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Preface

What is the Nature of This Book?

This four-volume book grew from a four-semester general physics curriculum which
I developed and taught for the past decade to undergraduate students at Wisconsin
Lutheran College in Milwaukee. The curriculum is designed to encourage a criti-
cal and circumspect approach to natural science while at the same time providing
a suitable foundation for advanced coursework in physics. This is accomplished by
holding before the student some of the best thinking about nature that has been com-
mitted to writing. The scientific texts found herein are considered classics precisely
because they address timeless questions in a particularly honest and convincing
manner. This does not mean that everything they say is true—in fact many clas-
sic scientific texts contradict one another—but it is by the careful reading, analysis
and discussion of the most reputable observations and opinions that one may begin
to discern truth from error.

Who is This Book For?

Like fine wine, the classic texts in any discipline can be enjoyed by both the novice
and the connoisseur. For example, Sophocles’ tragic play Antigone can be appreci-
ated by the young student who is drawn to the story of the heroine who braves the
righteous wrath of King Creon by choosing to illegally bury the corpse of her slain
brother, and also by the seasoned scholar who carefully evaluates the relationship
between justice, divine law and the state. Likewise, Galileo’s Dialogues Concerning
Two New Sciences can be enjoyed by the young student who seeks a clear geomet-
rical description of the speed of falling bodies, and also by the seasoned scholar
who is amused by Galileo’s wit and sarcasm, or who finds in his Dialogues the
progressive Aristotelianism of certain late medieval scholastics.1

1 See Wallace, W. A., The Problem of Causality in Galileo’s Science, The Review of Metaphysics,
36(3), 607–632, 1983.
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Having said this, I believe that this book is particularly suitable for the fol-
lowing audiences. First, it could serve as the primary textbook in an introductory
discussion-based physics course at the university level. It was designed to appeal to
a broad constituency of students at small liberal arts colleges which often lack the
resources to offer the separate and specialized introductory physics courses found
at many state-funded universities (e.g. Physics for poets, Physics for engineers,
Physics for health-care-professionals, Physics of sports, etc.). Indeed, at my institu-
tion it is common to have history and fine arts students sitting in the course alongside
biology and physics majors. Advanced high-school or home-school students will
find in this book a physics curriculum that emphasizes reading comprehension, and
which can serve as a bridge into college-level work. It might also be adopted as a
supplementary text for an advanced placement course in physics, astronomy or the
history and philosophy of science. Many practicing physicists, especially those at
the beginning of their scientific careers, may not have taken the opportunity to care-
fully study some of the foundational texts of physics and astronomy. Perhaps this
is because they have (quite understandably) focused their attention on acquiring a
strong technical proficiency in a narrow subfield. Such individuals will find herein
a structured review of such foundational texts. This book will also likely appeal
to humanists, social scientists and motivated lay-readers who seek a thematically-
organized anthology of texts which offer insight into the historical development and
cultural significance of contemporary scientific theories. Finally, and most impor-
tantly, this book is designed for the benefit of the teaching professor. Early in
my career as a faculty member, I was afforded considerable freedom to develop
a physics curriculum at my institution which would sustain my interest for the fore-
seeable future—perhaps until retirement. Indeed, reading and re-reading the classic
texts assembled herein has provided me countless hours of enjoyment, reflection
and inspiration.

How is This Book Unique?

Here I will offer a mild critique of textbooks typically employed in introductory
university physics courses. While what follows is admittedly a bit of a caricature, I
believe it to be a quite plausible one. I do this in order to highlight the unique fea-
tures and emphases of the present book. In many university-level physics textbooks,
the chapter format follows a standard recipe. First, accepted scientific laws are pre-
sented in the form of one or more mathematical equations. This is followed by a
few example problems so the student can learn how to plug numbers into the afore-
mentioned equations and how to avoid common conceptual or computational errors.
Finally, the student is presented with contemporary applications which illustrate the
relevance of these equations for various industrial or diagnostic technologies.

While this method often succeeds in preparing students to pass certain stan-
dardized tests or to solve fairly straightforward technical problems, it is lacking
in important respects. First, it is quite bland. Although memorizing formulas and
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learning how to perform numerical calculations is certainly crucial for acquiring
a working knowledge of physical theories, it is often the more general questions
about the assumptions and the methods of science that students find particularly
stimulating and enticing. For instance, in his famous Mathematical Principles of
Natural Philosophy, Newton enumerates four general rules for doing philosophy.
Now the reader may certainly choose to reject Newton’s rules, but Newton himself
suggests that they are necessary for the subsequent development of his universal
theory of gravitation. Is he correct? For instance, if one rejects Rules III and IV—
which articulate the principle of induction—then in what sense can his theory of
gravity be considered universal? Questions like “is Newton’s theory of gravity cor-
rect?” and “how do you know?” can appeal to the innate sense of inquisitiveness
and wonder that attracted many students to the study of natural science in the first
place. Moreover, in seeking a solution to these questions, the student must typically
acquire a deeper understanding of the technical aspects of the theory. In this way,
broadly posed questions can serve as a motivation and a guide to obtaining a detailed
understanding of physical theories.

Second, and perhaps more importantly, the method employed by most standard
textbooks does not prepare the student to become a practicing scientist precisely
because it tends to mask the way science is actually done. The science is presented
as an accomplished fact; the prescribed questions revolve largely around techno-
logical applications of accepted laws. On the contrary, by carefully studying the
foundational texts themselves the student is exposed to the polemical debates, the
technical difficulties and the creative inspirations which accompanied the develop-
ment of scientific theories. For example, when studying the motion of falling bodies
in Galileo’s Dialogues, the student must consider alternative explanations of the
observed phenomena; must understand the strengths and weaknesses of competing
theories; and must ultimately accept—or reject—Galileo’s proposal on the basis of
evidence and reason. Through this process the student gains a deeper understanding
of Galileo’s ideas, their significance, and their limitations.

Moreover, when studying the foundational texts, the student is obliged to
thoughtfully address issues of language and terminology—issues which simply
do not arise when learning from standard textbooks. In fact, when scientific the-
ories are being developed the scientists themselves are usually struggling to define
terms which capture the essential features of their discoveries. For example, Oersted
coined a term which is translated as “electric conflict” to describe the effect that an
electrical current has on a nearby magnetic compass needle. He was attempting to
distinguish between the properties of stationary and moving charges, but he lacked
the modern concept of the magnetic field which was later introduced by Faraday.
When students encounter a familiar term such as “magnetic field,” they typically
accept it as settled terminology, and thereby presume that they understand the phe-
nomenon by virtue of recognizing and memorizing the canonical term. But when
they encounter an unfamiliar term such as “electric conflict,” as part of the scientific
argument from which it derives and wherein it is situated, they are tutored into the
original argument and are thus obliged to think scientifically, along with the great
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scientist. In other words, when reading the foundational texts, the student is led into
doing science and not merely into memorizing and applying nomenclature.

Generally speaking, this book draws upon two things that we have in common:
(i) a shared conversation recorded in the foundational scientific texts, and (ii) an
innate faculty of reason. The careful reading and analysis of the foundational texts
is extremely valuable in learning how to think clearly and accurately about natural
science. It encourages the student to carefully distinguish between observation and
speculation, and finally, between truth and falsehood. The ability to do this is essen-
tial when considering the practical and even philosophical implications of various
scientific theories. Indeed, one of the central aims of this book is to help the student
grow not only as a potential scientist, but as an educated person. More specifically, it
will help the student develop important intellectual virtues (i.e. good habits), which
will serve him or her in any vocation, whether in the marketplace, in the family, or
in society.

How is This Book Organized?

This book is divided into four separate volumes; volumes I and II were concurrently
published in the autumn of 2014, and volumes III and IV are due to be published
approximately a year later. Within each volume, the readings are centered on a
particular theme and proceed chronologically. For example, Volume I is entitled
The Heavens and the Earth. It provides an introduction to astronomy and cosmol-
ogy beginning with the geocentrism of Aristotle’s On the Heavens and Ptolemy’s
Almagest, proceeding through heliocentrism advanced in Copernicus’ Revolutions
of the Heavenly Spheres and Kepler’s Epitome of Copernican Astronomy, and arriv-
ing finally at big bang cosmology with Lemaître’s The Primeval Atom. Volume
II, Space, Time and Motion, provides a careful look at the science of motion and
rest. Here, students engage in a detailed analysis of significant portions of Galileo’s
Dialogues Concerning Two New Sciences, Pascal’s Treatise on the Equilibrium of
Fluids and the Weight of the Mass of Air, Newton’s Mathematical Principles of
Natural Philosophy and Einstein’s Relativity.

Volume III traces the theoretical and experimental development of the electro-
magnetic theory of light using texts by William Gilbert, Benjamin Franklin, Charles
Coulomb, André Marie Ampère, Christiaan Huygens, James Clerk Maxwell, Hein-
rich Hertz, Albert Michelson, and others. Volume IV provides an exploration of
modern physics, focusing on the mechanical theory of heat, radio-activity and
the development of modern quantum theory. Selections are taken from works by
Joseph Fourier, William Thomson, Rudolph Clausius, Joseph Thomson, James
Clerk Maxwell, Ernest Rutherford, Max Planck, James Chadwick, Niels Bohr,
Erwin Schrödinger and Werner Heisenberg.

While the four volumes of the book are arranged around distinct themes, the
readings themselves are not strictly constrained in this way. For example, in his
Treatise on Light, Huygens is primarily interested in demonstrating that light can be
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best understood as a wave propagating through an aethereal medium comprised of
tiny, hard elastic particles. In so doing, he spends some time discussing the speed
of light measurements performed earlier by Ole Rømer. These measurements, in
turn, relied upon an understanding of the motion of the moons of Jupiter which had
recently been reported by Galileo in his Sidereal Messenger. So here, in this Treatise
on Light, we find references to a variety of inter-related topics. Huygens does not
artificially restrict his discussion to a narrow topic—nor does Galileo, or Newton or
the other great thinkers. Instead, the reader will find in this book recurring concepts
and problems which cut across different themes and which are naturally addressed
in a historical context with increasing levels of sophistication and care. Science is a
conversation which stretches backwards in time to antiquity.

How Might This Book be Used?

This book is designed for college classrooms, small-group discussions and indi-
vidual study. Each of the four volumes of the book contains roughly thirty chap-
ters, providing more than enough material for a one-semester undergraduate-level
physics course; this is the context in which this book was originally implemented. In
such a setting, one or two 50-min classroom sessions should be devoted to analyz-
ing and discussing each chapter. This assumes that the student has read the assigned
text before coming to class. When teaching such a course, I typically improvise—
leaving out a chapter here or there (in the interest of time) and occasionally adding
a reading selection from another source that would be particularly interesting or
appropriate.

Each chapter of each volume has five main components. First, at the beginning
of each chapter, I include a short introduction to the reading. If this is the first
encounter with a particular author, the introduction includes a biographical sketch
of the author and some historical context. The introduction will often contain a
summary of some important concepts from the previous chapter and will conclude
with a few provocative questions to sharpen the reader’s attention while reading the
upcoming text.

Next comes the reading selection. There are two basic criteria which I used for
selecting each text: it must be significant in the development of physical theory, and
it must be appropriate for beginning undergraduate students. Balancing these crite-
ria was very difficult. Over the past decade, I have continually refined the selections
so that they might comprise the most critical contribution of each scientist, while at
the same time not overwhelming the students by virtue of their length, language or
complexity. The readings are not easy, so the student should not feel overwhelmed
if he or she does not grasp everything on the first (or second, or third. . . ) reading.
Nobody does. Rather—like classic literature—these texts must be “grown into” (so
to speak) by returning to them time and again.

I have found that the most effective way to help students successfully engage
foundational texts is to carefully prepare questions which help them identify and
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understand key concepts. So as the third component of each chapter, I have prepared
a study guide in the form of a set of questions which can be used to direct either
classroom discussion or individual reading. After the source texts themselves, the
study guide is perhaps the most important component of each chapter, so I will
spend a bit more time here explaining it.

The study guide typically consists of a few general discussion questions about
key topics contained in the text. Each of these general questions is followed by
several sub-questions which aid the student by focusing his or her attention on the
author’s definitions, methods, analysis and conclusions. For example, when students
are reading a selection from Albert Michelson’s book Light Waves and their Uses, I
will often initiate classroom discussion with a general question such as “Is it possi-
ble to measure the absolute speed of the earth?” This question gets students thinking
about the issues addressed in the text in a broad and intuitive way. If the students get
stuck, or the discussion falters, I will then prompt them with more detailed follow-
up questions such as: “What is meant by the term absolute speed?” “How, exactly,
did Michelson attempt to measure the absolute speed of the earth?” “What tech-
nical difficulties did Michelson encounter while doing his experiments?” “To what
conclusion(s) was Michelson led by his results?” and finally “Are Michelson’s con-
clusions then justified?” After answering such simpler questions, the students are
usually more confident and better prepared to address the general question which
was initially posed.

In the classroom, I always emphasize that it is critical for participants to carefully
read the assigned selections before engaging in discussion. This will help them to
make relevant comments and to cite textual evidence to support or contradict asser-
tions made during the course of the discussion. In this way, many assertions will be
revealed as problematic—in which case they may then be refined or rejected alto-
gether. Incidentally, this is precisely the method used by scientists themselves in
order to discover and evaluate competing ideas or theories. During our discussion,
students are encouraged to speak with complete freedom; I stipulate only one class-
room rule: any comment or question must be stated publicly so that all others can
hear and respond. Many students are initially apprehensive about engaging in public
discourse, especially about science. If this becomes a problem, I like to emphasize
that students do not need to make an elaborate point in order to engage in classroom
discussion. Often, a short question will suffice. For example, the student might say
“I am unclear what the author means by the term inertia. Can someone please clar-
ify?” Starting like this, I have found that students soon join gamely in classroom
discussion.

Fourth, I have prepared a set of exercises which test the student’s understand-
ing of the text and his or her ability to apply key concepts in unfamiliar situations.
Some of these are accompanied by a brief explanation of related concepts or formu-
las. Most of them are numerical exercises, but some are provocative essay prompts.
In addition, some of the chapters contain suggested laboratory exercises, a few of
which are in fact field exercises which require several days (or even months) of
observations. For example, in Chap. 3 of Volume I, there is an astronomy field exer-
cise which involves charting the progression of a planet through the zodiac over the
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course of a few months. So if this book is being used in a semester-long college
or university setting, the instructor may wish to skim through the exercises at the
end of each chapter so he or she can identify and assign the longer ones as ongoing
exercises early in the semester.

Finally, I have included at the end of each chapter a list of vocabulary words
which are drawn from the text and with which the student should become
acquainted. Expanding his or her vocabulary will aid the student not only in their
comprehension of subsequent texts, but also on many standardized college and
university admissions exams.

What Mathematics Preparation is Required?

It is sometime said that mathematics is the “language of science.” This sentiment
appropriately inspires and encourages the serious study of mathematics. Of course if
it were taken literally then many seminal works in physics—and much of biology—
would have to be considered either unintelligible or unscientific, since they contain
little or no mathematics. Moreover, if mathematics is the only language of science,
then physics instructors should be stunned whenever students are enlightened by
verbal explanations which lack mathematical form. To be sure, mathematics offers
a refined and sophisticated language for describing observed phenomena, but many
of our most significant observations about nature may be expressed using everyday
images, terms and concepts: heavy and light, hot and cold, strong and weak, straight
and curved, same and different, before and after, cause and effect, form and function,
one and many. So it should come as no surprise that, when studying physics via
the reading and analysis of foundational texts, one enjoys a considerable degree of
flexibility in terms of the mathematical rigor required.

For instance, Faraday’s Experimental Researches in Electricity are almost
entirely devoid of mathematics. Rather, they consist of detailed qualitative descrip-
tions of his observations, such as the relationship between the relative motion
of magnets and conductors on the one hand, and the direction and intensity of
induced electrical currents on the other hand. So when studying Faraday’s work,
it is quite natural for the student to aim for a conceptual, as opposed to a quan-
titative, understanding of electromagnetic induction. Alternatively, the student can
certainly attempt to connect Faraday’s qualitative descriptions with the mathemati-
cal methods which are often used today to describe electromagnetic induction (i.e.
vector calculus and differential equations). The former method has the advantage
of demonstrating the conceptual framework in which the science was actually con-
ceived and developed; the latter method has the advantage of allowing the student to
make a more seamless transition to upper-level undergraduate or graduate courses
which typically employ sophisticated mathematical methods.

In this book, I approach the issue of mathematical proficiency in the following
manner. Each reading selection is followed by both study questions and homework
exercises. In the study questions, I do not attempt to force anachronistic concepts or
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methods into the student’s understanding of the text. They are designed to encour-
age the student to approach the text in the same spirit as the author, insofar as this
is possible. In the homework exercises, on the other hand, I often ask the student
to employ mathematical methods which go beyond those included in the reading
selection itself. For example, one homework exercise associated with a selection
from Hertz’s book Electric Waves requires the student to prove that two counter-
propagating waves superimpose to form a standing wave. Although Hertz casually
mentions that a standing wave is formed in this way, the problem itself requires that
the student use trigonometric identities which are not described in Hertz’s text. In
cases such as this, a note in the text suggests the mathematical methods which are
required. I have found this to work quite well, especially in light of the easy access
which today’s students have to excellent print and online mathematical resources.

Generally speaking, there is an increasing level of mathematical sophistication
required as the student progresses through the curriculum. In Volume I students need
little more than a basic understanding of geometry. Euclidean geometry is sufficient
in understanding Ptolemy’s epicyclic theory of planetary motion and Galileo’s cal-
culation of the altitude of lunar mountains. The student will be introduced to some
basic ideas of non-Euclidean geometry toward the end of Volume I when studying
modern cosmology through the works of Einstein, Hubble and Lemaître, but this
is not pushed too hard. In Volume II students will make extensive use of geomet-
rical methods and proofs, especially when analyzing Galileo’s work on projectile
motion and the application of Newton’s laws of motion. Although Newton devel-
ops his theory of gravity in the Principia using geometrical proofs, the homework
problems often require the student to make connections with the methods of cal-
culus. The selections on Einstein’s special theory of relativity demand only the use
of algebra and geometry. In Volume III, mathematical methods will, for the most
part, be limited to geometry and algebra. More sophisticated mathematical methods
will be required, however, in solving some of the problems dealing with Maxwell’s
electromagnetic theory of light. This is because Maxwell’s equations are most suc-
cinctly presented using vector calculus and differential equations. Finally, in Volume
IV, the student will be aided by a working knowledge of calculus, as well as some
familiarity with the use of differential equations.

It is my feeling that in a general physics course, such as the one being presented in
this book, the extensive use of advanced mathematical methods (beyond geometry,
algebra and elementary calculus) is not absolutely necessary. Students who plan to
major in physics or engineering will presumably learn more advanced mathematical
methods (e.g. vector calculus and differential equations) in their collateral mathe-
matics courses, and they will learn to apply these methods in upper-division (junior
and senior-level) physics courses. Students who do not plan to major in physics will
typically not appreciate the extensive use of such advanced mathematical methods.
And it will tend to obscure, rather than clarify, important physical concepts. In any
case, I have attempted to provide guidance for the instructor, or for the self-directed
student, so that he or she can incorporate an appropriate level of mathematical rigor.
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Figures, Formulas, and Footnotes

One of the difficulties in assembling readings from different sources and publishers
into an anthology such as this is how to deal with footnotes, references, formu-
las and other issues of annotation. For example, for any given text selection, there
may be footnotes supplied by the author, the translator and the anthologist. So I
have appended a [K.K.] marking to indicate when the footnote is my own; I have not
included this marking when there is no danger of confusion, for example in my
footnotes appearing in the introduction, study questions and homework exercises of
each chapter.

For the sake of clarity and consistency, I have added (or sometimes changed the)
numbering for figures appearing in the texts. For example, Fig. 16.3 is the third
figure in Chap. 16 of Volume I; this is not necessarily how Kepler or his transla-
tor numbered this figure when it appeared in an earlier publication of his Epitome
Astronomae Copernicanae. For ease of reference, I have also added (or sometimes
changed the) numbering of equations appearing in the texts. For example, Eqs. 31.1
and 31.2 are the equations of the Lorentz and Galilei transformations appearing in
the reading in Chap. 31 of Volume II, extracted from Einstein’s book Relativity. This
is not necessarily how Einstein numbered them.

In several cases, the translator or editor has included references to page numbers
in a previous publication. For example, the translators of Galileo’s Dialogues have
indicated, within their 1914 English translation, the locations of page breaks in the
Italian text published in 1638. A similar situation occurs with Faith Wallis’s 1999
translation of Bede’s The Reckoning of Time. For consistency, I have rendered such
page numbering in bold type surrounded by slashes. So /50/ refers to page 50 in
some earlier “canonical” publication.
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Chapter 1
A New Science of Heat

Profound study of nature is the most fertile source of
mathematical discoveries.

—Joseph Fourier

1.1 Introduction

Jean Baptiste Joseph Fourier (1768–1830) was born in Auxerre, France. His parents
died before his ninth year; he was one of the last of their nineteen children. As a
young orphan, Fourier was selected to attend the town’s military school run by Bene-
dictine monks, and when his application to join the military engineers was turned
down he became a novice at the Benedictine abbey of St. Benoît-sur-Loire in 1787.
He showed early promise in mathematics, and after relinquishing his novitiate he
returned to his old school in Auxerre to teach mathematics, history, philosophy and
rhetoric. During this time, Fourier’s forceful criticism of government corruption led
to official demands for his execution. But after a brief period of imprisonment, and
the public execution of Robespierre in July of 1794, Fourier was granted amnesty.
After his release, he attended the newly formed École Normal in Paris—a short-lived
school where the mathematicians Simon Laplace, Joseph Lagrange and Gaspard
Monge were his professors—before transferring (along with many of the Faculty)
to the École Polytechnique, an elite military academy. Due to his comparative age
and his reputation as a gifted lecturer, Fourier was elevated to an assistant teaching
post. He devoted his leisure time to outstanding problems in mathematics, including
a proof of Descartes’ rule of signs.1 But this would not last. As an able administrator
and outspoken advocate of the French Revolution, Fourier was soon asked to serve
as one of Napoleon’s scientific advisors on his expedition to Egypt in 1798. He was
appointed Secretary of the Institut d’Égypte which was established by Napoleon in
Cairo; this role involved both scientific and administrative duties. The discovery of

1 Descartes’ rule of signs provides a technique for determining the number of positive real roots of
a polynomial. An overview of Fourier’s life and work is provided in Grattan-Guinness, I., Joseph
Fourier 1768–1830, The Massachusettes Institute of Technology, 1972. Grattan-Guinness’s text is
the source for much of the present introduction.

© Springer International Publishing Switzerland 2016 1
K. Kuehn, A Student’s Guide Through the Great Physics Texts,
Undergraduate Lecture Notes in Physics, DOI 10.1007/978-3-319-21828-1_1
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Fig. 1.1 Detail of caryatid pillars; from vol. 2 of the Description of Egypt. (image courtesy of the
World Digital Library, Washington, DC)

the Rosetta Stone by French troops in 1799 would enable Jean-François Champil-
lon, a skilled linguist and young acquaintance of Fourier’s, to finally decipher the
Egyptian language.

After Napoleon’s premature departure from Egypt and Fourier’s subsequent
return to France in 1801, he was appointed by Napoleon himself to a leading admin-
istrative post as the Prefect of the Department of Isère in Grenoble. Despite his
heavy administrative responsibilities in Egypt and Grenoble, Fourier was able to
carry out significant scholarly work during this time: his scientific researches on the
diffusion of heat were published in 1807, and his researches on Egyptian antiquities
were later published as part of the monumental Description de l’Égypte—a twenty-
one volume scholarly work which Fourier himself had conceived during the French
expedition in Egypt (see Fig. 1.1). After Napoleon’s abdication and his eventual
defeat at Waterloo in 1814, Fourier was made Director of the Bureau of Statistics in
Paris, despite the fact that he was a committed Bonapartist. Fourier was elected to
the French Académie des Sciences in 1817, to the Royal Society in 1823, and to the
Académie Française and the Académie de Médicine in 1827.

The reading selections in the next several chapters of the present volume are
from Alexander Freeman’s 1878 English translation of Fourier’s 1822 Théorie Ana-
lytique de la Chaleur. This treatise expanded on the famous paper of 1807 in which
Fourier employed Newton’s law of cooling to advance a mathematically precise
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theory of heat diffusion through bodies of various shapes, sizes and compositions.2

Fourier’s 1807 paper also introduced a controversial mathematical technique—now
known as a Fourier series—which allowed him to express the temperature distribu-
tion within a solid body as a weighted sum of trigonometric functions (such as sines
and cosines) having different spatial frequencies of oscillation. Today, this method
of analysis underlies much of electrical engineering, image processing and spec-
troscopy (to name just three); it also provides a means for understand the Heisenberg
uncertainty principal, the basis of modern quantum theory. Fourier begins his 1822
Analytical Theory of Heat by situating his scientific work on heat diffusion into the
broader framework of natural philosophy.

1.2 Reading: Fourier, The Analytical Theory of Heat

Fourier, J., The Analytical Theory of Heat, Cambridge University Press, London,
1878.

1.2.1 Preliminary Discourse

Primary causes are unknown to us; but are subject to simple and constant laws,
which may be discovered by observation, the study of them being the object of
natural philosophy.

Heat, like gravity, penetrates every substance of the universe, its rays occupy all
parts of space. The object of our work is to set forth the mathematical laws which
this element obeys. The theory of heat will hereafter form one of the most important
branches of general physics.

The knowledge of rational mechanics, which the most ancient nations had been
able to acquire, has not come down to us, and the history of this science, if we
except the first theorems in harmony, is not traced up beyond the discoveries of
Archimedes. This great geometer explained the mathematical principles of the equi-
librium of solids and fluids. About eighteen centuries elapsed before Galileo, the
originator of dynamical theories, discovered the laws of motion of heavy bodies.
Within this new science Newton comprised the whole system of the universe. The
successors of these philosophers have extended these theories, and given them an
admirable perfection: they have taught us that the most diverse phenomena are sub-
ject to a small number of fundamental laws which are reproduced in all the acts of
nature. It is recognised that the same principles regulate all the movements of the
stars, their form, the inequalities of their courses, the equilibrium and the oscillations

2 Newton’s law of cooling states that the quantity of heat flowing between two adjacent bodies is
simply proportional to their temperature difference.
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of the seas, the harmonic vibrations of air and sonorous bodies, the transmission of
light, capillary actions, the undulations of fluids, in fine the most complex effects of
all the natural forces, and thus has the thought of Newton been confirmed: quod tam
paucis tam multa præstet geometria gloriatur.3

But whatever may be the range of mechanical theories, they do not apply to
the effects of heat. These make up a special order of phenomena, which cannot be
explained by the principles of motion and equilibrium. We have for a long time been
in possession of ingenious instruments adapted to measure many of these effects;
valuable observations have been collected; but in this manner partial results only
have become known, and not the mathematical demonstration of the laws which
include them all.

I have deduced these laws from prolonged study and attentive comparison of the
facts known up to this time: all these facts I have observed afresh in the course of
several years with the most exact instruments that have hitherto been used.

To found the theory, it was in the first place necessary to distinguish and define
with precision the elementary properties which determine the action of heat. I then
perceived that all the phenomena which depend on this action resolve themselves
into a very small number of general and simple facts; whereby every physical prob-
lem of this kind is brought back to an investigation of mathematical analysis. From
these general facts I have concluded that to determine numerically the most varied
movements of heat, it is sufficient to submit each substance to three fundamental
observations. Different bodies in fact do not possess in the same degree the power
to contain heat, to receive or transmit it across their surfaces, nor to conduct it
through the interior of their masses. These are the three specific qualities which our
theory clearly distinguishes and shews how to measure.

It is easy to judge how much these researches concern the physical sciences and
civil economy, and what may be their influence on the progress of the arts which
require the employment and distribution of heat. They have also a necessary con-
nection with the system of the world, and their relations become known when we
consider the grand phenomena which take place near the surface of the terrestrial
globe.

In fact the radiation of the sun in which this planet is incessantly plunged, pene-
trates the air, the earth, and the waters; its elements are divided, change in direction
every way, and, penetrating the mass of the globe, would raise its mean temperature
more and more, if the heat acquired were not exactly balanced by that which escapes
in rays from all points of the surface and expands through the sky.

Different climates, unequally exposed to the action of solar heat, have, after an
immense time, acquired the temperatures proper to their situation. This effect is
modified by several accessory causes, such as elevation, the form of the ground,
the neighbourhood and extent of continents and seas, the state of the surface, the
direction of the winds.

3 Philolophiæ naturalis principia mathematica. Auctoris præratio ad lectorem. Ao gloriatur
geometria quod tam paucis principiis aliunde petitis tam multa præstet. [A. F.]
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The succession of day and night, the alternations of the seasons occasion in the
solid earth periodic variations, which are repeated every day or every year: but these
changes become less and less sensible as the point at which they are measured
recedes from the surface. No diurnal variation can be detected at the depth of about
3 m (10 ft. ); and the annual variations cease to be appreciable at a depth much less
than 60 m . The temperature at great depths is then sensibly fixed at a given place:
but it is not the same at all points of the same meridian; in general it rises as the
equator is approached.

The heat which the sun has communicated to the terrestrial globe, and which has
produced the diversity of climates, is now subject to a movement which has become
uniform. It advances within the interior of the mass which it penetrates throughout,
and at the same time recedes from the plane of the equator, and proceeds to lose
itself across the polar regions.

In the higher regions of the atmosphere the air is very rare and transparent, and
retains but a minute part of the heat of the solar rays: this is the cause of the excessive
cold of elevated places. The lower layers, denser and more heated by the land and
water, expand and rise up: they are cooled by the very fact of expansion. The great
movements of the air, such as the trade winds which blow between the tropics, are
not determined by the attractive forces of the moon and sun. The action of these
celestial bodies produces scarcely perceptible oscillations in a fluid so rare and at so
great a distance. It is the changes of temperature which periodically displace every
part of the atmosphere.

The waters of the ocean are differently exposed at their surface to the rays of the
sun, and the bottom of the basin which contains them is heated very unequally from
the poles to the equator. These two causes, ever present, and combined with gravity
and the centrifugal force, keep up vast movements in the interior of the seas. They
displace and mingle all the parts, and produce those general and regular currents
which navigators have noticed.

Radiant heat which escapes from the surface of all bodies, and traverses elas-
tic media, or spaces void of air, has special laws, and occurs with widely varied
phenomena. The physical explanation of many of these facts is already known; the
mathematical theory which I have formed gives an exact measure of them. It con-
sists, in a manner, in a new catoptrics which has its own theorems, and serves to
determine by analysis all the effects of heat direct or reflected.

The enumeration of the chief objects of the theory sufficiently shews the nature of
the questions which I have proposed to myself. What are the elementary properties
which it is requisite to observe in each substance, and what are the experiments
most suitable to determine them exactly? If the distribution of heat in solid matter is
regulated by constant laws, what is the mathematical expression of those laws, and
by what analysis may we derive from this expression the complete solution of the
principal problems? Why do terrestrial temperatures cease to be variable at a depth
so small with respect to the radius of the earth? Every inequality in the movement
of this planet necessarily occasioning an oscillation of the solar heat beneath the
surface, what relation is there between the duration of its period, and the depth at
which the temperatures become constant?
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What time must have elapsed before the climates could acquire the different tem-
peratures which they now maintain; and what are the different causes which can now
vary their mean heat? Why do not the annual changes alone in the distance of the
sun from the earth, produce at the surface of the earth very considerable changes in
the temperatures?

From what characteristic can we ascertain that the earth has not entirely lost its
original heat; and what are the exact laws of the loss?

If, as several observations indicate, this fundamental heat is not wholly dis-
sipated, it must be immense at great depths, and nevertheless it has no sensible
influence at the present time on the mean temperature of the climates. The effects
which are observed in them are due to the action of the solar rays. But independently
of these two sources of heat, the one fundamental and primitive proper to the ter-
restrial globe, the other due to the presence of the sun, is there not a more universal
cause, which determines the temperature of the heavens, in that part of space which
the solar system now occupies? Since the observed facts necessitate this cause, what
are the consequences of an exact theory in this entirely new question; how shall we
be able to determine that constant value of the temperature of space, and deduce
from it the temperature which belongs to each planet?

To these questions must be added others which depend on the properties of radi-
ant heat. The physical cause of the reflection of cold, that is to say the reflection
of a lesser degree of heat, is very distinctly known; but what is the mathematical
expression of this effect?

On what general principles do the atmospheric temperatures depend, whether
the thermometer which measures them receives the solar rays directly, on a sur-
face metallic or unpolished, or whether this instrument remains exposed, during
the night, under a sky free from clouds, to contact with the air, to radiation
from terrestrial bodies, and to that from the most distant and coldest parts of the
atmosphere?

The intensity of the rays which escape from a point on the surface of any
heated body varying with their inclination according to a law which experiments
have indicated, is there not a necessary mathematical relation between this law and
the general fact of the equilibrium of heat; and what is the physical cause of this
inequality in intensity?

Lastly, when heat penetrates fluid masses, and determines in them internal move-
ments by continual changes of the temperature and density of each molecule, can
we still express, by differential equations, the laws of such a compound effect; and
what is the resulting change in the general equations of hydrodynamics?

Such are the chief problems which I have solved, and which have never yet been
submitted to calculation. If we consider further the manifold relations of this math-
ematical theory to civil uses and the technical arts, we shall recognize completely
the extent of its applications. It is evident that it includes an entire series of distinct
phenomena, and that the study of it cannot be omitted without losing a notable part
of the science of nature.

The principles of the theory are derived, as are those of rational mechanics, from
a very small number of primary facts, the causes of which are not considered by
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geometers, but which they admit as the results of common observations confirmed
by all experiment.

The differential equations of the propagation of heat express the most general
conditions, and reduce the physical questions to problems of pure analysis; and this
is the proper object of theory. They are not less rigorously established than the gen-
eral equations of equilibrium and motion. In order to make this comparison more
perceptible, we have always preferred demonstrations analogous to those of the the-
orems which serve as the foundation of statics and dynamics. These equations still
exist, but receive a different form, when they express the distribution of luminous
heat in transparent bodies, or the movements which the changes of temperature and
density occasion in the interior of fluids. The coefficients which they contain are
subject to variations whose exact measure is not yet known, but in all the natural
problems which it most concerns us to consider, the limits of temperature differ so
little that we may omit the variations of these coefficients.

The equations of the movement of heat, like those which express the vibrations
of sonorous bodies, or the ultimate oscillations of liquids, belong to one of the most
recently discovered branches of analysis, which it is very important to perfect. After
having established these differential equations their integrals must be obtained; this
process consists in passing from a common expression to a particular solution sub-
ject to all the given conditions. This difficult investigation requires a special analysis
founded on new theorems, whose object we could not in this place make known.
The method which is derived from them leaves nothing vague and indeterminate
in the solutions, it leads them up to the final numerical applications, a necessary
condition of every investigation, without which we should only arrive at useless
transformations.

The same theorems which have made known to us the equations of the movement
of heat, apply directly to certain problems of general analysis and dynamics whose
solution has for a long time been desired.

Profound study of nature is the most fertile source of mathematical discoveries.
Not only has this study, in offering a determinate object to investigation, the advan-
tage of excluding vague questions and calculations without issue; it is besides a sure
method of forming analysis itself, and of discovering the elements which it con-
cerns us to know, and which natural science ought always to preserve: these are the
fundamental elements which are reproduced in all natural effects.

We see, for example, that the same expression whose abstract properties geome-
ters had considered, and which in this respect belongs to general analysis, represents
as well the motion of light in the atmosphere, as it determines the laws of diffu-
sion of heat in solid matter, and enters into all the chief problems of the theory of
probability.

The analytical equations, unknown to the ancient geometers, which Descartes
was the first to introduce into the study of curves and surfaces, are not restricted
to the properties of figures, and to those properties which are the object of rational
mechanics; they extend to all general phenomena. There cannot be a language more
universal and more simple, more free from errors and from obscurities, that is to say
more worthy to express the invariable relations of natural things.
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Considered from this point of view, mathematical analysis is as extensive as
nature itself; it defines all perceptible relations, measures times, spaces, forces, tem-
peratures; this difficult science is formed slowly, but it preserves every principle
which it has once acquired; it grows and strengthens itself incessantly in the midst
of the many variations and errors of the human mind.

Its chief attribute is clearness; it has no marks to express confused notions; It
brings together phenomena the most diverse, and discovers the hidden analogies
which unite them. If matter escapes us, as that of air and light, by its extreme tenuity,
if bodies are placed far from us in the immensity of space, if man wishes to know the
aspect of the heavens at successive epochs separated by a great number of centuries,
if the actions of gravity and of heat are exerted in the interior of the earth at depths
which will be always inaccessible, mathematical analysis can yet lay hold of the
laws of these phenomena. It makes them present and measurable, and seems to be
a faculty of the human mind destined to supplement the shortness of life and the
imperfection of the senses; and what is still more remarkable, it follows the same
course in the study of all phenomena; it interprets them by the same language; as if
to attest the unity and simplicity of the plan of the universe, and to make still more
evident that unchangeable order which presides over all natural causes.

The problems of the theory of heat present so many examples of the simple and
constant dispositions which spring from the general laws of nature; and if the order
which is established in these phenomena could be grasped by our senses, it would
produce in us an impression comparable to the sensation of musical sound.

The forms of bodies are infinitely varied; the distribution of the heat which
penetrates them seems to be arbitrary and confused; but all the inequalities are
rapidly cancelled and disappear as time passes on. The progress of the phenomenon
becomes more regular and simpler, remains finally subject to a definite law which is
the same in all cases, and which bears no sensible impress of the initial arrangement.

All observation confirms these consequences. The analysis from which they are
derived separates and expresses clearly, 1◦ the general conditions, that is to say
those which spring from the natural properties of heat; 2◦ the effect, accidental but
continued, of the form or state of the surfaces; 3◦ the effect, not permanent, of the
primitive distribution.

In this work we have demonstrated all the principles of the theory of heat, and
solved all the fundamental problems. They could have been explained more con-
cisely by omitting the simpler problems, and presenting in the first instance the most
general results; but we wished to shew the actual origin of the theory and its grad-
ual progress. When this knowledge has been acquired and the principles thoroughly
fixed, it is preferable to employ at once the most extended analytical methods, as we
have done in the later investigations. This is also the course which we shall here-
after follow in the memoirs which will be added to this work, and which will form
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in some manner its complement;4 and by this means we shall have reconciled, so
far as it can depend on ourselves, the necessary development of principles with the
precision which becomes the applications of analysis.

The subjects of these memoirs will be, the theory of radiant heat, the problem of
the terrestrial temperatures, that of the temperature of dwellings, the comparison of
theoretic results with those which we have observed in different experiments, lastly
the demonstrations of the differential equations of the movement of heat in fluids.

The work which we now publish has been written a long time since; different
circumstances have delayed and often interrupted the printing of it. In this interval,
science has been enriched by important observations; the principles of our analysis,
which had not at first been grasped, have become better known; the results which
we had deduced from them have been discussed and confirmed. We ourselves have
applied these principles to new problems, and have changed the form of some of
the proofs. The delays of publication will have contributed to make the work clearer
and more complete.

The subject of our first analytical investigations on the transfer of heat was its dis-
tribution amongst separated masses; these have been preserved in Chap. 4, Sect. 4.2.
The problems relative to continuous bodies, which form the theory rightly so called,
were solved many years afterwards; this theory was explained for the first time in
a manuscript work forwarded to the Institute of France at the end of the year 1807,
an extract from which was published in the Bulletin des Sciences (Société Philoma-
tique, year 1808, page 112). We added to this memoir, and successively forwarded
very extensive notes, concerning the convergence of series, the diffusion of heat in
an infinite prism, its emission in spaces void of air, the constructions suitable for
exhibiting the chief theorems, and the analysis of the periodic movement at the sur-
face of the earth. Our second memoir, on the propagation of heat, was deposited in
the archives of the Institute, on the 28th of September, 1811. It was formed out of the
preceding memoir and the notes already sent in; the geometrical constructions and
those details of analysis which had no necessary relation to the physical problem
were omitted, and to it was added the general equation which expresses the state of
the surface. This second work was sent to press in the course of 1821, to be inserted
in the collection of the Academy of Sciences. It is printed without any change or
addition; the text agrees literally with the deposited manuscript, which forms part
of the archives of the Institute.5

In this memoir, and in the writings which preceded it, will be found a first expla-
nation of applications which our actual work does not contain; they will be treated
in the subsequent memoirs at greater length, and, if it be in our power, with greater

4 These memoirs were never collectively published as a sequel or complement to the Théorie
Analytique de la Chaleur. But, as will be seen presently, the author had written most of them
before the publication of that work in 1822. [A. F.]
5 It appears as a memoir and supplement in volumes IV. and V. of the Memoires de l’Académie
des Sciences. For convenience of comparison with, the table of contents of the Analytical Theory
of Heat, we subjoin the titles and heads of the chapters of the printed memoir: [The titles and heads of

chapters have been omitted for brevity.—K.K.]
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clearness. The results of our labours concerning the same problems are also indi-
cated in several articles already published. The extract inserted in the Annales de
Chimie et de Physique shews the aggregate of our researches (Vol. III, page 350,
year 1816). We published in the Annales two separate notes, concerning radiant
heat (Vol. IV, page 128, year 1817, and Vol. VI, page 259, year 1817).

Several other articles of the same collection present the most constant results of
theory and observation; the utility and the extent of thermological knowledge could
not be better appreciated than by the celebrated editors of the Annales.6

In the Bulletin des Sciences (Société philomatique year 1818, page 1, and year
1820, page 60) will be found an extract from a memoir on the constant or vari-
able temperature of dwellings, and an explanation of the chief consequences of our
analysis of the terrestrial temperatures.

M. Alexandre de Humboldt, whose researches embrace all the great problems of
natural philosophy, has considered the observations of the temperatures proper to
the different climates from a novel and very important point of view (Memoir on
Isothermal lines, Société d’Arcueil, Vol. III, page 462); (Memoir on the inferior limit
of perpetual snow, Annales de Chimie et de Physique, Vol. V, page 102, year 1817).

As to the differential equations of the movement of heat in fluids7 mention has
been made of them in the annual history of the Academy of Sciences. The extract
from our memoir shews clearly its object and principle. (Analyse des travaux de
l’Académie des Sciences, by M. De Lambre, year 1820.)

The examination of the repulsive forces produced by heat, which determine the
statical properties of gases, does not belong to the analytical subject which we have
considered. This question connected with the theory of radiant heat has just been
discussed by the illustrious author of the Mécanique céleste, to whom all the chief
branches of mathematical analysis owe important discoveries. (Connaissance des
Temps, years 1824–1825.)

The new theories explained in our work are united for ever to the mathematical
sciences, and rest like them on invariable foundations; all the elements which they
at present possess they will preserve, and will continually acquire greater extent.
Instruments will be perfected and experiments multiplied. The analysis which we
have formed will be deduced from more general, that is to say, more simple and
more fertile methods common to many classes of phenomena. For any substances,
solid or liquid, for vapours and permanent gases, determinations will be made of all
the specific qualities relating to heat, and of the variations of the coefficients which
express them.8 At different stations on the earth observations will be made, of the

6 Gay-Lussac and Arago.
7 Mémoires de l’Académie des Sciences, Tome XII., Paris, 1833, contain on pp. 507–514, Mémoire
d’analyse sur le mouvement de la chaleur dans les fluides, par M. Fourier. Lu à l’Académie Royale
des Sciences, 4 Sep. 1820. It is followed on pp. 515–530 by Extrait des notes manuscrites con-
servées par l’auteur. The memoir is signed Jh. Fourier, Paris, 1 Sep. 1820, but was published after
the death of the author. [A. F.]
8 Mémoires de l’Académie des Sciences, Tome VIII., Paris 1829, contain on pp. 581–622, Mémoire
sur la Théorie Analytique de la Chaleur, par M. Fourier. This was published whilst the author was
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temperatures of the ground at different depths, of the intensity of the solar heat
and its effects, constant or variable, in the atmosphere, in the ocean and in lakes;
and the constant temperature of the heavens proper to the planetary regions will
become known.9 The theory itself will direct all these measures, and assign their
precision. No considerable progress can hereafter be made which is not founded on
experiments such as these; for mathematical analysis can deduce from general and
simple phenomena the expression of the laws of nature; but the special application
of these laws to very complex effects demands a long series of exact observations.

1.3 Study Questions

QUES. 1.1. What three scientists laid the foundation of rational mechanics? What
phenomena does it encompass? And can the effects of heat be understood using a
mechanical theory?

QUES. 1.2. What geophysical problems does Fourier’s theory of heat address?

a) Is the applicability of Fourier’s theory of heat limited to engineering and civil
economy—that is, to practical endeavors?

b) Why doesn’t the Earth continuously increase in temperature? Does the concept
of equilibrium play a role in Fourier’s considerations?

c) What factors influence a region’s climate? Are daily, or even seasonal, tempera-
ture variations felt beneath the Earth’s surface?

d) Why are the higher regions of the atmosphere colder than the lower? What role
do heat capacity, gravity and convection play in these phenomena?

e) What is the cause of the trade winds and the ocean currents? What factors
determine their direction and strength?

Perpetual Secretary to the Academy. The first only of four parts of the memoir is printed. The
contents of all are stated. I. Determines the temperature at any point of a prism whose terminal
temperatures are functions of the time, the initial temperature at any point being a function of its
distance from one end. II. Examines the chief consequences of the general solution, and applies it
to two distinct cases, according as the temperatures of the ends of the heated prism are periodic or
not. III. Is historical, enumerates the earlier experimental and analytical researches of other writers
relative to the theory of heat; considers the nature of the transcendental equations appearing in the
theory; remarks on the employment of arbitrary functions; replies to the objections of M. Pois-
son; adds some remarks on a problem of the motion of waves. IV. Extends the application of the
theory of heat by taking account, in the analysis, of variations in the specific coefficients which
measure the capacity of substances for heat, the permeability of solids, and the penetrability of
their surfaces. [A. F.]
9 Mémoires de l’Académie des Sciences, Tome VII. , Paris, 1827, contain on pp. 569–604, Mémoire
sur les temperatures du globe terrestre et des espaces planétaires, par M. Fourier. The memoir is
entirely descriptive; it was read before the Academy, 20 and 29 Sep. 1824 (Annales de Chimie et
de Physique, 1824, XXVII. p. 136). [A. F.]
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f) What two sources of heat drive all geophysical processes? Are there any other
sources of heat in the universe?

QUES. 1.3. What is the “universal language” in which Fourier formulates his theory
of heat? And what are the virtues of this language?

a) How are the principles of Fourier’s theory derived? Does Fourier consider these
principles to be axioms or empirical laws?

b) What form, then, does Fourier’s theory of heat take? What is the benefit of such
a formulation?

c) What three measurable properties of a substance are required to achieve a quan-
titative understanding of the movement of heat? For the temperature ranges
typically under consideration, do these properties of bodies vary from place to
place?

d) What aspects of a body dictate the particular solution to the differential equation
for heat flow through the body?

e) To what seemingly unrelated field of study does Fourier compare the mathemat-
ical analysis of the laws of nature? Do you think this is an apt comparison?

f) In what way does Fourier believe his theoretical framework will provide
direction for additional scientific studies of heat?

QUES. 1.4. Pedagogically, how does Fourier’s book proceed? From the simpler
problems to the more general theory, or from the general theory to the simpler?
Why does he proceed in this way?

1.4 Exercises

EX. 1.1 (NATURAL PHILOSOPHY ESSAY). Do you agree with Fourier that the objective
of natural philosophy is to discover “primary causes”? What does this mean? In
particular, how does one discern other causes from primary ones?

EX. 1.2 (FATE OF HEAT). What is the eventual fate of bodies having an initially
unequal distribution of heat? Why do you suppose this might be? And are there any
exceptions to this rule?

1.5 Vocabulary

1. Radiant heat
2. Catoptrics
3. Hydrodynamics
4. Differential equation
5. Luminous
6. Sonorous
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7. Analytical
8. Tenuity
9. Diffusion

10. Emission
11. Prism
12. Propagation
13. Thermological
14. Coefficient
15. Ordinate
16. Homogeneous
17. Heat capacity
18. Interior conductivity
19. Exterior conductivity
20. Diurnal
21. Convergent
22. Definite integral
23. Dynamical theory
24. Isochronism
25. Fluxion
26. Contingent
27. Fortuitous
28. Dilatation



Chapter 2
Mathematics and Temperature

Mathematical analysis has therefore necessary relations with
sensible phenomena; its object is not created by human
intelligence; it is a pre-existent element of the universal order,
and is not in any way contingent or fortuitous.

—Joseph Fourier

2.1 Introduction

In the previous chapter, we looked at the preliminary discourse of Fourier’s Ana-
lytical Theory of Heat. Herein, he provided an overview of the types of (previously
insoluble) problems his theory would address, and how his theory would be for-
mulated: in terms of differential equations. These differential equations govern the
flow of heat—and hence the temperature distribution—throughout bodies subjected
to sources of heat. In order to arrive at a solution to these differential equations for
a given body, one must have knowledge of certain specific qualities of the body. In
particular, one must know the body’s (i) specific heat (its power to contain heat),
(ii) surface conductivity (its power to receive or transmit heat across its surface),
and (iii) thermal conductivity (its power to conduct heat through the interior of its
mass).Once these qualities are known—along with the thermal conditions existing at
the surface of the body—then finding the temperature distribution within the body is
reduced to the mathematical process of solving a differential equation given certain
boundary conditions. This is not to say it is easy: Fourier would have to develop a
new method—the series solution—to solve many such problems. But the technique
which Fourier discovered provided a new way of addressing the problem of heat. In
the reading selection that follows, Fourier begins to flesh out the mathematical meth-
ods outlined in the preliminary discourse. He begins by way of example—describing
the distribution of temperature within bodies subjected to various sources of heat.
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2.2 Reading: Fourier, The Analytical Theory of Heat

Fourier, J., The Analytical Theory of Heat, Cambridge University Press, London,
1878.

2.2.1 Statement of the Object of the Work

1. The effects of heat are subject to constant laws which cannot be discovered
without the aid of mathematical analysis. The object of the theory which we are
about to explain is to demonstrate these laws; it reduces all physical researches
on the propagation of heat, to problems of the integral calculus whose ele-
ments are given by experiment. No subject has more extensive relations with
the progress of industry and the natural sciences; for the action of heat is always
present, it penetrates all bodies and spaces, it influences the processes of the arts,
and occurs in all the phenomena of the universe. When heat is unequally dis-
tributed among the different parts of a solid mass, it tends to attain equilibrium,
and passes slowly from the parts which are more heated to those which are less;
and at the same time it is dissipated at the surface, and lost in the medium or
in the void. The tendency to uniform distribution and the spontaneous emission
which acts at the surface of bodies, change continually the temperature at their
different points. The problem of the propagation of heat consists in determining
what is the temperature at each point of a body at a given instant, supposing that
the initial temperatures are known. The following examples will more clearly
make known the nature of these problems.

2. If we expose to the continued and uniform action of a source of heat, the same
part of a metallic ring, whose diameter is large, the molecules nearest to the
source will be first heated, and, after a certain time, every point of the solid will
have acquired very nearly the highest temperature which it can attain. This limit
or greatest temperature is not the same at different points; it becomes less and
less according as they become more distant from that point at which the source
of heat is directly applied.
When the temperatures have become permanent, the source of heat supplies,
at each instant, a quantity of heat which exactly compensates for that which is
dissipated at all the points of the external surface of the ring.
If now the source be suppressed, heat will continue to be propagated in the
interior of the solid, but that which is lost in the medium or the void, will no
longer be compensated as formerly by the supply from the source, so that all the
temperatures will vary and diminish incessantly until they have become equal
to the temperatures of the surrounding medium.

3. Whilst the temperatures are permanent and the source remains, if at every point
of the mean circumference of the ring an ordinate be raised perpendicular to
the plane of the ring, whose length is proportional to the fixed temperature at
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that point, the curved line which passes through the ends of these ordinates will
represent the permanent state of the temperatures, and it is very easy to deter-
mine by analysis the nature of this line. It is to be remarked that the thickness of
the ring is supposed to be sufficiently small for the temperature to be sensibly
equal at all points of the same section perpendicular to the mean circumference.
When the source is removed, the line which bounds the ordinates proportional
to the temperatures at the different points will change its form continually. The
problem consists in expressing, by one equation, the variable form of this curve,
and in thus including in a single formula all the successive states of the solid.

4. Let z be the constant temperature at a point m of the mean circumference, x

the distance of this point from the source, that is to say the length of the arc of
the mean circumference, included between the point m and the point o which
corresponds to the position of the source; z is the highest temperature which
the point m can attain by virtue of the constant action of the source, and this
permanent temperature z is a function f (x) of the distance x. The first part
of the problem consists in determining the function f (x) which represents the
permanent state of the solid.
Consider next the variable state which succeeds to the former state as soon as
the source has been removed; denote by t the time which has passed since the
suppression of the source, and by v the value of the temperature at the point m

after the time t . The quantity v will be a certain function F (x, t) of the distance
x and the time t ; the object of the problem is to discover this function F (x, t),
of which we only know as yet that the initial value is f (x), so that we ought to.
have the equation f (x) = F (x, 0).

5. If we place a solid homogeneous mass, having the form of a sphere or cube, in a
medium maintained at a constant temperature, and if it remains immersed for a
very long time, it will acquire at all its points a temperature differing very little
from that of the fluid. Suppose the mass to be withdrawn in order to transfer it to
a cooler medium, heat will begin to be dissipated at its surface; the temperatures
at different points of the mass will not be sensibly the same, and if we suppose
it divided into an infinity of layers by surfaces parallel to its external surface,
each of those layers will transmit, at each instant, a certain quantity of heat
to the layer which surrounds it. If it be imagined that each molecule carries a
separate thermometer, which indicates its temperature at every instant, the state
of the solid will from time to time be represented by the variable system of all
these thermometric heights. It is required to express the successive states by
analytical formulæ, so that we may know at any given instant the temperatures
indicated by each thermometer, and compare the quantities of heat which flow
during the same instant, between two adjacent layers, or into the surrounding
medium.

6. If the mass is spherical, and we denote by x the distance of a point of this mass
from the centre of the sphere, by t the time which has elapsed since the com-
mencement of the cooling, and by v the variable temperature of the point m,
it is easy to see that all points situated at the same distance x from the centre
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of the sphere have the same temperature v. This quantity v is a certain func-
tion F (x, t) of the radius x and of the time t ; it must be such that it becomes
constant whatever be the value of x, when we suppose t to be nothing; for by
hypothesis, the temperature at all points is the same at the moment of emersion.
The problem consists in determining that function of x and t which expresses
the value of v.

7. In the next place it is to be remarked, that during the cooling, a certain quantity
of heat escapes, at each instant, through the external surface, and passes into the
medium. The value of this quantity is not constant; it is greatest at the beginning
of the cooling. If however we consider the variable state of the internal spherical
surface whose radius is x, we easily see that there must be at each instant a
certain quantity of heat which traverses that surface, and passes through that
part of the mass which is more distant from the centre. This continuous flow
of heat is variable like that through the external surface, and both are quantities
comparable with each other; their ratios are numbers whose varying values are
functions of the distance x, and of the time t which has elapsed. It is required
to determine these functions.

8. If the mass, which has been heated by a long immersion in a medium, and whose
rate of cooling we wish to calculate, is of cubical form, and if we determine the
position of each point m by three rectangular co-ordinates x, y, z, taking for
origin the centre of the cube, and for axes lines perpendicular to the faces, we
see that the temperature v of the point m after the time t , is a function of the four
variables x, y, z, and t . The quantities of heat which flow out at each instant
through the whole external surface of the solid, are variable and comparable
with each other; their ratios are analytical functions depending on the time t ,
the expression of which must be assigned.

9. Let us examine also the case in which a rectangular prism of sufficiently great
thickness and of infinite length, being submitted at its extremity to a constant
temperature, whilst the air which surrounds it is maintained at a less temper-
ature, has at last arrived at a fixed state which it is required to determine. All
the points of the extreme section at the base of the prism have, by hypothesis,
a common and permanent temperature. It is not the same with a section distant
from the source of heat; each of the points of this rectangular surface parallel
to the base has acquired a fixed temperature, but this is not the same at differ-
ent points of the same section, and must be less at points nearer to the surface
exposed to the air. We see also that, at each instant, there flows across a given
section a certain quantity of heat, which always remains the same, since the
state of the solid has become constant. The problem consists in determining the
permanent temperature at any given point of the solid, and the whole quantity
of heat which, in a definite time, flows across a section whose position is given.

10. Take as origin of co-ordinates x, y, z, the centre of the base of the prism, and
as rectangular axes, the axis of the prism itself, and the two perpendiculars
on the sides: the permanent temperature v of the point m, whose co-ordinates
are x, y, z, is a function of three variables F (x, y, z): it has by hypothesis a
constant value, when we suppose x nothing, whatever be the values of y and
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z. Suppose we take for the unit of heat that quantity which in the unit of time
would emerge from an area equal to a unit of surface, if the heated mass which
that area bounds, and which is formed of the same substance as the prism, were
continually maintained at the temperature of boiling water, and immersed in
atmospheric air maintained at the temperature of melting ice.
We see that the quantity of heat which, in the permanent state of the rectangular
prism, flows, during a unit of time, across a certain section perpendicular to the
axis, has a determinate ratio to the quantity of heat taken as unit. This ratio is
not the same for all sections: it is a function φ(x) of the distance x, at which the
section is situated. It is required to find an analytical expression of the function
φ(x).

11. The foregoing examples suffice to give an exact idea of the different problems
which we have discussed.
The solution of these problems has made us understand that the effects of the
propagation of heat depend in the case of every solid substance, on three ele-
mentary qualities, which are, its capacity for heat, its own conductibility, and
the exterior conductibility.
It has been observed that if two bodies of the same volume and of different
nature have equal temperatures, and if the same quantity of heat be added to
them, the increments of temperature are not the same; the ratio of these incre-
ments is the inverse ratio of their capacities for heat. In this manner, the first of
the three specific elements which regulate the action of heat is exactly defined,
and physicists have for a long time known several methods of determining
its value. It is not the same with the two others; their effects have often been
observed, but there is but one exact theory which can fairly distinguish, define,
and measure them with precision.
The proper or interior conductibility of a body expresses the facility with which
heat is propagated in passing from one internal molecule to another. The exter-
nal or relative conductibility of a solid body depends on the facility with which
heat penetrates the surface, and passes from this body into a given medium,
or passes from the medium into the solid. The last property is modified by the
more or less polished state of the surface; it varies also according to the medium
in which the body is immersed; but the interior conductibility can change only
with the nature of the solid.
These three elementary qualities are represented in our formulæ by constant
numbers, and the theory itself indicates experiments suitable for measuring their
values. As soon as they are determined, all the problems relating to the prop-
agation of heat depend only on numerical analysis. The knowledge of these
specific properties may be directly useful in several applications of the physical
sciences; it is besides an element in the study and description of different sub-
stances. It is a very imperfect knowledge of bodies which ignores the relations
which they have with one of the chief agents of nature. In general, there is no
mathematical theory which has a closer relation than this with public economy,
since it serves to give clearness and perfection to the practice of the numerous
arts which are founded on the employment of heat.
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12. The problem of the terrestrial temperatures presents one of the most beautiful
applications of the theory of heat; the general idea to be formed of it is this.
Different parts of the surface of the globe are unequally exposed to the influ-
ence of the solar rays; the intensity of their action depends on the latitude of
the place; it changes also in the course of the day and in the course of the year,
and is subject to other less perceptible inequalities. It is evident that, between
the variable state of the surface and that of the internal temperatures a necessary
relation exists, which may be derived from theory. We know that, at a certain
depth below the surface of the earth, the temperature at a given place experi-
ences no annual variation: this permanent underground temperature becomes
less and less according as the place is more and more distant from the equa-
tor. We may then leave out of consideration the exterior envelope, the thickness
of which is incomparably small with respect to the earth’s radius, and regard
our planet as a nearly spherical mass, whose surface is subject to a temperature
which remains constant at all points on a given parallel, but is not the same
on another parallel. It follows from this that every internal molecule has also a
fixed temperature determined by its position. The mathematical problem con-
sists in discovering the fixed temperature at any given point, and the law which
the solar heat follows whilst penetrating the interior of the earth.
This diversity of temperature interests us still more, if we consider the changes
which succeed each other in the envelope itself on the surface of which we
dwell. Those alternations of heat and cold which are reproduced every day
and in the course of every year, have been up to the present time the object
of repeated observations. These we can now submit to calculation, and from a
common theory derive all the particular facts which experience has taught us.
The problem is reducible to the hypothesis that every point of a vast sphere is
affected by periodic temperatures; analysis then tells us according to what law
the intensity of these variations decreases according as the depth increases, what
is the amount of the annual or diurnal changes at a given depth, the epoch of the
changes, and how the fixed value of the underground temperature is deduced
from the variable temperatures observed at the surface.

13. The general equations of the propagation of heat are partial differential equa-
tions, and though their form is very simple the known methods do not furnish
any general mode of integrating them; we could not therefore deduce from them
the values of the temperatures after a definite time. The numerical interpretation
of the results of analysis is however necessary, and it is a degree of perfection
which it would be very important to give to every application of analysis to
the natural sciences. So long as it is not obtained, the solutions may be said to
remain incomplete and useless, and the truth which it is proposed to discover
is no less hidden in the formulæ of analysis than it was in the physical prob-
lem itself. We have applied ourselves with much care to this purpose, and we
have been able to overcome the difficulty in all the problems of which we have
treated, and which contain the chief elements of the theory of heat. There is
not one of the problems whose solution does not provide convenient and exact
means for discovering the numerical values of the temperatures acquired, or
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those of the quantities of heat which have flowed through, when the values of
the time and of the variable coordinates are known. Thus will be given not only
the differential equations which the functions that express the values of the tem-
peratures must satisfy; but the functions themselves will be given under a form
which facilitates the numerical applications.

14. In order that these solutions might be general, and have an extent equal to that
of the problem, it was requisite that they should accord with the initial state of
the temperatures, which is arbitrary. The examination of this condition shews
that we may develop in convergent series, or express by definite integrals, func-
tions which are not subject to a constant law, and which represent the ordinates
or irregular or discontinuous lines. This property throws a new light on the the-
ory of partial differential equations, and extends the employment of arbitrary
functions by submitting them to the ordinary processes of analysis.

15. It still remained to compare the facts with theory. With this view, varied
and exact experiments were undertaken, whose results were in conformity
with those of analysis, and gave them an authority which one would have
been disposed to refuse to them in a new matter which seemed subject to
so much uncertainty. These experiments confirm the principle from which we
started, and which is adopted by all physicists in spite of the diversity of their
hypotheses on the nature of heat.

16. Equilibrium of temperature is effected not only by way of contact, it is estab-
lished also between bodies separated from each other, which are situated for
a long time in the same region. This effect is independent of contact with a
medium; we have observed it in spaces wholly void of air. To complete our
theory it was necessary to examine the laws which radiant heat follows, on
leaving the surface of a body. It results from the observations of many physi-
cists and from our own experiments, that the intensities of the different rays,
which escape in all directions from any point in the surface of a heated body,
depend on the angles which their directions make with the surface at the same
point. We have proved that the intensity of a ray diminishes as the ray makes
a smaller angle with the element of surface, and that it is proportional to the
sine of that angle.1 This general law of emission of heat which different obser-
vations had already indicated, is a necessary consequence of the principle of
the equilibrium of temperature and of the laws of propagation of heat in solid
bodies.
Such are the chief problems which have been discussed in this work; they are
all directed to one object only, that is to establish clearly the mathematical prin-
ciples of the theory of heat, and to keep up in this way with the progress of the
useful arts, and of the study of nature.

17. From what precedes it is evident that a very extensive class of phenomena
exists, not produced by mechanical forces, but resulting simply from the pres-
ence and accumulation of heat. This part of natural philosophy cannot be

1 1 Mem. Acad. d. Sc. Tome V. Paris, 1826, pp. 179–213. [A. F.].
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connected with dynamical theories, it has principles peculiar to itself, and is
founded on a method similar to that of other exact sciences. The solar heat,
for example, which penetrates the interior of the globe, distributes itself therein
according to a regular law which does not depend on the laws of motion, and
cannot be determined by the principles of mechanics. The dilatations which the
repulsive force of heat produces, observation of which serves to measure tem-
peratures, are in truth dynamical effects; but it is not these dilatations which we
calculate, when we investigate the laws of the propagation of heat.

18. There are other more complex natural effects, which depend at the same time
on the influence of heat, and of attractive forces: thus, the variations of temper-
atures which the movements of the sun occasion in the atmosphere and in the
ocean, change continually the density of the different parts of the air and the
waters. The effect of the forces which these masses obey is modified at every
instant by a new distribution of heat, and it cannot be doubted that this cause
produces the regular winds, and the chief currents of the sea; the solar and lunar
attractions occasioning in the atmosphere effects but slightly sensible, and not
general displacements. It was therefore necessary, in order to submit these grand
phenomena to calculation, to discover the mathematical laws of the propagation
of heat in the interior of masses.

19. It will be perceived, on reading this work, that heat attains in bodies a regular
disposition independent of the original distribution, which may be regarded as
arbitrary.
In whatever manner the heat was at first distributed, the system of temperatures
altering more and more, tends to coincide sensibly with a definite state which
depends only on the form of the solid. In the ultimate state the temperatures of
all the points are lowered in the same time, but preserve amongst each other
the same ratios: in order to express this property the analytical formulæ contain
terms composed of exponentials and of quantities analogous to trigonometric
functions.
Several problems of mechanics present analogous results, such as the isochro-
nism of oscillations, the multiple resonance of sonorous bodies. Common
experiments had made these results remarked, and analysis afterwards demon-
strated their true cause. As to those results which depend on changes of
temperature, they could not have been recognised except by very exact exper-
iments; but mathematical analysis has outrun observation, it has supplemented
our senses, and has made us in a manner witnesses of regular and harmonic
vibrations in the interior of bodies.

20. These considerations present a singular example of the relations which exist
between the abstract science of numbers and natural causes.
When a metal bar is exposed at one end to the constant action of a source of heat,
and every point of it has attained its highest temperature, the system of fixed
temperatures corresponds exactly to a table of logarithms; the numbers are the
elevations of thermometers placed at the different points, and the logarithms are
the distances of these points from the source. In general, heat distributes itself in
the interior of solids according to a simple law expressed by a partial differential
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equation common to physical problems of different order. The irradiation of
heat has an evident relation to the tables of sines, for the rays which depart from
the same point of a heated surface, differ very much from each other, and their
intensity is rigorously proportional to the sine of the angle which the direction
of each ray makes with the element of surface.
If we could observe the changes of temperature for every instant at every point
of a solid homogeneous mass, we should discover in these series of observa-
tions the properties of recurring series, as of sines and logarithms; they would
be noticed for example in the diurnal or annual variations of temperature of
different points of the earth near its surface.
We should recognise again the same results and all the chief elements of general
analysis in the vibrations of elastic media, in the properties of lines or of curved
surfaces, in the movements of the stars, and those of light or of fluids. Thus
the functions obtained by successive differentiations, which are employed in
the development of infinite series and in the solution of numerical equations,
correspond also to physical properties. The first of these functions, or the fluxion
properly so called, expresses in geometry the inclination of the tangent of a
curved line, and in dynamics the velocity of a moving body when the motion
varies; in the theory of heat it measures the quantity of heat which flows at each
point of a body across a given surface. Mathematical analysis has therefore
necessary relations with sensible phenomena; its object is not created by human
intelligence; it is a pre-existent element of the universal order, and is not in any
way contingent or fortuitous; it is imprinted throughout all nature.

21. Observations more exact and more varied will presently ascertain whether the
effects of heat are modified by causes which have not yet been perceived, and
the theory will acquire fresh perfection by the continued comparison of its
results with the results of experiment; it will explain some important phenom-
ena which we have not yet been able to submit to calculation; it will shew
how to determine all the thermometric effects of the solar rays, the fixed or
variable temperature which would be observed at different distances from the
equator, whether in the interior of the earth or beyond the limits of the atmo-
sphere, whether in the ocean or in different regions of the air. From it will be
derived the mathematical knowledge of the great movements which result from
the influence of heat combined with that of gravity. The same principles will
serve to measure the conductivities, proper or relative, of different bodies, and
their specific capacities, to distinguish all the causes which modify the emission
of heat at the surface of solids, and to perfect thermometric instruments.
The theory of heat will always attract the attention of mathematicians, by the
rigorous exactness of its elements and the analytical difficulties peculiar to it,
and above all by the extent and usefulness of its applications; for all its con-
sequences concern at the same time general physics, the operations of the arts,
domestic uses and civil economy.
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2.3 Study Questions

QUES. 2.1. How does Fourier’s theory address the problem of heat?

QUES. 2.2. What is the temperature distribution within a metallic ring held above a
source of heat, such as a candle?

a) Does the ring reach a uniform temperature? Why or why not? How may the
temperature distribution be expressed mathematically? What assumption does
Fourier make?

b) What happens to the temperature of the ring when the heat source is suddenly
extinguished? What, then, is the ultimate goal of Fourier’s theory?

QUES. 2.3. What is the temperature of a solid sphere alternately immersed and
removed from a warm fluid?

a) Does the sphere attain a uniform temperature immediately upon immersion?
Does it ever attain a uniform temperature? If so, what is its value?

b) When the sphere is removed from the warm fluid, is its rate of cooling uniform?
Is its temperature uniform during the cooling process? Do any two points on its
surface differ in temperature?

c) More generally, how may the sphere’s temperature distribution be expressed
mathematically? Does the temperature distribution have any symmetries?

d) Is the behavior of a cube different than that of a sphere? Does the temperature
distribution have any symmetries?

QUES. 2.4. What is the temperature of a long rectangular prism one end of which is
held at a high temperature?

a) Does the prism attain a uniform temperature immediately upon immersion? Does
it ever attain a uniform temperature?

b) Is the temperature constant along the length of the prism? What about within any
cross-section of the prism?

c) Does the temperature distribution have any symmetries? Is the temperature
distribution time-dependent?

d) What does Fourier select as the unit of heat? Why might he have chosen this
unit?

e) In its final state, is the heat flowing through any cross-section of the prism
time-dependent, constant, or perhaps even zero? Is it the same for every
cross-sectional area along the length of the prism?

QUES. 2.5. Upon what elementary quantities doe the propagation of heat through a
body depend? How are each of these quantities defined? What can a knowledge of
these quantities provide?

QUES. 2.6. What are some significant problems that Fourier’s theory of heat allows
one to solve? What does a solution to such problems entail? Are all such problems
solvable analytically?
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QUES. 2.7. Must bodies be in physical contact in order to achieve equilibrium? Must
there be anything at all between them? What law governs the intensity of radiant heat
from a surface? In particular, how does its intensity depend on its emission angle?

QUES. 2.8. Is Fourier’s theory of heat a dynamical theory of heat? That is: does his
theory of heat follow from Newton’s three laws of motion? Is there any relation-
ship at all between Newton’s three laws of motion and, for instance, atmospheric or
oceanic currents?

QUES. 2.9. Does the final state of a body depend on its initial distribution of temper-
atures? Upon what does the final state depend? Are any other phenomena in nature
independent of initial conditions?

QUES. 2.10. In what way does mathematical analysis, and derivatives in particular,
relate to sensible phenomena?

a) In geometry, what quantity does the first derivative of a line express?
b) In dynamics, what quantity does the first derivative of the position of a moving

body express?
c) In the theory of heat, what quantity does the first derivative of the temperature

distribution inside a body express?

2.4 Exercises

EX. 2.1 (NATURE AND MATHEMATICS ESSAY). Consider the Fourier quote at the
outset of this chapter. What does he mean when he asserts that mathematics “is
a pre-existent element of the universal order” and that it “is not created by human
intelligence”? Do you agree with these assertions, or do you have a different view
of the origin of mathematics? Can you defend your view?

EX. 2.2 (TEMPERATURE AND SYMMETRY). Make sketches which clearly indicate the
temperature distribution within objects under the following conditions: (i) a thin
ring of metal heated for a long time at a single point along its circumference, (ii) a
solid homogeneous sphere immersed for a long time in fluid at 50◦C, (iii) the same
homogeneous sphere shortly after it has been removed from the fluid and placed in
the air at 20◦C, and (iv) a long, thin rectangular prism in 20◦C air, one end of which
is heated to 50◦C for a long time.

EX. 2.3 (HEAT CAPACITY AND THE METHOD OF MIXTURES). According to the caloric
theory, heat is an invisible and imponderable (weightless) fluid which, upon entering
a substance raises its temperature, and upon leaving a substance lowers its tem-
perature. Different substances have different abilities to store heat—different heat
capacities. The mathematical relationship between the amount of heat added to a
substance, �Q, the heat capacity of the substance, C, and the change in temperature
of the substance, �T , is given by

�Q = C�T (2.1)
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The method of mixtures is an experimental technique used to measure the relative
heat capacities of two substances, one of which is a fluid. Suppose, for instance, that
a 1 pound sheet of lead foil is loosely rolled up and then suspended in the steam
rising from a tea kettle until it finally reaches 212◦F . It is then plunged into a 1-
pound water bath initially at 57◦F . After the lead foil and water achieve thermal
equilibrium, the water is measured to be 62◦F . If 1 unit of heat is now defined as
the amount of heat required to raise 1 pound of water by 1◦F , then what is the heat
capacity of 1 pound of lead? (ANSWER: 1

30 )

EX. 2.4 (LATENT HEAT OF ICE MELTING). According to the caloric theory, when
heat enters a substance it may cause it to undergo a phase transformation instead
of raising its temperature. After such a phase transformation, the added heat or
caloric is hidden within the substance in the form of latent heat. For example, when
a certain quantity of heat is added to ice at 0◦C, it melts and becomes water at 0

◦
C.

This latent heat becomes manifest—it reappears and must be removed—when water
is refrozen into ice. In order to determine the latent heat associated with the melting
of ice, consider the following two laboratory experiments.

Experiment 1: 100 grains of ice at 0◦C are added to a 5000-grain bath of water
at 55◦C. After equilibration, the final temperature is 52.3◦C.

Experiment 2: 1000 grains of water at 5◦C are poured into a 5000-grain bath of
water at 56◦C. After equilibration, the final temperature is 47.5◦C.

According to convention, a grain is a unit of weight approximately equivalent to
65 mg,2 and a unit of heat is the amount required to raise one grain of water by 1◦C.

a) In experiment 1, what was the change in temperature of the ice? of the (initially)
warm water bath?

b) In experiment 2, what was the change in temperature of the (initially) cool water?
of the (initially) warm water bath? How many units of heat did the (initially) cool
water absorb? And how many units of heat left the (initially) warm water bath?
(ANSWER: 42,500 units)

c) In experiment 1, how many units of heat left the (initially) hot water bath? How
much of this heat went into raising the temperature of the melted ice? And how
much went into melting the ice? What, then, is the latent heat of one grain of
ice? (ANSWER: 82.3)

2 The grain is part of the traditional English weight system; it is still used today by apothecaries,
dentists, and ammunition manufacturers.
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2.5 Vocabulary

1. Propagation
2. Equilibrium
3. Dissipate
4. Incessant
5. Ordinate
6. Commencement
7. Emersion
8. Prism
9. Conductibility

10. Diurnal
11. Facilitate
12. Requisite
13. Shew
14. Conform
15. Dynamical
16. Exponential
17. Logarithm
18. Differentiation
19. Tangent
20. Contingent
21. Fortuitous
22. Thermometric



Chapter 3
Steam Engines and Heat Flow

Wherever there exists a difference of temperature, motive-power
can be produced.

—Sadi Carnot

3.1 Introduction

Nicolas Léonard Sadi Carnot (1796–1832) was born in the Palais du Petit-
Luxembourg in Paris. His father, a famous mathematician and minister of war under
Napoleon, named his son after the eminent medieval Persian poet Sadi of Shiraz.1

Carnot attended the Charlemagne Lycée before enrolling at the age of 16 in the
École Polytechnique, the elite military academy which attracted many famous sci-
entists and mathematicians during the age of the French Revolution: Biot, Arago,
Laplace, Fourier, Gay-Lussac, Ampère, and Poisson. After his graduation in 1814,
Carnot served as a cadet sub-lieutenant in the engineer corps at Metz, a position
which he found increasingly frustrating and confining after Napoleon’s defeat at
Waterloo and his father’s consequent retirement and exile to Magdeburg, Germany.
So in 1819 Carnot took an examination and was appointed a lieutenant in the French
general staff. After attaining a furlough he increasingly turned his attention to the
study of scientific matters, particularly the writings of Pascal and the design of
steam engines. This latter interest would eventually lead to his only publication in
1824. Carnot’s Réflexions sur la puissance mortice du feu went largely unnoticed
until after his death from cholera at the age of 36. Several years later, Clausius and
Kelvin developed Carnot’s seminal ideas on heat engines into one of the foundations
of modern science: the second law of thermodynamics. The reading selections that
follow are from an 1897 English translation by Robert Henry Thurston (Fig. 3.1).

1 Much of the present introduction was derived from a biographical sketch of Sadi Carnot written
by his younger brother, Hippolyte, which can be found in Chap. II of Carnot, S., Reflections on
the Motive Power of Heat, second ed., John Wiley & Sons and Chapman & Hall, New York and
London, 1897.
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Fig. 3.1 Watt’s steam engine, 1781; Fig. 27 from R.H. Thurston, A History of the Growth of the
Steam Engine, 1878
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3.2 Reading: Carnot, Reflections on the Motive Power of Heat,
and on Machines Fitted to Develop that Power

Carnot, S., Reflections on the Motive Power of Heat, second ed., John Wiley & Sons
and Chapman & Hall, New York and London, 1897.2

Every one knows that heat can produce motion. That it possesses vast motive-power
no one can doubt, in these days when the steam-engine is everywhere so well known.

To heat also are due the vast movements which take place on the earth. It causes
the agitations of the atmosphere, the ascension of clouds, the fall of rain and of mete-
ors, the currents of water which channel the surface of the globe, and of which man
has thus far employed but a small portion. Even earthquakes and volcanic eruptions
are the result of heat.

From this immense reservoir we may draw the moving force necessary for our
purposes. Nature, in providing us with combustibles on all sides, has given us the
power to produce, at all times and in all places, heat and the impelling power which
is the result of it. To develop this power, to appropriate it to our uses, is the object
of heat engines.

The study of these engines is of the greatest interest, their importance is enor-
mous, their use is continually increasing, and they seem destined to produce a great
revolution in the civilized world.

Already the steam-engine works our mines, impels our ships, excavates our ports
and our rivers, forges iron, fashions wood, grinds grains, spins and weaves our
cloths, transports the heaviest burdens, etc. It appears that it must some day serve as
a universal motor, and be substituted for animal power, waterfalls, and air currents.

Over the first of these motors it has the advantage of economy, over the two
others the inestimable advantage that it can be used at all times and places without
interruption.

If, some day, the steam-engine shall be so perfected that it can be set up and
supplied with fuel at small cost, it will combine all desirable qualities, and will
afford to the industrial arts a range the extent of which can scarcely be predicted.
It is not merely that a powerful and convenient motor that can be procured and
carried anywhere is substituted for the motors already in use, but that it causes rapid
extension in the arts in which it is applied, and can even create entirely new arts.

The most signal service that the steam-engine has rendered to England is
undoubtedly the revival of the working of the coal-mines, which had declined, and
threatened to cease entirely, in consequence of the continually increasing difficulty

2 Sadi Camot’s Réflexions sur la puissance motrice du feu (Paris, Bachelier 1824) was long
ago completely exhausted. As but a small number of copies were printed, this remarkable work
remained long unknown to the earlier writers on Thermodynamics. It was therefore for the ben-
efit of savants unable to study a work out of print, as well as to render honor to the memory of
Sadi Carnot, that the new publishers of the Annales Scientifique de l’École Normale supérieure
(ii. series,t. 1, 1872) published a new edition, from which this translation is reproduced.
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of drainage, and of raising the coal.3 We should rank second the benefit to iron
manufacture, both by the abundant supply of coal substituted for wood just when
the latter had begun to grow scarce, and by the powerful machines of all kinds, the
use of which the introduction of the steam-engine has permitted or facilitated.

Iron and heat are, as we know, the supporters, the bases, of the mechanic arts.
It is doubtful if there be in England a single industrial establishment of which the
existence does not depend on the use of these agents, and which does not freely
employ them. To take away to-day from England her steam-engines would be to
take away at the same time her coal and iron. It would be to dry up all her sources of
wealth, to ruin all on which her prosperity depends, in short, to annihilate that colos-
sal power. The destruction of her navy, which she considers her strongest defence,
would perhaps be less fatal.

The safe and rapid navigation by steamships may be regarded as an entirely new
art due to the steam-engine. Already this art has permitted the establishment of
prompt and regular communications across the arms of the sea, and on the great
rivers of the old and new continents. It has made it possible to traverse savage
regions where before we could scarcely penetrate. It has enabled us to carry the
fruits of civilization over portions of the globe where they would else have been
wanting for years. Steam navigation brings nearer together the most distant nations.
It tends to unite the nations of the earth as inhabitants of one country. In fact, to
lessen the time, the fatigues, the uncertainties, and the dangers of travel—is not this
the same as greatly to shorten distances?4

The discovery of the steam-engine owed its birth, like most human inventions, to
rude attempts which have been attributed to different persons, while the real author
is not certainly known. It is, however, less in the first attempts that the principal
discovery consists, than in the successive improvements which have brought steam-
engines to the condition in which we find them to-day. There is almost as great
a distance between the first apparatus in which the expansive force of steam was
displayed and the existing machine, as between the first raft that man ever made and
the modern vessel.

If the honor of a discovery belongs to the nation in which it has acquired its
growth and all its developments, this honor cannot be here refused to England.
Savery, Newcomen, Smeaton, the famous Watt, Woolf, Trevithick, and some other
English engineers, are the veritable creators of the steam-engine. It has acquired at

3 It may be said that coal-mining has increased tenfold in England since the invention of the
steam-engine. It is almost equally true in regard to the mining of copper, tin, and iron. The results
produced in a half-century by the steam-engine in the mines of England are to-day paralleled in
the gold and silver mines of the New World—mines of which the working declined from day to
day, principally on account of the insufficiency of the motors employed in the draining and the
extraction of the minerals.
4 We say, to lessen the dangers of journeys. In fact, although the use of the steam-engine on ships
is attended by some danger which has been greatly exaggerated, this is more than compensated
by the power of following always an appointed and well-known route, of resisting the force of the
winds which would drive the ship towards the shore, the shoals, or the rocks.
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their hands all its successive degrees of improvement. Finally, it is natural that an
invention should have its birth and especially be developed, be perfected, in that
place where its want is most strongly felt.

Notwithstanding the work of all kinds done by steam-engines, notwithstanding
the satisfactory condition to which they have been brought to-day, their theory is
very little understood, and the attempts to improve them are still directed almost by
chance.

The question has often been raised whether the motive power of heat5 is
unbounded, whether the possible improvements in steam-engines have an assignable
limit,—a limit which the nature of things will not allow to be passed by any means
whatever; or whether, on the contrary, these improvements may be carried on indefi-
nitely. We have long sought, and are seeking to-day, to ascertain whether there are in
existence agents preferable to the vapor of water for developing the motive power of
heat; whether atmospheric air, for example, would not present in this respect great
advantages. We propose now to submit these questions to a deliberate examination.

The phenomenon of the production of motion by heat has not been considered
from a sufficiently general point of view. We have considered it only in machines
the nature and mode of action of which have not allowed us to take in the whole
extent of application of which it is susceptible. In such machines the phenomenon
is, in a way, incomplete. It becomes difficult to recognize its principles and study its
laws.

In order to consider in the most general way the principle of the production
of motion by heat, it must be considered independently of any mechanism or any
particular agent. It is necessary to establish principles applicable not only to steam-
engines6 but to all imaginable heat-engines, whatever the working substance and
whatever the method by which it is operated.

Machines which do not receive their motion from heat, those which have for a
motor the force of men or of animals, a waterfall, an air-current, etc., can be studied
even to their smallest details by the mechanical theory. All cases are foreseen, all
imaginable movements are referred to these general principles, firmly established,
and applicable under all circumstances. This is the character of a complete theory.
A similar theory is evidently needed for heat-engines. We shall have it only when
the laws of Physics shall be extended enough, generalized enough, to make known
beforehand all the effects of heat acting in a determined manner on anybody.

We will suppose in what follows at least a superficial knowledge of the different
parts which compose an ordinary steam-engine; and we consider it unnecessary to
explain what are the furnace, boiler, steam-cylinder, piston, condenser, etc.

5 We use here the expression motive power to express the useful effect that a motor is capable of
producing. This effect can always be likened to the elevation of a weight to a certain height. It has,
as we know, as a measure, the product of the weight multiplied by the height to which it is raised.
6 We distinguish here the steam-engine from the heat-engine in general. The latter may make use
of any agent whatever, of the vapor of water or of any other, to develop the motive power of heat.
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The production of motion in steam-engines is always accompanied by a circum-
stance on which we should fix our attention. This circumstance is the re-establishing
of equilibrium in the caloric; that is, its passage from a body in which the tempera-
ture is more or less elevated, to another in which it is lower. What happens in fact in a
steam-engine actually in motion? The caloric developed in the furnace by the effect
of the combustion traverses the walls of the boiler, produces steam, and in some way
incorporates itself with it. The latter carrying it away, takes it first into the cylinder,
where it performs some function, and from thence into the condenser, where it is
liquefied by contact with the cold water which it encounters there. Then, as a final
result, the cold water of the condenser takes possession of the caloric developed by
the combustion. It is heated by the intervention of the steam as if it had been placed
directly over the furnace. The steam is here only a means of transporting the caloric.
It fills the same office as in the heating of baths by steam, except that in this case its
motion is rendered useful.

We easily recognize in the operations that we have just described the re-
establishment of equilibrium in the caloric, its passage from a more or less heated
body to a cooler one. The first of these bodies, in this case, is the heated air of the
furnace; the second is the condensing water. The re-establishment of equilibrium of
the caloric takes place between them, if not completely, at least partially, for on the
one hand the heated air, after having performed its function, having passed round
the boiler, goes out through the chimney with a temperature much below that which
it had acquired as the effect of combustion; and on the other hand, the water of the
condenser, after having liquefied the steam, leaves the machine with a temperature
higher than that with which it entered.

The production of motive power is then due in steam-engines not to an actual
consumption of caloric, but to its transportation from a warm body to a cold
body, that is, to its re-establishment of equilibrium—an equilibrium considered as
destroyed by any cause whatever, by chemical action such as combustion, or by any
other. We shall see shortly that this principle is applicable to any machine set in
motion by heat.

According to this principle, the production of heat alone is not sufficient to give
birth to the impelling power: it is necessary that there should also be cold; without
it, the heat would be useless. And in fact, if we should find about us only bodies as
hot as our furnaces, how can we condense steam? What should we do with it if once
produced? We should not presume that we might discharge it into the atmosphere,
as is done in some engines;7 the atmosphere would not receive it. It does receive
it under the actual condition of things, only because it fulfills the office of a vast

7 Certain engines at high pressure throw the steam out into the atmosphere instead of the condenser.
They are used specially in places where it would be difficult to procure a stream of cold water
sufficient to produce condensation.
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condenser, because it is at a lower temperature; otherwise it would soon become
fully charged, or rather would be already saturated.8

Wherever there exists a difference of temperature, wherever it has been possi-
ble for the equilibrium of the caloric to be re-established, it is possible to have also
the production of impelling power. Steam is a means of realizing this power, but
it is not the only one. All substances in nature can be employed for this purpose,
all are susceptible of changes of volume, of successive contractions and dilata-
tions, through the alternation of heat and cold. All are capable of overcoming in
their changes of volume certain resistances, and of thus developing the impelling
power. A solid body—a metallic bar for example—alternately heated and cooled
increases and diminishes in length, and can move bodies fastened to its ends. A
liquid alternately heated and cooled increases and diminishes in volume, and can
overcome obstacles of greater or less size, opposed to its dilatation. An aeriform
fluid is susceptible of considerable change of volume by variations of temperature.
If it is enclosed in an expansible space, such as a cylinder provided with a piston, it
will produce movements of great extent. Vapors of all substances capable of passing
into a gaseous condition, as of alcohol, of mercury, of sulphur, etc., may fulfill the
same office as vapor of water. The latter, alternately heated and cooled, would pro-
duce motive power in the shape of permanent gases, that is, without ever returning
to a liquid state. Most of these substances have been proposed, many even have been
tried, although up to this time perhaps without remarkable success.

We have shown that in steam-engines the motive power is due to a re-
establishment of equilibrium in the caloric; this takes place not only for steam-
engines, but also for every heat-engine—that is, for every machine of which caloric
is the motor. Heat can evidently be a cause of motion only by virtue of the changes
of volume or of form which it produces in bodies.

These changes are not caused by uniform temperature, but rather by alternations
of heat and cold. Now to heat any substance whatever requires a body warmer than
the one to be heated; to cool it requires a cooler body. We supply caloric to the
first of these bodies that we may transmit it to the second by means of the interme-
diary substance. This is to re-establish, or at least to endeavor to re-establish, the
equilibrium of the caloric.

8 The existence of water in the liquid state here necessarily assumed, since without it the steam-
engine could not be fed, supposes the existence of a pressure capable of preventing this water
from vaporizing, consequently of a pressure equal or superior to the tension of vapor at that tem-
perature. If such a pressure were not exerted by the atmospheric air, there would be instantly
produced a quantity of steam sufficient to give rise to that tension, and it would be necessary
always to overcome this pressure in order to throw out the steam from the engines into the new
atmosphere. Now this is evidently equivalent to overcoming the tension which the steam retains
after its condensation, as effected by ordinary means.

If a very high temperature existed at the surface of our globe, as it seems certain that it exists
in its interior, all the waters of the ocean would be in a state of vapor in the atmosphere, and no
portion of it would be found in a liquid state.
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It is natural to ask here this curious and important question: Is the motive power
of heat invariable in quantity, or does it vary with the agent employed to realize it as
the intermediary substance, selected as the subject of action of the heat?

It is clear that this question can be asked only in regard to a given quantity of
caloric,9 the difference of the temperatures also being given. We take, for example,
one body A kept at a temperature of 100◦ and another body B kept at a temperature
of 0◦, and ask what quantity of motive power can be produced by the passage of a
given portion of caloric (for example, as much as is necessary to melt a kilogram of
ice) from the first of these bodies to the second. We inquire whether this quantity of
motive power is necessarily limited, whether it varies with the substance employed
to realize it, whether the vapor of water offers in this respect more or less advantage
than the vapor of alcohol, of mercury, a permanent gas, or any other substance. We
will try to answer these questions, availing ourselves of ideas already established.

We have already remarked upon this self-evident fact, or fact which at least
appears evident as soon as we reflect on the changes of volume occasioned by heat:
wherever there exists a difference of temperature, motive-power can be produced.
Reciprocally, wherever we can consume this power, it is possible to produce a dif-
ference of temperature, it is possible to occasion destruction of equilibrium in the
caloric. Are not percussion and the friction of bodies actually means of raising their
temperature, of making it reach spontaneously a higher degree than that of the sur-
rounding bodies, and consequently of producing a destruction of equilibrium in the
caloric, where equilibrium previously existed? It is a fact proved by experience, that
the temperature of gaseous fluids is raised by compression and lowered by rarefac-
tion. This is a sure method of changing the temperature of bodies, and destroying
the equilibrium of the caloric as many times as may be desired with the same sub-
stance. The vapor of water employed in an inverse manner to that in which it is used
in steam-engines can also be regarded as a means of destroying the equilibrium of
the caloric. To be convinced of this we need but to observe closely the manner in
which motive power is developed by the action of heat on vapor of water. Imagine
two bodies A and B, kept each at a constant temperature, that of A being higher than
that of B. These two bodies, to which we can give or from which we can remove
the heat without causing their temperatures to vary, exercise the functions of two
unlimited reservoirs of caloric. We will call the first the furnace and the second the
refrigerator.

If we wish to produce motive power by carrying a certain quantity of heat from
the body A to the body B we shall proceed as follows:

(1) To borrow caloric from the body A to make steam with it—that is, to make this
body fulfil the function of a furnace, or rather of the metal composing the boiler
in ordinary engines—we here assume that the steam is produced at the same
temperature as the body A.

9 It is considered unnecessary to explain here what is quantity of caloric or quantity of heat (for
we employ these two expressions indifferently), or to describe how we measure these quantities by
the calorimeter. Nor will we explain what is meant by latent heat, degree of temperature, specific
heat, etc. The reader should be familiarized with these terms through the study of the elementary
treatises of physics or of chemistry.
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(2) The steam having been received in a space capable of expansion, such as a
cylinder furnished with a piston, to increase the volume of this space, and
consequently also that of the steam. Thus rarefied, the temperature will fall
spontaneously, as occurs with all elastic fluids; admit that the rarefaction may
be continued to the point where the temperature becomes precisely that of the
body B.

(3) To condense the steam by putting it in contact with the body B, and at the
same time exerting on it a constant pressure until it is entirely liquefied. The
body B fills here the place of the injection-water in ordinary engines, with this
difference, that it condenses the vapor without mingling with it, and without
changing its own temperature.10

The operations which we have just described might have been performed in an
inverse direction and order. There is nothing to prevent forming vapor with the
caloric of the body B, and at the temperature of that body, compressing it in such
a way as to make it acquire the temperature of the body A, finally condensing
it by contact with this latter body, and continuing the compression to complete
liquefaction.

By our first operations there would have been at the same time production of
motive power and transfer of caloric from the body A to the body B. By the inverse
operations there is at the same time expenditure of motive power and return of
caloric from the body B to the body A. But if we have acted in each case on the
same quantity of vapor, if there is produced no loss either of motive power or caloric,
the quantity of motive power produced in the first place will be equal to that which
would have been expended in the second, and the quantity of caloric passed in the
first case from the body A to the body B would be equal to the quantity which
passes back again in the second from the body B to the body A; so that an indefinite
number of alternative operations of this sort could be carried on without in the end
having either produced motive power or transferred caloric from one body to the
other.

10 We may perhaps wonder here that the body B being at the same temperature as the steam is able
to condense it. Doubtless this is not strictly possible, but the slightest difference of temperature will
determine the condensation, which suffices to establish the justice of our reasoning. It is thus that,
in the differential calculus, it is sufficient that we can conceive the neglected quantities indefinitely
reducible in proportion to the quantities retained in the equations, to make certain of the exact
result.

The body B condenses the steam without changing its own temperature—this results from our
supposition. We have admitted that this body may be maintained at a constant temperature. We take
away the caloric as the steam furnishes it. This is the condition in which the metal of the condenser
is found when the liquefaction of the steam is accomplished by applying cold water externally, as
was formerly done in several engines. Similarly, the water of a reservoir can be maintained at a
constant level if the liquid flows out at one side as it flows in at the other.

One could even conceive the bodies A and B maintaining the same temperature, although they
might lose or gain certain quantities of heat. If, for example, the body A were a mass of steam
ready to become liquid, and the body B a mass of ice ready to melt, these bodies might, as we
know, furnish or receive caloric without thermometric change.
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Now if there existed any means of using heat preferable to those which we have
employed, that is, if it were possible by any method whatever to make the caloric
produce a quantity of motive power greater than we have made it produce by our
first series of operations, it would suffice to divert a portion of this power in order
by the method just indicated to make the caloric of the body B return to the body
A from the refrigerator to the furnace, to restore the initial conditions, and thus to
be ready to commence again an operation precisely similar to the former, and so
on: this would be not only perpetual motion, but an unlimited creation of motive
power without consumption either of caloric or of any other agent whatever. Such
a creation is entirely contrary to ideas now accepted, to the laws of mechanics and
of sound physics. It is inadmissible. We should then conclude that the maximum of
motive power resulting from the employment of steam is also the maximum of motive
power realizable by any means whatever. We will soon give a second more rigorous
demonstration of this theory. This should be considered only as an approximation.
(See page 39.)

We have a right to ask, in regard to the proposition just enunciated, the following
questions: What is the sense of the word maximum here? By what sign can it be
known that this maximum is attained? By what sign can it be known whether the
steam is employed to greatest possible advantage in the production of motive power?

Since every re-establishment of equilibrium in the caloric may be the cause of
the production of motive power, every re-establishment of equilibrium which shall
be accomplished without production of this power should be considered as an actual
loss. Now, very little reflection would show that all change of temperature which is
not due to a change of volume of the bodies can be only a useless reestablishment
of equilibrium in the caloric.11 The necessary condition of the maximum is, then,
that in the bodies employed to realize the motive power of heat there should not
occur any change of temperature which may not be due to a change of volume.
Reciprocally, every time that this condition is fulfilled the maximum will be attained.
This principle should never be lost sight of in the construction of heat-engines; it is
its fundamental basis. If it cannot be strictly observed, it should at least be departed
from as little as possible.

Every change of temperature which is not due to a change of volume or to chem-
ical action (an action that we provisionally suppose not to occur here) is necessarily
due to the direct passage of the caloric from a more or less heated body to a colder
body. This passage occurs mainly by the contact of bodies of different tempera-
tures; hence such contact should be avoided as much as possible. It cannot probably
be avoided entirely, but it should at least be so managed that the bodies brought in
contact with each other differ as little as possible in temperature. When we just now

11 We assume here no chemical action between the bodies employed to realize the motive power of
heat. The chemical action which takes place in the furnace is, in some sort, a preliminary action,—
an operation destined not to produce immediately motive power, but to destroy the equilibrium of
the caloric, to produce a difference of temperature which may finally give rise to motion.
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supposed, in our demonstration, the caloric of the body A employed to form steam,
this steam was considered as generated at the temperature of the body A; thus the
contact took place only between bodies of equal temperatures; the change of tem-
perature occurring afterwards in the steam was due to dilatation, consequently to a
change of volume. Finally, condensation took place also without contact of bodies
of different temperatures. It occurred while exerting a constant pressure on the steam
brought in contact with the body B of the same temperature as itself. The conditions
for a maximum are thus found to be fulfilled. In reality the operation cannot proceed
exactly as we have assumed. To determine the passage of caloric from one body to
another, it is necessary that there should be an excess of temperature in the first, but
this excess may be supposed as slight as we please. We can regard it as insensible
in theory, without thereby destroying the exactness of the arguments.

A more substantial objection may be made to our demonstration, thus: When we
borrow caloric from the body A to produce steam, and when this steam is afterwards
condensed by its contact with the body B, the water used to form it, and which we
considered at first as being of the temperature of the body A, is found at the close
of the operation at the temperature of the body B. It has become cool. If we wish to
begin again an operation similar to the first, if we wish to develop a new quantity of
motive power with the same instrument, with the same steam, it is necessary first to
re-establish the original condition—to restore the water to the original temperature.
This can undoubtedly be done by at once putting it again in contact with the body
A; but there is then contact between bodies of different temperatures, and loss of
motive power.12 It would be impossible to execute the inverse operation, that is, to
return to the body A the caloric employed to raise the temperature of the liquid.

This difficulty may be removed by supposing the difference of temperature
between the body A and the body B indefinitely small. The quantity of heat nec-
essary to raise the liquid to its former temperature will be also indefinitely small
and unimportant relatively to that which is necessary to produce steam—a quantity
always limited.

The proposition found elsewhere demonstrated for the case in which the differ-
ence between the temperatures of the two bodies is indefinitely small, may be easily
extended to the general case. In fact, if it operated to produce motive power by the
passage of caloric from the body A to the body Z, the temperature of this latter body
being very different from that of the former, we should imagine a series of bodies B,
C, D. . . of temperatures intermediate between those of the bodies A, Z, and selected

12 This kind of loss is found in all steam-engines. In fact, the water destined to feed the boiler
is always cooler than the water which it already contains. There occurs between them a useless
re-establishment of equilibrium of caloric. We are easily convinced, à posteriori, that this reestab-
lishment of equilibrium causes a loss of motive power if we reflect that it would have been possible
to previously heat the feed-water by using it as condensing-water in a small accessory engine, when
the steam drawn from the large boiler might have been used, and where the condensation might
be produced at a temperature intermediate between that of the boiler and that of the principal con-
denser. The power produced by the small engine would have cost no loss of heat, since all that
which had been used would have returned into the boiler with the water of condensation.
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so that the differences from A to B, from B to C, etc., may all be indefinitely small.
The caloric coming from A would not arrive at Z till after it had passed through
the bodies B, C, D, etc., and after having developed in each of these stages maxi-
mum motive power. The inverse operations would here be entirely possible, and the
reasoning of page 36 would be strictly applicable.

According to established principles at the present time, we can compare with
sufficient accuracy the motive power of heat to that of a waterfall. Each has a maxi-
mum that we cannot exceed, whatever may be, on the one hand, the machine which
is acted upon by the water, and whatever, on the other hand, the substance acted
upon by the heat. The motive power of a waterfall depends on its height and on
the quantity of the liquid; the motive power of heat depends also on the quantity of
caloric used, and on what may be termed, on what in fact we will call, the height of
its fall,13 that is to say, the difference of temperature of the bodies between which
the exchange of caloric is made. In the waterfall the motive power is exactly pro-
portional to the difference of level between the higher and lower reservoirs. In the
fall of caloric the motive power undoubtedly increases with the difference of tem-
perature between the warm and the cold bodies; but we do not know whether it is
proportional to this difference. We do not know, for example, whether the fall of
caloric from 100 to 50◦ furnishes more or less motive power than the fall of this
same caloric from 50 to 0. It is a question which we propose to examine hereafter.

3.3 Study Questions

QUES. 3.1. What are some of the most important uses of the steam-engine? Which
nation-state, at the time of Carnot, had most fully developed its potential? And what
is the goal of Carnot’s work?

QUES. 3.2. What are the basic components—and the principle of operation—of a
steam-engine?

a) What are the purposes of the boiler, steam-cylinder, piston and condenser?
b) What is caloric? Where is it developed? In which direction does it flow? And

where does it end up? What role does the steam itself play?
c) What is the cause of the motive power of steam-engines? Is heat alone (from a

hot body) necessary to produce a steam-engine’s motive power? Do all steam-
engines require a condenser?

QUES. 3.3. Does the motive power of a heat-engine depend on the particular
intermediary substance employed?

a) Is steam the only feasible intermediate-substance for a heat-engine? If not, what
other substances have been employed instead of steam?

13 The matter here dealt with being entirely new, we are obliged to employ expressions not in use
as yet, and which perhaps are less clear than is desirable.
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b) In principle, what physical property must any body have in order to serve as the
intermediate-substance in a heat-engine?

c) What purpose, then, do the hot- and cold- bodies (e.g. the boiler and condenser)
serve?

d) How does Carnot define a unit of heat? And does the motive power of a steam
engine depend on the temperatures of the hot and cold bodies?

QUES. 3.4. If nature always acts in such a way as to restore the equilibrium of
the caloric, then what types of processes might destroy such equilibrium? What
is required? Can equilibrium be destroyed by a heat-engine? If so, how?

QUES. 3.5. Is it possible for a heat-engine to be more efficient—to produce more
motive power when operating between a pair of reservoirs—than a reversible heat-
engine?

a) Carefully describe the sequence of operations involved in Carnot’s steam engine
cycle. Which steps involve temperature changes? Which involve the flow of
caloric?

b) Is the amount of work done by the steam equal to the amount of work done on
the steam during an entire cycle? Does the engine accomplish any useful work?

c) If the cycle of operations is reversed, in which way does caloric flow? Does the
reversed heat engine accomplish useful work?

d) What is meant by a reversible heat-engine? In particular, is any heat-engine
which is run in reverse a reversible heat-engine? If not, then what is the mark
of a reversible heat-engine?

e) Suppose that a forward-running reversible heat-engine drives a second reversible
heat-engine backwards. Is there any overall transport of caloric between the hot
and cold reservoirs between which they (both) operate?

f) Would your answer to the previous question be the same if the backwards-
running engine were somehow more efficient than a reversible heat-engine?
What does this imply about the possibility of such a more-efficient heat-engine?

QUES. 3.6. Ideally, what physical process should accompany any and every flow
of caloric within a heat-engine so as to maximize the heat-engine’s efficiency in
generating motive power? What processes or situations should one avoid, and why?
Are these optimization conditions met in Carnot’s proposed engine cycle?

QUES. 3.7. In what sense is a heat-engine analogous to a water-fall? In particular,
does the power generated by a water-fall depend only upon the height of the fall?
Does the efficiency of a heat engine depend only upon the temperature difference
between its hot and cold reservoirs?

3.4 Exercises

EX. 3.1 (IDEAL GAS LAWS). An ideal gas is one whose constituent molecules are so
widely separated as to be effectively non-interacting. Charles’ law states that the



42 3 Steam Engines and Heat Flow

temperature of an ideal gas which is maintained at a constant pressure is directly
proportional to its volume:

V

T
= Constant (Charles’ law) (3.1)

Boyle’s law states that the pressure of an ideal gas which is maintained at a constant
temperature is inversely proportional to its volume:

PV = Constant (Boyle’s law) (3.2)

As an exercise, suppose that you are scuba diving in 55◦ F water. When you are
50 ft below the water’s surface, you take a gulp of air from your tank. The regulator
on your tank simplifies this task by ensuring that the air which you take in is at the
same pressure as the ambient water pressing against your body. (a) By what factor
does the volume of this inhaled air increase as it heats up to your body temperature,
98.6◦ F? (HINT: be sure to convert to Kelvin.) (b) Suppose that you now make the
mistake of holding your breath as you ascend to the water’s surface. Assuming the
temperature does not change as you ascend, by what factor does the volume of air
in your lungs increase by the time your reach the surface?

EX. 3.2 (WORK, PRESSURE AND THE VAN DER WAALS EQUATION OF STATE). A gas
exerts a force on the walls of its confining chamber. As a result, the gas expands until
the walls of the chamber—stretched like a spring—produce a force large enough
to check its expansion. For pliable containers (such as latex balloons) the relative
expansion can be quite large, while for very rigid containers (such as steel gas cylin-
ders) the expansion is miniscule. In any case, when the chamber expands, the gas
does work on the chamber walls. Recall that the work done by a force is defined as
the product of the force and the distance through which it travels. Since the pressure
of a gas is defined as the force it exerts on a unit area of the confining chamber, the
work may be expressed in terms of the gas pressure and its change in volume. In
particular, if the expansion is slow,14 then the work done by the gas on the chamber
wall(s) during its expansion can be written as a definite integral of the pressure over
the change in volume from V1 to V2:

W =
∫ V2

V1

p dV . (3.3)

14 Equation 3.3 for the work done by an expanding gas can only be used when the pressure exerted
by the gas is nearly the same as the external pressure attempting (in vain) to restrain its expansion.
During such an expansion, the gas pressure is uniform throughout. Equation. 3.3 cannot be used
when the gas expands rapidly against a much weaker restraining force, for example, when a balloon
is popped and an initially high pressure gas rushes into a surrounding low-pressure gas. There is no
work done by the gas in such a “free expansion.” For a more sophisticated treatment of this topic,
and its relationship to entropy, see Rudolph Clausius’ discussion of reversible and irreversible
processes in Chap. 6 of the present volume.
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Fig. 3.2 The pressure of a
gas drops when it expands
isothermally

For many gasses, the pressure, temperature and molar volume15 are related by the
Van der Waals equation of state:

(
p + a

v2

)
(v − b) = RT (3.4)

Here, R is the universal gas constant, and a and b are empirically determined gas-
dependent parameters. They account for (a) the slight diminution of pressure due
to attraction between pairs of molecules, and (b) the slightly increased volume due
to the size of the gas molecules themselves. For an ideal (i.e. noninteracting) gas, a

and b are taken to be zero.
As an exercise, consider a particular gas for which a = 1 × 10−4 and b =

3×10−5 (using SI units). 0.3 moles of this gas are confined in a cylindrical chamber
fitted with a movable piston at one end. The initial pressure of the gas is 144 psi.
It undergoes a slow expansion (by pushing out the piston) from 1 to 1.5 L while
being maintained at a constant temperature. This process is represented graphically
in Fig. 3.2.

a) What is the temperature of this gas during this isothermal expansion? How much
work does this gas perform on the piston as it expands? (ANSWER: 402 J)

b) In order to maintain the gas at a constant temperature, heat must be added to the
gas during its expansion. For a real gas, some of the added heat energy goes into
work done on the piston and some of it goes into changing the arrangement of
the (mutually attracting) gas molecules.16 For an ideal gas, on the other hand,
all of the added heat energy goes into the work performed during an isothermal
expansion. In this case, how much heat must be added during the aforementioned
expansion?

15 Molar volume is the volume per mole of gas.
16 The division of heat into internal energy and external work will be discussed in more detail by
Rudolph Clausius; see Chap. 6.
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3.5 Vocabulary

1. Ascension
2. Impel
3. Appropriate
4. Procure
5. Ascertain
6. Impel
7. Condenser
8. Aeriform
9. Perpetual

10. Inadmissible
11. Enunciate
12. Dilatation



Chapter 4
Carnot’s Cycle

The motive power of heat is independent of the agents employed
to realize it; its quantity is fixed solely by the temperatures of the
bodies between which is effected, finally, the transfer of the
caloric.

—Sadi Carnot

4.1 Introduction

In the previous reading selection, from his Reflections on the Motive Power of Heat,
Carnot claimed that the fundamental reason why all heat-engines are able to gen-
erate motive power is because caloric, or heat, flows from hot to cold bodies. This
tendency of nature to “restore the equilibrium in the caloric” is a necessary, but not
a sufficient condition to accomplish work. For example, no useful work is accom-
plished when a red-hot iron is simply plunged into a bath of cold water, despite the
fact that heat flows from the hot iron into the cold water. On the other hand, by heat-
ing up steam in a boiler chamber, allowing the high-pressure steam to drive a piston
upwards, and then allowing the steam to cool back down in a condenser chamber,
one may accomplish useful work. In other words, by carefully managing the flow
of caloric from hot to cold bodies, one can accomplish useful work. A steam-engine
is a well-known example of this, but any process that converts heat-flow into useful
work is called a heat-engine.

Now, how much motive power can a heat-engine generate? The efficiency of a
heat engine, η, is defined as the ratio of the work that it accomplishes during a
complete engine cycle, W , to the heat flowing into it from the hot reservoir during
the same cycle, Qh:

η = W

Qh
. (4.1)

How might a heat engine attain the highest possible efficiency? Does a heat-engine’s
efficiency depend on its construction? On the type of intermediate substance
employed? On the temperature of the boiler? Of the condenser? Carnot argued that
all these factors may, in fact, affect the efficiency of a heat-engine. But in principle,
there exists a special class of heat-engines which possess the highest possible effi-
ciency. These special heat-engines are the reversible heat-engines—those in which
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there is (essentially) no useless heat flow between various internal components, and
thus in which all of the heat flow from the hot to the cold reservoir provides useful
work.

Why must a reversible heat-engine have the highest possible efficiency? Carnot
employs a proof by contradiction to demonstrate this point: he supposes, for the
sake of argument, that a heat engine exists which is more efficient than a reversible
heat engine. He then proves that such a heat-engine could be driven backwards (by a
reversible heat engine running forwards) in such a way as to drive heat from a cold
to a hot body without expending any work. But this would violate a fundamental
principle of nature: its tendency to restore equilibrium in the caloric. Thus, such a
more-efficient heat-engine could not be possible. In the following reading selection,
Carnot provides a more exact formulation of this argument. He does so by intro-
ducing what is now known as the Carnot-cycle—a cycle of operations which are
performed on a heat engine in such a way as to accomplish the maximum amount
of work.

4.2 Reading: Carnot, Reflections on the Motive Power of Heat,
and on Machines Fitted to Develop that Power

Carnot, S., Reflections on the Motive Power of Heat, second ed., John Wiley & Sons
and Chapman & Hall, New York and London, 1897.

We shall give here a second demonstration of the fundamental proposition enunci-
ated on page 38, and present this proposition under a more general form than the
one already given.

When a gaseous fluid is rapidly compressed its temperature rises. It falls, on the
contrary, when it is rapidly dilated. This is one of the facts best demonstrated by
experiment. We will take it for the basis of our demonstration.

If, when the temperature of a gas has been raised by compression, we wish to
reduce it to its former temperature without subjecting its volume to new changes,
some of its caloric must be removed. This caloric might have been removed in pro-
portion as pressure was applied, so that the temperature of the gas would remain
constant. Similarly, if the gas is rarefied we can avoid lowering the temperature by
supplying it with a certain quantity of caloric. Let us call the caloric employed at
such times, when no change of temperature occurs, caloric due to change of vol-
ume. This denomination does not indicate that the caloric appertains to the volume:
it does not appertain to it any more than to pressure, and might as well be called
caloric due to the change of pressure. We do not know what laws it follows relative
to the variations of volume: it is possible that its quantity changes either with the
nature of the gas, its density, or its temperature. Experiment has taught us nothing
on this subject. It has only shown us that this caloric is developed in greater or less
quantity by the compression of the elastic fluids.
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Fig. 4.1 An air-filled vessel
fitted with a movable piston
is alternately isolated from,
and brought into contact with,
hot and cold reservoirs when
executing the four steps of a
Carnot cycle.—[K.K.]

This preliminary idea being established, let us imagine an elastic fluid, atmo-
spheric air for exampIe, shut up in a cylindrical vessel, abcd (Fig. 4.1), provided
with a movable diaphragm or piston, cd. Let there be also two bodies, A and B,
kept each at a constant temperature, that of A being higher than that of B. Let us
picture to ourselves now the series of operations which are to be described:

(1) Contact of the body A with the air enclosed in the space abcd or with the wall
of this space—a wall that we will suppose to transmit the caloric readily. The
air becomes by such contact of the same temperature as the body A; cd is the
actual position of the piston.

(2) The piston gradually rises and takes the position ef. The body A is all the time
in contact with the air, which is thus kept at a constant temperature during the
rarefaction. The body A furnishes the caloric necessary to keep the temperature
constant.

(3) The body A is removed, and the air is then no longer in contact with any body
capable of furnishing it with caloric. The piston meanwhile continues to move,
and passes from the position ef to the position gh. The air is rarefied without
receiving caloric, and its temperature falls. Let us imagine that it falls thus till it
becomes equal to that of the body B; at this instant the piston stops, remaining
at the position gh.



48 4 Carnot’s Cycle

(4) The air is placed in contact with the body B; it is compressed by the return of the
piston as it is moved from the position gh to the position cd. This air remains,
however, at a constant temperature because of its contact with the body B, to
which it yields its caloric.

(5) The body B is removed, and the compression of the air is continued, which
being then isolated, its temperature rises. The compression is continued till the
air acquires the temperature of the body A. The piston passes during this time
from the position cd to the position ik.

(6) The air is again placed in contact with the body A. The piston returns from the
position ik to the position ef ; the temperature remains unchanged.

(7) The step described under number 3 is renewed, then successively the steps 4, 5,
6, 3, 4, 5, 6, 3, 4, 5; and so on.

In these various operations the piston is subject to an effort of greater or less magni-
tude, exerted by the air enclosed in the cylinder; the elastic force of this air varies as
much by reason of the changes in volume as of changes of temperature. But it should
be remarked that with equal volumes, that is, for the similar positions of the piston,
the temperature is higher during the movements of dilatation than during the move-
ments of compression. During the former the elastic force of the air is found to be
greater, and consequently the quantity of motive power produced by the movements
of dilatation is more considerable than that consumed to produce the movements of
compression. Thus we should obtain an excess of motive power—an excess which
we could employ for any purpose whatever. The air, then, has served as a heat-
engine; we have, in fact, employed it in the most advantageous manner possible, for
no useless re-establishment of equilibrium has been effected in the caloric.

All the above-described operations may be executed in an inverse sense and
order. Let us imagine that, after the sixth period, that is to say the piston having
arrived at the position ef, we cause it to return to the position ik, and that at the same
time we keep the air in contact with the body A. The caloric furnished by this body
during the sixth period would return to its source, that is, to the body A, and the
conditions would then become precisely the same as they were at the end of the fifth
period. If now we take away the body A, and if we cause the piston to move from ef

to cd, the temperature of the air will diminish as many degrees as it increased during
the fifth period, and will become that of the body B. We may evidently continue a
series of operations the inverse of those already described. It is only necessary under
the same circumstances to execute for each period a movement of dilatation instead
of a movement of compression, and reciprocally.

The result of these first operations has been the production of a certain quantity
of motive power and the removal of caloric from the body A to the body B. The
result of the inverse operations is the consumption of the motive power produced
and the return of the caloric from the body B to the body A; so that these two series
of operations annul each other, after a fashion, one neutralizing the other.
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The impossibility of making the caloric produce a greater quantity of motive
power than that which we obtained from it by our first series of operations, is now
easily proved. It is demonstrated by reasoning very similar to that employed at page
38; the reasoning will here be even more exact. The air which we have used to
develop the motive power is restored at the end of each cycle of operations exactly
to the state in which it was at first found, while, as we have already remarked, this
would not be precisely the case with the vapor of water.1

We have chosen atmospheric air as the instrument which should develop the
motive power of heat, but it is evident that the reasoning would have been the same
for all other gaseous substances, and even for all other bodies susceptible of change
of temperature through successive contractions and dilatations, which comprehends
all natural substances, or at least all those which are adapted to realize the motive
power of heat. Thus we are led to establish this general proposition:

The motive power of heat is independent of the agents employed to realize it; its quantity is
fixed solely by the temperatures of the bodies between which is effected, finally, the transfer
of the caloric.

We must understand here that each of the methods of developing motive power
attains the perfection of which it is susceptible. This condition is found to be ful-
filled if, as we remarked above, there is produced in the body no other change of
temperature than that due to change of volume, or, what is the same thing in other
words, if there is no contact between bodies of sensibly different temperatures.

Different methods of realizing motive power may be taken, as in the employment
of different substances, or in the use of the same substance in two different states—
for example, of a gas at two different densities.

This leads us naturally to those interesting researches on the aeriform fluids—
researches which lead us also to new results in regard to the motive power of
heat, and give us the means of verifying, in some particular cases, the fundamental
proposition above stated.2

We readily see that our demonstration would have been simplified by supposing
the temperatures of the bodies A and B to differ very little. Then the movements
of the piston being slight during the periods 3 and 5, these periods might have been
suppressed without influencing sensibly the production of motive power. A very

1 We tacitly assume in our demonstration, that when a body has experienced any changes, and
when after a certain number of transformations it returns to precisely its original state, that is, to
that state considered in respect to density, to temperature, to mode of aggregation—let us suppose,
I say, that this body is found to contain the same quantity of heat that it contained at first, or
else that the quantities of heat absorbed or set free in these different transformations are exactly
compensated. This fact has never been called in question. It was first admitted without reflection,
and verified afterwards in many cases by experiments with the calorimeter. To deny it would be to
overthrow the whole theory of heat to which it serves as a basis. For the rest, we may say in passing,
the main principles on which the theory of heat rests require the most careful examination. Many
experimental facts appear almost inexplicable in the present state of this theory.
2 We will suppose, in what follows, the reader to be au courant with the later progress of modern
Physics in regard to gaseous substances and heat.
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little change of volume should suffice in fact to produce a very slight change of
temperature, and this slight change of volume may be neglected in presence of that
of the periods 4 and 6, of which the extent is unlimited.

If we suppress periods 3 and 5, in the series of operations above described, it is
reduced to the following:

(1) Contact of the gas confined in abcd (Fig. 4.1) with the body A, passage of the
piston from cd to ef.

(2) Removal of the body A, contact of the gas confined in abef with the body B,
return of the piston from ef to cd.

(3) Removal of the body B, contact of the gas with the body A, passage of the
piston from cd to ef, that is, repetition of the first period, and so on.

The motive power resulting from the ensemble of operations 1 and 2 will evidently
be the difference between that which is produced by the expansion of the gas while
it is at the temperature of the body A, and that which is consumed to compress this
gas while it is at the temperature of the body B.

Let us suppose that operations 1 and 2 be performed on two gases of differ-
ent chemical natures but under the same pressure—under atmospheric pressure, for
example. These two gases will behave exactly alike under the same circumstances,
that is, their expansive forces, originally equal, will remain always equal, whatever
may be the variations of volume and of temperature, provided these variations are
the same in both. This results obviously from the laws of Mariotte and MM. Gay-
Lussac and Dalton—laws common to all elastic fluids, and in virtue of which the
same relations exist for all these fluids between the volume, the expansive force, and
the temperature.

Since two different gases at the same temperature and under the same pressure
should behave alike under the same circumstances, if we subjected them both to
the operations above described, they should give rise to equal quantities of motive
power.

Now this implies, according to the fundamental proposition that we have estab-
lished, the employment of two equal quantities of caloric; that is, it implies that the
quantity of caloric transferred from the body A to the body B is the same, whichever
gas is used. The quantity of caloric transferred from the body A to the body B is
evidently that which is absorbed by the gas in its expansion of volume, or that which
this gas relinquishes during compression. We are led, then, to establish the following
proposition:

When a gas passes without change of temperature from one definite volume and pressure
to another volume and another pressure equally definite, the quantity of caloric absorbed
or relinquished is always the same, whatever may be the nature of the gas chosen as the
subject of the experiment.

Take, for example, 1 l of air at the temperature of 100◦ and under the pressure of
one atmosphere. If we double the volume of this air and wish to maintain it at the
temperature of 100◦, a certain quantity of heat must be supplied to it. Now this quan-
tity will be precisely the same if, instead of operating on the air, we operate upon
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carbonic-acid gas, upon nitrogen, upon hydrogen, upon vapor of water or of alcohol,
that is, if we double the volume of 1 liter of these gases taken at the temperature of
100◦ and under atmospheric pressure.

It will be the same thing in the inverse sense if, instead of doubling the volume
of gas, we reduce it one half by compression. The quantity of heat that the elastic
fluids set free or absorb in their changes of volume has never been measured by any
direct experiment, and doubtless such an experiment would be very difficult, but
there exists a datum which is very nearly its equivalent. This has been furnished by
the theory of sound. It deserves much confidence because of the exactness of the
conditions which have led to its establishment. It consists in this:

Atmospheric air should rise 1 ◦C when by sudden compression it experiences a
reduction of volume of 1

116 .3

Experiments on the velocity of sound having been made in air under the pressure
of 760 mm of mercury and at the temperature of 6◦, it is only to these two circum-
stances that our datum has reference. We will, however, for greater facility, refer it
to the temperature 0◦, which is nearly the same.

Air compressed 1
116 , and thus heated 1◦, differs from air heated directly 1◦ only

in its density. The primitive volume being supposed to be V, the compression of 1
116

reduces it to V − 1
116 V.

Direct heating under constant pressure should, according to the rule of M. Gay-
Lussac, increase the volume of air 1

267 above what it would be at 0◦: so the air is,
on the one hand, reduced to the volume V − 1

116 V; on the other, it is increased to
V + 1

267 V.
The difference between the quantities of heat which the air possesses in both

cases is evidently the quantity employed to raise it directly 1◦; so then the quantity
of heat that the air would absorb in passing from the volume V − 1

116V to the volume
V + 1

267V is equal to that which is required to raise it 1◦.
Let us suppose now that, instead of heating 1◦ the air subjected to a constant

pressure and able to dilate freely, we inclose it within an invariable space, and that in
this condition we cause it to rise 1◦ in temperature. The air thus heated 1◦ will differ
from the air compressed 1

116 only by its 1
116 greater volume. So then the quantity

of heat that the air would set free by a reduction of volume of 1
116 is equal to that

which would be required to raise it 1 ◦C under constant volume. As the differences
between the volumes V − 1

116 V, V, and V + 1
267V are small relatively to the volumes

themselves, we may regard the quantities of heat absorbed by the air in passing from
the first of these volumes to the second, and from the first to the third, as sensibly
proportional to the changes of volume. We are then led to the establishment of the
following relation:

3 M. Poisson, to whom this figure is due, has shown that it accords very well with the result of an
experiment of MM. Clement and Desormes on the return of air into a vacuum, or rather, into air
slightly rarefied. It also accords very nearly with results found by MM. Gay-Lussac and Welter.
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The quantity of heat necessary to raise 1◦ air under constant pressure is to the
quantity of heat necessary to raise 1◦ the same air under constant volume, in the
ratio of the numbers

1

116
+ 1

267
to

1

116
; (4.2)

or, multiplying both by 116 × 267, in the ratio of the numbers 267 + 116 to 267.
This, then, is the ratio which exists between the capacity of air for heat under

constant pressure and its capacity under constant volume. If the first of these two
capacities is expressed by unity, the other will be expressed by the number 267

267+116
or very nearly 0.700; their difference, 1 − 0.700 or 0.300, will evidently express
the quantity of heat which will produce the increase of volume in the air when it is
heated 1◦ under constant pressure.

According to the law of MM. Gay-Lussac and Dalton, this increase of volume
would be the same for all other gases; according to the theory demonstrated on page
87,4 the heat absorbed by these equal increases of volume is the same for all the
elastic fluids, which leads to the establishment of the following proposition:

The difference between specific heat under constant pressure and specific heat under
constant volume is the same for all gases.

It should be remarked here that all the gases are considered as taken under the
same pressure, atmospheric pressure for example, and that the specific heats are
also measured with reference to the volumes.

4.3 Study Questions

QUES. 4.1. What happens when a gaseous fluid is rapidly compressed? Can a com-
pressed gas be returned to its former temperature without it being dilated? If so,
how? Similarly, can a dilated gas be returned to its former temperature without it
being compressed?

QUES. 4.2. In what sense is Carnot’s cycle done “in the most advantageous manner
possible”?

a) Carefully describe the series of operations in Carnot’s heat-engine cycle. In
particular, in which stage(s) does the temperature remain constant? In which
stage(s) is caloric supplied or removed? Where does the caloric come from (or
go to)?

b) Is the temperature of the gas greater when the gas is expanding or when it is
contracting? Is the force exerted by the piston greater when the piston is moving
outwards or inwards?

4 Carnot refers here to a page number in his own Treatise—[K.K.]
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c) Is the work done by the gas during an expansion equal to the work done on the
gas during a compression? What does this imply?

d) After a complete Carnot cycle, is the gas in the same state as it was initially? Are
the hot and cold reservoirs in the same state(s)? Has any caloric flowed? If so, in
which direction?

e) What specific condition(s) must be met so as to render the Carnot cycle
reversible? How is this related to its efficiency?

QUES. 4.3. What happens if Carnot’s cycle is performed in reverse order? In partic-
ular, is more work done on the gas or by the gas during a complete cycle? And in
which direction does caloric flow?

QUES. 4.4. Does Carnot’s cycle require air (or any other particular substance, for
that matter) as the working substance? If not, then what (alone) determines the effi-
ciency of Carnot’s reversible engine cycle? Has Carnot proved this proposition?
What assertion does Carnot make regarding the nature of the gases employed in a
Carnot cycle?

QUES. 4.5. What is the relationship between the specific heat capacities of a gas
when measured at a constant pressure and when measured at a constant volume?
How does Carnot calculate this number empirically? Does it matter what kind of
gas is employed?

4.4 Exercises

EX. 4.1 (ADIABATIC COMPRESSION OF AN IDEAL GAS). When a gaseous substance
is compressed, its temperature rises. If the compression is sufficiently rapid, then it
does not have time to exchange heat (or caloric) with its surroundings—the com-
pression is said to be done adiabatically. For example, when a volume of air is
adiabatically compressed by a factor of 1/116, its temperature is found to rise by
1 ◦C. Of course since the temperature of this rapidly compressed gas is elevated
above that of its surroundings, heat will eventually flow out of the gas unless it is
perfectly insulated from its surroundings. But to the extent that a substance is per-
fectly thermally isolated form its surroundings, all processes which it undergoes are
adiabatic processes. During an adiabatic expansion (or compression) of an ideal gas,
the pressure and volume are related by

PV γ = constant, (4.3)

where γ = cp/cv is the ratio of the heat capacities of the ideal gas when measured
at constant pressure and at constant volume, respectively. Similarly, during an adi-
abatic expansion (or compression) of an ideal gas, the volume and temperature are
related by

T V γ−1 = constant, (4.4)
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According to Carnot, the value of γ is measured to be (267 + 116)/267. According
to more recent theoretical considerations, γ = 7/5 (or 5/3) for any diatomic (or
monatomic) ideal gas.

As an exercise, consider air confined in a 1-liter chamber at 397 K and having
a pressure of 144 psi. (a) Compare the slopes, dP/dV , of the adiabatic (Eq. 4.3)
and isothermal (Eq. 3.2) curves under these conditions. Which is greater? Is this
always the case? (b) If the air is allowed to expand isothermally from 1.0 to 1.5 l,
what will be its final pressure and temperature? What if this process is carried out
adiabatically?

EX. 4.2 (CARNOT CYCLE). Suppose that air is shut up in a 1-liter cylindrical vessel
provided with a movable diaphragm piston (see Fig. 4.1). Its initial temperature and
pressure are 397 K and 144 psi, respectively. The air is made to undergo a Carnot
cycle, which consists of four steps. First, it undergoes an isothermal expansion at
397 K (the temperature of reservoir A) until it reaches a volume of 1.5 l. Second, it
is removed from reservoir A and is allowed to expand adiabatically until it reaches
a temperature of 300 K (the temperature of reservoir B). Third, it is brought into
contact with reservoir B and is isothermally compressed. Finally, it is removed from
reservoir B and is adiabatically compressed until it returns to its initial state.

a) What is the pressure, volume and temperature of the air (taken as a diatomic
ideal gas) at the beginning (and end) of each step comprising this carnot cycle?
(HINT: Use Eqs. 4.3 and 4.4.) How many moles of gas are in this cylinder?

b) How much work is done by (or on) the gas during each of the isothermal steps?
Where (according to Carnot) does the heat drawn in from the hot reservoir end
up?

c) If this engine were run backwards, then how much work would be done on the
gas during each of the isothermal steps? Where (according to Carnot) would the
heat drawn in from the cold reservoir end up?

d) While maintaining the hot and cold reservoirs at the same temperatures, can
any other working substance be employed so as to construct a higher-efficiency-
engine than the one just constructed? Justify your answer.

4.5 Vocabulary

1. Enunciate
2. Dilate
3. Appertain
4. Diaphragm
5. Dilation
6. Aeriform
7. Au courant
8. Datum



Chapter 5
Engines as Thermometers

This may justly be termed an absolute scale, since its
characteristic is quite independent of the physical properties of
any specific substance.

—William Thomson (Lord Kelvin)

5.1 Introduction

William Thomson (1824–1907)—later known as Lord Kelvin—was born in Belfast,
Northern Ireland.1 His father, James Thomson, educated his sons at home in both
classical languages and modern subjects. At the age of 10, Kelvin began to attend
classes at the University of Glasgow, where his father was a Professor of Math-
ematics. Alongside his studies of Roman antiquities, astronomy, logic, and moral
and natural philosophy, Kelvin acquired an abiding interest in the analytical tech-
niques of French mathematicians such as Laplace, Lagrange and Fourier. After
reading Fourier’s La Théorie Analytique de la Chaleur on a family trip to Germany
in 1840, Kelvin wrote his first original paper entitled “On Fourier’s Expansion of
Functions in Trigonometric Series.”2 In fact, many of Kelvin’s initial publications
were inspired by Fourier’s Analytical Theory of Heat.3 In 1841, at the age of 17,
Kelvin left Glasgow to attend St. Peter’s College, Cambridge. As an undergradu-
ate, he published 16 mathematical and physical papers. Among these was one in
which he proposed the now-famous method of electric images for determining the
electric field in the vicinity of a charged body situated near a conducting surface.
He graduated in 1845, and in 1846 the faculty of his former University of Glasgow
unanimously elected him to the post of Professor of Natural Philosophy. The essay

1 Much of the biographical information on Lord Kelvin was obtained from Gray, A., Lord Kelvin:
An Account of His Scientific Life and Work, J.M. Dent & Co. and E.P. Dutton & Co., London and
New York, 1908.
2 Cambridge Mathematical Journal, vol. ii, May 1841.
3 Selections from Fourier’s Analytical Theory of Heat are included in Chaps. 1–2 of the present
volume.
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which he was assigned to submit (as a formal requirement for induction to this post)
proposed a limit to the age of the earth based on its present temperature. Kelvin
quickly set to work establishing a physical laboratory at Glasgow—the first of its
kind in Britain—and he remained in his post at the University for over half a cen-
tury. In 1892, Kelvin received the title Baron Kelvin of Largs, after the river Kelvin
which flowed near the University. He was buried just south of the grave of Sir Isaac
Newton in Westminster Abbey.

Like many natural philosophers of his day, Kelvin’s scientific interests were
broad, encompassing mathematics, astronomy, thermodynamics, hydrodynamics,
electrodynamics and terrestrial dynamics. He served as a key scientific advisor in
the successful deployment of an Atlantic telegraph cable between Ireland and New-
foundland, for which he was knighted by Queen Victoria in 1866.4 In 1872, he
designed and built an ocean-tide predicting machine which was essentially an analog
computer consisting of carefully arranged pulleys, cranks and rotating cylinders.5

Kelvin’s vortex theory of the atom, which treated the atom as a tiny smoke-ring-like
structure arising within an all-pervasive æthereal medium, once enjoyed popular
support among leading scientists.6 Kelvin’s vortex theory of the atom is now seen
as a mere curiosity, albeit one whose ideas bear a curious resemblance to recent
theories which treat fundamental particles as extended loop-like structures.

Today, Kelvin is best known for his work on the development of an absolute
temperature scale whose units bear his name. What is the difference between an
absolute and a practical temperature scale? Practical temperature scales, such as the
one developed in 1742 by Swedish astronomer Anders Celsius, are defined in terms
of the physical properties of a particular substance, such as the melting and vaporiza-
tion points of water. Is it possible to conceive of a temperature scale which in no way
references the particular properties of any substance? Kelvin said yes. Inspired by
the work of Sadi Carnot,7 Kelvin recognized how the principles of operation of heat
engines—in particular the efficiency of the idealized Carnot cycle—might be used
to define a temperature scale which is independent of the properties of any particu-
lar substance. His ideas were originally published in 1848 in the June 5 Cambridge
Philosophical Society Proceedings and also in the October Philosophical Maga-
zine. The following reading selection is from an edited version of this paper which
was republished by Kelvin in 1881 in his collection of Mathematical and Physical
Papers.

4 See, for example, Bart, D., and J. Bart, Sir William Thomson, on the 150th Anniversary of the
Atlantic Cable, Antique Wireless Association Review, 21, 2008.
5 See “The Tides”, Kelvin’s Evening Lecture to the British Association at the Southampton
Meeting, Friday, August 25th, 1882, contained in Eliot, C. W. (Ed.), Scientific Papers: Physics,
Chemistry, Astronomy, Geology, vol. 30, P.F. Collier & Son, New York, 1910.
6 Albert Michelson, America’s first nobel-prize winning scientist, enthusiastically endorsed
Kelvin’s vortex theory of the atom when explaining his famous speed-of-light measurements in
his book Light Waves and their Uses; see Chap. 34 of volume III of the present work.
7 Dover Publications has reprinted Carnot, S., Reflections on the Motive Power of Heat, second
ed., John Wiley & Sons and Chapman & Hall, New York and London, 1897.
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5.2 Reading: Kelvin, On an Absolute Thermometric Scale
Founded on Carnot’s Theory of the Motive Power of Heat,
and Calculated from Regnault’s Observations

Thomson, S. W., Mathematical and Physical Papers, Cambridge University Press,
1882. Art. XXXIX, pages 100–106.8,9

The determination of temperature has long been recognized as a problem of the
greatest importance in physical science. It has accordingly been made a subject of
most careful attention, and, especially in late years, of very elaborate and refined
experimental researches;10 and we are thus at present in possession of as complete
a practical solution of the problem as can be desired, even for the most accurate
investigations. The theory of thermometry is however as yet far from being in so sat-
isfactory a state. The principle to be followed in constructing a thermometric scale
might, at first sight seem to be obvious, as it might appear that a perfect thermome-
ter would indicate equal additions of heat, as corresponding to equal elevations of
temperature, estimated by the numbered divisions of its scale. It is however now
recognized (from the variations in the specific heats of bodies) as an experimentally
demonstrated fact that thermometry under this condition is impossible, and we are
left without any principle on which to found an absolute thermometric scale.

Next in importance to the primary establishment of an absolute scale, inde-
pendently of the properties of any particular kind of matter, is the fixing upon
an arbitrary system of thermometry, according to which results of observations
made by different experimenters, in various positions and circumstances, may be
exactly compared. This object is very fully attained by means of thermometers con-
structed and graduated according to the clearly defined methods adopted by the best
instrument-makers of the present day, when the rigorous experimental processes
which have been indicated, especially by Regnault, for interpreting their indications
in a comparable way, are followed. The particular kind of thermometer which is

8 Published in 1824 in a work entitled Réflections sur la Puissance Motrice du Feu, by M.S. Carnot.
Having never met with the original work, it is only through a paper by M. Clapeyron, on the
same subject, published in the Journal de l’École Polytechnique, Vol. XIV, 1834, and translated
in the first volume of Taylor’s Scientific Memoirs, that the Author has become acquainted with
Carnot’s Theory.—W.T. [Note of Nov. 5th, 1881. A few months later through the kindness of
my late colleague Prof. Lewis Gordon, I received a copy of Carnot’s original work and was thus
enabled to give to the Royal Society of Edinburgh my “Account of Carnot’s theory” which is
reprinted as Art. XLI. below. The original work has since been republished, with a biographical
notice, Paris, 1878.].
9 An account of the first part of a series of researches undertaken by M. Regnault by order of the
French Government, for ascertaining the various physical data of importance in the Theory of the
Steam Engine, is just published in the Mémpires de l’Institut, of which it constitutes the twenty-
first volume (1847). The second part of the researches has not yet been published. [Note of Nov. 5,
1881. The continuation of these researches has now been published: thus we have for the whole
series, Vol. I. in 1847; Vol II. in 1862; and Vol. III. in 1870.].
10 A very important section of Regnault’s work is devoted to this object.
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least liable to uncertain variations of any kind is that founded on the expansion of
air, and this is therefore generally adopted as the standard for the comparison of
thermometers of all constructions. Hence the scale which is at present employed
for estimating temperature is that of the air-thermometer; and in accurate researches
care is always taken to reduce to this scale the indications of the instrument actually
used, whatever may be its specific construction and graduation.

The principle according to which the scale of the air-thermometer is graduated
is simply that equal absolute expansions of the mass of air or gas in the instrument,
under a constant pressure, shall indicate equal differences of the numbers on the
scale; the length of a “degree” being determined by allowing a given number for the
interval between the freezing- and the boiling-points. Now it is found by Regnault
that various thermometers, constructed with air under different pressures, or with
different gases, give indications which coincide so closely, that, unless when certain
gases, such as sulphurous acid, which approach the physical condition of vapours at
saturation, are made use of, the variations are inappreciable.11 This remarkable cir-
cumstance enhances very much the practical value of the air-thermometer; but still
a rigorous standard can only be defined by fixing upon a certain gas at a determinate
pressure, as the thermometric substance. Although we have thus a strict principle
for constructing a definite system for the estimation of temperature, yet as reference
is essentially made to a specific body as the standard thermometric substance, we
cannot consider that we have arrived at an absolute scale, and we can only regard,
in strictness, the scale actually adopted as an arbitrary series of numbered points of
reference sufficiently close for the requirements of practical thermometry.

In the present state of physical science, therefore, a question of extreme inter-
est arises: Is there any principle on which an absolute thermometric scale can be
founded? It appears to me that Carnot’s theory of the motive power of heat enables
us to give an affirmative answer.

The relation between motive power and heat, as established by Carnot, is such
that quantities of heat, and intervals of temperature, are involved as the sole ele-
ments in the expression for the amount of mechanical effect to be obtained through
the agency of heat; and since we have, independently, a definite system for the mea-
surement of quantities of heat, we are thus furnished with a measure for intervals
according to which absolute differences of temperature may be estimated. To make
this intelligible, a few words in explanation of Carnot’s theory must be given; but
for a full account of this most valuable contribution to physical science, the reader
is referred to either of the works mentioned above (the original treatise by Carnot,
and Clapeyron’s paper on the same subject.)

11 Regnault, Relation des Expériences, &c., Fourth Memoir, First Part. The differences, it is
remarked by Regnault, would be much more sensible if the graduation were effected on the suppo-
sition that the coefficients of expansion of the different gases are equal, instead of being founded
on the principle laid down in the text, according to which the freezing-and boiling-points are
experimentally determined for each thermometer.
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In the present state of science no operation is known by which heat can be
absorbed, without either elevating the temperature of matter, or becoming latent
and producing some alteration in the physical condition of the body into which it is
absorbed; and the conversion of heat (or caloric) into mechanical effect is probably
impossible,12 certainly undiscovered. In actual engines for obtaining mechanical
effect through the agency of heat, we must consequently look for the source of
power, not in any absorption and conversion, but merely in a transmission of heat.
Now Carnot, starting from universally acknowledged physical principles, demon-
strates that it is by the letting down of heat from a hot body to a cold body,
through the medium of an engine (a steam-engine, or an air-engine for instance), that
mechanical effect is to be obtained; and conversely, he proves that the same amount
of heat may, by the expenditure of an equal amount of labouring force, be raised
from the cold to the hot body (the engine being in this case worked backwards);
just as mechanical effect may be obtained by the descent of water let down by a
water-wheel, and by spending labouring force in turning the wheel backwards, or in
working a pump, water may be elevated to a higher level. The amount of mechan-
ical effect to be obtained by the transmission of a given quantity of heat, through
the medium of any kind of engine in which the economy is perfect, will depend, as
Carnot demonstrates, not on the specific nature of the substance employed as the
medium of transmission of heat in the engine, but solely on the interval between the
temperature of the two bodies between which the heat is transferred.

Carnot examines in detail the ideal construction of an air-engine and of a steam-
engine, in which, besides the condition of perfect economy being satisfied, the
machine is so arranged, that at the close of a complete operation the substance (air
in one case and water in the other) employed is restored to precisely the same physi-
cal condition as at the commencement. He thus shews on what elements, capable of
experimental determination, either with reference to air, or with reference to a liquid
and its vapour, the absolute amount of mechanical effect due to the transmission of
a unit of heat from a hot body to a cold body, through any given interval of the ther-
mometric scale, may be ascertained. In M. Clapeyron’s paper various experimental
data, confessedly very imperfect, are brought forward, and the amounts of mechani-
cal effect due to a unit of heat descending a degree of the air-thermometer, in various
parts of the scale, are calculated from them, according to Carnot’s expressions. The
results so obtained indicate very decidedly, that what we may with much propriety
call the value of a degree (estimated by the mechanical effect to be obtained from

12 This opinion seems to be nearly universally held by those who have written on the subject. A
contrary opinion however has been advocated by Mr Joule of Manchester; some very remarkable
discoveries which he has made with reference to the generation of heat by the friction of fluids
in motion, and some known experiments with magneto-electric machines, seeming to indicate an
actual conversion of mechanical effect into caloric. No experiment however is adduced in which
the converse operation is exhibited; but it must be confessed that as yet much is involved in mystery
with reference to these fundamental questions of natural philosophy.
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the descent of a unit of heat through it) of the air-thermometer depends on the part
of the scale in which it is taken, being less for high than for low temperatures.13

The characteristic property of the scale which I now propose is, that all degrees
have the same value; that is, that a unit of heat descending from a body A at the
temperature T ◦ of this scale, to a body B at the temperature (T − 1)◦, would give
out the same mechanical effect, whatever be the number T . This may justly be
termed an absolute scale, since its characteristic is quite independent of the physical
properties of any specific substance.

To compare this scale with that of the air-thermometer, the values (according
to the principle of estimation stated above) of degrees of the air-thermometer must
be known. Now an expression, obtained by Carnot from the consideration of his
ideal steam-engine, enables us to calculate these values, when the latent heat of a
given volume and the pressure of saturated vapour at any temperature are exper-
imentally determined. The determination of these elements is the principal object
of Regnault’s great work, already referred to, but at present his researches are not
complete. In the first part, which alone has been as yet published, the latent heats of
a given weight, and the pressures of saturated vapour, at all temperatures between
0 and 230◦ (Cent. of the air-thermometer), have been ascertained; but it would be
necessary in addition to know the densities of saturated vapour at different tempera-
tures, to enable us to determine the latent heat of a given volume at any temperature.
M. Regnault announces his intention of instituting researches for this object; but
till the results are made known, we have no way of completing the data necessary
for the present problem, except by estimating the density of saturated vapour at
any temperature (the corresponding pressure being known by Regnault’s researches
already published) according to the approximate laws of compressibility and expan-
sion (the laws of Mariotte and Gay-Lussac, or Boyle and Dalton). Within the limits
of natural temperature in ordinary climates, the density of saturated vapour is actu-
ally found by Regnault (Études Hygrométriques in the Annales de Chimie) to verify
very closely these laws; and we have reason to believe from experiments which
have been made by Gay-Lussac and others, that as high as the temperature 100◦
there can be no considerable deviation; but our estimate of the density of saturated
vapour, founded on these laws, may be very erroneous at such high temperatures as
230◦. Hence a completely satisfactory calculation of the proposed scale cannot be
made till after the additional experimental data shall have been obtained; but with
the data which we actually possess, we may make an approximate comparison of
the new scale with that of the air-thermometer, which at least between 0 and 100◦
will be tolerably satisfactory.

13 This is what we might anticipate, when we reflect that infinite cold must correspond to a finite
number of degrees of the air-thermometer below zero; since, if we push the strict principle of
graduation, stated above, sufficiently far, we should arrive at a point corresponding to the volume
of air being reduced to nothing, which would be marked as −273◦ of the scale (−100/0.366, if
0.366 be the coefficient of expansion); and therefore −273◦ of the air-thermometer is a point which
cannot be reached at any finite temperature, however low.
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The labour of performing the necessary calculations for effecting a comparison of
the proposed scale with that of the air-thermometer, between the limits 0 and 230◦ of
the latter, has been kindly undertaken by Mr William Steele, lately of Glasgow Col-
lege, now of St Peter’s College, Cambridge. His results in tabulated forms were laid
before the Society, with a diagram, in which the comparison between the two scales
is represented graphically. In the first table,14 the amounts of mechanical effect due
to the descent of a unit of heat through the successive degrees of the air-thermometer
are exhibited. The unit of heat adopted is the quantity necessary to elevate the tem-
perature of a kilogramme of water from 0 to 1◦ of the air-thermometer; and the unit
of mechanical effect is a metre-kilogramme; that is, a kilogramme raised a metre
high.

In the second table, the temperatures according to the proposed scale, which cor-
respond to the different degrees of the air-thermometer from 0 to 230◦, are exhibited.
[The arbitrary points which coincide on the two scales are 0 and 100◦].

Note.—If we add together the first hundred numbers given in the first table, we
find 135.7 for the amount of work due to a unit of heat descending from a body
A at 100◦ to B at 0◦. Now 79 such units of heat would, according to Dr Black
(his result being very slightly corrected by Regnault), melt a kilogramme of ice.
Hence if the heat necessary to melt a pound of ice be now taken as unity, and if a
metre-pound be taken as the unit of mechanical effect, the amount of work to be
obtained by the descent of a unit of heat from 100 to 0◦ is 79 × 135.7, or 10,700
nearly. This is the same as 35,100 ft lb, which is a little more than the work of a
one-horse-power engine (33,000 ft lb) in a minute; and consequently, if we had a
steam-engine working with perfect economy at one-horse-power, the boiler being
at the temperature 100◦, and the condenser kept at 0◦ by a constant supply of ice,
rather less than a pound of ice would be melted in a minute.

[Note of Nov. 4, 1881. This paper was wholly founded on Carnot’s uncorrected the-
ory, according to which the quantity of heat taken in in the hot pan of the engine, (the
boiler of the steam engine for instance), was supposed to be equal to that abstracted
from the cold part (the condenser of the steam engine), in a complete period of
the regular action of the engine, when every varying temperature, in every part of
the apparatus, has become strictly periodic. The reconciliation of Carnot’s theory
with what is now known to be the true nature of heat is fully described in Article
XLVIII. below; and in §§24–41 of that article, are shewn in detail the consequently
required corrections of the thermodynamic estimates of the present article.15 These
corrections however do not in any way affect the absolute scale for thermometry
which forms the subject of the present article. Its relation to the practically more
convenient scale (agreeing with air thermometers nearly enough for most purposes,

14 [Note of Nov. 4, 1881. This table (reduced from metres to feet) was repeated in my “Account of
Carnot’s Theory of the Motive power of Heat,” republished as Article XLI. below, in §38 of which
it will be found.].
15 check this KKK.
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throughout the range from the lowest temperatures hitherto measured, to the highest
that can exist so far as we know) which I gave subsequently, Dynamical Theory of
Heat (Art. XLVIII, below), Part VI., §§99, 100; Trans. R. S. E., May, 1854: and Arti-
cle ‘Heat,’ §§35–38, 47–67, Encyclopædis Britannica, is shewn in the following
formula:

θ = 100
log t − log 273

log 373 − log 273
,

where θ and t are the reckonings of one and the same temperature, according to my
first and according to my second thermodynamic absolute scale.]

5.3 Study Questions

QUES. 5.1. What is the difference between a practical and an absolute temperature
scale?

a) What problem arises from defining temperature using the heat capacity of a
particular substance?

b) At the time of Kelvin, what type of thermometer served as a standard against
which all other thermometers were compared? Why was this? On what physical
property of air was this thermometer based? Do different gases yield different
results?

c) In what sense was this thermometer a practical, as opposed to an absolute, tem-
perature scale? What interesting questions does this temperature scale raise? And
wherein does Kelvin seek the answer to this question?

d) According to Carnot’s theory, what two elements completely determine the
amount of mechanical work done by a (reversible) heat engine? What does this
imply?

QUES. 5.2. How can an absolute temperature scale be created?

a) What are the two known effects of adding heat to a substance? What was the
common opinion regarding caloric (the substance of heat)? In particular, is it a
conserved quantity?

b) How, then do engines accomplish mechanical work? What analogy does Kelvin
(and Carnot) employ to illustrate this process? Can mechanical work, in turn,
pump heat from a cold to a hot reservoir?

c) For an engine whose economy (or efficiency) is perfect, what determines the
relationship between heat flow and mechanical work? Does it depend upon the
particular substance of the engine? What does this imply?

d) Are degrees of the air-thermometer all of the same size? By what standard is the
size of a degree to be measured? What if one uses the amount of heat absorbed
by a particular substance in order to change by 1◦? What if one uses the amount
of work done by a Carnot engine when heat falls, so to speak, through 1◦?

e) How does Kelvin define his own temperature scale? In what sense is his an
absolute scale?
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5.4 Exercises

EX. 5.1 (CONSTANT PRESSURE AIR THERMOMETRY). Galileo is said to have invented
the first air thermometer consisting of a glass bulb with a long neck open at the
bottom. The air was heated and the bottom of the neck was dipped into an open
pool of colored liquid. When the heat source was removed and the air subsequently
cooled, some of the liquid from the pool was drawn up into the neck. The level of the
liquid in the neck thereafter provided a measure of the temperature of the air residing
in the bulb.16 As an exercise, suppose that the neck of such an air thermometer
(whose inner diameter is 1 mm) is dipped into a pool of colored liquid. The bulb
itself holds 0.2 cubic centimeters of air and is initially in thermal equilibrium with
boiling water. Assume that air obeys Charles’ law (see Eq. 3.1), and that a unit of
volume of air expands to 1.3665 units when raised from 0 to 100 ◦C—as discovered
by Regnault.

(a) By how much does the liquid rise when the bulb is brought into thermal equi-
librium with ice water? After such a calibration procedure, what is the spacing
of 1◦ marks on the neck of the air thermometer?

(b) Theoretically, by how many degrees would the bulb need to be cooled in order
to reduce its volume to zero? Does the air thermometer then provide a practical
or an absolute temperature scale? In particular, does the scale thus constructed
depend on the particular physical properties of the gas employed?

EX. 5.2 (CONSTANT VOLUME GAS THERMOMETRY LABORATORY). By measuring the
pressure of a fixed volume of gas at several temperatures on a practical temperature
scale, one can estimate the lowest attainable temperature on that scale. To do so,
record the pressure of a gas-filled bulb17 submerged in (i) boiling water, (ii) ice
water, (iii) a methanol-dry ice slurry, and (iv) liquid nitrogen. To avoid an explosion,
be sure not to over-pressurize your bulb; use a valve if necessary to equalize the gas
pressure with atmospheric pressure when inserting the bulb into boiling water. Then
seal the valve and proceed to acquire low-temperature data. Next, make a plot of the
gas pressure as a function of temperature (in Celsius). Does the gas obey Boyle’s
law? Fit a curve to your data and extrapolate to zero pressure; at what value would
zero gas pressure occur on your temperature scale? Does gas thermometry thereby
provide an absolute temperature scale?

EX. 5.3 (WATER-WHEELS, HEAT-ENGINES AND ABSOLUTE TEMPERATURE SCALES).
Carnot compared the work done by a heat-engine to the work done by falling water.
In this exercise we will explore this analogy and how Kelvin used it to conceive

16 Unfortunately, such an air thermometer is of limited utility, since the level of the liquid depends
not only on the temperature of the air in the bulb, but also on the local atmospheric pressure
which presses down on the surface of the liquid pool. Thus, it must be used in conjunction with a
barometer so to compensate for varying atmospheric pressures.
17 For these laboratory experiments, you might consider the Absolute Zero Demonstration
apparatus (Model #WLS1828-89), available form Sargent Welch, Chicago, IL.
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of an absolute temperature scale. When a water-wheel is placed beneath a waterfall
it is able to accomplish work. For instance, it can raise a stone attached to a rope
wound around the axle of the water-wheel. More specifically, when a mass (m) of
water descends, the water-wheel can accomplish an amount of work (W ) given by

W = mg(h2 − h1). (5.1)

Here g is the local gravitational acceleration and the quantity in parentheses repre-
sents the distance the water descends. The work accomplished by one waterwheel
could, in turn, be expended so as to drive a second water-wheel backwards, raising
a mass of water back up. The most efficient water wheel would be one having no
internal friction in its gears. Such a reversible water-wheel, when driven by a falling
mass of water, would be able to drive a second reversible water wheel backwards in
such a way as to raise an identical mass of water back to the same height. If a water-
wheel could be constructed which was (somehow) more efficient than a reversible
water-wheel, then it could be driven in such a way as to lift a larger quantity of water
than the quantity which drove it in the first place, and this would violate the principe
of conservation of energy.18

Similarly, Carnot supposed that a heat-engine is able to accomplish work when
a portion of caloric falls, so to speak, through a temperature difference.19 Generally
speaking, the work accomplished depends on the construction of the particular heat-
engine. But for a reversible heat-engine—one in which there is no useless flow of
heat—the work accomplished depends only on the quantity of heat, Q, which drives
the engine and the temperature difference through which it descends:

W = Q(Th − Tc). (5.2)

This law follows from the assumption that the flow of caloric—a universal substance
identified with heat—drives all heat-engines. The particular working substance of
the heat-engine (e.g. steam or alcohol) merely serves to convey the caloric from the
high temperature to the low temperature reservoir. Just as water is neither created
nor destroyed by the waterfall, so also caloric is neither created nor destroyed by the
engine. According to this caloric theory of heat, one unit of absolute temperature
can now be defined in terms of the efficiency of a reversible heat-engine:

ηrev = Th − Tc. (5.3)

Equation 5.3 follows from Eq. 5.2 and the definition of a heat-engine’s efficiency
(Eq. 4.1). Notice that the efficiency of a reversible heat-engine is the same over

18 Herman von Helmholtz discusses water-wheels, work and the conservation of energy in his
famous lecture entitled On the Conservation of Force; this lecture can be found in Chaps. 9–11 of
Volume III.
19 This is discussed in Carnot, S., Reflections on the Motive Power of Heat, second ed., John Wiley
& Sons and Chapman & Hall, New York and London, 1897; see Chap. 3 of the present volume.
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the entire temperature scale defined in this way, provided it is operated between
two reservoirs whose temperatures differ by the same amount, for example 1◦ of
absolute temperature. This was Kelvin’s original method of establishing an absolute
temperature scale.

But what if, as suggested by Joule (and later conceded by Kelvin), heat is not
an indestructible substance? What if it is consumed by a heat-engine in the act of
performing work? According to this mechanical theory of heat, the amount of heat
drawn in from the hot reservoir in one cycle of the engine, Qh, and the amount of
heat ejected to the cold reservoir during the same cycle, Qc, differ by exactly the
amount of work done by the engine during a cycle, W .

a) Assuming the mechanical theory of heat to be true, show that the efficiency of a
heat-engine may now be expressed as

η = 1 − Qc

Qh
. (5.4)

Notice that Eq. 5.4 is the efficiency of all heat-engines, not just reversible heat-
engines.

b) For a reversible heat-engine, Eq. 5.4 must be capable of being expressed as a
function of the temperatures of the hot and cold reservoirs alone (as opposed to
the physical properties of any particular working substance, such as steam). In
other words

Qc

Qh
= f (Th, Tc) (5.5)

To determine the functional form of f (Th, Tc), consider two identical reversible
heat-engines arranged between three reservoirs maintained at temperatures Th,
Tm, and Tc, as depicted schematically in Fig. 5.1. Heat Qh from the hot reservoir
enters the first heat-engine, which does work W1 and ejects heat Qm into the
middle reservoir. The second engine is adjusted so that it draws heat Qm from
the middle reservoir, does work W2 and ejects heat Qc into the cold reservoir.
Now show that the function f (Th, Tc) must satisfy the condition

f (Th, Tc) = f (Th, Tm) · f (Tm, Tc). (5.6)

Next, show that Eq. 5.6 is true only if f (Th, Tc) takes the form

f (Th, Tc) =
(

Tc

Th

)n

(5.7)

where n is some number. Finally, show that the efficiency of a reversible heat-
engine can thus be expressed as

ηrev = 1 −
(

Tc

Th

)n

(5.8)



66 5 Engines as Thermometers

Fig. 5.1 Two reversible heat
engines arranged so that the
cold reservoir of the first
serves as the hot reservoir of
the second Qh

Qm

Qm

Qc

W1

Th

Tm

Tc

W2

Like our previous Eq. 5.3, Eq. 5.8 may be used to establish an absolute temperature
scale. Suppose that a reversible heat-engine draws heat from a reservoir maintained
at the temperature of boiling water and ejects heat into a reservoir maintained at the
temperature of ice water. Suppose that, experimentally, this reversible heat-engine
is found to absorb one Joule of heat from the hot reservoir and to accomplish 0.268
Joules of work during a single cycle.

c) How much heat flows into the cold reservoir during one cycle of this heat-
engine? And what is the efficiency of this engine operating between these two
temperatures? (ANSWER: 26.8 %)

d) Suppose we wish to establish a temperature scale having just 10◦ between the
boiling and freezing points of ice. (Arbitrarily) choose n = 1 and use Eq. 5.8 to
determine the absolute temperatures of the hot and cold reservoirs on this scale.
What are they? What if we instead chose n = 2?

e) Are either of these two absolute temperature scales equivalent to the Kelvin tem-
perature scale in use today? If not, how would you modify either of these to
produce Kelvin’s scale?
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f) According to Eq. 5.8, is the efficiency of a reversible heat-engine the same over
the entire absolute temperature scale, provided it is operating between two reser-
voirs whose temperatures differ by the same amount (e.g. between 150◦ and
100◦, or between 100◦ and 50◦)?

g) Finally, how might you design a reversible heat-engine so as to maximize its effi-
ciency? Might this explain why diesel fuel engines are generally more efficient
than gasoline engines?

5.5 Vocabulary

1. Saturated
2. Conversely
3. Condenser
4. Periodic



Chapter 6
The Second Law of Thermodynamics

The algebraic sum of all the transformations occurring in a
cyclical process can only be positive, or, as an extreme case,
equal to nothing.

—Rudolph Clausius

6.1 Introduction

Rudolph Clausius (1822–1888) was one of seventeen children born to a Pastor in
Köslin, Pomerania, which was then a province in the Kingdom of Prussia. As a
boy he attended the Gymnasium founded by his father at Stettin, from which he
graduated in 1840. He enrolled at the Frederic Wilhelm University of Berlin, where
he was attracted to history, physics and mathematics. After graduating in 1844, he
taught courses in mathematics and physics at the Frederic-Werder Gymnasium for
a year. In 1848, he earned his doctorate from the University of Halle for his work
on the refraction of sunlight by Earth’s atmosphere. He went on to serve as a Pro-
fessor at the Swiss Federal Institute of Technology, at the University of Züric, at
the University of Würzburg, and finally at the University of Bonn. During the time
of the Franco-Prussian war, Clausius organized an ambulance corps comprised of
university students; he was wounded in battle and was awarded the Iron Cross.

Clausius was one of the principle architects of the science of thermodynamics.
In 1850 he published a groundbreaking paper entitled On the Moving Force of Heat
and the Laws of Heat which May Be Deduced Therefrom. In this paper he criticized
the caloric theory of heat—upon which Carnot’s work had been founded—on the
grounds that it violated the first law of thermodynamics. Heat, Clausius argued,
was not an indestructible substance, but rather a form of energy which could be
transformed into work, and vice versa. The conversion of mechanical work into
heat (via friction) had been explored as early as 1798 by Count Rumford while
boring canons, and more recently by Julius Mayer and James Joule in the 1840s.
Indeed, when proposing his general principle of the conservation of energy in 1847,
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Fig. 6.1 An engraving of James Joule’s method for measuring the mechanical equivalent of heat,
from Harper’s New Monthly Magazine, No. 231, August, 1869. A thermometer measures the
heating of water when stirred by rotating paddles which are driven by a falling weight

Hermann Helmholtz recounts the careful experiments of Joule, who had measured
the heating of a bath of water stirred by a descending weight (see Fig. 6.1).1

By 1854, Clausius had expanded these ideas into what is today known as the
second law of thermodynamics. In so doing, he provided the first mathematical def-
inition of entropy, a term which he himself coined. In addition, Clausius’ study of
phase transitions led to what is now known as the Clausius-Clapeyron equation.2

And his work on the kinetic theory of gasses led him to develop a mathematical for-
mula for the mean free path—the average distance which a particle travels within
a gas before striking a neighboring particle. The reading selection included in this
chapter is from an 1867 collection of Clausius’ memoirs translated into English by
T. Archer Hirst. It was originally published in Poggendorff’s Annalen in May 1862,
as well as in the Philosophical Magazine and the Journal des Mathématiques of
Paris.

1 Helmholtz’s famous essay entitled On the Conservation of Force can be found in Chaps. 9–11 of
volume III.
2 The Clausius-Clapeyron equation relates the latent heat developed during a first-order phase
transition to the slope of the coexistence curve separating the phases (for example, the liquid and
solid phases of water).
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6.2 Reading: Clausius, the Mechanical Theory of Heat

Clausius, R., Mechanical Theory of Heat, with its Applications to the Steam-Engine
and to the Physical Properties of Bodies, John Van Voorst, London, 1867. Sixth
Memoir.

In a memoir published in the year 1854,3 wherein I sought to simplify to some
extent the form of the developments I had previously published, I deduced, from my
fundamental proposition that heat cannot, by itself, pass from a colder into a warmer
body, a theorem which is closely allied to, but does not entirely coincide with, the
one first deduced by S. Carnot from considerations of a different kind, based upon
the older views of the nature of heat. It has reference to the circumstances under
which work can be transformed into heat, and conversely, heat converted into work;
and I have called it the Theorem of the Equivalence of Transformations. I did not,
however, there communicate the entire theorem in the general form in which I had
deduced it, but confined myself on that occasion to the publication of a part which
can be treated separately from the rest, and is capable of more strict proof.

In general, when a body changes its state, work is performed externally and inter-
nally at the same time,—the exterior work having reference to the forces which
extraneous bodies exert upon the body under consideration, and the interior work to
the forces exerted by the constituent molecules of the body in question upon each
other. The interior work is for the most part so little known, and connected with
another equally unknown quantity4 in such a way, that in treating of it we are obliged
in some measure to trust to probabilities; whereas the exterior work is immediately
accessible to observation and measurement, and thus admits of more strict treat-
ment. Accordingly, since, in my former paper, I wished to avoid everything that was
hypothetical, I entirely excluded the interior work, which I was able to do by con-
fining myself to the consideration of cyclical processes—that is to say, operations
in which the modifications which the body undergoes are so arranged that the body
finally returns to its original condition. In such operations the interior work which
is performed during the several modifications, partly in a positive sense and partly
in a negative sense, neutralizes itself, so that nothing but exterior work remains,
for which the theorem in question can then be demonstrated with mathematical
strictness, starting from the above-mentioned fundamental proposition.

I have delayed till now the publication of the remainder of my theorem, because it
leads to a consequence which is considerably at variance with the ideas hitherto gen-
erally entertained of the heat contained in bodies, and I therefore thought it desirable
to make still further trial of it. But as I have become more and more convinced in the

3 Clausius’ 1854 publication, entitled “On a modified form of the second Fundamental Theorem
in the Mechanical Theory of heat,” appears as the Fourth Memoir of Clausius’ 1867 Mechanical
Theory of Heat.—[K.K.]
4 [In fact with the increase of the heat actually present in the body.—1864.]
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course of years that we must not attach too great weight to such ideas, which in part
are founded more upon usage than upon a scientific basis, I feel that I ought to hes-
itate no longer, but to submit to the scientific public the theorem of the equivalence
of transformations in its complete form, with the theorems which attach themselves
to it. I venture to hope that the importance which these theorems, supposing them to
be true, possess in connexion with the theory of heat will be thought to justify their
publication in their present hypothetical form.

I will, however, at once distinctly observe that, whatever hesitation may be felt
in admitting the truth of the following theorems, the conclusions arrived at in my
former paper, in reference to cyclical processes, are not at all impaired.

1. I will begin by briefly stating the theorem of the equivalence of transformations,
as I have already developed it, in order to be able to connect with it the following
considerations.

When a body goes through a cyclical process, a certain amount of exterior work may be
produced, in which case a certain quantity of heat must be simultaneously expended; or,
conversely, work may be expended and a corresponding quantity of heat may be gained.
This may be expressed by saying:—Heat can be transformed into work, or work into
heat, by a cyclical process.

There may also be another effect of a cyclical process: heat may be transferred
from one body to another, by the body which is undergoing modification absorb-
ing heat from the one body and giving it out again to the other. In this case the
bodies between which the transfer of heat takes place are to be viewed merely as
heat reservoirs, of which we are not concerned to know anything except the tem-
peratures. If the temperatures of the two bodies differ, heat passes, either from
a warmer to a colder body, or from a colder to a warmer body, according to the
direction in which the transference of heat takes place. Such a transfer of heat
may also be designated, for the sake of uniformity, a transformation, inasmuch
as it may be said that heat of one temperature is transformed into heat of another
temperature.
The two kinds of transformations that have been mentioned are related in such a
way that one presupposes the other, and that they can mutually replace each other.
If we call transformations which can replace each other equivalent, and seek the
mathematical expressions which determine the amount of the transformations in
such a manner that equivalent transformations become equal in magnitude, we
arrive at the following expression:—

If the quantity of heat Q of the temperature t is produced from work, the equivalence-
value of this transformation is

Q

T
; (6.1)

and if the quantity of heat Q passes from a body whose temperature is t1 into another
whose temperature is t2, the equivalence-value of this transformation is

Q

(
1

T2
− 1

T1

)
; (6.2)
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where T is a function of the temperature which is independent of the kind of
process by means of which the transformation is effected, and T1 and T2 denote
the values of this function which correspond to the temperatures t1 and t2. I have
shown by separate considerations that T is in all probability nothing more than
the absolute temperature.
These two expressions further enable us to recognize the positive or negative
sense of the transformations. In the first, Q is taken as positive when work is
transformed into heat, and as negative when heat is transformed into work. In
the second, we may always take Q as positive, since the opposite senses of the
transformations are indicated by the possibility of the difference 1

T2
− 1

T1
being

either positive or negative. It will thus be seen that the passage of heat from a
higher to a lower temperature is to be looked upon as a positive transformation,
and its passage from a lower to a higher temperature as a negative transformation.
If we represent the transformations which occur in a cyclical process by these
expressions, the relation existing between them can be stated in a simple and
definite manner. If the cyclical process is reversible, the transformations which
occur therein must be partly positive and partly negative, and the equivalence-
values of the positive transformations must be together equal to those of the
negative transformations, so that the algebraic sum of all the equivalence-values
becomes = 0. If the cyclical process is not reversible, the equivalence-values of
the positive and negative transformations are not necessarily equal, but they can
only differ in such a way that the positive transformations predominate. The the-
orem respecting the equivalence-values of the transformations may accordingly
be stated thus:—

The algebraic sum of all the transformations occurring in a cyclical process can only
be positive, or, as an extreme case, equal to nothing.

The mathematical expression for this theorem is as follows. Let dQ be an ele-
ment of the heat given up by the body to any reservoir of heat during its own
changes (heat which it may absorb from a reservoir being here reckoned as neg-
ative), and T the absolute temperature of the body at the moment of giving up
this heat, then the equation ∫

dQ

T
= 0 (6.3)

must be true for every reversible cyclical process, and the relation
∫

dQ

T
≥ 0 (6.4)

must hold good for every cyclical process which is in any way possible.
2. Although the necessity of this theorem admits of strict mathematical proof if

we start from the fundamental proposition above quoted, it thereby nevertheless
retains an abstract form, in which it is with difficulty embraced by the mind, and
we feel compelled to seek for the precise physical cause, of which this theorem is
a consequence. Moreover, since there is no essential difference between interior
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and exterior work, we may assume almost with certainty that a theorem which
is so generally applicable to exterior work cannot be restricted to this alone, but
that, where exterior work is combined with interior work, it must be capable of
application to the latter also.
Considerations of this nature led me, in my first investigations on the mechanical
theory of heat, to assume a general law respecting the dependence of the active
force of heat on temperature, among the immediate consequences of which is
the theorem of the equivalence of transformations in its more complete form,
and which at the same time leads to other important conclusions. This law I will
at once quote, and will endeavour to make its meaning clear by the addition of a
few comments. As for the reasons for supposing it to be true, such as do not at
once appear from its internal probability will gradually become apparent in the
course of this paper. It is as follows:—

In all cases in which the heat contained in a body does mechanical work by overcom-
ing resistances, the magnitude of the resistances which it is capable of overcoming is
proportional to the absolute temperature.

In order to understand the significance of this law, we require to consider more
closely the processes by which heat can perform mechanical work. These pro-
cesses always admit of being reduced to the alteration in some way or another
of the arrangement of the constituent parts of a body. For instance, bodies are
expanded by heat, their molecules being thus separated from each other: in
this case the mutual attractions of the molecules on the one hand, and exter-
nal opposing forces on the other, in so far as any such are in operation, have to
be overcome. Again, the state of aggregation of bodies is altered by heat, solid
bodies being rendered liquid, and both solid and liquid bodies being rendered
aëriform: here likewise internal forces, and in general external forces also, have
to be overcome. Another case which I will also mention, because it differs so
widely from the foregoing, and therefore shows how various are the modes of
action which have here to be considered, is the transfer of electricity from one
body to the other, constituting the thermo-electric current, which takes place by
the action of heat on two heterogeneous bodies in contact.
In the cases first mentioned, the arrangement of the molecules is altered. Since,
even while a body remains in the same state of aggregation, its molecules do
not retain fixed unvarying positions, but are constantly in a state of more or less
extended motion, we may, when speaking of the arrangement of the molecules at
any particular time, understand either the arrangement which would result from
the molecules being fixed in the actual positions they occupy at the instant in
question, or we may suppose such an arrangement that each molecule occupies
its mean position. Now the effect of heat always tends to loosen the connexion
between the molecules, and so to increase their mean distances from one another.
In order to be able to represent this mathematically, we will express the degree
in which the molecules of a body are separated from each other, by introducing
a new magnitude, which we will call the disgregation of the body, and by help of
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which we can define the effect of heat as simply tending to increase the disgre-
gation. The way in which a definite measure of this magnitude can be arrived at
will appear from the sequel.
In the case last mentioned, an alteration in the arrangement of the electricity takes
place, an alteration which can be represented and taken into calculation in a way
corresponding to the alteration of the position of the molecules, and which, when
it occurs, we will consider as always included in the general expression change
of arrangement, or change of disgregation.
It is evident that each of the changes that have been named may also take place
in the reverse sense, if the effect of the opposing forces is greater than that of the
heat. We will assume as likewise self-evident that, for the production of work, a
corresponding quantity of heat must always be expended, and conversely, that,
by the expenditure of work, an equivalent quantity of heat must be produced.

3. If we now consider more closely the various cases which occur in relation to
the forces which are operative in each of them, the case of the expansion of
a permanent gas presents itself as particularly simple. We may conclude from
certain properties of the gases that the mutual attraction of their molecules at
their mean distances is very small, and therefore that only a very slight resis-
tance is offered to the expansion of a gas, so that the resistance of the sides of
the containing vessel must maintain equilibrium with almost the whole effect of
the heat. Accordingly the externally sensible pressure of a gas forms an approxi-
mate measure of the separative force of the heat contained in the gas; and hence,
according to the foregoing law, this pressure must be nearly proportional to the
absolute temperature. The internal probability of the truth of this result is indeed
so great, that many physicists since Gay-Lussac and Dalton have without hesi-
tation presupposed this proportionality, and have employed it for calculating the
absolute temperature.
In the above-mentioned case of thermo-electric action, the force which exerts
an action contrary to that of the heat is likewise simple and easily determined.
For at the point of contact of two heterogeneous substances, such a quantity
of electricity is driven from the one to the other by the action of the heat, that
the opposing force resulting from the electric tension suffices to hold the force
exerted by the heat in equilibrium. Now in a former memoir “On the application
of the Mechanical Theory of Heat to the Phenomena of Thermal Electricity”,5

I have shown that, in so far as changes in the arrangement of the molecules are
not produced at the same time by the changes of temperature, the difference of
tension produced by heat must be proportional to the absolute temperature, as is
required by the foregoing law.
In the other cases that are quoted, as well as in most others, the relations are
less simple, because in them an essential part is played by the forces exerted
by the molecules upon one another, forces which, as yet, are quite unknown. It
results, however, from the mere consideration of the external resistances which

5 Poggendorff’s Annalen, vol. xc. p. 513.
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heat is capable of overcoming, that in general its force increases with the tem-
perature. If we wish, for instance, to prevent the expansion of a body by means
of external pressure, we are obliged to employ a greater pressure the more the
body is heated; hence we may conclude, without having a knowledge of the inte-
rior forces, that the total amount of the resistances which can be overcome in
expansion, increases with the temperature. We cannot, however, directly ascer-
tain whether it increases exactly in the proportion required by the foregoing law,
without knowing the interior forces. On the other hand, if this law be regarded
as proved on other grounds, we may reverse the process, and employ it for the
determination of the interior forces exerted by the molecules.
The forces exerted upon one another by the molecules are not of so simple a
kind that each molecule can be replaced by a mere point; for many cases occur
in which it can be easily seen that we have not merely to consider the distances
of the molecules, but also their relative positions. If we take, for example, the
melting of ice, there is no doubt that interior forces, exerted by the molecules
upon each other, are overcome, and accordingly increase of disgregation takes
place; nevertheless the centres of gravity of the molecules are on the average not
so far removed from each other in the liquid water as they were in the ice, for
the water is the more dense of the two. Again, the peculiar behaviour of water in
contracting when heated above 0◦ C., and only beginning to expand when its tem-
perature exceeds 4◦, shows that likewise in liquid water, in the neighbourhood of
its melting-point, increase of disgregation is not accompanied by increase of the
mean distances of its molecules.
In the case of the interior forces, it would accordingly be difficult—even if we
did not want to measure them, but only to represent them mathematically—to
find a fitting expression for them which would admit of a simple determination
of magnitude. This difficulty, however, disappears if we take into calculation,
not the forces themselves, but the mechanical work which, in any change of
arrangement, is required to overcome them. The expressions for the quantities
of work are simpler than those for the corresponding forces; for the quantities
of work can be all expressed, without further secondary statements, by numbers
which, having reference to the same unit, can be added together, or subtracted
from one another, however various the forces may be to which they refer.
It is therefore convenient to alter the form of the above law by introducing,
instead of the forces themselves, the work done in overcoming them. In this form
it reads as follows:—

The mechanical work which can be done by heat during any change of the arrangement
of a body is proportional to the absolute temperature at which this change occurs.

4. The law does not speak of the work which the heat does, but of the work which
it can do; and similarly, in the first form of the law, it is not of the resistances
which the heat overcomes, but of those which it can overcome that mention is
made. This distinction is necessary for the following reasons:—
Since the exterior forces which act upon a body while it is undergoing a change
of arrangement may vary very greatly, it may happen that the heat, while causing
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a change of arrangement, has not to overcome the whole resistance which it
would be possible for it to overcome. A well-known and often-quoted example
of this is afforded by a gas which expands under such conditions that it has not to
overcome an opposing pressure equal to its own expansive force, as, for instance,
when the space filled by the gas is made to communicate with another which is
empty, or contains a gas of lower pressure. In order in such cases to determine the
force of the heat, we must evidently not consider the resistance which actually is
overcome, but that which can be overcome.
Also in changes of arrangement of the opposite kind, that is, where the action of
heat is overcome by the opposing forces, a similar distinction may require to be
made, but in this case only as far as this—that the total amount of the forces by
which the action of the heat is overcome may be greater than the active force of
the heat, but not smaller.
Cases in which these differences occur may be thus characterized. When a
change of arrangement takes place so that the force and counterforce are equal,
the change can likewise take place in the reverse direction under the influence
of the same forces. But if it occurs so that the overcoming force is greater than
that which is overcome, the change cannot take place in the opposite direction
under the influence of the same forces. We may say that the change has occurred
in the first case in a reversible manner, and in the second case in an irreversible
manner.
Strictly speaking, the overcoming force must always be more powerful than the
force which it overcomes; but as the excess of force does not require to have
any assignable value, we may think of it as becoming continually smaller and
smaller, so that its value may approach to nought as nearly as we please. Hence
it may be seen that the case in which the changes take place reversibly is a limit
which in reality is never quite reached, but to which we can approach as nearly as
we please. We may therefore, in theoretical discussions, still speak of this case as
one which really exists; indeed, as a limiting case it possesses special theoretical
importance.
I will take this opportunity of mentioning another process in which this distinc-
tion is likewise to be observed. In order for one body to impart heat to another
by conduction or radiation (in the case of radiation, wherein mutual communi-
cation of heat takes place, it is to be understood that we speak here of a body
which gives out more heat than it receives), the body which parts with heat must
be warmer than the body which takes up heat; and hence the passage of heat
between two bodies of different temperature can take place in one direction only,
and not in the contrary direction. The only case in which the passage of heat can
occur equally in both directions is when it takes place between bodies of equal
temperature. Strictly speaking, however, the communication of heat from one
body to another of the same temperature is not possible; but since the difference
of temperature may be as small as we please, the case in which it is equal to
nothing, and the passage of heat accordingly reversible, is a limiting case which
may be regarded as theoretically possible.
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6.3 Study Questions

QUES. 6.1. Are there any limitations on the types of cyclical processes that can occur
in nature?

a) What is the difference between the external and internal work done on a body?
Which is more accessible to observation and measurement?

b) What is meant by a cyclical process? And what is the virtue of limiting one’s
attention to cyclical processes alone?

c) What does Clausius mean by a transformation? What is being transformed?
What are the two classes of transformations that Clausius considers? And
how does Clausius assign an equivalence value to each of these types of
transformations?

d) When a quantity work is transformed into a quantity of heat, Q (for instance
when a blacksmith’s hammer strikes an anvil) is the sense of this transformation
positive, negative or zero?

e) When a quantity of heat passes from a high-temperature to a low-temperature
body, is the sense of this transformation positive, negative, or zero? What about
when passing from a low to a high-temperature body? Does this latter case ever,
in fact, happen?

f) What general rule governs the equivalence values of transformations? In partic-
ular, must the equivalence value of each particular transformation be positive?
What about the sum of the equivalence values of all transformations making up
a cyclical process?

g) How is Clausius’ Theorem of the Equivalence of Transformations presented
mathematically? And how can it be understood physically?

QUES. 6.2. Does the pressure exerted by a gas on the walls of a chamber depend on
the mutual attraction or repulsion of its molecules?

a) What does Clausius mean by the term disgregation? What effect does the addi-
tion of heat to a substance have on the disgregation of its molecules? Is this
always the case?

b) What limits the expansion of a gas (as opposed to a solid or liquid)? Do uncon-
fined gases resist expansion at all? How is the pressure of a confined gas typically
determined?

c) Why does the pressure of a gas depend linearly on its temperature? And why do
other substances exhibit a more complicated dependence on temperature?

d) How might one infer the strength of the interior forces acting between the
molecules of substance? Why might one wish to do so? Must one completely
understand the strength of these forces when analyzing cyclical processes?
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QUES. 6.3. What is the relationship between the various forces acting on a substance
and the reversibility of a transformation caused by these forces?

a) What is the difference between a reversible and an irreversible change of vol-
ume of a gas? If an expanding gas does not accomplish any work, then is this
expansion a reversible process? Give an example of such an expansion.

b) What is the difference between a reversible and an irreversible transfer of heat
from one body to another? If the flow of heat does not accomplish work, then is
this heat flow a reversible process? Give an example of such a heat flow.

c) What happens when two bodies at different temperatures are brought into
contact? What happens to a moveable piston which separates two chambers
containing gases at different pressures?

d) In what sense is a temperature analogous to a force? How is the reversibility of a
transformation governed by the relationship between forces and counter-forces?

6.4 Exercises

EX. 6.1 (REVERSIBLE AND IRREVERSIBLE COMPRESSION). Suppose a cylindrical
chamber contains a compressible substance of mass M . The chamber is fitted with a
movable piston with area A at one end. Force F is applied to the piston, compressing
the substance a distance �x in time �t .

a) If this process is done slowly, then is this process reversible?
b) How much work is done by F per unit time? Can this work be expressed as the

product of the (internal) pressure of the substance and its change of volume?
c) Is there a change in disgregation of the molecules of the substance during this

process? If so, is it positive, negative or zero?
d) Is the equivalence-value of this transformation positive, negative, or zero?
e) Finally, would your answers to each of the previous questions change if the

process was done rapidly instead of slowly?

EX. 6.2 (COPPER BLOCK AND BATH). A 1-kg block of copper at 373 K is gently
placed into an enormous bath of water at 293 K.

a) What is the equivalence-value of the transformation (in Joules per Kelvin) that
the copper block undergoes as it comes to equilibrium with the bath at 293 K?
(Hint: You may assume that the specific heat capacity of copper is constant as
the block cools.)

b) How much heat flows from the block into the bath during the equilibration pro-
cess? And what is the equivalence-value of the transformation that the water bath
undergoes? (ANSWER: +105 J/K)

c) What is the sum of the equivalence values of these transformations? Is this
equilibration process reversible?
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d) Is energy conserved in this process? Does the principle of conservation of energy
necessitate this equilibration process? If not, then why does the block equilibrate
with the water?

e) Would your answer to each of the previous questions change if the copper block
was initially at the same temperature as the water, but was dropped into the water
bath from a height of 100 m? If so, how?

6.5 Vocabulary

1. Deduce
2. Hitherto
3. Hypothetical
4. Endeavour
5. Aggregation
6. Aëriform
7. Heterogeneous
8. Disgregation
9. Presuppose

10. Simultaneous
11. Thermo-electric
12. Irreversible



Chapter 7
Work, Heat, and Irreversibility

The excess of force may then give rise to motions of
considerable velocity in the parts of the body under
consideration, and these motions may subsequently be changed
into the molecular motions which we call heat.

—Rudolph Clausius

7.1 Introduction

In Arts. 1–4 of his sixth memoir on The Mechanical Theory of Heat, Clausius intro-
duced the so-called equivalence values of several transformations that a substance
might undergo. For example, when a small quantity of heat, dQ, flows into (or
out of) a substance maintained at a constant temperature T , an equivalence value
dQ T is assigned to this transformation. Most importantly, Clausius asserted that,
while the equivalence values of individual transformations may be either positive
or negative, when a substance undergoes a cyclic process comprised of reversible
transformations, these equivalence values must sum to zero:

∫
dQ

T
= 0. (7.1)

Now what is meant by “a cyclic process comprised of reversible transformations”?
A reversible transformation is one which is carried out in such a way that the sub-
stance is always nearly in equilibrium—for example, when a gas expands against
a movable piston which is itself backed by nearly the same pressure, or when heat
flows from a warm body into another one which is at nearly the same temperature.
A cyclic process is a process comprised of a set of transformations which eventually
return the substance back to its initial state (i.e. the same temperature, the same pres-
sure, and most importantly, the same internal energy). Consequently, during a cyclic
processes any mechanical work done on the substance must be either (i) expended
as work done by the substance, or (ii) expelled from the substance in the form of
heat. This follows form the first law of thermodynamics. For a non-cyclic process,
on the other hand, the internal energy of a substance may change. This is the topic to
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which Clausius now turns in Art. 5 of his sixth memoir. Then, in Art. 11, he broad-
ens the discussion to examine irreversible transformations, such as the conduction
of heat between bodies at significantly different temperatures.

7.2 Reading: Clausius, The Mechanical Theory of Heat

Clausius, R., Mechanical Theory of Heat, with its Applications to the Steam-Engine
and to the Physical Properties of Bodies, John Van Voorst, London, 1867. Sixth
Memoir, continued.

(5) We will now deduce the mathematical expression for the above law, treating in
the first place the case in which the change of condition undergone by the body
under consideration takes place reversibly. The result at which we shall arrive
for this case will easily admit of subsequent generalization, so as to include also
the cases in which a change occurs irreversibly.
Let the body be supposed to undergo an infinitely small change of condition,
whereby the quantity of heat contained in it, and also the arrangement of its
constituent particles, may be altered. Let the quantity of heat contained in it
be expressed by H , and the change of this quantity by dH . Further, let the
work, both interior and exterior together, performed by the heat in the change
of arrangement be denoted by dL, a magnitude which may be either positive or
negative according as the active force of the heat overcomes the forces acting in
the contrary direction, or is overcome by them. We obtain the heat expended to
produce this quantity of work by multiplying the work by the thermal-equivalent
of a unit of work which we may call A; hence it is AdL.
The sum dH + AdL is the quantity of heat which the body must receive from
without, and must accordingly withdraw from another body during the change
of condition. We have, however, already represented by dQ the infinitely small
quantity of heat imparted to another body by the one which is undergoing modi-
fication, hence we must represent in a corresponding manner, by −dQ, the heat
which it withdraws from another body. We thus obtain the equation

−dQ = dH + AdL,

or1

dQ + dH + AdL = 0 (7.6)

1 In my previous memoirs I have separated from one another the interior the exterior work per-
formed by the heat during the change of condition of the body. If the former be denoted by dI , and
the latter by dW , the above equation becomes

dQ + dlI + A dI + A dW = 0. (7.2)
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In order now to be able to introduce the disgregation also into the formulæ, we
must first settle how we are to determine it as a mathematical quantity.
By disgregation is represented, as stated in Art. 2, the degree of dispersion of the
body. Thus, for example, the disgregation of a body is greater in the liquid state
than in the solid, and greater in the aëriform than in the liquid state. Further, if
part of a given quantity of matter is solid and the rest liquid, the disgregation is
greater the greater the proportion of the whole mass that is liquid; and similarly,
if one part is liquid and the remainder aëriform, the disgregation is greater the
larger the aëriform portion. The disgregation of a body is fully determined when
the arrangement of its constituent particles is given; but, on the other hand, we
cannot say conversely that the arrangement of the constituent particles is deter-
mined when the magnitude of the disgregation is known. It might, for example,
happen that the disgregation of a given quantity of matter should be the same
when one part was solid and one part aëriform, as when the whole mass was
liquid.
We will now suppose that, with the aid of heat, the body changes its condi-
tion, and we will provisionally confine ourselves to such changes of condition
as can occur in a continuous and reversible manner, and we will also assume

Since, however, the increase in the quantity of heat actually contained in a body, and the heat
consumed by interior work during a change of condition, are magnitudes of which we commonly
do not know the individual values, but only the sum of those values, and which resemble each other
in being fully determined as soon as we know the initial and final conditions of the body, without
our requiring to know how it has passed from the one to the other, I have thought it advisable
to introduce a function which shall represent the sum of these two magnitudes, and which I have
denoted by U . Accordingly

dU = dH + A dI = 0. (7.3)

and hence the foregoing equation becomes

dQ + dU + A dW = 0; (7.4)

and if we suppose the last equation integrated for any finite alteration of condition, we have

Q + U + AW = 0. (7.5)

These are the equations which I have used in my memoirs published in 1850 and in 1854, partly
in the particular form which they assume for the permanent gases, and partly in the general form
in which they are here given, with no other difference than that I there took the positive and neg-
ative quantities of heat in the opposite sense to what I have done here, in order to attain greater
correspondence with the Eq. (6.3I) given in Art. 1. The function U which I introduced is capable
of manifold application in the theory of heat, and, since its introduction, has been the subject of
very interesting mathematical developments by W. Thomson and by Kirchhoff (see Philosophical
Magazine, S. 4. vol. ix. p. 528, and Poggendorff’s Annalen, vol. ciii. p. 177). Thomson has called
it “mechanical energy of a body in a given state,” and Kirchhoff “Wirkungsfunction.” Although
I consider my original definition of it as representing the sum of the heat added to the quantity
already present and of that expended in interior work, starting from any given initial state (pp. 29
and 118),2 as perfectly exact, I can still have no objection to make against an abbreviated mode of
expression. See the Appendix A. On Terminology at the end of this memoir (Included in Chap. 8
of the present volume.—[K.K.])
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that the body has a uniform temperature throughout. Since the increase of dis-
gregation is the action by means of which heat performs work, it follows that
the quantity of work must bear a definite ratio to the quantity by which the dis-
gregation is increased; we will therefore fix the still arbitrary determination of
the magnitude of disgregation so that, at any given temperature, the increase
of disgregation shall be proportional to the work which the heat can thereby
perform. The influence of the temperature is determined by the foregoing law.
For if the same change of disgregation takes place at different temperatures, the
corresponding work must be proportional to the absolute temperature. Accord-
ingly, let Z be the disgregation of the body, and dZ an infinitely small change
of it, and let dL be the corresponding infinitely small quantity of work, we can
then put

dL = KT dZ

or

dZ = dL

KT

where K is a constant dependent on the unit, hitherto left undetermined, accord-
ing to which Z is to be measured. We will choose this unit of measure so that
K = 1

A
, and the equation becomes

dZ = AdL

T
(7.7)

If we suppose this expression integrated, from any initial condition in which Z

has the value Z0, we get

Z = Z0 + A

∫
dL

T
(7.8)

The magnitude Z is thus determined, with the exception of a constant dependent
upon the initial condition that is chosen.
If the temperature of the body is not everywhere the same, we can regard it as
divided into any number we choose of separate parts, refer the elements dZ and
dL in Eq. (7.7) to anyone of them, and at once substitute for T the value of the
absolute temperature of that part. If we then unite by summation the infinitely
small changes of disgregation of the separate parts, or by integration, if there
is an infinite number of them, we obtain the similarly infinitely small change
of disgregation of the entire body, and from this we can obtain, likewise by
integration, any desired finite change of disgregation.
We will now return to Eq. (7.6), and by help of Eq. (7.7) we will eliminate from
it the element of work dL. Thus we get

dQ + dH + T dZ = 0 (7.9)

or, dividing by T ,
dQ + dH

T
+ dZ = 0 (7.10)
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If we suppose this equation integrated for a finite change of condition, we have
∫

dQ + dH

T
+

∫
dZ = 0 (7.11)

Supposing the body not to be of uniform temperature throughout, we may imag-
ine it broken up again into separate parts, make the elements dQ, dH , and dZ

in Eq. (7.10) refer, in the first instance, to one part only, and for T put the abso-
lute temperature of this part. The symbols of integration in (7.11) are then to
be understood as embracing the changes of all the parts. We must here remark
that cases in which one continuous body is of different temperatures at different
parts, so that a passage of heat immediately takes place by conduction from the
warmer to the colder parts, must be for the present disregarded, because such a
passage of heat is not reversible, and we have provisionally confined ourselves
to the consideration of reversible changes.
Equation (7.11) is the required mathematical expression of the above law, for
all reversible changes of condition of a body; and it is clearly evident that it also
remains applicable, if a series of successive changes of condition be considered
instead of a single one.

[Articles 6–10 have been omitted for the sake of brevity.]

(11) We must now examine the manner in which the foregoing theorem is modified
when we give up the condition that all changes of condition are to take place
reversibly.
From what has been said in Art. 4 concerning non-reversible changes of con-
dition, it is easy to perceive that the following must be a general property of
all three kinds of transformations. A negative transformation can never occur
without a simultaneous positive transformation whose equivalence-value is at
least as great; on the other hand, positive transformations are not necessarily
accompanied by negative transformations of equal value, but may take place in
conjunction with smaller negative transformations, or even without any at all.
If heat is to be transformed into work, which is a negative transformation, a
positive change of disgregation must take place at the same time, which cannot
be smaller in amount than that determinate magnitude which we regard as
equivalent. In the positive transformation of work into heat, on the other hand,
the state of things is different. If the force of heat is overcome by opposing
forces, so that a negative change of disgregation is brought about, we know that
in this case the overcoming forces may be greater than is required to produce
the particular result. The excess of force may then give rise to motions of
considerable velocity in the parts of the body under consideration, and these
motions may subsequently be changed into the molecular motions which we
call heat, so that in the end more work comes to be transformed into heat than
corresponds to the negative change of disgregation brought about. In many
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operations, especially in friction, the transformation of work into heat may take
place even quite independently of any simultaneous negative transformation.
The relation in which the third kind of transformation, namely change of dis-
gregation, stands to considerations of this nature, is implied in what has been
already said. The positive change of disgregation may indeed be greater, but
cannot be smaller, than the accompanying transformation of heat into work;
and the negative change of disgregation may be smaller, but cannot be greater,
than the transformation of work into heat.
Finally, in so far as regards the second kind of transformation, or the passage
of heat between bodies of different temperatures, I have thought myself justi-
fied in assuming as a fundamental proposition what, according to all that we
know of heat, must be regarded as well-established, namely, that the passage
from a lower to a higher temperature, which counts as a negative transfor-
mation, cannot take place of itself—that is, without a simultaneous positive
transformation. On the other hand, the passage of heat in the contrary direc-
tion, from a higher to a lower temperature, may very well take place without a
simultaneous negative transformation.
Taking these circumstances into consideration, we will now return once more
to the consideration of the development by means of which we arrived at
Eq. (7.11) in Art. 5. Equation (7.7), which occurs in the same Article, expresses
the relation in which an infinitely small change of disgregation must stand to
the work simultaneously performed by the heat, under the condition that the
change takes place in a reversible manner. In case this last condition need not
be fulfilled, the change of disgregation may be greater, provided it is positive,
than the value calculated from the work; and if negative, it may be, when taken
absolutely, smaller than that value, but in this case also it would algebraically
have to be stated as greater. Instead of Eq. (7.7), we must therefore write

dZ ≥ AdL

T
(7.12)

Applying this to Eq. (7.6), we obtain, instead of Eq. (7.10),

dQ + dH

T
+ dZ ≥ 0 (7.13)

The further question now arises, what influence would it have on the formulæ,
if a direct passage of heat took place between parts of different temperature
within the body in question.
In case the body is not uniform temperature throughout, the differential expres-
sion occurring in Eq. (7.13) must not be referred to the entire body, but only
to a portion whose temperature may be considered as the same throughout; so
that if the temperature of the body varies continuously, the number of parts
must be assumed as infinite. In integrating, the expressions which apply to
the separate parts may be united again to a single expression for the whole
body, by extending the integral, not only to the changes of one part, but to the
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changes of all the parts. In forming this integral, we must now have regard to
the passage of heat taking place between the different parts.
It must here be remarked that dQ is an element of the heat which the body
under consideration gives up to, or absorbs from, an external body which
serves only as a reservoir of heat, and that this element does not come into
question now that we are discussing the passage of heat between the different
parts of the body itself. This transfer of heat is mathematically expressed by a
decrease in the quantity of heat H in one part, and an equivalent increase in
another part; and accordingly we require to direct our attention only to the term
dH
T

in the differential expression (7.13). If we now suppose that the infinitely
small quantity of heat dH leaves one part of the body whose temperature is
T1 and passes into another part whose temperature is T2, there result the two
following infinitely small terms,

−dH

T1
and + dH

T2

which must be contained in the integral; and since T1 must be greater than T2,
it follows that the positive term must in any case be greater than the negative
term, and that consequently the algebraic sum of both is positive. The same
thing applies equally to every other element of heat transferred from one part
to another; and the change which the integral of the whole differential expres-
sion occurring in (7.13) undergoes, on account of this transfer of heat, can
therefore only consist in the addition of a positive quantity to the value which
would else have been obtained. But since, as results from Eq. (7.13), the last
value which would be obtained, without taking this direct transfer of heat into
consideration, cannot be less than nothing; this can still less be the case when
it has been increased by another positive quantity.
We may therefore write as a general expression, including all the circum-
stances which occur in non-reversible changes, the following, instead of
Eq. (7.11):— ∫

dQ + dH

T
+

∫
dZ ≥ 0 (7.14)

The theorem which in Art. 1 was enunciated in reference to cyclical processes
only, and was represented by the expression (6.4), has thus assumed a more
general form, and may be enunciated thus:—

The algebraic sum of all the transformations occurring during any change of condition
whatever can only be positive, or, as an extreme case, equal to nothing.

In my previous paper I have spoken of two transformations with opposite signs,
which neutralize each other in the algebraic sum, as compensating transforma-
tions. The foregoing theorem may therefore be enunciated still more briefly as
follows:—

Uncompensated transformations can only be positive.
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(12) In conclusion, we will submit the integral
∫

dH

T
,

which has been frequently used above, to a somewhat closer consideration.
We will call this integral, when it is taken from any given initial condition to
the condition actually existing, the transformation-value of the heat actually
present in the body when calculated from the given initial condition. That is,
when in any way whatever work is transformed into heat, or heat into work,
and the quantity of heat present in the body is thereby altered, the increment or
decrement of this integral gives the equivalence-value of the transformations
which have taken place. Further, if transfers of heat take place between parts
of different temperature within the body itself, or within a system of bodies,
the equivalence-value of these transfers of heat is likewise expressed by the
increment or decrement of this integral, if it is extended to the whole system
of bodies under consideration.
In order to be able actually to perform the integration which has been indicated,
we must know the relation between the quantity of heat H and the temperature
T . If we call the mass of the body m, and its real (capacity for heat) c, we have,
for a change of temperature throughout amounting to dT , the equation

dH = mc dT (7.15)

According to what has been said above, the real (capacity for heat) of a
body is independent of the arrangement of its particles; and since an arrange-
ment is known, namely, that in perfect gases, for which we must regard it as
established, partly by existing experimental data, and partly as the result of
theoretical considerations, that the real (capacity for heat) is independent of
temperature, we may assume the same thing for the other states of aggrega-
tion, and may regard the real (capacity for heat) as always constant. Thence it
follows that the amount of heat present in a body is simply proportional to its
absolute temperature, inasmuch as we can write

H = mcT (7.16)

Even when the body is not homogeneous, but consists of different substances,
all, however, at the temperature T , the foregoing equation will still remain
applicable, if for c we substitute the corresponding mean value. On the other
hand, if different parts of the body have different temperatures, we must in
the first instance apply the equation to the separate parts, and then unite the
various equations by summation. If, for the sake of generality, we assume that
the temperature varies continuously, so that the body must be conceived as
divided into an infinite number of parts, the equation takes the following form:

H =
∫

cT dm (7.17)
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Applying these expressions to the integral given above for the transformation-
value of the heat in the body, and denoting the initial temperature by T0,
we obtain; for the more simple case in which the temperature is uniform
throughout,

∫
dH

T
= mc

∫ T

T0

dT

T
= mc log

T

T0
(7.18)

and, as a general expression embracing all cases,
∫

dH

T
=

∫
c log

T

T0
dm (7.19)

If the disgregation of a body is changed, without heat being supplied to or
withdrawn from it, by an external object, the amount of heat contained in the
body must be changed in consequence of the production or consumption of
heat attendant on the change of disgregation, and a rise or fall of tempera-
ture must be the result; consequently the question may be raised, How great
must the change of disgregation be in order to bring about a given change
of temperature, it being assumed that all changes of condition take place
reversibly? In this case we must apply Eq. (7.11), putting dQ = 0, whereby it
is transformed into ∫

dH

T
+

∫
dZ = 0 (7.20)

If we assume, for the sake of simplicity, that the temperature of the entire body
varies uniformly, so that T has the same value for all parts, we may apply
Eq. (7.18) to the determination of the first of the two integrals; and we thus
obtain, for the required change of disgregation, the equation3

Z − Z0 = mc log
T0

T
(7.22)

If we desired to cool a body down to the absolute zero of temperature, the
corresponding change of disgregation, as shown by the foregoing formula, in
which we should then have T = 0, would be infinitely great. Hereon is based
the argument by which it may be proved to be impossible practically to arrive
at the absolute zero of temperature by any alteration of the condition of a body.

3 (If the above simplifying hypothesis—that the temperature is the same in all parts of the body
and changes in the same manner—be not made, we shall have the equation

Z − Z0 =
∫

c log
T0

T
dm, (7.21)

instead of the Eq. (7.18).—1864.)
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7.3 Study Questions

QUES. 7.1. What is meant by the disgregation of a substance? Does the liquid, solid
or gaseous state of a substance have a higher degree of disgregation? Does the
disgregation of a body fully specify the arrangement of its constituent particles?

QUES. 7.2. Must all transformations in nature have positive equivalence-values?

a) When a quantity of heat is transformed into work (for instance, in heating up a
gas, which in turn expands against a piston) is such a transformation positive,
negative or zero? Is the change in disgregation of the gas molecules positive,
negative or zero? Is the total equivalence-value of such a transformation positive,
negative or zero?

b) When a quantity of work is transformed into heat (for instance, in compressing
a gas, which in turn emits heat to its surroundings) is such a transformation pos-
itive, negative or zero? Is the change in disgregation of such a process positive,
negative or zero? Is the total equivalence-value of such a transformation positive,
negative or zero?

c) What is a compensating transformation? Must a negative transformation always
be compensated by a positive transformation? Conversely, must a positive
transformation always be compensated by a negative transformation? Upon
what fundamental and well-established proposition does Clausius justify this
asymmetry?

QUES. 7.3. What is the relationship between the heat added to a substance from an
exterior body (dQ) the heat contained in the substance (dH ) and the change in
disgregation of the substance (dZ) for a reversible process? For a non-reversible
process?

QUES. 7.4. What is the equivalence-value of a transformation consisting of the trans-
fer of heat between parts of a body at different temperatures? Is this a reversible
process?

QUES. 7.5. Is it possible for a substance to reach the absolute zero of temperature?
Why or why not?

7.4 Exercises

EX. 7.1 (WATER EQUILIBRATION). Suppose that a bath of ice water is momentarily
connected by a short copper wire to another bath of water which is 20◦ warmer. Dur-
ing this time, 1 erg of heat flows from the hot to the cold bath. Due to the immense
heat capacity of the baths, their temperatures remain nearly constant during this
process.
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a) What is the equivalence-value of the transformation that the cold-bath under-
goes? The hot bath? What is the sum of these equivalence-values? Is this a
reversible process? (ANSWER: +0.00025 erg/K)

b) If heat flowed in the other direction (from cold to hot), how would your answers
to the previous questions change? Would this reversed heat flow violate the
principle of conservation of energy? Would it violate any (other) laws of physics?

c) If these tanks were not large (for example, if each contained just 1 g of water)
then what would be the maximum amount of work which one could extract from
the tanks in allowing them to come to thermal equilibrium—for example by
letting heat flow from the hot to the cold bath through a reversible heat engine?
(HINT: Heat is not conserved, but energy is, so the work being done by the heat
engine during any time interval, dW , is just the difference between the amount
of heat flowing out of the hot bath, dQh, and into the cold bath, dQc.)

EX. 7.2 (COPPER ROD EQUILIBRATION). Consider a cylindrical copper rod having a
length of one meter and a cross-sectional area of 2 cm2. The two ends of the rod
are maintained at a constant temperature by keeping them in contact with boiling
water and ice water, respectively. Assuming that the thermal conductivity of the rod
does not depend on the temperature, the initial temperature distribution, T (z), within
the rod is linearly decreasing from the hot to the cold end. If, now, this contact is
broken, what is the temperature distribution within the rod after its various sections
have finally come to thermal equilibrium? You may assume that once contact is
broken, no heat is gained or lost by the rod. Also: what is the equivalence-value
associated with this equilibration process? Is it reversible?

7.5 Vocabulary

1. Subsequent
2. Determinate
3. Disgregation
4. Simultaneous



Chapter 8
Language: Concepts and Conventions

The heat which disappears during fusion or evaporation is
converted into work, and consequently exists no longer as heat;
I propose, therefore, in place of latent heat, to substitute the
term ergonized heat.

—Rudolph Clausius

8.1 Introduction

Much of the language used to describe the effects of heat was developed at a time
when it was thought that heat was itself an invisible and indestructible fluid-like
substance. This caloric was able to flow into (or out of) a body, thereby raising (or
lowering) its temperature. In addition, caloric could sometimes flow into a body
without raising its temperature, as when ice melts into water of the same temper-
ature. This water was then thought to contain a quantity of hidden, or latent, heat
which must be extracted in order to re-freeze the water. Perhaps unsurprisingly, the
rise of the mechanical theory of heat in the mid-nineteenth century posed a number
of conceptual and linguistic problems. First, should one even speak of heat flow?
Remarkably, such language is still commonplace in the twenty-first century, despite
the fact that almost nobody believes in the caloric theory of heat from which it was
derived. Second, if heat itself is not a conserved substance, then what is the fate
of the (so-called) heat which is added to a body—for example when a container of
gas is heated over a fire? How much of the added heat goes into motion of the gas
molecules (internal kinetic energy)? How much of it goes into changing the con-
figuration of the molecules (internal potential energy)? How much of it goes into
moving the walls of the container which confine the gas (external work)? And how
much of it simply escapes into nearby bodies, heating them up? In the reading selec-
tion below, taken from the appendix to the sixth memoir of The Mechanical Theory
of Heat, Clausius attempts to introduce terminology which more accurately reflect
the new mechanical theory of heat. Has Clausius’ terminology stuck?
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8.2 Reading: Clausius, The Mechanical Theory of Heat

Clausius, R., Mechanical Theory of Heat, with its Applications to the Steam-Engine
and to the Physical Properties of Bodies, John Van Voorst, London, 1867. Sixth
Memoir, Appendix A: On Terminology.

The new conceptions which the mechanical theory of heat has introduced into
science present themselves so frequently in all investigations on heat, that it has
become desirable to possess simple and characteristic names for them.

I have divided into the following three parts the heat which must be imparted to
a body in order to change its condition in any manner whatever: first, the increased
amount of heat actually present in the body; second, the heat consumed by interior
work; and third, the heat consumed by exterior work. Of these three quantities of
heat the last can only be determined when all the changes are known which the body
has suffered; for the determination of the two first quantities, however, a knowledge
of the entire series of changes is not necessary, an acquaintance with the initial and
final conditions of the body suffices. Given, therefore, the initial condition, proceed-
ing from which the body arrives successively at any other conditions whatever, the
first and second of the above quantities of heat may be regarded as two magnitudes
which are perfectly defined by the condition of the body at the moment under con-
sideration. The same remark applies, of course, to the sum of these two quantities
which I have represented by U , and which is of great importance, inasmuch as it
presents itself in the first fundamental equation of the mechanical theory of heat.

The definition I have given of this magnitude—the sum of the increment of actu-
ally present heat, and of the heat consumed by interior work—being for general
purposes too long to serve as the name of the quantity, several more convenient
ones have been proposed. As already remarked in the note on p. 83, Thomson has
to this end employed the expression “the mechanical energy of a body in a given
state,” and Kirchoff the term “Wirkungsfunction.” Zeuner, again, in his “Grundzüge
der mechanischen Wärmetheorie,” has called U “die innere Wärme des Körpers”
(interior heat of the body).

The latter name does not appear to me to correspond quite to the signification of
the magnitude U , since only a portion of the latter represents heat actually present in
the body, in other words, vis viva of its molecular motions, the other portion having
reference to heat which has been consumed by interior work, and which, therefore,
no longer exists as heat. I do not for a moment imagine that Zeuner had any intention
to imply, by that name, that all the heat represented by U was actually present as
heat in the body; nevertheless the name might easily be interpreted in this sense.

Of the two other expressions mentioned above, the term energy employed by
Thomson appears to me to be very appropriate; it has in its favour, too, the cir-
cumstance that it corresponds to the proposition of Rankine to include under the
common name energy, both heat and everything that heat can replace. I have no
hesitation, therefore, in adopting, for the quantity U , the expression energy of the
body.
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It must be here observed, however, that the total energy of a body cannot be mea-
sured, it is only the increment of energy, due to the passage of the body from any
initial state to its present condition, that is susceptible of measurement. The initial
condition being assumed as given, the increment of energy is a perfectly defined
magnitude for every other condition of the body. The question is, are we to under-
stand by the energy of a body merely the increment of energy estimated from a
given initial condition, or is the energy which the body possessed at the beginning
to be included in the term? In the latter case, where the total energy of the body
is implied, we must conceive the increment of energy to be supplemented by the
addition of an unknown constant having reference to the initial condition. It will not
always be necessary, of course, to mention this constant expressly; we may tacitly
assume that it is included.

Since the magnitude U consists of two parts which have frequently to be consid-
ered individually, it will not suffice to have an appropriate name for U merely, we
must also be able to refer conveniently to these its constituent parts.

The first part presents no difficulty whatever; the heat actually present in the
body may be simply called the heat of the body, or the thermal content of the body
(Wärmeinhalt des Körpers).

In giving a name to the second part of U , however, we are at once inconvenienced
by a circumstance which embarrasses the whole mechanical theory of heat,—the
fact that heat and work are measured by different units. The unit of heat is the
quantity of heat which is necessary to raise the temperature of a unit-weight of
water from 0◦ to 1◦, and the unit of work is the quantity which is represented by the
product of the unit of weight into the unit of length,—in French measure, therefore,
a kilogramme-metre.

Now in the mechanical theory of heat, after admitting that heat can be trans-
formed into work and work into heat, in other words, that either of these may replace
the other, it becomes frequently necessary to form a magnitude of which heat and
work are constituent parts. But heat and work being measured by different units, we
cannot in such a case say, simply, the magnitude is the sum of heat and work; we
are compelled to say either the sum of the heat and the heat-equivalent of the work,
or the sum of the work and the work-equivalent of the heat.

Rankine has avoided this inconvenient mode of expression in his memoirs by
assuming as his unit of heat the quantity which is equivalent to a unit of work. Nev-
ertheless, although perfectly appropriate on theoretic grounds, it must be admitted
that great difficulties oppose themselves to the general introduction of this measure
of heat. On the one hand it is always difficult to change a unit when once adopted,
and on the other there is here the additional circumstance that the heat-unit hitherto
used is a magnitude intimately connected with ordinary calorimetric methods, and
the latter being mostly based on the heating of water, necessitate only slight reduc-
tions, and these founded on very trustworthy measurements; the heat-unit adopted
by Rankine, however, besides requiring the same reductions, assumes the mechan-
ical equivalent of heat to be known,—an assumption which is only approximately
correct. Accordingly, since we cannot expect the mechanical measure for heat to be
universally adopted, we must always, when quantities of heat enter into an equation,
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first state whether these quantities are measured in the ordinary manner or by the
mechanical unit, and consequently the above-mentioned inconvenience would not
be removed by Rankine’s procedure.

For this purpose, therefore, I will venture another proposition. Let heat and work
continue to be measured each according to its most convenient unit, that is to say,
heat according to the thermal unit, and work according to the mechanical one. But
besides the work measured according to the mechanical unit, let another magnitude
be introduced denoting the work measured according to the thermal unit, that is to
say, the numerical value of the work when the unit of work is that which is equivalent
to the thermal unit. For the work thus expressed a particular name is requisite. I
propose to adopt for it the Greek word (εργoν) ergon.1

The processes which are considered in the mechanical theory of heat may be
very conveniently described by means of this new term. Heat and ergon are, in fact,
two magnitudes which admit of mutual transformation and substitution, without any
alteration in the numerical values of the respective quantities being thereby involved.
Accordingly, heat and ergon may, without preparation, be added to, or subtracted
from, one another.

When we consider the work produced during any change in the condition of a
body, we must call it the ergon produced, if it be measured by the unit of heat, and
here again we distinguish interior ergon and exterior ergon. The latter, as already
stated in the memoirs, is dependent upon the entire series of successive changes,
whilst the former is completely determined when the initial and final conditions,
solely, are known. Assuming the initial condition to be given, therefore, the interior
ergon may be regarded as a magnitude which depends solely upon the condition of
the body at the moment under consideration.

Analogous to the expression thermal content of the body, we may introduce the
expression ergonal content of the body. With reference to the last conception, how-
ever, the same remark applies which was previously made with reference to energy.
We may understand by ergonal content, either the increment of ergon reckoned from
a given initial condition, or the total ergonal content. In the latter case we have
merely to conceive an unknown constant, having reference to the initial state, added
to the increment of ergon; this is so obvious, however, that in such cases we may
usually assume tacitly that the constant has been included.

The same remark also applies to the thermal content of a body. By this term
we may likewise understand either the increment of heat calculated from an arbi-
trarily assumed initial condition, or the total thermal content. In the latter case a
constant associated with that initial condition is to be added to the heat-increment.
The only difference is that in the ease of the ergonal content, the added constant
is quite unknown, whilst in the case of the thermal content, the constant may be

1 The author has used the German word Werk, which is almost synonymous with Arbeit, but he
proposes the term Ergon as more suitable for introduction into other languages. The Greek word,
έργoν is so closely allied to the English word work, that both are quite well suited to designate two
magnitudes which are essentially the same, but measured according to different units.—T.A.H.
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approximately determined, seeing that the absolute zero of temperature is to a
certain extent known.

Now the quantity U is the sum of the thermal content and ergonal content, so
that in place of the word energy, we may use if we please the somewhat longer
expression, thermal and ergonal content.

In connexion with these remarks on Terminology I will venture another sugges-
tion. Hitherto the heat which disappears when a body is fused or evaporated has been
termed latent heat. This name originated when it was thought that the heat which
can no longer be detected by our senses, when a body fuses or evaporates, still exists
in the body in a peculiar concealed condition. According to the mechanical theory
of heat, this notion is no longer tenable. All heat actually present in a body is sen-
sible heat; the heat which disappears during fusion or evaporation is converted into
work, and consequently exists no longer as heat; I propose, therefore, in place of
latent heat, to substitute the term ergonized heat.

In order to distinguish, in a similar manner, the two parts of the latent heat which
I have stated to be expended, respectively, on interior and on exterior work, the
expressions interior and exterior ergonized heat might be used.

It must further be observed that of the heat which must be imparted to a body
in order to raise its temperature without changing its state of aggregation (all of
which was formerly regarded as free), a great portion falls in the same category as
that which has hitherto been called latent heat, and for which I now propose the
term ergonized heat. For, in general, the heating of a body involves a change in
the arrangement of its molecules. This change usually occasions a sensible alter-
ation in volume, but it may occur even when the volume of the body remains the
same. For every change in molecular arrangement, a certain amount of ergon is
requisite, which may be partly interior and partly exterior, and in producing this
ergon, heat is consumed. Only a part of the heat communicated to a body, therefore,
serves to increase the heat actually present therein; the remaining part constitutes
the ergonized heat.

In certain cases, such as those of evaporation and fusion, where the proposed term
ergonized heat frequently presents itself, a more abbreviated form of expression
may, of course, be adopted, should it be found convenient to do so. For instance,
instead of using the expressions ergonized heat of evaporation, and ergonized heat
of fusion, we may simply say, as I have done in my memoirs, heat of evaporation
and heat of fusion.

8.3 Study Questions

QUES. 8.1. In what two ways can the internal energy of a body be changed?

a) What are the three modes by which heat may be imparted to a body so as to
change its condition?

b) What is meant by the (internal) energy of a body? Can the energy of a substance
be measured?
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c) In what sense does the energy of a body represent both the kinetic and potential
energies of the particles comprising the substance?

d) What is the unit of heat, and upon what method was this unit based? What is the
unit of work, and upon what method was this unit based?

e) What difficulty was introduced by the mechanical theory of heat? What was
Rankine’s solution to this unit problem? And why is Clausius skeptical of this
solution?

f) What is Clausius’ solution to this problem? In particular, what name does he
propose to denote the unit of work which is equivalent to the thermal unit?

g) What is the difference between the ergonal content and the thermal content of a
body? How are these related to the energy of the body?

QUES. 8.2. Why does Clausius find the term latent heat to be misleading? What term
does he propose instead? Why do you think the older terminology survives today?
Is this a problem?

8.4 Vocabulary

1. Conception
2. Tacit
3. Constituent
4. Venture
5. Analogous
6. Arbitrary
7. Consequent
8. Requisite
9. Abbreviated

10. Fusion



Chapter 9
Energy and Entropy

The entropy of the universe tends to a maximum.
—Rudolph Clausius

9.1 Introduction

In his Sixth Memoir on The Mechanical Theory of Heat, Clausius explained how
the internal energy of a body (U ), consists of both thermal content (H ) and ergonal
content (Z). These represent the energy associated with the motion and the con-
figuration of the body’s particles, respectively. According to the first fundamental
theorem of the mechanical theory of heat—now known as the first law of thermo-
dynamics—the internal energy of a body may be changed by either adding heat
(Q) to the body, or doing external work (W ) on the body. But the first law of ther-
modynamics alone is not sufficient to explain the types of processes which tend to
occur in nature. Rather, only those processes, or transformations, occur which are
characterized by positive (or at best, zero) equivalence-values; any process which
has a negative equivalence value must be compensated by another process having
an equal or greater positive equivalence value. This is Clausius’ second fundamen-
tal theorem of the mechanical theory of heat. Today, it is known as the second law
of thermodynamics. In the reading selection below, taken from his Ninth Memoir,
Clausius clarifies these ideas by writing them in a succinct mathematical form. Per-
haps most notably, he introduces the concept of entropy, denoted by the letter S.
What is meant by this term? From where was it derived? And what is the connection
between entropy and the second law of thermodynamics?

9.2 Reading: Clausius, The Mechanical Theory of Heat

Clausius, R., Mechanical Theory of Heat, with its Applications to the Steam-Engine
and to the Physical Properties of Bodies, John Van Voorst, London, 1867. Ninth
Memoir.
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In my former Memoirs on the Mechanical Theory of Heat, my chief object was to
secure a firm basis for the theory, and I especially endeavoured to bring the second
fundamental theorem, which is much more difficult to understand than the first, to
its simplest and at the same time most general form, and to prove the necessary truth
thereof. I have pursued special applications so far only as they appeared to me to be
either appropriate as examples elucidating the exposition, or to be of some particular
interest in practice.

The more the mechanical theory of heat is acknowledged to be correct in its
principles, the more frequently endeavours are made in physical and mechanical
circles to apply it to different kinds of phenomena, and as the corresponding differ-
ential equations must be somewhat differently treated from the ordinarily occurring
differential equations of similar forms, difficulties of calculation are frequently
encountered which retard progress and occasion errors. Under these circumstances
I believe I shall render a service to physicists and mechanicians by bringing the
fundamental equations of the mechanical theory of heat from their most general
forms to others which, corresponding to special suppositions and being susceptible
of direct application to different particular cases, are accordingly more convenient
for use.

(1) The whole mechanical theory of heat rests on two fundamental theorems,—
that of the equivalence of heat and work, and that of the equivalence of
transformations.
In order to express the first theorem analytically, let us contemplate any body
which changes its condition, and consider the quantity of heat which must be
imparted to it during the change. If we denote this quantity of heat by Q, a
quantity of heat given off by the body being reckoned as a negative quantity
of heat absorbed, then the following equation holds for the element dQ of heat
absorbed during an infinitesimal change of condition,

dQ = dU + AdW (9.1)

Here U denotes the magnitude which I first introduced into the theory of heat
in my memoir of 1850, and defined as the sum of the free heat present in the
body, and of that consumed by interior work.1 Since then, however, W. Thom-
son has proposed the term energy of the body for this magnitude,2 which mode
of designation I have adopted as one very appropriately chosen; nevertheless,
in all cases where the two elements comprised in U require to be separately
indicated, we may also retain the phrase thermal and ergonal content, which,
as already explained on p. 97, expresses my original definition of U in a rather
simpler manner. W denotes the exterior work done during the change of con-
dition of the body, and A the quantity of heat equivalent to the unit of work,
or more briefly, the thermal equivalent of work. According to this AW is the

1 Pogg. Ann. Bd. lxxix. S. 385.
2 Phil. Mag. S. 4. vol. ix. p. 523.
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exterior work expressed in thermal units, or according to a more convenient
terminology recently proposed by me, the exterior ergo. (See Appendix A. to
Sixth Memoir.)
If for the sake of brevity, we denote the exterior ergon by a simple letter,

w = AW (9.2)

we can write the foregoing equation as follows,

dQ = dU + dw. (9.3)

In order to express analytically the second fundamental theorem in the simplest
manner, let us assume that the changes which the body suffers constitute a cycli-
cal process, whereby the body returns finally to its initial condition. By dQ we
will again understand an element of heat absorbed, and T shall denote the tem-
perature, counted from the absolute zero, which the body has at the moment
of absorption, or, if different parts of the body have different temperatures, the
temperature of the part which absorbs the heat element dQ. If we divide the
thermal element by the corresponding absolute temperature and integrate the
resulting differential expression over the whole cyclical process, then for the
integral so formed the relation

∫
dQ

T
≤ 0 (9.4)

holds, in which the sign of equality is to be used in cases where all changes of
which the cyclical process consists are reversible, whilst the sign < applies to
cases where the changes occur in a non-reversible manner.3

(2) We will first consider more closely the magnitudes occurring in Eq. (9.3) in
reference to different kinds of changes of the body.
The exterior ergon w, which is produced whilst the body passes from a given
initial condition to another definite one, depends not merely on the initial and
final conditions, but also on the nature of the transition.
In the first place, we have to consider the exterior forces which act on the body,
and which are either overcome by, or overcome the forces of the body itself;—
the exterior ergon being positive in the former, and negative in the latter case.

3 In my memoir “On a Modified Form of the Second Fundamental Theorem of the Mechanical
Theory of Heat” (Fourth Memoir of this collection), in which I first gave the most general expres-
sion of the Second Fundamental Theorem for a Cyclical Process, the signs of the differentials dQ

were differently chosen; there a thermal element given up by a changing body to a reservoir of heat
is reckoned positive, an element withdrawn from a reservoir of heat is reckoned negative. With this
choice of signs, which in certain general theoretical considerations is convenient, we have to write
instead of (9.4),

∫
dQ
T

≥ 0.
In the present memoir, however, the choice mentioned in the text is everywhere retained,

according to which a quantity of heat absorbed by a changing body is positive, and a quantity
given off by it is negative.
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The question then arises, are these exterior forces, at each moment, the same
as, or different from the forces of the body? Now although we may assert that
for one force to overcome another, the former must necessarily be the greater;
yet since the difference between them may be as small as we please, we may
consider the case where absolute equality exists as the limiting case, which,
although never reached in reality, must be theoretically considered as possi-
ble. When force and counter-force are different, the mode in which the change
occurs is not a reversible one.
In the second place, the change taking place in a reversible manner, the exte-
rior ergon likewise depends upon the intermediate conditions through which the
body passes when changing from the initial to the final condition, or, as it may
be figuratively expressed, upon the path which the body pursues when passing
from its initial to its final condition.
With the energy U of the body whose element, as well as that of the exterior
ergon, enters into the Eq. (9.3), it is quite different. If the initial and final con-
ditions of the body are given, the variation in energy is completely determined,
without any knowledge of the way in which the transition from the one con-
dition to the other took place—in fact neither the nature of the passage nor
the circumstance of its being made in a reversible or non-reversible manner, has
any influence on the contemporaneous change of energy. If, therefore, the initial
condition and the corresponding value of the energy be supposed to be given,
we may say that the energy is fully defined by the actually existing condition of
the body.
Finally, since the heat Q which is absorbed by the body during the change of
condition is the sum of the change of energy and of the exterior ergon produced,
it must like the latter depend upon the way in which the transition of the body
from one condition to another takes place.
Now in order to limit the field of our immediate investigation, we shall always
assume, unless the contrary is expressly stated, that we have to do with
reversible changes solely.
The Eq. (9.3) which expresses the first fundamental theorem, holds for
reversible as well as for non-reversible changes; hence, in order to apply it spe-
cially to reversible changes, we have not to modify it externally in any manner,
but merely to understand that by w and Q are meant the exterior ergon and
quantity of heat which correspond to reversible changes.
On applying to reversible changes the relation (9.4) which expresses the second
fundamental theorem, we have not only to understand by Q the quantity of heat
which relates to reversible changes, but also, instead of the double sign ≤, we
have simply to employ the sign of equality. We obtain for all reversible cyclical
processes, therefore, the equation

∫
dQ

T
= 0 (9.5)
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[Articles 3–13 of Clausius’ memoir have here been omitted for the sake of
brevity.—K.K.]

(14) All the foregoing considerations had reference to changes which occurred in a
reversible manner. We will now also take non-reversible changes into consid-
eration in order briefly to indicate at least the most important features of their
treatment.
In mathematical investigations on non-reversible changes two circumstances,
especially, give rise to peculiar determinations of magnitudes. In the first
place, the quantities of heat which must be imparted to, or withdrawn from
a changeable body are not the same, when these changes occur in a non-
reversible manner, as they are when the same changes occur reversibly. In
the second place, with each non-reversible change is associated an uncompen-
sated transformation, a knowledge of which is, for certain considerations, of
importance.
In order to be able to exhibit the analytical expressions corresponding to these
two circumstances, I must in the first place recall a few magnitudes contained
in the equations which I have previously established.
One of these is connected with the first fundamental theorem, and is the magni-
tude U , contained in Eq. (9.3) and discussed at the beginning of this Memoir;
it represents the thermal and ergonal content, or the energy of the body. To
determine this magnitude, we must apply the Eq. (9.3), which may be thus
written,

dU = dQ − dw (9.6)

or, if we conceive it to be integrated, thus:

U = U0 + Q − w (9.7)

Herein U0 represents the value of the energy for an arbitrary initial condition
of the body, Q denotes the quantity of heat which must be imparted to the
body, and w the exterior ergon which is produced whilst the body passes in
any manner from its initial to its present condition. As was before stated, the
body can be conducted in an infinite number of ways from one condition to
another, even when the changes are to be reversible, and of all these ways we
may select that one which is most convenient for the calculation.
The other magnitude to be here noticed is connected with the second funda-
mental theorem, and is contained in Eq. (9.5). In fact if, as Eq. (9.5) asserts,
the integral

∫
dQ
T

vanishes whenever the body, starting from any initial con-
dition, returns thereto after its passage through any other conditions, then the
expression dQ

T
under the sign of integration must be the complete differen-

tial of a magnitude which depends only on the present existing condition of
the body, and not upon the way by which it reached the latter. Denoting this
magnitude by S, we can write

dS = dQ

T
; (9.8)
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or, if we conceive this equation to be integrated for any reversible process
whereby the body can pass from the selected initial condition to its present
one, and denote at the same time by S0 the value which the magnitude S has
in that initial condition,

S = S0 +
∫

dQ

T
(9.9)

This equation is to be used in the same way for determining S as Eq. (9.7) was
for defining U .
The physical meaning of the magnitude S has been already discussed in the
Sixth Memoir. If in the fundamental Eq. (9.4) of the present Memoir, which
holds for all changes of condition of the body that occur in a reversible manner,
we make a small alteration in the notation, so that the heat taken up by the
changing body, instead of the heat given off by it, is reckoned as positive, that
equation will assume the form

∫
dQ

T
=

∫
dH

T
+

∫
dZ (9.10)

The two integrals on the right are the values for the case under consideration,
of two magnitudes first introduced in the Sixth Memoir.
In the first integral, H denotes the heat actually present in the body, which, as
I have proved, depends solely on the temperature of the body and not on the
arrangement of its parts. Hence it follows that the expression dH

T
is a complete

differential, and consequently that if for the passage of the body from its initial
condition to its present one we form the integral

∫
dH
T

, we shall thereby obtain
a magnitude which is perfectly defined by the present condition of the body,
without the necessity of knowing in what manner the transition from one con-
dition to the other took place. For reasons which are stated in the Sixth Memoir,
I have called this magnitude the transformation-value of the heat present in the
body.
It is natural when integrating, to take, for initial condition, that for which
H = 0, in other words, to start from the absolute zero of temperature; for
this temperature, however, the integral

∫
dH
T

is infinite, so that to obtain a
finite value, we must take an initial condition for which the temperature has a
finite value. The integral does not then represent the transformation-value of
the entire quantity of heat contained in the body, but only the transformation-
value of the excess of heat which the body contains in its present condition over
that which it possessed in the initial condition. I have expressed this by calling
the integral thus formed the transformation-value of the body’s heat, estimated
from a given initial condition. For brevity we will denote this magnitude by Y .
The magnitude Z occurring in the second integral I have called the disgrega-
tion of the body. It depends on the arrangement of the particles of the body,
and the measure of an increment of disgregation is the equivalence-value of
that transformation from ergon to heat which must take place in order to cancel
the increment of disgregation, and thus serve as a substitute for that increment.
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Accordingly we may say that the disgregation is the transformation-value of
the existing arrangement of the particles of the body. Since in determining the
disgregation we must proceed from some initial condition of the body, we will
assume that the initial condition selected for this purpose is the same as that
which was selected for the determination of the transformation-value of the
heat actually present in the body.
The sum of the two magnitudes Y and Z, just discussed, is the before-
mentioned magnitude S. To show this, let us return to Eq. (9.10), and
assuming, for the sake of generality, that the initial condition, to which the
integrals in this equation refer, is not necessarily the same as the initial condi-
tion which was selected when determining Y and Z, but that the integrals refer
to a change which originated in any manner whatever suited to any special
investigation, we may then write the integrals on the right of (9.10) thus:

∫
dH

T
= Y − Y0 and

∫
dZ = Z − Z0, (9.11)

wherein Y0 and Z0 are the values of Y and Z which correspond to the initial
condition. By these means Eq. (9.10) becomes

∫
dQ

T
= Y + Z − (Y0 + Z0) (9.12)

Putting herein
Y + Z = S (9.13)

and in a corresponding manner

Y0 + Z0 = S0

we obtain the equation ∫
dQ

T
= S − S0 (9.14)

which is merely a different form of the Eq. (9.9), by which S is determined.
We might call S the transformational content of the body, just as we termed
the magnitude U its thermal and ergonal content. But as I hold it to be better
to borrow terms for important magnitudes from the ancient languages, so that
they may be adopted unchanged in all modem languages, I propose to call the
magnitude S the entropy of the body, from the Greek word τρoπὴ, transfor-
mation. I have intentionally formed the word entropy so as to be as similar as
possible to the word energy; for the two magnitudes to be denoted by these
words are so nearly allied in their physical meanings, that a certain similarity
in designation appears to be desirable.
Before proceeding further, let us collect together, for the sake of reference,
the magnitudes which have been discussed in the course of this Memoir, and
which have either been introduced into science by the mechanical theory of
heat, or have obtained thereby a different meaning. They are six in number,
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and possess in common the property of being defined by the present condi-
tion of the body, without the necessity of our knowing the mode in which the
body came into this condition: (1) the thermal content, (2) the ergonal con-
tent, (3) the sum of the two foregoing, that is to say the thermal and ergonal
content, or the energy, (4) the transformation-value of the thermal content,
(5) the disgregation, which is to be considered as the transformation-value of
the existing arrangement of particles, (6) the sum of the last two, that is to say,
the transformational content, or the entropy.

[Article 15 of Clausius’ memoir has been omitted for the sake of brevity.—K.K.]

(16) If we now assume that in one of the ways above indicated the magnitudes U

and S have been determined for a body in its different conditions, the equations
which hold good for non-reversible changes may be at once written down.
The first fundamental Eq. (9.3), and the Eq. (9.7), resulting from it by
integration, which we will arrange thus,

Q = U − U0 + w (9.15)

hold just as well for non-reversible as for reversible changes; the only dif-
ference being, that of the magnitudes standing on the right side, the exterior
ergon w has a different value, in the case where a change occurs in a non-
reversible manner, from that which it has in the case where the same change
occurs in a reversible manner. With respect to the difference U − U0 this dis-
parity does not exist. It only depends on the initial and final condition, and not
on the nature of the transition. Consequently we need only consider the nature
of the transition so far as is necessary in order to determine the exterior ergon
thereby performed; and on adding this exterior ergon to the difference U − U0,
we obtain the required quantity of heat Q which the body takes up during the
transition.
The uncompensated transformation involved in any non-reversible change
may be thus obtained:—
The expression for the uncompensated transformation which is involved in a
cyclical process, is given in Eq. (9.11) of the Fourth Memoir.4 If we give to
the differential dQ in that equation the opposite sign, a quantity of heat given
off by the body to a reservoir of heat being there reckoned positive, whilst here

4 Clausius here refers to p. 127 of the Fourth Memoir in the J. Van Voorst 1867 publication, which
is not included in the present volume. Here, Clausius expresses the total transformation-value,
N , of a process whereby n bodies at temperatures Tn receive quantities of heat Qn. He writes
N = Q1

T1
+ Q2

T2
+ Q3

T3
+ . . . = ∑ Qn

Tn
. When a particular body’s temperature changes during this

process of heat transfer, then the transformation value of such a process is given by N = ∫
dQ
T

.
—[K.K.]
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we consider the heat taken up by the body to be positive, it becomes

N = −
∫

dQ

T
(9.16)

If the body has suffered one change or a series of changes, which do not form a
cyclical process, but by which it has reached a final condition which is different
from the initial condition, we may afterwards supplement this series of changes
so as to form a cyclical process, by appending other changes of such a kind as
to reconduct the body from its final to its initial condition. We will assume
that these newly appended changes, by which the body is brought back to the
initial condition, take place in a reversible manner.
On applying Eq. (9.16) to the cyclical process thus formed, we may divide
the integral occurring therein into two parts, of which the first relates to the
originally given passage of the body from the initial to the final condition, and
the second to the supplemented return from the final to the initial condition.
We will write these parts as two separate integrals, and distinguish the second,
which relates to the return, by giving to its sign of integration a suffix r . Hence
Eq. (9.16) becomes

N = −
∫

dQ

T
−

∫
r

dQ

T
.

Since by hypothesis the return takes place in a reversible manner, we can apply
Eq. (9.14) to the second integral, taking care, however, to introduce the differ-
ence S0 − S instead of S − S0 (where S0 denotes the entropy in the initial
condition, and S the entropy in the final condition), since the integral here in
question is to be taken backwards from the final to the initial condition. We
have therefore to write ∫

r

dQ

T
= S0 − S.

By this substitution the former equation is transformed into

N = S − S0 −
∫

dQ

T
. (9.17)

The magnitude N thus determined denotes the uncompensated transformation
occurring in the whole cyclical process. But from the theorem, that the sum
of the transformations which occur in a reversible change is null, and hence
that no uncompensated transformation can arise therein, it follows that the
supposed reversible return has contributed nothing to the augmentation of the
uncompensated transformation, and the magnitude N represents accordingly
the uncompensated transformation which has occurred in the given passage
of the body from the initial to the final condition. In the deduced expression,
the difference S − S0 is again perfectly determined when the initial and final
conditions are given, and it is only when forming the integral

∫
dQ
T

that the
manner in which the passage from one to the other took place must be taken
into consideration.
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(17) In conclusion I wish to allude to a subject whose complete treatment could
certainly not take place here, the expositions necessary for that purpose being
of too wide a range, but relative to which even a brief statement may not be
without interest, inasmuch as it will help to show the general importance of the
magnitudes which I have introduced when formalizing the second fundamental
theorem of the mechanical theory of heat.
The second fundamental theorem, in the form which I have given to it,
asserts that all transformations occurring in nature may take place in a certain
direction, which I have assumed as positive, by themselves, that is, without
compensation; but that in the opposite, and consequently negative direction,
they can only take place in such a manner as to be compensated by simulta-
neously occurring positive transformations. The application of this theorem to
the Universe leads to a conclusion to which W. Thomson first drew attention,5

and of which I have spoken in the Eighth Memoir. In fact, if in all the changes
of condition occurring in the universe the transformations in one definite direc-
tion exceed in magnitude those in the opposite direction, the entire condition
of the universe must always continue to change in that first direction, and the
universe must consequently approach incessantly a limiting condition.
The question is, how simply and at the same time definitely to character-
ize this limiting condition. This can be done by considering, as I have done,
transformations as mathematical quantities whose equivalence-values may be
calculated, and by algebraical addition united in one sum.
In my former Memoirs I have performed such calculations relative to the heat
present in bodies, and to the arrangement of the particles of the body. For every
body two magnitudes have thereby presented themselves—the transformation-
value of its thermal content, and its disgregation; the sum of which constitutes
its entropy. But with this the matter is not exhausted; radiant heat must also
be considered, in other words, the heat distributed in space in the form of
advancing oscillations of the æther must be studied, and further, our researches
must be extended to motions which cannot be included in the term Heat.
The treatment of the last might soon be completed, at least so far as relates
to the motions of ponderable masses, since allied considerations lead us to
the following conclusion. When a mass which is so great that an atom in
comparison with it may be considered as infinitely small, moves as a whole,
the transformation-value of its motion must also be regarded as infinitesimal
when compared with its vis viva; whence it follows that if such a motion by
any passive resistance becomes converted into heat, the equivalence-value of
the uncompensated transformation thereby occurring will be represented sim-
ply by the transformation-value of the heat generated. Radiant heat, on the
contrary, cannot be so briefly treated, since it requires certain special con-
siderations in order to be able to state how its transformation-value is to be
determined. Although I have already, in the Eighth Memoir above referred to,

5 Phil. Mag. Ser. 4. vol. iv. p. 304.
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spoken of radiant heat in connexion with the mechanical theory of heat, I have
not alluded to the present question, my sole intention being to prove that no
contradiction exists between the laws of radiant heat and an axiom assumed
by me in the mechanical theory of heat. I reserve for future consideration the
more special application of the mechanical theory of heat, and particularly of
the theorem of the equivalence of transformations to radiant heat.
For the present I will confine myself to the statement of one result. If for the
entire universe we conceive the same magnitude to be determined, consistently
and with due regard to all circumstances, which for a single body I have called
entropy, and if at the same time we introduce the other and simpler conception
of energy, we may express in the following manner the fundamental laws of the
universe which correspond to the two fundamental theorems of the mechanical
theory of heat.

1 The energy of the universe is constant.
2 The entropy of the universe tends to a maximum.

9.3 Study Questions

QUES. 9.1. What are the fundamental equations of the mechanical theory of heat?
How are they expressed mathematically? Which of these equations belong to Clau-
sius? And what condition does Clausius’ fundamental theorem place on the types of
processes which can occur in nature?

QUES. 9.2. What is the energy of a body? How are the thermal content and ergonal
content of a body related to its energy? Does the energy of a body in a particular
state depend on how this state was achieved?

QUES. 9.3. Does the work accomplished by (or on) a body undergoing a transition
between an initial and a final state depend upon the nature—the particular “path”—
of the transition? What about the heat absorbed by the body? Can work and heat then
be expressed mathematically as “complete differentials”? If so, under what specific
conditions?

QUES. 9.4. What is the entropy of a body? How are the transformation-value of the
thermal content and the disgregation of a body related to its entropy? Does the
entropy of a body in a particular state depend on how this state was achieved? In
what sense, then, are energy and entropy similar?

QUES. 9.5. Does the heat radiation surrounding a body have entropy? What diffi-
culty does this present? Can the mechanical theory of heat, and Clausius’ theorem
in particular, be applied to radiation?

QUES. 9.6. What do the fundamental theorems of the mechanical theory of heat
imply about the fate of the universe?
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9.4 Exercises

EX. 9.1 (ENTROPY OF EQUILIBRATION). In this exercise, we will compute the change
in entropy associated with heating up a 1-kg silver block, initially at the temperature
of ice-water, using three different methods.

Method 1: Suppose we place the silver block in direct thermal contact with a
large reservoir of boiling water until its temperature rises to 100 ◦ C.
What is the entropy change of the silver block as a result of this pro-
cess? Of the reservoir? Of the universe as a whole? Is this method of
heating the silver block a reversible process?

Method 2: Suppose, instead, we heat up the silver block in two stages. We first
let it equilibrate with a reservoir at 50 ◦ C, then we let it equilibrate
with another reservoir at 100 ◦ C. What is the entropy change of the
silver block as a result of this two-step process? Of the 50◦ reservoir?
Of the 100◦ reservoir? Of the universe as a whole? Is this a reversible
process?

Question: Which of the previous two methods of bringing the silver block to
100◦ results in a lower change in entropy of the universe as a whole?
Why do you suppose this is? Can you imagine a process whereby you
could raise the temperature of the silver block to 100◦ reversibly, that
is, with no change in the entropy of the universe?

Method 3: Finally, suppose we heat up the silver block to 100 ◦C by allowing
heat to flow into it from an enormous boiling water reservoir through
a reversible heat engine. In this case, what would be the change in
entropy of the silver block? Of the reservoir? Of the universe as a
whole? Is this a reversible process?

EX. 9.2 (ENERGY, ENTROPY AND THE CARNOT CYCLE). Clausius states that the energy
of a substance is comprised of both thermal and ergonal content. These describe,
respectively, the kinetic and potential energies of the particles comprising the sub-
stance. For an ideal (non-interacting) gas, the ergonal content must be zero. Hence
the energy of an ideal gas must be determined strictly by the motion of the gas
molecules. Since the temperature of a substance provides a measure of the average
kinetic energy of its particles, this implies that the energy of a fixed quantity of ideal
gas depends only on its temperature, regardless of its volume or pressure. With this
in mind, reconsider the carnot cycle described in Ex. 4.2. Suppose that the working
substance inside the cylinder acts as an ideal gas.

a) How much heat is drawn into the gas from the hot reservoir during the isother-
mal expansion? How much heat is ejected from the gas into the cold reservoir
during the isothermal compression? What about during the other two (adiabatic)
processes which make up the carnot cycle?

b) Recall that the efficiency of any engine cycle is defined by Eq. 5.4. What, then,
is the efficiency of this cycle? Is your answer in agreement with Eq. 5.8? Is this
what you would expect for a carnot cycle? Why?
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c) What is the change in entropy of (i) the air, (ii) the hot reservoir, and (iii) the cold
reservoir, during each of the four processes which make up the carnot cycle?
What is the change of entropy of the entire universe during a complete cycle of
this engine?

9.5 Vocabulary

1. Elucidate
2. Exposition
3. Figurative
4. Contemporaneous
5. Impart
6. Disparity
7. Ponderable
8. Infinitesimal
9. Allude

10. Incessant
11. Aether
12. Entropy



Chapter 10
The Kinetic Theory of Gases

The opinion that the observed properties of visible bodies
apparently at rest are due to the action of invisible molecules in
rapid motion is to be found in Lucretius.

—James Clerk Maxwell

10.1 Introduction

James Clerk Maxwell (1831–1879) was born in Edinburgh, Scotland. He is the
chief architect of the electromagnetic theory of light.1 Maxwell also played a sig-
nificant role in the development of both thermodynamics and the kinetic theory of
gases. Regarding the former topic (thermodynamics), Maxwell derived a set of four
equations that relate changes in the thermodynamic variables of a substance. For
example, he demonstrated that

if the temperature is maintained constant, those substances which increase in volume as the
temperature rises give out heat when the pressure is increased, and those which contract as
the temperature rises absorb heat when the pressure is increased.2

This Maxwell relation may be expressed mathematically in terms of the partial
derivative of volume with respect to temperature (maintaining constant pressure)
and the partial derivative of entropy with respect to pressure (maintaining constant
temperature): (

∂V

∂T

)
P

= −
(

∂S

∂P

)
T

He derived this equation (as well as the other three Maxwell relations) geomet-
rically, by analyzing how adjacent pairs of isothermal lines intersect adjacent
pairs of adiabatic lines on a pressure-versus-volume diagram. Maxwell’s four

1 For a presentation of Maxwell’s electromagnetic theory of light, and also biographical notes on
Maxwell himself, refer to Chap. 30 of Vol. III.
2 This quote is taken from Chap. IX of Maxwell, J. C., Theory of Heat, tenth ed., Longmans, Green,
and Co., London and New York, 1891.
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thermodynamic relations are completely general in that they apply to any substance
whatsoever.

Regarding the latter topic (the kinetic theory of gases) Maxwell argued that the
macroscopic properties of a gas, like its pressure and temperature, may be under-
stood in terms of the velocities of the molecules comprising the gas. The kinetic
theory also provides a key to understanding phenomena such as the conduction of
heat through iron, the viscosity of honey, and the diffusion of pollen through air. In
the reading selection that follows, taken from his Theory of Heat, Maxwell provides
an introduction to the kinetic theory of gases.

10.2 Reading: Maxwell, on the Molecular Theory of the
Constitution of Bodies

Maxwell, J. C., Theory of Heat, tenth ed., Longmans, Green, and Co., London and
New York, 1891. Chap. XXII.

We have already shown that heat is a form of energy—that when a body is hot it
possesses a store of energy, part at least of which can afterwards be exhibited in the
form of visible work.

Now energy is known to us in two forms. One of these is Kinetic Energy, the
energy of motion. A body in motion has kinetic energy, which it must communicate
to some other body during the process of bringing it to rest. This is the fundamental
form of energy. When we have acquired the notion of matter in motion, and know
what is meant by the energy of that motion, we are unable to conceive that any
possible addition to our knowledge could explain the energy of motion, or give us a
more perfect knowledge of it than we have already.

There is another form of energy which a body may have, which depends, not on
its own state, but on its position with respect to other bodies. This is called Potential
Energy. The leaden weight of a clock, when it is wound up, has potential energy,
which it loses as it descends. It is spent in driving the clock. This energy depends,
not on the piece of lead considered in itself, but on the position of the lead with
respect to another body—the earth—which attracts it.

In a watch, the mainspring, when wound up, has potential energy, which it spends
in driving the wheels of the watch. This energy arises from the coiling up of the
spring, which alters the relative position of its parts. In both cases, until the clock or
watch is set agoing, the existence of potential energy, whether in the clock-weight or
in the watch-spring, is not accompanied with any visible motion. We must therefore
admit that potential energy can exist in a body or system all whose parts are at rest.

It is to be observed, however, that the progress of science is continually opening
up new views of the forms and relations of different kinds of potential energy, and
that men of science, so far from feeling that their knowledge of potential energy
is perfect in kind, and incapable of essential change, are always endeavouring to
explain the different forms of potential energy; and if these explanations are in any
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case condemned, it is because they fail to give a sufficient reason for the fact, and
not because the fact requires no explanation.

We have now to determine to which of these forms of energy heat, as it exists
in hot bodies, is to be referred. Is a hot body, like a coiled-up watch-spring, devoid
of motion at present, but capable of exciting motion under proper conditions? or is
it like a fly-wheel, which derives all its tremendous power from the visible motion
with which it is animated?

It is manifest that a body may be hot without any motion being visible, either of
the body as a whole, or of its parts relatively to each other. If, therefore, the body
is hot in virtue of motion, the motion must be carried on by parts of the body too
minute to be seen separately, and within limits so narrow that we cannot detect the
absence of any part from its original place.

The evidence for a state of motion, the velocity of which must far surpass that of a
railway train, existing in bodies which we can place under the strongest microscope,
and in which we can detect nothing but the most perfect repose, must be of a very
cogent nature before we can admit that heat is essentially motion.

Let us therefore consider the alternative hypothesis—that the energy of a hot
body is potential energy, or, in other words, that the hot body is in a state of rest, but
that this state of rest depends on the antagonism of forces which are in equilibrium
as long as all surrounding bodies are of the same temperature, but which as soon as
this equilibrium is destroyed are capable of setting bodies in motion. With respect to
a theory of this kind, it is to be observed that potential energy depends essentially on
the relative position of the parts of the system in which it exists, and that potential
energy cannot be transformed in any way without some change of the relative posi-
tion of these parts. In every transformation of potential energy, therefore, motion of
some kind is involved.

Now we know that whenever one body of a system is hotter than another, heat is
transferred from the hotter to the colder body, either by conduction or by radiation.
Let us suppose that the transfer takes place by radiation. Whatever theory we adopt
about the kind of motion which constitutes radiation, it is manifest that radiation
consists of motion of some kind, either the projection of the particles of a sub-
stance called caloric across the intervening space, or a wave-like motion propagated
through a medium filling that space. In either case, during the interval between the
time when the heat leaves the hot body and the time when it reaches the cold body,
its energy exists in the intervening space in the form of the motion of matter.

Hence, whether we consider the radiation of heat as effected by the projection
of material caloric, or by the undulations of an intervening medium, the outer sur-
face of a hot body must be in a state of motion, provided any cold body is in its
neighbourhood to receive the radiations which it emits. But we have no reason to
believe that the presence of a cold body is essential to the radiation of heat by a
hot one. Whatever be the mode in which the hot body shoots forth its heat, it must
depend on the state of the hot body alone, and not on the existence of a cold body
at a distance, so that even if all the bodies in a closed region were equally hot, every
one of them would be radiating heat; and the reason why each body remains of the
same temperature is, that it receives from the other bodies exactly as much heat as
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it emits. This, in fact, is the foundation of Prevost’s Theory of Exchanges. We must
therefore admit that at every part of the surface of a hot body there is a radiation of
heat, and therefore a state of motion of the superficial parts of the body. Now this
motion is certainly invisible to us by any direct mode of observation, and therefore
the mere fact of a body appearing to be at rest cannot be taken as a demonstration
that its parts may not be in a state of motion.

Hence part, at least, of the energy of a hot body must be energy arising from the
motion of its parts, or kinetic energy.

The conclusion at which we shall arrive, that a very considerable part of the
energy of a hot body is in the form of motion, will become more evident when we
consider the thermal energy of gases.

Every hot body, therefore, is in motion. We have next to enquire into the nature
of this motion. It is evidently not a motion of the whole body in one direction, for
however small we make the body by mechanical processes, each visible particle
remains apparently in the same place, however hot it is. The motion which we call
heat must therefore be a motion of parts too small to be observed separately; the
motions of different parts at the same instant must be in different directions; and the
motion of any one part must, at least in solid bodies, be such that, however fast it
moves, it never reaches a sensible distance from the point from which it started.

We have now arrived at the conception of a body as consisting of a great many
small parts, each of which is in motion. We shall call any one of these parts a
molecule of the substance. A molecule may therefore be defined as a small mass
of matter the parts of which do not part company during the excursions which the
molecule makes when the body to which it belongs is hot.

The doctrine that visible bodies consist of a determinate number of molecules is
called the molecular theory of matter. The opposite doctrine is that, however small
the parts may be into which we divide a body, each part retains all the properties
of the substance. This is the theory of the infinite divisibility of bodies. We do not
assert that there is an absolute limit to the divisibility of matter: what we assert is,
that after we have divided a body into a certain finite number of constituent parts
called molecules, then any further division of these molecules will deprive them of
the properties which give rise to the phenomena observed in the substance.

The opinion that the observed properties of visible bodies apparently at rest are
due to the action of invisible molecules in rapid motion is to be found in Lucretius.

Daniel Bernoulli was the first to suggest that the pressure of air is due to the
impact of its particles on the sides of the vessel containing it; but he made very little
progress in the theory which he suggested.

Lesage and Prevost of Geneva, and afterwards Herapath in his ‘Mathematical
Physics,’ made several important applications of the theory.

Dr. Joule in 1848 explained the pressure of gases by the impact of their
molecules, and calculated the velocity which they must have to produce the observed
pressure.

Krönig also directed attention to this explanation of the phenomena of gases.
It is to Professor Clausius, however, that we owe the recent development of the

dynamical theory of gases. Since he took up the subject a great advance has been
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made by many enquirers. I shall now endeavour to give a sketch of the present state
of the theory.

All bodies consist of a finite number of small parts called molecules. Every
molecule consists of a definite quantity of matter, which is exactly the same for
all the molecules of the same substance. The mode in which the molecule is bound
together is also the same for all molecules of the same substance. A molecule may
consist of several distinct portions of matter held together by chemical bonds, and
may be set in vibration, rotation, or any other kind of relative motion, but so long
as the different portions do not part company, but travel together in the excursions
made by the molecule, our theory calls the whole connected mass a single molecule.

The molecules of all bodies are in a state of continual agitation. The hotter a
body is, the more violently are its molecules agitated. In solid bodies, a molecule,
though in continual motion, never gets beyond a certain very small distance from its
original position in the body. The path which it describes is confined within a very
small region of space.

In fluids, on the other hand, there is no such restriction to the excursions of a
molecule. It is true that the molecule generally can travel but a very small distance
before its path is disturbed by an encounter with some other molecule; but after this
encounter there is nothing which determines the molecule rather to return towards
the place from whence it came than to push its way into new regions. Hence in
fluids the path of a molecule is not confined within a limited region, as in the case
of solids, but may penetrate to any part of the space occupied by the fluid.

The actual phenomena of diffusion both in liquids and in gases furnish the
strongest evidence that these bodies consist of molecules in a state of continual
agitation.

But when we apply the methods of dynamics to the investigation of the properties
of a system consisting of a great number of small bodies in motion the resemblance
of such a system to a gaseous body becomes still more apparent.

I shall endeavour to give some account of what is known of such a system,
avoiding all unnecessary mathematical calculations.

10.2.1 On the Kinetic Theory of Gases

A gaseous body is supposed to consist of a great number of molecules moving
with great velocity. During the greater part of their course these molecules are not
acted on by any sensible force, and therefore move in straight lines with uniform
velocity. When two molecules come within a certain distance of each other, a mutual
action takes place between them, which may be compared to the collision of two
billiard balls. Each molecule has its course changed, and starts on a new path. I
have concluded from some experiments of my own that the collision between two
hard spherical balls is not an accurate representation of what takes place during
the encounter of two molecules. A better representation of such an encounter will
be obtained by supposing the molecules to act on one another in a more gradual



118 10 The Kinetic Theory of Gases

manner, so that the action between them goes on for a finite time, during which the
centres of the molecules first approach each other and then separate.

We shall refer to this mutual action as an Encounter between two molecules, and
we shall call the course of a molecule between one encounter and another the Free
Path of the molecule. In ordinary gases the free motion of a molecule takes up much
more time than that occupied by an encounter. As the density of the gas increases,
the free path diminishes, and in liquids no part of the course of a molecule can be
spoken of as its free path.

In an encounter between two molecules we know that, since the force of the
impact acts between the two bodies, the motion of the centre of gravity of the two
molecules remains the same after the encounter as it was before. We also know by
the principle of the conservation of energy that the velocity of each molecule rela-
tively to the centre of gravity remains the same in magnitude, and is only changed
in direction.

Let us next suppose a number of molecules in motion contained in a vessel whose
sides are such that if any energy is communicated to the vessel by the encounters
of molecules against its sides, the vessel communicates as much energy to other
molecules during their encounters with it, so as to preserve the total energy of the
enclosed system. The first thing we must notice about this moving system is that
even if all the molecules have the same velocity originally, their encounters will
produce an inequality of velocity, and that this distribution of velocity will go on
continually. Every molecule will then change both its direction and its velocity at
every encounter; and, as we are not supposed to keep a record of the exact particulars
of every encounter, these changes of motion must appear to us very irregular if we
follow the course of a single molecule. If, however, we adopt a statistical view of
the system, and distribute the molecules into groups, according to the velocity with
which at a given instant they happen to be moving, we shall observe a regularity of a
new kind in the proportions of the whole number of molecules which faIl into each
of these groups.

And here I wish to point out that, in adopting this statistical method of consider-
ing the average number of groups of molecules selected according to their velocities,
we have abandoned the strict kinetic method of tracing the exact circumstances of
each individual molecule in all its encounters. It is therefore possible that we may
arrive at results which, though they fairly represent the facts as long as we are sup-
posed to deal with a gas in mass, would cease to be applicable if our faculties and
instruments were so sharpened that we could detect and lay hold of each molecule
and trace it through all its course.

For the same reason, a theory of the effects of education deduced from a study
of the returns of registrars, in which no names of individuals are given, might be
found not to be applicable to the experience of a schoolmaster who is able to trace
the progress of each individual pupil.

The distribution of the molecules according to their velocities is found to be of
exactly the same mathematical form as the distribution of observations according
to the magnitude of their errors, as described in the theory of errors of observation.
The distribution of bullet-holes in a target according to their distances from the point
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aimed at is found to be of the same form, provided a great many shots are fired by
persons of the same degree of skill.

We have already met with the same form in the case of heat diffused from a
hot stratum by conduction. Whenever in physical phenomena some cause exists
over which we have no control, and which produces a scattering of the particles
of matter, a deviation of observations from the truth, or a diffusion of velocity or
of heat, mathematical expressions of this exponential form are sure to make their
appearance.

It appears then that of the molecules composing the system some are moving very
slowly, a very few are moving with enormous velocities, and the greater number
with intermediate velocities. To compare one such system with another, the best
method is to take the mean of the squares of all the velocities. This quantity is
called the Mean Square of the velocity. The square root of this quantity is called the
Velocity of Mean Square.

10.2.2 Distribution of Kinetic Energy Between Two Different Sets
of Molecules

If two sets of molecules whose mass is different are in motion in the same vessel,
they will by their encounters exchange energy with each other till the average kinetic
energy of a single molecule of either set is the same. This follows from the same
investigation which determines the law of distribution of velocities in a single set of
molecules.

Hence if the mass of a molecule of one kind is M1 and that of a molecule of the
other kind is M2, and if their average velocities of agitation are V1 and V2, then

M1V
2
1 = M2V

2
2 (10.1)

The quantity 1
2mv2 is called the average kinetic energy of agitation of a single

molecule. We shall return to this result when we come to Gay-Lussac’s Law of
the Volumes of Gases.

10.2.3 Internal Kinetic Energy of a Molecule

If a molecule were a mathematical point endowed with inertia and with attractive
and repulsive forces, the only kinetic energy it could possess is that of translation
as a whole. But if it be a body having parts and magnitude, these parts may have
motions of rotation or of vibration relative to each other, independent of the motion
of the centre of gravity of the molecule. We must therefore admit that part of the
kinetic energy of a molecule may depend on the relative motions of its parts. We
call this the Internal energy, to distinguish it from the energy due to the translation
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of the molecule as a whole. The ratio of the internal energy to the energy of agitation
may be different in different gases.

10.2.4 Definition of the Velocity of a Gas

It is evident that if a gas consists of a great number of molecules moving about in
all directions we cannot identify the velocity of any one of these molecules with
what we are accustomed to consider as the velocity of the gas itself. Let us consider
the case of a gas which has remained in a fixed vessel for a sufficient time to arrive
at the normal distribution of velocities. This gas, according to the ordinary notions,
is at rest, though the molecules of which it is composed may be flying about in all
directions.

Now consider any plane area of an imaginary surface described within the vessel.
This surface does not interfere with the motion of the molecules. Some molecules
pass through the surface in one direction, and others in the opposite direction; but it
is evident, since the gas does not tend to accumulate on one side rather than on the
other, that exactly the same number of molecules pass in the one direction as in the
other. If, therefore, a gas is at rest, as many molecules pass through a fixed surface
in the one direction as in the other in the same time.

It is evident that if the vessel, instead of being at rest, had been in a state of uni-
form motion, an equal number of molecules would pass in both directions through
any surface fixed with respect to the vessel. Hence we find that if a gas is in motion,
and if the velocity of a surface coincides in direction and magnitude with that of
the gas, the same number of molecules will pass through that surface in the positive
direction as in the negative.

This leads to the following definition of the velocity of a gas:

If we determine the motion of the centre of gravity of all the molecules within a very small
region surrounding a point in a gas, then the velocity of the gas within that region is defined
as the velocity of the centre of gravity of all the molecules within that region.

This is what is meant by the motion of a gas in common language. Besides this
motion, there are two other kinds of motion considered in the kinetic theory of gases.
The first is the motion of agitation of the molecules. This is the hitherto invisible
motion of the molecule considered as a whole. Its course consists of broken portions,
called free paths, interrupted by the encounters between different molecules.

The second is the internal motion of each molecule, consisting partly of rotation
and partly of vibrations among the component parts of the molecule.

The velocity of the centre of gravity of a molecule is the resultant of the velocity
of the gas and the velocity of agitation of the individual molecule at the given instant.
The velocity of a constituent part of a molecule is the resultant of the velocity of its
centre of gravity and the velocity of the constituent part relatively to the centre of
gravity of the molecule.
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Fig. 10.1 A plane surface
separating two regions of a
gas—[K.K.]

10.2.5 Theory of the Pressure of a Gas

Let us consider two portions of a gas separated by a plane surface which moves with
the same velocity as the gas. We have seen that in this case the number of molecules
which pass through the plane in opposite directions is the same.

Each molecule in crossing the plane from the region A to the region B enters the
second region in precisely the same state as it leaves the first. It therefore carries
over into the region B, not only its mass, but its momentum and its kinetic energy.
Hence, if we consider the quantity of momentum in a given direction existing at
any instant in the particles in the region B, this quantity will be altered whenever a
molecule crosses the boundary, carrying its momentum along with it (Fig. 10.1).

Now let us consider all the molecules whose velocity differs by less than a certain
quantity, c, from a given velocity the components of which are u in the direction
perpendicular to the plane from A towards B, and v and w in two other directions
parallel to the plane. Let there be N molecules whose velocity is within these limits
in every unit of volume, and let the mass of each of these be M .

Then the number of these molecules which will cross unit of area of the plane
from A to B in unit of time is

Nu

The momentum of each of these molecules resolved in the direction AB is Mu.
Hence the momentum in this direction communicated to the region B in unit of

time is
MNu2.

Since this bombardment of the region B does not produce motion of the gas, a
pressure must be exerted on the gas by the sides of the vessel, and the amount of
this pressure for every unit of area must be MNu2.

The region A loses positive momentum at the same rate, and in order to preserve
equilibrium there must be a pressure equal to MNu2 on every unit of area of the
surface of the region A.

Hitherto we have considered only one group of molecules, whose velocities lie
between given limits. In every such group that which determines the pressure in the
direction AB on the surface separating A from B is a quantity of the form MNu2,
where N is the number of molecules in the group, and u is the velocity of each
molecule resolved in the direction AB. The other components of the velocity do not
influence the pressure in this direction.
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To find the whole pressure, we must find the sum of all such expressions as MNu2

for all the groups of molecules in the system. We may write this result p = MNū2,
where N now signifies the total number of molecules in unit of volume, and ū2

denotes the mean value of u2 for all these molecules. Now if V 2 is the square of
the velocity without regard to direction, V 2 = u2 + v2 + w2, where u v w are
the components in three directions at right angles. Hence if ū2, v̄2, w̄2 denote the
mean square of these components, and V̄ 2 the mean square of the resultant, V̄ 2 =
ū2 + v̄2 + w̄2. When, as in every gas at rest, the pressure is equal in all directions,
ū2 = v̄2 = w̄2, and therefore V̄ 2 = 3ū2.

Hence the pressure of a gas is

p = 1

3
MNV̄ 2 (10.2)

where M is the mass of each molecule, N is the number of molecules in unit of
volume and V̄ 2 is the mean square of the velocity.

In this expression there are two quantities which have never been directly
measured—the mass of a single molecule, and the number of molecules in unit
of volume. But we have here to do with the product of these quantities, which is
evidently the mass of the substance in unit of volume, or in other words, its density.
Hence we may write the expression

p = 1

3
ρV̄ 2 (10.3)

where ρ is the density of the gas.
It is easy from this expression to determine, as was first done by Joule, the mean

square of the velocity of the molecules of a gas, for

V̄ 2 = 3
p

ρ
(10.4)

where p is the pressure, and ρ the density, which must of course be expressed in
terms of the same fundamental units.

For instance, under the atmospheric pressure of 2116.4 pounds weight on the
square foot, and at the temperature of melting ice, the density of hydrogen is
0.005592 pounds in a cubic foot. Hence p

ρ
= 378816 in gravitation units, and if

the intensity of gravity where this relation was observed was 32.2, we have

V̄ 2 = 36593916,

or, taking the square root of this quantity,

V̄ = 6097 ft/s.

This is the velocity of mean square for the molecules of hydrogen at 32 ◦F. and
at the atmospheric pressure.
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10.2.6 Law of Boyle

Two bodies are said to be of the same temperature when there is no more tendency
for heat to pass from the first to the second than in the reverse direction. In the kinetic
theory of heat, as we have seen, this thermal equilibrium is established when there
is a certain relation between the velocities of agitation of the molecules of the two
bodies. Hence the temperature of a gas must depend on the velocity of agitation of
its molecules, and this velocity must be the same at the same temperature, whatever
be the density.

In the expression p = 1
3ρV̄ 2, the quantity V̄ 2 depends only on the temperature

as long as the gas remains the same. Hence when the density ρ varies, the pressure
p must vary in the same proportion. This is Boyle’s law, which is now raised from
the rank of an experimental fact to that of a deduction from the kinetic theory of
gases.

If v denotes the volume of unit of mass, we may write this expression

pv = 1

3
V̄ 2 (10.5)

Now pv is proportional to the absolute temperature, as measured by a thermome-
ter, of the particular gas under consideration. Hence V̄ 2, the mean square of the
velocity of agitation, is proportional to the absolute temperature measured in this
way.

10.2.7 Law of Gay-Lussac

Let us next consider two different gases in thermal equilibrium. We have already
stated that if M1 M2 are the masses of individual molecules of these gases, and V1
V2 their respective velocities of agitation, it is necessary for thermal equilibrium that

M1V̄1
2 = M2V̄2

2
by Eq. (10.1).

If the pressures of these gases are p1 and p2, and the number of molecules in unit
of volume N1 and N2, then, by Eq. (10.2),

p1 = 1

3
M1N1V̄1

2
and p2 = 1

3
M2N2V̄2

2

If the pressures of the two gases are equal,

M1N1V̄1
2 = M2N2V̄2

2
.

If their temperatures are equal,

M1V̄1
2 = M2V̄2

2
.
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Dividing the terms of the first of these equations by those of the second, we find

N1 = N2 (10.6)

or when two gases are at the same pressure and temperature, the number of
molecules in unit of volume is the same in both gases.

If we put ρ1 = M1N1 and ρ2 = M2N2 for the densities of the two gases, then,
since N1 = N2, we get

ρ1 : ρ2 :: M1 : M2 (10.7)

or the densities of two gases at the same temperature and pressure are proportional
to the masses of their individual molecules.

These two equivalent propositions are the expression of a very important law
established by Gay-Lussac, that the densities of gases are proportional to their
molecular weights.

The proportion by weight in which different substances combine to form chemi-
cal compounds depends, according to Dalton’s atomic theory, on the weights of their
molecules, and it is one of the most important researches in chemistry to determine
the proportions of the weights of the molecules from the proportions in which they
enter into combination. Gay-Lussac discovered that in the case of gases the volumes
of the combining quantities of different gases always stand in a simple ratio to each
other. This law of volumes has now been raised from the rank of an empirical fact to
that of a deduction from our theory, and we may now assert, as a dynamical propo-
sition, that the weights of the molecules of gases (that is, those small portions which
do not part company during their motion) are proportional to the densities of these
gases at standard temperature and pressure.

10.3 Study Questions

QUES. 10.1. What is a molecule? Was Maxwell the first to assert that invisible
molecules give rise to the observed properties of visible bodies? Does Maxwell
believe that molecules (or perhaps atoms) are indivisible? And is there any plausible
alternative to the molecular theory?

QUES. 10.2. How do the motions of molecules in solids, liquids and gases differ?
What is meant by the free path of a molecule, and upon what does it depend?

QUES. 10.3. Do all the molecules of a gas travel at the same speed? If not, then how
are they distributed? How are the average agitation velocities of molecules having
different masses in a mixed gas related to one another?

QUES. 10.4. Is all of the kinetic energy of a complex molecule due to center of mass
agitation? If not, then what other type of motion do molecules exhibit?

QUES. 10.5. Why does a confined gas exert pressure on the walls of its container?
How is the gas pressure related to the average velocity of its constituent molecules?
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QUES. 10.6. What is the definition of thermal equilibrium, and how is this stated
according to the kinetic theory?

QUES. 10.7. When an ideal gas is compressed isothermally, what happens to its pres-
sure? Is this relationship (Boyle’s law) simply an empirical fact, or can it be derived
from the kinetic theory?

QUES. 10.8. When a gas comprised of light molecules (say, helium) and another gas
comprised of heavier molecules (say, oxygen) are held in separate chambers having
the same pressure, temperature and volume, which chamber has a larger number of
molecules? Which gas has the larger density? Is this (the law of Gay-Lussac) simply
an empirical fact, or can it be derived from kinetic theory?

10.4 Exercises

EX. 10.1 (STATISTICAL METHODS ESSAY). What are the relative strengths and
weaknesses of the kinetic and statistical methods of analysis?

EX. 10.2 (PRESSURE, TEMPERATURE AND KINETIC THEORY). A beam of hydrogen
molecules (H2) is aimed directly at a rigid wall. Each molecule in the beam has an
original speed of 1860 m/s.

a) If the beam strikes the wall at a rate of 1023 molecules per second, and the
molecules reflect perfectly elastically from the wall, then what is the force
exerted by the beam on the wall? Is this a sensible force? (ANSWER: 1.2 N)

b) Is the temperature of a gas confined in a perfectly rigid chamber constant? If the
wall is allowed to slowly recoil backwards as a result of the collisions, then what
happens to the speed of the recoiling molecules? What does this imply about the
temperature of a gas confined in a slowly expanding chamber?

c) Finally, if the wall is instead suddenly removed, so that the gas molecules no
longer strike the wall at all, what happens to the speed of the molecules? What
does this imply about the temperature of a gas confined in a chamber whose wall
is suddenly removed, allowing it to expand into a vacuum?3

EX. 10.3 (ISOTOPE SPEEDS). What are the relative mean speeds of the helium-3 and
helium-4 isotopes in air at standard temperature and pressure?

EX. 10.4 (INFLATED LUNGS). Assuming the air in your lungs is at atmospheric pres-
sure, what is the average speed of the oxygen molecules inside your lungs? Based
on this computed speed, about how often do the oxygen molecules collide with the
interior walls of the alveoli of your lungs? (HINT: Fully inflated alveoli have a radius
of about 100 microns.)

3 This process is referred to as Joule-Thomson expansion.
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EX. 10.5 (MEAN FREE PATH OF HELIUM ATOMS). The mean free path is defined as
the average distance a particle travels before undergoing a collision with another
one. As an exercise, consider N spherical marbles of diameter d sealed in a cubical
chamber of volume V which is vigorously shaken.

a) Find a mathematical expression for the mean free path of a marble. (Hint:
You might approach this problem by considering how much volume of space
is “swept out”, so to speak, by a moving marble when it travels an arbitrary
distance, L, and how many other particles occupy this volume.)

b) If d = 1 cm, N = 80 and V = 1 l, what is the mean free path of a marble?
At what value of N would the mean free path exceed the width of the chamber
itself? (Answer: 4 cm)

c) Suppose that a gas of helium atoms (instead of marbles) at standard temperature
and pressure is confined in the chamber. What is the mean free path of a helium
atom? How about in the high-vacuum regime, when the pressure is only 1 ×
10−6 atm?

EX. 10.6 (MOLECULES ESSAY). Do you believe in molecules? If so, on what
experimental or logical grounds?

10.5 Vocabulary

1. Endeavour
2. Devoid
3. Animate
4. Manifest
5. Repose
6. Cogent
7. Antagonism
8. Superficial
9. Enquire

10. Endow



Chapter 11
Molecules and Maxwell’s Demon

The exact equality of each molecule to all others of the same
kind gives it, as Sir John Herschel has well said, the essential
character of a manufactured article.

—James Clerk Maxwell

11.1 Introduction

In the previous reading selection, from the first half of Chap. 22 of his Theory of
Heat, Maxwell explained how—according to the kinetic theory—the pressure of
a gas may be understood as arising from countless collisions of molecules with
the walls of the chamber which contains the gas. Most importantly, the detailed
predictions of the kinetic theory (such as the relationship between the pressure, tem-
perature and volume of a gas) agree with the empirically determined gas laws (those
of Boyle and Gay-Lussac). Such agreement lends support to the molecular theory
of matter. The molecular theory was controversial even at the time of Maxwell. The
idea that visible matter is comprised of tiny invisible objects is, of course, not new.
The doctrine of atomism was asserted—and debated vigorously—by the ancients.
Indeed, the word atom itself comes from the Greek verb τεμνειν, meaning “to cut.”
From it is derived the term α-τoμoς, meaning that which is “un-cuttable.”1

In the reading selection that follows, from the second half of Chap. 22, Maxwell
develops the kinetic theory in more detail, explaining how it may be used to under-
stand material properties (such as the viscosity and specific heat capacity of a gas)
and natural processes (such as diffusion, evaporation and electrolysis). Perhaps most
interestingly, near the end of this chapter, he introduces what is now referred to as
“Maxwell’s Demon,” a tiny intelligent being which seemingly has the ability to
violate the second law of thermodynamics. Does it? Also, in the final part of this
chapter, Maxwell considers the broader implications of accepting the molecular the-
ory of matter. To what surprising conclusion is he led? Do you agree with Maxwell’s
conclusion?

1 A very interesting and comprehensive treatment of the concept of the atom since the time of
the ancient greeks is given in Melsen, A. G., From Atomos to Atom, Duquesne University Press,
Pittsburg, 1952.
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11.2 Reading: Maxwell, on the Molecular Theory
of the Constitution of Bodies

Maxwell, J. C., Theory of Heat, tenth ed., Longmans, Green, and Co., London and
New York, 1891. Chap. XXII.

11.2.1 Law of Charles

We must next consider the effect of changes of temperature on different gases. Since
at all temperatures, when there is thermal equilibrium,

M1V̄1
2 = M2V̄2

2

and since the absolute temperature, as measured by a gas thermometer, is propor-

tional to V̄1
2

when the gas is of the first kind, and to V̄2
2

when the gas is of the

second kind; it follows, since V̄1
2

is itself proportional to V̄2
2
, that the absolute tem-

peratures, as measured by the two thermometers, are proportional, and if they agree
at any one temperature (as the freezing point), they agree throughout. This is the law
of the equal dilatation of gases discovered by Charles.

11.2.2 Kinetic Energy of a Molecule

The mean kinetic energy of agitation of a molecule is the product of its mass by half
the mean square of its velocity, or

1

2
MV̄ 2.

This is the energy due to the motion of the molecule as a whole, but its parts may be
in a state of relative motion. If we assume, with Clausius, that the energy due to this
internal motion of the parts of the molecule tends towards a value having a constant
ratio to the energy of agitation, the whole energy will be proportional to the energy
of agitation, and may be written

1

2
βMV̄ 2.

where β is a factor, always greater than unity, and probably equal to 1.634 for air
and several of the more perfect gases. For steam it may be as much as 2.19, but this
is very uncertain.
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To find the kinetic energy of the substance contained in unit of volume, we have
only to multiply by the number of molecules, and we obtain

T = 1

2
βMNV̄ 2. (11.1)

Comparing this with the Eq. (10.2) which determines the pressure, we get

T = 3

2
βp (11.2)

or the energy in unit of volume is numerically equal to the pressure on unit of area
multiplied by 3

2β.
The energy in unit of mass is found by multiplying this by v, the volume of unit

of mass:

Tm = 3

2
βpv (11.3)

11.2.3 Specific Heat at Constant Volume

Since the product pv is proportional to the absolute temperature, the energy is
proportional to the temperature.

The specific heat is measured dynamically by the increase of energy correspond-
ing to a rise of one degree of temperature. Hence

Kv = 3

2
β

pv

θ
(11.4)

To express the specific heat in ordinary thermal units, we must divide this by J ,
the specific heat of water (Joule’s equivalent). It follows from this expression that
for any one gas the specific heat of unit of mass at constant volume is the same for
all pressures and temperatures, because pv

θ
remains constant. For different gases the

specific heat at constant volume is inversely proportional to the specific gravity, and
directly proportional to β.

Since β is nearly the same for several gases, the specific heat of these gases is
inversely proportional to their specific gravity referred to air, or, since the specific
gravity is proportional to their molecular weight, the specific heat multiplied by the
molecular weight is the same for all these gases. This is the law of Dulong and Petit.
It would be accurate for all gases if the value of β were the same in every case.

It has been shown at p. 183 that the difference of the two specific heats2 is pv
θ

.
Hence their ratio, γ , is

γ = 2

3β
+ 1 and β = 2

3

1

γ − 1

2 Maxwell here refers to page 183 in Chap. XI in his Theory of Heat, where he shows that the
difference between the specific heats of a gas at constant pressure and at constant temperature is
given by cp − cv = R, the ideal gas constant.
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If U is the velocity of sound in a gas, we have, as at p. 228,

U2 = γpv (11.5)

The mean square of the velocity of agitation is

V̄ 2 = 3pv (11.6)

Hence U =
√

γ
3 V , or, if γ = 1.408, as in air and several other gases,

U = 0.6858 V or V = 1.458 U (11.7)

These are the relations between the velocity of sound and the velocity of mean
square of agitation in any gas for which γ = 1.408.

The nature of this book admits only of a brief account of some other results of
the kinetic theory of gases. Two of these are independent of the nature of the action
between the molecules during their encounters.

The first of these relates to the equilibrium of a mixture of gases acted on by
gravity. The result of our theory is that the final distribution of any number of kinds
of gas in a vertical vessel is such that the density of each gas at a given height is the
same as if all the other gases had been removed, leaving it alone in the vessel.

This is exactly the mode of distribution which Dalton supposed to exist in
a mixed atmosphere in equilibrium, the law of diminution of density of each
constituent gas being the same as if no other gases were present.

In our atmosphere the continual disturbances caused by winds carry portions of
the mixed gases from one stratum to another, so that the proportion of oxygen and
nitrogen at different heights is much more uniform than if these gases had been
allowed to take their places by diffusion during a dead calm.

The second result of our theory relates to the thermal equilibrium of a vertical
column. We find that if a vertical column of a gas were left to itself; till by the
conduction of heat it had attained a condition of thermal equilibrium, the tempera-
ture would be the same throughout, or, in other words, gravity produces no effect in
making the bottom of the column hotter or colder than the top.

This result is important in the theory of thermodynamics, for it proves that gravity
has no influence in altering the conditions of thermal equilibrium in any substance,
whether gaseous or not. For if two vertical columns of different substances stand
on the same perfectly conducting horizontal plate, the temperature of the bottom of
each column will be the same; and if each column is in thermal equilibrium of itself;
the temperatures at all equal heights must be the same. In fact, if the temperatures
of the tops of the two columns were different, we might drive an engine with this
difference of temperature, and the refuse heat would pass down the colder column,
through the conducting plate, and up the warmer column; and this would go on till
all the heat was converted into work, contrary to the second law of thermodynamics.

But we know that if one of the columns is gaseous, its temperature is uniform.
Hence that of the other must be uniform, whatever its material.
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This result is by no means applicable to the case of our atmosphere. Setting aside
the enormous direct effect of the sun’s radiation in disturbing thermal equilibrium,
the effect of winds in carrying large masses of air from one height to another tends
to produce a distribution of temperature of a quite different kind, the temperature at
any height being such that a mass of air, brought from one height to another without
gaining or losing heat, would always find itself at the temperature of the surround-
ing air. In this condition of what Sir William Thomson has called the Convective
equilibrium of heat, it is not the temperature which is constant, but the quantity φ,
which determines the adiabatic curves.

In the convective equilibrium of temperature, the absolute temperature is propor-
tional to the pressure raised to the power γ−1

γ
, or 0.29.

The extreme slowness of the conduction of heat in air, compared with the rapidity
with which large masses of air are carried from one height to another by the winds,
causes the temperature of the different strata of the atmosphere to depend far more
on this condition of convective equilibrium than on true thermal equilibrium.

We now proceed to those phenomena of gases which, according to the kinetic
theory, depend upon the particular nature of the action which takes place when the
molecules encounter each other, and on the frequency of these encounters.

There are three phenomena of this kind of which the kinetic theory takes
account—the diffusion of gases, the viscosity of gases, and the conduction of heat
through a gas.

We have already described the known facts about the interdiffusion of two dif-
ferent gases. It is only when the gases are chemically different that we can trace the
process of diffusion, but on the molecular theory diffusion is always going on, even
in a single gas; only it is impossible to trace the progress of the molecules, because
we cannot tell one from another.

The relation between diffusion and viscosity may be explained as follows: Con-
sider the case of motion of a mass of gas, which has already been described in
Chap. XXI., in which the different horizontal layers of the gas slide over each other.
In diffusion the molecules pass, some of them upwards and some of them down-
wards, through any horizontal plane. If the medium has different properties of any
kind above and below this plane, then this interchange of molecules will tend to
assimilate the properties of the two portions of the medium.

In the case of ordinary diffusion, the proportions of the two diffusing substances
are different above and below, and vary in the different horizontal layers according
to their height. In the case of internal friction, the mean horizontal momentum is
different in the different layers, and when the molecules pass through the plane,
carrying their momentum with them, this exchange of momentum between the upper
and lower parts of the medium constitutes a force tending to equalize their velocity,
and this is the phenomenon actually observed in the motion of viscous fluids.

The coefficient of viscosity, when measured in the kinematic way, represents the
rate at which the equalization of velocity goes on by the exchange of the momentum
of the molecules, just as the coefficient of diffusion represents the rate at which the
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equalization of chemical composition goes on by the exchange of the molecules
themselves.

It appears from the kinetic theory of gases that if D is the coefficient of diffusion
of the gas into itself, and ν the viscosity measured kinematically,

ν = 0.6479 D (11.8)

D = 1.5435 ν (11.9)

The conduction of heat in a gas, according to the kinetic theory, is simply the dif-
fusion of the energy of the molecules by their moving about in the medium and
carrying their energy with them till they encounter other molecules, when the energy
is redistributed. The relation of the conductivity κ , measured thermometrically, to
the viscosity ν, measured kinematically, is

κ = 5

3γ
ν (11.10)

It appears, therefore, that diffusion, viscosity, and conductivity in gases are related to
each other in a very simple way, being the rate of equalization of three properties of
the medium—the proportion of its ingredients, its velocity, and its temperature. The
equalization is effected by the same agency in each case—namely, the agitation of
the molecules. In each case, if the density remains the same, the rate of equalization
is proportional to the absolute temperature; and if the temperature remains the same,
the rate of equalization is inversely proportional to the density. Hence, if we consider
the temperature and the pressure as defining the state of the gas, the quantities D,
ν, and κ vary directly as the square of the absolute temperature and inversely as the
pressure.

11.2.4 Molecular Theory of Evaporation and Condensation

The mathematical difficulties arising in the investigation of the motions of molecules
are so great that it is not to be wondered at that most of the numerical results are
confined to the phenomena of gases. The general character, however, of the expla-
nation of many other phenomena by the molecular theory has been pointed out by
Clausius and others.

We have seen that in the case of a gas some of the molecules have a much greater
velocity than others, so that it is only to the average velocity of all the molecules that
we can ascribe a definite value. It is probable that this is also true of the motions of
the molecules of a liquid, so that, though the average velocity may be much smaller
than in the vapour of that liquid, some of the molecules in the liquid may have
velocities equal to or greater than the average velocity in the vapour. If any of the
molecules at the surface of the liquid have such velocities, and if they are moving
from the liquid, they will escape from those forces which retain the other molecules
as constituents of the liquid, and will fly about as vapour in the space outside the
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liquid. This is the molecular theory of evaporation. At the same time, a molecule of
the vapour striking the liquid may become entangled among the molecules of the
liquid, and may thus become part of the liquid. This is the molecular explanation of
condensation. The number of molecules which pass from the liquid to the vapour
depends on the temperature of the liquid. The number of molecules which pass
from the vapour to the liquid depends upon the density of the vapour as well as its
temperature. If the temperature of the vapour is the same as that of the liquid, evapo-
ration will take place as long as more molecules are evaporated than condensed; but
when the density of the vapour has increased to such a value that as many molecules
are condensed as evaporated, then the vapour has attained its maximum density. It
is then said to be saturated, and it is commonly supposed that evaporation ceases.
According to the molecular theory, however, evaporation is still going on as fast as
ever; only, condensation is also going on at an equal rate, since the proportions of
liquid and of gas remain unchanged.

A similar explanation applies to cases in which the vapour or gas is absorbed by
a liquid of a different kind, as when oxygen or carbonic acid is absorbed by water
or alcohol. In such cases a ‘movable equilibrium’ is attained when the liquid has
absorbed a quantity of the gas whose volume at the density of the unabsorbed gas
is a certain multiple or fraction of the volume of the liquid; or, in other words, the
density of the gas in the liquid and outside the liquid stand in a certain numerical
ratio to each other. This subject is treated very fully in Bunsen’s ‘Gasometry.’

The amount of vapour of a liquid diffused into a gas of a different kind is gen-
erally independent of the nature of the gas, except when the gas acts chemically on
the vapour.

Dr. Andrews has shown (‘Proc. R.S.’ 1875) that by mixing nitrogen with carbonic
acid, the critical temperature is lowered, and that Dalton’s law of the density of
mixed vapours only holds at low pressures and at temperatures greatly above their
critical points.

11.2.5 Molecular Theory of Electrolysis

A very interesting part of molecular science which has not been thoroughly worked
out, but which hardly belongs to a treatise on Heat, is the theory of electrolysis. Here
an electromotive force acting on a liquid electrolyte causes the molecules of one of
its components to be urged in one direction, while those of the other component are
urged in the opposite direction. Now these components are joined together in pairs
by chemical forces of great power, so that we might expect that no electrolytic effect
could take place unless the electromotive force were so strong as to be able to tear
these couples asunder. But, according to Clausius, in the dance of molecules which
is always going on, some of the linked pairs of molecules acquire such velocities
that when they have an encounter with a pair also in violent motion the molecules
composing one or both of the pairs are torn asunder, and wander about seeking new
partners. If the temperature is so high that the general agitation is so violent that
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more pairs of molecules are torn asunder than can pair again in an equal time, we
have the phenomenon of Dissociation, studied by M. Ste.-Claire Deville. If, on the
other hand, the separated molecules can always find partners before they are ejected
from the system, the composition of the system remains apparently the same.

Now Professor Clausius considers that it is during these temporary separations
that the electromotive force comes into play as a directing power, causing the
molecules of one component to move on the whole one way, and those of the other
the opposite way. Thus the component molecules are always changing partners, even
when no electromotive force is in action, and the only effect of this force is to give
direction to those movements which are already going on.

Professor Wiedemann,3 who has also taken this view of electrolysis, compares
the phenomenon with that of diffusion, and shows that the electric conductivity of
an electrolyte may be considered as depending on the coefficient of diffusion of the
components through each other.

11.2.6 Molecular Theory of Radiation

The phenomena already described are explained on the molecular theory by the
motion of agitation of the molecules, a motion which is exceedingly irregular, the
intervals between successive encounters and the velocities of a molecule during suc-
cessive free paths not being subject to any law which we can express. The internal
motion of a single molecule is of a very different kind. If the parts of the molecule
are capable of relative motion without being altogether torn asunder, this relative
motion will be some kind of vibration. The small vibrations of a connected system
may be resolved into a number of simple vibrations, the law of each of which is
similar to that of a pendulum. It is probable that in gases the molecules may exe-
cute many of such vibrations in the interval between successive encounters. At each
encounter the whole molecule is roughly shaken. During its free path it vibrates
according to its own laws, the amplitudes of the different simple vibrations being
determined by the nature of the collision, but their periods depending only on the
constitution of the molecule itself. If the molecule is capable of communicating
these vibrations to the medium in which radiations are propagated, it will send forth
radiations of certain definite kinds, and if these belong to the luminous part of the
spectrum, they will be visible as light of definite refrangibility. This, then, is the
explanation, or the molecular theory, of the bright lines observed in the spectra of
incandescent gases. They represent the disturbance communicated to the luminifer-
ous medium by molecules vibrating in a regular and periodic manner during their

3 Gustav Heinrich Wiedemann (1826–1899) was a physicist, writer and editor of scientific peri-
odicals. He carried out significant work on the thermal conductivity of metals and was one of the
founders of the Berlin Physical Society.
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free paths. If the free path is long, the molecule, by communicating its vibrations to
the ether, will cease to vibrate till it encounters some other molecule.

By raising the temperature we increase the velocity of the motion of agitation
and the force of each encounter. The higher the temperature the greater will be
the amplitude of the internal vibrations of all kinds, and the more likelihood will
there be that vibrations of short period will be excited, as well as those fundamental
vibrations which are most easily produced. By increasing the density we diminish
the length of the free path of each molecule, and thus allow less time for the vibra-
tions excited at each encounter to subside, and, since each fresh encounter disturbs
the regularity of the series of vibrations, the radiation will no longer be capable of
complete resolution into a series of vibrations of regular periods, but will be anal-
ysed into a spectrum showing the bright bands due to the regular vibrations, along
with a ground of diffused light, forming a continuous spectrum due to the irregular
motion introduced at each encounter.

Hence when a gas is rare the bright lines of its spectrum are narrow and distinct,
and the spaces between them are dark. As the density of the gas increases, the bright
lines become broader and the spaces between them more luminous.

There is another reason for the broadening of the bright lines and the luminosity
of the whole spectrum in dense gases, which we have already stated at p. 172.4 There
is this difference, however, between the effect there mentioned and that described
here. At p. 172 the light from a certain stratum of incandescent gas was supposed
to penetrate through other strata, which absorbed the brighter rays faster than the
less luminous ones. This effect depends only on the total quantity of gas through
which the rays pass, and will be the same whether it is a mile of gas at thirty inches
pressure, or thirty miles at one inch pressure. The effect which we are now consid-
ering depends on the absolute density, so that it is by no means the same whether a
stratum containing a given quantity of gas is 1 or 30 miles thick.

When the gas is so far condensed that it assumes the liquid or solid form, then, as
the molecules have no free path, they have no regular vibrations, and no bright lines
are commonly observed in incandescent liquids or solids. Mr. Huggins, however,
has observed bright lines in the spectrum of incandescent erbia and lime, which
appear to be due to the solid matter, and not to its vapour.

11.2.7 Limitation of the Second Law of Thermodynamics

Before I conclude, I wish to direct attention to an aspect of the molecular theory
which deserves consideration.

One of the best established facts in thermodynamics is that it is impossible in a
system enclosed in an envelope which permits neither change of volume nor passage
of heat, and in which both the temperature and the pressure are everywhere the same,

4 See Chap. XVI of Maxwell’s Theory of Heat, included in Chap. 13 of the present volume.
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to produce any inequality of temperature or of pressure without the expenditure
of work. This is the second law of thermodynamics, and it is undoubtedly true as
long as we can deal with bodies only in mass, and have no power of perceiving
or handling the separate molecules of which they are made up. But if we conceive
a being whose faculties are so sharpened that he can follow every molecule in its
course, such a being, whose attributes are still as essentially finite as our own, would
be able to do what is at present impossible to us. For we have seen that the molecules
in a vessel full of air at uniform temperature are moving with velocities by no means
uniform, though the mean velocity of any great number of them, arbitrarily selected,
is almost exactly uniform. Now let us suppose that such a vessel is divided into two
portions, A and B, by a division in which there is a small hole, and that a being, who
can see the individual molecules, opens and closes this hole, so as to allow only the
swifter molecules to pass from A to B, and only the slower ones to pass from B to
A. He will thus, without expenditure of work, raise the temperature of B and lower
that of A, in contradiction to the second law of thermodynamics.

This is only one of the instances in which conclusions which we have drawn
from our experience of bodies consisting of an immense number of molecules may
be found not to be applicable to the more delicate observations and experiments
which we may suppose made by one who can perceive and handle the individual
molecules which we deal with only in large masses.

In dealing with masses of matter, while we do not perceive the individual
molecules, we are compelled to adopt what I have described as the statistical method
of calculation, and to abandon the strict dynamical method, in which we follow
every motion by the calculus.

It would be interesting to enquire how far those ideas about the nature and meth-
ods of science which have been derived from examples of scientific investigation
in which the dynamical method is followed are applicable to our actual knowledge
of concrete things, which, as we have seen, is of an essentially statistical nature,
because no one has yet discovered any practical method of tracing the path of a
molecule, or of identifying it at different times.

I do not think, however, that the perfect identity which we observe between differ-
ent portions of the same kind of matter can be explained on the statistical principle
of the stability of the averages of large numbers of quantities each of which may
differ from the mean. For if of the molecules of some substance such as hydrogen,
some were of sensibly greater mass than others, we have the means of producing a
separation between molecules of different masses, and in this way we should be able
to produce two kinds of hydrogen, one of which would be somewhat denser than the
other. As this cannot be done, we must admit that the equality which we assert to
exist between the molecules of hydrogen applies to each individual molecule, and
not merely to the average of groups of millions of molecules.
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11.2.8 Nature and Origin of Molecules

We have thus been led by our study of visible things to a theory that they are made
up of a finite number of parts or molecules, each of which has a definite mass,
and possesses other properties. The molecules of the same substance are all exactly
alike, but different from those of other substances. There is not a regular gradation
in the mass of molecules from that of hydrogen, which is the least of those known to
us, to that of bismuth; but they all fall into a limited number of classes or species, the
individuals of each species being exactly similar to each other, and no intermediate
links are found to connect one species with another by a uniform gradation.

We are here reminded of certain speculations concerning the relations between
the species of living things. We find that in these also the individuals are naturally
grouped into species, and that intermediate links between the species are want-
ing. But in each species variations occur, and there is a perpetual generation and
destruction of the individuals of which the species consist.

Hence it is possible to frame a theory to account for the present state of things by
means of generation, variation, and discriminative destruction.

In the case of the molecules, however, each individual is permanent; there is
no generation or destruction, and no variation, or rather no difference, between the
individuals of each species.

Hence the kind of speculation with which we have become so familiar under the
name of theories of evolution is quite inapplicable to the case of molecules.

It is true that Descartes, whose inventiveness knew no bounds, has given a theory
of the evolution of molecules. He supposes that the molecules with which the heav-
ens are nearly filled have received a spherical form from the long-continued grinding
of their projecting parts, so that, like marbles in a mill, they have ‘rubbed each
other’s angles down.’ The result of this attrition forms the finest kind of molecules,
with which the interstices between the globular molecules are filled. But, besides
these, he describes another elongated kind of molecules, the particula striata, which
have received their form from their often threading the interstices between three
spheres in contact. They have thus acquired three longitudinal ridges, and, since
some of them during their passage are rotating on their axes, these ridges are not
in general parallel to the axis, but are twisted like the threads of a screw. By means
of these little screws he most ingeniously attempts to explain the phenomena of
magnetism.

But it is evident that his molecules are very different from ours. His seem to be
produced by some general break-up of his solid space, and to be ground down in the
course of ages, and, though their relative magnitude is in some degree determinate
there is nothing to determine the absolute magnitude of any of them.

Our molecules, on the other hand, are unalterable by any of the processes which
go on in the present state of things, and every individual of each species is of exactly
the same magnitude, as though they had all been cast in the same mould, like bullets,
and not merely selected and grouped according to their size, like small shot.
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The individuals of each species also agree in the nature of the light which they
emit—that is, in their natural periods of vibration. They are therefore like tuning-
forks all tuned to concert pitch, or like watches regulated to solar time.

In speculating on the cause of this equality we are debarred from imagining any
cause of equalization, on account of the immutability of each individual molecule.
It is difficult, on the other hand, to conceive of selection and elimination of interme-
diate varieties, for where can these eliminated molecules have gone to if, as we have
reason to believe, the hydrogen, &c., of the fixed stars is composed of molecules
identical in all respects with our own? The time required to eliminate from the
whole of the visible universe every molecule whose mass differs from that of some
one of our so-called elements, by processes similar to Graham’s method of dialysis,
which is the only method we can conceive of at present, would exceed the utmost
limits ever demanded by evolutionists as many times as these exceed the period of
vibration of a molecule.

But if we suppose the molecules to be made at all, or if we suppose them to
consist of something previously made, why should we expect any irregularity to
exist among them? If they are, as we believe, the only material things which still
remain in the precise condition in which they first began to exist, why should we
not rather look for some indication of that spirit of order, our scientific confidence
in which is never shaken by the difficulty which we experience in tracing it in the
complex arrangements of visible things, and of which our moral estimation is shown
in all our attempts to think and speak the truth, and to ascertain the exact principles
of distributive justice?

11.3 Study Questions

QUES. 11.1. When an ideal gas is heated up while maintaining its pressure constant,
what happens to its volume? Is this relationship (Charles’ law) a strictly empirical
law, or can it be derived from the kinetic theory of gases?

QUES. 11.2. What is the kinetic energy of a gas?

a) What is the mean kinetic energy of agitation of a single gas molecule?
b) Is the kinetic energy of a gas molecule due to its center of gravity motion alone?

If not, what other types of motion might it undergo?
c) How is the kinetic energy associated with the internal motions of a gas molecule

limited? How can this limit be expressed mathematically?

QUES. 11.3. What is the specific heat capacity of a gas?

a) How is the temperature of a gas related to its total kinetic energy? And how is
the total kinetic energy related to its specific heat capacity?

b) Is the specific heat capacities of a gas larger when measured at constant pressure,
or at constant volume? Why do you suppose this might be?
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c) What is the relationship between the specific heat capacity of a gas measured at
constant pressure and at constant volume?

d) Does the speed of sound in a gas depend on the specific heat capacity of a gas?
Why might this be?

QUES. 11.4. Does gravity affect the temperature of a stationary body?

a) Is the density of a tall vertical column of gas standing in a gravitational field
uniform from top to bottom? What about its pressure and its temperature?

b) Generally speaking, is the temperature distribution of a substance in thermal
equilibrium affected by the presence of a gravitational field? Is the Earth’s
atmosphere in thermal equilibrium?

QUES. 11.5. Why does the temperature of Earth’s atmosphere vary with altitude?

a) Does gravity have an effect on earth’s atmosphere?
b) What is meant by convective equilibrium? How does it differ from thermal

equilibrium?
c) How does the temperature of a gas which is in convective equilibrium vary with

pressure? Is it hotter at high or low altitudes?

QUES. 11.6. Does the coefficient of viscosity of a gas depend on its temperature? on
its pressure? How are diffusion, viscosity and heat conduction in gases related to
one another?

QUES. 11.7. Why does a puddle of water on the ground evaporate if it is not boiling?
Why does the same puddle of water not evaporate if it is poured into a sealed jar?
Similarly, why do you feel cold when you step out of a pool? And how are all these
phenomena explained by kinetic theory?

QUES. 11.8. Why does electrolysis occur even if the electromotive force applied to
the molecules is much weaker than the binding forces of the molecules? In what
sense is electrolysis similar to diffusion?

QUES. 11.9. Why do hot gases emit light? Does the period of vibration of a molecule
depend on its velocity? What does the light emission spectrum of a hot gas look like?
Does the spectrum of a hot gas depend on its temperature? on its density?

QUES. 11.10. Can the second law of thermodynamics be violated by an intelligent
agent?

QUES. 11.11. What is the nature and origin of molecules?

a) How are molecules like, and unlike, species of living things?
b) Is it possible that molecules evolved by variation and natural selection? Who

supported this view? Why does Maxwell reject it?
c) Can molecules suffer changes? Are they, in fact, manufactured articles?
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11.4 Exercises

EX. 11.1 (SPEED OF SOUND). Using the kinetic theory of gases, calculate the speed of
sound in air at standard temperature and pressure. Do your calculations agree with
measured values?

EX. 11.2 (MOMENTUM DIFFUSION AND VISCOSITY). Consider a long train, A, having
mass M and sitting stationary on an east-west railroad track. An identical train, B,
is traveling at a speed V eastward down a parallel adjacent railroad track. As train
B passes train A, one passenger on each train tosses a sack of grain, having mass m,
across to the other train.

a) What happens to the speed of the trains as a result of this transfer of grain sacks?
Do the trains speed up or slow down? Using the principle of conservation of
momentum, calculate the final speed of each train in terms of M , m and V .

b) If N sacks of grain are thrown per second, then what would be the average
force acting on each train? In which direction do these forces act? Do they obey
Newton’s third law of motion?

c) How are these trains analogous to parallel flat plates which are separated by a
layer of viscous fluid and which are sliding past one another? What entities are
analogous to the grain sacks being tossed back and forth?

EX. 11.3 (INK DIFFUSION LABORATORY). Consider a tiny black particle placed in
clear water. This particle is constantly bombarded by nearby water molecules: it
gets kicked around in a random fashion many millions of times per second. Such
agitation is referred to as “Brownian motion” after experiments performed by Robert
Brown in 1827.5 How far do we expect the particle to have moved after a given
amount of time? In this laboratory exercise we will place a drop of ink into a shallow
layer of water and measure the size of the ink drop as a function of elapsed time,
t . If the individual ink molecules execute a random walk, then we might expect the
mean square distance travelled by a collection of ink molecules to be proportional
to the elapsed time:6

r2 = 6Dt + r2
0 . (11.11)

Here, r0 is the initial radius of the droplet. The factor of 6 appears in Eq. 11.11
because diffusion can occur in any of three directions; this factor would be 4 in
a 2-dimensional, and 2 in a 1-dimensional system. The diffusion constant, D, is a
measure of how quickly the ink spreads into the water. According to the kinetic
theory, it is related to the absolute viscosity of the fluid, μ, the radius of the water

5 See Brown, R., A brief account of microsopical observations made in the months of June, July
and August 1827, on the particles contained in the pollen of plants; and on the general existence of
active molecules in organic and inorganic bodies, Philosophical Magazine Series 2, 4(21), 1828.
6 You might with to look ahead to the random walk dice game in Ex. 15.1.
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molecules, a, the temperature, T , and Boltzmann’s constant kB , by the formula7

D = kBT

6πμa
. (11.12)

Therefore, if we measure D, and we known T , μ, and a, then we can calculate kB .
This, in turn, allows us to determine Avogadro’s number. How so? The ideal gas
law can be written either in terms of the number of moles n, and the gas constant,
R (as PV = nRT ). Or it can be written in terms of the number of atoms, N , and
Boltzmann’s constant, kB (as PV = NkBT ). It follows that

nR = NkB . (11.13)

So if we measure Boltzmann’s constant, and we know the gas constant, then we can
determine Avogadro’s number.

To begin your experiment, fill the bottom of a petrie dish with a shallow layer
of water. Place a small drop of ink near the middle of the petrie dish and mea-
sure its radius as a function of time using a finely graded scale placed beneath
the dish; it may take several tries to get a good data set. Does Eq. 11.11 fit your
experimental data? What is your measured diffusion constant? Using the known
absolute viscosity of water,8 and the approximate size of a water molecule, deter-
mine Boltzmann’s constant and Avogadro’s number. How does your measured value
of Avogadro’s number compare to the accepted value? How might temperature
affect your measurements of D, kB , and Na? Is D larger in a gas or in a liquid?
Does your experiment prove that molecules exist?

EX. 11.4 (MAXWELL’S DEMON ESSAY). Consider a tiny clever being who is nearly
the size of a molecule. Let us refer to this being as Maxwell’s demon.9 He guards
a pinhole between two chambers by means of a little gate, which he can open and
close at will with minimal effort. One chamber contains a high-temperature gas,
the other a low-temperature gas. How might Maxwell’s demon allow heat to flow
from the cold into the hot chamber? Would this process violate of the second law of
thermodynamics? If so, what does this imply? If not, why not?

EX. 11.5 (MOLECULES ESSAY). What do you think: is Maxwell correct in saying that
molecules have the “essential character of a manufactured article”? If so, what does
this imply? If not, then what are the marks of a manufactured article?

7 Equation. 11.12 is derived in Sect. 15.6 of Reif, F., Fundamentals of statistical and thermal
physics, McGraw-Hill, 1965.
8 The viscosity of various liquids can be found in Haynes, W. M. (Ed.), The CRC Handbook of
Chemistry and Physics, 95 ed., The Chemical Rubber Company, 2014.
9 Sir William Thomson (Lord Kelvin) first referred to Maxwell’s intelligent molecule-sorting agent
as “Maxwell’s demon.” See Thomson, S. W., Kinetic Theory of the Dissipation of Energy, Nature,
pp. 441–444, 1874. and also Thomson, S. W., The Sorting Demon of Maxwell, Proceedings of the
Royal Institution, ix, 113, 1879.



142 11 Molecules and Maxwell’s Demon

11.5 Vocabulary

1. Diffusion
2. Viscosity
3. Assimilate
4. Saturate
5. Electrolyte
6. Asunder
7. Dissociation
8. Incandescent
9. Refrangibility

10. Luminiferous
11. Spectrum
12. Evolution
13. Attrition
14. Interstices



Chapter 12
The Diffusion Equation

If no change has occurred in the order of things, it cannot have
been more than 200,000,000 years since the earth was in the
condition of a mass of molten matter, on which a solid crust was
just beginning to form.

—James Clerk Maxwell

12.1 Introduction

In his Analytical Theory of Heat, Joseph Fourier developed a mathematical
equation which governs the diffusion of heat—and the resulting distribution of
temperatures—in bodies of various shapes, sizes and compositions.1 Essential to
Fourier’s analysis is the precise stipulation of the thermal boundary conditions
of the body, such as the initial temperature within the body and the rate of heat
flow through the exterior surfaces of the body. Fourier’s treatment of thermal dif-
fusion was both exhaustive and mathematically sophisticated. On the other hand,
in Chap. 18 of his popular Theory of Heat, Maxwell presents Fourier’s method
in a simpler and more intuitive manner. This is the text included below. Maxwell
begins by defining the thermal conductivity of a substance. This includes a discus-
sion of dimensional analysis (another topic which was pioneered by Fourier). He
then explains how Fourier’s diffusion equation can be used to calculate the time-
evolution of the temperature distribution within a heated substance. In so doing he
recalls Fourier’s method of describing the temperature within a body as a series
of harmonic temperature distributions of various spatial frequencies.2 The high-
frequency (short wave-length) terms in the series die out most rapidly as heat
diffuses through the substance, leaving the low-frequency (long wave-length) com-
ponents as the most long-lived. Maxwell then goes on to explain how the diffusion
equation can be used to solve geophysical problems such as seasonal variations of

1 The introduction to Fourier’s Analytical Theory of Heat is included in Chap. 1 of the present
volume.
2 A derivation of the one-dimensional diffusion equation is presented in Ex. 12.3 at the end of the
present chapter.
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Fig. 12.1 A rectangular sec-
tion of a boiler plate whose
bottom surface is heated by
fire.—[K.K.]

Earth’s subsurface temperature, and perhaps even to determine the maximum age of
Earth’s crust.

12.2 Reading: Maxwell, On the Diffusion of Heat by Conduction

Maxwell, J. C., Theory of Heat, tenth ed., Longmans, Green, and Co., London and
New York, 1891. Chap. XVIII.

Whenever different parts of a body are at different temperatures, heat flows from the
hotter parts to the neighbouring colder parts. To obtain an exact notion of conduc-
tion, let us consider a large boiler with a flat bottom, whose thickness is c. The fire
maintains the lower surface at the temperature T , and heat c flows upwards through
the boiler plate to the upper surface, which is in contact with the water at the lower
temperature, S.

Let us now restrict ourselves to the consideration of a rectangular portion of the
boiler plate, whose length is a, its breadth b, and its thickness c (see Fig. 12.1).

The things to be considered are the dimensions of this portion of the body, and
the nature of the material of which it is made, the temperatures of its upper and
lower surfaces, and the flow of heat through it as determined by these conditions. In
the first place it is found that when the difference of the temperature S and T is not
so great as to make a sensible difference between the properties of the substance at
these two temperatures, the flow of heat is exactly proportional to the difference of
temperatures, other things being the same.

Let us suppose that when a, b, and c are each equal to the unit of length, and
when T is 1◦ above s, the steady flow of heat is such that the quantity which enters
the lower surface or leaves the upper surface in the unit of time is k, then k is defined
as the specific thermal conductivity of the substance. To find H , the quantity of heat
which flows in a time t through the portion of boiler plate whose area is ab, and
whose thickness is c, when the lower surface is kept at a temperature T , and the
upper at a temperature S, till the flow has become steady, divide the plate into c

horizontal layers, the thickness of each layer being unity, and divide each layer into
ab cubes, the sides of each cube being unity.

Since the flow of heat is steady, the difference of temperature of the upper and
lower faces of each cube will be 1

c
(T − S). The flow of heat through each cube will
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be k
c
(T −S) in unit of time. Now, in each layer there are ab such cubes, and the flow

goes on for t units of time, so that we obtain for the whole heat conducted in time t

H = abtk

c
(T − S)

where ab is the area and c the thickness of the plate, t the time, T −S the difference
of temperature which causes the flow, and k the specific thermal conductivity of the
substance of the plate.

It appears, therefore, that the heat conducted is directly proportional to the area
of the plate, to the time, to the difference of temperature, and to the conductivity,
and inversely proportional to the thickness of the plate.

12.2.1 On the Dimensions of k, the Specific Thermal Conductivity

From the equation we find

k = cH

abt(T − S)
.

Hence if [L] be the unit of length, [T ] the unit of time, [H ] the unit of heat, and [�]
the unit of temperature, the dimensions of k will be [H ]

[LT �] .
The further discussion of the dimensions of k will depend on the mode of

measuring heat and temperature.

1. If heat is measured as energy, its dimensions are [L2M

T 2 ] and those of k become

[ LM

T 3�
]. This may be called the dynamical measure of the conductivity.

2. If heat is measured in thermal units, such that each thermal unit is capable
of raising unit of mass of a standard substance through 1◦ of temperature, the
dimensions of H are [M�] and those of k will be [ M

LT
].This may be called the

calorimetric measure of the conductivity.
3. If we take as the unit of heat that which will raise unit of volume of the substance

itself 1◦, the dimensions of H are [L3�] and those of k are [L2

T
]. This may be

called the thermometric measure of the conductivity.

In order to obtain a distinct conception of the flow of heat through a solid body, let
us suppose that at a given instant we know the temperature of every point of the
body. If we now suppose a surface or interface to be described within the body such
that at every point of this interface the temperature has a given value T ◦, we may
call this interface the isothermal interface of T ◦. (Of course, when we suppose this
interface to exist in the body, we do not conceive the body to be altered in any way
by this supposition, as if the body were really cut in two by it.) This isothermal
interface separates those parts of the body which are hotter than the temperature T ◦
from those which are colder than this temperature.

Let us now suppose the isothermal interfaces drawn for every exact degree of
temperature, from that of the hottest part of the body to that of the coldest part.
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These interfaces may be curved in any way, but no two different interface can meet
each other, because no part of the body can at the same time have two different tem-
peratures. The body will therefore be divided into layers or shells by these interfaces,
and the space between two isothermal surfaces differing by 1◦ of temperature will
be in the form of a thin shell, whose thickness may vary from one part to another.

At every point of this shell there is a flow of heat from the hotter surface to the
colder surface through the substance of the shell.

The direction of this flow is perpendicular to the surface of the shell, and the rate
of flow is greater the thinner the shell is at the place, and the greater its conductivity.

If we draw a line perpendicular to the surface of the shell, and of length unity,
then if c is the thickness of the shell, and if the neighbouring shells are of nearly
the same thickness, this line will cut a number of shells equal to 1

c
. This, then, is

the difference of temperature between two points in the body at unit of distance,
measured in the direction of the flow of heat, and therefore the flow of heat along
this line is measured by k

c
, where k is the conductivity.

We can now imagine, with the help of the isothermal interfaces, the state of
the body at a given instant. Wherever there is inequality of temperature between
neighbouring parts of the body a flow of heat is going on. This flow is everywhere
perpendicular to the isothermal interfaces, and the flow through unit of area of one
of these interfaces in unit of time is equal to the conductivity divided by the distance
between two consecutive isothermal interfaces.

The knowledge of the actual thermal state of the body, and of the law of con-
duction of heat, thus enables us to determine the flow of heat at every part of the
body. If the flow of heat is such that the amount of heat which flows into any portion
of the body is exactly equal to that which flows out of it, then the thermal state of
this portion of the body will remain the same as long as the flow of heat fulfills this
condition.

If this condition is fulfilled for every part of the body, the temperature at any
point will not alter with the time, the system of isothermal interfaces will continue
the same, and the flow of heat will go on without alteration, being always the same
at the same part of the body.

This state of things is referred to as the state of steady flow of heat. It cannot exist
unless heat is steadily supplied to the hotter parts of the surface of the body, from
some source external to the body, and an equal quantity removed from the colder
parts of the surface by some cooling medium, or by radiation.

The state of steady flow of heat requires the fulfillment at every part of the body of
a certain condition, similar to that which is fulfilled in the flow of an incompressible
fluid.

When this condition is not fulfilled, the quantity of heat which enters any portion
of the body may be greater or less than that which escapes from it. In the one case
heat will accumulate, and the portion of the body will rise in temperature. In the
other case the heat of the portion will diminish, and it will fall in temperature. The
amount of this rise or fall of temperature will be measured numerically by the gain
or loss of heat, divided by the capacity for heat of the portion considered.
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If the portion considered is unit of volume, and if we measure heat as in the
third method given at p. 145 by the quantity required to raise unit of volume of the
substance, in its actual state, 1◦, then the rise of temperature of this portion will be
numerically equal to the total flow of heat into it.

We are now able, by means of a thorough knowledge of the thermal state of the
body at a given instant, to determine the rate at which the temperature of every part
must be changing, and therefore we are able to predict its state in the succeeding
instant. Knowing this, we can predict its state in the next instant following, and
so on.

The only parts of the body to which this method does not apply are those parts of
its surface to which heat is supplied, or from which heat is abstracted, by agencies
external to the body. If we know either the rate at which heat is supplied or abstracted
at every part of the surface, or the actual temperature of every part of the surface
during the whole time, either of these conditions, together with the original thermal
state of the body, will afford sufficient data for calculating the temperature of every
point during all time to come.

The discussion of this problem is the subject of the great work of Joseph Fourier,
Théorie de la Chaleur. It is not possible in a treatise of the size and scope of this
book to reproduce, or even to explain, the powerful analytical methods employed by
Fourier to express the varied conditions, as to the form of its surface and its original
thermal state, to which the body may be subjected. These methods belong, rather, to
the general theory of the application of mathematics to physics; for in every branch
of physics, when the investigation turns upon the expression of arbitrary conditions,
we have to follow the method which Fourier first pointed out in his ‘Theory of Heat.’

I shall only mention one or two of the results given by Fourier in which the
intricacies arising from the arbitrary conditions of the problem are avoided.

The first of these is the case in which the solid is supposed of infinite extent, and
of the same conductivity in every part.

The temperature of every point of this body at a given time is supposed to be
known, and it is required to determine the temperature of any given point P after a
time t has elapsed.

Fourier has given a complete solution of this problem, of which we may obtain
some idea by means of the following considerations. Let k be the conductivity, mea-
sured by the third method, in which the unit of heat adopted is that which will raise
unit of volume of the substance 1◦; then if we make

kt = α2, (12.1)

α will be a line the length of which will be proportional to the square root of the
time.

Let Q be any point in the body, and lets its distance from P be r . Let the orig-

inal temperature of Q be θ . Now take a quantity of matter proportional to e− r2
4kt

and of the temperature θ , and mix it with portions of matter taken from every other
part of the body, the temperature of each portion being the original temperature

of that point, and the quantity of each portion being proportional to e− r2
4kt . The
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mean temperature of all such portions will be the temperature of the point P after a
time t .

In other words, the temperature of P after a time t may be regarded as in some
sense the mean of the original temperatures of all parts of the body. In taking this
mean, however, different parts are allowed different weights, depending on their
distance from P , the parts near P having more influence on the result than those at
a greater distance.

The mathematical formula which indicates the weight to be given to the temper-
ature of each part in taking the mean is a very important one. It occurs in several
branches of physics, particularly in the theory of errors and in that of the motions of
systems of molecules.

It follows from this result that, in calculating the temperature of the point P , we
must take into account the temperature of every other point Q, however distant, and
however short the time may be during which the propagation of heat has been going
on. Hence, in a strict sense, the influence of a heated part of the body extends to the
most distant parts of the body in an incalculably short time, so that it is impossible
to assign to the propagation of heat a definite velocity. The velocity of propagation
of thermal effects depends entirely on the magnitude of the effect which we are able
to recognise; and if there were no limit to the sensibility of our instruments, there
would be no limit to the rapidity with which we could detect the influence of heat
applied to distant parts of the body. But while this influence on distant points can be
expressed mathematically from the first instant, its numerical value is excessively
small until, by the lapse of time, the line α has grown so as to be comparable with r ,
the distance of P from Q. If we take this into consideration, and remember that it is
only when the changes of temperature are comparable with the original differences
of temperature that we can detect them with our instruments, we shall see that the
sensible propagation of heat, so far from being instantaneous, is an excessively slow
process, and that the time required to produce a similar change of temperature in two
similar systems of different dimensions is proportional to the square of the linear
dimensions. For instance, if a red-hot ball of 4 in. diameter fired into a sandbank
has in an hour raised the temperature of the sand 6 in. from its centre 10 ◦F, then
a red-hot ball of 8 in. diameter would take 4 h to raise the temperature of the sand
12 in. from its centre by the same number of degrees. This result, which is very
important in practical questions about the time of cooling or heating of bodies of
any form, may be deduced directly from the consideration of the dimensions of the
quantity k—namely, the square of a length divided by a time. It follows from this
that if in two unequally heated systems of similar form but different dimensions the
conductivity and the temperature are the same at corresponding points at first, then
the process of diffusion of heat will go on at different rates in the two systems, so
that if for each system the time be taken proportional to the square of the linear
dimensions, the temperatures of corresponding points will still be the same in both
systems.

The method just described affords a complete determination of the temperature
of any point of a homogeneous infinite solid at any future time, the temperature of
every point of the solid being given at the instant from which we begin to count the
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time. But when we attempt to deduce from a knowledge of the present thermal state
of the body what must have been its state at some past time, we find that the method
ceases to be applicable.

To make this attempt, we have only to make t , the symbol of the time, a negative
quantity in the expressions given by Fourier. If we adopt the method of taking the
mean of the temperatures of all the particles of the solid, each particle having a
certain weight assigned to it in taking the mean, we find that this weight, according
to the formula, is greater for the distant particles than for the neighbouring ones,
a result sufficiently startling in itself. But when we find that, in order to obtain the
mean, after taking the sum of the temperatures multiplied by their proper factors,
we have to divide by a quantity involving the square root of t , the time, we are
assured that when t is taken negative the operation is simply impossible, and devoid
of any physical meaning, for the square root of a negative quantity, though it may
be interpreted with reference to some geometrical operations, is absolutely without
meaning with reference to time.

It appears, therefore, that Fourier’s solution of this problem, though complete
considered with reference to future time, fails when we attempt to discover the state
of the body in past time.

In the diagram Fig. 12.2 the curves show the distribution of temperature in an
infinite mass at different times, after the sudden introduction of a hot horizontal
stratum in the midst of the infinite solid. The temperature is indicated by the hori-
zontal distance to the right of the vertical line, and the hot stratum is supposed to
have been introduced at the middle of the figure.

The curves indicate the temperatures of the various strata 1, 4, and 16 h after the
introduction of the hot stratum. The gradual diffusion of the heat is evident, and also
the diminishing rate of diffusion as its extent increases.

The problem of the diffusion of heat in an infinite solid does not present those
difficulties which occur in problems relating to a solid of definite shape. These diffi-
culties arise from the conditions to which the surface of the solid may be subjected,
as, for instance, the temperature may be given over part of the surface, the quantity
of heat supplied to another part may be given, or we may only know that the surface
is exposed to air of a certain temperature.

The method by which Fourier was enabled to solve many questions of this kind
depends on the discovery of harmonic distributions of heat.

Suppose the temperatures of the different parts of the body to be so adjusted that
when the body is left to itself under the given conditions relating to the surface, the
temperatures of all the parts converge to the final temperature, their differences from
the final temperature always preserving the same proportion during the process; then
this distribution of temperature is called an harmonic distribution. If we suppose the
final temperature to be taken as zero, then the temperatures in the harmonic distri-
bution diminish in a geometrical progression as the times increase in arithmetical
progression, the ratio of cooling being the same for all parts of the body.

In each of the cases investigated by Fourier there may be an infinite series of
harmonic distributions. One of these, which has the slowest rate of diminution,
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Fig. 12.2 As time evolves, the temperature of a hot stratum of material in the middle of an infinite
body cools as heat diffuses into the surrounding material.—[K.K.]

may be called the fundamental harmonic; the rates of diminution of the others are
proportional to the squares of the natural numbers.

If the body is originally heated in any arbitrary manner, Fourier shows how to
express the original temperature as the sum of a series of harmonic distributions.
When the body is left to itself the part depending on the higher harmonics rapidly
dies away, so that after a certain time the distribution of heat continually approxi-
mates to that due to the fundamental harmonic, which therefore represents the law
of cooling of a body after the process of diffusion of heat has gone on for a long
time.
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Sir William Thomson has shown, in a paper published in the ‘Cambridge and
Dublin Mathematical Journal’ in 1844, how to deduce, in certain cases, the thermal
state of a body in past time from its observed condition at present.

For this purpose, the present distribution of temperature must be expressed (as it
always may be) as the sum of a series of harmonic distributions. Each of these har-
monic distributions is such that the difference of the temperature of any point from
the final temperature diminishes in a geometrical progression as the time increases in
arithmetical progression, the ratio of the geometrical progression being the greater
the higher the degree of the harmonic.

If we now make t negative, and trace the history of the distribution of temperature
up the stream of time, we shall find each harmonic increasing as we go backwards,
and the higher harmonics increasing faster than the lower ones.

If the present distribution of temperature is such that it may be expressed in
a finite series of harmonics, the distribution of temperature at any previous time
maybe calculated; but if (as is generally the case) the series of harmonics is infi-
nite, then the temperature can be calculated only when this series is convergent. For
present and future time it is always convergent, but for past time it becomes ulti-
mately divergent when the time is taken at a sufficiently remote epoch. The negative
value of t , for which the series becomes ultimately divergent, indicates a certain
date in past time such that the present state of things cannot be deduced from any
distribution of temperature occurring previously to that date, and becoming diffused
by ordinary conduction. Some other event besides ordinary conduction must have
occurred since that date in order to produce the present state of things. This is only
one of the cases in which a consideration of the dissipation of energy leads to the
determination of a superior limit to the antiquity of the observed order of things.

A very important class of problems is that in which there is a steady flow of
heat into the body at one point of its surface, and out of it at another part. There
is a certain distribution of temperature in all such cases, which if once established
will not afterwards change: this is called the permanent distribution. If the origi-
nal distribution differs from this, the effect of the diffusion of heat will be to cause
the distribution of temperature to approximate without limit to this permanent dis-
tribution. Questions relating to the permanent distribution of temperature and the
steady flow of heat are in general less difficult than those in which this state is not
established.

Another important class of problems is that in which heat is supplied to a portion
of the surface in a periodic manner, as in the case of the surface of the earth, which
receives and emits heat according to the periods of day and night, and the longer
periods of summer and winter.

The effect of such periodic changes of temperature at the surface is to produce
waves of heat, which descend into the earth and gradually die away. The length of
these waves is proportional to the square root of the periodic time. If we examine the
wave at a depth such that the greatest heat occurs when it is coldest at the surface,
then the extent of the variation of temperature at this depth is only 1

23 of its value
at the surface. In the rocks of this country this depth is about 25 ft for the annual
variations.
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Fig. 12.3 Subsurface temperature variations during different seasons.—[K.K.]

In the diagram Fig. 12.3 the distribution of temperature in the different strata is
represented at two different times. If we suppose the figure to represent the diurnal
variation of temperature, then the curves indicate the temperatures at 2 A.M. and 8
A.M. If we suppose it to represent the annual variation, then the curves correspond
to January and April.

Since the depth of the wave varies as the square root of the periodic time, the
wave-length of the annual variation of temperature will be about 19 times the depth
of those of the diurnal variation. At a depth of about 50 ft the variation of annual
temperature is about a year in arrear.

The actual variation of temperature at the surface does not follow the law which
gives a simple harmonic wave, but, however complicated the actual variation may
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be, Fourier shows how to decompose it into a number of harmonic waves of which
it is the sum. As we descend into the earth these waves die away, the shortest most
rapidly, so that we lose the irregularities of the diurnal variation in a few inches,
and the diurnal variation itself in a few feet. The annual variation can be traced to a
much greater depth; but at depths of 50 ft and upwards the temperature is sensibly
constant throughout the year, the variation being less than the 500th part of that at
the surface.

But if we compare the mean temperatures at different depths, we find that as we
descend the mean temperature rises, and that after we have passed through the upper
strata, in which the periodic variations of temperature are observed, this increase of
temperature goes on as we descend to the greatest depths known to man. In this
country the rate of increase of temperature appears to be about 1 ◦F for 50 ft of
descent.

The fact that the strata of the earth are hotter below than above shows that heat
must be flowing through them from below upwards. The amount of heat which thus
flows upwards in a year through a square foot of the surface can easily be found if we
know the conductivity of the substance through which it passes. For several kinds
of rock the conductivity has been ascertained by means of experiments made upon
detached portions of the rock in the laboratory. But a still more satisfactory method,
where it can be employed, is to make a register of the temperature at different depths
throughout the year, and from this to determine the length of the annual wave of
temperature, or its rate of decay. From either of these data the conductivity of the
substance of the earth may be found without removing the rocks from their bed.

By observations of this kind made at different points of the earth’s surface we
might determine the quantity of heat which flows out of the earth in a year. This can
be done only roughly at present, on account of the small number of places at which
such observations have been made, but we know enough to be certain that a great
quantity of heat escapes from the earth every year. It is not probable that any great
proportion of this heat is generated by chemical action within the earth. We must
therefore conclude that there is less heat in the earth now than in former periods of
its existence, and that its internal parts were formerly very much hotter than they are
now.

In this way Sir W. Thomson has calculated that, if no change has occurred in the
order of things, it cannot have been more than 200,000,000 years since the earth
was in the condition of a mass of molten matter, on which a solid crust was just
beginning to form.

12.2.2 On the Determination of the Thermal Conductivity
of Bodies

The most obvious method of determining the conductivity of a substance is to form it
into a plate of uniform thickness, to bring one of its surfaces to a known temperature
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and the other to a known lower temperature, and to determine the quantity of heat
which passes through the plate in a given time.

For instance, if we could bring one surface to the temperature of boiling water by
a current of steam, and keep the other at the freezing temperature by means of ice,
we might measure the heat transmitted either by the quantity of steam condensed,
or by the quantity of ice melted.

The chief difficulty in this method is that the surface of the plate does not acquire
the temperature of the steam or the ice with which it is in contact, and that it is diffi-
cult to ascertain its real temperature with the accuracy necessary for a determination
of this kind.

Most of the actual determinations of conductivity have been made in a more
indirect way—by observing the permanent distribution of temperature in a bar, one
end of which is maintained at a high temperature, while the rest of its surface is
exposed to the cooling effects of the atmosphere.

The temperatures of a series of points in the bar are ascertained by means of
thermometers inserted into holes drilled in it, and brought into thermal connexion
with its substance by means of fluid metal surrounding the bulbs.

In this way the rate of diminution of temperature with the distance can be
ascertained at various points on the bar.

To determine the conductivity, we must compare the rate of variation of temper-
ature with the flow of heat which is due to it. It is in the determination of this flow
of heat that the indirectness of the method consists. The most trustworthy method
of determining the flow of heat is that employed by Principal Forbes in his experi-
ments on the conduction of heat in an iron bar.3 He took a bar of exactly the same
section and material as the experimental bar, and, after heating it uniformly, allowed
it to cool in air of the same temperature as that surrounding the experimental bar.
By observing the temperature of the cooling bar at frequent intervals of time, he
ascertained the quantity of heat which escaped from the sides of the bar, this heat
being measured in terms of the quantity of heat required to raise unit of volume of
the bar 1◦. This loss of heat depended of course on the temperature of the bar at
the time, and a table was formed showing the loss from a linear foot of the bar in a
minute at any temperature.

Now, in the experimental bar the temperature of every part was known, and there-
fore the loss of heat from any given portion of the bar could be found by making
use of the table. To determine the flow of heat across any particular section, it was
necessary to sum up the loss of heat from all parts of the bar beyond this section,
and when this was done, by comparing the flow of heat across the section with the
rate of diminution of temperature per linear foot in the curve of temperature, the
conductivity of the bar for the temperature of the section was ascertained. Princi-
pal Forbes found that the thermal conductivity of iron decreases as the temperature
increases.

3 Trans. Roy. Soc. Edinb. 1861–1862.
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The conductivity thus determined is expressed in terms of the quantity of heat
required to raise unit of volume of the substance 1◦. If we wish to express it in the
ordinary way in terms of the thermal unit as defined with reference to water at its
maximum density, we must multiply our result by the specific heat of the substance,
and by its density; for the quantity of heat required to raise unit of mass of the
substance 1◦ is its specific heat, and the number of units of mass in unit of volume
is the density of the substance.

As long as we are occupied with questions relating to the diffusion of heat and the
waves of temperature in a single substance, the quantity on which the phenomena
depend is the thermometric conductivity expressed in terms of the substance itself;
but whenever we have to do with the effects of the flow of heat upon other bodies, as
in the case of boiler plates, steam-condensers, &c., we must use a definite thermal
unit, and express the calorimetric conductivity in terms of it. It has been shown by
Professor Tyndall that the wave of temperature travels faster in bismuth than in iron,
though the conductivity of bismuth is much less than that of iron. The reason is that
the thermal capacity of the iron is much greater than that of an equal volume of
bismuth.

Forbes was the first to remark that the order in which the metals follow one
another in respect of thermal conductivity is nearly the same as their order as regards
electric conductivity. This remark is an important one as regards certain metals, but
it must not be pushed too far; for there are substances which are almost perfect
insulators of electricity, whereas it is impossible to find a substance which will not
transmit heat.

The electric conductivity of metals diminishes as the temperature rises. The ther-
mal conductivity of iron also diminishes, but in a smaller ratio, as the temperature
rises.

Professor Tait has given reasons for believing that the thermal conductivity of
metals may be inversely proportional to their absolute temperature.

The electric conductivity of most non-metallic substances, and of all electrolytes
and dielectrics, increases as the temperature rises. We have not sufficient data to
determine whether this is the case as regards their thermal conductivity. According
to the molecular theory of Chap. 22. the thermal conductivity of gases increases as
the temperature rises.

12.2.3 On the Conductivity of Fluids

It is very difficult to determine the thermal conductivity of fluids, because the varia-
tion of temperature which is part of the phenomenon produces a variation of density,
and unless the surfaces of equal temperature are horizontal, and the upper strata are
the warmest, currents will be produced in the fluid which will entirely mask the
phenomena of true conduction.
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Another difficulty arises from the fact that most fluids have a very small conduc-
tivity compared with solid bodies. Hence the sides of the vessel containing the fluid
are often the principal channel for the conduction of heat.

In the case of gaseous fluids the difficulty is increased by the greater mobility of
their parts, and by the great variation of density with change of temperature. Their
conductivity is extremely small, and the mass of the gas is generally small compared
with that of the vessel in which it is contained. Besides this, the effect of direct radia-
tion from the source of heat through the gas on the thermometer produces a heating
effect which may, in some cases, completely mask the effect of true conduction.
For all these reasons, the determination of the thermal conductivity of a gas is an
investigation of extreme difficulty.

12.2.4 Applications of the Theory

The great thermal conductivity of the metals, especially of copper, furnishes the
means of producing many thermal effects in a convenient manner. For instance, in
order to maintain a body at a high temperature by means of a source of heat at some
distance from it, a thick rod of copper may be used to conduct the heat from the
source to the body we wish to heat; and when it is desired to warm the air of a room
by means of a hot pipe of small dimensions, the effect may be greatly increased by
attaching copper plates to the pipe, which become hot by conduction, and expose a
great heating surface to the air.

To ensure an exact equality of temperature in all the parts of a body, it may
be placed in a closed chamber formed of thick sheet copper. If the temperature
is not quite uniform outside this chamber, any difference of temperature between
one part of the outer surface and another will produce such a flow of heat in the
substance of the copper that the temperature of the inner surface will be very nearly
uniform. To maintain the chamber at a uniform high temperature by means of a
flame, as is sometimes necessary, it may be placed in a larger copper chamber, and
so suspended by strings or supported on legs that very little heat can pass by direct
conduction from the outer to the inner wall. Thus we have first an outer highly
conducting shell of copper; next a slowly conducting shell of air, which, however,
tends to equalize the temperature by convection; then another highly conducting
shell of copper; and lastly the inner chamber. The whole arrangement facilitates the
flow of heat parallel to the walls of the chambers, and checks its flow perpendicular
to the walls. Now differences of temperature within the chamber must arise from the
passage of heat from without to within, or in the reverse direction, and the flow of
heat along the successive envelopes tends only to equalize the temperature. Hence,
by the arrangement of successive shells, alternately of highly conducting and slowly
conducting matter, and still more if the slowly conducting matter is fluid, an almost
complete uniformity of temperature may be maintained within the inner chamber,
even when the outer chamber has all the heat applied to it at one point.
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This arrangement was employed by M. Fizeau in his researches on the dilatation
of bodies by heat.

12.3 Study Questions

QUES. 12.1. How can the rate of steady heat flow from the hot to the cold surface of
a rectangular boilerplate be maximized? Consider: what properties of the plate, and
of its surroundings, increase or decrease the rate of heat flow? And how can the rate
of heat flow be expressed mathematically?

QUES. 12.2. What are the dimensions of the specific thermal conductivity of a sub-
stance? What is the difference between dynamical, calorimetric, and thermometric
measures of the thermal conductivity?

QUES. 12.3. Can the past as well as the future isothermal surfaces within a body be
calculated from a complete knowledge of the present isothermal surfaces?

a) What are isothermal surfaces? May different isothermal surfaces intersect one
another? And how are the shape and spacing of isothermal surfaces related to
the direction and rate of heat flow within a substance?

b) Can the rate of heat flow into and out of a region of a body be unequal? If so,
what happens? And what is it called when the isothermal surfaces within a body
are time-independent?

c) What specific information is required to determine the shape of the isothermal
surfaces within a body at any particular instant?

d) At what velocity does heat propagate through a substance? What makes the
assignment of such a velocity difficult? And why does the assignment of a par-
ticular velocity to heat propagation depend on the sensitivity of the measuring
device?

e) How does the rate of thermal diffusion within a body scale with its size? For
example, if its size is doubled, by what factor does the thermal diffusion time
increase?

f) If the original temperature distribution of body is mathematically modeled as a
series of harmonic temperature distributions having different spatial frequencies,
then which frequencies tend to die away most rapidly? Why does this make it
difficult to extrapolate the diffusion of heat to previous times?

QUES. 12.4. What is the difference between steady heat flow and periodic heat
flow? Does Earth’s surface experience steady heat flow? To what depth are Earth’s
seasonal temperature variations felt? Are these subsurface temperature variations
contemporaneous with the surface temperature variations?

QUES. 12.5. Are there any limits to the age of the earth’s crust? Upon what
assumptions is Maxwell’s analysis based?

QUES. 12.6. Why is it difficult to measure the thermal conductivity of a body by
maintaining opposite boundaries of the substance at known temperatures (using,
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say, steam and ice-water) and measuring the heat flow? What happens at the surface
of the body? What alternative method is typically employed?

QUES. 12.7. If the thermal conductivity of iron is greater than that of bismuth, then
why do periodic temperature variations travel faster in bismuth than in iron?

QUES. 12.8. Are the thermal and electrical conductivities of materials correlated?
And are these properties temperature dependent?

QUES. 12.9. Why is the thermal conductivity of fluids and gases particularly difficult
to measure?

QUES. 12.10. Why do radiators make use of high-conductivity metal fins to heat
your house and to cool computer chips? And how can a chamber be constructed
whose interior temperature is practically uniform?

12.4 Exercises

EX. 12.1 (THERMAL CONDUCTIVITY). Two 1 cm thick boilerplates (as in Fig. 12.1)
are stacked on top of each other. The top one is made of iron, the bottom one of
copper. The bottom surface of the cooper boilerplate is subjected to a continuous
flow of steam at 100 ◦C; the top surface of the iron boilerplate is subjected to a
constant flow of ice water at 0 ◦C. What is the temperature at the interface between
the iron and copper boilerplates? How much heat is transported across one square
centimeter of these boilerplates each second? (ANSWER: 83 ◦ C.)

EX. 12.2 (SCALING AND HEAT FLOW). Suppose a red-hot ball 6 in. in diameter is
fired into a sandbank. After 1 h, it has raised the temperature of the sand 9 in. from
its center by 5 ◦C. Now if, instead, a red-hot ball 12 in. in diameter was used, how
long would it take the sand 18 in. from its center be raised by 5 ◦C?

EX. 12.3 (DERIVING THE DIFFUSION EQUATION). In this exercise, we will derive the
diffusion equation for heat flow in one-dimension. We will then obtain a solution to
this equation for the special case of an infinitely long rod subjected to a short heat
pulse at one of its ends. The rate at which heat energy flows into (or out of) a body
is called the heating (or cooling) power:

P = dQ

dt
, (12.2)

The dimensions of P are [ML2

T 3 ]. Now consider a rod of length L and cross sectional
area A whose left end is held at a higher temperature than its right end. The amount
of heat deposited in a tiny segment of length dz, in time dt , is simply the difference
between the amount of heat coming in from its left boundary and going out of its
right boundary:

dQ = [P (z) − P (z + dz)]dt . (12.3)
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a) Taylor expand Eq. 12.3 about z and linearize to obtain

dQ =
[
P (z) − P (z) −

(
∂P

∂z

)
dz

]
dt . (12.4)

b) Rearrange Eq. 12.4 to show that the rate at which heat accumulates in this
segment is

dQ

dt
= −

(
∂P

∂z

)
dz. (12.5)

c) Show that the rate of temperature rise for a rod segment of length dz and density
ρ can be written in terms of the specific heat capacity, c, as

∂T

∂t
= 1

ρAc dz

(
dQ

dt

)
. (12.6)

d) Combine Eqs. 12.5 and 12.6, and show that

∂T

∂t
= − 1

ρAc

(
∂P

∂z

)
. (12.7)

e) If the heat flow down the rod is directly proportional to the temperature gradient,
then

P = −kA

(
∂T

∂z

)
. (12.8)

Eq. 12.8 provides a definition of k, the thermal conductivity of a substance. Based
on the dimensions of k, does it correspond to what Maxwell calls the dynamical,
calorimetric, or thermometric thermal conductivity?

f) Now combine Eqs. 12.7 and 12.8 to show that, if the thermal conductivity of the
rod is uniform, then we obtain the one-dimensional diffusion equation:

∂T

∂t
= D

∂2T

∂z2
, (12.9)

where D ≡ k/ρc is the thermal diffusivity of the substance. Is Eq. 12.9 correct
if k is itself temperature-dependent?

g) What are the dimensions of the thermal diffusivity? Does it correspond to what
Maxwell calls the dynamical, calorimetric, or thermometric thermal conductiv-
ity?

h) Finally, what is the thermal diffusivity of copper at room temperature?

EX. 12.4 (HEAT DIFFUSION IN AN INFINITE ROD). In Ex. 12.3, we derived the one-
dimensional diffusion equation. In this exercise, we will solve the diffusion equation
analytically for the special case of an infinitely long one-dimensional rod. We will
assume that all of the heat is deposited at one location at t = 0.
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a) Verify, by direct substitution into Eq. 12.9, that the solution to the diffusion
equation may be written as

T ′ = B1 + B2
1√
t
e

−z2
4Dt . (12.10)

Here, B1 and B2 are constants. The reason for the T -prime notation on the left-
hand-side of Eq. 12.10 will become apparent in a moment; it does not indicate a
derivative.

b) What is the temperature, T ′, after a very long time? Prove that the difference
between the rod temperature and ambient temperature can be written as

T = B2
1√
t
e

−z2
4Dt . (12.11)

c) The total heat added to the rod, Q, may be found by summing the heats, dq,
added to each segment of the rod.4 These dq’s may be expressed in terms of the
temperature change of each segment as dq = dm cT . Thus

Q =
∫ ∞

0
dq =

∫ ∞

0
dz ρA cT (12.12)

Integrate Eq. 12.12 to show that

B2 = Q

A
√

πρck
. (12.13)

and thus that the solution to the one-dimensional diffusion equation is

T = Q

A
√

πρckt
e−z2/4Dt . (12.14)

d) Eq. 12.14 is a bit complicated. To clarify its meaning, let us define a character-
istic time scale, τ , and a characteristic temperature scale, �, associated with a
particular position along the rod:

τ = z2

4D
and � = 2Q

Aρcz
√

π
. (12.15)

Show that the solution to the diffusion equation can now be expressed in
dimensionless form:

T

�
=

√
τ

t
e−τ/t (12.16)

4 See Clausius’ discussion of the diffusion of heat, especially the text surrounding Eq. 7.15 in
Chap. 7 of the present volume.
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e) Show that the maximum of T/� occurs when t/τ = 2. What is T/� at this
instant?

f) Suppose that the temperature at a distance z0 from the end of a long copper rod
is measured as a function of time. From the amount of heat added to the end of
the rod and the maximum temperature at z0 (i.e. Tmax), one can determine the
value of the product ρc. Show that

ρ c = 0.86 Q√
πAz0 Tmax

(12.17)

g) Furthermore, from measuring the time at which Tmax occurs, one can determine
τ (and hence the thermal diffusivity, D). Finally, from D and ρc, one can deter-
mine the thermal conductivity, k. Find an appropriate mathematical expression
for the thermal conductivity of copper in terms of these measurable quantities.

EX. 12.5 (HEAT DIFFUSION—FOURIER METHOD). In his famous Analytical Theory of
Heat, Fourier claimed that an arbitrary periodic function may be written as a (per-
haps very complicated) sum of sine and cosine functions, each having a different
amplitude and frequency.5 Such a linear combination of trigonometric functions is
thus called a Fourier series. In this exercise, we will very briefly introduce Fourier’s
method of solving the one-dimensional diffusion equation. Suppose that at a par-
ticular time, t , the temperature at a position, x, inside a body is given by T (x, t).
Now instead of representing this temperature distribution as a sum of trigonomet-
ric functions (as Fourier would have), let us appeal to Euler’s formula6 and write
the temperature distribution as a sum of N exponential functions which are each
periodic in x:

T (x, t) =
N∑

k=0

T̃k(t) eikx (12.18)

Here, T̃k(t) represents the complex amplitude (at time t) of the term in the sum
having wave-number k. Note that k here is not the thermal conductivity; it is related
to the wavelength, λ, according to k = 2π/λ. The initial temperature distribution
in the body will determine each of the N values of T̃k(0). Show that Eq. 12.18 is
indeed a solution to the one-dimensional diffusion equation, provided that each of
the amplitudes, T̃k(t), satisfy

T̃k(t) = T̃k(0) e−Dk2t (12.19)

What does this imply regarding the time-evolution of an arbitrary non-uniform tem-
perature distribution within a body? In particular, do the long-wavelength or the
short-wavelength terms in Eq. 12.18 die out sooner? Is this consistent with what
Maxwell claims on p. 150, above?

5 For an introduction to Joseph Fourier’s Analytical Theory of Heat, see Chaps. 1 and 2 of the
present volume.
6 Euler’s formula says that eiθ = cos θ + i sin θ .
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12.5 Vocabulary

1. Conception
2. Arbitrary
3. Propagation
4. Deduce
5. Stratum
6. Harmonic
7. Diurnal
8. Annual
9. Ascertain

10. Intricacy
11. Conduction
12. Diminution
13. Isothermal
14. Convection
15. Conduction
16. Supposition



Chapter 13
Radiant Heat

The brighter the surface of a silver teapot, the longer will it
retain the heat of the tea.

—James Clerk Maxwell

13.1 Introduction

In the previous reading, from Chap. 18 of Maxwell’s Theory of Heat, we focused on
the transport of heat by conduction and (to a lesser extent) convection. In the former
case, heat is transported between stationary bodies which are in thermal contact—
like a hot lead ball buried in cool sand. In the latter case, a warm substance moves
into a cooler region, bringing heat with it—like an ascending hot-air balloon. A third
mode of heat transport, which has only briefly been mentioned, consists of bodies
exchanging heat across empty space in the form of radiation. This phenomenon is
illustrated by the heating of a cool thermometer suspended in a sealed warm vac-
uum chamber, or by the heating of the earth across vast space by the sun. In fact,
all bodies emit heat radiation, whether a red-hot rod of iron, a warm human body or
a cold dust cloud in a distant nebula. In the reading selection that follows Maxwell
describes the nature of radiant heat, and how it depends not only on the temper-
ature of the body, but also on the characteristics of the body’s surface. Although
these phenomena had been studied extensively by many scientists up to the time
of Maxwell, no satisfactory theory had been provided to accurately explain them.
Within 30 years of Maxwell’s publication, Max Planck’s careful examination of the
color and intensity of radiation emitted by black-bodies—those which appear black
when cold—led to the birth of modern quantum theory.

13.2 Reading: Maxwell, On Radiation

Maxwell, J. C., Theory of Heat, tenth ed., Longmans, Green, and Co., London and
New York, 1891. Chapter XVI.
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We have already noticed some of the phenomena of radiation, and have shown that
they do not properly belong to the science of Heat, and that they should rather be
treated, along with sound and light, as a branch of the great science of Radiation.

The phenomenon of radiation consists in the transmission of energy from one
body to another by propagation through the intervening medium, in such a way that
the progress of the radiation may be traced, after it has left the first body and before
it reaches the second, travelling through the medium with a certain velocity, and
leaving the medium behind it in the condition in which it found it.

We have already considered one instance of radiation in the case of waves of
sound. In this case the energy communicated to the air by a vibrating body is propa-
gated through the air, and may finally set some other body, as the drum of the ear, in
motion. During the propagation of the sound this energy exists in the portion of air
through which it is travelling, partly in the form of motion of the air to and fro, and
partly in the form of condensation and rarefaction. The energy due to sound in the
air is distinct from heat, because it is propagated in a definite direction, so that in a
certain time it will have entirely left the portion of air under consideration, and will
be found in another portion of air to which it has travelled. Now heat never passes
out of a hot body except to enter a colder body, so that the energy of sound-waves,
or any other form of energy which is propagated so as to pass wholly out of one
portion of the medium and into another, cannot be called heat.

There are, however, important thermal effects produced by radiation, so that we
cannot understand the science of heat without studying some of the phenomena of
radiation.

When a body is raised to a very high temperature it becomes visible in the dark,
and is said to shine, or to emit light. The velocity of propagation of the light emitted
by the sun and by very hot bodies has been approximately measured, and is esti-
mated to be between 180,000 and 192,000 miles/s, or about 900,000 times faster
than sound in air.

The time taken by the light in passing from one place to another within the lim-
ited range which we have at our command in a laboratory is exceedingly short, and
it is only by means of the most refined experimental methods that it has been mea-
sured. It is certain, however, that there is an interval of time between the emission of
light by one body and its reception by another, and that during this time the energy
transmitted from the one body to the other has existed in some form in the interven-
ing medium. The opinions with regard to the relation between light and heat have
suffered several alternations, according as these agents were regarded as substances
or as accidents. At one time light was regarded as a substance projected from the
luminous body, which, if the luminous body were hot, might itself become hot like
any other substance. Heat was thus regarded as an accident of the substance light.

When the progress of science had rendered the measurement of quantities of
heat as accurate as the measurement of quantities of gases, heat, under the name of
caloric, was placed in the list of substances. Afterwards, the independent progress of
optics led to the rejection of the corpuscular theory of light, and the establishment of
the undulatory theory, according to which light is a wave-like motion of a medium
already existing. The caloric theory of heat, however, still prevailed even after the
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corpuscular theory of light was rejected, so that heat and light seemed almost to
have exchanged places.

When the caloric theory of heat was at length demonstrated to be false, the
grounds of the argument were quite independent of those which had been used in
the case of light.

We shall therefore consider the nature of radiation, whether of light or heat, in
an independent manner, and show why we believe that what is called radiant heat
is the same thing as what is called light, only perceived by us through a different
channel. The same radiation which when we become aware of it by the eye we call
light, when we detect it by a thermometer or by the sensation of heat we call radiant
heat.

In the first place, radiant heat agrees with light in always moving in straight lines
through any uniform medium. It is not, therefore, propagated by diffusion, as in the
case of the conduction of heat, where the heat always travels from hotter to colder
parts of the medium in whatever direction this condition may lead it.

The medium through which radiant heat passes is not heated if perfectly diather-
manous, any more than a perfectly transparent medium through which light passes is
rendered luminous. But if any impurity or defect of transparency causes the medium
to become visible when light passes through it, it will also cause it to become hot
and to stop part of the heat when traversed by radiant heat.

In the next place, radiant heat is reflected from the polished surfaces of bodies
according to the same laws as light. A concave mirror collects the rays of the sun
into a brilliantly luminous focus. If these collected rays fall on a piece of wood,
they will set it on fire. If the luminous rays are collected by means of a convex lens,
similar heating effects are produced, showing that radiant heat is refracted when it
passes from one transparent medium to another.

When light is refracted through a prism, so as to change its direction through
a considerable angle of deviation, it is separated into a series of kinds of light
which are easily distinguished from each other by their various colours. The radiant
heat which is refracted through the prism is also spread out through a considerable
angular range, which shows that it also consists of radiations of various kinds. The
luminosity of the different radiations is evidently not in the same proportion as their
heating effects. For the blue and green rays have very little heating power compared
with the extreme red, which are much less luminous, and the heating rays are found
far beyond the end of the red, where no light at all is visible.

There are other methods of separating the different kinds of light, which are
sometimes more convenient than the use of a prism. Many substances are more
transparent to one kind of light than another, and are therefore called coloured
media. Such media absorb certain rays and transmit others. If the light transmit-
ted by a stratum of a coloured medium afterwards passes through another stratum of
the same medium, it will be much less diminished in intensity than at first. For the
kind of light which is most absorbed by the medium has been already removed, and
what is transmitted by the first stratum is that which can pass most readily through
the second. Thus a very thin stratum of a solution of bichromate of potash cuts
off the whole of the spectrum from the middle of the green to the violet, but the
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remainder of the light, consisting of the red, orange, yellow, and part of the green, is
very slightly diminished in intensity by passing through another stratum of the same
medium.

If, however, the second stratum be of a different medium, which absorbs most of
the rays which the first transmits, It will cut off nearly the whole light, though it may
be itself very transparent for other rays absorbed by the first medium. Thus a stratum
of sulphate of copper absorbs nearly all the rays transmitted by the bichromate of
potash, except a few of the green rays.

Melloni found that different substances absorb different kinds of radiant heat,
and that the heat sifted by a screen of any substance will pass in greater proportion
through a screen of the same substance than unsifted heat, while it may be stopped
in greater proportion than unsifted heat by a screen of a different substance.

These remarks may illustrate the general similarity between light and radiant
heat. We must next consider the reasons which induce us to regard light as depending
on a particular kind of motion in the medium through which it is propagated. These
reasons are principally derived from the phenomena of the interference of light.
They are explained more at large in treatises on light, because it is much easier to
observe these phenomena by the eye than by any kind of thermometer. We shall
therefore be as brief as possible.

There are various methods by which a beam of light from a small luminous object
may be divided into two portions, which, after travelling by slightly different paths,
finally fall on a white screen. Where the two portions of light overlap each other
on the screen, a series of long narrow stripes may be seen, alternately lighter and
darker than the average brightness of the screen near them, and when white light is
used, these stripes are bordered with colours. By using light of one kind only, such
as that obtained from the salted wick of a spirit-lamp, a greater number of bands or
fringes may be seen, and a greater difference of brightness between the light and the
dark bands. If we stop either of the portions of light into which the original beam
was divided, the whole system of bands disappears, showing that they are due, not
to either of the portions alone, but to both united.

If we now fix our attention on one of the dark bands, and then cut off one of the
partial beams of light, we shall observe that instead of appearing darker it becomes
actually brighter, and if we again allow the light to fall on the screen it becomes
dark again. Hence it is possible to produce darkness by the addition of two portions
of light. If light is a substance, there cannot be another substance which when added
to it shall produce darkness. We are therefore compelled to admit that light is not a
substance.

Now is there any other instance in which the addition of two apparently simi-
lar things diminishes the result? We know by experiments with musical instruments
that a combination of two sounds may produce less audible effect than either sepa-
rately, and it can be shown that this takes place when the one is half a wave-length
in advance of the other. Here the mutual annihilation of the sounds arises from the
fact that a motion of the air towards the ear is the exact opposite of a motion away
from the ear, and if the two instruments are so arranged that the motions which they
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tend to produce in the air near the ear are in opposite directions and of equal magni-
tude, the result will be no motion at all. Now there is nothing absurd in one motion
being the exact opposite of another, though the supposition that one substance is the
exact opposite of another substance, as in some forms of the Two-Fluid theory of
Electricity, is an absurdity.

We may show the interference of waves in a visible manner by dipping a two-
pronged fork into water or mercury. The waves which diverge from the two centres
where the prongs enter or leave the fluid are seen to produce a greater disturbance
when they exactly coincide than, when one gets ahead of the other.

Now it is found, by measuring the positions of the bright and dark bands on the
screen, that the difference of the distances travelled by the two portions of light is
for the bright bands always an exact multiple of a certain very small distance which
we shall call a wave-length, whereas for the dark bands it is intermediate between
two multiples of the wave-length, being 1 2, 11 2, 21 2, &c., times that length.

We therefore conclude that whatever exists or takes place at a certain point in a
ray of light, then, at the same instant, at a point at 1 2 or 11 2 of the wave-length in
advance, something exactly the opposite exists or takes place, so that in going along
a ray we find an alternation of conditions which we may call positive and negative.

In the ordinary statement of the theory of undulations these conditions are
described as motion of the medium in opposite directions. The essential charac-
ter of the theory would remain the same if we were to substitute for ordinary
motion to and fro any other succession of oppositely directed conditions. Profes-
sor Rankine has suggested opposite rotations of molecules about their axes, and I
have suggested oppositely directed magnetizations and electromotive forces; but the
adoption of either of these hypotheses would in no way alter the essential character
of the undulation theory.

Now it is found that if a very narrow thermo-electric pile be placed in the position
of the screen, and moved so that sometimes a bright band and sometimes a dark one
falls on the pile, the galvanometer indicates that the pile receives more heat when in
the bright than when in the dark band, and that when one portion of the beam is cut
off the heat in the dark band is increased. Hence in the interference of radiations the
heating effect obeys the same laws as the luminous effect.

Indeed it has been found that even when the source of radiation is a hot body
which emits no luminous rays, the phenomena of interference can be traced, show-
ing that two rays of dark heat can interfere no less than two rays of light. Hence all
that we have said about the waves of light is applicable to the heat-radiation, which
is therefore a series of waves.

It is also known in the case of light that after passing through a plate cut from a
crystal of tourmaline parallel to its axis the transmitted beam cannot pass through a
second similarly cut plate of tourmaline whose axis is perpendicular to that of the
first, though it can pass through it when the axis is in any other position. Such a beam
of light, which has different properties according as the second plate is turned into
different positions round the beam as an axis is called a polarized beam. There are
many other ways of polarizing a beam of light, but the result is always of the same
kind. Now this property of polarized light shows that the motion which constitutes
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light cannot be in the direction of the ray, for then there could be no difference
between different sides of the ray. The motion must be transverse to the direction
of the ray, so that we may now describe a ray of polarized light as a condition of
disturbance in a direction at right angles to the ray propagated through a medium
so that the disturbance is in opposite directions at every half wave-length measured
along the ray. Since Principal J.D. Forbes showed that a ray of dark heat can be
polarized we can make the same assertion about the heat radiation.

Let us now consider the consequences of admitting that what we call radiation,
whether of heat, light, or invisible rays which act on chemical preparations, is of the
nature of a transverse undulation in a medium.

A transverse undulation is completely defined when we know—

1. Its wave-length, or the distance between two places in which the disturbance is
in the same phase.

2. Its amplitude, or the greatest extent of the disturbance.
3. The plane in which the direction of the disturbance lies.
4. The phase of the wave at a particular point.
5. The velocity of propagation through the medium.

When we know these particulars about an undulation, it is completely defined, and
cannot be altered in any way without changing some of these specifications.

Now by passing a beam consisting of any assemblage of undulations through
a prism, we can separate it into portions according to their wave lengths, and we
can select rays of a particular wave-length for examination. Of these we may, by
means of a plate of tourmaline, select those whose plane of polarization is the prin-
cipal plane of the tourmaline, but this is unnecessary for our purpose. We have now
got rays of a definite wave-length. Their velocity of propagation depends only on
the nature of the ray and of the medium, so that we cannot alter it at pleasure,
and the phase changes so rapidly (billions of times in a second) that it cannot be
directly observed. Hence the only variable quantity remaining is the amplitude of
the disturbance, or, in other words, the intensity of the ray.

Now the ray may be observed in various ways. We may, if it excites the sensation
of sight, receive it in to our eye. If it affects chemical compounds, we may observe
its effect on them, or we may receive the ray on a thermo-electric pile and determine
its heating effect.

But all these effects, being effects of one and the same thing, must rise and fall
together. A ray of specified wavelength and specified plane of polarization cannot
be a combination of several different things, such as a light-ray, a heat-ray, and an
actinic ray. It must be one and the same thing, which has luminous, thermal, and
actinic effects, and everything which increases one of these effects must increase
the others also.

The chief reason why so much that has been written on this subject is tainted
with the notion that heat is one thing and light is another seems to be that the
arrangements for operating on radiations of a selected wave-length are troublesome,
and when mixed radiations are employed, in which the luminous and the thermal
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effects are in different proportions, anything which alters the proportion of the dif-
ferent radiations in the mixture alters also the proportion of the resulting thermal
and luminous effect, as indeed it generally alters the colour of the mixed light.

We have seen that the existence of these radiations may be detected in various
ways—by photographic preparations, by the eye, and by the thermometer. There can
be no doubt, however, as to which of these methods gives the true measure of the
energy transmitted by the radiation. This is exactly measured by the heating effect
of the ray when completely absorbed by any substance.

When the wave-length is greater than 812 millionths of a millimetre no luminous
effect is produced on the eye, though the effect on the thermometer may be very
great. When the wave-length is 650 millionths of a millimetre the ray is visible as a
red light, and a considerable heating effect is observed. But when the wave-length is
500 millionths of a millimetre, the ray, which is seen as a brilliant green, has much
less heating effect than the dark or the red rays, and it is difficult to obtain strong
thermal effects with rays of smaller wave-lengths, even when concentrated.

But, on the other hand, the photographic effect of the radiation on salts of silver,
which is very feeble in the red rays, and even in the green rays, becomes more pow-
erful the smaller the wave-length, till for rays whose wave-length is 400, which have
a feeble violet luminosity and a still feebler thermal effect, the photographic effect
is very powerfull and even far beyond the visible spectrum, for wavelengths of less
than 200 millionths of a millimetre, which are quite invisible to our eyes and quite
undiscoverable by our thermometers, the photographic effect is still observed. This
shows that neither the luminous nor the photographic effect is in any way propor-
tional to the energy of the radiation when different kinds of radiation are concerned.
It is probable that when the radiation produces the photographic effect it is not by its
energy doing work on the chemical compound, but rather by a well-timed vibration
of the molecules dislodging them from the position of almost indifferent equilibrium
into which they had been thrown by previous chemical manipulations, and enabling
them to rush together according to their more permanent affinities, so as to form
stabler compounds. In cases of this kind the effect is no more a dynamical measure
of the cause than the effect of the fall of a tree is a measure of the energy of the wind
which uprooted it.

It is true that in many cases the amount of the radiation may be very accurately
estimated by means of its chemical effects even when these chemical effects tend to
diminish the intrinsic energy of the system. But by estimating the heating effect of a
radiation which is entirely absorbed by the heated body we obtain a true measure of
the energy of the radiation. It is found that a surface thickly coated with lampblack
absorbs nearly the whole of every kind of radiation which falls on it. Hence surfaces
of this kind are of great value in the thermal study of radiation.

We have now to consider the conditions which determine the amount and quality
of the radiation from a heated body. We must bear in mind that temperature is a
property of hot bodies and not of radiations, and that qualities such as wave-lengths,
&c., belong to radiations, but not to the heat which produces them or is produced by
them.
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On Prevost’s Theory of Exchanges

When a system of bodies at different temperatures is left to itself, the transfer of
heat which takes place always has the effect of rendering the temperatures of the
different bodies more nearly equal, and this character of the transfer of heat, that
it passes from hotter to colder bodies, is the same whether it is by radiation or by
conduction that the transfer takes place.

Let us consider a number of bodies, all at the same temperature, placed in a
chamber the walls of which are maintained at that temperature, and through which
no heat can pass by radiation (suppose the walls of metal, for instance). No change of
temperature will occur in any of these bodies. They will be in thermal equilibrium
with each other and with the walls of the chamber. This is a consequence of the
definition of equal temperature at Chap. 2.1

Now if any one of these bodies had been taken out of the chamber and placed
among colder bodies there would be a transfer of heat by radiation from the hot
body to the colder ones; or if a colder body had been introduced into the chamber it
would immediately begin to receive heat by radiation from the hotter bodies round
it. But the cold body has no power of acting directly on the hot bodies at a distance,
so as to cause them to begin to emit radiations, nor has the hot chamber any power
to stop the radiation of any one of the hot bodies placed within it. We therefore
conclude with Prevost that a hot body is always emitting radiations, even when no
colder body is there to receive them, and that the reason why there is no change of
temperature when a body is placed in a chamber of the same temperature is that it
receives from the radiation of the walls of the chamber exactly as much heat as it
loses by radiation towards these walls.

If this is the true explanation of the thermal equilibrium of radiation, it follows
that if two bodies have the same temperature the radiation emitted by the first and
absorbed by the second is equal in amount to the radiation emitted by the second
and absorbed by the first during the same time.

The higher the temperature of a body, the greater its radiation is found to be,
so that when the temperatures of the bodies are unequal the hotter bodies will emit
more radiation than they receive from the colder bodies, and therefore, on the whole,
heat will be lost by the hotter and gained by the colder bodies till thermal equilibrium
is attained. We shall return to the comparison of the radiation at different tempera-
tures after we have examined the relations between the radiation of different bodies
at the same temperature.

The application of the theory of exchanges has at various times been extended to
the phenomena of heat as they were successively investigated. Fourier has consid-
ered the law of radiation as depending on the angle which the ray makes with the
surface, and Leslie has investigated its relation to the state of polish of the surface;
but it is in recent times, and chiefly by the researches of B. Stewart, Kirchhoff, and

1 Maxwell refers here to Chap. 2 of Maxwell, J. C., Theory of Heat, tenth ed., Longmans, Green,
and Co., London and New York, 1891.
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De la Provostaye, that the theory of exchanges has been shown to be applicable, not
only to the total amount of the radiation, but to every distinction in quality of which
the radiation is capable.

For, by placing between two bodies of the same temperature a contrivance such
as that already noticed at p. 168, so that only radiations of a determinate wave-length
and in a determinate plane can pass from the one body to the other, we reduce the
general proposition about thermal equilibrium to a proposition about this particular
kind of radiation. We may therefore transform it into the following more definite
proposition.

If two bodies are at the same temperature, the radiation emitted by the first and
absorbed by the second agrees with the radiation emitted by the second and absorbed
by the first, not only in its total heating effect, but in the intensity, wave-length, and
plane of polarization of every component part of either radiation. And the law that
the amount of radiation increases with the temperature must be true, not only for
the whole radiation, but for all the component parts of it when analysed according
to their wave-lengths and planes of polarization.

The consequences of these two propositions, applying as they do to every kind of
radiation, whether detected by its thermal or by its luminous effects, are so numerous
and varied that we cannot attempt any full enumeration of them in this treatise. We
must confine ourselves to a few examples.

When a radiation falls on a body, part of it is reflected and part enters the body.
The latter part again may either be wholly absorbed by the body or partly absorbed
and partly transmitted.

Now lampblack reflects hardly any of the radiation which falls on it, and it
transmits none. Nearly the whole is absorbed.

Polished silver reflects nearly the whole of the radiation which falls upon it,
absorbing only about a fortieth part, and transmitting none.

Rock salt reflects less than a twelfth part of the radiation which falls on it; it
absorbs hardly any, and transmits 92 %.

These three substances, therefore, may be taken as types of absorption, reflexion,
and transmission respectively.

Let us suppose that these properties have been observed in these substances at
the temperature, say, of 212 ◦F, and let them be placed at this temperature within a
chamber whose walls are at the same temperature. Then the amount of the radiation
from the lampblack which is absorbed by the other two substances is, as we have
seen, very small. Now the lampblack absorbs the whole of the radiation from the
silver or the salt. Hence the radiation from these substances must also be small, or,
more precisely—

The radiation of a substance at a given temperature is to the radiation of lampblack at that
temperature as the amount of radiation absorbed by the substance at that temperature is to
the whole radiation which falls upon it.

Hence a body whose surface is made of polished silver will emit a much smaller
amount of radiation than one whose surface is of lampblack. The brighter the surface
of a silver teapot, the longer will it retain the heat of the tea; and if on the surface
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of a metal plate some parts are polished, others rough, and others blackened, when
the plate is made red hot the blackened parts will appear brightest, the rough parts
not so bright, and the polished parts darkest. This is well seen when melted lead is
made red hot. When part of the dross is removed, the polished surface of the melted
metal, though really hotter than the dross, appears of a less brilliant red.

A piece of glass when taken red hot out of the fire appears of a very faint red
compared with a piece of iron taken from the same part of the fire, though the glass
is really hotter than the iron, because it does not throw off its heat so fast. Air or
any other transparent gas, even when raised to a heat at which opaque bodies appear
white hot, emits so little light that its luminosity can hardly be observed in the dark,
at least when the thickness of the heated air is not very great.

Again, when a substance at a given temperature absorbs certain kinds of radiation
and transmits others, it emits at that temperature only those kinds of radiation which
it absorbs. A very remarkable instance of this is observed in the vapour of sodium.
This substance when heated emits rays of two definite kinds, whose wave-lengths
are 0.00059053 and 0.00058989 mm respectively. These rays are visible, and may
be seen in the form of two bright lines by directing a spectroscope upon a flame in
which any compound of sodium is present.

Now if the light emitted from an intensely heated solid body, such as a piece of
lime in the oxyhydrogen light, be transmitted through sodium-vapour at a temper-
ature lower than that of the lime, and then analysed by the spectroscope, two dark
lines are seen, corresponding to the two bright ones formerly observed, showing that
sodium-vapour absorbs the same definite kinds of light which it radiates.

If the temperature of the sodium-vapour is raised, say by using a Bunsen’s burner
instead of a spirit-lamp to produce it, or if the temperature of the lime is lowered till
it is the same as that of the vapour, the dark lines disappear, because the sodium-
vapour now radiates exactly as much light as it absorbs from the light of the lime-ball
at the same temperature. If the sodium-flame is hotter than the lime-ball the lines
appear bright.

This is an illustration of Kirchhoff’s principle, that the radiation of every kind
increases as the temperature rises.

In performing this experiment we suppose the light from the lime-ball to pass
through the sodium-flame before it reaches the slit of the spectroscope. If, however,
the flame is interposed between the slit and the eye, or the screen on which the
spectrum is projected, the dark lines may be seen distinctly, even when the temper-
ature of the sodium-flame is higher than that of the lime-ball. For in the parts of
the spectrum near the lines the light is now compounded of the analysed light of
the lime-ball and the direct light of the sodium-flame, while at the lines themselves
the light of the spectrum of the lime-ball is cut off, and only the direct light of the
sodium-flame remains, so that the lines appear darker than the rest of the field.

It does not belong to the scope of this treatise to attempt to go over the immense
field of research which has been opened up by the application of the spectroscope
to distinguish different incandescent vapours, and which has led to a great increase
of our knowledge of the heavenly bodies.
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If the thickness of a medium, such as sodium-vapour, which radiates and absorbs
definite kinds of light, be very great, the whole being at a high temperature, the light
emitted will be of exactly the same composition as that emitted from lampblack at
the same temperature. For, though some kinds of radiation are much more feebly
emitted by the substance than others, these are also so feebly absorbed that they can
reach the surface from immense depths, whereas the rays which are so copiously
radiated are also so rapidly absorbed that it is only from places very near the surface
that they can escape out of the medium. Hence both the depth and the density of an
incandescent gas cause its radiation to assume more and more of the character of a
continuous spectrum.

When the temperature of a substance is gradually raised, not only does the inten-
sity of every particular kind of radiation increase, but new kinds of radiation are
produced. Bodies of low temperature emit only rays of great wavelength. As the
temperature rises these rays are more copiously emitted, but at the same time other
rays of smaller wave-length make their appearance. When the temperature has risen
to a certain point, part of the radiation is luminous and of a red colour, the luminous
rays of greatest wave-length being red. As the temperature rises, the other luminous
rays appear in the order of the spectrum, but every rise of temperature increases
the intensity of all the rays which have already made their appearance. A white-hot
body emits more red rays than a red-hot body, and more non-luminous rays than any
non-luminous body.

The total thermal value of the radiation at any temperature, depending as it does
upon the amount of all the different kinds of rays of which it is composed, is not
likely to be a simple function of the temperature. Nevertheless, Dulong and Petit
succeeded in obtaining a formula which expresses the facts observed by them with
tolerable exactness. It is of the form

R = maθ ,

where R is the total loss of heat in unit of time by radiation from unit of area of the
surface of the substance at the temperature θ , m is a constant quantity depending
only on the substance and the nature of its surface, and a is a numerical quantity
which, when θ expresses the temperature on the Centigrade scale, is 1.0077.

If the body is placed in a chamber devoid of air, whose walls are at the temper-
ature t , then the heat radiated from the walls to the body and absorbed by it will
be

r = mat ,

so that the actual loss of heat will be

R − r = maθ − mat

The constancy of the amount of radiation between the same surfaces at the same
temperatures affords a very convenient method of comparing quantities of heat. This
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method was referred to in our chapter on Calorimetry (Chap. 3),2 under the name of
the Method of Cooling.

The substance to be examined is heated and put into a thin copper vessel, the
outer surface of which is blackened, or at least is preserved in the same state of
roughness or of polish throughout the experiments. This vessel is placed in a larger
copper vessel so as not to touch it, and the outer vessel is placed in a bath of water
kept at a constant temperature. The temperature of the substance in the smaller ves-
sel is observed from time to time, or, still better, the times are observed at which the
reading of a thermometer immersed in the substance is an exact number of degrees.
In this way the time of cooling, say from 100◦ to 90◦, from 90◦ to 80◦, is registered,
the temperature of the outer vessel being kept always the same.

Suppose that this observation of the time of cooling is made first when the vessel
is filled with water, and then when some other substance is put into it. The rate
at which heat escapes by radiation is the same for the same temperature in both
experiments. The quantity of heat which escapes during the cooling, say from 100◦
to 90◦, in the two experiments, is proportional to the time of cooling. Hence the
capacity of the vessel and its contents in the first experiment is to its capacity in the
second experiment as the time of cooling from 100◦ to 90◦ in the first experiment is
to the time of cooling from 100◦ to 90◦ in the second experiment.

The method of cooling is very convenient in certain cases, but it is necessary
to keep the temperature of the whole of the substance in the inner vessel as nearly
uniform as possible, so that the method must be restricted to liquids which we can
stir, and to solids whose conductivity is great, and which may be cut in pieces and
immersed in a liquid.

The method of cooling has been found very applicable to the measurement of the
quantity of heat conducted through a substance. (See the chapter on Conduction3)

13.2.1 Effect of Radiation on Thermometers

On account of the radiation passing in all directions through the atmosphere, it is a
very difficult thing to determine the true temperature of the air in any place out of
doors by means of a thermometer.

If the sun shines on the thermometer, the reading is of course too high; but if
we put it in the shade, it may be too low, because the thermometer may be emitting
more radiation than it receives from the clear sky. The ground, walls of houses,
clouds, and the various devices for shielding the thermometer from radiation, may
all become sources of error, by causing an unknown amount of radiation on the bulb.
For rough purposes the effects of radiation may be greatly removed by giving the

2 Chap. 3 of Maxwell, J. C., Theory of Heat, tenth ed., Longmans, Green, and Co., London and
New York, 1891.—[K.K.]
3 Included in Chap. 12 of the present volume.—[K.K.]
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bulb a surface of polished silver, of which, as we have seen, the absorption is only a
fortieth of that of lampblack.

A method described by Dr. Joule in a communication to the Philosophical Society
of Manchester, November 26, 1867, seems the only one free from all objections. The
thermometer is placed in a long vertical copper tube open at both ends, but with a
cap to close the lower end, which may be removed or put on without warming it
by the hand. Whatever radiation affects the thermometer must be between it and the
inside of the tube, and if these are of the same temperature, the radiation will have
no effect on the observed reading of the thermometer. Hence, if we can be sure that
the copper tube and the air within it are at the temperature of the atmosphere, and
that the thermometer is in thermal equilibrium, the thermometer reading will be the
true temperature.

Now, if the air within the tube is of the same temperature as the air outside, it will
be of the same density, and it will therefore be in statical equilibrium with it. If it is
warmer it will be lighter, and an upward current will be formed in the tube when the
cap is removed. If it is colder, a downward current will be formed.

To detect these currents a spiral wire is suspended in the tube by a fine fibre,
so that an upward or downward current causes the spiral to twist the fibre, and any
motion of the spiral is made apparent by means of a small mirror attached to it.

To vary the temperature of the copper tube it is enclosed in a wider tube, so that
water may be placed in the space between the tubes, and by pouring in warmer or
cooler water the temperature may be adjusted till there is no current.

We then know that the air is of the same temperature within the tube as it is
without. But we know that the tube is also of the same temperature as the air, for if
it were not it would heat or cool the air and produce a current. Finally, we know that
the thermometer, if stationary, is at the temperature of the atmosphere; for the air in
contact with it, and the sides of the tube, which alone can exchange radiations with
it, have the same temperature as the atmosphere.

13.3 Study Questions

QUES. 13.1. In what sense is wave energy different than the heat energy within a
substance? What evidence supports the idea that energy may reside in space which
is devoid of matter?

QUES. 13.2. What is radiant heat? In particular, (a) does radiant heat travel in
straight lines? (b) Can it be reflected and refracted? (c) Does it heat up transparent
substances through which it travels? (d) Can it be filtered, or sifted, by transparent
media? (e) Does radiant heat exhibit interference patterns? (f) Can it be polarized?

QUES. 13.3. What is the strongest evidence that light is not itself a substance? And
if it is not a substance, then what is it? What are two hypotheses which attempt
to account for the undulation (wave) theory of light? Does the undulation theory
require either of these to be true?
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QUES. 13.4. How are heat, light, and actinic rays alike and different? (a) What are
the properties or quantities which define a transverse wave? (b) How are heat rays,
light rays, and actinic rays experimentally detected? (c) Why were heat and light
thought to be fundamentally different phenomena for many years? (d) How can the
energy of a ray be accurately measured?

QUES. 13.5. Which properties of a body affect the amount of heat radiation it emits
and absorbs?

a) Do bodies in a vacuum exchange heat? What if they are at identical tempera-
tures?

b) What two propositions, or laws, govern the emission and absorption of radiant
heat? What are some of the consequences of these laws?

c) Why should you polish your silver teapot? Consider: when heated to the same
temperature, which glows brightest—a polished mirror, a dull mirror, or a black-
painted mirror?

d) Does the relationship between a substance’s ability to absorb and emit heat radi-
ation apply to each particular frequency of heat radiation, or merely to the total
radiant power?

e) Does the emission spectrum of a substance depend on the size and density of the
substance, or merely on the composition of the substance? For example, would a
star composed entirely of hot sodium gas emit the same color of light as a small
sodium-vapor lamp at the same temperature?

f) What is Kirchoff’s principle? Does the emission spectrum of a medium depend
on its temperature? If so, how?

g) How can an understanding of radiant heat be used to accurately measure the heat
capacity of a solid or liquid substance?

QUES. 13.6. What difficulty arises when using a thermometer to measure air temper-
ature? How can this difficulty be minimized by coating the thermometer bulb with
polished silver? And what is Dr. Joule’s more sophisticated method of alleviating
the aforementioned difficulty?

13.4 Exercises

EX. 13.1 (LESLIE’S CUBE LABORATORY). A Leslie’s Cube can be used to illustrate
how the characteristics of a body’s surface affects the amount of radiant heat it
emits. It consists of a small cubical container that can be filled with very hot water
through a sealable hole in the top and whose four sides are coated with (i) white
paint, (ii) black paint, (iii) rough brass, and (iv) polished brass, respectively. Fill a
Leslie’s cube with very hot water (it doesn’t need to be boiling) and use a radiometer
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to explore the intensity of the radiation emitted from each of the surfaces.4 Does the
radiation intensity change as the cube cools down?

EX. 13.2 (STEFAN-BOLTZMANN LAW LABORATORY). The Stefan-Boltzmann law
relates the intensity of radiation by a black body to its absolute temperature. It
expresses the empirical fact that the total energy radiated per unit time from a unit
area of a black body’s surface is proportional to the fourth power of its temperature:

P = σT 4. (13.1)

The Stefan-Boltzmann constant, σ , has a value of 5.67 × 10−8 W/m2-K4; from a
theoretical perspective, it may be expressed in terms of Boltzmann’s constant, kB ,
the speed of light, c, and Planck’s constant, h:

σ = 2π4k4
B

15 c2h3
. (13.2)

In this laboratory exercise, we will use a radiometer to measure how the energy radi-
ated from a hot tungsten filament depends on the temperature of the filament.5 The
temperature of the tungsten wire may be obtained from its resistance. In particular,
the ratio of the resistance at temperature T to its resistance at temperature 293 K, is
given by

RT

R293
= 1 + α(T − 293) (13.3)

The temperature coefficient, α, for tungsten is about 0.0045.
Place the radiometer about 10 cm from the tungsten filament bulb. Attach the

bulb to a power supply and turn it on. Use a resistor to limit the electrical current
through the filament so you don’t burn it out. Simultaneously measure the electrical
current through the filament and the voltage drop across the filament. Then you
can use Ohm’s law to calculate the resistance, and hence the temperature, of the
filament. How does the radiated power depend on the temperature of the filament?
Does it agree with the Stefan-Boltzmann law?

EX. 13.3 (RADIANT COOLING OF A COPPER SPHERE). It has been found that good
absorbers of radiation are also good emitters of radiation. This is why polishing a
tea-pot minimizes radiative heat loss; it is also why emergency thermal blankets are
coated with reflective material. The emissivity, ε, describes the fraction of radiation
a surface absorbs. For a black body ε = 1, for a mirror ε = 0, and for a grey
body 1 < ε < 0. Generally speaking, the Stefan-Boltzmann law (Eq 13.1) must be
modified to account for the emissivity of the body under consideration:

P = εσT 4. (13.4)

4 A Leslie’s Cube (Model EH-10) and a Radiometer (Model EG-45) are available from Daedelon
Corp., Salem, MA.
5 A Stefan-Boltzmann source (Model EH-15) and a Radiometer (Model EG-45) are available from
Daedelon Corp., Salem, MA.
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As an exercise, suppose that a copper sphere of radius r = 1 cm with an emissivity
ε = 0.5 (its surface is oxidized) is suspended in an evacuated cryogenic chamber.
The chamber is thermally regulated at T0 = 3 K; the initial temperature of the
copper sphere is T = 10 K.

a) At what rate does the copper sphere emit radiant energy from its surface? At
what rate does it absorb radiant energy from the surrounding chamber? Is the
copper sphere in thermal equilibrium?

b) Show that the rate of change of temperature of the sphere is given by

dT

dt
= 3 ε σ

rρ c
(T 4 − T 4

0 ). (13.5)

Here, c and ρ are the specific heat capacity and density of the sphere, respec-
tively.

c) At sufficiently low-temperatures—below the so-called Debye temperature—the
heat capacity of many solid materials is proportional to the third power of its
absolute temperature:

C = 12π4

5
N kB

(
T

�D

)3

. (13.6)

For copper, the Debye temperature �D = 344 K. In Eq. 13.6, N is the number
of atoms in the solid and kB is Boltzmann’s constant. How much time, τ , does it
take for the copper’s temperature to drop by a factor of e−1? What if the sphere
was polished so that ε = 0.05?

13.5 Vocabulary

1. Transmission
2. Intervene
3. Rarefaction
4. Corpuscular
5. Caloric
6. Diathermanous
7. Luminous
8. Refract
9. Stratum

10. Potash
11. Undulation
12. Interference
13. Polarize
14. Transverse
15. Assemblage
16. Tourmaline
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17. Actinic
18. Wavelength
19. Taint
20. Affinity
21. Intrinsic
22. Lampblack
23. Enumerate
24. Treatise
25. Spectroscope
26. Copious
27. Incandescent
28. Spectrum
29. Calorimetry
30. Equilibrium



Chapter 14
From Positivism to Objectivity

The system of physics is still suffering from a strong dose of
anthropomorphism.

—Max Planck

14.1 Introduction

Max Planck (1858–1947) was born in the city of Kiel in the Duchy of Holstein—
now part of Germany.1 As a youth, he attended the classical Königliche Maximilian
Gymnasium, where he was introduced to the principle of the conservation of energy
by one of his teachers, Hermann Müller. Although the young Planck was gifted in
music—he excelled at performing on both the piano and the organ—he opted to
study physics and mathematics when he enrolled at the University of Munich in
1874. Three years later, he traveled to Berlin for a year to study under Hermann
von Helmholtz, Gustav Kirchoff and the mathematician Karl Weierstrass. Inspired
by a careful reading of the theoretical papers of Rudolph Clausius during his time
in Berlin, Planck wrote his 1879 doctoral dissertation on Clausius’ second law of
thermodynamics.2 After completing his habilitation thesis on The equilibrium states
of isotropic bodies at different temperatures, Planck returned to Munich to work as
a lecturer (Privatdozent) for a few years before being appointed Associate Profes-
sor of Theoretical Physics at the University of Kiel in 1885. His subsequent work
began to combine Clausius’ theory of thermodynamics with Maxwell’s electromag-
netic theory of light. An outstanding problem, identified by Kirchoff, was obtaining
a proper theoretical account of the electromagnetic radiation emitted by a heated
body which was itself coated with a completely absorbing substance—the so-called
“black-body radiation.” Existing theories, which treated the body as a collection
of tiny oscillating electrical charges, failed to account for the observed black-body
emission spectrum. After completing his Treatise on Thermodynamics in 1897, he

1 Much of this biographical information was gleaned from “Planck, Max Karl Ernst Ludwig.”
Complete Dictionary of Scientific Biography. 2008. Encyclopedia.com. (December 1, 2014).
http://www.encyclopedia.com/doc/1G2-2830903438.html.
2 See Chaps. 6–9 of the present volume.
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moved to the University of Berlin where he succeeded Kirchoff as assistant profes-
sor and director of the new Institute of Theoretical Physics. It was during his time in
Berlin that Planck solved the problem of black-body radiation. He did so by mak-
ing the radical assumption that electromagnetic energy can only exist in discrete
units, or quanta. The publication of Planck’s quantum hypothesis in 1900 is now
regarded as marking the birth of modern quantum theory. In the reading selection
below, Planck presents some of his mature views on the relationship between heat,
energy and probability.

Planck was elected a member of the Prussian Academy of Sciences in 1894, and
he served as president of the German Physical Society from 1905–1909. For his
work on black-body radiation, Planck was awarded the Nobel Prize for physics in
1918. And after retiring in 1926, he served as president of the Kaiser Wilhelm Soci-
ety. But while he enjoyed great success and recognition in his professional life, his
personal life was marked by profound tragedy. His wife died in 1909; his son Karl
was killed in action during the first world war; his daughters Margarete and Emma
both died in childbirth; and his son Erwin was executed in 1945 for his suspected
role in the failed attempt to assassinate Adolf Hitler. Most of his personal books and
manuscripts were destroyed during the Allied bombing of Berlin.

The two reading selections that follow are drawn from a series of lectures
delivered by Max Planck in 1909 at Columbia University. In his first lecture,
Planck begins with a review of how physical science has been historically orga-
nized anthropomorphically—according to the particular sensitivities of man. He
then describes how the advances in thermodynamics—specifically Rudolph Clau-
sius’s development of the second law—has inspired a reorganization of the whole of
physical science. Along what particular lines does Planck propose to divide physics
henceforth? Would such a division attain the goal of complete objectivity?

14.2 Reading: Planck, Reversibility and Irreversibility

Planck, M., Eight Lectures on Theoretical Physics, Columbia University Press, New
York, 1915. First Lecture.

Colleagues, ladies and gentlemen: The cordial invitation, which the President of
Columbia University extended to me to deliver at this prominent center of American
science some lectures in the domain of theoretical physics, has inspired in me a
sense of the high honor and distinction thus conferred upon me and, in no less
degree, a consciousness of the special obligations which, through its acceptance,
would be imposed upon me. If I am to count upon meeting in some measure your
just expectations, I can succeed only through directing your attention to the branches
of my science with which I myself have been specially and deeply concerned, thus
exposing myself to the danger that my report in certain respects shall thereby have
somewhat too subjective a coloring. From those points of view which appear to me
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the most striking, it is my desire to depict for you in these lectures the present status
of the system of theoretical physics. I do not say: the present status of theoretical
physics; for to cover this far broader subject, even approximately, the number of
lecture hours at my disposal would by no means suffice. Time limitations forbid the
extensive consideration of the details of this great field of learning; but it will be
quite possible to develop for you, in bold outline, a representation of the system as a
whole, that is, to give a sketch of the fundamental laws which rule in the physics of
today, of the most important hypotheses employed, and of the great ideas which have
recently forced themselves into the subject. I will often gladly endeavor to go into
details, but not in the sense of a thorough treatment of the subject, and only with the
object of making the general laws more clear, through appropriate specially chosen
examples. I shall select these examples from the most varied branches of physics.

If we wish to obtain a correct understanding of the achievements of theoreti-
cal physics, we must guard in equal measure against the mistake of overestimating
these achievements, and on the other hand, against the corresponding mistake of
underestimating them. That the second mistake is actually often made, is shown by
the circumstance that quite recently voices have been loudly raised maintaining the
bankruptcy and, débâcle of the whole of natural science. But I think such assertions
may easily be refuted by reference to the simple fact that with each decade the num-
ber and the significance of the means increase, whereby mankind learns directly
through the aid of theoretical physics to make nature useful for its own purposes.
The technology of today would be impossible without the aid of theoretical physics.
The development of the whole of electro-technics from galvanoplasty to wireless
telegraphy is a striking proof of this, not to mention aerial navigation. On the other
hand, the mistake of overestimating the achievements of theoretical physics appears
to me to be much more dangerous, and this danger is particularly threatened by
those who have penetrated comparatively little into the heart of the subject. They
maintain that some time, through a proper improvement of our science, it will be
possible, not only to represent completely through physical formulae the inner con-
stitution of the atoms, but also the laws of mental life. I think that there is nothing
in the world entitling us to the one or the other of these expectations. On the other
hand, I believe that there is much which directly opposes them. Let us endeavor then
to follow the middle course and not to deviate appreciably toward the one side or
the other.

When we seek for a solid immovable foundation which is able to carry the whole
structure of theoretical physics, we meet with the questions: What lies at the bot-
tom of physics? What is the material with which it operates? Fortunately, there is a
complete answer to this question. The material with which theoretical physics oper-
ates is measurements, and mathematics is the chief tool with which this material is
worked. All physical ideas depend upon measurements, more or less exactly carried
out, and each physical definition, each physical law, possesses a more definite sig-
nificance the nearer it can be brought into accord with the results of measurements.
Now measurements are made with the aid of the senses; before all with that of sight,
with hearing and with feeling. Thus far, one can say that the origin and the foun-
dation of all physical research are seated in our sense perceptions. Through sense
perceptions only do we experience anything of nature; they are the highest court of
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appeal in questions under dispute. This view is completely confirmed by a glance
at the historical development of physical science. Physics grows upon the ground
of sensations. The first physical ideas derived were from the individual perceptions
of man, and, accordingly, physics was subdivided into: physics of the eye (optics),
physics of the car (acoustics), and physics of heat sensation (theory of heat). It may
well be said that so far as there was a domain of sense, so far extended originally
the domain of physics. Therefore it appears that in the beginning the division of
physics was based upon the peculiarities of man. It possessed, in short, an anthropo-
morphic character. This appears also, in that physical research, when not occupied
with special sense perceptions, is concerned with practical life, and particularly with
the practical needs of men. Thus, the art of geodesy led to geometry, the study of
machinery to mechanics, and the conclusion lies near that physics in the last analysis
had only to do with the sense perceptions and needs of mankind.

In accordance with this view, the sense perceptions are the essential elements of
the world; to construct an object as opposed to sense perceptions is more or less an
arbitrary matter of will. In fact, when I speak of a tree, I really mean only a complex
of sense perceptions: I can see it, I can hear the rustling of its branches, I can smell
its fragrance, I experience pain if I knock my head against it, but disregarding all
of these sensations, there remains nothing to be made the object of a measurement,
wherewith, therefore, natural science can occupy itself. This is certainly true. In
accordance with this view, the problem of physics consists only in the relating of
sense perceptions, in accordance with experience, to fixed laws; or, as one may
express it, in the greatest possible economic accommodation of our ideas to our
sensations, an operation which we undertake solely because it is of use to us in the
general battle of existence.

All this appears extraordinarily simple and clear and, in accordance with it, the
fact may readily be explained that this positivist view is quite widely spread in sci-
entific circles today. It permits, so far as it is limited to the standpoint here depicted
(not always done consistently by the exponents of positivism), no hypothesis, no
metaphysics; all is clear and plain. I will go still further; this conception never leads
to an actual contradiction. I may even say, it can lead to no contradiction. But, ladies
and gentlemen, this view has never contributed to any advance in physics. If physics
is to advance, in a certain sense its problem must be stated in quite the inverse way,
on account of the fact that this conception is inadequate and at bottom possesses
only a formal meaning.

The proof of the correctness of this assertion is to be found directly from a
consideration of the process of development which theoretical physics has actu-
ally undergone, and which one certainly cannot fail to designate as essential. Let
us compare the system of physics of today with the earlier and more primitive sys-
tem which I have depicted above. At the first glance we encounter the most striking
difference of all, that in the present system, as well in the division of the various
physical domains as in all physical definitions, the historical element plays a much
smaller role than in the earlier system. While originally, as I have shown above,
the fundamental ideas of physics were taken from the specific sense perceptions of
man, the latter are today in large measure excluded from physical acoustics, optics,
and the theory of heat. The physical definitions of tone, color, and of temperature
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are today in no wise derived from perception through the corresponding senses;
but tone and color are defined through a vibration number or wave length, and the
temperature through the volume change of a thermometric substance, or through a
temperature scale based on the second law of thermodynamics; but heat sensation
is in no wise mentioned in connection with the temperature. With the idea of force
it has not been otherwise. Without doubt, the word force originally meant bodily
force, corresponding to the circumstance that the oldest tools, the ax, hammer, and
mallet, were swung by man’s hands, and that the first machines, the lever, roller,
and screw, were operated by men or animals. This shows that the idea of force was
originally derived from the sense of force, or muscular sense, and was, therefore,
a specific sense perception. Consequently, I regard it today as quite essential in a
lecture on mechanics to refer, at any rate in the introduction, to the original meaning
of the force idea. But in the modern exact definition of force the specific notion of
sense perception is eliminated, as in the case of color sense, and we may say, quite
in general, that in modern theoretical physics the specific sense perceptions play a
much smaller rôle in all physical definitions than formerly. In fact, the crowding
into the background of the specific sense elements goes so far that the branches of
physics which were originally completely and uniquely characterized by an arrange-
ment in accordance with definite sense perceptions have fallen apart, in consequence
of the loosening of the bonds between different and widely separated branches, on
account of the general advance towards simplification and coordination. The best
example of this is furnished by the theory of heat. Earlier, heat formed a separate
and unified domain of physics, characterized through the perceptions of heat sensa-
tion. Today one finds in well nigh all physics textbooks dealing with heat a whole
domain, that of radiant heat, separated and treated under optics. The significance of
heat perception no longer suffices to bring together the heterogeneous parts.

In short, we may say that the characteristic feature of the entire previous devel-
opment of theoretical physics is a definite elimination from all physical ideas of the
anthropomorphic elements, particularly those of specific sense perceptions. On the
other hand, as we have seen above, if one reflects that the perceptions form the point
of departure in all physical research, and that it is impossible to contemplate their
absolute exclusion, because we cannot close the source of all our knowledge, then
this conscious departure from the original conceptions must always appear aston-
ishing or even paradoxical. There is scarcely a fact in the history of physics which
today stands out so clearly as this. Now, what are the great advantages to be gained
through such a real obliteration of personality? What is the result for the sake of
whose achievement are sacrificed the directness and succinctness such as only the
special sense perceptions vouchsafe to physical ideas?

The result is nothing more than the attainment of unity and compactness in our
system of theoretical physics, and, in fact, the unity of the system, not only in rela-
tion to all of its details, but also in relation to physicists of all places, all times,
all peoples, all cultures. Certainly, the system of theoretical physics should be ade-
quate, not only for the inhabitants of this earth, but also for the inhabitants of other
heavenly bodies. Whether the inhabitants of Mars, in case such actually exist, have
eyes and ears like our own, we do not know,—it is quite improbable; but that they,
in so far as they possess the necessary intelligence, recognize the law of gravitation
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and the principle of energy, most physicists would hold as self evident: and anyone
to whom this is not evident had better not appeal to the physicists, for it will always
remain for him an unsolvable riddle that the same physics is made in the United
States as in Germany.

To sum up, we may say that the characteristic feature of the actual development
of the system of theoretical physics is an ever extending emancipation from the
anthropomorphic elements, which has for its object the most complete separation
possible of the system of physics and the individual personality of the physicist.
One may call this the objectiveness of the system of physics. In order to exclude
the possibility of any misunderstanding, I wish to emphasize particularly that we
have here to do, not with an absolute separation of physics from the physicist—for a
physics without the physicist is unthinkable,—but with the elimination of the indi-
viduality of the particular physicist and therefore with the production of a common
system of physics for all physicists.

Now, how does this principle agree with the positivist conceptions mentioned
above? Separation of the system of physics from the individual personality of the
physicist? Opposed to this principle, in accordance with those conceptions, each
particular physicist must have his special system of physics, in case that complete
elimination of all metaphysical elements is effected; for physics occupies itself only
with the facts discovered through perceptions, and only the individual perceptions
are directly involved. That other living beings have sensations is, strictly speak-
ing, but a very probable: though arbitrary, conclusion from analogy. The system of
physics is therefore primarily an individual matter and, if two physicists accept the
same system, it is a very happy circumstance in connection with their personal rela-
tionship, but it is not essentially necessary. One can regard this view-point however
he will; in physics it is certainly quite fruitless, and this is all that I care to main-
tain here. Certainly, I might add, each great physical idea means a further advance
toward the emancipation from anthropomorphic ideas. This was true in the passage
from the Ptolemaic to the Copernican cosmical system, just as it is true at the present
time for the apparently impending passage from the so-called classical mechanics
of mass points to the general dynamics originating in the principle of relativity. In
accordance with this, man and the earth upon which he dwells are removed from
the centre of the world. It may be predicted that in this century the idea of time
will be divested of the absolute character with which men have been accustomed
to endow it (cf. the final lecture). Certainly, the sacrifices demanded by every such
revolution in the intuitive point of view are enormous; consequently, the resistance
against such a change is very great. But the development of science is not to be
permanently halted thereby; on the contrary, its strongest impetus is experienced
through precisely those forces which attain success in the struggle against the old
points of view, and to this extent such a struggle is constantly necessary and useful.

Now, how far have we advanced today toward the unification of our system of
physics? The numerous independent domains of the earlier physics now appear
reduced to two; mechanics and electrodynamics, or, as one may say: the physics
of material bodies and the physics of the ether. The former comprehends acous-
tics, phenomena in material bodies, and chemical phenomena; the latter, magnetism,
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optics, and radiant heat. But is this division a fundamental one? Will it prove final?
This is a question of great consequence for the future development of physics.
For myself, I believe it must be answered in the negative, and upon the following
grounds: mechanics and electrodynamics cannot be permanently sharply differen-
tiated from each other. Does the process of light emission, for example, belong to
mechanics or to electrodynamics? To which domain shall be assigned the laws of
motion of electrons? At first glance, one may perhaps say: to electrodynamics, since
with the electrons ponderable matter docs not play any rule. But let one direct his
attention to the motion of free electrons in metals. There he will find, in the study
of the classical researches of H. A. Lorentz, for example, that the laws obeyed by
the electrons belong rather to the kinetic theory of gases than to electrodynamics.
In general, it appears to me that the original differences between processes in the
ether and processes in material bodies are to be considered as disappearing. Elec-
trodynamics and mechanics are not so remarkably far apart, as is considered to be
the case by many people, who already speak of a conflict between the mechanical
and the electrodynamic views of the world. Mechanics requires for its foundation
essentially nothing more than the ideas of space, of time, and of that which is mov-
ing, whether one considers this as a substance or a state. The same ideas are also
involved in electrodynamics. A sufficiently generalized conception of mechanics
can therefore also well include electrodynamics, and, in fact, there are many indica-
tions pointing toward the ultimate amalgamation of these two subjects, the domains
of which already overlap in some measure.

If, therefore, the gulf between ether and matter be once bridged, what is the point
of view which in the last analysis will best serve in the subdivision of the system
of physics? The answer to this question will characterize the whole nature of the
further development of our science. It is, therefore, the most important among all
those which I propose to treat today. But for the purposes of a closer investigation
it is necessary that we go somewhat more deeply into the peculiarities of physical
principles.

We shall best begin at that point from which the first step was made toward
the actual realization of the unified system of physics previously postulated by the
philosophers only; at the principle of conservation of energy. For the idea of energy
is the only one besides those of space and time which is common to all the var-
ious domains of physics. In accordance with what I have stated above, it will be
apparent and quite self evident to you that the principle of energy, before its gen-
eral formularization by Mayer, Joule, and Helmholtz, also bore an anthropomorphic
character. The roots of this principle lay already in the recognition of the fact that
no one is able to obtain useful work from nothing; and this recognition had origi-
nated essentially in the experiences which were gathered in attempts at the solution
of a technical problem: the discovery of perpetual motion. To this extent, perpetual
motion has come to have for physics a far reaching significance, similar to that of
alchemy for the chemist, although it was not the positive, but rather the negative
results of these experiments, through which science was advanced. Today we speak
of the principle of energy quite without reference to the technical viewpoint or to
that of man. We say that the total amount of energy of an isolated system of bodies
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is a quantity whose amount can be neither increased nor diminished through any
kind of process within the system, and we no longer consider the accuracy with
which this law holds as dependent upon the refinement of the methods, which we
at present possess, of testing experimentally the question of the realization of per-
petual motion. In this, strictly speaking, unprovable generalization, impressed upon
us with elemental force, lies the emancipation from the anthropomorphic elements
mentioned above.

While the principle of energy stands before us as a complete independent struc-
ture, freed from and independent of the accidents appertaining to its historical
development, this is by no means true in equal measure in the case of that principle
which R. Clausius introduced into physics; namely, the second law of thermody-
namics. This law plays a very peculiar role in the development of physical science,
to the extent that one is not able to assert today that for it a generally recognized, and
therefore objective formularization, has been found. In our present consideration it
is therefore a matter of particular interest to examine more closely its significance.

In contrast to the first law of thermodynamics, or the energy principle, the second
law may be characterized as follows. While the first law permits in all processes of
nature neither the creation nor destruction of energy, but permits of transformations
only, the second law goes still further into the limitation of the possible processes
of nature, in that it permits, not all kinds of transformations, but only certain types,
subject to certain conditions. The second law occupies itself, therefore, with the
question of the kind and, in particular, with the direction of any natural process.

At this point a mistake has frequently been made, which has hindered in a very
pronounced manner the advance of science up to the present day. In the endeavor to
give to the second law of thermodynamics the most general character possible, it has
been proclaimed by followers of W. Ostwald as the second law of energetics, and the
attempt made so to formulate it that it shall determine quite generally the direction
of every process occurring in nature. Some weeks ago I read in a public academic
address of an esteemed colleague the statement that the import of the second law
consists in this, that a stone falls downwards, that water flows not up hill, but down,
that electricity flows from a higher to a lower potential, and so on. This is a mistake
which at present is altogether too prevalent not to warrant mention here.

The truth is, these statements are false. A stone can just as well rise in the air
as fall downwards; water can likewise flow upwards, as, for example, in a spring;
electricity can flow very well from a lower to a higher potential, as in the case of
oscillating discharge of a condenser. The statements are obviously quite correct, if
one applies them to a stone originally at rest, to water at rest, to electricity at rest;
but then they follow immediately from the energy principle, and one does not need
to add a special second law. For, in accordance with the energy principle, the kinetic
energy of the stone or of the water can only originate at the cost of gravitational
energy, i.e., the center of mass must descend. If, therefore, motion is to take place at
all, it is necessary that the gravitational energy shall decrease. That is, the center of
mass must descend. In like manner, an electric current between two condenser plates
can originate only at the cost of electrical energy already present; the electricity
must therefore pass to a lower potential. If, however, motion and current be already
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present, then one is not able to say, a priori, anything in regard to the direction of the
change; it can take place just as well in one direction as the other. Therefore, there
is no new insight into nature to be obtained from this point of view.

Upon an equally inadequate basis rests another conception of the second law,
which I shall now mention. In considering the circumstance that mechanical work
may very easily be transformed into heat, as by friction, while on the other hand
heat can only with difficulty be transformed into work, the attempt has been made
so to characterize the second law, that in nature the transformation of work into heat
can take place completely, while that of heat into work, on the other hand, only
incompletely and in such manner that every time a quantity of heat is transformed
into work another corresponding quantity of energy must necessarily undergo at the
same time a compensating transformation, as, e.g., the passage of heat from a higher
to a lower temperature. This assertion is in certain special cases correct, but does not
strike in general at the true import of the matter, as I shall show by a simple example.

One of the most important laws of thermodynamics is, that the total energy of
an ideal gas depends only upon its temperature, and not upon its volume. If an
ideal gas be allowed to expand while doing work, and if the cooling of the gas be
prevented through the simultaneous addition of heat from a heat reservoir at higher
temperature, the gas remains unchanged in temperature and energy content, and
one may say that the heat furnished by the heat reservoir is completely transformed
into work without exchange of energy. Not the least objection can be urged against
this assertion. The law of incomplete transformation of heat into work is retained
only through the adoption of a different point of view, but which has nothing to
do with the status of the physical facts and only modifies the way of looking at
the matter, and therefore can neither be supported nor contradicted through facts;
namely, through the introduction ad hoc of new particular kinds of energy, in that
one divides the energy of the gas into numerous parts which individually can depend
upon the volume. But it is a priori evident that one can never derive from so artificial
a definition a new physical law, and it is with such that we have to do when we pass
from the first law, the principle of conservation of energy, to the second law.

I desire now to introduce such a new physical law: “It is not possible to construct
a periodically functioning motor which in principle does not involve more than the
raising of a load and the cooling of a heat reservoir.” It is to be understood, that
in one cycle of the motor quite arbitrary complicated processes may take place,
but that after the completion of one cycle there shall remain no other changes in
the surroundings than that the heat reservoir is cooled and that the load is raised a
corresponding distance, which may be calculated from the first law. Such a motor
could of course be used at the same time as a refrigerating machine also, without
any further expenditure of energy and materials. Such a motor would moreover be
the most efficient in the world, since it would involve no cost to run it; for the earth,
the atmosphere, or the ocean could be utilized as the heat reservoir. We shall call
this, in accordance with the proposal of W. Ostwald, perpetual motion of the second
kind. Whether in nature such a motion is actually possible cannot be inferred from
the energy principle, and may only be determined by special experiments.

Just as the impossibility of perpetual motion of the first kind leads to the principle
of the conservation of energy, the quite independent principle of the impossibility
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of perpetual motion of the second kind leads to the second law of thermodynam-
ics, and, if we assume this impossibility as proven experimentally, the general
law follows immediately: there are processes in nature which is no possible way
can be made completely reversible. For consider, e.g., a frictional process through
which mechanical work is transformed into heat with the aid of suitable appara-
tus, if it were actually possible to make in some way such complicated apparatus
completely reversible, so that everywhere in nature exactly the same conditions be
reestablished as existed at the beginning of the frictional process, then the apparatus
considered would be nothing more than the motor described above, furnishing a per-
petual motion of the second kind. This appears evident immediately, if one clearly
perceives what the apparatus would accomplish: transformation of heat into work
without any further outstanding change.

We call such a process, which in no wise can be made completely reversible,
an irreversible process, and all other processes reversible processes; and thus we
strike the kernel of the second law of thermodynamics when we say that irreversible
processes occur in nature. In accordance with this, the changes in nature have a
unidirectional tendency. With each irreversible process the world takes a step for-
ward, the traces of which under no circumstances can be completely obliterated.
Besides friction, examples of irreversible processes are: heat conduction, diffusion,
conduction of electricity in conductors of finite resistance, emission of light and
heat radiation, disintegration of the atom in radioactive substances, and so on. On
the other hand, examples of reversible processes are: motion of the planets, free
fall in empty space, the undamped motion of a pendulum, the frictionless flow of
liquids, the propagation of light and sound waves without absorption and refrac-
tion, undamped electrical vibrations, and so on. For all these processes are already
periodic or may be made completely reversible through suitable contrivances, so
that there remains no outstanding change in nature; for example, the free fall of a
body whereby the acquired velocity is utilized to raise the body again to its original
height; a light or sound wave which is allowed in a suitable manner to be totally
reflected from a perfect mirror.

What now are the general properties and criteria of irreversible processes, and
what is the general quantitative measure of irreversibility? This question has been
examined and answered in the most widely different ways, and it is evident here
again how difficult it is to reach a correct formularization of a problem. Just as orig-
inally we came upon the trail of the energy principle through the technical problem
of perpetual motion, so again a technical problem, namely, that of the steam engine,
led to the differentiation between reversible and irreversible processes. Long ago
Sadi Carnot recognized, although he utilized an incorrect conception of the nature
of heat, that irreversible processes are less economical than reversible, or that in an
irreversible process a certain opportunity to derive mechanical work from heat is
lost. What then could have been simpler than the thought of making, quite in gen-
eral, the measure of the irreversibility of a process the quantity of mechanical work
which is unavoidably lost in the process. For a reversible process then, the unavoid-
ably lost work is naturally to be set equal to zero. This view, in accordance with
which the import of the second law consists in a dissipation of useful energy, has
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in fact, in certain special cases, e.g., in isothermal processes, proved itself useful. It
has persisted, therefore, in certain of its aspects up to the present day; but for the
general case, however, it has shown itself as fruitless and, in fact, misleading. The
reason for this lies in the fact that the question concerning the lost work in a given
irreversible process is by no means to be answered in a determinate manner, so long
as nothing further is specified with regard to the source of energy from which the
work considered shall be obtained.

An example will make this clear. Heat conduction is an irreversible process, or
as Clausius expresses it: Heat cannot without compensation pass from a colder to
a warmer body. What now is the work which in accordance with definition is lost
when the quantity of heat Q passes through direct conduction from a warmer body
at the temperature T1 to a colder body at the temperature T2? In order to answer
this question, we make use of the heat transfer in carrying out a reversible Carnot
cyclical process between the two bodies employed as heat reservoirs. In this process
a certain amount of work would be obtained, and it is just the amount sought, since
it is that which would be lost in the direct passage by conduction; but this has no
definite value so long as we do not know whence the work originates, whether, e.g.,
in the warmer body or in the colder body, or from somewhere else. Let one reflect
that the heat given up by the warmer body in the reversible process is certainly not
equal to the heat absorbed by the colder body, because a certain amount of heat is
transformed into work, and that we can identify, with exactly the same right, the
quantity of heat Q transferred by the direct process of conduction with that which
in the cyclical process is given up by the warmer body, or with that absorbed by
the colder body. As one does the former or the latter, he accordingly obtains for the
quantity of lost work in the process of conduction:

Q · T1 − T2

T1
or Q · T1 − T2

T2
. (14.1)

We see, therefore, that the proposed method of expressing mathematically the irre-
versibility of a process does not in general effect its object, and at the same time
we recognize the peculiar reason which prevents its doing so. The statement of the
question is too anthropomorphic. It is primarily too much concerned with the needs
of mankind, in that it refers directly to the acquirement of useful work. If one require
from nature a determinate answer, he must take a more general point of view, more
disinterested, less economic. We shall now seek to do this.

Let us consider any typical process occurring in nature. This will carry all bodies
concerned in it from a determinate initial state, which I designate as state A, into
a determinate final state B. The process is either reversible or irreversible. A third
possibility is excluded. But whether it is reversible or irreversible depends solely
upon the nature of the two states A and B, and not at all upon the way in which the
process has been carried out; for we are only concerned with the answer to the ques-
tion as to whether or not, when the state B is once reached, a complete return to A in
any conceivable manner may be accomplished. If now, the complete return from B

to A is not possible, and the process therefore irreversible, it is obvious that the state
B may be distinguished in nature through a certain property from state A. Several
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years ago I ventured to express this as follows: that nature possesses a greater “pref-
erence” for state B than for state A. In accordance with this mode of expression,
all those processes of nature are impossible for whose final state nature possesses a
smaller preference than for the original state. Reversible processes constitute a lim-
iting case; for such, nature possesses an equal preference for the initial and for the
final state, and the passage between them takes place as well in one direction as the
other.

We have now to seek a physical quantity whose magnitude shall serve as a gen-
eral measure of the preference of nature for a given state. This quantity must be one
which is directly determined by the state of the system considered, without refer-
ence to the previous history of the system, as is the case with the energy, with the
volume, and with other properties of the system. It should possess the peculiarity of
increasing in all irreversible processes and of remaining unchanged in all reversible
processes, and the amount of change which it experiences in a process would furnish
a general measure for the irreversibility of the process.

R. Clausius actually found this quantity and called it “entropy.” Every system of
bodies possesses in each of its states a definite entropy, and this entropy expresses
the preference of nature for the state in question. It can, in all the processes which
take place within the system, only increase and never decrease. If it be desired to
consider a process in which external actions upon the system are present, it is nec-
essary to consider those bodies in which these actions originate as constituting part
of the system; then the law as stated in the above form is valid. In accordance with
it, the entropy of a system of bodies is simply equal to the sum of the entropies of
the individual bodies, and the entropy of a single body is, in accordance with Clau-
sius, found by the aid of a certain reversible process. Conduction of heat to a body
increases its entropy, and, in fact, by an amount equal to the ratio of the quantity of
heat given the body to its temperature. Simple compression, on the other hand, does
not change the entropy.

Returning to the example mentioned above, in which the quantity of heat Q is
conducted from a warmer body at the temperature T1 to a colder body at the tem-
perature T2, in accordance with what precedes, the entropy of the warmer body
decreases in this process, while, on the other hand, that of the colder increases, and
the sum of both changes, that is, the change of the total entropy of both bodies, is:

− Q

T1
+ Q

T2
> 0. (14.2)

This positive quantity furnishes, in a manner free from all arbitrary assumptions, the
measure of the irreversibility of the process of heat conduction. Such examples may
be cited indefinitely. Every chemical process furnishes an increase of entropy.

We shall here consider only the most general case treated by Clausius: an
arbitrary reversible or irreversible cyclical process, carried out with any physico-
chemical arrangement, utilizing an arbitrary number of heat reservoirs. Since the
arrangement at the conclusion of the cyclical process is the same as that at the begin-
ning, the final state of the process is to be distinguished from the initial state solely
through the different heat content of the heat reservoirs, and in that a certain amount
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of mechanical work has been furnished or consumed. Let Q be the heat given up in
the course of the process by a heat reservoir at the temperature T1, and let A be the
total work yielded (consisting, e.g. in the raising of weights); then, in accordance
with the first law of thermodynamics:

∑
Q = A (14.3)

In accordance with the second law, the sum of the changes in entropy of all the heat
reservoirs is positive, or zero. It follows, therefore, since the entropy of a reservoir
is decreased by the amount Q/T through the loss of heat Q that:

∑ Q

T
≤ 0. (14.4)

This is the well-known inequality of Clausius.
In an isothermal cyclical process, T is the same for all reservoirs. Therefore:

∑
Q ≤ 0, hence: A ≤ 0. (14.5)

That is: in an isothermal cyclical process, heat is produced and work is consumed.
In the limiting case, a reversible isothermal cyclical process, the sign of equality
holds, and therefore the work consumed is zero, and also the heat produced. This
law plays a leading role in the application of thermodynamics to physical chemistry.

The second law of thermodynamics including all of its consequences has thus
led to the principle of increase of entropy. You will now readily understand, having
regard to the questions mentioned above, why I express it as my opinion that in the
theoretical physics of the future the first and most important differentiation of all
physical processes will be into reversible and irreversible processes.

In fact, all reversible processes, whether they take place in material bodies, in the
ether, or in both together, show a much greater similarity among themselves than
to any irreversible process. In the differential equations of reversible processes the
time differential enters only as an even power, corresponding to the circumstance
that the sign of time can be reversed. This holds equally well for vibrations of the
pendulum, electrical vibrations, acoustic and optical waves, and for motions of mass
points or of electrons, if we only exclude every kind of damping. But to such pro-
cesses also belong those infinitely slow processes of thermodynamics which consist
of states of equilibrium in which the time in general plays no role, or, as one may
also say, occurs with the zero power, which is to be reckoned as an even power. As
Helmholtz has pointed out, all these reversible processes have the common prop-
erty that they may be completely represented by the principle of least action, which
gives a definite answer to all questions concerning any such measurable process,
and, to this extent, theory of reversible processes may bc regarded as completely
established. Reversible processes have, however, the disadvantage that singly and
collectively they are only ideal: in actual nature there is no such thing as a reversible
process. Every natural process involves in greater or less degree friction or conduc-
tion of heat. But in the domain of irreversible processes the principle of least action
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is no longer sufficient; for the principle of increase of entropy brings into the sys-
tem of physics a wholly new element, foreign to the action principle, and which
demands special mathematical treatment. The unidirectional course of a process in
the attainment of a fixed final state is related to it.

I hope the foregoing considerations have sufficed to make clear to you that the
distinction between reversible and irreversible processes is much broader than that
between mechanical and electrical processes and that, therefore, this difference, with
better right than any other, may be taken advantage of in classifying all physical
processes, and that it may eventually play in the theoretical physics of the future the
principal rôle.

However, the classification mentioned is in need of quite an essential improve-
ment, for it cannot be denied that in the form set forth, the system of physics is still
suffering from a strong dose of anthropomorphism. In the definition of irreversibil-
ity, as well as in that of entropy, reference is made to the possibility of carrying out
in nature certain changes, and this means, fundamentally, nothing more than that
the division of physical processes is made dependent upon the manipulative skill
of man in the art of experimentation, which certainly does not always remain at a
fixed stage, but is continually being more and more perfected. If, therefore, the dis-
tinction between reversible and irreversible processes is actually to have a lasting
significance for all times, it must be essentially broadened and made independent of
any reference to the capacities of mankind. How this may happen, I desire to state
1 week from tomorrow. The lecture of tomorrow will be devoted to the problem of
bringing before you some of the most important of the great number of practical
consequences following from the entropy principle.

14.3 Study Questions

QUES. 14.1. What are the dangers of underestimating, or overestimating, the value
of theoretical physics? Which does Planck think is worse? Which do you think is
worse?

QUES. 14.2. Is positivism compatible with the goal of a “common system of physics
for all physicists”?

a) What, according to Planck, is the material (so to speak) upon which theoretical
physics operates? With what tool does it operate? And what is the foundation of
all physical research?

b) How was physics historically divided? In what sense was this anthropomorphic?
How has physics been more recently reorganized? What specific benefit has this
conferred?

c) How does the goal of reducing anthropomorphism conflict with the positivis-
tic philosophy of science? In particular, if all physical discovery is based on
individual perception, then is a common system of physics even possible?
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d) How far has science advanced in the goal of complete unification? Is further
unification possible?

QUES. 14.3. What is the root of the law of conservation of energy? From what tech-
nical problem was this law derived? Is the law of conservation of energy, strictly
speaking, provable?

QUES. 14.4. How is the second law of thermodynamics different than the first law?
In particular, on what independent principle is it founded? And from what technical
problem was it derived?

QUES. 14.5. What common mistakes are made regarding the second law of thermo-
dynamics?

a) Does the second law dictate the direction of every process in nature—for
example the direction of flow of water or electricity?

b) Does the second law imply that whenever a quantity of heat is transformed into
work, an equal quantity of energy must always be transformed into heat (so as to
compensate this transformation)?

QUES. 14.6. What is an irreversible process? What are some examples of irre-
versible, and reversible, processes?

QUES. 14.7. How did Sadi Carnot define an irreversible process? Is this a good
definition? In particular, is mechanical work actually lost in an irreversible process?

QUES. 14.8. How, alternatively, did Clausius define an irreversible process?

a) What does it mean for nature to possess a greater “preference” for state A than
state B? What does this have to do with the notion of irreversibility, and the
second law?

b) What physical quantity of states A and B express this preference? Upon what
can this quantity depend, and upon what can it not depend?

c) By how much does the entropy of a body at temperature T increase when a
quantity of heat Q is added to the body?

d) How is the change in entropy computed when heat is conducted between two
bodies? Is entropy an additive quantity?

e) How, then, is Clausius’ statement of the second law expressed in terms of
changes in entropy?

QUES. 14.9. What is the essential difference between differential equations which
govern reversible and irreversible physical processes? What underlying principle
represents all reversible processes? Does this also represent irreversible processes?

QUES. 14.10. If physical science was historically organized according to the sense
perceptions of man, then what (according to Planck) is the best way to orga-
nize it henceforth? Can this be done objectively, that is, without resorting to
anthropomorphism?
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14.4 Exercises

EX. 14.1 (POSITIVISM, ANTHROPOMORPHISM AND OBJECTIVITY ESSAY). Do you agree
with the positivist view of physics? In particular: does physics consist only in the
relating of sense perceptions? What are the strengths and weaknesses of this view?
Do you believe that physics should eschew any kind of anthropomorphism? If so, to
what extent is this even possible?3

14.5 Vocabulary

1. Cordial
2. Confer
3. Refute
4. Anthropomorphic
5. Geodesy
6. Positivism
7. Metaphysics
8. Perception
9. Heterogeneous

10. Succinct
11. Vouchsafe
12. Emancipation
13. Intuitive
14. Electrodynamics
15. Ponderable
16. Amalgamation
17. Endeavor
18. Prevalent
19. Ad hoc
20. Assertion
21. A priori
22. Isothermal

3 There is an enormous body of scholarship which deals with the philosophy of science from
the perspective of empiricist/positivist/modernist philosophers, relativist/postmodernist philoso-
phers and rationalist/objectivist philosophers. One recent critique of the positivist position from
the perspective of rationalist philosophy can be found in Hoppe, H.-H., In Defense of Extreme
Rationalism, Rev. Austrian Econ., 3(1), 179–214, 1989.



Chapter 15
Entropy, Probability and Atomism

Nature prefers the more probable states to the less probable,
because in nature processes take place in the direction of
greater probability.

—Max Planck

15.1 Introduction

In Max Planck’s first lecture delivered at Columbia University in 1909, he explained
how physical science was historically organized anthropomorphically—that is,
according to man’s particular senses. Thus we had the sciences of optics (what the
eye can perceive), acoustics (what the ear can hear) and heat (what the skin can feel).
With new apparatus and measurement techniques, however, physical science has
become less concerned with subjective sensory experience and more concerned with
objective quantification. For example, radio antennae and bolometers have enabled
scientists to measure the properties of electromagnetic radiation that lies far outside
of the spectrum of visible light. Moreover, the laws of thermodynamics—and espe-
cially Clausius’ second law—has inspired a reorganization of physical science into
just two classes of phenomena: those which are reversible and those which are irre-
versible. Unfortunately, according to Planck, this new classification scheme still has
the (undesirable) mark of anthropomorphism. For the definition of irreversibility—
and the associated concept of entropy—still relies on the skill of an experimenter in
devising an efficient heat engine for the purpose of accomplishing useful work. In
other words, the purely thermodynamic definition of entropy is based on the incli-
nations and limitations of man. Is there a better definition of entropy—one which is
more objective? This is the question to which Planck now turns in his third lecture. . .

15.2 Reading: Planck, The Atomic Theory of Matter

Planck, M., Eight Lectures on Theoretical Physics, Columbia University Press, New
York, 1915. Third Lecture.
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The problem with which we shall be occupied in the present lecture is that of a
closer investigation of the atomic theory of matter. It is, however, not my intention
to introduce this theory with nothing further, and to set it up as something apart and
disconnected with other physical theories, but I intend above all to bring out the
peculiar significance of the atomic theory as related to the present general system
of theoretical physics; for in this way only will it be possible to regard the whole
system as one containing within itself the essential compact unity, and thereby to
realize the principal object of these lectures.

Consequently it is self evident that we must rely on that sort of treatment which
we have recognized in last week’s lecture as fundamental. That is, the division of all
physical processes into reversible and irreversible processes. Furthermore, we shall
be convinced that the accomplishment of this division is only possible through the
atomic theory of matter, or, in other words, that irreversibility leads of necessity to
atomistics.

I have already referred at the close of the first lecture to the fact that in pure
thermodynamics, which knows nothing of an atomic structure and which regards
all substances as absolutely continuous, the difference between reversible and
irreversible processes can only be defined in one way, which a priori carries a
provisional character and does not withstand penetrating analysis. This appears
immediately evident when one reflects that the purely thermodynamic definition
of irreversibility which proceeds from the impossibility of the realization of certain
changes in nature, as, e.g. the transformation of heat into work without compen-
sation, has at the outset assumed a definite limit to man’s mental capacity, while,
however, such a limit is not indicated in reality. On the contrary: mankind is making
every endeavor to press beyond the present boundaries of its capacity, and we hope
that later on many things will be attained which, perhaps, many regard at present as
impossible of accomplishment. Can it not happen then that a process, which up to
the present has been regarded as irreversible, may be proved, through a new discov-
ery or invention, to be reversible? In this case the whole structure of the second law
would undeniably collapse, for the irreversibility of a single process conditions that
of all the others.

It is evident then that the only means to assure to the second law real mean-
ing consists in this, that the idea of irreversibility be made independent of any
relationship to man and especially of all technical relations.

Now the idea of irreversibility harks back to the idea of entropy; for a process
is irreversible when it is connected with an increase of entropy. The problem is
hereby referred back to a proper improvement of the definition of entropy. In accor-
dance with the original definition of Clausius, the entropy is measured by means
of a certain reversible process, and the weakness of this definition rests upon the
fact that many such reversible processes, strictly speaking all, are not capable of
being carried out in practice. With some reason it may be objected that we have
here to do, not with an actual process and an actual physicist, but only with ideal
processes, so-called thought experiments, and with an ideal physicist who operates
with all the experimental methods with absolute accuracy. But at this point the dif-
ficulty is encountered: How far do the physicist’s ideal measurements of this sort



15.2 Reading: Planck, The Atomic Theory of Matter 199

suffice? It may be understood, by passing to the limit, that a gas is compressed
by a pressure which is equal to the pressure of the gas, and is heated by a heat
reservoir which possesses the same temperature as the gas, but, for example, that a
saturated vapor shall be transformed through isothermal compression in a reversible
manner to a liquid without at any time a part of the vapor being condensed, as in
certain thermodynamic considerations is supposed, must certainly appear doubtful.
Still more striking, hover, is the liberty as regards thought experiments, which in
physical chemistry, is granted the theorist. With his semi-permeable membranes,
which in reality are only realizable under certain special conditions and then only
with a certain approximation, he separates in a reversible manner, not only all pos-
sible varieties of molecules, whether or not they are in stable or unstable conditions,
but he also separates the oppositely charged ions from one another and from the
undissociated molecules, and he is disturbed, neither by the enormous electrostatic
forces which resist such a separation, nor by the circumstance that in reality, from
the beginning of the separation, the molecules become in part dissociated while
the ions in part again combine. But such ideal processes are necessary throughout in
order to make possible the comparison of the entropy of the undissociated molecules
with the entropy of the dissociated molecules; for the law of thermodynamic equi-
librium does not permit in general of derivation in any other way, in case one wishes
to retain pure thermodynamics as a basis. It must be considered remarkable that all
these ingenious thought processes have so well found confirmation of their results
in experience, as is shown by the examples considered by us in the last lecture.

If now, on the other hand, one reflects that in all these results every reference to
the possibility of actually carrying out each ideal process has disappeared—there are
certainly left relations between directly measurable quantities only, such as temper-
ature, heat effect, concentration, etc.—the presumption forces itself upon one that
perhaps the introduction as above of such ideal processes is at bottom a round-about
method, and that the peculiar import of the principle of increase of entropy with
all its consequences can be evolved from the original idea of irreversibility or, just
as well, from the impossibility of perpetual motion of the second kind, just as the
principle of conservation of energy has been evolved from the law of impossibility
of perpetual motion of the first kind.

This step: to have completed the emancipation of the entropy idea from the exper-
imental art of man and the elevation of the second law thereby to a real principle,
was the scientific life’s work of Ludwig Boltzmann. Briefly stated, it consisted in
general of referring back the idea of entropy to the idea of probability. Thereby is
also explained, at the same time, the significance of the above (p. 192) auxiliary
term used by me; “preference” of nature for a definite state. Nature prefers the more
probable states to the less probable, because in nature processes take place in the
direction of greater probability. Heat goes from a body at higher temperature to
a body at lower temperature because the state of equal temperature distribution is
more probable than a state of unequal temperature distribution.

Through this conception the second law of thermodynamics is removed at one
stroke from its isolated position, the mystery concerning the preference of nature
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vanishes, and the entropy principle reduces to a well understood law of the calculus
of probability.

The enormous fruitfulness of so “objective” a definition of entropy for all
domains of physics I shall seek to demonstrate in the following lectures. But today
we have principally to do with the proof of its admissibility; for on closer consid-
eration we shall immediately perceive that the new conception of entropy at once
introduces a great number of questions, new requirements and difficult problems.
The first requirement is the introduction of the atomic hypothesis into the system of
physics. For, if one wishes to speak of the probability of a physical state, i.e., if he
wishes to introduce the probability for a given state as a definite quantity into the
calculation, this can only be brought about, as in cases of all probability calcula-
tions, by referring the state back to a variety of possibilities; i.e., by considering a
finite number of a priori equally likely configurations (complexions) through each
of which the state considered may be realized. The greater the number of complex-
ions, the greater is the probability of the state. Thus, e.g., the probability of throwing
a total of four with two ordinary six-sided dice is found through counting the com-
plexions by which the throw with a total of four may be realized. Of these there are
three complexions:

with the first die, 1, with the second die, 3,
with the first die, 2, with the second die, 2,
with the first die, 3, with the second die, 1.

On the other hand, the throw of two is only realized through a single complexion.
Therefore, the probability of throwing a total of four is three times as great as the
probability of throwing a total of two.

Now, in connection with the physical state under consideration, in order to be
able to differentiate completely from one another the complexions realizing it, and
to associate it with a definite reckonable number, there is obviously no other means
than to regard it as made up of numerous discrete homogeneous elements—for in
perfectly continuous systems there exist no reckonable elements—and hereby the
atomistic view is made a fundamental requirement. We have, therefore, to regard all
bodies in nature, in so far as they possess an entropy, as constituted of atoms, and we
therefore arrive in physics at the same conception of matter as that which obtained
in chemistry for so long previously.

But we can immediately go a step further yet. The conclusions reached hold, not
only for thermodynamics of material bodies, but also possess complete validity for
the processes of heat radiation, which are thus referred hack to the second law of
thermodynamics. That radiant heat also possesses an entropy follows from the fact
that a body which emits radiation into a surrounding diathermanous medium expe-
riences a loss of heat and, therefore, a decrease of entropy. Since the total entropy
of a physical system can only increase, it follows that one part of the entropy of the
whole system, consisting of the body and the diathermanous medium, must be con-
tained in the radiated heat. If the entropy of the radiant heat is to be referred back to
the notion of probability, we are forced, in a similar way as above, to the conclusion
that for radiant heat the atomic conception possesses a definite meaning. But, since
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radiant heat is not directly connected with matter, it follows that this atomistic con-
ception relates, not to matter, but only to energy, and hence, that in heat radiation
certain energy elements play an essential role. Even though this conclusion appears
so singular and even though in many circles today vigorous objection is strongly
urged against it, in the long run physical research will not be able to withhold its
sanction from it, and the less, since it is confirmed by experience in quite a sat-
isfactory manner. We shall return to this point in the lectures on heat radiation. I
desire here only to mention that the novelty involved by the introduction of atom-
istic conceptions into the theory of heat radiation is by no means so revolutionary
as, perhaps, might appear at the first glance. For there is, in my opinion at least,
nothing which makes necessary the consideration of the heat processes in a com-
plete vacuum as atomic, and it suffices to seek the atomistic features at the source
of radiation, i.e. in those processes which have their play in the centres of emission
and absorption of radiation. Then the Maxwellian electrodynamic differential equa-
tions can retain completely their validity for the vacuum, and, besides, the discrete
elements of heat radiation are relegated exclusively to a domain which is still very
mysterious and where there is still present plenty of room for all sorts of hypotheses.

Returning to more general considerations, the most important question comes
up as to whether, with the introduction of atomistic conceptions and with the refer-
ence of entropy to probability, the content of the principle of increase of entropy
is exhaustively comprehended, or whether still further physical hypotheses are
required in order to secure the full import of that principle. If this important question
had been settled at the time of the introduction of the atomic theory into thermody-
namics, then the atomistic views would surely have been spared a large number of
conceivable misunderstandings and justifiable attacks. For it turns out, in fact—and
our further considerations will confirm this conclusion—that there has as yet noth-
ing been done with atomistics which in itself requires much more than an essential
generalization, in order to guarantee the validity of the second law.

We must first reflect that, in accordance with the central idea laid down in the
first lecture (p. 185), the second law must possess validity as an objective physical
law, independently of the individuality of the physicist. There is nothing to hinder
us from imagining a physicist—we shall designate him a “microscopic” observer—
whose senses are so sharpened that he is able to recognize each individual atom
and to follow it in its motion. For this observer each atom moves exactly in accor-
dance with the elementary laws which general dynamics lays down for it, and these
laws allow, so far as we know, of an inverse performance of every process. Accord-
ingly, here again the question is neither one of probability nor of entropy and its
increase. Let us imagine, on the other hand, another observer, designated a “macro-
scopic” observer, who regards an ensemble of atoms as a homogeneous gas, say, and
consequently applies the laws of thermodynamics to the mechanical and thermal
processes within it. Then, for such an observer, in accordance with the second law,
the process in general is an irreversible process. Would not now the first observer
be justified in saying: “The reference of the entropy to probability has its origin
in the fact that irreversible processes ought to be explained through reversible pro-
cesses. At any rate, this procedure appears to me in the highest degree dubious. In



202 15 Entropy, Probability and Atomism

any case, I declare each change of state which takes place in the ensemble of atoms
designated a gas, as reversible, in opposition to the macroscopic observer.” There
is not the slightest thing, so far as I know, that one can urge against the validity of
these statements. But do we not thereby place ourselves in the painful position of
the judge who declared in a trial the correctness of the position of each separately of
two contending parties and then, when a third contends that only one of the parties
could emerge from the process victorious, was obliged to declare him also correct?
Fortunately we find ourselves in a more favorable position. We can certainly medi-
ate between the two parties without its being necessary for one or the other to give
up his principal point of view. For closer consideration shows that the whole con-
troversy rests upon a misunderstanding—a new proof of how necessary it is before
one begins a controversy to come to an understanding with his opponent concern-
ing the subject of the quarrel. Certainly, a given change of state cannot be both
reversible and irreversible. But the one observer connects a wholly different idea
with the phrase “change of state” than the other. What is then, in general, a change
of state? The state of a physical system cannot well be otherwise defined than as the
aggregate of all those physical quantities, through whose instantaneous values the
time changes of the quantities, with given boundary conditions, are uniquely deter-
mined. If we inquire now, in accordance with the import of this definition, of the
two observers as to what they understand by the state of the collection of atoms or
the gas considered, they will give quite different answers. The microscopic observer
will mention those quantities which determine the position and the velocities of all
the individual atoms. There are present in the simplest case, namely, that in which
the atoms may be considered as material points, six times as many quantities as
atoms, namely, for each atom the three coordinates and the three velocity compo-
nents, and in the case of combined molecules, still more quantities. For him the
state and the progress of a process is then first determined when all these various
quantities are individually given. We shall designate the state defined in this way the
“micro-state,” The macroscopic observer, on the other hand, requires fewer data. He
will say that the state of the homogeneous gas considered by him is determined by
the density, the visible velocity and the temperature at each point of the gas, and he
will expect that, when these quantities arc given, their time variations and, therefore,
the progress of the process, to be completely determined in accordance with the two
laws of thermo-dynamics, and therefore accompanied by an increase in entropy. In
this collection he can call upon all the experience at his disposal, which will fully
confirm his expectation. If we call this state the “macro-state,” it is clear that the two
laws: “the micro-changes of state are reversible” and “the macro-changes of state are
irreversible,” lie in wholly different domains and, at any rate, are not contradictory.

But now how can we succeed in bringing the two observers to an understand-
ing? This is a question whose answer is obviously of fundamental significance for
the atomic theory. First of all, it is easy to see that the macro-observer reckons
only with mean values; for what he calls density, visible velocity and temperature
of the gas are, for the micro-observer, certain mean values, statistical data, which
are derived from the space distribution and from the velocities of the atoms in an
appropriate manner. But the micro-observer cannot operate with these mean values
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alone, for, if these are given at one instant of time, the progress of the process is not
determined throughout; on the contrary: he can easily find with given mean values
an enormously large number of individual values for the positions and the veloci-
ties of the atoms, all of which correspond with the same mean values and which, in
spite of this, lead to quite different processes with regard to the mean values. It fol-
lows from this of necessity that the micro-observer must either give up the attempt
to understand the unique progress, in accordance with experience, of the macro-
scopic changes of state—and this would be the end of the atomic theory—or that
he, through the introduction of a special physical hypothesis, restrict in a suitable
manner the manifold of micro-states considered by him. There is certainly nothing
to prevent him from assuming that not all conceivable micro-states are realizable
in nature, and that certain of them are in fact thinkable, but never actually realized.
In the formularization of such a hypothesis, there is of course no point of depar-
ture to be found from the principles of dynamics alone; for pure dynamics leaves
this case undetermined. But on just this account any dynamical hypothesis, which
involves nothing further than a closer specification of the micro-states realized in
nature, is certainly permissible. Which hypothesis is to be given the preference can
only be decided through comparison of the results to which the different possible
hypotheses lead in the course of experience.

In order to limit the investigation in this way, we must obviously fix our atten-
tion only upon all imaginable configurations and velocities of the individual atoms
which are compatible with determinate values of the density, the velocity and the
temperature of the gas, or in other words: we must consider all the micro-states
which belong to a determinate macro-state, and must investigate the various kinds
of processes which follow in accordance with the fixed laws of dynamics from the
different micro-states. Now, precise calculation has in every case always led to the
important result that an enormously large number of these different micro-processes
relate to one and the same macro-process, and that only proportionately few of the
same, which are distinguished by quite special exceptional conditions concerning
the positions and the velocities of neighboring atoms, furnish exceptions. Further-
more, it has also shown that one of the resulting macro-processes is that which the
macroscopic observer recognizes, so that it is compatible with the second law of
thermodynamics.

Here, manifestly, the bridge of understanding is supplied. The micro-observer
needs only to assimilate in his theory the physical hypothesis that all those special
cases in which special exceptional conditions exist among the neighboring config-
urations of interacting atoms do not occur in nature, or, in other words, that the
micro-states are in elementary disorder. Then the uniqueness of the macroscopic
process is assured and with it, also, the fulfillment of the principle of increase of
entropy in all directions.

Therefore, it is not the atomic distribution, but rather the hypothesis of elemen-
tary disorder, which forms the real kernel of the principle of increase of entropy and,
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therefore, the preliminary condition for the existence of entropy. Without elemen-
tary disorder there is neither entropy nor irreversible process.1 Therefore, a single
atom can never possess an entropy; for we cannot speak of disorder in connection
with it. But with a fairly large number of atoms, say 100 or 1000, the matter is quite
different. Here, one can certainly speak of a disorder, in case that the values of the
coordinates and the velocity components are distributed among the atoms in accor-
dance with the laws of accident. Then it is possible to calculate the probability for
a given state. But how is it with regard to the increase of entropy? May we assert
that the motion of 100 atoms is irreversible? Certainly not; but this is only because
the state of 100 atoms cannot be defined in a thermodynamic sense, since the pro-
cess does not proceed in a unique manner from the standpoint of a macro-observer,
and this requirement forms, as we have seen above, the foundation and preliminary
condition for the definition of a thermodynamic state.

If one therefore asks: How many atoms are at least necessary in order that a
process may be considered irreversible?, the answer is: so many atoms that one may
form from them definite mean values which define the state in a macroscopic sense.
One must reflect that to secure the validity of the principle of increase of entropy
there must be added to the condition of elementary disorder still another, namely,
that the number of the elements under consideration be sufficiently large to render
possible the formation of definite mean values. The second law has a meaning for
these mean values only; but for them, it is quite exact, just as exact as the law of
the calculus of probability, that the mean value, so far as it may be defined, of a
sufficiently large number of throws with a six-sided die, is 31 2.

These considerations are, at the same time, capable of throwing light upon ques-
tions such as the following: Does the principle of increase of entropy possess a
meaning for the so-called Brownian molecular movement of a suspended particle?
Does the kinetic energy of this motion represent useful work or not? The entropy
principle is just as little valid for a single suspended particle as for an atom, and
therefore is not valid for a few of them, but only when there is so large a number
that definite mean values can be formed. That one is able to see the particles and
not the atoms makes no material difference; because the progress of a process does
not depend upon the power of an observing instrument. The question with regard
to useful work plays no role in this connection; strictly speaking, this possesses, in
general, no objective physical meaning. For it does not admit of an answer without

1 To those physicists who, in spite of all this, regard the hypothesis of elementary disorder as gra-
tuitous or as incorrect, I wish to refer the simple fact that in every calculation of a coefficient of
friction, of diffusion, or of heat conduction, from molecular considerations, the notion of elemen-
tary disorder is employed, whether tacitly or otherwise, and that it is therefore essentially more
correct to stipulate this condition instead of ignoring or concealing it. But he who regards the
hypothesis of elementary disorder as self-evident, should be reminded that, in accordance with a
law of H. Poincaré, the precise investigation concerning the foundation of which would here lead
us too far, the assumption of this hypothesis for all time is unwarranted for a closed space with
absolutely smooth walls,—an important conclusion, against which can only be urged the fact that
absolutely smooth walls do not exist in nature.
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reference to the scheme of the physicist or technician who proposes to make use of
the work in question. The second law, therefore, has fundamentally nothing to do
with the idea of useful work (cf. first lecture, p. 191).

But, if the entropy principle is to hold, a further assumption is necessary, con-
cerning the various disordered elements,—an assumption which tacitly is commonly
made and which we have not previously definitely expressed. It is, however, not less
important than those referred to above. The elements must actually be of the same
kind, or they must at least form a number of groups of like kind, e.g., constitute a
mixture in which each kind of element occurs in large numbers. For only through
the similarity of the elements does it come about that order and law can result in the
larger from the smaller. If the molecules of a gas be all different from one another,
the properties of a gas can never show so simple a law-abiding behavior as that
which is indicated by thermodynamics. In fact, the calculation of the probability of
a state presupposes that all complexions which correspond to the state are a priori
equally likely. Without this condition one is just as little able to calculate the prob-
ability of a given state as, for instance, the probability of a given throw with dice
whose sides are unequal in size. In summing up we may therefore say: the second
law of thermodynamics in its objective physical conception, freed from anthropo-
morphism, relates to certain mean values which are formed from a large number of
disordered elements of the same kind.

The validity of the principle of increase of entropy and of the irreversible progress
of thermodynamic processes in nature is completely assured in this formularization.
After the introduction of the hypothesis of elementary disorder, the microscopic
observer can no longer confidently assert that each process considered by him in a
collection of atoms is reversible; for the motion occurring in the reverse order will
not always obey the requirements of that hypothesis. In fact, the motions of single
atoms are always reversible, and thus far one may say, as before, that the irreversible
processes appear reduced to a reversible process, but the phenomenon as a whole is
nevertheless irreversible, because upon reversal the disorder of the numerous indi-
vidual elementary processes would be eliminated. Irreversibility is inherent, not in
the indvidual elementary processes themselves, but solely in their irregular consti-
tution. It is this only which guarantees the unique change of the macroscopic mean
values.

Thus, for example, the reverse progress of a frictional process is impossible,
in that it would presuppose elementary arrangement of interacting neighboring
molecules. For the collisions between any two molecules must thereby possess a
certain distinguishing character, in that the velocities of two colliding molecules
depend in a definite way upon the place at which they meet. In this way only can it
happen that in collisions like directed velocities ensue and, therefore, visible motion.

Previously we have only referred to the principle of elementary disorder in its
application to the atomic theory of matter. But it may also be assumed as valid, as I
wish to indicate at this point, on quite the same grounds as those holding in the case
of matter, for the theory of radiant heat. Let us consider, e.g., two bodies at different
temperatures between which exchange of heat occurs through radiation. We can in
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this case also imagine a microscopic observer, as opposed to the ordinary macro-
scopic observer, who possesses insight into all the particulars of electromagnetic
processes which are connected with emission and absorption, and the propagation
of heat rays. The microscopic observer would declare the whole process reversible
because all electrodynamic processes can also take place in the reverse direction,
and the contradiction may here be referred back to a difference in definition of
the state of a heat ray. Thus, while the macroscopic observer completely defines
a monochromatic ray through direction, state of polarization, color, and intensity,
the microscopic observer, in order to possess a complete knowledge of an electro-
magnetic state, necessarily requires the specification of all the numerous irregular
variations of amplitude and phase to which the most homogeneous heat ray is actu-
ally subject. That such irregular variations actually exist follows immediately from
the well known fact that two rays of the same color never interfere, except when
they originate in the same source of light. But until these fluctuations are given in
all particulars, the micro-observer can say nothing with regard to the progress of the
process. He is also unable to specify whether the exchange of heat radiation between
the two bodies leads to a decrease or to an increase of their difference in temperature.
The principle of elementary disorder first furnishes the adequate criterion of the ten-
dency of the radiation process, i.e., the warming of the colder body at the expense of
the warmer, just as the same principle conditions the irreversibility of exchange of
heat through conduction. However, in the two cases compared, there is indicated an
essential difference in the kind of the disorder. While in heat conduction the disor-
dered elements may be represented as associated with the various molecules, in heat
radiation there are the numerous vibration periods, connected with a heat ray, among
which the energy of radiation is irregularly distributed. In other words: the disorder
among the molecules is a material one, while in heat radiation it is one of energy
distribution. This is the most important difference between the two kinds of disor-
der; a common feature exists as regards the great number of uncoordinated elements
required. Just as the entropy of a body is defined as a function of the macroscopic
state, only when the body contains so many atoms that from them definite mean val-
ues may be formed, so the entropy principle only possesses a meaning with regard
to a heat ray when the ray comprehends so many periodic vibrations, i.e., persists
for so long a time, that a definite mean value for the intensity of the ray may be
obtained from the successive irregular fluctuating amplitudes.

Now, after the principle of elementary disorder has been introduced and accepted
by us as valid throughout nature, the fundamental question arises as to the calcula-
tion of the probability of a given state, and the actual derivation of the entropy
therefrom. From the entropy all the laws of thermodynamic states of equilibrium,
for material substances, and also for energy radiation, may be uniquely derived.
With regard to the connection between entropy and probability, this is inferred
very simply from the law that the probability of two independent configurations
is represented by the product of the individual probabilities:

W = W1 · W2, (15.1)
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while the entropy S is represented by the sum of the individual entropies:

S = S1 + S2 (15.2)

Accordingly, the entropy is proportional to the logarithm of the probability:

S = k log W . (15.3)

k is a universal constant. In particular, it is the same for atomic as for radiation
configurations, for there is nothing to prevent us assuming that the configuration
designated by 1 is atomic, while that designated by 2 is a radiation configuration.
If k has been calculated, say with the aid of radiation measurements, then k must
have the same value for atomic processes. Later we shall follow this procedure, in
order to utilize the laws of heat radiation in the kinetic theory of gases. Now, there
remains, as the last and most difficult part of the problem, the calculation of the
probability W of a given physical configuration in a given macroscopic state. We
shall treat today, by way of preparation for the quite general problem to follow,
the simple problem: to specify the probability of a given state for a single moving
material point, subject to given conservative forces. Since the state depends upon six
variables: the three generalized coordinates φ1, φ2, φ3, and the three corresponding
velocity components φ̇1, φ̇2, φ̇3, and since all possible values of these six variables
constitute a continuous manifold, the probability sought is, that these six quantities
shall lie respectively within certain infinitely small intervals, or, if one thinks of
these six quantities as the rectilinear orthogonal coordinates of a point in an ideal
six-dimensional space, that this ideal “state point” shall fall within a given, infinitely
small “state domain.” Since the domain is infinitely small, the probability will be
proportional to the magnitude of the domain and therefore proportional to∫

dφ1 · dφ2 · dφ3 · dφ̇1 · dφ̇2 · dφ̇3 (15.4)

But this expression cannot serve as an absolute measure of the probability, because
in general it changes in magnitude with the time, if each state point moves in accor-
dance with the laws of motion of material points, while the probability of a state
which follows of necessity from another must be the same for the one as the other.
Now, as is well known, another integral quite similarly formed, may be specified
in place of the one above, which possesses the special property of not changing in
value with the time. It is only necessary to employ, in addition to the general coor-
dinates φ1, φ2, φ3, the three so-called momenta ψ1, ψ2, ψ3, in place of the three
velocities φ̇1, φ̇2, φ̇3, as the determining coordinates of the state. These are defined
in the following way:

ψ1 =
(

∂H

∂φ̇1

)
, ψ2 =

(
∂H

∂φ̇2

)
, ψ3 =

(
∂H

∂φ̇3

)
, (15.5)

wherein H denotes the kinetic potential (Helmholtz). Then, in Hamiltonian form,
the equations of motion are:

ψ̇1 = dψ1

dt
= −

(
∂E

∂φ 1

)
ψ

, . . . , φ̇1 = dφ1

dt
=

(
∂E

∂ψ1

)
φ

, . . . , (15.6)
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(E is the energy), and from these equations follows the “condition of incompress-
ibility”:

∂φ̇1

∂φ1
+ ∂ψ̇1

∂ψ1
+ . . . = 0 (15.7)

Referring to the six-dimensional space represented by the coordinates φ1, φ2, φ3,
ψ1, ψ2, ψ3, this equation states that the magnitude of an arbitrarily chosen state
domain, viz.: ∫

dφ1 · dφ2 · dφ3 · dψ1 · dψ2 · dψ3 (15.8)

does not change with the time, when each point of the domain changes its position
in accordance with the laws of motion of material points. Accordingly, it is made
possible to take the magnitude of this domain as a direct measure for the probability
that the state point falls within the domain. From the last expression, which can be
easily generalized for the case of an arbitrary number of variables, we shall calculate
later the probability of a thermodynamic state, for the case of radiant energy as well
as that for material substances.

15.3 Study Questions

QUES. 15.1. Is entropy an objective or a subjective quantity?

a) In what sense is the purely thermodynamic definition of entropy based on the
limited mental capacities of man? Is entropy thus defined an objective quantity?

b) What are some idealizations employed by physicists and chemists? Is the
definition of entropy dependent on these idealizations?

c) How is Boltzmann’s definition of entropy different than the thermodynamic def-
inition? In particular, how are thermodynamic states analogous to the possible
outcomes of rolling a set of dice? Is entropy thus defined an objective quantity?

d) Is the atomistic hypothesis implied by Boltzmann’s concept of entropy?

QUES. 15.2. Does electromagnetic radiation have entropy?

a) Can the atomistic hypothesis be applied to non-material bodies? How would this
imply an atomistic understanding of energy itself?

b) Does Planck wish to overthrow Maxwell’s differential equations governing elec-
tromagnetic fields? Where, then, does he situate the source of the “discrete
elements of heat radiation”?

QUES. 15.3. Does the concept of atomism imply the validity of the second law?
More specifically, is the probabilistic definition of entropy sufficient to explain the
second law of thermodynamics?

QUES. 15.4. Is it possible for a thermodynamic process be both reversible and
irreversible at the same time?
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a) What is meant by the “state of a system”? How does a microscopic observer
define the (micro)-state of the system? How does a macroscopic observer define
the (macro)-state of the system?

b) Can a microscopic and a macroscopic observer come to different conclusions
regarding the reversibility of a given change of state? Which must keep track of
fewer variables? Which observes the change of state to be reversible?

c) Are the general laws of dynamics reversible? If so, then from where does
irreversibility arise?

QUES. 15.5. What is meant by “disorder”?

a) What is the “principle of elementary disorder”? In particular, what does Planck
mean when he says that micro-processes are governed by the “laws of accident”?
Is this last term an oxymoron?

b) How does the principle of elementary disorder assure the uniqueness of a
particular macro-state (given an enormously large number of micro-states)?

c) Are all combinations of the positions and velocities of the atoms comprising
a macro-state possible—at least in principle? Are there any constraints on the
micro-states which are typically realized for a given macro-state?

QUES. 15.6. Can entropy be assigned to a single atom? Can it be assigned to
radiation?

a) How many atoms are necessary in order that a process may be considered irre-
versible? And what are the necessary conditions so as to ensure the principle of
increase of entropy?

b) Can the thermodynamic laws which govern, say, a gas be computed, based on
probability, if each molecule is unique?

c) Does the principle of elementary disorder apply to radiation as well as to matter?
How does the concept of disorder differ for matter and for radiant heat?

QUES. 15.7. How are entropy and probability connected mathematically?

a) What separate conditions must be satisfied by the probability and by the entropy?
b) Is Eq. 15.3 the only equation that fulfills both these conditions? If not, what other

equation might work?
c) Does the value of k depend on the type of process involved? What does this

imply about k?

QUES. 15.8. What is the entropy of a system of particles?

a) How can one compute the probability of a given state for a single moving
material point?

b) Upon upon how many (and what) variables does this probability depend? How
are the allowed values of these variables summed over a small range of values?

c) How can this probability be re-written in terms of generalized coordinates and
generalized momenta? What is the virtue of this alternative form?

d) How can this probability for a single particle be generalized so as to account for
a system of particles?
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15.4 Exercises

EX. 15.1 (DRUNKEN SAILOR GAME). Suppose a very drunk sailor stands at a lamp
post. Every 10 s he takes one step either north, south, east, or west. How far will
he be from the lamp post after 5 min? Let us model this situation by playing a
game using a piece of quad-ruled graph paper and a four-sided (tetrahedral) die.
This exercise is most easily and efficiently carried out by a group of perhaps ten
or fifteen students, each of which can generate his or her own data set. First, each
student should make a mark near the center of his or her graph paper and label it
with a small zero. This denotes the lamp post. Now roll the die. Make a new mark,
labelled with a “1”, to the top, right, bottom, or left of the previous mark, depending
on the outcome of your die throw. Using a ruler, measure and record the distance r

between the lamp post and the sailor. To be realistic, you might assume that 1 in. on
your graph paper corresponds to 1 yard for the sailor, for instance. The sailor has
just completed his N = 1 step. Repeat this procedure until the sailor has taken 30
steps. At each step, measure the distance between the lamp post and the sailor. Now
draw a graph of r2 vs. N for N = 1 . . . 30. Describe the relationship between r2 and
N for your drunken sailor game. Is there a pattern?

We have just considered the case of a single drunken sailor. Now what if we
have a bunch of drunken sailors standing at the lamp post? What can we say about
the average distance of all of the drunken sailors from the lamp post? Check with
your classmates. Record each of their r2 vs. N data in a table, and then compute the
average value of r2 at each step, N . Plot the mean square distance r2 vs. N data on
the same graph as your own r2 vs. N data. What do you notice about the motion of
the random walkers as the number of walkers increases? Based on what you have
learned, estimate the distance of an average drunken sailor from the lamp post after
half an hour. Which is more predictable, the distance of a single drunken sailor or
the average distance of a collection of drunken sailors?

EX. 15.2 (BOLTZMANN’S EQUATION—COINS IN A BOX). Clausius introduced his sec-
ond law of thermodynamics, and the concept of entropy, in order to understand
the types of processes which occur spontaneously in nature. According to Ludwig
Boltzmann (1844–1906), the entropy of a system may be determined from the con-
figuration of its individual components. In particular, the entropy associated with a
particular state of a system may be determined by simply counting the number of
ways, g, that the particular state can be realized:

S = k ln g. (15.9)

This is known as Boltzmann’s equation, and Boltzmann’s constant, k = 1.38 ×
10−23 J/K, is a universal constant of nature which can be related to Avogadro’s
number and the gas constant.2 As an exercise in working with entropy thus defined,

2 See Eq. 11.13 in the discussion of diffusion and the kinetic theory of gases in Chap. 11 of the
present volume.
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suppose you place four coins heads-up in a box. After shaking the box vigorously,
you open it and observe the state of the coins. Let us classify the possible final states
according to how many heads are showing: (i) 4 heads, (ii) 3 heads, (iii) 2 heads,
(iv) 1 heads, or (v) no heads.

a) Consider every possible outcome. How many ways can each of the states (i)–(v)
be realized? Which state is most likely to occur? Is your answer consistent with
common sense?

b) What is the entropy of each state? Which state has the highest entropy? Is the
state with the highest entropy the most likely state to occur? Does shaking the
box tend to increase the entropy, thus defined?

EX. 15.3 (ORDER, ENTROPY AND CARD SHUFFLING). The second law of thermody-
namics can be understood as a statement that natural processes occur in such a way
as to achieve the most likely final state. And the most likely final state is simply
the one that can be realized in the largest number of ways. Put this way, the second
law is hardly surprising. Nonetheless, there are subtleties involving how we define,
or classify, the possible states of a system. For example, consider a fresh deck of
playing cards, which is organized in ascending order according to suits (i.e. A♠,
2♠, 3♠,. . . Q♠, K♠,. . . A♥, 2♥, 3♥,. . . Q♥, K♥).

a) Does the deck of cards become more disordered by the process of shuffling?
In what sense? In particular, what is an “ordered” state, as opposed to a “dis-
ordered” state, of the deck? Does the deck have more ordered states or more
disordered states?

b) Does the entropy of the deck of cards increase by the process of shuffling?
Explain your reasoning.

c) Now, suppose that the playing cards are originally unmarked (i.e. they are all
identical and blank.) Does the entropy of this deck increase by the process of
shuffling? Explain.

d) Based on your previous considerations, does the act of shuffling itself lead to an
increase in the entropy of the deck? Is there a relationship between the entropy of
a system and the distinguishability of its parts? More generally, is the entropy of
a system an objective quantity, or does it depend subjectively on how an ordered
configuration of its individual components is defined?3

EX. 15.4 (INDISTINGUISHABILITY AND STATISTICAL LAWS). Planck states that if
each molecule is unique (distinguishable) then “the properties of a gas can never
show so simple a law-abiding behavior as that which is indicated by thermodynam-
ics.” In other words, the laws of thermodynamics require indistinguishability on a
microscopic level. If Planck is correct, then what does this imply about the use of
statistical methods to derive or establish social laws for human populations?

3 For a discussion of this concept, see Kenneth Denbigh’s 1981 article entitled “How subjective is
entropy” in Leff, H. S., and A. F. Rex (Eds.), Maxwell’s Demon: Entropy, Information, Computing,
Princeton Series in Physics, Princeton University Press, 1990.
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15.5 Vocabulary

1. Atomism
2. A priori
3. Provisional
4. Suffice
5. Liberty
6. Dissociate
7. Ion
8. Emancipate
9. Auxiliary

10. Configuration
11. Complexion
12. Differentiate
13. Discrete
14. Homogeneous
15. Diathermanous
16. Micro-state
17. Macro-state
18. Manifold
19. Assimilate
20. Tacit
21. Ensue
22. Monochromatic
23. Constitute
24. Domain



Chapter 16
Corpuscles of Light

The energy of a light ray spreading out from a point source is
not continuously distributed over an increasing space but
consists of a finite number of energy quanta which are localized
at points in space, which move without dividing, and which can
only be produced and absorbed as complete units.

—A. Einstein

16.1 Introduction

By the end of the nineteenth century, the kinetic theory of gases had achieved great
success in explaining a number of seemingly unrelated phenomena. For example,
Maxwell and Boltzmann had shown that the empirical gas laws of Charles and
Boyle could be seen as a consequence of the motion of countless microscopic gas
molecules, each obeying Newton’s laws of motion. After the discovery of the elec-
tron by J. J. Thomson in 1897, the kinetic theory was used by Drude to explain the
electrical and thermal conductivities of metals; he treated the electrons within the
metal as a gas of charged particles, each responding to the presence of electrical
potential or thermal gradients.

Unfortunately, the kinetic theory had been less successful in explaining the color
of light emitted by vibrating electrical charges. Consider: many heated objects (such
as the coils in a toaster oven) glow brightly when heated. Why is this? According
to the classical theory of electromagnetism, a charged particle which is vibrating
(or in any way accelerating, for that matter) will emit electromagnetic radiation—
light—whose color depends on the frequency of vibration. The vibration frequency,
in turn, is related to the temperature of the body in which the charged particle is
situated. Therefore the color of light emitted by a body depends essentially upon
its temperature. For certain types of bodies, the so-called blackbodies, the emission
spectrum depends only on the temperature of the body. Radiation from such bodies
is called blackbody radiation.
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Now here is the problem: the emission spectrum of a heated blackbody is very
different than that predicted using this classical theory of electromagnetic radiation.1

In fact, according to the classical theory, the radiant energy emitted from a heated
blackbody grows without limit in the short-wavelength (ultra-violet) region of the
electromagnetic spectrum. This problem, known as the ultraviolet catastrophe, was
finally solved by Max Planck in 1900. Planck proposed that radiant energy can only
be emitted or absorbed by matter in discrete amounts, or quanta.2 This is often
hailed as the birth of quantum theory.

In the following paper, translated from German by Arons and Peppard in 1965,
Einstein extends Planck’s quantum concept, claiming that not only the emission and
absorption of radiant energy, but even light itself is quantized. Essentially, Einstein
treats light not as a classical electromagnetic wave, but rather as a gas of corpuscles,
each of which carries a discrete amount of energy that depends on its wavelength.
At the outset of the reading selection, Einstein introduces his paradoxical new con-
cept of light.3 Then in the next several sections, Einstein motivates and explains this
concept by applying Boltzmann’s principle of entropy to a gas of light corpuscles.
These sections are rather technical, so feel free to skim over them for now; you
might come back and re-read these after having studied a bit of quantum theory,
variational calculus and statistical mechanics. In the mean time, be sure to carefully
study Sect. 16.2.8, wherein Einstein describes how his concept of the light quantum
may be used to understand the photoelectric effect. This curious emission of cath-
ode rays (electrons) from illuminated metal bodies had been observed and noted by
Heinrich Hertz in the 1880’s. Einstein’s novel theory of the photoelectric effect was
originally published in 1905; it earned him a Nobel Prize in physics 16 year later.

16.2 Reading: Einstein, Concerning a Heuristic Point of View
Toward the Emission and Transformation of Light

Arons, A., and M. B. Peppard, Einstein’s Proposal of the Photon Concept—a Trans-
lation of the Annalen der Physik Paper of 1905, American Journal of Physics, 33(5),
367–374, 1965.

A profound formal distinction exists between the theoretical concepts which physi-
cists have formed regarding gases and other ponderable bodies and the Maxwellian
theory of electromagnetic processes in so-called empty space. While we consider
the state of a body to be completely determined by the positions and velocities of
a very large, yet finite, number of atoms and electrons, we make use of continuous

1 The problem of blackbody radiation was mentioned briefly in Chap. 14 of the present volume.
2 See Planck’s lecture in Chap. 15 of the present volume.
3 Recall, however, that the concept of a light corpuscle was introduced some 300 years earlier by
Isaac Newton in Book III of his Opticks; see, for example, Chap. 18 of volume III.
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spatial functions to describe the electromagnetic state of a given volume, and a finite
number of parameters cannot be regarded as sufficient for the complete determina-
tion of such a state. According to the Maxwellian theory, energy is to be considered
a continuous spatial function in the case of all purely electromagnetic phenomena
including light, while the energy of a ponderable object should, according to the
present conceptions of physicists, be represented as a sum carried over the atoms
and electrons. The energy of a ponderable body cannot be subdivided into arbitrar-
ily many or arbitrarily small parts, while the energy of a beam of light from a point
source (according to the Maxwellian theory of light or, more generally, according
to any wave theory) is continuously spread over an ever increasing volume.

The wave theory of light, which operates with continuous spatial functions, has
worked well in the representation of purely optical phenomena and will probably
never be replaced by another theory. It should be kept in mind, however, that the
optical observations refer to time averages rather than instantaneous values. In spite
of the complete experimental confirmation of the theory as applied to diffraction,
reflection, refraction, dispersion, etc., it is still conceivable that the theory of light
which operates with continuous spatial functions may lead to contradictions with
experience when it is applied to the phenomena of emission and transformation of
light.

It seems to me that the observations associated with blackbody radiation, flu-
orescence, the production of cathode rays by ultraviolet light, and other related
phenomena connected with the emission or transformation of light are more readily
understood if one assumes that the energy of light is discontinuously distributed in
space. In accordance with the assumption to be considered here, the energy of a
light ray spreading out from a point source is not continuously distributed over an
increasing space but consists of a finite number of energy quanta which are localized
at points in space, which move without dividing, and which can only be produced
and absorbed as complete units.

In the following I wish to present the line of thought and the facts which have
led me to this point of view, hoping that this approach may be useful to some
investigators in their research.

16.2.1 Concerning a Difficulty with Regard to the Theory
of Blackbody Radiation

We start first with the point of view taken in the Maxwellian and the electron theories
and consider the following case. In a space enclosed by completely reflecting walls,
let there be a number of gas molecules and electrons which are free to move and
which exert conservative forces on each other on close approach; i.e. they can collide
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with each other like molecules in the kinetic theory of gases.4 Furthermore, let there
be a number of electrons which are bound to widely separated points by forces
proportional to their distances from these points. The bound electrons are also to
participate in conservative interactions with the free molecules and electrons when
the latter come very close. We call the bound electrons “oscillators”; they emit and
absorb electromagnetic waves of definite periods.

According to the present view regarding the origin of light, the radiation in
the space we are considering (radiation which is found for the case of dynamic
equilibrium in accordance with the Maxwellian theory) must be identical with
the blackbody radiation—at least if oscillators of all the relevant frequencies are
considered to be present.

For the time being, we disregard the radiation emitted and absorbed by the oscil-
lators and inquire into the condition of dynamical equilibrium associated with the
interaction (or collision) of molecules and electrons. The kinetic theory of gases
asserts that the average kinetic energy of an oscillator electron must be equal to the
average kinetic energy of a translating gas molecule. If we separate the motion of an
oscillator electron into three components at right angles to each other, we find for
the average energy E of one of these linear components the expression

E = (R/N)T (16.1)

where R denotes the universal gas constant, N denotes the number of “real
molecules” in a gram equivalent, and T the absolute temperature. The energy E

is equal to two-thirds the kinetic energy of a free monatomic gas particle because
of the equality between the time average values of the kinetic and potential energies
of the oscillator. If through any cause—in our case through radiation processes—it
should occur that the energy of an oscillator takes on a time average value greater
or less than E, then the collisions with the free electrons and molecules would lead
to a gain or loss of energy by the gas, different on the average from zero. Therefore,
in the case we are considering, dynamic equilibrium is possible only when each
oscillator has the average energy E.

We shall now proceed to present a similar argument regarding the interac-
tion between the oscillators and the radiation present in the cavity. Herr Planck
has derived5 the condition for the dynamical equilibrium in this case under the

4 This assumption is equivalent to the supposition that the average kinetic energies of gas molecules
and electrons are equal to each other at thermal equilibrium. It is well known that, with the help of
this assumption, Herr Drude derived a theoretical expression for the ratio of thermal and electrical
conductivities of metals.
5 M. Planck, Ann. Physik 1, 99 (1900).
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supposition that the radiation can be considered a completely random process.6 He
found

(Eν) = (L3/8πν2)ρν, (16.5)

where (Eν) is the average energy (per degree of freedom) of an oscillator with eigen-
frequency ν, L the velocity of light, ν the frequency, and ρνdν the energy per unit
volume of that portion of the radiation with frequency between ν and ν + dν.

If the radiation energy of frequency ν is not continually increasing or decreasing,
the following relations must obtain:

(R/N )T = E = (Eν) = (L3/8πν2)ρν,

ρν = (R/N )(8πν2/L3)T
(16.6)

These relations, found to be the conditions of dynamic equilibrium, not only fail
to coincide with experiment, but also state that in our model there can be no talk
of a definite energy distribution between ether and matter. The wider the range of
wavenumbers of the oscillators, the greater will be the radiation energy of the space,
and in the limit we obtain

∫ ∞

0
ρν dν = R

N

8π

L3
T

∫ ∞

0
ν2 dν = ∞ (16.7)

6 This problem can be formulated in the following manner. We expand the Z component of the
electrical force (Z) at an arbitrary point during the time interval between t = 0 and t = T in a
Fourier series in which Aν ≥ 0 and 0 ≤ αν ≤ 2π ; the time T is taken to be very large relative to
all the periods of oscillation that are present:

Z =
ν=∞∑
ν=1

Aν sin

(
2πν

t

T
+ αν

)
. (16.2)

If one imagines making this expansion arbitrarily often at a given point in space at randomly
chosen instants of time, one will obtain various sets of values of Aν and αν . There then exist for
the frequency of occurrence of different sets of values of Aν and αν (statistical) probabilities dW
of the form;

dW = f (A1, A2 . . . α1, α2)dA1 dA2 . . . dα1 dα2 (16.3)

The radiation is then as disordered as conceivable if

f (A1, A2 . . . α1, α2 . . . ) = F1(A1)F2(A2) . . . f1(α1)f2(α2) . . . , (16.4)

i.e., if the probability of a particular value of A or α is independent of other values of A or α. The
more closely this condition is fulfilled (namely, that the individual pairs of values of Aν and αν are
dependent upon the emission and absorption processes of specific groups of oscillators) the more
closely will radiation in the case being considered approximate a perfectly random state.
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16.2.2 Concerning Planck’s Determination of the Fundamental
Constants

We wish to show in the following that Herr Planck’s determination of the funda-
mental constants is, to a certain extent, independent of his theory of blackbody
radiation.

Planck’s formula,7 which has proved adequate up to this point, gives for ρν

ρν = αν3

eβν/T − 1
,

α = 6.10 × 10−56,

β = 4866 × 10−11

(16.8)

For large values of T/ν; i.e. for large wavelengths and radiation densities, this
equation takes the form

ρν = (α/β)ν2T . (16.9)

It is evident that this equation is identical with the one obtained in Sect. 1 from the
Maxwellian and electron theories. By equating the coefficients of both formulas one
obtains

(R/N )(8π/L3) = (α/β) (16.10)

or

N = (β/α)(8πR/L3) = 6.17 × 1023 (16.11)

i.e., an atom of hydrogen weighs 1/N g = 1.62 × 10−24 g. This is exactly the value
found by Herr Planck, which in turn agrees with values found by other methods.

We therefore arrive at the conclusion: the greater the energy density and the
wavelength of a radiation, the more useful do the theoretical principles we have
employed turn out to be; for small wavelengths and small radiation densities,
however, these principles fail us completely.

In the following we shall consider the experimental facts concerning blackbody
radiation without invoking a model for the emission and propagation of the radiation
itself.

16.2.3 Concerning the Entropy of Radiation

The following treatment is to be found in a famous work by Herr W. Wien and is
introduced here only for the sake of completeness.

7 M. Planck, Ann. Physik 4, 561 (1901).
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Suppose we have radiation occupying a volume v. We assume that the observable
properties of the radiation are completely determined when the radiation density
ρ(ν) is given for all frequencies.8 Since radiations of different frequencies are to be
considered independent of each other when there is no transfer of heat or work, the
entropy of the radiation can be represented by

S = v

∫ ∞

0
φ(ρ, ν) dν, (16.12)

where φ is a function of the variables ρ and ν.
φ can be reduced to a function of a single variable through formulation of the

condition that the entropy of the radiation is unaltered during adiabatic compression
between reflecting walls. We shall not enter into this problem, however, but shall
directly investigate the derivation of the function φ from the blackbody radiation
law.

In the case of blackbody radiation, ρ is such a function of ν that the entropy is a
maximum for a fixed value of energy; i.e.,

δ

∫ ∞

0
φ(ρ, ν) dν = 0 (16.13)

providing

δ

∫ ∞

0
ρ dν = 0 (16.14)

From this it follows that for every choice of δρ as a function of ν

δ

∫ ∞

0

(
∂φ

∂ρ
− λ

)
δρ dν = 0 (16.15)

where λ is independent of ν. In the case of blackbody radiation, therefore, ∂φ/∂ρ is
independent of ν.

The following equation applies when the temperature of a unit volume of
blackbody radiation increases by dT

dS =
∫ ν=∞

ν=0

(
∂φ

∂ρ

)
dρ dν, (16.16)

or, since ∂φ/∂ρ is independent of ν,

dS = (∂φ/∂ρ)dE. (16.17)

Since dE is equal to the heat added and since the process is reversible, the following
statement also applies

dS = (1/T )dE. (16.18)

8 This assumption is an arbitrary one. One will naturally cling to this simplest assumption as long
as it is not controverted by experiment.
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By comparison one obtains
∂φ/∂ρ = 1/T (16.19)

This is the law of blackbody radiation. Therefore one can derive the law of black-
body radiation from the function φ, and, inversely, one can derive the function φ by
integration, keeping in mind the fact that φ vanishes when ρ = 0.

16.2.4 Asymptotic Form for the Entropy of Monochromatic
Radiation at Low Radiation Density

From existing observations of the blackbody radiation, it is clear that the law
originally postulated by Herr W. Wien,

ρ = αν3ε−βν/T , (16.20)

is not exactly valid. It is, however, well confirmed experimentally for large values
of ν/T . We shall base our analysis on this formula, keeping in mind that our results
are only valid within certain limits.

This formula gives immediately

(1/T ) = −(1/βν) ln (ρ/αν3) (16.21)

and then, by using the relation obtained in the preceding section,

φ(ρ, ν) = ρ

βν

[
ln

( ρ

αν3

)
− 1

]
. (16.22)

Suppose that we have radiation of energy E, with frequency between ν and ν + dν

enclosed in volume v. The entropy of this radiation is:

s = vφ(ρ, ν)dν = − E

βν

[
ln

(
E

vαν3dν

)
− 1

]
. (16.23)

If we confine ourselves to investigating the dependence of the entropy on the volume
occupied by the radiation, and if we denote by S0 the entropy of the radiation at
volume v0, we obtain

S − S0 = (E/βν) ln (v/v0). (16.24)

This equation shows that the entropy of a monochromatic radiation of sufficiently
low density varies with the volume in the same manner as the entropy of an ideal
gas or a dilute solution. In the following, this equation will be interpreted in accor-
dance with the principle introduced into physics by Herr Boltzmann, namely that
the entropy of a system is a function of the probability its state.
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16.2.5 Molecular-Theoretic Investigation of the Dependence of
the Entropy of Gases and Dilute Solutions on the Volume

In the calculation of entropy by molecular-theoretic methods we frequently use
the word “probability” in a sense differing from that employed in the calculus of
probabilities. In particular, “cases of equal probability” have frequently been hypo-
thetically established when the theoretical models being utilized are definite enough
to permit a deduction rather than a conjecture. I will show in a separate paper that
the so-called “statistical probability” is fully adequate for the treatment of thermal
phenomena, and I hope that by doing so I will eliminate a logical difficulty that
obstructs the application of Boltzmann’s Principle. Here, however, only a general
formulation and application to very special cases will be given.

If it is reasonable to speak of the probability of the state of a system, and further-
more if every entropy increase can be understood as a transition to a state of higher
probability, then the entropy S1 of a system is a function of W1, the probability of its
instantaneous state. If we have two noninteracting systems S1 and S2, we can write

S1 = φ1(W1)

S2 = φ2(W2)
(16.25)

If one considers these two systems as a single system of entropy S and probability
W , it follows that

S = S1 + S2 = φ(W ) (16.26)

and
W = W1 · W2 (16.27)

The last equation says that the states of the two systems are independent of each
other.

From these equations it follows that

φ(W1 · W2) = φ(W1) + φ(W2), (16.28)

and finally

φ1(W1) = C ln (W1) + const,

φ2(W2) = C ln (W2) + const,

φ3(W ) = C ln (W ) + const.

(16.29)

The quantity C is therefore a universal constant; the kinetic theory of gases shows
its value to be R/N , where the constants R and N have been defined above. If S0
denotes the entropy of a system in some initial state and W denotes the relative
probability of a state of entropy S, we obtain in general

S − S0 = (R/N ) ln W . (16.30)



222 16 Corpuscles of Light

First we treat the following special case. We consider a number (n) of movable
points (e.g., molecules) confined in a volume v0. Besides these points, there can
be in the space any number of other movable points of any kind. We shall not
assume anything concerning the law in accordance with which the points move in
this space except that with regard to this motion, no part of the space (and no direc-
tion within it) can be distinguished from any other. Further, we take the number
of these movable points to be so small that we can disregard interactions between
them.

This system, which, for example, can be an ideal gas or a dilute solution, pos-
sesses an entropy S0. Let us imagine transferring all n movable points into a volume
v (part of the volume v0) without anything else being changed in the system. This
state obviously possesses a different entropy (S), and we now wish to evaluate the
entropy difference with the help of the Boltzmann Principle.

We inquire: How large is the probability of the latter state relative to the original
one? Or: How large is the probability that at a randomly chosen instant of time all n

movable points in the given volume v0 will be found by chance in the volume v?
For this probability, which is a “statistical probability,” one obviously obtains:

W = (v/v0)n. (16.31)

By applying the Boltzmann Principle, one then obtains

S − S0 = R(n/N ) ln (v/vo). (16.32)

It is noteworthy that in the derivation of this equation, from which one can easily
obtain the law of Boyle and Gay-Lussac as well as the analogous law of osmotic
pressure thermodynamicaIly,9 no assumption had to be made as to a law of motion
of the molecules.

16.2.6 Interpretation of the Expression for the Volume
Dependence of the Entropy of Monochromatic Radiation
in Accordance with Boltzmann’s Principle

In Sect. 16.2.4, we found the following expression for the dependence of the entropy
of monochromatic radiation on the volume

S − S0 = (E/βν) ln (v/v0). (16.35)

9 If E is the energy of the system, one obtains:

−d(E − T S) = pdv = T dS = RT (n/N )(dv/v); (16.33)

therefore
pv = R(n/N )T . (16.34)
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If one writes this in the form

S − S0 = (R/N ) ln
[
(v/v0)(N/R)·(E/βν)

]
, (16.36)

and if one compares this with the general formula for the Boltzmann principle

S − S0 = (R/N ) log W, (16.37)

one arrives at the following conclusion:
If monochromatic radiation of frequency ν and energy E is enclosed by reflecting

walls in a volume v0, the probability that the total radiation energy will be found in
a volume v (part of the volume v0) at any randomly chosen instant is

W = (v/v0)(N/R)·(E/βν) (16.38)

From this we further conclude that: Monochromatic radiation of low density (within
the range of validity of Wien’s radiation formula) behaves thermodynamically as
though it consisted of a number of independent energy quanta of magnitude Rβν/N .

We still wish to compare the average magnitude of the energy quanta of the black-
body radiation with the average translational kinetic energy of a molecule at the
same temperature. The latter is 3 2(R/N )T , while, according to the Wien formula,
one obtains for the average magnitude of an energy quantum

∫ ∞

0
αν3ε−βν/T dν

/ ∫ ∞

0

N

Rβν
αν3ε−βν/T dν = 3(RT/N ) (16.39)

If the entropy of monochromatic radiation depends on volume as though the radi-
ation were a discontinuous medium consisting of energy quanta of magnitude
Rβν/N , the next obvious step is to investigate whether the laws of emission and
transformation of light are also of such a nature that they can be interpreted or
explained by considering light to consist of such energy quanta. We shall examine
this question in the following.

16.2.7 Concerning Stoke’s Rule

According to the result just obtained, let us assume that, when monochromatic light
is transformed through photoluminescence into light of a different frequency, both
the incident and emitted light consist of energy quanta of magnitude Rβν/N , where
ν denotes the relevant frequency. The transformation process is to be interpreted in
the following manner. Each incident energy quantum of frequency ν1 is absorbed
and generates by itself—at least at sufficiently low densities of incident energy
quanta—a light quantum of frequency ν2; it is possible that the absorption of the
incident light quantum can give rise to the simultaneous emission of light quanta
of frequencies ν3, ν4, etc., as well as to energy of other kinds, e.g., heat. It does
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not matter what intermediate processes give rise to this final result. If the fluores-
cent substance is not a perpetual source of energy, the principle of conservation of
energy requires that the energy of an emitted energy quantum cannot be greater than
that of the incident light quantum; it follows that

Rβν2/N ≥ Rβν1/N (16.40)

or
ν3 ≤ ν1. (16.41)

This is the well-known Stokes’s Rule.
It should be strongly emphasized that according to our conception the quantity of

light emitted under conditions of low illumination (other conditions remaining con-
stant) must be proportional to the strength of the incident light, since each incident
energy quantum will cause an elementary process of the postulated kind, indepen-
dently of the action of other incident energy quanta. In particular, there will be no
lower limit for the intensity of incident light necessary to excite the fluorescent
effect.

According to the conception set forth above, deviations from Stokes’s Rule are
conceivable in the following cases:

1. when the number of simultaneously interacting energy quanta per unit volume
is so large that an energy quantum of emitted light can receive its energy from
several incident energy quanta;

2. when the incident (or emitted) light is not of such a composition that it corre-
sponds to blackbody radiation within the range of validity of Wein’s Law, that
is to say, for example, when the incident light is produced by a body of such
high temperature that for the wavelengths under consideration Wien’s Law is
no longer valid.

The last-mentioned possibility commands especial interest. According to the con-
ception we have outlined, the possibility is not excluded that a “non-Wien radiation”
of very low density can exhibit an energy behavior different from that of a blackbody
radiation within the range of validity of Wien’s Law.

16.2.8 Concerning the Emission of Cathode Rays Through
the Illumination of Solid Bodies

The usual conception, that the energy of light is continuously distributed over the
space through which it propagates, encounters very serious difficulties when one
attempts to explain the photoelectric phenomena, as has been pointed out in Herr
Lenard’s pioneering paper.10

10 P. Lenard, Ann. Physik 8, 169, 170 (1902).
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According to the concept that the incident light consists of energy quanta of
magnitude Rβν/N however, one can conceive of the ejection of electrons by light
in the following way. Energy quanta penetrate into the surface layer of the body,
and their energy is transformed, at least in part, into kinetic energy of electrons. The
simplest way to imagine this is that a light quantum delivers its entire energy to a
single electron; we shall assume that this is what happens. The possibility should not
be excluded, however, that electrons might receive their energy only in part from the
light quantum.

An electron to which kinetic energy has been imparted in the interior of the body
will have lost some of this energy by the time it reaches the surface. Furthermore,
we shall assume that in leaving the body each electron must perform an amount of
work P characteristic of the substance. The ejected electrons leaving the body with
the largest normal velocity will be those that were directly at the surface. The kinetic
energy of such electrons is given by

Rβν/N − P (16.42)

If the body is charged to a positive potential � and is surrounded by conductors at
zero potential, and if � is just large enough to prevent loss of electricity by the body,
it follows that:

�ε = Rβν/N − P (16.43)

where ε denotes the electronic charge, or

�E = Rβν − P ′ (16.44)

where E is the charge of a gram equivalent of a monovalent ion and P ′ is the
potential of this quantity of negative electricity relative to the body.11

If one takes E = 9.6 × 103, then � · 10−8 is the potential in volts which the
body assumes when irradiated in a vacuum.

In order to see whether the derived relation yields an order of magnitude con-
sistent with experience, we take P ′ = 0, ν = 1.03 × 1015 (corresponding to
the limit of the solar spectrum toward the ultraviolet) and β = 4866 × 10−11. We
obtain � · 107 = 4.3 V , a result agreeing in order magnitude with those of Herr
Lenard.12

If the derived formula is correct, then �, when represented in Cartesian coor-
dinates as a function of the frequency of the incident light, must be a straight line
whose slope is independent of the nature of the emitting substance.

As far as I can see, there is no contradiction between these conceptions and the
properties of the photoelectric effect observed by Herr Lenard. If each energy quan-
tum of the incident light, independently of everything else, delivers its energy to

11 If one assumes that the individual electron is detached from a neutral molecule by light with the
performance of a certain amount of work, nothing in the relation derived above need be changed;
one can simply consider P ′ as the sum of two terms.
12 P. Lenard, Ann. Physik 8, pp. 165, 184 and Table I, Fig. 2 (1902).
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electrons, then the velocity distribution of the ejected electrons will be indepen-
dent of the intensity of the incident light; on the other hand the number of electrons
leaving the body will, if other conditions are kept constant, be proportional to the
intensity of the incident light.13

Remarks similar to those made concerning hypothetical deviations from Stokes’s
Rule can be made with regard to hypothetical boundaries of validity of the law set
forth above.

In the foregoing it has been assumed that the energy of at least some of the quanta
of the incident light is delivered completely to individual electrons. If one does not
make this obvious assumption, one obtains, in place of the last equation:

�E + P ′ ≤ Rβν. (16.45)

For fluorescence induced by cathode rays, which is the inverse process to the one
discussed above, one obtains by analagous considerations:

�E + P ′ ≥ Rβν. (16.46)

In the case of the substances investigated by Herr Lenard, PE14 is always signifi-
cantly greater than Rβν, since the potential difference, which the cathode rays must
traverse in order to produce visible light, amounts in some cases to hundreds and in
others to thousands of volts.15 It is therefore to be assumed that the kinetic energy
of an electron goes into the production of many light energy quanta.

16.2.9 Concerning the Ionization of Gases by Ultraviolet Light

We shall have to assume that, in the ionization of a gas by ultraviolet light, an indi-
vidual light energy quantum is used for the ionization of an individual gas molecule.
From this it follows immediately that the work of ionization (i.e., the work theoret-
ically needed for ionization) of a molecule cannot be greater than the energy of an
absorbed light quantum capable of producing this effect. If one denotes by J the
(theoretical) work of ionization per gram equivalent, then it follows that:

Rβν ≥ J . (16.47)

According to Lenard’s measurements, however, the largest effective wavelength for
air is approximately 1.9 × 10−5 cm; therefore:

Rβν = 6.4 × 1012 erg ≥ J . (16.48)

13 P. Lenard, Ref. 9, p. 150 and p. 166–168.
14 Should be �E (translator’s note).
15 P. Lenard, Ann. Physik 12, 469 (1903).
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An upper limit for the work of ionization can also be obtained from the ionization
potentials of rarefied gases. According to J. Stark16 the smallest observed ioniza-
tion potentials for air (at platinum anodes) is about 10 V.17 One therefore obtains
9.6 × 1012 as an upper limit for J , which is nearly equal to the value found above.

There is another consequence the experimental testing of which seems to me to
be of great importance. If every absorbed light energy quantum ionizes a molecule,
the following relation must obtain between the quantity of absorbed light L and the
number of gram molecules of ionized gas j :

j = L/Rβν. (16.49)

If our conception is correct, this relationship must be valid for all gases which (at
the relevant frequency) show no appreciable absorption without ionization.

Bern, 17 March 1905

RECEIVED 18 MARCH 1905.

16.3 Study Questions

QUES. 16.1. What is Einstein’s conception of light?

a) What is the fundamental distinction between the theoretical concepts of matter
and of light? Is matter infinitely divisible? Are electromagnetic fields infinitely
divisible?

b) What phenomena are well described using the wave theory of light? What types
of phenomena, according to Einstein, may not be well-described by the wave
theory?

c) What alternative conception of light does Einstein suggest?

QUES. 16.2. Are there any problems with the classical theory of blackbody radia-
tion?

a) What is meant by the classical theory of blackbody radiation? According to this
theory, is there light inside a chamber completely enclosed by reflecting walls?
If so, what is its cause, or origin?

b) According to the kinetic theory of gases, what is the relationship between the gas
molecules and the electrons in the chamber? Are they in (thermal) equilibrium?

c) What, now, is the relationship between the vibrating matter and any radia-
tion existing in the chamber? Are they in (thermal) equilibrium? How is this
equilibrium condition expressed mathematically?

16 J. Stark, Die Elektrizität in Gasen (Leipzig, 1902), p. 57.
17 In the interior of gases the ionization potential for negative ions is, however, five times greater.
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d) According to this (classical) theory of electromagnetic radiation in a chamber,
what is the total (radiant) energy in such a chamber? Is this a problem? Why?

e) How did Max Planck solve this problem? In particular, what quantity did he
introduce? And how did it solve the problem of the radiant blackbody energy?

QUES. 16.3. Consider a gas of particles confined in a chamber. What is the proba-
bility that all of the particles happen to be located in one corner of this chamber?
According to Boltzmann’s Principle, what is the relationship between the probabil-
ity of this configuration and the entropy of this configuration? Does this relationship
depend in any way on Newton’s laws of motion?

QUES. 16.4. In what sense does monochromatic radiation, confined in a chamber,
behave like a gas of particles? What is the energy of each of these particles? How
does this compare to the average translational kinetic energy of a gas molecule at
the same temperature? What does this suggest regarding the nature of light?

QUES. 16.5. How does Einstein explain the emission of cathode rays from solid
substances when they are illuminated?

a) What is the photoelectric effect? Who discovered it? And what picture does
Einstein propose to explain this effect?

b) How does increasing the frequency of radiation affect the emission of cathode
rays? How does the intensity of the incident radiation affect the emission of
cathode rays?

c) What difficulty does the wave theory encounter in describing the photoelec-
tric effect? How does Einstein’s theory address this problem? Does Einstein’s
conception of light raise any difficulties?

QUES. 16.6. How does Einstein’s apply his theory of the photoelectric to understand
the ionization of gases?

16.4 Exercises

EX. 16.1 (STOPPING VOLTAGE). Einstein mentions that if a substance from which
electrons are being ejected by incident light is held at an electric potential, �,
above its surroundings, then it is able to slow down, or even stop the emitted
photoelectrons. Suppose that a particular substance requires a minimum work of
2 electron-volts to unbind an electron. (This is called the work function of the
substance.)

a) What is the minimum wavelength of light required to eject an electron from this
substance? What happens if light of this minimum wavelength is used and its
intensity is gradually increased?

b) If ultra-violet light, having a wavelength of 200 nm, is incident upon the sub-
stance, then what is the minimum value of the potential, �, such that ejected
electrons return to the substance, rather than escaping from the substance
entirely?
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EX. 16.2 (MEASURING PLANCK’S CONSTANT USING THE PHOTOELECTRIC EFFECT).
In this laboratory experiment, we will use the photoelectric effect to measure
Planck’s constant, h, and to explore the validity of Einstein’s quantum theory of
light. A photo-electric apparatus consists of a specially designed photo-tube, a
sensitive galvanometer and several monochromatic light sources having different
wavelengths.18 The photo-tube is an evacuated glass tube containing two electrodes
which are maintained at a slight voltage difference. The negative electrode (the cath-
ode) has a photosensitive surface. When light having sufficient energy strikes the
cathode, electrons are ejected. Some of these photo-electrons are collected by the
positive electrode (the anode) producing a small photo-current which can be mea-
sured using a sensitive galvanometer. By reversing the electric potential between
the cathode and the anode, this photo-current can be slowed down or even stopped
entirely. By measuring the minimum stopping voltage with a digital voltmeter,
one can estimate the kinetic energy of the most energetic photo-electrons. This is
because the kinetic energy of an electron is equal to the work required to bring it
to a complete stop.19 Einstein claimed that each photo-electron is ejected by a light
particle—a photon—whose energy, E, depends on the color (and not the intensity)
of the incident light:

E = hν (16.50)

Here, h is Planck’s constant and ν is the frequency of the photon, as it were. By mea-
suring photo-electron stopping voltages for several known light frequencies, one can
infer the energy of the incident photons. Is the photon energy indeed proportional
to its frequency? If so, what is the proportionality constant? Also, is there a mini-
mum energy required to eject photo-electrons? If so, what is its value? Do you think
it depends on the nature of the photo-sensitive surface?20 Finally, do the results of
your experiments support Einstein’s photon theory of light?

16.5 Vocabulary

1. Corpuscles
2. Phosphorescence
3. Cathode
4. Maltese cross

18 A complete Photoelectric Apparatus (Model EP-07)—containing a phototube, an amplifier
and three color filters—is available form Daedalon, Downeast Maine. Additional light sources,
such as a mercury arc and a He-Ne laser may be used to extend the measurements to additional
wavelengths. A digital voltmeter is also required.
19 See Ex. 16.1, above.
20 For precise measurements of the Planck’s constant using the photoelectric effect for several sur-
faces, see Millikan, R. A., A direct photoelectric determination of Planck’s “h”, Physical Review,
7(3), 355, 1916.
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5. Luminosity
6. Alkali metals
7. Supersaturated
8. Mahomet’s coffin
9. Electrolysis

10. Radium



Chapter 17
The Discovery of the Electron

The atom is not the ultimate limit to the subdivision of matter;
we may go further and get to the corpuscle, and at this stage the
corpuscle is the same from whatever source it may be derived.

—J. J. Thomson

17.1 Introduction

According to the ancient doctrines of Democritus and Epicurus, atoms are tiny indi-
visible masses rattling about through the vacuum of space. This atomic hypothesis
was preserved—in one form or another—for over 2000 years. Yet by the close of
the nineteenth century it was still not universally accepted. The most convincing evi-
dence for atomism was rather indirect, having come out of (i) the study of chemical
reactions, (ii) the kinetic theory of gases and (iii) Boltzmann’s probabilistic inter-
pretation of entropy.1 Even among the atomists there was considerable disagreement
regarding the nature and structure of the atom itself. For example, the followers of
Roger Boscovich2 believed atoms to be little more than point-like mathematical
centers of force.3 Boscovich’s atoms possessed an unchangeable mass, they could
move through the vacuum of space, and they were endowed with an irreducible
power to attract or repel other atoms. A very different view of the atom was main-
tained by William Thomson (Lord Kelvin). Inspired by the earlier work of Hermann
von Helmholtz, Kelvin imagined atoms to be like minuscule smoke-rings traveling
through an all-pervasive frictionless fluid medium—the æther.4 These so-called vor-
tex ring atoms were indivisible local excitations which could emit light by vibrating
like the rim of a tiny ringing bell. In this way, the vortex ring model of the atom

1 See, for example, the discussions of atomism by Clausius, Maxwell, and Planck which are
presented in Chaps. 6, 11 and 15 of the present volume.
2 Roger Boscovich was an eighteenth century natural philosopher and Jesuit priest.
3 See Part I, Sect. 7 of Boscovich, R. J., A Theory of Natural Philosophy, Open Court Publishing
Co., Chicago and London, 1922. Boscovich originally published this work in 1763.
4 See Thomson, W., On Vortex Atoms, Proceedings of the Royal Society of Edinburgh, 6, 1867.
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offered the possibility of explaining the complicated emission spectra of atomic
gasses.5

Kelvin’s vortex theory of the atom aroused the interest of another Thomson, J.J.,
who published his Treatise on the motion of vortex rings in 1883 while studying at
the University of Cambridge. A few years later, J.J. Thomson would propose the
existence of subatomic particles which weighed considerably less than the smallest
known atom. Joseph John Thomson (1856–1940) was born in Cheetham Hill, near
Manchester, England. He attended Owens College and then Trinity College, where
he became a Fellow in 1880. He was appointed Cavendish Professor of Experi-
mental Physics at Cambridge in 1884. Over the course of his career, Thomson’s
work focused on the nature of electricity, magnetism, and the atom. His works, for
example, include a textbook on the Elements of the Mathematical Theory of Elec-
tricity and Magnetism (1895), lectures on the Discharge of Electricity through Gases
(1897) and on the Conduction of Electricity through Gases (1903), and books on The
Structure of Light (1907), The Corpuscular Theory of Matter (1907), Rays of Posi-
tive Electricity (1913) and The Electron in Chemistry (1923). J.J. Thomson won the
Nobel prize in physics in 1906 “in recognition of the great merits of his theoretical
and experimental investigations on the conduction of electricity by gases.” Among
his famous students was Ernest Rutherford, who is today recognized as the father of
nuclear physics.6 Thomson’s son, George, shared the Nobel prize in Physics in 1937
with Clinton Davisson “for their experimental discovery of the diffraction of elec-
trons by crystals.”7 In the reading selection below, Thomson describes his famous
1897 discovery of subatomic electrically charged particles. It is taken from the first
chapter of his 1907 book on The Corpuscular Theory of Matter.

17.2 Reading: Thomson, The Corpuscular Theory of Matter

Thomson, J. J., The Corpuscular Theory of Matter, Charles Scribner’s Sons, New
York, 1907. Chap. I.

The theory of the constitution of matter which I propose to discuss in these lectures,
is one which supposes that the various properties of matter may be regarded as aris-
ing from electrical effects. The basis of the theory is electricity, and its object is to
construct a model atom, made up of specified arrangements of positive and nega-
tive electricity, which shall imitate as far as possible the properties of the real atom.
We shall postulate that the attractions and repulsions between the electrical charges

5 Niels Bohr discusses atomic emission spectra in the context of his quantized model of the atom;
see Chap. 28 of the present volume.
6 Rutherford describes his work with α-particles, radioactivity and nuclear fission in the readings
included in Chaps. 18–21 of the present volume.
7 See, for example, Davisson’s paper on electron diffraction which is included in Chap. 26 of the
present volume.
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in the atom follow the familiar law of the inverse square of the distance, though,
of course, we have only direct experimental proof of this law when the magnitude
of the charges and the distances between them are enormously greater than those
which can occur in the atom. We shall not attempt to go behind these forces and dis-
cuss the mechanism by which they might be produced. The theory is not an ultimate
one; its object is physical rather than metaphysical. From the point of view of the
physicist, a theory of matter is a policy rather than a creed; its object is to connect
or co-ordinate apparently diverse phenomena, and above all to suggest, stimulate
and direct experiment. It ought to furnish a compass which, if followed, will lead
the observer further and further into previously unexplored regions. Whether these
regions will be barren or fertile experience alone will decide; but, at any rate, one
who is guided in this way will travel onward in a definite direction, and will not
wander aimlessly to and fro.

The corpuscular theory of matter with its assumptions of electrical charges and
the forces between them is not nearly so fundamental as the vortex atom theory of
matter, in which all that is postulated is an incompressible, frictionless liquid pos-
sessing inertia and capable of transmitting pressure. On this theory the difference
between matter and non-matter and between one kind of matter and another is a dif-
ference between the kinds of motion in the incompressible liquid at various places,
matter being those portions of the liquid in which there is vortex motion. The sim-
plicity of the assumptions of the vortex atom theory are, however, somewhat dearly
purchased at the cost of the mathematical difficulties which are met with in its devel-
opment; and for many purposes a theory whose consequences are easily followed
is preferable to one which is more fundamental but also more unwieldy. We shall,
however, often have occasion to avail ourselves of the analogy which exists between
the properties of lines of electric force in the electric field and lines of vortex motion
in an incompressible fluid.

To return to the corpuscular theory. This theory, as I have said, supposes that the
atom is made up of positive and negative electricity. A distinctive feature of this
theory—the one from which it derives its name—is the peculiar way in which the
negative electricity occurs both in the atom and when free from matter. We suppose
that the negative electricity always occurs as exceedingly fine particles called cor-
puscles, and that all these corpuscles, whenever they occur, are always of the same
size and always carry the same quantity of electricity. Whatever may prove to be
the constitution of the atom, we have direct experimental proof of the existence of
these corpuscles, and I will begin the discussion of the corpuscular theory with a
description of the discovery and properties of corpuscles.

17.2.1 Corpuscles in Vacuum Tubes

The first place in which corpuscles were detected was a highly exhausted tube
through which an electric discharge was passing. When I send an electric discharge
through this highly exhausted tube you will notice that the sides of the tube glow
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Fig. 17.1 Perrin’s apparatus
for measuring charge carried
by the cathode rays.—[K.K.]

with a vivid green phosphorescence. That this is due to something proceeding in
straight lines from the cathode—the electrode where the negative electricity enters
the tube—can be shown in the following way: the experiment is one made many
years ago by Sir William Crookes. A Maltese cross made of thin mica is placed
between the cathode and the walls of the tube. You will notice that when I send the
discharge through the tube, the green phosphorescence does not now extend all over
the end of the tube as it did in the tube without the cross. There is a well-defined
cross in which there is no phosphorescence at the end of the tube; the mica cross has
thrown a shadow on the tube, and the shape of the shadow proves that the phospho-
rescence is due to something, travelling from the cathode in straight lines, which is
stopped by a thin plate of mica. The green phosphorescence is caused by cathode
rays, and at one time there was a keen controversy as to the nature of these rays. Two
views were prevalent, one, which was chiefly supported by English physicists, was
that the rays are negatively electrified bodies shot off from the cathode with great
velocity; the other view, which was held by the great majority of German physicists,
was that the rays are some kind of ethereal vibrations or waves.

The arguments in favour of the rays being negatively charged particles are (1) that
they are deflected by a magnet in just the same way as moving negatively electrified
particles. We know that such particles when a magnet is placed near them are acted
upon by a force whose direction is at right angles to the magnetic force, and also at
right angles to the direction in which the particles are moving. Thus, if the particles
are moving horizontally from east to west, and the magnetic force is horizontal and
from north to south, the force acting on the negatively electrified particles will be
vertical and downwards.

When the magnet is placed so that the magnetic force is along the direction in
which the particle is moving the latter will not be affected by the magnet. By plac-
ing the magnet in suitable positions I can show you that the cathode particles move
in the way indicated by the theory. The observations that can be made in lecture
are necessarily very rough and incomplete; but I may add that elaborate and accu-
rate measurements of the movement of cathode rays under magnetic forces have
shown that in this respect the rays behave exactly as if they were moving electrified
particles (Fig. 17.1).

The next step made in the proof that the rays are negatively charged particles,
was to show that when they are caught in a metal vessel they give up to it a charge
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Fig. 17.2 Thomson’s cathode ray tube.—[K.K.]

of negative electricity. This was first done by Perrin. I have here a modification of
his experiment. A is a metal cylinder with a hole in it. It is placed so as to be out of
the way of the rays coming from C, unless they are deflected by a magnet, and is
connected with an electroscope. You see that when the rays do not pass through the
hole in the cylinder the electroscope does not receive a charge. I now, by means of
a magnet, deflect the rays so that they pass through the hole in the cylinder. You see
by the divergence of the gold-leaves that the electroscope is charged, and on testing
the sign of the charge we find that it is negative.

17.2.2 Deflection of the Rays by a Charged Body

If the rays are charged with negative electricity they ought to be deflected by an
electrified body as well as by a magnet. In the earlier experiments made on this
point no such deflection was observed. The reason of this has been shown to be that
when the cathode rays pass through a gas they make it a conductor of electricity,
so that if there is any appreciable quantity of gas in the vessel through which the
rays are passing, this gas will become a conductor of electricity, and the rays will be
surrounded by a conductor which will screen them from the effects of electric force
just as the metal covering of an electroscope screens off all external electric effects.
By exhausting the vacuum tube until there was only an exceedingly small quantity
of air left in to be made a conductor, I was able to get rid of this effect and to obtain
the electric deflection of the cathode rays. The arrangement I used for this purpose
is shown in Fig. 17.2. The rays on their way through the tube pass between two
parallel plates, A, B, which can be connected with the poles of a battery of storage
cells. The pressure in the tube is very low. You will notice that the rays are very
considerably deflected, when I connect the plates with the poles of the battery, and
that the direction of the deflection shows that the rays are negatively charged.

We can also show the effect of magnetic and electric force on these rays if we
avail ourselves of the discovery made by Wehnelt, that lime when raised to a red
heat emits when negatively charged large quantities of cathode rays. I have here a
tube whose cathode is a strip of platinum on which there is a speck of lime. When
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Fig. 17.3 Electrostatic deflec-
tion of cathode rays.—[K.K.]
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the piece of platinum is made very hot, a potential difference of 100 V or so is
sufficient to make a stream of cathode rays start from this speck; you will be able
to trace the course of the rays by the luminosity they produce as they pass through
the gas. You can see the rays as a thin line of bluish light coming from a point on
the cathode; on bringing a magnet near it the line becomes curved, and I can bend
it into a circle or a spiral, and make it turn round and go right behind the cathode
from which it started. This arrangement shows in a very striking way the magnetic
deflection of the rays. To show the electrostatic deflection I use the tube shown in
Fig. 17.3. I charge up the plate B negatively so that it repels the pencil of rays which
approach it from the spot of lime on the cathode, C. You see that the pencil of rays
is deflected from the plate and pursues a curved path whose distance from the plate
I can increase or diminish by increasing or diminishing the negative charge on the
plate.

We have seen that the cathode rays behave under every test that we have applied
as if they are negatively electrified particles; we have seen that they carry a nega-
tive charge of electricity and are deflected by electric and magnetic forces just as
negatively electrified particles would be.

Hertz showed, however, that the cathode particles possess another property which
seemed inconsistent with the idea that they are particles of matter, for he found that
they were able to penetrate very thin sheets of metal, for example, pieces of gold-
leaf placed between them and the glass, and produce appreciable luminosity on
the glass after doing so. The idea of particles as large as the molecules of a gas
passing through a solid plate was a somewhat startling one in an age which knew
not radium—which does project particles of this size through pieces of metal much
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thicker than gold-leaf—and this led me to investigate more closely the nature of the
particles which form the cathode rays.

The principle of the method used is as follows: When a particle carrying a charge
e is moving with the velocity v across the lines of force in a magnetic field, placed
so that the lines of magnetic force are at right angles to the motion of the particle,
then if H is the magnetic force, the moving particle will be acted on by a force
equal to Hev. This force acts in the direction which is at right angles to the magnetic
force and to the direction of motion of the particle, so that if the particle is moving
horizontally as in the figure and the magnetic force is at right angles to the plane of
the paper and towards the reader, then the negatively electrified particle will be acted
on by a vertical and upward force (See Fig. 17.4). The pencil of rays will therefore
be deflected upwards and with it the patch of green phosphorescence where it strikes
the walls of the tube. Let now the two parallel plates A and B (Fig. 17.2) between
which the pencil of rays is moving be charged with electricity so that the upper
plate is negatively and the lower plate positively electrified, the cathode rays will be
repelled from the upper plate with a force Xe where X is the electric force between
the plates. Thus, if the plates are charged, when the magnetic field is acting on the
rays, the magnetic force will tend to send the rays upwards, while the charge on the
plates will tend to send them downwards. We can adjust the electric and magnetic
forces until they balance and the pencil of rays passes horizontally in a straight line
between the plates, the green patch of phosphorescence being undisturbed. When
this is the case, the force Hev due to the magnetic field is equal to Xe—the force
due to the electric field—and we have

Hev = Xe (17.1)

or

v = X

H
(17.2)

Thus, if we measure, as we can without difficulty, the values of X and H when the
rays are not deflected, we can determine the value of v, the velocity of the particles.
The velocity of the rays found in this way is very great; it varies largely with the
pressure of the gas left in the tube. In a very highly exhausted tube it may be 1 3 the
velocity of light or about 60,000 miles/s; in tubes not so highly exhausted it may
not be more than 5000 miles/s, but in all cases when the cathode rays are produced
in tubes their velocity is much greater than the velocity of any other moving body
with which we are acquainted. It is, for example, many thousand times the average
velocity with which the molecules of hydrogen are moving at ordinary temperatures,
or indeed at any temperature yet realised.

17.2.3 Determination of e/m

Having found the velocity of the rays, let us in the preceding experiment take away
the magnetic force and leave the rays to the action of tho electric force alone. Then
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Fig. 17.4 A force acts on
a charge moving through a
magnetic field.—[K.K.]

the particles forming the rays are acted upon by a constant vertical downward force
and the problem is practically that of a bullet projected horizontally with a velocity
v and falling under gravity. We know that in time t the body will fall a depth equal
to 1 2 gt2 where g is the vertical acceleration; in our case the vertical acceleration
is equal to Xe/m where m is the mass of the particle, the time it is falling is l/v

where l is the length or path measured horizontally, and v the velocity of projection.
Thus, the depth the particle has fallen when it reaches the glass, i.e., the downward
displacement of the patch of phosphorescence where the rays strike the glass, is
equal to

1

2

Xe

m

l2

v2
(17.3)

We can easily measure d the distance the phosphorescent patch is lowered, and
as we have found v and X and l are easily measured, we can find e/m from the
equation:

e

m
= 2d

X

v2

l2
(17.4)

The results of the determinations of the values of e/m made by this method are
very interesting, for it is found that however the cathode rays produced we always
get the same value of e/m for all the particles in the rays. We may, for example,
by altering the shape of the discharge tube and the pressure of the gas in the tube,
produce great changes in the velocity of the particles, but unless the velocity of the
particles becomes so great that they are moving nearly as fast as light, when, as we
shall see, other considerations have to be taken into account, the value of e/m is
constant. The value of e/m is not merely independent of tho velocity. What is even
more remarkable is that it is independent of the kind of electrodes we use and also
of the kind of gas in the tube. The particles which form the cathode rays must come
either from the gas in the tube or from the electrodes; we may, however, use any
kind of substance we please for the electrodes and fill the tube with gas of any kind,
and yet the value of e/m will remain unaltered.

This constant value is, when we measure e/m in the C. G. S. system of magnetic
units, equal to about 1.7 × 107. If we compare this with the value of the ratio of
the mass to the charge of electricity carried by any system previously known, we
find that it is of quite a different order of magnitude. Before the cathode rays were
investigated the charged atom of hydrogen met with in the electrolysis of liquids
was the system which had the greatest known value for e/m, and in this case the
value is only 104; hence for the corpuscle in the cathode rays the value of e/m is
1700 times the value of the corresponding quantity for the charged hydrogen atom.
This discrepancy must arise in one or other of two ways, either the mass of the
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corpuscle must be very small compared with that of the atom of hydrogen, which
until quite recently was the smallest mass recognised in physics, or else the charge
on the corpuscle must be very much greater than that on the hydrogen atom. Now it
has been shown by a method which I shall shortly describe that the electric charge
is practically the same in the two cases; hence we are driven to the conclusion that
the mass of the corpuscle is only about 1/1700 of that of the hydrogen atom. Thus
the atom is not the ultimate limit to the subdivision of matter; we may go further
and get to the corpuscle, and at this stage the corpuscle is the same from whatever
source it may be derived.

17.2.4 Corpuscles Very Widely Distributed

It is not only from what may be regarded as a somewhat artificial and sophisticated
source, viz., cathode rays, that we can obtain corpuscles. When once they had been
discovered it was found that they were of very general occurrence. They are given
out by metals when raised to a red heat : you have already seen what a copious
supply is given out by hot lime. Any substance when heated gives out corpuscles
to some extent; indeed, we can detect the emission of them from some substances,
such as rubidium and the alloy of sodium and potassium, even when they are cold;
and it is perhaps allowable to suppose that there is some emission by all substances,
though our instruments are not at present sufficiently delicate to detect it unless it is
unusually large.

Corpuscles are also given out by metals and other bodies, but especially by the
alkali metals, when these are exposed to light. They are being continually given out
in large quantities, and with very great velocities by radio-active substances such as
uranium and radium; they are produced in large quantities when salts are put into
flames, and there is good reason to suppose that corpuscles reach us from the sun.

The corpuscle is thus very widely distributed, but wherever it is found it preserves
its individuality, e/m being always equal to a certain constant value.

The corpuscle appears to form a part of all kinds of matter under the most diverse
conditions; it seems natural, therefore, to regard it as one of the bricks of which
atoms are built up.

17.2.5 Magnitude of the Electric Charge Carried
by the Corpuscle

I shall now return to the proof that the very large value of e/m for the corpuscle as
compared with that for the atom of hydrogen is due to the smallness of m the mass,
and not to the greatness of e the charge. We can do this by actually measuring the
value of e, availing ourselves for this purpose of a discovery by C.T.R. Wilson, that
a charged particle acts as a nucleus round which water vapour condenses, and forms
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Fig. 17.5 Thomson’s cloud chamber apparatus.—[K.K.]

drops of water. If we have air saturated with water vapour and cool it so that it would
be supersaturated if there were no deposition of moisture, we know that if any dust
is present, the particles of dust act as nuclei round which the water condenses and
we get the too familiar phenomena of fog and rain. If the air is quite dust-free we
can, however, cool it very considerably without any deposition of moisture taking
place. If there is no dust, C.T.R. Wilson has shown that the cloud does not form until
the temperature has been lowered to such a point that the supersaturation is about
eightfold. When, however, this temperature is reached, a thick fog forms, even in
dust-free air. When charged particles are present in the gas, Wilson showed that a
much smaller amount of cooling is sufficient to produce the fog, a fourfold supersat-
uration being all that is required when the charged particles are those which occur
in a gas when it is in the state in which it conducts electricity. Each of the charged
particles becomes the centre round which a drop of water forms; the drops form
a cloud, and thus the charged particles, however small to begin with, now become
visible and can be observed. The effect of the charged particles on the formation of
a cloud can be shown very distinctly by the following experiment (see Fig. 17.5).
The vessel A, which is in contact with water, is saturated with moisture at the tem-
perature of the room. This vessel is in communication with B, a cylinder in which
a large piston, C, slides up and down; the piston, to begin with, is at the top of its
travel; then by suddenly exhausting the air from below the piston, the pressure of
the air above it will force it down with great rapidity, and the air in the vessel A will
expand very quickly. When, however, air expands it gets cool; thus the air in A gets
colder, and as it was saturated with moisture before cooling, it is now supersatu-
rated. If there is no dust present, no deposition of moisture will take place unless the
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air in A is cooled to such a low temperature that the amount of moisture required to
saturate it is only about 1 8 of that actually present. Now the amount of cooling, and
therefore of supersaturation, depends upon the travel of the piston; the greater the
travel the greater the cooling. I can regulate this travel so that the supersaturation
is less than eightfold, and greater than fourfold. We now free the air from dust by
forming cloud after cloud in the dusty air, as the clouds fall they carry the dust down
with them, just as in nature the air is cleared by showers. We find at last that when
we make the expansion no cloud is visible. We now put the gas in a conducting state
by bringing a little radium near the vessel A; this fills the gas with large quantities of
both positively and negatively electrified particles. On making the expansion now,
an exceedingly dense cloud is formed. That this is due to the electrification in the
gas can be shown by the following experiment: Along the inside walls of the ves-
sel A we have two vertical insulated plates which can be electrified; if these plates
are electrified they will drag the charged particles out of the gas as fast as they are
formed, so that by electrifying the plates we can get rid of, or at any rate largely
reduce, the number of electrified particles in the gas. I now repeat the experiment,
electrifying the plates before bringing up the radium. You see that the presence of
the radium hardly increases the small amount of cloud. I now discharge the plates,
and on making the expansion the cloud is so dense as to be quite opaque.

We can use the drops to find the charge on the particles, for when we know
the travel of the piston we can deduce the amount of supersaturation, and hence the
amount of water deposited when the cloud forms. The water is deposited in the form
of a number of small drops all of the same size; thus the number of drops will be the
volume of the water deposited divided by the volume of one of the drops. Hence, if
we find the volume of one of the drops we can find the number of drops which are
formed round the charged particles. If the particles are not too numerous, each will
have a drop round it, and we can thus find the number of electrified particles.

If we observe the rate at which the drops slowly fall down we can determine the
size of the drops. In consequence of the viscosity or friction of the air small bodies
do not fall with a constantly accelerated velocity, but soon reach a speed which
remains uniform for the rest of the fall; the smaller the body the slower this speed,
and Sir George Stokes has shown that v, the speed at which a drop of rain falls, is
given by the formula—

v = 2

9

ga2

μ
(17.5)

where a is the radius of the drop, g the acceleration due to gravity, and μ the co-
efficient of viscosity of the air. If we substitute the values of g and μ we get

v = 1.28 × 106a2 (17.6)

Hence, if we measure v we can determine a, the radius of the drop. We can, in this
way, find the volume of a drop, and may therefore, as explained above, calculate
the number of drops, and therefore the number of electrified particles. It is a simple
matter to find, by electrical methods, the total quantity of electricity on these par-
ticles; and hence, as we know the number of particles, we can deduce at once the
charge on each particle.
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This was the method by which I first determined the charge on the particle.
H.A. Wilson has since used a simpler method founded on the following principles.
C.T.R. Wilson has shown that the drops of water condense more easily on negatively
electrified particles than on positively electrified ones. Thus, by adjusting the expan-
sion, it is possible to get drops of water round the negative particles and not round
the positive; with this expansion, therefore, all the drops are negatively electrified.
The size of these drops, and therefore their weight, can, as before, be determined
by measuring the speed at which they fall under gravity. Suppose now, that we hold
above the drops a positively electrified body, then since the drops are negatively
electrified they will be attracted towards the positive electricity and thus the down-
ward force on the drops will be diminished, and they will not fall so rapidly as they
did when free from electrical attraction. If we adjust the electrical attraction so that
the upward force on each drop is equal to the weight of the drop, the drops will
not fall at all, but will, like Mahomet’s coffin, remain suspended between heaven
and earth. If, then, we adjust the electrical force until the drops are in equilibrium
and neither fall nor rise, we know that the upward force on the drop is equal to the
weight of the drop, which we have already determined by measuring the rate of fall
when the drop was not exposed to any electrical force. If X is the electrical force, e

the charge on the drop, and w its weight, we have, when there is equilibrium—

Xe = w. (17.7)

Since X can easily be measured, and w is known, we can use this relation to
determine e, the charge on the drop. The value of e found by these methods is
3.1 × 10−10 = 10 electrostatic units, or 10−20 electromagnetic units. This value
is the same as that of the charge carried by a hydrogen atom in the electrolysis of
dilute solutions, an approximate value of which has long been known.

It might be objected that the charge measured in the preceding experiments is the
charge on a molecule or collection of molecules of the gas, and not the charge on a
corpuscle. This objection does not, however, apply to another form in which I tried
the experiment, where the charges on the particles were got, not by exposing the gas
to the effects of radium, but by allowing ultra-violet light to fall on a metal plate in
contact with the gas. In this case, as experiments made in a very high vacuum show,
the electrification which is entirely negative escapes from the metal in the form of
corpuscles. When a gas is present, the corpuscles strike against the molecules of
the gas and stick to them. Thus, though it is the molecules which are charged, the
charge on a molecule is equal to the charge on a corpuscle, and when we determine
the charge on the molecules by the methods I have just described, we determine the
charge carried by the corpuscle. The value of the charge when the electrification is
produced by ultra-violet light is the same as when the electrification is produced by
radium.

We have just seen that e, the charge on the corpuscle, is in electromagnetic units
equal to 10−20, and we have previously found that e/m, m being the mass of a
corpuscle, is equal to 1.7 × 107, hence m = 6 × 10−28 g.

We can realise more easily what this means if we express the mass of the cor-
puscle in terms of the mass of the atom of hydrogen. We have seen that for the
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corpuscle e/m = 1.7 × 107; while if E is the charge carried by an atom of hydro-
gen in the electrolysis of dilute solutions, and M the mass of the hydrogen atom,
E/M = 104; hence e/m = 1700 E/M . We have already stated that the value of
e found by the preceding methods agrees well with the value of E, which has long
been approximately known. Townsend has used a method in which the value of e/E

is directly measured and has showed in this way also that e is equal to E; hence,
since e/m = 1700 E/M , we have M = 1700 m, i.e. the mass of a corpuscle is only
about 1/1700 part of the mass of the hydrogen atom.

In all known cases in which negative electricity occurs in gases at very low pres-
sures it occurs in the form of corpuscles, small bodies with an invariable charge and
mass. The case is entirely different with positive electricity.

17.3 Study Questions

QUES. 17.1. Do you agree with Thomson’s general approach to science?

QUES. 17.2. What is the vortex theory of the atom? Who developed this theory?
What are its features and merits?

QUES. 17.3. What did Thomson discover, and how is this discovery related to the
structure of the atom?

a) What are cathode rays? And what were the two competing views on the nature
of cathode rays at the time of Thomson’s experiments?

b) Which did Thomson support, and for what reason? In particular, what was
determined, regarding the nature of the rays, by the experiments of Perrin?

c) What initial difficulty did Thomson overcome when studying whether cathode
rays are affected by an electric field? And what did his results imply?

d) What puzzle was raised by Hertz? And what did this lead Thomson to do?
e) How, precisely, can a charged particle be affected by a magnetic field? And how

did this allow Thomson to measure the speed of the cathode rays? What was
most notable about his measurements?

f) How, then, did Thomson measure the value of e/m of the cathode rays? In par-
ticular, what was his experimental apparatus, what did he measure, and how did
he arrive at his conclusions?

QUES. 17.4. Where, besides in cathode rays, can Thomson’s corpuscles be found?
And what does this imply about the nature of matter?

QUES. 17.5. What is the magnitude of the electric charge carried by electric
corpuscles?

a) How can one produce a supersaturated vapor in a controlled fashion? What effect
does the presence of dust or other particles have on such a vapor?

b) How, by measuring the speed of a falling droplet was Thomson able to measure
the size, and then the charge of the corpuscles?
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Fig. 17.6 Schematic diagram
of a mass spectrometer used to
separate uranium isotopes.—
[K.K.]

detectoraccelerator

c) How, alternatively, was H.A. Wilson able to make a similar measurement? What
was remarkable about both of their results?

17.4 Exercises

EX. 17.1 (ELECTRON ESSAY).Do electrons exist? Be sure to give a clear justification
for your beliefs.

EX. 17.2 (DROPLET SUSPENSION). What potential difference must be applied
between horizontally aligned parallel plates separated by 15 mm in order to suspend
an electron around which a 1.0 μm diameter droplet of water has condensed? If this
electric potential were suddenly reduced to zero, what would be the terminal veloc-
ity of the droplet when falling through air at standard temperature and pressure?
(ANSWER: 380 V)

EX. 17.3 (ELECTRON TRAJECTORY). Consider a cathode ray tube, as shown in
Fig. 17.2, which uses an accelerating voltage of 1000 V to generate a beam of high-
speed electrons. The electrons then pass between the parallel plates AB, which are
5 cm long, are separated by 15 mm, and are maintained at a potential difference
of 100 V. (a) What (uniform) magnetic field must be applied so that the electrons
continue a straight-line trajectory between the parallel plates? (b) In which direction
must the magnetic field be applied? (c) If the magnetic field were turned off, would
the cathode rays strike one of the plates?

EX. 17.4 (URANIUM PRODUCTION). Suppose that a mass spectrometer is designed to
separate doubly-ionized uranium-235 isotopes from a sample of uranium. To do so,
a beam of mixed uranium isotopes is first accelerated through a potential difference
of 100 kV. A magnetic field is then used to deflect the beam so that the desired
isotopes pass along a semi-circular path with a radius of curvature of 50 cm (see
Fig. 17.6). They then pass through a narrow slit and are collected in a detector.
The slit is 1 mm wide and 1 cm tall. What is the magnitude and orientation of the
required magnetic field? If a separation rate of 1 micro-gram per hour is required,
what cooling power (in watts) is required to keep the collection cup at a constant
temperature? (ANSWER: 1 T)
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Fig. 17.7 Nakamura e/m apparatus and power supply with patch cords attached

EX. 17.5 (THOMSON e/m LABORATORY). In this laboratory experiment, we will
attempt to measure the ratio of the electron’s charge to its mass. The apparatus
we will be using consists of a vacuum discharge tube situated between a pair of
Helmholtz coils (see Fig. 17.7).8 The vacuum discharge tube generates a thin beam
of high-speed electrons that travel through the low-pressure gas inside the tube.
The Helmholtz coils generate a magnetic field which exerts a Lorentz force on the
electron beam. By measuring the curvature of the beam, the ratio of e/m can be
determined.

Figure 17.8 illustrates how the electron beam is generated. A potential difference
is maintained between a cathode and an anode by a high-voltage power supply. A
low-voltage power supply drives an electrical current passing through a small heater
wire adjacent to the cathode, causing electrons to be emitted from the cathode. These
electrons are then accelerated towards the anode. The kinetic energy of the electron
beam passing through the anode can be determined from the accelerating voltage
using the principle of conservation of energy.

The Helmholtz coils consist of two circular coils of wire, mounted in parallel
on a common axis. When an electrical current is passed through the coils, a uni-
form magnetic field is formed around the common axis between the coils. When
the electrons in the beam pass through the magnetic field, they experience a Lorentz

8 I have had success with two different pieces of equipment: the Nakamura Model B10-7350,
and the Sargent Welch Model P63412. Detailed instructions on the operation of these pieces of
equipment are included with the equipment. The most expensive component of the apparatus is the
bulb, which costs about 800 USD. In addition, you will need a low-voltage power supply to heat
the lamp filament, a high-voltage (500 V) power supply to accelerate the electrons, current source
(3 amps) to drive the helmholtz coils, and a hand-held digital multimeter.
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Fig. 17.8 Schematic diagram of the apparatus used to produce and accelerate electrons

force perpendicular to both their velocity and the magnetic field. Since the electron
speed is constant, and the magnetic field is constant, the Lorentz force will cause the
electrons to move in a circular orbit. The charge to mass ratio of the electron may
thereby be determined in terms of the orbital radius, the magnetic field strength,
and the accelerating voltage. Does your measured value fall within your uncertainty
estimate of the accepted value?

17.5 Vocabulary

1. Corpuscle
2. Phosphorescence
3. Cathode
4. Maltese cross
5. Luminosity
6. Supersaturated
7. Electrolysis
8. Radium



Chapter 18
The Birth of Nuclear Physics

The α radiation from radium is very complex, and consists of
four groups of α particles, each of which is made up of α

particles which escape at widely different velocities.
—Ernest Rutherford

18.1 Introduction

Ernest Rutherford (1871–1937) was born in Spring Grove, a rural community near
Nelson on the South Island of New Zealand.1 He was the fourth of twelve children
born to a flax-miller and a schoolteacher who had emigrated from the United King-
dom. He attended Canterbury College in Christchurch, from which he earned his
Bachelor of Arts (1892), Master of Arts (1893), and Bachelor of Science (1894)
degrees. While at Christchurch, he carried out a set of experiments in which he
demonstrated that when a steel needle is subjected to high frequency magnetic fields,
only the surface of the needle is magnetized; this he proved by slowly dissolving the
outer layers of the magnetized needle with acid.

He left New Zealand in 1895 and went to work for Professor J.J. Thomson at
the Cavendish Laboratory in London—the famous laboratory’s first research student
who had not graduated from the University of Cambridge. While there, Rutherford’s
initial interest was in the transmission and detection of low-frequency electro-
magnetic “Hertzian” waves. But with the recent (1896) discoveries of X-rays by
Wilhelm Röntgen and radioactive uranium by Henri Becquerel, Rutherford quickly
turned his attention to the cause and nature of radioactivity. In 1902, at the age of
27, he accepted a professorship at McGill University in Montreal. During his time
at McGill, he discovered the radioactive gas radon, characterized radioactive decay
rates of various elements, and published a famous book on these topics in 1904 enti-
tled Radioactivity. For this work, he was later awarded the Nobel Prize in Chemistry
in 1908. In 1907 he returned to Britain—to the University of Manchester—where
he succeeded in identifying the nature of the α-particles which had been previously

1 The biographical information contained in this introduction is based on Campbell, J., Rutherford:
Scientist Supreme, AAS Publications, Christchurch, New Zealand, 1999.
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observed in certain radioactive decay processes. His subsequent studies of the scat-
tering of these same α-particles from gold-foil, carried out with the help of Hans
Geiger and Ernest Marsden in 1911, led him to the so-called “planetary model” of
the atom. This model would later serve as the basis for the early quantum theory
developed by the Danish physicist Niels Bohr. Today, Rutherford is widely recog-
nized as the father of nuclear physics. He was knighted in 1914, and in 1931 he
was awarded the title of Baron Rutherford of Nelson. He is buried in Westminster
Abbey.

The next reading selection, which is divided between the next two chapters of this
volume, originally appeared in 1906 in the Philosophical Journal. Herein, Ruther-
ford addresses the question: what is the identity of the newly-discovered α-particle?
In order to answer this question, Rutherford first needed to determine the properties
of the α-particle—specifically its speed and charge-to-mass ratio. After all, this is
how his mentor, J.J. Thomson, characterized the unique properties of the electron
a few years earlier. Rutherford was not the first to attempt such measurements on
α-particles. What difficulties did previous researchers encounter? And how were
Rutherford’s experiments different?

18.2 Reading: Rutherford, The Mass and Velocity of the
α Particles Expelled from Radium and Actinium

Rutherford, E., XLI. The Mass and Velocity of the α particles expelled from Radium
and Actinium., Philosophical Magazine Series 6, 12(70), 348–371, 1906.

The present paper contains an account of investigations that have been made to
determine, as accurately as possible, the mass and velocity of the α particles
expelled from some of the products of radium and actinium. At the present stage
of our knowledge of radioactivity, such measurements have an important theoretical
value in throwing light on the following questions:—

(1) Has the α particle expelled from all radioactive products the same mass?
(2) Does the value of e

m
of the α particle vary in its passage through matter?

(3) What is the connexion between the velocity of the a particle and its range of
ionization in air?

(4) What is the connexion, if any, between the α particle and the helium atom?
(5) Is the heating effect of radium or other radioactive substance due to the bom-

bardment of the radioactive matter by the α particles expelled throughout its
own mass?

In the course of these investigations, sufficient data have been accumulated, if not to
answer completely all of the above questions, at least to indicate with some certainty
the relations that exist between the various quantities.
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The experiments outlined in this paper have been in progress for more than a
year,2 but publication has been delayed in order to determine the mass of the α

particle from thorium and actinium as well as from radium.
The investigations on the mass of the α particle from thorium have been made in

conjunction with Dr. Hahn, and are described in a following paper.
Determinations of the mass and velocity of the α particles from radium have been

made by several observers. In 1902, using the electroscopic method and radium of
activity 19000, I showed that the α particles from radium consisted of positively
charged particles which were appreciably deflected in intense magnetic and electric
fields.3 I deduced that the value of e

m
—the ratio of the charge on the α particle to

its mass—was about 6 × 103, and that the swiftest α particles emitted from radium
had a velocity of about 2.5 × 109 cm/s. Shortly afterwards, these experiments were
repeated by Des Coudres,4 using the photographic method and with pure radium
bromide as a source of rays. He found the value of e

m
to be 6.3 × 103, and the

average velocity to be 1.65 × 109 cm/s.
On account of the difficulty of obtaining a sufficiently large deflexion of the α

rays in passing through an electric field, the values of e
m

and of the velocity of the
α particles obtained by Rutherford and Des Coudres could only be considered as a
first approximation to the true values.

Recently the question has again been attacked by Mackenzie,5 using the photo-
graphic method and pure radium bromide as a source of rays. Fairly large deflexions
of the pencil of rays were obtained by using strong magnetic and electric fields.
He showed that the α particles emitted by a thick layer of radium bromide were
unequally deflected in a magnetic and electric field, and presumably consisted of α

particles moving with different velocities. By assuming that the value of e
m

was the
same for all the α particles, he deduced that the value of e

m
for the average ray was

4.6 × 103, and that the average velocity was 1.37 × 109 cm/s.
It will be seen that all of these investigators have used a thick layer of radium

in radioactive equilibrium as a source of rays. We know that the α particles from
radium in equilibrium come from four distinct α ray products. The α particles from
each of these products have different ranges of ionization in air and different veloc-
ities of projection. In addition, the α particles from each single product reach the
surface from different depths of radioactive matter, and consequently have different
velocities. It is thus seen that the α radiation from radium is very complex, and con-
sists of four groups of α particles, each of which is made up of α particles which
escape at widely different velocities.

2 A preliminary account of the measurements of the value of e
m

for the particle from radium C was
given before the American Physical Society; December 1905. An abstract of the results appeared
in the Physical Review, Feb. 1906.
3 Rutherford, Phys. Zeit. iv. p. 235 (1902); Phil. Mag. Feb. 1903.
4 Des Coudres, Phys. Zeit. iv. p. 483 (1903).
5 Mackenzie, Phil. Mag. Nov. 1905.
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On account of the dispersion of the pencil of rays in passing through an electric
and magnetic field, it is difficult to interpret with certainty the defiexions observed.
The difficulties which arise are clearly pointed out by Mackenzie in his paper (loc.
cit.)

In a previous paper (Phil. Mag. July 1905) I pointed out that these difficulties
would disappear if a homogeneous pencil of α rays was employed. I showed that
such a homogeneous pencil could be obtained by using as a source of rays a small
wire which had been made very active by exposure to the radium emanation. Fifteen
minutes after removal from the emanation, radium A has been transformed, and the
α particles are then emitted only from radium C.

An examination of the deflexion of the rays in a magnetic field showed that such
an active wire fulfilled the conditions necessary for a homogeneous source of rays.
The α particles all escaped from the thin film of radioactive matter at the same speed,
and all suffered the same reduction of velocity in passing through an absorbing
screen. On account of the rapid decay of the activity of the active deposit, it is
necessary to employ an intensely active wire to obtain a strong photographic effect.
In most of the experiments described later, the active deposit was concentrated on
the wire by making it the only negatively charged surface in a vessel containing a
large quantity of the radium emanation. In this way, very active wires were obtained
which served as suitable sources of homogeneous α rays.

18.2.1 Electric Deflexion of the α Rays

The determination of e
m

, and of the velocity of the α particle was made in the usual
way by measuring the deflexion of a pencil of rays in passing through both a mag-
netic and electric field of known strength. The method employed for measuring
the magnetic deflexion has already been described in a previous paper. After some
preliminary experiments, the following arrangement was adopted to determine the
deflexion of the α rays in passing through an electric field. The rays from the active
wire W (Fig. 18.1), after traversing a thin mica plate in the base of the brass ves-
sel M , passed between two parallel insulated plates A and B about 4 cm high and
0.21 mm apart. The distance between the plates was fixed by thin strips of mica
placed at the four corners, and the plates were rigidly held together by rubber bands.
The terminals of a storage-battery were connected with A and B so that a strong
electric field could be produced between the two plates. The pencil of rays, after
emerging from the plates, fell on a photographic plate P . The latter was rigidly
fixed to a ground-brass plate which fitted accurately on the top surface of the vessel.
The ground surfaces were air-tight, and the photographic plate could thus easily be
placed in position or removed without disturbing the rest of the apparatus. The ves-
sel was connected to a mercury pump and exhausted to a low vacuum. If necessary,
the exhaustion was completed by means of a side tube filled with cocoanut charcoal
and immersed in liquid air.
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Fig. 18.1 Rutherford’s apparatus for measuring the deflection of α-particles passing through an
electric field.—[K.K.]

The plates A and B were placed close together for several reasons. In the first
place, a strong electric field could be produced between the plates for a compara-
tively small voltage. The greatest P.D. necessary in the experiments was about 500 V.
Since the plates were about one-fifth of a millimetre apart, this voltage produced an
electric field between the plates corresponding to 25000 V/cm. One advantage of the
arrangement lies in the fact that, provided the P.D. is below about 350 V, there is no
danger of a discharge between the plates, even if there is not a good vacuum. This is
particularly convenient where it is found necessary to expose the photographic plate
to a weak source of radiation for several days, for there is no necessity to continually
watch the state of the vacuum.

On account of the small distance between the plates, there is no necessity to
correct for the disturbance of the electric field near the ends of the plates. In addition,
the parallel plates acted as a slit in order to obtain a narrow pencil of rays. In its
passage through the electric field each α particle describes a parabolic path, and
after emergence travels in a straight line to the photographic plate. By reversing the
electric field at intervals, the direction of deflexion of the pencil of rays is reversed.



252 18 The Birth of Nuclear Physics

Fig. 18.2 Photographic plates exposed to a thin ray of α-particles when a potential difference of
(from left to right) 0, 255, 340 and 497 V was applied between the deflector plates.—[K.K.]

The general effect of the electric field in altering the appearance of the trace of
the pencil of rays impinging on the photographic plate is shown in Fig. 18.2. A

shows the natural width of the line without an electric field, B for a P.D. of 255 V,
C for 340 V, and D for 497 V. These are reproduced from the actual photographs
(magnification about 1.4 times). When a small P.D. is applied, the natural width
of the photographic trace is broadened. Above a certain voltage, the single band
breaks into two. As the voltage is further increased, the distance apart of these bands
increases while the width of each band steadily narrows. The outside edge of each
band is sharply defined, but it is difficult to fix with certainty the inner boundary of
the bands.

18.2.2 Theory of the Experiment

The theory of the experimental arrangement where the parallel plates act both as a
slit and a means of applying the electric field, is more complicated than the ordinary
case where a narrow pencil of α rays is made to pass between the two parallel plates
of the condenser without impinging on the sides.

A diagram of the experimental arrangement is shown in Fig. 18.3a, b. AB and
CD are the two charged parallel plates, and CE the radiant source which was of
greater width than the distance between the plates. It is required to find the width of
the trace on the photographic plate when a P.D. V is applied between the plates.

Let m = mass of α particle,

e = charge on α particle,

u = velocity of α particle in passing between plates,

AB = l1, CD = l2, Bb = l3,

d = distance between plates,

D = distance between extreme edges of the photographic trace for reversal

of the electric field.
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Case 1. Case 2.   a b

Fig. 18.3 Diagrams depicting the change in trajectory of an α-particle passing between charged
condenser plates when the particle’s deflection is less than (case 1) and greater than (case 2) the
plate separation.—[K.K.]
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There are two cases of the theory which must be separately considered:—

Case 1. when the deflexion of the α particle in passing through the electric field
is less than d , the distance between the plates,

Case 2. when the deflexion is greater than d .

Case 1. We shall now consider the theory for the first case. On entering the
electric field at A, each α particle describes a parabolic path, and on emer-
gence from the field moves in a straight line the direction of which is a
tangent to the parabolic path at the moment of emergence. The distance
between the plates (0.21 mm) is so small compared with the length AB

(3.77 cm), that we may assume without sensible error that the electric
field is everywhere normal to the path of the rays. Suppose that the elec-
tric field is applied in such a direction that the α particle is urged in the
direction of the plate AB. Some of the α particles, which before the field
was applied fell on the photographic plate, are now stopped by the plate
AB, but other α particles previously stopped by the plate CD are able to
emerge.
Suppose that the α particle in passing through the electric field is
deflected normally through a distance S represented by FB. All the α

particles which before the application of the electric field passed through
the point F now just emerge at B at grazing incidence. The α particle
which forms the extreme edge of the photographic trace at f must obvi-
ously be projected initially in the direction CF , and after emergence will
travel along the line Bf .
Since the normal acceleration of the α particle in passing through the
electric field V e

dm
, and the time occupied in passing between the charged

plates is l1
u

the distance

FB = s = V e

2dm
· l2

1

u2

or s = λ l2
1 , where λ = e

2m
· V

du2
.

At the moment of leaving the electric field, the tangent of the angle
θ , which the direction of motion makes with the initial direction of
projection CF , is given by tan θ = 2λl1.
If the angle DCF = θ1, the emerging ray makes an angle θ + θ1 with the
direction of the plates Bb. The distance bf = l3 tan (θ + θ1). Since the
angles θ and θ1 are small,

bf = l3(θ + θ1)

= l3

(
2λl1 + d − s

l2

)
.
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In a similar way when the electric field is reversed, the corresponding
distance

af ′ = l3

(
2λl1 + d − s

l1

)
.

In this case, the α particle which is most deflected enters the electric field
at grazing incidence at the point A.
The distance D between the extreme edges ff ′ of the photographic
impression is consequently given by

D = bf + ab + af ′

= 4λl1l3 + l3(d − s)

(
1

l1
+ 1

l2

)
+ d.

Substituting the value S = λl2
1 ,

D = λl1l3

(
3 − l1

l2

)
+

(
l3

l2
+ l3

l2
+ 1

)
d.

But it is easily seen that the natural width of the photographic band
without the electric field is given by

(
l3

l2
+ l3

l1
+ 1

)
d.

Therefore the increase D1 of the breadth of the band by the reversal of
the electric field is given by

D1 = λl1l3

(
3 − l1

l2

)
.

Substituting the value of λ,

mu2

e
= V l1l3

2dD1

(
3 − l1

l2

)
. (18.1)

This gives the formula required for determining the value of mu2

e
for case

1.
Case 2. In this case the electric field is supposed to be sufficiently strong to deflect

the α particle in passing between the charged plates through a distance
greater than d .
Suppose the electric field urges the α particle towards the plate AB

(Fig. 18.3b). A little consideration shows that the α particle which forms
the extreme edge of the photographic impression at f must touch at graz-
ing incidence the plate CD. Let LKF be the direction of projection of
such an α particle, intersecting the plate CD at K . The path of the α par-
ticle under the action of the electric field is shown by the dotted line in the
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figure. The path touches the plate CD at H and emerges at B at grazing
incidence.
Let DH = y.
Then with the same notation as before, d = λy2.
The angle θ which the tangent to the parabola at B makes with the
direction of the plate AB is given by

tan θ = 2λy.

The distance bf = l3 tan θ = 2λyl3.
The total distance D between the extreme edges of the photographic
impression on the plate P by reversal of the field is consequently given
by

D = 4λyl3 + d.

Then
(D − d)2 = 16λdl2

3 .

Substituting the value of λ as before,

mu2

e
= 8V l2

3

(D − d)2
(18.2)

It is interesting to note that this formula for the determination of mu2

e
does

not involve l1 or l2, and only involves the distance d to a subordinate
extent. For example, in one experiment where l3 = 10 cm, the value of d

was only 1
15D. This is a great advantage, as the distance d is difficult to

measure with accuracy.
While the distance l1 is not involved in the final formula, it must be
remembered that the formula (18.2) only applies when the α particle
is deflected through a distance greater than d in passing between the
plates. If l1 is made smaller, the value of V must be made correspondingly
greater before the formula can be applied.
It has been mentioned that the width of two deflected traces obtained by
reversal of the electric field decreases in width with increase in strength of
the electric field. The reason of this can readily be shown from theoretical
considerations. For example, it is seen that the inside edge of the deflected
pencil (Fig. 18.3b) is produced by the α particles whose paths touch at
grazing incidence the plate AB at A and also touch the plate CD. These
conditions determine the direction of the α particle in entering the electric
field at A. All α particles passing through A which make a greater angle
with the plate AB than the above α particle are stopped by the plate CD.
As the width of the trace is not required in the experiment, it has not been
thought necessary to include here the connexion between the width of the
deflected pencil and the strength of the electric field. The calculations,
though a little long, are not difficult.
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It is now necessary to consider how we are able to know from the photographs
obtained whether the formula (18.1) or (18.2) is to be applied. The formula (18.1)
holds provided the distance of deflexion of the α particle is not greater than d. Sup-
pose that the α particle is deflected through a distance d in passing between the
charged plates. The outside edge of the photographic impression, for example, on
the right of the plate P (Fig. 18.3a, b) is due to the α particles which start from the
point C parallel to the plate CD. With the same notation as before,

d = λl2
1 .

Following the same method of calculation as for case (2), it is seen that the value of
D is given by

D = 4λl1l3 + d .

Substituting the value λ = d

l21
,

D = d

(
4l3

l1
+ 1

)

In most of the experiments to be described later,

l3 = 3.94 cm, l1 = 3.77 cm, d = 0.21 mm.

Consequently,
D = 1.09 mm.

From the data given below it will be seen that the formula (18.2) applies for all volt-
ages greater than about 300, while the formula (18.1) applies for all values smaller
than this.

18.2.3 Results of Experiments

The electrostatic deflexion of the α rays from radium C was first determined for dif-
ferent voltages between the plates. The rays from the active wire passed through a
mica plate in the base of the vessel, equivalent in stopping power to about 3.5 cm of
air. The extreme distance D between the outside edges of the photographic impres-
sions obtained on the plate by reversal of the electric field was measured by the
lantern method described in a previous paper.6

In most of the experiments, the value l3 of the distance of the photographic plate
above the parallel plates was 3.94 cm. In one experiment this distance was 10.00 cm.

l1 = 3.77 cm, l2 = 4.165 cm, d = 0.210 mm.
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Table 18.1 Measured val-
ues of mu2

e
for α-particles

deflected by different
voltages.—[K.K.]

Volts between
plates

l3 (cm) D (mm) mu2

e

171 3.94 0.857 5.1 ×1014

255 ” 0.995 4.9 ×1014

340 ” 1.136 4.93 ×1014

497 ” 1.346 4.79 ×1014

508.6 10.00 3.10 4.87 ×1014

The values of mu2

e
obtained for different voltages and distances of the photo-

graphic plate are tabulated below (Table 18.1).
Each of the values of D given above is the mean of a large number of sepa-

rate measurements which agreed closely among themselves. The values for 171 and
255 V are calculated from formula (18.1), the natural width of the photographic
trace being 0.61 mm, and for the higher voltages from formula (18.2). Some of the
photographs from which the measurements were made are reproduced in Fig. 18.2,
magnification about 1.4.

Two good photographs were obtained with a P.D. of 340 V. In each case two
active wires were used successively to give a strong photographic impression. On
account of the greater distance, the photographic impression was not so strongly
marked for the distance 10 cm.

Giving a weight 1 to the measurement of mu2

e
for 497 volts, and a weight 2 for

both 340 and 508.6 V, the mean value is given by

mu2

e
= 4.87 × 1014 electromagnetic units (18.3)

By measurement of the magnetic deflexion, the maximum value of mu
e

for the α rays
from radium C was found to be 4.06 × 105. The mica screen cut down the velocity
of the rays to 0.763 of the initial velocity, so that the value of mu

e
for the rays which

passed through the electric field is given by

mu

e
= 3.10 × 105 . . . (18.4)

By combining equations (18.3) and (18.4)

u = 1.57 × 109 cm/s,
e

m
= 5.07 × 103 electromagnetic units.

I think that the values of u and e
m

are certainly correct within 2 %.
The initial velocity of the α particles expelled from radium C is consequently

2.06 × 109 cm/s.

6 Rutherford, Phil. Mag. August 1906.
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Table 18.2 Computed values of e
m

for α-particles.—[K.K.]

Interposed absorbing screen
in terms of air

Volts D mu
e

mu2

e
e
m

0 340 0.88 mm 4.06 ×105 9.4 ×1014 5.7 ×103

3.5 cm . . . . . . 3.10 ×105 4.87 ×1014 5.07 ×103

6.5 cm 340 1.62 mm 2.11 ×105 2.11 ×1014 4.8 ×103

18.2.4 Does the Value of e
m for the α Particle Vary in Its Passage

Through Matter?

In order to test this point, the value of e
m

for the α particle was determined under the
following conditions:—

(1) The active wire was placed on top instead of under the mica screen, so that the
electrostatic deflexion was determined for the α particle from the unscreened
wire.

(2) The α particles passed through a mica screen equivalent in stopping power to
3.5 cm of air. The value of e

m
under these conditions has been determined in the

previous section.
(3) The α particles passed through a screen of mica and aluminium equivalent to

about 6.5 cm of air.

The magnetic and electrostatic deflexion were separately determined. The former

gives the value of mu
e

and the latter mu2

e
. The results of the measurements are

collected in the following table, where D has the same meaning as before (see
Table 18.2). The value of l3 in all cases was 3.94 cm.

The deflexion for the rays from the bare wire was small, but could be measured
with fair certainty. I think the value of e

m
obtained in this case, viz. 5.7 × 103, is

undoubtedly too high. On removing the active wire after completion of the exper-
iment, it was noticed that its position was displaced somewhat to the side of the
opening of the parallel plates. This would tend to make the observed width of the
photographic trace too small, and consequently to give too great a value of e

m
, when

calculated from formula (18.1), which is based on the assumption that the active
source completely covers the opening between the parallel plates.

The impression on the photographic plate due to the α particles which have
passed through an absorbing screen equivalent to 6.5 cm of air was weak but clearly
defined, and admitted of fairly accurate measurement. Allowing for an error in the
estimation of e

m
for the α particles from the bare wire, I think the agreement of the

values of e
m

obtained under the different conditions is sufficiently close to prove
definitely that the value of e

m
for the α particle is unaltered in its passage through

matter.
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18.3 Study Questions

QUES. 18.1. What was Rutherford’s goal? And what questions was he able to
address as a result of his studies?

QUES. 18.2. How was Rutherford able to avoid the difficulties that plagued previous
measurements of the speed and charge-to-mass ratio of α-particles?

a) Do all α-particles travel at the same speed? What kind of α-source did
Rutherford employ?

b) What are the components of the apparatus shown in Fig. 18.1? In particular,
where is the source of the α-particles? Where is the electric-field region? And
how were the α-particles detected? How (and why) did Rutherford evacuate the
brass vessel?

c) What happens to the trajectory of the α-particles as the potential difference
between the condenser plates is gradually increased? What is the maximum
electric field strength Rutherford could establish between the plates?

QUES. 18.3. What is the value of mu2

e
for an α-particle?

a) When an α-particle is traveling through a transverse electric field, what is its
acceleration? How is the acceleration computed?

b) In which direction is the α-particle deflected? By how much? What happens
when the electric field is reversed?

c) How is the increase in width of the distribution of α-particles on the photographic

plate used to compute the ratio mu2

e
?

d) What two cases does Rutherford consider when computing mu2

e
? Under what

condition(s) are each of the two cases realized?
e) What were the measured values of mu2

e
from Rutherford’s experiments? In what

units were these values measured?

QUES. 18.4. What is the value of mu
e

for an α-particle?

QUES. 18.5. How can the speed and the charge-to-mass ratio of Rutherford’s α-
particle be derived from his measurements? How do his results compare to those
of previous researchers? And does the charge-to-mass ratio vary when α-particles
travel through matter?

18.4 Exercises

EX. 18.1 (HELIUM DEFLECTION BY A MAGNETIC FIELD). Suppose a beam of singly-
ionized 4

2He atoms travels at a speed u through a magnetic field. Demonstrate that
the deflection of the beam is proportional to e

mu
, where e and m are the charge and

mass of the helium-4 atoms.
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Fig. 18.4 The uranium series
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EX. 18.2 (HELIUM DEFLECTION BY AN ELECTRIC FIELD). Suppose a beam of singly-
ionized 4

2He atoms is emitted vertically at 1 % the speed of light from a source at the
base of the apparatus depicted in Fig. 18.1. How large a potential difference can be
applied between the condenser plates before the beam strikes one of the plates?

EX. 18.3 (α-PARTICLES AND ELECTRONS). How do the speed and the charge-to-mass
ratio of Rutherford’s α-particles compare to those of an electron? What does this
imply?

EX. 18.4 (URANIUM SERIES). In the reading selection of this (and the following)
chapter, Rutherford employs isotope names with which you are probably unfamiliar.
Identify the modern name and the half-life for each isotope in the uranium series
depicted in Fig. 18.4.

18.5 Vocabulary

1. Radium
2. Actinium
3. Radioactivity
4. Thorium
5. Conjunction
6. Ionization
7. Consequent
8. Impinge



Chapter 19
Radioactivity

The α particle constitutes one of the fundamental units of matter
of which the atoms of these elements are built up.

—Ernest Rutherford

19.1 Introduction

In the previous chapter we studied the first half of Rutherford’s 1906 Philosophical
Magazine article in which he described in detail how he was able to accurately
measure the properties of α-particles expelled from radium. By allowing them to

pass between a set of electrified plates, he was able to first deduce the ratio mu2

e
.

Here m, u, and e are the mass, velocity and charge of the particles, respectively.
Next, by measuring the deflection of α-particles in a magnetic field, he was able
to deduce the ratio mu

e
. Finally, by combining these results he was able to obtain

the velocity and the charge-to-mass ratio of the α-particles. Now we turn to the
second half of Rutherford’s paper, in which he broadens his study by considering
α-particles ejected from a host of other radioactive isotopes. Rutherford continues
to use the original names which were adopted for these isotopes (e.g. radium A,
radium C, radium F and radium emanation) so you may find it helpful to spend a
few minutes looking up the modern naming conventions for each of these isotopes
before proceeding.1 What do the α-particles ejected from all these isotopes have in
common? Is Rutherford able to finally determine the identity of these mysterious
particles?

19.2 Reading: Rutherford, The Mass and Velocity of the α

Particles Expelled from Radium and Actinium

Rutherford, E., XLI. The Mass and Velocity of the α particles expelled from Radium
and Actinium., Philosophical Magazine Series 6, 12(70), 348–371, 1906.

1 See Ex. 18.4 at the end of the previous chapter.
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19.2.1 Value of e/m for the α Particles from Radium A

In a previous paper (loc. cit.) I gave the results of the measurements by the photo-
graphic method of mu

e
for the α particle emitted from radium A. For the unscreened

wire the value of mu
e

= 3.67×105, and for the wire covered with a mica plate of the
same thickness as that over the opening in the base of the electrostatic apparatus, I
found the value of mu

e
= 2.19 × 105.

I pointed out in that paper the difficulty of accurately measuring, the magnetic
deflexion of the α particles from such a rapidly changing product as radium A,
which is half transformed in 3 min. The difficulty of obtaining a sufficiently marked
photographic impression, in order to measure the electric deflexions of the rays,
was still greater. It was found necessary to place 20 active wires successively in
position under the base of the apparatus, in order to obtain a measurable darkening
of the photographic plate. Each wire was exposed for 2 min as negative electrode
in a vessel containing a large quantity of the radium emanation. For such a short
exposure, the initial radiation from the wire mainly comes from radium A. The wire
was rapidly removed from the emanation vessel and placed in position and left for
6 min. In that time, the α ray activity of radium A is reduced to one quarter of its
initial value. The α rays from the active wire passed through the standard mica plate
before entering the electric field. The electric deflexion of the α rays from radium
A is considerably greater than that for the swifter α particles from radium C; so
that there is no danger of confusion between the two types of rays, even though the
photographic impression of the rays from radium C present on the active wire is
comparable with that due to the rays from radium A.

In the experiment the voltage was 255; l3 = 3.94 cm; and D = 1.30 mm. This
gave

mu2

e
= 2.67 × 1014.

The value mu
e

for the α rays from radium A after traversing the standard mica was
2.19 × 105. This gives the values

u = 1.22 × 109 cm/s

e/m = 5.6 × 103.

It was found by experiment that the measured value of D—the distance between
the extreme edges of the trace—was always underestimated for a very feeble pho-
tographic trace. An underestimate of the value of D gives too large a value for e/m.
Taking this factor into consideration, the values of e/m obtained for the α particles
from radium A and from radium C agree within the limit of experimental error. This
shows that the α particles expelled from radium A and C have the same mass and
differ only in their initial velocities of projection.
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19.2.2 Mass of the α Particle from Radium F

A bismuth rod coated with radiotellurium was used as a source of α rays. It is now
definitely established that the active constituent in both radiotellurium and polonium
is the same and consists of the transformation product of radium, radium F . The
active matter is deposited in the form of a thin film on the bismuth rod, and the α

particles all escape from the surface at practically the same velocity. A piece of the
rod was placed in position inside the electrostatic apparatus, and the photographic
plate exposed for 4 days to the action of the α rays from the bare rod. The value
l3 = 10.00 cm, the voltage = 443, and the observed value D = 2.72 mm.

This gives a value mu2

e
= 5.63 × 1014 for the α rays from the unscreened source.

The value of mu
e

= 3.2×105 deduced by me in a previous paper from measurement
of the range of the α particles from radium F in air. The experimental value found
directly by Mackenzie (loc. cit.) was 3.3×105. Taking the mean value mu

e
= 3.25×

105, we find that e/m = 5.3 × 103, and u = 1.73 × 109cm/s.
The actual photograph obtained was very weak in intensity, and, for the reasons

previously mentioned, there is no doubt that the value e/m obtained is too large. We
may consequently conclude that the α particle from radium F has the same mass as
that expelled from radium C. Using a more active rod or a longer time of exposure,
the value of e/m should be obtained with much greater precision; but there can be
no doubt that it would be found identical with that observed for the α particle from
radium C.

19.2.3 Mass of the α Particles from Actinium

In order to obtain a homogeneous source of α rays, the active deposit of actinium
was used. The active deposit was concentrated on a small copper plate by making
it the negative electrode in a small vessel containing the emanating actinium com-
pound. This active deposit consists of two products, actinium A and B, the former
of which is rayless. The activity imparted to a plate, 10 min after removal from the
emanation, decays exponentially with a period of 36 min. The rays emitted are all
of one kind and have a range in air, found by Dr. Hahn in this laboratory, of 5.5 cm.

The preparation of actinium2 employed was not very active, and the activity
imparted to the copper plate was too weak to produce appreciable photographic
action at the distances required. With the experience gained in the previous experi-
ments with weak radioactive sources, it was recognized that at least 20 active wires,
placed successively in position, would have been required to produce a measurable
photographic effect in the magnetic deflexion apparatus. Three or four times this

2 I am indebted to Mr. H. Lieber of New York for his kindness in lending me the sample of actinium
used in this experiment.
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number would have been necessary in the electrostatic experiment. In order to avoid
the necessity of such a procedure, the apparatus was constructed so that the cop-
per plate could be kept active in the position required for any length of time. The
actinium compound, wrapped in thin paper, was placed round the sides of a small
brass vessel, which was attached to the base of the magnetic or electric deflexion
apparatus. A small insulated copper plate, with its plane slightly inclined to the
vertical, was placed below a narrow slit covered with mica in the base of the appara-
tus and was kept negatively charged. The activity on the plate reached a maximum
after 3 h and then remained constant. The radiation passing through the slit into the
magnetic deflexion apparatus was mainly due to the α rays from actinium B. The
photographic effect of the radiations from the emanation close to the active plate
was too weak to be observed. The magnetic deflexion of the pencil of the α rays
was determined under identically the same conditions as in the experiments using
radium C as a source of rays. The photographic plate was exposed for 10 h in a
constant magnetic field which was reversed at intervals. Two fine well-defined lines
were obtained on the plate. The amount of the magnetic deflexion was then directly
compared with that due to the rays from radium C under the same conditions. For
this purpose, the copper plate was removed and made active by exposure to the
radium emanation. It was then placed back in its original position, and another pho-
tograph taken. The mica plate, covering the opening in the base of the magnetic
apparatus was of the same thickness as that used in the base of the electrostatic
apparatus. The following numbers illustrate the results obtained:—

Distance between centres of deflected bands due to rays from actinium B = 1.85 mm.

Distance between centres of deflected bands due to rays from radium C = 1.53 mm.

We have previously shown that the value of mu
e

for the α particles of radium C after
passing through the standard mica screen, absorbing-power equal to 3.5 cm of air,
is 3.10 × 105. Consequently the value of mu

e
for the α particles from actinium B is

mu

e
= 1.53

1.85
× 3.10 × 105 = 2.56 × 105.

It is interesting to note that the comparative magnetic deflexions observed for the
rays of actinium B and of radium C agree with those to be expected from their
known ranges in air, assuming the value of e/m for the α particle to be the same in
both cases.

I have shown in a previous paper that the velocity V of an α particle of range r

cm in air is given by
V

V0
= 0.348

√
r + 1.25,

where V0 is the maximum velocity of the rays from radium C which have a range
of 7.06 cm. Now, after passing through the mica screen, the rays from actinium
B have a range 5.5 − 3.5 = 2.0 cm, while those from radium C have a range
7.06 − 3.5 = 3.56 cm.
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Consequently,

velocity of rays from radium C after passage through mica

velocity of rays from actinium B after passage through mica
=

√
3.56 + 1.25

2.0 + 1.25
= 1.22

The experimental ratio is 1.21. From the agreement between the experimental and
the theoretical ratios, it could be concluded with confidence that the mass of the
α particle from actinium is the same as that from radium C. This, however has
been experimentally verified by measuring the electric deflexion of the a rays from
actinium B.

The apparatus for determining the electric deflexion of the α rays was the same
as that used in the radium experiments. The copper plate which served as a source
of a rays was kept active by an arrangement similar to that used for the magnetic
deflexion. The photographic plate was exposed for 6 days. Through an accident in
the connexions, the electric field was not acting between the plates for the first 3
days. The photographic plate consequently showed the undeflected trace of the rays
and the deflected trace on one side of it. The distance between the centre of the
undeflected trace and the outside edge of the deflected trace gives the value of D

2 .
The value of l3 was 10.00 cm; the voltage 340, and D was 3.174 cm. Consequently

the value mu2

e
for the rays after passing through the standard mica was

mu2

e
= 3.10 × 1014

We have previously shown that

mu

e
= 2.56 × 105,

Therefore

e

m
= 4.7 × 103,

and

u = 1.21 × 109 cm/s.

We may thus conclude that the α particle from actinium has the same mass as that
from radium.

19.2.4 Connexion of the α Particle with the Helium Atom

We have seen that, within the limit of experimental error, the mass of the α particle
expelled from radium A, radium C, radium F , or actinium B is the same. In a
later paper, in conjunction with Dr. Hahn, it will be shown that the mass of the α

particle expelled from thorium C is also identical with that expelled from the radium
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products. We have also shown in a previous paper that the amount of the magnetic
deflexion of the α particle from radium itself is in agreement with that to be deduced
from its range in air—a result which is only to be expected if the α particle from
radium has the same mass as that from radium C.

There then remains only one α ray product of radium, viz. the emanation, whose
radiation has not been closely examined. There is, however, no reason to suppose
that the α particles from the emanation differ in mass from those of the other prod-
ucts. An examination of the complex pencil of rays from a layer of radium in
equilibrium shows no evidence of the presence of α rays which suffer an abnor-
mal amount of deflexion. I think there can be no doubt that the α particles emitted
from the various products of radium have an identical mass, but differ only in the
initial velocities of projection. Although the mass of the α particles has been deter-
mined for only a single product of thorium and of actinium, the analogy with radium
would lead us to expect that the α particle has the same mass for all the products of
these substances.

We may thus reasonably conclude that the α particles expelled from the different
radio-elements have the same mass in all cases. This is an important conclusion;
for it shows that uranium, thorium, radium, and actinium, which behave chemi-
cally as distinct elements, have a common product of transformation. The α particle
constitutes one of the fundamental units of matter of which the atoms of these ele-
ments are built up. When it is remembered that in the process of their transformation
radium and thorium each expel five α particles, actinium four, and uranium one, and
that radium is in all probability a transformation product of uranium, it is seen that
the α particle is an important fundamental constituent of the atoms of the radio-
elements proper. I have often pointed out what an important part the α particles
play in radioactive transformation. In comparison, the β and γ rays play quite a
secondary role.

It is now necessary to consider what deductions can be drawn from the observed
value of e/m found for the α particle. The value of e/m for the hydrogen ion in the
electrolysis of water is known to be very nearly 104. The hydrogen ion is supposed
to be the hydrogen atom with a positive charge, so that the value of e/m for the
hydrogen atom is 104. The observed value of e/m for the α particle is 5.1 × 103, or,
in round numbers, one half of that of the hydrogen atom. The density of helium has
been found to be 1.98 times that of hydrogen, and from observations of the velocity
of sound in helium, it has been deduced that helium is monatomic gas. From this it
is concluded that the helium atom has an atomic weight of 3.96. If a helium atom
carries the same charge as the hydrogen ion, the value of e/m for the helium atom
should consequently be about 2.5 × 103. If we assume that the α particle carries
the same charge as the hydrogen ion, the mass of the α particle is twice that of
the hydrogen atom. We are here unfortunately confronted with several possibilities
between which it is difficult to make a definite decision.

The value of e/m for the α particle may be explained on the assumptions that
the α particle is (1) a molecule of hydrogen carrying the ionic charge of hydrogen,
(2) a helium atom carrying twice the ionic charge of hydrogen, or (3) one half of
the helium atom carrying a single ionic charge.
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The hypothesis that the α particle is a molecule of hydrogen seems for many
reasons improbable. If hydrogen is a constituent of radioactive matter, it is to be
expected that it would be expelled in the atomic, and not in the molecular state.
In addition, it seems improbable that, even if the hydrogen were initially projected
in the molecular state, it would escape decomposition into its component atoms in
passing through matter, for the α particle is projected at an enormous velocity, and
the shock of the collisions of the α particle with the molecules of matter must be very
intense, and tend to disrupt the bonds that hold the hydrogen atoms together. If the
α particle is hydrogen, we should expect to find a large quantity of hydrogen present
in the old radioactive minerals, which are sufficiently compact to prevent its escape.
This does not appear to be the case, but, on the other hand, the comparatively large
amount of helium present supports the view that the α particle is a helium atom.
A strong argument in support of the view of a connexion between helium and the
α particle rests on the observed facts3 that helium is produced by actinium as well
as by radium. The only point of identity between these two substances lies in the
expulsion of α particles of the same mass. The production of helium by both sub-
stances is at once obvious if the helium is derived from accumulated α particles, but
is difficult to explain on any other hypothesis. We are thus reduced to the view that
either the α particle is a helium atom carrying twice the ionic charge of hydrogen,
or is half of a helium atom carrying a single ionic charge.

The latter assumption involves the conception that helium, while consisting of a
monovalent atom under ordinary chemical and physical conditions, may exist in a
still more elementary state as a component of the atoms of radioactive matter, and
that, after expulsion, the parts of the atom lose their charge and recombine to form
atoms of helium; while such a view cannot be dismissed as inherently improba-
ble, there is as yet no direct evidence in its favour. On the other hand, the second
hypothesis has the merit of greater simplicity and probability.

On this view, the α particle is in reality a helium atom which is either expelled
with a double ionic charge or acquires this charge in its passage through matter. Even
if the α particle were initially projected without charge, it would certainly acquire
one after the first few collisions with the molecules in its path. We know that the α

particle is a very efficient ionizer, and there is every reason to suppose that it would
itself be ionized by its collisions with the molecules in its path, i.e. it would lose one
or more electrons and retain a positive charge. If the α particle can remain stable
with the loss of two electrons, these electrons would almost certainly be removed as
a result of the intense disturbance set up by the collision of the α particle with the
molecules of matter. The α particle would then have twice the normal ionic charge,
and the value of e/m, as found by measurement, would be quite consistent with the
view that the α particle is an atom of helium.

In a previous paper4 I showed, from measurement of the charge carried by the α

rays, that 6.2 × 1010 α particles were expelled per second from 1 g of radium at its

3 Debierne, C. R. exli. p. 383 (1905).
4 Phil. Mag, August (1905).
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minimum activity. This was based on the assumption that each α particle carried a
positive charge equal to the ionic charge of hydrogen, viz. 3.4 × 10−10 electrostatic
units. Assuming that the α particle carries two ionic charges, the corresponding
number is reduced to one half of the above, viz. 3.1 × 1010. This would make the
calculated period of radium 2600 years instead of 1300 years (see ‘Radioactivity,’
second edition, 1905, p. 457). In a similar way, the calculated volume of the emana-
tion released from 1 g of radium would be 0.4 cubic mm instead of 0.8 cubic mm.
The calculated volume of helium produced per year per gram of radium would be
0.11 cubic cm (‘Radioactivity,’ p. 481).

On the hypothesis that the α particle is a helium atom, the atomic weight of each
product is diminished by four units, in consequence of the expulsion of an α particle.
On the hypothesis that the α particle is half a helium atom carrying a single ionic
charge, the atomic weight is diminished by two units instead of four. Taking the
latter hypothesis, the number of α particles expelled per second from 1 g of radium
at its minimum activity is 6.2 × 1010. The calculated volume of the emanation is
0.8 cubic mm, while the production of helium per year is 0.11 cubic cm per gram.
The two hypotheses thus lead to the same rate of production of helium by radium.

19.2.5 Age of Radioactive Minerals

I have previously pointed out that the age of the radioactive minerals can be cal-
culated from the amount of helium contained in them. The method is based on the
assumption that, in a compact mineral, the greater part of the helium is mechanically
imprisoned in the mineral, and is unable to escape. Let us consider, for example, the
mineral fergusonite which was found by Ramsay and Travers to contain 1.81 c.c.
of helium per gram of the mineral. The fergusonite contains about 7 % of uranium.
The amount of helium per gram of uranium is consequently 26 c.c. Now we have
seen that 1 g of radium produces 0.11 c.c. of helium per year. The content of radium
per gram of uranium is 3.8 × 10−7 g.5 Supposing that uranium emits only one α

particle corresponding to the five emitted by radium in equilibrium where the prod-
uct radium F is present, the production of helium per year per gram of uranium is
6
4 × .11 × 3.8 × 10−7 or 6.3 × 10−8 c.c. per year. Assuming as a first approximation
that the rate of production of helium has been constant since the formation of the
mineral, the time required for a production of 26 c.c. of helium is about 400 million
years. This is a minimum estimate, for some of the helium has probably escaped
from the mineral.

As another example, consider the mineral thorianite, which contains about 72 %
of thorium and 10 % of uranium. The evolution of helium per gram of the mineral
was found by Ramsay to be 9.5 c.c. Bragg (Phil. Mag. June 1906) has shown that
thorium breaks up at 0.26 of the rate of uranium. This was based on measurements

5 Rutherford and Boltwood, Amer. Journ. Sci. July 1906.
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Table 19.1 The velocity
of α-particles emitted by
various radioactive materials
as deduced from their range
in air.—[K.K.]

Product Range of α Velocity in mu2

e
particle in cm cm/s

Radium 3.50 1.56 ×109 4.78 ×1014

Emanation 4.36 1.70 ×109 5.65 ×1014

Radium A 4.83 1.77 ×109 6.12 ×1014

Radium C 7.06 2.06 ×109 8.37 ×1014

Radium F* 3.86 1.61 ×109 5.15 ×1014

made with ordinary commercial thorium. Boltwood (Amer. Journ. Sci. June 1906)
has, however, drawn attention to the fact that ordinary commercial thorium has in
many cases only about one half of the activity obtained by direct preparation of
the thorium from the radioactive minerals. This would double the rate of breaking
up of thorium observed by Bragg. Remembering that a thorium atom during its
transformations emits five α particles, and assuming that thorium breaks up at half
the rate of uranium, it is seen that 72 % of thorium in a mineral corresponds as a
producer of helium to about 5

6 × 72
2 = 30 % of uranium. The amount of helium

corresponding to 1 g of uranium or its equivalent in the mineral is consequently 24
c.c. As before, the age of the mineral works out to be about 400 million years.

Numerous other examples may be given, but these serve to illustrate the method
of calculation from radioactive data of the age of some radioactive minerals, and
indirectly, in some cases, of the geological strata in which they are found.

19.2.6 Velocity and Energy of the α Particles Expelled from
Radium Products

If the value of e/m is the same for the α particle expelled from the various radium
products, the maximum velocity of each set of a particles can he deduced from their
range in air, knowing the velocity of the α particles expelled from radium C. The
velocities so determined are probably more accurate than those obtained by direct
measurement under difficult conditions. In the following table, the second column
gives the range in air of the α particles from the radium products, found by Bragg

and Kleeman; in the fourth column is given the value of mu2

e
where u is the initial

velocity of projection of the α particles (Table 19.1).
Disregarding radium F , the average energy of the α particle expelled from

radium in equilibrium is 3.11 × 1014e, where e is the charge carried by the α par-
ticle. Assuming that the heating effect of radium is a measure of the kinetic energy
of the expelled α particles, we can at once deduce the total number of α particles
expelled per second per gram of radium in equilibrium. One gram of radium in equi-
librium emits 100 gram-calories of heat per hour. This rate of emission of energy is
mechanically equivalent to 1.16 × 108 ergs per second. Since the average energy of
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Table 19.2 A comparison of
the calculated and observed
heating effects of various
radioactive materials.—[K.K.]

Product Calculated heating Observed heating
effect effect

Radium 19.2 23

Emanation 22.7 45

Radium A 24.5 45

Radium C 33.6 32

the expelled α particle is 3.11 × 1014e, the number of α particles expelled per sec-
ond from 1 g of radium in equilibrium is 3.65

109e
. The number previously found by the

writer by measuring the total charge carried by the α particles was 2.82
109e

, i.e. 77 % of
the theoretical number. The agreement between theory and experiment is thus fairly
good. In the above estimate, it is assumed that the heating effect is due entirely to
the kinetic energy of the expelled α particles. It is known experimentally that the
heating effect of the β and γ rays is only a small percentage of that due to the α

rays. The expulsion of an α particle from an atom should lead to the recoil of the
residue of the atom. Assuming that the momentum of the atom is equal and opposite
to that of the α particle, the velocity of recoil of the atom can be simply calculated.
Taking the mass of the α particle as 4 and of the radium atom as 225, the veloc-
ity of recoil of the disintegrated radium atom, for example, is 1 55 × 1.56 × 109 or
2.8 × 107 cm/s. The heating effect resulting from this recoil is thus only about 2 %
of that due to the α particle.

Assuming that each α particle carries a single ionic charge of 1.13 × 10−20 elec-
tromagnetic units, the number of α particles which must be expelled per second
from 1 g of radium in order to account entirely for the heating effect is 3.2 × 1011.
The experimental number is 2.5 × 1011. If it is assumed that the α particle carries
twice the usual ionic charge, each of these numbers is reduced by one half.

It is of interest to calculate the distribution of the heating effect of radium in
equilibrium amongst the various α ray products. The theoretical percentages of the
total heating effect are given in column 1. These are calculated from the known
energy of the α particles expelled from each product. The observed percentages are
deduced from the experimental numbers and curves given by Rutherford and Barnes
(Phil. Mag. Feb. 1904) (Table 19.2).

The observed heating effects of the emanation and radium A are given together,
as it is very difficult experimentally to determine their separate effects. It will be seen
that there is a substantial agreement between the calculated and observed values.

19.2.7 Connexion between the Velocity and Amount of Ionization
Produced by the α Particle

Bragg (Phil. Mag. Nov. 1905) has shown that the ionization produced by a single α

particle increases with the distance from the source to nearly the end of its range,
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when the ionization falls off very abruptly. He has shown that the ionization pro-
duced by the α particle at a distance r cm from the end of the path is inversely
proportional to

√
r + c, where c is a constant equal to 1.33. In a previous paper

(Phil. Mag. Aug. 1906) I have shown that the velocity of an α particle at a distance
r cm from the end of its range is proportional to

√
r + d, where d is a constant

equal to 1.25. The close agreement between these two expressions shows that the
ionization produced per unit path by the α particle is inversely proportional to its
velocity. This is in agreement with the theoretical views of Bragg, who supposed
that the rate of expenditure of energy of the α particle in ionization at any point is
inversely proportional to the energy of motion which it possesses.

A comparison of the velocities of the α particles expelled from the various prod-
ucts of the radio-elements, and a discussion of the connexion that exists between the
velocity of expulsion of the α particle and the character of the transformation will
be given in a later paper.

I desire to express my thanks to Dr. Hahn and Dr. Levin for their assistance in
the measurement of the numerous photographs obtained in this investigation.

Berkley, California, July 20, 1906.

19.3 Study Questions

QUES. 19.1. What is the identity of the α-particle?

a) What renders measurement of the deflection of α-particles from radium A so
difficult? How long does it take for the α ray activity to drop to 1 4 of its initial
value?

b) How can the α rays emitted by radium A be distinguished from those emitted by
radium C? Why is it important to analyze these rays separately? Do they have
the same values of e/m?

c) How do the speeds and charge-to-mass ratios of the α-particles from radium A,
radium C, radium F , actinium B and thorium C compare? How do their masses
compare, and what important conclusion does he draw from this?

d) What unique role do α-particles play in the constitution of atoms? Where does
Rutherford suspect radium came from?

e) How do the charge-to-mass ratios of hydrogen and α-particles compare? What
logical possibilities does this suggest regarding the identity of the α-particle?

f) Which of these does Rutherford find most reasonable? Why? Do you agree with
his rationale and his conclusions? Consider: does a helium ion have twice, or
four times, the atomic weight of a hydrogen ion?
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QUES. 19.2. How can the age of a radioactive mineral be computed?

a) How many α-particles per second are expelled from 1 g of radium? What does
this imply about the rate of helium production in radium?

b) Are Rutherford’s calculation of helium production dependent on the atomic
weight assigned to the α-particle?

c) Upon what assumption(s) is Rutherford’s method of radioactive dating based?
How old are the minerals dated using Rutherford’s method? Does this sound
reasonable?

QUES. 19.3. Why does radium feel warm? And how can the rate of production of
α-particles be deduced from the self-heating of radium?

QUES. 19.4. What is the velocity of an α-particle expelled from a radium product?
How can this be inferred from its range? And how is an α-particle’s velocity related
to the ionization it produces?

19.4 Exercises

EX. 19.1 (HALF-LIFE AND RADIOACTIVE DECAY RATE). The emission of an α-particle
by a radioactive isotope is an unpredictable process. This is true of all radioactive
decays. Nonetheless, a half-life can be assigned to each radioactive decay process
which indicates the time during which one-half of the isotopes present will have
undergone such a decay. The measured half-lives of many of the isotopes comprising
the uranium series are shown in Table 19.3.6

The rate of decay of a pure radioactive substance is (inversely) related to the
half-life of its constituent isotopes: the longer the half-life, the smaller the decay
rate. More precisely, if there are N isotopes present in a sample at a particular time,
t , then one can define the decay rate, R, as

R = −dN/dt

N
.

a) Demonstrate that the solution to this differential equation is

N (t) = N0 e−Rt . (19.1)

Make a sketch of Eq. 19.1. What does N0 represent?
b) Demonstrate that the half-life, τ1/2, can be expressed in terms of the decay rate

as

τ1/2 = ln 2

R
. (19.2)

c) How many half-lives must elapse before only 1/100 of the number of initial
radioactive atoms in a sample are remaining?

6 For more information on the uranium series, see Ex. 18.4 in the previous chapter.
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Table 19.3 Half-lives for
isotopes appearing in the
uranium series.—[K.K.]

Isotope τ1/2 Particle emitted
238U 4.468 ×109 Years α

234Th 24.10 Days β

234Pa 1.17 Minutes β

234U 2.455 ×105 Years α

230Th 7.338 ×104 Years α

226Ra 1.600 ×103 Years α

222Rn 3.825 Days α

218Po 3.10 Minutes α

214Pb 26.8 Minutes β

214Bi 19.9 Minutes β

214Po 164.3 μs α

210Pb 22.3 Years β

210Bi 5.013 Days β

210Po 138.376 Days α

206Pb Stable

EX. 19.2 (ISOTOPE ACTIVITY). The activity of a particular radioactive sample is
measured in becquerels (decays per second) using a radiation detector such as a
Geiger-Muller tube or a scintillation counter. Suppose that the initial activity of a
laboratory sample containing radon-222 isotopes is ten times the initial activity of
another laboratory sample containing bismuth-210 isotopes. How many days must
elapse before the activities of these two samples are equal?

EX. 19.3 (ATOMIC RECOIL AND HEATING). Based on Rutherford’s data, what is the
recoil speed of the residual (daughter) nucleus when an atom of radium F emits
an α-particle? Calculate the kinetic energies of each of the decay products and the
(initial) heating rate of a 1-g bulk sample of pure radium F . How would your answer
change if a very thin layer of radon was employed so that nearly all of the α-particles
escape from the surface of the sample, rather than being absorbed into its bulk?

EX. 19.4 (PLUTONIUM SELF HEATING). Uranium-235 (atomic mass 235.044 u) is
produced when plutonium-239 (atomic mass 239.05216 u) undergoes α-decay:

239
94 Pu −→ 235

92 U + 4
2He

The half-life of this decay process is about 24,100 years. Calculate (a) the speed of
the emitted α particle and (b) the (initial) heating rate of a 1-g bulk sample of pure
plutonium-239.

EX. 19.5 (RANGE OF α-PARTICLES LABORATORY). In this laboratory experiment, we
will measure the range of α-particles in air and thereby deduce their speed and
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kinetic energy.7 Place an α-source, such as polonium-210 near a geiger-mueller
tube or an ionization chamber and plot the measured activity (counts per second)
as a function of distance.8 From a plot of your data, determine the average range of
α-particles from polonium-210. The energy may be approximated using the formula

E � r + 1.5

where r is the range in air (in centimeters) and E is the energy (in MeV). Compare
the speed of your α-particles to Rutherford’s α-particles from polonium-210. What
effect do various materials have on the range of the α-particles?9

EX. 19.6 (BARIUM-137 HALF-LIFE LABORATORY). In this laboratory exercise, we will
use a geiger-muller tube to measure the activity and half-life of a sample of radioac-
tive barium-137m (a metastable state of barium-137, as described below). A safe
and easy-to-use isotope generator kit, from which barium-137m may be extracted, is
available commercially.10 In this kit you should find (i) an isotope exchange column
containing a small quantity of radioactive Cesium-137, (ii) a small bottle containing
an eluting solution consisting of 0.9 % NaCl in 0.04 M HCl, (iii) a syringe for inject-
ing about seven drops of eluting solution into the top of the exchange column, and
(iv) a small steel planchet in which to capture the eluting solution forced through
the exchange column.

The Cs-137 which resides in the exchange column undergoes β-decay, with a half
life of 30.17 years, producing the meta-stable isotope Ba-137m. The eluting solu-
tion which is forced through the exchange column selectively extracts the Ba-137m.
The large number of Cs-137 isotopes remaining in the column quickly regenerate
the Ba-137m, so the exchange column can be “milked” repeatedly. The Ba-137m
which is extracted by the eluting solution undergoes γ -decay to the stable isotope
Ba-137 with a much shorter half-life; this may be measured by counting the emitted
γ -particles using a geiger-muller tube held near the eluting solution in the steel
planchet.11 A data-collection time of up to 60 min may be necessary to ensure
that all of the Ba-137m has decayed. This will allow for an accurate background

7 A valuable resource for laboratory experiments involving radioactivity is Chase, G., S. Rituper,
and J. Sulcoski, Experiments in Nuclear Science, Burgess Pub. Co., 1971. Also see Gastineau,
J. E., Nuclear Radiation with Computers and Calculators, 3rd ed., Vernier Software & Technology,
2003.
8 I have used a Geiger-Mueller tube (Vernier model RMD-BTD) together with a data-logger
(Vernier LabPro), which are both available from Vernier Software & Technology, Beaverton,
OR. 210Po sources are available from Spectrum Techniques, Oak Ridge, TN. Alternatively, a
small silver disk (such as a pre-1965 United States dime or quarter) can be immersed in RaDEF
solution—consisting of RaD (210Pb) in equilibrium with RaE (210Bi) and RaF (210Po)—for a few
minutes and then washed with water and air-dried.
9 A Calibrated absorber set (Model RAS 20) consisting of lead, aluminum and plastic plates of
various thicknesses is available from Spectrum Techniques, Oak Ridge, TN.
10 Cs/Ba-137m Isotope Generator, Spectrum Techniques, Oak Ridge, TN.
11 Radiation monitor (Model RM-BTD), Vernier Software & Technology, Beaverton, OR.
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count due to non-barium radioactive sources. The residual eluting solution con-
taining stable Ba-137 may be simply washed from the planchets using water and
discarded.

19.5 Vocabulary

1. Radium
2. Emanation
3. Radiotellurium
4. Polonium
5. Monovalent
6. Ionize
7. Fergusonite
8. Thorium
9. Actinium

10. Thorianite
11. Uranium
12. Disintegrate



Chapter 20
Atomic Fission

While it has long been known that helium is a product of the
spontaneous transformation of some of the radio-active
elements, the possibility of disintegrating the structure of stable
atoms by artificial methods has been a matter of uncertainty.

—Ernest Rutherford

20.1 Introduction

In the previous two chapters we looked carefully at how Rutherford characterized
the α-particles which were emitted by radioactive substances such as radium and
actinium. These particles were all found to have nearly the same charge-to-mass
ratios. They were also found to be traveling at enormous speeds—comparable to
that of light itself. Based on these observations, Rutherford was able to identify
the α-particle as the nucleus of a helium atom. This suggested that the radioac-
tive elements, and perhaps even all the elements, were built up of helium nuclei.
So a few years later he turned this experiment around. Rutherford, Geiger and
Marsden employed a beam of high-speed α-particles from radium as a probe to
study the structure of gold atoms. In particular, they measured the deflection of
a beam of α-particles fired at a thin gold foil placed near a radioactive source in
a vacuum chamber. The deflected α-particles were meticulously observed as they
struck a zinc-sulphide screen placed behind the gold foil target, each time emit-
ting a faint flash of light—a scintillation—which was visible when viewed with a
microscope. These gold-foil experiments inspired Rutherford to construct a model
of the atomic nucleus in which he likened it to a tiny solar system composed of
negatively charged electrons orbiting a positively charged nucleus. This “planetary
model” of the atom was very different than the “plum pudding” model suggested in
1904 by Rutherford’s teacher, J. J. Thomson, who had himself discovered the elec-
tron in 1897. According to Thomson’s model, tiny electrons were situated inside the
atomic nucleus like negatively charged plums in a positively charged pudding.

In the reading selection below, taken from a lecture delivered in 1920, Rutherford
begins by recounting the results of these gold-foil experiments. He seems particu-
larly interested in determining the size of the atomic nucleus, and the strength of the
forces which act in its vicinity. He clearly has an eye toward determining whether
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atomic nuclei might possibly be broken apart by hitting them hard enough. He then
proceeds to describe a new set of experiments in which he attempted to do just that.
What was his experimental technique? Was he successful in splitting the atom?

20.2 Reading: Rutherford, Nuclear Constitution of Atoms

Rutherford, E., Bakerian Lecture: Nuclear Constitution of Atoms, Proceedings of
the Royal Society of London. Series A, Containing Papers of a Mathematical and
Physical Character, 97(686), 374–400, 1920.

20.2.1 Introduction

The conception of the nuclear constitution of atoms arose initially from attempts
to account for the scattering of α-particles through large angles in traversing thin
sheets of matter.1 Taking into account the large mass and velocity of the α-particles,
these large deflexions were very remarkable, and indicated that very intense elec-
tric or magnetic fields exist within the atom. To account for these results, it was
found necessary to assume2 that the atom consists of a charged massive nucleus
of dimensions very small compared with the ordinarily accepted magnitude of the
diameter of the atom. This positively charged nucleus contains most of the mass of
the atom, and is surrounded at a distance by a distribution of negative electrons equal
in number to the resultant positive charge on the nucleus. Under these conditions,
a very intense electric field exists close to the nucleus, and the large deflexion of
the α-particle in an encounter with a single atom happens when the particle passes
close to the nucleus. Assuming that the electric forces between the α-particle and
the nucleus varied according to an inverse square law in the region close to the
nucleus, the writer worked out the relations connecting the number of α-particles
scattered through any angle with the charge on the nucleus and the energy of the α-
particle. Under the central field of force, the α-particle describes a hyperbolic orbit
round the nucleus, and the magnitude of the deflection depends on the closeness of
approach to the nucleus. From the data of scattering of α-particles then available,
it was deduced that the resultant charge on the nucleus was about 1 2Ae, where A

is the atomic weight and e the fundamental unit of charge. Geiger and Marsden3

made an elaborate series of experiments to test the correctness of the theory, and
confirmed the main conclusions. They found the nucleus charge was about 1 2Ae,
but, from the nature of the experiments, it was difficult to fix the actual value within

1 Geiger and Marsden, ‘Roy. Soc. Proc.,’ A, vol. 82, p. 495 (1909).
2 Rutherford, ‘Phil. Mag.,’ vol. 21, p.669 (1911); vol. 27, p. 488 (1914).
3 Geiger and Marsden, ‘Phil. Mag.,’ vol. 25, p. 604 (1913).
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about 20 %. C. G. Darwin4 worked out completely the deflexion of the α-particle
and of the nucleus, taking into account the mass of the latter, and showed that the
scattering experiments of Geiger and Marsden could not be reconciled with any law
of central force, except the inverse square. The nuclear constitution of the atom was
thus very strongly supported by the experiments on scattering of α-rays.

Since the atom is electrically neutral, the number of external electrons surround-
ing the nucleus must be equal to the number of units of resultant charge on the
nucleus. It should be noted that, from the consideration of the scattering of X-rays
by light elements, Barkla5 had shown, in 1911, that the number of electrons was
equal to about half the atomic weight. This was deduced from the theory of scatter-
ing of Sir J. J. Thomson, in which it was assumed that each of the external electrons
in an atom acted as an independent scattering unit.

Two entirely different methods had thus given similar results with regard to the
number of external electrons in the atom, but the scattering of α-rays had shown in
addition that the positive charge must be concentrated on a massive nucleus of small
dimensions. It was suggested by Van den Broek6 that the scattering of α-particles
by the atoms was not inconsistent with the possibility that the charge on the nucleus
was equal to the atomic number of the atom, i.e., to the number of the atom when
arranged in order of increasing atomic weight. The importance of the atomic number
in fixing the properties of an atom was shown by the remarkable work of Moseley7

on the X-ray spectra of the elements. He showed that the frequency of vibration of
corresponding lines in the X-ray spectra of the elements depended on the square
of a number which varied by unity in successive elements. This relation received
an interpretation by supposing that the nuclear charge varied by unity in passing
from atom to atom, and was given numerically by the atomic number. I can only
emphasise in passing the great importance of Moseley’s work, not only in fixing
the number of possible elements, and the position of undetermined elements, but
in showing that the properties of an atom were defined by a number which varied
by unity in successive atoms. This gives a new method of regarding the periodic
classification of the elements, for the atomic number, or its equivalent the nuclear
charge, is of more fundamental importance than its atomic weight. In Moseley’s
work, the frequency of vibration of the atom was not exactly proportional to N ,
where N is the atomic number, but to (N − a)2, where a was a constant which had
different values, depending on whether the K or L series of characteristic radiations
were measured. It was supposed that this constant depended on the number and
position of the electrons close to the nucleus.

4 Darwin, ‘Phil. Mag.,’ vol. 27, p. 499 (1914).
5 Barkla, ‘Phil. Mag.,’ vol. 21, p. 648 (1911).
6 Van den Broek, ‘Phys. Zeit.,’ vol. 14, p. 32 (1913).
7 Moseley, ‘Phil. Mag.,’ vol. 26, p. 1024 (1913); vol. 27, p. 703 (1914).
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20.2.2 Charge on the Nucleus

The question whether the atomic number of an element is the actual measure of
its nuclear charge is a matter of such fundamental importance that all methods of
attack should be followed up. Several researches are in progress in the Cavendish
Laboratory to test the accuracy of this relation. The two most direct methods depend
on the scattering of swift α- and β-rays. The former is under investigation, using
new methods, by Mr. Chadwick, and the latter by Dr. Crowther. The results so far
obtained by Mr. Chadwick strongly support the identity of the atomic number with
the nuclear charge within the possible accuracy of experiment, viz., about 1 %.

It thus seems clear that we are on firm ground in supposing that the nuclear charge
is numerically given by the atomic number of the element. Incidentally, these results,
combined with the work of Moseley, indicate that the law of the inverse square
holds with considerable accuracy in the region surrounding the nucleus. It will be
of great interest to determine the extent of this region, for it will give us definite
information as to the distance of the inner electrons from the nucleus. A comparison
of the scattering of slow and swift β-rays should yield important information on
this point. The agreement of experiment with theory for the scattering of α-rays
between 5◦ and 150◦ shows that the law of inverse square holds accurately in the
case of a heavy element like gold for distances between about 36 × 10−12 cm and
3 × 10−12 cm from the centre of the nucleus. We may consequently conclude that
few, if any, electrons are present in this region.

An α-particle in a direct collision with a gold atom of nuclear charge 79 will be
turned back in its path at a distance of 3×10−12 cm, indicating that the nucleus may
be regarded as a point charge even for such a short distance. Until swifter α-particles
are available for experiment, we are unable in the case of heavy elements to push
further the question of dimensions of heavy atoms. We shall see later, however, that
the outlook is more promising in the case of lighter atoms, where the α-particle can
approach closer to the nucleus.

It is hardly necessary to emphasise the great importance of the nuclear charge in
fixing the physical and chemical properties of an element, for obviously the num-
ber and the arrangements of the external electrons on which the great majority of
the physical and chemical properties depend, is conditioned by the resultant charge
on the nucleus. It is to be anticipated theoretically, and is confirmed by experi-
ment, that the actual mass of the nucleus exercises only a second order effect on
the arrangement of the external electrons and their rates of vibration.

It is thus quite possible to imagine the existence of elements of almost identical
physical and chemical properties, but which differ from one another in mass, for,
provided the resultant nuclear charge is the same, a number of possible stable modes
of combination of the different units which make up a complex nucleus may be
possible. The dependence of the properties of an atom on its nuclear charge and
not on its mass thus offers a rational explanation of the existence of isotopes in
which the chemical and physical properties may be almost indistinguishable, but
the mass of the isotopes may vary within certain limits. This important question
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will be considered in more detail later in the paper in the light of evidence as to the
nature of the units which make up the nucleus.

The general problem of the structure of the atom thus naturally divides itself into
two parts:—

(1) Constitution of the nucleus itself.
(2) The arrangement and modes of vibration of the external electrons.

I do not propose to-day to enter into (2), for it is a very large subject, in which there is
room for much difference of opinion. This side of the problem was first attacked by
Bohr and Nicholson, and substantial advances have been made. Recently, Sommer-
feld and others have applied Bohr’s general method with great success in explaining
the fine structure of the spectral lines and the complex modes of vibration of simple
atoms involved in the Stark effect. Recently, Langmuir and others have attacked the
problem of the arrangement of the external electrons from the chemical standpoint,
and have emphasised the importance of assuming a more or less cubical arrange-
ment of the electrons in the atom. No doubt each of these theories has a definite
sphere of usefulness, but our knowledge is as yet too scanty to bridge over the
apparent differences between them.

I propose to-day to discuss in some detail experiments that have been made with
a view of throwing light on the constitution and stability of the nuclei of some of the
simpler atoms. From a study of radio-activity we know that the nuclei of the radio-
active elements consist in part of helium nuclei of charge 2e. We also have strong
reason for believing that the nuclei of atoms contain electrons as well as positively
charged bodies, and that the positive charge on the nucleus represents the excess
positive charge. It is of interest to note the very different rôle played by the electrons
in the outer and inner atom. In the former case, the electrons arrange themselves at a
distance from the nucleus, controlled no doubt mainly by the charge on the nucleus
and the interaction of their own fields. In the case of the nucleus, the electron forms
a very close and powerful combination with the positively charged units and, as far
as we know, there is a region just outside the nucleus where no electron is in stable
equilibrium. While no doubt each of the external electrons acts as a point charge in
considering the forces between it and the nucleus, this cannot be the case for the
electron in the nucleus itself. It is to be anticipated that under the intense forces in
the latter, the electrons are much deformed and the forces may be of a very different
character from those to be expected from an undeformed electron, as in the outer
atom. It may be for this reason that the electron can play such a different part in the
two cases and yet form stable systems.

It has been generally assumed, on the nucleus theory, that electric forces and
charges play a predominant part in determining the structure of the inner and outer
atom. The considerable success of this theory in explaining fundamental phenomena
is an indication of the general correctness of this point of view. At the same time if
the electrons and parts composing the nucleus are in motion, magnetic fields must
arise which will have to be taken into account in any complete theory of the atom. In
this sense the magnetic fields are to be regarded as a secondary rather than a primary
factor, even though such fields may be shown to have an important bearing on the
conditions of equilibrium of the atom.
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20.2.3 Dimension of Nuclei

We have seen that in the case of atoms of large nuclear charge the swiftest α-particle
is unable to penetrate to the actual structure of the nucleus so that it is possible to
give only a maximum estimate of its dimensions. In the case of light atoms, how-
ever, when the nucleus charge is small, there is so close an approach during a direct
collision with an α-particle that we are able to estimate its dimensions and form
some idea of the forces in operation. This is best shown in the case of a direct col-
lision between an α-particle and an atom of hydrogen. In such a case, the H atom
is set in such swift motion that it travels four times as far as the colliding α-particle
and can be detected by the scintillation produced on a zinc sulphide screen.8 The
writer9 has shown that these scintillations are due to hydrogen atoms carrying unit
positive charge recoiling with the velocity to be expected from the simple collision
theory, viz., 1.6 times the velocity of the α-particle. The relation between the num-
ber and velocity of these H atoms is entirely different from that to be expected if
the α-particle and H atom are regarded as point charges for the distances under con-
sideration. The result of the collision with swift α-particles is to produce H atoms
which have a narrow range of velocity, and which travel nearly in the direction of the
impinging particles. It was deduced that the law of inverse squares no longer holds
when the nuclei approach to within a distance of 3 × 10−13 cm of each other. This
is an indication that the nuclei have dimensions of this order of magnitude and that
the forces between the nuclei vary very rapidly in magnitude and in direction for a
distance of approach comparable with the diameter of the electron as ordinarily cal-
culated. It was pointed out that in such close encounters there were enormous forces
between the nuclei, and probably the structure of the nuclei was much deformed
during the collision. The fact that the helium nucleus, which may be supposed to
consist of four H atoms and two electrons, appeared to survive the collision is an
indication that it must be a highly stable structure. Similar results10 were observed
in the collision between α–particles and atoms of nitrogen and oxygen for the recoil
atoms appeared to be shot forward mainly in the direction of the α–particles and the
region where special forces come into play is of the same order of magnitude as in
the case of the collision of an α–particle with hydrogen.

No doubt the space occupied by a nucleus and the distance at which the forces
become abnormal increase with the complexity of the nucleus structure. We should
expect the H nucleus to be the simplest of all and, if it be the positive electron, it
may have exceedingly small dimensions compared with the negative electron. In the
collisions between α–particles and H atoms, the α–particle is to be regarded as the
more complex structure.

8 Marsden, ‘Phil. Mag.,’ vol. 27, p. 824 (1914).
9 Rutherford, ‘Phil. Mag.,’ vol. 37, I and II, pp. 538–571 (1919).
10 Rutherford, ‘Phil. Mag.,’ vol. 37, III, p. 571 (1919).
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Table 20.1 Calculated ranges
of singly charged particles of
various masses set in motion
by close collisions with an
α-particle

Mass 1 Range 3.91 R

” 2 ” 4.6 R

” 3 ” 5.06 R

” 4 ” 4.0 R

The diameter of the nuclei of the light atoms except hydrogen are probably of the
order of magnitude 5 × 10−13 cm and in a close collision the nuclei come nearly in
contact and may possibly penetrate each other’s structure. Under such conditions,
only very stable nuclei would be expected to survive the collision and it is thus of
great interest to examine whether evidence can be obtained of their disintegration.

20.2.4 Long Range Particles from Nitrogen

In previous papers, loc. cit., I have given an account of the effects produced by close
collisions of swift α–particles with light atoms of matter with the view of determin-
ing whether the nuclear structure of some of the lighter atoms, could be disintegrated
by the intense forces brought into play in such close collisions. Evidence was given
that the passage of α–particles through dry nitrogen gives rise to swift particles
which closely resembled in brilliancy of the scintillations and distance of penetra-
tion hydrogen atoms set in motion by close collision with α–particles. It was shown
that these swift atoms which appeared only in dry nitrogen and not in oxygen or car-
bon dioxide could not be ascribed to the presence of water vapour or other hydrogen
material, but must arise from the collision of α–particles with nitrogen atoms. The
number of such scintillations due to nitrogen was small, viz., about 1 in 12 of the
corresponding number in hydrogen, but was two to three times the number of natural
scintillations from the source. The number observed in nitrogen was on an average
equal to the number of scintillations when hydrogen at about 6 cm pressure was
added to oxygen or carbon dioxide at normal pressure.

While the general evidence indicated that these long range atoms from nitrogen
were charged atoms of hydrogen, the preliminary experiments to test the mass of
the particles by bending them in a strong magnetic field yielded no definite results.

From the data given in my previous paper (loc. cit.) several theories could be
advanced to account for these particles. The calculated range of a singly charged
atom set in motion by a close collision with an α–particle of range R cm in air was
shown to be for

On account of the small number and weakness of the scintillations under the
experimental conditions, the range of the swift atoms from nitrogen could not be
determined with sufficient certainty to decide definitely between any of these possi-
bilities. The likelihood that the particles were the original α-particles which had lost
one of their two charges, i.e., atoms of charge 1 and mass 4, was suggested by me
to several correspondents, but there appeared to be no obvious reason why nitrogen,
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Fig. 20.1 Rutherford’s arrangement for detecting any particles arising from gas struck by
α-particles emitted from a radioactive source.—[K.K.]

of all the elements examined, should be the only one in which the passage of a swift
α-particle led to the capture of a single electron.

If, however, a sufficient number of scintillations could be obtained under the
experimental conditions, there should be no inherent difficulty in deciding between
the various possibilities by examining the deflexion of the swift atoms by a magnetic
field. The amount of deflexion of charged atoms in a magnetic field perpendicular
to the direction of flight is proportional to e/mu. Assuming that the particles were
liberated by a direct collision with an α-particle, the relative values of this quantity
for different recoiling masses are easily calculated. Taking values MV/E for the α–
particle as unity, the corresponding values of mu/e for atoms of charge 1 and mass
1, 2, 3, and 4 are 1.25, 0.75, 0.58, and 0.50 respectively. Consequently the H atoms
should be more bent than the α–particles which produced them while the atoms of
mass 2 or 3, or 4 would be more difficult to deflect than the parent α-particle.

On my arrival in Cambridge, this problem was attacked in several ways. By the
choice of objectives of wide aperture, the scintillations were increased in brilliancy
and counting thus made easier. A number of experiments were also made to obtain
more powerful sources of radiation with the radium at my command, but finally it
was found best, for reasons which need not be discussed here, to obtain the active
source of radiation of radium C in the manner described in my previous paper.
After a number of observations with solid nitrogen compounds, described later; a
simple method was finally devised to estimate the mass of the particle by the use of
nitrogen in the gaseous state. The use of the gas itself for this purpose had several
advantages over the use of solid nitrogen compounds, for not only was the number
of scintillations greater, but the absence of hydrogen or other hydrogen compounds
could be ensured.

The arrangement finally adopted is shown in Fig. 20.1. The essential point lay
in the use of wide slits, between which the α–particles passed. Experiment showed
that the ratio of the number of scintillations on the screen arising from the gas to the
number of natural scintillations from the source, increased rapidly with increased
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depth of the slits. For plates 1 mm, apart this ratio was less than unity, but for slits
8 mm apart the ratio had a value 2–3. Such a variation is to be anticipated on the-
oretical grounds if the majority of the particles are liberated at an angle with the
direction of the incident α-particles.

The horizontal slits A, B were 6.0 cm long, 1.5 cm wide, and 8 mm deep, with
the source, C of the active deposit of radium placed at one end and the zinc sulphide
screen near the other. The carrier of the source and slits were placed in a rectangular
brass box; through which a current of dry air or other gas was continuously passed
to avoid the danger of radio-active contamination. The box was placed between the
poles of a large electromagnet, so that the uniform field was parallel to the plane of
the plates and perpendicular to their length. A distance piece, D, of length 1.2 cm,
was added between the source and end of the slits, in order to increase the amount
of deflexion of the radiation issuing from the slits. The zinc sulphide screen, S, was
placed on a glass plate covering the end of the box. The distance between the source
and the screen was 7.4 cm The recoil atoms from oxygen or nitrogen of range 9 cm
could be stopped by inserting an aluminium screen of stopping power about 2 cm
of air placed at the end of the slits.

With such deep slits it was impossible to bend the wide beam of radiation to
the sides, but the amount of deflexion of the radiation issuing near the bottom of
the slit was measured. For this purpose it was essential to observe the scintillations
at a fixed point of the screen near M . The method of fixing the position of the
counting microscope was as follows: The source, C, was placed in position, and
the air exhausted to a pressure of a few centimetres. Without the field, the bottom
edge of the beam was fixed by the straight line PM cutting the screen at M . The
microscope was adjusted so that the boundary line of scintillations appeared above
the horizontal cross wire in the microscope, marking the centre of the field.

On exciting the magnet to bend the rays upward (called the + field), the path
of the limiting α-particles is marked by the curve PLRN cutting the screen at N ,
so that the boundary of the scintillations appears to be displaced downwards in the
field of view. On reversing the field (called the − field), the path of the limiting α-
particle PQRT cuts the screen at T , and the band of scintillations appears to be bent
upwards. The strength of the magnetic field was adjusted so that, with a negative
field, the scintillations were observed all over the screen, while, with a positive
field, they were mainly confined below the cross wire. The appearance in the field
of view of the microscope for the two fields is illustrated in Fig. 20.2, where the
dots represent approximately the density of distribution of the scintillations. The
horizontal boundaries of the field of view were given by a rectangular opening in a
plate fixed in the position of the cross wires. A horizontal wire, which bisected the
field of view, was visible under the conditions of counting, and allowed the relative
numbers of scintillations in the two halves of the field to be counted if required.
Since the number of scintillations in the actual experiments with nitrogen was much
too small to mark directly the boundary of the scintillations, in order to estimate
the bending of the rays, it was necessary to determine the ratio of the number of
scintillations with the + and − field.
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Fig. 20.2 The field of view
of the zinc sulphide screen as
seen through the (inverting)
microscope when the mag-
netic field was oriented so
as to make the α-rays deflect
downwards (top) and upwards
(bottom).—[K.K.]

The position of the microscope and the strength of the magnetic field were in
most experiments so adjusted that this ratio was about one-third. Preliminary obser-
vations showed that this ratio was sensitive to changes of the field and it thus
afforded a suitable method for estimating the relative bending of any radiations
under examination.

After the position of the microscope was fixed, air was let in, and a continu-
ous flow of dry air maintained through the apparatus. The absorbing screen was
introduced at E to stop the atoms from N and O of range 9 cm. The number of
scintillations was then systematically counted for the two directions of the field, and
a correction, if required, made for any slight radioactive contamination of the screen.
The deflexion due to the unknown radiation was directly compared with that pro-
duced by a known radiation of α-rays. For this purpose, after removal of the source
and absorbing screen, a similar plate, coated with a weak distribution of the active
deposit of thorium, was substituted for the radium source. The α-particles from tho-
rium C of range 8.6 cm produced bright scintillations in the screen after traversing
the 7.4 cm of air in their path. The ratio of the number of scintillations with + and
− fields was determined as before.

An example of such comparison is given below. For a current of 4.0 A through
the electromagnet, the ratio for particles from nitrogen was found to be 0.33. The
corresponding ratio for α-particles from thorium C was 0.44 for a current of 4 A
and 0.31 for a current of 5 A It is thus seen that on the average, the particles from
nitrogen are more bent in a given field than the α-particles from thorium C. In order,
however, to make a quantitative comparison, it is necessary to take into account
the reduction in velocity of the radiations in passing through the air. The value mu

e

for the α-ray of range 8.6 cm from thorium C is known to be 4.28 × 105. Since
the rays pass through 7.4 cm of air in a uniform field before striking the screen, it
can be calculated that the actual deflection corresponds to α-rays in a vacuum for
which mu

e
= 3.7 × 105, about. Taking the deflection of the α-particles for a current

of 4.8 A to be the same as for the nitrogen particles for a field of 4 A—ratio of
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fields 1.17—it is seen that the average deflexion of the nitrogen particles under the
experimental conditions corresponds to a radiation in a vacuum for which the value
of mu

e
= 3.1 × 105.

Bearing in mind that the particles under examination are produced throughout
the volume of the gas between the slits, and that their distribution is unknown, and
also that the particles are shot forward on an average at an angle with the inci-
dent α-particles, the experimental data are quite insufficient to calculate the average
value of mu

e
to be expected under the experimental conditions for any assumed mass

of projected particles. It seems probable that the majority of the particles which
produce scintillations are generated in the first few centimetres of the air next the
source. The actual deflection of a given particle by the magnetic field will depend on
the distance of its point of origin from the source. These factors will obviously tend
to make the average deflection of the particles to appear less than if they were all
expelled with constant velocity from the source itself. Assuming that the correction
for reduction of velocity of the long range particles in traversing the gas is 10 %,
the average value of mu

e
is about 3.4 × 105. Since the value of MV

E
for the α-particle

from radium C is 3.98 × 105, it is seen that under the experimental conditions the
average value of mu

e
for the nitrogen particles is less than that of the α-particles

which produce them.
From the data given earlier in the paper, this should only be true if the particles

are comparable in mass with an atom of hydrogen, for singly charged particles of
mass 2, 3, or 4 should suffer less deflexion than the α-particles. For example, if we
assume that the particles were helium atoms carrying one charge, we should expect
them to be deflected to about one-half of the extent of the α-particle. The experi-
mental results thus afford strong presumptive evidence that the particles liberated
from nitrogen are atoms of hydrogen.

A far more decisive test, however, can be made by comparing the deflexion of the
nitrogen particles with that of H atoms under similar conditions. For this purpose,
a mixture of about one volume of hydrogen to two of carbon dioxide was stored
in a gas-holder and circulated in place of air through the testing apparatus. The
proportions of the two gases were so adjusted that the stopping power of the mixture
for α-rays was equal to that of air. Under these conditions, the H atoms, like the
nitrogen particles, are produced throughout the volume of the gas, and probably the
relative distribution of H atoms along the path of the α-rays is not very different
from that of the nitrogen particles under examination. If the nitrogen particles are
H atoms, we should expect the average deflexion to be nearly the same as for the
H atoms liberated from the hydrogen mixture. A number of careful experiments
showed that the ratio of the number of scintillations in + and − fields of equal
value was so nearly identical in the two cases that the experiments were unable
to distinguish between them. Since the two experiments were carried out under as
nearly as possible identical conditions, the equality of the ratio shows that the long
range particles liberated from nitrogen are atoms of hydrogen. The possibility that
the particles may be of mass 2, 3, or 4 is definitely excluded.
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In a previous paper I have given evidence that the long range particles observed
in dry air and pure nitrogen must arise from the nitrogen atoms themselves. It is thus
clear that some of the nitrogen atoms are disintegrated by their collision with swift
α-particles and that swift atoms of positively charged hydrogen are expelled. It is to
be inferred that the charged atom of hydrogen is one of the components of which
the nucleus of nitrogen is built up.

While it has long been known that helium is a product of the spontaneous trans-
formation of some of the radio-active elements, the possibility of disintegrating the
structure of stable atoms by artificial methods has been a matter of uncertainty.
This is the first time that evidence has been obtained that hydrogen is one of the
components of the nitrogen nucleus.

It should be borne in mind that the amount of disintegration effected in nitrogen
by the particles is excessively small, for probably on an average only one α-particle
in about 300,000 is able to get near enough to the nitrogen nucleus to liberate the
atom of hydrogen with sufficient energy to be detected by the scintillation method.
Even if the whole α-radiation from 1 g of radium were absorbed in nitrogen gas, the
volume of hydrogen set free would be only about 1/300,000 of the volume of helium
due to the collected α-particles, viz., about 5 × 10−4 cubic mm per year. It may be
possible that the collision of an α-particle is effective in liberating the hydrogen
from the nucleus without necessarily giving it sufficient velocity to be detected by
scintillations. If this should prove to be the case, the amount of disintegration may
be much greater than the value given above.

20.2.5 Experiments with Solid Nitrogen Compounds

A brief account will now be given of experiments with solid nitrogen compounds.
Since the liberation of the particle from nitrogen is a purely atomic phenomenon,
it was to be expected that similar particles would be liberated from nitrogen com-
pounds in number proportional to the amount of nitrogen. To test this point, and also
the nature of the particles, a number of compounds rich in nitrogen were examined.
For this purpose I have employed the following substances, which were prepared as
carefully as possible to exclude the presence of hydrogen in any form:—

(1) Boron nitride, kindly prepared for me by W. J. Shutt, in Manchester University.
(2) Sodium nitride, titanium nitride and para-cyanogen, kindly prepared for me by

Sir William Pope and his assistants.

The apparatus used was similar in form to that given in Fig. 20.1, except that the
plates were 4 cm long. By means of a fine gauze, the powdered material was sifted as
uniformly as possible on a thin aluminium plate about 2 cm2 in area. The weight of
the aluminium plate was about 6 mg/cm2, and usually about 4–5 mg of the material
per square centimetre was used. The stopping power of the aluminium plate for α-
particles corresponded to about 3.4 cm of air, and it was usually arranged that the
average stopping power of the material was about the same as for the aluminium.
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In order to make the material adhere tightly to the plate, a layer of alcohol was first
brushed on and the material rapidly sifted into position, and the plate then dried.

Experiment showed that no detectable hydrogen contamination was introduced
by the use of alcohol in this way. The zinc sulphide screen was placed outside the
box close to an aluminium plate of stopping power equal to 5.2 cm of air which
covered an opening in the end of the brass box. The aluminium carrier was then
placed in position to cover the end of the slits near the source, care being taken not
to shake off any material. The air was exhausted and the number of scintillations on
the screen counted.

(1) With material facing the source.
(2) With plate reversed.

In the former case, the α-particles were fired directly into the material under exam-
ination; in the latter case the α-particles only fell on the material when their range
was reduced to about half, when their power of liberating swift atoms is much
reduced. This method of reversal had the great advantage that no correction was
necessary for unequal absorption of the α-particles from the source indifferent
experiments.

In this way it was found that all the nitrogen compounds examined gave a larger
number of scintillations in position (1). The nature of these particles was examined
by a method similar to that employed in the case of nitrogen and a direct comparison
was made of the deflexion of the particles with that of H atoms liberated from a film
of paraffin put in place of the nitrogen compound. In all experiments, the particles
were found to be deflected to the same degree as H atoms from the paraffin and no
trace of particles of mass 2, 3 or 4 was detected.

For films of equal average stopping power for α-rays, it can readily be calculated
from Bragg’s rule that the relative stopping power of the nitrogen in the compounds
is 0.67 for BN, 0.74 for C2N2, 0.40 for titanium nitride, taking the stopping power
of sodium nitride as unity. Since the expulsion of long range nitrogen particles must
be an atomic phenomenon, it was to be expected that the number of scintillations
under the experimental conditions, after correction for the natural effect from the
source, should be proportional to the relative values of stopping power given above.
The observations with sodium nitride and titanium nitride were very consistent and
the number of long range nitrogen particles was in the right proportion and about
the same as that to be expected from the experiments with nitrogen gas. On the other
hand, boron nitride and para-cyanogen gave between 1.5 and 2 times the number to
be expected theoretically. In these experiments every precaution was taken to get
rid of hydrogen and water vapour. Before use, the aluminium plates were heated
in an exhausted quartz tube in an electric furnace nearly to its melting point to
get rid of hydrogen and other gases. The films under examination were kept in a
dessicator and heated in the electric furnace just before use and transferred at once
to the testing vessel. Several control experiments were made, using preparations not
containing nitrogen, viz., pure graphite and silica which had been kindly prepared
for me by Sir William Pope. In both of these cases, the number of scintillations
observed with the material facing the α-rays was actually less than when the plate
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was reversed. This showed that some H atoms were liberated by the α-rays from the
heated aluminium. The control experiments were thus very satisfactory in showing
that H atoms were not present in materials not containing nitrogen. Incidentally,
they show that H atoms do not arise in appreciable numbers from carbon, silicon,
or oxygen.

The increased effect in boron nitride and para-cyanogen naturally led to the sus-
picion that these preparations contained some hydrogen although every precaution
was taken to avoid such a possibility. In the case of boron nitride there is also the
uncertainty whether boron itself emits H atoms. This point has not yet been prop-
erly examined. On account of these uncertainties, experiments on solid nitrogen
compounds were abandoned for the time, and experiments already described made
directly on gaseous nitrogen.

It is of interest to note that a considerable contamination with hydrogen is
required to produce the number of H atoms observed in these compounds. In the
case of sodium nitride at least 50 cc of hydrogen must be present per gram of mate-
rial. I am inclined to think that the H atoms liberated by the α-rays from sodium
nitride is due mainly, if not entirely to the nitrogen, and in the case of para-cyanogen,
part of the effect is probably due to the presence of hydrogen or other hydrogen
compound. It is hoped to examine this question in more detail later.

20.3 Study Questions

QUES. 20.1. What is the charge and the size of the atomic nucleus?

a) What law(s) governs the scattering of α-particles from an atomic nucleus? Where
is the nuclear charge concentrated? How do you know?

b) Do all atoms with the same atomic number have the same atomic weight? What,
in particular, is the relationship between nuclear charge and atomic number?
Do Moseley’s measurements of atomic x-ray spectra confirm or refute Van den
Broek’s assertions?

c) How can an atom maintain its overall neutrality? Where does Rutherford believe
the atomic electrons reside?

d) How can the size of the atomic nucleus be measured? What limits the preci-
sion of such measurements? And upon what assumptions or theories do such a
measurement rely?

e) What governs the chemical properties of the atom? What governs the stability
and structure of the atomic nucleus? And under what conditions might nuclear
disintegration occur?

QUES. 20.2. What happens when nitrogen and oxygen are bombarded with α-
particles?

a) Describe Rutherford’s experimental apparatus. How did it work? In particular,
how was the magnetic field applied, and in which direction? And how were the
recoil atoms detected?
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Fig. 20.3 Before (left) and
after (right) a nuclear fission
reaction

ma mb
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b) When the chamber was evacuated, what was the trajectory of the α particles with
and without the magnetic field turned on?

c) On what basis does Rutherford determine that the long-range recoil particles,
obtained after introducing dry nitrogen into the chamber, were not helium atoms?
What were they? And where did they come from?

d) What was the nature of the short-range recoil atoms which he detected after intro-
ducing air into the chamber? In particular, how do they differ from the helium
atoms which commonly arise from radioactive decay?

20.4 Exercises

EX. 20.1 (ELASTIC HEAD-ON COLLISION). Suppose an α-particle moving at speed
v collides head-on with an initially stationary hydrogen nucleus. Using the laws of
conservation of energy and momentum, find the speed of the hydrogen particle after
the collision. Is the value given by Rutherford on page 284 correct? What is the
speed of the α-particle after the collision?

EX. 20.2 (NUCLEAR REACTION Q-VALUE). Rutherford found that a high-speed α-
particle can induce the fission of a target nitrogen nucleus. Consider such a nuclear
fission reaction, depicted schematically in Fig. 20.3. In this problem, we will deter-
mine the mass of one of the fission products, mB , based on the known masses of
the incoming particle, ma , the target particle, mb, and the other fission product, mA.
But first we must find the Q-value of this nuclear reaction. The Q-value is defined
as the difference between the kinetic energies of the products and the reactants:

Q = (KA + KB ) − (Ka + Kb). (20.1)

a) First, using the conservation of energy, demonstrate that the Q-value of this reac-
tion may be expressed in terms of the difference between the rest energies of the
reactants and the products:

Q = (ma + mb)c2 − (mA + mB )c2. (20.2)

The Q-value is thus a measure of the amount of rest energy which is trans-
formed into kinetic energy. A positive Q-value denotes an exothermic reaction;
a negative Q-value denotes an endothermic reaction.
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b) Now show that when all the particles’ kinetic energies are small compared to
their rest energies (semi-classical approximation), the Q-value of the reaction
may be expressed in terms of the scattering angle, θ , the kinetic energies Ka and
KA, and the masses ma , mA and mB :

Q = KA

(
1 + mA

mB

)
− Ka

(
1 − ma

mB

)
− 2 cos θ

mB

√
KaKAmamA. (20.3)

(HINT: Use the non-relativistic formula K = p2/2m to eliminate KB in Eq. 20.1.
Then use momentum conservation to write pB in terms of pa , pA and θ .)

c) Now reconsider Rutherford’s induced fission reaction:

4
2He +14

7 N −→ 1
1H + 17

8 O

Suppose the incident α-particle has an energy of 7.69 MeV, and the produced
hydrogen atom scatters at an angle of 90◦. If the hydrogen atom is found to have
an energy of 4.44 MeV, then what is the Q-value of this nuclear fission reaction?
Is it endothermic or exothermic?

20.5 Vocabulary

1. Constitution
2. Hyperbolic
3. X-ray
4. Unity
5. Distinguishable
6. Isotope
7. Mode
8. Predominant
9. Impinge

10. Scintillation
11. Ascribe
12. Inherent
13. Liberate
14. Aperture
15. Presumptive
16. Infer
17. Spontaneous
18. Disintegrate
19. Adhere
20. Paraffin
21. Dessicator
22. Graphite



Chapter 21
Nuclear Structure

In considering the possible constitution of the elements, it is
natural to suppose that they are built up ultimately of hydrogen
nuclei and electrons.

—Ernest Rutherford

21.1 Introduction

In the first half of his 1920 Bakerian Lecture on the Nuclear Constitution of Atoms,
Rutherford described in detail his experiments in which he fired high-speed α-
particles across a chamber filled with dry nitrogen gas. On the opposite side of the
chamber occasional scintillations from a zinc-sulphide detector screen signalled the
arrival of tiny particles. Surprisingly, these particles did not have the known char-
acteristics of α-particles. Rather, they had the charge and mass of hydrogen ions,
despite the fact that every effort had been made to rid the gas of any hydrogen
contamination. From this Rutherford concluded that “some of the nitrogen atoms
are disintegrated by their collision with swift α-particles and that swift atoms of
positively charged hydrogen are expelled.” He also went on to say “this is the first
time that evidence has been obtained that hydrogen is one of the components of the
nitrogen nucleus.” Now in the following reading selection—the second half of the
same Bakerian Lecture—Rutherford continues to explore the artificial disintegration
of atomic nuclei with high-speed α-particles. What new isotope does he discover?
How does this discovery help to shape his theory of the internal structure of the
atomic nucleus? And what new elementary particle does Rutherford postulate in the
course of his analysis?

21.2 Reading: Rutherford, Nuclear Constitution of Atoms

Rutherford, E., Bakerian Lecture: Nuclear Constitution of Atoms, Proceedings of
the Royal Society of London. Series A, Containing Papers of a Mathematical and
Physical Character, 97(686), 374–400, 1920.
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21.2.1 Short Range Atoms from Oxygen and Nitrogen

In addition to the long range H atoms liberated from nitrogen, the passage of
α-particles through oxygen as well as through nitrogen gives rise to much more
numerous swift atoms, which have a range in air of about 9.0 cm compared with
that of 7.0 cm for the colliding α-particles. The method of determining the range
and number of these atoms has been explained in a previous paper.1 It is there shown
that these projected atoms arise from the passage of the α-particles through the gas.
Just beyond the range of the α-particles from radium C, the scintillations are much
brighter than those due to H atoms, and more resemble α-particles.

In the absence of definite information as to the nature of these atoms, it was
provisionally assumed that they were atoms of oxygen or nitrogen carrying a single
charge set in swift motion by close collisions with α-particles, for the observed
range of these particles was in approximate accord with that calculated on these
assumptions. At the same time it was pointed out that the agreement of the ranges
of the atoms set free in N and O was rather surprising, for it was to be anticipated
that the range of the swifter N atoms should be about 19 % greater than for the
slower O atoms. The possibility that these swift atoms might prove to be fragments
of disintegrated atoms was always present, but up till quite recently, I did not see
any method of settling the question.2

As soon as the use of wide slits had proved successful in deciding the nature
of the long range particles from nitrogen, experiments were made with the same
apparatus and method to test the nature of the short range particles in O and N .

First consider the relative deflexion to be expected for an O atom which is set
in motion by a direct impact with an α-particle. The velocity of the O atom after
the collision is 2

5V , where V is the velocity of the incident α-particle. The value of
mu
e

for the O atom carrying a single charge is easily seen to be 3.1 times that of
the α-particle before impact. Consequently the O atom with a single charge should
be much more difficult to deflect than the α-particle, and this is the case even if the
former carries two charges.

To test these points, the apparatus was the same as that shown in Fig. 20.1. The
source was 7.4 cm distant from the zinc sulphide screen, the end pieces, 1.2 cm long,
being used as before to increase the deflexion of the rays. During an experiment,
dried air or oxygen was circulated slowly through the apparatus to avoid radio-active
contamination of the screen. In the case of oxygen, the scintillations observed on the
screen were due to the O atoms with a small proportion of H atoms from the source.
In the case of air, the scintillations on the screen were due partly to N atoms, some O

atoms, and H atoms from the source and nitrogen. The actual number of short range
N atoms appeared to be less than the number of O atoms under similar conditions.

1 Rutherford, ‘Phil. Mag.,’ vol. 37, III, p. 571 (1919).
2 Mr. G.S. Fulcher, of the National Research Council, U.S.A., sent me, in November, 1919, a
suggestion that these atoms might prove to be α-particles.
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The position of the microscope was fixed as before to give a convenient ratio for
the number of scintillations on reversing the magnetic field. This ratio varied with
the position of the microscope, and in the actual experiments had values between
0.2 and 0.4.

It was at once obvious that the atoms from O instead of being less deflected than
the α-particles, as they should be if they were O atoms, were more deflected. This
at once excluded the possibility that the atoms from oxygen were actual atoms of
oxygen carrying either one or two charges. Since helium is expelled in so many
radio-active changes, it might be expected to be one of the components of light
atoms, liberated by the intense collision. The deflexion of the atoms from O was,
however, much too large to be accounted for in this way. To test this point, at the
conclusion of the experiments with oxygen, a plate which had been exposed to tho-
rium emanation was substituted for the radium source, and the bending of the rays
of range 8.6 cm from thorium C was examined in a similar way. If an α-particle
were ejected from an O atom near the source, it would be bent like an α-particle of
range 9.0 cm; if produced near the end of the range of α-rays, the amount of bending
could not be more than for an α-particle of range 7.0 cm, i.e., about 9 % more than
in the first case. Even supposing the particles were liberated uniformly along the
path of the α-rays and moved in the same line as the colliding particle, the average
bending would not differ by 5 % from that of the α-particle from thorium C. If, as
seems probable, some of the atoms are liberated at an angle with the incident parti-
cles, the average amount of bending of the beam would be less than the above, and
in all probability less than for the α-particles from thorium C. Actually the bending
observed was about 20 % greater, showing that the hypothesis that the atoms from
O are charged atoms of helium is quite untenable.

If the atoms from O were H atoms, they would be more bent than the α-particles,
but would have a maximum range of 28 cm instead of the 9.0 cm observed. It thus
seemed clear from this evidence that the atom must be of mass intermediate between
1 and 4, while from consideration of the range of the particles and their amount of
deflexion it was clear that the atom carried 2 units of charge.

In order to make a more decisive test, the deflexion of O atoms in a positive
and negative field of given value was directly compared with the deflexion of H

atoms from a mixture of hydrogen and carbonic acid, in the ratio of about 1–2 in
volume. In order to absorb completely the O atoms from CO2, aluminium foil was
placed over the zinc sulphide screen, so that the total absorption between the source
and screen corresponded to slightly more than 9 cm of air. In both experiments, the
atoms under examination are produced in the gas between the slits, and probably
the relative distribution along the path of the α-rays is not markedly different in the
two cases.

The ratios for reversing the field in the two experiments were found to be nearly
equal; but, as an average of a number of experiments, the H atoms were slightly
more bent than the atoms from O. From a number of experiments it was concluded
that the difference in deflexion did not on the average amount to more than 5 %,
although from the nature of the observations it was difficult to fix the difference
with any certainty.
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From these data and the range of the atoms from O in air, we can deduce the
mass of the particle liberated from oxygen.

Let m = mass of the atom from O,

u = its maximum velocity near the source,

E = charge

Let M,V,E be the corresponding values for the incident α-particles and m′, u′, e
the values for the H atoms liberated close to the source.

Taking into account that the particle from O of range 9 cm is steadily reduced
in velocity in passing through the 7.4 cm of oxygen between the source and
screen, it can easily be calculated that its average deflexion by the magnetic field
is proportional to 1.14 E

mu
in place of E

mu
in a vacuum.

In a similar way, the deflexion of the H atom is proportional to 1.05 e
m′u′ , the

correction in this case for change of velocity being smaller, and estimated to be
about 5 %. Now we have seen that the experimental results showed that the atoms
from O were bent about 5 %, less than the H atoms. Consequently

1.14
E

mu
= 1.05

1.05

e

m′u′ = 1.25
E

MV
,

or

1.14 MV = 1.25 mu, (21.1)

since it has been calculated and verified by experiment that the deflexion of the
H atom in a magnetic field is 1.25 times that of the α-particle which sets it in
motion (see Paper II, loc. cit.). Also in a previous paper, III, I have given reasons for
believing that the range x of mass m and initial velocity u, carrying a double charge,
is given by

x

R
= m

M

( u

V

)3
, (21.2)

where R is the range of the α-particle of mass M and velocity V . Since x = 9.0 cm
for the atoms from O set in motion by collision with α-particles from radium C of
range 7 cm,

x

R
= 1.29, (21.3)

and taking M = 4

mu3 = 5.16 V 3,
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A formula of this type has been shown to account for the range of the H atom, and
there is every reason to believe it is fairly accurate over such a short difference of
range. From (21.1) and (21.3)

u = 1.19 V ,

m = 3.1.

Considering the difficulty of obtaining accurate data, the value m = 3.1 indicates
that the atom has a mass about 3 and this value will be taken as the probable value
in later discussions.

When air was substituted for oxygen it was not possible to distinguish any differ-
ence between the bending of the short range atoms in the two cases. Since the short
range atoms from air arise mainly from the nitrogen, we may consequently conclude
that the short range atoms liberated by the passage of particles through oxygen or
nitrogen consist of atoms of mass 3, carrying a double charge, and initially projected
with a velocity 1.19 V , where V is the velocity of the colliding α-particle.

There seems to be no escape from the conclusion that these atoms of mass 3 are
liberated from the atoms of oxygen or nitrogen as a result of an intense collision with
an α-particle. It is thus reasonable to suppose that atoms of mass 3 are constituents of
the structure of the nuclei of the atoms of both oxygen and nitrogen. We have shown
earlier in the paper that hydrogen is also one of the constituents of the nitrogen
nucleus. It is thus clear that the nitrogen nucleus can be disintegrated in two ways,
one by the expulsion of an H atom and the other by the expulsion of an atom of
mass 3 carrying two charges. Since now these atoms of mass 3 are 5–10 times
as numerous as the H atoms, it appears that these two forms of disintegration are
independent and not simultaneous. From the rareness of the collisions it is highly
improbable that a single atom undergoes both types of disintegration.

Since the particles ejected from O and N are not produced at the source, but
along the path of the α-particles, it is difficult to determine their mass and velocity
with the precision desired. To overcome this drawback, attempts were made to deter-
mine the deflection of O atoms released from a mica plate placed over the source.
In consequence of hydrogen in combination in the mica, the H atoms falling on
the screen were so numerous compared with the O particles, and their deflexion
under the experimental conditions so nearly alike, that it was difficult to distinguish
between them.

21.2.2 Energy Considerations

In close collisions between an α-particle and an atom, the laws of conservation
of energy and of momentum appear to hold,3 but, in cases where the atoms are

3 Rutherford, ‘Phil. Mag.,’ vol. 37, p. 562 (1919).
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disintegrated, we should not necessarily expect these laws to be valid, unless we
are able to take into account the change of energy and momentum of the atom in
consequence of its disintegration.

In the case of the ejection of a hydrogen atom from the nitrogen nucleus, the data
available are insufficient, for we do not know with certainty either the velocity of
the H atom or the velocity of the α-particle after the collision.

If we are correct in supposing that atoms of mass 3 are liberated from O and N

atoms, it can be easily calculated that there is a slight gain of energy as a result of
the disintegration. If the mass is 3 exactly, the velocity of escape of the atom is 1.20
V , where V is the velocity of the impinging α-particle.

Thus
energy of liberated atom

energy of α-particle
= 3 × 1.44

4
= 1.08,

or there is a gain of 8 % in energy of motion, even though we disregard entirely the
subsequent motion of the disintegrated nucleus or of the colliding α-particle. This
extra energy must be derived from the nitrogen or oxygen nucleus in the same way
that the α-particle gains energy of motion in escaping from the radio-active atom.

For the purpose of calculation, consider a direct collision between an α-particle
and an atom of mass 3. The velocity of the latter is 8

7V , where V is the velocity
of the α-particle, and its energy is 0.96 of the initial energy of the α-particle. No
doubt, in the actual case of a collision with the O or N atom, in which the atom of
mass 3 is liberated, the α-particle comes under the influence of the main field of the
nucleus, as well as of that of the part of mass 3 immediately in its path. Under such
conditions, it is not to be expected that the α-particle can give 0.96 of its energy to
the escaping atom, but the latter acquires additional energy due to the repulsive field
of the nucleus.

In our ignorance of the constitution of the nuclei and the nature of the forces in
their immediate neighbourhood, it is not desirable to enter into speculations as to
the mechanism of the collision at this stage, but it may be possible to obtain further
information by a study of the trails of α-particles through oxygen or nitrogen by the
well-known expansion method of C.T.R. Wilson. In a previous paper,4 I discussed
the photograph obtained by Mr. Wilson, in which there is a sudden change of 43◦ in
the direction of the trail, with the appearance of a short spur at the fork. Evidence
was given that the relative length of the tracks of the α-particle and of the spur
were in rough accord with the view that the spur was due to the recoiling oxygen
atom. This is quite probably the case, for the general evidence shows that the atoms
of mass 3, after liberation, travel nearly in the direction of the α-particle, and an
oblique collision may not result in the disintegration of the atom.

Recently, Dr. Shimizu, of the Cavendish Laboratory, has devised a modification
of the Wilson expansion apparatus, in which expansions can be periodically pro-
duced several times a second, so that the trails of many particles can be inspected in
a reasonable time. Under these conditions, both Shimizu and myself saw on several

4 Rutherford, ‘Phil. Mag.,’ vol. 37, p. 577 (1919).
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occasions what appeared to be branching trails of an α-particle in which the lengths
of the two tracks were comparable. Eye observations of this kind are too uncertain to
regard them with much confidence, so arrangements are being made by Mr. Shimizu
to obtain photographs, so that the tracks can be examined in detail at leisure. In this
way we may hope to obtain valuable information as to the conditions which deter-
mine the disintegration of the atoms, and on the relative energy communicated to
the three systems involved, viz., the α-particle, the escaping atom, and the residual
nucleus.

So far no definite information is available as to the energy of the α-particle
required to produce disintegration, but the general evidence indicates that fast
α-particles, of range about 7 cm in air, are more effective than α-particles of range
about 4 cm. This may not be connected directly with the actual energy required to
effect the disintegration of the atom itself, but rather to the inability of the slower
α-particle under the repulsive field to approach close enough to the nucleus to be
effective in disrupting it. Possibly the actual energy required to disintegrate the atom
is small compared with the energy of the α-particle.

If this be the case, it may be possible for other agents of less energy than the
α-particle to effect the disintegration. For example, a swift electron may reach the
nucleus with sufficient energy to cause its disintegration, for it moves in an attrac-
tive and not a repulsive field as in the case of the α-particle. Similarly, a penetrating
γ -ray may have sufficient energy to cause disintegration. It is thus of great impor-
tance to test whether oxygen or nitrogen or other elements can he disintegrated
under the action of swift cathode rays generated in a vacuum tube. In the case of
oxygen and nitrogen, this could be tested simply by observing whether a spectrum
closely resembling helium is given by the gas in the tube, after an intense bom-
bardment of a suitable substance, by electrons. Experiments of this type are being
undertaken by Dr. Ishida in the Cavendish Laboratory, every precaution being taken
by the heating of the vacuum tube of special glass and electrodes to a high temper-
ature to ensure the removal of any occluded helium which may be initially in the
material. Helium has previously been observed by several investigators in vacuum
tubes and is known to be released from substances by bombardment with cathode
rays. The proof of the actual production of helium in such cases is exceedingly dif-
ficult, but the recent improvements in vacuum tube technique may make it easier to
give a decisive answer to this important question.

21.2.3 Properties of the New Atom

We have shown that atoms of mass about 3 carrying two positive charges are lib-
erated by α-particles both from nitrogen and oxygen, and it is natural to suppose
that these atoms are independent units in the structure of both gases. Since probably
the charged atom during its flight is the nucleus of a new atom without any external
electrons, we should anticipate that the new atom when it has gained two negative
electrons should have physical and chemical properties very nearly identical with
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those of helium, but with a mass 3 instead of 4. We should anticipate that the spec-
trum of helium and this isotope should be nearly the same, but on account of the
marked difference in the relative masses of the nuclei, the displacement of the lines
should be much greater than in the case of isotopes of heavy elements like lead.

It will be remembered that Bourget, Fabry, and Buisson,5 from an examination of
the width of the lines in the spectrum of nebulæ, conclude that the spectrum arises
from an element of atomic mass about 2.7 or 3 in round numbers. It is difficult,
however, on modern views to suppose that the spectrum of the so-called “nebulium”
can be due to an element of nuclear charge 2 unless the spectrum under the con-
ditions existing in nebulæ are very different from those observed in the laboratory.
The possible origin of the spectrum of nebulium has been discussed at length by
Nicholson6 on quite other lines, and it is not easy at the moment to see how the new
atoms from oxygen or nitrogen can be connected with the nebular material.

Since probably most of the helium in use is derived, either directly or indirectly,
from the transformation of radio-active materials, and these, as far as we know,
always give rise to helium of mass 4, the presence of an isotope of helium of mass 3
is not likely to be detected in such sources. It would, however, be of great interest to
examine whether the isotope may be present in cases where the apparent presence
of helium is difficult to connect with radio-active material; for example, in beryl,
drawn attention to by Strutt.7 This is based on the assumption that the atom of mass
3 is stable. The fact that it survives the intense disturbance of its structure due to
a close collision with an α-particle is an indication that it is a structure difficult to
disintegrate by external forces.

21.2.4 Constitution of Nuclei and Isotopes

In considering the possible constitution of the elements, it is natural to suppose
that they are built up ultimately of hydrogen nuclei and electrons. On this view the
helium nucleus is composed of four hydrogen nuclei and two negative electrons with
a resultant charge of two. The fact that the mass of the helium atom 3.997 in terms of
oxygen 16 is less than the mass of four hydrogen atoms, viz., 4.032, has been gener-
ally supposed to be due to the close interaction of the fields in the nucleus resulting
in a smaller electromagnetic mass than the sum of the masses of the individual com-
ponents. Sommerfeld8 has concluded from this fact that the helium nucleus must
be a very stable structure which would require intense forces to disrupt it. Such a
conclusion is in agreement with experiment, for no evidence has been obtained to

5 Bourget, Fabry and Buisson, ‘C.R.,’ April 6, May 18 (1914).
6 Nicholson, ‘Roy. Ast. Soc.,’ vol. 72, No. 1, p. 49 (1911)’; vol. 74, No. 7, p. 623 (1914).
7 Strutt, ‘Roy. Soc. Proc.,’ A, vol. 80, p. 572 (1908).
8 Sommerfeld, ‘Atombau und Spektrallinien,’ p. 538. Vieweg and Son, 1919.
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show that helium can be disintegrated by the swift α-particles which are able to dis-
rupt the nuclei of nitrogen and oxygen. In his recent experiments on the isotopes of
ordinary elements Aston9 has shown that within the limit of experimental accuracy
the masses of all the isotopes examined are given by whole numbers when oxygen is
taken as 16. The only exception is hydrogen, which has a mass 1.008 in agreement
with chemical observations. This does not exclude the probability that hydrogen is
the ultimate constituent or which nuclei are composed, but indicates that either the
grouping or the hydrogen nuclei and electrons is such that the average electromag-
netic mass is nearly 1, or, what is more probable, that the secondary units, or which
the atom is mainly built up, e.g., helium or its isotope, have a mass given nearly by
a whole number when O is 16.

The experimental observations made so far are unable to settle whether the new
atom has a mass exactly 3, but from the analogy with helium we may expect the
nucleus of the new atom to consist of three H nuclei and one electron, and to have
a mass more nearly 3 than the sum of the individual masses in the free state.

If we are correct in this assumption it seems very likely that one electron can also
bind two H nuclei and possibly also one H nucleus. In the one case, this entails the
possible existence of an atom of mass nearly 2 carrying one charge, which is to
be regarded as an isotope of hydrogen. In the other case, it involves the idea of
the possible existence of an atom of mass 1 which has zero nucleus charge. Such
an atomic structure seems by no means impossible. On present views, the neutral
hydrogen atom is regarded as a nucleus or unit charge with an electron attached at
a distance, and the spectrum of hydrogen is ascribed to the movements or this dis-
tant electron. Under some conditions, however, it may be possible for an electron to
combine much more closely with the H nucleus, forming a kind of neutral doublet.
Such an atom would have very novel properties. Its external field would be practi-
cally zero, except very close to the nucleus, and in consequence it should be able
to move freely through matter. Its presence would probably be difficult to detect by
the spectroscope, and it may be impossible to contain it in a sealed vessel. On the
other hand, it should enter readily the structure of atoms, and may either unite with
the nucleus or be disintegrated by its intense field, resulting possibly in the escape
of a charged H atom or an electron or both.

If the existence of such atoms be possible, it is to be expected that they may be
produced, but probably only in very small numbers, in the electric discharge through
hydrogen, where both electrons and H nuclei are present in considerable numbers.
It is the intention of the writer to make experiments to test whether any indication
of the production of such atoms can be obtained under these conditions.

The existence of such nuclei may not be confined to mass 1 but may be possible
for masses 2, 3, or 4, or more, depending on the possibility of combination between
the doublets. The existence of such atoms seems almost necessary to explain the
building up of the nuclei of heavy elements; for unless we suppose the production
of charged particles of very high velocities it is difficult to see how any positively

9 Aston, ‘Phil. Mag.,’ December, 1919: April and May, 1920.
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Fig. 21.1 Three possible iso-
topes of lithium built up from
electrons and light nuclei.—
[K.K.]

charged particle can reach the nucleus of a heavy atom against its intense repulsive
field.

We have seen that so far the nuclei of three light atoms have been recognised
experimentally as probable units of atomic structure, viz.,

+
H1,

++
X3,

++
He4

where the subscript represents the mass of the element.
In considering the possible ways in which nuclei can be built up, difficulties at

once arise, for many combinations of these units with negative electrons are pos-
sible to give an element of the required nuclear charge and mass. In our complete
ignorance of the laws of force close to the nuclei, no criterion is available as to
the stability or relative probability of the theoretical systems. With the exception
of a few elements which can exist in the gaseous state, the possible isotopes of the
elements have not yet been settled. When further information is available as to the
products of the disintegration of other elements than the two so far examined, and
more complete data have been obtained as to the number and mass of the isotopes,
it may be possible to deduce approximate rules which may serve as a guide to the
mode in which the nuclei are built up from the simpler units. For these reasons it
seems premature at this stage to attempt to discuss with any detail the possible struc-
ture of even the lighter and presumably less complex atoms. It may, however, be of
some interest to give an example to illustrate a possible method of the formation of
isotopes in the case of the lighter elements. This is based on the view that probably
in many cases a helium nucleus of mass 4 may be substituted in the complex struc-
ture for the corresponding nucleus of mass 3 without seriously interfering with the
stability of the system. In such a case, the nuclear charge remains unchanged but the
masses differ by unity.

For example, take the case of lithium of nuclear charge 3 and atomic mass about
7. It is natural to suppose that the nucleus is composed of helium or its isotope of
mass 3 with one binding electron. The three possible combinations are shown in
Fig. 21.1.

On this view, at least three isotopes of lithium of mass 6, 7, and 8 are theoretically
probable, but even if the combinations were equally stable, the question of their



21.2 Reading: Rutherford, Nuclear Constitution of Atoms 305

relative abundance in the element lithium on the earth will be dependent on many
factors of which we know nothing; for example, the mode of actual formation of
such nuclei, the relative amount of the combining units present, and the probability
of their combinations.

The experimental results given in the paper support, as far as they go, the view
that the atoms of hydrogen and of mass 3 are important units in the nuclear structure
of nitrogen and oxygen. In the latter case, one could a priori have supposed that
oxygen was in some way a combination of four helium nuclei of mass 4. It seems
probable that the mass 3 is an important unit of the nuclei of light atoms in general,
but it is not unlikely, with increasing complexity of the nuclei and corresponding
increase of the electric field, the structures of mass 3 suffer a rearrangement and tend
to revert to the presumably more stable nucleus of mass 4. This may be the reason
why helium of mass 4 always appears to be expelled from the radio-active atoms,
while the isotope of mass 3 arises in the artificial disintegration of lighter atoms
like oxygen and nitrogen. It has long been known that for many of the elements
the atomic weights can be expressed by the formula 4n or 4n + 3, where n is an
integer, suggesting that atoms of mass 3 and 4 are important units of the structure of
nuclei.10

21.2.5 Structure of Carbon, Oxygen, and Nitrogen Nuclei

In the light of the present experiments, it may be of interest to give some idea,
however crude, of the possible formation of the above atoms to account for the
experimental facts. It will be remembered that nitrogen alone gives rise to H atoms
while carbon and oxygen do not. Both nitrogen and oxygen give rise to atoms of
mass 3, while carbon has not yet been investigated from this point of view. A pos-
sible structure is shown in Fig. 21.2 when the masses and charges of the combining
units are indicated. Negative electrons are represented by the symbol −.

The carbon nucleus is taken to consist of four atoms of mass 3 and charge 2, and
two binding electrons. The change to nitrogen is represented by the addition of two
H atoms with a binding electron and an oxygen nucleus by the substitution of a
helium nucleus in place of the two H atoms.

We can see from this type of structure that the chance of a direct collision
with one of the four atoms of mass 3 in nitrogen is much greater than the chance
of removing an H atom, for it is to be anticipated that the main nucleus would
screen the H atom from a direct collision except in restricted regions facing the
H atoms. This serves to illustrate why the number of H atoms of mass 3 liberated

10 From these and other considerations, Harkins (‘Phys. Rev.,’ vol. 15, p. 73 (1920) ) has proposed
a constitutional formula for all the elements. The combining units employed by him are electrons
and atoms of mass 1, 3, and 4 of nuclear charges 1, 1 and 2, respectively. The unit of mass 3 is
taken by him to have a nucleus charge of 1 and not 2, and is thus to be regarded as an isotope of
hydrogen and not an isotope of helium.
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Fig. 21.2 Hypothetical structure of carbon, nitrogen and oxygen nuclei.—[K.K.]

from nitrogen should be much greater than the number of H atoms released under
corresponding conditions. It should be borne in mind that the structures outlined
are purely illustrative and no importance is attached to the particular arrangement
employed.

It is natural to inquire as to the nature of the residual atoms after the disintegration
of oxygen and nitrogen, supposing that they survive the collision and sink into a new
stage of temporary or permanent equilibrium.

The expulsion of an H atom carrying one charge from nitrogen should lower
the mass by 1 and the nuclear charge by 1. The residual nucleus should thus have
a nuclear charge 6 and mass 13, and should be an isotope of carbon. If a nega-
tive electron is released at the same time, the residual atom becomes an isotope of
nitrogen.

The expulsion of a mass 3 carrying two charges from nitrogen, probably quite
independent of the release of the H atom, lowers the nuclear charge by 2 and the
mass by 3. The residual atom should thus be an isotope of boron of nuclear charge
5 and mass 11. If an electron escapes as well, there remains an isotope of carbon of
mass 11. The expulsion of a mass 3 from oxygen gives rise to a mass 13 of nuclear
charge 6, which should be an isotope of carbon. In case of the loss of an electron as
well, there remains an isotope of nitrogen of mass 13. The data at present available
are quite insufficient to distinguish between these alternatives.
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It is intended to continue experiments, to test whether any evidence can be
obtained of the disintegration of other light atoms besides nitrogen and oxygen.
The problem is more difficult in the case of elements which cannot be conveniently
obtained in the gaseous state, since it is not an easy matter to ensure the absence
of hydrogen or to prepare uniform thin films of such substances. For these reasons,
and the strain involved in counting scintillations under difficult conditions, further
progress is not likely to be rapid.

I am indebted to my assistant, G.A.R. Crowe, for the preparation of the radio-
active sources and his help in counting; also to Mr. J. Chadwick and Dr. Ishida for
assistance in counting scintillations in some of the later experiments.

21.3 Study Questions

QUES. 21.1. What are the properties of the new short-range particles liberated from
nitrogen and oxygen?

a) How were the newly discovered particles produced? How are they different than
the previously discovered “long-range” particles from nitrogen?

b) How did Rutherford measure the mass and charge of these new short-range par-
ticles? In particular, how did he prove that they were not singly (or doubly)
charged oxygen atoms, helium atoms, or hydrogen atoms?

c) Are both momentum and mechanical energy conserved during every atomic
collision? Why might some α-particles be more effective in producing nuclear
disintegrations than others?

d) Is the newly discovered short-range particle stable? Is it as abundant as the
helium-4 isotope? Does Rutherford anticipate that its spectrum will be the same
as that of helium-4?

QUES. 21.2. What are atomic nuclei made of?

a) Can two isotopes of different masses have the same nuclear charge? If so, how?
If atomic nuclei contain (positively charged) hydrogen nuclei, then what holds
them together?

b) Is the atomic mass of every isotope an integral multiple of the the mass of a
hydrogen nucleus? More generally, is the mass of an atomic nucleus equal to the
sum of the masses of its components?

c) What new type of particle does Rutherford postulate? What is his motivation for
considering the existence of such a particle? Why might such a particle be very
difficult to detect?

d) What difficulty arises when trying to ascertain the units from which atomic
nuclei might be built up? What additional information is required? What strategy
does Rutherford (tentatively) suggest?

e) How, according to Rutherford’s strategy, might one form a lithium atom? How
many isotopes does it have? And what dictates the relative abundance of the
various isotopes which might be formed?
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f) How might one form a nitrogen atom? What are the structures of carbon, oxy-
gen and nitrogen nuclei? What considerations go into constructing hypothetical
models such for these?

g) What renders the study of artificial disintegration more difficult in heavy
elements than in, say nitrogen and oxygen gas?

21.4 Exercises

EX. 21.1 (DISINTEGRATION OF NITROGEN). Suppose an α-particle moving at speed
V strikes a nitrogen nucleus, causing it to eject a particle of mass 3 at speed 1.20 V .
Is kinetic energy conserved during this collision? If not, why not? Disregarding the
subsequent motion of the residual nucleus and of the α-particle, does your result
agree with Rutherford’s calculation on p. 300?

EX. 21.2 (RUTHERFORD’S NUCLEAR MODEL). Rutherford considers the possibility
that all atomic nuclei are built up of 4

2He, 3
2He and 1

1H particles. The masses of
these are found (by mass spectrometry) to be 4.00260 u, 3.0160 u and 1.007823 u,
respectively. The atomic mass unit, u is defined as 1 12 the atomic mass of a 12

6 C atom.
According to this model, nuclear electrons serve both to bind the nucleus together
and to maintain the correct atomic number. The binding energy, �E, of the atomic
nucleus can be computed from the mass-deficit—the difference between the mass of
the nucleus and the mass of its constituents. What, then, would be the binding energy
of a carbon-12 isotope if the nucleus were comprised of (a) twelve 1

1H particles,
(b) three 4

2He particles, or (c) four 3
2He particles. Which of these compositions would

have the highest energy per nuclear bond between constituent particles?

21.5 Vocabulary

1. Provisional
2. Disintegrate
3. γ -ray
4. Cathode ray
5. Spectrum
6. Occlude
7. Isotope
8. Nebulium
9. Doublet

10. Spectroscope
11. Unity
12. Lithium



Chapter 22
The Discovery of the Neutron

In order to explain the great penetrating power of the radiation
we must further assume that the particle has no net charge.

—James Chadwick

22.1 Introduction

In the course of Rutherford’s effort to develop a plausible model of the atomic
nucleus, he postulated the existence of a particle having the same mass as the
hydrogen nucleus but having no electrical charge whatsoever.1 He conceived of this
neutral particle—essentially a bound-state of a proton and an electron—in order to
account for isotopes having identical atomic charges but different atomic weights
(e.g. helium-3 and helium-4). Just a few years later, Rutherford’s hypothetical parti-
cle was discovered by one of his students. James Chadwick (1891–1974) was born
in Cheshire, England. He attended the Manchester Municipal Secondary School
before entering Manchester University in 1908. He graduated from the honors pro-
gram in physics in 1911, but remained at the university to study radioactivity under
Ernest Rutherford. His early work focused on the absorption of gamma-rays—
highly penetrating radiation which was produced during certain radioactive decays
and which could be detected using a Geiger counter. He earned his M.Sc. degree
in 1913, then traveled to Berlin to work under Hans Geiger. Professor Geiger had
just returned to Germany from Manchester to accept a position at the Physikalisch-
Technische Reichsanstalt. With the outbreak of the First World War, Chadwick was
interned in Germany. After the war, he return to England in 1918 to work with
Rutherford, who had moved to the Cavendish Laboratory in Cambridge. Chadwick
earned his Ph.D. in 1921, and in 1923 was appointed Assistant Director of Research
under Rutherford at the Cavendish Laboratory. It was around this time that Ruther-
ford succeeded in artificially disintegrating nitrogen nuclei by bombarding them
with high-speed α-particles emitted by radioactive substances. Chadwick assisted
Rutherford in studying the artificial transmutation of light elements for several

1 See Rutherford’s Bakerian Lecture on the Nuclear Constitution of Atoms in Chap. 21 of the
present volume.
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years, and in 1930 the two co-authored a book entitled Radiations from Radioactive
Substances. During the second world war, Chadwick led a team of British scientists
which collaborated with the Americans on the Manhattan project in Los Alamos.
Chadwick went on to become a leading advocate for the development of Britain’s
very own atomic weapons program. He was subsequently knighted by King George
VI in 1945.

In the reading selection that follows, Chadwick describes the 1932 discovery for
which he is most famous, and for which he was awarded the Hughes Medal from
the Royal Society in 1932 and the Nobel Prize for physics in 1935. He begins by
describing the work of Bothe and Becker, who had recently detected very pene-
trating radiation emitted when certain light elements, such as beryllium and boron,
were bombarded with α-rays from a polonium source. This radiation was initially
thought to be gamma rays.

22.2 Reading: Chadwick, The Existence of a Neutron

Chadwick, J., The Existence of a Neutron, Proceedings of the Royal Society of
London. Series A, Containing Papers of a Mathematical and Physical Character,
136(830), 692–708, 1932.

It was shown by Bothe and Becker2 that some light elements when bombarded by
α-particles of polonium emit radiations which appear to be of the γ -ray type. The
element beryllium gave a particularly marked effect of this kind, and later observa-
tions by Bothe, by Mme. Curie-Joliot3 and by Webster4 showed that the radiation
excited in beryllium possessed a penetrating power distinctly greater than that of
any γ -radiation yet found from the radioactive elements. In Webster’s experiments
the intensity of the radiation was measured both by means of the Geiger-Müller tube
counter and in a high pressure ionisation chamber. He found that the beryllium radi-
ation had an absorption coefficient in lead of about 0.22 cm−1 as measured under his
experimental conditions. Making the necessary corrections for these conditions, and
using the results of Gray and Tarrant to estimate the relative contributions of scat-
tering, photoelectric absorption, and nuclear absorption in the absorption of such
penetrating radiation, Webster concluded that the radiation had a quantum energy
of about 7 × 106 electron volts. Similarly he found that the radiation from boron
bombarded by α-particles of polonium consisted in part of a radiation rather more
penetrating than that from beryllium, and he estimated the quantum energy of this
component as about 10 × 106 electron volts. These conclusions agree quite well

2 ‘Z. Physik,’ vol. 66, p. 289 (1930).
3 I. Curie. ‘C. R. Acad. Sci. Paris,’ vol. 193, p. 1412 (1931).
4 ‘Proc. Roy. Soc.,’ A, vol. 136, p. 428 (1932).
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with the supposition that the radiations arise by the capture of the α-particle into the
beryllium (or boron) nucleus and the emission of the surplus energy as a quantum
of radiation.

The radiations showed, however, certain peculiarities, and at my request the
beryllium radiation was passed into an expansion chamber and several photographs
were taken. No unexpected phenomena were observed though, as will be seen later,
similar experiments have now revealed some rather striking events. The failure of
these early experiments was partly due to the weakness of the available source of
polonium, and partly to the experimental arrangement, which, as it now appears,
was not very suitable.

Quite recently, Mme. Curie-Joliot and M. Joliot5 made the very striking observa-
tion that these radiations from beryllium and from boron were able to eject protons
with considerable velocities from matter containing hydrogen. In their experiments
the radiation from beryllium was passed through a thin window into an ionisation
vessel containing air at room pressure. When paraffin wax, or other matter contain-
ing hydrogen, was placed in front of the window, the ionisation in the vessel was
increased, in some cases as much as doubled. The effect appeared to be due to the
ejection of protons, and from further experiment they showed that the protons had
ranges in air up to about 26 cm, corresponding to a velocity of nearly 3 × 109 cm/s.
They suggested that energy was transferred from the beryllium radiation to the pro-
ton by a process similar to the Compton effect with electrons, and they estimated
that the beryllium radiation had a quantum energy of about 50 × 106 electron volts.
The range of the protons ejected by the boron radiation was estimated to be about
8 cm in air, giving on a Compton process an energy of about 35 × 106 electron volts
for the effective quantum.6

There are two grave difficulties in such an explanation of this phenomenon.
Firstly, it is now well established that the frequency of scattering of high energy
quanta by electrons is given with fair accuracy by the Klein-Nishina formula, and
this formula should also apply to the scattering of quanta by a proton. The observed
frequency of the proton scattering is, however, many thousand times greater than
that predicted by this formula. Secondly, it is difficult to account for the production
of a quantum of 50 × 106 electron volts from the interaction of a beryllium nucleus
and an α-particle of kinetic energy of 5 × 106 electron volts. The process which
will give the greatest amount of energy available for radiation is the capture of the
α-particle by the beryllium nucleus, Be11, and its incorporation in the nuclear struc-
ture to form a carbon nucleus C13. The mass defect of the O13 nucleus is known
both from data supplied by measurements of the artificial disintegration of boron
B10 and from observations of the band spectrum of carbon; it is about 10 × 106

electron volts. The mass defect of Be9 is not known, but the assumption that it is
zero will give a maximum value for the possible change of energy in the reaction

5 Curie and Joliot, ‘O. R. Acad. Sci. Paris,’ vol. 194, p. 273 (1932).
6 Many of the arguments of the subsequent discussion apply equally to both radiations, and the
term “beryllium radiation” may often be taken to include the boron radiation.
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Be9 + α → C13 + quantum. On this assumption it follows that the energy of the
quantum emitted in such a reaction cannot be greater than about 14 × 106 elec-
tron volts. It must, of course, be admitted that this argument from mass defects is
based on the hypothesis that the nuclei are made as far as possible of α-particles;
that the Be9 nucleus consists of 2 α-particles + 1 proton + 1 electron and the C13

nucleus of 3 α-particles + 1 proton + 1 electron. So far as the lighter nuclei are con-
cerned, this assumption is supported by the evidence from experiments on artificial
disintegration, but there is no general proof.

Accordingly, I made further experiments to examine the properties of the radi-
ation excited in beryllium. It was found that the radiation ejects particles not only
from hydrogen but from all other light elements which were examined. The exper-
imental results were very difficult to explain on the hypothesis that the beryllium
radiation was a quantum radiation, but followed immediately if it were supposed
that the radiation consisted of particles of mass nearly equal to that of a proton and
with no net charge, or neutrons. A short statement of some of these observations was
published in ‘Nature.’7 This paper contains a fuller description of the experiments,
which suggest the existence of neutrons and from which some of the properties of
these particles can be inferred. In the succeeding paper Dr. Feather will give an
account of some observations by means of the expansion chamber of the collisions
between the beryllium radiation and nitrogen nuclei, and this is followed by an
account by Mr. Dee of experiments to observe the collisions with electrons.

22.2.1 Observations of Recoil Atoms

The properties of the beryllium radiation were first examined by means of the valve
counter used in the work8 on the artificial disintegration by α-particles and described
fully there. Briefly, it consists of a small ionisation chamber connected to a valve
amplifier. The sudden production of ions in the chamber by the entry of an ionising
particle is detected by means of an oscillograph connected in the output circuit of
the amplifier. The deflections of the oscillograph were recorded photographically on
a film of bromide paper.

The source of polonium was prepared from a solution of radium (D + E + F )9

by deposition on a disc of silver. The disc had a diameter of 1 cm and was placed
close to a disc of pure beryllium of 2 cm diameter, and both were enclosed in a small
vessel which could be evacuated, Fig. 22.1. The first ionisation chamber used had
an opening of 13 mm covered with aluminium foil of 4.5 cm air equivalent, and a

7 ‘Nature,’ vol. 129, p. 312 (1932).
8 Chadwick, Constable and Pollard, ‘Proc. Roy. Soc.,’ A, vol. 130, p. 463 (1931).
9 The radium D was obtained from old radon tubes generously presented by Dr. C. F. Burnam and
Dr. F. West, of the Kelly Hospital, Baltimore.
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Fig. 22.1 A beryllium radiation source (left) and an ionization detector (right).—[K.K.]

depth of 15 mm. This chamber had a very low natural effect, giving on the average
only about seven deflections per hour.

When the source vessel was placed in front of the ionisation chamber, the number
of deflections immediately increased. For a distance of 3 cm between the beryllium
and the counter the number of deflections was nearly 4 per minute. Since the number
of deflections remained sensibly the same when thick metal sheets, even as much as
2 cm of lead, were interposed between the source vessel and the counter, it was clear
that these deflections were due to a penetrating radiation emitted from the beryllium.
It will be shown later that the deflections were due to atoms of nitrogen set in motion
by the impact of the beryllium radiation.

When a sheet of paraffin wax about 2 mm thick was interposed in the path of
the radiation just in front of the counter, the number of deflections recorded by the
oscillograph increased markedly. This increase was due to particles ejected from
the paraffin wax so as to pass into the counter. By placing absorbing screens of
aluminium between the wax and the counter the absorption curve shown in Fig. 22.2,
curve A, was obtained. From this curve it appears that the particles have a maximum
range of just over 40 cm of air, assuming that an Al foil of 1.64 mg/cm2 is equivalent
to 1 cm of air. By comparing the sizes of the deflections (proportional to the number
of ions produced in the chamber) due to these particles with those due to protons of
about the same range it was obvious that the particles were protons. From the range-
velocity curve for protons we deduce therefore that the maximum velocity imparted
to a proton by the beryllium radiation is about 3.3 × 109 cm/s, corresponding to an
energy of about 5.7 × 106 electron volts.

The effect of exposing other elements to the beryllium radiation was then inves-
tigated. An ionisation chamber was used with an opening covered with a gold foil
of 0.5 mm air equivalent. The element to be examined was fixed on a clean brass
plate and placed very close to the counter opening. In this way lithium, beryllium,
boron, carbon and nitrogen, as paracyanogen, were tested. In each case the number
of deflections observed in the counter increased when the element was bombarded
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Fig. 22.2 Absorption curves for protons ejected from paraffin wax by beryllium radiation in the
same (A) and in the opposite (B) direction as the incident α-particles from the polonium source.—
[K.K.]

by the beryllium radiation. The ranges of the particles ejected from these elements
were quite short, of the order of some millimetres in air. The deflections produced
by them were of different sizes, but many of them were large compared with the
deflection produced even by a slow proton. The particles therefore have a large ion-
ising power and are probably in each case recoil atoms of the elements. Gases were
investigated by filling the ionisation chamber with the required gas by circulation
for several minutes. Hydrogen, helium, nitrogen, oxygen, and argon were examined
in this way. Again, in each case deflections were observed which were attributed
to the production of recoil atoms in the different gases. For a given position of the
beryllium source relative to the counter, the number of recoil atoms was roughly
the same for each gas. This point will be referred to later. It appears then that the
beryllium radiation can impart energy to the atoms of matter through which it passes
and that the chance of an energy transfer does not vary widely from one element to
another.

It has been shown that protons are ejected from paraffin wax with energies up
to a maximum of about 5.7 × 106 electron volts. If the ejection be ascribed to a
Compton recoil from a quantum of radiation, then the energy of the quantum must
be about 55 × 106 electron volts, for the maximum energy which can be given to a
mass m by a quantum hν is 2

2+mc2/hν
·hν. The energies of the recoil atoms produced

by this radiation by the same process in other elements can be readily calculated.
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For example, the nitrogen recoil atoms should have energies up to a maximum of
450,000 electron volts. Taking the energy necessary to form a pair of ions in air
as 35 electron volts, the recoil atoms of nitrogen should produce not more than
about 13,000 pairs of ions. Many of the deflections observed with nitrogen, however,
corresponded to far more ions than this; some of the recoil atoms produced from
30,000 to 40,000 ion pairs. In the case of the other elements a similar discrepancy
was noted between the observed energies and ranges of the recoil atoms and the
values calculated on the assumption that the atoms were set in motion by recoil
from a quantum of 55 × 106 electron volts. The energies of the recoil atoms were
estimated from the number of ions produced in the counter, as given by the size of
the oscillograph deflections. A sufficiently good measurement of the ranges could
be made either by varying the distance between the element and the counter or by
interposing thin screens of gold between the element and the counter.

The nitrogen recoil atoms were also examined, in collaboration with Dr. N.
Feather, by means of the expansion chamber. The source vessel was placed immedi-
ately above an expansion chamber of the Shimizu type, so that a large proportion of
the beryllium radiation traversed the chamber. A large number of recoil tracks was
observed in the course of a few hours. Their range, estimated by eye, was some-
times as much as 5 or 6 mm in the chamber, or, correcting for the expansion, about
3 mm in standard air. These visual estimates were confirmed by a preliminary series
of experiments by Dr. Feather with a large automatic expansion chamber, in which
photographs of the recoil tracks in nitrogen were obtained. Now the ranges of recoil
atoms of nitrogen of different velocities have been measured by Blackett and Lees.
Using their results we find that the nitrogen recoil atoms produced by the beryllium
radiation may have a velocity of at least 4 × 108 cm/s, corresponding to an energy
of about 1.2 × 106 electron volts. In order that the nitrogen nucleus should acquire
such an energy in a collision with a quantum of radiation, it is necessary to assume
that the energy of the quantum should be about 90 × 106 electron volts, if energy
and momentum are conserved in the collision. It has been shown that a quantum of
55 × 106 electron volts is sufficient to explain the hydrogen collisions. In general,
the experimental results show that if the recoil atoms are to be explained by collision
with a quantum, we must assume a larger and larger energy for the quantum as the
mass of the struck atom increases.

22.2.2 The Neutron Hypothesis

It is evident that we must either relinquish the application of the conservation of
energy and momentum in these collisions or adopt another hypothesis about the
nature of the radiation. If we suppose that the radiation is not a quantum radiation,
but consists of particles of mass very nearly equal to that of the proton, all the diffi-
culties connected with the collisions disappear, both with regard to their frequency
and to the energy transfer to different masses. In order to explain the great penetrat-
ing power of the radiation we must further assume that the particle has no net charge.
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We may suppose it to consist of a proton and an electron in close combination, the
“neutron” discussed by Rutherford10 in his Bakerian Lecture of 1920.

When such neutrons pass through matter they suffer occasionally close collisions
with the atomic nuclei and so give rise to the recoil atoms which are observed. Since
the mass of the neutron is equal to that of the proton, the recoil atoms produced
when the neutrons pass through matter containing hydrogen will have all velocities
up to a maximum which is the same as the maximum velocity of the neutrons.
The experiments showed that the maximum velocity of the protons ejected from
paraffin wax was about 3.3 × 109 cm/s. This is therefore the maximum velocity of
the neutrons emitted from beryllium bombarded by α-particles of polonium. From
this we can now calculate the maximum energy which can be given by a colliding
neutron to other atoms, and we find that the results are in fair agreement with the
energies observed in the experiments. For example, a nitrogen atom will acquire in a
head-on collision with the neutron of mass 1 and velocity 3.3 × 109 cm/s a velocity
of 4.4 × 108 cm/s, corresponding to an energy of 1.4 × 106 electron volts, a range
of about 3.3 mm in air, and a production of ions of about 40,000 pairs. Similarly, an
argon atom may acquire an energy of 0.54 × 106 electron volts, and produce about
15,000 ion pairs. Both these values are in good accord with experiment.11

It is possible to prove that the mass of the neutron is roughly equal to that of the
proton, by combining the evidence from the hydrogen collisions with that from the
nitrogen collisions. In the succeeding paper, Feather records experiments in which
about 100 tracks of nitrogen recoil atoms have been photographed in the expansion
chamber. The measurement of the tracks shows that the maximum range of the recoil
atoms is 3.5 mm in air at 15 ◦C and 760 mm pressure, corresponding to a velocity
of 4.7 × 108 cm/s according to Blackett and Lees. If M, V be the mass and velocity
of the neutron then the maximum velocity given to a hydrogen atom is

up = 2M

M + 1
· V, (22.1)

and the maximum velocity given to a nitrogen atom is

un = 2M

M + 14
· V, (22.2)

whence
M + 14

M + 1
= up

un

= 3.3 × 109

4.7 × 108
, (22.3)

10 Rutherford, ‘Proc. Roy. Soc.,’ A, vol. 97, p. 374 (1920). Experiments to detect the formation
of neutrons in a hydrogen discharge tube were made by J. L. Glasson, ‘Phil. Mag.,’ vol. 42,
p. 596 (1921), and by J. K. Roberts, ‘Proc. Roy. Soc.,’ A, vol. 102, p. 72 (1922). Since 1920
many experiments in search of these neutrons have been made in .this laboratory.
11 It was noted that a few of the nitrogen recoil atoms produced about 50–60,000 ion pairs. These
probably correspond to the oases of disintegration found by Feather and described in his paper.
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and
M = 1.15 (22.4)

The total error in the estimation of the velocity of the nitrogen recoil atom may
easily be about 10 %., and it is legitimate to conclude that the mass of the neutron is
very nearly the same as the mass of the proton.

We have now to consider the production of the neutrons from beryllium by the
bombardment of the α-particles. We must suppose that an α-particle is captured by
a Be9 nucleus with the formation of a carbon C12 nucleus and the emission of a
neutron. The process is analogous to the well-known artificial disintegrations, but a
neutron is emitted instead of a proton. The energy relations of this process cannot be
exactly deduced, for the masses of the Be9 nucleus and the neutron are not known
accurately. It is, however, easy to show that such a process fits the experimental
facts. We have

Be9 + He4 + kinetic energy of α = C12 + n1 + kinetic energy of C12

+ kinetic energy of n1.

If we assume that the beryllium nucleus consists of two α-particles and a neutron,
then its mass cannot be greater than the sum of the masses of these particles, for the
binding energy corresponds to a defect of mass. The energy equation becomes

(8.00212 + n1) + 4.00106 + K.E. of α > 12.0003 + n1 + K.E. of n1 (22.5)

or
K.E. of n1 < K.E. of α + 0.003 − K.E. of C12. (22.6)

Since the kinetic energy of the α-particle of polonium is 5.25×106 electron volts, it
follows that the energy of emission of the neutron cannot be greater than about
8 × 106 electron volts. The velocity of the neutron must therefore be less than
3.9 × 109 cm/s. We have seen that the actual maximum velocity of the neutron
is about 3.3 × 109 cm/s, so that the proposed disintegration process is compatible
with observation.

A further test of the neutron hypothesis was obtained by examining the radiation
emitted from beryllium in the opposite direction to the bombarding α-particles. The
source vessel, Fig. 22.1, was reversed so that a sheet of paraffin wax in front of the
counter was exposed to the “backward” radiation from the beryllium. The maximum
range of the protons ejected from the wax was determined as before, by counting the
numbers of protons observed through different thicknesses of aluminium interposed
between the wax and the counter.

The absorption curve obtained is shown in curve B, Fig. 22.2. The maximum
range of the protons was about 22 cm in air, corresponding to a velocity of about
2.74 × 109 cm/s. Since the polonium source was only about 2 mm away from the
beryllium, this velocity should be compared with that of the neutrons emitted not
at 180◦ but at an angle not much greater than 90◦ to the direction of the incident
α-particles. A simple calculation shows that the velocity of the neutron emitted at
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90◦ when an α-particle of full range is captured by a beryllium nucleus should
be 2.77 × 109 cm/s, taking the velocity of the neutron emitted at 0◦ in the same
process as 3.3 × 109 cm/s. The velocity found in the above experiment should be
less than this, for the angle of emission is slightly greater than 90◦. The agreement
with calculation is as good as can be expected from such measurements.

22.3 Study Questions

QUES. 22.1. Can beryllium radiation be identified with a quantum of light?

a) Why did Bothe and Becker initially conclude that γ -rays were produced when
beryllium and boron were bombarded with α-particles? What was the problem
with this conclusion?

b) What notable observation was made by Curie and Joliot when studying the
properties of such beryllium radiation? What was their experimental apparatus?
How did Curie and Joliot explain the ejection of protons from paraffin wax by
beryllium radiation?

c) Why does Chadwick find “grave difficulties” with this conclusion? In particular,
does the observed frequency of proton ejection from paraffin by the beryllium
radiation match the theoretical predictions for the scattering of protons by light
quanta? Also, can α-particles produce light quanta of sufficiently high-energy
when striking a beryllium target?

d) Describe Chadwick’s experimental apparatus in detail. How was beryllium radi-
ation produced? How was it detected? Could it be blocked by thick metal
sheets?

e) What happened when a sheet of paraffin wax was placed in front of the beryllium
radiation source? Could recoil atoms be produced when other materials were
subjected to the beryllium radiation? How were the energies of the recoil atoms
measured?

f) If the recoiling hydrogen atoms from the paraffin have an energy of 5.7 × 106

eV, then how much energy would the beryllium radiation need if it is, in fact,
a quantum of light? Is identifying beryllium radiation with a light quantum
plausible?

g) What alternative explanation did Chadwick offer for the identity of the beryllium
radiation? Why did he find this to be more plausible than the light-quantum
explanation given by Curie and Joliot? Does it preserve the laws of conservation
of energy and momentum?

QUES. 22.2. What is the charge of the (hypothetical) neutron? What is the mass of
the neutron, and how can it be calculated from the speeds of recoiling hydrogen or
nitrogen atoms?

QUES. 22.3. How might neutrons be produced when an α-particle from polonium
strikes a beryllium target? What is the energy and speed of the ejected neutron? Are
these values consistent with observations?
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22.4 Exercises

EX. 22.1 (NEUTRON PRODUCTION).Consider the following nuclear reaction which
occurs when an α-particle (4.00260 u) strikes a stationary beryllium-9 atom
(9.01219 u).

9
4Be + 4

2He −→ 12
6 C + 1

0n

a) What is the maximum kinetic energy, and the velocity, of the ejected neutron
(1.00866 u) if a 5.25 MeV α-particle from a polonium source is used? What is
the minimum kinetic energy and velocity?

b) In which direction is the neutron ejected in each of these cases? Does one need
to know the kinetic energy of the carbon-12 atom which is produced in order to
solve this problem?

c) Finally, do your calculations agree with Chadwick’s measurements for the veloc-
ity of forward-scattered and “backward”-scattered beryllium radiation? (HINT:
see the discussion of nuclear reaction Q-values in Ex. 20.2.)

22.5 Vocabulary

1. Quantum
2. Paraffin
3. Deposition
4. Interpose
5. Relinquish
6. Neutron



Chapter 23
Neutron Scattering

The neutron should be able to penetrate the nucleus easily.
—James Chadwick

23.1 Introduction

In the previous reading selection, taken from the first half of his 1932 article on
The Existence of a Neutron, Chadwick described his experiments with the recently
discovered highly-penetrating beryllium radiation. First, a beryllium target was
bombarded with α-particles from a silver disk coated with polonium. When a sheet
of paraffin wax was held near the beryllium, protons were ejected from the paraffin.
These protons had high enough energies that they could travel significant distances
through air and still be detected by an ionization counter. Earlier investigators (Curie
and Joliot) had supposed that the protons were being ejected from the paraffin by
γ -particles—high-frequency light quanta—which had been emitted by the beryl-
lium target. Chadwick rejected this hypothesis for two reasons. First, the scattering
of protons from paraffin by light quanta should, according to theoretical consider-
ations, produce far fewer protons than were actually being observed. Second, the
hypothesized light quanta produced by the bombarding α-particles would not have
the requisite energy to eject protons from the paraffin which could survive such long
flights though air and still be detected by an ionization counter. So Chadwick instead
proposed that the protons were being ejected from the paraffin by close collisions
with uncharged particles whose masses are the same as a proton. These uncharged
particles from the beryllium, he argued, were quite possibly the long-sought neu-
trons which Chadwick’s mentor, Ernest Rutherford, had predicted years before. In
the reading selection that follows (the second half of his 1932 article) Chadwick
continues to explore the nature of the neutron and how it interacts with other mate-
rials. Neutron scattering would later become one of the most important techniques
for condensed matter physics research and radioactive isotope production for both
medical and industrial purposes.
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23.2 Reading: Chadwick, The Existence of a Neutron

Chadwick, J., The Existence of a Neutron, Proceedings of the Royal Society of
London. Series A, Containing Papers of a Mathematical and Physical Character,
136(830), 692–708, 1932.

23.2.1 The Nature of the Neutron

It has been shown that the origin of the radiation from beryllium bombarded by
α-particles and the behaviour of the radiation, so far as its interaction with atomic
nuclei is concerned, receive a simple explanation on the assumption that the radia-
tion consists of particles of mass nearly equal to that of the proton which have no
charge. The simplest hypothesis one can make about the nature of the particle is to
suppose that it consists of a proton and an electron in close combination, giving a
net charge 0 and a mass which should be slightly less than the mass of the hydrogen
atom. This hypothesis is supported by an examination of the evidence which can be
obtained about the mass of the neutron.

As we have seen, a rough estimate of the mass of the neutron was obtained from
measurements of its collisions with hydrogen and nitrogen atoms, but such measure-
ments cannot be made with sufficient accuracy for the present purpose. We must turn
to a consideration of the energy relations in a process in which a neutron is liberated
from an atomic nucleus; if the masses of the atomic nuclei concerned in the process
are accurately known, a good estimate of the mass of the neutron can be deduced.
The mass of the beryllium nucleus has, however, not yet been measured, and, as
was shown in Sect. 22.2.2, only general conclusions can be drawn from this reac-
tion. Fortunately, there remains the case of boron. It was stated in Sect. 22.2 that
boron bombarded by α-particles of polonium also emits a radiation which ejects
protons from materials containing hydrogen. Further examination showed that this
radiation behaves in all respects like that from beryllium, and it must therefore be
assumed to consist of neutrons. It is probable that the neutrons are emitted from the
isotope B11, for we know that the isotope B10 disintegrates with the emission of a
proton.1 The process of disintegration will then be

B11 + He4 −→ N14 + n1.

The masses of B11 and N14 are known from Aston’s measurements, and the fur-
ther data required for the deduction of the mass of the neutron can be obtained by
experiment.

In the source vessel of Fig. 22.1 the beryllium was replaced by a target of pow-
dered boron, deposited on a graphite plate. The range of the protons ejected by the

1 Chadwick, Constable and Pollard, loc. cit.
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boron radiation was measured in the same way as with the beryllium radiation. The
effects observed were much smaller than with beryllium, and it was difficult to mea-
sure the range of the protons accurately. The maximum range was about 16 cm in
air, corresponding to a velocity of 2.5 × 109cm/s. This then is the maximum veloc-
ity of the neutron liberated from boron by an α-particle of polonium of velocity
1.59×109cm/s. Assuming that momentum is conserved in the collision, the velocity
of the recoiling N14 nucleus can be calculated, and we then know the kinetic ener-
gies of all the particles concerned in the disintegration process. The energy equation
of the process is

Mass of B11 + mass of He4 + K.E. of He4 = mass of N14 + mass of n1

= K.E. of N14 + K.E. of n1.

The masses are B11 = 11.00825 ± 0.0016; He4 = 4.00106 ± 0.0006 ; N14 =
14.0042±0.0028. The kinetic energies in mass units are α-particle = 0.00565; neu-
tron = 0.0035; and nitrogen nucleus = 0.00061. We find therefore that the mass of
the neutron is 1.0067. The errors quoted for the mass measurements are those given
by Aston. They are the maximum errors which can be allowed in his measurements,
and the probable error may be taken as about one-quarter of these.2 Allowing for
the errors in the mass measurements it appears that the mass of the neutron cannot
be less than 1.003, and that it probably lies between 1.005 and 1.008.

Such a value for the mass of the neutron is to be expected if the neutron consists
of a proton and an electron, and it lends strong support to this view. Since the sum of
the masses of the proton and electron is 1.0078, the binding energy, or mass defect,
of the neutron is about 1 to 2 million electron volts. This is quite a reasonable value.
We may suppose that the proton and electron form a small dipole, or we may take
the more attractive picture of a proton embedded in an electron. On either view, we
may expect the “radius” of the neutron to be a few times 10−13 cm.

23.2.2 The Passage of the Neutron Through Matter

The electrical field of a neutron of this kind will clearly be extremely small except
at very small distances of the order of 10−12 cm. In its passage through matter the
neutron will not be deflected unless it suffers an intimate collision with a nucleus.
The potential of a neutron in the field of a nucleus may be represented roughly by
Fig. 23.1. The radius of the collision area for sensible deflection of the neutron will
be little greater than the radius of the nucleus. Further, the neutron should be able
to penetrate the nucleus easily, and it may be that the scattering of the neutrons

2 The mass of B11 relative to B10 has been checked by optical methods by Jenkins and McKellar
(‘Phys. Rev.,’ vol. 39, p. 549 (1932)). Their value agrees with Aston’s to 1 part in 10. This suggests
that great confidence may be put in Aston’s measurements.
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Fig. 23.1 The potential of
a neutron in the field of a
nucleus.—[K.K.]

will be largely due to the internal field of the nucleus, or, in other words, that the
scattered neutrons are mainly those which have penetrated the potential barrier. On
these views we should expect the collisions of a neutron with a nucleus to occur
very seldom, and that the scattering will be roughly equal in all directions, at least
as compared with the Coulomb scattering of a charged particle.

These conclusions were confirmed in the following way. The source vessel, with
Be target, was placed rather more than 1 in. from the face of a closed counter filled
with air, Fig. 22.1. The number of deflections, or the number of nitrogen recoil atoms
produced in the chamber, was observed for a certain time. The number observed
was 190/h, after allowing for the natural effect. A block of lead 1 in. thick was then
introduced between the source vessel and the counter. The number of deflections
fell to 166/h. Since the number of recoil atoms produced must be proportional to the
number of neutrons passing through the counter, these observations show that 13 %
of the neutrons had been absorbed or scattered in passing through 1 in. of lead.

Suppose that a neutron which passes within a distance p from the centre of the
lead nucleus is scattered and removed from the beam. Then the fraction removed
from the beam in passing through a thickness t of lead will be πp2nt , where n is the
number of lead atoms per unit volume. Hence πp2nt = 0.13, and p = 7×10−13 cm.
This value for the collision radius with lead seems perhaps rather small, but it is
not unreasonable. We may compare it with the radii of the radioactive nuclei cal-
culated from the disintegration constants by Gamow and Houtermans,3 viz., about
7 × 10−13 cm. Similar experiments were made in which the neutron radiation was
passed through blocks of brass and carbon. The values of p deduced in the same
way were 6 × 10−13 cm and 3.5 × 10−13 cm respectively.

The target areas for collision for some light elements were compared by another
method. The second ionisation chamber was used, which could be filled with differ-
ent gases by circulation. The position of the source vessel was kept fixed relative to
the counter, and the number of deflections was observed when the counter was filled
in turn with hydrogen, nitrogen, oxygen, and argon. Since the number of neutrons
passing through the counter was the same in each case, the number of deflections
should be proportional to the target area for collision, neglecting the effect of the
material of the counter, and allowing for the fact that argon is monatomic. It was
found that nitrogen, oxygen, and argon gave about the same number of deflections;

3 ‘Z. Physik,’ vol. 52, p. 453 (1928).
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the target areas of nitrogen and oxygen are thus roughly equal, and the target area of
argon is nearly twice that of these. With hydrogen the measurements were very dif-
ficult, for many of the deflections were very small owing to the low ionising power
of the proton and the low density of the gas. It seems probable from the results that
the target area of hydrogen is about two-thirds that of nitrogen or oxygen, but it may
be rather greater than this.

There is as yet little information about the angular distribution of the scattered
neutrons. In some experiments kindly made for me by Dr. Gray and Mr. Lea, the
scattering by lead was compared in the backward and forward directions, using the
ionisation in a high pressure chamber to measure the neutrons. They found that the
amount of scattering was about that to be expected from the measurements quoted
above, and that the intensity per unit solid angle was about the same between 300
and 900 in the forward direction as between 900 and 1500 in the backward direction.
The scattering by lead is therefore not markedly anisotropic.

Two types of collision may prove to be of peculiar interest, the collision of a
neutron with a proton and the collision with an electron. A detailed study of these
collisions with an elementary particle is of special interest, for it should provide
information about the structure and field of the neutron, whereas the other collisions
will depend mainly on the structure of the atomic nuclei. Some preliminary experi-
ments by Mr. Lea, using the pressure chamber to measure the scattering of neutrons
by paraffin wax and by liquid hydrogen, suggest that the collision with a proton is
more frequent than with other light atoms. This is not in accord with the experi-
ments described above, but the results are at present indecisive. These collisions can
be more directly investigated by means of the expansion chamber or by counting
methods, and it is hoped to do so shortly.

The collision of a neutron with an electron has been examined in two ways, by
the expansion chamber and by the counter. An account of the expansion chamber
experiments is given by Mr. Dee in the third paper of this series. Mr. Dee has looked
for the general ionisation produced by a large number of neutrons in passing through
the expansion chamber, and also for the short electron tracks which should be the
result of a very close collision between a neutron and an electron. His results show
that collisions with electrons are extremely rare compared even with those with
nitrogen nuclei, and he estimates that a neutron can produce on the average not
more than 1 ion pair in passing through 3 m of air.

In the counter experiments a beam of neutrons was passed through a block of
brass, 1 in. thick, and the maximum range of the protons ejected from paraffin wax
by the emergent beam was measured. From this range the maximum velocity of
the neutrons after travelling through the brass is obtained and it can be compared
with the maximum velocity in the incident beam. No change in the velocity of the
neutrons due to their passage through the brass could be detected. The accuracy of
the experiment is not high, for the estimation of the end of the range of the protons
was rather difficult. The results show that the loss of energy of a neutron in passing
through 1 in. of brass is not more than about 0.4×106 electron volts. A path of 1 in.
in brass corresponds as regards electron collisions to a path of nearly 2 × 104 cm of
air, so that this result would suggest that a neutron loses less than 20 V/cm path in
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air in electron collisions. This experiment thus lends general support to those with
the expansion chamber, though it is of far inferior accuracy. We conclude that the
transfer of energy from the neutron to electrons is of very rare occurrence. This is
not unexpected. Bohr4 has shown on quite general ideas that collisions of a neutron
with an electron should be very few compared with nuclear collisions. Massey,5 on
plausible assumptions about the field of the neutron, has made a detailed calculation
of the loss of energy to electrons, and finds also that it should be small, not more
than 1 ion pair per metre in air.

23.2.3 General Remarks

It is of interest to examine whether other elements, besides beryllium and boron,
emit neutrons when bombarded by α-particles. So far as experiments have been
made, no case comparable with these two has been found. Some evidence was
obtained of the emission of neutrons from fluorine and magnesium, but the effects
were very small, rather less than 1 % of the effect obtained from beryllium under
the same conditions. There is also the possibility that some elements may emit neu-
trons spontaneously, e.g., potassium, which is known to emit a nuclear β-radiation
accompanied by a more penetrating radiation. Again no evidence was found of the
presence of neutrons, and it seems fairly certain that the penetrating type is, as has
been assumed, a γ -radiation.

Although there is certain evidence for the emission of neutrons only in two cases
of nuclear transformations, we must nevertheless suppose that the neutron is a com-
mon constituent of atomic nuclei. We may then proceed to build up nuclei out of
α-particles, neutrons and protons, and we are able to avoid the presence of uncom-
bined electrons in a nucleus. This has certain advantages for, as is well known, the
electrons in a nucleus have lost some of the properties which they have outside, e.g.,
their spin and magnetic moment. If the α-particle, the neutron, and the proton are
the only units of nuclear structure, we can proceed to calculate the mass defect or
binding energy of a nucleus as the difference between the mass of the nucleus and
the sum of the masses of the constituent particles. It is, however, by no means cer-
tain that the α-particle and the neutron are the only complex particles in the nuclear
structure, and therefore the mass defects calculated in this way may not be the true
binding energies of the nuclei. In this connection it may be noted that the examples
of disintegration discussed by Dr. Feather in the next paper are not all of one type,
and he suggests that in some cases a particle of mass 2 and charge 1, the hydrogen
isotope recently reported by Urey, Brickwedde and Murphy, may be emitted. It is
indeed possible that this particle also occurs as a unit of nuclear structure.

4 Bohr, Copenhagen discussions, unpublished.
5 Massey, ‘Nature,’ vol. 129, p. 469, corrected p. 691 (1932).
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It has so far been assumed that the neutron is a complex particle consisting of a
proton and an electron. This is the simplest assumption and it is supported by the
evidence that the mass of the neutron is about 1.006, just a little less than the sum
of the masses of a proton and an electron. Such a neutron would appear to be the
first step in the combination of the elementary particles towards the formation of
a nucleus. It is obvious that this neutron may help us to visualise the building up
of more complex structures, but the discussion of these matters will not be pursued
further for such speculations, though not idle, are not at the moment very fruitful.
It is, of course, possible to suppose that the neutron may be an elementary particle.
This view has little to recommend it at present, except the possibility of explaining
the statistics of such nuclei as N14.

There remains to discuss the transformations which take place when an α-particle
is captured by a beryllium nucleus, Be9. The evidence given here indicates that the
main type of transformation is the formation of a C12 nucleus and the emission of
a neutron. The experiments of Curie-Joliot and Joliot,6 of Auger,7 and of Dee show
quite definitely that there is some radiation emitted by beryllium which is able to
eject fast electrons in passing through matter. I have made experiments using the
Geiger point counter to investigate this radiation and the results suggest that the
electrons are produced by a γ -radiation. There are two distinct processes which
may give rise to such a radiation. In the first place, we may suppose that the trans-
formation of Be9 to C12 takes place sometimes with the formation of an excited C12

nucleus which goes to the ground state with the emission of γ -radiation. This is
similar to the transformations which are supposed to occur in some cases of disin-
tegration with proton emission, e.g., B10, F19, Al27; the majority of transformations
occur with the formation of an excited nucleus, only in about one-quarter is the final
state of the residual nucleus reached in one step. We should then have two groups of
neutrons of different energies and a γ -radiation of quantum energy equal to the dif-
ference in energy of the neutron groups. The quantum energy of this radiation must
be less than the maximum energy of the neutrons emitted, about 5.7 × 106 electron
volts. In the second place, we may suppose that occasionally the beryllium nucleus
changes to a C13 nucleus and that all the surplus energy is emitted as radiation. In
this case the quantum energy of the radiation may be about 10 × 106 electron volts.

It is of interest to note that Webster has observed a soft radiation from beryllium
bombarded by polonium α-particles, of energy about 5 × 105 electron volts. This
radiation may well be ascribed to the first of the two processes just discussed, and
its intensity is of the right order. On the other hand, some of the electrons observed
by Curie-Joliot and Joliot had energies of the order of 2–10 × 106 V, and Auger
recorded one example of an electron of energy about 6.5 × 106 V. These electrons
may be due to a hard γ -radiation produced by the second type of transformation.8

6 ‘C. R. Acad. Sci. Paris,’ vol. 194, p. 708 and p. 876 (1932).
7 ‘C. R. Acad. Sci. Paris,’ vol. 194, p. 877 (1932).
8 Although the presence of fast electrons can be easily explained in this way, the possibility that
some may be due to secondary effects of the neutrons must not be lost sight of.
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It may be remarked that no electrons of greater energy than the above appear
to be present. This is confirmed by an experiment9 made in this laboratory by
Dr. Occhialini. Two tube counters were placed in a horizontal plane and the number
of coincidences recorded by them was observed by means of the method devised
by Rossi. The beryllium source was then brought up in the plane of the counters so
that the radiation passed through both counters in turn. No increase in the number of
coincidences could be detected. It follows that there are few, if any, β-rays produced
with energies sufficient to pass through the walls of both counters, a total of 4 mm
brass; that is, with energies greater than about 6 × 106 V. This experiment further
shows that the neutrons very rarely produce coincidences in tube counters under the
usual conditions of experiment.

In conclusion, I may restate briefly the case for supposing that the radiation the
effects of which have been examined in this paper consists of neutral particles rather
than of radiation quanta. Firstly, there is no evidence from electron collisions of the
presence of a radiation of such a quantum energy as is necessary to account for
the nuclear collisions. Secondly, the quantum hypothesis can be sustained only by
relinquishing the conservation of energy and momentum. On the other hand, the
neutron hypothesis gives an immediate and simple explanation of the experimental
facts; it is consistent in itself and it throws new light on the problem of nuclear
structure.

23.2.4 Summary

The properties of the penetrating radiation emitted from beryllium (and boron) when
bombarded by the α-particles of polonium have been examined. It is concluded that
the radiation consists, not of quanta as hitherto supposed, but of neutrons, particles
of mass 1, and charge 0. Evidence is given to show that the mass of the neutron
is probably between 1.005 and 1.008. This suggests that the neutron consists of
a proton and an electron in close combination, the binding energy being about
1–2 × 106 electron volts. From experiments on the passage of the neutrons through
matter the frequency of their collisions with atomic nuclei and with electrons is
discussed.

I wish to express my thanks to Mr. H. Nutt for his help in carrying out the
experiments.

9 Cf. also Rasetti, ‘Naturwiss.,’ vol. 20, p. 252 (1932).
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23.3 Study Questions

QUES. 23.1. Is the neutron an elementary particle, a composite particle, or a quantum
of radiation?

a) Do any other elements, besides beryllium and boron, produce neutrons when
bombarded with α-particles?

b) What is the mass of the neutron? How can the mass of the neutron be measured,
and with what precision?

c) What, according to Chadwick, is the size and the internal structure of the
neutron? What experiments are particularly useful in measuring its internal
structure?

QUES. 23.2. Can neutrons be effectively used to probe the structure of atomic
nuclei?

a) Which are able to more closely approach an atomic nucleus before scattering, a
proton, a neutron, or an electron? Why is this?

b) Is the range of protons ejected from paraffin wax by a beam of neutrons reduced
by passing the beam through a block of lead? How about through a block of
brass? What does this imply?

c) How can the size of a lead nucleus be estimated from neutron scattering data?
How does the size of the lead nucleus compare to that of other atomic nuclei?
And what renders a comparison of the sizes of hydrogen, nitrogen, oxygen and
argon nuclei difficult?

d) Are neutrons more likely to collide with an atomic nucleus or with an elec-
tron? How can one study the collision of neutrons with hydrogen atoms? with
electrons? Does this accord with experimental predictions?

QUES. 23.3. What are the elementary units of structure of an atomic nucleus? Are
there any advantages of avoiding the possibility of uncombined electrons in the
nucleus?

23.4 Exercises

EX. 23.1 (NEUTRON SHIELDING). Suppose a beam of neutrons emitted by a beryllium
target (as described by Chadwick) strikes a 1 in. thick sheet of lead. What fraction
of the incident neutrons is transmitted through the lead? How would this fraction
change if the lead was 2 in. thick instead? How thick would the lead need to be so
that no more than 1 % of the incident neutrons are transmitted?

EX. 23.2 (NUCLEAR CROSS-SECTION). As explained by Chadwick, the fraction, f ,
of incident particles scattered or absorbed by a target may be expressed in terms of
the thickness of the target, t , the number of target atoms per unit volume, n, and the
radius, p, of the target atoms:

f = πp2nt . (23.1)
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The quantity πp2 is the cross section for an interaction between the incident particle
and a target nucleus. What is the cross-section for neutrons striking a lead target, as
described in Ex. 23.1? Why do you suppose σ is typically reported in barns? How
big is a barn?

EX. 23.3 (URANIUM FISSION). The cross-section for a particular nuclear reaction
may be defined in terms of the nuclear reaction rate, R, and the incident particle
flux, I :

σs = R

I
(23.2)

The incident flux is the number of particles striking the target per second per unit
area. The nuclear reaction rate is the number of induced reactions per unit time
per target nucleus. Generally speaking, the cross-section depends not only on the
properties of the target nuclei, but also on the speed of the incident particles. For
example, by slowing a beam of high-energy neutrons down to thermal velocities—
velocities at which their kinetic energies are of order kBT (Boltzmann’s constant
times the temperature)—the likelihood that they will induce the fission of uranium-
235 is greatly increased. This is partly due to the fact that slow neutrons spend
more time in the vicinity of each uranium-235 nucleus, increasing the likelihood
that they will be captured, producing an unstable uranium-236 nucleus. This heav-
ier uranium isotope then breaks apart into two lighter nuclei, and also produced a
(7 MeV) γ -particle and two (2 MeV) neutrons:

n +235
92 U −→ 236

92 U∗ −→ 89
36Kr +144

56 Ba + γ + 2 n

Suppose that the cross-section for uranium-235 fission by (low-energy) thermal neu-
trons is about 580 barns. What incident neutron flux is necessary to produce one
fission per second? If the kinetic energy of the neutron beam is about 1 electron-volt,
then what density of neutrons (neutrons per cubic centimeter) must be provided in
the beam to produce this reaction rate? Notably, if one or more of the neutrons pro-
duced by the fission reaction described above can be made to induce another fission
reaction, then one might produce a fission “chain reaction.” What do you suppose
makes it difficult to sustain such a chain reaction?

23.5 Vocabulary

1. Monatomic
2. Anisotropic
3. Speculation
4. Ascribe



Chapter 24
X-Ray Diffraction

Whatever we may find regarding the nature of x-rays, it would
take a bold man indeed to suggest, in light of these experiments,
that they differ in nature from ordinary light.

—Arthur Holly Compton

24.1 Introduction

Arthur Holly Compton (1892–1962) was born in Wooster, Ohio. He earned his
Bachelor of Science degree in 1913 from the College of Wooster, where is father
served as Dean and Professor of Philosophy. He earned his Master of Arts degree in
1914, and his Ph.D. in 1916, both from Princeton University. He went on to serve
as an instructor of physics for a year at the University of Minnesota, then for a short
time as a research engineer at Westinghouse Lamp Company in Pittsburgh. In 1919
he was appointed a National Research Council Fellow and studied at Cambridge
University. His subsequent academic appointments included positions at Washing-
ton University as the head of the physics department and later as Chancellor, and at
the University of Chicago as Professor of Physics.

Compton’s academic career was largely devoted to the study of x-rays and their
interaction with matter. X-rays had been discovered in 1895 by William Röntgen
while passing an electrical current through an evacuated glass Crookes tube. The
tube, he surmised, was emitting invisible rays which could penetrate a heavy black
cardboard shield and cause a distant screen to glow with a fluorescent light.1 Almost
immediately, the usefulness of these new highly-penetrating rays was recognized,
and they were soon employed for medical diagnostic purposes. In fact, the earliest
x-ray images are of Röntgen’s wife’s hand—revealing her skeleton beneath a thin
shadow of flesh. The true nature of x-rays, however, remained a mystery until 1912,
when Max von Laue discovered that they exhibit a diffraction pattern when passed
through a copper sulfate crystal. This confirmed that the mysterious x-rays were
indeed electromagnetic waves with lengths comparable to the atomic spacing of the

1 An English translation by Arthur Stanton of Röntgen’s 1895 German publication can be found in
Röntgen, W. C., On a New Kind of Rays, Nature, 3(59), 277–231, 1896.
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crystal.2 Inspired by von Laue’s work, William Henry Bragg and his son, William
Lawrence Bragg, carried out a systematic investigation of crystal structures using
the new technique of x-ray diffraction.3

But are these x-rays truly waves? Since Einstein’s 1905 publication, theoretical
and experimental evidence was beginning to suggest that light behaves—at least in
certain situations—like discrete packets of energy.4 Could this quantum theory of
light be extended to x-rays? And if so, how could it be experimentally verified?
These are the issues which Compton addresses in the reading selection contained in
the next two chapters.

24.2 Reading: Compton, X-Rays as a Branch of Optics

Compton, A. H., X-Rays as a Branch of Optics, Journal of the Optical Society of
America, 16(2), 71–86, 1928.

One of the most fascinating aspects of recent physics research has been the gradual
extension of the familiar laws of optics to the very high frequencies of x-rays, until
at present there is hardly a phenomenon in the realm of light whose parallel is not
found in the realm of x-rays. Reflection, refraction, diffuse scattering, polarization,
diffraction, emission and absorption spectra, photoelectric effect, all of the essen-
tial characteristics of light have been found also to be characteristic of x-rays. At
the same time it has been found that some of these phenomena undergo a gradual
change as we proceed to the extreme frequencies of x-rays, and as a result of these
interesting changes in the laws of optics we have gained new information regarding
the nature of light.

It has not always been recognized that x-rays is a branch of optics. As a result of
the early studies of Röntgen and his followers it was concluded that x-rays could not
be reflected or refracted, that they were not polarized on traversing crystals, and that
they showed no signs of diffraction on passing through narrow slits. In fact, about
the only property which they were found to possess in common with light was that
of propagation in straight lines. Many will recall also the heated debate between
Barkla and Bragg, as late as 1910, one defending the idea that x-rays are waves like
light, the other that they consist of streams of little bullets called “neutrons.” It is a
debate on which the last word has not yet been said!

2 Laue, M., Concerning the detection of X-ray interferences, in Nobel Lectures, Physics 1901–
1921, Elsevier Publishing Company, 1914.
3 Lawrence, B. W., The diffraction of X-rays by crystals, in Nobel Lectures, Physics 1901–1921,
Elsevier Publishing Company, 1915.
4 For Einstein’s introduction of the photon concept, see Chap. 16 of the present volume.
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24.2.1 The Refraction and Reflection of X-Rays

We should consider the phenomena of refraction and reflection as one problem,
since it is a well known law of optics that reflection can occur only from a boundary
surface between two media of different indices of refraction. If one is found, the
other must be present.

In his original examination of the properties of x-rays, Röntgen5 tried unsuc-
cessfully to obtain refraction by means of prisms of a variety of materials such as
ebonite, aluminium and water. Perhaps the experiment of this type most favorable
for detecting refraction was one by Barkla.6 In this work x-rays of a wave length
which excited strongly the characteristic K radiation from bromine were passed
through a crystal of potassium bromide. The precision of his experiment was such
that he was able to conclude that the refractive index for a wave length of 0.5A
probably differed from unity by less than 5 parts in a million.

Although these direct tests for refraction of x-rays were unsuccessful, Stenström
observed7 that for x-rays whose wave lengths are greater than about 3A, reflected
from crystals of sugar and gypsum, Bragg’s law, nλ = 2D sin θ , does not give
accurately the angles of reflection. He interpreted the difference as due to an appre-
ciable refraction of the x-rays as they enter the crystal. Measurements by Duane and
Siegbahn and their collaboraters8 showed that discrepancies of the same type occur,
though they are very small indeed, when ordinary x-rays are reflected from calcite.

The direction of the deviations in Stenström’s experiments indicated that the
index of refraction of the crystals employed was less than unity. If this is the case
also for other substances, total reflection should occur when x-rays in air strike a
polished surface at a sufficiently sharp glancing angle, just as light in a glass prism
is totally reflected from a surface between the glass and air if the light strikes the sur-
face at a sufficiently sharp angle. From a measurement of this critical angle for total
reflection, it should be possible to determine the index of refraction of the x-rays.

When the experiment was tried,9 the results were strictly in accord with these
predictions. The apparatus was set up as shown in Fig. 24.1, reflecting a very narrow
sheet of x-rays from a polished mirror onto the crystal of a Bragg spectrometer. It
was found that the beam could be reflected from surfaces of polished glass and
silver through several minutes of arc. By studying the spectrum of the reflected
beam, the critical glancing angle was found to be approximately proportional to the
wave length. For ordinary x-rays whose wave length is half an Angström, the critical

5 W. Röntgen, Sitzungber. der Wurzburger Phys. Med. Ges. Jahrg. 1895. These papers are reprinted
in German in Ann. d. Phys., 64, p. 1; 1898, and in English translation by A. Stanton in Science, 3,
p. 227; 1896.
6 C. G. Barkla, Phil. Mag., 31, p. 257; 1916.
7 W. Stenstrom, Dissertation, Lund, 1919.
8 Duane and Patterson, Phys. Rev., 16, p. 532; 1920. M. Siegbahn, C. R., 173, p. 1350; 1921; 174,
p. 745; 1922.
9 A. H. Compton , Phil. Mag., 45. p. 1121; 1923.
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Fig. 24.1 Apparatus for studying the total reflection of x-rays

Fig. 24.2 Total reflection of x-rays from polished glass and speculum metal (Doan). P directed
beam, C critical angle of the totally reflected beam

glancing angle from crown glass was found to be about 4.5 minutes of arc, which
means a refractive index differing from unity by a little less than 1 part in a million.
Figure 24.2 shows some photographs of the totally reflected beam and the critical
angle for total reflection taken recently by Dr. Doan10 working at Chicago. From
the sharpness of the critical angles shown in this figure, it is evident that a precise
determination of the refractive index can thus be made.

10 R. L. Doan, Phil. Mag., 20, p. 100; 1927.
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Fig. 24.3 Refraction of x-rays by a glass prism. Arrangement by Larsson, Siegbahn and Waller

You will recall that when one measures the index of refraction of a beam of light
in a glass prism it is customary to set the prism at the angle for minimum deviation.
This is done primarily because it simplifies the calculation of the refractive index
from the measured angles. It is an interesting comment on the psychology of habit
that most of the earlier investigators of the refraction of x-rays by prisms also used
their prisms set at the angle for minimum deviation. Of course, since the effect to be
measured was very small indeed, the adjustments should have been made to secure
not the minimum deviation but the maximum deviation possible. After almost 30
years of attempts to refract x-rays by prisms, experiments under the conditions to
secure maximum refraction were first performed by Larsson, Siegbahn and Waller,11

using the arrangement shown diagrammatically in Fig. 24.3. The x-rays struck the
face of the prism at a fine glancing angle, just greater than the critical angle for
the rays which are refracted. Thus the direct rays, the refracted rays, and the totally
reflected rays of greater wave length were all recorded on the same plate.

Figure 24.4 shows one of the resulting photographs. Here we see a complete dis-
persion spectrum of the refracted x-rays, precisely similar to the spectrum obtained
when light is refracted by a prism of glass. The presence of the direct ray and the
totally reflected ray on the same plate make possible all the angle measurements
necessary for a precise determination of the refractive index for each spectrum line.

For a generation we have been trying to obtain a quantitative test of Drude and
Lorentz’s dispersion theory in the ordinary optical region. But our ignorance regard-
ing the number and the natural frequency of the electron oscillators in the refractive
medium has foiled all such attempts. For the extreme frequencies of x-rays, however,
the problem becomes greatly simplified. In the case of substances such as glass, the
x-ray frequencies are much higher than the natural frequencies of the oscillators in
the medium, and the only knowledge which the theory requires is that of the number
of electrons per unit volume in the dispersive medium. If we assume the number of
electrons per atom to be equal to the atomic number, we are thus able to calculate
at once the refractive index of the medium for x-rays. In the case of glass this cal-
culation gives agreement with experiment within the experimental error, which is in

11 Larsson, Siegbahn and Waller, Naturwiss, 1924.
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Fig. 24.4 Prism spectrum of
x-rays obtained by Larsson,
Siegbahn and Waller

some cases less than 1 %. So we may say that the laws of optical dispersion given by
the electron theory are first established on a quantitative basis by these experiments
on the refraction of x-rays.

Another way of looking at the problem is to assume the validity of the dispersion
equation developed from the electron theory, and to use these measurements of the
refraction of x-rays to calculate the number of electrons in each atom of the refract-
ing material. This affords us what is probably our most direct as well as our most
precise means of determining this number. The precision of the experiments is now
such that we can say that the number of electrons per atom effective in refracting
x-rays is within less than one half of 1 % equal to the atomic number of the atom.

Thus optical refraction and reflection are extended to the region of x-rays, and
this extension has brought with it more exact knowledge not only of the laws of
optics but also of the structure of the atom.

24.2.2 The Diffraction of X-Rays

Early in the history of x-rays it was recognized that most of the properties of these
rays might be explained if, as suggested by Wiechert,12 they consist of electromag-
netic waves much shorter than those of light. Haga and Wind performed a careful
series of experiments13 to detect any possible diffraction by a wedge shaped slit a

12 E. Wiechert, Sitz. d. Phys-okon Ges. zu Konigsberg, 1894.
13 Haga and Wind, Wied. Ann., 68, p. 884; 1899.
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few thousandths of an inch broad at its widest part. The magnitude of the broad-
ening was about that which would result14 from rays of 1.3A wave length. The
experiments were repeated by yet more refined methods by Walter and Pohl,15 who
came to the conclusion that if any diffraction effects were present, they were consid-
erably smaller than Raga and Wind had estimated. But on the basis of photometric
measurements of Walter and Pohl’s plates by Koch,16 using his new photoelectric
microphotometer, Sommerfeld found17 that their photographs indicated an effective
wave length for hard x-rays of .4A, and for soft x-rays a wave length measurably
greater.

It may have been because of their difficulty that these experiments did not carry
as great conviction as their accuracy would seem to have warranted. Nevertheless it
was this work perhaps more than any other which encouraged Laue to undertake his
remarkable experiments on the diffraction of x-rays by crystals.

Within the last few years Walter has repeated these slit diffraction experiments,
making use of the Kα line of copper, and has obtained perfectly convincing diffrac-
tion effects.18 Because of the difficulty in determining the width of the slit where
the diffraction occurs, it was possible to make from his photographs only a rough
estimate of the wave length of the x-rays. But within this rather large probable error
the wave length agreed with that determined by crystal spectrometry.

While these slit diffraction experiments were being developed, and long before
they were brought to a successful conclusion, Laue and his collaborators discov-
ered the remarkable fact that crystals act as suitable gratings for diffracting x-rays.
You are all acquainted with the history of this discovery. The identity in nature
of x-rays and light could no longer be doubted. It gave a tool which enabled the
Braggs to determine with a definiteness previously almost unthinkable the manner
in which crystals are constructed of their elementary components. By its help Mose-
ley and Siegbahn have studied the spectra of x-rays, we have learned to count one by
one the electrons in the different atoms, and we have found out something regard-
ing the arrangement of these electrons. The measurement of x-ray wave lengths
thus made possible gave Duane the means of making his precise determination of
Planck’s radiation constant. By showing the change of wave length when x-rays
are scattered, it has helped us to find the quanta of momentum of radiation which
had previously been only vaguely suspected. Thus in the two great fields of modern
physical inquiry, the structure of matter and the nature of radiation, the discovery
of the diffraction of x-rays by crystals has opened the gateway to many new and
fruitful paths of investigation. As the Duc de Broglie has remarked, “if the value of
a discovery is to be measured by the fruitfulness of its consequences, the work of

14 A. Sommerfeld, Phys. ZS., 2, p. 59; 1900.
15 Walter and Pohl, Ann. der Phys., 29, p. 331; 1909.
16 P. P. Koch, Ann. der Phys., 38, p. 507; 1912.
17 A. Sommerfeld, Ann. der Phys., 38, p. 473; 1912.
18 B. Walter, Ann. der Phys., 74, p. 661; 1924; 75, Sept. 1924.
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Laue and his collaborators should be considered as perhaps the most important in
modern physics.”

These are some of the consequences of extending the optical phenomenon of
diffraction into the realm of x-rays.

There is, however, another aspect of the extension of optical diffraction into the
x-ray region, which has also led to interesting results. It is the use of ruled diffrac-
tion gratings for studies of spectra. By a series of brilliant investigations, Schumann,
Lyman and Millikan, using vacuum spectrographs, have pushed the optical spectra
by successive stages far into the ultraviolet. Using a concave reflection grating at
nearly normal incidence, Millikan and his collaborators19 found a line, probably
belonging to the L series of aluminium, of a wave length as short as 136.6A, only
a twenty-fifth that of yellow light. Why his spectra stopped here, whether because
of failure of his gratings to reflect shorter wave lengths, or because of lack of sensi-
tiveness of the plates, or because his hot sparks gave no rays of shorter wave length,
was hard to say.

Röntgen had tried to get x-ray spectra by reflection from a ruled grating, but
the task seemed hopeless. How could one get spectra from a reflection grating if
the grating would not reflect? But when it was found that x-rays could be totally
reflected at fine glancing angles, hope for the success of such an experiment was
revived. Carrara,20 working at Pisa, tried one of Rowland’s optical gratings, but
without success. Fortunately we at Chicago did not know of this failure, and with
one of Michelson’s gratings ruled specially for the purpose, Doan found that he
could get diffraction spectra of the K series radiations from both copper and molyb-
denum.21 Figure 24.5 shows one of our diffraction spectra, giving several orders of
the Kα1 line of molybdenum, obtained by reflection at a small glancing angle. This
work was quickly followed by Thibaud,22 who photographed a beautiful spectrum
of the K series lines of copper from a grating of only a few hundred lines ruled on
glass. That x-ray spectra could be obtained from the same type of ruled reflection
gratings as those used with light was now established.

The race to complete the spectrum between the extreme ultraviolet of Millikan
and the soft x-ray spectra of Siegbahn began again with renewed enthusiasm. It
had seemed that the work of Millikan and his coworkers had carried the ultraviolet
spectra to as short wave lengths as it was possible to go. On the x-ray side, the long
wave length limit was placed, theoretically at least, by the spacing of the reflecting
layers in the crystal used as a natural grating. De Broglie, W. H. Bragg, Siegbahn and
their collaborators were finding suitable crystals of greater and greater spacing, until
Thoraeus and Siegbahn,23 using crystals of palmitic acid, measured the Lα line of

19 Millikan, Bowen, Sawyer, Shallenberger, Proc. Nat. Acad., 7, p. 289; 1921; Phys. Rev., 23, p. 1;
1924.
20 N. Carrara, N. Cimento, 1, p. 107; 1924.
21 A. H. Compton and R. L. Doan, Proc. Nat. Acad., 11, p. 598; 1925.
22 J. Thibaud, C. R., Jan. 4,1926.
23 Siegbahn and Thoraeus, Arkiv f M. o F., 19, p. 1; 1925.
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Fig. 24.5 Spectrum of the
Kα1 line of molybdenum,
λ = 0.708A, from a grating
ruled on speculum metal
(Compton and Doan). D

marks the direct beam, and O

the directly reflected beam

chromium, with a wave length 21.69A. But there still remained a gap of almost three
octaves between these x-rays and the shortest ultraviolet in which, though radiation
had been detected by photoelectric methods, no spectral measurements has been
made.

Thibaud, working in de Broglie’s laboratory at Paris, made a determined effort
to extend the limit of the ultraviolet spectrum, using his glass grating at glancing
incidence.24 His spectra, however, stopped at 144A, a little greater than the shortest
wave length observed in Millikan’s experiments.

But meanwhile Dauvillier, also working with de Broglie, was making rapid
strides working from the soft x-ray side of the gap. First,25 using a grating of
palmitic acid, he found the Kα line of carbon of wave length 45A. Then26 using
for a grating a crystal of the lead salt of mellissic acid, with the remarkable grating
space of 87.5A, he measured a spectrum line of thorium as long as 121A, leaving
only a small fraction of an octave between his longest x-ray spectrum lines and
Millikan’s shortest ultraviolet lines. The credit for filling in the greater part of the
remaining gap must thus be given to Dauvillier.

The final bridge between the x-ray and the ultraviolet spectra has however been
laid by Osgood,27 a young Scotchman working with me at Chicago. He also used
soft x-rays as did Dauvillier, but instead of a crystal grating, he did his experiments
with a concave glass grating in a Rowland mounting, but with the rays at glancing
incidence. Figure 24.6 shows a series of Osgood’s spectra. The shortest wave length
here shown is the Kα line of carbon, 45A, and we see a series of lines up to 211A. An

24 J. Thibaud, J. de Phys. et Rad., 8, p. 15; 1927.
25 A. Dauvillier, C. R., 182, p. 1083; 1926.
26 A. Dauvillier, J. de Phys. et Rad., 6, p. 1; Jan. 1927.
27 T. H. Osgood, Nature, 119, p. 817; June 4,1927; Phys. Rev., November, 1927.
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Fig. 24.6 Osgood’s grating spectra of soft x-rays from Al, C, Mg, Fe and Ni, showing lines from
λ = 45A to λ = 211A. These are the first spectra bridging the gap between the soft x-rays and the
ultraviolet

interesting feature of these spectra is an emission band in the aluminium spectrum at
about 170A, which is probably in some way associated with the L series spectrum of
aluminium. These spectra overlap, on the short wavelength side, Dauvillier’s crys-
tal measurements, and on the side of the great wave lengths, Millikan’s ultraviolet
spectra.

In the September number of the Physical Review, Hunt28 describes similar exper-
iments, using however a plane ruled grating at glancing incidence, in which he has
measured lines from 2A down to the carbon line at 45A, thus meeting the short-
est of Osgood’s measurements. On the other hand, Fig. 24.7 shows some beautiful
spectra of the extreme ultraviolet obtained recently by Dr. Hoag, working with Pro-
fessor Gale at Chicago, using a concave grating at grazing incidence. These spectra
extend from 200A to 1760A, overlapping Osgood’s x-ray spectra on the short wave
length side, and reaching the ordinary ultraviolet region on the side of the great
wave lengths. Thus from the extreme infrared to the region of ordinary x-rays we
now have a continuous series of spectra from ruled gratings.

Whatever we may find regarding the nature of x-rays, it would take a bold man
indeed to suggest, in light of these experiments, that they differ in nature from
ordinary light.

It is too early to predict what may be the consequences of these grating mea-
surements of x-rays. It seems clear, however, that they must lead to a new and more
precise knowledge of the absolute wave length of x-rays, and thus to direct deter-
minations of the grating spaces of crystals. This will in turn afford a new means
of determining Avogadro’s number and the electronic charge, which should be of
precision comparable with that of Millikan’s oil drops.

28 F. L. Hunt, Phys. Rev., Sept. 1927.
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Fig. 24.7 Spectra of the extreme ultraviolet, from Mg and Ti, 200A to 1760A (Hoag)

24.3 Study Questions

QUES. 24.1. In what way are x-rays similar to visible light? Do x-rays exhibit reflec-
tion? Refraction? Total internal reflection? Why was it not immediately obvious that
x-rays are waves, like light?

QUES. 24.2. How does the Drude-Lorentz theory allow one to theoretically calculate
the refractive index of a material? Why were x-rays particularly suitable for testing
this theory? And how did such tests, in turn, provide a more exact knowledge of the
structure of the atom?

QUES. 24.3. Under what conditions, if any, do x-rays exhibit diffraction? What does
this suggest?

QUES. 24.4. Where do x-rays fit in the electromagnetic spectrum? How much of the
spectrum had been explored at the time of Compton’s writing? And what techniques
are used to measure the wavelengths of various regions the spectrum?

24.4 Exercises

EX. 24.1 (X-RAY CRYSTALLOGRAPHY AND THE BRAGG CONDITION). By carefully
examining the scattering of x-rays from various crystals, William Bragg was able
to deduce and catalog the arrangement and spacing of their constituent atoms. To
understand how he did this, consider a simple cubic crystal, such as NaCl, whose
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Fig. 24.8 (a) Four sets of Bragg planes constructed in different regions of a crystal lattice. (b)
Incident x-rays reflecting from adjacent Bragg planes which are separated by distance d

atoms are arranged in the face centered cubic structure drawn (two-dimensionally)
in Fig. 24.8a. Various sets of parallel equally-spaced planes—called Bragg planes—
can be drawn so as to contain all of the atoms in the crystal. In Fig. 24.8a, the four
sets of Bragg planes which have been drawn appear as dashed lines labeled A, B,
C and D. When incident x-rays strike the atoms lying in a single Bragg plane, the
outgoing x-rays obey the law of reflection; but when incident x-rays strike atoms
lying in two adjacent Bragg planes, constructive interference only occurs for certain
incidence angles. In this problem we will explore the conditions under which such
constructive interference is exhibited by the reflected x-rays.

a) Consider the set of Bragg planes which are separated by distance d in Fig. 24.8b.
Prove that constructive interference between x-rays reflecting from adjacent
Bragg planes occurs only for incidence angles θn that satisfy the Bragg con-
dition:

nλ = 2d sin θn n = 0, 1, 2 . . . (24.1)

b) If d = 5Å and λ = 0.2 nm, find all of the incident angles, θn which satisfy
the Bragg condition for the Bragg planes shown in Fig. 24.8b. Conversely, by
observing the angles at which constructive interference occurs for x-rays of a
known wavelength λ, the spacing of a particular set of Bragg planes can be
deduced.

24.5 Vocabulary

1. Reflection
2. Refraction
3. Diffraction
4. Neutron
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5. Ebonite
6. Unity
7. Calcite
8. Dispersion
9. Molybdenum

10. Grating
11. Octave
12. Photoelectric
13. Ultraviolet
14. Infrared



Chapter 25
Compton Scattering

We are thus confronted with the dilemma of having before us
convincing evidence that radiation consists of waves, and at the
same time that it consists of corpuscles.

—Arthur Holly Compton

25.1 Introduction

In the first half of his 1928 publication entitled X-rays as a Branch of Optics, Comp-
ton describes numerous experiments which reveal that (i) x-rays obey the same laws
of reflection and refraction as ordinary (visible) light rays, (ii) the angle by which
x-rays bend when entering a body can be computed from the body’s electron den-
sity by using the optical dispersion theory of Drude and Lorentz, and (iii) x-rays fit
nicely into the high-frequency region of the electromagnetic spectrum, since they
have a wavelength on the order of a few angstroms. Now, in the second half of his
X-rays as a Branch of Optics, Compton explains the surprising results of certain
x-ray scattering experiments. To set the stage, Compton briefly reminds the reader
of the main features of light scattering by turbid media. A turbid medium (such as
milk) consists of a fluid in which tiny impurities are suspended; these impurities, in
turn, are capable of scattering incident light.1 What makes Compton’s novel x-ray
scattering experiments difficult—if not impossible—to reconcile with the classical
theory of light scattering?

25.2 Reading: Compton, X-Rays as a Branch of Optics

Compton, A. H., X-Rays as a Branch of Optics, Journal of the Optical Society of
America, 16(2), 71–86, 1928.

1 For a more comprehensive discussion of the scattering of light by turbid media (such as milk) see
the final section of Tyndall’s fourth lecture on light, included in Chap. 24 of volume III.
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25.2.1 The Scattering of X-rays and Light

The phenomena that we have been considering are ones in which the laws which
have been found to hold in the optical region apply equally well in the x-ray region.
This is not the case, however, for all optical phenomena.

The theory of the diffuse scattering of light by turbid media has been examined
by Drude, Lord Rayleigh, Raman and others, and an essentially similar theory of
the diffuse scattering of x-rays has been developed by Thomson, Debye and others.
Two important consequences of these theories are, (1) that the scattered radiation
shall be of the same wave length as the primary rays, and (2) that the rays scattered
at 90◦ with the primary rays shall be plane polarized. The experimental tests of these
two predictions have led to interesting results.

A series of experiments performed during the last few years2 have shown that
secondary x-rays are of greater wave length than the primary rays which produce
them. This work is too well known to require description. On the other hand, careful
experiments to find a similar increase in wave length in light diffusely scattered by a
turbid medium have failed to show any such effect.3 An examination of the spectrum
of the secondary x-rays shows that the primary beam has been split into two parts,
as shown in Fig. 25.1, one of the same wave length and the other of increased wave
length. When different primary wave lengths are used, we find always the same dif-
ference in wave length between these two components; but the relative intensity of
the two components changes. For the longer wave lengths the unmodified ray has
the greater energy, while for the shorter wave lengths the modified ray is predomi-
nant. In fact when hard γ -rays are employed, it is not possible to find any radiation
of the original wave length.

Thus in the wave length of secondary radiation we have a gradually increasing
departure from the classical electron theory of scattering as we go from the optical
region to the region of x-rays and γ -rays.

The question arises, are these secondary x-rays of increased wavelength to be
classed as scattered x-rays or as fluorescent rays? An important fact bearing on this
point is the intensity of the secondary rays. From the theories of Thomson, Debye
and others it is possible to calculate the absolute intensity of the scattered rays. It is
found that this calculated intensity agrees very nearly with the total intensity of the
modified and unmodified rays, but that in many cases the observed intensity of the
unmodified ray taken alone is very small compared with the calculated intensity. If
the electron theory of the intensity of scattering is even approximately correct, we
must thus include the modified with the unmodified rays as scattered rays.

Information regarding the origin of these secondary rays is also given by a study
of their state of polarization. We have called attention to the fact that the electron the-
ory demands that the x-rays scattered at 90◦ should be completely plane polarized.

2 For an account of this work, see e.g. the writer’s “X-Rays and Electrons,” Chap. IX, Van Nostrand,
1926.
3 E. g., P. A. Ross, Proc. Nat. Acad., 9, p. 246; 1923.
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Fig. 25.1 A typical spectrum of scattered x-rays, showing the splitting of the primary ray into a
modified and an unmodified ray

If the rays of increased wave-length are fluorescent, however, we should not expect
them to be strongly polarized. You will remember the experiments performed by
Barkla4 some 20 years ago in which he observed strong polarization in x-rays scat-
tered at right angles. It was this experiment which gave us our first strong evidence
of the similar character of x-rays and light. But in this work the polarization was far
from complete. In fact the intensity of the secondary rays at 90◦ dropped only to one
third of its maximum value, whereas for complete polarization it should have fallen
to zero. It might have seemed that the remaining third was due to really unpolarized
rays of a fluorescent type.

4 C. G. Barkla, Proc. Roy. Soc. A., 77, p. 247; 1906.
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Fig. 25.2 An x-ray photon is deflected through an angle φ by an electron, which in turn recoils at
an angle θ , taking up a part of the energy of the photon

The fact that no such unpolarized rays exist was established by repeating Barkla’s
experiment5 with scattering blocks of different sizes. When very small blocks were
used, we found that the polarization was nearly complete. The lack of complete
polarization in Barkla’s experiments was due chiefly to the multiple scattering of
the x-rays in the large blocks that he used to scatter the x-rays. It would seem that
the only explanation of the complete polarization of the secondary rays is that they
consist wholly of scattered rays.

According to the classical theory, an electromagnetic wave is scattered when it
sets the electrons which it traverses into forced oscillations, and these oscillating
electrons reradiate the energy which they receive. In order to account for the change
in wave-length of the scattered rays, however, we have had to adopt a wholly differ-
ent picture of the scattering process—that shown in Fig. 25.2. Here we do not think
of the x-rays as waves, but as light corpuscles, quanta, or, as we may call them,
photons. Moreover, there is nothing here of the forced oscillation pictured on the
classical view, but a sort of elastic collision, in which the energy and momentum are
conserved.

This new picture of the scattering process leads at once to three consequences
that can be tested by experiment. There is a change of wave-length

δλ = h

mc
(1 − cos φ) (25.1)

which accounts for the modified line in the spectra of scattered x-rays. Experiment
has shown that this formula is correct within the precision of our knowledge of h, m

5 A. H. Compton and C. F. Hagenow, J.O.S.A. and R.S.I., 8, p. 487; 1924.
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and c. The electron which recoils from the scattered x-ray should have the kinetic
energy,

Ekin = hν · hν

mc2
cos2 θ (25.2)

approximately. When this theory was first proposed, no electrons of this type were
known; but they were discovered by Wilson6 and Bothe7 within a few months after
their prediction. Now we know that the number, energy and spatial distribution of
these recoil electrons are in accord with the predictions of the photon theory. Finally,
whenever a photon is deflected at an angle φ, the electron should recoil at an angle
θ given by the relation,

cot
1

2
φ = tan θ (25.3)

approximately.
This relation we have tested8 using the apparatus shown diagrammatically in

Fig. 25.3. A narrow beam of x-rays enters a Wilson expansion chamber. Here it
produces a recoil electron. If the photon theory is correct, associated with this recoil
electron, a photon is scattered in the direction φ. If it should happen to eject a β-
ray, the origin of this β-ray tells the direction in which the photon was scattered.
Figure 25.4 shows a typical photograph of the process. A measurement of the angle
θ at which the recoil electron on this plate is ejected and the angle φ of the origin
of the secondary β-particle, shows close agreement with the photon formula. This
experiment is of especial significance, since it shows that for each recoil electron
there is a scattered photon, and that the energy and momentum of the system photon
plus electron are conserved in the scattering process.

The evidence for the existence of directed quanta of radiation afforded by this
experiment is very direct. The experiment shows that associated with each recoil
electron there is scattered x-ray energy enough to produce a secondary beta ray, and
that this energy proceeds in a direction determined at the moment of ejection of the
recoil electron. Unless the experiment is subject to improbably large experimental
errors, therefore, the scattered x-rays proceed in the form of photons.

Thus we see that as a study of the scattering of radiation is extended into the
very high frequencies of x-rays, the manner of scattering changes. For the lower
frequencies the phenomena could be accounted for in terms of waves. For these
higher frequencies we can find no interpretation of the scattering except in terms
of the deflection of corpuscles or photons of radiation. Yet it is certain that the two
types of radiation, light and x-rays, are essentially the same kind of thing. We are
thus confronted with the dilemma of having before us convincing evidence that
radiation consists of waves, and at the same time that it consists of corpuscles.

6 C. T. R. Wilson, Proc. Roy. Soc., 109, p. 1; 1923.
7 W. Bothe, ZS. f. Phys., 16, p. 319; 1923; 20, p. 237; 1923.
8 A. H. Compton and A. W. Simon, Phys. Rev., 26, p. 289; 1925.
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Fig. 25.3 An electron recoiling at an angle θ should be associated with a photon deflected through
an angle φ

Fig. 25.4 Photograph showing recoil electron and associated secondary β-ray. The upper photo-
graph is retouched

It would seem that this dilemma is being solved by the new wave mechanics. De
Broglie9 has assumed that associated with every particle of matter in motion there

9 L. de Broglie, Thèse, Paris, 1924.
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is a wave whose wave length is given by the relation,

mv = h/λ, (25.4)

where mv is the momentum of the particle. A very similar assumption was made
at about the same time by Duane,10 to account for the diffraction of x-ray photons.
As applied to the motion of electrons, Schrödinger has shown the great power of
this conception in studying atomic structure.11 It now seems, through the efforts of
Heisenberg, Bohr and others, that this conception of the relation between corpuscles
and waves is capable of giving us a unified view of the diffraction and interference
of light, and at the same time of its diffuse scattering and of the photoelectric effect.
It would however take too long to describe these new developments in detail.

We have thus seen how the essentially optical properties of radiation have been
recognized and studied in the realm of x-rays. A study of the refraction and specular
reflection of x-rays has given an important confirmation of the electron theory of
dispersion, and has enabled us to count with high precision the number of electrons
in the atom. The diffraction of x-rays by crystals has given wonderfully exact infor-
mation regarding the structure of crystals, and has greatly extended our knowledge
of spectra. When x-rays were diffracted by ruled gratings, it made possible the study
of the complete spectrum from the longest to the shortest waves. In the diffuse scat-
tering of radiation, we have found a gradual change from the scattering of waves to
the scattering of corpuscles.

Thus by a study of x-rays as a branch of optics we have found in x-rays all of
the well known wave characteristics of light, but we have found also that we must
consider these rays as moving in directed quanta. It is these changes in the laws
of optics when extended to the realm of x-rays which have been in large measure
responsible for the recent revision of our ideas regarding the nature of the atom and
of radiation.

University of Chicago,
Chicago, Illinois,
October 10, 1927.

25.3 Study Questions

QUES. 25.1. Which is better, the classical wave theory of scattering or the new
photon theory of scattering?

a) What are the two important consequences of the classical theory of diffuse
scattering of light by turbid media? Do experiments confirm these predictions?

10 W. Duane, Proc. Nat. Acad., 1924.
11 E. Shrödinger, Ann. der Phys., 79, pp. 361, 489, 734; 80, 437; 81,109; 1926; Phys. Rev., 28,
p. 1051; 1926.
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b) In what way did the scattering of very high frequency rays contradict the classical
electron theory of scattering? In particular, what happens to the wavelength of
the scattered ray?

c) How does the classical theory depict the scattering process of electromagnetic
waves from electrons? How, by contrast, does the light-corpuscle theory depict
the same process?

d) According to the light-corpuscle theory, what is the wavelength (and the direc-
tion) of a photon scattered by an electron? How are these actually measured?

e) Are x-rays then best understood as waves or as particles? Is there a way out of
this dilemma?

QUES. 25.2. How has the study of x-rays contributed to our ideas regarding the
nature of the atom and radiation?

25.4 Exercises

EX. 25.1 (COMPTON SCATTERING). In this problem, we will explore the scattering
of light from an electron, as depicted in Fig. 25.2. Let us assume that the electron
is initially stationary and that the incoming quantum of light (the photon) carries a
momentum p0.

a) First, use the principle of conservation of momentum to demonstrate that the
momenta of the scattered photon, p1, and of the scattered electron, p, are related
by

p2
0 + p2

1 − 2 p0 p1 cos φ = p2 (25.5)

b) According to the theory of special relativity, the energy, E, of a particle of rest
mass m0 is related to its momentum, p, by12

E2 = (pc)2 + (m0c
2)2 (25.6)

Assuming that the photon has zero rest mass, use the conservation of energy to
demonstrate that the kinetic energy of the outgoing electron, T , can be written
as

T = (p0 − p1)c (25.7)

and that the electron’s kinetic energy, rest mass and momentum are related by

T 2 + 2 T m0 c2 = (p c)2 (25.8)

12 See the discussion of Einstein’s theory of relativity, and especially Ex. 32.2, in Chap. 32 of
volume II.
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c) Combine Eqs. 25.5, 25.7, and 25.8 to show that the momenta of the incoming
and outgoing photons are related by

(p0 − p1)2 = p0 p1(1 − cos φ) (25.9)

d) Assuming that the photon obeys the de Broglie relation, show that the change
of wavelength of the scattered photon is given by Compton’s scattering formula,
Eq. 25.1.

e) What is the change in wavelength of a photon scattering from an electron in
a carbon sample through an angle φ = 135◦, as depicted in Fig. 25.1? At
what scattering angle, φ, would the photon momentum change by the Compton
wavelength, which is defined in Eq. 25.10?

λc = h

m0c
(25.10)

f) Finally, how would the preceding analysis change if the photon were to scat-
ter from a hydrogen nucleus rather than from an electron? Would the compton
wavelength remain the same?

25.5 Vocabulary

1. Turbid
2. Photon



Chapter 26
Electron Scattering and Diffraction

Electron scattering is not, it would seem, the mildly interesting
matter of flying particles and central fields that we supposed,
but is instead a much more interesting phenomenon in which
electrons exhibit the properties of waves.

—Clinton Davisson

26.1 Introduction

Clinton Joseph Davisson (1881–1958) was born in Bloomington, Illinois.1 He
enrolled at the University of Chicago in 1902 after graduating from the public high
school. Before finishing his Bachelor of Science degree, however, he was hired as a
part-time physics instructor by Princeton University. During his time at Princeton,
he was able to complete the requirements for his undergraduate degree by returning
to Chicago during summer sessions. He eventually earned his Ph.D. from Princeton
in 1911, writing a dissertation under the guidance of O.W. Richardson On The Ther-
mal Emission of Positive Ions From Alkaline Earth Salts. Davisson then went on to
serve as an instructor at the Carnegie Institute of Technology in Pittsburg until 1917,
when he moved to the Western Electric Company (later Bell Telephone Laborato-
ries) in New York City. This industrial research position, which initially consisted
in war-related work, eventually provided Davisson with the freedom to do scientific
research which he lacked in his previous academic appointment. While at Western
Electric, Davisson studied the ejection of electrons from metals by heat (thermionic
emission) and by bombardment with other electrons. This latter research program
eventually led to his famous work, in collaboration with Lester Germer, for which
Davisson was awarded the Nobel Prize in physics in 1937. The famous Davisson-
Germer experiment is described in the reading selection below. It begins with a short
introduction by the editor of the Bell System Technical Journal, in which the article
was published in 1928.

1 Much of the information in this introduction is from the Davisson entry in the Complete
Dictionary of Scientific Biography. 2008. Retrieved January 04, 2015 from Encyclopedia.com.
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26.2 Reading: Davisson, The Diffraction of Electrons
by a Crystal of Nickel

Davisson, C., The Diffraction of Electrons by a Crystal of Nickel, Bell System
Technical Journal, 7(1), 90–105, 1928.

This article is taken from the manuscript prepared by the author for his address at the joint
meeting of Section B of the American Association for the Advancement of Science and
the American Physical Society on December 28, 1927, at Nashville, Tennessee. An account
of this work giving fuller experimental details is given by Davisson and Germer in the
December, 1927, issue of the Physical Review.

These experiments are fundamental to some of the newer theories in physics. Until they
were performed, it could be said that all experimental facts about the electron could be
explained by regarding it as a particle of negative electricity. It now appears that in some
way a “wavelength” is connected with the electron’s behavior. The work thus shows an
interesting contrast with the discovery of A.H. Compton that a ray of light (a light pulse)
suffers a change of wave-length upon impact with an electron, the change of wave-length
corresponding exactly to the momentum gained by the electron. Until Compton’s work, all
the known facts about light could be explained by thinking of light as a wave motion. The
Compton effect seems to prove the existence of particles of light.

Physics is thus faced with a double duality. Compton showed that light is in some sense
both a wave motion and a stream of particles. Davisson and Germer have now shown that a
beam of electrons is in some sense both a stream of particles and a wave motion.

At the same time, theoretical advances have been made which seem to pave the way for
an understanding of this curious situation. A general account of these new developments
was given by K.K. Darrow in his series “Contemporary Advances in Physics” in the Bell
System Technical Journal for October, 1927. Some remarks on the relation of the Davisson
and Germer experiments to the new mechanics were given in this article, p. 692 et seq.—
EDITOR.

The experiments which I have been asked to describe are the most recent of an
investigation of the scattering of electrons by metals on which we have been engaged
in the Bell Telephone Laboratories for the last 7 or 8 years.

The investigation had its inception in a simple but significant observation. We
observed some time in the year 1919 that when a beam of electrons is directed
against a metal target, electrons having the same speed as those in the incident beam
stream out in all directions from the bombarded area. It seemed to us at the time that
these could be no other than particular electrons from the incident beam that had suf-
fered large deflections in simple elastic encounters with single atoms of the target.
The mechanism of scattering, as we pictured it, was similar to that of alpha ray scat-
tering. There was a certain probability that an incident electron would be caught in
the field of an atom, turned through a large angle, and sent on its way without loss of
energy. If this were the nature of electron scattering it would be possible, we thought,
to deduce from a statistical study of the deflections some information in regard to
the field of the deflecting atom. It was with these ideas in mind that the investiga-
tion was begun. What we were attempting, it will be seen, were atomic explorations
similar to those of Sir Ernest Rutherford and his collaborators but explorations in
which the probe should be an electron instead of an alpha particle. I shall not stop
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to recount the earlier experiments of this investigation, but shall pass at once to the
most recent ones—those in which Dr. Germer and I have studied the scattering of
electrons by a single crystal of nickel.

The unusual interest that attaches to these experiments is due to their revealing
the phenomenon of electron scattering in a new and, I may say, fashionable role.
Electron scattering is not, it would seem, the mildly interesting matter of flying
particles and central fields that we supposed, but is instead a much more interesting
phenomenon in which electrons exhibit the properties of waves. The experiments
reveal that the way in which electrons are scattered by a crystal is very similar to
the way in which x-rays are scattered by a crystal. The analogy is not so much with
the alpha ray experiments of Sir Ernest Rutherford, as with the x-ray diffraction
experiments of Professor von Laue.

My task of describing these experiments is much simplified by the fact that the
experiments of Professor von Laue are so well known and so thoroughly compre-
hended. I remind you very briefly that in the original Laue experiment a beam of
x-rays was directed against a crystal of zincblende, that about the transmitted beam
was found an array of regularly disposed subsidiary beams proceeding outward from
the irradiated portion of the crystal, and that these subsidiary beams could be inter-
preted completely and precisely in terms of the then already popular wave theory of
x-radiation. They could indeed be explained as diffraction beams that resulted from
the superposition of secondary wave trains expanding from the regularly arranged
atoms of the crystal lattice.

There are two features of the Laue experiment which we shall need particularly
to remember. The first is that diffraction beams issue not only from the far side of
the crystal along with the transmitted beam, but also from the near or incidence
side of the crystal—these latter being disposed in a regular array about the incident
beam. The second is that each diffraction beam is characterized by a particular wave-
length, and that a given beam appears in the diffraction pattern if the incident beam
contains radiation of its characteristic wavelength, or of some submultiple value
of this wave-length, but not otherwise. If the incident beam is monochromatic, no
diffraction beams appear at all unless the wave-length of the incident beam happens
to coincide with a wave-length of one or more of the diffraction beams. In that case
the favored beams appear but no others.

With this picture of x-ray scattering in mind one sees at once the significance of
the main results of the present experiments. A homogeneous beam of electrons is
directed against a crystal of nickel, and at certain critical speeds of bombardment
full speed scattered electrons issue from the incidence side of the crystal in sharply
defined beams—a few beams at each of the critical speeds—the totality of such
beams making up a regularly disposed array similar to the array of Laue beams that
would issue from the same side of the same crystal if the incident beam were a beam
of x-rays.

The electron beams are not identical in disposition with the Laue beams, and yet
it is possible to treat them as diffraction beams, and from their position and from
the geometry and scale of the crystal to calculate “wave-lengths” of the incident
beam—just as we might do if we were dealing with x-rays or with any other wave
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radiation. When this is done we arrive at a definite and simple relation between
the speed of the electron beam and its apparent wave-length—the wave-length is
inversely proportional to the speed.

Surprising as it is to find a beam of electrons exhibiting thus the properties of a
beam of waves, the phenomenon is less surprising today than it would have been a
few years ago. We have been prepared, to a certain extent, by recent developments
in the theory of mechanics for surprises of just this sort—for the discovery of cir-
cumstances in which particles exhibit the properties of waves. We have witnessed,
during the last 3 years, the inception and development of the idea that all mechanical
phenomena are in some sense wave phenomena—that the rigorous solution of every
problem in mechanics must concern itself with the propagation and interference of
waves. The wave nature of mechanical phenomena is not ordinarily apparent, we are
told, because the length of the waves involved is ordinarily small compared to the
dimensions of the system. It is only in such small scale phenomena as the intimate
reactions between atoms and electrons that the wave-lengths are comparable with
the dimensions of the system. Here only are we to expect notable departures from
classical mechanics, and here only are we to find evidence of a more comprehen-
sive wave mechanics.2 The success of this new theory has been confined, up to the
present time, to explanations of certain of the data of spectroscopy. In this field the
theory has appealed very strongly to all of us because of the elegance of its methods
and because of its remarkable facility in accounting for various of the inhibitions
with which the radiating atom is afflicted. We have been prepared by these suc-
cesses to view with not too great Surprise—or alarm—evidence for the wave nature
of phenomena involving freely moving electrons. And any reluctance we may feel
in treating electron scattering as a wave phenomenon is apt to be dispelled when
we find that the value calculated for the wave-length of the equivalent radiation is
in acceptable agreement with that which L. de Broglie assigned to the waves which
he associated with a freely moving particle—that is to say, the value h/mv (Planck’s
constant divided by the momentum of the particle).

In this account of the experiments I will describe the general method of the mea-
surements and the general character of the results rather than attempt to go into these
matters in detail.

Nickel forms crystals of the face centered cubic type. In Fig. 26.1a the crystal
which we had at our disposal is represented by a block of unit cubes of this type.

Our first step in preparing the crystal for bombardment was to cut through this
structure at right angles to one of the cube diagonals. The appearance of the crys-
tal after the cut was made, and the corner of the cube removed, is indicated in
Fig. 26.1b. It is this newly formed triangular surface that was exposed to electron
bombardment. The bombardment was at normal incidence as indicated in Fig. 26.1c.
We are to think of electrons raining down normally upon this triangular surface, and

2 It was predicted by W. Elsasser in 1925 (Naturwiss., 13, 711 (1925)) that evidence for the wave
mechanics would be found in the interaction between a beam of electrons and a crystal.
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Fig. 26.1 Diagrams of nickel lattice, of cut lattice, and of lattice with incident and scattered beams

Fig. 26.2 Showing the three principal azimuths

of some of these emerging from the crystal without loss of energy, and proceeding
from it in various directions.

What is measured is the current density of these full speed scattered electrons
as a function of direction and of bombarding potential. The way in which the mea-
surements are made is illustrated in Fig. 26.2. The electrons proceeding in a given
direction from the crystal enter the inner box of a double Faraday collector and a
galvanometer of high sensitivity is used to measure the current to which they give
rise. An appropriate retarding potential between the parts of the collector excludes
from the inner box all but full speed electrons.

The collector may be moved over an arc of a circle in the plane of the drawing as
indicated, and the crystal may be rotated about an axis which coincides with the axis
of the incident beam of electrons. Thus the collector may be set for measuring the
intensity of scattering in any direction relative to the crystal—by turning the crystal
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Fig. 26.3 Curves showing development of diffraction beam in the A-azimuth. . . and variation of
intensity with the azimuth at colat. 50◦ for which beam is strongest in the A-azimuth

to the desired azimuth, and moving the collector to the desired colatitude. The whole
solid angle in front of the crystal may be thus explored with the exception of the
region within 20◦ of the incident beam.

Certain of the azimuths related most simply to the crystal structure we shall refer
to as “principal azimuths.” Thus there are the three azimuths that include the apexes
of the triangle. If we find the intensity of scattering depending on colatitude in a
certain way in one of these azimuths, we expect, of course, to find it depending
upon colatitude in the same way in each of the other two. We shall call these the
“A-azimuths.” On the left in Fig. 26.2 the crystal has been turned to bring one of the
A-azimuths into the plane of rotation of the collector.

Another triad of principal azimuths consists of the three which include the mid-
points of the sides of the triangle. These we shall call the “B-azimuths.” The next
most important family of azimuths comprises those which are parallel to the sides
of the triangle; of these there are six, the “C-azimuths.”

If we turn the crystal to any arbitrarily chosen azimuth, set the bombarding poten-
tial at any arbitrarily chosen value, and measure the intensity of scattering as a
function of colatitude, what we find ordinarily is the type of relation represented
by the curve on the left in Fig. 26.3.

This curve is actually one found for scattering in the A-azimuth when the bom-
barding potential is 36 V. It is typical, however, of the curves that are obtained when
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no diffraction beam is showing. The intensity of scattering in a given direction is
indicated by the length of the vector from the point of bombardment to the curve.
The intensity is zero in the plane of the crystal surface, and increases regularly as
the colatitude angle is decreased. This type of scattering forms a background upon
which the diffraction beams are superposed.

The occurrence of a diffraction beam is illustrated in the series of curves to the
right in Fig. 26.3. When the bombarding potential is increased from 36 to 40 V, the
curve is characterized by a slight hump at colatitude 60◦. With further increase in
bombarding potential this hump moves upward, and at the same time develops into
a strong spur. The spur reaches its maximum development at 54 V in colatitude 50◦,
then decreases in intensity, and finally vanishes from the curve at about 70 V in
colatitude 40◦.

We next make an exploration in azimuth through this spur at its maximum; we
adjust the bombarding potential to 54 V, set the collector in colatitude 50◦, and make
measurements of the intensity of scattering as the crystal is rotated. The results of
this exploration are exhibited by the curve at the bottom of Fig. 26.3, in which
current to the collector is plotted against azimuth. We find that the spur is sharp in
azimuth as well as in latitude and that it is one of a set of three spurs as required by
the symmetry of the crystal.

We observe also that there are small spurs showing in the B-azimuths. We turn
the crystal to bring the B-azimuth under observation, and again make explorations in
latitude for various speeds of bombardment. We find that the spur in the B-azimuth
is similar to the “54 volt” spur in the A-azimuth, but that it attains its maximum
development at a higher voltage and at a higher angle. Curves exhibiting its growth
and decay are shown in Fig. 26.4. Maximum development is attained at 65 V in
colatitude 44◦. At the bottom of the figure we show the intensity-azimuth curve
through this spur at its maximum. The small maxima in the A-azimuths represent
the remnants of the “54-volt” spurs.

We have thus a set of spurs at colatitude 50◦ in the A-azimuths when the bom-
barding potential is 54 V and a set of 44◦ in the B-azimuths when the bombarding
potential is 65 V. These spurs are due to beams of full speed scattered electrons
which are comparable in sharpness and definition with the beam of incident elec-
trons. This is inferred from the widths of the spurs and the resolving power of the
apparatus.

It is hardly necessary to point out that these sharply defined beams of scattered
electrons are similar in their behavior to x-ray diffraction beams. If the incident
beam were a beam of monochromatic x-rays of adjustable wave-length instead of a
homogeneous beam of electrons of adjustable speed, quite similar effects could be
produced. If the wave-length of the x-ray beam were varied, critical values would
be found at which intense diffraction beams would issue from the crystal in its A-
azimuths and others at which such beams would issue in the B-azimuths. The x-ray
diffraction beams would indeed be more sharply defined in wave-length than the
electron beams defined in voltage. No diffraction beam would be observed until
the wave-length of the incident x-rays were very close indeed to its critical value,
and the beam would disappear again when the wave-length had passed only very
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Fig. 26.4 Similar for the B-azimuth

slightly beyond the critical value. This “wave-length sharpness” or “wave-length
resolving power” is dependent, however, upon the number and disposition of the
atoms involved in the diffraction. If the crystal were only a few atom layers in thick-
ness, or if the x-rays were extinguished on penetrating through only a few atom
layers of the crystal, then the x-ray diffraction beams would be much less sharply
defined in wave-length; they would behave more like the electron beams. We may
say then that the electron beams exhibit the general behavior of diffraction beams
resulting from the scattering of a beam of very soft wave radiation—radiation that
is very rapidly extinguished in the crystal.

26.3 Study Questions

QUES. 26.1. To whose work did Davisson originally compare his own studies of the
scattering of a beam of electrons from a metal target? What information did he hope
to obtain from such measurements? What surprising observation did he make when
scattering electrons from a nickel crystal?

QUES. 26.2. What are the key features of Laue’s x-ray diffraction experiments? In
particular, are the x-rays scattered with equal intensity in all directions? If not, then
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how does the spacing between the crystal’s atoms (along lines of different orienta-
tions) relate to the scattering of x-rays? Are diffraction beams of every conceivable
wavelength emitted when a single wavelength x-ray beam strikes the crystal?

QUES. 26.3. Was the similarity between Davisson’s experiments with electrons and
Laue’s experiments with x-rays entirely surprising? Why had the wave-like char-
acter of electrons not been observed previously? What properties of an electron
determines its (De Broglie) wavelength?

QUES. 26.4. Describe the experimental apparatus of Davisson and Germer. What is
the nature of the nickel target? In which direction was it oriented? How did they
control the speed of the electron beam? And how did they detect the scattered
electrons?

QUES. 26.5. What notable pattern did the scattered electrons display? In particular,
how did the scattering intensity depend upon (i) the accelerating voltage, (ii) the
co-latitude angle (for a fixed azimuthal angle), and (iii) the azimuthal angle (for a
fixed co-latitude angle)?

QUES. 26.6. In what way was the scattering of electron beams qualitatively similar to
the scattering of x-ray beams? In what way(s) was it different? Do electrons scatter
from crystals like particles or like waves?

26.4 Exercises

EX. 26.1 (DE BROGLIE WAVELENGTH). According to Louis de Broglie, the momen-
tum of any particle, whether an electron or a sand grain, is given by

p = h

λ
(26.1)

a) Assuming this to be true, what is the momentum of a single photon of red light
(λ = 633 nm)?

b) What (average) force would be produced on a black (absorbing) plate if it were
struck by a beam of red light photons at a rate of 1000 photons per second.

c) Would the same beam exert the same force on a perfectly reflecting mirror? If
not, by how much would it differ?

EX. 26.2 (ELECTRON SCATTERING FROM THE SURFACE OF A CRYSTAL). Suppose
that a beam of electrons is accelerated through a potential difference of 100 V. The
beam strikes the surface of a crystal whose atoms are arranged in a simple cubic
lattice with atomic spacing 4 Å. Assuming that the (mutually perpendicular) rows of
surface atoms act as a diffraction grating, at what angle with respect to the normal is
the first-order (n = 1) interference maximum observed? Does the diffraction pattern
appear as a series of linear fringes? To answer these questions, you might recognize
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that when waves strike a diffraction grating, the angular locations of the principle
maxima of the scattered waves occur whenever the partial waves from the grating
lines constructively interfere with one another.3 (ANSWER: 18◦.)

26.5 Vocabulary

1. Duality
2. Zincblende
3. Subsidiary
4. Superposition
5. Monochromatic
6. Diffraction
7. Homogeneous
8. Inception
9. Spectroscopy

10. Apt
11. Inhibition
12. Galvanometer
13. Azimuth
14. Colatitude
15. Apex
16. Triad

3 See Ex. 20.4, and especially Eq. 20.2, in volume III.



Chapter 27
Matter Waves

The electron as a particle is too well established to be
discredited by a few experiments with a nickel crystal.

—Clinton Davisson

27.1 Introduction

In the previous reading selection, Davisson interpreted his experiments on the scat-
tering of electrons from a nickel crystal using De Broglie’s recently developed
theory of matter waves. According to this novel theory of mechanics, the momentum
and wavelength of any particle are related by

p = h

λ
. (26.1)

This peculiar relationship had been devised by Prince Louis de Broglie in his 1924
doctoral thesis in an attempt to generalize Einstein’s theory of light quanta.1 De
Broglie claimed that just as light waves could exhibit particle-like properties (in
the form of photons), so too, particles (such as electrons) could exhibit wave-like
properties. This counter-intuitive idea of wave-particle duality had been recently
employed by Compton in order to make sense of the scattering of photons from
electrons,2 and it would soon form the basis of Schrödinger’s wave-mechanical for-
mulation of quantum theory.3 In the reading selection below, Davisson continues
to discuss his famous electron scattering experiments. You will notice that he treats
the top layer of atoms in the nickel crystal as a diffraction grating whose spac-
ing depends on the orientation of the crystal.4 Do his results provide quantitative

1 Einstein’s interpretation of the photoelectric effect is described in Sect. 16.2.8 of the present
volume.
2 The phenomenon of Compton scattering is discussed in Chap. 25 of the present volume.
3 See Schrödinger’s 1933 nobel lecture on The Fundamental Idea of Wave Mechanics, contained
in Chap. 31 of the present volume.
4 For a discussion of diffraction gratings and their effect on incident waves, refer to Ex. 20.4 in
volume III.
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(as opposed to merely qualitative)support for De Broglie’s theory of matter waves?
What conclusion does he finally draw from his data?

27.2 Reading: Davisson, The Diffraction of Electrons
by a Crystal of Nickel

Davisson, C., The Diffraction of Electrons by a Crystal of Nickel, Bell System
Technical Journal, 7(1), 90–105, 1928.

Let us try now to forget that what we are measuring in these experiments is a current
of discrete electrons arriving one by one at our collector. Let us imagine that what
we are dealing with is indeed a monochromatic wave radiation, and that our Fara-
day box and galvanometer are instruments suitable for measuring the intensity of
this radiation. We are to think of the incident electron beam as a beam of monochro-
matic waves, and of the “54-volt beam” in the A-azimuth and the “65-volt beam”
in the B-azimuth as diffraction beams that owe their intensities, in the usual way,
to constructive interference among elements of the incident beam scattered by the
atoms of the crystal. With this picture in mind we try next to calculate wave-lengths
of this electron radiation from the data of these beams and from the geometry and
scale of the crystal.

To begin with, we shall need to look more closely into our crystal. The atoms in
the triangular face of the crystal may be regarded as arranged in lines or files at right
angles to the plane of the A- and B-azimuths (Fig. 27.1). If a beam of radiation were
scattered by this single layer of atoms, these lines of atoms would function as the
lines of an ordinary line grating. In particular, if the beam met the plane of atoms
at normal incidence, diffraction beams would appear in the A- and B-azimuths, and
the wave-lengths and inclinations of these beams would be related to one another
and to the grating constant d by the well-known formula, nλ = d sin θ , as illustrated
at the top of the figure.

In the actual experiments the diffracting system is not quite so simple. It com-
prises not a single layer of atoms, but many layers; it is equivalent not to a single line
grating, but to many line gratings piled one above the other, as shown graphically at
the bottom of the figure. What diffraction beams will issue from this pile of similar
and similarly oriented plane gratings?

The answer to this question is twofold. In respect of position all the beams which
appear will coincide with beams which would issue from a single grating. We get
no additional beams by adding extra layers to the lattice. In respect of intensity,
however, the results are greatly changed. A given beam may be accentuated or it
may be diminished, both absolutely and relatively to the other beams; it may in
fact be blotted out completely, or reduced to such an extent that it can no longer
be perceived. These are effects of interference among the similar beams proceeding
from the various plane gratings that make up the pile. Later we shall consider under
what conditions these component beams combine to produce a resultant beam of
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Fig. 27.1 Showing nλ = d sin θ relation in the A-, B- and C-azimuths

maximum intensity; for the present, however, I wish only to stress the fact that
whenever and wherever a space lattice beam appears its wave-length and colatitude
angle θ will be related to the constant d of the plane grating through the ordinary
plane grating formula. We therefore apply this formula to the 54- and 65-V beams
that have been described. The grating constant d has the value 2.15 Å., the 54-V
beam occurs at θ = 50◦ so that nλ for this beam should have the value 2.15×sin 50◦,
or 1.65 Å. For the 65-V beam we obtain for nλ the value 1.50 Å.

We now compare these wave-lengths with the wave-lengths associated with
freely moving electrons of these speeds in the theory of wave mechanics. Translated
into bombarding potentials, de Broglie’s relation

λ = h

mv
becomes λ =

√
150

V
Å, (27.1)

where V represents the bombarding potential in volts. The length of the phase wave
of a “54-volt electron” is (150/54)

1 2 = 1.67Å, and for a 65-V electron 1.52Å.
The 54- and 65-V electron beams do very well indeed as first order phase wave
diffraction beams.

It may be mentioned that beams occur at different voltages in the A- and B-
azimuths because the plane gratings that make up the crystal are not piled one
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Fig. 27.2 Plot of λ against sin θ for various beams

immediately above the other. There is a lateral shift from one grating to the next
amounting to one third of the grating constant. Because of this shift the phase rela-
tion among the elementary beams emerging in the A-azimuth is not the same as that
among those emerging in the B-azimuth—and coincidence of phase among these
beams occurs at different voltages, or at different wave-lengths, in the two azimuths.

We next make similar calculations for a beam occurring in the C-azimuth. One
such beam attains its maximum development in colatitude 56◦ when the bombard-
ing potential is 143 V. For diffraction into the C-azimuth we must regard the atoms
in the surface layer as arranged in lines normal to the plane of this azimuth as illus-
trated in Fig. 27.1. The grating constant is 1.24 Å, and the similar gratings that
make up the whole crystal are piled up without lateral shift. For this reason the C-
azimuth is six-fold instead of only three-fold. For a beam occurring in this azimuth
in colatitude 56◦, nλ should be equal to 1.24×sin 56◦ or 1.03 Å. The value of h/mv

for electrons that have been accelerated from rest through 143 V is (150/143)
1 2 or

1.025 Å. Again the beam does very well as a first order diffraction beam.
The total number of such beams which we have observed in all azimuths in explo-

rations up to 370 V is 24—nine in the A-azimuth, ten in the B-azimuth, and five in
the C-azimuth. It would be possible to calculate an observed wave-length for each
of these beams from nλ = d sin θ , and to compare this in each case with the theoret-
ical wave-length calculated from λ = h/mv, just as we have done already for three
of the beams. We have chosen, however, to display the results graphically rather
than numerically.

The data for the 24 beams are exhibited in diagrams in Fig. 27.2, in which wave-
length λ is plotted against the sine of the colatitude, θ . There is a separate diagram
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for each azimuth and in each the straight lines passing through the origin represent
the plane grating formula nλ = d sin θ in its different orders. Each of the 24 beams
is represented by a point or by a wedge-shaped symbol in one of these diagrams.
The quantities coordinated in each case are the wave-length of the incident beam
as calculated from λ = h/mv = (150/V )

1 2 and the sine of the colatitude angle of
the diffraction beam as observed. There are no points to the left of the line θ = 20◦
as this represents the lower limit of our colatitude range of observation, and none
below the line λ = 0.637 Å as this corresponds to the upper limit of our voltage
range, 370 V. The bombarding potentials corresponding to various wave-lengths are
shown by figures enclosed in brackets.

When the data are exhibited in this fashion the question as to whether or not the
observed wave-length of a beam agrees with its theoretical wave-length is answered
by whether or not the point representing the beam falls on one or another of the lines
representing the plane grating formula. If there were perfect agreement in all cases,
each of the points would lie on some one of these lines.

It will be seen that the points all lie close to the lines, though not as a rule
exactly on them. It is of course very important to decide whether the departures
of the points from the lines are or are not too great to be attributed to uncertain-
ties of measurements. It is our belief that they are in fact due to experimental error
in the determination of the colatitude angles. If we accept the theoretical values of
the wave-lengths as correct, and calculate the values of θ which we should have
observed, we find that in no case do they deviate by more than 4◦ from the values
of θ actually set down. Corrections of this magnitude do not seem excessive when
it is considered that we are making measurements with what amounts to a rather
crude spectrometer, that the arm of the spectrometer is but 11 mm in length, that the
opening in the collector is 5◦ in width, and that the spectrometer itself is sealed into
a glass bulb. We therefore assume that in every case the value of the wave-length
assigned by de Broglie is the correct one.

I now direct your attention to a particular group of these beams—the group com-
prising the beam of greatest wave-length in each of the three azimuths, which are
represented in the figure by wedge-shaped symbols. The interpretation of these three
is quite simple. The radiation to which our electron beam is equivalent is extremely
soft as already noted. Its intensity suffers a considerable decrement when the beam
passes normally through only a single layer of atoms. This characteristic is inferred
from the low resolving power of the crystal, and is consistent with what we know
of the penetrating power of low speed electrons. When the beam passes through
a layer of atoms at other than normal incidence the decrement in its intensity is
greater still—and in the limit as the angle of incidence approaches grazing to the
atom layer the intensity of the transmitted beam will approach zero. Thus we may
expect that when a diffraction beam leaves the crystal at near grazing emergence the
contributions to the resultant beam which come from the second and lower layers
of atoms will be much less important than when the beam emerges from the crys-
tal at a higher angle. Near grazing the radiation proceeding from the second and
lower layers will be heavily absorbed in its passage through the overlying layers.
Within a limited angular range near grazing the diffraction beam will be made up
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almost entirely of radiation scattered by the uppermost layer of atoms. The diffract-
ing system becomes essentially a single plane grating and what we should observe
is ordinary plane grating diffraction.

The first order diffraction beam from a line grating appears at grazing emergence
when the wave-length of the incident radiation is equal to the grating constant. The
grating constant for diffraction into the A- and B-azimuths is 2.15 Å and grazing
beams should appear in both azimuths when the wave-length of the incident elec-
tron beam has this value. The bombarding potential corresponding to wave-length
2.15 Å is 32.5 V, and at just 32.5 V diffraction beams appear at grazing in both
these azimuths. As the bombarding potential is increased the beams move up from
the surface to satisfy the relation λ = d sin θ . Ten or fifteen degrees above the sur-
face radiation from the second and lower layers escapes in sufficient amounts to
reduce the intensity of the resultant beam through interference, and at a somewhat
higher angle the beam disappears.

An exactly similar beam is found at grazing in the C-azimuth. The grating con-
stant here is 1.24 Å and the bombarding potential corresponding to wave-length
1.24 Å is 97.5 V. The beam appears at grazing at just this voltage. These three beams
occurring and behaving exactly as required by the theory constitute the strongest
evidence we have in favor of the wave interpretation of electron scattering.

We have been less successful in trying to account for the occurrences of the
remaining 21 sets of beams. We do not know why they occur where they do. The
most we have been able to do is to relate their occurrences with those of the Laue
beams that would issue from the same crystal if the incident beam were a beam of
x-rays.

In Fig. 27.3 we indicate by crossed circles in a (λ sin θ ) diagram the x-ray diffrac-
tion beams that would be observed in the B-azimuth. We show also again the
electron beams as actually observed. It is obvious that the law of occurrence of
electron beams is not the same as the law of occurrence of Laue beams, and yet
we see that the occurrences of the two sets of beams have certain features in com-
mon. The dots representing electron beams occur along the plane grating lines at
about the same intervals as the crossed circles representing the Laue beams. Other
points of similarity are found with further study of the data and one is led finally to
the conviction that each electron beam is the analogue of a particular Laue beam.
The electron beam represented by a given dot appears to be the analogue of the B-
azimuth Laue beam of the same order represented by the crossed circle occurring
next above it in the diagram. This association of beams is indicated in the figure.

The occurrences of the Laue beams are determined in part by the separation
between the atomic plane gratings that make up the crystal. If the separation
between adjacent planes were increased the crossed circles representing the Laue
beams would be moved upward along the plane grating lines; if the separation were
decreased the crossed circles would be moved downward. Merely as a mode of
description, then, we may say that a given electron beam has the wave-length and
position that its Laue beam analogue would have if the separation between planes
were decreased by a certain factor.
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Fig. 27.3 λ sin θ diagram for
B-azimuth

We have calculated this spacing factor for each of the 21 beams and the values
found are plotted in the upper part of Fig. 27.4 against the voltages of the beams. The
points form a very bad curve. They do indicate, however, that the factor increases
with the speed of the electron, and there is the suggestion that it approaches unity
as a limiting value. There is the suggestion, that is, that at high voltages the law of
occurrence of electron beams is the same as the law of occurrence of Laue beams.

It has been pointed out by Eckart that if the index of refraction of the crystal
for the electron radiation is other than unity diffraction beams will occur as if the
separation between atom planes were other than normal. We have computed the
indices of refraction that would give rise to the observed occurrence of beams and
these are plotted in the lower part of the diagram against bombarding potential.
Again the points fan very irregularly. While it cannot be said that there is at present
a satisfactory explanation of the peculiar occurrence of the space lattice electron
diffraction beams, it should be clearly understood that this deficiency in no way
affects either the wave-length measurements of these beams or the agreement of
these wave-lengths with the values of h/mv.

The electron diffraction beams which I have described are the only ones observed
when the surface of the crystal is free from gas. When the surface is not free from
gas still other beams appear. These beams are due to the scattering of electrons by
the adsorbed gas and therefore we shall not consider them at this time.
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Fig. 27.4 Plot of values of spacing factor and associated values of refractive index for 21 beams

In closing I should like to say a few words about the conceptual difficulty in
which these experiments involve us. When Laue and his collaborators investigated
the scattering of x-rays by crystals the results of their observations were accepted
at once as establishing the wave theory of x-rays. It was a very simple matter for
W.H. Bragg and others to give up the corpuscular theory because of the hypothetical
nature of the x-ray corpuscle. It was only necessary to recognize that Laue’s results
were contrary to hypothesis and the corpuscle disappeared.

If the electron were not the well-authenticated particle we know it to be, it is
possible that the experiment I have described would cause it to vanish in like manner.
We do not, however, anticipate any such event. The electron as a particle is too well
established to be discredited by a few experiments with a nickel crystal. The most
we are apt to allow is that there are circumstances in which it is more convenient
to regard electrons as waves than as particles. We will allow perhaps that electrons
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have a dual nature—when they produce tracks in a C.T.R. Wilson cloud experiment
they are particles, but when they are scattered by a crystal they are waves.

A quite similar situation exists, of course, in the case of x-rays. It has been evi-
dent for some years that the adherents of the corpuscular theory of x-rays were too
enthusiastic in their recantations. X-rays also exhibit a dual nature—when they give
rise to diffraction patterns they are waves, but when they exhibit the Compton effect
or cause the emission of electrons from atoms they are particles—quanta or photons.

This state of affairs is one that should appeal to us as intolerable. There must, it
would seem, be comprehensive modes of description applicable to all electron and
x-ray phenomena, but what these are we do not yet know. We do not know whether
we shall eventually believe with de Broglie and Schroedinger that electrons and x-
rays are waves that sometimes masquerade as particles, with Duane that electrons
and x-rays are particles that sometimes masquerade as waves, or whether eventually
we shall believe with Born that we are dealing in both cases with actual particles
and phantom waves.

I believe, however, that for the present and for a long time to come we shall,
in describing experiments, worry but little about ultimate realities and logical
consistency. We will describe each phenomenon in whatever terms we find most
convenient.

27.3 Study Questions

QUES. 27.1. Do Davisson’s experiments provide quantitative support for the theory
of matter waves?

a) How does Davisson compute the wavelength of electrons scattered from a nickel
crystal based on the spacing of the atoms at its surface? How do you suppose he
knew (beforehand) the arrangement and spacing of the nickel atoms?

b) How does Davisson compute the wavelengths of the scattered electrons based
on De Broglie’s theory of matter waves? What were the shortest wavelength
electrons which Davisson was able to produce?

c) Do the calculations based on De Broglie’s theory of matter waves compare favor-
ably with the calculations based on Laue’s scattering of waves from surface
atoms? To what does Davisson attribute any inconsistencies? Do you find his
conclusions convincing?

QUES. 27.2. Is there a comprehensive (i.e. logically consistent) theory of both
electrons and x-rays?

a) Why was the wave-theory of x-rays accepted more readily (when Laue per-
formed his scattering experiments) than the wave-theory of electrons (when
Davisson performed his scattering experiments)? And why does Davisson sug-
gest that “the adherents of the corpuscular theory of x-rays were too enthusiastic
in their recantations.”
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aperture imagesobjects light 
rays

Fig. 27.5 Light reflected from two objects having an angular separation θ form two broadened
images after passing through an aperture

b) How does the electron and x-ray theory of de Broglie and Schrödinger differ
from that of Duane? How does the theory of Born differ from both of these? To
which of these (if any) does Davisson subscribe? To which do you?

27.4 Exercises

EX. 27.1 (DIFFRACTION LIMITS, ELECTRON IMAGING AND THE RAYLEIGH CRITERION).
The resolution of any measurement apparatus—the size of the smallest discernible
feature—is limited by the wavelength of the illumination source. This is essentially
due to the diffraction of waves when passing through an aperture. In this exercise, we
will explore how such wave diffraction imposes a limit on the resolution achievable
using both optical and electron imaging techniques.

a) As a first example, consider an owl hunting for prey. Moonlight illuminates two
mice on the ground far below. Light reflected from the mice (separated by 10 cm)
enters the owl’s iris (aperture diameter 5 mm) and forms two images on the owl’s
retina. Since light which passes through an aperture experiences diffraction, each
of these images will be spread out a bit, as depicted schematically in Fig. 27.5.
As long as the spreading is not too severe (so that the images do not overlap too
much) the owl will still be able to resolve two distinct mice. According to the
Rayleigh criterion, two images can be resolved so long as each of their central
bright spots lie outside of its neighboring image’s first diffraction minimum.5

With this in mind, demonstrate that, according to the Rayleigh criterion, two
images are resolvable if their angular separation is greater than θR , where

sin θR = λ

d
(27.2)

5 Recall that when a light ray passes through an aperture of width d, the spreading of the ray is
determined by the angular locations of the diffraction minima on either side of the central bright
spot. See the treatment of single-slit diffraction in Ex. 14.2 of volume III.



27.5 Vocabulary 375

At what maximum altitude can the owl still resolve the two mice?6 (ANSWER:
About 1 km.)

b) As a second example, consider a simplified electron microscope. It operates by
aiming a beam of high-energy electrons (100 keV) at a sample having many
tiny, detailed features. The electrons are (elastically) reflected from the sample.
They travel 1 m, pass through a small circular aperture (diameter 1 mm), and
are detected when they strike a small zinc-sulphide screen. What is the smallest
feature that can be resolved using this electron imaging apparatus? How does
this compare to the best resolution available for reflection of visible light from a
sample?

EX. 27.2 (LOGICAL CONSISTENCY). Should scientists worry about “ultimate realities
and logical consistency.” Should anyone?

27.5 Vocabulary

1. Accentuate
2. Lateral
3. Resolve
4. Analogue
5. Unity
6. Adsorb
7. Corpuscular
8. Authenticate
9. Discredit

10. Recantation
11. Photon
12. Masquerade

6 Strictly speaking, Eq. 27.2 is only valid for slit-shaped apertures. For circular apertures, the
Rayleigh criterion becomes sin θR = 1.22 λ

d
.



Chapter 28
Bohr’s Atomic Model

A definite relation may be obtained between the spectra of the
elements and the structure of their atoms on the basis of the
postulates.

—Niels Bohr

28.1 Introduction

Niels Henrick David Bohr (1885–1962) was born in Copenhagen, Denmark. He
received his Ph.D. from Copenhagen University in 1911. Afterwards, he moved
to England, where he studied under J.J. Thomson in Cambridge and under Ernest
Rutherford in Manchester. Bohr’s model of the atom, based on Rutherford’s plane-
tary model, was published in 1913. He was awarded the Nobel Prize for physics in
1922 “for his services in the investigation of the structure of atoms and of the radi-
ation emanating from them.” He went on to serve as a professor at the University of
Copenhagen and then as the director of the newly founded Institute of Theoretical
Physics. He also served a minor role in the Manhattan project during World War II,
after which he became a leading advocate for the peaceful use of nuclear energy.
Among his most famous writings are a series of philosophical essays in which he
clarified the meaning and the significance of the new atomic theory.1

The reading selections in the next few chapters make up Bohr’s 1922 Noble lec-
ture. He begins by providing a brief overview of the most important developments
and discoveries which led up to his own model of the atom. How did Bohr’s atomic
model differ from that of Rutherford? What specific problems motivated Bohr’s
novel theory? And could Bohr’s model account for the emission of light by atomic
hydrogen?

1 See, for example, Bohr, N., Atomic Theory and the Description of Nature, Cambridge University
Press, Cambridge, 1934.
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28.2 Reading: Bohr, The Structure of the Atom

Bohr, N., The Structure of the Atom, in Nobel Lectures, Physics 1922–1941, Else-
vier Publishing Company, 1965. Lecture delivered by Niels Bohr on December 11,
1922.

Ladies and Gentlemen. Today, as a consequence of the great honour the Swedish
Academy of Sciences has done me in awarding me this year’s Nobel Prize for
Physics for my work on the structure of the atom, it is my duty to give an account
of the results of this work and I think that I shall be acting in accordance with the
traditions of the Nobel Foundation if I give this report in the form of a survey of the
development which has taken place in the last few years within the field of physics
to which this work belongs.

28.2.1 The General Picture of the Atom

The present state of atomic theory is characterized by the fact that we not only
believe the existence of atoms to be proved beyond a doubt, but also we even believe
that we have an intimate knowledge of the constituents of the individual atoms. I
cannot on this occasion give a survey of the scientific developments that have led to
this result; I will only recall the discovery of the electron towards the close of the
last century, which furnished the direct verification and led to a conclusive formu-
lation of the conception of the atomic nature of electricity which had evolved since
the discovery by Faraday of the fundamental laws of electrolysis and Berzelius’s
electrochemical theory, and had its greatest triumph in the electrolytic dissociation
theory of Arrhenius. This discovery of the electron and elucidation of its properties
was the result of the work of a large number of investigators, among whom Lenard
and J.J. Thomson may be particularly mentioned. The latter especially has made
very important contributions to our subject by his ingenious attempts to develop
ideas about atomic constitution on the basis of the electron theory. The present state
of our knowledge of the elements of atomic structure was reached, however, by the
discovery of the atomic nucleus, which we owe to Rutherford, whose work on the
radioactive substances discovered towards the close of the last century has much
enriched physical and chemical science.

According to our present conceptions, an atom of an element is built up of a
nucleus that has a positive electrical charge and is the seat of by far the greatest
part of the atomic mass, together with a number of electrons, all having the same
negative charge and mass, which move at distances from the nucleus that are very
great compared to the dimensions of the nucleus or of the electrons themselves. In
this picture we at once see a striking resemblance to a planetary system, such as
we have in our own solar system. Just as the simplicity of the laws that govern the
motions of the solar system is intimately connected with the circumstance that the
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dimensions of the moving bodies are small in relation to the orbits, so the corre-
sponding relations in atomic structure provide us with an explanation of an essential
feature of natural phenomena in so far as these depend on the properties of the ele-
ments. It makes clear at once that these properties can be divided into two sharply
distinguished classes.

To the first class belong most of the ordinary physical and chemical properties
of substances, such as their state of aggregation, colour, and chemical reactivity.
These properties depend on the motion of the electron system and the way in which
this motion changes under the influence of different external actions. On account of
the large mass of the nucleus relative to that of the electrons and its smallness in
comparison to the electron orbits, the electronic motion will depend only to a very
small extent on the nuclear mass, and will be determined to a close approximation
solely by the total electrical charge of the nucleus. Especially the inner structure of
the nucleus and the way in which the charges and masses are distributed among its
separate particles will have a vanishingly small influence on the motion of the elec-
tron system surrounding the nucleus. On the other hand, the structure of the nucleus
will be responsible for the second class of properties that are shown in the radioac-
tivity of substances. In the radioactive processes we meet with an explosion of the
nucleus, whereby positive or negative particles, the so-called α- and β-particles, are
expelled with very great velocities.

Our conceptions of atomic structure afford us, therefore, an immediate explana-
tion of the complete lack of interdependence between the two classes of properties,
which is most strikingly shown in the existence of substances which have to
an extraordinarily close approximation the same ordinary physical and chemical
properties, even though the atomic weights are not the same, and the radioactive
properties are completely different. Such substances, of the existence of which the
first evidence was found in the work of Soddy and other investigators on the chem-
ical properties of the radioactive elements, are called isotopes, with reference to the
classification of the elements according to ordinary physical and chemical proper-
ties. It is not necessary for me to state here how it has been shown in recent years
that isotopes are found not only among the radioactive elements, but also among
ordinary stable elements; in fact, a large number of the latter that were previously
supposed simple have been shown by Aston’s well-known investigations to consist
of a mixture of isotopes with different atomic weights. The question of the inner
structure of the nucleus is still but little understood, although a method of attack
is afforded by Rutherford’s experiments on the disintegration of atomic nuclei by
bombardment with α-particles. Indeed, these experiments may be said to open up a
new epoch in natural philosophy in that for the first time the artificial transforma-
tion of one element into another has been accomplished. In what follows, however,
we shall confine ourselves to a consideration of the ordinary physical and chemical
properties of the elements and the attempts which have been made to explain them
on the basis of the concepts just outlined.

It is well known that the elements can be arranged as regards their ordinary phys-
ical and chemical properties in a natural system which displays most suggestively
the peculiar relationships between the different elements. It was recognized for the
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Fig. 28.1 Julius Thomsen’s depiction of the periodic table.—[K.K.]

first time by Mendeleev and Lothar Meyer that when the elements are arranged in
an order which is practically that of their atomic weights, their chemical and physi-
cal properties show a pronounced periodicity. A diagrammatic representation of this
so-called Periodic Table is given in Fig. 28.1, where, however, the elements are not
arranged in the ordinary way but in a somewhat modified form of a table first given
by Julius Thomsen, who has also made important contributions to science in this
domain. In the figure the elements are denoted by their usual chemical symbols, and
the different vertical columns indicate the so-called periods. The elements in suc-
cessive columns which possess homologous chemical and physical properties are
connected with lines. The meaning of the square brackets around certain series of
elements in the later periods, the properties of which exhibit typical deviations from
the simple periodicity in the first periods, will be discussed later.

In the development of the theory of atomic structure the characteristic features
of the natural system have found a surprisingly simple interpretation. Thus we are
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led to assume that the ordinal number of an element in the Periodic Table, the so-
called atomic number, is just equal to the number of electrons which move about
the nucleus in the neutral atom. In an imperfect form, this law was first stated by
Van den Broek; it was, however, foreshadowed by J.J. Thomson’s investigations of
the number of electrons in the atom, as well as by Rutherford’s measurements of the
charge on the atomic nucleus. As we shall see, convincing support for this law has
since been obtained in various ways, especially by Moseley’s famous investigations
of the X-ray spectra of the elements. We may perhaps also point out, how the simple
connexion between atomic number and nuclear charge offers an explanation of the
laws governing the changes in chemical properties of the elements after expulsion
of α- or β-particles, which found a simple formulation in the so-called radioactive
displacement law.

28.2.2 Atomic Stability and Electrodynamic Theory

As soon as we try to trace a more intimate connexion between the properties of the
elements and atomic structure, we encounter profound difficulties, in that essential
differences between an atom and a planetary system show themselves here in spite
of the analogy we have mentioned.

The motions of the bodies in a planetary system, even though they obey the
general law of gravitation, will not be completely determined by this law alone,
but will depend largely on the previous history of the system. Thus the length of
the year is not determined by the masses of the sun and the earth alone, but depends
also on the conditions that existed during the formation of the solar system, of which
we have very little knowledge. Should a sufficiently large foreign body some day
traverse our solar system, we might among other effects expect that from that day
the length of the year would be different from its present value.

It is quite otherwise in the case of atoms. The definite and unchangeable proper-
ties of the elements demand that the state of an atom cannot undergo permanent
changes due to external actions. As soon as the atom is left to itself again, its
constituent particles must arrange their motions in a manner which is completely
determined by the electric charges and masses of the particles. We have the most
convincing evidence of this in spectra, that is, in the properties of the radiation emit-
ted from substances in certain circumstances, which can be studied with such great
precision. It is well known that the wavelengths of the spectral lines of a substance,
which can in many cases be measured with an accuracy of more than one part in a
million, are, in the same external circumstances, always exactly the same within the
limit of error of the measurements, and quite independent of the previous treatment
of this substance. It is just to this circumstance that we owe the great importance of
spectral analysis, which has been such an invaluable aid to the chemist in the search
for new elements, and has also shown us that even on the most distant bodies of the
universe there occur elements with exactly the same properties as on the earth.
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On the basis of our picture of the constitution of the atom it is thus impossible,
so long as we restrict ourselves to the ordinary mechanical laws, to account for the
characteristic atomic stability which is required for an explanation of the properties
of the elements.

The situation is by no means improved if we also take into consideration the well-
known electrodynamic laws which Maxwell succeeded in formulating on the basis
of the great discoveries of Oersted and Faraday in the first half of the last century.
Maxwell’s theory has not only shown itself able to account for the already known
electric and magnetic phenomena in all their details, but has also celebrated its great-
est triumph in the prediction of the electromagnetic waves which were discovered
by Hertz, and are now so extensively used in wireless telegraphy.

For a time it seemed as though this theory would also be able to furnish a basis
for an explanation of the details of the properties of the elements, after it had been
developed, chiefly by Lorentz and Larmor, into a form consistent with the atom-
istic conception of electricity. I need only remind you of the great interest that
was aroused when Lorentz, shortly after the discovery by Zeeman of the charac-
teristic changes that spectral lines undergo when the emitting substance is brought
into a magnetic field, could give a natural and simple explanation of the main fea-
tures of the phenomenon. Lorentz assumed that the radiation which we observe
in a spectral line is sent out from an electron executing simple harmonic vibrations
about a position of equilibrium, in precisely the same manner as the electromagnetic
waves in radiotelegraphy are sent out by the electric oscillations in the antenna. He
also pointed out how the alteration observed by Zeeman in the spectral lines corre-
sponded exactly to the alteration in the motion of the vibrating electron which one
would expect to be produced by the magnetic field.

It was, however, impossible on this basis to give a closer explanation of the
spectra of the elements, or even of the general type of the laws holding with great
exactness for the wavelengths of lines in these spectra, which had been established
by Balmer, Rydberg, and Ritz. After we obtained details as to the constitution of
the atom, this difficulty became still more manifest; in fact, so long as we confine
ourselves to the classical electrodynamic theory we cannot even understand why we
obtain spectra consisting of sharp lines at all. This theory can even be said to be
incompatible with the assumption of the existence of atoms possessing the structure
we have described, in that the motions of the electrons would claim a continuous
radiation of energy from the atom, which would cease only when the electrons had
fallen into the nucleus.

28.2.3 The Origin of the Quantum Theory

It has, however, been possible to avoid the various difficulties of the electrodynamic
theory by introducing concepts borrowed from the so-called quantum theory, which
marks a complete departure from the ideas that have hitherto been used for the
explanation of natural phenomena. This theory was originated by Planck, in the
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year 1900, in his investigations on the law of heat radiation, which, because of its
independence of the individual properties of substances, lent itself peculiarly well
to a test of the applicability of the laws of classical physics to atomic processes.

Planck considered the equilibrium of radiation between a number of systems with
the same properties as those on which Lorentz had based his theory of the Zeeman
effect, but he could now show not only that classical physics could not account
for the phenomena of heat radiation, but also that a complete agreement with the
experimental law could be obtained if—in pronounced contradiction to classical
theory—it were assumed that the energy of the vibrating electrons could not change
continuously, but only in such a way that the energy of the system always remained
equal to a whole number of so-called energy-quanta. The magnitude of this quantum
was found to be proportional to the frequency of oscillation of the particle, which,
in accordance with classical concepts, was supposed to be also the frequency of the
emitted radiation. The proportionality factor had to be regarded as a new universal
constant, since termed Planck’s constant, similar to the velocity of light, and the
charge and mass of the electron.

Planck’s surprising result stood at first completely isolated in natural science,
but with Einstein’s significant contributions to this subject a few years after, a great
variety of applications was found. In the first place, Einstein pointed out that the
condition limiting the amount of vibrational energy of the particles could be tested
by investigation of the specific heat of crystalline bodies, since in the case of these
we have to do with similar vibrations, not of a single electron, but of whole atoms
about positions of equilibrium in the crystal lattice. Einstein was able to show that
the experiment confirmed Planck’s theory, and through the work of later investiga-
tors this agreement has proved quite complete. Furthermore, Einstein emphasized
another consequence of Planck’s results, namely, that radiant energy could only be
emitted or absorbed by the oscillating particle in so-called “quanta of radiation,”
the magnitude of each of which was equal to Planck’s constant multiplied by the
frequency.

In his attempts to give an interpretation of this result, Einstein was led to the
formulation of the so-called “hypothesis of light-quanta”, according to which the
radiant energy, in contradiction to Maxwell’s electromagnetic theory of light, would
not be propagated as electromagnetic waves, but rather as concrete light atoms, each
with an energy equal to that of a quantum of radiation. This concept led Einstein to
his well-known theory of the photoelectric effect. This phenomenon, which had
been entirely unexplainable on the classical theory, was thereby placed in a quite
different light, and the predictions of Einstein’s theory have received such exact
experimental confirmation in recent years, that perhaps the most exact determina-
tion of Planck’s constant is afforded by measurements on the photoelectric effect. In
spite of its heuristic value, however, the hypothesis of light-quanta, which is quite
irreconcilable with so-called interference phenomena, is not able to throw light on
the nature of radiation. I need only recall that these interference phenomena con-
stitute our only means of investigating the properties of radiation and therefore of
assigning any closer meaning to the frequency which in Einstein’s theory fixes the
magnitude of the light-quantum.
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In the following years many efforts were made to apply the concepts of the
quantum theory to the question of atomic structure, and the principal emphasis was
sometimes placed on one and sometimes on the other of the consequences deduced
by Einstein from Planck’s result. As the best known of the attempts in this direction,
from which, however, no definite results were obtained, I may mention the work of
Stark, Sommerfeld, Hasenöhrl, Haas, and Nicholson.

From this period also dates an investigation by Bjerrum on infrared absorption
bands, which, although it had no direct bearing on atomic structure, proved signif-
icant for the development of the quantum theory. He directed attention to the fact
that the rotation of the molecules in a gas might be investigated by means of the
changes in certain absorption lines with temperature. At the same time he empha-
sized the fact that the effect should not consist of a continuous widening of the lines
such as might be expected from classical theory, which imposed no restrictions on
the molecular rotations, but in accordance with the quantum theory he predicted
that the lines should be split up into a number of components, corresponding to a
sequence of distinct possibilities of rotation. This prediction was confirmed a few
years later by Eva von Bahr, and the phenomenon may still be regarded as one of
the most striking evidences of the reality of the quantum theory, even though from
our present point of view the original explanation has undergone a modification in
essential details.

28.2.4 The Quantum Theory of Atomic Constitution

The question of further development of the quantum theory was in the meantime
placed in a new light by Rutherford’s discovery of the atomic nucleus (1911). As
we have already seen, this discovery made it quite clear that by classical conceptions
alone it was quite impossible to understand the most essential properties of atoms.
One was therefore led to seek for a formulation of the principles of the quantum
theory that could immediately account for the stability in atomic structure and the
properties of the radiation sent out from atoms, of which the observed properties
of substances bear witness. Such a formulation was proposed (1913) by the present
lecturer in the form of two postulates, which may be stated as follows:

(1) Among the conceivably possible states of motion in an atomic system there
exist a number of so-called stationary states which, in spite of the fact that the
motion of the particles in these states obeys the laws of classical mechanics to
a considerable extent, possess a peculiar, mechanically unexplainable stability,
of such a sort that every permanent change in the motion of the system must
consist in a complete transition from one stationary state to another.

(2) While in contradiction to the classical electromagnetic theory no radiation takes
place from the atom in the stationary states themselves, a process of transition
between two stationary states can be accompanied by the emission of electro-
magnetic radiation, which will have the same properties as that which would be
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sent out according to the classical theory from an electrified particle executing
an harmonic vibration with constant frequency. This frequency ν has, however,
no simple relation to the motion of the particles of the atom, but is given by the
relation

hν = E′ − E′′ (28.1)

where h is Planck’s constant, and E′ and E′′ are the values of the energy of
the atom in the two stationary states that form the initial and final state of
the radiation process. Conversely, irradiation of the atom with electromagnetic
waves of this frequency can lead to an absorption process, whereby the atom is
transformed back from the latter stationary state to the former.

While the first postulate has in view the general stability of the atom, the second
postulate has chiefly in view the existence of spectra with sharp lines. Furthermore,
the quantum-theory condition entering in the last postulate affords a starting-point
for the interpretation of the laws of series spectra.

The most general of these laws, the combination principle enunciated by Ritz,
states that the frequency ν for each of the lines in the spectrum of an element can be
represented by the formula

ν = T ′′ − T ′, (28.2)

where T ′′ and T ′ are two so-called “spectral terms” belonging to a manifold of such
terms characteristic of the substance in question.

According to our postulates, this law finds an immediate interpretation in the
assumption that the spectrum is emitted by transitions between a number of sta-
tionary states in which the numerical value of the energy of the atom is equal to
the value of the spectral term multiplied by Planck’s constant. This explanation of
the combination principle is seen to differ fundamentally from the usual ideas of
electrodynamics, as soon as we consider that there is no simple relation between
the motion of the atom and the radiation sent out. The departure of our consider-
ations from the ordinary ideas of natural philosophy becomes particularly evident,
however, when we observe that the occurrence of two spectral lines, corresponding
to combinations of the same spectral term with two other different terms, implies
that the nature of the radiation sent out from the atom is not determined only by the
motion of the atom at the beginning of the radiation process, but also depends on
the state to which the atom is transferred by the process.

At first glance one might, therefore, think that it would scarcely be possible to
bring our formal explanation of the combination principle into direct relation with
our views regarding the constitution of the atom, which, indeed, are based on exper-
imental evidence interpreted on classical mechanics and electrodynamics. A closer
investigation, however, should make it clear that a definite relation may be obtained
between the spectra of the elements and the structure of their atoms on the basis of
the postulates.
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Fig. 28.2 Selected transitions
(arrows) between stationary
states (circles).—[K.K.]

28.2.5 The Hydrogen Spectrum

The simplest spectrum we know is that of hydrogen. The frequencies of its lines
may be represented with great accuracy by means of Balmer’s formula:

ν = K

(
1

n′′2 − 1

n′2

)
(28.3)

where K is a constant and n′ and n′′ are two integers. In the spectrum we accordingly
meet a single series of spectral terms of the form K/n2, which decrease regularly
with increasing term number n. In accordance with the postulates, we shall there-
fore assume that each of the hydrogen lines is emitted by a transition between two
states belonging to a series of stationary states of the hydrogen atom in which the
numerical value of the atom’s energy is equal to hK/n2.

Following our picture of atomic structure, a hydrogen atom consists of a posi-
tive nucleus and an electron which—so far as ordinary mechanical conceptions are
applicable—will with great approximation describe a periodic elliptical orbit with
the nucleus at one focus. The major axis of the orbit is inversely proportional to the
work necessary completely to remove the electron from the nucleus, and, in accor-
dance with the above, this work in the stationary states is just equal to hK/n2 . We
thus arrive at a manifold of stationary states for which the major axis of the electron
orbit takes on a series of discrete values proportional to the squares of the whole
numbers. The accompanying Fig. 28.2 shows these relations diagrammatically. For
the sake of simplicity the electron orbits in the stationary states are represented by
circles, although in reality the theory places no restriction on the eccentricity of the
orbit, but only determines the length of the major axis. The arrows represent the
transition processes that correspond to the red and green hydrogen lines, Hα and
Hβ , the frequency of which is given by means of the Balmer formula when we put
n′′ = 2 and n′ = 3 and 4 respectively. The transition processes are also represented
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which correspond to the first three lines of the series of ultraviolet lines found by
Lyman in 1914, of which the frequencies are given by the formula when n′′ is put
equal to 1, as well as to the first line of the infrared series discovered some years
previously by Paschen, which are given by the formula if n′′ is put equal to 3.

This explanation of the origin of the hydrogen spectrum leads us quite naturally
to interpret this spectrum as the manifestation of a process whereby the electron is
bound to the nucleus. While the largest spectral term with term number 1 corre-
sponds to the final stage in the binding process, the small spectral terms that have
larger values of the term number correspond to stationary states which represent the
initial states of the binding process, where the electron orbits still have large dimen-
sions, and where the work required to remove an electron from the nucleus is still
small. The final stage in the binding process we may designate as the normal state
of the atom, and it is distinguished from the other stationary states by the property
that, in accordance with the postulates, the state of the atom can only be changed
by the addition of energy whereby the electron is transferred to an orbit of larger
dimensions corresponding to an earlier stage of the binding process.

The size of the electron orbit in the normal state calculated on the basis of the
above interpretation of the spectrum agrees roughly with the value for the dimen-
sions of the atoms of the elements that have been calculated by the kinetic theory of
matter from the properties of gases. Since, however, as an immediate consequence
of the stability of the stationary states that is claimed by the postulates, we must sup-
pose that the interaction between two atoms during a collision cannot be completely
described with the aid of the laws of classical mechanics, such a comparison as this
cannot be carried further on the basis of such considerations as those just outlined.

A more intimate connexion between the spectra and the atomic model has been
revealed, however, by an investigation of the motion in those stationary states where
the term number is large, and where the dimensions of the electron orbit and the
frequency of revolution in it vary relatively little when we go from one stationary
state to the next following. It was possible to show that the frequency of the radi-
ation sent out during the transition between two stationary states, the difference of
the term numbers of which is small in comparison to these numbers themselves,
tended to coincide in frequency with one of the harmonic components into which
the electron motion could be resolved, and accordingly also with the frequency of
one of the wave trains in the radiation which would be emitted according to the laws
of ordinary electrodynamics.

The condition that such a coincidence should occur in this region where the sta-
tionary states differ but little from one another proves to be that the constant in the
Balmer formula can be expressed by means of the relation

K = 2π2e4m

h3
(28.4)

where e and m are respectively the charge and mass of the electron, while h is
Planck’s constant. This relation has been shown to hold to within the considerable
accuracy with which, especially through the beautiful investigations of Millikan, the
quantities e, m, and h are known.
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This result shows that there exists a connexion between the hydrogen spec-
trum and the model for the hydrogen atom which, on the whole, is as close as we
might hope considering the departure of the postulates from the classical mechan-
ical and electrodynamic laws. At the same time, it affords some indication of how
we may perceive in the quantum theory, in spite of the fundamental character of this
departure, a natural generalization of the fundamental concepts of the classical elec-
trodynamic theory. To this most important question we shall return later, but first
we will discuss how the interpretation of the hydrogen spectrum on the basis of the
postulates has proved suitable in several ways, for elucidating the relation between
the properties of the different elements.

28.3 Study Questions

QUES. 28.1. What are the strengths and weaknesses of the planetary model of the
atom?

a) What is the planetary model of the atom? On what grounds was it accepted? In
particular, what types of phenomena could it elucidate?

b) How are electron orbits unlike those of planets? And how is this connected to
spectral analysis? To atomic stability?

QUES. 28.2. What is a light quantum?

a) What is the origin of idea of quantization of energy? What experiment did
Einstein use the hypothesis of light quanta to explain?

b) With what phenomena is the concept of the light quantum irreconcilable?

QUES. 28.3. How is the Bohr model of the atom similar to, or different from, the
planetary model?

a) What were the postulates which formed the basis of Bohr’s quantum theory? In
particular, what is a stationary state, and why is it so-called? How are stationary
states related to electromagnetic radiation from atoms?

b) What do these two postulates aim to explain? Are they successful? In what
sense do these postulates provide a departure from “the ordinary ideas of natural
philosophy”?

QUES. 28.4. Can the Bohr model of the atom account for the observed emission
spectrum of atomic hydrogen?

a) What is the Balmer formula? What does it mean?
b) Is the emission spectrum of hydrogen continuous or discreet? How does the

Balmer formula account for this?
c) According to the Bohr model, how can one interpret, say, the red and green

hydrogen emission lines? The ionization energy of hydrogen?
d) What fundamental constants appear in Bohr’s model of the hydrogen atom? Do

the measured values of these constants support Bohr’s model? What does this
suggest?
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28.4 Exercises

EX. 28.1 (BOHR MODEL). According to the planetary model, a hydrogen atom con-
sists of a positively charged proton orbited by a negatively charged electron. In
this exercise, we will explore how Bohr’s model is similar to, and different from,
Rutherford’s planetary model.

a) Using Newton’s second law of motion to relate the coulomb force to the elec-
tron’s centripetal acceleration, show that the speed of an electron orbiting the
proton at distance r is given by

v(r) =
√

kq2

mr
,

where k is coulomb’s constant, q is the elementary charge, and m is the electron
mass.

b) What is the angular momentum, l, of the electron in terms of m, v, and r?
c) Suppose that l were somehow “quantized” so that it could only have values l =

nh̄, where n is an integer and h̄ is a constant with units of angular momentum.
Show that the electron orbits are now also quantized, with orbital radii

rn = n2h̄2

kq2m
.

d) What is the kinetic energy of the orbiting electron? The kinetic energy should
be positive, and should depend upon the orbital radius. What is the electrical
potential energy of the electron-proton system? (HINT: The kinetic and potential
energies should have opposite signs and should depend on the orbital radius.)

e) Show that the total energy of an orbiting electron (whose angular momentum is
quantized) can be written as

En = −2k2q4mπ2

h2

1

n2
, (28.5)

where h̄ = h/2π . Does this answer agree with Bohr’s result? (HINT: What
system of units is Bohr using?)

f) What is the frequency of a photon emitted during a transition between states E4
and E2. Does this lie in the visible range of the spectrum?

g) What is the shortest wavelength photon which can be absorbed by a hydrogen
atom?

EX. 28.2 (BRACKETT SERIES PROBLEM). In the line spectrum of atomic hydrogen
there is also a group of lines known as the Brackett series. These lines are produced
when electrons, excited to high energy levels, make transitions to the n = 4 level.
Find the longest and the shortest wavelengths of the Brackett series. Are these in the
visible range of the electromagnetic spectrum?
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Fig. 28.3 Clockwise from
left: a spectrometer (Sargent-
Welch model S-75903-80), a
5000 V discharge tube power
supply (model WL2393D)
with a hydrogen spectrum
tube (model WLS-68755-
30G), the spectrometer light
shields, and a 600 line/mm
diffraction grating (model
CP86763-01)

EX. 28.3 (HYDROGEN EMISSION SPECTRUM LABORATORY). In this laboratory exer-
cise, you will observe the emission spectrum of hydrogen gas and thereby measure
the value of the Rydberg constant. You will need a grating spectrometer, a discharge
tube power supply, and both hydrogen and mercury spectrum tubes (Fig. 28.3). The
grating spectrometer consists of three main components: a collimator, a diffraction
grating, and a telescope. The collimator is an optical device which forms a beam
of parallel light rays from an initially divergent light source (such as a hydrogen
spectrum tube). The front of the collimator is fitted with an adjustable slit which
allows only a small ribbon of light from the source into the collimator tube. The
collimated light strikes the diffraction grating, which separates the light according
to the wavelengths of its constituent colors. By measuring the angular position of
each colored fringe using the telescope, the precise wavelength of each line in the
hydrogen emission spectrum can be readily determined.

The particular spectrometer that you use will likely include a detailed description
of its components and specific instructions for its use. Before measuring the emis-
sion lines of hydrogen, you will need to calibrate your spectrometer by using a light
source with a well-known emission line, such as the mercury green line. Set up your
spectrometer in a dark room and place the vertical entrance slit of the collimator
tube very near the mercury discharge tube. Adjust the spectrometer until you can
clearly see the mercury emission lines. One of these is a brilliant green line, which
has a wavelength of 546.1 nm. Measure the angles at which the first order (m = 1)
and second order (m = 2) mercury green lines occur with respect to the central
white fringe (m = 0). Then use the diffraction grating formula,2

mλ = d sin θm m = 0, 1, 2, . . . (28.6)

2 See the discussion of wave interference, and especially Ex. 20.4, in Chap. 20 of volume III.
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to determine the grating spacing, d . After thus calibrating your diffraction grating,
set up your spectrometer to measure the hydrogen emission lines. Depending on
conditions, you should be able to observe first order and second order fringes of
red, blue-green, violet, and perhaps even far-violet light by sweeping your telescope
through a wide range of angles. It may take some time for your eyes to adjust to
the dark; a small red LED light is useful for recording information in your lab book
without disturbing your night-vision. Record the angular positions of each of these
fringes, both to the left and to the right of the central white fringe. From your data,
and the grating spacing which you previously determined, calculate the wavelength
(and frequency) of each of the observed hydrogen lines.

Now, attempt to model your data using Balmer’s formula (Eq. 28.3). Each of the
visible lines in the hydrogen emission spectrum corresponds to a transition from a
high energy state, n′, to a low energy state, n′′ = 2. You will need to assign to each
of your emission lines a particular value of n′. (How should you do this?) Then, plot
the frequency, ν, versus 1/n′ and find the slope; this yields the value of the Rydberg
constant, K . (By how much does your measured value differ from the accepted
value?) Also, use your plot to determine the series limit: the frequency as n′ → ∞.
(What does the series limit signify?) Finally, compute the value of Planck’s constant,
h, from your measured value of the Rydberg constant.

28.5 Vocabulary

1. Radioactive
2. Isotope
3. Element
4. Homologous
5. X-ray
6. Spectra
7. Radiotelegraphy
8. Quanta
9. Lattice

10. Photoelectric
11. Heuristic
12. Interference
13. Manifold
14. Eccentricity



Chapter 29
Atomic Spectra and Quantum Numbers

The stationary states compose a more complex manifold, in
which, according to these formal methods, each state is
characterized by several whole numbers, the so-called quantum
numbers.

—Niels Bohr

29.1 Introduction

Since at least the thirteenth century, it had been known that sunlight could be divided
into a broad rainbow of colors by passing it through droplets of water or transpar-
ent crystals. This phenomenon of the dispersion of light was explored with great
care by Isaac Newton in the late seventeenth century by shining pencil-thin rays of
sunlight through triangular glass prisms.1 But it was not until the mid-eighteenth
century—with the development of the spectroscope by Kirchhoff and Bunsen in
Heidelberg—that specific chemical elements could be identified by measuring their
unique emission spectra. Anders Ångström had recently found that hydrogen gas
emits a discrete set of spectral lines (rather than the continuous rainbow-like emis-
sion spectrum studied by Newton) when subjected to a high-voltage electrical
discharge. The wavelengths of these spectral lines could be measured using the
spectroscope. They were found to exhibit a clearly discernible pattern which was, in
turn, described mathematically in 1885 by the Swiss mathematician Johann Balmer.
Balmer’s formula was later generalized by Johannes Rydberg so as to account more
completely for the emission spectrum of hydrogen.2

From the viewpoint of a planetary model of the atom, the discrete emission
spectrum of hydrogen (and the other elements) made no sense. After all, like plan-
ets orbiting the sun, electrons should be able to orbit an atomic nucleus at any
conceivable frequency. So according to the Maxwell’s theory of electrodynamics,

1 See, for example, Propositions II-V of Book I in Newton, I., Opticks: or A Treatise of the
Reflections, Refractions, Inflections & Colours of Light, 4th ed., William Innes at the West-End
of St. Pauls, London, 1730.
2 See Eq. 28.3.
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they should be capable of emitting every conceivable color of light. But atomic
gases typically emit (and absorb) only particular colors. Moreover, orbiting elec-
trons should continually emit radiation—and hence lose energy—spiraling into the
atomic nucleus. The atom should thus be unstable.

In order to address these seemingly fatal flaws of the planetary model, Bohr made
two novel postulates. First, he proposed that electrons can reside in so-called sta-
tionary states. When in one of these peculiar states, either the electron is not moving
(hence, it is “stationary”), or the classical theory of radiation simply does not apply.
How such a scenario might arise Bohr could only surmise. Second, he proposed that
when an electron makes a transition between two stationary states, it emits a sin-
gle photon—Einstein’s proposed quantum of light—whose frequency (as it were)
is determined strictly by the energy difference between the initial and final station-
ary states. Bohr’s two postulates, when appended to the planetary model, were able
to account (at least nominally) for the empirical formula developed by Balmer and
Rydberg to describe the emission spectrum of hydrogen. In the reading selection
that follows, which is a continuation of his 1922 Nobel lecture, Bohr explains how
his model was expanded so as to account for the emission spectra of atoms hav-
ing more complex electronic structures. In so doing, he introduces the reader to the
concept of quantum numbers.

29.2 Reading: Bohr, The Structure of the Atom

Bohr, N., The Structure of the Atom, in Nobel Lectures, Physics 1922-1941, Elsevier
Publishing Company, 1965. Lecture delivered by Niels Bohr on December 11, 1922.

29.2.1 Relationships Between the Elements

The discussion above can be applied immediately to the process whereby an electron
is bound to a nucleus with any given charge. The calculations show that, in the
stationary state corresponding to a given value of the number n, the size of the orbit
will be inversely proportional to the nuclear charge, while the work necessary to
remove an electron will be directly proportional to the square of the nuclear charge.
The spectrum that is emitted during the binding of an electron by a nucleus with
charge N times that of the hydrogen nucleus can therefore be represented by the
formula:

ν = N2K

(
1

n′′2 − 1

n′2

)
(29.1)

If in this formula we put N = 2, we get a spectrum which contains a set of lines
in the visible region which was observed many years ago in the spectrum of cer-
tain stars. Rydberg assigned these lines to hydrogen because of the close analogy
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with the series of lines represented by the Balmer formula. It was never possible to
produce these lines in pure hydrogen, but just before the theory for the hydrogen
spectrum was put forward, Fowler succeeded in observing the series in question by
sending a strong discharge through a mixture of hydrogen and helium. This inves-
tigator also assumed that the lines were hydrogen lines, because there existed no
experimental evidence from which it might be inferred that two different substances
could show properties resembling each other so much as the spectrum in question
and that of hydrogen. After the theory was put forward, it became clear, however,
that the observed lines must belong to a spectrum of helium, but that they were
not like the ordinary helium spectrum emitted from the neutral atom. They came
from an ionized helium atom which consists of a single electron moving about a
nucleus with double charge. In this way there was brought to light a new feature of
the relationship between the elements, which corresponds exactly with our present
ideas of atomic structure, according to which the physical and chemical properties
of an element depend in the first instance only on the electric charge of the atomic
nucleus.

Soon after this question was settled the existence of a similar general relationship
between the properties of the elements was brought to light by Moseley’s well-
known investigations on the characteristic X-ray spectra of the elements, which was
made possible by Laue’s discovery of the interference of X-rays in crystals and the
investigations of W.H. and W.L. Bragg on this subject. It appeared, in fact, that
the X-ray spectra of the different elements possessed a much simpler structure and a
much greater mutual resemblance than their optical spectra. In particular, it appeared
that the spectra changed from element to element in a manner that corresponded
closely to the formula given above for the spectrum emitted during the binding of an
electron to a nucleus, provided N was put equal to the atomic number of the element
concerned. This formula was even capable of expressing, with an approximation
that could not be without significance, the frequencies of the strongest X-ray lines,
if small whole numbers were substituted for n′ and n′′.

This discovery was of great importance in several respects. In the first place,
the relationship between the X-ray spectra of different elements proved so sim-
ple that it became possible to fix without ambiguity the atomic number for all
known substances, and in this way to predict with certainty the atomic number of
all such hitherto unknown elements for which there is a place in the natural system.
Figure 29.1 shows how the square root of the frequency for two characteristic X-ray
lines depends on the atomic number. These lines belong to the group of so-called
K-lines, which are the most penetrating of the characteristic rays. With very close
approximation the points lie on straight lines, and the fact that they do so is condi-
tioned not only by our taking account of known elements, but also by our leaving an
open place between molybdenum (42) and ruthenium (44), just as in Mendeleev’s
original scheme of the natural system of the elements.

Further, the laws of X-ray spectra provide a confirmation of the general theoret-
ical conceptions, both with regard to the constitution of the atom and the ideas that
have served as a basis for the interpretation of spectra. Thus the similarity between
X-ray spectra and the spectra emitted during the binding of a single electron to a
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Fig. 29.1 The (square root of the) frequency of the Kα and Kβ X-ray lines emitted from known
elements scales linearly with atomic number; gaps clearly announce missing elements.—[K.K.]

nucleus may be simply interpreted from the fact that the transitions between sta-
tionary states with which we are concerned in X-ray spectra are accompanied by
changes in the motion of an electron in the inner part of the atom, where the influ-
ence of the attraction of the nucleus is very great compared with the repulsive forces
of the other electrons.

The relations between other properties of the elements are of a much more com-
plicated character, which originates in the fact that we have to do with processes
concerning the motion of the electrons in the outer part of the atom, where the
forces that the electrons exert on one another are of the same order of magnitude as
the attraction towards the nucleus, and where, therefore, the details of the interaction
of the electrons play an important part. A characteristic example of such a case is
afforded by the spatial extension of the atoms of the elements. Lothar Meyer himself
directed attention to the characteristic periodic change exhibited by the ratio of the
atomic weight to the density, the so-called atomic volume, of the elements in the nat-
ural system. An idea of these facts is given by Fig. 29.2, in which the atomic volume
is represented as a function of the atomic number. A greater difference between this
and the previous figure could scarcely be imagined. While the X-ray spectra vary
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Fig. 29.2 Some properties of the elements—such as atomic volume—exhibit a periodic (rather
than a linear) dependence on atomic number.—[K.K.]

uniformly with the atomic number, the atomic volumes show a characteristic peri-
odic change which corresponds exactly to the change in the chemical properties of
the elements.

Ordinary optical spectra behave in an analogous way. In spite of the dissimilarity
between these spectra, Rydberg succeeded in tracing a certain general relationship
between the hydrogen spectrum and other spectra. Even though the spectral lines of
the elements with higher atomic number appear as combinations of a more compli-
cated manifold of spectral terms which is not so simply co-ordinated with a series
of whole numbers, still the spectral terms can be arranged in series each of which
shows a strong similarity to the series of terms in the hydrogen spectrum. This sim-
ilarity appears in the fact that the terms in each series can, as Rydberg pointed out,
be very accurately represented by the formula K/(n + α)2, where K is the same
constant that occurs in the hydrogen spectrum, often called the Rydberg constant,
while n is the term number, and α a constant which is different for the different
series.

This relationship with the hydrogen spectrum leads us immediately to regard
these spectra as the last step of a process whereby the neutral atom is built up by the
capture and binding of electrons to the nucleus, one by one. In fact, it is clear that the
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last electron captured, so long as it is in that stage of the binding process in which
its orbit is still large compared to the orbits of the previously bound electrons, will
be subjected to a force from the nucleus and these electrons, that differs but little
from the force with which the electron in the hydrogen atom is attracted towards the
nucleus while it is moving in an orbit of corresponding dimensions.

The spectra so far considered, for which Rydberg’s laws hold, are excited by
means of electric discharge under ordinary conditions and are often called arc spec-
tra. The elements emit also another type of spectrum, the so-called spark spectra,
when they are subjected to an extremely powerful discharge. Hitherto it was impos-
sible to disentangle the spark spectra in the same way as the arc spectra. Shortly
after the above view on the origin of arc spectra was brought forward, however,
Fowler found (1914) that an empirical expression for the spark spectrum lines could
be established which corresponds exactly to Rydberg’s laws with the single differ-
ence that the constant K is replaced by a constant four times as large. Since, as
we have seen, the constant that appears in the spectrum sent out during the binding
of an electron to a helium nucleus is exactly equal to 4K , it becomes evident that
spark spectra are due to the ionized atom, and that their emission corresponds to the
last step but one in the formation of the neutral atom by the successive capture and
binding of electrons.

29.2.2 Absorption and Excitation of Spectral Lines

The interpretation of the origin of the spectra was also able to explain the charac-
teristic laws that govern absorption spectra. As Kirchhoff and Bunsen had already
shown, there is a close relation between the selective absorption of substances for
radiation and their emission spectra, and it is on this that the application of spectrum
analysis to the heavenly bodies essentially rests. Yet on the basis of the classical
electromagnetic theory, it is impossible to understand why substances in the form
of vapour show absorption for certain lines in their emission spectrum and not for
others.

On the basis of the postulates given above we are, however, led to assume that the
absorption of radiation corresponding to a spectral line emitted by a transition from
one stationary state of the atom to a state of less energy is brought about by the return
of the atom from the last-named state to the first. We thus understand immediately
that in ordinary circumstances a gas or vapour can only show selective absorption for
spectral lines that are produced by a transition from a state corresponding to an ear-
lier stage in the binding process to the normal state. Only at higher temperatures or
under the influence of electric discharges whereby an appreciable number of atoms
are being constantly disrupted from the normal state, can we expect absorption for
other lines in the emission spectrum in agreement with the experiments.

A most direct confirmation for the general interpretation of spectra on the basis
of the postulates has also been obtained by investigations on the excitation of spec-
tral lines and ionization of atoms by means of impact of free electrons with given
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velocities. A decided advance in this direction was marked by the well-known inves-
tigations of Franck and Hertz (1914). It appeared from their results that by means
of electron impacts it was impossible to impart to an atom an arbitrary amount of
energy, but only such amounts as corresponded to a transfer of the atom from its
normal state to another stationary state of the existence of which the spectra assure
us, and the energy of which can be inferred from the magnitude of the spectral term.
Further, striking evidence was afforded of the independence that, according to the
postulates, must be attributed to the processes which give rise to the emission of the
different spectral lines of an element. Thus it could be shown directly that atoms
that were transferred in this manner to a stationary state of greater energy were able
to return to the normal state with emission of radiation corresponding to a single
spectral line.

Continued investigations on electron impacts, in which a large number of
physicists have shared, have also produced a detailed confirmation of the theory
concerning the excitation of series spectra. Especially it has been possible to show
that for the ionization of an atom by electron impact an amount of energy is neces-
sary that is exactly equal to the work required, according to the theory, to remove
the last electron captured from the atom. This work can be determined directly as
the product of Planck’s constant and the spectral term corresponding to the normal
state, which, as mentioned above, is equal to the limiting value of the frequencies of
the spectral series connected with selective absorption.

29.2.3 The Quantum Theory of Multiply-Periodic Systems

While it was thus possible by means of the fundamental postulates of the quantum
theory to account directly for certain general features of the properties of the ele-
ments, a closer development of the ideas of the quantum theory was necessary in
order to account for these properties in further detail. In the course of the last few
years a more general theoretical basis has been attained through the development of
formal methods that permit the fixation of the stationary states for electron motions
of a more general type than those we have hitherto considered. For a simply peri-
odic motion such as we meet in the pure harmonic oscillator, and at least to a first
approximation, in the motion of an electron about a positive nucleus, the manifold
of stationary states can be simply co-ordinated to a series of whole numbers. For
motions of the more general class mentioned above, the so-called multiply peri-
odic motions, however, the stationary states compose a more complex manifold, in
which, according to these formal methods, each state is characterized by several
whole numbers, the so-called “quantum numbers”.

In the development of the theory a large number of physicists have taken part,
and the introduction of several quantum numbers can be traced back to the work of
Planck himself. But the definite step which gave the impetus to further work was
made by Sommerfeld (1915) in his explanation of the fine structure shown by the
hydrogen lines when the spectrum is observed with a spectroscope of high resolving
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Fig. 29.3 Transitions corresponding to the red (Hα) and green (Hβ ) lines of atomic hydrogen.
The precise frequencies of the lines depend on both the principle quantum number, n, and the
subordinate quantum number, k, of the stationary states between which transitions occur.—[K.K.]

power. The occurrence of this fine structure must be ascribed to the circumstance
that we have to deal, even in hydrogen, with a motion which is not exactly simply
periodic. In fact, as a consequence of the change in the electron’s mass with velocity
that is claimed by the theory of relativity, the electron orbit will undergo a very slow
precession in the orbital plane. The motion will therefore be doubly periodic, and
besides a number characterizing the term in the Balmer formula, which we shall call
the principal quantum number because it determines in the main the energy of the
atom, the fixation of the stationary states demands another quantum number which
we shall call the subordinate quantum number.

A survey of the motion in the stationary states thus fixed is given in the dia-
gram (Fig. 29.3), which reproduces the relative size and form of the electron orbits.
Each orbit is designated by a symbol nk , where n is the principal quantum number
and k the subordinate quantum number. All orbits with the same principal quantum
number have, to a first approximation, the same major axis, while orbits with the
same value of k have the same parameter, i.e. the same value for the shortest chord
through the focus. Since the energy values for different states with the same value
of n but different values of k differ a little from each other, we get for each hydrogen
line corresponding to definite values of n′ and n′′ in the Balmer formula a number
of different transition processes, for which the frequencies of the emitted radiation
as calculated by the second postulate are not exactly the same. As Sommerfeld was
able to show, the components this gives for each hydrogen line agree with the obser-
vations on the fine structure of hydrogen lines to within the limits of experimental
error. In the figure the arrows designate the processes that give rise to the compo-
nents of the red and green lines in the hydrogen spectrum, the frequencies of which
are obtained by putting n′′ = 2 and n′ = 3 or 4 respectively in the Balmer formula.
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In considering the figure it must not be forgotten that the description of the orbit
is there incomplete, in so much as with the scale used the slow precession does not
show at all. In fact, this precession is so slow that even for the orbits that rotate
most rapidly the electron performs about 40,000 revolutions before the perihelion
has gone round once. Nevertheless, it is this precession alone that is responsible for
the multiplicity of the stationary states characterized by the subordinate quantum
number. If, for example, the hydrogen atom is subjected to a small disturbing force
which perturbs the regular precession, the electron orbit in the stationary states will
have a form altogether different from that given in the figure. This implies that the
fine structure will change its character completely, but the hydrogen spectrum will
continue to consist of lines that are given to a close approximation by the Balmer
formula, due to the fact that the approximately periodic character of the motion will
be retained. Only when the disturbing forces become so large that even during a
single revolution of the electron the orbit is appreciably disturbed, will the spectrum
undergo essential changes. The statement often advanced that the introduction of
two quantum numbers should be a necessary condition for the explanation of the
Balmer formula must therefore be considered as a misconception of the theory.

Sommerfeld’s theory has proved itself able to account not only for the fine struc-
ture of the hydrogen lines, but also for that of the lines in the helium spark spectrum.
Owing to the greater velocity of the electron, the intervals between the components
into which a line is split up are here much greater and can be measured with much
greater accuracy. The theory was also able to account for certain features in the fine
structure of X-ray spectra, where we meet frequency differences that may even reach
a value more than a million times as great as those of the frequency differences for
the components of the hydrogen lines.

Shortly after this result had been attained, Schwarzschild and Epstein (1916)
simultaneously succeeded, by means of similar considerations, in accounting for
the characteristic changes that the hydrogen lines undergo in an electric field, which
had been discovered by Stark in the year 1914. Next, an explanation of the essen-
tial features of the Zeeman effect for the hydrogen lines was worked out at the same
time by Sommerfeld and Debye (1917). In this instance the application of the postu-
lates involved the consequence that only certain orientations of the atom relative to
the magnetic field were allowable, and this characteristic consequence of the quan-
tum theory has quite recently received a most direct confirmation in the beautiful
researches of Stern and Gerlach on the deflexion of swiftly moving silver atoms in
a nonhomogenous magnetic field.

29.2.4 The Correspondence Principle

While this development of the theory of spectra was based on the working out of
formal methods for the fixation of stationary states, the present lecturer succeeded
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shortly afterwards in throwing light on the theory from a new viewpoint, by pursu-
ing further the characteristic connexion between the quantum theory and classical
electrodynamics already traced out in the hydrogen spectrum. In connexion with the
important work of Ehrenfest and Einstein these efforts led to the formulation of the
so-called correspondence principle, according to which the occurrence of transitions
between the stationary states accompanied by emission of radiation is traced back
to the harmonic components into which the motion of the atom may be resolved and
which, according to the classical theory, determine the properties of the radiation to
which the motion of the particles gives rise.

According to the correspondence principle, it is assumed that every transition
process between two stationary states can be co-ordinated with a corresponding
harmonic vibration component in such a way that the probability of the occur-
rence of the transition is dependent on the amplitude of the vibration. The state
of polarization of the radiation emitted during the transition depends on the fur-
ther characteristics of the vibration, in a manner analogous to that in which on the
classical theory the intensity and state of polarization in the wave system emitted
by the atom as a consequence of the presence of this vibration component would be
determined respectively by the amplitude and further characteristics of the vibration.

With the aid of the correspondence principle it has been possible to confirm and
to extend the above-mentioned results. Thus it was possible to develop a complete
quantum theory explanation of the Zeeman effect for the hydrogen lines, which,
in spite of the essentially different character of the assumptions that underlie the
two theories, is very similar throughout to Lorentz’s original explanation based on
the classical theory. In the case of the Stark effect, where, on the other hand, the
classical theory was completely at a loss, the quantum theory explanation could be
so extended with the help of the correspondence principle as to account for the
polarization of the different components into which the lines are split, and also
for the characteristic intensity distribution exhibited by the components. This last
question has been more closely investigated by Kramers, and the accompanying fig-
ure will give some impression of how completely it is possible to account for the
phenomenon under consideration.

Figure 29.4 reproduces one of Stark’s well-known photographs of the splitting
up of the hydrogen lines. The picture displays very well the varied nature of the
phenomenon, and shows in how peculiar a fashion the intensity varies from compo-
nent to component. The components below are polarized perpendicular to the field,
while those above are polarized parallel to the field.

Figure 29.5 gives a diagrammatic representation of the experimental and theoret-
ical results for the line Hγ , the frequency of which is given by the Balmer formula
with n′′ = 2 and n′ = 5. The vertical lines denote the components into which the
line is split up, of which the picture on the right gives the components which are
polarized parallel to the field and that on the left those that are polarized perpendic-
ular to it. The experimental results are represented in the upper half of the diagram,
the distances from the dotted line representing the measured displacements of the
components, and the lengths of the lines being proportional to the relative inten-
sity as estimated by Stark from the blackening of the photographic plate. In the
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Fig. 29.4 Stark’s observation of the splitting of the Hδ (left), Hγ (center) or Hβ (right) hydrogen
emission line by an applied electric field. The emission lines exhibit polarizations both parallel
(upper) and perpendicular (lower) to the applied field.—[K.K.]

Fig. 29.5 A comparison of the experimental (top) and theoretical (bottom) splitting of the Hγ line
by an electric field for both parallel (right) and perpendicular (left) polarizations. The lines are
labelled according to the principle quantum number, n, and the subordinate quantum number, s, of
the initial and final states.—[K.K.]

lower half is given for comparison a representation of the theoretical results from a
drawing in Kramers’ paper.

The symbol (n′
s′ −n′′

s′′ ) attached to the lines gives the transitions between the sta-
tionary states of the atom in the electric field by which the components are emitted.
Besides the principal quantum integer n, the stationary states are further character-
ized by a subordinate quantum integer s, which can be negative as well as positive



404 29 Atomic Spectra and Quantum Numbers

and has a meaning quite different from that of the quantum number k occurring in
the relativity theory of the fine structure of the hydrogen lines, which fixed the form
of the electron orbit in the undisturbed atom. Under the influence of the electric
field both the form of the orbit and its position undergo large changes, but certain
properties of the orbit remain unchanged, and the surbordinate quantum number s

is connected with these. In Fig. 29.5 the position of the components corresponds to
the frequencies calculated for the different transitions, and the lengths of the lines
are proportional to the probabilities as calculated on the basis of the correspondence
principle, by which also the polarization of the radiation is determined. It is seen
that the theory reproduces completely the main feature of the experimental results,
and in the light of the correspondence principle we can say that the Stark effect
reflects down to the smallest details the action of the electric field on the orbit of the
electron in the hydrogen atom, even though in this case the reflection is so distorted
that, in contrast with the case of the Zeeman effect, it would scarcely be possible
directly to recognize the motion on the basis of the classical ideas of the origin of
electromagnetic radiation.

Results of interest were also obtained for the spectra of elements of higher atomic
number, the explanation of which in the meantime had made important progress
through the work of Sommerfeld, who introduced several quantum numbers for
the description of the electron orbits. Indeed, it was possible, with the aid of the
correspondence principle, to account completely for the characteristic rules which
govern the seemingly capricious occurrence of combination lines, and it is not too
much to say that the quantum theory has not only provided a simple interpretation
of the combination principle, but has further contributed materially to the clearing
up of the mystery that has long rested over the application of this principle.

The same viewpoints have also proved fruitful in the investigation of the so-called
band spectra. These do not originate, as do series spectra, from individual atoms,
but from molecules; and the fact that these spectra are so rich in lines is due to the
complexity of the motion entailed by the vibrations of the atomic nuclei relative
to each other and the rotations of the molecule as a whole. The first to apply the
postulates to this problem was Schwarzschild, but the important work of Heurhnger
especially has thrown much light on the origin and structure of band spectra. The
considerations employed here can be traced back directly to those discussed at the
beginning of this lecture in connexion with Bjerrum’s theory of the influence of
molecular rotation on the infrared absorption lines of gases. It is true we no longer
think that the rotation is reflected in the spectra in the way claimed by classical
electrodynamics, but rather that the line components are due to transitions between
stationary states which differ as regards rotational motion. That the phenomenon
retains its essential feature, however, is a typical consequence of the correspondence
principle.
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29.3 Study Questions

QUES. 29.1. Do the properties of an element depend on the charge of its atomic
nucleus?

a) In what way(s) are the spectra of hydrogen and singly ionized helium different?
What is the cause of this difference? And why might the size of an electron’s
orbit depend on its nuclear charge?

b) Consider subsequent elements of increasing atomic number. Why are properties
such as the atomic volume and the optical spectrum periodic, whereas the X-ray
spectrum of is not?

c) Why are the emission spectra of very complicated elements (i.e., those having
many electrons and a highly charged nucleus) still quite similar to that of the
hydrogen atom?

d) Is the absorption spectrum of a gas different than its emission spectrum? If so,
why?

e) What is meant by the ionization energy of an atom? And what did Frank and
Hertz demonstrate?

QUES. 29.2. What are quantum numbers, and what is their relationship to atomic
spectra?

a) Was Bohr’s theory able to account for the so-called fine structure of the atomic
spectrum? How did Sommerfeld modify Bohr’s theory?

b) How many quantum numbers are required to describe the fine structure of
hydrogen? How does the orbital shape depend on the values of these quantum
numbers? And what happens to an electron orbit when special relativity is taken
into account?

c) Why does Bohr refer to systems characterized by more than one quantum num-
ber as multiply periodic? Do the electrons in an atom, which are characterized
by particular quantum numbers, in fact move, or are they truly stationary?

d) What, according to the correspondence principle, determines the probability of
a particular transition between stationary states?

e) Can Bohr’s quantum theory account for the Stark effect? the Zeeman effect?

29.4 Exercises

EX. 29.1 (HELIUM RECOIL PROBLEM). What is the energy, momentum, and wave-
length of a light quantum emitted by a singly-ionized helium atom when it makes
a direct transition from an excited state with n = 10 to the ground state? Find the
recoil speed of the helium atom in this process.

EX. 29.2 (QUANTUM NUMBERS). According to Bohr’s original model of the atom, the
energy of an orbiting electron was determined by its principle quantum number, n.
Later, Sommerfeld generalized Bohr’s model by introducing subordinate quantum
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numbers so as to account for the observed fine structure of atomic spectra. Accord to
the Bohr-Sommerfeld theory, the electron orbits were ellipses; the principle quan-
tum number, n, described the major axis and the azimuthal quantum number, k,
described the minor axis. According to modern quantum theory—based on the work
of Schrödinger and Heisenberg—atomic electron orbitals are now characterized by
four quantum numbers. I simply list them here with minimal explanation:

n The principle quantum number is sometimes called the energy level of the
orbital. It can take any integer value beginning with unity: n = 1, 2, 3, . . .

l The azimuthal quantum number determines the orbital angular momentum—
and hence the shape—of the orbital. Having specified n, the azimuthal
quantum number can can take any integer value from l = 0 up to l = n − 1.
The l = 0 orbital is called an s orbital; l = 1 a p orbital; l = 2 a d orbital, and
l = 3 an f orbital. Subsequent values are referred to as g, h, i, j . . . orbitals
(omitting l and s for obvious reasons).

ml The magnetic quantum number determines the projection the orbital angu-
lar momentum along a particular (x, y, or z) axis. Having specified l, the
magnetic quantum number can take any integer value from ml = −l up to
ml = +l.

ms The spin quantum number describes the projection of the electron’s intrinsic
angular momentum—its so-called spin—along a particular axis. Depending
on the orientation (so to speak) of the electron with respect to the axis, ms can
take values of either ms = −1 2 or ms = +1 2.

Notice that according to the old Bohr-Sommerfeld model, the azimuthal quantum
number k had a minimum value of 1. From a common-sense perspective, it was
thought that an orbiting electron could not have zero orbital angular momentum.
According to modern quantum theory, it can. This illustrates one of the striking
differences between common-sense (classical) and quantum behavior.3 Now, as an
exercise: how many distinct states can an electron in the n = 2 energy level have?
Write out the four quantum numbers corresponding to each state. Repeat this for an
electron having n = 3 and for an electron having n = 4.

29.5 Vocabulary

1. Atomic volume
2. Empirical
3. Frank-Hertz experiment
4. Ionization

3 The relationship between the old and new azimuthal quantum numbers is given by l = k − 1;
see Chaps. I.2 and I.4 of Herzberg, G., Atomic Spectra and Atomic Structure, 2nd ed., Dover
Publications, New York, 1944.
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5. Fine structure
6. Principle quantum number
7. Subordinate quantum number
8. Spectroscope
9. Perihelion

10. Zeeman effect
11. Stark effect
12. Stern–Gerlach experiment
13. Correspondence principle
14. Polarization
15. Capricious
16. Band spectra



Chapter 30
The Periodic Table of the Elements

We are therefore obliged to be modest in our demands and
content ourselves with concepts which are formal in the sense
that they do not provide a visual picture of the sort one is
accustomed to require of the explanations with which natural
philosophy deals.

—Niels Bohr

30.1 Introduction

Modern atomic theory grew largely out of an attempt to reconcile older “common-
sense” concepts—such as the idea of electrons orbiting a nucleus like little moons
around a planet—with the data emerging from new high-precision experiments on
the emission and absorption of light by various substances. To what extent does
Bohr’s new atomic theory provide an adequate theoretical explanation of spec-
troscopic data? And more generally, what counts as an appropriate theoretical
explanation? Must a theory explain why a particular phenomenon occurs? Must it
be able to predict new phenomena? Must it provide an organizing principle which
connects seemingly disparate phenomena? In the following reading selection, which
brings us to the end of Bohr’s 1922 Nobel lecture, Bohr attempts to explain how his
new atomic model provides an appropriate theoretical explanation of the observed
properties of the known elements. Do you find his arguments convincing? Or is there
perhaps a better theoretical explanation for the periodic table of the elements?

30.2 Reading: Bohr, The Structure of the Atom

Bohr, N., The Structure of the Atom, in Nobel Lectures, Physics 1922–1941, Else-
vier Publishing Company, 1965. Lecture delivered by Niels Bohr on December
11, 1922.
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Fig. 30.1 Some stationary states having small subordinate quantum numbers (e.g. k = 1 and
k = 2) have orbits which penetrate the region very near the nucleus. —[K.K.]

30.2.1 The Natural System of the Elements

The ideas of the origin of spectra outlined in the preceding have furnished the basis
for a theory of the structure of the atoms of the elements which has shown itself
suitable for a general interpretation of the main features of the properties of the
elements, as exhibited in the natural system. This theory is based primarily on con-
siderations of the manner in which the atom can be imagined to be built up by the
capture and binding of electrons to the nucleus, one by one. As we have seen, the
optical spectra of elements provide us with evidence on the progress of the last steps
in this building-up process.

An insight into the kind of information that the closer investigation of the spectra
has provided in this respect may be obtained from Fig. 30.1, which gives a diagram-
matic representation of the orbital motion in the stationary states corresponding to
the emission of the arc-spectrum of potassium. The curves show the form of the
orbits described in the stationary states by the last electron captured in the potas-
sium atom, and they can be considered as stages in the process whereby the 19th
electron is bound after the 18 previous electrons have already been bound in their
normal orbits. In order not to complicate the figure, no attempt has been made to
draw any of the orbits of these inner electrons, but the region in which they move is
enclosed by a dotted circle. In an atom with several electrons the orbits will, in gen-
eral, have a complicated character. Because of the symmetrical nature of the field of
force about the nucleus, however, the motion of each single electron can be approx-
imately described as a plane periodic motion on which is superimposed a uniform
rotation in the plane of the orbit. The orbit of each electron will therefore be to a
first approximation doubly periodic, and will be fixed by two quantum numbers, as
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are the stationary states in a hydrogen atom when the relativity precession is taken
into account.

In Fig. 30.1, as in Fig. 29.3, the electron orbits are marked with the symbol nk ,
where n is the principal quantum number and k the subordinate quantum number.
While for the initial states of the binding process, where the quantum numbers are
large, the orbit of the last electron captured lies completely outside of those of the
previously bound electrons, this is not the case for the last stages. Thus, in the potas-
sium atom, the electron orbits with subordinate quantum numbers 2 and 1 will, as
indicated in the figure, penetrate partly into the inner region. Because of this cir-
cumstance, the orbits will deviate very greatly from a simple Kepler motion, since
they will consist of a series of successive outer loops that have the same size and
form, but each of which is turned through an appreciable angle relative to the pre-
ceding one. Of these outer loops only one is shown in the figure. Each of them
coincides very nearly with a piece of a Kepler ellipse, and they are connected, as
indicated, by a series of inner loops of a complicated character in which the electron
approaches the nucleus closely. This holds especially for the orbit with subordinate
quantum number 1, which, as a closer investigation shows, will approach nearer to
the nucleus than any of the previously bound electrons.

On account of this penetration into the inner region, the strength with which an
electron in such an orbit is bound to the atom will—in spite of the fact that for the
most part it moves in a field of force of the same character as that surrounding the
hydrogen nucleus—be much greater than for an electron in a hydrogen atom that
moves in an orbit with the same principal quantum number, the maximum distance
of the electron from the nucleus at the same time being considerably less than in such
a hydrogen orbit. As we shall see, this feature of the binding process in atoms with
many electrons is of essential importance in order to understand the characteristic
periodic way in which many properties of the elements as displayed in the natural
system vary with the atomic number.

In the accompanying table (Fig. 30.2) is given a summary of the results concern-
ing the structure of the atoms of the elements to which the author has been led by a
consideration of successive capture and binding of electrons to the atomic nucleus.
The figures before the different elements are the atomic numbers, which give the
total number of electrons in the neutral atom. The figures in the different columns
give the number of electrons in orbits corresponding to the values of the principal
and subordinate quantum numbers standing at the top. In accordance with ordinary
usage we will, for the sake of brevity, designate an orbit with principal quantum
number n as an n-quantum orbit. The first electron bound in each atom moves in
an orbit that corresponds to the normal state of the hydrogen atom with quantum
symbol 11. In the hydrogen atom there is of course only one electron; but we must
assume that in the atoms of other elements the next electron also will be bound in
such a 1-quantum orbit of type 11. As the table shows, the following electrons are
bound in 2-quantum orbits. To begin with, the binding will result in a 21 orbit, but
later electrons will be bound in 22 orbits, until, after binding the first 10 electrons
in the atom, we reach a closed configuration of the 2-quantum orbits in which we
assume there are four orbits of each type. This configuration is met for the first time
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Fig. 30.2 The building up of atomic orbitals by capture and binding of electrons. —[K.K.]
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in the neutral neon atom, which forms the conclusion of the second period in the
system of the elements. When we proceed in this system, the following electrons
are bound in 3-quantum orbits, until, after the conclusion of the third period of the
system, we encounter for the first time, in elements of the fourth period, electrons
in 4-quantum orbits, and so on.

This picture of atomic structure contains many features that were brought for-
ward by the work of earlier investigators. Thus the attempt to interpret the relations
between the elements in the natural system by the assumption of a division of
the electrons into groups goes as far back as the work of J.J. Thomson in 1904.
Later, this viewpoint was developed chiefly by Kossel (1916), who, moreover, has
connected such a grouping with the laws that investigations of X-ray spectra have
brought to light.

Also G.R. Lewis and I. Langmuir have sought to account for the relations
between the properties of the elements on the basis of a grouping inside the atom.
These investigators, however, assumed that the electrons do not move about the
nucleus, but occupy positions of equilibrium. In this way, though, no closer relation
can be reached between the properties of the elements and the experimental results
concerning the constituents of the atoms. Statical positions of equilibrium for the
electrons are in fact not possible in cases in which the forces between the electrons
and the nucleus even approximately obey the laws that hold for the attractions and
repulsions between electrical charges.

The possibility of an interpretation of the properties of the elements on the basis
of these latter laws is quite characteristic for the picture of atomic structure devel-
oped by means of the quantum theory. As regards this picture, the idea of connecting
the grouping with a classification of electron orbits according to increasing quantum
numbers was suggested by Moseley’s discovery of the laws of X-ray spectra, and by
Sommerfeld’s work on the fine structure of these spectra. This has been principally
emphasized by Vegard, who some years ago in connexion with investigations of X-
ray spectra proposed a grouping of electrons in the atoms of the elements, which in
many ways shows a likeness to that which is given in the above table.

A satisfactory basis for the further development of this picture of atomic struc-
ture has, however, only recently been created by the study of the binding processes
of the electrons in the atom, of which we have experimental evidence in optical
spectra, and the characteristic features of which have been elucidated principally by
the correspondence principle. It is here an essential circumstance that the restriction
on the course of the binding process, which is expressed by the presence of electron
orbits with higher quantum numbers in the normal state of the atom, can be natu-
rally connected with the general condition for the occurrence of transitions between
stationary states, formulated in that principle.

Another essential feature of the theory is the influence, on the strength of binding
and the dimensions of the orbits, of the penetration of the later bound electrons into
the region of the earlier bound ones, of which we have seen an example in the
discussion of the origin of the potassium spectrum. Indeed, this circumstance may
be regarded as the essential cause of the pronounced periodicity in the properties of
the elements, in that it implies that the atomic dimensions and chemical properties of
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homologous substances in the different periods, as, for example, the alkali-metals,
show a much greater similarity than that which might be expected from a direct
comparison of the orbit of the last electron hound with an orbit of the same quantum
number in the hydrogen atom.

The increase of the principal quantum number which we meet when we proceed
in the series of the elements, affords also an immediate explanation of the character-
istic deviations from simple periodicity which are exhibited by the natural system
and are expressed in Fig. 28.1 by the bracketing of certain series of elements in the
later periods. The first time such a deviation is met with is in the 4th period, and the
reason for it can be simply illustrated by means of our figure of the orbits of the last
electron bound in the atom of potassium, which is the first element in this period.
Indeed, in potassium we encounter for the first time in the sequence of the elements
a case in which the principal quantum number of the orbit of the last electron bound
is, in the normal state of the atom, larger than in one of the earlier stages of the
binding process. The normal state corresponds here to a 41 orbit, which, because of
the penetration into the inner region, corresponds to a much stronger binding of the
electron than a 4-quantum orbit in the hydrogen atom. The binding in question is
indeed even stronger than for a 2-quantum orbit in the hydrogen atom, and is there-
fore more than twice as strong as in the circular 33 orbit which is situated completely
outside the inner region, and for which the strength of the binding differs but little
from that for a 3-quantum orbit in hydrogen.

This will not continue to be true, however, when we consider the binding of the
19th electron in substances of higher atomic number, because of the much smaller
relative difference between the field of force outside and inside the region of the first
eighteen electrons bound. As is shown by the investigation of the spark spectrum of
calcium, the binding of the 19th electron in the 41 orbit is here but little stronger
than in 33 orbits, and as soon as we reach scandium, we must assume that the 33
orbit will represent the orbit of the 19th electron in the normal state, since this type
of orbit will correspond to a stronger binding than a 41 orbit. While the group of
electrons in 2-quantum orbits has been entirely completed at the end of the 2nd
period, the development that the group of 3-quantum orbits undergoes in the course
of the 3rd period can therefore only be described as a provisional completion, and,
as shown in the table, this electron group will, in the bracketed elements of the 4th
period, undergo a stage of further development in which electrons are added to it in
3-quantum orbits.

This development brings in new features, in that the development of the electron
group with 4-quantum orbits comes to a standstill, so to speak, until the 3-quantum
group has reached its final closed form. Although we are not yet in a position to
account in all details for the steps in the gradual development of the 3-quantum
electron group, still we can say that with the help of the quantum theory we see
at once why it is in the 4th period of the system of the elements that there occur
for the first time successive elements with properties that resemble each other as
much as the properties of the iron group; indeed, we can even understand why these
elements show their well known paramagnetic properties. Without further reference
to the quantum theory, Eadenburg had on a previous occasion already suggested the
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idea of relating the chemical and magnetic properties of these elements with the
development of an inner electron group in the atom.

I will not enter into many more details, but only mention that the peculiarities we
meet with in the 5th period are explained in much the same way as those in the 4th
period. Thus the properties of the bracketed elements in the 5th period as it appears
in the table, depend on a stage in the development of the 4-quantum electron group
that is initiated by the entrance in the normal state of electrons in 43 orbits. In the 6th
period, however, we meet new features. In this period we encounter not only a stage
of the development of the electron groups with 5- and 6-quantum orbits, but also
the final completion of the development of the 4-quantum electron group, which is
initiated by the entrance for the first time of electron orbits of the 44 type in the
normal state of the atom. This development finds its characteristic expression in the
occurrence of the peculiar family of elements in the 6th period, known as the rare-
earths. These show, as we know, a still greater mutual similarity in their chemical
properties than the elements of the iron family. This must be ascribed to the fact that
we have here to do with the development of an electron group that lies deeper in the
atom. It is of interest to note that the theory can also naturally account for the fact
that these elements, which resemble each other in so many ways, still show great
differences in their magnetic properties.

The idea that the occurrence of the rare-earths depends on the development of an
inner electron group has been put forward from different sides. Thus it is found in
the work of Vegard, and at the same time as my own work, it was proposed by Bury
in connexion with considerations of the systematic relation between the chemical
properties and the grouping of the electrons inside the atom from the point of view
of Langmuir’s static atomic model. While until now it has not been possible, how-
ever, to give any theoretical basis for such a development of an inner group, we see
that our extension of the quantum theory provides us with an unforced explanation.
Indeed, it is scarcely an exaggeration to say that if the existence of the rare earths
had not been established by direct chemical investigation, the occurrence of a fam-
ily of elements of this character within the 6th period of the natural system of the
elements might have been theoretically predicted.

When we proceed to the 7th period of the system, we meet for the first time with
7-quantum orbits, and we shall expect to find within this period features that are
essentially similar to those in the 6th period, in that besides the first stage in the
development of the 7-quantum orbits, we must expect to encounter further stages
in the development of the group with 6- or 5-quantum orbits. However, it has not
been possible directly to confirm this expectation, because only a few elements are
known in the beginning of the 7th period. The latter circumstance may be supposed
to be intimately connected with the instability of atomic nuclei with large charges,
which is expressed in the prevalent radioactivity among elements with high atomic
number.
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30.2.2 X-Ray Spectra and Atomic Constitution

In the discussion of the conceptions of atomic structure we have hitherto placed the
emphasis on the formation of the atom by successive capture of electrons. Our pic-
ture would, however, be incomplete without some reference to the confirmation of
the theory afforded by the study of X-ray spectra. Since the interruption of Mose-
ley’s fundamental researches by his untimely death, the study of these spectra has
been continued in a most admirable way by Prof. Siegbahn in Lund. On the basis
of the large amount of experimental evidence adduced by him and his collaborators,
it has been possible recently to give a classification of X-ray spectra that allows an
immediate interpretation on the quantum theory. In the first place it has been possi-
ble, just as in the case of the optical spectra, to represent the frequency of each of
the X-ray lines as the difference between two out of a manifold of spectral terms
characteristic of the element in question. Next, a direct connexion with the atomic
theory is obtained by the assumption that each of these spectral terms multiplied by
Planck’s constant is equal to the work which must be done on the atom to remove
one of its inner electrons. In fact, the removal of one of the inner electrons from
the completed atom may, in accordance with the above considerations on the forma-
tion of atoms by capture of electrons, give rise to transition processes by which the
place of the electron removed is taken by an electron belonging to one of the more
loosely bound electron groups of the atom, with the result that after the transition an
electron will be lacking in this latter group.

The X-ray lines may thus be considered as giving evidence of stages in a pro-
cess by which the atom undergoes a reorganization after a disturbance in its interior.
According to our views on the stability of the electronic configuration such a distur-
bance must consist in the removal of electrons from the atom, or at any rate in their
transference from normal orbits to orbits of higher quantum numbers than those
belonging to completed groups; a circumstance which is clearly illustrated in the
characteristic difference between selective absorption in the X-ray region, and that
exhibited in the optical region.

The classification of the X-ray spectra, to the achievement of which the above-
mentioned work of Sommerfeld and Kossel has contributed materially, has recently
made it possible, by means of a closer examination of the manner in which the
terms occurring in the X-ray spectra vary with the atomic number, to obtain a very
direct test of a number of the theoretical conclusions as regards the structure of the
atom. In Fig. 30.3 the abscissæ are the atomic numbers and the ordinates are propor-
tional to the square roots of the spectral terms, while the symbols K,L,M,N,O,
for the individual terms refer to the characteristic discontinuities in the selective
absorption of the elements for X-rays; these were originally found by Barkla before
the discovery of the interference of X-rays in crystals had provided a means for
the closer investigation of X-ray spectra. Although the curves generally run very
uniformly, they exhibit a number of deviations from uniformity which have been
especially brought to light by the recent investigation of Coster, who has for some
years worked in Siegbahn’s laboratory.
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Fig. 30.3 Variation of X-ray spectra with atomic number. —[K.K.]
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These deviations, the existence of which was not discovered until after the publi-
cation of the theory of atomic structure discussed above, correspond exactly to what
one might expect from this theory. At the foot of the figure the vertical lines indicate
where, according to the theory, we should first expect, in the normal state of the
atom, the occurrence of nk orbits of the type designated. We see how it has been
possible to connect the occurrence of every spectral term with the presence of an
electron moving in an orbit of a definite type, to the removal of which this term is
supposed to correspond. That in general there corresponds more than one curve to
each type of orbit nk is due to a complication in the spectra which would lead us
too far afield to enter into here, and may be attributed to the deviation from the pre-
viously described simple type of motion of the electron arising from the interaction
of the different electrons within the same group.

The intervals in the system of the elements, in which a further development of
an inner electron group takes place because of the entrance into the normal atom
of electron orbits of a certain type, are designated in the figure by the horizontal
lines, which are drawn between the vertical lines to which the quantum symbols are
affixed. It is clear that such a development of an inner group is everywhere reflected
in the curves. Particularly the course of the N - and O-curves may be regarded as
a direct indication of that stage in the development of the electron groups with 4-
quantum orbits of which the occurrence of the rare-earths bears witness. Although
the apparent complete absence of a reflection in the X-ray spectra of the complicated
relationships exhibited by most other properties of the elements was the typical
and important feature of Moseley’s discovery, we can recognize, nevertheless, in
the light of the progress of the last years, an intimate connexion between the X-
ray spectra and the general relationships between the elements within the natural
system.

Before concluding this lecture I should like to mention one further point in which
X-ray investigations have been of importance for the test of the theory. This con-
cerns the properties of the hitherto unknown element with atomic number 72. On
this question opinion has been divided in respect to the conclusions that could be
drawn from the relationships within the Periodic Table, and in many representations
of the table a place is left open for this element in the rare-earth family. In Julius
Thomsen’s representation of the natural system, however, this hypothetical element
was given a position homologous to titanium and zirconium in much the same way
as in our representation in Fig. 28.1. Such a relationship must be considered as a
necessary consequence of the theory of atomic structure developed above, and is
expressed in the table (Fig. 30.2) by the fact that the electron configurations for
titanium and zirconium show the same sort of resemblances and differences as the
electron configurations for zirconium and the element with atomic number 72. A
corresponding view was proposed by Bury on the basis of his above-mentioned sys-
tematic considerations of the connexion between the grouping of the electrons in
the atom and the properties of the elements.

Recently, however, a communication was published by Dauvillier announcing
the observation of some weak lines in the X-ray spectrum of a preparation contain-
ing rare-earths. These were ascribed to an element with atomic number 72 assumed
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to be identical with an element of the rare-earth family, the existence of which in
the preparation used had been presumed by Urbain many years ago. This conclusion
would, however, if it could be maintained, place extraordinarily great, if not unsur-
mountable, difficulties in the way of the theory, since it would claim a change in the
strength of the binding of the electrons with the atomic number which seems incom-
patible with the conditions of the quantum theory. In these circumstances Dr. Coster
and Prof. Hevesy, who are both for the time working in Copenhagen, took up a
short time ago the problem of testing a preparation of zircon-bearing minerals by
X-ray spectroscopic analysis. These investigators have been able to establish the
existence in the minerals investigated of appreciable quantities of an element with
atomic number 72, the chemical properties of which show a great similarity to those
of zirconium and a decided difference from those of the rare-earths.1

I hope that I have succeeded in giving a summary of some of the most important
results that have been attained in recent years in the field of atomic theory, and I
should like, in concluding, to add a few general remarks concerning the viewpoint
from which these results may be judged, and particularly concerning the question of
how far, with these results, it is possible to speak of an explanation, in the ordinary
sense of the word. By a theoretical explanation of natural phenomena we understand
in general a classification of the observations of a certain domain with the help of
analogies pertaining to other domains of observation, where one presumably has to
do with simpler phenomena. The most that one can demand of a theory is that this
classification can be pushed so far that it can contribute to the development of the
field of observation by the prediction of new phenomena.

When we consider the atomic theory, we are, however, in the peculiar position
that there can be no question of an explanation in this last sense, since here we have
to do with phenomena which from the very nature of the case are simpler than in
any other field of observation, where the phenomena are always conditioned by the
combined action of a large number of atoms. We are therefore obliged to be modest
in our demands and content ourselves with concepts which are formal in the sense
that they do not provide a visual picture of the sort one is accustomed to require
of the explanations with which natural philosophy deals. Bearing this in mind I
have sought to convey the impression that the results, on the other hand, fulfill, at
least in some degree, the expectations that are entertained of any theory; in fact,
I have attempted to show how the development of atomic theory has contributed
to the classification of extensive fields of observation, and by its predictions has
pointed out the way to the completion of this classification. It is scarcely necessary,
however, to emphasize that the theory is yet in a very preliminary stage, and many
fundamental questions still await solution.

1 For the result of the continued work of Coster and Hevesy with the new element, for which they
have proposed the name hafnium, the reader may be referred to their letters in Nature of January
20, February 10 and 24, and April 7.
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30.3 Study Questions

QUES. 30.1. Does Bohr’s model of the atom provide an appropriate theoretical
explanation for the periodic table of the elements?

a) What is the maximum number of electrons which can be bound to an element
having principle quantum number n = 1? n = 2?

b) Do electron orbits having large principle quantum numbers always lie outside
orbits having smaller principle quantum numbers?

c) What are the quantum numbers of the electrons orbiting the nucleus in potas-
sium? Generally speaking, when an atom’s orbits are successively filled with
captured electrons, are the n-quantum orbits always populated before the (n +
1)-quantum orbits?

d) What feature dictates the chemical and magnetic properties of an element? In
particular, how does the classification of electron orbits according to quantum
numbers allow one to group the elements?

e) What is unique about the rare-earth elements? In which period do they appear?
f) Why are high-atomic number elements comparatively rare? What physical

process limits their stability?
g) How is the X-ray spectrum of an element connected to its atomic structure?
h) What constitutes an appropriate theoretical explanation of the periodic table?

Can Bohr’s quantum theory explain the classification of the elements? Did it
make any testable predictions? Have these predictions been verified?

30.4 Exercises

EX. 30.1 (THE AUFBAU PRINCIPLE AND ELECTRON CONFIGURATIONS). The hypothet-
ical scheme according to which an atomic nucleus captures successive electrons and
places them into atomic orbitals is referred to as the aufbau principle (German for
“building-up principle”). According to the building-up principle, an electron will
tend to occupy the lowest energy state which is available, subject to a constraint
imposed by the Pauli exclusion principle: no electron may have the same four quan-
tum numbers as another electron. For example, the two bound electrons in a neutral
(and unexcited) helium atom have quantum numbers (n, l,ml,ms) = (1, 0, 0,+1 2)
and (1, 0, 0,−1 2).

A standard notation has been adopted for denoting the electron configuration of
an atom. This consists of a string of numbers and letters denoting the occupancy
of each orbital. For example, the ground state electron configuration of a hydrogen
atom is denoted by 1s1 (pronounced “one ess one”). The 1s denotes the orbital
having n = 1 and l = 0; the superscript indicates that the 1s orbital is occupied by a
single electron. The ground state of lithium is 1s22s1 (“one ess two, two ess one”).
This can also be written more compactly as [He] 2s1, since lithium is like helium
with an additional electron in the 2s orbital.
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As an exercise, write down the ground state electron configurations of your
favorite element from each period of the periodic table. In so doing, you should keep
in mind the following general rule: orbitals having the smallest principle quantum
number, n, are filled before ones having larger principle quantum numbers. This rule
is true only insofar as the azimuthal quantum number, l, has no effect on the energy
of the orbital. Recall that according to Sommerfeld, orbitals having small orbital
angular momenta have very elliptical orbits (classically speaking) and thus pene-
trate very near to the atomic nucleus. This gives rise to a strong (negative) binding
energy. The building-up principle is then governed by the Madelung rule: orbitals
with lower n + l values tend to be filled before ones with higher n + l values. All
of this is based on the (somewhat dubious) assumption that an electron’s energy
is independent of the locations of neighboring electrons; a more comprehensive
treatment of the aufbau principle necessitate the careful consideration of electron-
electron interactions. By applying the Madelung rule, what is the first element in
which a higher n orbital is occupied before a lower n orbital? Is this consistent with
the ground-state electron configuration reported by Bohr? What is the first element
that does not obey Madelung’s rule? (HINT: You may wish to double-check your
answers by looking at a modern reference which reports the ground-state electron
configurations of various elements.)

EX. 30.2 (X-RAY EMISSION SPECTRUM OF COPPER). Suppose that a beam of electrons
is accelerated towards a copper target. One of the incoming electrons has sufficient
energy to penetrate the outer shells of a copper atom and eject one of the innermost
electrons from its orbital. Subsequently, one of the electrons having principal quan-
tum number n = 2 makes a transition to the newly vacated n = 1 orbital. This
produces the Kα spectral emission line.

a) What is the wavelength of the photon emitted as a result of this n = 2 to n = 1
transition in copper? How does this compare to the wavelength of the photon
emitted during a similar n = 2 to n = 1 transition for a helium atom?

b) Suppose, instead, that one of the n = 3 electrons is ejected from copper, and that
an n = 4 electron falls into the vacated n = 3 orbital? Can you approximate the
wavelength of the emitted photon? (HINT: The remaining inner-orbital electrons
act to shield the positively charged copper nucleus, making its Coulomb force
on the outer-orbital electron appear much weaker.)

EX. 30.3 (THEORY AND EXPLANATION ESSAY). Does the Bohr model provide a the-
oretical explanation of the periodic table of the elements? According to Bohr, what
must any theoretical explanation accomplish? Does Bohr’s quantum theory ful-
fill this criteria? Do you generally agree with Bohr’s views on what constitutes a
theoretical explanation? If not, how do your views differ?
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30.5 Vocabulary

1. Prevalent
2. Elucidate
3. Homologous
4. Paramagnetic
5. Rare-earth
6. Manifold
7. Discontinuity
8. Abscissæ
9. Ordinate

10. Configuration
11. Analogy
12. Pertain



Chapter 31
Wave Mechanics

The atom in reality is merely the diffraction phenomenon of an
electron wave captured as it were by the nucleus of the atom.

—Erwin Schrödinger

31.1 Introduction

Erwin Schrödinger (1887–1961) was born in Vienna, Austria. He was home-
schooled by his parents and tutors until the age of 11, when he attended the academic
Gymnasium in Vienna. His early interests included Latin and Greek grammar, Ger-
man poetry, and science. In 1906, he enrolled at the University of Vienna, where
he began to attend lectures on theoretical physics given by Friedrich Hasenöhrl,
the successor of Ludwig Boltzmann. After receiving his doctoral degree in 1910,
he became an assistant to Franz Exner and supervised physics laboratory courses.
After serving as an artillery officer in World War I, he pursued an academic career.
In 1920, he took a position as assistant to Max Wien, then served as an extraor-
dinary professor at Stuttgart and an ordinary professor at Breslau before replacing
von Laue at the University of Zurich. In 1927, he moved to Berlin to succeed Max
Planck at the University until 1933. During the War years, he spent time in Oxford,
at the University of Graz and at the University of Ghent before moving to the new
Institute for Advanced Studies in Dublin to serve as the Director of the School of
Theoretical Physics until his retirement in 1955.

While at Zurich, Schrödinger published much of his most famous work, includ-
ing theoretical papers on the specific heat of solids, thermodynamics, atomic spectra,
and the foundation of quantum mechanics. Indeed Schrödinger is known as one of
the primary architects of modern quantum theory. The reading selection that follows
is the lecture delivered by Schrödinger in 1933 upon receiving the Nobel Prize in
physics.
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Fig. 31.1 Snell’s law governs the refraction of a light ray at the boundary between two media.—
[K.K.]

31.2 Reading: Schrödinger, The Fundamental Idea of Wave
Mechanics

Schrödinger, E., Wave Mechanics, in Nobel Lectures, Physics 1922–1941, Elsevier
Publishing Company, 1965. Lecture delivered by Erwin Schrödinger in 1933.

On passing through an optical instrument, such as a telescope or a camera lens, a
ray of light is subjected to a change in direction at each refracting or reflecting sur-
face. The path of the rays can be constructed if we know the two simple laws which
govern the changes in direction: the law of refraction which was discovered by Snel-
lius a few hundred years ago, and the law of reflection with which Archimedes was
familiar more than 2000 years ago. As a simple example, Fig. 31.1 shows a ray
A − B which is subjected to refraction at each of the four boundary surfaces of two
lenses in accordance with the law of Snellius.

Fermat defined the total path of a ray of light from a much more general point of
view. In different media, light propagates with different velocities, and the radiation
path gives the appearance as if the light must arrive at its destination as quickly
as possible. (Incidentally, it is permissible here to consider any two points along
the ray as the starting- and end-points.) The least deviation from the path actually
taken would mean a delay. This is the famous Fermat principle of the shortest light
time, which in a marvellous manner determines the entire fate of a ray of light
by a single statement and also includes the more general case, when the nature of
the medium varies not suddenly at individual surfaces, but gradually from place to
place. The atmosphere of the earth provides an example. The more deeply a ray of
light penetrates into it from outside, the more slowly it progresses in an increasingly
denser air. Although the differences in the speed of propagation are infinitesimal,
Fermat’s principle in these circumstances demands that the light ray should curve
earthward (see Fig. 31.2), so that it remains a little longer in the higher “faster”
layers and reaches its destination more quickly than by the shorter straight path
(broken line in the figure; disregard the square, WWW ′W ′ for the time being). I
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Fig. 31.2 The curvature of a light ray in Earth’s atmosphere is a consequence of Fermat’s principle,
which states that a light ray will follow the path of least time (rather than the path of least distance)
between two points.—[K.K.]

Fig. 31.3 According to the wave theory, light rays are fictitious entities constructed orthogonal to
wave surfaces (a); the curvature of a light ray is associated with the swerving of a wave surface as
it advances through an inhomogeneous medium (b).—[K.K.]

think, hardly any of you will have failed to observe that the sun when it is deep on
the horizon appears to be not circular but flattened: its vertical diameter looks to be
shortened. This is a result of the curvature of the rays.

According to the wave theory of light, the light rays, strictly speaking, have only
fictitious significance. They are not the physical paths of some particles of light,
but are a mathematical device, the so-called orthogonal trajectories of wave sur-
faces, imaginary guide lines as it were, which point in the direction normal to the
wave surface in which the latter advances (cf. Fig. 31.3a which shows the simplest
case of concentric spherical wave surfaces and accordingly rectilinear rays, whereas
Fig. 31.3b illustrates the case of curved rays).

It is surprising that a general principle as important as Fermat’s relates directly
to these mathematical guide lines, and not to the wave surfaces, and one might be
inclined for this reason to consider it a mere mathematical curiosity. Far from it. It
becomes properly understandable only from the point of view of wave theory and
ceases to be a divine miracle. From the wave point of view, the so-called curvature
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of the light ray is far more readily understandable as a swerving of the wave surface,
which must obviously occur when neighbouring parts of a wave surface advance at
different speeds; in exactly the same manner as a company of soldiers marching
forward will carry out the order “right incline” by the men taking steps of vary-
ing lengths, the right-wing man the smallest, and the left-wing man the longest. In
atmospheric refraction of radiation for example (Fig. 31.2) the section of wave sur-
face WW must necessarily swerve to the right towards W ′W ′ because its left half is
located in slightly higher, thinner air and thus advances more rapidly than the right
part at lower point. (In passing, I wish to refer to one point at which the Snellius’
view fails. A horizontally emitted light ray should remain horizontal because the
refraction index does not vary in the horizontal direction. In truth, a horizontal ray
curves more strongly than any other, which is an obvious consequence of the theory
of a swerving wave front.) On detailed examination the Fermat principle is found
to be completely tantamount to the trivial and obvious statement that—given local
distribution of light velocities—the wave front must swerve in the manner indicated.
I cannot prove this here, but shall attempt to make it plausible. I would again ask
you to visualize a rank of soldiers marching forward. To ensure that the line remains
dressed, let the men be connected by a long rod which each holds firmly in his hand.
No orders as to direction are given; the only order is: let each man march or run as
fast as he can. If the nature of the ground varies slowly from place to place, it will be
now the right wing, now the left that advances more quickly, and changes in direc-
tion will occur spontaneously. After some time has elapsed, it will be seen that the
entire path travelled is not rectilinear, but somehow curved. That this curved path is
exactly that by which the destination attained at any moment could be attained most
rapidly according to the nature of the terrain, is at least quite plausible, since each of
the men did his best. It will also be seen that the swerving also occurs invariably in
the direction in which the terrain is worse, so that it will come to look in the end as
if the men had intentionally “bypassed” a place where they would advance slowly.

The Fermat principle thus appears to be the trivial quintessence of the wave the-
ory. It was therefore a memorable occasion when Hamilton made the discovery that
the true movement of mass points in a field of forces (e.g. of a planet on its orbit
around the sun or of a stone thrown in the gravitational field of the earth) is also
governed by a very similar general principle, which carries and has made famous
the name of its discoverer since then. Admittedly, the Hamilton principle does not
say exactly that the mass point chooses the quickest way, but it does say something
so similar—the analogy with the principle of the shortest travelling time of light
is so close, that one was faced with a puzzle. It seemed as if Nature had realized
one and the same law twice by entirely different means: first in the case of light,
by means of a fairly obvious play of rays; and again in the case of the mass points,
which was anything but obvious, unless somehow wave nature were to be attributed
to them also. And this, it seemed impossible to do. Because the “mass points” on
which the laws of mechanics had really been confirmed experimentally at that time
were only the large, visible, sometimes very large bodies, the planets, for which a
thing like “wave nature” appeared to be out of the question.
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The smallest, elementary components of matter which we today, much more
specifically, call “mass points”, were purely hypothetical at the time. It was only
after the discovery of radioactivity that constant refinements of methods of mea-
surement permitted the properties of these particles to be studied in detail, and
now permit the paths of such particles to be photographed and to be measured very
exactly (stereophotogrammetrically) by the brilliant method of C.T.R. Wilson. As
far as the measurements extend they confirm that the same mechanical laws are
valid for particles as for large bodies, planets, etc. However, it was found that
neither the molecule nor the individual atom can be considered as the “ultimate
component”: but even the atom is a system of highly complex structure. Images are
formed in our minds of the structure of atoms consisting of particles, images which
seem to have a certain similarity with the planetary system. It was only natural that
the attempt should at first be made to consider as valid the same laws of motion that
had proved themselves so amazingly satisfactory on a large scale. In other words,
Hamilton’s mechanics, which, as I said above, culminates in the Hamilton principle,
were applied also to the “inner life” of the atom. That there is a very close analogy
between Hamilton’s principle and Fermat’s optical principle had meanwhile become
all but forgotten. If it was remembered, it was considered to be nothing more than a
curious trait of the mathematical theory.

Now, it is very difficult, without further going into details, to convey a proper
conception of the success or failure of these classical-mechanical images of the
atom. On the one hand, Hamilton’s principle in particular proved to be the most
faithful and reliable guide, which was simply indispensable; on the other hand
one had to suffer, to do justice to the facts, the rough interference of entirely new
incomprehensible postulates, of the so-called quantum conditions and quantum pos-
tulates. Strident disharmony in the symphony of classical mechanics—yet strangely
familiar—played as it were on the same instrument. In mathematical terms we can
formulate this as follows: whereas the Hamilton principle merely postulates that a
given integral must be a minimum, without the numerical value of the minimum
being established by this postulate, it is now demanded that the numerical value
of the minimum should be restricted to integral multiples of a universal natural
constant, Planck’s quantum of action. This incidentally. The situation was fairly des-
perate. Had the old mechanics failed completely, it would not have been so bad. The
way would then have been free to the development of a new system of mechanics.
As it was, one was faced with the difficult task of saving the soul of the old system,
whose inspiration clearly held sway in this microcosm, while at the same time flat-
tering it as it were into accepting the quantum conditions not as gross interference
but as issuing from its own innermost essence.

The way out lay just in the possibility, already indicated above, of attributing
to the Hamilton principle, also, the operation of a wave mechanism on which the
point-mechanical processes are essentially based, just as one had long become
accustomed to doing in the case of phenomena relating to light and of the Fermat
principle which governs them. Admittedly, the individual path of a mass point loses
its proper physical significance and becomes as fictitious as the individual isolated
ray of light. The essence of the theory, the minimum principle, however, remains
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not only intact, but reveals its true and simple meaning only under the wave-like
aspect, as already explained. Strictly speaking, the new theory is in fact not new, it
is a completely organic development, one might almost be tempted to say a more
elaborate exposition, of the old theory.

How was it then that this new more “elaborate” exposition led to notably different
results; what enabled it, when applied to the atom, to obviate difficulties which the
old theory could not solve? What enabled it to render gross interference acceptable
or even to make it its own?

Again, these matters can best be illustrated by analogy with optics. Quite prop-
erly, indeed, I previously called the Fermat principle the quintessence of the wave
theory of light: nevertheless, it cannot render dispensible a more exact study of the
wave process itself. The so-called refraction and interference phenomena of light
can only be understood if we trace the wave process in detail because what matters
is not only the eventual destination of the wave, but also whether at a given moment
it arrives there with a wave peak or a wave trough. In the older, coarser experimental
arrangements, these phenomena occurred as small details only and escaped obser-
vation. Once they were noticed and were interpreted correctly, by means of waves,
it was easy to devise experiments in which the wave nature of light finds expres-
sion not only in small details, but on a very large scale in the entire character of the
phenomenon.

Allow me to illustrate this by two examples, first, the example of an optical
instrument, such as telescope, microscope, etc. The object is to obtain a sharp image,
i.e. it is desired that all rays issuing from a point should be reunited in a point, the
so-called focus (cf. Fig. 31.4 a). It was at first believed that it was only geometrical-
optical difficulties which prevented this: they are indeed considerable. Later it was
found that even in the best designed instruments focussing of the rays was consider-
ably inferior than would be expected if each ray exactly obeyed the Fermat principle
independently of the neighbouring rays. The light which issues from a point and is
received by the instrument is reunited behind the instrument not in a single point any
more, but is distributed over a small circular area, a so-called diffraction disc, which,
otherwise, is in most cases a circle only because the apertures and lens contours are
generally circular. For, the cause of the phenomenon which we call diffraction is
that not all the spherical waves issuing from the object point can be accommodated
by the instrument. The lens edges and any apertures merely cut out a part of the
wave surfaces (cf. Fig. 31.4b) and—if you will permit me to use a more sugges-
tive expression—the injured margins resist rigid unification in a point and produce
the somewhat blurred or vague image. The degree of blurring is closely associ-
ated with the wavelength of the light and is completely inevitable because of this
deep-seated theoretical relationship. Hardly noticed at first, it governs and restricts
the performance of the modern microscope which has mastered all other errors of
reproduction. The images obtained of structures not much coarser or even still finer
than the wavelengths of light are only remotely or not at all similar to the original.

A second, even simpler example is the shadow of an opaque object cast on a
screen by a small point light source. In order to construct the shape of the shadow,
each light ray must be traced and it must be established whether or not the opaque
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Fig. 31.4 Light from an object (A) is focused by lenses into an image (B) using a ray picture
(above) and a wave picture (below). Only the latter picture provides a complete explanation of the
inevitable blurring of the image. —[K.K.]

object prevents it from reaching the screen. The margin of the shadow is formed
by those light rays which only just brush past the edge of the body. Experience
has shown that the shadow margin is not absolutely sharp even with a point-shaped
light source and a sharply defined shadow-casting object. The reason for this is the
same as in the first example. The wave front is as it were bisected by the body
(cf. Fig. 31.5) and the traces of this injury result in blurring of the margin of the
shadow which would be incomprehensible if the individual light rays were inde-
pendent entities advancing independently of one another without reference to their
neighbours.

This phenomenon—which is also called diffraction—is not as a rule very notice-
able with large bodies. But if the shadow-casting body is very small at least in one
dimension, diffraction finds expression firstly in that no proper shadow is formed at
all, and secondly—much more strikingly—in that the small body itself becomes as
it were its own source of light and radiates light in all directions (preferentially to
be sure, at small angles relative to the incident light). All of you are undoubtedly
familiar with the so-called “motes of dust” in a light beam falling into a dark room.
Fine blades of grass and spiders’ webs on the crest of a hill with the sun behind
it, or the errant locks of hair of a man standing with the sun behind often light up
mysteriously by diffracted light, and the visibility of smoke and mist is based on it.
It comes not really from the body itself, but from its immediate surroundings, an
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Fig. 31.5 The fringes which
appear in the shadow of an
illuminated object can be
understood from the wave
(and not the ray) picture of
light.—[K.K.]

area in which it causes considerable interference with the incident wave fronts. It is
interesting, and important for what follows, to observe that the area of interference
always and in every direction has at least the extent of one or a few wavelengths, no
matter how small the disturbing particle may be. Once again, therefore, we observe
a close relationship between the phenomenon of diffraction and wavelength. This is
perhaps best illustrated by reference to another wave process, i.e. sound. Because
of the much greater wavelength, which is of the order of centimetres and metres,
shadow formation recedes in the case of sound, and diffraction plays a major, and
practically important, part: we can easily hear a man calling from behind a high wall
or around the corner of a solid house, even if we cannot see him.

Let us return from optics to mechanics and explore the analogy to its fullest
extent. In optics the old system of mechanics corresponds to intellectually operat-
ing with isolated mutually independent light rays. The new undulatory mechanics
corresponds to the wave theory of light. What is gained by changing from the old
view to the new is that the diffraction phenomena can be accommodated or, better
expressed, what is gained is something that is strictly analogous to the diffraction
phenomena of light and which on the whole must be very unimportant, otherwise the
old view of mechanics would not have given full satisfaction so long. It is, however,
easy to surmise that the neglected phenomenon may in some circumstances make
itself very much felt, will entirely dominate the mechanical process, and will face
the old system with insoluble riddles, if the entire mechanical system is comparable
in extent with the wavelengths of the “waves of matter” which play the same part in
mechanical processes as that played by the light waves in optical processes.
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This is the reason why in these minute systems, the atoms, the old view was
bound to fail, which though remaining intact as a close approximation for gross
mechanical processes, but is no longer adequate for the delicate interplay in areas of
the order of magnitude of one or a few wavelengths. It was astounding to observe the
manner in which all those strange additional requirements developed spontaneously
from the new undulatory view, whereas they had to be forced upon the old view
to adapt them to the inner life of the atom and to provide some explanation of the
observed facts.

Thus, the salient point of the whole matter is that the diameters of the atoms and
the wavelength of the hypothetical material waves are of approximately the same
order of magnitude. And now you are bound to ask whether it must be considered
mere chance that in our continued analysis of the structure of matter we should come
upon the order of magnitude of the wavelength at this of all points, or whether this is
to some extent comprehensible. Further, you may ask, how we know that this is so,
since the material waves are an entirely new requirement of this theory, unknown
anywhere else. Or is it simply that this is an assumption which had to be made?

The agreement between the orders of magnitude is no mere chance, nor is any
special assumption about it necessary; it follows automatically from the theory in
the following remarkable manner. That the heavy nucleus of the atom is very much
smaller than the atom and may therefore be considered as a point centre of attraction
in the argument which follows may be considered as experimentally established by
the experiments on the scattering of alpha rays done by Rutherford and Chadwick.
Instead of the electrons we introduce hypothetical waves, whose wavelengths are
left entirely open, because we know nothing about them yet. This leaves a letter, say
a, indicating a still unknown figure, in our calculation. We are, however, used to this
in such calculations and it does not prevent us from calculating that the nucleus of
the atom must produce a kind of diffraction phenomenon in these waves, similarly
as a minute dust particle does in light waves. Analogously, it follows that there is
a close relationship between the extent of the area of interference with which the
nucleus surrounds itself and the wavelength, and that the two are of the same order
of magnitude. What this is, we have had to leave open; but the most important step
now follows: we identify the area of interference, the diffraction halo, with the atom;
we assert that the atom in reality is merely the diffraction phenomenon of an electron
wave captured as it were by the nucleus of the atom. It is no longer a matter of chance
that the size of the atom and the wavelength are of the same order of magnitude: it
is a matter of course. We know the numerical value of neither, because we still
have in our calculation the one unknown constant, which we called a. There are two
possible ways of determining it, which provide a mutual check on one another. First,
we can so select it that the manifestations of life of the atom, above all the spectrum
lines emitted, come out correctly quantitatively; these can after all be measured
very accurately. Secondly, we can select a in a manner such that the diffraction halo
acquires the size required for the atom. These two determinations of a (of which
the second is admittedly far more imprecise because “size of the atom” is no clearly
defined term) are in complete agreement with one another. Thirdly, and lastly, we
can remark that the constant remaining unknown, physically speaking, does not in
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Fig. 31.6 From a wave
picture, which of these
equally-possible parallel rays
corresponds to the true path
of a point particle?—[K.K.]

fact have the dimension of a length, but of an action, i.e. energy × time. It is then an
obvious step to substitute for it the numerical value of Planck’s universal quantum
of action, which is accurately known from the laws of heat radiation. It will be seen
that we return, with the full, now considerable accuracy, to the first (most accurate)
determination.

Quantitatively speaking, the theory therefore manages with a minimum of new
assumptions. It contains a single available constant, to which a numerical value
familiar from the older quantum theory must be given, first to attribute to the diffrac-
tion halos the right size so that they can be reasonably identified with the atoms, and
secondly, to evaluate quantitatively and correctly all the manifestations of life of
the atom, the light radiated by it, the ionization energy, etc. I have tried to place
before you the fundamental idea of the wave theory of matter in the simplest possi-
ble form. I must admit now that in my desire not to tangle the ideas from the very
beginning, I have painted the lily. Not as regards the high degree to which all suffi-
ciently, carefully drawn conclusions are confirmed by experience, but with regard to
the conceptual ease and simplicity with which the conclusions are reached. I am not
speaking here of the mathematical difficulties, which always turn out to be trivial in
the end, but of the conceptual difficulties. It is, of course, easy to say that we turn
from the concept of a curved path to a system of wave surfaces normal to it. The
wave surfaces, however, even if we consider only small parts of them include at least
a narrow bundle of possible curved paths (Fig. 31.6) to all of which they stand in
the same relationship. According to the old view, but not according to the new, one
of them in each concrete individual case is distinguished from all the others which
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are “only possible”, as that “really travelled”. We are faced here with the full force
of the logical opposition between an

either—or (point mechanics)

and a

both—and (wave mechanics)

This would not matter much, if the old system were to be dropped entirely and to
be replaced by the new. Unfortunately, this is not the case. From the point of view
of wave mechanics, the infinite array of possible point paths would be merely ficti-
tious, none of them would have the prerogative over the others of being that really
travelled in an individual case. I have, however, already mentioned that we have yet
really observed such individual particle paths in some cases. The wave theory can
represent this, either not at all or only very imperfectly. We find it confoundedly dif-
ficult to interpret the traces we see as nothing more than narrow bundles of equally
possible paths between which the wave surfaces establish cross-connections. Yet,
these cross-connections are necessary for an understanding of the diffraction and
interference phenomena which can be demonstrated for the same particle with the
same plausibility—and that on a large scale, not just as a consequence of the theo-
retical ideas about the interior of the atom, which we mentioned earlier. Conditions
are admittedly such that we can always manage to make do in each concrete indi-
vidual case without the two different aspects leading to different expectations as
to the result of certain experiments. We cannot, however, manage to make do with
such old, familiar, and seemingly indispensible terms as “real” or “only possible”;
we are never in a position to say what really is or what really happens, but we can
only say what will be observed in any concrete individual case. Will we have to be
permanently satisfied with this. . . ? On principle, yes. On principle, there is nothing
new in the postulate that in the end exact science should aim at nothing more than
the description of what can really be observed. The question is only whether from
now on we shall have to refrain from tying description to a clear hypothesis about
the real nature of the world. There are many who wish to pronounce such abdication
even today. But I believe that this means making things a little too easy for oneself.

I would define the present state of our knowledge as follows. The ray or the parti-
cle path corresponds to a longitudinal relationship of the propagation process (i.e. in
the direction of propagation), the wave surface on the other hand to a transversal
relationship (i.e. normal to it). Both relationships are without doubt real; one is
proved by photographed particle paths, the other by interference experiments. To
combine both in a uniform system has proved impossible so far. Only in extreme
cases does either the transversal, shell-shaped or the radial, longitudinal relation-
ship predominate to such an extent that we think we can make do with the wave
theory alone or with the particle theory alone.
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31.3 Study Questions

QUES. 31.1. What is Fermat’s principle?

a) What happens to a ray of light when passing from one medium into another?
b) What two laws govern the reflection and refraction of light rays? How are these

related to Fermat’s principle?
c) What is the relationship between the law of refraction and the wave theory of

light?
d) In what sense is Fermat’s principle the “quintessence of the wave theory”?

QUES. 31.2. How is Hamilton’s principle similar to Fermat’s principle?

a) Do Hamilton’s and Fermat’s principles deal with the same physical entities?
b) What puzzle does the similarity of the two principles then present?
c) How is a mass point similar to an isolated ray of light? What does this imply

about its physical significance?

QUES. 31.3. Under what conditions is the wave-like character of light most clearly
expressed?

a) How do the physical dimensions of a body affect the degree to which the wave-
like character of light is noticeable?

b) What everyday examples does Schrödinger provide in which the wave-like
character of light is observed?

c) Why can one hear, but not see, a person calling from behind a wall?

QUES. 31.4. Is the wave-like character of matter always observable? Is it ever
observable?

a) Why had the wave-like character of matter been overlooked until now? What
systems most clearly illustrate this wave-like character?

b) Is it mere chance that the characteristic length-scale of matter-waves is the same
as the size of an atom? What does Schrödinger mean when he asserts that
“the atom in reality is merely the diffraction phenomenon of an electron wave
captured as it were by the nucleus of the atom”?

c) What significant role does Planck’s constant play in the theory of wave mechan-
ics?

QUES. 31.5. What is the fundamental idea of wave mechanics?

a.) Schrödinger states that it is “difficult to interpret the traces we see as noth-
ing more than narrow bundles of equally possible paths between which the
wave surfaces establish cross-connections.” Why, then then does he suggest this
interpretation?

b.) Schrödinger states that it is an old idea that “exact science should aim at nothing
more than the description of what can really be observed.” Do you agree with
this postulate? Can you name one or more scientists who would disagree with
this postulate?
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c.) Does Schrödinger himself wish to “refrain from tying description to a clear
hypothesis about the real nature of the world”?

d.) How does Schrödinger summarize the present state of knowledge?

31.4 Exercises

EX. 31.1 (THE TIME-DEPENDENT SCHRÖDINGER EQUATION). In 1926, Schrödinger
published a famous paper in which he set forth his theory of wave mechanics. The
heart of this theory is the so-called time-dependent Schrödinger equation. This (lin-
ear, homogeneous, second-order, partial) differential equation may be expressed (in
cartesian coordinates) as follows:

ih̄
∂

∂t
� = − h̄2

2m

(
∂2

∂x2
+ ∂2

∂y2
+ ∂2

∂z2

)
� + V �. (31.1)

Here, h̄ is Planck’s constant (divided by 2π ), m is the mass of the particle under
consideration, V is the potential energy function to which mass m is subjected, and
i = √−1. The solutions, �, of this differential equation are the matter-waves to
which Schrödinger refers in his nobel lecture. Generally speaking, they are time- and
space- dependent functions whose form depends on the potential energy function
V (x, y, z). For example, for an electron placed in a spherically symmetric inverse-
square potential (such as the potential of a hydrogen nucleus), the solutions, �,
yield the various stationary state orbitals of a neutral hydrogen atom.1 In Ex. 31.4
and 31.5, we will explore these solutions for a simple particle-in-a-box potential. In
the present problem, we will motivate the development of the Schrödinger equation
itself.

The time-dependent Schrödinger equation may be understood as the F = ma

(so to speak) of wave mechanics, in that it serves as the axiom2 upon which any
analysis of matter-waves is based.3 Considered as an axiom, Eq. 31.1 cannot be
derived. Nonetheless, one can begin to understand why the fundamental equation
of wave mechanics must have this particular form by considering another partial
differential equation—the classical wave equation:

∂2

∂t2
� = c2 ∂2

∂x2
� (31.2)

1 See Bohr’s discussion of stationary states of they hydrogen atom in Chaps. 28–30 of the present
volume.
2 In his Principia, Newton described his second law of motion not as an empirical law but as an
Axiom; see Chap. 21 of volume II.
3 Strictly speaking, Schrödinger’s equation is only applicable to non-relativistic quantum systems;
when treating relativistic particles the Dirac equation must be used.
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The one-dimensional wave equation, as written above, governs the propagation of
waves in diverse classical systems, from longitudinal sound waves to transverse
electromagnetic waves.

a) Prove that the plane-wave �(x, t) = �0 cos (kx − ωt) is a solution to the one-
dimensional wave equation, provided that the wave speed, c, the wave-number,
k, and the angular frequency, ω, obey the dispersion relation:

ω2 = c2k2 (31.3)

How are k and ω related to the wavelength, λ, and the period, T , of the traveling
wave? In which direction is this wave propagating?

b) If we take Einstein’s theory of light seriously, then electromagnetic waves may
be understood as photons whose energy and momentum are given by E = h̄ω

and p = h/λ, respectively. Prove that the energy and momentum of a quantum
of light are then related by

E = cp. (31.4)

c) Unlike electrons, photons have zero mass. So presumably, Eq. 31.4 does not
work for electrons. In fact, from classical mechanics, we know that the energy
and momentum of a particle of mass m moving in a potential V are related by

E = p2

2m
+ V . (31.5)

The question now is: can we begin with Eq. 31.5 and work backwards to con-
struct a wave-equation which governs the behavior of massive particles? To
begin, let us assume that the energy and momentum of a massive particle are
still given by the Einstein and de Broglie relations. Show that Eq. 31.5 may then
be written as

h̄ω = h̄2k2

2m
+ V .

d) Notice that in the dispersion relation for a massive particle, ω and k are no longer
linearly related, as they were in the dispersion relation for a photon. We might
therefore anticipate that the new partial differential equation we seek has a first
derivative of � with respect to t on the left-hand-side and a second derivative of
� with respect to x on the right-hand-side. Let us try an equation of the form

A
∂

∂t
� = B

∂2

∂x2
� + V �.

Here, A and B are (soon to-be-determined) constants. Is �(x, t) =
�0 cos (kx − ωt) a solution to this equation? What problem do you run into?

e) Show that this problem can be fixed by (i) using a complex plane-wave solution
of the form �(x, t) = �0e

i(kx−ωt), and (ii) appropriately choosing the values
of A and B. This should allow you to obtain a one-dimensional form of the
time-dependent Schrödinger equation, Eq. 31.1.
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EX. 31.2 (THE SUPEPOSITION PRINCIPLE AND SCHRÖDINGER’S CAT). For a free par-
ticle which obeys the Schrödinger equation, the wave-number (and frequency) can
have any values whatsoever. For a bound particle, on the other hand, we will soon
find that they can only take on certain, discrete values.4 Anticipating this devel-
opment, let us introduce an integer, n, and denote the allowed wave-numbers and
frequencies by kn and ωn, respectively. The nth allowed solution to the Schrödinger
equation is then written as

�n(x, t) = �0,ne
i(knx−ωnt) (31.6)

Now it is a general feature of linear differential equations (such as the Schrödinger
equation), that any linear combination of solutions is itself a solution. To illustrate
this, use Eq. 31.6 to prove that if �1 and �2 are solutions of the time-dependent
Schrödinger equation, then so is the linear combination

�(x, t) = a1�1(x, t) + a2�2(x, t). (31.7)

Equation 31.7 expresses the superposition principle. This principle curiously
implies that the state of an electron can (theoretically) be represented by a wave-
function, �, which has more than one wavelength and more than one frequency. An
electron in such a superposition state will typically not have a unique momentum
or a unique energy—at least until it is actually observed by a measuring appara-
tus. When observed, however, the electron will be found to have the momentum (or
energy) associated with one of the particular states which comprise the superposition
state. For example, for an electron in the state given by Eq. 31.7, whose constituent
states �1 and �2 have energy values E1 = h̄ω1 and E2 = h̄ω2, the probability
of finding the energy of the electron to be E1 will be |a1|2, and the probability of
finding the energy of the electron to be E2 will be |a2|2. After this measurement
process, the electron will persist in whichever state happened to be measured; the
superposition state, �, is said to have “collapsed” during the measurement process
into one of the possible “energy eigenstates” �1 or �2.

It is interesting to note that Schrödinger himself considered the existence of
such superposition states to be rather dubious, for the following reason. Perhaps
a microscopic body (such as an electron) might exist in a superposition state of
different energies. But when this concept is extended to macroscopic bodies, the
superposition principle implies that a large organism (such as a cat) might exist in
a superposition state in which it is both alive and dead. Schrödinger thought this
situation to be absurd. Is it?5

EX. 31.3 (THE TIME-INDEPENDENT SCHRÖDINGER EQUATION). In Ex. 31.1, we devel-
oped a partial differential equation which yields the correct dispersion relation

4 See Ex. 31.4, below.
5 Other paradoxes associated with the so-called Copenhagen interpretation of quantum theory will
be presented by Werner Heisenberg in the subsequent chapter.
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for a massive particle whose energy and momentum are given by E = h̄ω and
p = h/λ. This partial differential equation is the time-dependent Schrödinger equa-
tion. In many cases, the solutions to this equation can be factored into the product
of a space-dependent function and a time-dependent function. For example, in one
spatial dimension, � may be written as

�(x, t) = ψ(x)φ(t). (31.8)

a) Show that when this is the case, we may re-write the time-dependent Schrödinger
equation as

1

ψ(x)

(
−h̄2

2m

)
∂2

∂x2
ψ(x) + V = ih̄

φ(t)

∂

∂t
φ(t) (31.9)

b) Notice that if the potential function is time-independent, then the left-hand-side
of Eq. 31.9 is only a function of x, and the right-hand-side is only a function
of t . We have separated the variables. Moreover, since x and t are independent
variables, the only way for solutions of Eq. 31.9 to exist is if the left and right
sides are separately equal to the same (space- and time-independent) constant.
Using this technique of separation of variables, show that φ(t) takes the form

φ(t) = e−iEt/h̄, (31.10)

and that ψ(x) obeys the (one-dimensional) time-independent Schrödinger equa-
tion:

−h̄2

2m

∂2

∂x2
ψ(x) + V (x)ψ(x) = Eψ(x) (31.11)

c) Finally, show that in three spatial dimensions the time-independent Schrödinger
equation becomes

−h̄2

2m

(
∂2

∂x2
+ ∂2

∂y2
+ ∂2

∂z2

)
ψ(x, y, z) + V (x, y, z)ψ(x, y, z) = Eψ(x, y, z)

(31.12)

EX. 31.4 (PARTICLE IN A 1-D BOX). In this exercise, we will determine the energy of
an electron confined in a hypothetical one-dimensional box of length a which has
absolutely impenetrable walls. This box may be described by the following potential
function.

V (x) =
{

0 if 0 < x < a

∞ if x ≤ 0 or x ≥ a
(31.13)

Notice that V (x) doesn’t depend on time. Thus, we can use the time-independent
Schrödinger equation to determine ψ(x).

a) First, demonstrate that the function

ψ(x) = A sin (kx) (31.14)
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is a viable solution to the time-independent Schrödinger equation inside the box.
(HINT Plug it into Eq. 31.11 and check!) A is here a constant which we will
determine shortly.

b) Does our solution work outside the box? Notice that ψ(x) must vanish (become
zero) in the regions where V = ∞; otherwise the left-hand side of Eq. 31.11
would be infinite, and this would require an infinite energy, E, on the right-
hand side. So now show that in order to satisfy the boundary conditions, the
wave-number can only have certain, discrete values:

kl = lπ

a
, (31.15)

where l = 0, 1, 2, . . . (HINT: where are the nodes of sin (kx)?)
c) In order to solve the Schrödinger equation for the particle in a one-dimensional

box, we had to introduce an integer, l; this is called a quantum number. Prove
that the electron’s energy is given by

El = h2l2

8ma2
. (31.16)

The energies El are said to be the eigenvalues (special values) which correspond
to each of the eigenfunctions (special functions) ψl .

d) Thus far, we have been focusing on the space-dependent part of the wave-
function, ψ(x); recall that the solutions to Schrödinger’s equation also contain
a time-dependent factor, φ(t). So the wave-functions of the electron in a
one-dimensional box should be written as

�l(x, t) = Ae−iEl t/h̄ sin (lπx/a), (31.17)

where El is given by Eq. 31.16. This is a complex space- and time-dependent
function. Show that |�l(x, t)|2, which is the product of �l(x, t) and its complex
conjugate, is a time-independent and real function of x.

e) Schrödinger initially suggested that the aforementioned quantity, |�l(x)|2, repre-
sented the charge density of the electron. In other words, he thought the electron
charge was somehow smeared out over a region of space. Later, Max Born inter-
preted this same quantity as a probability density function. That is, he understood

P (x) dx = |�l(x)|2 dx (31.18)

as the probability that an electron might be found in a small region of space
between x and x + dx (if it was measured, for example, with an ionization
chamber or a scintillation counter). In order to treat P (x) as a probability density
function, there must be a 100 % likelihood of finding the electron somewhere
inside the box. Carry out the integral

∫ x=a

x=0
P (x) dx = 1 (31.19)
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and thereby determine the appropriate value of A which normalizes the wave-
function �l(x, t).

f) Make a sketch of the probability density function, P (x), for an electron in (i) the
ground state (l = 0) and (ii) the first excited state (l = 1). Where is the electron
most likely to be located when in each of these two states? Where is it least likely
to be located?

g) What is the wavelength of the photon which is emitted when the electron makes
a transition from the first excited state to the ground state? How small would the
box need to be for this photon to lie in the visible range of the spectrum?

EX. 31.5 (PARTICLE IN A 3-D BOX). In this exercise, you will attempt to generalize
the analysis of Ex. 31.4 to the case of a three-dimensional box having sides of length
a, b, and c.

a) First, you should construct a wave-function ψl,m,n(x, y, z) which satisfies the
three-dimensional time-independent Schrödinger equation. Remember that these
wave-functions must vanish outside of the box. This will require the introduction
of three quantum numbers, l, m, and n.

b) Next, you should find a mathematical expression for the energy eigenvalues,
El,m,n, which correspond to the eigenfunctions ψl,m,n. Assuming the dimensions
of the box to be (a, b, c) = (10, 12, 15) nanometers, what are the quantum num-
bers, (l, m, n), which correspond to the lowest five energy states? Calculate the
wavelength of a photon emitted when the confined electron makes a transition
from the first excited state to the ground state.

c) Finally, make a sketch of the probability density function for an electron in the
ground state and in the first excited state. Where is the electron most likely to be
found when in each of these two states? Where is it least likely to be found?

31.5 Vocabulary

1. Refraction
2. Reflection
3. Infinitesimal
4. Tantamount
5. Postulate
6. Strident
7. Quantum
8. Microcosm
9. Fictitious

10. Exposition
11. Obviate
12. Render
13. Quintessence
14. Diffraction



31.5 Vocabulary 441

15. Surmise
16. Gross
17. Salient
18. Trivial
19. Prerogative
20. Confound
21. Longitudinal
22. Transverse



Chapter 32
The Quantum Paradox

One would get into hopeless difficulties if one tried to describe
what happens between two consecutive observations.

—Werner Heisenberg

32.1 Introduction

Werner Heisenberg (1901–1976) was born in the city of Würzburg, part of the Ger-
man Empire. In 1920, he enrolled at the University of Munich where his father was
a professor of Byzantine studies. Although Heisenberg shared his father’s love of
classical languages, he chose to study physics under Arnold Sommerfeld while at
the University. Sommerfeld was one of the principle architects of the “old quantum
theory” which used as its starting point Rutherford’s planetary model of the atom.1

After struggling through a laboratory course on experimental physics (led by Wil-
helm Wien), Heisenberg earned his Ph.D. in 1923. His dissertation was “On the
Stability and Turbulence of Fluid Flow.” Immediately thereafter, he traveled to Göt-
tingen to begin working as an assistant to Max Born, who would later be awarded
the Nobel Prize in physics for his statistical interpretation of the wave function
which appeared in Schrödinger’s wave-mechanical quantum theory.2 Heisenberg
had already spent some time with Born in Göttingen while his doctoral advisor,
Sommerfeld, was lecturing at the University of Wisconsin during the winter of
1922. While working as an assistant to Born, Heisenberg briefly traveled to the
University of Copenhagen to collaborate with Niels Bohr and his assistant Hendrik
Kramers. By the time he completed his habilitation, which qualified him to teach
at the university level, Heisenberg’s attention was devoted almost entirely to devel-
oping a new quantum theory of the atom. His breakthrough came in 1925, when
he and Born published a paper entitled “Quantum-Theoretical Re-interpretation of
Kinematic and Mechanical Relations.”

1 See Chaps. 28–30 of the present volume.
2 Max Born was awarded the Nobel prize in physics in 1954 for work which he had published
in 1926. For a brief explanation of the probability interpretation of |�∗�|, see Ex. 31.4 in the
previous chapter of the present volume.
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Unlike the old quantum theory of Bohr and Sommerfeld which incorporated
classical ideas (such as planet-like electron orbits), Heisenberg’s new quantum
mechanics was expressed entirely in terms of quantities which are observable—at
least in principle—such as the position and the momentum of an electron. One of the
most striking and significant features of the new quantum mechanics is the formu-
lation of Heisenberg’s uncertainty (or indeterminacy) principle, which appeared in
his 1927 publication “On the Perceptual Content of Quantum Theoretical Kinemat-
ics and Mechanics.” Heisenberg’s indeterminacy principle places a numerical limit
on the precision with which one may simultaneously determine the values of certain
pairs of observable quantities. For example, the position, q, and the momentum, p,
of a particle obey the uncertainty relation

�q�p ≥ h

4π
. (32.1)

Here, �q and �p refer to the uncertainties of the particle’s position and momentum,
respectively, and h is Planck’s constant.3 In other words, for a subatomic particle,
“the more precisely the position is determined, the less precisely the momentum is
known in this instant, and vice versa.”4

Shortly after his development of the new quantum mechanics, Heisenberg was
appointed Lecturer in Theoretical Physics at the University of Copenhagen. Then
in 1927 he was appointed Professor of Theoretical Physics at the University of
Leipzig. He was awarded the Nobel Prize in Physics in 1932. After the discovery
of the neutron in 1932 by James Chadwick, Heisenberg helped to develop a the-
ory of proton-neutron interactions within the atomic nucleus (now called the strong
nuclear force). In 1941, he was appointed Professor of Physics at the University of
Berlin and then the Director of the Kaiser Wilhelm Institute for Physics. Along with
several other nuclear scientists who remained and worked for Germany during the
war, Heisenberg was taken prisoner by Allied troops and relocated to England. Upon
his return to Germany in 1946, he assisted in reorganizing his former “Kaiser Wilh-
lem” Institute into the (politically uncontroversial) “Max Planck” Institute. Later,
he would serve as the President of the Alexander von Humboldt Foundation and as
Professor of Theoretical Physics at the University of Munich, where he had begun
his scientific studies under Arnold Sommerfeld so many years before.

The reading selection that follows was one of Heisenberg’s Gifford Lectures
delivered at the University of Saint Andrews in the winter of 1955–1956. Herein,
he describes the Copenhagen Interpretation of quantum theory. This interpretation
takes the indeterminacy principle as the cornerstone, so to speak, of quantum theory.
In other words, it assumes that our inability to simultaneously know the position and
momentum of a sub-atomic particle with unlimited precision is not simply an artifact
of one particular method of measurement. Rather, it is an essential feature of nature

3 See Heisenberg, W., The Physical Principles of Quantum Theory, University of Chicago Press,
Chicago, 1930.
4 This is a translated quote from Heisenberg’s 1927 publication.
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itself, and hence cannot be circumvented under any conceivable circumstances. As
you explore the following text, you might consider the following questions: what
(if any) are the philosophical and scientific implications of accepting the indeter-
minacy principle? In particular, does the Copenhagen interpretation of quantum
theory retain the notion of causality? Do you think that Heisenberg’s conclusions
are correct?

32.2 Reading: Heisenberg, The Copenhagen Interpretation
of Quantum Theory

Heisenberg, W., Physics and Philosophy, World Perspectives, George Allen &
Unwin, London, 1958. Chap. 3.

The Copenhagen interpretation of quantum theory starts from a paradox. Any exper-
iment in physics, whether it refers to the phenomena of daily life or to atomic events,
is to be described in the terms of classical physics. The concepts of classical physics
form the language by which we describe the arrangement of our experiments and
state the results. We cannot and should not replace these concepts by any others.
Still the application of these concepts is limited by the relations of uncertainty. We
must keep in mind this limited range of applicability of the classical concepts while
using them, but we cannot and should not try to improve them.

For a better understanding of this paradox it is useful to compare the procedure
for the theoretical interpretation of an experiment in classical physics and in quan-
tum theory. In Newton’s mechanics, for instance, we may start by measuring the
position and the velocity of the planet whose motion we are going to study. The
result of the observation is translated into mathematics by deriving numbers for the
co-ordinates and the momenta of the planet from the observation. Then the equations
of motion are used to derive from these values of the co-ordinates and momenta at a
given time the values of these co-ordinates or any other properties of the system at a
later time, and in this way the astronomer can predict the properties of the system at
a later time. He can, for instance, predict the exact time for an eclipse of the moon.

In quantum theory the procedure is slightly different. We could for instance be
interested in the motion of an electron through a cloud chamber and could determine
by some kind of observation the initial position and velocity of the electron. But this
determination will not be accurate; it will at least contain the inaccuracies following
from the uncertainty relations and will probably contain still larger errors due to
the difficulty of the experiment. It is the first of these inaccuracies which allows us
to translate the result of the observation into the mathematical scheme of quantum
theory. A probability function is written down which represents the experimental
situation at the time of the measurement, including even the possible errors of the
measurement.

This probability function represents a mixture of two things, partly a fact and
partly our knowledge of a fact. It represents a fact in so far as it assigns at the
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initial time the probability unity (i.e., complete certainty) to the initial situation: the
electron moving with the observed velocity at the observed position; “observed”
means observed within the accuracy of the experiment. It represents our knowledge
in so far as another observer could perhaps know the position of the electron more
accurately. The error in the experiment does—at least to some extent—not represent
a property of the electron but a deficiency in our knowledge of the electron. Also
this deficiency of knowledge is expressed in the probability function.

In classical physics one should in a careful investigation also consider the error
of the observation. As a result one would get a probability distribution for the initial
values of the co-ordinates and velocities and.therefore something very similar to the
probability function in quantum mechanics. Only the necessary uncertainty due to
the uncertainty relations is lacking in classical physics.

When the probability function in quantum theory has been determined at the ini-
tial time from the observation, one can from the laws of quantum theory calculate
the probability function at any later time and can thereby determine the probability
for a measurement giving a specified value of the measured quantity. We can, for
instance, predict the probability for finding the electron at a later time at a given
point in the cloud chamber. It should be emphasized, however, that the probability
function does not in itself represent a course of events in the course of time. It rep-
resents a tendency for events and our knowledge of events. The probability function
can be connected with reality only if one essential condition is fulfilled: if a new
measurement is made to determine a certain property of the system. Only then does
the probability function allow us to calculate the probable result of the new mea-
surement. The result of the measurement again will be stated in terms of classical
physics.

Therefore, the theoretical interpretation of an experiment requires three distinct
steps: (1) the translation of the initial experimental situation into a probability func-
tion; (2) the following up of this function in the course of time; (3) the statement
of a new measurement to be made of the system, the result of which can then be
calculated from the probability function. For the first step the fulfillment of the
uncertainty relations is a necessary condition. The second step cannot be described
in terms of the classical concepts; there is no description of what happens to the
system between the initial observation and the next measurement. It is only in the
third step that we change over again from the “possible” to the “actual.”

Let us illustrate these three steps in a simple ideal experiment. It has been said
that the atom consists of a nucleus and electrons moving around the nucleus; it has
also been stated that the concept of an electronic orbit is doubtful. One could argue
that it should at least in principle be possible to observe the electron in its orbit.
One should simply look at the atom through a microscope of a very high resolving
power, then one would see the electron moving in its orbit. Such a high resolving
power could to be sure not be obtained by a microscope using ordinary light, since
the inaccuracy of the measurement of the position can never be smaller than the
wave length of the light. But a microscope using γ -rays with a wave length smaller
than the size of the atom would do. Such a microscope has not yet been constructed
but that should not prevent us from discussing the ideal experiment.
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Is the first step, the translation of the result of the observation into a probability
function, possible? It is possible only if the uncertainty relation is fulfilled after the
observation. The position of the electron will be known with an accuracy given by
the wave length of the γ -ray. The electron may have been practically at rest before
the observation. But in the act of observation at least one light quantum of the γ -ray
must have passed the microscope and must first have been deflected by the electron.
Therefore, the electron has been pushed by the light quantum, it has changed its
momentum and its velocity, and one can show that the uncertainty of this change
is just big enough to guarantee the validity of the uncertainty relations. Therefore,
there is no difficulty with the first step.

At the same time one can easily see that there is no way of observing the orbit
of the electron around the nucleus. The second step shows a wave pocket moving
not around the nucleus but away from the atom, because the first light quantum will
have knocked the electron out from the atom. The momentum of light quantum of
the γ -ray is much bigger than the original momentum of the electron if the wave
length of the γ -ray is much smaller than the size of the atom. Therefore, the first
light quantum is sufficient to knock the electron out of the atom and one can never
observe more than one point in the orbit of the electron; therefore, there is no orbit in
the ordinary sense. The next observation—the third step—will show the electron on
its path from the atom. Quite generally there is no way of describing what happens
between two consecutive observations. It is of course tempting to say that the elec-
tron must have been somewhere between the two observations and that therefore the
electron must have described some kind of path or orbit even if it may be impossible
to know which path. This would be a reasonable argument in classical physics. But
in quantum theory it would be a misuse of the language which, as we will see later,
cannot be justified. We can leave it open for the moment, whether this warning is a
statement about the way in which we should talk about atomic events or a statement
about the events themselves, whether it refers to epistemology or to ontology. In any
case we have to be very cautious about the wording of any statement concerning the
behavior of atomic particles.

Actually we need not speak of particles at all. For many experiments, it is more
convenient to speak of matter waves; for instance, of stationary matter waves around
the atomic nucleus. Such a description would directly contradict the other descrip-
tion if one does not pay attention to the limitations given by the uncertainty relations.
Through the limitations the contradiction is avoided. The use of “matter waves” is
convenient, for example, when dealing with the radiation emitted by the atom. By
means of its frequencies and intensities the radiation gives information about the
oscillating charge distribution in the atom, and there the wave picture comes much
nearer to the truth than the particle picture. Therefore, Bohr advocated the use of
both pictures, which he called “complementary” to each other. The two pictures are
of course mutually exclusive, because a certain thing cannot at the same time be a
particle (i.e., substance confined to a very small volume) and a wave (i.e., a field
spread out over a large space), but the two complement each other. By playing with
both pictures, by going from the one picture to the other and back again, we finally
get the right impression of the strange kind of reality behind our atomic experiments,
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Bohr uses the concept of “complementarity” at several places in the interpretation
of quantum theory. The knowledge of the position of a particle is complementary to
the knowledge of its velocity or momentum. If we know the one with high accuracy
we cannot know the other with high accuracy; still we must know both for deter-
mining the behavior of the system. The space-time description of the atomic events
is complementary to their deterministic description. The probability function obeys
an equation of motion as the co-ordinates did in Newtonian mechanics; its change
in the course of time is completely determined by the quantum mechanical equa-
tion, but it does not allow a description in space and time. The observation, on the
other hand, enforces the description in space and time but breaks the determined
continuity of the probability function by changing our knowledge of the system.

Generally the dualism between two different descriptions of the same reality is
no longer a difficulty since we know from the mathematical formulation of the the-
ory that contradictions cannot arise. The dualism between the two complementary
pictures—waves and particles—is also clearly brought out in the flexibility of the
mathematical scheme. The formalism is normally written to resemble Newtonian
mechanics, with equations of motion for the co-ordinates and the momenta of the
particles. But by a simple transformation it can be rewritten to resemble a wave
equation for an ordinary three-dimensional matter wave. Therefore, this possibility
of playing with different complementary pictures has its analogy in the different
transformations of the mathematical scheme; it does not lead to any difficulties in
the Copenhagen interpretation of quantum theory.

A real difficulty in the understanding of this interpretation arises, however, when
one asks the famous question: But what happens “really” in an atomic event? It has
been said before that the mechanism and the results of an observation can always be
stated in terms of the classical concepts. But what one deduces from an observation
is a probability function, a mathematical expression that combines statements about
possibilities or tendencies with statements about our knowledge of facts. So we
cannot completely objectify the result of an observation, we cannot describe what
“happens” between this observation and the next. This looks as if we had introduced
an element of subjectivism into the theory, as if we meant to say: what happens
depends on our way of observing it or on the fact that we observe it. Before dis-
cussing this problem of subjectivism it is necessary to explain quite clearly why one
would get into hopeless difficulties if one tried to describe what happens between
two consecutive observations.

For this purpose it is convenient to discuss the following ideal experiment: We
assume that a small source of monochromatic light radiates toward a black screen
with two small holes in it. The diameter of the holes may be not much bigger than
the wave length of the light, but their distance will be very much bigger. At some
distance behind the screen a photographic plate registers the incident light. If one
describes this experiment in terms of the wave picture, one says that the primary
wave penetrates through the two holes; there will be secondary spherical waves
starting from the holes that interfere with one another, and the interference will
produce a pattern of varying intensity on the photographic plate.
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The blackening of the photographic plate is a quantum process, a chemical reac-
tion produced by single light quanta. Therefore, it must also be possible to describe
the experiment in terms of light quanta. If it would be permissible to say what hap-
pens to the single light quantum between its emission from the light source and
its absorption in the photographic plate, one could argue as follows: The single
light quantum can come through the first hole or through the second one. If it goes
through the first hole and is scattered there, its probability for being absorbed at a
certain point of the photographic plate cannot depend upon whether the second hole
is closed or open. The probability distribution on the plate will be the same as if
only the first hole was open. If the experiment is repeated many times and one takes
together all cases in which the light quantum has gone through the first hole, the
blackening of the plate due to these cases will correspond to this probability distri-
bution. If one considers only those light quanta that go through the second hole, the
blackening should correspond to a probability distribution derived from the assump-
tion that only the second hole is open. The total blackening, therefore, should just
be the sum of the blackenings in the two cases; in other words; there should be no
interference pattern. But we know this is not correct, and the experiment will show
the interference pattern. Therefore, the statement that any light quantum must have
gone either through the first or through the second hole is problematic and leads to
contradictions. This example shows clearly that the concept of the probability func-
tion does not allow a description of what happens between two observations. Any
attempt to find such a description would lead to contradictions; this must mean that
the term “happens” is restricted to the observation.

Now, this is a very strange result, since it seems to indicate that the observation
plays a decisive role in the event and that the reality varies, depending upon whether
we observe it or not. To make this point clearer we have to analyze the process of
observation more closely.

To begin with, it is important to remember that in natural science we are not
interested in the universe as a whole, including ourselves, but we direct our atten-
tion to some part of the universe and make that the object of our studies. In atomic
physics this part is usually a very small object, an atomic particle or a group of
such particles, sometimes much larger—the size does not matter; but it is impor-
tant that a large part of the universe, including ourselves, does not belong to the
object. Now, the theoretical interpretation of an experiment starts with the two steps
that have been discussed. In the first step we have to describe the arrangement of
the experiment, eventually combined with a first observation, in terms of classical
physics and translate this description into a probability function. This probability
function follows the laws of quantum theory, and its change in the course of time,
which is continuous, can be calculated from the initial conditions; this is the second
step. The probability function combines objective and subjective elements. It con-
tains statements about possibilities or better tendencies (“potentia” in Aristotelian
philosophy), and these statements are completely objective, they do not depend on
any observer; and it contains statements about our knowledge of the system, which
of course are subjective in so far as they may be different for different observers.
In ideal cases the subjective element in the probability function may be practically
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negligible as compared with the objective one. The physicists then speak of a “pure
case.”

When we now come to the next observation, the result of which should be pre-
dicted from the theory, it is very important to realize that our object has to be in
contact with the other part of the world, namely, the experimental arrangement, the
measuring rod, etc., before or at least at the moment of observation. This means
that the equation of motion for the probability function does now contain the influ-
ence of the interaction with the measuring device. This influence introduces a new
element of uncertainty, since the measuring device is necessarily described in the
terms of classical physics; such a description contains all the uncertainties concern-
ing the microscopic structure of the device which we know from thermodynamics,
and since the device is connected with the rest of the world, it contains in fact the
uncertainties of the microscopic structure of the whole world. These uncertainties
may be called objective in so far as they are simply a consequence of the description
in the terms of classical physics and do not depend on any observer. They may be
called subjective in so far as they refer to our incomplete knowledge of the world.

After this interaction has taken place, the probability function contains the objec-
tive element of tendency and the subjective element of incomplete knowledge,
even if it has been a “pure case” before. It is for this reason that the result of the
observation cannot generally be predicted with certainty; what can be predicted is
the probability of a certain result of the observation, and this statement about the
probability can be checked by repeating the experiment many times. The proba-
bility function does—unlike the common procedure in Newtonian mechanics—not
describe a certain event but, at least during the process of observation, a whole
ensemble of possible events.

The observation itself changes the probability function discontinuously; it selects
of all possible events the actual one that has taken place. Since through the observa-
tion our knowledge of the system has changed discontinuously, its mathematical
representation also has undergone the discontinuous change and we speak of a
“quantum jump.” When the old adage “Natura non facit saltus” is used as a basis for
criticism of quantum theory, we can reply that certainly our knowledge can change
suddenly and that this fact justifies the use of the term “quantum jump.”

Therefore, the transition from the “possible” to the “actual” takes place during the
act of observation. If we want to describe what happens in an atomic event, we have
to realize that the word “happens” can apply only to the observation, not to the state
of affairs between two observations. It applies to the physical, not the psychical act
of observation, and we may say that the transition from the “possible” to the “actual”
takes place as soon as the interaction of the object with the measuring device, and
thereby with the rest of the world, has come into play; it is not connected with the act
of registration of the result by the mind of the observer. The discontinuous change
in the probability function, however, takes place with the act of registration, because
it is the discontinuous change of our knowledge in the instant of registration that has
its image in the discontinuous change of the probability function.

To what extent, then, have we finally come to an objective description of the
world, especially of the atomic world? In classical physics science started from the
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belief—or should one say from the illusion?—that we could describe the world or
at least parts of the world without any reference to ourselves. This is actually pos-
sible to a large extent. We know that the city of London exists whether we see it
or not. It may be said that classical physics is just that idealization in which we
can speak about parts of the world without any reference to ourselves. Its success
has led to the general ideal of an objective description of the world. Objectivity has
become the first criterion for the value of any scientific result. Does the Copenhagen
interpretation of quantum theory still comply with this ideal? One may perhaps say
that quantum theory corresponds to this ideal as far as possible. Certainly quantum
theory does not contain genuine subjective features, it does not introduce the mind
of the physicist as a part of the atomic event. But it starts from the division of the
world into the “object” and the rest of the world, and from the fact that at least for
the rest of the world we use the classical concepts in our description. This division
is arbitrary and historically a direct consequence of our scientific method; the use of
the classical concepts is finally a consequence of the general human way of think-
ing. But this is already a reference to ourselves and in so far our description is not
completely objective.

It has been stated in the beginning that the Copenhagen interpretation of quantum
theory starts with a paradox. It starts from the fact that we describe our experiments
in the terms of classical physics and at the same time from the knowledge that these
concepts do not fit nature accurately. The tension between these two starting points
is the root of the statistical character of quantum theory. Therefore, it has sometimes
been suggested that one should depart from the classical concepts altogether and that
a radical change in the concepts used for describing the experiments might possibly
lead back to a nonstatistical,5 completely objective description of nature.

This suggestion, however, rests upon a misunderstanding. The concepts of clas-
sical physics are just a refinement of the concepts of daily life and are an essential
part of the language which forms the basis of all natural science. Our actual situa-
tion in science is such that we do use the classical concepts for the description of
the experiments, and it was the problem of quantum theory to find theoretical inter-
pretation of the experiments on this basis. There is no use in discussing what could
be done if we were other beings than we are. At this point we have to realize, as von
Weizsäcker has put it, that “Nature is earlier than man, but man is earlier than nat-
ural science.” The first part of the sentence justifies classical physics, with its ideal
of complete objectivity. The second part tells us why we cannot escape the paradox
of quantum theory, namely, the necessity of using the classical concepts.

We have to add some comments on the actual procedure in the quantum-
theoretical interpretation of atomic events. It has been said that we always start
with a division of the world into an object, which we are going to study, and the rest
of the world, and that this division is to some extent arbitrary. It should indeed not
make any difference in the final result if we, e.g., add some part of the measuring
device or the whole device to the object and apply the laws of quantum theory to

5 I have taken the liberty to correct this from “nonstatical”—[K.K.].
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this more complicated object. It can be shown that such an alteration of the theoret-
ical treatment would not alter the predictions concerning a given experiment. This
follows mathematically from the fact that the laws of quantum theory are for the
phenomena in which Planck’s constant can be considered as a very small quantity,
approximately identical with the classical laws. But it would be a mistake to believe
that this application of the quantum-theoretical laws to the measuring device could
help to avoid the fundamental paradox of quantum theory.

The measuring device deserves this name only if it is in close contact with the rest
of the world, if there is an interaction between the device and the observer. There-
fore, the uncertainty with respect to the microscopic behavior of the world will enter
into the quantum-theoretical system here just as well as in the first interpretation. If
the measuring device would be isolated from the rest of the world, it would be nei-
ther a measuring device nor could it be described in the terms of classical physics at
all.

With regard to this situation Bohr has emphasized that it is more realistic to state
that the division into the object and the rest of the world is not arbitrary. Our actual
situation in research work in atomic physics is usually this: we wish to understand a
certain phenomenon, we wish to recognize how this phenomenon follows from the
general laws of nature. Therefore, that part of matter or radiation which takes part
in the phenomenon is the natural “object” in the theoretical treatment and should be
separated in this respect from the tools used to study the phenomenon. This again
emphasizes a subjective element in the description of atomic events, since the mea-
suring device has been constructed by the observer, and we have to remember that
what we observe is not nature in itself but nature exposed to our method of ques-
tioning. Our scientific work in physics consists in asking questions about nature in
the language that we possess and trying to get an answer from experiment by the
means that are at our disposal. In this way quantum theory reminds us, as Bohr has
put it, of the old wisdom that when searching for harmony in life one must never for-
get that in the drama of existence we are ourselves both players and spectators. It is
understandable that in our scientific relation to nature our own activity becomes very
important when we have to deal with parts of nature into which we can penetrate
only by using the most elaborate tools.

32.3 Study Questions

QUES. 32.1. Does quantum theory allow for the prediction of future events?

a) How is the future position of the moon predicted in the context of classical
physics? What observations are required? What laws must be invoked? And what
limits the precision with which such predictions can be made?

b) Is the prediction procedure identical when using quantum physics? In particular,
are the sources of uncertainty the same? Are the laws and equations which gov-
ern motion the same? And what is the significance of the measurement process
itself?



32.3 Study Questions 453

c) What (perhaps surprising) assertion does Heisenberg make regarding the
description of a system between individual acts of measurement?

QUES. 32.2. Do electrons actually orbit around the nucleus of an atom?

a) How might a microscope be used to observe the location of an orbiting electron?
Can ordinary light be used? What limits the precision of any such measurement?

b) What alternative type of radiation might be instead employed? What difficulty
does this raise? And how does this limit the ability of observing subsequent
points of the electron’s orbit?

c) Are these experimental difficulties associated with the particular type of mea-
surement employed? Could they perhaps be circumvented by some other mea-
surement strategy? If not, then what does this imply about the existence of an
atomic orbit?

d) Is the question of whether an atomic orbit exists a problem of ontology or a
problem of epistemology?

QUES. 32.3. Can an object be both a particle and a wave at the same time?

a) What is the difference between a particle and a wave? In which context is the
particle picture of an electron more appropriate? In which context is the wave
picture more appropriate?

b) Which did Bohr advocate, the wave picture or the particle picture? What does it
mean that the position and momentum of a particle are complementary? How is
the space-time description (of atomic events) complementary to a deterministic
description (of such events)?

QUES. 32.4. What happens between two consecutive observations of a particle?

a) Describe the setup of Heisenberg’s idealized two-slit experiment. Where is the
source of light? The screen? The photographic plate?

b) Sketch the illumination of the photographic plate, as you would expect from
applying the classical wave theory of light.

c) Similarly, sketch the illumination of the photographic plate, as you would expect
from a single photon passing through the left slit in the barrier (if the right slit
were blocked).

d) Now sketch the illumination of the photographic plate, as you would expect from
a large number of photons passing through the left slit in the barrier (the right
slit is still blocked).

e) Next sketch the illumination of the photographic plate, as you would expect from
a large number of photons passing through the right slit in the barrier (the left
hole is now blocked).

f) Finally, sketch the illumination of the photographic plate, as you would expect
from a large number of photons passing through the barrier while both slits are
left open.

g) Is it true that each individual photon passes through either the left slit or the right
slit? If so, what problem arises? If not, what can we say about the trajectory of
each individual photon?
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QUES. 32.5. Does London exist when nobody is looking at it?

a) How is the wave function introduced in quantum theory? In particular, how is
the shape of the wave function of an electron determined at the moment of
measurement—for instance, when registering its position using the click of a
geiger counter or a condensation trail in a cloud chamber?

b) What happens to the wave function of the electron during the time interval
between measurements? Does the wave function evolve in a predictable way?
What equation governs its time evolution? Is quantum theory then a deterministic
theory?

c) How would you describe the ontological status of the wave function. Does it
exist? If so, in what sense? How does Heisenberg’s quantum theory resurrect
(so to speak) the Aristotelian concept of potentia? At what moment is there a
transition from the possible to the actual?

d) What, then, is the ontological status of the electron itself? Does the electron
describe a real trajectory through space between acts of measurement? Does the
electron exist between acts of measurement? What about larger objects, such as
bugs, persons and cities?

QUES. 32.6. Does quantum theory provide an objective description of the world?

a) What does Heisenberg mean by the term “classical concepts”? Provide an exam-
ple. Can such concepts adequately describe atomic events? If not, should they be
employed? What is the alternative to employing classical concepts?

b) In what sense, then, does the Copenhagen interpretation of quantum theory start
from a paradox? Are there any alternatives—such as using a completely new set
of concepts?

c) What is the significance of von Weizsäcker’s statement that “Nature is earlier
than man, but man is earlier than natural science”?

32.4 Exercises

EX. 32.1 (THE PRINCIPLE OF COMPLEMENTARITY ESSAY). What do you think: does
the principle of complementarity advocated by Niels Bohr undermine science by
giving license to sloppy thinking, or perhaps even to outright contradiction?

EX. 32.2 (THE HEISENBERG UNCERTAINTY PRINCIPLE—SINGLE SLIT DIFFRACTION).
In this exercise, we will demonstrate how Heisenberg’s uncertainty relation,

�x�px � h, (32.2)

follows from de Broglie’s concept of matter waves. As mentioned in the introduction
to this chapter, this principle refers to how precisely one can simultaneously know—
under any conceivable circumstances—the values of certain pairs of measurable
quantities.6 In the case of Eq. 32.2, these two quantities are the position (x) and

6 See, for example, Heisenberg, W., The Physical Principles of Quantum Theory, University of
Chicago Press, Chicago, 1930.
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the x-directed momentum (px) of a particle; the uncertainties in these quantities are
written as �x and �px , respectively.

a) To begin, suppose that an electron having momentum py is aimed directly at a
screen in which is cut a small vertical slit of width d. Supposing the electron to
be a matter-wave, what is the wavelength of the electron approaching the slit?7

b) Write an expression for the angular width, α, of the central diffraction peak after
the electron passes through the slit. According to the probability interpretation
of the wave-function, the electron has a non-zero probability of being found at
any location within this diffraction peak.8

c) The width of this peak may thus be interpreted as an indication of the range of
possible transverse momenta (which we may call �px) acquired by the electron
upon passage through the slit. Write down an expression for �px in terms of α,
λ and h.

d) From the previous considerations, obtain an expression for the product �x�px .
What happens to �px as the slit width is narrowed? Do your results agree with
Eq. 32.1? What do your results imply?

e) How general are your conclusions? For example, is your uncertainty relation
limited to considerations of electrons? Or would it apply to any particle? And
what minimal set of assumptions underly the Heisenberg uncertainty relation?

EX. 32.3 (THE HEISENBERG UNCERTAINTY PRINCIPLE—ELECTRON-IN-A-BOX). Con-
sider the ground-state solution to the time-independent Schrödinger equation for an
electron confined in a one-dimensional impenetrable box of width a (see Ex. 31.4).
Demonstrate that the uncertainty in the position, �x, and momentum, �px , of the
electron are consistent with the Heisenberg uncertainty relation. (HINT: Notice that
when in the ground state, the momentum of the electron has a definite magnitude,
but not a definite direction. Use the (inverse of the) Euler formula to re-write the
standing wave solution as a sum of rightward and leftward traveling waves, and
thereby find the uncertainty in the electron’s momentum.)

EX. 32.4 (HUMAN TWO-SLIT EXPERIMENT). Suppose that you visit a peculiar world
in which Planck’s constant is 100 J-s, rather than the customary value of 6.626 ×
10−34 J-s. While visiting this world, you run directly towards a wall with two open
doorways into a hallway, as depicted cartoonishly in Fig. 32.1. Suppose that your
mass is 50 kg, your speed is 2.0 m/s, the doorways are each 1.0 m wide and are
separated by 2.0 m. The width of the hallway is 3.0 m.

a) What is your momentum and your de Broglie wavelength?

7 For an experimental justification of the concept of matter waves, refer back to Davisson and
Germer’s work on electron scattering from crystals; this is described in Chap. 26 of the present
volume.
8 The probability density function, |�|2, was introduced by Max Born; see Ex. 31.4 of the previous
chapter.
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Fig. 32.1 A matter-
wave/person running towards
two open doors

b) Sketch your two-slit interference pattern on the wall opposite the doorways.
What is the separation between your interference maxima?

c) Provide an interpretation of this interference pattern. In particular, what do the
maxima and minima of the interference pattern imply? Where do you actually
hit the wall?

d) Do you believe that the concept of matter waves is equally valid for electrons,
sand grains and people? If not, why?

EX. 32.5 (SCIENCE AND OBJECTIVITY ESSAY). Should scientific theories provide an
objective description of the world? Does classical theory? Does (the Copenhagen
interpretation of) quantum theory?

32.5 Vocabulary

1. Paradox
2. Gamma ray
3. Matter wave
4. Complementarity
5. Dualism
6. Light quantum
7. Epistemology
8. Ontology
9. Objective

10. Subjective
11. Potentia
12. Quantum jump
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