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Abstract
by

Darshana Chandrakant Patel

The objective of this thesis work is to investigate the “softness” in nuclear
incompressibility observed in the open-shell nuclei and the role of symmetry
energy in the nuclear incompressibility. The first experiment was performed to
study the isoscalar giant monopole resonance (ISGMR) strength distribution in the
Cd isotopes. Accurate and extremely forward angle (including 0ı) alpha inelastic
scattering measurements were made on a series of 106;110–116Cd isotopes. The
“softness” in the nuclear incompressibility, as observed in the Sn isotopes, was
seen in the Cd isotopes as well. The relativistic and nonrelativistic calculations,
which successfully reproduce the ISGMR strength distributions in 208Pb and 90Zr,
overestimate the ISGMR centroid energies in the Sn and the Cd isotopes. Inclusion
of the various types of pairing effects in the calculation cannot account for the
observed discrepancy. The second experiment was performed to test an intriguing
idea of mutually enhanced magicity (MEM) effect playing a role in the nuclear
incompressibility in order to account for the observed “softness.” Systematic
and extremely accurate alpha inelastic scattering measurements were made on
204;206;208Pb isotopes. The ISGMR centroid energies measured in the series of Pb
isotopes indicated a standard A�1=3 dependence in stark contrast to a sharp increase
of 0.6 MeV in the ISGMR centroid energy of 208Pb when compared to the centroid
energy of 204Pb that was predicted as resulting from MEM effect. These results
clearly established that the MEM effect does not play a measurable role in the energy
of the ISGMR, thereby leaving the question of experimentally observed “softness”
in the Sn and Cd unanswered still.

Paving a path for the future experiments, in order to answer the haunting
question of experimentally observed “softness” in nuclear incompressibility, the
third experiment was performed to test the feasibility of using deuteron as a probe
to measure ISGMR in radioactive isotopes using inverse kinematics. Accurate and
extremely forward angle inelastic scattering measurements were made using high-
energy (100 MeV/u) deuteron beam. For the first time, the multipole decomposition
analysis was successfully employed to delineate different multipole contributions
reliably. This experiment established the feasibility of using deuteron probe to study
giant resonances in the radioactive nuclei and thus explore the density dependence
of symmetry energy in further detail.
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Supervisor’s Foreword

Giant resonances are highly collective oscillations of the atomic nucleus in which
a large fraction of the nucleons (neutrons and protons) of the nucleus move
together. Indeed, the motion is so collective that it is appropriate to think of
these modes of excitation in hydrodynamic terms as the oscillations of a liquid
drop. The collectivity of these modes can be measured via cross sections of their
excitation in direct nuclear reactions such as inelastic scattering. The isoscalar
giant monopole resonance (ISGMR) is a compression mode of collective oscillation
that corresponds to the compression and expansion of the nuclear volume, with
concomitant oscillations of the nuclear density, about its equilibrium value and,
hence, is termed the “breathing mode.” Investigations of ISGMR are very important
because the frequency (energy) of this oscillation provides a direct means to
experimentally determine the nuclear incompressibility, a quantity of fundamental
importance in defining the equation of state (EOS) for nuclear matter. The latter
describes a number of interesting phenomena from collective excitations of nuclei to
supernova explosions and radii of neutron stars. In particular, for the investigations
related to the EOS of very dense nuclear matter, such as that encountered in neutron
stars, the asymmetry term of the nuclear incompressibility is expected to play a
very important role, making its experimental determination a topic of strong current
interest and focus, both experimentally and theoretically. (The “asymmetry” here
refers to the difference of the numbers of neutrons (N) and protons (Z) in a system
and is defined as ((N�Z)/(NCZ)).)

Experimental identification of the ISGMR requires inelastic scattering of an
isoscalar particle (such as the ˛-particle, the nucleus of the 4He atom) at extremely
forward angles, including 0ı, where the cross section for exciting the ISGMR is
maximal. Such measurements have improved considerably over the years, and it is
now possible to obtain inelastic spectra even at 0ı, virtually free of all instrumental
background. The ISGMR strength distributions can then be extracted from a
multipole-decomposition analysis of such “background-free” inelastic-scattering
spectra.
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x Supervisor’s Foreword

In this dissertation, Dr. Darshana Patel has presented results of her investigations
on ISGMR related to the asymmetry term of nuclear incompressibility and also
explored a very intriguing phenomenon observed a few years ago of the “softness”
of open-shell nuclei: measurements on a series of Sn isotopes had revealed that
the energies of the ISGMR in these nuclei were significantly lower than what
would be expected from the value of nuclear incompressibility determined from
the closed-shell nuclei. From her measurements on a series of Cd isotopes, Dr. Patel
confirmed the value of the asymmetry term of nuclear incompressibility previously
obtained from the Sn measurements and that the Cd isotopes also exhibit the
“softness” observed in the Sn isotopes. There have been several theoretical attempts
to understand and describe this observed “softness,” none too successful, and this
question remains an open problem in nuclear structure physics.

An intriguing hypothesis forwarded to explain this phenomenon was that this
could be the effect of the so-called “mutual enhancement magicity” (MEM) effect
first noted for nuclear masses. It turns out that theoretical expressions for nuclear
masses always miss out in the cases for nuclei with doubly closed shells, i.e., where
both the protons and neutrons fill in shells in a nucleus completely with a wide gap
to the next higher shell (akin to noble gases in atoms), pointing to an added stability
associated with the closed shells. The suggestion then was that a similar effect
might occur in case of nuclear incompressibility and any calculations using nuclear
incompressibility derived from the closed-shell nuclei would always overestimate
the ISGMR in open-shell nuclei. Dr. Patel set about to test this hypothesis and
measured, in the same experiment to minimize any systematic effects in the final
results, the ISGMR in three isotopes of Pb with masses 204, 206, and 208. The
nucleus 208Pb is the quintessential “doubly closed shell” nucleus, and, indeed,
the extraction of nuclear incompressibility from ISGMR relies primarily on this
nucleus. On the other hand, the other two nuclei measured in this work, 204Pb
and 206Pb, are “open shell,” and, per the aforementioned hypothesis, the ISGMR
energies in 204;206Pb would have been significantly lower than that in 208Pb. Dr.
Patel’s careful measurements showed that this was not the case and that the ISGMR
energies were nearly identical in the three nuclei, contradicting the MEM-effect
hypothesis.

The advent of radioactive ion beams has opened up the prospect of extending
ISGMR measurements to nuclei away from the stability line, thus extending the
range of isotopes over which to measure this resonance and to extract the asymmetry
term in nuclear incompressibility to a higher precision. These measurements have
to be performed in “inverse kinematics,” with beams of the nuclei of interest
impinging on an isoscalar target. For various practical reasons, the ˛-particle, used
successfully in normal kinematics ISGMR measurements, does not render itself
to be an ideal system for inverse kinematic measurements, and another isoscalar
particle, the deuteron (nucleus of deuterium, an isotope of hydrogen), appears to
be a more appropriate choice as the target material instead. However, practically
no measurements had been made to demonstrate that it was possible to correctly
extract the ISGMR strengths from inelastic deuteron scattering spectra. The third
part of Dr. Patel’s dissertation reports her measurements of elastic and inelastic
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scattering of deuterons off several targets. She was able to extract the ISGMR
strength distributions in these nuclei, with results that were fully consistent with
those obtained with ˛-particles, thus clearly establishing the deuteron as an effective
probe for such investigations.

Small-angle inelastic scattering measurements are rather difficult to execute, and
the analysis of the data requires particular attention to a number of details (not to
mention tremendous patience). In her efforts, she was ably supported by the machine
staff of the Research Center for Nuclear Physics, Osaka University, Japan, where the
experiments were performed, and her many collaborators. The work still remains
essentially her own, however, and it is to her credit that she has obtained so many
important results in a single dissertation. My expectation is that these results will
remain of importance and relevance to researchers in this field for quite some time
to come, and I am delighted that her dissertation has been selected for publication
in the Springer Theses series.

Notre Dame, France Umesh Garg
September, 2015
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Chapter 1
Introduction

Our understanding of the ground state and excited state properties of the atomic
nuclei remains unsatisfactory even decades after establishing the existence of the
nuclear force. The evolution of shell structure in heavy nuclei, the phases of strongly
interacting nuclear matter, the nature of exotic excitations in nuclei at the frontier
of stability and its role in stellar processes, the nature of neutron stars and dense
nuclear matter, the origin of elements in the universe, the exact nature of nuclear
reactions and the stellar environments leading to explosions are few of the many
phenomena which still have not been understood completely and satisfactorily.
A lot of theoretical effort has been made over the past many years to explain the
experimental observations and, at the same time, consistent effort has been put
forward to push the experimental frontiers. The field has advanced in the last few
decades, not the least because of the advent of better computational resources and
state of the art experimental facilities worldwide.

On the theoretical front, computationally intensive ab-initio methods using
the bare nucleon-nucleon (NN) interaction, and advanced methods like Green’s
Function Monte Carlo (GFMC) have been used with great success in light nuclei,
typically with A .15. Things get more complex in the heavier systems. One way
out is to deal with these systems in a nuclear matter framework [8]. The study
of nuclear matter is a powerful tool from the point of view of improving our
understanding of the nuclear many-body problem. Nuclear matter is a theoretical
construct of an infinite number of nucleons with a fixed neutron to proton ratio. The
nuclear matter equation of state (EOS) essentially describes the binding energy per
nucleon as a function of nuclear density, as shown in Fig. 1.1. The EOS is essentially
a constitutive equation which provides a mathematical relationship between two
or more state functions associated with a given system, such as its temperature,
pressure, internal energy, density or particle number. The nuclear matter EOS is
important for understanding many interesting phenomena such as the collective
behavior of nucleons in nuclei, the massive stellar collapse leading to a supernova
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Fig. 1.1 Graphical depiction of the EOS corresponding to different K1 values. The curve with
lower K1 value results in softer EOS as against that with higher K1 which corresponds to the
stiff EOS. The soft and stiff EOS are with respect to the accepted value of K1 D 240˙ 20MeV
(Black curve)

explosion, the radii of neutron stars, and nuclear properties such as the neutron-skin
thickness of heavy nuclei. It thus becomes important to know the EOS for nuclear
matter accurately.

The EOS of nuclear matter is mainly characterized by three quantities, viz. the
saturation density (�0), the binding energy per nucleon at the saturation density
(E/Aj�0), and the nuclear incompressibility (K1). Of these, the first two have
been accurately determined from the previous experiments; �0 D 0:148 fm�3 and
E/A.�0/ � �16MeV for symmetric nuclear matter [9]. Nuclear incompressibility,
the third parameter plays a key role in controlling the behavior of the EOS at high
nuclear densities, as seen in astrophysical scenarios like neutron stars and supernova
explosions [10, 11], and has not been determined very precisely so far.

The nuclear equation of state (EOS) dictates how the energy per nucleon changes
as a function of both the density (�) and the neutron-proton asymmetry (˛ D (N-
Z)/A). The total energy per particle "(�, ˛) can be expanded as a power series in ˛2

as [12],

".�; ˛/ D "SNM.�/C ˛2S.�/C O.˛4/ (1.1)
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The first term in the expansion corresponds to the energy of symmetric nuclear
matter and the first-order correction term is identified as the symmetry energy which
is essentially the energy cost incurred in converting symmetric nuclear matter into
pure neutron matter. The coefficient ˛ for some of the very neutron rich stable nuclei
is, however, a very small number. This makes it difficult to obtain an accurate value
of the symmetry energy. The masses of stable nuclei can only provide a meaningful
constrains on S(� � �0); its density dependence remains largely undetermined. In
order to probe the density dependence of the EOS one must study the response of
the nucleus to external perturbations. The isoscalar giant monopole resonance is
one such compression mode of oscillation where protons and neutrons oscillate in
phase with each other around the equilibrium density. Thus the ISGMR measures
the response of the nucleus to density fluctuations. The ISGMR centroid energy is
directly related to the incompressibility of finite nuclei which in turn constrains the
incompressibility of the infinite nuclear matter, as described in detail in Sect. 1.3.

The role of ISGMR measurements in constraining the value of nuclear matter
incompressibility can be understood through the following discussion. The energy
per particle of symmetric nuclear matter and the symmetry energy can be expanded
around the equilibrium density as,

"SNM.�/ D �0 C 1

2
K1x2 C 1

6
Q1x3 C : : :

S.�/ D J C Lx C 1

2
K1

symx2 C 1

6
Q1

symx3 C : : :

Here x D .� � �0/=3�0, K1 and Q1 are the incompressibility coefficient
and skewness parameter of symmetric nuclear matter, and K1

sym and Q1
sym are

the corresponding quantities for the symmetry energy. By substituting the above
expansions into Eq. 1.1 the energy per particle of the asymmetric nuclear matter can
be rewritten as,

".�; ˛/ D .�0 C J˛2/C L˛2x C 1

2
.K1 C ˛2K1

sym/x
2 C 1

6
.Q1 C ˛2Q1

sym/x
3 C : : :

(1.2)

For the symmetry energy expansion, the density pressure L does not vanish and, as a
result, the saturation point in asymmetric matter shifts from x0 D 0 to x0, where the
latter is defined as the solution to the equation @"=@x D 0 [12, 13]. This results in,

x0 D � L

K1
˛2 ! �0

�0
D 1C 3x0 D 1 � 3

L

K1
˛2 (1.3)

Introducing x D .� � �0/=3�0 to quantify deviations from the new equilibrium
density we obtain,

".�; ˛/ D .�0 C J˛2/C 1

2
K1.˛/x2 C : : : (1.4)
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where the incompressibility of the neutron-rich matter is given by,

K1.˛/ D K1 C K1
� ˛

2 � K1 C
�

K1
sym � 6L � Q1

K1
L

�
˛2 (1.5)

The above equation clearly identifies the importance of ISGMR studies in a series of
isotopes. The nuclear incompressibility of the asymmetric nuclear matter is sensitive
to the density dependence of the symmetry energy. Therefore, a study of ISGMR
centroid energies in a series of isotopes with large variation in asymmetry parameter,
˛, can provide stringent constraints on the value of K1

� . The asymmetry coefficient
of the finite nucleus incompressibility, K� , does not include contributions merely
from the second derivative of the symmetry energy and hence cannot be identified
as K1

� [7]. However, K� is strongly correlated with K1
� and hence constrains the

density dependence of the symmetry energy. Also, the ISGMR centroid energies in
a near symmetric nuclei can constrain the value of incompressibility coefficient of
symmetric matter, K1.

Experimentally constraining the value of nuclear incompressibility of asymmet-
ric nuclear matter, and hence the nuclear symmetry energy, is the main focus of this
thesis work.

1.1 Nuclear Matter Incompressibility

Nuclear matter incompressibility is a measure of the curvature of the EOS of nuclear
matter at the saturation density, and thus corresponds to the nuclear stiffness [14].
Using a second order Taylor expansion of the EOS around the saturation density
leads to,

E

A
.�/ D E

A
.�0/C d.E

A /

d�

ˇ
ˇ
ˇ
ˇ
ˇ
�0

.� � �0/C 1

2

d2.E
A /

d�2

ˇ
ˇ
ˇ
ˇ
ˇ
�0

.� � �0/
2 (1.6)

The second term is zero at the saturation density �0. The coefficient of the third
term in the expansion is identified as the nuclear matter incompressibility according
to the following definition,

K1 D 9�20
d2.E

A /

d�2

ˇ̌
ˇ
ˇ
ˇ
�0

D k2F
d2.E

A /

dk2F

ˇ̌
ˇ
ˇ
ˇ
kF0

(1.7)

Here kF is the Fermi momentum when momentum is used as an independent vari-
able in calculations. K1, however cannot directly be determined from experiments.
A distinct correlation between K1 and an experimental observable is necessary.
Among such correlated observables are the nuclear masses, nuclear radii, momen-
tum transfer in high energy nuclear collisions, and some astrophysical observables
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such as neutron star masses and radii [15]. However, all of these experimental efforts
cannot provide a constraint better than 50–100 MeV on the value of K1 which has
been calculated to be in the range 200–300 MeV [8]. Much effort has since been put
into the study of the compression mode of nuclear oscillations viz. giant resonances
(GR). A clear correlation can be developed within mean field calculations between
K1 and the energies of the compression modes of oscillations observed in nuclei
which can be studied in the laboratory. This will be further discussed in detail in
Sect. 1.3. Inspite of considerable success, some theoretical concerns still remain
within this approach. This thesis work experimentally addresses some of these
concerns by providing extensive and important data and paves the way towards
future work in this field with radioactive nuclei.

1.2 Giant Resonances

Giant resonances are the high-frequency, damped, (nearly) harmonic density/shape
vibrations around the equilibrium density/shape of the nuclear system. These modes
correspond to the collective motion of nuclei. Quantum mechanically they are
observed as resonances corresponding to transitions between the ground state and
the collective states. The strength of these resonances, like for any resonance, is
governed by the transition amplitude which in turn depends on the ground state
properties of the nuclei, like the size of the system or the number of participating
nuclei. Total transition strength is, thus, limited by a sum rule which depends on
the ground state properties of the nucleus. If a given resonance exhausts more than
50 % of the corresponding sum rule (total transition strength) then it is called a Giant
Resonance (GR) [1, 16].

1.2.1 Macroscopic Picture

Macroscopically, GRs are collective nuclear vibrations and there are several modes
of such vibrations. Different modes of GRs can be classified based on three
important features as described in Fig. 1.2. The two main classes of GRs are the
electric and magnetic GRs. The main difference between electric and magnetic
resonance comes about based on spin identity. Electric resonances make no
distinction between individual spin states of the nucleons. Further classification of
GRs is based on multipolarity L, spin S, and isospin T [1]. The differences between
isoscalar (�T = 0) and isovector (�T = 1) comes from the distinction made based on
the charge state of the nucleon. In the case of isoscalar electric resonances, protons
and neutrons oscillate in phase with each other. Electric isovector resonances result
in protons oscillating out of phase with neutrons. Higher order multipolarities
correspond to oscillations that differ in geometry.
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Fig. 1.2 Schematic representation of various collective mode oscillations

1.2.2 Microscopic Picture

In the microscopic picture, GRs can be described as a coherent superposition
of particle-hole excitations. In the shell model picture, the single-particle wave
functions of subsequent states carry opposite parity and the operator giving rise
to GR allows, to first order, only for transitions with �N�L, where N is the
principal quantum number of a given state and L is the multipolarity [17]. Further
the parity conservation allows only for �N = 0,2,4: : : for the even L transitions
and �N = 1,3,5: : : for the odd L transitions. This is summarized in Table 1.1. The
lowest excitations, 0„!, corresponds to the rearrangements and transitions within
the highest unoccupied major shell, and hence are possible only in open-shell nuclei
[1, 16].

In this model, the residual particle-hole (p-h) interaction gives rise to one strong
collective state which is a coherent superposition of all possible particle-hole
interactions of a given multipolarity and parity. It must be noted that both ISGMR
and ISGDR are second-order effects; to first order, the transition operator for
ISGMR is a constant which cannot induce any transitions from the ground state
to excited states, and that for the ISGDR it corresponds to spurious center-of-mass
motion. Further, the p-h residual interaction is positive for the isoscalar transitions
and repulsive for isovector excitations. As a result, various resonances overlap in
excitation energy; Fig. 1.3 depicts this situation. Further, these resonances have
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Table 1.1 Multipole excitations as particle-hole excitations across major shells

Multipolarity �E Multipolarity �E

ISGMR L = 0 (0„!),2„! ISGQR L = 2 (0„!), 2„!
ISGDR L = 1 (1„!), 3„! ISGOR L = 3 1„!, 3„!
IVGDR L = 1 1„! ISGHR L = 4 (0„!), 2„!, 4„!
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Fig. 1.3 Hypothetical strength distributions for various electric isoscalar giant resonances of
116Sn, indicative of their centroid energies

large widths arising from the mixing of the simple collective 1p-1h state with
more complicated 2p-2h states of the same spin and parity [16]. In order to study
a specific mode of vibration it thus becomes extremely important to choose the
appropriate probe in order to achieve selectivity in exciting the mode of interest.
This is discussed in detail in Sect. 1.4. Also, a careful analysis technique becomes
crucial in disentangling various multipoles. The theoretical basis of this analysis
technique is discussed in the next chapter and its implementation is discussed in
Sect. 4.4.
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1.2.3 Width of GR

Giant resonances have characteristic widths of the order of 2.5–5 MeV. Its theoret-
ical understanding require a complicated description as stated in Ref. [16]. A brief
description of it is presented in this section.

The total width observed experimentally has three different contributions:

�total D �inh C �" C �# (1.8)

�inh is the inherent width or the Landau damping. This width is a result of
the spread in excitation energy of the initial 1p-1h strength function. It can be
described as the effect of the coupling of the correlated particle-hole excitation
with uncorrelated particle-hole configurations in the same excitation-energy range
causing a fragmentation of the correlated wave function.
�" is the escape width. It corresponds to the direct decay of the collective 1p-1h

state in the nucleus A by particle emission. It can be described as resulting from the
coupling of the correlated 1p-1h state to the continuum.
�# is the spreading width. GRs are located at high excitation energies where

a high density of 2p-2h configurations of the same spin and parity as the 1p-1h
configuration occurs. This component of the width is associated with the mixing of
these more complex and numerous 2p-2h configurations with the correlated 1p-1h
state.

1.3 Compressional Mode GRs and Nuclear Incompressibility

A nucleus when set into vibrations can exhibit surface as well as normal modes of
oscillations. The normal modes involving compression of nuclear density are called
the compressional modes. The two compressional modes of oscillations observed
in nuclei correspond to L = 0 (ISGMR) and L = 1 (ISGDR). In the ISGMR mode,
the protons and neutrons oscillate in phase with each other and it is often referred
to as a “breathing mode”. The ISGDR mode corresponds to a compression wave
moving back and forth keeping the volume of the nucleus constant; such a mode
is referred to as a “squeezing mode” of oscillation. Nuclear incompressibility of a
finite nucleus is directly related to the centroid energy of these two resonances. The
EISGMR and EISGDR are related to the nuclear compressibility of finite nuclei, in the
scaling model, as [18, 19],

EISGMR D „
s

KA

m < r2 >0
(1.9)

EISGDR D „
s
7

3

KA C 27
25
�F

m < r2 >0
(1.10)
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Here < r2 >0 is the ground-state mean-square radius of the nucleus, KA is its
incompressibility, m is the nucleon mass (938.86 MeV/c2) and �F is the Fermi
energy. It must be further noted that the ISGMR in light nuclei (A < 90) is not
a suitable observable to extract K1 for the ISGMR strength distribution in light
nuclei is highly fragmented [8, 16]. Also, of the ISGMR and ISGDR, the former is
often observed as a single well-defined peak while the latter is associated with more
complex structure. The ISGDR in most nuclei displays a low-lying, fragmented part
which lies below the giant resonance[8]. Different theoretical calculations agree
that the low-lying strength is not collective. However, due to these ambiguities the
ISGMR is agreed upon as the optimal tool for the study of nuclear incompressibility.
Further, one needs to relate KA to K1 in a meaningful and reliable way. This can be
achieved using different approaches as discussed in the following subsections.

1.3.1 Macroscopic Approach to K1

In the macroscopic liquid drop approach, KA is expanded in a form similar to the
semi-empirical mass formula [19–21] and is written as:

KA D Kvol CKsurf A�1=3CK�

�
N � Z

A

�2
CKcoul

Z2

A4=3
CKss

�
N � Z

A

�2
A�1=3CKcvA�2=3

(1.11)

Here N and Z are the number of neutrons and protons and A D N C Z. The
contributions from surface-symmetry term (Kss) and the curvature term (Kcv) are
of higher order and can be neglected [22]. K� is the asymmetry term in the nuclear
incompressibility. The determination of the various parameters is done by fitting the
empirical data. K1 is then identified with the volume term Kvol as,

K1 D lim
A!1 KA D Kvol (1.12)

However, this approach suffers from several ambiguities [8]. First and foremost,
the expansion as in Eq. 1.11 is valid only for small amplitude vibration which
is true only in heavy nuclei. Further, Eq. 1.12 holds only if the ISGMR is well
described by scaling model. The scaling does not work equally well for light as
well as heavy nuclei leaving the above assumption rather uncertain. Also, in lighter
nuclei, the breathing mode is rather anharmonic and hence the interpretation of
various terms in the expansion is more complicated. Aside from these difficulties,
there is also a practical difficulty of determining the parameters in Eq. 1.11 from
fits to the limited set of data points. It has been shown that equally good fits
can be obtained with the volume term taking arbitrary values in a wide range;
100 � Kvol � 400MeV [20, 23]. These difficulties have been reconciled by Treiner
et al. [19]. They have shown that in order to get meaningful results, one has to
take into account, within a specific model, the known correlations between various
parameters, reducing the parameter set to one. This leads to a value of K1 that is
compatible with the microscopic calculations.
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1.3.2 Microscopic Approach to K1

In the microscopic picture, the basic idea consists of using energy functionals, E(�/,
which allow for calculating nuclear matter and finite nuclei on the same footing [24].
In both non-relativistic and relativistic cases, the second derivative of the energy
functional can be calculated analytically for uniform nuclear matter and the value of
K1 associated with a given pameterization is obtained. In the case of finite nuclei,
one calculates the monopole excitation using self-consistent linear response theory.
Using a set of different parametrizations (within a given class of energy functionals)
characterized by different values of K1, self-consistent RPA calculations of the
ISGMR are performed in a given nucleus. For a single well defined monopole peak,
Eqs. 1.11 and 1.12 suggest a relation of the type, EISGMR � a

p
K1 C b [8]. The

experimental value of EISGMR is then used to extract the value of K1. However,
the use of different interactions within the self-consistent RPA formalism results in
varied values of K1. Initially, nonrelativistic calculations that reproduce isoscalar
monopole strength distribution in 208Pb resulted in K1 D 210–230MeV, while
relativistic models point toward K1 ' 270MeV.

The solution to this puzzle came from an important realization that the ISGMR in
208Pb does not constrain the compression modulus of symmetric nuclear matter but
rather the one of neutron-rich matter [9, 25, 26]. This explained how models with
significantly different K1 values may still reproduce monopole strength in 208Pb.
Accurately-calibrated theoretical models were built to reproduce simultaneously
the distribution of isoscalar monopole strength in nuclei with significantly different
nucleon asymmetries; viz. 90Zr and 208Pb. With this treatment, the relativistic and
non relativistic models have reached a consensus for the value of the incompress-
ibility of symmetric nuclear matter at K1 D 240˙ 20MeV [26].

1.4 Experimental Tools to Study ISGMR

As discussed at the end of Sect. 1.2.2, the choice of the experimental tool used
to study the GRs is very important. The various tools available to study GRs
are summarized in Fig. 1.4. In the inelastic scattering of charged hadrons, i.e.
protons, ˛-particles and heavy ions, both nuclear and electromagnetic interactions
contribute, but for lighter nuclei the nuclear interaction dominates. Isovector
resonances, as shown in Fig. 1.2, discriminate between protons and neutrons. These
modes are, therefore, not important from the point of view of extracting nuclear
incompressibility which is a bulk property of nuclei. These modes can be studied
using electromagnetic probes or using charge-exchange reactions. The isovector
giant monopole resonance is often studied by pion charge exchange reactions.
Further isovector giant dipole resonances (IVGDR) has been extensively studied
in photo-absorption experiments. Inelastic electron scattering can be used to excite
isoscalar as well as isovector resonances. However both modes are equally excited
and hence the interpretation of such experiments is not straightforward.
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Fig. 1.4 The most commonly used tools to study GRs in nuclei [1, 2]

1.4.1 The Selectivity of ˛ and Deuteron Probes

In the study of ISGMR, inelastic ˛-scattering has an advantage that to first order
it only excites isoscalar electric modes (�S = 0) since it carries no spin (S = 0)
and cannot magnetically couple to the target nucleus. For proton-even neutron-
even target nuclei this implies that the spin and parity of the excited state can
be given by �L and .�1/�L. Coulomb excitation and isospin mixing in the
ground-state can result in small contributions from isovector modes. Of these, only
Coulomb excitation is important for small-angle scattering in which case it results
predominantly in excitation of the IVGDR. The effect of Coulomb excitation is
rather small but it is included in the analysis of the experimental data. Isospin
mixing in the ground-state of nuclei results from the difference in radii of neutron
and proton distributions in nuclei. It gives rise to a small isovector cross-section and
is mostly ignored. Indeed, ˛-scattering remains the best probe for the investigation
of isoscalar electric giant resonances [1, 16]. Deuteron has an isospin of zero (T = 0)
and hence is also mainly an isoscalar probe. Spin-flip excitations are also possible
with the use of deuteron inelastic scattering since it carries a spin of 1 unit in its
ground state. However, the corresponding cross-sections are strongly reduced as
compared to those for non-spin-flip excitations [27, 28]. Clearly, establishing the
feasibility of using deuterons as a probe to study the ISGMR is one of the goals of
this work.
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1.5 Motivation

Current work constitutes three different experiments each of which were performed
at the Research Center for Nuclear Physics (RCNP), Osaka university, Japan. The
experimental details are given in Chap. 3. This section describes the motivation for
the three experiments undertaken as a part of this work.

1.5.1 E-309

This experiment was carried out with the aim of measuring ISGMR in a series of Cd
isotopes. As mentioned earlier, it was realized that the ISGMR properties of 208Pb
constrain the nuclear incompressibility of neutron rich matter at the particular value
of the neutron excess, that corresponding to 208Pb [9, 25, 26]. Also the ISGMR in
208Pb was found to be sensitive to the density dependence of the symmetry energy.
Symmetry energy is, to an excellent approximation, equal to the difference between
the energy of pure neutron matter and that of symmetric nuclear matter. As the
infinite nuclear system becomes neutron rich, the saturation density lowers, the
binding energy weakens and the nuclear incompressibility softens. Thus, K1 of
a neutron rich system having the same neutron excess as 208Pb is lower than the K1
of symmetric nuclear matter. The important realization that the ISGMR strength
distributions in heavy nuclei are sensitive to the density dependence of the symmetry
energy motivated experimental measurements of GRs in a series of isotopes.

The first such experiment was performed on a series of Sn isotopes. Experimental
results of this experiment revealed interesting features as shown in Fig. 1.5 [24, 29].
As can be seen, the accurately-calibrated models that reproduce the ISGMR in 90Zr,
144Sm and 208Pb overestimate the distribution of the ISGMR in the Tin isotopes. An
attempted solution to the observed discrepancies in the Sn isotopes (as described
above) was that of the inclusion of the pairing interactions in the calculations.
However that reduced the discrepancy by only about 150 keV in the case of Sn
isotopes [4, 30–32] and despite concerted theoretical effort in recent years the
challenge still remains to simultaneously describe the ISGMR in open-shell nuclei
as well as in the doubly magic 208Pb and 90Zr nuclei [12, 31–34]. This was identified
as one of the“open” problems in nuclear structure in a recent major compilation [35].

However, the results of this experiment were the only ones available on a series of
isotopes until then. It was thus imperative to make measurements on another series
of isotopes in a similar mass region. The ideal choice for such an experiment was
the study of the ISGMR in the even-even 106;110–116Cd isotopes. A systematic study
of the ISGMR in Cd isotopes forms a part of this thesis work.
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Fig. 1.5 Comparison between the ISGMR centroid energies (m1/m0) in all neutron-even 112–124Sn
isotopes. The experimental results (filled squares) are compared with results from nonrelativistic
RPA calculations (without pairing) by Colò et al. (filled circles), relativistic calculations of
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1.5.2 E-340

Amidst various efforts of resolving the discrepancy, it was argued that 208Pb,
being a doubly-magic nucleus, is “stiffer” than the open-shell nuclei and the
incompressibility obtained from doubly-magic nuclei would invariably lead to an
overestimation of the ISGMR energies in the open-shell nuclei [36]. This was
included in the form of the mutually enhanced magicity (MEM) effect in the
calculations of the ISGMR centroid energies in the constrained Hartree-Fock-
Bogoliubov (CHFB) framework [32]. An important prediction of the inclusion of
the MEM effect in the calculations of the ISGMR centroid energies was that the
ISGMR centroid energy in 208Pb would be higher than the corresponding values
in the 204;206Pb isotopes by �600 keV as shown in Fig. 1.6. E-340 was performed
to explore the role of MEM in the nuclear incompressibility and to verify the
theoretical prediction of the ISGMR centroid energies in the Pb isotopes.
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Fig. 1.6 Excitation energies of the ISGMR in 204–212Pb isotopes calculated with constrained HFB
method, taking into account the MEM effect [3]

1.5.3 E-318

In the future one needs to explore the nuclear incompressibility in the neutron-
rich nuclei, far from valley of stability, with an aim to shed more light on the
role of the symmetry energy. Further interest in the ISGMR strengths in nuclei
far from stability, especially on the neutron-rich side, stems from the possible
investigation of many important, and intriguing, nuclear structure effects, such as
the theoretically predicted appearance of monopole strength below the particle
threshold: the “pygmy” ISGMR [37–39], akin to the “pygmy” dipole resonances
reported in several neutron-rich nuclei (see, for example, Ref. [40]). The advent
of new radioactive-ion beam facilities makes these investigations feasible. Inverse-
kinematics measurements can be made using an active target system (such as MAYA
[41] at GANIL or IKAR [42] at GSI, for example) wherein the detector gas also
acts as the target. In the first such measurement, using MAYA, an enhancement
of the giant resonance (GR) strength was observed on top of the underlying
continuum in the 56Ni nucleus and it was demonstrated that this “bump” could be
construed as corresponding to a combination of the ISGMR and the isoscalar giant
quadrupole resonance (ISGQR) [43, 44]. This measurement used deuterium as the
active target/detector gas. Indeed, as documented in Ref. [44], it proved impossible
to operate the counter with pure He gas, hence ruling out ˛ particles as the probe of
choice for ISGMR investigations in radioactive nuclei.
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As an isoscalar particle, the deuteron (d) is ideally suited for investigation of
the ISGMR and some experimental work with this projectile was carried out in
the 1970s [45, 46]. Specifically, Willis et al. [46] performed a (d,d0) measurement at
54 MeV/A, where inelastic cross-sections for giant resonances are rather low. More-
over, the GR strength distributions for various multipoles were extracted using peak
fitting, a method deemed less reliable than the multipole decomposition analysis
(MDA) technique currently in use. This lack of prior knowledge of GR excitation
using a deuteron probe rendered the analysis difficult in the aforementioned 56Ni
investigation as it was not possible to clearly delineate the ISGMR and ISGQR
strengths. The experiment reported here was performed to investigate the GR with
the deuteron probe at a beam energy of 100 MeV/u, amenable to reasonable cross
sections for excitations of the GR.



Chapter 2
Theory of Collective Motion

2.1 Introduction

GRs are collective phenomenon. They can be viewed as a coherent superposition
of one-particle one-hole (1p-1h) interactions. The nucleon in the target nucleus can
be excited into bound or quasi-bound states which gives rise to the 1p-1h state of
the target nucleus. The excitation strength tends to be concentrated, by constructive
superposition of 1p-1h excitations, into one or few of the levels in each shell.
Thus, mathematically if the observed resonance exhausts a large fraction of the
corresponding transition strength (sum rule) it is identified as a giant resonance.

As discussed in the previous chapter, GRs corresponding to different multi-
polarities overlap in excitation energy and specifically with their large widths it
becomes rather difficult to disentangle different modes of GR excitations. In order
to achieve this disentanglement, we adopt a method of multipole decomposition
analysis (MDA); its implementation is discussed in detail Sect. 4.4. The theoretical
ingredients required to perform this analysis are discussed in this chapter.

2.2 Distorted-Wave Born Approximation (DWBA)

Inelastic scattering direct reaction, is known to preferentially excite the collective
states of the vibrational and rotational type [47]. In order to extract the strength
distribution of the giant resonance it is necessary to evaluate the differential cross-
section for inelastic scattering which in turns requires the use of the DWBA
formalism. The detailed description of the DWBA formalism can be found in
Ref. [47]; only salient details are provided in this section.

Consider a two-body scattering system, aCA ! bCB. Let the entrance channel
be denoted by ˛ and the exit channel by ˇ. The total Hamiltonian, H, of the system
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is the sum of the internal Hamiltonian for nucleus a and A, H˛, the kinetic energy
of their relative motion K˛ , and the mutual interaction potential V˛ . The total
wavefunction  contains incoming plane waves only in the ground-state ˛ channel
but will have outgoing spherical waves in all the channels which are open at the
given incident energy. It is denoted as ‰.C/

˛ . Ek˛/, where .C/ indicates that we are
choosing an outgoing wave and ˛ means it arises from an incident wave in the ˛
channel. This wavefunction can be expanded in terms of a complete set of internal
states in channel ˇ as,

‰.C/
˛ D

X

ˇ

�ˇ. Erˇ/ ˇ.xˇ/ (2.1)

For the appropriate boundary conditions, �ˇ takes the form,

�ˇ. Erˇ/ ! eiEk˛ �Er˛ ı˛ˇ C fˇ˛.EOrˇ; Ek˛/ 1Erˇ eikˇrˇ (2.2)

where, fˇ˛.EOrˇ; Ek˛/ is the transition amplitude. Asymptotically, the relative momen-

tum Ekˇ has the same direction as Erˇ , hence f˛ˇ=fˇ˛ . If the ˇ and ˛ partitions are the
same, fˇ˛ , refers to elastic (f˛˛) or inelastic (f˛˛0) scattering. The differential cross-
section for the transition from channel ˛ to channel ˇ is defined as the ratio of the
outgoing flux per unit time going into the small area subtending a solid angle d	
in channel ˇ, jJˇ0 jr2ˇd	, to the incident flux per unit time and unit area in channel
˛, jJ˛i j,

d
ˇ˛
d	

d	 D jJˇ0 jr2ˇd	

jJ˛i j
d
ˇ˛
d	

D �˛kˇ
�ˇk˛

jfˇ˛.Ekˇ; Ek˛/j2 (2.3)

Here,�˛ D maMA=.maCMA/ and �ˇ D mbMB=.mb CMB/. Thus, in order to obtain
the differential cross-section for inelastic scattering, the transition amplitudes,
fˇ˛.Ekˇ; Ek˛/, need to be evaluated. The evaluation of the transition amplitude requires
knowledge of the interaction potential and the wavefunction. The exact expression
for the normalized transition amplitude can be obtained by solving the Schroginger’s
equation using the appropriate form of the Hamiltonian,

.H � E/‰C̨ D .Hˇ C Kˇ C Vˇ � E/‰C̨ D 0

Tˇ˛.Ekˇ; Ek˛/ D< eiEkˇ �Er‘
ˇ ˇjVˇj‰.C/

˛ .Ek˛/ > (2.4)

Here, ‰.C/
˛ is the wavefunction corresponding to the physical situation wherein

it contains incoming plane waves only in the ground state ˛ channel but will
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have outgoing spherical waves in ˛ and all other channels which are open at the
given energy. The procedure to estimate ‰.C/

˛ is called the distorted wave Born
approximation (DWBA).

One of the possible ways to determine‰.C/
˛ is to introduce an auxiliary potential

Uˇ(rˇ) such that, Vˇ(�ˇ,Erˇ) D Uˇ(rˇ) � Wˇ . Although the auxiliary potential Uˇ is
arbitrary in principle, the motivation for introducing it is to include a large part of
the average effects of the interaction Vˇ so that the effects of the inhomogeneous
term may be minimized. Then the remaining or the residual interaction, Wˇ , can be
treated as a perturbation. The formal solution on the following modified equation,

ŒEˇ � Kˇ � Uˇ.rˇ/�ˇ.Erˇ/ D<  ˇjWˇj‰.C/
˛ > (2.5)

may be expressed in terms of the solutions of the homogeneous equation,

ŒEˇ � Kˇ � Uˇ.rˇ/�
.C/
ˇ .Ekˇ; Erˇ/ D 0 (2.6)

These �.C/ˇ are known as the distorted waves and describe the (elastic) scattering
of b on B due to the potential Uˇ by itself. Asymptotically they have the form of
an incident plane wave plus outgoing (scattered) spherical waves [hence the (C)
superscript],

�
.C/
ˇ .Ekˇ; rˇ/ ! eiEkˇ �Erˇ C f .0/ˇ .�/

1

rˇ
eikˇrˇ (2.7)

where f.0/ˇ .�/ is the scattering amplitude due to Uˇ alone. One can measure the
elastic scattering cross-section experimentally and fit it to get the appropriate Uˇ .
The Uˇ we get represents the average of Vˇ over the internal ground state of a
channel. Usually, the distorted waves are generated in a complex optical potential
which is empirically obtained by requiring a good fit to the elastic scattering data.
The optical model is discussed in detail in Sect. 4.2.

Further the study of the GR via inelastic scattering requires a transition potential
for the calculation of the differential cross-section of inelastic scattering within this
DWBA framework. This in turn requires a construct of transition densities which
can be calculated based on the appropriate sum rules. These theoretical constructs,
necessary for calculations of the GR cross-sections, are discussed in the remainder
of this chapter.

2.3 Sum Rules

GRs can be described as the response of the nucleus to a weak external field,
such that a linear approximation can be applied. This field can be decomposed
into various multipoles and the response can thus be viewed as the sum of the
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various contributions of the multipole GRs. GRs exhaust a large fraction of the
transition strengths (sum rules) connected with the multipole transition operators of
the external fields responsible for their excitation. In the analysis of GR spectra, it
is very useful to make use of sum rules which can be derived from the algebraic
relations between the transition operators and the Hamiltonian or powers thereof.
Most interesting for the isoscalar electric modes are the so-called energy weighted
sum rules (EWSR) because they can be determined model independently and
depend only on the ground-state properties of the nucleus. The linear EWSR can be
expressed as an expectation value of a one-body operator and is therefore relatively
insensitive to the detailed correlations in the initial state [14]. EWSR is often used
as a measure of the strength of the giant resonance. It is defined as a sum of the
transition probabilities from ground state to excited states for a certain multipolarity,
multiplied respectively by the excitation energy,

S.O��/ �
X

n

.En � E0/j < njO��j0 > j2 (2.8)

where n labels the complete set of excited states that can be reached by operating
with O�� on the initial state j0>. � and � refer to the multipolarity and isospin
structure of the resonance. For the multipole field operator,

O�� D
AX

iD1
f .ri/Y

M
L .	i/ (2.9)

EWSR can be evaluated as,

S.O��/ D 2�C 1

4�

„2
2m

A

*�
df

dr

�2
C �.�C 1/

�
f

r

�2+

(2.10)

Here A is the particle number of the system. Using the appropriate operator
definition and following the recipe provided in Refs. [16, 48] one obtains the
expressions for the EWSR corresponding to multipoles.
For the ISGMR (� D 0), corresponding to the second order field operator,

O00 D
AX

iD1
r2i Y00

S00 D 2„A

m
< r2 > (2.11)
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For the ISGDR (� D 1), corresponding to the second order field operator,

O10 D 1

2

AX

iD1
r3i Y01 .	i/

S1;0 D 3„2A
32m�

Œ11 < r4 > �.25=3/ < r2 >2 �10� < r2 > (2.12)

with,

� D „2
3mA

�
4

EISGDR
C 5

EISGQR

�
(2.13)

For higher multipoles (� � 2) corresponding to the multipole field operator defined
by Eq. 2.9,

S�;0 D „2A
8�m

�.2�C 1/2 < r2��2 > (2.14)

Here, A is the mass of the nucleus, m is the nucleon mass (938.86 MeV/c2) and <
r2 > is the mean square radius of the nuclear density. Also EISGQR D 65A�1=3 MeV
and EISGMR D 80A�1=3 MeV are the excitation energies of the ISGQR and ISGMR.
< rn > are the radial moments of the ground state densities and can be calculated
using a Fermi-mass distribution with parameters deduced from electron scattering,
for instance. The second and third terms in Eq. 2.12 correspond to the center-of-
mass corrections. All the above expressions for the EWSR hold for a specific form
of operator O�� which hold for light probes like ˛-particles and deuterons.
NOTE: Eq. 2.11 is normalized with respect to Y0

0 D (4�)�1=2 as described in
Ref. [49]. Most DWBA and coupled-channel codes follow this convention. Also the
EWSR definition for ISGDR, Eq. 2.12, incorporates the three magnetic sub-states
of the L D 1 multipole; m D �1, 0, 1.

2.4 Transition Densities and Transition Potentials

Two important ingredients for describing the collective motion are transition
densities and the transition potentials. The construction of these is discussed in this
section.



22 2 Theory of Collective Motion

2.4.1 Transition Densities

The basic idea to obtain the transition density is to take a spherically symmetric
density distribution �(r) and introduce certain multipole deformation parameters.
These parameters are the dynamical variables of the model [47].
For multipolarities, � �2:
The deformation in the nucleus can be introduced using different prescriptions
giving rise to different models for the construction of transition densities. The most
commonly used prescriptions are the Tassie model and the Bohr-Mottelson(BM)
collective model. Of these, as has been noted in Ref. [49], the BM model is
frequently used for the low-lying collective states. On the other hand, it has been
noted in Ref. [50], that the systematic errors associated with the model dependence
of the transition densities is typically 5 %, except for higher excitation energies
Ex � 27MeV where the difference is about 20 %. Hence the BM model has been
chosen for the construction of the transition densities for the low lying discrete states
as well as the giant resonances with multipolarities � �2.

Assuming an incompressible nucleus with a density distribution �(r) D constant
in the interior and a sharp edge r D R0, the deformation is the introduced by making
the edge position angular dependent,

R0 ! R.�; �/ D R0Œ1C
X

��2;�
˛��Y�� .�; �/

� D R0 C ıR.�; �/ (2.15)

This prescription for deformation can be easily transferred to a nuclear density
distribution and following the standard macroscopic description given in Ref. [49],
one obtains the expression for the transition density for � �2,

ı��.r/ D �ı� d

dr
�gs.r/ (2.16)

where �gs is the ground state density, and the deformation length, ı�, is given by,

ı2� D 2�„2
AmEx

�.2�C 1/2

.L C 2/2
< r2��2 >
< r��1 >2

(2.17)

For multipolarity �=0:
The ISGMR is a mode of oscillation in which the central density of the nuclear
matter oscillates about its equilibrium value with high frequency. This mode may be
generated by simple radial scaling [47],

r ! r0 D r.1 � ˛0/ (2.18)

of the equilibrium density �(r),

�.r/ ! N�.r0/ D �.r/C ı�.r/ (2.19)
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where N is the renormalization factor required to conserve the number of particles,
viz.

R
ı�.r/r2dr=0. Combining Eqs. 2.18 and 2.19 one obtains,

N�.r0/ D N�.r � r˛0/ � N�.r/� Nr˛0
d�.r/

dr
D �.r/C ı�.r/ (2.20)

The transition density can then be expressed as,

ı�.r/ D .N � 1/�.r/� Nr˛0
d�.r/

dr
(2.21)

The particle conservation condition applied on the above equation in addition to the
assumption that ˛0 � 1, results in the transition density expression,

ı�0.r/ � �˛0
�
3C r

d

dr

�
�gs.r/ (2.22)

where the dimensionless amplitude, ˛0, is given by,

˛20 D 2�„2
AmEx < r2 >

(2.23)

For multipolarity �D 1:
The collective formalism to describe the ISGDR mode of excitations in electron
scattering was first proposed by Deal et al. [51], and later extended to those excited
with hadron scattering by Harakeh and Dieperink [48]. Further, the ISGDR operator
to first order, O10 DPA

iD1 riY01 , can only result in a translation of the center of mass
(cm). The effects of the spurious cm motion induced by this first-order transition
operator should be taken care of exactly, even if the second-order transition operator,
O10 D 1

2

PA
iD1 r3i Y01 , which corresponds to the intrinsic dipole oscillation, is used.

Using the prescription described in Ref. [16], the transition density for the ISGDR
is expressed as,

ı�1.r/ D � ˇ1p
3c

�
3r2

d

dr
C 10r � 5

3
< r2 >

d

dr
C �

�
r

d2

dr2
C 4

d

dr

��
�gs.r/

(2.24)
with the deformation parameter, ˇ1, is given by,

ˇ21 D 6�„2
mAEx

c2

11 < r4 > � 25
3
< r2 >2 �10� < r2 >

(2.25)

Here, c is the half radius of the Fermi mass distribution and � is as defined in
Eq. 2.13. The second and third terms in the denominator of Eq. 2.25 are due to
center-of-mass corrections. The second term is large in all nuclei, whereas the third
term is proportional to A�1 and negligible for A � 40 nuclei.
Note: The transition density for the ISGDR, Eq. 2.24, corresponds to one out of
three magnetic substates for L D 1, as derived in Ref. [48]. The correction to this
equation can be made by multiplying the transition density by a factor of

p
3 as
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discussed in Ref. [52] or equivalently by using the correct expression for the EWSR
[16]. Often these different approaches are discussed in the literature [52, 53] and a
consistent treatment is necessary. We have adopted the method of incorporating the
three magnetic substate contributions into our expression for the EWSR, Eq. 2.12.

2.4.2 Transition Potentials

A transition potential is required to calculate the differential cross-section for inelas-
tic scattering. The transition potentials are obtained from the phenomenological
optical model potential in a procedure that is called the deformed potential model
(DPM). DPM is based on the simple and plausible assumption that the shape of the
optical potential for the scattering pairs follows the shape of the density distribution
of the target and is either statically deformed or undergoing shape oscillations in the
same way [16, 47]. With this assumption, the transition potential can be obtained
immediately by analogy with the transition density introduced in the previous
section as follows [49],

For � �2:

U�.r/ D �ı� dUOM

dr
(2.26)

For �D 0:

U1.r/ D �˛0
�
3C r

d

dr

�
UOM.r/ (2.27)

For �D 1:

U1.r/ D �ˇ1
c

�
3r2

d

dr
C 10r � 5

3
< r2 >

d

dr
C �

�
r

d2

dr2
C 4

d

dr

��
UOM.r/

(2.28)

Here, ı�, ˛0, ˇ1 and � are given by Eqs. 2.17, 2.23, 2.25 and 2.13 respectively.
UOM is the complex optical model potential obtained phenomenologically by
fitting to the elastic scattering data.

The construction of the transition potential described above has some ambiguities
which have to be fixed before performing the actual DWBA calculations. One of
them is related to the deformation parameter defined above. In most cases the real
and the imaginary parts of the optical potential have different geometries resulting
in real and imaginary coupling parameters ˇR and ˇI . This is resolved by adopting
the prescription which rests on the idea of constancy of the deformation length, ˇR,
for a certain transition resulting in [16]:

ˇRRR D ˇIRI (2.29)
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Further, at bombarding energies of �100 MeV/u, the inelastic cross-section can be
explained as mainly due to real coupling, i.e. the real part of the transition potential
has the largest contribution to the inelastic cross-section. The most general method is
to take the coupling which has the largest contribution to the cross-section obtained
from inelastic scattering and assume that the corresponding deformation length (ˇR)
is a constant to which all other deformation lengths are set equal using Eq. 2.29.
We use the method of an implicit folding model. It has been argued that the radial
moments can be evaluated with respect to the real part of the optical potential on the
basis of theorem by Satchler [54],

< r� >gsD< r� >opt (2.30)

This is strictly true if the optical potential is assumed to be implicitly derived
from folding the ground state density independent projectile-nucleon interaction,
which is the case for our ˛ analysis. For the deuterium inelastic scattering pure
phenomenological optical potential is used for fitting the elastic scattering data. In
this case, we use a method proposed by Bernstein [55], wherein the deformation
length of the ground-state density (Fermi shape distribution) is assumed to be
equal to the deformation length of the optical potential. The radial moments are
then calculated with respect to the Fermi mass distribution and substituted in the
formulae for the reduced transition matrix elements and the EWSRs.

Secondly, for the transition density the radial moments are calculated with
respect to the ground-state density. However, since the transition potential is derived
from the optical potential, then in the case of ISGDR ReU1,< r2 >R should be taken
with respect to the real part of the optical potential, UOM , and similarly for ImU1,
< r2 >I should be taken with respect to the imaginary part of UOM . This is necessary
for a proper treatment of the spurious cm motion.

2.5 Contribution from the Isovector Giant Dipole Resonance

The isovector giant dipole resonance (IVGDR) is excited through the Coulomb
interaction in the (˛; ˛0) reaction. Hence, the contribution from the IVGDR needs to
be considered in the analysis. If the IVGDR component is fitted as a free parameter
in the MDA, the results of MDA are ambiguous in the lower excitation energy
range. This component is therefore estimated and subtracted out of the experimental
differential cross-section before the fitting procedure. This is done making use of the
available experimental data on the photo-nuclear cross-sections [56, 57].

In the semiclassical theory of the interaction of photon with nuclei, the shape of
a fundamental resonance in the absorption cross-section is assumed to be described
by the Lorentz function,


.Ex/ D 
m

1C Œ.E2x � E2m/
2=E2x�

2
(2.31)



26 2 Theory of Collective Motion

where, the Lorentz parameters Em, 
m and � are the resonance energy, peak cross-
section and full width at half maximum respectively. In the Goldhaber-Teller (GT)
model, the associated transition density with the 100 % EWSR value for IVGDR are
given by [49],

ı�n
1.r/ D �˛1 2Z

A

d�n

dr
ı�

p
1.r/ D �˛1 2N

A

d�p

dr
(2.32)

with the amplitude, ˛1, given by,

˛21 D �„2
2m

A

NZEx
(2.33)

The IVGDR contribution to the experimental differential cross-section is then
determined as follows,

d
2

d	dE
.�c:m:;Ex/�D1;�D1 D a�D1;�D1.Ex/

d
2

d	dE
.�c:m:;Ex/

calc
�D1;�D1 (2.34)

where, a�D1;�D1(Ex) are defined as,

a�D1;�D1.Ex/ D 
abs

R

abs.Ex/dEx

(2.35)



Chapter 3
Experimental Overview and Data Reduction

3.1 Overview

This chapter discusses the experimental details of the (˛,˛0) and (d,d0) reactions
used to study isoscalar giant resonances in nuclei. The discussion begins with the
experimental requirements for the giant resonance studies, followed by the general
experimental set-up used for the three experiments. The first part of this chapter
concludes by providing the detailed specifications of each experiment.

The second part of the chapter describes in detail the data reduction process
needed to obtain the background-free, accurately-calibrated, excitation energy
spectra. The chapter concludes with the description of the procedure for extracting
the experimental cross-section from these excitation spectra.

3.2 Experimental Setup

The experiments were performed at the Research Center for Nuclear Physics
(RCNP), Osaka University, Japan. The cross-section of the giant monopole reso-
nance, which is the focus of this work, is maximum at 0ı. Thus the forward angle
measurements, including 0ı, are extremely important for our analysis. The high-
resolution spectrometer at RCNP, Grand Raiden, was used in order to separate the
main beam from the scattered beam at extremely forward angle measurements. This
unique capability made RCNP an ideal choice for these experiments.

© Springer International Publishing Switzerland 2016
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3.2.1 Beam Line at RCNP

The accelerators at RCNP consists of two cyclotrons. The azimuthally varying field
(AVF) cyclotron serves as injector into the K400 ring cyclotron, as shown in Fig. 3.1
[58]. A low energy beam is extracted from an electron cyclotron resonance (ECR)
ion source and is injected in the AVF cyclotron [59]. The ring cyclotron was used
in the single turn extraction mode in order to keep the beam halo to a minimum.
The beam was then transported through the WS beam line to the experimental area.
The achromatic beam transport was used in order to avoid an increase in the beam
halo which could have resulted when using the high-resolution lateral-dispersion
matching mode [60].

3.2.2 Grand Raiden Spectrometer

The beam, after its interaction with the target, was guided through the high
resolution magnetic spectrometer, Grand Raiden. The main beam is guided through
an exit beam pipe at the high-momentum side of the focal plane. The scattered
particles were momentum analyzed with a resolution of p=4 p D 37;000 [61].
The schematic set up of the Grand Raiden is shown in Fig. 3.1. Grand Raiden has
the configuration of QSQDMD(DSR), where Q, S, D, and M denote quadrupole,
sextupole, dipole, and multipole magnets, respectively. An optional magnet, (DSR),
is a dipole for spin rotation magnet which was used in our experiment as an extra
steering magnet, for the 0ı measurement, in order to guide the main beam into
the Faraday cup (FC) located at the end of the beam exit pipe [62]. The complete
system, shown in Fig. 3.1, was rotated about the center of the scattering chamber for
the cross-section measurements at different angles [50, 63]. The main properties of
the Grand Raiden spectrometer are listed in Table 3.1.

3.3 Detector Setup

3.3.1 Focal-Plane Detector System

The focal plane detector system consisted of two multiwire drift chambers
(MWDCs) followed by two plastic scintillators (PS1 and PS2) as shown in Fig. 3.2
[64]. The detector system was aligned along the focal plane tilted at 45ı with
respect to the central ray of the spectrometer. The MWDCs have holes at their
high-momentum sides of the sensitive area in order to allow for the main beam
to pass through it for the 0ı measurement. This enabled us to measure nuclear
excitation energies at as low as 6 MeV in the case of 400 MeV alpha particles and
about 8 MeV in the case of 200 MeV deuterons at 0ı.
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Table 3.1 Design parameters of Grand Raiden and MWDC

Grand Raiden parameters MWDC design parameters

Radius of the central orbit 3 m Active area 1150W mm � 120H mm

Total bending angle 162ı Wire configuration X(0ı), U(�48.2ı)

Angular range �4ı to 90ı Anode-cathode gap 10 mm

Tilting angle of focal plane 45ı Anode wire spacing 2 mm

Max. magnetic field strength 18 kG Sense wire spacing 6 mm (X), 4 mm (U)

Max. magnetic rigidity 5.4 T�m Number of sense wires 192 (X), 208(U)

Momentum resolution (p/4p) 37,000 Anode sense wire 20�m Au-W

Momentum acceptance 5 % Anode potential wire 50�m Au-Cu/Be

Momentum dispersion 15.451 m Cathode foil 10�m carbon-aramid

Max. horizontal acceptance ˙20 mr Gas seal 12.5�m aramid film

Max. vertical acceptance ˙70 mr Pre-amplifier LeCroy 2735DC

Horizontal magnification (xjx) �0.417 Digitizer LeCroy 3377 TDC

Vertical magnification (yjy) 5.98 – –

Detailed parameters of the MWDCs are summarized in Table 3.1. Each MWDC
consists of X and U anode planes with wire configurations as shown in Fig. 3.3. The
X plane was held at �350V while the U plane was held at �500V. A high voltage
of �5:4 kV was applied to the three cathode planes. The MWDCs were filled with a
gas mixture of Ar (71.4 %) and iso-butane (28.6 %). Iso-propyl-alcohol was mixed
at 2 ıC vapor pressure into argon gas.

3.3.2 Faraday Cup Settings

The inelastic scattering measurements were performed over an angular range of 0ı
to about 12ı. In order to reliably determine the accumulated charge of the incident
beam, three different Faraday cups (FC) were used to cover the whole angular
range.

1. FC for 0ı measurement
At 0ı the main beam passes very close to the scattered beam and hence a

special setup, as shown in Fig. 3.2, was used. The main beam was guided through
the spectrometer to the beam exit pipe situated at the high-momentum side of the
MWDCs. The main beam was stopped in a 0ı-FC situated 3 m down stream of
the focal plane.

2. FC for 2ı < �Lab <5ı measurement
For �Lab > 2ı, the main beam does not pass through the spectrometer owing

to the limited horizontal acceptance of the spectrometer. Therefore, for the 2ı <
�Lab <5ı measurements, a special Faraday cup after quadrupole Q1 called Q1-FC
was used. In this setup, the beam passes through the side-gap of the Q1 magnet
and is stopped in a FC located between Q1 magnet and SX magnet 1.55 m behind
the target.
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Primary Beam
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VDC1
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Fig. 3.2 Focal plane detector system shown in the setup for 0ı measurement with the primary
beam passing close by the high-momentum side

3. FC for �Lab > 6.5ı measurement

For the measurements at �Lab > 6.5ı, the beam was stopped in the standard
scattering chamber (SC) FC, situated inside the SC. The SC-FC is most reliable and
stable against fluctuations of the beam intensity.
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Beam direction

Cathode Plane

Cathode Plane

Cathode Plane

MWDC X-Plane
Sense wire spacing 6mm

MWDC U-Plane
Sense wire spacing 4mm
Tilting angle 48.2°

X

48.2°

y

Z

Fig. 3.3 Structure of each plane of MWDC

3.4 Data Acquisition System

The overview of the data acquisition system (DAQ) used for the high rate measure-
ments is presented in Fig. 3.4 [65, 66]. Each event was constructed using drift-time
data from the MWDCs (digitized by LeCroy3377 TDC), the charge and timing
signals from the trigger scintillators encoded with LeCroy4300B Fast Encoding and
Readout ADC (FERA) system and the input register.

The trigger signal was generated from the coincidence of signals from PS1 and
PS2 using the trigger circuit shown in Fig. 3.5. The output signals from PS1 and PS2
were sent over two paths; one was discriminated by a constant fraction discriminator
(CFD Ortec 935) and the other was sent to the FERA module after a delay. Further
the CFD outputs were sent over two paths; one of the CFD outputs was transmitted
to the TFC (time to FERA converter) backed by the FERA module and the other
one was used to generate the coincidence signal using a mean-timer circuit (REPIC
PRN-070) where the two signals from both sides of the same PS were averaged.
The trigger system was constructed using a LeCroy 2366 universal logic module
(ULM) with field programmable gate-array (FPGA) chips [67]. The trigger signals,
after 250 ns delay, were utilized as a common-stop signals for LeCroy3377 TDCs
and gate signals for FERA.
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Fig. 3.5 Schematic diagram of the Trigger circuit

As a part of the DAQ system, flow controlling event tagger (FCET) was used to
attach the event header, event number and the input register words to each event in
order to maintain the consistency of the data flow [68]. The digitized data were
transferred via the emitter coupled logic (ECL) line bus to high speed memory
modules (HSM) in a Versa Module Europa (VME) system (LeCroy 1191 dual
port memory) as shown in Fig. 3.4. Each data line was connected to a pair of
HSMs which worked in a double-buffer mode. The timing of the buffer change
was controlled by the LeCroy2366 ULM, Since the data readout was independent
of the software management and computer automated measurement and control
(CAMAC) functions, the effective dead time for encoding events was reduced to
less than 30�s/event. Finally the buffered data was transferred and stored in the
work station server IBM RS/6000 SP via gigabit ethernet (GbE) link.

3.5 Experimental Specifications

This section presents the experimental specifications for the three experiments that
form part of this thesis work. The first experiment (E-309) was performed using a
100 MeV/u 4HeCC beam to study the giant resonances in the even-even 106;110–116Cd
isotopes. The second experiment (E-340) was performed using a 100 MeV/u 4HeCC
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Table 3.2 Target specifications

E-309 E-340 E-318

Thickness Thickness Thickness

Target (mg/cm2) Enrichment Target (mg/cm2) Enrichment Target (mg/cm2)
106Cd 4.99 96.0 204Pb 5.16 99.94 24 Mg 50.0
110Cd 5.01 95 206Pb 4.92 99.76 28Si 58.5
112Cd 5.06 98 208Pb 5.82 99.70 58Ni 1.5
114Cd 6.50 96 – – – 90Zr 4.2
116Cd 6.01 93 – – – 116Sn 10.0

– – – – – – 208Pb 10.0

Calibration targets
12C 2.2 – 26 Mg 2.5 – 12C 2.2

Table 3.3 Angular ranges

Energy Energy res. Elastic Inelastic
Expt. Beam MeV keV angular range angular range

E-309 4HeCC 386 �160 3.4ı � �Lab � 19.0ı 0.0ı � �Lab � 9.8ı

E-340 4HeCC 386 �160 3.5ı � �Lab � 24.0ı 0.0ı � �Lab � 9.5ı

E-318 2HC 196 �120 3.5ı � �Lab � 32.0ı 0.0ı � �Lab � 11.0ı

beam to test the mutually enhanced magicity (MEM) effect on the giant resonances
in the even-even 204�208Pb isotopes. The third experiment (E-318) was performed
to establish the feasibility of studying giant resonance in various nuclei using a
100 MeV/u 2HC beam.

Elastic and inelastic scattering cross-sections were measured for the self-
supporting targets in case of each experiment. The target thicknesses are summa-
rized in Table 3.2. The beam energy, experimentally obtained energy resolution,
and the angular range covered for each experiment are summarized in Table 3.3.

In the case of E-340, due to time constraints, the elastic scattering cross-
sections for 208Pb were measured over 3.5ı to 8.5ı, and the previous data from [50]
(measured at the same beam energy) were used for angles up to 25ı. In the case of
E-318, inelastic scattering cross-sections for the giant resonance excitation region
were measured only for 116Sn and 208Pb. The elastic scattering cross-sections were
measured for all six targets in order to determine the optical model for deuteron
scattering.

3.6 Data Reduction

The analyzer program, Yosoi analyzer, was mainly used for the data reduction
process [69]. Following particle identification, the gated spectra were further
analyzed for background reduction and energy calibration in order to reliably extract
the corresponding cross-sections and, hence, the angular distributions.
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3.6.1 Particle Identification

The timing and the pulse height information of the trigger signals from the scintilla-
tor counters, PS1 and PS2, were used to identify the charged particles. The charged
particle loses energy in matter primarily by ionization and the corresponding rate
of energy loss of the charged particle as it travels through the material is given by
Bethe-Bloch formula as [70],

� dE

dx
D 2�NAr2e mec2�

Z

A

z2

ˇ2

�
ln

�
2mev

2�2Wmax

V2

�
� 2ˇ2 � ı � 2C

Z

�
(3.1)

Here, Wmax is the maximum energy that can be imparted to a free electron in a
single collision, NA is Avogadro’s number, re is classical electron radius, me is
electron mass, � is density of the medium, Z is atomic number of the medium,
A is atomic mass number of the medium, z is charge of the incoming particle, v is
velocity of the incoming particle, ˇ D v=c of the incoming particle, � D 1p

1�ˇ2 ,

V is mean excitation potential, ı is density correction, C is shell correction to the
total energy loss. Further, the energy loss of a charged particle is approximately
proportional to the number of photons produced in the scintillators. The number of
scintillation photons, produced at a distance x from the photo multiplier tube (PMT),
are attenuated as they pass through the scintillator material. The number of photons
entering one of the PMTs, I, can be described as a function of the distance x as,

I.x/ D I0exp
�
�x

l

	
(3.2)

where, I0 is the initial photon number and l is the attenuation length of the scintillator
material. If the source point is at a distance x from the left PMT, the geometric mean
of the number of photons from the two PMTs, which are at a total distance of L from
each other, is given by,

I D
p

ILIR D
s

I0exp
�
�x

l
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�
D I0exp

�
� L
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�
(3.3)

The geometrical mean, thus, being independent of the position x of the source point
of ionization, becomes a good measurement of the deposited energy. The I spectra
are, therefore, very useful for particle identification (PID), as shown in Fig. 3.6.
The threshold of the CFD and the HV for the scintillators are optimized to cut off
the events due to low-energy scattered protons in order to improve the live time of
the DAQ system. The bottom right panel of the plot shows a spectrum where clear
identification can be made between alpha particles and protons. Gates applied to this
spectrum help in selecting the particles of interest for further analysis.
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Fig. 3.6 Description of the particle identification technique. Top left and right panel: Correspond
to the right and left PMT outputs. Bottom left panel: Corresponds to the geometrical mean of the
left and the right PMT output as described by Eq. 3.3. Bottom right panel: Corresponds to the
projection of bottom left panel on to the energy axis with counts on the y-axis

3.6.2 Particle Track Reconstruction

Three-dimensional particle track reconstruction can be achieved by making use of
the signals from the MWDCs. This procedure is depicted in Fig. 3.7. The wire
planes of the MWDCs are aligned parallel to the focal plane, i.e. 45ı relative to
the beam direction. A charged particle passing through the MWDC creates two or
more wire hits per plane. The group of these adjacent hit-wires is called a “cluster”.
This allows for separating any background events created e.g. by X-rays or � rays,
which are usually single hit events. The track reconstruction is based on satisfying
the following three conditions: (1) A cluster has at least two wire hits. (2) A single
wire hit is ignored. (3) The number of clusters in each anode plane is one.
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Fig. 3.7 Details of the x-plane configuration of the MWDC

A cluster with three wire hits is depicted in Fig. 3.7. The expected position, p, of the
charged particle at an anode plane of the MWDCs is given by,

p D pi C�P
di�1 C diC1
di�1 � diC1

(3.4)

Here, pi is the position of the i-th anode wire and �P is the anode wire-spacing,
for the geometrical setup where di�1 < 0 and di�1 > 0. The drift lengths di, diC1
and di�1 are obtained from the drift time information measured by the TDC. The
free electrons, generated by the charged particles entering the MWDCs, drift in the
electric field between the potential wires and the cathode plain generating a drift
time spectrum as shown in Fig. 3.8. The edge closest to cathode foil corresponds
to the longest drift length. The sharp peak at the edge near anode wire in the TDC
spectrum is due to the steep 1/R dependence of the electric field close to the anode
wire. Second order corrections were employed to obtain the flat distribution in terms
of the drift length, as shown in the lower panel of Fig. 3.8.

The horizontal angle, �x, of a particle track is determined from the relative
positions at the two X-planes, (x1,x2) and the distance L D 250mm between them,
as follows,

tan�x D x2 � x1
L

(3.5)

The position resolution was about, �x1 D �x2 D 0:3mm in FWHM. This
corresponds to an energy resolution of about 29 keV=mm 
 0:3mm D 8:7 keV at
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Fig. 3.8 Conversion of drift times to drift lengths for the track reconstruction with MWDCs

the focal plane of Grand Raiden which is better than the beam spread seen in each
experiment. The horizontal angular resolution at the focal plane of Grand Raiden is
given by,

ı�fp D tan�1
 p

2 0:3

250

!

� 0:1ı (3.6)

At the target, this corresponds to a horizontal scattering angle of, ı�tgt � .xjx/ 

ı�fp � 0:417 
 0:1ı D 0:04ı, since the horizontal angular magnification, .� j�/ �
1=.xjx/ at the focal plane where .xj�/ � 0. The measured angular resolution of
the MWDCs, including the broadening of scattering angle due to the emittance of
the beam and the multiple Coulomb-scattering effects, was about 0.15ı at the focal
plane of Grand Raiden.
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3.6.3 Efficiency

Efficiency corrections are important to reliably extract the reaction cross-sections.
There were two distinct efficiencies that were corrected for; the intrinsic efficiency
of the MWDCs and the efficiency of the DAQ system. The tracking efficiency of
each of the four anode-wire planes (two X-planes and two U-planes) was determined
using the following description,

�Xi D NHit.Xi \ Xj \ Ui \ Uj/

NTotal.Xj \ Ui \ Uj/
(3.7)

Here the numerator is the number of hit events detected in all four anode-wire planes
and the denominator is the total number of events detected by the other three anode-
wire planes (baring the one for which the efficiency is calculated). The total MWDC
efficiency is then the product of the all four anode-wire planes;

2MWDCD �Xi 	 �Xj 	 �Ui 	 �Uj (3.8)

The DAQ efficiency is calculated as follows,

2DAQD Trigger accepted events

Requested events
(3.9)

The estimated total efficiency of both, the MWDC and DAQ, was found to be in the
range of 90 % to 99 % for most runs.

3.6.4 Acceptance of Spectrometer

The tantalum slits used at the entrance of the Grand Raiden spectrometer determined
the vertical and horizontal acceptances of the spectrometer. The aperture of the slits
used in the experiments were ˙20 mrad wide horizontally. The horizontal angular
acceptance was divided into three regions; �0:9ı to �0:3ı, �0:3ı to 0:3ı and 0:3ı
to 0:9ı, for all the finite angle measurements by using the reconstructed scattering
angles as described in the previous section. The horizontal angular acceptance was
restricted to �0:6ı to 0:6ı for the 0ı measurement. The geometrical description of
the co-ordinate system used for the calculation of the solid angle is as shown in
Fig. 3.9.

The solid angle is given by,

�	 D
Z Z

d.cos�/d� D
Z �GRC��x

2

�GR���x
2

Z C��
2

���
2

d�xd� (3.10)
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Fig. 3.9 Geometrical description of the co-ordinate system for the solid angle calculation

The average angle in the laboratory frame can be calculated according to Fig. 3.9 as
follows,

�av D
R �GRC��x

2

�GR���x
2

R ��y
2

���y
2

‚d�xd�y

R �GRC��x
2

�GR���x
2

R ��y
2

���y
2

d�xd�y

(3.11)

‚ D tan�1
q

tan2�x C tan2�y (3.12)
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For the zero degree measurements, �GR D 0ı, the angular cut was ��x D 1:2ı
(�0:6ı to 0.6ı) and ��x D 40mr (˙20mr). Thus, the average angle in the
laboratory frame corresponding to Grand Raiden angle of 0ı is �av D 0.7ı.

3.6.5 Energy Calibration

Energy calibration is an important step in the analysis procedure. 12C and 26 Mg
were used as calibration targets in our experiments. In order to study the higher
excitation energy region continuum, where there are no discrete states, it is required
to calibrate the focal plane detector using the well-known low-lying discrete states
in“standard” nuclei. Calibration was obtained using the kinematic relation between
the incoming particles ˛/d, the target nucleus A, and the scattered particles ˛0/d0
using the following equation,

Ex D
q
.E˛=d C MA � E˛0=d0 � Eloss/2 � .P2˛=d C P2

˛0=d0 � 2P˛=dP˛0=d0Cos�lab/�MA

(3.13)

Here �lab is the scattering angle of the particle in the laboratory frame. The
momentum of the scattered ˛ particle was determined from the MWDC’s data using
the first order transfer matrix of Grand Raiden calculated along with the actual
magnetic field settings using the code ‘RAYTRACE’ in conjunction with code
‘calc_field’ (M. Itoh, 2008, Private communication). The correction parameters of
the higher order transfer matrix elements were obtained by comparing the calculated
values with the experimental data of elastic and low-lying states of 12C. A typical
calibration spectrum so obtained is shown in Fig. 3.10.

In the E-340 experiment, the magnetic field setting required to cover the giant
resonance excitation energy range in the Pb isotopes led to the 9.64 MeV peak of
12C to being the lowest energy peak in the spectrum. This allows only for a linear
calibration. In order to include non-linear terms, 26 Mg was used as a calibration
target and the corresponding calibration spectrum is shown in Fig. 3.11. 26 Mg
spectra were taken at three different magnetic field settings in order to calibrate the
whole focal plane and determine the quadratic term in the calibration equation. The
B� v/s focal plane x-position spectrum, constituting three magnetic field settings,
is shown in the upper left panel of Fig. 3.11. The quadratic term obtained is of the
order of 10�6, confirming the validity of using linear calibration for the kind of
energy resolutions obtained using achromatic, halo-free beams in our experiments.

3.6.6 Background Subtraction

All spectra obtained during the experiment contain background events arising from
different sources in addition to the desired events. The background arising from the
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Fig. 3.10 The calibration using 12C target at 0ı. Upper panel: Calibration spectrum for the lower
excitation energy states was taken at a particular magnetic field setting. Lower panel: The black
spectrum is the zoomed-in section of the spectrum in the upper panel. The red spectrum is
the calibration spectrum taken at a different magnetic field settings in order to cover the higher
excitation energy region (scaled to the spectrum in upper panel of the figure, for comparison)

beam halo is reduced by tuning the accelerator and adjusting the slits. However,
most background events originate from multiple coulomb scattering in the target
and subsequent re-scattering from the edges of the entrance slit, the magnetic yokes
and the walls of the spectrometer. The multiple coulomb scattering poses major
problem in particular in forward angle measurements. In order to discriminate this
background the Grand Raiden spectrometer was operated in the double focusing
mode. While the ‘true’ events, from the inelastic scattering of the beam particles,
are focused in vertical as well as horizontal direction, the background events result
in a flat distribution as shown in the vertical Y-position spectrum in Fig. 3.12. The
central peak region consist of the ‘True + Background’ events where the true events
are focused in a sharp peak sitting on a flat background. Defining the gates on this
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Fig. 3.11 Calibration using 26 Mg target at 5ı. Top left panel: The calibration equation for the
entire focal plane using three magnetic field setting data. The red line is the quadratic fit to the data
points. Top right panel: The full spectrum obtained at 5ı, showing the elastic and the first excited
state of 26 Mg. Bottom left panel: The zoom in part of spectra b with identified peak energies.
Bottom right panel: The higher excitation zoom of spectra b. The numbers in red represent the
identified energies with large uncertainties

Y-position spectrum is translated to the excitation energy spectra as shown in the
bottom left panel of Fig. 3.12. The resultant background subtracted spectrum, shown
in the bottom right panel, is essentially free from instrumental background.

3.6.7 Differential Cross-Section

The instrumental background free spectrum of the scattered particles of interest, at
a given angle, is used to calculate the differential cross-sections. The differential
cross-section is defined as follows,

d2


d	dE
.�av;Ex/ D Y

NINT�E�	.�av;Ex/ 2MWDC .�av;Ex/ 2DAQ .�av;Ex/
(3.14)

where �av is the average scattering angle as defined in Sect. 3.6.4. Y is the yield in the
accepted solid angle (�	, in msr),�E is the energy bin in MeV, and 2MWDC;DAQ are
the total MWDC and DAQ efficiencies defined in Sect. 3.6.3. NI is the total number
of incident particles which depends on the integrated current of the incoming beam
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Fig. 3.12 Y-position and gated energy spectra at 0ı for 116Sn(d, d0)

Q, its atomic number Z, electron charge e. The total number of target nuclei, NT , are
determined from the target thickness �x, Avogadro’s number NA and the mass of
the target nucleus A. The differential cross-section equation then takes the following
form,

d2


d	dE
.�av;Ex/ D YAZe

Q�xNA�E�	.�av;Ex/ 2MWDC .�av;Ex/ 2DAQ .�av;Ex/
(3.15)

The elastic differential cross-section so obtained are further analyzed for deter-
mining the optical model parameters which are used in subsequent analysis of the
inelastic scattering angular distributions.



Chapter 4
Data Analysis

4.1 Overview

The elastic angular distributions along with the first few discrete level angular
distributions were utilized in modeling the nuclear potential. Details of the nuclear
potential models are presented in the first two sections of this chapter followed by
the detailed description of the models used in each of the three experiments. This
chapter ends with the description of the multipole decomposition analysis (MDA)
technique used for the analysis of the giant resonance data.

4.2 Optical Model

The optical model is one of the most successful models used to describe the
scattering phenomenon [71]. The optical model essentially characterizes the inter-
action between two nuclei in terms of a potential. The optical potential is a
simple “effective” interaction which is designed to describe the elastic as well
as the inelastic scattering channels. It is used to replace the complicated many-
body problem posed by the interaction between two nuclei with a much simpler
problem of two particles interacting through an ‘effective’ potential. In order to take
into account the inelastic channels, a complex optical model potential is adopted.
This is closely related to the use of complex refractive index for describing the
passage of light through a given medium. The details of this modeling procedure
are described in the following section. The optical model plays an important role
in the description of nuclear scattering. Not only does it provide an interpretation
of the elastic scattering in terms of a potential, but it also provides the associated
wavefunction which could be used to study the inelastic scattering.

© Springer International Publishing Switzerland 2016
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4.2.1 Introduction

In order to accurately describe the scattering phenomenon, each term in the complex
optical potential can be further modeled based on the reaction under study. Each part
of the potential, real and imaginary, can have contributions arising from various
possible functional forms based on the modeling of a given reaction. Usually
it is assumed [47], at least for light ion scattering, that the interior of the real
part of the potential is flat and attractive (negative) and, because of the short
range of the nuclear interaction, rises quickly and monotonically to zero at the
surface. There are several analytical forms that can be used [72, 73]. In the present
experimental investigation, a hybrid optical model potential was employed to model
the 100 MeV/u ˛ elastic scattering (E-309 and E-340). In the case of E-318, a
phenomenological optical model was used to model the deuteron elastic scattering.
These are discussed in further detail in the following subsections.

4.2.1.1 Hybrid Model

The hybrid optical model potential, which has been well established in previous
studies of ˛ scattering at similar beam energies [74, 75], was constructed using
the density dependent single folding model for the real part of the potential and
the Woods-Saxon form for the imaginary part. The form factors for the density
dependent single folding real part were obtained using a Gaussian ˛-nucleon
potential described by Satchler and Khoa [74]. The hybrid optical potential form
is given by,

U D VC C VDDG C iWVol (4.1)

Where,

VDDG.s; �/ D �VG.s/f .�/ D �VRŒ1 � ˛�gs.r
0/ˇexp.�s2=t2/

and,

WVol D Wi

1C exp..r � Ri/=Ai/

Here, s D jr-r0 j is the distance between the center of mass of the alpha particle
and a target nucleon, �gs(r0) is the ground-state density of the target nucleus at the
position r0 of the target nucleon, VR and Wi are the potential depths for the real and
the imaginary part of the potential, range t D 1.88 fm, ˛D 1.9, ˇD 2/3 and, Ri and
Ai are the radius parameter and diffusivity of the imaginary part of the potential.
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Table 4.1 Fermi density distribution parameters used for the density
dependent single folding calculations

E-309 E-340
106Cd 110Cd 116Cd 204Pb 206Pb 208Pb

�0 (fm�3) 0.1561 0.1573 0.1596 0.1583 0.1589 0.1594

c (fm) 5.2875 5.3435 5.4164 6.6169 6.6311 6.6468

a (fm) 0.523 0.523 0.523 0.523 0.523 0.523

VC is the coulomb potential assumed to be of the form “point and uniform sphere”
as described below,

VC D CZpZte2

r
W r � RC

VC D
CZpZte2

�
3 �

�
r

RC

	2�

2RC
W r < RC (4.2)

Here RC is the coulomb radius. The Fermi parameters c (half density radius) and
a (diffuseness parameter) of the ground-state density used in the calculation are
summarized in Table 4.1 [76].

Computer programs, SDOLF and DOLF, were used to calculate the real part
of the elastic and transition potentials (L. Rickersten, 1976, SDOLF and DOLFIN,
unpublished). The form factors for the real part of the potential were given as an
input to the computer code PTOLEMY [77]. PTOLEMY input file was generated
taking into account the correct relativistic kinematics. This program was used to fit
the elastic scattering cross-sections in order to extract the OMPs; viz. VR, Wi, Ri

(Ri D ri0A1=3) and Ai, using �2 minimization technique. The values obtained for the
even-even 106;110–116Cd isotopes (E-309) and 204–208Pb isotopes (E-340) are given in
Table 4.2. In the case of the E-309, elastic data was obtained only for 106;110;116Cd
isotopes and the OMPs for 112;114Cd were interpolated. The experimentally obtained
first excited state cross-sections were compared with the calculated cross-section
from PTOLEMY using the known B(E2)/B(E3) values from literature [78, 79].
These were used as a test to validate the OMP set obtained from the elastic fits.
The elastic fits along with the 1st excited state comparison plots, for the Cd and
Pb targets, are shown in Figs. 4.1 and 4.2 respectively. In the case of 208Pb, the
experimental elastic and 3�

1 state cross-sections were obtained form the previous
data taken using ˛ scattering at same beam energy [50]. The experimental 2C

1 and
3�
1 angular distributions compare very well with the DWBA angular distributions

calculated using the OMP obtained from the corresponding elastic fits and the
adopted values of B(E2) and B(E3). Further, a global test was performed as a last
check on the OMP as is discussed in the latter part of this chapter in Sect. 4.3.
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Table 4.2 Hybrid model: optical model parameters obtained from fitting the experimen-
tally obtained elastic angular distributions

E-309 E-340

VR Wi ri0 Ai VR Wi ri0 Ai

Target (MeV) (MeV) (fm) (fm) Target (MeV) (MeV) (fm) (fm)
106Cd 32.04 31.28 1.025 0.566 204Pb 43.60 34.52 1.086 0.745
110Cd 31.76 32.41 1.010 0.613 206Pb 44.29 39.57 1.073 0.745
112Cd 31.74 32.96 1.008 0.629 208Pb 41.29 48.40 1.035 0.745
114Cd 31.69 34.06 1.003 0.661
116Cd 31.67 34.61 1.000 0.677
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Fig. 4.1 E-309: Elastic and first excited state cross-section spectra obtained for 106;110;116Cd
isotopes. The black squares and circles correspond to the experimentally obtained angular
distributions obtained for the elastic and the first excited state respectively. Red lines for the elastic
state angular distributions are the fits to the experimental data. The red lines for the first excited
state represent the calculated angular distribution obtained using the OMPs from the corresponding
elastic fits and the known B(E2) values from literature

4.2.1.2 Phenomenological Potential Model

The customary optical model used for deuteron scattering consists of a complex
central potential of the Wood-Saxon shape and its derivatives, a spin-orbit term
of the Thomas form and a Coulomb term. These are described in further detail in
Refs. [80–83]. Deuteron carries one unit of spin in its ground state. This requires
inclusion of a real spin-orbit term in the optical potential. In addition to this, an
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Fig. 4.2 E-340: Elastic and first excited state cross-section spectra obtained for 204;206;208Pb
isotopes. The black squares and circles correspond to the experimentally obtained angular
distributions for the elastic and the first excited state respectively. Red lines for the elastic state
angular distributions are the fits to the experimental data. The red lines for the first excited state
represent the calculated angular distribution obtained using the OMPs from the corresponding
elastic fits and the known B(E2)/B(E3) values from the literature

imaginary surface term is also required to account for the surface absorption. Thus,
the phenomenological optical model potential employed in the current study had the
following functional form,

V D VCoul C VVOL C iŒWVOL C WSURFC VLS (4.3)

where,

VVOL D �Vvolfv.r;Rv; av/;WVOL D �Wvolfwv.r;Rwv; awv/;

WSURF D 4awsWsurf
d

dr
fws.r;Rws; aws/;

VLS D Vls

� „
m�c

�2
1

r
.EL 	 ES/ d

dr
fls.r;Rls; als/;

The computer code DFPD4 was used to calculate the folded Coulomb part of the
optical potential [84]. The functional form of “f” was chosen to be of the Woods-
Saxon form,
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f .r;R; a/ D 1

1C e
.r�R/

a

(4.4)

The Coulomb transition potential is calculated in the same way as the nuclear
transition potential by the folding model in which the proton density of the target
nucleus is used. Further, spin-orbit transition potentials were obtained using the
same deformation parameters as for volume and surface potentials.

116Sn and 90Zr were used as test cases for establishing the model appropriateness
since the OMP test could be performed on two low lying states viz. 2C

1 and 3�
1

simultaneously in each nucleus thereby constraining the model better. The resultant
best fits with this model for 116Sn and 90Zr nuclei are shown in Fig. 4.3. The elastic
angular distribution fits and the DWBA calculations were done using computer code
ECIS97 [2, 85]. The experimental 2C

1 angular distributions for both nuclei compare
very well with the calculated angular distributions using the adopted B(E2) values
[78]. The 3�

1 experimental angular distribution for 116Sn agrees very well with the
calculated 3�

1 distribution with the adopted value of B(E3) from Ref. [79] within
errors. For the case of 90Zr the adopted value of B(E3) D 0.098 e2b3 overesti-
mated the experimentally observed angular distribution. Instead, a lower value of
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1 states. Red line for the elastic state angular distributions is the best fit to the experimental data.
The red lines for the excited states represent the calculated angular distributions obtained using the
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Table 4.3 Phenomenological model: optical model parameters obtained from fitting the
experimentally obtained elastic angular distributions

E-318

Vvol av Wvol r0wv awv Wsurf r0ws aws r0ls als

Target MeV fm MeV fm fm MeV fm fm fm fm
208Pb 48.54 0.938 20.59 1.20 0.361 7.0 1.24 0.79 1.12 1.23
116Sn 44.33 0.911 20.87 1.07 0.571 7.0 1.12 1.09 0.93 1.11
90Zr 42.95 0.997 20.20 1.06 0.538 7.9 1.10 0.997 1.20 0.985
58Ni 39.07 0.914 21.41 1.07 0.456 7.6 1.04 1.03 1.19 1.11
28Si 35.58 0.911 22.67 1.07 0.420 7.95 1.02 0.989 1.19 1.11
24Mg 34.42 0.977 26.39 1.07 0.551 8.0 1.02 0.920 0.956 1.364

B(E3)D 0.043 e2b3 obtained from previous inelastic scattering data listed in
Ref. [79] was used to reproduce the experimentally observed angular distribution.

Deuteron elastic scattering data was obtained for six different target nuclei.
Some of the less sensitive parameters were held constant in order to reduce the
number of free parameters and thence reduce the ambiguity in the parameter sets.
Two parameters, r0v D 1.18 fm and Vls D 2.11 MeV, were held fixed in the fits.
OMP extracted for all the nuclei studied in this experiment, corresponding to
the simultaneous best reproduction of first excited state angular distribution, are
summarized in Table 4.3.

The fits obtained using these parameter sets are plotted in Fig. 4.4. The fits
tend to get worse for lighter nuclei. This is an implication of the failure of the
pure phenomenological model for light mass nuclei. Similar limitation of the
phenomenological model in the case of light nuclei is also noted in Refs. [81, 86].
However, this model works very well for the heavier nuclei like 116Sn and 208Pb.
This model was employed further to test the global validity of the OMP set before
the MDA.

4.3 Global Optical Model Analysis

The ratio of volume integral of an optical potential to the product of the projectile
and target mass, JR.I//(ApAt), has been found to be a suitable parameter for
investigating the systematic trend of the optical model potentials [87, 88]. It is
possible to refer to data that typically covers incident energy from 20 MeV to
1000 MeV. The comparison with this data, results in an important consistency test
for the optical potentials obtained in a given experiment. The volume integrals are
defined as,

JR.I/ D
Z

UR.I/.r/d
3r (4.5)
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Figure 4.5 shows the comparison of volume integrals obtained from previous
work against those obtained from this work. The squares represent data obtained
from ˛ scattering and circles represent data obtained from deuteron scattering.
The compilation data was obtained from previous experimental observations, as
described in Refs. [24, 27, 81, 89–94]. All the current values, for both the real and
imaginary volume integrals, follow the general trend as seen in the figure. The
real part of the volume integral appear to show a decrease with energy, whereas,
the imaginary part appears to be nearly constant. Within the scattered data set,
the values obtained from the current analysis are quite reasonable, indicating the
appropriateness of our optical model parameterizations.

4.4 Multipole Decomposition Analysis

The inelastic scattering cross-section spectra obtained at higher excitation energy
consist of overlapping contributions from varied angular momentum transfers. It
thus becomes important to extract the contribution from each of these multipolarities
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in order to study the specific nuclear vibrational modes of interest. This section
describes in detail the multipole decomposition technique used to separate strengths
corresponding to each multipolarity.

4.4.1 Introduction

The OMP sets obtained from the analysis of the elastic scattering cross-sections are
used to calculate the DWBA cross-sections. These calculations are carried out in the
giant resonance excitation energy region and for various multipoles corresponding
to different angular momenta transferred during the reaction. Calculations were
performed with the help of PTOLEMY and ECIS codes using the transition densities
and sum rules for various multipolarities described in Chap. 2.

The 0ı inelastic scattering cross-sections measured for all the isotopes studied
in this work are presented in Figs. 4.6, 4.7 and 4.8. Similar spectra were obtained
for a number of angles over the angular ranges listed in Table 3.3. Each spectrum
is divided into 1 MeV wide bins for further analysis, providing an “experimental”
angular distribution for each energy bin. The contribution due to IVGDR, arising



56 4 Data Analysis

116Cd

114Cd

112Cd

110Cd

106Cd

Ex (MeV)

d2
s/

dW
·d

E
 (

m
b/

sr
·M

eV
)

10

100

100

20 30
0

0

0

100

0

100

100

0

Fig. 4.6 E-309: (˛,˛0) cross-section spectra (100 keV bin size) obtained for the even-even
106;110–116Cd isotopes at �av D 0.7ı

204Pb

206Pb

208Pb

Ex (MeV)

d2
s/

dW
•d

E
 (
m

b/
sr

•M
eV

)

10

100

200

20 30
0

0

100

200

100

200

0

Fig. 4.7 E-340 : (˛,˛0) cross-section spectra (200 keV bin size) obtained for the even-even
204–208Pb isotopes at �av D 0.7ı



4.4 Multipole Decomposition Analysis 57

Ex (MeV)
0

0

5

10

20

20

30

30

40

50

60

10

15

25

10 20

d2
s/

dW
/d

E
 (

m
b/

sr
/M

eV
)

116Sn

208Pb

Fig. 4.8 E-318: (d,d0) cross-section spectra (200 keV bin size) obtained for 116Sn and 208Pb
isotopes at �av D 0.7ı

from the coulomb interaction, is subtracted out from the total cross-section before
the MDA. The IVGDR contribution is obtained using the photonuclear cross-section
data in conjunction with DWBA calculations on the basis of Goldhaber-Teller
model. The details are presented in Sect. 2.5. No photonuclear cross-section data
is available for 204Pb; in this case the parameters were obtained from a global
equation derived from the best fit to the available data over a wide range of nuclear
masses [57]. In the event, the corresponding IVGDR cross-sections are too small to
affect the MDA results in any significant way.

The IVGDR subtracted cross-sections are then expressed as the linear combina-
tion of the calculated DWBA differential cross-sections as follows,

d2
exp.�Lab;Ex/

d	dE
D
X

L

aL.Ex/
d2
DWBA

L .�Lab;Ex/

d	dE
(4.6)

MDA fits are performed up to maximum angular momentum transfer of�Lmax D 7,
in the case of ˛ particle scattering, since the �2/� saturates to 1 near about
�Lmax D 7. However in the case of the deuteron scattering, minimum �2/� was
found at about �Lmax D 5 and MDA was performed upto �Lmax D 5. The fitting
was obtained using a �2 minimization technique.
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MDA fits for different target nuclei at excitation energies of corresponding
ISGMR centroid energies are presented in Figs. 4.9 and 4.10 for E-309 and E-340,
respectively. For E-318, experiment MDA fits at an excitation energy of 13.5 MeV
are presented in Fig. 4.11; ISGMR in the case of 208Pb and ISGQR in the case of
116Sn peak around this excitation energy. A clear dominance of the L D 0 can be
seen for 208Pb as against the dominant contribution of L D 2 in the case of 116Sn
nucleus. MDA fits were obtained at each excitation energy within a 1 MeV grid in
order to obtain the strength distributions for different multipoles. A complete set of
these plots at each value of excitation energy for all the isotopes studied as a part of
this thesis are presented in Appendix A.
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Chapter 5
Results and Discussion

5.1 Overview

As described in the previous chapter a multipole deconposition analysis (MDA)
is performed. In order to extract the strength distribution of various multipoles,
MDA yields the coefficients, aL(Ex) (defined by Eq. 4.6), as a function of excitation
energy for a given multipolarity. These coefficients are referred to as the fractions
of EWSR. These EWSR fractions are directly related to the multipole strengths by
the following definitions,
For L = 0,

S0.Ex/ D 2„2A < r2 >

mEx
a0.Ex/ (5.1)

For L = 1,

S1.Ex/ D 3„2A
32�mEx

�
11 < r4 > �25

3
< r2 >2 �10� < r2 >

�
a1.Ex/ (5.2)

where � is defined by Eq. 2.13.
For L � 2,

SL�2.Ex/ D „2A < r2L�2 >
8�mEx

L.2L C 1/2aL.Ex/ (5.3)

Here, A is the mass number, m is the nucleon mass, Ex is the excitation energy
and < rn > is the nth radial moment of the ground state density. The extracted
strength distributions for the isoscalar giant monopole resonance are presented in
this chapter. Each strength distribution is fitted to a Lorentzian curve in order
to extract the shape-parameters of the corresponding giant monopole resonances.

© Springer International Publishing Switzerland 2016
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These results are further discussed in detail for each experiment. The properties of
the other giant resonances (L�0) have also been extracted as a part of this thesis
work and are presented in Appendix B.

5.2 E-309: 106;110–116Cd(˛,˛0)

In an experimental investigation of ISGMR in a series of Sn isotopes, an intriguing
feature was observed: the ISGMR centroid energies of Sn isotopes were found
to be consistently lower than those predicted by relativistic and non-relativistic
calculations, by as much as 1 MeV [24, 29]. These theoretical models, however,
were accurately calibrated, and could reproduce ISGMR strength distributions in
90Zr, 144Sm and 208Pb very well. In order to investigate this problem further,
we have made GR measurements in the neighboring Cd isotopes. The ISGMR
strength distributions extracted from the MDA analysis in the current experiment
are presented in Fig. 5.1 for 106;110;112;114;116Cd isotopes. The experimental strength
distributions are fitted with a Lorentzian curve for each isotope and the parameters
extracted are presented in Table 5.1. The centroid energies for the ISGMR, for the
case of 110Cd and 116Cd nuclei, agree within errors with the previously obtained
values [95].
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Fig. 5.1 E-309: The ISGMR strength distributions in the Cd isotopes investigated in this work.
The solid red lines represent Lorentzian fits to the data
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Table 5.1 Lorentzian-fit parameters for the ISGMR strength dis-
tributions in the Cd isotopes investigated in this work

E (MeV) � (MeV)

Target E (MeV) � (MeV) Ref. [95] Ref. [95]
106Cd 16.50 ˙ 0.19 6.14 ˙ 0.37 – –
110Cd 16.09 ˙ 0.15 5.72 ˙ 0.45 15.71 C0:11

�0:11 5.18 C0:16
�0:17

112Cd 15.72 ˙ 0.10 5.85 ˙ 0.18 – –
114Cd 15.59 ˙ 0.20 6.41 ˙ 0.64 – –
116Cd 15.43 ˙ 0.12 6.51 ˙ 0.40 15.17 C0:12

�0:11 5.40 C0:16
�0:14

Note: For comparison, ISGMR parameters from Lui et al. (Gaussian
fits) are also provided

The extra strength seen at the higher excitation energies is not well understood.
However, similarly enhanced E0 and E1 strengths at high excitation energies are
noted previously [29, 53, 96] and have been attributed to the contributions to
the continuum from three-body channels, such as knockout reactions, which are
forward peaked [97], this leads to a mimicking of the L = 0 angular distribution.
These processes are implicitly included in the MDA as background and may lead
to spurious contributions to the extracted multipole strengths at higher energies
where the associated cross-sections are very small. This conjecture was supported
by measurements of proton decay from the ISGDR at backward angles (quasifree
knockout results in protons that are forward peaked) wherein no such spurious
strength was observed in the spectra in coincidence with the decay protons [98–101].
Similar increase in the ISGMR strength at high excitation energies has been reported
in previous work reported by Li et. al. in Sn isotopes [24] and by TAMU group
in 12C [102].

The ISGMR centroid energies obtained from the current analysis are compared
with the calculations based on various interactions and are presented graphically
in Fig. 5.2. The ISGMR centroid energies are calculated theoretically in terms
of the moment ratios, defined as mk=

R
Ek

xS.Ex/dx. The moment ratios obtained
from this work and the theoretical results extracted from the distributions of
isoscalar monopole strength computed in a relativistic random phase approxi-
mation (RPA) using the accurately calibrated NL3 (K1 = 271 MeV) [103] and
FSUGold (K1 = 230 MeV) [104] effective interactions are summarized in Table 5.2.
A detailed description of the relativistic RPA formalism and its implementation
may be found in Ref. [105]. The use of the NL3 effective interaction, with an
incompressibility coefficient significantly larger than FSUGold, exacerbates the
discrepancy between theory and experiment even further. Likewise, in a recently
available calculation [4] within the Skyrme Hartree-Fock+BCS and quasiparticle
RPA with the SLy5 parameter set (K1 = 230 MeV), which reproduces the ISGMR
in 208Pb very well, the centroids of ISGMR strength distributions in the Cd isotopes
(also shown in Fig. 5.2) are, again, significantly larger than the experimentally-
obtained results. Thus, the question originally posed in Refs. [26, 35, 106] of “Why
are the Sn isotopes so Fluffy” extends to the cadmium isotopes as well.
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As can be noted, even with the inclusion of pairing effects, using a mixed pairing
interaction [4], the centroids of the ISGMR remain well above the experimental
values (Fig. 5.2) – the net effect pf pairing appears to be that of lowering the
centroid by only �100 keV in 106Cd to a maximum of �240 keV in 116Cd. Thus,
the impact of superfluid correlations on the compressibility of a fermionic droplet
remains an interesting open question [36] to date in spite of significant theoretical
effort [4, 31, 33, 34, 36, 107], no single approach has been able to simultaneously
describe the centroid energies in 90Zr, 208Pb, and the Sn/Cd isotopes. The remaining
challenge, therefore, is not only to describe the distribution of monopole strength
along the isotopic chain in tin and cadmium, but to do so without sacrificing
the enormous success already achieved in reproducing a host of ground-state
observables and collective modes.

Measurements made on series of isotopes presents a way to extract the asymme-
try term, K� , in nuclear incompressibility expansion, Eq. 1.11. K� obtained from the
study of finite nuclei is strongly correlated with the corresponding term in infinite
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Table 5.2 Moment ratios calculated over the excitation-energy range 10.5–20.5 MeV

Target
p

m1=m�1 m1=m0 (MeV)

(MeV) This work FSUGold NL3 SLy5 [4]

Mixed Without

pairing pairing
106Cd 16.06˙0.05 16.27˙0.09 16.73 17.25 16.82˙0.55 16.92
108Cd – – 16.65 17.17 – –
110Cd 15.72˙0.05 15.94˙0.07 16.59 17.09 16.54˙ 0.60 16.65
112Cd 15.59˙0.05 15.80˙0.05 16.50 17.00 16.39˙ 0.59 16.50
114Cd 15.37˙0.08 15.61˙0.08 16.38 16.90 16.25˙0.64 16.47
116Cd 15.19˙0.06 15.44˙0.06 16.27 16.77 16.12˙0.68 16.36

Note: The numbers for the SLy5 interaction without pairing were obtained in a private
communication with G. Colò

nuclear matter, K1
� , and is vital in placing stringent constraints on the density

dependence of the symmetry energy. K1
� is simply related to a few fundamental

parameters of the equation of state [108]:

K1
� D Ksym � 6L � Q0

K1
L ; (5.4)

where Q0 is the “skewness” parameter of symmetric nuclear matter, and L and Ksym,
respectively, are the slope and curvature of the symmetry energy. It is the strong
sensitivity of K1

� to the density dependence of the symmetry energy that makes the
present study of critical importance in constraining the EOS of neutron-rich matter.

In order to extract K� from the observed nuclear incompressibility, KA, in the Cd
isotopes, Eq. 1.11 can be rewritten as,

KA � KCoulZ
2A�4=3 D Kvol



1C cA�1=3�C K�

�
N � Z

A

�2
(5.5)

Here, c � �1 [109], and KCoul is essentially model independent (in the sense
that the deviations from one theoretical model to another are quite small), so
that the associated term can be calculated for a given isotope. For the series of
106;110–116Cd isotopes studied as a part of this thesis work, the neutron-proton
asymmetry changes by 83 % across the isotopic chain. Whereas the Kvol(1+cA�1=3)
term changes 0.5 % over the isotopic chain. Therefore, an approximately quadratic
relation between

�
KA � KCoulZ2A�4=3 and the neutron-proton asymmetry, (N-Z)/A,

of the form y = A + Bx2 can be applied to fit the experimental data. K� can then
be identified as the fitting parameter B. KA is calculated using Eq. 1.9 where the
moment ratio

p
m1=m�1 is identified as EISGMR. The value of KCoul is taken to be

�5:2˙0.7 MeV from Ref. [5]. The quadratic fit for the Cd isotopes is shown in
Fig. 5.3. The value of K� obtained from this fit is �555˙75 MeV; the quoted error
includes the effect (�20 MeV) of the uncertainty in the value of KCoul. This result
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Fig. 5.3 The difference KA � KCoulZ2A�4=3 in the Cd isotopes investigated in this work plotted as
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customary moment ratio

p
m1=m�1 for the energy of ISGMR, and a value of 5.2˙0.7 MeV has

been used for KCoul [5]. The solid line represents a quadratic fit to the data

confirms, and is in excellent agreement with, the value K� D �550˙100 MeV
obtained from the Sn isotopes [24, 29]. This value is also consistent with the
K� D �370˙120 MeV obtained from the analysis of the isotopic transport ratios
in medium-energy heavy-ion reactions [110], K� D �500C120

�100 MeV obtained from
constraints placed by neutron-skin data from anti-protonic atoms across the mass
table [108], and K� D �500˙50 MeV obtained from theoretical calculations using
different Skyrme interactions and relativistic mean-field (RMF) Lagrangians [5].

5.3 E-340: 204–208Pb(˛,˛0)

The softness observed in Sn isotopes is confirmed from the experimental investiga-
tion on Cd isotopes (E-309) [111]. An intriguing proposal put forward to explain this
discrepancy was that the mutual enhancement of magicity (MEM) effect may play
a role in the nuclear incompressibility [36]. MEM refers to a strong underbinding
observed in the Hartree-Fock mass formulas (HFMF) for all doubly magic nuclei
and their immediate neighbors, formed by adding or removing not more than one
nucleon [112, 113]. As noted in Ref. [113], there are 27 such nuclei for which the
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mean error between the experimentally measured values of the nuclear masses and
those calculated by HFMF is �1.31 MeV as against �40 keV for the complete set
of >1700 data points available at the time of that compilation. For the Pb isotopes,
inclusion of this MEM effect in the calculation of ISGMR centroid energies has been
shown to predict higher ISGMR centroid energy in 208Pb by �600 keV, compared
to corresponding ISGMR centroid energies in 204;206Pb nuclei [36]. With a view to
test this MEM effect in Pb isotopes, measurements were made on the three lead
isotopes simultaneously in order to eliminate the systematic errors. The results of
the MDA fits were used to obtain the ISGMR strength distributions; these strength
distributions are shown in Fig. 5.4. Experimental distributions were fitted with a
Lorentzian curve and the parameters for these fits are summarized in Table 5.3.
The centroid energies obtained from this experiment, for the 206Pb and 208Pb nuclei,
agree within errors with the previous measurements [114–116]. The experimental
ISGMR centroid energies are very close to each other for the three Pb isotopes, in
stark disagreement with the predicted �600 keV difference in the ISGMR centroid
energies of 204Pb and 208Pb resulting from the MEM effect as shown in Fig. 5.5.

The moment ratio,
p

m1=m�1, for the three Pb isotopes obtained in this exper-
iment have been compared with theoretical values calculated in the constrained
HFB formalism taking into account the MEM effect. The results are presented in
Table 5.4. The moment ratios were computed over the energy range 9.5–19.5 MeV;
this energy range incorporates nearly all of the ISGMR strength. Also the values
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Table 5.3 Lorentzian fit parameters for the ISGMR distributions obtained for the
three Pb isotopes

Target This work RCNP-U[114] TAMU� [115] KVI[116]
204Pb E (MeV) 13.8 ˙ 0.1 – – –

� (MeV) 3.3 ˙ 0.2 – – –
206Pb E (MeV) 13.8 ˙ 0.1 – – 14.0 ˙ 0.3

� (MeV) 2.8 ˙ 0.2 – – 2.0 ˙ 0.4
208Pb E (MeV) 13.7 ˙ 0.1 13.5 ˙ 0.2 13.96 ˙ 0.20 13.9 ˙ 0.3

� (MeV) 3.3 ˙ 0.2 4.2 ˙ 0.3 2.88 ˙ 0.20 2.5 ˙ 0.4

Note: Parameter values marked with an astrisk (�) were extracted from the moment
ratios rather than peak fitting

203 204 205 206 207 208 209 210 211 212 213
13
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13.6

13.8

14.2

14
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E
IS

G
M

R
 (
M

eV
)

Pairing+MEM

Expt

Fig. 5.5 The ISGMR centroid energies of the Pb isotopes. Red circles are the energies calculated
with constrainted HFB method, taking into account the MEM effect [3] and black squares are
experimentally obtained values [6]

of the product, EISGMRA�1=3, are compared with theoretical values. EISGMRA1=3

is practically identical for the three isotopes, indicating that the ISGMR centroid
energies follow the standard A�1=3 dependence.

These results are in contrast with the theoretical predictions of Ref. [36],
where EISGMRA1=3 varies by 4 MeV between 204Pb and 208Pb. It can be concluded
without much ambiguity, then, that the MEM effect does not play a measurable
role in the energy of the ISGMR in the Pb isotopes and, thence, in the nuclear
incompressibility. The MEM effect, thus, fails to account for the observed softness
of the Sn and the Cd isotopes, and this question remains open still.
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Table 5.4 The moment ratio,
p

m1=m�1, values obtained in this experiment
and calculated over the energy range of 9.5–19.5 MeV are presented

Target
p

m1=m�1 (MeV) EISGMRA1=3 (MeV)

This work Pairing+MEM [36] This work Pairing+MEM [36]
204Pb 13.7˙0.1 13.4 81.2˙0.6 78.9
206Pb 13.6˙0.1 13.4 81.5˙0.6 79.1
208Pb 13.5˙0.1 14.0 81.2˙0.6 82.9

Incidentally, the difference in EISGMR for 204Pb and 208Pb due to the K� value
obtained from the measurements on the Sn and Cd isotopes [6, 24, 29] would be
0.19˙0.03 MeV, consistent with the current meaurements.

5.4 E-318: 116Sn(d,d0),208Pb(d,d0)

Giant resonance in stable isotopes have been studied extensively using various
probes. With the current inconsistencies between experimental observations and
theoretical calculations, as described in the previous sections, it is important
to explore nuclear incompressibility in nuclei far from line of stability. This is
important in understanding the effect of large neutron-proton asymmetries on the
nuclear incompressibility. There is also a possibility of exploring the properties
of “Pygmy” resonance in halo nuclei, resulting from the “core” oscillating against
the skin. One would then be looking at two incompressibilities, that of the “core”
and the “skin”. These measurements would have to be done in inverse kinematics
using radioactive ion beams. With high intensity radioactive ion beams becoming
available at various facilities around the world, these measurements are now
possible. One option for performing such measurements is using an active target-
time projection chamber (AT-TPC) [41]. Deuteron gas can be used as an active
target having dual functionality- serving as both the target gas and as a detector gas.
However, establishing the feasibility in obtaining the ISGMR strength distributions
correctly such a measurement is very important. The goal of the current experiment
was to measure GR properties in two previously studied “standard” nuclei, 116Sn
and 208Pb, to establish the appropriateness of this probe for such studies. Also, for
the first time, we have employed the MDA technique, previously developed for ˛-
particles, to extract strength distributions of various multipoles for inelastic spectra
obtained using the deuteron probe.

The extracted ISGMR and ISGQR strength distributions for the 116Sn and 208Pb
nuclei are shown in Figs. 5.6 and 5.7. The data was taken over only a limited energy
range due to experimental constraints. The strength distributions are fitted to a
Lorentzian curve and the extracted parameters are presented in Tables 5.5 and 5.6.
For comparison, the ISGMR and ISGQR strength distribution parameters from
previous measurements using the ˛ and deuteron probes are also presented. As can
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Fig. 5.6 The ISGMR strength distributions for 116Sn (lower panel) and 208Pb (upper panel)
obtained in this work. Solid lines represent Lorentzian fits to the data
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isotopes investigated in this work. Solid lines represent Lorentzian fits to the data
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Table 5.5 Lorentzian fit
parameters for the ISGMR
strength distributions for
116Sn and 208Pb

EISGMR (MeV) �ISGMR (MeV) % EWSR
208Pb

This work 13.6 ˙ 0.1 3.1 ˙ 0.4 147 ˙ 18

Orsay [46] 13.5 ˙ 0.3 2.8 ˙ 0.2 307 ˙ 60

Jülich [27] 13.8 ˙ 0.3 2.6 ˙ 0.3 –

RCNP [114] 13.5 ˙ 0.2 4.2 ˙ 0.3 58 ˙ 3

TAMU� [115] 13.96 ˙ 0.20 2.88 ˙ 0.20 99 ˙ 15

IUCF [117] 13.9 ˙ 0.4 3.2 ˙ 0.4 100 ˙ 20

KVI [116] 13.9 ˙ 0.3 2.5 ˙ 0.4 110 ˙ 22
116Sn

This work 15.7 ˙ 0.1 4.6 ˙ 0.7 73 ˙ 15

RCNP [24] 15.8 ˙ 0.1 4.1 ˙ 0.3 99 ˙ 5

TAMU� [115] 15.85 ˙ 0.20 5.27 ˙ 0.25 112 ˙ 15

KVI [118] 15.69 ˙ 0.16 3.73 ˙ 0.39 101 ˙ 22

Note: Parameter values marked with an astrisk (�) were
extracted from the moment ratios rather than peak fitting

Table 5.6 Lorentzian fit
parameters for the ISGQR
strength distributions for
116Sn and 208Pb

EISGQR (MeV) �ISGQR (MeV) % EWSR
208Pb

This work 10.6 ˙ 0.2 2.7 ˙ 0.4 98 ˙ 9

Orsay [46] 10.5 ˙ 0.2 2.8 ˙ 0.2 85 ˙ 15

Jülich [27] 10.9 ˙ 0.3 2.6 ˙ 0.3 –

TAMU� [115] 10.89 ˙ 0.30 3.00 ˙ 0.30 100 ˙ 13

IUCF [117] 10.9 ˙ 0.3 2.4 ˙ 0.4 77 ˙ 15

KVI [116] 10.9 ˙ 0.3 3.0 ˙ 0.3 145 ˙ 30
116Sn

This work 13.2 ˙ 0.1 6.0 ˙ 1.0 73 ˙ 23

RCNP [24] 13.1 ˙ 0.1 6.4 ˙ 0.4 112 ˙ 4

TAMU� [115] 13.50 ˙ 0.35 5.00 ˙ 0.30 108 ˙ 12

KVI [118] 13.39 ˙ 0.14 2.94 ˙ 0.31 134 ˙ 28

be noted, the values obtained from current experiment agree well, within errors, with
all the previous measurements. The EWSR values are obtained over the excitation
energy range covered in this experiment; the quoted uncertainties in EWSR values
are statistical only.

The current measurement clearly establishes that a reliable extraction of the
ISGMR strength distributions from inelastic deuteron scattering using the MDA
technique is possible. Small-angle deuteron inelastic scattering can thus serve
reliably for investigation of the ISGMR in nuclei far from stability using inverse-
kinematics reactions, making it possible to investigate the properties of ISGMR in
the exotic nuclei at the rare isotope beam facilities currently operational, and being
planned, worldwide.



Chapter 6
Summary and Current Status

The nuclear matter equation of state (EOS) plays an important role in our under-
standing of nuclear bulk properties, as well as processes taking place in the
stellar environments (i.e. dynamics of supernovae collapse and structure of neutron
stars). The EOS also sheds light on the phase transitions taking place in the
heavy ion collision reactions. Its exact determination is being pursued extensively,
both experimentally and theoretically. Nuclear incompressibility is an important
parameter of the nuclear matter EOS. The centroid energy of one of the nuclear
compression modes – the isoscalar Giant Monopole Resonance (ISGMR) – is a
direct experimental tool to constrain the value of nuclear matter incompressibility.

We have measured giant resonance (GR) strength distributions in a series of
106;110;112;114;116Cd and 204;206;208Pb isotopes with a view of answering one of the
“open” questions in nuclear physics [7, 13]: “Why are Sn isotopes so soft?”.
Additionally, with an aim to further extend the work to more neutron-rich nuclei,
the last part of this thesis is dedicated to establishing the feasibility of deuterium as
a probe for future GR studies in nuclei far from the line of stability and thus explore
the density dependence of symmetry energy in more detail.

Experiments were performed at the Research Center for Nuclear Physics
(RCNP), Osaka University, Japan. Extremely forward angle inelastic scattering
measurements (including 0ı) were made to take advantage of the distinctive
angular distributions exhibited by transitions of different multipolarity using the
high resolution spectrometer, Grand Raiden. Elastic scattering measurements were
performed in order to obtain the optical model parameters. Multipole decomposition
analysis (MDA) was performed to extract the strength distributions for the various
multipole. Distorted-wave Born approximation (DWBA) angular distributions were
calculated in the frame-work of the hybrid model for ˛ scattering experiments
and the phenomenological model for the deuteron scattering experiment. A hybrid
optical model was constructed with the single folding calculation (using density
dependent˛-nucleon interaction) for the real part and Wood-Saxon shaped potential
for the imaginary part.

© Springer International Publishing Switzerland 2016
D.C. Patel, A Study of the Isoscalar Giant Monopole Resonance, Springer Theses,
DOI 10.1007/978-3-319-22207-3_6
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The ISGMR strength distributions were extracted for the Cd isotopes. The
ISGMR centroid energies show softness similar to that in the Sn isotopes (observed
in a previous study). The relativistic, as well as the non-relativistic calculations
including pairing effects, overestimate the ISGMR centroid energies in the Cd
isotopes. The asymmetry term in the nuclear incompressibility, K� , extracted from
the analysis of Cd isotopes was found to be �555˙ 75MeV [111].

We investigated an intriguing theoretical conjecture to explain the softness in
the Sn and Cd isotopes, viz. consequences of the MEM effect on ISGMR centroid
energies. The GR measurements in Pb isotopes were dedicated to testing this
MEM effect as predicted to manifest in Pb isotopes. The ISGMR centroid energies
measured in the series of Pb isotopes indicated a standard A�1=3 dependence in
stark contrast to a sharp increase of 0.6 MeV in the ISGMR centroid energy of 208Pb
when compared to the centroid energy of 204Pb that was predicted as resulting from
the MEM effect. These results clearly established that MEM effect does not play
a measurable role in the energy of the ISGMR, thereby leaving the question of
“softness” in the Sn and Cd unanswered still [6].

Combining the results of GR measurements from this thesis work (in Cd and
Pb isotopes) and all the previous measurements, a more global picture can be
constructed. A strong correlation exists between the symmetry energy coefficient
J and the asymmetry term in the nuclear incompressibility. Using this correlation
and the value of K� obtained from the GR experiments and other independent
measurements the value of J is found to lie between, 27.7 � J � 35.6 MeV
corresponding to K� = �550 ˙ 100 MeV, as shown in Fig. 6.1 [7].

The parameter-set for a given class of energy functionals is characterized by
specific values of K1 and K� . The “experimental” values thus obtained from the
ISGMR for K1 and K� taken together can provide a means of selecting the most
appropriate of the interactions used in nuclear structure and EOS calculations.
Figure 6.2 shows K1 values plotted against different K� values used in different
interactions. The constraints put by K� values obtained from the ISGMR in the Sn
and Cd isotopes and the currently adopted value of K1 D 240 ˙ 20MeV [7, 13],
leaves only a small number of the commonly used interactions as “acceptable”.

To facilitate future GR studies in radioactive isotopes, the feasibility of deuteron
inelastic scattering for such studies was tested as a third and the last part of
this thesis work. The ISGMR and ISGQR strength distributions in 116Sn and
208Pb were extracted using a high energy (100 MeV/u) deuteron beam. For the
first time, the MDA technique was successfully employed to delineate different
multipole contributions reliably. Various features of these strength distributions
are compared with the previous measurements; they agree within experimental
errors. This established the feasibility of using deuteron probe to study GRs in the
radioactive nuclei using inverse kinematics [119]. With the new radioactive beam
facilities becoming available world wide and the improved detector systems for such
measurements, GR studies would be possible in the radioactive nuclei. With these
measurements in nuclei far from stability line, one hopes to answer the question of
“softness” in some detail and also explore the density dependence of the symmetry
energy in the nuclear matter EOS.
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the volume symmetry term J, calculated by using various Skyrme parameter sets (SHF, open
circles) and relativistic Lagrangians (RMF, filled circles [Adapted from Ref. [7]])
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Appendix A
Multipole Decomposition Analysis Results

Multipole decomposition analysis was performed on the experimental angular
distributions at excitation energy interval of 1 MeV. The results of these fits for all
the isotopes studied as a part of this thesis work are presented in this section.

© Springer International Publishing Switzerland 2016
D.C. Patel, A Study of the Isoscalar Giant Monopole Resonance, Springer Theses,
DOI 10.1007/978-3-319-22207-3
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Appendix B
Isoscalar Giant Dipole and Isoscalar Giant
Quadrupole Resonances

The isoscalar giant dipole resonance (ISGDR) and the isoscalar giant quadrupole
resonance (ISGQR) strength distributions were extracted as a part of the multipole
decomposition analysis (MDA )for the Cd isotopes (E-309) and the Pb isotopes
(E-340).
E-309: The ISGDR strength distributions are presented in Figs. B.1 and B.2. The
Lorentzian fits to the data are shown by red lines and the parameters obtained
from these fits are summarized in Tables B.1 and B.2. For comparison, ISGDR
parameters corresponding to the low energy (LE) component and the high energy
(HE) components from Lui et al. (Gaussian fits) are also provided [95].
E-340: The ISGDR and ISGQR strength distributions are presented in Fig. B.3.
The Lorentzian fits to the data are shown by red lines and the parameters obtained
from these fits are summarized in Tables B.3 and B.4. For comparison, ISGDR
parameters corresponding to the low energy (LE) component and the high energy
(HE) components from previous measurements are also provided. Parameter values
marked with an asterisk (�) were extracted from the moment ratios rather than peak
fitting.

© Springer International Publishing Switzerland 2016
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Fig. B.1 E-309: The ISGDR strength distributions in the Cd isotopes investigated in this work.
The solid red lines represent Lorentzian fits to the data
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Fig. B.2 E-309: The ISGQR strength distributions in the Cd isotopes investigated in this work.
The solid red lines represent Lorentzian fits to the data
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Table B.1 Lorentzian fit parameters for the ISGDR strength distributions in
the Cd isotopes investigated in this work

EISGDR (MeV) FWHM (MeV)

Target EISGDR (MeV) � (MeV) Ref. [95] Ref. [95]
106Cd LE 14.7 ˙ 0.2 4.2 ˙ 1.2 – –

HE 26.2 ˙ 0.4 14.6 ˙ 1.9 – –
110Cd LE 14.2 ˙ 0.2 3.6 ˙ 0.6 14.47 C0:44

�0:47 8.7 C0:87
�0:87

HE 26.4 ˙ 0.3 10.3 ˙ 1.3 23.30 C0:55
�0:48 7.32 C1:07

�0:78
112Cd LE 14.0 ˙ 0.3 2.9 ˙ 1.0 – –

HE 25.3 ˙ 0.7 7.9 ˙ 2.4 – –
114Cd LE 13.7 ˙ 0.2 5.3 ˙ 1.0 – –

HE 25.9 ˙ 0.7 13.6 ˙ 3.2 – –
116Cd LE 13.7 ˙ 0.2 4.2 ˙ 0.7 13.94 C0:26

�0:30 8.31 C0:59
�0:46

HE 25.8 ˙ 0.5 12.0 ˙ 2.2 23.58 C0:42
�0:42 9.22 C0:92

�0:72

Table B.2 Lorentzian fit parameters for the ISGQR strength distributions
in the Cd isotopes investigated in this work

EISGQR (MeV) FWHM (MeV)

Target EISGQR (MeV) � (MeV) Ref. [95] Ref. [95]
106Cd 13.7 ˙ 0.3 6.0 ˙ 1.6 – –
110Cd 13.7 ˙ 0.2 5.4 ˙ 1.0 13.09 C0:14

�0:13 5.18 C0:09
�0:41

112Cd 13.5 ˙ 0.2 5.35 ˙ 1.2 – –
114Cd 13.7 ˙ 0.3 6.2 ˙ 1.9 – –
116Cd 13.6 ˙ 0.2 5.6 ˙ 0.9 13.13 C0:12

�0:12 4.94 C0:18
0:16
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Fig. B.3 E-340: The ISGDR and the ISGQR strength distributions in the three Pb isotopes
investigated in this work are shown in the lower three panels and the upper three panels
respectively. The solid red lines represent Lorentzian fits to the data

Table B.3 Lorentzian fit parameters for the ISGDR strength distributions in the Pb
isotopes investigated in this work

RCNP-U TAMU-Y TAMU-C

Target This work [53] [115] [120]
204Pb LE E (MeV) 12.8 ˙ 0.3 – – –

� (MeV) 3.6 ˙ 1.3 – – –

HE E (MeV) 22.6 ˙ 0.8 – – –

� (MeV) 10.6 ˙ 4.8 – – –
206Pb LE E (MeV) 12.2 ˙ 0.3 – – –

� (MeV) 4.0 ˙ 1.4 – – –

HE E (MeV) 22.7 ˙ 1.1 – – –

� (MeV) 11.0 ˙ 5.8 – – –
208Pb LE E (MeV) 12.3 ˙ 0.3 13.0 ˙ 0.1 13.26 ˙ 0.30 12.2 ˙ 0.6

� (MeV) 4.2 ˙ 1.3 1.1 ˙ 0.4 5.68 ˙ 0.50 4.5 ˙ 1.2

HE E (MeV) 22.5 ˙ 0.9 22.7 ˙ 0.2 22.2 ˙ 0.30 19.9 ˙ 0.8

� (MeV) 8.6 ˙ 6.8 11.9 ˙ 0.4 9.39 ˙ 0.35 5.9 ˙ 1.4
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Table B.4 Lorentzian fit parameters for the ISGQR strength distributions for the three Pb
isotopes studied as a part of this thesis work

This work Jülich TAMU� IUCF KVI

(MeV) [27] [115] [117] [116]
204Pb E 11.4 ˙ 0.2 – – – –

� 3.0 ˙ 0.9 – – – –
206Pb E 11.2 ˙ 0.2 – – – 11.0 ˙ 0.3

� 3.8 ˙ 1.0 – – – 2.7 ˙ 0.3
208Pb E 11.0 ˙ 0.2 10.9 ˙ 0.3 10.89 ˙ 0.30 10.9 ˙ 0.3 10.9 ˙ 0.3

� 4.8 ˙ 1.0 2.6 ˙ 0.3 3.00 ˙ 0.30 2.4 ˙ 0.4 3.0 ˙ 0.3
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