

a
μ + gfabcAb

μA
c
ν and fermions Ψm are all in the

fundamental representation, N of SU(N). The covariant derivative is defined
as Dμ = ∂μ − igAa

μT
a, where T a, a = 1, · · · , N2 − 1 are generators of the Lie

algebra of SU(N), in the fundamental representation.

[T a, T b] = ifabcT c, Tr(T aT b) =
1

2
δab. (4.89)

Let us enumerate symmetries of these actions,

1. Local gauge invariance: In case of abelian gauge theory, the action is in-
variant under

Ψ(x) → Ψ′(x) = e−ieα(x)Ψ(x), (4.90)

Aμ(x) → a′μ(x) = Aμ(x)− ∂μα(x). (4.91)
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For non-abelian gauge theory, the action is invariant under

Ψm(x) → Ψ′
m(x) = U(θ)Ψm(x), (4.92)

A′
μ(x) = U(θ)Aμ(x)U

−1(θ)− i

g
∂μU(θ)U−1(θ), (4.93)

where, U(θ) = exp(−iT aθa(x)).

2. Global symmetries:

(a) Apart from obvious Poincare invariance, both abelian and non-
abelian gauge theory actions are invariant under the scale trans-
formation. This gives conserved dilatation current.

Aμ(x) → A′
μ(x) = λAμ(λx), (4.94)

Ψ(x) → Ψ′(x) = λ3/2Ψ(λx). (4.95)

(b) Both the actions are invariant under the phase transformations

Ψ(x) → eiαΨ(x), or Ψm(x) → eiαΨm(x), (4.96)

and

Ψ(x) → eiβγ5Ψ(x), or Ψm(x)→eiβγ5Ψm(x). (4.97)

These two symmetries give rise to conserved vector current

Jμ(x) = (Ψ̄γμΨ)(x) [(Ψ̄mγμΨm)(x)], (4.98)

and conserved axial current

Jμ
5 (x) = (Ψ̄γμγ5Ψ)(x) [(Ψ̄mγμγ5Ψm)(x)]. (4.99)

Action of these symmetries on left handed and right handed fermion
is (for vector transformation)

ΨL(x) → Ψ′
L(x) = e−iαΨL(x), (4.100)

ΨR(x) → Ψ′
R(x) = e−iαΨR(x), (4.101)

and (for axial vector transformation)

ΨL(x) → Ψ′
L(x) = eiβΨL(x), (4.102)

ΨR(x) → Ψ′
R(x) = e−iβΨR(x). (4.103)
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(c) In addition to these symmetries, the non-abelian gauge theory action
has SU(nf )L × SU(nf )R flavor symmetry. To see this symmetry we
first write nf fermions in a column vector

Ψ(x) =

⎛⎜⎜⎜⎝
Ψ1

Ψ2

...
Ψnf

⎞⎟⎟⎟⎠ (x). (4.104)

An nf × nf unitary matrix U mixes these fermions into each other.
This unitary matrix is an element of SU(nf ) group. Since we have
decomposed fermions into left handed and right handed components
with no term in the action which couples left and right components,
we can do independent rotations of left handed and right handed
fermions. This corresponds to the transformations

ΨL(x) → Ψ′
L(x) = UΨL(x) (4.105)

ΨR(x) → Ψ′
R(x) = ŨΨR(x). (4.106)

Thus in case of massless fermions we have SU(nf )L × SU(nf )R
chiral flavor symmetry. This symmetry can also be written as
SU(nf )V × SU(nf )A flavor symmetry. This can be seen by recog-
nizing that vector transformation acts on ΨL(x) + ΨR(x) and axial
vector transformation acts on ΨL(x)−ΨR(x).

We are interested in the axial U(1) transformation symmetry. To study that let
us choose Fock-Schwinger gauge, i.e., xμAa

μ(x) = 0. We will make this gauge
choice both for abelian as well as non-abelian gauge theories. However, to see
the utility of this gauge we will carry out manipulations in the non-abelian
gauge theory. The Fock-Schwinger gauge implies we can write down the gauge
field Aa

μ in terms of the field strength Ga
μν as

Aa
ν(x) =

∫ 1

0

dααxμGa
μν(αx). (4.107)

It is trivial to see that this gauge field satisfies the Fock-Schwinger gauge con-
dition. However, it is instructive to check this relation explicitly. To do that let
us write

Aa
μ(y) = ∂μ(A

a
ρ(y)y

ρ)− yρ∂μA
a
ρ(y)

= −yρ∂μA
a
ρ(y) (4.108)

= −yρGa
μρ(y)− yρ∂ρA

a
μ. (4.109)
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The last relation is true because

yρGa
μρ(y) + yρ∂ρA

a
μ = yρ(∂μA

a
ρ − ∂ρA

a
μ + gfabcAb

μA
c
ρ)

+ yρ∂ρA
a
μ. (4.110)

The non-linear term vanishes due to gauge choice leaving us with

yρGa
μρ(y) + yρ∂ρA

a
μ = yρ∂μA

a
ρ(y). (4.111)

We can now rearrange the equation (4.108) as

yρGa
ρμ(y) = Aa

μ(y) + yρ∂ρA
a
μ. (4.112)

Let us now write yμ = αxμ, which allows us to rewrite the equation (4.112) as

αxρGa
ρμ(αx) =

d

dα
(αAa

μ(αx)). (4.113)

Putting this expression back into (4.107) gives us the identity. Explicit expres-
sion for Aa

μ(x) can be obtained by Taylor expanding the field strength and
carrying out integration over α.

Aa
μ(x) =

∫ 1

0

dααxρGa
ρμ(αx) =

xρGa
ρμ(x)

2

+
xβxρ∂βG

a
ρμ(x)

3
+

xλxβxρ∂λ∂βG
a
ρμ(x)

8
+ · · · (4.114)

Using the gauge condition we can replace ordinary derivatives by covariant
derivatives.

Aa
μ(x) =

xρGa
ρμ(x)

2
+

xβxρDβG
a
ρμ(x)

3

+
xλxβxρDλDβG

a
ρμ(x)

8
+ · · · (4.115)

Similarly, Taylor expansion of the fermion field can also be expanded in terms
of covariant derivatives

Ψ(x) = Ψ(0) + xμDμΨ(0) +
1

2
xμxνDμDνΨ(0) + · · · (4.116)

Let us now consider the fermion propagator. we will ignore flavor indices on
the fermion.

S(x, y) = 〈T{Ψ(x)Ψ̄(y)}〉. (4.117)
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The propagator satisfies the Green’s function equation

(iγμ∂μ + gγμAμ(x))S(x, y) = iδ4(x− y). (4.118)

We will use the background field method, i.e., we will fix the classical gauge field
background Aμ(x) = Aa

μ(x)T
a. We cannot determine the propagator exactly,

however, we can express it in terms of the free propagator using the Dyson
series.

S(x, y) = S(0)(x− y) + g

∫
d4z S(0)(x− z)A/(z)S(0)(z − y) + · · · (4.119)

The free propagator in the coordinate space is given by

S(0)(x− y) =
i

2π2

x/− y/

(x− y)4
. (4.120)

This form of the propagator can be obtained by using following identities

• 1
∂/ = −∂/ 1

�
⇒ S(0)(x− y) = −∂/

∫
d4k
(2π)4

e−ik·(x−y)

k2+iε

• ∫∞
−∞ dx exp(−x2

2 ) =
√
2π ⇒ Volume of S3 = 4π2

• Fourier Transform of 1/k2 is 1/x2.

This form of the propagator can also be determined by dimensional analysis.
We will now choose Aa

μ(z) = zρGa
ρμ(0)/2. Higher order terms are regular. Sub-

stituting this in the expression of the propagator

S(x, y) = S(0)(x− y)

+
g

8π2

∫
d4z

x/− z/

(x− z)4
zρGρμγ

μ z/− y/

(z − y)4
+ · · ·

=
i

2π2

x/− y/

(x− y)4
+

i

4π2

xα − yα

(x− y)2
gG̃αβγ

βγ5 + · · · (4.121)

where G̃αβ = 1
2εαβγδG

γδ. This result can also be derived using momentum
space representation of the propagator and expanding exact formal propagator
in terms of free propagator.

Le us now look at the U(1) axial current in this theory.

Jμ
5 = Ψ̄(x)γμγ5Ψ(x). (4.122)

We will consider only single fermion flavour and multiply the final result by nf

to accommodate contribution of all fermion flavours. The axial current in the
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quantum theory is ill-defined due to product of operators at same space-time
point. We will use point-splitting regularization method to define Jμ

5 (x).

Jμ
5 = Ψ̄(x+ ε)γμγ5 exp

(
ig

∫ x+ε

x−ε

Aρdy
ρ

)
Ψ(x− ε). (4.123)

Let us compute divergence of this current. Using equation of motion it is easy
to show that the divergence vanishes except for a contribution coming from
the derivative acting on the gauge field in the exponent. We thus get (using
Aρ = 1

2y
μGμρ(y))

∂μJ
μ
5 = Ψ̄(x+ ε)γμγ5ε

βGμβ(x) exp

(
ig

∫ x+ε

x−ε

Aρdy
ρ

)
Ψ(x− ε). (4.124)

Let us now evaluate vacuum expectation value of ∂μJ
μ
5 in the classical gauge

field background.

〈∂μJμ
5 〉 = 〈Ψ̄(x+ ε)γμγ5ε

βGμβ(x) exp

(
ig

∫ x+ε

x−ε

Aρdy
ρ

)
Ψ(x− ε)〉

= −〈Tr(igγμγ5ε
βGμβ(x)Ψ(x− ε)Ψ̄(x+ ε))〉

= −Tr
(
igγμγ5ε

βGμβ(x)〈S(x− ε, x+ ε)〉)
= Tr

(
igγμγ5ε

βGμβ(x)

{
1

2π2

−2ε/

(2ε)4

− igεα

2π2(2ε)2
G̃αργ

ργ5 + · · ·
})

=
g2

16π2
Ga

μνG̃
aμν , (4.125)

where, we have used the relation Tr(T aT b) = 1
2δ

ab and anticipating the fact that
in the point splitting method we eventually take ε → 0 we have retained only
non-vanishing terms. We will take ε → 0 limit in such a way that the Lorentz
invariance is recovered. This corresponds to taking this limit in a symmetric
manner,

εαεβ

ε2
=

1

4
gαβ . (4.126)

In this way we get the axial anomaly equation in four dimensional abelian and
non-abelian gauge theories. In case of non-abelian gauge theory this anomaly
is computed using single fermion flavour. Taking into account contribution of
nf flavours gives

〈∂μJμ
5 〉 =

g2

16π2
nfG

a
μνG̃

aμν . (4.127)
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4.7 Path Integral Method

We know how to study quantum mechanics and quantum field theory using
canonical operator formalism.We have developed elaborate techniques to com-
pute physically relevant quantities in this formalism and have compared them
with laboratory results. We will now briefly introduce path integral methods
and use them to compute anomalies. There are several reasons to take re-
sort to the path integral methods. Firstly, operator method is not manifestly
Lorentz invariant, although the final result is Lorentz invariant. Secondly op-
erator method becomes cumbersome if the interaction Hamiltonian contains
derivative terms. Path integral method is well suited for quantizing non-abelian
gauge theories.

We have developed good intuition in classical physics. However, many of
these classical physics intuitions encounter problems in quantum theory in the
operator formalism due to operator ordering ambiguity, normal ordering, time
ordering of operators in the correlations functions etc. A quantization approach
which avoids these roadblocks and allows extension of classical intuition to the
quantum theory domain is most desirable. This is precisely what is achieved
in the path integral method. Of course, this can not be achieved at no cost.
In the path integral approach we not only sum over all classical trajectories
but we also sum over all other trajectories connecting initial and final point.
Advantage of this method is, we work with classical variables.

4.7.1 Path Integral Approach to Quantum Mechanics

The utility of the path integral approach is easy to illustrate in quantum me-
chanics. We will show that the canonical operator method in quantum mechan-
ics is identical to the path integral method. Let us start with the Hamiltonian
operator

Ĥ =
p̂2

2m
+ V (q̂). (4.128)

This is derived from the classical Hamiltonian

H =
p2

2m
+ V (q). (4.129)

The corresponding Lagrangian is

L =
1

2
mq̇2 − V (q). (4.130)
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Figure 4.2: Classical trajectory of a particle.

The action associated with a given path q(t) is

S =

∫ t2

t1

dt

(
1

2
mq̇2 − V (q)

)
. (4.131)

Any path joining q1 at t = t1 and q2 at time t = t2 gives a number for the
action. Extremization of the action functional gives the classical path. Let us
use Heisenberg picture to describe quantum mechanics, i.e., states are time
independent and operators are time dependent. Using the Heisenberg equation
of motion for an operator Ô,

dÔ
dt

=
∂Ô
∂t

+ i[Ĥ, Ô], (4.132)

we can write
Ô(t) = exp(iĤt), (4.133)

where for simplicity we have set � = 1. Let us define position eigenstates. |q′〉
and |q′′〉, with eigenvalues q′ and q′′ respectively. Let us now define the kernel
K(q′, t′; q′′, t′′) as

K(q′, t′; q′′, t′′) = 〈q′′| exp(−iĤ(t′′ − t′)|q′〉. (4.134)

K(q′, t′; q′′, t′′) give the probability amplitude of a state created at a point q′

at time t′ and measured at a point q′′ at time t′′. We now claim that

K(q′, t′; q′′, t′′) = N
∫

[Dq] exp

(
iS

�

)
(4.135)
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where N is the normalization factor and
∫
[Dq] is a sum over all paths in

q"

t

q

t

t

’

"

q’

Figure 4.3: Path Integral representation of motion of a quantum mechanical particle.

(q, t) space which begins at (q′, t′) and end at (q′′, t′′). We sum over all paths
connecting q′ and q′′ with the weight exp(iS/�). This sum over paths is carried
out by discretizing time interval (t′′− t′) into N units, Δ = (t′′− t′)/N , N large
but fixed. Using this the action can be written in the discretized form as

S =

∫ t′′

t′
dt

(
1

2
mq̇2 − V (q)

)
= Δ

N∑
i=1

{
m

2

(
qi+1 − qi

Δ

)2

− V (qi)

}
, (4.136)

where qi = q(ti) and ti = t′ + (i − 1)Δ. The kernel in the discretized form
becomes

K(q′, t′; q′′, t′′) = 〈q′′| exp(−iĤNΔ)|q′〉. (4.137)

By writing exp(−iĤNΔ) = exp(−iĤΔ) · · · exp(−iĤΔ) N -times and introduc-
ing complete set of position eigenstates between them, we get

K(q′, t′; q′′, t′′) =

∫
dq2 · · · dqN 〈q′′| exp(−iĤΔ)|qN 〉

〈qN | · · · |q2〉〈q2| exp(−iĤΔ)|q′〉. (4.138)

Let us look at one matrix element

〈qi+1| exp(−iĤΔ)|qi〉 =
〈
qi+1

∣∣∣∣exp(−i

[
p̂2

2m
+ V (q̂)

])∣∣∣∣ qi〉 . (4.139)
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We will now use the following results

exp

(
−iΔ

[
p̂2

2m
+ V (q̂)

])
= exp

(
−iΔ

p̂2

2m

)
exp (−iΔV (q̂))

× exp(−o(Δ2))

q̂|qi〉 = qi|qi〉
|qi〉 =

∫
dp|p〉〈p|q〉

〈p|q〉 = exp(−ipq)

p̂|p〉 = p|p〉, 〈p̃|p〉 = δ(p− p̃)

Using these results we can write the matrix element as〈
qi+1

∣∣∣∣exp(−iΔ(
p̂2

2m
+ V (q̂))

)∣∣∣∣ qi〉=

∫
dpdp̃ exp(−iΔV (qi))

× exp

(
−iΔ

p2

2m

)
exp(iΔp̃qi+1)δ(p− p̃) exp(−iΔpqi) (4.140)

Carrying out the integration over the δ-function and using the following identity∫
dp exp

(
−a

p2

2
+ ip(x− y)

)
=

√
2π

a
exp

(
− (x− y)2

2a

)
, (4.141)

we get

〈qi+1| exp(−iĤΔ)|qi〉 = exp(−iΔV (qi)) exp
(
i
m

2Δ2
(qi+1 − qi)

2
)
. (4.142)

Substituting this expression back in the expression for the kernel gives

K(q′, t′; q′′, t′′) = N
∫

dq2 · · · dqN

exp

(
iΔ

N∑
i=1

{
m

2

(
qi+1 − qi

Δ

)2

− V (qi)

})
. (4.143)

The term in the exponent is precisely the discretized form of the action. The
final expression for the kernel does not contain any operator. It contains only
eigenvalues/numbers. Therefore description in terms of classical action makes
sense. In this formalism, vacuum expectation value of time ordered product of
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operators can be written as

〈q′′| exp(−iĤt′′)T

(
n∏

i=1

q̂(ti)

)
exp(iĤt′|q′〉∫

[Dq] exp(iS)qn(tn) · · · q1(t1). (4.144)

Note that in the path integral q1 · · · qn are all classical variables. We can or-
der them any which way we want, but when we evaluate the path integral it
naturally gives thee time ordered expression.

4.7.2 Path Integral Approach to Quantum Field Theory

Results of quantum mechanics can be generalized to quantum field theory.
Quantum mechanical degrees of freedom q̂i(ti), p̂i(ti) go over to quantum field

theoretic degrees of freedom φ̂i(x), Π̂i(x). In the path integral picture we re-
place Lagrangian of the classical mechanical system by the Lagrangian density
of the classical field theory.

S =

∫
dtL(q, q̇) −→ S =

∫
d4xL(φ(x), ∂μφ(x)). (4.145)

In case of the free scalar field theory we write the path integral as

Zfree =

∫
[Dφ]]exp(iS[φ]), (4.146)

where,

S[φ] =

∫
d4x

[
1

2
ημν∂μφ∂νφ− 1

2
m2φ2

]
, (4.147)

and [Dφ] is the integration measure defined over the space of field configu-
rations. Vacuum expectation value of time ordered product of field operators
φ(xi) is given by

〈T (φ̂(x1) · · · φ̂(xn))〉 =
∫
[Dφ] exp(iS[φ])φ(x1) · · ·φ(xn). (4.148)

It is worth noting that on the left hand side we have expectation value of
product of quantum operators and on the right hand side we have classical
action functional and classical fields. In path integral approach we do not need
to put in explicit time ordering. This method can be extended to any field
theory involving bosonic fields.
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Let us now discuss path integral with fermionic fields. The Dirac field
satisfies anticommutation relations

{ψ̂α(x, t), ψ̂β(y, t)} = 0 (4.149)

{ψ̂†
α(x, t), ψ̂

†
β(y, t)} = 0 (4.150)

{ψ̂α(x, t), ψ̂
†
β(y, t)} = �δαβδ

3(x− y). (4.151)

Note ψ̂†
α(x, t) is the momentum conjugate to ψ̂α(x, t). In the � → 0 limit we find

that all anticommutation relations vanish. This is not a regular classical limit,
because in the classical limit the functions should have commuted but instead
they seem to anticommute. Thus there exists no classical limit of fermions, and
the classical theory would be a formal construction. Path integrals for fermions
also are formal procedures.

The formal action for a free fermion is

S[ψ] =

∫
d4xψ̄(x)(iγμ∂μ −m)ψ(x), (4.152)

and the path integral is ∫
[Dψ][Dψ̄] exp(iS[ψ]). (4.153)

ψ and ψ̄ are anticommuting variables. We need to define the notion of inte-
gration over anticommuting variables. Anticommuting variables are called the
Grassmann variables. They have following properties.

Suppose θi, (i = 1, · · ·n), are n Grassmann variables, then

• Anticommutativity: θiθj = −θjθi, ∀i, j,
• Suppose F (θ) is a function of Grassmann variables then it has a finite
Taylor series expansion in powers of θs.

F (θ1, θ2, · · · , θn) = f0+
∑
i

f (i)θi+ · · ·+
∑

i1,···in
f (i1···in)
n θi1 · · · θin , (4.154)

where fi are ordinary numbers. F (θ) is an even(odd) function if
f2m+1(f2m) vanish for all m.

• Differentiation:
∂θi
∂θj

= δji . (4.155)



174 4. Introduction to Anomalies

This implies
∂

∂θi
(FG) =

∂F

∂θi
G+ (−1)FF

∂G

∂θi
, (4.156)

where, (−1)F is 1 if F is an even function and −1 if it is an odd function.
Since differentiation anticommutes ∂2F/∂θ2i = 0.

• Integration: We define integration using the property that integration if a
total derivative term vanishes.∫

dθ
∂

∂θ
F (θ) = 0. (4.157)

This implies
∫
dθF (θ) = ∂F (θ)/∂θ. This is effect means∫

dθ = 0, and

∫
dθθ = 1. (4.158)

Consider an integral involving ordinary variables∫
dx1 · · · dxnf(x1, · · ·xn). (4.159)

If we make a change of variables xi → yi = Aijxj then define∫
dx1 · · · dxnf(A1ixi, · · ·Anixi). (4.160)

Let us not relate these two integrals. To do that let us notice that

dy1dy2 · · · dyn = (detA)dx1dx2 · · · dxn. (4.161)

Thus ∫
dx1 · · · dxnf(A1ixi, · · ·Anixi) =

(detA)−1

∫
dy1 · · · dynf(y1, · · · yn). (4.162)

By relabelling y as x we get∫
dx1 · · · dxnf(A1ixi, · · ·Anixi) =

(detA)−1

∫
dx1 · · · dxnf(x1, · · ·xn). (4.163)
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Let us now consider an integral involving Grassmann variables,∫
dθmdθm−1 · · · dθ1F (θ1, θ2, · · · , θm), (4.164)

and relate it to ∫
dθmdθm−1 · · · dθ1F (Ã1iθi, Ã2iθi, · · · , Ãmiθi). (4.165)

It is easy to see by explicitly expanding F (Ãθ) in terms of the Taylor series
that ∫

dθmdθm−1 · · · dθ1F (Ã1iθi, Ã2iθi, · · · , Ãmiθi) =

±(det Ã)

∫
dθmdθm−1 · · · dθ1F (θ1, θ2, · · · , θm). (4.166)

Let us also compare the Dirac δ-function for ordinary variables and for Grass-
mann variables. For ordinary variables∫ ∞

−∞
dxδ(x)f(x) = f(0), (4.167)

and for Grassmann variables∫
dθδ(θ)F (θ) = F (0). (4.168)

In particular, if F (θ) = a+ bθ then F (0) = a, implying δ(θ) = θ.
Let us now define complex Grassmann variables

θj = φj + iψj , and θ†j = φj − iψj , (4.169)

whereφj and ψj are real Grassmann variables. Same rules for differentiation
and integration extend to complex Grassmann variables.

4.8 Path Integral Formalism for Anomalies

Let us start with the discussion of symmetries and conservation laws. Since
the path integral formulation of quantum field theory is in terms of classical
action and classical field variables, it is trivial to implement Noether procedure
and derive conservation laws corresponding to the symmetries of the action.
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However, path integral approach is designed to give us results in the quantum
theory. That would imply all classical symmetries and conservation laws would
trivially carry over to the quantum theory. If this is so then what is the status
of anomalies? How do we derive them from path integral approach?

Although classical action is invariant under symmetry transformations,
we have not checked if the integration measure is invariant or not. If the inte-
gration measure is not invariant then under symmetry transformation we will
get a Jacobian factor. It is this Jacobian factor which can potentially carry
information about anomalies.

Having spotted possible location for finding anomalies in the classical
symmetries let us proceed with the analysis of the integration measure in gauge
theories coupled to fermions. For simplicity, let us consider SU(N) gauge theory
coupled to a single Dirac fermion. The Minkowski space action is

S =

∫
d4xL, L = −1

4
Ga

μνG
aμν + ψ̄iD/ψ. (4.170)

The fermion belongs to the fundamental representation N of SU(N). In the
path integral approach it is convenient to work in the Euclidean space. This
cane be achieved by Wick rotating time direction x0 → −ix4 and A0 → iA4.
We define iγ0 = γ4 and D/ = γiDi + γ4D4. Like γi, γ4 is antihermitian but
γ5 = iγ0γ1γ2γ3 = −γ1γ2γ3γ4 is hermitian. The metric on the Euclidean space
is gμν = diag(−1,−1,−1,−1).

To define path integral measure, let us decompose the Dirac field in terms
of the complete set of eigenfunctions of D/.

ψ(x) =
∑
n

anφn(x), ψ̄(x) =
∑
n

φ†
n(x)b̄n, (4.171)

where,
D/φn(x) = λnφn(x), (4.172)

and ∫
d4xφ†

n(x)φm(x) = δn,m, (4.173)

where an and b̄n are elements of Grassmann algebra. In terms of this decom-
position of ψ, the path integral measure becomes∏

x

[DAμ(x)]Dψ(x)Dψ̄(x) =
∏
x

[DAμ(x)]
∏
n

dan
∏
m

db̄m. (4.174)

Since we will not be concerned too much with the gauge field measure, we will
not bother to define it properly. To derive conserved current corresponding to
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the chiral transformation, we will follow Noether’s prescription. Consider the
local chiral transformation.

ψ(x) → ψ′(x) = exp(iα(x)γ5)ψ(x) (4.175)

ψ̄(x) → ψ̄′(x) = ψ̄(x) exp(iα(x)γ5). (4.176)

Under this transformation the Lagrangian density of the Dirac field transforms
as

ψ̄iγμDμψ → ψ̄iγμDμψ − ∂μα(x)ψ̄γ
μγ5ψ. (4.177)

Effect of this chiral transformation on the fermion modes is

ψ′(x) =
∑
n

a′nφn(x) =
∑
n

ane
iα(x)γ5φn(x). (4.178)

Using this relation and orthogonality of φn(x), we can write a′n in terms of an,

a′m =
∑
n

∫
d4xφ†

m(x)eiα(x)γ5φn(x)an =
∑
n

Amnan. (4.179)

Similarly,

b̄′m =
∑
n

∫
d4xφ†

n(x)e
iα(x)γ5 b̄nφm(x) =

∑
n

Amnb̄n. (4.180)

Since
∫
dθ is same as ∂/∂θ,∏

m

da′m =
1

(detAmn)

∏
n

dan (4.181)

and ∏
m

db̄′m =
1

(detAmn)

∏
n

db̄n. (4.182)

Therefore, ∏
m

da′mdb̄′m =
1

(detAmn)2

∏
n

dandb̄n. (4.183)

Let us now evaluate this determinant for infinitesimal chiral transformation.

Am,n =

∫
d4xφ†

m(x)(1 + iα(x)γ5)φn(x) + · · ·

= δmn +

∫
d4xiα(x)φ†

m(x)γ5φn(x) + · · · (4.184)
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Thus,

[detAm,n]
−1 = det

[
δmn + i

∫
d4xα(x)φ†

m(x)γ5φn(x)

]−1

= exp

(
−Tr ln

[
δmn + i

∫
d4xα(x)φ†

m(x)γ5φn(x)

])
= exp

(
−i

∑
n

∫
d4xα(x)φ†

n(x)γ5φn(x)

)
. (4.185)

As a result we find∏
m

da′mdb̄′m =
∏
n

dandb̄ne
−2i

∑∫
d4xα(x)φ†

n(x)γ5φn(x). (4.186)

Thus the Jacobian factor is

exp

(
−2i

∑∫
d4xα(x)φ†(x)γ5φn(x)

)
= exp

(
−2i

∫
d4xα(x)A(x)

)
. (4.187)

We will evaluate this Jacobian by regularizing the term in the exponent. For
global chiral transformations α(x) is independent of coordinates and can be
pulled out of the integral.

Let us now look at the infinite sum in the exponent,

A(x) =
∑
n

φ†
n(x)γ5φn(x) = lim

M→∞

(∑
n

φ†
n(x)γ5e

−(λn/M)2φn(x)

)
. (4.188)

We regularize the infinite sum by introducing the Gaussian cut off. This not
only gives a smooth cut off for eigenvalues λn > M but also maintains the
gauge invariance. For simplicity we will change basis vectors from φn(x) to
plane wave basis, i.e., eik·x

A(x) = lim
M→∞

(∑
n

φ†
n(x)γ5e

−(D//M)2φn(x)

)

= lim
M→∞

(
Tr

∫
d4k

(2π)4
γ5e

−ik·xe−(D//M)2eik·x
)
. (4.189)

Using the expansion Π/Π/ = Π2 + [γμ, γν ]Gμν/2 and Πμ = (ikμ +Aμ(x)),

A(x) = lim
M→∞

Tr

∫
d4k

(2π)4
γ5e

−{2(ikμ+Aμ)
2+[γμ,γν ]Gμν}/2M2

. (4.190)
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We need to pull down [γμ, γν ] factors enough number of times to get non-zero
trace. Since Aμ is not relevant in trace manipulations, we will ignore it. We will
then be left with a Gaussian integral over k.

A(x) = lim
M→∞

Trγ5([γ
μ, γν ]Gμν)

2 1

(2M2)2
1

2

∫
d4k

(2π)4
e−kμkμ/M

2

=
1

16π2
TrGμνG̃

μν , G̃μν =
1

2
εμνρσG

ρσ. (4.191)

We will now substitute A(x) back into the Jacobian factor. The Jacobian factor
is

e−2α
∫
d4xA(x) = e

iα
8π2

∫
d4xTrGμνG̃

μν

. (4.192)

Total variation of the path integral is∫
[DAμ(x)]DψDψ̄ exp(−S[A,ψ, ψ̄]) →∫
[DAμ(x)]Dψ′Dψ̄′ exp(−S[A,ψ′, ψ̄′])

=

∫
[DAμ]DψDψ̄e−S[A,ψ,ψ̄]−∫

d4x∂μα(x)ψ̄γμγ5ψ

×e
i

8π2

∫
d4xα(x)(TrGμνG̃

μν). (4.193)

Thus we get the anomalous conservation law

∂μJ
μ
5 (x) = − i

8π2
TrGμνG̃

μν , (4.194)

where, Jμ
5 (x) = ψ̄(x)γμγ5ψ(x).

Analytic continuation from the Euclidean space back to the Minkowski
space gets rid of i factor in front of the anomaly term. The imaginary factor
has important implications in the Euclidean version of the theory. Another
point to note is that the exponent of the Jacobian factor is given by

A(x) =
∑
n

φ†
n(x)γ5φn(x). (4.195)

The basis vectors φn(x) satisfy the Dirac equation with eigenvalue λn

D/φn(x) = λnφn(x). (4.196)
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Multiplying this equation by γ5 we get

D/γ5φn(x) = −λnγ5φn(x). (4.197)

Thus for every eigenvector φn(x) with eigenvalue λn, there exists an eigenvector
γ5φn(x) with eigenvalue −λn. Therefore φn(x) and γ5φn(x) are orthogonal to
each other. This implies∫

d4xA(x) =

∫
d4x

∑
n

φ†
n(x)γ5φn(x) = 0, (4.198)

except for the zero modes, i.e., when λ = 0. When λ = 0, we can rewrite A(x)
as ∫

d4xA(x) =

∫
d4x

∑
n

φ†
n(x)γ5φn(x)

=

∫
d4x

(
n+∑
i=1

φ†
iR(x)φiR(x)−

n−∑
i=1

φ†
iL(x)φiL(x)

)
, (4.199)

where φL(R) are left handed (resp. right handed) zero modes, and∫
d4xA(x) = n+ − n−. (4.200)

In other words, the anomaly term is equal to the number of positive chirality
zero-modes minus the number of negative chirality zero-modes. This is the
Atiyah-Singer index theorem.

Yet another point to notice is that computation of the Jacobian factor
gives the anomaly term in any even space-time dimensions. Number of factors
of [γμ, γν ]Gμν that we pull down depends on dimensionality of space-time or
equivalently on the definition of γ5. It is also easy to see that in two dimensions
non-ablelian gauge theory cannot have anomaly because TrGμν = 0.

Let us now consider a theory with parity violating gauge couplings. The
Lagrangian density is

L = ψ̄L(x)iD/ψL(x)− 1

4
Ga

μνG
aμν , (4.201)

where ψL = (1− γ5)ψ/2, ψL belongs to representation N of SU(N). Using the
fact that γ5φn(x) has eigenvalue −λn if φn has eigenvalue λn, we can decompose
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the eigenvectors into left and right chirality modes as

φnL(x) =
1− γ5√

2
φn(x), for λn > 0 (4.202)

=
1− γ5

2
φn(x) for λn = 0 (4.203)

φnR(x) =
1 + γ5√

2
φn(x), for λn > 0 (4.204)

=
1 + γ5

2
φn(x) for λn = 0. (4.205)

Using these modes we can decompose the chiral fermion as

ψL(x) =
∑
λn≥0

anφnL(x) (4.206)

ψR(x) =
∑
λn≥0

b̄nφ
†
nR(x). (4.207)

Under global U(1) chiral transformation,

ψL(x) → e−iα(x)ψL(x) (4.208)

ψ̄L(x) → ψ̄L(x)e
iα(x), (4.209)

where we have kept α to be x dependent only to carry out the Noether pre-
scription. The change in the Lagrangian density due to this transformation
is

L → L+ ∂μαψ̄Lγ
μψL. (4.210)

The integration measure also changes under this transformation. It is now easy
to see that the Jacobian factor is

exp

⎛⎝i

∫
d4xα(x)

∑
λn≥0

[φ†
nL(x)φnL(x)− φ†

nR(x)φnR(x)]

⎞⎠
= exp

(
−i

∫
d4xα(x)

∑
λn

φ†
n(x)γ5φn(x)

)

= exp

(
−i

∫
d4xα(x)A(x)

)
. (4.211)

This phase factor is half of the factor obtained with the Dirac fermion. If we
define the current

Jμ
L = ψ̄Lγ

μψL, (4.212)
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then

∂μJ
μ
L = − i

16π2
TrGμνG̃

μν . (4.213)

It is now trivial to extend this result by replacing abelian chiral transformation
by non-abelian chiral transformations. Consider a chiral transformation,

ψL(x) → exp(−iαa(x)T a)ψL(x), (4.214)

where, T a are generators of the gauge group G. The classically conserved cur-
rent in this case is

Ja
μ(x) = ψ̄L(x)γμT

aψL(x). (4.215)

Since the generator T a does not affect our computation except for contributing
to group theory trace, it is easy to write down the anomaly factor

Aa(x) =
∑
n

φ†
n(x)γ5T

aφn(x) =
1

2

( −1

8π2

)
Tr(T aGμνG̃

μν). (4.216)

Due to Bose symmetry of gauge bosons the anomaly factor can be written as

Aa(x) =
1

4

( −1

8π2

)
Gb

μνG̃
dμνTr(T a{T b, T d}). (4.217)

This is called the gauge anomaly. It is now easy to see that this anomaly
vanishes for SU(2) gauge theory. For SU(2) theory

{T b, T d} = 2δbd ⇒ Tr(T a{T b, T d}) = Tr(T a) = 0. (4.218)

Let us now look at the Standard Model of particle physics. This model
is based on a gauge theory with gauge group SU(3)c ⊗ SU(2)L ⊗ U(1)Y . Of
these SU(3)c is not a chiral gauge theory and hence is free from anomalies.
SU(2)L ⊗ U(1)Y theory can be potentially anomalous.

However, we will see that for the anomaly to cancel we will get constraints
on the matter content of the theory. Let us look at the fermionic matter content
of the Standard Model and their quantum numbers.

• Quarks (
u
d

)Y=1/3

L

,

(
c
s

)Y=1/3

L

,

(
t
b

)Y=1/3

L

(4.219)

uR(Y = 4/3), dR(Y = −2/3), cR(Y = 4/3),

sR(Y = −2/3), tR(Y = 4/3), bR(Y = −2/3). (4.220)
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• Leptons (
νe
e

)Y=−1

L

,

(
νμ
μ

)Y=−1

L

,

(
ντ
τ

)Y=−1

L

(4.221)

eR(Y = −2), μR(Y = −2), τR(Y = −2). (4.222)

Let us look at only one generation of leptons and one generation of quarks.
Result obtained in this case generalize naturally to three generations. We will
see that the Standard Model anomalies cancel in each generation provided
quarks come in three colours. Potentially anomalous traces in the Standard
Model are

Tr(Y 3), andTr({T a, T b}Y ), (4.223)

where, T a are generators of SU(2)L and Y is a generator of U(1)Y . There
are two more traces but they do not contribute due to tracelessness of SU(2)
generators and the fact that every member of SU(2)L multiplet has same Y
quantum numbers. Let us now concentrate on Tr({T a, T b}Y ) term. Due to the
fact that for SU(2) group {T a, T b} = 2δab, we get

Tr({T a, T b}Y ) = 2δabTr(Y ). (4.224)

It is now easy to see that hypercharges of u, d quarks when added up give
Yq = −Yl/3, where Yq is the total hypercharge of quarks in one generation and
Yl is the total hypercharge of leptons in one generation.

Yq =
1

3
+

1

3
+

4

3
+

−2

3
=

4

3
(4.225)

Yl = −1− 1− 2 = −4. (4.226)

Thus hypercharge anomaly cancels if quarks come in three colours. That is

3Yq + Yl = 0. (4.227)

Let us now look at Tr(Y Y Y ) anomaly. First of all notice that hypercharge gauge
field Bμ(x) does not couple hypercharged matter through vector coupling. For
example, coupling of Bμ(x) to left handed electron is different from coupling
to right handed electron.

DμeL =

(
∂μ + i

g′

2
Bμ

)
eL (4.228)

DμeR = (∂μ + ig′Bμ)eR. (4.229)
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We will split this interaction into vector and chiral coupling. We will choose the
vector coupling in such a way that chiral coupling involves only right handed
fields. Of course, this is purely a matter of choice. It is always possible to adjust
vector coupling so that chiral coupling are purely left handed. The latter choice
is more physical as we will see below.

For anomaly computation, this splitting means we can write Y = YV +YR.
Let us do this assignment for the first fermion generation.

Y q
V : Y u

V =
1

3
, Y d

V =
1

3
; Y l

V : Y ν
V = −1, Y e

V = −1 (4.230)

Y q
R : Y u

R = 1, Y d
R = −1; Y l

R : Y ν
R = 1, Y e

R = −1. (4.231)

Substituting this in pure hypercharge anomaly term gives

Tr(Y Y Y ) = Tr ((YV + YR)(YV + YR)(YV + YR))

= Tr(YV YV YV ) + 3(Tr(YV Y
2
R)

+Tr(Y 2
V YR)) + Tr(Y 3

R). (4.232)

However, we know that the triangle diagram with three vector current insertions
is not anomalous. We are thus left with

Tr(Y Y Y ) = 3(Tr(YV Y
2
R) + Tr(Y 2

V YR)) + Tr(Y 3
R). (4.233)

It is trivial to see that Tr(Y 3
R) cancels within quark generation ans lepton

generation separately. However, the term (Tr(YV Y
2
R + YRY

2
V )) cancel between

a quark generation and a lepton generation provided there are three coloured
quarks.

Tr(YV Y
2
R + YRY

2
V )q =

(
1

9
− 1

9
+

1

3
+

1

3

)
=

2

3
(4.234)

Tr(YV Y
2
R + YRY

2
V )l = −1− 1 = −2 (4.235)

3Tr(YV Y
2
R + YRY

2
V )q + Tr(YV Y

2
R + YRY

2
V )l = 0. (4.236)

Let us now look at the Standard Model anomaly cancellation from low
energy point of view. This would be a check of ’t Hooft’s anomaly matching
condition. At low energy we are left with the quantum electrodynamics. This
theory has only vector coupling and we know that a theory with vector coupling
does not have gauge anomalies. This may seem like a trivial result but if er
demand ’t Hooft’s anomaly matching condition and turn the argument on its
head, we would say that the theory defined in the ultraviolet limit better be an
anomaly free theory because QED is free from gauge anomalies.
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Although it is trivial to see that the infrared theory is anomaly free, it is
still instructive to see how that affects the anomaly cancellation in the Standard
Model. To do this we will split the hypercharge gauge coupling into vector
coupling and left handed coupling. This is a familiar decomposition. This tells
is how electric charge is related to the third component of SU(2)L generator
and the hypercharge.

Q = T3 +
Y

2
⇒ Y = 2(Q− T3). (4.237)

Since T3 is a purely left handed charge and Q is purely vector charge, this gives
us the desired decomposition of the hypercharge. With this decomposition,
the Standard Model anomaly cancellation is the statement that if quarks have
three colours then the Standard Model fermionic matter is ‘electrically neutral’
in each generation, i.e., the sum of electric charges of all fermions in a given
generation vanishes. To see the relation between these two statements, let us
proceed with the analysis of the gauge anomalies.

The first kind of term is Tr(Y ) = 2Tr(Q− T3) = 2Tr(Q). Total charge in
the quark sector (u, d) = 1/3 and total charge in the lepton sector (νe, e) = −1.
This implies Tr(Q) = 0 only if quarks come in three colours.

The second type of anomaly is Tr(Y 3).

Tr(Y 3) = 2Tr(Q3 − 3Q2T3 + 3QT 2
3 − T 3

3 ). (4.238)

Of these terms we already know that Tr(Q3) = 0 because the vector coupling
is not anomalous. We also know that Tr(T 3

3 ) = 0 due to the tracelessness of
odd powers of T3. Thus we are left with

Tr(Y 3) = −24Tr(QT3(Q− T3)) = −12Tr(QT3Y ). (4.239)

Now using the fact that Q = T2 + Y/2, we can write

Tr(Y 3) = −12Tr(T 2
3 Y )− 6Tr(T3Y

2). (4.240)

The second term in eq.(4.240) vanishes because T3 is traceless and that the
hypercharge of all the members of a given SU(2)L multiplet is same. Thus we
are reduced only to one term and since T 2

3 = 12×2,

Tr(Y 3) = −12Tr(Y ) = −12Tr(2(Q− T3))

= −24Tr(Q) = 0. (4.241)

Thus we have seen that the Standard Model anomaly cancellation means that
the fermionic matter of the Standard Model is ‘electrically neutral’ when all
charges of the fermions is a given generation are added up.
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5

Cosmology for Particle

Physicists

Urjit Yajnik

5.1 Introduction

Over the past two decades Cosmology has increasingly become a precision sci-
ence. That the Universe is expanding was an astonishing discovery. Now we
know its details to unprecedented precision. An expanding Universe also im-
plied an extremely compact state in the past, and therefore very high tempera-
ture. The Particle Physics forces which can now be explored only in accelerator
laboratories were in free play in the remote past. Thus the observation of the
oldest remnants in the Universe amounts to looking at the results of a Particle
Physics experiment under natural conditions.

In these notes we present a selection of topics, each section approximately
amounting to one lecture. We begin with a brief recapitulation of General Rela-
tivity, and the Standard Model of Cosmology. The study of Cosmology requires
General Relativity to be applied only under a highly symmetric situation and
therefore it is possible to recast the essentials as Three Laws of Cosmology. The
study of very early Universe brings us squarely into the domain of Quantized
Field Theory at given temperature. Intermediate metastable phases through
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which the Universe passed require an understanding of the effective potential
of the field theory in a thermal equilibrium. This formalism is developed in
some detail. The important topic of Dark Energy could not be included within
the limitations of this course. The reader can refer to some of the excellent
reviews cited at the end or await the next avatara of these notes.

The remainder of the notes discuss important signatures of the remote
past. These include : (i) inflation, (ii) density perturbations leading to galaxy
formation, (iii) study of hot and cold relics decoupled from the remaining con-
stituents, some of which can be candidates for Dark Matter, (iv) finally the
baryon asymmetry of the Universe. As we shall see each of these has a strong
bearing on Particle Physics and is being subjected to ever more precise obser-
vations.

5.1.1 General Theory of Relativity: A recap

Special Theory of Relativity captures the kinematics of space-time observa-
tions. On the other hand, General Theory of Relativity is a dynamical theory,
which extends the Newtonian law of gravity to make it consistent with Special
Relativity. In this sense it is not a “generalization” of Relativity but rather, a
theory of Gravity on par with Maxwell’s theory of Electromagnetism. It is nev-
ertheless a very special kind of theory because of the Principle of Equivalence.
The equivalence of gravitational and inertial masses ensures that in a given
gravitational field, all test particles would follow a trajectory decided only by
their initial velocities, regardless of their mass. This makes it possible to think
of the resulting trajectory as a property of the spacetime itself. This was the
motivation for introducing methods of Differential Geometry, the mathematics
of curved spaces for the description of Gravity. Due to this “grand unification”
of space and time into a dynamically varying set we shall use the convention of
writing the word spacetime without hyphenation as adopted in ref. [1].

Throughout these notes we use the convention � = c = 1 and the sign
convention ds2 = dt2 − |dx|2 for the spacetime interval in Special Relativity.
The principle of General Covariance states that a given gravitational field is
described by a metric tensor gμν a function of spacetime variables collectively
written as xμ ≡ x, t. Gravity modifies the spacetime interval to the general
quadratic form gμνdx

μdxν , where the summation convention on same indices
is assumed. The trajectories of test particles are simply the shortest possible
paths in this spacetime, determined by the metric tensor through the geodesic
equation

d2xμ

dτ2
+ Γμ

νρ

dxν

dτ

dxρ

dτ
= 0
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where the Christoffel symbols Γμ
νρ are given by

Γμ
νρ =

1

2
gμλ

(
∂gνλ
∂xρ

− ∂gνρ
∂xλ

+
∂gρλ
∂xν

)
These symbols are not tensors but determine the covariant derivative much the
same way that the electromagnetic potentials which are themselves not gauge
invariant determine the minimal coupling of charged particles to electromag-
netic fields.

The equations which determine the gravitational field, i.e., the tensor gμν
itself are the Einstein Equations,

Gμν − Λgμν ≡ Rμν − 1

2
gμνR− Λgμν = 8πGTμν

where Tμν is the energy momentum tensor and the Ricci tensor Rμν and the
scalar curvature R are the contracted forms of the fourth rank tensor the Rie-
mann curvature, given by

Rμ
ναβ = ∂αΓ

μ
νβ − ∂βΓ

μ
να + Γμ

σαΓ
σ
νβ − Γμ

σβΓ
σ
να

Rμν = Rλ
μλν

R = gμνRμν

The tensor Gμν is called the Einstein tensor and has the elegant property
that its covariant derivative vanishes. The last term on the left hand side is
called the Cosmological term since its effects are not seen on any small scale,
even galactic scales. It can be consistently introduced into the equations pro-
vided Λ is a constant. Since the covariant derivative Dρgμν = 0, the covariant
derivative of this term also vanishes. This fact is matched on the right hand
side of Einstein’s equation by the vanishing of the covariant derivative of the
energy-momentum tensor. The vanishing of the Einstein tensor follows from
the Bianchi identities in Differential Geometry. The geometric significance of
the identities is that given a spacetime domain, they express the statement“the
boundary of a boundary is zero”. We leave it to the reader to pursue ref [1]
to understand its details. Thus a geometric principle implies the covariant con-
servation of energy-momentum tensor, a physical quantity. But it has to be
noted that covariant conservation does not imply a conserved charge the way
it happens in flat spacetime with divergence of a four-vector. But if there are
3-dimensional regions on whose 2-dimensional boundaries gravity is very weak,
it does imply conservation of total mass-energy in the given volume.

There are quite a few subtleties concerning the implications of General
Relativity and the conditions under which it supercedes Newtonian gravity.
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We present here a few “True or False” statements for the reader to think over
and discuss with peers or teachers. Starting points to answers are given in
Appendix, sec. 5.11.

True or False

1. Curved spacetime is a necessity of GR due to the underlying Special Rel-
ativity principle.

2. The invariance of the equations of physics under arbitrary reparameteri-
sation of spacetime is the essential new content of GR.

3. The notion of energy density becomes meaningless in GR

4. The notion of total energy becomes meaningless in GR

5. Points where some of the metric coefficients vanish are unphysical

6. Points where some of the metric coefficients diverge are unphysical

7. Points where any components of curvature tensor diverge are unphysical

8. Newtonian gravity is insufficient to describe an expanding Universe and
GR is required.

5.1.2 The Standard Model of Cosmology

Here we summarise the broadest features of our current understanding of the
Universe based on a vast variety of data and modeling. We summarise size, age
and contents of the Universe as follows

• There is a strong indication that the Universe is homogeneous and
isotropic if we probe it at sufficiently large scales, such as the scale of
clusters of galaxies. The typical scale size is 10 Megaparsec (Mpc) and
larger. At the scale of several tens of Mpc the distribution of galaxies is
homogeneous.

It is at present not known whether the Universe is finite in size or
infinite. A finite Universe would be curved as a three dimensional manifold.
An infinite universe could also show curvature. At present we do not see
any signs of such curvature.

• Secondly we believe that the Universe has been expanding monotonically
for a finite time in the past. This gives a finite age of about 13.7 billion
years to our Universe.

What was “before” this time is not possible to understand within
the framework of classical General Relativity. But Newton’s gravitational
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constant suggests a fundamental mass scale, called the Planck scale MPl =
G−1/2 ≈ 1.2 × 1019GeV and corresponding extremely small time scale,
10−44 sec. We expect that Quantum theory of Gravity should take over
at that scale. Unfortunately that theory has not yet been worked out due
to insufficient data.

• Finally it has been possible to map the current contents of the Universe
to a reasonable accuracy. More about them below. The contents of the
Universe can be divided into three types,

1. Radiation and matter as known in Particle Physics

2. Dark Matter, one or more species of particles, at least one of which
is necessarily non-relativistic and contributing significantly to the
total energy density of the Universe today. These particles have no
Standard Model interactions.

3. Dark Energy, the largest contributor to the energy density balance
of the present Universe, a form of energy which does not seem to fit
any known conventional fields or particles. It could be the discovery
of a non-zero cosmological constant. But if more precise observations
show its contribution to be changing with time, it can be modelled
as a relativistic continuum which possesses negative pressure.

Of the contents of type 1, there are approximately 400 photons per cc and
10−7 protons per cc on the average. Compared to Avogadro number available on
earth, this is a very sparse Universe. Of these the major contributor to energy
density is baryonic matter. This constitutes stars, galaxies and large Hydrogen
clouds out of which more galaxies and stars are continuously in formation. The
other component is the Cosmic Microwave Background Radiation (CMBR), the
gas of photons left over after neutral Hydrogen first formed. Its contribution
to total energy density is relatively insignificant. But its precision study by
experiments such as the Wilkinson Microwave Anisotropy Probe (WMAP) and
the Planck space mission is providing us with a very detailed information of
how these photons have been created and what are the ingredients they have
encountered on their way from their origin to our probes.

There probably are other exotic forms of energy-matter not yet discovered.
Two principle candidates are topological defects such as cosmic strings, and the
axion. We shall not be able to discuss these here. Axions are almost a part of
Standard Model though very weakly interacting, and could potentially be Dark
Matter candidates.

Aside from these current parameters of the Universe there is a reason to
believe that the Universe passed through one or more critical phases before
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arriving at the vast size and great age it presently has. This critical phase in its
development is called Inflation. It is expected to have occurred in remote past
at extremely high energies, perhaps in the Planck era itself. What is interesting
is that the fluctuations in energy density which finally became galaxies could
have originated as quantum effects during that era. Thus we would be staring
at the results of quantum physics in the very early Universe whenever we see
galaxies in the sky.

A quantitative summary of present observables of the Universe is given at
the end of Sec. 5.3.

5.1.3 The Standard Model of Particle Physics

We assume that the reader is familiar with the Standard Model of Particle
Physics. Appendix B of “The Early Universe” by Kolb and Turner (hereafter
referred to as Kolb and Turner) contains a review. Cosmology has a dual role
to play in our understanding of the fundamental forces. It is presenting us
with the need to make further extensions of the Standard Model and is also
providing evidence to complete our picture of Particle Physics. For example
whether Dark Matter emerges from an extension of the Standard Model is a
challenge to model building. On the other hand axions expected from QCD
may perhaps get verified in Astroparticle physics experiments and may have
played a significant role in the history of the Cosmos.

Study of Cosmology also sharpens some of the long recognized problems
and provides fresh perspectives and fresh challenges. Symmetry breaking by
Higgs mechanism in Standard Model (and its extensions the Grand Unified
models) causes hierarchy problem. But it also implies a cosmological constant
far larger than observed. We hope that the two problems have a common solu-
tion. Despite the conceptual problems with the QFT of scalar fields, inflation is
best modeled by a scalar field. Similarly, consider Dark Energy which is almost
like a cosmological constant of a much smaller value than Particle Physics scales.
This has finally been confirmed over the past decade. Again many models seem
to rely on unusual dynamics of a scalar field to explain this phenomena. We
hope that supersymmetry or superstring theory will provide natural candidates
for such scalar fields without the attendant QFT problems.

5.2 Friedmann-Robertson-Walker Metrics

Cosmology began to emerge as a science after the construction of reflection
telescopes of 100 to 200 inch diameter in the USA at the turn of 1900. When
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Doppler shifts of Hydrogen lines of about twenty nearby galaxies could be
measured it was observed that they were almost all redshifts. Edwin Hubble
proposed a linear law relating redshift and distance. Then the data could be
understood as a universal expansion. Over the last 75 years this fact has been
further sharpened, with more than 10 million galaxies observed and cataloged.

It is reasonable to believe that we are not in a particularly special galaxy.
So it is reasonable to assume that the expansion is uniform, i.e. observer on
any other galaxy would also see all galaxies receding from him or her at the
same rate. This reasoning allows us to construct a simple solution to Einstein’s
equations. We assume that the Universe corresponds to a solution in which aside
from the overall expansion as a function of time, the spacetime is homogeneous
and isotropic. This would of course be true only for the class of observers who
are drifting along with the galaxies in a systematic expansion. (An intergalactic
spaceship moving at a high speed would see the galactic distribution quite
differently). We characterize this coordinate system as one in which (1) there
is a preferred time coordinate1 such that at a given instant of this time, (2) the
distribution of galaxies is homogeneous and isotropic.

It should be noted that this is a statement about the symmetry of the
sought after solution of the Einstein equations. The symmetries restrict the
boundary conditions under which the equations are to be solved and in this
way condition the answer. In older literature the existence of such symmetries
of the observed Universe was referred to as Cosmological Principle, asserted in
the absence of any substantial data. Over the years with accumulation of data
we realize that it is not a principle of physics, but a useful model suggested by
observations, similar to the assumption that the earth is a spheroid.

The assumptions of homogeneity and isotropy made above are very strong
and we have a very simple class of metric tensors left as possible solutions. They
can be characterized by spacetime interval of the form

ds2 = dt2 −R2(t)

{
dr2

1− kr2
+ r2dθ2 + r2 sin2 θdφ2

}
The only dynamical degree of freedom left is the scale factor R(t). Further, there
are three possibilities distinguished by whether the spacelike hypersurface at
a given time is flat and infinite (Newtonian idea), or compact like a ball of
dimension 3 with a given curvature, (generalization of the 2 dimensional shell

1This time coordinate is not unique. We can define a new time coordinate t̃(t) as an

arbitrary smooth function of the old time coordinate t. What is unique is that a time axis is

singled out from the spacetime continuum. What units, (including time dependent ones), we

use to measure the time is arbitrary.
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of a sphere in usual 3 dimensional Euclidean space), or unbounded and with
constant negative curvature, a possibility more difficult to visualize. These three
possibilities correspond to the parameter k = 0, or k = +1, or k = −1. The
cases k = −1 and k = 1 also have representations which make their geometry
more explicit

ds2 =

⎧⎨⎩ dt2 −R2(t)
{
dχ2 + sin2 χ

(
dθ2 + sin2 θdφ2

)}
k = 1

dt2 −R2(t)
{
dχ2 + sinh2 χ

(
dθ2 + sin2 θdφ2

)}
k = −1

The time coordinate t we have used above is a particular choice and is
called comoving time. An alternative time coordinate η is given by

dη =
dt

R(t)

ds2 = R2(η)

{
dη2 − dr2

1− kr2
− dr2 − r2 sin2 θdφ2

}
Its advantage is that for k = 0 it makes the metric conformally equivalent to
flat (Minkowski) space.

5.2.1 Cosmological Redshift

In this and the next subsection we identify the precise definitions of redshift
and cosmological distances to understand Hubble Law in its general form.

The observed redshift of light is similar to Doppler shift, but we would
like to think that it arises because spacetime itself is changing and not due to
relative motion in a conventional sense. In other words, in cosmological context
the redshift should be understood as arising from the fact that time elapses
at a different rate at the epoch of emission t1 from that at the epoch t0 of
observation. Since light follows a geodesic obeying ds2 = 0, it is possible for us
to define the quantity f(r1) which is a dimensionless measure of the separation
between emission point r = 0 and the observation point r = r1

f (r1) ≡
∫ r1

0

dr

(1− kr2)
1/2

=

∫ t0

t1

dt

R(t)

where the second equality uses ds2 = 0. Now the same f(r1) is valid for a light
signal emitted a little later at t = t1+ δt1 and received at a corresponding later
time t0 + δt0.

f (r1) =

∫ t0+δt0

t1+δt1

dt

R(t)
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Equivalently, ∫ t1+δt1

t1

dt

R
=

∫ t0+δt0

t0

dt

R(t)

δt1
R (t1)

=
δt0

R (t0)

or

ν0
ν1

=
δt1
δt0

=
λ1

λ0
=

R (t1)

R (t0)

It is convenient to define the redshift z, originally so defined because it would
always be small, as given by

1 + z ≡ λ0

λ1
=

R (t0)

R (t1)

5.2.2 Luminosity Distance

Defining a measure of spacelike distances is tricky in Cosmology because phys-
ical separations between comoving objects are not static and therefore lack
an operational meaning. Since distances are measured effectively by observing
light received, we define luminosity distance dL by

d2L =
L

4πF

where L is the absolute luminosity and F is the observed flux. If the metric were
frozen to its value at time t0 this would have been the same as in flat space,
R(t0)

2r21 with r1 the coordinate distance travelled by light.Due to expansion
effects, we need additional factors of 1 + z, once for reduction in energy due to
redshift and once due to delay in the observation of the signal

d2L = R2 (t0) r
2
1 (1 + z)

2

We now introduce measures H0 for the first derivative, representing the Hubble
parameter and a dimesionless measure q0 for the second derivative, traditionally
deceleration, by expanding the scale factor as

R(t)

R (t0)
= 1 +H0 (t− t0)− 1

2
q0H

2
0 (t− t0)

2
+ ....

H0 ≡ Ṙ (t0)

R (t0)
q0 ≡ − R̈ (t0)

Ṙ2 (t0)
R (t0) =

−R̈

RH2
0
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Therefore

z = H0 (t0 − t) +
(
1 +

q0
2

)
H2

0 (t0 − t)
2
+ ...

so that

(t0 − t) = H−1
0

(
Z −

(
1 +

q0
2

)
Z2 + ...

)
We now use the quantity f(r) introduced in the discussion of redshift of light,
which for the three different geometries works out to be

f (r1) =

⎧⎨⎩ sin−1 r1 = r1 +
|r|3
6

r1
sinh−1 = − 1

6

Therefore

r1 =
1

R (t0)

[
(t0 − t1) +

1

2
H0 (t0 − t1)

2
+ ...

]
Substitute (t0 − t1)

r1 =
1

R (t0)H0

[
z − 1

2
(1 + q0) z

2 + ...

]
H0dL = z +

1

2
(1− q0) z

2 + ...

The last relation expresses the connection between observed luminosity of dis-
tance dL of galaxies and their redshift z, incorporating the curvature effects
arising from the expansion of the Universe. Extensive data on dL and z gath-
ered from galaxy surveys such as 2-degree Field Galactic Redshift Survey (2dF
GRS) and 6dF GRS can be fitted with this equation to determine cosmological
parameters H0 and q0.

5.3 The Three Laws of Cosmology

It is possible to discuss the cosmological solution without recourse to the full
Einstein equations. After all a comprehensive framework like electromagnetism
was discovered only as a synthesis of a variety of laws applicable to specific
situations. Specifically, Coulomb’s law is most useful for static pointlike charges.
Similarly, given that the Universe has a highly symmetric distribution of matter,
allows us to express the physics as three laws applicable to Cosmology, these
being
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1. Evolution of the scale factor : The evolution of R(t) introduced above is
governed by (

Ṙ

R

)2

+
k

R2
− Λ

3
=

8π

3
Gρ

2. Generalized thermodynamic relation : The energy-matter source of the
gravitational field obeys generalization of the first law of thermodynamics
dU = −pdV ,

d

dt

(
ρR3

)
+ p

d

dt

(
R3

)
= 0

To put this to use we need the equation of state p = p(ρ). For most
purposes it boils down to a relation

p = wρ

with w a constant.

3. Entropy is conserved : (except at critical thresholds)

d

dt
(S) =

d

dt

(
R3

T
(ρ+ p)

)
= 0

The law 2 can be used to solve for ρ as a function of R with w a given
parameter. Then this ρ can be substituted in law 1 to solve for R(t) the cos-
mological scale factor.

As for Law 3, in the cosmological context we speak of entropy density s.
Thus the above law applies to the combination sR3. Further, non-relativistic
matter does not contribute significantly to entropy while for radiation s ∝ T 3.
Hence we get the rule of thumb

S = sR3 ∝ T (t)3R(t)3 = constant

Thus Law 3 provides the relation of the temperature and the scale factor.
However, critical threshold events are expected to have occured in the early
Universe, due to processes going out of equilibrium or due to phase transitions.
The constant on the right hand side of R(t)T (t) equation has to be then re-set
by calculating the entropy produced in such events.

This formulation is sufficient for studying most of Cosmology. However if
we are familiar with Einstein’s theory the above laws can be derived systemat-
ically. We need to calculate the Einstein tensor. The components of the Ricci
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tensor and the scalar curvature R in terms of the scale factor R(t) are

R00 = −3
R̈

R

Rij = −6

(
R̈

R
+

Ṙ2

R2
+

k

R2

)
gij

R = −6

⎛⎝ R̈

R
+

(
Ṙ

R

)2

+
k

R2

⎞⎠
The resulting Einstein equations contain only two non-trivial equations, the
G00 component and the Gii component where i = 1, 2, 3 is any of the space
components.

00 :

(
Ṙ

R

)2

+
k

R2
=

8π

3
Gρ

ii : 2
R̈

R
+

(
Ṙ

R

)2

+
k

R2
= −8πGp

It turns out that the ii equation can be obtained by differentiating the 00
equation and using the thermodynamic relation

d
(
ρR3

)
= −pd

(
R3

)
Hence we only state the second law rather than the ii equation.

5.3.1 Example: Friedmann Universe

An early model due to A. A. Friedmann (1922) considers a k = 1 universe with
pressureless dust, i.e., p = 0 and with Λ = 0. Then according to Law 2,

d

dt

(
ρR3

)
= 0

Now let t1 be a reference time so that for any other time t, ρ(t)R3(t) =
ρ(t1)R

3(t1) Then according to Law 1,

1

R2

(
dR

dt

)2

+
k

R2
=

8π

3
Gρ1

R3
1

R3
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which implies

Ṙ2 − Rmax

R
= −1

where

Rmax ≡ 8π

3
Gρ1R

3
1

This equation is first order in time, but non-linear. It can be solved by express-
ing both t and R in terms of another parameter η. The solution is

R(η) =
1

2
Rmax(1− cos η) t(η) =

1

2
Rmax(η − sin η)

It results in a shape called cycloid. The first order equation thus solved can
also be thought of as a particle in potential V (x) = −xmax

x with total energy −1.

Exercise: (Friedmann 1924) Solve for the scale factor of a Λ = 0 universe with
pressureless dust but with negative constant curvature, i.e., k = −1.

5.3.2 Parameters of the Universe

We now summarise the observable parameters of the Universe as available from
several different data sets. But first we introduce some standard conventions.
First we rewrite the first law including the cosmological constant,

H2 +
k

R2
− Λ

3
=

8πG

3
ρ

Suppose have a way of measuring each of the individual terms in the above
equation. Then with all values plugged in, the left hand side must balance the
right hand side. Our knowledge of the Hubble constant H0 is considerably more
accurate than our knowledge of the average energy density of the Universe. We
express the various contributions in the above equation as fractions of the
contribution of the Hubble term. This can of course be done at any epoch.
Thus, dividing out by H2,

1 +
k

H2R2
= ΩΛ +Ωρ

where we define the fractions

ΩΛ =
Λ

3H2
Ωρ =

8πGρ

3H2
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In detail, due to several different identifiable contributions to ρ from baryons,
photons and Dark Matter, we identify individual constributions again as frac-
tions of the corresponding Hubble term as Ωb, Ωγ , and ΩDM respectively. Either
the sum of the various Ω’s must add up to unity or the k �= 0. In table 5.1 we
list the current values of the parameters.

Age t0 13.7± 0.2G. yr,

Hubble constant H0 h× 100km/s/Mpc

Parameter h 0.71 or 0.73

TCMB 2.725× 106μK

Ω 1.02± 0.02

Ωall matterh
2 0.120to0.135

Ωbh
2 0.022

ΩΛ 0.72± 0.04,

w (≡ p/ρ) −0.97± 0.08

Table 5.1: Parameters of the Universe

Determination of Hubble constant has several problems of calibration. It
is customary to treat its value as an undetermined factor h times a convenient
value 100 km/s/Mpc which sets the scale of the expansion rate. It is customary
to state many of the parameters with factors of h included since they are
determined conditionally. At present h2 ≈ 1/2. The Dark Energy component
seems to behave almost like a cosmological constant and hence its contribution
is given the subscript Λ.

Ω being close to unity signifies that we seem to have measured all contri-
butions to energy density needed to account for the observed Hubble constant.
The parameter w exactly −1 corresponds to cosmological constant. Current
data are best fitted with this value of w and assumption of cold, i.e., non-
relativistic Dark Matter. This Friedmann model is referred to as the Λ-CDM
model.

5.4 The Big Bang Universe

By its nature as a purely attractive force, gravity does not generically allow
static solutions. Since the Universe is isotropic and homogeneous now it is
reasonable to assume that that is the way it has been for as far back as we can
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extrapolate. Such an extrapolation however will require the Universe to have
passed through phases of extremely high densities and pressures, phases where
various microscopic forces become unscreened long range forces, again subject
to overall homogeneity and isotropy of the medium. This is the essential picture
of a Big Bang Universe, extrapolated as far back as the Quantum Gravity era
about which we can not say much at the present state of knowledge. However the
intervening epochs encode into the medium important imprints of the possible
High Energy forces that may have been operative. Thus the early Universe is
an interesting laboratory for Elementary Particle Physics.

5.4.1 Thermodynamic Relations

For a massless single relativistic species at temperature T the energy density ρ
and number density n are given by

ρ =
π2

30
gT 4 for bosons . . .× 7

8
for fermions

n =
ξ(3)

π2
gT 3 for bosons . . .× 3

4
for fermions

where g is the spin degeneracy factor. In the early Universe, a particle species
with mass much less than the ambient temperature behaves just like a rela-
tivistic particle2. More generally, we introduce an effective degeneracy g∗ for a
relativistic gas which is a mixture of various species,

ρrelat =
π2

30
g∗T 4 ≡ 3prelat

g∗ =
∑
i

gi

(
Ti

T

)4

+
7

8

∑
j

gj

(
Tj

T

)4

Bose Fermi

species species

2Massless vector bosons have one degree of freedom less than massive vector bosons. So

this has to be accounted for in some way. In the Standard Model of Particle Physics, masses

arise from spontaneous symmetry breaking which disappears at sufficiently high temperature

and the longitudinal vector boson degree of freedom is recovered as additional scalar modes

of the Higgs at high temperature.
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As T continues to drop species with rest masses mi � T become nonrelativistic
and stop contributing to the above. For such species,

ρnon−relat.
i = mini

=
mi

(
ni (t1)R

3 (t1)
)

R3(t)

pnon−relat
i = 0 → “dust”

5.4.2 Isentropic Expansion

We assume particle physics time scales to remain far shorter than expansion
time scale H(t)−1. Thus we have approximate equilibrium throughout and we
have been using equilibrium thermodynamics. Specifically entropy is conserved.
While the usual term for such a system is adiabatic, the term in the sense of
being isolated from “other” systems does not apply to the Universe and we
shall refer directly to fact that entropy is conserved. With no other system
with which to exchange energy, it can be shown for the primordial contents of
the Universe, that (Kolb and Turner, Section 3.4)

d

[
(ρ+ p)V

T

]
= 0 = dS

we define s ≡ S
V = ρ+p

T which is dominated by contribution of relativistic
particles

s =
2π2

45
g∗sT 3

with

g∗s =
∑
i

gi

(
Ti

T

)3

+
7

8

∑
j

gj

(
Tj

T

)3

Bose Fermi

Note that this is a different definition of the effective number of degrees of
freedom than in the case of energy density ρ.

5.4.3 Temperature Thresholds

While the conditions of approximate equilibrium and isentropic expansion
hold for the most part, crucial energy thresholds in microphysics alter the
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conditions in the early Universe from time to time and leave behind im-
prints of these important epochs. Based on the scales of energy involved, we
present here a short list of important epochs in the history of the early Universe

T Relevant species g∗

T � MeV 3ν’s; photon (γ) 3.36 (see
reason below)

1 MeV to 100 MeV 3ν’s; γ; e+e− 10.75

≥ 300 GeV 8 gluons, 4 electroweak gauge
bosons; quarks & leptons (3 gen-
erations), Higgs doublet

106.75

Above 300 GeV scale, no known particles are non-relativistic, and we have
the relations

H = 1.66g
1/2
∗

T 2

MPl

t = 0.30l g
1/2
∗

MPl

T 2
∼
(

T

MeV

)−2

sec

where

G =
1

(MPl)
2 =

1

(1.2211× 1019GeV )
2

5.4.4 Photon Decoupling and recombination

We now see in greater detail how one can learn about such thresholds, with the
example of photons. As the primordial medium cools, at some epoch, neutral
hydrogen forms and photons undergo only elastic (Thomson) scattering from
that point onwards. Finally photons decouple from matter when their mean
free path grows larger than Hubble distance H−1.

Γγ = neσT < H

Here σT = 6.65 × 10−25cm2 is the Thomson cross-section. (Verify that in eV

units, σT = 1.6 × 10−4(MeV)
−2

.) Note that we should distinguish this event
from the process of “recombination”, which is the formation of neutral Hydor-
gen. In this case the competition is between cross section for ionisation and
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the expansion rate of the Universe. By contrast the above relation determines
the epoch of decoupling of photons, also sometimes called “the surface of last
scattering”. Thus the process of recombination ends with residual ionisation
which is the ne required above to determine decoupling.

Saha Equation for Ionization Fraction

To put above condition to use, we need ne as a function of time or temperature
and thenH at the same epoch. ne should be determined from detailed treatment
of non-equilibrium processes using Boltzmann equations, which we shall take up
later. However, utilizing various conservation laws, we can obtain a relationship
between the physical quantities of interest, as was done by Saha first in the
context of solar corona.

We introduce the number densities nH , np, ne of neutral Hydrogen, pro-
tons and neutrons respectively. The amount of Helium formed is relatively
small, nHe � 0.1np and is ignored. Charge neutrality requires ne = np, and
Baryon number conservation requires nB = nH + np. From approximate ther-
modynamic equilibrium, we expect these densities to be determined by the
Boltzmann law, where i stands for H, p or e:

ni = gi

(
miT

2π

)3/2

exp

(
μi −mi

T

)
with gi degeneracy factors, mi the relevant masses and μi the relevant chemical
potentials respectively. Due to chemical equilibrium,

μH = μe + μp

Thus we can obtain a relation

nH =
gH
gpge

npne

(
meT

2π

)−3/2(
mH

mp

)3/2

exp

(
B

T

)
where B denotes the Hydrogen binding energy, B = mp+me−mH = 13.6 eV .
Finally we focus on the fraction Xe ≡ np

nB
of charged baryons relative to total

baryon number,

1−Xeq
e

(Xeq
e )

2 =
4
√
2√
π
ξ(3)

(
nB

nγ

)(
T

me

)3/2

exp

(
B

T

)
Fig. 5.1 shows variation of Xeq

e as function of the photon temperature T ,
using the value of nB/nγ = 6×10−10 as known from Big Bang Nucleosynthesis
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Figure 5.1: Ionization fraction as a function of photon temperature expressed in eV

calculations and WMAP data. We see that the ionization fraction reduces to
5% when T ≈ 0.29eV≈ 350K. These are our estimates of the ionisation fraction
(set arbitrarily at 5%) and the temperature of the last scattering.

Using this estimate we can now calculate the Hubble parameter in the
inequality which determines decoupling. We assume that the Universe was al-
ready matter dominated by this epoch. Then the scale factor obeys

R(t) =
R0

t
2/3
0

t2/3

where t0 and R0 are a particular epoch and the corresponding scale factor,
chosen here to be the current values signified by subscript 0. Using this we try
to determine the H at decoupling epoch in terms of H0.

Ṙ

R
=

2

3t
=

H

H0
H0 =

(
ρ

ρ0

)1/2

H0 =

(
nB

nB0

)1/2

H0
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Combine this with the relation

ΩB =
ρB0

ρcrit0
=

mpnB0

3H2
0/8πG

where mp is the proton mass. Then the condition for photon decoupling be-
comes

Xeq
e σT <

(
T0

T

)3/2
8π

3
G

mp

ΩBH0

Substituting σT expressed in eV units computed above, and Xeq
e of 5% and the

corresponding temperature found from the graph of Saha formula, we can check
that the temperature of the photons decoupled at that epoch should today be

T0 ∼ (32K)× (ΩB)
2/3

Although very crude, this estimate is pretty close to the order of magnitude of
the temperature of the residual photons today. We have thus traced a possible
way Alpher and Gamow could anticipate the presence of residual radiation from
the Big Bang at approximately such a temeperature.

5.5 Phase Transitions with Quantum Fields in the

Early Universe

We have been considering an expanding Universe, but its expansion rate is so
slow that for most of its history, it is quasi-static as far as Particle Physics
processes are concerned. Under this assumption, we can think of a thermal
equilibrium for substantial periods on the microscopic scale, and build in the
slow evolution of the scale factor as a significant but separate effect.

Quantized fields which are systems of large numbers of degrees of freedom
display different collective behavior, with qualitative changes in ground state as
a function of temperature. The technique for studying the ground state behavior
at non-zero temperature is a modification of the process of calculating Green
functions using path integral method in functional formalism.

5.5.1 Legendre Transform

As a warm up for the method to be used, consider a magnetized spin sys-
tem with spin degrees of freedom s(x) as a function of position, and H the
Hamiltonian of the system. If we want to determine the equilibrium value of
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magnetization, we first introduce an external field H, in the presence of which,
the Helmholtz Free Energy F is given by

Z(H) ≡ e−βF (H) =

∫
Ds exp

(
−β

∫
dx H(s)−Hs(x)

)
where β = 1/T , (same as 1/(kT ) in our units) and Ds denotes functional
integration over s(x). Now the quantity of interest is

M =

∫
dx〈s(x)〉 = 1

β

∂

∂H
log Z = − ∂F

∂H

We now introduce a function of M itself, the Gibbs free energy, through the
Legendre transform

G(M) = F +MH

so that by inverse transform,

H =
∂G

∂M

Now H being an auxiliary field has to be set to zero. Thus the last equation can
be now read as follows. The equilibrium value of M can be found by minimizing
the functionG(M) with respect toM . In other words, for studying the collective
properties of the ground state, G is the more suitable object than H.

5.5.2 Effective Action and Effective Potential

In Quantum Field Theory, a similar formalism can be set up to study the
collective behavior of a bosonic field φ. It is possible in analogy with the above,
to define a functional Γ of an argument suggestively called φcl designating the
c-number or the classical value of the field. Analgous to the external field H
above, an auxiliary external current J(x) is introduced. Then

Z[J ] ≡ e−iE[J] =

∫
Dφ exp

[
i

∫
d4x (L[φ] + jφ)

]
Then we obtain the relations

δE

δJ
= i

δ logZ

δJ(x)
= −〈Ω|φ(x)|Ω〉J
≡ φcl(x)

Therefore, let

Γ [φcl] ≡ −E[J ]−
∫

d4yJ(y)φcl(y)
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so that
δ

δφcl
Γ [φcl] = −J(x)

Thus the quantum system can now be studied by focusing on a classical field φcl,
whose dynamics is determined by minimizing the functional Γ. The auxiliary
current J is set zero at this stage. This is exactly as in classical mechanics,
minimizing the action for finding Euler-Lagrange equations. The functional
Γ is therefore called the effective action. If it can be calculated, it captures
the entire quantum dynamics of the field φ expressed in terms of the classical
function φcl.

Calculating Γ can be an impossible project. A standard simplification is
to demand a highly symmetric solution. If we are looking for the properties
of a physical system which is homogeneous and in its ground state, we need
the collective behavior of φ in a state which is both space and time translation
invariant. In this case φcl(x) → φcl, ∂μφcl = 0 and Γ becomes an ordinary
function (rather than a functional) of φcl. It is now advisable to factor out the
spacetime volume to define

Veff (φcl) = − 1

(V T )
Γ [φcl]

so that the ground state is given by one of the solutions of

∂

∂φcl
Veff (φcl) = 0

In general Veff can have several extrema. The minimum with lowest value of
Veff , if it is unique, characterises the ground state while the other minima
are possible metastable states of the system. A more interesting case arises
when the lowest energy minimum is not unique. In a quantum system with
finite number of degrees of freedom, this would not result in any ambiguity.
The possibility of tunneling between the supposed equivalent vacua determines
a unique ground state – as in the example of ammonia molecule. But in an
infinite dimensional system, such as a field system, we shall see that such tun-
neling becomes prohibitive, and the energetically equivalent vacua can exist
simultaneously as possible ground states.

When we speak of several local minima of Veff and therefore maxima
separating them we are faced with a point of principle. Any function defined as a
Legendre Transform can be shown to be intrinsically convex, i.e., it can have no
maxima, only minima. The maxima suggested by above extremization process
have to be replaced by a construction invented by Maxwell for thermodynamic
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equilibria. Consider two minima φ1 and φ2 separated by a maximum φ3 as
shown in Fig. 5.2. We ignore the part of the graph containing point φ3 as of no
physical significance, and introduce a parameter x which permits continuous
interpolation between the two minima. Over the domain intermediate between
φ1 and φ2, we introduce a parameter x and redefine φcl to be

φcl = xφ1 + (1− x)φ2 0 ≤ x ≤ 1

The assumption is that the actual state of the system is no longer translation

1

φ2

φ3

φ

eff

φcl

V

Figure 5.2: The effective potential of a system with local minimum at φ1 and φ2. The

mostly concave segment with the point φ3 is treated as unphysical and replaced by

the dashed line.

invariant and is an admixture of phases with either a value φ1 or a value φ2.
The above redefinition is interpreted as a value of φ averaged over such regions.
Then if the physical value of φcl is characterised by parameter value x, we
define the corresponding value of Veff

V avg
eff (φcl) = xVeff (φ1) + (1− x)Veff (φ2)

These formulae will not be of direct relevance to us. However we should remem-
ber that while the minima φ1 and φ2 represent possible physical situations, the
extremum does not. We shall see that the admixture phase arises when the
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system begins to tunnel from one vacuum to another due to energetic con-
siderations. We shall develop the formalism for the tunneling process and will
be more interested in the tunneling rate which in turn is indicative of how
quickly the transition from a false vacuum (a local minimum) to a true vacuum
(absolute minimum) can be completed.

5.5.3 Computing Veff

A very simple example of a non-trivial effective potential is given by a complex
scalar field theory with a non-trivial self-coupling

L = ∂μφ
†∂μφ− λ

4
(φ†φ− μ2)2

Note that the mass-squared is negative and so the kinetic terms without the
φ4 interaction would imply tachyonic excitations. The correct field theoretic
interpretation is to work around a stable minimum such as φ = μ. Thus we
define φ(x) = μ + φ̃(x) and quantize only the φ̃(x) degrees of freedom. By
substituting the redefined φ into the above Lagrangian we find that the field φ̃
has a mass-squared +μ2 and can be treated perturbatively.

In this example the polynomial λ
4 (φ

†φ − μ2)2 serves as the zeroth order
effective potential. The values μeiα for real values of alpha between 0 and 2π
are all permissible vacuum expectation values (VEVs) as determined from min-
imizing this polynomial. These values are modified in Quantum Field Theory,
however in this simple example their effect will only be to shift the value μ of
|φ| by corrections of order �. This example is the well known Goldstone mech-
anism of symmetry breaking. Here the symmetry breaking is indicated by the
classical V itself.

There are important exceptions to this, where quantum corrections be-
come important and they must be computed. One is where the above La-
grangian is modified as follows. Remove the mass term altogether, but couple
the massless field to a U(1) gauge field, in other words massless scalar QED.
The classical minimum of the potential (φ†φ)2 is φ = 0. It was shown by S.
Coleman and E. Weinberg that after the one-loop quantum effects are taken
into account, the minimum of the scalar potential shifts away from zero. The
importance of this result is that the corrected vacuum does not respect U(1)
gauge invariance. The symmetry breakdown is not encoded in classical V and
has to be deduced from the Veff .

Another important example is effects of a thermal equilibrium. Consider
the complex scalar of our first example, with mass-squared negative at clas-
sical level. Suppose we couple this field to a gauge field. This would lead to
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spontaneous but classically determinable breakdown of the gauge invariance ac-
cording to Higgs-Kibble mechanism. If we now include temperature corrections,
then in the high temperature limit the minimum of the scalar field Lagrangian
in fact shifts to φ = 0, thus restoring the symmetry! This is the case impor-
tant to the early Universe where Universe cools slowly from very high values
of temperature, possibly close to the Planck scale. Since Higgs mechanism is
the chief device for constructing Grand Unified Theories (GUTs) we find that
gauge symmetries are effectively restored at high temperatures and non-trivial
vacua come into play only at lower temperatures.

We will be unable to discuss the formalism for computing the effective
potential in any detail. However here we shall briefly recapitulate the recipe
which reduces the problem to that of computing Feynman diagrams. Recall
that an important consequence of quantum corrections can be change in the
vacuum expectation value of a scalar field. We shall assume that the vacuum
continues to be translation invariant, so that this shifted value is a constant.
Anticipating this, in the Lagrangian we shift the field value φ(x) = φcl + η(x)
where the significance of the subscript cl becomes clear due to the reasoning
given above. However note that at his stage φcl is only a parameter and the
Veff is computed as a function of it. Now in the presence of an external source
J(x), ∫

d4x (L+ Jφ) =

∫
d4x (L+ Jφd) +

∫
d4xη

(
δL
δφ + J

)
+ 1

2

∫
d4xd4yη η δ2L

δφδφ ....

Here onwards we assume that the φcl is chosen to satisfy

δL
δφ

∣∣∣∣
φ=φcl

= −J(x)

Note that this φcl is still dependent on the external function J(x) and hence
adjustable. Then in the path integral formula for the generating functional, we
can carry out a saddle point evaluation of the gaussian3 integral around the
extremum defined by the choice of φcl just made.

ZJ =

∫
Dη exp

(
i

∫
L (φcl) + Jφcl +

1
2

∫
ηL”η

)
= exp

[
i

∫
L (φcl) + Jφcl

]
×
(
det

[
− δ2L

δφδφ

])−1/2

Z2

3Actually “pseudo”-gaussian due to the presence of i, but equivalently after choosing to

work with euclidian path integral.
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where the Z2 denotes all the terms of order higher in the variations of L with
respect to φ. In perturbative interpretation hese higher derivatives

δnL
δφ . . . δφn

are treated as vertices, while

−i

(
δ2L
δφδφ

)−1

is used as propagator. The main correction to one-loop order however can be
determined directly from the determinant resulting from saddle point integra-
tion. While calculating S-matrix elements this determinant is only an overall
constant and of no significance. But in the effective potential formalism it pro-
vides the main correction. It also requires proof to know that the determinant
provides the leading correction and that everything inside Z2 represents higher
order quantum corrections. This will not be pursued here. We now quote an
example.

An Example

Consider the theory of two real scalar fields φ1 and φ2

L =
1

2

∑
i

(
∂μφ

i
)2

+
1

2
μ2

∑
i

(
φi
)2 − λ

4

[∑
i

(
φi
)2]2

with i = 1, 2 and μ2 > 0. The latter condition means that the classical minimum
of the theory is not at φi = 0 but at any of the values defined by λ(φ2

1+φ2
2) = μ2.

A possible minimum is at (φ1, φ2) = (μ/
√
λ, 0). If we shift the fields by choosing

(φ1, φ2) = (φcl + η1(x), η2(x)) we get propagators for the two real scalar fields
ηi with mass-squares given by m2

1 = 3λφ2
cl − μ2 and m2

2 = λφ2
cl − μ2.

Evaluation of the determinants of the inverse propagators requires a series
of mathematical tricks.

log det
(
∂2 +m2

)
= Tr log

(
∂2 +m2

)
=

∑
k

log
(−k2 +m2

)
= (V T )

∫
d4k

(2π)4
log

(−k2 +m2
)
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The determinant actually has a diagrammatic interpretation as was explained
by Coleman and Weinberg. Consider a single closed loop formed by joining
together nmassless propagators, joined together by consecutive mass insertions.
Here we are treating treating mass as an interaction for convenience. This loop
has 1

n! in front of it from perturbation theory rules due to n mass insertions.
But there are (n−1)! ways of making these identical mass isertions. This makes
the contribution of this loop weighed by 1

n . Further because the propagators are
identical, nth term is nth power of first term. Thus summing all the terms with
single loop but all possible mass insertions amounts to a log series. The next
important argument is that indeed the perturbative expansion is an expansion
ordered by the number of loops. By including all contributions at one loop, we
have captured the leading quantum correction.

We now turn to evaluation of this using dimensional regularization pre-
scription ∫

ddk

(2π)
d
log

(−k2 +m2
)
=

−iΓ
(−d

2

)
(4π)d/2

1

(m2)
−d/2

Therefore,

Veff (φcl) = −1

2
μ2φ2

cl +
λ

4
φ4
cl

−1

2

Γ (−d/2)

(4π)d/2

[(
λφ2

cl − μ2
)d/2

+
(
3λφ2

cl − μ2
)d/2]

+
1

2
δμφ

2
cl +

1

4
δλφ

4
cl

where the δμ and δλ represent finite parts. Now

Γ (2− d/2)

(4π)d/2 (m2)
2−d/2

=
1

(4π)2

(
2

ε
− y + log 4π − logm2

)

MS scheme−−−−−−−−−→ 1

(4π)2

(
− log

m2

M2

)
where a reference mass scale M has to be introduced. Therefore, with super-
script (1) signifying one-loop correction,

V
(1)
eff =

1

4

1

(4π)2

[(
λφ2

cl − μ2
)2 (

log
(
λφ2

cl − μ2
)
/M2 − 3/2

)]
+
(
3λφ2

cl − μ2
)2 (

log
[(
3λφ2

cl − μ2
)
/M2

]− 3/2
)



214 5. Cosmology for Particle Physicists

A rule of thumb summary of this example is that the one-loop correction to
the effective potential is (1/64π2) m4

eff ln(meff/M)2 where m2
eff contains φ2

cl

and M is a reference mass scale required by renormalization. Further, it can
be shown that the modification to the tree level (classical) vacuum expectation
value comes only from the m4 ln(m/M)2 term of the field direction in which
the vacuum is already shifted, φ1 in the present example.

5.5.4 Temperature Corrections to 1-loop

In the early universe setting we are faced with doing Field Theory in a thermal
bath, also referred to as “finite temperature field theory”. With some clever
tricks and exploiting the analogy of the field theory generating functional with
the partition function for a thermal ensemble, one can reduce this problem also
to that of calculating an effective potential. The key modification introduced
is to combine the time integration of the generating functional and the mul-
tiplicative −β (inverse temperature) occurring in the partition function into

an imaginary time integral − ∫ β

0
dτ . Further, the trace involved in the thermal

averaging can be shown to be equivalent to periodicity in imaginary time of
period β. For bosonic fields one is lead to periodic boundary condition and
for fermionic fields one is lead to anti-periodic boundary condition. Thus the
usual propagator is replaced by an imaginary time propagator of appropriate
periodicity. For a scalar field of mass m, thermal propagator ΔT is given by

ΔT (x, y) =
1

β

∑
k0=2πin/β

∫
d3k

(2π)3
e−ik·(x−y) i

k2 −m2

We now quote the result for the temperature dependent effective potential
V T . We focus only on the φ1 degree of freedom of the previous example and
drop the subscript 1,

V T
eff [φcl] = Veff [φcl] +

T 4

2π2

∫ ∞

0

dxx2 ln

[
1− exp

(
−
(
x2 +

m2

T 2

)1/2
)]

with m2 (φcl) = −μ2 + 3λφ2
cl

and Veff to one-loop order is as obtained in the previous subsection. In the high
temperature limit T � φcl we can determine the leading effects of temperature
by expanding the above expression to find

V T
eff = Veff +

λ

8
T 2φ2

cl −
π2

90
T 4 + . . .
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From thermodynamic point of view this Veff represents the Gibbs free energy.
Entropy density, pressure and the usual energy density are given by

s[φcl] = −∂V T
eff

∂T
; while p = −V T [φcl]

andρ[φcl] = V T
eff + Ts[φcl]

= V (φcl)− λ

8
T 2φ2

cl +
π2

30
T 4.

The resulting graphs of V T
eff are plotted in Fig. 5.3. In plotting these, the term

T 4 which is the usual thermodynamic contribution, but which is independent
of the flield φcl is subtracted.

V
eff
T

φ
cl

T=0

T = Tc

Figure 5.3: Temperature dependent effective potential plotted to show its dependence

on φcl for various values of temperature T . Tc denotes the temperature below which

the trivial minimum is unstable.

We can summarise the main results of this subsection retaining a single
scalar degree of freedom φ for which,

L =
1

2
∂μφ∂

μφ+
1

2
μ2φ2 − 1

4
λφ4

with minima at σ± = ±√μ2/λ
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The leading effect of the temperature correction is to add a term T 2φ2
cl so

that

V T
eff =

(
−1

2
μ2 +

λ

8
T 2

)
φ2
c +

1

4
λφ4

c + . . .

This is extremized at the values

φcl = ±
√

μ2 − λT 2/4

λ
and φcl = 0

Further, note that
∂2V

∂φ2
|φc=0= −μ2 +

λ

4
T 2

As a result we see that the curvature can change sign at the trivial extremum
φcl = 0 at a critical temperature Tc = 2μ/

√
λ.

5.6 First Order Phase Transition

At the end of the last section we saw that the minimum at φ = 0 can turn
into a maximum as the temperature drops below the critical value Tc. This
effect is felt simultaneously throughout the system and a smooth transition to
the newly available minimum with φ �= 0 ensues. The expectation value of φ
is called the order parameter of the phase transition, and in this case where it
changes smoothly from one value to another over the entire medium is called a
Second Order phase transition.

But there can also be cases where there are several minima of the free
energy function but separated by an energy barrier. Thus the system can end
up being in a phase which is a local minimum, called the false vacuum, with
another phase of lower free energy, called the true vacuum, available but not
yet accessed. If the barrier is not too high, thermal fluctuations can cause the
system to relax to the phase of lower free energy. The probability for the system
to make the transition is expressed per unit volume per unit time and has the
typical form

Γ = A exp{−B}
The expressions A and B are dependent upon the system under consideration.
The presence of B reminds us of the Boltzmann type suppression that should
occur if the system has to overcome an energy barrier in the process of making
the transition. In Quantum Field Theory there are also quantum mechanical
fluctuations which assist this process. We observe that the formula above is also
of the type of WKB transition rate in Quantum Mechanics. Indeed, we have
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partly thermal fluctuations and partly tunneling effects responsible for this kind
of transition. A convenient formalism exists for estimating the combined effects
using the thermal effective potential introduced in the previous section.

A transition of this type does not occur simultaneously over the entire
medium. It is characterized by spontaneous occurrance of small regions which
tunnel or fluctuate to the true vacuum. Such regions of spontaneously nucle-
ated true vacuum are called “bubbles” and are enclosed from the false vacuum
by a thin boundary called the “wall”. Since the enclosed phase is energetically
favorable, such bubbles begin to expand, as soon as they are formed, into the
false vacuum. Over time such bubbles keep expanding, with additional bub-
bles continuing to nucleate, and as the bubbles meet, they merge, eventually
completing the transition of the entire medium to the true vacuum. Such a
transition where the order parameter φ has to change abruptly from one value
to another for the transition to proceed is called a First Order phase transition
(FOPT).

5.6.1 Tunneling

At first we shall consider tunneling for a field system only at T = 0. An elegant
formalism has been developed which gives the probability per unit volume per
unit time for the formation of bubbles of true vacuum of a given size. Consider
a system depicted in Fig. 5.4 which has a local minimum at value φ1, chosen
to be the origin for convenience. There are other configurations of same energy,
such as φ2 separated by a barrier and not themselves local minima. If this is an
ordinary quantum mechanical system of one variable and the initial value of φ is

Figure 5.4: A system which has a local minimum at φ1 and which is unstable towards

tunneling to a point φ2 of equal energy



218 5. Cosmology for Particle Physicists

φ1, the system is unstable towards tunneling to the point φ2 and subsequently
evolving according to usual dynamics. If this were point particle mechanics,
the formula for the transition amplitude from the state |φ1〉 to the state |φ2〉 is
given in the Heisenberg picture and in the path integral formulation as

〈φ2|e− i
�
HT |φ1〉 =

∫
Dφe

i
�
S

where T is a time interval and the action S on the right hand side has the
same range of time integration. Instead of evaluating this directly, we make
two observations. Firstly, if we asked for the amplitude for the state |φ1〉 to
evolve into itself after time T , it would involve contributions also from paths
that access the state |φ2〉. Thus if we inserted a complete set of states on the
left hand side above at an intermediate time, say, time T/2 (we justify the T/2
later), among the many contributions there would also occur the term

〈φ1|e− i
�
HT/2|φ2〉〈φ2|e− i

�
HT/2|φ1〉

Correspondingly on the right hand side we would have contribution from paths
that start at the point φ1 and end at φ1, but after reaching φ2 somewhere along
the trajectory.

The second point is more interesting. Actually the presence of |φ2〉, a
state of equal energy, makes |φ1〉 unstable. Hence the contribution such as

〈φ1|e− i
�
HT/2|φ2〉 actually makes the total amplitude for φ1 returning to φ1

smaller than unity in magnitude. This happens only if the evolution operator
e−

i
�
HT/2 somehow departs from being of unit magnitude, i.e., its exponent

becomes real negative rather than pure imaginary.
Thus if we look, not for the entire amplitude, but only for the part

where the exponent becomes effectively imaginary then that part of the sum
over intermediate states actually indirectly gives the transition amplitude
〈φ2|e− i

�
HT/2|φ1〉, the one we started out to look for (aside from factor 1/2

in time). In the limit T becomes infinite, all the contributions with real nega-
tive exponents will go to zero. The leading contribution is the term with the
smallest exponent. On the right hand side this means that among all the paths
that start from one vacuum, sample the other and return, the one that min-
imises the action will contribute. Again we expect, on the right hand side, the
exponent to be real negative, i.e., the contribution of a Euclidean path, with
i
∫
dt replaced by − ∫

dτ . This is also reasonable since we know the usual ki-
netic energy of the particle has to be replaced by a negative contribution when
the trajectory is under the barrier.

The summary of this discussion is that actually we should be looking only
for the imaginary part of the contributions on both the sides of the formula
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above. If we find the path which minimises the Euclidean action, then in terms
of that, to leading order, and in the semi-classical limit, we have the tunneling
formula

Γ = A exp (−SE)

We can also now see the reason for T/2 to be the appropriate time. If the path
minimises the action it should be as symmetric as possible. Thus we expect
a time symmetry T → −T and this explains why the escape point φ2 should
occur at T/2. We therefore solve the Euler-Lagrange equations derived from
the action

SE =

∫
d4x

{
1

2

(
dφ

dτ

)2

+
1

2
|∇φ|2 + V [φ]

}
Now the action will be minimum for the path that has the fewest wiggles, i.e.,
is mostly monotonic. We expect the path to start at large negative τ at the
value φ1 and stay at that value as much as possible, and monotonically reach
φ2 near the origin, and then retrace a symmetric path back to φ1 as τ goes to
infinity. Such a path which bounces back has been called “the bounce”.

To solve for the bounce, our first simplification will be to invoke space-
time symmetries, viz., we assume that the configuration of fields which will
minimise the integral in question will obey spatial isotropy. This is same as
assuming that the spontaneously formed bubble will be spherically symmet-
ric. With 4 Euclidean dimensions, assuming 0(4) symmetry, one solves the
equation

φ” +
3

r
φ′ − V ′(φ) = 0

One boundary condition is φ(r → ∞) = φ1 where we have chosen φ1 = 0. At the
origin we could place the requirement φ(r = 0) = φ2 but it is more important
to require φ′(r = 0) = 0 as is usual for spherical coordinates when the solution
is expected to be smooth through the origin. Indeed we may not even know
what the “exit point” φ2 after the tunelling will be. The bounce when solved
for will also reveal it. A typical bounce solution is shown in Fig. 5.5.

Next to Leading Order

According to above discussion, the tunneling rate is given by a WKB type
formula Γ = A exp (−SE). With SE(φbounce) determined by extremising the
Euclidean action, the exponential is the most important factor in this formula.
The front factor A arises from integration over the small fluctuations around
the stationary point φbounce. This is a Gaussian integration and results in a
determinant. There are several subtleties which arise. The answer is that we
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Figure 5.5: Tunneling rate is determined by the minimum of the Euclidean action

φbounce(r) obeying appropriate symmetry and boundary conditions.

need to remove zero mode(s) of the fluctuation operator, and normalize with
respect to the determinant of the fluctuations in the absence of the bounce.
Thus with prime on “det” denoting removal of zero mode(s),

A =

(
SE(φ)

2π

)2
(
det′

[−��E + V ”(φbounce)
]

det [−��E + V ”(0)]

)−1/2

Thermal Bounce

We can now address the tunneling problem in a thermal ensemble, i.e., at T �= 0.
Recall our observation during the discussion of thermal effective potential, viz.,
the analogy between Euclidean path integral and the trace weighed by density
matrix in thermal partition function. By the same arguments we can show that
we must look for a bounce solution periodic in imaginary time with period 1/β.
There will be an infinite number of such bounces, but the one to dominate will
have least number of extrema. Then we obtain the rate formula

Γ[T ] = A exp
(
−S

[T ]
E

)
with

S
[T ]
E = 4πβ

∫ ∞

0

r2dr

[
1

2
φ′2 + V T

eff (φ)

]
To obtain the euclidian action in this case, we solve the equations of motion
obtained by varying this action and solve them subject to O(3) symmetry
of spatial directions. This is called the “bounce” solution relevant to thermal
transitions and the corresponding value of the action is inserted into the rate
formula.
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5.6.2 Applications

The formalism developed in this section is important for determining the evolu-
tion of the Universe when the field theory signals a first order phase transition.
The rate Γ can vary greatly due to the exponential factor. If the rate is too
small, the expansion rate of the Universe may be faster and in this case parts
of the Universe may never tunnel to the true vacuum. If the state of broken
symmetry is phenomenologically desirable, the rate should be fast enough, at
least faster than the expansion rate of the Universe at the time of Big Bang Nu-
cleosynthesis (BBN). The end of a first order phase transition dumps a certain
amount of entropy into the Universe, similar to latent heat in usual substances.
Since the history of the Universe after the BBN is fairly precisely known any
unusual phenomenon especially one that may disturb the baryon to entropy
ratio should occur well before the BBN and not alter the required value of the
ratio.

Such considerations place constraints on the parameters of the scalar field
theory undergoing the phase transition. The first proposal of inflationary Uni-
verse required a fairly specific range for the value of the rate, slow enough for
sufficient inflation to occur, but still fast enough that the present day Universe
would be in the true vacuum.

In some theories the false vacuum is phenomenologically the desirable
one. In many supersymmetric models, the desirable state actually turns out
to be metastable, whereas the true ground state has undesirable properties
such as spontaneous breaking of the QCD colour symmetry. Several models of
supersymmetry breaking arising in a hidden sector and communicated to the
observed sector by messengers, end up with unphysical ground states. In such
cases one invokes the possibility that the parameters of the theory make the
tunneling rate much smaller than the expansion rate of the universe till the
present epoch. If a volume of the size M−3 determined by the energy scale
M of the high energy theory is to not undergo a transition within the typical
expansion time scale of the Universe, then

Γ < M3H0

where H0 is the present value of the Hubble parameter, i.e., the experimentally
observed Hubble constant.

As another application, in Standard Model, the Higgs boson has a self
interaction potential of the type discussed above. The exact form of the poten-
tial, namely, which local minimum is energetically favored and what can be the
tunneling rate for going from one vacuum to another is determined by the mass
parameter and the quartic coupling occurring in the Higgs potential. The mass
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parameter is known from the requirement of spontaneous symmetry breaking
to reproduce the Weak interaction scale. However, the quartic coupling will be
determined only when the collider experiments will determine its mass. Since
this value is as yet unknown, we can use cosmology to put a bound on its
possible values.

It can be shown that if the Higgs boson is very light, then there is a
danger for the Universe to be trapped in an unphysical vacuum. This puts a
lower bound on the Higgs boson mass at about 10 GeV. This is known as the
Linde-Weinberg bound.

5.7 Inflationary Universe

It is remarkable that the Friedmann-Robertson-Walker model is so successful a
description of the observed Universe. At first this seems a resounding triumph
of General Relativity. It is true that the dynamics all the way back to Big Bang
Nucleosynthesis (BBN) is successfully described. However one begins to notice
certain peculiarities of the initial conditions. First of all, the Big Bang itself
presents a problem to classical physics, being a singularity of spacetime. But
we expect this to be solved by a successful theory of Quantum Gravity. But
now we will show that even the conditions existing after the Big Bang and
well within the realm of classical General Relativity pose puzzles and demand
a search for new dynamics or newer laws of physics.

5.7.1 Fine Tuned Initial Conditions

Any physical entity such as a planet or a star or a galaxy has an associated legth
or mass scale. Very often this is set by accidental initial conditions. However
not all accidentally possible scales would be tolerated by the dynamics holding
together the object. Some initial conditions will lead to unstable configurations.
Question : what scales would be permitted by a universe driven according to
General Relativity? The coupling constant of Gravity is dimensionful, G−1

N =
M2

Pl ∼ (1019GeV )2. The available physical quantity is energy density. We pro-
pose a naive possibility that the system size or scale be decided by this energy
density re-expressed in the units of MPl. We then find that the Universe has far
too small an energy density 10−6(eV )4 ∼ 10−66(MPl)

4, and far too big a size,
Giga parsec compared to 10−20fermi. It is interesting that Gravity permits a
viable solution with such variance from its intrinsic scales.

Further, we find that above mentioned ratio evolves with time because the
scale factor grows and density keeps reducing. We can ask what is the time scale
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set by gravity for this variation. In the evolution equation for the scale factor
R(t) we see that the intrinsic scale is set by the Gravitational constant. If the
ρ/(MPl)

4 was order unity at some epoch, then there is only one independent
time scale left, that set by MPl. We then find that the universe would either
have recollapsed or expanded precisely within the time set by the Planck scale,
10−44sec. The fact that the Universe seems to be hovering between collapse and
rapid expansion even after 14 billion years, requires that we must start with
extremely fine tuned initial conditions. The fine tuning has to be to the extent
of one part in 1066 because we started with the value of the ratio close order
unity.

It is such uncanny fine tuning that is the motivation for proposing an “in-
flationary” event in the early Universe, a phase of unusually rapid expansion.
Such an event reconditions the ratios we discussed above. Their large apparant
values then arise from dynamics rather than initial values. All physical realiza-
tions of this proposal have consisted of admitting dynamics other than Gravity
to intervene for the purpose of significantly reconditioning these ratios.

It is fully likely that the answer to the puzzles to be described in the
following is buried in the Planck era itself. Any data which can throw light
on such a mechanism would also provide a valuable window into Planck scale
physics. But there are viable candidates within the known physical principles of
Relativistic Field Theory, a possibility which if true would reduce our intrinsic
ignorance of the physical world, and in turn lead to prediction of newer forces.

5.7.2 Horizon Problem

This problem arises from the fact that our Universe had a finite past rather
than an indefinitely long past. A finite past gives rise, at any given time, to
a definite physical size over which information could have travelled upto that
time. This physical scale is called the “particle horizon”. At present epoch we
find unusually precise correlation in the physical conditions across many particle
horizons, i.e., over regions of space that had no reason to be in causal contact
with each other. It is to be noted that the world could well have emerged all
highly correlated from the Planck era. But as explained above, we work in the
spirit of exploring newer dynamics within the known principles.

With this preamble, the paradox presented by the current observations
is as follows. We know that the observed Cosmic Microwave Background
Radiation (CMBR) originated at the time of decoupling of photons from the
partially ionized Hydrogen. The temperature of this decoupling, as we esti-
mated in sec. 5.4.4 is 1200K, while today it is close to 1K. From the ratio of
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temperatures, and assuming a matter dominated Universe,

T0

Tdec
� 1

1200
=

R (tdec)

R (t0)
=

(
td
t0

)2/3

Therefore, td ∼ 2× 105 h−1 years.
Now consider the size of the particle horizon at these two epochs, ie.,

the size of the region over which communication using light signals could have
occurred since the Big Bang.

a (t0)

∫ t0

td

dt′

R (t′)
≈ 3t0 ≈ 6000 h−1 Mpc

where the contribution of the lower limit is ignorable. Similarly at tdec, horizon
∼ 3tdec ≈ 0.168 h−1Mpc, using the time-temperature relation appropriate
to the radiation dominated era. Then the angle subtended to us today by a
causally connected region of the decoupling epoch is

θd =
168

6000
� 0.03 rad or 2 deg

This means that we are viewing today 4π
(0.03)2 ≈ 14, 000 causally unconnected

horizon patches, and yet they show remarkable homogeneity.

5.7.3 Oldness-Flatness Problem

An independent puzzle arises due to the fact that the curvature of the three
dimensional space is allowed to be non-zero in General Relativity. Let us rewrite
the evolution equation by dividing out by H(t)2 ≡ (Ṙ(t)/R(t))2

1

H(t)2
k

R(t)2
= Ω(t)− 1

where Ω(t) ≡ 8πGρ(t)/3H(t)2 which can be thought of as the energy density
at time t re-expressed in the units of G and H(t). At the present epoch t0 in
the Universe, the observational evidence suggests the right hand side (RHS) of
above equation is ±0.02. This suggests the simple possibility that the value of
k is actually zero. Let us first assume that it is non-zero and assume a power
law expansion R(t) = R0t

n, with n < 1 as is true for radiation dominated and
matter dominated cases. After dividing the previous equation on both sides by
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the corresponding quantities at present epoch t0, we find(
t

t0

)1−n

= 50× (Ω(t)− 1)

where we have used the current value of the right hand side (RHS), 0.02. Now
the current value t0 is ≈ 5 × 1017 second, while at the time of Big Bang Nu-
cleosynthesis (BBN) it was only about 100 seconds old. Using n = 1/2 for the
sake of argument, we find LHS≈ 10−7, which means that correspondingly, on
the RHS Ω must be tuned to unity to one part in 108. If further, we compare
to earlier epochs such as the QCD phase transition or the electroweak epoch,
we need higher and higher fine tuning to achieve the 0.02 accuracy at present
epoch. We thus see that the initial conditions have to be fine tuned so that
we arrive at the Universe we see today. Equivalently, since the problem is con-
nected to the large ratio of time scales on the LHS, we may wonder why the
Universe has lived so long. This may be called the “oldness” problem.

In case the k is zero, then that would be a miraculous fine tuning in
itself. The discrete values 0,±1 arise only after scaling the curvature by a
fiducial length-squared. The natural values for the curvature pass smoothly
from negative to positive and zero is only a special point. The tuning of the
value to zero earns this puzzle the name “flatness” problem.

We can also restate the problem as there being too much entropy in the
present Universe. Taking the entropy density of the CMB radiation at 2.7K and
multiplying by the size of the horizon as set by approximately H−1

0 ∼ (1/3)t0
∼ 3×109 yr. we get the entropy to be 1086 (check this!). The aim of inflationary
cosmology is to explain this enormous entropy production as a result of an
unusual phase transition in the early Universe.

5.7.4 Density Perturbations

A last important question to be answered by Cosmology is the origin of the
galaxies, in turn of life itself and ourselves. If the Universe was perfectly ho-
mogeneous and isotropic, no galaxies could form. Current observations of the
distribution of several million galaxies and quasars suggests that the distribu-
tion of these inhomogeneities again shows a pattern. To understand the pattern
one studies the perturbation in the density, δρ(x, D) = ρ(x, D)− ρ̄, where ρ̄ is
the average value and ρ(x, D) is the density determined in the neighborhood
of point x by averaging over a region of size D. It is found that the density
fluctuations do not depend on the scale of averaging D. It is a challenge for any
proposal that purports to explain the extreme homogeneity and isotropy of the
Universe to also explain the amplitude and distribution of these perturbations.
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5.7.5 Inflation

The inflationary universe idea was proposed by A. Guth to address these issues
by relying on the dynamics of a phase transition. The horizon problem can be
addressed if there existed an epoch in the universe when the particle horizon
was growing faster than the Hubble horizon. Later this phase ends and we
return to radiation and matter dominated Universe.

If the Universe was purely radiation dominated during its entire early his-
tory particle horizon could not have grown faster than Hubble horizon. However,
if there is an unusual equation of state obeyed by the source terms of Einstein’s
equations then this is possible. Our study of first order phase transitions sug-
gests a possible scenario. We have seen that there is a possibility for the system
(the universe) to be trapped in a false vacuum. Exit from such a vacuum occurs
by quantum tunneling. If this tunneling rate is very small, the vacuum energy
of the false vacuum will dominate the energy density of the Universe. Vacuum
energy of a scalar field has just the right property to ensure rapid growth of
particle horizon, keeping the hubble horizon a constant. If inflation occurs, the
flatness problem also gets automatically addressed.

Consider the energy momentum tensor of a real scalar field

Tμ
ν = ∂νφ∂

μφ− δμνL

= ∂μφ∂
μφ− δμν

(
1

2
∂λφ∂

λφ− V (φ)

)
If the field is trapped in a false vacuum, its expectation value is homogeneous
over all space and is also constant in time. This means all the derivative terms
vanish and Tμ

ν → V0δ
μ
ν where V0 is the value of the potential V in the false vac-

uum, called the vacuum energy density. Now for an isotropic and homogeneous
fluid, the energy-momentum tensor assumes a special form, diag(ρ,−p,−p,−p).
That is, the off diagonal terms are zero, the three space dimensions are equiva-
lent, and the non-zero entries have the interpretation of being the usual quan-
tities ρ the energy density and p the pressure. Thus comparing this form with
that assumed by the scalar field in a false vacuum, we see that the expectation
value of the scalar field behaves like a fluid obeying the unusual equation of
state p = −ρ. Now the Friedmann equation becomes(

Ṙ

R

)2

=
8π

3
Gρ =

8π

3
GV0

whose solution is R(t) = R (ti) exp (H (t− ti)), with H2 = (8π/3)V0 and ti is
some initial time.
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Figure 5.6: Comparison of scale factor R, Hubble variable H, and temperature T as

functions of time t in simple FRW cosmology (left panel) with the same variables in

inflationary cosmology (right panel). Epochs denoted ti and tf refer to beginning and

end of inflation, tr refers to end of the “reheating” era and t0 to present time. Between

tf and tr, the three quantities are not defined due to strongly out of equilibrium and

also possibly inhomogeneous conditions. R and H resume at tr with approximately

the same corresponding values as at tf . However T increases substantially, bounded

only by its value at ti.

Fig. 5.6 shows sketches of the resulting change from simple FRW cosmol-
ogy. The implications of this change will be discussed in the remainder of this
section.

5.7.6 Resolution of Problems

Horizon and Flatness Problems

During the inflationary epoch we assume an exponential expansion and a con-
stant value of Hubble parameter H (defined without special subscript or su-
perscript since H0 is reserved for the current value of H). Now consider the
particle horizon, or equivalently, the luminosity distance at any epoch t

dH = eHt

∫ t

ti

dt′

eHt′ ≈ 1

H
eH(t−ti)

Thus the distance over which causal effects could be exchanged is expo-
nentially larger than the simple estimate 3tdec we used while discussing the
horizon problem. Suppose inflation lasted for a duration (t − ti) ≡ τ . We can
estimate what value Hτ we need during inflation so that we are not seeing a
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large number of primordial horizon volumes but only about one. Suppose in-
flation ended leaving the Universe at a temperature Tr (subscript “r” signifies
reheat as explained in next subsection). Then the dH of above equation rescaled
to today assuming radiation dominated Universe4 should give current inverse
horizon H−1

0 . Thus (
1

H
eHτ

)
×
(
Tr

T0

)
≈ 1

H0

In above formula let us estimate H/H0 again assuming radiation domi-
nated evolution since the Tr till now,

H

H0
∼ t0

t

∣∣∣∣
FRW

∼
(
Tr

T0

)2

∼
(
1014 GeV

10−4 eV

)2

∼ (
1027

)2
recall that H2 ∝ T 4 and we inserted a Grand Unification scale 1014GeV as a
possibility for Tr. Then eHτ has to be 1027.

We need an improvement upon this estimate. As we shall later see, there
are theoretical reasons to believe that Tr � 109GeV. In this case it is also as-
sumed that there is additional (non-inflationary or mildly inflationary) stretch-
ing by a factor 109. In this case we delink the reheat temperature Tr from the
vacuum energy density causing inflation, and assume the latter to continue to
be at GUT scale. In this case,

eHτ ∼
(

H

H0

)
×
(
t0
Tr

)
× 10−9 ∼ 1018

where we have used estimate of the vacuum energy density (0.03eV)4 as derived
from the directly observed value of current Hubble constant. In the literature
one often sees this estimate made with GUT scale taken to be 1016GeV so that
the required value of eHτ � 1022 ∼ e55.

Let us see the requirement to solve the flatness problem. We need to
show that the term |k|/R2 becomes insignificant regardless of its value before
inflation. For naturalness we assume it to be comparable to H2 as expected from
Friedmann equation. Now including scaling from inflation, the stretching by

4The Universe has of course not been radiation dominated through out. But replacing

later history of the Universe by matter dominated evolution will not significantly alter these

estimates since the expansion is changed by a small change in the power law, t2/3 instead

of t1/2. Assumption of radiation dominated expansion allows relating temperatures at two

different epochs, as a good approximation.
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factor 109 as introduced above, and subsequently during the era after reheating,
we find (

k

R2

)
0

∼
(

k

R2

)
pre-inf

× e−2τ × (
109

)−2
(
T0

Tr

)2

The left hand side is (1 − Ω)H2
0 which is insignificant. The right hand side is

the same small factor we estimated above, squared. So this means the left hand
side is reduced to a value 10−36 or 10−44 depending on the value of Grand
Unification scale we take.

Avoidance of Unwanted Relics

A byproduct of Inflation is that it would also explain absence of exotic relics
from the early Universe. Typically a grand unified theory permits occurance of
topological defects such as cosmic strings or monopoles. They signifiy unusual
local vacua of spontaneously broken gauge theories which cannot evolve by
unitary quantum mechanical processes to the simple vacuum. Unlike normal
heavy particle states, therefore, such defects cannot decay.

The natural abundance of such relics can be calculated by understanding
the dynamics of their formation. Typically these events are the phase transi-
tions characterised by specific tempratures. If the naturally suggested adun-
dances of these objects really occured, they would quickly dominate the energy
density of the Universe, with possible exception of cosmic strings. This would
be completely contradictary to the observations. On the other hand if the scale
of Inflation was below the temperature of such phase transitions, the density
of topological objects formed would be diluted by the large factor by which
volumes expand during inflation.

Another class of exotic relics are the so called moduli fields, scalar excita-
tions arising in supersymmetric theories and String Theory. They are generic
because of the powerful symmtry restrictions on potential energy functions in
such theories. Inflation provides a solution for some class of models for this case
also.

Resolution for Density Perturbations

Finally the density perturbations are neatly explained by inflation. The scalar
field is assumed to be in a semi-classical state. However quantum fluctuations
do exist and these should in principle be observable. Inflationary era is char-
acterized by Hubble parameter H remaining a constant while the scale factor
grows exponentially. Thus the wavelengths of various Fourier components of
the fluctuations are growing rapidly, leaving the horizon.
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We shall take up in greater detail the theory of small perturbations in an
expanding Universe in section 5.8. There we show that the amplitudes of the
Fourier modes of these perturbations remain frozen at the value with which
they left the Hubble horizon. Eventually when the Universe becomes radiation
dominated and subsequently matter dominated, Hubble horizon H−1 begins to
grow faster than the scale factor and the wavelengths of the modes begin to
become smaller than Hubble horizon. This is the same reason as the solution of
the horizon problem wherein apparently uncorrelated regions of distant space
now seem to be correlated. They all emerged from the same causally connected
region and got pushed out of the horizon during the inflation epoch.

The result of this evolution of the fluctuations is that when they re-enter
the horizon they all have the same amplitude. These fluctuations then influence
the rest of the radiation and matter causing fluctuations of similar magnitude
in them. This is the explanation for the scale invariant matter density pertur-
bations represented by distribution of galaxies. We shall take up the details of
fluctuations in the next section.

5.7.7 Inflaton Dynamics

Inflation is a paradigm, a broad framework of expectations rather than a specific
theory. The expectations can be shown to be fulfilled if a scalar field dubbed
“inflaton” obeying appropriate properties exists. If inflation is implemented by
such a scalar field, we need to make definite requirements on its evolution. We
assume that its evolution leads the Universe through the following three phases

• Inflationary phase

• Coherent oscillation phase

• Decay and re-heating phase (“re-heat” only for low field scenario)

Of these three phases, the inflationary phase addresses the broadest re-
quirements discussed in previous subsection. To obtain exponential expansion
we need constant vacuum energy. This means that the field φ has a value where
V (φ) �= 0 and also that φ continues to remain at such a value. The simplest such
possibility is a false vacuum, a local minimum of the effective potential which is
not a global minimum. But this is problematic because this kind of state can be
far too stable and the exit from it keeping the Universe permanently inflating.
Two possibilities which are strong candidates due to phenomenological reasons
are the so called High Field (older name Chaotic Inflation) or the Low Field
(older name New Inflation) scenarios of inflation. These are shown in Fig. 5.7.
In the High Field case the initial value of the field is close to Planck scale and
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no clear barrier separating it from the low energy true minimum. However its
dynamics governed by Planck scale effects is “chaotic” and keeps it at a very
high energy for a long time. In the Low Field case, the dynamics is usual field
theory but the effective potential function has a long plateau of very small slope.
Assuming the initial value of the field at the top of the plateau, this allows the
field to sustain a position of large vacuum energy for a long time. In both cases,
the field eventually moves towards the low energy true minimum, via the next
two phases. A third possibility which is appealing for supersymmetric unified
theories is called the Hybrid scenario. It involves two fields, one which keeps
the Universe initially at a high field value, and the second field which becomes
more dominant at a later stage, causing a rapid roll down and exit from the
high energy plateau. It will not be possible for us to discuss these scenarios in
any detail in these notes.

M Pl

V[   ]φ
4

φM Pl φ

M
4

GUT

V[   ]φ

Figure 5.7: Sketches of stipulated effective potentials with the corresponding initial

value of the inflaton field indicated by a small circle (a “ball” ready to “roll down”

the shown profiles). Left panel shows the High Field scenario, the right panel shows

the Low Field scenario

Next, it is easier to explain the third listed phase, since it is necessary
that the end point of inflationary expansion is a hot Universe. Big Bang Nucle-
osynthesis is very successful in explaining the natural abundance of elements.
We need to assume a hot Universe of at least a few MeV temperature for BBN
to remain viable.

Finally, the intermediate phase dominated by coherent oscillations of the
scalar field 5 is almost certain to occur as inflation ends. This is because during

5This is a special state in which it is possible to treat the field in the leading order as if

it were a classical field.
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inflation the field is already in a coherent state, one in which it has homoge-
neous (position independent) value. This phase ends with creation of quanta. In
a large class of models this phase may be of no particular interest. But in spe-
cial cases when the coupling of the inflaton to other matter is tuned to certain
values, it can lead to a variety of interesting effects which can have observable
consequences. One such possibility is a long duration of coherent oscillations,
which can be shown to mimic a Universe filled with pressureless dust. Alter-
natively there can be particles with special values of mass which can be shown
to be produced copiously during the coherent oscillation epoch. Such effects
are called “preheating” because heating of the Universe is achieved not directly
through the inflaton but by other particles which have efficiently carried away
the energy of the inflaton. Such phases can enhance the expansion achieved
during the inflationary phase, the additional 109 factor used in estimates in
previous subsection.

Predictions and Observables

For a quantitative study we consider a scalar field φ with lagrangian

S[φ] =

∫
d4x

√−g

(
1

2
∂μφ∂

μφ− V (φ) + Lφ−matter

)
To discuss the inflationary phase we do not need Lφ−matter containing the
detail of the coupling of the scalar field to the rest of matter. Varying this
action after putting the Friedmann metric for gμν gives an equation of motion
for φ,

φ̈+ 3Hφ̇+ V ′(φ) = 0

The inflationary phase is characterized by a homogeneous value of φ and a very
slow time evolution so that there is domination by vacuum energy. Mathemat-
ically one demands

φ̈ � 3Hφ̇

in other words we assume that the time scale of variation of the field φ encoded

in φ̇/
. . . φ is small compared to the time scale H−1 of the expansion of the

Universe. Further, the assumption that the time scale of variation of φ is very
small amounts to assuming that in the action we must have

φ̇2 � V0

Thus while obtaining the Euler-Lagrange equations the V term continues to be
important, but the higher time derivative of φ can be dropped. So the evolution
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equation reduces to

3Hφ̇ = −V ′(φ)

To ensure consistency of the above two conditions, divide the simplified evolu-
tion equation by 3H and take a time derivative. Recall thatH2 = (8π/3)GV (φ).
Thus H can be implicitly differentiated with respect to time as shown in the
equation below

φ̈ = −V ”(φ)φ̇

3H(φ)
+

V ′(φ)
3H2(φ)

H ′(φ)φ̇

We now write the equation in three equivalent forms

φ̈

3Hφ̇
= −V ”(φ)

9H2
+

V ′

9H3
H ′

= − V ”(φ)

9× 8π
3 GV0

+
V ′ ( 4π

3

)
GV ′

9× (
8π
3 G

)2
V 2

= − V ”

3× 8πGV0
+

1

2

1

3× 8πG

(
V ′

V

)2

where use has been made of the preceding assumptions as also the relation
2HH ′ = 8π

3 GV ′.
Inspecting the above equations we define three parameters

ε ≡ Mp2

16π

(
V ′(φ)
V (φ)

)2

, η ≡ Mp2

8π

V ”(φ)

V (φ)

and

ξ ≡ φ̈

Hφ̇
= ε+ η

The requirements of the inflationary phase viz., large vacuum energy and
a vary slow roll towards the true minimum mean that

ε � 1, | η |� 1 and ξ ∼ 0(ε, η)

We use these in the criterion that if either of these quantities becomes large,
inflationary phase ends. These have come to be called the “slow roll” parameters
characterizing inflation.
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For several decades inflation remained a theoretical paradigm. However
with precision cosmological experiments such as the Hubble Space Telescope
(HST), the Wilkinson Microwave Anisotropy Probe (WMAP) and Planck yield-
ing valuable data we face the exciting prospects of verifying and refining the
paradigm, and also deducing the details of the dynamics of the inflaton field.
It is possible to set up a relationship between slow roll parameters introduced
above and the temperature fluctuation data of the microwave background radi-
ation. Similarly the large scale galaxy surveys such as 2dF GRS (2 degree Field
Galaxy Redshift Survey) and 6dF GRS provide detailed data on distribution
of galaxies which can be counter checked over a certain range of wavenumbers
against the fluctuations as observed in WMAP and Planck and also against the
specific dynamics of the inflaton.

Finally let us work out a simple example of how we can relate intrinsic
properties of the effective potential to observable features of inflation. We can
for instance compute the number of e-foldings N in the course of φ evolving
from initial value φi to a value φf , given the form of the potential.

N (φi → φf ) ≡ ln

(
R (tf )

R (ti)

)
=

∫ tf

ti

Hdt =

∫
H

φ̇
dφ

= −
∫ φf

φi

3H2dφ

V ′

where we assumed tf ∼ H−1 (φf ). Now shift the global minimum of the effective
potential to be at φ = 0 so φi � φf

= −8πG

∫ φf

φi

V (φ)

V ′(φ)
dφ

This formula can be used to relate the dominant power law in the effective
potential with the number of e-foldings. For V (φ) = λφμ,

N (φi → φf ) =
4π

ν
G
(
φ2
0 − φ2

f

)
≈

(
4π

ν
G

)
φ2
int
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5.8 Density Perturbations and Galaxy Formation

An outstanding problem facing FRW cosmological models is formation of galax-
ies. If the Universe emerged from the Planck era perfectly homogeneous and
isotropic, how did the primordial clumping of neutral Hydrogen occur? Without
such clumping formation of galaxies and in turn stars would be impossible.

The related observational facts are also challenging. The fluctuations in
the average density have resulted in a distribution of galaxies and clusters of
galaxies. What is remarkable is that these fluctuations exist at all observable
scales. Further, the observed fluctuations seem to have originated from seed
fluctuations which were of the same magnitude, approximately one part in 105,
independent of the scale at which we study the fluctuations. This statement
of scale invariance began as a hypothesis, known as the Harrison-Zel’dovich
spectrum but has been remarkably close to the extensive experimental evidence
accumulated over the last fifty years. The main sources of current data are
Sloan Digital Sky Survey (SDSS), Two degree field Galaxy Redshift Survey
(2dF GRS), quasar redshift surveys, “Lyman alpha forest” data etc, collectively
called Large Scale Structure (LSS) data.

Here we shall present a brief overview of the formalism used for studying
fluctuations. We shall also show that the inflationary Universe is in principle a
solution, providing scale invariant fluctuations. The magnitude of resulting fluc-
tuations however is too large unless we fine tune a parameter to required value.

5.8.1 Jeans Analysis for Adiabatic Perturbations

First we study the evolution of perturbations in a non-relativistic fluid. We
study the continuity equation, the force equation and the equation for gravita-
tional potential assuming that the state of the fluid provides a solution a solu-
tion to these. We then work out the equations satisfied by the perturbations.
Fourier analysing the perturbations, it is found that modes with wavelengths
larger than a critical value of the wavelength the perturbations are not stable.

The relevant equations for the mass density ρ(x, t), velocity field v(x, t)
and the newtonian gravitational potential φ(x, t) are

∂ρ

∂t
+∇ · (ρv) = 0

∂v

∂t
+ (v · ∇)v +

1

ρ
∇p+∇φ = 0

∇2φ = 4πGρ
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We now split the quantities into average values ρ̄, p̄ and space-time dependent
perturbations ρ1, p1

ρ(x, t) = ρ̄+ ρ1(x, t) p(x, t) = p̄+ p1(x, t)

and similarly for velocity. However, for a homogeneous fluid, average velocity
is zero so v and v1 are the same. It is reasonable to assume that there is no
spatial variation in equation of state. This means the speed of sound is given
by

v2s =

(
∂p

∂ρ

)
adiabatic

=
p1
ρ1

Thus the equations satisfied by the fluctuations are,

∂ρ1
∂t

+ ρ̄∇ · v1 = 0

∂v1

∂t
+

v2s
ρ̄
∇ρ1 +∇φ1 = 0

∇2φ1 = 4πGρ1

From these coupled equations we obtain a wave equation for ρ1,

∂2ρ1
∂t2

− v2s∇2ρ1 = 4πGρ̄ρ1

whose solution is

ρ1 (r, t) = Ae(iωt−ik·r)

with ω2 = v2sk
2 − 4πGρ̄

The expression for ω suggests the definition of a critical wavenumber, the Jeans

wavenumber, kJ ≡ (
4πGρ̄/v2s

)1/2
. For k � kJ we get exponential growth, i.e.,

instability. We can understand this result by associating with a wavelength λ
a hydrodynamic timescale τhyd ∼ λ/vs ∼ 1/kvs. This is the timescale during

which pressure differences will be communicated by perturbations with wave-

length λ. Next we associate the timescale τgrav = (4πGρo)
−1/2

with the grav-
itational influences. The result above says that for the wavelengths for which
hydrodynamic response is slower to propagate than gravitational influences,
the latter win and cause a gravitational collapse.
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We can now define the Jeans mass

MJ ≡ 4π

3

(
π

kJ

)3

ρo =
π5/2

6

vs
3

G3/2ρ
1/2
0

We can deduce that a homogeneous mass bigger than this value is susceptible
to gravitational collapse.

5.8.2 Jeans Analysis in an Expanding Universe

We need to extend the above treatment to the case of an expanding Universe.
Firstly we must let the mean density and pressure be time dependent due to
change in cosmological scale factor. For instance, the mean density in a matter
dominated universe will scale as ρ̄(t) = ρ̄ (ti) (R(ti/R(t))

3
where ti denotes

some “initial” reference time.
From now on we shall not follow the evolution of the other quantities but

focus on the energy density. We introduce the dimensionless quantity δ = ρ1/ρ̄
from which the obvious R(t) dependence gets scaled out. Further, using the
FRW metric in the comoving form, we treat r to be dimensionless and t and
R(t) to have dimensions of length (equivalently, time). Introduce the Fourier
transform

δ(x, t) =

∫
d3k

(2π)3
δk(t)e

(−ik·r)

It can be shown that these Fourier modes obey the equation

δ̈k +
2Ṙ

R
δ̇k +

(
v2sk

2

R2
− 4πGρ̄(t)

)
δk = 0

We see that the modified Jeans wave number defined by

k2J ≡ 4πGρ̄(t)R(t)2/v2s

plays a crucial role, in that at any given epoch t, wavelengths shorter than
∼ 1/kJ are oscillatory and hence stable.

We shall now study the fate of the long wavelengths, the ones significant
on cosmological scales. We shall see that the unstable modes grow in time,
but instead of exponential growth they may have power law growth. We have
assumed k → 0. Further, using FRW equation we can replace the Gρ̄(t) term by
(3/2)(Ṙ/R)2 in a spatially flat universe. Then for a matter dominated universe
with R ∝ t2/3, we get

δ̈ +
4

3t
δ̇ − 2

3t2
δ = 0
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The solutions are

δ+(t) = δo (ti)

(
t

ti

)2/3

δ−(t) = δ− (ti)

(
t

ti

)−1

Studying the examples of other power law expansions of scale factor R,
one may conclude that the expansion of the universe keeps pulling apart the
infalling matter and slows down the growth of the Jeans instability. However
in the case of a de Sitter universe it is found that the exponential instability
persists. In this case the long wavelength modes obey the equation

δ̈ + 2Hδ̇ − 3

2
H2δ = 0

so that substituting δ ∼ eαt we find

α2 + 2Hα− 3

2
H2 = 0

This has the roots α± = −H ± √
H2 + 3/2. One root is negative defi-

nite signifying decaying exponential though one positive root persists, α+ =√
H2 + 3/2 −H. (When we study density perturbations generated during in-

flation below we shall see that δ can be a physically ambiguous quantity.)

Fate of the Super-horizon Modes

Let us now return to the idea of inflationary universe as the source of primor-
dial perturbations. The basic hypothesis is that the quantum mechanics of the
“inflation” scalar field causes fluctuations in its expectation value. These then
manifest as perturbations in the classical quantity, the energy density. This
assumption is expressed as

ρ1 ≡ δρ =
δV

δφ
δφ

where
δφ ≡ 〈(φ− 〈φ〉)2〉

and the expectation values are computed in an appropriately chosen state.
This choice is not always easy. In general this is a static, translation invariant
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state with similar properties shared by the vaccum expectation values. In an
expanding Universe the corresponding symmetries available are those of the
space-time metric, namely the FRW metric. Since the time translation symme-
try is lost, there are several conceptual issues. Fortunately the de Sitter metric
has a sufficiently large group of symmetries permitting a fairly unique choice of
the vaccum. Inflationary universe resembles the de Sitter solution over a sub-
stantial length of time so that we can adopt the answers obtained for the de
Sitter case.

Decompose δφ into Fourier modes with the same conventions as in the
preceding section. During the inflationary phase, the expectation value of φ
remains approximately constant. Hence by appropriate shifting of the field,
dynamics of δφ and φ are the same. The equations of motion for the modes of
δφ are then

δφ̈k + 3Hδφ̇k + k2
δφk

R2
= 0

Then for “super-horizon” fluctuations with wavenumbers satisfying k � RH,
we can ignore the last term and the non-decaying solution is δφk = constant.
This is a crude argument to justify that the fluctuations at this scale become
constant in amplitude. But constant amplitude would mean vanishing time
derivatives, so the third term can’t be smaller than the first two. In order to
consistently ignore the third term relative to the second, we need to additionally
assume that if the time scale of variation of δφk is τ , then 1/τ > k/R in
addition to k � RH. The two inequalities together imply 1/τ � H. Thus the
fluctuations are constant in the sense that the time scale of their variation is
much less than the natural time scale of the geometric background, H−1.

The above statement can be made more precise using Quantum Field
Theory in curved spacetime, where it can be shown that in de Sitter universe, for
a massless scalar field, the fluctuations in φ, after appropriate cut-off procedure,
are given by

〈φ2〉 =
(
H

2π

)2

The assumption in this calculation is that the state chosen is de Sitter invariant.
Thus variations that do not respect this invariance don’t constribute and we
get the expected constant result. Further, since no new scales are introduced
through the choice of the state, the only dimensionful quantity available in the
problem is H, which effectively determines the magnitude of the fluctuations.

We can now see the qualitative features which make inflation so appeal-
ing for generating scale invariant perturbations. For all normal kind of states
of matter and energy, the scale factor grows as power law ts, with s < 1. Thus
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H−1 grows as t and all wavelengths λphy scale as (λphy/R (t1))×R(t) and hence
keep falling inside the horizon. On the other hand, in the inflationary phase,
H−1 = constant and wavelengths grow exponentially, λphy(t) ∝ λie

H(t−ti) with
some reference initial time ti. Later, after inflation ends, H−1 begins to grow
faster than other length scales and steadily catches up with fluctuations of in-
creasing values of wavelengths. Between leaving H−1 and re-entering H(t)−1

later, the amplitude of the fluctuations remains frozen by arguments of pre-
ceding para. Note that for other power law expansions ts with s > 1 also, the
wavelengths grow faster than the Hubble horizon. However, the amplitude of
these wavelengths will not remain constant and will not reproduce the scale
invariant spectrum after re-entering the horizon. Some of these arguments will
become clearer in the following subsection.

Connection to Density and Temperature Perturbations

The problem of galaxy formation is to predict the observed pattern of clump-
ing of luminous matter. Also, since matter and radiation were in equilibrium
upto decoupling, the fluctuations in matter have also to be reflected in the
fluctuations in the temperature of the CMBR.

The fluctuation we are referring to are in the spatial distribution. These
are mathematically characterized by the auto-correlation function

(Δρ)2(r) ≡ 〈δρ(x)δρ(x+ r)〉
where on the right hand side, an averaging process is understood. For a homo-
geneous medium, the locations x are all equivalent and this dependence drops
out at the end of averaging process. Introducing the Fourier transform δk, we
can show that

(Δρ)2(r) =

∫
dk

k2

2π2
|δk|2 sin kr

kr

Now the rms value Δρrms at a given point is the square-root of this auto-
correlation function for r = 0. Accordingly, taking the limit kr → 0 in the
above expression, we get

(Δρrms)
2 =

∫
dk

k
P(k)

with

P(k) ≡ k3

2π2
|δk|2

P represents the variation in (Δρrms)
2 with variation in ln k. The aim of ex-

periments is to determine the quantity P.
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Linear perturbation theory used above is valid only for small fluctuations.
Once a fluctuation grows in magnitude it begins to be controlled by non-linear
effects. We can estimate the intrinsic scale upto which the mass of a typical
galaxy could have been in the linear regime. Using the value of the ρ̄ to be the
present abundance of non-relativistic matter ( ≈ 10−29g/cc) and bringing out
a factor of 1011 solar masses, the mass in a sphere of diameter of wavelength λ
is

M � 1.5× 1011M�(Ω0h
2)

(
λ

Mpc

)3

Assuming 1012 solar masses per galaxy, this gives the size λ to be 1.9 Mpc,
far greater than the actual galactic size 30 kpc. The λ found here represents
the size this mass perturbation would have had today had it not entered the
non-linear regime.

Present data are not adequate to determine the spectrum P over all scales.
However too large a magnitude of fluctuations at horizon scale would have been
imprited on temparature fluctuations of CMB, which it is not. Likewise large
fluctuations at smaller scales could have seeded gravitational collapse and given
rise to a large number of primordial black holes, which also does not seem to be
the case. Hence the spectrum must not be varying too greatly over the entire
range of wavenumbers. It is customary to assume the spectrum of |δk|2 to not
involve any special scale, which means it must be a power law kn. Further,
a fluctuation of physical scale λ contains mass M ∼ λ3 ∼ k−3. Hence the
spectrum P ∼ M−1−n/3. Now if we make the hypothesis that the spectrum of
perturbations seems to be independent of the scale at which we observe it, we
expect P ∼ a constant, i.e. independent of M . For this to be true, n must be
−3.

In the analyses of CMB data it is customary to normalize the rms per-
turbation spectrum by its observed value at (8/h) ∼ 11Mpc and denote it σ8.
Planck reports the best fit value to be 0.8. Further, (Δρrms)

2 is parameterized
as k(−1+ns) where the subscript in ns signifies scalar perturbations. A very long
epoch of perfectly de Sitter inflation would produce ns = 1 and a perfectly scale
invariant spectrum. Given a specific model of inflation the small departures of
ns from unity can be calculated as a function of k. This mild dependence of ns

on k is referred to as “running of the index” of the power law. Current Planck
data (i.e. horizon scale perturbations) seem to suggest ns = 0.96 but the direct
observations of LSS data (galaxies and clusters of galaxies) suggest ns > 1.

Likewise a formalism exists for relating the temperature fluctuations with
the density perturbations and in turn with the scalar field fluctuations. We
shall not go into it here and the reader is referred to the references.
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5.8.3 Density Fluctuations from Inflation

We now show how the inflation paradigm along with the knowledge of the form
of the scalar potential helps us determine the magnitude of the scalar field
fluctuations.

Suppose we wish to know the fluctuation in a scale of size of our present
horizon. According to the derivation in previous subsection we need to know
the value of the perturbation when it left the horizon in the inflationary era.
And we need to know the number of e-foldings the inflationary universe went
through before becoming radiation dominated. It is the latter fact which then
determines the later epoch when the same scale re-enters the horizon.

Let us trace a physical scale �0 today by keeping track of corresponding
co-moving value �. We have to consider the evolution in two parts. From the
present we can only extrapolate back to the time when the current hot phase of
the Universe began, i.e. the “re” heated6 phase. Prior to that was the phase of
inflaton oscillation and decay. Reheating is assumed to be complete at a time
td, the decay lifetime of the inflaton or its product particles.

Thus the size of a scale � can be extrapolated to the epoch tf when inflation
ended, (i.e., the slowness conditions on the evolution of the scalar field ceased
to be valid) by

�f = �

(
To

Tr

)(
R (tf )

R (td)

)
The last ratio can be estimated if we are given the effective potential V (φ) =
λφν and a formalism for the dissipation of the inflaton vacuum energy. We shall
not pursue these details here but claim that this can be calculated to be

R (tf )

R (td)
=

(
tf
td

)(ν+2)/3ν

(5.1)

=

(
tf
td

)1/2

for ν = 4 (5.2)

Now �phys (tf ) = H−1 eN	 where N� is the number of e-foldings between
the time the specific scale attained the value H−1, (i.e. became comparable
to the horizon) and the end of inflation. Substituting the current value of the
horizon in the above expressions finally gives NH−1

0
≈ 50− 60.

6We remind the reader that it is possible in some inflationary scenarios for the Universe

to never have been in thermal equilibrium before this stage. Hence the prefix “re” is purely

conjectural though conventional.
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We now trace the magnitude of the perturbation through this exit from
horizon followed by the re-entry at present epoch. It turns out that δρ/ρ is
a physically ambiguous quantity to follow through such an evolution. This is
because choice of a particular time coordinate amounts a choice of a gauge in
General Relativity. The gauge invariant quantity to focus on has been shown
to be ζ = δρ/(p+ ρ).

We seek the value of the numerator at a late epoch when inflation has
ended. The denominator at this epoch is determined by p = 0 and the energy
density which is dominated by the kinetic term. The value of ζ at the inflation-
ary epoch is known from preceding arguments about perturbations on scales
comparable to horizon. Here

δρ =
δV

δφ
δφ = V ′(φ)

H

2π

where the δφ is estimated from QFT calculation of the rms value. Further, we
replace φ̇2 by using the slow roll condition of inflation, 3Hφ̇ = −V ′(φ). Thus
we equate (

δρ

φ̇2

)
�∼H−1

= ζ|�∼H−1

=
V ′(φ)H(φ)

2πφ̇2

∣∣∣∣
�∼H−1

=

(
9H3(φ)

2π (V ′(φ))

)
�∼H−1

Thus in matter dominated era when p = 0, we have recovered(
δρ

ρ

)
�

=

(
2

5

)
× 8

√
6π

V 3/2 (φ�)

M2
PV

′ (φ�)

where we reexpress G ≡ 1/M2
P , the squared inverse of the Planck mass in natu-

ral units. The 2/5 factor is acquired during transition from radiation dominated
to matter dominated era.

We thus need the values of V and V ′ at the value φ�. We do not really
know the latter directly. But we can determine it if we know the number of
e-foldings between its crossing the horizon and the end of inflation. Inverting
the relation

H−1 (φ�) = �phy (tf ) e
N	
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for φ� and also using

N� (φ� → φf ) =

∫
Hdt =

∫ φf

φ	

H

φ̇
dφ → πGφ2

�

where the last arrow gives the answer corresponding to the form λφ4 for the
effective potential and is obtained by consistently using the slowness condition
and the FRW equation. This gives us the number of e-foldings between horizon
crossing by this scale and the end of inflation. Therefore, trading N� for φ� we
get (

δρ

ρ

)
�

=
4
√
6π

5
λ1/2

(
φ�

MP

)3

=
4

5

√
6πλ1/2

(
N�

π

)3/2

We have arrived at a remarkable mathematical relationship, expressing the
magnitude of perturbations visible in the sky today with the parameters
of the effective potential that drove the primordial inflation. We can take
the fluctuations δρ/ρ to be as visible in the CMB temperature fluctuations,
δT/T ∼ 6 × 10−5. Assuming N = 55 as needed for solving the horizon and
flatness problems, we find that we need the value of λ ∼ 6 × 1014. This is
a tremendous theoretical achievement. Unfortunately the required numerical
value is unnaturally small and it appears that we have to trade the fine tuning
required to explain the state of the Universe with a fine tuning of a microscopic
effective potential.

5.9 Relics of the Big Bang

As the Universe cools reaction rates of various physical processes become slow.
When they become slower than the expansion rate of the Universe, the entities
governed by those reactions no longer interact and remain as residual relics. The
mathematical description for these events is provided by Boltzmann equation
which can be used to infer the relative abundance of these relic particles which
can be in principle observed today. The term relic applies to a wide variety of
objects, including extended objects like cosmic strings or domain walls but we
shall be dealing only with particle like relics in these notes.

5.9.1 Boltzmann Equation

The Boltzmann equation describes the approach to equilibrium of a system
that is close to equilibrium. In the context of the early Universe we have two
reasons for departure from equilibrium. One is that if the reheat temperature
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after inflation has been Treh then all processes requiring energies larger than
T are suppressed and such processes play no role in establishing dynamical
equilibrium. Thus particles that interact via only such processes remain out of
equilibrium. We do not have much more control on such entities and in any case
they most likely got inflated away and will not be recreated due to insufficient
energy for them to be created.

The more important source of departure from equilibrium is the fact that
the Universe is expanding. Like in an expanding gas, the temperature systemat-
ically falls. The primary assumption here is adiabaticity – i.e. extreme slowness
of the rate of change of temperature compared to the time scales of the equi-
librating processes. However, interesting epochs in the Universe correspond to
times when the rates of a few specific processes are becoming as small as the
expansion rate of the Universe. After the epoch is passed same reactions go out
of equilibrium and the last conditions remain impritned as initial conditions for
the rest of the evolution.

Schematically one can think of the Boltzmann equation as Liouville op-
erator L̂ acting on distribution function f , with a driving force provided by
a collision operator C. In the absence of the collision term we have equilib-
rium statistical mechanics. L̂[f ] = C[f ] The Liouville operator which basically
describes convection through the phase space can be written as

L̂ =
d

dt
+ �v · �∇x +

�F

m
· �∇ν

assuming the conjugate momentum has the simple form of velocity times mass.
In General Relativity this has to be generalized to

pα
∂

∂xα
− Γα

βψp
βpψ

∂

∂pα

which simplifies in the FRW case to

E
∂f

∂t
− Ṙ

R
|�p|2 ∂f

∂E

The total number density is obtained by integrating the distribution function
over all momenta,

n(t) =
g

(2π)3

∫
d3pf(E, t)

Thus we obtain

g

(2π)3

∫
d3p

∂f

∂t
− Ṙ

R

g

(2π)3

∫
d3p

|�p|2
E

∂f

∂E
=

g

(2π)3

∫
C[f ]

d3p

E
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Exchanging the order of integration and differentiation in the first term and
working out the second term by doing an integration by parts, we can show
that this equation becomes

d

dt
n+ 3

Ṙ

R
n =

g

(2π)3

∫
C[f ]

d3p

E

Consider a process involving several particle species ψ, a, b...

ψ + a+ b ↔ i+ j + ...

Our interest is usually a specific species which is undergoing an important
change. We think of the collision operator with species ψ as the object of main
interest to be

g

(2π)3
C[f ]

d3pψ

dEψ
= −

∫
d3pψ

(2π)32Eψ
× d3pa

(2π)32Ea

×...(2π)4δ4 (p4 + pa...− pi − pj ...)

×
[
|M |2→ fψfa (1± fa)

− |M |2← fi (1± fa) (1± fψ)
]

where M represents a matrix element for the concerned process. There are
Bose-Einstein and Fermi-Dirac distribution functions for the species in the in
state. As for the out state, the ± signs have to be chosen by knowing the species.
Bosons prefer going into an occupied state (recall harmonic oscillation relation
a†|n〉 = √

n+ 1|n〉 so that an n-tuply occupied state has weightage proportional
to n to be occupied). Hence the factors (1 + f), while fermions are forbidden
from transiting to a state already occupied hence the Pauli suppression factors
(1− f). There is an integration over the phase space for each species.

Let us specialize the formalism further to cosmologically relevant case
with isentropic expansion. Since the entropy density s scales as 1/R3, we can
remove the presence of R3 factors in number density of non-relativistic particles
by studying the evolution of their ratio with s. Thus we define the relative
abundance for a given species Y = nψ

s . Then the we can see that

ṅψ + 3Hnψ = sẎ

Next the time evolution can be trade for temperature evolution in a radiation
dominated universe, by introducing a variable x.

x ≡ m

T
so that t = 0.3g

−1/2
∗

mPl

T 2
= 0.3g

−1/2
∗

mPl

m2
x2 ≡ H−1(m)x2
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Thus we get the equation

dY

dx
= − x

H(m)

∫
dπψdπa, ...dπi...(2π)

4|M |2δ4 (pin − pout)

[fa fb...fψ − fi fj ...]

Consider a species ψ which is pair annihilating and going into a lighter species
X, ψψ̄ → XX̄. The assumption is that the X are strongly interacting either
directly with each other or with rest of the contents, so that they equilibrate
quickly and remain in equilibrium. Thus the species to be studies carefully is
ψ. Due to the property of the chemical potential and detailed balance which
would exist if the ψ are also inequilibrium we can relate the equilibrium values

nXnX̄ = neQ
ψ nEQ

ψ̄
=
(
nEQ
ψ

)2

Note the superscript eq is not necessary in the nX due to it always being in
equilibrium. We can thus obtain the equation

dY

dx
= − xs

H(m)
〈σA|ν|〉

(
Y 2 − Y 2

EQ

)
The solution of above equations can be simplified by identifying convenient
regimes of values of x in which approximate analytic forms of YEQ exist

YEQ(x) =
45

2π4

(π
8

)1/2 g

g∗s
x3/2e−x x � 3 non-relativistic case

YEQ(x) =
45

2π4
ξ(3)

geff
g∗s

= 0.278
geff
g∗s

x � 3 relativistic case

where the effective degeneracy factors geff are defined relative to their usual
values g by geff = gboson and geff = 3

4gfermi.

Freeze out and subsequent evolution

We can get further insight into the special case considered above, namely that
of a species annihilating with its anti-particle and also going out of equilibrium.
Define

ΓA ≡ nEQ 〈σA|ν|〉
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which represents the rate of the reactions, given as a product of the microscopic
cross-section σ, and number density times relative velocity as a measure of the
flux. Using this, we can rewrite the evolution equation above in the form

x

YEQ

dY

dx
= −ΓA

H

[(
Y

YEQ

)2

− 1

]

This shows that the rate of approach to equilibrium depends on two factors.
The second factor is the extent of departure from equilibrium, as we may expect
even in a laboratory process. The front factor ΓA/H represents the competi-
tion between the annihilation rate (temperature dependent) and expansion rate
(also temperature dependent) of the Universe. When this front factor becomes
small compared to unity, approach to equilibrium slows down, even if equilib-
rium is not reached. The abundance of the species ψ in a comoving volume
remains fixed once this factor becomes insignificant. This phenomenon is called
“freeze out”, i.e., the fact that the relative abundance does not change after
this and continues to evolve like free gas.

After the species freezes out, at epoch tD with corresponding temperature
TD, the distribution function of the species continues to evolve purely due to
the effect of the expanding spacetime. There are two simple rules of thumb we
can prove for its distribution d3n/d3p in phase space :

• A relativistic species continues to have the usual Bose-Einstein or Fermi-
Dirac distribution function (eβE ± 1)−1, except that β−1 = T scales like
T (t) = T (tD)R(tD)/R(t).

• A species which is non-relativistic, i.e., mass m � TD the number den-
sity simply keeps depleting as R−3, just like the particles which are still
in equilibrium. But the momenta scale as R−1, so energy E = p2/2m
scales as R−2. This is equivalent to the temperature scaling as T (t) =
T (tD)R2(tD)/R2(t).

Thus the distribution functions have an energy dependence which is simply
obtained from their functional forms at the time of decoupling. In the relativistic
case in fact remaining self-similar, and looks just like that of the particles still
in equilibrium, with an important exception. If there is a change in the total
number of effective degrees of freedom at some temperature, this information is
not conveyed to the decoupled particles. In the non-relativistic case the scaling
of the temperature parameter is significantly different.



5.9. Relics of the Big Bang 249

5.9.2 Dark Matter

There is a variety of evidence to suggest that a large part of the matter content
of the Universe is neither radiation, nor in the form of baryons. As such it is
not capable of participating in processes producing electromagnetic radiation
and christened Dark Matter.

The direct evidence for Dark Matter is available at two largely different
scales. At the scale of individual galaxies and at the scale of clusters of galaxies.
At the level of single galaxies it is possible to measure speeds of luminous bodies
in the spiral arms for those galaxies which are visible edge on. The difference in
the redshifts of the parts rotating away from us and the parts rotating towards
us is measurable. It turns out that as a function of their distance from the
center of the galaxy, velocities of rotation in the plane of the galaxy do not
slow decrease in accordance with the 1/r2 law expected from Kepler’s law.
Rather their speeds remain steadily high even beyond the visible edge of the
galaxy. The plots of the velocity vs. the radial distance from the center of the
galaxy have come to be called “rotation curves”. The departure from Kepler
law suggests presence of gravitating matter extended to ten times the size of
the visible galaxy!

Secondly at the level of clusters of galaxies, it is possible to measure the
relative speeds of the galaxies in a cluster, specifically the component of the
velocity along the line of sight. By viirial theorem the values of these velocities
should be set by the total matter content of the cluster. Again one finds the
velocities more compatible with almost ten times the matter content compared
to the visible.

Another indicator of the extent of the baryonic content is indirect but very
sensitive. Big Bang Nucleosynthesis predicts ratio of Hydrogen to Helium and
the ratios of other light elements to Hydrogen determined by one parameter,
the baryon to photon ratio, η = B/s where B is the net baryon number (dif-
ference of baryon and antibaryon numbers) and the denominator is the photon
entropy. We shall have occasion to discuss this in greater detail in the sec-
tion on Baryogenesis. The observed ratios of Helium to Hydrogen and other
light nuclei to Hydrogen is correctly fitted only if η ∼ 10−9. Knowing the pho-
ton temperature very accurately we know the contribution of radiation to the
general expansion (it is very insignificant at present epoch). Further knowing
this accurately we know the baryon abundance rather accurately. Between the
two, the latter is certainly the dominant contribution to the energy density of
the present Universe. However the total amount of matter-energy required to
explain the current Hubble expansion is almost 30 times more than the abun-
dance baryons inferred through the BBN data. Again we are led to assume the
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existence of other forms of matter energy that account for the Hubble expan-
sion. It is therefore assumed that there is extensive amount of non-relativistic
matter present in the Universe today, and is called Dark Matter. We do not
know at present whether Dark Matter is a single species of particles or several
different species of particles. We do not know the possible values for the masses
of such particles, however the study of galaxy formation suggests two classes of
Dark Matter distinguished by their mass as we see in the next paragraphs.

The latest data from all sources suggest that the dominant component
of the energy driving the expansion is actually neither radiation nor matter,
but some other form of energy obeying an equation of state close to that of
relativistic vacuum, p = −ρ. This is estimated to be contribute about 68%.
The Dark matter component is estimated to be about 27%, and only about 5%
is in the form of baryonic matter. These conclusions follow from Planck data on
CMB. It is remarkable that the abundance of Dark Matter relative to baryonic
matter as inferred directly from cluster data is verified reasonably accurately
by the very indirect methods. This is what gives us confidence in the Dark
Matter hypothesis.

When galaxy formation is considered this highly abundant Dark Mat-
ter component plays a significant role. While no other kind of interaction is
permitted between baryonic matter and Dark Matter at least at low energies,
gravity is always a mediator. It is no surprise therefore that the Dark Matter
is clustered in approximately the same way as luminous baryonic matter. The
question whether there are large distributions of Dark Matter separately from
baryonic matter needs experimentally studied however so far the evidence does
not seem to demand such an assumption.

It then follows that the growth of perturbations which led to galaxy for-
mation must have proceeded simultaneously for the baryonic matter and the
Dark Matter, coupled to each other through gravity. The study of this coupled
evolution gives rise a distinction of two categories of Dark Matter which can
be made based on the mass of the corresponding particle. Those particles that
have become non-relativistic by the time of galaxy formation are called Cold
Dark Matter (CDM). They are in the form of pressureless dust by this epoch
and their chief contribution to energy density comes from their rest masses and
not their thermal motion, hence Cold. We may think of this dividing line as set
by the temperature ∼ 1eV when neutral Hydrogen forms. Particles which are
already non-relativistic at this temperature certainly belong to the category of
CDM. On the other hand particles that remain a relativistic gas down to 1eV
temperature contribute through their thermal energy density and are called
Hot Dark Matter (HDM). A prime candidate for this kind of DM is a neutrino,
whose masses are constrained to very small values.
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The main difference in the two kinds of DM comes from the nature of
the clustering they assist. From the Jeans formula we see that HDM clustering
occurs at large physical scales while CDM can cluster at much smaller scales.
In fact too much HDM can destroy clumping of baryonic clusters at smaller
scales. Thus a study of the spectrum of perturbations P(k) gives a clue to the
form of DM that assisted the formation of galaxies. The current evidence in the
light of the WMAP and Planck data strongly suggests essentially the presence
only of CDM, though some proportion of a HDM species cannot be ruled out.

In the following subsections we shall show how we can trace back at least
some of the microscopic properties of the Dark Matter if we know its abundance
today.

Hot Relics

For particles that continue to remain relativistic as they are going out of equi-
librium, the equations from the previous subsection can can be used to show
that their abundance at late time is determined by the value of their freeze out
temperature, i.e., xfreeze out

Y∞ = YEQ (xfreeze out) = 0.278
geff
g∗s(x)

If we want to think of this as the Dark Matter candidate, we estimate the
energy density it can contribute, which is determined to be

ρψo = s0Y∞m = 3Y∞
( m

eV

)
keV-(cm)

−3

From LSS data on distribution of fluctuations, as also the CMB data it is
now concluded that the structure formation could not have occurred due to
HDM. Hence this is not a very useful quantity to verify against observations.
Historically, this density value was used to put an upper bound on the mass
of a neutrino. If the decoupled neutrino is to not be so overabundant that it
exceeds the current density of the Universe, than its mass must be bounded.

m � 13eV
g∗s (xf )

geff

For ν’s the ratio of the g∗ factors is 0.14, from which one can conclude that
mν < 91eV . This is known as the Cowsik-McClelland bound. Although the
bound is surpassed by both by terrestrial experiments and recent astrophysical
data, it is an instructive exercise.
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Cold Relics

For cold relics, we need to determine the quantities xf , Tf corresponding to
the freeze out of the species, and its present abundance relative to radiation,
Y∞. These are determined by solving the equation

dY

dx
= − 1

x2

√
πg∗(T )

45
MP 〈σv〉(Y (T )2 − Yeq(T )

2)

It is useful to make an expansion of the cross-section in partial waves, which
amounts to an expansion in energy, or equivalently in the present setting, an
expansion in x = m/T . For a massive particle the leading term is

〈σa|v|〉 ≡ σo

(
T

m

)n

= σox
−n x � 3

Thus expressing the cross-section as a function of x, the equation can be solved.
The solution to this equation gives the left over abundance for a massive particle
χ at present time. The answer typically has the following dependence

Y∞ = O(1)× xf

mχMP 〈σA|v|〉
with xf determined numerically when the Y effectively stops evolving. The
present contribution to the energy density due to these particles is mχY∞ ×
(s(T0)/ρcrit) where s(T0) is the present value of entropy density in radiation.

It is thus possible to relate laboratory properties of the χ particle with
a cosmological observable. Given a particle physics model, we can constrain
the properties of the potential Dark Matter candidate by calculating its con-
tribution to ΩDM and then counterchecking the same cross-section in collider
data.

5.10 Baryogenesis

A very interesting interface of Particle Physics with cosmology is provided by
the abundance of baryons in the Universe. At first it is a puzzle to note that we
only have baryonic matter present in the Universe, with no naturally occurring
baryons to be seen.

In principle a cluster of galaxies completely isolated from others could
be made totally from anti-Hydrogen and anti-elements. However there should
be some boundary within which this confined, since any contact with usual



5.10. Baryogenesis 253

baryonic matter would generate violent gamma ray production which would be
observed as a part of cosmic rays. But there are no clearly visible empty cor-
ridors separating some galaxies or clusters of galaxies from others, nor is there
a significant gamma ray background to indicate ongoing baron-anti-baryon an-
nihilation. Thus we assume the present Universe to be devoid of priordial anti-
baryons.

Due to charge neutrality, the electron number should be exactly equal to
the proton number of the Universe, and if Lepton number were conserved, we
should therefore have a predictable abundance of electron type anti-neutrinos.
However after the discovery of neutrino oscillations the question of total lepton
number conservation is open and their number may not be determined exactly
by the charged lepton number. Thus the total matter vs. anti-matter asymmetry
of the Universe is a more complicated question. We shall deal only with the
baryons where the situation is more precisely known.

The observed asymmetry is quantified by expressing it as a ratio of the
photon number density, i.e., entropy,

η ≡ nB

s
≡ nb − nb̄

nγ

where the upper case subscript B signifies the net baryon number while the
lower case subscripts b, b̄ signify the actual densities of baryonic and anti-
baryonic species separately. Big Bang nucleosynthesis constrains the value of
this ratio very precisely. The abundances of Helium 4He to Hydrogen is sensi-
tively dependent on this ratio, but further, the abundances of light nuclei such
as Deuterium, 3He, and 7Li relative to Hydrogen are also extremely sensitive
to this ratio.

5.10.1 Genesis of the Idea of Baryogenesis

We believe that the Universe started with a hot Big Bang. If the laws of nature
were completely symmetric with respect to matter and anti-matter both should
be present in exactly same abundance in thermodynamic equilibrium. Then the
asymmetry between the two has to be taken as an accidental initial condition.
Fortunately we know that the Weak interactions do not respect charge con-
jugation or matter-anti-matter symmetry C, but only the product CP after
parity P is included. Further, in 1964-65 two crucial discoveries were made. It
was shown that certain sectors of the theory (K0 − K̄0 system) also do not
respect CP . In QFT there is a theorem that says that it is impossible to write
a Lorentz invariant local theory which does not respect the combination CPT ,
now including time reversal T . Thus a CP violating theory presumably violates
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T invariance in same measure. The small mixing of CP eigenstates will also be
reflected in small asymmetry in reaction rates involving these participants.

The other crucial discovery was the Cosmic Microwave Background which
established the Hubble expansion back to temperatures as high as 1000K. It
is easy to extrapolate this to sufficiently early times and higher temperatures
when density and temperature would be sufficiently high for Particle Physics
processes to occur freely. The stage was set for searching for a dynamical ex-
planation for the baryon asymmetry (Weinberg 1964) and a specific model was
proposed (Sakharov 1967).

5.10.2 Sakharov Criteria

The minimal conditions required for obtaining baryon asymmetry have come
to be called Sakharov criteria. They can be understood via a specific example.
Consider a species X which carries baryon number and is decaying into two
different possible final products, either two quarks or one anti-quark and a
lepton. (We use one of the decay modes to determine the baryon number of
X and violation shows up in the other decay). Such decays are easily possible
in Grand Unified models. The following should be true for a net B number to
remain in the Universe :

1. Baryon number violation

X → qq ΔB1 = 2/3
q̄�̄ ΔB2 = −1/3

2. Charge conjugation violation

M(X → qq) �= M (
X̄ → q̄q̄

)
3. CP violation reflected in difference in rates

r1 =
Γ1(X → qq)

Γ1 + Γ2
�= Γ̄1

(
X̄ → q̄q̄

)
Γ̄1 + Γ̄2

= r̄1

4. Out-of-equilibrium conditions, which would make reverse reactions be-
come unfavorable

Net B = ΔB1r1 +ΔB2 (1− r1)

(−ΔB1) r̄1 + (−ΔB2) (1− r̄1)

= (ΔB1 −ΔB2) (r1 − r̄1)
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In the early Universe, the condition for departure from Equilibrium means
that the reaction rate should become slow enough to be slower than the Hubble
expansion rate at that epoch. This will happen because reaction cross-sections
depend both on density which is falling due to expansion, and the energy de-
pendence of the intrinsic cross-section makes it smaller at lower temperature.

ΓX � αXm2
X/T

H � g
1/2
∗ T 2/MPl

Need the rate ΓX still < H when kT ∼ mX . Thus kTD ∼ (αX mPLmX)
1/2

.

Resulting

nB

s
� B

g∗
× (Boltzmann evolution)

Thus the result depends purely on the microscopic quantity B (includes δCP )
and g∗ of the epoch when the mechanism operates.

5.10.3 Anomalous Violation of B + L Number

Quantization of interacting field theories contain many subtleties. Sometimes
the process of renormalization does not respect a symmetry present at the
classical level. Then quantum mechanically the corresponding number operator
is not conserved. This situation is called anomaly. This is tolerable if it happens
for a global charge. If it happens for a gauge charge the model would not be
viable. It turns out that the Standard Model of Particle Physics does not respect
the global quantum number B + L, baryon number plus lepton number. The
number B − L is also not coupled to any gauge charge howeve it remains,
miraculously, anomaly free and hence is conserved.

The anomalous violation is not obtained in perturbation theory. However
a handle on the anomalous violation rate can be obtained by topological ar-
guments involving global configurations of gauge and Higgs fields. A specific
configuration whose energy value determines the rate is called sphaleron. The
energy of a sphaleron is approximately 5 TeV in Standard Model. At temper-
atures well below this, the rate is suppressed exponentially. At a temperatrue
much higher, the rate is order unity. Actually it becomes meaningless to speak
of a conserved number. However a number generated by any other mechanism
will be quickly equilibrated to zero by this non-conservation.
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In the in between regime of temperatures, the rate is estimated as

Γ ≈ κ (NV)0 T 4 e−Esph(T )/kT

where κ is the determinant of other fluctuations (recall Coleman tunneling
formula) and NV0 represents sphaleron zero-mode volume, i.e., the weightage
associated with all the possible ways a sphaleron can arise. This formula is valid
for mW � T � mW /αW where mW is mass of the W boson and αW is the
fine structure constant g2/4π of the Weak interactions.

Sphaleron energy depends on the Higgs mass at zero temperature in such
a way that too light a Higgs (< 90GeV) would result in very rapid violation of
B + L around the electroweak phase transition. The conclusion is that either
the Higgs is heavier (which is corroborated by the bound mH > 117GeV from
LEP data), or there is more than one Higgs, or that there was a primordial
B − L number already present at the electroweak scale.

5.10.4 Electroweak Baryogenesis

Could the baryon number arise at the elctroweak scale itself? Sphaleronic pro-
cesses are already becoming unimortant at this scale. Also the properties any
new particles needed can be counterchecked at the LHC or ILC. At the elec-
troweak scale the expansion of the Universe is many orders of magnitude (1012)
slower than the particle physics processes. Hence direct competition with rates
is not possible. However, a first order phase transition leads to formation of
bubble walls. They sweep past any given point in sufficiently short time scale
that Particle Physics scales compete with this time scale rather than the ex-
pansion time scale of the Universe. Such a scenario which by-passes the thermal
conditions in the Universe is called non-thermal, as against the example studied
at the beginning of the section which is called thermal mechanism for baryoge-
nesis.

If we enhance the SM with additional particles we can actually use the
sphaleronic excitations to generate B + L asymmetry if the other criteria of
Sakharov are satisfied. Typical scenarios rely on

1. Usual C asymmetry of Weak interactions

2. B + L violation by sphaleronic excitations

3. CP violation due to complex phases in the vacuum expectation values of
one or more scalar fields

4. Out-of-equilibrium conditions due a first order phase transition
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It turns out that all of these conditions are easily satisfied provided we have
more than one Higgs scalar and sufficiently large CP phases entering some
fermion masses. In specific models favored for esthetic reasons however it has
not been easy to reconcile all the known constraints from other data with the
requirements of electroweal baryogenesis. For example, the Minimal Supersym-
metric Standard Model (MSSM) has the following dangers (see M. Quiros,
arXiv:hep-ph/0101230)

• Need for first order phase transition implies a light Higgs and a light
superpartner “stop” of the top quark, as also a bound on the ratio of the
masses of the two neutral Higgs bosons expressed as tan β,

110 < mH < 115GeV, tanβ � 4 , mt̃R
∼ 105to165GeV

• One requires δCP � 0.04 which in turn raises the danger of color breaking
vacua.

5.10.5 Baryogenesis from Leptogenesis

A realistic alternative possibility for dynamical explanation for baryon asym-
metry is thrown up by the discovery of neutrino mass. The very small mass
mν ∼ 0.01 eV for neutrinos requires their Yukawa coupling to the Higgs to be
10−11. As we discussed in case of inflation, such small dimensionless numbers
seem to hide some unknown dynamics going on. A very elegant explanation
for the small mass can be given if we assume (i) Majorana type masses for the
neutrinos and (ii) assume this mass, denoted MR to be high, MR ∼ 1014GeV.
It can be shown that

mνMR � m2
W

is a natural relation if such a scale is assumed. Now a scale like 1014 is also far
removed from other physics, but is tantalisingly in the range of Grand Unified
theories. This mechanism is called see-saw mechanism

This possibility makes leptogenesis naturally possible in the early Universe
almost literally by the example we studied earlier for the particle X at the
beginning of the section. Majorana fermions do not conserve fermion number.
Further, the mixing of the three generations can introduce a complex phase in
the mass matrix which can lead to CP violation. Finally high mass means that
the decay rate can actually compete with the expansion scale of the Universe
which is sufficiently rapid at high temperatures, unlike at electroweak scale.
This can result in lepton asymmetry of the Universe. This lepton asymmetry
converts to baryon asymmetry as follows. Recall that at temperatures high
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compared to the electroweak scale, B + L number is meaningless, and will be
equilibrated to zero. That is, the anomalous effects ensure Δ(B + L) = 0 and
hence will generate approximately ΔB ∼ −ΔL. The equality is not exact due
to interplay of several chemical potentials one has to keep track of.

An important handle on this proposal is provided by the low energy neu-
trino data. It is possible to constrain the extend of CP violation that can be
available at high scale from low scale masses due to see-saw mechanism. Con-
sider the decay of a heavy neutrino species N into a light lepton � and a Higgs
particle. There are several such possibilities, and in each case the electric charge
in the final state is balanced to be zero. Due to lepton number violation char-
acteristic of Majorana fermions, the same N can also decay into anti-lepton
and anti-Higgs. Thus the difference in the lepton number of the final products
in the two different modes is ΔL = 2 along the same lines as ΔB = 1 in our
example at the beginning of the section. Then the CP -asymmetry parameter
in the decay of any one of the three heavy neutrinos Ni, i = 1, 2, 3 is defined as

εi ≡ Γ(Ni → �̄φ)− Γ(Ni → �φ†)
Γ(Ni → �̄φ) + Γ(Ni → �φ†)

. (5.3)

If we assume a hierarchy of masses M1 < M2 < M3 as is the case of all
other fermions, then the main contribution to the lepton asymmetry generation
comes from the species to decay last, i.e., the lightest of the heavy neutrinos
N1. (Why?) The maximum value of CP violation parameter ε1 in this case can
be shown to be

|ε1| ≤ 9.86× 10−8

(
M1

109GeV

)( m3

0.05eV

)
. (5.4)

where the mass of the heaviest of the light neutrinos ν3 is bounded by the
atmospheric neutrino data, which gives the mass-squared difference Δm2

atm ≡
m2

3 −m2
1. Thus, m3 �

√
Δm2

atm = 0.05eV.
In the Fig. 5.8 we show the solutions of the Boltzmann equations showing

the accumulation of B − L as temperature T drops for various values of M1

with CP violation chosen to be maximal permissible according to above formula
and the parameter m̃1 = (m†

DmD)11/M1 chosen 10−5eV. It turns out that this
particular parameter (numerator is the 11 element of the square of Dirac mass
matrix for the neutrinos) determines the overall outcome of the thermal B−L
number production. We see that there is negligible net number B − L at high
temperature but it builds up as the decay processes are going out of equilibrium.
At some point the production levels off. Then due to sphalerons, the asymmetry
which is initially in the form of light neutrinos also gets converted to baryonic
form producing net B number.
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Figure 5.8: The evolution of the B − L asymmetry with temperature, shown here as

a function of Z = M1/T , with fixed values of M1 as indicated in the legend. The

value of the CP violation parameter is maximal permissible and the parameter m̃1

explained in text is chosen 10−5eV for all graphs. Figure from N. Sahu et al, Nucl.

Phy. B752 (2006)

From such exercises it can be shown that we need the mass scale MR

of the heavy majorana neutrinos to be typically > 1012GeV but with some
optimism, at least > 109GeV for successful thermal leptogenesis. The problem
with this conclusion is that firstly a new intermediate scale much lower than
required for gauge coupling unification is called for. Secondly, as discussed in
the Introduction, we expect supersymmetry to regulate the QFT involved in
Grand Unification with several scales of symmetry breaking. But supersym-
metry necessarily implies the existence of gravitino. Further, it can be shown
that if our Universe underwent simple radiation dominated expansion from any
temperature larger than 109GeV down to Big Bang Nucleosynthesis, sufficient
number of gravitinos would be generated that would make the Universe matter
dominated and foul up BBN. Thus it is usual to assume that the “reheat” tem-
perature after inflation is lower than 109GeV. But then the thermal leptogenesis
discussed here becomes unviable.

It remains an open possibility that there are non-thermal mechanisms
similar to the electroweak baryogenesis, but applicable to leptogenesis.
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5.11 Appendix

Here we discuss the “True or False” statements given in section 5.1.1. Note
that some of the statements are half baked and warrant a discussion rather
than simple yes or no. Some hints.

1. Curved spacetime takes account of equivalence of gravitational and in-
nertial mass. The Relativity principle of space and time could have been
Galilean and the formulation would be still useful. See ref [1], chapter 12
for Cartan’s formulation.

2. Reparametererization only relabels points. It cannot change physics. Usu-
ally the laws are written only in the form invariant under rigid rotations.
But every law can in principle be rewritten to be form invariant under
change of parameterization. Thus reparameterization invariance cannot
be a new physical principle.

3. Due to Equivalence Principle as adopted by Einstein, all forms of energy
are subject to and contribute to gravitational field. Energy density there-
fore must contain contribution of gravitational “binding energy”. However
we can always choose freely falling frames locally so that effect of grav-
ity disappear. In these frames the energy density of gravitational field
disappears.

4. Total energy would be an integral of the energy density over a whole space-
like surface. This answer would remain unchanged under coordinate local
transformations especially if we restrict ourselves to rigid transformations
at infinity (sitting where we measure up the energy). But GR throws up
the possibility of compact spacelike hypersurfaces. In this case asymptotic
region is not available.

5. If this genuinely means spacetime measurements are meaningless at that
point then it is unphysical. But it can be an artifact of coordinate system,
as for instance the origin in a spherical or cylindrical coordinates.

6. Divergence of metric coefficients is often avoided using different coordinate
systems.

7. Curvature tensor is a physical quantity. Divergence of its components will
also often imply divergence of some components of energy-momentum ten-
sor. Such points would be unphysical. However note that much electro-
statics is done assuming point charges. These have infinite energy density
at the location of the point. When such points are isolated we hope some
other physics takes over as the singular point is approached.
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8. The expansion of the Universe is neither relativistic, nor a strong gravity
phenomenon at least ever since BBN. It admits a Newtonian description.
If the spacelike hypersurfaces were compact that would be easier to explain
as a dynamical fact in GR. In Newtonian physics we would simply accept
is as fact, just as we are willing to accept infinite space as fact.
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Problem set 1: The Friedmann-Robertson-Walker cosmology

1. (a) Argue that, because of spherical symmetry, a homogenous and
isotropic spatial hypersurface must be described by the line-
element [TP]

d�2 = a2
[
λ2(r) dr2 + r2 dΩ2

2

]
,

where a is a constant and dΩ2
2 denotes the metric on the two-sphere

given by

dΩ2
2 =

(
dθ2 + sin2θ dφ2

)
.

(b) Compute the scalar curvature R for this line element and show that

R =

(
3

2a2r3

)
d

dr

[
r2 (λ2 − 1)/λ2

]
.

(c) Homogeneity implies that R is a constant. Equate R to a constant
and integrate the resulting equation to obtain that[

r2 (λ2 − 1)/λ2
]
=
(
Ar4 +B

)
.

(d) Provide arguments as to why B should be zero, thereby obtaining
that

λ2(r) =
(
1−Ar2

)−1
.

2. The Friedmann universe is described by the line-element

ds2 = dt2 − a2(t)

[
dr2

(1− kr2)
+ r2 dΩ2

2

]
,

where k = 0,±1. It is straightforward to check that the metric of the
k = 0 Friedmann universe can be expressed in the form gμν =

[
Ω2(η) ημν

]
,

where Ω(η) = a(η) with η being the conformal time defined by the relation
dη = [dt/a(t)] and ημν denotes the flat spacetime metric. The k = 0 Fried-
mann universe is therefore said to be conformally related to flat spacetime.
It turns out that the metric corresponding to the k = ±1 Friedmann
universes are also conformally related to ημν . Construct the coordinate
systems in which these metrics can be expressed in such a form [TP].

3. Show that [p(t) a(t)] = constant, where p(t) is the three momentum of a
particle [TP].
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(a) Consider a particle traveling along a path with θ = constant and
φ = constant. Then show that the zeroth component of the geodesic
equation is (

d2t

ds2

)
+

(
aȧ

1− kr2

) (
dr

ds

)2

= 0.

(b) Eliminate (dr/ds) between this equation and the first integral(
dt

ds

)2

−
(

a2

1− kr2

)(
dr

ds

)2

= 1

and get (
d2t

ds2

)
+

(
ȧ

a

) [(
dt

ds

)2

− 1

]
= 0.

(c) Integrate this equation to obtain

a

[(
dt

ds

)2

− 1

]1/2
= constant.

If uα = (dxα/ds) is the four-velocity of the particle, then the condi-
tion uα uα = 1 implies(

dt

ds

)2

− σαβu
αuβ = 1.

Show that σαβ p
α pβ = |p|2 ∝ a−2.

(d) One can most efficiently obtain the geodesic for a particle from the
Hamilton-Jacobi equation

gαβ
(

∂S
∂xα

)(
∂S
∂xβ

)
= m2,

where gαβ is the metric and S denotes the action describing the
particle. Write this equation in the Friedmann metric and show that
the problem of determining the radial geodesics reduces to obtaining
a quadrature [KT].

4. The dynamics of the electromagnetic field in a curved spacetime is de-
scribed by the action

S =

(
1

16π

)∫
d4x

√−g (Fμν Fμν) ,
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where

Fμν = (Aν;μ −Aμ;ν) = (Aν,μ −Aμ,ν) .

(a) Show that this action is invariant under the conformal transformation

Aμ → Aμ, xμ → xμ, gμν → (
Ω2 gμν

)
.

(b) Show that the electromagnetic waves in the Friedmann universe can
be written in terms of the conformal time coordinate η as follows:

Aμ ∝ exp−(ikη) = exp−
[
ik

∫
dt/a(t)

]
.

(c) Since the time derivative of the phase defines the instantaneous fre-
quency ω(t) of the wave, show that ω(t) ∝ a−1(t) [TP].

5. Recall that, for a light ray, we have [TP]

tobs∫
temi

dt

a(t)
=

remi∫
0

dr√
1− k r2

.

Also recall that, in terms of the scale factor a(t), the redshift z can be
written as (

a0
a(t)

)
= (1 + z),

where a0 refers to the value of the scale factor today (i.e. when t = t0).
Using the above expression for the redshift, show that

remi(z) = Sk [α(z)] , where α(z) =
1

a0

z∫
0

dz dH(z),

Sk(α) = (sinhα, α, sinα) for k = (−1, 0, 1), respectively, and dH is the
Hubble radius defined as

dH(t) = dH(z) ≡
(
ȧ

a

)−1

.

6. (a) Write, say, a Mathematica code (or a Fortran or a C code), to eval-
uate the following expressions for the Ricci tensor Rμ

ν , the scalar
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curvature R, and the Einstein tensor Gμ
ν for the Friedmann metric:

R0
0 = −3

(
ä

a

)
,

Ri
j = −

[(
ä

a

)
+ 2

(
ȧ

a

)2

+ 2

(
k

a2

)]
δij ,

R = −6

[(
ä

a

)
+

(
ȧ

a

)2

+

(
k

a2

)]
,

G0
0 = 3

[(
ȧ

a

)2

+

(
k

a2

)]
,

Gi
j =

[
2

(
ä

a

)
+

(
ȧ

a

)2

+

(
k

a2

)]
δij .

(b) Consider a fluid described by the stress-energy tensor Tμ
ν =

diag. (ρ,−p,−p,−p), where ρ and p are the density and pressure
of the fluid. Using the above Einstein tensor, obtain the following
Friedmann equations for such a source:(

ȧ

a

)2

+

(
k

a2

)
=

(
8πG

3

)
ρ

2

(
ä

a

)
+

(
ȧ

a

)2

+

(
k

a2

)
= − (8πG) p

(c) From the above Friedmann equations, show that(
ä

a

)
= −

(
4πG

3

)
(ρ+ 3 p)

Note: This relation implies that ä > 0, i.e. the universe will undergo
accelerated expansion, provided (ρ+ 3 p) < 0. This condition which
will be required when we discuss inflation in the early universe and
the accelerated expansion of the universe today.

7. (a) Using the two Friedmann equations obtained above, obtain the fol-
lowing relation between the density ρ and the pressure p of the source:

d

dt

(
ρ a3

)
= −p

(
da3

dt

)
.
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Note: This relation also follows from the conservation law, viz. Tμν
;ν =

0, for the energy-momentum tensor.

(b) Also show that the above equation can be rewritten as

d

da

(
ρ a3

)
= − (

3 a2 p
)
.

(c) Given that p = (w ρ), using the above equation, show that

ρ ∝ a−3 (1+w).

8. Using the above result, rewrite the total density of a universe filled with
non-relativistic matter (w = 0, NR), relativistic matter (w = (1/3), R)
and cosmological constant (w = −1, Λ) as follows:

ρ(a) =

[
ρ0NR

(a0
a

)3

+ ρ0R

(a0
a

)4

+ ρ0Λ

]
,

= ρc

[
ΩNR

(a0
a

)3

+ΩR

(a0
a

)4

+ΩΛ

]
,

= ρc

[
ΩNR (1 + z)

3
+ΩR (1 + z)

4
+ΩΛ

]
,

where ρc is the critical density defined as

ρc =

(
3H2

0

8πG

)
and H0 ≡ (ȧ/a)t=t0

denotes the Hubble constant.

Note: The quantities ΩNR, ΩR and ΩΛ are three of the cosmological
parameters determined by observations.

9. The Cosmic Microwave Background Radiation (CMBR) is considered to
be the dominant contribution to the relativistic energy density in the
universe. Given that the temperature of the CMBR today is T � 2.73K,
show that (

ΩR h2
) � 2.56× 10−5,

where h is related to the Hubble constant H0 as follows:

H0 � 100 h km s−1 Mpc−1.

Note: h is another of the cosmological parameters.
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10. (a) Show that the redshift zeq at which the energy density of matter and
radiation were equal is given by

(1 + zeq) =

(
ΩNR

ΩR

)
� 3.9× 104

(
ΩNR h2

)
.

(b) Also show that the temperature of the radiation at this epoch is
given by

Teq � 9.24
(
ΩNR h2

)
eV.

11. Write a code to determine the value of the Hubble constant H0 using the
data in, say, Table 2 of S. Perlmutter et. al., Ap. J. 517, 565 (1999).

12. Given that H0 � 70 km s−1 Mpc−1, estimate the numerical value of the
critical density ρc.

13. Rewrite the first of the Friedmann equations in terms of the cosmological
parameters and redshift as follows:(

H(z)

H0

)2

=
[
ΩNR (1 + z)3 +ΩR (1 + z)4 +ΩΛ − (Ω− 1) (1 + z)2

]
,

where Ω = (ΩNR +ΩR +ΩΛ).

14. Show that the line-element

ds2 = dt2 − t2
[(

dr2

1 + r2

)
+ r2 dΩ2

2

]
is a solution to the Friedmann equations with ρ = p = 0. Obtain the
coordinate transformation that will transform the above line-element into
the following Minkowskian form:

ds2 = dT 2 − dR2 −R2 dΩ2
2.

15. (a) Solve the Friedmann equations for k = 1 and k = 0 when the equa-
tion of state for matter is p = −ρ. Show that the resulting line-
elements have the form

ds2 = dt2 − e2Ht
(
dr2 + r2 dΩ2

2

)
,

ds2 = dT 2 −H−2 cosh2(HT )

[
dR2

1−R2
+R2 dΩ2

2

]
.
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(b) As the source is the same, we expect the two line-elements above to
represent the same spacetime. Prove that this is indeed the case by
finding the coordinate transformation between (t, r) and (T,R).

16. (a) Integrate the Friedmann equation for a k = 0 universe with matter
and radiation to obtain that [TP]

a(η) =
√

a0 ΩR (H0 η) +

(
ΩNR a20

4

)
(H0 η)

2
,

where η is the conformal time coordinate.
Note: In obtaining the above result, it has been assumed that a = 0
at η = 0.

(b) Integrate the Friedmann equation for a k = 0 universe with matter
and cosmological constant to obtain that [TP](

a

a0

)
=

(
ΩNR

ΩΛ

)
sinh2/3

(
3Ω

3/2
Λ H0 t

2ΩNR

)
.

17. Express the age of the universe in terms of the cosmological parameters
ΩNR, ΩR, ΩΛ and h.

18. Assuming that h = 0.7 and that only CMBR contributes to ΩR, evaluate
the age of the universe numerically as a function of ΩNR and ΩV. Plot the
contours of constant age in the ΩNR-ΩV plane and identify the allowed
values of ΩNR and ΩV if 12Gyr < t0 < 18Gyr.

19. Show that for a universe dominated by non-relativistic matter, the Hubble
radius and the luminosity distance can be expressed in terms of the red-
shift as follows [TP]

dH(z) =
[
H0 (1 + z) (1 + ΩNR z)

1/2
]−1

,

dL(z) =

(
2

H0 Ω2
NR

) (
ΩNR z + (ΩNR − 2)

[
(1 + ΩNR z)

1/2 − 1
])

.

20. The horizon h(t) is defined as the maximum proper distance a photon can
travel in the time interval (0, t), i.e.

h(t) = a(t)

t∫
0

dt′

a(t′)
.
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For a matter dominated universe, show that [TP],

h(z) =
[
H0 (1 + z) (ΩNR − 1)1/2

]−1

cos−1

(
1−

[
2 (ΩNR − 1)

ΩNR (1 + z)

])
for ΩNR > 1,

= 2
[
H0 (1 + z)3/2

]−1

for ΩNR = 1,

=
[
H0 (1 + z) (1− ΩNR)

1/2
]−1

cosh−1

(
1 +

[
2 (1− ΩNR)

ΩNR (1 + z)

])
for ΩNR < 1.

Note: The concept of horizon will be needed later on to understand
one of the main reasons behind requiring an inflationary epoch in the early
universe—the horizon problem.
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Problem set 2: Thermal history of the universe

1. (a) The number density of particles within the phase-space volume(
d3x d3p

)
is given by

dN = f(x,p, t) d3x d3p,

where f(x,p, t) denotes the distribution function. In a Friedmann
universe, the distribution function will be independent of x due to
the homogeneity of the background, and it will depend only on p
(rather than on p) due to the isotropy. Show that, if no particles are
created or destroyed, then the distribution function remains invariant
under the evolution of the universe [TP].

(b) Argue that, for a thermal distribution of photons in a Friedmann
universe, the invariance of the distribution function implies that the
temperature of the radiation is inversely proportional to the scale
factor [KT,TP].

2. Consider a collection of relativistic particles of mass m, k and energy

E =
(
k2 +m2

)1/2
, where k = |k|. Given that the distribution function

of the particles is f(k), the number density n, energy density ρ and the
ressure p of the collection of particles are given by

n =

∫
d3k f(k), ρ =

∫
d3k f(k)E and p =

∫
d3k f(k)

(
k2/3E

)
.

In thermal equilibrium, an ideal Bose or Fermi gas is described by the
distribution function

f(k) =

(
g

(2π)3

) (
1

exp [(E − μ)/T ]± 1

)
,

where g is the spin-degeneracy, T is the temperature and μ denotes the
chemical potential. In the above expression for the distribution function,
the upper sign (viz. +) corresponds to fermions and the lower sign (viz. −)
to bosons.

(a) Using the above expressions, show that, for bosons, when μ � T and
T � m (i.e. when the particles are relativistic), we have [KT,TP]

n =

(
ζ(3)

π2

)
g T 3, ρ =

(
π2

30

)
g T 4, p =

(ρ
3

)
,
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while for T � m (i.e. in the non-relativistic limit), we have

n = g

(
mT

2π

)3/2

exp [−(m− μ)/T ] , ρ = (nm) , p = (nT ) � ρ.

(b) Similarly, for fermions, when μ � T , show that, for T � m we have

n =

(
3

4

) (
ζ(3)

π2

)
g T 3, ρ =

(
7

8

) (
π2

30

)
g T 4, p =

(ρ
3

)
,

while, for T � m, we have

n = g

(
mT

2π

)3/2

exp [−(m− μ)/T ] , ρ = (nm) , p = (nT ) � ρ.

(c) Also show that, when T � m, for bosons, we have( ρ
n

)
� 2.701T,

while, for fermions, we have( ρ
n

)
� 3.151T.

3. (a) Using the above definitions of n, ρ and p, show that, in a Friedmann
universe described by the scale factor a(t), we have [KT,TP]

d
(
s a3

) ≡ d
[
(ρ+ p− nμ)

(
a3/T

)]
= −

( μ

T

)
d
(
na3

)
.

(b) Also, show that, when μ � T , the quantity s = [(ρ+ p) /T ] can be
interpreted as the entropy density.

Note: In obtaining the above relations, it has been assumed that the
chemical potential μ is a given function of the temperature T .

4. Show that, during the radiation dominated era, the age of the universe at
the temperature T is given by [KT,TP]

t � g−1/2

(
T

1MeV

)−2

s,

where g is the total number of degrees of freedom of the relativistic par-
ticles present.
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5. Show that, when T � m, the net fermion number density is given by [TP]

(n+ − n−)

=
( g

2π2

) ∞∫
m

dE E
(
E2 −m2

)1/2
×
[(

1

exp [(E − μ)/T ] + 1

)
−
(

1

exp [(E + μ)/T ] + 1

)]
,

�
(
g T 3

6π2

) [
π2

(μ

T

)
+
( μ

T

)2
]
.

6. Argue that [TP] (
nB

nγ

)
� 10−8,

where nB and nγ are the number density of the baryons and photons,
respectively.

7. Using the above expression for the net fermion number density, viz.
(n+ − n−), the fact that the universe is nearly neutral, and the above
ratio for (nB/nγ), show that, for e±( μ

T

)
� 10−8.

8. Show that, for weak interactions, we have [TP](
Γ

H

)
�
(

T

1.6× 1010

)3

.
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Problem set 3: Spontaneously broken symmetries and

formation of topological defects [KT]

1. Consider the following Lagrangian density

L =

(
1

2

)
∂μφ∂μφ−

(
λ

4

) (
φ2 − σ2

)2
,

where φ is a real scalar field. Note that the true vacuum of the potential
is located at φ = ±σ and the Lagrangian density is symmetric under
reflection, i.e. φ → −φ. Consider a situation wherein the scalar field has
the value φ = −σ in one region, and has the value φ = σ in another. Since
the scalar field must make the transition from φ = −σ to φ = σ smoothly,
there must be a region in between where the scalar field is in the false
vacuum, i.e φ should vanish. This region where the scalar field is in the
false vacuum is called the domain wall, and domain walls arise whenever
a discrete symmetry is broken.

(a) Assume that there is a time-independent, infinite wall extending over
the whole of, say, the x-y plane located at z = 0. Show that, in such
a case, the scalar field satisfies the differential equation(

∂2φ

∂z2

)
− λφ

(
φ2 − σ2

)
= 0.

(b) Construct a solution to this equation of motion with the following
conditions: φ → −σ as z → −∞, and φ → σ as z → ∞.

(c) Argue that the thickness of the domain wall is of the order of

Δ =
(√

λσ/2
)−1

.

(d) Show that the stress-energy tensor associated with this domain wall
is given by

Tμ
ν =

(
λσ2

4

)
cosh−4 (z/Δ) diag. (1, 1, 1, 0) .

(e) The Newtonian limit of the Poisson’s equation corresponding to a
stress-energy tensor of the form: Tμ

ν = diag. (ρ,−p1,−p2,−p3) is
given by

∇2ϕ = (4πG) (ρ+ p1 + p2 + p3) ,



6. A Collection of Problems on Cosmology 277

where ϕ is the gravitational potential. For the case of the above
planar domain wall solution, this Poisson equation reduces to

∇2ϕ = − (4πGρ) .

What does this equation imply for the gravitational field of the do-
main wall—will it be attractive or repulsive?

2. Consider an Abelian, Higgs model with a spontaneously broken U(1)
gauge symmetry. Such a system will be described by the following La-
grangian density:

L = (DμφDμφ)− λ
[
φφ∗ − (σ2/2)

]2
,

where φ is a complex scalar field, Aμ is the electromagnetic vector poten-
tial, and the asterisk denotes complex conjugation. The covariant deriva-
tive Dμ and the electromagnetic tensor Fμν are defined as follows:

Dμ = (∂μ − ieAμ) and Fμν = (∂μAν − ∂νAμ) ,

where e is the quanta of the electric charge.

Consider a cylindrically symmetric situation wherein the scalar field
is in the false vacuum along the axis of symmetry (say, the z-axis), and
the field is in the true vacuum far away from the axis. Since the potential
energy is determined only by the amplitude of the complex scalar field, the
above requirements imply that |φ| → 0 as r → 0 and |φ| → σ as r → ∞,
r being the radial coordinate in the cylindrical coordinate system. The
phase of the scalar field, say, θ, can be position dependent, but the fact
the scalar field must be single valued implies that the total change in θ on
a closed path around the z-axis should be an integral multiple, say N , of
(2π). The axis of symmetry where the field is in the false vacuum is called
the cosmic string, and the integer N is referred to as the winding number
of the string.

(a) The above picture suggests that, as r → ∞, we have

φ →
(
σ/

√
2
)
exp (i θ) ,

where θ now denotes the angular coordinate in the cylindrical coor-
dinate system. Show that if we demand that the energy density of
the field be finite, then, as r → ∞, we require that

Aθ →
(

1

e r

)
.
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(b) Show that the magnetic flux associated with a string of winding
number N is (2πN/e).

(c) Argue that the stress-energy tensor associated with such a cosmic
string is given by

Tμ
ν = μ δ(x) δ(y) diag. (1, 0, 0, 1) .

(d) Is there a non-zero Newtonian gravitational potential around the
string?
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Problem set 4: The inflationary scenario

1. (a) Show that the coordinate size of the region on the last scattering
surface from which we receive the CMBR today is given by [TP]

�1 (t0, tdec) =

t0∫
tdec

dt′

a(t′)
�
(

3

adec

) (
t2dec t0

)1/3
,

where tdec denotes the epoch of decoupling.

(b) Show that, if there was no inflationary epoch, and if the universe is
assumed to be radiation dominated until the epoch of decoupling,
the coordinate size of the horizon is given by

�2 (0, tdec) =

tdec∫
0

dt′

a(t′)
=

(
2 tdec
adec

)
.

(c) What is the value of R1 ≡ (�1/�2)?

(d) Assuming that an inflationary epoch takes place, and that during
this epoch the scale factor is enlarged by a factor A, show that the
coordinate size of the horizon at decoupling is given by

�3 (0, tdec) =

tdec∫
0

dt′

a(t′)
�
(

4 ti
adec

) (
tdec
tf

)1/2

A,

where ti and tf are time at which inflation starts and ends, respec-
tively.
Note: In obtaining the above result, we have assumed t0 � tdec,

A � 1, ti � H−1 and adec = (ai A) (tdec/tf )
1/2

.

(e) Show that

R2 ≡
(
�3
�1

)
� (

4× 104
) ( A

1030

)
.

(f) The number of e-foldings during inflation is defined as

N = ln (af/ai) .

What should be the value of N if R2 � 1?
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Figure 6.1: Behavior of the physical wavelength of a perturbation and the Hubble

scale as a function of the scale factor.

2. (a) In figure 6.1 below, we have plotted log (length), where the term
“length” denotes either the physical wavelength of a mode or the
Hubble scale dH = H−1 ≡ (ȧ/a)−1—against log a(t) [KT].

i. Explain figure 6.1.

ii. In particular, argue as to how inflation is necessary if we need
a causally connected patch (i.e. k < dH) to generate perturba-
tions.

(b) In figure 6.2, we have plotted log (comoving length) against
log a(t) [SD].

i. Explain figure 6.2.

ii. Using figure 6.2 argue that requiring a causally connected patch
at early times implies that we need ä > 0.

3. (a) Show that the scalar field φ described by the action

S[φ] =
∫

d4x
√−g

[(
1

2

)
(gμν ∂μφ ∂νφ)− V (φ)

]
satisfies the following equation of motion:

�φ+ Vφ ≡ 1√−g
∂μ

(√−g gμν ∂ν
)
φ+ Vφ = 0,
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where Vφ ≡ (dV/dφ).

(b) Show that in a flat, Friedmann model described by the line-element

ds2 = dt2 − a2(t) dx2 = a2(η)
(
dη2 − dx2

)
,

a homogeneous scalar field satisfies the equation

φ′′ + 2Hφ′ + Vφ = 0,

where H ≡ (a′/a) denotes the conformal Hubble parameter, and the
prime (here and hereafter) denotes differentiation with respect to the
conformal time coordinate η.

4. (a) Show that the potential [LL]

V (φ) = V0 exp

[
−
√

2

p

(
φ

MPl

)]
,

where V0 and p are constants, leads to the following behavior for a(t)
and φ(t)

a(t) = a0 t
p

and (
φ(t)

MPl

)
=
√
2p ln

[(
V0

(3p− 1) p

)1/2 (
t

MPl

)]
.
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(b) Show that the potential [LL]

V (φ) ∝
(

φ

MPl

)−β
[
1−

(
6

(β − 2)2

) (
φ

MPl

)2
]
,

leads to the following behavior for a(t)

a(t) = a0 exp
(
Atf

)
,

where A > 0, β = [(4− 2f)/f ] and 0 < f < 1.

Note: The quantity MPl appearing in the above equations denotes
the Planck mass and is defined as M2

Pl ≡ (8πG)
−1

.

5. The Friedmann equations for a flat, scalar field dominated universe can
be written as

H2 =

(
1

3M2
Pl

) (
φ′2

2
+ a2 V (φ)

)
,

H′ = −
(

1

3M2
Pl

) (
φ′2 − a2 V (φ)

)
.

Using the above Friedmann equations and the equation of motion for the
scalar field, show that the scalar field and the potential can be expressed
parametrically in terms of the conformal time η as follows:

φ(η) =

∫
dη

(
2a′2

a2
− a′′

a

)1/2

and V (η) = −
(H′

�∈

)
.

Note: Given the scale factor a(η), these two equations allows us to
construct the potential from which such a scale factor can arise.

6. Given the functions H(t) and φ(t), show that it is possible to construct a
function H(φ) which satisfies the following equation [LL](

dH

dφ

)2

−
(

3

2M2
Pl

)
H2(φ) = −

(
1

2M2
Pl

)
V (φ).

Note: This is referred to the Hamilton-Jacobi formulation of inflation.



6. A Collection of Problems on Cosmology 283

7. Recall that the slow-roll parameters ε and δ in terms are defined in terms
of the potential V and its derivatives with respect to φ as follows:

ε =

(
M2

Pl

2

) (
Vφ

V

)2

and δ = M2
Pl

(
Vφφ

V

)
,

where Vφ = (dV/dφ) and Vφφ =
(
d2V/dφ2

)
. Also, in the slow roll limit,

(i.e. when ε � 1 and δ � 1) the first of the Friedmann equations and the
equation of motion of the scalar field reduce to

H2 �
(

V

3M2
Pl

)
and

(
3H φ̇

)
� −Vφ.

Show that, in the slow-roll limit, the number of e-foldings during inflation
can be expressed as [LL]

N = ln

(
af
ai

)
=

tf∫
ti

dtH �
(

1

M2
Pl

) φi∫
φf

dφ

(
V

Vφ

)
,

where φi and φf denote the values of the scalar field at the beginning and
end of inflation, respectively.

8. Consider a potential of the form

V (φ) = V0 φ
n,

where V0 is a constant and n > 0. Show that the slow-roll conditions
are satisfied for sufficiently large values of φ, and inflation ends as φ ap-
proaches zero.

9. (a) Consider the potential

V (φ) =

(
m2

2

)
φ2,

where m is a constant. In the slow-roll limit
i. Show that the solutions to the scalar field and the scale factor

are given by

φ(t) � φi −
(
mMPl

2
√
3π

)
t

a(t) � ai exp

(√
π

3

(
2m

MPl

) [
φi t−

(
mMPl

4
√
3π

)
t2
])

,

where φi is the initial value of the scalar field.
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ii. Show for N ≥ 60, we require that φi � (3MPl).

(b) Consider the potential
V (φ) = λφ4,

where λ is a constant.
i. Show that, in the slow-roll limit, the scalar field and the scale

factor corresponding to this potential are given by

φ(t) � φi exp
[
−4MPl

√
λ/3 (t− ti)

]
,

a(t) � ai exp

[(
φ2
i

8M2
Pl

) (
1− exp

[
−8MPl

√
λ/3 (t− ti)

])]
,

where φi and ai denote the values of the scalar field and the
scale factor at the beginning of inflation at time ti.

ii. Determine the value of φ when inflation ends.

iii. Determine the value of N in this model.

Note: The above inflaton potentials are often referred to as “large
field” models as inflation occurs for large values of the scalar field.

10. Identify the domain where inflation can occur in the following potential

V (φ) = m4 [1 + cos (φ/f)] ,

where m and f are constants.

Note: This potential is called as the pseudo Nambu-Goldstone boson
potential. This potential is an example of “small field” model as inflation
occurs for small values of the scalar field.
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Problem set 5: Generation of density perturbations [LL,SD]

Let us assume that the inflaton field φ that we have been considering until now
has a “small” quantum component which we shall denote by, say, ϕ. In the
standard picture, it is this quantum component that is supposed to give rise to
the density perturbations during the inflationary epoch. For small amplitudes,
it can be shown that the quantum component satisfies an equation of motion
that is similar to that of a free and massless scalar field. (It should be clarified
that this statement is not generically true, but is true for exponential—the case
we shall consider below—and power-law inflation.)

1. Consider a massless scalar field ϕ propagating in a flat, Friedmann uni-
verse described by the line-element

ds2 = dt2 − a(t) dx2 = a2(η)
(
dη2 − dx2

)
.

Due to the homogeneity of the background, the scalar field can be decom-
posed in terms of the Fourier modes as follows:

ϕ (η,x) =

(
1

(2π)3/2

) (
uk

a(η)

)
eik·x.

Show that the function uk satisfies the differential equation

u′′
k +

[
k2 −

(
a′′

a

)]
uk = 0,

where, as before, the primes denote differentiation with respect to the
conformal time η.

2. In the case of de Sitter spacetime described by the scale factor a(η) =
−(H η)−1, the above differential equation reduces to

u′′
k +

[
k2 −

(
2

η2

)]
uk = 0.

Show that the general solution to this differential equation is given by

uk(η) = C1(k)

[
1−

(
i

k η

)]
e−ikη + C2(k)

[
1 +

(
i

k η

)]
eikη.

Also show that the Wronskian corresponding to the above differential
equation for uk leads to the following relation between the k-dependent
constants C1 and C2: (|C1|2 − |C2|2

)
= 1.
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3. Sub-Hubble and super-Hubble modes are defined as follows:

sub−Hubble : (k/a)
−1 � H−1 and super−Hubble : (k/a)

−1 � H−1.

Show that, for the de Sitter universe, these conditions imply that

sub−Hubble : (k η) � 1 and super−Hubble : (k η) � 1.

4. Also, show that Hubble exit, viz. (k/a) = H, occurs in a de Sitter universe
when (kη) = 1.

5. Show that the constant C2 has to be set to zero if we demand the following
initial condition for the mode uk at super-Hubble scales:

uk(η) →
(

1√
2k

)
e−ikη.

6. On quantization, the field ϕ can be expressed in terms of the modes uk

as follows

ϕ̂(η,x) =

∫
d3k

(2π)3/2

(
âk [uk(η)/a(η)] e

ik·x + â†k [u∗
k(η)/a(η)] e

−ik·x
)
,

where ak and a†k are the usual creation and annihilation operators that
satisfy the standard commutation relations.

7. The scalar power spectrum PS(k) is defined as

PS(k) ≡
(

k3

2π2

)∫
d3(x− x′) e−ik·(x−x′) 〈0|ϕ̂(η,x) ϕ̂(η,x′)|0〉,

where the vacuum state |0〉 is defined as âk|0〉 = 0 ∀ k. Using the above
decomposition of the quantum field, show that the scalar power spectrum
is given by

PS(k) ≡
(

k3

2π2

) ( |uk(η)|
a(η)

)2

.

8. Utilizing the above solution for the mode uk in de Sitter spacetime

(a) Show that the quantity (uk/a) for a given mode k tends to a constant
value after Hubble exit.
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(b) Show that the scalar power spectrum at super-Hubble scales is given
by

PS(k) ≡
(
H

2π

)2

.

Note: This power spectrum is scale-invariant, i.e. it is independent
of k.
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Problem set 6: The cosmic microwave background radiation

1. Apart from the luminosity distance, another observable for distant sources
is the angular diameter distance. If D is the physical size of an object that
subtends an angle δ to the observer, then, for small δ, we have

D = [remi(z) a(temi) δ] .

The angular diameter distance dA(z) for the source is then defined as

δ = (D/dA)

so that we have

dA(z) = [remi(z) a(temi)] = a0 remi(z) (1 + z)−1.

Recall that, in a flat Friedmann universe, the quantity remi(z) is
defined as:

remi(z) =
1

a0

z∫
0

dz dH(z),

where dH denotes the Hubble radius. Also, recall that we had obtained
the size of the horizon in a flat, matter-dominated universe to be

h(z) = 2
[
H0 (1 + z)3/2

]−1

.

(a) Using these expressions, show that the angular size of the horizon at
a given red-shift is given by [TP]

θh(z) � (1 + z)
−1/2

.

(b) Using this expression, estimate the angular size subtended by the
horizon at on the Last Scattering Surface (LSS).

2. The ‘primary’ angular anisotropies in the CMBR arise due to [SD]

• The motion of the observer with respect to the rest frame of the
CMBR.

• Intrinsic inhomogeneities in the energy density of radiation.

• Peculiar velocity of matter scattering the CMBR photons on the
LSS.
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• Gravitational potential arising due to inhomogeneities in matter on
the LSS.

However, inhomogeneities in the CMBR can be ‘wiped out’ due to [SD]

• The thickness of the LSS is about Δz � 80—this can ‘iron-out’ the
anisotropies.

• Interaction of the CMBR photons with the material in between the
LSS and the observer. This can occur due to

– Interaction of the photons with charged particles that were
reionized after the epoch of decoupling.

– Photons climbing in and out of the gravitational fields of col-
lapsing/collapsed matter.

These are, in fact, referred to as the ‘secondary’ anisotropies.

Let us now evaluate the contribution to CMBR anisotropy due to
the motion of the observer. At each event in spacetime, the CMBR has
a mean rest frame and as seen in the mean rest frame, the CMBR is
isotropic and thermal at the temperature T0 = 2.73K. Actually, the earth
moves relative to the mean rest frame of the CMBR with a speed of about
600 km s−1 towards the Hydra-Centaurus region of the sky. Consider an
observer on earth who points his microwave receiver in a direction that
makes an angle θ with the direction of that motion, as measured in the
earth’s frame.

(a) Show that the intensity of the radiation received is precisely Planck-
ian in form, but with the Doppler shifted temperature

T = T0

([
1− (v/c)2

]1/2
1 + (v/c) cos θ

)
.

(b) Note that the θ dependence of the temperature corresponds to an
anisotropy of the CMBR as seen from earth. Show that, because
the earth’s velocity is small compared to the velocity of light, the
anisotropy is dipolar in form.

(c) What is the magnitude of (ΔT/T ) of the variations between the
maximum and minimum CMBR temperature on the sky?
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