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Preface

Attosecond nanophysics is a new research field merging ultrafast sci-
ence with time scales reaching into the attosecond domain with studies
on nanoscale materials. An attosecond is incredibly short. To put
it in perspective, one attosecond (one attosecond = 10−18 seconds)
compares to one second roughly as one second compares to the age of
the universe. Within one attosecond even light only travels a distance
of 0.3 nanometer (1 nanometer = 109 meter). Attosecond time and
nanometer length scales are thus inherently connected. The attosec-
ond timescale is particularly important for electrons, which are light
enough to move so fast that they must be clocked with attosecond
precision to track their motion. These fast electron dynamics govern
the interaction of light with matter and form the basis for optoelec-
tronics. The possibility to steer electronic processes in nanomaterials
with tailored lightwaves can be exploited in ultrafast nanoelectronic
circuitry with switching frequencies approaching the petahertz domain
(many orders of magnitudes above conventional electronics). This
potential has motivated the rapid growth of attosecond nanophysics.
The master thesis of Johannes Schötz discusses an important ex-

perimental advance in this young field, namely the ability to measure
the evolution of fields on the nanoscale in real-time, i.e. attosecond
timescales. He describes both experimental and theoretical advances
towards the realization of the attosecond streak-camera technique
on the nanoscale. While the attosecond streak-camera has become
a standard tool in attosecond physics, and related measurements on
electron dynamics in atoms, molecules, and extended surfaces, its
realization for measurements of nanostructures is not straightforward.
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The reasons are discussed in detail in the thesis, with a special em-
phasis on metallic nanotips, which Johannes Schötz has investigated
in his work.
In attosecond streaking, electrons are photoemitted through an

attosecond light pulse in the extreme ultraviolet and are accelerated
by an external field provided by e.g. a synchronized optical light
pulse (with a duration of a few cycles). While in conventional at-
tosecond streaking the external fields are spatially homogenous, the
near-fields of nanostructures are inhomogenous. The ramifications
of the nanometer spatial inhomogeneity are non-trivial and therefore
typically detailed simulations of the streaking process and its applica-
tion in real-time measurements of nanoscale near-fields are required.
Johannes Schötz performed such simulations and shows them in his
thesis.
The thesis not only describes the first steps into the new territory

of attosecond resolved measurements on nanostructures, but it is also
written such that it provides guidance to a newcomer. The thesis of
Johannes Schötz is of high relevance to future research in attosecond
nanophysics and I wish that his ground breaking work will find the
wide and interested readership that it certainly deserves.

Prof. Matthias Kling

Ultrafast Nanophotonics Group,
Laboratory of Attosecond Physics
Department of Physics, Ludwig-Maximilians-Universität München &
Max Planck Institute of Quantum Optics, Garching, Germany



The Laboratory of Attosecond
Physics (LAP)

Figure 0.1: Generation of attosecond pulses at LAP (Thorsten Naeser,
MPQ)

The Laboratory of Attosecond Physics (LAP) is a unique facility for
research on ultrafast particle motions outside of the atomic core. LAP
is a joint facility of the Max Planck Institute of Quantum Optics
(MPQ) and the Ludwig-Maximilians-Universität (LMU) Munich. The
LAP team includes 150 scientists and students. Many of them are
organized within the DFG cluster of excellence Munich-Centre for
Advanced Photonics (MAP). The scientists are mainly interested in
the motion of electrons, which change their probability density in
quantum mechanical steps within attoseconds. In order to record
such motion, the physicists have developed light flashes that last only



X The Laboratory of Attosecond Physics (LAP)

attoseconds in duration. One attosecond is a billionth of a billionth
of a second.

Physicists led by Prof. Dr. Ferenc Krausz, the current leader of the
LAP team, generated and measured such extremely short light flashes
for the first time in 2001. Since then, impressive insight into the
mostly unknown world of electron motion has been gained world-wide,
where the real-time dynamics of these particles can be followed after
light-induced excitation.
The LAP research group Ultrafast Nanophotonics, which also Jo-

hannes Schötz is part of, is led by Prof. Dr. Matthias Kling. The
research group investigates how electrons in complex materials collec-
tively behave under the influence of intense laser light. In particular
the physicists are interested in the dynamics and the control of elec-
trons in molecules and nanostructures. Such light-induced electron
motion occurs, for example, in semiconductors and dielectrics within
attoseconds. Technically, the research could advance light-controlled
nanoelectronics. With light frequencies in the Petahertz regime (1015

Hz) ultrafast switching times of electronic circuits could be achieved.
This would advance current electronics by many (up to about 5) orders
of magnitude.

Thorsten Naeser

Internet:
www.attoworld.de
www.munich-photonics.de



Contents

Introduction 1

2 Theoretical background 5
2.1 Ultrashort Laserpulses . . . . . . . . . . . . . . . . . . 5
2.2 Maxwell’s equations . . . . . . . . . . . . . . . . . . . 6
2.3 Nanoplasmonics . . . . . . . . . . . . . . . . . . . . . . 8
2.4 Mie Theory . . . . . . . . . . . . . . . . . . . . . . . . 10
2.5 Attosecond streaking . . . . . . . . . . . . . . . . . . . 13

2.5.1 Fundamentals of attosecond streaking . . . . . 13
2.5.2 Attosecond streaking from solids . . . . . . . . 16

3 Experimental methods and setup 23
3.1 Generation of ultrashort laserpulses . . . . . . . . . . . 23
3.2 CEP-stabilization . . . . . . . . . . . . . . . . . . . . . 25
3.3 High-Harmonic Generation . . . . . . . . . . . . . . . 28
3.4 AS5-Beamline . . . . . . . . . . . . . . . . . . . . . . . 31

4 Electron scattering in solids 35
4.1 Elastic Scattering . . . . . . . . . . . . . . . . . . . . . 35
4.2 Inelastic Scattering . . . . . . . . . . . . . . . . . . . . 41

4.2.1 Kinematics of inelastic scattering . . . . . . . . 41
4.2.2 Theory . . . . . . . . . . . . . . . . . . . . . . 43
4.2.3 Extension algorithms . . . . . . . . . . . . . . . 46
4.2.4 Energy Loss Function . . . . . . . . . . . . . . 49

4.3 Surface Scattering . . . . . . . . . . . . . . . . . . . . 53
4.4 Transmission . . . . . . . . . . . . . . . . . . . . . . . 57
4.5 Simulation for a plane surface . . . . . . . . . . . . . . 59



XII Contents

5 Attosecond streaking from metal nanotips 63
5.1 General characteristics of nanoplasmonic streaking . . 63
5.2 Theoretical Modelling . . . . . . . . . . . . . . . . . . 66
5.3 Experiments . . . . . . . . . . . . . . . . . . . . . . . . 75
5.4 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 77
5.5 Suggestion for proof-of-principle experiment . . . . . . 88

6 Conclusion and Outlook 91

Appendix A: Description of electron scattering 93



List of Figures

1.1 CPU clock speeds . . . . . . . . . . . . . . . . . . . . . 2

2.1 Few-cycle laser pulses . . . . . . . . . . . . . . . . . . 6
2.2 Surface plasmons . . . . . . . . . . . . . . . . . . . . . 9
2.3 Principle of attosecond streaking . . . . . . . . . . . . 14
2.4 Experimental attosecond streaking trace . . . . . . . . 16
2.5 Three step picture of photoemission . . . . . . . . . . 17
2.6 Density of states of Au . . . . . . . . . . . . . . . . . . 20
2.7 Relation between DOS and photoemission spectra . . 21

3.1 Overview of the laser system . . . . . . . . . . . . . . 24
3.2 Carrier-envelope phase stabilization . . . . . . . . . . . 26
3.3 Principle of high-harmonic generation . . . . . . . . . 29
3.4 Isolated attosecond pulses from high-harmonic generation 31
3.5 Experimental XUV pulses . . . . . . . . . . . . . . . . 32
3.6 Attosecond beamline . . . . . . . . . . . . . . . . . . . 32
3.7 Delay stage and TOF detector . . . . . . . . . . . . . 33

4.1 Differential cross sections of elastic scattering . . . . . 38
4.2 Higher order effects on elastic scattering . . . . . . . . 38
4.3 Dependence of elastic scattering on the muffin-tin radius 40
4.4 The kinematics of inelastic scattering. . . . . . . . . . 42
4.5 Bulk loss function for gold . . . . . . . . . . . . . . . . 50
4.6 Mermin extension algorithm . . . . . . . . . . . . . . . 51
4.7 Mean free path and differential cross section for inelastic

scattering . . . . . . . . . . . . . . . . . . . . . . . . . 51
4.8 Inelastic scattering: IMFP and DCS . . . . . . . . . . 52
4.9 Surface loss function . . . . . . . . . . . . . . . . . . . 54



XIV List of Figures

4.10 DSEP and SEP of inelastic surface scattering . . . . . 56
4.11 Transmission through surface potential step . . . . . . 57
4.12 Simulation of surface scattering . . . . . . . . . . . . . 59
4.13 Simulation results . . . . . . . . . . . . . . . . . . . . 61

5.1 Near-field decay . . . . . . . . . . . . . . . . . . . . . . 64
5.2 Near-field streaking regimes: phase and amplitude shift 67
5.3 Geometry of the nanotips . . . . . . . . . . . . . . . . 68
5.4 Electric near-fields around a nanotip and effect on

attosecond streaking traces . . . . . . . . . . . . . . . 70
5.5 linear electromagnetic response of the nanotip . . . . . 72
5.6 Attosecond streaking simulation . . . . . . . . . . . . . 73
5.7 Effect of geometry on the nanotip . . . . . . . . . . . . 76
5.8 Electron spectra from nanotips . . . . . . . . . . . . . 78
5.9 Analysis of gas streaking traces . . . . . . . . . . . . . 79
5.10 Attosecond streaking spectrum from a gold nanotip . . 80
5.11 Comparison of gas and nanotip streaking traces . . . . 81
5.12 Extracted peak shifts . . . . . . . . . . . . . . . . . . . 82
5.13 Correlation between peak shifts and the IR period . . 83
5.14 Relative streaking amplitude . . . . . . . . . . . . . . 86
5.15 Different streaking geometries . . . . . . . . . . . . . . 88
5.16 Relative phase shift and amplitude in alternative ge-

ometry . . . . . . . . . . . . . . . . . . . . . . . . . . . 90



Introduction

Conventional electronics has reached over the past few years a fun-
damental limit, which restricts the clock speed from significantly
exceeding 3.5 GHz [1,2] (see Fig. 1.1). To overcome this limitation,
the control of electronic motion in signal processing by light pulses has
been proposed [3] and called lightwave electronics. The period of light
lies on the order of 1 fs, which would allow clock speeds 5-6 orders
of magnitude faster than current state-of-the-art conventional elec-
tronics. Indeed, recent experiments showed, that by using few-cycle
laser pules electrical currents can reversibly be induced in dielectric
materials [4, 5], with switching times on the femto- to attosecond
time-scale.
One fundamental challenge in this approach is the issue of inter-

connects between such switches, as those are required to be on the
nanoscale for use in on-chip integrated circuits and need to support
high switching speeds [2]. This could be solved by the use of plasmonic
nanostructures which allow nanoconfinement of light well beyond the
diffraction limit and support frequencies from the visible to the in-
frared [6]. The extraordinary optical properties of nanoplasmonic
systems arise due to the coupling of the dynamics of light with the
collective electron motion on the nanoscale [7]. This leads besides the
confinement of optical energy to an enhancement of the electromag-
netic field near such nanostructures. Both effects are used in a growing
number of diverse applications including chemical and bio-sensing
with greatly enhanced sensitivity, nanoscopy, i.e. optical microscopy
well below the diffraction limit, enhanced solar energy conversion and
thermal cancer treatment [8].
Metal nanotips are a nanoplasmonic model system due to their

widespread use in various nanoplasmonic applications and the relative

© Springer Fachmedien Wiesbaden 2016
J. Schötz, Attosecond Experiments on Plasmonic Nanostructures,
BestMasters, DOI 10.1007/978-3-658-13713-7_1
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simplicity and good control of their production process [9]. The cou-
pling of light onto nanotips by use of nanogratings and the controlled
transformation of the travelling surface plasmon polariton have been
demonstrated [10, 11]. Besides the number of applications initiated
by this approach, e.g. [12–14], this proves that nanotips are also an
ideal system to study the possibility and fundamental limitations of
the control of coherent electron motion in nanoplasmonics.

Figure 1.1: Intel CPU introductions. The clock speed is shown in dark
circles. A stagnation at approximately 3.5 GHz beginning
around 2005 is discernible (adapted from [1]).

Concerning the temporal evolution of the collective electron dynam-
ics, first experiments on tungsten tips [15, 16] and gold tips [17] could
proof the attosecond dynamics of electron emission from the apex of
the tips when illuminated by few-cycle laserpulses. The reconstruction
of this dynamics from the measurements however heavily relies on
simulations. A technique which allows the measurement of electron
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dynamics on attosecond time scales directly in the temporal domain
has become available about a decade ago with attosecond streak-
ing metrology [18–20]. It is based on the process of high-harmonic
generation with intense few-cycle IR laser pulses, which allows the
production of isolated XUV-pulses with typical durations on the order
of 100 as and energies around 100 eV. In the attosecond streaking
pump-probe scheme, electrons are emitted by the XUV-pulse and
subsequently accelerated by the strong few-cycle IR-pulse used for
the production of the attosecond pulse. Originally used for the char-
acterization of the IR- and XUV-pulse itself, it has been applied to
study a number of processes in atoms [21] and from monocrystalline
plane surfaces [22–24], which focus on the delay in photoemission
delay of electrons from different quantum states. A number of recent
theoretical studies suggest the feasibility of applying the concept of
streaking to investigate the attosecond collective electron dynamics of
nanoplasmonic systems [25–30].
In this thesis results of attosecond streaking on gold nanotips are

presented. These are the first successful experiments of streaking
measurements from nanosized solids. Numerical simulations where
performed to understand the results of the experiment. Furthermore
the effect of the neglect of transport effects in previous theoretical
studies was examined. This thesis is organized as follows. In the
second chapter an overview of the theoretical background necessary
to describe attosecond streaking from nanoobjects is given. The third
chapter describes the experimental techniques used for conducting
attosecond streaking measurements. In the fourth chapter the influ-
ence of propagation effects of electrons inside the solid is examined
in an semiclassical model and the limitations of those models are
investigated. Finally in the fourth chapter the first experimental
result on attosecond streaking from a metal nanotip are presented
and compared to simulations. The experimental results in this thesis
led to a paper which is waiting for publication [31].
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2.1 Ultrashort Laserpulses

The work treats the interaction of few-cycle laser pulses with matter.
The basic description of the time evolution of the eletric field of a few-
cycle laser pulse is most conveniently described using an envelope f(t)
and a phase function (φ(t)). Due to its simplicity often a Gaussian
envelope with linear phase is assumed:

E(t) = f(t)·cos(φ(t)) = exp(−2·ln(2)(t/τ)2)·cos(ω0 ·t+φCE), (2.1)

where ω0 is the central frequency and τ is the intensity-FWHM. The
Fourier transform leads to a connection between spectral width and
temporal duration for a pulse with flat spectral phase [32]:

τp ·Δω = 0.441 · 2π. (2.2)

where Δω is the spectral intensity-FWHM. Few-cycle-pulses need
an octave-spanning spectrum. As laser pulse described by Eq. 2.1
is plotted in Fig. 2.1. As an be seen for few-cycle laserpulses the
CE-phase plays an important role in the time-evolution of the electric
field.

© Springer Fachmedien Wiesbaden 2016
J. Schötz, Attosecond Experiments on Plasmonic Nanostructures,
BestMasters, DOI 10.1007/978-3-658-13713-7_2



6 2 Theoretical background

Figure 2.1: A 4.5 fs few-cycle laser pulse centered at 750 nm for two
different carrier to envelope phases (φCE or CEP).

2.2 Maxwell’s equations

The description of the interaction of electromagnetic fields with macro-
scopic matter is given in terms of Maxwell’s equations [7]:

∇ · �D = ρext (2.3)

∇ · �B = ρ (2.4)

∇× �E = −∂ �B

∂t
(2.5)

∇× �H = �Jext +
∂ �D

∂t
(2.6)

where �E is the electric field, �D is the electric displacement, �B the
magnetic field and �H the auxiliary magnetic field and ρ and �J are
the external charge and current densities.
For nonmagnetic media �D and �H are linked to the electric and

magnetic fields �E and �B:

�D = ε0 �E + �P = ε0εr �E (2.7)

�B = μ0
�H, (2.8)

where εr is called the relative permittivity or dielectric function. Due
to the interaction of the intrinsic charges and currents within the
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medium, the dielectric displacement is dependent on the response of
the medium at surrounding positions and earlier times. This can be
expressed as a temporal and spatial convolution:

�D(�r, t) = ε0

∫
dt′

∫
d�r′ε(�r − �r′, t− t′) �E(�r′, t′). (2.9)

By switching to frequency-momentum-space via Fourier transform,
we obtain:

�E(�k, ω) = ε0εr(�k, ω) �E(�k, ω). (2.10)

For electromagnetic radiation the wavelength is usually large compared
to the interaction length of the charges in the medium. It is thus save
to approximate εr(�k, ω) = εr(�k = 0, ω) = εr(ω), which is equivalent
to assuming a local response. We will see in a later chapter, that
for the problem of the passage of an electron through matter, the
above assumption is not valid and the �k-dependence has to be kept.
Generally, the finite response time of the medium, especially for
ultrashort pulses, remains important and we have to keep the ω-
dependence.

In the description of material properties of metals, the free-electron
gas model has been very successful. By considering the polarization
response of a free electron to an oscillating electric field E(t) =
E0 · e−iωt the so-called Drude dielectric function can be derived:

εD(ω) = 1− ω2
p

ω2 + iγω
(2.11)

where γ is the damping constant of electron motion. The plasma
frequency ωp is given by:

ωp =

√
e2 · n
ε0m

, (2.12)

where e is the electron charge, n the electron density and m the
(effective) mass of an electron. Neglecting the damping, for ω = ωp

the dielectric function vanishes and the electric field is given by an
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longitudinal depolarization field �E = P
ε0
. This can be interpreted as

an collective electron oscillation and is referred to as bulk plasmon [7].
It will play an important role when considering the energy loss of
electrons passing through matter.

Mathematically finding the response of a nanoobject to an external
field is a boundary value problem. Maxwell’s equation lead to the
following boundary conditions between medium 1 and medium 2 in
the absence of free surface currents:

( �E1 − �E2)× �n = 0 (2.13)

( �H1 − �H2)× �n = 0 (2.14)

where E1 (H1) and E2 (H2) are the electric (auxiliary magnetic)
fields on the left and right of the boundary respectively and �n is the
surface normal. In macroscopic Maxwell equation the surface charge
is confined to an infinitesimally thin layer. In realistic materials the
interaction of this charges leads to smearing of the surface charge
on the length scale of the screening length [6]. The description of
this effect requires nonlocal models and is a hot topic in the current
research of nanoplasmonics [33, 34].

2.3 Nanoplasmonics

Nanoplasmonics allows overcoming the diffraction limit of light, by
coupling collective electron dynamics (plasmons) to the oscillations
of the electromagnetic field of light. [8]. Due to the coupling these
excitations are called plasmon-polaritons [6]. Within the framework
of second quantization of quantum mechanics they can be assigned
a quasi-particle character. For classical incoming light (always the
case in this thesis) they can however fully be described within the
framework of Maxwell’s equations [7]. The confinement of light is
usually accompanied by enhancement of the electric field near the
surface of the plasmonic object. Plasmon-polaritons are distinguished
into surface plasmon-polaritons (SPP) and localized surface plasmons
(-polaritons, LSP). Surface plasmon-polaritons are electromagnetic
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Figure 2.2: a): Illustration of a travelling surface plasmon polariton.
The electric field is localized perpendicular to the surface.
(from [35]) b): Localized surface plasmon polariton. The
driving field causes oscillations of the electrons with respect
to the lattice. Superposition of driving field and induced
field leads to field enhancement at the poles.

waves which travel along a surface [7] and which are confined to the
nanoscale perpendicular to the surface. They are simply solutions
of Maxwell’s equations coupling quasi-plane waves from both sides
of the surface through Eq. 2.13. These solutions can be interpreted
as SPPs if they are confined to the surface, which depends on the
refractive index of the two media [7]. This is schematically in Fig. 2.2
a). SPPs are not restricted to plane surfaces and occur also on e.g.
cylindrical or conical surfaces like the shank of a nanotip [10].

Localized surface plasmons by contrast occur when the dimensions
of the particle fall below the wavelength of the incident light. The
oscillating electric field of the incoming light causes a collective oscilla-
tion of the electrons with respect to the ion lattice [6], which leads to
a confinement of optical energy on the order of the geometric features
of the nanoobject and to field enhancement. This is schematically
shown in Fig. 2.2 b).
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2.4 Mie Theory

Mie theory is one of the few examples of an analytic solution to the
problem of electromagnetic scattering of a particle in the framework
of Maxwell’s equations.

An extensive presentation of this subject with a detailed derivation
is given in [36]. The basic concept of the solution is actually quite
simple and straight-forward, however often obscured by the technical
difficulties encountered on the way. We will therefore only outline the
general formalism, which is independent of the geometry before briefly
sketching the explicit solution for a sphere. The basic formalism starts
from the Maxwell equations in a linear homogeneous isotropic medium
in frequency-space:

∇× �E = iωμ �H (2.15)

∇× �H = −iωε �E (2.16)

∇ · �E = 0 (2.17)

∇ · �H = 0. (2.18)

From this the well known wave equations can be derived:

Δ �E + k2 �E = 0, (2.19)

where k2 = ω2εμ and analogously for �H. The first decisive step in
solving such an equation is by making a general ansatz:

�M = ∇× (
�vψ

)
= −�v × (∇ψ

)
(2.20)

where �v is a vector and ψ a scalar function. Plugging this ansatz into
the wave-equation leads to

Δ �M + k2 �M = ∇× (
Δψ + k2ψ

)
(2.21)

That means for �M to satisfy the wave-equation, we only have to solve
the scalar wave-equation for ψ. So far, we have not said anything
about �v. It can be shown, that for Eq. 2.21 to hold, �v can either be a
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(arbitrary) constant vector or the position vector �r [37]. Moreover we
notice that another independent solution to Eq. 2.19 is given by

, �N =
1

k
∇× �M (2.22)

and that ∇ × �N = k �M , using identities for the curl-operator. We
can now write the solutions for �E and �H in terms of �M and �N , the
electric and auxiliary magnetic fields are linked by 2.15.
�M and �N are called vector harmonics and ψ the generating function.
The two independent vector harmonics correspond to the two polar-
izations of light in a homogeneous medium. [37].
In order to solve the actual scattering problem, we first have to

solve the scalar wave-equation to obtain a (possibly complete) set
of solutions ψ. Then, the general fields inside and outside of the
scatterer are expressed through the vector harmonics. Finally, the
scattering solution is obtained by imposing the boundary conditions
on the parallel components of �E and �H.
The choice of the coordinate system clearly depends on the sym-

metry of the problem. Only for three geometries, namely spherical,
spheroidal and cylindrical, exact analytic solutions are known [37].
We will briefly sketch the solution for light scattering of a sphere.

The scalar wave equation in a spherical coordinate system reads:

1

r2
∂

∂r

(
r2

∂ψ

∂r

)
+

1

r2sinθ

∂

∂θ

(
sinθ

∂ψ

∂θ

)
+

1

r2sinθ

∂2ψ

∂φ2
+k2ψ = 0. (2.23)

By making a product ansatz ψ = R(r)Θ(θ)Φ(φ) we get the set of even
(subscript e) and odd (subscript o) solutions:

ψemn = cos(mφ)Pm
n (cosθ)zn(kr) (2.24)

ψomn = sin(mφ)Pm
n (cosθ)zn(kr), (2.25)

where Pm
n are the associated Legendre Polynomials, and zn stands

for any pair of the spherical Bessel functions of the first kind jn, the
second kind yn, or the spherical Hankel functions of the first and
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second kind h
(1)
n and h

(2)
n . The set of functions ψemn and ψomn forms

a complete set. The general electric field can now be written as:

�E =
∑

Bemn
�Memn+Bomn

�Momn+Aemn
�Nemn+Aomn

�Nomn. (2.26)

The fields outside the sphere a expressed as a sum of incident Ei and
scattered field Es. Using the orthogonality of the vector spherical
harmonics, in principle any incident field can be expanded as such a
sum. For a plane wave one obtains:

Ei = E0exp(−ikz) · �ex = E0exp(−ikrcosθ) · �ex =

= E0

∑
in

2n+ 1

n(n+ 1)

(
�M

(1)
o1n − i �N

(1)
e1n

)
(2.27)

where the superscript (1) indicates the use of the Bessel function
of the first kind. Due to the orthogonality of the vector spherical
harmonics we only need to consider the terms �Mo1n and �Ne1n for the
scattered fields and the fields inside the sphere. Taking the boundary
condition of vanishing scattered fields at infinity, and finite fields at
the origin we obtain as ansatz for the field inside the sphere E1:

E1 =
∑

En

(
cn �M

(1)
o1n − idn �N

(1)
e1n

)
(2.28)

and for the scattered field Es:

Es =
∑

ian �N
(3)
e1n − bn �M

(3)
o1n, (2.29)

where the superscript (3) denotes the usage of the Hankel function
of the first kind. The coefficients an, bn, cn and dn now have to be
determined by imposing the boundary conditions on �E and �H (which
follow from 2.15): (

Ei + Es − E1

)× �er|r=R = 0 (2.30)(
Hi +Hs −H1

)× �er|r=R = 0. (2.31)
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Using the size parameter x = kR and the relative refractive index
m = k1/k one obtains the solution:

cn =
μ1jn(x)[xh

(1)
n (x)]′ − μ1h

(1)
n (x)[xjn(x)]

′

μ1jn(x)[xh
(1)
n (x)]′ − μh

(1)
n (x)[mxjn(mx)]′

(2.32)

dn =
μ1mjn(x)[xh

(1)
n (x)]′ − μ1mh

(1)
n (x)[xjn(x)]

′

μm2jn(mx)[xh
(1)
n (x)]′ − μ1h

(1)
n (x)[mxjn(mx)]′

(2.33)

an =
μm2jn(x)[xjn(x)]

′ − μ1j
(1)
n (x)[mxjn(mx)]′

μm2jn(mx)[xh
(1)
n (x)]′ − μ1h

(1)
n (x)[mxjn(mx)]′

(2.34)

bn =
μ1jn(mx)[xjn(x)]

′ − μj
(1)
n (x)[mxjn(mx)]′

μ1jn(mx)[xh
(1)
n (x)]′ − μh

(1)
n (x)[mxjn(mx)]′

. (2.35)

The importance of Mie theory in the field of nanoscience is manifold.
Besides light scattering, it also allows the description of the plasmon
modes and near-fields of a sphere and traveling plasmon modes of a
cylinder. The general formalism can be used to obtain for example the
fiber modes encountered in Super-Continuum-Generation in hollow-
core-fibers (see section 3.1). Last but not least it is often used as a
benchmark for computational algorithms.

2.5 Attosecond streaking

2.5.1 Fundamentals of attosecond streaking

The basic principle of attosecond streaking can be understood in a
classical picture considering the electron as a point particle. Attosec-
ond streaking is a pump-probe scheme with an XUV attosecond pump
pulse and a strong few-cycle IR pump pulse. The XUV pulse leads to
photoemission and the emitted electrons are subsequently accelerated
by the oscillating field of the IR pulse . This is schematically shown
in Fig. 2.3 a). The initial velocity of the electrons depends on the
XUV energy which is on the order of 100 eV. In this non-relativistic
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XUV

IR

t0

e-

t

v

t

A(t)E(t) broadening

unstreaked

a)

b)

Figure 2.3: Principle of attosecond streaking: a) The time t0 of elec-
tron emission depends on the timing of the XUV attosecond
pulse and the few cycle IR pulse. b) The relation between
the emission time and the velocity shift experienced by the
photoemitted electrons. Features of the XUV pulse are en-
coded in the change of the shape of the electron spectrum,
e.g. the finite temporal duration leads to a delay dependent
broadening of the spectrum compared to the unstreaked case
(thick dashed line).
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regime, omitting the magnetic field, the change of the electron velocity
emitted in polarization direction can be written as:

Δv = − e

m

∫ ∞

t0

dt E(t), (2.36)

where it has been assumed that the electric field is homogeneous
in space, which is usually a good assumption since the XUV focus
is much smaller than the IR focus [38]. Using the relation of the

electric field to the vector potential ∂ �A
∂t = −E(t) and the vanishing

DC-component of a laser pulse
∫∞
−∞E(t) = F [E(ω = 0)] = 0 = A(∞),

the above equation can be rewritten as:

Δv = − e

m
A(t). (2.37)

Depending on the time of emission the electron bunch initiated by
the attosecond XUV pulse experiences a velocity shift proportional to
the vector potential. This is schematically depicted in Fig 2.3 b).

The final energy is given by

E(t0) =
m

2
(v0 +Δv)2 =

= (h̄ω − Ip)−
√

2

m
(h̄ω − Ip)

e

m
·A(t0) +

(
e

m
A(t0)

)2

, (2.38)

where the last term is usually negligible even for relatively high ampli-
tudes [38]. While the overall shift reflects the vector potential of the IR
pulse, the change of the shape of the electron pulse reflects properties
of the exciting XUV pulse. In Fig. 2.3 a) this is schematically shown
in the delay dependent broadening of the velocity distribution due
to the finite temporal duration of the XUV pulse. Also higher order
features of the XUV pulse like chirp are encoded in the spectrum
and using attosecond streaking both pulses can be characterized [38].
An experimental streaking trace from Neon gas is shown in Fig. 2.4
Attosecond streaking enables to resolve processes on the order of the
pulse length of the XUV pulse.



16 2 Theoretical background

delay (fs)

E
(e
V
)

-6 -4 -2 0 2 4 6

40

60

80

100

co
u
n
ts

0

0.2

0.4

0.6

0.8

1

Figure 2.4: An experimental attosecond streaking trace from Neon mea-
sured with our setup.

2.5.2 Attosecond streaking from solids

Attosecond streaking has been applied to measure processes on monocrys-
talline surfaces. Since attosecond streaking is a time-resolved pho-
toemission process, first the theoretical description of photoemission
without the IR probe is considered before a brief overview of the
existing models of attosecond streaking from solids is given.

Photoemission

Historically one distinguishes between the one-step and three-step
picture [39]. The photoemission probability in the one-step pictures
and the first step in the three-step picture for weak exciting light
fields is given in terms of Fermi’s golden rule:

P (i → f) ∝ | < ψf |HPE|ψi > |2δ(h̄ω − Ef + Ei), (2.39)

where ψi and ψf are the initial and final many-body states respectively,
h̄ω is the energy of the exciting light. HPE is the photoemission
operator, which is given by [40]:

HPE =
ieh̄

2m

(
∇ · �A+ �A · ∇

)
+

e2

m
�A2, (2.40)
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surface transmission

surface plasmon excitation

e-
incoming photon

Figure 2.5: The photoemission process in the three step picture.

where �A is the vector potential.
State-of-the-art models use density functional theory (DFT) to

calculate the inital state and are thus able to consistently incorporate
the crystal symmetry and effects such as surface reconstruction and
recombination [39]. The models differ in the treatment of the final
state and electron scattering within the solid. In the one-step model
the final state is generally computed by Quantum Field theoretical
methods as a state which behaves asymptotically as a free electron and
which is scattered inside the solid. It coherently takes into account
effects like intrinsic and extrinsic excitations at the price of high
computational demand.

In the three-step model, the final state is an eigenstate of the crystal
and the computation of Eq. 2.39 leads to the probability of the first
step. The three steps are schematically depicted in Fig. 2.5. The
second step consists in the transport of the electron to the surface. The
probability P (s) that the electron undergoes a scattering event while
travelling a distance s, is defined by the material specific mean-free
path λ:

P (s) ∝ e−s/λ. (2.41)

The inelastic mean free path of most metals for electron energies
around 100eV lies in the region of 5 Å [41]. That means that 63%
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of the electron suffering no energy loss, are emitted within 5Åfrom
the surface. This directly illustrates the surface sensitivity of the
photoemission process. The quasiparticle nature of the photoelectron
can be accounted for by using an energy dependent group velocity
vG. [42]. The third step is the transmission through the surface, where
the electron is transmitted with a probability T and diffracted. Fur-
thermore by passage through the surface, the electron might excite
surface plasmons.
The advantage of the three-step model is that it treats different

effects such as propagation and transmission as distinct steps, which
does not only simplify the description but also allows to describe the
the different effects with different degrees of accuracy.
To get a description of attosecond streaking based on this models,

the effect of the IR pulse has to be incorporated. In the one-step
picture this leads to a different final state, which is again difficult to cal-
culate, whereas in the three-step model it can simply be incorporated
into the propagation of the electron.

Attosecond Streaking from Plane Surfaces

The first experiments of attosecond streaking from a plane tungsten
surface [22], and subsequent experiments on rhenium [23] and magne-
sium [24], which focused on measuring time delays between valence
and core bands, initiated a number of theoretical models. A recent
overview models is given in [33]. All but one [42] use a quantum me-
chanical description in the single-active electron approximation. The
IR-streaking field can either be taken into account by directly solving
the time-dependent Schrdinger equation or by employing damped
Volkov-states as final states in Eq. 2.39 [33]. Using the symmetry of
the experiments, the quasi-perpendicular polarization of XUV and IR
with respect to the surface and normal emission, allows a considerable
simplification of the models. Different factors such as dispersion or
different localization and energy-dependent scattering where used to
explain the observed time-shifts of around 100as for tungsten and
rhenium and 0 as for magnesium.
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Attosecond streaking from nanoplasmonic objets

A number of theoretical studies [25–30] have suggested the use of
attosecond streaking for the characterization of nanoplasmonic near-
fields. Several points restrict the models for plane surfaces to be used
for nanoplasmonics objects. First, due to the changed geometry, the
symmetry is reduced, IR and XUV fields are generally not normal
to the surface anymore and non-normal electron emission has to be
considered. Additionally, the IR fields show pronounced inhomogeni-
ties and the considered objects are usually polycristalline. Therefore
employed models to describe the attosecond streaking process from
nanoobjects are considerably simplified. Electrons are treated in a
classical framework. Most models assume electron emission from a
narrow band and neglect scattered electrons [25, 27–29] or use an
experimental spectrum [26]. Furthermore emission from the surface is
assumed and any effects of electron emission and propagation in the
solid are neglected, except for [29].

With the first successful attosecond streaking experiments on nanos-
tructures (see Chapter 5), a more detailed model to study the influence
of effects neglected above is necessary. Such a model has been devel-
oped in this work in the framework of the three-step model. Although
the model should be widely applicable, we limit our discussion to
attosecond streaking from gold and XUV energies in the region from
80 to 110eV region, the conditions found in experiment. We use a
Monte-Carlo algorithm. The XUV beam is described by an Gaussian-
profile in space and time and propagates along a straight ray-like line.
Over the distances relevant for photoemission the attenuation and
the temporal distortion of the XUV-pulse is neglected. This is in
agreement with Mie calculations on spheres and cylinders. Since the
polarization of the XUV field is numerically hard to calculate and due
to the unknown crystal symmetry the photoexcitation is assumed to
be isotropic and homogenous and is restricted to a layer a few times
the inelastic mean free path from the surface. The initial energy of
the electrons is given by the convolution of the experimentally XUV-
spectrum and the valence band density of states of gold calculated by
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Figure 2.6: partial and total density of states of the valence band of gold
calculated by full-potential linear muffin-tin orbital (FP-
LMTO) implementation of density-functional theory (DFT)
in the local-density approximation (LDA) [43] [adapted from
[44]]

density functional theory (DFT) in the full-potential linear muffin-tin
implementation (FP-LMTO) using the local density approximation
(LDA) [43, 44]. The employed DOS of gold is shown in Fig. 2.6. The
electron is subsequently propagated through the medium subject to
elastic and inelastic scattering until it reaches the surface, where it is
diffracted and may lead to surface excitations. The relation between
the DOS and the resulting (unstreaked) photoelectron spectrum is
shown in Fig. 2.7. A free electron dispersion is assumed. Scattering
and surface transmission are described in great detail in the next chap-
ter. All the time from its birth, the electron is subject to the IR field
and the following classical equation of motion is solved numerically:

d�v

dt
= − e

m
�EIR(�r, t). (2.42)

Electron scattering, which changes the electron energy and direction,
is assumed to occur instantly. The propagation is stopped when all
fields have substantially decayed.
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Figure 2.7: Illustration of the relation between the photoemission spec-
trum and the DOS. The finite width of the exciting photon
spectrum as well as scattering lead to a broadening of the
features in the photoelectron spectrum.



3 Experimental methods and
setup

The attosecond streaking technique requires CEP-controlled high-
power few-cycle laserpulses to produce isolated attosecond XUV-pulses.
In this section a short overview of the setup for the production of few-
cycle pulses is given before turning to the generation of isolated XUV
pulses and the implementation of the attosecond streaking technique
itself.

3.1 Generation of ultrashort laserpulses

The Ti:Sa-Laser is up-to-date the workhorse of attosecond physics
because of the broad bandwidth which it supports and which allows
the generation of few-cycle laserpulses from an oscillator. Fig. 3.1
shows a schematic overview of the lasersystem used in our experiments.
The lasersource is as commercially available chirped-pulse amplifier
(FEMTOPOWER Compact Pro). The first part is a Kerr-mode-locked
Ti:Sa-oscillator which delivers 3.5 nJ pulses with a duration of 7 fs
covering a spectral range from 620 nm to 1000 nm at a repetition
rate of 70 MHz. It is equipped with a module for CEP-stabilization
(see subsequent section). A pulse-picker sends pulses at a repetition
rate of 1 kHz to the subsequent amplification stage. Then the pulses
are sent through a SF-57 glass stretcher where they are elongated
to around 10 ps by introducing negative chirp. For fine tuning of
the dispersion a programmable acusto-optic dispersive filter is used
(FASTLITE Dazzler) before finally passing the chirped pulses to the
Ti:Sa 10-pass amplifier. After amplification the pulses have an energy
of around 2 mJ and due to gain narrowing a spectral bandwidth

© Springer Fachmedien Wiesbaden 2016
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Figure 3.1: Schematic overview over the AS5-laser-system used for the
experiments. [Adapted from [45]]

of around 100 nm centered at 800 nm. They are then sent to the
AS5-lasertable, where they pass through a telescope before entering
the pulse compressor, which implements a hybrid approach. First
a prism-compressor is used to precompress the pulses. However to
avoid pulse distortions due to optical nonlinearities in the last prism
caused by high-intensities the pulses are not fully compressed. This is
achieved in second stage with a set of highly dispersive mirrors. After
this, the pulse is compressed to a duration of around 27 fs with an
energy of approximately 1.6 mJ. To avoid beam-pointing instabilities
a beam-stabilization system, which measures pointing fluctuations
via Position-Sensitive-Detectors (PSD), is employed before and after
the compressor. For spectral broadening the pulse is focused into a
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hollow-core fiber with an inner diameter of 275 μm. The fiber is filled
with neon gas at an optimized pressure between 2.6 and 3.2 bar. The
spectral broadening occurs due to the optical Kerr-effect. It can be
described by the second order nonlinear refractive index n2 and leads
to an intensity dependent refractive index :

n(t) = n0 + n2 · I(t), (3.1)

where n0 is the linear refractive index and I(t) the intensity. This
causes an additional time dependence of the instantaneous phase
of the pulse φ(z, t) = −ω · t + n(t)kzz, which changes the effective
frequency ωeff :

ωeff =
∂

∂t
φ(z, t) = ω − n2z

∂I(z, t)

∂t
. (3.2)

The change of intensity within the pulse leads to the generation of
additional red (blue) frequency components in the leading (trailing)
part. Additionally so-called self-steepening occurs, which leads to
an steeper trailing edge and therefore favours the generation of blue
components [32].

The resulting positively chirped pulse is recompressed using chirped
mirrors. The phase of the output pulse is however not trivial over the
whole part of the generated spectrum and therefore not the whole
bandwidth can be used effectively for pulse compression [38]. For
fine-tuning and compensation of day-to-day variations a pair of glass
wedges is used. A small portion of the beam is sent into another CEP-
stabilization system. The rest of the beam is sent to the experiment.

3.2 CEP-stabilization

The generation of isolated attosecond pulses used in streaking spec-
troscopy heavily relies on waveforms with a controlled CEP. In our
setup the CEP is controlled at two different positions namely directly
at the oscillator and after the spectral broadening in the hollow-core-
fiber and two different techniques are employed.
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Figure 3.2: a): Pulses from a mode-locked oscillator with repetition rate
frep and constant phase slip ΔφCE . b) The phase slip leads
to an offset of the frequency comb of the fundamental laser
by fCE . The frequency comb of the difference frequency
signal (DFG) lies at multiple integers of frep. Interference
of the fundamental and the DFG-signal leads to a beating
signal.

As schematically shown in Fig. 3.2 a), mode-locked oscillators
deliver pulses with a well defined pulse envelope and repetition rate,
however there is generally a pulse-to-pulse shift of the carrier-to-
envelope phase ΔφCE . In the frequency domain this corresponds
to a shift of the teeth of the frequency comb fn = n · frep by the
so-called carrier-envelope phase offset frequency fCE = frepΔφCE/2π.
In our setup the offset-frequency is measured by focusing a part of
the oscillator output into a periodically-poled lithium niobate crystal
(PPLN). Via the second order nonlinearity a difference frequency
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signal (DFG) is produced, the teeth of which lie at multiple integers
of the repetition frequency:

f ′
m = fk − fn = (k · frep + fCE)− (n · frep + f0) = m · frep. (3.3)

where k − n = m. This is schematically shown in Fig. 3.2 b). In the
region where both spectra overlap a beating can be observed. The
measurement of fCE via the beating signal can be understood by
considering the temporal intensity I(t) on a fast photodiode, which is
able to resolve frequencies on the order of frep and simply averages
over the frequencies which occur in the comb:

I(t) ∝<
∑
m,l

[cos(ωl · t) + cos(ω′
m · t)]2 > (3.4)

=<
∑
m,l

cos(ωl · t)2 + cos(ω′
m · t)2 + 2 · cos(ωl · t)cos(ω′

m · t) >

=
∑
m,l

[1+ < cos(ωl · t+ ω′
m · t) > + < cos(ωl · t− ω′

m · t) >]

=
∑
m,l

[const.+ cos(ωl · t− ω′
m · t)],

where the prime denotes the DFG-comb. Relative amplitudes of the
different contributions have been neglected. The beating signal thus
contains frequency components at fl − f ′

m = fCE for l = m which can
be determined by Fourier analysing the time signal of the photodiode.
The rest of the spectrum, where no beating occurs is filtered out. By
considering different pairings of frequencies in the above equation, it
can be understood why fCE is usually stabilized to frep/4. At integer
values of frep it would overlap with contributions from {fl+n, fl} and
at frep/2 with the signal stemming from {fl−1, f

′
l}. In the setup fCE

is referenced to frep/4 in the locking electronics (MENLO systems)
and stabilized via a change of the intracavity dispersion by modulating
the pump power with an acusto-optical modulator (AOM). The pulse
picker ensures that only pulses with identical CEP are amplified.
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After the oscillator CEP-drifts might occur due to intensity fluctu-
ations in the amplifier and pointing instabilities in the whole setup.
Therefore the CEP of the recompressed pulse after the chirped mir-
rors is measured. This is done by focusing a part of the beam into
a β-barium borate BBO-crystal which is optimized for SHG. The
resulting spectrum I(ω) of the overlap of the fundamental and SHG
is measured via a spectrometer and is given by [45]:

I(ω) = If (ω)+I2f (ω)+
√

If (ω)I2f (ω)cos(φf (ω)−φ2f (ω)+ωτ+φCE).

(3.5)
Due to the delay τ of the spectral components of fundamental and
SHG signal a modulation of the measured intensity occurs in the
region of spectral overlap. This modulation is shifted φCE . By Fourier
analysing the modulation, the relative CEP can be calculated [46].
By a feedback on one of the prisms in the hybrid compressor, the
dispersion can be changed and the CEP stabilized.
We note, that in connection with the first technique one speaks

of ”f-to-0”-technique, and in connection with the second of ”f-to-2f”-
technique [41]. The term however only describes whether the the
fundamental is referenced to the DFG or the SHG signal. Variation of
the first technique, where the SHG-signal is used are widespread [38].

3.3 High-Harmonic Generation

High-harmonic generation (HHG) is the decisive process for the gen-
eration of attosecond XUV pulses and is achieved by focusing a
high-intensity laser-beam into gas. Most of the features of HHG
can be understood in a simple semi-classical model, the so-called
’simple-man’s model’ [38], which can be decomposed into three steps.
A schematic illustration of this model is shown in Fig. 3.3 a). First,
at the crest of the electric field, the incident laser causes a strong
distortion of the Coulomb potential of the gas atom, which leads to
ionization by electron tunnelling through the potential barrier. The
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Figure 3.3: a) The simple-man’s model of High-Harmonic Generation.
The dashed line shows the unperturbed Coulomb potential,
the red line the total potential at the time of electron emis-
sion. b) The timing with respect to the driving laser. The
dashed curves schematically show the ionization (Pion) and
recollision probabilities (Prec).

emitted electrons, initially at rest, are accelerated away from the par-
ent ion. Secondly, due to its temporal evolution, the field will reverse
its direction. The electrons are decelerated and will finally travel back
to the parent ion. Thirdly upon recollision and recombination with
the parent ion, a photon with an energy equal to the sum of kinetic
energy and ionization potential Ip is created. The maximum photon
energy Ecutoff predicted by this model is given by [38]:

Ecutoff = 3.17 · Up + Ip, (3.6)
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which is close to the quantum mechanical result. Up is the pondero-
motive energy which is given by:

Up =
(eE0(τ))

2

4mω2
0

≈ 9.33IL[10
14 W

cm2
] · λ0[μm]2, (3.7)

where ω0 and λ0 are the central frequency and wavelength respectively.
E0(τ) is the amplitude of the instantaneous electric field oscillation
and IL is the intensity.
Two important things are to be noticed. First, due to the highly

nonlinear process of tunneling ionization, the electrons are emitted
only during a well confined time interval around the field maximum.
As a consequence also the recollision and photon emission is synchro-
nized with the driving laser. Due to the dispersion of the electrons
while travelling through the laser-field, the time interval of recollision
is broadened compared to ionization, but still confined to a fraction
of the optical period. This is schematically shown in Fig. 3.3 b). The
process of ionization and recollision repeats every half cycle and leads
to the production of attosecond pulse trains.

Secondly, for few-cycle laser-pulses the maximum electric field am-
plitude depends on the CE-phase (see Fig. 2.1) and with that through
Eq. 3.6 the maximum photon energy produced in HHG. For φCE = 0,
the highest photon energies are produced only during the central half-
cycle. By spectrally filtering out the highest energy photons, which
are only produced during the central half-cycle, isolated attosecond
pulses can be generated. This is schematically shown in Fig. 3.4. The
basic characteristics of HHG have so far been discussed in the intuitive
semi-classical picture. A quantum mechanical description becomes
necessary for example when examining the efficiency of the HHG
process or when considering phase-matching of the HHG-beam [38].
In our setup the laser is focused with a peak intensity of around
5 · 1014 W

cm2 into a neon gas jet. By use of Eq. 3.6 this leads to a cutoff-
energy of approximately 105 eV. Fig. 3.5 shows the attosecond pulses
produced in our experiments after spectral filtering and dispersion
compensation as measured by attosecond streaking from neon gas.
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Figure 3.4: a): The HHG-process for φCE = 0. The color encodes the
energy of the produced XUV-photons. The highest energies
are only produced during the central field oscillation. b):
Sketch of the HHG-spectrum for two different CE-phases.
The spetral filter, which allows generation of isolated attosec-
ond pulses, is indicated as a black dashed line. [adapted and
corrected from [45]].

They lie around 95 eV with a bandwidth of around 8 eV given by the
spectral filter and with a duration of approximately 220 as.

3.4 AS5-Beamline

Fig. 3.6 shows a schematic overview of the AS5-attosecond beamline
used in the experiments. Because the XUV pulses get easily absorbed
the whole setup resides in vacuum chambers, evacuated to pressures
around 10−5 mbar or lower. The few-cycle IR-beam coming from
the lasertable is sent into the HHG-chamber where it is focused into
a neon-gas target by a mirror with a focal length of 50 cm. After
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Figure 3.5: A typical XUV pulse used in the experiment in the spectral
(a) and temporal domain (b), determined from an experimen-
tal streaking trace. [from [45].

Figure 3.6: Overview over the AS5-attosecond beamline [45].

passing through a system of differential pumping stages, the combined
HHG and IR beam reaches the XUV-characterization stage. There,
a gold mirror can be driven into the beam path, which projects the
XUV onto a grating spectrometer, consisting of a grazing incidence
grating and a MCP with a fluorescent screen. The beam then passes
through the filter section, where XUV and IR are spatially separated.
The outer beam passes through a pellicle, blocking the XUV, and
the inner part passes through a Zirconium foil, blocking the IR. The
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Figure 3.7: Detailed view on the TOF, double mirror and target stages
[45].

beam is then sent into the experimental chamber onto a spherical
double mirror. The position of the inner part of the mirror is controled
via a high-precision piezo-stage, which allows to introduce the delay
between XUV and IR necessary for the attosecond streaking pump-
probe scheme. It has a focal length of 12.5 cm and focuses both beams
under a slight angle onto the targets mounted on the target stage in
front of the time-of-flight spectrometer (Käasdorf TOF ETF-20). This
is shown in more detail in Fig. 3.7. The spectrometer registers the
arrival of electrons via an MCP which produces a fast voltage signal.
The timing of this signal is then recorded with respect to a trigger
signal, produced by the previous IR pulse, by a fast multiple-event
time digitizer card (TDC FASTCOMTec p7889). From this the time-
of-flight spectrum of the electrons can be deduced and converted to
energy with the use of calibration curves provided by the manufacturer
of the TOF.



4 Electron scattering in solids

Electron scattering in solids is a problem encountered in many ex-
periments for example Reflection Electron Energy Loss Spectroscopy
(REELS), Low Energy Electron Diffraction (LEED), Transmission
Electron Microscopy (TEM) and also in radiation therapy, radiation-
protection and for radiation detectors.
In Scattering theory generally two types of scattering are distin-

guished, namely elastic and inelastic scattering. In inelastic scattering
events, part of the energy of the projectile is used to promote the
target to a different internal state, while in elastic scattering it remains
the same.

The passage of electrons through solids and surfaces is in principle a
complex many-body problem which is very difficult, if not impossible,
to solve correctly. Therefore simplified models have to be used for
their description. These models turn out quite differently for elastic
and inelastic scattering, as will be elaborated in the present chapter.

4.1 Elastic Scattering

The elastic scattering of an electron with kinetic energy E is usually
described as the interaction with a single free target atom, modelled
via the spherically symmetric potential V (r). The neglect of the
crystal structure and bonds of the solid seems to be a severe approxi-
mation at first, however, as will be discussed below, it is justified for
most cases.

Due to the spherical symmetry of the problem, the well established
partial wave methods can be used. Although it can be found in any
good textbook on Advanced Quantum Mechanics (e.g. [47]) we will

© Springer Fachmedien Wiesbaden 2016
J. Schötz, Attosecond Experiments on Plasmonic Nanostructures,
BestMasters, DOI 10.1007/978-3-658-13713-7_4



36 4 Electron scattering in solids

shortly describe the general procedure here. Due to the symmetry
the solution of the Schrödinger Equation (SE) can be expanded into
different orbital angular momentum states with quantum number
l. This leads to a separate one-dimensional equation for each l in
the radial variable r. For large r, where the potential for a neutral
atom is zero, the general solution is known analytically (it has the
same form as the one encountered in Mie-theory [36]). The ansatz for
the solution is a distorted plane wave, an incoming plane wave plus
an outgoing spherical wave. By numerically integrating the SE for
each angular momentum state l up to the radius where the potential
vanishes (has reached it’s asymptotic value) and matching it to the
distorted plane wave solution, the differential cross section can easily
be calculated.

In order to allow for a more accurate description in the framework
of relativistic quantum mechanics, the Schrödinger equation has to
be replaced by the Dirac equation, which also naturally accounts for
the spin of the electron. The general procedure however remains the
same.
There exist a number of databases for elastic scattering cross sec-

tions calculated by the above procedure, whereas experimental data
exists only for a number of elements at specific energies. An overview
and comparison of the databases is given in [48]. The main differences
are the employed potentials, the covered energy range, the available
elements and the relativistic/non-relativistic treatment. An alterna-
tive to databases is to use available codes, which calculate the desired
quantities. In this thesis we will utilize the code-system ELSEPA [49],
which has been used in a number of recent Monte-Carlo simulation
papers involving electron transport, including a recent paper in the
context of attosecond physics on metal nanotips [50] and streaking
from tungsten surfaces [42]. It uses Dirac-Partial-Wave-Analysis and
employs the state-of-the-art model, which allows the description of
relatively low energy elastic scattering. It also allows the user to
vary certain parameters in the potentials to study the effect on the
scattering characteristics.
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In the ELSEPA code-system the interaction is modelled using an
optical model potential [51]:

V (r) = Vst(r) + Vex(r) + Vcp(r)− i ·Wabs(r). (4.1)

where Vst is the electrostatic interaction. In ELSEPA it is obtained
from Dirac-Hartree-Fock self-consistent density-functional calculations
for a single atom.

Vex is the exchange potential. It arises due to the Pauli-exclusion
principle, the exchange antisymmetry for electrons. This is a non-
local effect, which is difficult to handle in calculations. Therefore
Vex(r) is derived from the local-density-approximation (LDA) of a
homogeneous electron gas (HEG).

The terms Vst and Vex are used in other calculations too and corre-
spond to a first order Born-approximation [51], which is asymptotically
exact for high energy electrons. For lower energies the polarization
and the absorption of the atom play a role. Vcp is the correlation-
polarization potential which accounts for the polarization via the
classical long range polarization potential and the electron screening
via a short range correlation potential obtained from LDA. Wabs is
the absorptive potential. It is also derived from the electron energy
loss through e-h-creation in a HEG.

Furthermore to allow for the description of elastic scattering within
solids, the atomic Vst can be replaced by a muffin-tin potential. This
is a common approach to describe electrons in solids. In the model
used in ELSEPA it is assumed that all atomic electrons are confined
to within a sphere of radius Rmt.

Fig. 4.1 b) shows the differential elastic cross section (DCS) for
a gold atom for different energies. It is calculated using the optical
model potential described above and a muffin-tin radius Rmt = 1.37
Å, the order of magnitude of which can be estimated from the lat-
tice constant of gold alattice = 4.11 Å. For all energies the DCS is
dominated by a strong forward scattering peak, which becomes more
pronounced with increasing energy. In addition there appear minima
in the DCS, which arise due to the interference of different angular
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Figure 4.1: a) Classical picture of the relation between radial distance
and scattering angle. b) Differential cross section for gold for
different energies computed with a muffin-tin radius of 2.4
a0. Note the logarithmic scale.

a) b)

Figure 4.2: Effect of the muffin-tin model and the different higher order
terms on a) the differential cross section for gold at 93eV
and b) on the total elastic cross section versus energy.

momentum contributions. The position, width and depth vary with
energy and eventually disappear for high energies.

To see the effect of different higher order contributions in the opti-
cal model potential a set of calculations were performed starting from
the combined electrostatic-exchange potential Vst + Vex and consecu-
tively switching on the muffin-tin option, the correlation-polarization



4.1 Elastic Scattering 39

potential and finally the absorptive potential. As can be seen in Fig.
4.2 a) the muffin-tin option (green/wide dashes) slightly shifts the
minima but more importantly lowers the DCS at small scattering
angles. The reason for the latter is that it lowers the electron density
and therefore the potential at higher radii compared to the atomic
case. This can be understood already in a classical picture as illus-
trated in Fig. 4.1 a). The main effect of Vcp (red/narrow dashes) is to
introduce a long-range polarization potential, which leads to a increase
in V (r) for high r. This in contrast, leads to an increase in the DCS at
relatively low scattering angles. The influence on the distribution for
higher scattering angles is minor. Wabs (light blue/solid line) lowers
the DCS at all angles without drastically influencing the shape. The
effect of the higher order corrections becomes less important for higher
electron energies and the DCS practically converge. For lower energies
however, the impact of Vcp and the muffin-tin option increases and
they eventually dominate the distribution for energies below about 40
eV.
This is also illustrated in the total elastic cross section, as shown

in Fig. 4.2b). While at high energies the different models practically
deliver the same σtot. For 100 eV the differences are still only a few
percent, whereas below 40 eV they might get as high as several 100%.
In this region the biggest impact is from the muffin-tin model. This
can also be seen in Fig. 4.3, where the energy dependence of the total
elastic cross section for different muffin-tin radii is shown. The height
and position of the maximum below 40 eV critically depends on Rmt.
This can be understood by considering the de-Broglie wavelength
λDB of the electron, which reaches in this energy region the size of
the muffin-tin potential. The sensitivity on Rmt thus indicates the
occurrence of a resonance.

There are a few points to conclude from the above analysis. First
of all, the differential cross section for gold has a rather complicated
structure in the energy region around 100eV . Even for low energies it
can not be approximated by an isotropic distribution. That implies
that for Monte-Carlo simulations the calculated differential cross sec-
tion should be used.
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Figure 4.3: The dependence of the total elastic scattering cross section
on the muffin-tin radius Rmt in units of the Bohr-radius a0.
The shift of the low energy maxima with the radius indicates
the occurrence of a resonance.

Secondly, in this model for energies below 40eV the higher order
corrections become dominant for elastic scattering. The occurrence of
resonances in this energy region, lead to a drop of the elastic mean free
path below the interatomic distance. This violates the assumption of
a incoming plane wave for consecutive scattering event and leads to a
break down of the model. A study for silica showed, by describing
the electrons as Bloch-electrons and considering the different inelastic
and quasi-elastic channels separately, that the elastic cross sections in
the low-energy region are indeed significantly lower than calculated
from models similiar to one the above [52].
Since for real solids we expect foremost that the potential at high

r is different from the atomic case, we can conclude that for higher
energies only the small scattering angles are considerably affected,
as seen above. Small angle scattering below 10◦ only slightly affects
the (incoherent) particle transport over small distances, which is the
reason why atomic cross sections have been successfully applied for
electron elastic scattering at solid surfaces [48].
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There a two further points in the model which have to be discussed
when applying the above results to photo-emission from solids. First,
in real situations the incoming electron will not be a plane wave but
more or less spatially confined wave-packet. However, if we assume
that the wave-front is approximately plane over the length scale of
the atomic radius, we can apply the above results. Furthermore, for
low energies the actual band structure of the solid might strongly
influence the dispersion relation of electron and the approximation of
an electron as a free electron might be invalid.
Finally the symmetry and periodicity inside a crystal can lead to

the well known Bragg diffractions in coherent scattering. However for
this the electron wave-packet must be describable as a plane wave
over the length scale of several lattice constants, which might not be
valid, depending on the initial and final photo-emission states. Addi-
tionally at the polycrystalline and possibly reconstructed and relaxed
surfaces [53], we are dealing with in our experiments, the symmetry is
reduced and a priori not known. We will therefore neglect any Bragg
reflections in the course of this thesis.

4.2 Inelastic Scattering

Inelastic scattering in solids is modelled as the interaction of an elec-
tron with a medium characterized by the dielectric constant ε(�r, ω).
However, before looking into the details inelastic scattering calcula-
tions, we will consider the basics kinematics.

4.2.1 Kinematics of inelastic scattering

The kinematics are governed by the universal law of energy and
momentum conservation:
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Figure 4.4: The kinematics of inelastic scattering.

E = E1 +Q (4.2)

�k = �k1 + �q (4.3)

Where E (�k) and E1 ( �k1) is the initial and final energy (wavevector)
of the electron. Q is the energy loss and �q the wavevector transfer.
Rearranging �q = �k − �k1, and squaring the expression leads to q2 =
k2 + k21 − 2kk1cosΘ, where Θ is the scattering angle (see 4.4). To
further simplify the expression, we have to make an approximation
about the dispersion relation. Assuming a free-electron like dispersion
E = h̄2

2mk2 and using E = E0 −Q, we arrive at the following relation:

q =

√
2m

h̄2
(2E −Q− 2

√
E
√

E −QcosΘ) (4.4)

That means that for a given energy loss Q there’s a lower(-) and
upper(+) bound for q:

q± =

√
2m

h̄2
(
√
E ± 2

√
E −Q) (4.5)
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By taking the total differential of Eq. 4.4 at fixed energy loss Q,
we arrive at an expression which we will use later:

dq =
2m

h̄2

√
E
√
E −QsinΘ

q
dΘ (4.6)

4.2.2 Theory

To arrive at the expression for the inelastic scattering cross section
within the semiclassical framework some derivation is necessary, which
is usually not found in the literature. The derivation we present here,
has been adapted from the derivation of the energy loss of electrons
in the presence of a surface [54]. We start by considering an electron
with velocity �v moving through a homogeneous medium characterized
by a dielectric constant ε. We will neglect the magnetic field �B. This
is equal to setting �A = 0, which is an approximation valid for non-
relativistic particles. From Gauss-Law in frequency-momentum-space
we obtain:

i�q �D(�q, ω) = ρ(�q, ω). (4.7)

Together with the definition of the potential in frequency-momentum-
space �E(�q, ω) = −i�qφ(�q, ω) and the constitutive relation �D(�q, ω) =
ε(�q, ω) �E(�q, ω), we can derive a result for φ(�q, ω). This can then be
used to obtain �E(�q, ω):

�E(�q, ω) = − i�q

q2ε0ε(�q, ω)
ρ(�q, ω). (4.8)

The charge distribution ρ(�r, t) is given by eδ(�r − �vt), consequently
ρ(�q, ω) reads 2πeδ(�q�v + ω). Using Eind = Ebulk − Evac, we get an
expression for the induced electric field:

�Eind(�q, ω) = −2π
i�q

q2ε0
eδ(�q�v + ω)

[
1

ε(�q, ω)− 1

]
. (4.9)

The easiest way to obtain a relation with the formalism of scattering
cross sections is via the stopping power, the energy loss per unit path
length in the medium. It reads as:
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dW

ds
=

dt

ds

dW

dt
=

1

v
�v �Find

∣∣∣∣
�r=�vt

=
1

v
e�v �Eind

∣∣∣∣
�r=�vt

= (4.10)

− 1

v

�ve22π

ε0

∫
R3

dq3
∫ ∞

−∞
dω

i�q

q2
δ(�q�v + ω)

[
1

ε(�q, ω)
− 1

]
e+iωte+i�q�r

∣∣∣∣
�r=�vt

Now there are two small tricks. First of all we move �v into to integral
and perform the scalar product with �q. Using the delta function this
can be replaced with ω. Secondly, we notice that the expression is
evaluated at �r = �vt. Again with the help of the delta function, the
complex exponentials from the Fourier transform reduce to unity,
resulting in:

dW

ds
=

1

v

2πe2

ε0

∫ ∞

0

dq q2

(2π)3

∫ 1

−1
d · cosΘ

∫ 2π

0
dφ (4.11)

·
∫ ∞

−∞
dω

2π

[
1

ε(�q, ω)
− 1

]−iω

q2
δ(qvcosΘ + ω)

Assuming that the dielectric constant is isotropic, meaning ε(�q, ω) =
ε(q, ω), we can perform the integral over φ to give a factor 2π. The
integral over cosΘ can be used to collapse the delta function, which
gives an factor 1

qv and reduces the integral boundaries:

dW

ds
=

1

v2
e2

(2π)2ε0

∫ ∞

0
dq

1

q

∫ +qv

−qv
dω(−iω)

[
1

ε(�q, ω)
− 1

]
. (4.12)

Using the identity ε(�q, ω) = ε∗(−�q,−ω), we obtain the final expression:

dW

ds
=

1

v2
e2

2(π)2ε0

∫ ∞

0
dq

1

q

∫ +qv

0
dω ωIm

( −1

ε(�q, ω)

)
. (4.13)

So far, we have a expression for the stopping power based on Maxwell’s
equations. Now we want to have another one based on differential
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cross-sections dσ
dwd�q . Using the target number density N the energy

loss per unit path length can be expressed as

dW

ds
=

∫ E

0
dω

∫ �q+

�q−
d�qωN dσ

dωd�q
. (4.14)

The product of differential cross section and target number density in
the kernel can be interpreted as probability per unit path length to
loose an energy ω and momentum �q. Note that the integral is over
all possible �q and not a volume integral. Using the symmetry of our
model, we can perform the integral over the angles:

dW

ds
=

∫ E

0
dω

∫ q+

q−
dq

∫ +1

−1
dcosΘ

∫ 2π

0
dφωN dσ

dωd�q

= 4π

∫ E

0
dω

∫ q+

q−
dqωN dσ

dωdq
. (4.15)

The quasi-classical approximation consists now in identifying the
Fourier components ω and q of Eq. 4.13 with the energy loss and
momentum transfer in Eq. 4.15. Comparing these two equations we
obtain:

N dσ

dωdq
=

e2

(2π)2ε0v2
· 1
q
Im

( −1

ε(q, w)

)
. (4.16)

Note that the integral limits in Eq. 4.15 come from kinetic consid-
erations whereas in Eq. 4.13, we didn’t impose such restrictions yet.
Using the inelastic mean free path λ = 1/Nσ and the electron energy
E, the above expression can be written as

dλ−1

dQdq
=

1

aBπE

1

q
Im

( −1

ε(q,Q)

)
. (4.17)

Eq. 4.17 is the central equation in this chapter. It divides the scat-
tering in a projectile dependent term and a material dependent term,
the energy loss function (ELF) Im(−1/ε(q,Q)). From this we can
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derive an equation for the so called differential inverse inelastic mean
free path DIIMFP, which corresponds to the energy loss probability:

dλ−1

dQ
=

1

aBπE

∫ q+

q−

dq

q
Im

( −1

ε(q,Q)

)
(4.18)

and further the differential cross section using Eq. 4.6:

dλ−1

dΩ
=

∫ E

0
dQ

dλ−1

dqdQ

dq

4πdcosΘ
(4.19)

4.2.3 Extension algorithms

In the presented model, the material dependent term, which deter-
mines all the scattering characteristics of a given solid is determined
by ε(q,Q). This function is experimentally hard to access except at
q = 0, where it can be calculated from optical data. Fig. 4.5 shows
the energy loss function for q = 0 for gold. With knowledge of the
electronic structure of the material it is possible to assign specific loss
channels to certain features in the ELF. The extension of the ELF to
non-zero q is difficult and has to rely on semi-empirical algorithms.
(An overview is given in [55]). First principle calculations still have dif-
ficulties in reproducing the experimental data for ε(0, Q)(see e.g. [56]).
For a few model systems ε(q,Q) is approximately known analytically,
for example the homogeneous electron gas. However these models are
often not sufficient to describe the complex structure in real solids.
The most successful strategy for real materials is the Optical Data
Model. It parametrizes the ELF at q = 0 and varies some of the
parameters with q according to semi-empirical models. The two most
commonly used algorithms are the extended Drude model and the
Drude-Lindhard model.
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In the extended Drude model the dielectric function ε = ε1 + i · ε2
is expressed as a sum of Drude-terms (see Eq. 2.11):

ε1 = εb −
∑
j

fj(ω
2 − ω2

j )

(ω2 − ω2
j )

2 + ω2γ2j
(4.20)

and ε2 =
∑
j

fjγjω

(ω2 − ω2
j )

2 + ω2γ2j
. (4.21)

The imaginary part ε2 is fitted to the experimental ELF from which
ε1 can be calculated. In order to extend this model to non-zero q’s,
ωj is varied as:

ωj(q)
2 = ωj(0)

2 +
2

3
Ef

h̄2

2me
q2 + (

h̄2

2me
q2)2. (4.22)

where Ef is the Fermi energy, linked to the plasmon energy Ep = h̄ω0

by Ef = h̄2

2me
(3 ·π2 ε0me

h̄2e
)
2
3
·E

4
3
p . Often the simplified asymptotic version

for high q is used:

ωj(q) = ωj(0) +
h̄2

2me
q2. (4.23)

Only sometimes also the damping constant is dispersed γ = γ(q) [55].
The approach in the Drude-Lindhard model is different. Here the
optical ELF is directly expressed as a sum of loss functions derived
from Drude model:

Im

( −1

ε(q,Q)

)
=

∑
j

fjIm

( −1

εj(ω, q, ωj , γj)

)
(4.24)

−1

εj
=

γωi(0)
2ω

(ω2 − ωj(q)2)2 + γ2ω2
, (4.25)

where ωj(q) is extended to non-zero q as in the model above. One
possibility to avoid the semi-empirical extensions of ω(q) is to use
the Mermin-formalism [52], however paying the price of considerably
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increased complexity. In analogy to the Drude-Lindhard model the
loss function is expressed as:

Im

( −1

ε(ω, q)

)
=

∑
j

fjIm

( −1

εm(ω, q)

)
, (4.26)

where εm is the Mermin-function [57], which is the self-consistent
description of the dielectric function of a homogeneous electron gas
with a finite plasmon width in the Random-Phase-Approximation
(RPA). It is based on the Lindhard dielectric function εL:

εm(ω, q; γ,Ef ) =

1 +
(1 + i · γ/ω)(εL(ω + iγ̇, q;Ef )− 1)

1 + i(γ/ω)(εL(ω + iγ̇, q;Ef )− 1)/(εL(0, q;Ef )− 1)
(4.27)

The Lindhard dielectric function itself is given by [58]:

εL(ω, q;Ef ) =

1 +
k′tf
4q′3

(
2q′ + (1− x21)log

x1 + 1

x1 − 1
+ (1− x22)log

x2 + 1

x2 − 1

)
, (4.28)

where x1 = 1
2(q

′−ω′/k′) and x2 = 1
2(q

′+ω′/q′) and ktf =
√

me2kf
ε0pi2h̄

2 is

the Thomas-Fermi wave-vector. The prime denotes that the quantities
are expressed in Fermi units. Although it usually separated into its’
real and imaginary parts for real valued arguments, it is advantageous
for the complex arguments encountered in the definition of the Mermin
function, to stay with Eq. 4.28 and use the complex logarithm.
In the limit q → 0 the function Im(1/εm) reduces to the Drude-

Lindhard expression (Eq. 4.24) [59]. Thus the same parameters can
be used in parametrizing the ELF, only that now dispersion and
broadening are naturally accounted for.

Although the formalism is recognized as a significant improvement
over the extended Drude and Drude-Lindhard formalism in the low
energy regime (e.g. [54, 55]), it is not that often used. The reason
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besides the increased complexity is probably that as q → 0 the eval-
uation of Eq. 4.27 becomes numerically unstable (because of the
q3-term in the denominator). We circumvent this problem by using
the Drude-Linhard expression below an empirically determined qcut.

It must be noted that εm is derived from the homogeneous electron
gas. Thus it does not realistically describe all loss channels in a real
solid, e.g. interband transitions. Often the occurrence of a band
gaps, e.g. in semi-conductors is ignored, which is justified as long as
the energy of the electron is much bigger the band gap( [55]). One
general possibility is to use Drude-Lindhard terms with a specific
dispersion and broadening for such transitions and Mermin-terms for
losses connected to plasmons.
One disadvantage of the extended Drude and Drude-Lindhard

approach is that the ELF has to be parametrized through a com-
plicated fitting procedure. There are other approaches which use
integral equations, which however are not able to incorporate disper-
sion and broadening of the plasmon peak on the same level as the
Mermin-formalism. Here we also use one formulation due to Ding and
Shimizu [60], and refer to [61] for an overview of other possibilities.

4.2.4 Energy Loss Function

The first step in computing the inelastic scattering properties in solids
is to fit the model to the optical loss function. There are a few
databases available (see e.g. [56,62,63]). As can be seen from Fig. 4.5
a) the loss function computed from those differ quite considerably,
although common features can be identified. We only mention, that
there exist sum-rules to check the consistency of the input data (see
e.g. [64]). We here choose to employ the data from [62], which is
shown together with the corresponding Drude-Lindhard fit in Fig. 4.5
b). The fit was performed in the region from 0 to 190 eV. In the range
from 10 to 100 eV it is quite accurate, below 4 eV and above 150 eV
there are some small deviations.

Fig. 4.6 shows the extension of the loss function to non-zero
momentum transfer computed with the Mermin-formalism. At q = 0
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Figure 4.5: the loss function of gold: a) computed from different data
sources (green/thick dashes from [56], blue/solid line from
[62] and red/fine dashes from [63]) b) data and fit to [62] via
the drude-lindhard-formalism 4.24

we recognize the optical loss function. For higher energy losses and
momentum transfers a ridge can be observed, the so-called Bethe-
ridge, which asymptotically approaches a dispersion of q2. Physically
that means that for high energy and momentum transfers the inelastic
scattering can be treated as being caused by interaction with free
electrons [65].

To check the influence of the inelastic scattering properties on the
employed model, we performed calculations of the inelastic mean free
path and the differential cross section with the Drude-Lindhard model,
the Mermin-model and the fitless procedure of Ding and Shimizu [60].
Gaussian quadrature was used for the numerical integrations. The
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Figure 4.6: The extension of the surface loss function to non-zero mo-
mentum transfer computed through the Mermin-formalism.

Figure 4.7: Comparison of the different extension algorithms: a) imfp
b) differential cross section for incident electron energy of
100eV. At low energies differences occur while the models
converge for higher energies

resulting inelastic mean free paths are shown in 4.7 a). The general
behaviour is the same for all three models. Coming from high elec-
tron energies the IMFP decreases, reaching a minimum at around
100eV and then rising again. This behaviour is quite universal to all
metals [66]. It can be seen that for high electron energies, the models
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Figure 4.8: a) The differential inverse inelastic mean free path for gold
for different kinetic energies of the incident electron com-
puted through the Mermin-formalism. b) The inelastic dif-
ferential cross section for gold for different energies of the
incident electron.

agree well. For lower electron energies, the Mermin-formalism gives
the lower IMFPs compared to the Drude-Lindhard-formalism. This
difference can be attributed to the lack of a broadening formalism in
the latter model. It may be noted, that due to the small overestima-
tion of the loss-function below 4 eV in the above Drude-Lindhard fit
the IMFP below 10 eV might be overestimated. It is well known that
for low-energy electron scattering the Ding-Shimizu-model (DSM) is
a poor approximation, since it does not use any broadening formalism
and only a q2-dispersion [60].

We also computed the differential cross section (DCS) for all three
models for an electron kinetic energy of 100 eV. As shown in Fig. 4.7
b), inelastic scattering is dominated by low-angle scattering. This
is intrinsic in this description of inelastic scattering, owing to the
1/q-term in 4.17. Due to the restrictions in the DSM, scattering with
an angle greater than π/2 is not allowed.

Furthermore, we calculated the energy loss probability and the
differential cross section within the Mermin model. As can be seen in
Fig. 4.8 a) the peaks from the optical loss function in Fig. 4.5 can
be recognized in the DIIMFP. The loss probability however is broad
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and extends from low energies to the kinetic energy of the electron.
For other materials, especially free-electron-like metals such as Al and
Mg, the loss function is dominated by a single plasmon peak. This
single plasmon peak can be observed even with a broadband XUV
excitation and has even been measured with attosecond streaking [41].

The variation of the DCS is shown in Fig. 4.8 b). The general small-
angle scattering characteristic already mentioned above, increases with
energy.

There exist a number of databases, most prominently from NIST [67].
They usually only provide IMFPs, and don’t give DIIMFPs and DCSs
which are necessary for Monte Carlo simulations. This is the reason
why we took the effort of implementing the above algorithms.
It must be noted that there exist a number of analytic expressions for
the IMFPs obtained through a fit to numerical calculations. As we
have seen above, a simple extension of this expression to low energies
below 40 eV, where the IMFPs calculated from different models can
differ by factors of a few 100%, should only be taken with care.

However at such low energies, expression 4.17 and the possibly also
the model for the loss-function should be modified anyhow, to include
exchange and correlation effects. ( [68], [65]). This is beyond the
scope of this thesis.

4.3 Surface Scattering

As the electron approaches the surface it interacts with the surface
plasmon modes. This interaction is dependent on the distance to the
surface and leads to a change in the energy loss probability compared
to the bulk. An extensive literature exists on this problem for plane
surfaces (see [54] for an excellent introduction and overview). For
nanostructures the spatial dependence of the surface loss has been
applied to measure the spatial distribution of different nanoplasmonics
modes using electron energy loss spectroscopy EELS (e.g. [69]). For
the example of a sphere the connection between electron energy loss
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b) a)

Figure 4.9: a) Illustration of surface and bulk surface losses. b) The
surface loss function for q = 0 of gold computed from [62].

and plasmon modes can be understood from the derivation of Eq. 2.32
and Eq. 4.17. In the framework of Mie theory the fields in any region
excluding the electron can be described through the vector harmonics.
Solving for the boundary conditions gives the induced fields acting
on the electron in terms of the different modes [70]. The difference
to light scattering is, that the electron will generally also couple to
non-dipole, so called dark, modes.

In the nanoplasmonic streaking experiments considered in this the-
sis, we will encounter different shapes. For a general description we
will use an approximation where we consider the surface as being
(locally) flat and investigate the scattering characteristics. Since the
general description [54] depends on five parameters, energy E, depth
d, angle to surface α and scattering angles θ and φ, and leads to
expressions which are very hard to evaluate, we will use a simplified
description, given by [63]. In this model it is assumed, that the region
where electrons couple to the surface modes is usually small ( see Fig.
4.9 a)). Assuming scattering to be confined to the plane of incidence
and straight line propagation through this region (SLA), effectively
integrating over the surface loss term, this expression can be obtained:
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Ps(α,E,Q, �q) =
|qs|

π2vcosαq4
Im

(
(ε− 1)2

ε(ε+ 1)

)
, (4.29)

where Ps is the surface contribution of electrons scattering and losing
an amount of Q i n energy, α the crossing angle and qs the momentum
transfer parallel to the surface. The same relations between E, Q and
θ and q as for inelastic scattering in the bulk are valid.

The material dependent term in this equation is given by the surface
loss function:

Im

(
(ε− 1)2

ε(ε+ 1)

)
. (4.30)

As can be seen in Fig. 4.9 b), the SLF is also negative in certain
regions, where the bulk loss function is maximal.
Further assuming that the scattering is confined to the plane of

incidence, qs can be decomposed as, depending of whether the electron
is scattered from or to the surface [63]:

qs = q⊥cosα± q‖sinα =

(
q2−

(
Q

v
+

q2

2v

)2) 1
2

cosα±
(
Q

v
+

q2

2v

)
sinα.

(4.31)
With this, the so called surface excitation parameter (SEP), the mean
number of surface excitations per crossing, can readily be calculated:

Ps±(α,E) =
1

πv2(cosα)

∫ E

0
dQ

∫ q+

q−
dq

|q′s|
q3

Im

(
(ε− 1)2

ε(ε+ 1)

)
. (4.32)

For the total SEP, both plus and minus-contributions have to be
added:

Ps = Ps− + Ps+. (4.33)

Fig. 4.10 shows the calculated dependence of the SEP on the incidence
angle and the energy. For low angles the SEP stays relatively constant
and then diverges for angles approaching π/2. From the assumption
that the SEP is proportional to the time the electron needs to cross
the boundary, a simple formula for the SEP can be derived [71]:

Ps ∝ s

vcosα
=

as√
Ecosα

, (4.34)
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where as is a material specific parameter. As can be seen in 4.10, this
approximation describes the variation of the SEP very well. For as in
our region of interest of 30 eV to 140 eV, we obtain through fitting
parameter values of about 2.5 to 2.8.

Figure 4.10: a) The differential surface excitation parameter (DSEP)
for gold for different incidence angles.b) The surface exci-
tation parameter (SEP) for gold. Dashed lines show the fit
through Eq. 4.34.

The presented model is also capable of predicting energy losses via
the so called differential surface excitation parameter DSEP. This is
shown in Fig. 4.10 a) for an electron energy of 100 eV. While the
angle dependence of the total area is approximately given by Eq. 4.34,
the relative shape does practically not change. Due to the negativity
of the the SLF, also the DSEP is sligthly negative in some regions.
This is no problem if the above expression is used for deconvolution of
electron spectra. For Monte-Carlo simulations this negativity hinders
the interpretation of the SEP and DSEP as probabilities. In our
approach we just set the SLF to zero where it is actually negative.
The expressions calculated by this procedure, turn out to practically
not differ from the otherwise computed quantities in the case of gold.
We note that for other materials, like Al, this approach might not be
feasible. Moreover, the effect of this approximation on the angular
distribution is not clear.
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Figure 4.11: a) The relation between incidence and final angle in the
transmission through a potential step. b) The effective to-
tal transmission T through the potential step dependening
on final angle.

For the description of photoemission, electrons might actually be
born inside the surface scattering region. For those electrons this
model will overestimate the total scattering probabilities. Furthermore
the assumptions of a straight-line propagation and scattering in the
plane of incidence might not be valid. A consideration of the first
mentioned idealization will lead to a reduction of the SEP for large
incidence angles [71].
Being aware of the shortcomings of this model, we will still use

it, for its qualitatively complete description of the inelastic surface
scattering process.

4.4 Transmission

A point which is usually omitted in the context of inelastic surface
scattering of electrons is the potential the electron has to overcome at
the surface. Using the simplified model of a potential step, the quan-
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tum mechanical transmission probability T can easily be calculated
(e.g. [64]):

T =

4

(
1− V

Ecos2α

) 1
2

[
1 +

(
1− V

Ecos2α

) 1
2
]2 , (4.35)

where E is the energy of the electron, α the incidence angle with
respect to the surface normal and V the potential step.

The potential step also leads to refraction of the incident electrons.
The relation between initial and final angle α and α′ is given by:

sinα′ =
(

V

E − V

) 1
2

sinα (4.36)

and shown in Fig. 4.11.
In a more or less ad-hoc approach we can try to combine both

surface scattering effects. Assuming that the inelastic scattering
region can be divided into two equal regions above and below the
surface and considering the Poissonian distribution of the surface
excitation process [63], we can write for the probability of an electron
to leave the surface unscattered in dependence on the final angle α′

and initial energy E:

Ttot(α
′, E) = exp

(− Ps(α
′, E − V )/2

)
T (α,E)exp

(− Ps(α,E)/2
)

(4.37)
where we used Eq. 4.36 for T and the analytic approximation 4.34 for
Ps. The result is plotted in Fig. 4.11 for different energies without
(dashed) and with (solid) inelastic surface scattering. It can be seen
that the probability for unscattered transmission through the surface
decays abruptly for large final angles. This will affect the weight of
different photoelectron contributions coming from different regions of
the nanoobject.
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Figure 4.12: a) Electron kinetic energy spectra for different detector
orientations and a detector acceptance of 40◦. While the
shape doesn’t change much, the countrates vary consider-
ably. b) Angular dependence of the total electron counts
for detector acceptance of 40◦

4.5 Simulation for a plane surface

To investigate the effect of the different scattering contributions,
we performed a Monte-Carlo-simulation of electron transport at a
gold surface. Therefore we initialized electrons equally with different
distances to the surface, an isotropic velocity distribution and a
Gaussian distribution of initial kinetic energies around 95 eV with a
FWHM of 8 eV. We assume free electron dispersion.
The transport in bulk is described by the total electron mean free

path:
1

λtot
=

1

λinel
+

1

λel
. (4.38)

In this Monte-Carlo formulation, the distance ds to the next scattering
event is given by:

ds = −λtotlog(1− P ), (4.39)

where P is a uniform random number between 0 and 1. If the location
of the next scattering event lies outside the surface, the electron is
transmitted through the surface. The final angle to the surface, as
well as kinetic energy, time for reaching the surface and number of
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scattering events is recorded. If the electron energy falls below 35
eV the propagation is stopped. The details of the description of a
scattering event through the formulations in the previous section is
given in the Appendix.

In Fig. 4.12 a) the resulting spectra, for a detector acceptance angle
of 40◦ for different orientations with respect to the surface normal are
shown. As can be seen the spectra for different angles are very similar.
No distinct loss peak can be identified, due to the broad DIIMFP- and
initial energy distribution. The decrease of counts with the detector
angle can be qualitatively understood by considering bulk scattering
alone. The inelastic mean free path λinel limits the average distance
an electron can travel before losing too much energy. This leads to
a reduction of the active volume Vemission from which electrons can
reach the surface depending on the angle to the surface α, which is
given by:

Vemission ∝ λinel · cosα. (4.40)

The monotonic decrease predicted by this simplified model is indeed
encountered Fig. 4.12 b). This effect has so far not been considered in
nanoplasmonic streaking simulations. Of course, in experiments, also
polarization and initial state effects as well as the existence of surface
states, might alter this result. Also the role of surface roughness is
not clear.
The number of inelastic, elastic and surface scattering events for

particles reaching the surface are shown in Fig. 4.13 a). The ratio
of the number of inelastic and elastic scattering events is in good
agreement with the ratio of the inverse mean free paths.
Another very important result is shown in Fig. 4.13 b). 63% of

the electrons in the whole energy range from 35 eV reach the surface
within 73 as. That means, that in this model scattering does indeed
not lead to huge distortions in the timing and that the assumption of
immediate emission in nananoplasmonic streaking ( [25–28]) can be
considered valid.
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Figure 4.13: a) Number of elastic, inelastic and surface scattering events
for electrons reaching the surface with a kinetic energy
above 35eV. b) The delay time of electrons at the surface
after initialization for electrons with a kinetic energy above
35eV.



5 Attosecond streaking from
metal nanotips

In this section experimental results of attosecond streaking exper-
iments from a nanoplasmonic system, namely a gold nanotip, are
presented. First, we will discuss some characteristics of nanoplasmonic
streaking which arise due to the inhomogeneity of the electromag-
netic fields. Then we will look into the theoretical modelling and
expectations of our experiment. This subsequently allows us to better
interpret and discuss the experimental results. Finally we will theoret-
ically consider a slight modification of the experimental setup, with
which we expect to easily obtain a clear signature of nanoplasmonic
streaking.

5.1 General characteristics of nanoplasmonic
streaking

Unlike in streaking from a gas (see chapter 2) the field around a
metal nanoparticle is inhomogeneous due to localization and field
enhancement. This is schematically shown in Fig. 5.1. The momentum
shift of the electrons due to the streaking field is now given by:

Δ�p = −e0

∫ ∞

t0

dt �E(�r, t). (5.1)

where the electric field has now become position dependent and
the simple relation given in Eq. 2.37 is not valid anymore. This
complicates the reconstruction of the near-field at the surface of the
nanoparticle. Depending on the ratio of the field decay length κ and

© Springer Fachmedien Wiesbaden 2016
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Figure 5.1: Illustration of the near-field decay around plasmonic
nanoparticles. The decay length κ can usually be approx-
imated by the size of the geometrical features r of the parti-
cle. The regime of streaking will depend on the ratio of the
initial electron velocity and the decay length of the field.

the initial velocity of the electron three regimes can be distinguished.
In the first extreme case, the decay length is so long that the electron
does not experience any position dependent variations before the pulse
has decayed in time. The electric field can therefore be considered
homogeneous, which is equivalent to the gas streaking case and is
therefore called ponderomotive regime. In the other extreme case, the
field decay length is so small, that the electron leaves the influence of
the near-field within a fraction of the pulse-duration. This is called
field-probing regime, the reason for this will be clear later. The third
regime, where neither of those assumptions is valid, is called the
intermediate regime. An intuitive model, which allows the distinction
of these regimes has recently been presented in [33,45]. In this model,
the electric field is assumed to decay exponentially in space and time:

E(r, t) = E0e
iω·te−t/τte−r/κ. (5.2)

where ω is the central frequency of the near-field oscillations, τt and
κ is the temporal and spatial decay constant, r is the distance to the
surface. The field is assumed to be normal to the surface.
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For usual streaking amplitudes the change in the velocity v of
the electron can be neglected when regarding the propagation in
space [45]. This implies that for an electron propagating away from
the surface with an initial velocity v, the spatially dependent part in
the description of the electric field experienced by the electron may
be rewritten as:

r

κ
=

v(t− t0)

κ
=

(t− t0)

τs
. (5.3)

where τs =
κ
v . With this Eq. 5.1 can be integrated analytically:

Δp =− e0

∫ ∞

t0

dt E( �r(t), t) = −e0

∫ ∞

t0

dtE0e
(i·ω−1/τt−1/τs)·te+t0/τs =

− e0E0

[
1

iω − 1/τt − 1/τs
e(i·ω−1/τt−1/τs)·t

]∞
t0

e+t0/τs =

E0

[
e0

−i · ω − (1/τt + 1/τp)

ω2 + (1/τt + 1/τs)2

]
e(i·ω−1/τt)·t0 . (5.4)

The factor in the squared brackets defines the relation to the electric
near-field at the surface (r=0) of the particle (compare Eq. 5.2). It
can be factorized into a phase φ and amplitude A contribution:

φ(ω, τt, τs) = −π + arctan
( ω

1/τt + 1/τs

)
. (5.5)

A((ω, τt, τs)) =
1√

ω2 + (1/τs + 1/τt)2
. (5.6)

Taking the limit κ → 0, we see that the phase-shift to the electric
field vanishes, which is why this regime is called field-probing regime.

In order to see the effect of propagation, on the measured momentum
shifts, they are compared to the case of a completely homogeneous
regime (κ → ∞), depending on the initial energy of the electrons and
the spatial decay constant. The result of such an analysis is plotted
in Fig. 5.2 assuming a central wavelength of 720 nm and a temporal
decay constant of 4.5 fs. Since τs also enters in the homogenous
regime, it only becomes important when it gets below the period of
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the field oscillations. The relative phase is shown in Fig. 5.2 a), where
the phase shift is expressed in units of time using ω. Only for a very
small spatial decay lengths below 10 nm and high electron energies
above a few keV, the phase shift approaches π/2 (fieldprobing regime),
whereas it stays below 50 as for κ >20nm and energies below 200
eV (ponderomotive regime). The shorter the eletron stays within the
influence of the near-field, the less it is accelerated during propagation.
This an be seen in Fig. 5.2 b). For the field-probing regime, the
relative amplitude approaches zero. In the ponderomotive regime by
contrast the relative amplitude is close to unity.
We refer to a more complete discussion of this model [45]. As

can be seen in the next section, we are experimentally dealing with
photoelectrons at around 90 eV and nanoobjects whose geometric
features are on the order of 50 nm. From Fig. 5.2 it an be seen that
it’s thus save to assume that we are in the ponderomotive regime.

5.2 Theoretical Modelling

This section covers the modelling of the attosecond streaking ex-
periments from a gold nanotip. The nanotips are provided by the
group of Peter Hommelhoff (FAU Erlangen). They are produced
from 100μm-thick polycrystalline gold wires by the so-called double-
lamellae drop-off technique, an electrochemical etching method. With
this technique tip-radii of a few 10 nm and a surface roughness below
0.8 nm have been realized [9, 72]. Fig. 5.3 a) shows a TEM-image of
one of the tips used in experiments. Based on this, the tip is modelled
as a semi-infinite cylinder with a semi-sphere (Fig. 5.3 b)) with a
radius of 100 nm as tip apex.

To get an expectation of the response of this system to a fs-IR-pulse
this geometry has been modelled numerically using a commercial
finite-difference time-domain (FDTD) solver [73]. The input pulse
is chosen to be a Gaussian with an intensity-FWHM of 4.5 fs and a
center wavelength of 720 nm. The CEP is chosen to be 0◦. Due to
memory restriction on the work station used for the calculations, the
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Figure 5.2: phase-shift (a) and relative amplitude (b) of streaking traces
taking into account the spatial and temporal decay com-
pared to the homogeneous case (κ → ∞) but same temporal
decay constant τt. Calculated for τt = 4.5fs and λ = 720nm
through Eqs.5.5 and 5.6. The dashed white circles mark the
regime relevant for the experiments presented in this thesis.

simulation area is confined to a volume of 6 μm×6 μm×3 μm. As a
consequence the diameter of the Gaussian input beam was limited to
4 μm in order to avoid numerical diffraction at the simulation region
boundary. The dispersion for gold is taken from [74]. The mesh at
the apex of the tip has a resolution of 2 nm.

Fig. 5.4 a) and Fig. 5.4 b) show the maximum of the electric field
in the direction of the cylinder axis relative to the input pulse in
the plane along and perpendicular to the laser propagation direction.
At the tip apex the characteristic features of nanoplasmonics, field
enhancement and field localization can be recognized. The field is
localized down to a length scale on the order of the radius of the
nanotip. For this relatively large apex the field enhancement is limited
to a factor of about 2. The maximum field strength at the shank is
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Figure 5.3: a): TEM-image of one of a gold nanotip used in the exper-
iments [Courtesy of M. Förster]. b) Model geometry: The
tip is oriented along the polarization direction towards the
time-of-flight (TOF) spectrometer. The laser propagates into
the paper plane.

reduced to a value of about 0.5 compared to the input pulse. This
can be understood as arising due to the superposition of the incoming
wave with a phase shifted reflected wave. Note again that for the
whole geometry the decay length of the near-fields is on the order
of 50-100 nm and the considered streaking processes with electron
energies of around 100 eV lies deep in the ponderomotive regime, as
discussed above.

Analyzing the temporal profile of the eletric fields a different posi-
tions one finds a temporal phase shift between shank and tip apex.
Additionally it can be observed that the temporal duration of the fields
at the nanotips are practically the same as those of the input pulse
and it can therefore be concluded that the response of the system is
ultrafast. This absence of a sharp resonance in the field enhancement
from nanotips is often used to argue, that the field enhancement is not
a plasmonic but rather a geometrical effect. However as discussed in
chapter 2, the collective electron motion in nanoplasmonics is partly
due to the nanosize of the object and not necessarily due to the mate-
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rial property alone. We will therefore keep the term nanoplasmonic
in this work and refer to [75] for a discussion.

In order to assess the signature of the near fields on the streaking
traces, we calculate so-called pseudo-streaking traces. For different
delays between XUV- and IR-pulse, electrons are emitted at spec-
ified points from the surface with a fixed energy and velocity, and
subsequently propagated in the electric field using a velocity verlet
algorithm [76]. The propagation is stopped at a time when the electric
field has substantially decayed and the final kinetic energy, as would
be measured by a TOF, is recorded. Fig 5.4 c) shows the result
of such a calculation. The emission positions of the electrons are
indicated in Fig. 5.4 a) and b) by colored dots. The electrons emitted
from the apex show the highest streaking amplitude, which rapidly
decays moving away from the position of maximum field enhance-
ment. The near-fields at the shank of the tip, are closely related to
the Mie-solution of a cylinder, and approximately independent of the
distance from the apex, which can also be seen in the pseudo streaking
curves. For comparison we also calculate the streaking curve for the
same settings but without any object in the simulation volume. This
corresponds to a gas streaking measurement and is termed ’reference’
from now on. It is shown as a dashed curve in the above plot. The
amplitude ratios between reference and tip signal agree quite well
with the ratios of the maximum field strength.

In addition to the different streaking amplitudes, there is also a also
shift observable between the peak time of the different contributions,
which will be called peak shift in the following. Fig 5.4 d) shows the
pseudo-streaking curves on a smaller time scale. While the shank
contribution advances the reference by around 250 as, the apex contri-
bution is delayed by approximately the same amount. It is important
to note that such a shift is a priori not constant over the pulse due to
material dispersion in combination with the geometry. As discussed
in chapter 2, dispersion in the frequency domain is equivalent to a
delayed response in time. The actual peak shift will then depend on
the pulse shape and might vary over the pulse. Consider the extreme
case of a sharp resonance in the dielectric function covered by the
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Figure 5.4: Near fields calculated by FDTD for the model geometry and
the signature in an attosecond streaking experiment: a) and
b) maximum of the electric field in direction of the cylinder
axis perpendicular and parallel to the laser propagation
direction for a 4.5 fs intensity-FWHM Gaussian input pulse
centred at 720 nm. The dots indicate the emission positions
of the electrons in the pseudo-streaking curves of shown in c)
and d). The legend indicates the distance from the apex in
y-direction. The last point lies outside the range of a) and b)
and is not shown.

bandwidth of the laser pulse but not at the central wavelength. This
will lead to a shift of the central frequency of the near-fields which
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automatically implies a change of the peak shift between tip and
reference. Regarding the response of shaped objects this has to be
complemented with the geometrical considerations. Generally the
same geometry will respond differently to different frequencies due
to the change in the wavelength and the dielectric constant. The
combined effect of the dielectric function and the geometry can conve-
niently be discussed in the framework of linear response theory. In
the frequency-domain the response of the system at a point �r to an
input field Einput(ω) can be described via the complex valued response
H(�r, ω)

E(�r, ω) = H(�r, ω) · Einput(ω). (5.7)

where E(�r, ω) is the total field due to Einput. If the linear response of
the system and the spectral representation of the input field is known,
the answer of the system in the time domain can be calculated via
Fourier transformation. We note that in this framework the discussion
of the resulting temporal evolution of the total field is completely
analogous to the general formulation for a light pulse travelling through
a linear dispersive medium [32]. Fig. 5.5 shows the amplitude and
the phase) of the linear response at the front of the shank of the gold
nanotip, 1 nm above the surface, for a polarization direction parallel
to the cylinder axis. The model of an infinite cylinder was used and
the response calculated by Mie theory [77]. Additionally the spectral
intensity of a Gaussian laser pulse with an intensity-FWHM of 4.5
fs centred at 720 nm is shown. Both the amplitude and the phase
are practically flat over the whole spectrum. That is the reason, why
the peak shifts calculated in the time domain stay constant over the
main and trailing part of the pulse and why, as observed above, the
temporal response of the system is ultrafast.

We also note at this point that we employed a very simplified model
and e.g. completely neglected the interaction of the photoelectron with
the remaining hole and its quantum mechanical nature. Inclusion of
this effect will lead to a temporal shift on the order of a few 10 as [33].
Furthermore a self-consistent description of attosecond streaking from
metal surfaces under normal emission showed that considering the
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Figure 5.5: The linear response of the shank to the incident electric
field using the infinite cylinder model and calculated with
Mie theory [77] in terms of the amplitude (abs(H)) and the
phase (φ). The electric fields are parallel to the cylinder axis.
The response is flat over the whole spectrum. The relative
amplitude and the peak shift calculated with the phase of
the response at the central wavelength agree well with the
FDTD calculations performed in the time domain. The
spectral intensity of a 4.5 fs-pulse centred at 720 nm is also
shown

dielectric interaction of the electron with the solid in a quantum
mechanical framework leads to a shift of about 100 as [78]. Under
large angle emission this effect might even be larger, which is relevant
for our geometry. The calculated phase shifts have to be understood
as a guideline for the expectations on experimental results.
For the simulation of the experimental streaking traces, a full

3D-calculation is performed using the IR-fields from above. The
fields are linearly interpolated between grid points. The experimental
XUV-spetrum is taken into account and a Gaussian shape with an
intensity-FWHM of 220 as is assumed. The XUV-propagation and
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Figure 5.6: a): simulated attosecond streaking measurement from gold
nanotips as described in the text. b) The simulated gas
streaking reference trace

electron emission from the solid is based on the description in chapter
2. Due to limitations in the monitor size, emission is restricted to
within 1.2 μm from the apex. The electron is then propagated under
the influence of the IR-field using again a velocity-verlet algorithm.
The dispersion is chosen to be free electron like. Electrons are born at
the surface and scattering is neglected. The result of a full streaking
calculation is shown in Fig. 5.6 a).

With the help of the pseudo-streaking curves one can identify the
different contributions. The major part originates from the shank of
the tip, while only few counts are emitted from the apex. The latter
contribution can be identified by the shift of the peak position and
higher amplitude. However it is only visible for positive energy shifts,
as the biggest part of this contribution is hidden within the broad
spectrum.
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Count rate approximation

Considering the geometrical cross-section an approximate expression
for the ratio of the two different contributions and the visibility of the
electrons originating from the apex for different XUV spot sizes can
be derived. For this the ratio of the sizes of the enhanced field region
to the illuminated cylinder region has to be estimated. Taking Fig.
5.4 as a guideline we deduce, that the area of the enhanced region is
about 10% of the total area of the semi-sphere, when projected onto
the plane perpendicular to the beam direction. For the effective area
of the shank, the cylinder cross section has to be weighted by the
XUV intensity. Assuming a Gaussian profile of the XUV beam with
an intensity-FWHM FWHMXUV, we get an estimate for the ratio
of the number of electrons coming from the (enhanced) apex region
Napex to the number of electrons originating from the shank Nshank:

Napex

Nshank
≈ 0.1 · πr2

2r
√
π
2

FWHMXUV

2
√

ln(2)

≈ 0.2
r

FWHMXUV
. (5.8)

where r is the radius of the tip. We note that this is only a rough
estimate, e.g. we did not consider the decrease of amplitude between
tip apex and beginning of the cylinder. If Nshank >> Napex we can
approximate Napex = 0.2 r

FWHMXUV
·Ntotal. Whether all the electrons

are visible will depend on the ratio of the streaking amplitude to the
width of the photoelectron spectrum. For the simulation we get about
Napex = 0.02 ·Ntotal.

Different geometries

We also performed FDTD simulations for geometries which go beyond
this idealized model for the tip. We checked cylinders which were
tilted by an angle of 20◦ with respect to the polarization direction
both in the plane of laser propagation and perpendicular to it. While
the maximum field enhancement slightly varies, all phase relations
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and the amplitude relation between gas reference and shank turned
out to be robust against this variations.

Realistic tips have a conical shape with opening angles on the order
of 10◦ ( [33] and see Fig. 5.3). The effect of the opening angle was
studied with a conical tip with an opening angle of 15◦ and an apex
radius of 50 nm. Again the relations appeared very robust, however
only a small region within 2 μm from the apex could be simulated.
For experimentally realistic XUV spot sizes of around 10 μm the radius
of the conical tip changes by a few 100 nm within the XUV-focus. In
order to estimate the effect of this on the streaking traces we used the
observation that in the above FDTD-simulations of a conical tip, the
results where close to the Mie-solution for infinite cylinders. Using
the code from [77], the electric field in the direction of the cylinder
axis at 1 nm from the surface was calculated again for a 4.5 fs input
pulse centred at 720 nm. The dispersion for gold was taken from [62].
The electric field at 1 nm from the surface and the input pulse were
integrated to give the ’local’ vector potential. Relative amplitudes
and peak shifts between the largest peak of each pseudo-potential
were extracted. The results are shown in Fig. 5.7. The peak shifts are
almost independent of the angle and slightly increase with the radius
from 250 as at 50 nm to 450 as at 1500 nm. The relative amplitudes
decrease with the angle but have a similiar shape. The maximum of
the relative amplitude slightly reduces from 0.55 at 50 nm to 0.48 at
1500 nm. For both observables the change with the radius becomes
smaller with bigger radii. From this analysis one can expect a rather
homogeneous streaking trace, close to Fig. 5.6 a), even when using
conical tips and relatively large XUV spot sizes.

5.3 Experiments

The first step and one of the central parts in the experiments is the
optimization of the HHG-process and the generation of isolated at-
tosecond pulses. This is done via streaking from a neon gas target
which is placed in front of the TOF. Only then the nanotip is moved
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Figure 5.7: The relation of the vector potentials of the near-fields for
different radii to the incoming field. Calculations where
performed using a Mie-code for infinite gold cylinders [77]
for polarization parallel to the cylinder axis at 1 nm from
the surface. θ is the angle between radial vector and the
propagation direction of the laser. θ = 0◦ corresponds to the
front of the cylinder, θ = 90◦ to the side. a) shows the peak
shifts, b) shows the relative amplitude. Only minor shifts are
to be expected due to the conical shape of the tip and the
propagation of electrons away from the cylinder surface. Due
to the quasi-constant phase-shift with respect to the angle, a
homogeneous streaking trace can be expected.

into the laser focus. Fig. 5.8 a) shows an experimental spectrum of a
gold nanotip under the combined illumination by an IR- and an at-
tosecond XUV-pulse. The spectrum is composed of two contributions.
First electrons which are produced by a linear photoemission process
through XUV-photons at a kinetic energy around 90eV (hereinafter
called XUV-electrons). Secondly electrons are produced due to non-
linear photoemission by the strong IR-field below an energy of about
15 eV, subsequently called IR-electrons (for an overview of nonlinear
photoemission from metal nanotips see [72]). Some electrons in this
region are also produced by scattering of XUV-electrons. As can
be checked by blocking the IR-beam, this contribution is, however,
negligible.
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IR-electrons mainly originate form the tip apex, where the highest
field enhancement is realized, due to the high nonlinearity in the pho-
toemission process. As shown in Fig. 5.8 b) and c), by scanning the
tip in the plane perpendicular to the laser propagation direction and
observing the total IR-eletron yield, the tip apex can be positioned
in the laser focus. The XUV-electron yield by contrast is due to its’
linearity proportional to the total cross section of the illuminated area
of the nanotip. The above procedure is used when first switching from
the gas to the tip target and is a lengthy process. For later changes
the tip is moved out of the focus only along the laser propagation
direction, in order to be able to position it as reproducibly as possible
with the open loop stages used for the positioning of the tip.

5.4 Analysis

After the optimization of the gas streaking traces the IR-intensity is
reduced, which is necessary to avoid damaging of the nanotip. As a
reference and in order to be able to extract laser intensity another
gas scan is performed before the nanotip is moved into the focus. A
streaking measurement from the tip is usually divided into several
repeated scans covering the same delay range. Since one measurement
can take several hours, this is done to obtain some useful data even
in cases when e.g. the CEP drops out of the control loop. The single
scans only contain relatively few counts and the shape of the streaking
curve can usually only be estimated. Under stable conditions, after a
sufficient number of scans the gas target is again moved in to record a
second gas reference scan. This is used to judge the occurrence of any
phase drifts or jumps and changes in intensity during the preceding
measurement.
Consequently, the experimental data is divided into two different

groups, depending on whether they contain one or two references.
Double-reference measurements, which show a phase shift between
the two reference scans, or single-reference measurements, where the
coarse streaking trace between the different scans differs considerably,
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Figure 5.8: a): Experimental spectrum from a gold nanotip, the IR and
XUV parts discussed in the text are indicated. Note the loga-
rithmic scale. b): The overall counts for the IR-part. c): The
overall counts for the XUV-part. The scales are extracted us-
ing the step size communicated by the manufacturer. Same
geometry as Fig. 5.3. [taken from [45]]
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are discarded. With this our dataset reduces to a total of 9 measure-
ments with a total of 26 peaks, 4 of those which comprise 12 peaks
are double-reference measurement.
We employ three different methods, in order to analyse the peak

positions and amplitudes of our streaking curves. The simplest one
is the so-called cutoff-method. Coming from high energies, for each
delay it is determined at which energy a certain threshold nthr value
is reached. Secondly, for gas reference scans, one can also calculate
the center-of-gravity of the spectrum for each delay. For this so-called
centre-of-gravity-method (COG), the energy region below 50 eV is
excluded to avoid electrons produced due to IR-photoemission.
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Figure 5.9: a): Smoothed gas reference streaking trace. The white
dashed lines indicate the COG-curve (lower) and cutoff-
curve (upper). b): Consistency of the two methods shifted to
a common baseline

Fig. 5.9 a) shows a gas reference scan. The white dashed lines show
the curves calculated by the cutoff-method (upper) and the COG-
method (lower). As can be seen in Fig. 5.9 b) apart from a constant
energy shift, both methods agree quite well in the determination of
the amplitudes for an appropriate value of nthr, which is set to around
50% of the maximum counts. In the determination of peak positions,
the cutoff-method however is limited by the low amplitude and energy
resolution.
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The cog-method can not be applied to streaking measurements from
nanotips due to the electron background from scattering at lower en-
ergies nor the sophisticated analysis methods developed for streaking
from plane surfaces, due to the low statistics of our measurements. In
order to have a good way to analyse peak positions for tip streaking
measurements, we therefore use the so-called integral method. For
each delay all counts above a certain energy Emin are summed up. For
the measurements from the nanotips Emin is set to lie in the cutoff
region of the spectra between 86 eV and 88 eV.
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Figure 5.10: Raw (a) and smoothed (b) streaking traces obtained from
a gold nanotip. The white dashed line indicates the curve
obtained through the cutoff-method for the smoothed trace.

Fig. 5.10 shows a measurement for a nanotip over 4.5 hours. The
relatively low statistics requires the use of spectral smoothing in order
to be able to apply the cutoff-analysis method, especially for measure-
ments with fewer counts. We employ a diskfilter which averages over
directly neighbouring datapoints. In the spectrogram shown, there is
no apex contribution visible. Taking the around 3000 counts in the
energy region between 70 eV and 90 eV, an estimated XUV spot size
of 10 μm and tip radius of 100 nm, we predict with the use of Eq. 5.8
approximately 6 electrons from the apex, for a perfect positioning of
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the apex within the XUV-focus. Due to the broad spectrum and the
non-sharp cutoff of the electron-spectrum, the apex electrons will be
completely masked by electrons from the shank. We also note that
combining all measurements into one trace is not feasible due to the
different experimental conditions between different measurements, like
the laser waveform and intensity, which result in different streaking
periods and amplitudes. Therefore we restrict our analysis to the
relative amplitudes and peak shifts of gas reference and tip streaking
measurements, assuming that all electrons are emitted from the shank.
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Figure 5.11: The different curves from which phase shifts and relative
amplitudes are extracted. The cutoff-curve and integral-
curve for the tip streaking trace as well as the cog-curves
for the gas reference traces before and after the measure-
ments. The curves have been shifted to the baseline of the
cutoff-curve.

The result of such an analysis for a single measurement is shown
in Fig. 5.11. The peak shifts are extracted from a comparison of the
position of the peaks of integral-curves for the tip measurements and
the COG-curves from the gas. Relative amplitudes are determined
by examining the amplitudes from the COG-curves from gas and the
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Figure 5.12: The extracted peak shifts for all data points (a) and the
mean for the different measurements (b). Colours/Shading
indicate whether the data is from double- (blue/darker)
or single-reference (red/lighter) measurements. The solid
vertical lines in b) separate different measurement days.
The horizontal dashed lines show the weighted mean
(black/daker shading) and the theoretical expectation
(red/lighter shading).

cutoff-curves from the nanotip. As can be seen, there is a slight phase
and amplitude-shift between the two reference scans, which is the
main reason for the relatively large error estimates, especially for the
single-reference scans.

Fig. 5.12 a) and b) show the extracted peak shifts for all available
data points and averaged for all measurements, respectively. The
weighted mean lies around 0.3 fs, close to the expectation of around
0.25 fs. However the data points show a huge spread, which is bigger
than the very conservative error estimates. It must therefore be con-
cluded that there are some systematic deviations which we did not
account for so far.
By looking at Fig. 5.7 the measured values around 0.25 fs could

be explained. If the tip is not positioned appropriately, we might
measure a region of the shank with a larger radius which could lead
to the increased phase shift. However this could not explain the data
points with peak shifts above 0.5 fs and below 0.2 fs.
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Figure 5.13: a): Correlation between the extracted peak shifts and the
period of the tip streaking curve. b): Correlation between
the extracted streaking periods from the gas reference and
the nanotip measurements. The black/dark shaded and
green/lighter shaded dots indicate the simulation results for
the up-chirped and down-chirped pulses as discussed in the
text. The lines a merely a guide for the eye.

Secondly there could be an influence of the Gouy phase shift in
combination with a possible different positioning of the gas and tip
target along the laser propagation direction. Since the count rate
from the tip is so low, systematic test were performed by moving the
gas target along the laser propagation direction while the TOF stayed
fixed. While the count rates varied by a an order of magnitude, only
a slight peak shift on the order of 100 as, which could be associated
to a phase drift of the CEP stabilization, could be measured.

Furthermore the propagation of the IR-pulse through the streaking
gas could lead to a phase and peak shift as has been stated in previous
works [45]. This was checked by varying the pressure and consequently
the count rates by one order of magnitude. Again, no significant shift
was found. Thus it has to be concluded that for a fixed TOF the
positioning of the gas target and the applied pressure do not influence
peak positions of the gas reference scans. We note however that the
gas measurement is averaging over a relatively big volume.
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A hint on another systematic effect is given by examining the cor-
relation between the extracted delay and the streaking period Tscan.
The distance to the previous peak was used to determine Tscan. Un-
fortunately, this further limits the number of data points since for a
consistent treatment, the first peak in each scan has to be excluded.
However, as shown in Fig. 5.13 a) there is indeed a strong correlation
as indicated by the high absolute value of the correlation coefficient
and the low p-value. The question is, whether this is due to chirp of
the input pulse or whether it rather has to do with the inhomogenity of
the IR-laser focus and the locality of the tip streaking measurements.
While for some measurements a slight chirp is directly visible for the
gas reference measurement, the characterization of the tip streaking
traces is difficult, since they usually only comprise two to three peaks,
since they originally focused on the detection of a signal from the
apex. Nevertheless a connection between chirp of the input pulse and
the tip streaking can be made by looking at the correlation of the
period of the gas reference and the period from the tip streaking trace.
From Fig. 5.13 b) it can be seen that the correlation is relatively low
from the low correlation coefficient and the high P-value. This seems
to imply that the observed variation in streaking period is not due to
the input pulse.

In order to understand the effect of chirp, we performed simplified
calculations using a infinite cylinder model with radius of 100nm for
up- and down-chirped pulse with an intensity-FWHM of 4.5 fs and
chirp parameter b of ± 0.13· 1

fs2
. The results are indicated in Fig.

5.13 by the black/dark shaded (down-chirp) and green/lighter shaded
(up-chirp) curves. As can be seen chirp leads to a change of the peak
shifts, which can simply be explained by linear response theory. Due
to the change of the oscillation period in time in the chirped input
pulses but the constant phase shift of the linear response of the system,
the simulated peak shifts should be approximately proportional to
the period of the local field and the period of the input pulse and
the local field should be correlated. The difference between the up-
and down-chirped pulses in the plots can partly be explained by the
fact that the analysis method does not determine the instantaneous
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frequency/period of the oscillation. It is clearly visible that the size
of the spread of the measured peak shifts can not be explained by
simply considering chirped input pulses. Moreover the correlation of
the simulation results contradicts the experimentally observed anti-
correlation.

Another possible explanation which could account for the observed
spread in peak shifts and the low correlation of the periods of the gas
and reference scans is the locality of the tip streaking measurements
in contrast to the volume averaged gas reference measurements. Dif-
ferent spectral components get focussed differently which leads to a
spectrally inhomogeneous field in the focal plane and, considering the
double mirror, also along the laser propagation direction. While this
can explain the observed spread of measured peak shifts and the low
correlation of tip and gas streaking periods it is not clear whether it
can explain the observed anti-correlation between peak-shifts and tip
streaking periods.
There could also be some influence of surface contamination on

the response of the nanotip. The presence of such contaminations
can directly be seen in the electron spectrum in Fig. 5.8 a) and
the missing peak of the 5p-band which is expected at around 35 eV
(see e.g. [26,40]). Indeed it is known from TEM-characterization of
the nanotips that during the production a few nm thick passivation
layer is formed [72]. Unfortunately simple methods exist only for
the removal from the apex. Additionally our vacuum conditions are
three orders of magnitude worse than in streaking experiments on flat
metal surfaces, which observe surface contamination within hours [41],
which implies that surface contamination seems to be unavoidable.
In order to explain the observed spreads the thickness of surface
contamination layers must vary considerably and always different
regions of the tip shank must have been measured. We believe that
our method of positioning is quite reliable, we expect that this is not
the explanation for the observed effect. In the experiments different
gold tips where used and not all of them were characterized directly
after the measurements. The spread was however observed even in
experiments performed on the same day.
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We note at this point, that some confusion might arise concerning
the surface contamination. From streaking measurements from tung-
sten surfaces covered with a monolayer of adsorbates, a shift of the
relative delay between core-state-electrons and valence band electrons
around 70 as could be measured [41]. Contamination layers with
nm-thickness sound catastrophic in that respect. However, the nature
of our measured phase shifts is completely different. They arise due to
the semi-macroscopic near-field response of our nanosystem which we
expect to be rather insensitive to thin surface contamination layers.
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Figure 5.14: The extracted relative amplitudes for all data points
(a) and the mean for the different measurements (b).
Colours/Shading indicate whether the data is from double-
(blue/darker) or single-reference (red/ligther) measure-
ments. The solid vertical lines in b) separate different
measurement days. The horizontal dashed lines show the
weighted mean (black/darker shading) and the theoretical
expectation (red/lighter shading).

The relative amplitudes between tip and gas streaking, are shown
in Fig. 5.14 a) and b) for all data points and averaged for different
measurements. The weighted mean lies around 1.8 and is approxi-
mately a factor of 3.5 larger as expected from simulations. For this
systematic shift surface passivation layers could play a role. However,
in some preliminary investigations, assuming an organic material like
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refractive index and varying layer thickness, this enhancement could
not be explained.

Surface roughness leads to enhanced fields. This is for example used
in surface-enhanced Raman-spectroscopy (SERS) [79]. From studies
using Ag-surfaces with controlled roughness it is known that already
a relatively low roughness on the order of few nm, could lead to the
observed enhancement factors [80]. However the enhancement is not
uniform in such a case and one should observe a superposition of
different amplitudes. Additionally a surface roughness which produces
such field enhancements should affect the phase relations. A study of
this effect will be preferable, even though this might require the use
of nonlocal models.

As above the most probable explanation is the of the locality of the
tip streaking measurement. With our positioning method we are able
to accurately place the tip in the focus. Electrons are only emitted
from the surface of the tip which is confined within a small volume.
The gas streaking measurements are by contrast volume averaging
both along the laser propagation direction and perpendicular to it.
In addition, the overlap of XUV- and IR-beam is usually not perfect,
which means that for the gas streaking measurements more electrons
might actually be emitted outside the IR-focus than within. We
believe that the combination of those two effects is able to explain
the increased streaking amplitudes from the nanotip.

The accuracy of the above analysis is limited by the relatively low
amplitudes. Since the measurements were far from being affected by
IR-photoemission, future measurements the amplitude could employ
considerably increased amplitudes.
The measurements were performed with different tips, so the ob-

served effects, especially the consistently too high relative amplitude,
seem to be real. Nevertheless further confirmations of the above
observations and tests of the possible explanations are necessary.
The argument of the inhomogeneous laser-focus could be tested by
scanning the tip in the plane perpendicular to the laser propagation
direction with newly installed closed-loop stages. For tungsten tips
a procedure exists to remove the passivation layers also from the



88 5 Attosecond streaking from metal nanotips

shank [72]. Measurements before and after such a procedure could
unravel the role of these layers. Furthermore, the above analysis
suffers from the relatively low statistics. Improving the XUV-flux and
CEP-stability will certainly be beneficial in this respect. A possibility
to characterize the quality of the shank would of the tips would be
helpful.

5.5 Suggestion for proof-of-principle experiment
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Figure 5.15: a) Geometry of the proposed experiment: The tip is ro-
tated by 90◦ with respect to Fig. 5.3 b). b) The maximum
field enhancement around the cylindrical nanotip shank at
800 nm away from the tip apex. The coloured points indi-
cate the emission points for the pseudo-streaking traces (c).
d) The resulting streaking trace.
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As estimated from Eq. 5.8 we can not expect to see an apex contri-
bution for our measurements. One possibility to tackle this problem
is to decrease the XUV focus size. This will help in two ways. First it
increases the total number of counts and furthermore improves the
ratio Napex/Nshank. However, the reduction of the focal length has
proven experimentally to pose problems and the issue of having to
position the apex in the focus remains. Therefore we propose a change
of the geometry, with which the nanoplasmonic signature of streaking
traces is in principle independent of the XUV-spotsize and with which
the positioning will be easier.

The goal of a proof-of-principle experiment on nanoplasmonic streak-
ing is to observe inhomogeneous near-fields which lead to different
amplitudes and phase shifts depending on the emission position. The
problem with the conventional geometry in nanoplasmonic streaking
measurements is that the enhanced region is confined to a small area
at the tip apex while the whole part of the shank experiences fields
which lead to a uniform streaking trace. We thereforev suggest using
a geometry (Fig. 5.15 a)) in which the tip is rotated by 90◦ compared
to the conventional geometry (Fig. 5.3 a)). Due to this change the
enhanced region is all along the side of the cylinder and loses its
singular character, which leads to a much larger area of emission of
the enhanced area. For the analysis of this geometry, we use the same
methodology as in section 5.2. As can be seen in Fig. 5.15 b) this
geometry leads to a region with enhanced fields at the side of the
cylinder and reduced fields at the front. Additionally, there is a phase
shift between the contributions from the different regions as shown in
the pseudo-streaking traces (Fig. 5.15 c)). As compared to the other
geometry, a significantly stronger plasmon is induced at the tip apex.
However far enough away from the apex the fields still converge to
the Mie-solution for infinite cylinders. The different contributions can
be identified by the different amplitudes and phase shifts which are on
the order of 600 as. This results in simulated streaking measurement
shown in Fig. 5.15 d). All contributions a clearly visible and due
to the geometry, the weight is not dependent on the XUV-spotsize.
Again the influence of the change of the radius with conical tips has
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Figure 5.16: Phase shift (a) and relative amplitude (b) of the local vec-
tor potential compared to that of the input pulse. Same
as Fig. 5.7 just for laser polarization perpendicular to the
cylinder axis.

to be investigated. Using the Mie-type procedure to investigate the
near-fields in detection direction in dependence on θ yields, that even
for relatively large radii the above description remains valid. As can
be seen in Fig. 5.16 a) and b) the phase shifts and relative amplitudes
of the near-fields for radii bigger than 100 nm practically coincide. Re-
markably, the maximum field enhancement is around 1.8, and is only
slightly smaller than the field enhancement at the apex for a radius of
100 nm. This shows that in this setting not even the homogeneity of
the streaking traces is affected by the XUV focus size. Nevertheless
with a small focus one could possibly investigate the incoupling of
the plasmon at the tip apex. Furthermore, due to the high counts
from the enhanced region, we expect that one can possibly investigate
effets which go beyond our simple model such as nonlinear response
and space charge effects.



6 Conclusion and Outlook

This thesis presented the first successful experimental results of at-
tosecond streaking measurements on nanoobjects, using a gold nanotip
as target. They show that attosecond streaking can even be applied
to complex systems. The observations of peak shifts and relative
amplitudes slightly deviated from our model simulations. Concern-
ing the peak shifts, the inhomogeneous laser focus was given as an
explanation for the observed spread in the experiments. Non-perfect
overlap between IR and XUV focus in conjunction with the argument
of a local measurement with a nanotip in contrast to the volume
averaged measurement of the gas target was used to explain the too
high relative amplitudes. However the statistics is rather limited and
future systematic measurements, which test those hypotheses, are
desirable.

This thesis shows that within a semiclassical description the neglect
of electron transport has only a minor effect on the time the electrons
need to reach the surface, which is due to the small inelastic mean
free paths. A consideration effect will only become important when
measurement with very low statistical and systematic uncertainties
are available. Concerning the timing, the neglect of electron transport
used in previous studies therefore seems to be justified.
Our model however predicts a strong decrease in photoelectron

yield with respect to the surface emission angle. This effect might
become important when the nanobject posseses cross sectional areas of
equal size with different near-fields, such as spheres or the cylindrical
geometry suggested in the last section.
An original goal of this thesis was to measure electrons from the

enhanced near-field region at the tip apex. This was not achieved,
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which could be explained with the help of a simple count rate ap-
proximation. Simulations suggest that a reduction of XUV spotsize
will enable such measurements. Alternatively in this thesis, a slight
change of geometry is suggested, which will possibly yield a clear
signature of nanoplasmonic streaking without the need of extremely
small XUV spot sizes. Attosecond streaking measurement with this
geometry will also be a test for our model and possibly even allow the
study of higher order effects, such as nonlinearities and space charge
effects.
The experimental results presented in this thesis lead to a paper,

which is currently waiting for publication [31].



Appendix A: Description of
electron scattering

The electron scattering inside the bulk is determined by the total
mean free path :

1

λtot
=

1

λel
+

1

λel
(1)

The probability p(s) that an electron scatters in the solid at a distance
s from it’s current position is given by:

p(s) =
1

λtot
e−

s
λ (2)

Consequently using the inversion cumulative distribution function, s
following the statistics given by the above equation can be computed
from a uniform probability distribution P in the interval [0,1]:

s = −λtotlog(1− P ) (3)

Using the velocity v of the electron this can also be converted to a scat-
tering time τ = s/v. Note that this formulation makes the assumption
that the electron velocity is constant. For the electrons inside solids
in an attosecond streaking experiment this is only approximately true.
If the electron has crossed the surface before travelling the distance
s, no bulk scattering occurs. Otherwise the probability of an elastic
or inelastic scattering event, Pel and Pinel can be computed from the
ratios of the inverse mean free paths:

Pel =
λinel

λel + λinel
(4)

Using again a uniform random number distribution P, an elastic scat-
tering event occurs if P < Pel else an inelastic scattering event occurs.
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All the other distribution functions of elastic and inelastic scatter-
ing follow more or less complex curves and the inverse cumulative
distribution function is not known analytically. Sampling the distribu-
tions function at closely spaced positions the cumulative distribution
function can numerically be calculated. Inversion is then achieved by
switching position vector and cumulative distribution function. Again
using linear interpolation the inverse cumulative distribution function
can now be calculated. For multidimensional distribution functions,
the dimension is subsequently reduced by calculating conditional in-
verse cumulative distribution functions. For a given random variable
the conditional inverse cumulative distribution function is then calcu-
lated by multidimensional linear interpolation. In this approach only
a single random number has to be generated per dimension involved
in the distribution function however at the price of increased memory
requirements. However due to the smooth change of the distribution
functions involved in the description of scattering in solids a database
of a few 100 Mb yielded a good sampling of the distribution functions.
For an inelastic scattering event using a uniform random number
distribution first the energy loss Q is calculated and then for the
given Q the scattering angle θ. Only the scattering angle θ has to be
calculated in an elastic scattering event.

When the electron reaches the surface it has to cross the surface bar-
rier and may undergo surface scattering. According to the description
in chapter 3 the surface scattering is symmetrically separated into a
part before and after the surface transmission. Due to the Poissonian
statistics of the surface scattering the total SEP therefore has to be
divided by a factor of 2. If the electron undergoes scattering, one
scattering event is calculated. Then for the new angle and energy this
procedure is maximally repeated 5 times until no scattering occurs.
Then the electron is diffracted at at surface barrier and weighted by
the transmission factor. Finally the other part of the surface scattering
is calculated analogously to the first part.

The splitting of the surface scattering into two equal parts is ques-
tionable, but it was found to be more consistent when including the
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transmission. Also the possibility to switch off the surface scattering
is implemented.
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