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To Carl



Preface

In 2015, we celebrated the 100th anniversary of the development of general rela-
tivity theory (GRT). Einstein presented his theory at the Prussian Academy of
Science in Berlin on November 25th, 1915. In GRT, he replaced the absolute space
and time of Newton in favor of a changing arena called “spacetime,” in which
gravity appeared as curvature. The equivalence principle linked every acceleration
locally with gravitation. In principle, GRT poses the possibility of understanding all
forces in the world using geometry. Galileo Galilei expressed this thought nearly
400 years ago when he pronounced: He who understands geometry, understands
anything in the world. Therefore it was logical that Einstein continued this program
even after completing his GRT, with the development of proposals for a unified
field theory.

Carl H. Brans chose to investigate such theories for his undergraduate thesis at
Loyola University in New Orleans. It was the beginning of a lifelong engagement
with GRT. Even the mathematical beauty of GRT and the unified field theory
attracted him. As a 10-year-old boy, he taught himself differential and integral
calculus, and difficult books on mathematics and mathematical physics held a great
appeal for him. His preference for GRT was a little bit unusual at the time. Since the
1920s, the GRT had lost its prominent role in theoretical physics. The advent of
quantum mechanics and elementary particle physics, together with new work on
quantum electrodynamics, inspired more interest among physicists in those days.

In the 1950s, the situation began to change. John A. Wheeler, at Princeton
University, started to develop geometrodynamics as a new representation of GRT.
At the same time, Wheeler established his by-now famous working group, which
focused on problems in GRT and on the foundations of quantum mechanics. In
parallel, Robert Dicke, Wheeler’s colleague at Princeton, began to work on the
experimental problems in GRT during his sabbatical year of 1954. He also became
interested in Mach’s principle, which Einstein had used as a guide during the
development of GRT. Dicke considered Mach’s principle to imply: The gravita-
tional constant, κ, should be a function of the mass distribution in the universe.
Paul A.M. Dirac had earlier conjectured that there is a relation between the coupling
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constant of gravity and the mass and radius of the universe (now known as Dirac’s
“large number conjecture”). For an expanding universe, one thereby obtains a
variable gravitational coupling constant!

In 1957, Carl Brans arrived in Princeton to undertake his graduate study and
Ph.D. thesis. In his contribution to this book, he writes extensively about that time.
He heard some lectures and visited the seminar of Wheeler, who had established his
famous group. Charles Misner, who had recently completed his Ph.D. thesis,
introduced Carl to fiber bundle theory. Hence, Carl planned to write his Ph.D. thesis
about the application of fiber bundles in physics. At that time, he also began to be
interested in the mathematical structure of spacetime. But the time was not yet ripe
for these ideas; fiber bundles would only become commonly used in theoretical
physics in the 1970s. Instead, Misner recommended that Carl should contact Dicke,
who was searching for a theoretical physicist. It was the beginning of a lifelong and
fruitful collaboration.

Mach’s principle and Dirac’s large-numbers hypothesis formed the basis for the
discussions between Dicke and Brans. They wondered if they could create a version
of GRT with a variable gravitational coupling. Brans pursued the idea and devel-
oped it in his Ph.D. thesis in 1961. Today this renowned theory is known as the
Brans-Dicke theory. They introduced a scalar field to represent the variable cou-
pling. Pascual Jordan had described a similar theory in his 1955 book, Schwerkraft
und Weltall, though Jordan’s work was not well known at the time. Brans and
Dicke’s work quickly received much more attention within the physics community,
helping to establish the importance of “scalar-tensor” theories of gravitation, as Carl
describes further in his contribution to this volume.

In the Brans-Dicke theory, one arbitrary parameter (usually denoted by ω)
quantifies the coupling between the scalar field and spacetime curvature. Dicke
proposed to express ω in terms of other physical constants; failing that, most
experimental tests of the theory concentrated on possible restrictions on ω. An
outstanding experimenter, Dicke was strongly interested in the experimental veri-
fication of the Brans-Dicke theory. As an important side-effect of these efforts,
many effects of GRT were tested with unprecedented precision. Among them
included classic experiments like the Eötvös experiment to confirm the weak
equivalence principle, as well as various NASA missions. Martin McHugh’s con-
tribution in this volume presents an overview of these experiments, as well as
Dicke’s endeavor to confirm the Brans-Dicke theory.

In 1961, Brans and Dicke’s paper appeared in the Physical Review. Following its
publication, the Brans-Dicke theory had wide repercussions. The meaning and
importance of scalar fields in physics increased significantly, from their role in
spontaneous symmetry breaking, as in the Higgs mechanism, to the dynamics of the
very early universe, as in models of cosmic inflation. Other theories, which
incorporated a scalar field to model variable cosmological effects, such as quin-
tessence, used Brans-Dicke theory as a prototype. Interest in Brans-Dicke theory
increased further during the 1980s and 1990s in the context of string theory.
Finally, the discovery of the Higgs boson in 2012 marked the first experimental
detection of a fundamental scalar field in nature.
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The present volume includes a collection of invited papers by renowned col-
leagues. The contributions range over various aspects of scalar fields to Mach’s
principle, Bell’s inequality, and spacetime structure. Together, the chapters illus-
trate how Carl’s ideas have been developed even further over the years. The volume
is organized into three parts, reflecting the scientific foci of Carl’s career.

The first part concerns the scalar-tensor theory. In the decades since the devel-
opment of Brans-Dicke theory, scalar fields have come to play a diverse set of roles
in physics, from the inflaton that drove cosmic inflation, to the axion that breaks
chiral symmetry in QCD, to the Higgs boson that generates mass for elementary
particles and the dilaton field that breaks global scale invariance (Weyl symmetry).
Chapters in this part focus on this diversity of scalar fields in the context of GRT.

David Kaiser (MIT, USA) describes the role of Brans-Dicke (or non-minimal)
couplings between scalar fields and spacetime curvature in the context of
inflationary model-building. As he discusses, recent observational data, such as
collected by the Planck satellite, place strong constraints on models of
early-universe inflation. Models with Brans-Dicke couplings provide a natural way
of realizing inflation while matching all the latest observations. Yasunori Fujii
(Waseda University, Japan) focuses on a possible relation between micro-
scopic physics and the cosmological model of Brans and Dicke. According to
Brans-Dicke theory, the mass of an electron would not be constant in an expanding
universe. However, Fujii demonstrates, one may introduce a massive scalar field
(akin to a dilaton) to address this feature, and further estimate the dilaton mass.
Roman Jackiw (MIT, USA) and So-Young Pi (Boston University, USA) focus on a
special version of Brans-Dicke theory which is independent of the underlying scale
(Weyl symmetry), which should affect short-scale behavior.

The appearance of different scalar fields naturally leads to the question of how
those fields might relate or interact with each other. Friedrich Hehl (University of
Cologne, Germany, and University of Missouri-Columbia, USA) addresses such
questions. First he shows that the dilaton and axion fields appear naturally in the
context of Einstein−Cartan theory. Next he constructs the metric as well as the
axion and dilaton fields directly from an electromagnetic model of the universe
(“premetric electrodynamics”).

Many researchers have implicitly assumed that Brans-Dicke theory would yield
small deviations from the usual predictions of GRT. But what about more radical
departures, such as contributions that are quadratic in the curvature? This question
is discussed by Tirthabir Biswas (Loyola University New Orleans, USA) in col-
laboration with Alexey Koshelev (Universidade da Beira Interior, Portugal) and
Anupam Mazumdar (Lancaster University, UK). They demonstrate the appearance
of the Brans-Dicke model as a stable solution to physically well-motivated con-
sistency conditions.

What is the influence of the scalar field on objects in the universe and on the
universe as a whole? These fascinating questions are investigated by Eckehard W.
Mielke (Universidad Autónoma Metropolitana Iztapalapa, Mexico) and Israel
Quiros (Universidad de Guanajuato, Mexico). As shown by Mielke, the gravita-
tional collapse of a boson cloud of scalar fields would lead to a boson star as a
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new type of a compact object. Moreover, as a coherent state (like the vortices of
Bose–Einstein condensates), such collapse would allow for rotating solutions with
quantized angular momentum. Quiros focuses on the cosmological impact of
Brans-Dicke theory. Is the standard model of cosmology (the so-called ΛCDM
model) a stable solution of Brans-Dicke theory? Assuming a
Friedmann-Robertson-Walker metric in the Brans-Dicke theory, he demonstrates
that the de Sitter solution of GRT is an attractor of the Jordan frame (dilatonic)
Brans-Dicke theory only for special values of the coupling constant ω and for
special scalar-field potentials. Only for these values does one obtain the ΛCDM
model from Brans-Dicke theory.

The first part of the volume closes with the contribution by Martin McHugh
(Loyola University New Orleans, USA) about the history of the Brans-Dicke theory
and its experimental tests. Dicke became famous for this experimental work and
was a popular contact to discuss unexplainable experimental results. At the end of
1965, he received a call from Arno Penzias and Robert W. Wilson at nearby Bell
Laboratory, who had found a mysterious microwave signal. They had spent nearly a
year searching for the cause of the signal in their antenna. Dicke immediately
identified the signal as the long-sought cosmic microwave background (CMB),
which he had dubbed the “ash of the Big Bang.” In 1978, Penzias and Wilson
received the Nobel Prize for their discovery.

The Brans-Dicke theory occupied Carl Brans for twenty years after its initial
publication in 1961, and he continued to return to the topic after that. But Brans
made contributions to several other topics as well. (Indeed, even beyond the
research topics covered in this volume, Carl made additional, important contribu-
tions to the Petrov classification, numerical GRT, and complex GRT.) The second
part of this volume includes contributions reflecting on Carl’s work during the
1980s.

The original motivation for Brans-Dicke theory concerned Mach’s principle, and
the notion that the gravitational constant, κ, should be a function of the mass
distribution of the universe. In his contribution for this volume, Bahram Mashoon
(University of Missouri-Columbia, USA) describes the application of Mach’s
principle to particles’ inertial property of spin. The inertia of intrinsic spin is studied
via the coupling of intrinsic spin with rotation, a coupling which has recently been
measured in neutron polarimetry. The implications of the inertia of intrinsic spin are
critically examined in the light of the hypothesis that an electromagnetic wave
cannot stand completely still with respect to an accelerated observer.

The second chapter in this part, by Michael J.W. Hall (Griffith University
Brisbane, Australia), concerns Bell’s inequality. Carl’s colleague A.R. Marlow
(Loyola University New Orleans, USA) notes that Carl developed an interest in
quantum logic and interpretational problems in quantum mechanics. In particular,
Carl became interested in Bell’s theorem and the effort to decide whether any
hidden variables determine the outcomes of measurements, or if the probabilistic
framework of quantum mechanics is complete. In 1988, Carl published an article in
which he noticed a circular argument in the derivation of Bell’s theorem. Bell had
to assume that an experimenter’s selection of detector settings in an experimental
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test of quantum entanglement was entirely uncorrelated with any possible hidden
variables that could affect the outcomes of those measurements—even though the
events that determined the detector settings presumably shared an enormous causal
past with any events that could have influenced the outcome of the measurements.
Put another way, whatever hidden variables could have classically determined the
outcomes of measurements could also have determined the experimenter’s selection
of detector settings. Hence, in order to derive strong no-go results like Bell’s
inequality, one must assume “measurement independence.” Hall discusses the
importance of such an assumption as well as means to relax it within the context of
Bell’s inequality. He further generalizes Brans’s 1988 model to demonstrate that no
more than 2 log d bits of prior correlation between the hidden variables and the
detector settings are required for a local deterministic model to reproduce the
quantum-mechanical predictions for any d-dimensional system.

More recently, Carl’s research has focused on the structure of spacetime, and in
particular on exotic smoothness. These topics occupy the third part of the volume.
As noted above, Charles Misner introduced Carl to such questions with his lecture
on fiber bundle theory in 1957, and Norman Steenrod’s book on The Topology of
Fiber Bundles (1951) provided further inspiration. Exploiting similar methods,
including cobordism theory, John Milnor made an unexpected discovery in 1956:
there exist exotic 7-spheres.

To appreciate the importance of this result, one must dig deeply into manifold
theory. The weak equivalence principle in GRT implies the usage of the manifold
concept: every neighborhood of a point in spacetime must be locally flat, that is, it
must be a subset of Rn. Then spacetime is a smooth manifold, i.e. it is covered by
smooth charts with smooth transition functions forming an atlas. A smooth atlas is a
smoothness structure. Conventional wisdom had long held that every topological
manifold could be smoothed (by smoothing the corners), so that there would only
be one smoothness structure (given by the smoothness structure of the Rn). But
Milnor found seven 7-dimensional spheres S7 which agreed topologically but dif-
fered in their smoothness structure, thereby providing the first counterexample to
the higher-dimensional Poincaré conjecture. Milnor thus founded the new topic of
differential topology and received the highest mathematical honor, the Fields medal,
in 1962.

As Carl noticed, this revolution occurred only “some doors away from him” at
Princeton university. From the physics point of view, the 7-sphere is not particu-
larly interesting, except perhaps in string theory (in which Edward Witten used it to
cancel the global gravitational anomalies in 1985). Moreover, exotic smoothness is
difficult to visualize, because no exotic smoothness structure exists in dimension
smaller than four. For dimension 5 and higher, there are only finitely many exotic
smoothness structures, as shown by Kervaire and Milnor in 1963. But what about
4-manifolds as models of our spacetime?

The riddle was solved in the 1980s with the work of many mathematicians,
including Michael Freedman, Simon Donaldson, Robert Gompf, and Clifford
Taubes. Most compact 4-manifolds admit (countable) infinitely many different
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smoothness structures, whereas most non-compact 4-manifolds—including R4—
admit (uncountable) infinitely different ones. Therefore, the physical dimension 4 is
mathematically distinguished from any other dimension!

Carl attended a lecture by Ron Fintushel at Tulane University to hear about these
results. It is typical for Carl that he immediately asked about their relevance for
physics. In his first article in collaboration with the mathematician Duane Randall,
Brans published the first deep results. It was the start of a long and fruitful col-
laboration between mathematicians and physicists on this topic. Indeed, many of
Carl’s questions remain open to this day. His questions helped to shape the
direction for current research.

A driving force was the Brans conjecture from 1994. In an article from that year,
Carl constructed an exotic R4 in which the exoticness is localized (now known as
small exotic R4). The Brans conjecture is that this localized exoticness can act as a
source for some externally regular field, just as matter or a wormhole can. This
conjecture was partly proven by Jan Sładkowski and Torsten Asselmeyer-Maluga.
In a 2002 paper by Brans and Asselmeyer-Maluga, this conjecture was extended:

“… In summary, what we want to emphasize is that without changing the
Einstein equations or introducing exotic, yet undiscovered forms of matter, or even
without changing topology, there is a vast resource of possible explanations for
recently observed surprising astrophysical data at the cosmological scale provided
by differential topology. …”

Results in this area of research up through 2007 may be found in Brans and
Asselmeyer-Maluga’s book, Exotic Smoothness and Physics (World Scientific,
2007), which has become a standard reference for the topic. An introduction to the
topic may also be found in Carl’s contribution to the present volume. The third part
of this book describes more recent developments.

Jan Sładkowski (University of Silesia Katowice, Poland) aims to describe
spacetime structure from the physics point of view. He considers the algebra of all
real functions over a manifold containing the information about the topology of the
manifold. A generalization of these functions leads to Alain Connes’s model of
noncommutative geometry as a possible description of the standard model in ele-
mentary particle physics.

Jerzy Król (University of Silesia Katowice, Poland) studies model-theoretic
aspects of exotic smoothness, uncovering unexpected relations to noncommutative
spaces and quantum theory. Forcing, as a special extension of the axioms in set
theory, is used to obtain the deformation of the algebra of usual complex functions
to the noncommutative algebra of operators on a Hilbert space. The results in the
context of the Epstein-Glaser renormalization in QFT are also discussed.

In the contribution by Duane Randall (Loyola University New Orleans, USA), a
question of Milnor is answered: is there always an exotic n–sphere for n[ 6 and
n 6¼ 12; 61? In the next chapter, Torsten Asselmeyer-Maluga (German Aerospace
Center Berlin, Germany) extensively discusses the following questions: Is it pos-
sible to construct a quantum gravity theory by using exotic smoothness? Is it
possible to construct quantum gravity directly, i.e. without any quantization of a
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classical theory? In his chapter, the richness of exotic smoothness in dimension 4 is
used to construct a quantum gravity theory directly. The use of this geometrical
approach implies one problem: one has to construct a geometrical expression for a
quantum state (the ψ–ontic interpretation as implied by current experiments). This
construction, using wild embeddings (like Alexander’s horned sphere), gives a
fractal space. Moreover, quantum fluctuations arise from an unpredictable chaotic
dynamics. The consequences for decoherence, the measurement problem, and
cosmology are discussed.

The contributions in this volume are dedicated to Carl Brans on the occasion of
his 80th birthday, and were written exclusively for this volume. The chapters were
contributed by renowned colleagues who collaborated directly with Carl or who
were inspired by his ideas. Though Carl never founded a formal school or group,
his influence has been felt by many young scientists, across many countries and
communities.

Throughout his career, colleagues and students have appreciated Carl’s critical
questions and his ambition to understand problems at a very deep level. Always
approachable, Carl has inspired generations with his deep questions and important
insights. Israel Quiros expressed it best in his dedication: “He is one of the greatest
minds of the twentieth century.” It is a great pleasure to honor Carl Brans with this
collection. Happy Birthday, Carl!

Berlin Torsten Asselmeyer-Maluga
January 2016
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About Carl H. Brans

Thoughts of Colleagues, Friends, Family

With this volume, the 80th birthday of Carl H. Brans will be celebrated. Instead of a
single foreword, colleagues and friends will present her/his personal view on
Carl H. Brans and his influence (Fig. 1).

Fig. 1 Anna and Carl Brans
(December, 13th 2015), 80th
birthday of Carl
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Carl’s Influence on the Movie Interstellar

The ideas that Newton’s gravitational constant G might change from place to place
and time to time, and might be controlled by some sort of nongravitational field,
were hot topics in the Princeton University physics department when I was a PhD
student there in the early 1960s. These ideas had been proposed by Princeton’�As
Professor Robert H. Dicke and his graduate student Carl Brans in connection with
their “Brans-Dicke theory of gravity”, an interesting alternative to Einstein’s gen-
eral relativity. The Brans-Dicke theory has motivated a number of experiments that
searched for varying G, but no convincing variations were ever found. These ideas
and experiments motivated my interpretation of some of Interstellar’s gravitational
anomalies and how to control them: bulk fields control the strength of G and make
it vary. The Professor’s equation, as used in this movie and shown on a blackboard
in one sequence, builds on these ideas.

Kip Thorne, Caltech
(see The Science of Interstellar by Kip Thorne, Norton & Company 2014)

Carl as Colleague

I have known Carl since 1964 when I came back to Loyola having graduated from
there in 1952 a few years prior to Carl. I consider my career as somewhat unusual in
having it sandwiched between a brief acquaintance with Charles Misner at Notre
Dame and a long friendship with Carl, two extraordinary physicist. Unfortunately
brilliance doesn’t osmose and Carl has had to be very patient with my dumb
questions and ever ready to discuss my mathematical and theoretical questions. He
has over the years conducted numerous weekly seminars in relativity for the benefit
of interested undergraduates and a few faculty and is even currently doing so with
discussions of such mysterious topics as the Unruh effect and Bell’s inequalities.

One thing that has puzzled me about Carl is why he returned and stayed at Loyola
ever since completing his degree at Princeton. I have never asked him about this but
my conjecture is that Carl is such and independent, innovative thinker and, impor-
tantly, disciplined hard worker that he doesn’t need the intellectual stimulation
produced by a larger department. Call it the Keiffer conjecture. Happy birthday Carl.

David Keiffer, Loyola University New Orleans

Unsurprisingly, I had worked on several different versions of Brans-Dicke theory
before I actually met Carl during my job interview at Loyola. Thankfully, I didn’t
know that I was actually meeting Carl Brans (somehow I missed his profile on the
Loyola physics faculty listings) because that would have completely overwhelmed
me. It was only halfway through the interview that I realized that I was talking to
someone who knew a lot more gravity than I did. Since then, we have become very
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good friends, his good nature, his humility, and his commitment to rigor is
something that I cherish and I am inspired by. So, here is to Carl for showing the
path that many others like me could follow (Fig. 2).

Tirthabir Biswas, Loyola University New Orleans

Supporting Young Scientists

I first met Carl Brans about twenty years ago, in the mid-1990s, when I was a
graduate student. Carl invited me to visit him at Loyola University in New Orleans,
and he and his wife Anna kindly hosted me in their beautiful home. Our first
meeting has always stood out in my mind: Carl picked me up at the airport, drove
me straight to his office, and handed me a piece of chalk. I was to give him a
lecture, right there at the blackboard, about cosmic inflation. I launched in, as best I
could, and after a fun discussion Carl announced that it was time to pause and get
some seafood gumbo; after all, we were in New Orleans. Ever since my first visit, I
have found it terrifically inspiring to talk with Carl and to try to sharpen my own
ideas in the face of his excellent questions, which he has always delivered in a
gentle and encouraging way.

Fig. 2 Carl in Princeton (1959) “This picture has me “studying”(?) while sitting on the heater in
student apartment. I was always cold!”
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David I. Kaiser, MIT

In 1983, as a 12-years old boy living in the GDR, the socialist part of Germany, I
came across the name Carl H. Brans while reading the book “The View of Modern
Physics” (“Das Bild der modernen Physik”, Urania Verlag). At the end of the
chapter “Relativity?, I found a discussion about a variable coupling constant in
General Relativity together with this footnote: “This extension of General Relativity
was essentially developed by P. Jordan, C. Brans and R. Dicke in 1961.”. I was
deeply impressed and hoped to one day work with these scientists. But I lived on
the wrong side of the iron curtain and was forbidden to have contacts with people in
the USA. Eventually the political situation began to evolve as I started my study of
Physics in September 1990, one month before the unification of East and West
Germany. In the second semester I joined a lecture group on algebraic topology
which included a discussion of the existence of exotic R4 and the exceptional role
of exotic smoothness in dimension four. I was very excited about the possible
relationship between this new mathematics and the classical dimension of space-
time. So I enthusiastically began to learn everything I could about Exotic
Smoothness. In 1992, I came across the paper written by Brans and Randall with
many intriguing ideas. A professor at my university helped me to get an invitation
to the summer school on Gravity and Torsion in Erice (Italy) where I met Friedrich
Hehl who had been a colleague of Brans as a visitor to the Princeton Physics
department in 1973. In September 1995, Hehl was organizing a Heraeus seminar
“Relativity and Scientific Computing—Computer Algebra, Numerics,
Visualisation” and invited Brans to talk about his work with exotic smoothness and
physics. It was at this conference that I met Carl and we immediately recognized
our common enthusiastic interest in modern differential topology. This then led to
some intensive email exchanges.

In 1997, Carl offered me a scholarship (LaSpace Grant) to visit him in New
Orleans the next year. It was then that we began to write our book “Exotic
smoothness and physics”. Carl was very impressed by the story above about a
12-years-old boy behind the “wall” who had a dream to someday meet him. Of
course, in New Orleans there is always life after work and I still remember the
warm welcome (with a seafood gumbo) by Carl’s wife Anna. That was the
beginning of our wonderful friendship and successful collaboration. I feel so
privileged to have had the opportunity to work with him on numerous occasions
(Fig. 3).

Torsten Asselmeyer-Maluga, German Aerospace Center

His Family:

Carl Henry Brans was born at St. Paul’s Hospital in Dallas, Texas on Friday,
December 13, 1935. For his parents, Carl Brans, who worked in the maintenance
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department at Sears Roebuck, and Delia Elizabeth Murrah, a housewife and tal-
ented pianist, Friday the thirteenth represented good luck from then on. Carlie was
an only child, but had the support of a large extended family in Dallas.

Both of Carl’s paternal grandparents had come to America as children, his
grandfather from Anholt, Germany and his grandmother from Austria. The men in

Fig. 3 Carl in the student apartment (1957)

Fig. 4 Anna and Carl in Mississippi City (1957) “It is a “selfie” taken on our honeymoon.”
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the family were brick masons. His maternal grandmother, MaryMcNamara was born
in Dallas to Irish immigrants, whereas his maternal grandfather, who was a black-
smith, came from a family with deep American roots, which led back to England.

On May 5, 1956, I met Carl on a blind date for the Physics Department’s annual
end of year crawfish boil. It was the end of his junior year and the end of my
sophomore year as a major in Sociology. This was the beginning of a beautiful
relationship. On February 9, 1957 we were married and went to Princeton together
in September of that year. During the 3 long lean years of living on NSF fellow-
ships, our oldest son was born.

After 58 years of marriage, our little dynasty numbers nineteen descendants:
Four sons, Thomas Joseph, Henry Robert, Patrick David and John Edward.
A daughter, Mary Elizabeth, died in infancy of hydrocephalus.

Our later years were enriched as we saw our progeny flourish. We now have
eight grandchildren who have given us seven great-grandchildren (so far) (Figs. 4
and 5).

Anna Dora Monteiro Brans
September, 2015

Fig. 5 1958: Carl with the first son Tommy in front of the student apartment (left) and Anna, Carl
and Tommy in front of the church in Princeton when the son Tommy was baptized (right)
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Chapter 1
65 Years in and Around Relativity

Carl H. Brans

At the very beginning I must thank all of the contributors to this book for taking their
valuable time to add to it. Of course, my special thanks goes to Torsten Asselmeyer-
Maluga, not only for organizing this work, but also for his friendship as well as his
expert advice and tutelage in the mathematics of differential topology over the last
20 (or more) years we have known each other. As always, “Much thanks to you
Torsten!”

1.1 Undergraduate Days, 1953–1957

I was not exposed to anyone with expert knowledge about current research in math-
ematical physics until I got to Princeton at about 20 years of age. Until then I mostly
learned on my own, as many of us probably did. Later experience confirmed to me
that indeed there is a good bit of the truth in the old saying: “A self taught person has a
fool for a teacher.” Also, I think this background made it difficult for me to work well
in groups or to collaborate, except recently with Torsten. More importantly when I
arrived at Princeton University I had a lot of holes in my knowledge of mathematics
and physics, and felt quite intimidated by both faculty and other graduate students
who had more solid foundations in mathematics and physics. In spite of this, I man-
aged to muddle through and passed both oral and written qualifying exams at the
end of my first year.

Forme perhaps themost fascinating andmotivating aspect ofmodern physics, pri-
marily relativity and quantum theory, is the marvelously counter-intuitive models for
reality beyond that whichwe can directly observe withmore or less “everyday” expe-
rience. Of course much of the apparent mystery is a result of trying to describe these
“worlds” beyond our everyday experience in natural language which has developed

C.H. Brans (B)
Loyola University, 6363 St. Charles Avenue, Box 92, New Orleans 70118, USA
e-mail: brans@loyno.edu
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exclusively from such direct, human-scaled, experiences. When natural language is
inadequate, it has been replaced by mathematics, often using formalisms previously
thought to be purely abstract, and unrelated to “common sense.” Fortunately for me,
I had developed a taste (if not a real skill) in pure mathematics. One of the most
interesting things for me was finding that much of the mathematics needed by rel-
ativity and quantum theory had been developed before these needs were known. In
turn, these physical fields have inspired the further development of mathematical
structures. I was very interested in the often asked question: “What is this curious
interaction between physics and mathematics?”

Also, I was re-discovering the fact that questioning old assumptions is fun. I enjoy
turning to books such as Counterexamples in Topology [1]. To paraphrase a remark
that I heard from JohnWheeler, “Aren’t we so very lucky to be paid to do something
that we otherwise would do as a hobby.”

As an undergraduate at Loyola, I delved into as much mathematics and mathe-
matical physics as I could. So from our library I got a taste of topology from the
books Introduction to Topology and Algebraic topology, by Lefschetz and a bit of
measure theory from the book of Halmos. For differential geometry and relativity I
read mostly from Sokolnikoff’s Tensor Analysis and especially Einstein’s Meaning
of Relativity, 3rd edition. I was most fascinated by the Appendix on a unified field
theory constructed by generalizing the standard symmetric metric to an asymmetric
one. Although this did not turn out to be a widely explored direction in the quest for
the classical unified field theory, I found it fascinating and wrote a primitive review
of the subject as my senior thesis for my Physics degree from Loyola in 1957 [2]
(unpublished).My original readings on quantum theorywere probably from the book
Lande, my introduction to Quantum Field theory the book by Wentzel. Of course
I also tried to read some of the available articles in the Physical Review (only one
issue then) and the Annals of Mathematics.

I should also mention that I was very fortunate to have the strong support of Frank
Benedetto, S.J., then chairman of the department who did his PhD work on cosmic
rays under the Nobel prize winner, Victor Hess. At Loyola Benedetto continued
observational work with cosmic rays involving an array of geiger counters with
requisite very high voltage. In spite ofmy obvious difficultieswith anything practical,
Benedetto provided me with some much needed financial support by employing me
to check this array occasionally. I know that at some point I was reaching across
the apparatus, with exposed high voltage terminals, and then some undetermined
time later I awoke on the concrete floor on my back, sore and somewhat confused.
Probably I had received a high voltage shock. I suppose it must have rewired the
synaptic patterns in my brain, but I will never know since I was too embarrassed
to tell anyone about it at the time. Since then I have even more studiously avoided
experimental equipment as much as possible. On a more positive note, during my
senior year Benedetto encouraged me to apply to the National Science Foundation
for one of their relatively new Research Fellowships. At his suggestion I also applied
to Princeton, Einstein’s last home. Somehow both applications were successful.
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However, during this time the most important thing in my life was my marriage
to Anna Monteiro who somehow has managed to raise our family and stay with me
for almost 60 years now.

1.2 Arrival in Princeton 1957–1960: Misner, Dicke et al.

In the late fifties as a result of research related toWWII, timeswere very good forU.S.
federal support of research in physics and mathematics in general and especially for
people inmy age bracket. The fairly newNational Science Foundation was providing
very generous research support for graduate student fellowships. This enabled me
to concentrate entirely on research and fortunately no lab work or teaching was
required.

When I arrived in Princeton, I was overwhelmed to be around people whose
names I knew as world-class leaders in mathematics and physics. Most of them had
even knownEinstein personally. Unfortunately this did not includeme since he died a
couple of years before I arrived. It is now very clear tome thatMisner andDickewere
most influential to me in these 3years. Misner’s relativity course opened my eyes to
some of mathematical formalisms which were providing new (at least to me) tools
and incentives for my nascent explorations into mathematical physics. I discovered
Steenrod’s fiber bundle book and was inspired by the potential tools presented by
bundle structures. In fact, much of the foundation for work that would fascinate me
the rest of my career was being done next door in Fine Hall, physically connected to
Palmer Lab. Of course, the chief director and contributor to theoretical relativity at
Princeton at that timewas JohnWheeler. Probably as a result ofmy early development
in a somewhat isolated environment for mathematical physics, I have always found
it hard to work in a group. So I didn’t really “join” Wheeler’s very productive group,
although I did attend many of its seminars. As I matured later, I realize that I missed
a golden opportunity to profit from working more closely withWheeler himself. I do
recall an unforgettable afternoon during this period when someone mentioned what
might be an interesting seminar at some place about an hour’s drive from Princeton.
However, no one seemed to have a car except me so Wheeler asked me to give him
and Dirac (who was visiting then) a ride to the seminar. Of course, I couldn’t say
no, but my ancient car had obviously seen much better days. Actually it was rather
“beat up” (both mechanically and cosmetically) to use the common phrase. In spite
of this I was looking forward to the prospect of spending a long ride with two such
pre-eminent physicists when I was only beginning my graduate school experience.
From what I recall, Dirac and Wheeler sat in the back and a long, mostly one sided,
conversation ensued between the very taciturn Dirac and the very outgoing and
loquacious Wheeler. As I recall, during this period much of Dirac’s work concerned
quantization of the first order metric field using then current quantum field theory
techniques. On the other hand, I knew that Wheeler thought the special nature of
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geometry meant that any quantization would require an entirely different approach.
The “conversation” consistedmostly of rather long, but always polite, questions from
Wheeler, and usually only one syllable answers from Dirac. Looking back on this
from almost 60years later, I believe that had I recorded the conversation, it would
not now seem to be entirely out of date. Fortunately, considering the prominence of
the passengers, I was very happy that my poor car managed to hold up for the round
trip.

Also, although I did not look carefully into it, but about that time, late 1950s,
workers in quantum field theory and particle physics were beginning to explore sym-
metries and Lagrangian formulations in which the notions of bundle theory could
provide the underpinning for the exploration of quantum force fields as connections
on principal bundles. Actually this was presaged as early as 1918 by the work of
Weyl on gauge transformations of the electromagnetic potential as being related
to conformal transformation of the metric, thus providing some sort of geometric
interpretation of the electromagnetic field. This particular approach to a unified field
theory was not further studied for many reasons. But it was important as an intro-
duction of what was later to be expressed as gauge symmetry in QFT. These gauge
transformations were associated with spacetime scalars with perhaps some internal
(bundle group) structure. This ultimately led to what is now referred to as the Higgs
scalar and related work. So even before introduction of a scalar field into general
relativity, scalars were blossoming in the QFT context.

Although I did not realize it at the time, much of the later surprising discoveries
of exotic, i.e., non-standard, structures on topologically simple manifolds such as
R

4, R × S3, were being presaged by the work of one of the most talented young
mathematicians next door in Fine Hall, John Milnor. I refer especially to Milnor’s
exotic spheres, Σ7, which are smooth manifolds that are homeomorphic to S7 but
not diffeomorphic to it in its standard structure inherited from R

8. Milnor started
with an S3 bundle over S4 but with non standard coordinate patch identification of
the upper and lower hemispheres of the resulting Σ7. Later I recognized that since
Yang-Mills original non-commutative gauge group is equivalent to an S3 bundle
over R4, connections on Milnor’s exotic spheres could be thought of as Yang-Mills
models over compactified spacetime. These topics are in a branch of mathematics
known as differential topology, which has held my interest for the last 20years or so.

In addition to Misner’s lectures I sat in other courses. One of these was Quan-
tum Mechanics/Field theory, by Marvin Goldberger. I remember Goldberger’s class
especially since I found none other than Eugene Wigner sitting next to me and very
politely asking questions and making comments. That was certainly a notable expe-
rience for a young student such as me. As is well known, Wigner was very kind and
extremely polite. It was said that you could never follow Wigner through a door, he
would always bow and open it for you.

At that time there was no class or grade requirement at Princeton just a compre-
hensive exam which I managed to pass at the end of the academic year 1957–1958.
It was then time for me to start work on a thesis. Misner’s course had exposed me
to the mathematics I found most fascinating, so I asked his opinion on my idea to
write my thesis on the application of bundle theory to physics. Instead, he suggested
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that a more realistic path would be to talk to Robert Dicke. He said that Dicke was
looking for a theoretical student to develop some of his ideas. It is hard to believe
now but at that time I had never heard of Bob and his group, even though he had
already become one of the outstanding experimental physicist of his time. Dicke was
very approachable and patient in explaining to me his thoughts on Mach’s principle,
the “large number coincidences,” and finally Bob’s ideas that

GM

R
≈ 1 (1.1)

for M and R as the mass and radius of the universe as known then might lead to a
relativistic generalization of

G−1 ≈ M/R =⇒ ∇2G−1 ≈ ρmass (1.2)

Or on an expected local level

G−1 = G−1
0 + Σ

m

r
(1.3)

Bob referred to (1.1) as the “large number coincidence,” expressed in atomic units
as

10−401080

1040
≈ 1 (1.4)

as pointed out by Dirac [3] and others. Of course modern observational cosmology
has caused drastic revisions to these ideas which seem simplistic to the modern
reader, but they were more or less mainstream in terms of observations up to the
1950s. Bob was also very interested in Mach’s ideas in terms of a possible causal
relation of the state of motion of inertial reference frames relative to the fixed stars.
Exactly what is meant by “Mach’s Principle” has been debated probably for a century
by now [4]. From what I recall Bob was most concerned about the fact that in almost
all expositions, “inertial” forces are not granted the same status as “real” ones. Since
both inertial and gravitational forces are proportional to the mass they act on, Bob
thought that inertial forces should be as real as gravitational ones. In other words Bob
wanted to understand inertial forces, such as centrifugal, in terms of gravitational
ones due to acceleration relative to the fixed stars. He suggested that this might result
in having inertial mass depend on the mass distribution of the universe.1 To avoid
dependence on choice of units, he suggested that this could be expressed in terms of
a variable G. This part of the argument is somewhat involved. I think that Bob was
rather disappointed that our formulation of a scalar-tensor theory does not seem to
provide an explicit derivation of Newton’s bucket, etc.

1And I believe so did Einstein. See the later discussion of this issue to which a good bit of my thesis
was addressed.
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As a start, Bob referred me to a paper by Sciama [5] which presented a toy
model of vector gravity analogous to electromagentism. This turns out to produce
gravitational forces to be seen by an observer accelerating relative to the shell. In the
simplest model a mass m accelerating relative to a spherical shell of mass M and
radius R would be subject to a gravitational force

FSciama = GM

R
mA (1.5)

when it has an acceleration A relative to the shell which represents the rest of the
universe. This would be exactly the observed inertial force if GM

R = 1. Of course it
was known that such a purely vector form could not replace Einstein’s for general
relativistic gravitation. Sciama presented it only as a toy model to understand inertial
forces as gravitational ones. Dicke was fascinated by Sciama’s work. Unfortunately
for Bob, as far as I know neither scalar-tensor nor standard Einstein theory can
reproduce anything as explicit as (1.5). Einstein had devoted a few pages ofMeaning
of Relativity to remark that he had incorporated Mach’s Principle in his standard
equations of general relativity by having the inertial mass depend on certain metric
components and thus the mass in the entire universe. It seemed obvious that this must
be purely a coordinate effect, and I later published a paper on it [6].

Another aspect of inertial and gravitational forces could be expressed in terms of
the equivalence principle(s). Roughly, in modern usage the weak principle asserts
that all point masses have same gravitational acceleration. The fact that point masses
have a limit of zero self energy later turns out to be critical. The strong principle
can be summarized as asserting that all gravitational effects are due to the metric
alone which requires assumptions not necessarily made and observed in the weak
principle.

For many years the work of Eötvös around 1900 was the standard test of the weak
principle.However, on closer examinationDicke claimed that the experimental errors
inherent in the experiment as done by Eötvös were much greater than believed. In
fact, I recall his saying that that the accuracy of the Eötvös apparatus would be
affected by human movement only a few meters away. So Bob and others set about
re-designing the experiment with modern tools and the results were published in
[7]. This seemed to be a very satisfactory confirmation of the weak principle of
equivalence, but Bob was still intrigued by the fact that Einstein theory makes the
implicit assumptions contained in the yet-to-be-tested strong principle. In the 1950s
and early 1960s Bob was unaware of the implications of the later discovery by Ken
Nordtvedt that a variable G (violation of the strong principle) would in fact result
in a violation of even the weak principle for massive bodies. This will be discussed
below.

In any event during the 1950s, Bobwas highlymotivated byMach’s principle, and
still unaware of a connection between strong and weak principles. After a few visits,
Bob suggested to me that I develop a rigorous formalism consistent with the weak
but breaking the strong principle of equivalence incorporating a general relativistic
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formulation of (1.3) with variable G2. At first, consider allowing G to be a variable
in an action principle based on

S0 =
∫ √−gd4x(R + 8πGLmatter ) (1.6)

Then clearly, the translational invariance of the actionwould lead to (GT μν
matter );ν = 0

so matter conservation would be violated if G is not constant. However starting from
(1.6) multiply S0 by the (still constant) G−1, thus decoupling the possibly non-
constant G from the matter Lagrangian, so matter conservation could still hold,
(T μν

matter );ν = 0, as in Einstein theory. Using φ as a scalar field variable associated
with variable G we would still need to add a Lagrangian for φ,

SST =
∫ √−gd4x(φR + 8πLmatter + Lφ) (1.7)

If φ ≈ G−1 then the dimensionally consistent and simplest choice for Lφ would be
functionally of the form

Lφ ∼ φμφ
μ

φ
(1.8)

At this point I realized that the ∼ in (1.8) must be replaced by =. I noticed that this
would still allow the introduction of a dimensionless constant, the now infamous ω,

so the study would begin with something like

SST =
∫ √−gd4x(φR + 8πLmatter + ω

φμφ
μ

φ
) (1.9)

The usual variational principle then leads to

2
ω

φ
�φ − ω

φ2
φ,αφ,α + R = 0 (1.10)

for φ, and an equation that can be written as

Rμν − 1

2
gμνR = φ−1[8πTmatter

μν + ω(φ,μφν − gμνφ
,αφ,α)/φ + (φ,μ;ν − gμν�φ)]

(1.11)

for themetric. It is interesting to note that the gravitational field equations (1.11) have
the usual Einstein tensor on the left side of the equation and φ−1 times a generalized
source tensor that involves not only “matter” but also terms involving derivatives of
φ. So, in this form the φ part of (1.11) seems to act like ordinary matter in producing
the geometry. However, from a purely formal point of view (1.11) could be written

2This ultimately led to the oxymoronic phrase in my thesis title: “...variable...constant.”.
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φ(Rμν − 1

2
gμνR) − ω(φ,μφν − gμνφ

,αφ,α)/φ − (φ,μ;ν − gμν�φ) = 8πTmatter
μν

(1.12)
Thus, in (1.12) matter contributes to differential equations for both the metric and
φ, leading more directly to the idea of a scalar-tensor theory, scalar combined with
metric tensor, in which both quantities have matter as source. But as written, (1.10)
and either (1.11) or (1.12) do not directly show matter as the source for φ, which
was one of the original motivations. To get this simply contract (1.11) to get another
equation for R in terms of T and φ. Eliminating R from these two equations then
results in the important.

�φ = 8πT/(2ω + 3) (1.13)

It is clear that in the weak field approximation (1.13) will result in some relativistic
approximation of (1.2). When I brought this equation to Bob, he was at first pleased
but then concerned that we had replaced the determination of a constant, G, with
an undetermined ω. Bob naturally found this somewhat unsatisfying.3 He suggested
that I look for something giving the value of ω as a function of the fundamental
mathematical constants such as e,π, or the physical fine structure constant, etc. But
I could not get anywhere with this, so he suggested I proceed with the mathematical
analysis of the equations resulting from an action of the form in (1.9) and associated
equation (1.13) which I did, ultimately leaving ω as a dimensionless number which
could only be determined by experiment. Of course, from my side, I was somewhat
disappointed that none of this would involve any mathematics beyond basic algebra
and calculus. I was very concerned that the thesis itself was too trivial with little
interesting mathematics so that it might not be sufficient to get a Doctorate from
Princeton. But I was told it could lead to a PhD. Little did I know that from this
unassuming and not very challenging thesis, Bob Dicke and others would develop a
remarkably significant re-examination of General Relativty both experimentally and
theoretically.

When I was stuck with the problem of trying to find an exact solution analogous
to that of Schwarzschild for standard General Relativity, Misner suggested I try
the metric form in isotropic coordinates. In this form it was possible to give exact
solutions in terms of elementary functions, but the expressions fell naturally into
four separate functional forms depending on the ranges of ω and other constants.
Some of these solutions involve negative ω and exponential behavior for the metric
and are all presented in my thesis. Of course, (1.13) caused Bob to consider only
the one form for which 2ω + 3 > 0 in all of his work. In my thesis I neglected any
interpretation of the solution for other ranges of ω, although I sometimes think of
looking at them again. In my thesis and later publications, I presented fairly thorough
arguments suggesting that 1/φ does indeed act as G to some approximation in 1/ω
as well as the question of how this scalar-tensor model might be consistent with
some form of Mach’s principle, still rather amorphous to me. I also made attempts

3He was also concerned that since electromagnetic radiation has T = 0, an electromagnetic radi-
ation field would not contribute as a source for φ. This question was shoved aside and not further
investigated, I believe.
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to find exact cosmological solutions analogous to the familiar FRW ones of standard
General Relativity, but the best I could do was to give some information in terms of
Taylor series approximation. All of this is presented in my thesis and [8].

I was well along with this work when someone (I don’t know who) told me to
check on Jordan’s work, probably even the book Schwerkraft und Weltall [9]. Of
course I was disappointed when I found Jordan’s expositions, and thought that I
would need to begin again with a new thesis topic. As a very young researcher, I was
not fully aware of the phenomena associated with the not uncommon “re-discovery”
of results.4 But Bob assured me that we could proceed with the subject since since
we had started the work independently of Jordan et al., and that we could point out
that the difference in motivation was Mach’s Principle and some of the large number
coincidences, etc. I have been most asked: “What did Dicke know of Jordan’s work
andwhen?” All I can say is that I do not recall Bob’s havingmentioned Jordan’s work
when I was starting my thesis. Later when I visited Princeton as a visiting professor
at the University, and later as a visitor to the Institute for Advanced Studies, I do not
recall his telling me that he knew of Jordan’s work before I told him about it around
1958 or so. However, It is now clear that indeed Bob was in correspondence with
Jordan and evenmentioned his work before 1958. This will be examined a little more
closely in the discussion in the following.

Most all of this work and consultation with Dicke et al. was done in the late 1950s,
but publications did not come until the early 1960s.

1.3 1960s: Scalars, Tensors, Invariants, Invariance,
Petrov, etc.

The original paper on this formalism appeared in 1961 [10], written mostly by Dicke
using formalisms and results frommy thesis, which, despite my doubts was accepted
as sufficient for me to get my doctorate. In addition I followed this upwith a couple of
papers, [6, 8] extracted from my thesis to give my arguments on how this formalism
did indeed give a variable G, but not a strong Mach’s principle in the sense that
Sciama’s toymodel did. The thesis also described in detail the class of Schwarzshild-
like solutions I found. Also I gave the explicit argument against the physical reality
of Einstein’s claim that inertial mass is a function of the mass distribution in the
rest of the universe. A brief summary of the topics covered in my thesis is in the
Appendix below.

It was clear that the theory gave predictions observably different from Einstein’s
by amounts that decreased with decreasing 1/ω. In other words, the scalar-tensor
formulation differed from the original Einstein theory significantly in the empirical
sense only if ω is not too large. How large? Since 1961 many observations have
narrowed the error bars sufficiently to make the scalar-tensor formulation effectively
irrelevant in the solar system scale. The book by Poisson and Will [11] is a detailed

4Since then I have done work which turned out to be on both sides of this phenomenon.
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source for the current status of ST and other modifications of standard Einstein
theory. Bob himself led much of this work. As planetary orbital data pushed ω
higher and higher, Bob proposed a solar oblateness of sufficient size as to allow
ST theory with reasonable value of ω. Ironically observations of the sun by Henry
Hill, a former student of Dicke and highly regarded by him, indicated that the solar
oblateness did not exist to the degree that Dicke was proposing. My collaborator and
fellow contributor to this volume, Martin McHugh, is actively at work on a scientific
biography of Dicke that should help unify the history of this topic.

As mentioned earlier, it turns out that a variable G might even break the weak
equivalence principle. A simplified version of this later described to me by Dicke
based his conversations with Nordtvedt along the following lines. Consider a mass,
M , which contains a significant gravitational binding energy. If G is variable, the
total amount of this energy will vary from point to point. Ken Nordtvedt proposed a
thought experiment to explore the implications of this. Using a constant gravitational
field for simplicity suppose that originally M is at height h. It is then broken in half
overcoming the binding energy by an amount by an amount G(h) f (M) at the top.
Here f (M) is some function depending on the structure of M. During the fall,
each M/2 piece falls with acceleration, g1 gaining energy 2(M/2)g1. They are then
reassembled at the bottom, gaining energy proportional to G(0). So the net energy
gained from M at top to M at the bottom is

E1 = Mg1 + G(0) f (M) − G(h) f (M) (1.14)

Or, we could reach the final state letting M itself fall with acceleration g2, gaining
energy

E2 = Mg2 (1.15)

Obviously the beginning and ending conditions are the same in both cases, so we
should have E1 = E2, or

0 = E1 − E2 = M(g1 − g2) + (G(0) − G(h)) f (M) (1.16)

So energy conservation expressed in (1.16) results in

g1 − g2 = (G(h) − G(0)) f (M)/M (1.17)

and the weak principle of equivalence cannot be extended to bodies with significant
gravitational binding, | f (M)/M | � 0.

Nordtvedt brought this argument to Dicke around 1967 who agreed that indeed a
variableG would result in objects fallingwith different accelerations dependent upon
their fraction of gravitational binding energy. This crude thought experiment was
turned into rigorous predictions that would be most easily and precisely observed in
the earth-moon orbital motion. Of course this difference would not arise in Einstein’s
purely geometric model of gravitation, and again the difference would depend on
1/ω. In 1969 astronauts placed a laser reflector on the moon which would allow for
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very precise measurement of the earth-moon relative motion. The result again put
tighter limits on 1/ω and also confirmed that a theory with variable G would not
satisfy even theweakprinciple of equivalence for bodieswith significant gravitational
binding energies. For more details, see [11]. Thus, it is somewhat ironic that Dicke
should suggest the non-constant G in scalar-tensor theories while he was working
on a repetition of the Eötvös experiment to verify the weak principle for non-pont
masses to much higher accuracy.

I now believe that when I proposed a formulation generated by a Lagrangian such
as in [12] Bob regarded his version of Mach’s principle and other motivations as
sufficiently different from Jordan’s as to justify our use of this formalism. I would
also like to point out that it was Dicke (not me) who first used the phrase “Brans-
Dicke” theory [13].

Of course later scalar fields have re-emerged in various forms in string theory and
modern cosmology. There are many sources an interested reader can find for more
thorough look at the development of scalar-tensor theories and their off shoots, In
addition to my early papers [6, 8, 10], there is of course a wealth of papers by Dicke,
many of which are summarized in his book [14]. Much later, at the suggestion of
others, I worked on some online surveys [15, 16]. For a first hand historical review
of the work of Jordan and others, see Schucking [17].

An early incident contributed to my discontinuing interest in ST theories. At one
meeting shortly after our 1961 paper, while I was still a very young recent PhD, I
was attacked by some of general relativity’s elder statesmen for destroying the purity
of Einstein’s formulation by adding the scalar field. This was very intimidating and
together with the lack of challenging mathematics caused me to pretty much lose
interest in ST theory and its empirical status.

However, I became interested in the fact that, as far as I knew, no scalar field had
survived the introduction of special and general relativity. Of course looking back
on the times I am well aware of studies of the significance of conformal transfor-
mations of the metric by Weyl and others. I now realize that in the context of the
times many people were investigating what is now generally referred to as the Higgs
Boson(scalar) in the quantum field theory realm but I was regarding gravity purely
as a classical field. More precisely, in the classical realm, I was not aware of fields (at
the potential level) which were spacetime scalars. Thus, the electromagnetic field is
a vector field while the gravitational field explicitly involves the metric, a two-tensor
field. However the φ in scalar-tensor theories provides a physically invariant quantity
which cannot be transformed away over any open set by a particular choice of coor-
dinates. In part, this led me to the question of finding the invariant trail left by the
metric tensor in standard Einstein theory, with or without some scalar attached. The
principle of general relativity allows the use of any coordinate system and lacking
even a single scalar field such as φ, I wanted to try to understand the explicit tech-
nology for extracting coordinate independent, invariant information describing
gravity.

The problem of obtaining invariant information about a geometry is, of course, a
very old one and goes back to the definitions of curvature for a line, one dimensional,
and thenGaussian curvature for two dimensional surfaces. For higher dimensions the
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Riemann tensor appeared, which, as a tensor, is usually expressed in terms of coor-
dinate dependent components. Extracting invariant information from those tensor
components leads naturally to two important issues

1. Invariants that is, finding functions whose values are coordinate independent,
and

2. Metric determination exploring to what degree these invariants determine the
actual geometry.

Actually this could be described more directly by saying that in Einstein theory the
field is a cross section, g, the metric, on the principal bundle of tangent vector frames
over the base space, M , with bundle group reduced to the Lorentz group. However, to
ultimately observe and compare this field in the operational sense, we need to know
how the real time measuring devices are related to the local coordinates chosen for
M , and a specific form for g. In more familiar form, the invariant content of Einstein
theory presents the observer with proper distance metric,

ds2 = ηαβωα(xμ)ωβ(xν) (1.18)

and we must know how both the coordinates, xμ, on M and the Lorentz orthonormal
forms, ωα, as functions of them are related to local observations. A large literature
grew out of these problems. I was especially attracted to the approach of Petrov,
at least for a class of metrics which are Ricci flat. Petrov [18–20] has provided a
very nice description of one approach to extracting all invariant information from a
coordinate expression of the Riemann tensor. In four dimensions using the Ricci flat,
Lorentz signature metric, this four index tensor can be first reduced to a symmetric
two by two matrix whose four components are described by a pair of three by three
matrices. Using the following notation,

Mab = R0a0b, Nab = R0abc, (a, b, c) = cyclic(1, 2, 3) (1.19)

Here M and N are symmetric and M has trace zero. As an intermediate step, write

RAB =
(
M N
N −M

)
(1.20)

where A, B = 1...6. Next, use the fact that the Hodge star is a complex structure on
fiber Λ2,

� : Λ2 → Λ2, �� = −1. (1.21)

Thus Let (a, b, c) be a cyclic permutation of (1, 2, 3) and

ua ≡ ω0 ∧ ωa, va ≡ − � ua = ωb ∧ ωc (1.22)
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which then satisfy

(ua, ub) = (va, vb) = 0 (ua, vb) = δab (1.23)

This then leads naturally to the combining of M and N into the single three by three
complex, symmetric matrix

R ≡ M + i N (1.24)

and the definition of complex 2-forms basis for Λ2(C),

f a ≡ ua + iva (1.25)

It is then easy to see that (1.25) and (1.23) are equivalent to

f a ∧ f b = iδab � 1 (1.26)

and
f a ∧ f̄ b = 0 (1.27)

It is then easy to complexify the connection forms,

Xa = ωb
c − iω0

a (1.28)

and arrive at the structure equations,

d f a = f b ∧ Xc − f c ∧ Xb, (a, b, c) = cyclic (1, 2, 3) (1.29)

and finally the curvature equation

dXa − Xb ∧ Xc = Ra
n f

n + Qa
n f̄

n, sum n = 1, 2, 3 (1.30)

The vacuum Einstein equations, Ricci flatness, can then be expressed by requiring
only f a, and not f̄ a on the right hand side of (1.30), or Q = 0. More simply, the
vacuum Einstein equations are equivalent to (1.26), (1.27), and (1.31),

dXa − Xb ∧ Xc = Ra
n f

n (1.31)

As in similar algebraic matrix problems, the final forms resulted in possible degen-
eracies and natural division into distinct types. Petrov presents in his book [19] a
complete and extensive approach to his results. Certainly we know the relationship
of the Lorentz group, SO(1, 3,R) to SL(2,C). However, this formalism seems to
correspond to the group SO(3,C). In terms of the Lie algebras, so(1, 3,R) is clearly
6 real dimensions, sl(2,C) consists of all traceless C two by two so 4 − 1 = 3 com-
plex=6 real dimensions, and so(3,C) consists of all traceless, antisymmetric three
by three C matrices, again 3 complex= 6 real dimensions.
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In the case of algebraic degeneracies, successive covariant derivatives of the Rie-
mann tensor, or its complex form, may be required. Obviously the necessary algebra
involved in this process is clearly very complicated. At that time, I was beginning to
become slightly computer literate, primarily thru FORTRAN. I was never interested
in the numerical calculations expedited by such languages, but the logical branching
it provided led me to investigate the possibility to do purely formal, symbolic, alge-
bra and differential manipulations in a computer program designed to represent the
Riemann tensor and its covariant derivatives by indexed objects and then perform
algebraic operations needed to extract invariant information from themas generalized
eigenvalues/eigenfunctions. I knew that others were doing symbolic manipulations
with computer programs, such as the developing system Macsyma and currently
packages such as Maple and Mathematica. Nevertheless since this was relatively
novel at the time, I managed to publish my first and only computer paper [21]. As
clumsy as it was, my FORTRAN package did help in post-Petrov work [22].

Note that Petrov’s formalism involves finding standard form for complex three
by three matrix and results in preferred vectors and scalars. It occurred to me that
this invariant information might be used to (at least partly) determine local tangent
vector frames as well as coordinates to the extent allowed by possible degeneracies.
Note that the problem of finding canonical forms for complex matrices operating
on C

3 differs from that for real matrices on R
3 in that non-zero complex vectors

may have null magnitude using the complex Euclidean pseudo norm, replacing ∧
product in (1.26) with that provided by the Euclidean three metric. The form of
these equations seduced me into a (so far useless) search for a possible relationship
between the complex two-form basis, f a, and an arbitrary holomorphic basis for the
one forms over C3, but with the Hermitean metric replaced by the pseudo-Eulidean
in (1.26), (1.27). The temptationwas instigated by the fact that all solutions to the two
dimensional vacuum electrostatic field equations, �2V = 0 can be explicitly stated
simply as the real or imaginary parts of any arbitrary holomorphic function of one
complex variable. So, could we simply replace the two-forms, f in the preceding
equations by holomorphic complex one-forms, σa(zb) of three complex variables,
replacing the ∧ in (1.26), (1.27) by the euclidean inner product (not a norm over C).
Thus, the Einstein equations as expressed in (1.26), (1.27), (1.29) and (1.31), bear
a striking resemblance to the complex three dimensional geometry of C3 with the
only requirement being that the basis for two-forms, σa, be holomorphic. Needless
to say, so far such a correspondence has eluded me.

Before ending this discussion of invariant studies of Ricci flat metric geometries, I
must refer to the result of Schmidt [23] noting that the completeness of the invariants
found using these techniques for a Lorentz signature metric, is not guaranteed
by the classical arguments involving the positive definite Riemannian geometry of
SO(4). In particular, in this paper he noted that the calculation of all invariants from
the Riemann tensor and all of its derivatives can be zero, without having the space
be flat, for certain explicitly stated gravitational wave equations. Thus, for any

ds2 = 2dudv + a2(u)dw2 + b2(u)dz2 (1.32)
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such that

a
d2b

du2
+ b

d2a

du2
= 0 (1.33)

the Ricci tensor is zero, but not all components of the Riemann tensor are zero if
at least one of the second derivatives in (1.33) is not zero. However, all invariants
formed from the Riemann tensor must be zero. Schmidt also pointed out that the
reason for this discrepancy lies in the fact that SO(1, 3) is not compact, whereas
SO(4) is.

When I developed and published my work on this subject, first [21], and later,
in the 1970s [22, 24–26], I was unaware of the complete analysis of these tools by
Thorpe [27] and others years earlier. My work was certainly not the earliest on the
subject, bringing back my “re-discovery” of the work of Jordan and others on ST
theories in beginning my thesis.

During the 1960s I also briefly looked at some of the problems associated with
Komar’s claim of an explicit presentation of some form of Wheeler’s “gravitational
geon,” some sort of object held together by its own gravitational energy, at least for
some time [28, 29].

1.4 1970s Alternative Geometric Formalisms
and a Bit on Quantum Logic

During the early 1970s I continued my work on the geometric invariants problems
[25, 26, 30, 31], but had to completely abandon any hopes that a holomorphic one-
form structure over Euclidean C

3 would lead to any results on the actual real, four-
dimensional Einstein equations in (1.26), (1.27), (1.29) and (1.31). There probably
is no way to relate frames of complex one-forms Λ1(C) over C3 to Λ2 ⊗ C, even
though the formalisms are deceptively similar. Another intuition that did not pan out.

During 1973–1974 academic year I had the opportunity of again spending time
in the Princeton physics department. It was there that I first met Dave Wilkinson,
Friedrich Hehl, BahramMashhoon, Eckehardt Mielke, and others. Of course I again
resumed conversations with Bob Dicke, but by then the experimental evidence was
strongly suggesting that our proposed form of a scalar-tensor theory was effectively,
i.e., for reasonable values of ω, no more valid, at least in the solar system scales, than
standard Einstein theory. Dicke had tried to resurrect the notion of an oblateness in
the sun’s mass distribution sufficient to adjust predictions of orbital data to conform
to observations even with a reasonably small value of ω. However, Henry Hill, one
of Dicke’s students then at Arizona had made observations sufficiently accurate that
the sun was not sufficiently oblate to provide the Dicke’s proposed adjustmenta of
ω back down to reasonable values. So it soon became clear to me that Bob had
resigned himself to the situation that observations had driven the value of ω so high
as tomake the theory irrelevantly different from standard Einstein theory. JimPeebles
and Dave Wilkinson were close workers with Dicke at that time, and Bob seemed
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to have reluctantly given up interest is scalar-tensor theory5 and taken up more
general cosmological problems, observational and theoretical. Penzias and Wilson
had approached Bob and Jim to discuss background universal cosmological radiation
they had found. Bob and Jim suggested that this might be the black body remnants
of the big bang cooled off to a present temperature in the four degree range. Of
course, it was Penzias andWilson who received the Noble prize for their observation
of this phenomenon. The two groups decided to publish sequential articles in the
Astrophysical Journal [32, 33].

Bob Dicke and Dave Wilkinson had begun construction of models of antennae
to provide confirmation of the 4◦ black body hypothesis. I seem to recall that they
were driven to improve the tools to detect sufficient frequency vs intensity data
to confirm the black body characteristics of the radiation. Specifically, I heard a
lot of talk about the importance of getting points surrounding the maximum in the
Planck curve to confirm black body radiation at this temperature. Dave was also
particularly interested in observing possible anisotropy of the radiation and designing
detectors to do this. I believe the inclusion of Dave’s name in the widely usedWMAP
term is in honor of his work. I spent some time listening to these exchanges, but
the details of equipment design were essentially incomprehensible to me. I now
realize that I was just an occasional observer of the work of people who were laying
the groundwork for much of modern cosmological studies. However, after learning
more from Dave Wilkinson, I published a paper [34] pointing out that background
gravitational anisotropies could scramble polarization properties of the big bang
radiation as now observed.

In spite of Bob’s deep disappointment that our theory was not really relevant, at
least in the solar system context, it is clear to me now that the wide promulgation
of a theory seriously competing with Einstein’s general relativistic gravitational one
served as a very important motivation to re-activate experimental interest in gravity.
The time was coincidentally very propitious in that it was presented when satellite
explorations of the solar system were beginning and such activity now was provided
with the additional impetus of being important in testing theories of (classical) gravity.
However, it seems to me that before our 1961 paper [10], the lack of a widely known
alternative to Einstein’s equations seemed to have put a damper on motivations to
experimentally investigate its validity after the early confirmation of these equations
in the well known three standard tests: frequency shift and deflection of light, and
the rotation of Mercury’s perihelion. Largely because of Dicke’s high standing in
experimental physics this paper seems to have reinvigorated interest in experimental
studies of gravity. Perhaps this was the most important aspect of our form of a scalar-
tensor theory.

While Dicke, Wilkinson et al., pursued their very well known and important
experimental work, my interests continued to be focussed on the mathematical and
theoretical aspects of our understanding of classical, i.e., non-quantum, spacetime.

5In fact some 20years later inflationary cosmology was to lead to renewed interest in the addition
of a classical scalar field to the metric.
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The question of the validity of Einstein’s argument [35] that in general relativity
the inertial mass of a point particle is affected by the gravitational field of all other
masses continued to be claimed in various papers. I wrote another brief reply [36]
showing that Einstein had really only defined a purely coordinate effect and thus not
invariantly observable.

On returning to Loyola, I began to learn a bit about quantum logic from a new
colleague, A.R. Marlow, specifically quantum logic [37] developed from the notion
of state as a projection operator in Hilbert space. This presents many interesting
comparisons with the Boolean logic associated with the classical description of state
as an element of a point set.Marlowmanaged to invite awide variety ofworkers in the
field to several meetings at Loyola [38]. Although I was mainly learning about these
formalisms, the Einstein-Bohr debate was obviously at the basis of the argument
that quantum theory could not be expressed using Boolean algebras as inclusion in
sets produce for classical or “hidden variable” models. This later led me look more
carefully at Bell’s theorem, especially in the next decade.

In the meantime, returning to classical physics and the mixture of topology with
relativity theory, there is an interesting variation on the returning twin paradox in
flat space that I looked into with Stewart. In teaching and discussing the twins and
their spacetime world lines with beginning students I usually referred to the com-
mon explanation that at least one of the twins might be distinguished from the other
by having to accelerate to return for local clock comparisons. However, I had also
been introducing the possibility of non-trivial topology. So I thought about another
example of the paradox in only one space and one time, (x, t), coordinates by sim-
ply topologically identifying two points, say x = 0, t = t0 with x = 1, t = t0 thus
describing a two-dimensional cylinder. Stewart and I wrote a brief article [39] on
this explaining that one observer is distinguished by remaining at rest in a coordinate
systems where the spatial identifications were made simultaneously.

1.5 1980s Bell’s Theorem Comments and Further
Studies of Scalar-Tensor Consequences

In the late 1970s I began to look into quantum logic. Marlow organized a meeting on
these topics with the proceedings [38]. While these ideas are certainly very interest-
ing I did not dig deeply in this area as such. However, the topics led me to look again
into the status of the very early Einstein-Bohr debate about what is now generally
called “hidden variables.” These variables are classically deterministic, but currently
beyond our direct perception but determine the result of each quantummeasurement.
The observed quantum probability spreads are then simply a result of our ignorance
of the details of the hidden variables distribution. However, Bell [40] proved a very
important theorem that the use of classically deterministic hidden variables for the
statistics of a class of experiments in which detector settings were made by “ran-
dom” settings of separated detectors in spacelike (thus not causal) events could not
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reproduce the values predicted by quantum theory. It is important to note the use of
apparently contradictory descriptions: “random” and “deterministic.”

In more detail, consider a pair of particles created with spin zero moving in oppo-
site directions and two detectors are set to measure the spin of each particle in direc-
tions a and b respectively. For simplicity record each measurement as A(a) = ±1,
and B(b) = ±1, respectively. Let σσσ1,σσσ2 be the spin operators for the two parti-
cles. Then it is easy to show that the average of the products of these measurements
predicted by standard quantum theory (again, with spin normalized to ±1)

〈σσσ1 · a σσσ2 · b〉 = −a · b (1.34)

Following Bell’s notation, let λ represent the hidden variables which completely
determine the outcome of each individual measurement so the values of each mea-
surement, A and B are determined by the value of λ, which can be statistically
distributed arbitrarily with measure ρ(λ)dλ. Then, the overall average of the indi-
vidual measurements will result in

〈σσσ1 · a σσσ2 · b〉 =
∫

ρ(λ)A(a,λ)B(b,λdλ (1.35)

Bell is then able to show rigorously that the result in (1.35) cannot duplicate that of
(1.34), nor even come arbitrarily close to it if the choices of settings a, b are made
“randomly” and at events that cannot be subluminally related.

It seemed to me that there is some circularity in this argument, since it assumes
that choices for the direction a, b are truly random and not themselves subject to
some hidden varibles. That is, true randomness (non-causal) in the settings must be
assumed to prove that quantum measurements are not predictable in the classical
sense. In fact, clearly the two events, choices of the settings (a, b) have intersecting
past light cones, so, in principle, some past values for λ will determine not only the
result of each measurement but even the choice of setting for each measurement.
In other words the result A(a,λ) must be replaced by one in which the vector a
is also a function of λ so we should write A(a(λ),λ), B(b(λ),λ) in (1.35) With
this assumption everything is determined and (1.34) can be exactly reproduced. I
explained this is more detail in [41].

Of course many others have been involved in this discussion. Mermin [42] is a
nice review as of 1993. For another important example, see the work of deRaedt et al.
[43] for an actual realist model for the Einstein-Podolsky-Rosen-Bohm experiment.

During this time I have kept up with a small bit of the literature related to ST
theories. Of course variations on our original formalism [10] were obviously to be
expected.A couple of papers in this direction caughtmyeye and resulted in comments
by me. Dicke and I had been motivated by conservation of matter in our formalism
so that (T μν

matter ); ν = 0. Note that originally we had tried to be keep separate the
tensors on the right hand side of the field equation into those for matter, T μν

matter and
for φ, T μν

φ . However, the exploration of alternatives to this formalism sometimes
disregarded this separations.
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One of thesewaswas amodel for a “Self-Creation Cosmology” [44, 45] involving
the addition of a scalar field in such a way that the the stress energy tensor for matter
does not satisfy the conservation equation, so that matter was created, It turns out
that this formalism was in fact not self consistent.

Probably the most popular path was to explore conformal metric changes to
replace the φ formalism by non-linear terms in the curvature scalar, R, in the
Lagrangian. One example is [46, 47]. Actually Dicke [13] as early as 1962 con-
sidered such changes, but using the phrase “transformation of units,” rather than
“conformal changes of the metric.” Perhaps the use of this different terminology
prevented the recognition of Dicke’s early work by later workers. I published a paper
[48] discussing this matter [41], pointing out that a conformal change of the metric
does indeed change the physics, detectable for example by changes in non-null geo-
desics. Thus, a conformal metric transformation of the metric resulting from one set
of field equations would be detectable in observation of planetary orbits, etc.

Another question of non-standard terminology is the expression that a conformal
metric transformation can take a ST theory into Einstein’s field equations describing
this process as using an “Einstein frame” rather than a “Jordan frame.” I believe this
terminology can be misleading, because, what is happening is a change in metric.
Also, as mentioned above, a conformal metric transformation results in physically
detectable changes in geodesics. However, in terms of arriving at some form of an
ST action, the conformal transformation

gi j → ḡi j = e2ψgi j (1.36)

results in a vacuum action

S =
∫ √−gR → S̄ =

∫ √−ḡ[R̄ − 3∇λ · ∇λ

2λ2
] (1.37)

Actually, Dicke included matter and the ST field φ and their conformally changed
expressions (φ̄ = φ/λ) in his paper.

The vacuum form in (1.37) is presented here to show that a form of ST theory can
be obtained from standard Einstein theory by a conformal transformation of both
the metric and matter fields.

1.6 1990-Today: More ST History

This was the period in which a good number of people expressed interest in my
thoughts and recollections of the history of so-called Brans-Dicke theories. Conse-
quently I wrote a few papers, some for existing web pages, some based on talks [15,
16, 49, 50]. In most of these, I included at least some of my recollections of my
interaction with Dicke as well as brief, incomplete, comments on the history of the
influence of the introduction of scalar-tensor formalism on more recent cosmology
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and even string theory. I believe one of my talks was titled something like “The rise
and fall and resurrection (?) of scalar fields in gravity.” In addition, in 2003 Fujii and
Maeda [51] published an excellent review book on the topic of scalar-tensor theories.

Many of the questions centered around when Dicke first knew about Jordan’s
scalar-tensor theory. As I recalled earlier in this paper, I first learned of it when I was
essentially finishedwith establishing a formalism inmy thesis that I thought would fit
Bob’s specifications. At that time, he told me simply to provide sufficient reference
but that what would come to be known as the Brans-Dicke theory was independent
of Jordan’s by virtue of its being motivated by Mach’s principle. In the 1990s I had
the opportunity to pursue the Jordan-Dicke connection more definitively.

During my stay as a visitor to the Institute for Advanced Studies in Princeton
in 1993 I took advantage of an opportunity to record a brief conversation with Bob
and specifically mentioned that I first became aware of Jordan’s ST theory sometime
around 1958 or 1959 and brought up the subject with him for advice on the effect
of this on my thesis. I then asked Bob when he learned of Jordan’s work and he
replied “...I think it was about that time for me also...” Of course in 1991 Bob’s
illness had taken a severe toll on him, so this obvious lapse (recall [52]) was entirely
understandable. I also took advantage of a visit to NYU around this time. Peter
Bergmann also agreed to allow me to tape a conversation with him in which I also
referred to the question of ST and his and Einstein’s involvement with some form
of a ST theory. To clarify things, Peter sent me a letter in 1991 with more specific
information on his papers, “Unified Field Theory with Fifteen Field Variables,” [53]
in 1948, and “Comments on the Scalar-Tensor Theory,” [54] in 1968. The letter also
mentioned Einstein’s thoughts on the implications of Kaluza’s theory sometime in
the late 1930s. He also pointed out that Jordan was able to smuggle proofs of his own
paper on ST out of then occupied Germany to Pauli, then at Princeton. According to
Bergmann, Pauli then turned this paper over to him, describing it as “nonsense,” but
asking for his (Peter’s) opinion of it. I believe that I was very fortunate indeed to have
been able to communicate with both Bob Dicke and Peter Bergmann on these and
other matters. This was described more fully in Bergmann’s 1948 paper cited above.

During the 1990s Fred Hehl was especially helpful to me for various reasons. First
was his introduction of me to Torsten Asselmeyer-Maluga in Bad Honeff, 1995. I
had just begun to publish a little on the subject of exotic smoothness and Torsten was
also interested in such things. So Hehl was instrumental in connectingme tomymost
important collaborator for the next 20years. Later Hehl had generously hosted my
visit to his University in Cologne in 1998. He also enabled me to visit other groups
around Germany.

1.7 1990-Today: Exotica

My serious interest, which certainly continues today, in the strange happenings in the
world of differential topology began during this period. Admittedly all of this work is
on classical, that is, non-quantum spacetime models. However such models are still
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widely used much of theoretical physics. Sometime, probably in the 1980s, I heard
Ron Fintushel, then at Tulane, give a mathematics seminar in which he talked about
new, non-standard smooth (C∞ differentiable) structures on R

4. It took a while for
the impact of this statement to sink in, but during the question period I really deluged
him with very basic questions about what this might mean. The counter-intuitive
impact of these ideas makes them quite surprising and I may even have said that this
idea does not make sense at all. But fortunately Ron is a very nice person and patient
with mathematical diletantes like me. He assured me that this statement has to be
analyzed carefully and its meaning is not at all obvious but does make sense and is
very important. Perhaps the rather cryptic statement:

Differences: There is a difference between different and non-diffeomorphic smoothness
structures on a given topological manifold

was difficult for me to understand, but fortunately many colleagues have helped me
along the way, especially Torsten Asselmeyer-Maluga and Duane Randall. Many
thanks to them. For the reader I would recommend especially three books on the
subject [55–57].

In fact, it had been proven that for every n �= 4 there was only one smoothness
structure, up to global diffeomorphisms, onRn . If n �= 4 that structure is generated by
global topological coordinates, (x1, . . . , xn) andbydefining a function, f : Rn → R,

as differentiable if derivatives to all orders are well-defined when f is expressed as
f (x1, . . . , xn) in the usual sense of real analysis. In the 1980s the uniqueness of the
standard smooth structure on R

n for n < 4 had been settled using more or less ad
hoc methods, not practical for n = 4, whereas for n > 4 the methods of cobordism
and handlebodies had succeeded in establishing uniqueness.

However these techniques could not be applied to dimension less than five. A
popularized description of the problem was presented by Freedman [58]. By the mid
1980s thework ofDonaldson, Freedman et al. led to an existence proof that theremust
exist at least one smoothness structure on spaces which are homeomorphic toR4 but
not diffeomorphic to the standard one (i.e., identified with some global topological
coordinates). It turns out that the same is true for the existence of exotic smoothness
on spaces which are homeomorphic toR × S3,R2 × S2 and perhaps other relatively
topologically simple manifolds. From this time on I have been mesmerized by the
mathematics that dealt with such questions, “differential topology”.

How/why would this be important to physics? In fact diffeomorphisms are global
extensions of the idea embodied in Einstein’s principle of General Relativity requir-
ing that physics can be done in any (implicitly assumed to be smooth) coordinate
system. Different coordinate systems must lead to different expressions, but not
physical content, of any physical theory. Of course almost all theories involve doing
calculus on certain functions, for example simply expressing a differential equation
means that we know how to and are able to take derivatives. Such apparently trivial
operations may now actually involve hidden assumptions about how do this even on
a topologically simple space such asR4. The discovery of exoticR4’s means that this
assumption is not trivial and involves the choice of a particular global smoothness.
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There are several facts that suggested to me that these results ought to be investigated
as possibly physically significant:

• Critical dimension fourThe arena ofmuch of themathematical research on exotic
smoothness involves the physically significant dimension four.

• Yang-Mills type moduli spacesThemanifold of cross sections of SU (2) bundles,
modulo gauge transformations, was found to contain one of the first examples of
an exotic R4

Θ [59, 60].
• Cosmology The existence of exotic R × S3 opens the door to possible exotic
cosmological models [61].

• Black holes The existence of exoticR2 × S2 which is the topology of the Kruskal
description of the non-singular region of the Schwarzschild solution [62].

• Milnor spheres Skipping to dimension seven, as early as 1956, Milnor [63] con-
structed spaces, Σ7, which are topological S7 from Yang-Mills type SU (2) = S3

bundles over S4. These Σ’s could not be diffeomorphic to the standard S7.

It is important to note that factorization of the topological products above need
not be extended to the smooth realm. Thus exotic R

4 is homeomorphic, but not
diffeomorphic to R × R

3. Actually, these alternatives to the standard approach can
even be extended to the topological level. For example Whitehead continua are
topological manifolds which are homeomorphic to R4 and to R × W , where W is a
three manifold not homeomorphic to R3.

My immediate attachment to this field is due to the fact that I have always been
interested in all examples of the cross fertilization between physics and (otherwise)
pure mathematics. Examples and anecdotes abound. The development of geometry
(and its generalizations) as mathematics and as physics is especially noteworthy. In
the 1700s mathematicians began in earnest the questioning of the minimal structure
of Euclid’s axioms, in particular, the necessity or not of including the postulate
pertaining to parallel lines. Max Jammer [64] summarizes this history very well.
Underlying the mathematical discussion is the additional question of whether or
not the axioms are physical or mathematical in nature. Of course, today, we are
quite comfortable with the separation of pure mathematics from physics, but this has
not always been so clear. Thus, for example, as described in [64], Gauss actually
performed a physical experiment with surveying equipment to determine if the sum
of the angles in a triangle is indeed π, as it should be in flat, Euclidean, geometry.
He bounced light off of three mirrors constituting the three vertices of a triangle. Of
course, with the technology available to him at the time, such an experiment could
be done with only crude accuracy, but it presaged a whole set of experiments on the
behavior of light rays undertaken over the last 30years or so within the solar system.

Such work by Gauss, Riemann, Lobachevski and others on the apparently very
abstract and non-physical subject of “non-Euclidean” geometry was precisely what
was needed to provide the foundation for Einstein’s theory of General Relativity, in
which gravity is described in terms of the geometric properties of spacetime. The
path by which Einstein was led to consider what must have appeared to him to be
very abstruse and abstract mathematics as a possible tool for physics has recently
been reviewed in the various volumes celebrating the centennial of his birth.
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Later investigations of Einstein’s theory led to the natural introduction of non-
trivial topology in addition to geometry. In the meantime, the parallel development
of quantum theory and quantum field theory has led to the introduction into physics
of branches of mathematics such as function theory, Hilbert spaces, bundle theory,
moduli space structures, etc. In fact, the second half of the twentieth century has
seen a virtual explosion of applications of various branches of mathematics, many
of which were considered to be of only abstract interest, to physics. Conversely, in
many cases the direction of “applicability” has been reversed, some of which will be
touched on later. Questions of interest in theoretical physics have turned out to have
value in the pursuit of “pure” mathematics.

In summary, the rich interplay between physics and mathematics is obvious to
contemporary workers. Certainly, there is no theorem that says “Good mathematics
makes good physics,” but certainly there is strong anecdotal evidence that this has
been true in many important situations. So I was strongly motivated to look into
whether or not these new smoothness structures could have physical significance.

My initial puzzlement in approaching differential topology was due to confusion
of several terms:

• Different smoothness Given a topological manifold, M, p ∈ M , and a choice of
two coordinate patch atlases, locally xi (p) and yi (p), which are to be smooth
then either

1. Coordinate tranformationAround each p there is a neighborhood inwhich the
y′s are smooth and smoothly invertible functions of the x ′s. The two coordinate
systems clearly represent the same physics in the sense of general relativity, or

2. Homeomorphism (1) is not true, but there is a homeomorphism of M → M ,
i.e., rearranging points p → p′ = h(p) so that the combination yi (h(p)) is a
smooth, smoothly invertible function of the x j (p). Thus, without tearing holes
in space, making wormholes, etc., we can relplace one coordinate system by
another. An example of this is the transition from Schwarzschild to Kruskal
coordinates, so there is no change in the physics but functions that are smooth in
one systemmay not be in the other system. For example, the metric components
in Schwarzschild are apparently singular at r = 2M , are smooth in Kruskal.

In either (1) or (2) the choices of local coordinates are diffeomorphic to each
other. or,

• Non diffeomorphic Neither (1) nor (2) is true. This means that without tearing
or cutting or any other topological changes, we can have truly different physics,
not just the same physics in different coordinate system. That this happens in a
manifold as topologically trivial as R4 is the great surprise coming from the work
of Freedman, Donaldson, et al.

Consider a simple 1-dimensional example. Let p ∈ R be a real number. Choose
the global smooth coordinate system, x = p numerically. With this choice the class
of smooth functions, F is given by the usual definition of differentiable functions,
f (x). However, suppose we had first performed a homeomorphism of R onto itself,
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replacing p by p3. The topology of the manifold clearly has been unchanged. Con-
sider the choice of coordinate, y,

y(p) = p3, (1.38)

Now the class of smooth functions, F ′, is defined to be those functions f ′(p) such
that f ′

c(y) ≡ f ′(y1/3) is C∞ in the usual sense. Clearly, F �= F ′. The identity map
is an element of F , but, since y1/3 is not differentiable at the origin, it is not an
element of F ′. Thus, we have a simple example of one point set, with two different
smoothness structures, S �= S ′, provided by the homeomorphism,

h(p) = p1/3, (1.39)

of R onto itself which is actually also a diffeomorphism. Its coordinate expression
is simply the identity map,

hc(x) ≡ y(h(p(x))) = x . (1.40)

Thus, from the viewpoint of differential topology, these two different smoothness
structures on topological R are actually diffeomorphic. Diagrammatically,

R
1
TOP

x−−−−→ R
1

h

⏐⏐� I

⏐⏐�
R

1
TOP

y−−−−→ R
1

(1.41)

is commutative. The two horizontal maps are coordinate maps, defining S and S ′,
respectively, the left downward map, h, in (1.39) is a homeomorphism, and the
combined map expressed in the two coordinate systems, I, is the identity diffeomor-
phism. The existence of such a diagram provides the fundamental definition of the
equivalence, mathematical and physical, of two different smoothness structures.

Consider also the Schwarzschild singularity at r = 2GM. It was soon discovered
that rather than an essential singularity, the anomalous behavior of the metric com-
ponents at r = 2GM was actually a result of extending the spherical coordinate too
far toward the origin. In fact, an alternative extension uses other coordinates, such
as proposed by Kruskal et al. The differential geometry depends on the “global”
topological question of whether or not r = 2GM is a static sphere, S2 × R, if we
choose standardSchwarzschild as global (a differential topological choice!), or the set
S2 × {(u, v)|u2 = v2}, if we choose Kruskal coordinates. Perhaps evenmore notable
is the way in which the r = 0 singularity is interpreted. In standard Schwarzschild
coordinates it is simply a point times time, {pt} × R, while in Kruskal coordinates
it is a hyperboloid, S2 × {(u, v)|u2 − v2 = −1}. In fact, we now know that there is
an exotic version of this topology.
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For most of the twentieth century it has been assumed by physicists that the
choice of which coordinate systems are to be smooth is trivially determined by
the topological coordinates, since most topological models are based on subsets of
topologically Euclidean spaces. However, one of the main points of my studies is
to review the physical implications of the mathematical discovery that the choice
of smoothness is not necessarily uniquely determined by the topology, even for
relatively simple topological spacetime models such asR4, or the closed cosmology,
R × S3, etc. So, we ask: What are the differential geometric consequences of exotic
smoothness?

The short answer to this is that the consequences are global, and refer to the
extendibility of local coordinates and the way in which they are patched together.
Unfortunately with the present state of the mathematical technology, we can’t give a
full answer to the question, but can only state some general facts and conjecture for
exotic smoothness which will be discussed later.

Differential topology: the choice of the way in which local coordinates are patched together,
influences the physical properties of the spacetime model supporting differential geometry.

1.8 The Physics of Exotic Smoothness

Can differential topology really have anything to do with physical theories? Clearly
the answer to this question must be “Yes” because of the principle of general relativ-
ity. In light of this principle, the physical content of theories must be invariant under
changes of local coordinate patches, provided that the new smoothness structure
is diffeomorphic to the original one. This is in fact the prototype of “gauge” theory.
However, the discovery of exotic smoothness structures shows that there are many,
often an infinity, of non-diffeomorphic and thus physically inequivalent smoothness
structures on many topological spaces of interest to physics. Because of these dis-
coveries, we must face the fact that there is no a priori basis for preferring one
such structure to another, or to the “standard” one just as we have no a priori rea-
son to prefer flat to curved spacetime models. We note that these exotic structures
are by definition all locally equivalent, so the local expression of physical laws is
unchanged. This leads to the apparently paradoxical fact that the implications of
exotic smoothness are global, but not in the topological sense!

Unfortunately, the technical difficulties encountered in applying these new results
have resulted in only qualitative results for physical applications so far. However the
rich interplay between physics andmathematics is obvious to contemporary workers.

Fortunately there are a class of manageable exotic structures available in the
smooth category. These were discovered in the late 1950s byMilnor [63] and known
as Milnor spheres. The simplest one is an exotic S7. This space can be realized
naturally as the bundle space of an SU (2) ≈ S3 bundle over S4 (which is compactified
R

4) using a construction of Hopf. From the physics viewpoint, a Yang-Mills field
with appropriate asymptotic behavior is a cross section of such a principal bundle.
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Such fields satisfying Yang-Mills field equations are called instantons6 and turn
out to be important later in the story of exotica. For now, however, consider the
construction of S7 as the subset of quaternion 2-space, {(q1, q2) : |q1|2 + |q2|2 = 1}.
There is a natural projection of this space into projective quaternion space, (q1 : q2).
This space, however, turns out to be nothing more than S4. The kernel of this map
is the set of unit quaternions, S3 ≈ SU (2). Equivalently, S7 can be defined by two
copies of (H − 0) × S3, with identification

(q, u) ∼ (q/|q|2, qu/|q|)

Milnor was able to generalize this to produce a manifold, Σ7 by means of the iden-
tification

(q, u) ∼ (q/|q|2, q juqk/|q|)

Milnor then showed that if j + k = 1 the space Σ7 is topologically identical (home-
omorphic) to S7. However, if ( j − k)2 is not equal to 1 mod 7, then Σ7 is exotic,
that is not diffeomorphic to standard S7.

However, when we return to exotic R
4
Θ , the extensive number of mathemati-

cal tools to investigate this subject precludes any significant summary to the non-
specialist. The existence ofR4

Θ has resulted in much interest andmany developments
in the mathematics of differential topology. This is certainly good for mathematics,
but not so good for their use in physics.Notmanyphysicists arewell versed in subjects
such as Morse theory, characteristic classes, handlebody construction, cobordism,
etc. so it is difficult to do more than skim over some of what is known.

After the initial discovery of one R
4
Θ , rapid progress was made in discovering

(more in the sense of existence rather than construction) various R
4
Θ ’s, and clas-

sifying them. For example, Gompf has a paper entitled “An Exotic Menagerie,”
[65], showing the existence of an uncountable number of non-diffeomorphic R4

Θ ’s.
Gompf’s construction makes extensive use of handlebody chains, which apparently
must be infinite. Freedman and Taylor [66] show the existence of a universal R4

Θ in
which all others can be smoothly embedded. Also, as a note for use below, it turns
out that some R4

Θ ’s can be smoothly embedded in standard R
4, and others cannot.

Recently, field equations suggested bySeiberg andWitten [67] showgreat promise
for simplifications of the study of moduli spaces. However, to date, it is unfortunately
true that

• Fact No finite effective coordinate patch presentation exists of any exotic R4
Θ .

Nevertheless, even in the absence of a manageable coordinate patch presentation,
certain features can be explored. Some are summarized in results from previous
papers.

6There can be no global non-zero vector field on S4 for topological reasons, and thus noMinkowski
signature metric.
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1.9 Some Geometry and Physics on R
4
Θ

Let us begin here by simply stating a strikingly counter intuitive fact as well estab-
lished mathematically:

Fact: There exist global smoothness structures on topological R4 which are not
diffeomorphic to the standard one. We label such manifolds R4

Θ.

For our purposes a remarkable feature of these exoticR4
Θ ’s is that eachof themcon-

tains a compact set that cannot be contained in the interior of any smoothly embedded
S3. See, for example, the discussion in pages 366ff of Gompf and Stipsicz [56].

For some R4
Θ, there exist global topological coordinates (t, x, y, z) and numbers

R1 < R2 such that the spheres, SR0 , defined by t
2 + x2 + y2 + z2 = R2

0 are smooth
for R0 < R1, but are not smoothly embedded for any R0 ≥ R2. Choose one such,
say M, for our spacetime model.

We can thus state that for M

No single covering patch: We can choose two sets, a and b in M such that both
cannot be included in one smooth coordinate patch in any diffeomorphic presentation
of M

So, in general the attempts to interpret information received in a from b involve
the a priori assumption that there is a single smooth coordinate patch including both
of them, which is not necessarily true.

Thus the null geodesics from b could still be smooth and well behaved throughout
their length, and the Einstein equations satisfied with normal matter, but it might be
incorrect to assume that we can extrapolate from these incoming geodesics in a
information about b because we do not know the non-trivial transition function
between the smooth coordinate patches linking the two sets.

• Cosmology

The coordinates (t, r ):Observational cosmology uses these, but now we know that they may
not be smoothly extendible indefinitely into the past.

If this is the case then the standard extrapolation of earth based observations to distant
phenomena may not be justified.

More specifically, in observational astronomy it is generally assumed that the
metric can be written in the FRW form

ds2 = −dt2 + a(t)2dσ2
3, (1.42)

where the spatial three metric is usually expressed in spherical coordinates in a form
depending on assumptions of isotropy and homogeneity. The associated topology
is thus KΘ = R

1 × M3 for some three-manifold, M3. In the standard models the
three metric is one of the three constant curvature ones, each containing a “radial”
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coordinate,7 r . Because of isotropy, the incoming geodesics are described globally
(modulo the proviso in the footnote) by differential equations involving r, t only.
However, if KΘ is exotically smooth, these coordinates cannot be globally smooth.
Hence the actual metric would have to be expressed in terms of more than one r, t
coordinate region, and information extracted from the coordinate overlaps. Unfor-
tunately, because the present mathematical technology does not provide us with an
effective coordinate patch structure, more explicit statements than this cannot now
be made. Nevertheless, the assumption that we can extrapolate information coming
from incoming light rays back in time and out in space as if these geodesics would
act as a radial type of coordinate system when indefinitely extended into their past
is not valid if KΘ is used as a spacetime model. We should also note that although
we have discussed only theR4

Θ (which is actuallyR1 ×Θ R
3) we could equally have

chosen an exotic R1 ×Θ S3.
A simple analogy is provided by gravitational lensing phenomena. Here we see

two incoming null geodesics arriving at earth from different directions. However, the
possibility that in some reasonable situations they cannot be extrapolated backward
as “good” radial coordinates because they have been focused by the gravitational
lens effect of an intervening massive object has been widely discussed and generally
accepted as viable. Thus the extrapolation of the different angle data for the two
incoming geodesics to different sources is incorrect.

• Gravitational lensing analogy Null geodesics arriving from different angles may
intersect in the past because of gravitational curvature caused by intervening mass
and thus may not be extrapolated back as good radial coordinate lines.

What we are proposing here is more radical, of course, but just as viable in the
sense that we know of no physical principles to exclude it, and it could lead to
an understanding of apparent anomalous distant time behavior without introducing
exotic theories or matter, just exotic smoothness of the spacetime manifold model.

• Exotic structures Null geodesics arriving from distant sources may not be extrap-
olated back as good radial coordinate lines because of intervening coordinate patch
transformations caused by global exotic smoothness.

In summary, what we want to emphasize is that without changing the Einstein
equations or introducing exotic, yet undiscovered forms of matter, or even with-
out changing topology, there is a vast resource of possible explanations for recently
observed surprising astrophysical data at the cosmological scale provided by differ-
ential topology.

While it is true that at this stage of development of the mathematical technology
it is not possible to give explicitly the coordinate patch overlap functions, research
along these lines is being actively pursued. Furthermore, Sładkowski [68], has shown

7Of course in the spherical case the “radial” coordinate is not indefinitely continuable because it is
essentially an angular one. However, this is not the sort of coordinate anomaly we are addressing
here and can certainly be accommodated in standard models.
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that it is possible to relate isometry groups (geometry) to differential structures in
some cases.

Related to this is the question that naturally arises concerning the given global
topological coordinates, {pα}, which define the topological manifold R

4, and their
relationship to the local smooth coordinates given by the coordinate patch functions,
φα
U . Both provide maps from an abstract p ∈ R

4, into R
4 itself. Clearly the global

topological coordinates cannot themselves be smooth everywhere since otherwise
theywould provide a diffeomorphismofR4

Θ onto standardR4. But can they be locally
smooth? This is answered in the affirmative by

• FactThere exists a smooth copyof eachR4
Θ forwhich the globalC0 coordinates are

smooth in some neighborhood. That is, there exists a smooth copy, R4
Θ = {(pα)},

for which pα ∈ C∞ for |p| < ε.

The implied obstruction to continuing the {pα} as smooth beyond the ε limit presents
a challenging source for further investigation. Related to this is a the defining feature
of the early discovery work of R4

Θ ’s, namely the non-existence of arbitrarily large
smoothly embedded three-spheres.

There are also certain natural “topological but not smooth” decompositions. For
example,

• Fact R4
Θ is the topological, but not smooth, product, R1 ×Θ R

3 is not smoothly
equivalent (diffeomorphic) to R × R

3.

Many interesting examples can be constructed using Gompf’s “end-sum” tech-
niques [69]. In this construction topological “ends” of non-compact smooth mani-
folds are glued together smoothly, X ∪end Y. If one of the manifolds, say X , is also
topologicalR4, the topology of the resultant space is unchanged, that isR4 ∪end Y is
homeomorphic to Y . However, if X is an R

4
Θ which cannot be smoothly embedded

in standard R
4, then neither can the the end sum. Thus,

• Gompf’s end sum result If X = R
4
Θ cannot be smoothly embedded in standard

R
4, but Y can be, thenR4×Θ ∪end Y is homeomorphic, but not diffeomorphic to Y .

This technique will be used further below.
To do geometry we need a metric of the appropriate signature. It is a well known

fact that any smooth manifold can be endowed with a smooth Riemannian metric,
g0. This follows from basic bundle theory [70]. Similarly, if the Euler number of X
vanishes a globally non-zero smooth tangent vector, u exists. g0 and u can be com-
bined then to construct a global smooth metric of Lorentz signature, (−,+,+,+),
in dimension four. A generalization of this result follows also from standard bundle
theory [70].

• Theorem If M is any smooth connected 4-manifold and A is a closed submanifold
for which H 4(M, A; Z) = 0, then any smooth time-orientable Lorentz signature
metric defined over A can be smoothly continued to all of M.

One immediate conclusion about certain geometries on R
4
Θ can be drawn from an

investigation of the exponential map of the tangent space at some point, which is
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standardR4, onto the range of the resulting geodesics. TheHadamard-Cartan theorem
guarantees that thismapwill be a diffeomorphismonto the fullmanifold if it is simply
connected, the geometry has nonpositive curvature and is geodesically complete [71].
Thus,

• Theorem There can be no geodesically complete Riemannian metric with non-
positive sectional curvature on R4

Θ .
8

The apparent lack of localization of the “exoticness” means that it must extend
to infinity in some sense as illustrated by the lack of arbitrarily large smooth three-
spheres. However, it turns out to be possible that the exoticness can be localized in
a spatial sense as follows:

• Theorem There exists smooth manifolds which are homeomorphic but not dif-
feomorphic to R4 and for which the global topological coordinates (t, x, y, z) are
smooth for x2 + y2 + z2 ≥ ε2 > 0, but not globally. Smooth metrics exists for
which the boundary of this region is timelike, so that the exoticness is spatially
confined.

The details of the construction of such manifolds are given in [73]. First, Gompf’s
end-sum technique is used to produce a R

4
Θ for which the global topological

coordinates are smooth outside of the cylinder, that is, in the closed set c0 =
{(t, x, y, z)|x2 + y2 + z2 ≥ ε} described in the first part of the theorem. Next, a
Lorentz signature metric is constructed on c0. This metric can even be a vacuum
Einstein metric. For more details for the possibilities of smoothly exotic Einstein
metrics on R

4 see the paper of Kotschick [74]. The only condition is that the ∂/∂t
be time like on c0. The cross section continuation result with A = c0 then guarantees
the extension of the metric over the full space consistent with the conditions of the
theorem. What makes the complement of c0 exotic is the fact that the (x, y, z, t)
cannot be continued as smooth functions over all of it. This result leads to

• Conjecture This localized exoticness can act as a source for some externally
regular field, just as matter or a wormhole can.

Another set of interesting physical possibilities arise in a cosmological context
inspired by the exotic product, X = R ×Θ S3, which arises from a puncturing ofR4

Θ .
It is not hard to apply the same techniques used above to show that this product can
be the standard smooth one for a finite, or semi-infinite range of the first variable,
say t . The resulting manifold could then be endowed with a standard cosmological
metric. This metric, and even the variable t itself, cannot be continued as globally
smooth indefinitely, because of the exotic smoothness obstruction. Recall, however,
that X is still a globally smooth manifold, with some globally smooth Lorentz-
signature metric on it. Other interesting topological but not smooth products can be
constructed by use of the end-sum construction. One interesting example is exotic

8However there are explicit metrics on Milnor’s exotic S7 [72], and it is known that a Riemannian
metric exists on any smoothR4. The Lorentz signature case is different however, since the existence
of a nowhere zero timelike vector would result in a smooth foliation of the manifold which would
then reduce it to standard, so R × R

3 = R
4, and thus any such metric must have a singularity.
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Kruskal, XK = R
2 ×Θ S2. Using the cross section continuation theorem above, the

standard vacuum Kruskal metric can be imposed on some closed set, A ⊂ XK , and
then continued to some smooth metric over the entire space. However, it cannot be
continued as Kruskal, since otherwise XK would then be standard R2 × S2. In sum,

• Theorem On some smooth manifolds which are topologically R2 × S2, the stan-
dard Kruskal metric cannot be smoothly continued over the full range, u2 − v2<1.

Finally, we close this section with a brief mention of the possible physical signifi-
cance of Milnor’s exotic seven-spheres, denoted here by Σ7 (there are seven distinct
ones). Recall that the standard S7 as a Hopf bundle is the underlying bundle space
for Yang-Mills (SU (2)) connections over S4, which is compactifiedR4. On the other
hand, Σ7 as a bundle is no longer a principle SU (2) bundle, but one associated
to a principle Spin(4) bundle. This could be regarded as some sort of generalized
or exotic Yang-Mills bundle. It might prove interesting to investigate the possible
physical ramifications of this.

Of course, there are many who are skeptical that this particular venture into dif-
ferential topology will ever produce any result useful for physics. Typical reasons,
and possible replies can be listed

• No explicit coordinate patchSo there is not now, andmay not be ever, any explicit
coordinate expression for the metric

– Reply But nevertheless certain general results can be proposed.

• Necessity of singularities Because an exotic R
4
Θ cannot be globally smoothly

foliated, there must necessrily be some type of singularity in any Lorentz signature
metric.

– Reply But the same is true with many if not most metrics investigated in man-
ifolds with standard smoothness including those on manifolds with standard
smoothness, such as collapse to a point, the origin of cosmology, etc.

1.10 Summary and Continuing Work

I had planned to end with some sort of a “conclusion,” but the exotica work is
ongoing, mostly by Torsten and others. So I will end with a slightly altered summary
of significant work in the field, old and new. This has been provided to me by Torsten
Asselmeyer-Maluga. Perhaps there is a motto along the lines: “If we cannot assume
standard geometry (flat) for our entire universe, why should we assume standard
smoothness?”

Perhaps the first paper trying to connect differential topologywith physicalmodels
of spacetime was by Duane Randall and me [75]. Duane is a topolgist who patiently
helped me understand the mathematics. This was followed by other papers [76–78].
In the meantime Sładkowski [79–81] started to investigate a possible relationship
between exotic smoothness and particle physics and quantum gravity. About this
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time it occurred to me we are clearly making an assumption when we continue
our spacetime observations, obviously limited to a single coordinate patch, to the
entire manifold. Thus it may be that metric information cannot be continued in a
model with exotic smoothness in the same way as for standard smoothness. For
example, if we locally see the geometry of the Schwarzschild metric, we must make
an assumption about the global smoothness structure S2 × R

2 before describing the
Kruskal diagram. If we extrapolate from our local coordinate patch and assume
standard smoothness on S2 × R

2, we find either a singularity or a material source.
However our hidden assumption of standard smoothness need not be valid, since there
are now known to be an infinity of others, none of which are physically equivalent
to the standard one which is chosen without a priori justification. In other words it
could be that the exotic structure might provide the source of what is seen in our
local coordinate patch as a Schwarzschild metric. This speculation is not entirely
well-formed and still needs further clarification, but became known as the Brans
conjecture: exotic smoothness can serve as an additional source of gravity. This was
further explored for compact manifolds by Asselmeyer [82] and for the exotic R

4

by Sładkowski [68, 83]. Later this conjecture was extended in [84] to the possible
generation for all forms of known energy, especially dark matter and dark energy.
Exploring this in the context of dark energy resulted in a partial success [85] where
the expectation value of an embedded surface was calculated. This value showed
an inflationary behavior with a cosmological constant having a realistic value (in
agreement with the Planck satellite results).

In 2004, Pfeiffer [86] discussed a strong relation between a smoothness struc-
ture and quantum gravity [87]. In the period 2004 to 2006, Król was able to find a
connection to topos [88, 89] and model theory [90, 91] which uncovers some inter-
esting relations to other areas like noncommutative geometry and quantum gravity.
He continues to work on these ideas with Asselmeyer-Maluga. Their main focus is
the relation of exotic smoothness to quantum gravity, using the theory of foliations
[92]. Also, noncommutative geometry provides another tool to study these foliations
and get relations to quantum field theory (QFT). For instance, the von Neumann
algebra of a codimension-one foliation of an exotic R4 must contain a factor of type
III1 which is the local observable algebra in local algebraic QFT used to describe the
vacuum [93–95]. But why is the foliation of an exotic 4-manifold so complicated?
As an example consider the exotic S3 × R. Clearly, there is always a topologically
embedded 3-sphere but there is no smoothly embedded one. Let us assume the well-
known hyperbolic metric of the spacetime S3 × R using the trivial foliation into
leaves S3 × {t} for all t ∈ R. Suppose S3 × R carries an exotic smoothness struc-
ture. Then we will get only topologically, but not smoothly, embedded 3-spheres,
within leaves S3 × {t} (otherwise one obtains the standard smoothness structure,
see [96] for instance). These topologically embedded 3-spheres are also known as
wild 3-spheres. In [97], a relation to quantum D-branes was presented. Finally it
was proved in [98] that the deformation quantization of a tame embedding (the usual
embedding) is a wild embedding. Furthermore a geometric interpretation of quantum
states naturally presents itself: wild embedded submanifolds are quantum states. This
construction depends essentially on the continuum, wild embedded submanifolds



1 65 Years in and Around Relativity 33

always admit infinite triangulations. This approach opens a way to quantize a theory
using geometric methods.

The inclusion of matter is also one of the main problems in this theory. For a
special class of compact 4-manifolds it was shown in [99] that exotic smoothness
can generate fermions and gauge fields using the so-called knot surgery of Fintushel
and Stern [100]. Here, the knot is directly related to the appearance of an exotic
smoothness structure. This provides a stable but fixed structure of fermions and
gauge fields contradicting the results of QFT with a variable number of fermions
and gauge fields9 (where the (virtual) fermions and gauge fields will be generated
or destroyed). The paper [101] presents an approach using the exotic R4 solving the
difficulties of [99]. Cosmology is another application of exotic smoothness since the
first work [84]. Here a smoothly exotic black hole [102] was constructed to show the
absence of a singularity in the interior. The assumption of a smooth spacetime is a
strong restriction as shown in [103]. The wild embedding has also a strong impact
on the initial state of the universe: as shown in [104], a wild embedded 3-sphere (as
quantum state) will pass to smooth 3-manifold by decoherence. This process leads to
an exponential increase like inflation [85]. Notable are also the interesting relations
to quantum gravity and string theory [105–108].

Appendix

Here I will summarize a selected list of topics from my thesis, finished in 1960, but
formally presented and accepted by Princeton in May 1961.

• Mach’s Principle I reviewed what I knew of it, and especially what I thought
Dicke assumed. This of course required a careful look at the question of how a
backgrund metric would affect the motion of particles, both point and extended.
So this led to the next point.

• Equations of Motion During this time the questions associated with the equations
of motion of both point and extended (fluid type) particles had been extensively
studied by Einstein, Infeld, Papapetrou and others. So, in trying to confirm that
I was using an operationally significant procedure for measuring and comparing
inertial and gravitational mass for a given background metric. As I recall, Einstein
and infeld were primarily concerned with point masses, while Papapetrou looked
at fluid type stress-energy tensors.

• How to measure “mass” I tried to settle this for inertial mass by looking at motion
in an external electric field.

• Equivalence Principles I explored both strong and weak as presented to me by
Dicke.

• Variational principles and field equations I had already presented and explored
the formalismBob and Iwould use to arrive at equations satisfying the oxymoronic

9Here we do not distinguish between a fermionic quantum field and a fermion.



34 C.H. Brans

phrase “varying ...constant.” Then, hearing of the work of Jordan and his group, I
first reviewed their formalisms.

• Static, spherically symmetric vacuum I looked at the solution in Jordan’s formu-
lation known as the Heckmann solution, and then did the same for our formalism
but in isotropic coordinates. This led to careful analysis of four qualitatively dif-
ferent metric forms.

• Does G vary? I then used various idealized operational procedure to look at what
could be said about the dependence of G ∼ 1/φ on the matter distribution in the
universe.

• Boundary Conditions Of course these had to be carefully defined and were even-
tually defined in the usual way in terms of some “going to zero or other constant
at infinity” procedure.

• Cosmology I could find no exact analog to the FRW metric of the Einstein equa-
tions, so I simple did some very extensive power series expansions for each of
various ranges of arbitrary constants. A very few of you may recall that at that
time we were amazed to have a human driven mechanical computer that could
both multiply and divide long numbers within 10s or so.
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Part I

Scalar-Tensor Theories (Brans–Dicke
Theory)

“...Part II is mainly concerned with the introduction of a varying gravitational
constant into the framework of general relativity, violating the strong while
preserving the weak principle of equivalence (i.e. geodesics for uncharged test
particles). To this end a scalar field, / roughly corresponding to j�1 (j
Gravitational constant) is added to the variational principle of general relativity.
...” (Ph.D. Thesis, Abstract).

“...The possibility of a varying gravitational constant has been discussed by
Dirac, Jordan, and particularly with respect to Mach’s principle by Dicke. The idea
is to weaken the strong principle of equivalence through the effective gravitational
constant. ... In choosing a variational principle violating the strong principle of
equivalence by the introduction of a varying gravitational “constant,” it seems
desirable to satisfy at least two conditions. First, the variational principle must be
similar to the standard Einstein principle, In other words, since the Einstein
equations do agree with the observed data fairly well, any extension of the theory
might be expected to be formally similar. Second, the variational principle must be
consistent with the weak principle of equivalence which is just a generalization of
the results of the Eötvös experiment. To satisfy this second condition it will be
required that the operational definition of inertial mass be prescribed in a manner
formally independent of the structure of the universe. The stress tensor of
ponderable matter will be identified formally and interpretatively with that of
general relativity. ...

...The variational principle will be thus taken to be
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Here / has the dimensions of reciprocal gravitational constant, x is a

dimensionless constant number. The field equations associated with this principle
become
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in which dm signifies variation with respect to pertinent matter variable. ... (Sab is
the Einstein tensor)”

Carl H. Brans: Mach’s Principle and a varying Gravitational Constant, Ph.D.
Thesis, Princeton University 1961
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Chapter 2
Nonminimal Couplings in the Early
Universe: Multifield Models of Inflation
and the Latest Observations

David I. Kaiser

Abstract Models of cosmic inflation suggest that our universe underwent an early
phase of accelerated expansion, driven by the dynamics of one or more scalar fields.
Inflationary models make specific, quantitative predictions for several observable
quantities, including particular patterns of temperature anistropies in the cosmic
microwave background radiation. Realistic models of high-energy physics include
many scalar fields at high energies. Moreover, we may expect these fields to have
nonminimal couplings to the spacetime curvature. Such couplings are quite generic,
arising as renormalization counterterms when quantizing scalar fields in curved
spacetime. In this chapter I review recent research on a general class of multifield
inflationary models with nonminimal couplings. Models in this class exhibit a strong
attractor behavior: across a wide range of couplings and initial conditions, the fields
evolve along a single-field trajectory for most of inflation. Across large regions of
phase space and parameter space, therefore, models in this general class yield robust
predictions for observable quantities that fall squarely within the “sweet spot” of
recent observations.

2.1 Introduction

I firstmet Carl Brans about twenty years ago, in themid-1990s, when Iwas a graduate
student. Carl invited me to visit him at Loyola University in New Orleans, and he
and his wife Anna kindly hosted me in their beautiful home. Our first meeting has
always stood out in my mind: Carl picked me up at the airport, drove me straight to
his office, and handed me a piece of chalk. I was to give him a lecture, right there
at the blackboard, about cosmic inflation. I launched in, as best I could, and after
a fun discussion Carl announced that it was time to pause and get some seafood
gumbo; after all, we were in New Orleans. Ever since my first visit, I have found it

D.I. Kaiser (B)
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terrifically inspiring to talk with Carl and to try to sharpen my own ideas in the face
of his excellent questions, which he has always delivered in a gentle and encouraging
way.1

Carl pursued what has become known as the “Brans-Dicke” theory of gravitation
for his Ph.D. dissertation at Princeton, working closely with his advisor Robert
Dicke [1–3]. Previous physicists had explored various ideas for scalar-tensor theories
of gravity, including Pascual Jordan’s well-known work, though none of the prior
efforts had nearly the same galvanizing influence on the physics community as the
Brans-Dicke work [4–8]. Brans and Dicke were motivated to try to incorporate
Mach’s principle in a relativistic theory of gravitationmore consistently than Einstein
had done in his general theory of relativity.2

The key insight in Brans and Dicke’s work was to couple a scalar field directly
to the Ricci spacetime curvature scalar in the action, thereby replacing Newton’s
constant,G, with an effective strength of gravity that could vary over space and time.
Since Brans and Dicke introduced their formative work, several distinct theoretical
motivations have emerged for such nonminimal couplings, beyond consideration of
Mach’s principle, including everything fromdimensional compactification of higher-
dimensional theories to effective couplings in supergravity and beyond. (For recent
discussions, see [10–13].)

Perhaps the most mundane motivation for such nonminimal couplings today—
but for me, the most compelling—is that nonminimal couplings arise as necessary
counterterms when quantizing a self-interacting scalar field in curved spacetime.
Even if the bare coupling is set to zero, quantum corrections will induce a nonzero
coupling [14–20]. Moreover, the nonminimal coupling typically rises with energy
scale under renormalization-group flow, with no ultraviolet fixed point [18]. It there-
fore makes sense to consider models with sizable nonminimal couplings at high
energies, at or above the GUT scale—and hence to consider nonminimal couplings
when thinking about the early universe.

2.2 Nonminimal Couplings and Inflation

Models of cosmic inflation suggest that our observable universe underwent an early
phase of accelerated expansion, driven by the dynamics of one or more scalar
fields [21]. (For reviews, see [22, 23].) There is by now a long history of build-
ing models of early-universe inflation incorporating nonmiminal couplings. Early
models such as “induced-gravity inflation” [24], for example, built directly on work
by Lee Smolin [25] and Anthony Zee [26], who had aimed to combine Brans-Dicke
gravitation with a Higgs-like spontaneous symmetry breaking potential, in order to
account for why the strength of gravity is so much weaker than the other fundamen-
tal forces. “Extended inflation” [27] likewise combined a Brans-Dicke field with

1 Preprint MIT-CTP-4740.
2On Einstein’s changing considerations of Mach’s principle, see [9] and references therein.
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a simple potential to drive accelerated expansion. Others considered more general
nonmiminal couplings, in which the effective gravitational coupling Geff arose as a
combination of a bare coupling constant plus contributions from a scalar field cou-
pled to the Ricci curvature scalar [28]. Among the most prominent recent examples
is “Higgs inflation” [29]. In such models, the scalar field is expected to settle into a
minimum of its potential near the end of inflation, leading to an effectively constant
gravitational coupling for most of cosmic history. Hence such models present no
tension with Solar System constraints on scalar-tensor gravity.

Realistic models of particle physics, relevant for inflationary energy scales,
include many scalar fields [30]. The renormalization arguments alone suggest that
each of these scalar fields should have a nonminimal coupling. So together with sev-
eral students and collaborators, I have enjoyed exploring in recent years multifield
models of inflation that incorporate nonminimal couplings [31–36].

The action for the original Brans-Dicke theory may be written

SBD =
∫

d4x
√−g̃

[
Φ R̃ − ω

Φ
g̃μν∂μΦ∂νΦ

]
, (2.1)

whereω is a dimensionless constant and g̃μν(x) is the spacetimemetric. (Greek letters
label spacetime indices, μ, ν = 0, 1, 2, 3.) In (3 + 1) spacetime dimensions, the
Brans-Dicke field Φ has dimensions (mass)2. Since high-energy theorists typically
consider scalar fields that have dimensionmass in (3+1) spacetime dimensions, we
may rescale the Brans-Dicke field as Φ → φ2/(8ω). In terms of the rescaled field
φ, the action of Eq. (2.1) may be written

SBD =
∫

d4x
√−g̃

[
fBD(φ)R̃ − 1

2
g̃μν∂μφ∂νφ

]
. (2.2)

The nonminimal coupling function takes the form

fBD(φ) = 1

2
ξφ2, (2.3)

where the dimensionless coupling constant ξ is related to the original Brans-Dicke
parameter as ξ = 1/(8ω). Such a quadratic term is precisely the form in which
quantum corrections arise for scalar fields in curved spacetime, and hence the form
that appropriate counterterms must assume [14–20].

In Brans and Dicke’s original formulation, the local strength of gravity, Geff(x),
varies with the fieldφ(x):Geff(x) = 1/(8πξφ2). Onemay generalize such a coupling
to include a bare (constant) mass, M0, within the function f (φ):

f (φ) = 1

2

[
M2

0 + ξφ2
]
, (2.4)
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with (16πGeff)
−1 = f (φ). And this form, in turn, may be generalized to models

with N scalar fields:

f (φI ) = 1

2

[
M2

0 +
N∑
I=1

ξI
(
φI

)2]
. (2.5)

We therefore consider models for which the action may be written

S =
∫

d4x
√−g̃

[
f (φI )R̃ − 1

2
δI J g̃

μν∂μφ
I∂νφ

J − Ṽ (φI )

]
. (2.6)

Here capital Latin letters label field-space indices, I, J = 1, 2, ..., N , and tildes
denote quantities in the so-called Jordan frame, in which the nonminimal couplings,
f (φI )R̃, remain explicit in the action.
Because we are interested in comparing predictions from this family of mod-

els with recent astrophysical observations—especially high-precision measurements
of the cosmic microwave background radiation (CMB)—it is convenient to work
in the so-called Einstein frame, for which physicists have established a powerful
gauge-invariant formalism for treating gravitational perturbations.3 (For reviews,
see [22, 38].)

In order to bring the gravitational portion of the action of Eq. (2.6) to the famil-
iar Einstein-Hilbert form, we perform a conformal transformation, much as Dicke
described early in the study of Brans-Dicke gravitation [39]. We rescale the space-
time metric tensor, g̃μν(x) → gμν(x) = Ω2(x)g̃μν(x). The conformal factor Ω2(x)
is positive definite and is related to the nonminimal coupling function that appears
in Eq. (2.6) as

Ω2(x) = 2

M2
pl

f (φI (x)), (2.7)

where Mpl ≡ 1/
√
8πG = 2.43 × 1018 GeV is the reduced Planck mass, related to

Newton’s gravitational constant,G. Upon performing this conformal transformation,
the action of Eq. (2.6) is transformed to [40]

S =
∫

d4x
√−g

[
M2

pl

2
R − 1

2
G I J (φ

K )gμν∂μφ
I∂νφ

J − V (φI )

]
. (2.8)

The conformal transformation induces a field-space manifold whose metric, in the
Einstein frame, is given by

3We have bracketed, for now, the important and rather subtle question of whether there remains
any significant “frame dependence” for predictions from such multifield models. It seems clear
that one may map predictions for observables from one frame to another in the case of single-field
models [11, 12]. But making that mapping between frames in the presence of entropy (or isocurva-
ture) perturbations—which can only arise in multifield models—seems to raise new subtleties [37].
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GI J (φ
K ) = M2

pl

2 f (φK )

[
δI J + 3

f (φK )
f,I f,J

]
, (2.9)

where f,I = ∂ f/∂φI .
We encounter an interesting feature when performing this conformal transforma-

tion for models with multiple scalar fields: unlike the well-studied case of a single-
field model, in general there does not exist a rescaling of the scalar fields φI that
can bring the gravitational portion of the action into Einstein-Hilbert form while also
yielding canonical kinetic terms for the scalar fields. In particular, for M0 �= 0 and
N ≥ 2 scalar fields, the conformal transformation induces a field-space manifold
whose metric, GI J (φ

K ), is not conformal to flat [40].4 Instead, following the confor-
mal transformation, models within this family assume the form of nonlinear sigma
models [41].

The potential is also stretched by the conformal factor upon transformation to the
Einstein frame. In particular, we find

V (φI ) = M4
pl

[2 f (φI )]2 Ṽ (φI ). (2.10)

This is the generalization of Dicke’s original finding that masses of particles depend
on the Brans-Dicke field following the conformal transformation [39]. In the context
of simple inflationary models, this conformal stretching of the potential leads to
important changes to the inflationary dynamics, compared to models with minimally
coupled fields. The most important change is the emergence of strong single-field
attractor behavior, which we discuss in Sect. 2.4.

Building on pioneering work on multifield inflation [44, 46], we developed in
[32–36] a doubly covariant formalism with which to address dynamics in models
that include multiple scalar fields with nonminimal couplings—that is, covariant
with respect to both ordinary gauge transformations (xμ → x ′μ) as well as repara-
meterizations of the field-space coordinates (φI → φ′I ). We consider perturbations
around a Friedmann-Lemaître-Robertson-Walker spacetime metric, which we take
to be spatially flat for convenience; the radius of curvature is stretched exponentially
quickly during the first few efolds of inflation, so that a spatially flat background
provides an excellent approximation for later dynamics. We then have

ds2 = gμνdx
μdxν

= −(1 + 2A)dt2 + 2a(∂i B)dxidt + a2
[
(1 − 2ψ)δi j + 2∂i∂ j E

]
dxidx j ,

(2.11)
where a(t) is the scale factor, and A(xμ), B(xμ),ψ(xμ), and E(xμ) characterize the
scalar degrees of freedom of the metric perturbations. Given the symmetries of the
spacetime, to background order the fields can only depend on time:

4In the case of Brans-Dicke-like couplings, with M0 = 0, one may rescale the fields φI to bring
GI J → δI J , and hence restore canonical kinetic terms, only for N ≤ 2. For N > 2, even with
M0 = 0, one again finds that GI J is not conformal to flat [40].
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φI (xμ) = ϕI (t) + δφI (xμ). (2.12)

The magnitude of the velocity vector for the background fields is given by

|ϕ̇I | ≡ σ̇ =
√
GI J ϕ̇I ϕ̇J , (2.13)

where overdots denote derivatives with respect to cosmic time, t . The background
fields obey the equation of motion [32, 46]

Dt ϕ̇
I + 3H ϕ̇I + G I J V,J = 0, (2.14)

where H ≡ ȧ/a is the Hubble parameter, and we have introduced a (covariant)
directional derivative for vectors AI on the field-space manifold:

Dt A
I ≡ ϕ̇JDJ A

I = ȦI + Γ I
J K AJ ϕ̇K . (2.15)

The Christoffel symbols Γ I
J K are constructed from the field-space metric GI J . The

Friedmann equations (to background order) take the form [32, 46]

H 2 = 1

3M2
pl

[
1

2
σ̇2 + V (ϕI )

]
,

Ḣ = − 1

2M2
pl

σ̇2.

(2.16)

Equations (2.14) and (2.16) yield self-consistent inflationary solutions, with |Ḣ | 	
H 2, across wide ranges of coupling constants and initial conditions [32–35].

The scale of H during inflation is constrained by recent observations. In particular,
the present upper bound on the ratio of primordial tensor-to-scalar power spectra, r ,
requires H∗ ≤ 3.4 × 10−5 Mpl [45], where the asterisk indicates the value of H at
the time when cosmologically relevant perturbations first crossed outside the Hubble
radius during inflation. In simple, single-field models of chaotic inflation, one must
fine-tune parameters, such as the quartic self-coupling λ ∼ O(10−12), in order to
accommodate this bound on H∗. In models with nonminimal couplings, however,
the magnitude of H∗ depends on both the Jordan-frame couplings (such as masses,
mI , and quartic self-couplings, λI , in Ṽ (φI )), as well as the nonminimal coupling
constants ξI , due to the conformal stretching of the potential in Eq. (2.10). Hence
one may accommodate the observational constraint on H∗ without exponentially
fine-tuning the parameters [29, 32–35].

In order to study the behavior of the fluctuations, we may generalize the gauge-
invariant Mukhanov-Sasaki variable to the multifield case, defining a vector of per-
turbations QI (xμ) as a linear combination of the field fluctuations, δφI , and the
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metric perturbation, ψ [32]5:

QI ≡ δφI + ϕ̇I

H
ψ. (2.17)

To linear order, the fluctuations QI satisfy the equation of motion [32, 46]

D2
t Q

I + 3HDt Q
I +

[
k2

a2
δ I

J + MI
J

]
QJ = 0, (2.18)

where we have performed a Fourier transform, ∇2QI = −k2QI with comoving
wavenumber k, and the mass-squared matrix is given by

MI
J ≡ G I K (DJDK V ) − RI

LM J ϕ̇
L ϕ̇M − 1

a3M2
pl

Dt

(
a3

H
ϕ̇I ϕ̇J

)
. (2.19)

Here RI
LM J is the Riemann tensor of the field-space manifold, constructed from

GI J (and calculated to background order in the fields, ϕI ); we raise and lower field-
space indices with GI J . The fluctuations thus acquire three distinct contributions
to their effective mass: a term arising from the second derivative of the potential,
akin to simple single-field models; a term (proportional to RI

LM J ) arising from the
curvature of the field-space manifold; and a term (proportional to 1/M2

pl) arising
from the coupled metric perturbations.

2.3 Predictions for Observables

Even to linear order, Eq. (2.18) couples fluctuations QI with QJ and so on. The
presence of several interacting degrees of freedom can lead to new observational
features in multifield models, with no correlates in simple, single-field models. Two
of the most important and best studied examples include the amplification of non-
Gaussianities in the primordial power spectrum of curvature perturbations, and the
amplification of isocurvature perturbations in addition to adiabatic modes. Non-
Gaussianities are generically suppressed in single-field models [42, 43], and isocur-
vature modes do not arise at all in models with only a single scalar degree of freedom
[22, 44]. Given tight constraints on primordial non-Gaussianities and isocurvature
perturbations from the latest measurements of the CMB [45], many types of multi-
field models may therefore be in tension with the latest observations.

5Because the field-space manifold is curved, one must work with a representation of the field
fluctuations that is covariant with respect to reparameterizations of the field-space coordinates, as
discussed in [32] and references therein. That form reduces to Eq. (2.17) to linear order in the field
fluctuations, which will suffice for our purposes here.
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In order to quantify these multifield features, we build on techniques developed in
[22, 44, 46] and introduce covariant measures with which to study the perturbation
spectra [32–36]. We introduce a unit vector

σ̂ I ≡ ϕ̇I

σ̇
(2.20)

which points in the direction of the background fields’ evolution. The directions in
field space orthogonal to σ̂ I are spanned by

ŝ I J ≡ G I J − σ̂ I σ̂ J . (2.21)

Wemay then project the perturbations QI into components along the direction of the
background fields’ motion (the adiabatic direction) and orthogonal to that motion
(the isocurvature directions):

Qσ ≡ σ̂I Q
I , δs I ≡ ŝ IJ Q

J . (2.22)

The gauge-invariant curvature perturbation, Rc, is defined as [22, 38],

Rc ≡ ψ − H

(ρ + p)
δq, (2.23)

where ρ and p are the background-order energy density and pressure, respectively,
and δq is the momentum flux of the perturbed fluid, T 0

i = ∂iδq. Given the form of
the action in Eq. (2.8), one may show that [32]

Rc = H

σ̇
Qσ. (2.24)

Primordial curvature perturbations, Rc(x), lead to temperature anisotropies in the
CMB. Photons that hail from regions of space that had a slightly greater-than-average
gravitational potentialwill be slightly redshifted, upon expending a bit of extra energy
to climb out of the potential well, compared to photons from regions of space that had
a slightly less-than-average gravitational potential [22, 23, 38]. Hence the statistical
properties of the tiny temperature anisotropies of the CMB provide a snapshot of
primordial inhomogeneities, which in turn help to constrain models of early-universe
inflation.

A critical insight [44, 46] is that Qσ and δs I are coupled only if the background
fields turn in field space. Hence features like non-Gaussianities and isocurvature per-
turbations can be amplified in multifield models if the turn-rate, ω I , is nonvanishing
during the late stages of inflation (typically within the last 60 efolds of inflation).
The covariant turn-rate may be defined as [32]

ω I ≡ Dt σ̂
I . (2.25)
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In multifield models, ω I need not remain small during inflation, which can amplify
features that are not observed in the CMB.

Consider the limit ω I → 0 first, in which case the perturbations Qσ and δs I

remain decoupled. The effective masses for the perturbations take the form [32]

Mσσ ≡ σ̂I σ̂
JMI

J , Mss ≡ ŝ J
I MI

J . (2.26)

In the limit |Mσσ|, |Mss | 	 H 2, each perturbation will evolve during inflation as
a (nearly) massless scalar field in (quasi-) de Sitter space, and hence we may expect
each perturbation to develop an amplitude of order [16, 19, 22]

PQ 

(
H

2π

)2

, (2.27)

where the power spectrum is defined as PQ ≡ (2π)−2k3|Qσ|2, which we have
evaluated for modes of order the Hubble scale, k 
 aH ; likewise for PS , the power
spectrum associated with the conventionally normalized isocurvature perturbations
SI ≡ (H/σ̇)δs I . Upon using Eqs. (2.16), (2.24), and the usual definition of the
slow-roll parameter,

ε ≡ − Ḣ

H 2
, (2.28)

we therefore expect an amplitude of curvature perturbations during inflation

PR 
 1

2M2
plε

(
H

2π

)2

(2.29)

and similarly for PS .
The background fields ϕI (t) evolve slowly during inflation, and hence neither

H(t) nor ε(t)will remain constant. Thatmeans that whenmodes of various comoving
wavenumbers k cross outside the Hubble radius, with k = aH , they do so with
slightly different amplitudes,PR(k). Hencewith a littlemorework, onemay calculate
the spectral tilt of the curvature perturbations [22, 32, 44, 46]:

ns ≡ 1 + ∂ lnPR

∂ ln k
= 1 − 6ε + 2ησσ, (2.30)

where

ησσ ≡ M2
pl
Mσσ

V
(2.31)

is the generalization of the second slow-roll parameter, formotion along the adiabatic
direction. In the limitω I → 0, therefore, the amplitude and spectral tilt of primordial
curvature perturbations in the multifield case look quite similar to the predictions
from single-field models—with one important difference. If |Mss | 	 H 2, then
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such multifield models may amplify a sizable fraction of isocurvature modes, with
βiso(k) ≡ PS(k)/[PR(k)+PS(k)] ∼ O(1) at relevant wavenumbers k, which would
be in significant tension with the latest observations [45].

Even greater deviations from the single-field case emerge if the fields turn in field
space during inflation, ω I �= 0. In that case, there can be a transfer of power from
the isocurvature to the adiabatic modes, and the amplitude and tilt of PR(k) will be
affected. In particular, one may relate the power spectrum at time t∗ (say, 50 or 60
efolds before the end of inflation) to its value at some later time, t , by means of a
transfer function TRS(t∗, t) [32, 44, 46]:

PR(k) = PR(k∗)
[
1 + T 2

RS(t∗, t)
]
,

ns = ns(t∗) + 1

H

(
∂TRS

∂t∗

)
sin (2Δ) ,

(2.32)

whereΔ ≡ arccos(TRS/

√
1 + T 2

RS). Even amodest transfer of power from the isocur-
vature to the adiabatic modes could push multifield models out of agreement with
the latest high-precision measurements of quantities like ns . Moreover, since TRS is
scale-dependent, such processes effectively couple modes of different wavenumber,
k, and hence can amplify non-Gaussianities, pushing the coefficient of the bispectrum
fN L � O(1) [32, 46].6

In the Einstein frame, there is no anisotropic pressure to leading order in the
perturbations (Π i

j ∝ T i
j ∼ 0 for i �= j), and hence the tensor perturbations hi j

evolve just as in single-field models. Around the pivot scale k∗, the power spectrum
thus obeys PT 
 128(H 2/M2

pl) [34, 44, 46], which yields a prediction for the
tensor-to-scalar ratio, r ,

r ≡ PT

PR
= 16ε

[1 + T 2
RS]

. (2.33)

Just as the case for ns and fN L , predictions for r can deviate strongly from the usual
single-field predictions in the case of significant transfer of power from isocurvature
to adiabatic modes.

The exact form of TRS for multifield models with nonminimal couplings may be
found in [32]; the important point is that TRS ∝ |ω I |. In general, when significant
turning occurs and TRS ≥ O(10−1), one finds both ns and fN L pulled significantly
outside the 2σ bounds from the latest observations [32, 35].

6To calculate fN L properly, one must go beyond linear order in the fluctuations and calculate the
genuine bispectrum, 〈Rc(k1)Rc(k2)Rc(k3)〉 [32, 42, 43]; upon performing the full calculation,
we find a strong correlation between nonzero TRS and sizable fN L [32].
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2.4 Single-Field Attractor

For multifield models with nonminimal couplings, the turn rate generically remains
negligible. Therefore the types of observational consequences that may arise in mul-
tifield models, such as the overproduction of isocurvature modes or the amplification
of significant non-Gaussianities, typically do not arise for this class of models. The
reason comes from the conformal stretching of the potential, V (φI ) of Eq. (2.10).

For simplicity, consider a two-field model, with φI = (φ,χ). Then for a generic,
renormalizable potential in the Jordan frame,

Ṽ (φ,χ) = 1

2
m2

φφ
2 + 1

2
m2

χχ2 + 1

2
gφ2χ2 + λφ

4
φ4 + λχ

4
χ4, (2.34)

and a nonminimal coupling function f (φ,χ) as in Eq. (2.5), we find from Eq. (2.10)
the potential in the Einstein frame7

V (φ,χ) = M4
pl

4

(2m2
φφ

2 + 2m2
χχ2 + 2gφ2χ2 + λφφ

4 + λχχ4)

[M2
pl + ξφφ2 + ξχχ2]2 . (2.35)

Whereas the potential in the Jordan frame, Ṽ (φI ), grows as φ and/or χ becomes
large, in the Einstein frame the potential V (φI ) flattens out to long plateaus for large
field values. (See Fig. 2.1.) That is, generically, the potential in the Einstein frame
develops ridges (local maxima) and valleys (local minima), becoming flat along a
given direction for asymptotically large field values. Both the ridges and valleys
satisfy V > 0, and hence the system will inflate (albeit at different rates) whether
the fields evolve along a ridge or a valley during inflation.

The ridge-valley structure of the potential leads to strong single-field attractor
behavior during inflation, across a wide range of couplings and initial conditions
[32–36]. If the fields happen to begin evolving along the top of a ridge, they will
eventually fall into a neighboring valley at a rate that depends on the local curvature
of the potential. Once the fields fall into a valley, Hubble drag quickly damps out
any transverse motion in field space, after which the system evolves with virtually
no turning for the remainder of inflation. (See Fig. 2.2.) In [36], we demonstrate that
the strong attractor behavior persists in the limit 0 < ξI ≤ 1 as well as in the limit
ξI � 1.

In the limit of strong nonminimal couplings, ξI � 1, the fields rapidly fall into
a single-field attractor (within the first few efolds of inflation) unless one fine-tunes
the ratio of couplings and the fields’ initial conditions to exponential accuracy.
Such attractor behavior is therefore a generic feature of multifield models with

7We have set M0 = Mpl in f (φI ), since for Ṽ (φI ) in Eq. (2.34), the global minimum of the
potential occurs at φ = χ = 0 rather than at any nonzero vacuum expectation value. Hence at the
end of inflation, once φ and χ settle into the global minimum of the potential, f (φI ) → M2

pl/2,
recovering the usual gravitational coupling for general relativity.
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Fig. 2.1 ThepotentialV (φ,χ) in theEinstein frame,Eq. (2.35), for ξφ = 100, ξχ = 80,λφ = 10−2,
λχ = 1.25× 10−2, g = 0.8× 10−2, mφ = 10−4 Mpl, and mχ = 1.5× 10−4 Mpl. The field values
are shown in units of Mpl

Fig. 2.2 Field trajectories for various couplings and initial conditions.Open circles indicate fields’
initial values (in units of Mpl). We set φ̇0 = χ̇0 = mI = 0, ξφ = 102,λφ = 10−2, and vary
the other parameters {ξχ,λχ, g, θ0}: {1.2ξφ, 0.75λφ,λφ,π/4} (red); {0.8ξφ,λφ,λφ,π/4} (blue);
{0.8ξφ,λφ, 0.75λφ,π/3} (green); {0.8ξφ, 1.2λφ, 0.75λφ,π/6} (black). Here θ0 ≡ arctan(χ0/φ0).
See also [34, 36]

nonminimal couplings, and subsumes the class of “α attractors” that has recently
been identified [47].

The lack of turning in field space means that, generically, models in this family
yield predictions very similar to those of simple single-field models of “plateau”
inflation. With ω I 
 0, there is virtually no transfer of power from the isocurvature
to the adiabatic modes, TRS 
 0. Moreover, the effective mass of the isocurvature
modes, Mss , remains large during inflation, while the fields evolve within a valley
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of the potential:Mss � H 2. Hence βiso(k) ∼ O(10−5), well in keeping with recent
observational constraints [35, 45].

Even better, within a single-field attractor and in the limit ξI � 1, one may inte-
grate the equations ofmotion for the background fields within a slow-roll approxima-
tion, taking |ϕ̈I | 	 |H ϕ̇I |; as demonstrated in [34], the resulting analytic expressions
provide a remarkably close match for the exact numerical solutions within a given
single-field attractor. In particular, we find [34]

ξφφ
2∗

M2
pl


 4

3
N∗, (2.36)

where N∗ is the number of efolds before the end of inflation, and we have considered
(in this case) couplings such that the direction χ = 0 is a local minimum of the
potential. (We arrive at comparable expressions for other choices of couplings such
that the local minimum lies along some angle θ = arctan(χ/φ) in field space.) In
that limit, we find expressions for the slow-roll parameters that are independent of
the couplings:

ε 
 3

4N 2∗
, ησσ 
 − 1

N∗

(
1 − 3

4N∗

)
. (2.37)

Returning to Eqs. (2.30), (2.32), and (2.33) with ω I 
 0 and hence TRS 
 0, we
then find [34]

ns 
 1 − 2

N∗
− 3

N 2∗
, r 
 12

N 2∗
, (2.38)

independent of the values of the couplings and the fields’ initial conditions. For
typical reheating scenarios, one expects 50 ≤ N∗ ≤ 60 to correspond to the time
during inflation when perturbations of a given comoving wavenumber first crossed
outside the Hubble radius, which later re-entered the Hubble radius around the time
the CMB was emitted [48]. Selecting 50 ≤ N∗ ≤ 60 in Eq. (2.38) yields

0.959 ≤ ns ≤ 0.966,

0.003 ≤ r ≤ 0.005.
(2.39)

This value of the spectral index, ns , is in excellent agreement with the latest measure-
ment by the Planck collaboration, ns = 0.968±0.006 [45], while the predictions for
r remain comfortably below the present upper bound of r < 0.09 [45]. Moreover,
predictions for the running of the spectral index, α = dns/d ln k, satisfy α < 10−3

[34], likewise consistent with the latest observational estimates (which themselves
are consistentwith no observable running) [45].Andwithω I 
 0 and hence TRS 
 0,
these models predict fN L ∼ O(10−1) [32], again perfectly consistent with the latest
observational constraints [45].

Lastly, one may study post-inflation reheating in this family of models [36]. The
single-field attractor persists after the end of inflation, at least during times when the
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perturbations may be treated to linear order. The lack of turning in field space leads
to efficient transfer of energy from the inflation condensate to coupled fluctuations,
in contrast to multifield models with minimal couplings, in which “dephasing” of
the background fields’ oscillations typically suppresses resonances [48, 49]. Hence
reheating in these models should be efficient, with an effective equation of state
w = p/ρ that interpolates between w 
 0 and w 
 1/3 within the first few efolds
after the end of inflation [36].

2.5 Conclusions

More thanhalf a century afterBrans andDicke introduced their scalar-tensor theoryof
gravitation, the studyof scalar fieldswith nonminimal couplings continues toflourish.
The number of compelling theoretical motivations for considering such nonminimal
couplings has grown, and the relevance of such models for understanding the earliest
moments of cosmic history is stronger than ever.

Brans and Dicke introduced their work at a time when Solar System tests of
gravitation were still rare, and before the CMB had even been detected! It is an
amazing testament to Carl’s curiosity and physical insights that work stemming
from his dissertation continues to inspire investigations of our cosmos to this day.8

Congratulations to Carl on his 80th birthday, with admiration and gratitude.
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Chapter 3
A New Estimate of the Mass
of the Gravitational Scalar Field
for Dark Energy

Yasunori Fujii

Abstract A new estimate of the mass of the pseudo dilaton is offered by following
the fundamental nature that a massless Nambu-Goldstone boson, called a dilaton, in
the Einstein frame acquires a nonzeromass through the loop effects which occur with
the Higgs field in the relativistic quantum field theory as described by poles of D,
spacetime dimensionality off the physical value D = 4. Naturally the technique of
dimensional regularization is fully used to show this pole structure to be suppressed
to be finite by what is called a Classical-Quantum-Interplay, to improve our previous
attempt. Basically the same analysis is extended to derive also the coupling of a
pseudo dilaton to two photons.

3.1 Introduction

We have developed our own version of the Scalar-Tensor theory (STT) [1, 2] due
originally to Jordan [3], also to Brans and Dicke [4], but now with the unique fea-
ture that we are then allowed to be free from the possible fine-tuning problem in
understanding the small size of a cosmological constant (CC), or the dark energy
(DE), fitted to the observed accelerating universe [5]. Today’s value of CC ∼ t−2

0
with t0 the present age of the universe, is this small simply because we are this old
cosmologically.1

1We use the reduced Planckian unit system defined by c = � = MP(= (8πG)−1/2) = 1. The
units of length, time and energy in conventional units are given by 8.10 × 10−33cm, 2.70 ×
10−43s, 2.44 × 1018 GeV, respectively. As an example of the converse of the last entry, we find
1GeV = 2.44−1 × 10−18 in units of the Planck energy. In the same way, the present age of the
universe t0 ≈ 1.37 × 1010y is 1060.2 in units of the Planck time.
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This approach is an outgrowth, in retrospect, of a conceptual attempt based on
a simple Λ cosmology for the radiation-dominated universe [6]. According to an
attractor and asymptotic solution, the Jordan frame (JF), with a variable G, describes
unrealistically a static universe, while the Einstein frame (EF, with subscript ∗), with
G∗ kept constant, provides fortunately with an expanding universe, a(t∗) ∼ t1/2∗ ,
hence accepted as the physical frame. Also the scalar field density interpreted as
dark energy density falls off like t−2∗ , from which follows the scenario of a decaying
cosmological constant, as emphasized above. On the other hand, however, starting
off by assuming a conventional mass term in JF, we come to finding that the micro-
scopic fundamental particles, including an electron, with their masses which fall
off like ∼ a∗(t∗)−1 ∼ t−1/2

∗ in EF. This is totally in conflict with today’s view on
the astronomical measurements; cosmological size is measured in reference to the
microscopic units of length provided by the inverse mass of the microscopic parti-
cles. Also we have no way of detecting any variation of units themselves, implying
their constancy in the physical frame, as we once called the Own-unit-insensitivity
principle (OUIP) [7], which ultimately derives the receding speeds of distant objects
in terms of the red-shifts of the observed atomic spectra.

From these arguments we view the theory of STT to face a serious flaw when
it meets the microscopic physics. Sometime ago we came across [1, 2] that this
flaw can be avoided miraculously in terms of global scale invariance broken sponta-
neously with the field φ playing the role of a massless Nambu-Goldstone (NG) boson
[8–10], called dilaton, which, likemany other examples ofNGbosons, would acquire
a nonzero mass hence a pseudo dilaton. We further suggested a tentative estimate of
its mass-squared; μ2 ∼ m2

qM
2
ss/M

2
P ∼ (10−9 eV)2, with mq for the averaged quark

mass, while Mss ∼ 103 GeV for the supersymmetry mass scale to be prepared for
the quadratic cutoff of the self-energy of a scalar field.2

Now in the current article, we are going to replace quarks by the Higgs field as an
origin for the masses of fundamental particles, also with an improved technique for
the mass acquisition mechanism applied uniquely to the dilaton. The new numerical
estimate based on the StandardModel (SM) turns out to result in μ somewhat heavier
than our previous estimate, still basically more or less in the same range of the order
of magnitude, remaining responsible for the experimental searches for the DE [12]
of the accelerating universe through γγ scattering.

On the theoretical side, as we also point out, the two different concepts, scaling
behavior and infinities in the qantized field theory, are described by a single common
variable, the spacetime dimensionality assumed to be continuous off the physical
value 4. On the basis of dimensional regularization (DR) technique [13], the formu-
lation is then not only simple and straightforward but also continued smoothly from
the first half of the spontaneously broken scale invariance.

2This mass corresponds approximately to the force-range ∼100m, related to the suggested non-
Newtonian force, as was discussed in [11], for example.
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The same mechanism applies also to the coupling of a pseudo dilaton to two
photons. These experiences prompt us to present our phenomenological results even,
for the moment, only with a preliminary study of the effects of the conventional
renormalization procedure.

3.2 Basic Equations

We start with the basic Lagrangian

L =
⎧
⎨

⎩

√−g
(
1
2ξφ

2R − 1
2 εg

μν∂μφ∂μφ + Lmatter − Λ
)
,

√−g∗
(
1
2 R∗ − 1

2g
μν∗ ∂μσ∂μσ + L∗matter − Λ exp(−4ζ̂σ)

)
,

(3.1)

for Λ > 0 and ξ > 0 by avoiding antigravity, expressed both in JF and EF, respec-
tively, where the factor Ω for the conformal transformation satisfies3

gμν = Ω(x)−2g∗μν, φ = ξ̂−1/2Ω, with Ω = exp(ζ̂σ), (3.2)

where
ξ̂ = ξM−2

P , ζ̂ = ζM−1
P , with ζ−2 ≡ 6 + εξ−1 > 0. (3.3)

The symbol φ implies the gravitational scalar field in JF with ε = ±1, or 0.4 Notice
that φ, even with an apparently ghost nature with ε = −1, has been brought to be
mixed to the spinless portion of gμν through the nonminimal coupling term, the first
term on RHS of the upper line of (3.1), to emerge as a canonical nonghost scalar
field σ in EF under the condition specified at the last of (3.3).

From (3.1) we derive the cosmological equations in each of radiation-dominated
JF and EF, also in the standard spatially flat Robertson-Walker metric with the matter
density approximated by a uniform distribution, finding the attractor and asymptotic
solutions.5 This is the way we reach the static universe in JF and the expanding
universe in EF, as stated in Sect. 3.1.

During the calculation, we derived the asymptotic relation for the matter density
ρ in JF;

ρ = −3Λ
2ξ + ε

6ξ + ε
. (3.4)

Using Λ > 0 and ξ > 0 as stated immediately following (3.1) before also the last
condition of (3.3), we find that the obvious condition ρ > 0 results only if

3Symbols ϕ,ω used in the original Refs. [3, 4] are now re-expressed by our more convenient ones;
ϕ = (1/2)ξφ2, 4ω = εξ−1.
4ε = 0 implies ζ2 = 1/6 corresponding to the coefficient a = 1/3 of the scalar component of the
combined potential [11, 14]. We choose η00 = η00 = −1.
5For details see [1, 2, 15].



62 Y. Fujii

ε = −1, hence
1

6
< ξ <

1

2
, and

1

4
< ζ2 < ∞, (3.5)

as will be used later. We also come to find

φ → t, or Ω → t, as t → ∞. (3.6)

Many of the important features in these approximate solutions are taken over
to the more exact numerical solutions, which include such a unique complication
like the occasional step-like falling-off behavior of the scalar-field density, as was
discussed with the help of a supporting assumption, in Sects. 5.4.1–5.4.2 of [1] and
Sects. 6.1–6.2 of [2], thus allowing the wording, a decaying cosmological constant,
acceptable semantically. But more urgently, we re-emphasize briefly how OUIP is
observed by the spontaneously broken scale invariance.

The crucial point is that we are supposed to start with the interaction term in JF;

− LI = 1

2

√−g hφ2Φ2, (3.7)

instead of the conventional mass term−Lm = √−g(1/2)m2Φ2, applied to an exam-
ple of the real scalar-field matter Φ, where h is a dimensionless coupling constant,
hence indicating scale invariance in JF. The conformal transformation to EF yields

− LI = 1

2

√−g∗Ω−4hξ̂−1Ω2Ω2Φ2
∗ = 1

2

√−g∗m2
∗Φ

2
∗ , (3.8)

with Φ = ΩΦ∗, m2
∗ = hξ̂−1.

Notice that all of the Ω’s cancel each other, hence leaving a truly constant m∗. The
last result might be combined with ξ ∼ O(1) as obtained from the second of (3.5)
to find h ∼ O(m2∗/M2

P), which will be inherited basically to the more realistic but
more complicated model for the Higgs field as will be developed soon later.

In this connection, we also notice that (3.7) fails to observe a premise that φ be
decoupled from the matter Lagrangian, as emphasized by Brans and Dicke [4] who
realized this to be the simplest way to implementWeak Equivalence Principle (WEP)
as one of the most important features in the macroscopic and classical gravity.6

Now facing the microscopic and cosmological gravity, we might try an attempt
beyond their premise. This is the reason why we come to (3.7), showing remarkably
the global scale invariance taking φ into account. In a sense, we exploit the scale
invariance of the whole STT terms in JF Lagrangian except for Λ.

From none of the mass in (3.7) we have created the mass spontaneously. In fact
the mass dimension has been smuggled through ξ̂−1/2 as a VEV of φ, following the
secondof (3.2). The spontaneous naturemight also be better interpreted by computing

6The amplitude through the nonminimal coupling term observes the same tensor coupling as in
General Relativity.
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the Noether current of the scale transformation7;

δgμν = 2�gμν, δφ = −�φ, δΦ = −�Φ, (3.9)

which derives,

Jμ = 1

2

√−ggμν∂ν

(
ξζ−2φ2 + Φ2

)
, (3.10)

an exact result, as detailed in Appendix M of [1]. We then re-express RHS now in
EF. In this process, we obtain 	
∗Φ2∗ on RHS, then by using the field equation of Φ∗
coming to find the contribution from Λ∗ = exp(−4ζ̂σ)Λ. In the rest of the present
article, however, we focus upon the epochs in which Λ∗ remains rather smaller than
the ordinary matter as was demonstrated by our realistic solutions in [1, 2], in the
reasonable past from today. Then we may ignore Λ∗ approximately, also impose the
conservation law ∂μ J

μ∗ = 0, thus obtaining

ζ−1	
∗σ = − (
m2

∗Φ
2
∗ + gμν

∗ ∂μΦ∗∂νΦ∗
)
, (3.11)

where LHS comes directly from the first term on RHS of (3.10), hence reaching the
massless nature ofσ, to be called adilaton, precisely as hadbeen shownbyNambu [8].
The occurrence of the massless dilaton is expected to survive the approximations
mentioned above.

We now leave the first half of the scenario of spontaneously broken scale invari-
nace, entering its second half in which the massless dilaton grows into a massive
pseudo dilaton. For this purpose, we start with the spacetime dimensionality D off,
but close to, the physical value 4. We also re-interpret the above Φ now as the
Higgs field supposed to provide with the origin of the masses of all the microscopic
fields. In fact the familiar Mexican-Hat potential is shown to inherit the core of the
4-dimensional scale-invariance within the realm of STT.

We then extend (3.7) to

− LH = √−g

(
1

2
hφ2Φ2 + λ

4!Φ
4

)

= √−g∗ΩD−4

(
1

2
m̃2Φ2

∗ + λ

4!Φ
4
∗

)

, (3.12)

with m̃2 = hξ̂−1,

where Ω in the second of (3.2) and (3.8) are both replaced by Ωd−1 with d = D/2.
Then together with

√−g = Ω−D√−g∗, we come to find an overall multiplier on
RHS of (3.12);

Ω−D
(
Ωd−1)4 = Ω−D+2D−4 = ΩD−4. (3.13)

7The special form of the first in the following, corresponding to gμν → Ω2gμν , has been selected,
because, unlike another type of the coordinate transformation xμ → Ωxμ or δxμ = �xμ, making
it straightforward to be applied to the expanding universe with the 3-space simply uniform without
any particular origin. See [16], for example, on introducing δxμ/x2 = βμ.
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Obviously, adding the quartic self-coupling of Φ4 to (3.7) leaves our experiences of
the scaling behaviors and spontaneous symmetry breaking nearly unchanged.

Following the well-known procedure, we shift the origin by the VEV v;

Φ∗ = v + Φ̃. (3.14)

By requiring the absence of the term linear in Φ̃, we arrive finally at8

− LH = exp
(
2ζ̂(d − 2)σ

)√−g∗V, with V = 1

2
m2Φ̃2 + 1

2
m

√
λ

3
Φ̃3 + λ

4! Φ̃
4,

(3.15)
where m defined by

m2 = −2m̃2 = λ

3
v2, (3.16)

is the observed mass of the Higgs field, 1.26 × 102 GeV [17].
In thiswaywe define the dynamics of Φ̃ andσ, where the exponential factor comes

from (3.13), substituted from the third of (3.2), while V is the Higgs potential.9 We
have ignored the possible vacuum terms as well as part of CC, in accordance with
what we stated before between (3.10) and (3.11). As we consider, the current process
of mass creation and the pseudo dilaton belongs to a local physics expected not to
be affected seriously by CC, or DE.

To be noticed more explicitly, the field σ occurs only in associationwith d − 2 =
(D − 4)/2 separated from what is called the Higgs potential V . In other words, the
dilaton σ might appear to be present only for D �= 4. This by no means implies that
σ is entirely outside our realistic concern at D = 4, because another part V contains
infinities at D = 4, as will be shown shortly. We should take the same attitude as in
DR that we keep d �= 2 during the computation until we come back to the physical
value d = 2 only at the very end of the calculation.

For more details of the calculation, we apply the expansion

exp(2ζ̂(d − 2)σ) ≈ 1 − 2ζ̂(2 − d)σ. (3.17)

On the other hand, the potential V , representing a collection of the field Φ̃, might
develop certain Feynman diagrams which may happen to induce closed loops of Φ̃

then exhibiting divergences. The simplest 1-loop divergence is described by

8The symbol m in the second equation is the mass in EF, to be better denoted by m∗. To avoid too
much notational complications in the following equations, however, we continue to use m without
the subscript ∗ for the observed mass for the Higgs mass in the whole subsequent part of the article.
9This potential V is shown to agree with the relevant part of the SM. See (87.3) of [18], for
example. His V (ϕ) = (λr/4)(ϕ†ϕ − (v2/2))2 is reproduced precisely by our (3.15) by choosing
σ = 0, λr/4 = λ/4!, and ϕ = (1/

√
2)(v + Φ̃) only for the single component, with another com-

ponent vanishing, corresponding to his (87.13). Notice also that a special relation chosen between
the two terms in the parenthesis on RHS of V (ϕ) above has the same effect of the term linear in Φ̃

removed, which we required in the sentence just prior to the foregoing footnote 8.
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Γ (2 − d) ∼ (2 − d)−1, as d → 2, (3.18)

according to the technique of DR.
By substituting (3.17) and (3.18) into the first of (3.15), we find a product like

ζ(d − 2)σΓ (2 − d), for which we apply the relation

(2 − d)Γ (2 − d) → 1, as d → 2, (3.19)

to be called a Classical-Quantum Interplay (CQI), which connects a classical factor
2 − d toΓ (2 − d) obviously representing a quantumnature. The above result implies
that σ happens to pick up a Φ̃-loop, which thus plays a major role in the same way
as the cutoff conjectured by Nambu and Jona-Lasinio [10] for the study of the pion-
nuleon system, thus re-discovered in a somewhat different but closely related context.

Notice also that we no longer suffer from infinities, as far as the relevant processes
are dominated by CQI. This might be, however, related to the Brans-Dicke premise
as was discussed following (3.8). The pole structure (3.18) should apply only to such
fundamental fields like Φ, or quarks and leptons, but not to composite particles like
hadrons. In this sense, the WEP violation effect due to the occurrence of φ in the
matter Lagrangian tends to be smaller, but might need more detailed analysis before
reaching the final comparison with the observations.

In the next section we are going to discuss how this crucial relation, CQI, can be
used naturally in calculating the mass of the pseudo dilaton.

3.3 Computing the Mass of the Pseudo Dilaton

In order to derive the mass μ of σ, we first consider the simplest form of the σ self-
energy (SE) part, as shown in the upper line of Fig. 3.1, where the dotted and solid
lines are for σ and Φ̃, respectively. Each vertex is read out from the second term on
RHS of (3.17) times the first term in V of (3.15), deriving the effective vertex part;

g0 = −2ζ̂(2 − d)m2. (3.20)

The loop integral of Φ̃ gives10,11

∫

dDk
1

(k2 + m2)2
= iπ2

(
m2

)d−2 Γ (d)Γ (2 − d)

Γ (2)
≈ iπ2Γ (2 − d). (3.21)

10Some of the details of the required integrals will be found in Appendix N of [1].
11 Strictly speaking, the denominators should be ((k + q/2)2 + m2)((k − q/2)2 + m2), where q is
for the momentum of the size of ∼μ. Since we finally find μ negligibly smaller than m as in (3.49),
we might justify the approximate computation as in (3.21). The same kind of approximation applies
to almost any of the loop integrals to be encountered in the following of the present article.
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(a) (b) (c) (d) (e)

Fig. 3.1 In the upper line we show the simplified 1-loop SE part of σ, to start with. Dotted and
solid lines are for the σ and the shifted Higgs field Φ̃, respectively. In the lower line, we illustrate
the 2-loop amplitudes to which CQI can be applied. They are different from each other in the ways
the dotted lines couple to different parts of the three terms in the potential V on RHS of (3.15)

The whole contribution is

∼ g20iπ
2Γ (2 − d) ∼ 4m4ζ2(2 − d)2Γ (2 − d) ∼ 2 − d → 0, as d → 2,

(3.22)
since the pole (2 − d)−1 has been over-cancelled by (d − 2)2 in accordance with
CQI. As a lesson, a finite nonzero result will occur only if the Φ̃ in V must include
2-loop divergences.

We now try to extend the argument to construct 2-loop amplitudes for the σ mass
term, as illustrated by (a)–(e) in the lower line of Fig. 3.1. First in the diagram (a),
we show a simply doubled 1-loop diagrams, in fact by connecting the simplest one
to another diagram formed by the first term and the third term of V in (3.15). By
computing explicitly, we do reach two poles resulting in the nonzero result;

Ja =
[−i(2π)4

]3

[
i(2π)4

]4 λm4
[
2ζ̂(2 − d)σ

]2
∫

dDk
1

(k2 + m2)2

∫

dDk ′ 1

(k ′2 + m2)2

= i(2π)−4(iπ2)2λζ̂24m4σ2 = −i
1

4
λζ̂2m4σ2, as d → 2. (3.23)

The combination in (b) is basically the same as in (a), different only where one
of the dilaton lines reaches V , thus causing a linear denominator. Still due to

∫

dDk ′ 1

k ′2 + m2
= iπ2(m2)d−1 Γ (d)Γ (1 − d)

Γ (3 − d)
= −iπ2m2Γ (2 − d), (3.24)

somewhat different from (3.21), though, we find the result, which happens to be the
same as (3.23);
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Jb =
[−i(2π)4

]2

[
i(2π)4

]3 λm2
[
2ζ̂2(2 − d)σ

]2
∫

dDk ′ 1

k ′2 + m2

∫

dDk
1

(k2 + m2)2

= i
1

4
π−4λm4(iπ2)2ζ̂2σ2 = −i

1

4
λζ̂2m4σ2 = Ja . (3.25)

The same result will follow for the diagram in (c);

Jc = −i(2π)4
[
i(2π)4

]−2
λ

[
2ζ̂(2 − d)σ

]2
∫

dDk ′ 1

k ′2 + m2

∫

dDk
1

k2 + m2

= i(2π)−4λ4ζ̂2σ2

[

iπ2m2 2 − d

Γ (2 − d)

]2

= Ja . (3.26)

We then face another diagram in (d) due to the trilinear term on RHS of (3.15);

Jd = [−i(2π)4]3
[i(2π)4]4 λm2

[
2ζ̂(2 − d)σ

]2 (
3!m
2
√
3

)2

× ∫
dDk

∫
dDk ′ 1

k2+m2
1

(k ′2+m2)2
1

(k−k ′)2+m2 , (3.27)

where the last term under the double integral is ovelapping not separable into the
functions of k alone, and k ′ alone, respectively, corresponding to the inclined line in
(d) in Fig. 3.1.

We have two alternative ways, carrying out (i) the k ′ integral first, or (ii) the k
integral first. This also corresponds to including the overlapping integral as part of
k ′ integral, or k integral, or expressed more explicitly as

J (i)
d = Kd(2 − d)2

∫

dDk
1

k2 + m2

(∫

dDk ′ 1

(k ′2 + m2)2

1

(k − k ′)2 + m2

)

,

(3.28)

J (ii)
d = Kd(2 − d)2

∫

dDk ′ 1

(k ′2 + m2)2

(∫

dDk
1

k2 + m2

1

(k − k ′)2 + m2

)

,

(3.29)

where

Kd = [−i(2π)4]3
[i(2π)4]4 4ζ̂2σ2

(
m

2

√
λ

3
3!

)2

= 3i
λm2

4π4
ζ̂2σ2. (3.30)

We are going to show first that J (i)
d vanishes due to the k ′ integration which does

not behave divergently, by analyzing only the relevant portion of (3.28);

Ĵ (i)
d = (2 − d)

∫

dDk ′ 1

(k ′2 + m2)2

1

(k − k ′)2 + m2
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= −2(2 − d)

∫ 1

0
xdx

∫

dDk̃ ′ 1

(k̃ ′2 + M2
(i))

3

= −iπ2(2 − d)

∫

xdx(M2
(i))

d−3Γ (3 − d)

∼ −iπ2 2 − d

M2
(i)

→ 0, as d → 2, (3.31)

in which the gamma function Γ (3 − d) is left convergent at d = 2, hence (3.31),
with the factor 2 − d, vanishes in the sameway as in (3.22), despite thatM2

(i) defined
by

M2
(i) = m2 + x(1 − x)k2, with k̃ ′ = k ′ − k. (3.32)

is not a pure constant.
We then move on to J (ii)

d . Also using (3.21), we find

J (ii)
d = Kd(2 − d)2

∫ 1

0
dx

∫

dDk ′ 1

(k ′2 + m2)2

∫

dDk̃
1

(k̃2 + M2
(ii))

2

= Kd(2 − d)iπ2
∫

dDk ′ 1

(k ′2 + m2)2
(M)d−2

(ii) (2 − d)Γ (2 − d)

= Kd(2 − d)iπ2
∫

dDk ′ 1

(k ′2 + m2)2

= Kd(iπ
2)2(2 − d)Γ (2 − d) = Kd(iπ

2)2

= −3i
1

4π4
λζ̂2m4σ2 = 3Ia, (3.33)

3 times as large as the last term of (3.23) for Ja , where

M2
(ii) = m2 + x(1 − x)k ′2, with k̃ = k − k ′, (3.34)

by the repeated use of CQI. Notice that the fact thatM2
(ii) is not purely constant does

not affect the conclusion in the limit d → 2.
Basically the same analysis can be applied to the diagram (e). From a visual

inspection, we readily identify the difference in the equations; we only replace the
double-pole terms of the type (k2 + m2)−2 by the single-pole terms (k2 + m2)−1,
where k might be k ′. This removes the difference between (3.28) and (3.29), leaving
us to consider only (3.33), with the double-pole term at the very end of the second
line replaced by the single-pole term, implying a sign change as we notice between
(3.21) and (3.24). This is offset by the difference between [−i(2π)4]3/[i(2π)4]4 at
the top of (3.27) and the corresponding factor [−i(2π)4]2/[i(2π)4]3 supposed to
occur in Je. In this way we reach the simple result

Je = Jd . (3.35)
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We then take the sum

J = Ja + 2Jb + Jc + 2Jd + 2Je = −i
16

4
λm4ζ̂2σ2 = −4iλm4ζ̂2σ2, (3.36)

where we have doubled the contribution from (b) and (d), to recover the right-left
symmetry, while another doubling in (e) has been applied because the diagrams
displayed in Fig. 3.1 are only half of the two possible choices of the dotted lines.

We are then allowed to compare our result with the effective mass term of σ;

J = −Lμ = 1

2
μ2σ2, (3.37)

thus allowing us to identify (3.36) with −i(2π)4μ2σ2, hence

μ2 = 4

16π4
ζ̂2λm4, or μ = 1

2π2

√
λζ̂m2. (3.38)

In this way we have come to conclude that a massless dilaton in the presence of
quantum loops does acquire a nonzero mass, thus becoming a pseudo dilaton, almost
automatically in accordance with a simple interpretation of the exponential factor in
(3.15). It seems even amusing to find that the same Higgs field plays indispensable
roles in creating masses both of the pseudo dilaton, part of gravity, and the rest of
the fundamental particles.

In spite of this desired result in deriving themassμ, we still admit someuncertainty
whichmight arise from the contribution without being derived from the CQI process.
Consider a typical example of an additional Φ̃ loop inserted between the two loops
in the diagram (a) of Fig. 3.1, for example, also connected to the neighboring loops
through the λ term in V of (3.15).12 In the absence of (d − 2)σ we must appeal to
the conventional procedure in DR;

R ≡ −i(2π)4λ2[i(2π)4]−2
∫

dDk
1

(k2 + m2)2
≈ − λ2

16π2
Γ (−δ) exp (−δ/δm)),

(3.39)
where δ = d − 2, (m2)δ = exp(δ lnm2), and λ ∼ O(1), also

δm ≡ 1

− lnm2
≈ 1

75
≈ 0.013. (3.40)

The foregoing CQI calculations would be left undisturbed if |R| is kept well below
the order unity in the reduced Planckian units.

The relation (3.39) is evaluated at δ → 0+. The divergence from Γ (−δ) ∼ −δ−1

requires a re-regularization, which is expected to convert a pole to a cutoff δc > 0,
for example. In the absence of any general way of fixing δc, also without related

12Basically the same type of analysis can be applied to another example of a loop attached to the
side of the left loop in Fig. 3.1b, for example.
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physical observables,13 we might choose it to be δm defined by (3.40), which is not
only unique to the current model with the occurrence of m2, but also happens to be
reasonably small. In this way we have now reached;

|R(δc)| = |R(δm)| ≈ − lnm2

16π2
e−1 ≈ 0.48

2.72
≈ 0.18<∼O(1), (3.41)

which turns out to be barely a lower end of O(1).
This result achieved by a simple but natural approach appears to be an encouraging

sign for a theoretically favored idea of the CQI-dominance, at least in certain physical
situations, though more details are yet to be scrutinized, probably in the future. In
the next section, we then enter the final step of our numerical analysis on the basis
of the expected CQI computation.

3.4 Estimating µ

In the second equation of (3.38), we first re-expressm2 = (1.26 × 102)2 (GeV)2 into
the Planckian unit system;

m2 = (1.26 × 102)2 × (2.44−1 × 10−18)2. (3.42)

However, ζ̂ has the mass dimension−1, so that the product ζ̂m2 has the mass dimen-
sion +1, in agreement with μ on LHS of the second of (3.38), and is going to be
re-expressed in units of GeV instead of (GeV)2;

ζ̂m2 = ζ̂(1.26 × 102)2 × (2.44−1 × 10−18) = ζ
1.262 × 104

2.44
× 10−18 GeV

= 0.651ζ × 10−14 GeV = 6.51ζ µeV. (3.43)

In order to know λ, we first use (3.16). We then go through the two well-known
steps in SM;

mW = −gv

2
, and

g2

m2
W

= 8√
2
GF, (3.44)

wheremW = 80.2GeV is themass of theWmeson interpreted as aHiggsmechanism
for the mass of a gauge field, while GF = 1.17 × 10−5 GeV−2 is the Fermi constant
for the weak interaction. We then use the second equation of (3.44) to derive14

13For the self-masses in QED or QCD, divergences are removed simply to fit the observed values.
14The effect of renormalized fields might have been ignored at this moment, given the crude approx-
imation to be allowed in (3.49). For details see [18], for example.
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g2 = 8√
2
m2

W GF = 0.426, or g = 0.653, (3.45)

which is then substituted into the first of (3.44), finding

v = −2

g
mW = 246GeV, (3.46)

finally substituted into (3.16) hence arriving at

λ = 3

(
1.26

2.46

)2

= 0.787, or
√

λ = 0.887. (3.47)

We also need an estimate of ζ. According to (3.5), we have ε = −1 and 1/6 <

ξ < 1/2, hence 1/4 < ζ2 < ∞ for the radiation-dominated universe, while 1/2 <

ξ < 3/2 and 3/16 < ζ2 < 1/4 for the dust-dominated universe, as shown in Fig. 1 of
[2, 7]. Our own fit to the accelerating universe yields ζ ∼ 1.58. as read in Fig. 5.8 of
[1] and Fig. 9 of [2]. Also noted is ξ = 1/4 and ζ2 = 1/2, or ζ = 0.714 from Super
String Theory as indicated in (3.4.58) of [19]. In view of these findings, we suggest
a tentative but still convenient bound of ζ somewhere between 0.5 and 2.0;

ζ ≈ (0.5−2.0). (3.48)

Summarizing them all finally in the second of (3.38), we obtain

μ ≈ (0.15−0.59)µeV ∼ (150−590) neV. (3.49)

The far RHS suggests nearly two orders of magnitude over the previous estimate
∼ 10−9 eV.15

3.5 Coupling of a Pseudo Dilaton to Two Photons

As an application of the current approach, we now try to re-derive the coupling term

− L3 = Aσ
1

4
FμνF

μν, (3.50)

which plays a pivotal role in the experimental searches for DE [12], hopefully on a
wider perspective in exploiting the scale invariance than in the past attempts [1, 2].

15It still appears that the two estimates above are more or less close to each other from a wider
point of view, probably because the two approaches share the same concept on the pseudo dilaton
in some way or the other.
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To emphasize the unique nature of the pseudo dilaton, we are going to study the
photon SE part, or the vacuum polarization, represented by the diagram, the same
type as shown on the upper line of Fig. 3.1, though the solid line, used to be for
the neutral Higgs field, is now re-interpreted as a charged matter field, also with the
dotted line used for the pseudo dilaton, replaced by the photon line. For simplicity for
the moment, we assume a singly charged and massive Dirac field ψ, a representative
of quarks and leptons.

We start off with the simple electromagnetic interaction of ψ first in JF, followed
by moving to EF;

− Lem = bie
(
ψ̄biμγiψ

)
Aμ → b∗Ω−DieΩD−1

(
ψ̄∗biμ∗ Ωγiψ∗

)
Ωd−2A∗μ

≡ −b∗Ωd−2L∗em, (3.51)

where e is the elementary charge chosen to be a pure constant, with α = e2/(4π) ≈
1/137;

− L∗em = ieψ̄∗biμ∗ γiψ∗A∗μ, (3.52)

with biμ the dimensionally extended tetrad with b = √−g, also the electromagnetic
field transforming as Aμ = Ωd−2A∗μ. The occurrence of Ωd−2 on the far RHS of
(3.51) indicates scale invariance in 4 dimensions, hence the same nature as generating
σ as in the previous sections.

In EF, we approximate spacetime by locally Minkowskian to apply the ordinary
Feynman rules based on (3.52) to the same type of the diagram as on the upper line
of Fig. 3.1 in terms of DR, obtaining the gauge-invariant form16

Πμν(k) = α

3π

(
kμkν − k2ημν

)
Γ (2 − d), (3.53)

where we have reversed the overall sign due to the antisymmetric nature of ψ and ψ̄.
Further re-installing Ωd−2 on the far RHS of (3.51), substituted from the third of

(3.2), we reach the whole result

√−g∗ exp
(
2ζ̂(d − 2)σ

) −α

3π

(
kμkν − k2ημν

)
Γ (2 − d). (3.54)

We then pick up the term liner in σ, also using the CQI in the form of (3.19),
comparing the result with (3.50) by using the relation

1

4
FμνF

μν = −ε
μ
f

(
kμkν − k2ημν

)
εν
i , (3.55)

16See (6.174)–(6.181) of [1] for details simply for the scalar loop field. Extending to the Dirac field
is tedious but straightforward.
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with ε
μ
f and εν

i for the polarization vectors of the final and initial photons, respectively,
then identifying the constant A as

A = − α

3π
ζ̂. (3.56)

In this way we come to determine A basically of the size of the inverse of the Planck
mass, as expected to be.

For each of the quarks and the leptons, the result (3.56) adds up with the corre-
sponding multiplicative factors for the electric charges squared. Notice also that a
cancellation always takes place between the terms of the samem, themass of the loop
fields, to meet the gauge-invariance of the form (3.53), thus yielding A independnent
of m. This has an advantage that we derive A basically ∼αζ̂, but, on the other hand,
deprives us of a familiar procedure to suppress the contribution from much heavier
and uncertain loop fields.

From this point of view, we may also consider the charged scalar fields, sharing
the same charge-structure as indicated by supersymmetry, for which we develop
obviously the pararell computations with ψ in (3.52) replaced by Φ together with
the additional 4-point term ∼e2Φ̄Φgμν AμAν ,17 without the sign change due to the
antisymmetry of the fermionic field, ending up with a multiplicative factor −1/4 to
(3.53),

Asc = α

12π
ζ̂. (3.57)

in place of (3.56).
The reduction factor 1/4 can be interpreted by (1/2)2 with 1 and 2 for the spin

degrees of freedom for the scalar and theDirac fields, respectively, while the squaring
takes care of the occurrence of two lines in each of the main loop diagrams. In this
sense, every 4 scalar fields offset the effect of 1 Dirac field, no matter how heavy
they might be. Obviously, it appears too early to make an unambiguous prediction
before we develop a more general survey on what the fundamental particles are to
be included in the loop, also considering wider class of spin-statistics combinations,
again left to future studies, at this time. An uncertainty of this kind still unavoidable
at present might result in an adjustable parameter multiplied to Γ 1/2 with Γ for the
decay width of σ into two photons in the formulation in [12].18

17This term contributes a term proportional tom2 due to a simple 1-loop of 〈0|ΦΦ̄|0〉 ∝ m2 in DR ,
thus cancelling the term of ∼m2 in the main loop term as in the upper line of Fig. 3.1.
18The previous result Eq. (3.91) in [2], for example, can even be re-interpreted as our (3.56) multi-
plied by an “adjustable parameter” B/A = ζ−1(2/3)Z.
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3.6 Summary

We started out by assuming the scale-invariance of the Higgs potential in JF in STT in
4 dimensions, reaching, somewhat unexpectedly, a time-independent particle mass
in EF in conformity with today’s view on measuring cosmological size in units of
the inverse of the mass of the microscopic particles. We then extended the spacetime
dimensionality D off the physical value 4, allowing us to analyze the behavior of
the pseudo NG boson, pseudo dilaton. We derived its mass by studying the σ SE
part. By considering the 2-loop amplitudes, we obtained the nonzero and finite mass
μ of the pseudo dilaton, by maximally exploiting the CQI relation, also utilizing
SM, somewhere around µeV, which turns out approximately 2 orders of magnitude
heavier than our previous tentative estimate. The difference is understood naturally
because we now deal with a theoretical model quite different from our previous
simple-minded one. It still seems helpful if we find any aspect more tractable on the
non-CQI terms possibly in the future. As an extended idea, we tried also to re-derive
the coupling strength of σ into 2γ, still short of the fully unique determination of the
multiplier at present.

Acknowledgments The author expresses his sincere thanks to K. Homma, H. Itoyama, C.S. Lim,
K. Maeda, T. Tada and T. Yoneya for many useful discussions.
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Chapter 4
Axion and Dilaton + Metric Emerge Jointly
from an Electromagnetic Model Universe
with Local and Linear Response Behavior

Friedrich W. Hehl

Universally coupled, thus gravitational, scalar fields are still
active players in contemporary theoretical physics. So, what is
the relationship between the scalar of scalar-tensor theories, the
dilaton and the inflaton? Clearly this is an unanswered and
important question. The scalar field is still alive and active, if
not always well, in current gravity research.

Carl H. Brans (1997)

Abstract We take a quick look at the different possible universally coupled scalar
fields in nature. Then, we discuss how the gauging of the group of scale transforma-
tions (dilations), together with the Poincaré group, leads to a Weyl-Cartan spacetime
structure. There the dilaton field finds a natural surrounding. Moreover, we describe
shortly the phenomenology of the hypothetical axion field. In the second part of our
essay, we consider a spacetime, the structure of which is exclusively specified by the
premetricMaxwell equations and a fourth rank electromagnetic response tensor den-
sity χi jkl = −χ j ikl = −χi jlk with 36 independent components. This tensor density
incorporates the permittivities, permeabilities, and the magneto-electric moduli of
spacetime. No metric, no connection, no further property is prescribed. If we forbid
birefringence (double-refraction) in this model of spacetime, we eventually end up
with the fields of an axion, a dilaton, and the 10 components of a metric tensor with
Lorentz signature. If the dilaton becomes a constant (the vacuum admittance) and
the axion field vanishes, we recover the Riemannian spacetime of general relativity
theory. Thus, the metric is encapsulated in χi jkl , it can be derived from it.
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4.1 Dilaton and Axion Fields

4.1.1 Scalar Fields

The Jordan-Brans1-Dicke scalar, the dilaton, the axion, the inflaton—scalar fields
everywhere—and eventually even one, the scalar, that is, the spinless Higgs boson
H 0, which has been found experimentally as heavy as some 134 protons. These
different scalar fields2 are not necessarily independent from each other, it could be,
for example, that the JBD-scalar can be identified with the dilaton (see [30]) or
the Higgs boson with the inflaton (see [6, 7]). Thus, the list of potentially existing
universally coupled scalar fields could be somewhat smaller. For the history of the
JBD-scalar, one can compare Brans [11] and Goenner [32] and, for the role of the
inflaton in different models, Vennin et al. [97].

4.1.2 Einstein Gravity and the Energy-Momentum Current

As remarked by Brans [10] in the quotation above, if universally coupled, the
scalar fields are intrinsically related to the gravitational field. In Einstein’s theory
of gravity, general relativity (GR), the gravitational potential is the metric gi j , with
i, j = 0, 1, 2, 3 as (holonomic) coordinate indices. As its source acts the symmet-
ric energy-momentum tensor Ti j of matter. This is a second rank tensor, which is
generated already in special relativity (SR) with the help of the group T (4) of trans-
lations in space and in time. Together with the Lorentz transformations SO(1, 3),
the translations T (4) build up the Poincaré group P(1, 3) as a semi-direct product:
P(1, 3) = T (4) � SO(1, 3). This is the group of motion in the Minkowski space of
special relativity, see [31].

Accordingly, if one desires to understand gravity from the point of view of the
gauge principle, the T (4) is an indispensable part of these considerations. However,
being only one piece of the P(1, 3), it is suggestive to gauge the complete P(1, 3).
This is exactly what Sciama and Kibble did during the beginning 1960s, see [73],
[9, Chap. 4], and [16].

1Carl Brans is one of the pioneers of the scalar-tensor theory of gravitation. This essay is dedicated
to Carl on the occasion of his 80th birthday with all best wishes to him and his family. During the
year of 1998, we had the privilege to host Carl, as an Alexander von Humboldt awardee, for several
months at the University of Cologne. I remember with pleasure the many lively discussions we had
on scalars, on structures of spacetime, on physics in general, and on various other topics.
2We skip here the plethora of scalar mesons,

π±,π0, η, f0(500), η
′(958), f0(980), a0(980), ...,

K±, K 0, K 0
S , K

0
L , K ∗

0 (1430), D±, D0, D∗
0 (2400)

0, D±
s , ... ;

they are all composed of two quarks. Thus, the scalar mesons do not belong to the fundamental
particles.
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4.1.3 Einstein-Cartan Gravity: The Additional Spin Current

This gauging of the P(1, 3) extends the geometrical framework of gravity. The
4 translational potentials eiα and the 6 Lorentz potentials Γi

αβ = −Γi
βα span a

Riemann-Cartan spacetime, enriching the Riemannian spacetime of GR by the pres-
ence of Cartan’s torsion; here α,β = 0, 1, 2, 3 are (anholonomic) frame indices.
Whereas the translational potentials couple to the canonical energy-momentum ten-
sor of matter Σα

i , the Lorentz potentials couple to the canonical spin current of
matter ταβ

i = −τβα
i .

The simplest version of the emerging Poincaré gauge models is the Einstein-
Cartan theory (EC), a viable gravitational theory competingwithGR if highestmatter
densities are involved. If lPlanck denotes the Planck length and λCompton the Compton
wave length of a particle, then deviations of the Einstein-Cartan from Einstein’s the-
ory are expected at length scales of below∼(l2Planck λCompton)

1/3; for protons, prevalent
in the early cosmos, it is about 10−29 m. According to Mukhanov [65], it is exactly
this order of magnitude down to which, according to recent cosmological data, GR
is known to be valid.

From a gauge theoretical point of view, the EC-theory looks more reasonable
than GR since the Einsteinian principles of how to heuristically derive a gravitational
theory were followed closely: they were just applied to fermionic matter instead of
to macroscopic point particles or Euler fluids or to classical electromagnetism, as
Einstein did.

Incidentally, in the EC-theory and, more generally, in the Poincaré gauge theory,
the Poincaré and, in particular, the Lorentz covariance are valid locally by construc-
tion, similar as in a SU(2) Yang-Mills theory, we have local SU(2) covariant. Kost-
elecký (priv. comm., Jan. 2016) agrees that the “Einstein-Cartan theory maintains
local Lorentz invariance.” Then the same is true for a Poincaré gauge theory, which
acts likewise in a Riemann-Cartan spacetime with torsion and curvature. However, in
an experimental set-up, according to Kostelecký [48], torsion must be considered as
an external field and, according to the “standard lore for backgrounds,” local Lorentz
invariance is broken. By the same token, an external magnetic field in electrodynam-
ics breaks local Lorentz invariance. This is, in my opinion, an abuse of language,
which conveys the wrong message that the existence of a torsion field violates local
Lorentz invariance.

If, for theoretical reasons, one wants to evade the emergence of the Riemann-
Cartan spacetime, then one can manipulate, in the underlying Minkowski space, the
intrinsic or spin part of the total angular momentum of matter in such a way that it
vanishes on the cost of increasing the orbital part of it by the corresponding amount,
see [63]. This procedure is called Belinfante-Rosenfeld symmetrization of the canon-
ical energy-momentum current, which, in general, is defined as an asymmetric tensor
by the Noether procedure. Accordingly, by symmetrization the energy-momentum
current is made fit to act as a source of the Einstein field equation. In this way, one
can effectively sweep the spin and the torsion under the rug and can live happily
forever in the paradise of the Riemannian spacetime of GR.
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Of course, in the end observations and/or experiments will decide which of the
two theories, GR or EC, will survive. We opt for the latter.

4.1.4 Dilaton Field and Dilation Current

The dilaton field φ entered life as a Nambu-Goldstone boson of broken scale invari-
ance, see Fujii in [30]. Thus, φ is related to dilat[at]ions or scale transforma-
tions in space and time. But the dilaton also occurs in theories of gravity (JBD)
and in string theory, see Di Vecchia et al. [21]. The P(1, 3), if multiplied (semi-
directly) with the scale group, becomes the Weyl group W (1, 3). This 11-parameter
group is an invariance group for massless particles in special relativity. The trans-
lations, via Noether’s theorem, generate the conserved energy-momentum tensor
Σi j , the Lorentz transformations the conserved total angular momentum tensor
Ji j k := τi jk + x[iΣ j]k = −Jji k , and the dilation the conserved total dilation current
Υ k := Δk + xlΣl

k ,

∂kΣi
k = 0 , (4.1)

∂k Ji j
k = ∂kτi j

k − Σ[i j] = 0 , (4.2)

∂kΥ
k = ∂kΔ

k + Σk
k = 0 , (4.3)

see [47, 59] particularly for Υ k . Thus, if a universal coupling is assumed, then φ
should have the intrinsic dilation currentΔk as its source; for theories inWeyl spaces
in which Δk does not play a role, see Scholz [86, 87].

There are numerous field theoretical models under way which, if scale or dilation
invariance is implemented, have conformal invariance as a consequence; for a more
recent review see Nakayama [66]. Hence, jumping to conformal invariance, before
one understood scale invariance, is probably not a very good strategy. For this reason
we confine ourselves here to scale invariance, to the dilaton, and to the 11-parametric
Weyl group. But it should be understood that the light cone is also invariant under the
15-parametric conformal group, see Barut and Ra̧czka [5] and Blagojević [8] and,
for a historical account, Kastrup [45].

Both currents, the intrinsic dilation currentΔk and the energy-momentum current
Σi

k are related to external groups, to the dilation (scale) and to the translation groups,
respectively. This is the reason for their universality.

4.1.5 The Weyl-Cartan Spacetime as a Natural Habitat
of the Dilaton Field

We only tried to make a strong case in favor of the EC-theory in order to repeat the
corresponding arguments for the dilation group. Gauging the Weyl group yields a
Weyl-Cartan spacetime. The classical paper in that respect is the one of Charap and
Tait, see [9, Chap. 8]. A universally coupled massless scalar field induces a Weyl
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covector Qi as the corresponding dilation potential willy nilly. This is the type of
spacetime Weyl used (with vanishing torsion) for his failed unified theory of 1918.
Here the Weyl space with the connection WΓ is resurrected for the dilation current,
instead of for the electric current, see [8]:

W∇ i g jk = −Qig jk , WΓi jk = RCΓi jk + 1

2
(Qig jk + Q jgki − Qkgi j ) ; (4.4)

RCΓ is the connection of the Riemann-Cartan space. Again, as in the case of the
Lorentz group, one can manipulate the total dilation current Υ k and can transform
its intrinsic part into an orbital part by modifying in this case the trace Σk

k of
the energy-momentum current. Then, again, one can stay within the realm of the
Riemannian space of GR, see Callan et al. [13].

As we mentioned already, the gauge theoretical answer was given by Charap and
Tait [15].Again,which approachwill succeed is eventually a question to experimental
verification.

We see, if the JBD-scalar is interpreted as a dilaton, then we would expect that the
Weyl-Cartan spacetime is its arena. Clearly this does only provide the kinematics of
the theory. The dynamicswould depend on the exact choice of the dilatonLagrangian.

Recently, Lasenby and Hobson [53] wrote an in-depth review of gauging theWeyl
group and, moreover, formulated an “extendedWeyl gauge theory.” Also within their
framework, the Weyl-Cartan space, and a straightforward extension of it, play an
important role, see also Haghani et al. [33]. Definite progress has also been achieved
in the study of equations of motion within the scalar tensor theories of gravity,
see Obukhov and Puetzfeld [76, 81, 82]. The breaking of scale invariance in the
more general approach of metric-affine gravity was studied in [34], for example; for
somewhat analogous breaking mechanisms, see [60–62].

4.1.6 Axion Field

Dicke did not only introduce in 1961, together with Brans [12], a scalar field into
gravity, but he also discussed, in 1964, and pseudoscalar or axial scalar field ϕ2 in
the context of gravitational theory, see [20, Appendix 4, p. 51, Eq. (7)].

Subsequently, in the early 1970s, Ni [67] investigated matter coupled to the grav-
itational field and to electromagnetism and looked for consistency with the equiv-
alence principle. He found it possible to introduce in this context a new neutral
pseudoscalar field accompanying the metric field, see also [4, 68–70]. Later, in
the context of the vacuum structure of quantum chromodynamics, a light neutral
pseudoscalar, subsequently dubbed “axion” was hypothesized, see Weinberg [98,
pp. 458–461]. Similar as Ni’s field, the axion couples also to the electromagnetic
field, see Wilczek’s paper [99] on “axion electrodynamics”.

The axion field is of a similar universality as the gravitational field. In other words,
the axion belongs to the universally coupled scalar fields. Let in electrodynamics,
Hi j = (D,H) = −H j i and Fi j = (E,B) = −Fji denote the excitation and the field
strength, respectively. The constitutive relation characterizing the axion field α(x)
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(in elementary particle terminology it is called A0) reads [35],

Hi j = 1

2
αεi jkl Fkl or

{
Da = αBa ,

Ha = −αEa ,
(4.5)

see also [37] for the corresponding formalism; here ε is the totally antisymmetric
Levi-Civita symbol with εi jkl = ±1, moreover, a = 1, 2, 3. Clearly, the axion
embodies the magnetoelectric effect par excellence. It is a pseudoscalar under 4-
dimensional diffeomorphisms.

In electrotechnical terms, the axion behaves like the (nonreciprocal Tellegen)
gyrator of network analysis, see [49, 100]; also the perfect electromagnetic con-
ductor (PEMC) of Lindell and Sihvola [58, 93] represents an analogous structure.
Metaphorically speaking, as we see from (4.5), the axion “rotates” the voltages
(B,E) into the currents (D,H). In SI, we have the units [B] = Vs/m2, [E] =
V/m; [D] = As/m2, [H] = A/m. Thus, [α] = 1/ohm = 1/Ω carries the physical
dimension of an admittance. Now, in the Maxwell Lagrangian, we find an additional
piece ∼ α(x)εi jkl Fi j Fkl ∼ α(x)E · B, a term, which was perhaps first discussed
by Schrödinger [89, pp. 25–26]. If α were a constant, the field equations would not
change.

As we already remarked, α is a 4-dimensional pseudoscalar. The same is true for
the von Klitzing constant RK ≈ 25 813Ω . And this covariance is a prerequisite for
its universal meaning. Phenomenologically, the quantum Hall effect (QHE) can also
be described by a constitutive law of the type (4.5), see [35, Eq. (B.4.60)].

It is possible to apply the constitutive relation (4.5) directly to a solid, too. By
the evaluation of experiments we have shown [37] that in the multiferroic Cr2O3

(chromium sesquioxide) we have a nonvanishing axion piece of up to ∼10−3λ0,
where λ0 is the vacuum admittance of about 1/377Ω . This fact demonstrates that
there exist materials with a nonvanishing, if small, (pseudoscalar) axion piece. This
may be considered as a plausibility argument in favor of a similar structure emerging
in fundamental physics. If the A0 were found, it would not be an unprecedented
structure, see in this context also Ni et al. [72].

In matter-coupled N = 2 supergravity models, there are examples in which a
dilaton and an axion are contained simultaneously in the allowed particle spectrum,
see Freeman and Van Proeyen [29, p. 451]. However, in the next section we will
demonstrate that in a fairly simple classical model of an electromagnetic universe,
the axion can emerge jointly with a dilaton and the metric.

More recently, there have been attempts to relate the axion field to the torsion
of spacetime, see, for example Mielke et al. [64] and Castillo-Felisola et al. [14].
To us, this assumed link between the internal symmetry U (1) of the axion with the
external translation symmetry T (4) related to the torsion appears to be artificial and
not supported by physical arguments.
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4.2 An Electromagnetic Model Universe

4.2.1 The Premetric Maxwell Equations

We consider a 4-dimensional differentiable manifold. The electromagnetic field is
specified by its excitationHi j , a 2nd rank antisymmetric contravariant tensor density,
and by its field strength Fi j , a 2nd rank antisymmetric covariant tensor; the electric
current J k is a contravariant vector density, see Post [80]. On this manifold, the
Maxwell equations read

∂kHik = J k , ∂[i Fjk] = 0 ; (4.6)

the brackets [ ] denote antisymmetrization of the corresponding indices with 1/3! as
a factor, see [88]; for the Tonti-diagram of (4.6), compare [95, p. 315].

In none of these equations the metric tensor gi j nor the connection Γi j
k are

involved. Still, these equations are valid and are generally covariant in theMinkowski
space of special relativity, in the Riemann space of general relativity, and in the
Riemann-Cartan orWeyl-Cartan space of gravitational gauge theories. TheMaxwell
equations (4.6) as such, apart from a historical episode up to 1916, see [22, 23], have
no specific relation to the Poincaré or the Lorentz group.

Perlick [78] has shown that the initial value problem in electrodynamics can
be particularly conveniently implemented by means of the premetric form of the
Maxwell equations.

In contrast to most textbook representations, no “comma goes to semicolon rule”
is required. The Maxwell equations (4.6) are just universally valid for all forms of
electrically charged matter. Incidentally, this represents also a simplifying feature for
numerical implementations. The price one has to pay is to introduce, asMaxwell did,
the excitationHi j , besides Fi j , as an independent field quantity and to note that it is
a tensor density. From a phenomenological point of view, this is desirable anyway,
since the excitation has an operational definition of its own, namely as charge/length2

(D) and current/length (H), respectively, which is independent from the definition
of the field strength as force/charge (E) and force/current (B). For a rendition in the
calculus of exterior differentiable forms, one can compare with the axiomatic scheme
in [18, 35], see also [19].

Let us stress additionally that Hi j , Fi j , and J k can be defined in a background
independent way.

TheMaxwell equations (4.6) are based on the conservation laws of electric charge
Q := ∫

dσi jkεi jkl J l (unit in SI “coulomb”) and magnetic flux Φ := ∫
dσi j Fi j

(unit in SI “weber”). Charge Q and flux Φ are 4-dimensional scalars. They induce
the structure of the excitationHi j and the field strength Fi j . In this context, the field
strength is operationally defined via the Lorentz force density fi = Fi jJ j , the current
being directly observable and the force and its measurement known frommechanics.
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The charge and its conservation is the anchor of electrodynamics. Its current J k

defines, by means of the Lorentz force density fi , the field strength Fi j , which allows
to define the magnetic flux Φ. Faraday’s induction law is an incarnation of magnetic
flux conservation.

Some people have no intuition about the conservation of a quantity that is defined
in 3dimensions by integrationover a 2-dimensional area∼ ∫

dσa Ba , sinceweusually
associate conservation with a quantity won by 3-dimensional volume integration,
namely ∼ ∫

dVρ. Some mathematics education about dimensions will enable us to
understand the induction law as a “continuity equation.”

Summing up: the premetric Maxwell equations are a close-knit structure, the 4-
dimensional diffeomorphisms covariance holds it all together. Clearly, a metric as
well as a connection are alien to the Maxwell equations.

4.2.2 A Local and Linear Electromagnetic Response

In order to fill the Maxwell equations with life, one has to relate Fi j toHi j :

Hi j = Hi j (Fkl) (4.7)

If we assume this functional to be local, that is,Hi j (x) depends only on Fkl(x), and
linear homogeneously, then we find

Hi j = 1

2
χi jkl Fkl with χi jkl = −χi jlk = −χ j ikl ; (4.8)

here the field χi jkl(x) represents the electromagnetic response tensor density of rank
4 and weight+1, with the physical dimension [χ] = 1/resistance. An antisymmetric
pair of indices corresponds, in 4 dimensions, to 6 independent components. Thus,
χi jkl can be understood as a 6 × 6 matrix with 36 independent components.

We want to characterize the electromagnetic model spacetime by this response
tensor field χi jkl(x) with 36 independent components.3 This is the tensor density
defining the structure of spacetime. It transcends the metric and/or the connection.

We decompose the 6× 6 matrix into its 3 irreducible pieces. On the level of χi jkl ,
this induces [17, 35]

χi jkl = (1)χi jkl + (2)χi jkl + (3)χi jkl . (4.9)

36 = 20 ⊕ 15 ⊕ 1 .

3Schuller et al. [90] took theχi jkl -tensor density,which arises so naturally in electrodynamics, called
the tensor proportional to it “areametric”, and generalized it to n dimensions and to string theory. For
reconstructing a volume element, they have, depending on the circumstances, two different recipes,
like, for example, taking the sixth root of a determinant. From the point of view of 4-dimensional
electrodynamics, the procedure of Schuller et al. looks contrived to us.
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The third part, the axion part, is totally antisymmetric (3)χi jkl := χ[i jkl] = α εi jkl ,
with the pseudoscalar α, see also [83]. The skewon part is defined according to
(2)χi jkl := 1

2 (χ
i jkl − χkli j ). Under reversible conditions, (4.8) can be derived from

a Lagrangian, then (2)χi jkl = 0. The principal part (1)χi jkl fulfills the symmetries
(1)χi jkl = (1)χkli j and (1)χ[i jkl] = 0.

The local and linear response relation now reads

Hi j = 1

2

(
(1)χi jkl + (2)χi jkl + α εi jkl

)
Fkl , (4.10)

and, split in space and time [35, 37],

Da = (εab − εabc nc)Eb + ( γa
b + sb

a − δab sc
c)Bb + α Ba , (4.11)

Ha = (μ−1
ab − εabcm

c)Bb + (−γb
a + sa

b − δbasc
c)Eb − α Ea ; (4.12)

here εabc = εabc = ±1, 0 are the 3-dimensional Levi-Civita symbols. The 6 permit-
tivities εab = εba , the 6 permeabilities μab = μba were already known to Maxwell.
The 8magnetoelectric pieces γa

b (its trace vanishes, γc
c = 0)were found since 1961,

see Astrov [2]. Eventually, the hypothetical skewon piece [35] carries 3 permittiv-
ities na , the 3 permeabilities ma , and the 9 magnetoelectric pieces sab. Equivalent
response relations were formulated by Serdyukov et al. [91, p. 86] and studied in
quite some detail, see also de Lange and Raab [52].

Suppose we have as special case a vacuum spacetime described by a Riemannian
metric gi j . Then the response tensor turns out to be

χi jkl = (1)χi jkl = 2λ0
√−ggi[kgl] j and Hi j = λ0

√−gFi j , (4.13)

with the vacuum admittance λ0 ≈ 1/377Ω . Thus, we recover known structures,
and we recognize that the relation (4.8) represents a natural generalization of the
vacuum case. The metric gi j can be considered as some kind of a square root of the
electromagnetic response tensor χi jkl .

We should keep in mind that a local and homogeneous electromagnetic response
like (4.8) can be, if the circumstances require it, generalized to nonlocal and/or
to nonlinear laws. Examples of nonlocal laws have been proposed by Bopp and
Podolsky4 and by Mashhoon.5 Nonlinear laws are due to Heisenberg and Euler,6

Born and Infeld,7 and Plebański.8 Fresnel surfaces for the nonlinear case were found
byObukhov andRubilar [77], for example.More recently, Lämmerzahl et al. [51] and
Itin et al. [44] investigated electrodynamics in Finsler spacetimes. In the premetric

4See [28, Sect. 28-8].
5See [35, Sect. E.2.2].
6See [35, Sect. E.2.3].
7See [35, Sect. E.2.4].
8See [35, Sect. E.2.5].
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framework, this corresponds to a nonlocal constitutive law, see [44, Eq. (3.29)],
somewhat reminiscent of the Bopp-Podolsky scheme.

4.2.3 Propagation of Electromagnetic Disturbances

The obvious next step in evaluating the physics of our model of spacetime is
to look how electromagnetic disturbances propagate in this spacetime. One can
either consider the short wave-length limit of the electromagnetic theory, the WKB-
approximation, or one can study, as we will do here, the propagation of electromag-
netic disturbances with a technique developed by Hadamard; for a general outline,
see [96, Chap. C].

Hadamard describes an elementary wave as a process that forms a wave surface.
Across this surface, the electromagnetic field is continuous, but the derivative of
the field has a jump. The direction of a jump is given by the wave covector. The
subsequent integration produces the rays, with the wave vectors as tangents to rays,
see for our case [35, 40, 46, 74]. In the meantime, our methods have been improved,
see [3, 24, 27].

Out of the electromagnetic response tensor density we can define, with the help
of the covariant Levi-Civita symbol εi jkl = ±1, 0, the premetric “diamond” (single)
dual and the diamond double dual, respectively:

χ	 i j
kl := 1

2
χi jcdεcdkl ,

	χ	
i jkl := 1

2
εi jabχ

	 ab
kl = 1

4
εi jabχ

abcdεcdkl . (4.14)

The covariant Levi-Civita symbol carries weight −1 and χabcd weight +1. Thus, the
double dual has weight +1, too. Performing the double dual apparently corresponds
to a lowering of all four indices of χabcd—and this is achieved without having access
to a metric of spacetime.

After this preparation, it is straightforward to define the (premetric) 4th rank
Kummer tensor density, which is cubic in χ, as [3]

Ki jkl[χ] := χaibj 	χ	
acbdχ

ckdl . (4.15)

It has weight +1 and obeys the symmetry Ki jkl = Kkli j .

At each point in spacetime, the wave covectors qi = (ω,k) of the electromag-
netic waves span the Fresnel wave surfaces, which are quartic in the wave covectors
according to

Ki jkl[χ] qiq jqkql = K(i jkl)[χ] qiq jqkql = 0 . (4.16)

The Tamm-Rubilar (TR) tensor density [35, 84], with the conventional factor 1/6,
is defined by
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Gi jkl [χ] := 1

6
K(i jkl)[χ] = 1

6
χa(i j |b 	χ	

acbdχ
c|kl)d . (4.17)

It is totally symmetric and carries 35 independent components. By straightforward
algebra it can be shown that the axion field drops out from the TR-tensor:

Gi jkl [χ] = Gi jkl [ (1)χ + (2)χ] ; (4.18)

see in this connection also [39] and the references given there. The effect of the
skewon piece on light propagation has been studied in [75]. Ni [68] was the first to
understand that the axion field doesn’t influence the light propagation in the geomet-
rical optics limit. Note that (1)χ + (2)χ has 20+ 15 independent components, exactly
as G—probably not by chance.

Accordingly, the totally symmetric TR-tensor Gi jkl[χ], with its 35 independent
components, can, up to a factor, be observed by optical means, that is, the TR-
tensor—in contrast to theKummer tensor, as far aswe know—has a direct operational
interpretation.

4.2.4 Fresnel Wave Surface

The (generalized) Fresnel equation

Gi jkl[χ] qiq jqkql = 0 , (4.19)

determines a Fresnelwave surface. A trivial test for checking the correctness of (4.19)
is to substitute the response tensor for theMaxwell-Lorentz vacuum electrodynamics
(4.13)1 into the TR-tensor of (4.19). One finds straightforwardly (gi j qiq j )

2 = 0, that
is, two light cones that collapse onto each other. The decomposition of (4.19) into
space and time can be found in [35, (D.2.44)].

For illustration, following [3, 85], see also [41],wewill display a classical example
of such a surface. In Eqs. (4.11) and (4.12), we choose an anisotropic permittivity
tensor with three different principal values and assume trivial vacuum permeability,
whereas all magnetoelectric moduli—with the possible exception of the axion α—
vanish,

(εab) =
⎛
⎝ε1 0 0
0 ε2 0
0 0 ε3

⎞
⎠ and (μ−1

ab ) = μ−1
0

⎛
⎝ 1 0 0
0 1 0
0 0 1

⎞
⎠ . (4.20)

Substitution into the Fresnel equation yield the quartic polynomial

(α2x2 + β2y2 + γ2z2)(x2 + y2 + z2)

− [
α2(β2 + γ2)x2 + β2(γ2 + α2)y2 + γ2(α2 + β2)z2

] + α2β2γ2 = 0 , (4.21)
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with the 3 parameters9 α := c/
√

ε1, β := c/
√

ε2, γ := c/
√

ε3, and with c =
1/

√
ε0μ0 as the vacuum speed of light.

The corresponding surface is drawn in Fig. 4.1. As an example of a Fresnel surface
for a more exotic material, we provide one for the so-called PQ-medium of Lindell
[56]. It may turn out that this response tensor can only be realized with the help
of a suitable metamaterial, see [92]. Corresponding investigations are underway by
Favaro [25].

Let us shortly look back on what we have achieved so far: We have formulated the
Maxwell equation in a premetric way. For the response tensor only local and linear
notions are used, no distances or angles were mentioned nor implemented. Under
such circumstances, electromagnetic disturbances propagate in a birefringent way in
accordance with the Fresnel wave surfaces, such as presented in Figs. 4.1 and 4.2.

How can we now bring in distances and angles, which are concepts omnipresent
in everyday life? The answer is obvious, we have to suppress birefringence.

4.2.5 Suppression of Birefringence: The Light Cone

Looking at the figures, it is clear that we have to take care that both shells in each
Fresnelwave surface become identical spheres. Then light propagates like in vacuum.
For this purpose, we can solve the quartic Fresnel equation (4.19) with respect to
the frequency q0, keeping the 3-covector qa fixed. One finds four solutions, for
the details please compare [38, 50]. To suppress birefringence, one has to demand
two conditions. In turn, the quartic equation splits into a product of two quadratic
equations proportional to each other. Thus, we find a light cone gi j (x) qiq j = 0 at
each point of spacetime.

Perhaps surprisingly, we derived also the Lorentz signature, see [35, 42, 43]. This
can be traced back to theLenz rule,which determines the relative sign of the two terms
in the induction law, as compared to the relative sign in the Ampère-Maxwell law.
The Lorentz signature can be understood on the level of classical electrodynamics,
no appeal to quantum field theory, which is widespread in the literature, is necessary.

Globally in the cosmos, birefringence is excluded with high accuracy, see the
observations of Polarbear [1] and the discussion of Ni [71].

4.2.6 Axion, Dilaton, Metric

At the premetric level of our framework, besides the principal piece, first the skewon
and the axion fields emerged. Only subsequently the light cone was brought up. The
skewon field was phased out by our insistence of the vanishing birefringence in the
vacuum. Accordingly, the axion field and the light cone survived the suppression of
the birefringence.

9Here, in this context, α is not the axion field!.
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Fig. 4.1 Fresnel wave surface for the permittivities and the permeabilities of Eq. (4.20). It had
been drawn by Jaumann for an optically biaxial crystal, see Schaefer [85, p. 485]. This crystal has
the property of birefringence (or double refraction). The origin at x = y = z = 0 is the point in
3-dimensional space from where the wave covectors k originate. They end on the Fresnel wave
surface. Their modulus is proportional to the reciprocal of the phase velocity ω/k. In other words,
up to a sign, we have usually in one direction two different phase velocities. This is an expression
of the birefringence. Only along the optical axes I and II, we have only one wave covector. The
upper half depicts the exterior shell with the funnel shaped singularities, the lower half the inner
shell. The two shells cross each other at four points forming cusps
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Fig. 4.2 Fresnel wave surface for a PQ-medium of Lindell [56, 57]. Using Lindell’s dyadic version
of the Fresnel equation [54, 55], Sihvola [94] drew the Fresnel wave surface by using Mathematica.
Our image was later created by Favaro [25] in a similar way, again with Mathematica. For the wave
covector, we have qi = (ω, k1, k2, k3)

The light cone does not define the metric uniquely. Rather an arbitrary function
λ(x) is left over:

λ(x) gi j (x) qiq j = 0 . (4.22)

The light cone is invariant under the 15-parametric conformal group. The 4 proper
conformal transformation correspond to a reflection at the unit circle and, as such,
are of a nonlocal nature. As a consequence, if two frames are related to each other by
a proper conformal transformation and one frame is inertial, the other one is acceler-
ated with respect to the former one. Accordingly, there is an operational distinction
possible between a proper conformal and a dilation or scale transformation. Thus,
only the 11 parameter Weyl subgroup of the 15 parameter conformal group is based
on local transformations.

If we compare our result in (4.22) with vacuum response in (4.13), we recog-
nize, not forgetting the axion field, that we find the following response equation for
vanishing birefringence:

Hi j = [ λ(x)︸︷︷︸
dilaton

√−g gik(x) g jl(x) + α(x)︸︷︷︸
axion

εi jkl ] Fkl . (4.23)
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Because of the presence of the dilation within theWeyl group, it is natural to identify
the function λ(x) with the dilaton field.10

In the calculus of exterior differential forms, see [35], the twisted excitation 2-form
H = 1

2 εi jklHkldxi ∧ dx j and the untwisted field strength 2-form F = 1
2 Fi jdx

i ∧
dx j , together with the twisted current 3-form J = 1

3!εi jklJ ldxi ∧ dx j ∧ dxk , obey
the Maxwell equations dH = J and dF = 0. By means of the metric, we can
introduce the Hodge star � operator. Then the response relation (4.23) becomes even
more compact [26, 36]:

H = [λ(x) � + α(x)]F . (4.24)

Equations (4.23) and (4.24) represent the end result of investigating an electro-
magnetic spacetime model with local and linear response and without birefringence.
The three fields λ(x), gi j (x), and α(x) come up together with a reasonable interpre-
tation. At least in the way we defined them here, λ(x), gi j (x), and α(x) are all three
descendants of electromagnetism.

Aswe have argued in Sect. 1.5, the dilaton seems to be at home in theWeyl-Cartan
spacetime. Our results (4.23) or (4.24) are consistent with this expectation, that is,
we believe that these equations are valid in a Weyl-Cartan spacetime.

What are we told by experiments and observations? The axion A0 has not been
found so far, so we can provisionally put α = 0. Moreover, under normal circum-
stances, the dilaton seems to be a constant field and thereby sets a certain scale, that
is, λ(x) = λ0 = const, where λ0 is the admittance of free space, the value of which
is, in SI-units, ≈1/(377 Ω). Under these conditions, we are left with the response
relation of conventional Maxwell-Lorentz electrodynamics,

Hi j = λ0
√−g Fi j or H = λ0

�F . (4.25)

The possible generalizations are apparent.

4.3 Discussion

Gravity, coupling to all objects carrying energy-momentum, is a truly universal inter-
action. Electromagnetism is only involved in electrically charged matter. What is
curious and what we still do not understand is that the gravitational potential gi j

emerges in an electromagnetic context, that is, in studying electromagnetic dis-
turbances, we can suppress birefringence, and then the light cone emerges. And
the light cone is essentially involved in general relativity. In other words, we

10In the early 1980s, Ni [69] has shown the following: Suppressing the birefringence is a neces-
sary and sufficient condition for a Lagrangian based constitutive tensor to be decomposable into
metric+dilaton+axion in a weak gravitational field (weak violation of the Einstein equivalence prin-
ciple), a remarkable result. Note that Ni assumed the existence of a metric. We, in (4.23), derived
the metric from the electromagnetic response tensor density χi jkl .

http://dx.doi.org/10.1007/978-3-319-31299-6_1
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cannot formulate a general-relativistic theory of gravity unless some electric charge
is around: electromagnetic waves are a necessary tool for constructing general rela-
tivity.

Perlick is not concerned about it. He observes that [79] “...the vacuum Maxwell
equations are but one example that have the light cones of the spacetime metric
for their characteristics. The same is true of the Dirac equation, the Klein-Gordon
equation and others....” Yes, this is true. However, if a metric is not prescribed, we
cannot even formulate Dirac’s theory. In contrast, in premetric electrodynamics, if
a local and linear response tensor density is assumed, we can derive the metric, as
we discussed above. In this sense, electrodynamics is distinguished from Dirac’s
theory—and in this, and only in this sense, the premetric Maxwell equations are
more fundamental than the Dirac equation.

Accordingly, there seems to be a deep connection between electromagnetism and
gravity, even though gravity is truly universal, in contrast to electrodynamics.
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Chapter 5
Gravitational Theories with Stable (anti-)de
Sitter Backgrounds

Tirthabir Biswas, Alexey S. Koshelev and Anupam Mazumdar

Abstract In this article we will construct the most general torsion-free parity-
invariant covariant theory of gravity that is free from ghost-like and tachyonic insta-
bilities around constant curvature space-times in four dimensions. Specifically, this
includes the Minkowski, de Sitter and anti-de Sitter backgrounds. We will first argue
in details how starting from a general covariant action for the metric one arrives at an
“equivalent” action that at most contains terms that are quadratic in curvatures but
nevertheless is sufficient for the purpose of studying stability of the original action.
We will then briefly discuss how such a “quadratic curvature action” can be decom-
posed in a covariant formalism into separate sectors involving the tensor, vector and
scalar modes of the metric tensor; most of the details of the analysis however, will
be presented in an accompanying paper. We will find that only the transverse and
trace-less spin-2 graviton with its two helicity states and possibly a spin-0 Brans-
Dicke type scalar degree of freedom are left to propagate in 4 dimensions. This will
also enable us to arrive at the consistency conditions required to make the theory
perturbatively stable around constant curvature backgrounds.

5.1 Introduction

5.1.1 A Personal Note from Tirtho

Initially, it felt a bit strange to me to write about attempts to modify General Theory
of Relativity (GR) when we are celebrating one hundred very successful years of
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Einstein’s master piece, but then I remembered one of the fundamental tenants of
science, that we can never know whether a theory is correct, only that it is not yet
wrong! So, it is not so surprising after all that in spite of its success in these hundred
years, literally hundreds of attempts have been made to modify Einstein’s theory
of gravity. Having said that, GR has proved to be impossibly difficult to dislodge.
Perhaps, there is an emotional component to it, after all we all fell in love with GR
when we saw for the first time how a theory could replace the abstract notions of
force and “action at a distance” with a physically intuitive and beautiful geometric
picture that could explain gravity. And, it is always hard to extricate ourselves from
something that we love. While we now know how to construct countless theories
of gravity which preserves the same basic geometric structure and symmetries, for
instance, that the force of gravity is encoded in curvatures of space-time that can
be built from a metric, Einstein had also based his theory on deep philosophical
ideas, such as the Equivalence principle, that are harder to preserve, not that we are
obliged to. Theoretically speaking, if one at leastwants to preserve general covariance
without introducing any new fields beyond the metric, the modifications that one can
consider must involve higher derivative terms which tend to be plagued by ghost-like
or tachyonic instabilities. As if these were not enough impediments, experimentally,
GR has been tested to unprecedented levels of accuracy, and it passes with flying
colors. Indeed, GR has experienced success in explaining a multitude of different
phenomena starting from purely astronomical observations, such as the bending of
light near a massive object, to the cosmic expansion of our universe.

So, why do we keep searching for this elusive “better” theory so vigorously, why
can’t we just leave GR alone for a while? The answer is obvious to most theoreti-
cal physicists, notwithstanding its amazing success, GR is profoundly incomplete.
It is plagued by classical singularities in the ultraviolet (UV), as seen inside the
blackholes or at the Big Bang. GR suffers from quantum divergences that cannot be
renormalized and constructing a consistent quantum theory of gravity remains one of
the outstanding challenges of 21st century physics. To draw a contrast, while wemay
not be completely happy with the Standard Model of particle physics that describes
the three other fundamental forces of nature, for instance, it suffers from the hierar-
chy problem, doesn’t explain the origin of its twenty odd parameters, the fact of the
matter is that it is a perfectly consistent theory that has till date explained/predicted
experimental observations quite brilliantly.

On the infrared (IR) front we have also “recently” been greeted with a surprise, we
have found out that our universe at the largest scales is apparently able to defy gravity
and speed up its cosmic expansion. While this major inconvenience can be explained
away without having to tamper with GR just by invoking a cosmological constant,
albeit a disconcertingly small one, there is a school of thought that it is gravity that is
perhaps becoming weak at cosmic scales thereby allowing our universe to accelerate.

Thus, today it has become especially fashionable to try to modify GR in ways that
could address either the UV or IR problems/puzzles, but the reason, in my opinion,
why Carl’s work with Dicke is phenomenal is not just because they realized the
importance of going beyond GR and constructed in comprehensive detail their scalar
tensor model of gravity, but even more because they did so around a half a century
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ago!What is also remarkable is that this first attempt tomodifyGR is arguably still the
most fruitful of the modifications that has been considered in the literature. Indeed,
Brans-Dicke theories or generalizations thereof are what emerge from fundamental
theories such as Kaluza Klein theories, supergravity models and string theory after
compactifications of extra dimensions. It has been phenomenologically the most
successful, finding applications in inflation theory and various dark energy models
such as quintessence.

Unsurprisingly, I had worked on several different versions of Brans-Dicke theory
before I actually met Carl during my job interview at Loyola. Thankfully, I didn’t
know that I was actually meeting Carl Brans (somehow I missed his profile on the
Loyola physics faculty listings) because that would have completely overwhelmed
me. It was only halfway through the interview that I realized that I was talking to
someone who knew a lot more gravity than I did. Since then, we have become very
good friends, his good nature, his humility, and his commitment to rigor is something
that I cherish and I am inspired by. So, here is to Carl for showing the path that many
others like me could follow. Cheers!

5.1.2 Towards Consistent Theories of Gravity

There have been numerous attempts to formulate a quantum theory of gravity [1–3],
such as string theory (ST) [4], Loop QuantumGravity (LQG) [5], Causal Set [6], and
asymptotic safety [7]. In many of these approaches gravitational interactions yield
non-local operators where the interactions are spread out over a space-time region.
For instance, strings and branes are non-local objects, nonlocality also emerges in
string field theory [8], non-commutative geometry [9], p-adic strings [10], zeta
strings [11], and strings quantized on a random lattice [12, 13], for a review, see
[14]. A key feature of all these stringy models is the presence of an infinite series
of higher-derivative terms incorporating the non-locality in the form of an exponen-
tial kinetic correction [15–17], or equivalently modifying the graviton propagator by
an entire function [18–21]. Similar infinite-derivative modifications have also been
argued to arise in the asymptotic safety approach to quantum gravity [22].1

Only very recently, the concrete criteria for any covariant gravitational theory
(including infinite-derivative theories) to be free from ghosts and tachyons around
the Minkowski vacuum was obtained in Refs. [25, 26]. The class of action consid-
ered were assumed to be free from torsion, have a well defined Newtonian limit
and to be parity conserving. It was also shown in [25, 26], that one could construct

1Finite higher derivative theories suffer from Ostrogradsky instabilities, see Ref. [23]. However,
the Ostrogradsky argument relies on having a highest “momentum” associated with the highest
derivative in the theory, in which the energy comes as a linear term, as opposed to quadratic. In a
classical theory this would lead to instability and in a quantum theory, this would yield ghosts or
extra poles in the propagator. A classic example is Stelle’s 4th derivative theory of gravity [24],
which has been argued to be UV finite, but contains massive spin-2 ghost, therefore shows vacuum
instabilities.
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theories that have no extra poles in the propagators, so that there are no new degrees
of freedom, ghosts or otherwise. The only dynamically relevant degrees of freedom
are the massless gravitons; the graviton propagator, however, can be modified by a
multiplicative entire function. In particular, one can choose the entire function to cor-
respond to be a gaussian, which would suppress the ultraviolet (UV) modes possibly
making the theory asymptotically free [27], see also [18–21] for similar arguments
in slightly different models. We should point out that at a classical level it has already
been shown that in these infinite derivative gravity (IDG) models one can find cos-
mological solutions bereft of singularities [17, 25, 28, 29], as well as non-singular
static, spherically symmetric metrics [29–31].2 These classical results corroborates
the idea that IDG theories may provide us with an asymptotically safe/free theory of
gravity, for a review on these models, see [32].

The aim here is to go beyond the analysis around the Minkowski vacuum. We
would like to find a robust algorithm to construct the most general action of gravity
that is “consistent” around constant curvature maximally symmetric space-times,
viz. de Sitter (dS) and anti-de Sitter (AdS) and Minkowski. The analysis in [25]
essentially gave us constraints that quadratic curvature terms (such as R2, R�R, etc.)
must satisfy in order for the theory to be free from instabilities around theMinkowski
space-time. However, the higher curvature terms remained completely arbitrary. If
however, we believe that the “ultimate” theory of gravity must be consistent on any
background, then requiring that it be so should provide constraints on the higher
curvature terms. The ultimate hope is that this may provide us with new insights
on how to construct a consistent and finite quantum theory of gravity. Looking at
dS/AdS backgrounds is a first step towards this process where we will start with a
gravitational action that is covariant, parity preserving, torsion-free and possesses a
well defined Newtonian limit. Our goal will be to study the quadratic fluctuations
around dS and AdS backgrounds. In this article we will argue that for this purpose it
is sufficient to study the fluctuations around an “equivalent” action which has terms
that are atmost quadratic in curvatures. This is a crucial simplificationwhichmakes it
possible to study the dynamics of linearized fluctuations around dS/AdS/Minkowski
backgrounds for a very general class of covariant gravity theories.

To briefly outline our analysis, we note that in 4 space-time dimensions, a priori,
there are a total 10 independent degrees of freedom in the metric, out of which two
degrees of freedom are associated with a massless spin-2 field (tensor mode), two
more degrees of freedom with a massless spin-1 field (vector mode), and two spin-0
fields (scalar modes), along with 4 gauge degrees of freedom. In a companion paper,
using a covariant formalism we were able to show that in the equivalent action (and
this really means for any action by our previous argument) the dangerous ghost-like
vector mode and one of the scalar modes are absent from the theory, as one might
expect from Bianchi identities. Further, following a rather elaborate calculation,
in [37] we were also able to decompose the equivalent quadratic curvature action

2The action of Ref. [25] also provides the UV complete Starobinsky inflation [33–35]. Also, it was
noted that the gravitational entropy for this action, for a static spherically symmetric background,
gets no contribution from the quadratic curvature part [36].
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into the remaining propagating degrees of freedom, the spin-2 gravitation and the
spin-0 Brans-Dicke scalar3 and obtain the conditions under which the tensor and the
scalarmode can bemade ghost and tachyon free in dS/AdS.Whilewe recommend the
readers to our companion paper [37] for all the details of the derivations leading up to
the consistency conditions, in this article wewill briefly outline the important results.
Indeed, our results will match the Minkowski space-time analysis of Ref. [29], when
we let the cosmological constant vanish.

Let us now begin our discussion by obtaining the most general form of the grav-
itational action that is relevant for studying the classical and quantum properties of
the fluctuations around dS/AdS backgrounds.

5.2 Higher Derivative Actions on (anti-)de Sitter
Space-Times

5.2.1 Obtaining the General Form of the Covariant
Derivative Structure

Our aim in this section is to arrive at the most general form of the gravitational action
that is relevant for studying classical and quantum properties of the fluctuations
around constant curvature backgrounds. While this was already investigated for the
Minkowski space-time in 4 dimensions in Ref. [25], here we generalize the analysis
to include dS/AdS backgrounds. Now, for investigating theoretical and observational
consistencies of gravitational models, often it is sufficient to consider quadratic fluc-
tuations around relevant background metrics, i.e., only keep O(h2) terms in the
action, where hμν corresponds to fluctuations around the background metric, ḡμν :

gμν = ḡμν + hμν . (5.1)

In this article we will restrict ourselves to constant curvature, maximally symmetric
space-times, i.e., ḡμν is dS/AdS or theMinkowski metric. Keeping this in mind, let us
first identify themost general form of a covariant action that we need to consider if we
are only interested in keeping theO(h2) terms in the action. Conversely, this will tell
us how to obtain theO(h2) action starting from any arbitrary covariant metric theory
of gravity. Our arguments will closely resemble what was discussed for Minkowski
space-times in [25, 26] (see [36] for its generalization to any dimensions), but they
will become more intricate for dS/AdS backgrounds.

As was first noted in [25], any covariant action with a well defined Minkowski
limit can be written as

3Although, Brans and Dicke formulated their theory by adding a new nonminimally coupled scalar
field, as is well known, this scalar degree of freedom can be incorporatedwithin themetric degrees of
freedom by replacing R → F(R) in the gravitational action [38]. This is the approach that naturally
emerges in our analysis.
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S =
∫

d4x
√−g

[
P0 +

∑
i

Pi

∏
I

(Ôi IQi I )

]
(5.2)

where P,Q’s are functions of the Riemann and the metric tensor, while the differ-
ential operators Ô’s are made up solely from covariant derivatives, and contains at
least one of them. Essentially, any action which admits a Taylor series expansion
in covariant derivatives is included in our discussion. However, nonlocal operators
such as �−1 (see for instance [39]) falls outside the purview of our analysis.

First of all, it is easy to see that even if the Q’s are complicated functions of
the Riemann tensor to begin with, one can always use simple rules of calculus to
break up ÔIQI into a sum of terms where each term is of the form

∏
J (ÔJRJ ),

where RJ ’s now represent just the Riemann tensors. We note in passing that if a
metric contraction is present inside the Q’s they can be moved to P as the metric is
annihilated by the covariant derivatives, ∇μgνρ = 0. In other words, without loss of
any generality, we can write our action in the form

S =
∫

d4x
√−g

[
P0 +

∑
i

Pi

∏
I

(Ôi IRi I )

]
. (5.3)

Purposely, we have not specified the index structure of the differential operators and
the curvature tensors. Themost useful property of the maximally symmetric constant
curvature space-times is that the Riemann tensor can be completely expressed in
terms of the metric and therefore the covariant derivatives annihilate the Riemann
tensor and any functions thereof. Mathematically,

ˆ̄OR̄ = ˆ̄OP̄ = 0 (5.4)

This, in turn, implies that at most we need to consider terms which contain two Ô’s:
If one has a term like ÔR, then if both Ô and R take on the background curvature
values term must vanish. This implies that we need to vary at least one of them, and
since we are only interested in quadratic variations, at most we can accommodate
two such variations. The relevant action then reduces to

S =
∫

d4x
√−g

[
P0 +

∑
i

P1i (Ô1iR1i )(Ô2iR2i ) +
∑
i

P2i (Ô3iR3i )

]
(5.5)

Let us simplify the second term. First consider the situation that P1 is just a con-
stant. In this case, applying repeated integration by parts one can convert the term
into the form of the last term. So, P1 must contain Riemann tensors. In this case,
schematically: ∫

d4x
√−gP1i (Ô1iR1i )(Ô2iR2i )
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= −
∫

d4x
√−g

(
Ô1i

∇ R1i

)[
(∇P1i )(Ô2iR2i ) + P1i (∇Ô2iR2i )

]
.

The first term is a product of three operators (as long as Ôi1 contains more than one
derivatives) and hence do not contribute to the quadratic fluctuations, and one can
continue to integrate by parts the “second” terms to keep reducing the number of
derivatives from Oi1. This process can continue till we are left with only a single
covariant derivative in Ôi1. Thus, the relevant action reduces to the form

S =
∫

d4x
√−g

[
P +

∑
[P(∇R)(ÔR) + PÔR]

]
. (5.6)

We have suppressed the indices, but remind the readers that P’s are just made up of
the metric and Riemann tensors, while Ô’s are made up of covariant derivatives.

It is convenient tomake a last rearrangement. SinceP,R contains an even number
of indices, the Ô appearing in the third term must contain at least two covariant
derivatives. Integrating by parts it is then trivial to see that this term can always be
recast as the second. Thus our relevant action is of the form

S =
∫

d4x
√−g

[
P0 +

∑
i=1

Pi (∇R)(ÔiR)

]
. (5.7)

In other words, given any arbitrary higher derivative action which possesses a well
defined Minkowski limit, R → 0, we can always obtain an action of the form (5.7)
plus additional terms which do not contribute to the quadratic action involving hμν .

5.2.2 Constant Curvature Background Solutions

Before proceeding any further, we need to determine the vacuum solution around
which we want to perturb our action. This, in particular will also tell us whether (5.7)
provides us with an dS/AdS orMinkowski solution. For this question we need to look
at linear variations of the action. However, since all the terms except the first contain
covariant derivatives acting on two curvatures, and covariant derivatives annihilate
the background curvatures, linear variations of these termsmust vanish. Thus, we are
only left to consider the linear variation of the first term, i.e., δ(

∫
d4x

√−gP0(R)).
This has already been discussed in previous literature, but for completeness, below
we provide a discussion and the main result.
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Firstly, it becomes useful from this point onwards to consider P0 as a function of
the scalar curvature, the traceless Ricci tensor (we will refer to this as the TR tensor
from here on)

Sμν = Rμν − 1

4
Rgμν ,

and the Weyl tensor

Cμ
ανβ = Rμ

ανβ − 1

2
(δμ

ν Rαβ − δ
μ
β Rαν + Rμ

ν gαβ − Rμ
βgαν) + R

6
(δμ

ν gαβ − δ
μ
βgαν) ,

as the latter two are traceless and vanish on dS/AdS/Minkowski space-times.
The key point is that since the Lagrangian is a scalar quantity, in all the scalar

polynomials that appear in the Lagrangian there cannot be any term that contains a
single TR or Weyl tensor, there has to be at least two TR tensors, or two Weyl, or
one Weyl plus one TR tensor. Otherwise, their indices have to be contracted with
the metric tensor which makes them vanish. This means that while taking a single
variation of any such scalar polynomial, there will always remain another TR or
Weyl tensor which then has to take on the background value and hence must vanish.
To conclude, we only need to worry about the function

PR(R) = P0(R, S = 0,C = 0) , (5.8)

and the variation of the action (5.7) reduces to

δS =
∫

d4x
√−ḡ

[
h

2
PR(R) − h

4
P ′

R(R)R

]
, (5.9)

where we have dropped some total derivatives. Thus the background curvature, R̄,
is determined by the equation

2PR(R̄) − R̄P ′
R(R̄) = 0 . (5.10)

5.2.3 Classification Based on Quadratic Curvature Action

We are now going to perform a final simplification or rather a classification: For a
given action of the form (5.7), we will attempt to find an action which has a much
simpler form, but which nevertheless gives the same quadratic (in hμν) action as that
of the original action. It will become evident that several different actions of the form
(5.7) will have the same simple equivalent action. Also, if a particular action admits
several background curvatures, i.e., (5.10) has more than one solution, then it will
have different equivalent actions depending upon the background about which one
wants to find the quadratic action.
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Havingmade these clarifications, let us proceed.Wefirst observe thatwhile obtain-
ing the quadratic action for the fluctuations, δ

√−g or δPi , cannot contribute in the
variation of the second term in (5.7), else the covariant derivatives will annihilate the
background Riemann tensors. Thus, the quadratic variation must be given by

δS =
∫

d4x

[
δ(

√−gP0) +
∑
i=1

√−ḡPi (R̄)δ(∇R)δ(ÔiR)

]
. (5.11)

Now, the background Riemann tensor can be written completely in terms of the
metric, Pi (R̄) = P̃i (ḡ). Then the terms involving Pi ’s can be simplified as follows:

∫
d4x

√−ḡPi (R̄)δ(∇R)δ(ÔR) =
∫

d4x
√−ḡδ(∇R)δ(P̃i (ḡμν)ÔR)

≈
∫

d4x
√−ḡδ(∇R)δ(P̃i (gμν)ÔR) =

∫
d4x

√−ḡδ(∇R)δ(ÕR) (5.12)

What we have shown here is that the quadratic variation of any action of the form
(5.7) is exactly the same as the variation coming from an equivalent action of the
form

S =
∫

d4x
√−g

[
P +

∑
(∇R)(ÕR)

]
, (5.13)

where Õ can be obtained from Ô according to the prescription above. Therefore, for
the purpose of understanding the linearized fluctuation dynamics, we need only to
consider actions of the form (5.13).

Now, these actions were precisely the type of actions that were considered in [25,
26], and the Bianchi identities along with the commutativity of the covariant deriva-
tives (we are considering a torsionless theory) enable one to recast it in the following
rather simple form:

S =
∫

d4x
√−g[P0(R) + RF1(�)R + SμνF2(�)Sμν + CμνλσF3(�)Cμνλσ] .

(5.14)
where the Fi ’s are of the form

Fi (�) =
∞∑
n=1

ci,n�n

We note that although we continue to use the same symbol,P0, this term can actually
change as one goes over from (5.13) to (5.14). More details including illustrative
examples will be provided in the companion paper [37].

To complete the reduction, let us focus on the variation of theP0(R) piece, see [40,
41] for similar discussions and conclusions. Once more, since both the Weyl and TR
tensors vanish on Minkowski/dS/AdS, we can at most have two of those. Moreover,
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we also can’t have terms containing a single symmetric or Weyl tensor, since their
indices have to necessarily be contracted which makes them vanish, and by the same
token a mixed term with one symmetric and oneWeyl also cannot be non-vanishing.
In other words, the only relevant part of P0 in action (5.14) that survives is of the
form:

P0 = PR(R) + PS(R)SμνS
μν + PC(R)CμνρσC

μνρσ , (5.15)

where

PS(R) = 1

2

(
∂2P0

∂Sμν∂Sμν

)
S=C=0

and PC(R) = 1

2

(
∂2P0

∂Cμνρσ∂Cμνρσ

)
S=C=0

(5.16)
Finally, for the S- and C-terms the quadratic variations must originate from S and
C tensors, so the R can take on the background value, R̄. It is also obvious that the
PR(R) reduces around the dS/AdS/Minkowski background to

PR → M2
P

2
R + c1,0R

2 − Λ,

where the parameters of the equivalent action are given by

M2
P = 4

R̄
[PR(R̄) − 1

2
R̄2P ′′

R(R̄)], c1,0 = 1

2
P ′′
R(R̄), Λ = PR(R̄) − 1

2
R̄2P ′′

R(R̄) = M2
P R̄

4
.

(5.17)

The last inequality was indeed expected in accordance with (5.10).
Thus, the equivalent action involving the non-derivative terms are given by

S =
∫

d4x
√−g

[
M2

P

2
R + c1,0R

2 + c2,0SμνS
μν + c3,0CμνλσC

μνλσ − Λ

]
,

(5.18)
where

c2,0 = PS(R̄) , c3,0 = PC(R̄) , (5.19)

and the other coefficients are given by (5.17).
To summarize, we have shown that in order to investigate quadratic fluctuations

around dS/AdS/Minkowski space-times in a generic gravitational theory, all we need
to focus our attention on are actions of the form:

S =
∫

d4x
√−g

[
M2

P
2

R − Λ + RF1(�)R + SμνF2(�)Sμν + CμνλσF3(�)Cμνλσ

]
,

(5.20)
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where we have now redefined the F’s to include the constant terms:

Fi (�) =
∞∑
n=0

ci,n�n . (5.21)

We point out that typically one expects the higher derivative terms to become impor-
tant at some scale M ≤ Mp which can be made explicit by rescaling the ci,n’s and
redefining Fi (�) → Fi (�/M2). This is especially useful for constructing phenom-
enological models and will be discussed in [37], here though we will work with
(5.21).

In the process of arriving at the equivalent action (5.20) we have also provided the
algorithm on how to obtain the coefficients, ci,n’s, starting from a generic covariant
action that is regular asR → 0. Thus given any action of the form (5.7) (and indeed
(5.2)) we can determine an action of the form (5.20) that is identical to the general
action up to quadratic order in fluctuations around dS/AdS/Minkowski background. It
is worth emphasising that all the coefficients ci ’s depend on the background curvature
parameter R̄, which is determined according to (5.10) from the original action.

Finally, we note that the Gauss Bonnet scalar being a topological invariant in four
dimensions allows us to set one of the coefficients among c1,0, c2,0, c3,0 to zero, if we
want to. This completes the derivation of the equivalent quadratic action in terms of
the curvature tensors. In the next section we will provide the perturbative structure
of action (5.20) and the conditions for having a ghost and tachyon free spectrum
around the dS/AdS space-times.

5.3 Quadratic Fluctuations Around dS/AdS/Minkowski
Background

5.3.1 Action and Field Equations

The goal of this subsection is to obtain theO(h2) action starting from the equivalent
action (5.20) in a form that is suitable to address issues of stability and consistency.
For this purpose, it becomes imperative that we not only find an expression for the
O(h2) Lagrangian, but also that we decouple the Lagrangian into separate sectors
containing the different physical degrees of freedom of the metric, and present it in
a form where we can read off the corresponding propagators. So, we will have to
decompose the metric tensor into its 10 degrees of freedom:

hμν = h⊥
μν + ∇(μA

⊥
ν) + (∇μ∇ν − 1

4
gμν�)B + 1

4
gμνh , (5.22)
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where h⊥
μν represents the transverse traceless massless spin-two graviton,

∇μh⊥
μν = gμνh⊥

μν = 0 , (5.23)

containing 5 degrees of freedom, A⊥
μ is the transverse vector,

∇μA⊥
μ = 0 , (5.24)

accounting for three degrees of freedom, and the two scalars B and h make up the
remaining two degrees of freedom. We should mention that in all the calculations
that follow we will be using the − + ++ signature for the metric.

Our next step is to substitute (5.22) into (5.20) and simplify the Lagrangian to the
point where we obtain decoupled actions for the different modes. It turns out that
such a simplifying and decoupling process provides an extra-ordinary algebraic and
technical challenge the details of which we provide in our companion paper [37].
Here we present the main physical arguments and results. As noted earlier, a-priori,
the metric represents a massless spin-2, a massless spin-1, and two scalar fields;
three gauge degrees reduce the spin two field to the two spin-two helicity states,
while another gauge freedom can be used to eliminate the time like component of
the vector to again leave us with the two spin-one helicity states.

Now, it is expected, and has been explicitly verified around the Minkowski back-
ground [25, 26], that only the spin-2 graviton and one of the scalar fields should
survive. Indeed, one finds that when one substitutes the decomposed metric (5.22)
into the action (5.20), all the terms involving the vector field, A⊥

μ , automatically drops
out. Also, only one combination of the two scalar fields,

φ ≡ �B − h , (5.25)

survive.
After a tour-de-force calculation, we obtain a radically simplified action:

S = S0 + S2 + O(h3) , (5.26)

where

S2 ≡ 1

2

∫
dx4

√−ḡ h̃⊥μν

(
� − R̄

6

) [
1 + 4

M2
p

c1,0 R̄ + 2

M2
p

{(
� − R̄

6

)
F2(�)

+ 2

(
� − R̄

3

)
F3

(
� + R̄

3

)}]
h̃⊥

μν , (5.27)
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and

S0 ≡ −1

2

∫
dx4

√−ḡφ̃

(
� + R̄

3

)[
1 + 4

M2
p

c1,0 R̄ − 2

M2
p

{
6

(
� + R̄

3

)
F1(�)

+ 1

2
�F2

(
� + 2

3
R̄

)}]
φ̃ . (5.28)

Here, we have introduced canonical fields

h̃⊥
μν = 1

2
Mph

⊥
μν and φ̃ =

√
3

32
Mpφ . (5.29)

It is now straight forward to obtain the field equations

(
� − R̄

6

) [
1 + 4

M2
p

c1,0 R̄ + 2

M2
p

{(
� − R̄

6

)
F2(�)

+ 2

(
� − R̄

3

)
F3

(
� + R̄

3

)}]
h̃⊥

μν = κτμν

−
(

� + R̄

3

) [
1 + 4

M2
p

c1,0 R̄

− 2

M2
p

{
6

(
� + R̄

3

)
F1(�) + 1

2
�F2

(
� + 2

3
R̄

)}]
φ̃ = κτ

(5.30)

where τμν, τ represents the appropriate stress-energy sources for the gravitational
fields. We have performed several checks of the above result in [37].

5.3.2 Consistency Conditions

The condition for the theory not to have any ghost/tachyon-like states around the
Minkowski space-time was obtained in [25, 26] by looking at the propagators.
Although, essentially the propagators are the inverses of the field equation oper-
ators, obtaining its precise form is somewhat of a technical exercise on dS/AdS
space-times, see for instance [42, 43] for a discussion. For us, all we need to care
about is the number and nature of the zeroes in the field equation operators for the
tensor and scalar modes respectively:
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T (R̄,�) ≡
(

� − R̄

6

)[
1 + 4R̄

M2
p

c1,0 + 2

M2
p

{(
� − R̄

6

)
F2(�)

+ 2

(
� − R̄

3

)
F3

(
� + R̄

3

)}]
,

S(R̄,�) ≡ −
(

� + R̄

3

)[
1 + 4R̄

M2
p

c1,0 − 2

M2
p

{
2(3� + R̄)F1(�)

+ 1

2
�F2

(
� + 2

3
R̄

)}]
. (5.31)

To see this, let us first look at the GR operators:

TGR(R̄,�) ≡
(

� − R̄

6

)
,

SGR(R̄,�) ≡ −
(

� + R̄

3

)
. (5.32)

As is evident, the function, TGR, has a zero at � = R̄/6, corresponding to a pole in
the propagator that is known to represent the massless graviton state, the “artificial”
mass is simply an artifact of the non-zero curvature of dS/AdS. SGR also possesses a
zero at� = −R̄/3, and a corresponding pole in the propagator. As in theMinkowski
case, the ghost-like scalar state (note the negative sign in front of the SGR operator) is
again needed to cancel the unphysical longitudinal degrees of freedom in the graviton
field.

Let us now focus on the general T (R̄,�), S(R̄,�) functions. Firstly, we recog-
nize the presence of the zeroes representing the graviton and scalar modes that are
present in normal GR. Secondly, just as in the Minkowski case, to ensure that we do
not introduce a Weyl ghost in the tensorial mode, we must impose that there are no
extra zeroes in T (R̄,�), or equivalently,

a(R̄,�) ≡ 1 + 4R̄

M2
p

c1,0 − 2

M2
p

[(
� − R̄

6

)
F2(�) + 2

(
� − R̄

3

)
F3

(
� + R̄

3

)]

(5.33)
should not have any zeroes. Finally, again as in the Minkowski case, the scalar
function, S(R̄,�) can have one extra zero, as that would correspond to a pole in the
propagator which will have the correct residue sign. Indeed this zero corresponds to
the Brans-Dicke scalar degree of freedom. Thus, the function,

b(R̄,�) ≡ 1 + 4R̄

M2
p

c1,0 + 2

M2
p

[
2(3� + R̄)F1(�) + 1

2
�F2

(
� + 2

3
R̄

)]
,

(5.34)
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can at least have a single zero. If b(R̄,�) does contain a zero, then one has to ensure
that the resulting scalar degree of freedom is not tachyonic:

If b(R̄,m2) = 0 then m2 > − R̄

3
. (5.35)

Several comments are now in order:

• The conditions that we obtained obviously reduces to the conditions that were
previously enumerated for the Minkowski case in [25, 26] when Λ → 0.

• It is appropriate to point out a particular special case where F2 = F3 = 0 and
F1 = c1,0, a constant. In this case the tensor mode does not get any correction
from it’s GR counterpart, but the scalar propagator picks up an extra pole. This is
indeed the Brans-Dicke scalar mode that appears in the Starobinsky inflationary
model [44].

• It should be apparent that both the scalar and tensor propagators depend on the
background curvature, and thus if a particular model of gravity admits more than
one constant curvature background, it is possible that the theory is consistent on
one background and not the other. To view it differently, requiring that a theory of
gravity be consistent around all possible backgrounds may be a powerful way to
narrow down the list of acceptable theories of gravity.

5.4 Discussion

To summarize, here we have provided a formalism on how to find a quadratic (in cur-
vatures) order action of gravity that is equivalent to any given covariant gravitational
action as far as linearized fluctuations are concerned around constant curvature max-
imally symmetric space-times. As elaborated in [37], while perturbing the quadratic
curvature action around dS/AdS/Minkowski metrics we found that only the spin-2
massless graviton and possibly a spin-0 Brans-Dicke scalar can propagate in these
backgrounds.We also enumerated the conditions underwhich the theory can bemade
perturbatively stable, i.e. the conditions for a given theory to be free from ghosts and
tachyons. Our results match the limits of Minkowski space-time [44] for quadratic
curvature gravitywith infinite derivatives, as well as the limit of pure Einstein-Hilbert
action on dS/AdS backgrounds.

While our analysis can be applied to obtain viable cosmological models involving
inflationary or bouncing cosmology as well as themodified gravitymodels motivated
by the cosmic speed-up problem, it also provides encouraging signs for efforts in
constructing a more fundamental gravity model which is bereft of the UV problems
of GR. Classically, for the IDG theories, the next big step would be to be able to
compute perturbations around cosmological and spherically symmetric solutions,
because that would help us analyse a wide array of phenomenological applications
that have made GR such a success. On the quantum front, while toy models have
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provided us with some encouraging results regarding finiteness of higher loops in
infinite derivative theories [27], see also [13, 45, 46], whether there is any chance that
the higher loops can be made finite in IDG theories remains an intriguing question
for future!
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Chapter 6
Rotating Boson Stars

Eckehard W. Mielke

Abstract Recently, experimental evidence has been accumulated that fundamental
scalar fields, like the Higgs boson, exist in Nature. The gravitational collapse of such
a boson cloud would lead to a boson star (BS) as a new type of a compact object.
Similarly as for white dwarfs and neutron stars (NSs), there exist a limiting mass,
the Kaup limit, below which a BS is stable against complete gravitational collapse
to a black hole (BH). Depending the self-interaction of the basic scalars, one can
distinguish mini-, axi-dilaton, soliton, charged, oscillating and rotating BSs. Their
compactness normally prevents a Newtonian approximation, however, modifications
of general relativity (GR), as in the case of Jordan-Brans-Dicke theory,would provide
them with gravitational memory. Balance between the quantum pressure due to
Heisenberg’s uncertainty principle and gravity permits the existence of a completely
stable branch of spherically symmetric configurations. Moreover, as a coherent state,
like the vortices of Bose-Einstein condensates, it allows for rotating solutions with
quantized angular momentum. In this review, we concentrate on the fascinating
possibility of weakening the BH uniqueness theorem for rotating configurations
and soliton-type collisions of excited BSs. (Dedicated to Carl Brans’ 80th birthday,
the author’s professor at Princeton in the fall of 1973, then lecturing on complex
relativity).

6.1 Introduction: From Geons to Boson Stars

Scalar fields are the basic states in Wigner’s classification of irreducible unitary
representations of the Poincaré group of relativity. They are postulated as variable
gravitational ‘constant’ 1/G in Jordan-Brans-Dicke (JBD) theory [2], in the Brout-
Englert-Higgs mechanism [16] of spontaneous symmetry breaking (SSB) and, as
well, in inflationary cosmology. Such proposals of the late 50’s arose from the

E.W. Mielke (B)
Departamento de Física, Universidad Autónoma Metropolitana Iztapalapa,
Apartado Postal 55-534, C.P. 09340 Mexico, D.F., Mexico
e-mail: ekke@xanum.uam.mx

© Springer International Publishing Switzerland 2016
T. Asselmeyer-Maluga (ed.), At the Frontier of Spacetime,
Fundamental Theories of Physics 183, DOI 10.1007/978-3-319-31299-6_6

115



116 E.W. Mielke

fundamental question, why objects have mass, i.e. in a broad sense [17, 27, 33],
is GR founded (Fig. 6.1) on a Machian type principle?

The Higgs particle, as an excitation of SSB, is a necessary ingredient of the
standard model in order to understand mass generation, and may also decay into
dark matter particles. Thus the recent discovery [32] of the Higgs boson of mass
mh

∼= 125 GeV/c2 at the Large Electron Positron (LEP) collider at CERN gives this
strand of investigation a fresh impetus.

Mathematically, a boson star (BS) is a fascinating soliton-like object built out
of a huge number N of scalar particles in a coherent state with a self-generated
gravitational confinement.

It started in 1955 with Wheeler’s geons being unstable localized solutions of the
coupled Einstein-Maxwell equations, like a ball lightning (in German: Kugelblitz)
[6]. Then, the electromagnetic field was replaced by some tentative scalar field in
the pioneering works [10, 18, 35] of Feinblum and McKinley 1968, Kaup 1968, as
well as Ruffini and Bonazzola in 1969.

In a nutshell, BSs represent soliton-type regular configurations composed of a
complex, massive scalar field which are confined by their self-generate gravitational
field. They are localized objects with a finite mass M and particle number N . Its
associated U (1) symmetry gives rise to a conserved current and conserved charge

Fig. 6.1 Carl Brans together with his colleagues and the author (middle) at the entrance of LIGO,
Louisiana, December 7, 2001
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Q = eN in terms [34] of the particle number N . The term mini-BS was coined [21]
by T.D. Lee in 1989 and, in the form of mini-Machos [30], has been resurrected as
candidates for dark matter (DM).

6.2 Self-Gravitating Scalar Field

The Lagrangian density of gravitationally coupled complex scalar field Φ reads

LBS =
√| g |
2κ

{
R + κ

[
gμν(∂μΦ

∗)(∂νΦ) − U (|Φ|2)
]}

. (6.1)

Here κ = 8πG is the gravitational constant in natural units, g the determinant of the
metric gμν , and R := gμν Rμν the curvature scalar with Tolman’s sign convention.

Using the principle of variation, one finds the coupled Einstein-Klein-Gordon
equations

Gμν := Rμν − 1

2
gμν R = −κTμν(Φ), (6.2)

(
� + dU

d | Φ |2
)

Φ = 0 , (6.3)

where

Tμν(Φ) = 1

2

[
(∂μΦ

∗)(∂νΦ) + (∂μΦ)(∂νΦ
∗)

]
− gμνL(Φ)/

√| g | (6.4)

is the stress-energy tensor and � := (
1/

√| g |) ∂μ

(√| g |gμν∂ν

)
the generally

covariant d’Alembertian.

6.2.1 Maximal Mass of Stable BS

Particular choices for the self-interacting potential are

• Mini-BS with merely a mass term

U (|Φ|) = m2Φ�Φ = m2|Φ|2 −→ Mcrit ∝ M2
Pl

m
(Kaup limit), (6.5)

where MPl = √
�c/G is the Planck mass. Stable configurations exist only below

the Kaup limit Mcrit ≤ 0.633MM2
Pl/m. This critical mass corresponds to an

effective radius of RBS = 2.47RS = 2.47 × 2G M/c2, and total particle number
Ncrit ∼ (MPl/m)3. For 1 GeV constituents, a mini-BS has MBS ∼ 10−19M�, i.e.
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a tiny fraction of a solar mass and only RBS ∼ 1 femto m. Therefore, it may not
be realistic DM candidate.

• A repulsive quartic interaction [7]

UCWS (|Φ|) = m2|Φ|2 + λ|Φ|4 −→ Mcrit ∝ M3
Pl

m2
(Chandrasekhar type limit)

(6.6)
rescales [30] its critical mass till Mcrit ≈ 0.1

√
λ

(
GeV/mc2

)2
. For λ = 1, and

m p ∼ 1GeV/c2 to about one solar mass.
• A soliton type interaction

U (|Φ|) = λ|Φ|2 (|Φ|4 − a|Φ|2 + b
) −→ Mcrit ∝ M4

Pl

m3
(6.7)

similarly to a Φ6 interaction [28].
• Another Φ6 potential is

ULE(φ) = m2

2
φ2(1 − χφ4), (6.8)

inspired by the Lane-Emden (LE) equation of astrophysics.

6.2.2 Conserved Noether Charge

Due to the U (1) symmetry of a complex scalar field, the global phase invariance
φ → φeiα leads to Noether’s current density

jμ := 1

2

√| g | gμν[Φ∗∂νΦ − Φ∂νΦ
∗] (6.9)

which is locally conserved, i.e., ∂μ jμ = 0. In order to obtain a finite boson number

N :=
∫

j0dv (6.10)

or charge Q = eN , the field should have only a time-dependence in the phase of the
scalar field

Φ (t, r) = P (r) e−iωt spherically symmetric BS (6.11)

Φ (t, r, θ,ϕ) = P (r, θ) e−iωt−iaϕ rotating BS with quantized rotation (6.12)

The normalized energy ω = E/� determines the number of bosons bound in the
star, whereas a is the azimuthal quantum number. BSs do not possess a sharp radius:
Instead, an exponential fall-off of the scalar field prevails, similarly as the density of
the Sun modeled by the Lane-Emden equation.
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Only an effective radius can be defined for BS, but the asymptotic Schwarzschild
metric gives a general lower bound on the radius of any type of object, namely
R > M/M2

Pl in natural units.

6.2.3 Spherically Symmetric Solitons

The stationarity Ansatz
Φ(r, t) = P(r)e−iωt (6.13)

(and its complex conjugate) describe a spherically symmetric bound state, when
subjected to the spherical symmetry line-element

ds2 = eν(r)dt2 − eλ(r)

[
dr2 + r2

(
dθ2 + sin2 θdϕ2

)]
. (6.14)

This isotropic metric is static and the functions ν = ν(r) and λ = λ(r) depend only
on the Schwarzschild type radial coordinate r . Thus there arises a systemof three cou-
pled nonlinear equations for the radial parts of the scalar and the strong gravitational
tensor field.

The Klein-Gordon equation reduces to the radial Schrödinger equation

[
∂r∗2 − Veff(r

∗) + ω2 − m2
]

P = 0 (6.15)

for the radial function P(r) := Φeiωt . The curved spacetime enters essentially via
an effective gravitational potential

Veff(r
∗) = eνdU

(d|Φ|2) + eνl(l + 1)

r2
+ (ν ′ − λ′)eν−λ

2r
(6.16)

when written in terms of the tortoise coordinate r∗ := ∫
exp[(λ − ν)/2] dr .

Then, it can be easily realized that localized solutions decrease asymptotically as

P(r) ∼ (1/r) exp
(
−

√
m2 − ω2 r

)
(6.17)

in a Schwarzschild-type asymptotic background.As first shown numerically byKaup
[18], cf. [35] for the real scalar field case, metric and curvature associated with
a BS remain completely regular. Via an analytic shooting argument, it has been
mathematically proven [1] that globally regular mini-BSs exists.

In order to facilitate a visualization of a spherical BS, in Fig. 6.2 the gravitational
back-reaction is neglected in order to obtain a sequence of exact Lane-Emden solitons
or ‘lumps’.
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Fig. 6.2 Lame-Emden soliton as a non-gravitational model of a BS

6.2.4 Scalar Matter as an Anisotropic ‘fluid’

The canonical stress-energy tensor of a BS, unlike a classical fluid, is in general
anisotropic as already noticed by Kaup. For a spherically symmetric configuration,
it becomes diagonal, i.e.

Tμ
ν(Φ) = diag (ρ,−pr ,−p⊥,−p⊥) (6.18)

with

ρ = 1

2
(ω2P2e−ν + P ′2e−λ + U )

and
pr = ρ − U,

p⊥ = pr − P ′2e−λ.

In contrast to NSs, where the ideal fluid approximation demands the isotropy of
the pressure, for spherically symmetric BSs there are different stresses pr and p⊥
in radial or tangential directions, respectively. The notion of fractional anisotropy
a f := (pr − p⊥)/pr = P ′2e−λ/(ρ − U ) depends essentially on the self-interaction
U .

The contractedBianchi identity∇μGμ
ν ≡ 0 is, inGR, equivalent togeneralization

of the Tolman-Oppenheimer-Volkoff equation

d

dr
pr = −ν ′

(
ρ + pr − 2

r
(pr − p⊥)

)
(6.19)

of ‘hydrostatic’ equilibrium for an anisotropic fluid.
For a spherically symmetric BS in its ground state two different layers of the scalar

matter are separated by p⊥(Rc) = 0, i.e. a zero of the tangential pressure. Near the
center, p⊥ is positive and, after passing through zero at the core radius Rc, it stays
negative until radial infinity. The core radius Rc is still inside the BS and contains
most of the scalar matter. Hence, all three stresses are positive inside the BS core;
the boundary layer contains a matter distribution with pr > 0 and p⊥ < 0.
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6.3 Boson Stars in Jordan-Brans-Dicke Theory

In the so-called scalar-tensor (ST) theories, a real time-dependent scalar field replaces
the inverse Newton’s gravitational constant G, whose coupling strength to the met-
ric is given by a function �(φBD). In the simplest scenario, the Jordan-Brans-Dicke
(JBD) theory [2], � is a constant. GR is attained in the limit 1/� → 0. To ensure
that the weak-field limit of this theory agrees with current observations of pulsars
[11], � must exceed 25,000. This is within a factor of 1.7 of the precision of the
Cassini experiment in the solar system, i.e. experiments taking place in the current
cosmic epoch. Scalar tensor theories have regained some popularity through infla-
tionary scenarios, and because a JBD model with � = −1 is the low-energy limit of
superstring theory.

Here, we exhibit models which contain, beside the complex scalar field of the BS
matter, the real scalar field of a JBD type theory.

TheLagrangian for our systemofSTgravity coupled to a self-interacting, complex
scalar field in the (physical) Jordan frame is

LBD =
√| g̃ |
2

[
φBD R̃ − �(φBD)

φBD
g̃μν∂μφBD∂νφBD + Ṽ (φBD) + g̃μν∂μΦ∗∂νΦ − UCSW

]
.

(6.20)

The gravitational scalar is φBD and �(φBD) is the Jordan frame coupling of φBD to
the matter. In more general theories, the real scalar φBD possesses even a potential
Ṽ . The complex scalar Φ has mass m and is self-interacting1 through the potential
term UCSW = UCSW(|Φ|).

There is an alternative representation ofLagrangian (6.20) in the so-calledEinstein
frame. The transition to this frame is effected by the conformal change

g̃μν = e2W (ϕE)gμν, (6.21)

where
φ−1
BD = κe2W (ϕE) (6.22)

and W (ϕE) is Wagoner transformation2 from φBD to the gravitational scalar ϕE in
the Einstein frame. The relationship between �(φBD) and W (ϕE) is obtained by
requiring (

∂W

∂ϕE

)2

= 1

2� + 3
. (6.23)

1One motivation is that extended inflation models based on BD theory explain the completion of
the phase transition in a more natural manner, without fine-tuning.
2It is also related to bifurcations [36] of effective higher order curvature Lagrangians.
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Using the potential V (ϕE) = e4W (ϕE)Ṽ [φBD(ϕE)], we find the Lagrangian in the
Einstein frame

LBD =
√| g |
2κ

[
R − 2gμν∂μϕE∂νϕE + V (ϕE)

]
(6.24)

+
√| g |
2

e2W (ϕE)
[
gμν∂μΦ

∗∂νΦ − e2a(ϕE)UCSW
]
.

Mathematically, the transition from the Jordan to the Einstein frame is a conformal
change of metric, cf. [24], and a field redefinition or ‘renormalization’ of the scalar
field, the afore mentioned Wagoner transformation. The question which “frame”
describes the true, physical metric that measures the distance between spacetime
points is a subtle one which depends on the coupling to matter (see the careful
analysis of Brans [3]). However, the Einstein frame is, at times, more useful for
calculations of BSs leading to results close enough to GR.

As in GR, exited states of BS in general are not stable. They form BH if they
cannot lose enough energy to go to the ground state.

6.3.1 Gravitational Memory

The evolution of conventional nuclear burning stars follows the Hertzsprung-Russell
diagramof the luminosity as a function of the temperature. There is the possibility that
a BS could go through a continually evolution as well, if the gravitational attraction
changes during the evolution of the Universe.

In JBD or scalar tensor theory, a real scalar field regulates the strength of the
gravitational force, and suppose that at the time of BS formation, the gravitational
strength was different from the one prevailing today.

Inside the BS, the strength of the gravitational constant at formation timemay still
be conserved. According to this gravitational memory effect, the BS is book-keeping
the evolution of G. Because the BD scalar field has also radial dependence and may
change its value at infinity, there should be a repercussion on the BS. But if this
change is much slower than the cosmological evolution of G, the star is practically
static. If, instead, the BD field adapts quickly inside as changes occur at infinity, the
BS evolves as well.

Thus, the BS mass increases with increasing φBD(∞) = 1/G, i.e. with time. One
can understand that an increasing BD field pumps energy into the BS and increases
the mass. Thereby, the evolution of a BS in JBD theory resembles the evolution of
conventional stars (cf. Ref. [39] for more details).
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6.4 Rotating Boson Stars

Since BSs resemble gravitational atoms,3 with the usual wave function

Φ ∝ 1

r
√
4π

R(r) P |a|
l (cos θ)P(r)e−iaϕ−iωt , (6.25)

it is rather natural to expect that the angular momentum J is quantized by a, the
analog of the magnetic or azimuthal quantum number. In fact, it is characterized by
the principal quantum number n ≥ l + 1, the angular momentum quantum number l
and theazimuthalquantumnumber |a| ≤ l.Moreover, it can be shownvia catastrophe
theory [20] that the ground state, the 1 s state with n = 1 and l = 0, is spherically
symmetric and a stable configuration for a mass below the Kaup limit.

In spite of previous disclaims, rapidly rotating BSs, [29, 37] exist in the Einstein-
KG system: An isotropic stationary axisymmetric line element

ds2 = f (r, θ)dt2 − 2k(r, θ)dtdϕ − l(r, θ)dϕ2 − eμ(r,θ)
(
dr2 + r2dθ2

)
(6.26)

is used, where f, k, l,μ are functions to be determined numerically. In order to
find rotating BSs, the stationary Ansatz for the scalar field in such a gravitational
background is

Φ(r, θ,ϕ, t) := P(r, θ) exp[−i(aϕ + ωt)], (6.27)

where the dependence on the azimuthal angle ϕ occurs only in the phase. Unique-
ness of the scalar field under a complete rotation Φ(ϕ) = Φ(ϕ + 2π) requires the
azimuthal quantum number a = 0,±1,±2, . . . to be quantized, like the rigid rotator
in quantum mechanics (Figs. 6.3, 6.4 and 6.5).

Fig. 6.3 H-atom in an eigenstate of n = 4, l = 3, and azimuthal quantum number a = 1

3In Ref. [28], the BS is composed from several complex scalars which are in the same ground state
of a ’t Hooft-Polyakov type monopole configuration. Complications due to a possible dependence
on the azimuthal angle ϕ are there avoided by averaging the energy-momentum tensor, leaving
merely an angular momentum term in the field equations.
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Fig. 6.4 Isocontour plot of the scalar field modulus for rotating BS with a = 1 in the a meridian
plane, cf. [13]

Fig. 6.5 Surfaces of constant scalar energy density of a rotating BS. Inside prevails a toroidal
topology

After integrating the time component j0 over the whole space, we find the particle
number N :

N = 4π

π/2∫

0

∞∫

0

(ωl − ak)
P2

√
f l + k2.

eμrdrdθ . (6.28)

For asymptotically flat spacetimes in GR, Komar [25] has shown that con-
served quantities for solutions with a Killing vector field ξα are generated by
K := ∫

ξα nβ(Tα
β − 1

2δ
β
α Tμ

μ)dV , where nβ = δ0β is a unit vector in the timelike
direction.

The choice ξα = 2nβ leads to Tolman’s expression for the total mass M, whereas
the rotational Killing vector ξα = δα

3 interconnects the canonical angular momentum
current with the U (1) Noether current (6.9) via T3

0 √|g| = a j0, essentially due to
i∂ϕΦ = aΦ. Consequently, the total angular momentum

J =
∫

T3
0
√|g|d3x = aN (6.29)
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of a rotating BS is exactly proportional to the particle number N and quantized.
Instead of the ring singularity of the Kerr metric, it exhibits an effective ‘mass

torus’ [38] built from coherent scalar fields. Consequently, the suggestion to fill in
the Kerr metric, in view of its ring singularity, with a regular toroidal rather than a
spherical source, is realized to some extent. In a sense, it becomes the field-theoretical
pendant of rotating NSs [23].

There exist sequences of rotating mini-BSs: The energy density ρ vanishes iden-
tically at the axis of rotation due to ‘centrifugal forces’, i.e., vacuum predominates in
the interior; cf. the situation of the rotating BS in (2+1)-dimensions. Nevertheless,
its critical mass will increase above the Kaup limit.

If sub-millisecond pulsars would be detected, today’s realistic equation of states
(EOSs) for NSs had to be subjected to a major revision. Central cores built from
strange matter or fermion condensates would be need for denser stars, sustaining
an even faster rotation. The core of a pulsar would resemble a rotating BS whose
physical parameters may indirectly affect the observable quantities at the surface.

6.5 Sagitarius Sgr A∗, a Compact Radio Source
in Our Galaxy

The center of the Milky way is a radio source at R0 = 8.33 ± 0.35 kpc distance and,
due to dust, it is difficult to observe even the Kepler orbits (Fig. 6.6) of nearby stars.
Accordingly, the central region has an estimated mass of M = (4.31 ± 0.736) × 106

M� and is believed to harbor a BH.

Fig. 6.6 Orbit of the star S2
around the galactic center
Sgr A∗
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In contrast, the center of our nearby sister galaxy M31 can be observed much
better via the Hubble space telescope, cf. Fig. 6.7.

6.5.1 Kerr Black Hole Versus a Rotating BS?

Since the central region of Sgr A∗ appears to be rather compact, it is widely believed
that it harbors a supermassive BH. However, the Kerr metric has difficulties when
matching it consistently to a interior metric generated from a rotating realistic matter
source. Thus, there are distinguished doubts [19] whether “...the [gravitational] field
outside such a fast rotating collapsed object can be Kerr.” Only asymptotically, it
may represent the spacetime of an astrophysical rotating object.

The uniqueness of BH has been assessed by John Wheeler’s famous phrase:
“Black holes have no Hair”. Accordingly, generalizations of spherically symmetric
BHs with a bound state of scalar fields do not exist.

More recently however, the exterior of rotating BS may provide scalar “hair” to
Kerr BHs, since ametrical Ansatzwith the twoKilling vectors ξα = 2nβ and ξα = δα

3
is feasible [14, 15]. These are, however, not Killing vectors of the full solution: The
scalar field depends on both only through a phase. This type of ‘hair’ turns out to
generate an intermediate state between rotating BSs and Kerr BHs with a scalar

Fig. 6.7 Core of the galaxy Andromeda (M31)
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Fig. 6.8 Gravity: optical interferometer involving four 8m telescopes at VLT (Cerro Paranal,
Chile)

halo. Contrary to the case of the Kerr spacetime, two invariants [41] built from the
Simon-Mars tensor are non-zero for a rotating BS or NS.

For our Galaxy, a Kerr BH or a rotating BS, acting as a ‘black hole mimicker’, are
marginally compatible [42] with the observations of Sgr A∗ so far. Although rather
unlikely, should we face the bizarre possibility of Sgr A∗ harboring a BS made of
some kind of DM anchored to its extended halo? In the near future, BHs may well
be distinguished observationally from BS or other more exotic configurations.

The Gravity instrument [9] is an optical interferometer (Fig. 6.8) in the near-
infrared with an astrometric precision of 10 microarcseconds (10µ as) and phase-
referenced imaging with 4 milliarcsecond resolution. The most prominent goal is
to observe highly relativistic motions of matter around the center of our galaxy. It
should provide the ultimate empirical test whether or not the Galactic center harbors
a BH of four million solar masses. Thereby, Gravity may even be able to verify or
exclude alternative models of GR in the presently unexplored strong field limit.

A more ambitious future project is to study images (Fig. 6.9) of BH shadows
[8] via the Event Horizon Telescope (Sub)mm VLBI all over the world, which is
expected to have an angular resolution of 1µ as!

Also for DM halos in galaxies, gravitational lensing [40] provides an excellent
window of observations. In fact, one of the main predictions of GR is the deflection
of light by the Sun. Up to a factor of 2, this was suggested by Soldner already in
1801 in the context of Newton’s theory.
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Fig. 6.9 Accretion disk
around a Schwarzschild BH
with �SgrA∗ = 53µ as

6.6 Boson-Anti-Boson Star in a Saturn Type Configuration

Since the scalar constituents of a BS are unknown, QCD axions are another possible
ingredient. Such axion stars (ASs) [31] may collide with NSs and thereby produce
Gamma ray bursts without invoking an ad hoc ‘beaming mechanism’.

A more radical scenario [26] is a toroidal BS configuration containing an anti-
matter ring around a centrally condensed core, thus resembling partially a positron-
ium atom. Such toroidal structures have also been considered before for NSs.

When considering ‘excited scalar geons’ [28], the next excited state, the 1p state,
is axisymmetric with quantized angular momentum J = aN , where N is the particle
number of the BS. As we have learned before, the first rotating state with a = 1 has
the form of a mass torus and is marginally stable against gravitational radiation. The
lowest BS mode which owns a quadrupole moment is the 3d state with n = 3 and
l = 2. Since this ‘gravitational soliton’ allowsΔJ = 2 transitions to its ground state,
it may rapidly decay by radiating, in addition to scalar modes, gravitational waves.

Let us now consider a “Saturn type configuration”, i.e. spherically symmetric BS
surrounded by a toroidal boson star configuration in a marginal stable configuration,
cf. Fig. 6.4 of Ref. [12]. For the argument’s simplicity, we assume that mass and
particle number add up linearly and the torus is the only responsible for the total
angular momentum Jtot = J32.

Since a BS is built from a complex scalar field, such an object could form not only
frommatter, but alternatively, from both,matter and bosonic antimatter. Accordingly,
two possibilities with respect to the total particle number emerge:

Ntot = N10 + N32 for a boson-boson star (BBS), or
Ntot = N10 − N32 for an boson-antiboson star (BAS),

where the sub-indices in Nnl etc. refer to the principal and angular momentum quan-
tum numbers n and l, respectively.

Through a merger of the torus with the core, such a bizarre BAS would annihilate
all its scalar particles.
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6.7 Head-On Collisions of BS

Head-on collisions of massive galaxy clusters, like those occurring in the so-called
bullet cluster are a challenge for the cold DM paradigm. Instead, one may suspect
that the halo is composed of a gas of ‘axion mini clusters’ or mini-ASs. In fact, axion
like scalar fields and the Lane-Emden truncation of their periodic potential has been
analyzed [4, 5] as a model of DM halos.

So far, for the LE potential (6.8), an exact auto-Bäcklund transformation for
generating multi-solitons has yet not been found. Instead a approximate mapping
[4, 5] to a kink-kink pair may serve us as a guide: At large separations from the
central interaction region, cf. Figure6.10, the two soliton solution clearly decouples
asymptotically into a (non-interacting) kink–kink pair (Fig. 6.10).

Fig. 6.10 Minkowski diagram of a kink-kink collision in 2D monitored via the absolute value of
its spatial derivative

Fig. 6.11 Animation of the scalar amplitude |Φ|2 and metric component gxx in the z = 0 plane
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On the other hand, for a superposition

Φ � Φ1 + Φ2 (6.30)

of two singleBSswith the samemass at spatial infinity, it is necessary to performa3 +
1 decomposition of spacetime. Then the Einstein equations turn into an evolutionary
system. In the harmonic or de Donder gauge ∂μhμν = ∂νh, the Einstein equations
reduce to a wave equation �gab = · · · nonlinear in the metric. In order to ensure
stability of the numerical code, the next step is to convert this second order system into
a first order one, where a 3rd order Runge-Kutta method can be applied to integrate
in time. Moreover, an adaptive mesh refinement in space and time is employed, cf.
Ref. [22].

As a result, the collision of BSs will be partially inelastic as in the case [5] of
solitons (Fig. 6.11).
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Chapter 7
The Lambda-CDMModel Is Not
an Universal Attractor of the Brans–Dicke
Cosmology

Israel Quiros

Abstract By means of the tools of the dynamical systems theory it is shown that
the general relativity de Sitter solution is an attractor of the Jordan frame (dilatonic)
Brans–Dicke theory only for the exponential potential U (ϕ) ∝ expϕ, which corre-
sponds to the quadratic potential V (φ) ∝ φ2 in terms of the original Brans–Dicke
field φ = expϕ, or for potentials which approach to expϕ at the stable point. I find
bounds on the Brans–Dicke coupling constant ωbd, which are consistent with well-
known results.

7.1 Introduction

The Brans–Dicke (BD) theory of gravity [1] represents the simplest modification
of general relativity (GR) by the addition of a new (scalar) gravitational degree of
freedom φ in addition to the 10◦ which are associated with the metric tensor gμν . This
theory has been cornerstone for a better understanding of several other modifications
of general relativity such as the f (R) theories of gravity [2]. In contrast to Einstein’s
GR, the BD theory is not a fully geometrical theory of gravity since, while one of the
propagators of the gravitational field: the metric tensor, defines the metric properties
of the spacetime, the scalar field φ modifies the local strength of the gravitational
interactions through the effective gravitational coupling Geff ∝ φ−1.

Many aspects of BD theory have been well-explored in the past (see the text-
books [3, 4]), while other aspects have been cleared up just recently. Thanks to the
chameleon effect [5], for instance, it was just recently understood that the lower
experimental bounds on the BD coupling parameter ωbd, which were set up through
experiments in the solar system, might not apply in the large cosmological scales if
consider BD theory with a potential. According to the chameleon effect, the effective
mass of the scalar field mφ computed in the Einstein’s frame, depends on the back-
ground energy density of the environment: In the large cosmological scales where
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the background energy density is very small (of the order of the critical density),
the effective mass is also very small, so that the scalar field degree of freedom has
impact in the cosmological dynamics. Meanwhile, in the solar system, where the
averaged energy density of the environment is huge compared with the one in the
cosmological scale, the effective mass is large, so that the Yukawa component of
the gravitational interaction associated with the scalar field ∝ e−mφr/r , is short-
ranged, leading to an effective screening of the scalar field degree of freedom in the
solar system.

The Brans–Dicke theory has found very interesting applications specially in cos-
mology [4], where it has been explored as a possible explanation of the present stage
of the accelerated expansion of the universe [6]. The problem with this is that, but
for some anomalies in the power spectrum of the cosmic microwave background [7],
at the present stage of the cosmic evolution any cosmological model has to approach
to the so called concordance or ΛCDM model [8]. The mathematical basis for the
latter is the GR (Einstein–Hilbert) action plus a matter action piece:

SΛCDM = 1

16πG

∫
d4x

√|g| (R − 2Λ) +
∫

d4x
√|g|LCDM, (7.1)

whereLCDM is the Lagrangian density of (pressureless) cold dark matter (CDM). On
the other hand, it has been known for decades, that GR can be recovered from the
BD theory only in the limit when the BD coupling constant ωbd → ∞.

In the references [9–11], by means of the tools of the dynamical systems theory, it
was (apparently) shown that the Jordan frame (JF)Brans–Dicke theory leads naturally
to the ΛCDM model since, as the authors showed in [9], the GR–de Sitter solution
is an attractor of JF–BD theory, independent on the choice of the self-interaction
potential for the BD scalar field.1 The interesting thing is that the bounds on ωbd

found in [9] (ωbd ≈ −3/2), and in [10] (ωbd ≈ −1), are far from the solar system–
based experimental bound ωbd > 40000 [15].

Although the chameleon effect could (in principle) explain such a discrepancy
between the bounds on ωbd based in solar system experimentation (see, how-
ever, Ref. [16]), and those based in cosmological considerations, nevertheless, the
bounds estimated on the basis of cosmological arguments: ωbd > 120 in [17], and
10 < ωbd < 107 in [18], neither are consistent with the ones found in the references
[9] and [10]. Besides, we stress that the conclusion on the existence of the GR–de
Sitter (stable) critical point independent on the assumed potential in [9–11], is mis-
leading. As a matter of fact, in [11] the authors seem to recognize that the de Sitter

1For prior works where the de Sitter solutions are investigated within the frame of the scalar-tensor
theories, see Ref. [12], where de Sitter exact and intermediate inflationary solutions are found for
FRW models with appropriate choice of the coupling function ωbd(ϕ). In [13] it is shown that
intermediate “almost de Sitter” solutions might arise also when CDM is included. Other, more
resent works on this subject, are also found [14].
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equilibrium configuration arises only for the quadratic monomial V (φ) ∝ φ2, and
for the lineal V (φ) ∝ φ potentials. Since the estimates of [9–11] are based on the
analysis of linearized solutions which are, in fact, very small perturbations around
the stable GR–de Sitter critical point (hence are highly dependent on the choice of the
initial conditions), we suspect that these estimates could be physically meaningless.
Actually, linear solutions around general relativity (plus a cosmological constant),
which is obtained in the formal limit ωbd → ∞ of Brans–Dicke theory, can not be
reliable sources of bounds on the parameters of the BD theory.

In this paper we shall apply the tools of the theory of the dynamical systems in
order to uncover the dynamics of cosmological models which are based in the BD
theory of gravity, for several self-interaction potentials, in a convenient phase space.
Unlike [9–11], herewe shall explore specific potentials other than (but also including)
the quadratic and the lineal monomials: V (φ) ∝ φ2 and V (φ) ∝ φ, respectively. For
a better understanding of our analysis we shall study the vacuum BD theory and
the BD theory with matter, separately (see Sects. 7.4 and 7.5, respectively). In the
Sect. 7.6, we shall show that it is not enough that the de Sitter solution be a critical
point of the dynamical system, in order for theΛCDMmodel to be an attractor of the
BD theory with a potential. It is a necessary condition for the latter that the GR–de
Sitter solution, i.e., the de Sitter point which leads to φ = φ0 = const., to be a stable
critical point instead. It will be shown that, as a matter of fact, only for the quadratic
monomial potential V (φ) ∝ φ2, or for potentials that approach to φ2 at the stable
point, the ΛCDM model is an attractor of the BD cosmology.

For simplicity of mathematical handling we shall use the dilatonic field variable
ϕ instead of the standard BD field φ. These variables are related by Eq. (7.4). At the
end of the contribution the reader can find an appendix with concrete criticism on
the procedure and on the results discussed in Ref. [9].

7.2 Basic Setup

Hereweassume theBrans–Dicke theory [1]with the potential, to dictate the dynamics
of gravity and matter. In the Jordan frame it is depicted by the following action:

Sφ
jf =

∫
d4x

√|g|
{
φR − ωbd

φ
(∂φ)2 − 2V + 2Lm

}
, (7.2)

where (∂φ)2 ≡ gμν∂μφ∂νφ, V = V (φ) is the scalar field self-interaction potential,
ωbd is the BD coupling parameter, and Lm = Lm(χ, ∂χ, gμν) is the Lagrangian
density of the matter degrees of freedom, collectively denoted by χ. Unless the
contrary is specified, the natural units 8πG = 1/M2

PL = c = 1, are adopted. The
field equations which are derived from (7.2) are the following:
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Gμν = ωbd

φ2

[
∂μφ∂νφ − 1

2
gμν (∂φ)2

]
− gμν

V

φ
+ 1

φ

(∇μ∂νφ − gμν∇2φ
) + 1

φ
T (m)

μν ,

∇2φ = 2

3 + 2ωbd

(
φ∂φV − 2V + 1

2
T (m)

)
, (7.3)

where Gμν = Rμν − gμνR/2, is the Einstein’s tensor, ∇2 = gμν∇μ∇ν , is the
D’Alembertian operator, and T (m)

μν = −(2/
√|g|)∂ (√|g|Lm

)
/∂gμν, is the con-

served stress-energy tensor of the matter degrees of freedom ∇μT (m)
μν = 0.

It is also convenient to rescale the BD scalar field and, consequently, the self-
interaction potential:

φ = eϕ, V (φ) = eϕ U (ϕ), (7.4)

so that, the action (7.2) is transformed into the string frame BD action [19]:

Sϕ
sf =

∫
d4x

√|g|eϕ
{
R − ωbd(∂ϕ)2 − 2U + 2e−ϕLm

}
. (7.5)

The following motion equations are obtained from (7.5):

Gμν = (ωbd + 1)

[
∂μϕ∂νϕ − 1

2
gμν(∂ϕ)2

]
− gμν

[
1

2
(∂ϕ)2 +U (ϕ)

]

+∇μ∂νϕ − gμν∇2ϕ + e−ϕT (m)
μν ,

∇2ϕ + (∂ϕ)2 =
2

[
∂ϕU −U + e−ϕ

2 T (m)
]

3 + 2ωbd
, (7.6)

where∇2 ≡ gμν∇μ∂ν ,Gμν = Rμν − gμνR/2, and, as before, T (m)
μν is the (conserved)

stress-energy tensor of the matter degrees of freedom: ∇μT (m)
μν = 0.

In this contributionwe shall consider Friedmann-Robertson-Walker (FRW) space-
times with flat spatial sections for which the line-element takes the simple form:

ds2 = −dt2 + a2(t)δi j dx
idx j , i, j = 1, 2, 3.

We assume the matter content of the Universe in the form of a cosmological perfect
fluid, which is characterized by the following state equation pm = wmρm , relating
the barotropic pressure pm and the energy density ρm of the fluid, where wm is the so
called equation of state (EOS) parameter. Under these assumptions the cosmological
equations (7.6) are written as it follows:

3H 2 = ωbd

2
ϕ̇2 − 3H ϕ̇ +U + e−ϕρm,

Ḣ = −ωbd

2
ϕ̇2 + 2H ϕ̇ + ∂ϕU −U

3 + 2ωbd
− 2 + ωbd (1 + wm)

3 + 2ωbd
e−ϕρm,
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ϕ̈ + 3H ϕ̇ + ϕ̇2 = 2
U − ∂ϕU

3 + 2ωbd
+ 1 − 3wm

3 + 2ωbd
e−ϕρm,

ρ̇m + 3H (wm + 1) ρm = 0, (7.7)

where H ≡ ȧ/a is the Hubble parameter.
Due to the complexity of the system of non-linear second-order differential equa-

tions (7.7), it is a very difficult (and perhaps unsuccessful) task to find exact solutions.
Yet, even when an analytic solution can be found it will not be unique but just one
in a large set of them. This is in addition to the problem of the stability of given
solutions. In this case the dynamical systems tools come to our rescue. These very
simple tools give us the possibility to correlate such important concepts in the phase
space like past and future attractors (also saddle equilibrium points), limit cycles,
heteroclinic orbits, etc., with generic behavior of the dynamical system derived from
the set of equations (7.7), without the need to analytically solve them.A very compact
and basic introduction to the application of the dynamical systems in cosmological
settings with scalar fields can be found in the references [20–25].

7.3 Dynamical Systems

As it is for any other physical system, the possible states of a cosmological model
may be also correlated with points in an equivalent state space or phase space. How-
ever, unlike in the classical mechanics case, where the phase space is spanned by
the generalized coordinates and their conjugate momenta, in a cosmological context
the choice of the phase space variables is not a trivial issue. This leads to a certain
degree of uncertainty in the choice of an appropriate set of variables of the phase
space. There are, however, certain—not written—rules one follows when choosing
these variables: (i) these should be dimensionless variables, and (ii) whenever possi-
ble, these should be bounded. The latter requirement is necessary to have a bounded
phase space where all of the existing equilibrium points are “visible”, i.e., none of
then goes to infinity. Unfortunately it is not always possible to find such bounded
variables.

In general, when one dealswithBDcosmologicalmodels it is customary to choose
the following variables [9–11]:

x ≡ ϕ̇√
6H

= ϕ′
√
6
, y ≡

√
U√
3H

, ξ ≡ 1 − ∂ϕU

U
, (7.8)

where the tilde means derivative with respect to the variable τ ≡ ln a—the number
of e-foldings. As amatter of fact x and y in Eq. (7.8), are the same variables which are
usually considered in similar dynamical systems studies of FRW cosmology, within
the frame of Einstein’s general relativity with a scalar field matter source [20]. In
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terms of the above variables the Friedmann constraint in Eq. (7.7) can be written as

Ωeff
m ≡ e−ϕρm

3H 2
= 1 + √

6x − ωbd x
2 − y2 ≥ 0. (7.9)

Notice that one might define a dimensionless potential energy density and an “effec-
tive kinetic” energy density

ΩU = U

3H 2
= y2, Ωeff

K = x
(
ωbdx − √

6
)

, (7.10)

respectively, so that the Friedmann constraint can be re-written in the following
compact form: Ωeff

K + ΩU + Ωeff
m = 1.

The definition for the dimensionless effective kinetic energy density Ωeff
K has not

the same meaning as in GR with a scalar field. It may be a negative quantity without
challenging the known laws of physics. Besides, since there is not restriction on
the sign of Ωeff

K , then, it might happen that ΩU = U/3H 2 > 1. This is due to the
fact that the dilaton field in the BD theory is not a standard matter field but it is
a part of the gravitational field itself. This effective (dimensionless) kinetic energy
density vanishes whenever: x = √

6/ωbd ⇒ ϕ̇ = 6H/ωbd ⇒ ϕ = 6 ln a/ωbd, or
if: x = 0 ⇒ ϕ̇ = 0 ⇒ ϕ = const., which, provided that the matter fluid is cold
dark matter, corresponds to the GR–de Sitter universe, i.e., to the ΛCDM model.

The following are useful equations which relate Ḣ/H 2 and ϕ̈/H 2 with the phase
space variables x , y and ξ:

Ḣ

H 2
= 2

√
6 x − 3ωbd x

2 − 3y2ξ

3 + 2ωbd
− 2 + ωbd (1 + wm)

3 + 2ωbd
3Ωeff

m ,

ϕ̈

H 2
= −3

√
6 x − 6x2 + 6y2ξ

3 + 2ωbd
+ 1 − 3wm

3 + 2ωbd
3Ωeff

m . (7.11)

Our goal will be to write the resulting system of cosmological equations (7.7),
in the form of a system of autonomous ordinary differential equations (ODE-s) in
terms of the variables x , y, ξ, of some phase space. We have:

x ′ = ϕ̈√
6H 2

− x
Ḣ

H 2
, y′ = y

[√
6

2
(1 − ξ) x − Ḣ

H 2

]
,

ξ′ = −√
6x (1 − ξ)2 (Γ − 1) , Γ ≡ U∂2

ϕU

(∂ϕU )2
, (7.12)

or, after substituting Eqs. (7.11) into (7.12), we obtain the following autonomous
system of ODE-s:
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x ′ = −3x
(
1 + √

6x − ωbdx
2
)

+ x + √
2/3

3 + 2ωbd
3y2ξ

+
1−3wm√

6
+ [2 + ωbd(1 + wm)] x

3 + 2ωbd
3Ωeff

m ,

y′ = y

[
3x

(
ωbdx − ξ + 3√

6

)
+ 3y2ξ

3 + 2ωbd
+ 2 + ωbd (1 + wm)

3 + 2ωbd
3Ωeff

m

]
,

ξ′ = −√
6x (1 − ξ)2 (Γ − 1) , (7.13)

where Ωeff
m is given by Eq. (7.9), and it is assumed that Γ = U∂2

ϕU/(∂ϕU )2 can be
written as a function of ξ [25]: Γ = Γ (ξ). Hence, the properties of the dynamical
system (7.13) are highly dependent on the specific functional form of the potential
U = U (ϕ).

7.4 Vacuum Brans-Dicke Cosmology

A significant simplification of the dynamical equations is achieved when matter
degrees of freedom are not considered. In this case, since Ωeff

m = 0 ⇒ y2 = 1 +√
6x − ωbd x2, then the system of ODE-s (7.13) simplifies to a plane-autonomous

system of ODE-s:

x ′ =
(

−3x + 3
x + √

2/3

3 + 2ωbd
ξ

) (
1 + √

6x − ωbdx
2
)

,

ξ′ = −√
6x (1 − ξ)2 (Γ − 1) . (7.14)

In the present case one has Ωeff
K + ΩU = 1, where

ΩU = U

3H 2
= y2 = 1 + √

6x − ωbdx
2, Ωeff

K = x
(
ωbdx − √

6
)

. (7.15)

We recall that the definition of the effective (dimensionless) kinetic energy density
Ωeff

K , has not the same meaning as in GR with scalar field matter, and it may be,
even, a negative quantity. In this paper we consider non-negative self-interaction
potentials U (ϕ) ≥ 0, so that the dimensionless potential energy density ΩU = y2,
is restricted to be always non-negative: ΩU = 1 + √

6x − ωbdx2 ≥ 0. Otherwise,
y2 < 0, and thephase-planewouldbe a complexplane.Besides,we shall be interested
in expanding cosmological solutions exclusively (H ≥ 0), so that y ≥ 0. Because of
this the variable x is bounded to take values within the following interval:

α− ≤ x ≤ α+, α± = √
3/2(1 ± √

1 + 2ωbd/3)/ωbd. (7.16)
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This means that the phase space for the vacuum Brans–Dicke theory Ψvac can be
defined as: Ψvac = {(x, ξ) : α− ≤ x ≤ α+}, where the bounds on the variable ξ—if
any—are set by the concrete form of the self-interaction potential (see below).

Another useful quantity is the deceleration parameter

q = −1 − Ḣ

H 2
= −1 − 2

√
6x + 3ωbdx

2 + 3(1 + √
6x − ωbdx2)ξ

3 + 2ωbd
. (7.17)

Seemingly, in accordance with the results of [9–11], without the specification of
the functionΓ (ξ), there are found four dilatonic equilibriumpoints Pi : (xi , ξi ), in the
phase space corresponding to the dynamical system (7.14). The first one is the GR–
de Sitter phase: (0, 0) ⇒ x = 0 ⇒ ϕ = ϕ0, and y2 = 1 ⇒ 3H 2 = U = const.,
which corresponds to accelerated expansion q = −1. Given that, the eigenvalues of
the linearizationmatrix around this point depend on the concrete form of the function
Γ (ξ),

λ1,2 = −3

2

(
1 ±

√
1 + 8(1 − Γ )

3(3 + 2ωbd)

)
,

at first sight it appears that nothing can be said about the stability of this solution
until the functional form of the self-interaction potential is specified. Notice, how-
ever, that since ξ = 0 at this equilibrium point, this means that U (ϕ) ∝ eϕ, i.e., the
function Γ is completely specified: Γ = 1. As a matter of fact, the eigenvalues of
the linearization matrix around (0, 0) are: λ1 = −3, λ2 = 0. This means that (0, 0)
is a non-hyperbolic point.

We found, also, another de Sitter solution: q = −1⇒ Ḣ = 0,which is associated
with scaling of the effective kinetic and potential energies of the dilaton:

P :
(

1√
6(1 + ωbd)

, 1

)
⇒ Ωeff

K

ΩU
= − 6 + 5ωbd

12 + 17ωbd + 6ω2
bd

,

λ1 = −4 + 3ωbd

1 + ωbd
, λ2 = 0, (7.18)

where, as before, λ1 and λ2 are the eigenvalues of the linearization matrix around
the critical point. We call this as BD–de Sitter critical point to differentiate it from
the GR–de Sitter point.

In order to make clear what the difference is between both de Sitter solutions,
let us note that the Friedmann constraint (7.9), evaluated at the BD–de Sitter point
above, can be written as

e−ϕρm = 3H 2
0 + 6 + 5ωbd

6(1 + ωbd)
2
3H 2

0 −U0,

i.e., e−ϕρm = const. This means that the weakening/strengthening of the effective
gravitational coupling (Geff ∝ e−ϕ) is accompanied by a compensating
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growing/decreasing property of the energy density of matter ρm ∝ eϕ, which leads to
an exponential rate o expansion a(t) ∝ eH0t . This is to be contrasted with the GR–de
Sitter solution: 3H 2

0 = U0 ⇒ a(t) ∝ e
√
U0/3 t , which is obtained only for vacuum,

ρvac = U0; ρm = 0.
The effective stiff-dilaton critical points (Ωeff

K = 1):

P± : (α±, 1) ⇒ q± = 2 + √
6α±, λ±

1 = 6
(
1 + √

2/3α±
)

, λ2 = 0, (7.19)

are also found, where the α± are defined in Eq. (7.16).
Before we said that, seemingly (in accordance with the results of the references

[9–11]), the obtained critical points are quite independent of the form of the function
Γ . Notice, however, that this is not true at all. For theGR–de Sitter point, for instance,
ξ = 0, which means that ξ = 1 − ∂ϕU/U = 0 ⇒ U ∝ expϕ, forcing Γ = 1. For
the remaining equilibrium points, ξ = 1 ⇒ U = const , and Γ = undefined. This
means that the equilibrium points listed above exist only for specific self–interaction
potentials, but not for arbitrary potentials. Hence, contrary to the related statements
in [9–11], the above results are not as general as they seem to be.

Given that the critical points obtained before were all non-hyperbolic, resulting
in a lack of information on the corresponding asymptotic properties, in the follow-
ing subsections we shall focus in the exponential potential: U (ϕ) ∝ exp(kϕ) ⇒
ξ = 1 − k, which includes the particular case when k = 1 ⇒ ξ = 0 ⇒ U (ϕ) =
M2 expϕ ⇒ Γ = 1, and the cosmological constant case k = 0 ⇒ ξ = 1 ⇒
U = M2, with the hope to get more precise information on the stability proper-
ties of the corresponding equilibrium configurations.2 These particular cases: ξ = 0,
and ξ = 1, correspond to the four critical points obtained above. For completeness
we shall consider also other potentials than the exponential.

7.4.1 Exponential Potential

Let us investigate the vacuum FRW–BD cosmology driven by the exponential
potential U (ϕ) ∝ exp(kϕ). In this case, since ξ = 1 − k, is a constant, the plane-
autonomous system of ODE-s (7.14), simplifies to a single autonomous ODE:

x ′ = −
⎛
⎝ (k + 2 + 2ωbd) x −

√
2
3 (1 − k)

1 + 2ωbd/3

⎞
⎠ (

1 + √
6x − ωbdx

2
)

. (7.20)

2When the critical point under scrutiny is a non-hyperbolic point the linear analysis is not enough
to get useful information on the stability of the point. In this case other tools, such as the center
manifold theorem are to be invoked [26, 27].
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The critical points of the latter dynamical system are (η = k + 2 + 2ωbd):

x1 = √
2/3 (1 − k)/η, x± = α±, (7.21)

where the α± are given by Eq. (7.16). Notice that, since xi �= 0 (but for k = 1, in
which case x1 = 0 and q = −1), there are not critical points associated with constant
ϕ = ϕ0. Thismeans that the deSitter phasewith ϕ̇ = 0 (ϕ = const),U (ϕ) = const.,
i.e., the one which occurs in GR and which stands at the heart of the ΛCDMmodel,
does not arise in the general case when k �= 1.

Hence, only in the particular case of the exponential potential with k = 1 (ξ = 0),
which corresponds to the quadratic potential in terms of the original BD variables:
V (φ) = M2φ2, the GR-de Sitter phase is a critical point of the dynamical system
(7.20). In this case the critical points are (see Eq. (7.21)): x1 = 0, x± = α±. Worth
noticing that x1 = 0 corresponds to the GR–de Sitter solution 3H 2 = M2 expϕ0,
meanwhile, the x± = α±, correspond to the stiff-fluid (kinetic energy) dominated
phase: Ωeff

K = 1. While in the former case the deceleration parameter q = −1 −
Ḣ/H 2 = −1, in the latter case it is found to be q = 2 + √

6α+ > 0.
For small (linear) perturbations ε = ε(τ ) around the critical points: x = xi + ε,

ε � 1, one has that, around the de Sitter solution: ε′ = −3ε ⇒ ε(τ ) ∝ exp(−3τ ),
so that it is an attractor solution. Meanwhile, around the stiff-matter solutions:
ε±(τ ) ∝ exp

[
3
(
2 + √

6α±
)

τ
]
, so that, if assume non-negativeωbd ≥ 0, the points

x± are always past attractors (unstable equilibrium points) since 2 + √
6α− > 0. For

negative ωbd < 0, these points are both past attractors whenever ωbd < −3/2. In this
latter case, for −3/2 < ωbd < 0, the point x+ is a past attractor, while the point x−
is a future attractor instead.

7.4.2 Constant Potential U(ϕ) = M2

The constant potential is a particular case of the exponential when k = 0 (ξ = 1
⇒ U = const). In this case the autonomous ODE (7.20) simplifies:

x ′ =
[√

2/3 − 2(1 + ωbd)x

3 + 2ωbd

] (
1 + √

6x − ωbdx
2
)

. (7.22)

The critical points correspond to the following values of the independent variable x :

x1 = 1/
√
6(1 + ωbd), x± = α±. (7.23)

Since, in this case,

Ḣ

H 2
= −3 − √

6ωbdx

3 + 2ωbd

[
1 − √

6(1 + ωbd)x
]

⇒ Ḣ

H 2

∣∣∣∣∣
x1

= 0 ⇒ H = H0,

(7.24)
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the point x1 corresponds to BD–de Sitter expansion (q = −1). At x1 the effective
kinetic and potential energies of the dilaton scale as

Ωeff
K

ΩU
= − 6 + 5ωbd

12 + 17ωbd + 6ω2
bd

,

where, as mentioned before, the minus sign is not problematic since Ωeff
K is not the

kinetic energy of an actualmatter field. As already shown—see the paragraph starting
below Eq. (7.18) and ending above Eq. (7.19)—this point does not correspond to a
ΛCDM phase of the cosmic evolution, since, unlike in the GR case, in the BD theory
the effective gravitational coupling Geff ∝ e−ϕ is not a constant and, besides, the de
Sitter solution H = H0 is obtained in the presence of ordinary matter with energy
density ρm ∝ G−1

eff .

Given that under a small perturbation (ε � 1) around x1: ε(τ ) ∝ exp
(
− 4+3ωbd

1+ωbd
τ
)
,

this is a stable equilibriumpoint (future attractor) if theBDparameterωbd ≥ 0. In case
it were a negative quantity, instead, x1 were a future attractor whenever ωbd < −4/3
and −1 < ωbd < 0.

The critical points x± in Eq. (7.23), correspond to kinetic energy–dominated
phases, i.e., to stiff-matter solutionsΩeff

K = 1,whereq = 2 + √
6α+ > 0, and, under

a small perturbation ε′ = λ±ε, with λ± = 6
(
1 + √

2/3α±
)
, so that, assuming non-

negative ωbd ≥ 0, the points x± are always unstable (source critical points). In the
case when ωbd < 0 is a negative quantity, the point x− is unstable if ωbd < −4/3
(the critical point x+ is always unstable).

7.4.3 Other Potentials Than the Exponential

The concrete form of the dynamical system (7.14) depends crucially on the func-
tion Γ (ξ). For a combination of exponentials (M2, N 2, k and m are free constant
parameters):

U (ϕ) = M2 ekϕ + N 2 emϕ, (7.25)

which corresponds to the BD potential V (φ) = M2φk+1 + N 2φm+1, for instance,
one has:

x ′ =
(

−3x + 3
x + √

2/3

3 + 2ωbd
ξ

) (
1 + √

6x − ωbdx
2
)

,

ξ′ = −√
6x

[
k + m − km − 1 − (k + m − 2) ξ − ξ2

]
. (7.26)
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In this case (assuming that m > k), since

ξ = 1 − k + (1 − m)
(
N
M

)2
e(m−k)ϕ

1 + (
N
M

)2
e(m−k)ϕ

, (7.27)

as ϕ undergoes −∞ < ϕ < ∞ ⇒ 1 − m ≤ ξ ≤ 1 − k. Hence, the phase space
where to look for equilibrium points of the dynamical system (7.26), is the bounded
compact region of the phase plane (x, ξ), given by

Ψ c.exp
vac = {(x, ξ) : α− ≤ x ≤ α+, 1 − m ≤ ξ ≤ 1 − k} ,

where, we recall, α± = √
3/2(1 ± √

1 + 2ωbd/3)/ωbd (see Eq. (7.16)).
In the case of the cosh and sinh-like potentials,

U (ϕ) = M2 coshk(μϕ), V (φ) = M2φ
[
cosh(ln φμ)

]k
, (7.28)

respectively, one has:

x ′ =
(

−3x + 3
x + √

2/3

3 + 2ωbd
ξ

) (
1 + √

6x − ωbdx
2
)

,

ξ′ = −
√
6

k
x

(
k2μ2 − 1 + 2ξ − ξ2

)
. (7.29)

The difference between the cosh and the sinh-like potentials is in the phase space
where to look for critical points of (7.29). For the cosh-like potentials one has that
the phase space is the following bounded and compact region of the phase plane

Ψ cosh
vac = {(x, ξ) : α− ≤ x ≤ α+, 1 − kμ ≤ ξ ≤ 1 + kμ} ,

while, for the sinh-like potentials the phase space is the unbounded region
Ψ sinh
vac = Ψ sinh-

vac ∪ Ψ sinh+
vac ,whereΨ sinh-

vac = {(x, ξ) : α− ≤ x ≤ α+, 1 + kμ ≤ ξ < ∞},
Ψ sinh+
vac = {(x, ξ) : α− ≤ x ≤ α+, −∞ < ξ ≤ 1 − kμ} .

A distinctive feature of the dynamical systems (7.26) and (7.29), is that the GR–
de Sitter critical point with x = ξ = 0, PdS : (0, 0) ⇒ H = H0, ϕ = ϕ0, is shared
by all of them. However, as it will be shown in the following sections, this does not
mean that for potentials of the kinds (7.25) and (7.28) with arbitrary free parameters,
the ΛCDM model is an equilibrium point of the corresponding dynamical system.
As a matter of fact, only for those arrangements of the free parameters which allow
that the given potential approaches to the exponential U ∝ expϕ as an asymptote,
the ΛCDM model is an equilibrium configuration of the corresponding dynamical
system.
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7.5 Brans–Dicke Cosmology with Matter

In the former section we have investigated the dynamical properties of the vacuum
Brans–Dicke cosmology in the phase space. Here we shall explore the case when
the field equations are sourced by CDM, i.e., by pressureless dust with wm = 0, and
for exponential potentials only, since, in this latter case, ξ = 1 − k, is a constant.
This means that the relevant phase space will be a region of the phase plane (x, y).
For this case the autonomous system of ODE-s (7.13) results in the following plane-
autonomous system:

x ′ = −3x
(
1 + √

6x − ωbdx
2
)

+ 3(1 − k)

3 + 2ωbd

(
x + √

2/3
)
y2

+1 + √
6 (2 + ωbd) x√

6 (3 + 2ωbd)
3Ωeff

m ,

y′ = y

[
3x

(
ωbdx − 4 − k√

6

)
+ 3(1 − k)

3 + 2ωbd
y2 + 2 + ωbd

3 + 2ωbd
3Ωeff

m

]
, (7.30)

which has physically meaningful equilibrium configurations only within the phase

plane: Ψmat =
{
(x, y) : α− ≤ x ≤ α+, 0 ≤ y ≤

√
1 + √

6x − ωbdx2
}
, where we

have considered the facts that Ωeff
m ≥ 0 and y ∈ R+ ∪ 0. The critical points of this

dynamical system are:

P±
stiff :

(
1 ∓ √

1 + 2ωbd/3√
2/3ωbd

, 0

)
, Ωeff

m = 0;

Psc :
(

1√
6(1 + ωbd)

, 0

)
, Ωeff

m = 12 + 17ωbd + 6ω2
bd

6(1 + ωbd)
2

;

P ′
sc :

(
−

√
3/2

k + 1
,

√
k + 4 + 3ωbd√
2(k + 1)

)
, Ωeff

m = 2k2 − 3k − 8 − 6ωbd

2(k + 1)2
;

P∗ :
(

−
√
2/3(k − 1)

η
,
β

η

)
, Ωeff

m = 3(2 − k − k2)

η2
+ (7 − 2k − 5k2)ωbd

2η2
,

(7.31)

where, in the last critical point we have defined the new parameters:

β = √
1 + 2ωbd/3

√
8 + 6ωbd − k(k − 2), η = k + 2 + 2ωbd.

The equilibrium points P±
stiff represent stiff-fluid solutions, meanwhile the remaining

points represent scaling between the energy density of the dilaton and the CDM.
Let us to focus into two of the above critical points: P ′

sc and P∗. As it was for
vacuum BD cosmology, the de Sitter critical point does not arise unless k = 1. In
this latter case (k = 1), for the last equilibrium point in Eq. (7.31), one gets:
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P∗ : (0, 1) , q = −1 (H = H0), Ωeff
m = 0, λ1,2 = −3,

where λ1 and λ2 are the eigenvalues of the linearization matrix around P∗ : (0, 1).
This means that, for the exponential potentialU (ϕ) ∝ expϕ, the GR–de Sitter solu-
tion is an attractor of the dynamical system (7.30).

For the scaling point P ′
sc, the deceleration parameter is given by q = (k −

2)/2(k + 1), so that, for k = 0, which corresponds to the constant potentialU = U0,
the BD–de Sitter solution is obtained q = −1 ⇒ a(t) ∝ eH0t , e−ϕρm = const.
However, since

Ωm = 2k2 − 3k − 8 − 6ωbd

2(k + 1)2
,

at k = 0, Ωeff
m = −(4 + 3ωbd), is a negative quantity, unless the Brans–Dicke cou-

pling parameter falls into the very narrow interval −3/2 < ωbd ≤ −4/3. Hence, for
k = 0, but for −1.5 < ωbd ≤ −1.33, the point P ′

sc does not actually belong in the
phase space Ψmat.

7.6 (Non)emergence of the ΛCDM Phase from
the Brans–Dicke Cosmology

This problem has been generously discussed before in the reference [9]. The con-
clusion on the emergence of the ΛCDM cosmology starting from the Brans–Dicke
theory, seems to be supported by the existence of a de Sitter phase, whichwas claimed
to be independent on the concrete form of the self-interaction potential of the dilaton
field in [9, 10], and then, in Ref. [11] the same authors somewhat corrected their pre-
vious claim. In this section we shall address this problem and we will clearly show
that, in general (but for the exponential potential U (ϕ) ∝ eϕ), the ΛCDM model is
not an attractor of the FRW–BD cosmology.3

Before we go any further, we want to make clear that the latter statement on the
non-universality of the GR–de Sitter equilibrium point, does not forbids the possi-
ble existence of exact de Sitter solutions for several choices of the self-interaction
potential (see, for instance, Ref. [14]). What the statement means is that, in case
such solutions are found, these would not be generic solutions, but very particular
(unstable) solutions instead, which are unable to represent any sensible cosmological
scenario.

It will be useful to state that a de Sitter solution arises whenever q = −1 ⇒
Ḣ = 0 ⇒ H = H0 ⇒ a(t) ∝ eH0t .This condition can be achieved even if x �= 0.
However, only when x = 0 ⇒ ϕ̇ = 0 ⇒ ϕ = ϕ0, the de Sitter solution can lead
to the ΛCDM model, where by ΛCDM model we understand the FRW cosmology

3A detailed analysis of the procedure and of the misleading conclusions in [9] can be found in the
appendix at the end of this contribution.



7 The Lambda-CDM Model Is Not an Universal Attractor … 147

within the frame of Einstein’s GR, with a cosmological constant Λ and cold dark
matter as the sources of gravity. Actually, only if ϕ = ϕ0, is a constant, the action
(7.2)—up to a meaningless factor of 1/2—is transformed into the Einstein-Hilbert
action plus a matter source:

S = 1

8πGN

∫
d4x

√|g| {R − 2U0} + 2
∫

d4x
√|g|Lm,

where eϕ0 = 1/8πGN . When Lm is the Lagrangian of CDM, the latter action—
compare with Eq. (7.1)—is the mathematical expression of what we call as the
ΛCDM cosmological model. In the remaining part of this section we shall discuss
on the (non)universality of theΛCDMequilibrium point. For this purpose, in order to
find useful clues,we shall explore first the simpler situation of vacuumBDcosmology
and, then, the Brans–Dicke cosmology with CDM will be explored.

7.6.1 Vacuum FRW–BD Cosmology

In this simpler situation the de Sitter phase arises only if assume an exponential
potential of the formU (ϕ) ∝ expϕ ⇒ V (φ) = M2φ2,whichmeans that ξ = 0 and
Γ = 1, are both completely specified, or if ξ = 1, i.e., if U (ϕ) = M2 ⇒ V (φ) =
M2φ. As a matter of fact, as shown in Sect. 7.4, for exponential potentials of the
general form: U (ϕ) = M2 exp (kϕ) ⇒ V (φ) = M2φk+1, with k �= 1 and k �= 0,
the de Sitter critical point does not exist. In other words, speaking in terms of the
original BD variables: but for the quadratic and the lineal monomials, V (φ) ∝ φ2 and
V (φ) ∝ φ, respectively—also for those potentials which approach to either φ2 or φ
at the stable point of the potential—the de Sitter solution is not an equilibrium point
of the corresponding dynamical system (see the worked examples in the appendix).

Now we want to show that, even when a de Sitter solution is a critical point of
(7.22), the existence of a de Sitter equilibrium point in the vacuum BD cosmology,
by itself, does not warrant that theΛCDMmodel is approached. As an illustration of
this statement, let us choose the vacuum FRW–BD cosmology driven by a constant
potential (see Sect. 7.4.2). In this case one of the equilibrium points of the dynamical
system (7.22): x1 = 1/

√
6(1 + ωbd) �= 0, corresponds to the de Sitter solution since

q = −1 ⇒ Ḣ/H 2 = 0 ⇒ H = H0. The tricky situation here is that, although
the de Sitter solution (H = H0) is a critical point of the dynamical system (7.22),
the ΛCDM model is not mimicked. Actually, at x1,

x = ϕ̇√
6 H

= 1√
6(1 + ωbd)

⇒ ϕ̇ = H0

1 + ωbd
⇒ ϕ(t) = H0 t

1 + ωbd
+ ϕ0,

i.e., the scalar field evolves linearly with the cosmic time t . This point corresponds
to BD theory and not to GR since, while in the latter the Newton’s constant GN is
a true constant, in the former the effective gravitational coupling (the one measured
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in Cavendish-like experiments) evolves with the cosmic time: Geff = e−ϕ(4 +
2ωbd)/(3 + 2ωbd) ⇒ Ġeff/Geff = −H0/(1 + ωbd). Taking the Hubble time to be
t0 = 13.817 × 109 yr (as, for instance, in [9]), i.e., the present value of the Hubble
constant H0 = 7.24 × 10−11 yr−1, one gets

Ġeff/Geff = −(1 + ωbd)
−17.24 × 10−11 yr−1. (7.32)

As a consequence of the above, if consider cosmological constraints on the vari-
ability of the gravitational constant [28], for instance the ones in [29], which uses
WMAP-5yr data combined with SDSS power spectrum data:−1.75 × 10−12 yr−1 <

Ġ/G < 1.05 × 10−12 yr−1, or the ones derived in Ref. [30], where the depen-
dence of the abundances of the D, 3He, 4He, and 7Li upon the variation of G
was analyzed: |Ġ/G| < 9 × 10−13 yr−1, from Eq. (7.32) one obtains the following
bounds on the value of the BD coupling constant: ωbd > 40.37 | ωbd < −69.95, and
ωbd > 79.44 | ωbd < −81.44, respectively. These constraints contradict the results
of [9, 10], and are more in the spirit of the estimates of [17, 31] (see, also, Ref. [18]).

7.6.2 Other Potentials

As seen in Sect. 7.4.3, for other potentials, such as the combination of exponentials
(7.25), and the cosh and sinh-like potentials (7.28), the GR–de Sitter solution is a
critical point of the corresponding dynamical system. However, do not get confused:
the above statement is not true for any arrangement of the free constants.

Take, for instance, the combination of exponentials. The GR–de Sitter point
x = ξ = 0 entails that (see Eq. (7.27)), either k = m = 1 ⇒ ξ = 0, or, for m = 1,
arbitrary k, the point is asymptotically approached asϕ → ∞ if k < 1. In the former
case (k = m = 1) the combination of exponentials U (ϕ) = M2ekϕ + N 2emϕ, coin-
cides with the simple exponential U (ϕ) = (M2 + N 2) eϕ, while in the latter case
(m = 1, k arbitrary), assuming that k < 1, the above potential tends asymptotically
(ϕ → ∞) to the exponential U (ϕ) ≈ N 2eϕ.

For the cosh and sinh-like potentials one has:

U (ϕ) = M2 (
eμϕ ± e−μϕ

)k
, (7.33)

where the “+” sign is for the cosh potential, while the “−” sign is for the sinh
potential, and the 2−k has been absorbed in the constant factor M2. On the other
hand, one has the following relationships:

ξ = 1 − kμ
eμϕ − e−μϕ

eμϕ + e−μϕ
, ξ = 1 − kμ

eμϕ + e−μϕ

eμϕ − e−μϕ
,

where the left-hand equation is for the cosh-like potential, while the right-hand
one is for the sinh-like potential. Since at the GR–de Sitter point: x = ξ = 0, then,
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from the above equations it follows that this critical point exists, for the cosh and
sinh-like potentials, only if kμ = 1, in which case, the mentioned potentials (7.33)
asymptotically approach to the exponential as ϕ → ∞: U (ϕ) ≈ M2 ekμϕ = M2 eϕ.

Summarizing: Only for the exponential potential U (ϕ) ∝ expϕ, or for any other
potential which, as ϕ → ∞, tends asymptotically to the exponential expϕ, the GR–
de Sitter solution is an attractor of the dynamical system (7.14). This is easily visu-
alized if realize that, by the definition of the variable ξ: ξ = 1 − ∂ϕU/U. Hence, if
assume ξ = 0, which is a necessary condition for the existence of the GR–de Sitter
point, then, necessarily: ∂ϕU/U = 1 ⇒ U (ϕ) ∝ eϕ.

7.6.3 FRW–BD Cosmology with Matter

In the case when we consider a matter source for the Brans–Dicke equations of
motion, in particular CDM, the existence of a de Sitter critical point with x = 0
⇒ ϕ̇ = 0—which means that the effective gravitational coupling is a real constant
that can be made to coincide with the Newton’s constant—is to be associated with
the ΛCDM model.

The autonomous system of ODE-s that can be obtained out of the cosmologi-
cal FRW–BD equations of motion, when these are sourced by CDM, is the one in
Eq. (7.30). The critical points of this dynamical system are given in Eq. (7.31). Notice
that only one of them:

P∗ :
(

−
√
2/3(k − 1)

k + 2 + 2ωbd
,

β

k + 2 + 2ωbd

)
,

where β = √
1 + 2ωbd/3

√
8 + 6ωbd − k(k − 2), can be associated with GR–de Sit-

ter expansion, i.e., with what we know as theΛCDMmodel, in the special case when
k = 1. In this latter case P∗ : (0, 1). Since we are considering exponential potentials
of the form U (ϕ) ∝ exp(kϕ), then the GR–de Sitter equilibrium configuration is
associated, exclusively, with the potential ∂ϕU/U = k = 1 ⇒ U (ϕ) ∝ eϕ.

Although in Sect. 7.5 we have considered only exponential potentials in FRW–BD
cosmology with background dust, it is clear that the result remains the same as for
the vacuum case: Only for the exponential potentialU (ϕ) ∝ expϕ, or for potentials
that approach asymptotically to expϕ, the GR–de Sitter solution is an equilibrium
configuration of the corresponding dynamical system.

7.7 Discussion

Why do our results differ from those in Ref. [9, 10], even when the tools used are the
same? To start with we shall concentrate, specifically, in the result related with what
the authors of [9, 10] call as the asymptotic value of the scalar fieldmass at the deSitter
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point,4 which is the value of the BD scalar field mass computed with the help of the

following known equation [9, 10, 32]: m2 = 2
[
φ∂2

φV (φ) − ∂φV (φ)
]
/(3 + 2ωbd),

or, in terms of the field variables ϕ and U = U (ϕ) in Eq. (7.4), the mass squared of
the dilaton:

m2 = 2
(
∂2

ϕU −U
)
/(3 + 2ωbd), (7.34)

evaluated at the GR–de Sitter equilibrium point.
According to [9, 10], the asymptotic value of the scalar field mass m|∗, at the

de Sitter point, is given by m|∗ ≈ 1.84 × 10−33/
√
3 + 2ωbd eV. Then the authors

constrain the BD coupling parameter ωbd by contrasting the above value m|∗ with
known estimates signaling at m|∗ ∼ 10−22 eV. The obtained bound ωbd ≈ −3/2 +
10−22, is a singular value and, if matter is taken into account, is very problematic
since consistency of the BD motion equations require that only traceless matter can
be coupled to the BD scalar field if ωbd = −3/2. The above bound on ωbd is to be
contrasted with our result in the Sect. 7.6.1, or with our demonstrated result that the
GR–de Sitter solution can be attained only if

U ∝ eϕ ⇒ ∂2
ϕU −U = 0 ⇒ m2 = 0,

i.e., if the dilaton is massless.
Given that the scalar field is necessarily massless at the GR–de Sitter point, which

would be the meaning of the tiny, yet non-vanishing, asymptotic valuem|∗ computed
in [9]? In this regard notice that the computations in [9, 10] are based on the linearized
solutions (perturbations would be more precise) around the de Sitter point, which are
valid up to linear terms in the initial conditions. Besides, in order to obtain the bound
ωbd ≈ −3/2 + 10−22 on the BD coupling parameter, the authors of [9, 10] assumed
what they called as “special initial conditions”. Then, the mass of the BD scalar
field computed in the mentioned references is the mass of the field at the linearized
(perturbed) solutions around the de Sitter point, but not at the point itself where the
dilaton is actually massless as we have shown.

The next question would be: which is the actual meaning of the linearized solu-
tions? The linearized solutions correspond to points in the phase space which are
very close to the stable equilibrium point—the de Sitter critical point in the present
case—so that the linear approximation takes place:

x(τ ) ≈ xc + εx (τ ), y(τ ) ≈ yc + εy(τ ), (7.35)

where xc, yc are the coordinates of the given equilibrium point, and the perturbations
εx ∼ εy � 1, are very small. These solutions can be viewed as small deformations
of the stable GR–de Sitter solution. Just as an illustration, let us consider the FRW–
BD theory driven by the exponential potential U (ϕ) ∝ expϕ, in a background of

4A detailed analysis with specific criticism of the work in [9, 10] is included in the appendix.
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CDM (see Sect. 7.5). The small perturbations around the de Sitter point P : (0, 1),
very quickly tend to vanish, restoring the system into the stable equilibrium state:
εx ∼ εy ∝ exp(−3τ ), where we have taken into account that the eigenvalues of the
linearizationmatrix at (0, 1), coincide:λ1 = λ2 = −3. Then, the linearized solutions
around the GR–de Sitter point look like5:

x(τ ) ≈ A e−3τ ⇒ ϕ(a) ≈ −√
2/3A/a3 + ϕ0,

y(τ ) ≈ 1 + B e−3τ ⇒ H 2(a) ≈ M2 eϕ0−√
2/3A/a3/3(1 + B/a3)2.

These will eventually (perhaps very quickly) decay into the stable de Sitter solution:
x(τ ) = 0 ⇒ ϕ = ϕ0, y(τ ) = 1 ⇒ H = H0 = M eϕ0/2/

√
3.

We can say that the linearized solutions have a finite life-time in the sense that,
within a finite amount of “time” τ , these decay into the stable solution. It is then clear
that the mass of the dilaton computed at linearized solutions would be highly depen-
dent on the assumed initial conditions, in contrast to the mass of the dilaton at the de
Sitter point. Actually, while the mass of the field at perturbed (unstable) solutions,
depends on the way the perturbations are generated, at the GR–de Sitter attractor,
being a stable equilibrium configuration, the field is massless regardless of the ini-
tial conditions. Hence, making cosmological predictions on the base of perturbed
solutions around equilibrium points, is meaningless due to the loss of predictability
which is associated with the strong dependence on the initial conditions. The only
useful information the dynamical systems theory allow to extract from the given
cosmological dynamical system is encoded in the equilibrium points themselves, but
not in the (linear) perturbations around them. The latter serve only as probes to test
the stability of the given critical point.

In addition we have to say that estimates on the parameters of the BD theory, such
as the BD coupling constant ωbd, made on the basis of linearized solutions in the
neighborhood of the GR–de Sitter solution, are not reliable since these linearized
solutions may not depart too much from general relativity (plus a cosmological
constant) which is obtained from the BD theory in the formal limit ωbd → ∞. The
same reasoning applies to the computation of other derived quantities such as the
ratio Ġ/G (see Sect. 7.6.1).

We find no reason to believe that we are living in one such perturbed solution
and not in the equilibrium configuration itself. Besides, if one wants to avoid the
cosmic coincidence problem, an equilibrium configuration which attracts the cosmic
history into aGR–de Sitter stage, is all what one needs.Making definitive conclusions
about the entire cosmic history based in computations made at a perturbed solution
is potentially misleading.

We want to underline that the above discussion was based on the assumption that
the computations made in [9] are correct. However, as I show in the appendix, these

5Here A and B are integration constants, which depend linearly on the initial conditions x(0), y(0),
and on other free parameters such as ωbd.
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computations are incorrect in general.Hence, after all, itmaybe that the discrepancies
of the present results and the results claimed in [9] (see also [10, 11]) is due to the
incorrect procedure performed in those references.

7.8 Conclusion

In the present paper I have explored the asymptotic properties of FRW–BD cosmo-
logical models (7.7), by means of the tools of the dynamical systems theory [9–11,
20–26, 33]. I have shown that, in spite of known results [9–11], the GR–de Sitter
phase is not an universal attractor of the BD theory.6 Only for the specific exponential
potential U (ϕ) ∝ expϕ, which, in terms of the original BD field φ, amounts to the
quadratic monomial V (φ) ∝ φ2, or for potentials which asymptotically approach to
expϕ (φ2), the GR–de Sitter phase is a stable critical point, i.e., a future attractor
in the phase space. I have shown, also, that at the GR–de Sitter critical point the
effective mass of the dilaton m2 in Eq. (7.34), vanishes.

We have learned that physically meaningful conclusions can be based only on
computations performed at the equilibrium configurations as, for instance, at the
stable GR–de Sitter critical point. On the contrary, the results based on computations
made at perturbed solutions are highly dependent on the initial conditions chosen
and, hence, useless to make physically meaningful predictions.

In particular, the computations performed at the stable BD–de sitter critical point
yield to bounds on the value of the BD coupling parameter ωbd > 40.37 | ωbd <

−69.95, or ωbd > 79.44 | ωbd < −81.44, depending on the observational data
assumed, which are consistent with the estimates of [17, 18, 31]. These results
are to be contrasted with the ones in Ref. [9]: ωbd = −3/2, or in [10]: ωbd ≈ −1,
which were based on computations made at perturbed solutions around the GR–de
Sitter attractor.
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6This result has been independently confirmed in [27] by means of the center manifold theorem.
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Appendix: Incorrectness of the Claim on the Universal
Character of the Λ-CDM Attractor in the Brans-Dicke
Cosmology

Here we want to show in details the source of the incorrect claim on the global
character of the de Sitter attractor in the BD theory, exposed in Ref. [9] (see also
[10, 11]). Here we assume the cosmological equations written in terms of the BD
scalar fieldφ (seeEq. (7.3)), aswell as the same definition of the phase space variables
used in [9]:

x := φ̇

Hφ
, y :=

√
V (φ)

3φ

1

H
, λ := −φ

∂φV (φ)

V (φ)
. (7.36)

The obtained autonomous system of ODE is given by (Eq. (15) in Ref. [9]):

x ′ = −x

(
3 + x + Ḣ

H 2

)
+ 6y2(2 + λ)

3 + 2ωbd
+ 3(1 − 3wm)

3 + 2ωbd

(
1 + x − ωbd

6
x2 − y2

)
,

y′ = −1

2
y

[
x(1 + λ) + 2

Ḣ

H 2

]
, λ′ = xλ [1 − λ (Γ − 1)] , (7.37)

where wm is the barotropic parameter of the matter fluid, the function Γ = V∂2
φV/(

∂φV
)2

, encodes the information of the potential V = V (φ), and it is assumed to
be a function of the parameter λ: Γ = Γ (λ). Notice that this function Γ does not
coincide with the similar function defined in Eq. (7.12). Another useful expression
is (Eq. (14) in [9]):

Ḣ

H2 = 2x
(
1 − ωbd

4
x
)

− 3y2(2 + λ)

3 + 2ωbd
− 3

[
2 + ωbd(1 + wm)

]
3 + 2ωbd

(
1 + x − ωbd

6
x2 − y2

)
.

(7.38)

The de Sitter Point

The main claim of the authors of Ref. [9] on the global character of the de Sit-
ter attractor is based on the argument that the general relativity de Sitter solution,
which corresponds to the critical point (x, y,λ) = (0,±1,−2) of the dynamical
system (7.37), is obtained independent of the specific functional form of Γ = Γ (λ).
This is seemingly the case, since by substituting x = 0, y = ±1 and λ = −2 in
the autonomous system of ODE (7.37), one gets x ′ = 0, y′ = 0 and λ′ = 0 without
making any assumptions on the functional form of Γ (λ).
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Notice, however, that it is mandatory that λ = −2 for the existence of the GR–
de Sitter solution. Actually, as clearly seen from (7.38), when evaluated at x = 0,
y = ±1 (the de Sitter condition) one gets:

Ḣ

H

∣∣∣∣
(0,±1,λ)

= − 3(2 + λ)

3 + 2ωbd
⇒ Ḣ = 0 ⇔ λ = −2.

Having established this fact (as properly done in [9]), the next step is to notice
that, taking into account the definition of the variable λ in (7.36) (Eq. (12) of
Ref. [9]), then, at the de Sitter attractor where λ = −2: ∂φV (φ)/V (φ) = 2/φ ⇒
V (φ) ∝ φ2. Then, the existence of the general relativity de Sitter attractor requires
that λ = −2 and this, in turn, necessarily entails that V (φ) ∝ φ2. As a straight-
forward consequence of this, since V (φ) = V0 φ2, then one invariably gets that
Γ = V∂2

φV/(∂φV )2 = 1/2. This means that, unlike the claim in [9], at the de Sitter
point (λ = −2), the function Γ (λ) is completely specified: Γ (−2) = 1/2.

Summarizing this very simple and straightforward argument: the GR–de Sitter
attractor necessarily entails λ = −2 ⇔ V (φ) ∝ φ2 ⇔ Γ (−2) = 1/2, and there
is not other way around. This is precisely our main claim in the present paper: the
GR–de Sitter attractor exists exclusively for the quadratic potential or for poten-
tials that approach to the quadratic one at the stable point, i.e., it is mandatory that
Γ (−2) = 1/2.

In order to illustrate our arguments, let us choose a pair of examples [9].

Example 1

Let us start by the potential

V (φ) = V0
(
φ2 − v2

)2
. (7.39)

The extrema of this potential are at φ2 = v2 (minimums) and at φ = 0 (maximum).
Since

λ = −φ
∂φV

V
= − 4φ2

φ2 − v2
⇒ φ2

v2
= λ

λ + 4
,

then Γ = Γ (λ) = V∂2
φV/(∂φV )2 = (

3 − v2/φ2
)
/4 = (λ − 2)/2λ. The relevant

values are precisely the extrema φ2 = v2, andφ = 0. At these values we have λ = ∞
(undefined), and λ = 0, respectively. Besides Γ (∞) = 1/2, and Γ (0) = ∞ (unde-
fined).

The attractor solutions for this potential are atφ = ±v, i. e., atλ = ∞ (undefined).
Notice that the value λ = −2, which is a necessary requirement for the existence
of the de Sitter critical point, is correlated with an unphysical solution. Actually, at
λ = −2, φ2 = −v2 ⇒ φ = ±iv, so that the scalar field is pure imaginary and, since
the effective gravitational coupling G ∝ φ−1 = ±iv−1 is unphysical, the de Sitter
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solution is unphysical for this potential. In consequence it is not a critical point (not
even a point) in the corresponding phase space. This was expected since, for the
potential (7.39), Γ (−2) = 1, i.e., Γ (−2) �= 1/2.

Example 2

The other potential included in the stability analysis of the de Sitter point in [9] is
the following:

V (φ) = 1

2
m2φ2 + α

4
φ4. (7.40)

From the particles physics perspective the physically interesting case is for negative
m2 < 0 (as for instance in the Higgs mechanism). This case (m2 < 0) is another nice
example of a potential that does not approach to the quadratic potential at the stable
point and, hence, does not drive a stable de Sitter phase. For this potential

λ = −4

(
m2 + αφ2

2m2 + αφ2

)
⇒ αφ2

m2
= −2(λ + 2)

λ + 4
,

Γ (λ) =
(
2 + αφ2

m2

) (
1 + 3αφ2

m2

)
(
2 + 4αφ2

m2

)2 = −4(8 + 5λ)

(8 + 6λ)2
.

Since m2 < 0, then αφ2 = −m2 are minimums, while φ = 0 is a maximum. Hence,
the attractor solutions in this case are at λ = 0, while at the maximum, which corre-
sponds to an unstable equilibrium point, one has: λ = −2. I.e., the de Sitter solution
in this case exists but it is an unstable point, not an attractor as assumed in [9].
Besides, for this potential Γ (−2) = 1/2 at φ = 0. This is because near of the max-
imum φ ∼ 0, the potential behaves like the (negative of the) quadratic potential.
In this case despite that Γ (−2) = 1/2, the quadratic potential is not approached at
the stable point(s) φ2 = −m2/α. Hence, Γ (−2) = 1/2 is a necessary condition for
the existence of the GR–de Sitter attractor, but it is not a sufficient condition. It is
required, additionally, that the latter condition is satisfied at the stable point of the
potential.

If, on the contrary, choose the less physically motivated case when in (7.40),
m2 > 0 is a positive quantity, thenV (φ) = m2φ2/2 + αφ4/4 has only one extremum:
a minimum at φ = 0, where λ = −2 and Γ (−2) = 1/2. As explained above, this
happens because in the neighborhood of theminimumatφ = 0, this potential behaves
like ∝ φ2. In this case (m2 > 0), the potential approaches to the quadratic one at the
stable point and enters the category of potentials for which the ΛCDM model is an
attractor of the FRW-BD theory, i.e., it serves as an illustration of our main result.
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Stability Conditions for the de Sitter State

As previously shown, since the present method assumes that Γ = Γ (λ), then for the
existence of the de Sitter attractor, necessarily, Γ (−2) = 1/2 at the stable point of
the potential: λ = −2 ⇔ V (φ) ∝ φ2 ⇔ Γ (−2) = 1/2.

Although the authors of [9] seem to perform a kind of general analysis of the
stability conditions of the GR–de Sitter point by introducing the parameter

3δ/8 = ∂λ′/∂x |∗ = λ∗ [1 − λ∗ (Γ (λ∗) − 1)] = δ(λ∗),

as a matter of fact, as shown, at the de Sitter attractor λ∗ = −2 and Γ (−2) = 1/2, so
that necessarily: δ = δ(−2) = −16 [1 + 2 (Γ (−2) − 1)] /3 = 0. This is precisely
the case which in [9] (first paragraph below Eq. (18)) is called as “degenerated”.
In more “dynamical systems oriented” terms, what happens in this case is that the
GR–de Sitter solution is a non-hyperbolic critical point and the Hartman-Grobman
theorem can not be applied, so that the standard tools of the linear analysis are useless
and one is obliged to resource to other tools such as the center manifold theorem, etc.,
as done, for instance, in [27]. Hence the analysis of the stability in [9] after Eq. (18)
is incorrect and its claimed generality through δ �= 0 is spurious. This is where our
analysis in the present paper starts departing from the one in [9].
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Chapter 8
New Setting for Spontaneous Gauge
Symmetry Breaking?

Roman Jackiw and So-Young Pi

Abstract Over half century ago Carl Brans participated in the construction of a
viable deformation of the Einstein gravity theory. The suggestion involves expanding
the tensor-based theory by a scalar field. But experimental support has not materi-
alized. Nevertheless the model continues to generate interest and new research. The
reasons for the current activity is described in this essay, which is dedicated to Carl
Brans on his eightieth birthday.

Brans and Dicke (also P. Jordan) [1] proposed a tensor/scalar (gμν/ϕ) generalization
of Einstein’s general relativistic tensor gravity model. In their generalization a scalar
field ϕ is coupled to the Ricci scalar, and further dynamics is posited for ϕ. The
dynamical equations follow from a generalized Einstein-Hilbert Lagrangian

Iα = −
∫

Lα (8.1)

Lα = √−g

[
α

12
ϕ2R + 1

2
gμν ∂μϕ ∂νϕ + λϕ4

]

The parameter α measures the strength of the R − ϕ2 interaction and suggests
a dynamical origin for the gravitational constant G ∝ 1/ ϕ2. (A self coupling of
strength λ may also be included, but it plays no role in our present discussion.)

While the model is attractive in that it presents a very explicit modification of the
Einstein theory, it fails to agree with the experimental values for the classic solar
system tests of gravity theory. Nevertheless these days interest has revived in the
Brans-Dicke model at α = 1 : LW = Lα=1.
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LW = √−g

{
1

12
ϕ2R + 1

2
gμν ∂μϕ ∂νϕ + λϕ4

}
(8.2)

The α = 1 model possesses Weyl invariance, i.e invariance against rescaling the
dynamical variables by a local space-time transformation.

gμν → e2θgμν (8.3a)

ϕ → eθϕ (8.3b)

Here θ is an arbitrary function on space time. The reasons for the contemporary
interest in LW are the following.

These days physicists are satisfied by the success that has been achieved in under-
standing and unifying all forces save gravity. This has been accomplished with the
help of spontaneous breaking of local internal symmetries.

With the desire to include gravity in this framework, and in keeping with its
presumed geometric nature, various people have suggested studying Weyl invariant
dynamics, with the hope that scaling will help understand short distance phenomena.
Additionally some are tantalized by the long-standing desire to extend conventional
space-time symmetries to include local conformal (Weyl) symmetry [2].

LW seems to bring closer the above goals: An operative Weyl symmetry appears
to host a local gauge symmetry, which can be broken by choosing specific values
for ϕ. Indeed ϕ = 1 renders LW equal to the Einstein-Hilbert Lagrangian. In this
framework Einstein theory is merely the “unitary gauge” version of LW .

Certainly such ideas are provocative and worthy of further examination and pos-
sible development. However, a critical viewpoint leads to the following questions
and observations.

1. No gauge potential (connection) is present; in what sense does IW define a “gauge
theory”?

2. There is no dynamical/energetic reason for choosing the “unitary gauge” ϕ = 1.
(In familiar spontaneous breaking, asymmetric solutions are selected by lowest
energy considerations.)

3. By inverting the order of presentation, we recognize that ϕ is a spurion variable:
upon replacing gμν in the Einstein-Hilbert action by gμνϕ

2, one arrives at theWeyl
action [3].

IEinstein-Hilbert
∣∣
gμν→ gμν ϕ2 → IW

4. The Weyl symmetry current vanishes identically. The computation is performed
according to Noether’s first theorem (applicable when transformation parameters
are constant) and her second theorem (applicablewhen transformation parameters
depend on space-time coordinates). The former is a special case of the latter;
both give the same result: no current. With no current, there is no charge and no
symmetry generator.
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The fact that the Weyl current vanishes cannot be attributed to the locality of
the symmetry transformation parameter θ(x). An instructive example is electrody-
namics, where δAμ = ∂μθ and δΨ = −iθΨ for a charged field Ψ . The current is
non-vanishing and is identically conserved, i.e. it is a superpotential.

Jμ = ∂ν (Fμν θ) (8.4)

(This is the Noether current for gauge symmetry, not the source current Jμ
EM that

appears in the Maxwell equations.) While the dependence on an inhomogenous θ
may make Jμ unphysical, the global limit produces a sensible result.

Jμ = ∂ν (Fμν) θ = Jμ
EMθ (8.5)

In the Weyl case, setting the parameter θ to a constant leaves a global symmetry. Yet
the current still vanishes.

Evidently the vanishing of the Weyl symmetry current, both local and a forteriori
also global, reflects the particularly peculiar role of the Weyl “symmetry” in the
examined models [4].

As yet we do not know how to assess the significance of the above observations for
a physics program based on Weyl symmetry. Clearly it is interesting to explore the
similarities to and differences from the analogous structures in conventional gauge
theory. We conclude with two observations on the model.

By an alternate “gauge choice” we can set
√−g to a constant. Evidently, a uni-

modular scalar/tensor theory is “gauge equivalent” to the Einstein-Hilbert model.
The kinetic term forϕ is notWeyl invariant and its non-invariance is compensated

by the non-minimal interaction with R. Alternatively we may dispense with the non-
minimal interaction and achieve invariance by introducing a gauge field Wμ, which
transform as Wμ → Wμ − ∂μθ. One verifies invariance of

∫
d4x

√−g

(
1

2
gμν Dμϕ Dν ϕ

)

Dμ ≡ ∂μ + Wμ. (8.6)

Expanding and integrating by parts shows that (8.6) is equivalent to (8.2) provided
R is given by the formula [5, 6]

1

12
R = DμWμ + gμν

2
WμWν . (8.7)

While these observations are provocative, they have not produced any useful insights.
Indeed thus far the only established role for IW is to generate the traceless new
improved energy momentum tensor θCC J

μν [7]
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θCC J
μν = 2√−g

δ IW
δgμν

∣∣∣∣
gμν→ δμν

(8.8)
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Chapter 9
The Brans-Dicke Theory and Its
Experimental Tests

Martin P. McHugh

Abstract Carl Brans submitted his doctoral dissertation to the Princeton committee
inMay of 1961. ByNovember, theBrans-Dicke theorywas disseminatedwidelywith
the publication of a 10-page paper in Physical Review. An extension of Einstein’s
general relativity, it generated great interest and was the subject of enormous effort
to test its implications experimentally. We examine the history and impact of the
experimental tests of this theory.

9.1 Introduction

Carl Brans is a theorist. This is clear to all who know him and his work. He can be
self-effacing yet almost boastful in saying he is not interested in the practical and
that any of his early tentative steps as a student in the laboratory were disastrous.
He tells a story of when he was a lab assistant at Loyola University New Orleans
(where he was an undergraduate, and later a faculty member) and he nearly killed
himself with a high voltage cosmic ray detector. He tells another of an incident at
Princeton when he was a graduate student taking an oral exam. Eugene Wigner had
posed a problem (something to do with cosmic rays in the earth’s magnetic field)
and Carl was working through it at the board when Wigner suggested that some
numerical estimates should be made. Carl informed him that he did not know one of
the numbers needed—the radius of the earth in some suitable units—andWigner was
aghast. Understandably a bit uncomfortable, Carl explained that he had never felt
the need to learn such things. The other examiners laughed, and one of them bailed
Carl out. He passed both the oral and the written qualifying exam in his first year
at Princeton. So it is interesting that Carl’s name is forever tied to someone who is
known as the consummate experimentalist—someone who reveled in designing and
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building experiments—Robert Dicke. One must note however that it is Dicke who
‘crosses over’ for the association because it is the Brans-Dicke theory for which they
both are famous. The amount of experimental effort behind tests of the Brans-Dicke
theory is truly stupendous (and I became even more convinced of this while doing
research for this short article). The direct and indirect spinoff work resulting from
this effort could easily fill an entire volume. But I make no effort to be complete here,
and will merely point out a couple of highlights that strike me as most interesting
and relevant. I should also note that the subject has the obvious connection to my
interest in the history of Robert Dicke’s work.

So it is my tribute to Carl on the occasion of his 80th birthday, to marvel at the
truly astounding body of experimental work that his theory has inspired (in spite of
himself).

9.2 Background

Robert Dicke began working on gravitation about the time of a sabbatical leave he
took from Princeton University beginning in the fall of 1954. During this year at
Harvard, the motivation for his interest in gravity was, at least in part, his perception
of a lack of strong experimental support for General Relativity (GR). He was also
influenced by ideas that are sometimes called the ‘Dirac large numbers’. These ideas
suggested that the coincidence in the size of some large dimensionless physical
quantities might point to possible underlying—but as yet unknown—connections.
One of the hypotheses suggested a link between the strength of gravity and the age
of the universe. If true it would mean that the strength of the gravitational interaction
(embodied in Newton’sG) would change with time. Other major influences on Dicke
included the ideas of Mach. One version of Mach’s principle can be summarized
to say that the inertial forces do not arise from motion relative to absolute space,
but rather due to distant matter in the universe [1]. These ideas (Mach and Dirac)
formed the background for Dicke’s discussions with Carl, who came to Princeton
as a graduate student in 1957. The theory that Carl would formulate was born from
these discussions.

For the experiments we will begin with the heart of the Brans-Dicke theory [2],
the scalar field introduced in addition to the tensor of GR. In GR the strength of the
gravitational interaction is determined, as it is in Newtonian theory, by the constant
G. In Brans-Dicke the strength of gravity is tied to the scalar field. This leads to—as
Carl likes to point out—the paradoxically named ‘variable gravitational constant’, or
variable G. Geophysical considerations [3], tracking of satellite and planetary orbits
[4, 5], etc. were all tests considered by Dicke and others to look for this varying G.
An early example of a proposed direct test in response to Brans-Dicke was to look
at the dynamics of massive stars in galactic clusters under the influence of a variable
G [6].
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9.3 The Three Classic Tests

The initial Brans-Dicke paper presented calculations for what are sometimes known
as the three ‘classic’ experimental tests of GR. For the first, the gravitational redshift,
there is no difference between Brans-Dicke and GR. In fact, it has been shown that
the gravitational redshift does not form a test capable of distinguishing between
relativistic gravitational theories [7].

For the second, the deflection of light in a gravitational field, there is a difference
between Brans-Dicke and GR. To first order the deflection angle δθ differs from
the GR value by a factor 3+2ω

4+2ω where ω is a dimensionless constant whose inverse
gives the relative strength of the scalar part of the Brans-Dicke scalar-tensor theory.
For large ω the importance of the scalar is small, and experimental results approach
those of GR. For the deflection of light experimental results available in 1961, “The
accuracy of the light deflection observations is too poor to set any useful limit to the
size of ω”, to quote Brans-Dicke [2].

For the third classic test, the perihelion rotation of the orbit of Mercury, an exact
solution is found in Brans-Dicke, and the difference with GR is found to be a factor
of 4+3ω

6+3ω . Thus for ω = 1, the extra perihelion shift due to relativistic effects would
be roughly 20% smaller than the 43′′·arc/century of GR. We will return to these two
significant experimental tests-the deflection of light and the orbit of Mercury—but
first we will turn our attention to another foundational experiment, then to one that
is not envisioned in that first Brans-Dicke paper but will be expanded upon later.

9.4 The Weak Equivalence Principle

The first gravitational experiment that Dicke had begun in the mid 1950’s was the so-
called Eötvös experiment. Baron Roland von Eötvös had performed by far the most
precise experimental test of universal free fall—the phenomenon that the accelera-
tion due to gravity is the same for all objects regardless of their composition. The
experiment is naturally viewed as a test of the equivalence of gravitational and iner-
tial mass, and embodies what came to be known as the ‘weak equivalence principle’.
Eötvös found that the gravitational and inertial mass of a test object were equal to
within 3 parts in 109. This principle is so fundamental to the theory of gravity that
Dicke deemed it of utmost importance to repeat, and if possible improve upon the
results of Eötvös. He and his collaborators made several changes to the experimental
technique, and although it took close to 10 years of effort before the final results were
published, they found the weak equivalence principle to hold to within a part in 1011

[8]. The Brans-Dicke theory obeys the weak principle, so the experiment supports it
as much as it supports GR. However, the ‘strong principle of equivalence’ does not
hold for Brans-Dicke. The strong principle, to quote Brans-Dicke, states that all “the
laws of physics, including numerical content (i.e. dimensionless physical constants),
as observed locally in a freely falling laboratory, are independent of the location in
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time or space of the laboratory” [2]. In fact, the distinction between the ‘strong’ and
‘weak’ becomes apparent when clarifying the role of the principle of equivalence in
GR and alternate theories of gravity.

So the experimental verification of universal free-fall supports the weak, but not
the strong principle of equivalence—with one crucial caveat which we will explore
next.

9.5 The Nordtvedt Effect

Universal free-fall has a wrinkle within the context of the Brans-Dicke theory. First
recorded in lectures given in the picturesque town of Varenna on Lake Como in
northern Italy during the summer of 1961 [9], Dicke considered the possibility that
gravitational self-energy of an object could lead to anomalous free-fall in Brans-
Dicke. In other words, massive bodies would fall at a different rate than less massive
objects. In particular he considered looking for an effect in the orbit of the most
massive planet in the solar system, Jupiter. He reasoned though, that the effect was
smaller than the current orbital determinations could test. The issue thus languished
for several years until a letter, dated February 20, 1967, came to Dicke from Kenneth
Nordtvedt, then atMontana StateUniversity [10]. In the letter, he refers to an enclosed
preprint that he claims shows that both Einstein’s general relativity and the Brans-
Dicke theory obey the equivalence principle (universal free-fall) for massive bodies.
Dicke’s brief reply expresses his interest, but is non-committal. He appears not to
have been convinced because in anApril 3 letter to scientist-astronaut Dr. F.C.Michel
[11] Dicke writes, “I have been unable to prove the constancy of the gravitational
acceleration when self gravitational energy is important”. The story does not end
there of course, but continues with a subsequent May 24, 1967 letter from Nordtvedt
to Dicke [11], where he says that he (Nordtvedt) discovered a mistake in his earlier
paper, and that there is, in fact, an anomalous acceleration for massive bodies in the
Brans-Dicke theory. Nordtvedt goes on to publish a pair of articles [12, 13] which
demonstrate the existence of the effect (in particular for the Brans-Dicke theory)
and to propose new possible experimental tests. Even before the first two papers had
appeared in print he submitted a third [14] which very significantly points out for
the first time, that a lunar laser ranging experiment could be used to test this effect—
soon known as the ‘Nordtvedt effect’. With the anomalous contribution from the
gravitational self-energy, the earth and the moon fall towards the sun at slightly
different rates, and their mutual orbital motion is thus distorted. This distortion can
be measured by accurate distance measurements between the earth and the moon.

Ranging measurements to artificial satellites [4] and to the moon [15] were one
of the many experimental ideas that had be bandied about by the Dicke group with
the idea of looking for a variation in Newton’s gravitational constant G. Already in
1964 a letter from Dicke to Dr. Urner Liddel of NASA [16] indicated that NASA
had endorsed the idea of putting a reflector on the moon. A full proposal for the
experiment came in 1965 [17]. Coincident with the new insight of Nordtvedt for a
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direct test of Brans-Dicke, but also due to the desire to take some of the work load
off of the astronauts for the first landing [18], the lunar laser ranging retro-reflector
(LLLR) experiment was chosen towards the end of 1968 to be part of the Early
Apollo Scientific Experiments Package (EASEP) to be placed on the moon by the
Apollo 11 astronauts in July 1969. This part of the first experimental package was
quick and easy to deploy. The LLLR array was simply placed on the surface at a
sufficient distance from the lunar lander so that dust from the launch for the return
trip would not cover the reflectors.

The first reflections from the array were detected back on earth by August 1, 1969,
and additional reflector arrays were placed on the moon by Apollo 14, 15 and by
the unmanned Soviet Luna 17 spacecraft [18]. As the data came in, the test of the
Nordtvedt effect proceeded.

As late as early 1975 the laser ranging analysis team had a tentative (unpublished)
result of an orbital distortion of about 1 meter consistent with a significant Nordtvedt
effect implying an ω = 7.5 for Brans-Dicke [19]. A new ephemeris model led to
the discovery of a systematic error, and the effect was reduced to 9 cm—within the
experimental uncertainties. By the end of 1975 when the results were published [20]
a constraining limit on the Brans-Dicke theory of ω > 79 could be inferred from the
data. This result came at a time, as we will discuss further, when evidence from a
number of tests began to come in to severely constrain the Brans-Dicke theory.

As part of the legacy of experiments inspired by Brans-Dicke, the lunar laser
ranging has continued up to the present day, making it easily the longest-lived of the
first experiments placed on the moon by Apollo astronauts. It has given a wealth of
information including the limits on a changing G (its original goal) and limits on a
violation of the equivalence principle [21].

9.6 The Deflection of Light

Indeed there is a long history of optical light deflection experiments. As stated before,
at the time Brans-Dicke was published, the limits were insufficient to put constraints
on the theory. To highlight the difficulties of such an experiment, a more modern
version done by a team from the University of Texas in 1973 only measured the
effect to an accuracy of 10% [22]. This would only give a constraint of ω > 4.
However,motivated byBrans-Dicke to do better, a number of groups doing deflection
experiments using radio waves instead of visible light began to get results by the
late 1960’s. By 1975, radio interferometry measurements of quasar sources passing
near the sun had restricted ω > 40 [23]. The exquisite angular resolution of Very
Long Baseline Interferometry (VLBI) has pushed that restriction to ω > 10,000 by
2011 [24].
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9.7 Solar Oblateness

In 1961, the strongest test of GR was the one that had been around the longest—the
measured anomalous precession of the perihelion ofMercury. By the reckoning of the
original Brans-Dicke paper, this result set a limit on ω right from the start—ω ≥ 6.
It is interesting to note that this was based on an 8% uncertainty in the experimental
value of the anomalous precession, even though the Brans-Dicke paper quoted the
value as 42.6′′ ± 0.9′′·arc/century—a 2% uncertainty. The case to justify the extra
‘wiggle room’ on the uncertainty was made quite reasonably by Brans and Dicke by
showing how astronomical values are routinely revised by amounts much greater that
the previously reported uncertainties. The example of the mass of Saturn showed that
a new value reported in 1960 differed from a previous determination by an amount
roughly 16 times as large as the reported error of the older measurement. Systematic
errors, being very difficult to estimate, were typically not taken into account, and
strictly the formal probable error was reported. Therefore an error in the mass of
Venus seemed a plausible culprit that would increase the uncertainty in Mercury’s
orbit. But only a year later, by the end of 1962, the results from NASA’s Mariner II
probe supported the accepted value for the mass of Venus. The wiggle room already
appeared to be shrinking.

Sitting in an airport lounge in New York (then known as Idlewild but soon to
become JFK) waiting for a flight to a quantum electronics symposium in Paris, Dicke
began to think seriously about other sources of error in the perihelion shift calculation.
The experimental effort that resulted was in many ways the most complex (and most
convoluted) of any inspired by Brans-Dicke. The idea that hit Dicke that day was
that a slight distortion of the mass distribution of the sun would contribute to the
perihelion shift. If the mass distribution was not perfectly spherical as was assumed
by Einstein and others in the calculations, but insteadwas slightly squashed or oblate,
the amount of the perihelion shift that could be simply explained by Newtonian
gravity—without invoking relativity—would change.Dickewould discover later that
an astronomer named Simon Newcomb had contemplated an oblate sun to account
for the perihelion anomaly long before the advent of general relativity [25]. But when
Einstein’s calculation so nicely accounted for the entire anomaly, the interest in a
possible solar oblateness evaporated. Dicke would later write, “I have long believed
that an experimentalist should not be unduly inhibited by theoretical untidiness”
[26]. So Dicke revived the idea, and set out to measure the oblateness of the sun. He
recruited the help of a couple of brilliant experimentalists who were young Princeton
faculty members in his research group—Henry Hill and Mark Goldenberg.

RaiWeiss, a postdoc in the Dicke group at the time, tells an interesting story about
the initial design of the apparatus for this experiment [27]. After a group meeting
where some of the ideas were discussed, Dicke ‘disappeared’ for 3 or 4 weeks.When
he returned he had a stack of machine blueprints outlining the whole apparatus. But
more than that, and what struck Weiss as pure genius, Dicke had thought through in
enormous detail many of the myriad sources of systematic error. He had included in
the design, features that often came after months of working with an apparatus and
discovering its weaknesses.
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Even with this heroic effort, this was only a start, with long work ahead and major
contributions to the experimental apparatus and design from Hill and Goldenberg.

In highly simplified terms, the basic idea for the experiment was to capture the
image of the sun with a telescope equipped with a circular disk to block out nearly
the entire surface of the sun. The remaining thin ring would then be examined to
look for the excess light that would be produced by a bulge in the shape of the sun.
A perfectly spherical sun would lead to a uniform ring, but a bulging sun would
produce a non-uniform ring. After construction, the first preliminary measurements
were made in the late summer of 1963 [28].

More hard work ensued, but by end of the summer of 1966 they had collected
sufficient data, and in 1967 published initial results that they had observed an oblate
sunwith a fractional difference in the equatorial and polar radii of (5.0 ± 0.7) × 10−5

[29]. This small bulge was enough to lead to a slight perihelion rotation for Mercury
and reduce the presumably relativistic effect from 43′′ to 39.6′′ arc/century. This
later value agrees with Brans-Dicke with ω ∼ 6. The Dicke-Goldenberg result was
immediately attacked on several fronts, and Dicke spent a large amount of time
answering the critics. The great difficulty of the experiment came from the great
complexity of the sun. It was not until 1974 that a full account and complete data
analysis of the experiment was presented [30].

Meanwhile, Henry Hill, who was a key member of the effort early on, had left
his assistant professor job at Princeton for Wesleyan University in the fall of 1964.
Dicke thought very highly ofHill; hewrote a recommendation letter (datedDecember
22, 1965) for Hill’s promotion to full professor at Wesleyan stating Hill was “one
of the country’s very few really brilliant experimentalists” [31]. What Hill had been
planning since moving toWesleyan was a light deflection experiment. It was set up at
the Sacramento Peak Observatory in Tucson Arizona, and the facility was called the
Santa Catalina Laboratory for Experimental Relativity by Astrometry (SCLERA).
A great weakness of the light deflection experiments was the fact that they could be
done only during an eclipse, and thus theywere donewith temporary installations that
were at the mercy of the local conditions over the brief time the measurements could
be made. The initial goal of SCLERA was to measure the deflection of light for stars
near the sun without benefit of an eclipse. It turned out, however, that the instrument
was suited for a measurement of the solar oblateness. With the controversy over the
Dicke-Goldenberg result raging, Hill turned his efforts toward this measurement.
His result published in 1974 [32] gave a value approximately 5 times smaller than
Dicke-Goldenberg for the solar oblateness, back in linewith Einstein’s theory.Within
a short time of this publication, results for the other solar system tests (laser ranging,
radio deflection, etc.) all came in consistent with GR, placing strict limits on Brans-
Dicke. Therefore, the issue seemed to be resolved, with Hill’s results confirming the
conventional wisdom. However, given the subtle nature of the experiments, and the
complexity of the solar structure, the issue was, in fact, far from being settled.

A key to understanding the results was understanding the brightness variations of
the sun—pole to equator, and at the edge or ‘limb’. How these brightness variations
changed with time was also important. Through the measurements to look for solar
oblateness, Henry Hill was among the first to observe a set of normal mode oscil-
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lations of the sun that led the way for observational helioseismology [33]. Now a
large, and well-established field (see [34] and references therein for a review of the
subject) the study of how the sun oscillates was in its infancy then, and the oblate-
ness work helped move it forward. In the late 70’s Dicke and collaborators built a
new instrument for solar observations, and along with his students Jeffrey Kuhn and
Kenneth Libbrecht, continued work and made significant contributions to the field of
solar physics (see for example [35]). Dicke himself was author or coauthor on more
than 50 publications on solar physics.

9.8 The Shapiro Delay

Irwin Shapiro proposed a ‘fourth test’ of relativistic gravitation not long after the
publication of Brans-Dicke [36]. There is a predicted time delay of a light signal
as it passes through a gravitational field. The time comparisons needed to test this
effect require an out-and-back signal, and the initial proposal was to look at radar
reflections off of the inner planets as the signal passed near the sun. First results
published in 1968 [37] were not precise enough to place any restrictions on Brans-
Dicke. The subsequent use of satellite probes allowed improved measurements, and
by 1979 experiments using the Viking spacecraft gave a restriction of ω ≥ 500 [38].

9.9 Gravity Probe B

Yet another test of relativity, proposed by Leonard Schiff in 1960, was to observe
a spinning gyroscope in orbit around the earth [39]. An expected precession of the
angularmomentumaxis of the gyroscope is the result of two relativistic effects—a so-
called geodetic or de Sitter term, and an additional frame-dragging or Lense-Thirring
term due to the rotation of the earth ‘dragging’ the inertial frame around with it. After
the Brans-Dicke publication, some authors touted this experiment as the best test of
the theory [40]. The geodetic term would differ from GR by a factor 3ω+4

3ω+6 and the
frame-dragging term would differ by a factor of 2ω+3

2ω+4 . The experiment—known as
Gravity Probe B—ended up having quite a long history. It launched in 2004 with
final results published in 2011 [41]. Both the measured geodetic and frame-dragging
terms agreed with the predictions of GR within the experimental uncertainties. The
90% confidence limit determined by those uncertainties places restrictions on Brans-
Dicke of ω ≥ 118.

9.10 Scalar Gravitational Waves

In Brans-Dicke theory gravitational radiation has additional terms beyond what is
predicted in GR. There is experimental and observational work in this area that is
of note for what some of those involved were inspired to go on to do later. One of
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Dicke’s students whose Ph.D. thesis was entitled An astronomical and geophysical
search for scalar gravitational waves was W. Jason Morgan. He went on to be an
eminent geophysicist who was one of the pioneers in the theory of plate tectonics.
He won the National Medal of Science in 2002. Rai Weiss and Barry Block did an
experiment to look for scalar gravitational waves by using a gravimeter to monitor
the spherically symmetrical normal mode (or ‘breathing mode’) of the earth [42].
Weiss went on to invent the interferometric gravitational wave detector [43] and to
be one of the founders of LIGO [44]—the large project based on that invention to
realize the detection of gravitational radiation.

9.11 The Binary Pulsar

Early results from observations of the binary pulsar PSR 1913+16 considered grav-
itational radiation in the context of the Brans-Dicke theory [45]. By the late 1970’s
solar system test constraints were fairly strict, and dramatic differences between
Brans-Dicke and GR predictions would only occur for orbiting stars with quite dif-
ferent gravitational binding energies. In that case, Brans-Dicke predicts an additional
energy loss of the binary system due to dipole radiation, which does not occur in GR.
For the binary pulsar however there was evidence for the companions to be quite
similar in mass, so no further constraints on Brans-Dicke were possible.

9.12 The Cosmic Microwave Background

In the summer of 1964, casting about for cosmological tests, Dicke suggested looking
for the remnantmicrowave background radiation of an early hot epoch in the universe.
In a story told at length elsewhere (see for example [46]), members of Dicke’s group,
Dave Wilkinson and Peter Roll, began an experiment to look for the background
while Jim Peebles began exploring the theoretical implications. They were famously
‘scooped’ in the discovery of the cosmic microwave background by Penzias and
Wilson [47, 48], but an era of observational cosmology was launched, at least in part
by Brans-Dicke.

9.13 Solar Neutrinos

There were other research efforts, although not directly conceived as tests of gravity,
that nonetheless were influenced by Brans-Dicke. An early paper by John Bahcall on
solar neutrinos [49] references the predictions of a solar model based on the variable
G of Brans-Dicke. It was hoped that the neutrino detection experiments of Ray Davis
might be able to shed light on thesemodels. Of course the ‘missing’ neutrino problem
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that was revealed later agreed with none of the models. The standard solar models
were later confirmedbyhelioseismology,whichwehave seen, had contributions from
the work done on solar oblateness tests of Brans-Dicke. Confirming solar models
showed that there was a real ‘solar neutrino problem’ which was later explained with
the new physics of neutrino oscillations. Nobel prizes for these experiments followed
for Raymond Davis Jr. and Masatoshi Koshiba in 2002 and for Takaaki Kajita and
Arthur B. McDonald in 2015.

9.14 Conclusions

Carl’s thesis project has been tested in locations ranging frommineshafts to themoon.
Satellites, telescopes and the full might of NASA have been behind the massive body
of work that tested the Brans-Dicke theory. And when we consider all the directions
these experiments have taken, it is mind-boggling. For those interested in delving
further into the many experimental tests of the Brans-Dicke theory, Clifford Will’s
book [50] or his online living review [51] are very good places to start.
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Part II
Mach’s Principle and Bell’s Inequality

“...In Part I it is conjectured that a “Mach’s principle” might lead to a dependence of
the local Newtonian gravitational constant, K, on universe structure, K� M

R .
Einstein and others have suggested that general relativity predicts such a result.
A closer analysis, however, including the carrying out of the geodesic equations to
second order, seems to indicate that this is not true and that the apparent “Mach’s
principle” terms involving total universe structure are really only coordinate effects.

“...It is sometimes said that quantum theory saves free will: In the context of this
paper, this might be reversed, so that free will saves quantum theory, at least in the
sense of eliminating hidden variable alternatives. In other words, if there are any
truly “free” events in the experiment, then there can be no classical determinism and
hence no classical hidden variables. Conversely, given FCA (All aspects of the
experiment; including detector settings, are determined by initial data at some
sufficiently remote time.), there are no truly “free” or “random” events, although



certain sets of variable values may be uncorrelated in any contemporary statistical
sense. Thus, an FCA type of hidden variable theory can reproduce exactly the
predictions of quantum theory, yet still preserve the apparent randomness of certain
choices. ...”

176 Part II: Mach’s Principle and Bell’s Inequality



Chapter 10
Mach’s Principle and the Origin of Inertia

Bahram Mashhoon

Abstract The current status of Mach’s principle is discussed within the context of
general relativity. The inertial properties of a particle are determined by its mass
and spin, since these characterize the irreducible unitary representations of the inho-
mogeneous Lorentz group. The origin of the inertia of mass and intrinsic spin are
discussed and the inertia of intrinsic spin is studied via the coupling of intrinsic
spin with rotation. The implications of spin-rotation coupling and the possibility of
history dependence and nonlocality in relativistic physics are briefly mentioned.

10.1 Introduction

Is motion absolute or relative? If the Newtonian absolute space and time are not real
and therefore not responsible for the origin of inertia, then inertia must be due to
immediate connections betweenmasses. Thus onemight expect that the inertial mass
of a test particle increases in the vicinity of a large mass. Following this Machian line
of thought, Einstein suggested that perhaps the physics of general relativity could
be so interpreted as to allow for this possibility [1]. However, Brans showed that if
one adopts the modern geometric interpretation of general relativity, then the inertial
mass of a free test particle cannot change in a gravitational field. Indeed, this issue has
since been completely settled as a result of Brans’s thorough analysis [2, 3]. More-
over, Mach’s principle played an important role in the scalar-tensor generalization
of Einstein’s tensor theory by Brans and Dicke [4].

Carl Brans has made basic contributions to gravitation theory and general relativ-
ity. It is a great pleasure for me to dedicate this paper to Carl on the occasion of his
eightieth birthday.
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The connection between Mach’s ideas [5] and Einstein’s theory of gravitation [1]
has been the subject of many interesting investigations [6]; furthermore, there is a
diversity of opinion on this matter [6–9]. A more complete account of the views
expressed in this brief treatment is contained in [10] and the references cited therein.

The special theory of relativity involves, among other things, themeasurements of
observers inMinkowski spacetime. The special class of inertial observers has played
a pivotal role in the development of physics, since the fundamental laws of physics
are expressed in terms of the measurements of these hypothetical observers. Indeed,
inertial physics was originally established by Newton [11]. The measurements of
inertial observers, each forever at rest in a given inertial frame in Minkowski space-
time, are related to each other by Lorentz invariance. Actual observers are all more
or less accelerated. The measurements of accelerated observers must be interpreted
in terms of the fundamental (but hypothetical) inertial observers.

The acceleration of an observer in Minkowski spacetime is independent of any
system of coordinates and is in this sense absolute. Let uμ = dxμ/dτ be the 4-
velocity of an observer following a timelike world line in Minkowski spacetime.
Here, xμ = (ct, x) denotes an event in spacetime, Greek indices run from 0 to 3,
while Latin indices run from 1 to 3; moreover, the signature of the metric is +2
and τ is the proper time along the path of the observer. The observer’s 4-acceleration
aμ = duμ/dτ is orthogonal to uμ, namely, aμ uμ = 0, since uμ uμ = −1. Thus aμ is a
spacelike 4-vector such thataμ aμ = A2,where the scalarA(τ ) ≥ 0 is the coordinate-
independent magnitude of the observer’s acceleration. An accelerated electric charge
radiates electromagnetic waves. The existence of radiation is independent of inertial
frames of reference and wave motion is in this sense absolute as well.

Relativity theory, namely, Lorentz invariance, is extended to accelerated observers
inMinkowski spacetime in a pointwisemanner. That is, at each instant along itsworld
line, the accelerated observer is assumed to be momentarily equivalent to a hypo-
thetical inertial observer following the straight tangent world line at that instant. The
further extension of relativity theory to observers in a gravitational field is accom-
plished via Einstein’s local principle of equivalence. Therefore, in general relativity
spacetime is curved and the gravitational field is identified with spacetime curva-
ture. Test particles and null rays follow timelike and null geodesics of the spacetime
manifold, respectively. Moreover, spacetime is locally flat and Minkowskian. The
global inertial frames of special relativity are thus replaced by local inertial frames;
moreover, gravitation is rendered relative in this way due to its universality, a circum-
stance that does not extend to other fundamental interactions. The general equation
of motion of a classical point particle in general relativity is given by

d2xμ

dτ 2
+ Γ

μ
αβ

dxα

dτ

dxβ

dτ
= aμ , (10.1)

where aμ is the absolute acceleration of the particle due to nongravitational forces and
Γ

μ
αβ are the Christoffel symbols. For instance, for a particle of mass m and charge q

in an electromagnetic field Fμν , aμ = (q/m)Fμν uν by the Lorentz force law. At each
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event in spacetime, coordinates can be chosen such that the Christoffel symbols all
vanish and Eq. (10.1) reduces to the corresponding relation inMinkowski spacetime.

Inertial forces appear in a system (“laboratory”) that accelerateswith respect to the
ensemble of local inertial frames. These inertial forces are not due to the gravitational
influence of distant masses, which would instead generate gravitational tidal effects
in the laboratory [12–16].

10.2 Mach’s Principle

Newton’s absolute space and time refer to the ensemble of inertial frames, namely,
Cartesian systems of reference that are homogeneous and isotropic in space and time
and in which Newton’s fundamental laws of motion are valid. Indeed, Newton’s first
law ofmotion, the principle of inertia, essentially contains the definition of an inertial
frame. Newton argued that the existence of inertial forces provided observational
proof of the reality of absolute space and time. Thus in classical mechanics, the
motion of a Newtonian point particle is absolute, yet subject to the principle of
relativity. However, the absolute motion of a particle, namely, its motion with respect
to absolute space and time is not directly observable.

Mach considered all motion to be relative and therefore argued against the New-
tonian conceptions of absolute space and time [5]. In his critique of Newtonian
foundations of physics, Mach analyzed, among other things, the operational defi-
nitions of time and space via masses and concluded that in Newtonian mechanics,
masses are not organically connected to space and time [5]. In fact, in Chap. II of [5],
on pp. 295–296 of Sect. VI, we find:

“…Although I expect that astronomical observation will only as yet necessitate very small
corrections, I consider it possible that the law of inertia in its simple Newtonian form has
only, for us human beings, a meaning which depends on space and time. Allow me to make
a more general remark. We measure time by the angle of rotation of the earth, but could
measure it just as well by the angle of rotation of any other planet. But, on that account,
we would not believe that the temporal course of all physical phenomena would have to
be disturbed if the earth or the distant planet referred to should suddenly experience an
abrupt variation of angular velocity. We consider the dependence as not immediate, and
consequently the temporal orientation as external. Nobody would believe that the chance
disturbance — say by an impact — of one body in a system of uninfluenced bodies which
are left to themselves and move uniformly in a straight line, where all the bodies combine
to fix the system of coördinates, will immediately cause a disturbance of the others as a
consequence. The orientation is external here also. Although we must be very thankful for
this, especially when it is purified from meaninglessness, still the natural investigator must
feel the need of further insight — of knowledge of the immediate connections, say, of the
masses of the universe….”

Thus Newton’s absolute space and time are fundamentally different from their
operational definitions by means of masses. Moreover, masses do not appear to
“recognize” absolute space and time, since they have been “placed” in this arena
without being immediately connected to it. In fact, the internal state of a Newtonian
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point particle, characterized by its massm, has no direct connection with its external
state in absolute space and time, characterized by its position and velocity (x, v) at a
given time t . Thus only the relativemotion of classical particles is directly observable.
This epistemological shortcoming of Newtonian mechanics means that the external
state of the particlem, namely, (x, v), can in principle be occupied by other particles
comoving with it. It is indeed a prerequisite of the notion of relativity of motion of
masses that an observer be capable of changing its perspective by comoving with
each particle in turn. As particles can be directly connected with each other via
interactions, we may say that particles have a propensity for relative motion.

With the advent of Maxwell’s electrodynamics, Galilean relativity was gradually
replaced by Lorentz invariance, in which the speed of light is the same in all inertial
frames of reference. Indeed, it is impossible for an inertial observer to be comoving
with light. Motion is either relative or absolute in classical physics. The motion of
light inMinkowski’s absolute spacetime is independent of inertial observers and is, in
this sense, nonrelative or absolute. Thus in Lorentz invariance, the motion of inertial
observers is relative, while the motion of electromagnetic radiation is absolute.

In classical physics, movement takes place via either particles or electromagnetic
waves. As emphasized by Mach [5], the internal and external states of particles are
not directly related, which leads to the notion of relativity of particle motion. How-
ever, the opposite is the case for electromagnetic waves. That is, the internal state
of a wave, namely, its period, wavelength, intensity and polarization are all directly
related to its external state characterized by its wave function, which is a solution
of Maxwell’s field equations. In this way, electromagnetic waves can “recognize”
absolute spacetime and this leads to their propensity for absolute motion. There-
fore, an inertial frame of reference can be characterized by standing electromagnetic
radiation [17]. Indeed, ring lasers are now regularly employed in inertial guidance
systems. Similarly, the wave nature of matter in quantum theory can be used to
establish an inertial frame of reference. For instance, the rotation of the earth can be
detected via superfluid helium [18]. Moreover, atom interferometers can function as
sensitive inertial sensors, since they can measure acceleration and rotation to rather
high precision [19–23].

10.3 Duality of Absolute and Relative Motion

Classical physics is the correspondence limit of quantum physics. It is therefore inter-
esting to extend the quantum duality of classical particles and waves to their motions
aswell. That is, themotion of a quantumparticle has complementary classical aspects
in relative and absolute movements [13].

The epistemological shortcoming of Newtonian mechanics that was pointed out
by Mach [5] essentially disappears in the quantum theory. That is, wave-particle
duality makes it possible for a (quantum) particle to “recognize” absolute spacetime;
moreover, it is impossible for a classical observer to be comoving with the particle
in conformity with Heisenberg’s uncertainty principle. Consider, for instance, the
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nonrelativistic motion of a particle of mass m in a potential V according to the
Heisenberg picture. The Hamiltonian is

Ĥ = 1

2m
p̂2 + V (x̂) . (10.2)

In this “particle” representation, the momentum operator of the particle is given by

p̂ = m
dx̂
dt

, (10.3)

so that the fundamental quantum condition, [x̂ j , p̂k] = i � δ jk , can be written as

[
x̂ j ,

dx̂k

dt

]
= i

�

m
δ jk . (10.4)

In sharp contrast to classical mechanics, the inertial mass of the particle is related,
albeit in a statistical sense, to the observables corresponding to its position and
velocity. This connection, through Planck’s constant �, disappears when m → ∞.
A macroscopically massive system behaves classically, since the perturbation expe-
rienced by the system due to any disturbance accompanying an act of observation
would be expected to be negligibly small. Similarly, let L̂, m L̂i = εi jk x̂ j p̂k , be the
specific orbital angular momentum operator of the particle; then,

[L̂ j , L̂k] = i
�

m
ε jkn L̂

n . (10.5)

The mechanical laws of classical physics pertaining to translational and rotational
inertia hold in a certain average sense in quantum theory as well. Moreover, in terms
of the Schrödinger picture, the state of the particle is characterized by awave function
Ψ (t, x) that satisfies the Schrödinger equation. This equation is explicitly dependent
upon the particle’s inertial massm, thereby connecting the internal and external states
of the particle in the “wave” representation.

In relativistic quantum theory, rotational inertia involves the intrinsic angular
momentum of the particle as well, thus leading to the inertia of intrinsic spin.

10.4 Inertia of Intrinsic Spin

Mass and spin describe the irreducible representations of the Poincaré group [24].
The state of a particle in spacetime is thus characterized by its mass and spin, which
determine the inertial properties of the particle. In quantum theory, therefore, the
inertial characteristics of a particle are determined by its inertial mass [25–27] as
well as intrinsic spin [28–31].
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To examine the inertia of intrinsic spin, we recall that the total angular momentum
operator is the generator of rotations; therefore, we expect that intrinsic spin would
couple to the rotation of a frame of reference in much the same way as orbital
angular momentum. This means that in a macroscopic body rotating in the positive
sense with uniform angular velocity Ω , the spins of the constituent particles do not
naturally participate in the rotation and all instead tend to stay essentially fixed with
respect to the local inertial frame. Thus relative to the rotating body, we have in the
nonrelativistic approximation for each spin vector σ̂,

dσ̂i

dt
+ εi jk Ω j σ̂k = 0 , (10.6)

since the spin vector appears to precess with angular velocity −Ω with respect
to observers at rest with the rotating body. The Hamiltonian corresponding to this
motion is

Ĥ = −σ̂ · Ω , (10.7)

because the Heisenberg equation of motion

i �
dσ̂k

dt
= [σ̂k, Ĥ] (10.8)

coincides with Eq. (10.6). For a discussion of the corresponding relativistic treatment
and further developments of this subject, see [32–37]. Moreover, a review of this
subject and a more complete list of references is contained in [38].

In general, the energy of an incident particle as measured by the rotating observer
is given by

E ′ = γ (E − � MΩ) , (10.9)

where E is the energy of the incident particle in the inertial frame and M is the total
(orbital plus spin) “magnetic” quantum number along the axis of rotation. In fact,
M = 0,±1,±2, . . . , for a scalar or a vector particle,whileM ∓ 1

2 = 0,±1,±2, . . . ,
for a Dirac particle. In the JWKB approximation, E ′ = γ (E − Ω · J), where J =
r × P + σ is the total angular momentum of the particle and P is its momentum;
hence, E ′ = γ (E − v · P) − γ σ · Ω , where v = Ω × r is the velocity of the uni-
formly rotating observer with respect to the background inertial frame and γ is the
Lorentz factor of the observer. The energy corresponding to spin-rotation coupling
is naturally augmented by time dilation.

It is important to remark here that the spin-rotation coupling is completely inde-
pendent of the inertial mass of the particle. Moreover, the associated spin-gravity
coupling is an interaction of the intrinsic spin with the gravitomagnetic field of the
rotating source that is also independent of the mass of the test particle. For instance,
free neutral Dirac particles with their spins up and down (i.e., parallel and antiparallel
to the vertical direction, respectively) in general fall differently in the gravitational
field of the rotating earth [29].
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The spin-rotation coupling has recently been measured for neutrons via neutron
polarimetry [39]. Moreover, this general coupling has now been incorporated into
the condensed-matter physics of spin mechanics and spin currents [40–48]. It is also
expected to play a role in the emerging field of spintronics [49].

10.5 Helicity-Rotation Coupling

To illustrate the general nature of spin-rotation coupling, we now turn to the case of
photons, see [50–56] and the references cited therein. Consider the measurement
of the frequency of a plane monochromatic electromagnetic wave of frequency ω
propagating along the axis of rotation of the observer. The result of the Fourier
analysis of the measured field is

ω′ = γ (ω ∓ Ω) , (10.10)

where the upper (lower) sign refers to positive (negative) helicity radiation. With
E = � ω, our classical result (10.10) is consistent with the general formula (10.9)
for spin 1 photons. The helicity-dependent contribution to the transverse Doppler
effect in Eq. (10.10) has been verified via the GPS [57], where it is responsible for
the phenomenon of phase wrap-up [57].

It is simple to interpret the coupling of helicity with rotation in Eq. (10.10), aside
from the presence of the Lorentz factor that is due to time dilation. In a positive
(negative) helicity wave, the electromagnetic field rotates with frequency ω (−ω)

about the direction of propagation of the wave. The rotating observer therefore per-
ceives positive (negative) helicity radiation with the electromagnetic field rotating
with frequency ω − Ω (−ω − Ω) about the direction of wave propagation.

For the case of oblique incidence, the analog of Eq. (10.10) is

ω′ = γ (ω − M Ω) , (10.11)

where M = 0,±1,±2, . . . for the electromagnetic field. This exact classical result
can be obtained by studying the electromagnetic field as measured by uniformly
rotating observers. It is interesting to note that ω′ = 0 for ω = M Ω , a situation that
is discussed in the next section, while ω′ can be negative for ω < M Ω . The latter
circumstance does not pose any basic difficulty, since it is simply a consequence of
the absolute character of rotational motion.

10.6 Can Light Stand Completely Still?

The exact formula ω′ = γ (ω − Ω) for incident positive-helicity radiation has a
remarkable consequence that is not easily accessible to experimental physics: The
incident wave stands completely still with respect to observers that rotate uniformly
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with frequency Ω = ω about the direction of propagation of the wave. That is,
helicity-rotation coupling has the consequence that a rotating observer can in prin-
ciple be comoving with an electromagnetic wave; in fact, the wave appears to be
oscillatory in space but stands completely still with respect to the rotating observer.
The fundamental difficulty under consideration here is quite general, as it occurs for
oblique incidence as well.

By amere rotation, an observer can in principle stay completely at restwith respect
to an electromagnetic wave. This circumstance is rather analogous to the difficulty
with the pre-relativistic Doppler formula, where an inertial observer moving with
speed c along a light beam would see a wave that is oscillatory in space but is other-
wise independent of time and hence completely at rest. This issue, as is well known,
played a part in Einstein’s path to relativity, as mentioned in his autobiographical
notes, see p. 53 of [58]. The difficulty in that case was eventually removed by Lorentz
invariance; however, in the present case, the problem has to do with the way Lorentz
invariance is extended to accelerated observers in Minkowski spacetime. In the spe-
cial theory of relativity, Lorentz invariance is extended to accelerated systems via
the hypothesis of locality, namely, the assumption that an accelerated observer is
pointwise inertial [59, 60]. This circumstance extends to general relativity through
Einstein’s local principle of equivalence. The locality assumption originates from
Newtonian mechanics, where the state of a particle is determined by (x, v) at time t .
The accelerated observer shares this state with a comoving inertial observer; there-
fore, they are at that moment physically equivalent insofar as all physical phenomena
could be reduced to pointlike coincidences of classical particles and rays of radiation.
However, classical wave phenomena are in general intrinsically nonlocal.

According to the locality assumption, the world line of an accelerated observer
in Minkowski spacetime can be replaced at each instant by its tangent and then
Lorentz transformations can be pointwise employed to determine what the accel-
erated observer measures. To go beyond the locality postulate of special relativity
theory, the past history of the observer must be taken into account. Thus the locality
postulate must be supplemented by a certain average over the past world line of
the observer. In this way, the observer retains the memory of its past acceleration.
This averaging procedure involves a weight function that must be determined. In this
connection, we introduce the fundamental assumption that a basic radiation field
can never stand completely still with respect to an observer. On this basis a nonlocal
theory of accelerated observers can be developed [61]. The nonlocal approach is in
better correspondence with quantum theory than the standard treatment based on the
hypothesis of locality [62].

History-dependent theories are nonlocal in the sense that the usual partial dif-
ferential equations for the fields are replaced by integro-differential equations.
Acceleration-induced nonlocality in Minkowski spacetime suggests that gravity
could be nonlocal. This is due to the intimate connection between inertia and grav-
itation, implied by Mach (e.g., in his discussion of Newton’s experiment with the
rotating bucket of water on p. 279 of [5]) and developed in new directions by Einstein
in his general theory of relativity [1]. That is, Einstein interpreted the principle of
equivalence of inertial and gravitational masses to mean that an intimate connec-



10 Mach’s Principle and the Origin of Inertia 185

tion exists between inertia and gravitation. One can follow Einstein’s interpretation
without postulating a local equivalence between inertia and gravitation as in general
relativity; for instance, one can instead extend general relativity to make it history
dependent. Recently, nonlocal theories of special and general relativity have been
developed [63–67]. It turns out that nonlocal general relativity simulates dark matter.
That is, according to this theory, what appears as dark matter in astrophysics [68–70]
is essentially a manifestation of the nonlocality of the gravitational interaction [67].

10.7 Discussion

Classical relativistic mechanics and classical electrodynamics are mainly concerned
with two types of motion, namely, local particle motion and nonlocal wave motion,
respectively. These are brought together in geometric optics, where the waves are
replaced by rays that can be treated in a similar way as classical point particles. With
respect toMinkowski’s absolute spacetime, particle motion is absolute; however, this
absolute motion is not directly observable. On the other hand, the motion of classical
particles naturally tends to be relative. Similarly, themotion of electromagneticwaves
naturally tends to be absolute, though the corresponding wave equation is Lorentz
invariant. In the quantum domain, this line of thought leads to the complementarity
of absolute and relative motion; moreover, the notion of inertia must be extended
to include intrinsic spin as well. The inertial coupling of intrinsic spin to rotation
has recently been measured in neutron polarimetry [39]. The implications of the
inertia of intrinsic spin are critically examined in the light of the hypothesis that an
electromagnetic wave cannot stand completely still with respect to any accelerated
observer.
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Chapter 11
The Significance of Measurement
Independence for Bell Inequalities
and Locality

Michael J. W. Hall

Abstract A local and deterministic model of quantum correlations is always pos-
sible, as shown explicitly by Brans in 1988: one simply needs the physical systems
being measured to have a suitable statistical correlation with the physical systems
performing themeasurement, via some common cause.Hence, to derive no-go results
such as Bell inequalities, an assumption of measurement independence is crucial.
It is a surprisingly strong assumption—less than 1/15 bits of prior correlation suf-
fice for a local model of the singlet state of two qubits—with ramifications for the
security of quantum communication protocols. Indeed, without this assumption, any
statistical correlations whatsoever—even those which appear to allow explicit super-
luminal signalling—have a corresponding local deterministic model. It is argued that
‘quantum nonlocality’ is bad terminology, and that measurement independence does
not equate to ‘experimental free will’. Brans’ 1988 model is extended to show that
no more than 2 log d bits of prior correlation are required for a local deterministic
model of the correlations between any two d-dimensional quantum systems.

11.1 Introduction

Various no-go results exist formodels of quantumphenomena, based on variousmore
or less plausible assumptions for the structure of such models. Such results support
a longstanding view that quantum mechanics is more or less implausible—indeed,
Niels Bohr was famously quoted as saying [1]:

Those who are not shocked when they first come across quantum theory cannot possibly
have understood it.
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This has led not only to much philosophical discussion on which assumption(s)
should be relaxed, but also to surprising applications of what might be termed quan-
tum implausibility, such as quantum cryptography and quantum computation.

Themost remarkable of these no-go results are Bell inequalities, which imply that
at least oneof the plausible properties of determinism, locality andmeasurement inde-
pendence must be given up to successfully describe quantum correlations between
distant measurement regions [2–4]. Here measurement independence denotes the
statistical independence of (i) any physical parameter influencing the selection of
measurement procedures from (ii) any physical parameter influencing measurement
outcomes, and is typically justified by an appeal to experimental free will [5].

The question of which property should be relaxed is not just a matter of idle
speculation: the security of quantum cryptographic protocols, for example, relies
on there being no deterministic description underlying correlations between distant
measurement outcomes—an eavesdropper possessing such a description would be
able to determine the cryptographic key [6]. Hence, any unconditionally secure pro-
tocol based on violation of Bell inequalities must, to ensure there is no deterministic
description available, assume that the properties of locality and measurement inde-
pendence hold. A similar requirement applies to device-independent protocols for
randomness generation [6].

While most discussion in the literature focuses on choosing between locality or
determinism to model quantum correlations, it was pointed out by Brans in 1988
that there is in fact an explicit local and deterministic model, obtained by relaxing
measurement independence [7]. Brans further observed that there is an inherent
conflict in assuming that both determinism and measurement independence hold: if
the physical world is deterministic, then correlations between physical parameters
are generic.

There has been a recent upsurge of interest in local deterministicmodels, including
their construction [8–10]; the derivation of generalisedBell inequalities incorporating
a given level of measurement dependence [9–17]; impacts on device-independent
quantum communication protocols [13–15]; and new experimental tests [18, 19].

In this contribution I briefly review the assumptions leading to Bell inequalities
(Sect. 11.2); pause to urge replacement of the misleading terms ‘quantum nonlocal-
ity’ and ‘Bell nonlocality’ in the literature by the more neutral term ‘Bell nonsep-
arability’ (Sect. 11.3); compare the degrees of measurement dependence of various
local deterministic models for the singlet state, and extend the Brans model to show
that local deterministic models for two d-dimensional quantum systems require no
more than 2 log2 d bits of measurement-dependent correlation (Sect. 11.4); and dis-
cuss the relevance of local deterministic models to questions of causality and free
will—including a demonstration of the prima facie paradoxical existence of a local
deterministic model for superluminal correlations (Sect. 11.5).
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11.2 The Well Trod Path to Bell Inequalities

11.2.1 Bayes Theorem

Consider an experiment in which

• Preparation procedure P is carried out.
• Measurement procedure M is performed.
• Outcome m is recorded.

In a joint measurement scenario one is interested in the case where the measurement
procedure M decomposes into two subprocedures x and y, with respective outcomes
a and b, i.e.,

M ≡ (x, y), m ≡ (a, b).

Statistical correlations between these outcomes are represented by some joint proba-
bility density p(m|M, P) = p(a, b|x, y, P), which can be in principle measured via
many repetitions of the experiment. Part of the physicist’s job is to find an underlying
model for these correlations, for a given set of experiments {(x, y, P)}.

In particular, an underlying model introduces additional physical variables of
some sort. Denoting these underlying variables by λ, Bayes theorem immediately
tells us that

p(m|M, P) = p(a, b|x, y, P) =
∫

dλ p(a, b|λ, x, y, P) p(λ|x, y, P), (11.1)

with integration replaced by summation over any discrete ranges of λ. A givenmodel
must therefore specify the type of information encoded in λ, and the underlying
probability densities p(a, b|λ, x, y, P) and p(λ|x, y, P).

For example, in standard quantum mechanics λ may be taken to range over a set
of density operators, with

pQ(a, b|λ, x, y, P) = tr[λExy
ab ], pQ(λ|x, y, P) = δ(λ − λP), (11.2)

for some density operator λP associated with preparation procedure P and some
positive operator valued measure (POVM) {EM

m ≡ Exy
ab } associated with the joint

measurement procedure M = (x, y).

11.2.2 Bell Separability

A given underlying model may or may not satisfy certain physically plausible prop-
erties, such as determinism, causal correlations, etc. In the scenario typically consid-
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ered for Bell inequalities [2], one requires the quantities in Eq. (11.1) to satisfy the
following three properties in particular:

Statistical completeness: All statistical correlations arise from ignorance of the
underlying variable, i.e.,

p(a, b|λ, x, y, P) = p(a|λ, x, y, P) p(b|λ, x, y, P). (11.3)

Thus, all correlations between measurement outcomes vanish when the additional
information encoded in λ is specified [20]. This property is also known as outcome
independence, and is guaranteed to hold for deterministic models, i.e., for

p(a, b|λ, x, y, P, ) ∈ {0, 1}.

Indeed, the existence of a deterministic model for a given set of correlations is
equivalent to the existence of a statistically complete model [11, 21]. The original
motivation for statistical completeness was in fact outcome determinism, via an
appeal to the existence of an underlying reality in which all measurement outcomes
are predetermined [2].

Statistical locality: Distant measurement subprocedures do not influence each
other’s underlying outcome probability distributions, i.e.,

p(a|λ, x, y, P) = p(a|λ, x, P), p(b|λ, x, y, P) = p(b|λ, y, P). (11.4)

Thus, an observer cannot distinguish, via any local measurement x , whether a distant
observer has carried outmeasurement y or y′, even given knowledge of the underlying
variable λ. This property, also known as parameter independence, is justified by
the principle of relativity when the measurement subprocedures are carried out in
spacelike separated regions [2].

Measurement independence: The measurement procedure M = (x, y) is not cor-
related with the underlying variable, i.e.,

p(λ|x, y, P) = p(λ|P). (11.5)

Thus, knowledge of the underlying variable gives no information about the mea-
surement procedure, and vice versa. This property is often justified by an appeal to
‘experimental free will’ [5], as will be discussed in some detail further below.

The combination of all three properties is equivalent, via Eqs. (11.1) and (11.3)–
(11.5), to:
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Bell separability: The joint probabilities of distantly-performed measurement
procedures have an underlying model of the form

p(a, b|x, y, P) =
∫

dλ p(λ|P) p(a|λ, x, P) p(b|λ, y, P), (11.6)

i.e., a model satisfying statistical completeness, statistical locality and mea-
surement independence.

Bell separable models were first introduced by Bell [2] (see Ref. [22] for a recent
review), and capture the notion that statistical correlations between distant regions
separate into independent contributions, distinguished by their dependencies on the
measurement subprocedures as per Eq. (11.6).

11.2.3 Bell Inequalities

Statistical correlationswhich have aBell separablemodel satisfy various inequalities,
known as Bell inequalities. For example, if each measurement outcome is labelled
by ±1, Bell separability implies that the Clauser-Horne-Shimony-Holt (CHSH)
inequality [3]

E(x, y, P) + E(x, y′, P) + E(x ′, y, P) − E(x ′, y′, P) ≤ 2 (11.7)

holds for any four pairs of distantly performed measurement procedures (x, y),
(x, y′), (x ′, y) and (x ′, y′), where E(x, y, P) := ∑

a,b=±1 a b p(a, b|x, y, P).
It is nowwell known that not only do the predictions of standard quantummechan-

ics violate such Bell inequalities: so does nature [23, 24]. Hence, our world is Bell-
nonseparable, and one or more of the three properties in Eqs. (11.3)–(11.5) must be
relaxed in any underlying model thereof.

It is worth noting that the existence of a Bell separable model as per Eq. (11.6), for
some given set of joint measurement procedures {(x, y)} and preparation procedure
P , is also equivalent to the existence of a formal joint probability distribution for any
finite subset (x1, . . . , xm, y1, . . . yn)—whether or not this subset has an experimental
joint implementation. In particular, one may define [21]

pF (a1, . . . , am , b1, . . . bn |x1, . . . , xm , y1, . . . yn, P) :=
∫

dλp(λ|P)

m∏
j=1

p(a j |λ, x j , P)

×
n∏

k=1

p(bk |λ, yk , P). (11.8)

Bell inequalities correspond to boundary inequalities for the space (polytope) of such
formal joint probability distributions [6, 25–27].
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11.3 Why ‘Quantum Nonlocality’ Is Bad Terminology

The violation of Bell inequalities by quantum systems is often referred to as ‘quan-
tum nonlocality’ or ‘Bell nonlocality’. To do so is quite misleading, however, as
it implicitly—and incorrectly—suggests that some sort of mysterious action-at-a-
distance is necessarily involved in quantum correlations.

In particular, only one of the three assumptions in Sect. 11.2.2 makes reference to
notions of locality: statistical locality requires that a distant measurement procedure
cannot be identified from local statistics. The other two assumptions, statistical com-
pleteness and measurement dependence, do not require any notion of acausal infor-
mation transfer between distant regions (as shown explicitly in Sects. 11.4 and 11.5).
Hence, by dropping either one of these two assumptions, Bell inequality violations
may be modelled in a perfectly local manner.

Further, the property of statistical locality is automatically satisfied in standard
quantum mechanics, via the usual tensor product representation

Exy
ab = Ex

a ⊗ Ey
b (11.9)

of the POVM in Eq. (11.2) for measurements in separated regions [28]. Hence, quan-
tum mechanics is in fact local, with respect to the only sense in which this concept
makes an appearance in the derivation of Bell inequalities!

This has led Mermin to conclude that use of the term ‘quantum nonlocality’ is
no more than “fashion at a distance” [29], and Kent to lament it as a “confusingly
oxymoronic phrase” that conflicts with the notion of locality in quantum field theory
[30]. An extended critique has been given recently by Żukowksi and Brukner [31]
(see also Ref. [32]).

While ‘Bell nonlocality’ is preferable to ‘quantum nonlocality’, insofar as the
adjective vaguely implies some sort of special qualification, essentially the same
criticisms apply. Moreover, since quantum communication protocols that rely on
the violation of Bell inequalities require the assumption of statistical locality (and
measurement independence), to ensure indeterminism (see Sect. 11.1), it is similarly
‘confusingly oxymoronic’ to assert that such protocols rely on Bell nonlocality, as
is commonly done [6].

I therefore strongly urge adoption of the more neutral term ‘Bell nonseparability’.

11.4 Local Deterministic Models of Quantum Correlations

11.4.1 Relaxing Measurement Independence

As noted previously, violation of a Bell inequality, and hence of Bell separability,
implies that at least one of the properties in Eqs. (11.3)–(11.5) must be relaxed in
any underlying model. The degree to which these properties need to be individually
or jointly relaxed, relative to various measures, has been recently reviewed [11].
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For example, the standard quantum mechanics model satisfies the property of
statistical locality in Eq. (11.4), as noted in the previous section. Comparison of
Eqs. (11.2) and (11.5) shows that it also satisfies the property of measurement inde-
pendence. Hence, since it predicts violations of Bell inequalities, it follows that the
standard quantum mechanics model must relax the property of statistical complete-
ness. This is indeed so: the joint probability pQ(a, b|λ, x, y, P) in Eq. (11.2) is only
guaranteed to factorise, as per Eq. (11.3), for tensor product states λ = λ1 ⊗ λ2.

A major contribution by Brans was to provide, in contrast, the first explicit local
deterministic model of quantum correlations, by instead relaxing the assumption of
measurement independence [7]. The existence of such a fully causal model for Bell-
nonseparable correlations further emphasises the point made in Sect. 11.3, that the
properties of statistical completeness and measurement independence do not rely on
any concept of locality per se.

Brans’ model for the singlet state of two spin-1/2 particles or qubits, together
with two subsequent models, are briefly described in Sect. 11.4.2, before discussing
the generalisation of Brans’ model to arbitrary quantum correlations in Sect. 11.4.3.
However, it is of interest to first quantify the degree of measurement dependence of
any givenmodel, so as to be able to make quantitative comparisons between different
models.

Several measures of measurement independence have been discussed in the lit-
erature [9–16]. Attention here will be confined to the ‘measurement dependence
capacity’, which directly quantifies the correlation between the joint measurement
procedure and underlying variable in terms of the maximum mutual information
between them [10]:

CMD := sup
p(x,y)

H(Λ : X,Y ) = sup
p(x,y)

∫
dλdxdy p(λ, x, y|P) log2

p(λ, x, y|P)

p(λ|P) p(x, y)
.

(11.10)

Here the supremum is over all possible probability densities p(x, y) for the joint
measurement procedure; H(Λ : X,Y ) denotes the mutual information; and
p(λ, x, y, |P) := p(λ|x, y, P) p(x, y). Note that the mutual information quantifies
the average information gained about the measurement procedure from knowledge
of the underlying variable, and vice versa, in terms of the number of bits required to
represent the information [33].

The abovemeasure vanishes if and only themeasurement independence condition
in Eq. (11.5) is satisfied. A useful upper bound follows via [11]

CMD = sup
p(x,y)

[
H [Λ] −

∫
dxdy p(x, y)Hx,y(Λ)

]
≤ Hmax(Λ) − inf

x,y
Hx,y(Λ),

(11.11)
where H(Λ) denotes the entropy of the underlying variable λ, with maximum pos-
sible value Hmax(Λ), and Hx,y(Λ) denotes the entropy of p(λ|x, y, P).
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11.4.2 Singlet State Models

Brans model: Letting PS denote a preparation procedure for the singlet state |ΨS〉,
the Brans model in its simplest form corresponds to choosing λ ≡ (λ1,λ2), with
λ1,λ2 = ±1, and identifying the labels x and y with measurement of spin in the
corresponding unit directions x and y. The corresponding probabilities in Eq. (11.1)
are then specified, via Eq. (11) of Ref. [7], by

pB(a, b|λ, x, y, PS) := δa,λ1 δb,λ2 , pB(λ|x, y, PS) := 1 − λ1λ2 x · y
4

.

(11.12)
This trivially reproduces the correct singlet state probabilities p(a, b|x, y, PS) =
(1 − abx · y)/4, via Eq. (11.1). The model is deterministic, and clearly satisfies
the properties of statistical completeness and statistical locality in Eqs. (11.3) and
(11.4)—but not the measurement independence property in Eq. (11.5). Brans further
showed that the correlation existing between the underlying variable λ and the mea-
surement procedures x and y can be simulated causally and deterministically [7], as
will be discussed in Sect. 11.5.

To evaluate CMD for this model, note first that λ takes only 4 distinct values,
implying that Hmax(Λ) = log2 4 = 2 bits. A straightforward calculation further gives

Hx,y(Λ) = log2 2 + h(x · y) ≥ 1 bit,

where h(a) denotes the entropy of the probability distribution {(1 ± a)/2}. Hence,
using Eq. (11.11), the degree of measurement dependence in Eq. (11.10) is bounded
by 1 bit of correlation. It is straightforward to check that this bound is achieved by the
choice p(x, y) = [δ(x + y) + δ(x − y)]/(8π) in Eq. (11.10), where x and y range
over all directions on the unit sphere, yielding

CB
MD = 1 bit. (11.13)

Thus, no more than one bit of correlation is required in the Brans model for the
singlet state. This result is generalised in Sect. 11.4.3.

Degorre et al. model: The local deterministic model of the singlet state due to
Degorre et al. takes the underlying variable λ to be a point on the unit sphere,
with [8]

pD(a, b|λ, x, y, PS) := δa,A(λ,x) δb,B(λ,y), pD(λ|x, y, PS) := |λ · x |
2π

, (11.14)

where A(λ, x) := sign λ · x and B(λ, y) := −sign λ · y determine the local out-
comes. Thus, these outcomes correspond to the projections of ‘classical’ spin vectors,
λ and −λ, onto the measurement directions x and y respectively. As in the Brans
model, the properties of statistical completeness and statistical locality are clearly
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satisfied, while the property of measurement independence is clearly not. Note from
Eq. (11.14) that λ is only correlated with one of the local measurement directions, x .
This model was also independently put forward by Barrett and Gisin [10].

To calculate CMD for the Degorre et al. model, note that the entropy of the under-
lying variable is maximised by a uniform distribution over the unit sphere, with
Hmax(Λ) = log2 4π. Further, letting θ denote the angle between λ and x , one has

Hx,y(Λ) = −
∫ π

0
dθ

∫ 2π

0
dφ sin θ

| cos θ|
2π

log2
| cos θ|
2π

= log2 2πe
1/2.

Hence, the upper bound in Eq. (11.11) is log2 2/
√
e. This bound is achieved, for

example, by p(x, y) = (4π)−1 p(y), yielding [10]

CD
MD = log2

2√
e

≈ 0.279 bits. (11.15)

Thus, noting Eq. (11.13), the Degorre et al. model requires less correlation between
the measurement directions and the underlying variable, in comparison to the Brans
model. Moreover, this correlation is only required between λ and one of the local
measurement directions.

Hall model: Finally, it is of interest to consider a local deterministic model with
an even smaller degree of measurement dependence [9]. The underlying variable is
again a point on the unit sphere, corresponding to a ‘classical’ spin vector, and again
the local outcomes are determined by the projection of this spin vector onto the local
measurement directions, via

pH (a, b|λ, x, y, PS) := δa,A(λ,x) δb,B(λ,y), (11.16)

with A(λ, x) = sign λ · x and B(λ, y) = −sign λ · y as for the Degorre et al. model.
However, in contrast to the latter model,

pH (λ|x, y, PS) := 1

4π

1 + (x · y) sign [(λ · x)(λ · y)]
1 + (1 − 2φxy/π) sign [(λ · x)(λ · y)] , (11.17)

where φxy ∈ [0,π] denotes the angle between directions x and y.
The interesting aspect of this model is its low degree of measurement dependence,

with [11]
CH

MD ≈ 0.0663 bits. (11.18)

Thus, in comparison to Eqs. (11.13) and (11.15), a remarkably low degree of corre-
lation, less than 1/15 of a bit, is required to model the singlet state.
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11.4.3 Generalising the Brans Model to Arbitrary Quantum
States

While the Brans model of the singlet state is not optimal with respect to the degree of
measurement dependence required, it does have the significant advantage of being
easily generalisable to a local deterministic model for all quantum correlations, with
a corresponding simple upper bound for the degree of measurement dependence
required.

In particular, consider a preparation procedure P corresponding to some quantum
density operator ρ describing two quantum systems, where these systems have a d1-
dimensional and a d2-dimensional Hilbert space respectively. Further, consider an
arbitrary joint measurement of twoHermitian observables, x and y, on these systems,
with corresponding POVM {Exy

ab }. The joint outcome (a, b) may be labelled by ele-
ments of the set O := {1, 2, . . . , d1} × {1, 2, . . . , d2}, without any loss of generality.
To construct a corresponding local deterministic model, we choose the underlying
variable to be λ = (λ1,λ2) ∈ O , and generalise Eq. (11.12) to

pB(a, b|λ, x, y, P) := δa,λ1 δb,λ2 , pB(λ|x, y, P) := tr[ρExy
λ1λ2

] (11.19)

Substitution into Eq. (11.1) immediately recovers the quantum probability density
p(a, b|x, y, P) = tr[ρExy

ab ], as required.
To obtain an upper bound for the degree of measurement dependence required in

this model, note that 0 ≤ H(Λ) ≤ log2 d1d2, with the upper bound corresponding
to a uniform distribution over λ. Hence, from Eq. (11.11), one immediately has the
upper bound

CB
MD ≤ log2 d1 + log2 d2 (11.20)

for the degree of measurement independence. In particular, no more than 2 log2 d
bits of correlation are required to model the statistics of all Hermitian observables
on two d-dimensional quantum systems. Note that the bound holds irrespective of
whether the corresponding POVMs factorise as per Eq. (11.9). It would be of interest
to determine whether the bound also holds for non-Hermitian observables, i.e., for
arbitrary joint POVMs.

11.5 Questions of Causality and Free Will

11.5.1 Causality in Measurement Dependent Models

Brans did more than give the first explicit local and deterministic model for singlet
state correlations. He also showed that the corresponding probability distribution
pB(λ|x, y, P) was compatible with a fully causal explanation, and that it did not
contradict the notion of ‘experimental free will’ in any operational sense [7]. The
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causal aspect will be discussed here, and the free will aspect in Sect. 11.5.2. The
surprising existence of a local deterministic model for superluminal correlations is
given in Sect. 11.5.3.

The violation of measurement independence, i.e., a correlation such that

p(λ|x, y, P) �= p(λ|P),

may at first sight suggest that the joint measurement procedure (x, y) has a causal
effect on the statistics of λ. However, this is not so: using Bayes rule the above
equation can equivalently be written in either of the forms

p(x, y|λ, P) �= p(x, y|P), p(λ, x, y|P) �= p(λ|P) p(x, y|P),

where the latter form is seen to be perfectly symmetrical with respect to the mea-
surement procedure and λ. Correlation does not specify causation.

In fact, for any measurement-dependent correlation, p0(λ|x, y, P) �= p0(λ|P)

say, and any distribution of joint measurement procedures, p0(x, y|P) say, the cor-
responding probability density p0(x, y|λ, P) �= p0(x, y|P) is uniquely determined
by the laws of probability. It is straightforward to construct a causal model for this
probability density, of the form

p0(x, y|λ, P) =
∫

dμ p(x |μ) p(y|μ) p(μ|λ, P), (11.21)

where μ is a further underlying variable. It is clear from this equation that the corre-
lation can be causally implemented via generation of the distribution of μ by λ and
P , with subsequent local generation of the distribution of the measurement subpro-
cedures x and y by μ, with no retrocausal or superluminal propagation required.

As an explicit example, choose μ ≡ (μ1,μ2), where (μ1,μ2) labels the set of pos-
sible joint measurement procedures {(x, y)}, with p(x |μ) := δ(x − μ1), p(y|μ) :=
δ(y − μ2), and

p(μ|λ, P) := p0(λ|μ1,μ2, P) p0(μ1,μ2|P)∫ ∫
dμ1dμ2 p0(λ|μ1,μ2, P) p0(μ1,μ2|P)

. (11.22)

It is straighforward to check that these choices reproduce Eq. (11.21), as desired.
Thus no violation of causality is required by measurement dependent models, such
as those in Sect. 11.4.

11.5.2 Free Will and Conspiracy

Brans noted that the assumption of measurement independence is fundamentally
inconsistent with a fully deterministic world [7]. In such a world even the preparation
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procedure P , along with the measurement M = (x, y) and the outcomesm = (a, b),
will be predetermined by suitable underlying variables, and hence are generically
all correlated. Thus, in a superdeterministic world, assuming that x and y are not
correlated with the underlying variables, i.e., measurement independence, amounts
to conspiracy! In such a world, measurement dependence—and hence the possibility
of Bell inequality violation—is only to be expected [34].

However, as previously remarked, measurement independence is typically justi-
fied by an appeal to ‘experimental free will’: surely the selection of measurement
procedures is independent of any underlying physical variables that determine the
outcomes? For if they were not, surely this would compromise our perception of
having the free will to make such a selection?

There are several responses that can be made in this regard, in addition to the
obvious point that the subjective experience of free will does not imply its objectivity.
The first is practical: in actual tests of Bell nonseparability and Bell inequalities,
physical systems rather than physicists are used to ‘randomly’ select measurement
procedures [23, 24]. This fact has practical relevance for the security of commercial
quantum cryptographic devices that contain such systems: how can we trust random
number generators built by a third party? [13–15]. We certainly do not expect these
devices to have ‘free will’, and their degree of measurement dependence is easily
manipulated by the device manufacturer.

The second is operational: there is no experimental distinction that can be made
between models satisfying measurement independence and models which do not
[7]—at least, under the proviso that the distribution of measurement procedures is
independent of the preparation procedure, p(x, y|P) = p(x, y). In such a case, all
that is operationally accessible to the ‘free will’ of the experimenter(s) in this regard
is the choice of p(x, y). However, any such choice is compatible with measurement-
dependent models: it merely implies that the operationally-inaccessible joint distri-
bution p(λ, x, y|P) is given by p(λ|x, y, P) p(x, y) [11].

The third is rhetorical: suppose that experimenters were informed that there was a
physical quantity they could not change: no matter what choices of preparation and
measurement procedures theymade, using their ‘free will’, the quantitymysteriously
came out to be the same—even for jointmeasurements in spacelike separated regions.
Would this necessarily represent a lack of ‘free will’? No, not if the quantity was the
total energy! Conservation laws are not considered to be conspiratorial. This suggests
the intriguing possibility of a local deterministicmodel for quantum systems inwhich
p(x, y) emerges as a conserved quantity [35].

Thus, there is no a priori reason why the behaviour of experimenters or random
generators should not be statistically correlated with a given system to some degree,
reflecting a common causal dependence on some underlying variable, even in the
absence of superdeterminism and/or in the presence of ‘free will’. However, it must
be admitted that a measurement-dependent model in which p(x, y) emerged as a
conserved quantity would be far more compelling than those presented in Sect. 11.4.
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11.5.3 Local Deterministic Models of Superluminal
Correlations

It is remarkable to note that even correlations which appear to allow superluminal
signalling can be modelled in a local and deterministic manner, by relaxing the
assumption of measurement independence.

For example, consider some preparation procedure P and two joint measurement
procedures M = (x, y) and M ′ = (x ′, y), with corresponding experimental joint
probability distributions satisfying

p(b|x, y, P) �= p(b|x ′, y, P). (11.23)

Thus, knowledge of the local outcome distribution of procedure y provides infor-
mation about whether the procedure x or x ′ was performed. This is an example of
a ‘signalling’ correlation. Such a correlation is not surprising in the case that the
measurement subprocedure y is performed in the future lightcone of subprocedure x
or x ′—this would simply represent the possibility of signalling from the past to the
future. However, such a correlation would be very surprising in the case of spacelike-
separated subprocedures x and y, as it would appear to amount to the possibility of
superluminal signalling.

Surprisingly, perhaps, a local deterministic model for such signalling correlations
is easily obtained, via a straightforward adaptation of the extended Brans model
discussed inSect. 11.4.3. In particular, for a given set of experimental joint probability
distributions {pE (a, b|x, y, P)}, choose the underlying variable to range over the set
of possible joint measurement outcomes, with λ = (λ1,λ2) ∈ {(a, b)}, and define

p(a, b|λ, x, y, P) := δa,λ1 δb,λ2 , p(λ|x, y, P) := pE (λ1,λ2|x, y, P). (11.24)

This model is explicitly deterministic, and clearly satisfies both statistical com-
pleteness and statistical locality, whether or not the experimental correlations are
signalling! Further, a causal description of the measurement-dependent correlation
p(λ|x, y, P) can always be given, as per the discussion in Sect. 11.5.1.

The resolution of this paradoxical result is that the very notion of ‘signalling’ log-
ically requires some degree of measurement independence: if one has, for example,
no control at all over the choice of measurement x or x ′ in Eq. (11.23), then one has
no ability at all to signal—e.g., ‘buy’ or ‘sell’—via such a choice [14].

It follows that one should not refer to ‘no-signalling’ or ‘signal locality’ without
a simultaneous commitment to measurement independence (I must recant having
done so previously [11]). Moreover, a simple tweak of the above model implies that
it is possible to replace any underlying model that violates the property of statistical
locality byone that instead violatesmeasurement independence. Indeed, in this regard
Barrett and Gisin have previously shown that any underlying deterministic model
that requires at most m bits of superluminal communication can be replaced by one
that requires CMD ≤ m bits of measurement-dependent correlation [10].
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11.6 Conclusions

One of themost remarkable discoveries in physics is the violation of Bell separability
by quantumphenomena: any underlyingmodel of such phenomenamust relax at least
one of the properties of statistical completeness, statistical locality or measurement
independence. There is a strong intuition among physicists that perfect correlations
between distant measurement outcomes, such as singlet state correlations, should
be deterministically and locally mediated, independently of the joint measurement
procedure. However, this intuition fails in the light of Bell inequality violation.

Given that standard quantum mechanics satisfies statistical locality and measure-
ment independence, Occam’s razor suggests that it is the intuition behind determin-
ism (and thus statistical completeness) that must be given up. On the other hand, it
may be argued that relaxingmeasurement dependence is relatively far more efficient:
only 1/15 of a bit of measurement dependence is required to model the singlet state,
in comparison to 1 bit of communication in nonlocal models, and 1 bit of shared
randomness in nondeterministic models [11]. In the end, however, whether or not
one’s personal preference is guided by simplicity or efficiency, the consideration of
all three properties cannot be avoided—and is of practical relevance in assessing the
reliability of device-independent quantum communication protocols.

It is a pleasure to be able to acknowledge the seminal contribution of Carl Brans to
this ongoing debate, as part of this Festschrift to mark his 80th birthday. His explicit
local deterministic model for quantum correlations has led to a better understanding
of the significance of measurement (in)dependence, and has stimulated many new
results and ideas. Hewill no doubt be pleased that one of the latter [18]may lead to an
experimental connection with his many cosmological interests: the recent proposal
to test measurement independence in a Bell inequality experiment by using the light
from distant quasars that have never been in causal contact.
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Part III
Exotic Smoothness and Space-Time

Models

“... This result [the existence of an exotic R4] could have great significance in all
fields of physics, not just relativity, Some model of spacetime underlies every field
of physics. It has now been proven that we cannot infer that space is necessarily
smoothly standard from investigating what happens at spatial infinity, even for
topologically trivial R4. It seems very clear that this is potentially very important to
all of physics since it implies that there is another possible obstruction, in addition
to material sources and topological ones, to continuing external vacuum solutions
for any field equations from infinity to the origin. Of course, in the absence of any
explicit coordinate patch presentation, no example can be displayed. However, this
leads naturally to a conjecture, informally stated as:



Conjecture 1. This localized exoticness can act as a source for some extemally
regular field, just as matter or a wormhole can.”

“... In summary, what we want to emphasize is that without changing the
Einstein equations or introducing exotic, yet undiscovered forms of matter, or even
without changing topology, there is a vast resource of possible explanations for
recently observed surprising astrophysical data at the cosmological scale provided
by differential topology. ...”
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Chapter 12
Exotic Smoothness, Physics
and Related Topics

Jan Sładkowski

Abstract In 1854 Riemann, the father of differential geometry, suggested that the
geometry of space may be more than just a mathematical tool defining a stage for
physical phenomena, and may in fact have profound physical meaning in its own
right. Since then various assumptions about the spacetime structure have been put for-
ward. But to what extent the choice of mathematical model for spacetime has impor-
tant physical significance? With the advent of general relativity physicists began
to think of the spacetime in terms a differential manifolds. In this short essay we
will discuss to what extent the structure of spacetime can be determined (modelled)
and the possible role of differential calculus in the due process. The counterintuitive
discovery of exotic four dimensional Euclidean spaces following from the work of
Freedman and Donaldson surprised mathematicians. Later, it has been shown that
exotic smooth structures are especially abundant in dimension four—the dimension
of the physical spacetime. These facts spurred research into possible the physical
role of exotic smoothness, an interesting but not an easy task, as we will show.

12.1 Introduction

The outcomes of physicalmeasurements are expressed in rational numbers: all mean-
ingful measurements are performed with certain accuracy and it is even hard to
imagine how can they produce an irrational number. Nevertheless, we believe that
all possible values of physical variables constitute the set of real numbersR. Most of
physical theories, including quantum gravity, use the concept of spacetime as scene
of physical processes, at least approximately. We also suppose that the spacetime,
whatever it actually is, can be faithfully modeled as a manifold. At this stage the
algebra of real continuous functions C(M) on the spacetime manifold M comes to
play [16]. This algebra play central rôle in physics, although this fact is not always
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stressed or even perceived. It is tightly intertwined with one of the most important
and fundamental open problems in theoretical physics: to explain the origin and
structure of spacetime and to analyse how faithful our theoretical models of the
spacetime can be. We will suppose that it is possible to determine the algebra of, say
continuous, K−valued functions C(M, K ) defined on the spacetime (assumed to be
a topological space) with sufficient for our aim accuracy for various K . Actually, if
we confine our aspirations to the analysis of only local properties of M the algebra
in question can be substantially smaller. This does not mean that we have to be able
to find all elements of C(M, K ) “experimentally”: some abstraction or inductive
construction would be sufficient. With obvious abuse of language, we will call ele-
ments of C(M, K ) observables. Our aim is to find out to what extent the structure
of the mathematical model of spacetime is determined by C(M, K ) for M being
a topological space. We will also analyse what happens if we admit of M being a
differential manifold or to have no topology. Finally, we will show how C(M, K )

can be used to construct a field theory of fundamental interactions in the A. Connes’
noncommutative geometry formalism [10].

It is a great honor and pleasure to be able to contribute to this volume celebrating
Carl Brans eightieth birthday and his scientific achievements that influenced the
development of the theory of gravitation in such a significant way.

12.2 The Topology of Spacetime

A lot of information on a given topological space M is encoded in the associated
algebras C(M,R) of continuous real functions defined on M . For any set M the
family C of real functions M → R determines a minimal topology τC on M such
that all function in C are continuous [16, 28]. It is less known that the reals can
be replaced by some other algebraic structures [28, 29]. Therefore, we will also
consider C(M, K ), the algebras of K -valued functions, K being a topological ring,
field, algebra and so on. Suppose that our experimental technique is powerful enough
to reconstruct C(M, K ) acting on our model of the spacetime M . What information
about M provides us with knowledge of C(M, K ) information concerning M can
be extracted from these data? If M is a set and C a family of real functions M → R

then C determines a (minimal) topology τC on M such that all function in C are
continuous [16]. In general, there would exist real continuous functions on M that
do not belong to C and other families of real functions on M can define the same
topology on M . The topological space represented by (M, τC) would be a Hausdorff
space if and only if for every pair of different points p1, p2 ∈ M there is a function
f ∈ C such that f (p1) �= f (p2). If the “space” or “time” are continuous by their
nature we can hardly imagine any experiment that would be able to discover or
distinguish two points “unseparable points”.1 From the physical point of view, to

1Actually, one can impose various inequivalent forms of such separation “axioms”.
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be able to distinguish x from y in our model of spacetime we have to find such an
observable f ∈ C(M) that for x, y ∈ M f (x) �= f (y). Therefore, sooner or later it
seems reasonable to accept that

f (x) = f (y) ∀ f ∈ C (M) ⇒ x = y. (12.1)

From the mathematical point of view,we have to identify all points that are not
distinguished byC(M) in the above sense. It is then easy to show that such spaces are
Hausdorff spaces. This means that we should look for the topological representation
of the spacetime in the class of Hausdorff spaces. Note, that it is standard to postulate
evenmore—one assumes paracompactness of space timemanifold—this gives us the
powerful tools of differential geometry. To proceed, let us define [16, 19, 28, 29]:

Definition 12.1 Let E be a topological space. A topological Hausdorff space X is
called E-compact (E-regular) if it is homeomorphic to a closed (arbitrary) subspace
of EY , for some Y .

Here EY is the space mappings Y → E (Tychonoff power). One can prove that
for a topological space X (not necessarily a Hausdorff one!) we can construct an
E-regular space τE X and its E-compact extension υE X so that we have [16, 28]

C (X, E) ∼= C (τE X, E) ∼= C (υE X, E) ∼= C (υEτE X, E) , (12.2)

where∼= denotes isomorphism. The spaces τE X and υEτE X have the assumed prop-
erty (1)! It should be obvious that, in general, our theoretical model of the spacetime
would not be unique. This important result also says that we can always model our
spacetime as a subset of some Tychonoff power ofR provided C(M) is known. But
it also says that we can model it on a subset of a Tychonoff power of a different topo-
logical space e.g. the rational numbers Q. Actually, it is our choice. The topological
number fields R and Q have the very important property of determining uniquely
(that is up to a homeomorphism) R- and Q-compact sets provided the appropriate
algebras of continuous functions are known:

C (X, E) ∼= C (Y, E) ⇐⇒ X is homeomorphic to Y, E = R or Q. (12.3)

Other topological rings might also have this property but it is far from being a rule.
But this does not mean that the spacetime modelled on C(M, E) is homeomorphic
to the one modelled on C(M, E ′). Hewitt have shown that R-compact spaces are
determined up to a homeomorphism by C(X, E), where E = R, C or H are the
topological fields of real, complex numbers and quaternions, respectively [19]. This
means that if we are interested in modelling spacetime on an R-compact space then
we can use C(M,R), C(M,C) or C(M,H) to determine it. Unfortunately, such
conclusion is false for rational numbers. It a serious obstacle as we probable never
get more than rational numbers out of any feasible experiment.
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To sum up, R-compact are determined up-to homomorphism from C(M). Con-
sider any space M . There exists the smallest R-compact space υM in which M is
dense and υM would be the actual spacetime that we would probably reconstruct.
υM need not to be compact—every subset of euclidean space isR-compact, e.g.R4.
R-compact for a sufficiently wide class of functions for our aims: it is not easy to
construct a space that is notR-compact. Discrete spaces are R-compact, practically
all metrizable spaces areR-compact. The reader is referred to [16, 28, 29] for details.

We will also need to deal with the technical problem of deciding whether we are
dealing with the algebra C(X, E) or only with the algebra of all bounded E-valued
functions on X , C∗(X, E) (if this concept of boundness make any sense). For a
compact space X we have C(X, E) = C∗(X, E), but in general, they are distinct.
Spaces on which all continuous real functions are bounded are called pseudocom-
pact. AnR-compact pseudocompact space is compact. We might get hints that some
observables may in fact be unbounded but we are unlikely to be able to observe
infinities. Moreover, with a high probability physical resources are not unlimited
but an unbounded observable would be necessary for spacetime to be noncompact.
Therefore, if we suppose that we can only recover C∗(M,R) ≡ C∗(M), then we
can as well suppose that M is compact (for an R-compact M). We often compact-
ify configuration spaces by adding extra points or imposing appropriate boundary
conditions (e.g. by demanding that all relevant fields vanish at infinity is practically
equivalent to the one point compactification of the spacetime2 A topological space X
has more then one such an extension (compactification). Although mathematically
one compactification can be differentiated from another with help of regular subrings
this is unlikely to be done on the physical ground. Therefore, we will be forced to
make various assumptions to choose one among the possible compactifications.

We have argued for looking for the spacetime model in the class of R-compact
M spaces. But what if we consider a more general field? It is often conjectured that
at the sub-Plankian scales spacetime is non-Archimedean. Such spaces are much
less tame do deal with. The Archimedean axiom says that, for any x ∈ K , there is
a natural number n such that |nx | > 1. An Archimedean field is one in which this
axiom holds. Examples are the real numbers and the complex numbers. Technically,
there are no other examples: the only complete Archimedean fields areR and C.3 A
non-Archimedean field is a complete normed field. For a given a non-Archimedean
K , the cartesian product Kn is disconnected and it is not easy to follow the insight
gained from R or C. Note that filling in gaps between points (completion) of Q
results inR but the initial setQ becomes practically negligible: we can more or less
ignore the rational numbers when we do analysis. Therefore, the gap-filling process
is performed in a more abstract way by introducing a Grothendieck topology on Kn .

The problems of dimension, density and “tightness” of the spacetime can also
be addressed in terms of rings of real continuous functions with various topologies

2That is we impose that the field in question vanish at the extra point glued to the space.
3The Archimedean axiom is also satisfied by C, with powers of the usual norm, and restrictions of
these norms to subfields.
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although experimental verification of these properties except dimension seems to be
unlikely. The reader is referred to [1, 2] for details. The cardinality of the spacetime
seem to be to abstract to have any practical significance, there are suggestions that
such conclusions may be wrong [31]. Such problems might lead us outside the
standard axioms of set theory.

One may also wonder if the knowledge of some symmetries might be of any help.
Unfortunately, a topological space X is not determined by its symmetries considered
as continuous maps X → X [15, 22, 27, 30]. Of course it sometimes can provide us
with useful information. For example, if we know that some groupG acts transitively
on X then the cardinality of X cannot be greater than that of G [6]. For example, if
we are pretty sure that the Poincare or Galilean symmetry groups act transitively on
the spacetime we have got an upper bound on the cardinality of the spacetime. The
situation is better if some extra structures are imposed, e.g. demanding existence of
lorentzian structure is quite restrictive.

12.3 What if There Is No Topology on the Spacetime?

Up to now we have considered the arbitrariness of our mathematical model X of
the spacetime as determined by C(X,R). This means that we assume that M is
a topological space. We can also ask to what extent algebras that we identify as
an algebra of physical observables on the spacetime actually define a topological
space. A commutative algebra must fulfill various sets of conditions to represent a
C(X,R) of some topological space X . If we suppose that our model of the spacetime
is not a topological space we can deal with RX , the algebra of all real functions on
X . But to have any “selective” power we have to demand the existence of some
additional structure on X , for example to distinguish a collection of subsets of X or
fix an algebraic structure on the class of functions we consider [22]. If (X, τ ) is a
pair consisting of a set X and a family τ of its subsets then we can define sort of
“continuity” and “homeomorphisms” by replacing topology by the family τ . In this
such cases the following theorem holds [16, 28].

Theorem 12.1 Let X and Y be two sets and τ and σ families of their subsets
containing the empty set, closed with respect to finite intersections and summing
up to X and Y , respectively. Then X and Y are “homeomorphic” if and only if there
is an isomorphism of the semigroups DX and DY such that “C(X, D)” is mapped
onto “C(Y, D)”.

Such generalized space are more difficult to deal with than ordinary topological
spaces therefore we think that spacetime should be modelled in the class of topolog-
ical spaces.



212 J. Sładkowski

12.4 Differential Structure?

Existence of a differential structure on the spacetime manifold is a nice property.
It certainly is not indispensable. Not every topological space or even topological
manifold can support differential structures and demanding the existence of such
structures severely restricts our choice of models. A differential structure of class
k on a manifold M can be defined by specifying the (sub-)algebra of differentiable
functions Ck(M,R) of the algebra C(M,R). The algebra C∞(M) of smooth real
functions on M determines M up to a diffeomophism (the points of M are in one-
to-one correspondence with maximal ideals in C∞(M)). The algebra of continuous
function on M is much larger than Ck(M,R). If the laws of physics are “smooth”
then the spacetime should be modelled as a smooth manifold. Therefore, in this case
then C∞(M,R) is be sufficient to construct M . As any real manifold M can be
embedded in Rn for some n M is R-compact. The most popular models of space-
time are pseudo-Riemannian manifolds. Such spaces are metrizable. This means that
these manifolds are as topological spaces determined by C(X, E), where E = R, C
orH but additional knowledge of the subalgebra of differentiable functions is needed
to determine the differential structure. Differential structures might not be unique If
this is the case the “additional” differential structures are usually referred to as fake
or exotic ones. Surprisingly, they are specially abundant in the four dimensions (one
only needs to remove one point from a given manifold to get a manifold with exotic
structures [12–14, 17, 18]. More astonishing is the fact that the four dimensional
euclidean space R4 supports uncountably many exotic structures. We have to inter-
pret these mathematical results in physical terms. H. Brans was first who realized this
fact. He has conjectured that exoticness can be a source for some gravitational field,
just as standard matter can [7–9]. One can put forward many arguments that exotic
smoothness might have physical sense [7–9, 24, 25], the actual lack of any tractable
description hinders physical predictions. Nevertheless, recent results of Asselmeyer-
Maluga, Brans and Król shed a new interesting light on this important issue [3–5].
There are suggestions that existence of exotic smoothness has “something” to do
with quantization of various models. Inflation can also be spurred by exoticness.
In this context one can also ask if there is an gravitational analogue of the Bohm-
Aharonov effect. That is if some points are removed or excluded from the spacetime
exotic differential structures do emerge. The “standard” metric tensor and related
structures defined by the distribution of matter might not be smooth with respect to
some exotic differential structures. Such effect could a priori be detected say in cos-
molological/astrophysical observations. This would mean that there is “additional”
curvature required by consistency of differential structures.

The existence of exotic differential structures is certainly a challenge to physicists.
These problems are involved and it is very difficult to distinguish between cause and
effect.

It should be noted here non-Archimedean (p-adic, nonstandard) analysis is also
considered to be the correct mathematical formalism to cope with dynamics at sub-
Planckian levels [23]. Presently, no concrete data can be used for or against such
ideas.
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12.5 What if the Spacetime Is Pointless?

We have seen that topology and differential structures can be reconstructed from
algebras of functions. These algebras are necessary commutative. Connes [11] made
a step forward and showed how to differential geometry without the topological
background. The basic structures are a C∗-algebra A represented in some Hilbert
spaceH and an operatorD acting inH. The differential da of an a ∈ A is defined by
the commutator [D, a] and the integral is replaced by the Diximier trace, Trω , with
an appropriate inverse n-th power of |D| performing the role of the volume element
dnx :

∫
a = Trωa|D|−n

V
, (12.4)

where V is some constant majorizing the eigenvaules λ j of D (λ j < V
j , j → ∞).

The Diximier trace of an operator O is, roughly speaking, the logarithmic divergence
of the trace:

TrωO = lim
n→∞

λ1 + · · · + λn

log n
, (12.5)

where λi is the i-th eigenvalue of O . See Ref. [10, 11] for details. The differential
geometry is build up as follows. The notions of covariant derivative (∇), connection
(A) and curvature (F) forms are defined so that standard properties are conserved:

∇ = d + A, F = ∇2 = d A + A2, (12.6)

where A ∈ Ω1
D is the algebra of one forms defined with respect to d. Fiber bundles

became projective modules on A in this language. For example, an n-dimensional
Yang-Mills action can be given by the formula:

L (A,ψ,D) = Trω
(
F2 | D |−n

) + 〈ψ | D + A | ψ〉 , (12.7)

where 〈|〉 denotes the inner product in the corresponding Hilbert space. For A =
C∞(M,R) and D being the ordinary Dirac operator we recover the ordinary Rie-
mannian geometry of the (spin-) manifold M . In, general, noncommutative C∗-
algebras do not “produce” topological spaces. In some “almost trivial” cases M be
multiplied by some discrete space. In this approach gravitation is hidden in the met-
ric tensor that “enters” the Dirac operator. This means that we may not know the
structure of the spacetime with satisfactory precision but nevertheless fundamental
interactions determine it in a quite unique way. Of course, it is possible that the C∗
algebraA that describes correctly fundamental interactions do not correspond to any
topological space and spacetime can only approximately be described as a topolog-
ical space or that fundamental interactions does not determine it uniquely. It should
be stressed here that matter fields (fermions) and their interactions are essential in
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the process determining the spacetime structure and the notion of spacetime is not a
fundamental one. The noncommutative geometry formalism actually says that fermi-
ons create the spacetime at least on the theoretical level. The pure gauge sector is
insufficient because two E-compact spaces X and Y are homeomorphic if and only
if the categories of all modules over C(X, E) and C(Y, E) are equivalent. Some
models of set theory can be constructed which admit “sets” that have no points. They
might not be empty but still are pointless [21]. Toposes are regarded as the simplest
generalization of classical set theory. They can be used as the stage for gravitational
interactions [20]. Such objects are much more difficult to identify and differentiating
among them might be possible only at the aesthetic or philosophical levels.

12.6 Gravitational Interactions

Up to now, we have deliberately avoided any physical interpretation of its points.
Although spacetime plays the role of stage in almost all physical models it is inextri-
cably linkedwith gravity. Since the birth of general relativity, spacetime is understood
as the set of all physical events and its geometry is governed by distribution of matter
and its dynamics. The metric field g unlike other physical fields represents nothing
else but a class of properties a more or less substantial spacetime M . Mathematically,
the spacetime geometry is an additional structure over the topological space M , e.g.
for defining the metric field g and deriving from it the curvature (connection) and so
on. Einstein’s general relativity requires that M is a smooth manifold and the metric
g is from the Hilbert-Einstein action:

S =
∫

d4x
√−g[ R

2κ2
+ Lm(g,ψ)], (12.8)

where R is the curvature scalar and Lm(g,ψ) is the matter lagrangian with matter
fields collectively denoted by ψ. This can be generalized to

S =
∫

d4x
√−g[ f (R)

2κ2
+ Lm(g,ψ)], (12.9)

where f (R) is an arbitrary function of the curvature tensorR. Therefore, we have a
plethora of acceptable theories of gravitational interaction and among them a wide
class of virtually indistinguishable theories with local observations. This class would
probably be extended by some generalized noncommutative geometry models. We
can hardly believe that we would ever be able recover the correct theory of gravity
from observational data, cg the discussion in [26]
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12.7 Conclusions

Wehave described the problemofmathematicalmodelling of the spacetime structure.
A priori we should be able to build a faithful and unique model of the spacetime in
the class of R-compact spaces. Nevertheless, some of the features would have to be
conjectured. We have to find a phenomenon that cannot be described in terms of the
algebraC(M,R) to reject the assumption ofR-compactness. If we restrict ourselves
only to topological methods, we will not be able to construct the topological model
M of the spacetime uniquely—extra assumptions of, say, “minimality” should be
made (Occam’s razor). Some of popular assumptions about might never be provable.
For example, an unbounded observable is necessary to prove noncompactness of
spacetime manifold. In the general case, we will be able to construct only the Stone-
Ĉech compactificationβM of the spaceM and such spaces are in some sensemaximal
and could be enormous.4 The existence of a differential structure on M allows for
the identification of M with the set of maximal ideals of C∞(M,R), although we
anticipate that the determination of the differential structure may be problematic,
especially if there is a lot of them. Note that the construction of the standard model of
electroweak interactions imply that fundamental interactions determine the model of
spacetime in the classR-compact space in a uniqueway because they are specified by
C(M,H). This is not true for other symmetry groups, e.g. GUTs, are lacking in such a
determinative power. Matter fields are fundamental for defining and determining the
spacetime properties and the associated geometries. If we are not able to determine
C(M,R) or C(M,Q) then our knowledge of the spacetime structure is significantly
less accurate. In general, we have a bigger class of spaces “at our disposal” andwe are
more free in making assumptions about the topology and even about the cardinality
of the model of spacetime.
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Chapter 13
Model and Set-Theoretic Aspects of Exotic
Smoothness Structures on R4

Jerzy Król

Abstract Model-theoretic aspects of exotic smoothness were studied long ago
uncovering unexpected relations to noncommutative spaces and quantum theory.
Some of these relations were worked out in detail in later work. An important point
in the argumentation was the forcing construction of Cohen but without a direct
application to exotic smoothness. In this article we assign the set-theoretic forcing
on trees to Casson handles and characterize small exotic smooth R4 from this point
of view. Moreover, we show how models in some Grothendieck toposes can help
describing such differential structures in dimension 4. These results can be used to
obtain the deformation of the algebra of usual complex functions to the noncom-
mutative algebra of operators on a Hilbert space. We also discuss the results in the
context of the Epstein-Glaser renormalization in QFT.

13.1 Infinite Geometric Constructions and Set-Theoretic
Forcing

Currently it is a bit of a folklore to say that dimension 4 is exceptional both in
physics and mathematics. On the one hand this is the dimension where Einstein
theories of relativity were formulated, where the physics of particles and quantum
fields found their marvelous realization on (curved) Minkowski spacetimes, and
where the cosmological evolution of our world is to be described. On the other hand,
many curious mathematical facts, like the existence of exotic R4, or in fact, of a
continuum many of them, take place exactly in this dimension. It was a big effort of
manymathematicians in 1980s like Donaldson, Freedman, Gompf, Taubes andmany
others whose work on topology and geometry of manifolds in dimension 4 opened
our eyes on the unique 4-dimensional topological and ‘smooth’ world and help in
its understanding. However, taking seriously advanced and technical mathematical
findings as applicable to physics, required much scientific imagination and courage
in those days. It was Carl Brans who took the step in a series of papers [1–4].
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Soon after, there appeared the work of Torsten Asselmeyer-Maluga (e.g. [5]) and
Jan Sładkowski (e.g. [6, 7]) who approached the role of exotic R

4’s in physics from
various perspectives. Carl’s Brans ideas and the papers above were an inspiration
to me and I have been lucky as a researcher to work together with Torsten and Jan
within the recent years. It is a big honor and pleasure to me to contribute to the
volume celebrating the work of Carl Brans.

Exotic smoothness structures on R
4 are just Riemannian, curved smooth 4-

manifolds (exotic R4) which topologically are (homeomorphic to)R4. In this chapter,
I will show that the perspective of set theory and Grothendieck toposes, hence foun-
dations of mathematics, is the right one when considering physical applications of
exotic, open 4-smoothness. Even though this is neither obvious nor widely accepted
approach, the use of model and set-theoretic methods in physics has a firm and
vivid tradition arisen from the foundations of mathematics (e.g. [8–11]). That was
developed substantially further in recent years (e.g. [12–17]).

In physics, set theory is usually considered informally as unchanged eternal back-
ground which goes together with the classical 2-valued logic. However, when one
allows for variations in such background more formal, axiomatic formulation is
needed. That is why set theory is understood as the first order axiomatic Zermelo-
Fraenkel (ZF) theory of sets with possible addition of the axiom of choice (AC)—
ZFC. Similarly arithmetic is usually described as an axiomatic first order theory—
Peano arithmetic (PA) (see the discussion regarding the order of formal theories
versus set theory in [18]). The variations in the theories can be grasped by consid-
ering various models of these theories. Classically such models (Tarski) are built in
the category Set of sets and functions between them. All models of first order theo-
ries undergo usual limitations and benefits which follow the Gödel or Löwenheim-
Skolem-like theorems (and much more, see e.g. [19]). We also will be using more
general models of (intuitionistic) set theory in other categories like toposes where
the logic becomes intuitionistic [20].

The forcing method is known from the independence results in set theory since
1960s [21] and allows for changing the models. In general, forcing in mathematics
is a very rich, technical and advanced subject (see e.g. [19, 22]). For the purpose of
this work it is a method for studying the real numbers line. Thus Cohen forcing in a
narrow sense used in the chapter can be seen as a mechanism of adding real numbers
to the model and thus changing the model of ZF(C) and the real line. This is also a
tool for exploring the exotic smooth R4’s (see e.g. [17, 23, 24]).

We start with infinities appearing in some geometric constructions in dimensions
3 and 4 like Casson handles and Alexander horned sphere (wild embeddings). These
infinities are the inevitable and intrinsic features of the constructions. On the other
hand, infinity by itself is a natural and central topic in set theory. The key for under-
standing this relation is precisely the Cohen forcing. On the algebraic level a forcing
is generated by some complete atomless Boolean algebra—in this case the forcing
is nontrivial and can eventually add some reals to the ground model M of ZFC. In
the case of Cohen forcing the algebra is the unique atomless Boolean algebra with a
dense countable subset. In fact it holds true:
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Lemma 13.1 (Corollary 25.4, p. 189 [25]) Let A be a complete atomless Boolean
algebra that contains a countable dense subset. Then A is isomorphic to the algebra
RO(CS) of regular open subsets of the Cantor set CS.

Any (signed) tree canonically generates a partial order (partially ordered set). A
partial order (P,≤) is called separative if for all p, q ∈ P such that p � q there
exists r ≤ p with r ⊥ q. Here r ⊥ q means incompatibility relation i.e. there does
not exist k that neither q ≤ k nor r ≤ k is true. Then, the important lemma holds
true:

Lemma 13.2 (Lemma 13.33, [25]) Every separative partial order P can be com-
pleted to a complete Boolean algebra B such that P is dense in B \{0} and the partial
order in P agrees with ≤B. B is unique up to isomorphism.

Next we ask the question: which rooted trees do represent a separative partial order?
One easily finds that the full binary tree (the one which has precisely 2 branches at
every node) does. Moreover:

Lemma 13.3 The full binary tree represents the countable dense subset (partial
order) of some complete atomless Boolean algebra.

This is because the full binary tree represents the Cantor set in (0, 1) interval: one
assigns to every branch 0 or 2 numbers which appear in the three-mal decompositions
0.x1x2x3 . . .of numbers in (0, 1). Thenmissing numbers correspondprecisely to xi =
1, i = 1, 2, 3, . . .. Thenodes of the tree represent themembers of the countable partial
orderwhich is dense in the partial order of the tree hence in the correspondingBoolean
algebra. The algebra is RO(CS)which is atomless and generates the nontrivial Cohen
forcing. �

Now the point is that the Cantor set generated by the binary tree is frequently
realized geometrically by Casson handles construction in dimension 4 and by wild
embeddings of spheres in dimension 3 (see e.g. [26]). Casson handles (CH) (see e.g.
[27–29]) appear in the handle-body decompositions of small exotic smooth open
4-manifolds [29] and are also represented by the infinite signed rooted trees [29, 30].
If the tree was finite and the CH smooth, the Casson handle would be the ordinary
smooth 2-handle.1

Let me quote an important and elementary observation by Kato ([31], p. 114)
which ensures that given a signed tree we have a Casson handle spanned on that tree:

There are sufficiently many Casson handles. In fact to each infinite signed tree, one can
associate a Casson handle.

Let M be a model of ZFC and M[G] its generic extension by Cohen forcing
[19, 22]. Then we can prove the following:

Theorem 13.1 A general Casson handle appearing in the handlebody of a small
exotic R4 determines a nontrivial Cohen forcing adding aCohen real in some generic
model M[G] of ZFC.

1Every CH is topologically (as a pair) homeomorphic to the standard 2-handle which was shown
by Freedman [28].
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Proof First, any Casson handle can be embedded in the simplest CH which is the
linear tree with only one, positive or negative, self-intersection at each level. This fol-
lows from the fact that every CHwith a bigger signed tree than the tree of another CH
is embeddable in this ‘smaller-tree-CH’. One should respect the rule that the smaller
tree is homeomorphically embedded into the bigger one.Adding self-intersections on
any level and killing the generators by gluing kinky handles determines the embed-
ding. Moreover, the resulting embeddings of CH’s preserves the attaching areas of
CH (or at least attaching circles and their framings). The last means that whenever
the simplest CH were exotic (the attaching circle determines the non-smooth slice)
the embedded CH with a bigger tree would be exotic too [30].

Second, instead of attaching an arbitrary CH let us attach the simplest one (see
Figs. 13.1 and 13.2) with the linear signed tree in which we know the bigger one is
embeddable. In general we do not know whether the CH with such a tree is exotic
although we know it is exotic for the ‘only +’ or ‘only −’ trees.

Next, let us consider the Casson handle determined by the full binary tree (BT)
with one infinite branch identical with the linear one above. Such ‘binary-tree-CH’
embeds in the linear CH and let us forget the signs in the binary CH. Then from
Lemmas 13.1 and 13.3 the algebra RO(CS) is the unique Cohen forcing algebra
generated by BT. �

Note that every CH determines the same (up to isomorphism) Cohen algebra thus
the nontrivial Cohen forcing in a generic model M[G]. In dimension 3 given wildly
embedded 3-sphere, say horned Alexander sphere, a ‘grope’ is assigned naturally to
it which is spanned on the infinite binary tree again ([26], pp. 18–19). Thus Cohen
forcing can be built also in this case. We do not discuss the meaning of it here
but only note that wild embeddings in dimension 4 is the other side of exotic open
4-smoothness and this can be understood physically as a quantum state [32, 33].

Cohen forcing changes the real line substantially, namely the reals in the model
M constitute merely measure zero subset of the extended real line in M[G], hence
of R. As shown above it is also assigned to replacing the standard smooth 2-handles
by an exotic Casson handle, hence to changing the smoothness structures on R

4. If
the forcing acted over R-line in R

4 and resulted in exotic R4 the following important
question would arise: Can an extension of the real line by forcing be a valid tool
when exploring exotic smoothness in dimension 4? In some sense this kind of forcing
should add reals to the fullR resulting in the sameR since R4 is again the Riemannian
smooth real manifold. We will analyze this problem in the next and subsequent
sections.

13.2 From the Standard to Categorical R
4

One needs ‘adding’ more real numbers to the already full R. What is the meaning of
such procedure?Wewill show that the modification of logic and set theory is needed.
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From the external absolute point of view a set-theoretic forcing adds reals (if
any at all) to subsets RM of R where RM is a set of real numbers in some model
M of ZFC. Internally there is no difference between (1st order) properties of real
lines RM and R. Suppose that we already have a well defined model of the standard
real line R.2 Starting with R can one add consistently more reals to the line? More
precisely: can one construct a bigger real line which would have the same properties
as R but be different as a set (thus containing more reals)? Our general motivation
for considering such questions, as observed in the 1st section, is that we expect such
procedure to possibly modify the smoothness of manifolds.

Reducing the properties of the real line to its 1st order properties, and the logic
to first order logic, Robinson showed [34] that there are non-standard models of
arithmetic ∗N and analysis ∗R. They are end-extensions of the standard N and R

respectively and contain infinite natural and real numbers. Moreover, ∗R contains
infinitesimal invertible real elements. Now, every true 1st order formula φ about
natural numbers is fulfilled in ∗N iff it is fulfilled in N, i.e. ∗N � φ ≡ N � φ. We
say that ∗N and N are elementary equivalent and write:

∗N �1 N (∗R �1 R), (13.1)

meaning, one can not distinguish the two models just by their 1st order properties.
Wewould like to strengthen the indistinguishability as above and consider something
like ∗N �2,3,... N (∗R �2,3,... R).3 It is seemingly a trivial task, since 2nd order
theory of natural or real numbers are categorical and the real line R is the only (up to
isomorphism) model allowed, hence indeed ∗N �2,3,... N.

That is why we are rather looking for an environment (the twist) where non-
standard models for arithmetic and analysis may exist, are nontrivial, i.e. different,
and are valid for higher order theories, i.e. some second order properties of themodels
become identical after the twisting. Without any twist these particular properties
would not coincide. As noted above we can not achieve the nontrivial realization of
the full classical indistinguishability ∗N �2 N (∗R �2 R) since 2nd order arithmetic
has isomorphic models.

To imagine how the twist could work one can introduce three parameters (w, α, ε)

controlling the twist—w corresponds to the weakening of the arithmetic and/or the
logic, and the other two to the fractions (belonging to (−1, 1)) of the numbers of all
true formulas of the first and second orders correspondingly. α = 0 and w = 0 mean
that all true 1st order formulas of both models, (∗R and R), are determined with
respect to the first order (i.e. α = 0) classical (i.e. w = 0) predicate logic. Similarly,

2A formal theory giving rise to the unique up to isomorphism model of real numbers should use the
2nd order logic. Such theories are called categorical (in ℵ1). The theory of Archimedean complete
ordered field is categorical. It is a second order theory.
3It would be sufficient to consider ∗N �2 N since there are theorems reducing the higher order to
2nd order logic (e.g. [35, 36]).
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ε = 0 and w = 0 mean that all second order formulas of the models are determined
w.r.t. the classical second order logic. Thus one writes

∗N �w
1−α,1+ε N (∗R �w

1−α,1+ε R) (13.2)

when the logic is weakened and the sets of the first order formulas and sec-
ond order formulas have been modified and especially some 2nd order formulas
become identical in both models after the twist. The +,− signs indicate the twist
or the rotation in the parameter space. The value of the parameters depends on the
degree of how much of weak and nonclassical logic is used. We do not need to deter-
mine the relation between the parametersmore precisely here. Instead, let us consider
the important example. We will weaken the logic and arithmetic considerably and
take the models in a constructive set-up, i.e. in toposes.

This weak Peano arithmetic was recognized in detail by Moerdijk and Reyes [37]
when they considered the non-standard models of numbers in smooth toposes and
built the smooth topos model for synthetic differential geometry. We present the
discussion of the elements of their construction important for us in the Appendix
13.4.2.

The important point is that the objects of natural numbers (NNO) in smooth
toposes like Zariski (Z) and Basel topos (B) determined by the natural embedding of
manifolds from Set to the toposes, i.e. the map s : M → Z , sends N to the standard
natural numbers s(N) in Z , B,4 fails to generate a proper object of real numbers
s(R) = RZ (or RB). For example: RZ is nonarchimedean with respect to s(N) so
thus (13.21) does not hold. Besides [0, 1] ⊂ RZ is noncompact with respect to s(N).
As the consequence this last property devastates the homology theory of manifolds
in Z ([37], pp. 280–284.).

To cure this one should turn to themodified object of natural numbers NZ (smooth
natural numbers) which is not the canonical standard NNO s(N) in Z . As shown
by Moerdijk and Reyes the axioms of the weak logic (13.17)–(13.19) are fulfilled
in Z however the type N is interpreted now as NZ i.e. it is the smooth NNO. RZ
is now Archimedean w.r.t. NZ , [0, 1] is compact (smooth compact, or s-compact),
the homologies of manifolds are tractable and in particular the internal topologies
of manifolds in Z are well-defined. Internal in Z constructions and theories are
formulated such as the true natural numbers are NZ rather than the standard s(N).
The shift s(N) → NB changes some second order properties of real and natural
numbers such that now in Z internal constructions are more like the external ones.

The construction of NZ follows the filterproduct construction. Namely, the object
RZ � s(R):

RZ = s(R) = L(−, lC∞(R))

is the representable object of Z [37]. It is non-archimedean with respect to s(N)

as said above. Instead one defines the object of smooth natural numbers NZ thus
allowing for the modification of finiteness. Let (sin(πx)) be the ideal inC∞(R). The

4As the object in a topos this standard NNO is the constant sheaf of natural numbers.
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representable object in Z of smooth integer numbers ZZ is now defined as ([37], p.
252)5:

ZZ = l(C∞(R)/(sin πx)), NZ = l(C∞(R)/(sin πx, x ≥ 0)). (13.3)

Taking the ideal F of functions which are non-zero only on finite initial segments of
N, then the quotient l(C∞(N)/F) represents a non-standard infinite natural number
in Z .

To have the standard s(N) � N one can define it as the subtype of NZ :

N = {n ∈ NZ : ∀S∈P(NZ )(0 ∈ S ∧ ∀n∈NZ (m ∈ S → m + 1 ∈ S) → n ∈ S)} (13.4)

which means N fulfills the strong induction scheme we know from Peano arithmetic
[37]. However, when logic is weakened (in the metatheory) the ‘true’ natural num-
bers are defined with respect to the coherent induction scheme (13.17) in which
case one does not distinguish N and NZ . We do not dwell upon such metatheoretic
considerations here (see however [17]).

Even if the subtype N ⊂ NZ can be defined as in (13.4) still it is undecidable6:

Z |= (N �= NZ) → (N is not decidable in NZ).

The important question is the extent up to which one can consistently replace N by
NZ . What is crucial here is that the 2nd order property of RZ of being Archimedean
is again retrieved with respect to NZ . Similarly, the interval [0, 1] is compact again
with respect to NZ . The twist (13.2) is realized by the shift:

s(N) → NZ (13.5)

which allows for the retrieving of some internal higher order properties of theories
in Z which were lost when the canonical standard NNO was in use.

We will demonstrate how this intuitionistic model for weak arithmetic and espe-
cially the shift (13.5) is related to both smoothness structures in dimension 4 and the
procedure of adding reals by forcing.

13.2.1 Smooth Natural Numbers in B

Weak logic as described in the previous section (and in the Appendix) guarantees
that there is a NNO different than s(N), i.e. NZ which replaces consistently the
standard NNO in the intuitionistic set-up. The crucial point is that NZ contains also

5l( ) is themember ofL—the category of lociwhich is opposite to the category of (finitely generated)
smooth rings ([37], p. 58).
6A subset A ⊂ B is decidable when a ∈ A is decidable property, i.e. when ∀a∈B(a ∈ A ∨ a /∈ A).
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non-standard natural numbers what indicates that NZ is an intuitionistic analogue of
∗N known from the non-standard analysis (NA). Internal in the toposes, higher order
intuitionistic theories are formulated internally in Z w.r.t. NZ and RZ leaving aside
their standard counterparts. But such radical departure from standardness modifies
finiteness such that infinite big non-standard natural numbers are considered as s-
finite.

In general there are two kinds of infinitesimal elements in RZ : invertible (I ⊂ RZ )
and nilpotent ones. Nilpotent elements are required by the synthetic differential
geometry approach and they represent forms like dx (d2 = 0), while invertible
elements are predicted by the non-standard analysis of Abraham Robinson which
can be generated by taking inverses of infinite non-standard natural numbers. The
smooth topos unifies both kinds of infinitesimals in the one real line Rwhere they exist
as real numbers. Moreover, most internal higher order theories perceive the smooth
numbers as true real and natural numbers. The important class of such theories
are differentiable manifolds whose category M is mapped into the smooth toposes
via s transform, and they require s-numbers to define their topology, compactness,
connectedness or homologies.

However, do there really exist ‘non-standard’ and invertible infinitesimal elements
of RZ , i.e. I in Z? In fact it holds [37]:

Z |= ¬¬[∃x x ∈ RZ ∩ I] (13.6)

which is a rather weak version of the existence of invertible infinitesimals (recall that
the logic in Z is intuitionistic and double negation does not cancel in general). To
strengthen this result the Authors of [37] proposed to modify the topos Z towards B
such that now one proves:

B |= ∃x x ∈ RZ ∩ I. (13.7)

To obtain this result one has to modify the Grothendieck topology in Z and then
to be sure invertible infinitesimals do exist, one adds them by the forcing on stages
(see the Appendix 1 in [37]). Thus, indeed in the internal environment of B the non-
standard real numbers are added by forcing. This is the extension of the real line by
adding new reals which we discussed in Sects. 13.1 and 13.2. Such procedure is not
in general possible in higher orders and in the classical {0, 1} logic, but it is possible
in the weaker logic of the topos B realizing the twist (13.2) by the shift (13.5).

13.2.2 The Smooth Topos B Localized on R
n

Here we want to show that smoothness structures on R
4 can have their origins at

the level of models of the real line. Moreover, continuum many different exotic
smoothness structures R4’s can be understood at that level. Given the real line (higher
order, classical) R it is Archimedean with respect to N. To have such a unique model
R we can think of it as the model for the second order theory of real numbers or
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the theory of an Archimedean complete ordered field, both having unique (up to
isomorphisms) models. On the contrary, reducing the properties of N or R to the
first order we get a plurality of non-standard models ∗N and ∗R in every infinite
cardinality. Can one have different non-standard models ∗R all having the cardinality
of continuum? The answer is the following:

Lemma 13.4 Under the Continuum Hypothesis (or under 2<c = c) there are 2c

different non-isomorphic models ∗R all having the cardinality c.

The part of the proof important to us is the observation that every non-principal
ultrafilter U on the set N generates a non-standard ∗RU of the cardinality continuum
as an ultrapower construction, and two such ultrapowers are isomorphic if and only
if the ultrafilters generating them are isomorphic w.r.t. a permutation of N. Finally
there are 2c non-isomorphic ultrafilters on N. �

Thus starting with the higher order R one has up to 2c possibilities to choose
its 1st order continuous reducts R → ∗R. This extends to the relation basic to us
(especially for n = 4) with 1 to 2c possibilities:

R
n 2nd→1st−→ ∗Rn

. (13.8)

Let us complete this correspondence with another one as follows:

R
n 2nd→1st−→ ∗Rn

1
sh→ ∗Rn

2
2nd→1st←− R

n. (13.9)

We would like to have (13.9) realized as smooth correspondence also in the middle
arrow, and valid in the higher orders. This is the point where the topos B and the
twist (13.5) come into play. We are further extending the correspondence (13.9) into
the following B-modified one:

R
n 2nd→1st−→ ∗Rn

1
e1→ Rn

B
[d]→ Rn

B
e2← ∗Rn

2
2nd→1st←− R

n. (13.10)

We are going to determine the internal in B [d]-continuous and even differentiable
map. Let Fin be the ideal in P(N) of finite subsets of N. The algebra P(N)/Fin =
P(ω)/Fin is an atomless Boolean algebra. Moreover, all nonprincipal ultrafilters on
N are the members of the Stone remainder β[ω] \ω of the algebra P(ω)/Fin. Recall
that the Frechet cofinite filter F on N is defined as:

F = {F ∈ P(N) : N \ F ∈ Fin.} (13.11)

The following obvious but important lemma holds true:

Lemma 13.5 Every nonprincipal ultrafilter U on N contains the Frechet cofinite
filter F .

Let us consider now the specific relation of non-standard models ∗N , ∗R in classical
logic (Set) and in toposes (higher order intuitionistic logic).
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Lemma 13.6 In B and Z the non-standard models are built as filterproduct con-
structions based on the Frechet filter F rather than on ultrafilters.

This follows from the direct construction of smooth natural numbers in B (see [37],
p. 252). Moreover, to respect constructivism in toposes one cannot base on the AC
(especially using ultrafilters strongly depends on AC). In [38] Moerdijk showed
explicitly that the constructive non-standard PA in the topos Sh(F) of sheaves on the
category of filters is based on the smooth natural numbers constructed with respect
to the Frechet filter F .

Corollary 13.1 All non-standard models ∗N (∗R) are mapped by e1, e2 in (13.10),
into the single intuitionistic non-standard model NB (RB) in B.
This is the consequence of: (1) All ultrafilters are the extensions of the unique Frechet
filter (Lemma 13.5). (2) Different nonstandard models of R (with the cardinality
continuum) are constructed on the base of non-isomorphic nonprincipal ultrafilters
on N. (3) Lemma 13.6. �

Let us consider relations on N modulo the ideal of finite subsets Fin, e.g. the
equality becomes A =∗ B meaning AΔB = A \ B ∪ B \ A ∈ Fin. We call a 1 : 1
function f : D f → Im f , D f , Im f ⊂ N an almost permutation of N whenever
domain of f , D f , and its image Im f are almost N, i.e. D f =∗

N =∗ Im f .
Each such almost permutation f of N gives rise to the automorphism d f of the

Boolean algebra P(ω)/Fin. Namely

d f ([A]) = [ f (A ∩ D f )] for [A] ∈ P(ω)/Fin. (13.12)

Even though there can be up to 2c nontrivial automorphisms of the algebra P(ω)/Fin
[39], it is still valid that:

Lemma 13.7 There are c automorphisms of P(ω)/Fin which give rise to almost
permutations of N.

This is crucial for us to consider such trivial automorphisms since they forbid N,
hence R, to be constant and give definite transformations of N. Moreover, as shown
by Shelah [40], the statement that there are only c automorphisms of P(ω)/Fin (only
trivial) is consistent with ZF. So in the above sense we restrict our considerations to
the trivial automorphisms case. Let us note that:

Lemma 13.8 Every trivial automorphism of P(ω)/Fin represented by a permuta-
tion σ : ω → ω corresponds to a mapping (shift) between non-isomorphic non-
standard models of R of the cardinality c.

This is a direct consequence of the relation of the nonprincipal ultrafilters and non-
standard models of R, and the fact that the Stone space of P(ω)/Fin, i.e. β[ω],
contains all nonprincipal ultrafilters on ω, i.e. β[ω] \ ω. Every permutation of N

extends to a homeomorphism β(σ) : β[ω] → β[ω] and to an automorphism of
β[ω]\ω (e.g. 3.41, p. 88 in [39]). This last defines the shift between the non-standard
models. �

In fact we need the following converse relation:
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Corollary 13.2 For every automorphism of P(ω)/Fin there exists the shift-map
between non-isomorphic non-standard c-models of R such that the automorphism
realizes this shift between the models.

Nowgiven the shift-map sh : ∗R1 → ∗R2 as in (13.9)we can think of it as determined
by some automorphismof P(ω)/Fin.Note that this correspondence is obviously non-
unique. Taking an internal in B extension [d] of the shift as in (13.10) gives rise to
the following:

Theorem 13.2 Every external shift sh : ∗R1 → ∗R2 determines the internal s-
differentiable maps [d]1,2, [d]2,1 : Rn

B → Rn
B, n = 1, 2, 3, . . ..

Note that [d]1,2 and [d]2,1 are generated in Set by the ‘inverse’ almost permutations
of N.

Proof First, any non-standardmodel ∗Ri is obtained via the ultraproduct construction
w.r.t. an ultrafilter Ui . U is the extension of the Frechet filter F . In B the ‘non-
standard’ real line is RB obtained via the filter construction w.r.t. F . Hence we have
[d]1,2 : RB → RB. Second, every internal [d] is continuous in B (see Theorem 3.6,
p. 270 in [37]). Next, since B is the model of synthetic differential geometry (there
exist nilpotent infinitesimals D ⊂ RB) it holds true the Kock-Lawvere axiom in B,
which gives ([37], p. 302):

∀ f ∈RR∀x∈R∃! f ′(x)∈R∀h∈D f (x + h) = f (x) + h f ′(x)

where R stands for RB. Note that f ′(x) is just the symbol for the unique y =
f ′(x) such that y ∈ R. Repeating the procedure we determine subsequently
f ′′(x), f ′′′(x), . . .. Thus f ∈ RR is a standardly infinitely many times differentiable
internal function. Finally, we apply again the Kock-Lawvere axiom to the ‘inverse’
map [d]2,1 which leads to a similar differentiability. �

Definition 13.1 The pair ([d]n1,2, [d]n2,1), or [d]n1,2 to shorten, is called an internal
diffeomorphism or s-diffeomorphism of Rn

B, n = 1, 2, 3.

Note that any internal diffeomorphism as above is generated by the shift between the
non-standard c-models of R. One could wonder whether the s-diffeomorphisms can
be non-identity maps since they all are generated w.r.t. the Frechet filter. However,
due to Lemma 13.7 there is precisely c shifts which guarantee that N hence RB are
not constant.

Now we are ready to define the central object in this section (cf. [41]):

Definition 13.2 Let Mn be a smooth n-dimensional manifold and {Uα : Uα ∈ O}
its regular open cover. We call (B)Mn a n-dimensional manifold Mn locally modified
by the topos B, or the smooth B structure on Mn , whenever it holds:

• For every regular open cover {Uα} of Mn there exists some Uα ∈ {Uα} such that
Uα is internal object of the internal in B topology of s(Mn).
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• If two such open Uα,Uβ are internal in B their nonempty internal meet defines
the local change of coordinates in B which contain the s-diffeomorphisms: ηαβ =
[d]1,2 : Uα ∩Uβ → Uα ∩Uβ .

Next we would like to ensure that s-diffeomorphisms do not arise from a Set-based
diffeomorphism. To this end let the class of trivial automorphisms of P(ω)/Fin be
suitably limited: one allows only those trivial automorphisms whose almost permu-
tations of N contain at least one non-identical almost cycle—cyclic almost permuta-
tions and we will call them cyclic permutations if it does not cause any confusion.7

There still exist continuum many such almost permutations and none of them is
extendable in Set to any orientation preserving diffeomorphism of R.

Summarizing:

1. s-diffeomorphisms are not images of diffeomorphisms from Set, hence the local
modification byB of the smoothness structure ofMn is nontrivial and categorical.

2. s-diffeomorphism is generated in Set by a cyclic almost permutation of N ⊂ R

so it is not extendable to any orientation-preserving diffeomorphism of R.
3. In B each permutation of s(N) ⊂ RB gives rise to the s-diffeomorphism

([d]i j , [d] j i ).

13.3 From the Categorical to Exotic R
4

Given the local B-modification of the smooth structure on Mn we are interested in
its impact on the actual classical smoothness of manifolds. One obvious classical
limit (this which does not depend on B) of the B-modified structure on Mn is just the
smooth structure of Mn we started with. In this case all openUα ∈ O become (again)
Set based external objects. There is however another, more refined possibility.

Definition 13.3 1. We say that a classical limit of theB-deformed smooth structure
on Mn factors through the non-standard models ∗R1 and ∗R2 whenever they are
c-models of R and the B-deformation was performed according to (13.9) and
(13.10) where now O � Uα � R

n on the l.h.s. and O � Uβ � R
n on the r.h.s. of

these relations.
2. A nontrivial classical limit of theB-deformed smooth structure ofMn is a smooth

structure on Mn which factors through some non-standard models of R while
reaching the Set and higher order levels.

The point is that even though local B-modifications of Mn take all almost permu-
tations of N into internal s-diffeomorphisms, hence a single B-deformed structure
emerges, on the Set level it is not so. Namely we can prove the important result:

7An almost cyclic permutation is an almost permutation p, i.e. p : A 1:1−→ B, A =∗
N =∗ B, which

reverses the order of elements of some C ⊂ A when compared to the order of p(C).
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Theorem 13.3 For different non-isomorphic c-models ∗R1 and ∗R2 with the cyclic
automorphism shifting them, the classical nontrivial limit (if it exists!) of the local
B-deformed structure of R

4 is some exotic smooth R4
1,2.

To fix the result we need the simple but crucial observation:

Lemma 13.9 Given a smooth structure on R
4 if there does not exist any open cover

of R
4 containing a single coordinate patch R

4 this structure has to be exotic.

If a smooth R
4 has a single coordinate patch U � R

4 it is diffeomorphic to the
standard R

4. If none of its open covers contains a single element, such R4 can not
be diffeomorphic to the standard R

4. �
Proof (Theorem 13.3) We will show that any coordinate patch of the B-modified R

4

can not contain the single chart. On the contrary let there exist a single coordinate
patch R

4 for the classical limit of the B-modified R
4 as above. But in this case

any open cover can be deformed by diffeomorphisms to a cover whose transition
functions are identities. However, the factorization of some Uα through ∗R1 and Uβ

through ∗R2 and the cyclic condition on the permutations ofN excludes the identities.
�

Note that this proof works in the case of B-modified R
n since in this case for the

standard R
n one can have a single coordinate patch. It is known that exotic Rn’s

exist only in dimension n = 4 so that means that classical smooth limits of the
categorical B-modifications do not exist for n �= 4. What is so special in dimension
4 that enables the existence of the limit as above? Some explanation comes from the
special relation of Casson handles and geometric constructions in dimension 4 with
the smooth NNO in B.

13.3.1 Casson Handles in B

When proving that emerged smooth R4 is exotic we left aside the case when there
are external diffeomorphisms which can be mapped onto the internal ones. The
reason is that they could be ‘gauged out’ to the identity on the intersections by some
external diffeomorphisms. However, making the additional assumption, which is
also partly and implicitly present in so far analysis, we can include some external
diffeomorphisms as generating exotic smooth R4’s. Namely, assume explicitly that
natural numbers N are generated as different objects by non-isomorphic c-models
of R. This means that given the almost permutations of N generated by different
c-models of R they can not be ‘gauged out’ to the identity whenever the models of
R are non-isomorphic. This is rather strong low level assumption which reverses our
‘natural thinking’ about the relation of real and natural numbers. However, in B we
had a similar situation: given the canonical object of real numbers RB which is the
image s(R) from Set, we had to modify the NNO s(N) to the smooth NB. The real
numbers determined the NNO. Now we want to follow this line of reasoning and
show that Casson handles are related with the smooth NNO in B.
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Fig. 13.1 The simplest small exotic R4 with the simplest possible Casson handle attached to the
Akbulut cork

Fig. 13.2 The simplest possible Casson handle which gives rise to an exotic R4

Let us consider one example. The simplest known exoticR
4 can be represented in

the Kirby calculus language as a handle-body with a single Casson handle (Fig. 13.1,
[29], p. 363). The simplest possible Casson handle with a single positive intersection
at each level (Fig. 13.2, see [29], p. 363). Let us assign apartial non-cyclic permutation
p of N to this CH, namely define it by: the number of level, i.e. n, plus the number
of intersections at each level, i.e. 1. partial permutation:

p : n → n + 1, n ∈ N. (13.13)

Such a permutation defines the automorphism of P(ω)/Fin according to (13.12) and
thus corresponds to the shifts between the c-models of R. Based on the assumption
we indeed arrive at the exotic R

4.
This simple example justifies the assumption as a basic rule in the context of

exotic smooth structures on R
4. It also shows that Casson handles are nontrivially

related with the object of NN in B. One can make this relation even more direct by
interpreting the trees spanning CH’s as built w.r.t. the smooth rather than standard
NN. In this case we say that a Casson handle is spanned by a tree in B. Let us turn
again to the simplest CH represented by its Kirby diagram in the Fig. 13.2 (see [29], p.
363). The tree is just infinite +-signed linear order of levels. The crucial information
is its infiniteness resulting from the geometric construction. More precisely:

Lemma 13.10 If the smooth Casson handle construction terminated after finitely
many steps it is the standard smooth 2-handle.

This means that any smoothR
4 with a handle-body containing all smooth finite CH’s

becomes the standard smooth R
4. Let us now associate the smooth NN to the levels
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of the simplest CH:
# of level → n ∈ N ⊂ NB

just by taking the infinite set of levels as complementary to the finite set {0} thus
becoming amember of the Frechet filterF . But this means that the infinite tree of this
CH is just s-finite in B. When one performs similar enumerating of infinite number
of levels in an arbitrary CH the result is the following:

Lemma 13.11 Infinite Casson handles are spanned in B by s-finite trees.

This together with Lemma 13.10 indicates that indeed the internal arithmetic of B
has something to do with exotic smoothness, since one can state:

Corollary 13.3 Exotic smoothness structures on R
4 (smooth 4-manifolds), while

transformed into B by s, belong to the class of s-standard smooth R
4. They all are

internally s-diffeomorphic.

This result in fact agrees with our previous observation that externally distinct, even
discontinuous maps lead to internal s-diffeomorphisms. What was crucial in estab-
lishing it was the shift (replacement) from the standard N to the smooth NB. The
same shift is crucial in the above seeing CH’s as s-finite objects. Observe that turning
to the locally modified by B structures of manifolds, allows for the shifting between
various exotic R

4’s, not necessarily between exotic and the standard ones. Namely
it holds:

Theorem 13.4 Let R4 be a small exotic R
4 whose handle-body contains k many

CH’s for some k ∈ N. Let a local B-modification of R4 be performed such that
l < k, l ∈ N l-many CH’s belong to the local open neighborhood which is internal
in B. Then, there exists a classical limit of this modification which is an exotic R4

k−l
(with only k − l nontrivial CH’s).

Proof Observe that internally l CH’s becomes s-finite CH’s (those corresponding
to the s-finite spanning trees). It is enough to define the classical limit as R4

k−l by
requiring that s-finite CH’s are sent to the actually finite ones. �

Now, we see that the local modification of the manifold smooth structures by B
and taking classical limits, works as an analogue of the large diffeomorphism where
the actual smooth exotic R4’s represent a kind of generalized isotopy classes of
embeddings (or small, coordinate-like diffeomorphisms).Working entirely in Set one
can not realize exotic R4’s as merely isotopy classes of embeddings since there is no
diffeomorphism at all connecting different exotic R4’s. Moreover, in this generalized
set-up, one can study a class of topological and smooth manifolds allowing for the
local categorical modifications (and the resulting new concept of equivalence). The
local character of the modification leads to generalized manifoldswhich are partially
both in Set and B.
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13.4 Some Consequences to Physics

Starting with R and ∗R and creating the pairs of such reals for both models we
arrive at the isomorphic fields of complex numbers, even though R and ∗R are non-
isomorphic. This is connected with the fact that in C one can not define the NNO
N (starting from the axioms of the complete ordered algebraically closed field of
characteristic zero). But this means that we can use ∗R instead of R in the case of
the complete ordered algebraically closed field of characteristic zero, i.e. C.

Given the divergent expression 1 + 2 + 3 + 4 + · · · = ∑∞
i=1 i it is bigger than

any n ∈ N so this sum, if existed as the natural number (and in 1st order language),
corresponds to a non-standard number of some model ∗N hence ∗R. Moreover, such
non-standard element exists in any non-standard c-model of R, since every non-
standard model of N is the (conservative) end-extension of N.

Note that we get the sameC (up to isomorphism) starting from any ∗R by building
the space of pairs with the algebraic operations of C. This is the consequence of
categoricity of C. Thus, possibly the non-standard big values, like the infinite sum
above, should correspond (via the isomorphisms ofmodels) to some finite value inC.

Indeed, suppose such value does not exist, then each pair of the form (
∑∞

i=1 i, b),
b ∈ ∗R can not correspond to any standard complex number. But it does since every
∗C

iso� C (C is c-categorical). Moreover it has to correspond via the isomorphism
to some standard pair z ∈ C, z = (x, y); x, y ∈ R. The point is the following: C

allows 2c nontrivial automorphisms and they give rise to the isomorphisms ∗C
iso� C

for every ∗C generated via the ultrafilter constructions. On the other hand there
are only 2 automorphisms of C that send R to R—the identity and the complex
conjugation. This, together with the fact that fixed points of all automorphisms of C

are all rational numbers, i.e. ∀φ∈Aut(C)∀r∈Qφ(r) = r , give that the image of
∑∞

i=1 i

under any isomorphism ∗C
iso� C has to be irrational pair (x, y) ∈ C : x, y ∈ I. This is

in fact result of a very discontinuous and wild behavior of the (wild) automorphisms
of C realizing the above isomorphism. On the other hand if one would like to have
a finite value assigned to this iso which would not be dependent on the choice
of the non-standard model ∗R it had to be rational number as it is a fixed point
of every automorphism. In what follows we would like to consider this model-
theoretic mechanism for assigning finite values to divergent expressions in context
of exotic smoothness structures onR

4. Thenwe try to understand this phenomenon in
context of renormalization and regularization ever-present in perturbative quantum
field theories.8

Lemma 13.12 For any exotic smooth R4 (which is topologicallyR
4) any diffeomor-

phic image of it can not send smooth coordinate line R to the smooth R.

If there were such diffeomorphism the exotic R4 would factorize as R × R
3 which

is necessarily standard. �

8This part of the work was performed in the cooperation with Krzysztof Bielas.



13 Model and Set-Theoretic Aspects of Exotic Smoothness Structures on R
4 233

One can equivalently state the lemma as: If the topological R is smooth line in
a smooth R4 this has to be standard R

4. Thus, when a smooth diffeomorphism
of R4 preserves R as the factor this can happen only for the standard R

4. In the
case of automorphisms of C when R is send to R then the automorphism can not
be wild. Otherwise, any wild automorphism scatters in a very discontinuous way
the real line in the complex plane (leaving the rational numbers fixed). For any
exotic diffeomorphism of R4 it can not smoothly send the line R to itself, though
continuously it does. As we explained in the previous sections and in this one, both
situations are connected with non-standard c-models of R.

Let us consider the non-standard ∗C (though isomorphic to C) as generated by
pairs of the non-standard reals, i.e. ∗C � {(a, b) ∈ ∗R × ∗R}. Then, make the
product: ∗C2 � ∗R4. When turning to the higher orders one gets the unique (up to
isomorphisms) standard real field and the equality reads: C

2 � R
4. Instead, one can

use an automorphism of C to obtain (non-canonical) isomorphism ∗C
iso� C and thus

C
2 �iso

∗R4. Given different ∗R4’s one gets different automorphisms of C and thus
different realizations of the isomorphism above. It follows that one can use different
wild automorphisms of C to distinguish (index) different non-standard models of R.
Given R

4 locally modified by B and taking its classical limit which factors through
∗R1,

∗R2, this results in the exotic R4
1,2 and thus the correspondence follows:

Corollary 13.4 Pairs (α1, α2) of automorphisms of C, where at least one automor-
phism is wild, distinguishes different exotic R4

1,2’s.

This relation can be expressed in terms of Eq. (13.10) which for n = 4 and by turning
to the C leads to the fully external description:

C
2 � R

4 2nd→1st−→ ∗R1
4 → ∗C1

(iso,0)→ C × C
(0,iso)← ∗C2 ← ∗R2

4 2nd→1st←− R
4 � C

2.

(13.14)
The middle C × C product emerges from the component-wise automorphisms of C

giving rise to the isomorphisms αi : ∗Ci � C, i = 1, 2 and this is the pair (α1, α2)

which represents exotic R4
1,2. The relation is, however, highly non-constructive, sim-

ilarly to the wild automorphisms of C and the ultrafilters constructions.
As we observed the wild automorphisms of C should somehow allow for the

assignment of finite values to some divergent expressions. We can make this point
more tractable by turning to the relation with exotic R4

1,2 and making use of the very
special properties of B. So we turn again to (13.10) from (13.14). The point is that B
locally modifiesR

4 and the theory of distributions inB looks very special, namely all
distributions in B are regular (constructive and w.r.t. the smooth real line and natural
numbers) and each external distribution is canonically mapped into the internal one.
In fact it holds ([37], Theorem 3.6, p. 324 and Remark on p. 322):

Theorem 13.5 [37] InB for every distributionμ on Rn there exists a predistribution
(function) μ0 : Rn → R such that for all f ∈ Fn:

μ( f ) =
∫

f (x)μ0(x)dx .
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Here Fn denotes the internal space of test functions in dimension n. Also as stated
by Theorem 3.15.3, p. 336 in [37], there exists a bijection between the external
distributions in Set and the internal in B given by the global section functor Γ :
B → Set. In particular, the product and the square roots of distributions are thus
well-defined in B as operations on the representing internal functions.

13.4.1 Renormalization in the Coordinate Space

Now we can discuss the problem of renormalization in perturbative quantum field
theory based on this special representation of distributions in B. Note also that in B
the standard NNO, i.e. N, is replaced with the smooth NNO, NB, such that ‘finite’ in
B is ‘infinite’ externally in Set. Thus indeed B is a natural category for addressing
renormalization questions. Given the interaction Lagrangian L = λ

k!φ
k
I of the φk

neutral scalar massive quantum field theory its S-matrix is determined in Dyson
series representation, as [42]:

S =
∞∑

n=0

i n

n!
∫

Mn

T (LI (x1)LI (x2) . . .LI (xn))dx1dx2 . . . dxn (13.15)

where M = R
1,3, Mn = M × · · · × M n-times and T stays for the time-ordered

products of the operator-valued distributions LI , hence S is the operator-valued
distribution either. The time ordering is defined for two operator valued functions
A, B on M as (we follow the presentation in [42]):

T (A(x1)B(x2)) = Θ(x01 − x02 )A(x1)B(x2) + Θ(x02 − x01 )B(x2)A(x1) (13.16)

where Θ(x) is the Heaviside function on R, i.e. Θ(x) = 0, x < 0 and Θ(x) =
1, x ≥ 0. Here x0i , i = 1, 2 are time coordinates of xi ∈ M, i = 1, 2. However, as
noted in [42] for general operator-valued irregular distributions one cannot create
the products of them by discontinuous functions like Θ . If one, however, works
outside the thick diagonal, Dn = {x ∈ Mn : ∃i �= j xi = x j }, then the Θ is continuous
hence the product (13.16) is well-defined. This is the core of the various problems
in perturbative QFT, let us quote the opinion of Authors of [42]:

In fact the mathematical origin for the appearance of short-distance singularities in pertur-
bation theory is the ill-defined notion of time-ordering reviewed above. Epstein and Glaser
proposed a way to construct well-defined time ordered products Tn , one for each power
n of the coupling constant, that satisfy a set of suitable conditions explained below, the
most prominent being that of locality or micro-causality. The power series S constructed
by (13.15) using the Epstein-Glaser time-ordered product T is a priori finite in every order,
and renormalization corresponds then to stepwise extension of distributions from Mn\Dn
to Mn . In general, distributions can not be extended uniquely onto diagonals. The resulting
degrees of freedom are in one-to-one correspondence with the degrees of freedom (finite
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renormalizations) in momentum space renormalization programs like BPHZ and dimen-
sional regularization.

Instead of reviewing the Epstein-Glaser construction let us observe that for regular
distributions the problem in (13.16) does not arise since they can be represented by
the operator-valued functions, their product is well-defined and they can be multi-
plied by Θ . True problem arises for irregular distributions like Dirac δ. Moreover,
if all distributions were regular the Epstein-Glaser construction would give as the
extension over Mn\Dn just the regular distributions we started with.

Now recall that in B: 1. every distribution is regular (Theorem 13.5), 2. every
distribution in Set can be naturally mapped to a distribution in B (Theorem 3.15.3,
p. 336, [37]), and 3. the function BΘ : R → R is continuous. This observations
motivate the following procedure:

GivenMn (n-product of theMinkowski spacetime,n = 1, 2, 3 . . .) let the diagonal
Dn ⊂ Uβ ∈ O for some regular open cover {Uα}α∈I where Uβ ∈ {Uα}α∈I . Then,
one locally modifies Mn by B such that Uβ ∈ B according to Definition 13.2.

Under the procedure above one indeed haswell-defined extensions of distributions
over the diagonals Dn in a sense of internal logic of B localized on Mn . Observe also
that the local modification of Mn implies some local modification of spacetime M
itself (if not, all factors in Mn are not modified, hence Mn neither).

Corollary 13.5 Varying the underlying geometry of a spacetime manifold by the
local modification of its smooth structure by B, i.e. (B)M, gives rise to the renormal-
ization of some perturbative QFT when formulated on such modified manifolds.

Let us introduce the following additional suppositions:
All the local deformations of M are generated by the underlying local defor-

mations by B of R
4, and let the classical limit of them factorize through some

∗Ri , i = 1, 2, thus leading to exotic R4
1,2. Then it follows:

Corollary 13.6 The renormalization problem of some perturbative QFT can be
translated into the geometry of some (Euclidean) exotic R4 background which com-
plements the Minkowski flat spacetime.

One can restate the corollary as: Ultraviolet (UV) divergences in some perturba-
tive QFT determine exotic smoothness of the Euclidean R

4 background. We expect
that ultraviolet divergences counterterms of some perturbative QFT’s on Minkowski
spacetime are expressible in terms of the Riemannian (sectional) curvature of R4

1,2.
This Euclidean curved 4-background complements theMinkowski’s one. Recall that
exotic R4’s are just Riemannian smooth 4-manifolds which can not be flat. Thus
the Corollary 13.6 indicates that a curvature in spacetime, hence nonzero density of
gravitational energy emerges,when renormalization problem is solved geometrically.
This connection with gravity is a rather universal, non-perturbative phenomenon of
different perturbative QFT’s and it is an important feature of the approach.
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13.4.2 QM on Smooth R4 and Model Theory

The specific model-theoretic approach to exotic smoothness of open 4-manifolds
like R

4 presented here has also the advantage that one can still think in terms of local
differentiation and (global) functions and arrive at the model-theoretic set-up. This
is complementary to the approach via Riemannian structures and curvature, which
anyway indicates that exotic R4’s are ‘normal’ smooth 4-manifolds and functions
are local objects on them. We follow the work [24] and the case of exotic R4’s
is again crucial here. We work in the complementary picture and the analysis is
based on model-theoretic tools but it is worth mentioning that strong connection
of small exotic smooth R4’s with QM formalism, noncommutative spaces, QFT
and quantum gravity, was indeed shown and developed by purely geometric and
topological methods (see e.g. [32, 43, 44]).

Lemma 13.13 Let R4 be some exotic smoothness structure on R
4. There has to

exist a continuous (non-standard smooth) real-valued function on R
4 which would

be smooth on R4, or a continuous real-valued function smooth on R
4 but merely

continuous on R4.

If such function did not exist precisely the same functions would be smooth in
both structures and the smoothness structures would be equivalent and manifolds
diffeomorphic (being homeomorphic). �

So, let f : R
4 → R, f ∈ C0(R4) and f ∈ C∞(R4) so f is exotic smooth. f can

not be everywhere standardly differentiable on R
4 but, when changing the smooth-

ness structure into R4, it can. Moreover, the differentiation is locally the same as a
standard one, since R4 is a Riemannian smooth 4-manifold. What would happen if
one tried to differentiate globally any nondifferentiable continuous function? One
should follow the pattern of generalized differentiation of functions or distributions.
Outside the domains where the function is not continuous, the differentiation agrees
with normal local differentiation. We are looking for the model-theoretic compen-
sation (representation) for such global ‘non-standard’ distributional differentiation.
The result is precisely the R

4 locally modified by B.
Namely, it is always possible to choose open neighborhoods containing the non-

smooth domains of the function f such that in these domains the functions would be
represented by regular distributions. However, iterating differentiation of them leads
to irregular distributions as well, like Dirac δ-distribution. Then, we can turn to a R

4

locallymodified byB such that the neighborhoods are internal inB and every external
distribution, also irregular, is represented internally by regular one (Theorem 3.15.3,
p. 336, [37]), i.e. by some internal smooth function. This is the model-theoretic
smoothing of continuous functions on R

4. Taking the classical nontrivial limit of
this local modification by B the result is some exotic R4 as in Theorem 13.3. On
the contrary, every local modification by B sends some irregular distributions to the
internal smooth functions. Thus the following definition is natural and direct in
this context: we call the modification by B the model-theoretic representation of an
exotic smooth structure on R

4 [24] provided it sends some irregular distributions to
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the internal smooth functions. Let exotic smooth R4
1,2 be the classical limit of our

(B)R4 which factorizes through ∗Ri , i = 1, 2.

Lemma 13.14 Let the model-theoretic representation of the exotic smooth R4
1,2 be

(B)R4. In the classical trivial, i.e. standard R
4 limit, the space of exotic smooth

functions on R4
1,2 contains some irregular external distributions on the standard R

4.

First, in the classical limit we do not have the dependence on B any longer. Next,
suppose that classical limit as in the formulation of the lemma does not contain the
distribution. Then the global differentiation of every smooth function on R4

1,2 agrees
with the global standard differentiation on R

4. So, the smoothness structure of R4
1,2

has to be the standard one. �
Next consider the Fourier transform of smooth functions FT : C∞(R4) →

C∞(R4). Let us represent the discontinuous functions in some open neighborhood
by the corresponding irregular distributions as before. FT extends over the space
of L2-functions and distributions on R

4 thus over C∞(R4
1,2) in the R

4 representa-
tion. The image of such Fourier operator is again C∞(R4

1,2). This is the core of the
interpretation of QM formalism on exotic R4.

Lemma 13.15 The FT of δ and δ-distribution itself, they both belong to the model-
theoretic representation of an exotic smooth R4 in the standard R

4 limit.

Wewould like to interpret this result directly on exotic R4. Note that the FT of δ is∼ 1
and it is geometrically a straight line, say coordinate axes, in the standard structure.
However, this line can not be any smooth coordinate line in any exotic R4, since this
would give the factorization and the collapse of the structure to the standard one.
However, the tangent space of every exotic R4 is trivial, i.e. T R4 � TR

4 � T0R4

(R4 is contractible) and we consider this 1(x) as the coordinate line in the tangent
space T R4 [24].9 This coordinate line is spanned by ∼∂x in the generator tangent
space. Thus FT mixes the standard tangent space with coordinate space R4 and thus
∂x is sent to the multiplication operation in the model-theoretic representation of
exotic R4. Given a large exotic R4 (which can not be embedded into the standard
R

4) its contraction to a ball in R
4 gives rise to:

Theorem 13.6 (Corollary 4, [24]) One can interpret the noncommutative relations
of the position and momentum operators in the, contracted to a 4-ball, classical limit
of the model-theoretic representation of a large exotic smooth R4.

Based on this interpretation the mechanism of decoherence in spacetime was pro-
posed where QM effects disappear by taking uncontracted limit of such contracted
R4 [24].

Acknowledgments The author appreciates much the important and fruitful discussions with
Torsten Asselmeyer-Maluga and Krzysztof Bielas within the years about the wide range of topics
appearing in the Chapter.

9One could also think about such structures as having the generalized tangent spaces like e.g.
T R4 ⊕ ∗T R4. Indeed, one can relate [45] some small exotic R4’s with deformations of Hitchin
structures (gerbes) defined on T S3 ⊕ ∗T S3, S3 ⊂ R

4.
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Appendix

Weak Arithmetic in Smooth Toposes

In order to work constructively in arbitrary topos the correct logic is intuitionistic—
one avoids the axiom of choice (AC) and the law of excludedmiddle (e.g. [20]). Next,
instead of the axiom of choice, and even finite AC, one has the axiom of bounded
search [37] as in (13.19), recursion rule is replaced by the finitely presented type
recursion (13.18) and full induction is replaced by the following (13.17) coherent
induction scheme10:

Ind : φ(0) ∧ ∀x∈N (φ(x) → φ(x + 1)) → ∀x∈Nφ(x), for φ coherent (13.17)

Rec : ∀ f ∈SS×T ∀a∈ST ∃!g∈SN×T ∀x∈T (g(0, x)) = (13.18)

a(x) ∧ ∀n∈N g(n + 1, x) = f (g(n, x))

weak AC : ∀A∈P(N×N )(∀n∈N∃m∈N A(n,m) → (13.19)

∀n0∈N∃m0∈N∀nn ≤ n0∃mm ≤ m0 ∧ A(n,m)).

The type S in (13.18) has to be finitely presented and the formula φ in (13.17)
coherent (e.g. [37], pp. 297–298) which results in further weakening of the logic.11

Given such substantial weakening of the logic and arithmetic one gains the degree
of indistinguishability of the standard and certain non-standard models of natural
numbers. These weak properties are augmented by the usual subset of PA axioms
(still in the intuitionistic logic):

N is a subtype of R; (13.20)

R is Archimedean : ∀x∈R∃n∈N x < n; (13.21)

0 ∈ N and ∀x∈R(x ∈ N → x + 1 ∈ N ) and (13.22)

∀x∈R(x ∈ N ∧ x + 1 = 0 → ⊥).

As shown by Moerdijk and Reyes [37] these properties characterizing weak intu-
itionistic arithmetic along with coherent formulas and type restrictions as in (13.17)
and (13.18) above, are fulfilled in some smooth toposes like smooth Zariski topos Z
or Basel topos B.
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Chapter 14
Exotic Smoothness on Spheres

Duane Randall

Abstract In his article [13], “Differential TopologyForty-sixYearsLater” published
in the Notices of the AMS in 2011, John Milnor posed the following problem. Is the
finite abelian group of oriented diffeomorphism classes of closed smooth homotopy
spheres of dimension n nontrivial for all dimensions n > 6 with n different from 12
and 61? He includes a table enumerating these groups of closed smooth homotopy
spheres for all n < 64, n different from 4. Nontriviality of the group of distinct
exotic smoothness structures on the n-dimensional sphere provides counterexamples
to the differential Poincare hypothesis in dimension n. We note in this abstract that
this problem posed by John Milnor has a nearly complete solution, principally due
to constructions of infinite 2-primary families of nontrivial elements in the stable
homotopy of spheres by numerous topologists and also by the recent spectacular
work of Hill et al. [7] on the non-existence of Kervaire invariant one elements in
all dimensions 2 j − 2 with j > 7. We obtain the main theorem: The n-dimensional
sphere, Sn, admits exotic smoothness structures of 2-primary order for all dimensions
n > 61 such that n is not congruent to 4 modulo 8 and also n not equal to 125 or 126.
Moreover, for any integer n congruent to 4 modulo 8 of the form n = 4p(p − 1) − 4
for some odd prime p, Sn admits exotic differentiable structures of p-primary order.

14.1 Notes from T. Asselmeyer-Maluga (Editor)

With these notes, we will present an introduction to understand the importance of
the result in the abstract.

In 1904, Poincaré proposed the following famous conjecture:
Poincaré conjecture: Let M be a closed 3-manifold. If M is simply connected,

then M is homeomorphic to the 3-sphere
This conjecture was proved by Perelman [18] in the more wider context of

Thurston’s geometrization conjecture [15, 16]. This conjecture can be generalized
to higher dimensions:
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Question 1: Let M be a closed n-manifold. Suppose M is homotopy equivalent
to Sn. Is M homeomorphic to Sn?

The answer turns out to be yes for all dimensions. For n = 4, it was proved by
Freedman [5] in 1982. For n ≥ 5, it was proved by Smale [20] in 1962, using the
theory of h-cobordisms, and by Newman [17] in 1966 and by Connell [3] in 1967.
Smale has to assume the existence of a smooth structure, while Newman and Connell
proved it without this condition. Finally one obtains:

Theorem 14.1 Any closed n-manifold that is homotopy equivalent to Sn is homeo-
morphic to Sn.

One can also generalize this question into the smooth category, i.e.
Question 2: Let M be a closed n-manifold. Suppose M is homeomorphic to Sn.

Is M diffeomorphic to Sn?
For n = 3, the answer is yes. It is due to Moise [14] that every closed 3-manifold

has a unique smooth structure. In particular, the 3-sphere has a unique smooth struc-
ture. For n = 4, this question is wildly open. For higher dimensions, Milnor [12]
constructed an exotic smooth structure on S7. Furthermore, Kervaire and Milnor [8]
showed that the answer is not true in general for n ≥ 5. The construction can be
simply summarized: Every n-sphere is given by a decomposition

Sn = Dn ∪ f D
n

into two n-disks Dn glued together by a diffeomorphism

f : ∂Dn = Sn−1 → ∂Dn = Sn−1

and we obtain by Theorem 14.1 that every topological n-sphere can be decomposed
in this form. Using the h-cobordism theorem for n > 6, f depends on the connect-
ing components of the diffeomorphism group i.e. the elements of π0(Diff (Sn−1))

called isotopy classes. If f is connected to the identity component (the class
[ f ] = 0 ∈ π0(Diff (Sn−1))) then Sn admits the so-called standard smoothness struc-
ture (as induced by the embedding in R

n+1). Therefore the answer to Question 2 is
not true in general, leading to two natural questions:

Question 3: How many exotic structures are there on Sn?
Question 4: For which n’s does there exist a unique smooth structure on Sn?
Kervaire and Milnor reduced the question above to a computation of the stable

homotopy groups of spheres. In fact, Kervaire and Milnor constructed a group Θn ,
which is the group of h-cobordism classes of homotopy n-spheres. The group Θn

classifies the differential structures on Sn for n ≥ 5. This group Θn has a subgroup
Θ

bp
n , which consists of homotopy spheres that bound parallelizable manifolds. For

completeness we have to introduce the nth stable homotopy group of the sphere πn .
Let Sn+k → Sk be a map where the corresponding homotopy class is an element
of πn+k(Sk). According to the stability (Freudenthal suspension theorem [6]), the
group πn+k(Sk) for k > n + 1 depends only on n, the nth stable homotopy group
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of the sphere πn . Furthermore there is a famous homomorphism between the homo-
topy groups of the group SO(k) and the homotopy groups of the sphere called
J-homomorphism

J : πn(SO(k)) → πn+k(S
k)

defining in the stable case a map

J : πn(SO) → πn

where SO is the stable special orthogonal group. Then the relation between Θn and
πn can be summarized by the following theorem.

Theorem 14.2 (Kervaire and Milnor [8]) Suppose that n ≥ 5.

1. The subgroup Θ
bp
n is cyclic, and has the following order:

|Θbp
n | =

⎧
⎪⎨

⎪⎩

1, if n is even,

1 or 2, if n ≡ 1 (mod 4),

22n−2(22n−2 − 1)B(n), if n ≡ 3 (mod 4).

Here B(n) is the numerator of 4B2n/n and B2n is the Bernoulli number.
2. For n �≡ 2 (mod 4), there is an exact sequence

0 �� Θbp
n

�� Θn
�� πn/J �� 0.

Here πn/J is the cokernel of the J-homomorphism.
3. For n ≡ 2 (mod 4), there is an exact sequence

0 �� Θbp
n

�� Θn
�� πn/J

Φ �� Z/2 �� Θbp
n−1

�� 0.

Here the map Φ is the Kervaire invariant.

By the argumentation above, this result implies that the number of exotic n-spheres
is finite for n ≥ 5 to answer Question 3. Then the classification of the exotic spheres
given by Table14.1 up to dimension 18. But what about the higher-dimensional
examples. The result in the abstract gives a partial answer the result above, one has to
go deeper into this theorem. In the first part of Theorem 14.2, the case n ≡ 3 (mod 4)
depends on the computation of the order of the image of the J-homomorphism.
The case n ≡ 1 (mod 4) depends on the Kervaire invariant in dimension n + 1. The
computation of the image of the J-homomorphism at 4k − 1 stems is a special case
of the Adams conjecture. The proof was completed by Mahowald [10], and the full
Adams conjecture was proved by Quillen [19], Sullivan [21], and by Becker and
Gottlieb [1].



244 D. Randall

Table 14.1 number of homotopy spheres with respect to the dimension n, for n > 4 equivalent to
the number of exotic spheres

n 1 2 3 4 5 6 7 8 9

Order of Θn 1 1 1 ? 1 1 28 2 8

n 10 11 12 13 14 15 16 17 18

Order of Θn 6 992 1 3 2 16256 2 16 16

For Question 4, it is clear from Theorem 14.2 that, for n = 4k + 3 with k ≥ 1,
the smooth structure on the n-sphere is never unique. For n = 4k + 1 with k ≥ 1,
the answer depends on the existence of the Kervaire invariant one elements. In 2009,
Hill et al. [7] showed that the only dimensions in which the Kervaire invariant one
elements exist are 2, 6, 14, 30, 62 and possibly 126. That is, in other dimensions, the
Kervaire invariant map

πn/J
Φ �� Z/2

in part (3) of Theorem 14.2 is always zero and the group Θ
bp
n−1 is Z/2. Therefore,

the only odd dimensional spheres that could have a unique smooth structure are
S1, S3, S5, S13, S29, S61 and S125. Further, the cases S13 and S29 can be ruled out by
May’s [11] 3-primary computation of the stable homotopy groups of spheres. For
dimension 61, it was shown in [22] that the sphere S61 has a unique smooth structure
whereas the sphere S125 may not have a unique smooth structure. Here we have to
note that these results have to be considered with care. Finally we decided to use it
here because the results look promising. Finally, one obtains:

Theorem 14.3 The only odd dimensional spheres with a unique smooth structure
are S1, S3, S5 and S61.

For even dimensions, since the subgroup Θ
bp
n is always zero, we need to understand

the cokernel of the J-homomorphism to get the result in the abstract. In [13], Milnor
states that up to dimension64: then-sphere has a unique smooth structure only forn =
1, 2, 3, 5, 6, 12, 61. This observation is based on the computation of 2-primary stable
homotopy groups of spheres up to the 64 stem by Kochman and Mahowald [9] from
1995. Recently, Isaksen [4] discovered several errors in Kochman and Mahowald’s
computations, and he was able to give rigorous proofs of computations through the
59 stem. One major correction is that, instead of having order 4, π56 is of order 2 and
is generated by a class in the image of J . Therefore one has:

Theorem (Isaksen) The sphere S56 has a unique smooth structure.

For 5 ≤ n ≤ 61, Sn has a unique smooth structure only for n = 5, 6, 12, 56 and
61. Recent work of Behrens et al. [2] shows that the next sphere with a unique smooth
structure, if exists, is in dimension at least 126.
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The odd-dimensional result was covered by the arguments above. For the even
case, DuaneRandall obtained an existence result for even-dimensional exotic spheres
of dimension higher than 61.
Main Theorem: The n-dimensional sphere, Sn, admits exotic smoothness struc-
tures of 2-primary order for all dimensions n > 61 such that n is not congruent
to 4 modulo 8 and also n not equal to 125 or 126. Moreover, for any integer
n congruent to 4 modulo 8 of the form n = 4p(p − 1) − 4 for some odd prime
p, Sn admits exotic differentiable structures of p-primary order.

This result rules out the unknowndimension 126. Then the first relevant dimension
which is not covered by the main theorem is 132, because it has dimension congruent
to 4 modulo 8 but 32 �= p(p − 1) for any odd prime.
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Chapter 15
Smooth Quantum Gravity: Exotic
Smoothness and Quantum Gravity

Torsten Asselmeyer-Maluga

Abstract Over the last two decades, many unexpected relations between exotic
smoothness, e.g. exotic R

4, and quantum field theory were found. Some of these rela-
tions are rooted in a relation to superstring theory and quantum gravity. Therefore one
would expect that exotic smoothness is directly related to the quantization of general
relativity. In this article we will support this conjecture and develop a new approach
to quantum gravity called smooth quantum gravity by using smooth 4-manifolds
with an exotic smoothness structure. In particular we discuss the appearance of a
wildly embedded 3-manifold which we identify with a quantum state. Furthermore,
we analyze this quantum state by using foliation theory and relate it to an element in
an operator algebra. Then we describe a set of geometric, non-commutative opera-
tors, the skein algebra, which can be used to determine the geometry of a 3-manifold.
This operator algebra can be understood as a deformation quantization of the classical
Poisson algebra of observables given by holonomies. The structure of this operator
algebra induces an action by using the quantized calculus of Connes. The scaling
behavior of this action is analyzed to obtain the classical theory of General Rela-
tivity (GRT) for large scales. This approach has some obvious properties: there are
non-linear gravitons, a connection to lattice gauge field theory and a dimensional
reduction from 4D to 2D. Some cosmological consequences like the appearance of
an inflationary phase are also discussed. At the end we will get the simple picture
that the change from the standard R

4 to the exotic R4 is a quantization of geometry.

15.1 Introduction

On the 25-th of November in 1915, Einstein presented his field equations, the basic
equations of General Relativity, to the Prussian Academy of Sciences in Berlin.
This equation had a tremendous impact on physics, in particular on cosmology.
The essence of the theory was expressed by Wheeler by the words: Spacetime tells
matter how to move; matter tells spacetime how to curve. Einsteins theory remained
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unchanged for about 40 years. Then one started to investigate theories fulfilling
Mach’s principle leading to a variable gravitational constant. Brans-Dicke theory
was the first realization of an extended Einstein theory with variable gravitational
constant (Jordans proposal was not widely known). All experiments are, however, in
good agreement with Einstein’s theory and currently there is no demand to change it.

General relativity (GR) has changed our understanding of space-time. In parallel,
the appearance of quantum field theory (QFT) has modified our view of particles,
fields and the measurement process. The usual approach for the unification of QFT
and GR to a quantum gravity, starts with a proposal to quantize GR and its underlying
structure, space-time. There is a unique opinion in the community about the relation
between geometry and quantum theory: The geometry as used in GR is classical
and should emerge from a quantum gravity in the limit (Planck’s constant tends to
zero). Most theories went a step further and try to get a space-time from quantum
theory. Then, the model of a smooth manifold is not suitable to describe quantum
gravity, but there is no sign for a discrete space-time structure or higher dimensions
in current experiments [50]. Therefore, we conjecture that the model of spacetime
as a smooth 4-manifold can be used also in a quantum gravity regime, but then one
has the problem to represent QFT by geometric methods (submanifolds for particles
or fields etc.) as well to quantize GR. In particular, one must give meaning to the
quantum state by geometric methods. Then one is able to construct the quantum
theory without quantization. Here we implicitly assumed that the quantum state is
real, i.e. the quantum state or the wave function has a real counterpart and is not
a collection of future possibilities representing some observables. Experiments [28,
75, 83] supported this view. Then the wave function is not merely representing our
limited knowledge of a system but it is in direct correspondence to reality! Then one
has to go the reverse way: one has to show that the quantum state is produced by
the quantization of a classical state. It is, however, not enough to have a geometric
approach to quantum gravity (or the quantum field theory in general). What are the
quantum fluctuations? What is the measurement process? What is decoherence and
entanglement? In principle, all these questions have to be addressed too.

Here, the exotic smoothness structure of 4-manifolds can help finding a way. A
lot of work was done in the last decades to fulfill this goal. It starts with the work
of Brans and Randall [32] and of Brans alone [29–31] where the special situation
in exotic 4-manifolds (in particular the exotic R

4) was explained. One main result
of this time was the Brans conjecture: exotic smoothness can serve as an additional
source of gravity. I will not present the whole history where I refer to Carl’s article.
Here I will list only some key results which will be used in the following

• Exotic smoothness is an extra source of gravity (Brans conjecture is true), see
Asselmeyer [5] for compact manifolds and Sładkowski [86, 87] for the exotic R

4.
Therefore an exotic R

4 is always curved and cannot be flat!
• The exotic R

4 cannot be a globally hyperbolic space (see [40] for instance), i.e.
represented by M × R for some 3-manifold. Instead it admits complicated folia-
tions [17]. Using non-commutative geometry, we are able to study these foliations
(the leaf space) and get relations to QFT. For instance, the von Neumann algebra
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of a codimension-one foliation of an exotic R
4 must contain a factor of type III1

used in local algebraic QFT to describe the vacuum [11, 13, 19].
• The end of R

4 (the part extending to infinity) is S3 × R. If R
4 is exotic then S3 × R

admits also an exotic smoothness structure. Clearly, there is always a topologically
embedded 3-sphere but there is no smoothly embedded one. Let us assume the
well-known hyperbolic metric of the spacetime S3 × R using the trivial foliation
into leafs S3 × {t} for all t ∈ R. Now we demand that S3 × R carries an exotic
smoothness structure at the same time. Then we will get only topologically embed-
ded 3-spheres, the leafs S3 × {t}. These topologically embedded 3-spheres are also
known as wild 3-spheres. In [14], we presented a relation to quantum D-branes.
Finally we proved in [16] that the deformation quantization of a tame embedding
(the usual embedding) is a wild embedding.1 Furthermore we obtained a geometric
interpretation of quantum states: wild embedded submanifolds are quantum states.
Importantly, this construction depends essentially on the continuum, because wild
embedded submanifolds admit always infinite triangulations.

• For a special class of compact 4-manifolds we showed in [20] that exotic smooth-
ness can generate fermions and gauge fields using the so-called knot surgery of
Fintushel and Stern [51]. In the paper [10] we presented an approach using the
exotic R

4 where the matter can be generated (like in QFT).
• The path integral in quantum gravity is dominated by the exotic smoothness con-

tribution (see [6, 49, 80] or by using string theory [12]).

The paper is organized as follows. In the following three sections we will explain
exotic 4-manifolds and motivate the whole approach by using the path integral for
the Einstein-Hilbert action. Here we will also present how to couple the matter
and gauge fields to this theory. For a 4-manifold, there are two main invariants the
Euler and Pontrjagin class which determine the main topological invariant of a 4-
manifold, the intersection form. In Sect. 15.5, we will obtain the Einstein-Hilbert
and Holst action by using these two classes. At the first view, this section is a little
bit isolated from the previous and subsequent sections but we will use this result
later during the study of the scaling. In the main Sect. 15.6, we will construct the
foliation of an exotic R

4 of codimension (equivalent to a Lorentz structure). Following
Connes, [41] the leaf space is an operator algebra constructed from the geometrical
information of the foliation (holonomy groupoid). This operator algebra is a factor
III von Neumann algebra and we will use the Tomita-Takesaki modular theory to
uncover the structure of the foliation. It is not the first time that this factor was used
for quantum gravity and we refer to the paper [22] for a nice application. States in this
operator algebra are represented by equivalence classes of knotted curves (element
of the Kauffman bracket skein module). The reconstruction of the spatial space from
the states gives a wild embedded 3-sphere as geometrical representation of the state.
Surprisingly, it fits with the properties of the exotic R

4. If one introduces a global
foliation of the exotic R

4 by a global time then one obtains a foliation into wild
embedded 3-spheres. In contrast, if one uses a local but complicate foliation then

1A wild embedding is a topological embedding I : N → M so that the image I (N ) ⊂ M is an
infinite polyhedron or the triangulation needs always infinitely many simplices.
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this wild object can be omitted and one obtains a state given by a finite collection of
knotted curves. Interestingly, the operator algebra can be understood as observable
algebra given by a deformation quantization (Turaev-Drinfeld quantization [97, 98])
of the classical observable algebra (Poisson algebra of holonomies a la Goldman
[61]). In Sect. 15.7, we will use the splitting of the operator algebra (15.10) given by
Tomita-Takesaki modular theory to introduce the dynamics (see Connes and Rovelli
[43] with similar ideas). Finally we will obtain a quantum action (15.15) in the
quantized calculus of Connes [42]. Then the scaling behavior is studied in the next
section. For large scales, the action can be interpreted as a non-linear sigma model.
The renormalization group (RG) flow analysis [56] gives the Einstein equations for
large scales. The short-scale analysis is much more involved, yielding for small
fluctuations the Einstein-Hilbert action and a non-minimally coupled scalar field.
In particular, we will obtain a (2 + ε)-dimensional fractal structure. In Sect. 15.9
we will present some direct consequences of this approach: the nonlinear graviton
[79], a relation to lattice gauge field theory with a discussion of discreteness and
the appearance of dimensional reduction from 4D to 2D. In Sect. 15.10 we will
discuss the answer to a fundamental question: where does the quantum fluctuations
come from? The main result of this section can be written as: The set of canonical
pairs (as measurable variables in the theory) forms a fractal subset of the space
of all holonomies. Then we can only determine the initial condition up to discrete
value (given by the canonical pair) and the chaotic behavior of the foliation (i.e. the
Anosov flow) makes the limit not predictable. This interesting result is followed by a
section where we will discuss the collapse of the wavefunction by the gravitational
interaction by calculating the minimal decoherence time. Furthermore we will discuss
entanglement and the measurement process. In Sect. 15.12 we will list our work in
cosmology which uses partly the results of this paper. In the last Sect. 15.13, we will
discuss some consequences and open questions. Some mathematical prerequisites
are presented in three appendices.

This article is dedicated to my only teacher, Carl H. Brans for 20 years of col-
laboration and friendship. He is the founder of this research area. We had and will
have many interesting discussions. Carl always asked the right question and put the
finger on many open points. During the 7 years of writing our book, we had a very
fruitful collaboration and I learned so much to complete even this work. Carl, I hope
for many discussions with you in the future. I’m very glad to count on your advice.
Happy Birthday!

15.2 What Is Exotic Smoothness?

Why am I going to concentrate on a concept like exotic smoothness? Einstein used the
equivalence principle as a key principle in the development of general relativity. Every
gravitational field can be locally eliminated by acceleration. Then, the spacetime is
locally modeled as subsets of the flat R

4 or the equivalence principle enforces us to
use the concept of a manifold for spacetime. Together with the smoothness of the
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dynamics (usage of differential equations), we obtain a smooth 4-manifold as model
for the spacetime in agreement with the current experimental situation. A manifold
consists of charts and transition functions forming an atlas which covers the manifold
completely. The smooth atlas is called the smoothness structure of the manifold. It
was an open problem for a long time whether every topological manifold admits a
unique smooth atlas. In 1957, Milnor found the first counterexample: the construction
of a 7-sphere with at least 8 different smoothness structures. Later it was shown
that all manifolds of dimension larger than 4 admit only a finite number of distinct
smoothness structures. The real breakthrough for 4-manifolds came in the 80s where
one constructed infinitely many different smoothness structures for many compact 4-
manifolds (countably infinite) and for many non-compact 4-manifolds (uncountably
infinite) including the R

4. In all dimensions smaller than four, there is only one
smoothness structure (up to diffeomorphisms), the standard structure. The standard
R

4 is simply characterized by the unique property to split smoothly like R
4 = R ×

R × R × R. All other distinct smoothness structures are called exotic smoothness
structures. These structures are different, nonequivalent, smooth descriptions of the
same topological manifold, a different atlas of charts. In case of the exotic R

4, the
difference is tremendous: the standard R

4 needs one chart (and every other description
can be reduced to it) whereas every known exotic R

4 admits infinitely many charts
(which cannot be reduced to a simpler description). So, the spacetime exhibits a much
larger complexity by using an exotic smoothness structure, but why is dimension 4
so special? There is a good description in [55] and I will give a short account now. At
first we have to discuss the question: how do I build an atlas for a smooth manifold?
The answer is given by considering the construction of diffeomorphisms. Every
diffeomorphism is locally given by the solution of ẋ = −∇ f (x) for a real function
f over the manifold. The fixed points of this equation are the critical points of f .
In case of isolated critical points, one can reproduce the structure of the manifold
(this is called Morse theory). Every critical point leads to the attachment of a handle,
a submanifold like Dn−k × Dk , i.e. the k-handle (where Dk is the k-disk). In many
cases, the corresponding structure of the manifold, the handle body, can be very
complicated but there are rules (handle sliding) to simplify them. In all dimensions
except dimension 4. Therefore, two handle bodies can be described by the same
4-manifold topologically but differ in the smooth description.

15.3 The Main Example: Exotic R
4

One of the most surprising aspects of exotic smoothness is the existence of exotic
R

4’s. In all other dimensions [88], the Euclidean space R
n with n �= 4 admits a unique

smoothness structure, up to diffeomorphisms. Beginning with the first examples [66],
Taubes [93] and Freedman/DeMichelis [46] constructed countably many large and
small exotic R

4’s, respectively. A small exotic R
4 embeds smoothly in the 4-sphere

whereas a large exotic R
4 cannot be embedded in that way. For the following we need

some simple definitions: the connected sum # and the boundary connected sum � of
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manifolds. Let M, N be two n-manifolds with boundaries ∂M, ∂N . The connected
sum M#N is the procedure of cutting out a disk Dn from the interior int (M)\Dn

and int (N )\Dn with the boundaries Sn−1 � ∂M and Sn−1 � ∂N , respectively, and
gluing them together along the common boundary component Sn−1. The boundary
∂(M#N ) = ∂M � ∂N is the disjoint sum of the boundaries ∂M, ∂N . The boundary
connected sum M�N is the procedure of cutting out a disk Dn−1 from the boundary
∂M\Dn−1 and ∂N\Dn−1 and gluing them together along Sn−2 of the boundary.
Then the boundary of this sum M�N is the connected sum ∂(M�N ) = ∂M#∂N of
the boundaries ∂M, ∂N .

15.3.1 Large Exotic R
4

Large exotic R
4 can be constructed using the failure to arbitrarily split a compact,

simply-connected 4-manifold. For every topological 4-manifold one knows how to
split this manifold topologically into simpler pieces using the work of Freedman [53].
Donaldson [47], however, that some of these 4-manifolds do not exist as smooth 4-
manifolds. This contradiction between the continuous and the smooth case produces
the first examples of exotic R

4. Below we discuss one of these examples.
One starts with a compact, simply-connected 4-manifold X classified by the inter-

section form [53]

QX : H2(X, Z) × H2(X, Z) → Z

a quadratic form over the second integer homology group. In the first construction
of a large exotic R

4, one starts with the K3 surface as 4-manifold having the inter-
section form

QK3 = E8 ⊕ E8 ⊕ (⊕3

(
0 1
1 0

)
) := 2E8 ⊕ 3H (15.1)

with the the matrix E8:

E8 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2 1 0 0 0 0 0 0
1 2 1 0 0 0 0 0
0 1 2 1 0 0 0 0
0 0 1 2 1 0 0 0
0 0 0 1 2 1 0 1
0 0 0 0 1 2 1 0
0 0 0 0 0 1 2 0
0 0 0 0 1 0 0 2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

The work of Donaldson [47] shows that a closed, smooth, simply-connected, com-
pact 4-manifold XE8⊕E8 with intersection form E8 ⊕ E8 does not exist. Freedman
[53] showed, however, that there is a topological splitting
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K3 = XE8⊕E8 #
(
#3(S

2 × S2)
)

(15.2)

with the m-times connected sum #m (see above) which fails to be smooth. This split-
ting means that we glue together the two manifolds #3(S2 × S2)\D4 and XE8⊕E8\D4

along the common boundary S3 = ∂D4 (D4 is the 4-disk or 4-ball). Now we define
the interior X = #3(S2 × S2)\I nt D4. The splitting (15.2) gives a way to represent
the 3H part of the intersection form (15.1) by using X but that fails smoothly. So,
choosing a topological splitting

K3 = XE8⊕E8 #
(
#3(S

2 × S2)
)

= (
XE8⊕E8\D4

) ∪ (
S3 × [0, 1]) ∪ (

#3(S
2 × S2)\D4

)

gives a S3 × [0, 1] inside the K3. The interior of S3 × [0, 1] defines a manifold
S3 × [0, 1) glued to a (topological) 4-disk D4 ⊂ #3(S2 × S2)\D4 along the common
boundary, i.e. W = D4 ∪ S3 × [0, 1) topologically. W is homeomorphic to R

4 but
the non-existence of the smooth splitting implies that it is an exotic R

4 and there is no
smooth embedded S3 (otherwise the topological splitting is smooth). This failure for
a smooth embedding implies also that such exotic R

4’s do not embed in the 4-sphere,
i.e. it is a large exotic R

4. The details of the construction can be found in our book
[8] (Sect. 8.4).

Gompf [64] introduced an important tool for finding new exotic R
4 from others,

the end-sum �e. Let R, R′ be two topological R
4’s. The end-sum R�e R′ is defined as

follows: Let γ : [0,∞) → R and γ′ : [0,∞) → R′ be smooth properly embedded
rays with tubular neighborhoods ν ⊂ R and ν ′ ⊂ R′, respectively. For convenience,
identify the two semi-infinite intervals with [0, 1/2), and (1/2, 1] leading to diffeo-
morphisms, φ : ν → [0, 1/2) × R

3 and φ′ : ν ′ → (1/2, 1] × R
3. Then define

R�e R
′ = R ∪φ I × R

3 ∪φ′ R′

as the end sum of R and R′. With a little checking, it is easy to see that this construction
leads to R�e R′ as another topological R

4. However, if R, R′ are themselves exotic,
then so will R�e R′ and in fact, it will be a “new” exotic manifold, since it will not
be diffeomorphic to either R or R′. Gompf used this technique to construct a class
of exotic R

4’s none of which can be embedded smoothly in the standard R
4.

By an extension of Donaldson theory for a special class of open 4-manifolds,
so-called end-periodic 4-manifolds, Taubes [93] gives a continuous family of exotic
R

4 which was extended by Gompf to a continuous 2-parameter family Rs,t .

15.3.2 Small Exotic R
4

Small exotic R
4’s are again the result of anomalous smoothness in 4-dimensional

topology but of a different kind than for large exotic R
4’s. In 4-manifold topology
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[53], a homotopy-equivalence between two compact, closed, simply-connected 4-
manifolds implies a homeomorphism between them (a so-called h cobordism), but
Donaldson [48] provided the first smooth counterexample, i.e. both manifolds are
generally not diffeomorphic to each other. The failure can be localized in some
contractible submanifold (Akbulut cork) so that an open neighborhood of this sub-
manifold is a small exotic R

4. The whole procedure implies that this exotic R
4 can be

embedded in the 4-sphere S4. Below we discuss the details for one of these examples.
In 1975 Casson (Lecture 3 in [39]) described a smooth 5-dimensional h-cobordism

between compact 4-manifolds and showed that they “differ” by two proper homo-
topy R

4’s (see below). Freedman knew, as an application of his proper h-cobordism
theorem, that the proper homotopy R

4’s were R
4. After hearing about Donaldson’s

work in March 1983, Freedman realized that there should be exotic R
4’s and, to find

one, he produced the second part of the construction below involving the smooth
embedding of the proper homotopy R

4’s in S4. Unfortunately, it was necessary to
have a compact counterexample to the smooth h-cobordism conjecture, and Don-
aldson did not provide this until 1985 [48]. The idea of the construction is simply
given by the fact that every such smooth h-cobordism between non-diffeomorphic
4-manifolds can be written as a product cobordism except for a compact contractible
sub-h-cobordism V , the Akbulut cork. An open subset U ⊂ V homeomorphic to
[0, 1] × R

4 is the corresponding sub-h-cobordism between two exotic R
4’s. These

exotic R
4’s are called ribbon R

4’s. They have the important property of being diffeo-
morphic to open subsets of the standard R

4. That stands in contrast to the previous
defined examples of Kirby, Gompf and Taubes.

To be more precise, consider a pair (X+, X−) of homeomorphic, smooth, closed,
simply-connected 4-manifolds. The transformation from X− to X+ visualized by a
h-cobordism can be described by the following construction.

Let W be a smooth h-cobordism between closed, simply connected 4-manifolds
X− and X+. Then there is an open subset U ⊂ W homeomorphic to [0, 1] × R

4

with a compact subset K ⊂ U such that the pair (W\K ,U\K ) is diffeomorphic to a
product [0, 1] × (X−\K ,U ∩ X−\K ). The subsets R± = U ∩ X± (homeomorphic
toR

4) are diffeomorphic to open subsets of R
4. If X− and X+ are not diffeomorphic,

then there is no smooth 4-ball in R± containing the compact set Y± = K ∩ R±, so
both R± are exotic R

4’s.
Thus, remove a certain contractible, smooth, compact 4-manifold Y− ⊂ X−

(called an Akbulut cork) from X−, and re-glue it by an involution of ∂Y−, i.e. a
diffeomorphism τ : ∂Y− → ∂Y− with τ ◦ τ = I d and τ (p) �= ±p for all p ∈ ∂Y−.
This argument was modified above so that it works for a contractible open subset
R− ⊂ X− with similar properties, such that R− will be an exotic R

4 if X+ is not
diffeomorphic to X−. Furthermore R− lies in a compact set, i.e. a 4-sphere or R− is a
small exotic R

4. In the next subsection we will see how this results in the construction
of handle bodies of exotic R

4. In [46] Freedman and DeMichelis constructed also a
continuous family of small exotic R

4.
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15.3.3 Main Property of (Small) Exotic R
4

One of the characterizing properties of an exotic R
4 (all known examples) is the

existence of a compact subset K ⊂ R4 which cannot be surrounded by any smoothly
embedded 3-sphere (and homology 3-sphere bounding a contractible, smooth 4-
manifold). Let R4 be the standard R

4 (i.e. R4 = R
3 × R smoothly) and let R4 be

a small exotic R
4 with compact subset K ⊂ R4 which cannot be surrounded by a

smoothly embedded 3-sphere. Then every completion N (K ) of an open neighbor-
hood N (K ) ⊂ R4 is not bounded by a 3-sphere S3 �= ∂N (K ). However, R4 is a small
exotic R

4 and there is a smooth embedding E : R4 → R4 in the standard R
4. Then

the completion of the image E(R4) has the boundary S3 = ∂E(R4) as subset of R4.
So, we have the strange situation that an open subset of the standard R4 represents
a small exotic R4. In case of the large exotic R

4, the situation is much more compli-
cated. A large exotic R

4 does not embed in any smooth 4-manifold which is simpler
than the manifold used for the construction of this exotic R

4. Above we considered
the example of a large exotic R

4 constructed from a K3 surface. Therefore this large
exotic R

4 embeds in the K3 surface but not in simpler 4-manifolds like CP2.

15.3.4 Handle Decomposition of the Small Exotic R
4

and Casson Handles

As of now, we only know of exotic R
4’s represented by an infinite number of coor-

dinate patches. This naturally makes it difficult to provide an explicit description of
a metric. However, in [9], a suggestion to overcome this limitation is provided by
the consideration of periodic explicitly described coordinate patches making use of
more complex pieces, so-called handles, and even more complex gluing maps. Then
one also gets infinite structures of handles but with a clear picture: the coordinate
patches have a periodic structure.

Handles Every 4-manifold can be decomposed using standard pieces such as
Dk × D4−k , the so-called k-handle attached along ∂Dk × D4−k to the 0-handle D0 ×
D4 = D4. In the following we need two possible cases: the 1-handle D1 × D3 and
the 2-handle D2 × D2. These handles are attached along their boundary components
S0 × D3 or S1 × D2 to the boundary S3 of the 0-handle D4 (see [68] for the details).
The attachment of a 2-handle is defined by a map S1 × D2 → S3, the embedding of
a circle S1 into the 3-sphere S3, i.e. a knot. This knot into S3 can be thickened (to
get a knotted solid torus). The important fact for our purposes is the freedom to twist
this knotted solid torus (so-called Dehn twist). The (integer) number of these twists
(with respect to the orientation) is called the framing number or the framing. Thus
the gluing of the 2-handle on D4 can be represented by a knot or link together with an
integer framing. The simplest example is the unknot with framing ±1 representing the

complex projective space CP2 or with reversed orientation CP
2
, respectively. The

1-handle will be glued by the map of S0 × D3 → S3 represented by two disjoint
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solid 2-spheres D3. Akbulut [2] introduced another description. He observed that
a 1-handle is something like a cut-out 2-handle with a fixed framing. We remark
that all details can be found in [68]. Now we are ready to discuss the handle body
decomposition of an exotic R

4 by Bizaca and Gompf [24].
Handle decomposition of small exotic R

4 First it is very important to notice that
the exotic R

4 is the interior of the handle body described below (since the handle
body has a non-null boundary and is compact). The construction of the handle body
can be divided into two parts. The first part is a submanifold consisting of a pair of a
1- and a 2-handle. This pair can be canceled topologically by using a Casson handle
and we obtain the topological 4-disk D4 with R

4 as interior. This submanifold is a
smooth 4-manifold with a boundary that can be covered by a finite number of charts.
The smoothness structure of the exotic R

4, however, depends mainly on the infinite
Casson handle.

Casson handle Now consider the Casson handle and its construction in more
detail. Briefly, a Casson handle CH is the result of attempts to embed a disk D2 into a
4-manifold. In most cases this attempt fails and Casson [39] looked for a substitute,
which is now called a Casson handle. Freedman [53] showed that every Casson handle
CH is homeomorphic to the open 2-handle D2 × R

2 but in nearly all cases it is not
diffeomorphic to the standard handle [63, 65]. The Casson handle is built by iteration,
starting from an immersed disk in some 4-manifold M , i.e. an injective smooth map
D2 → M. Every immersion D2 → M is an embedding except on a countable set of
points, the double points. One can kill one double point by immersing another disk
into that point. These disks form the first stage of the Casson handle. By iteration
one can produce the other stages. Finally consider not the immersed disk but rather
a tubular neighborhood D2 × D2 of the immersed disk including each stage. The
union of all neighborhoods of all stages is the Casson handle CH . So, there are two
input data involved with the construction of a CH : the number of double points in
each stage and their orientation ±. Thus we can visualize the Casson handle CH by
a tree: the root is the immersion D2 → M with k double points, the first stage forms
the next level of the tree with k vertices connected with the root by edges etc. The
edges are evaluated using the orientation ±. Every Casson handle can be represented
by such an infinite tree. The Casson handle CH(R+) having an immersed disk with
one (positively oriented) self-intersection (or double point) is the simplest Casson
handle represented by the simplest tree T+ having one vertex in each level connected
by one edge with evaluation +.

15.3.5 Small Exotic R
4 as a Sequence of 3-Manifolds

One of the characterizing properties of an exotic R
4 (all known examples) is the

existence of a compact subset K ⊂ R4 which cannot be surrounded by any smoothly
embedded 3-sphere (and homology 3-sphere bounding a contractible, smooth 4-
manifold). Let R4 be the standard R

4 (i.e. R4 = R
3 × R smoothly) and let R4 be

a small exotic R
4 with compact subset K ⊂ R4 which cannot be surrounded by a
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Fig. 15.1 Link picture for
the compact subset K

smoothly embedded 3-sphere. Then every completion N (K ) of an open neighbor-
hood N (K ) ⊂ R4 is not bounded by a 3-sphere S3 �= ∂N (K ), but R4 is a small
exotic R

4 and there is a smooth embedding E : R4 → R4 in the standard R
4. Then

the completion of the image E(R4) has the boundary S3 = ∂E(R4) as subset of R4.
So, we have the strange situation that an open subset of the standard R4 represents
a small exotic R4.

Now we will describe R4. Historically it was constructed by using a counterex-
ample of the smooth h-cobordism theorem [24, 48]. Then the compact subset K is
given by a non-canceling 1-/2-handle pair. The attachment of a Casson handle CH
cancels this pair topologically. Then one obtains the 4-disk D4 with interior R4, but
this cancellation of the 1/2-handle pair cannot be done smoothly and one obtains
a small exotic R4 which is schematically given by R4 = K ∪ CH . Remember R4

is a small exotic R
4, i.e. R4 is embedded into the standard R4 by definition. The

completion R̄4 of R4 ⊂ R4 has a boundary given by the 3-manifold Yr . There is also
the possibility to construct Yr directly as the limit n → ∞ of a sequence {Yn} of
3-manifolds. To construct this sequence of 3-manifolds [59], one can use the Kirby
calculus, i.e. one represents the compact subset K by 1- and 2-handles pictured by
a link say LK where the 1-handles are represented by a dot (so that surgery along
this link gives K ) [68]. Then one attaches a Casson handle to this link [24]. As an
example see Fig. 15.1.

The Casson handle is given by a sequence of Whitehead links (where the unknotted
component has a dot) which are linked according to the tree (see the right figure of
Fig. 15.2 for the building block and the left figure for the simplest Casson handle
given by the unbranched tree).

For the construction of a 3-manifold which surrounds the compact K , one con-
siders n-stages of the Casson handle and transforms the diagram to a real link (the
dotted components are changed to usual components with framing 0). By handle
manipulations one obtains a knot so that the n-th (untwisted) Whitehead double of
this knot represents the desired 3-manifold (by using surgery). Then our example
in Fig. 15.1 will result in the n-th untwisted Whitehead double of the pretzel knot
(−3, 3,−3), Fig. 15.3 (see [59] for the handle manipulations).
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Fig. 15.2 Building block of every Casson handle (right) and the simplest Casson handle (left)

Fig. 15.3 Pretzel knot
(−3, 3,−3) or the knot 946
in Rolfson notation
producing the 3-manifold Y1
by 0-framed Dehn surgery

Then this sequence of 3-manifolds

Y1 → Y2 → · · · → Y∞ = Yr

characterizes the exotic smoothness structure of R4. The limit of this sequence n →
∞ gives a wild embedded 3-manifold Yr whose physical relevance will be explained
later.

15.4 Motivation: Path Integral Contribution
by Exotic Smoothness

Here, we will motivate the appearance of exotic smoothness by discussing the path
integral for the Einstein-Hilbert action. For simplicity, we consider general relativ-
ity without matter (using the notation of topological QFT). Space-time is a smooth
oriented 4-manifold M which is non-compact and without boundary. From the for-
mal point of view (no divergences of the metric) one is able to define a boundary
∂M at infinity. The classical theory is the study of the existence and uniqueness of
(smooth) metric tensors g on M satisfying the Einstein equations subject to suitable
boundary conditions. In the first order Hilbert–Palatini formulation, one specifies an
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SO(1, 3)-connection A together with a cotetrad field e rather than a metric tensor.
Fixing A|∂M at the boundary, one can derive first order field equations in the inte-
rior (now called bulk) which are equivalent to the Einstein equations provided that
the cotetrad is non-degenerate. The theory is invariant under space-time diffeomor-
phisms M → M . In the particular case of the space-time M = S3 × R (topologi-
cally), we have to consider smooth 4-manifolds Mi, f as parts of M whose boundary
∂Mi, f = Σi � Σ f is the disjoint union of two smooth 3-manifolds Σi and Σ f to
which we associate Hilbert spaces H j of 3-geometries, j = i, f . These contain suit-
able wave functionals of connections A|Σ j . We denote the connection eigenstates by
|A|Σ j 〉. The path integral,

〈A|Σ f |TM |A|Σi 〉 =
∫

A|∂Mi, f

DA De exp

(
i

�
SEH [e, A, Mi, f ]

)
(15.3)

is the sum over all connections A matching A|∂Mi, f , and over all e. It yields the matrix
elements of a linear map TM : Hi → H f between states of 3-geometry. Our basic
gravitational variables will be cotetrad eIa and connection AI J

a on space-time M with
the index a to present it as 1-forms and the indices I, J for an internal vector space V
(used for the representation of the symmetry group). Cotetrads e are ‘square-roots’ of
metrics and the transition from metrics to tetrads is motivated by the fact that tetrads
are essential if one is to introduce spinorial matter. eIa is an isomorphism between
the tangent space Tp(M) at any point p and a fixed internal vector space V equipped
with a metric ηI J so that gab = eIae

J
b ηI J . Here we used the action

SEH [e, A, Mi, f , ∂Mi, f ] =
∫

Mi, f

εI J K L (eI ∧ eJ ∧ (d A + A ∧ A)K L ) +
∫

∂Mi, f

εI J K L (eI ∧ eJ ∧ AKL )

(15.4)
in the notation of [3, 4]. The boundary term εI J K L(eI ∧ eJ ∧ AKL) is equal to twice
the trace over the extrinsic curvature (or the mean curvature). For fixed boundary
data, (15.3) is a diffeomorphism invariant in the bulk. If Σi = Σ f are diffeomorphic,
we can identify Σ = Σi = Σ f and H = Hi = H f i.e. we close the manifold Mi, f

by identifying the two boundaries to get the closed 4-manifold M ′. Provided that the
trace over H can be defined, the partition function,

Z(M ′) = trHTM =
∫

DA De exp

(
i

�
SEH [e, A, M, ∂M]

)
(15.5)

where the integral is now unrestricted, is a dimensionless number which depends only
on the diffeomorphism class of the smooth manifold M ′. In case of the manifold Mi, f ,
the path integral (as transition amplitude) 〈A|Σ f |TM |A|Σi 〉 is the diffeomorphism
class of the smooth manifold relative to the boundary. The diffeomorphism class of
the boundary, however, is unique and the value of the path integral depends on the
topology of the boundary as well on the diffeomorphism class of the interior of Mi, f .
Therefore we will shortly write
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〈Σ f |TM |Σi 〉 = 〈A|Σ f |TM |A|Σi 〉

and consider the sum of manifolds like Mi,h = Mi, f ∪Σ f M f,h with the amplitudes

〈Σh |TM |Σi 〉 =
∑
A|Σ f

〈Σh |TM |Σ f 〉〈Σ f |TM |Σi 〉 (15.6)

where we sum (or integrate) over the connections and frames on Σh (see [69]). Then
the boundary term

S∂[Σ f ] =
∫
Σ f

εI J K L(e
I ∧ eJ ∧ AKL) =

∫
Σ f

H
√
hd3x (15.7)

is needed where H is the mean curvature of Σ f corresponding to the metric h at Σ f

(as restriction of the 4-metric). In the path integral (15.3), one integrates over the
frames and connections. The possibility of singular frames was discussed at some
places (see [103, 104]). The cotetrad field eI = eIadx

a changes w.r.t. the smooth map
f : M → M by eIa(x) dx

a �→ eIa(x
′) dx ′a = eIa( f (x))(∂b f a(x))dxb. The transfor-

mation matrix (∂b f a(x)) has maximal rank 4 for every regular value of the smooth
map, but at the critical points xc of f , some derivatives vanish and one has a smaller
rank at the point xc, called a singular point. Then there is no inverse frame (or tetrad
field) at this point. Usually singular frames are of this nature and one can decompose
every singular frame into a product of a regular frame and a (singular) transforma-
tion induced by a smooth map. How can one interpret these singularities? At this
point one needs some differential topology. A homeomorphism can be arbitrarily
and accurately approximated by smooth mappings (see [70], Theorem 2.6), i.e. in
a neighborhood of a homeomorphism one always finds a smooth map. Secondly,
there is a special class of smooth maps, the stable maps. Here, two smooth maps are
stable equivalent if both maps agree after a diffeomorphism of the corresponding
manifolds [62]. Here we are interested into smooth mappings from 4-manifolds into
4-manifolds. By a deep result of Mather [76], stable mappings for this dimension
are dense in all smooth mappings of 4-manifolds. In [8], we analyzed this situation:
the approximation of a homeomorphism by a stable map. If this smooth map has
no singularities then we can perturb them to a diffeomorphism. For a singular map,
however, we showed that it induces a change of the smoothness structure. Then, a
singular frame corresponds to a regular frame in a different smoothness structure.
The path integral changed the domain of integration:

∫
regular+singular frames

De →
∫

smoothness structures

De

We remark that this change is unique for dimension four. No other dimension has this
plethora of smoothness structures which can be used to express the singular frames.
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The inclusion of exotic smoothness changed the description of trivial spaces like
R

4 completely. Instead of a single chart, we have now an infinite sequence of charts
or an infinite sequence of 4-dimensional submanifolds. We will describe it more
completely later. Each submanifold is bounded by a 3-manifold (different from a
3-sphere) and we obtain a sequence of 3-manifolds Y0 → Y1 → Y2 → · · · char-
acterizing the smoothness structure. The sequence of 3-manifolds divides the path
integral into a product

〈Y0|TM |Y1〉〈Y1|TM |Y2〉〈Y2|TM |Y3〉 · · ·

and we have to think about the boundary term (15.7). In [10, 20] we analyzed this
term: the boundary Yn seen as embedding into the spacetime M can be described
locally as spinor ψ and one obtains for the boundary term

∫
Yn

H
√
hd3x =

∫
Yn

ψ̄Dψ
√
hd3x (15.8)

the Dirac action with the Dirac operator D and |ψ|2 = const. (see [57] for the con-
struction of ψ). In particular we obtained the eigenvalue equation Dψ = Hψ, i.e. the
mean curvature is the eigenvalue of the Dirac operator which has compact spectrum
(from the compactness of Yn) or we obtained discrete levels of geometry. This result
enforced us to identify the 3-manifolds (or the parts) with the matter content. Further-
more the path integral of the boundary can be carried out by an integration along ψ
(see [18]). With some effort [10, 20], one can extend this boundary term to a tubular
neighborhood Yn × [0, 1] of the boundary Yn . However, the relation (15.8) is only
true for simple (i.e. irreducible) 3-manifolds, i.e. for complements of a knot admitting
hyperbolic structure. For more complex 3-manifolds, we have the following simple
scheme: the knot complements are connected by torus bundles (locally written as
T 2 × [0, 1]). Therefore we also have to describe these bundles by using the bound-
ary term. In [20] we described this situation by using the geometrical properties of
these bundles and we will give a short account of these ideas in Sect. 15.9.1. Simply
expressed, in this bundle one has a flow of constant curvature along the tube. The
constant curvature connections are given by varying the Chern-Simons functional.
Now following Floer [52], the 4-dimensional version of this flow equation is the
instanton equation (or the self-dual equation) leading to the correct Yang-Mills func-
tional (Chern-Simons gives the Pontrjagin class and the instanton equation makes
it to the Yang-Mills functional). More importantly, the three possible types of torus
bundles fit very good into the current scheme of three gauge field interactions (see
[20] (Sect. 8)).
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15.5 The Action Induced by Topology

Now we have the following picture: fermions as hyperbolic knot complements and
gauge bosons as torus bundles. Both components together are forming an irreducible
3-manifold which is connecting to the remaining space by a S2-boundary (see the
prime decomposition in Appendix B). This connection via S2 × [0, 1] (S2-bundle) is
the only connection between matter and space. Here, there is only one interpretation:
this S2-bundle must be interpreted as gravity. In this section we will support this
conjecture and construct the corresponding action. At first we will fix the model, i.e.
let ΣM and ΣS be the 3-manifolds for matter and space, respectively. The connected
sum # of both components represents the whole spatial component

Σ = ΣM#ΣS = ΣM ∪S2

(
S2 × [0, 1]) ∪S2 ΣS = ΣM#S3#ΣS

of the spacetime. The decomposition above showed the geometry of theS2-bundle (in
the sense of Thurston, see Appendix B) to be the spherical geometry with isometry
group SO(3). The idea of the following construction can be simply expressed: the
2-sphere S2 explores locally the curvature of the space where the curvature is given
by the inverse volume 1

vol(S2)
of the 2-sphere S2. The 2-sphere can be written as a

homogenous space S2 = SO(3)/SO(2) also known as Hopf bundle. As mentioned
above, the geometry of the bundle S2 × [0, 1] (interpreted as an equator region of
S3) is the spherical geometry with isometry group SO(3). So, as a local model we
have an embedding of a 3-manifold (as the spatial component for a fixed time) into
the spacetime with local Lorentz symmetry (represented by SO(3, 1)). From the
mathematical point of view, it is a reductive Cartan geometry [101, 102] over the
homogenous space SO(3, 1)/SO(3), the 3-dimensional hyperbolic space. For the
moment, let us extend this symmetry to the spacetime M itself. A Cartan connection
A decomposes as a so(3)-valued connection ω (so(3) denotes the Lie algebra of
SO(3)) and a coframe field e (with values in so(3, 1)/so(3)) as

A = ω + 1

�
e

by using the scale �(in agreement with the physical units) and with curvature

F = d A + A ∧ A

= (dω + ω ∧ ω) + 1

�2
e ∧ e = R + 1

�2
e ∧ e

Then for the spacetime (as 4-manifold), we interpret the Cartan connection A as
the connection of the frame bundle (with respect to the Lorentz structure). Now we
have to think about what characterizes the S2-bundle in a 4-manifold, i.e. a surface
bundle over a surface (at least locally). It is known that a surface bundle over a
surface is topologically described by the Euler class as well as the Pontrjagin class
(via the Hirzebruch signature theorem). Therefore we choose the sum of the Euler
and Pontrjagin class for the frame bundle as action
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S =
∫
M

(
εABCDFAB ∧ FCD + γF ∧ F

)

where the Pontrjagin class is weighted by a parameter γ. Using the rules above, we
obtain

S = 1

�2

∫
M

(
2εABCDeA ∧ eB ∧ RCD + 2γe ∧ e ∧ R + (1 + γ)

�2
e ∧ e ∧ e ∧ e

)

+
∫
M

(
εABCDRAB ∧ RCD + γR ∧ R

)
,

the Einstein-Hilbert action with cosmological constant and the Holst action with
Immirizo parameter as well the Euler and Pontrjagin class for the reduced bundles.
In this model, the curvature is changed locally by adding a S2-bundle. Then the scale
�2 has to agree with the volume of the S2. In the action we have the coupling constant
1
�2 which has to agree with 1/L2

P (LP Planck length) to get in contact with Einsteins
theory, i.e. we must set

� = LP

The agreement with the Einstein-Hilbert action showed that this approach can
describe gravity but it does not describe the global geometry. Later we can show,
however, that it must be the de Sitter space SO(4, 1)/SO(3, 1) globally.

15.6 Wild Embeddings: Geometric Expression
for the Quantum State

In this section we will support our main hypothesis that an exotic R
4 has automati-

cally a quantum geometry, but as noted in the introduction, we must implicitly assume
that the quantum-geometrical state is realized in the exotic R

4. Interestingly, it fol-
lows from the physically motivated existence of a Lorentz metric which is induced
by a codimension-one foliation. Therefore we will construct the foliation and the
corresponding leaf space as the space of observables (using ideas of Connes). This
leaf space is a non-commutative C∗-algebra with observable algebra a factor III1
von Neumann algebra. A state in this algebra can be interpreted as a wild embedding
which is also motivated by the exotic smoothness structure. The classical state is
the tame embedding. Then, the deformation quantization of this tame embedding
is the wild embedding (see [16]). In principle, the wild embedding determines the
C∗-algebra completely. This algebra is generated by holonomies along connections
of constant curvature. It is known from mathematics that this algebra (forming a so-
called character variety [44]) determines the geometrical structure of the 3-manifold
(along the way of Thurston [84, 95]). The main structure in this approach is the
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fundamental group, i.e. the group of closed, non-contractible curves in a manifold.
The quantization of this group (as an expression of the classical geometry) gives the
so-called skein algebra of knots in this manifold. We will relate this skein algebra to
the leaf space above. On the way to show this relation, we will obtain the generator
of the translation from one 3-manifold into another 3-manifold, i.e. the time together
with the Hamiltonian.

15.6.1 Exotic R
4 and Its Foliation

In Sect. 15.4, we described the sequence of 3-manifolds

Y1 → Y2 → · · · → Y∞ = Yr

characterizing the exotic smoothness structure of R4. Then 0-framed surgery along
this pretzel knot produces Y1 whereas the n-th untwisted Whitehead double will give
Yn . For large n, the structure of the Casson handle is contained in the topology of Yn
and in the limit n → ∞ we obtain Yr (which is now a wild embedding Yr ⊂ R4 in the
standard R4 given by the embedding of the small exotic R4, see above). What do we
know about the structure ofYn orYr in general? The compact subset K is a 4-manifold
constructed by a pair of one 1-handle and one 2-handle which topologically cancel.
The boundary of K is a compact 3-manifold having the first Betti number b1 = 1.

This information is also contained in Yr . By the work of Freedman [53], every Casson
handle is topologically D2 × R

2 (relative to the attaching region) and therefore Yr
must be the boundary of D4 (the Casson handle trivializes K to be D4), i.e. Yr is a
wild embedded 3-sphere S3. Then we obtain two different descriptions of R4:

1. as a sequence of 3-manifolds Yn (all having the first Betti number b1 = 1) as
boundaries of the neighborhood of K with increasing size and

2. as a global hyperbolic space of R4\K written as S3∞ × R where S3∞ is a wild
embedded 3-sphere (which looks differently for different t ∈ R).

The first description gives a non-trivial but smooth foliation but there is no global
spatial space. In contrast to this highly non-trivial foliation, the second description
gives a global foliated spacetime containing a global spatial component, the wild
embedded 3-sphere. In the first description we have a complex, relational description
with no global time-like slices. Here, there only is a local coordinate system (with its
own eigenzeit). This relational view has the big advantage that the simplest parts are
also simple submanifolds (only finite surfaces with boundary). In contrast, the second
description introduces a global foliation into equal time slices. Then the complexity
is contained into the spatial component which is now a wild embedding (i.e. a space
with an infinite number of polygons). This second approach will be described in
the next subsection. So, lets concentrate on the first approach. Every 3-manifold Yn
admits a codimension-one (PSL(2, R)-invariant) foliation (see [17] for the details).
By the description of the exotic R4 using the sequence of 3-manifolds
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Y1 → Y2 → Y3 → · · ·

we also get a foliation of the exotic R4. The foliation onYn is defined by a PSL(2, R)-
invariant one-form ω which is integrable dω ∧ ω = 0 and defines another one-form
η by dω = −η ∧ ω. Then the integral

GV (Yn) =
∫
Yn

η ∧ dη

is known as Godbillon-Vey number GV (Yn) with the class gv = η ∧ dη. From the
physics point of view, it is the abelian Chern-Simons functional. The Godbillon-
Vey class characterizes the codimension-one foliation for the 3-manifold Yn (see the
Appendix B for more details). The foliation is very complicated. In [82] the local
structure was analyzed. Let κ, τ be the curvature and torsion of a normal curve,
respectively. Furthermore, let T, N , Z be the frame formed by this vector field dual
to the one-forms ω, η, ξ and let lT be the second fundamental form of leaf. Then the
Godbillon-Vey class is locally given by

η ∧ dη = κ2 (τ + lT (N , Z)) ω ∧ η ∧ ξ

where τ �= 0 for PSL(2, R) invariant foliations i.e. [Z , N ] = Z , [N , T ] = T and
[Z , T ] = N . Recall that a foliation (M, F) of a manifold M is an integrable subbun-
dle F ⊂ T M of the tangent bundle T M . The leaves L of the foliation (M, F) are the
maximal connected submanifolds L ⊂ M with Tx L = Fx ∀x ∈ L . We denote with
M/F the set of leaves or the leaf space. Now one can associate to the leaf space
M/F a C∗-algebra C(M, F) by using the smooth holonomy groupoid G of the foli-
ation (see Connes [41]). According to Connes [42], one assigns to each leaf � ∈ X
the canonical Hilbert space of square-integrable half-densities L2(�). This assign-
ment, i.e. a measurable map, is called a random operator forming a von Neumann
W (M, F). A deep theorem of Hurder and Katok [72] for foliations with non-zero
Godbillon-Vey invariant states that this foliation has to contain a factor III von Neu-
mann algebra. As shown in [13], the von Neumann algebra for the foliation of Yn
and for the exotic R4 is a factor III1-algebra. For the construction of this algebra,
one needs the concept of a holonomy groupoid. Foliations are determined by the
holonomies of closed curves in a leaf and the transport of this closed curve together
with the holonomy from the given leaf to another leaf. Now one may ask why one
considers only closed curves. Let PM the space of all paths in a manifold then this
space admits a fibration over the space of closed paths ΩM (also called loop space)
with fiber the constant paths (therefore homeomorphic to M), see [26]. Then, a curve
is determined up to deformation (i.e. homotopy) by a closed path. Consider now a
closed curve γ in a leaf � and let act a diffeomorphism on �. Then the curve γ is
modified as well to γ′ but γ and γ′ are related by a (smooth) homotopy. Therefore to
guarantee diffeomorphism invariance in this approach, one has to consider all closed
curves up to homotopy. This structure can be made into a group (using concatenation
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of paths as group operation) called the fundamental group π1(�) of the leaf. Above
we spoke about holonomy but a holonomy needs a connection of some bundle which
we did not introduce until now. But Connes [41] described a way to circumvent this
difficulty: Given a leaf � of (M, F) and two points x, y ∈ � of this leaf, any simple
path γ from x to y on the leaf � uniquely determines a germ h(γ) of a diffeomorphism
from a transverse neighborhood of x to a transverse neighborhood of y. The germ of
diffeomorphism h(γ) only depends upon the homotopy class of γ in the fundamental
group of the leaf �, and is called the holonomy of the path γ. All fundamental groups
of all leafs form the fundamental groupoid. The holonomy groupoid of a leaf � is
the quotient of its fundamental groupoid by the equivalence relation which identifies
two paths γ and γ′ from x to y (both in �) iff h(γ) = h(γ′). Then the von Neumann
algebra of the foliation is the convolution algebra of the holonomy groupoid which
will be constructed later for the wild embedding.

15.6.1.1 Intermezzo: Factor III and Tomita-Takesaki Modular Theory

Remember a von Neumann algebra is an involutive subalgebra M of the algebra of
operators on a Hilbert space H that has the property of being the commutant of its
commutant: (M ′)′ = M . This property is equivalent to saying that M is an involutive
algebra of operators that is closed under weak limits. A von Neumann algebra M is
said to be hyperfinite if it is generated by an increasing sequence of finite-dimensional
subalgebras. Furthermore we call M a factor if its center is equal to C. It is a deep result
of Murray and von Neumann that every factor M can be decomposed into 3 types
of factors M = MI ⊕ MI I ⊕ MI I I . The factor I case divides into the two classes In
and I∞ with the hyperfinite factors In = Mn(C) the complex square matrices and
I∞ = L(H) the algebra of all operators on an infinite-dimensional Hilbert space H .
The hyperfinite II factors are given by II1 = Cli f fC(E), the Clifford algebra of an
infinite-dimensional Euclidean space E , and II∞ = II1 ⊗ I∞. The case III remained
mysterious for a long time. Now we know that there are three cases parametrized
by a real number λ ∈ [0, 1]: III0 = RW the Krieger factor induced by an ergodic
flow W , IIIλ = Rλ the Powers factor for λ ∈ (0, 1) and III1 = R∞ = Rλ1 ⊗ Rλ2

the Araki-Woods factor for all λ1,λ2 with λ1/λ2 /∈ Q. We remark that all factor III
cases are induced by infinite tensor products of the other factors. One example of
such an infinite tensor space is the Fock space in quantum field theory.

The modular theory of von Neumann algebras (see also [25]) has been discovered
by Tomita [96] in 1967 and put on solid grounds by Takesaki [91] around 1970. It is a
very deep theory that, to every von Neumann algebra M ⊂ B(H) acting on a Hilbert
space H, and to every vector ξ ∈ H that is cyclic, i.e. (Mξ) = H, and separating,
i.e. for A ∈ M, Aξ = 0 → A = 0, associates:

• a one-parameter unitary group t �→ Δi t ∈ B(H)

• and a conjugate-linear isometry J : H → H such that:
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Δi tMΔ−i t = M, ∀ t ∈ R, and JMJ = M′,

where the commutant M′ of M is defined by M′ :={A′ ∈ B(H) | [A′, A]− =
0,∀ A∈B(H)}.

More generally, given a von Neumann algebra M and a faithful normal state 2 (more
generally for a faithful normal semi-finite weight) ω on the algebra M, the modular
theory allows to create a one-parameter group of ∗-automorphisms of the algebraM,

σω : t �→ σω
t ∈ Aut(M), with t ∈ R,

such that:

• in the Gel’fand–Naı̆mark–Segal representation πω induced by the weight ω, on the
Hilbert spaceHω , the modular automorphism groupσω is implemented by a unitary
one-parameter group t �→ Δi t

ω ∈ B(Hω) i.e. we have πω(σω
t (x)) = Δi t

ωπω(x)Δ−i t
ω ,

for all x ∈ M and for all t ∈ R;
• there is a conjugate-linear isometry Jω : Hω → Hω , whose adjoint action imple-

ments a modular anti-isomorphism γω : πω(M) → πω(M)′, between πω(M) and
its commutant πω(M)′, i.e. for all x ∈ M, we have γω(πω(x)) = Jωπω(x)Jω .

The operators Jω and Δω are called respectively the modular conjugation operator
and the modular operator induced by the state (weight) ω. We will call “modular
generator” the self-adjoint generator of the unitary one-parameter group t �→ Δi t

ω as
defined by Stone’s theorem i.e. the operator

Kω := log Δω, so that Δi t
ω = eiKω t . (15.9)

The modular automorphism group σω associated to ω is the unique one-parameter
automorphism group that satisfies the Kubo–Martin–Schwinger (KMS-condition)
with respect to the state (or more generally a normal semi-finite faithful weight) ω,
at inverse temperature β = −1, i.e.

ω(σω
t (x)) = ω(x), ∀ x ∈ M

and for all x, y ∈ M.
Using Tomita-Takesaki-theory, one has a continuous decomposition (as crossed

product) of any factor III algebra M into a factor II∞ algebra N together with a one-
parameter group3 (θλ)λ∈R∗+ of automorphisms θλ ∈ Aut (N ) of N , i.e. one obtains

M = N �θ R
∗
+. (15.10)

2ω is faithful if ω(x) = 0 → x = 0; it is normal if for every increasing bounded net of positive
elements xλ → x , we have ω(xλ) → ω(x).
3The group R

∗+ is the group of positive real numbers with multiplication as group operation also
known as Pontrjagin dual.



268 T. Asselmeyer-Maluga

That means, there is a foliation induced from the foliation producing this II∞
factor. Connes [42] (in Sect. I.4, p. 57ff) constructed the foliation F ′ canonically
associated to the foliation F of factor III1 above having the factor II∞ as von Neu-
mann algebra. In our case it is the horocycle flow: Let P the polygon on the hyperbolic
space H

2 determining the foliation above. P is equipped with the hyperbolic metric
2|dz|/(1 − |z|2) together with the collection T1P of unit tangent vectors to P . A
horocycle in P is a circle contained in P which touches ∂P at one point, but from
the classification of factors, we know that II∞ is also splitted into

II∞ = II1 ⊗ I∞

so that every factor III is determined by the factor II1. The factor I∞ are the compact
operators in the Hilbert space. With an important observation we will close this
intermezzo. The factor II∞ admits an action of the group R

∗+ by automorphisms
so that the crossed product (15.10) is the factor III1. The corresponding invariant,
the flow of weights mod (M), was determined by Connes [42] to be the Godbillon-
Vey invariant. Therefore the modular generator above is given by the Godbillon-Vey
invariant, i.e. this invariant is the Hamiltonian of the theory.

15.6.1.2 Construction of a State

Then the C∗-algebra C∗
r (M, F) of the foliation (M, F) is the C∗-algebra C∗

r (G) of
the smooth holonomy groupoid G. For completeness we will present the explicit
construction (see [42] Sect. II.8). The basic elements of C∗

r (M, F) are smooth half-
densities with compact supports on G, f ∈ C∞

c (G,Ω1/2), where Ω1/2
γ for γ ∈ G is

the one-dimensional complex vector space Ω
1/2
x ⊗ Ω

1/2
y , where s(γ) = x, t (γ) = y,

and Ω
1/2
x is the one-dimensional complex vector space of maps from the exterior

power Λk Fx , k = dim F , to C such that

ρ(λν) = |λ|1/2ρ(ν) ∀ν ∈ Λk Fx ,λ ∈ R.

For f, g ∈ C∞
c (G,Ω1/2), the convolution product f ∗ g is given by the equality

( f ∗ g)(γ) =
∫

γ1◦γ2=γ

f (γ1)g(γ2)

Then we define via f ∗(γ) = f (γ−1) a ∗-operation making C∞
c (G,Ω1/2) into a ∗-

algebra. For each leaf L of (M, F) one has a natural representation of C∞
c (G,Ω1/2)

on the L2 space of the holonomy covering L̃ of L . Fixing a base point x ∈ L , one
identifies L̃ with Gx = {γ ∈ G, s(γ) = x} and defines the representation
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(πx ( f )ξ)(γ) =
∫

γ1◦γ2=γ

f (γ1)ξ(γ2) ∀ξ ∈ L2(Gx ).

The completion of C∞
c (G,Ω1/2) with respect to the norm

|| f || = sup
x∈M

||πx( f )||

makes it into a C∗-algebra C∗
r (M, F). Among all elements of the C∗-algebra, there

are distinguished elements, idempotent operators or projectors having a geometric
interpretation in the foliation. For later use, we will construct them explicitly (we
follow [42] Sect. II.8. β closely). Let N ⊂ M be a compact submanifold which is
everywhere transverse to the foliation (thus dim(N ) = codim(F)). A small tubular
neighborhood N ′ of N in M defines an induced foliation F ′ of N ′ over N with
fibers R

k, k = dim F . The corresponding C∗-algebra C∗
r (N

′, F ′) is isomorphic to
C(N ) ⊗ K with K the C∗-algebra of compact operators. In particular it contains an
idempotent e = e2 = e∗, e = 1N ⊗ f ∈ C(N ) ⊗ K, where f is a minimal projection
in K. The inclusion C∗

r (N
′, F ′) ⊂ C∗

r (M, F) induces an idempotent in C∗
r (M, F)

which is given by a closed curve in M transversal to the foliation.
In case of the foliation above (of the 3-manifolds Yn), one has the foliation of the

polygon P in H
2 and a circle S1 attached to every leaf of this foliation. Therefore we

have the leafs S1 × [0, 1] and the S1 is the closed curve transversal to the foliation.
Then every leaf defines (using the isomorphism π1(S1 × [0, 1]) = π1(S1) = Z) an
idempotent represented by the fiber S1 forming a base for the GNS representation of
the C∗-algebra. Now we are able to construct a state in this algebra.

A state is a linear functional ω : C∗
r (M, F) → C so that ω(x · x∗) ≥ 0 and

ω(IC∗
r (M,F)) = 1. Elements ofC∗

r (M, F) are half-densities with a support along some
closed curve (as part of the holonomy groupoid). In a first step, one can use the GNS-
representation of the C∗-algebra C∗

r (M, F) by a map C∗
r (M, F) → B(H) into the

bounded operators of a Hilbert space. By the theorem of Fréchet-Riesz, every linear
functional can be represented by the scalar product of the Hilbert space for some
vector. To determine the linear functionals, we have to investigate the geometry
of the foliation. The foliation was constructed to be PSL(2, R)-invariant, i.e. fix-
ing the upper half space H

2. Then we considered the unit tangent vectors of the
tangent bundle over H

2 defining the ˜SL(2, R)-geometry. But more is true. Every
part of the 3-manifold Yn is a knot/link complement with hyperbolic structure with
isometry group PSL(2, C) where the other geometric structures like ˜SL(2, R) and
PSL(2, R) embed. Here we remark the known fact that every PSL(2, C)-geometry
lifts uniquely to SL(2, C) (the double cover). Therefore, to model the holonomy, we
have to choose a flat SL(2, C)-connection and write it as the well-known integral of
the connection 1-form along a closed curve. The linear functional is the trace of this
integral (seen as matrix using a representation of SL(2, C)) known as Wilson loop.
One can use the well-known identity

Tr(A) · Tr(B) = Tr(AB) + Tr(AB−1)
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Fig. 15.4 Mandelstam identity as skein relation (see Fig. 15.7 and Sect. 15.6.3.2)

for SL(2, C) which goes over to the Wilson loops. Let Wγ[A] be the Wilson loop of
a connection A along the closed curve γ. Then the relation of the Wilson loops

Wγ[A] · Wη[A] = Wγ◦η[A] + Wγ◦η−1[A]

for two intersecting curves γ and η is known as the Mandelstam identity for inter-
secting loops, see Fig. 15.4 for a visualization.

This relation is also known from another area: knot theory. There, it is the Kauff-
man bracket skein relation used to define the Kauffman knot polynomial. Therefore
we obtain a state in the C∗-algebra by a closed curve in the leaf which extends to a
knot (an embedded, closed curve) in a submanifold of the 3-manifold defined up to
the skein relation. Finally:

State ω over leaf � ←→ element of Kauffman skein module for � × [0, 1]

We will later explain this correspondence as a deformation quantization. We will close
this subsection by some remarks. Every representation π1(M) → SL(2, C) defines
(up to conjugacy) a flat connection. At the same time it defines also a hyperbolic
structure on Yn (for M = Yn). By the argumentation above, the quantized version of
this geometry (as defined by the C∗-algebra of the foliation) is given by the skein
space (see Sect. 15.6.3.2 for the definition of the skein space).

15.6.2 The Wild Embedded 3-Sphere = Quantum
(Geometric) State

Our previous work implied that the transition from the standard R4 to a small exotic
R4 has much to do with Quantum Gravity (QG). Therefore one would expect that a
submanifold in the standard R4 with an appropriated geometry represents a classical
state. Before we construct this state, there is a lot to say about the wild embedded
3-sphere as a quantum state.
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0

Exotic
0

0 0

. . . .

R4I

Fig. 15.5 Handle picture of the small exotic R
4, the components with the dot are 1-handles and

without the dot are 2-handles

15.6.2.1 The Wild Embedded 3-Sphere

To describe this wild 3-sphere, we will construct the sequence of Yn by using the
example of [23, 24] which was already partly explained in Sect. 15.3.5. At first we
remark that the interior of the handle body in Fig. 15.5 is the R4.

The Casson handle for this R4 is given by the simplest tree T+, one positive
self-intersection for each level. The compact 4-manifold inside of R4 can be seen in
Fig. 15.1 as a handle body. The 3-manifold Yn surrounding this compact submanifold
K is given by surgery (0-framed) along the link in Fig. 15.5 with a Casson handle
of n-levels. In [59], this case is explicitly discussed. Yn is given by 0-framed surgery
along the n-th untwisted Whitehead double of the pretzel (−3, 3 − 3) knot (see
Fig. 15.3). Obviously, there is a sequence of inclusions

· · · ⊂ Yn−1 ⊂ Yn ⊂ Yn+1 ⊂ · · · → YT+

with the 3-manifold YT+ as limit. Let K+ be the corresponding (wild) knot, i.e. the
∞-th untwisted Whitehead double of the pretzel knot (−3, 3,−3) (or the knot 946

in Rolfson notation). The surgery description of YT+ induces the decomposition

YT+ = C(K+) ∪ (
D2 × S1) C(K+) = S3\ (K+ × D2) (15.11)

where C(K+) is the knot complement of K+. In [33], the splitting of knot com-
plements was described. Let K946 be the pretzel knot (−3, 3,−3) and let LWh be
the Whitehead link (with two components). Then the complement C(K946) has one
torus boundary whereas the complement C(LWh) has two torus boundaries. Now
according to [33], one obtains the splitting

C(K+) = C(LWh) ∪T 2 · · · ∪T 2 C(LWh) ∪T 2 C(K946)

and we will describe each part separately (see Fig. 15.6).
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Fig. 15.6 Schematic picture
for the splitting of the knot
complement C(K+) (above)
and in the more general case
C(KT ) (below)

At first the knot K946 is a hyperbolic knot, i.e. the interior of the 3-manifold
C(K946) admits a hyperbolic metric. By the work of Gabai [60], C(K946)admits a
codimension-one foliation. The Whitehead link is a hyperbolic link but we need
more: the Whitehead link is a fibered link of genus 1. That is, there is a fibration of
the link complement π : C(LWh) → S1 over the circle so that π−1(p) is a surface of
genus 1 (Seifert surface) for all p ∈ S1. Now we will also describe the changes for
a general tree. At first we will modify the Whitehead link: we duplicate the linked
circle, i.e. there are as many circles as branching in the tree to get the link Whn with
n + 1 components. Then the complement of Whn has also n + 1 torus boundaries
and it also fibers over S1. With the help of Whn we can build every tree T . Now
the 3-manifold YT is given by 0-framed surgery along the ∞-th untwisted ramified
(usage of Whn) Whitehead double of a knot k, denoted by the link KT . The tree T
has one root, then YT is given by

YT = C(KT ) ∪ (
D2 × S1)

and the complement C(KT ) splits like the tree into complements of Whn and many
copies of C(k) (see Fig. 15.6). Using a deep result of Freedman [53], we obtain:

YT is a wild embedded 3-sphere S3∞.

15.6.2.2 Reconstruction of the Spatial Space by Using a State

Our result about the existence of a codimension-one foliation for YT can be simply
expressed: foliations are characterized by the holonomy properties of the leafs. This
principle is also the corner stone for the usage of non-commutative geometry as
description of the leaf space. In the previous subsection, we already characterized
the state as an element of the Kauffman skein module. Here we are interested in a
reconstruction of the underlying space but now assuming a global foliation so that
we will obtain the whole spatial space.
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Starting point is the state constructed in the Sect. 15.6.1.2. Here, we got a rela-
tion between the state ω as linear functional over the algebra and the Kauffman skein
module. Using this relation, we consider a leaf � = S1 × [0, 1] and the 3-dimensional
extension as solid torus S1 × D2. The Kauffman skein module K (S1 × D2) is poly-
nomial algebra with one generator (the loop around S1). Now we consider one 3-
manifold Yn with the corresponding foliation. Using the splitting above, the Kauff-
man skein module K (Yn) is determined by the skein module for the parts, i.e. by
the knot complements. Therefore we have to consider the skein module for hyper-
bolic 3-manifolds. Hyperbolic 3-manifolds contain special surfaces, called essential
or incompressible surfaces, see Appendix C. It is known [36] that the skein module
of 3-manifolds containing essential surfaces is not finitely generated. Therefore, the
state itself is not finitely generated. If we use the leaf S1 × D2 as a local model for
one generator then we will obtain an infinitely complicated 3-manifold made from
pieces S1 × D2 so that the corresponding generators are not related to each other. An
example of this structure is the Whitehead manifold having a non-finitely generated
Kauffman skein module [1]. In general we will obtain a wild embedded 3-manifold
by using this simple pieces. By the argumentation in the previous subsection we know
that this wild embedded 3-manifold is the wild embedded 3-sphere YT . Finally we
obtain:

State ω ←→ wild embedded 3-sphere YT

the state ω is realized by some wild embedded 3-sphere.

15.6.2.3 Construction of the Operator Algebra

Following [16] we will construct aC∗-algebra from the wild embedded 3-sphere. Let
I : S3 → R

4 be a wild embedding of codimension-one so that I (S3) = S3∞ = YT .
Now we consider the complement R4\I (S3)which is non-trivial, i.e.π1(R

4\I (S3)) =
π �= 1. Now we define the C∗-algebra C∗(G,π) associated to the complement
G = R

4\I (S3) with group π = π1(G). If π is non-trivial then this group is not finitely
generated. From an abstract point of view, we have a decomposition ofG by an infinite
union

G =
∞⋃
i=0

Ci

of ‘level sets’ Ci . Then every element γ ∈ π lies (up to homotopy) in a finite union
of levels.

The basic elements of the C∗-algebra C∗(G,π) are smooth half-densities with
compact supports on G, f ∈ C∞

c (G,Ω1/2), where Ω1/2
γ for γ ∈ π is the one-

dimensional complex vector space of maps from the exterior power Λk L (dim L =
k), of the union of levels L representing γ, to C such that

ρ(λν) = |λ|1/2ρ(ν) ∀ν ∈ Λ2L ,λ ∈ R.
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For f, g ∈ C∞
c (G,Ω1/2), the convolution product f ∗ g is given by the equality

( f ∗ g)(γ) =
∫

γ1◦γ2=γ

f (γ1)g(γ2)

with the group operation γ1 ◦ γ2 in π. Then we define via f ∗(γ) = f (γ−1) a
∗-operation making C∞

c (G,Ω1/2) into a ∗-algebra. Each level set Ci consists of
simple pieces denoted by T . For these pieces, one has a natural representation of
C∞
c (G,Ω1/2) on the L2 space over T . Then one defines the representation

(πx ( f )ξ)(γ) =
∫

γ1◦γ2=γ

f (γ1)ξ(γ2) ∀ξ ∈ L2(T ),∀x ∈ γ.

The completion of C∞
c (G,Ω1/2) with respect to the norm

|| f || = sup
x∈G

||πx ( f )||

makes it into a C∗-algebra C∞
c (G,π). Finally we are able to define the C∗-algebra

associated to the wild embedding. Using a result in [16], one can show that the
corresponding von Neumann algebra is the factor III1.

Among all elements of the C∗-algebra, there are distinguished elements, idempo-
tent operators or projectors having a geometric interpretation. For later use, we will
construct them explicitly (we follow [42] Sect. II.8. β closely). Let YT ⊂ R

4 be the
wild submanifold. A small tubular neighborhood N ′ of YT in R

4 defines the corre-
sponding C∗-algebra C∞

c (N ′,π1(R
4\N ′)) is isomorphic to C∞

c (G,π1(R
4\I (S3)) ⊗

KwithK theC∗-algebra of compact operators. In particular it contains an idempotent
e = e2 = e∗, e = 1N ⊗ f ∈ C∞

c (G,π1(R
4\I (S3))) ⊗ K, where f is a minimal pro-

jection in K. It induces an idempotent in C∞
c (G,π1(R

4\I (S3))). By definition, this
idempotent is given by a closed curve in the complement R

4\I (S3). These projection
operators form the basis in this algebra.

15.6.3 Reconstructing the Classical State

In this section we will describe a way from a (classical) Poisson algebra to a quan-
tum algebra by using deformation quantization. Therefore we will obtain a positive
answer to the question: Does the C∗-algebra of the foliation (as well of a wild (spe-
cific) embedding) comes from a (deformation) quantization? Of course, this ques-
tion cannot be answered in all generality, but for our example we will show that
the enveloping von Neumann algebra of foliation and of this wild embedding is the
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result of a deformation quantization using the classical Poisson algebra (of closed
curves) of the tame embedding. This result shows two things: the wild embedding
can be seen as a quantum state and the classical state is a tame embedding.

15.6.3.1 Intermezzo 1: The Observable Algebra
and Its Poisson Structure

In this section we will describe the formal structure of a classical theory coming
from the algebra of observables using the concept of a Poisson algebra. In quantum
theory, an observable is represented by an hermitean operator having the spectral
decomposition via projectors or idempotent operators. The coefficient of the projector
is the eigenvalue of the observable or one possible result of a measurement. At least
one of these projectors represents (via the GNS representation) a quasi-classical
state. Thus, to construct the substitute of a classical observable algebra with Poisson
algebra structure, we have to concentrate on the idempotents in the C∗-algebra. Now
we will see that the set of closed curves on a surface has the structure of a Poisson
algebra. Let us start with the definition of a Poisson algebra.

Let P be a commutative algebra with unit over R or C. A Poisson bracket on P
is a bilinearform { , } : P ⊗ P → P fulfilling the following 3 conditions:

1. anti-symmetry {a, b} = − {b, a}
2. Jacobi identity {a, {b, c}} + {c, {a, b}} + {b, {c, a}} = 0
3. derivation {ab, c} = a {b, c} + b {a, c}.

Then a Poisson algebra is the algebra (P, { , }).
Now we consider a surface S together with a closed curve γ. Additionally we

have a Lie group G given by the isometry group. The closed curve is one element
of the fundamental group π1(S). From the theory of surfaces we know that π1(S) is
a free abelian group. Denote by Z the free K-module (K a ring with unit) with the
basis π1(S), i.e. Z is a freely generated K-module. Recall Goldman’s definition of
the Lie bracket in Z (see [61]). For a loop γ : S1 → S we denote its class in π1(S)

by 〈γ〉. Let α,β be two loops on S lying in general position. Denote the (finite)
set α(S1) ∩ β(S1) by α#β. For q ∈ α#β denote by ε(q;α,β) = ±1 the intersection
index of α and β in q. Denote by αqβq the product of the loops α,β based in q. Up
to homotopy the loop (αqβq)(S1) is obtained from α(S1) ∪ β(S1) by the orientation
preserving smoothing of the crossing in the point q. Set

[〈α〉 , 〈β〉] =
∑
q∈α#β

ε(q;α,β)(αqβq). (15.12)

According to Goldman [61] (Theorem 5.2), the bilinear pairing [ , ] : Z × Z → Z
given by (15.12) on the generators is well defined and makes Z a Lie algebra. The
algebra Sym(Z) of symmetric tensors is then a Poisson algebra (see Turaev [98]).
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The whole approach seems natural for the construction of the Lie algebra Z but
the introduction of the Poisson structure is an artificial act. From the physical point
of view, the Poisson structure is not the essential part of classical mechanics. More
important is the algebra of observables, i.e. functions over the configuration space
forming the Poisson algebra. For the foliation discussed above, we already identified
the observable algebra (the holonomy along closed curves) as well the corresponding
group to be SL(2, C). Therefore for the following, we will set G = SL(2, C).

Now we introduce a principal G bundle on S, representing a geometry on the
surface. This bundle is induced from a G bundle over S × [0, 1] having always a
flat connection. Alternatively one can consider a homomorphism π1(S) → G repre-
sented as holonomy functional

hol(ω, γ) = P exp

⎛
⎝∫

γ

ω

⎞
⎠ ∈ G (15.13)

with the path ordering operator P and ω as flat connection (i.e. inducing a flat curva-
ture Ω = dω + ω ∧ ω = 0). This functional is unique up to conjugation induced by
a gauge transformation of the connection. Thus we have to consider the conjugation
classes of maps

hol : π1(S) → G

forming the space X (S,G) of gauge-invariant flat connections of principalG bundles
over S. Now (see [85]) we can start with the construction of the Poisson structure on
X (S,G), based on the Cartan form as the unique bilinearform of a Lie algebra. As
discussed above we will use the Lie group G = SL(2, C) but the whole procedure
works for every other group too. Now we consider the standard basis

X =
(

0 1
0 0

)
, H =

(
1 0
0 −1

)
, Y =

(
0 0
1 0

)
(15.14)

of the Lie algebra sl(2, C) with [X,Y ] = H, [H, X ] = 2X, [H,Y ] = −2Y . Fur-
thermore there is the bilinearform B : sl2 ⊗ sl2 → C written in the standard basis as

⎛
⎝ 0 0 −1

0 −2 0
−1 0 0

⎞
⎠

Now we consider the holomorphic function f : SL(2, C) → C and define the gra-
dient δ f (A) along f at the point A as δ f (A) = Z with B(Z ,W ) = d fA(W ) and

d fA(W ) = d

dt
f (A · exp(tW ))

∣∣∣∣
t=0

.
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The calculation of the gradient δtr for the trace tr along a matrix

A =
(
a11 a12

a21 a22

)

is given by

δtr (A) = −a21Y − a12X − 1

2
(a11 − a22)H.

Given a representation ρ ∈ X (S, SL(2, C)) of the fundamental group and an invari-
ant function f : SL(2, C) → R extendable to X (S, SL(2, C)). Then we consider
two conjugacy classes γ, η ∈ π1(S) represented by two transversal intersecting loops
P, Q and define the function fγ : X (S, SL(2, C) → C by fγ(ρ) = f (ρ(γ)). Let
x ∈ P ∩ Q be the intersection point of the loops P, Q and cx a path between the point
x and the fixed base point in π1(S). Then we define γx = cxγc−1

x and ηx = cxηc−1
x .

Finally we get the Poisson bracket

{
fγ, f ′

η

} =
∑

x∈P∩Q

sign(x) B(δ f (ρ(γx )), δ f ′(ρ(ηx ))),

where sign(x) is the sign of the intersection point x . Thus,
The space X (S, SL(2, C))has anaturalPoisson structure (inducedby the bilinear

form (15.12) on the group) and thePoisson algebra (X (S, SL(2, C), { , }) of complex
functions over them is the algebra of observables.

15.6.3.2 Intermezzo 2: Drinfeld-Turaev Quantization

Now we introduce the ring C[[h]] of formal polynomials in h with values in C.
This ring has a topological structure, i.e. for a given power series a ∈ C[[h]] the set
a + hnC[[h]] forms a neighborhood. Now we define

A Quantization of a Poisson algebra P is a C[[h]] algebra Ph together with the
C-algebra isomorphism Θ : Ph/hP → P so that

1. the module Ph is isomorphic to V [[h]] for a C vector space V
2. let a, b ∈ P and a′, b′ ∈ Ph be Θ(a) = a′, Θ(b) = b′ then

Θ

(
a′b′ − b′a′

h

)
= {a, b} .

One speaks of a deformation of the Poisson algebra by using a deformation
parameter h to get a relation between the Poisson bracket and the commutator.
Therefore we have the problem to find the deformation of the Poisson algebra
(X (S, SL(2, C)), { , }). The solution to this problem can be found via two steps:
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Fig. 15.7 Crossings
L∞, Lo, Loo

1. at first find another description of the Poisson algebra by a structure with one
parameter at a special value and

2. secondly vary this parameter to get the deformation.

Fortunately both problems were already solved (see [97, 98]). The solution of the
first problem is expressed in the theorem:

The skein module K−1(S × [0, 1]) (i.e. t = −1) has the structure of an algebra
isomorphic to the Poisson algebra (X (S, SL(2, C)), { , }). (see also [34, 38])

Then we have also the solution of the second problem:
The skein algebra Kt (S × [0, 1]) is the quantization of the Poisson algebra

(X (S, SL(2, C)), { , }) with the deformation parameter t = exp(h/4). (see also
[38])

To understand these solutions we have to introduce the skein module Kt (M) of a
3-manifold M (see [81]). For that purpose we consider the set of links L(M) in M
up to isotopy and construct the vector space CL(M) with basis L(M). Then one can
define CL[[t]] as ring of formal polynomials having coefficients in CL(M). Now
we consider the link diagram of a link, i.e. the projection of the link to the R

2 having
the crossings in mind. Choosing a disk in R

2 so that one crossing is inside this disk.
If the three links differ by the three crossings Loo, Lo, L∞ (see Fig. 15.7) inside of
the disk then these links are skein-related.

Then in CL[[t]] one writes the skein relation4 L∞ − t Lo − t−1Loo. Furthermore
let L � O be the disjoint union of the link with a circle and one writes the fram-
ing relation L � O + (t2 + t−2)L . Let S(M) be the smallest submodule of CL[[t]]
containing both relations. Then we define the Kauffman bracket skein module by
Kt (M) = CL[[t]]/S(M). We list the following general results about this module:

• The module K−1(M) for t = −1 is a commutative algebra.
• Let S be a surface, then Kt (S × [0, 1]) carries the structure of an algebra.

The algebraic structure of Kt (S × [0, 1]) can be simply seen by using the diffeomor-
phism between the sum S × [0, 1] ∪S S × [0, 1] along S and S × [0, 1]. Then the

4The relation depends on the group SL(2,C).
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product ab of two elements a, b ∈ Kt (S × [0, 1]) is a link in S × [0, 1] ∪S S × [0, 1]
corresponding to a link in S × [0, 1] via the diffeomorphism. The algebra Kt (S ×
[0, 1]) is in general non-commutative for t �= −1. For the following we will omit the
interval [0, 1] and denote the skein algebra by Kt (S).

In Sect. 15.6.1.2, we described the state as an element of the Kauffman skein
module Kt (�) of the leaf �. Now we obtained also that the observable algebra is the
Kauffman skein module again. How does this whole story fit into the description of
the observable algebra for the foliation as factor III1? In [58], it was shown that the
Kauffman bracket skein module of a cylinder over the torus embeds as a subalgebra
of the noncommutative torus. However, the noncommutative torus can be seen as the
leaf space of the Kronecker foliation of the torus leading to the factor II∞. Then by
using (15.10), we obtain the factor III1 back. We will use this relation in the next
section to get the quantum action.

15.7 Action at the Quantum Level

Above, we used the foliation to get quantum states which agreed with the deformation
quantization of a classical state. Central point in our argumentation is the construc-
tion of the C∗-algebra with the corresponding von Neumann algebra as observable
algebra. This von Neumann algebra is a factor III1. By using the Tomita-Takesaki
modular theory, there is a relation to the factor II∞ by using an action of the group
R

∗+ by automorphisms of a Lebesgue measure space leading to the decomposition of
the factor III1. This action is related to an invariant, the flow of weights mod(M). The
main property of the factor III1 is the constant flow of weights mod(M). Connes [41,
42] described the flow of weights as a bundle of densities over the leaf space, i.e. the
R

∗+ homogeneous space of nonzero maps. In case of the foliation considered above,
this density is constant and we can naturally identify this density with the volume
of the submanifold defining the foliation. By definition, this volume is given by the
Godbillon-Vey invariant (see Eq. (15.34) in Appendix B, the circle in the fiber has
unit size). This invariant can be seen as an element of H 3(BG, R) with the holonomy
groupoid G of the foliation. As shown by Connes [41, 42], the Godbillon-Vey class
GV can be expressed as a cyclic cohomology class (the so-called flow of weights)

GVHC ∈ HC2(C∞
c (G))

of the C∗-algebra for the foliation. Then we define an expression

S = Trω (GVHC)

uniquely associated to the foliation (Trω is the Dixmier trace). The expression S
generates the action on the factor by

Δi t
ω = exp(i S)
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so that S is the action or the Hamiltonian multiplied by the time (see (15.9)). It is
an operator which defines the dynamics by acting on the states. For explicit cal-
culations we have to evaluate this operator. One way is the usage of the relation
between the foliation and the wild embedding. This wild embedding is determined
by the fundamental group π of its complement. In [16], we discussed the properties
of this group π. It is a perfect group, i.e. every element is generated by a commutator.
Then a representation of this group into some other group like GL(C) (the limit of
GL(n, C) for n → ∞) reduces to the representation of the maximal perfect sub-
group. For that purpose we consider the representation of the group π into the group
E(C) of elementary matrices, which is the perfect subgroup of GL(C). Then we
obtain matrix-valued functions Xμ ∈ C∞

c (E(C)) as the image of the generators of
π w.r.t. the representation π → E(C) labeled by the dimension μ = 1, . . . , 4 of the
embedding space Rn . Via the representation ι : π → E(C), we obtain a cyclic cocy-
cle in HC2(C∞

c (E(C)) generated by a suitable Fredholm operator F . Here we use
the standard choice F = D|D|−1 with the Dirac operator D acting on the functions
in C∞

c (E(C)). Then the cocycle in HC2(C∞
c (E(C)) can be expressed by

ι∗GVHC = ημν[F, Xμ][F, Xν]

using a metric ημν in R4 via the pull-back using the representation ι : π → E(C).
Finally we obtain the action

S = Trω([F, Xμ][F, Xμ]) = Trω([D, Xμ][D, Xμ]|D|−2) (15.15)

which can be evaluated by using the heat-kernel of the Dirac operator D. The appear-
ance of the heat kernel is a sign for a relation to quantum field theory where the heat
kernel is a very convenient tool for studying one-loop divergences, anomalies and
various asymptotics of the effective action.

Away from this operator expression for the Godbillon-Vey invariant, there are
geometrical evaluations which are not defined on the leaf space but rather on the
whole manifold. As mentioned above, this invariant admits values in the real num-
bers and we can evaluate them according to the type of the number: for integer
values one obtains the Euler class and for rational numbers the Pontrjagin class (for
the corresponding bundles). Therefore using the ideas of Sect. 15.5, we obtain the
Einstein-Hilbert and the Holst action but also a correction given by irrational values
of the Godbillon-Vey number.

15.8 The Scaling Behavior of the Action

A good test for the theory is the dependence of the action (15.15) on the scale. The
theory has a strong geometrical flavor and therefore the scaling behavior can be
understood by a geometrical construction using the exotic R4. As explained above,
the central point in the construction is the Casson handle. From the scaling point of
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view, the Casson handle contains disks of any size (with respect to the embedding
R4 ↪→ R4). The long scales are given by the first levels of the Casson handle whereas
the small scales are represented by the higher levels of the Casson handle.

15.8.1 Long-Scale Behavior (Einstein-Hilbert Action)

Let us consider the small exotic R4. From the physics point of view, the large scale
is given by the first levels of the Casson handle. In the construction of the foliation
of R4, the first levels describe a polygon in the hyperbolic space H

2 with a finite and
small number of vertices. The Godbillon-Vey number of this foliation is given by
the volume of this polygon. In principle, it is also true for the inclusion of the higher
levels (and also for the whole Casson handle) but every higher level gives only a
very small contribution to the Godbillon-Vey number. Therefore, the first levels of
the Casson handle can be simply characterized by the Godbillon-Vey number, i.e. by
the size of the polygon in the scale r . Then the Godbillon-Vey number is given by
GV = r2. In [16] we analyzed this situation and found the relation

GV
r→∞= r2

∫
D2

(
gμν∂kξ

μ∂kξν
)
d2x

to the Godbillon-Vey number. Here we integrate over the disk (equal to the polygon)
which is used to define the foliation. This model is the non-linear sigma model (for
the embedding of the disk into Yn with metric g) depending on the scale r2. The
scaling behavior of this model was studied in [56] and one obtains the RG flow
equation

∂

∂r2
gμν = Rμν + 1

r2

(
RμλκιR

λκι
ν

) + O(r−4) (15.16)

reducing to the Ricci flow equations for large scales (r → ∞). The fixed point of this
flow are geometries of constant curvature (used to prove the Thurston geometrization
conjecture). Therefore in the classical limit of large scales, we obtain a geometry of
the 3-manifold of constant curvature whereas for small scales one has to take into
account higher curvature corrections. On the spacetime, one has also flow equations
from one 3-manifold of constant curvature to another 3-manifold of constant curva-
ture. This flow equation is equivalent to the (anti-)self-dual curvature (or instantons)
by using the gradient flow of the Chern-Simons functional [52]. This approach has
much in common with the non-linear graviton of Penrose [79]. We will explain these
ideas in Sect. 15.9.1.
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15.8.2 Short-Scale Behavior

For the short scale, we need the full power of the Casson handle. As a first step we can
evaluate the action (15.15) so that the Dirac operator D acts on usual square-integrable
functions, so that [D, Xμ] = dXμ is finite. Then the action (15.15) reduces to

S = Trω(ημν(∂k X
μ∂k Xν)|D|−2)

where μ, ν = 1, . . . , 4 is the index for the coordinates on R4 and k = 1, 2 represents
the index of the disk (inside of the Casson handle). Now we will choose a small
fluctuation ξk of a fixed embedding of the disk in the Casson handle given by Xμ =
(xk + ξμ)δ

μ
k with ∂l xk = δkl . Then we obtain

∂k X
μ∂k Xν = δ

μ
k δν

k (1 + ∂kξ
μ)(1 + ∂kξ

ν)

and we use a standard argument to neglect the terms linear in ∂ξ: fluctuations have
no preferred direction and therefore only the square contributes. Then we have

S = Trω(ημν(δ
μ
k δν

k + ∂kξ
μ∂kξν)|D|−2)

for the action. By using a result of [42] one obtains for the Dixmier trace

Trω(|D|−2) = 2
∫
D2

∗(Φ1)

with the first coefficient Φ1 of the heat kernel expansion [21]

Φ1 = 1

6
R

and the action simplifies to

S =
∫
D2

(
2

3
R + ∂kξ

μ∂kξν 1

3
R

)
dvol(D2) (15.17)

for the main contributions where R is the scalar curvature of the embedded disk
D2. Again, but now for small fluctuations, we obtain the flow equation (15.16) but
we have to consider the small case r → 0. Then we have to take arbitrary curva-
ture contributions into account. This short calculation showed that the short-scale
behavior is given by a two-dimensional action. In the next section we will under-
stand this behavior geometrically. For small fluctuations we obtained a disk but what
happens for larger fluctuations? Then we have to take even the higher levels of the
Casson handle into account. These higher levels form a complicated surface with a
fractal structure (a generalization of the Cantor set). Then the action (15.17) has to
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be replaced by an integral over this fractal space. For the evaluation of the quantum
action (15.15) one can use the ideas of noncommutative geometry as used for fractals
and quasi-Fuchsian groups, see [42] (Sect. IV.3).

15.9 Some Properties of the Theory

In this section we will present some properties of the theory. For an impression, it is
enough to present the main ideas. The details will be published separately.

15.9.1 The Graviton

By using the large scale behavior in Sect. 15.8.1, we have to consider Ricci-flat
spaces and an easy calculation gives the well-known propagator in the linearized
version, however, we are not interested in the linearized version. GRT is a highly
non-linear theory and therefore one has to take this non-linearity into account. The
Ricci-flatness of the spacetime goes over to the 3-manifold as the spatial component
where it implies a 3-manifold of constant curvature (as fixed point of the Ricci flow).
Then as shown by Witten [103–105], the 3-dimensional Einstein-Hilbert action

∫
N

R(3)

√
h d3x = L · CS(N , A)

is related to the Chern-Simons action CS(N , A) with respect to the (Levi-Civita)
connection A and the length L . By using the Stokes theorem we obtain

SEH (N × [0, 1]) =
∫
MT

tr(F ∧ F) ,

i.e. the action for the 4-manifold N × [0, 1] (as local spacetime) with the curvature
F = DA, i.e. the action is the (topological) Pontrjagin class of the 4-manifold. From
the formal point of view, the curvature 2-form F = DA is generated by a SO(3, 1)

connection A in the frame bundle, which can be lifted uniquely to a SL(2, C)-
(Spin-) connection. According to the Ambrose-Singer theorem, the components of
the curvature tensor are determined by the values of holonomy which is in general
a subgroup of SL(2, C). Thus we start with a suitable curvature 2-form F = DA
with values in the Lie algebra g of the Lie group G as subgroup of the SL(2, C).
The variation of the Chern-Simons action gets flat connections DA = 0 as solutions.
The flow of solutions A(t) in N × [0, 1] (parametrized by the variable t , the ‘time’)
between the flat connection A(0) in N × {0} to the flat connection A(1) in N × {1}
will be given by the gradient flow equation (see for instance [52])
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d

dt
A(t) = ± ∗ F(A) = ± ∗ DA (15.18)

where the coordinate t is normal to N . Therefore we are able to introduce a connection
Ã in N × [0, 1] so that the covariant derivative in t-direction agrees with ∂/∂t .
Then we have for the curvature F̃ = DÃ, where the fourth component is given
by F̃4μ = d Ãμ/dt . Thus we will get the instanton equation with (anti-) self-dual
curvature

F̃ = ± ∗ F̃ .

It follows

SEH ([0, 1] × N ) =
∫

N×[0,1]
tr(F̃ ∧ F̃) = ±

∫
N×[0,1]

tr( F̃ ∧ ∗F̃) ,

(i.e. the MacDowell–Mansouri action).
We remark the main point in this argumentation: we obtain a self-dual curva-

ture as gradient flow between two 3-manifolds of constant curvature. Of course,
(anti-)self-dual curvatures are also solutions of Einsteins equation (but the reverse is
not true). Following Penrose [79], we call these solutions the nonlinear graviton.

15.9.2 Relations to the Quantum Groups

Above we constructed the observable algebra from the foliation leading to the Kauff-
man bracket skein module. In the subsection we will discuss the relation to lattice
gauge field theory. Main source for this discussion is the work of Bullock, Frohman
and Kania-Bartoszyńska [35–37, 58]. In this paper the authors realize that gauge
fields come from the restricted dual of the Hopf algebra on which the theory is
based. This leads to a coordinate free formulation. Then they comultiply connec-
tions in a way that implies the usual exchange relations for fields while preserving
their evaluability. Their new foundations allow them to compute Wilson loops and
many other operators using a simple extension of tangle functors. Then they analyzed
the structure of the algebra of observables. In their viewpoint, the observables cor-
respond to quantum groups seen as rings of invariants of n-tuples of matrices under
conjugation. The connection with lattice gauge field theory is that each n-tuple of
matrices corresponds to a connection on a lattice with one vertex and n-edges, with
the gauge fields based on a classical group. The construction given in this paper
leads to an algebra of “characters” of a surface group with respect to any ribbon
Hopf algebra. The algebras are interesting from many points of view: They gener-
alize objects studied in invariant theory; they should provide tools for investigating
the structure of the mapping class groups of surfaces; and they should give a way of
understanding quantum invariants of 3-manifolds. The algebra of observables based
on the enveloped Lie algebra U (g) is proved to be the ring of G-characters of the
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fundamental group of the associated surface. Then, given the ring of G-characters
of a surface group, they showed that the observables based on the corresponding
Drinfeld-Jimbo algebra form a quantization with respect to the usual Poisson struc-
ture. Furthermore they proved for the classical groups that the algebra of observables
is generated by Wilson loops. Finally, invoking a quantized Cayley-Hamilton iden-
tity, they obtain a new proof, that the Uh(sl2)-characters of a surface are exactly
the Kauffman bracket skein module of a cylinder over that surface. The power of
lattice gauge field theory is that it places the representation theory of the underlying
manifold and the quantum invariants in the same setting. Ultimately the asymptotic
analysis of the quantum invariants of a 3-manifold in terms of the representations
of its fundamental group should flow out of this setting. The identification of the
representation theory of a quantum group with that of a compact Lie group leads
to rigorous integral formulas for quantum invariants of 3-manifolds. This should in
turn lead to a simple explication of the relationship between quantum invariants and
more classical invariants of 3-manifolds.

This relation to lattice gauge field theory seems to imply an underlying discrete
structure of the space and/or spacetime, but the approach in the paper uncovers the
reason [35–37, 58]: the Kauffman bracket skein module is discrete structure con-
taining only a finite amount of information. Therefore, any description has to be
discrete as well including the approach via gauge fields. This idea can be extended
to the 4-manifold. As explained above, every smooth 4-manifold can be effectively
described by handles and one only needs a finite number to describe every com-
pact 4-manifold. Then the handles can be simply triangulated by using simplices
to end up with a piecewise-linear (or PL) structure. The surprising result of Cerf
for manifolds of dimension smaller than 7 was simple: PL-structure (or triangula-
tions) and smoothness structure are the same. This implies that every PL-structure
can be smoothed to a smoothness structure and vice versa. Therefore the discrete
approach (via triangulations) and the smooth approach to defining a manifold are
the same! So, our spacetime admits a kind of duality: it contains discrete information
in its handle structure but it is a continuous space at the same time. Both approaches
are interchangeable. Therefore the underlying structure of the spacetime is discrete
but the spacetime itself is a smooth 4-manifold. Or, the information contained in a
smooth 4-manifold is finite.

15.9.3 Dimensional Reduction and Exotic Smooth Black
Holes

In [9] we described an exotic black hole by constructing a smooth metric for the
interior. Here we will present the main argument shortly.

In [31] the existence of an exotic Black hole (as exotic Kruskal space) using an
exotic R

4 was suggested. The idea was simply to consider the complement R
4\(D3 ×

R) = S2 × R
2 where × was only understood topologically. In case of the exotic small
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R
4 given by a Casson handle, we can reproduce our construction of an exotic S2 × R

2

by using a Casson handle. Therefore we will here concentrate on the representation
of the exotic S2 × R

2 by using the Casson handle CH to get

S2 ×Θ R
2 = D2 ∪∂CH CH.

In [74] the analytical properties of the Casson handle were discussed. The main idea
is the usage of the theory of end-periodic manifolds, i.e. an infinite periodic structure
generated by W glued along a compact set K to get

S2 ×Θ R
2 = K ∪N W ∪N W ∪N · · ·

the end-periodic manifold. The definition of an end-periodic manifold is very formal
(see [93]) and we omit it here. All Casson handles generated by a balanced tree
have the structure of end-periodic manifolds as shown in [74]. By using the theory
of Taubes [93] one can construct a metric on · · · ∪N W ∪N W ∪N · · · by using the
metric on W . Then a metric g in S2 ×Θ R

2 transforms to a periodic function ĝ on
the infinite periodic manifold

Ỹ = · · · ∪N W−1 ∪N W0 ∪N W1 ∪N · · ·

where Wi is the building block W at the i-th place. To reflect the number of the
building block, we have to extend ĝ to Y × C

∗ by using a metric ĝz holomorphic
in z ∈ C

∗ = S1 with Y = W/ i where i identifies the two boundaries of W . From
the formal point of view we have the generalized Fourier-Laplace transform (or
Fourier-Laplace transform for short)

ĝz(.) =
∞∑
n=0

anz
n · ĝ(.) (15.19)

where the coefficient an represents the building block Wn in Ỹ . Without loss of
generality we can choose the coordinates x in M so that the 0-th component x0 is
related to the integer n = [x0] via its integer part [ ]. Using the inverse transformation
we can construct a smooth metric g in Ỹ at the n-th building block via

(T̃ ng)(x) = 1

2πi

∫
|z|=s

z−n ĝz(π(x))
dz

z
(15.20)

for x ∈ Ỹ , s ∈ (0,∞), n = [x0] with the projection π : Ỹ → Y (mathematically: Ỹ
is the universal cover of Y like R is the universal cover of S1). In the case of the
Kruskal space we have the metric
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ds2 =
(

2M3

r

)
exp

(
− r

2M

) (−dv2 + du2
) + r2

(
dθ2 + sin2 θdφ2

)
(15.21)

in the usual units with a singularity at r = 0 used for the whole space S2 × R
2. The

coordinates (u, v) together with the relation

u2 − v2 =
( r

2M
− 1

)
exp

(
− r

2M

)
(15.22)

represent R
2 and the angles (θ,φ) the 2-sphere S2 parametrized by the radius r .

Clearly this metric can be also used for each building block W having the topo-
logical structure D3 × S1 = W with two attaching regions topologically given by
D2 × S1 = N forming the boundary S2 × S1 = ∂(D3 × S1) (see the description of a
Casson handle above). Remember that the Casson handle is topologically the subset
D2 × R

2 ⊂ S2 × R
2. Now we consider the decomposition W = D2 × (D1 × S1)

and the part D1 × S1 will be later the R
2 part of the Casson handle. The size of the

D2 is parametrized by r as above. Then we obtain the metric (15.21) for the building
block W .

Our model of the black hole based on the implicit dependence of the two coordi-
nates (u, v) on the parameter r , the radius of the 2-sphere. Therefore we choose for
the coordinate z ∈ C

∗ the relation z = exp(ir) and obtain a metric ĝ on Y × C
∗. So,

we make the assumptions:

1. The coordinate z is related to the radius by z = exp(ir).
2. Only the (u, v) part of the metric is periodic and we do not change the other

component r2
(
dθ2 + sin2 θdφ2

)
of the metric.

3. The integer part n = [v] of the coordinate v gives the number of the building
block Wn in the Casson handle (seen as end-periodic manifold).

4. The metric on S2 ×θ R
2 is given by a Fourier transformation (15.20) of the (u, v)

part of the metric in the building block W .

Some more comments are in order. The number n = [v] is related to the coordinate v

as substitute of “time”. The metric g in Ỹ is smooth with respect to v and we obtain the
number of the building block by n = [v]. To express this property we have to identify
(u, v) with the coordinates of D1 × S1. Then we obtain the metric on S2 ×θ R

2 by
the generalized Fourier-Laplace transformation of the metric on Y = W/ i using the
metric of the building block W and the coordinate z similar to (15.20)

g(v, u, θ,φ) =
∫

exp (irv) ĝr (v, u, θ,φ)dr

Especially the singular part of the metric (i.e. the (u, v) part) on the building block W

(ĝr )00 =
(

2M3

r

)
exp

(
− r

2M

)
= (ĝr )11
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Fig. 15.8 Hyperbolic
triangle with increasing
curvature (from left to right),
the tree is the limit and a
dimensional reduction 2D to
1D

transforms to the Heaviside jump function

g00 = g11 = 2M3Θ(v2 − u2 − 1)

using the relation (15.22), having no singularity. The metric vanishes, however, for
large values of v in the interior of the black hole. This sketch of some arguments
gives a hint that the transformation of the smoothness to exotic smoothness could
possibly smooth out some singularity in the black hole case. This metric vanishes
along two directions or one obtains a dimensional reduction from 4D to 2D. But, is
there a geometrical reason for this reduction? A hyperbolic 3-manifold M admits a
hyperbolic structure by fixing a homomorphism π1(M) → SL(2, C) (up to conjuga-
tion). From the physics point of view, this homomorphism is given by the holonomy
along a closed curve (as element in π1(M)) for a flat connection. A sequence of
these holonomies does not converge but it is possible to compactify the space of
flat SL(2, C) connections. This limit can be understood geometrically: the hyper-
bolic 3-manifold is triangulated by tetrahedrons. However, because of the hyperbolic
geometry, the edge between two vertices is not the usual line but rather a geodesics
in the hyperbolic geometry. The curvature of this geodesics depends on the hyper-
bolic structure. In the limit, all geodesics of the tetrahedron meet and one obtains a
tree instead of tetrahedrons. Therefore in the limit of large curvature, one obtains a
reduction from 3D (=tetrahedrons) to 1D (=tree). Figure 15.8 visualizes the transition
from 2D(triangle) to 1D(tree).

15.10 Where Do the Quantum Fluctuations Come From?

In a purely geometrical theory, one has to answer this question. It cannot be shifted
to assume the appearance of quantum fluctuations. Instead we have to understand
the root of these quantum fluctuations. Starting point of our approach is the foliation
of the exotic R4 by using the Anosov flow. Main point in the argumentation above
is the appearance of the hyperbolic geometry in 3- and 4-dimensional submanifolds.
The foliation can, however, be interpreted differently: a foliation defines a dynamics
at a manifold leading to a splitting into leafs (the integral curves of the dynamics).
Therefore, a tiny variation in the initial conditions will lead to a strong variation
of the corresponding integral curve. This chaotic behavior is a natural consequence
of the exotic smoothness structure (leading to the non-trivial PSL(2, R)-foliation).
For completeness we will describe this dynamics, called the Anosov flow. For that
purpose we consider the standard basis
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J = 1

2

(
1 0
0 −1

)
, X =

(
0 1
0 0

)
, Y =

(
0 0
1 0

)
(15.23)

of the Lie algebra sl(2, R) with

[J, X ] = X [J,Y ] = −Y [X,Y ] = 2J

leading to the exponential maps

gt = exp(t J ) =
(
et/2 0
0 e−t/2

)
h∗
t = exp(t X) =

(
1 t
0 1

)
ht = exp(tY ) =

(
1 0
t 1

)

defining right-invariant flows on the unit tangent bundle T1H = PSL(2, R) of the
hyperbolic space. The connection to the Anosov flow comes from the realization
that gt is the geodesic flow on P = T1H. With Lie vector fields being (by definition)
left invariant under the action of a group element, one has that these fields are left
invariant under the specific elements gt of the geodesic flow. This flow goes over to
a surface M = H/Γ defined by a subgroup Γ ⊂ PSL(2, R) with Q = T1M . Now
the geodesic flow gt acts on the exponential maps gs, h∗

t , ht so that the geodesic flow
itself is invariant, gsgt = gtgs = gs+t , but the other two shrink and expand: gsh∗

t =
h∗
t ·exp(−s)gs and gsht = ht ·exp(s)gs . Then the bundle T Q splits into three subbundles

T Q = E+ ⊕ E0 ⊕ E−

where one bundle E+ expands, one bundle E− contracts and one bundle E0 is invari-
ant w.r.t. geodesic flow. This property is crucial for the following discussion. Because
of the expanding behavior of one subbundle, the Anosov flow is the generator of a
chaotic dynamics. Therefore, two geodesics diverge exponentially in this foliation,
but this behavior goes over to the holonomies characterizing the geometry. The
transport of a holonomy along two diverging geodesics can lead to totally different
holonomies. Currently this dynamics is deterministic, i.e. if we choose exactly the
same initial condition then we will end at the state (seen as limit point). This situation
changes if we are unable to choose the initial condition exactly (by choosing real
numbers) but instead we can only choose a rational number where this rational num-
ber is the characterizing property of the state. Then all initial conditions (represented
by all real numbers) in this class represent the same state but have totally different
limit points of the corresponding dynamics. Now we will describe this dynamics.

Starting point is the observable algebra X (S, SL(2, C), i.e. the space of
holonomies π1(S) → SL(2, C) (i.e. homomorphisms) up to conjugation, see
Sect. 15.6.3.1. The deformation quantization (see Sect. 15.6.3.2) is the Kauffman
bracket skein module. Here we made use of the identity

tr(A) · tr(B) = tr(AB) + tr(AB−1)
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between two elements A, B ∈ SL(2, C) (w.r.t. a representation). Using the group
commutator [A, B] = ABA−1B−1 one also obtains

2 + tr([A, B]) = (tr(A))2 + (tr(B))2 + (tr(AB))2 − tr(A)tr(B)tr(AB)

According to deformation procedure, pairs of elements A, B ∈ SL(2, C) coming
from closed curves via the holonomy and fulfilling

tr([A, B]) = ±2

can be a canonical pair w.r.t. the symplectic structure. The sign is purely convention
and we choose tr([A, B]) = −2. Then the canonical pair has to fulfill the equation

(tr(A))2 + (tr(B))2 + (tr(AB))2 − tr(A)tr(B)tr(AB) = 0

which can be written in a more familiar form

x2 + y2 + z2 − 3xyz = 0 (15.24)

Fig. 15.9 Binary tree of Markoff numbers as solution of equation (15.24)
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by using 3x = tr(A), 3y = tr(B), 3z = tr(AB). Because of the discreteness of
π1(S), we have to look for rational solutions of this equation (Diophantine equa-
tion). The solutions of the equation are Markoff triples forming a binary tree (see
Fig. 15.9).

The set of these elements A, B corresponding to discrete groups is known to be
fractal in nature [27]. It is the large class of quasi-Fuchsian groups having a fractal
curve (Julia set) as limit set. Then we have the desired behavior:

The set of canonical pairs (as measurable variables in the theory) forms a fractal
subset of the space of all holonomies. Thenwe can only determine the initial condition
up to discrete value (given by the canonical pair) and the chaotic behavior of the
foliation (i.e. the Anosov flow) makes the limit not predictable.

At the end of this section, one remark about the role of the canonical pair. It is
always possible to construct a classical continuous random field that has the same
probability density as the quantum vacuum state. Furthermore it is known that a
random field can be generated by a chaotic dynamics. There is, however, a large
difference between the classical random field and a quantum field: there are pairs of
not equally accurate measurable observables (mostly the canonical pairs) for quantum
fields impossible for the classical random fields. With our approach, we showed the
same behavior for the canonical pairs.

15.11 Decoherence, Entanglement and Measurement

Our geometrical approach should also lead to a description of the measurement
process (including the collapse of the wave function). In Sect. 15.6, we constructed
the geometrical expression for a quantum state given by a wild embedding (the wild
S3). The reduction of the quantum state (as linear combination) to an eigenstate (or
the collapse of the wave function) is equivalent to a reduction of the wild embedding
to a tame embedding. Therefore we need a mechanism to reduce the wild embedding
to a tame one. The construction of the wild S3 is strongly related to the Casson handle.
The exoticness of the smooth structure of R4 and the wildness of the S3 depend both
on the self-intersection of some disk. If we are able to remove these self-intersections
then we will obtain the desired reduction. According to the discussion in Sect. 15.3.2,
one needs a Casson handle for the cancellation. How many levels of the Casson handle
are needed to cancel the self-intersection? This question was answered by Freedman
[54]: one needs three levels (a three-level Casson tower)! At the same time, however,
one produces more self-intersections in the higher levels. Therefore one needs a little
bit more: a Casson tower where a complete Casson handle can be embedded. Then
this Casson handle is able to cancel the self-intersection and we will obtain a tame
embedding or a classical state. As shown by Freedman [53] and Gompf/Singh [67],
one needs a 5-stage Casson tower so that a Casson handle with the same attaching
circle can be embedded into this 5-stage tower. We obtain a process which is “the
collapse of the wave function”. What is the cause of this collapse? As explained above,
we cannot choose a single disk to remove the self-intersections. Instead we have to
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choose a Casson tower where each stage is a boundary-connected sum of S1 × D3,
i.e. its boundary is the sum S1 × S2#S1 × S2# · · · where the number of components
is equal to the number of self-intersections. So, every piece S1 × S2 of the boundary
is given by the identification of the two boundary components for S2 × [0, 1]. In
Sect. 15.5, we identified this 3-manifold with the graviton or the collapse of the wave
function is caused by a gravitational interaction. The corresponding process is known
as decoherence. In the following we will calculate the minimal decoherence time for
the gravitational interaction. The 5-stage Casson tower can be also understood as a
cobordism between the 3-manifold

Σ0 = S1 × S2

(the S1 defines the attaching circle) and a 3-manifold having the same homology. In
case of the simplest Casson tower, it is given by five complements of the Whitehead
link C(Wh) closed by two solid tori, i.e.

Σ1 = (D2 × S1) ∪ C(Wh) ∪ C(Wh) ∪ C(Wh) ∪ C(Wh) ∪ C(Wh) ∪ (D2 × S1)

and this manifold can be very complicated for more complex towers. Now we will add
some geometry to calculate the decoherence time. As shown by Witten [103–105],
the action ∫

Σ0,1

3R
√
h d3x = L · CS(Σ0,1) (15.25)

for every 3-manifold (in particular for Σ0 and Σ1 denoted by Σ0,1) is related to the
Chern-Simons action CS(Σ0,1). The scaling factor L is related to the volume by
L = 3

√
vol(Σ0,1) and we obtain formally

L · CS(Σ0,1, A) = L3 · CS(Σ0,1)

L2
=

∫
Σ0,1

CS(Σ0,1)

L2 · vol(Σ0,1)

√
h d3x (15.26)

by using

L3 · vol(Σ0,1) =
∫

Σ0,1

√
h d3x

with the (unit) volume vol(Σ0,1). If Σ0,1 is a hyperbolic 3-manifold then the (unit)
volume is a topological invariant which cannot be normalized to 1. Together with

3R = 3k

a2
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one can compare the kernels of the integrals of (15.25) and (15.26) to get for a
fixed time

3k

a2
= CS(Σ0,1)

L2 · vol(Σ0,1)
.

This gives the scaling factor

ϑ = a2

L2
= 3 · vol(Σ0,1)

CS(Σ0,1)
(15.27)

where we set k = 1 in the following. The hyperbolic geometry of the cobordism is
best expressed by the metric

ds2 = dt2 − a(t)2hikdx
idxk (15.28)

also called the Friedmann-Robertson-Walker metric (FRW metric) with the scaling
function a(t) for the (spatial) 3-manifold. Mostow rigidity enforces us to choose

(
ȧ

a

)2

= 1

L2

in the length scale L of the hyperbolic structure. In the following we will switch to
quadratic expressions because we will determine the expectation value of the area. A
second reason for the consideration of quadratic expressions is again the hyperbolic
structure of H

2. We needed this structure for the construction of the foliation which
is given by a polygon in H

2. This polygon defines a compact surface of genus g > 1.
Then the foliation of the polygon induces a foliation of the small exotic R4. The area
of the polygon is mainly the Godbillon-Vey invariant of the foliation. It is known that
foliations of surfaces are given by quadratic differentials of the form defined below.
Here, there are deep connections to trees and SL(2, C) flat connections, i.e. a tree
defines a quadratic differential and vice versa [45, 71, 90, 106].

Using the previous equation, we obtain

da2 = a2

L2
dt2 = ϑ dt2 (15.29)

with respect to the scale ϑ. By using the tree of the Casson handle, we obtain a
countable infinite sum of contributions for (15.29). Before we start we will clarify
the geometry of the Casson handle. A Casson handle admits a hyperbolic geometry.
Therefore the tree corresponding to the Casson handle must be interpreted as a
metric tree with hyperbolic structure in H

2 and metric ds2 = (dx2 + dy2)/y2. The
embedding of the Casson handle in the cobordism is given by the rules



294 T. Asselmeyer-Maluga

1. The direction of the increasing levels n → n + 1 is identified with dy2 and dx2

is the number of edges for a fixed level with scaling parameter ϑ.
2. The contribution of every level in the tree is determined by the previous level best

expressed in the scaling parameter ϑ.
3. An immersed disk at level n needs at least one disk to resolve the self-intersection

point. This disk forms the level n + 1 but this disk is connected to the previous
disk. So we obtain for da2|n+1 at level n + 1

da2|n+1 ∼ ϑ · da2|n
up to a constant.

By using the metric ds2 = (dx2 + dy2)/y2 with the embedding (y2 → n + 1,
dx2 → ϑ) we obtain for the change dx2/y2 along the x-direction (i.e. for a fixed y)

ϑ
n+1 . This change determines the scaling from the level n to n + 1, i.e.

da2|n+1 = ϑ

n + 1
· da2|n = ϑn+1

(n + 1)! · da2|0

and after the whole summation (as substitute for an integral in case of discrete values)
we obtain for the relative scaling

a2 =
∞∑
n=0

(
da2|n

) = a2
0 ·

∞∑
n=0

1

n!ϑ
n = a2

0 · exp (ϑ) = a2
0 · lscale (15.30)

with da2|0 = a2
0 . The Chern-Simons invariant for Σ0 vanishes and we are left with

CS(Σ1) = 5

8

and the complements C(Wh) are hyperbolic 3-manifolds with

vol(Σ1) = 5 · vol(C(Wh)) ≈ 18.31931...

by using the software Snapea. Finally for the scaling we obtain

ϑ ≈ 87.932688...

and for the time we have to choose

Tdecoherence = T0 · exp

(
ϑ

2

)

using the well-known relation a0 = cT0 between length and time, i.e. we see one
coordinate along the Casson handle as time axis. The time T0 has to be identified
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Fig. 15.10 Two disjoint
circles get linked after the
application of the skein
relation for the area marked
by the small circles

with the Planck time T0 ≈ 10−43s (see Sect. 15.5) so that

Tdecoherence ≈ 10−24s

is the minimal decoherence time for the gravitational interaction.
Now we also discuss the entanglement which has to be also geometrically

expressed. A quantum state is an element of the skein algebra Kt (S) for S × [0, 1].
For two disjoint surfaces S0 � S1 one has

Kt (S0 � S1) = Kt (S0) ⊗ Kt (S1).

Now let us choose a knot |0〉 in S0 × [0, 1] as element of Kt (S0) as well a knot |1〉
in Kt (S1). Then |0〉 ⊗ |1〉 is an element of Kt (S0 � S1). Furthermore we can assume
that the knots |1〉 and |0〉 can be also an element of Kt (S0) and Kt (S1), respectively.
Then the element

|0〉 ⊗ |1〉 + |1〉 ⊗ |0〉

exists but now as an element of Kt (S) with S0 � S1 ⊂ S. Using the skein relations
in Kt (S), see Fig. 15.7, we obtain a linking between the corresponding knots, i.e.
|0〉 and |1〉 forming a link. Figure 15.10 visualizes the transition from disjoint circles
(=disjoint states) to linked circles (=entangled states). Then entanglement is reduced
to a linking!

Next we have to think about the measurement which reduces the entangled state
to one product state. Here we will only present some rough ideas for the description
of the measurement process, but at first we have to define a measurement device.
In this proposal, it is a union of Casson handles which can be used to unlink two
linked components. At the level of skein algebras, the Casson handle is also given
by elements of a skein algebra (given by closed, knotted curves at the levels). The
particular structure of the Casson handle is not determined (see also Sect. 15.10).
Now a given quantum state is linked to this Casson handle. The limit point of the
Casson handle (i.e. the leafs of the tree) give the result of the unlinking. All limit
points of the Casson handle have a fractal structure (a Cantor set) expressing our
inability to know the outcome of the measurement. The tree structure of the Casson
handle has also another effect: the limit points are exponentially separated from each
other and can be seen as classical states. With these speculations, we will close this
section.
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15.12 Some Implications for Cosmology

In the last section we will collect some implications for a cosmological model. Let
us assume the topology S3 × R for the spacetime but with an exotic smoothness
structure S3 ×θ R. One can construct this spacetime from the exotic R4 by R4\D4 =
S3 ×θ R. From previous work, we know:

• Cosmological anomalies like dark matter and dark energy are (conjecturally)
rooted in exotic smoothness [7].

• The initial state of the cosmos must be a wild 3-sphere representing a quantum
state [16].

• Then there is an inflationary phase [18] driven by a decoherence which can be
described by the Starobinsky model.
In this model, we have a topological transition from a 3-manifold Σ0 to another 3-
manifold Σ1. Both 3-manifolds are homology 3-spheres. Therefore let us describe
this change (a so-called homology cobordism) between two homology 3-spheres
Σ0 and Σ1. The situation can be described by a diagram

Σ1
Ψ−→ R

φ ↓ � � id (15.31)

Σ0
ψ−→ R

which commutes. The two functions ψ and Ψ are the Morse function of Σ0 and Σ1,
respectively, with Ψ = ψ ◦ φ. The Morse function over Σ0,1 is a function Σ0,1 →
R having only isolated, non-degenerated, critical points (i.e. with vanishing first
derivatives at these points). A homology 3-sphere has two critical points (located
at the two poles). The Morse function looks like ±||x ||2 at these critical points. The
transition y = φ(x) represented by the (homology) cobordism M(Σ0,Σ1) maps
the Morse function ψ(y) = ||y||2 on Σ0 to the Morse function Ψ (x) = ||φ(x)||2
on Σ1. The function −||φ||2 represents also the critical point of the cobordism
M(Σ0,Σ1). As we learned above, this cobordism has a hyperbolic geometry and
we have to interpret the function ||φ(x)||2 not as an Euclidean form but change it
to the hyperbolic geometry so that

−||φ||2 = − (
φ2

1 + φ2
2 + φ2

3

) → −e−2φ1(1 + φ2
2 + φ2

3)

i.e. we have a preferred direction represented by a single scalar field φ1 : Σ1 → R.
Therefore, the transition Σ0 → Σ1 is represented by a single scalar field φ1 :
Σ1 → R and we identify this field as the moduli. Finally we interpret this Morse
function in the interior of the cobordism M(Σ0,Σ1) as the potential (shifted away
from the point 0) of the scalar field φ with Lagrangian

L = R + (∂μφ)2 − ρ

2
(1 − exp (−λφ))2
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with two free constants ρ and λ. For the value λ = √
2/3 and ρ = 3M2 we obtain

the Starobinski model [89] (by a conformal transformation using φ and a redefin-
ition of the scalar field [100])

L = R + 1

6M2
R2 (15.32)

with the mass scale M � MP much smaller than the Planck mass. From our
discussion above, the appearance of this model is not totally surprising. It favors a
surface to be incompressible (which is compatible with the properties of hyperbolic
manifolds).

• This inflationary phase is followed by another exponentially increasing phase lead-
ing to a hyperbolic 4-manifold with constant curvature which is rigid by Mostow
rigidity [18]. Here, we obtained the global geometry of the spacetime: it is a de Sit-
ter space SO(4, 1)/SO(3, 1) with a cosmological constant which is the curvature
of the spacetime.

• This constant curvature can be identified with the cosmological constant in good
agreement with the Planck satellite results [18]. The cosmological constant is
constant by Mostow rigidity (but now for the 4-manifold).

• The topology of the spatial component (seen as 3-manifold) is strongly restricted
[15] by the smoothness of the spacetime.

• The inclusion of matter can be done naturally as direct consequence of exotic
smoothness [10].

• The interior of black holes can be described by exotic smoothness where the
singularity is smoothed out [9].

15.13 Conclusion and Open Questions

Smooth Quantum Gravity, the usage of exotic smoothness structures on 4-manifolds,
are the attempt to obtain a consistent theory of quantum gravity without any further
assumptions. For us, the change of the smoothness structure is the next step in
extending General Relativity, where non-Euclidean geometry was used to describe
gravity and all accelerations. Then, two different smoothness structures represent
two different physical systems. In particular I think that the standard smoothness
structure represents the case of a spacetime without matter and non-gravitational
fields. In this paper we are going a more radical way to construct a quantum theory
without quantization but by using purely geometrical ideas from mathematical topics
like differential and geometric topology. The flow of ideas can be simply described
by the following points:

• An exotic R
4 is given by an infinite handlebody (so one needs infinitely many

charts) and one finds also the description by an infinite sequence of 3-manifolds
together with 4-dimensional cobordisms connecting them.
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• Every 3-manifold admits a codimension-one foliation which goes over to the 4-
dimensional cobordisms. The leaf space of this foliation is an operator algebra
with a strong connection to algebraic quantum field theory.

• The states (as linear functionals in the algebra) depend on knotted curves and are
elements of the Kauffman bracket skein algebra. The reconstruction of the spatial
space gives a wild embedded 3-sphere which is therefore related to the state, or
the quantum state can be identified with the wild embedding. The classical state
is a tame (i.e. usual) embedding where the deformation quantization of a tame
embedding is a wild embedding.

• The structure of the operator algebra can be analyzed by the Tomita-Takesaki
modular theory. Then it is possible to construct the quantum action by using the
quantized calculus of Connes.

• For large scales, one gets the Einstein-Hilbert action. Whereas for small scales,
one obtains a dimensional reduced action.

• The foliation is given by a hyperbolic dynamics having a chaotic behavior. For our
states, one gets an unpredictable behavior so that the dynamics can generate the
quantum fluctuations.

This list shows the current state but there are many open points, where we list only
the most important here:

• What is the Hamiltonian of the theory? In principle we constructed this operator
but have a problem connecting to Loop quantum gravity.

• What are the states seen as knots? The states are knots but the skein and Mandelstam
identities give a class of knots: the states are conjecturally the concordance class
of knots.

• Is the state a solution of the Hamiltonian? Here we conjecture that the concordance
class of the knot lies already in the kernel of the Hamiltonian (therefore it is a
solution of the Hamiltonian constraint).

A lot is done but there are also many open problems.
Happy Birthday Carl!
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Appendix A Casson Handles and Labeled Trees

Let us now consider the basic construction of the Casson handle CH . Let M be a
smooth, compact, simply-connected 4-manifold and f : D2 → M a (codimension-
2) mapping. By using diffeomorphisms of D2 and M , one can deform the mapping
f to get an immersion (i.e. injective differential) generically with only double points
(i.e. #| f −1( f (x))| = 2) as singularities [62]. But to incorporate the generic location
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of the disk, one is rather interesting in the mapping of a 2-handle D2 × D2 induced by
f × id : D2 × D2 → M from f . Then every double point (or self-intersection) of
f (D2) leads to self-plumbings of the 2-handle D2 × D2. A self-plumbing is an
identification of D2

0 × D2 with D2
1 × D2 where D2

0, D
2
1 ⊂ D2 are disjoint sub-disks

of the first factor disk. In complex coordinates the plumbing may be written as
(z, w) �→ (w, z) or (z, w) �→ (w̄, z̄) creating either a positive or negative (respec-
tively) double point on the disk D2 × 0. Consider the pair (D2 × D2, ∂D2 × D2)

and produce finitely many self-plumbings away from the attaching region ∂D2 × D2

to get a kinky handle (k, ∂−k) where ∂−k denotes the attaching region of the kinky
handle. A kinky handle (k, ∂−k) is a one-stage tower (T1, ∂

−T1) and an (n + 1)-stage
tower (Tn+1, ∂

−Tn+1) is an n-stage tower union of kinky handles
⋃n

�=1(T�, ∂
−T�)

where two towers are attached along ∂−T�. Let T−
n be (interior Tn) ∪ ∂−Tn and the

Casson handle
CH =

⋃
�=0

T−
�

is the union of towers (with direct limit topology induced from the inclusions Tn ↪→
Tn+1). A Casson handle is specified up to (orientation preserving) diffeomorphism
(of pairs) by a labeled finitely-branching tree with base-point *, having all edge
paths infinitely extendable away from *. Each edge should be given a label + or −
and each vertex corresponds to a kinky handle; the self-plumbing number of that
kinky handle equals the number of branches leaving the vertex. The sign on each
branch corresponds to the sign of the associated self plumbing. The whole process
generates a tree with infinite many levels. In principle, every tree with a finite number
of branches per level realizes a corresponding Casson handle. The simplest non-trivial
Casson handle is represented by the tree Tree+: each level has one branching point
with positive sign +. The reverse construction of a Casson handle CHT by using
a labeled tree T can be found in the appendix A. Let T1 and T2 be two trees with
T1 ⊂ T2 (it is the subtree) then CHT2 ⊂ CHT1 .Given a labeled based tree Q, let us
describe a subset UQ of D2 × D2. Now we will construct a (UQ, ∂D2 × D2) which
is diffeomorphic to the Casson handle associated to Q. In D2 × D2 embed a ramified
Whitehead link with one Whitehead link component for every edge labeled by +
leaving * and one mirror image Whitehead link component for every edge labeled
by −(minus) leaving *. Corresponding to each first level node of Q we have already
found a (normally framed) solid torus embedded in D2 × ∂D2. In each of these solid
tori embed a ramified Whitehead link, ramified according to the number of + and
− labeled branches leaving that node. We can do that process for every level of Q.
Let the disjoint union of the (closed) solid tori in the n-th family (one solid torus for
each branch at level n in Q) be denoted by Xn . Q tells us how to construct an infinite
chain of inclusions:

· · · ⊂ Xn+1 ⊂ Xn ⊂ Xn−1 ⊂ · · · ⊂ X1 ⊂ D2 × ∂D2

and we define the Whitehead decomposition WhCQ = ⋂∞
n=1 Xn of Q. WhCQ is the

Whitehead continuum [99] for the simplest unbranched tree. We define UQ to be
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UQ = D2 × D2\(D2 × ∂D2 ∪ closure(WhCQ))

alternatively one can also write

UQ = D2 × D2\ cone(WhCQ) (15.33)

where cone() is the cone of a space

cone(A) = A × [0, 1]/(x, 0) ∼ (x ′, 0) ∀x, x ′ ∈ A

over the point (0, 0) ∈ D2 × D2. As Freedman (see [53] Theorem 2.2) showed UQ

is diffeomorphic to the Casson handle CHQ given by the tree Q.

Appendix B Thurston Foliation of a 3-Manifold

In [94] Thurston constructed a foliation of the 3-sphere S3 which depends on a
polygon P in the hyperbolic plane H

2 so that two foliations are non-cobordant if
the corresponding polygons have different areas. For later usage, we will present
the main ideas of this construction only (see also the book [92] Chap. VIII for the
details). Starting point is the hyperbolic plane H

2 with a convex polygon K ⊂ H
2

having k sides s1, . . . , sk . Assuming the upper half plane model of H
2 then the sides

are circular arcs. The construction of the foliation depends mainly on the isometry
group PSL(2, R) of H

2 realized as rational transformations (and this group can be
lifted to SL(2, R)). The followings steps are needed in the construction:

1. The polygon K is doubled along one side, say s1, to get a polygon K ′. The sides
are identified by (isometric) transformations si → s ′

i (as elements of SL(2, R)).
2. Take ε-neighborhoods Uε(pi ),Uε(p′

i ) with ε > 0 sufficient small and set

V 2 = (
K ∪ K ′) \

k⋃
i=1

(
Uε(pi ) ∪Uε(p

′
i )

)

= S2\
k⋃

i=1

D2
i

having the topology of V 2 = S2\ {k punctures} and we set P = K ∪ K ′.
3. Now consider the unit tangent bundleUH

2, i.e. a S1-bundle over H
2 (or the tangent

bundle where every vector has norm one). The restricted bundle over V 2 is trivial
so that UV 2 = V 2 × S1. Let L , L ′ be circular arcs (geodesics) in H

2 (invariant
w.r.t. SL(2, R)) starting at a common point which define parallel tangent vectors
w.r.t. the metrics of the upper half plane model. The foliation of V 2 is given
by geodesics transverse to the boundary and we obtain a foliation of V 2 × S1

(as unit tangent bundle). This foliation is given by a SL(2, R)-invariant smooth
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1-form ω (so that ω = const.defines the leaves) which is integrable dω ∧ ω = 0.
(SL(2, R)-invariant Foliation FSL )

4. With the relation D2 = V 2 ∪ D2
1 ∪ · · · ∪ D2

k−1, we obtain D2 × S1 = V 2 × S1 ∪(
D2

1 × S1
) ∪ · · · ∪ (

D2
k−1 × S1

)
or the gluing of k − 1 solid tori to V 2 × S1 gives

a solid tori. Every glued solid torus will be foliated by a Reeb foliation. Finally
using S3 = (D2 × S1) ∪ (S1 × D2) (the Heegard decomposition of the 3-sphere)
again with a solid torus with Reeb foliation, we obtain a foliation on the 3-sphere.

The construction of this foliation FThurston (Thurston foliation) will be also work for
any 3-manifold. Thurston [94] obtains for the Godbillon-Vey number

GV (V 2 × S1,FSL) = 4π · vol(P) = 8π · vol(K )

and
GV (S3,FThurston) = 4π · Area(P) (15.34)

so that any real number can be realized by a suitable foliation of this type. Further-
more, two cobordant foliations have the same Godbillon-Vey number (but the reverse
is in general wrong). Let [1] ∈ H 3(S3, R) be the dual of the fundamental class [S3]
defined by the volume form, then the Godbillon-Vey class can be represented by

ΓFa = 4π · Area(P)[1] (15.35)

The Godbillon-Vey class is an element of the deRham cohomology H 3(S3, R). Now
we will discuss the general case of a compact 3-manifold carrying a foliation of the
same type like the 3-sphere above. The main idea of the construction is very simple
and uses a general representation of all compact 3-manifolds by Dehn surgery. Here
we will use an alternative representation of surgery by using the Dehn-Lickorish
theorem ([81] Corollary 12.4 at p. 84). Let Σ be a compact 3-manifold without
boundary. There is now a natural number k ∈ N so that any orientable 3-manifold
can be obtained by cutting out k solid tori from the 3-sphere S3 and then pasting
them back in, but along different diffeomorphisms of their boundaries. Moreover, it
can be assumed that all these solid tori in S3 are unknotted. Then any 3-manifold Σ

can be written as

Σ =
(
S3\

(
k⊔

i=1

D2
i × S1

))
∪φ1

(
D2

1 × S1
) ∪φ2 · · · ∪φk

(
D2

k × S1
)

where φi : ∂
(
S3\

(⊔k
i=1 D

2
i × S1

))
→ ∂D2

i × S1 is the gluing map from each

boundary component of
(
S3\

(⊔k
i=1 D

2
i × S1

))
to the boundary of ∂D2

i × S1. This

gluing map is a diffeomorphism of tori T 2 → T 2 (where T 2 = S1 × S1). The Dehn-
Lickorish theorem describes all diffeomorphisms of a surface: Every diffeomorphism
of a surface is the composition of Dehn twists and coordinate transformations (or
small diffeomorphisms). The decomposition
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S3 = (
V 2 × S1

) ∪ (
D2

1 × S1
) ∪ · · · ∪ (

D2
k−1 × S1

) ∪ (
S1 × D2

k

)
(15.36)

of the 3-sphere can be used to get a decomposition of Σ by

Σ = (
V 2 × S1) ∪φ1

(
D2

1 × S1) ∪φ2 · · · ∪φk

(
D2

k × S1)

which will guide us to the construction of a foliation on Σ :

• Construct a foliation FΣ,SL on V 2 × S1 using a polygon P (see above) and
• Glue in k Reeb foliations of the solid tori using the diffeomorphisms φi .

Finally we get a foliation FΣ,Thurston on Σ . According to the rules above, we are
able to calculate the Godbillon-Vey number

GV (Σ,FΣ,Thurston) = 4π · vol(P)

Therefore for any foliation of S3, we can construct a foliation on any compact 3-
manifold Σ with the same Godbillon-Vey number. Both foliations FThurston and
FΣ,Thurston agree for the common submanifold V 2 × S1 or there is a foliated cobor-
dism between V 2 × S1 ⊂ Σ and V 2 × S1 ⊂ S3. Of course, S3 and Σ differ by the
gluing of the solid tori but every solid torus carries a Reeb foliation which does not
contribute to the Godbillon-Vey number.

Appendix C 3-Manifolds and Geometric Structures

A connected 3-manifold N is prime if it cannot be obtained as a connected sum of
two manifolds N1#N2 neither of which is the 3-sphere S3 (or, equivalently, neither
of which is the homeomorphic to N ). Examples are the 3-torus T 3 and S1 × S2 but
also the Poincare sphere. According to [77], any compact, oriented 3-manifold is the
connected sum of a unique (up to homeomorphism) collection of prime 3-manifolds
(prime decomposition). A subset of prime manifolds are the irreducible 3-manifolds.
A connected 3-manifold is irreducible if every differentiable submanifold S home-
omorphic to a sphere S2 bounds a subset D (i.e. ∂D = S) which is homeomorphic
to the closed ball D3. The only prime but reducible 3-manifold is S1 × S2. For the
geometric properties (to meet Thurstons geometrization theorem) we need a finer
decomposition induced by incompressible tori. A properly embedded connected sur-
face S ⊂ N is called 2-sided5 if its normal bundle is trivial, and 1-sided if its normal
bundle is nontrivial. A 2-sided connected surface S other than S2 or D2 is called
incompressible if for each disk D ⊂ N with D ∩ S = ∂D there is a disk D′ ⊂ S
with ∂D′ = ∂D. The boundary of a 3-manifold is an incompressible surface. Most
importantly, the 3-sphere S3, S2 × S1 and the 3-manifolds S3/Γ with Γ ⊂ SO(4)

5The ‘sides’ of S then correspond to the components of the complement of S in a tubular neighbor-
hood S × [0, 1] ⊂ N .
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Fig. 15.11 Torus (JSJ-) decomposition, Hi hyperbolic manifold, Si Graph-manifold, Ti Tori

a finite subgroup do not contain incompressible surfaces. The class of 3-manifolds
S3/Γ (the spherical 3-manifolds) include cases like the Poincare sphere (Γ = I ∗
the binary icosaeder group) or lens spaces (Γ = Zp the cyclic group). Let Ki be
irreducible 3-manifolds containing incompressible surfaces then we can N split into
pieces (along embedded S2)

N = K1# · · · #Kn1 #n2 S
1 × S2#n3 S

3/Γ , (15.37)

where #n denotes the n-fold connected sum and Γ ⊂ SO(4) is a finite subgroup.
The decomposition of N is unique up to the order of the factors. The irreducible 3-
manifolds K1, . . . , Kn1 are able to contain incompressible tori and one can split Ki

along the tori into simpler pieces K = H ∪T 2 G [73] (called the JSJ decomposition).
The two classes G and H are the graph manifold G and the hyperbolic 3-manifold
H (see Fig. 15.11).

The hyperbolic 3-manifold H has a torus boundary T 2 = ∂H , i.e. H admits a
hyperbolic structure in the interior only. In this paper we need the splitting of the
link/knot complement. As shown in [33], the Whitehead double of a knot leads to JSJ
decomposition of the complement into the knot complement and the complement of
the Whitehead link (along one torus boundary of the Whitehead link complement).

One property of hyperbolic 3-manifolds is central: Mostow rigidity. As shown
by Mostow [78], every hyperbolic n-manifold n > 2 with finite volume has this
property: Every diffeomorphism (especially every conformal transformation) of a
hyperbolic n-manifold with finite volume is induced by an isometry. Therefore one
cannot scale a hyperbolic 3-manifold and the volume is a topological invariant.
Together with the prime and JSJ decomposition

N = (H1 ∪T 2 G1) # · · · #
(
Hn1 ∪T 2 Gn1

)
#n2 S

1 × S2#n3 S
3/Γ ,

we can discuss the geometric properties central to Thurstons geometrization the-
orem: Every oriented closed prime 3-manifold can be cut along tori (JSJ decom-
position), so that the interior of each of the resulting manifolds has a geometric
structure with finite volume. Now, we have to clarify the term geometric structure’s.
A model geometry is a simply connected smooth manifold X together with a tran-
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sitive action of a Lie group G on X with compact stabilizers. A geometric structure
on a manifold N is a diffeomorphism from N to X/Γ for some model geometry X ,
where Γ is a discrete subgroup of G acting freely on X . t is a surprising fact that
there are also a finite number of three-dimensional model geometries, i.e. 8 geome-
tries with the following models: spherical (S3, O4(R)), Euclidean (E3, O3(R) � R

3),
hyperbolic (H3, O1,3(R)+), mixed spherical-Euclidean (S2 × R, O3(R) × R × Z2),
mixed hyperbolic-Euclidean (H2 × R, O1,3(R)+ × R × Z2) and 3 exceptional cases
called ˜SL2 (twisted version of H

2 × R), NIL (geometry of the Heisenberg group as
twisted version of E

3), SOL (split extension of R
2 by R, i.e. the Lie algebra of the

group of isometries of 2-dimensional Minkowski space). We refer to [84] for the
details.
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