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Preface 

For many years, first as a student and later as a teacher, I have ob­
served graduate students in ecology and other environmental sci­
ences who had been required as undergraduates to take calculus 
courses. Those courses have often emphasized how to prove theo­
rems about the beautiful, logical structure of calculus, but have ne­
glected applications. Most of the time, the students have come out of 
such courses with little or no appreciation of how to apply calculus in 
their own work. Based on these observations, I developed a course de­
signed in part to re-teach calculus as an everyday tool in ecology and 
other environmental sciences. I emphasized derivations—working 
with story problems (sometimes quite complex ones)—in that course, 
and now in this book. 

The present textbook has developed out of my notes for that 
course. Its basic purpose is to describe various types of mathemati­
cal structures and how they can be apphed in environmental science. 
Thus, linear and non-linear algebraic equations, derivatives and in­
tegrals, and ordinary and partial differential equations are the basic 
kinds of structures, or types of mathematical models, discussed. For 
each, the discussion follows a pattern something like this: 

1. An example of the type of structure, as apphed to environmental 
science, is given. 

2. Next, a description of the structure is presented. 

3. Usually, this is followed by other examples of how the structure 
arises in environmental science. 

4. The analytic methods of solving and learning from the structure 
are discussed. 

5. Numerical methods for use when the going gets too rough analyti­
cally are described. 
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6. In most chapters, examples of using MATLAB® software to solve 
and explore the structures are also included. All these examples 
have been tested with Version 7, Releases R14 and R2006a. 

This book is not an introduction to calculus—it assumes that its 
readers will already have been introduced to the basic ideas of dif­
ferential and integral calculus. It does, however, include three early 
chapters and an appendix to review basic algebra, derivatives, and 
integrals. 

So far as I know, the combination of materials provided in the 
book is unique, but I believe it forms the basis for a useful and in­
teresting course. In general, none of the material goes beyond what 
might be taught in a junior-level math or engineering course, but be­
cause the book covers ground from several such courses, the present 
material is appropriately taught at the graduate level. Obviously then, 
parts of the material treated here could be selected for use in an 
undergraduate course—indeed, advanced undergraduates have often 
done well in my version of the course. 

In addition to its use as a text for a course, the material here 
should provide an interesting source for environmental scientists and 
managers to review forgotten math, and to learn some that is new. 

Environmental science is a broad area, and I have included exam^ 
pies, and over 150 exercises, drawn from a wide variety of its sub-
fields. A hst of apphcations is provided in Appendix C. 

In my classes, I asked students to write out questions at the end 
of each period, and then answered those to the whole class by e-mail. 
Selections of those questions and answers are provided at the end of 
most chapters. 

Readers wishing a review of basic math may find Appendix A help­
ful. Over the nearly 30 years I've taught the course that led to this 
book, I've discovered that many students have apparently not learned 
to study math and other quantitative subjects effectively. For that 
reason, I recommend having a look at the study suggestions provided 
at the beginning of Appendix B, on p. 292. 

I thank the many students and colleagues who have helped me 
tune these notes over the years. Special thanks go to Deborah Robin­
son for many useful suggestions and careful proofreading of the en­
tire text. As always, any remaining errors are my responsibility. 
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Chapter 1 

Introduction 

1.1 On Translating Ideas to Mathematics 

In a sense, this book is about how to work environmental science 
"story problems." It is often useful to solve such problems symboh-
cally first; i.e., in terms of letter variables (a, b,x,y, etc.), and to put 
in numerical values only near the end of each problem. Consider an 
example: 

Your laboratory keeps two stock solutions of ethanol, one 
with 90% and one with 40% of alcohol in water. How much 
of each of these two solutions must be mixed to produce 
1 liter of a solution that is 2/3 alcohol? 

You could solve this problem numerically for the particular case in­
volved, but if other stocks, or other final alcohol concentrations, 
might be needed in the future, it would be useful to solve the gen­
eral case in terms of symbols. To do this: 

• First define what you know in terms of variables, stating units for 
each. 

For example, let 

/ i = fraction of alcohol in Solution 1 = 0.9 L alcohol/L solution 

/2 = fraction of alcohol in Solution 2 = 0.4 L alcohol/L solution 
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/3 = fraction of alcohol in final solution = 2/3 L alcohol/L solution 

V3 = liters of final solution = 1 liter. 

Next write descriptions of quantities that you don't know. Again 
use symbols and give units. 

Vi = liters of Solution 1 needed = unknown 

V2 = liters of Solution 2 needed = unknown 

Many problems in environmental science involve mass balances 
or energy balances. Here we write the mass-balance relationships 
that must hold for all problems of this particular type: 

Vi + V2 = V3 (total liters must add up) (1.1) 

fiVi + /2V2 = /3V3 (total alcohol must add up) (1.2) 

Next solve the general case. One way to do that is to set V2 = 
V3 - Vi (by rearranging the first equation) and substitute to obtain 

/ l V i + / 2 ( V 3 - V i ) = / 3 V 3 . 

Solve this for Vi, as follows: 

/ l V i + / 2 V 3 - / 2 V i = / 3 V 3 

flVi-f2Vi=f3V3-f2V3 

ifl-f2)Vi = (f3-f2)V3 

Vi = {^~{^V3 and V2 = V3 - Vi (1.3) 

Equation 1.3 is the general solution. There are computer tools, 
like MATLAB®, Maple®, Mathematica®, and Octave, that can do 
part of the work when we have such software available. This book 
will provide examples of using the first of those, but the others 
have similar capabilities. For useful general information on using 
MATLAB, see Hanselman and Littlefield (2001), and Higham and 
Higham (2000). 
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Even if such tools are available, however, we still must come up 
with the original relationships (Eqns. 1.1 and 1.2) by the logic of 
mass balances, and it is often useful to solve simple problems 
without cranking up the computer. It is also important to be able 
to check computer solutions "by hand." 

For the present problem, to look into MATLAB a bit, if we entered 
the lines^ 

% Define some symbolic variables 
syms VI V2 V3 f l f2 f3 
soln=solveCVl+V2=V3' , 'fl*Vl+f2W2=f3vcV3' ,V1,V2) 
Vl=soln.Vl 
V2=soln.V2 

MATLAB would return 

Vl=-V3vc(-f3+f2)/( f l - f2) 
V2=V3>v(f l - f3)/( f l - f2) 

which, with a little fiddling, can be put in a form identical to the 
solution found above (Eqn. 1.3). MATLAB would format the solu­
tions differently if we entered 

pretty(Vl) 
pretty(V2) 

The result would be 

V3 (-f3 + f2) V3 ( f l - f3) 
-. and 

f l - f2 f 1 - f2 

Now is the time to put in the numbers for the particular case^. 

^Any material following a % sign in commands sent to MATLAB is treated as a 
comment, and ignored. 

^In this text, a numeral with a bar over it, like the "3" in Eqn. 1.4, indicates that 
the number under the bar is to be repeated ad infinitum. Thus, 0.53 denotes the re­
peating decimal number 0.533333 ...; similarly, 0.617 would represent the quantity 
0.61717171717.... 
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V2 = 1 -0 .53 = 0.46 liters 

This is the particular solution for the numerical values specified in 
this instance. It's a good idea to work most problems in this way— 
symbolically first, then substituting numbers at the end—because it 
produces general answers that can be reused, and that provide in­
sight into the structure of the problem and its solution. Some people 
find it difficult to work in this way; if that is true for you, you may 
find it helpful to do an example set of numerical calculations before 
generalizing to the symbolic version. 

For tough story problems, it often helps to use some of the fol­
lowing aids: 

• List the units of all quantities involved. When a variable seems 
vague, this can help clarify what it is and what it means. 

• Draw sketches. Try to represent the general nature of the solution 
with rough curves. 

• Try a special case, e.g., with numbers instead of symbols, and then 
generahze to symbols. 

• Solve a simpler problem by omitting comphcating factors. Then, 
if you can solve the simple problem, add back the omitted factors, 
one at a time. 

• For really hard problems, trial and error may help. Keep guess­
ing at solutions and testing whether they meet all the conditions. 
Watching the patterns that develop for different guesses may help 
you to see what the general relationship is. 

1.2 Pre-Calculus Math Review 

If you wish to review basic pre-calculus math, have a look at Appendix 
A. In particular, if you are not comfortable working with logarithms^, 
please review them there. I have made some arbitrary decisions about 

-̂ In this book, "log" will refer to the natural (base e) log; if base-10 logs are needed, 
they will be denoted by "logio." For more on this, see p. 288. 
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what material to put there and what to retain in this chapter, so don't 
be surprised to see material here that you may consider review. 

1.3 Trigonometry. 

Although the trigonometric functions (sin0, etc.) are motivated by, 
and often defined in terms of, angles and sides of triangles, they have 
many uses in applied math that are independent of geometrical inter­
pretations. It is often useful to think of them as periodic (repeating) 
functions of some arbitrary variable x. In applications, the indepen­
dent variable is often time. 

Note that although many people are accustomed to working with 
trigonometric functions with angles measured in degrees (360 de­
grees in a full circle), radians (ZTT in a full circle) are a more natural 
unit in mathematics. Unless stated otherwise, all angles used in this 
book will be expressed in radians. You should adopt this convention 
too. This means that you should figure out how to set the radian 
mode for trigonometric functions in your calculator. 

The following exercises illustrate the idea of using sines and 
cosines to model periodic relationships. 

1. Sketch these six functions and label both axes: a. sinx; b. cosx; 
c. 3 sinx; d. 2 cosx; e. sin(x + 5); f. cos(x - 7T/8). 

2. How does the value of y = a + b cos[c(x - d)] change as a, b, c, 
and d change? A rough sketch of this function will help you to 
answer this question. 

3. Consider the graph of 3̂  = sin(fct) shown in Fig. 1.1, p. 6, and 
determine the values asked about there. Note that the period of 
a sine or cosine function is the length of time required for the 
oscillation to complete one full cycle. 

1.4 Units, Dimensions, and Conversion Factors 

It may be that math becomes "applied math" when numbers have 
dimensions or units. Dimensions are concepts like time, mass, length, 
weight, etc. Units are specific cases of dimensions, like hour, gram. 
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II 

T J 2T 3T 

Figure 1.1: A plot of the function y = sin(^t). Here T is the period of 
y = fit)] i.e., T = 2Tr/b. What values of ^ will be required to yield periods 
of a) 1 sec; b) 12 months; c) 24 hours; d) 1 year? 

meter, lb/, etc. As you know, you can multiply and divide quantities 
with different units: 

3ftx7lb = 21 ft-lb; (70mi)/(2hr) = 3 5 m i h r - \ 

but you can add and subtract terms only if they have the same units: 

3kg+21bm = TILT. 

453 6e I k s 
However, 3 kg + 2 Ib^ x - ^ ^ x - ^ = 3.91 kg. 

Ibm 1000 g 

You can use these rules to check formulas you derive; e.g., suppose 
you have derived the relationship kT = CppV. The variables here are 

/ thermal \ / \ / spec i f ic \ / , . \ / , \ 
l c o n d u c t i v i t y J r H = ( heat j (density) (volumej .conductivity; 

One set of units might be 

mW 1 r , 1 fniW • sec 1 f g [ = ] H ^ [fdf Iti^lM-—>--
Agreement of units is necessary (but not sufficient) for formulas 

to be correct. 
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Conversion Factors 

Suppose you need to convert 2cal cm~^min~^ into kWnii"^. From 
tables, we find 1 cal min"! = 70mW, 10^ mW = 1 kW, 2.54 cm - 1 in, 
12 in = 1 ft, and 5280 ft = 1 mi. Then 

70 mW 
^ cal 

mm 

IkW 
106 mW 

Thus, 

70mWmincal ^ = 1 (dimensionless); 

= 1 (dimensionless), etc. 

cal ^^mWmin kW ^^.^cm^ .^9in^ , -? ft^ 
mi" 

— — _ . 70"^" 7^"^ . —^P— • 2.54^^^^ • 1 2 ^ ^ • 5280^- . 
cm2 mm cal lO^mW in'̂  ft ^^ 

^ B.GBxlO^kwmi"^ 

You are probably familiar with unit conversions of this sort—they can 
be complicated, and require careful work. 

In later chapters, we will need to work with the units of derivatives 
and integrals. Here are a few examples. If x = meters and t = seconds, 
the units of these quantities: 

are m s""\ m s~^, m^ s"^, and m^ s, respectively. 

1.5 Ratios and Percentages 

These types of quantities can be confusing, and in particular, denom­
inators must be carefully specified. Examples: 

• A child weighs 50 lbs. In the next year, she gains 20% in weight. 
The following year, she gains another 20%. What is her weight now 
40% higher than at the start? 

• A machine produces 8% defective items. You adjust it to produce 
only 6% defective items. Is that a 2% or 25% improvement? 

• In 2003, an apple tree produced 200 lb of apples. In 2004, it 
produced 50% more than in 2003. In 2005, it produced 50% less 
than in 2004. Was the 2005 production the same as that in 2003? 
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1.6 Analysis (Finding Symbolic Solutions) versus 
Numerical Analysis 

Example 1: Consider polynomials; i.e., equations of the form 

y = ao + uix + azx"^ + asx^ + a4x'^ + • • • + UnX^ = PnM-

With Pi(x), the polynomial is 3̂ 0 = ^0 + ^ i ^ - Thus x = {yo - ao)/ai. 
(That's pretty simple.) 

With P2{x), we have yo = cio + aix + a2x'^. Then x = ? To solve 
this analytically, you'll need to use the quadratic formula that you've 
probably seen before, but you'll likely have to substitute symbols to 
put the problem into the specific form you learned then. 

The approximate energy balance for the roof of a car might be 
70 = (5.4 X 10-^)r^ + 1.2(T - 295), in terms of roof temperature T 
[deg K]. The 70 is the solar and thermal radiation absorbed by the 
roof, the T"^ term is the reradiated energy, and the 7 - 2 9 5 term is 
the convective heat loss to the air. How do we solve for T? There 
is no general "quartic" formula comparable to the quadratic formula. 
This solution can only be obtained numerically, by methods we'll see 
in Chapter 10. 

Example 2: Consider models involving sets of linear equations. 
How do you solve for the x values from each set of N equations? 

• N = I: aiXi = bi 

• JV = 2: anxi + unXz = bi 
aziXi + a22^2 = ^2 

• N = 3: anXi + ai2X2 + ^13X3 = bi 
a2lXi + a22^2 + ^23^3 = ^2 

a^Xi + a32^2 + ^33^3 = ^3 

• N = 4: aiiXi + ai2X2 + ̂ 13X3 + ai4X4 = bi 

CiA\X\ + a42X2 + CI43X3 + a44X4 = fe^4 

With this class of relationships, for N = 1, xi is obviously bi/ui. 
For N = 2, you have no doubt learned to solve one of the equations 
for xi in terms of %2 (say), to substitute that relationship into the 
other equation, and to solve the latter for X2- Back substitution then 
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yields xi. (You've seen an example of this in the mass-balance prob­
lem at the beginning of this chapter.) When JV = 3 or higher, a similar 
process would work in principle, but becomes unnecessarily tedious. 
Instead, one would usually use a numerical method from Chapter 9 
to find the x values when N is three or higher. 

Example 3: Consider the logistic equation for population growth; 
i.e., the differential equation (which we'll see in more detail in Chap­
ter 4): 

dN ^/K-N' dN ^/K-N\ . ^ , , , , 0, (1.5) 

Here r = growth rate (= b - d), N =population size, t = time, and 
K = carrying capacity. This equation models population growth that 
is nearly exponential (following dN/dt = rN) when N is small com­
pared to K, because the factor in parentheses is nearly unity then. As 
N -^ K and that factor approaches zero, the growth rate approaches 
zero too. 

The solution to Eqn. 1.5, an analytic solution, is 

KNo 
N(t) = No + {K-No)e-^^' (1.6) 

Figure 1.2: A generalized solution of the logistic population growth equa­
tion, with N{t) represented as a fraction of the carrying capacity K, and 
with the population starting out at O.OSK. 

Although specific numerical values are required to graph the solu­
tion as in Fig. 1.2, the analytic solution allows us to infer much of its 
general behavior from the equation itself. For example, 
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• At t - 0, it is easy to check that N{t) = NQ. 

• As t ^ 00, we see that N{t) = K. 

• Because t enters the solution only through the product rt, we can 
see that if population A has twice the growth rate r compared 
to population B, but No and K are the same for the two popula­
tions, then A will reach any given population size in half the time 
required by B. 

Compare that model, for which an analytic solution is available, 
with a more complicated one, a modification of the Lotka-Volterra 
equations (p. 138), for the changes with time of two interacting popu­
lations. Here H might represent the biomass of some herbivore pop­
ulation, and C that of a carnivore population on some area of land. 

^ ^ = THHI^^'^] - aHC with H = Ho3Xt=0, and (1.7) 
dt \ KH 

dC ^fbH-C 
^ = rcC (^^-77^) + cHCwith C = Q at f = 0. 
dt \ bH J 

(1.8) 

In this model, the coefficients a, b, c, rn, re, and KH are often 
taken to be constants. Even so, no analytic solution of the form 
"Hit) = explicit equation, C{t) = explicit equation" is obtainable 
for this system of equations, but the numerical solution (for any par­
ticular set of constants) can be obtained, as shown in Fig. 1.3, p. 11. 
The method used to obtain the plotted values appears in Chapter 7. 

Although there are sophisticated techniques for inferring some 
aspects of the behavior of solution of models like this directly from 
the differential equations (e.g., Mesterton-Gibbons 1995), the solution 
itself (including population sizes, for example) can only be obtained 
numerically, for a given set of numerical parameter values. These 
examples illustrate that analytic solutions are often more desirable 
than numerical ones because of their greater generality. However, we 
also need methods for obtaining numerical solutions for the many 
situations when analytic solutions are not available. 

1.7 Notes on Significant Digits 

In problems involving numerical calculations based on inexact data 
or on rough estimates, apparent conflicts sometimes arise between: 
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• The need to avoid round-off error during calculations, and 

• The need to avoid an appearance of excessive certainty in the final 
values presented. 

The following guidelines (developed in a discussion with my col­
league, Ronald Kites) should help you in working with numbers and 
in reporting results. 

1. While performing calculations, keep at least three more significant 
digits in all numbers than you will report in your final answer. In 
many calculations, like those involving matrices, it is best to keep 
all available digits—this helps reduce round-off error, which can 
be substantial, especially in a series of calculations. 

2. When using a calculator, to the extent possible store intermediate 
calculations rather than writing them down and then re-entering 
them. This avoids transcription and re-entry errors, and retains 
full precision. 

3. When reporting results, present one more significant digit than 
you had in your least precise input value. Be a little flexible here— 
note that 0.999 and 1.111, with 3 and 4 significant digits respec­
tively, have nearly identical precision, while 0.999 and 9.999 differ 
in precision by an order of magnitude. As another example, the 

200 

20 40 60 80 100 

t[yr] 

Figure 1.3: Results of a numerical solution of the Lotka-Volterra equations (Eqns. 1.7 and 1.8) with TH = 0.07 yr-\ KH = 2000 kg, a 
Tc = 0.03 yr-\ b = 0.1 [-], and c = 0.001 kg-^ yr-^. 

0.001 kg-i yr-
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sum of 0.333, 0.334, and 0.335 is 1.002. If the three original val­
ues are really known to three places, then valid information would 
be lost by rounding the sum to 1.00, yet that is what the "standard 
rule" that many learn says to do. 

Also, statistical theory tells us that means of N numbers are ViV 
times more precise than the individual numbers being averaged. 
Thus, a mean of 100 numbers is known with an additional digit of 
precision compared with the original data. Even with fewer than 
100 numbers, this tells us that the result of a calculation can have 
more precision than the individual items that go into it. 

4. With measurements, three significant figures are usually about 
right for your final reported value. Use more only in special cases 
when you need, and can justify, more. 

5. When using or presenting data with a ± error range, you should 
know (and state) what the error range represents. For example, is 
it a standard deviation, a confidence interval, or a maximum bias? 

6. Measurements presented as 6.6 ± 0.4, say, seldom indicate a behef 
that the true value lies anywhere in the range from 6.2 to 7.0 with 
equal likelihood—instead the likelihood is concentrated near 6.6. 

7. Above all, use common sense. 

Preparatory Problem 

This exercise illustrates why differential equations, which we'll take 
up in Chapter 4, are needed to solve many real problems in environ­
mental science. Attempting to solve this example problem without 
that tool is a valuable exercise. 

Consider a lake with a volume of 3 x 10^ cubic meters. A stream 
flows into the lake at a rate of 2,500 m^/day. Assume that an outlet 
stream balances the inflow with negligible evaporation, so the lake 
volume remains nearly constant, at least on average, over several 
years. 

The lake carries an initial mercury load of 0.025 mg/hter. Most 
of this has come in via the stream, which enters the lake with a mer­
cury concentration of 0.3 mg/liter. To simplify matters, assume that 
all mercury is dissolved in the water and that none of it evaporates. 
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drops to the bottom with sediments, is taken up by organisms, or is 
involved in chemical reactions. 

Develop a method to compute a rough estimate of mercury con­
centration in the lake water after a period of five years, and then carry 
out the computations. Keep your method fairly simple. Please do not 
use differential equations, even if you know how to use them. 

You should write out a) a list of any important assumptions and 
simplifications that you make to obtain an approximate solution, b) 
a brief description (about 1 page) of how your method operates to 
stimulate physical reality, c) a list defining all variables you use, and 
d) a statement of your results: 

1. What approximations are involved in your scheme. 

2. Whether your estimate is likely to be larger or smaller than the 
true value, and why. 

3. What else you would need to know, if you wanted to improve your 
estimate. Work in symbols for as long as you can, and show your 
work. 

1.8 Exercises 

Algebra Story Problem Practice"^ 

We'll start with some relatively straightforward story problems, as 
practice for the more complex ones in later chapters. In solving these 
problems, try to work in symbols as long as possible, so as to obtain 
general answers; then substitute numbers only at the end of each 
problem. However, if it works better for you, solve the problem with 
numbers first, and then derive the more general symbolic solution. 

1. River City is 3/5 as far from Victor as Horner is from Victor. If 
River City is 80 miles from Victor, how far is it from Victor to 
Horner? 

2. On a field trip, the professor for the course and the teaching as­
sistant both drove the van. The prof drove 2.5 times the distance 

"̂ Answers to odd-numbered problems for all chapters may be found in Ap­
pendix B, pp. 292^ 
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that the TA drove. How far did the TA drive if the prof drove 440 
miles? 

3. Two trucks haul materials to a landfill. The larger truck carries 3.8 
tons each trip, or 2.6 times the weight carried by the smaller truck. 
What weight did the latter carry? 

4. A experimental tank contained 8.2 kg of salt (NaCl), which made 
up 12% of the mass (weight) in the tank; the rest was water. What 
mass of water did the tank contain? 

5. A rectangular field is 500 m by 900 m. A farmer plows around the 
perimeter of the field until 1/4 of the field's area is plowed. How 
wide a border has been plowed at that time? 

6. Annie made a 100-mile round trip in 2.8 hours. Because of bad 
weather, she drove 7 mph slower on the return part of the trip 
than on the outgoing part. What was her speed each way? 

7. Pump A alone can fill a storage tank in 2.5 hours less time than it 
would take pump B alone. If both pumps together can fill the tank 
in 6 hours, how long would it take each pump working alone? 

8. Two volunteers for a public-interest group are able to insert 2200 
letters into envelopes in 3.5 hours. How many letters could be 
dealt with in 2 hours by 11 volunteers working at the same rate? 

9. On a map you are consulting, 40 miles corresponded to 0.8 inch. 
If two locations are 2.5 inches apart on the map, how far apart are 
they in reality? 

10. A certain fraction has the property that if the same constant (any 
constant) is added to both its numerator and denominator, its 
value doesn't change. What is the original fraction? 

11. A copper rod, part of an instrument, is exposed to varying temper­
atures. Its length I is almost a linear function of the temperature 
r , as long as T is less than 150^C. Find an equation for 1(7) using 
the following measurements: (T = 15; L = 76.45 cm) and (T = 100; 
L = 76.56 cm) 

12. Suppose that one animal is 15% larger in every linear dimension 
than a second animal—the two then have the same shape (they are 
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geometrically similar). How do their surface areas, volumes and 
weights (under the assumption of constant specific gravity) differ? 

13. Suppose an animal grows without a change in shape. If its vol­
ume increases by 40%, by what percentage does its surface area 
increase? 

14. A population that grows exponentially (i.e., N{t) = Noe^^) has 
a doubling time that remains constant. That is, the population 
would grow from 40 million to 80 million in the same amount of 
time it would take to grow from 5 miUion to 10 milhon. Thus, if 
N goes from No to 2No, then 2No/No = 2 = e^^, where D must 
be the doubling time. Taking the natural log of both sides yields 
log 2 = rD, or D = (log2)/r (assuming r remains constant). (Be 
sure you understand why!) 

Similarly, decay of radioactive substances often follows the model 
M = Moe~^K Scientists then refer to the half-life H; i.e., the length 
of time required for a radioactive mass to drop from any amount 
M to an amount M/2. Find an expression for H in terms of r . 

15. Calculate, and plot (with speed S on the horizontal axis), the 
amount of time you would save by driving 100 miles at (5 + 10) 
miles per hour rather than at S miles per hour. Do this for 
10 < 5 < 70 mph. 

16. If a certain length of wire is bent to form a square, will it enclose a 
larger or a smaller area than if it were bent to form a circle? How 
much larger or smaller? 

17. For a study of temperature in birds' nests, you borrow an old in­
strument that uses thermistors to sense temperature. The manual 
for the instrument tells you that the resistance rises nearly linearly 
with the temperature, over a temperature range between 0-100° C, 
and that you should calibrate the system every six months or so 
to account for any aging of components. So, you obtain output 
readings of n kQ (kilohm) at Ti °C and of rz kQ at T2 °C. 

A. Find the equation (in terms of the symbols n , r2, Ti, and Tz) 
that would give you temperature as a function of resistance in 
future measurements. 

B. If n - 8.7 kQ and r2 = 12.5 kD when Ti = 0° C and T2 = 
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40° C respectively, what would the sensor temperature be when 
the reading is 9.2 kQ? 

Hint: Of the various formulas for working with straight lines, the 
"two-point formula" is often the most efficient. If you know two 
specific points (xi, y i ) and (X2, yz) ona straight line, and if (x, y) 
is any other point on the line, then the line can be defined by: 

y- yi ^ y2 -y\ 
X - X\ X2- X\ 

This works because both sides of the equality are expressions for 
the slope of the line. You may use this if you like, but there are 
other ways to solve the problem. 

Exercises involving ratios 

The essence of mathematical modelling, and much of applied math­
ematics, is setting up word problems, converting them to mathemat­
ical equations, and then solving those. Here are three problems to 
solve. Be careful, because each involves ratios, and ratios are fre­
quently tricky. Remember in the problems below to work in symbols 
for as long as you can. 

18. B left Dandongadale 30 minutes after A, and travelled in the same 
direction. If A travelled 50 mph and B travelled 60 mph, how far 
had they gone when B overtook A? 

19. A pollution control project has been running for 10 years. During 
its first 5 years the project had a benefit:cost ratio of 1.1. During 
the second 5 years, the ratio increased to 1.2. What is the overall 
benefit:cost ratio for the 10 year period? (The P.R. Department 
wants to know in 5 minutes!) 

20. If you drive 50 miles at 40 mph, and 50 more miles at 50 mph, 
what is your average speed for the 100 mile trip? 

Exercises with periodic functions 

21. You are working with a group modelling forest growth, and you 
find that for your location, the amount of sunlight available (on 
cloudless days) varies roughly sinusoidally, with a maximum of 
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about 500 cal cm~^ day"^ on day 172 of the year and the minimum 
of about 160 cal cm~^ day~^ on day 354 of the year. To simphfy 
matters, you may assume that all years have 364 days (to make 
it an even number). You decide to model this relationship using 
Cl = a + b sin[c(t + d)], where Q is the radiation [cal cm~^ day~^] 
and t is time [days] from the start of each year. (A rough sketch 
will doubtlessly be helpful.) 

A. In terms of quantities given above, what are the values of a and 
b7 What are the units of each? 

B. What are the values of c and d? What are the units of each? 

22. Mountain streams sometimes cause major problems for alpinists 
because of variability of water level during a day. In particular, 
some streams can be easily and safely crossed in early morning, 
but later in the day they become too high to cross because of in­
creases in snowmelt as the air warms and solar radiation increases. 
The same phenomenon is of interest to hydrologists in mountain 
regions. 

Suppose you want to model such stream flow as a sine wave with 
a period of one day, and with time measured in hours after mid­
night, using a 24-hour decimal clock (i.e., t = 13.25 at 1:15 p.m., 
t = 23.5 at 11:30 p.m., etc.). Suppose the minimum stream flow 
each day is about qi m^ s~̂  and the maximum is about qz , with 
the maximum occurring at 3 p.m. (t = 15) each day. Determine 
the parameters (a, b, c, and d) that would make the function 
qit) = a-\-bsin[c{t-\-d)] fit that situation. The c{t + d) part should 
be in radians. (Radians are technically ratios of two lengths, and 
so have no units.) 

In your final answer, a and b should be expressed in terms of qi 
and ^2, while c and d should have numerical values. If you prefer 
to work with numbers, you could start with numerical values qi = 
20 and ^2 = 100, but your final answer should be based on general, 
symbolic values for these two quantities. You will almost certainly 
find it helpful to sketch the curve for which you are writing the 
equation. 
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1-9 Questions and Answers 

These items, and those in similar sections in other chapters, are ques­
tions asked by students in some of my classes, and the answers I 
provided by e-mail. 

1. You sometimes use the name "exp." What does that mean? 

• "exp" is one name for the exponential function; exp(anything) 
stands for the number e taken to the 'anything' power. That is, 
exp(x) is another name for e^, and exp(sint) is another name for 
gsint Yi is convenient to use the "exp" form when you don't want 
to have to type an exponent as a superscript, especially when the 
exponent is a complicated expression. You'll see this a lot in books 
and reports. See p. 287. 

2. Does the sine of 0 equal 1? 

• No. Actually, sin(O) = 0. However, cos(O) = 1. 

3. Why is (m/s)/s, that is, meters per second per second, equal to 
m/(s^), that is, meters per second^? 

• (m/s)/s is the same as (m/s) multiplied by the fraction (1/s). If 
you multiply two fractions (say 2/3 and 4/5) then the result is the 
products of the numerators (2'''4) divided by the product of the 
denominators (3 '̂5). For the (m/s)'Hl/s), that becomes (m"l)/(s'^s), 
which is m/(s^). What you might call "multiple divisions" like this 
can be confusing. That's why most scientific journals these days 
want units of quantities like milligrams per square meter per hour 
(a deposition rate of some quantity to a soil surface, say) to be 
printed as mg m~^ hr~^ rather than as mg/m^/hr. 



Chapter 2 

Derivatives and 
Differentiation 

2.1 What Is a Derivative? 

Figure 2.1: A generalized function, for use in illustrating the definition of 
the first derivative. 

When asked "What is the derivative at a point x of the function 
y = fix) plotted in Fig. 2.1," students most often answer "the slope 
of the line above that x." That geometric interpretation is correct, 
but a more mathematical definition is 
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dy^ ^ j j ^ fix ^h)-fix) 
dx h-^o h 

Copying the figure and sketching the line from, say, / (4 ) to / ( 4 + h) 
with h = I, then h = O.S, and then h = 0.1 may help you to see the 
relationship between those two definitions. 

2.2 Usefulness in Environmental Science 

Derivatives arise in environmental science in two general ways. First, 
many derivatives are fundamentally important; e.g.,: 

-T- = rates of population change (2.1) 

-J— = mass flow rates (2.2) 
at 

dx 
-z- = velocities (2.3) 
at 

-J- = rates of temperature change (2.4) 
at 

-^— = vertical temperature gradients (lapse rates) (2.5) 
az 
dP 
— = pressure gradients (2.6) 

dC 
-r— = concentration gradients. (2.7) 
ax 

These will often arise as components of differential equations, as in 
Chapters 4 and 5. 

Secondly, as you likely recall from your calculus course, deriva­
tives arise in maximum and minimum (extremum) problems. Recall 
that the derivative of a function is zero at every local or global maxi­
mum or minimum point, as in Fig. 2.2, p. 21. Let's consider an exam­
ple max-min problem, after first recalling some basic relationships. 

• First, for any function y = x^, the derivative dy/dx = px^~^. 

• The derivative of the sum of several terms is the sum of their 
derivatives. 
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Figure 2.2: Graph of a function with six maxima and minima in the range 
from X = 0 to X = 4. What is the value of the derivative (dy/dx) at each of 
these extreme points? 

• Recall the quadratic formula. If fix) = ax^-\-hx+c, t h e n / ( x ) = 0 
whenx = {-b ± Vib̂  - 4ac)/2a. 

Here's the example problem: An ornithologist studying the (fic­
tional) black-booted albatross goes to twenty breeding colonies and 
measures breeding success as a function of how densely packed the 
breeding pairs are in the various colonies. She finds by polynomial 
regression that the relationship can be approximated by 

F = A-^BD + CD^, (2.8) 

where F is the average number of young fledged (successfully raised) 
per breeding pair, D is the density of breeding pairs in the colony 
(pairs m~^), A = 4, J? = 2, and C - -2} This relationship is shown 
in Fig. 2.3, p. 22. Because total area and suitable locations for breed­
ing of this species are limited, the researcher asks you to estimate 
the breeding-pair density that would produce the maximal number 
of young fledged per unit area of colony, assuming that Eqn. 2.8 is 
reasonably accurate. 

If F is young pair~^ and D is pairs m~^, then S = FD gives the 
number of young per square meter (check the units). The density 

^The units of these coefficients are not particularly useful to work with, but are 
whatever they need to be to make the equation come out right. 
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0.5 1.0 1.5 

D [nests m"̂ ] 

Figure 2.3: Average number of young fledged (F) in relation to number of 
breeding pairs (nests, D) per square meter, for the "black-booted albatross" 
at different breeding colonies. 

D that maximizes S = FD = AD + BD^ + CD^ is the value for which 
dS/dD = A+2BD + 3CD^ = 0. Applying the quadratic formula to that 
equation yields D = {-B ± VF^^^lAC)/{3C). Substituting numbers 
yields values of about 1.215 and -0.549 pairs m~^ for D, of which 
only the positive value makes sense. For that D, the success rate S is 
about 4.23 young m~^. 

General Tips for Solving Max-Min Problems 

When you want to find the value of some variable x that causes an­
other variable y to be a maximum or a minimum, the following steps 
may help: 

1. Read the problem, and state in your own words what you know and 
what you are trying to find. With the albatross problem, we could 
start with a particular number of pairs per m^, and then could use 
the equation for F to get the number of young per breeding pair. 
What we don't know is the number of pairs per m^ that would 
make the areal success a maximum. 

2. Draw a diagram, label it, and identify what is constant and what 
varies. Here we might guess at a curve of S plotted against D. 
Clearly the curve should start at S = 0 when the breeding-pair 
density is zero. A little thought would show that since the young 
per nest goes to zero when adults become too dense, S must be 
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zero for D > 2 as well. (See Fig. 2.3.) Thus, you can guess that the 
curve reaches some maximum for D between 0 and 2 pairs per m^. 

3. Always pay careful attention to units! Units are often the key to 
a quick solution. Here S [young m~^] must equal D [pairs m~^] 
times F [young pair"^]. 

4. a. Try to write an equation of the form y = fix), where y is the 
quantity to be maximized or minimized, and x is the quantity you 
can control. Here we would want 5 as a function of D, and the 
units tell us directly that S = DF. 

b. If there is more than one quantity that you can control, such 
as X and z, then write an equation of the form y = g{x,z). Then 
search for a relationship between x and z that allows you to elim­
inate z, and to convert y = g{x,z) lo y = fix). (This is not 
needed for the present example.) 

5. Solve for the value of x that makes df/dx = 0. Then determine 
whether y is a maximum or a minimum for that x value. 

6. State your conclusions in words. 

Straightforward Nature of Differentiation 

Differentiation can always be accomphshed analytically (i.e., in terms 
of symbols), by applying various definite rules. First, of course, one 
needs to know certain basic derivatives, such as those of x^, e^, e^^, 
logx, log fox, sinfox, and cos fox. (Here fo and p are constants, and 
X is a variable.) Try writing down the derivatives of those functions; 
then check your answers using any calculus text, or a table like that 
in the Handbook of Chemistry and Physics (Lide 2005). Be sure to note 
any exceptions to general rules. 

Those specific derivatives follow from the definition of the deriva­
tive; i.e., from^ 

dfix) ^^ ^.^ fix-^h)-fix) 
dx h-^o h 

^The symbol " ^d " should be read as "is equal to by definition." Distinguishing 
equality by definition from equality that follows from a series of mathematical steps 
can often aid understanding. 
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For example, when you studied introductory calculus, you probably 
carried out a series of calculations something like these, which show 
that the derivative of x^ is 3x^: 

dx^ ,. {x + h)^-x^ 
-T— = h m 
ax h-*o h 

,. x^ + 3x^h + 3xh^ + h^ - x^ 
= hm z 

h^O h 

= lim 3x^ + 3xh + h^ = 3x^ 

Similar though often more complicated calculations lead to other 
derivatives. 

Environmental scientists using math as a tool can work most effi­
ciently if they memorize and know how to use these most common 
derivatives, along with the rules that follow soon for differentiating 
combinations of functions. However, computer software that can per­
form symbohc (analytic) calculations is becoming more readily avail­
able, and is worth learning too. As a simple example for now, here's 
how to obtain the analytic derivative of f(x) = sin{bx) using MAT-
LAB®^ 

To differentiate that function, we enter the following lines (the 
parts to the left of the dots, that is) in the MATLAB command window: 

syms b x Treat b and x as symbols rather than numeric values. 
f=si n(bv-x) Define the function. 
di f f ( f ) Perform the differentiation. 

After you enter the third line, MATLAB returns the result in the form 
ans = cosCb'Vx)>vb. 

Interestingly, we didn't have to tell the program that x was the 
variable and b a constant. Here's the reason, taken from the MATLAB 
help system: "The default symbohc variable in a symbohc expression 
is the letter that is closest to 'x' alphabetically. If there are two equally 
close, the letter later in the alphabet is chosen." I recommend trying 
your hand at using MATLAB (or a similar program) to obtain the other 
derivatives listed above and below. 

Important rules that aid in differentiation are the sum, product, 
and quotient rules: 

'̂ This assumes availability of a version of MATLAB that includes the "Symbolic 
Math Toolbox." 
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d{u + w) _ du dw 
dx dx dx 

d(uw) du dw ,^ „, 
-^—- = w—- + u—- (2.9) 

dx dx dx 
d(u/w) ( du dw\ I 2 

dx \ dx dx) I 
One rule we'll use fairly often is the chain rule, which helps us deal 

with functions of functions. For example, if y = f{x) and z = g{y), 
then the dependence of z on x can be determined from z = g[f{x)]. 
If we want to know how rapidly z changes with changes in x, we could 
obtain dz/dx from the chain rule, 

dz _ dz{y) dy{x) _ dg(y) df(x) 
dx dy dx dy dx 

For example, if z = y^ and y = e^, then dzjdx = 3e^^. (Check this 
out for yourself.) 

To see how the chain rule might arise in practice, suppose the 
turbidity T of the water in a stream is a function T = f{C), where C 
is the concentration of clay particles in the water, and that C in turn 
is a function C = g{V) of the stream velocity V. Now, suppose you 
wanted to know how much turbidity T increases for a unit increase in 
stream velocity V. That is, you want dT/dV. However, the functions 
we know are / and g. To get dT/dV, we use the chain rule, here 
dT/dV = (dT/dC) x (dC/dV). Because T = f{C) and C = g{V), 
we can also write dT/dV = (df/dC) x {dg/dV)—this is just another 
way of saying the same thing. 

Often we need to combine rules. For example, let's differentiate 

yix) = 
1 +£3x 

with a series of elemental steps to illustrate the process. Experienced 
mathematicians might perform many of these steps "in their heads," 
but here I illustrate the process in a way that even a novice can use 
safely: 

Let u 'd x^, from which du/dx = 3x^ 

Let f ^ 1 + e^^, s '4 ly and t il ê ^ so v = s + t. Then 
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-z— = 0, so -— = 3e^ ,̂ and 
dx dx 

^3x dv 
dx 

Finally, 

dy 
dx 

ds dt 
dx dx 

du dv 
dx dx 

v2 

The point is, you can combine the various rules to differentiate any 
function analytically. In contrast, there are many functions that can­
not be integrated analytically, as we shall see in Chapter 3. 

For another example, it is possible to differentiate 

r. . ,, Vcosh{sin[log(x + 1)]} 

In fact, differentiation of this function is straightforward (although 
by no means simple) in the sense that it can proceed by a series of 
definite, sequential steps. We will skip the details, however, and note 
that there's an easier way to obtain this derivative if we have access to 
computer software that can perform symbolic math. (This functional­
ity is not available in current spreadsheets and similar programs, but 
is provided by Maple, Mathematica, MATLAB, and some other pro­
grams.) To obtain the derivative using MATLAB, we could enter"̂  

syms X Make x symbohc 
f=sqr t (cosh(s in( log(x+l ) ) ) ) / ( (sqr t (x) -h l )A2) Define f 
di f f (f) Find the derivative 

The result would be returned as 

ans = 
l /2/cosh(sin( log(x+l)))A( l /2)/(xA(l /2)-hl)A2vc 
s i nh (s i n (1 og (x+1) ) ) * cos (1 og (x4-l) ) / (x-i-1) -
cosh(s in ( log(x+ l ) ) )A( l /2 ) / (xA( l /2 )+ l )A3/xA( l /2 ) 

Entering pret ty (ans) "prettyprints" the answer in a somewhatmore 
readable form as 

În MATLAB, "log" refers to the natural, not common, logarithm. 
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sinh(s in( log(x + 1)) ) cos(log(x + 1)) 
1/2 

1/2 1/2 2 
cosh(sin(log(x + 1)) ) (x + 1 ) (x + 1) 

1/2 
cosh(sin(log(x + 1)) ) 

1/2 3 1/2 
(x + 1) X 

The probability of correctly differentiating a function this complex 
by hand on the first try is pretty small for most of us, and even if 
we use MATLAB, we shouldn't trust the result absolutely. Symbohc 
programs sometimes make mistakes, and anyway, we might have 
mistyped something. Besides, we could easily have made a mistake 
copying down the answer, so how could we check this result? This 
latter question is one you should consider every time you obtain 
any mathematical result—how can you demonstrate, to yourself 
and others, that a result you have just obtained is correct? That is 
one of the subjects of § 2.4, but first we'll take up some background 
material that we'll need there and later in the book. 

2.3 Taylor Series; a Basis for Numerical Analysis 

We now take a brief side trip from derivatives per se to consider a 
mathematical relationship that underhes much mathematical analy­
sis, and (of interest to us) forms the basis for many methods of nu­
merical analysis. We consider only the basic ideas; for more informa­
tion on the present topic, see the sections on "Taylor polynomials", 
"infinite series", and "Taylor series" in some calculus text. 

In applied math, we are often interested in "nice" functions, for 
which / (x) and all needed derivatives exist and are continuous over 
the range of interest. There may be a few singularities where the 
series is not valid, as in the function 

fix) = ^ 
X2 
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at X = ±1, but many of the functions we work with are defined for all 
positive X, at least. 

Nice functions can be expanded in Taylor Series, which have the 
form: 

3 '^^ n! 
n=0 

Note (because 0! = 1) that the first term can be written as 

/ ( a ) = ^ ( x - a ) « , 

SO it fits into the same pattern as all the other terms. 
In this expression, the symbol f denotes the second derivative 

of / , / ' " is the third derivative, and /^^^ is the nth derivative. Also, 
recall that AT! = 1 x 2 x . . .xiV for all integer AT > 1. Remember too that 
0! = 1! = 1 by definition—this may seem odd, but it turns out to be 
convenient in many situations. It is also consistent with the gamma 
function of higher mathematics, which is related to factorials by the 
relation Y{x + 1) = x\ when x is an integer > 0. (The gamma function 
is more general than factorials, being defined even for non-integer 
values of x. It is part of many important statistical distributions.) 

In words, Eqn. 2.10 states the remarkable fact that the value of a 
function (left-hand side) can be determined everywhere if you know 
its value and the value of all its derivatives at a single point x = a 
(right-hand side). The equality holds within some "radius of conver­
gence" R] i.e., it is valid for \x-a\ < R. We say that f{x) is "expanded 
about a." 

In the particular case when a = 0, the series is called a Maclaurin 
series, and it then takes the form: 

fix) = /(o)+x/(o) + ^ r (0) + ^r'(o) +.... 
2 b 

Some important Maclaurin series, ones that are sometimes consid­
ered in higher math to be the definitions of the functions they repre­
sent, are: 

e^ = exp(x) = l + x + — + — + — + . . . + — + .. . (2.11) 
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cosx = 1 -

sinx = X -

x^ x^ 

%3 x^ 

x^ 

Note how these three series involve the same kinds of terms, but 
in different combinations and with different signs. Exercise 14, p. 41, 
demonstrates some interesting implications of these series. 

Taylor Series Example 

We won't often use Taylor series directly and explicitly in this book, 
but familiarity with them is useful because they provide important 
background for many of the analyses we will perform. To see how the 
series work, we consider a simple function here to allow comparing 
our results with easily calculated values. The Taylor series for f{x) = 
•sfx (or x^/^) expanded about a = 4 is 

/ ( x ) = V 3 ? ^ / ( 4 ) + / ' ( 4 ) ( x - 4 ) + ^ ^ - ^ 

We can simplify this, but must do so carefully. To get / ' ( 4 ) , first 
differentiate fix) symbolically, and then substitute 4 for x. That is, 
you must differentiate -^Jx for the variable x, not for the constant 
value, 4. The same principle holds for the higher derivatives. In sym­
bols, then^: 

fix) = x'l\ fix) = ^ = ^ = V i / 2 ^ 1 1 
dx dx 2 2 V^ 

/(4)(;,) = _ l lx -7 /2 ;e tC . 
lb 

Now substitute x = 4 (because a = 4): 

f(4) = 2- f(4) = —— = —=— = -• r ' ( 4 ) = -— = - — 
jK^) L, J K^) 2 ^ ^2)(2) 4 ' ^ ^^ (4)(8) 32 

f'''{4) ^ :̂  ; /('^)(4) = 
(8)(32) 256' ^ (16)(128) 2048 

^Recall that the derivative of x^ is px^~ 
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Putting this all together yields the Taylor series for f{x) = -^px 
expanded around a = 4: 

/ < „ = 2 ^ . i u _ 4 , - ^ , . - 4 ) = . ^ ^ , . - 4 ) = - . . . , „ r 

/ ( x ) - V3c = 2 + ( x - 4 ) / 4 - ( x - 4 ) 2 / 6 4 + 3 ( x - 4 ) ^ / 1 5 3 6 - . . . (2.12) 

for all X > 0. 
Touse this series, we know tha t / (4 ) = V? = 2. Thus to get/(4.1) 

(i.e., ViTT), calculate 

/ ( 4 . 1 ) ^ V 4 T ^ 2 ^ ^ ^ - ^ - " ) - ^ " - ^ - ^ ^ % ^ ( ^ - ^ - ^ ) ^ . . . 
^^ ^ 4 64 1536 

r— , 0.1 0.01 0.001(3) 
^ V 4 J ^ 2 + - - ^ + - ^ ^ 3 g - - . . . , o r 

v T I = 2 + 0.025 - 0.00015625 + 0.000001953 - . . . 

« 2.024845703. 

Compare that with the direct result V4T = 2.024845673 from a cal­
culator. 

Now, for various x values try different polynomial orders (i.e., ter­
minate the infinite series at earlier and earlier terms): 

(n = 3) : / ( x ) « 2 + ^ ( x - 4) - ^ ( x - 4)^ + -r^{x - 4)^ 
4 64 1536 

( n - 2 ) : / ( x ) « 2 + ^ ( x - 4 ) - ^ ( x - 4 ) 2 
4 o4 

( n = l ) : / ( x ) ^ 2 + ^ ( x - 4 ) 

(n = 0 ) : / ( x ) « 2 

Table 2.1, p. 31, shows the relative error; i.e., 

approx fix) - true f(x) absolute error 
relative error ^ 

true fix) true value 

that results from using different levels of approximation with various 
values of X - a. In the present case, the relative error is 

(Taylor series for Jx) - Jx 
Kh = 
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Table 2.1: Relative errors resulting from approximating / (x ) = V^ for dif­
ferent values of x (columns), using the Taylor series of Eqn. 2.12 with differ­
ent numbers of terms (rows). The square root function is expanded about 
a = 4. n = 4 corresponds with truncating the series at the cubic term, etc. 

x-a: 0 0.1 0.4 4 36 
n x = 4 x = 4.1 X = 4.4 x = S x = 40 
4 0 1.5x10-8 3.5x10-6 0.016 12.0 
3 0 -9.5x10-^ -5.6x10-5 -0.028 -2.5 
2 0 7.6x10-5 0.0011 0.061 0.74 
1 0 -0.012 -0.047 -0.29 -0.68 

Note that the relative errors decrease in size as the number of 
terms increases except when x-a = 36. This occurs because when x 
is far from a, (x-a)^ in the numerator of terms increases faster than 
fc! in the denominator, until eventually k becomes large enough. This 
table illustrates (though it can't be considered a proof) that when 
using a few terms of a Taylor Series (or some other polynomial) to 
approximate a function: 

• evaluating the function at a point close to the expansion point 
(x ~ a) reduces error, and 

• for X values close enough to a, more terms tend to yield greater 
accuracy. On the other hand, if |x - a| is large, then adding a few 
terms can increase the error. Many more terms would be required 
before the series would begin to converge for x = 40. 

The take-home point is that approximating functions over small 
intervals is generally desirable. 

Eqn. (2.12) can be rewritten as / ( x ) = 

+2 constant term 
- 1 -F0.25X ( x - 4 ) / 4 
-0.25 +0.125X -0.015625x2 ( x - 4 ) 2 / 6 4 
-0.125+0.09375x-0.023438x2 +0.00195312x^ 3(x - 4)^/1536 
+ 

This is equivalent to f(x) « 0.625 -F 0.46875x - 0.039062x2 + 
0.001953Ix^, which illustrates that a Taylor series truncated after 
n + 1 terms is an nth order polynomial. 
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Figure 2.4: Two Taylor-series approximations to the cosine function, with 
a = 27T (left) and a = 5 (right). The vertical line marks the value of a in each 
case. Note that the approximation based on the first six terms (/s, Eqn. 2.14) 
approximates the function well over a wider range than the one based on 
only the first four terms (/s, Eqn. 2.13). 

Any "nice" function (one that is continuous, with all necessary 
derivatives also defined and continuous) can be written as an infinite 
polynomial of the general form f{x) = a + hx + cx^ + dx^ + .... 
We will make frequent use of low-order polynomials to approximate 
more complicated functions. The theory of Taylor series, which we 
have barely touched on, provides the motivation. 

As a further example, consider approximating the cosine function 
with terms through the third and fifth order of its Taylor series. That 
is, take f{x) - cosx, where: 

s m a cos a /3(x) n cos a - ^V. ( ^ ~ ^ ) ~ T. (^~^)^+ ^ r. (^~^)^> (2.13) 
1! 

and, adding two more terms. 

2! 
^2^sina^ 

3! 

/ 5 ( X ) ^ ^ / 3 ( X ) + cos a 
4! 

(x - ay sin a 

5! 
(x - a)^. (2.14) 

The plots in Fig. 2.4 compare these approximations with the actual 
cosine function, for a = 27T and a == 5, respectively. 

2.4 Numerical Differentiation 

In Chapter 3, we look at analytic integration, but then derive methods 
for calculating numerical values for definite integrals. Because not all 
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functions can be integrated analytically, such numerical methods are 
essential tools in applied math. 

Even though, as just discussed, all practical functions can be dif­
ferentiated analytically (except at points of discontinuity), there are 
several reasons why we sometimes want to differentiate numerically 
as well: 

• We may need the derivative of a function that we know only as a 
table of values of the form [x, fix)]. For example, this situation 
might arise if we had a table of daily measurements of the volume 
of water in a reservoir. 

• If a function is very messy, and we need its derivative at only one 
point, numerical differentiation may be the easiest way to obtain 
it. For example, the temperature distribution along the length of 
a cooling fin in a heat exchanger might be of the form 

Tix) = Ta 

cosh?n(I - x) + (h/mk) sinhmiL - x) 
^{To-Ta)- coshmL + (h/mk) sinhmL 

If we needed dT/dx only at x = 0 as a step in calculating the 
total rate of heat loss from the fin, numerical differentiation might 
produce an acceptable answer most quickly. 

• Numerical differentiation can form the basis for numerical meth­
ods for solving differential equations. We take up this topic later. 

• Numerical derivatives can be very useful for checking whether an 
analytic derivative is correct or not. An example will follow shortly 
after we see how to do it. 

To carry out numerical differentiation, first consider how we might 
approximate the slope of a function y = / ( x ) at a particular point 
XQ. One method, called the forward difference approximation, is il­
lustrated with Fig. 2.5 (left), p. 34. With this method, the derivative at 
X = xo is approximately 

dy _ yjxp + h) - yixp) 
dx ^ h 

The forward difference method would be exact only for a linear func­
tion, y = a-h bx. 



34 Chapter 2. Derivatives and Differentiation 

h 
•h h -

Figure 2.5: Graphs of a generalized function illustrating the forward differ­
ence numerical derivative (left) and the central difference numerical deriva­
tive (right). 

A better method is the central difference scheme as defined with 
the aid of Fig. 2.5 (right). That approximation (for the derivative at 
X = XQ) is 

dy ^ y{xo + h) - yjxp -h) 
dx 2h 

(2.15) 

The central difference formula is exact for a quadratic. To show that, 
let y = fix) = a + bx + cx^. Then 

y ' 1 = ? 
/ ( x + h ) - / ( x - f o ) 

[a + bjx + ^) + cjx + h)'^] -[a+bjx -h) -^ c{x - h)'^] 
2h 

a-^ bx -\-bh + cx'^ + 2cxh + ch?-
2h 

-a- bx -\- bh- cx^ + 2cxh - ch? 
+ 

2bh + 4cxh 
2h 

2h 

= b -{- 2cx. 

But analytically^, 

-^ = -T-{a-\-bx + cx^) = b -\- 2cx, QED 
dx dx 

^QED, often found at the end of mathematics proofs, is an abbreviation for the 
Latin phrase "quod erat demonstrandum", meaning "which was to be demonstrated." 
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For an example use of central differences, suppose you can't re­
member whether the derivative of cosx is sinx or - sinx. We know 
from its graph that the sine function is positive just above zero, so 
what is d{cosx)/dx at x = 0.1? Using a hand calculator, our formula 
for the numerical derivative, and h = 0.001, we find 

dicosx) fix -\-h) - fix - h) 
dx 2h 

cos0.101-cos0.099 
= -0.09983. 

0.002 
Thus, we can conclude that our required analytic derivative is - s i nx . 

Numerical derivatives suffer from and make good examples for 
demonstrating round-off error, which affects most numerical calcu­
lations. Because the central difference formula is correct only for 
quadratics, it is tempting to keep h very small when we apply the for­
mula to higher-order functions. But the smaller we make h, the more 
alike will be the two terms in the numerator. When their difference is 
computed to a finite number of digits (as is true in all calculators and 
computers) a great deal of precision can be lost. 

Let us demonstrate this by using our formula to estimate the 
derivative of sinx at x = 1. We know the result analytically; i.e., 
at X = 1, dsinx/dx = cosl = 0.540302306, and we can compare 
our estimates with that. If we choose h = 10"^ on a machine with 12 
digits, we obtain 

sin 1.00001 -sinO.99999 ^sin(x) 
dx x=l 0.00002 

0.8414T6387773 - 0.8414^65581743 
0.0000200000000000 

0.000010806030 
= 0.54030(1500). 

0.0000200000000000 
(The caret marks the point where the two terms begin to differ, and 
digits in parentheses are nonsense digits lost to round-off error.) 

If we carry out similar calculations for various values of h, we find 
the results in Table 2.2, p. 36, which illustrate a compromise—as we 
go to smaller values of /x, the round-off error increases, and the so-
called truncation error (caused by truncating the Taylor series at the 
quadratic term) decreases because we stay ever closer to the point of 
expansion. One of the exercises at the end of the chapter will help 
you to choose a reasonable h to use with your own calculator. 
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Table 2.2: Effects of varying h on truncation error and round-off error, with 
the divided difference approximation to a derivative. 

J ]_ 
1 

10-1 
10-2 
10-3 
10-^ 
10-5 
10-6 
10-^ 
10-8 
10-9 

^ ( s i n x ) / ^ x 
(numerical) 

0.4(54648713) 
0.53(9402252) 
0.5402(93300) 
0.540302(220) 
0.5403023(30) 
0.54030(1500) 
0.5402(93500) 
0.5403(1) 
0.53(98) 
0.5(34) 

truncation 
error 
larger 

smaller 

round-off 
error 
smaller 

larger 

2.5 Checking Analytic Derivatives 

As we will see later (e.g., p. 173), the function sinhx ^ (e^ - e~^) /2, 
the hyperbolic sine of x, arises as a solution of second-order differ­
ential equations that describe processes like diffusion of substances 
and transfer of heat in the environment. If we differentiate this func­
tion analytically, we obtain 

(isinhx d (e^-e~^\ e^ + e~^ 

the hyperbolic cosine function''. To check our answer, we could 
(a) calculate the numerical derivative at, say, x = 1, with h = 0.001, 
(b) calculate the numerical value of the analytic derivative at x = 1, 
and (c) compare the two. The numerical derivative of sinhx at 1 is: 

sinh 1.001-sinh 0.999 
0.002 

Our analytic derivative becomes 

1.5430809. 

e^ + e~^ 
= 1.5430806, 

which checks pretty well! 

''It happens that sinh' x = + coshx and cosh' x = + sinh x, which is similar to the 
parallel relationship with the circular sin and cos, but with no change of signs. 
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2.6 Exercises 

Problem Set on Derivatives 

1. Determine the derivative of the following function analytically, 
then find its numerical value when a = 2TT/12, b = 7, C = 0.01, 
g = 2, k = 3 and t = 3. 

^ _ e~^^cos[a{t + b)] 

2. Check your result to Exercise 1 using numerical differentiation, 
with the central difference of Eqn. 2.15, p. 34. 

3. Calculate the actual (analytical) value of d(cosx)/dx at x == 2 and 
then check the result using 

df ^ f{x + h)-f{x-h) 
dx ^ 2h 

with h = I, 10"^, lO"'^, 10"^, and 10~^. Your goal is to determine 
a good h to use in your own calculator for similar calculations. 
When you locate the best value from those above, say 10"^, try 
]̂ Q-(N+i) ^ j ^^ iQ-{N-i) ^g ^gjj^ gQ yQ^ don't miss the best value. 

4. Differentiate f(x) = x^ - x^-^ analytically, and then check the 
result numerically at the point x = 7. Be sure to show all steps of 
your work. 

5. Use the chain rule to find dz/dx when y = sinbx and z = y^. 

6. As manager of a large water quality research project, you have to 
design some special sample bottles, of which several thousand will 
be required. Each must: 

• be cylindrical in shape 

• have 1 liter capacity (1000 cm^) 

• have the smallest internal surface area consistent with the other 
two criteria. This results from the need to line the bottles with a 
very costly non-reactive substance. 

What should be the inside dimensions of the bottles, to satisfy 
these criteria? 
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7. You are setting up an experiment in a greenhouse. You need a 
seed bed surrounded by a plant-free border of 10 cm at the top 
and bottom, and 6 cm on each side. Space is limited, and you 
have been allocated a total of 2000 cm^ of area (seed bed plus 
border) on one of the tables. What overall dimensions should you 
choose to obtain the maximum area of seed bed? What will the 
actual seed bed area then be? (Note: the border is not part of the 
seed-bed area.) 

As usual, try to solve this problem both symbohcally and numeri­
cally. Be sure to define any symbols you use. 

8. Suppose it is found that the average annual concentration [ppm] of 
a pollutant at a "target point" at least 1 km away from a pollutant 
source is proportional to the average annual pollutant concentra­
tion at the source, divided by the distance between the source and 
the target point. The proportionality coefficient is some constant 
k [km]. Now consider a small city with two major sources of SO2. 
The average SO2 concentration at one is 110 ppm, and at the other 
is 230 ppm. The two sources are 7 km apart. If their effects at a 
target point are additive, and all other sources can be neglected, 
where along the line between the two sources (but at least 1 km 
from each) would the pollutant be a minimum? 

9. Suppose the white oaks in a forest are a fraction / of the individual 
trees there, and that there are a total of Ut trees ha~^ (all species) 
in that stand. In other words, the stand contains / • Ut white 
oaks per hectare. Under that condition, the oaks produce m kg of 
acorns per tree per year, on average. Suppose that if the density of 
trees (stems per hectare) increased, the acorn production of each 
tree would decrease by 6 kg per tree per year per added tree [kg 
tree~^ yr~^ overall]. 

A. If only white oaks were added (and no stems of other species) 
what number of white oaks per hectare would produce the largest 
number of acorns per hectare per year? (The deer—weeds of the 
mammal world—who eat acorns, would like to know this.) For this 
part, provide that answer entirely in symbols. 

B. If / = 40%, Ut = 120, m = 200, and 5 = 4, what number 
of white oaks would lead to maximum production of acorns, and 
what would that production be? 
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Hint: For a given density x of white oaks per hectare, acorn pro­
duction p (you determine the units) is reduced from its original 
value, m, by an amount 5{x - fut). 

10. The Ostrich Waste Disposal Corporation (OWDC) plans to build a 
landfill. They are constrained by state regulations to lay it out 
in trenches 10m wide, but they have some choice about trench 
depth. The trenches have vertical sides, and a horizontal bottom. 
They need a total trench volume of 30,000 m^. 

The top covering for the trenches costs C dollars per square me­
ter, and to reduce that cost, they would like to make the trenches 
deep. On the other hand, excavation costs increase quadratically 
with depth, and can be estimated as E = a -^ bZ^, where E is the 
excavation cost per unit length of 10-m wide trench [doUars/m], Z 
is trench depth [m], and a and b are constants. 

A. What are the units of a and b? 

B. What length and depth should the company choose to minimize 
its total construction costs for a landfill of the necessary size? 
Work this part entirely in symbols. Express your final answer in 
one (or a few) complete sentences. 

11. The equation 

I = a + i^sin — ( t + d) 

is an approximate description of the daylength I between sunrise 
and sunset at 32 N latitude, as it varies with time of year t. (For 
data, see List 1949.) We'll work with 365-day years, and ignore 
leap years. The variables are: 

L = daylength [minutes] 
a = annual average daylength [minutes] 
b = amplitude [minutes] 
c = period [days] 
d = "phase shift" [days], to make the peak fall near June 21. 

We will define t = 0 at midnight between Dec. 31 and Jan. 1. 

Sketch a graph of L versus t and work out the following: 

• Differentiate the equation analytically (symbolically) to yield 
dL/dt. 
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• Using that derivative, calculate the numerical value of dL/dt at 
noon of January 1 (when t = 0.5 da) and at noon on September 
21 (when t = 263.5 da). State the units and explain the physical 
meaning of these numbers. For these calculations, use a = 731.5, 
b = 170.5, c = 365, and d = -80.5. 

• Check your derivative value for noon of January 1 by differenti­
ating the original equation for I numerically at t = 0.5. 

12. A forest ecologist estimates that the density D of acorns dropped 
near white oak trees decreases with distance x from the tree, with 
the relationship being D(x) = a/(l + x), where D is in acorns m~^ 
and X is in m. However, deer and squirrels are aware of this 
distribution—they learn that relationship in school—and thus for­
age most intensely near the trees. As a result, the probability P 
of any given acorn remaining on the ground and germinating in­
creases with distance from the tree as given by P(x) = bx/{c + x). 
(That probability is also the fraction that germinates, on the aver­
age.) 

Your tasks are to: 

a) Determine the distance Xmax where the density of germinating 
acorns (in number m~ )̂ is greatest. Your answer should be 
given in terms of the symbohc constants, a, b, and c. 

b) Explain how you know that you have found a maximum rather 
than a minimum. 

c) If a = 3 acorns m~^ b = 0.5 m~^ and c = 40 m, then what is 
the numerical value of Xmax and of the maximum density of 
germinated acorns? 

You'll likely find it helpful to sketch the two functions, and per­
haps some combination of them as well. 

Hint: Remember that a fraction can be zero either if the numer­
ator is zero or if the denominator goes to infinity. In max-min 
problems, we are usually interested in solutions where the numer­
ator goes to zero. 

13. One afternoon while searching for spotted-owl nests, you use a 
topographic map and a GPS unit to keep careful track of where 
you are. At quitting time, you find yourself one mile east of the 
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north-south road on which you left your truck. Specifically, if you 
walked due west you would strike the road at a point three miles 
south of your truck. 

You could walk the four miles along that right-angle path and you 
could walk straight toward your truck, as two limiting cases. How­
ever, you think you would get to your truck fastest if you angled 
through the woods to strike the road at a point that was less than 
three miles from the truck. You estimate that your walking speed 
through the woods would be two miles per hour, and your speed 
on the road would be four miles per hour. 

a) To minimize your walking time, what point on the road (at 
what distance from your truck) should you aim for? For both 
parts of this problem, work in symbols for as long as you can, 
but then give numerical values. 

b) What would your minimum walking time be, and how much 
time would you save compared with that along the right-angle 
path? 

As always, you'll likely a sketch helpful. 

Exercises on Taylor & Maclaurin Series 

Reminder—In the field of analysis, one learns that "nice" functions 
(even transcendental ones^) can be expanded as Taylor series that are 
valid for all x within certain intervals. If a function/(x) is "expanded 
about" a point a, it takes the form described by Eqn. 2.10. Such a 
form can always be simplified to an infinite polynomial of the form 

/ ( X ) = fco + i>\^ + ^2^^ + ^ 3 ^ ^ + • • • 

and this fact is useful for doing approximate calculations in numeri­
cal analysis. 

14. Show that: 

• cos(-a) = cos(a). (Because of this, cos x is called an "even" 
function.) 

Â transcendental function is one that can't be expressed as a ratio of two poly­
nomials. Examples are e^ and sinx. 
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• s in(-a) = - sin(+a). (sin x is an odd function.) 

• e^^ = cosz + is inz, where i = ^ / ^ . To confirm this, it helps to 
work out first the values of i^, i^, i^, etc. You will find that an 
interesting pattern emerges. 

15. The purpose of this exercise is to show that the Taylor series for a 
finite polynomial is that polynomial. E.g., consider 

fix) = P^ix) = 7x^ - 3x, expanded about a = 4. (2.16) 

We have: f{a) = 7(64) - 3(4) = 436, and from the rules for deriva­
tives of positive powers (i.e., that dx^/dx = nx^~^)\ 

fix) = 2 1 x ^ - 3 , Sofia) = 2 1 ( 1 6 ) - 3 = 333, 

fix) = 42x, so f'ia) = 42(4) = 168, and 

r'ix)= 42, so r'ia)= 42. 

Also, f^'^Hx) == 0 for all n > 3 and for all x. Substituting these 
into (1), we get the Taylor series: 

1 68 
fix) = 436 + 333(x - 4) + j^ji^ - 4)^ + 

42 
( X - 4 ) ^ 0 + 0 + .... 3- 2- 1 

Your jobs are to simplify this expression by grouping like pow­
ers of X, and to show that it reduces to the original polynomial 
(Eqn. 2.16). 

16. Recalling that 

dx 

expand y = 1/x about the point a=2. Show the first 4 terms of the 
expansion. Use this truncated series to estimate / (2.1) , and com­
pare the estimate with the true value of/(2.1) = 1/(2.1) obtained 
by division. 

Note that the function fix) = 1/x is not a polynomial because it 
is not a sum of terms of positive powers of x. Hence, to be exact 
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the Taylor series for this function must have an infinite number of 
terms. Do you think your series would yield a reasonable approxi­
mation for / ( x ) at X = 0? Why or why not? 

17. Expand y = R -\- Sx -\- Tx^ about x = a (symbolically), and show 
that the Taylor series expansion reduces to the original polyno­
mial. 

18. Given: The derivative of y = e^^ is be^^, and (as you may remem­
ber) for any function y and any constant c, 

d{cy) _ dy 
dx dx' 

Using these facts, expand y = ce^^ as a Maclaurin series (which 
means you set a = 0). Then show that that series reduces to c 
times e^ when u = bx. For this, you can take as given that for any 
u, 

,. ^ u^ u^ u^ 

19. Expand f{x) = xe^ about a = 1 through the [x -1]^ (third-order) 
term. What are the relative errors that result if you use this trun­
cated Taylor series to estimate/(1.1), / (1.2) , / (1 .4) , 
/ ( 1 . 8 ) , / ( 2 . 6 ) , / ( 4 . 2 ) and / (7 .4 ) ? 

20. Expand the function fix) = log(x) as a Taylor series around the 
point a= 1, keeping terms up to and including the term based on 
the third derivative. 

What approximate value does your series provide for log(l.l)? 
Then, if you assume that your calculator yields the exact true value 
for that quantity, what is the relative error of the approximate 
value calculated from your series? 

21. The net exchange R of long-wave (thermal) radiation between an 
object (such as a leaf or an animal) and its surroundings is given by 
R(T) = aeiT"^ - Tf), where a is the Stefan-Boltzmann constant [J 
cm~^ s~^ deg"'*], e is the emissivity (or "blackness") of the object 
in far-infrared wavelengths [unitless], T is the object's absolute 
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surface temperature [deg K], and Ts is the absolute temperature 
of surrounding objects. R is one term of the energy balance of 
an object. Assuming that Ts is a known constant, determine the 
first five terms of the Taylor series for R{T), expanded about the 
temperature T = a. 

22. This problem makes use of the Maclaurin series for e^, which as 
you have seen is 

6^ = l + x + ^ + ^ + . - . . (2.17) 

In risk assessment for carcinogens, test animals like rats are often 
fed high doses of a chemical. Then assessors use a mathemati­
cal model to estimate the mean number ju of tumors per animal 
expected to occur in rats fed some lower dose to which humans 
might be exposed. From JL/, the assessors wish to estimate the car­
cinogenic potency (p, which is defined as the probabihty that a rat 
fed that lower dose would get cancer; i.e., one or more tumors. 

At the low doses considered, cancers are rare, and so the Poisson 
distribution from statistics can be used to show that the prob­
ability of a given rat's not getting cancer is P(0) = e~^. Thus 
the probability that a rat will suffer from one or more tumors is 
<p = l-P{0) = l - e~^, and this is the quantity we seek. Suppose 
for a particular dose of a particular chemical that n is quite small, 
say 0.0001. Then use the series in Eqn. 2.17 to show that for all 
practical purposes, <p = ju. Describe your logic. (Ultimately the 
potency for rats is converted to a potency for humans, but that's 
another story.) 

23. (This problem is about integration, but does not require you to 
perform any integration.) As noted on p. 44, the equation for the 
"bell curve" of statistics; i.e., for the standard normal distribution, 
is 

p(z) = - ^ e x p f - y V (2.18) 

Unfortunately that analytic expression is not directly useful much 
of the time because it yields the probability density at any value 
of z, and not the actual probabihties that we usually want to work 
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with. To calculate the probability P that a standard normal ran­
dom variable Z lies in some range of interest, we have to integrate 
p(z) over that range. Sadly, p{z) can't be integrated analytically. 

Suppose we needed P(0 < z < 0.8) for some statistical application. 
One way to obtain that value would be to write the Taylor series 
for p{z) (expanded about a = 0.4, say), to truncate that series 
after k terms, and to sum the integrals of those terms. If we kept 
enough terms, that should work reasonably well, since the integral 
of a sum is the sum of the integrals. 

Although you need not perform any integration, your task here is 
to check out how well a few terms of the Taylor series for p{z) 
approximate that function. In particular, 

A. Find the first three terms (i.e., through the quadratic term) of 
the Taylor series for p(z), expanded about 0.4. 

B. Calculate the true numerical value of p{0) and of p(0.8) from 
Eqn. 2.18, to as many digits as your calculator supplies. 

C. Calculate the approximate value of p(0) that would be obtained 
from the three terms of the Taylor series, and determine the rela­
tive error of that approximation. 

D. Repeat the calculations from Part C at z = 0.8. 

If those errors are relatively small, that would suggest (but not 
prove) that the integral of the three-term series would approxi­
mate the integral of the true p{z) reasonably well over this range. 
If not, you might want to add more terms, but as the higher deriva­
tives get messy, we'll omit that here. 

Hints: To simphfy developing the Taylor series, you may find it 
helpful to give the leading constant in the formula for p{z) a sym­
bolic name (like c); use a substitution like giz) = - z^ /2 , and make 
use of the chain rule. 

24. At X = 3, a certain function has the value / ( 3 ) = 1, and its first 
three derivatives there have the values f = 1/2, f = 1/4, and 
/^^^ = 1/8. The fourth and all higher derivatives are zero at x = 3. 
Using this information and the properties of Taylor series, write a 
formula that would allow an assistant to calculate values of fix) 
for any value of x. 
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25. In energy-balance calculations similar to the one for the top of a 
car on p. 8, a quantity like q(T) = (T"^ - A^) frequently arises, 
and analysts often "linearize" that with the help of Taylor series 
to simplify solving for temperature. Find the first three terms of 
the Taylor series for the function (^(T) expanded around the point 
T = A] i.e., the constant term and those involving (T - A) and 
{T - A)^. Then, calculate the numerical values of each of those 
three terms if T == 300° K and A = 295° K. Linearization involves 
dropping the third (and higher) terms. How large is that third 
term, relative to the sum of the first two, in this application? Can 
it reasonably be dropped? 

2.7 Questions and Answers 

1. Please explain again why the derivative of y = fix) = e^^ is 
fix) = he^''. 

• This is a good place to use the chain rule. Define u = bx. Then 
y = giu) = e^y and u = hix) = bx. The chain rule says that 
dy/dx = idyIdu)iduIdx) = ie^)(b). Now replace the u with 
bx, and you have dy/dx = ie^^)ib) = be^^. Alternatively, you 
can work with the Maclaurin series for e^\ i.e., with 

,, , u^ u^ li^ 
. - = l + u + — + — + — + . . . . 

Now substitute u = bx, and then differentiate the result term by 
term. Remember that the derivative of a sum is the sum of the 
derivatives. You should be able to factor out a b from the result, 
and what's left will be expibx)/b = exp(u). 

2. Is there a table of derivatives and integrals we can use for refer­
ence? 

• There are lots available. The firm that publishes the Handbook of 
Chemistry and Physics extracts the math tables from that book as 
a smaller book, and you can buy that. The Handbook of Mathemat­
ical Functions is a fine reference book by Abramowitz and Stegun, 
originally pubhshed by the National Bureau of Standards (Now the 
National Institute of Standards & Technology), and later, in paper­
back, by Dover—it's a big tome, however. Some of the "outline 
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series" of books (e.g., Schaum's) have tables available, I think. I've 
seen other books of tables in various bookstores, and any of them 
ought to be helpful. 

3. Fm unsure of when you use [f{a + h) - f{a)]/h and when you 
just differentiate analytically. 

• You should differentiate analytically most of the time—it's more 
exact. But you can use the finite difference form (A) to check an­
alytic derivatives, (B) when you have only a list of values of the 
function, not the function itself, and (C)—yet to come—as the ba­
sis for approximate solutions to differential equations. Remember 
that the central difference form [/(a + h) - f{a - h)]/{2h) is al­
most always preferable to the forward difference you asked about. 

4. Please give another example of the chain rule. 

• That would also be a good thing to look up in a calculus text 
for a good general description. For an example, though, suppose 
the water temperature in some lake varied with time on summer 
days as r = a + f? sin(ct), and suppose evaporation rate from the 
water depended on temperature according to E = a • exp(fcr). 
Then ultimately E would vary with time through this "chain" of 
dependencies. Thus, to see how rapidly E would change with time 
at some particular time, you could use dE/dt = {dE/dT){dT/dt), 
which is the chain rule. Here dE/dT = akexpikT), and dT/dt = 
bccosict). 

5. Why again is the derivative of log{bx) equal to 1/x? 

• logbx = logb -\- logx (log of a product is the sum of the logs). 
\ogb is a constant, so its derivative is zero. Thus, d(logbx)/dx = 
0 + d(logx)/dx = 1/x. That one seems counterintuitive at first, 
doesn't it? 

6. When you gave the rule that d{u + w) /dx = du/dx + dw /dx, why 
did you specify that u = f{x) and w = g{x)7 

• It only makes sense to differentiate u with respect to x if tt is a 
function of x. The 'u = / ( x ) ' was just meant to tell you that it is. 

7. What are the apphcations of Taylor series? 

• They are often used as the basis for approximations. 
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They form the basis for much of numerical analysis. (This is re­
lated to the first point.) We will use them at various times in 
the semester either to derive numerical methods (e.g., Newton's 
method for finding roots of non-linear equations) or to justify and 
help understand the behavior of other methods. 

They are used a great deal by mathematical modellers, engineers, 
and other applied mathematicians. For those of you whose goal in 
the course is to be able to work with such people, a basic under­
standing of Taylor series (and that's our level—very basic) should 
help you communicate with them. 

A side benefit in working with Taylor series is that you get some 
useful practice differentiating. 

8. How can you get so much information from a Taylor series, when 
all you know about is one point? 

• Well, you have to know a lot about that one point! You'll see 
as we get further into it (the short distance farther that we will 
go) that the first N terms of a Taylor series are equivalent to a 
polynomial of order AT - 1. That means that knowing the function 
and N derivatives at a single point tells you quite a lot about how 
the function curves and varies, at least in the near neighborhood 
of that point. 

If you know the y value at a given x, and you know the slope, you 
can move left or right a short distance on the tangent line, and be 
close to the value of the function there. If you know both the first 
and second derivatives there, that gives you an estimate of how 
much you should correct for curvature. Each additional derivative 
helps you to correct more and more. 

9. In a Taylor series, what are a and x, and especially, what is the 
difference? 

• X is the general variable (on the x axis), while a is the specific 
value of X about which we "expand the function." That is, a is the 
X value for which we must know the value of the function and its 
derivatives. If we truncate the series at a finite number of terms, 
then the resulting approximation will generally be better when x 
is near a than when x is far from a. 
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10. If we can obtain square roots from our calculators, or if we already 
know some other / (x ) , why do we need Taylor series? 

• The square root example illustrated what a Taylor series is, the 
steps you have to go through to get one, and the fact that these 
series yield better approximations near a (i.e., in a narrow range 
around the point of expansion), and better approximations with 
more terms (at least near a). 

If you go on a long research trip some time, and drop your calcu­
lator in a lake, you now know one way to get the square root of 
5 <grin>. That's not too far fetched, I guess. You might have to 
triangulate withx^ + y^ = z^ (fromwhichz = Jx^ -i- y^\to find 
locations on a lake, or some such thing. 

More reahstically, If your calculator doesn't give hyperbolic sines 
and cosines, you now have a way to get those. That is, Taylor 
series are used for many other kinds of functions in addition to 
square roots. 

Most important, we now have a justification for using polynomials 
to approximate general (non-polynomial) functions, and we know 
that these approximations work better in narrow ranges and with 
more terms. This is the major reason we deal here with Taylor 
series—they form the basis for most numerical methods. 

11. Does the second derivative show how the slope is changing? For 
example, does a negative second derivative tell you that the slope 
is getting less steep as x increases? 

• Yes, and yes. The second derivative is just the slope of the slope 
(It tells you how fast the slope changes with increasing x). A nega­
tive / ' ' tells you that f gets smaller as x increases. 

When you do a max-min problem, you find a point where the first 
derivative is zero. To determine whether that is a maximum or 
a minimum point, you can calculate the second derivative at that 
point. If / ' ' is positive there, it means that the slope keeps getting 
bigger as you move to the right. Therefore, the function is cupped 
upward, and you have a minimum. If f is negative at your ex­
treme point, then the slope keeps getting smaller as you move to 
the right. That means that the function is cupped downward at 
the extremum, so the point is a maximum. See any calculus book 
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if you want more on this. Also, try some sketches to see it better. 

Conceptually, this indicates why including a second-derivative 
term {f"{x - a)^/2\) improves a Taylor series. The information 
about how the slope changes as you move away from x = a helps 
to predict fix), relative to what you would get from using just 
f{a) and f'(a) (the starting value and the starting slope). 

12. How is a Taylor series different from linear approximation, where 
fix) ~ fia) + f'ia)Ax7 Is the Taylor series more exact? 

• One way to look at this is that a linear approximation is the 
simplest form of approximation based on the Taylor series—it is 
equivalent to using the first two terms of a Taylor series. The Tay­
lor series is more exact if you keep more terms, but if you drop 
all but the first two terms, the two are identical. Linear approx­
imations are very common, but during the semester we will use 
some quadratic ones (like the central difference derivative) and 
one quartic (fourth-order) one. Stay tuned. 

13. What does your example on p. 35 have to do with Taylor series? 
What do those calculations illustrate? 

• Those calculations are in the "numerical differentiation" section. 
They are indirectly related to Taylor series in the sense that Tay­
lor series tell us it is better to use central differences than to use 
forward differences. But these calculations illustrate a completely 
different point, namely that if you use too small an "h" value (that 
would be good from the point of view of Taylor series, which tell 
us to work in a very small range), then the new problem of round­
off error rears its ugly head. There are tradeoffs like this in a lot 
of numerical work. Keeping ranges small helps from one point of 
view, but often increases round-off error. Applied math (like life) 
is full of compromises. 

14. Shouldn't there be a 'remainder term' at the end of a Taylor series? 

• If you truncate a Taylor series (i.e., cut it off after a finite number 
of terms) then it would often have a remainder term added to it, 
as you have evidently seen elsewhere. However, so far I think the 
series I've written have all had a "+..." at the end, indicating a 
(theoretically) infinite series of terms. The full series does not have 
a remainder. Also, Taylor series for polynomials can be exact with 
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a finite number of terms, and they don't need remainder terms 
either. 

15. What is the meaning of second and higher derivatives, hke / ' ' ( x ) , 
f'"{x), and so on? 

• That would be a good thing to review in an introductory calcu­
lus text, but let me explain it too. Take the function y = fix) = 
x^ + 3x, say. Wherever you go on the x axis, the slope of the curve 
above that point (the "rise" over the "run") can be calculated using 
the first derivative, which is fix) = Sx"^ + 3. You can treat that 
derivative as a function too. If you do, and take its derivative ev­
erywhere, you would get "derivative of 5x^^+3'' = 20x^ + 0 = 20x^. 
That new function is just the second derivative of the original func­
tion. It tells you how fast the slope of the original function changes 
as you move from one value of x to another. A 20th derivative is 
just the derivative with respect to x of the 19th derivative (etc.). 
(For fix) = x^ + 3x, every derivative above the fifth would be 
zero, however.) 

16. What is the point of working with a Taylor series if you just get 
the original function back? 

• That happens only if your original function is a polynomial. It 
didn't happen with the square-root example we've started to work 
with, as you saw. Finding the Taylor series for a polynomial is 
instructional, though, because it shows the close relationship be­
tween those two mathematical forms. 

17. With a Taylor series, do you always need an infinite number of 
terms, or can you stop once the terms become zero? 

• (Infinity) x (zero) is still zero, so if you know that all remaining 
possible terms are zero, then you can stop because you know that 
adding them won't make any difference. Generally that happens 
only with polynomials, however. 
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Integration 

3.1 What is Integration? 

Figure 3.1: A function for defining the definite integral. 

If y = fix) is the function plotted in Fig. 3.1, what is the meaning 
of the definite integral given by 

rX2 rX2 

I '4 \ ydx= \ f{x)dxl 

A geometric interpretation would be "the area under the curve 
over the range xi < x < X2." A more mathematical answer in­
volves breaking the area into numerous vertical panels of width hi 
and height f{Xi), where xt is a value anywhere in the range of the 
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panel. Then the integral is defined as^ 

/ = lim 
n-oo 

Z hifixi) 

Adding an infinite number of infinitesimally narrow panels in this 
way yields the total area. 

Important note: expressions like Js inx or \{a + hx + ce^^) are 
meaningless, and have incorrect units as well. Every "J" sign must be 
accompanied by "^ something" to have any meaning at all. Please be 
sure that every integral sign you write is accompanied by a differen­
tial of some variable. 

3.2 Usefulness in Environmental Science 

Integration is mathematically equivalent to adding an infinite num­
ber of infinitesimal parts; as a result, it usually arises in situations 
involving accumulation and averaging. 

Example 1. A major apphcation is to solve differential equations. 
E.g., let RD be the rate of dumping (in kg mo~^) of PCB mass M at 
a landfill. Suppose RD rose linearly with time starting in June 1962 
(which we define as t=0). In particular, 

RD = 500 + sot kg/mo = -^ = a-hbt. 
at 

To determine how much total PCB mass had been dumped t 
months later, we integrate that variable rate of dumping over time: 

M = \ RDdt = \ {a + ht)dt = a\ dt-\-b \ tdt = 
Jo Jo Jo Jo 

A unit check yields kg = [kg mo~^][mo]. This is a good example of 
integration applied to a process of accumulation, in this case accu­
mulation of PCB mass. 

Example 2. Consider a big cat that is 50 m away from an antelope 
(Fig. 3.2, p. 54). Each animal has a maximum speed V (VA or Vc) 

^The symbol "V" means "for every.' 
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1-50 m- | 

CAT-

ANTELOPE • - - - - — — — — — — — 

Figure 3.2: Starting positions and paths of the cat and the antelope. 

in m/s. A reasonable model for changes in velocity resulting from 
acceleration might be v{t) = V(l - e~^^'^) for each animal; T here is 
called a "time constant" (about which more later). 

Suppose the antelope has a greater maximum speed {VA > Vc), but 
the cat can accelerate faster; hence has a smaller T. The numerical 
values might be: 

V T 
Cat 8.5 m/s 2.5 s 
Antelope 9 m/s 5 s 

For these values, will the antelope be caught? To answer this ques­
tion mathematically, we need to know how far each animal will go 
in t seconds, and determine whether the cat would ever have gone 
50 m farther at any time. Because v = dx/dt—velocity is the rate 
of change of distance with time—that distance is the integral of the 
velocity; i.e., for each animal^ 

x{t)= f v(t)dt= { V{l-e-^''')dt = V{t-hTe-^^''-T) (3.1) 
Jo Jo 

Fig. 3.3, p. 55, shows the distance between the cat and the antelope, 
calculated as 50 - Xcat - ^antelope, as that distance varies through 
time. Because that distance never goes to zero, the antelope must 
escape. 

Again, integration often models accumulation, and here it models 
accumulation of distance through time. 

Example 3. A tank initially contains a volume Vo m^ of water. 
Water flows in at a (possibly variable) rate, qtnit) [m^ hr~^], and out 
at a rate qoutit) [m^ hr"^]. The volume V in the tank varies with time 
according to V{t) = Vo + Jo {cun - (lout) dt. This process represents a 
good physical model for the meaning of integration. 

^We haven't reviewed the mechanics of integration yet, so don't worry if you don't 
see how this result arose. We'll take up those operations soon. 
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10 20 

time, s 

Figure 3.3: Distance between the cat and the antelope through time. 

Integration and Averaging 

Consider the dissolved oxygen curve shown in Fig. 3.4. If the only 
data one had were "grab sample" values taken every two hours during 
the day (at 0, 2, 4, ..., hours), then the average DO concentration for 
that day could be estimated as 

13 

" 13 ^ ' ' ' ' 

an ordinary-looking average. Actually, a better value in this case 
would be (co + 2c2 + 2c4 + . . . + 2c22 + C24)/24. That weighted mean 

^^o 

12 18 
Time [hour of day] 

Figure 3.4: Concentration of dissolved oxygen (DO) In a stream over a day. 
The curve represents the results of continuous monitoring; alternatively, 
grab samples might be taken every two hours. 
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Figure 3.5: Temperature variation at a site on Day 1 (left), and on Day 2 
(right). 

would account for the first and last values each representing only 
one hour of the day under consideration, while the other eleven val­
ues each represent two hours. 

If one had the continuous record shown in the figure, and defined 
that curve as c(t), then the true mean could be calculated as 

1 f̂^ 

This illustrates the general definition that the mean of a continuous 
function/(x) for x between two limits a and b is given by 

mean 
rb 

^ / ( 
Ja 

x) dx/{b - a). 

The US weather bureau defines the daily mean temperature at a 
given measurement station to be {Tmax + Tmin)l^\ i-e., halfway be­
tween the highest and lowest temperatures over the day. How well 
does this approximate the true mean temperature for the two days 
shown in Fig. 3.5? How well would it work for an exact sine wave? 

A ratio problem^: Suppose in a 10-year project that the Benefit 
= $10 U/yx=a and the Cost = {%lQU){e-^-'^'^^)/yr =be-''^ as shown in 
Fig. 3.6, p. 57. Then the ratio at any particular time t would be i?(t) = 
B{t)/C(t), and the mean value of that ratio over the ten years is: 

R = i^\ R{t)dt = ^ \ - ^ d t = - ^ 
10 Jo 10 Jo be-^^ lObc 

B̂e cautious with ratios—they can cause lots of trouble if you don't think carefully 
about how you use and interpret them. 
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Year Year 

Figure 3.6: Benefit attained (left) and cost incurred (right) for an environ­
mental protection project over a ten-year period. 

However, R, the average value of the ratio over time, isn't usually of 
much interest. What we really care about is the overall benefit:cost 
ratio defined by Eqn. 3.2. 

-f̂ overall — 

rlO 

total B Jo ^(^)^^ 
total C f i o^^ ^ ^ • 

C(t)dt 
Jo 

(3.2) 

That has the value 

^overall 
10a lOac 

Jo 

= 2.56, 

which is substantially different from the mean of the ratio R over the 
period. Do think carefully whenever you use and interpret ratios! 

3.3 Analytic Integration 

Many, but by no means all, integrals can be evaluated analytically. 
That is, the result can be written symbolically in terms of standard 
functions, with a finite number of terms. Here are some integrals you 
should memorize, so as not to waste time looking them up every time 
you need one. Note that these are written as definite integrals, so we 
end up with a value at the upper limit minus a value at the lower limit. 
(With indefinite integrals, we have a value plus a constant instead.) 
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Integrals to Memorize 

rb ^ n + 1 _ ^n+1 rb -^^ ^ 

x^dx = ; ; —dx = logb-loga = log—\ (3.3) 
Ja n+l Ja X a 

(^ I ^ exp(fc^) - exp(fca) f̂  . , , . f^/ x ^ 
exp kx dx = ; cf{x) dx = c \ f{x) dx\ 

Ja k Ja Ja 

f̂  . , J cosfca-cosfet^ f̂  
sinkxdx = ; ( 

Ja k Ja 

r̂  . , , cosfca-cosfet^ r^ , J sinkb - sinka 
coskxdx = ; 

(3.4) 

rb rb rb 

[fM+g(x)]dx=\ f{x)dx+\ g{x)dx\ 
Ja Ja Ja 

rb 

[f{x)-g{x)]dx = 7 (3.5) 
Ja 

The integral in Eqn. 3.5 must be left unspecified; there is no general 
"product rule" for integrals comparable to the one for derivatives. 
However, integrals of some products will yield to integration by parts, 
for which see any calculus text. 

I have emphasized definite integrals above because I find them 
most useful in applications. You will sometimes also see indefinite 
integrals, which for example take the form 

1 ^ n + l 
x^ dx = + C, 

n + 1 
where C is a constant of integration that must be determined from 
the details of an apphcation. 

To perform analytic (symbohc) integration in MATLAB®, when its 
Symbolic Math Toolbox is available, you could enter (again, just the 
parts to the left of the dots): 

syms a b c x Define symbolic variables 
f=si n (c'vx) Define the function to integrate 
i nt ( f ) Find indefinite integral 
i nt (f, a, b) Find definite integral 
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For the indefinite integral, MATLAB returns ans=-l/cvrcos (c*x), and 
for the definite one, ans=-(cos(cvrb)-cos(c*a)) /c . Note well that 
MATLAB does not provide a constant of integration for symbolic zn-
definite integrals. You must remember to add your own. 

As with differentiation, I suggest that you try using MATLAB to 
obtain the other integrals in Eqns. 3.3-3.4 above. 

Integration by Substitution 

Many integrals not in that group will yield to substitution. For exam­
ple, to integrate 

I 
t2 

exp[a + bit - l)]dt, 
ti 

\etu '1 a + b{t - 1). Then the integral becomes 

t̂z rtz rl2 rll 

exp{u)dt = e^dt. 
Jti Jti 

However, du/dt = b, so du = bdt, and our integral becomes^ 

1 r̂ "̂ 2 I r Y=t2 
— e^du = — exp(u) 
b Jt=ti bl At=tx 

= M e x p [ a + fc(t-l)]| ' (3.6) 
bL Jt=ti 

_ exp[a + b(t2 - 1)] - exp[a + bjti - 1)] 
~ b 

There are other "tricks" for integrating functions, such as inte­
gration by parts. Because such most integrals can be more easily 
obtained using tables or software, we will not take the time to review 
those methods here. 

Integration Using Tables 

One of the easiest analytic integration methods is to "look it up in 
the tables!" My favorites are the CRC Standard Mathematical Tables 

"̂ When you change the variable of integration in association with a substitution, it 
is helpful to keep explicit track of the limits of integration, as with the "t = t\" and 
"t = tz" in Eqn. 3.6. 
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Table 3.1: A short table of integrals. You are likely to find others in calculus 
texts, and much more complete tables are available in various handbooks. 

pax 

a 

, -cos ax ^ 
sm ax ax = + C 

a 
, sin ax ^ 

cos ax ax = + C 
a 

. o J -1/2 cos(ax) sm(ax) + l /2ax ^ 
sm'̂  ax dx = + C 

a 
o J 1/2 cos(ax)sin(ax) + l /2ax ^ 

cos'̂  ax dx = — ^̂  + C 
a 

logaxdx = Xlog(ax) - x + C 

exp(ax) , log(l + 6^ )̂ ^ 
ax = 1- C 

1 + exp(ax) a 

(extracted from Lide 2005), and the Handbook of Mathematical Func­
tions (Abramowitz and Stegun 1972). These days, however, it may be 
even faster to use software that can integrate analytically. A limited 
table is provided as Table 3.1, and some others that involve factors 
like e^^ are provided in a second table on p. 131. 

3.4 Numerical Integration 

Although many integrals can be evaluated analytically (i.e., symboli­
cally, in closed form), many other important ones cannot be. Yet, as 
users of math, we may still need to know the value of such integrals. 
For example, users of statistics frequently need to know integrals like 

P{z) = - ^ \ e-^^l^dz = \ p(z) dz, (3.7) 

since these give the cumulative probabihty lying below z in the unit 
normal distribution. Because of their importance, some values of this 
integral are generally available in tables. The tabled values, however, 
come from numerical methods provided by the field of numerical 
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analysis. Because we need numerical methods for many integrals, we 
take up that topic next. 

Suppose, then, that we wished to find 

rb 

= fix 
J a 

) dx. 

In a general sense, all numerical integration methods involve some 
scheme to estimate the area under the curve defined by the function 
of interest. Our brief study of Taylor series suggested approximating 
functions by polynomials, and many schemes for numerical integra­
tion do just that — a polynomial is fit to some set of points along the 
curve ,̂ and the integral of that polynomial provides an approxima­
tion to the area under the curve. 

The simplest version of that scheme, the trapezoidal rule, fits a 
straight line between the points [a , / (a)] and [h,f{b)], and uses the 
area under the resulting trapezoid as the approximate integral. A 
more refined scheme, known as Simpson's 1/3 rule, fits a quadratic to 
those two endpoints plus the point halfway along the range of x—we 
consider that method in more detail shortly. 

Other methods of "quadrature" use higher order polynomials, 
which in effect use more terms of the Taylor series for the function; 
however, care is required because high degree polynomials can take 
wild swings, and deviate far from the true curve between the points 
being fit. Other more complex approaches exist as well, but we will 
deal with the simple and effective Simpson's rule, which works as 
follows. 

Suppose we wished to integrate a function, like the one plotted as 
a solid line in Fig. 3.7, p. 62, from x = Xi to x = X2. In principle, f{x) 
could be expanded in a Taylor series, and over a narrow enough range 
x\ to X2, we could approximate the Taylor series with a quadratic, as 
shown by the dashed line in the figure. That is, we would take 

f{x) = a + bx -\- cx^ + dx^ + ... « a -f f7x + cx^. 

The middle expression there is the full Taylor series, and the RHS 
(right-hand side) is a quadratic approximation of it. In one application 
of the basic form of Simpson's rule, we find the approximate area of 
two panels, each of width h, as shown in the figure. Thus, 

^Any n distinct points determine a polynomial of degree n - 1. 
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Figure 3.7: A function to be integrated approximately (solid line), with the 
quadratic approximation to be integrated by Simpson's rule (dashed line. 
Two panels of width h are shown. 

rX2 

I ^ la = \ {a + hx + cx^)dx. 
JX\ 

Now we define Xc = (xi + X2)/2 and ask, can we get la into the 
form la = kiyi + kcyc + ^23^2, where yc is the function value at the 
midpoint (Xc) between xi and X2? That is, can we find constants fei, 
kc, and kz so that is true? Try it. First integrate I a analytically: 

la = \ {a+hx -^ cx^)dx = \ax -\- -bx^ + -cx^ 

= a{x2 - xi) + - i7(x | - xl) + :^c{xl - x^). 

That is the exact integral of the quadratic, but not necessarily of 
the real function. Note that the x-dependence in these three terms 
can be rewritten as: 

(X2 -xi) = 2h, 

{xl - xl) = {X2 -Xi)(x2 + x i ) = 2h{x2 + x i ) , and 

(xl - Xl) = (X2 -Xi)(x2 +X2X1 +Xi) =^ 2h(x2 +X2X1 +Xi) . 

Thus 

la = 2h\a-^ •:^b{x2 + xi) + - c ( x | +X2X1 +x?) . 
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Now divide the 2^ by 6, and multiply the expression in brackets by 6. 
Then 

]6a+ 3b{x2 +xi) + 2c{X2 + xzXi +Xi)[ 'J — { } 

Will this fit into the form { } = kiyi + kcyc + ^2^2? We use the 
relationship yi = a -\- bxi + cxl and similar ones for ydxc) and 
3̂2 (^2). Then we separate out the terms in { } so that { } = 

a + bxi + cxl 

+4a + 2fê (xi + X2) + c{xl + 2x1X2 + ^2) 

+ a + t>X2 + CX2. 

The first and third expressions here are yi and yz, respectively, so 
we have shown that 

{}=yi + [4a + 2b{x\ + X2) + c{xl + 2x1X2 + ^2)] + 3̂ 2-

We can now set fci = ^2 = 1. Then, if we can massage the middle 
three terms into the form kcy^ we'll be home free. Note that Xc = 
(xi +X2)/2 and that (Xi + 2x1X2 +X2) = (xi +X2)^. We now rewrite 
[ ]as 

Aa + Aby^^—^j +c:(xi +X2)^ = Aa-\- AbXc + 4c[ 9 ) 

= Aa + 4b Xc + 4cx^ = 4yc. 

Thus { } = y 1 + 4yc + y2 '• Finally, then, our approximate integral 
is 

la = lin-^ 4y. .y,) = 2h^y^^%^^y^\ (3.8) 

As stated earlier, Eqn. 3.8 provides an exact value of the integral for 
any quadratic and for any h. Note that the fraction on the RHS here is 
a weighted mean of y values, in which the value at the center of the 
interval is counted more than the values at the ends of the interval. 
The 2h part corresponds to the range of the integration (the length 
along the horizontal axis), while {y\ + 4yc + y2)/6 is a (weighted) 
average height of the values the function takes on over that range. 
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The weighting counts the value in the middle four times as much as 
the values at the two ends. 

Simpson's rule can be generalized. For example, 

jV(x)^x- ( 1 ^ ) [/(a)+ 4 / (^)+/ ( ! ; ) ] (3.9) 

is a two-panel numerical approximation to the integral of any func­
tion fix) from a to b. However, if the interval t̂  - a is too wide, and 
if fix) is not well approximated by a quadratic^, then the approxima­
tion to the integral may not be very good either. Actually, Simpson's 
1/3 rule with two panels gives an exact result over any interval b-aif 
fix) is any cubic polynomial. Proving that fact makes an interesting 
exercise. 

Suppose we want to integrate a function fix), not a cubic, over 
some fairly wide interval. We could go two ways—one would be to 
use higher-order polynomial approximations, and many quadrature 
methods do this. We could also apply Simpson's one-third rule over 
more panels, and that is the approach taken here. 

Let's rewrite Eqn. 3.9 as 

rb rC rb 

y dx = \ y dx -\- \ y dx, 
Ja Ja Jc 

which matches common sense if you interpret integrals as areas un­
der curves. So if we set c at the midpoint between a and b, we can 
integrate fix) from a to c with two panels, and from c to b with 
another two panels. We have: 

J ydx ^ -lyo-^ 4yi + yz \ 

J y t i x ^ - j ^ 3^2+43/3+^4]. 

When we add these two areas, we get 

J 3̂  dx « -13/0 + 4yi + 2y2 + 43/3 + yA • 

We can break the interval from a to b into more pairs of panels. 
For a total of n panels, with n an even number, the 1/3 rule becomes: 

^Note that the quadratic shown for our example (Fig. 3.7, p. 62) overestimates the 
area under the true function, at least for the left-hand panel. 



§3.5. Differentiation-Integration Contrasts 6 5 

J ydx ^ - | 3 /o + 43/i + 23/2 + 43/3 + 23/4 + . . . + 2yn-2 + 43/n-i+3^nJ. 

Simpson also derived a 3/8 rule, which applies over three panels: 

Use the 3/8 rule only when necessary, because it is less accurate 
than the 1/3 rule. You really only need it when you want to integrate 
a function for which you have evenly spaced tabulated values over 
odd numbers of panels. 

Simpson's rules are relatively easy to understand and use, and 
are adequate for many purposes. However, be aware that there are 
other more efficient numerical integration methods that are prefer­
able if you have a lot of heavy-duty number-crunching to do. You 
will find some of these well described (including, for example the ef­
ficient Romberg method) in Press et al. (1992). In MATLAB, the quadl 
procedure is effective. 

3.5 Differentiation-Integration Contrasts 

Differentiation can be contrasted with integration in several interest­
ing ways: 

• Differentiation and integration are inverse processes relative to 
one another. 

• Differentiation is straightforward, and integration is not. 

• Differentiation is less "robust" than integration. 

Let's consider these points in turn. 

Differentiation and Integration Are Inverse Processes 

This is stated formally by the "Fundamental Theorem of Calculus," 
which declares that if fix) is continuous over a < x < b and if 

dF 
— = fix) when a < x < b 

then 
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rb rh J r 

f{x)dx=\ --z-dx = F{b)-F{a). 

This is proved in many calculus texts. 
In terms of indefinite integrals, this theorem tells us that if dF/dx 

= fix), then J fix) dx = Fix) + C. In words, the theorem essentially 
means that if a function / is the derivative of some other function f, 
then F is the integral of / . 

Completing the graphical exercise at the end of this chapter may 
help you to gain an intuitive feeling for the inverse nature of the two 
processes. 

Integration Is Not Alvsrays Straightforw^ard 

In contrast to the situation for differentiation (Chapter 4), there are 
many functions that cannot be integrated analytically so as to yield a 
result in closed form. For example, recall the function 

,,, Vcosh{sin[log(x + l)]} 
^^ ^= (V3c+1)2 

from the previous chapter. Although we found the derivative of this 
function on p. 26, its integral over the range 1 < x < 3 almost cer­
tainly doesn't exist in closed form. That is, probably no mathemati­
cian could find a function Fix) with a finite number of terms such 
that 

I, '1 

or such that 

fix)dx = Fi3)-Fil) 

I fix)dx = Fix) + C, 

If we ask MATLAB to find that integral using 
syms X 
f=sqr t (cosh(s in ( log(x+ l ) ) ) ) / (sqr t (x )+ l )A2 
i n t ( f ) 

it returns an error message, along with 

ans=in t (cosh(s in( log(x+ l ) ) )A( l /2) / (xA( l /2)+ l )A2,x) , 
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which merely restates the problem, but provides no answer. However, 
you can estimate the value of the integral numerically, by Simpson's 
rule, for example. The value is approximately 0.419. To tell MATLAB 
to integrate that function numerically from 1 to 3, one choice would 
be to enter'^ 

f = i n l i n e C ( c o s h ( s i n ( l o g ( x + l ) ) ) ) . A ( l / 2 ) . / . . . 
( x .A ( l / 2 )+ l ) .A2 ' ) 

in tva l = quad l ( f , l , 3 ) 

MATLAB rephes with i n tva l =0.4190. The quadl function in MATLAB 
uses a process called Lobatto quadrature, which is more efficient and 
accurate, but more complicated, than Simpson's rule. Note that the 
definition of the function / requires dots (periods) in front of the 
*, / , and '' operators (but not in front of + or -). This has to do with 
MATLAB's internal use of vectors while performing this integration. 

Differentiation Is Not Robust 

Integration is very robust to approximations and discontinuities, 
compared with differentiation, which is sensitive to such things. For 
example, suppose an ecologist measured the densities (in trees per 
acre) of balsam firs of various ages in a forested area, and found the 
age-density curve shown by the sohd line in Fig. 3.8, p. 68 (J. Hett, 
personal communication, 1970). 

The true curve suggests that there had been cycles of high and 
low reproduction in the past. A mathematical modeller interested in 
the overall decline of density with age might want to approximate the 
true solid curve with the dashed one. Note that the integrals under 
the two curves would be very similar (because integration averages 
out fluctuations), but S2, the derivative of the approximate curve, can 
be very different from SI, the derivative of the true curve, at many 
points. 

''In MATLAB, an ellipsis (...) at the end of a line normally indicates that the com­
mand is continued on the next line. However, you can't break a string (material 
between quotes) that way, so you'll have to enter this as one line to run it. 
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Figure 3.8: The age-density relationship for balsam fir in a region of New 
Brunswick. Solid line—true curve; dashed line—an approximate curve. Note 
that the two curves have very similar integrals (areas under the curves), but 
that the slopes of the relationship for trees of certain ages differ drastically 
between the true and approximate curves. 

3.6 Exercises 

1. Review of basic integration: Integrate the following functions by 
substitution, with the help of the tables on pp. 60 and 131 or by 
any other appropriate method. You may also want to try integrat­
ing them using MATLAB. 

J X 
B. 1 X2 + 1 

dx] 
rlog2 

Jo ' 

D. l{e^ + e-^fdt] E. f t^e^ dt] F. f 
J Jo Jo 

e^dt 

xe ^ dx 

2. Using analytic integration, find the value of the integral 

-2.5 
1= { ' {X^- 4^)dX 

3. Check your result in the previous exercise using Simpson's 1/3 
rule with six panels. 

4. Find the mean value of the function y = 36""̂ -̂  - 2 analytically, 
over the range a < x < b. Work symbolically as long as you can, 
then plug in numerical values to obtain the final numerical value 
(for a = l,b = 3) only at the very end. 
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5. Consider a 12-m wide stream that flows north to south, and sup­
pose that its depth varies with distance x from the western shore 
approximately as d == a x + fcx^ + cx^ for 0 < x < 6 m. Assume 
the stream bed has the reverse shape from 6 < x < 12 m. What 
is the volume of water in a slice of the stream one meter along its 
length? 

6. (This one's a little harder.) Consider a circular farm pond of radius 
8 m, in which the depth varies with distance x from the shore 
according to d = a + bx + cx^, for 0 < x < 8 m. What is the total 
volume of water in the pond? 

7. The human population was approximately 0.5 "gigabod" at 1.5 mil-
lenia C.E. (common era) and 3 gigabod at 1.964 millenia C.E. These 
two data points can be used to determine uniquely (but probably 
not accurately) the two constants in each of the following models 
for population growth: 

Linear: Niit) =A + Bt (1) 
Exponential: Neit) = ae^^ (2) 

Based on each of these models, estimate: 

A. the mean population over the whole time interval between the 
two times. 

B. the rate of population increase at time 1.732. 

8. Consider a population that grows logistically, according to this 
equation, modified from Eqn. 1.6, p. 9: 

N{t) = -
yrt + No 

Use Simpson's one-third rule with four panels to estimate the 
mean population over the time period from t = 0 to t = 2 years, 
when the parameters are K = 1000 animals, r = 0.03 y r " \ and 
No = 7 animals. 

You work for a city that owns a small reservoir that is a minor 
part of its water supply. Three flows—via an aqueduct entering, a 
stream entering, and an aqueduct leaving the lake—are measured 
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on an instantaneous basis at 7 a.m. (0700 hours) and 7 p.m. (1900 
hours) every day. These flows are used to estimate changes in 
the volume of water stored in the reservoir, under the assumption 
that the three flows afl change fairly smoothly. (That assumption 
sometimes breaks down during heavy storms, but no storms occur 
during the period you will work with here.) 

Based on past calculations, we know that the reservoir contains 
about 7.5 X 10^ m^ of water at 0700 on the first day shown. Given 
the flows hsted in the table below, use numerical integration to 
estimate the amount of water stored at 0700 on each of the next 
two days. Be sure to check units, and to show your unit check(s). 

Day 
1 
1 
2 
2 
3 

Time 
0700 
1900 
0700 
1900 
0700 

Q-duct in 

[m^ s-i] 
3.85 
3.78 
3.75 
3.81 
3.86 

Ccstream in 

[m^ s-i] 
0.97 
1.03 
1.04 
1.08 
1.04 

Qduct out 

[m3 s-i] 
4.25 
4.31 
4.36 
4.40 
4.43 

Net ir 
[m^ s~ 

0.57 
0.50 
0.43 
0.49 
0.47 

10. Most of the water provided to NY City by the NYC DEP is unfiltered, 
because the source waters (mainly in the Catskill Mountains) are 
remarkably clean. As one condition for avoiding having to build a 
filtration system (at a cost of many bilhons of dollars), the US EPA 
requires the city to keep concentrations of Escherichia coli and 
other indicators of fecal contamination at specified low levels. 

As an aid in meeting that condition, DEP hydrologists study the 
loading of FCBs (fecal coliform bacteria) discharged by streams 
into the City's reservoirs. Here we consider data obtained for Sub­
urban Creek, which drains a largely residential area north of White 
Plains into the Kensico Reservoir. Potential sources that might 
add FCBs to that creek are pet and wildlife feces, leaky sewers, 
and malfunctioning septic systems. 

The hydrologists obtain data for hourly discharge q (flow of water) 
in m^ hr~^ of water, as it varies with time through a year. They also 
take water samples once every four hours for a full year^, and send 

În reality, this would be prohibitively expensive. They actually sample intensively 
only during storm events 
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these to the lab for determination of FCB concentrations c, which 
we will express^ in CPU m~^. 

Suppose we can express q and c as known, continuous functions, 
say q = fit) and c = ^( t ) for one year of interest. (This could be 
done approximately using mathematical structures known as cubic 
splines for example.) We now wish to estimate the total number of 
FCB CPUs discharged into Kensico via this stream in the year under 
study. 

One of the team, John Doe, suggests calculating the mean hourly 
water discharge q for the year and the mean PCB concentration 
c over the year. Then, he would estimate total PCB loading T [the 
number of PCB CPUs over the year] as T = q x c x iV, where N is the 
number of hours in the year. Another of the team points out that 
the PCBs can sometimes be flushed out of the stream's watershed 
early in a storm, so that maximum c values may often occur with 
small q values, and conversely. 

Your task is to describe an analysis that would take that latter 
phenomenon into account and would provide a more accurate es­
timate of the year's loading of PCB into Kensico (from this stream) 
than Doe's calculation could provide. Make your description as 
mathematically explicit as you can, given that you don't yet know 
the specific forms of q and c. Be sure to 

• Describe your method and reasoning in full sentences, 

• Draw any hypothetical sketches that will help to illustrate your 
reasoning, 

• Analyze units, and 

• Describe why your proposed method should work better than 
J. Doe's method. 

Hint: It may help you to think back to birds colliding with power 
lines. It may also help you to think about hourly PCB loadings for 
a few "representative" hours during the year. 

11. The data in the table below represent instantaneous flow rates Q, 
phosphorus concentrations C, and phosphorus loading rates R { = 

^CFU=colony-forming units 
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QC/1000) entering a constructed wetland. Use Simpson's rule to 
estimate the total loading of P, expressed in kilograms, into the 
wetland over the six-month period. To simplify the calculations, 
assume that each month comprises exactly 30 days. 

State your result in a sentence, and supply a unit check, including 
a statement about whether the units do check or do not. 

Q C R 

Date |m^ da~^ | [mg m"" ]̂ [g da~M 
Apr 1 
May 1 
J u n l 
Ju l l 

Aug 1 
Sep 1 
Oct l 

2480 
1932 
1756 
1288 
945 

1120 
1432 

39.6 
44.2 
48.0 
48.2 
47.8 
43.6 
40.6 

98.21 
85.39 
84.29 
62.08 
45.17 
48.83 
58.14 

12. Toxicologists who study acute responses to inhaled substances 
sometimes make use of "Haber's Law," which is really just a 
first approximation rather than a scientific "law" (whatever that 
means). This principle states that the physiological response to 
an inhaled toxin will tend to be about the same when the product 
of concentration C inhaled times the duration of exposure T is 
held constant. Thus, a rat breathing air containing 1 mg m~^ of 
formaldehyde for two hours would be expected to respond simi­
larly to a rat breathing 2 mg m"^ for one hour. Let us denote the 
effective total exposure as £, where E = CT. If C and T have the 
units given above, what are the units of £? 

For exposures to varying concentrations, E is obtained by inte­
grating (accumulating) the concentration over the exposure time. 
Suppose that you spill some volatile substance in a lab, and the 
concentration carried by the air ducts to a nearby classroom varies 
as 

at) = ae-^^^-^^' for 0 < t < 2fc, 

C{t) = 0 otherwise. 

Then 
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A. Obtain the integrated concentration over the 2k minutes that 
this episode lasts. Because this function can't be integrated ana­
lytically, estimate its value numerically for the case when a = 2 
mg m~^, b = 0.02 min"^, and fc = 20 min. Use Simpson's rule with 
8 panels. Be sure to show your work in detail. 

B. Explain briefly how you might decide whether eight panels yield 
a sufficiently accurate answer. (Just explain what you would do— 
you don't have to carry out the procedure.) 

C. What is the average concentration over the 40-minute period of 
interest here? (Express your answer symbolically, and then as a 
numerical value.) 

D. Is it true that the average, when multiplied by the 40-minute 
duration, is the same as the integrated E value? 

13. There are several kinds of situations that call for numerical inte­
gration, such as: 

• having a function in "formula" form for which no analytic inte­
gral can be found. 

• checking an analytic integral, when one has been found. 

• having a functional relationship (e.g., some response y that 
varies with time) that is known only as a table of measure­
ments, and not as a formula. 

The problems above have dealt with the first two of these situa­
tions. The present problem provides an example of the third. 

Convective heat loss between an object and the air surrounding 
it is often modelled with a convection coefficient he, such that the 
energy loss from the object is given by q = he A (T - TA) , where he 
has units like cal cm~^ min~^ deg~^ A is the object's area in cm^, 
T is the object's temperature, and TA is the temperature of the air 
(or other fluid) surrounding the object. The convection coefficient, 
in turn, can be expected to be proportional to the square root of 
the object's length in the direction of the wind, when the wind 
flows along in the plane of the object. When the length of the 
object varies, then he could be calculated from the mean square 
root of the length. 
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Figure 3.9: An aspen leaf with lines indicating locations where the measure­
ments in Table 3.2 were taken. The lines are 0.16 cm apart. 

1.27 
2.09 
2.62 
2.98 
3.22 
3.43 
3.60 

3.69 
3.75 
3.78 
3.77 
3.72 
3.62 
3.48 

3.29 
3.10 
2.90 
2.68 
2.51 
2.22 
1.92 

1.47 
1.16 
0.63 
0.35 
0.11 

Table 3.2: Measurements [cm] of the lengths of the lines shown in Fig. 3.9. 
(Read numbers top to bottom in the first column, then in the second column, 
etc.) 

The aspen (Populus tremuloides) leaf shown in Fig. 3.9, has the 
lengths (in cm) provided in Table 3.2, measured along the lines 
shown in the figure. Use these data to determine the mean square 
root of width, using Simpson's rule. If the number of panels is 
not an even number, then use the 3/8 rule once, somewhere in the 
part of the range where the widths vary the least. 

Also, describe how you could use Simpson's rule to estimate the 
area of this leaf. (You do not have to carry out these calculations.) 

14. Decay of leaf litter on the forest floor is of interest for many rea­
sons, not the least of which is that we would all soon be buried 
alive if dead things didn't rot. In addition, the decay process re­
leases nutrients back to the soil, and is part of the global carbon 
cycle. Leaf htter contains many components, but two important 
ones are cellulose and lignin—cellulose is fairly easily decomposed 
by microorganisms like fungi and bacteria, while lignin is more re-
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calcitrant. One model that accounts for "slow" and "fast" compo­
nents of litter is 

m = fo exp(-k / t ) + SQ exp{-kst) = foe'^f^ + soe'^'\ 

where 

m = total litter mass remaining in a sample [g] 
/o = initial fast mass [g] 
SQ = initial slow mass [g] 
kf = decay constant for the fast mass [da~^] 
ks = decay constant for the slow mass [da~^] 

t = time after leaf fall [da]. 

(All these values are positive at all times.) 

Assuming that relationship, and that no new litter falls during the 
time of interest, determine the mean amount of litter mass present 
between any two times, ti and tz within that decay process. Pro­
vide a complete unit check. 

15. Make an enlarged photocopy of Fig. 3.10 on p. 76 if you can, and 
for each of the f{x) functions there, sketch the first and second 
derivatives in the top two rows of panels. In the bottom row, 
sketch at each x the integral of the function from zero to that 
value of X. Remember that integrals accumulate. Your goal should 
be to sketch the general tendencies correctly—you need not be 
quantitatively correct. 
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Figure 3.10: Graphical exercise for understanding the basic meaning of 
derivatives and integrals. 
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3.7 Questions and Answers 

1. Why is log(x) the integral of 1/x? 

• The following doesn't explain why, but it helps to confirm the 
relationship. The Taylor series for log(x) at a = 1 happens to be 

{x-D- | ( x - 1)2 H- | ( x - 1)3 - i ( x - 1)4 + i ( x - 1)5 + ... . 

If you differentiate that term by term, you get the Taylor series for 
1 / x a t a - 1, which is l - ( x - 1) + (x-l)^ - (x-l)^ + ( x - l ) ^ -
( x - l ) 5 + ... . 

2. Please provide an example of calculating an integral, like the one 
in the class exercise today. 

• Okay. The function was 0.1(1 + x + x^). Let's call its integral 
from 0 to 10 "/." Using the rule that the integral of a constant 
times a function is the constant times the integral of the function, 
we get / = 0.1 J(l + X + x^)dx. Next use the rule that the integral 
of a sum is the sum of the integrals to get 

/ = 0.1 Idx -\- \ xdx + \ x^ dx\. 

The first of those integrals (from 0 to 10) gives 10-0. The second 
gives (10^ - 02)/2 = 50. The third gives (10^ - 0^)/3 = 1000/3. 
Finally, then, / = 0.1(10 + 50 + 333.3) = 39.3. To get the average 
of the function over some range, you divide by the range (10-1), so 
the average value was 3.93. 

3. There were several questions about Simpson's rule, so let me try 
to answer them all at once. 

• In various numerical methods, we often use polynomials in one 
way or another. Even if we don't use Taylor series explicitly (we 
don't with Simpson's rule), our brief look at them tells us two im­
portant things: 

• All other things being equal, polynomials with more terms pro­
vide better approximations to general functions than polynomials 
with fewer terms. (This is especially true for narrow ranges of the 
X variable.) 
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• Even low-degree polynomials of ten provide good approximations 
if we work within a narrow enough x range. 

There are lots of ways one could approximate functions to esti­
mate integrals. There are methods, e.g., "Gaussian quadrature," 
that involve fitting a single 16th degree polynomial (for example) 
to the function being integrated. Alternatively, one can use rela­
tively low degree polynomials, and break the range of integration 
into lots of narrow subranges. That's what we do when we use 
Simpson's rule. 

Simpson's rule is particularly effective because, even though we 
derived it to approximate a function with a quadratic, it actually 
provides exact integrals for cubics. That means that it approx­
imates more complicated functions with cubic approximations, 
too. 

4. How do computers integrate functions (with references to some 
related questions)? 

• Most of the time they don't use Taylor series explicitly, unless 
you tell them to. Programs like Maple (and MATLAB symbolics) 
and Mathematica (and some others) "know" how to use the gen­
eral rules of symbohc integration (including integration by parts, 
for example), and can integrate many functions that have analytic 
integrals. For example, if I want to evaluate J sin(x) exp(-fcx) dx, 
I enter 

syms b x 
f=si n (x) 'vexp(-b'vx) 
s i m p l i f y ( i n t ( f ) ) 

in MATLAB, and it yields (without the constant of integration, re­
member) 

ans = -exp(-bvfx)*(cos(x)+bvfsin(x))/(bA2-i-l). 

(The "simplifyO" is not necessary, but often gives a cleaner looking 
answer.) This is MATLAB's notation for 

, , ,cos(x) + ^sin(x) _exp(-fcx) .^^^^ . 

MATLAB can also do numerical integration, as was shown on p. 67. 
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With any programs like MATLAB, keep in mind the following warn­
ing (about the similar Maple) from Kofler (1997): "... Therefore you 
should always look at Maple results with a certain degree of scep­
ticism. The better your knowledge of the underlying mathematics, 
the higher the probability of detecting such errors and possibly 
finding an alternative formulation for which Maple supphes the 
correct result...." 

5. Why can't you use Simpson's 1/3 rule with an even number of data 
values (if all you have is a table of data, not a formula)? 

• An even number of values corresponds with an odd number of 
panels. But Simpson's 1/3 rule always works with sets of two pan­
els at a time, as with {yi + 4yc + yz)- Simpson's 3/8 rule is not as 
accurate, but it allows you to work with three panels. 

6. What was the 'handy trick' you mentioned to check if you've used 
Simpson's rule correctly? 

• Actually, I was suggesting the opposite—using Simpson's rule to 
check whether you have done some symbolic integration correctly. 
If you integrate some messy function (by substitution, or by parts, 
or with tables, or even with software), it's not a bad idea to check 
your result. One way to check is to differentiate, and see whether 
you get your original function back, but sometimes the resulting 
algebraic forms can look so different that it's hard to tell. Another 
way to check (and you'll see this in some of this chapter's exer­
cises) is to see whether Simpson's rule gives you essentially the 
same numerical result as your analytic integral, over some specific 
range. 

7. Is Simpson's rule useful for real applications, such as engineering 
work? 

• Yes, it is a fairly standard way of performing numerical integra­
tion. In particular, it's pretty easy to work with Simpson's rule in a 
spreadsheet if you don't have (or don't want to use) fancy software 
like MATLAB, and it's accurate enough for many purposes. Simp­
son's rule is about the best you can do if you have only a table 
of measured values to represent a continuously varying quantity, 
too. A lot of numerical integration these days is performed using 
more complicated methods, but those are not at all easy to im-
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plement in a spreadsheet. (Software hke MathCad and MATLAB, 
and calculators that have integrators built in probably use more 
sophisticated, but more complex, methods. When I worked for 
the NY City water supply, one of my staff used Simpson's rule to 
integrate flows into and out of the City's reservoirs. 

8. If you have a set of measured data taken at uneven intervals, how 
would you use Simpson's rule? 

• You can't. If I had that situation, and needed to estimate the 
integral under the curve that the data represent, I would probably 
use repeated applications of the trapezoidal rule between each set 
of two numbers. Another approach would be to use approximating 
functions called cubic splines, and to integrate those. 

9. How can the p{z) expression you wrote for the 'bell curve' be an 
equation for that function, since you said there is no algebraic way 
to write it? 

• The p(z) equation (the integrand, or the lower-case p(z) func­
tion inside the integral in Eqn. 3.7 in the notes) is the equation 
for the bell itself. What I said was that the integral of that curve, 
the P(z) (capital P) that represents the actual probabilities of be­
ing between any two numbers, doesn't have an algebraic repre­
sentation. That is, although the function x^ + 2 has the integral 
(x^/3) + 2x + C, you can't integrate p(z) to get a symbolic form 
anything like that. In statistics, that p(z) is called a "probability 
density function;" it does not represent actual probabilities. 

10. Please explain again why we divide h by 3 in Simpson's rule. 

• I'll explain at two levels. The first is that the "3" came out of the 
derivation, and it has to be there to make the answer exactly cor­
rect when you integrate a function that happens to be a quadratic. 
The second is (and this may be what you are asking for) that Simp­
son's rule can be written in the form of the width of the area of in­
terest {2h) multiplied by the average height of the 'y' variable over 
that range. That average height is a "weighted average," namely 
iyi + 4yc + 3̂2 )/6. The 2 multiplied by (1/6) leaves you with 1/3. 
In fact, the rule we learned is sometimes called "Simpson's one-
third rule." There is also a three-eighths rule that is useful for 
limited special cases. 
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11. What exactly does Simpson's rule tell you? Is it the same as taking 
a definite integral? 

• It is similar in intent. Specifically, it is a numerical method for 
approximating the value of a definite integral, for use primarily 
when you can't obtain that value analytically. 

12. If you have a function that can't be integrated analytically, could 
you represent it graphically, and then approximate the integral 
with infinitesimally small Ax's? 

• Well, if you make them infinitesimally small, literally, then you 
would need an infinite number of them, so that process would take 
you a very long time <grin>. In the days BC (before computers), I've 
heard of people drawing a curve, cutting out the area, weighing it, 
weighing a known rectangular area, and using that information 
to estimate the unknown area. I've also used an area-measuring 
device called a planimeter used. But it's easier to use one of the 
numerical integration routines we will discuss, and that might be 
"good enough for government work" (as the saying goes). The 
aspen leaf exercise demonstrates that process. 

13. Your example in Fig. 3.5 was very extreme. How well does the 
Weather Bureau's averaging method work for realistic cases? 

• When I was an undergraduate in Boulder, Colorado, the temper­
ature dropped one day from something like 90 to 30 F in about 
six hours. Still, I agree that kind of thing doesn't happen very of­
ten. My example was meant more to illustrate what the mean of 
a continuous function is, rather than to criticize the WB's method. 
Given all the uncertainties in temperature measurements, their 
method is probably good enough for most purposes. There are 
places where sea breezes cool things off rapidly in the evening, 
day after day, in the summer. If that were a regular pattern, the 
simplistic [max+min]/2 could be biased by an amount that might 
matter for some purposes. 

14. Isn't it easier to change the limits of integration to limits for the 
new variable when you make a substitution, rather than doing it 
the way you did? 

• You can do it whichever way seems easier to you. It's a matter 
of personal preference—either works if you're careful. 



Chapter 4 

Ordinary Differential 
Equations 

4.1 How ODEs Arise 

Although derivatives are important in environmental science in ways 
described in Chapter 2, their greatest importance may be as compo­
nents of differential equations. Until now, we have mostly translated 
story problems into algebraic or transcendental^ equations involving 
specific variables directly. That is, we might be able to work out that 
some response y is a given function of some influencing variable x. 
Often, though, we don't have knowledge of that direct kind. Instead, 
we have two other kinds of knowledge: 

• Given any value x of the causative (independent) variable and any 
value y of the response (dependent) variable, the rate of change 
of y with X (that is, dy/dx) is a known function of x and y. In 
the environmental sciences, the independent variable (x) is often 
time, so x is often replaced by t in these notes. 

• At Xo or to (some particular value of x or t), the value of y is yo. 

Situations like these lead to differential equations, which describe the 
rates at which state variables like mass, concentration, temperature. 

^Technically, algebraic equations are those involving polynomials only. Loga­
rithms, exponentials, and trigonometric functions are known as transcendental func­
tions. We won't pay further attention to this distinction, however. 
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Figure 4.1: Definitions of quantities in the mercury-in-lake problem. t|=flow 
into and out of the lake [m^ da"M; Ci=concentration of Hg in the water 
flowing in [mg m~^]; m = tn(t)=mass of Hg in the lake water [mg] as 
it varies with time; V=volume of water in the lake [m^], a constant here; 
c(= ?n(0/V)=concentration of Hg in well-mixed lake water [mg m"^]. 

pressure, population size, or other conditions change with time, with 
distance along some spatial coordinate, or occasionally with some 
other variable. Our ultimate interest is often in the states rather than 
in the rates, and we obtain information about the states by solving 
the differential equations (pp. 89ff). The reader will find that care­
ful attention to the distinction between rates and states will help in 
learning to understand and use differential equations effectively. 

We begin our study of these valuable mathematical tools with 
three examples. We will first derive the equations (write the mathe­
matical statements for the processes being modelled), and later solve 
them. 

Example 1 

We return to the mercury-in-lake problem posed earher (p. 12), for the 
lake diagrammed in Fig. 4.1. Let's simplify matters with some "heroic 
assumptions"—that all mercury is dissolved in the water and none of 
it evaporates, drops to the bottom with sediments, is taken up by or­
ganisms, or is involved in chemical reactions. We'll also assume that 
flow of water into the lake equals flow out, and both are constant (so 
lake volume doesn't change with time), and that ct remains constant 
through time. 

Let m = mo (the initial condition) at some starting time t = 0, 
where m is the total mass [mg] of mercury in the lake. In the fu­
ture, for any time period of length At (not only at the first time 
step!), a simple mass balance tells us that m{t + At) = ni{t) + 
{m added in time At) - {m lost in time At). 
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If At is short enough, then for the processes shown above 

171 
m(t + At) ~ m{t) + Ci^At - TT^^t. (4.1) 

Note the use of "~" and not "=", which will be explained shortly. 
Here, Ci is the (assumed constant) mercury concentration [mg m~^] 
in the incoming stream, q is the discharge of water [m^ da~^] of both 
the inlet stream and the outlet stream, and V is the volume of water 
[m^] in the lake. The units of the various terms in the equation above 
are thus 

mg m^ , mg m^ , 
mg = mg + —7 -—- da + —f -;— da. 

m^ da m^ da 

With a little algebra, Eqn. 4.1 becomes 

m{t + At) - m{t) ( m" 

At 

This form is only approximate because the mass m, and hence the 
loss rate of mercury from the lake, are both changing continuously— 
those variables are not constant for the whole period from t to t + At. 

We can save the day by taking the limit as At goes to zero, to yield 

m(t-\-At) - mit) dm 
lim : = —r-
At-o At dt 

( 7n\ 

with the initial condition that m(0) = mo. This is a differential 
equation, in this case a rule for the rate at which mercury mass m 
will change at any given time, based on what m is present at that 
given time. Of course, we really want to know how m changes with 
time; i.e., m = f{t). That would be the solution to the DE (differential 
equation), and we will learn shortly how to obtain it. To that end, note 
for now that the DE could be written as m ' = a + ibrn, with a = qct 
and b = -q/V, where a and b are both constants. 

Example 2 

We have here the tale of an oddly-motivated swallow headed for 
Capistrano one spring. (The model is fanciful, but it helps to illus­
trate some important concepts.) At any instant, she flies toward her 
goal at an airspeed that is one-fourth of her distance D [km] from 
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i> •K [km/da] 

• H [km/da] 

•D[km] 

r^ 
Q Q Q 

Figure 4.2: A swallow flying toward Capistrano. VA is the bird's variable 
airspeed, relative to the wind [km da"^], H is the constant wind speed [km 
da~^], and d is her (variable) distance from the mission [km]. 

the mission per day. This airspeed is by definition relative to the air, 
not the ground; further, it is an instantaneous rate that can change 
from instant to instant. In other words, as she gets closer to her 
goal, she slows down. Unfortunately, her airspeed is also relative to 
a headwind of H km da~^ 

If we knew her distance Do at some starting time to, it would be 
convenient to be able to write down her D{t) function for future 
times, so the tourists at Capistrano would know when to expect her. 
But we don't really have that knowledge—all we know about is rates 
of motion. So again, we derive a differential equation, which for this 
problem we can write directly. We have 

dP 
dt 

D{t) 

(Distance increase rate) - (Distance decrease rate) 

= H (4.2) 

with the initial condition that D{to) = DQ. Units are 

km _ km km 
da da da" 

This is of the form D' = a + bD' (with a = H and b = -I/4), or more 
generally of the form y' = a + by. 

Be sure to note that this equation applies at all times into the 
future, not just at the starting moment. A quick check shows that 
dDjdt, H, and D/4 all have units of km/da, so our units are at least 
consistent. Finally, note the initial condition (IC)—we will need both 
the DE and the IC to obtain a solution, which again we will take up 
shortly. At this point, it is worthwhile to sound several warnings 
about confusions that students sometimes experience. 
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WARNINGS! 

• The initial condition is part of the problem specification, and the 
differential equation has no unique solution without it. Neverthe­
less, the starting value is rarely part of the differential equation 
itself. (Chemists sometimes do include starting amounts in their 
rate equations—when they do, they state the current mass of some 
reactant as the starting mass less what has been lost to the reac­
tion so far.) 

• To be more specific, one should not write Eqn. 4.2 as 

cLD _^ Do 

This form would be correct for just an instant at t = 0, but after 
that (after the swallow's distance from her goal changes from Do) 
it would overestimate her airspeed as she gets closer to her target 
and slows down. 

• Also, do not write the DE as 

This form makes no sense at all, since the distance Do is not a rate 
and even has different units from the other three terms. It is D, 
and not its derivative, that starts at Do- The rate of change ofD 
may or may not ever have the same numerical value as Do, but in 
any event that would be irrelevant, since distance D and its rate of 
change are different quantities with different units, and so can't 
be added. 

This may suggest the greatest difficulty beginners have with DEs. 
It is important to distinguish carefully between the state or con­
dition of a variable on the one hand, and the rates at which it 
changes on the other. 

• I noted above that D/4 was the swallow's instantaneous rate of 
flight (relative to the wind) toward the mission. This means that at 
the particular moment when she is 100 km away, her forward air­
speed would be 25 km/da (or about 1.042 km/hr, or 17.36 m/min, 
or 28.94 cm/sec). But this doesn't mean that she will actually 
travel 25 km in the next 24 hours, nor even 28.94 cm in the next 
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second. The reason is that as she gets closer to her goal, even just 
a little bit, she slows down. So her speed at D = 100 km is her 
speed for only an instant. This is a good example of why calculus 
and the concept of the limit are needed. 

Suggested Exercise: 

The rates in the swallow problem were sufficiently simple that we 
could write down the overall differential equation directly. But you 
might find it instructive also to use the general format of 

D(t + At) « D{t) + AtiD increasing rates - D decreasing rates) 

and then to apply an appropriate limiting process to obtain that same 
DE. 

Example 3 

In Fig. 4.3, a point source adds solids to a river at a position x = XQ. 
We assume the river water is generally well mixed, and that the new 
solids mix instantly with the water from upstream, yielding a solids 
concentration of co g m"^ at XQ. The density of the sohds is such that 
they sediment out to the stream bottom; 5% of those present in any 
small volume drop out per hour. (Actually that is the instantaneous 

Discharge 

Velocity u 

Figure 4.3: Variable definitions for Exercise 3. Here x [m] is the distance 
downstream from the discharge point, xo; CQ [g m"^] is the sediment con­
centration at X = Xo = 0; c(x) is the concentration at any distance x; V [m ]̂ 
is the volume of water within a short reach of stream, and u [m s~̂ ] is the 
stream velocity. 
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sedimentation rate, so the net loss would be somewhat less than 5% 
per hour.) 

Our problem is to determine the concentration c{x) of solids in 
the water at different distances downstream. Again we have the sit­
uation of knowing the value of the state variable c at one particular 
point, and the rate at which c would decrease from any particular 
value. That knowledge will ultimately prove sufficient to give us c{x) 
for all X > 0, but we will have to work to obtain that result. 

Our approach is to consider a small volume V of water (sometimes 
called a control volume) at some distance x and corresponding time 
t downstream from the discharge. If we let m be the mass in grams 
of solids present in V, then 

^ = -km = -kcV, (4.3) 
at 

where fe = 5% per hour, or 0.05 hr~^ (Warning: Remember always to 
convert percentages to fractions in equations like this.) Note that 
dm/dt = [g hr~^] and kcV =[hr~^][gm~^][m^]=[ghr"M also. 

Our goal here is to find the concentration c = f{t), or better yet, 
c = fix). Of course, concentration is mass per volume, so c = m/V 
and m = Vc. From this, 

dc 1 , . . , dm , , 
= 77 or dm = Vdc or —— = V. 

dm V dc 

Using the chain rule (p. 25), we change the LHS of Eqn. 4.3 to 

dw. _ dm. dc _ dc 
dt dc dt dt 

from which (because V is constant) 

dc _ dm. _ , X. ^^ _ 7, 
dt dt dt 

Our problem was to find c(x), which suggests that we really want 
an expression for dc/dx. Using the chain rule again yields 

dc _ dc dt 
dx dtdx' 

We know dc/dt, but what is dt/dx?. Its dimensions are time/distance, 
or the inverse of velocity. In fact, if the stream velocity is u [m hr~^], 
then 



§4.2. Solution of Simple First-Order ODEs 89 

dx ^ .. . dt 1 
u = -T-, from which -— = —. 

dt dx u 

Putting all this together yields 

dc _ dc dt _ , 1 _ fc 
dx dt dx u u ' 

which again is of the form y' = a -\- by, with a = 0. The initial 
condition is of the form c(0) = CQ. 

4.2 Solution of Simple First-Order ODEs 

We have now derived three relatively simple first-order ordinary dif­
ferential equations: 

dm 
~dt 

Ci- —j] m(0) = mo (mercury) 

^ = H - ? ; D(0) = Do (swallow) 
at 4 

-r— = — c ; c(0) = Co (solids in stream). 
dx u 

What we want to know are m{t), D{t), and c(x), but all we have 
is equations for the rates of change of these variables. So, we now 
solve the differential equations to obtain the desired equations for 
m, D, and c. This process is sometimes referred to as integrating 
differential equations. 

Our technique of working in symbolic, general terms now becomes 
particularly useful, because all three of these DEs turn out to have the 
same general form, Le.: 

d'V 
- ^ = a + fcy, with 3/(0) = yo-

That is, in all three rate equations, the rates of change of the state 
variables represented by y are linear functions of the dependent 
(state) variables. So, if we can solve this general form, we will have 
solutions for all three problems, and, it happens, for many other im­
portant differential equations that arise in environmental science. 

Before taking on y' = a •\- by, let's solve four simpler cases to 
illustrate the general process. First, suppose a = ^ = 0, so 
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§ = 0, y{0) = yo. 

If we multiply through by dt and integrate both sides using definite 
integrals, we obtain 

dy = Odt 

\ dy = \ Odt 
Jyo Jo 

y-yo = o-o 

y = yo (for all t). 
This solution should be obvious because if y = yo at one value of t, 
and if y never changes (as is implied by y' = 0), then y must equal 
yo at all times. 

The solution method above used definite integrals, with the initial 
condition providing the lower limits of the two integrals. A second 
approach uses indefinite integrals, with the constant of integration 
obtained from the initial condition. Let 

dy = Odt 

Odt \<iy'\^ 

y + Ci = 0H-C2 . 

Now let C'AC2-C\\o obtain 

y = 0 + C, 

where C is the constant of integration that is required whenever one 
evaluates an indefinite integral. In this approach, we use the initial 
condition to solve for the numerical value of C. Because y = 0 ^- C 
everywhere, and y = yo at t = 0, it is clear that C must equal yo, so 
y = yo for all t. 

Next, let's solve the equation 

d'V 
-T7 = a, wiXhyiO) = yo, and a a constant. 

This could represent the mass y of some material in a pond if the 
rate of accumulation a were constant. In this case we have 
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dy = \ adt 
Jyo Jo 

from which y - yo = a ( t - 0), or 3/ = yo + at. This is consistent 
with our prior knowledge that functions with constant derivatives 
are linear. Solving this equation using indefinite integrals works this 
way: 

dy = adt 

dy = \adt 

y = at -\- C, 

where C is the constant of integration. Since yo = ^ • 0 + C, we see 
that C = yo, so y = yo-{- at, as before. 

Next, consider 

-^ = y. y{0) = yo, 

which says that the rate at which a variable y changes with time is 
equal at any time to its current value. Solving this by separation of 
variables takes the form 

y 

Jyo y Jo 

l o g y - l o g y o = ( t - 0 ) . 

Because a difference in logs is the log of the quotient (p. 289), this 
becomes 

log 

y -

3̂ 0 

= e' 

-- yoe^. 

Note that this is consistent with the fact that f{t) = exp(t) is the 
only function we know that is equal to its own derivative! 
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The equation 

— = by, 3/(0) = yo 

is only slightly harder. This equation represents a situation where 
the variable y increases at a rate proportional at any moment to its 
current size—accumulation of principal at a constant interest rate is 
an example. (Note that this is also mathematically the same equation 
as the simple population growth equation, dN/dt = rN.) Here, we 
"separate variables," dividing both sides by y and multiplying both 
by dt. Then we integrate: 

^ = bdt 
y 

bdt r dy^ f\ 
ho y Jo' ho y 

l o g y - l o g y o = h{t-Q). 

Because a difference in logs is the log of the quotient (p. 289), this 
becomes 

log— - hi 

yo 

yo 

y = yoe^K 
Solving this equation with indefinite integrals is left for you as an 
exercise. 

This brings us, finally, to our general equation, 

^ = a + i,y, (4.4) 

from which 

\ dy = (a. + by) dt. 

Unfortunately this can't be solved directly because the y on the right-
hand side is an unknown function of t. However, we can again sepa­
rate variables (y on one side, t on the other) to obtain 
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^ y = dt. 
a-\- by 

and integrate both sides: 

Jyoa-\-by Jo 

Here a simple substitution, u '4 a + by, helps. Then, because du 
bdy, we have 

1 
b ) Jo 

^"^ ^ ^ [ dt = t. (4.5) 
y=yo ^ 

The "y =" notation emphasizes that the limits of integration are 
stated in terms of a variable different from the variable of integra­
tion. This is a useful trick that can prevent much grief whenever you 
use substitution in integration. 

Integrating Eqn. 4.5 yields 

[logu]^:^^ = bt 

[logia ^by)]^^ = bt 

log(a + by) - log(a + byo) = bt 

, a + by , ^ 
log - ^^ = bt 

a + byo 

a-\- byo 

a-\- by = ia-\- byo)e^^ 

y = ^^ia-^byo)e^^-a^, or y = [{a/b) ^yo^^ - (a/b). (4.6) 

This is the solution of all differential equations of the form 

y = a-^by\ 3/(0) =3/0, (4.7) 

as long diSb ^ 0. Before we apply it to our three special cases though, 
it would be wise to check it. In fact, whenever you obtain a solution to 
a differential equation, it is advisable to check it! 
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4-3 Checking Solutions of ODEs 

An analytical check is based on the fact that if y is the solution of 
the equation dy/dt = f(y), then it must be true that 

derivative of solution yCt) = /(solution 3/(t)). 

With our present equation, that becomes 

derivative of solution = a-\- b x solution. 

The solution at the initial value of t must also equal the initial condi­
tion. The complete check thus involves two steps, namely: 

• Att = 0, y should equal yo. Does it? 

• Since our solution is y{t), we should be able to show that its 
derivative is equal to the original differential equation, for all y. 
We attempt that now. 

For the moment, let us denote our putative solution as s{t)\ i.e., 

s{t) = ^[{a + byo)e^'-a]. (4.8) 

Differentiating this solution yields 

d {I, , . btl 1 da 

^ a-i-byo de^ _ a + byp u^ 
b dt b ' 

or 5' = ( a + byo)e^K 
Further, if 3/ = 5(t) is a solution of our original DE, then it must 

also be true that 

s' = a-\- bs. 

If we substitute s(t) in the RHS of this latter equation, we obtain 

s' = a + b\-[(a + byo)e^^ - a] [, or 

s' = a+ {a-^ byo)e^^ - a = {a + byo)e^K 
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But this is identical to s' obtained by differentiating s{t) (Eqn. 4.8). 
Thus, s must be a solution, as long as the initial condition is also 
satisfied^. 

To summarize how to check a solution in the general case: 

• begin with a differential equation y' = f(y,t) and find a sup­
posed solution, y = s{t). 

• Substitute s for y my' = f{s, t). 

• Differentiate the solution 5(t) to get y' = s'{t). 

• Determine whether f{s, t) = 5'(t)—if so, the solution checks for 
the general case. 

• Finally, 5(0) must equal the initial condition 3̂ 0-

The reader should be sure to understand the steps of this check, 
so as to be able to carry out similar checks for solutions of other 
differential equations. 

An alternative method for checking a putative solution to a dif­
ferential equation makes use of numerical differentiation, which we 
developed in Section 2.4, p. 32. This method may be easier, but is not 
a definitive proof of correctness. To demonstrate this method, let us 
again check whether Eqn. 4.8 is a solution to Eqn. 4.7. To work nu­
merically, we must replace all symbols with numbers—I recommend 
using a different prime number for each quantity, to help prevent 
spurious cancelling of errors. 

For example, let us replace a = 2 and b = 3 in Eqn. 4.7, to yield 
3/' = 2 + 33/, and set yo = 5. Then we wish to show that 

sit) = ^[{a + byo)e^' - a] = {[17^^^ - 2]/3} (4.9) 

is a solution. If it is, then with t set to some arbitrary value (t = 7, 
say) and for some small h(h = 0.001, say) it should be true that 

ds s{t + h) - s{t -h) , ,^, 
di^ 2h - ^ - ^ M t ) . 

where the middle expression is the central-difference approximation 
to the derivative, and the right-most expression is the RHS of the orig­
inal differential equation with y replaced by the supposed solution, s. 

^Theoretical considerations outside our scope show that a first-order hnear DE 
like this has a single unique solution, so this is not only a solution but the solution. 



96 Chapter 4. Ordinary Differential Equations 

If we now substitute the RHS of Eqn. 4.9 for 5, with its three different 
arguments of t -\- h, t - h, and t, we obtain 

j[l7^3(7.001) _ 2]/3} _ |[17^3(6.999) _ 2]/^] 

0.002 

The calculations indicated yield 2.24199 x lO^^ « 2.241987 x 10^^, 
which is reasonable agreement, probably within round-off error. 

This calculation provides some confidence that Eqn. 4.8 is a solu­
tion to Eqn. 4.7, but it does not serve as a proof—the analytic check 
above is distinctly more definitive. Repeating the calculations with 
other numerical values (and with various combinations of positive 
and negative numbers) would improve our confidence, however. I 
leave it to the reader to repeat this check with a different set of coef­
ficients, and in particular, with a negative value for b. 

The Mercury Problem 

Finally, we are ready to apply our general solution to the more specific 
7ti'(t), D'(t), and c'(x) equations. For the mercury in the lake, we 
had 

Ci- — 1; m(0) = mo. 

This is equivalent to y' = a -\- by if a = qct and b = -q/V. We 
substitute these values into the general solution. 

y = -r [(a-^byo)e^^ -a] 
b 

to obtain 

m{t) = — (qci - ^moj exp{-qt/V) - qcA. 

A little algebra simplifies this to 

m{t) = (mo - Vci) expl-^tj + Vci. 

If we set mo -̂  75 kg, V == 3 X 10^ m^, ct = 300 mg m~^, and 
q = 912500 m^ yr ~^ (corresponding to the problem posed on p. 12), 
the solution appears as in Fig. 4.4, p. 97. This solution is correct at 
t = 0 and seems reasonable as t ^ oo, when the lake concentration 
approaches that in the incoming stream. 
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Figure 4.4: A solution curve for mercury entering a lake. 

The Swallow's Flight (or Plight) 

To see what happens to the swallow we left suspended in mid-air a 
few pages back, recall that we had D' = H - D/4, with D(0) = Do-
Our general solution will apply if we substitute y = D, a = H, and 
b = -1/4. Theny = [{a/b) + yo] exp{bt) - a/b becomes 

D{t) = (Do-4H)6-^/^ + 4H. 

Again, if t = 0, D = Do as it should. However, as time goes on, the ex­
ponential factor approaches zero, so D(t) approaches 4H at large t. 
In other words, because of her unusual behavior, this particular swal­
low can never get closer to the mission than 4 km for each km da~^ 
of headwind speed. If the headwind is at all substantial, the tourists 
will never see her. In any case, our swallow's time-distance curve is 
as shown in Fig. 4.5, p. 98, if she starts 4000 km from the mission, 
and if the headwind is 250 km da~^. 

Solids in the Stream 

I leave it to the reader to manipulate our general solution so that it 
yields c{x) for the solids concentration problem, which was 

dc _ k_ 
dx u 

Be sure to sketch your solution, and to show that it gives reasonable 
results at X = 0 and at very large distances downstream from the 
source. 
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Figure 4.5: A solution curve for the swallow's distance from the mission. 

4.4 Notes on Differential Equations 

Having considered three examples of the linear, first-order, ordinary 
differential equation with constant coefficients, we now define differ­
ential equations more formally. We then consider more examples, 
and take up the analytic solution of DEs that can be solved by sep­
aration of variables. Later, in Chapter 7 we will consider methods 
for numerical solution of ordinary differential equations that can't 
be solved analytically. 

What Are Differential Equations? 

Definition: An ordinary differential equation (ODE) is any equation 
involving one or more ordinary (i.e., not partial) derivatives. Thus, an 
nth-order ODE is any function of the form 

d'^y d^-^y dy dy \ 0, 

and a solution of this equation is any function y = f{x) for which 
F = 0. This equation is nth-order because that is the highest order 
derivative appearing in it. The independent (x) variable is often time 
(t) in practice. 

In contrast to ODEs, there are partial differential equations (PDEs) 
that involve partial derivatives. One example, which describes time-
dependent heat transfer in a three-dimensional medium such as a 
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volume of soil, is 

d^T d^T d^T dT 
3x2 + 93,2 + az2 ~ ̂  at • 

Here, T is soil temperature; x, y , and z are coordinates in the 3-
dimensional volume; t is time; and a is a coefficient that accounts 
for the thermal properties of the soil. Partial derivatives are required 
because temperature varies with both time and location in the soil. 
We will take up PDEs in Chapter 11. 

The order of an ODE is the order of the highest derivative in it. 
Thus the logistic equation for population growth, 

dt \ K ) k ' 

is first-order (although non-hnear because of the term in JV )̂, while 

is an important second-order equation from physics that describes 
many phenomena including both heat and mass transfer, and peri­
odic responses like swinging pendula and alternating current. We 
will concentrate on first-order ODEs for the rest of this chapter, and 
take up second-order ones in Chapter 8. 

Many important DEs are of the form y' = fiy). That is, the state 
variable y changes at a rate that depends only on the current value 
of the state. Examples are the logistic equation and our form y' = 
a + by. Other DEs can be of the form y' = f{t,y), with the rate 
depending on both the driving and response variables. An example 
of the latter would be a modification of the logistic equation in which 
the carrying capacity was a periodic {e.g. seasonal) function of time; 
i.e., K = a + bsinct'. 

dN ^ Ua^bsmct)-N-\ ^ 
dt L (a+bsinct) J ^^''''^^• 

The form y' = fit), such as y' = kt, can exist, but seldom arises 
in practice. (The landfill PCB example from p. 53 was an example of 
such an equation, however.) 

Another classification important in the theory of DEs, is the dis­
tinction between linear and non-linear equations. A first-order ODE 
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is linear if y and y' each appear (if at all) only to the first power 
and not multiplying each other. Thus fi{x)y' = f2ix)y + f^ix) is 
the most general linear, first-order ODE. This equation is considered 
linear in y even if the functions / are non-linear in x. {Solutions to 
such equations are often non-linear, as you have seen.) Note that the 
simple form of the logistic equation is non-linear; this may be easier 
to see if you write it as N' = rN - rN'^/K. The term in N^ makes this 
equation non-linear. 

A Graphical View of ODEs and Their Solutions 

Graphical interpretations of mathematical concepts often provide 
useful aids to understanding, at least for some people. Treating an 
integral as an area under a curve, or a derivative as the slope of a 
curve, are good examples. Here we take a graphical look at differen­
tial equations. 

Consider first the simple DE, 

dy 
ax 

with no initial condition specified. This equation is a rule stating that 
if you were at any point [x,y] in the x-y plane, you would have to 
move away from that point along a line with slope x if you wanted to 
satisfy the equation. 

Of course, you could move along that line for no more than an 
infinitesimal distance—as soon as you moved a yoctometer (10"^"^ m) 
or so, the value of x would have changed a little bit, and you would 
have to change your direction of movement a httle bit too. 

Fig. 4.6 (left), p. 101, which represents y' = x, can be interpreted 
in several ways. First note that for any of the curves suggested by 
the figure, the slope of the curve at any value of x is equal to x. For 
example, at x = 1, each of the potential curves has a slope (dy/dx) 
equal to 1, regardless of the value ofy. Above x = -2, each curve has 
a slope of -2, and above x = 0, each curve has a slope of zero. (Note 
that the curves actually plotted in the figure are only representatives 
of all the infinity of curves that could be plotted. You might imag­
ine that each pair of curves shown has a thousand, or a million, or a 
billion others drawn between them in invisible ink.) For another in­
terpretation, imagine that you parachuted onto some point on a huge 
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Figure 4.7: Direction fields for the differential equation y' = -xy (left), and 
for the "logistic equation" with r = 0.05 and K = 1000 (right). 

copy of this figure (with x and y having units of kilometers, say). 
Your landing point would be your initial condition (or IC). Given that 
IC, you would have to walk along whatever curve (visible or invisible) 
that you had landed on to satisfy the DE, y' = x. In other words, 
the curves represent various possible solutions of the DE, depending 
on what the IC might be. Once the IC is specified, however, only one 
curve represents a valid solution. 
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More examples might help. Figs. 4.6 (right) and 4.7 (left), p. 101, 
represent the direction fields (solution fields) of the DEs y' = y and 
y' = -xy, respectively. In the former case, the slopes of the solution 
curves depend only on y , and for fixed y they do not vary with x. In 
the second of these figures, the slopes depend on both x and y. For 
example, if either x = 0 or y = 0, the slope is zero. And, the slope 
would be +1 for (x ,y ) equal to (-2, +0.5), (-1, +1), (-0.5, +2), (+0.5, -2), 
(+1, -1), (+2, 0.5), or any other similar combination. Check this out by 
sketching in the curves through those points. 

As a final example. Fig. 4.7 (right), p. 101, traces representative 
solution curves for the logistic equation, 

dt \ K ) 

4.5 Analytic Solution of First-Order ODEs 

Several points about solving DEs are worth noting: 

• Solving a DE is often called "integrating the DE," because integrat­
ing dy/dx with respect to x gives y, the solution sought. 

• Like integration, solving DEs is not always straightforward. Ana­
lytic solution of DEs is not always possible. 

• If you do obtain an analytic solution of the form y = Fix) to the 
DE y' = f{x,y) with y(0) = yo, then it is straightforward to 
check your solution using the steps outlined earher. 

• As we shall see, DEs that can't be solved analytically can still be 
solved numerically. However, numerical solutions have three ma­
jor disadvantages: 

1. Each such solution applies to only one special case, with a par­
ticular initial value and particular numerical values for the param­
eters (constants). 
2. Numerical solutions are difficult or impossible to check rigor­
ously. 
3. Numerical solutions can have large computational errors, due 
both to truncation and to round-off. We'll take up numerical meth­
ods soon, for use when analytic solutions are not available. 
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Solution by Separation of Variables 

Although there are many methods for solving first-order ODEs analyt­
ically (especially for linear equations), most are beyond the scope of 
this book. For now, we will take up only one straightforward method 
known as separation of variables, a method that can be used for a 
special class of DEs of the form 

F{x,y) = -^ =f{x)xg{y), withyixo) = yo. (4.10) 

(Separation does not work for equations like dy/dx = f{x) -\- g{y).) 
For equations of the product form shown in Eqn. 4.10, one can mul­
tiply both sides by dx and divide both sides hy g{y) to obtain 

-̂  =fix)dx, 
giy) 

as we did with Eqn. 4.4, p. 92. 

We have now accomplished the separation, with all y dependence 
on one side and all x dependence on the other. Next we attempt to 
integrate both sides: 

lil)̂ !̂ *-"'--g(y) 

If both these integrals can be evaluated analytically, we will have our 
solution. A new example may help: 

In economics, it has long been noted that a dollar is worth more 
to the poor (e.g., college professors) than to the wealthy (college ad­
ministrators). A simple model of this notion states that one's rate 
of increase in utility (U) for a unit increase in wealth (W) is inversely 
proportional to one's present wealth. Thus 

^ = ̂ , with UiWo) = Uo. 
dW W 

Here k is the constant of proportionahty for a particular person. Sep­
arating and integrating this model with the IC specified in the limits 
of integration yields 
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JUo JWo W 

\u] =k[logM l̂ 
L J[/o L -ivfo 

U - Uo = k(\ogW - \ogWo) 

The IC can be incorporated into the solution process in an alter­
nate way that uses indefinite integration and constants of integration, 
instead of including it in the limits of integration. Again we separate 
variables and integrate: 

JM^kl dW 
W 

Both integrals produce a constant of integration, but these can be 
combined into one constant C. Thus, integration yields a general 
solution, 

U = k\ogW + C. (4.11) 

The solution must hold at the IC as well as elsewhere, so Uo = 
k log Wo + C, from which 

C = Uo-klogWo. 

Substituting this expression for C in the general solution (Eqn. 4.11) 
yields 

U = klogW + Uo - klogWo, 

which, with a little algebra, is identical to the solution 4.11 obtained 
by the first method. Using the IC in the limits of integration (rather 
than to solve for a constant of integration) is generally simpler, but 
you may want to try both methods to see which works best for you. 

Solution Using Tables 

Although separation of variables is an important solution method 
for many first-order DEs, it only applies to those equations that can 
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be factored into the form y' = f(x)g(y). Thus, it can be used for 
y' = xy or y' = e^ siny, but not for y' = x -\- y nor for y' = 
e-^y. The first of these can be solved using an integrating factor 
(Chapter 5), but some DEs require even more complex methods, or 
can't be solved analytically at all. Because other analytic solution 
methods (e.g., Derrick and Grossman 1981) are beyond the scope of 
this book, we next take up how to work with tables of ODE solutions. 

A comprehensive book of tables, e.g.. Murphy (1960), can be useful 
if you have a recalcitrant ODE to solve. Unfortunately, that book is 
out of print (although it is available in many libraries). Section 4.6, 
p. 106, provides a short table of some of the DE forms that arise most 
often in practice. The table contains eleven differential equations of 
the general form y' = fix). Using it to solve a particular equation 
requires 

• Identifying the dependent (y) and independent (x) variables in 
your own equation. 

• Finding a comparable form in the table, with all the needed terms. 
For example, if your equation contains a linear term in y (e.g., Sy) 
and an exponential term in x (e.g., 2e~^^), then you look for an 
equation in the table that contains terms of those same forms. 

• Substituting your variables for the x and y in the table, and your 
parameter values (constants) for those in the table. 

Some of the solutions provided require additional steps, as we will 
illustrate. 

Suppose you have the equation N' = 3- e~^^^ + 0.02N, with the IC 
N(l) = 50. Our "x" variable is thus t and our "y" variable is N. This 
DE includes a constant term, an exponential in "x," and a linear term 
in "y." A search through the table yields equation number 10 of the 
form y' = a-\- be^^ + cy, which applies when k ^ c.We set up a list 
to match variables and constants; i.e., y -^ N, x ^ t, a -^ 3, b -^ -1, 
k -* -0.5, and c -^ 0.02. Note that k and c are different, so we can 
use equation number 10. 

The table lists two solutions. The first, Eqn. 4.12, applies when the 
IC is defined at t = 0, and the second, Eqn. 4.13, applies for a more 
general IC of formyixo) = yo. Because our present IC is JV(1) = 50, 
we must use this second form. Thus, our solution must be 
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, , a{c - fe) + [aik - c) + ckyo - c^yo]e^^^~^^^ 
^̂ ^̂  ^ Tik^) ^ 

c{k-c) 

Substitution of values from our list then yields 

3(0.02 + 0.5) 
^ ^ 0 .02(-0 .5-0.02) 

[3(-0.5 - 0.02) - 0.5(0.02)50 - 0.02^50]gQQ^(^-^) 
0 .02(-0 .5-0.02) ^ 

0 02g0.02t-0.02-0.5 _ 0.02g-Q-5t 

0.02(-0.5-0.02) 

Finally, a bit of arithmetic simplifies this to 

N(t) = a + ^^0.02(t-l) _ y^0.02t-0.52 ^ ye-0.5t^ 

where a = -150, j8 = 200, and y ~ 1.923076923. The computations 
required to arrive at this point have been sufficiently messy that we 
would surely want to check this solution by one of the methods de­
scribed in §4.3, p. 94. That exercise is left to the reader. 

Although separation of variables, other analytic methods, and ta­
bles like Murphy's will allow you to solve many ODEs, there remain 
many others that simply have no analytic solution. This is especially 
true for systems of ODEs, which we take up in Chapter 6. For this 
reason, we will need to take up numerical methods for solving ODEs 
or systems of ODEs, and we will do this in Chapter 7. 

4.6 Table of Solutions of Selected ODEs 

This table contains solutions to some common first order, ordinary 
differential equations [y' = / ( y , t)] that can't be readily solved by 
separation or similar means. Solutions containing "yo" assume the 
initial condition 3 (̂0) = yo- Solutions containing a constant of inte­
gration C apply when the initial condition is specified at a non-zero 
time—for such cases, the value of C must be calculated from the 
initial condition. Both forms are given for some, but not all, of the 
equations treated here. 
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The solutions here were obtained using Maple V, Release 4, stu­
dent edition. They are presented in a form similar to that in Murphy 
(1960). That excellent set of tables is unfortunately out of print, but 
is still available in some science-oriented libraries. I have not found 
any similarly comprehensive book that is still in print. 

1. y' = a + by. 

ya) = (f + yo).^^-f; y(t) = ce^^-^ 

2. y' = a-^bt -h cy\ 

ac + b + bet 
yit) = Ce ct 

3. y' = a + by/(c + t): 

,^, (c + t)^V ac 1 (c + t 

4. y' = ay^ -\-by -^c. Solving this equation takes a httle extra effort. 
You first have to set the right-hand side (the quadratic) to zero and 
find its roots using the quadratic formula. Call these roots yi and yz. 
Then, if yi = yz, rewrite the DE as y' = a{y - yi)^. The solutions 
for this form are: 

y{t) = yi-

at {yi - yo) + 1 

1 
at - C 

If the two roots are distinct (i.e., yi ^ yz), then rewrite the DE as 
y' = a{y - yi){y - yz). The solutions for this form are 
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y(t) = 
l - | ^ ' ~ ^ ' l e x p [ ( y 2 - y i ) a t ] 

,yi -yo 

when the IC is given at t = 0, or 

3/2 - yi exp[(3/2 - yi)(at - o ] 
yit) 

otherwise. 
5. y' = ax^y: 

1 -exp[(3/2 - y i ) ( a t - C ) ] 

y ( t ) =yoexp 

y{t) = Cexp 

a t n+l 

n + 1 

a t n + l 

n + l 

6. y' = a'^ -\- b^y^, (Expressing the constants as squares simplifies 
the form of the solution.) 

y{t) = - t a n 

a 

abt + arc tan 
( ! - ) 

y{t) = - tan[a . f7( t -C)] 
b 

7. y' = a?- - b^y^: 

a[{a + byo) e^a^^ -{a- byo)] 

b [{a + byo) e2afct + (a- byo)] 

a l-exp[2abit-C)] 

yit) 

y(t) = 
b l + exp[2abit-C)] 

8. y' = it + y)^: 

yit) 
tcost - s i n t - yoitsint + cost) 

yo sin t - cos t 

9. y' = acosibt + c) + ky: 
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b^ + k^ 

Ubsinibt + c) - kcos{bt + c)] - [fcsinc - kcosc]e^^l 

10. y' = a + be^^ + cy, k ^ c: 

If yiO) = yo, then a solution (not necessarily in simplest form) is 

^ ( ^ ) ^ {g (fc - c) + c [{k -c)yo-b]} exp (ex) ^^^^^^ 
C \IC C) 

bcexp(kx) - a{k- c) 
"̂  c{k-c). 

If y{xo) = yo, then more generally, 

. . ^ a{c -k) + [a{k - c) -^ ckyp - c^yoJg^^^'^o^ 

cik-c) 

11. y' = a-\- be^^ + cy\ 

Ify(O) = 3/0, then 

, , (bxc + a-^ yoc)e^^ a 
y{x) = ^ -^—'- - . 

c c 

If y(xo) = yo, then more generally, 

yix) = bix- xo) exp(cx) + (^ + ^yo)exp[c ( x - x o ) ] - a_ 

4.7 Analytic Solution with MATLAB 

It is often convenient to use software like MATLAB®to search for an­
alytic solutions to ODEs. As an example, consider again our familiar 
logistic population-growth equation, 

dN 
dt -K^)-^-i'^= 

The solution, which was given in the introduction (p. 9), could be 
obtained from the fourth equation in the table of §4.6. However, 
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that process is fairly complex, and if MATLAB or a similar program 
is available, it may be easier to obtain the solution that way. Here's 
how, assuming MATLAB's Symbolic Math Toolbox is available: 

The command 

dsolveCDN=r>vN>v(K-N)/K') 

supplies a solution including an undefined constant of integration, 
because no IC is given. To supply one, enter something like 

N=dsolveCDN=r>vN^v(K-N)/K','N(0)=NO'). 

That yields the more convenient solution, 

N=K/(l+exp(-rvrt)vr(K-NO)/NO). 

What happens if we ask MATLAB to solve an ODE that has no analytic 
solution (or one it is not capable of solving, at any rate)? If we enter 

dsolveCDy=sin(exp(-yA2/2)) ' ) , 

MATLAB returns 

ans=t- In t ( l /s in(exp(- l /2*_aA2)) ,_a = . . y)+Cl = 0. 

The reference to "Int" indicates that the solution involves an integral 
that MATLAB can't perform analytically. (Note that this is not a very 
realistic equation, but it is one MATLAB can't solve.) 

4.8 Exercises 

In these exercises, be sure as always to check units frequently, and 
when you solve a differential equation, check your solution as well. 

1. Show that de^Idt = e^ (the function e^ is its own derivative) by 
differentiating the Maclaurin series for e^ (p. 28) term by term, 
and showing that the result is the same as the original series. 

2. Suppose that during a three-month drought, the streamflow qi into 
a western lake declines over time, specifically as qt = qto exp(-fct), 
where q is in m^ da~^ and t is in da after the beginning of the 
drought. 
(A) What must be the units of fc? 
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Also, suppose the shape of the lake basin and its outlet are such 
that the outflow qo [m^ da~^] depends on the volume V [m ]̂ of 
water present in the lake according to ^o = a + bV -\- cV^. Further, 
suppose that about E m^ of water evaporates from the lake's sur­
face each day. 
(B) What must be the units of a, b, and c? 

(C) Derive the equation that, if solved, would allow you to calculate 
the volume of water in the lake at any time during the period in 
which these conditions hold. 
(D) Can your equation be solved for V(t) by separation? If so, do 
so. If not, check whether MATLAB can find an analytic solution. 

3. Two streams, A and B, enter a lake containing water volume V m^, 
from which a third outlet stream, C, leaves. Stream A has a flow 
rate (assumed constant) of qa ni^ da~^ and it carries a concen­
tration CA mg m"^ of arsenic (As) from mine tailings that it flows 
past. Stream B has a constant flow rate of qs m^ da"^ and it car­
ries a negligible amount of arsenic. The flow in the outlet C is just 
the sum of the flows of the inlets, causing the volume of water 
in the lake to remain constant. As an approximation, assume the 
water in the lake is uniformly mixed at all times. A fraction / of 
the As in the lake water falls to the bottom of the lake each day, 
as a result of uptake by organisms that then die and fall to the 
sediment. 

A. Derive the ODE describing how the mass of As in the lake water 
changes with time, as a result of those processes. 

B. Using any convenient method, provide the solution to that equa­
tion. Assume that the initial As content of the lake is nio mg. 

4. A lump of a radioactive material loses mass at an instantaneous 
rate that is a fraction / per year of its mass at any given time. If 
the lump has an initial mass mo g at time 0, what is the equation 
for its mass at later times? Obtain that by first writing and then 
solving an appropriate differential equation. 

5. A consulting company, EcoTox, is testing a new insecticide for its 
manufacturer. One test they perform involves supplying a pulse of 
the insecticide to a large fish tank. Specifically, the tank contains a 
constant volume V [m ]̂ of water, and water flows into and out of 
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t [days] 

Figure 4.8: Illustration of the triangular pulse of insecticide concentration 
in the water entering the tank. 

the tank at a constant rate q [vo? da"^]. They vary the concentra­
tion of the insecticide flowing into the tank in a triangular pulse 
of two-week duration, as shown in Fig. 4.8. As shown there, the in­
going insecticide concentration cin [g m~^] starts at zero, rises to 
Cmax (shown as C in the figure) at the end of the seventh day, and 
drops back to zero at the end of the fourteenth day and thereafter. 

Your task is to determine how the insecticide concentration ct in 
the tank changes over those same 14 days, neglecting any potential 
uptake by the biota or other potential losses. That is, consider only 
the flows into and out from the tank, and what stays in the water 
there. Also assume that the contents of the tank are always well 
mixed. 

To accomplish that task, derive and solve one differential equation 
that applies for the first seven days, assuming that Ct = 0 at the 
beginning of the entire process. Then, derive and solve a slightly 
different DE that apphes over days 8-14. Note that the solution 
of the first equation at t = 7 days is the initial condition for the 
concentration in the tank when the second (declining) stage of the 
pulse begins. 

You may leave an undetermined constant in the second solution, 
but not in the first. Be sure to specify the initial condition for the 
second DE as specifically as you can. 

6. Suppose you are working with a gas analyzer that measures SO2 
concentrations in air samples. The instrument contains a stainless 
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Figure 4.9: Inflow rate / [g s~̂ ] versus time t [s] after a "sample" button is 
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steel flask of 1 liter capacity. Gas is pumped into one end of the 
flask at an input rate / g s"^, which is controlled electronically to 
be 

I = 1 - t / 1 0 0 = l + at 

1 = 0 thereafter. 

for 0 < t < 100 s, 

This varying inflow rate is shown in Fig. 4.9 (left). 

Gas bleeds out of the flask (into a measuring chamber) at a rate 
B [g s"M that is proportional to the pressure in the flask [atm], as 
defined graphically in Fig. 4.9 (right). 

The temperature in the flask is held constant, and as a result the 
pressure P in the flask is proportional to the mass M of the gas 
it contains. Specifically, for this particular gas, we know that P = 
cM with c = 0.83 atm g-^ 

A. If the flask initially contains 1.7 g of the gas, derive the differ­
ential equation relating M to t for 0 < t < 100. 

B. Can this equation be solved by separation? If so, do so. If not, 
explain why and solve it by another method. 

7. Solve the following equations by separation of variables. Each has 
the IC y{xo) = yo: y' = -33/ , y' = 2x^, y' = -7xy, and y' = 
sin3x. 

8. Use the methods of p. 95 to check whether y = b exp (1.5t^) is 
the solution to the differential equation dy/dt = 3ty if 3^(0) = b. 
Don't forget to check whether the initial condition is satisfied. 
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9. Use the tables to find the solution to the logistic population growth 
equation, 

{^y 
when N(0) = NQ. Hint: To find the right form in the table of so­
lutions, it may help to multiply through by rN. This solution was 
given in Chapter 1, but see whether you can find it for yourself. 

10. Consider d y / ^ x = l/ie'^^x^) wi thy = 1/10 when x = 1/2. Solve 
this equation analytically for 3/ = f{x), and calculate the value of 
y when x = 0.9. The solution should be in a form such that if 
given an x value you could provide the corresponding y value. 

11. A basement crawl space has a volume V m^ and a floor area A 
m^. Radon gas infiltrates through the dirt floor at a rate r jjg m~^ 
da~^ Air from outside, essentially radon-free, enters the space 
through a ventilator at a rate q m^ da~^ and the same volume 
of air (carrying the present concentration of radon with it) flows 
out the other side. Finally, some of the radon present is lost by 
radioactive decay at an instantaneous fractional rate of / da~^ 
Derive and solve the differential equation describing this process. 
You may assume as an initial condition that no radon is present. 

12. Lake B in the chain diagrammed in Fig. 4.10 receives water via 
the stream from A, and discharges water into the stream to C. 
Discharge from A (flow into B) is regulated by a hydroelectric dam 
and has the form [a + t̂  sin(t/2TT)] where the units of a and b are 
m^ day~^ and t is in days. 

The outlet of lake B is essentially wedge shaped (Fig. 4.11, p. 115). 

Water flows from this outlet at a rate proportional to the area 
available for flow (i.e., to the shaded area shown). The basin of 

Figure 4.10: Three lakes {A,B and C) connected by a stream. 
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3m 

Figure 4.11: Cross-section of outlet of lake B. 

13. 

B is hemispherical, such that the relation between volume (V) of 
water in the basin and water level (W) is 

V = 7T 5M^^-
W' 

with V in m^ and W in m. (Be glad you weren't asked to derive 
that; try it for week-end entertainment!) Also, the surface area of 
Ldke B is TT(low-W^). 

If the water level of Lake B is Wo at some reference time to = 0, 
derive an equation which, if solved, would give you W{t) in the 
future. You don't have to solve the equation. Assume a symbol 
for each constant you may need. State the units of every quantity. 
It will help to remember that the area of a right triangle is 1/2 the 
base times the height; the wedge-shaped outlet shown the figure 
can be treated as two right triangles. 

On p. 103, I claimed that U = Uo + kx \og{W/Wo) was the solu­
tion to the wealth-utihty equation, dU/dW = k/W. Show that this 
checks. Don't forget to check the IC, too. 

14. A team of aquatic ecologists interested in nitrogen dynamics build 
a series of mesocosms (large aquaria) in which they set up ar­
tificial ecosystems including phytoplankton, zooplankton, and a 
small starting population of fathead minnows. They provide the 
mesocosms with limited nitrogen, but with plenty of all other re­
quired nutrients. 

The ecologists decide to test the following model for the mass of 
nitrogen M{t) (in g) that is stored in the biomass of the minnows, 
as the minnow population feeds and increases through time: 
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• The total mass of nitrogen N in a given mesocosm remains con­
stant throughout the duration of an experiment. Any processes 
that might cause conversion of the nitrogen in the system to 
gaseous forms that could be lost from the system are assumed 
to be negligible. 

• At all times, N = M -h L, where I is the mass of nitrogen in 
the lower trophic levels (and everywhere else in the mesocosm 
other than in the fish biomass). 

• Minnow biomass is represented for the purposes of the model 
by the mass of nitrogen in the fish (i.e., by M), rather than by 
the total mass of the fish. 

• The minnows take up nitrogen at a rate that is proportional to 
the product of their current biomass (in nitrogen units) and of 
the amount of nitrogen in the rest of the ecosystem. 

• The initial nitrogen mass in the minnows is Mo g. Because N is 
constant, this leaves Lo = iV - Mo as the initial nitrogen mass 
in the rest of the system. 

Your job is to write the equation that, if solved, would give M(t) 
at later times (assuming the model is correct). Provide clear defi­
nitions for all variables and constants that you use, and give units 
for each. Your final result should be entirely in terms of M, N, t, 
and any constants you may introduce—it should not contain the 
variable I . 

15. Direction-field exercise 

The four direction fields in Figs. 4.12 and 4.13, p. 117, represent 
the four differential equations listed below. (The plots were pro­
duced with Maple's "dfieldplot" command.) Try to match each DE 
with one of the direction fields. In each plot, x ranges from 0 to 
4, and y ranges from -2 to +2. Hint—consider where the slope 
should equal zero and where it should equal ± unity for each of 
these differential equations: 

. dy .. dy ... dy x . dy 
1. -z— = X + y; n. -r- = x - y\ m. -f^ = —; iv. -r^ = xy. 

dx dx dx y dx 

16. Unlike our unfortunate swallow, the horses at Alec's Stable move 
faster as they approach home. Suppose at a distance x = 2 km 
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from home the horse you've rented is moving at a speed of 
52 km min~^ and at A: = 1 km its speed is si km min"^ Also, 
suppose the speed increases linearly from x = 2 to x = 0. In 
terms of 52 and si, how long will it take you and your mount to get 
to the stable, starting from the 2 km distance? 

17. A couple is designing an energy-efficient home. It will include a 
heating system that, like most, is either off or on at any given 
instant. When it is on, it will supply Q J min~^ of heat. Whether the 
furnace is off or on is to be specified by a function f{T) that will 
be determined by the thermostat they purchase, and is unknown 
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at present; however, the unitless function f{T) will have values of 
either 0 or 1 depending on whether the furnace is off or on. Thus, 
the heat supplied to the house at any instant will be Q / ( r ) . 

The house will lose heat at a rate [J min"^] that is proportional to 
the difference between the internal room temperature (assumed 
uniform throughout the house) and the outside air temperature, 
both in deg C. This heat loss will also be inversely proportional to 
the thickness S [cm] of the insulation they will install. 

Temperatures are related to heat flows in much the same way 
that concentrations are related to mass flows. Specifically for this 
house, a net flow of C Joules of heat into the living space of the 
house would raise its temperature by 1° C. This means that if dH 
(say) is a small change in the heat content of the house, then 
dH/dT = C. The constant C, with units here of J deg~^ is the 
heat capacity of the house. 

Assuming that the outside air temperature varies as a + b sin(rt), 
determine the differential equation that the couple should solve to 
estimate how the internal house temperature will vary with time. 
They plan to use this information to help them decide how much 
insulation to install, and whether the f{T) of the controller they 
might buy is acceptable. Because f(T) is not yet specified, you will 
not be able to solve this equation, so there is no need to attempt 
that. 

Perform a complete unit check on the final equation. Your final 
result should be stated as an equation for the rate of change of 
temperature with time. 

18. A late spring snowfall at 8000 ft elevation in the Colorado Rockies 
falls steadily for just over two days at a rate of 5 g per m^ of 
surface area per hour. Because it is fairly warm at ground level, 
whatever snow is present consohdates, melts, and runs off at an 
instantaneous rate of M% per hr. 

a) If the ground was free of snow at the start of this storm, what 
mass of snow was present per square meter at each time t 
while the above conditions held? Answer symbolically at this 
stage. 

b) Check that your solution obtained in Part (a) is correct. 
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c) If 5 = 6 g m~^ hr~^ and M = 2% per hr, what mass of snow 
covers each square meter of surface 30 hours after the storm 
began? 

4.9 Questions and Answers 

1. Why is y' = a -\- by called a linear differential equation when a 
graph of its solution isn't linear at all? 

• Linearity of a differential equation is defined by the nature of 
the derivative {a + by in that one), and not by the nature of the 
solution. In y' = a + by, y' is a linear function of y, and so 
by definition, this is a linear differential equation. I agree with 
you, however, that the solution [y{t) = stuff + stuff x expibt)] 
is definitely not a linear function of t. This is admittedly a little 
confusing. 

Even a differential equation like x^y' = ^pcy + cos(x) is linear 
in y, although it is far from linear in x. Because the right-hand 
side has y to no other power than the first, this is called a linear 
differential equation. I'm sure its solution, which would be y as 
some function of x, is not a linear function of x, 

2. Please go over the steps for checking the solution to a differential 
equation again. 

• Here's an easy example that may help you to see the process. 
Suppose you have the differential equation y' = y, with an ini­
tial condition of y{0) = A. Now suppose I claim to you that the 
solutionis y{t) = AeK Here's the check: 

Step 1: At t = 0, is y = A? Answer: yes. 

Step 2: Is y' = y? Answer: y' = Ae^ (from differentiating the 
y{t) that I claim is the solution). And the right hand side of the 
DE, namely y, is also Ae^. Therefore, if y = Ae\ y' = y. So this 
checks too. 

3. When using definite integrals to solve DEs, do you always integrate 
from 0 to t? Put another way, how do you choose the limits of 
integration? 
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• For any differential equation of the form dy/dt = fit) x giy), 
with initial condition 3/(^0) = yo, you separate variables, and then 
integrate the t side from to up to general t. (Most commonly, 
to is set to zero since starting time is usually arbitrary anyway. 
However, if in some problem you wanted to start at to = 1995, 
say, then you would integrate from 1995 up to a general value of 
t.) Next, integrate the y side from yo up to the value of y that 
corresponds with the general t. Occasionally, the yo value is zero 
too, but not as often as the to value is. 

The wealth-utility equation was an example of this—it didn't start 
at zero wealth, but at some finite amount of wealth. So the lower 
limit of integration wasn't zero. (That's a good thing, since the log 
of zero doesn't exist.) 

4. I'm trying to understand the application of ODEs in 'real life.' Does 
the swallow example suggest what really happens to birds? 

• 1 guess something similar to that could happen (with head winds 
faster than the bird's speed), but doubt that it does very often. I 
used that example to illustrate instaneous rates and some com­
mon errors. It is mathematically similar to some real situations, 
but as stated is pretty fanciful. I've been in canoes when the head 
wind was faster than my paddling, although my paddling speed 
was not proportional to how far I was from my goal. Most of our 
other examples are very true to hfe, however. 

5. Please explain again how linear DEs can result in non-linear graphs. 

• Ok. With a linear differential equation, the derivative, dy/dx, 
(i.e., the rate at which y changes with x) is a linear function of the 
response variable y. The 'non-linear graphs' refer to the solution, 
y = fix). These are graphs of how y varies with the independent 
variable x (or time). These are entirely different types of relation­
ships, so it's easy for one to be linear and the other not. Of course 
the two kinds of relationships are related, but one is linear and the 
other is not. 

6. In working with the direction fields, we figured out how the graphs 
and equations were related by plugging in points. Is that the cor­
rect (and easiest) way to do it? 

• I assume you mean to do something like "calculate the slope at 
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X = some value A, and at y = some value B", and then to see if the 
graph indicates that slope at that value of x and that value of y. 
If so, I don't know of a better way. Sometimes you can work with 
just one of x or y , as with dy/dx = x/y, which would produce 
an infinite slope wherever y = 0 (except perhaps where x = 0). 

7. Was the purpose of the graphing exercise simply to show that 
slope is the derivative of the function, or are there other purposes? 

• I see three purposes for working with direction fields. (1) To 
show that a differential equation without an initial condition rep­
resents a whole series of solutions, but that once you choose an 
IC, the solution is uniquely determined. (That's true for first-order 
linear equations, at least.) (2) To get you to think in terms of slopes 
and rates of change. (3) To give you more practice reading graphs 
(which is not easy for everyone), by thinking about them in a new 
way. 

8. Are there other ways than numerical substitution to check solu­
tions to DEs? 

• Yes. Please reread the section on checking solutions. The 
first method, substituting the supposed solution ls{t)] into both 
sides of the original DE and checking for equahty, is analytic, and 
doesn't involve any numerical substitution at all. That method 
provides the only definite proof that you have a correct solution. A 
second method is to solve the DE by a numerical method (which we 
will take up later), and to check whether that numerical solution 
agrees approximately at various times with the analytic solution at 
those times. 

9. (Comment) I'm understanding how to solve DEs pretty well, but 
could use more help setting them up. 

• The "story problem" aspect of applied math, which is one of the 
main factors that separates it from "pure math," is difficult for 
many people. This is hke learning to play a guitar, I think—there 
is no substitute for practice. Please have a go at the exercises at 
the end of the chapter. 

10. Why do you sometimes integrate from yo to y , and other times 
from y = yo to y = y? 
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• I use the first form when the variable of integration is y itself. 
I use the second form when I've performed a substitution, so that 
the variable of integration is some "u" or whatever. In the latter 
case, I want to remind myself that the limits on the integral are y 
values, not u values. This becomes especially important when the 
limits are numbers, rather than "y" and "yo". 

11. Setting up DEs is hard for me. Are there any steps you should 
always follow in that process? 

• The variety of situations leading to DEs is sufficiently great that 
it seems unlikely there could be universal steps. However, with 
situations involving unsteady mass balances (our focus so far), the 
system I try to follow is to work with mass, and to set m{t + h) ~ 
7n(t) -\- /i*(sum of rates that increase m) - h*{suin of rates that 
decrease mass). 

Then subtract m(t) from both sides, divide through by h, and take 
the limit as h -> 0. This leads to an equation of the form dm/dt = 
(sum of rates that increase w)-(sum of rates that decrease m). Af­
ter you get more experience, or in some simple situations (as with 
the swallow), you can sometimes just write down the DE in a form 
like the last one. It depends on how complex the processes in­
volved are. 



Chapter 5 

Further Topics in ODEs 

This chapter considers two further but unrelated topics involving 
first-order ordinary differential equations: the diverse ways scientists 
in various fields describe and work with responses that approach a 
limit (an asymptote), then methods for solving certain DEs using inte­
grating factors. 

5.1 Asymptotic Behavior 

We have seen numerous situations where some variable declines or 
increases asymptotically toward a limiting value, usually following a 
negative exponential. Examples are: 

• Mercury increasing in a lake 
• A swallow flying toward Capistrano 
• Sediment settling from a river downstream from a source 
• Decay of radioactive elements 

It would be useful to have a measure of how long it takes such 
processes to come to completion, but they never quite do. For that 
reason, scientists in various fields have worked out ways to indicate 
how fast a response is "not quite getting there," i.e., how fast it ap­
proaches an asymptote. The terminology varies from field to field— 
e.g., engineers speak of time constants, limnologists of residence 
times and turnover rates, and radiation physicists and toxicologists 
of half-lives. All of these are measures of "asymptotic behavior." 
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a+b 

Figure 5.1: Processes described by differential equations with the solutions 
y = a + bexp{-kt) (left) andy = a-\- b[l - exp(-fet)] (right). 
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Figure 5.2: Progress of an exponential decay process as time passes through 
various numbers of time constants. The equation plotted is y{t) = 1 • 
exp(-t/T). 

Consider various processes described by y = a -\- be~^^ or y = 
a + b{l - e~^^), and shown in Fig. 5.1. One way to describe such 
processes is via the general equation y = yf -^ (yt - yf)e~^\ where 
the subscripts i and / denote "initial" and "final," respectively. These 
processes both contain the form y = e~^^, which, if T is substituted 
for 1/fe, can be diagrammed as in Fig. 5.2. 

Note that for each such process, 1 - ^"^ of the total change occurs 
as t goes from 0 to T (0 to 1/fe), where e - 2.7183. Thuse"^ is roughly 
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Table 5.1: Fractions of negative exponential processes completed as time 
progresses. 

t 
l/k= T 
21k = 2 T 

3/i^= 3 T 

4/k = 4T 
5//^= 5 T 

6/k = 6T 

10/k= IOT 

Fraction of total 
change completed 

0.63 
0.86 
0.95 
0.982 
0.993 
0.998 

0.99995 

1/3, and 1 - e~^ is roughly 2/3. Furthermore, a fractional change of 
1 - e~^ occurs as t goes from 0 to 2T, etc. From this, we can calculate 
the values in Table 5.1. 

One point that arises here is not as well known as it should b e -
in any use of exp(x), the argument of the function (i.e., x) must be 
dimensionless (unit-free). One way to understand why is to think of 
the Maclaurin series that defines e^. It is the sum of terms in x^, x^, 
x^, and so on, and if x had units, this addition wouldn't be possible. 

Time Constant 

The quantity r (^ 1/k) is a useful measure related to the rate of 
exponential decay processes. It has units of time, and is called the 
time constant, especially in some fields of engineering. 

Half-Ufe 

When a substance has a half-hfe (H), that length of time is a constant 
multiple of the time constant. That is, if y = yoe~^^ = yoe'^''^, then 
by definition, y = yol2 {y drops to half its original amount) when 
t - H. Thus {ylyo) = (1/2) = e~^l'', from which the half-life H is 
(-log0.5)T. The corresponding numerical values are H ^ 0 . 6 9 3 T , or 
T « 1.443H. Both H and T have dimensions of time. 

In population biology and human demography, the similar con­
cept of doubling time arises, but of course this applies to quantities 
that are increasing exponentially, at ever-increasing absolute rates. 
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Measures in Limnology 

Suppose clean water flows at a rate q into a lake that initially contains 
substance X at a concentration Q . Assume perfect mixing within the 
lake, outflow of water equal to inflow, and a constant lake volume V. 
Then the rate of change C in the lake water is described by 

f = 1 ( 0 - 0 =-4c, C(0) = C.. 

(The 0 here represents the concentration of X in the clean water flow­
ing in.) The solution is 

C{t) = Coe-^^^l^^^ = Coe-^l'' with r = V/q. 

For example, if V is in m^ and q in m^ da"^ then T has units of days. 
In limnology, r is known as the residence time, and its reciprocal 
(T~^) is called the turnover rate. 

Note that, over the whole flushing process, the average length of 
time (iw) that particular molecules of X stay in the lake is 

r 
Jo 

^ sC{s)Vds 
tw = lim ^^ 

C{s)Vds 
0 

t-oo 

This is a weighted mean—the mean time of residence, weighted by 
the number of molecules present for each length of time. Analysis 
shows that iw = r , so r is in fact the average length of time the 
molecules reside in the lake once the flushing processing starts. 

5.2 Integrating Factors for Linear First-Order Dif­
ferential Equations 

When we dealt with first-order ODEs in Chapter 4, the most general 
solution method we considered was separation of variables. However, 
many important DEs remain that cannot be separated, the simplest 
being y' = x -\- y. Although solutions of many such equations are 
listed in tables, it is useful to be able to obtain solutions when tables 
and analytic software are not readily available. We wifl therefore con­
sider one further method that is helpful for many (but stifl not all) 
linear, first-order ODEs. 
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The most general DE in this class is 

^ = / l ( x ) y + / 2 ( x ) . 

The Constant-Coefficient Case 

We will begin with the constant-coefficient version of this equation, 
which we write as 

^ -^ay = g{x), (5.1) 
ax 

where a is a constant. The idea is to find an integrating factor I that 
makes 

(̂ ^H i = g(x)i 

easy to solve. 
Although few of us would probably have figured this out for our­

selves, it is easy to confirm (using the product rule for derivatives— 
p. 24) that 

• (e^^y) = e^^^ + ae^^y = e^^i^ -\- ay), 
dx \dx J 

To confirm this, set u{x) = e^^ and w (x) = y, and apply the product 
rule. 

This suggests, or did to some creative mathematician many years 
ago, that we try / = e^^ as an integrating factor. This yields 

^^^[-f^ + a y j = e^^gix), 

from which 

^(e^''y)=e^''g{x). 
ax 

Now we can multiply through by dx and attempt to integrate both 
sides: 

[die^^'y) = [e^^'^gMdx. 
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Next we use the fact that jdu = u- C^ for any u, so this expression 
becomes 

^axy ^ e^^g{x)dx + C, 

which, because 1/e^^ = e~^^, we can write as 

3/= g-^^r L ^ ^ ^ ( x ) d x + c j . 

Be forewarned, and don't make the common error of writing this as 

y = L-̂ ^ fg^^^(x)dxl +C, 

which is not the same. (The constant has to be multiphedby e~^^\) If 
we can perform the integration on the RHS, then we have our solution. 
Such integrals often fall to integration by parts, or better yet, can be 
found in tables like the one in Section 5.3, p. 131. 

Consider an example. Suppose 

y' = l.3y + x^, or y' - 1.3y = x^, with 3/(0) = 3. 

Here we have the form y' -\- ay = g{x) (Eqn. 5.1) with a = -1.3 and 
g{x) = x^. In our usual fashion, we first solve the symbolic form, so 

y ^^-^^rf^^^x^dx + C 

Any good table of integrals, or even the short table on p. 131, will 
show that 

I 
kx 

e^^'x^dx = ^(k^x^ - 2kx + 2) 
k^ 

plus a constant, which can be added into the C already present. Thus, 
with k replaced by a, 

r pax -j 

y = e-^^ ^{a^x^ - 2ax + 2) + C (5.2) 

= \{a^x'^ - 2ax + 2) + Ce"^^. 
a^ 

^The constant is arbitrary, so we make it negative simply because it is convenient 
to do so. 
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For a = -1.3, Eqn. 5.2 becomes 

y = -^(1.3^x2 + 2.6x + 2) + C^ -̂̂ .̂ 

The value of C can be obtained from the IC, y(0) = 3, by setting 

3 = - Y ^ ( 0 + 0 + 2) + C- l , 

and solving for C = 3 + 2/1.3^. 
Clearly the success of this method depends on the integrability of 

Summary for the Constant-Coefficient Case, y' -\- ay = g{x) 

The linear, first-order ODE with a constant coefficient multiplying y, 
i.e., y' + ay = g(x), has the solution 

^ __ g CLX [e'^''g{x)dx + cY 

which is useful whenever you can perform the integration. In prac­
tice, one just uses this formula—the derivation doesn't have to be 
repeated every time. 

The Variable-Coefficient Case 

The most general linear, first-order DE is the form 

y + f{x)y = g{x), 

where the constant a in the situation just dealt with has been re­
placed by the function f(x). The derivation of the integrating-factor 
method for this form is similar to that for the constant-coefficient 
case, but is more complex. We will skip the derivation, and simply 
state the result: 

Summary for the Variable-Coefficient Case, Y + f (x)y = g(x). 

Given a linear, first-order ODE with a function of x multiplying y; i.e., 
y' -\-f{x)y = ^(x),set 
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î  J/0 Fix) 'd \f{x)dx. 

Now e^^^^ is our integrating factor, and if we can do the integration 
analytically, the solution to the ODE is 

y = e-FM r LFMg{x)dX + c l 

When the necessary integrations can be performed, this method is a 
powerful one. 

We demonstrate this method by solving 

dy (h\ 2 

for which/(x) = b/x and^(x) = cx^. Then 

F = f(x)dx = —dx = fc^logx = logx^. 

Thus e^ = exp(logx^) = x^. This is our integrating factor. (It is 
a special case, though. Because F was a logarithm, the exponential 
function disappeared. Usually the exponential remains as part of the 
integrating factor.) Now 

-F Ue^g{x)dx + c] =x-^Ux^ -cx^dx + c] 

Recall that for any x, u, and w, x^x^ = x^^^. (For example, 7? • 2̂  
23+2 ^ 2^) Therefore, 

y = cx-^ r [ x^^^dx + c]=cx 
X^ + 2 + l 

bTJTi + c 

As usual, the value of C would be obtained from an initial condition. 
Suppose, for a more specific example, that we wanted to solve 

^ ^ l y = 7^2 with 3/(2) = 4. 
dx X 

Then b = 3 and c = 7, so 

.6 

From the IC (i.e., y = 4 when x = 2), 
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4 ̂  7 . 2-3 f ̂  + cV 
6 

so C = -256/42. Substituting this into the solution yields 

y = 1 ( 7 x 3 - 2 5 6 X - 3 ) . 

You could, of course, check this solution using the methods of § 4.3, 
p. 94. 

5.3 Integrals for the integrating-factor method 

The integrating-factor method for solving linear differential equa­
tions typically leads, as a step along the way, to integrals of the form 
/ e^^fix) dx. It is therefore useful to have handy a table of some of 
the common integrals of that type. Here are a few. (In each case, C is 
a constant of integration that must be included in the solution.) The 
first three are for f{x) = x, x^, and, more generally, x^ : 

I- ax SI e^^{ax-l) ^ 
xe^^ dx = 5 + C, 

a2 

2 cix ^ e ( ^ ^ - 2 a x + 2) ^ x'^e^^ dx = ^ z + C 

This pattern carries on to higher powers of x as follows: 

x^e^^dx = ^-^ x^-^e^'^dx, 
J a a ] 

You then apply this repeatedly until n ^ 0. 

A common/ (x) might be e^^. Because e^^e^^ = g(^+^)^^ 

C C p{a+b)x 

e^^'e^'^dx = e^^-'^^'^dx = f — + C. 
J J (a-^b) 

Sines and cosines appear in some apphcations. In simple form, we 
obtain 

1 e^^ sin bx dx = —7.—7-77 (a s inbx -b cos bx) + C] 
a^ + b^ 

and 
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^ax ^Qg ^ ^ ^^ ^ — (^ (,Qg bx + h sin hx) ^ C. 
J a^ + h^ 

If the sine or cosine function starts at an x value other than zero (i.e., 
there is a phase shift represented by (p), then, 

\e''''sinbix~hcl))dx = -r^ ^ [b-2b {cos6 f + 2as in0cos0]+C; 

and 

r e^^ r ?1 
e^^cosb{x-\-cl))dx = -r-̂  ^ [ 2 ^ s i n 0 c o s 0 - a-\- 2a (cos0) J+C, 

where 0 = b{x + (p)/2. 

Finally, don't forget that the integral of the sum of two functions 
is the sum of their integrals. This would mean, for example, that 

{e^''[f{x)-^g{x)]dx= {e^""f (x) dx-^ {e^''g{x)dx. 

5.4 Exercises 

Asymptotic Variation 

1. Lead 210 is a radioactive isotope that is frequently used to date 
lake sediments at various depths in a sediment profile. The pro­
cess is like that for carbon 14 dating, but because the half-lives of 
^^^Pb and "̂̂ C differ, these isotopes allow dating over quite differ­
ent time intervals. The half-lives are, respectively, about H = 22 
years and H = 5770 years. 

Suppose that the smallest loss of radioactivity that can be detected 
accurately for these two elements is 0.1% of the radioactivity ini­
tially present. Then what would be the shortest period of time 
before present that could usefully be measured by each isotope? 
Also suppose that the radioactivity levels for each isotope could 
be accurately detected until they dropped to 0.1% of initial levels. 
What lengths of time before present would these levels represent? 
Do the useful data ranges for the two isotopes overlap? 

It is most efficient to solve this problem analytically for arbitrary 
half-life H and arbitrary fractional mass loss 7n{t)/7no. Then you 
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can just plug in the numbers to get the answers for the four in­
dividual cases. (That has the further advantage that your answers 
would apply to other isotopes, like cesium 137.) 

2. A lake in Minnesota has a water volume of 2 x 10'̂  m^. The average 
annual discharge into, and out of, the lake is 5 x 10^ m^. The 
lake starts out clean, but at t = 0 the incoming stream becomes 
polluted with an average of 0.3 mg L"^ of arsenic, caused by an 
industrial process carried out in a factory that discharges effluent 
into the stream. This discharge continues for many years. 

A. Derive and solve the differential equation to obtain an estimate 
of [As] in the lake over time. What assumptions do you have to 
make here? 

B. Calculate the time constant, the residence time, the turnover 
rate, and the half-life for this process. Give units for each. 

C. Suppose the lake has an irregular shoreline, with islands and 
large bays. As a result, some portions of the lake contain water 
that does not mix readily with the water in the main basin. Would 
this fact cause the time constant for the true average arsenic con­
centration to be larger or smaller than the value for a well-mixed 
lake? (Your answer here should be qualitative rather than quanti­
tative.) 

D. Do the concentrations involved (i.e. Co = 0, Ctn = 0.3 mg L~ )̂ 
have any effect on the time constants and related parameters? 

Reminder: For parts A and B, work analytically as long as you can, 
and put in numbers only at the very end. 

3. A pond on a university campus contains a water volume V = 50 
m^, and water flows through it at a rate q = ZOm^ da~^ How long 
would it take for afl but 1/3 of the water present to be flushed 
through? 

4. Suppose some radioactive waste from a nuclear power plant had 
a half-life of H = 20,000 years. In helping to design a waste de­
pository, you want to model the decay of a starting mass, mo kg 
of that material, using the equation dm/dt = -km. 

A. What would be the symbolic and numerical values of fe, and 
what would be its units? 



134 Chapters. Further Topics in ODEs 

B. What would be the symbohc solution of that differential equa­
tion (without numbers)? 

C. What fraction of the original mass would remain after 1000 
years? 

5. Consider a lake that has a constant volume V [w?] of well-mixed 
water, a constant inflow q [m^ da~^] of arsenic-free water, a con­
stant outflow q (the same q) [m^ da~^] of the lake water, and an 
initial mass mo [g] of arsenic dissolved evenly throughout the lake 
water. 

Determine the half-life H of the arsenic in the lake water, in terms 
of V and q. (H is the time required for the arsenic mass in the 
water to decline to half its initial value.) Show your work and rea­
soning in detail. Any processes not mentioned explicitly here may 
be assumed negligible. Be sure to check units. 

6. A certain toxic chemical has an effective half-life of four months 
in the human body, with the chemical being eliminated primarily 
in the urine. 

A. What would be the time constant for this elimination process? 

B. Write and solve the differential equation for the mass of the 
substance in the body, as it varies with time. The initial mass is 
m{0) = viQ. Use symbols, not numbers, for this part. Provide 
a unit check (and a discussion of what you conclude from it) for 
your final equation. 

C. How long would it take for 90% of the mass that is present 
at time t = 0 to be eliminated? Work in symbols, substituting 
numbers (with units) only at the very end. 

Integrating Factors 

7. Use an integrating factor to solve y ' = 0.3x+0.23/, given 3/(0) = 0. 
Check your solution. 

8. The Streeter-Phelps equations (p. 144), derived in the 1930s or 
thereabouts, provide a first-cut model for the depletion of oxygen 
in a stream or lake caused by the presence of "BOD" (biochemical 
oxygen demand). The equations are: 
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B' = -kB; B(0) = BQ 

D' = -kB + r{Ds-D)\ D{0) = Do, 

where B=BOD concentration [mg L~^], D=dissolved oxygen concen­
tration [mg L"^], fc=reaction rate constant [hr~^], and r=reaeration 
rate constant [hr~M. 

Solve the first equation by separation (or by inspection), substitute 
that solution into the D' equation, and solve the latter using an in­
tegrating factor. Note that the "oxygen sag" modelled by these 
equations has two characteristic time constants, one from the de­
cay process and one from the deaeration. In such instances the 
larger time constant (representing the slower process) determines 
the time response of the system as a whole. 

9. Solve y' = cosx - 2y/x, if yin) = 0. It will help to know that 

p x'^cosxdx = 2XC0SX + (x"̂  - 2) sinx + constant. 

10. A certain toxic chemical has an effective half-life of 6 months in 
the human body, with the chemical being eliminated primarily in 
the urine. 

a) What would be the time constant for this elimination process? 
Please provide a number, with units. 

b) Write and solve the differential equation for the mass of the 
substance in the body as it varies with time. Please work sym­
bolically here. 

c) How long would it take for 99% of the mass that is present at 
some time t = 0 to be eliminated? Work in symbols, substitut­
ing numbers only at the very end. 

5.5 Questions and Answers 

1. What's the difference between 'solving a differential equation' and 
'integrating?' 

• Solving a DE [i.e., finding the function ^ ( t ) that satisfies the DE 
y' = fitjy)y maybe with an initial condition] usually involves in­
tegrating, but usually also involves some algebra. Integration is 
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sometimes done for other purposes, hke finding means, areas un­
der curves, areas of surfaces, volumes of soUds, and probabilities. 
Thus integration is a more general process. 

2. Is exp(ax) always the integrating factor for the constant-coeffi­
cient case? 

• For such cases, the integrating factor is always of that form, yes. 



Chapter 6 

Systems of Ordinary 
Differential Equations 

6.1 ODEs for Multiple Response Variables 

In the previous two chapters we've considered situations in which 
our fundamental knowledge tells us about the rate of change of one 
variable {y, say) with respect to another (often time t), rather than 
about a simple function relating the two. Such situations provide us 
with differential equations of the form dy/dt = F{t,y), which can 
oftenbe solved to yield direct functional relationships; e.g., y = fit). 

Frequently, variables involved in differential equations do not 
change by themselves, but rather as part of a larger system of in­
teracting variables. An obvious example is that of interacting popu­
lations in an ecosystem. We could represent an ecosystem with three 
trophic (feeding) levels symbolically using interacting populations of 
carrots (C), rabbits (i?), and foxes (F)^. One simple model of such a 
system (a linear system with constant coefficients) might be 

^ = anC + auR + auF + fdt); C(0) = Co (6.1) 
at 

dR 
— = a2iC + a22i? + a23i^ + / r ( t ) ; R{0) = RQ 

^You might think of these as convenient nicknames for the biomasses [kg] of all 
plants, all herbivores, and all carnivores in an ecosystem being modelled. 
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dF 
— = a3iC + a32i^ + a33f+ / / ( t ) ; F(0)=Fo. 

This model states that each population changes, at any instant, at 
a rate that depends linearly on the current sizes of the three popu­
lations, as well as (possibly) on time-dependent factors represented 
by the / functions. The coefficient a22, for example, would be re­
lated to the rabbits' birth rate minus death rate, not counting the 
direct contributions of the carrots and foxes. The value of azi would 
probably be positive, reflecting the greater growth potential of the 
rabbit biomass when their vegetable food supply was plentiful. On 
the other hand, ^23 would usually be negative because a larger fox 
population would tend to cause a decrease in the biomass of rabbits. 
Coefficients uu and a^i would be small or zero, since the carrots and 
foxes have little direct effect on one other—their interdependence is 
largely indirect, with the rabbits as mediators. The function / i could 
represent variations in carrot production that are due to seasonal cli­
matic changes (but independent of C, i?, and f), and so on for the 
other / terms. 

Linear models like these were studied intensively by some mathe­
matical ecologists in the mid to late 1960s, but they seemed to offer 
little insight into real ecosystems and are no longer an active sub­
ject for research. Linear systems models have the advantage that, 
for some simple / s , they can be solved semi-analytically (Derrick and 
Grossman 1981). But they have the major disadvantage that in most 
instances the linear dependence of rates on state variables is too sim­
plistic to represent realistic population interactions. 

It is not easy to model something as complex as an ecosystem 
mathematically, but many have tried. A famous example, called the 
Lotka-Volterra equations after the two mathematicians who indepen­
dently developed them, can be written (for example for the rabbits 
and foxes) as 

— - auR - auRF 

— = a2iRF - a22F. 

Here the terms in R and F account for the dependence of the rates of 
change of each population on their own population sizes, while the 
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RF terms suggest that the interactions are proportional to the num­
ber or biomass of rabbits around to be eaten by foxes times the num­
ber or biomass of foxes around to eat the rabbits. This seems more 
logical than the uuR term in the linear carrot equation (Eqns. 6.1), 
since the latter implies that 100 rabbits would have the same effect 
on the carrot rate of change whether there were 2 kg of carrots, or 2 
miUion, available for the rabbits to eat. 

While the Lotka-Volterra equations may not be perfectly descrip­
tive of real population interactions either, they do seem more logical 
than the linear system, and of course they can be generalized to even 
more complicated (and, one hopes, more realistic) forms (Haefner 
2005). Unlike the linear system, however, they usually cannot be 
solved analytically. If one wants to plot their solutions to see their 
full behavior, they must be solved numerically (Chapter 7). 

A great many environmental phenomena can be usefully modelled 
using systems of ODEs, but we will consider just one more example 
for now. (Additional apphcations are provided in the exercises.) In 
deriving the DE for mercury concentration in the lake (p. 83), we as­
sumed a constant and equal streamflow into and out of the lake. We 
also assumed that evaporation of water was negligible, and that the 
mercury concentration in the incoming water was constant. Let us 
now add some greater realism and generality to the situation. We 
allow for 

• the source stream to have a discharge and a mercury concentra­
tion that vary with time. Call these qtit) and Ci(t) respectively. 

• the discharge of the outflow stream to depend on the water level 
(and hence the volume) of water in the lake. Thus qo = qo(V), 
where now V varies rather than remaining constant. 

• evaporation of water from the lake surface at a time-dependent 
rate E{t). Although some evaporation of mercury would likely 
also occur, we wifl neglect that here. 

• sedimentation processes to remove mercury from the water col­
umn. As a reasonable first approximation, this would occur at a 
rate proportional to the mass m(t) of Hg present in the water col­
umn at any given time. Let k [da"^] denote the proportionality 
constant for this process. 
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To account for all these phenomena, we need differential equations 
for both lake water volume, V, and mercury mass, m, because both 
are changing with time. To derive these DEs, we write approximate 
mass-balance equations to represent the changes of V and m from 
their values at any time t to some later time t + At: 

y ( t + At) ^V{t)-^At{qi-qo-E) [m^] ^ [m^] + [da m^/da] 

mit + At) - m{t)-^At{ciiCi-cioC-km) [mg] ^̂̂  [mg] + [damg/da] 

If we now subtract the V(t) and m{t) terms from both sides of their 
respective equations, divide through by At, and take limits as At goes 
to zero, we obtain 

^ = qi-cio-E,sor = qtit) - qdV) - E{t) - / i (V, t) (6.2) 

and 
dm 

= qtCi - qoC -km = / 2 (c , t ) . 
dt 

It is inconvenient to have the left and right sides of the latter equation 
in terms of different variables, m and c. The easiest way to deal with 
this is to substitute m/V for c in the RHS to obtain: 

dm qn 
-dt = ^̂^̂  - ni) ^ - '̂ -̂

Thus, m ' = / ( w , V, t). Together with Eqn (6.2), this provides a sys­
tem of two first-order ODEs. 

Given that qiit), qoiV), E{t), and Ci{t) are not likely to be simple 
functions of time, it is almost certain that this system of equations 
(for V and m') could not be solved analytically, and we would have 
to solve them numerically. Note that for any particular time at which 
you knew m and V, you could divide w by V to obtain the corre­
sponding mercury concentration c. Note also that converting the m ' 
equation to a d equation would be complicated. Because m = cV 
and V varies with time, 

dm ^,dc dV ^ , . , dc 1 f dm. dV 
-^— = V^- + c-^—, from which -r- = 77 -^ c-^-
dt dt dt dt V \ dt dt 

This combination of derivatives is messy to work with. 
In any case, it is now clear that there are important DEs, and sys­

tems of DEs, that can only be solved numerically, and that is the 
subject of the next chapter. 
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6.2 Exercises 

Background for Exercises 1 and 2 

Suppose a group of scientists has developed a model that esti­
mates deposition rates of PCBs from the atmosphere to land in the 
northern U.S. They believe it is reasonably accurate over the entire 
period of industrial use of PCBs, from 1935 on, but they wish to test 
it. They go to a relatively pristine northern lake, core the sediments, 
and sample the PCB content of those sediments at various depths 
that correspond to dates that they can estimate adequately. 

Along with their deposition model, they need to model the PCB 
content of the lake water as a function of time. They wish to account 
for the following sources and losses of PCBs to and from the water in 
the lake: 

• There is one inlet stream, with the water flow rate of qinit) 
[m^ da~^], which carries with it a concentration Cinit) [pg m"^] of 
PCBs. (One pg, or picogram, is 10"^^ gram.) 

• The atmospheric deposition rate of PCBs to the entire lake surface 
is calculated from their model to be Dait) [ng da"^]. (One ng, or 
nanogram, is 10"^ gram.) 

• There is an outlet stream with a water flow rate of qout(t) [ni^ da~^], 
which carries PCBs at the lake water concentration (assuming good 
mixing throughout the lake basin). 

• Water evaporates from the lake at a rate of £'(t) [m^ da~^]. PCB loss 
by evaporation is assumed neghgible. 

• PCBs enter the sediments at a rate proportional to the total amount 
in the lake water. The instantaneous PCB sedimentation rate is a 
proportion pi per year of the amount in the lake water, or p2 = 
pi/365.25 per day. 

• All other potential PCB sources and losses are assumed to be neg­
ligible. Also, all isomers of PCB are assumed to be identical for the 
purpose of these models, so the PCB amounts discussed are totals 
over all isomers. Initially, at the end of 1934, the lake contains a 
volume of VQ [m^] of water that is free of PCBs. 

1. Derive two differential equations, such that the solution of the first 
would be the volume V(t) of water in the lake at any number of 
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days (t) after 1/1/1935, and the solution of the second would be 
the mass B{t) [specify your units] of PCBs in the entire volume of 
lake water. Write these equations in terms of the variables speci­
fied above. 

2. Now make the following simphfying assumptions: 

A.qin{t)= qout(t) = ^0, a constant. 

B. dn increases linearly with time; i.e., Qn = o(t 

C. Da also increases linearly with time; i.e.. Da = lit. 

D. Evaporation of water (as well as PCBs) is zero. 

Then, obtain analytic solutions to the resulting simplified equa­
tions, using separation, tables, or whatever is needed to do so. 

3. Consider two small islands in the South Pacific that are connected 
by a narrow isthmus, as shown in Fig. 6.1. 

Eden 

Paradise 

Figure 6.1: Two islands connected by an isthmus. 

Captain Cook stops briefly at Eden, and a few rats escape from his 
ship to that island. Thereafter the rat population density on Eden 
grows logistically (similarly to Eqn. 1.5, p. 9) toward an areal car­
rying capacity of KE [rats m~^] with specific growth rate TE [da~^]. 
Eden has an area of AE and Paradise of Ap, both in m^. 

As the population grows (assume uniformly over the whole area 
of each island) the rats quickly discover the isthmus, and begin to 
move to Paradise where the areal carrying capacity is Kp and the 
specific growth rate is rp (same units as for Eden). 

That inter-island migration from E to P occurs at a rate propor­
tional to the difference in rat densities on the two islands; i.e., to 
ipE -pp)- Note that if pp exceeds PE at any time, the net migration 
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would then be toward Eden—the equation takes care of that auto­
matically, as long as you give the migration term the right sign. 

Your task is to derive two first-order ODEs, one for the rate of 
change of PE and the other for the rate of change of pp. (You will 
likely want to start with "mass balances" of rat numbers rather 
than of rat densities, however.) The initial conditions are pniO) = 
po and PP(0) = 0. You need not attempt to solve these equations. 

Hint: Note that if K is the carrying capacity of an island in rats per 
square meter, and if A is the island's area, then KA is the carrying 
capacity in terms of rat numbers. (Check the units.) 

4. Limnologists studying phosphorus cycling in a lake decide to 
model the P as cycling among three compartments—that in inor­
ganic form (/), that in living biomass (I), and that in non-living 
organic matter (JV). The mass in each compartment is expressed 
in units of mmol (millimoles) of P. The volume of water in the lake 
is V [L]. Suppose that transfers among the compartments occur as 
follows. (All rates are instantaneous, and all are in units of jumol 
da-i.) 

• From living biomass to non-living organic matter (by death and 
excretion), at a rate proportional to the mass of P in living biomass. 
(This is an example of a "donor-controlled" process). 

• From non-living organic matter to inorganic P (by decomposi­
tion), at a rate proportional to the mass of P in non-living organic 
matter that is available to decompose. 

• From inorganic P to living biomass at a rate proportional to the 
product of the masses of P present in those two compartments. 

A. Derive the system of ODEs that describe these transfers. Leave 
these in terms of P masses in each compartment, not P concentra­
tions. 

B. What must the units be for the proportionality constants for 
each of those processes? 

C. Suppose the proportionality constants for the three processes 
named above have numerical values of 0.22, 0.044, and 2.2 respec­
tively. Also suppose that at some instant (t = ti, say), / = 0.12, 
I = 0.24, and JV = 1.0 mmol. Determine the numerical value of the 
net rate at which each compartment would be gaining or losing P 
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at that instant. State for each compartment whether it is losing 
mass, gaining mass, or in equilibrium (unchanging). Also state the 
units of each rate. 

You'll probably find it useful to draw a diagram showing the three 
compartments, with arrows representing the flows among them. 
This is optional, however. 

5. Consider the SIR model (Kermack & McKendrick 1927) for a dis­
ease epidemic, using differential equations to connect three sub­
groups of a population: 
• Susceptible people, S 
• Infected people, / 
• Recovered, dead or otherwise immune people, R 

Suppose the rate at which susceptible people become infected is 
proportional to the product of the number of "susceptibles" times 
the number currently infected, and thus available to pass on the 
disease to the susceptible people. Suppose too that a fraction / of 
the people who are ill (infected) recover (or die) each day. Finally, 
suppose that once people recover (or die), they can't pass on the 
disease to others, and that they are immune to reinfection. 

Derive the differential equations that represent these assump­
tions. Be sure to specify some appropriate initial conditions. 

6. Derive the Streeter-Phelps equations, which describe the sag of dis­
solved O2 concentration D [mmol L~̂ ] in a stream below a source 
of "biochemical oxygen demanding" wastes ("BOD)," with concen­
tration B [mmol L~ ]̂. 

The two equations are based on these assumptions: 

• BOD mass is measured in "oxygen-equivalent" units, i.e., in units 
of the mass of O2 that would be consumed in oxidizing it. 

• In any given slug (fixed mass) of water, BOD is lost at a rate 
proportional to the mass of BOD available to be oxidized as the 
slug moves downstream. 

• From the definition of the units of BOD, O2 is also lost at a rate 
proportional to how much BOD is available to be oxidized. 
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• The stream regains dissolved oxygen by reaeration as it flows 
along with its surface in contact with the air above it. That process 
is modelled thus: 

A. Water becomes saturated with O2 at a temperature-dependent 
concentration D5 mmol L~^ (Assume temperature is constant, and 
that D5 is known.) 

B. The reaeration at any instant takes place at a rate proportional 
to how far the present concentration of DO lies below D5. (The 
proportionality coefficient depends on the depth and turbulence 
of the water.) 

7. Lipid-soluble chemicals that enter the human body are sometimes 
modefled as partitioning between a "blood" compartment and a 
"fatty-tissue" compartment, and we'll do that here. Suppose a 
factory worker takes up a substance S that she works with at a 
uniform rate^ of U mg da~^. As S circulates in her blood, a frac­
tion / per day of what is in her blood is removed by her liver and 
kidneys. Suppose her blood has mass B kg and her fatty tissues 
available for exchanging S with the blood have mass F kg. At any 
instant, S exchanges between the blood compartment and the fat 
compartment at a rate proportional to the difference between its 
concentration in the blood (in mg kg~^) and p (a dimensionless 
partition coefficient) times its concentration in the fat (in the same 
units). 

A. Derive the system of ordinary differential equations that de­
scribe the net rates of change of S mass in each compartment. You 
may assume initial conditions of zero for both compartments, but 
that is irrelevant to the task of deriving the DEs. 

B. Convert that to a system of equations for rates of change of S 
concentration, assuming that B and F are constant over some pe­
riod of interest to a toxicologist. 

These equations have an analytic solution, but we haven't studied 
how to obtain it. 

8. The foUowing scenario involving indoor air pollution involves two 
rooms of a house. The two rooms are connected by an open door. 

În reality, this rate would vary between times she's at work and times she is not, 
but over the long run, we can work with the average. Let's hope f/ is a small number. 
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but are isolated from other rooms. The rooms each have ceihng 
fans, so you may assume that within each room the air is well 
mixed. 

In Room 1, on the north side of the house, a new carpet has just 
been laid. An organic solvent, a component of the cement used 
to lay the carpet, is evaporating into the air. The evaporation 
rate per m^ of floor (in fug m"^ s~ )̂ is proportional to the dif­
ference between the concentration Co (ji/g m~^) of the solvent in 
the air around the carpet fibers and the concentration of the sol­
vent in the Room 1 air. The proportionality constant here is fci 
(jL/g m"^ s~^) per (jug m"^), which reduces to fci m s~^ 

A breeze from the north brings air into Room 1 at a velocity Vi 
(m s~ )̂ through a window with an opening of Ai (m^). That same 
amount of air ultimately flows through the doorway into Room 2, 
and out an open window on the south side of that room. 

Room 2 has no new sources of the solvent, and we'll neglect any 
adsorption to surfaces there. However, a fraction / of the solvent 
in the air of Room 2 is destroyed by photolysis each second, a 
process driven by sunlight coming through the windows into that 
room. 

The volumes of air in the two rooms are Wi and Wz m^, respec­
tively, and the surface areas of the two floors are ^i and 5*2 m^. 

Derive the differential equations for the concentrations Ci(t) and 
CziO) of solvent in the two rooms, if Vi is a function of time. As­
sume initial concentrations of Cio and C20, respectively. If Vi(t) 
were known, we could solve this system numerically, but we leave 
that for another day. 



Chapter 7 

Numerical Solution of 
Ordinary Differential 
Equations 

As noted in the last two chapters, many ODEs and systems of ODEs 
cannot be solved analytically. When we want solutions to such equa­
tions, we need to turn to numerical methods, which we now take up. 
We begin with a simple DE that can also be solved analytically by 
separation of variables^; i.e., 

g=xy,y(l) = l, 

This will allow comparison of the approximate numerical solution 
with the exact analytic solution, which is y = exp[(x^ - l)/2]. 

7.1 Euler's Method 

We will begin with a very simple numerical process, called Euler's^ 
method, that is too inaccurate for practical use but that demonstrates 
the basic puU-yourself-up-by-the-bootstraps idea underlying all such 
methods. (Two other reasons for studying this essentially useless 
method are [1] that some more accurate methods make use of it, and 

În practice, we therefore should obtain the analytic solution—the only reason for 
using this example here is to allow us to check the accuracy of the method. 

^The name is pronounced "Oiler." 
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[2] to help you recognize when others use it indiscriminately. In the 
latter situation, you may be able to point the users to better methods). 

In Euler's method, we replace the differential equation with a cor­
responding finite-difference approximation. Specifically, we use a for­
ward difference (p. 33). It might be said (with apologies) that we "un-
take the limit" that gave us the derivative in the first place. Thus 

dy Ay 

The latter quantity is, of course, the slope of the curve at the point 
X, y. Because 

Ay 'A y{x + Ax) - y{x) - xyAx, 

we have 

y{x + Ax) ~ y(x) + Ax{xy). 

If we now set î  ^ Ax = 0.1, we can use this formula repeatedly, 
starting from the known IC, to get 

3^(1) = 1 (theIC) 

y ( l . 1 ) ^ 3 / ( 1 ) + A x - x - y = 3/(1)+ 0.1(1)(1) = 1 + 0.1 = 1.1 

3/(1.2) ^3/(1.1) +0.1(1.1)(1.1) = 1.1 + 0.121 = 1.221 

3/(1.3) « y(1.2) + 0.1(1.2)(1.221) = 1.221 + 0.14652 

= 1.36752, etc. 

Notice the pattern—starting from a known point on the solution, 
we calculate the slope along which we should move away from that 
point. We move a little way along that slope to a new point. There we 
calculate a new slope, and move along that to yet another point, and 
so on. So, the pattern is point -* slope -̂  point -̂  slope -^ .... (This 
is a little like stepping along the arrows on a direction field.) The 
problem is, of course, that we should move along each new slope for 
only an infinitesimal distance, but instead we take a comparatively 
gargantuan step of length Ax. {Any finite Ax is huge, compared with 
zero.) 
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Corresponding values from the analytic solution are y{l) = 1, 
y ( l . l ) = 1.11071,3/(1.2) = 1.246083, and 3/(1.3) - 1.41199. Al­
though the numerical solution is rising in the same general sort of 
way as the analytic, the former is clearly falling behind the latter, 
with ever-increasing error. 

Now let us use h in place of Ax, and state Euler's method more 
generally. At xo, the DE is 

dy 
dx = fixo^yo), 

0 

i.e., the slope is the value calculated from the slope function / based 
on the starting values of x and y. Replacing that with its finite-
difference approximation yields 

Ay 
10 ' h 

Because Ay stands for the difference y{xo + h) - y{xo), then 

Ay 
Ax 

^ fixo.yo). 
0 

Ay = y(xo-hh) -y{xo) « hf{xo,yo). 

After moving the y{xo) term to the right side, we see that the general 
form can be written as 

ynew ^ y(Xo\d) + hf(Xo\d^yold)-

We now apply this computation repeatedly, as with 

3/2 = y(x2) = y(xi + h) ^ y{xi) + hfixuyi), etc. 

Consider another example; let 

^— = 4-. with 3/ = 1 when x = 0. 
dx A 

We can compare the analytic solution (3/ = 1 • e^/^) with the Euler-
method solution obtained using h = 1: 

3.0 4.0 5.0 6.0 
2.117 2.718 3.490 4.482 
1.953 2.441 3.052 3.815 

These results are also shown in Fig. 7.1, p. 150. Note the following 
points on the inaccuracy of Euler's method: 

X 0 
^^true 1 

^Euler 1 

1.0 
1.284 
1.250 

2.0 
1.649 
1.562 
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3 4 
X 

Figure 7.1: Comparison of the Euler-method solution with the true solution 
o f y =3//4, with 3/(0) = 1.) 

• The slope is calculated at the left end of each Ax interval. How­
ever, the true slope should increase continuously as x increases. 

• Thus at each step, y increases less than it should, and this would 
occur even if the starting value of y for that step were correct. 

• To make matters worse, once beyond the first step, the slopes are 
low for a second reason as well—each slope is calculated as yjA, 
but if y is already too low from errors in previous steps, this will 
reduce the slope even further below what it should be. 

For this reason, I emphasize that Euler's method should not be used 
in practice. Its main value is its simplicity, which helps to show the 
general concept of how numerical solution of DEs works. (See foot­
note, p. 148.) 

Before moving on to a useful solution method, we note that Euler's 
method (like other methods) can be generahzed to systems of ODEs. 
The same pattern, of y -* y' ^ y ^ y' -> ... holds, except now 
each y represents a vector of state variables, one for each DE in the 
system. For example, consider again the Lotka-Volterra equations, 
which, as we have seen, cannot be solved analytically: 

R' =aR- bRF = "rabbit slope'', R(0) = Ro 

F' = cRF -dF = "fox slope", F(0) = FQ. 
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If we used a time step of h years, Euler's method would proceed 
thus: 

Ri ^ jR(0 + fi) ^ i?o + hiuRo - bRoFo) 

Fi '4 f (0 + ^) ^ fo + hicRoFo - dFo) 

Thus, the slopes for both state variables are calculated from the val­
ues of both at t = 0. Further steps follow the same pattern: 

i?2 '4 R{2h) « i?i + h(aRi - bRiFi), 

F2 ̂  Fi2h) « Fi + hicRiFi - cLFi), 

and so on. Again, however, Euler's method is only illustrative. 
We now turn to the fourth-order Runge-Kutta method, a real 

workhorse in the stable of methods for solving ODEs numerically. 
We begin by applying it to a single, simple DE. 

7.2 The Runge-Kutta Method 

Although there are many Runge-Kutta methods for integrating differ­
ential equations (Press et al. 1992), we will cover only one, a simple 
and common fourth-order method. We will apply it first to the sim­
ple, first-order ODE, 

y = ^ = / ( ^ , y ) withIC (xo,yo). 
ax 

Our goal will be to estimate the value of 3̂  at x = xo, xo + /t, XQ -\-
2/t, xo + 3h, etc. As with Euler's method, we use our estimate of the 
IC to estimate 3/(xo + /i), then use that point to estimate y(xo + 2^), 
and so on. Let us concentrate on the first step away from the IC. 

With Euler's method, we calculated a single slope, and moved from 
Po (point 0) to Pi (point 1) along that slope. With our R-K method, we 
calculate four different slopes, and then move from Po to Pi along 
a line with a slope that is a weighted mean of the four. (The idea is 
similar to Simpson's rule, which you may recall estimates the value of 
an integral based on a weighted mean of three function values—here 
we use a final slope estimate that is the weighted mean of four trial 
slopes.) 
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Here is the procedure: 

1. Define point Po = (xo.yo)', i-^., the initial condition, and slope 
Sa = /(Po) = fi^o^yo)^' That is, the first slope is calculated from 
the X and y values at the known point from which we are moving. 
This first slope is the same one used in an Euler-method step. 

2. "Pull yourself up by the bootstraps," and extrapolate along slope 
Sa from point Po to a point Pa that hes a distance h/2 to the right 
of Po in the x direction. Thus Pa = (xo + h/2, yo + hSa/2). (In this 
sub-step, we go only half as far as we would in an Euler-method 
step.) 

3. Let Sb = f{Pa)y and again extrapolate over Ax = h/2 from Po, but 
along this new slope. This takes us to Pt = {x + h/2, y + hSb/2). 

4. Let Sc 'd f{Pb). Now extrapolate again from Po, but this time go all 
the way to x + h. Call this new point Pc ('4 x + h, y -\- hSc). 

5. Now we are at an estimate of the final point of this step, but it 
won't be our final value. Instead, we use this estimated point at 
the right-hand end of our interval to estimate a fourth slope, Sd î  
f{Pc), at the right-hand end. 

6. We now have four estimates—Sa, Sb, S^ and 5̂ ^—of the overall 
slope from (xo,yo) to {xi,y{xi)). One estimate lies at the left 
end of the interval, two lie in the center, and one lies at the right 
end. We use an argument similar to the one that justifies using 
the central-difference formula rather than the forward-difference 
form for numerical differentiation—a slope near the center of an 
interval should be a better estimate of the overall slope of a func­
tion over that interval than a slope near the ends would be. For 
this reason, we average the four slope estimates, but place greater 
weight on the two mid-interval slopes. Thus we set 

^ ^ 1 • Sg + 2 • S^ + 2 • 5c + 1 • 5^ 
1 + 2 + 2 + 1 

(The 1:2:2:1 weights are not arbitrary, but have been derived by 

-̂  Often the independent (x) variable does not appear on the right-hand side of 
the differential equation. When that is true, then the slope values that we calculate 
depend only on the current value of "y", and not on the current value of "x". The 
Instructions here, and the first example, deal with the more general case where the 
slope function depends on both variables, however. 
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Runge and Kutta, to make the method a fourth-order method. This 
point is discussed below.) 

7. Finally, we extrapolate a distance h along the slope S from Po to a 
new point Pi '4 [x + h,y(x+ h)]. This is the best estimate we will 
get of the value of y on the vertical axis corresponding to x + h 
on the horizontal axis. 

To continue on, we treat our new point (Pi) as a new IC, take another 
step (with four slopes), and continue stepping along in this way until 
we get to our goal. 

So much for the formulas—it's time for a demonstration. As we 
did with Euler's method, we will solve a DE with known analytic solu­
tion so we can check our result: 

y = ^ = f^^^y) = X + | ; xo - 0, yo = 0.6. 

We will use Runge-Kutta with h = 1 to step to x = 1, a point we'll 
call (xi, y\). The calculations proceed as shown in the table below, 
which is laid out in spreadsheet-like form. The sequence of steps is 
illustrated graphically in Fig. 7.2, p. 154. 

x_ y_ S_ 
Po 0 0.6 ~ 
Sa 0 +0.6/3 = 0.2^ 
Pa 0 + 1 / 2 = 0.5 0 .6+(1 /2) -0 .2 = 0.7 
Sh 0.5 + 0.7/3 = 0.73^ 
P^ 0 + 1 / 2 = 0.5 0 .6+(1/2) -0 .73 = 0.96 

Sc 0.5 + ^ = 0.82^ 
Pc 0 + 1 = 1 0 .6+1-0.82) = 1.42 

Sd 1 + ^ = 1.4740^ 

Note that what might be called 'P^' is never used. Now we calculate 
the weighted mean of the four slope estimates just found; i.e.. 

0.2 .2(0 .73) . 2 ( 0 . 8 2 ) . 1.4740 ^ ,,,,,^,,,,_ 

'= fiPo) 
"= fiPa) 
'=f(Pb) 
^=f{Pc) 
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0.2 0.4 0.6 0.8 

0.0 0.2 0.4 0.6 0.8 1.0 

Figure 7.2: Illustration of points and slopes used in one Runge-Kutta step. 
Refer to the calculations on p. 153. 

and move along that slope a distance h from PQ to Pi. Thus 

Pi H (xo-^Kyo-\-hS) = (0 + 1,0.6+1 -0.797530864) (7.1) 

= (1,1.397530864) = (xuyi). 

This is our best estimate of y(x + h)] i.e., y(l) = 1.397530864. It 
is important not to round off here, since this is our best estimate of 
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y at X = 1, and we need the best estimate so the slopes to the next 
point can be estimated as accurately as possible. Given our new Pi, 
we can now step on to the point P2 at x == 2 by a similar series of 
steps, and then continue on for as many steps as necessary. 

To check our approximate value of 3/(1), we find that the second 
equation in the solution table on p. 107 yields 3/ = 9 .6exp(x /3 ) -3x-
9 as the analytic solution to our DE. Thus our estimate differs from 
the exact value of yd) = 1.397879280 by about -0.00035, giving a 
relative error of -0.0249%. This may be "good enough for government 
work", but of course it represents a single step, and the error could 
accumulate if we integrated over many steps. We could probably im­
prove the accuracy by using more, smaller steps. 

Note that to go from x = 0 to x = 1 above, we evaluated y' = 
f{x,y) four times. An equivalent number of evaluations of the slope 
function would be required for four Euler method steps with h = 
0.25: 

y'=x + ^] Xo = 0; 3/0 = 0.6; h = 02S 

3/(0.25) « 0.6+ 0.25(0 + ^ ) =0.65 

3/(0.5) « 0.65 + 0.25(0.25 + ^ ] = 0.76 

3/(0.75) « 0.76 + 0.25(0.5 + ^ ) = 0.95 

yd) « 0.95+ 0.25(0.75 + ^ ) = 1.222685185. 

We can now compare the value of y(l) estimated by the two numeri­
cal methods with the analytic value: 

Euler yd) « l .[2. . .] 
Analytic 3^(1) = 1.397879280 
R-K y ( l ) « 1.397[5...] 

The two estimates have required the same number of evaluations 
of the 3/' function (a common measure of the "cost" of a numerical 
method), but the Runge-Kutta integration has provided considerably 
greater accuracy. This results from the difference in order of the two 
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methods. Euler's method (which is of first order) is exact only for 
a DE of the form y' = constant, while our fourth-order Runge-Kutta 
scheme would give exact answers (regardless of the size of h) for 
any DE of form y' = a-\- bx -^ cx'^ + dx^. The solution of the latter 
equation^, of form bo + bix + bzx^ + bsx^ + 1?4X ,̂ is, of course, a 
fourth-order polynomial. 

Runge-Kutta for an ODE System 

We now look at an example of using the Runge-Kutta method to 
solve a system of two first-order ODEs. Earlier (p. 134) we consid­
ered the Streeter-Phelps equations, a classic model for the loss and 
subsequent replacement of oxygen from water downstream from a 
discharge of organic wastes into a stream. Those equations are fun­
damentally illogical in one sense, however—if the oxygen in the water 
were entirely depleted, they allow the oxidation to continue anyway. 
Here we will modify the equations to the form 

B' = -kBD] B(0) = Bo 

D' = -kBD-^r(Ds-D)] D{0) = Do, (7.2) 

where 

JB=BOD concentration [mg L~ ]̂ 

D=dissolved oxygen concentration [mg L~ ]̂ 

Ds= saturation DO concentration at the stream tempera­
ture [mg L~ ]̂ 

k=reaction rate constant [L mg~^ hr~^] r=reaeration rate 
constant [hr~^] 

Although the original equations could be solved analytically, the 
present modified ones cannot. Let us solve them numerically for the 
case when 

Bo = lOOmgL-i 

Do = 12mgL-i 

"̂ That equation can be solved analytically, but it suggests approximating other 
more complicated equations by Taylor series 
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D, = 14mgL-i 

k = 0.04/24 L mg-i hi'^, and 

r = 0.5/24 hr-i 

We will take one step with h = 0.3 hr (starting from an initial time of 
zero), to illustrate how the calculations work. 

For our single illustrative step, the starting point is 

i'o(to,-Bo,Do) = (0,100,12), 

and from that we calculate the two starting slopes, 

SBa = B'(Po) = -kBoDo = -2 

Sua = D'iPo) = -kBoDo + r{Ds - Do) = -1.958333. 

We step along those slopes for a time of h/2 to 

Pa = [to + h/2,Bo + {h/2){SBa),Do + {h/2){SDa)] 

= [0 + 0.15,100 + 0.15(-2),12 + 0.15(-1.958333)] 

= [0.15,99.7,11.70625]. 

Now use that point to get the next slope estimates: 

SBb = B'(Pa) = -1.945189 

SDb=D'(Pa) = -1.897402 

and move along those slopes to the next point: 

Pb = [to + h/2,Bo + {h/2){SBb),Do + ih/2){SDb)] 

= [0 + 0.15,100 + 0.15(-1.945189), 12 + 0.15(-1.897402)] 

= [0.15,99.708222,11.71539]. 

Next calculate more slopes: 

SBc = B'{Pb) = -1.946868 

SDC =D'{Pb) = -1.899272. 
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Now determine the last temporary point: 

Pc = [to + h,Bo + hSicDo + hS2c] 

= [1 + 0.3,100 + 0.3(-1.946868),40 + 0.3{-1.899272)] 

= [0.3,99.41594,11.430218] 

and for the last set of intermediate slopes: 

SBd = B'{Pc) =-1.89391 

SDd = D'{Pc) =-1.840373. 

Next, we calculate the weighted averages of the four slope estimates 
for each of the variables B and D: 

SB = SBa + 2SBi> + 2SBc + SBd ^ _i.946337 
6 

SD = ^^'^ ^ ^^^^ ^ ^^^^ + ^"^ = -1.898676, 
6 

and finally step for a time h along those slopes to the best estimates 
we will obtain of the values of B and D att = to ^ h: 

Pi = [to + ^,JBO + hSB^Do + hSn] 

= [0 + 0.3,100 + 0.3(-1.946337), 12 + 0.3(-1.898676) 

= [0.3,99.416099,11.430397]. 

Thus, our best estimates for the values of the two response vari­
ables at t = 0.3 hr are 

£(0.3) ^ 99.416099 and D(0.3) ^ 11.430397. 

We could now treat these values as a new starting point, and take 
a second R-K step to P2 at t = 0.6 hr. In fact, we could repeat the 
process for as long as the solution remains of interest to us. 

Note that neither the BOD nor the DO has declined much in this 
first 18 minute period. However, the BOD has declined by a greater 
net amount than has the DO, which is logical because some reaeration 
has taken place during the period. Note also that the four slope es­
timates were reasonably stable during the integration step, for both 
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variables. This indicates that our time step h has been adequately 
small. 

Admittedly it is not very satisfactory to consider this single time 
step, the purpose of which has been to illustrate the process of nu­
merically integrating a system of differential equations. You could 
continue the solution over as many steps as you wished using a 
spreadsheet, if that were the best tool you had available. Better yet, 
use a tool like MATLAB as shown in the next section, if you have that 
available. 

73 Solving ODEs Numerically with MATLAB 

Solving one ODE, or a system of them, numerically using MATLAB®is 
a two-step process. First, one must create what MATLAB calls an 
m function that computes the slopes for the various state variables, 
given current values for the independent variable (e.g., time) and of 
the state variables. To do that for the modified Streeter-Phelps sys­
tem (Eqn. 7.2), enter "edit" (without the quotes) at the MATLAB » 
prompt, and when an editor window pops up, enter the following 
five lines into that window (by typing them directly, or by cutting and 
pasting from some other source). Then in that window's menus, enter 
File I Save as, and save the file as "slopes.m". 

funct ion dydt = s lopes( t ,y) 
% y i s a column vector; y(l)=BOD, y(2)=D0 
Ds=14; r=0.5/24; k=0.04/24; 
dydt = ze ros (2 , l ) ; 
% That defines dydt as a vector the same length as y 

dydt(l) = -k.vy(l),vy(2); 

dydt(2) = -bvy(l),vy(2)+r>v(Ds-y(2)); 

The percent signs in the lines above tells MATLAB that the text to the 
right of them represents comments, to be ignored. 

Next, we can calculate the numerical solution using a sophisti­
cated variation of the Runge-Kutta method called ode45 in MAT­
LAB. (Have a look at "help ode45.") To obtain the solution, enter 
[Time,Y]=ode45(@slopes,[0,500],[100 12]). 
This computes a matrix of times and corresponding "y" values, with 
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Figure 7.3: Solution curves for Runge-Kutta solution of the BOD-DO system 
model, as obtained from MATLAB. BOD, left; DO, right. 

time running from 0 to 500 hours, and with initial conditions of 100 
mg L-i for BOD (yi) and 12 mg L"! for DO (yz). 

Finally, we can inspect our approximate solution by asking MAT-
LAB to plot it. We could use a single plot, but because BOD starts out 
nearly ten times higher than DO, two plots work better. These lines 
do the work: 

p lo t (T ime ,Y ( : , l ) ) ; 
ylabelCBOD concentration [mg/L ] ' ) ; 
xlabeK'Time [days] ' ) 
% View the f i r s t p lo t (and save i f desired). 
p lo t (T ime,Y( : ,2) ) ; 
ylabelC'DG concentration [mg/L ] ' ) ; 
XlabeK'Time [days] ' ) 

The result is Fig. 7.3. Note that with the coefficients specified, the 
DO drops from 12 to about 2 mg L"^ rapidly, and then recovers more 
slowly by reaeration. The BOD also drops rapidly at first, but its 
loss then approaches a constant rate that is in a balance with the 
reaeration. The fish in this stream appear to be in some trouble! 

7.4 Exercises 

1. Consider the differential equation 

dy 
It = 2.7r-^3/^\ with3/(1) = 0.7. 
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As a baseline against which to compare numerical results, solve 
this equation analytically. 

Next use Euler's method with a step size of /t = 0.1 to estimate 
the value of y when t = 1.4. Plot the y values as you go along. 
Also plot the analytic solution for comparison. This exercise is 
designed to give you an intuitive feeling for what a numerical so­
lution of a differential equation is. In real apphcations, you should 
avoid Euler's method because of its inferior accuracy relative to 
the Runge-Kutta method. Compare your result from this and the 
Runge-Kutta result to follow with the analytic solution. 

Finally, use Runge-Kutta with h = 0.2 to estimate the value of y 
when t = 1.4. Plot the y values you obtain at t = 1.2 and t = 1.4 
on the same graph as before. It will help to keep a summary table 
of the various t values, y values, and slopes that go into your 
solution. 

2. Consider again the SIR model (p. 144) for a disease epidemic based 
on differential equations that connect three subgroups of a pop­
ulation; susceptible people, S; infected people, J; and recovered, 
dead or otherwise immune people, R. 

Now suppose the probability, and therefore the rate, of infection 
for people in the S group is proportional to the product of S times 
/. (Does that make sense to you?) Further, suppose a fixed frac­
tion of infected people will recover per unit time. This model is 
sometimes called the SIR model. 

Next, suppose that at some early stage in a given epidemic, S = 
9900 people, 7 = 100 people, and no one has yet recovered. Also, 
suppose that the proportionality constant for the S-I interaction 
is 4.2 X 10~^ person"^ day~^ and that 10% of infected people will 
recover per day. 

Using our Runge-Kutta method, take two one-day steps to estimate 
S, /, and R two days after the time for which starting values were 
given. Keep a table of values of t, 5, 7, i?, rris, ^^t and itir, where 
the m values are slopes for the three variables. 

3. The purpose of this exercise is to show you the relationships in­
volved in changing the time units of differential equations. Let 1 
year = 365 days. Then convert the differential equations from the 
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previous exercise so their time units are per year rather than per 
day. Finally, repeat the Runge-Kutta calculations using two steps 
with h = (1/365) year and compare with the original calculations. 
Describe in words what happens. 

4. As you have seen, the Lotka-Volterra equations for rabbit (R) and 
fox (f) populations are: 

R' =aR-bRF] R{0) = RQ (7.3) 

r = cRF - dF\ f (0) = fo- (7.4) 

Consider a case where a = 0.2 year~^ b = 0.005 fox~^ year"^ 
c = 0.00005 rabbit-i year"!, d = 0.04 year"!, RQ = 1000 rabbits, 
and fo = 20 foxes. 

Estimate the sizes of the rabbit and fox populations at t = 0.2 year 
(a little over two months after t = 0) using two Runge-Kutta steps 
of ^ = 0.1 year each. You will find this exercise easier if you keep a 
tidy table of values of t, i?, f, Sr and 5/, where Sr values are "rabbit 
slopes" (dR/dt) and 5/ values are "fox slopes" (dF/dt). 

5. Perform one step (with h = O.l yr) of a Runge-Kutta solution of the 
modified Lotka-Volterra equations from pp. 17-18 of the notes: 

^ = THHI^^J") - aHC with H = Ho^Xt=0, and 
dt \ KH J 

4 ? = rcC (^^~r^] + cHC with C = Co at f = 0. 
dt \ bH J 

For parameter values, use H{0) = Ho = 10,000 [kg], C(0) = Co = 
1000 [kg], TH = 0.14 [yr-i], KH = 2000 [kg], a = 0.002 [kg yr"!], 
Tc = 0.06 [yr-i], b = 0.1 [-], and c = 0.002 [kg yr"!]. 

Retain at least 5 digits in all calculations. (In a spreadsheet or in 
MATLAB, you would automatically be retaining more than that.) 

6. Use MATLAB or other software to repeat Exercises 1-5, and check 
the results against what you found in your less-automated calcu­
lations. 

7. As you know, the solution to dN/dt = rN is N{t) = e^^ when 
N(0) = 1. Thus, (A) dN/dt = rN, JV(0) - 1 and (B) dN/dt = 
r e^^, N{0) = 1 are equivalent mathematical statements, meaning 
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that (A) and (B) are differential equations that must have the same 
solutions. 

Suppose you were to solve each of (A) and (B) numerically using 
Euler's method from 0 < t < 10, using h = O.S. Would the errors 
(the deviations from the true analytic solution) caused by using 
Euler's method be the same in both cases? If so, state why. If not, 
state which would result in the worse error, and why. 

7.5 Questions and Answers 

1. Does the Runge-Kutta method work for non-linear functions; i.e., 
those that aren't straight lines? 

• Yes. In fact, if your function were a straight line, the slope would 
be a constant, and then there would be no need for a numerical 
method. In that case you could always get an analytic solution. In 
the notes, I point out that the 1:2:2:1 weights for averaging the four 
slope estimates were chosen to make this method exact for any DE 
whose solution is a fourth-order polynomial in x (or t). That is, if 
you differentiated the polynomialy = a-^ bt ^ ct^ + dt^ + et"^ to 
turn it into a DE, and then used our R-K method to solve it, it would 
give an exact answer even for arbitrarily large h. What this means 
(shades of Taylor series) is that this method can follow quite a bit 
of curvature accurately. (If you actually had that particular DE, 
you could solve it analytically. However, that analysis shows that 
our R-K method is like using the first four terms of a Taylor series 
for the derivative.) 

2. For what kind of environmental problems would Runge-Kutta 
methods be used? 

• The method is used for solving systems of (and sometimes sin­
gle) differential equations that model: 

a) transport and fate of materials moving around among multi­
ple compartments. Two examples are pollution transport in 
streams, and phosphorus exchanges among water, sediments, 
and various species (or trophic levels) in lakes. 

b) models for interacting populations in fisheries and wildlife bi­
ology, including risk analyses for endangered species. 



164 Chapter 7. Numerical Solution of ODEs 

c) chemical reactions among multiple, interacting chemicals. 

d) the various "reacting vessels" in a sewage-treatment plant. 

There are many more. I am surprised by how often people seem to 
use Euler's method for solving such problems, given that Runge-
Kutta is so much more accurate. 

3. "Why have we been applying numerical methods to differential 
equations that can be solved analytically?" 

• Only to test and illustrate how the methods work with equa­
tions for which we know the true solution—we use that true so­
lution for comparison. In practice, the analytic solution would al­
ways be preferable, since it would give exact, and general, results. 
However, there are lots of DEs (and especially systems of DEs) for 
which analytic solutions are not available, so Runge-Kutta is used 
a lot. 

4. How do you recognize the need to solve ODEs numerically as op­
posed to analytically? A lot of them look too hard to solve analyt­
ically, but should one try first (possibly using software), and only 
turn to R-K and Euler if that doesn't work? 

• Please, never use Euler, since you can use R-K! I suggest that 
you first look in tables or try MATLAB, or both. If you can't get 
an analytic solution by one of those methods, then turn to Runge-
Kutta. 

5. In Runge-Kutta, are there only four calculations for slope, never 
more? 

• With the particular R-K method we work with, you calculate four 
slopes, and their weighted average for each step and for each equa­
tion in the system. Quoth the raven.... 

6. Can our 4th-order R-K method be extrapolated to higher orders, 
for more accurate solutions? If so, would the slopes be weighted 
as in Simpson's rule, i.e., 1 4 2 4 2 4 ... 4 1? 

• There are higher order versions (which we won't study). In fact, 
the variable-time-step method used in MATLAB's "ode45" turns 
out to be 5 th order. I think the weightings would not then be 
those of Simpson's rule, which is third order, and does a different 
thing. 
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7. What kinds of problems would you use the R-K method for? 

• I have described two cases; i.e., the modified (and more realistic?) 
Streeter-Phelps equations, and following flows of water (and bac­
teria, and various substances) through reservoirs. DEs describing 
reactions among numerous chemical substances (like those pro­
ducing the "ozone hole" in the atmosphere) would be another sit­
uation, if you wanted to deal with non-equilibrium cases. The "SIR" 
model for epidemics is another example. 

8. If an equation can't be solved analytically, how can it be solved by 
Runge-Kutta? 

• An analytic solution gives a very general formula for the ''ex­
act* solution. That is very desirable, but if you can't get that, 
then R-K just gives you a list of approximate y(t=0), y(t=h), y(t=2h), 
... points. It does that by the process of going to various points 
that are approximations to the true values, and using the slopes 
at those "guesswork" points to estimate the true slope. So R-K 
doesn't yield a true solution—it just gives a series of approxima­
tions. 

The situation here is closely related to the fact that we noted ear­
lier, that some integrals yield analytic results but others do not. 

9. Why in Runge-Kutta do we go in the sequence h/2, h/2, hi 

• The idea is to use the point at the left (starting) end of the step 
once, a point at the right (ending) end of the step once, and points 
in the middle of the range twice. It's a bit like the 1-4-1 weighting 
of Simpson's rule, in that points near the center of the range are 
treated as more representative than those at the ends. 



Chapter 8 

Second-Order ODEs 

Because they are important in their own right, and because many 
important partial differential equations (Chapter 11) are second or­
der, we now take up second-order ordinary differential equations. 
This means that we must deal with second derivatives, sometimes in 
combination with first derivatives, and sometimes alone. We will be 
concerned with equations of the general form 

Many of the equations that arise in applications take the simpler form 
of the linear second-order equation^ 

In environmental science, this form of mathematical model arises 
most often in describing various transfers of energy (as heat) and 
mass. Mass transfers of interest might include SO2 and NOx as air 
pollutants, CO2 to a forest canopy, water from a leaf or from a body 
of water, and groundwater flows. As we shall see, one fundamen­
tal principle that applies for most of these tranfers is that exchange 
rates are proportional to concentration, temperature, or pressure dif­
ferences] that is to gradients (spatial derivatives) of those quantities. 

^Can you explain to a colleague just why Eqn. 8.2 is conceptually much simpler 
thanEqn. 8.1? 
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Figure 8.1: Diagram of a hollow tube used to derive the diffusion equation. 

8.1 Mass Transfer in Cartesian Coordinate Sys­
tems 

We begin with an example of mass transfer—diffusion of a gas down 
a long rectangular tube, as shown in Fig. 8.1. A gas will diffuse when­
ever there is a concentration difference^ (i.e., when Ci 4" C2) from 
one end of the tube to the other. (We are assuming here the simple 
case where a single gas, such as chloroform, is diffusing at relatively 
low concentrations through air, without participating in any reactions 
and without being adsorbed onto the walls of the tube along the way.) 
Under these conditions, R, the mass flow rate (or flux) in the +x di­
rection, is given in units like mol s"^ by 

R = D 
C2-C1 {^V"-^A^)- (8.3) 

where Ci and C2 are chloroform concentrations [mol cm~^] at the two 
ends of the tube, I is the tube length [cm], Axs is its cross-sectional 
area [cm^], and D is the molecular diffusivity of chloroform through 
air [cm^ s~^]. 
Thus, Eqn 8.3 has consistent units of 

m cm^ mg 
cm^cm. 

cm" 

Eqn. 8.3 gives the mass flow rate down a tube of finite length I . Often 
we will need to know what R would be across a plane, in response 

^Strictly speaking, gases diffuse in response to differences in mass fractions 
(Parkhurst 1994), but these are proportional to concentrations in isobaric (uniform 
pressure) systems. 
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to the concentration gradient (dC/dx) across that plane. Such flow 
rates can be calculated by taking Eqn. 8.3 in the limit as L ^ 0, which 
yields 

R across a plane = -AxsD-^—. (8.4) 
dx 

Frequently it is more convenient to work with mass flux densities, with 
dimensions of mass area~^ time"^ rather than with mass fluxes or 
flow rates [mass time"^. For our present problem, the flux density, 
in mg cm~^ s~^ of gas diffusing across the plane is given by 

F=R/Axs = -D^^ (8-5) 

which is known as Pick's first law of diffusion, and dates back to at 
least 1855 (Nobel 1991). The minus sign on the RHS of Eqn. 8.5 is 
puzzling to many at first, but it must be present because (1) diffusion 
moves material from high concentration regions to low concentration 
regions (i.e., down a gradient), and (2) defining the flux to be positive 
when material moves in the positive x direction is a useful convention 
that we adopt. 

A unit check for Eqn. 8.5 takes the form 

mg (mg/s) cm^ mg 1 
cm^^ cm^ s cm^ cm" 

Next we take up an example where we must work with this deriva­
tive form. Suppose we consider a specific short section of our rectan­
gular tube, which we will refer to as a "control volume." Also suppose 
that some gas is lost from the air in the tube as the gas diffuses along, 
by adsorption onto (adhering to) the tube wall. We might model this 
adsorption using 

W = kPC (8.6) 

where W is the adsorption rate of the gas per unit length of tube 
[mg cm~^ s~^], P = 4S is the perimeter of the tube [cm] (comparable 
to the circumference of a circular cylinder), fc is a rate coefficient 
[cm s~M known as a deposition velocity because of its velocity-like 
units, and C is the chloroform concentration at x. I leave the reader 
to perform a unit check for Eqn. 8.6. 
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x+^x 

Figure 8.2: Diffusion tube showing "control volume," of length Ax. The 
perimeter P is the sum of the lengths of the four sides indicated. 

For a steady state situation, we work with a mass balance over any 
convenient period of time for the control volume (CV) shown in Fig 
8.2. This takes the form 

(diffusion rate in at x) = (uptake rate by wall within CV) 

+ (diffusion rate out at x + Ax). (8.7) 

It is not obvious how C will vary with x along the tube in this scenario. 
(Can you guess?) But we can work it out. Similarly to the situations in 
Chapter 4, we have a case in which our fundamental knowledge does 
not tell us C(x) directly, but rather has to do with rates of change 
along X. A straightforward mass balance (assuming a steady state 
in time) will lead us to the appropriate differential equation, whose 
solution (as before) will give us C(x). 

Eqn. 8.7 represents a balance for the movement of chloroform 
mass into and out of the control volume over some period of time 
At. This states, if C(x) is not changing with time, that mass m dif­
fusing across the plane at x is balanced by the sum of mass diffusing 
out at X + Ax plus mass adsorbing onto the tube wall: 

dx x+Ax 

A unit check yields 

2̂ I - r m g 

At + kPCAxAt. (8.8) 

cm'̂  

cm s. 
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If the tube has a square cross section of width 5, and P is the 
perimeter of a cross section, then 

If we substitute these expressions, factor out the At, and collect the 
two diffusion terms on the LHS, we obtain 

or 
dC\ dC\ 
CLX / x+Ax ^^ ) > 

4k5CAx 

^^'^ (8.9) 
Ax DS ' 

Next, to help keep things straight, it can be helpful to make a 
temporary substitution^, using G to represent the concentration gra­
dient: 

ax 

Then Eqn. 8.9 becomes 

Gx+Ax - Gx _ 4fcC 

Ax '^ DS' 

As we have seen in previous ODE derivations, this expression is 
only approximate because C (and probably G) varies somewhat along 
the Ax length of the control volume. So, we take the limit as Ax -^ 0 
to obtain 

l im ^ ^ + ^ ^ ~ ^ ^ = — = ^^^ 
Ax-'O Ax dx DS ' 

But from the definitions of G and of second derivatives, 

dG_ _ d_ /dC_\ _ d^C 
dx dx \dx J dx^' 

Finally, then, we obtain"^ 

'̂ This type of substitution is not necessary, and once you've had a little practice 
with second-order equations, you'll probably go directly to the result without it. 

'̂ Using a^ as the constant turns out to be convenient for two reasons—first, it 
indicates that the constant is positive. Second, the solution to Eqn. 8.10 will turn out 
to contain the square root of this constant, so if we make it a square, the solution is 
simplified. 
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dx^ DS DS 
A unit check here yields 

Lcm^J Lcm^J L s J Lcm^J Lcm^J LcmJ 

This is a second-order ODE, one that represents our knowledge of the 
balance of chloroform mass transfers within the tube. To find C(x), 
we would want to solve this equation. 

Solving second-order ODEs involves integrating twice, so two con­
stants of integration arise; thus, two equivalents of initial conditions 
are needed. For problems like this one, where time is not a variable, 
the two fixed conditions might be values of C\ and C2, for example, 
and these are called boundary conditions (BCs). Here C(0) = Ci and 
C{L) = C2. 

Murphy (1960) has a chapter covering solutions of second-order 
equations; in it, y'' = a^y is the one that matches our diffusion 
equation. Murphy presents two alternate solutions that in our context 
take the form, 

C{x) = Asinhax + Bcoshax, or (8.11) 

C{x) - Ae^^+B^-^^, (8.12) 

and we may choose whichever form provides the more convenient 
solution. In either case, one substitutes the two boundary conditions 
in turn into the chosen solution, yielding two expressions that can be 
solved for the constants A and B, 

Suppose that for some reason we needed to solve our differential 
equation numerically. This need might arise if the dimensions of the 
tube varied with x, for example. Then we could translate our one 
second-order equation into a system of two first-order ones using 

•3— ^ G, (the gradient), and 
ax 
dG _ AkC 
dx ~ DS ' 

This system could be solved using a variant of our Runge-Kutta 
scheme called a shooting method (Press et al. 1992) to deal with the 
fact that we don't know both G and C at x = 0. Anyway, any second-
order ODE can be converted into a pair of first-order equations in a 
similar manner. 
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Some Example Analytic Solutions 

For a long square tube with a gas diffusing along its length and ad­
sorbing onto its walls (at a rate proportional to the local concentra­
tion), we found that 

d^C ^ 4kC ^ 2r 
dx^ ~ DS ""^ 

We also found the general solution to this equation (in two forms) 
from Murphy's tables. Now let's look at some particular solutions of 
this equation for a few special cases: 

1. First, suppose that gas does not adsorb onto the tube wall, so that 
k = 0. Also suppose that Ci and C2 are two known constants. Here 

TT = f(f)=0. (8.13) 
dx'^ dx \dx) 

To solve this form, we can treat x as one variable and dC/dx as 
another, separate the two variables, and integrate once to obtain^ 

J (̂f) = l'̂ "̂f = ̂ ' 
where a is a constant of integration. This latter expression can be 
solved by a new separation of variables and another integration: 

-— = a => \ dC 
dx h adx ^ C = ax -\- b, (8.14) 

where i? is a second constant of integration. This is, of course, consis­
tent with a linear function (Eqn. 8.14) having a zero second derivative 
(Eqn. 8.13). 

Note the simple result here—given diffusion down the tube with 
different, fixed concentrations at the two ends and with no sources 
or sinks, the gas concentration varies linearly along the length. To 
solve for the constants of integration, we note that C = ax + b holds 
at X = 0 and at x = L, from which 

C(0) =:Ci=aO + b^b = Ci 

^The symbol "=̂ " is read "implies." That means, in turn, "It must follow that." 
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C(L) = C2 = aL-hb=^a= ^^~^\ 

Thus the complete solution becomes C(x) = Ci + (C2 - Ci)(x/ I ) . 
As always, it is good practice to be sure our solution satisfies both 

the DE and the BCs. The latter checks are easy, since C(0) = Ci and 
C(I) = C2 by simple substitution of x = 0 and x = L into the solu­
tion. To check that we have satisfied C ^ 0, we simply diff'erentiate 
the solution twice. Clearly C = a, from which C = 0, so the check 
is complete. 

2. Next we solve the problem as originally stated, with fc ^ 0, C(0) = 
Ci, and C(I) = C2. If we set^ a^ ^ 4fe/(DS), our DE becomes 

As before, using a^ rather than a provides a more convenient solu­
tion, and it also represents a positive constant; this is consistent with 
AkjDS being positive. 

I stated above (p. 171) that both C{x) = Aexp(ax) + Bexp{-ax) 
and C{x) = As inhax + JScoshax are solutions to our DE, and Ex­
ercise 1, p. 183, asks you to prove that these expressions do satisfy 
C = a^C. If we choose the second form, and use the BCs to solve 
for A and B, we obtain 

C(0) = AsinhO + J5coshO = Ci 

C{L) = As inha l + BcoshaL = C2. 

Because'' sinhO = 0 and coshO = 1, the first of these equations yields 
B = Ci. Simple algebra applied to the second then yields 

C2 - Ci cosha l 
sinh uL 

The overall solution becomes 

C{x) = (C2 - Ci coshal ) (-7—;—- ) H- Ci coshax, (8.15) 
Vsmha l / 

which I leave for you to verify. For example, is it correct at x = 0 and 
at X = I? One such solution is shown in Fig. 8.3 (left), p. 174. 

^This form for a^ applies to a tube with a square cross section; the coefficient 
would be different for other shapes. 

^You could check these values using tables, a calculator, or the definitions of the 
sinh and cosh functions. 
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X [cm] X [cm] 

Figure 8.3: Plots of Eqn. 8.15 when Ci = 100 and C2 = 50 (left), and of 
Eqn. 8.16 with Ci = 100 and dC/dx = Oatx = 10 (right). For both, a = 0.11. 
Note that in the first case, the slope of the relationship does not go to zero 
at X = I, while in the second case it does go to zero. 

3. Again suppose k ^ 0 and C(0) = Ci, but now let us specify that 
the tube has an impermeable cap at x = I ; i.e., that no chloroform 
diffuses across the plane there. This latter BC requires that 

- D ^ ^ O a t x 
ax 

Our BCs are now 

I , from which ^] =0 . 
dx JI 

C(0) - AsinhO + BcoshO = A(0) +B(1) = Ci and 

^—I = -r—(Asinhax + Bcoshax)L = 
dx / L dx 

aA cosh a l + ajBsinh a l = 0. 

The first BC imphes as before that B = Ci, while the second reduces 
to 

sinh a l 
-Ci- -Ci t anha l , 

cosh a l 
where tanhx U s inhx/coshx (by definition). The final solution is 
thus 

C{x) = Ci(coshax - sinh a x tanh a l ) . (8.16) 

I leave this solution for you to check, but close by plotting its general 
form in Fig. 8.3 (right). Note from the plot that the curve becomes 
level at X = L, consistent with dC/dx = 0 there. 

We have now laid the groundwork for deriving some important 
partial differential equations, which will be the subject of Chapter 11. 
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8.2 Generalizations to Other Quantities 

Concepts like those represented by the equation 

R = -DA^, (8.17) 
ax 

which indicates that transfers of mass by diffusion across a plane 
occur at rates proportional to the concentration gradient and pro­
portional to the area available, are very general ones in the physi­
cal world. The same general concept applies to transfers of heat by 
conduction, of groundwater, of electrical charge, and of organisms 
modelled as moving by Brownian-like random processes. Some of 
the chapter exercises deal with the latter situation (sometimes across 
a line rather than across a plane). 

The analogous relationships to Eqn. 8.17 for some of these pro­
cesses are given here. For the discharge Q of groundwater [e.g., in 
m^ hr~^], 

a = -KAJ^. (8.18) 

where h is the hydraulic head (a pressure, often expressed in m of 
water) and K is the hydraulic conductivity [e.g., in m hr"^]. This rela­
tionship is known as Darcy's law. The coefficient K depends on the 
properties of the flowing fluid and of the matrix, such as soil, through 
which it flows. 

For organisms moving on a planar surface, and modelled as diffus­
ing across a line (rather than across a plane), the relationship might 
take the form 

M = -DL-r-, (8.19) 
ax 

with M being the migration rate [organisms da~^], I being the length 
of the line across which the organisms can move, C being the or­
ganism density [number per m^], and D is the "diffusivity" (or "mi-
grativity," if you will) of the organisms on that surface [m^ da~^]. A 
similar situation is the basis for Exercise 2, p. 183, except that it deals 
with fish moving through 3-dimensional space (they aren't confined 
to a surface), and they move across a plane like our diffusing gas 
molecules, rather than just across a line. 
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For conduction of heat through a sohd, a standard model is 

Q - - f c A ^ , (8.20) 
dx 

with Q the heat flux [J s~^], T the temperature [deg C], and k the 
thermal conductivity [J deg~^ m"^ s~^]. 

You may find it useful to check the units for each of Eqns. 8.18-
8.20. 

8.3 Conduction of Heat in a Solid 

Now we consider just one of those examples, to serve as a variation on 
the theme of diffusion that we have already dealt with. In particular, 
we will derive the second-order ODE that describes conduction heat 
transfer along the length of a small cylinder. We'll take the case of 
roasting hot dogs or marshmallows, using a heavy steel wire as our 
"spit." 

Suppose we have a long, thin cylinder of radius r , and we hold one 
end in a fire so that T{0) = Ti, and hold the other end in our hand, 
where T{L) = T2. (We hope that T2 doesn't go much above 35 C!) Let 
us suppose that heat not only moves along the wire by conduction, 
but is also lost to the air by the process of convection. Specifically, 
a good model for that process would be that from any short section 
of the wire where the temperature is T{x) deg, heat loss to the air 
proceeds at a rate Qsurf [J s~M given by 

Qsurf = hAs(T{x)-Ta)^ (8.21) 

with h the convection coefficient [J cm"^ deg"^ s"M, As the surface 
area of the wire in contact with the air [cm^], and Ta the air temper­
ature [deg]. (We will ignore the comphcation that in reahty, the air 
temperature would be higher near the fire than it is near your hand, 
and treat it as a constant here.) 

The law of conservation of energy then tells us that in a steady 
state, for any small length of the wire between x and x + Ax, 

Energy conducted in at x = Energy conducted out at {x + Ax) 

+Energy lost to air. 
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We use Eqn. 8.20 for the first two terms and Eqn. 8.21 for the third to 
obtain 

-feA;,, — ) ^-kA^s-r) +hAs{T{x)-Ta). (8.22) 

with Axs = TTT^ being the cross-sectional area of the rod (across 
which conduction occurs) and As = 2nrAx being the surface area 
of the AX"long section that is exposed to the air. Can you explain 
why this equation is only approximate? 

Before we go further, it's time for a unit check: 

J 
-cm 

deg J 2 deg 
cm'^—- + J -cm^ deg. 

cm s deg cm cm s deg cm cm^ s deg 

Does this check? 
We now manipulate Eqn. 8.22 by operations similar to those we 

used to move from Eqn. 8.10 to Eqn. 8.19. We have 

kA, 
dxJx+Ax dx/x. 

hAs{T{x)-Ta), 

Idx / x+Ax dxj xi 
hAs 
kAx! 

{T{x)-Ta). 

or 

.dx/x+Ax dx)x\ 

\dT\ dT\ 
Idx/x+Ax dxJxj 

h2TTrAx 
knT^ 

{T{x)-Ta). 

Ax 

2h 
rk 

iTix)-Ta). 

Finally, we take the limit as Ax - 0 

lim 
Ax-O 

\dT\ _ dT\ 
Idx Jx+Ax dx )X. 

Ax 
2h 
rk 

{T{x)-Ta). 

If you find it helpful, you could define G = dT/dx—Xhe temperature 
gradient—and work with that, but in any case the result will be 

d^T 2h 
dx^ rk 

(T-Ta). 
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The easiest way to solve that equation (if Ta is a constant) is to 
define 9 '.iT -Ta, and to note that 

dl _ djT-Tq) dT dTg cLT 
dx dx dx dx dx' 

because the derivative of Ta would be zero. The same argument holds 
for the second derivative, and so 

d^e _ 2h 
dx^ rk 

Now if we set a^ = 2h/{rk), we have the same equation we already 
solved in the diffusion context, but with temperature difference 6 
replacing concentration as the field variable. 

8.4 Coordinate Systems for Curved Geometry 

Spherical Geometry 

Reminder: mass flux density equals -D{dC/dx), with dimensions of 
mass time~^ area"^ In a similar way, heat flux density equals 

_i _2 . , dT \ ^ 1 L deg m s J 
[degl 
L m J dx 

where k is the thermal conductivity of a substance, and T is temper­
ature. 

If we are interested in conductive heat transfer in part of a spher­
ical object, e.g., in the fur of a small "rolled up" animal, it is most 
convenient to work in spherical coordinates rather than in Cartesian 
(x-y-z) coordinates. Spherical coordinates are often defined as shown 
in Fig. 8.4, p. 179. 

We will consider a simplified situation in which there is no angu­
lar variation of temperature or other features of the sphere, so that 
temperature and heat flux densities vary only with radius r . We wifl 
derive the energy-balance equation for this situation based on the Ar 
control volume, a thin, spherical shell in the fur, diagrammed as in 
Fig. 8.5, p. 179. (The thickness of the fur, relative to the body diame­
ter, is exaggerated in that diagram.) 

For this process, it will be useful to remember that the surface area 
A and the volume V of a sphere of radius r are given by A = 47Tr^ 
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Equator" view "North pole" view Any view 

Figure 8.4: Spherical coordinates are most easily seen in an analogy to the 
earth. The angle (p corresponds roughly (though not exactly) to latitude, 
while 6 corresponds roughly with longitude. Any point within, or on, the 
sphere can be specified uniquely by its (p, 6, and r coordinates. The N 
symbol indicates the point that would be the "north pole" if this sphere 
were our globe. 

Figure 8.5: Cross section through a sphere showing a control volume 
bounded by two concentric spheres. 

and V = 4TTr^/3. It may also help to notice that the surface area is 
the r-ward derivative of the volume {dV/dr ^ 4nr^ = A) and that 
dV = Adr. 

In a steady-state situation^, when no heat is produced in the fur, 
the heat entering any "shell" of fur must equal the heat leaving that 
shell in any given period of time. Thus, the heat flux Q in at r equals 
Q out at r + Ar, where 

'2[i]=''^[?i?]""'l' 
^I.e., when nothing changes with time 
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Q i n a t r - - f c f — j A{r), 

and 

-3—) A(r + Ar). 
a r /r+Ar 

Let dT/dr '4 G, the radial temperature gradient. Then the energy 
balance becomes 

-kG{r)A{r) = -kG(r + Ar) A{r + Ar), or 

k[G{r + Ar)A(r + Ar) - G{r)A{r)] = 0. 

Since k is not zero, we can divide through by kAr to simplify the 
equation to 

G(r^ Ar) A{r-^ Ar) - G{r)A{r) _ 
Ar 

Then, we take the limit as Ar — 0, which yields d{GA)ldr = 0. Ex­
panding that derivative using the product rule (p. 25) leads to 

dr dr 

or, if we substitute for A and G, 

4^^2 A f ̂ U ^ . ^(4TTr^) = 0. 
dr \dr) dr dr 

Next we divide through by Au to obtain 

nd^T dT dr^ ^ 
r 1 • = 0, or 

dr^ dr dr 

2d^T ^ dT ^ ^ „ 
^ -7-^ + 2r — = 0, or ftnally 

d^T 2^dJ_ _ 
dr^ r dr 

The solution to this equation can be found in Murphy (1960) or 
in Carslaw and Jaeger (1947), or by using software like MATLAB®, 
Maple®, Mathematica®, or Octave. For example, if T{Ri) = Ti and 
r(i?2) = T2, the solutionis 

T{r) = ^ {T2R2-TiRi) + ^^{Ti-T2) 
r 

(8.23) 
R2-R1 

which is of the form T(r) = a-\- b/r, and is plotted in Fig. 8.6 (left), 
p. 181, for the boundary conditions indicated. 
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r [cm] r [cm] 

Figure 8.6: Temperature profiles in the fur of a spherical animal (left) and a 
cylindrical animal (right), with body diameters of 7 cm and fur thicknesses 
of 3 cm more. In each case, the body temperature is 35° C, and the temper­
ature at the outer fur surface is 10° C. The result for the sphere is given by 
Eqn 8.23, p. 180, and that for the cylinder by Eqn 8.24, p. 182. 

Cylindrical Geometry 

Fig. 8.7 defines the components of the cylindrical coordinate system. 
In the steady state, Q in at r = Q out at r + Ar. The equation for that 
energy balance is 

Air) -k -y-] A{r + Ar) 
ar /r+Ar 

Here, as with the sphere, we will consider temperature variation only 
in the radial dimension—refer to Fig. 8.5, (p. 179), which can also be 
interpreted as showing the end of a cylinder. Again, let dT/dr ^d G. 
Then, as with the sphere, 

k[G{r-^ Ar) A{r + Ar) - G(r)A{r)] = 0. 

Figure 8.7: Components of the cylindrical coordinate system. 
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In the hmit, that becomes d{GA)/dr = 0, from which 

.dG ^ ^dA 
A-z— + G-r— = 0. 

dr dr 

Substituting for A and G yields 

ZnrAz— I—] + — TZTTAZ—1 = 0 
dr\dr) dr I dr] = u, or 

d^T dJ^_Q 
dr^ dr 

with boundary conditions T (i?i) = Ti and T (Rz) = Tz. 
The solution to this equation (again from tables) is 

^(^) = 1̂  , J in , [(^1 log^2 - T2 logi^i) - (Ti - Tz) logr], (8.24) 

which is of the form T{r) = a -\- ^ logr . The appearance of logr 
in this equation precludes specifying a fixed-temperature boundary 
condition at r == 0, because the log of zero is undefined. The solution 
is shown in Fig. 8.6 (right), p. 181, for the boundary conditions indi­
cated. Note the similarity to the solution for the sphere—the general 
shape is the same, but the slope and curvature differ with geometry. 

We will see these coordinate systems again in Chapter 11, where 
we will allow concentrations and temperatures to vary with time as 
well as with radius. 

8.5 Solving Second-Order ODEs Analytically with 
MATLAB 

When a second-order ODE has an analytic solution, MATLAB can prob­
ably find it. For example, to solve Eqn. 8.10 with C(0) = Ci and 
C'{L) = 0, as with Case 3 on p. 174, we could enter 
C=dsolveCD2Conc=aA2vrConc' , 'Conc(0)=Cl' , 'DConc(L)=0'), 
where the D2Conc denotes the second derivative of Cone. Then we 
could enter p re t ty ( s imple (C) )^ to see the answer in the form 

exp[a(x - I ) ] + exp[ -a (x - I ) ] 
exp(al) + exp(-aL) 

^MATLAB's "simple" function tries various ways to simplify an expression, and 
returns the shortest one. 
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A bit of algebra shows that to be equal to the Eqn. 8.16 that we ob­
tained earlier (p. 174). As with other commands, you can obtain more 
information about using MATLAB to solve this kind of equation by 
entering help dsolve. 

8.6 Exercises 

1. Differentiate each of the putative solutions in Eqns. 8.11 and 8.12, 
(p. 171) twice, to show that both satisfy C = a^C. 

2. Ecologists sometimes model animal migration by analogy with dif­
fusion, and this exercise follows that approach. Consider a stream 
in which fish are kept stocked at a (roughly) constant density of FQ 
fish per cubic meter of water at one position x = 0 along a stream. 
In the next 1000 m downstream {i.e., for 0 < x < 1000), fishing 
is not allowed. Then, at x = 1000 m, fishing pressure keeps the 
fish density at a lower, but nearly constant value f i . In the "no-
fishing" reach of the stream, there is a httle natural reproduction, 
but deaths exceed births there so that in any small volume of wa­
ter in this reach, the instantaneous net rate of loss of fish (deaths 
minus births) is L% per year. 

At any (imaginary) vertical plane across the stream, the fish mi­
grate across the plane in a diffusion-like fashion, at a rate equal 
to 

M - -A,D§. 

where M is the migration rate or flux [fish per day] in the posi­
tive (downstream) x direction. Ax is the (assumed uniform) cross-
sectional area of the stream [m^], D is the "diffusivity" [m^ da~M, 
and t is time [da]. The diagram of the square tube on p. 167 may 
illustrate this situation as wefl, if you replace C with F. 

Assuming that the fish density remains constant through time at 
any distance x along the unfished reach, derive the differential 
equation that, if solved, would tell us the fish density at any point 
along that reach. State the boundary conditions clearly, as wefl. 
Solve this equation for f (x), and determine what the density is in 
the center of the reach, i.e., at x ^ 500 m. 
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3. Temperatures at various depths in a soil profile can aff'ect organ­
isms living there, the rates of decomposition of organic matter 
there, the emission of methane as a result of such decomposi­
tion, and many other processes. Such temperatures nearly always 
vary with both depth and with time, and partial differential equa­
tions (PDEs) are then necessary to model the variations. Here we 
model the somewhat artificial process of steady-state (i.e., time-
independent) conduction of heat in soil, to set the stage for mod­
elling more realistic situations when we study PDEs. 

Conduction of heat in a solid occurs by a process analogous to 
molecular diffusion, with (as 1 understand the process) molecular 
vibrations and electrons zipping around somewhat randomly, with 
more activity in higher temperature regions than in cooler ones. 
Temperature can be thought of, roughly anyway, as a measure of 
energy concentration. Thus, heat energy is conducted from high 
to low temperature regions, and moves at rates proportional to 
temperature gradients. In a close analogy to molecular diffusion 
of some mass through a fluid, the conductive heat flux Q across a 
plane is given by 

Q=-kA^ [ J s - i ] , 

and the heat flux density q is given by 

Here k is the thermal conductivity [J m"^ s~^ deg"^], A is the area 
of the plane across which the flux passes, and x is the direction 
normal (perpendicular) to that plane. 

Suppose the surface temperature of the soil (perhaps that under a 
building) stays constant at a temperature To, and the temperature 
at a depth of L meters stays constant at a temperature TL. (AS 
noted above, this is a somewhat artificial situation.) Also suppose 
that microbes in this soil produce heat (from their metabolic pro­
cesses) at a uniform rate of M J m~^ s~^ Derive the differential 
equation whose solution would give the temperature at any depth 
between depths z = 0 and z = L. Then solve the equation for T{z). 
You'll probably find it helpful to think of the column of soil under 
a representative square meter of surface. 



§8.6. Exercises 185 

4. Derive tlie second-order differential equation for gas diffusion 
through a circular tube with gas adsorption at the tube wall. The 
tube has length L and radius R. The gas diffusivity through air is 
D cm^ s~^ and the adsorption rate coefficient is k cm s~^ (Note: 
Those units can be thought of as mg adsorbed per second per mg 
cm~^ of concentration). The gas concentrations on the ends of the 
tube are Ci and C2 mg cm~^, respectively. This problem is similar 
to the one discussed at the start of the chapter on second-order 
ODEs, except that the tube here has a circular cross-section instead 
of a rectangular one. (Assume that the concentration varies only 
along the length, but not with radius. Thus a Cartesian coordinate 
system is adequate for this problem.) 

5. Consider two small sub-arctic islands, A and B, connected by an 
isthmus I m long and W m wide. (Fig. 6.1, p. 142, can be used 
here.) There are voles on each, with constant population densities 
PA and pB [voles m"^], respectively. (In reality, the densities would 
likely vary with time. We can deal with that complication when we 
get to Chapter 11.) Those constants form the boundary conditions 
for the density variation across the isthmus, and you may take 
them as given. The voles migrate along the isthmus in a diffusion­
like process, with the migration rate M voles da~^ across any line 
of width w being 

dx 
The "migrativity" D is in m^ da"^ and x [m] is the distance from 
Island A along the isthmus. Voles are exposed as they move along 
the isthmus, and a fraction / of those on any small area are taken 
per day by predatory birds. (Treat that as an instantaneous rate.) 

Derive the differential equation that if solved would tell us how 
the vole density varies along the length of the isthmus. 

6. When you study systems of linear algebraic equations, you will 
work with heat loss through a layer of insulation on a domestic 
water heater. Those calculations will be simplified by neglecting 
effects of curvature of the walls of that water heater. This problem 
takes the curvature into account. 

Consider a hot water heater with a boiler of diameter D. It is con­
structed of steel with a thin glass lining. The steel is then sur-
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rounded by a thickness / of insulation, and finally by a second 
layer of steel. Fig. 8.8 helps to define some of the variables re­
ferred to below. 

A(r) = 2icrL 

J 
A 

Figure 8.8: Side view of the water heater (tipped on its side) (left), and end 
view (right) with the thickness of insulation exaggerated. The area formula 
shown applies to the curved side of the cylinder (not to the circular ends). 

Assume that the two layers of steel and the layer of glass are so 
thin that they present negligible resistance to heat loss relative 
to the resistance in the insulation layer. Thus, you could assume 
that the temperature at the inner surface of the insulation layer 
is approximately equal to the water temperature T^j. That is the 
inner boundary condition. 

A reahstic boundary condition at the outer surface of the insula­
tion would be more complicated. For example, heat loss from the 
outer surface would go as 

Q = hA{To-Te), 

where: 

Q = total heat loss rate from the outside of the insulation [J s~ ]̂ 
h = convective heat loss coefficient for heat loss to the air 

plus thermal radiation to the surroundings [J cm~^ s~^ deg~^] 
A = Surface area available for heat loss [cm~^] 
To = temperature at the outside surface of the insulation [deg C] 
Te = environmental temperature [deg C] 

In the steady state, this Q must be matched by conduction of heat 
through the insulation at its outer radius, i?o, which equals 
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where k is the thermal conductivity of the insulation [J cm"^ s~^ 
deg~^] and {dT/dr)R^ is the temperature gradient [deg cm~^] just 
outside the insulation at r = Ro-

Your tasks with this problem are to: 

a) derive the differential equation that has as its solution the tem­
perature profile through the insulation. 

b) obtain the analytic solution for T{r) in the insulation. You 
would find from tables like Murphy's that 

y = Ci + Cz log X 

is the general solution to 

xy'' + y = 0, 

with Ci and C2 being constants of integration whose values 
can be calculated from the boundary conditions. 

c) Let D - 50 [cm] 
/ - 9 [cm] 
k = 5.2 X 10"^ [J cm~^ s~^ deg~M for the insulation 
^̂ ^ = 100 [deg] 
Te = 20 [deg] 
h = 2x 10-4 [J ^^-2 s-i deg-i]. 

With these numerical values, calculate the outer surface temper­
ature of the water heater (To) and the total heat loss rate, Q. Be 
sure to give units for Q. By what fraction would heat loss decrease 
if insulation thickness / were increased to 12 cm? 

7. When a bird's nest gets wet, some microbial decay may occur, and 
heat will be generated in the process. (An Australian bird, the 
Mallee-fowl, incubates its eggs with heat obtained by composting 
vegetation in its pit-shaped nest.) Suppose that occurs in a hemi­
spherical nest, a cross section of which appears in Fig. 8.9, p. 188. 
Specifically, suppose heat is produced in the nest material at a rate 
of ^ J cm"^ s-^ 
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Figure 8.9: Diagram of an idealized, hemispherical Mallee-fowl nest, sec­
tioned vertically through the middle. 

Derive the differential equation whose solution is T{r) for i?i < 
r < Rz for this situation. It may help you to know that the volume 
of a very thin spherical shell with inner radius r and thickness Ar 
is approximately 4nr^Ar. Solve the equation if you can. 

8. Derive and solve the differential equation describing radial diffu­
sion of a substance in a cylinder in which the substance is partially 
absorbed by the medium through which it is diffusing^^. Specif­
ically, suppose the substance is absorbed at a constant rate of U 
mol m~^ s~^ in that medium. For boundary conditions, assume 
that at r = 0.1, the concentration gradient (dC/dr) is 0, and that 
at r = JR, C{R) = Ci. (The 1/r factor in the solution makes it 
difficult to set conditions at r = 0.) The volume of a thin-walled 
cylinder of length L is approximately InrLAr. Work with concen­
tration in mol m"^. 

9. Rounder Island (off the coast of Alaska) is the roundest island in 
the world; in fact, it is a perfect circle with a radius of Router = 10 
km. In the center of the island, three students spend their sum­
mer internships maintaining a colony of lemmings at a constant 
density of po = 5000 lemmings km"^. This colony occupies the 
center circle of radius 0.1 km; that makes p(O.l) = po one of the 
BCs for the problem. 

The lemmings migrate outward by a diffusion-like process, with a 
"migrativity" of M = 300 km^ da"^ In particular, outward migra­
tion at any radius is given by 

^̂ The same mathematics would apply if the substance were being lost by chemical 
reaction. 



§8.6. Exercises 189 

where L is the perimeter of the circle at radius r , and p{r) is the 
areal density of the animals at r. Assume that no births or deaths 
take place along the way. 

Like (mythical) lemmings everywhere, whenever one of these gets 
to the outer rim of the island it jumps into the sea, so the density 
of the animals at Router is zero. Each year an equilibrium becomes 
estabhshed by the end of May, after which the lemming density at 
any given distance from the island's center ceases to change with 
time. (This equilibrium ends when the students go back to school 
in the fall.) 

a) Assuming that all these conditions hold, derive the equation 
whose solution would tell you how the equilibrium lemming 
density varies with distance from the center of the island. It 
may be helpful to interpret the diagram in Fig. 8.5, p. 179 to 
represent the island. 

b) Obtain the analytical (symbolic) solution, given the specified 
BCs. 

c) Determine the numerical value of the lemming density at ra­
dius r = S km. 

10. The tunnel entrance to a weasel den is shaped approximately as a 
circular cylinder, of radius R [cm] and length L [cm]. As the ani­
mals in the den breathe, CO2 builds up to a stable internal concen­
tration Ci [mmol cm~^] there (mmol = millimoles). Also, the lower 
external CO2 concentration is Co [mmol cm~^]. Thus, CO2 diffuses 
down the tunnel from inside to outside. At the same time, respir­
ing plant roots and microbes in the soil release S mmol of CO2 per 
cm^ of tube surface area per second into the tube. Assume that: 

a) Everything reaches a steady equilibrium, so nothing changes 
with time; 

b) L is large compared with i?, so you can ignore variations of CO2 
with radius or angle at any given distance along the tunnel; and 

c) The diffusivity of CO2 in air is D [cm^ s~^]. 
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Derive the differential equation that, if solved, would tell you how 
CO2 concentration varies with distance along the tunnel. Express 
any quantities that depend on radius R in terms of that radius, 
and then simplify your equation as far as you can. Provide a unit 
check (and your conclusion about it) for your final equation. You 
need not attempt to solve the equation, but do state its boundary 
condition(s). 

8.7 Questions and Answers 

1. Is the reason for the positive sign for diffusion onto the wall of the 
tube just the way you defined it? 

• I'd say it's more fundamental than that. Consider both (A) the 
problem of stuff being carried by a bulk flow (q) of a fluid down a 
tube, and (B) the problem of stuff being moved by diffusion down 
a tube. For both problems, consider processes that remove stuff 
from the fluid (at rates R mg per cm of tube length per sec) and 
processes that add stuff to the fluid (at rates S mg per cm of tube 
length per sec). I'm using R for removal and S for source here. 

For problem (A), if you set up the mass balance for a short control 
volume of length h, then you will always get (into CV = out from 
CV) qCx + Sh^ qCx+h + Rh. 

The two terms on the left add stuff to the box, and the two on the 
right subtract stuff from the box. If nothing is changing with time, 
then the two sides have to be equal. If you rearrange terms and 
take the limit, you get tie/d[x = il/q)[S -R]. 

For problem (B), the mass balance (based on gradients G) becomes 

-DAGx + Sh^ -DAGx+h + Rh. 

Taking the limit here gives 

^ . f c 1 ,̂ _̂ , 
ax dx'^ DA 

The R and 5 switch signs here (compared to the bulk flow case) 
because of the minus sign in the "diffusion across a plane" that 
results from diffusion going in the direction opposite to the gradi­
ent. 
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2. Why was T = a + bx the solution to T'' = 0, while C = A s inhax + 
B cosh a x was the solution to C = a^C7 

• If I translate your question to "why are the solutions to T'' = 0 
and C = a^C so different?", I would answer that these equa­
tions have very different physical implications. The first says that 
r ' (the temperature gradient) is the same for all x (because the 
derivative of T' is 0 everywhere). The second says that C is pro­
portional to C everywhere, and thus that C is not the same for all 
X. 

To answer your original question, you can find the solution to 
T'' = 0 yourself—see Eqns. 8.13-8.14. We won't study where the 
sinh-cosh solution comes from (i.e., how to obtain it), but you can 
confirm that it is a solution (see Exercise 1, p. 183). If you're cu­
rious about how to find that solution from scratch, check in a dif­
ferential equations text. 

3. If you broke the animal's fur down as Ar -^ 0, then couldn't you 
say that you were working with a sum of infinite shells, each of 
uniform temperature? 

• Yes, that is essentially what the differential equation does. Any 
integration process that would be used to solve the DE then 
"sums" over an infinite number of infinitesimally thin shells. That 
takes us back to Chapter 3, where I reminded you that integration 
is very closely related to summation, but of continuously varying 
quantities rather than of discrete items. 

4. If you put an impermeable cap at the end of your diffusion tube, 
why wouldn't that create a very large gradient across the cap? 

• It's true that there might be quite a large concentration differ­
ence over some finite distance between the two sides of the cap, 
but what happens external to the tube is irrelevant here. The gra­
dient that's relevant is the one-sided internal one at a point, as 
defined by limh->o [C(L) - C{L - h)]/h. No locations at x > I are 
involved here. 

There would also be a zero gradient outside the tube, defined by 
lim^->o [C{L + h)- C{L)]/h. Those C values might be quite differ­
ent from the ones inside the tube, but the gradient on the outside 
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also has to be zero (immediately at the surface of the cap) if there 
is no diffusion there. 

5. In Eqn. 8.3 on p. 167, which part represents flow from low concen­
tration to high concentration, and which from high to low? Is Ci 
the high concentration and C2 the low concentration? 

• Bothversions;i.e., tof/i"+DA(Ci-C2)/I"and"-DA(C2-Ci)/I" 
represent flow from low to high concentration. Furthermore, both 
versions have that property whether Ci is higher than C2 or C2 is 
higher than Ci. Try putting in some numbers (and bear in mind 
that D, A, and I are ah positive). If Ci = 100 and C2 = 50, then 
both versions say that the diffusion will move mass in the positive 
X direction (from Ci to C2). If Ci = 50 and C2 = 100, then both 
versions tell you that diffusion will move mass in the negative x 
direction (from C2 to Ci). 

6. What is W on p. 168? I don't understand deposition to the wall. 
Does that mean that the molecules bond to the wall? What exactly 
is adsorption? 

• The process I am modelling here (probably in an oversimplified 
way) is about molecules bonding to the wall, yes. That is what I 
mean by adsorption. There would be a dynamic equilibrium, with 
some molecules hopping on, and others hopping off. The W is 
the net mass of molecules that leave the air and stick to the wafl 
per cm of tube length per second. A sponge absorbs water, but 
molecules attaching to surfaces are said to adsorb. 

7. I have a problem understanding why W = kPC is positive, if that 
is a way for the gas to leave the system. Since the gas is leaving, 
shouldn't W be negative? 

• You can define it either way. I choose to call adsorption pos­
itive (and it seems you'd like to cafl desorption positive). Either 
would be correct, as long as you give the term the right sign in the 
mass balance. In my mass balance (Eqns. 8.7 and 8.8, p. 169), I've 
put "sources" to the control volume on the left side of the =, and 
"losses" from the CV on the right side. If you give W the opposite 
sign from my choice, you would have to put that term on the LHS. 
The final result would be the same. 



Chapter 9 

Linear Algebra 

We now leave calculus for a while, to take up methods for dealing 
with mathematical models that represent direct relationships among 
variables rather than relationships involving rates of change. First 
we consider linear models, and in Chapter 10, somewhat more com­
plicated non-linear ones. To work with linear equations, we will use 
some mathematical structures—vectors and matrices—from the field 
of linear algebra. Near the end of the chapter, we'll apply those struc­
tures to a type of model useful in population biology, and look briefly 
at a variety of other applications. 

9.1 Linear Algebraic Equations 

The simplest linear model expresses a straight-line relationship be­
tween two variables: 

y = b + ax. 

Written in this form, the model suggests that for given values of x 
we will want to calculate corresponding values of y , and indeed the 
formula is often used in that way. However, for consistency with the 
systems of linear equations that are the main subject of this chapter, 
note that we can also write 

ax = y - b. 

Now it is clear that if we knew a, b, and y, we could multiply through 
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by 1/a, the multiplicative inverse of a (i.e., 1/a), to solve for x. That 
is, (l/a)ax = {l/a)iy - b), or x = {y - b)/a. 

In any case, we define the relationship between two variables y 
and X to be linear if dy/dx (or dx/dy) is a constant. Put another 
way, this means that a change in y, which we call Ay, is proportional 
to a corresponding change in x (Ax). 

Frequently, we are interested in systems of N linear equations in 
N unknowns. The general form is 

aiiXi + auxz + . . . + a\nXn = bi 

aziXi + a22-^2 + . . . + Clln^n = ^2 

^nl-^1 + Cin2^2 + . • • + dnn^n = bn 

while a particular example, with N = 2, would be Eqns. 1.1 and 1.2 
from p. 2. 

Here the a's and b's are usually known constants, and the x's are 
variables whose values are to be determined by solving the equations. 
If all the b's are zero, the system is termed homogeneous; otherwise, 
it is inhomogeneous. 

9.2 How Linear Systems Arise 

Linear equations arise in at least four ways: 

• as natural mathematical models of real situations, often as a result 
of a quantity varying in proportion to one or more others 

• as approximations to non-linear models, as in using the first two 
terms of a Taylor series 

• as steps in solving other problems, including ordinary and partial 
differential equations, and curve fitting (regression) 

• as a means of finding the equilibrium solution of a system of linear 
ordinary differential equations. 

As an example of the first of these, suppose trout in a lake are 
feeding one evening on two species of insects, say of midges and 
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moths^ If interested in the average caloric value supplied to the 
fish by each of the two insect species, we might catch two fish and 
examine their stomach contents. In particular, we could count head 
capsules to determine the numbers of each type of insect eaten by 
each fish, and use a bomb calorimeter to measure the total caloric 
content of each stomach's contents. Suppose we find: 

No. of No. of Total Cal. 
Fish midges moths in stomach 

A 18 12 660 
B 14 8 480 

If we now let xi be the average caloric content of the midges eaten, 
and X2 be the average for the moths eaten, we can see that: 

18X1 + 12X2 = 660 

14X1 + 8X2 = 480 

A unit check here is pretty simple; i.e., 

midges x I ——— I = cal. 
V midge/ 

It is easy to confirm that xi = 20 cal/midge and X2 = 25 cal/moth is 
the solution of this pair of equations. We will study general methods 
for determining such solutions shortly. 

Linear Equations as Approximations 

That linear equations can be used to approximate more complex non­
linear ones is easy to see by referring to Taylor series again. Recall 
from Chapter 1 that we can write any nice function as: 

fix) = f(a) + f{a){x - a) + ^ ^ { x - a)^ + . . . , 

from which 

^Modified from Chaston 1971, with permission from Elsevier. Chaston's example 
involves four fish and four insect species, which might give more reliable results 
than two and two. With more fish than insect species, one could use the statistical 
technique of linear regression. 
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20 30 
T [deg C] 

Figure 9.1: Radiative heat loss from a black body in relation to Celsius tem­
perature. Although the energy radiated is proportional to the fourth power 
of the Kelvin temperature (°K=°C+273.16), the relationship is reasonably 
linear over the temperature range shown. This can be seen by sighting along 
the curve in the direction of the arrow. 

f{x)^f{a)+f{a){x-a). 

Truncating the series after the second term yields a linear equation 
that may be a tolerable approximation to / ( x ) if we keep \ x - a \ 
small enough. 

As an example, remember that the Maclaurin series for e^ is 

For small x, e^ ^ I + x. Thus, if x -= 0.1, then e^-^ ̂  1 + 0.1 = 1.1. 
This approximation is only about 0.5% smaller than the true value, 
1.105170918. For smaller x, the approximation would be even closer. 

As a second example, consider the infrared radiation emitted from 
a black body as a function of its temperature, as shown in Fig. 9.1. 
This radiation is a quartic (fourth-power) function of the absolute 
(Kelvin or Rankine) temperature, as can be seen in the figure. How­
ever, over a temperature range of 10 degrees or so, a linear approxi­
mation is often adequate for heat-transfer calculations. 
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9.3 Methods for Solving Linear Systems: An Intro­
duction to Linear Algebra 

We begin this section with an introduction to the main structures 
used in linear algebra, namely matrices and vectors. 

Matrix Notation 

A matrix is an array of elements of the form 

A = 

/ an ai2 

a2i a22 
Clin \ 

Ci2n 

\ CLfnl Ctynl • • • Clnin / 

The indices of the array elements come in a row-column order. That 
is, for elements aij with i = 1, . . . , m and j = 1 , . . . , n, the matrix has 
m (horizontal) rows and n (vertical) columns. To make good use of 
matrices, we need some further definitions and concepts: 

• Two matrices, A and B, are equal if and only if utj = hij for all i 
and J. 

X = 
X2 

\XnJ 

is a column matrix (or column vector). 

• T = (ti t2 . . . tn) is a row matrix (or row vector). 

• Two matrices^ A (or A^n) and B (or Bnp) may be multiplied, pro­
vided that the number of columns in the first is the same as the 
number of rows in the second (as indicated for A and B by the 
common n). The product Cmp = AmnBnp has, by definition, the 
elements 

^The subscripts indicating the matrix size are often absent, but may be included 
when they add clarity. 
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A = 

C=AB 
81) 
81) 

119 221 
143 501 

Cik ^ X ^iJ^Jk 

i=i 

for all i = 1,. . . ,m and k = I,...,p. For example^, consider 

, M ) ^ " ^ ^ = ( | 7 8 | 

The product of these matrices is 

' (T - |5 + 2 . | 7 ) ( T - 6 1 + 2 
(3- 15+4- 17) (3-61 + 4 

which is of the form 

'a b\ ( e f \ (ae + hg af -\- bh^ 
cd)\gh) \ce-\-dg cf + dh 

Note that the element Cik depends only on the ith row of A and 
on the feth column of B. For example, cn is formed from row 1 
of A and column 1 of B. As an exercise, try calculating BA. Is it 
different from AB? Why? 

Although multiplication of simple numbers is commutative (i.e., 
ab == i?a), this is not generally true for matrices. For example, you 
should convince yourself by calculating both products for the two 
matrices given above that BA differs from AB. 

Beyond that, it can even be true that AB exists while BA is un­
defined. This would occur, for example, if A were 3 rows x 5 
columns and B were 5 rows x 4 columns. Then AB would be a 
3 x 4 matrix, but B A ( [ 5 x 4 ] x [ 3 x 5 ] ) would not even exist be­
cause the number of columns in B would differ from the number 
of rows in A. 

An identity matrix I, the matrix equivalent of the scalar "1" , is a 
square matrix with ones along the "NW-SE" diagonal, and zeroes 
elsewhere: 

/ I 0 0 . . . 0 \ 
0 1 0 . . . 0 

I dj I 0 0 1 . . . 0 

\ 0 0 0 . . . 1 / 

^In the example, the overbars, underUnes, and vertical lines identify each num­
ber's original row or column. 
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This matrix gets its name because, for any matrix A, AI=A and 
IA=A. You must of course use an I of the correct size to allow the 
multiplication—this means that I must be n x n, where n is the 
number of columns in A for AI, or the number of rows in A for 
lA. I suggest you prove to yourself that this works, using a matrix 
like 

'3 7 5 2̂  
^ ' 1 6 4 8 

That is, demonstrate to yourself that pre-multiplying A by a 2 x 2 
identity matrix, and post-multiplying A by a 4 x 4 identity matrix 
both result in matrices identical to the original A. 

• Multiplying a simple number a (a scalar) by its multiplicative in­
verse a~^ = 1/a yields the multiplicative identity, 1. In a similar 
way, a square matrix A may have an inverse, denoted by A"^ for 
which AA~^ = I. (This defines the inverse of a [square] matrix.) If 
such an inverse exists, one can show that A"^A = I also. 

We are considering matrix notation in part because it provides 
a convenient shorthand for expressing and for solving systems of 
linear algebraic equations. Thus, if A is an n x n matrix of coefficients, 
X is an n X 1 column vector of x variables, and B is an n x 1 column 
vector of constants, then it is easy to confirm that 

UuXi + UuXi + . . . + UinXfi = hi 

UziXi + a22^2 + . . . + azn^n = ^2 

^ n l ^ l + ^n2->^2 + • •. + Unn^n = bn 

can be written as AX=B. For example, the trout-insect equations de­
rived above could be written as AX=B if we set 

. / 1 8 12 \ „ / 6 6 0 \ , , , (xi 12\ „ / 6 6 0 \ 
8 ' « = 480 ' ^ " d ^ = 14 s y v48oy ' \X2 

As suggested above, not only does the matrix notation allow a system 
of equations to be written more compactly, but it can also help us to 
solve the system. As an illustration of the first point, note that 
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, 18 12 \ (xA ^ / I 8 x i + 12x2 
14 8) [x2) V 14X1 + 8X2 

6 6 0 \ _ 
4 8 o ; - ^ -

We take up the second point, using matrix algebra to solve the equa­
tions, in the next section. 

Gaussian Elimination and Sensitivity Analysis 

How do we solve systems of linear equations? I will describe one 
straightforward, relatively efficient method known as Gaussian elimi­
nation that could be used for hand (or spreadsheet) calculations with 
systems of two or three equations. (Often, other methods to be de­
scribed briefly below would be applied using software like MATLAB.) 

Before taking up the details of Gaussian elimination, we will con­
sider a form of sensitivity analysis that is often useful with linear 
equations. Recall that in our fish-insect example, the right-hand sides 
of the equations we are solving are measurements of the caloric con­
tent of the material in the stomachs of the two fish we caught. Such 
measurements are never exact, of course, and it is interesting to es­
timate how sensitive our final answers may be to potential errors in 
these caloric measurements. Gaussian elimination provides an easy 
way to look into that issue, so we will study the solution method and 
sensitivity analysis simultaneously. 

Suppose we believe that the calorie measurements could be in er­
ror by up to about ±10% of the correct values. Then we could solve 
the equations once with the real measured values, and additional 
times with reahstic positive or negative errors added to those values. 
We will work with four arbitrary combinations of 594 = 0.9 x 660, 
726 = 1.1 X 660, 432 - 0.9 x 480, and 528 = 1.1 x 480. Thus, we will 
solve the equations for five different sets of right-hand sides. This 
may seem like a lot of effort, but Gaussian elimination allows us to 
do it all at once, and as you will see, the results will be very informa­
tive. 

To use Gaussian elimination for two equations with multiple RHSs, 
we make use of so-called elementary row operations, in which we may 
multiply any row by a constant, or may add or subtract any two rows 
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and then eUminate one of those source rows, without changing the 
solution represented by the system of rows. For the present system, 
we first write out two rows: 

(1) 
(2) 

18 12 
14 8 

Orig. 
B 

660 
480 

Modified 

726 594 726 594 
432 432 528 528 

Check 
sum 

3330 
2422 

(9.1) 

From left to right, these columns are one column of row numbers, 
two of coefficients from the LHS of the equations, one of the original 
RHSs of the equations, four of the artificially added RHSs, and a final 
one (the check sum) containing for each row the sum of all the other 
elements in that row. 

Begin by driving a n to 1 (Divide row 1 by a n ; i.e., by 18): 

( la) 1 0.6^ 36.6 40.3 33 40.3 33 185^. 

Next, check to be sure that the first seven elements sum to the 
eighth one, which these do. Then multiply row (la) through by 14, 
and subtract the resulting elements from the same-column elements 
in row (2): 

(2a) 0 -1.3^ -33.3 -132.6 -30 -36.6 66 -168^. 

Divide row (2a) through by -1 .3 : 

{2b) 0 1 25 99.5 22.5 27.5 -49.5 126. 

This row contains a great deal of information, as it really represents 
five separate equations, one for each RHS: 

Oxi -f 1x2 = 25 

Oxi + 1X2 - 99.5 

Oxi + 1X2 = -49.5. 

^ 2 / 1 8 
^3330/28 
^8 - 0.6 X 14 
^2422 - 185 X 14 
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Thus, we now have, in cal per moth for the 5 RHSs, 

X2 ^ 25, 99.5, 22.5, 27.5, and - 49.5. 

These particular solutions happen to be exact, but I use the approxi­
mation sign to indicate that there will often be some round-off error. 

Next, we go back to row (la) to solve for the 5 xi values. E.g., for 
the third set of h values, we substitute the third X2 value and solve 
for xi. That is, we solve the equation 

Ixi +0.6X2 = 33 to yield xi - 33-0.6(22.5) - 18. 

We end up with 5 solution vectors, X, corresponding to the 5 B vec­
tors, : 

/ 2 0 - 2 6 18 22 6 6 \ / ca lmidge - i \ 
V 25 99.5 22.5 27.5 - 4 9 . 5 ) \ cal moth"! ) ' ^ ^ ^ 

The fact that the solution varies so widely with relatively small (± 10%) 
changes in the right-hand sides indicates that this is an ill-determined 
system of equations. We will have more to say about this later. The 
bottom line for a biologist should be that this is not a good way to 
determine the food value of moths and midges to trout! 

This is a good time to note an important practical point. As far 
as possible, one should arrange the order of the rows (equations) 
to place large elements on the diagonal. This helps to ensure that 
no zeros occur as an values, since each of the diagonal elements 
becomes a divisor at some point in the process, and more generally, 
to reduce round-off error. Then we apply Gaussian elimination to the 
rearranged system. 

As noted above, software programs like MATLAB®usually use 
more complex methods for solving systems of linear equations, such 
as 
L-U decomposition (Press et al. 1992). These methods can be a bit 
more efficient than Gaussian elimination, and can produce more ac­
curate solutions by reducing round-off error. 

There are several ways to solve linear systems with MATLAB; but 
each works with a matrix of coefficients A and a matrix (or vector) 
of RHSs, B. Here is an example for a 3 x 3 system, with two RHSs, 
that has already been arranged to put large elements on the diagonal. 
(MATLAB would rearrange them to optimize the row order, if we did 
not do so.) Define: 
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A=[7 1 3 
4 11 4 
5 2 9 ] ; 

B=[4 12 
15 8 
12 16 ] ; 

Then the command^ X=A\B, or its equivalent X=ml di vi de (A, B), asks 
MATLAB to perform Gaussian elimination, with the result 

X = 
-0.06041666666667 1.25833333333333 
0.96666666666667 -0.13333333333333 
1.15208333333333 1.10833333333333 

which is of course the two solutions corresponding to the two RHSs. 
The command X=B/A or its equivalent X=mrdivide(B,A) has the 

same effect for the present A and B matrices, but can produce differ­
ent results from those produced by the previous commands for other 
matrices of different sizes. Yet another command, l insolve(A,B) 
produces a solution obtained by the L-U decomposition mentioned 
above. See help ml d iv ide , for example, for further details of each 
command. 

Gauss-Jordan Matrix Inversion 

A second method for solving systems of linear equations involves in­
verting the coefficient matrix A, and multiplying the resulting inverse 
times the RHS vector B. This works as follows: given the equations 
AX = B, premultiply both sides by A~^ to obtain A~^AX = A"^B. (This 
assumes that A~^ exists.) Now, A"^A = I by definition, and because 
IX = X, then X = A~^B. Thus, solving linear equations is formally very 
easy using matrix notation—the process is equivalent to solving the 
scalar equation ax = bhy multiplying both sides by a~^ 

In reality, however, we have to calculate A~^ to solve actual equa­
tions. There are several ways to do this, but one straightforward 
method is to carry Gaussian elimination a httle further, with a pro­
cess called Gauss-Jordan matrix inversion. Suppose we want to solve 

"̂ The backslash is deliberate, and correct. 
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the fish-insect equations, for example with two diff'erent right hand 
sides. We juxtapose the following matrices, side by side: 

AIIIB1IB2IZ. 

Note that we add an identity matrix, of the same size as AX, that was 
not needed in Gaussian elimination. 

Then we carry out a series of steps similar to those for Gaussian 
elimination. Here I will present all the rows of numbers first, then 
add the explanations below them. We have: 

(1) 18 
(2) 14 

(la) 1 
(2a) 0 

ilb) 1 
(2b) 0 

12 
8 

0.6^ 

-I.?' 

0*̂  
1 

1 
0 

0.05 

-0.7 

-0.3 

0.583 

0 
1 

0 
1 

0.4^ 

-0.75 

660 
480 

36.6 

-33.3 

20'^ 

25 

693 
528 

38.5 

-11 

33 
8.25 

1384 

1031 

76.8 

-45.4 

54.16 

34.083 

The process followed to produce these rows was to: 

• Write down rows (1) and (2) in the form stated above. 

• Form row (la) by dividing row (1) by its a n (which was 18). 

• Form row (2a) by subtracting azi (i.e., 14) times the elements of 
row (la), from the elements of row (2). 

• Form row (2b) by dividing row (2a) by its 0̂ 22 (-1.3). 

• Finally, row (lb) results from subtracting aiaz (or 0.6) times the 
elements of row (2b), from the elements of row (la). 

• Be sure to check the two totals against the checksum after each 
new row has been calculated. 

The result; i.e., rows (lb) and (2b), contains the following: 

• The first two columns, which originally contained the A matrix, 
now contain the identity. 

n 2 / i 8 
^ 8 - ( 2 / 3 ) x l 4 
^0.6 - 0.6 X 1 
^ 3 6 . 6 - 0 . 6 x 2 5 
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• Columns 3 and 4, which started out as I, now contain A .̂ 

• The next two columns, which originally contained the two B vec­
tors, now contain the corresponding X vectors (solutions). 

• The final column is of course the checksums, which can now be 
forgotten. 

Compared with Gaussian elimination, we have done a httle more work 
here to solve the two equations (with two sets of RHSs). In the pro­
cess, though, we have gained the inverse of the original coefficient 
matrix. The advantage of this is that, if we now decide to solve the 
equations with additional B vectors, we can do so with relatively little 
work. For example, if we now have a B = (627,504)', then 

X-A-'B-(-^-l 0-45 W 6 2 7 \ _ / 43 
V0.583 - 0 . 7 5 / V504y \^-12.25 

This matrix multiplication is much easier than solving the whole sys­
tem again from scratch. For each additional RHS we might want to 
add, we need do only a simple matrix multiphcation. 

To perform similar operations in MATLAB, we could enter 

A=[18 12; 14 8 ] ; % The f i r s t semicolon separates rows 
B=[660 693; 480 528]; 
Ainv=inv(A) 
X=Ainv>vB 

resulting in 

Ainv = 
-0.33333333333333 0.50000000000000 
0.58333333333333 -0.75000000000000 

X = 
20.00000000000006 33.00000000000006 
2 5.00000000000000 8.2 5000000000000 

MATLAB's help page for the inv function recommends against solving 
linear equations in this way, however; it suggests that using X = A\B 
is both faster and more accurate. Either method will provide a warn­
ing for systems that are poorly conditioned (next section). However, 
inverse matrices can be useful for other purposes. 
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Solving Linear Equations Iteratively 

So far we have looked at two methods for solving linear equations, 
methods that involve completely predictable steps for a system of 
any given size. There is another class of methods, called iterative 
methods, that work by repeating a series of successive approxima­
tions, until sufficient precision in the solution has been attained. We 
will consider one such method, the Gauss-Seidel scheme, that is ad­
vantageous in certain situations: 

• For hand calculations, it may provide a solution to a system of 
equations more simply than other methods. 

• In many applications of linear equations, the coefficient matrix 
may be banded, with non-zero elements along certain narrow di­
agonal bands, and zeros everywhere else. Iterative methods are 
often particularly efficient for systems of this type. 

• Iterative methods are sometimes used to "tune up" a solution ob­
tained by Gaussian elimination, where round-off may introduce 
substantial errors into the calculated solution. That Gaussian so­
lution, however, can be used as a starting guess, and iterative 
methods then applied to refine its accuracy. 

For two equations in two unknowns, the Gauss-Seidel method works 
like this. Write the two equations, 

aiiXi + ai2X2 = bi 

^21^1 + ^22-^2 = b2, 

in an order that places large elements on the diagonal as far as pos­
sible. (This is very important!) Then solve the first for xi and the 
second for X2 (note the circularity in the two equations): 

XI = ^ L Z ^ M i (9.3) 
a n 

X2 = ^'-^''^\ (9.4) 
a22 

Now 

1. Guess a value for X2 and solve Eqn. 9.3 for Xi. 
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2. Plug the new value of xi into Eqn. 9.4 and solve for xz-

3. Check whether |New xi - Old xi | < 5 and |New xz - Old X21 < 5, 
where 6 is the precision required in the solutions. 

4. If both conditions are met, stop; otherwise, go back to step 1 using 
the latest value of Xz- Continue with steps 1 to 4 until both con­
ditions are met, or until the values are obviously diverging (which 
may occur if the coefficient matrix is not diagonally dominant). 

As an example, if 

3X1 + 2X2 = 10 (9.5) 

2x1 + 5X2 = 14, (9.6) 

then 

1 0 - 2 x 2 2,. , 
xi = " 3 ̂ ^ ~ ^2) 

14 - 2X1 2,_ ^ 
X2 = — ^ = - ( 7 - X i ) . 

Then, starting with a guess oi X2 = 1, the iterations yield 

Xi X2 
- 1.000 

2.666 1.730 
2.170 1.928 
2.047 1.981 
2.013 1.995 
2.003 1.999 
2.001 2.000 
2.000 2.000 
2.000 2.000. 

We have successfully obtained the solution, x\ = 2, X2 = 2. However, 
note that if we had solved for X2 from the first equation and for x\ 
from the second, we would have obtained 

X, = i i ^ (9.7) 

X2 = ^^^^. (9.8) 
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Here the sequence of iterations would yield 

Xi X2 

1.000 
4.500 -1.750 
11.375 -12.062 
37.156-50.734. 

This sequence is diverging to ±oo, and will never converge, even 
though xi == 2 and X2 == 2 is still the correct solution of the equa­
tions. Thus, one disadvantage of the Gauss-Seidel scheme is that it 
may not converge; the problem in this specific case, though, is that 
we have not put the large elements on the diagonal. 

Finally, note that this method for solving a linear system is not 
limited to 2 x 2 systems. For example, with a 3 x 3 system, you solve 
each equation for a different one of the three x's. 

9.4 Well and 111 Conditioned Linear Systems 

Earlier (on p. 202) we found that with our fish-insect equations, rela­
tively small errors of ±10% in the estimates of total stomach caloric 
content could result in very large changes in the calculated values of 
xi and X2 (the calories/moth and calories/midge values). The prob­
lem here, in mathematical terms, is that the system of equations: 

18X1 + 12X2 = 660 

14xi + 8X2 - 480 

is an ill-conditioned (or poorly determined) system. 
This ill conditioning can be seen graphically (Fig. 9.2), p. 209, if we 

plot X2 against Xi for each of the two equations. In an ill-conditioned 
system, the two lines representing the two equations are nearly paral­
lel. When the RHS of one equation changes (e.g., from 660 to 693), its 
intercept increases and the one equation shifts upward a little. How­
ever, because the two equations are so close to parallel, their point of 
intersection (the solution point) shifts substantially in response. 

In contrast, consider two other equations that would represent 
one fish with a strong preference for moths and a second fish with a 
strong preference for midges: 
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80 

-20 

18x^+12x2=693 

18x^+12x2=660 

14x^+8x2=480^ 

-10 10 20 30 40 50 

Figure 9.2: Two linear equations in a poorly determined system. A slight 
change in the intercept of one equation changes the solution of the system 
substantially. The point where the lines representing the two equations 
cross is the solution. Compare with Fig. 9.3, p. 210. 

18X1 + 4X2 = 510 

5X1 + 20X2 =425. 

(9.9) 

Here (Fig. 9.3, p. 210) the lines representing the two equations are far 
from parallel, and a small shift in one line (e.g., as 510 goes to 535) 
results in a much smaller shift in the solution point than before. This 
latter system is better conditioned than the first. 

In systems of just two equations in two unknowns, graphical 
analyses like this are easy to do, and are quite informative. With 
N > 2 equations, graphical analysis becomes difficult because the 
plots must be done in N dimensions, or else all combinations of xt-
Xj plots must be produced. In such cases, a sensitivity analysis using 
multiple RHSs is very useful. However, additional useful information 
can be gleaned from the determinant of a system. 

Determinants 

The determinant of a matrix is denoted by vertical bars around the 
elements of the matrix and is, for a 2 x 2 matrix, defined as 
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18x^+4x2=535 

18x^+4x2=510 

Figure 9.3: Two linear equations in a well determined system. A slight 
change in the intercept of one equation causes little change in the solution 
of the system. Compare with Fig. 9.2. 

Det(A) ^ a n uu 
^ 2 1 ^ 2 2 

^1 aiia22 - Cl\2Cl2\. 

For example, for the original ill-determined system, 

= 18(8)-12(14) = -24 . 18 12 
14 8 

(The sign is not important for our purposes.) The value 24 is of the 
same order of magnitude as the larger elements in the A matrix, indi­
cating that that system is poorly determined. On the other hand, for 
the well-determined system of Eqn. 9.9, the determinant is 

18 4 
5 20 

= 18(20)-4(5) = 340 «202, 

a much larger value that is similar in order of magnitude to a typical 
element squared. 

In general, it is difficult to say exactly how large a determinant 
should be for a system to be well determined. However, determinants 
of the same order of magnitude as the absolute value of the typical 
elements in A (or smaller) indicate trouble, while for an JV x N sys­
tem, larger determinants on the order of the Nth power of a typical 
element are desirable. 
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The general definition of determinants for JV x JV matrices can be 
found in many books on algebra or numerical analysis. Here I will 
present one way to evaluate the determinant for a 3 x 3 matrix, and 
then perform the calculation for an example. The calculations shown 
result from expanding the determinant around the first row; more 
generally, any row or column can be used as a basis for expansion. 

a n ai2 uu 
a2l a22 ^ 2 3 

^ 3 1 ^ 3 2 ^ 3 3 

For example. 

( - l ) ^ ^ ' a i i 
a22 (^23 

^ 3 2 ^ 3 3 + 

0-21 ^ 2 3 

^ 3 1 ^ 3 3 
+ ( - l ) i + 3 a i 3 

^ 2 1 ^ 2 2 

^ 3 1 ^ 3 2 

- 3 9 7 
6 4 - 2 
8 - 5 1 

( - l ) ' ( - 3 ) 
4 - 2 

- 5 1 
+ (-1)^(9) 

6 - 2 
8 1 

+ (-1)^(7) 
6 4 
8 - 5 

= - 3 [ ( 4 ) ( l ) - ( - 2 ) ( - 5 ) ] - 9 [ ( 6 ) ( l ) - ( - 2 ) ( 8 ) ] 

+ 7 [ ( 6 ) ( - 5 ) - ( 4 ) ( 8 ) ] - - 6 1 4 . 

Because 614 is not too different from the largest element taken to the 
Nth power (9^ = 729), a system of equations with these coefficients 
would probably be reasonably well conditioned. A sensitivity analysis 
would be useful here. 

As a further note, recall (perhaps from your distant memory) that 
if one equation in a system is a constant multiple of the other, then 
the system cannot be solved. For example, if all one has is the two 
equations: 

X + 2y = 5 

3x -\- 6y = 15, 

then X and y cannot be determined at all. For this system, the de­
terminant is (1)(6) - (2)(3) = 0. Graphically, these "two equations" 
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determine the same line in the x-y plane. Thus, they do not intersect 
at a unique point, and this is consistent with the indeterminacy of x 
and y. In the same vein, it is an interesting exercise to attempt to 
invert 

using the Gauss-Jordan procedure. 

Preparation for the Next Chapter 

Before turning to the next chapter, try to figure out some practical 
way to estimate a numerical value of x for which e~^ = sinx - logx, 
where x is in radians (not degrees) in the sine function. Your method 
should be able to produce a solution good to three significant digits. 

9.5 Population modelling with Leslie matrices 

As noted in the introduction to this chapter, matrices and their vec­
tor components have other applications beyond providing solutions 
to systems of linear equations. Models based on matrices are often 
used to model population growth, taking account of the age or hfe-
stage structure of a population. The notation here is similar to that 
in Chapter 2 of Caswell (2001), where you will find much more detail. 
Beissinger & Westphal (1998) also discuss these models, but provide 
warnings about using them for predicting viability of rare and endan­
gered populations. 

The basic idea is captured by the Leslie matrix, which we consider 
for an example population with three age classes: 

1. Suppose the age classes are one year "wide," i.e., the population 
contains individuals only in age classes 0-1 yr old, 1-2 yr old, and 
2-3 yr old. (Time units of months, decades, etc. could also be used. 
Five-year classes are sometimes used in human demography, for 
example.) We will use the model to project from time t to t -h 1, 
t + 1 to t + 2, etc. In some applications, the categories can be life 
stages (such as larvae, pupae, and adults in an insect population) 
rather than age classes. 
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2. The state of the population at any time t is represented by a vector 
n(t) that has three elements, n i ( t ) , uzit), and n3(t) that give the 
number of individuals in each category at that time. 

3. Some fraction of the critters in Category 1 mature and move to 
Category 2 in a year, and a (probably different) fraction move from 
2 to 3. In this example population (which might represent an in­
sect species), those in the oldest age class all die, so none move 
into a fourth or higher age class. This process is represented by 
uzit + 1) = Pi X n i ( t ) and n^it + 1) = P2X uzit), where Pi is the 
probabihty of an individual in the ith age class surviving for a year 
and moving into the next higher class^. 

4. n i ( t + 1) can't be determined using that same approach, because 
the new members of the first class come from births, not from 
surviving from an earlier class. Rather, this value is modelled as 
n i ( t + 1) = Fi x n i ( t ) +f2Xn2(t) +F3 xn3(t) , where the f values 
are the per-capita fertilities of each age class (or other category). 

All those relationships can be summarized with matrices, viz., 

(n,\ / p^ p^ p^ \ 

it + l) = 
fnA 

712 (t), Pi 0 0 

V 0 P2 0 y 

which using matrix notation becomes 

n(t + 1) = An(t ) . 

Caswell calls A a population projection matrix^, and points out 
that its elements can be constants (perhaps unreahstically), functions 
of environmental changes and hence of time, functions of population 
size (indicating density dependence), or combinations of the latter 
two. 

^These are examples of finite difference equations; note their similarity to the first 
stage of deriving mass balance differential equations by the m{t + h) ~ .. . approach 
we have studied. For these, however, we keep a finite time step, and do not take a 
limit. 

^This form is often termed a Leslie matrix in other writings. 
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Example: Suppose we are modelling a population for which 

A = 

Then 

/ 0 2 7\ 
0.2 0 0 
0 0.45 0 

and n(0) = 
/ioo\ 

20 
\ 5 / 

(9.10) 

/ 0- 100 + 2 - 2 0 + 7 - 5 \ 
n( l ) = 

V 
0.2- 100 + 0 •20 + 0-

0- 100 + 0.45 -20 + 0 7 

/ 7 5 \ 
20 

V 9 / 

The reader is left to show that n(2) = [103 15 9]' , and n(3) = 
[93 20.6 6.75]'; these vectors represent the evolving population 
structure in years 2, and 3. As you work, think about the meaning 
of each individual element of the A matrix. For example, what is the 
meaning of the 2 in the first row, and of the 0.45 in the third row? 

Note that this process is made easier by software like MATLAB, 
which gets its name from its original purpose of working with matri­
ces. Even spreadsheets have functions allowing for matrix multipli­
cation, although these functions are often not very "transparent." 

Eigenvalues 

Here we look briefly at the concept of eigenvalues^ of matrices, which 
arise in many areas of science and math in addition to population 
modelling. By definition (Derrick & Grossman 1981), an n x n matrix 
A has an eigenvalue A if there is a non-zero vector^ v such that 

Av = Av. 

(It may have up to n of them.) 
One can find eigenvalues from the characteristic equation of a ma­

trix, which results from setting the determinant of A - AI equal to 
zero. For example, for 

A = | 2 _ 5 1, A - A I = 
3 - A - 1 

2 - 5 - A 

''"Eigen" is German for "own." 
^Both the eigenvalue and the components of the eigenvector can be real or com­

plex numbers. 
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so the characteristic equation is 

( 3 - A ) ( - 5 - A ) - ( - l ) ( 2 ) = 0. 

For a 2 X 2 matrix, that will be a quadratic, which here has a solution of 
- 1 ± vT4. Hence, those are the two eigenvalues for that matrix. (These 
days, software like MATLAB is generally used to find eigenvalues; e.g., 
with the function ei g (A).) 

Two examples of how these are used are 

1. With Leshe matrices, the dominant (largest) eigenvalue gives the 
geometric rate of population change. For example, for the A of 
Eqn. 9.10, the dominant eigenvalue is 1.0114. This indicates that 
the modelled population will grow with time according to N = 
No exp(1.0114t), where N is the total population size. 

2. With systems of linear ordinary differential equations like Eqns. 6.1 
on p. 137, the eigenvalues of the matrix of coefficients provide the 
rate constants in the exponential functions that appear in the so­
lution of the system. 

Eigenvalues also have uses in multivariate statistics, for example 
in principle component analysis. 

9-6 Other Applications for Matrices 

Matrices have many other applications beyond helping to solve sys­
tems of linear equations and modelling population growth. They are 
often used in some areas of statistics, for example. In multiple regres­
sion, the least-squares estimates b for the vector of regression coeffi­
cients can be represented and calculated as b = (X'X)"^X'y, where X 
is the matrix of independent (causative) variables, and y is the vector 
of responses (Greene 1993). 

Another type of matrix application is the "Markov-chain" model, 
in which entities existing in a set of conditions move (or not) to other 
conditions, with transition probabilities given by a matrix similar to 
a Leshe matrix. Example apphcations include modelling: 

• forest succession, with transitions of trees in a forest from species 
to species over time (Horn 1976); 
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• dispersal of organisms among patches (Caswell 2001); 

• growth of pine trees from smaller girth classes to larger ones 
(Mesterton-Gibbons 1995); 

• sequences of weather types in a city (Grossman and Turner 1974); 
and 

• passage of genetic traits from generation to generation (Maki 
and Thompson 1973). These authors also describe the theory of 
Markov chains in some detail. 

9.7 Exercises 

1. Solve the following set of linear algebraic equations using Gaus­
sian elimination. 

22.7x-llAy = 13.76 

10.3^ + 20.23/= 6.41 

Carry at least 7 figures in your calculations. State whether or not 
you think this system is highly sensitive to small changes in the 
right-hand sides. On what did you base your opinion? 

2. Consider the set of linear equations given by AX = B, where 

A = 
1.7 2.3 4.7 
3.9 1.2 -2.1 

-3.0 5.1 3.0 

There are three different B vectors; i.e., 

Bi = 

[10.5" 
3.0 

|_ 4.9 
, B2 = 

'11.03" 
2.85 
4.90 

, and B3 = 
'10.501 

3.00 
5.I5J 

Note that the second and third Bs include small perturbations of 
the elements in the first one. 

A. Solve these equations using Gaussian elimination, including all 
three B vectors in your solution. To do this, write the coefficient 



§9.7. Exercises 217 

rii Ĥ  r\:i 1x4 

Q—-^pV\AH-VV\H-AAAr+AAAH—* Q 

Water Air 
Figure 9.4: Thermal resistor model for loss of heat through the walls and 
insulation of a water heater 

matrix together with the three B vectors and with a column con­
taining the sum of all numbers in each row: 

A matrix 
1.7 2.3 4.7 
3.9 1.2 -2.1 

-3.0 5.1 3.0 

three Bs 
10.5 11.03 10.50 

3.0 2.85 3.00 
4.9 4.90 5.15 

check sum 
40.73 
11.85 
20.05 

The check-sum column allows you to check your calculations at 
each stage. At any step in the Gaussian elimination process, the 
last element of each row should equal the sum of all other ele­
ments. Be sure to rearrange the equations to put the largest ele­
ments on the diagonal, as far as possible. Comment on the sensi­
tivity of the solution to the given 5% changes in the B vector. 

B. Check your results by substituting back into the original equa­
tions. 

3. A company manufacturing hot water heaters wants to add an ex­
tra layer of insulation to their units, in response to consumer de­
mands as gas prices rise. The present line of heaters uses 5 cm 
of Fluff brand insulation, which is pretty expensive but can stand 
temperatures well above lOO^C. Another brand (Airy insulation) 
is available at less than half the cost, but it deteriorates abruptly if 
it gets hotter than 78^C. The question is, can a 5 cm layer of Airy 
be added outside the 5 cm of Fluff, without the Airy's getting too 
hot? (Airy has the same heat transfer properties as Fluff has.) 

The following theory applies; see Fig. 9.4. 

Let Tia = water temperature (all temperatures in degrees Celsius) 
Ti = temperature at the inside of the Fluff 
T2 = temperature at the Fluff-Airy interface 
T3 = temperature at the outside of the Airy 
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TA = air temperature surrounding the heater 
i?i = resistance to heat transfer between the water and the 

inside of the Fluff layer (inner boundary layer plus 
tank wall) 

i?2 = resistance to heat transfer through the layer of Fluff 
i?3 = resistance to heat transfer through the layer of Airy 
i?4 = resistance to heat transfer between the outside of the 

Airy and the air (heater wall plus outer boundary layer) 

By the law of conservation of energy, the total heat loss rate Q 
(per unit surface area) must be the same through each layer. Also, 
theory tells us that 

Q __Tw-Ti ^Ti~T2 _T2-T3 ^T3-TA 

Ri i?2 i?3 R4 

because of the way the resistances are defined. 

Since all the fractions above are equal to the same heat loss 
rate (Q), you can form three equations in the three unknowns 
(Ti, 72, Ts), and Q need not be known to solve for the temper­
atures. In forming your equations to eliminate Q, be sure to use 
each of the four fractions above at least once. 

Suppose the thermal properties of the two kinds of insulation lead 
to 

18°C „ „ 12,000°C , „ 880°C 
^1 = " W " ' ^2 - i?3 = ^ , and i?4 = - ^ . 

Finally, then, choose a worst case and calculate the resulting tem­
perature on the inside of the Airy insulation. In particular, the 
water may get as hot as T^ = 100°C maximum. On a hot sum­
mer's day, the air temperature surrounding the heater might go to 
TA = 45°C. ("W" is the standard abbreviation for "Watt.") 

Once you've derived the necessary equations, solve them either by 
Gaussian elimination (e.g., in a spreadsheet), or using MATLAB. 

A. For these values, what is 72? Can we use the Airy, if its proper­
ties are as stated? 

B. How sensitive is the calculated value of T2 to the estimates of 
Tw and TA? In particular, if Tw = 102.5°C, what would T2 be? 
Could we use the Airy in this case? 
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Two points of interest: 

i. The general principles used above apply to a wide range of prob­
lems involving either heat transfer or mass diffusion through a 
series of layers. 

ii. Actually, I have approximated the problem to allow for an exact 
answer. More correctly, one would have to adjust the resistances 
to allow for the curvature of the layers. I expect the error is not 
large, however. 

4. For a study of temperature in birds' nests, you borrow an old in­
strument that uses thermistors to sense temperature. The manual 
for the instrument tells you that the resistance rises nearly linearly 
with the temperature, over a temperature range between 0-100° C, 
and that you should calibrate the system every six months or so 
to account for any aging of components. So, you obtain output 
readings of n kO (kilohms) at Ti °C and of rz kO at T2 °C. 

A. Find the equation (in terms of the symbols r i , r2, Ti, and T2) 
that would give you temperature as a function of resistance in 
future measurements. 

B. If n = 8.7 kO and rz = 12.5 kO when Ti = 0° C and Tz = 
40° C respectively, what would the sensor temperature be when 
the reading is 9.2 kO? 

Hint: Of the various formulas for working with straight lines, the 
"two-point form" is often the most efficient. If you know two spe­
cific points (xi.yi) and (xz^yz) on a straight line, and if (x^y) is 
any other point on the line, then the line can be defined by: 

y-yi ^ yi-yi 
X - Xi X2- X\ 

This works because both sides of the equality are expressions for 
the slope of the line. You may use this if you like, but are not 
required to do so. 

5. The "equilibrium solution" to a system of differential equations is 
the set of values from which there is no further change. At that 
point, because none of the dependent variables is changing, all the 
derivatives are equal to zero. Thus, 

-^ = fi{x,y,z,t) = 0 
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dz 
-^ = f3{x,y,z,t) = 0 

becomes a set of regular (not differential) equations of the form 
/ i = 0, fz = 0, f3 = 0 at the equilibrium point Xg, ye, Ze. 

From about 1965 to 1975, ecologists were exploring models that 
represented ecological communities as systems of interacting pop­
ulations that could be described by systems of linear differential 
equations. A simple example of such a model would be 

dR 
-r- = 0.100 i^-0.900 F - 3 0 
at 

4 ? = 0.003 i^-0.020 F - 2 0 
at 

where R denotes the number of rabbits, and F the number of foxes, 
occupying some area of land. 

If this were an accurate model (a very big IF), then for what number 
of rabbits and what number of foxes would their populations be 
stable (i.e. not changing with time)? Use Gaussian elimination or 
MATLAB to find your solution. 

6. Finite elements and finite differences represent two approaches 
for solving partial differential equations numerically (and approx­
imately). Both these numerical approaches tend to yield large sys­
tems of linear equations, of which a small example is provided 
here. Like the system here, the equations involved usually have 
many zero coefficients, and this can simplify their solution. Con­
sider this example, which appUes to heat transfer along an object 
that projects out into a moving fluid (like a tree branch or a cooling 
fin): 

20r i -1772 +073 +074 - 150 
- 1 7 7 i +4072 -1773 +074 = 120 

07i -1772 +4073 -1774 = 120 
07i +072 -1773 +2174 = 84. 

As you know, if you were to use Gaussian elimination to solve 
these equations, you would end up with an array of elements of 
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the form just below, and as you can see, the system above aheady 
has three of the desired zeros in the lower left corner. 

1 ai2 Cil3 CilA bi 

0 1 a23 Cl24 ^2 

0 0 1 a34 b3 

0 0 0 1 [74 

Your task here is to begin a Gaussian elimination, and take it 
through the first two major steps. That is, set up the Gaussian 
elimination, and carry out the appropriate computations to the 
point where the first two columns are of the form 

1 an 
0 1 
0 0 
0 0 • • .. 

For this exercise, you need not complete the computations, nor 
perform any back substitution (but do show all the other columns, 
of course). The idea is to demonstrate that you have the basic idea 
of Gaussian elimination. Keeping a check sum column is optional, 
but you omit it at your own peril. 

7. You are working with an engineer in testing a three-reactor sys­
tem designed to reduce the amount of oxygen-demanding wastes 
(ODWs) in a wastewater treatment plant. You have derived three 
ODEs as a model of that system, namely: 

dCi _ qjCj - qCi + q/Cs 
dt " Vi 

dC2 qCi - qC2 

-fiCi 

dt V2 

dC3 qC2 - qCs 

- / 2 C 2 

- / 3 C 3 
dt V3 

where Ci to C3 are the concentrations of ODWs in the three tanks 
[g m~^], Vi to V3 are the tank volumes [m^], qt and Ct are the flow 
rate [m^ hr"^] and ODW concentration of the wastewater inflow to 
the system, q/ is the rate at which water is fed back from the third 
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tank to the first, to "seed" the system with active bacteria that aid 
in ODW degradation. The sum q = qi + q/ represents the flow 
between tanks 1-2 and 2-3. Finally, / i , /2, and / s [hr~M are the 
fractions of ODW destroyed or settled out per hour in the three 
tanks. 

Suppose that qi and Q both remain constant for an extended test 
period. Then the three tank concentrations would approach equi­
librium levels that can be estimated by setting the three derivatives 
to zero and solving the resulting algebraic equations. Let ^i = 150 
m^ hr- i , qf = 10 m^ hr"!, Q = 120 g m ' ^ Vi = Vz = V3 = 80 m^ 
/ i = 0 . 8 , / 2 = 0.7,and/3 = 0.6. 

a) Set up the A matrix and B vector in terms of those coefficient 
names. 

b) Determine the numerical values of the elements of A and B. 

c) Use MATLAB or other software to solve this system. Interpret 
the results, being sure to state units. 

8. A large Midwestern power plant burns a mixture of high-sulfur 
Indiana Coal (4% sulfur by weight) and low-sulfur Wyoming coal 
(1.5% sulfur). The western anthracite has higher energy content 
(VK = 2500 BTU/ton) than the Indiana bituminous coal (J = 2100 
BTU/ton). (Note: these numerical values for W and / are just rough 
estimates, but the concept is reasonable.) 

For each 100,000 BTU produced, the plant is allowed to emit no 
more than 1 ton of sulfur. Unfortunately, because the western coal 
is considerably more expensive than the Midwestern, the plant 
manager chooses to emit that full amount. How many tons of 
each type of coal should the plant burn for each 100,000 BTU of 
heat energy? Use Gaussian elimination or software to determine 
the unknown tonnages. Provide units for all quantities. 

9.8 Questions and Answers 

1. Is the fish-insect system so sensitive because there are only two 
equations? Would the system become less sensitive if there were 
more equations, or more unknowns, or both? 
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• The number of equations isn't the issue. For example, the system 
Ix -hOy = 5 and Oy -\- ly = 8 would be perfectly well determined. 
If you changed the 5 by 10%, then x would also change by 10%. 
The problem with the original trout-insect equations (which we 
look at in more detail later in the chapter) is that they are not very 
different—the two fish ate similar proportions of the two insects. 
The system would be a lot less sensitive if Fish 1 had eaten mostly 
midges and Fish 2 had eaten mostly moths. Section 9.4 explains 
this phenomenon geometrically. 

2. Please give an example of an overdetermined system. 

• If we had data for a third fish, say one that had eaten 5 midges 
and 12 moths, but there were still only two insect types, then we 
would have three equations in two unknowns. That third equation 
would not be a linear combination of the first two, either, because 
of the numbers 1 picked. Thus, the three equations would not 
have a unique solution. A good solution in such a case would be 
to estimate the average caloric content of the two insect types by 
regression, a statistical procedure. 

3. Please explain again why you can sometimes multiply AB, but not 
BA, with the same two matrices. 

• The best way to understand this is probably to take an example, 
and try to carry out the multiphcation. Then you'll see the why of 
it. For example, try to calculate C = AB and D = BA when 

5 6 7 ' ^^^ ^ 
56 78 

\ ^ 8 7 6 5 y 

C should have two rows and four columns. What do you get for D? 

4. Where do the check sums come from? Are they given in the prob­
lem, or do you have to figure them out? If so, how? 

• Take the fish-insect example (because the numbers there are sim­
ple). 

IBxi + 12X2 = 660 

14xi -I- 8X2 = 480. 
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There are no check sums inherent in the problem. When you set 
up the matrices to solve this system by Gaussian elimination, you 
could write 

18 12 660 
14 8 480 

and just work with those. Instead, it's helpful to add 18 + 12 + 
660 - 690 to the end of the first row, and 14 + 8 + 480 = 502 to 
the end of the second row. 

Now, when 1 divide the first row through by 18, I get 1, 0.66666, 
36.66666, and 38.33333. Then I check whether (1 + 0.66666 + 
36.66666) = 38.33333, which it does. In other words, at every 
step after the first writing down, there are two ways of arriving 
at the check sum (once from the row operations, and once from 
summing), and they should both give you the same result. 

That's the check. If you check at every step in this way, you save 
yourself from propagating an error from one step to another, and 
having to redo the whole analysis when your results don't check at 
the end. (Be sure you also know how to, and do, check your results 
by substituting them back into the original equations.) 

5. I'm still not grasping what the solutions to these equations mean. 
What are they telling us? What situations would occur where I 
should know to solve the equations by Gaussian elimination or by 
matrix inversion? 

• I wonder whether this is one of those things that is so easy it 
seems hard? All kinds of situations lead to linear equations be­
cause some response changes in direct proportion to one or more 
"causes." You'll see several examples in the chapter exercises. In 
fact, if you turnback to § 1.1 of this book, you'll see that we started 
with such an example. The question "How much each of 90% alco­
hol and 40% alcohol must be mixed to produce 1 liter of solution 
that is 2/3 alcohol?" resulted in the two equations 

y 1 + V2 = V3 (total hters must add up) and 

fiVi + /2V2 = /3 V3 (total alcohol must add up). 

You should recognize these as two linear equations in two un­
knowns. If you have just two, it's not hard to solve them analyt­
ically (symbolically) as we did with those. However, if you had 
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three linear equations in three unknowns, it becomes far too cum­
bersome to get an analytic solution, and then you would turn to 
one of the methods we've been studying. 

The solutions we obtain are the things we want to know (the "un­
knowns"). In the example just given, the solution (mathematically 
speaking) is the amounts of the two mixtures we would need to 
mix to get the mixture of 2/3 alcohol that we need in the lab. In 
the water heater exercise, the x values are the temperatures at var­
ious locations in the water heater. In Exercise 5 of this chapter, the 
solution tells us the numbers of rabbits and foxes that would exist 
if this modelled "ecosystem" ever reached a steady, unchanging 
condition. 

6. What situations would occur where I should know to solve the 
equations by Gaussian elimination or by matrix inversion? 

• If you are pretty sure that you already have all the RHSs for which 
you will want solutions, then use Gaussian elimination because of 
its greater efficiency. On the other hand, if you think you may 
later want to solve the same equations with additional RHSs, then 
matrix inversion is probably the better choice. 

7. What does it mean for a system of linear equations to be sensitive 
or not? 

• If a system is ill-conditioned (sensitive), that means that you re­
ally can't trust your solution unless you know that you've mea­
sured all the constants very accurately. Small errors in either the 
a constants or the h constants can be "magnified" into large er­
rors in the x results. For example, in the alcohol mixture prob­
lem, if the system were ill-conditioned, you would want to be more 
careful than usual to measure amounts accurately, and to be sure 
about the percentage alcohol contents, too. If a system is well-
conditioned, then small errors in the inputs {a and h values) lead 
to similarly small errors in the x results. 

8. I still have a hard time understanding why arranging large ele­
ments on the diagonal produces less variation in the answers (i.e., 
if you change them by 10%) than if you don't so arrange them. 

• I don't think that's correct. Putting large elements on the diago­
nal is a related but different issue from the sensitivity (degree of 
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determination) of the equations themselves. It's true that if there 
are dominant large elements that can be put on the diagonal, then 
the system will be well-determined. Beyond that, though, having 
large elements on the diagonal reduces round-off error in the cal­
culations for Gaussian elimination or for matrix inversion. To see 
this, try solving 

lOOOxH- l.Sy = 1001 

41.5x4-10003/ = 1001 

in that order, and then solve in the reversed order, 

1.5X+ 10003/ = 1001 

1000x4-1.53/ = 1001. 

In both cases, round off to four significant digits at every step. 
The correct solution is x = 3/ = 0.9995007489 (if you carry lots 
of digits). If I round to four digits at every step with the large 
elements on the diagonal, I get x = 3/ = 0.9995 (not bad). If I 
round to four digits with the equations arranged in the second 
way, I get x = 1 and y = 0.9994 (not as good). Note that these 
equations are very well determined—the determinant is very close 
to the square of the largest element. 

With larger iV x AT systems, you do more calculations, so round-off 
errors can build up even more than in a 2 x 2 system. This is the 
reason for putting large elements on the diagonal. 

9. In the Gauss-Seidel (iteration) method for solving systems of linear 
equations, how do you determine 5? 

• The precision needed in the solutions depends on your applica­
tion. In the fish-insect application, we might want to know average 
calories per midge to the nearest 0.1 calorie. That would be 5. In 
the exercise on p. 219, we might want to know the numbers of rab­
bits and foxes to the nearest whole animal. In that case, 5 = 1.0. 
Choosing 5 requires knowledge of the situation, and judgment—it 
is not a purely mathematical process. 

10. What is the sum column in Gaussian elimination used for, other 
than for checking? 



§9.8. Questions and Answers 227 

• That's its only purpose, but it is well worth doing. If you ever 
solve a 3 X 3 system without the checks, and then discover at the 
end that your 'x' values don't satisfy the original equations, you 
will wish you had caught your error (or errors) sooner. 

11. In Eqns. 9.7-9.8, p. 207, you show how the Gauss-Seidel scheme 
fails when the large elements are off the diagonal. Can you please 
show how the equations were aligned to produce this result? 

• Yes. This results from solving Eqn. 9.5 for X2 instead of xi, and 
solving 9.6 for xi instead of X2-

12. In the Markov-Chain succession model, how are the probabilities 
calculated? 

• Broadly, Horn estimated them from tree-density data in forest 
stands of different successional ages. If you want more detail, see 
Horn's paper. The reference is on p. 265. 

13. Would that model yield more accurate results if you used more, 
shorter time steps? 

• I suppose it would, but the probabilities would have to be deter­
mined for that shorter time step. The shorter the time step, the 
smaller each element in the P matrix would be. 

14. Please explain again why the largest numbers must be on the diag­
onal. 

• I don't know whether you are asking this in the context of Gaus­
sian elimination, or matrix inversion, or Gauss-Seidel, but I guess 
the reason is generally the same for all three. In each of those 
processes, you end up dividing by the diagonal elements. If those 
divisors are big, the division tends to 'damp out' errors, but if they 
are small, then any errors in the system (including roundoff er­
rors) tend to be magnified. It's clear you can't have zeros on the 
diagonal, especially, because of the division. 

15. Why does each row in Eqn. 9.1 on p. 201 average to the first term 
in each? 

• Funny you should notice that. It hadn't occurred to me, but 
it is explained by the B elements in Eqn. 9.2 being the measured 
caloric value, and plus or minus 10% around the measured value. 
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Thus, the B values average to the measured value. Since the x's 
are linear functions of the b's, the x's must average to the value 
for the average b. It is a general feature of linear relationships that 
the mean of function values is the same as the function value at 
the mean. That's not true for non-linear relationships. 

16. How does Gaussian elimination relate to statistics, if at all? It 
seems that the example we did in class should relate to the stan­
dard deviation of cal/midge, etc. 

• There might be some sort of relationship for our ''estimate'^ of 
cal/midge, since we've worked with estimated measurement error. 
I don't think there would be a relationship with the standard devi­
ation of the caloric content of various individual midges, though. 
Finding slopes and intercepts in linear regression (and multiple 
linear regression) involves solving systems of linear equations, and 
Gaussian elimination might be used by some statistical software to 
do that. That's the only sort of relationship I can see, however. 

17. Is Gaussian elimination the method used to solve a larger number 
of simultaneous equations, say for ten variables? 

• Often, yes. When I have some 800 simultaneous equations as a 
step in solving a partial DE for CO2 diffusion inside a leaf, that's 
the method I use, because of its efficiency. Other methods are 
sometimes used for certain apphcations, however. For example, 
some numerical processes lead to systems that have non-zero el­
ements on only a narrow band centered on the main diagonal. 
Sometimes iterative solution methods (similar to the one in Sect. 
9.6) are useful there. Also, a method called L-U decomposition is 
popular these days—I think it is good for reducing round-off error. 

18. What does the expression 
N 

Cik = X (^0 ' • ^jk) 

mean? Whyj=l? 

• The capital sigma means to take the sum of the expression to 
the right, as the index j varies over the integers from 1 to N. In our 
2 x 2 times 2 x 2 matrix example, N is 2. For each combination of 
i=l or 2 and k=l or 2, j varies from 1 to 2. 



Chapter 10 

Non-Linear Equations 

In Chapter 9, we studied hnear equations as models for real phenom­
ena and as approximations to non-linear relationships. In many cases, 
however, the true relationships between or among variables are too 
far from linear to allow useful linear approximation, so now we take 
up methods for dealing with non-linear relationships. A non-linear 
equation is one that represents a relationship whose graph is not a 
straight line (with two variables), a plane (with three), or a hyperplane 
(with four or more). Examples, from a wide range of possibilities, 
include: 

• Polynomials like quadratics, cubics, quartics, etc. 

• Exponentials (ae^^, ae~^^) and the related sinhx and coshx. 

• Logarithmic and trigonometric functions. 

• Power functions, like ax^. 

• Many others {e~^^^, etc.) 

Often these functions arise as solutions of differential equations, but 
they can arise in other ways too. In my view, linear functions are 
used too often (particularly in regression studies in statistics). Linear 
functions are not appropriate when: 

• there is obvious curvature in a relationship. 

• a response of interest oscillates. 

• quantities approach asymptotes. 
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In other words, use common sense in choosing models to represent 
data. 

10.1 Roots of Nonlinear Equations 

Working with nonhnear equations takes various forms. Most simply, 
one has functions like y = ae~^^ + be~^\ and needs to calculate 
the value of y at one or more values of t when the parameters a, 
h, fe, and r are specified. (Given "x," find "3/.") The Streeter-Phelps 
equations, a well-known model for oxygen loss and replacement in a 
stream carrying oxidizable wastes (pp. 144, 134), lead to a solution 
of this form, for example. Given modern calculators, computations 
of this type are straightforward. 

A more difficult but still common problem arises when one has a 
nonlinear function of the form y = fix) and needs to find a value 
for X when the value of y is specified. For example, if y = e^ and we 
learn somehow that y = 3, then log 3 = loge^ = x, so x - 1.0986. 
Similarly, if y = 3x^ + 1.5x + 0.1 and we know that y = 5.27, then it 
is easy enough to apply the quadratic formula to determine the two 
corresponding values of x. But many problems can't be solved so 
easily. For example, if y •= x^ ^ 13x^ + 7x^ + 3x - 5 and y = 17, then 
there is no "quartic formula" analogous to the quadratic formula to 
tell us analytically what x must be. For problems like this we must 
once again turn to numerical methods. 

Problems of this type can be formalized as follows. Suppose y = 
g{x), and we want to know the value (or values) of x that make y = c, 
where c is some specified constant. Then we can always restate the 
question by writing / ( x ) = g{x) - c, and asking "What values of x 
cause f(x) to equal zero?" Such values are called roots or zeros of 
fix)—we devote the rest of this chapter to methods for finding roots 
of functions. Warning—the methods we study apply only to finding 
values of the independent variable (x) that drive the function value 
to zero. Thus, you must remember to convert your problem to that 
form before attempting to solve it! 

Note that the problem posed on p. 212; i.e., to find x such that 
e~^ == sinx - logx, is another example of this type of problem. If we 
write fix) = e~^ - sinx + logx, then the number we seek is a root of 
fix) (Fig. 10.1, p. 231). Were you successful in solving that? 
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Figure 10.1: A non-linear function, f{x) = e ^ - sinx + logx, for which we 
seek a root. 

We now take up a few (out of many) methods for finding roots, 
and apply these to an example from physiological plant ecology. The 
energy balance for a plant leaf whose temperature is not changing 
with time can be written as 

Qj^ = hc{T - A) ^ aeT"^ + If , 

where 

QA = total solar and thermal radiation absorbed by the leaf 
he = convective heat transfer coefficient 
r , A= leaf and air Kelvin temperatures, respectively 
(J = the Stephan-Boltzmann constant 
e = emissivity of the leaf to long-wave thermal radiation 
L = latent heat of vaporization of water 
E = flux density of evaporative water loss. 

If the stomata (pores) of the leaf were closed, then E would be 
nearly zero. Let us find the leaf temperature for such a case, when 

f{T) = QA-hc{T-A)-aeT'' = 0, (10.1) 

QA = 80 mW cm-2, he = 4mW cm-^ d e g - \ A = 300°K, a = 5.67 x 
10-^ mW cm-2 deg-^, and e = 0.97. Eqn. 10.1 tells us how badly 
our energy balance is out of balance, at various leaf temperatures. 
This means we seek the physically real root of the quartic polynomial 
plotted in Fig. 10.2, p. 232, i.e., 

fiT) = 5.5 X 10-^r^ + 4 r - 1280 = 0. (10.2) 
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Figure 10.2: The quartic polynomial, Eqn. 10.2, that models the steady-state 
energy balance of a non-transpiring leaf (left), and another view (right) for 
temperatures just above the air temperature of 300° K. 

All numerical methods for finding roots require one to choose a 
starting guess (or to guess a range) for the root. With the present 
problem, we can be reasonably confident that the leaf's temperature 
is near, but probably above, air temperature A, and so we could use 
that as a starting guess. However, theory tells us that a quartic func­
tion must have four roots in all, so here, as in most problems of find­
ing roots, it proves worthwhile to plot the function against a range of 
T values to determine its general behavior before proceeding numer­
ically as in Fig. 10.2 (left). 

It is clear that, within the resolution of the figure, only one root 
lies anywhere near 300° K, and this knowledge makes finding the 
root more certain, as we shall see. Theory tells us further that if a 
quartic has one real root, then it must have at least two. Indeed, 
with the present function the graph shows another root near T = 
-987.5°, which is physically impossible, and certainly irrelevant for 
our purposes. 

The other two roots of this equation are probably complex conju­
gates of the form a±bi, where i = V--T. These are also irrelevant. The 
other possibility is that the other two roots are real numbers, but lie 
outside the range plotted—this would also mean they were physically 
meaningless. In any case the root we seek is the one near 300° K. It 
is therefore useful to replot the function with greater resolution near 
this root, as in Fig. 10.2 (right). As seen there, our function is nearly 
linear for T between 300 and 320 degrees K, which will lead to fast 
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convergence for the methods that follow, since most of them con­
verge in a single iteration for truly linear functions. 

Newton's Method 

One common and generally efficient method for finding roots of non­
linear equations is known as Newton's method. (An alternative name 
is the Newton-Raphson method.) This method can be derived easily 
from the theory of Taylor series. Recall that any nice function can be 
written as 

fix) = fia) + f{a){x - a) + r (a)(x - af/2\ + .... 

from which fix) « fia) + f ia)ix - a) provided x is close enough 
to a. (Using such an approximation is called linearization.) 

Now suppose that we want to find a root of some fix). We could 

• choose a guess, xo, and expand the function about a = xo-

• truncate the resulting Taylor series after the linear term to get 
fix) ^ fixo) -\-fixo)ix-xo) = 0. 

• set this fix) = 0 (because by definition the function will have 
that value at the root we seek) and solve the result for x ^ XQ -
fixo)lf'ixo). The result should be an improved estimate of the 
root, but it will be only approximate (except for a linear fix)) 
because we have truncated the Taylor series. 

• iterate to convergence (or to obvious divergence). 

To apply this process to the leaf energy balance, we return to the 
f o r m / ( r ) = ar^+[7r+c, where a = 5.5x10-^, f? = 4 , a n d c = -1280. 
Note that the value of this / ( T ) represents how much the net energy 
uptake of the leaf is out of balance, and so we wish to find the value 
of T that drives it to zero. Here f'iT) = 4aT^ + b, so we iterate from 
our starting guess (xo = 300) using 

aT^ + bTi + c 

4 a r / + b 
on fixo) 

of form xi ~ Xo fixo) 

This process yields 300, 307.717, 307.678, 307.678. Of the various 
schemes we consider, Newton's method usually has the fastest rate of 
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convergence. Its disadvantages are that it doesn't always converge if 
the initial guess is too far from the root, that you have to differentiate 
the function (without error!), and that it is not trivial to program in 
computers because of its use of the derivative. 

Bisection 

We turn now to a method with nearly opposite properties—foz.secfzon 
is simple and rehable, but slow and inefficient. Bisection differs from 
Newton's method in requiring two starting guesses (say XQ and Xi), 
guesses that must bracket the root. This means that f{x) must cross 
the X axis between xo and xi , and so the product f{xo)f{xi) must 
be negatived Further, there must be only one root between XQ and 
xi , so to stay out of trouble it is best to plot fix) for xo < x < xi. 

Once we have two guesses that do bracket the root, we proceed as 
follows. We will illustrate the method with our leaf energy balance 
and with starting guesses of To = 300, Ti = 320. (You might wish to 
sketch lines on a copy of Fig. 10.2, right, to aid in understanding the 
method.) 

• Bisect the TQ-TI range. I.e., calculate Tz = {To^Ti)/2 = 310. Then 
calculate fiTz) and choose the subrange, (To.Tz) or (72, Ti), that 
continues to bracket the root. Mathematically, the former will be 
true if f{To)f{T2) < 0, as is the case here. 

• Now bisect the new subrange, and calculate / (305) in this in­
stance. This gives us an even smaller subrange, (305-310) that 
we know contains the root. 

• Continue bisecting, each time working with the latest interval that 
we know includes the root. 

• Note that as we go, we pin down the root to within a range of 
width \xi -xo l , \xi -Xol/2, |xi -xo l /4 , \xi -Xol/8, \xi -xol /16, 
and so on. In fact, after n bisections, we know that neither end 
of the current interval is farther than \xi - xo I /2^ away from the 
root. 

Îf you don't see why this is so, try sketching a function that crosses the y = 0 
axis. 
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Table 10.1: Progress of root-finding with the bisection method apphed to 
finding an equilibrium leaf temperature from Eqn. 10.2 

f(T) f(T) 
~300 
320 
310 
305 
307.5 
308.75 
308.125 
307.813 
307.656 

-35.45 
57.67168 
10.79365 
-12.4049 
-0.82514 
4.979344 
2.07588 
0.625067 
-0.10011 

307.734 
307.695 
307.676 
307.686 
307.681 
307.678 
307.677 
307.678 
307.678 

0.262459 
0.081169 
-0.00947 
0.035849 
0.013188 
0.001858 
-0.00381 
-0.00097 
0.000442 

In the present case, our calculations proceed as in Table 10.1. The 
iterations converge to a leaf-temperature estimate of 307.678° K. The 
f{T) column indicates how well the energy flows are balanced at each 
temperature estimate. Although the values of T shown in the table 
are rounded to the nearest 0.001°, the calculations were actually car­
ried out in a desktop computer with perhaps 16 or more digits of pre­
cision. Note the large number of iterations required to reach 0.001° 
precision with this method. Other methods, like Newton's above and 
the secant method below, are usually much more efficient, although 
they may not be as certain to locate a root. 

The Secant Method 

We close with one other method for seeking roots, a method that 
is intermediate in safety and efficiency, but easy to program. Again 
we begin with two guesses for the root, say Xi and X2- (It is safest, 
but not absolutely required, for these guesses to bracket the root.) 
We calculate yi = f{xi) and 3/2 = fi^z), and seek X3 such that 
/(X3) = 0. Usually /(X3) will not equal zero, but we hope it will be 
closer to zero than either of its two predecessors. 

The scheme we use is, in effect, to draw a straight line between the 
two starting points and to find the x intercept of that line (i.e., the 
point on that line where y = 0.) Of course, if f{x) itself were a linear 
function, then this intercept would be the root of that function, and 
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no further iterations would be needed. But since f{x) is non-hnear, 
the intercept will only be close (we hope) to the root we seek. 

To find the intercept, we use the two-point formula for a straight 
line; i.e., 

y-yi ^ yi-yi 
X - X\ X2 - -^1 

= slope of line. 

If we now set y = 0, then X3 = x is the next approximation we seek. 
Thus 

0 - y i yi-yi 
X3 - Xi X2- Xi 

= slope of line, 

or 

fX2-Xi\ 
\y2-y1J yz-yi-

This is our general iteration formula, but we now need a way of decid­
ing which of the previous two points to throw out. One scheme for 
making this decision results in the method of false position, which 
we will not consider further here. A second scheme yields the secant 
method. For the latter, one compares lyzl with \yi\ and discards 
whichever point is farther from the x axis, i.e., the one with the larger 
absolute function value. 

For the leaf energy balance, if we begin with Ti = 300° and T2 = 
320°, the secant method produces the following sequence^: 

Ti 
300 
300 
307.614 

307.678 

yi 
-35.45 

-35.45 

-0.2976 

0.00152 

T2 
320 
307.614 

307.678 

307.678 

y2 
57.6717 

-0.29759 

0.00152 

-6.56E-08 

Ts 
307.614 

307.678 

307.678 

307.678 

ys 
-0.2976 

0.00156 

-6.56E-08 

0 

As predicted, this procedure has converged rapidly, in part because 
our f{T) is so nearly linear between T = 300° and T = 320°. 

One question that arises with every iterative method is "when 
should we stop?" In the calculations just presented, the decision was 
easy, because f{T) went to an actual zero (within the precision of the 
computer used), and no root can be better than that. Note that the 

^Some values are shown at reduced precision so the table will fit the page. 



§10.1. Roots 237 

T values in the table are rounded to the nearest 0.001 degree, but at 
full precision the values in the calculations continued to change until 
the last value, Ts, for which f(T) = 0. 

Often, iterative methods for finding roots do not converge to the 
point where f{x) = 0 exactly, even after a large number of iterations. 
Rather, because of round-off error and limited machine precision, the 
iterations will lead to a cycle of x values for which fix) is only close 
to zero. On the other hand, frequently all that is needed is an estimate 
of the root that is good to a few digits of precision. If this is the case, 
then you can stop iterating as soon as |Xt+2 - ^i+il < 6, where e is 
the allowable error in the root. For the present problem, we might 
have decided to stop iterating once we knew the root to the nearest 
hundredth of a degree, say. In that case, we could have stopped after 
the third iteration. 

There is another consideration, though. Sometimes, the precision 
of the root itself is less important than that the function value f{x) 
be sufficiently close to zero. In the present problem, our criterion for 
stopping might have been that we wanted the net energy flows to be 
balanced to within 0.05 mW cm"^. If so, we could have stopped after 
the second iteration, when/ (T) = 0.00152. To carry this point a little 
further, in some problems one might want to set conditions on both 
the precision of the root estimate and on the absolute value of the 
corresponding function value. Double conditions like this are easily 
accommodated in subroutines that find roots by any of the methods 
we have studied. 

Roots of Polynomials 

Although we will not treat them in this book, be aware that special nu­
merical methods are available for finding roots of polynomials. These 
are useful if your polynomial has repeated roots (see below), or if you 
need to find roots that are complex numbers. Most textbooks on nu­
merical analysis (e.g., Press et al. 1992) discuss methods of this type. 

Summary of Methods 

To close our consideration of these various methods for finding roots 
of functions, we can summarize their relative efficiencies (converging 
with few function evaluations), reliabilities (likelihood of converging 
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Table 10.2: Comparison of properties of methods for finding roots of non­
linear equations. 

Method Efficiency Reliability Simplicity 
Bisection low high high 
Secant medium medium medium 
Newton high medium low 

to a solution), and simplicity of use (somewhat subjective) as in Ta­
ble 10.2. 

Finding Roots with MATLAB 

To find the zero of the leaf energy balance (Eqn. 10.2) using MATLAB®, 
we could enter 

enbal=inlineC5.5e-9v.TA4+4^vT-l280'); 
Tsteady=fzero(enbal,300) 

(The 300 in the call to f zero is optional, but providing a starting value 
helps MATLAB to find the root we seek.) The result would be returned 
as Tsteady = 3.076778222325283e-h002, along with additional in­
formation about the convergence. The documentation for the fzero 
function describes other options available for using it. 

Because the present function is a quadratic, we could also use 
MATLAB's "root" function to find its four roots. The call could take 
the form^ 

quart ic=[5.5e-9 0 0 4 
roots(quart ic) 

The result of that call is 

ans = 
1.0e-h002 * 

-9.87493400340406 

3.39907789053938 

3.39907789053938 

3.07677822232528 

-1280]; 

8.064996801390191 

8.064996801390191 

-̂ The "quartic" vector contains the coefficients of T"̂ , T^, ..., T^, in that order. 



§10.2. Repeated Roots 239 

-2 -1 0 ., 1 2 

Figure 10.3: A quadratic, y = x^ -\-1, with no real roots. 

As noted before, only the last of those roots is of physical interest in 
this case. 

10.2 Repeated or Multiple Roots 

Here I raise two cautions about finding roots. First, some equations 
may not have any real roots, as with f{x) = x^ + 1 (Fig. 10.3), which 
equals zero only when x = ±^f^. Thus its two roots are complex 
conjugates, not real numbers. The lack of real roots can be seen in 
the figure. 

The second caution is that roots may sometimes be repeated. For 
example, f{x) = x^ - 3x^ + 3x - 1 can be factored into fix) = 
(x - l ) (x - l ) (x - 1), showing that the three roots of this cubic are 
+1, +1, and +1. That is, this root is repeated three times, making 
it very difficult to locate accurately—it is ill-determined. In a similar 
way, we can construct a cubic such as y = fix) = ix-l)ix-2)ix-2) 
with two different roots, one of which is repeated twice. 

It is important to be aware of repeated roots because when they 
occur, they are often hard to find. Suppose for example, that 

y = fix) = ie^-5)ix-logs), (10.3) 

as shown in Fig. 10.4 (left), p. 240. Given the function stated in that 
form, it is easy to see that it has two roots, as described in Eqns. 10.4 
and 10.5. 
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Figure 10.4: Plots of Eqns. 10.3 and 10.6 (left), and of Eqn. 10.7 (right), which 
has one root repeated in triplicate. Note the flat slope of fix) near the root. 

1. ( e ^ - 5 ) = 0 = S => X = log5, and (10.4) 

(10.5) 2. ( x - l o g 5 ) = 0 => x = log5. 

Thus the root x = log 5 is repeated twice. 
If the function were presented to us in the form of Eqn. 10.3, we 

would have little trouble finding these roots and determining that 
they were the same. However, if fix) were multiphed out using the 
approximate numerical value of log 5 ~ 1.60944, it might appear as: 

fix) = ix- 1.60944)^^ -Sx + 8.04719. (10.6) 

Given this form of the function, I'm sure I would not recognize its 
factors (would you?), and I would have to use a numerical method to 
find its roots. 

Note that if I tried to bracket the repeated root (1.60944) with 
xi = 1,X2 = 2,1 would obta in / (x i ) = 1.39056 and / (xz ) =0.93306, 
both of which are positive. This problem shows up well if you just 
plot the function—are you beginning to get the idea that plotting a 
function can be an important step toward finding its roots? 

Clearly, we can't use bisection, the secant method, or false posi­
tion to find these roots; less clearly, Newton's method will often fail 
with repeated roots too. 

One further example is illustrative. The function 

fix) = ie^ - 5)(x - log 5)(3x - log 125), (10.7) 

shown in Fig. 10.4 (right), has the root x = log 5 repeated three times. 
(Be sure you see why.) Here it is possible to bracket the root, but both 
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fix) and fix) are zero there, and the function is very flat at the 
root as wefl. Thus, even if bisection or the secant method would work 
in principle, functions like this give poor numerical results because of 
round-off difficulties. Finding repeated (multiple) roots is discussed 
in advanced numerical analysis texts. We will not cover it further, but 
be aware of the problem and always plot your function! 

10.3 Exercises 

1. Newton's method provides a handy way to obtain square roots 
iteratively. It is likely the method most calculators apply to get 
square roots, and you can use it effectively if you don't have a 
calculator that provides them. Show that Newton's method yields 

xur = ^ ^ ^ (10.8) 

if you use it to find the root of f(x) = x'^ - N. Apply this method 
to find the square root of 17, starting with an estimate of 4. 

Note that Eqn. 10.8 calculates each new value as the arithmetic 
average of the previous guess and N over the previous guess. If 
one of those terms is too big, the other will be too small, and their 
mean comes closer to the value sought. 

2. Many cooling processes can be modelled by "Newton's law of cool­
ing", which states that, to a first approximation, the rate of heat 
loss from an object is proportional at any instant to the difference 
between its temperature and that of its surroundings. Mathemati­
cally, this can be described as: 

^ = -be, from which 0(t) = 0oe-^\ 
at 

in which 9 represents the temperature difference between an ob­
ject and the air. Suppose two solar collectors are at the same tem­
perature (00 = 60° C) when a cloud bank rofls in at t = 0. The first 
collector has thermal properties that lead to a value of bi = 1/3 
min"^ while for the second, b2 = 1/2 min~^ 

How long win it take before the second coUector is 2° C cooler 
than the first? Use the secant method. Use the secant method. To 
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demonstrate your ability to use the method correctly, your answer 
should be correct to the nearest 0.001 minute. 

3. Along similar lines, consider the temperature differences 6i and 
02 for two collectors given by: 

0^(t) = Oi^oe-^'^ and 02(0 = ̂ 2,0^"^'^ 

Suppose we want to determine how long it will take (from starting 
time to = 0) for 0i{t) and 02(t) to differ by D Celsius degrees; thus 
D = 9i - 02- For each of the following situations discuss whether, 
and why, it would be better to obtain a numerical solution or an 
analytic solution. (Also state which is possible in each case.) 

a) In a particular case at hand, 0i,o = ̂ 2,0 = 80°C, bi = 0.3 min"\ 
b2 = 0.5 min~\ and D = 2° C. However, we know we will be 
interested in other combinations of values in the future. 

b) In a particular case at hand, 0i,o = 75°C, 02,o = 80°C, bi = 
0.3 min~\ b2 = O.S min"\ and we want to know how long it 
will take for the two collectors to cool to identical tempera­
tures. Furthermore, we know that in all future cases we will 
only be interested in finding the time required for two collec­
tors to cool until their temperatures are equal. 

4. As you know, three-dimensional relationships of the form z = 
f{x,y) can be plotted as a contour diagram in two dimensions; 
i.e., as a "contour map" of "elevations" z, drawn in the x-y plane. 
Computer programs to make such plots for arbitrary z = f{x,y) 
functions can be written as in the following example: 

Suppose z = f{x,y) = 0.7(xy)^ - 4{xy)^-'^. For this function, 
you can plot a given contour (for z = 3, say) by: 

a) setting z = 3, then 

b) choosing a particular y value (y == 2, say), and 

c) calculating the corresponding x for which 3 = / (x ,2) . Then 
you repeat Step C for many y values, and finally, repeat the 
whole procedure for each z contour that you want to plot. 

To aid in understanding this procedure, calculate x such that 
fix,2) = 3. Use a numerical method. Note that this gives you 
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just one point on the z = 3 contour (above x = 2); the computer 
would have to repeat the calculation many times to allow plotting 
the contour. 

5. The oxygen deficit D in a stream caused by a wastewater discharge 
is sometimes modelled using the solution to the Streeter-Phelps 
equations, which you have seen before. One form is: 

D{t) = ^{e-^'-e-^')+Doe-^' 
r - k 

where D = oxygen deficit (relative to saturation) [mg L~^], Do = 
initial value of D at the point of discharge, Bo is the initial value 
of BOD concentration at the point of discharge [mg L~^], k is an 
oxidation rate coefficient [da~^], and r is a re-aeration coefficient 
[da-i]. 

Suppose that for a particular discharge 

Bo - 6 . 7 5 m g L - i 
Do - 1.59 mgL-^ 
k = 0.607 da-i 
r = 0.76da-i . 

a) Plot D(t) for t between 0 and 3 days. 

b) Suppose further that Pumpkinseed Sunfish cannot survive in 
the stream if the oxygen deficit D > 2 mg L~^ Also suppose 
the stream flows at a velocity of 1.5 ft s~^ Then determine 
the range of distances downstream from the discharge point 
where these fish could not survive. 

6. A system of two equations for the transfers of a lipid-soluble 
chemical between a person's blood and fatty tissues, when there 
is a constant rate of intake of the chemical, might take the form: 

rfG [/ fe / ^ \ , dCf k 
dt 

^ - / a - ^ ( a - K , ) a n d ^ = ^ ( c . - , C , ) , 

where Ch and C/ are the concentrations in the blood and fat, re­
spectively, U is the intake rate, B and F are the masses of blood 
and fat in the body, p is a partition coefficient accounting for dif­
ferential solubihty of the substance in the two tissue types, and / 
and k are rate constants. 
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If we set the uptake rate to zero, we could apply that model to the 
decline of dioxin in the body of the Ukrainian pohtician, Viktor 
Yushchenko, who was reportedly poisoned with that substance in 
2004. As rough guesses, let's set B = 10 kg, f = 15 kg, fe = 0.1 kg 
da-i, / = 0.01 da-i , ^ ( 0 ) - 1 mg kg-^ (i.e., 1 ppm), C/(0) - 10 
mg kg~^ and p == 0.1 [unitless], at some starting time. MATLAB's 
dsolve command yielded this approximate solution for his blood 
concentration (in mg kg~^) as it might have varied after time zero: 

a ( t ) ^ 0.733 exp(-0.00618t) + 0.267 exp(-0.0205t). 

Using Newton's or the secant method^, estimate how long it would 
have taken for the concentration of dioxin in Yushchenko's blood 
to decline from its estimated starting value of 1.0 mg kg~^ to 0.1 
mg kg~^ Provide the result to the nearest 0.01 day for checking 
purposes, even though that is excessive accuracy for the real prob­
lem. 

You will likely find this plot useful: 
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7. The utility department of a large city with several reservoirs in its 
water supply decides to use copper sulfate in two of them one 
summer, to kill off some aquatic weeds. The weed species in the 
two water bodies are different, so different maximum concentra­
tions are needed for the two reservoirs. In particular. Reservoir 
A will require a concentration of 80 mg L~̂  and Reservoir B will 

"̂Be sure to review the bold-faced question on p. 230. 
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require a concentration of 60 mg L~^ The CUSO4 will be applied 
around midday on the same day in both reservoirs. 

The two water bodies have the following flow characteristics: 

Res. Volume Flow through 
[m^] [m^ da-i] 

A 55,000 2,700 
B 38,000 700 

(Assume that both reservoirs are well mixed, and that the volumes 
and flows for each remain constant through time.) 

Your supervisor asks you to determine how long it will be until the 
Reservoir A concentration is 1 mg L~̂  below that of Reservoir B. 
That is your task here. Be sure to include at least one unit check 
for any analysis you perform. 

Hint: You will need to apply ideas from more than one chapter of 
the book to this question. Specifically, the CUSO4 concentration 
in each reservoir should drop exponentially from its initial con­
centration, with an appropriate "decay rate" for each water body. 
You'll also need a root-finding method (you may choose one) to 
determine when the two curves differ by the stated amount. 

8. The MPN (most probable number) method is sometimes used to 
estimate concentrations of microorganisms in situations where 
the organisms are difficult to count as individuals, but where it 
is feasible to determine their presence or absence in a sample. For 
example, the method can be used to estimate concentrations of 
methane-consuming bacteria (methanotrophs) in soils, by analyz­
ing for methane disappearance from sample tubes. 

Using the MPN method involves repeating serial dilutions of the 
medium under study, and determining the number of samples at 
each dilution level in which the quality of interest is detected. Of­
ten the results are determined from tables that exist for the pur­
pose, but in some cases, you may need to use a combination of 
sample number or dilution factor for which you can't find tables. 
In such a case, it is possible to determine the most probable num­
ber of organisms present in samples of the lowest dilution level 
using a formula like the one here. (This particular version applies 
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to a special case with only two dilution levels, to minimize the 
amount of computation you need to do. Usually more levels are 
involved.) 

The formula is: 

dipi 
+ 

a2p2 
2 _ ^-a\x 2 _ ^-azx 

= UiUi + a2Tl2, (10.9) 

where at is the ith dilution level, pi is the number of positive tubes 
at dilution i, i.e., the number exhibiting the response of interest, 
X is the most probable number (MPN) of organisms in the level 1 
samples, and ut is the number of tubes tested at dilution level i. 

A microbiologist in the lab where you work asks you to determine 
the MPN (i.e., x) of methanotrophs at the 1/10 dilution, for a study 
in which ui = n2 = 5, ai = 0.1, az = 0.01, pi = 4, and p2 = 1- De­
termine this value to the nearest 3 significant digits, showing your 
work in detail. You may use any appropriate method, but iden­
tify the method. A plot of the left hand side (LHS) of the equation 
above is shown in Fig. 10.5. 

5 10 15 ^ 20 25 

Figure 10.5: Plot of the LHS of Eqn. 10.9 

Spruce Lake, which feeds into Pine Lake, becomes contaminated 
with a substance from a one-time spill. State hydrologists de­
rive differential equations that describe the tranfer from Spruce 
into Pine and the subsequent flushing of Pine, and estimate that 
the concentration of the substance [mg L~ ]̂ in Pine should vary 
roughly as 
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C{t) = l20[e-^-^''-e-^-''']. 

The rate constants in the exponentials have units of yr"^ 

The state Department of Environmental Protection wishes to warn 
residents on Pine Lake not to use the water from that lake when 
the concentration of the contaminant rises above 15 mg L~^ Use 
any of the methods described in this chapter to estimate when 
that would first occur. You'll likely find it helpful to plot the con­
centration over the range 0-10 yr. 

10.4 Questions and Answers 

1. How can you be sure you are bracketing the root for these meth­
ods? 

• Note that the bracketing concept is relevant only for the methods 
that require you to have two starting guesses. It doesn't apply with 
Newton's method. 

If you have two guesses, Xi and X2, and if you are trying to find the 
zero(s) of fix), then you know you are bracketing a root (or three, 
or five, or some odd number of roots) if one of f{xi) and fixz) 
has a plus sign and the other has a minus sign. Draw a sketch of 
an arbitrary fix), and convince yourself of that. This condition is 
equivalent to the product fixi) x fixz) being negative. 

2. Why do we want to know the roots of polynomials? 

• The leaf energy balance (which could be the energy balance of 
just about anything, like the top of your car, or ...) was a poly­
nomial, the root of which is the leaf temperature. If you were 
studying carbon balances of forests, you might want to know leaf 
temperatures because they would affect photosynthesis rates (for 
example). So, in modelling, you'd find the temperature by finding 
the root of the energy balance equation. Polynomials often come 
up in many other applications, such as risk analysis, cost-benefit 
analysis, and so on. 

3. Why does the secant method have that name? 

• I don't know. The straight line we fit between the latest two 
points probably has something to do with a secant, but I'm not 
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sure what the relationship is. 

4. Comment: It seems that Taylor series are among the most appli­
cable tools we've learned this semester. 

• I agree. They form the basis for much of mathematical analysis, 
even when they aren't mentioned explicitly. 

5. When you used the bisection method, what function were you us­
ing f o r / ( D ? 

• Since you've written T, it would have been the leaf energy balance 
in the form f(T) = 0. In general, you would apply bisection to find 
the value of x that makes some fix) equal to zero. 

6. Please explain again, graphically, how the secant method works. 
Which value of the x variable do you throw out at each step? 

• Sketch some curve that starts out at low x, where fix) is neg­
ative, and curves up to high x, where fix) is positive. You then 
pick one point (xi,yi, say) to the left of where the curve crosses 
the X axis, and a second point ix2,y2) to the right of that crossing. 
Then draw a straight line between the two points. Where that line 
crosses the x axis is the x^ value, and 3/3 is the value of the func­
tion at that value of X3. With the secant method, at each iteration, 
after you calculate X3 and 3/3 = fix^), you replace whichever of 
xi or X2 had a function value with the largest absolute value. 

7. Do you need to draw the graph of a non-linear function before 
finding its root(s)? 

• That isn't mandatory, but I strongly recommend it. Otherwise 
you may not know whether there is more than one root that might 
be of interest. Graphs can also help you to choose good starting 
values and to detect problems like multiple roots. 

8. What kind of accuracy is achievable with Newton's method? 

• The accuracy of all these methods is limited primarily by the 
number of digits stored for a variable in the computer or calcu­
lator you are using. You can iterate as many times as needed to 
improve accuracy, but eventually round-off error will prevent do­
ing any better. In Maple, you can set Digits=50, say, to get greater 
accuracy if you need it, but I don't think MATLAB has the same 
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ability. You can presumably get better answers from a spread­
sheet than with an 8-digit calculator. In programming languages 
like Fortran, you can do better if you use double-precision (or even 
quad-precision) variables in place of single-precision variables. 

9. Comment: In addition to programs like MATLAB, Maple, Mathe-
matica and the like, spreadsheets now contain "solve" functions 
as well. In Quattro, it's in Tools|Numeric Tools|Solve For. In Excel, 
try Tools I Solver. 



Chapter 11 

Partial Differential Equations 

11.1 Partial Derivatives 

We begin this chapter with an introduction to the meaning of par­
tial derivatives, and a discussion of the variety of notations used to 
represent them. Because we will use a new symbol (3)^ these deriva­
tives may look complicated, but they aren't really very different, in 
the ways we'll use them, from the ordinary ones you already know 
about. 

Consider a model for the growth rate G of algal biomass in a pond 
or lake, in units like mg L~^ day"^ In this model, the growth rate 
increases as the product of a logistic in nitrogen concentration N [mg 
L~ ]̂ times a second logistic in phosphorus concentration P. Such a 
model might be of the form: 

GiN^P) = f, ^^ ,, + b] • f, ^ \ , + d) , (11.1) 

which is plotted in Fig. 11.1, and as a contour plot in Fig. 11.2 (p. 251 
for both). 

A limnologist might want know how much this algal growth rate 
would increase if N or P increased by small amounts. These quan­
tities, which would depend on the current values of N and P, could 
handily be expressed as: 

^This symbol is usually read as "partial," or sometimes just as "d." 
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Figure 11.1: A hypothetical relationship (Eqn. 11.1) between algal growth 
rate G and nitrogen and phosphorus concentrations in a pond or lake. See 
also Fig. 11.2. 
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Figure 11.2: Contour diagram of the relationship plotted in Fig. 11.1. The 
contour values of 10-90 are values of growth rate. 

Increase in growth rate per increase in JV = —-, and 
aJS 

Increase in growth rate per increase in P = 
dG_ 
dP' 

Actually, these expressions come close to what we want, but be­
cause G varies with both N and P, it is conventional to use the "9" 
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symbol referred to above in place of d. If we act as if P is temporar­
ily a constant, and then take the derivative of G with respect to JV, 
we obtain the partial derivative of G with respect to JV; i.e., BG/dN. 
According to MATLAB, this turns out to be 

= aKnTne"'-'' il+^l-rpP + ̂ ) (l + ̂ ^" ' ' ^^) ' ' i (11.2) 

dG/dP would have a similar form. (See Exercise 1, p. 272). 
From a biological point of view, 3G/3N at a particular N-P point 

represents the slope of the surface at that point (i.e., the rate of 
change of growth with nitrogen concentration), along a line paral­
lel to the N axis; dG/dP is similarly the slope along a line parallel to 
the P axis. 

Next consider the four second-order and mixed derivatives: 

d^G d^G d^G _ d (dG\ ^ ^ ^ ^ ! G _ ^ _a_/aG\ 
) • aiV2' ap2' dNdP dNKdPj' dPdN dPKdNJ 

The first of those describes the rate at which dG/dN increases as one 
moves along a constant P line (parallel to the JV axis), and the second 
the rate at which dG/dP increases along a constant JV line (parallel 
to the P axis). The third describes the rate at which dG/dP increases 
along a constant P line (parallel to the N axis), and the fourth the rate 
at which dG/dN increases along a constant JV line (parallel to the P 
axis). Try moving an imaginary ruler around on the Fig. 11.1 surface 
in your mind, to get a better feeling for those meanings. 

Be aware that other notation is often used for partial derivatives. 
For example, alternative symbols for derivatives like those just given, 
for a function z = / ( x , y ) , are (Edwards and Penney 1982): 

1 ^ - 1 ^ = fxix^y) = / i ( x , y ) = D^fix^y) = D i / ( x , y ) ; 

= fyix.y) = fzix.y) = Dyf{x,y) - D2f{x,y)\ 
dy dy 

Another symbol is sometimes used for certain combinations of 
partial derivatives, namely the V operator, which is usually referred 
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to as del in the U.S., and as nabla in Europe. This operator is espe­
cially useful for various vector relationships (e.g., Schey 1973). An 
example of its use in a non-vector context is 

3x2 9y2 92^ • 

This is known as del-squared of T (temperature) or the Laplacian of 
r , and is useful shorthand for a combination of derivatives that oc­
curs frequently in apphed math. For example, it helps describe heat 
transfer by conduction in a solid, as we shall see. If T is replaced by 
the concentration C of some substance, then V^C appears in models 
of diffusion. 

We close this section with some straightforward examples of par­
tial derivatives. For the function 

2 = f{x,y) = 3x^ - 2xy -h y^ : 

dz dz A 
— = 6x-2y, ^ = -2x+5y^, 
dx dy 

d^z d (dz\ a ._ ^ X ^ 

9x2 9;̂  

d^z d (dz\ d 
9y2 9y \^y/ Sy 

d^z d (dz\ d 

(-2% + 5y^) = 20y^ 

( i )^^ '—»-^ -
dxdy dx \dy) dx^ ^ 

â z _ d_ fdz\ _ _d_ 
dydx dy \dx) dy 

Note the equahty of the two mixed derivatives. Calculus texts (e.g., 
Edwards and Penney 1982) often present proofs that the mixed 
derivatives are independent of order of differentiation for functions 
having derivatives that are suitably continuous. (In the rest of this 
book, we will not be using mixed derivatives anyway.) 

11.2 Mass and Heat Transfer 

In Chapters 4-8 we dealt with one or more responses that varied 
only with time at a given place, or along one dimension at a given 
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x+ix 

Figure 11.3: Hollow diffusion tube showing "control volume, of length Ax. 
Each side is of length 5" cm, and the perimeter is P = 45". Alternatively, the 
figure can be viewed as a solid metal rod carrying an electrical current, for 
derivation of the transient (time-varying) heat conduction equation. 

time. However, many important environmental variables like temper­
atures or pollutant concentrations may change simultaneously with 
time and along one or more spatial dimensions. In these cases we 
need to use partial differential equations (PDEs), because they allow 
us to deal with variations of the response variables in relation to two 
or more "independent" variables. 

We will consider PDEs for one general class of problems, those in­
volving transfers of mass, heat, or organisms through air, water, and 
solids. Because PDEs are usually much more complicated to solve 
than are ODEs, we will only touch on solution methods in this book. 
Our purposes will be to help you understand where PDEs come from, 
and what they mean. This should aid you in reading literature that in­
cludes PDEs as mathematical models for environmental phenomena. 
Many PDEs are nothing more than mathematical statements of mass 
balances or energy balances, and knowledge of that fact should aid 
your understanding. 

For an example of a mass-balance situation leading to a PDF, we 
will generalize the diffusion problem from Chapter 8 to include time 
dependence. For the derivation, refer to Fig. 11.3. 

We retain all features of the problem treated in Chapter 8, includ­
ing adsorption of chloroform onto the tube wall, with one exception— 
now we suppose that C(0) = Ci is not a constant but a specified 
function of time, Ci(t) = fit). We will still hold C{L) constant at a 
fixed value Cz to keep matters simple, but in principle it could vary 
with time as well. This one change means that everywhere in the tube 
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(except at X = I), the local chloroform concentration will vary with 
both X and t. Thus, in mathematical notation, C = C(x, t). As a re­
sult, the mass of chloroform in the control volume (CV), the diffusion 
rates into and out of that volume, and the rate of adsorption onto 
its walls, all vary with location and time as well. We can account for 
these changes by writing, for some short period of time At, 

mass present in CV at time t + At = 
mass present in CV at time t 
+ mass entering at x during At period 
- mass leaving at x + Ax during At period 
- mass adsorbed onto CV wall during At period. 

In symbols, this mass balance for the CV (located at x) becomes 
something like: 

X-

DAxs^] ]At-4kSAxCAt. 
dX / %+AxJ 

mit + At)'=^fnit) + \-DAxs~] JAt 

- [ -
A unit check yields 

cm^ f m ) s - ( ^ ) cm cm (^] 
cm^ 

Cancellation shows that all terms have units of mg. 
In Chapter 8, concentration gradients along a single dimension led 

to ordinary derivatives. Now, because C varies with both x and t— 
i.e., C = C{x, t)—the concentration gradients in this equation should 
be expressed as partial derivatives, dC/dx, since the instantaneous 
diffusion rates depend on the rate of variation of C with x and not its 
variation with t. Don't puzzle over this too much—it's just a matter of 
definition. In general, the partial derivative of f{x,y) with respect to 
X is just the derivative of / with respect to x, treating y temporarily 
as a constant. Using partial-derivative notation, then, our equation 
becomes: 
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m{t + At)^m{t) + \-DAxsj-] [At 

\-DAxs^] 1 At - 4kSAxCAt. 

If we move the m{t) term to the left, then the LHS refers to 
mass, and the RHS refers to concentration. To be more consistent, 
we can divide through by the volume of the CV, namely AxsAx, and 
rearrange some of the terms to obtain 

C(t + A t ) - C ( t ) D dxJx+Ax dx I 
Ax 

4kSAxC 
Ave Ax 

At. 

As always, we should check the units of the terms in this equation: 

mg 
-_. cm^ 

cm^ mg 

s cm^ 

cm mg 1 
cm —T — ^ s cm^ cm2 

Now recall that Axs = S'^, divide through by At, and cancel Ax from 
the last term to obtain: 

at + At)-at) 
At 

D 

^ \ _ ac\ 
x+Ax dx J X 

Ax 
dx) 4k 

S 
C. 

Finally, if we take limits as both At -* 0 and Ax -^ 0, we have 

ac a^c 
at ~ ax2 

4fe C. 

This partial differential equation (PDE) represents the changes in the 
mass balance of the diffusing gas in the tube as the concentration 
varies with time and with x. Similar equations, based on an analogy 
between dispersion of organisms and diffusion of molecules, are used 
as mathematical models by population biologists. For an introduction 
to this topic, see Holmes, Lewis, Banks, and Veit (1994). 

We won't attempt to solve this equation, at least not yet, but to 
do so, you would need to have one initial condition (IC), because 
there's a first derivative with respect to time; and two boundary con­
ditions (BCs), because there's a second derivative with respect to dis­
tance. For example, the IC might take the form C(x,0) = ftix) for 
0 < X < I , which gives the concentration at every value of x at time 
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zero. The BCs might take the form Ci = fiit) and C2 = /2(t) at x = 0 
and X = L respectively. Some authors would use different terminol­
ogy, calling these conditions C(0, t) and C{L, t). These particular BCs 
state the concentrations at the end points for all future times. 

Heat Transfer by Conduction 

Heat transfer by the process of conduction is physically analogous 
to molecular diffusion, and, not surprisingly, the mathematics of the 
two processes is similar as well. Now we derive a PDE to describe 
conductive heat transfer along a solid rod, as diagrammed by viewing 
Fig. 11.3, p. 254 in that way. 

In particular, we consider a case when an electrical current along 
the rod produces a uniform (but possibly time dependent) rate of heat 
generation G{t) per unit volume of rod material, where G has units 
of J cm~^ s~^ Similarly to diffusion of a gas across a plane (p. 168), 
heat conduction across a plane follows the relationship: 

where 

Q= heatnux[Js"M 

k = thermal conductivity [J cm~^ s"^ C~M 

A = area of the plane [cm^] 

T = local temperature [C] 

X = distance along the rod [cm]. 

For BCs, we specify, for r (x , t ) , that 7(0, t) - / i ( t ) and T{L,t) = 
fzit); i.e., that the temperatures at the two ends may vary over time 
as described by the functions / i and fz. Then, for conduction along 
a rod with square cross-section (side 5), a heat balance for a control 
volume between x and x + Ax can be stated as: 

heat in the CV at time t + At = 
heat in the CV at time t 
+ heat entering the left face during the At period 
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+ heat generated in the CV during the At period 
- heat leaving the right face during the At period. 

Mathematically, this balance becomes: 

Hit + At) ^H{t)+\-kA^] lAt 

- \-kA^] 1 At + GAAxAt, 
L dxJx+Axi 

where H is the heat content of the CV, in Joules. A unit check yields 

J - J + f — ^ c ^ ' — I s Lcms°C cmj 

- cm^ — s - —7— cm^ cm s . 
Lcms°C cmJ Lcm^ s J 

From this, 

Hit + At)-Hit) AH .AdT\ dT\ 1 ^ ^ ^ ^ 
— = —- « kA -r— - ^r-] + GAAx. 
At At Idx/x+Ax dx/xJ 

When we worked with diffusion of a gas, we made use of the re­
lationship between mass m and concentration C in some volume V, 
but that was easy because C = m/V, or m/C = V. Now we need a 
similar relationship between heat content H (analogous with mass) 
and "heat concentration," which is related to the temperature T. The 
necessary relationship comes from physics, and turns out to be 

dH ( AH\ , , dT ( AT\ 1 

^ ( - ^ j - c , p V o r — ( . — j = ̂ -^, 
where Cp is the heat capacity (or specific heat) of the conductive 
medium^ [J g~^ C~ ]̂ and p is the density of the medium [g cm~^]. 

If the medium stays within a limited temperature range, so that 
CppV stays nearly constant, then 

AH^CppViAT). 

Thus 

^Note that "medium" is the singular form, and "media" is plural—many people 
use these terms incorrectly. 



§11.3. Schmidt's Method 259 

Hit + At)-H{t) ^CppV[Tit + At)-Tit)], 

so 

CppV 
At 

Now V = A Ax, so 

T{t + At)-T(t) k 
At Cpp 

dxJx+Ax dx/x 
Ax 

; ) , G 
+ Cpp 

which, in the limit as At — 0 and Ax -^ 0, becomes 

dT k d^T G 
+ dt CpP dx^ Cpp' 

Solution of this equation, for conduction in the presence of a heat 
source, would require an initial condition, T{x, 0), in addition to the 
two BCs already specified. 

11.3 Schmidt's Graphical Method for Solving PDEs 

Although solving partial differential equations is in general beyond 
our scope, certain equations in which the main quantity of interest 
(e.g., temperature) varies with time and along a single physical di­
mension can be solved approximately by a simple graphical method. 
Because this solution process provides insight into the meaning of 
PDEs and their solutions, we will take up an example: 

A biologist studying a rare species of shrew wants to model how 
temperatures change with time at various depths in the soil where 
the shrew lives. She uses a probe to measure the temperature profile 
once at a starting time, but wishes to avoid that disturbance later. She 
thus hopes to estimate sub-soil temperatures for other times, based 
on measurements of the surface temperature only. 

To do this, we need the partial differential equation that describes 
time-varying heat conduction in one physical dimension. That equa­
tion (when there are no heat sources or sinks in the soil) is 

fcT-7 = cp-r- or - r - j - - ^ - . 11.3) 
dz^ dt dz^ a dt 
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This is like the equation for conduction in the wire, but here there is 
no internal source of heat. The symbols here are: 

T = T{z,t) = soil temperature [C] at depth z [m] and time t [da], 

k = thermal conductivity of the soil [J m~^ da~^ C"M, 

c = specific heat capacity of the soil matrix [J kg"^ C~^], 

p = density of the soil matrix [kg m"^], and 

a = k/(cp) = thermal diffusivity of the soil [m~^ da"^. 

For some problems with fairly simple initial and boundary con­
ditions, Eqn. 11.3 can be solved analytically, in the form of infinite 
series of sines and cosines that are known as Fourier series. The the­
ory behind those solutions is outside our scope, so we will have a 
look at a relatively simple numerical-graphical technique instead. 

Before going further, we need to take up a method for approxi­
mating a second derivative (ordinary or partial) as a finite difference. 
Suppose, for example, that we want to approximate 

dx"^ dx dx 

at a point xi, using a difference Ax = h. A common way to do this is 
to apply the forward difference scheme (p. 33) three times, as follows: 

d^T 
3x2 ~ 

dx)x+h dx)x 
h 

T{x + h)-T{x) T{x)-T{x-
h h 

h 

T{x + h) + T{x - h) - 2T{x) 

-h) 

(11.4) 
n 

-h)-2T{x) 
h^ 

NotethatEqn. 11.4helps to showwhy 3^r/ax^ has units of degcm"^. 
Equations like 11.3 can be represented approximately by using fi­

nite approximations, and considering changes in temperature over 
discrete steps of z and discrete steps of time. We will use subscripts 
(e.g., i = 1, 2, ...) to indicate successive values of depth z,and "over-
scripts" to represent values of time. In the discrete form, as we go 
from time t to time t + At at physical location i, Eqn. (11.3) becomes 
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t t t t+At t 
Tj-i + Tj+i -2Ti 1 Tj -Tj 

(Az)2 ^ a At • ^ ^ 

As you can see, the temperature variation through time is approxi­
mated by the RHS essentially as an Euler method step. 

t 
If we multiply through by aAt, add Tt to both sides, and solve for 

t+At 
Ti , Eqn. 11.5 becomes 

t+At t aAt t t t 
Ti-i^Tui-2Ti (11.6) 

This expresses the new temperature (at time t + At) at location i in 
terms of the old temperature (at time t) at that location and the old 
temperatures on either side of it. A physicist named Schmidt noticed 
that certain particular choices for Az and At could simplify calcu­
lations involving that equation considerably. In particular, we can 
choose these two differences to force 

from which At = 
(Az)2 2' ^̂ -̂ ^̂  ^̂ "̂ -̂ ^ -^ 2a ' 

and since it is usually convenient to specify Az based on the geom­

etry of the system, this amounts to determining a value for At after 

choosing Az. With the At set in that way, Eqn. 11.6 becomes 

i.e., the new temperature at location i is just the average of the old 
temperatures on either side of that location! This would make calcu­
lations simple (even in a spreadsheet), but it also allows for a simple 
graphical solution of heat transfer problems like ours, and of related 
diffusion and population-migration problems. 

Here is an example of Schmidt's graphical method. To interpret it 
quantitatively, we will use a = 0.42 cm^ min~^ and Az = 5 cm, say^. 
Then each time step we take will represent 

At = ^-—- = 777—TT;- = 0.496 hr ^ 0.5 hr, or 30 min. 
2a 2(0.42) 

^The value for a is taken for loess soil from Geiger (1966), who indicated that this 
parameter varies widely with soil type. In a real situation, one would want a good 
estimate for the particular soil type present at the site under investigation. 
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Figure 11.4: Schmidt's method apphed to varying temperatures in a soil 
profile. The nine measured temperatures at time 0 (solid line) define the 
initial condition; and the five measured temperatures at depth 0, and the 
assumed constant value at 40 cm define the boundary conditions. 

Suppose the initial temperature profile measured by the probe is 
as shown by the solid line in Fig. 11.4, and that the measured surface 
temperatures at several later times (ti, tz, ...) are as indicated along 
the left (temperature) axis. Then the temperature profiles estimated 
by Schmidt's method are indicated by the various dashed lines in the 
figure. We are making one major assumption here, that 50 cm is deep 
enough in the soil that the temperature there changes little over the 
time period of interest. 

Note that as the soil cools at the surface, the soil just beneath 
it cools too, but as you go deeper, e.g., to 25 cm, the soil is still 
warming from heat stored above that depth, at least initially. Work­
ing with Schmidt's method can provide interesting surprises at times. 
Information like this might help to explain the depth at which some 
animals choose to nest. Finally, although Schmidt's method is usu­
ally taught as a graphical procedure, it is easy to set up the same 
calculations in a spreadsheet, and to let it do the work. 

11.4 Atmospheric Diffusion in Three Dimensions 

The heat and mass balances we've studied so far have involved varia­
tions along a single spatial dimension, x. We now add variation with 
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Figure 11.5: Spatial relationships involved in diffusion and advection of sul­
fur from a smokestack, with a cubic control volume (CV) as shown in the 
inset. West is to the left, and east to the right. Definitions: V = ts.x/S.y^z, 
A\ = AyAz, A2 = /S.X/S.Z, and A3 = AxAy. 

y and z, and also make two other changes. First, we allow for a bulk 
flow of air (wind) in addition to diffusive transport. Also, we allow for 
turbulent (eddy) diffusion in place of the simple molecular diffusion 
that results from Brownian movement of molecules. 

Consider the small control volume shown in the plume from an 
effluent stack as shown in Fig. 11.5. We will derive the mass-balance 
equation for total sulfur as the plume from the stack moves along 
with a wind of speed U [m s~^], which we take to flow in the positive 
X direction. Let x, y , and z, each with units of meters, be defined as 
shown in the diagram. The zero point is the top of the stack. Let S be 
the mass of sulfur [mg] present in the CV and C = 5/V be the sulfur 
concentration there [mg m~^]. Note that C varies in both space and 
time, which is sometimes indicated by writing C = f{x,y,z, t). At 
a particular point, its dependence on time is often indicated by the 
notation C{t), while its dependence on location at a particular time 
is sometimes denoted by C = / ( x , y, z). 

We define a given transport rate to be positive for material moving 
in a positive x, y, or z direction. A mass balance for sulfur in the CV 
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over some short period of time At is thus 

5(x, y , z, t -f At) ^ S{x, y, z, t) + (Z rates in - Z rates out)At. 

We are working with an imaginary box (CV) whose front lower left 
corner is located at the point (x, 3/, z). From here on I will drop that 
cumbersome notation, but you should bear in mind that the notation 
S{t) really means S{x,y, z, t)—the t is indicated explicitly to empha­
size that we are interested in variation of S with t at a fixed point in 
space. 

Referring to Fig. 11.5, we can rewrite the above equation as 

S{t + At) « S{t) + (i?i + i?3 + -R5 - î 2 - i?4 - i?6)At, 

with units 

mg = mg + m 
Because C == S/V, we now divide through by V and subtract C{t) 
from both sides to obtain 

at + M) - at). (^i+i^3^^s-i^.-i?4-i^a)^, 

Dividing by At and taking the limit as At — 0 yields 

dC_ _ R1+R3+R5-R2-R4- RQ 
dt ~ V 

Next we need to express the six rates in more detail. First, i?i and 
i?2 represent bulk transport, or advection, of sulfur (S carried along 
by the wind). This bulk transport of sulfur is very much like the 
mercury carried into and out of our famous lake by the streams that 
feed and drain it. In the latter situation the mercury transfer rate 
was of the form m = qC ([mg day~^] = [L day~M[mg L~^]), where q 
was the stream discharge and C the mercury concentration. In the 
present case we have R = AUG ([mg s~^] = [m^][m s~^][mg m~^]), so 
the air flow across the face of the box is A times the velocity U [m 
s"^]. Thus 

Ri =AiUC{x)3indR2 =AiUC{x^Ax). 

The remaining Rs involve eddy diffusion. This is a process analogous 
to molecular diffusion, except that gas molecules are carried from 
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regions of higher concentration to regions of lower concentration by 
eddies (gusts or packets of air) rather than by Brownian movement at 
the molecular level. Thus, eddy diffusivities (K) tend to be orders of 
magnitude higher than molecular diffusivities. 

For these diffusion rates, we have that 

R = -KA^, 

where § denotes any spatial dimension like x or y or z. K, the eddy 
diffusivity, has units of m^ s~^ so the whole term has rate units of 

m2 I 2 I mg I mg ']A^] s J Lm'^J s 

From this, we calculate that 

Ri = -KyA2z^] (Sface) 
dyjy 

R4 = -KyA2^\ (Nface) 
Oy /y + ^y 

7^r^ \ 
Rs = -KzA3 -^ I (bottom face) 

OZ / z 

Re = -KzA3^] (top face) 
OZ J z+Az 

where Ky is the horizontal diffusivity in the y direction (perpendicu­
lar to the wind) and Kz is the vertical diffusivity. 

Now we substitute these detailed expressions for the Rs into the 
overall mass-balance equation to obtain: 

- \AIUC(X + Ax)] - \-KyA2^] 1 - l-KzA^^] 
L J L oyJy+Ayj I ozJz+Az 

The next step is to collect together the x-ward, y-ward, and z-ward 
terms, factoring out constants where possible. We also substitute 
V = AxAyAz, Ai =- AyAz, Az = AxAz, and A3 = Ax Ay: 



266 Chapter 11. Partial Differential Equations 

1 dC 

dt AxAy/^^z 
^y^zU{-C{x + Ax) + C(x)] 

+ AxAziC 
dc 

y \ 
idy/y+Ay dyjy 

^IdzJz+Az dz/ziy 

Cancelling factors of Ax, Ay, and Az yields 

dt 
U 

K^ 

-C{x + Ax) + C{x)' 
Ax 

^y)y+Ay ^y)y 
Ay 

+ 

+ Kz 

acN 
dz J z+Az dzJz 

Az 

Finally (whew!) we take limits as Ax, Ay, and Az each go to zero, and 
obtain 

dC _ dC d^C d^C 
(11.7) 

This is known as an advection-dispersion equation. The first-derivative 
term describes the advection (material carried by a bulk flow), and 
the second-derivative terms describe dispersion (or diffusion). We 
are assuming that x-ward diffusion is negligible relative to the x-
ward advection. Solving Eqn. 11.7 would require us to choose some 
system boundaries, to set boundary conditions on that system at all 
times, and to set initial conditions (for t = 0) at every point within the 
volume—the solution process is beyond the scope of this book. Note 
that the "Gaussian plume" model, which you may meet elsewhere, re­
sults from solving this equation under certain simplifying conditions. 

PDEs in Cylindrical Systems 

So far we have worked with PDEs in rectangular coordinate systems, 
but some problems arise in cylindrical or spherical objects. In such 
cases it is usually much easier to work with differential equations in 
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r+Ar 

Figure 11.6: Diagram defining variables for modelling heat transfer along a 
cylindrical wire of radius Ri, with an insulation layer having an outer radius 
of R2. The end view shows a control volume (CV); that view could also 
represent a section through the center of a sphere. 

terms of cylindrical or spherical coordinate systems^, which we con­
sidered earlier in Chapter 8. We will take up one simplified example 
of each. 

We begin with a cylindrical case. The most general cylindrical co­
ordinates allow for the quantity of interest (temperature, concentra­
tion, etc.) to vary with distance z along the length of the cylinder, 
with radius r out from the centerline of the cylinder, and with angle 
of rotation (/> about the centerline. We will work with a simple special 
case in which temperature varies only with r (and time t), but not 
with z or with </). This lack of angular dependence gives the problem 
radial symmetry. 

Consider a long, round, copper electrical wire surrounded with a 
layer of plastic insulation, as shown in Fig. 11.6. We allow for heat 
production G{t) [J cm~^ s"M caused by Joule heating; i.e., by an elec­
trical current flowing through the wire. (Similar mathematics might 
apply to the elongated body of a weasel or a dachshund, with fur re­
placing the plastic insulation.) We will assume that heat is lost from 
the outer surface of the insulation according to 

q = h[T{R2)-Te]^ 

where 

h = convective heat transfer coefficient [J cm"^ s~^ C~ ]̂ 

'̂ An excellent description of various coordinate systems appears in Arfken (1970) 
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q = heat flux density from the surface [J cm~^ s~M 
T{R2) = outer surface temperature [C] 
Te = temperature of the surroundings [C]. 

Then, we will be interested in the temperature profiles T{r,t) in the 
wire and in the insulation. 

In the copper wire, the energy balance for the control volume, a 
small cylindrical tube down the length of the wire, is, over some time 
period At: 

Heat content at t + At= 
Heat content at t 
+ Heat conducted in at r 
+ Heat generated within the CV 
- Heat conducted out at r + Ar. 

Thus for a wire of length L [cm], 

Hit ^ At) ^H{t) ^-fi At + GVAt 

[ kAr+Ar •^-j I At, 
OT /r+Ar 

with units 

J = J + | " ^ m [cm^l [—1 [s] + r ^ l [cm^l [s] LcmsCJL J LcmJ Lcm"̂  s j •- -• 

Lcms CJ L -• LcmJ 

Here V is the volume of the CV, and Ar and Ar+Ar are its inner and 
outer surface areas, respectively. Expressing these areas and the vol­
ume in terms of L,r, and Ar yields A^ = 2nrL, Ar+Ar = 27T(r + Ar)I , 
and V ~ ZnrLAr. 

Strictly speaking, V = n{r-hAr)^L-TTr^L, or V = TrI[r^ + 2 rAr+ 
(Ar)^ - r ^ ] . However, if we make Ar small enough (as we will in 
the limit), then the Ar^ term will be neghgibly small compared with 
2rAr. Using these values, we can rewrite the energy balance as: 

Hit + At) - Hit) ^ -kiZnrL) - ^ ) At + G(2TTrLAr)At 
or Jr 

-fe[2Tr(r + Ar) I ] ^] 
or /r+Ai 
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If we divide through by CppV and by At, we have: 

Tit + At)-Tit) 1 r kr BT' 

At 

+ 

i_r__fer_ ar\ 
PP L rAr dr J 

) ] • 
with units of 

g deg cm^ 

J g 

Cpp L r A r dr Jr 

fc(r + Ar) dJ^ 
dr. 

J cm 

r A r 

+ 

cm deg s cm^ 

Jem 
cm deg s cm^ 

In the hmit as At -* 0, Eqn. (11.8) becomes 

rdegl 
L cm J 

(11.8) 

+ -^1 cm^ s j 

dT 1 
dt CpP 

ir + Ar)—\ dT\ 
r+Ar or I r 

rAr 
+ G 

We now would hke to write the conduction term in the form of an 
appropriate derivative, but the first term on the RHS of this equation 
is not of the simple form 

lim 
Ar-O 

dr/r+Ar dr/r ^ ^^T 
Ar dr^' 

However, to obtain a derivative, all we need in general is an expres­
sion of the form 

/ ( r + A r ) - / ( r ) 
Ar 

which becomes df/dr in the limit as Ar -^ 0. So all is not lost—we 
define 

Sir) 'Ir^^. 
dr 

With this definition, the conduction term becomes 

(r + Ar) ar 
dr r+Ar 

ar 
ar r A r 

kSjr + Ar) -Sjr) 
r Ar 
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In the limit, this reduces to 

r dr r dr 

_k d^ kd7^d£ d^ fear 

r 3r2 r dr dr dr^ r dr' 

Substituting this term back into our DE then yields 

dT 
dt Cpp 

d^T IdT^ 
dr^ r dr 

This equation describes unsteady (time-dependent) conductive heat 
transfer in a cylinder, when temperature varies only in the radial di­
rection. (The 1 / r factor on the RHS is a general indicator of cylin­
drical geometry in problems like this.) If there were variations of G 
with z and with (p, or if the boundary conditions depended on these 
coordinates, then our equation would become (Kreith 1973) 

a dt dr'^ r dr r^ dcp'^ dz^ k 

where a = k/{Cpp). We will not derive this more general form, or 
work with any problems that require it, but I present it here for your 
general information. 

Spherical Coordinates 

The most general spherical coordinate system also involves three co­
ordinate variables, representing r , the distance out from the center of 
the sphere; (p, which is like longitude on a globe; and 0, which is sim­
ilar to latitude. These were diagrammed earlier in Fig. 8.4, p. 179. As 
with the cylindrical example above, we will work only with a simple 
case where we allow for no angular variation of temperature, either 
(^-ward or 0-ward. This leaves T to vary only with r and t. 

Look again at the circular inset in Fig. 11.6, p. 267. Previously it 
represented a cross section of a cylinder, but now we interpret it as 
cutting through the center of a sphere. This might represent the body 
of a small mammal rolled up into a ball, in which case heat produc­
tion G{t) [J cm"^ s~M would result from the animal's metabolism. For 
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an application using a model like this for understanding the physiol­
ogy of warm-blooded mammals, see Porter, Parkhurst, and McClure 
(1986). 

The energy balance for the CV would again be of the form 

dT 1 
Ar+Ar 

dT\ 
-

dT ] 
dt CppV l'^ l^^'^"^' drJr+Ar ^ drJr 

].GV]. 

The expressions for areas and volumes now represent the spherical 
geometry: 

Ar = 47rr^; Ar+Ar = 47r(r + Ar)^; V ^ Anv^Ar. 

Thus 

dT' dT' 
dT 
dt ^ 

k -^"^^ - - ^ ^ 3r / r+dr drJr , G 
Cpp Anr^Ar Cpp' 

or 

dT ^ 1 r fc Sir ^Ar)-Sir) 1 
dt ^ Cpp Lr2 Ar J ' 

where now 

Sir) ^ r ^ - ^ . 
dr 

In the limit we have 

a r _ 1 r k 35 i 
dt Cpp Lr2 dr J " 

Now we carry out the differentiation of the new 5: 

dS _ d 2^T _ 2^^T dT 
dr dr dr dr'^ dr' 

Finally, we put all this together and end up with 

dT _ 1 
dt Cpp 

~d^T 2kdT ~ 
k^^^ + —-T— + G 

dr^ r dr 
1 

~ Cpp _r2 dr \ dr ) I (11.9) 

This equation describes conduction of heat in a sphere, with radial 
symmetry in the heat source and in the surface boundary conditions. 
It would apply to a roUed-up animal only if its surface heat loss were 
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uniform around its whole body. If that heat loss varied from one 
point to another on its surface, then all the cylindrical coordinates 
would have to be brought in. The result would be: 

}_d£ _ _l__a_ / 2^\ 1 d ( . .^J\ 
a dt r"^ dr \ dr J r^sm4>d4>\ dcj)) 

1 d^T G_ 
^ r2s in20a02 ^ k' 

As you can imagine, this full equation would be more difficult than 
Eqn. 11.9 to solve. 

11.5 Exercises 

1. Differentiate Eqn 11.1 once with respect to N to obtain Eqn 11.2, 
p. 252. 

Figure 11.7: Geometry of a city located in a rectangular basin. The small 
cube in the middle is a control volume, with dimensions Ax, Ay, and Az. 

2. A city is located in a basin (Fig. 11.7) between a mountain range 
and some associated foothills^. The city is conveniently square 
(3 km on a side). One windy day, the SO2 concentration in the 
air throughout the basin builds up to 10 mg hter"^ Then sud­
denly the wind stops, and an inversion sets in at 100 m above the 
surface. The basin is surrounded by cliffs 100 m high (strangely 
enough). 

Assume SO2 production at any point on the surface is known in 
terms of a function P(x, y , t), in kg km"^ hr"^ (P would be high 
at a coal-fired power plant, and might be negative at a location 

^This problem is somewhat oversimplified to make it easier to deal with. Even so, 
you may find that it is not too easy. 
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where plants absorbed SO2.) The physics of diffusion across a 
plane, which is similar to the physics of heat conduction, can be 
described as: 

R = -KA^^, 
dx 

where R is diffusion rate across a vertical plane of area A [km^], in 
kg h r " \ K = diffusivity of SO2 in air, [km^ hr"^], C = SO2 concen­
tration, [kg km~^], and x = distance in the direction perpendicular 
to the plane, [km] 

In any small control volume, the SO2 concentration C at time t + At 
will approximately equal C(t) plus 

Net mass of SO2 entering control volume during At 
Volume of control volume 

because concentration is mass per unit volume. 

Your tasks are to: 

a) Identify the 6 terms that define the net rate of SO2 accumu­
lation in the volume. For each of these terms, you will need 
to multiply a rate per unit area (kg km"^ hr~^) times the area 
across which that transfer is occurring to obtain a rate in kg 
hri . 

b) Add the terms that add SO2 to the volume, and subtract the 
terms that take SO2 out. Be careful though, since some of the 
terms have their own minus signs from Pick's law. 

c) Multiply this net rate (from B) times At to obtain the approxi­
mate net increase in kg of SO2 during the time increment. 

d) Divide the result from C by the volume of the control volume 
(in km^), to get the net increase in SO2 concentration. 

e) Rearrange terms to get time dependence on one side and 
space dependence on the other. Also, group x-dependent, y-
dependent, and z-dependent terms separately. 

f) Take limits as Ax, Ay, Az, and At each go to zero, and you 
have your PDE. 

The initial condition is that C(x, y, 0) = 10 mg L~̂  = 10'̂  kg km~^ 
for all X, y, and z. The boundary conditions are that dC/dx = 0 
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on the east and west boundaries, and dC/dy = 0 on the north 
and south boundaries. These conditions are consistent with zero 
diffusion through the cliffs that bound the city. Also, dC/dz = 0 
at the inversion {z = 0.1 km), but 

-K^] = P ( x , y , t ) a t z = 0. 

3. Consider a solar heat collector made of a copper sheet that is H 
mm thick by W cm wide by I cm long. The thickness H is small 
enough that temperature differences perpendicular to the plane of 
the sheet may be neglected. That is, no z component of heat trans­
fer needs to be considered unless you wish to do so. The copper 
has conductivity k (J cm"^ deg~^ sec"^), density p (g cm~^), and 
specific heat Cp (J g"^ deg~^). 

Heat is absorbed by the upper surface of the sheet at a rate that 
(for practical purposes) depends only on the current solar radi­
ation striking the plate. This rate, S{t) [in J cm~^ sec~M, varies 
with time but is uniform over the surface of the plate (i.e., it is 
independent of the x and y coordinates). 

Heat is transferred out of the lower surface of the sheet to water 
that flows through tubing soldered to that surface, at a rate that 
varies with x, y, and the local temperature T{x, y, t). Specifically, 
this rate [QiXyy, t)] is given by 

Q = b{x,y) X [T{x,y,t) - 0{x,y,t)] 

where b is an exchange coefficient (J cm~^ sec~^ deg"^), and 6 is 
the water temperature in the nearest tubing (deg). 

In summary, heat can be transferred into and out of any small area 
on the plane by x-ward conduction, y-ward conduction, adsorp­
tion of solar energy on the top, and transfer to the water in the 
tubing on the bottom. 

Your assignment is to derive the partial differential equation that 
summarizes the net heat balance at every point on the plane of the 
copper sheet. For this derivation, start with a control volume of 
thickness H that runs from x to x + Ax, and from y to y -\- Ay. 
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4. The core of a nuclear power reactor at Goldurnsk is a sphere of 
radius R in which, after the graphite rods are removed, the rate of 
heat production is uniform at Q [J cm"^ min"^]. The outside of 
the core is kept at a uniform temperature TR by heat-exchanging 
fluid (usually liquid mercury); this ensures that the temperature 
within the core will vary with radius only, and not with "latitude" 
or "longitude". 

Derive the differential equation whose solution would allow calcu­
lation of the core temperature at any distance r from the center 
and at any time t after the graphite rods are withdrawn. Ignore the 
hollow spaces left by the rods, and assume the remaining core ma­
terial is uniform in thermal conductivity k [J cm"^ min~^ deg~^], 
density p [g cm~^], and specific heat c [J g"^ deg~^]. 

5. Migration of plant and animal populations is in some ways analo­
gous to molecular diffusion, at least if animals tend to move from 
areas of higher density to areas of lower density in proportion to 
population density gradients. Some mathematical biologists (e.g., 
Holmes, Lewis, Banks, and Veit 1994) have written models that 
exploit this analogy, as we do here. 

Suppose two rabbits (that's all it takes if you pick the right two) are 
plunked down at a point in the middle of the Central Australian 
desert. There they begin to reproduce, and to migrate outward in 
a circular pattern. Assume that: 

• Birth and death processes on any small area of land follow a 
logistic model of the form 

Births - Deaths .rK - N 
: =rN—-— 

time K 

where births and deaths are in units of rabbits, time is in years, 
and r = relative net reproductive rate [rabbits/rabbit/year], 
N = rabbit density [rabbit/m^], and K = carrying capacity 
[rabbits/m^]. 

• The rabbits migrate from more crowded to less crowded areas, 
in a process somewhat like molecular or eddy diffusion. In partic­
ular, their rate of movement across any I meters of line is given 
by 
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Figure 11.8: A circular coordinate system. 

Q = -mL-r-, 
dr 

where Q = migration rate [rabbit/year], m = "migrativity" 
[m^/year], L = length of line across which migration is taking place 
[m], and dN/dr = gradient of rabbit density in the r direction, 
[(rabbits/m^)/m]=[rabbits/m^]. 

Your job is to write the partial differential equation for N as a 
function of r and t, assuming a circular coordinate system cen­
tered on the point of release. Use a "control area" that is a narrow 
ring of area as shown in Fig. 11.8. 

Two hints: 

• The diffusive movement of rabbits into the control area from 
the inside (at r) takes place across a line of length Zrrr, while the 
movement outward from the control area occurs across a line of 
length 27T(r + Ar). 

• Do not attempt to write separate DEs for the birth and death 
versus the migration processes. Migration from an area responds 
to total density in that area, regardless of whether the animals 
were born in the area or migrated into it. Similarly, rabbits in a 
given area can reproduce and die regardless of whether they were 
born there or migrated into that area. Thus, your one PDF should 
combine both processes. 

6. An entomologist who studies insects that bore into giant sequoia 
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(Sequoiadendron giganteum) trees wants to know how the temper­
ature varies with time and depth in the trunk, as daily warming 
and coohng occurs at the tree's surface. If we treated the trunk as 
a circular cylinder, the appropriate equation for the energy balance 
would be: 

3^2 Y dr a dt' 

It is possible to modify Schmidt's method to allow its use in solv­
ing this equation, but we won't add that comphcation here. In­
stead, if a cylinder is large, then temperature variations near its 
surface will not be very different from those in a solid with a flat 
surface. In such a case, we can approximate the energy balance 
above with 

where x is the depth from the surface into the trunk. You have 
seen how to apply Schmidt's graphical method to solving that 
equation. 

Now, suppose that the surface temperature T̂  (t) on the north side 
of a "big tree" trunk during some midsummer period varies ap­
proximately as 

Ts{t) = t + h s i n [ c ( t - d ) ] , 

where f == 21 C is the mean temperature (over several days), Z? = 3 
C is the amphtude of the sinusoidal variation, c = {2n/24) hr~^ 
adjusts the period to 24 hr, and d = 9 hr is the "phase shift" that 
causes the maximum to fall at 3 p.m. This equation assumes that 
midnight of the starting day is equated to t = 0. 

Use Schmidt's method to study the penetration of the daily heat 
wave into one of these large trees. As an initial condition, assume 
that the temperature is uniform at T, at a starting time of 9 a.m. 
one morning. Then, let the surface temperature vary sinusoidally 
as given. 

Kreith (1965) gives a value a = 0.0029 ft̂  hr~^ for pine when the 
heat transfer is perpendicular to the grain as it is here. Convert 
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that value to cm^ hr~^ and estimate graphically the changes in 
temperature in the tree trunk for eight time steps, using ten Ax 
steps of 2 cm each. The surface temperature climbs for eight time 
steps, and then begins to decline again. The process continues to 
work in that case, but the lines start to overlap confusingly unless 
you switch to a new sheet of paper. Assume (probably wrongly) 
that the thermal properties of the bark, as represented by a, are 
the same as those in the wood. Schmidt's method can be adjusted 
for varying thermal properties, but we won't deal with that here. 
Also assume that the temperature at 20-cm depth remains at T for 
the duration of your calculations. 

Once you have completed those manipulations, plot the tempera­
ture at 2 cm depth as it varies with time. This might be of interest 
to the entomologist, if that were a typical depth to which the in­
sects bored. 

Coda: I once used thermocouples to measure temperatures every 
hour for 24 hr, at 2 cm intervals in a 20-cm diameter Ponderosa 
pine tree in Colorado. Interestingly, the temperature at the cen­
ter of the tree (at a 10 cm depth) reached a maximum at a time 
very close to 12 hours after the surface temperature reached its 
maximum. As a related point, the mass of wood present in a for­
est acts as a sort of "thermal sponge," and reduces temperature 
variations relative to what they would be in the same climate if 
the trees weren't there. Wood is not as effective as water in this 
regard because its heat capacity is lower, but it can still moderate 
temperature variations substantially. 

7. A wastewater treatment plant has a long, rectangular primary set­
tling basin that is L m long, W m wide, and H m deep in the x, y, 
and 2 dimensions, respectively. Water moves in the x direction, 
from 0 to I ; the flow rate is ^ m^ s~^ The water entering the tank 
at X = 0 contains a concentration Cu of solids; this concentra­
tion varies with time, so we can think of Q = Ctit) [g m"^]. (This 
is the boundary condition. The subscript i indicates input to the 
upstream end of the basin.) 

As the water moves down the basin, the sohds settle out, which is 
the main purpose of the structure. Specifically, within any small 
volume, a fraction p of the solids drop to the bottom each second 
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(on an instantaneous basis). Your task is to derive the rate equa­
tion whose solution would tell us the concentration of solids in the 
water at any point x and at any time t. Describe in general terms 
what the form of the initial condition would be for a problem like 
this. You do not have to solve the equation. You should make the 
simplifying assumptions that both the water flow and the concen­
tration of solids are uniform across any vertical cross section of 
the basin (i.e., that neither varies with y or with z.) 

Note that this situation involves only advection of the solids, and 
not diffusion. Provide unit checks for the first equation you write 
down (whatever form that takes) and for your final answer. 

8. One of the many uncertainties related to global warming is the 
possibility of positive and negative feedbacks that may exacerbate 
or ameliorate the general effect. For example, as warming occurs 
in northern latitudes, organic matter that has accumulated from 
slow decomposition caused by low temperatures may rot faster, 
releasing CO2 and methane in the process. These gases could then 
"magnify" the greenhouse effect caused originally by burning fos­
sil fuels. 

Geochemists find, not surprisingly, that CO2 and methane emis­
sion rates increase with temperature in the peat. Suppose you 
are working with a research team who wish to model heat flow 
within a peat bog. Your task here is to derive the partial differen­
tial equation describing heat conduction in a region of a bog where 
the following simplifying conditions hold: 

• Temperature may vary with time, depth z, and both horizontal 
coordinates {x and y). Express distances in cm. 

• The peat is fairly homogeneous, with uniform thermal conduc­
tivity k [J cm~^ s~^ deg"M, density p [g cm~^], and heat capacity 
Cp [Jg-i deg-^-

• No water is flowing, so heat moves only by conduction (opposite 
to temperature gradients in the way we have studied). 

• Heat is produced by the decomposition process at a tempera­
ture-dependent rate f{T) [J cm~^ s~M. 

Because no shape has been specified for the region of interest, 
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you need not be concerned with boundary or initial conditions, 
and solving the equation is out of the question. However, show 
your derivation in detail. 

As you have seen, Schmidt's method allows easy but approximate 
solution of the equation for transient (time-dependent) conduction 
of heat in one physical dimension; i.e., 

dt = a a t 2 ' 

where a = k/(cp) is the thermal diffusivity of the medium. A gas 
pipeline is currently under consideration to be constructed next 
to the Alyeska oil pipeline that crosses part of Alaska (this is not 
just hypothetical—it may have already been constructed). Suppose 
you work for a consulting firm, and that you are assigned the task 
of calculating pre-construction temperature variations in the soil 
profile near where the proposed pipeline is to run. At your starting 
point, the temperature profile (temperature T versus depth z) has 
the form shown here: 

C\J 

o 

o 

»- 00 

Q . CD 

E 

eg 

3.0 4.5 6.0 7.5 
Depth [cm] 

9.0 10.5 12.0 

You propose to your supervisor to use Schmidt's method, and you 
show her an example of how it works. She finds it interesting, 
but says that you need to use calculations rather than a graphical 
method to allow use of more, smaller Az steps, smoother plot­
ting, and numerical results to be used in calculations of other ef­
fects. You respond "Aha!" Recalling that the points you plot in the 
graphical method are simply averages of two earlier values, you 
realize how easy it would be to do calculations that are completely 
equivalent to the Schmidt manipulations. 
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Consider a soil for which a = 36 cm^ hr~^ (van Wijk 1963). Start­
ing with a temperature profile given by the values in the t = 0 
row of the table below (and shown in the figure above), and given 
the boundary conditions provided in the z = 0 and z = 12 cm 
columns, fill in the table for the next two time steps (t = At and 
t = 2At). Provide the temperature estimates in a table like the 
one below. You may assume that no water is freezing or thawing 
during the time period you are considering. 

Finally, determine and state (with units) what the numerical value 
of t = At is, so one can associate each row of the table with a 
specific time. 

t 
0 

At 
2At 

Depth z [cm] 
0.0 1.5 3.0 4.5 6.0 

Temperature 
7.7 
72 
6.7 

9.8 11.3 11.9 11.1 

7.5 9.0 10.5 12.0 
[deg C] 

8.9 6.0 3.2 1.8 
1.8 
1.8 

10. A factory uses an organic solvent, some of which evaporates 
from its manufacturing process and escapes into the outside air 
through a vent pipe in the roof. From there the vapors are dis­
tributed and destroyed by the following processes: 

a) They are carried along by a wind that always blows straight x-
ward, from west to east, but with variable speed v{t) [m s"^]. 

b) They diffuse vertically, by turbulent (eddy) diffusion, with dif-
fusivityiCz [m^ s~^]. 

c) They diffuse horizontally, northward and southward, with dif-
fusivityi^y [m^ s~^]. 

d) They are broken down photochemically into more harmless 
substances. In this process, a fraction / of the vapor in any 
small volume degrades each second. This / is not a constant; 
rather, it is proportional to solar intensity, which varies with 
time of day. 

Using a small control volume, derive the partial differential equa­
tion which, if solved, would determine the concentration of solvent 
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vapors at any point x, y, z relative to the outlet of the vent pipe 
as the origin. 

11. Population biology has a rich tradition of mathematical modelling. 
As noted earlier, some population biologists add migration to their 
models by borrowing the diffusion concept from physics. We 
adopt that analogy here. 

Consider a large area of relatively uniform forest. A new insect 
pest is introduced near the center of this area by the careless im­
portation of some infested logs. The pest population grows and 
expands as follows. On any given hectare, its "natural" growth 
rate (birth rate minus death rate) is logistic, with that rate G [kg 
biomass ha"^ da"M being 

c = ..(V) 
Here p is the specific growth rate [da~^], B is the biomass density 
[kg ha~^], and K [kg ha~^] is the short-term carrying capacity of 
the forest for the insect density. 

In addition to this growth, the insects migrate radially (in ever-
increasing circles) analogously to diffusion, along biomass-density 
gradients. Thus, across any line or line segment (including curved 
ones), the pests migrate at a rate M [kg per meter of line length 
per day] given by 

00) 

where D is the insect "diffusivity" [m^ da~^] and cv is any coordi­
nate, such as X or r , along which the pests are moving. 

Your task is to derive the equation that, if solved, would allow 
prediction B's variation with time and with distance from the point 
of the original introduction. You need not attempt to solve the 
equation—just derive it. Fig. 11.8, p. 276, would be useful here; 
with the outer ring representing the outer boundary of the forest 
region, the point of contamination being the center of the circles, 
and the narrow ring being a control area. The area of the latter is 
approximately ZnrAr. 
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Be sure to check the units of your final result, noting that one 
hectare is 10"̂  m^. (For safety, you may wish to check units at 
several stages in your derivation.) 

12. An insect pest is carelessly introduced more or less uniformly 
along a road at one edge of a rectangular strip of forest. (The 
short dimension of the rectangle is along the road, and the long 
dimension is perpendicular to the road.) 

The insects move into and then through the forest in a diffusive 
fashion, with a dispersal coefficient (a "migrativity") of M m^ da~^ 
They have a reproduction rate of b percent per day, and a fraction 
/ are eaten by predators, or die for other reasons, each day. 

Derive the PDE that would yield as its solution the density D (in 
insects m~^) at any time t and at any distance x into the forest. 
The X coordinate is measured perpendicular to the road. You need 
not attempt to solve this equation. Be sure to include at least one 
unit check. 

11.6 Questions and Answers 

1. What Greek letter is the partial derivative symbol? 

• It's not a Greek letter at all. I think it's Elvin, from the Fourth 
Realm <grin>. Actually, it may be somebody's idea of a curly 'd'. 
Just read it as 'partial' or, when you're not worried about confusion 
with ordinary derivatives, just read it as 'd'. 

2. In the G{N,P) example with algal growth, can you also get the 
partial of N with respect to P (and vice versa), and would you ever 
want to do that? 

• First, yes, you can. One way (for that particular function) is to 
solve for iV as a function of G and P, and then take dN/dP. If 
it were a messier function, and you couldn't isolate the JV on one 
side, you could still use a process called implicit differentiation to 
get dN/dP. See most any calculus text for details on that process. 

Second, would that be meaningful? Yes, in many situations, in­
cluding this one. Here it would tell you about how much you 
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would have to change N for a unit change in P, to keep G con­
stant. It seems from looking at the plot that this derivative would 
therefore be negative. 

3. You derived the finite difference scheme for a second partial 
derivative. Does that equation also apply for ordinary second 
derivatives? I'm referring to the [y{x-^h) -i-yix-h) -2y{x)]/h'^ 
expression. 

• Yes. That same formula is sometimes used to get approximate 
(numerical) solutions to second-order ordinary DEs, too. 

4. Please explain again why partial differential equations don't always 
involve second derivatives. 

• So far in Chapter 11 we've dealt with fluxes that were propor­
tional to temperature or concentration gradients. The rate of diffu­
sion across a plane is proportional to the first derivative of concen­
tration. The rate of heat conduction across a plane is proportional 
to the first derivative of temperature. Since the first derivative can 
change from x to x -\- Ax, that leads to second derivatives when 
we shrink to a point. 

Not all fluxes are proportional to gradients, however. When a ma­
terial, or for that matter, heat, is carried across a plane by a flow 
of some fluid (like water or air), the flux depends on the concen­
tration (or temperature) in that fluid, not on the gradient. Now 
it's the concentration (temperature) itself that changes from x to 
X + Ax, so when we take a difference and shrink to a point, we get 
a first derivative. 



Appendix A 

Pre-Calculus Math Review 

This section is provided for those wishing to review basic pre-calculus 
math. 

Rules of Precedence 

To be most valuable as a language of science, math needs to be as 
unambiguous as possible. For example, the following equation ap­
peared in a statistics paper by Chen (1995): 

^i=UXi-X)^lnlS^. (A.1) 

It is not obvious whether that means 

^'= (n/^3) o r ^ , ^ 
Z{Xi-X)^ 

n 
IS'-

which are different quantities. This equation arises in the "Chen test," 
which the EPA specifies for use at some hazardous waste sites (US 
EPA 1996), so it, like most equations, is important to "get right." The 
second form turns out to be correct, but it would have been helpful 
if the author had used parentheses and written the equation unam­
biguously to begin with as 

^i=Z{Xi-X)^/{nS^). (A.2) 

It is useful to know the rules of precedence for performing math­
ematical operations, and then to use lots of parentheses to make the 
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order even more clear. Those rules are that parentheses and their 
relatives^—0, [] or brackets, and {} or braces—act first, exponentia­
tion (e.g., taking x to the power y) comes next, multiplication and 
division are next, and addition and subtraction come last. Also, op­
erations at a given level (e.g., multiplication and division) are per­
formed in order from left to right. Thus a + bxx = a+{bxx), 
axb-\-c^xd= {ah) + [(c^)rf], and alh xc = (a/b)c. Note that by 
these standard rules, a/b x c is equal to {ac)/b, not to a/(be). 

As another example, 1 + 2/3 + 4 = l + (2/3) + 4 = 5f,not | . If you 
mean (1 + 2)/(3 + 4), be sure to put in the parentheses. For another 
example, 3/5^ = 3/(5^), not (3/5)^. As it happens, Chen's equation 
A.l is correct if interpreted by these rules (check it out!) but even so, 
it would be safer to write it as Eqn. A.2 in the first place. 

Incidentally, two common words that have specific meanings in 
mathematics are term and factor. In general, I will use "term" to mean 
an expression within a formula that is added to or subtracted from 
other terms, and "factor" to mean an expression that is multiplied by 
other factors within a term. For example, in the series 

fix)=fia) + ̂ (x-a) + ̂ ^(x-a)H^^ix-a)\ (A.3) 

which will appear in the next chapter, the expressions fix), f{a), 
and/ ' ' (a)(x - a)^/2! are terms, while/' '(a), (x - a)^, and 1/2! are 
factors within the fourth term. Although these two words are some­
times used more loosely, it is helpful to maintain these more precise 
meanings when discussing math. 

Note that in Eqn. A.3, f(x) denotes the value of the function / 
at some value of the independent variable x, and f{a) denotes the 
value of the function at a particular point where x = a. 

Some Algebraic Operations 

Below is a list of relationships from algebra that we'll need from time 
to time in the book. I'd suggest practicing with them now, by way of 
review. To use these profitably, please consider the following points: 

^Caution: brackets and braces are useful in mathematical text to help the eye find 
matching sets; however, most computer languages give special meanings to those 
symbols, and only ordinary parentheses are usually allowed to delimit sections of 
equations. 
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1. It's easy to confuse "levels of knowing"—it is one thing to watch 
someone else work through a relationship, and to say to yourself "I 
see that." It requires a different, much deeper level of understand­
ing to be able to work through similar examples on your own^. 
This deeper understanding is what is needed for effective use of 
mathematics in environmental science, and it can be developed 
with practice. For this reason, I suggest that you work with the 
relationships below something like this: 

2. Look at each relationship, and decide whether it is something you 
already know really well (as well as you know that "one plus one 
equal two," for example). If so, go on to the next one. If not, 
don't just look at it—instead, work with it. Put in some numbers. 
Demonstrate for yourself that the relationship is true, for at least 
a couple of cases. 

Here's an example: Suppose the relationship given is x^x^ = 
x^+b^ which shows one of the ways in which exponents combine. 
You could just try to memorize this, but you'll learn it much more 
effectively if you plug in some numbers, like 2^2^ = 2^+^ = 7J. That 
looks reasonable, but to be sure, check it out by calculating 2^, 2^, 
and 2'', and confirming whether it all checks out. As you can see, 
8 X 16 = 128, so it does check. (Using your calculator to calculate 
2J will give you practice with specialized calculations of that type, 
too, so this is an additional advantage you can gain from this sort of 
exercise.) 

Working with relationships in this way, in contrast to just read­
ing about them, not only gives you a deeper understanding, but also 
helps to imprint them in your memory. I suggest that you work with 
all the others in the hst in similar ways. 

2. e^^y = e^e^ (This is the same relationship, for a particular "x." 
As you probably know, e is the base of natural logarithms. Inci­
dentally, e^ is often written as "exp(x)." The "exp" is known as 
the exponential function.) 

^Because of this, you are strongly advised not to look at the answers to problems 
until after you've done your best to solve them on your own 
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3. x~^ = l/x^ (the definition of a negative exponent) 

4. x^~^ = x^/x^ (Check out how this follows from the relationships 
above.) 

5. (ax)^ = a^x^ (and as a special case when p = 0.5, ^/Jcy = 

6. xi/^ = V^ (It is not true that x^/^ - 1/x^.) 

7. gioĝ  = X and log^^ = x. (These follow from the definition of 
a logarithm. What are the comparable expressions for base 10 
logarithms?) 

Properties of Logarithms 

Because logarithms play an important role in many areas of apphed 
math, it is worthwhile to review their properties here. By definition, 
the logarithm to the base f? of a quantity x is simply the power (expo­
nent) to which b must be taken to yield the quantity x. For example, 
2 is the log (base 10) of 100, and 0.5 (or 1/2) is the log (base 10) of the 
square root of ten. In general, b^^^^^ = x; for example, lO^̂ îô  = x. 

When the base is t' = 10, we refer to common logarithms. When 
b is the number e {^ 2.71828183), we refer to natural (or Napierian) 
logarithms. These are the two most frequently used bases, but base 2 
can be useful when halving or doubling is of particular interest, and 
other bases are permitted if needed. 

Notation can be a httle confusing—in some scientific and engineer­
ing writing, logx refers to the common (base 10) log, and Inx refers 
to the natural (base e) log. However, "real mathematicians" often use 
"logx" for natural logs, and "log^o^" for common logs, because nat­
ural logs arise naturally in their applications, and common logs do 
not. Thus, when using various computer software (spreadsheets, sta­
tistical packages, languages like Fortran, and mathematical programs 
like MATLAB and MathCad) to perform calculations involving logs, be 
sure to check the appropriate names for the different logarithms. You 
also have to be careful when you read scientific papers and books. If 
you see "log" without a base subscript attached, you have to figure 
out from the context which base is intended. In this book, "log" will 
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refer to the natural (base e) log; if base-10 logs are needed, they will 
be denoted by "logio." 

The main properties of logarithms follow from their definition and 
from the properties of exponents. For example: 

1. Ify = x^.thenlogy = alogx. 

2. If z = X • y , then logz = logx + \ogy. 

3. log 1/x = logx"^ = - logx. 

4. If z = x/y, then logz = logx - log3^. 

5. lO^^sio^ = X and logio lO"" = ^ 

6. \ogxy = logx + logy (These same relationships hold for logs to 
any base.) 

7. log{x/y) = logx - logy 

8. logx^ = p logx 

9. log(x -{- y) = log(x + y)\. Be careful—the log of a sum can't be 
simplified further. If you needed a numerical value, you would 
have to calculate the sum before taking its log. 

10. log{x^y~^) Based on the relationships above, try expressing this 
in terms of logx and logy. 

Now we get away from logarithms, and look at other relationships: 

1. {ax + by)^ = (ax)^ + 2axby + (by)'^ Try showing this by multi­
plying out {ax + by){ax + by). 

2. {ax -f- by)^ = {ax)^ + 3{ax)^by + 3ax{by)^ + {by)^ 

3. {ax + by)^ Try working this one out. 

I. Without using a calculator, simplify to a single number: 

1. 2^ X 2^ - ?; 2. (3^)3 = ?; 3. (2/3)^ = ?; 4. 2^/22 = ?; 

II. Some of these "equalities" are correct and some are not. Mark each 
as true or false: 
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1. a^xb^ = {abV 

l.a^-xh'^ = (abV 

'i.'ia + Ab = 7ab 

5. x^ + y^ = (x + y)'^ 

y s 

1 1 a + h 
' a h ah 

^ a + h 1 a + h + I 
4- T + 1 = 1— 

c + a c + a c + a 
X + y _ y_ 

' X + Z Z 

^ X r sx -{- ry 
8. — + - = — 

y s sy 

^ a ax ^^ ax + hx\ , 
^.—x = -— 10. Ix = 

\ X + ex ) h hx ' \ X -\- ex ) 1 + c" 

III. Some important relationships: 

1. What is the equation of the straight hne passing through points 
(-1,1) and (2,16), where each of the points consists of (x,y) coordi­
nates? 

2. If 2x2 + 3 x - 5, what is X? 

3. Given log 2 and log 5, find log 10 without using tables or calculator. 

4. Given log^o 5, find log^o 2 without using tables or calculator. 

Calculator Problem Set 

These exercises are to help you ensure that you know how to use your 
calculator. It is to your advantage to be sure you can do all these 
operations—you may need to do similar calculations in exercises as 
you work through this book. Try not to do any subcalculations in 
your head (except to check results), and not to write down intermedi­
ate results if that can be avoided. 

1. Simple operations: 5 x 3 ; 15/3; 6 + 5 - 1 

2. 5 x 3 x 7 ; 6 x 4 + 2; 3(6 + 5 + 4) 

3. [(2 + 3 ) x ( 4 + 5 ) ] / [ ( 6 + 7 ) x ( 8 + 9)] 

4. [(2)(3) + (4)(5)]/[(6)(7) + (8)(9)] 
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5. exp 1; log 10; sin3.14 (radians, not degrees) 

6. exp(loglO); log[5(3) + 2] 

7. Store x = 3.3 in a memory. Then calculate {{[{2x - 3)x + 4]x -
5}x + 6). This yields the value of the polynomial y = 2x^ - 3x^ + 
4x^ - 5x + 6 at X = 3.3. (Be sure you see why this is so.) This 
technique for evaluating polynomials is computationally efficient, 
and it usually also produces less round-off error than evaluating 
the polynomial term by term. It is known as Horner's Rule. 

8. Obtain the natural log of the previous answer without repunching 
that answer. 

Answers: 
2c: 45; 3: 0.20362; 4: 0.22807; 5a: e = 2.71828; 5b: 2.30259; 5c: 
1.59265E-3; 6a: 10; 6b: 2.8332; 7: 162.4332; 8: 5.0903. 

Functions 

One basic and important concept in mathematics is that of the func­
tion. For example, y = 3x -\- 4 represents a linear (straight-line) re­
lationship between the variables x and y. This function might often 
be written as y = f{x) = 3x + 4 as well, indicating that y, the de­
pendent variable, depends on x, the independent variable. Note that 
although "3(4) = 12" uses parentheses to represent multiphcation, 
in forms like f{x) or g{t), the parentheses indicate a function rather 
than multiphcation. Thus, " / ( x ) " is read as " / of x" indicating that 
/ is a function of the variable x. It does not mean / times x. 

Among its many other uses, function notation allows compact 
statements of "what depends on what." Thus, " r (x ) " might indicate 
that temperature T depends on (or varies with) distance x. Similarly, 
"c(t)" might indicate that some concentration c varied with time t. 
Be careful with units. Because T{x) means "temperature at x" (not 
temperature times x), the units of T{x) are just degrees, not degrees 
X cm (or some other length units). 

If you have not used functional notation recently, please review 
the concept in an introductory calculus text. It is critical that you 
recognize notation like f (t) as representing a function of t, and not 
as a quantity f multiplied by a quantity t. 



Appendix B 

Solutions to Odd-Numbered 
Exercises 

I recommend that you not look at answers until you have taken the 
associated exercises as far as you can. You will learn a thousand 
times more (give or take a little) by working a problem through your­
self than by looking at a prepared solution and convincing yourself 
that you understand it. Remember that in your future work you will 
have to solve problems yourself, not just understand someone else's 
solutions (and the same is true in exams, if you are using this book 
in a course). 

If you help others with an exercise, you can do them the most 
good not by working it for them, but rather by either (a) working 
some similar problem for them, or (b) determining where they are 
stuck, and asking leading questions that will get them on the right 
track. If you go to the effort to help others in these ways, you will 
likely learn a lot yourself in the process. 

Chapter 1 
I. 133.3 mi 
3. 1.4615 T 
5. «42.795m 
7.TB ^ 13.379 hr 
9. 125 miles 
I I . L ^ 76.430 +0.00129412 T 
13. (1.4)^/^ = 1.2515, so the increase is 25.14%. 
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20 30 40 50 60 
Base speed S [mph] 

17. A. 
-TiTz - Tzr -h TzTi + TiT 

-r2 + n 

B. r ^ 5.26°C 
19. Not enough information is given. If you obtained a numerical 

answer, then you must have made some assumption that can't be 
justified on the basis of what is given. The difficulty is that the 
costs might be different in the two five-year periods. 

21. A. a = 330 and b = 170, both cal cm'^ day-^; B. c = 27T/364 
day~^; d = - 8 1 day 

Chapter 2 

dl 
dt 

-ct 

gt^ H- k 
a sin (a (t + b)) + ccos{a{t + b)) + 

gt cos {a (t-hb)) 
gt^ + k 

You might arrange the result in a different way, so yours could 
look different from this but still be correct. One way to check 
whether two forms are (probably) the same is to put numerical 
values into both, and to see whether they yield the same final 
result. I usually use a different prime number (2,3,5,7,11,13,...) 
for each constant or variable in an expression, to lower the chance 
of cancellation of errors. The numerical value requested is about 
0.00752028531. 
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3. The numerical value of the analytic derivative is - sin(2), or about 
-0.9092974268. (Be sure for this problem, and throughout the 
book, to set your calculator to work in radian mode whenever 
you calculate a trigonometric function like sin, cos, tan, etc. This 
is not necessary with hyperbolic functions like sinh, cosh, and 
tanh.) I can't supply a specific answer for the second part, since 
your result will depend on the number of digits your calculator 
uses in its calculations. 

5. z' = 2b sm{bx)cos{bx) 
7. Suggestion—sketch a diagram consisting of a rectangle that is x 

cm wide by y cm high. A smaller rectangle lies inside it, one 
that is X - 12 cm by y - 20 cm. The area of the seed bed is 
then Ash = {x - a){y - b) cm^, with a = 12 and b = 20, and 
the total area is At = xy, with At = 2000. The idea in max-min 
problems is usually to reduce the problem to a single equation for 
the quantity to be optimized, as a function of a single variable. 
Here we can obtain Ash in terms of x, namely 

Asb = (x .)(f-.). 
Differentiating yields 

At {x-a)At 
A;,--fc + 

X X^ 

and setting that to zero gives x = ±^JabAt|b, of which only the 
positive value is of interest. Thus x = 34.641 cm, from which 
y = At/x or about 57.735 cm. The seed-bed area is then about 
854.36 cm^. 

From the hint, p = m - 6 {x - fut). Note as a check that at the 
start, when x = fut, p = w as prescribed. Let A denote the total 
acorn production per ha per yr, so 

A = xp = I oaks • (acorns oak~^ ^^" /1 = ^[^^~ S {x - fut)]. 

The derivative dA/dx is zero when x = {m + 5fnt) 125. That 
yields x ^ 49, only one more than the 48 that were there at the 
start. The acorn production density with 49 oaks would be 9604 
kg ha~^ yr~^ Acorn production density for the original 48 oaks 
would be 9600 kg ha-1. 
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dL 
dt ^ 

0 100 200 
Day of year 

2bTT 
= COS 

c 

"27T(t + rf)1 

Daylength is increasing by about 0.5648497 min da ^ on Jan. 1, 
and decreasing by about 2.934913 min da~^ on Sept. 21. 
[1(0.5 + 0.005) - 1(0.5 - 0.005)1/(2 * 0.005) - 0.5648497, an 
excellent check. 

13. Let L be the 3 mi along the road and x be the 1 mi distance from 
the road. Then the optimum target is a distance y mi south of 
the truck, with y = L - X/A/3 - 2.4227 mi. It would take you 
t = {r 12) + {y lA) hours to reach the truck by that route, where 
r^ = x^ + (I - y)^. Thus, t ^ 1.18 hr, just a little less than the 
1.25 hr it would take by the right-angle route. Going straight for 
the truck would be slowest, at about 1.58 hr. 

15. When the equation is simplified, the constant terms and those 
involving x^ cancel out, and the original cubic results. 

17. The series is f{x) = {R + Sa + Ta^ + (5 + 2 Ta) (x - a) + 
r (x - a)^), which does simplify to the original quadratic. 

19. The series i s / ( x ) « e + 2 ^ ( x - l ) + ( 3 / 2 ) e ( x - l ) 2 + ( 2 / 3 ) 6 ( x - l ) ^ 
Its fractional relative errors at the specified values of x are 
-0.00001755649, -0.0002387804, -0.002819132, -0.02612107, 
-0.1636307, -0.5670925, and -0.9438657, respectively. 

21. R{T) = ore[{a'^ - Tf) + 4a^{T - a) + 6a^{T - a)^ + 4a{T - a)^ 
+ (r-a)^]. 

23. A. p{z) ^ 0.3682701402 - 0.1473080561(z - 0.4)-

0.1546734589(2 - 0.4)^ + 0.06972581320(z - 0.4)^ 
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B. p(0) = 0.3989423; p(0.8) = 0.2896916. 
C. p(0) « 0.3979832; Relative error: -0.002404107 
D. p(0.8) ^ 0.2890616; Relative error: -0.002174727 

25. The series requested is 0 (T - Af + 4 A^ (T - A)^ + 6 A^ (T - Af. 
Numerically, the third term is 13,053,750, and the sum of the first 
two (just the second one, actually) is 513,447,500. The ratio of the 
two is about 0.025; whether the linearization is acceptable would 
depend on the accuracy needed in the application. 

Chapter 3 
l .A. [(logx)2/2] + C; B. [log(x2 + l ) / 2 ] + C; C. 1; 

D. [ exp(20-exp( -2 t )H-4 t ] /2 ; E. ^ - 2; F. 1 - 3^-^ 
3. Simpson's rule yields / « 2.906442. 
5. 36a + 144^7 +648c m^ 
7. Eor the linear equation, A ^̂  -7.58190 gb and B « 5.387931 

gbyr- i . 
Remember, keep lots of decimals in calculations, and round 

off only at the end. Roundoff error is an insidious problem, worse 
than most people seem to appreciate, and keeping a few extra dig­
its can sometimes make a substantial difference in a final answer. 
Try doing the remaining calculations with the coefficients given 
here, and then again with A ~ -7.6 gb and B « 5.4 gb yr"^. What 
differences do you see in the final answers? The roundoff effect is 
likely to be even greater with the exponential function in the next 
part. 

Eor the exponential equation, a ~ 0.00152544 gb and b ~ 
3.86155 yr-i . 

Erom these, we can calculate that the mean population over 
the time interval would have been 1.75 gb if the linear model were 
true, and 1.3953 gb if the exponential model were true. {Now we 
could reasonably round that latter answer to 1.4 x 10^ people.) 
The rates of increase in the year 1732 would have been 5.3879 
gb/yr and 4.7294 gb/yr under the two models. 

9. This problem requires two separate applications of Simpson's 1/3 
rule. As with many if not most realistic mass-balance problems, 
the units for various quantities are not consistent, and you have 
to settle on a consistent set. Here I'll use cubic meters for vol­
ume, and seconds for time. You may have chosen other units, but 
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if you dealt with them correctly, you should get the same overall 
results as are provided here. 

The water volume added in the first day (two 12-hr periods) 
is (within the approximation resulting from integrating by Simp­
son's rule) 43200 m^, and the volume added in the second two 
12-hour periods is 41184 m^. I'll leave you to add those to the 
original volume present, to find the amounts present at the end 
of each day. 
With the units used here, 

u s m^ 3 
h r • r— • — = m^. 

hr s 

11. 12.0047 kg. A unit check would account for [g da~^]x [da] x 
[kg g~^], yielding kg as required. 

13. Your exact result will depend on which three panels you apply 
the 3/8 rule to. Applying that rule to the 9th-l 1th panels and the 
1/3 rule to the others yields a mean square root of 1.59 cm^^^. 
Using a similar calculation yields an area of about 10.7 cm^. 

Chapter 4 
1. The Maclaurin series is ê  - 1 +1 +1^/2! +1'^ jV. + ^4/41 + t^/S! + . . . . 

The derivatives, term by term, are 0, 1, 2t/2! = t, 3t2/3! = t^/2U 
etc. Adding those derivatives gives you back the original series. 

3. The equation is of the form y ' = a + by, with y = m, a = qa CA, 
and b = -[f -h iqa + (lb)/V]' Thus, the general solution for that 
form applies. See Eqn 4.6, p. 93. 

5. First find equations for the rise and fall of ctn with time. They 
would be dn = (Cmax/y)t for 0 < t < 7 days, and Qn = C^ax(2 -
t/7) for 7 < t < 14 days. Define {Cmax/7) '4 a for convenience. 
Then 

dm a 

is the rate equation for the insecticide mass in the tank for the 
first seven days. Rewrite that as 

dm ^ q 

For the second week, we have 
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dm q ^ (^ t\ q 
- ^ = qcin - -^yn = qCmax (2 - - 1 - - m , 

which, after a bit of algebra, can be rewritten as 

dm , ^ ^ Q. 
- 3 — = 14{?(X - qat - 77W. 
dt V 

Now divide by both w ' equations by V to obtain 

dc qa^ <l o^ J 

dt V V V ^ -f ' 

where ^ = qa/V, y = -q/V, and 5 = 14qa/V. You can solve 
both of those using the second equation in the table on p. 107 of 
the notes. For the first week, you get 

which, after replacing jS and y with their definitions becomes 

The solution of the DE for the second week is 

c{t) = (x(14 - t) + — + Ci exp ( - ^ ) , 

where Ci is the constant of integration. (You could obtain its 
value from the IC, if asked to do so.) The IC for that second equa­
tion is c{7), as calculated from the first week's solution. If you 
plot the overall solution, you will see that the tank concentration 
never gets as high as Cmax^ and that it begins to drop at the point 
when Cin drops below Ctank- It does not begin to drop at the end 
of exactly 7 days. 

7.3/oexp(-3t); {2/3)x^-hyo] yo exp{-3.5t^)] a n d - ( l / 3 ) cos(3t) + 

(1/3)+ yo. 
9. See Eqn. 1.6, p. 9. 
11. The DE is 

dm^ ^ q . 
—-— = rA - —m - jm. 
dt V ^ 
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This is another instance of our y' = a -\- by form, with y = m, 
a = rA, and b = -{f -h q/V), so the solution again comes from 
Eqn 4.6, p. 93. 

13. Because the derivative of log(cx) is 1/x, then treating W/WQ as 
cW, we see that the derivative of the U given is 0 + k/W. That 
is clearly the same as the RHS of the DE. At M̂  = W(0), we have 
U = Uo-\- felog(l) = [/o, so both parts of the check are complete. 

15. A-iv; B-iii; C-i; D-ii . 
17. 

dt dH dt . i [Q/^f(r^r,)] , 

where Te ^ a + b sin(rt)- Each term has units of deg min~^ 

Chapter 5 
1. The general analytic solution is that mass m reaches a given frac­

tion m/mo of the initial mass at time 

^ log(m/mo) 
log(l/2) • 

For 2iOpb, the useful range is 0.03176-219.25 yr. For ^^C, the 
range is 8.3285-57,502.6 yr. Thus, the ranges do overlap. 

3. Ignoring new water coming in, the water present at some time 
t = 0 is lost according to dw/dt = -{q/V)w. Thus, the amount 
of that original water remaining at later times is w = woe~^^^^. 
Then w/wo = 1/3 when t = -{V/q)log{l/3). That turns out to 
be about 2.75 da. 

S.H=-(V/q)\og{l/2). 
7. The integrating factor is e^-^^, so y = 7.5 (e^/^ - 1) -- 1.5x. 
9. y = sin(x) + (2/x) cos(x) + (2/x^) [TT - sin(x)]. 

Chapter 6 
1. The volume equation is 

^ = qin(t)-qout-E{t)] V ( 0 ) - y o , 

and the one for PCB mass is 

^ = qinCin + kiDa - ^ B - P2B; B{0) = Bo, 
dt V 
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where fci is the conversion factor from ng to pg, i.e., 10^. A unit 
check here yields pg da~^ for each term. To convert the equation 
to one for concentration C when V changes with time is a messy 
process. Because C = B/V, to obtain dC/dt you must use the 
quotient rule. Another approach would be to solve this system 
for mass B{t) and volume V(t), and then to get the concentration 
at any time using B(t)/V(t). 

3. 

dpE (KE- PE\ k . . 

dpp fKp - pp\ k . , 

k is the migration proportionality coefficient, with units of (rat 
da"^) per rat m~^), or m^ da~^ 

5. S' = -kSI] r = kSI - fl\ and R' = fl. The ICs might be 5(0) = So, 
1(0) = /o, and R{0) = i?o, where at least the first two must be 
greater than zero if the epidemic is to occur. The units of k and 
/ are [people"^ da~^] and [da"^] respectively. 

7. 

dcp k . V 

TYiB, mF, CB, and CF are the masses and concentrations of sub­
stance S in the blood and fat compartments, respectively, and k 
is the proportionality coefficient for the exchange between blood 
and fat, with units of kg da~^ 

Chapter 7 
1. The analytic solution is 

y = [o.7^•^ + 2.025(tl•2-l)]^^^^ 



301 

so y(1.4) ^ 1.841899. Using Euler's method as specified yields 
1.817347, which is about 1.3% too small. 

3. What happens here is that the rate constants would be 365 times 
larger on a per-year basis than they are on a per-day basis, and 
this makes the slopes numerically that much larger. On the other 
hand, the values of h (and of h/2) are a factor of 365 times 
smaller, so each product of the form (time step) x (slope) re­
mains constant. This exercise illustrates the general fact that you 
can change units in differential equations and still get the same 
results overall. 

5. HiO.l) ^ 5732.02 kg and C(O.l) « 4836.6 kg. These large changes 
in just 1/10 year suggest that the calculations should probably be 
repeated with smaller time steps. 

7. The error would be larger with (A) because with it, both the prob­
lems stated on p. 150 would occur, while with (B), the second 
problem (stated in the third bullet) does not apply. 

Chapter 8 
1. For Eqn 8.11, C = a{A cosh ax + B sinh ax) and 

C = a^ (A sinh ax -\- B cosh ax), so C = a^C, as required. For 
Eqn 8.12, C = aiAe^"" - Be'"''') and C = a^ (Ae^^ + Ee"^^), 
so again C = a^C, as required. 

3. The equation is 

d^T M 
dz^~ k~ ""' 

where a is just a shorter name for M/k. You can solve this equa­
tion by separation, yielding T{z) = A-\- Bz - az'^/2, where A and 
B are the constants of integration. Solving for those from the 
boundary conditions yields 

^ , , T ^ / a l 2 - 2 7 b + 2 T i \ fa\ ^ 
T(z) = To^[^ ^L ) ' - [ 2 ) ' ' 

A quick check shows that this at least echoes the two boundary 
conditions. 

5. 

Dj-^ = -fp] p{0) = pA] p{L) = pB. 



302 Appendix B. Solutions to Odd-Numbered Exercises 

7. The equation is 

dr^ r dr k' 

The solution is messy, but turns out to be 

. . ^ - 6 kR2T2 - qR2^ + 6kRiTi + qRi^ _ 
6fe(-i?2+i?i) 

R1R2 {6kTi + qRi^ - 6kT2 - qR2^) qr^ 

6rfc(-i?2+i?i) ~Gk 

9. A. The annular ring in Fig.8.5, p. 179, from r to r + Ar is a useful 
"control area" for deriving this equation. One obtains 

dr^ r dr 

B. The solution is 

. . ^ PO log {Router/r) 

^^ logilO Router) ' 

Note that it does give the correct values for p at r = 0.1 and at 

^ — Router-

C. Thus, p(5 km) = 752.575 lemmings m~^. 

Chapter 9 
1. X2 ^ 0.00656122 and Xi ^ 0.60946246. You'll find that these 

check if you substitute them back into the original equations (as 
is always recommentd!). In the original matrix, the elements on 
the main diagonal are about double those on the "off" diagonal, 
so the system seems likely to be well determined. The determi­
nant is about 576, which is more than the square of the largest 
element; this also suggests a well-determined system. 

3. For Tw = 100 C, T2 ~ 73.45 C, and for Tw = 102.5 C, T2 ~ 74.75 
C. When you solve a physical problem like this, it's always a good 
idea to think about whether your results seem reasonable. Here 
they seem to be, in the senses that the calculated temperatures 
start out near the water temperature and then drop in a reason­
able progression toward the air temperature as we go from inside 
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to outside. Also, the inside wall is a little cooler than the water, 
and the outside wall is a little warmer than the air. For both wa­
ter temperatures, we could apparently use the cheaper insulation, 
since 72 < 78 C in both cases. 

At equilibrium, this area would have about 24857 rabbits and 
2729 foxes. 

7. A. 

A = 

V 0 ^ - [ ^ + / 3 ] / 
B = 0 

\ 0 / 

/2 .8 0 - 0 . 1 2 5 \ 

A = 2 -2 .7 0 
0 2 -2 .6 

B = 
/ 2 2 5 \ 

\ 0 / 

C. The equilibrium ODW concentrations [g m ^], are about 82.45, 
61.08, and 46.98, respectively. 

Chapter 10 
General note: Don't forget that all the methods described in this 

book for finding roots are designed to find values of a variable that 
drive a function to zero. 

1. To obtain Eqn 10.8, rearrange 

^i+l — ^i 2xi 

You should find X ;̂  4.123106 when iV = 17. 

A. Because different combinations of parameters will arise in the 
future, it would be desirable to find an analytic solution. Unfor­
tunately, such a solution is not available for this situation. 
B. Here it turns out we can get an analytic solution. Set the two 
functions of time equal to one another, take the logs of both sides, 
and then solve for t. The result is that the two temperature dif­
ferences would be equal when 
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In 01,0 

02,0 

5. A. 

1.0 1.5 2.0 
Time [da] 

B. If you make the suggested plot, you'll see that deficit increases 
to more than 2 mg L~̂  between about 0 and 0.3 da, and decreases 
back to 2 at between about 2.5-3 da. You could use any of the 
methods we've studied here to pin the times sought down to 
0.16199656 da and 2.64859468 da. The problem statement calls 
for a range of distances, however, so we calculate how far water 
would move downstream in those times at a velocity of 1.5 ft s~^; 
the results are 3.98 mi and 65.01 mi. This stream is in pretty bad 
shape! 

7. In reservoir A, the concentration varies as CAU) = CAO^'^''^^, 

with a similar equation for reservoir B. The numerical values are 
CAO = 80, TA = 55000/2700, CBO = 60, and T^ = 38000/700. The 
units of the T'S are da-^. When Q - O - 1 = 0, t ~ 10.0404 da. 

9. The concentration would first exceed 15 mg L~̂  after about 1.6907 
years. As you would see if you plotted the function, there is an­
other root at about 5 years—that's when the concentration would 
decline below 15 mg L""̂  again. 

Chapter 11 
1. We want the derivative of G with respect to N, treating P tem­

porarily as a constant. It may help to rewrite the growth function 
as 
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G = = ^(r 
Kfi 

" ) • 

where j8, temporarily treated as a constant, replaces the second 
major factor in the RHS of Eqn 11.1. This makes clear that we just 
need to differentiate the expression in the remaining parentheses 
with respect to JV, then multiply the result by jS. The constant b 
doesn't contribute to the derivative either, and we can factor out 
KM. Thus, we need to differentiate (1 + a^~^^^)"^ We obtain 
- ( 1 + a^~^^^)"^, times the derivative of the ae"^""^ term, which 
is -arne~^''^. Cancelling the two minus signs and replacing the 
KM and j8 then yields the derivative in Eqn 11.2. 

I would work with a control volume (CV) that is H mm thick, by 
Ax cm in the x direction, by Ay cm in the y direction. Because 
other length dimensions are all expressed in cm, convert H to cm 
too. The equation sought is 

dt CpP 

S b{T-e) 
CppH CppH 

at " ^ 3 x 2 
TN 

K~N 
K ' 

9. 

dt 
q dc 

- pc. WHdx 

The initial condition is a specification of c at time zero, for all 
0 < % <L. 

At = 0.03125 hr, or a bit under 2 min. In the table below, the 
columns f or z = 0 and z = 12 cm (the given boundary conditions) 
have been removed so the rest will fit the page width. 

t 
0 

At 
2At 

Depth z [cm] 
1.5 3.0 4.5 6.0 7.5 9.0 10.5 

Temperature [deg C] 
9.8 
9.5 

9.025 

11.3 
10.85 
10.35 

11.9 
11.2 

10.625 

11.1 
10.4 

9.875 

8.9 
8.55 

8.225 

6.0 
6.05 

6.225 

3.2 
3.9 

3.925 
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11. Each term in this result has units of kg biomass ha~^ da~^: 

dB ^(d^B ldB\ ^ 
dt \ dr^ r dr 
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List of Applications 

acorn production, 38 
acorn germination pattern, 40 
air pollutant toxicity, 72 
algal growth, 250 
animal heat loss, 271, 270 
animal migration, 185, 142, 188, 275 
antelope-cat interaction, 53 
aspen leaf area, 73 
atmospheric SO2 diffusion, 262 
bird flight speed, 84 
bird nest temperature, 187 
breeding bird density, 21 
cancer risk assessment, 44 
car top temperature, 8 
chemical mixture, 1 
coliform bacteria in water, 70 
conduction of heat, 176, 257 

in peat bog, 279 
in soil, 184,280 

contour diagramming, 242 
convection heat transfer, 73 
copper sulfate dispersal, 244 
cost-benefit analysis, 16, 56 
dating with isotopes, 132 
daylength through year, 39 
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diffusion, time-dependent, 255 
diffusive migration of fish, 183 
dissolved oxygen, 55, 134, 144 
distance travelled vs. speed, 16 
doubling time, 15, 125 
ecosystem model, 137 
energy-balance calculations, 46 
energy-efficient home, 117 
epidemic model, 144, 161 
forest succession, 215 
gas analyzer behavior, 112 
gas diffusion, 167 
greenhouse layout, 38 
Haber's law of toxicity, 72 
half-life concept, 15, 125 
heat conduction in sphere, 178 
horse speed, 116 
human population growth, 69 
indoor air pollution, 145 
infrared radiation, 196 
insect pest dispersal, 282, 283 
lake pollution, 12, 83, 111, 133, 139, 140, 141 
landfill design, 39 
leaf litter decay, 74 
leaf temperature, 231 
lake contamination, 246 
linear ecosystem models, 220 
logistic population growth, 9, 69, 99 
Lotka-Volterra population model, 10, 138, 162, 162 
maximum pollutant concentration, 38 
mean air temperature, 56 
microbe concentration measurement, 245 
mountain snowpack, 118 
mountain streamflow, 17 
nitrogen cycling in mesocosm, 115 
normal distribution, 45, 60 
nuclear reactor, 275 
oxygen depletion in stream, 134, 156, 243 
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PCB dumping, 53 
phosphorus 

cychng in lake, 143 
loading to wetland, 71 

pollutant half-life in lake, 134 
radioactive decay, 111, 133 
radon in basement, 114 
residence time in lake, 126 
route choice, 40 
sample bottle design, 37 
SO2 diffusion, 263 

in city, 272 
SO2 from coal, 222 
soil temperature, 259 
solar collector, 241, 274 
solar constant units, 7 
statistical test, 285 
stream sedimentation, 87 
surface:volume in animals, 14 
temperature measurement, 219 
thermal radiation exchange, 43 
toxicity testing. 111 
toxin in human body, 135, 145, 243 

half-life, 134 
tree density, 67 
tree-trunk temperature, 276 
trout nutrition, 194 
turbidity of water, 25 
turbulent diffusion of solvent, 281 
wastewater treatment, 221, 278 
water heater, 185, 217 
water reservoir dynamics, 69, 110, 114 
water volume, 

pond, 69 
stream, 69 

wealth-utility relationship, 103 
weasel den CO2, 189 
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exp, 18, 287 

advection-dispersion eqn., 266 
algebra 

basic, 286 
analytic integration 

MATLAB, 66 
analytic solutions, 8 
asymptotic behavior, 123 

bisection, 234 

calculator 
use of, 290 

calculus 
fundamental theorem, 65 

Cartesian coordinates, 167 
central difference, 34 
chain rule, 88 

use of, 88 
conduction of heat, 176, 257 
contour plotting, 242 
control volume, 88, 168 
conversion factors, 7 
cylindrical coordinates, 181, 266 

derivative 
applications, 20 
concept, 19 
units of, 7 

derivatives 
partial, 250 

determinant, 209 
differential equation 

analytic solution, 102 
checking solution, 115 
checking solutions, 94 
direction fields, 116 
Euler's method, 147 
general definition, 98 
initial condition, 84 
integrating, 102 
linear versus non-linear, 99 
numerical check of solution, 

95 
numerical solution, 102, 147 

MATLAB, 159 
partial, definition of, 98 
second order, 166 
second-order, 99 

analytic solution, 172 
shooting method solution, 

171 
solution by integrating factor, 

126 
solution by Runge-Kutta, 151 
solution by separation of vari­

ables, 103 
solution by tables, 104 
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time units in, 161 
differential equations 

analytic solution 
MATLAB, 109 

cautions, 86 
derivation, 83 
direction fields, 100 
first-order, solution, 89 
first-order, source of, 82 
how they arise, 82 
introduction, 82 
partial, 253 
solution by separation, 92 
system 

Runge-Kutta solution, 156 
systems of, 137 
table of solutions, 106 

differentiation 
basic rules, 24 
lack of robustness, 67 
MATLAB, 24, 26 
numeric to check analytic, 36 
numerical, 32 
straightforward nature, 23 
versus integration, 65 

diffusion 
atmospheric, 262 
molecular, 167 
time-dependent, 254 

digits 
significant, 10 

dimensions, 5 
doubling time, 15 

eigenvalue, 214 
equations 

linear algebraic, 8 
non-linear, 229 

error 
absolute, 30 
relative, 30 

Euler's method, 147 
DE system, 150 
illustrative nature of, 150 
inaccuracy, 149 
inaccuracy of, 149 

exponential function, 287 
Maclaurin series, 28 

extremum, 20 

forward difference 
differentiation, 33 

functions 
concept, 291 

Gauss-Jordan 
matrix inversion, 203 

Gauss-Seidel iteration, 206 
Gaussian elimination, 200 
gradient, 166 

concentration, 170 

half-life, 15, 123, 125 
relation to time constant, 125 

heat conduction 
sphere, 271 

heat transfer, 253 
heat transfer by conduction, 257 
hyperbohc cosine, 36 
hyperbolic sine, 36 

identity matrix, 198 
ill-determined equations, 202 
initial condition, 84 
integral 

units of, 7 
integrals 

table of, 60, 131 
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to memorize, 58 
integrating factor, 126 

constant-coefficient DEs, 127 
variable-coefficient DEs, 129 

integration 
analytic, 57 
analytic using MATLAB, 58 
analytic with MATLAB, 78 
and averaging, 5 5 
in environmental science, 53 
not straightforward, 66 
numerical, 60 
robustness, 67 
Simpson's rule, 61 
substitution, 59 
tables, 59 
trapezoidal rule, 61 
versus differentiation, 65 
What is i t?, 52 

inverse matrix, 199 

Leslie matrix, 212 
limnology, 126 
linear algebra, 193 
linear algebraic equations, 193 

in environmental science, 194 
solution, 197 

linear equation 
two-point formula, 16 

linear equations 
Gauss-Seidel iteration, 206 
ill-conditioned, 208 
well-conditioned, 208 

linear systems 
MATLAB, 205 

linearity 
definition of, 194 

logarithm, 288 

logistic growth, 9 
Lotka-Volterra equations, 10,138, 

150 

Maclaurin series, 28 
Markov-chain models, 215 
mass transfer, 253 
MATLAB 

analytic integration, 58, 66, 
78 

L-U decomposition, 202 
linear systems, 205 
ODE solution 

analytic, 109 
numerical, 159 

root finding, 238 
Second-Order ODEs, 182 
solving equations, 3 
symbolic differentiation, 24, 

26 
matrices 

for linear algebraic equations, 
199 

matrix 
definition, 197 
equality, 197 
identity, 198 
inverse, 199 
inversion, 203 
Leslie, 212 
Markov-chain models, 215 
multiplication, 197 
use, 197 

matrix multiplication 
properties, 198 

max-min problems, 20, 38 
tips, 22 

maximum, 20 
mercury problem, 12 
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minimum, 20 
multiplication 

matrix, 197 

Newton's method, 233 
non-linear equations, 229 
numerical analysis, 8 

partial derivative 
notation, 252 

partial differential equation, 256, 
259, 266, 270 

cylindrical coordinates, 270 
spherical coordinates, 271 

partial differential equations, 253 
percentages, 7 
periodic functions, 16 

period, 5 
problem, 39 

polynomials, 8 
roots of, 237 

population models, 138 
precedence 

rules of, 285 

ratios, 7, 16 
regression 

linear, 215 
repeated or multiple roots, 239 
residence time, 123 

relation to time constant, 126 
roots, 238 

bisection, 234 
Newton's method, 233 
non-linear equations, 230 
of equations, 230 
polynomials, 237 
repeated or multiple, 239 
secant method, 235 

Runge-Kutta 
DE system, 156 

Runge-Kutta method, 151 

secant method, 235 
Second-Order ODEs 

MATLAB, 182 
sensitivity analysis, 200 

linear algebra, 200 
series 

Maclaurin, 28 
Taylor, 27 

shooting method, 171 
significant digits, 10 
Simpson's rule 

generalization, 64 
three-eighths rule, 65 

solution 
analytic, 8 
numerical, 8 

disadvantages of, 102 
symbolic, 1, 89 

solving equations 
MATLAB, 3 

spherical coordinates, 178, 270 
story problems, 1, 13 

approaches, 4 
Streeter-Phelps eqns., 243 
Streeter-Phelps equations, 134 
system 

differential equations 
linear, 137 
ordinary, 137 
Runge-Kutta solution, 156 

systems 
linear algebraic equation, 193 

Taylor series, 27 
time constant, 54, 123, 125 
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trigonometric functions, 5 
turnover rate, 123 

relation to time constant, 126 

units, 5 

variable 
dependent, 291 
independent, 291 

vector 
column, 197 
row, 197 




