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Supervisor’s Foreword

The strong force not only binds atomic nuclei but is responsible for the structure
of the nucleon itself. Within the Standard Model the strong force is described by
Quantum Chromodynamics, QCD for short, which is a local gauge theory built
upon the concept of colour. The strong force is aptly named; it is indeed extremely
strong, with a force between quarks, which themselves have a size less than
10−18 m, exceeding 10 tonnes! As a consequence, one must use non-perturbative
techniques to solve the equations of QCD and at present there is only one rigorous
practical method to do so, namely lattice QCD. In this approach one transforms to
Euclidean space-time and works on a finite grid or lattice of space-time points. Even
then one needs the fastest supercomputers to begin to calculate the properties of
even the lowest-mass strongly interacting particles (hadrons).

In this thesis, Dr. Shanahan combines lattice QCD with the modern tool of chiral
effective field theory to not only improve the accuracy of the calculation of key
observable properties of hadrons but also to yield deeper insight into how QCD
gives rise to those properties. The strange quark provides a unifying theme, with the
focus moving from the masses and electromagnetic properties of the hyperons to
the presence of non-valence strange quarks in the nucleon. The correct prediction
of the latter is of comparable importance to the understanding of the Lamb shift in
QED, since strange quarks in the nucleon can only arise through virtual strange
quark loops. Not only does Dr. Shanahan present accurate calculations of the
strange quark contributions to the nucleon mass and electromagnetic form factors
but she also presents by far the most accurate calculation of charge symmetry
violation in the electromagnetic form factors of the nucleon. Since this is the major
systematic uncertainty in the experimental determination of the strange form factors
of the nucleon, her result represents a very significant advance.

The thesis begins with a careful introduction to QCD as formulated on a
Euclidean space-time lattice, paying particular attention to the origin of strangeness
in the nucleon. The concept of charge symmetry is also explained. Chapter 3
explains the concept of chiral symmetry and its realization in QCD. This naturally
leads to the formulation of chiral effective field theory, including the idea of power
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counting. Various approaches to regulating the infinities that appear in chiral
effective field theory are explained, including a careful explanation of the method
known as finite range regularization (FRR). With this theoretical framework
established, Dr. Shanahan turns first to the analysis of world data on the masses
of the ground state hyperons over a wide range of quark masses. She clearly
establishes that this data is very accurately described by FRR effective field theory
over the full range of light and strange quark masses.

Having obtained closed expressions for the octet baryon masses that both
describe the lattice data over a very wide range of quark masses and show agree-
ment with the experimental values after extrapolation, Dr. Shanahan applies these
expressions to a number of important problems. In Chap. 4 she obtains expressions
for the mass splittings between isospin partners in the baryon octet induced by the
up-down quark mass difference. In the following chapter the same expressions are
used to make the first complete calculation of the entire set of sigma commutators
for the baryon octet. Perhaps the most significant phenomenological result is the
remarkably small strange sigma commutator of the nucleon, which is of crucial
importance for estimating dark-matter–nucleon scattering cross sections.

The chiral extrapolation of moments of parton distribution functions is the topic
of Chap. 6. Perhaps the most remarkable results relate to charge symmetry violation
(CSV) in the parton distribution functions of the nucleon. These are not only in
good agreement with earlier model calculations but provide a firm basis for esti-
mating the correction to the NuTeV anomaly from CSV. Chapter 7 presents a
complete analysis of the electromagnetic form factors of the entire baryon octet,
using new lattice QCD data complemented by effective field theory. It is here that
one finds not only an analysis of the electric and magnetic form factors of the
hyperons as a function of quark mass, but state-of-the-art calculations of the strange
and CSV form factors of the nucleon.

This thesis is a pleasure to read, as well as a very valuable source of information
concerning lattice QCD and chiral effective field theory and their applications to
baryon structure. It is a pleasure to invite you to dip into it.

Adelaide, Australia Prof. Anthony W. Thomas, FAA
January 2016 Elder Professor of Physics and Australian

Laureate Fellow, The University of Adelaide
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Abstract

The role of strange quarks in generating the structure of the nucleon provides a key
testing ground for our understanding of Quantum Chromodynamics (QCD).
Because the nucleon has zero net strangeness, strange observables give tremendous
insight into the nature of the vacuum; they can only arise through quantum fluc-
tuations in which strange–antistrange quark pairs are generated. Strange observ-
ables are also relevant to searches for physics beyond the Standard Model; the role
of the strange quark in generating the nucleon mass—encoded in the strange sigma
term—is essential information for the interpretation of dark matter direct-detection
experiments. For these reasons, strangeness in the nucleon is currently a particular
focus of the nuclear physics community.

We use the numerical lattice gauge theory approach to QCD, and the chiral
perturbation theory formalism, to build a clear picture of the role of strange quarks
in various nucleon-structure observables. A detailed analysis of the octet baryon
masses provides precise new values of the nucleon sigma terms. By combining
experimental and lattice input, we deduce the strange electromagnetic form factors
of the nucleon over a far larger range of momentum scales than is accessible
experimentally. Our calculation of the strange magnetic moment is an order of
magnitude more precise than the closest experimental result.

Until now, the dominant uncertainty in experimental determinations of the
strange proton form factors has come from a lack of knowledge about the size of
charge symmetry violation (CSV) in these quantities. CSV effects quantify the
breaking of the approximate SU(2)-flavour symmetry of the up and down quarks. In
addition to their relevance to experimental determinations of nucleon strangeness,
the precise knowledge of CSV observables has, with increasing experimental
precision, become essential to the interpretation of many searches for physics
beyond the Standard Model. We develop a formalism for the calculation of CSV
observables from isospin-averaged 2 + 1-flavour lattice QCD simulations.

Applying this formalism to a comprehensive lattice-based study of the electric
and magnetic Sachs form factors of the baryon octet reveals that the CSV form
factors are an order of magnitude smaller than suggested by previous work. This
calculation opens the door for new, precise, experimental measurements of the
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strange nucleon form factors. We also investigate the proton–neutron mass differ-
ence and quantify the long-neglected CSV effects in the low Mellin moments of the
spin-dependent and spin-independent parton distribution functions. This analysis
improves the interpretation of neutrino-nucleus deep inelastic scattering
experiments.
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Chapter 1
Introduction

Protons and neutrons are the building blocks of atomic nuclei. Collectively called
nucleons, they constitute more than 99% of the visible mass in our universe. Quan-
titatively describing the structure of these particles in terms of the quark and gluon
constituents encoded in Quantum Chromodynamics (QCD), our theory of the strong
force, remains a defining challenge for hadronic physics research. The ultimate goal
is to ‘map out’ the complete spatial, momentum, spin, flavour, and gluon structure
of the nucleon; to understand (and be able to predict) its interactions and resonances
precisely. Such a map is not only the key to interpreting our observations of Nature
in terms of the currently-accepted fundamental theory, but is essential to inform
searches for physics beyond the Standard Model (SM). For example, QCD calcula-
tions of the SMbackground are necessary to constrain direct searches for newphysics
at the high-energy frontier at the Large Hadron Collider. In the low energy-regime—
at the so-called intensity frontier—QCD is typically the limiting factor in indirect
searches for non-SM physics, from CP violation in b-quark decays to permanent
electric dipole moments in hadrons and nuclei.

Over several decades of experimental investigation and theoretical analysis based
on QCD, a complicated picture of the nucleon has emerged. The modern under-
standing is that its structure is generated not only by three ‘valence’ quarks—the
simplest configuration needed to carry the observed quantum numbers—but addi-
tionally any number of ‘sea’ quark-antiquark pairs and gluons. Deep inelastic scat-
tering of electrons and neutrinos off nuclear targets has demonstrated that, at low
values of the probing momentum-scale Q2, valence-quark effects dominate. For the
proton and neutron, with valence-quark content (uud) and (udd) respectively, the
u and d quarks are thus of primary importance. However, with larger values of Q2

the resolving power of scattering probes increases, and the increasingly-significant
role of the vacuum-generated qq pairs and gluons is exposed. Because the large
masses of the heavy quarks (Q = c, b or t) prohibit any significant admixtures of
QQ pairs in the nucleon wavefunction, strange quarks—the lightest of the sea-only
quark flavours—play a unique role. Providing tremendous insight into the nature
of the quantum vacuum, strange nucleon observables occupy a position in QCD
comparable in significance to that of the Lamb shift in the history of QED. The
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2 1 Introduction

calculation of these quantities within QCD, and their verification by experiment, is
thus of fundamental importance.

As well as providing a key test of our understanding of QCD, strange observables
are relevant to searches for physics beyond the SM. The role of the strange quark
in generating the nucleon mass—encoded in the strange sigma term—is particularly
topical as the uncertainty on this much-debated quantity is the limiting theoretical
factor in the interpretation of experimental searches for particle dark matter. The
spatial distribution of the nucleon’s strange quark content has also received consid-
erable attention in recent decades. Despite significant accelerator facility programs
at Jefferson National Laboratory and at Mainz, the best experimental values of the
proton’s strange electromagnetic form factors are indistinguishable from zero. The
limiting uncertainty in future determinations of these quantities is theoretical, arising
from the assumption of good charge symmetry.

Charge symmetry violating (CSV) effects quantify the breaking of the approxi-
mate SU(2)-flavour symmetry of the u and d quarks. Beyond their relevance to the
experimental investigation of strangeness in the nucleon, the precise determination
of CSV observables has, with increasing experimental precision, become essential
theoretical input for searches for physics beyond the SM. In particular, the long-
neglected CSV effects in the low Mellin moments of the spin-independent parton
distribution functions are important to the interpretation of neutrino-nucleus deep
inelastic scattering experiments. Clearly it has become imperative to determine both
strange and CSV observables precisely from QCD.

The only knownway to directly probe QCD in the nonperturbative regime is using
a numerical technique named lattice QCD. This method involves explicitly calcu-
lating observables within a discretised formulation of QCD. First proposed in the
mid-1970s, lattice methods, computer infrastructure, and the theoretical techniques
used to interpret lattice simulation results, have now reached a level of sophistica-
tion that allows truly quantitative predictions to be made from QCD. In this body of
work we explore hadron structure from lattice QCD, with a particular focus on both
strangeness and CSV in nucleon observables.

After introducing QCD, the lattice approach, and the chiral perturbation theory
formalism upon which this work is based, in Chaps. 2 and 3, we investigate several
nucleon observables in turn.We begin in Chap.4 by calculating the strong-force con-
tribution to the proton-neutron mass difference. Beyond giving quantitative insight
into the breaking of charge symmetry, a precise understanding of this quantity from
first principles will inform studies of the evolution of our universe; if there were a
stable neutron, and a more massive proton, one would expect a predominance of
heavy nuclei, no normal galaxies, stars, or planets would form, and life as we know
it would be impossible.

In Chap.5 we extend this study to investigate sigma terms, which are the matrix
elements of the scalar quark currents between baryon states. As many dark matter
candidates (e.g., the supersymmetric neutralino) have interactions with hadronic
matter which depend quadratically on these terms, the uncertainty of theoretical
dark matter scattering cross-sections is largely driven by the poorly-known strange
sigma term. Modern revisions of this quantity, including our precise result based on

http://dx.doi.org/10.1007/978-3-319-31438-9_2
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1 Introduction 3

lattice QCD, have resulted in predicted dark matter cross-sections being reduced by
an order of magnitude, with significant increases in precision.

There is an almost-universal assumption of charge symmetry in the literature
concerned with parton distributions. In Chap.6 we quantify the long-neglected CSV
effects in the lowMellinmoments of the spin-dependent and spin-independent parton
distribution functions. Our results confirm that the omission of these effects led to an
over-inflated view of the importance of the deviation from SM expectations observed
in neutrino-nucleus deep inelastic scattering experiments.By comparing the total spin
carried by the quarks in baryons across the octet, we are also able to reveal that the
experimentally-measured suppression of the fraction of the proton spin carried by its
quarks (relative to quark-model predictions) is not a universal property of baryons, but
rather is structure-dependent. This supports the conclusion that the spin-suppression
observed in the proton cannot be explained by the axial anomaly.

In Chap.7 we present a comprehensive lattice-based study of the electric and
magnetic Sachs form factors of the baryon octet. This analysis includes the hyperon
form factors, which have so far received limited attention in the literature. Notably,
we achieve the first accurate determination of the hyperonmagnetic radii from lattice
QCD. We also investigate strange and CSV effects in the nucleon in this context.
By combining experimental and lattice input, we deduce the strange nucleon form
factors over a far larger range of momentum-scales than is accessible experimentally.
Our calculation of the strange magnetic moment is an order of magnitude more
precise than the closest experimental result. Until now, the dominant uncertainty in
experimental determinations of the strange proton form factors has come from a lack
of knowledge about the size of CSV in these quantities. By revealing that the CSV
form factors are an order of magnitude smaller than suggested by previous work, our
calculations also open the door for a new generation of experimental tests of QCD
through the proton’s strange form factors.

Finally, in Chap. 8 we review this body of work to build a coherent picture of
the role of both CSV effects and the strange quark in the structure of the nucleon in
QCD.

http://dx.doi.org/10.1007/978-3-319-31438-9_6
http://dx.doi.org/10.1007/978-3-319-31438-9_7
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Chapter 2
Quantum Chromodynamics

The Standard Model of Particle Physics (SM) embodies our knowledge of the strong
and electroweak interactions. It contains as fundamental degrees of freedom the spin-
1
2 quarks and leptons, the spin-1 gauge bosons, and the spin-0 Higgs field. Despite the
presence of a number of a-priori unknown parameters, this model is a mathematical
construction of considerable predictive power. Notably, it suggested the existence of
the W and Z bosons, the gluon, and the top and charm quarks before these particles
were observed. In 2013, the particle content of the SM was made complete by the
experimental discovery of the Higgs Boson [1, 2].

Here we focus on the strong-force component of the SM, which specifies how
quarks and gluons bind together to form ordinary hadronic matter. This is the theory
of Quantum Chromodynamics (QCD), describing all strong-interaction physics at
all distance scales, from high energy particle collisions and the decay of heavy nuclei
to the properties of matter under extreme conditions such as in the core of a neutron
star. This diverse physics is encapsulated in a single formula of alluring simplicity:
the Lagrangian of QCD. Despite its apparently simple form, deriving the physical
dynamics of a system from this equation poses a tremendous theoretical challenge.

Asymptotic freedom—the property that quarks and gluons interact very weakly
in high-energy reactions—ensures that perturbative approaches can be applied to
QCD at small distance scales. In this way one can obtain precise theoretical predic-
tions from the SM which may be rigorously tested through high-energy scattering
experiments. In the low-energy regime, however, the QCD coupling is large and
perturbative techniques cannot be used. The only known first-principles approach to
QCD at these scales is numerical: a discretised form of the QCD equations can be
solved exactly, using supercomputers, on a finite four-dimensional grid representing
space-time. This technique is named lattice QCD.

Of course, although we receive invaluable insight by discretising QCD, we have
also lost direct comparison with the physical, continuous, world. To be able to com-
pare the results of lattice QCD simulations with experiment, one must extrapolate
to the physical point. Precisely, the continuum limit (as lattice spacing a → 0),
the infinite volume limit (as lattice size L → ∞), and, as computation time often
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6 2 Quantum Chromodynamics

limits simulations to larger-than-physical quark masses, the continuation into small

quark masses
(
as mq → m(phys.)

q

)
must be taken. This final limit, the so-called chiral

extrapolation, is arguably the most difficult of the three to implement and will be a
particular focus of this body of work.

As technological and algorithmic advances now allow lattice simulations to be
performed near, or even at, the physical quark masses, it is foreseeable that chiral
extrapolation as a means of reaching the physical point will soon become obsolete.
With this in mind, we explore this technique not only as an essential link between
lattice simulations and Nature, but as an invaluable tool with which to develop a
deeper understanding of QCD from unphysical test cases which cannot be explored
experimentally. As we will see in later chapters, one can extend chiral extrapolation
techniques to isolate vacuum-quark effects, explore the quark-mass dependence of
observables and hence extract mass-derivative quantities, and extend SU(2)-flavour–
symmetric simulations to the SU(2)-brokenworld. Combining the insight afforded by
unphysical lattice simulations with experimental results allows one to deduce hard-
to-calculate quantities to a precision that is yet unreachable by direct computation.
In this way, we set the benchmarks for the next generation of experimental tests of
the SM.

After outlining the mathematical formulation of QCD in the next section, we
briefly discuss the numerical lattice QCD approach. The remainder of this chapter is
devoted to the concepts of strangeness and charge symmetry violation in the nucleon,
which are the core themes of this body of work.

2.1 Mathematical Formulation

Mathematically, QCD is a gauge field theory describing the interactions of ‘colour-
charged’ particles. It is based on the non-Abelian, compact, and simple Lie group
SU(3), commonly represented by the group of 3 × 3 complex unitary matrices with
unit determinant. The gluons Aμ arise as the (spin-1) gauge bosons of this theory.
As such, they may be identified with the generators of SU(3) rotations in colour-
space1, Aμ = ta Aa

μ, and transform in the adjoint representation of the gauge group.
The dimension of the adjoint representation (equal to the number of generators) is
32 − 1 = 8 for SU(3), thus the gluons are colour-octet. The quark fields ψ are spin- 12
fermions in the fundamental representation of the gauge group and carry colour and
flavour labels. The dimension of the fundamental representation is the degree of the
group, N = 3 for SU(3), so the quarks are colour-triplet.

The classical, unrenormalised Lagrangian density of QCD is completely spec-
ified by the conditions of renormalisability and invariance under the SU(3) gauge
transformations

1Here ta = λa/2, where λa , a = 1, . . . , 8 are the Gell-Mann matrices with normalisation
Tr(λaλb) = δab.
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ψ(x) → ψ′(x) = U (x)ψ(x), (2.1a)

Aμ(x) → A′
μ(x) = U (x)Aμ(x)U

−1(x) + i

g

(
∂μU (x)

)
U−1(x), (2.1b)

whereU (x) = exp (iφa(x)ta) defines an independent SU(3) transformation at every
point in space-time. Neglecting a quark-mass mixing phase—the θ parameter associ-
ated with the strong CP problem—as it is known to be extremely small [3], one finds2

LQCD =
∑
q

ψ
i
q

(
iγμDi j

μ − δi jmq
)
ψ j
q − 1

4
F (a)

μν F (a)μν

= ψ
(
i /D − Mq

)
ψ − 1

4
FμνF

μν . (2.2)

The second line shows the standard compact notation—fundamental-
representation colour indices i, j , adjoint-representation colour indices a, and flavour
labels q = u, d, s, . . . have been suppressed. The Dirac matrix γμ, where μ is a
Lorentz vector index, expresses the vector nature of the strong force, and the non-
zero quark masses are encoded in Mq = diag(mu,md ,ms . . .). There is no gauge-
invariant way of including a gluon mass. The QCD covariant derivative introduces
the coupling g of the quarks to the gluons:

Di j
μ = δi j∂μ − igt i ja Aa

μ, (2.3)

and the non-Abelian gluon field strength tensor is given by

F (a)
μν = ∂μA

a
ν − ∂ν A

a
μ + g fabc A

b
μA

c
ν, (2.4)

where fabc are SU(3) Lie group structure constants. This is non-linear in terms of the
gauge field and as a result the gluon kinetic energy term of the Lagrangian generates
three and four-gluon self-interactions. These interactions are responsible for many
of the salient features of QCD.

In particular, because of the gluon self-coupling, the polarisation of virtual glu-
ons in the vacuum antiscreens (i.e., enhances) colour charge. This effect domi-
nates over the screening effect of the quark vacuum-polarisation, which is analo-
gous to that of QED. As a result, the QCD coupling, αs = g2/4π, runs to become
small at large scales; at high energy QCD is essentially a theory of free partons—
quarks and gluons—which only interact through relatively small quantum correc-
tions that can be systematically, perturbatively, calculated. This is the property of
asymptotic freedom, for which Politzer, Gross, and Wilczek were awarded the 2004
Nobel Prize [4, 5].

2Counterterms and ghost and gauge-fixing terms are implicit; they are all unnecessary for the lattice
QCD approach which we will consider here.
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In contrast, at low energies accelerators reveal a particle spectrum which bears no
resemblance to the non-interacting theory: free quarks are never observed. Instead,
towers of strongly-bound colour-singlet particles named hadrons emerge. This is
termed confinement and is understood as a consequence of the property that the force
between two colour-charges does not diminish as they are separated. Instead, linear
string-like potentials build up between partons. These strings only ‘break’ when the
energy contained is large enough to create an additional quark-antiquark pair out of
the vacuum. As a result, one only observesmesons, which have the quantum numbers
of a quark-antiquark pair, and baryons, with the quantum numbers of three quarks.
The properties of these hadrons are the focus of this body of work.

Analytic derivations of hadron properties have proven to be impossible except in
some extreme limiting cases; at the relevant low energy scales the strong coupling
becomes large and perturbation theory is no longer valid. While many models and
approximations are used to study low-energy processes: the limit of the large number
of colours; generalisations of the original Shifman-Vainshtein-Zakharov sum rules;
QCD vacuum models and effective string models; the AdS/CFT conjecture; and
Schwinger-Dyson equations, the only known way to study QCD in the nonpertur-
bative regime directly is to use numerical methods. As suggested earlier, the most
successful of these, and the only one rigorously derived from the fundamental theory,
is lattice QCD.

2.2 Lattice Quantum Field Theory

First proposed by Wilson in 1974 [6], lattice QCD is a first-principles method of
calculating QCD observables numerically. In short, a discretised version of the full
QCD theory is solved explicitly on a four-dimensional lattice of points (3 space, 1
time dimension). Any such lattice is characterised by a finite lattice spacing a which
is not physical but acts as a method of regularisation. The limit a → 0 must be taken
to connect to the physical theory.

As the only known direct probe of QCD in the nonperturbative regime, the lattice
is an important source of information for tests of the SM; it provides results for var-
ious low-energy hadronic matrix elements that are complimentary to those obtained
using phenomenological approaches. It has also become a viable framework for cal-
culations of nuclear few-body quantities [7, 8], and for the exploration of part of the
QCD phase diagram [9, 10]. As we will see in later chapters, a great advantage of
lattice field theory is that the technique allows precise control over the parameters
of QCD. By varying these parameters one may probe more than QCD at the physi-
cal point—for example, one can ‘turn off’ vacuum loop contributions or change the
quark masses—to develop a deeper understanding of nonperturbative phenomena.
In this section we introduce the basic concepts and terminology relevant to lattice
QCD. A comprehensive summary of the approach may be found in Refs. [11–13].
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2.2.1 The Discretised Action

Lattice gauge theory is based on the Feynman path integral approach to quantumfield
theory [14]. In this formulation of QCD, observables are given by the expectation
values of field operators. These expectation values, known as Green’s functions, can
be expressed as functional derivatives of the generating functional,

ZQCD =
∫

δAμ δψ δψ ei SQCD , (2.5)

with respect to the various sources. If all Green’s functions could be calculated,
QCD would be solved. In Minkowski space, however, this formulation of QCD does
not lend itself to numerical computation because of the complex term ei SQCD which
appears in Eq. (2.5); the oscillatory integrand causes cancellations between different
regions of phase space. For this reason lattice QCD is formulated in Euclidean space-
time. The partition function

ZE
QCD =

∫
δAμ δψ δψ e−SQCD (2.6)

is obtained by a Wick rotation (t → −i tE ) of the corresponding expression in
Minkowski space (Eq. (2.5)). This form allows a probabilistic interpretation of the
functional integral; the exponential factor corresponds exactly to the Boltzmann
weighting of a statistical ensemble.

In this section we describe the construction of a discretised lattice action for QCD:

SQCD = SF [U,ψ, ψ] + SG[U ], (2.7)

where the subscripts F and G denote the fermion and purely-gauge components,
respectively.

2.2.1.1 Fermions

In Euclidean space-time the Dirac action for a free fermion is written as

∫
d4x ψ(x)

(
/D + m

)
ψ(x). (2.8)

In the discretised theory the quark fields ψ(n) reside on the sites n of the lattice, i.e.,
the fermionic degrees of freedom are

ψ(n), ψ(n), n ∈ �. (2.9)
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We will restrict ourselves to four-dimensional cubic lattices:

� = {
x ∈ R

4
∣∣x = an, n ∈ Z

4
}
, (2.10)

where a is the discrete lattice spacing. While this is the standard topology, others
have been explored [15, 16] and there has been a recent resurgence of interest in
anisotropic lattices [17, 18]. In practice, of course, the lattices used for numerical
simulations have some finite extent. As in the continuum theory, the spinors ψ carry
colour, flavour, and Dirac indices (which are suppressed in our notation).

The derivative in Eq. (2.8) may be discretised using a symmetrised finite differ-
ence, where appropriate gauge links are included to maintain gauge invariance:

ψ /Dψ →
4∑

μ=1

ψγμ∇μψ = 1

2a
ψ(n)

4∑
μ=1

γμ

[
Uμ(n)ψ(n + μ̂) −U†

μ(n − μ̂)ψ(n − μ̂)
]
,

(2.11)

where the gauge fields Uμ(n) are elements of the gauge group SU(3). These fields
are oriented and attached to the links of the lattice:Uμ(n) lives on the link connecting
the sites (n) and (n + μ̂). Under a gauge transformation λ(n),

Uμ(n) → λ(n)Uμ(n) λ(n + aμ̂)−1. (2.12)

Finally, implementing the discretisation of the integral in Eq. (2.8) as a sum over the
set of space-time points �, we arrive at the ‘naive’ action for fermions in an external
gauge field U :

SNF [U, ψ, ψ] =
∑
n∈�

ψ(n)

⎛
⎝ 1

2a

4∑
μ=1

γμ

[
Uμ(n) ψ(n + μ̂) −U †

μ(n − μ̂) ψ(n − μ̂)
]

+ mψ(n)

⎞
⎠

=
∑

n,m∈�

ψ(n) MN
nm [U ] ψ(m), (2.13)

where MN is the naive interaction matrix

MN
nm[U ] = m δnm + 1

2a

4∑
μ=1

γμ

[
Unμ δn(m−μ) −U †

(n−μ)μ δn(m+μ)

]
. (2.14)

By Taylor-expanding Uμ and ψ in powers of the lattice spacing a, one can see that
the naive fermion action has O(a2) errors. It is clear, however, that the first-order
derivative can only couple lattice sites separated by 2a. As a result, certain high-
momentum modes do not correspond to a large value of the action. This leads to
unwanted additional long-range degrees of freedomcalled doublers; in the continuum
limit there are 2d = 16 flavours of quark rather than one.

There are two common methods of fixing the doubling problem. The first reduces
the number of doublers by ‘staggering’ the quark degrees of freedom on the lattice.
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This procedure is described in Ref. [11]. The other technique, which is used in this
work, involves adding additional operators to the quark action (which scale with a
and so vanish in the continuum limit) to suppress the doublers by driving them to
higher energies.

Precisely, the Wilson term—a particular (energy) dimension-five operator—is
added to the standard naive lattice fermion action, giving the ‘Wilson action’:

SWF [U,ψ, ψ] =
∑
n∈�

ψ(n)

⎡
⎣

4∑
μ=1

(
γμ∇μ − 1

2
ra�μ

)
+ m

⎤
⎦ψ(n). (2.15)

Here∇ denotes the finite difference defined in Eq. (2.11), and the operator� removes
the unwanted doublers by coupling adjacent lattice sites:

�μψ(n) = 1

a2
[
Uμ(n)ψ(n + μ̂) +U †

μ(n − μ̂)ψ(n − μ̂) − 2ψ(n)
]
. (2.16)

In terms of link variables, the Wilson action is written as

SWF [U,ψ, ψ] =
∑

n,m∈�

ψ
L
(n) MW

nm[U ] ψL(m),

where

aMW
nm[U ] = δnm − κ

4∑
μ=1

[
(r − γμ)Unμ δn(m−μ) + (r + γμ)U

†
(n−μ)μ δn(m+μ)

]
,

(2.17)
with a field renormalisation

κ = 1/(2ma + 8r), (2.18)

ψL = ψ/
√
2κ. (2.19)

It is typical to take r = 1.
In the continuum limit it is clear that, through the addition of the Wilson term, we

have introduced O(a) discretisation errors into the fermion matrix; the Dirac action
of Eq. (2.8) becomes

∫
d4x ψ(x)

(
/D + m − a

r /D2

2

)
ψ(x) + O (

a2
)
. (2.20)

Numerical simulations using Wilson fermions must thus be performed on very fine
lattices, which are computationally expensive, in order for continuum extrapolations
to be reliable. It has become standard to improve the uncertainties of the Wilson
action through the addition of higher-dimension operators. This procedure is known
as the Symanzik improvement program [19].
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We discuss here only one choice of improved fermion action, which we use in
this work (see Chap.7). The Sheikholeslami-Wohlert fermion action [20] includes
the so-called ‘clover’ term—a gauge-invariant, local, dimension-five operator—in
addition to the standard terms of the Wilson action:

SSWF [U,ψ, ψ] = SWF [U,ψ, ψ] − a cSW r

4

∑
n∈�

4∑
μ,ν=1

ψ(n)σμν Fμν(n)ψ(n).

(2.21)
Here cSW is the clover coefficient which can be tuned (typically nonperturbatively
using the axial Ward identity [21]) to remove allO(a) artefacts. Further details may
be found in Refs. [11–13].

2.2.1.2 Gluons

The matrix-valued link variable Uμ(x) was introduced in Eq. (2.11) to maintain
the gauge-invariance of the covariant derivative. Based on its gauge transformation
properties (Eq. (2.12)), we interpretUμ(n) as a lattice version of the gauge transporter
connecting the points (n) and (n + μ̂). Under this identification, we can express the
link variable in terms of the algebra-valued continuum gauge field Aμ(x):

Uμ(n) = P exp ig
∫ a

0
Aμ(n + λμ̂)dλ, (2.22)

where the operator P path-orders the Aμ along the integration path and g is the
coupling constant.

From Eq. (2.12) it is clear that the trace over a closed (Wilson) loop of link
variables is a gauge-invariant object. Various such loops are used in combination
to build the lattice version of the QCD gauge action—the precise construction is
arbitrary provided that the usual continuum action is recovered in the a → 0 limit. It
is natural to consider the simplest case first; the shortest nontrivial closed loop on the
lattice is the so-called plaquette, constructed by the product of four links enclosing
an elementary square:

Pμν(n) = Re Tr
[
Uμ(n) Uν(n + μ̂)U †

μ(n + ν̂)U †
ν (n)

]
. (2.23)

Using Eq. (2.22), and expanding the integral, we express Pμν in terms of the field Aμ:

Pμν(n) = Re TrPeig
∮
�n

A·dx

= TrP
[
1 − 1

2

(
g

∮

�n

A · dx
)2

+ O(A4)

]
. (2.24)

http://dx.doi.org/10.1007/978-3-319-31438-9_7
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Stoke’s theorem gives an expression for the integral:

∮

�n

A · dx =
∫ a

0
dxμdxν

[
∂μAν(n + x) − ∂ν Aμ(n + x)

]

=
∫ a

0
dxμdxνFμν(n + x)

= a2Fμν(n) + a4

24

(
∂2

μ + ∂2
ν

)
Fμν(n) + O (

a6, A2
)
, (2.25)

where the last line follows from a Taylor expansion of Fμν(n + x) about the lattice
site (n). Substituting this expression back into Eq. (2.24), the plaquette term becomes

Pμν(n) = 1 − 1

2
g2a4Tr

[
Fμν(n)2

] + O (
g2a6, a8, g4a6

)
. (2.26)

This expansion yields the ‘Wilson action’ for gluons on the lattice:

SWG [U ] = 2

g2
∑
n∈�

∑
μ<ν

[
1 − Pμν(n)

]

= a4

2g2
∑
n∈�

∑
μ<ν

Tr
[
Fμν(n)2

] + O (
a2, a2g2

)
. (2.27)

This expression differs from the continuum gluon action by terms which are O(a2)
andO(a2g2). These artefacts can be removed, however, by adding otherWilson loops
to the action which have different errors at O(a2). For example, the Lüscher-Weisz
gauge action [22] includes 1 × 2 rectangular loops and parallelogram-shaped loops
as well as the standard plaquette:

SLWG [U ] = 2

g2

⎛
⎝c0

∑
plaq.

[
1 − Pμν

] + c1
∑
rect.

[
1 − Rμν

] + c2
∑
par.

[
1 − Lμν

]
⎞
⎠ ,

(2.28)

where Rμν and Lμν denote products of gauge links, enclosing 1 × 2 rectangles and
parallelograms respectively, defined analogously to Pμν in Eq. (2.23). The relative
weighting coefficients ci (that are generically functions of g2) are chosen to satisfy
c0 + 8c1 + 8c2 = 1, which ensures that discretisation errors are cancelled toO(a4).
Two common choices of the weighting coefficients are the Iwasaki gauge action [23]
and the tree-level improved action [24] which we use in Chap. 7. This latter choice
sets c0 = 20/12, c1 = −1/12, and c2 = 0.

http://dx.doi.org/10.1007/978-3-319-31438-9_7
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2.2.2 Lattice Expectation Values

Physical observables are calculated in the lattice approach as expectation values:

〈O〉 = 1

Z
∫

δAμ δψ δψO e−SQCD , (2.29)

where O can be any combination of operators expressed in terms of time-ordered
products of gauge and quark fields, and Z is the Euclidean–space-time partition
function (Eq. (2.6)). One can remove any dependence of O on the quark fields as
dynamical variables by performing Wick contractions to re-express them in terms
of propagators. The propagators, for a given background field U , are determined by
inverting the Dirac operator. In terms of an interaction matrix M (e.g., Eq. (2.14)
or (2.17)),

S f (m, n,U ) = (M[U ]−1)nm (2.30)

gives the amplitude for the propagation of a quark from site (n) to site (m) (where the
spin-colour indices are suppressed).Now, integrating over the fermionfield (recalling
that the fermion action is given by SF = ψMψ, Eq. (2.13)),

〈O〉 =
∫

δAμ det[M]O e−SG∫
δAμ det[M] e−SG

. (2.31)

As the gauge group SU(3) is continuous, there are infinitely many gauge configura-
tions that contribute to this expression. For this reason the integral over the gauge
fields is approximated statistically:

〈O〉 ≈ 1

N

N∑
i=1

O (
U [i]) . (2.32)

Here O(U [i]) is the operator O evaluated for the i th field configuration U [i] of an
ensemble of N such configurationswhich have been randomly generated based on the
acceptance probability of the weight function det[M[U ]]e−SG[U ] . This generation is
performed iteratively using aMarkov process; beginning froman initial configuration
U [0], a chain of configurations

{
U [1],U [2], . . .

}
is generated using a Monte-Carlo–

style algorithm satisfying

P
(
U [i−1] → U [i]) P [

U [i−1]] = P
(
U [i] → U [i−1]) P [

U [i]] , (2.33)

where P
(
U → U ′) is the transition probability between configurations U and U ′.

General criteria exist that guarantee that the configurations visited are indeed dis-
tributed according to the desired probability distribution after a sufficient number of
iterations.
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The generation of gauge configurations is computationally expensive. The cost of
calculating the fermion determinant det[M[U ]] depends not only on the number of
configurations generated, but on the number of lattice sites, the lattice volume, and
the quark masses. Because of the sheer size of the fermion matrix M , its determinant
is approximated numerically. This is done using iterative algorithms which involve
inverting matrices that become progressively more singular as the quark masses
become lighter. Similarly, the quark propagators, which must be calculated explicitly
for each gauge configuration, become more expensive to calculate at light masses.
Moreover, the lattice volume required becomes increasingly large. For this reason
calculations at or near the physical masses are only now becoming tractable [25].

A further cost-saving approximation is that quark propagators are typically cal-
culated from a fixed source point to every other point on the lattice; ‘all-to-all’
propagators from every lattice site to every other site are simply too expensive. As
a result, contributions to observables from quark-line–disconnected loops—which
could appear at any point on the lattice—are neglected in most simulations (see
Sect. 2.3.1). The effects of this omission in the case of baryon electromagnetic form
factors will be discussed in detail in Chap.7.

2.2.3 Scale Setting

Acharacteristic of lattice simulations is that all quantities are calculated in units of the
unknown lattice spacing a, which must be determined by matching an observable to
its physical value3. This canbedone in a variety ofways.Twocommonmethods, often
referred to as the ‘mass-independent’ and ‘mass-dependent’ scale-setting schemes,
are of particular interest to us here:

1. Mass-independent.The inverse bare coupling β determines the lattice spacing a.
That is, simulations at some fixed value of β are extrapolated to the physical point
(usually linearly in the bare quark mass amqsea ), and the value of some observable
at that point is used to set the common scale a for all lattice ensembles at that
common β.

2. Mass-dependent. The lattice spacing varies with bare quark mass. That is,
a is determined separately for each set of bare parameters (β, amqsea) by using
a physical observable that is assumed to be independent of the quark masses. A
typical choice of observable is the Sommer scale, r0, which is related to the force
between static quarks at relatively short distance, or any of a range of similar
quantities.

We could think of these two choices of scale-setting prescription as different
ways of absorbing the observed quark-mass dependence of the ratio r0/a at fixed β.

3The lattice spacing is not physical, but acts as a method of regularisation. The only physical
quantities are mass-ratios.

http://dx.doi.org/10.1007/978-3-319-31438-9_7
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Method 1 essentially assumes that this dependence may be attributed to the variation
of r0 with quark mass, while method 2 instead assumes that a is changing. What
is not often considered is that both r0 and a may have some dependence on the
sea-quark mass, which would lead to an intermediate scale in some sense. Such a
‘mixed’ scale-setting procedure would be nontrivial to implement.

Of course, in the continuum limit, and after the chiral extrapolation to physical
quark masses has been performed, the results of each method of scale setting must
agree for physical observables. When considering quantities which are expressed as
derivatives with respect to quark mass, however, the choice of scale-setting method
becomes farmore significant; these quantities, by the very definition of the derivative,
depend on the scale away from the physical point and hence on the scale-setting
scheme chosen. This distinction will be particularly relevant to the discussion of
Chap. 5, where we calculate the octet baryon sigma terms as derivatives via the
Feynman-Hellmann theorem.

2.3 Strangeness and Charge Symmetry Violation
in the Nucleon

We finish this chapter with an introduction to the concepts of strangeness and charge
symmetry violation (CSV) in nucleon structure; these topics are the unifying themes
of this body of work. Both strange and CSV observables are associated with devia-
tions from approximate features of the nucleon in QCD. They are hence benchmark
quantities for modern precision tests of the theory.

In particular, strange nucleon observables occupy a position of comparable impor-
tance in QCD to that of the Lamb shift in the history of QED. While lattice QCD
and models have described a number of valence-quark–dominated hadronic proper-
ties extremely accurately [26], strange observables can only arise through quantum
fluctuations of the vacuum in which a strange-antistrange quark pair briefly bubble
into and out of existence. The calculation of such quantities directly within QCD,
and their verification by experiment, is thus the ideal test of our understanding of
virtual sea quarks in the nucleon.

Charge symmetry, defined formally in Sect. 2.3.2, is related in QCD to the near
mass-degeneracy of the u and d quarks. At the quark level this symmetry is, of
course, very badly broken, but this is hidden by dynamical chiral symmetry breaking;
in nuclear reactions charge symmetry holds to better than about 1% [27]. Precise
calculations of CSV observables therefore also provide SM benchmarks for tests of
QCD. In our discussion, the themes of strangeness and CSV are connected through
the electromagnetic form factors (Chap.7); the strange quark and CSV contributions
to these quantities cannot be distinguished experimentally.

http://dx.doi.org/10.1007/978-3-319-31438-9_5
http://dx.doi.org/10.1007/978-3-319-31438-9_7
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2.3.1 Nucleon Strangeness

The net strangeness of the nucleon is, of course, zero; its quantum numbers corre-
spond to those of two u quarks and a single d . In QCD, however, these light valence
quarks are accompanied by a fluctuating sea of all flavours of qq pairs. The magni-
tude of the vacuum contributions to observables from different flavours scales with
quark mass. Clearly, the lightest non-valence quark flavour—the s for the nucleon—
will provide the dominant vacuum contribution, and hence be the most interesting
phenomenologically.

Other than the valuable information about the quantum vacuum which strange
observables provide in their own right, these quantities are also relevant in other
arenas. Most importantly, the strange nucleon sigma terms (Chap. 5) are essential
input for the interpretation of dark matter direct-detection experiments. In general,
however, the uncertainties in both experimental and theoretical determinations of the
strangeness matrix elements, including the strange sigma terms, are large. Clearly
latticeQCDpromises significant improvement by facilitating the calculation of defin-
itive quantitative results for these observables.

The challenge in determining strange nucleon observables in lattice QCD lies
in the evaluation of the so-called disconnected insertions, illustrated in Fig. 2.1(a).
Determining these terms explicitly requires the calculation of all-to-all propagators—
from every point on the lattice to every other point—which is prohibitively expensive
compared to the evaluation of the connected insertions. Consequently, there are
very few lattice calculations of disconnected observables [28, 29]. In these studies
the all-to-all propagators are stochastically estimated. For these reasons, the lattice
QCD simulations which we use and develop in this body of work will include only
connected insertions. We emphasise here that this does not omit the entire meson
cloud of QCD. This distinction is illustrated explicitly in Fig. 2.2.

We investigate the role of strange quarks in generating different nucleon observ-
ables by combining connected-only lattice QCD simulations, chiral effective field
theory, and experimental input; the aim is to build a cohesive picture of the contribu-
tion not only from the strange quark, but from the dynamical vacuummore generally,
in QCD. In particular, we investigate the strange nucleon sigma terms (Chap. 5) and
the strange contribution to the electromagnetic form factors of the nucleon (Chap.7).

(a) (b)

Fig. 2.1 Quark-line ‘skeleton’ diagrams showing connected and disconnected insertions of some
operator (represented by the crossed vertex). All gluons and additional (spectator) quark-antiquark
pairs are omitted for clarity, (a) Disconnected insertion, (b) Connected insertion

http://dx.doi.org/10.1007/978-3-319-31438-9_5
http://dx.doi.org/10.1007/978-3-319-31438-9_5
http://dx.doi.org/10.1007/978-3-319-31438-9_7
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(a) (b)

Fig. 2.2 Quark-line ‘skeleton’ diagrams showing themeson cloud contributions to hadronic observ-
ables. All gluons and additional quark-antiquark pairs are omitted for clarity. Any operator insertion
into a connected quark line (i.e., any line other than the vacuum bubble in Fig. 2.2(b)) is included in
a connected-only calculation, (a) Quark-line connected meson loop, (b) Quark-line disconnected
meson loop

2.3.2 Charge Symmetry Violation

Charge symmetry is formally defined as the invariance of the strong interaction under
an isospin rotation exchanging u and d quarks; it corresponds precisely to a rotation
by π about the ‘2’ axis in isospin space (compared to isospin symmetry, which is
invariance under an arbitrary rotation in this space). The violation of this symmetry is
arguably small: the proton-neutron mass difference is one part in a thousand [30] and
many nuclear reactions proceed identically if protons and neutrons are interchanged.
The effects of this small CSV, however, may be hugely significant. For example, if
the proton-neutronmass difference were reversed, protons could undergo beta decay,
atoms such as carbon, the building block of all organic matter, could not form, and
life as we know it would be impossible. CSV also explains the discrepancy between
the calculated and measured binding energy differences of mirror nuclei (Okamoto-
Nolen-Schiffer anomaly [31]) and may play a role in precision tests of the SM [32],
including those at the LHC [33].

In lattice QCD studies, however, the small effects of CSV are in general ignored;
it is standard to perform ‘2+1-flavour’ simulations where the light quarks are mass-
degenerate. A full ‘1+1+1-flavour’—isospin-broken—study would involve a signif-
icantly more complicated tuning procedure in order to find the lattice parameters
corresponding to the close-to-physical space of interest. With the majority of lattice
simulations not yet at the physical average light-quark mass, the effect of CSV has
thus long been a secondary concern; only very recently have lattice studies been per-
formed that partially (for the valence quarks only) [34] or fully [35] include strong
CSV contributions.

CSV effects have also, until very recently [36–38], been neglected in many
standard analyses of experimental results. For example, the assumption of good
charge symmetry at the parton level has been applied to global fits of parton dis-
tribution functions to experimental data [33, 39] in order to reduce the number of
independent functions by a factor of two. Experimental tests of the SM are now,
however, reaching a level of precision where CSV effects may be important. For
example, it has been suggested [40] that CSV artefacts could significantly reduce
the 3-sigma discrepancy with the SM value for the weak mixing angle found by
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the NuTeV collaboration [41] in neutrino-nucleus deep inelastic scattering. For this
reason, we devote considerable attention to the role of CSV in the nucleon (returning
to a discussion of the NuTeV anomaly in Chap. 6).

In future chapters we combine 2+1-flavour lattice QCD simulations with input
from chiral effective field theory to determine CSV effects in a number of nucleon
observables. In particular, we separate the strong and electromagnetic contributions
to the proton-neutron mass difference (Chap. 4), as well as determining the level
of CSV in the baryon sigma terms (Chap. 5), and in moments of parton distribution
functions (Chap.6). In Chap.7we describe the first lattice-QCD–based calculation of
the CSV electromagnetic form factors and, importantly, present the remarkable result
that these quantities are constrained to be an order ofmagnitude smaller than previous
best estimates. This revelation paves the way for a new generation of experimental
determinations of the strange nucleon form factors to constrain these quantities to
an unprecedented level of precision. Moreover, because of the extremely small SM
background, measurements of CSV in the electromagnetic form factors may in the
future provide some insight in searches for new physics.
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Chapter 3
Chiral Perturbation Theory

One of the prime motivators for lattice QCD is its potential to confront experiment
in the nonperturbative regime. Its success on this front has historically been tied
to chiral effective theory, whose essential role was to bridge the gap between the
physical region of light quark masses and simulations with computationally less
demanding, heavier, masses. Even in the current era of high-precision lattice stud-
ies approaching the physical point, chiral extrapolation techniques are not obsolete.
As will be described in the coming chapters, the formalism has become a refined
tool with which one can correct a variety of lattice artefacts in near-physical simu-
lations or glean understanding from unphysical test cases which are not accessible
experimentally.

In this chapterwe provide an introduction to chiral perturbation theorywith a focus
on understanding properties of the low-lying baryon octet. After discussing effective
field theories, of which the chiral theory is arguably the canonical example, we
consider the symmetry-breaking pattern of QCD and describe the emergent Nambu-
Goldstonebosons, exposing their universal low-energydynamics throughan effective
chiral Lagrangian. Through the example of the chiral extrapolation of the mass of
the nucleon we introduce the finite-range regularisation scheme which is applied
throughout this bodyofwork. Thefinal section describes the use of chiral perturbation
theory to correct artefacts resulting from a finite lattice volume.

In later chapters we develop and use more complex chiral extrapolations for
particular observables of interest. Throughout that discussion we maintain a focus
on applications tailored to lattice QCD in the high-precision era; beyond quark-mass
extrapolation formulae, we address extensions needed to account for the quark-line–
connected approximation to QCD (Chap.7), and the breaking of the commonly-
employed light quark mass degeneracy mu = md (Chap. 4).
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3.1 Effective Field Theory

Effective field theories (EFTs) provide a standard way to analyse physical systems
with widely-separated energy scales. Such systems are common in arenas ranging
from the high-energy domain of particle physics beyond the SM to the low-energy
domain of nuclear physics which is of interest to us here. In essence, EFTs encode the
expectation that the details of high-energy interactions will have little influence on
the low-energy dynamics of a system; parameters encoding physics at energy scales
that are very large or small with respect to the scale of interest are taken to infinity or
zero, respectively. This provides a simpler, approximate, description of the system,
which can be improved to arbitrary order by treating corrections induced by higher
and lower energy scales—i.e., by the finite physical values of the parameters which
have been removed—as perturbations.

This process is very familiar and intuitive; it is the basis of the multi-pole expan-
sion in electrodynamics, the use of Newtonian rather than relativistic mechanics
for systems with scales v � c, and the replacement of a physical dielectric with a
uniform one. In a relativistic, quantum mechanical theory where particles may be
created and destroyed, however, it is complicated considerably by the necessity of
ultraviolet regularisation; the limit in which small distance scales are taken to zero
must be handled carefully. Furthermore, the renormalisation-group running of cou-
pling constants is modified in an effective theory—the usual logarithmic dependence
on heavy particle masses is traded for scale-dependence.

The machinery of EFTs in the modern sense grew out of the chiral Lagrangian
techniques developed by Weinberg, Dashen and others in the late 1960s as a short-
cut to current-algebra derivations [1–7]. On the grounds of perturbative unitarity
and analyticity, Weinberg argued that the correct effective Lagrangian consists of
all operators with the desired fields and symmetries. Thus, to construct an EFT
describing physics below some energy scale�χ, only relevant degrees of freedom—
states withm � �χ—are considered explicitly, while heavier excitations with M ≥
�χ are ‘integrated out’ of the action, generating non-local terms. One then writes an
expansion of interactions among the light states in powers of (energy/�χ), replacing
the non-local interactions from virtual heavy particle exchange with a set of local
interactions which are constructed to give the same physics at low energies. The
leading terms in the expansion will dominate in the low-energy region of interest.

While the EFT has the same infrared behaviour as the underlying fundamental the-
ory, it has different ultraviolet behaviour; the only remnants of high-energy dynamics
are contained in the symmetries of the EFT and in the (a-priori unknown) couplings
of the resulting low-energy Lagrangian. In our applications of chiral effective field
theory to lattice QCD studies in future chapters, these couplings will be determined
by fits to lattice simulation results. In the next section we describe the construction
of the chiral Lagrangian which was established by Gasser and Leutwyler [8] as the
canonical example of the use of effective field theory.
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3.2 Chiral Symmetry

The possibility of building a phenomenological effective theory of low-energy QCD
exists because there is a mass gap between the pseudoscalar mesons (�π, �K , η),
which are the lightest hadrons, and all other states and resonances. This is elegantly
explained by the Nambu-Goldstone mechanism: in the limit of vanishing quark mass
the mesons are massless bosons arising from the spontaneous breaking of the chiral
symmetry. The construction of an effective Lagrangian describing only the low-
energy Goldstone-boson modes, but incorporating the full chiral symmetry of QCD,
allows a systematic analysis of the implications of the symmetries and symmetry-
breaking pattern, with higher-order corrections treatable in the sense of perturbative
field theory.

The QCD Lagrangian was introduced in Chap. 2:

LQCD = ψ
(
i /D − Mq

)
ψ − 1

4
FμνFμν . (3.1)

Two approximate symmetries ofLQCD concern us here. If all quark masses are equal,
the Lagrangian is invariant under global unitary-vector transformations:

ψ(x) → ψ′(x) = eiw
a taψ(x), (3.2)

where, as in previous sections, ta = λa/2 are the generators of flavour-SU(N f ) (and
N f is the number of quark flavours in the theory). These transformations form the
group SU(N f )V , a generalisation of the familiar isospin symmetry SU(2)V . If all
quark masses vanish, then LQCD is also invariant under global axial-vector transfor-
mations which form the group SU(N f )A:

ψ(x) → ψ′(x) = eiw
a taγ5ψ(x). (3.3)

The combined symmetry group SU(N f )V ⊗ SU(N f )A is termed chiral symmetry;
the limit Mq → 0 is named the chiral limit. Noether’s theorem gives the correspond-
ing classically-conserved vector and axial-vector currents:

Vμ = ψγμ tψ, Aμ = ψγμγ5 tψ, (3.4)

with associated classically-conserved charges

QV =
∫

d3xV0 and QA =
∫

d3xA0, (3.5)

respectively.

http://dx.doi.org/10.1007/978-3-319-31438-9_2
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It is useful for future sections to re-write the chiral symmetry group using the
notion of chirality, defined by the operators

�L ,R = 1

2
(1 ± γ5), (3.6)

which project left and right-handed1 components of the Dirac wavefunction:

ψL = �Lψ, ψR = �Rψ, with ψ = ψL + ψR . (3.7)

In terms of these chirality states, the QCD Lagrangian (Eq. (3.1)) may be re-
expressed as

LQCD = ψLi /DψL + ψRi /DψR − ψLMqψR − ψRMqψL − 1

4
FμνFμν . (3.8)

In the chiral limit (Mq → 0), the left and right-handed quark fields decouple and
LQCD becomes invariant under global SU(N f )L ⊗ SU(N f )R symmetry transforma-
tions.

Chiral symmetry is spontaneously broken in nature by the vacuum state. If it
were unbroken, the axial current would be exactly conserved and the axial charge

operators, Q̂a
A, would commute with the Hamiltonian:

[
Q̂a

A, Ĥ
]

= 0. Then, given

an eigenstate of the Hamiltonian, |N+〉 (e.g., the nucleon, with positive parity and
mass M = 0.940GeV), such that

Ĥ |N+〉 = M |N+〉, (3.9)

another state, of opposite parity because of the γ5 structure of the axial current, must
be defined by |N−〉 = Q̂a

A|N+〉. By the commutation relation, this state is degenerate
with |N+〉 in mass. Such pairs of mass-degenerate states of opposite parity are not
observed in the low-energy hadron spectrum (the lowest excitations of the nucleon,
N (1535) and �(1620), have masses more than 500MeV greater than that of the N ).
Clearly, Q̂a

A|0〉 	= 0.
The Goldstone theorem [9] states that, in a physical system in which a continuous

symmetry is broken by the vacuum state, there exists a massless, spinless boson
carrying the quantum numbers of the symmetry transformation; a ‘Goldstone boson’.
For QCDwith N f = 3, there are 2(N 2

f − 1) = 16 generators of the chiral symmetry,

8 of which are broken spontaneously by the vacuum state (as SU(3)L ⊗ SU(3)R
vac.=⇒

SU(3)V ). The 8 associated Goldstone bosons are identified with the pseudoscalar
meson octet.

The physical octet mesons are only approximately Goldstone because of the
explicit chiral symmetry breaking by the finite quark masses; the quark-mass term in

1The terms left and right-handed come from the high-energy (or massless) limit in which chirality
becomes identical to helicity.
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the Lagrangian,−Mqψψ, is not invariant under axial-vector transformations. Never-
theless, as the physical QCD vacuum lies very close to a spontaneously broken phase
of an exact chiral symmetry, we can treat the explicit breaking as a perturbation about
the chiral limit, giving rise to the small masses of the physical octet mesons.

Ever since thephenomenological importanceof chiral symmetrywas realised [10],
there has been great interest in quantifying its breaking in nature (comprehensive
early reviews are given in Refs. [11, 12]). This is complicated by confinement; one
cannot simply measure the mass of a free quark. Instead, matrix elements of the
scalar quark currents, called sigma commutators, can be determined (to first order)
from on-shell scattering amplitudes. The sigma terms vanish identically in the chiral
limit and hence their non-zero values in Nature provide some information on the
form and size of explicit chiral symmetry breaking. These quantities are the focus of
Chap. 5.

3.3 The Chiral Effective Lagrangian

By the formalism outlined in Sect. 3.1, the chiral Lagrangian is given by the most
general expression of the form

Leff. = L0 + LSB, (3.10)

which satisfies the following conditions:

• L0 possesses the same symmetries as the chirally-symmetric part of the QCD
Lagrangian. That is, it is invariant under the chiral flavour group SU(3)L ⊗
SU(3)R .

• The symmetry group is spontaneously broken to SU(3)V by the ground state of
the theory.

• The Goldstone modes resulting from the broken symmetry are the only massless,
strongly-interacting particles.

• The explicit symmetry-breaking part, LSB, is small, can be treated perturbatively,
and generates small masses for the pseudo-Goldstone mesons.

By construction this Lagrangian will produce the same low-energy expansion as
QCD itself. The systematic framework underpinning that expansion—an ordering
in powers of energies and momenta (generically denoted by p) of the interacting
particles such that any matrix element or scattering amplitude is organised as a
Taylor series in p—is called chiral perturbation theory.

The following subsections outline the construction of the various (meson, baryon)
components of Leff.. More detail may be found in Refs. [13, 14], with the ‘heavy-
baryon’ formalism used here presented in Ref. [15].

http://dx.doi.org/10.1007/978-3-319-31438-9_5
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3.3.1 Pseudo-Goldstone Bosons

In order to construct Leff. in the meson sector with N f = 3, it is convenient to
represent the pseudoscalar pseudo-Goldstone bosons by a 3 × 3 matrix field�(x) =
ξ2(x) ∈ SU(3). This matrix transforms linearly under chiral rotations of left and
right-handed quarks: under SU(3)L ⊗ SU(3)R ,

� → L�R†, (3.11a)

ξ → LξU † = UξR†, (3.11b)

where U is defined implicitly as a function of L , R and ξ by Eq. (3.11b). Explicitly,

� = ξ2 = exp

(
2i�

fπ

)
, (3.12)

� = 1√
2

⎛
⎜⎝

1√
2
π0 + 1√

6
η π+ K+

π− − 1√
2
π0 + 1√

6
η K 0

K− K
0 − 2√

6
η

⎞
⎟⎠, (3.13)

where fπ is a low-energy constant which describes the normalisation of the field
�. From its relation to the axial current this constant is identified, as the notation
suggests, with the pion decay constant in the SU(3) chiral limit. A chiral perturbation
theory estimate is fπ = 87MeV, with this normalisation2 [16]. We note that the
symbol ‘η’ in Eq. (3.13) denotes the octet component of the η field, rather than a
representation of the observed η meson.

The meson part of Leff. may now be written in terms of the field �(x) and its
derivatives. At low energy, an expansion in powers of the meson momenta is equiv-
alent to an expansion in powers of ∂μ�. By Lorentz invariance, only terms with
even numbers of derivatives will appear. At leading order in chiral perturbation the-
ory, which corresponds to O(p2) in the energy/momentum expansion, the effective
Lagrangian is thus [13]

L�
eff. =

f 2π
4

Tr
(
∂μ�†∂μ�

) + λTr Mq
(
�† + �

)
. (3.14)

All two-derivative terms can be incorporated into this form. The low-energy constant
λ, which relates the quark-massmatrix to themesonmasses, could in principle be cal-
culated explicitly in terms of fundamental QCD parameters. Without exact solutions
toQCDGreen’s functions, however, this constant is determined phenomenologically.

Taylor-expanding the symmetry-breaking part of Lφ
eff. in powers of the meson

field, one finds

2The two most common conventions for the normalisation of fπ differ by a factor of
√
2.
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L�
SB = λTr Mq

(
�† + �

)

= 2λTr(Mq ) − 4λ

f 2π
Tr

(
Mq�2

)
+ O

(
�4

)

= 2λ(ms + 2m) − 4λ

f 2π

(
�π · �πm + 1

2
�K · �K (m + ms) + 1

3
η2(m + 2ms)

)
+ O

(
�4

)
,

(3.15)

where the first term is a vacuum energy contribution, higher-order interaction terms
have been neglected, and we have taken the isospin-symmetric limit by approximat-
ing mu = md = m (i.e., Mq = diag(m,m,ms)). The meson masses to leading order
can be simply read from this equation:

m2
π = 8λ

f 2π
m, m2

K = 4λ

f 2π
(m + ms), m2

η = 8λ

3 f 2π
(m + 2ms). (3.16)

We have clearly recovered the Gell-Mann–Oakes–Renner relation [17] m2
π ∝ m and

the Gell-Mann–Okubo mass relation [18, 19]

3m2
η + m2

π − 4m2
K = 0. (3.17)

By taking both the pion and the vacuum matrix-elements of the symmetry-breaking
Lagrangian, the low-energy constantλ, andhence themesonmasses (fromEq. (3.16)),
can also be related directly to the quark condensate:

− 2λ = 〈uu〉vac. = 〈dd〉vac. = 〈ss〉vac., (3.18)

f 2πm
2
π = −m〈uu + dd〉vac.. (3.19)

Other tree-level results can be derived just as simply; expandingL�
eff. toO(�4) yields

an interaction term between four mesons:

1

24 f 2π

(
Tr

([�, ∂μ�]� ∂μ�
) + 2λ f 2π Tr

(
�4Mq

))
. (3.20)

This expression leads trivially to the celebrated ππ scattering lengths obtained by
Weinberg in the 1960s [20] using current algebra techniques (as well as to predictions
for the scattering amplitudes for any other four pseudoscalar mesons).

Contributions at next-to-leading order are systematically included by incorporat-
ing terms involving higher derivatives and increased powers of the quark masses
into the chiral Lagrangian. In addition to the resulting tree-level contributions at
O(p4), loops with interaction vertices taken from the leading-order Lagrangian must
be considered, i.e., chiral perturbation theory corresponds to an expansion in both
quark-mass and momentum-dependent interactions and increasing loop complexity.
The ordering of this expansion is termed chiral power counting and is the focus of
Sect. 3.4. While formally possible, calculations at arbitrarily high order in the chiral
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expansion are not practical; at each order there is a significant increase in the number
of undetermined coefficients (12 at O(p4) and 90 at O(p6)) which must be input
from phenomenology, experiment, or lattice QCD, limiting the predictive power of
the theory [21].

3.3.2 Octet Baryons

In the meson sector, chiral perturbation theory gives rise to a power-series expansion
of the effective Lagrangian in terms of derivatives and the quark-mass matrix Mq .
Progressively higher-dimension operators are suppressed by higher inverse powers
of the chiral symmetry breaking scale �χ. Physically, this scale corresponds to the
range of validity of the effective theory. As the first non-Goldstone mode is the ρ
meson, perturbation theory with only the pseudo-Goldstone octet mesons is sensible
at scales up to �χ ≈ mρ ≈ 770MeV. An alternate argument, based on loop geom-
etry, suggests �χ = 4π fπ ≈ 1GeV—the same order of magnitude. For baryons, if
MB denotes the baryon-mass matrix, MB/�χ ∼ O(1). This indicates that higher-
derivative operators involving baryon fields are not suppressed in the same way as
those involving the meson fields.

To see this explicitly, consider a Lagrangian consisting of the baryon kinetic
energy term plus a higher-dimension term with two additional derivatives: for a
baryon field B,

L = B
(
i /∂ − MB

)
B + B

(
i /∂ − MB

) ∂2

�2
χ

B. (3.21)

As the time derivatives in ∂2/�2
χ produce a factor of M

2
B/�2

χ, which is not small, this
term is important even for processes involving small momenta. A similar problem
occurs in the loop expansion; higher-order loop graphs may produce terms which
scale asMB/�χ ∼ O(1) relative to the leading-order contributions and hence cannot
be neglected. This complicates the low-energy structure of the meson-baryon system
considerably; there is no longer a one-to-one mapping between the loop and small-
momentum expansions. To overcome this difficulty and include the octet baryons
into the chiral Lagrangian, we use a formalism, pioneered by Jenkins and Manohar
(based on earlier work by Georgi for the study of heavy quarks [22]), in which
baryons are treated as heavy static fermions [15].

In the chiral limit, the momentum that is transferred between baryons by pion
exchange is smallwith respect to the baryonmass. Thus, baryon velocity is effectively
conserved. This suggests a parameterisation of the momentum of a close-to-on-shell
baryon as

pμ = MBvμ + kμ, (3.22)
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where v2 = 1 and v · k � �χ is proportional to the amount by which the baryon is
off-shell. The effective theory can now be reformulated in terms of new baryon fields
Bv , with definite four-velocity vμ, which are related to the original baryon fields B by

Bv(x) = 1 + /v

2
exp(iMBv · x)B(x). (3.23)

As [vμ, xν] = i�gμν/MB → 0 in the heavy fermion limit, this field with definite
position and velocity is allowed. The factor 1

2 (1 + /v) projects out the particle com-
ponents of the Dirac spinors. The antiparticle fields are integrated out of the theory
(generating O(1/MB) corrections—this is detailed in Appendix A) and the effects
of virtual baryon loops are absorbed into higher-order terms in the chiral expansion.
The new baryon fields obey a modified Dirac equation, /∂Bv = 0, which no longer
has a baryon mass term:

B
(
i /∂ − MB

)
B = Bvi /∂Bv + O

(
1

MB

)
. (3.24)

It is clear fromEq. (3.23) that derivatives acting on Bv produce powers of k rather than
p, so higher-derivative terms in the reformulated effective field theory are suppressed
by powers of the small quantity k/�χ. The heavy-baryon formalism thus allows a
systematic and consistent expansion in powers of derivatives.

As in the meson case, it is convenient to represent the octet baryons by a 3 × 3
matrix field3

B = Bv =
⎛
⎜⎝

1√
2
�0 + 1√

6
� �+ p

�− − 1√
2
�0 + 1√

6
� n

�− �0 − 2√
6
�

⎞
⎟⎠. (3.25)

Under SU(3)L ⊗ SU(3)R , this field transforms as

B → UBU †, (3.26)

whereU is defined byEq. (3.11b). Velocity-dependent Pauli-Lubanski spin operators
Sμ = Sμ

v = i
2γ5σ

μνvν act on the baryon fields. These satisfy4

v · S = 0, S2B = −3

4
B, (3.27a)

{Sλ,Sσ} = 1

2

(
vλvσ − gλσ

)
,

[
Sλ,Sσ

] = iελσαβvαSβ . (3.27b)

3Subscripts v are implicit on the velocity-dependent heavy baryon fields.
4We use the convention ε0123 = +1.
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For a non-relativistic spin- 12 particle in its rest frame the spin operators reduce to the
usual expression, �σ/2.

The effective Lagrangian in the baryon sector is the most general expression that
can be written using the baryon field B, the meson field �, the spin operator Sμ, and
derivatives. At lowest order [15],

L =
∫

d3v

2v0
LB
eff., (3.28)

with

LB
eff. = i TrB(v · D)B + 2D TrBSμ{Aμ,B} + 2F TrBSμ

[
Aμ,B

]

+bD TrB{ξ†Mqξ
† + ξMqξ,B} + bF TrB

[
ξ†Mqξ

† + ξMqξ,B
]

+σ0 Tr Mq
(
� + �†

)
TrBB, (3.29)

where
DμB = ∂μB + [

V μ,B
]
, (3.30)

V μ = 1

2

(
ξ∂μξ† + ξ†∂μξ

)
, Aμ = i

2

(
ξ∂μξ† − ξ†∂μξ

)
. (3.31)

Here the spin operators and a host of associated identities, which can be found in
Appendix B, have been used to eliminate γ-matrix structure; all tensors made from
spinors can be written in terms of vμ and Sμ. The integral over v in Eq. (3.28), which
we suppress for clarity in future expressions, ensures that the theory is Lorentz-
invariant. The mass term MBBB which appears in the usual chiral Lagrangian was
removed by the redefinition of baryon fields in Eq. (3.23).

One could at this point use the Lagrangian given above to develop Feynman rules
and form a perturbative expansion of observables such as the octet baryon masses.
However, as outlined in the following section, it is important to first consider and
include contributions arising from the decuplet baryons.

3.3.3 Decuplet Baryons and Resonances

The lowest-lying decuplet of spin- 32 baryon resonances plays a particularly important
role in low-energy baryon phenomenology because of the closeness of the average
decuplet mass MT to the average octet baryon mass MB ; the physical N -� mass
splitting is δ ≈ 300MeV. In our application of chiral perturbation theory to lattice
simulation results, this scale is comparable to relevant values of the pseudo-Goldstone
boson mass m. As we cannot claim that m � δ, it is in general prudent to retain
explicit decuplet fields, rather than integrate them out. Integrating the decuplet out
would generate higher-order contributions suppressed by powers of C2/δ (where C
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is the T Bφ coupling).5 Given that the coupling C is approximately 1.5 (calculated
using SU(6) symmetry), and higher-dimension operators from typical short-distance
QCD effects are suppressed by 1/�χ, decuplet contributions are thus significantly
more important than other higher-dimension operators in the chiral theory.

Higher baryon resonances are, in general, sufficiently heavy to be consistently
integrated out of the low-energy effective theory. Even allowing for unphysically-
large meson massesm ≈ 500MeV—of a comparable scale to the mass gap between
the nucleon and higher N ∗ resonances—these fields do not necessarily need to be
included explicitly but can bemimicked by higher-dimension operatorswhose effects
are of a similar size. For example, the N (1440) lies only 500MeV above the N (939),
but it is estimated that the contribution to typical octet baryon amplitudes from this
state is no more than 10% that of the �(1232) [15]. This can be understood physi-
cally using an intuitive argument provided by the quark model: the wavefunctions of
the octet and decuplet baryons differ only in the arrangement of spin, while higher
resonances have different spatial wavefunctions. As the hyperfine spin-spin interac-
tion is relatively weak, it is energetically easier for an octet baryon to be converted
into a decuplet baryon than for it to transition to other excited states.

For these reasonswe include the spin- 32 decuplet, but no higher baryon resonances,
into the effective chiral theory. The decuplet is represented by a Rarita-Schwinger
field (T μ)abc, which is totally symmetric under the exchange of flavour indices and
contains both spin- 12 and spin- 32 components. The constraint γμTμ = 0 projects out
the spin- 12 pieces. Explicitly,

T =

⎧⎪⎪⎨
⎪⎪⎩

⎛
⎜⎜⎝

�++ �+√
3
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3

�+√
3

�0√
3

�∗0√
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�∗+√
3

�∗0√
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�∗0√
3

⎞
⎟⎟⎠,

⎛
⎜⎜⎝

�+√
3

�0√
3

�∗0√
6

�0√
3
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3
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⎛
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3
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�∗0√
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�∗−√
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�∗−√
3
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3

�∗−√
3

�−

⎞
⎟⎟⎠

⎫⎪⎪⎬
⎪⎪⎭

. (3.32)

Under SU(3)L ⊗ SU(3)R , T μ transforms as

T μ
abc → Ud

a U
e
bU

f
c T

μ
de f , (3.33)

whereU is defined in Eq. (3.11b). Just as was done for the octet baryons (Eq. (3.23)),
it is convenient to define the velocity-dependent field

T μ
v (x) = 1 + /v

2
exp(iMT v · x)T μ(x). (3.34)

To avoid the introduction of factors of exp(i(MT − MB)v · x) into the Lagrangian,
which would otherwise appear in terms that involve both B and T , one can define

Tμ = exp(iMBv · x)T μ
v (x). (3.35)

5Here T represents decuplet baryons, B represents octet baryons, and φ stands for the octet mesons.
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The modified Dirac equation for the re-defined decuplet fields is
(
i /∂ − δ

)
Tμ = 0;

the decuplet mass term has been replaced by the octet-decuplet mass splitting δ. Spin
operators Sμ, which satisfy the same spin algebra as the octet baryon spin operators,
act on the spinor indices6 of Tμ. It is again useful to note identities which can be
used to eliminate Dirac structures from the theory, in particular,

vμTμ = 0, SμTμ = 0. (3.36)

A more complete collection of such identities is given in Appendix B.
To lowest order, the decuplet baryon contribution to the effective Lagrangian may

be written as

LT
eff. = −iT

μ
(v · D)Tμ + δT

μ
Tμ + C

(
T

μ
AμB + BAμT

μ
)

+ 2HT
μ
Sν A

νTμ

+cT
μ(

ξ†Mqξ
† + ξMqξ

)
Tμ − σ̃ Tr M

(
� + �†

)
T

μ
Tμ, (3.37)

where we have suppressed the SU(3) tensor indices and the bold typeface on T μ.
Flavour-space contractions denoted by brackets (. . .) are given by

(BAB) = B
kji

Al
i Bl jk, (3.38a)

(BBA) = B
kji

Al
k Bi jl, (3.38b)

where B represents either the decuplet baryon tensor T μ or

Babc = 1√
6
(εabdBdc + εacdBdb). (3.39)

The Lagrangian in Eq. (3.37) contains an explicit mass term proportional to the
octet-decuplet mass splitting δ because the transformation to velocity-dependent
fields has the effect of removing only part of the decuplet baryon mass. The complete
first-order Lagrangian for the effective field theory is given by the sum of the meson,
octet and decuplet Lagrangians which appear in Eqs. (3.14), (3.29) and (3.37). From
this one can derive Feynman rules for meson-baryon interactions (summarised in
Sect. 3.3.4) and use diagrammatic perturbation theory to calculate expansions for
hadronic properties, including the octet baryon masses. This is the topic of Sect. 3.6.

Of course, to obtain meaningful expansions of physical observables in this way,
one must include all diagrams to a given order in perturbation theory. The process of
assigning a rigorous order to each type of Feynman diagram is the subject of chiral
power counting, which is outlined in Sect. 3.4.

6It is important to note that Sμ is now not the total spin operator. Instead, SαTμ =
1
2 (σα − (σ · v)vα)Tμ, i.e., Sμ acts only on the spinor portion of the Rarita-Schwinger field.
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3.3.4 Feynman Rules

Using the complete first-order Lagrangian which was developed in the previous
sections (Eqs. (3.14), (3.29) and (3.37)), one can derive Feynman rules within the
heavy-baryon formalism. The octet and decuplet baryon propagators, meson propa-
gator, and baryon-meson vertices are summarised in standard notation below.

Octet Baryon Propagator:
i

k · v + iε
, (3.40a)

Decuplet Baryon Propagator:
i Pμν

k · v − δ + iε
, (3.40b)

Meson Propagator:
i

k2 − m2
φ + iε

, (3.40c)

BB ′φ Vertex (Fig. 3.1(a)):
k · S
fπ

CBB ′φ, (3.40d)

BTφ Vertex (Fig. 3.1(b)):
kμ

fπ
CBTφ. (3.40e)

Here vμ denotes the four-velocity of the heavy baryon B or T , kμ in a propagator
refers to the momentum of the relevant baryon or meson and in a vertex to the (outgo-
ing)momentumof themeson, Pμν = vμvν − gμν − (4/3)SμSν is a spin-polarisation
projector that projects onto the spin- 32 solutions to the equation of motion, and δ
denotes the average octet-baryon–decuplet-baryon mass splitting. The flavour alge-
bra is encompassed in the definitions of the (Clebsch-Gordan) coefficients C which
are given explicitly in Appendix D. Subscripts B, T , and φ on these coefficients
label the octet baryon, decuplet baryon, and meson which appear in the correspond-
ing vertex (illustrated in Fig. 3.1). This list of Feynman rules will be extended in
future chapters, where we generalise the Lagrangian to include external sources as
needed for the calculation of various current matrix elements.

B B

φ

(a)

B T

φ

μ

(b)

Fig. 3.1 Diagrammatic representation of the leading-order strong interaction vertices (solid
squares). The single, double, and dashed lines denote octet baryons, decuplet baryons, and mesons,
respectively, (a) BB ′φ vertex, (b) BTφ vertex
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3.4 Chiral Power Counting

Chiral power counting is a systematicmethod for assigning a chiral dimension to each
Feynman diagram. This dimension plays a role analogous to that of the fine-structure
constant α in QED expansions; naive dimensional analysis shows that contributions
to physical observables from diagrams with chiral dimension D are suppressed by
pD (where p is the momentum-scale of the chiral expansion—see Sect. 3.3).

The chiral dimensionof a particular Feynmandiagram is givenby a combinationof
the dimensions of its propagator and vertex components; each component contributes
as specified by the powers of external momenta and meson masses which appear.
Using the Feynman rules summarised in the previous section, one finds that [23]:

• Meson propagators are given by i
k2−m2

φ+iε
, where k is the four-momentum of

the meson field and mφ is its mass. They hence have chiral dimension D = −2.
The total dimension associated with all meson propagators in a given diagram is
written as IM .

• Octet baryon propagators and decuplet baryon propagatorsmay be expressed
as i

v·k+iε and
i Pμν

v·k−δ+iε respectively, where k
μ is the four-momentum of the baryon

field and vμ is its four-velocity. The chiral dimension of a baryon propagator is
thus7 D = −1. The symbol IB denotes the total chiral dimension of the baryon
propagators in a diagram.

• The chiral dimension D = dM of a particular mesonic vertex is given by the
dimension of the term of the chiral Lagrangian from which it originates. Recall
that by Lorentz covariance only even dimensions contribute: dM = 2, 4, 6, . . ..
The number of mesonic vertices of dimension dM in a given diagram is denoted
by NM

dM
.

• Similarly, the dimensions D = dB of meson-baryon vertices are obtained from
the dimensions of the terms of the chiral Lagrangian from which they originate.
The number of meson-baryon vertices of dimension dB = 1, 2, 3, . . . is denoted
by NMB

dB
.

These components combine to give the chiral dimension D of a complete diagram:

D = 4L − 2IM − IB +
∑
dM

dM NM
dM +

∑
dB

dBN
MB
dB , (3.41)

where L is the total number of loops. In the case of fully-connected diagrams, one
can eliminate IM by substituting the general topological identity

L = IM + IB −
∑
dM

NM
dM −

∑
dB

N MB
dB + 1 (3.42)

7Subtleties regarding transitions between octet and decuplet baryon multiplets will be discussed
later in this section.
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to obtain the relation

D = 2L + 2 + IB +
∑
dM

(dM − 2)NM
dM +

∑
dB

(dB − 2)NMB
dB . (3.43)

The diagrams which are relevant to this body of work have a single baryon line
running through the diagram. In this case

∑
dB

N MB
dB

= IB + 1. Substituting this into
Eq. (3.43), we find

D = 2L + 1 +
∑
dM

(dM − 2)NM
dM +

∑
dB

(dB − 1)NMB
dB ≥ 2L + 1. (3.44)

This shows that tree diagrams contribute at order p, and that one-loop graphs begin to
contribute at order p3.

There is some ambiguity in this power counting scheme for diagrams which
include transitions between baryon multiplets, for example octet → decuplet →
octet . In general (for example in their application to lattice QCD simulation results),
one wishes chiral extrapolations to be valid for a reasonably large range of values of
mφ. Thus one can claim neither δ � mφ nor δ � mφ, and, as a result, the appropriate
chiral dimension of loops involving transitions is debatable. Because of the particular
significance of decuplet effects, as outlined in Sect. 3.3.3, we choose to consider self-
energy loops involving transitions between octet and decuplet baryons at the same
order as the analogous loopswithout transitions. Thiswill be our choice of convention
throughout this body of work. In our scheme, terms which enter a chiral expansion of
octet baryon self-energy with chiral dimension D = 3 thus arise from the one-loop
diagrams shown in Fig. 3.2.

When these loops are regularised using the finite-range regularisation scheme
(FRR) (introduced in Sect. 3.5), the simple power counting described in this section
is modified; FRR introduces an additional mass parameter � with the result that
loop processes renormalise chiral parameters at different orders in the energy expan-
sion. In the small meson mass limit, however, FRR gives the same result as other
regularisation schemes and the standard power counting is restored. From this one
can conclude that the order in which loops contribute in FRR is still dictated by the
standard formalism [24]. When the meson masses are set to their physical values,

Fig. 3.2 One-loop graphs which contribute to an expansion of octet baryon self-energy at order p3.
Single,dashed, anddouble lines represent octet baryons,mesons, and decuplet baryons, respectively.
The solid squares denote leading-order strong-interaction vertices
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FRR expressions include a partial resummation of higher-order effects which com-
bine to cancel unphysical small-distance behaviour. This resummation will be shown
explicitly for an example given in Sect. 3.6.

3.5 Finite-Range Regularisation

As for any physical description in quantum field theory, one must regularise and
renormalise infinities arising from self-interactions in chiral perturbation theory.
Developed in [25–29], finite-range regularisation (FRR) is a regularisation prescrip-
tion which takes into account the extended nature of fields of finite structure; the
scheme is characterised by the suppression of the ultraviolet behaviour of loop inte-
grals.

FRR was motivated in part by the poor convergence of the traditional approach of
dimensional regularisation (DR). DR is a regularisation scheme based on the fact that
logarithmically divergent integrals in a four-dimensional theory become convergent
in d = (4 − 2ε) dimensions, where ε > 0. An analytic continuation to d dimensions
is performed, rendering the integral finite, and a finite four-dimensional result is
recovered by taking ε → 0 and subtracting terms which diverge in this limit. This
process involves integrals over all possible loop (i.e., meson) momenta. This allows
meson propagation over distances smaller than typical hadronic size. That is, DR
introduces model-dependent effects; it treats meson-baryon couplings as point-like
and does not take into account the finite size of the baryon, instead integrating over
loop momenta far beyond the scale where the particular EFT has any significance
[30, 31].

It is clear that physical results should be independent of regularisation and renor-
malisation schemes. It is the physical insight recognised above which informs the
development of FRR. In QCD, Goldstone bosons are emitted and absorbed by com-
posite objects made of quarks and gluons. Because these objects have some finite size
R, the emission and absorption of probeswithmomenta greater than� ≈ R−1 is sup-
pressed. So, formφ > �, we expect pseudo-Goldstone boson loops to be suppressed
by powers of �/mφ, not enhanced by powers of mφ/�χ. If � > �χ, this physics
would be included in the standard formulation of the effective theory. Evidence sug-
gests, however, that � ≤ �χ [25–29]. FRR thus introduces a finite ultraviolet cutoff
(i.e., a mass parameter �), which physically corresponds to the fact that the source
of the meson cloud is an extended structure [24, 32–34]. The form of the regulator
used, which could for example be chosen to be a sharp cutoff or dipole, does not
affect the leading-order non-analytic structure of the expansion [29]. Furthermore,
the renormalisation constants may be fixed by matching to lattice simulation results,
eliminating dependence on the regulator.

FRR also offers improved convergence over dimensionally-regulated SU(3) chi-
ral expansions. This stems from the fact that the parameter � remains finite; FRR
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effectively resums the chiral expansion, leaving only the long-distance model-
independent physics at the lower orders. In the limit mφ/� → 0, however, FRR
becomes equivalent to DR.

It isworth commenting here on a subtletywhich ariseswhen using FRR rather than
DR in chiral perturbation theory. As with any theory involving derivative couplings,
there is an occasional change of the Feynman rules for the FRR-regularised theory
from their prescribed form. The canonical momentum conjugate to a field variable
is given by

π(x) = δL
δ∂0φ(x)

. (3.45)

Time-derivatives in the interactionLagrangian then lead to canonicalmomentawhich
carry portions of the interaction; the interaction Hamiltonian is no longer simply
the negative of the interaction Lagrangian. Since the Feynman rules for a theory are
derived from the interactionHamiltonian, it is clear that they aremodified, potentially
in a nontrivial way [35].

Dimensionally-regularised chiral perturbation theory has the fortunate peculiarity
that these changes,which canbe accounted for by adding a specific contact interaction
proportional to δ4(0) to the mesonic part of the theory, vanish. In this case the naive
Feynman rules may be used without modification. While this is not the case for
the theory with FRR, it has been verified that, to the order of our calculations, the
extrapolation of observables such as baryon mass are not affected [24]. We will use
the FRR regularisation scheme throughout this work.

3.6 The Nucleon Mass

We illustrate the FRR technique using the chiral extrapolation of the nucleon mass
MN as a test case. Here we account for pion loops only (and neglect η, �K )—a full
SU(3) perturbation theory study of the octet baryon masses will be presented in the
next chapter.

The physical nucleon mass MN is defined as the pole position of the full propa-
gator:

S0(p) = 1

/p − M0 − �(/p)
, (3.46)

where M0 denotes the nucleon mass in the chiral limit and �(/p) refers to the (one-
particle irreducible) self-energy. Determining the mass MN thus reduces to a calcu-
lation of the self-energy: one must solve

MN − M0 − �(MN ) = 0 (3.47)

for MN .
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From the discussion of baryon self-energy in Sect. 3.4, the chiral expansion of
MN may be formulated in terms of m2

π ∼ mq as

MN = {a0 + a2m
2
π + a4m

4
π + . . .} + {χπ Iπ(mπ) + χπ� Iπ�(mπ) + . . .}, (3.48)

where the second term corresponds, at leading order, to contributions from the loops
displayed in Fig. 3.2. That is, the expansion takes the form

MN = {terms analytic in mq} + {chiral loop corrections}, (3.49)

where the coefficients of the analytic terms are not constrained by chiral symmetry
(and will be determined from lattice QCD calculations in future chapters), and the
chiral loops account for non-analytic behaviour in the quark masses. The coefficients
of the loop terms are model-independent and can be derived using the effective field
theory Lagrangian of Sect. 3.3.

For example, the nucleon self-energy, i.e., the first of the diagrams shown in
Fig. 3.2, gives an additive correction χπ Iπ to the mass of the nucleon, where

− iδi j
Iπ
24π

:=
∫

d4k

(2π)4

ki k j

(k0 − iε)(k2 − m2
π + iε)

. (3.50)

Using the results of Appendix C.1 to simplify the integral, and writing χπ explicitly,
this can be expressed as

χπ Iπ(mπ) = − 3g2A
32π f 2π

2

π

∫ ∞

0
dk

k4

k2 + m2
π

, (3.51)

where gA = (D + F) in the notation of Eq. (3.29). Both DR and FRR were outlined
in Sect. 3.5. Choosing DR with ε → 0, the nucleon expansion of Eq. (3.48) becomes

MN = c0 + c2m
2
π + χπm

3
π + c4m

4
π + . . . , (3.52)

where the coefficients ci denote the ai of Eq. (3.48) after they have undergone an infi-
nite renormalisation. As previously discussed, DR allows a large contribution from
the k → ∞ portion of the integral, and short distance physics is highly overestimated.
Numerical estimates of the terms in Eq. (3.52) give [36]

MN =
(
1 + 1.1

(
mπ

mR

)2

− 1.0

(
mπ

mR

)3

+ . . .

)
[0.89 GeV], (3.53)

where mR = 0.54GeV. This resembles a geometric series with no sign of conver-
gence for pion massesmπ � 0.5GeV. Pion masses of this magnitude are still typical
of many lattice simulations.
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If one instead uses FRR, introducing a dipole regulator (the form suggested by a
comparison of the nucleon’s axial and induced pseudoscalar form factors [37])

u(k) =
(

�2

�2 + k2

)2

(3.54)

at each pion-nucleon vertex, the integral becomes

I FRRπ = 2

π

∫ ∞

0
dk

k4

k2 + m2
π

u2(k), (3.55)

which is convergent for k → ∞ and can be evaluated explicitly:

I FRRπ = 1

16

�5(m2
π + 4mπ� + �2)

(mπ + �)4
. (3.56)

Taylor-expanding about mπ = 0, the difference between the two regularisation
schemes becomes apparent:

I FRRπ → �3

16
− 5�

16
m2

π + m3
π − 35

16�
m4

π + 4

�2
m5

π + . . . . (3.57)

Higher-order DR terms are resummed in the FRR scheme with the result that loop
contributions Iπ → 0 as mπ becomes large. Writing out the FRR expansion of MN

to leading non-analytic order, one recovers the renormalised expansion coefficients
ci obtained using DR:

MN =
(
a0 + χπ

�3

16

)
+

(
a2 − χπ

5�

16

)
m2

π + χπm
3
π +

(
a4 − χπ

35

16�

)
m4

π + . . .

= c0 + c2m
2
π + χπm

3
π + c4m

4
π + . . . , (3.58)

just as was claimed in Sect. 3.4.

3.7 Finite-Volume Corrections

The discussion of chiral perturbation theory in this chapter has, to a large extent, been
motivated by our intent to apply this formalism to extrapolate lattice QCD simulation
results from unphysically-large pseudoscalar meson masses to the physical masses.
As was described in Sect. 2.2.2, however, there are other systematic effects which
must be considered before lattice studies can confront experiment. In particular,
simulations are necessarily performed on lattices with some finite spatial extent. In
this section we describe an application of effective field theory to the modelling and
correction of finite-volume artefacts.

http://dx.doi.org/10.1007/978-3-319-31438-9_2
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Lattice QCD simulations must satisfy several conditions if the low-energy chiral
EFT is to provide an appropriate framework for the estimation of finite-volume
effects. Of course, the EFT can only be applied where the standard hierarchy of mass
scales is maintained:

| �p |,mπ � �χ � a−1. (3.59)

Here p is a typical momentum in the system of interest, mπ is the pion mass, �χ is
the scale of chiral symmetry breaking which separates soft from hard momenta, and
a is the lattice spacing. In a box of finite spatial extent L , momenta are quantised
such that �p = 2π�n/L (with �n ∈ Z

3). Equation (3.59) then places a condition on L:

2π

L
� �χ ⇒ L � 2π

�χ
≈ 1

2π fπ
≈ 1fm. (3.60)

The constraint L � 2R, where R corresponds approximately to the size of the system
of interest, must also be satisfied for (non-pionic) hadronic physics to be completely
contained inside the lattice. In this body of work we consider single baryon systems,
i.e., R ≈ 1fm ⇒ L � 2fm. This is a more stringent requirement than that given in
Eq. (3.60).

In addition, to ensure that the box size has no effect on spontaneous chiral sym-
metry breaking, the lattice must be sufficiently large that mπL � 1 for simulation
values of the pion mass. If this is not maintained, there will be a deformation of the
vacuum state and the momentum-zero modes of the pseudo-Goldstone bosons must
be treated nonperturbatively [38, 39]. Physically, if mπL � 1—that is, the Compton
wavelength 1/mπ (approximately 1.4fm for the physical pion mass) is of a similar
size to L—the pion does not have enough space to propagate before interacting with
the boundaries of the finite lattice. If mπL � 1 and the pion fits comfortably inside
the box, however, the explicit symmetry breaking of the low-energy behaviour of
the system is more important than that resulting from the finite volume. Like in the
infinite volume, contributions from zero modes can be neglected in this case.

In the regime where all conditions are satisfied, quantities calculated on a finite
lattice are expected to display behaviour which is qualitatively similar to that on the
infinite volume. Furthermore, one can model finite-volume artefacts using the chiral
perturbation theory formalism. This approach is based on the understanding that the
dominant finite-volumeeffects come from the exchangeofmesons ‘around theworld’
of the lattice as a result of the periodic boundary conditions. As a consequence, the
mass of a hadron, for example, receives corrections of order e−mπL to its asymptotic
value. For typical numerical simulations, such as those performed in Chap. 7,mπL ≥
3 and the finite-volume corrections are small compared to the statistical uncertainties.

Formalising this approach, explicit expressions for finite-volume artefacts can
be written in terms of the loop integrals which represent the meson cloud in the
chiral perturbation theory formalism. The finite-volume shift to the value of some
observable is modelled as

http://dx.doi.org/10.1007/978-3-319-31438-9_7
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δtot.L =
∑
I

χI δL(I), (3.61)

where the sum runs over all loops I contributing to the chiral expansion of the
observable of interest, and χI is the appropriate chiral coefficient that scales the
contribution of loop I to that observable. The volume-dependence of I is given by

δL(I) ≡ IL − I∞. (3.62)

Here IL and I∞ denote the loop expression evaluated on a lattice of length L and
on the infinite volume, respectively:

δL(I) ≡
⎛
⎝ 1

Lx L yLz

∑
nxnynz

I −
∫

d3k

(2π)3
I
⎞
⎠, (3.63)

where the ni are integers. Throughout this body of work we consider symmetric
lattices, for which Lx = Ly = Lz = L .

While Eq. (3.63) can be evaluated by explicitly performing the finite-volume sum
and the integral, this procedure is computationally intensive. It is more efficient to
use the well-known decomposition of δL in terms of Bessel functions [40, 41]. For
a typical integrand

δL

(
1

[�l2 + M2]m
)

≡ 1

L3

∑
�n

1

(�n 2 + M2)m
−

∫
d3l

(2π)3

1

(�l 2 + M2)m

= 2− 1
2 −mM3−2m

π
3
2 �(m)

∑
�n 	=0

(LM|�n|)− 3
2 +mK 3

2 −m(LM|�n|),
(3.64)

where �n ∈ Z
3 and Km(z) is a modified Bessel function of the second kind. In general,

it is necessary to use Feynman parameters to express integrands in the standard form
used above. In Appendix C.2 we do this explicitly for an integral discussed in the
previous section in the context of a chiral expansion of the nucleonmass. The example
we use is

I dip.π = 2

π

∫
dk

k4

k2 + m2

(
�2

�2 + k2

)
, (3.65)

where a dipole regulator has been chosen within the FRR scheme. Making the iden-

tification δL(M,m) ≡ δL

(
1

[�l 2+M2]m
)
, we find

δL

(
I
dip.
π

)
= 4π�8δL (�, 4) − 16πm2�8

∫ 1

0
dx(1 − x)3δL

(√
xm2 + (1 − x)�2, 5

)
.

(3.66)



42 3 Chiral Perturbation Theory

The accuracy of this model has been confirmed, for the case of the octet baryon
masses, by a detailed numerical study using multiple lattice volumes [42].

We will use this model in future chapters to correct lattice simulation results
for finite-volume artefacts before performing chiral extrapolations. Since finite-size
effects should be insensitive to short-distance physics, varying the FRR regulator
form and mass within the integrands can also provide an estimate of the model-
dependence associated with the ultraviolet part of the loop integrals.
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Chapter 4
Octet Baryon Mass Splittings

Charge symmetry violation in the nucleon mass is arguably small—the neutron-
proton mass difference is one part in a thousand. The effects of this small CSV,
however, are of tremendous significance; it is precisely this which ensures that the
hydrogen atom is stable against weak decay and that neutrons can decay into protons
(plus electrons and antineutrinos) in radioactive beta decay. Moreover, the elemental
abundances establishedduring thefirst fewminutes after the big bangdependedon the
neutron-proton mass difference and neutron lifetime. If there were a stable neutron,
and a more massive proton, our universe would be radically different; one would
expect a predominance of heavy nuclei, no normal galaxies, stars, or planets would
form, and life as we know it would be impossible [1]. Beyond giving quantitative
insight into the breaking of charge symmetry, a precise understanding of the neutron-
proton mass difference from first principles will inform studies of the evolution of
our universe.

In the framework of the Standard Model, the neutron-proton mass difference is
generated by the electroweak interactions. It may be expressed (to leading order) as
the sum of two terms:

Mn − Mp = �EM + �md−mu . (4.1)

The electromagnetic contribution, �EM, arises because of the different electromag-
netic charges of the proton and neutron. This contribution is negative and is com-
pensated by the strong isospin breaking contribution �md−mu . In a quark picture this
second term results from the difference in the masses of the up and down quarks; this
is ultimately determined by the values of the Yukawa couplings and by the vacuum
expectation value of the Higgs field. The total mass difference Mn − Mp, and the
analogous physical mass splittings between members of the other baryonic isospin
multiplets, have been measured extremely precisely experimentally [2, 3]:

Mn − Mp = 1.2933322(4)MeV, (4.2a)

M�− − M�+ = 8.079(76)MeV, (4.2b)

M�− − M�0 = 6.85(21)MeV. (4.2c)

© Springer International Publishing Switzerland 2016
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The decomposition of each into its electromagnetic and strong components, however,
is far less well known.

In recent years there has been considerable effort invested in lattice-based deter-
minations of both the QCD contribution to the baryon mass splittings [4–8] and
the electromagnetic contribution [9–12]. However, 1 + 1 + 1-flavour simulations—
at this stage the only way to directly probe the full flavour-dependence of QCD
observables—are not yet widely available (the first set of 1 + 1 + 1 + 1-flavour
ensembles has recently appeared [13]).

In this chapter we describe the use of SU(3) chiral perturbation theory to
determine the strong contribution to the mass splittings among members of octet
baryon isospin multiplets using isospin-averaged (2 + 1-flavour) lattice calcula-
tions [14, 15]. This procedure takes advantage of the high-precision simulations
which are currently available for the octet baryon masses using mass-degenerate
light quarks. The symmetries of low-energy QCD are used to break this mass-
degeneracy—the unknown low-energy constants in the chiral expansion are the same
whether or not the SU(2) symmetry is broken—while describing the meson mass
dependence of the masses of the entire baryon octet simultaneously.

This study is of particular interest in the light of recent results which sug-
gest that the accepted value for the electromagnetic contribution to the neutron-
proton mass difference calculated using the Cottingham formula, �EM = −0.76 ±
0.30 MeV [16], may be too small. Walker-Loud et al. (WLCM) claim to find an
omission in the traditional analysis1 and present a larger value of −1.30 ± 0.03 ±
0.47 MeV [17]. From these estimates, one infers strong isospin breaking contribu-
tions of �md−mu = 2.05 ± 0.30 MeV (traditional) and 2.60 ± 0.47 MeV (WLCM),
respectively. Clearly, independent theoretical estimates of the size of the strong con-
tribution to Mn − Mp, such as that reported here, are of considerable value.

4.1 SU(3) Chiral Extrapolation

In this section we develop an SU(3) chiral perturbation theory expansion for the octet
baryon masses. This is an extension of the formalism presented in Sect. 3.6 for the
mass of the nucleon to the entire baryon octet, now including not only pion, but also
eta and kaon loops. We also revisit the discussion of the meson fields in Sect. 3.3.1
to allow for a non-zero light quark mass splitting, i.e., mu �= md .

For mu �= md , mixing occurs between the π0 and η: expanding the mass term of
the meson Lagrangian, Eq. (3.14), in powers of the meson field,

1WLCM found that the application of the Cottingham formula with two different Lorentz decompo-
sitions of the Compton scattering tensor yields incompatible results. The ambiguity can be removed
using a subtracted dispersive analysis, which leads to the updated results.

http://dx.doi.org/10.1007/978-3-319-31438-9_3
http://dx.doi.org/10.1007/978-3-319-31438-9_3
http://dx.doi.org/10.1007/978-3-319-31438-9_3
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L�
kin =B Tr

(
Mq�

2
)

(4.3a)

=B(mu + md)π
+π− + B(ms + md)K

0K
0

+ B(ms + mu)K
+K− + B

2
(mu + mu)(π

0)2

+ B
6

(md + mu + 4ms)η
2 + B√

3
(mu − md)ηπ0, (4.3b)

where B = 4λ/ f 2π . This may be diagonalised into the mass basis via a field rotation:

π0 → π0 cos ε − η sin ε, (4.4a)

η → π0 sin ε + η cos ε, (4.4b)

where the mixing angle ε is defined2 by

tan 2ε =
√
3 (md − mu)

2ms − (md + mu)
. (4.5)

The meson masses may be expressed as

m2
π± = B(mu + md), (4.6a)

m2
π0 = B(mu + md) − 2B

3
(2ms − (mu + md))

sin2 ε

cos 2ε
, (4.6b)

m2
K± = B(ms + mu), (4.6c)

m2
K 0 = B(ms + md), (4.6d)

m2
η = B

3
(4ms + mu + md) + 2B

3
(2ms − (mu + md))

sin2 ε

cos 2ε
, (4.6e)

where mπ0 and mη now contain some dependence on the mixing angle ε. In the limit
ε → 0 these expressions clearly reduce to the isospin-averaged results of Eq. (3.16).

Using the formalism of Chap. 3, the mass of an octet baryon B can now be
expressed as a series

MB = M (0) + δM (1)
B + δM (3/2)

B + · · · , (4.7)

where the superscript indicates the order of the expansion in powers of the quark
mass—the explicit chiral symmetry breaking parameter of QCD. The leading term,
M (0), denotes the degenerate mass of the octet baryons in the SU(3) chiral limit,
and the leading dependence on Mq , which is encoded in δM (1)

B , arises from terms

2This notion of a π0 − η mixing angle is well-defined only at leading order in the quark mass
expansion.

http://dx.doi.org/10.1007/978-3-319-31438-9_3
http://dx.doi.org/10.1007/978-3-319-31438-9_3
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Table 4.1 Coefficients of the terms in Eq. (4.7) which are linear in the up, down, and strange quark
masses, expressed in terms of the SU(3)-breaking parameters α, β, and σ

CBu CBd CBs

p 5
3α + 2

3β + 2σ 1
3α + 4

3β + 2σ 2σ

n 1
3α + 4

3β + 2σ 5
3α + 2

3β + 2σ 2σ

� 1
2α + β + 2σ 1

2α + β + 2σ α + 2σ

�+ 5
3α + 2

3β + 2σ 2σ 1
3α + 4

3β + 2σ

�− 2σ 5
3α + 2

3β + 2σ 1
3α + 4

3β + 2σ

�0 1
3α + 4

3β + 2σ 2σ 5
3α + 2

3β + 2σ

�− 2σ 1
3α + 4

3β + 2σ 5
3α + 2

3β + 2σ

in the octet Lagrangian (Eq.3.29) with coefficients bD , bF , and σ0. In anticipation
of the extension to the partially-quenched formalism which we will consider in later
chapters,where it becomes notationally convenient to use a different parameterisation
of the Lagrangian, we define parameters α, β, and σ:

α = 2

3
bD + 2bF , β = −5

3
bD + bF , σ = bD − bF + σ0. (4.8)

In terms of these parameters,

δM (1)
B = −CBu Bmu − CBd Bmd − CBs Bms, (4.9)

where the coefficients CBq are given explicitly in Table4.1.
The first non-analytic term, δM (3/2)

B , encodes the leading loop corrections to the
baryon masses; as discussed in Sect. 3.4, these correspond to the diagrams shown in
Fig. 3.2 and include both octet and decuplet baryon intermediate states. The relevant
coefficients and integrals may be derived from the appropriate terms of the chiral
Lagrangian, just as was shown for the nucleon mass in Sect. 3.6. Explicitly,

δM (3/2)
B = − 1

16π f 2π

∑
φ

[
χBφ IR(mφ, 0,�) + χTφ IR(mφ, δ,�)

]
, (4.10)

where the meson loops involve the integrals

IR(mφ, δ,�) = 2

π

∫
dk

k4√
k2 + m2

φ

(
δ +

√
k2 + m2

φ

)u2(k) − b0 − b2m
2
φ. (4.11)

The subtraction constants, b0,2, are defined so that the parameters M (0) and CBq are
renormalised. Explicit expressions for these terms can be readily evaluated byTaylor-
expanding the integrand inm2

φ, as was done for the nucleon expressions in Eqs. (3.57)

http://dx.doi.org/10.1007/978-3-319-31438-9_3
http://dx.doi.org/10.1007/978-3-319-31438-9_3
http://dx.doi.org/10.1007/978-3-319-31438-9_3
http://dx.doi.org/10.1007/978-3-319-31438-9_3
http://dx.doi.org/10.1007/978-3-319-31438-9_3
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Table 4.2 Chiral SU(3) coefficients for the coupling of an octet baryon to other octet baryons
through the pseudoscalar octet meson φ

χBφ

π0

p 1
6 (2(D2 + 3F2) + (D2 + 6DF − 3F2) cos(2ε) − √

3(D − 3F)(D + F) sin(2ε))

n 1
6 (2(D2 + 3F2) + (D2 + 6DF − 3F2) cos(2ε) + √

3(D − 3F)(D + F) sin(2ε))

� 2
3 D

2

�± F2 + F2 cos(2ε) + 2
3 D sin ε(±2

√
3F cos ε + D sin ε)

�0/− 1
6 (2(D2 + 3F2) + (D2 − 6DF − 3F2) cos(2ε) ± √

3(D + 3F)(D − F) sin(2ε))

η

p 1
6 (2(D2 + 3F2) − (D2 + 6DF − 3F2) cos(2ε) + √

3(D − 3F)(D + F) sin(2ε))

n 1
6 (2(D2 + 3F2) − (D2 + 6DF − 3F2) cos(2ε) − √

3(D − 3F)(D + F) sin(2ε))

� 2
3 D

2

�± 2
3 (D2 cos2 ε ∓ 2

√
3DF cos ε sin ε + 3F2 sin2 ε)

�0/− 1
6 (2(D2 + 3F2) − (D2 − 6DF − 3F2) cos(2ε) ∓ √

3(D + 3F)(D − F) sin(2ε))

π± K 0 K±

p (D + F)2 (D − F)2 2
3 (D2 + 3F2)

n (D + F)2 2
3 (D2 + 3F2) (D − F)2

� 4
3 D

2 1
3 (D2 + 9F2) 1

3 (D2 + 9F2)

�± 2
3 (D2 + 3F2) (D ∓ F)2 (D ± F)2

�0 (D − F)2 2
3 (D2 + 3F2) (D + F)2

�− (D − F)2 (D + F)2 2
3 (D2 + 3F2)

and (3.58). This is done in Ref. [18]. The mass scale � is introduced through the
finite range regulator u(k) (for details see Sect. 3.5), and the chiral coefficients χBφ

and χTφ relevant to this particular calculation are given in Tables4.2 and 4.3.
In the most general case, each octet baryon receives distinct loop contributions

from each of the mesons π±,π0, K±, K 0, η, where the π± and K± remain pairwise
mass-degenerate. In the isospin-averaged scenario (ε → 0), to which we turn in the
next section, the sum in Eq. (4.10) runs only over π, K , and η: χBπ = χBπ± + χBπ0 ,
with the contributions from the charged and neutral kaons combined in an analogous
way. Clearly, the coefficients of terms linear in the light quark masses may also be
combined: CBl = CBu + CBd . Our calculation of the octet baryon mass splittings
in Sect. 4.3 will be based on the observation that the a-priori unknown low-energy
constants which appear in these coefficients, namely α, β, and σ, remain linearly
independent in this limit (when considering the entire baryon octet) and hence can
be determined using isospin-symmetric 2 + 1-flavour lattice QCD simulations.

http://dx.doi.org/10.1007/978-3-319-31438-9_3
http://dx.doi.org/10.1007/978-3-319-31438-9_3
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Table 4.3 Chiral SU(3) coefficients for the coupling of an octet baryon to the decuplet baryons
through the pseudoscalar octet meson φ

χTφC−2

π0 π± K 0 K± η

p 4
9 cos

2 ε 8
9

2
9

1
9

4
9 sin

2 ε

n 4
9 cos

2 ε 8
9

1
9

2
9

4
9 sin

2 ε

� 1
3 cos

2 ε 2
3

1
3

1
3

1
3 sin

2 ε

�+ 1
9 (cos ε + √

3 sin ε)2 1
9

2
9

8
9

1
9 (−√

3 cos ε + sin ε)2

�− 1
9 (− cos ε + √

3 sin ε)2 1
9

8
9

2
9

1
9 (

√
3 cos ε + sin ε)2

�0 1
9 (cos ε + √

3 sin ε)2 2
9

1
9

8
9

1
9 (−√

3 cos ε + sin ε)2

�− 1
9 (− cos ε + √

3 sin ε)2 2
9

8
9

1
9

1
9 (

√
3 cos ε + sin ε)2

4.2 Fits to Isospin-Averaged Lattice QCD Simulation
Results

Here we describe the application of the octet-baryon–mass chiral extrapolation
formalism developed in the previous section to recent 2 + 1-flavour (i.e., isospin-
averaged, with mu = md ) lattice QCD simulation results. The fits described will
form the basis for the extraction of the strong contribution to the octet baryon mass
splittings in Sect. 4.3.

We consider two distinct sets of simulations, generated by the PACS-CS [14] and
QCDSF-UKQCD [15] collaborations. There are significant systematic differences
between the two sets of ensembles, including the lattice volumes, lattice spacings,
and methods of determining these spacings. Furthermore, they follow quite different
trajectories in the light-strange quark mass plane, as shown in Fig. 4.1. While the
PACS-CS collaboration results are generated at what is essentially a fixed strange
quark mass, the QCDSF-UKQCD collaboration simulations follow paths of constant
singlet quark mass (m2

K + m2
π/2), beginning at several SU(3)-symmetric points. We

perform independent analyses on these two lattice data sets.
Before fitting the chiral perturbation theory expressions of the previous section to

the lattice simulation results, we correct for finite-volume effects using the formal-
ism outlined in Sect. 3.7. The corrections are small; for the PACS-CS collaboration
results (L3 × T = 323 × 64, L ≈ 2.9 fm) they are less than 1% at all masses. The
corrections to the QCDSF-UKQCD simulation results range between approximately
5% on the smallest volume (L3 × T = 243 × 48, L ≈ 1.8 fm) to <0.5% on the
largest (L3 × T = 483 × 96, L ≈ 3.6 fm). We also allow for an uncertainty on these
corrections, determined by allowing the dipole mass of the FRR regulator used in the
finite-volume estimation to range between 0.8 and 4 GeV; while 0.8 GeV is a typical
value (e.g., based on a comparison of the nucleon’s axial and induced pseudoscalar
form factors [19]), the limit of large regulator mass corresponds to the regulator-
independent formalism.

http://dx.doi.org/10.1007/978-3-319-31438-9_3


4.2 Fits to Isospin-Averaged Lattice QCD Simulation Results 49

Fig. 4.1 Locations of the lattice simulations in theml − ms plane. Thegreen circles show thePACS-
CS [14] data set, while the squares denote QCDSF-UKQCD collaboration results [15] where the
light blue, dark blue, and purple colours indicate lattice volumes of dimension L3 × T = 243 × 48,
323 × 64, and 483 × 96, respectively. The red star represents the physical point and the dashed
line indicates the SU(3)-symmetric trajectory. The dotted red lines show the trajectories plotted
in Figs. 4.2 and 4.3: constant strange quark mass and constant singlet quark mass (m2

K + m2
π/2 =

fixed), passing through the physical point

After correcting to infinite volume, we fit to the simulation results for the entire
baryon octet simultaneously. Of course, separate fits are performed to the results
of the two collaborations, which have different sources of systematic uncertainty
because of the different lattice configurations and simulation parameters. While
our formal chiral power counting scheme treats the octet and decuplet baryons
as degenerate (as outlined in Sect. 3.4), we retain the octet-decuplet mass split-
ting, δ, in numerical evaluations, setting this to the physical N − � splitting:
δ = 0.292 GeV. The baryon-baryon-meson coupling constants are taken from phe-
nomenology; D + F = gA = 1.27, F = 2

3D andC = −2D, and fπ is set to 87 MeV,
a chiral perturbation theory estimate for the pion decay constant in the SU(3) chiral
limit [20]. The fit parameters are the octet baryon mass in the chiral limit M (0), the
SU(3) chiral symmetry breaking parameters α, β, σ, and the finite-range regulator
mass �. Of course, ε, which parameterises the light-quark mass splitting, is zero for
this fit to 2 + 1-flavour lattice simulations.

The fit to the PACS-CS baryon octet data is shown in Fig. 4.2, while that to the
QCDSF-UKQCD set is shown in Fig. 4.3. For illustration, the lattice simulation
results (M latt.

B ) have been shifted onto the trajectories shown in Fig. 4.1 using the

http://dx.doi.org/10.1007/978-3-319-31438-9_3
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Fig. 4.2 Fit to the PACS-CS lattice simulation results. The error bands shown are purely statistical
and incorporate correlated uncertainties between all fit parameters. The lattice data was corrected
for the effects of the finite lattice volume before fitting. For display the data has been shifted (based
on the fit—see Eq. 4.12) from the simulation strange quark mass, which was somewhat larger than
the physical value, to the physical value. The red stars show the experimentally-determined baryon
masses [3]

chiral fit:

M latt.
B → M latt.

B −
[
Mfit

B

(
m(sim.)

π ,m(sim.)
K

)
− Mfit

B

(
m(traj.)

π ,m(traj.)
K

)]
. (4.12)

Herem(sim.)
φ denotes the simulation value of the mesonmass, whilem(traj.)

φ denotes the
closest point on the desired trajectory (relative to the axes of Fig. 4.1). The shifts are
illustrated explicitly in Fig. 4.4. This process allows us to show both the comparison
of our extrapolated results with the experimental values of the baryon masses, and
the quality of fit to the lattice data, on a single figure.

The quality of fit is clearly excellent in each case; the χ2/d.o.f. are 0.5 and 0.6
for the PACS-CS and QCDSF-UKQCD results, respectively. The dipole regulator
masses, � = 1.0(1) and 0.8(2) GeV, are in close agreement with the value deduced
from an analysis of nucleon magnetic moment data [21] and, from the phenomeno-
logical point of view, remarkably close to the value suggested by a comparison of the
nucleon’s axial and induced pseudoscalar form factors [19]. While we use the dipole
regulator to calculate the central values, we allow the form of the UV regulator to
vary between monopole, dipole, Gaussian, and sharp cutoff forms as an estimate of
the model-dependence. This is the smallest systematic uncertainty.
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(a)

(b)

Fig. 4.3 Fit to the QCDSF-UKQCD baryon octet data, plotted along the physical singlet-mass
trajectory (m2

K + m2
π/2 = constant) and SU(3)-symmetric line. The error bands shown are purely

statistical, with a dipole regulator chosen in the FRR formalism, and incorporate correlated uncer-
tainties between all fit parameters. The lattice data was corrected for finite-volume effects before
fitting. For display the lattice points in (a) have been shifted (based on the fit—see Eq. 4.12) from
the simulation values of the pion and kaon masses to the physical singlet trajectory. These shifts are
shown in Fig. 4.4. Lattice data points on the SU(3)-symmetric line are only shown on figure (b).
Colour-coding is as in Fig. 4.1. The red stars show the experimental values of the baryonmasses [3],
(a) Physical singlet-mass trajectory, (b) SU(3)-symmetric line: mK = mπ
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Fig. 4.4 Locations of the lattice simulations in the ml − ms plane. The symbols are as in Fig. 4.1.
The arrows show the chosen projection of the lattice simulation results onto the trajectories plotted
in Figs. 4.2 and 4.3

Table 4.4 Octet baryon masses in the infinite-volume after chiral extrapolation to the physical
point. The first uncertainty quoted is statistical, while the second allows for variation of the form
of the FRR UV regulator and for a 10% deviation of fπ , F , C, and δ from their central values. The
experimental baryon masses are taken from Ref. [3]

Mass (GeV)

B PACS-CS QCDSF-UKQCD Experimental

N 0.964(19)(23) 0.940(18)(9) 0.939

� 1.132(12)(15) 1.110(10)(5) 1.116

� 1.190(10)(10) 1.174(9)(4) 1.193

� 1.325(6)(3) 1.289(5)(1) 1.318

A comparison of the octet baryon masses extrapolated to the physical point with
the experimental values is given in Table4.4. The results are largely consistent; we
thus expect these fits to provide a good basis for the extraction of the mass splittings
among members of the baryon isospin multiplets as described in the next section.
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4.3 Mass Splittings

Using the chiral extrapolation formulae developed in Sect. 4.1 (summarised in
Eqs. (4.7), (4.9) and (4.10)) it is straightforward to write expressions for the strong
mass splittings between members of the baryon isospin multiplets: (Mn − Mp),
(M�− − M�+ ), and (M�− − M�0 ). The isospin-averaged fits described in Sect. 4.2
can then be used to reduce these expressions to functions of quark mass only; all
other free parameters, namely the SU(3)-breaking parameters α, β, and σ, as well
as the regulator mass �, are specified by the fits.

We choose to express our results in terms of the light-quark mass ratio R =
mu/md . The Gell-Mann-Oakes-Renner relation suggests the definition

ω = B(md − mu)

2
= 1

2

(1 − R)

(1 + R)
m2

π(phys.)
, (4.13)

which leads to the identifications of the quark mass terms in Eq. (4.9) as

Bmu = 1

2
m2

π(phys.)
− ω, (4.14a)

Bmd = 1

2
m2

π(phys.)
+ ω, (4.14b)

Bms = m2
K(phys.)

− 1

2
m2

π(phys.)
. (4.14c)

Here we take mπ(phys.) = 137.3MeV and mK(phys.) = 497.5MeV to be the physical
isospin-averaged meson masses [3]. The loop meson masses are calculated using
Eq. (4.6).

The resulting octet baryon mass splittings are summarised, as a function of ω,
in Table4.5, and the strong neutron-proton mass difference is shown graphically
as a function of R in Fig. 4.5. The results using the fits based on the PACS-CS and
QCDSF-UKQCDcollaboration simulations are largely consistent; themass splittings
between the members of the sigma and cascade baryon isospin multiplets agree at
the 1-sigma level, while the two results for the strong neutron-proton mass difference
differ by just over one sigma.

To determine these quantities in physical units we take two recent estimates for
the up-down quark mass ratio [22, 23],

R = mu

md
= 0.553 ± 0.043, and 0.47 ± 0.04. (4.15)

The first of these is determined by a fit to meson decay rates. This value is compatible
with more recent estimates of the ratio from 2 + 1 and 3-flavour QCD and QED [5,
24]. The second is the result from the FLAG3 [23].

3FLAG stands for the FLAVIAnet Lattice Averaging Group which provides world-averages of
lattice simulation results for a number of observables.
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Table 4.5 Strong mass splittings between members of the baryon isospin multiplets, based on a
chiral extrapolation of latticeQCD simulation results. The quoted uncertainties contain all statistical
and systematic errors (discussed in the text) combined in quadrature. The constant ω, defined in
Eq. (4.13), encodes the mass difference between the light quarks

�md−mu ×
[
m2

π(phys.)
/ω

]
(MeV)

PACS-CS QCDSF-UKQCD

Mn − Mp 20.1(13) 17.5(10)

M�− − M�+ 52.2(24) 52.6(13)

M�− − M�0 32.0(18) 35.2(14)

Fig. 4.5 Strong contribution to the neutron-proton mass difference as a function of the light-quark
mass ratio R. The green (upper) and blue (lower) bands show the result of fits to the PACS-CS and
QCDSF-UKQCD collaboration simulations, respectively. The vertical pink (right) and orange (left)
shaded bands correspond to two recent estimates of the physical up-down quark mass ratio [22, 23]
as described in the text (see Eq. 4.15)

Numerical results in physical units are summarised in Table4.6. The error bands
quoted are the result of a complete analysis taking into account the correlated uncer-
tainties arising from all of the fit parameters, as well as the quoted uncertainty on R.
Monopole, dipole, Gaussian, and sharp cutoff regulators u(k) are considered within
the FRR scheme; the variation of the final results as u(k) is changed is of order 1%
of the total mass differences. The deviation as the parameters fπ , F , C, and δ are
perturbed by ±10% from their central values is similarly small, and the statistical
uncertainty arising from the fit to lattice data is smaller still. In fact, the dominant
uncertainty is that arising from the quoted error band on the light-quark mass ratio
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Table 4.6 Strong mass splittings between members of the baryon isospin multiplets, based on
a chiral extrapolation of lattice QCD simulation results. For the fits to each data set we display
the results using two different estimates of the up-down quark mass ratio R [22, 23]. The second
uncertainty—by far the dominant contribution in all cases—results frompropagating the uncertainty
on R, while the first includes all other statistical and systematic uncertainties combined in quadrature

�md−mu (MeV)

PACS-CS QCDSF-UKQCD

R 0.553(43) 0.47(4) 0.553(43) 0.47(4)

Mn − Mp 2.90(18)(36) 3.63(23)(37) 2.51(15)(31) 3.15(19)(32)

M�− − M�+ 7.51(35)(93) 9.40(44)(97) 7.57(19)(94) 9.49(24)(98)

M�− − M�0 4.60(26)(57) 5.77(33)(59) 5.06(20)(63) 6.34(25)(65)

R. It is clear that better estimates of this quantity will allow our results to be greatly
improved in precision, without the need for further lattice data. Conversely, a precise
determination of the electromagnetic contribution to the neutron-proton mass dif-
ference could possibly facilitate an improved estimate of R by this method. This is
shown clearly in Fig. 4.6, which illustrates that our results are more consistent with
both the traditional and WLCM calculations of the electromagnetic neutron-proton
mass difference, and with direct lattice QCD calculations of the strong contribution,
when takenwith the larger estimate of R (Leutwyler [22]) than with the smaller value
(FLAG [23]).

(a) (b)

Fig. 4.6 Strong and electromagnetic contributions to the neutron-protonmass difference. The black
line indicates the experimental constraint on the total [3]. The green and blue shaded bands show
the result of fits to the PACS-CS and QCDSF-UKQCD collaboration simulations, respectively, with
the given values of the light-quark mass ratio R. The yellow vertical band indicates a recent direct
lattice calculation of the strongmass splitting by the BMWcollaboration [25]. The horizontal bands
show the traditional (orange) and WLCM (pink) estimates for the EM contribution, (a) Leutwyler:
R = 0 : 553(43) [22], (b) FLAG: R = 0 : 47(4) [23]
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It is interesting to compare our results with those from a different analysis of the
same QCDSF-UKQCD collaboration simulation set. Horsley and collaborators [8]
have recently calculated the strong contribution to the baryonmass splittings from this
lattice data using a linear and quadratic SU(3)-flavour-symmetry–breaking expan-
sion in the quark masses. As the expansion coefficients depend only on the average
quark mass, provided this is kept constant at its physical value (as it is along the
primary QCDSF-UKQCD simulation trajectory), a fit of these coefficients to the
isospin-averaged lattice results allows an estimation of the baryon mass splittings at
the physical point. The results using this method are [8]:

Mn − Mp

∣∣
strong = 3.13(15)(53)MeV, (4.16a)

M�− − M�+
∣∣
strong = 8.10(14)(135)MeV, (4.16b)

M�− − M�0

∣∣
strong = 4.98(10)(84)MeV. (4.16c)

The first uncertainty quoted in Eq. (4.16) is statistical, while the second allows for
violations of Dashen’s theorem.4 While in this approach one can only make use of
lattice data calculated along a trajectory which holds the average quark mass fixed,
our chiral fit (results presented in Table4.6) also includes simulations which lie away
from this line. This is the primary reason for our smaller uncertainties. We also point
out that both methods require some theoretical input: we input the up-down quark
mass ratio R, while the Horsley et al. calculation uses Dashen’s theorem (with some
uncertainty) to estimate ‘pure QCD’ meson masses at the physical point. The clear
consistency between the two calculations is encouraging.

4.4 Summary and Discussion

We have calculated the strong contribution to the mass splittings between mem-
bers of the octet baryon isospin multiplets using a formal chiral expansion based on
broken SU(3)-flavour symmetry, fit to lattice QCD simulation results. Our results,
based on independent analyses of PACS-CS and QCDSF-UKQCD lattice data sets,
are summarised in Table4.7. Both calculations yield compatible values, despite sig-
nificant differences between the two lattice studies, including in particular different
lattice volumes, lattice spacings, and different methods of determining these spac-
ings. Of course, as emphasised previously, the two sets of lattice ensembles also
follow quite different trajectories in mπ − mK space. Furthermore, the results of a
flavour-symmetry–breaking expansion in the quark masses [8], fit to a subset of the
QCDSF-UKQCDcollaboration lattice data set, are entirely consistentwith our values

4This is the statement that the squares of the electromagnetic contributions to the mass differences
between the charged and neutral pseudoscalar mesons are equal in the chiral SU(3) limit, i.e.,(
m2

π± − m2
π0

)
EM

=
(
m2

K± − m2
K 0

)
EM

.
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Table 4.7 Strong contribution to the octet baryon mass splittings. Lines 1 and 2 show the results
of our chiral extrapolations of PACS-CS and QCDSF-UKQCD lattice data, respectively, with the
up-down quark mass ratio set to R = 0.553(43). Line 3 shows the QCDSF-UKQCD collaboration
analysis of their data as described in the text, while lines 4 and 5 give estimates deduced from the
total mass splittings and electromagnetic contributions, as determined by Gasser and Leutwyler
(traditional) or Walker-Loud et al. (WLCM). An update and extension of the WLCM dispersion
analysis is shown in line 6 [26]

�md−mu (MeV) Mn − Mp M�− − M�+ M�− − M�0

1 Chiral (PACS-CS) 2.9(4) 7.5(10) 4.6(6)

2 Chiral (QCDSF-UKQCD) 2.5(3) 7.6(9) 5.0(6)

3 QCDSF-UKQCD 3.1(6) 8.1(14) 5.0(9)

4 Exp. and EM (traditional) 2.0(3) 7.9(3) 6.0(3)

5 Exp. and EM (WLCM) 2.6(5) – –

6 Exp. and EM [26] 2.3(4) 8.1(11) 6.5(11)

despite the different phenomenological input used (that calculation used Dashen’s
theorem, with some uncertainty, while we input R = mu/md ).

While more lattice data for the isospin-averaged octet baryon masses, on larger
lattice volumes and at lighter meson masses, would allow the precision of our cal-
culation to be somewhat improved, we emphasise that the dominant contribution
to the uncertainty of our result arises not from the lattice simulations but from the
up-down quark mass ratio R. A more precise value of R = mu/md could reduce the
uncertainty of our determination of the strong baryon mass splittings considerably,
without the need for further simulations. Conversely, direct lattice (or phenomeno-
logical) determinations of the electromagnetic contributions to the mass splittings,
with the analysis presented here, may allow a significantly improved determination
of R. At the current level of precision it is already clear from Fig.4.6 that, for consis-
tency with direct lattice calculations [25] and experiment, this analysis favours the
larger value R = 0.553(43) over the smaller R = 0.47(4).

Our results using the larger value of R are consistent with both the traditional and
Walker-Loud et al. (WLCM) determinations of the strong contribution to the proton-
neutron mass difference from the electromagnetic component, as shown in Table4.7.
TheWLCM subtracted dispersion approach was adapted to the hyperons in Ref. [26]
(and some minor updates were implemented for the proton-neutron system5). For
the hyperons, the dispersive estimates have significantly larger uncertainties than for

5The minor differences in the nucleon analysis arise from two sources: significant spurious CSV
effects in the Delta region realised by the Bosted-Christy structure functions have been suppressed
in the new analysis, generating a rather small increase in the self-energy, and an inelastic subtraction
is suppressed more rapidly in order to appropriately match onto the ultraviolet behaviour dictated
by the operator product expansion. This acts to reduce the size of that term, and consequently lessen
the sensitivity to the poorly-known isovector polarisability. Details are given in Ref. [26].
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the nucleon; these are dominated by the lack of knowledge of the hyperon isovector
polarisabilities. Certainly further theoretical (or experimental) work on this aspect of
hyperon structure would be of interest, particularly as the present uncertainties are
too large to provide a meaningful counterpoint to our current work.

In the next chapter, we use the chiral extrapolation for the octet baryon masses
presented here to investigate the size and nature of chiral symmetry breaking in
the context of the octet baryon sigma commutators. Our focus is, in particular, on
the strange nucleon sigma term, which can be interpreted as a direct measure of
strangeness in the nucleon.
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Chapter 5
Sigma Commutators

Approximate chiral symmetry forms the backbone of the phenomenological low-
energy effective theory of QCD—chiral perturbation theory—which we use in this
work (c.f., Sect. 3.2). The central importance of this symmetry to our understanding
of the strong interaction, however, predates the explicit formulation of QCD, having
been established by the successes of the current algebra and partially conserved axial-
vector current techniques of the 1960s [1–3]. Since then, there have been significant
efforts to calculate andmeasure quantities named sigma terms, which provide crucial
information about the size and mechanism of chiral symmetry breaking in nature.

Sigma terms are defined as the matrix elements of the scalar quark currents
between baryon states,1 and as such quantify the contribution of explicit chiral
symmetry breaking to the baryon masses [4]. Most commonly, one considers the
‘pion-nucleon’ and ‘strange nucleon’ sigma terms:

σπN = ml〈N |uu + dd|N 〉, (5.1a)

σNs = ms〈N |ss|N 〉, (5.1b)

where ml = (mu + md)/2. These fundamental parameters of low-energy hadron
physics are closely related to hadronic physics topics as diverse as themass spectrum,

1Historically, a sigma term (or sigma commutator) is in fact defined as any matrix element of an
even number of charge commutators of the Hamiltonian [3]. The modern definition corresponds to
the double commutator: for a baryon B,

σab
B =

〈
B

∣∣∣
[
Q̂a

A,
[
Q̂b

A, H
]]∣∣∣B

〉
,

where Q̂a
A denote the axial-vector charge operators (defined in Sect. 3.2) with SU(3)-octet

label a, and the commutator explicitly picks out the symmetry-breaking part of H (for QCD,
qMq = ∑

q mqqq). In this notation the usual meson-nucleon sigma terms are σπN = σ11
N and

σ
u/d
K N = σ

44/66
N .
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meson-nucleon scattering amplitudes (through Ward identities), quark mass ratios,
properties of hadronic atoms, and nuclear matter at finite temperature and density.
In the context of this body of work, our focus is on σNs , which provides a direct
measure of strangeness in the nucleon.

The strange nucleon sigma term has historically been poorly known. It is tradition-
ally calculated from the small difference between σπN , deduced from pion-nucleon
scattering data using a dispersion relation analysis [5, 6], and the non-singlet quantity
σ0 = ml〈N |uu + dd − 2ss|N 〉 which is determined based on observations of the
baryon mass spectrum. An EFT-improved estimate is σ0 = 36 ± 7MeV [7]. Given
this value, even a perfect determination of σπN would result in σNs having an uncer-
tainty of order 100% [8]. Far from perfect, the benchmark value σπN = 45± 5MeV
remains that of Gasser et al. [9] from the early 1990s; the experimental status of
pion-nucleon scattering data has not improved substantially in the last two decades.
The long-standing conclusion from these numbers was that σNs is of the order of
300MeV. Such a large value would imply that as much as one third of the nucleon
mass can be attributed to non-valence quarks, a conclusion apparently incompati-
ble with the success of constituent quark models. This puzzle has generated much
theoretical interest over the last decades.

In recent years, the best value for σNs has seen an enormous revision. Advances
in lattice QCD have revealed a strange sigma term of 20–50MeV [10–19], an order
of magnitude smaller than previous determinations and significantly more precise.
This revelation has far-reaching consequences, in particular for the interpretation
of experimental searches for particle candidates of dark matter [20–25]. As many
such candidates (e.g., the favoured neutralino) have interactions with hadronicmatter
which are determined by couplings to the squares of the sigma terms, the uncertainty
of their theoretical cross-sections is largely driven by the poorly-known σNs . The
lattice QCD revision of this quantity has resulted in predicted dark matter cross-
sections being reduced by an order of magnitude, with significant increases in preci-
sion. Clearly, ever-better determinations of the sigma terms, in particular the strange
nucleon term, using lattice methods, are essential for the progress of dark matter
research.

In this chapter we describe a calculation of the sigma terms of the octet baryons,
based on the chiral extrapolation of lattice results for the baryon masses which was
presented in Chap.4. While we deduce both light and strange quark sigma terms for
the entire baryon octet, we focus in particular on the strange nucleon sigma term
σNs . The small statistical uncertainty, and considerably smaller model-dependence,
in our analysis allows a significantly more precise determination of this quantity than
hitherto possible, subject to an unresolved issue concerning the lattice scale setting
which is discussed in detail in Sect. 5.1. Our technique allows comparisonwith recent
direct lattice QCD calculations of the flavour-singlet matrix elements at unphysical
meson masses [11–13, 26, 27].

http://dx.doi.org/10.1007/978-3-319-31438-9_4
http://dx.doi.org/10.1007/978-3-319-31438-9_5
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5.1 The Feynman-Hellmann Theorem

The Feynman-Hellmann theorem relates the derivative of the energy of a system,
with respect to some parameter, to the expectation value of the derivative of the
Hamiltonian with respect to the same parameter. This relationmay be used to express
the sigma terms as derivatives of baryon mass with respect to quark mass [28]. Using
generic notation for the sigma term of any octet baryon B with quark flavour q,

σBq ≡ mq〈B|qq|B〉 (5.2)

= mq
∂MB

∂mq
, (5.3)

where the second line is the statement of the Feynman-Hellmann relation in this
context. To the order of the chiral expansion described in Sect. 4.1, one can replace
the quark masses mq with meson masses squared: Bml → m2

π/2 and Bms →
(m2

K − m2
π/2) (where B is related to the parameter λ of Eq. (3.14) by B = 4λ/ f 2π ).

Clearly, given closed-form expressions for baryon mass MB as a function of the
meson masses, which were developed in Chap.4, the scalar form factors can be
evaluated by simple differentiation.

This method has a considerable advantage over the direct calculation of the sigma
terms in lattice QCD; it does not require the evaluation (or estimation) of contribu-
tions from quark-line–disconnected diagrams which are represented by noisy and
expensive ‘all-to-all’ propagators on the lattice. However, it also has a disadvantage;
the application of the Feynman-Hellmann relation requires taking a partial derivative
with respect to quarkmass. That is, all other parameters must be held fixed, including
the strong coupling α (or, equivalently, �QCD). In lattice QCD, there is an apparent
ambiguity as to how to define a fixed renormalised coupling α [29, 30]. This is pre-
cisely the issue of lattice scale setting, which was discussed in Sect. 2.2.3—while
lattice simulation results extrapolated to the physical point must be independent of
scale-setting scheme, derivative quantities, by definition, make reference to the scale
away from the physical point and hence their values may depend on the scheme
chosen.

We consider here two independent scale-setting schemes which are described
in detail in Sect. 2.2.3. The mass-dependent approach is based on the assumption
that the dimensionful Sommer scale, r0, which is related to the force between static
quarks at relatively short distance, is essentially disconnected from chiral physics
and should therefore vary slowly with changes in quark mass. Using this scheme,
the Feynman-Hellmann relation applied to lattice simulation results involves the
derivative

∂
( r0
a aMB

)

∂mq
. (5.4a)

If this expression is to generate the physical sigma terms, one requires ∂r0/∂mq = 0.
Applying the theoremwithin themass-independent scheme instead, where the lattice

http://dx.doi.org/10.1007/978-3-319-31438-9_4
http://dx.doi.org/10.1007/978-3-319-31438-9_3
http://dx.doi.org/10.1007/978-3-319-31438-9_4
http://dx.doi.org/10.1007/978-3-319-31438-9_2
http://dx.doi.org/10.1007/978-3-319-31438-9_2
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scale at constant bare coupling (e.g., β) is taken to be independent of the bare quark
mass, amounts to calculating

∂
(
r∗
0
a∗ aMB

)

∂mq
, (5.4b)

where the asterisk denotes a value extrapolated to the physical point. This, in con-
trast to the first approach, will give physical results if a/a∗ = 1 (or equivalently,
∂a/∂mq = 0).

One might expect the difference between the nucleon sigma terms evaluated in
each scheme to be particularly significant for the strange quark. One reason is the
shift in the ratio r0/a which is observed when unquenching lattice simulations [31].
This effect can be interpreted as a sea-quark dependence of either r0 or the lattice
spacing a. As this shift can be significant, the choice of scale setting absorbs a
possibly large effect, and hence will lead to non-negligible differences in the results
of derivatives with respect to sea-quark mass calculated with each of the two choices.
Additionally, the strange quark is considerably heavier than the light quarks, which
serves to amplify the effect of any scale-setting prescription dependence on the
strange sigma term.

For the chiral extrapolation of octet baryon masses in Chap. 4, the scale for the
PACS-CS lattice data was set using the mass-dependent approach, while the mass-
independent scheme was used for the QCDSF-UKQCD simulation results. In the
coming sections we give results based on these extrapolations and on an otherwise
identical analysis of the PACS-CS collaboration simulation results where the scale
was set using the mass-independent scheme, allowing us to investigate the scale-
dependence of our extraction of the sigma terms. We do not have access to the lattice
values of r0 necessary to apply the mass-dependent scheme to an analysis of the
QCDSF-UKQCD lattice data.

5.2 Light and Strange Sigma Terms

Light and strange quark sigma terms, calculated using Eq. (5.3) applied to the chiral
extrapolations of octet baryonmasses described inChap.4, are presented in Table5.1.
The fit to the QCDSF-UKQCD lattice simulation results yields a value for σNs with
a much larger uncertainty than the analyses of the PACS-CS collaboration data set.
This is as expected; the leading-order term in a chiral expansion for the strangeness
nucleon sigma commutator is determined by the parameter σ, as made explicit in
Table4.1. This parameter is common to all baryons in the octet, and is sensitive only
to the singlet combination of the quark masses (see Eqs. (3.29) and (4.8)). Figure4.1
shows that the variation of the singlet quark mass across the PACS-CS ensemble
is quite large relative to the extrapolation necessary to reach the physical point. In
contrast, the QCDSF-UKQCD data set covers a much smaller range of singlet quark
masses; by design, most simulation ensembles lie on one close-to-physical singlet
quark mass line.

http://dx.doi.org/10.1007/978-3-319-31438-9_4
http://dx.doi.org/10.1007/978-3-319-31438-9_4
http://dx.doi.org/10.1007/978-3-319-31438-9_4
http://dx.doi.org/10.1007/978-3-319-31438-9_3
http://dx.doi.org/10.1007/978-3-319-31438-9_4
http://dx.doi.org/10.1007/978-3-319-31438-9_4
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Table 5.1 Light and strange quark sigma terms for the octet baryons based on chiral extrapolations
of PACS-CS and QCDSF-UKQCD collaboration lattice simulation results for the baryon masses.
The labels (MD) and (MI) denote results where the lattice scale has been set using mass-dependent
and mass-independent schemes respectively. The uncertainty quoted includes the statistical uncer-
tainty and allows for the variation of various chiral parameters and the form of the UV regulator as
described in Chap. 4

σBl (MeV)

B PACS-CS (MD) PACS-CS (MI) QCDSF-UKQCD (MI)

N 43.8(69) 45.7(73) 39.6(72)

� 28.6(43) 30.7(47) 27.0(43)

� 23.5(33) 25.7(36) 21.9(34)

� 11.5(14) 13.8(16) 12.3(14)

σBs (MeV)

N 20(6) 52(8) 26(15)

� 158(8) 185(12) 163(14)

� 202(9) 227(14) 234(14)

� 315(10) 337(16) 334(14)

It is also clear that there is a significant dependence on the scale-setting scheme,
despite the otherwise small uncertainties of the calculation. While the chiral extrapo-
lations of the PACS-CS collaboration octet baryon masses using the mass-dependent
and independent schemes agree at the physical point, as expected, and the qualities
of the two fits are similar (χ2/d.o.f. 0.43 and 0.78, respectively), the value of the
strangeness sigma term in the nucleon changes from 20 ± 6 to 52 ± 8 MeV. This
is by far the most significant shift; the light-quark sigma terms are entirely consis-
tent within uncertainties, while the other strange sigma terms are consistent within
2-sigma.

Given the large systematic scale-setting effect, we consider it prudent to check
that the order of the chiral expansion used in the analysis is sufficient; as the PACS-
CS collaboration data set includes pseudoscalar masses significantly larger than the
physical values, it is possible (although unexpected, based on previous studies of
the FRR formalism [32]) that higher-order terms become significant, distorting the
results. By performing the fit to progressively fewer data points, that is, by dropping
the heaviest mass points, we confirm that the results are independent of the truncation
of the data. This can be seen clearly in Fig. 5.1. Although we have displayed results
with the mass-dependent scale-setting scheme, this conclusion holds equally for the
results with the mass-independent prescription.

Alternatively, we can check the possible contribution from higher-order terms
by explicitly including them in the fit. Adding all analytic terms at order m4

φ to the
baryon mass expansion, and re-fitting to the PACS-CS lattice results with the coef-
ficients of the new terms generously constrained to twice the dimensional estimate(
M (0)/(4π fπ)4

)
at 1-sigma, yields new values for the baryon sigma terms. Although

the uncertainties are large, as one would expect given the excellent fit quality at
lower order, the fact that the central values for all sigma terms shift very little—e.g.,

http://dx.doi.org/10.1007/978-3-319-31438-9_4
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Fig. 5.1 Baryon sigma terms, evaluated using the Feynman-Hellmann theorem following a fit to
PACS-CS collaboration lattice simulation results for the octet baryon masses. The horizontal scale
shows the number of pseudoscalar meson masses included in the fit. The lattice scale was set using
the mass-dependent scheme

σNs = 22 ± 46MeV and σNl = 43 ± 3MeV for the PACS-CS collaboration results
with the mass-dependent scale-setting scheme (where only the statistical uncertain-
ties of the new fit are quoted)—does indicate that our fit is robust. Including in
quadrature the shift in central values from the higher-order fit as an estimate of the
systematic uncertainty resulting from our choice of resummation (i.e., through the
FRR prescription) does not increase the uncertainties quoted in Table5.1.

With a view to finding a physically significant result for σNs , we point out that
direct lattice calculations of this quantity should not have a large dependence on
the scale-setting scheme. As we can easily evaluate sigma terms from our fit at any
pion or kaon mass, we may compare our results explicitly with such calculations,
including preliminary calculations performed at only one set of pseudoscalar masses.
Such a comparison is given in Table5.2. The available direct calculations include 2
and 2 + 1 + 1–flavour simulations [12, 13] at a single set of pion and kaon masses,
and 2 + 1–flavour calculations which have been chirally extrapolated to the phys-
ical point [26, 27]. The MILC collaboration calculation is not a direct three-point
calculation, but rather uses a ‘hybrid’ method to find the sigma term [11]. The collab-
oration indicates that this method corresponds most closely to the mass-independent
scale-setting scheme [33]. The results of our analysis using themass-dependent scale-
setting approach for the PACS-CS simulations agree extremely well with the direct
QCDSF and ETM calculations at the simulation values ofmπ andmK . We regard this
comparison as particularly significant as those calculations involved no chiral extrap-
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Table 5.2 Recent direct lattice calculations of σNs compared with the results of our analysis.
Columns labelled MD and MI correspond to our analysis of the PACS-CS collaboration (P) or
QCDSF-UKQCD collaboration (Q) lattice results, evaluated at the indicated (mπ,mK ) values,
with the scale set using the mass-dependent or independent scale-setting prescriptions, respectively.
Those simulations listed at the physical point denote values after chiral extrapolation (by the relevant
lattice groups)

σNs (MeV)

(mπ,mK )MeV Direct MD (P) MI (P) MI (Q)

QCDSF [13] (281,547) 12+23
−16 16(6) 50(7) 24(16)

ETM [12] (390,580) 13(5)(1) 12(5) 46(6) 22(16)

Engelhardt [26] Physical 43(10) 20(6) 52(8) 26(14)

JLQCD [27] Physical 8(14)(15) 20(6) 52(8) 26(14)

MILC [11] Physical 59(6)(8) 20(6) 52(8) 26(14)

olation.A similar level of agreement is foundwith the (chirally-extrapolated) JLQCD
result. Finally, the Engelhardt result sits between the values of σNs given by the two
scale-setting schemes, while the MILC result favours the mass-independent scheme.
The extrapolated QCDSF-UKQCD collaboration simualtion results, analysed using
only themass-independent scheme, have somewhat larger uncertainties and are com-
patible with all direct simulations at the 1-sigma level.

There is no consensus in the literature as to the most appropriate way to set the
scale for a spectral determination of the sigma terms; both Refs. [30, 34] argue for
the mass-independent scheme, in the former case based on observations of scaling
violation, while others (e.g., Refs. [35, 36]) favour the mass-dependent scheme. We
choose the mass-dependent prescription to calculate our preferred central values
because, for the PACS-CS simulation results where we can compare scale-setting
schemes, it yields values for σNs which are more consistent with direct calculations.
Of course, we cannot rule out the possibility of ‘mixed scale setting’, as discussed in
Sect. 2.2.3. Nevertheless, we emphasise that our results are more significant than the
general statement that σNs lies in the 45MeV range spanned by all determinations
would indicate; within each scale-setting prescription we find results which are very
precise, with small statistical and systematic uncertainties. More lattice data for
the octet baryon masses will not improve the results significantly compared to the
scale-setting problem. Future direct lattice calculations for the strange nucleon sigma
commutator, however, will not only more precisely constrain this term as needed for
dark matter calculations, but will provide significant insight into the problem of scale
setting on the lattice and indeed into QCD itself.

Finally, we note again that our results for the light quark sigma terms using each
scale-setting method—and both the PACS-CS and QCDSF-UKQCD collaboration
simulation sets—are precise and compatible within uncertainties, and that we are for
this reason extremely confident in our determination σNl = 44 ± 7MeV.

http://dx.doi.org/10.1007/978-3-319-31438-9_2
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5.3 Charge Symmetry Violation

Individual up, down, and strange quark sigma terms are relevant to searches for
supersymmetric dark matter candidates [20, 37, 38]. These terms may be calculated
in precisely the same way as the isospin-averaged sigma commutators were obtained
via the Feynman-Hellmann theorem applied to a chiral extrapolation of lattice QCD
simulation results for the octet baryon masses in the last section. As described in
Chap.4, the only additional input needed to break the light-quark mass degeneracy
in the baryonmass extrapolations is a value for R = mu/md . Based on the discussion
of Sect. 4.4, we use the Leutwyler [39] value, R = 0.553(43), determined by a fit to
meson decay rates.

Our results, calculated using the PACS-CS collaboration lattice simulation results
with themass-dependent scale-setting scheme, are shown inTable5.3. For the reasons
given in Sect. 5.2 this is our preferred scale-setting scheme. Re-scaling the sigma
terms by the relevant quark masses to make dimensionless quantities and match the
notation of Ellis et al. [20, 37, 38], we define

B(B)
q ≡ σBq/mq . (5.5)

These terms for the proton (p) and neutron (n) are related to the usual σNs and σπN

by

σπN = 1

4
(mu + md)

(
B(p)
u + B(p)

d + B(n)
u + B(n)

d

)
, (5.6a)

σNs = 1

2
ms

(
B(p)
s + B(n)

s

)
. (5.6b)

Table 5.3 Individual quark sigma terms for the octet baryons based on a chiral extrapolation of
PACS-CS collaboration lattice simulations of the baryon masses. The lattice scale was set using the
mass-dependent prescription

σBq (MeV)

B u d s

p 19(3) 23(4) 22(7)

n 12(2) 34(5) 19(6)

� 10(2) 18(3) 158(8)

�0 8(1) 15(2) 201(9)

�+ 16(2) 2(1) 205(10)

�− 1(1) 29(4) 199(8)

�0 8(1) −0.46(42) 317(11)

�− −0.11(23) 15(2) 313(10)

http://dx.doi.org/10.1007/978-3-319-31438-9_4
http://dx.doi.org/10.1007/978-3-319-31438-9_4
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Our calculation yields

B(p)
u − B(p)

s

B(p)
d − B(p)

s

= 1.5(4),
B(p)
d

B(p)
u

= 0.7(2),
ml

MN
〈p|uu − dd|p〉 = 0.009(5).

(5.7)

The quoted errors include correlated uncertainties between all fit parameters and
also allow for some variation of phenomenologically-set quantities including the
up-down quark mass ratio R, as described in Chap.4. These results, and our values
for the nucleon light quark sigma terms (see Table 5.3), are consistent with those
obtained by Ellis et al. in Ref. [38] based on SU(6) symmetry and the same R-value
used here. The strange sigma terms σp/n,s resulting from our work, however, are
significantly smaller; the Ellis values are σns = σps = 110(60)MeV (and no results
are presented for the hyperons). Of course, the discussion of the previous section
regarding the effect of lattice scale setting on σNs applies equally here: choosing the
mass-independent scale-setting scheme yields larger values for the strange nucleon
sigma terms, namely σps = 53(8) MeV and σns = 50(8) MeV, but values of the

light quark sigma terms and
(
B(p)
u − B(p)

s

)/(
B(p)
d − B(p)

s

)
and B(p)

d

/
B(p)
u which

are identical with those given above, to the quoted precision.

5.4 Summary and Discussion

Using the isospin-broken chiral extrapolations of lattice QCD simulation results for
the octet baryonmasseswhichwere presented inChap. 4,wedetermine precise values
for the baryon sigma terms by simple differentiation. This indirect approach allows
us to achieve small statistical uncertainties whileminimising anymodel-dependence,
most importantly for the strange nucleon sigma terms which are extremely expensive
to calculate directly. These quantities provide a measure of vacuum quark compo-
nents in the nucleon, and are a key theoretical ingredient for the interpretation of dark
matter direct-detection experiments. With a given choice of lattice-scale–setting pre-
scription, our results for the strange nucleon sigma terms are the most precise to
date. The choice of scale-setting method, however, constitutes a significant system-
atic uncertainty.

A comparison of our results for σNs with those of recent direct lattice calculations
of this quantity—which should not suffer from the scale-setting ambiguity—informs
our choice of the mass-dependent prescription as our preferred method. Setting the
lattice scale for the PACS-CS collaboration simulation results using this scheme,
we find σNs = 20 ± 6MeV at the physical point. The pion-nucleon sigma term is
σπN = 44 ± 7 MeV. This value is consistent with the results σπN = 46 ± 7 and
40 ± 7MeV found within the mass-independent scheme from the same PACS-CS
collaboration results and from an entirely independent analysis of QCDSF-UKQCD
collaboration simulation results, respectively. A comparison of these values with

http://dx.doi.org/10.1007/978-3-319-31438-9_4
http://dx.doi.org/10.1007/978-3-319-31438-9_4
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� Fig. 5.2 Summary of values for σNs and σNl from lattice QCD with N f quark flavours [10, 11,
15, 16, 18, 19, 26, 27, 33, 40–54]. The yellow vertical bands indicate the results of this work. The
central values are taken at our preferred results (using the mass-dependent scale-setting scheme),
while the error bands encompass the full 1-sigma range of both this result and those generated using
the mass-independent prescription

those from other lattice QCD studies and analyses is displayed in Fig. 5.2. Our results
are comparatively precise (up to the scale-setting ambiguity which was not consid-
ered in previous work), and broadly consistent with the latest numbers from other
collaborations. We emphasise that future direct lattice calculations for the strange
nucleon sigma commutator will provide significant insight into the problem of scale
setting on the lattice and, through this, into QCD itself.
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Chapter 6
Parton Distribution Moments

The revelation of the late 1960s that the proton has distinct substructure1 raised
a pivotal question: how are hadron observables generated from more fundamental
degrees of freedom? Answering this question—where the generic point-like ‘par-
ton’ constituents originally introduced by Feynman [4] are now identified with the
asymptotically-free quarks and gluons of QCD—remains one of the most basic chal-
lenges of particle and nuclear physics. Perhaps most notably, the decomposition of
the proton’s spin into quark and gluon spin and orbital angular momentum contri-
butions has been much-debated since the quark-spin component was measured to be
only a small percentage of the total [5]. The current value is approximately 33% [6].
We return to the discussion of this ‘proton spin puzzle’ in Sect. 6.4.

In the modern language, hadron structure as probed in high-energy scattering is
parameterised through structure functionswhich encode both short and long-distance
effects. It follows from asymptotic freedom that contributions from the two scales can
be systematically separated. This is known as factorisation; structure functions may
be written as the convolution of a perturbatively-calculable hard scattering cross-
section—a process-dependent factor—and a nonperturbative function encoding the
hadron structure. These functions are named parton distribution functions (PDFs)
for inclusive processes (or parton distribution amplitudes for exclusive processes).
In the infinite-momentum frame, PDFs represent the number density of partons of
each type carrying the Bjorken momentum fraction2 x at a renormalisation scale μ2.

The utility and importance of PDFs comes from their universality; they encode the
process-independent partonic structure of hadrons. Once determined (e.g., experi-

1This hinged in particular on a series of deep inelastic scattering (DIS) experiments at MIT and
SLAC in late 1967 [1, 2]. Two unexpected features emerged. The first was that the probability of
DIS decreased much more slowly with Q2, the momentum transfer to the proton, than that of elastic
scattering, suggesting the existence of some ‘hard core’ within the target protons. The second was
scaling [3], i.e., that in the DIS regime the proton structure functions depend only on the ratio
ω = ν/Q2 (ν being the energy lost by the electron), not ν and Q2 independently—an indication
that proton structure always appears the same to an electromagnetic probe, regardless of how hard
the proton is struck.
2The Bjorken variable is x = Q2/2MBν ∝ 1/ω, where MB is the mass of the relevant baryon.
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mentally, from some limited set of reactions), the PDFs can thus be used for the
analysis of other processes, ranging from deep inelastic scattering to Drell-Yan or
W± production. They are also essential to experimental physics programs searching
for physics beyond the SM, for example through the scattering of ultra-high-energy
cosmic ray particles or fixed target and colliding beam experiments.

PDFs have beenwell determined experimentally [7–10] andwidely studiedwithin
models [11–17]. The majority of these investigations, however, have relied on the
assumption of good charge symmetry [18, 19] to reduce the number of independent
quark distribution functions by a factor of two. Recently, CSV effects have been
included in phenomenological PDFs for the first time [20–22]. Experimental upper
limits on partonic CSV are in the range 5–10% [18, 19, 23]; effects of this magnitude
would significantly affect a number of tests of the SM, such as those based on neutrino
deep inelastic scattering experiments [24, 25].

Ultimately, one wishes to determine PDFs, and in particular the size of CSV
effects in these quantities, directly from QCD itself. Lattice field theory is currently
the only quantitative tool available with this facility. Until very recently it was not
known how one might calculate PDFs directly on the lattice [26]; deep inelastic
scattering and related processes are dominated by distances that are light-like, and
as such are inaccessible in Euclidean-space calculations. Use of the operator product
expansion, however, allowsMellin moments of PDFs, which represent averages over
the momentum fraction x carried by the parton, to be evaluated using standard lattice
calculations of hadronic matrix elements of local operators [27–30]. Details of the
operator product expansion, as well as an overview of the connection between deep
inelastic scattering, hadron structure functions, and PDFs, are given in Appendix E.

In this chapter we develop a formalism for the chiral extrapolation of the spin-
dependent and spin-independent Mellin moments of the quark distributions of the
octet baryons. The analysis allows for isospin-breaking and may thus be used to
calculate CSV effects from isospin-averaged lattice QCD simulation results, just as
was outlined for the octet baryon masses and sigma terms in the previous chapters.

6.1 Moments of Quark Distribution Functions

The spin-independent (qB(x)) and spin-dependent (�qB(x)) quark distribution func-
tions are defined as

qB(x) =qB
↑ (x) + qB

↓ (x), (6.1a)

�qB(x) =qB
↑ (x) − qB

↓ (x), (6.1b)

where qB
↑(↓) represents the number density of quarks whose spin is parallel (antipar-

allel) to the longitudinal spin direction of a baryon B. For clarity of notation, we sup-
press the dependence of these distributions on a renormalisation scale μ2 throughout
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this discussion.Wedefine the (n−1)th spin-independent (SI) andmth spin-dependent
(SD) Mellin moments of the parton distributions, respectively, as

〈xn−1〉Bq =
∫ 1

0
dx xn−1

(
qB(x) + (−1)nq B(x)

)
, (6.2a)

〈
xm

〉B
�q =

∫ 1

0
dx xm

(
�qB(x) + (−1)m�qB(x)

)
, (6.2b)

i.e., our definitions alternate between C-even (+) and odd (−) distributions,

q±(x) = q(x) ± q(x), (6.3)

with increasing n and m. These alternating towers of moments can be related to the
matrix elements of local twist-two operators

Oμ1···μn
q = i n−1qγμ1

←→
D μ2 · · · ←→D μn q, (6.4a)

Oμ0···μm
�q = imqγ5γ

μ0
←→
D μ1 · · · ←→D μmq, (6.4b)

where
←→
D = 1

2

(−→
D − ←−

D
)
, through the operator product expansion described in

Appendix E. One finds:

〈
B( 	p)∣∣[O{μ1···μn}

q − Tr
]∣∣B( 	p)〉 = 2〈xn−1〉Bq

[
p{μ1 · · · pμn} − Tr

]
, (6.5a)

〈
B( 	p)∣∣[O{μ0···μm }

�q − Tr
]∣∣B( 	p)〉 = 2〈xm〉B�qMB

[
S{μ0 pμ1 · · · pμm } − Tr

]
. (6.5b)

The braces, {. . .}, indicate total symmetrisation of the enclosed indices, and trace
terms involving gμiμ j have been subtracted to ensure that the operators transform
irreducibly under the Lorentz group. The spin operator, Sμ, is as in Eq. (3.27); we
have suppressed the bold typeface here.

In recent years, several collaborations have presented lattice QCD studies of the
matrix elements of twist-two operators relevant to both the spin-independent and
spin-dependent parton distributions [29, 30]. Because of the reduced symmetry
of a cubic lattice compared with continuous space (the symmetry group O(4) →
H(4)), these simulations have been restricted to the lowest few Mellin moments
by power-divergent operator mixing—one can choose irreducible representations of
H(4) which are safe from such mixings only for {n,m} ≤ 4. Furthermore, renormal-
isation becomes extremely complex for larger moments.

Although the lowest several moments of the quark distribution functions do not
provide enough information for a reconstruction of the PDFs, they are interesting in
their own right. For example, the zeroth spin-dependent moment, 〈1〉B�q , corresponds
to the spin of baryon B carried by quark flavour q . Lattice results for this quantity can
thus give insight into the proton spin puzzle (see Sect. 6.4).Moreover, determinations
of CSV effects in the Mellin moments are relevant to experimental tests of the SM.

http://dx.doi.org/10.1007/978-3-319-31438-9_3
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Perhaps most notably, CSV effects in the lowest spin-independent PDF moments
could act to significantly reduce the 3-sigma discrepancy with the SM found by the
NuTeV collaboration [31] in neutrino-nucleus DIS experiments.

6.2 Chiral Perturbation Theory

Here we outline the derivation of chiral extrapolation formulae for the spin-indepen-
dent and spin-dependent quark distribution moments, to leading non-analytic order.
The analysis allows for (strong) isospin-breaking, that is, formu �= md . We begin by
writing down effective Lagrange densities which represent the twist-two operators
O (Eqs. (6.4a) and (6.4b)) within the framework of chiral effective field theory. The
appropriate flavour structure for each operator will be isolated by insertions of the
matrices

λq = 1

2

(
ξλqξ

† + ξ†λqξ
)
, (6.6)

where for each quark flavour q , λq is given by

λu =
⎛
⎝
1

⎞
⎠, λd =

⎛
⎝ 1

⎞
⎠, λs =

⎛
⎝

1

⎞
⎠. (6.7)

Effective operators relevant to the isovector quark distributions, for example, will be
expressed in terms of the matrix λ = λu − λd .

The interactions of the octet baryons, decuplet baryons, andmesons, with no oper-
ator insertions, are encoded in the usual effective Lagrangian which was presented in
Chap.3.We refer to that chapter, in particular Sect. 3.3, for a summary of the notation
and conventions used here (note that we now suppress the bold typeface on matrices
of heavy-baryon fields). The only new notation needed is the generalisation of the
quark-mass matrix Mq to include higher powers of the meson field �:

M = 1

2

(
ξMqξ + ξ†Mqξ

†
)
. (6.8)

We note from the outset that the expressions given in the following sections differ
from those of related works [32–34] by factors of the baryon mass MB . We have
chosen our convention to make the a-priori unknown low-energy coefficients which
appear in the effective matrix elements dimensionless.

Spin-Independent

Herewe list effectivematrix elements of the trace-subtracted spin-independent twist-

two operators
(
O{μ1...μn}

q − Tr
)
. All terms involving zero or one mass-insertion (M)

are included.The total symmetrisationof all Lorentz indices,which is usually denoted

http://dx.doi.org/10.1007/978-3-319-31438-9_3
http://dx.doi.org/10.1007/978-3-319-31438-9_3
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by braces, {. . .}, may also be written as ‘+ permutations’ where this is notationally
more convenient. This always indicates the symmetric sum with no normalisation
factor, i.e., {μν} = μν + νμ = (μν + permutations). Superscripts (n) on the unde-
termined low-energy coefficients indicate that these constants are distinct for each
operator, that is, α(0) �= α(1) etc.

At leading order, the relevant effective Lagrange density is

[
α(n)

(
BBλq

) + β(n)
(
Bλq B

) + σ(n)
(
BB

)
Tr(λq)

]
p{μ1 . . . pμn} − Tr. (6.9)

The O(mq) counterterms are given by

(
b(n)
1 Tr

[
B

[[
λq , B

]
, M

]] + b(n)
2 Tr

[
B{[λq , B

]
, M}] + b(n)

3 Tr
[
B

[{λq , B}, M]]

+ b(n)
4 Tr

[
B{{λq , B}, M}] + b(n)

5 Tr
[
BB

]
Tr

[
λqM

] + b(n)
6 Tr

[
BBλq

]
Tr[M]

+ b(n)
7 Tr

[
Bλq B

]
Tr[M] + b(n)

8 Tr
[
BMB

]
Tr

[
λq

] + b(n)
9 Tr

[
BBM

]
Tr

[
λq

]

+ b(n)
10 Tr

[
Bλq

]
Tr[MB]

)
p{μ1 . . . pμn} − Tr, (6.10)

and the decuplet insertions may be represented by

γ(n)
(
T

ν
λqTν

)
p{μ1 . . . pμn} + γ′(n)M2

B

(
T

{μ1
λqT

μ2

)
pμ3 . . . pμn} − Tr. (6.11)

The contractions between field tensors are defined in Eq. (3.38).

Spin-Dependent

The spin-dependent operators have effective matrix elements very similar in struc-
ture to those given in the previous section for the spin-independent case. The term
analogous to Eq. (6.9) has the form

[
�α(m)

(
BSμ0Bλq

) + �β(m)
(
BSμ0λq B

) + �σ(m)
(
BSμ0B

)
Tr(λq)

]
pμ1 . . . pμm

+ permutations − Tr. (6.12)

For m = 0, the Goldberger-Treiman relation provides the identification of the low-
energy constants with the meson-baryon coupling constants:

�α(0) = 2

(
2

3
D + 2F

)
, �β(0) = 2

(
−5

3
D + F

)
, (6.13)

where F and D are defined by Eq. (3.29). The effective Lagrange density with inser-
tions of the quark-mass matrix M is entirely analogous to Eq. (6.10):

http://dx.doi.org/10.1007/978-3-319-31438-9_3
http://dx.doi.org/10.1007/978-3-319-31438-9_3
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(
�b(m)

1 Tr
[
BSμ0

[[
λq , B

]
, M

]] + �b(m)
2 Tr

[
BSμ0{[λq , B

]
, M}]

+ �b(m)
3 Tr

[
BSμ0

[{λq , B}, M]] + �b(m)
4 Tr

[
BSμ0{{λq , B}, M}]

+ �b(m)

5 Tr
[
BSμ0B

]
Tr

[
λqM

] + �b(m)
6 Tr

[
BSμ0Bλq

]
Tr[M]

+ �b(m)
7 Tr

[
BSμ0λq B

]
Tr[M] + �b(m)

8 Tr
[
BSμ0MB

]
Tr

[
λq

]

+ �b(m)
9 Tr

[
BSμ0BM

]
Tr

[
λq

] + �b(m)
10 Tr

[
BSμ0λq

]
Tr[MB]

)
pμ1 . . . pμm

+ permutations − Tr . (6.14)

Decuplet contributions may be represented by

�γ(m)
(
T

ν
S{μ0λqTν

)
pμ1 . . . pμm } + �γ′(m)M2

B

(
T

{μ1 Sμ0λqT
μ2

)
pμ3 . . . pμm } − Tr.

(6.15)

Clearly, because of the number of available indices,�γ′(0,1) = 0. Other approximate
relations between the unknown coefficientsmay be derived using SU(6) symmetry. In
our numerical calculations, for example, we set�γ(0) = 2H = −6D. The analogous
relation for the first moment is �γ(1) = − 3

2

(
�α(1) − 2�β(1)

)
.

Transitions between octet and decuplet baryons via an operator insertion are also
allowed in the spin-dependent case. These are represented by the effective matrix
element

√
3

2
ω(m)

[(
T

μ0
λq B

)
+ (

BλqT
μ0

)]
pμ1 . . . pμm + permutations − Tr. (6.16)

Here, by the nucleon-delta Goldberger-Treiman relation, we make the identification
ω(0) = C. This parameter appears in Eq. (3.37) and encodes the octet-decuplet baryon
transition viameson emission or absorption. To reduce the number of free low-energy
constants, we use the SU(6) approximation to set ω(1) = − 1

2

(
�α(1) − 2�β(1)

)
for

our numerical study of the first spin-independent moment (see Sect. 6.3).

6.2.1 Feynman Rules

Feynman rules corresponding to the twist-two operator insertion verticesmay be read
directly from the effective Lagrangian terms given in the previous section. Following
the notation introduced in Sect. 3.3.4, the octet baryon, decuplet baryon, and meson
which appear in a particular vertex are indicated by subscripts B, T , and φ on the
(Clebsch-Gordan) coefficientsC which encompass the flavour algebra. The subscript
Oq indicates that the couplings listed here correspond to operator insertion vertices.
All coefficients C are given explicitly in Appendix D.

http://dx.doi.org/10.1007/978-3-319-31438-9_3
http://dx.doi.org/10.1007/978-3-319-31438-9_3
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For the spin-independent operators,

BB ′
SI Operator Insertion 6.1(a):

1

MB
C (n)

BB ′Oq
p{μ1 . . . pμn}, (6.17a)

T T ′
SI Operator Insertion 6.1(b) #1:

1

MB
C (n)

T T ′Oq
gνβ p

{μ1 . . . pμn}, (6.17b)

T T ′
SI Operator Insertion 6.1(b) #2:

1

MB
C (n)

T T ′Oq
g {μ1

ν g μ2

β pμ3 . . . pμn}, (6.17c)

BB ′φφ′
SI Vertex Insertion 6.1(d)

1

MB f 2π
C (n)

BB ′φφ′Oq
p{μ1 . . . pμn}. (6.17d)

The labels indicate the panel of Fig. 6.1 in which each vertex is depicted, and the T T ′
operator insertions labelled #1 and #2 correspond to the first and second terms of the
decuplet effective operator contributions respectively (see Eqs. (6.11) and (6.15)).
Similarly, for the spin-dependent operators,

BB ′
SD Operator Insertion 6.1(a): C (m)

BB ′O�q
S{μ0 pμ1 . . . pμm }, (6.18a)

T T ′
SD Operator Insertion 6.1(b) #1: C (m)

T T ′O�q
gνβS

{μ0 pμ1 . . . pμm }, (6.18b)

T T ′
SD Operator Insertion 6.1(b) #2: C (m)

T T ′O�q
g {μ1

ν g μ2

β Sμ0 pμ3 . . . pμm }, (6.18c)

T BSD Operator Insertion 6.1(c) C (m)
T BO�q

g {μ0
α pμ1 . . . pμm }, (6.18d)

BB ′φφ′
SD Vertex Insertion 6.1(d):

1

f 2π
C (m)

BB ′φφ′O�q
S{μ0 pμ1 . . . pμm }. (6.18e)

By symmetry, the BTSD vertex (i.e., the reflection of Fig. 6.1(c) in a vertical plane)
is identical to the T BSD vertex given here.

B B

(a)

T T

μ0μ0
β ν

(b)

T B

μ0
α

(c)

B Bμ0

φ φ
(d)

Fig. 6.1 Feynman diagrams illustrating the vertices which appear in the leading non-analytic con-
tributions to moments of quark distribution functions. The twist-two operator insertion (denoted by
a cross) carries a Lorentz index μ0 in the spin-dependent case only. Single, double and dashed lines
denote octet baryons, decuplet baryons and mesons, respectively
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6.2.2 Feynman Diagrams

This section gives details of the Feynman diagrams which contribute to the Mellin
moments of the PDFs to leading non-analytic order. These are shown in Fig. 6.2 and
include loops with both octet and decuplet baryon intermediate states, tadpole loops,
and wavefunction renormalisation terms. Figures 6.2(h)–(j) contribute only to the
odd-n spin-independent moments at order mn+1

π log(mπ) and are thus included for
the n = 1 spin-independent moment only. For this moment they serve to cancel the
contributions of Figs. 6.2(a)–(e) to give the usual quark flavour sum rule; for this
reason we do not write out their contribution explicitly.

(a) (b) (c)

(d) (e)

(f) (g)

(h) (i) (j)

Fig. 6.2 Chiral loops included in the present calculation. Single, double, and dashed lines denote
octet baryons, decuplet baryons, andmesons, respectively.Crosses (squares) denote twist-two oper-
ator (leading-order strong interaction) insertions. Diagram (a) is hereafter referred to as the ‘octet
loop’ diagram, in this figure (d) is the ‘decuplet loop’, and diagram (b) is referred to as the ‘tadpole’
diagram. Diagrams (c) and (e) represent wavefunction renormalisation. The transition diagrams,
shown in these figures (f) and (g), contribute only in the spin-dependent case. Diagrams (h)–(j) are
included for the n = 1 spin-independent moment only, as explained in the text
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(a) (b)

Fig. 6.3 Loop diagrams which include Weinberg-Tomozawa contact terms. These contribute only
to the spin-dependent matrix elements at higher order (they have non-analytic behaviour of order
m3

π log(mπ) or higher), and are thus excluded from our calculation

Figures6.3(a), (b) show the loop diagrams which include Weinberg-Tomozawa
contact terms. These contribute only to the spin-dependent matrix elements at higher
order than we consider here (they have non-analytic behaviour of order m3

πlog(mπ)

or higher), and are thus excluded from our analysis, although it has been argued that
these terms may indeed be significant [27].

6.2.3 Loop Integrals

Here we summarise the integral expressions needed for the evaluation of the Feyn-
man diagrams depicted in the previous section.We use the finite-range regularisation
scheme which was introduced in Sect. 3.5, but also make explicit the simple substi-
tutions which relate our expressions to those generated in the DR formalism [35].

Loops with octet baryon intermediate states (e.g., Fig. 6.2(a)) involve the term

∫
d4k

(2π)4

ki k j

(k0 − iε)2(k2 − m2
φ + iε)

=
FRR

−iδi j
J (m2)

16π2
, (6.19)

where

J (m2) = 4

3

∫ ∞

0
dk

k4u2(k)

(
√
k2 + m2)3

, (6.20)

with the finite-range regulator u(k) inserted into the integrand. The normalisation of
J (m2) has been defined so that the non-analytic part is simply related to the common
form of dimensionally regularised results: J (m2) →

DR
m2 ln(m2/μ2).

Entirely analogous expressions can be written for integrals with decuplet prop-
agators replacing one or more of the octet propagators in the above loop integral
expression. We define

∫
d4k

(2π)4

ki k j

(k0 + δ − iε)(k0 − iε)(k2 − m2
φ + iε)

=
FRR

−iδi j
J1(m2, δ)

16π2
, (6.21)

∫
d4k

(2π)4

ki k j

(k0 + δ − iε)2(k2 − m2
φ + iε)

=
FRR

−iδi j
J2(m2, δ)

16π2
, (6.22)

http://dx.doi.org/10.1007/978-3-319-31438-9_3
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where

J1(m
2, δ) = 4

3

∫ ∞

0
dk

k4u2(k)

(
√
k2 + m2)2(

√
k2 + m2 + δ)

, (6.23)

J2(m
2, δ) = 4

3

∫ ∞

0
dk

k4u2(k)

(
√
k2 + m2)(

√
k2 + m2 + δ)2

, (6.24)

with one and two decuplet propagators, respectively. The non-analytic parts of these
integrals give the corresponding DR expressions:

J1(m
2, δ) →

DR

(
m2 − 2

3

)
ln

(
m2

μ2

)
+ 2

3δ

(
δ2 − m2

) 3
2 ln

(
δ − √

δ2 − m2

δ + √
δ2 − m2

)
(6.25)

+ 2π

3δ
m3 − 4

3
m2,

J2(m
2, δ) →

DR

(
m2 − 2δ2

)
ln

(
m2

μ2

)
+ 2δ

√
δ2 − m2 ln

(
δ − √

δ2 − m2

δ + √
δ2 − m2

)
. (6.26)

We also define

JT (m2) = 4
∫ ∞

0
dk

k2u2(k)√
k2 + m2

, (6.27)

which has the same non-analytic structure as J , i.e., JT (m2) →
DR

m2 ln(m2/μ2). This

integral will appear in the evaluation of tadpole loops in Sect. 6.2.4.
To make a comparison with DR expressions clear, and to avoid absorbing loop

terms into known parameters such as F and D, constant terms are subtracted by the
integral replacement

I(m) → Ĩ(m) = [I(m) − I(m = 0)], (6.28)

where I stands for any of the integrals defined earlier. Terms analytic in m2 are
absorbed by redefinition of the unknown low-energy coefficients (�)bi . With this
convention, DR expressions can be recovered by simply replacing each loop integral
expression by its non-analytic DR form given above.

6.2.4 Loop Contributions

This section gives explicit expressions for the contribution from each loop diagram
shown in Sect. 6.2.2 to the chiral extrapolation of the Mellin moments of the PDFs.
Each term may be derived using the Feynman rules of Sect. 6.2.1 and is written in
terms of the subtracted integrals defined in Sect. 6.2.3. In each case, the subscripts
P and U indicate the polarised (spin-dependent) and unpolarised cases, while the
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superscripts 8 and 10 indicate diagrams with octet and decuplet baryon intermedi-
ate states. All Clebsch-Gordon coefficients C , the momenta pμ1 . . . pμn,m , and the
associated symmetrisation of Lorentz indices are suppressed for clarity of notation.

Wavefunction Renormalisation

The contributions from wavefunction renormalisation correspond to Fig. 6.2(c), (e)
and reduce to

Z8
2,{P,U } = 1

16π2 f 2π

(
3

8

)
J̃ (m2), (6.29)

Z10
2,{P,U } = 1

16π2 f 2π
J̃2(m

2, δ). (6.30)

Tadpole Loops

The tadpole loop contributions correspond to Fig. 6.2(b).

Z tad
1,{P,U } = 1

16π2 f 2π

(
1

2

)
J̃T (m2). (6.31)

Octet Intermediate-State Loops

The contribution from Fig. 6.2(a), with an operator insertion into an octet baryon
intermediate state, differs from the octet loop wavefunction renormalisation term
only in the spinor algebra.

Z (8,8)
1,P = 1

16π2 f 2π

(
−1

8

)
J̃ (m2), (6.32)

Z (8,8)
1,U = 1

16π2 f 2π

(
3

8

)
J̃ (m2). (6.33)

Decuplet Intermediate-State Loops

The contribution from decuplet loops with one operator insertion (i.e., Fig. 6.2(d))
mimics that of the decuplet loop wavefunction renormalisation term. While there
is an extra Pμν polarisation projector in the spin algebra, as there are two decu-
plet propagators, the wavefunction renormalisation term (with one propagator) has
the identical integral form, J2, because of the derivative with respect to external
momentum.

There are two separate terms which contribute to the decuplet loop (Fig.6.2(d)),
arising from the two terms in each of Eqs. (6.11) and (6.15). We label these contribu-
tions as ‘1’ and ‘2’, matching the notation used when defining the relevant Feynman
rules in Eqs. (6.17) and (6.18).
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Z (10,10)
1,P1 = 1

16π2 f 2π

(
−5

9

)
J̃2(m

2, δ), (6.34)

Z (10,10)
1,P2 = 1

16π2 f 2π

(
1

9

)
J̃2(m

2, δ), (6.35)

Z (10,10)
1,U1 = 1

16π2 f 2π
(−1) J̃2(m

2, δ), (6.36)

Z (10,10)
1,U2 = 1

16π2 f 2π

(
1

3

)
J̃2(m

2, δ). (6.37)

Octet-Decuplet Transition Loops

By symmetry, the contributions from Figs. 6.2(f), (g) are the same. These diagrams
do not contribute in the spin-independent case.

Z (10,8)
1,P = Z (8,10)

1,P = 1

16π2 f 2π

(
2

3

)
J̃1(m

2, δ).

6.2.5 Fit Functions

Here we finally present complete expressions for the chiral extrapolation of quark
distribution moments. The Clebsch-Gordon coefficients C are those given in the
Feynman rules in Eqs. (3.40), (6.17) and (6.18).We emphasise that these coefficients,
while labelled identically, have distinct numerical values for each moment. Expres-
sions for each C in terms of the low-energy constants introduced in the effective
Lagrange densities are given in Appendix D. In the expressions below, summation
over repeated indices, e.g., B ′, T , φ (but not B) is implied. The overall factor of 2
arises from the corresponding factor in Eqs. (6.5a) and (6.5b). We remind the reader
that the terms p{μ1 . . . pμn} and S{μ0 pμ1 . . . pμm }, arising from the Feynman rules and
spinor algebra for the chiral extrapolation of the matrix elements, factor out when
writing out the quark moment chiral extrapolation (again see Eqs. (6.5a) and (6.5b)).

The master expression for the spin-independent Mellin moments with n ≥ 2 is

2〈xn−1〉Bq =
(
C (n)
BBOq

+ C (n)
BBOqM

)
+ C (n)

BB′φC
(n)

B′B′′Oq
C (n)

B′′BφZ
(8,8)
1,U

(
m2

φ

)

+ C (n)
BBφφOq

Z tad
1,U

(
m2

φ

)
+ C (n)

BTφC
(n)

T T ′Oq
C (n)

T ′Bφ

[
Z (10,10)
1,U1

(
m2

φ

)
+ Z (10,10)

1,U2

(
m2

φ

)]

−
(
C (n)

BB′φ

)2
CBBOq Z

8
2,U

(
m2

φ

)
−

(
C (n)
BTφ

)2
C (n)
BBOq

Z10
2,U

(
m2

φ

)
, (6.38)

while the n = 1 case is simply the quark flavour sum rule. The spin-dependent
moments are given, for m ≥ 1, by

http://dx.doi.org/10.1007/978-3-319-31438-9_3


6.2 Chiral Perturbation Theory 83

2〈xm〉B�q =
(
C (m)

BBOq
+ C (m)

BBO�q M

)
+ C (m)

BB ′φC
(m)
B ′B ′′O�q

C (m)

B ′′BφZ
(8,8)
1,P

(
m2

φ

)

+ C (m)

BBφφO�q
Z tad
1,P

(
m2

φ

) + C (m)

BTφC
(m)
T T ′O�q

C (m)

T ′BφZ
(10,10)
1,P1

(
m2

φ

)

+ C (m)

BTφC
(m)
T B ′O�q

C (m)

B ′Bφ

[
Z (8,10)
1,P

(
m2

φ

) + Z (10,8)
1,P

(
m2

φ

)]

−
(
C (m)

BB ′φ

)2
C (m)

BBO�q
Z8
2,P

(
m2

φ

) −
(
C (m)

BTφ

)2
CBBO�q Z

10
2,P

(
m2

φ

)
. (6.39)

These expressions match those of previous studies [32–34, 36–40] in the limit where
mu = md , i.e., ε → 0 in the expressions for the couplings C and the meson masses
mφ (see Eq. (4.6)).

To facilitate direct comparison with, and use of, these expressions, the chi-
ral expansions for some of the commonly-investigated combinations of moments,
namely 〈1〉p�u−�d = gA and 〈x〉pu−d , are given explicitly in Appendix F.

6.3 Fits to Lattice QCD Simulation Results

In this section we describe the application of the theory developed here to the chiral
extrapolation of lattice results provided by the CSSM and QCDSF-UKQCD collab-
orations for the first few Mellin moments of the quark distributions [29, 30, 41]. In
particular, we consider the first spin-independent moment and the zeroth and first
spin-dependent moments.

The simulations [29, 30, 41] were performed on a lattice volume L3×T = 243×
48 (with a = 0.083 fm), and include results for the doubly and singly-represented
quark3 contributions to theMellin moments of all outer-ring octet baryons (i.e., no�

or�0 baryons) at five different sets of pseudoscalar masses (mπ,mK ). The locations
of the simulations in the light-strange quark mass plane are indicated by the light
blue squares along the single constant singlet-mass line in Fig. 4.1. All numbers are
expressed as ratios of the moments for different octet baryons (as in Fig. 6.4); overall
normalisations are not given.

For our analysis we use a dipole regulator, u(k) =
(

�2

�2+k2

)2
, and a regulator mass

� = 1GeV, within the FRR scheme. All results are insensitive to this choice; select-
ing, for example, monopole, Gaussian, or sharp cutoff forms for the regulator does
not change the results of the analysis within the quoted uncertainties. We explicitly
allow � to vary by ±20% for our final results.

The fit to the simulation results is performed by minimising the sum of χ2 for
each set of moments independently. As lattice data is available only for the doubly

3For a baryon with valence quark content xxy, the doubly-represented contribution is the total from
quarks of flavour x , while the singly-represented contribution is the total from y-flavoured quarks.
For example, in the proton the u and d quarks are doubly and singly-represented, respectively.

http://dx.doi.org/10.1007/978-3-319-31438-9_4
http://dx.doi.org/10.1007/978-3-319-31438-9_4
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and singly-represented quark moments, not all of the parameters which appear in
the equations in the previous sections are linearly independent in the relevant fit
functions. Replacements are made:

n1 = b1 + b3, n2 = b2 + b4, n3 = b5, (6.40)

n4 = b7, n5 = b8, n6 = b9,

with entirely analogous relations defining �ni in the spin-dependent cases.
There are 24 lattice data points available for each of the threemoments considered.

The fit parameters are different (and the fits independent), for each moment. As
indicated earlier, we use SU(6) relations between unknown quantities to reduce the
number of free parameters to eight or nine:

• For the zeroth spin-dependent moment, �n(0)
i , �σ(0), and D are fit; the low-

energy constants �α(0) and �β(0) have been related to D by Eq. (6.13). We use
SU(6) symmetry to set F = 2

3D and �γ(0) = −6D. C → Cphys. = − 6
5gAphys. is

also fixed. This gives a total of eight free parameters.

• The nine fit parameters for the first spin-dependent moment are �n(1)
i , �α(1),

�β(1), and �σ(1). Fixed parameters are D → Dphys. = 3
5gAphys. , F → Fphys. =

2
3Dphys., C → Cphys., and, using SU(6) symmetry, �γ(1) = − 3

2

(
�α(1) − 2�β(1)

)
,

as outlined in the text (see Eq. (6.15)).

• For the first spin-independentmoment, nine parameters, n(2)
i , α(2), β(2), and σ(2),

are fit, with D, F , and C again fixed to their physical values. As no phenomenolog-

ical estimate of the combination
(
γ(2) − γ′(2)

3

)
is available, this quantity is fixed to

a ‘physical’ value through its relationship to the tree-level delta insertion, SU(6)
symmetry, and the best experimental value of the isovector proton moment (at a
scale of 4GeV2) [42]:

(
γ(2) − γ′(2)

3

)
= 6〈x〉�+

u−d at tree level, (6.41a)

= 6〈x〉pu−d using SU(6) symmetry, (6.41b)

=
exp.

6(0.157) = 0.942. (6.41c)

The fits to the available lattice simulation results (expressed as ratios of Mellin
moments) are shown inFig. 6.4. Thehorizontal axes are normalisedwith respect to the

simulation centre-of-mass of the pseudoscalar meson octet, Xπ =
√

(2m2
K + m2

π)/3
= 411 MeV, so that the figures may be easily compared against previously published
analyseswhich used linear fits to the lattice results [29, 30]. The quality of fit is clearly
acceptable in each case, with the χ2/d.o.f. between 0.6 and 0.9 for each moment.
All χ2 values are less than one as we were not able to take into account the effect of
correlations between the original lattice data points. Best-fit parameters for each fit
are given in Table6.1.
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(a) (b)

(c) (d)

(e) (f)

Fig. 6.4 Illustration of the fits to the zeroth spin-dependent moment (a) and (b), the first spin-
dependent moment (c) and (d), and the first spin-independent moment (e) and (f). Figures in
left (right) hand panels correspond to the ratios of singly (doubly) represented quark distribu-
tion moments for the � (red upward triangles) and � (blue downward triangles) baryons to those
of the nucleon. Lattice data is taken from Refs. [29, 30] (Color figure online)

In Sect. 6.5 we describe the use of these fits to determine the magnitude of CSV
effects in each of the Mellin moments. This analysis is based on the same principles
introduced in Chap.4 to determine the mass splittings among members of baryon
isospin multiplets from 2+1–flavour lattice simulation results. First, however, we use
the chiral extrapolation for the zeroth spin-dependent moment, which directly probes
the distribution of the spin of a baryon among its quarks, to gain some insight into
the proton spin puzzle.

http://dx.doi.org/10.1007/978-3-319-31438-9_4
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Table 6.1 Values of the fit parameters corresponding to the fits shown in Fig. 6.4. All (�)n( j)
i have

dimensions (GeV−2), other parameters are dimensionless. The first error range given is statistical,
while the second indicates the uncertainty resulting from a ±20% variation in the FRR cutoff �

First SI (i = 2) Zeroth SD (i = 0) First SD (i = 1)

(�)n(i)
1 1.1(25)(0) 4.9(84)(9) −1.5(13)(15)

(�)n(i)
2 −7.0(28)(27) 0.5(98)(12) 6.3(29)(26)

(�)n(i)
3 8.3(26)(31) −2.2(58)(9) −3.9(16)(23)

(�)n(i)
4 0.5(27)(1) −15(17)(0) −7.0(46)(11)

(�)n(i)
5 11(4)(4) 0.2(50)(9) −1.0(11)(8)

(�)n(i)
6 6.2(24)(23) −1.1(88)(7) −6.0(28)(34)

(�)α(i) −4.1(17)(12) 0.41(50)(29)

(�)β(i) −8.6(31)(21) −1.5(10)(3)

(�)σ(i) 7.5(26)(23) −0.22(26)(0) −0.93(61)(14)

D 0.74(24)(6)

6.4 Hyperon Spin Fractions and the Proton Spin Puzzle

Since the discovery by the EuropeanMuon collaboration [5, 43–45] that quarks carry
a relatively small fraction of the spin of the proton—the proton spin puzzle—there
have been decades of careful experimental investigation of that claim. The puzzle,
however, has persisted; the quark contribution to the proton spin currently stands
at [6] 33 ± 3 ± 5% if one relies on SU(3) symmetry for the octet axial charge,
g8A. This is a dramatic suppression with respect to the value of 100% expected in
a naive quark model, or even the 65% expected in a relativistic quark model. The
value deduced from experiment increases only marginally, to 36 ± 3 ± 5%, if g8A
is reduced by 20%, as suggested by model calculations [46] and a recent lattice
simulation [47].

A number of possible theoretical explanations for the spin puzzle have been
offered, ranging from a key role for the axial anomaly [48–54] to the effect of
gluon exchange currents [55–57], the effects of chiral symmetry [58, 59], and, in
the light of insights gained from lattice QCD studies, a combination of both of these
effects4 [62]. It is clearly of great interest to find new ways to shed light on the origin
of this phenomenon.

The analysis of lattice QCD simulation results described in previous sections
can give some insight into the spin puzzle. In particular, the zeroth spin-dependent
Mellin moment of the quark distribution function for quark flavour q in baryon B
corresponds identically to the spin carried by that quark flavour:

4The relatively small values of the gluon spin in the proton, found in both fixed target and collider
experiments [60, 61], have eliminated the possibility that the axial anomaly alone might explain
the observed suppression, although its effect may still be quantitatively significant.
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Table 6.2 Ratio of the spin fraction for each hyperon to that of the nucleon. For the model calcula-
tion, the uncertainties quoted result from choosing a bag radius R = 0.8 fm rather than the default
1 fm. The lattice uncertainties include all statistical and systematic effects described in previous
sections combined in quadrature

B Model Lattice

N 1.0 1.0

� 1.35(2)

� 0.97(1) 0.92(13)

� 1.49(5) 1.61(33)

�qB ≡ 〈1〉B�q =
∫ 1

0
dx

(
�qB(x) + �qB(x)

)
. (6.42)

As the lattice QCD simulation results used here were presented in ratio form by
the lattice groups (because the analysis of the renormalisation of the lattice oper-
ators had not been completed), the absolute values of the spin fractions cannot be
extracted from our analysis. We can, however, use our results—which extend to the
entire outer-ring baryon octet—to determine whether the suppression observed for
the proton is a general property or varies across the baryon octet. Despite early pro-
posals [63] to measure the quark contribution to the � baryon spin, there is at this
stage no experimental indication as to whether spin-suppression is a universal feature
of baryons or not.

Unfortunately, as the lattice data set does not include any calculations for the
� hyperon,5 we are unable to present results in that case. However, for the other
members of the octet one can simply sum �u, �d, and �s to obtain the (connected
quark-line contribution to the) spin fractions carried by the quarks in each baryon.
These values, determined from the fit functions of Sect. 6.3 evaluated at the physical
mesonmasses, are shown in the final column of Table6.2. Although the uncertainties
are substantial, there is a remarkable degree of variation with the structure of the
baryon, with the ratio of spin fractions equal to 0.92(13) for � : N while it is
1.61(33) for � : N . This variation is not merely an artefact of the (significant) chiral
extrapolation in pion mass which is necessary to reach the physical point; it is in fact
distinct in the lattice results themselves. This is illustrated in Fig. 6.5.

These results clearly do not support the hypothesis that the spin suppression
observed for the protonmight be auniversal property. In order to understand this effect
qualitatively it is of considerable interest to investigate the predictions of models in
which the suppression of the spin carried by quarks is dependent on baryon structure.
In Ref. [65], the cloudy bag model (CBM), developed in Refs. [55, 56, 58, 60],
was applied to this problem. The model includes relativity [66–69], gluon exchange
currents [55, 70, 71], and the meson cloud required by chiral symmetry [58]. As can

5Since the completion of this work, calculations of the quark spin fractions in the � baryon have
been performed for a subset of the simulation ensembles used here [64]. At this stage, however, the
results do not span a sufficient range of meson masses to constrain an extrapolation of the � spin
fraction to the physical point (when included in our analysis).
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Fig. 6.5 As in Fig. 6.4(b), with dimensionful units on the horizontal axis. Red upward (blue down-
ward) triangles show the ratio of the lattice moments of the u in the �+ (s in the �) to the u in the
proton. The vertical dashed line indicates the physical pion mass (Color figure online)

be seen from Table6.2, the predicted variation of the fraction of the spin carried by
quarks across the octet is striking, and is in excellent agreement with the results of
our lattice study. Within the quark model, this variation in spin-suppression can be
easily interpreted; the meson cloud correction is considerably smaller in the � than
in the nucleon. That, combined with the less relativistic motion of the heavier strange
quark, results in the quark spin fraction in the � being substantially larger than that
in the nucleon.

6.5 Charge Symmetry Violation

As discussed in the introduction to this chapter, the assumption of good charge sym-
metry has beenwidely applied in parton phenomenology [18, 19] despite experimen-
tal upper limits on partonic CSV falling in the range 5–10%. CSV of that magnitude
would produce important effects in tests of physics beyond the SM, for example in
neutrino-nucleus deep inelastic scattering experiments [24]. We use the analysis of
lattice simulation results presented in Sect. 6.3 to more precisely constrain the size
of CSV effects in the lowest several lattice-accessible Mellin moments of the PDFs.

In terms of quark distributions, charge symmetry implies

u p
(
x, Q2

) = dn
(
x, Q2

)
, d p

(
x, Q2

) = un
(
x, Q2

)
, (6.43)
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with analogous relations for the antiquark distributions. A measure of the size of the
violation of charge symmetry is given by the ‘CSV parton distributions’, defined in
terms of the Mellin moments as

δum± =
∫ 1

0
dx xm

(
u p±(x) − dn±(x)

) = 〈xm〉p±u − 〈xm〉n±
d (6.44a)

and

δdm± =
∫ 1

0
dx xm

(
d p±(x) − un±(x)

) = 〈xm〉p±d − 〈xm〉n±
u (6.44b)

for the spin-independent distributions, with analogous expressions for the spin-
dependent case. Here, the plus (minus) superscripts indicate C-even (C-odd) dis-
tributions:

q±(x) = q(x) ± q(x). (6.45)

As the CSSM and QCDSF-UKQCD collaboration lattice simulation results [29,
30] analysed in Sect. 6.3 use mass-degenerate light quarks, the CSV terms cannot
be directly evaluated using Eqs. (6.44a) and (6.44b) (as this would give zero in each
case). The problem can, however, be approached indirectly; because the simulations
lie along a line of constant singlet quark mass (light blue squares in Fig. 4.1), an
approximation to the CSV moments may be found using a linear flavour expansion
about the SU(3)-symmetric point. This approach is described in Sect. 6.5.1.

The resultsmaybe improved using the chiral fitswhichwere presented in Sect. 6.3.
Just aswas described in detail in the context of determining themass splittings among
members of baryon isospin multiplets from N f = 2 + 1 lattice simulation results
(Sect. 4.3), the only additional input needed to determine the CSVmoments from the
previously-described isospin-averaged fits is a value for the light-quark mass ratio
R = mu/md . The chirally-improved extraction of the CSV terms is described in
Sect. 6.5.2.

6.5.1 Linear Flavour Expansion

If one takes the light-quark mass difference mδ = (md − mu) to be small, the CSV
Mellin moments may be expanded as

δu = mδ

(
−∂〈x〉pu

∂mu
+ ∂〈x〉pu

∂md

)
+ O(

m2
δ

)
, (6.46)

with a similar expression for δd . The equivalence of the u and d quarks in the
lattice simulations to which we will apply this expansion, i.e., that ∂〈x〉nd/∂md =
∂〈x〉pu /∂mu and∂〈x〉nd/∂mu = ∂〈x〉pu /∂md , has been used to simplify the expression.

http://dx.doi.org/10.1007/978-3-319-31438-9_4
http://dx.doi.org/10.1007/978-3-319-31438-9_4
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Near the SU(3)-symmetric point, the strange quark can be considered as a heavy light-
quark; the lattice results for the hyperon Mellin moments can thus be substituted for
information about the light-quark derivatives:

∂〈x〉pu
∂mu

≈ 〈x〉�0

s − 〈x〉pu
ms − ml

,
∂〈x〉pu
∂md

≈ 〈x〉�+
u − 〈x〉pu
ms − ml

, (6.47a)

∂〈x〉pd
∂mu

≈ 〈x〉�0

u − 〈x〉pd
ms − ml

,
∂〈x〉pd
∂md

≈ 〈x〉�+
s − 〈x〉pd
ms − ml

. (6.47b)

Rearranging these expressions, and invoking the Gell-Mann–Oakes–Renner rela-
tion, the CSV momentum fractions can be written as6

δu

〈x〉pu−d

= 1

2

mδ

mq

(〈x〉�+
u − 〈x〉�0

s

)/〈x〉pu−d(
m2

K − m2
π

)
/X2

π

, (6.48a)

δd

〈x〉pu−d

= 1

2

mδ

mq

(〈x〉�+
s − 〈x〉�0

u

)/〈x〉pu−d(
m2

K − m2
π

)
/X2

π

, (6.48b)

where mq = (2ml + ms)/3 and X2
π = (2m2

K + m2
π)/3. Similar expressions hold

for the spin-dependent CSV moments. Written in this way, the fractional CSV terms
are simply the slopes of straight lines drawn through the data displayed in Fig. 6.6
(evaluated at the SU(3)-symmetric point), multiplied by the ratiomδ/mq . Taking the
Leutwyler value, R = mu/md = 0.553(43), based on the discussion of Sect. 4.4, we
find mδ/mq = 0.066(7) for the lattice simulations considered here. The normalisa-
tions of each moment are set using the best experimental values at the physical point
at a scale of 4 GeV2 [42, 72, 73]:

gA = 〈1〉p�u−�d =
exp.

1.2695(29), (6.49a)

〈x〉p�u−�d =
exp.

0.190(8), (6.49b)

〈x〉pu−d =
exp.

0.157(9). (6.49c)

Results for all six CSV moments are given in the first column of Table6.3.
Because this method gives estimates of the magnitude of CSV at the simulation
SU(3)-symmetric point, the results may have chiral corrections which are more sig-
nificant than the O(m2

δ) counting suggested by the Taylor expansion in Eq. (6.46).
Using the chiral extrapolations detailed in Sect. 6.3 we can improve on this linear
expansion and explicitly calculate the corrections involved in moving away from the
simulation SU(3) value to the physical (SU(3)-broken) point.

6 In Refs. [29, 30] the factor of 1
2 appearing at the beginning of the following equations was

erroneously omitted. As a result, the values quoted for the CSV terms were too large by a factor of
two.

http://dx.doi.org/10.1007/978-3-319-31438-9_4
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(a)

(b)

(c)

Fig. 6.6 Illustration of the fits to the lattice data from Refs. [29, 30] for the lowest several Mellin
moments of the PDFs. Upward and downward triangles indicate the ratios of doubly and singly-
represented quark moments, respectively, (a) Zeroth spin-dependent Mellin moments, (b) First
spin-dependent Mellin moments, (c) First spin-independent Mellin moments
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Table 6.3 Comparison of CSV PDF moment results. The column labelled ‘Linear’ gives the
results which were published with the lattice simulations [29, 30], calculated using a linear flavour
expansion about the SU(3)-symmetric point. These have been corrected from the values quoted
in Refs. [29, 30], as explained in the footnote preceding Eq. (6.48a). ‘Chiral’ gives the results of
this work, i.e., including chiral physics, both at the comparable ‘SU(3)-symmetric’ point (with
(md + mu) = 2ms but the physical (md − mu)), labelled ‘SU(3)-sym.’, and at the physical
pseudoscalar masses

Moment Linear: SU(3)-sym. Chiral: SU(3)-sym. Chiral: physical

δ�u0+ −0.0057(14) −0.0063(13) −0.0061(13)

δ�d0+ −0.0018(6) −0.0019(6) −0.0018(6)

δ�u1− −0.0010(3) −0.0007(2) −0.0007(2)

δ�d1− −0.0004(1) −0.0003(1) −0.0002(1)

δu1+ −0.0012(3) −0.0013(3) −0.0023(7)

δd1+ 0.0010(2) 0.0012(2) 0.0017(4)

6.5.2 Chiral Expansion

To evaluate the CSV terms at the physical (rather than the simulation SU(3)-
symmetric) point, we use the chiral extrapolations detailed in Sect. 6.3. As the
isospin-averaged and broken expressions for the Mellin moments as functions of
pseudoscalar mass have the same unknown parameters, the CSV terms given in
Eq. (6.44) may be evaluated by simply substituting the best-fit parameters of the
previously-described fits into the full isospin-broken expressions. These expressions
can then be evaluated at any pseudoscalar masses, in particular at the physical point.
As described in Chap.4, the only additional input needed is a value for the light-quark
mass ratio which we set to the Leutwyler value, R = mu/md = 0.553(43), based
on the discussion of Sect. 4.4.

For example, δ�um may be expressed as a function of meson mass in the form:

δ�um = 〈xm〉p�u − 〈xm〉n�d = a(m)
� + 1

16π2 f 2π

(
b(m)

� + d(m)
� + g(m)

�

)
, (6.50)

where

a(m)
� =1

2

(
−�n(m)

1 + �n(m)
2 + �n(m)

3 + �n(m)
6

)
B(mu − md), (6.51a)

b(m)
� = 1

6
√
3

(
D2 − 2DF − 3F2) sin(2ε)(5�α(m) + 2�β(m) + 6�σ(m)

)

× [
J̃
(
m2

π0

) − J̃
(
m2

η

)]

+ 1

24

[−D2
(
9�α(m) + 2�β(m) + 8�σ(m)

)

+2DF
(
19�α(m) + 10�β(m) + 24�σ(m)

)

http://dx.doi.org/10.1007/978-3-319-31438-9_4
http://dx.doi.org/10.1007/978-3-319-31438-9_4
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+3F2
(
5�α(m) + 2�β(m) + 8�σ(m)

)][
J̃
(
m2

K 0

) − J̃
(
m2

K±
)]

+ 1

24

(
5�α(m) + 2�β(m)

)[
J̃T

(
m2

K 0

) − J̃T
(
m2

K±
)]

, (6.51b)

d(m)
� = − 1

72

(
5�α(m) + 2�β(m) + 6�σ(m)

)C2
[
J̃2

(
m2

K 0 , δ
) − J̃2

(
m2

K± , δ
)]

− 1

108

(
5�γ(m) − �γ′(m)

)C2
[
J̃2

(
m2

K 0 , δ
) − J̃2

(
m2

K± , δ
)]

, (6.51c)

g(m)
� = − 4

9
√
3
(D − 3F) sin(2ε)�ω(m)

[
J̃1

(
m2

π0 , δ
) + J̃1

(
m2

η, δ
)]

+ 2

9
(D − 3F)�ω(m)

[
J̃1

(
m2

K 0 , δ
) − J̃1

(
m2

K± , δ
)]

, (6.51d)

where expressions for the (subtracted) integrals J̃ are given in Sect. 6.2.3. Clearly,
entirely analogous expressions may be written for δ�dm and the spin-independent
CSV terms. These are given in Appendix F.2. To the same order in the broken
SU(3) symmetry, analogous expressions for each quark flavour combination in each
octet baryon are expressed in terms of different linear combinations of the same
coefficients; the general chiral expansion is given in Sect. 6.2.5.

Figure6.6 shows the fits to the isospin-averaged lattice data in a form which
emphasises the SU(3)-symmetry–breaking in the simulation results. It is clear from
these plots that, before extrapolation to the physical masses, there are only small
chiral corrections to the CSV moments; the slopes of the fit functions at the SU(3)-
symmetric point are comparable to those of the straight-line fits described in the
previous section.

As the available QCDSF-UKQCD collaboration lattice results are presented only
in terms of ratios of moments, there is an unknown constant scaling factor, Z , asso-
ciated with all data points. The Zs are distinct for each moment (zeroth and first
spin-dependent and first spin-independent) under consideration and are fixed by
matching the extrapolations for the isovector moments to experimental values at a
scale of 4 GeV2 [42, 72, 73], just as was done for the linear flavour expansion analy-
sis (see Eq. (6.49)). The uncertainty of the experimental numbers is propagated into
the final results. The full error analysis also takes account of correlated uncertainties
between all of the fit parameters in the original fits, as well as allowing for the stated
variation of R. The regulator mass,� = 1 GeV, is allowed to vary by±20%, which
is again propagated into the final uncertainty. Changing the functional form of the
regulator u(k) within the FRR scheme leads to small variations of order 1%.

An advantage of the chiral method is that the CSV moments may be evalu-
ated at any pseudoscalar masses. In particular, evaluating the chiral perturbation
theory expressions at the point where (md + mu) = 2ms and both (md − mu) and
(mu +md +ms) take their physical values, labelled ‘SU(3)-sym.’ in Table6.3, gives
results which may be directly compared with the linear flavour expansion calcula-
tion. As might be anticipated from an inspection of Fig. 6.6(a)–(c) which show fits
qualitatively consistent with straight lines, chiral loop corrections to the CSV terms
at this point are small and do not change the results within the quoted uncertainties,
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even given the small shift from the simulation SU(3) value to the physical symmetric
point.

Moreover, comparison of these results with the CSV moments evaluated at the
physical pseudoscalar masses gives an indication of the size of any chiral correc-
tions which appear in moving away from the SU(3) point. Again, these correc-
tions are small in the spin-dependent case, while being more significant in the spin-
independent case. In contrast to the results of the linear flavour expansion, the chiral
perturbation theory results are based on fits to all lattice data simultaneously (for each
moment), and thus include the proper correlations between quark moments in each
of the baryons. As a consequence, even with more fit parameters, the uncertainties
are comparable to the simple linear fits.

The origin of the chiral loop contributions to the CSV terms can be seen clearly
from the form of Eq. (6.50) (and the analogous Eqs. (F.5), (F.7a) and (F.7b) in Appen-
dix F.2). One contribution to the δ(�)u moments is illustrated diagrammatically in
Fig. 6.7. The kaon loop diagrams shown, and the analogous diagrams for the δ(�)d
moments, give contributions to the CSV terms proportional to

[
J̃
(
m2

K 0

) − J̃
(
m2

K±
)]
,

which is non-vanishing when m2
K 0 �= m2

K± . The corresponding wavefunction renor-
malisation terms, as well as tadpole and decuplet kaon-loop diagrams, also contribute
to the CSV terms proportional to

[
J̃
(
m2

K 0

) − J̃
(
m2

K±
)]
. In the spin-independent case,

this kaon mass difference effect yields the only chiral loop corrections to the CSV
terms. For the spin-dependent moments, however, additional terms proportional to[
J̃
(
m2

π0

) − J̃
(
m2

η

)]
also contribute. Cancellation between the octet loop terms and

wavefunction renormalisation contributions ensures that these terms vanish in the
spin-independent case.

The chiral loops also account for the corrections in moving from the ‘SU(3)
point’ to the physical point. For example, as one moves along the line of constant
singlet quark mass ((mu + md + ms) = constant) from the SU(3)-symmetric point
to the physical point, the difference

[
J̃
(
m2

K 0

) − J̃
(
m2

K±
)]
decreases in magnitude by

approximately 30%.

u/d

Λ, Σ0 Λ, Σ0

K+/0

p/n p/n

u/d

Σ+/− Σ+/−

K0/+

p/n p/n

Fig. 6.7 Illustration of some of the octet loop terms contributing to δ�um = 〈xm〉p�u − 〈xm〉n�d or
δum = 〈xm〉pu − 〈xm〉nd . These contributions are non-vanishing when the loop pseudoscalar masses
are different, i.e., when m2

K 0 �= m2
K±
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6.6 Summary and Discussion

We have used the chiral perturbation theory formalism to extrapolate QCDSF-
UKQCD collaboration lattice data for the first several Mellin moments of quark
distribution functions to the physical pseudoscalar meson masses. By performing
a consistent analysis including the entire outer-ring baryon octet, we have clearly
shown that the experimentally-measured suppression of the fraction of the proton
spin carried by its quarks (relative to the predictions from a naive or relativistic quark
model) is not a universal property across the baryon octet, but rather is structure-
dependent. This conclusion is supported by a calculation within a relativistic quark
model which includes gluon exchange currents and the meson cloud required by
chiral symmetry.

Furthermore, our study allows the CSV parton distribution moments to be eval-
uated at the physical pseudoscalar masses. Comparing our results with those of a
previous analysis based on a linear flavour expansion about the SU(3)-symmetric
point [29, 30], we find that both the chiral corrections at the SU(3) point, as well as
the shifts resulting from the extrapolation to the physical pseudoscalar masses, are
small. The latter corrections, however, are more significant for the spin-independent
than spin-dependent moments.

At the physical point, our analysis gives the spin-dependent CSV terms to be

δ�u0+ = −0.0061(13), δ�d0+ = −0.0018(6), (6.52a)

δ�u1− = −0.0007(2), δ�d1− = −0.0002(1). (6.52b)

As a result, one would expect CSV corrections to the Bjorken sum rule [74, 75] to
appear at the half-percent level.Measuring these correctionswould require significant
improvement over the current best determination of the sum rule to 8% precision
at Q2 = 3 GeV2 from a recent COMPASS collaboration experiment [76]. For the
spin-independent moments, this analysis gives

δu1+ = −0.0023(7), δd1+ = 0.0017(4), (6.53)

in good agreementwith previous phenomenological estimates ofCSVbothwithin the
MIT bagmodel [21, 24] and using theMRST analysis [20]. These results support the
conclusion [19, 24, 77] that partonicCSVeffectsmay reduce the3-sigmadiscrepancy
with the Standard Model reported by the NuTeV collaboration [31] by up to 30%.
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Chapter 7
Electromagnetic Form Factors

More than a decade before the partonic substructure of the proton was revealed
through DIS (see Chap. 6), elastic electron-proton scattering experiments at Stan-
ford University High Energy Physics Laboratory [1] were used to probe the spatial
distribution of the charge and magnetisation density in the nucleon. These properties
were encoded in so-called electromagnetic form factors [2], expressed as functions
of the probing momentum scale, Q2. The first measurements of proton form factors
were reported in 1955 [3], followed by the first measurement of the neutron mag-
netic form factor in 1958 [4]. Half a century later, the precise determination of these
quantities, and their interpretation within the framework of QCD, remains a defining
challenge for hadronic physics research [5].

In particular, with ever-improving experimental measurements of the nucleon
form factors revealing slight deviations from the phenomenological dipole form
[6–9], it is of renewed importance to calculate precise QCD benchmarks for these
functions. As the only first-principles approach which can quantitatively probe the
nonperturbative domain of QCD, lattice simulation [10–24] can not only set these
benchmarks, but it can give theoretical predictions of the hyperon form factors [18,
21–25] which are extremely challenging to measure and as a result are poorly deter-
mined, if at all.

Importantly, lattice studies also provide an interpretation of the experimental
results for the baryon electromagnetic form factors in the context of QCD. For
example, the simulations give general insight into the environmental sensitivity of
the distribution of quarks inside a hadron [18, 25] by discriminating between dif-
ferent quark-flavour contributions to the form factors. The lattice method can also
reveal the dependence of these quantities on quark mass [26–28] and allows a sepa-
ration of quark-line–connected and disconnected terms, providing both a great deal
of physical insight and valuable information for model-building [29].

In this chapter we present two sets of new dynamical 2 + 1–flavour lattice QCD
simulation results for the electric and magnetic form factors of the outer-ring octet
baryons, at a range of discrete Q2-values up to 1.3GeV2. To interpret these simula-
tions we develop a novel chiral extrapolation formalism—applied at each fixed value
of Q2—which is based on the principles of effective field theory. For the hyperons
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in particular, which have so far received limited attention in the literature [18, 21–
25], our results represent the state-of-the-art in such simulations. The hyperon form
factors are of significant interest both in their own right and because they provide
valuable insight into the environmental sensitivity of the distribution of quarks inside
a hadron. For example, one may learn how the distribution of u quarks in the proton
differs from that in the �+, an effect caused by the mass difference of the spectator
d and s quarks.

The last sections of this chapter are devoted to an exploration of our core themes,
strangeness and CSV in the nucleon, in the context of the electromagnetic form fac-
tors. By combining our lattice simulation results with experimental input, we deduce
values for the strange electromagnetic form factors of the protonwhich are consistent
with available direct measurements of these quantities but span a far larger range of
values of Q2 [30–33]. Our calculation of the strange magnetic moment, in particular,
is an order of magnitude more precise than the closest experimental result. The dom-
inant uncertainty in the experimental numbers for the strange proton form factors
arises from the assumption of good charge symmetry which informs their extraction.
By applying the methods for calculating CSV quantities which were developed in
previous chapters, we present the first determination of CSV in the electromagnetic
form factors of the nucleon based on lattice QCD. Our result, an order of magni-
tude smaller than model predictions, opens the door for more precise experimental
measurements of the strange proton form factors using existing methods.

7.1 Dirac, Pauli and Sachs Form Factors

The electromagnetic form factors are formally defined in terms of the matrix element
of the electromagnetic current density operator, jμ, between baryon states. The stan-
dard decomposition of this matrix element into distinct Dirac structures, restricted by
the requirement of covariance under the improper Lorentz group, charge conserva-
tion, and symmetry under spatial reflections, yields the Dirac and Pauli form factors
F1

(
Q2

)
and F2

(
Q2

)
[34]:

〈
B

(
p′, s ′) ∣∣ jμ(q)

∣∣ B (p, s)
〉 = u

(
p′, s ′)

[
γμF

B
1

(
Q2) + iσμνqν

2MB
FB
2

(
Q2)

]
u (p, s) .

(7.1)
Here u(p, s) is a Dirac spinor with momentum p and spin polarisation s, q = p′ − p
is the momentum transferred to the baryon, Q2 = −q2, and MB is the mass of the
baryon B. For a classical point particle, both form factors are independent of Q2;
deviations from this expectation thus give insight into the extended nature of the
baryon as seen by an electromagnetic probe.

Throughout this chapter, we use an alternative standard basis for the form factors,
namely linear combinations of F1 and F2 named the electric and magnetic Sachs
form factors:
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GB
E

(
Q2

) = FB
1

(
Q2

) − Q2

4M2
B

F B
2

(
Q2

)
, (7.2)

GB
M

(
Q2

) = FB
1

(
Q2

) + FB
2

(
Q2

)
. (7.3)

This choice is convenient for the interpretation of electron scattering experiments
because the (unpolarised) cross section may be expressed as a linear combination
of the squares of GE and GM , with no interference term. The Sachs form factors
also have simple physical interpretations: in the Breit frame, where the scattered
electron transfers momentum but no energy, and in the non-relativistic limit, the
three-dimensional Fourier transformofGB

E

(
Q2

)
describes the electric charge density

distributionwithin the baryon B, while that ofGB
M

(
Q2

)
encodes themagnetic current

density distribution. Electric and magnetic mean-square radii are defined based on
this straightforward interpretation:

〈r2〉BE/M = − 6

GB
E/M(0)

d

dQ2
GB

E/M

(
Q2

) ∣∣∣∣
Q2=0

. (7.4)

At zero momentum transfer, the electric form factor GB
E (0) simply gives the charge

of baryon B. Moreover, GB
M(0) = (

GB
E (0) + κB

) = μB defines the baryon mag-
netic moment, where κB = FB

2 (0) is the anomalous magnetic moment. Should
GE/M(0) = 0, this normalising factor is omitted from Eq. (7.4).

7.2 Lattice QCD Simulation

In this sectionwe describe our lattice setup and summarise the standardmethods used
to calculate the octet baryon electromagnetic form factors. Because of the limitations
of computation time, the simulations presented here are performed not only at larger-
than-physical pseudoscalar masses, but omit operator self-contractions (quark-line–
disconnected diagrams)which require the notoriously noisy and expensive ‘all-to-all’
quark propagators to be calculated.

In later sections we develop and apply a formalism based on connected chiral
perturbation theory [35–38] to correct for finite-volume effects and to extrapolate
each baryon form factor to the physical pseudoscalar masses. While the omission
of disconnected terms restricts the explicit calculation of full-QCD results from our
simulations to quantities for which the omitted contributions vanish (e.g., isovec-
tor observables, up to CSV effects), the comparison of experimental numbers with
the chirally-extrapolated lattice results for connected-only observables gives insight
into the significance of disconnected quark-loop contributions at the physical point.
This is the method by which we access the strange electromagnetic form factors
(Sect. 7.7); the technique is complementary to direct lattice studies of disconnected
terms [30–33].
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7.2.1 Simulation Parameters

We use gauge field configurations with 2 + 1 flavours of nonperturbatively O(a)-
improved Wilson fermions. The clover action consists of the tree-level Symanzik
improved gluon action (described in Sect. 2.2.1) together with a mild ‘stout’ smeared
fermion action [39]. We generate two sets of simulations, on ensembles with lattice
volumes L3 × T = 323 × 64 and 483 × 96, with lattice scales a = 0.074(2) fm and
0.062(2) fm (set using various singlet quantities [39–41]), respectively. Details are
given in Table7.1.

The data set generated on each ensemble consists of the individual (quark-
line–connected) quark contributions to the electric and magnetic form factors of
the outer-ring octet baryons: Gp,u

E/M , G
p,d
E/M , G

�,u
E/M , G

�,s
E/M , G

�,s
E/M , and G�,u

E/M , at six
(simulation set I) or seven (set II) discrete values of the momentum transfer. These
are the lowest six or seven momentum-transfers accessible on our particular lattices,
where the simulations are performed with zero sink momentum. The three-momenta
�q2 are given by

�q2 = (
n2x + n2y + n2z

) ×
(
2π

La

)2

, (7.5)

where nx,y,z are integers, L is the (dimensionless) spatial extent of the lattice
(so −L/2 < nx,y,z ≤ L/2), and a is the lattice spacing. The values of the four-
momentum transfer q2 vary with baryon mass MB by the dispersion relation

q2 =
(√

M2
B + �q2 − MB

)2

− �q2, (7.6)

Table 7.1 Details of the lattice simulation parameters. Simulations 1–6 constitute data set I, with
β = 5.5 corresponding to a = 0.074(2) fm and L3 × T = 323 × 64. Simulations 7–9 constitute set
II, with L3 × T = 483 × 96 and β = 5.8 corresponding to a = 0.062(2) fm. Simulation 10 stands
alone and has the same lattice scale as set I (corresponding to β = 5.5), but a larger lattice volume:
L3 × T = 483 × 96. The parameter κ0 denotes the value of κl = κs at the SU(3)-symmetric point

β κ0 κl κs mπ (MeV) mK (MeV) mπL

1 5.5 0.120900 0.120900 0.120900 465 465 5.6

2 0.121040 0.120620 360 505 4.3

3 0.121095 0.120512 310 520 3.7

4 5.5 0.120920 0.120920 0.120920 440 440 5.3

5 5.5 0.120950 0.120950 0.120950 400 400 4.8

6 0.121040 0.120770 330 435 4.0

7 5.8 0.122810 0.122810 0.122810 305 405 6.1

8 0.122880 0.122670 340 430 5.1

9 0.122940 0.122551 265 450 4.1

10 5.5 0.120900 0.121166 0.120371 220 540 4.0

http://dx.doi.org/10.1007/978-3-319-31438-9_2
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since the sink momentum is held fixed at 0. The values of q2 for our simulations are
shown graphically in Fig. 7.1.

A particular feature of the gauge configurations used here is that the primary simu-
lation trajectory in quark-mass space, illustrated in Fig. 7.2, follows a line of constant
singlet mass: mq = (mu + md + ms)/3 = (2ml + ms)/3. This is achieved by first

Fig. 7.1 Distribution of four-momenta Q2 = −q2 for lattice simulation sets I (blue), II (green),
and simulation 10 (purple) (see Table7.1). The values of Q2 corresponding to each fixed three-
momentum vary slightly because of the different baryon masses feeding into the dispersion relation
(Eq. (7.6))

Fig. 7.2 Locations of the lattice ensembles in the ml–ms plane. Blue circles and green crosses
correspond to simulation sets I and II, respectively, while the purple square shows the location
of simulation 10 (see Table7.1). The red star denotes the physical point and the dashes indicate
the flavour-symmetric line where ml = ms . Our primary simulation trajectory, illustrated by the
dotted line, corresponds to the line of constant singlet quark mass, (2m2

K + m2
π), at κ0 = 0.120900

(simulations 1–3 in Table7.1). The solid red line indicates the physical value of the singlet mass
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finding the SU(3)-flavour–symmetric point where flavour-singlet quantities take their
physical values, then varying the individual quark masses about that point [39, 41]. It
is clear from Fig. 7.2 that this primary trajectory at κ0 = 0.120900 (where the para-
meter κ0 denotes the value of κl = κs at the SU(3)-symmetric point) does not quite
match the physical singlet-mass line [41]. Extrapolation to the physical point thus
requires a shift not only along the simulation trajectory, but in a direction perpen-
dicular to it. To constrain the quark-mass dependence in this perpendicular direction
we include additional lattice simulations at several singlet masses (i.e., values of κ0).
These are listed as simulations 4–6 in Table7.1 and are shown in Fig. 7.2.

In addition to our two primary simulation sets, we have a single ensemble at the
same lattice scale as simulation set I (β = 5.5 corresponding to a = 0.072(2) fm) but
on a larger lattice volume, L3 × T = 483 × 96, and at a pionmass of 220MeV, about
100MeV lighter than the lightest ensemble of data set I. Comparison of chirally-
extrapolated set I (smaller volume) results with this additional point provides a test
that both finite-volume effects and the extrapolation are under control. Raw lattice
results for all simulations are tabulated in Appendix G.

7.2.2 Lattice Method

On the lattice, the Dirac and Pauli form factors F1(Q2) and F2(Q2) are obtained from
the standard decomposition of the matrix element of the electromagnetic current jμ
between baryon states (see Eq. (7.1)). This quantity, 〈B(p′, s ′)| jμ(q)|B(p, s)〉, is
calculated in the usual way from the ratio of three-point and two-point correlation
functions:

R(t, τ ; �p′, �p ) = C3pt(t, τ ; �p′, �p )

C2pt(t, �p′)

[
C2pt(τ , �p′)C2pt(τ , �p′)C2pt(t − τ , �p )

C2pt(τ , �p )C2pt(t, �p )C2pt(t − τ , �p′)

] 1
2

,

where t denotes the Euclidean-time position of the sink and τ the operator insertion
time. In order to ensure that excited-state contributions to the correlation functions
are suppressed, we employ quark smearing at the source and sink and use a generous
source-sink separation of 1–1.15fm [20].

The two-point and three-point functions are given, as in Ref. [20], by

C2pt(τ , �p ) = Tr

[
1

2
(1 + γ4)〈B(τ , �p )B(0, �p )〉

]
, (7.7a)

C3pt(t, τ , �p′, �p,O) = Tr
[
�〈B(t, �p′)O(�q, τ )B(0, �p )〉] , (7.7b)

where ‘Tr’ denotes a trace in spinor space and the local vector current O is

Oμ(�q, τ ) =
∑

�x
ei �q·�x q(�x, τ ) γμ q(�x, τ ). (7.8)



7.2 Lattice QCD Simulation 105

Hereq(�x, τ ) is a quark field and �q is the three-momentum transfer. TheDirac operator
� represents a polarisation projection. For example, we use

�unpol. = 1

2
(1 + γ4), (7.9a)

�3 = 1

2
(1 + γ4)iγ5γ3, (7.9b)

for an unpolarised baryon or one polarised in the z-direction, respectively. As the
current O is not strictly conserved at finite lattice spacings, we enforce charge con-
servation by using 2/F p,u

1 (0) as a multiplicative renormalisation on each ensemble
(as explained later, the quark-level form factors are defined for quarks of unit charge).
The values of these constants are approximately 0.86 and 0.88 for simulation ensem-
bles with β = 5.5 and β = 5.8, respectively. Disconnected quark-line contributions
to the three-point function of Eq. (7.7b) are neglected in these simulations. The effect
of this omission will be discussed further in the following sections. As detailed in
the previous section, simulations are performed with zero sink momentum and six
or seven different values of the momentum transfer �q = �p′ − �p for each ensemble,
corresponding to Q2 values up to approximately 1.3GeV2.

7.2.3 Lattice Results for F1 and F2

Although the primary goal of this work is to determine the values of the electric and
magnetic Sachs form factors at the physical quark masses, with details of the chiral
and infinite-volume extrapolation presented in the following sections, we display
here a sample typical of the raw lattice simulation results for F1 and F2. Numerical
results are tabulated in their entirety inAppendixG.We also give the results of a naive
extraction of the Dirac and Pauli mean-squared radii and the anomalous magnetic
moment, based on dipole-like fit forms.

The raw lattice simulation results for theDirac andPauli form factors at the lightest
simulation pion mass from data set I, (mπ,mK ) = (310, 520)MeV, are shown in
Figs. 7.3 and 7.4. The figures have been organised as doubly and singly-represented
quark contributions. This grouping shows most clearly the environmental sensitivity
of the quark contributions to the form factors; for example, any difference between
the u-quark contributions to the proton and sigma baryon factors must arise from the
different masses of the spectator (d and s) quarks. For F1 this sensitivity increases
with Q2. The apparent sensitivity of F2 is largely the result of the baryon-dependence
of the natural magneton units. The fits shown use the 2-parameter ansätze:

F1(Q
2) = F1(0)

1 + c12Q2 + c14Q4
, (7.10a)

F2(Q
2) = F2(0)

(1 + c22Q2)2
, (7.10b)
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(a)

(b)

Fig. 7.3 Quark contributions to the Dirac form factor F1 of the octet baryons at the lightest pion
mass from simulation set I, (mπ,mK ) = (310, 520)MeV. The charges of the relevant quarks have
been set to one. The lines show dipole-like fits using Eq. (7.10a), (a) Doubly-represented quark
contributions, (b) Singly-represented quark contributions
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(a)

(b)

Fig. 7.4 Quark contributions to the Pauli form factor F2 of the octet baryons at the lightest pionmass
from simulation set I, (mπ,mK ) = (310, 520)MeV. The charges of the relevant quarks have been
set to one. The lines show dipole fits using Eq. (7.10b), (a) Doubly-represented quark contributions,
(b) Singly-represented quark contributions
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where the ci j and the anomalousmagneticmoment FB,q
2 (0) = κB,q arefit parameters,

while F1(0) is fixed by charge conservation. As we consider quarks of unit charge,
F1(0) = 2, 1 for the doubly and singly-represented quarks, respectively. Clearly, the
functional forms chosen provide excellent fits to the lattice simulation results; the
particular pion-kaon mass point selected for display is typical of the entire data set.

Mean-squared radii are extracted from the Q2-derivatives of the fit ansätze by

〈r2〉i = − 6

Fi (0)

d

dQ2
Fi (Q

2)

∣∣∣∣
Q2=0

. (7.11)

The isovector radii for the nucleon are shown in Fig. 7.5. These results are in line
with those based on other recent 2 + 1 and 2 + 1 + 1–flavour lattice simulations [19,
42–45].We note that the results displayed from other collaborations were determined
from simulations performed at a range of values of mK . Moreover, although most
were extracted using dipole or dipole-like forms to parameterise the Q2-dependence,
some include a systematic uncertainty arising from that choice while others do not.
This partially accounts for the large variation in the quoted errors. Tables of results
for all 〈r2〉B,q

1,2 and κB,q extracted from our fits are given in Appendix G.

7.3 Connected Chiral Perturbation Theory

The lattice simulations considered here, although fully dynamical, include only
contributions from ‘connected’ insertions of the current operator. For this reason
we extrapolate the simulation results from unphysically large pseudoscalar meson
masses to the physical point using a formalism based on ‘connected chiral perturba-
tion theory’ [35–37]. This is a special case of partially-quenched chiral perturbation
theory [37, 46–52].

Partially-quenched lattice simulations traditionally employ different values for the
sea and valence quark masses. As a result the distinguishing feature of the partially-
quenched perturbation theory formalism, developed to extrapolate such simulations,
is that it allows one to treat the sea and valence quarks separately. This is precisely
what is needed to extrapolate connected lattice results; the ‘quenching’ effect is that
the charges of the sea quarks are set to zero, removing the disconnected diagrams
which are omitted from the lattice simulations. Here we use the heavy-baryon chiral
perturbation theory expansion pioneered by Jenkins andManohar [53–57] which has
been applied throughout this body of work. This section summarises our adaptation
of this formalism and presents the resulting chiral extrapolation expressions for the
Sachs form factors of the octet baryons.
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(a)

(b)

Fig. 7.5 Dirac and Pauli radii for the nucleon from recent 2 + 1 and 2 + 1 + 1–flavour lattice
simulations [19, 42–45], compared with the results of this work. Empty circles, diamonds and
squaresdenote our simulation sets I, II, and the stand-alone ensemble 10 (seeTable7.1), respectively.
Note that the results displayed were generated from simulations performed using a range of values
of mK , (a) Isovector Dirac radius of the nucleon, (b) Isovector Pauli radius of the nucleon
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7.3.1 Partially-Quenched Chiral Perturbation Theory

Details of partially-quenched chiral perturbation theory may be found in Refs. [37,
46–52]. Here we outline the special case of this formalism termed connected chiral
perturbation theory [35].

Partially-quenched QCD includes nine quarks, which appear in the fundamental
representation of the graded symmetry group SU(6|3):

ψT =
(
u, d, s, j, l, r, ũ, d̃, s̃

)
. (7.12)

In addition to the three usual light quarks (u, d, s), there are three light fermionic

sea quarks ( j, l, r) and three spin- 12 bosonic ghost quarks
(
ũ, d̃, s̃

)
. When the ghost

quarks are made pairwise mass and charge-degenerate with (u, d, s), their bosonic
statistics ensure that closed q and q̃ quark-loop contributions cancel and hence such
loops do not contribute to observables. Thus, if only (u, d, s) are used in hadronic
interpolating fields, these quarks truly represent valence quarks, while ( j, l, r) appear
only in disconnected loops and are therefore interpreted as sea quarks.

For our application, the sea and ghost quarks are mass-degenerate with their
corresponding valence partners. The quark-mass matrix is thus

Mψ = diag (mu,md ,ms,mu,md ,ms,mu,md ,ms) . (7.13)

As we wish to exclude all diagrams with closed quark-loops from contributing to
hadronic observables, we set the sea quark charges to zero. As the ghost quarks(
ũ, d̃, s̃

)
must have the same charges, pairwise, as (u, d, s), the general form of the

quark-charge matrix is

Q = diag (qu, qd , qs, 0, 0, 0, qu, qd , qs) . (7.14)

Individual quark contributions may be extracted by setting all but one charge to zero,
for example by taking qu → 1, qd → 0, qs → 0 to isolate the u-quark contribution.
Of course, reinstating the sea quark charges1 yields a formalism which reproduces
full chiral perturbation theory exactly [49].

The dynamics of the 80 pseudo-Goldstone mesons (both bosonic and fermionic)
which emerge from the spontaneous breaking of the symmetry group:

SU(6|3)L ⊗ SU(6|3)R ⊗ U(1)V → SU(6|3)V ⊗ U(1)V (7.15)

are described at lowest order by the Lagrangian

L = f 2π
4

Str
(
Dμ�†Dμ�

) + λ Str Mψ

(
� + �†

)
, (7.16)

1This can be achieved by setting Q → diag (qu , qd , qs , qu , qd , qs , qu , qd , qs).
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where

� =
(

φ χ†

χ φ̃

)
, � = ξ2 = exp

(
2i�

fπ

)
. (7.17)

This is entirely analogous to the standard leading-order Lagrangian which is given in
Eq. (3.14). Here φ and φ̃ are matrices of pseudo-Goldstone bosons with the quantum
numbers of qq and q̃q̃ pairs respectively, and χ contains pseudo-Goldstone fermions
with the quantum numbers of q̃ q pairs. With our conventions, � is normalised such
that �12 = π+/

√
2. In this way, the upper 3 × 3 block of the matrix φ matches pre-

cisely the usual octet of pseudoscalar mesons. The standard naming of the mesons
formedwith sea and ghost quarks ismade explicit in Ref. [50] (where the conventions
for fπ and � differ from ours by a factor of

√
2). The symbol Str denotes the super-

trace, and the gauge-covariant derivative is given by Dμ� = ∂μ� + i.e.Aμ [Q, �].
While the complete partially-quenched theory includes baryons composed of all

types (and all mixtures of types) of quarks, for our application we need only pre-
dominantly valence states with at most one ghost or sea quark. These are constructed
explicitly in Ref. [50]. In general terms, the baryon field Bi jk is constructed using an
interpolating field

Bγ
i jk ∼

(
ψα,a
i ψ

β,b
j ψ

γ,c
k − ψα,a

i ψ
γ,c
j ψ

β,b
k

)
εabc(Cγ5)αβ . (7.18)

The usual spin- 12 baryon octet is embedded in Bi jk , for i, j, k restricted to 1–3, as

Bi jk = 1√
6

(
εi jlBlk + εiklBl j

)
, (7.19)

where B is the standard matrix of baryon fields introduced in Sect. 3.3.2 (see
Eq. (3.25)). Similarly, the spin- 32 decuplet baryons may be constructed as

T α,μ
i jk ∼

(
ψα,a
i ψ

β,b
j ψ

γ,c
k + ψ

β,b
i ψ

γ,c
j ψα,a

k + ψ
γ,c
i ψα,a

j ψ
β,b
k

)
εabc(Cγμ)β,γ,

where, for i, j, k =1–3, Ti jk is simply the usual totally-symmetric tensor containing
the decuplet of valence baryon resonances (see Eq. (3.32)).

The covariant derivative takes the same form for both the octet and decuplet
baryons:

(DμB)i jk = ∂μBi jk + (V μ)li Bl jk

+ (−1)ηi (η j+ηm )(V μ) jm Bimk

+ (−1)(ηi+η j )(ηk+ηn)(V μ)kn Bi jn. (7.20)

Here the grading factor ηk tracks the statistics of the bosonic ghost quark sector:

http://dx.doi.org/10.1007/978-3-319-31438-9_3
http://dx.doi.org/10.1007/978-3-319-31438-9_3
http://dx.doi.org/10.1007/978-3-319-31438-9_3
http://dx.doi.org/10.1007/978-3-319-31438-9_3
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ηk =
{
1 for k = 1–6

0 for k = 7–9,
(7.21)

and the vector field V μ is defined in analogy with that in QCD:

V μ = 1

2

(
ξ∂μξ† + ξ†∂μξ

)
. (7.22)

The coupling of the 80 pseudo-Goldstone mesons to the baryons is described by

L = 2α
(
BSμBAμ

) + 2β
(
BSμAμB

) + 2γ
(
BSμB

)
Str(Aμ) + 2H

(
T

ν
SμAμTν

)

+
√
3

2
C

[(
T

ν
AνB

)
+ (

BAνT
ν
)] + 2γ

′ (
T

ν
SμTν

)
Str(Aμ), (7.23)

where, again in analogy with QCD,

Aμ = i

2

(
ξ∂μξ† − ξ†∂μξ

)
. (7.24)

The brackets in Eq. (7.23) are a shorthand for field bilinear invariants, originally
employed in Ref. [58], which are summarised in Appendix B, and Sμ is the covari-
ant spin-vector. By matching to the usual QCD Lagrangian (Eq. (3.29)) for i, j, k
restricted to 1–3, we make the identifications

α = 2

3
D + 2F, β = −5

3
D + F, (7.25)

while C and H map directly to their QCD values.
The heavy-baryon and off-diagonal meson propagators are the same as those

which arise in the standard formalism; these are given in Eq. (3.40). For the mesons
occupying the diagonal of�, however, the two-point functions deviate from the usual
simple, single-pole form. As these mesons are by definition both flavour and charge-
neutral, this subtlety can be avoided in the current context of the electromagnetic
form factors; we leave the details to Ref. [50].

7.3.2 Electromagnetic Form Factors of the Octet Baryons

In the heavy-baryon formalism, the electromagnetic Sachs form factors GE and GM

are defined by

〈
B(p′)| jμ|B(p)

〉 = u(p′)
[

vμG
B
E

(
Q2

) + iεμναβvαSβqν

MN
GB

M

(
Q2

)]
u(p), (7.26)

http://dx.doi.org/10.1007/978-3-319-31438-9_3
http://dx.doi.org/10.1007/978-3-319-31438-9_3


7.3 Connected Chiral Perturbation Theory 113

where, as before, q = p′ − p and Q2 = −q2. Here we take the magnetic form factor
to be expressed in units of physical nuclearmagnetons rather than the natural (baryon-
dependent) magnetons used in Eq. (7.1); this explains the presence of the nucleon
mass MN , rather than MB , in this expression.

We focus in particular on developing chiral extrapolation formulae for the Sachs
form factors at fixed, finite, values of Q2. As our lattice simulations include results
at values of Q2 up to approximately 1.3GeV2, it is not appropriate to our purposes to
expand perturbatively in this momentum scale.2 The following sections summarise
our approach.

Magnetic Sachs Form Factor
In the familiar formulation of chiral perturbation theory, the magnetic moments of
the octet baryons in the chiral limit are encoded in the coefficients of the ‘magnetic
Lagrangian density’ [57]:

LM = e

4MN
Fμνσ

μν
[
μα

(
BBQ

) + μβ

(
BQB

) +μγ

(
BB

)
Str(Q)

]
. (7.27)

By comparison with the standard QCD Lagrangian (Eq. (3.29)), we make the iden-
tifications

μα = 2

3
μD + 2μF , μβ = −5

3
μD + μF . (7.28)

The μγ term in Eq. (7.27) vanishes unless the quark charge matrix Q (Eq. (7.14))
is defined such that Str(Q) �= 0, for example when considering individual quark
contributions to the form factors (e.g., setting qu → 1, qd → 0, qs → 0 to obtain the
u-quark contribution). Terms describing the explicit symmetry-breaking at leading
order in the quark masses are generated by

LM
lin. = B e

2MN

[
cM1

(
BMψB

)
Str(Q) + cM2

(
BBMψ

)
Str(Q) + cM3

(
BQB

)
Str(Mψ)

+ cM4
(
BBQ

)
Str(Mψ) + cM5

(
BQMψB

) + cM6
(
BBQMψ

)

+ cM7
(
BB

)
Str(QMψ) + cM8

(
BB

)
Str(Q)Str(Mψ)

+ cM9 (−1)ηl (η j+ηm )
(
B
kji

(Mψ)li Q
m
j Blmk

)

+ cM10(−1)η jηm+1
(
B
kji

(Mψ)mi Ql
j Blmk

)

+ cM11(−1)ηl (η j+ηm )
(
B
kji

Ql
i (Mψ)mj Blmk

)

+ cM12(−1)η jηm+1
(
B
kji

Qm
i (Mψ)lj Blmk

)]
Fμνσμν , (7.29)

2For example, the proton electric form factor can be approximated by a dipole: Gp
E

(
Q2

) ≈
1/

(
1 + Q2

0.71

)2
. This form has a pole at Q2 = −0.71GeV2, which limits the radius of convergence

of any expansion to Q2 = 0.71GeV2.

http://dx.doi.org/10.1007/978-3-319-31438-9_3
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p p

k − q/2 k + q/2µ

q

p p

k − q/2 k + q/2µ

q

Fig. 7.6 Loop diagrams which contribute to GM at leading non-analytic order. Single, double,
dashed, andwavy lines represent octet baryons, decuplet baryons,mesons, and photons, respectively

where B = 4λ/ f 2π (see Eq. (7.16)). The one-loop diagrams displayed in Fig. 7.6 give
rise to the leading chiral non-analyticities of the quark-mass expansion.

For small values of the momentum transfer, the standard perturbative approach
would be to generate extensions of Eqs. (7.27) and (7.29), with additional derivatives,
to form a series expansion in Q2. In the present work we are interested in the form
factors over a much larger range of Q2 than can be explored perturbatively. For this
reason we consider independent chiral extrapolations at fixed values of Q2. To do
this, we take a model that maintains the SU(3) flavour structure of Eqs. (7.27) and
(7.29). The parameters μα,β,γ appearing in Eq. (7.27) are now interpreted as chiral-
limit form factors at fixed Q2; their numerical values may be different at each value
of Q2 considered [22, 59]. Similarly, the terms of Eq. (7.29) are associated with the
symmetry-breaking at fixed Q2. Given this interpretation, we can write down chiral
extrapolation formulae which have independent sets of free coefficients at each value
of Q2. A particular advantage of this approach is that there is no need to impose a
phenomenological constraint on the shape of the variation of the form factors with
Q2. Of course, a disadvantage is that the chiral extrapolation expressions which we
generate must be fit to the lattice simulation results at each value of the momentum
transfer independently.

The resulting expressions for the magnetic form factors as a function of quark
mass—at some fixed finite value of Q2—may be summarised as

GB,q
M (Q2) = αBq +

∑
q ′

αBq(q ′)Bmq ′

+ MN

16π3 f 2π

∑
φ

(
β
Bq(φ)

O I MO (mφ, Q
2) + β

Bq(φ)

D I MD (mφ, Q
2)

)
, (7.30)
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defined in units of physical nuclear magnetons μN . HereBmq denotes themass of the
quark q, identified with the meson masses via the appropriate Gell-Mann–Oakes–
Renner relation, e.g., Bml = m2

π/2. The physical mass of the nucleon is given by
MN and φ stands for any of the 80 pseudo-Goldstone mesons of our theory. The
contributions from Figs. 7.6(a), (b) may be expressed in terms of the integrals

I MO =
∫

d�k k2y u(�k + �q/2) u(�k − �q/2)

2ω2+ω2−
, (7.31a)

I MD =
∫

d�k k2y (ω− + ω+ + δ) u(�k + �q/2) u(�k − �q/2)

2(ω+ + δ)(ω− + δ)ω+ω−(ω+ + ω−)
, (7.31b)

where

ω± =
√

(�k ± �q/2)2 + m2, (7.32)

δ denotes the average octet-baryon–decuplet-baryon mass splitting, and u(�k) is the
ultraviolet regulator used in thefinite-range regularisation scheme (which is discussed
in detail in Sect. 3.5). Just as was done in Chap.6, we choose a dipole regulator,

u(k) =
(

�2

�2+k2

)2
, with a regulator mass � = 0.8 ± 0.1GeV. The dipole form is

suggested by a comparison of the nucleon’s axial and induced pseudoscalar form
factors [60] and the choice of� is informed by a lattice analysis of nucleon magnetic
moments [61]. Different regulator forms, for example monopole, Gaussian or sharp
cutoff, yield fit parameters (and extrapolated results) which are consistent within
the quoted uncertainties. The coefficients αBq , αBq(q ′), βBq(φ)

O , and β
Bq(φ)

D are given
explicitly in terms of the chiral-limit form factors cMi and μα/β/γ in Appendix D.

Electric Sachs Form Factor
The leading-order contribution to the electric form factor is generated by the follow-
ing term in the Lagrangian:

LE = −evμ
(
DνFμν

) [
bα

(
BBQ

) + bβ

(
BQB

) +bγ

(
BB

)
Str(Q)

]
. (7.33)

In analogy with the μγ term in Eq. (7.27) for the magnetic form factor, the bγ term
is relevant only when considering individual quark contributions to the electric form
factor. In line with the notation used for the magnetic form factor (Eq. (7.28)), we
define

bα = 2

3
bD + 2bF , bβ = −5

3
bD + bF . (7.34)

Terms linear in the quark masses are generated by a Lagrangian piece, LE
lin., which

is identical to LM
lin. (Eq. (7.29)) under the replacements

e

4MN
Fμνσ

μν → vμ
(
DνFμν

)
, cMi → cEi . (7.35)

http://dx.doi.org/10.1007/978-3-319-31438-9_3
http://dx.doi.org/10.1007/978-3-319-31438-9_6
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p p

µ

q

k − q/2 k + q/2

Fig. 7.7 Tadpole loop diagram which contributes to GE at leading order. Single, dashed, and wavy
lines represent octet baryons, mesons, and photons, respectively

The loop diagrams which contribute to GE at leading order are those depicted in
Fig. 7.6, as well as the tadpole diagram shown in Fig. 7.7 (which does not contribute
to the magnetic form factors). Just as was done in the magnetic case, the coefficients
in Eq. (7.33) are taken to be chiral-limit form factors at some fixed value of Q2, with
a similar interpretation for the cEi in LE

lin. (see Eqs. (7.29) and (7.35)).
The leading-order loop contributions to GE (Figs. 7.6 and 7.7) may be written in

terms of the integrals

I EO =
∫

d�k (�k2 − �q2/4) u(�k + �q/2) u(�k − �q/2)

ω+ω−(ω+ + ω−)
, (7.36a)

I ED =
∫

d�k (�k2 − �q2/4) u(�k + �q/2) u(�k − �q/2)

(ω+ + δ)(ω− + δ)(ω+ + ω−)
, (7.36b)

I ET =
∫

d�k u(�k + �q/2) u(�k − �q/2)

ω+ + ω−
, (7.36c)

where ω± is defined in Eq. (7.32). To prevent the baryon electric charges from being
renormalised by contributions from the loop integrals we make the replacement

I (m, �q) → Ĩ (m, �q) = I (m, �q) − I (m, 0) (7.37)

for each of the integrals above.
Finally, the formulae for the chiral extrapolation of the electric form factors at

some fixed, finite, value of Q2 may be summarised as
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GB,q
E (Q2) =GB,q

E (Q2 = 0) + Q2αBq + Q2
∑
q ′

αBq(q ′)Bmq ′

+ 1

16π3 f 2π

∑
φ

(
1

2
β
Bq(φ)

O Ĩ EO (mφ, Q
2) − β

Bq(φ)

D Ĩ ED (mφ, Q
2)

+β
Bq(φ)

T Ĩ ET (mφ, Q
2)

)
, (7.38)

where, again, Bmq is the mass of the quark q , identified with the meson masses
through the appropriateGell-Mann–Oakes–Renner relation. The termGB,q

E (Q2 = 0)
corresponds to the total charge of the quarks of flavour q in the baryon B. As these
expressions apply to quarks of unit charge, GB,q

E (Q2 = 0) = 2, 1 for the doubly and
singly-represented quarks, respectively.

The coefficientsαBq ,αBq(q ′),βBq(φ)

O , andβ
Bq(φ)

D in Eq. (7.38) take the same form in
terms of the undetermined chiral coefficients (e.g., cE/M

i ) as those named identically
in the case of the magnetic form factor (under the replacements μF → bF and μD →
bD). These, as well as β

Bq(φ)

T , are given explicitly in Appendix D. We point out that,
while these parameters may have the same structure for the electric and magnetic
form factors, the values of the undetermined chiral coefficients are different in each
case.

7.4 Fits to Lattice Simulation Results

Here we describe the application of the chiral extrapolation formalism developed in
the previous section to the lattice simulation results presented in Sect. 7.2. Before
fitting the chiral expressions (Eqs. (7.30) and (7.38)) to the lattice results, we perform
several corrections to the raw lattice data. First, we shift the raw numbers to correct
for small finite-volume effects, estimated using the leading one-loop results of the
chiral EFT (see Sect. 7.4.1). As the chiral extrapolation functions summarised in
Sect. 7.3.2 are defined for fixed finite values of Q2, we also analyse the lattice results
in fixed-Q2 bins; to facilitate this we interpolate the form factors to common points
in Q2.

For the magnetic form factors the entire analysis is performed in units of physical
nuclear magnetons. This choice simplifies the extrapolation procedure as there is no
need to consider a quark-mass dependent magneton, although an extrapolation using
such units is possible and equivalent. The conversion from lattice natural magnetons
to physical nuclear magnetons is performed on the simulation results at the bootstrap
level.
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7.4.1 Finite-Volume Corrections

As described in detail in Sect. 3.7, finite-volume corrections are performed using the
difference between the infinite-volume integrals and corresponding finite-volume
sums for the loop integrals which appear in the chiral expressions (Eqs. (7.30) and
(7.38)). Because momentum is quantised on the lattice, the finite-volume sums must
be calculated with the integrands in Eqs. (7.31) and (7.36) shifted from being sym-
metric (meson lines with momenta k − q/2 and k + q/2, as illustrated in Fig.7.6) to
what is more natural for the lattice, namely meson lines with momenta k and k + q.

The finite-volume corrections are small: for our smallest volume (data set I) they
contribute approximately 2–4% of the nucleon magnetic form factor at the lowest
value of Q2 (0.26GeV2) and 0.03–0.06% at the largest (1.35GeV2), where the varia-
tion in each range is a result of the different pion and kaonmass points considered. For
the electric form factor the corrections are in the range 1–2% at all values of Q2. An
artefact in this estimate is that the naive enforcement of charge-nonrenormalisation
by Eq. (7.37) may lead to an overestimate of the corrections to the electric form factor
at large values of the momentum transfer Q2. While the higher-order diagrams (not
included here) which would naturally prevent the renormalisation of charge would
contribute progressively less at larger values of Q2, the constant subtraction used here
does not have that feature. As the finite-volume corrections are nevertheless small—
neglecting them yields results for all relevant observables which are consistent within
uncertainties with those presented here—this is not a significant effect.

7.4.2 Binning in Q2

As the chiral extrapolation expressions used here (Eqs. (7.30) and (7.38)) are appli-
cable for fixed finite values of the four-momentum transfer, we bin the lattice
simulation results in Q2 before performing independent fits to the data in each bin.
The bin groupings are illustrated for data set I in Fig. 7.8; the binning (and fitting)

Fig. 7.8 Four-momenta, Q2, corresponding to the lattice simulation results in data set I. Colours
indicate the Q2-bin groupings; each bin corresponds to a single value of the three-momentum
transfer in lattice units (Color figure online)

http://dx.doi.org/10.1007/978-3-319-31438-9_3
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procedure is performed separately for each data set. Each bin corresponds to a single
value of the three-momentum transfer in lattice units. The corresponding physical
values of Q2 vary slightly because of the different baryon masses feeding into the
dispersion relation (Eq. (7.6)). The largest variation is 1.29–1.37 GeV2 for the bin
with the highest value of Q2.

To account for the small variation in Q2 within each bin, all simulation results are
shifted to the average Q2-value of their respective bin. This shift is performed using
a dipole-like fit to the (finite-volume–corrected) simulation results. The functional
forms used for the magnetic and electric form factors are

Gfit
M(Q2) = μ

1 + dM1Q2 + dM2Q4
, (7.39a)

Gfit
E (Q2) = GE (Q2 = 0)

1 + dE1Q2 + dE2Q4
, (7.39b)

where μ and dE/M,i are free parameters, and GE (Q2 = 0) = 1, 2 for the singly and
doubly-represented quarks (of unit charge) respectively. These particular functional
forms are chosen as they provide good fits to the lattice simulation results; as illus-
trated later, standard dipole forms perform poorly. Several examples of the fits are
shown in Fig. 7.9.

After the fits have been performed, the raw lattice simulation results are shifted by
Gfit(Q2

average) − Gfit(Q2
simulation). As these shifts are small, particularly at low values

of Q2 where the fit functions have larger slopes, there is no dependence, within
uncertainties, on the functional form chosen for Gfit.

7.4.3 Fits

After the lattice simulation results have been finite-volume corrected and binned in
Q2 we perform an independent bootstrap-level fit, using Eqs. (7.30) and (7.38) for
GM and GE , respectively, to the variation withmπ for the results in each Q2-bin. An
advantage of this approach [22, 59] is that it allows the fit parameters, which are the
undetermined chiral coefficients, to vary with Q2 without the need to impose some
phenomenological expectation on the shape of their variation. The best values of the
fit parameters are tabulated in Appendix H.1. The quality of fit is good, with the
χ2/d.o.f. in the range 0.5–1.4 for each bin. An illustration of the fit quality for data
set I in representative bins, for both GM and GE , is given in Fig. 7.10. That figure
shows the ratio of the fit function to the lattice simulation result for each data point;
the 24 data points include 6 at each set of pseudoscalar masses wheremπ �= mK (i.e.,
Gp,u

M , Gp,d
M , G�,u

M , G�,s
M , G�,s

M , and G�,u
M ) and 2 at each SU(3)-symmetric point. We

recall that while each Q2-set is treated as independent (as are GE and GM ), the form
factors for the different octet baryons are fit simultaneously.
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(a)

(b)

Fig. 7.9 Generalised dipole fits (Eq. (7.39)) upon which the binning corrections are based. The
three fits shown in each figure correspond to the three different pseudoscalar mass points along
the primary simulation trajectory for simulation set I (red, green and blue points denote simulation
ensembles 1, 2, and 3 in Table7.1). Quarks have unit charge, (a) Up-quark contribution to the proton
magnetic form factor, (b) Up-quark contribution to the proton electric form factor
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(a)

(b)

(c)

Fig. 7.10 Illustration of the quality of fit for data set I in representative Q2-bins. Each point denotes
one of the lattice simulation results e.g., Gp,u

M , Gp,d
M …, at one of the sets of pseudoscalar masses.

For the electric form factor the comparison of these figures (b) and (c) shows the expected increase
in uncertainty as Q2 increases (i.e., as one moves further from Q2 = 0 where the value of GE is
fixed). Because of correlations between the lattice data points the χ2/d.o.f. of the fit cannot be read
trivially from these figures, (a)GM , Q2 ≈ 0 : 26GeV2, (b)GE , lowest Q2-bin: Q2 ≈ 0 : 26GeV2,
(c) GE , highest Q2-bin: Q2 ≈ 1 : 35GeV2
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Using these fits, the baryon Sachs form factors may be extrapolated to the physical
pseudoscalar masses at each bin value of Q2. For example, Fig. 7.11 shows results for
the u-quark contribution to the proton form factors, plotted along a trajectory which
holds the singlet pseudoscalar mass (m2

K + m2
π/2) fixed to its physical value. The

results display the expected qualitative behaviour for the magnetic form factor; as Q2

increases (moving down the figure), the extrapolation in m2
π decreases in curvature.

This implies that the magnetic radius of the proton increases in magnitude as we
approach the physical pion mass from above. Magnetic radii are discussed further in
Sect. 7.5.3.

We note that any uncertainty in the value of the lattice scale, a, affects both the
form factors themselves and the simulation values of Q2 in physical units. At low
Q2 the shift in the form factors, and at high Q2 the shift in Q2 itself, is not negligible
when varying a = 0.074(2) fm or a = 0.062(2) fm within the quoted uncertainties.
Nevertheless, repeating the analysis presented in the following sections for a values
at the extremities of the quoted ranges yields fits which are almost indistinguishable
from those presented for the central value—essentially the points are shifted a short
distance along lines interpolating the form factors in Q2—and give entirely consistent
results for each quantity, even when extrapolated to Q2 = 0 using some functional
form.

7.4.4 Test of Finite-Volume Effects

One limitation of the analysis presented in the previous sections is that it is difficult
to quantify finite-volume effects beyond the corrections we perform based on chi-
ral perturbation theory; all of the lattice simulations at a given value of the lattice
scale were performed on a single volume. Simulation set I was performed at β = 5.5
corresponding to a = 0.074(2) fm, on a L3 × T = 323 × 64 volume. In physical
units, this lattice has an extent of approximately 2.4fm in the spatial direction. Sim-
ulation set II was performed at β = 5.8 corresponding to a = 0.062(2) fm, on a
larger 483 × 96 volume; this lattice has a spatial extent of approximately 3.0fm in
physical units. While comparing the results of these two simulation sets is a valuable
consistency-check, any discrepancy between the two data sets cannot be conclusively
categorised as a lattice-scale or finite-volume effect.
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(a)

(b)

Fig. 7.11 Up-quark (connected) contribution to the electromagnetic form factors of the proton for
quarks with unit charge. Each line (top to bottom) shows the fit to data set I at a different (increasing)
value of Q2. The fits have been evaluated along the trajectory which holds the singlet pseudoscalar
mass (m2

K + m2
π/2) fixed to its physical value, (a) Up-quark contribution to the proton magnetic

form factor, (b) Up-quark contribution to the proton electric form factor
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To facilitate an explicit check of the volume-dependence of our results, we have
performed an additional simulation at the lattice scale of simulation set I, β = 5.5
corresponding to a = 0.074(2) fm, on a larger 483 × 96 (3.6fm) volume. This sim-
ulation is also performed at a lighter pion mass: mπ = 220MeV. Details of this
ensemble are given as simulation 10 in Table7.1; raw lattice results for F1 and F2

are given in Appendix G.
As there is only one new simulation on the larger volume, and the discrete Q2-

values in physical units differ substantially between volumes, we do not include this
new simulation into the chiral perturbation theory fits. Instead we compare the results
of the fits to simulation set I, extrapolated to the pseudoscalar masses of the new point
(with a pion mass about 100MeV lighter than the lightest pion mass of set I), with
the larger-volume results. We note that finite-volume corrections, as described in
Sect. 7.4.1, have been applied to the new results.

Figures7.12 and 7.13 show the excellent agreement between the chirally extrapo-
lated small-volume results and the larger-volume results, in particular for the charged
baryons. For the neutral-baryon electric form factors there is a systematic shift
between the results on the two volumes, although we point out that the absolute
magnitude of this shift is small—of order 5% of the proton form factor. This is
comparable to the size of the discrepancies between the charged baryon form factors
on the two volumes. The shift may be evidence of excited-state contamination in
either set of results—which cannot be estimated quantitatively as only one value
of the source-sink separation is used here—or the effect of some other yet-to-be-
understood systematic. Nevertheless, the comparison is extremely encouraging and
suggests that both the systematic finite-volume effect and the extrapolation in pion
mass are well under control for the charged baryon form factors.

7.5 Electromagnetic Form Factors at the Physical Point

The following subsections present infinite-volume, chirally-extrapolated, results at
the physical pseudoscalar masses for some electromagnetic form factor observ-
ables of interest. In particular, we focus on the isovector form factors which do
not suffer from corrections associated with the omitted disconnected quark-loops
(Sect. 7.5.1), as well as connected quantities such as the octet baryon magnetic
moments (Sect. 7.5.3) and magnetic and electric radii (Sect. 7.5.3). An investiga-
tion of the individual quark contributions to the form factors gives insight into the
environmental sensitivity of the distribution of quarks inside a baryon (Sect. 7.5.4).
We also apply the methods developed in previous chapters to isolate the charge sym-
metry violating form factors (Sect. 7.6), which are essential inputs to experimental
measurements of the strange form factors of the nucleon (Sect. 7.7).
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Fig. 7.12 Connected part of the octet baryon magnetic form factors at the pseudoscalar masses
of simulation 10 in Table7.1, (mπ,mK ) = (220, 540)MeV. Results calculated on ensemble 10 are
represented by the empty red diamonds, while the solid blue circles denote the results of the chiral
extrapolation of the set I (323 × 64 volume) lattice simulation results to the same pseudoscalar
meson masses. Finite-volume corrections, based on leading-order perturbation theory, have been
applied to all results

7.5.1 Isovector Quantities

Isovector combinations of observables are of particular interest in this study as they
canbedetermined from the connected-only lattice resultswith the smallest systematic
uncertainty. Because disconnected quark-loop terms cancel in isovector combina-
tions, the extrapolated results may be directly compared with experimental numbers.

The agreement between the extrapolated isovector nucleon form factors and exper-
imental determinations of these quantities is impressive. Figure7.14 displays our
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Fig. 7.13 As in Fig. 7.12, for the electric Sachs form factors

numbers, for both data sets I and II, compared against the Kelly [62] parameterisa-
tion of experimental results. The consistency between the two determinations, for
both GE and GM , is remarkable across the entire range of Q2-values considered. We
do note, however, that the uncertainties shown for the Kelly parameterisation may
be overestimated as we were unable to take into account the effect of correlations
between the fit parameters. It is notable that a dipole form does not provide a good
description of the extrapolated results for the isovector electric form factor over the
full range of simulation Q2-values: the χ2/d.o.f. > 3 for each dipole fit (to data
sets I or II). As GM is described acceptably by a dipole form in Q2, this suggests
qualitatively that GE/GM �= constant. This is discussed further in Sect. 7.5.5.

The isovector combinations of sigma and cascade baryon form factors are shown
in Figs. 7.15 and 7.16. There is complete consistency, within uncertainties, between
the extrapolated results based on data sets I and II. As no experimental numbers are
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(a)

(b)

Fig. 7.14 Isovector nucleon form factors extrapolated (at fixed Q2-values) to infinite volume and
the physical pseudoscalar masses. The dashed red band shows the Kelly parameterisation [62] of
experimental results. The blue circles and green crosses denote results derived from simulation sets
I (a = 0.074(2) fm) and II (a = 0.062(2) fm), respectively, (a) Isovector nucleon magnetic form
factor, (b) Isovector nucleon electric form factor
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(a)

(b)

Fig. 7.15 Isovector hyperon magnetic form factors extrapolated (at fixed Q2-values) to infinite
volumeand the physical pseudoscalarmasses. The bands showdipole-likefits in Q2 usingEq. (7.39).
The blue circles and green crosses denote results based on simulation sets I and II, respectively. The
red stars indicate the experimental values of the isovector magnetic moments, (a) Isovector sigma
baryon magnetic form factor, (b) Isovector cascade baryon magnetic form factor



7.5 Electromagnetic Form Factors at the Physical Point 129

(a)

(b)

Fig. 7.16 As in Fig. 7.15, for the isovector electric form factors of the hyperons, (a) Isovector sigma
baryon electric form factor, (b) Isovector cascade baryon electric form factor
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Table 7.2 Isovector magnetic moments, based on sets I and II of chirally and infinite-volume
extrapolated lattice simulation results. A dipole-like parameterisation (Eq. (7.39)) has been used to
model the Q2-dependence of the form factors

μB (μN )

B p − n �+ − �− �0 − �−

Extrapolated (set I) 3.8(4) 3.0(3) −0.51(8)

Extrapolated (set II) 4.2(4) 3.2(3) −0.62(10)

Experimental [63] 4.706 3.62(3) −0.60(1)

available for the hyperon form factors away from Q2 = 0, dipole-like fits (Eq. (7.39))
to the extrapolated simulation results, as well as the experimental isovector baryon
magnetic moments, are shown. We find fair agreement with the experimentally-
measured baryon magnetic moments, even with simple phenomenological fits para-
meterising the Q2-dependence of the form factors. It is clear, however, that the point
at a lower value of Q2 which is included in data set II acts to increase the curvature
in the fit functions in Q2, which improves the agreement with experiment in every
case. Isovector magnetic moments, extracted using these fits, are given in Table7.2.

We emphasise that the lattice simulation results away from the primary simulation
trajectory for data set I (that is, simulations 1–3 in Table7.1) are essential to tightly
constrain the chiral extrapolation to the physical point. The effect of adding the
additional off-trajectory points to the fit leads to a factor of 6 reduction in statistical
uncertainty. This illustrates the importance for chiral extrapolations of performing
lattice simulations which map out the ml–ms plane as we have done, rather than
simply following a single trajectory in this space. For data set II we have simulation
results along only one trajectory. However, as this lies very close to the physical
singlet trajectory (as illustrated in Fig. 7.2), the extrapolation in a perpendicular
direction to the physical point inflates the uncertainties only marginally.

7.5.2 Connected Baryon Form Factors

Aswell as the isovector quantities presented in the previous section,we can determine
the ‘quark-line–connected’ part of all individual baryon form factors. Comparison
of these quantities with experimental determinations is of particular interest—a sys-
tematic discrepancy between the lattice and experimental results could be a signal
of significant disconnected contributions to the form factors.

Figures7.17 and 7.18 show extrapolated results for the connected parts of the
proton and neutron form factors, compared with the Kelly parameterisation [62]
of experimental results. The level of agreement between the lattice and experiment
across the entire range of simulation Q2-values supports the conclusion of Ref. [30]
that the omitted disconnected contributions are relatively small.
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(a)

(b)

Fig. 7.17 Extrapolated (connected part of the) proton and neutronmagnetic form factors, compared
with the Kelly parameterisation [62] of experimental measurements (dashed red band). The blue
circles and green crosses denote extrapolated results based on simulation sets I and II, respectively,
(a) Proton magnetic form factor, (b) Neutron magnetic form factor
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(a)

(b)

Fig. 7.18 Extrapolated (connected part of the) proton and neutron electric form factors, compared
with the Kelly parameterisation [62] of experimental measurements (dashed red band). The blue
circles and green crosses denote extrapolated results based on simulation sets I and II, respectively,
(a) Proton electric form factor, (b) Neutron electric form factor
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Table 7.3 Connected contribution to the octet baryon magnetic moments, based on a dipole-like
fit (Eq. (7.39)) to the extrapolated lattice simulation results. Experimental values are taken from
Ref. [63]

μB (μN )

B p n �+

Extrapolated (set I) 2.3(3) −1.45(17) 2.12(18)

Extrapolated (set II) 2.6(2) −1.65(17) 2.27(18)

Experimental [63] 2.79 −1.913 2.458(10)

�− �0 �−

Extrapolated (set I) −0.85(10) −1.07(7) −0.57(5)

Extrapolated (set II) −0.95(11) −1.19(12) −0.59(8)

Experimental [63] −1.160(25) −1.250(14) −0.6507(25)

Figures displaying connected form factors for each of the octet baryons, including
dipole-like fits in Q2, are given in Appendix H.2. The magnetic moments extracted
from the fits to the magnetic form factors, given in Table7.3, are close to the exper-
imental values, especially for data set II which includes a point at a lower value of
Q2. Once again, greater curvature in the functional form in Q2 would improve the
agreement with experiment in every case.

7.5.3 Magnetic and Electric Radii

The magnetic and electric radii of the octet baryons are defined by Eq. (7.4) in terms
of the slopes of the Sachs form factors with respect to changes in the momentum
scale Q2, at Q2 = 0. To determine these quantities from the lattice simulation results
we again use dipole-like parameterisations of the Q2-dependence of GE and GM .

It is clear that fitting the magnetic form factors with Eq. (7.39) will yield consis-
tently smaller values for the magnetic radii than those determined experimentally
(for the nucleon) or predicted in chiral quark models (for the octet baryons) [64,
65]; as noted in the previous sections, while our results are quite consistent with the
experimental parameterisation of the nucleon form factorswhere they are calculated,
the best-fit dipole-like function has slightly less curvature. This can be seen clearly
from a comparison of Figs. 7.17 with7.19.

To explore the model-dependence of this extraction of the magnetic radii we
consider a second functional form in Q2, inspired by the Kelly-style parameterisa-
tions of experimental results. This form has a more general polynomial in Q2 in the
denominator:

Gfit
M

(
Q2

) = μ
exp.
B

1 + cM1Q2 + cM2Q4 + cM3Q6
. (7.40)
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Fig. 7.19 Connected part of the nucleon magnetic form factors. Blue circles (left-hand column)
and green crosses (right-hand column) denote the results of simulation sets I and II, respectively,
extrapolated to infinite volume and the physical pseudoscalar masses. The red stars indicate the
experimental magnetic moments. The lines show dipole-like fits in Q2 using Eq. (7.39) (dashed
red) and Eq. (7.40) (solid blue or green)

We now fix μ
exp.
B to the experimental magnetic moment (disregarding the omission

of disconnected quark-line contributions in our simulations), so there are again three
free parameters, cM1, cM2, and cM3. As illustrated for the nucleon in Fig. 7.19 (and
for the other octet baryons in Appendix H.2), the quality of fit using this functional
form is entirely comparable with that using Eq. (7.39). The shift in the extracted value
of the magnetic radius, however, is significant, as shown in Table7.4. This example
confirms that truly robust predictions for the hyperon magnetic radii from lattice
QCD will require results at much lower values of Q2 to eliminate the significant
dependence on the functional form chosen for the extrapolation in Q2.

Nevertheless, by taking the experimental magnetic moments as additional input,
we find an outstanding level of agreement between the extracted nucleon magnetic
radii and the experimental values for these observables. Moreover, our results using
simulation sets I and II, which have quite different sources of systematic uncertainty,
are entirely consistent. Based on this, we conclude that we have achieved the first
accurate calculation of the magnetic radii of the entire outer ring of the baryon octet
from lattice QCD (extrapolated to the physical pseudoscalar masses).

To extract the electric radiiwe also use amore general dipole-like parameterisation
of the Q2-dependence of GE , with three free parameters:
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Table 7.4 Extrapolated results for the octet baryon magnetic radii, based on our fits to the lattice
simulation results, compared with experimental values. Results labelled ‘free μB ’ result from a
dipole-like fit function in Q2 (Eq. (7.39)), while those labelled ‘general’ use the ansatz given in
Eq. (7.40) with μB fixed to the experimental values [63]

〈r2M 〉B (fm2)

p n �+ �− �0 �−

Set I, free μB 0.35(11) 0.35(11) 0.39(9) 0.42(13) 0.27(8) 0.23(8)

Set II, free μB 0.47(14) 0.51(17) 0.42(13) 0.50(19) 0.34(14) 0.17(16)

Set I, general 0.71(8) 0.86(9) 0.66(5) 1.05(9) 0.53(5) 0.44(5)

Set II, general 0.69(8) 0.89(10) 0.62(7) 1.06(12) 0.48(8) 0.38(11)

Experimental [63] 0.777(16) 0.862(9)

Fig. 7.20 Connected part of the proton electric form factor. The symbols are as in Fig. 7.19. The
lines shown correspond to dipole-like fits in Q2 using Eq. (7.41)

Gfit
E

(
Q2

) = GE
(
Q2 = 0

)

1 + cE1Q2 + cE2Q4 + cE3Q6
. (7.41)

As was noted previously for the isovector nucleon form factor, the standard dipole
form does not provide a good fit to the extrapolated lattice results; the χ2/d.o.f. is
as large as 4.0 for the �− and 1.7 for the proton. In contrast, the more general form
of Eq. (7.41) yields fits with a χ2/d.o.f. � 1 for each of the charged baryons. Fits
using this ansatz are shown in Fig. 7.20 (for the proton) and Appendix H.2 (for the
other octet baryons). Results for the radii of the charged baryons, compared with the
available experimental numbers, are given in Table7.5.

The electric radii determined by this method are consistently smaller than the
corresponding experimental numbers for the proton and�−. We point out that while
this calculation omits any disconnected contributions to the form factors and therefore
to the radii, the very close agreement of the extracted proton electric form factor with
the experimental determination suggests that the effect of this omission is small,
barring lattice artefacts as discussed in the previous section. It is clear that the simple
dipole-like parameterisation used for the Q2-dependence is not sufficient to extract
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Table 7.5 Octet baryon electric radii based on a dipole or dipole-like (Eq. (7.41)) fit to the extrap-
olated lattice simulation results, compared with the available experimental values [63]

〈r2E 〉B (fm2)

p �+ �− �−

Dipole ansatz, set I 0.601(14) 0.599(12) 0.414(5) 0.352(3)

Dipole ansatz, set II 0.718(15) 0.738(15) 0.505(10) 0.439(9)

Equation (7.41) ansatz, set I 0.76(10) 0.61(8) 0.45(3) 0.39(2)

Equation (7.41) ansatz, set II 0.76(10) 0.68(8) 0.52(4) 0.45(3)

Experimental [63] 0.878(5) 0.780(10)

accurate values of the electric radii from these simulations. Robust predictions of
the electric radii from lattice QCD will require simulations with a similar level of
precision to the results of this work, but at much lower values of Q2. We note that the
electric radius of the proton extracted as described above does display the expected
behaviour with pion mass, increasing quite rapidly as one approaches the physical
pseudoscalar masses from above. This is illustrated in Fig. 7.21.

Fig. 7.21 Electric radius of the proton from the chiral extrapolation of data set I, with a dipole (blue
band) or dipole-like (green dashed band) ansatz (Eq. (7.41)) parameterising the Q2-dependence.
The singlet pseudoscalar mass (m2

K + m2
π/2) is held fixed at its physical value. The red point

indicates the experimental value [63]
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7.5.4 Quark Form Factors

We investigate the environmental sensitivity of the distribution of quarks inside a
hadron by inspecting the individual (connected) quark contributions to the form fac-
tors of the octet baryons. These contributions, evaluated using the chiral extrapolation
described in previous sections, are illustrated in Figs. 7.22 and 7.23. The figures show
the lowest-Q2 result from the fit to data set I, at approximately 0.26GeV2. We recall
that the lines shown on each plot are not independent as the chiral extrapolation
expressions are simultaneously fit to all of the octet baryon form factors.

Comparison of the u quark contributions to the proton and �+ magnetic form
factors, illustrated in Fig. 7.22(a), shows the relative suppression of G�,u

M caused
by the heavier spectator quark in the sigma. This effect is replicated, and is more
significant, when probing the singly-represented quark, as can be seen by the relative
suppression (in magnitude) of the u contribution to the cascade baryon compared to
the d in the proton in Fig. 7.22(b). Changing the mass of the probed quark—doubly-
represented in the proton compared with the cascade, or singly-represented in the
proton compared with the sigma—causes a similar effect.

The doubly-represented quark contributions to the electric form factors are illus-
trated in Fig. 7.23(a). While the u contribution to the proton and the u contribution to
the sigma baryon are very similar—again, the only difference is themass of the single
spectator (d or s) quark—the s contribution to the cascade baryon has a different
shape. As in the magnetic case, that form factor has significantly less curvature with
m2

π below the SU(3)-symmetric point as a result of the heavier mass of the probed s
quark.

The singly-represented quark contributions to the electric form factors are shown
in Fig. 7.23(b). Here the difference between the d quark contribution to the proton
and the s quark contribution to the sigma baryon illustrates the effect of changing the
mass of the single probed quark.While the effect of changing themass of the spectator
quark is small for the doubly-represented form factors, it is far more significant here
as there are now two spectator quarks. This may be seen by comparing the d quark
contribution to the proton with the u in the cascade baryon.

We also notice that the u quark contribution to the cascade baryon electric form
factor is considerably more suppressed in the light quark-mass region than the cor-
responding d quark contribution to the proton. That is, the magnitude of 〈r2〉�u is
enhanced relative to 〈r2〉pd . This can be explained by the meson-dressing effects; the
connected d in the proton prefers to form a π+ with one of the valence u quarks
in the proton, giving rise to a substantial negative contribution to 〈r2〉pd in the light
quark-mass region. In contrast, the connected u in the cascade baryon can only form
a pion state by coupling to a sea quark, from which the resulting enhancement is
always positive.
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(a)

(b)

Fig. 7.22 Connected part of the doubly and singly-represented quark contributions to the baryon
magnetic form factors for data set I at Q2 ≈ 0.26GeV2. The singlet pseudoscalar mass (m2

K +
m2

π/2) is held fixed at its physical value. The charges of the relevant quarks have been set to one,
(a) Doubly-represented quark contributions, (b) Singly-represented quark contributions
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(a)

(b)

Fig. 7.23 As in Fig. 7.22, for the electric form factors, (a) Doubly-represented quark contributions,
(b) Singly-represented quark contributions
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7.5.5 Ratio of Electric and Magnetic Form Factors

By combining the chirally-extrapolated values of the octet baryon electric and mag-
netic form factors, we deduce the ratios μBGB

E/GB
M at each of the discrete values

of Q2 for which we have results. As with the chiral extrapolations themselves, the
entire analysis of these ratios is performed at the bootstrap level.

Figure7.24 shows the proton form factor ratioμpG
p
E/Gp

M , where the experimental
value is used for the magnetic moment μp [63]. While the results are qualitatively
consistent with a linear decrease of that ratio with Q2, as concluded from polarisation
transfer experiments (e.g., see the results from Refs. [8, 66, 67], illustrated on the
figure), this decrease is more pronounced in our results than in the experimental data,
with the exception of the results of Ref. [6] which display a similarly steep trend. In
our work this trend is explained by the observation that the lattice simulation results
for GM fall off less rapidly in Q2 than the Kelly parameterisation of experimental
results, while the lattice results for GE are consistent with experiment.

Figure7.25 shows the absolute value of μBGB
E/GB

M for each of the outer-ring
octet baryons. The large value of this ratio for the �− baryon is a result of the choice
of normalisation; the magnetic moment of the �− suggested by the lattice data was
found to be significantly smaller than the experimental value [63] which is used here.
We note that if the trends displayed for μBGB

E/GB
M at the relatively low Q2-values

of this study continue to high Q2, zero-crossings of this ratio for the �− and �−
baryons seem unlikely.

Fig. 7.24 Ratio of the electric and magnetic form factors of the proton based on the chiral extrap-
olations of data sets I (blue circles) and II (green crosses). The red stars denote the experimental
results of Refs. [8, 66, 67]



7.5 Electromagnetic Form Factors at the Physical Point 141

(a)

(b)

Fig. 7.25 Ratios of the electric and magnetic form factors of the octet baryons. The points denoting
the �+ and �− baryons have been slightly offset on the Q2-axis for clarity. The circles and crosses
denote results based on simulation sets I and II, respectively, (a) Charged baryons, (b) Neutral
baryons
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7.6 Charge Symmetry Violation

The assumption of good charge symmetry has been widely applied in studies of the
electromagnetic structure of the nucleon, just as it has in investigations of sigma terms
(Chap.5) and in parton phenomenology (Chap. 6). In particular, the limiting factor
in state-of-the-art experimental determinations of the strange-quark contribution to
the nucleon electromagnetic form factors [68–72] is the poor theoretical constraint
on the size of CSV effects.

Precisely, CSV form factors GCSV, if not accounted for, mimic the strange-quark
contribution Gs

E/M in the combination of form factors accessible through parity-
violating electron scattering experiments [73–75]: themeasured neutral weak current
matrix elements Gp,Z

E/M may be expressed as

Gp,Z
E/M = (

1 − 4 sin2 θW
)
Gp,γ

E/M − Gn,γ
E/M − Gs

E/M + GCSV, (7.42)

where the weak mixing-angle θW and the total electromagnetic form factors Gp/n,γ
E/M

are precisely determined from other experimental studies.
With theoretical predictions of the size of GCSV varying through several orders of

magnitude [76–78], this uncertainty (along with the remarkable experimental chal-
lenges) has halted experimental parity-violating electron scattering programs [72].
Using the chiral extrapolations of lattice simulation results presented in the previous
sections, we perform the first ab-initio calculation of the relevant CSV quantities.
With the discovery that the CSV form factors are an order of magnitude smaller than
the precision of existing parity-violating electron scattering studies, this calculation
opens the door for a new generation of experiments to challenge the predictions of
QCD.

7.6.1 CSV Form Factor Formalism

In terms of individual u and d quark contributions to the Sachs electric and magnetic
form factors of the proton and neutron, the CSV form factors which we calculate are
defined as

δuE/M = Gp,u
E/M − Gn,d

E/M , δdE/M = Gp,d
E/M − Gn,u

E/M , (7.43)

where we explicitly calculate Gp/n,u/d
E/M and perform the subtractions indicated. The

combination relevant to experimental determinations of nucleon strangeness using
Eq. (7.42) is

GCSV =
(
2

3
δdE/M − 1

3
δuE/M

)
. (7.44)

http://dx.doi.org/10.1007/978-3-319-31438-9_5
http://dx.doi.org/10.1007/978-3-319-31438-9_6
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We express GCSV as a function of pseudoscalar mass using the chiral formalism
developed in the previous sections. Of course, this formalism must now incorpo-
rate the breaking of SU(2) symmetry; we allow for non-equal light quark masses
mu �= md . Precisely as described in earlier chapters, where we investigated the
mass splittings among members of baryon isospin multiplets (Chap.4), the CSV
sigma terms (Chap. 5), and CSV parton distribution moments (Chap.6), this is a
simple extension of the formalism which we have already described. Moreover,
the low-energy parameters which appear in the SU(2)-breaking terms in the chi-
ral extrapolation expressions for the electromagnetic form factors also appear in the
isospin-averaged expressions. These parameters may thus be fixed by the previously-
described fits to our N f = 2 + 1 lattice QCD simulations on the baryon octet.

Explicitly, using the formalism presented in Sect. 7.3.2, chiral extrapolation
expressions for the CSV electric and magnetic form factors can be written as

δuM = 1

6

(
2cM1 − 3cM10 − 3cM12 − 4cM2 − 2cM5 − 5cM6 − 54cM7 + 3cM9

)
B(md − mu)

+ MN

16π3 f 2π

1

9

[
C2

(
I MD (mK 0 ) − I MD (mK± )

)

−12
(
D2 + 3F2) (

I MO (mK 0 ) − I MO (mK± )
)]

, (7.45a)

δdM = 1

6

(
2cM1 + 2cM10 − 4cM11 + 2cM12 − 4cM2 + 4cM5 + cM6 + 54cM7 − cM9

)
B(md − mu)

− MN

16π3 f 2π

2

9

[
C2

(
I MD (mK 0 ) − I MD (mK± )

)
− 9 (D − F)2

(
I MO (mK 0 ) − I MO (mK± )

)]
,

(7.45b)

δuE = 1

6

(
2cE1 − 3cE10 − 3cE12 − 4cE2 − 2cE5 − 5cE6 − 54cE7 + 3cE9

)
Q2B(md − mu)

− 1

16π3 f 2π

1

9

[
C2

(
I ED (mK 0 ) − I ED (mK± )

)
+ 6

(
D2 + 3F2) (

I EO (mK 0 ) − I EO (mK± )
)

+18
(
I ET (mK 0 ) − I ET (mK± )

)]
, (7.45c)

δdE = 1

6

(
2cE1 + 2cE10 − 4cE11 + 2cE12 − 4cE2 + 4cE5 + cE6 + 54cE7 − cE9

)
Q2B(md − mu)

+ 1

16π3 f 2π

1

9

[
2C2

(
I ED (mK 0 ) − I ED (mK± )

)
+ 9 (D − F)2

(
I EO (mK 0 ) − I EO (mK± )

)

+9
(
I ET (mK 0 ) − I ET (mK± )

)]
, (7.45d)

where the low-energy parameters cE/M
i are defined in Eqs. (7.29) and (7.35). All of

these constants, other than cE/M
1 , cE/M

2 , and cE/M
7 , are determined from the chiral

fits to the connected contribution to the isospin-averaged electromagnetic form fac-
tors which are described in Sect. 7.4. The parameters cE/M

1 , cE/M
2 , and cE/M

7 do not
appear in the previous fit expressions, and thus cannot be determined from the lattice
simulations which we consider here. Bounds on these contributions to the CSV are
estimated within the framework of a model which is described in Sect. 7.6.2.

http://dx.doi.org/10.1007/978-3-319-31438-9_4
http://dx.doi.org/10.1007/978-3-319-31438-9_5
http://dx.doi.org/10.1007/978-3-319-31438-9_6
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7.6.2 Disconnected Contributions to the CSV

While some of the disconnected contribution to the CSV form factors can be system-
atically included by the method described in the previous section, other disconnected
terms—those which are linear inB(md − mu) and not generated by chiral logarithms
frommeson loops—cannot be determined in that way. Precisely, the terms which are
generated by the Lagrangian pieces with coefficients cE/M

1 , cE/M
2 , and cE/M

7 (defined
in Eqs. (7.29) and (7.35)) cannot be determined from the present lattice simulations.
Physically, they arise from the diagrams illustrated and described in Fig. 7.26. These
contributions are anticipated to be small based on the success of valence quark mod-
els. This is supported by the results of direct lattice QCD calculations ofGE/M which
find that the disconnected contributions at small finite momentum transfer are con-
sistent with zero and are bounded at the 1% level [30]. The terms which we seek to
estimate here are only part of that disconnected contribution.

We choose to set contributions from the unknown terms cE/M
1 , cE/M

2 , and cE/M
7

to 0, with an uncertainty taken to be twice the magnitude of the corresponding
contributions frommeson loopdiagrams, evaluatedwith adipole cutoff regulatorwith
mass scale � = 0.8(2)GeV. This is justified by the well-established and successful
use of this model to relate full and partially-quenched lattice QCD calculations [79].
The loopdiagramused to estimate the cE/M

1,2 terms is represented inFig. 7.27(b),where
only the ‘loop spectator’ quark mass (i.e., the valence quark part of the meson mass)
is changed. For the cE/M

7 term, represented in Fig. 7.27(a), only the sea quark part of
the loop meson mass is considered. These contributions are added in quadrature. The
magnitude of this contribution to the total uncertainty varies with Q2; it is largest at
our lowest Q2-values where it contributes 20–60% of the quoted uncertainty on the
final result (depending which of δ

u/d
E/M one is considering), while at larger values of

Q2 it contributes 1–15%.

(a) (b)

Fig. 7.26 Diagrammatic quark-line skeleton representation of omitted contributions to the CSV
form factors. Solid and wavy lines represent quarks and photons, respectively. The crosses denote
quark mass insertions, i.e., the figures represent the contribution from disconnected quark-loops to
the CSV arising from the different (u and d quark) masses of: (a) the struck sea quark; (b) spectator
quarks. These contributions are proportional to B(md − mu)
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(a) (b)

Fig. 7.27 Quark-line skeleton diagrams of themeson loops used tomodel the omitted contributions
to theCSV form factors. Solid andwavy lines represent quarks and photons, respectively. The crosses
denote quark mass insertions into: (a) the struck sea quark in the meson loop; (b) the meson loop
spectator quark

7.6.3 CSV Relevant to the Strange Electromagnetic Form
Factors

Figure7.28 shows the size of the CSV form factor combination, GCSV, as relevant to
parity-violating electron scattering experiments probing the strange electromagnetic
form factors of the nucleon by Eq. (7.42). The individual u and d quark contribu-
tions are shown in Fig. 7.29. The close agreement of the two sets of simulations (at
different lattice spacings a and on different simulation volumes) confirms that the
finite-volume corrections and chiral extrapolations are under control and that any
discretisation effects resulting from the finite lattice spacing are small.

Our result gives quantitative confirmation that CSV effects in the electromagnetic
form factors, for momentum transfers up to approximately 1.3GeV2, are at the level
of 0.2% of the relevant proton form factors—an order of magnitude smaller than
the precision of existing parity-violating electron scattering studies. To put this in
perspective, the level of CSV shown in Fig. 7.28(b) is equivalent to a CSV difference
in charge radii of less than one attometer. These precise results open the door for
a new generation of experiments to probe the structure of the quantum vacuum
through the strange quark form factors. We turn to a deeper discussion of the strange
electromagnetic form factors of the nucleon in the next section.

7.7 Strange Nucleon Form Factors

Recent years have seen extensive experimental efforts directed at measuring the
strangequark contribution to the electromagnetic form factors of the nucleon. Probing
a range of values of Q2 up to approximately 0.94GeV2, the combined data sets from
programs at Jefferson National Lab (G0, HAPPEX) [70–72, 80–83], MIT-Bates
(SAMPLE) [68, 84], and Mainz (A4) [69, 85, 86] constrain these terms to be less
than a few percent of the total form factors but all results are, at this stage, consistent
with zero to within 2-sigma [87]. Our precise calculation of the CSV contributions
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(a)

(b)

Fig. 7.28 Magnetic and electric CSV form factors as relevant to experimental determinations of
nucleon strangeness. The blue circles and green crosses denote our results based on simulation
sets I (a = 0.074(2) fm) and II (a = 0.062(2) fm), respectively, (a) Magnetic CSV form factors,
(b) Electric CSV form factors

to the electromagnetic form factors of the nucleon, presented in the last section,
has opened the door for a new generation of parity-violating electron scattering
experiments to improve on these determinations.
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Fig. 7.29 Individual up and down quark contributions to the CSV form factors. These terms are

combined to give the total CSV form factors GCSV =
(
2
3 δdE/M − 1

3 δuE/M

)
. Blue points and green

crosses show the results of data sets I and II extrapolated to the physical point, with corrections
applied to model the omitted disconnected terms

The status of the strange form factors from theory is less clear; predictions from
various quark models cover a very broad range of values [88–93] and the large
computational cost of all-to-all propagators has so far limited direct lattice QCD
studies to large pion masses and single volumes [30, 94].

Using the connected lattice simulations of the octet baryon electromagnetic form
factors presented in this chapter, we determine the strange quark contributions to the
nucleon form factors indirectly over a range of values of Q2 currently unattainable
through direct experimental measurement. Our final result for the strange magnetic
moment of the proton, Gs

M

(
Q2 = 0

) = −0.07 ± 0.03μN , is non-zero to 2-sigma
and an order of magnitude more precise than the closest experimental results. It is
also consistent with an earlier extraction using FRR to analyse quenched lattice data
at relatively large quark masses [95]. The results reported at values of Q2 above
0.6GeV2 are the first determinations, experimental or based on lattice QCD, in that
region. At present they cannot be distinguished from zero, but the uncertainties
constrain their actual values to be very small.
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7.7.1 Indirect Determination of the Strange Form Factors

We have shown in the last section that charge symmetry violation in the electromag-
netic form factors of the nucleon is a small effect, with the CSV terms constrained
to be smaller than approximately 0.2% of GE and GM over values of Q2 up to
1.3GeV2. Using this result—i.e., assuming good charge symmetry—we deduce the
strange form factors [96–98] by combining experimental measurements of the total
nucleon form factors with our lattice QCD determinations of the connected compo-
nents. This method has been applied previously to determine the strange magnetic
form factor at Q2 = {0, 0.23}GeV2 [95, 99] and the strange electric form factor at
Q2 = 0.1GeV2 [100] from quenched lattice QCD results.

Explicitly, under the assumption of charge symmetry, one may express the elec-
tromagnetic form factors of the proton and neutron as [96]

p = euu p + edd p + ON , (7.46a)

n = edu p + eud p + ON . (7.46b)

Here, p and n denote the physical (electric or magnetic) form factors of the proton
and neutron and u p and d p represent the connected u and d quark contributions to
the proton form factor. The disconnected quark-loop term, ON , may be decomposed
into individual quark contributions:

ON = 2

3
�Gu − 1

3
�Gd − 1

3
�Gs, (7.47a)

=
�Gs

3

(
1 − �Rs

d
�Rs

d

)
, (7.47b)

where charge symmetry has been used to equate �Gu = �Gd and the ratio of s to d
disconnected quark-loops is denoted by �Rs

d = �Gs/�Gd .
Rearranging Eqs. (7.46) and (7.47b) to isolate the strange quark loop contribution,

�Gs , yields two independent expressions which are rigorous consequences of QCD
under the assumption of charge symmetry:

�Gs =
(

�Rs
d

1 − �Rs
d

) [
2p + n − u p

]
, (7.48a)

�Gs =
(

�Rs
d

1 − �Rs
d

) [
p + 2n − d p

]
. (7.48b)

In principle, given a suitable estimate of �Rs
d , these expressions may be simply evalu-

ated; the total form factors p and n are well known experimentally and the connected
contributions u p and d p may be calculated on the lattice.

This procedure relies on the assumption that the difference between the exper-
imental numbers and the connected lattice simulation results for the form factors
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may be entirely attributed to contributions from disconnected quark loops, i.e., that
all other systematic effects are under control. In order to be able to estimate any
as-yet undetermined lattice systematics, we average Eqs. (7.48a) and (7.48b) result-
ing in a form where only the connected contribution to the isoscalar combination,
(u p + d p)conn., needs to be determined from the lattice simulations:

�Gs =
(

�Rs
d

1 − �Rs
d

)[
3

2
(p + n) − 1

2
(u p + d p)conn.

]
. (7.49)

Relaxing the assumption of exact charge symmetry in the valence sector would
result in an additional term + 3

2GCSV (where GCSV, defined in Eq. (7.42), is the sys-
tematic CSV uncertainty affecting experimental determinations of the strange form
factors) appearing within the square brackets of Eq. (7.49). For low values of Q2,
in particular where

(
�Rs

d/(1 − �Rs
d)

)
is small, this systematic error thus affects our

extraction of the strange form factors considerably less than it impacts on exper-
imental determinations of these quantities, where the assumption of good charge
symmetry is also standard.

From our analysis of the CSV form factors in Sect. 7.6 it is clear that contributions
from GCSV are negligible for this calculation of the strange form factors across the
entire Q2-range of relevance. If we disregard our own calculation, which constrains
CSV to be an order of magnitude smaller than suggested by previous studies, and
instead take values ofGCSV fromRef. [77] (for Q2 < 0.3GeV2 where the calculation
is valid) as a systematic uncertainty, our error bands increase by less than 10%. A
recent re-evaluation of GCSV using relativistic chiral perturbation theory with a more
realistic ω-nucleon coupling [76] found a significant reduction in GCSV over the
values in Ref. [77]. This confirms that the assumption of good charge symmetry has
a negligible effect on our results.

We discuss in turn each of the three inputs into Eq. (7.49):

• The lattice values for (u p + d p)conn..
• The experimental p and n form factors.
• The ratio �Rs

d = �Gs/�Gd .

Lattice Determinations of u p and d p

The connected quark-line contributions to the proton electric and magnetic form
factors are obtained as described in Sect. 7.4. Both statistical uncertainties and sys-
tematic effects resulting from the chiral and infinite-volume extrapolations, including
an estimate of the model-dependence, are included. Additionally, we allow for any
unknown systematics on the combination (u p + d p)conn. by estimating that such
effects will be similar in magnitude for the isovector combination (u p − d p)conn.,
which may be directly compared with experiment. Because disconnected contri-
butions in the total form factors cancel in the combination (p − n), the difference
(u p − d p)latt. − (p − n)exp. provides an estimate of any unaccounted-for uncertainty
in the lattice simulation results.We take the largest value of this difference, evaluated
over the entire range of discrete simulation Q2-values, as a conservative estimate.
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This procedure is followed for both the electric and magnetic form factors. The
additional uncertainty included in this fashion is significant and larger than the sta-
tistical uncertainty in the determination of the strange magnetic form factor. For the
electric form factor it is a modest contribution of a size similar to, or smaller than,
the statistical uncertainty (see Table7.6 in Sect. 7.7.2).

Experimental p and n Form Factors
The total proton and neutron electromagnetic form factors p and n are taken from the
parameterisations of experimental results by Kelly [62] andArrington and Sick [101]
(the latter is used only on its quoted range of validity, Q2 < 1GeV2). The entire
calculation, including the additional estimate of lattice systematics, is performed
using each parameterisation. The average central value of the two sets of results is
taken as the best-estimate of the strange form factors. Half of the difference between
the two central values is included as an estimate of the parameterisation-dependent
uncertainty. As shown in Table7.6 in Sect. 7.7.2, this contribution to the uncertainty
is small.
Estimate of the Ratio �Rs

d
We derive an estimate for the disconnected quark-loop ratio �Rs

d = �Gs/�Gd using
a model based on chiral effective field theory, as was also done in Refs. [95, 99,
100]. In that formalism �Rs

d is given by the ratio of loop diagram contributions to the
electromagnetic form factors, where the relevant loop integrals are weighted by the
appropriate ‘disconnected’ chiral coefficients for the s and d quarks [37, 99, 100].

The primary loop diagram relevant to this calculation is depicted in Fig. 7.6(a). For
the electric form factor in particular, a higher-order diagram (Fig. 7.30(b)) is impor-
tant as it makes a significant contribution of the opposite sign to that of Fig. 7.6(a),
resulting in a large cancellation. While to the order of our chiral extrapolation this
term contributes a constant to GE

(
Q2

)
(enforcing charge conservation at Q2 = 0),

this is not a good approximation for the large values of Q2 considered in this work.
For this reason we include Fig. 7.30(b), with an estimate of its Q2-dependence,

explicitly in our calculation of �Rs
d for the electric form factor. This is achieved by

calculating the diagram in heavy-baryon chiral perturbation theory and modelling
the Q2-dependence of the photon-baryon vertex based on the lattice results described
in previous sections. Further details are given in Appendix H.3.

For both the electric and magnetic form factors the effect of additionally includ-
ing loops with decuplet baryon intermediate states is taken as an estimate of the
uncertainty in the ratio �Rs

d . The errors quoted for the numerical results in Table7.6
in Sect. 7.7.2 combine this estimate in quadrature with that given by allowing the
dipole mass-parameter � used in the finite-range regularisation scheme to vary in
the range 0.6–1.0GeV. The final values for �Rs

d are shown in Fig. 7.31.
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(a) (b)

Fig. 7.30 Loop diagrams (a), which are included in the estimate of �Rs
d from effective field theory.

In this figure (b) is included for the electric form factor only. The solid, dashed, and wavy lines
denote octet baryons, mesons, and photons, respectively

Fig. 7.31 Estimate of �Rs
d from effective field theorywith finite-range regularisation, for the electric

(dashed green) and magnetic (solid blue) form factors. Details are given in Sect. 7.7.1

7.7.2 Strange Form Factors at Q2 > 0

The results of this analysis (using Eq. (7.49)) for the strange electric and magnetic
form factors of the proton are summarised in Table7.6 and are displayed in Fig. 7.32
alongside the latest experimental determinations of those quantities. All results (away
from Q2 = 0) are consistent with zero to within 2-sigma. The results for the strange
magnetic form factor favour negative values which are consistent with recent exper-
imental results. For the electric form factor, the two independent analyses based on
the two sets of lattice QCD simulations at different lattice spacings and volumes are
inconsistent at 1-sigma. As a result, simple estimates of the strange electric charge
radius of the proton using a straight-line fit in Q2 to the lowest-Q2 result for Gs

E give
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Table 7.6 Results for the strange electric and magnetic form factors of the proton at the non-zero
values of Q2 investigated here. The first uncertainty quoted is propagated from the lattice values
for the connected u and d quark contributions to the proton form factors, while the second is the
additional systematic uncertainty included as described in Sect. 7.7.1. The third uncertainty is that
propagated from the factor

(
�Rs

d/(1 − �Rs
d )

)
(see Sect. 7.7.1). The last uncertainty is that from the

Kelly parameterisation of the experimental p and n form factors [62], combined in quadrature with
the parameterisation-uncertainty in those results for Q2 < 1GeV2, where we use two parameteri-
sations as described in Sect. 7.7.1

Q2 (GeV2) Gs
M (μN ) Gs

E

Set I 0.26 −0.069(12)(44)(15)(78) −0.010(4)(5)(2)(6)

0.50 −0.109(12)(59)(21)(112) −0.014(8)(8)(3)(7)

0.73 −0.136(15)(72)(24)(129) −0.008(15)(11)(1)(13)

0.94 −0.122(20)(83)(20)(136) −0.017(28)(16)(3)(20)

1.14 −0.103(16)(94)(17)(137) 0.053(34)(24)(40)(24)

1.33 −0.115(20)(103)(18)(135) 0.141(57)(35)(153)(36)

Set II 0.17 −0.080(20)(48)(19)(56) 0.0081(31)(29)(4)(46)

0.33 −0.111(20)(61)(24)(88) 0.023(7)(4)(3)(6)

0.47 −0.131(23)(73)(26)(109) 0.039(12)(6)(9)(6)

0.62 −0.153(28)(84)(29)(122) 0.056(20)(7)(18)(9)

0.75 −0.151(28)(94)(28)(130) 0.077(27)(9)(30)(12)

0.88 −0.145(35)(103)(25)(135) 0.104(40)(11)(50)(15)

1.13 −0.089(47)(119)(14)(137) 0.220(78)(17)(164)(24)

results with opposite signs for the two analyses:

〈r2E 〉s =
{
0.0086(79) fm2, Set I,

−0.0114(88) fm2, Set II.
(7.50)

Although we cannot make a conclusive statement without additional simulation
results, we expect that this difference is dominated by statistical fluctuations.

Since experimental determinations of the strange form factors are obtained as
linear combinations of Gs

E and Gs
M we also display results at the lowest values of

the momentum transfer, Q2 = 0.26GeV2 and 0.17GeV2 for simulation sets I and
II, respectively, in the Gs

M–G
s
E plane in Fig. 7.33. The available experimental results

for similar values of Q2 appear on this figure as ellipses. Both of our calculations
are consistent with experiment to within 2-sigma.
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(a)

(b)

Fig. 7.32 Strange contribution to the magnetic and electric form factors of the proton, for strange
quarks of unit charge. The blue circles and green crosses show the results of independent analyses
based on lattice simulation sets I and II (with lattice scales a = 0.074(2) fm and 0.062(2) fm),
respectively. The experimental results (red stars) are taken from Refs. [68, 71, 72, 81, 84, 86],
(a) Strange magnetic form factor, (b) Strange electric form factor
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Fig. 7.33 Comparison of the results of this work (to 1-sigma) at Q2 = 0.26GeV2 for simulation
set I (red ellipse), and at Q2 = 0.17GeV2 for simulation set II (orange ellipse), with available
experimental results at similar values of Q2. The dark (pale) green ellipse shows 1-sigma (2-
sigma) results from the A4 collaboration at Q2 = 0.23GeV2 [85], while the blue ellipses show G0
collaboration results close to Q2 = 0.23GeV2 [80, 81]

7.7.3 Strange Magnetic Moment

Using the additional information available from experiment at Q2 = 0, where the
hyperon form factors have been measured [63], we also determine the strange quark
contribution to the proton magnetic moment. We rearrange Eqs. (7.48a) and (7.48b),
using the assumption of charge symmetry, to express the nucleon strange magnetic
moment in terms of the hyperon moments [96, 98]:

�Gs =
(

�Rs
d

1 − �Rs
d

) [
2p + n − u p

u�

(
�+ − �−)]

, (7.51a)

�Gs =
(

�Rs
d

1 − �Rs
d

) [
p + 2n − un

u�

(
�0 − �−)]

. (7.51b)

This rearrangementminimises the propagation of lattice systematics as only the ratios
of form factors, not their absolute values, must be determined from lattice QCD.
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The ratios u p
M/u�

M and unM/u�
M of connected up quark contributions to the hyperon

form factors, at a range of non-zero values of the momentum transfer Q2, are taken
from the lattice QCD analyses described earlier (see Sect. 7.4). We determine the
Q2 = 0 values needed here using a linear extrapolation in Q2, with an additional
experimental constraint provided by the equality of Eqs. (7.51a) and (7.51b):

u p
M

u�
M

= unM
u�
M

(
μ�0 − μ�−

μ�+ − μ�−

)
+

(
μp − μn

μ�+ − μ�−

)
, (7.52)

where μB denotes the experimental magnetic moment of the baryon B [63]. The fit
is performed to the lattice results where Q2 < 1GeV2, which display qualitatively
linear behaviour and for which the linear-fit χ2/d.o.f. is acceptable given the con-
straint of Eq. (7.52). Fitting to one less data point does not change the results to the
precision quoted. The extrapolation for data set I is illustrated in Fig. 7.34; the same
procedure is followed (independently) for data set II.

The best estimates of the ratios of the connected contributions to the baryon
magnetic form factors at Q2 = 0 are

[
u p
M

u�
M

,
unM
u�
M

]
=

{
[1.096(16), 1.239(90)] , Set I,

[1.095(17), 1.222(98)] , Set II,
(7.53)

where the two sets of results correspond to our two independent analyses using lattice
QCD simulation results at different lattice spacings and volumes as described earlier.
These full-QCD numbers align remarkably well with those determined in Ref. [95],
given that analysis was based on quenched lattice simulation results at rather large
quark masses, after the application of a theoretical ‘unquenching’ formalism and
FRR [102].

The resulting values for the strange magnetic moment (from Eqs. (7.51a) and
(7.51b)), conventionally defined without the charge factor, are

Gs
M

(
Q2 = 0

) =
{

−0.071(13)(25)(4)μN , Set I,

−0.073(14)(26)(4)μN , Set II.
(7.54)

The first uncertainty is propagated from the lattice simulation results, the second,
dominant, contribution comes from the ratio �Rs

d , and the last is that from the
experimental determination of the magnetic moments [63]. Clearly, the results of
our analysis using the two independent calculations performed at different lattice
spacings and volumes are in excellent agreement. Our final result, Gs

M

(
Q2 = 0

) =
−0.07 ± 0.03μN , is non-zero to 2-sigma and an order of magnitude more precise
than the closest experimental results.
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Fig. 7.34 Results for the ratios u p
M/u�

M and unM/u�
M of connected contributions to the baryon

magnetic form factors for the simulations in data set I. The bands show simultaneous fits, linear in
Q2, to the lowest 4 (blue solid band) or 3 (green dashed band) data points, constrained by Eq. (7.52)
at Q2 = 0
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7.8 Summary and Discussion

In this chapter we have presented a 2 + 1–flavour lattice QCD study of the electro-
magnetic form factors of the octet baryons. The results are based on two independent
sets of simulations, with different lattice spacings and volumes, at a total of 13 dis-
crete values of the momentum transfer in the range 0.17–1.3GeV2.

By performing simulations on configurations which ‘map out’ the ml–ms plane,
rather than following a single trajectory in this space, we are able to robustly con-
strain chiral extrapolations of the Sachs form factors to the physical pseudoscalar
masses. Independent extrapolations are performed at each simulation value of Q2

using a formalism based on connected heavy-baryon chiral perturbation theory. An
advantage of this method is that it requires no phenomenological input regarding the
Q2-dependence of the form factors. Systematic uncertainties are controlled by evalu-
ating finite-volume corrections using the same formalism. The uncertainties inherent
in the determination of the lattice scale a, the shape of the ultraviolet cutoff, and the
value of the cutoff parameter� in the finite-range regularisation scheme, are found to
be negligible. Moreover, both sets of simulations, which one would expect to suffer
from different systematic finite-volume and finite-a effects, are entirely consistent
after extrapolation to the physical point. It is notable that, even after extrapolation,
the precision of these results rivals experimental measurements of the nucleon form
factors.

It is particularly notable that a pure dipole form in Q2 does not, in general, provide
a good fit to the extrapolated lattice simulation results for GE or GM . A dipole-like
fit function, with a more general polynomial in the denominator, fares significantly
better. In fact, by using a dipole-like fit form and taking the experimental values for
the baryon magnetic moments as additional input in Q2-extrapolations of GM , we
are able to perform the first accurate extraction of the magnetic radii of the entire
outer-ring baryon octet. Our analysis suggests that meaningful determinations of the
magnetic moments and radii from lattice QCD alone requires a more careful analysis
than the standard procedure using a pure dipole form in Q2 allows, unless simulations
are performed for very small Q2-valuesmuch less than 0.2GeV2. Analyses similar to
that performed here may reveal that other existing lattice simulations are in fact more
compatible with experiment than the results of the standard calculations indicate.

The connected proton and neutron form factors, extrapolated to the physical
pseudoscalar masses, agree remarkably well with the experimental determinations
of these quantities at all values of Q2 considered. This gives a good indication that
disconnected quark-loop contributions to the nucleon form factors are small relative
to the uncertainties of this calculation. By combining our lattice simulation results
with experimental input, we are able to quantify this claim; we deduce values for the
strange electromagnetic form factors of the proton which are consistent with avail-
able direct measurements of these quantities but span a far larger range of values
of Q2. At Q2 above about 0.6GeV2 our results are the first determinations of the
strange form factors, experimental or based on lattice QCD. Our calculation of the
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strange magnetic moment is an order of magnitude more precise than the closest
experimental result and is non-zero to 2-sigma: Gs

M

(
Q2 = 0

) = 0.07(3)μN .
We also determine the CSV electromagnetic form factors of the nucleon based

on our chiral extrapolations and a best value for the light-quark mass ratio mu/md .
Our results reveal that these quantities are at most 0.2% of the relevant proton form
factors to 1-sigma—an order of magnitude smaller than suggested by previous work.
Until now, the dominant uncertainty in experimental determinations of the strange
proton form factors has come from the assumption that the CSV form factors are
small; by quantifying this assumption, our precise results open the door for a new
generation of experimental tests of QCD through the proton’s strange form factors.
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Chapter 8
Summary and Outlook

The strong-interaction properties of the nucleon are of broad interest; they directly
reveal the structure and interactions of hadrons, inform astrophysics, and are nec-
essary input into models of the evolution of the universe. Moreover, achieving
percent-level precision in StandardModel (SM) expectations for nucleon observables
has become essential in order to interpret modern direct and indirect experimental
searches for new physics. We have investigated the strong-interaction properties of
hadrons, in particular the nucleon, using lattice QCD and chiral effective field theory.
Our focus has been on nucleon strangeness and charge symmetry violation (CSV),
both associated with small deviations from approximate features of the nucleon in
QCD.

Strange-quark effects in the nucleon provide a unique probe of the vacuum; as the
nucleon has no net strangeness, ss pairs can only appear through quantum fluctua-
tions. The contribution of s quarks to themass of the nucleon—encoded in the strange
sigma term—is also relevant to searches for particle dark matter by direct detection.
Our precise new determination of this quantity using the Feynman-Hellmann rela-
tion, σNs = 20(6)MeV, is in line with results from direct lattice QCD simulations.
We have also deduced values for the strange electromagnetic form factors of the
proton based on a comprehensive new lattice study of the octet baryon Sachs form
factors. Our results are consistent with available experimental measurements of these
quantities but span a far larger range of values of the probing momentum scale, Q2.
At Q2 above about 0.6GeV2 ours are the first determinations of the strange form
factors, experimental or based on lattice QCD. Our calculation of the strange mag-
netic moment is an order of magnitude more precise than the closest experimental
result and is non-zero to 2-sigma: Gs

M

(
Q2 = 0

) = 0.07(3)μN . These investigations
present a coherent picture; contributions from strange quarks to both the mass and
electromagnetic form factors of the nucleon appear at the percent-level.

CSV effects are smaller still and affect observables at a scale which is typically
a fraction of a percent. Nevertheless, precise determinations of these quantities are
essential at the level of precision of current experiments searching for physics beyond
the SM. For example, our results reveal that the CSV contributions to the electro-
magnetic form factors of the nucleon are at most 0.2% at 1-sigma—an order of
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magnitude smaller than suggested by previous work. This revelation has removed
the dominant uncertainty in experimental determinations of the proton’s strange form
factors and has hence opened the door for a new generation of tests of QCD. More-
over, we have resolved CSV in the low spin-dependent and spin-independent Mellin
moments of parton distribution functions to be non-zero to 3-sigma, but, again, these
contributions appear only at the level of a fraction of a percent of the total moments.
In particular, CSV corrections to the Bjorken sum rule are approximately 0.5%. This
is an order of magnitude smaller than the uncertainty of the current best experimental
determination but will nevertheless be significant in connection with proposed mea-
surements at a future electron-ion collider. Proper consideration of the small CSV
effects in the spin-independentMellin moments may reduce the 3-sigma discrepancy
with the SM reported by the NuTeV collaboration, in neutrino-nucleus deep inelastic
scattering experiments, by up to 1-sigma.

Our investigation of nucleon CSV effects proceeded using a novel formalism
combining the symmetries of QCD, encoded in the low-energy chiral effective field
theory, with the information gained from studying the entire baryon octet in isospin-
averaged 2+ 1–flavour lattice QCD simulations. In principle this method could con-
strain the light-quarkmass ratio R = mu/md , if the strong and electromagneticmass-
splittings among members of the baryon isospin multiplets were precisely known.
Even at the level of precision of current determinations of these quantities our analy-
sis favours R = 0.553(43) over the slightly smaller number, R = 0.47(4), obtained
from a world-average of lattice simulation results. Clearly, more precise determi-
nations of the strong and electromagnetic CSV effects in the baryon masses are of
considerable interest.

In the course of our study we were also able to calculate a number of other
observables relevant to nucleon and hyperon structure which are of phenomenolog-
ical importance in their own right. Through a detailed analysis of the octet baryon
masses, based on several independent sets of lattice simulations, we determined the
pion-nucleon sigma term: σπN = 46(7)MeV. This result is in complete agreement
with the benchmark experimental value, 45(8)MeV, from an analysis by Gasser,
Leutwyler and Sainio in the early 1990s. Clearly, lattice simulations will be able
to rival experimental precision for this quantity in the near future. Furthermore, our
investigation of the lowest spin-dependent parton distributionmoment can give some
insight into the resolution of the proton spin puzzle: we have revealed that the frac-
tion of spin carried by the quarks in the octet baryons varies, that is, that the quark
spin-fraction is structure-dependent. This result suggests that the spin-suppression
observed in the proton cannot be explained by the axial anomaly alone.

Our complete lattice study of the octet baryon electromagnetic form factors—
including careful consideration of meson mass, finite-volume, and lattice discretisa-
tion effects—allowed a detailed investigation of the hyperon form factors,which have
received little attention in the literature to date. These quantities are of interest both
in their own right and because they provide valuable insight into the environmental
sensitivity of the distribution of quarks inside a hadron. Importantly, we performed
the first accurate extraction of the magnetic radii of the entire outer-ring baryon octet
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from lattice QCD. It is also notable that the precision of our results for the nucleon
form factors, extrapolated to the physical point, rivals experimental measurements.

In summary, we have determined precise new SM values for a number of strong
observables relevant to nucleon and hyperon structure. This investigation has been
guided by experiment. Not only do our results set benchmark values for tests of QCD,
but they provide input for direct searches for physics beyond the SM and inform the
analysis of experimental measurements of poorly-known SM quantities. By com-
bining lattice QCD simulations with chiral effective field theory techniques we have
truly been able to probe QCD in the physically-relevant parameter space. We have
carefully corrected systematic effects in our simulations, such as unphysically-large
meson masses and finite lattice volumes, and have taken advantage of the infor-
mation provided by the baryon octet to investigate SU(3)-flavour–breaking effects.
Most notably, we have developed a formalism for determining nucleon CSV observ-
ables from isospin-averaged 2+ 1–flavour lattice simulations. A coherent picture
has emerged; CSV effects typically appear at the level of a fraction of a percent—an
order of magnitude smaller than most previous estimates. Our study of strange-quark
contributions to nucleon observables has revealed that these are of order 1%.



Appendix A
Formal Details of Heavy Mass Techniques

In this appendix we explicitly derive the heavy-baryon Lagrangian for the interac-
tions of the spin- 12 baryon octet with the octet mesons from the familiar relativistic
expression. For simplicity we omit electromagnetic terms and interactions with the
spin- 32 decuplet; as the effective theory is represented by themost general Lagrangian
consistent with the broken chiral symmetry, it is in most cases simplest to construct
this directly in terms of the heavy-baryon fields. This is the approach which is taken
in Chap.3.

Representing the octet baryons in matrix form, as in Sect. 3.3.2, the standard
relativistic Lagrangian for baryon-meson interactions is

L = B(i /D − MB) + DBγμγ5{Aμ, B} + FBγμγ5
[
AμB

]
. (A.1)

Considering the baryons to be heavy, their four-momenta are expressed as pμ =
MBvμ +kμ, where vμ is a four-velocity satisfying v2 = 1, and kμ is a soft momentum
with v ·k � {MB,�χ}. One can then construct eigenstates of operators which project
the upper and lower components of the Dirac wavefunction, so that

B(x) = e−iMBv·x (H(x) + h(x)) , (A.2)

where

H(x) = eiMBv·x P+B(x), (A.3a)

h(x) = eiMBv·x P−B(x), (A.3b)

and

P± = 1

2
(1 ± /v). (A.4)

In terms of these new fields, the Lagrangian of Eq. (A.1) assumes the form

L = HAH + hBH + Hγ0B†γ0h − hCh. (A.5)
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Using the projection operator identities

P±P∓ = 0, P±P± = P±, P± /DP± = ±v · DP±, P± /DP∓ = /D − /vv · D,

(A.6)
one finds the explicit low-energy expansions

A = iv · D + 2DBSμ{Aμ, B} + 2FBSμ[Aμ, B] + . . . , (A.7a)

B = i( /D − /vv · D) − DBγ5vμ{Aμ, B} − FBγ5vμ[Aμ, B] + . . . , (A.7b)

C = A + 2MB + . . . . (A.7c)

Clearly the two field components H and h are coupled in the Lagrangigan of
Eq. (A.5). This can be resolved via the field-redefinition

h′ = h − C−1BH. (A.8)

In path-integral language it is clear that the ‘heavy’ field h, with a mass parameter
of twice the baryon mass, can be integrated out: the generating functional Z [sources]
is given by

ei Z [sources] = const.
∫

δH δH δh δh exp

(
i
∫

d4x (L + source terms)

)

= const.
∫

δH δH δh δh exp

(
i
∫

d4x
(
H

(A + γ0Bγ0C−1B) H

−h
′Ch′ + source terms

))

= const.
∫

δH δH det(C) exp

(
i
∫

d4x
(
H

(A + γ0Bγ0C−1B) H

+ source terms
))

, (A.9)

where the integrated determinant generates an (uninteresting) overall constant. Fi-
nally,we have derived an effective Lagrangian in terms of the ‘light’ field components
H only:

Leff. = H
(A + (

γ0B†γ0
) C−1B) H. (A.10)

Expanding C−1 in a power series in 1/MB , to leading order, gives the Lagrangian
presented in Eq. (3.29). The first 1/MB corrections are generated by

L(1/MB ) = H
γ0B†γ0B
2MB

H. (A.11)
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Of course, when loop contributions are calculated, a set of counterterms is re-
quired to absorb the various divergences which arise. These are constructed in the
heavy-baryon formalism just as they are in the relativistic framework: by considering
all possible local terms allowed by the symmetry requirements of parity transforma-
tions, charge conjugation, hermitean conjugation, overall Lorentz-invariance, and
invariance under chiral vector and axial-vector transformations.



Appendix B
Definitions and Identities

Here we collate a number of identities and relations which were used to simplify
the expressions which arose in the derivation of the results presented in Chaps. 4, 6,
and 7. As defined in Chap.3, vμ denotes the four-velocity of a heavy baryon, Pauli-
Lubanski spin operators are denoted by Sμ, and Pμν is a spin-polarisation projector
that acts on the decuplet baryon field tensor T μ to project out the positive spin- 12
solutions to the equation of motion.

v · S = 0, S2B = −3

4
B, (B.1)

vμTμ = 0, SμTμ = 0, (B.2)

PμνP λ
ν = −Pμλ, Pμνgμν = −2, (B.3)

PμνSμ = −4

3
Sν, SνP

μν = −4

3
Sμ, (B.4)

{Sλ,Sσ} = 1

2

(
vλvσ − gλσ

)
, Pμν = (vμvν − gμν) − 4

3
SμSν, (B.5)

Pμνvν = Pμνvμ = 0, PμνSν = SμP
μν = 0. (B.6)

Throughout this work we employ a compact notation for field bilinear invariants
which was originally employed by Labrenz and Sharpe in Ref. [1]. In the following
expressions, A is an operator with the transformation properties of the axial current
Aμ, while � is an arbitrary Dirac matrix, e.g., the spin operator Sμ. The octet and
decuplet baryon tensors Bi jk and T μ

i jk are as defined in Eqs. (3.39) and (3.32).
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(
B�B

) ≡ B
α

k ji�
β
αBi jk,β, (B.7)

(
B�AB

) ≡ B
α

k ji�
β
αAii ′ Bi ′ jk,β, (B.8)

(
B�BA

) ≡ B
α

k ji�
β
αAkk ′ Bi jk ′,β × (−1)(i+ j)(k+k ′), (B.9)

(
B�AμTμ

) ≡ B
α

k ji�
β
αA

μ
i i ′T

β
μ,i ′ jk, (B.10)(

T
μ
�Tμ

)
≡ T

μ

k ji,α�α
βT

β
μ,i jk, (B.11)

(
T

μ
�AνTμ

)
≡ T

μ

k ji,α�α
β A

ν
i i ′T

β
μ,i ′ jk . (B.12)
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Appendix C
Derivations for Chapter 3

In this appendix we give the details of several derivations relevant to the discussion
of Chap.3.

C.1 Loop Integral Transform

Here we show the simplification of a loop integral required in Sect. 3.6.

I =
∫

d4k

(2π)4

ki k j
(k0 − iε)(k2 − m2 + iε)

=
∫

d3�k
(2π)4

∫
dk0

ki k j
(k0 − iε)(k2 − m2 + iε)

=
∫

d3�k
(2π)4

∫
dk0

ki k j
(k0 − iε)(k0 − ω + iε)(k0 + ω − iε)

, where ω =
√

�k2 + m2,

= −(2πi)
∫

d3�k
(2π)4

{
ki k j

k0(k0 + w)

∣∣∣∣
k0=ω

}

= −(2πi)
∫

d3�k
(2π)4

{
ki k j
2ω2

}

= −i
∫

d3�k
(2π)3

{
ki k j

2(�k2 + m2)

}

= −i
δi j

6

∫
d3�k

(2π)3

�k2
�k2 + m2

= −i
2πδi j

3

∫ ∞
0

dk

(2π)3
k4

k2 + m2 . (C.1)
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C.2 Example of Finite-Volume Correction

Here we explicitly derive the finite-volume correction expression presented in
Sect. 3.6. We consider the integral of Eq. (3.55), with a dipole regulator in the FRR
scheme:

I dip.π = 2

π

∫
dk

k4

k2 + m2

(
�2

�2 + k2

)

= 1

2π2

∫
d3k

k2

k2 + m2

(
�2

�2 + k2

)
. (C.2)

The finite-volume correction to the associated loop-integral expression can be
modeled as

δL

(
I dip.π

)
= 1

2π2

⎡
⎣ (2π)3

L3

∑
�k

k2

k2 + m2

(
�2

�2 + k2

)4

−
∫

d3k
k2

k2 + m2

(
�2

�2 + k2

)4
⎤
⎦

= 1

2π2

⎡
⎣ (2π)3

L3

∑
�k

(
�2

�2 + k2

)4

−
∫

d3k

(
�2

�2 + k2

)4
⎤
⎦

+ 1

2π2

⎡
⎣ (2π)3

L3

∑
�k

−m2

k2 + m2

(
�2

�2 + k2

)4

−
∫

d3k
−m2

k2 + m2

(
�2

�2 + k2

)4
⎤
⎦

= 4π�8

⎡
⎣ 1

L3

∑
�k

(
1

k2 + �2

)4

−
∫

d3k

(2π)3

(
1

k2 + �2

)4
⎤
⎦

− 4πm2�8

⎡
⎣ 1

L3

∑
�k

1

(k2 + m2)(k2 + �2)4
−

∫
d3k

(2π)3

1

(k2 + m2)(k2 + �2)4

⎤
⎦ .

(C.3)

The final step is to use Feynman parameters to express the second term in the ex-
pression in the standard form:

1

(k2 + m2)(k2 + �2)4
= 4

∫ 1

0
dx

(1 − x)3(
x(k2 + m2) + (1 − x)(k2 + �2)

)5

= 4
∫ 1

0
dx

(1 − x)3(
k2 + xm2 + (1 − x)�2

)5 , (C.4)

giving the result stated in Sect. 3.7:

δL

(
I dip.π

)
= 4π�8δL (�, 4) − 16πm2�8

∫ 1

0
dx(1 − x)3δL

(√
xm2 + (1 − x)�2, 5

)
. (C.5)
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Appendix D
Tables of Chiral Coefficients

The tables in this appendix give explicit expressions for the various chiral coefficients
used in this body of work, particularly in Chaps. 6 and 7. Coefficients which vanish
are either omitted from the tables, or their positions are left blank.

D.1 Strong Interaction Vertices

TablesD.1, D.2, D.3, D.4, D.5, D.6, D.7, D.8, D.9, D.10, D.11, D.12, D.13 and D.14
give the Clebsch-Gordan coefficients CBB ′φ and CBTφ (defined in Eqs. (3.40d) and
(3.40e)), which correspond to leading-order strong interaction vertices coupling an
octet-baryon to octet-baryon or octet-baryon to decuplet-baryon through the emis-
sion of a meson. These vertices are illustrated in Fig. 3.1(a), (b). The coefficients
are expressed in terms of the parameters D, F , and C, which are defined in the
Lagrangians of Eqs. (3.29) and (3.37) in Chap. 3.

D.2 Twist-Two Operator Insertion Vertices

The Clebsch-Gordan coefficients corresponding to insertions of the twist-two op-
erators relevant to our exploration of parton distribution moments in Chap.6 are
given in TablesD.15, D.16, D.17, D.18, D.19, D.20, D.21, D.22, D.23 and D.24.
The coefficients are defined in Eqs. (6.17) and (6.18), and the associated vertices are
illustrated in Fig. 6.1. Superscripts (n) on every coefficient C and on every unknown
parameter α, β, σ, and bi (defined in the Lagrangians derived in Sect. 6.2) have been
suppressed for clarity of notation. We have displayed the coefficient tables for the
spin-independent case only; the spin-dependent coefficients are recovered by the
trivial re-labelling α(n) → �α(n) etc. The labels ‘Doubly’, ‘Singly’, ‘Triply’, and
‘Other’ denote the status of the indicated quark flavour in the baryon B or T , i.e.,
whether it is the doubly, singly or triply-represented quark, or does not appear at all.
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Table D.1 Clebsch-Gordan coefficients for the leading-order strong coupling of octet baryons B
and B ′ through the emission of the pseudoscalar meson π+

CBB′π+

B

B ′ p � �0 �+ �0

n 2(D + F)

� 2
√

2
3 D

�0 −2
√
2F

�− 2
√

2
3 D 2

√
2F

�− 2(D − F)

Table D.2 Clebsch-Gordan coefficients for the leading-order strong coupling of octet baryons B
and B ′ through the emission of the pseudoscalar meson π−

CBB′π−

B

B ′ n � �0 �− �−

p 2(D + F)

� 2
√

2
3 D

�0 2
√
2F

�+ 2
√

2
3 D −2

√
2F

�0 2(D − F)

Table D.3 Clebsch-Gordan coefficients for the leading-order strong coupling of octet baryons B
and B ′ through the emission of the pseudoscalar meson K 0

CBB′K 0

B

B ′ p n � �0 �−

� −
√

2
3 (D + 3F)

�0
√
2(F − D)

�+ 2(D − F)

�0 −
√

2
3 (D − 3F) −√

2(D + F)

�− 2(D + F)
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Table D.4 Clebsch-Gordan coefficients for the leading-order strong coupling of octet baryons B
and B ′ through the emission of the pseudoscalar meson K+

CBB′K+

B

B ′ p n � �0 �+

� −
√

2
3 (D + 3F)

�0
√
2(D − F)

�− 2(D − F)

�0 2(D + F)

�− −
√

2
3 (D − 3F)

√
2(D + F)

Table D.5 Clebsch-Gordan coefficients for the leading-order strong coupling of octet baryons B
and B ′ through the emission of the pseudoscalar meson K−

CBB′K−

B

B ′ � �0 �− �0 �−

p −
√

2
3 (D + 3F)

√
2(D − F)

n 2(D − F)

� −
√

2
3 (D − 3F)

�0
√
2(D + F)

�+ 2(D + F)

Table D.6 Clebsch-Gordan coefficients for the leading-order strong coupling of octet baryons B

and B ′ through the emission of the pseudoscalar meson K
0

C
BB′K 0

B

B ′ � �0 �+ �0 �−

p 2(D − F)

n −
√

2
3 (D + 3F)

√
2(F − D)

� −
√

2
3 (D − 3F)

�0 −√
2(D + F)

�− 2(D + F)
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Ta
bl
e
D
.7
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ch
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or
da
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ie
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th
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or
de
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co
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oc
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an
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gh

th
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si
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th
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eu
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sc
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ar
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s
π
0

an
d

η
.T

he
π
0
–η

m
ix
in
g
pa
ra
m
et
er

ε
is
de
fin

ed
in

E
q.

(4
.5
)

C
B
B

′ φ
φ

B
B

′
π
0

η

p
p

1 3

√ 2
( 3(

D
+

F
)
co
sε

−
√ 3(

D
−

3
F

)
si
n

ε)
−1 3

√ 2
( √

3(
D

−
3
F

)
co
sε

+
3(
D

+
F

)
si
n

ε)

nn
−1 3

√ 2
( 3(

D
+

F
)
co
sε

+
√ 3(

D
−

3
F

)
si
n

ε)
√ 2(

D
+

F
)
si
n

ε
−

√
2 3
(
D

−
3
F

)
co
sε

�
�

−2
√

2 3
D
si
n

ε
−2

√
2 3
D
co
sε

�
�

0
2√

2 3
D
co
sε

−2
√

2 3
D
si
n

ε

�
0
�

0
2√

2 3
D
si
n

ε
2√

2 3
D
co
sε

�
+ �

+
2√ 2

F
co
sε

+
2√

2 3
D
si
n

ε
2√

2 3
D
co
sε

−
2√ 2

F
si
n

ε

�
− �

−
2√

2 3
D
si
n

ε
−

2√ 2
F
co
sε

2√
2 3
D
co
sε

+
2√ 2

F
si
n

ε

�
0
�

0
−1 3

√ 2
( 3(

D
−

F
)
co
sε

+
√ 3(

D
+

3
F

)
si
n

ε)
−1 3

√ 2
( √

3(
D

+
3
F

)
co
sε

+
3(
F

−
D

)
si
n

ε)

�
− �

−
1 3

√ 2
( 3(

D
−

F
)
co
sε

−
√ 3(

D
+

3
F

)
si
n

ε)
−1 3

√ 2
( √

3(
D

+
3
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)
co
sε

+
3(
D

−
F

)
si
n

ε)
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Table D.8 Clebsch-Gordan coefficients for the leading-order strong coupling of an octet baryon
B to a decuplet baryon T through the emission of the pseudoscalar meson π+

CBTπ+ × C−1

B

T p n � �0 �+ �0

�0 1√
3

�− 1

�∗0 − 1√
6

�∗− − 1√
2

1√
6

�∗− − 1√
3

Table D.9 Clebsch-Gordan coefficients for the leading-order strong coupling of an octet baryon
B to a decuplet baryon T through the emission of the pseudoscalar meson π−

CBTπ− × C−1

B

T p n � �0 �− �−

�++ −1

�+ − 1√
3

�∗0 1√
6

�∗+ 1√
2

1√
6

�∗0 1√
3

Table D.10 Clebsch-Gordan coefficients for the leading-order strong coupling of an octet baryon
B to a decuplet baryon T through the emission of the pseudoscalar meson K 0

CBT K 0 × C−1

B

T p n � �0 �− �−

�∗0 − 1√
6

�∗+ − 1√
3

�∗0 1√
2

1√
6

�∗− 1√
3

�− 1

D.3 Electromagnetic Form Factor Extrapolation

In TablesD.25, D.26, D.27, D.28, D.29, D.30, D.31, D.32, D.33, D.34, D.35, D.36
and D.37 we present expressions for the coefficients αBq , αBq(q ′), and β

Bq(φ)

O/D/T which
appear in the chiral extrapolation expressions for themagnetic and electric Sachs form
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Table D.11 Clebsch-Gordan coefficients for the leading-order strong coupling of an octet baryon
B to a decuplet baryon T through the emission of the pseudoscalar meson K+

CBT K+ × C−1

B

T p n � �0 �+ �0

�∗0 1√
6

�∗− 1√
3

�∗0 − 1√
3

�∗− − 1√
2

1√
6

�− −1

Table D.12 Clebsch-Gordan coefficients for the leading-order strong coupling of an octet baryon
B to a decuplet baryon T through the emission of the pseudoscalar meson K−

CBT K− × C−1

B

T �0 �+ �− �0 �−

�++ 1

�+ −
√

2
3

�0 − 1√
3

�∗0 − 1√
6

�∗+ 1√
3

Table D.13 Clebsch-Gordan coefficients for the leading-order strong coupling of an octet baryon

B to a decuplet baryon T through the emission of the pseudoscalar meson K
0

C
BT K

0 × C−1

B

T �0 �+ �− �0 �−

�+ 1√
3

�0 −
√

2
3

�− −1

�∗0 1√
6

�∗− − 1√
3

factors, Eqs. (7.30) and (7.39), derived in Chap. 7. These parameters take the same
form in terms of the undetermined chiral-limit form factors cE/M

i and μα/β/γ (defined
in Sect. 7.3.2) for the magnetic and electric form factors (under the replacements
μF → bF and μD → bD for GE ). Of course, the numerical values of the chiral-limit
form factors differ not only for the electric and magnetic cases, but at each fixed

http://dx.doi.org/10.1007/978-3-319-31438-9_7
http://dx.doi.org/10.1007/978-3-319-31438-9_7
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Table D.14 Clebsch-Gordan coefficients for the leading-order strong coupling of an octet baryon
B to a decuplet baryon T through the emission of the pseudoscalar meson π0 or η. The π0–η mixing
parameter ε is defined in Eq. (4.5)

CBTφ × C−1

φ

BT π0 η

p�+
√

2
3 cos ε −

√
2
3 sin ε

n�0
√

2
3 cos ε −

√
2
3 sin ε

��∗0 − 1√
2
cos ε 1√

2
sin ε

�0�∗0 1√
2
sin ε 1√

2
cos ε

�+�∗+ − 1√
6

(
cos ε + √

3 sin ε
)

1√
6

(
sin ε − √

3 cos ε
)

�−�∗− 1√
6

(√
3 sin ε − cos ε

)
1√
6

(√
3 cos ε + sin ε

)

�0�∗0 − 1√
6

(
cos ε + √

3 sin ε
)

1√
6

(
sin ε − √

3 cos ε
)

�−�∗− 1√
6

(√
3 sin ε − cos ε

)
1√
6

(√
3 cos ε + sin ε

)

Table D.15 Clebsch-Gordan coefficients for the leading-order interaction of the twist-two operator
defined in Eq. (6.4a) with an outer-ring octet baryon B. Labels ‘Doubly’, ‘Singly’, and ‘Other’
indicate whether the quark flavour q is doubly, singly, or not at all represented in B

CBBOq

Doubly Singly Other
1
6 (5α + 2β + 6σ) 1

6 (α + 4β + 6σ) σ

Table D.16 Clebsch-Gordan coefficients for the leading-order interaction of the twist-two operator
defined in Eq. (6.4a) with the � and �0 baryons

CBB′Oq

q

BB ′ u d s

�� 1
4 (α + 2β + 4σ) 1

4 (α + 2β + 4σ) 1
2 (α + 2σ)

��0 1
4
√
3
(α − 2β) − 1

4
√
3
(α − 2β)

�0�0 1
12 (5α + 2β + 12σ) 1

12 (5α + 2β + 12σ) 1
6 (α + 4β + 6σ)

value of Q2 at which the extrapolation is applied. As above, the labels ‘Doubly’,
‘Singly’, and ‘Other’ indicatewhether the quark q ′ or q is doubly-represented, singly-
represented, or not at all represented in the baryon B.

http://dx.doi.org/10.1007/978-3-319-31438-9_4
http://dx.doi.org/10.1007/978-3-319-31438-9_6
http://dx.doi.org/10.1007/978-3-319-31438-9_6
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Table D.17 Clebsch-Gordan coefficients for the O(mq ) counterterms relevant to effective matrix
elements of the twist-two operator defined in Eq. (6.4a). Labels ‘Doubly’, ‘Singly’, and ‘Other’
indicate whether the quark flavours q and q ′ are doubly, singly, or not at all represented in the
outer-ring octet baryon B

CBBOqM × m−1
q ′

q ′ q

Doubly

Doubly −b1 + b2 − b3 + b4 + b5 + b7 + b9
Singly b7
Other b1 + b2 + b3 + b4 + b7 + b8

Singly

Doubly b9
Singly b5
Other b8

Other

Doubly b1 − b2 − b3 + b4 + b6 + b9
Singly b6
Other −b1 − b2 + b3 + b4 + b5 + b6 + b8

Table D.18 Clebsch-Gordan coefficients for the O(mq ) counterterms relevant to effective matrix
elements of the twist-two operator defined in Eq. (6.4a) in � baryon external states

C��OqM × m−1
q ′

q

q ′ u d

u 1
6 (b10 + 4b4 + 6b5 + b6 + b7 + b8 + b9)

1
6 (b10+b6+b7+
b8 + b9)

d 1
6 (b10 + b6 + b7 + b8 + b9)

1
6 (b10 + 4b4 +
6b5 + b6 + b7 +
b8 + b9)

s 1
6 (−2b10 + b6 + b7 + 4b8 + 4b9) 1

6 (−2b10 + b6 +
b7 + 4b8 + 4b9)

s

u 1
6 (−2b10 + 4b6 + 4b7 + b8 + b9)

d 1
6 (−2b10 + 4b6 + 4b7 + b8 + b9)

s 1
3 (2b10 + 8b4 + 3b5 + 2b6 + 2b7 + 2b8 + 2b9)

Table D.19 Clebsch-Gordan coefficients for the O(mq ) counterterms relevant to effective matrix
elements of the twist-two operator defined in Eq. (6.4a) in �0 baryon external states

C�0�0OqM × m−1
q ′

q

q ′ u d s

u 1
2 (b10+4b4+2b5+b6+b7+b8+b9)

1
2 (−b10 + b6 + b7 + b8 + b9)

1
2 (b8 + b9)

d 1
2 (−b10+b6+b7+b8+b9)

1
2 (b10 + 4b4 + 2b5 + b6 + b7 + b8 + b9)

1
2 (b8 + b9)

s 1
2 (b6 + b7)

1
2 (b6 + b7) b5

http://dx.doi.org/10.1007/978-3-319-31438-9_6
http://dx.doi.org/10.1007/978-3-319-31438-9_6
http://dx.doi.org/10.1007/978-3-319-31438-9_6
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TableD.20 Clebsch-Gordan coefficients for the coupling of the u-quark twist-two operator defined
in Eq. (6.4a) to the octet baryon B through the emission of two mesons

CBBφφ′Ou

φφ′

B π+π− K+K−

p 1
3 (β − 2α) 1

6 (−5α − 2β)

n 1
3 (2α − β) 1

6 (−α − 4β)

� 1
4 (α − 2β)

�0 1
4 (2β − α)

�+ 1
6 (−5α − 2β) 1

3 (β − 2α)

�− 1
6 (5α + 2β) 1

6 (α + 4β)

�0 1
6 (−α − 4β) 1

3 (2α − β)

�− 1
6 (α + 4β) 1

6 (5α + 2β)

TableD.21 Clebsch-Gordan coefficients for the coupling of the d-quark twist-two operator defined
in Eq. (6.4a) to the octet baryon B through the emission of two mesons

CBBφφ′Od

φφ′

B π+π− K 0K
0

p 1
3 (2α − β) 1

6 (−α − 4β)

n 1
3 (β − 2α) 1

6 (−5α − 2β)

� 1
4 (α − 2β)

�0 1
4 (2β − α)

�+ 1
6 (5α + 2β) 1

6 (α + 4β)

�− 1
6 (−5α − 2β) 1

3 (β − 2α)

�0 1
6 (α + 4β) 1

6 (5α + 2β)

�− 1
6 (−α − 4β) 1

3 (2α − β)

Table D.22 Clebsch-Gordan coefficients for the coupling of the s-quark twist-two operator defined
in Eq. (6.4a) to the octet baryon B through the emission of two mesons

CBBφφ′Os

φφ′

B K 0K
0

K+K−

p 1
6 (α + 4β) 1

6 (5α + 2β)

n 1
6 (5α + 2β) 1

6 (α + 4β)

� 1
4 (2β − α) 1

4 (2β − α)

�0 1
4 (α − 2β) 1

4 (α − 2β)

�+ 1
6 (−α − 4β) 1

3 (2α − β)

�− 1
3 (2α − β) 1

6 (−α − 4β)

�0 1
6 (−5α − 2β) 1

3 (β − 2α)

�− 1
3 (β − 2α) 1

6 (−5α − 2β)

http://dx.doi.org/10.1007/978-3-319-31438-9_6
http://dx.doi.org/10.1007/978-3-319-31438-9_6
http://dx.doi.org/10.1007/978-3-319-31438-9_6
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Table D.23 Clebsch-Gordan coefficients for the leading-order interaction of the twist-two operator
defined in Eq. (6.4a) with a decuplet baryon T . Labels ‘Doubly’, ‘Singly’, and ‘Triply’ indicate
whether the quark flavour q is doubly, singly, or triply-represented in T . The low-energy constants
γ and γ′ are defined in Eq. (6.11)

CTT Oq × 3
(
γ − γ′

3

)−1

Singly 1

Doubly 2

Triply 3

Table D.24 Clebsch-Gordan coefficients for the transition between an octet baryon B and decuplet
baryon T via an insertion of the twist-two operator defined in Eq. (6.4b). The low-energy constant
ω is defined in Eq. (6.16)

CBT O�q × ω−1

q

BT u d s

p�+ 1√
3

− 1√
3

n�0 1√
3

− 1√
3

��∗0 − 1
2

1
2

�0�∗0 1
2
√
3

1
2
√
3

− 1√
3

�+�∗+ − 1√
3

1√
3

�−�∗− 1√
3

− 1√
3

�0�∗0 − 1√
3

1√
3

�−�∗− 1√
3

− 1√
3

Table D.25 Expressions for the coefficients αBq which appear in the chiral expansion for the
magnetic Sachs form factor GM (Eq. (7.30)). The labels ‘Doubly’ and ‘Singly’ indicate whether
the quark flavour q is doubly or singly-represented in the outer-ring octet baryon B

αBq

Doubly Singly

2μF μF − μD

Table D.26 Expressions for the chiral coefficients αBq , defined in Eq. (7.30), for the � and �0

baryons

αBq

q

B u d s

� μF − 2μD
3 μF − 2μD

3
μD
3 + μF

�0 μF μF μF − μD

http://dx.doi.org/10.1007/978-3-319-31438-9_6
http://dx.doi.org/10.1007/978-3-319-31438-9_6
http://dx.doi.org/10.1007/978-3-319-31438-9_6
http://dx.doi.org/10.1007/978-3-319-31438-9_6
http://dx.doi.org/10.1007/978-3-319-31438-9_7
http://dx.doi.org/10.1007/978-3-319-31438-9_7
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Table D.27 Coefficients of terms in the chiral expansion for the magnetic Sachs form factor GM
(Eq. (7.30)) which are linear in the quarkmasses. The labels ‘Doubly’, ‘Singly’, and ‘Other’ indicate
whether the quark flavour q or q ′ is doubly, singly, or not at all represented in the outer-ring octet
baryon B

αBq(q ′)

q

mq ′ Doubly

mDoubly
1
6 (c10 + c11 + c12 + 18c3 + 45c4 + 2c5 + 5c6 + c9)

mSingly
1
6 (−2c10 + c11 − 2c12 + 18c3 + 45c4 + 4c9)

mOther
1
2 (6c3 + 15c4)

Singly

mDoubly
1
6 (−2c10 + 4c11 − 2c12 + 36c3 + 9c4 + c9)

mSingly
1
6 (36c3 + 9c4 + 4c5 + c6)

mOther
3
2 (4c3 + c4)

Table D.28 Coefficients of terms in the chiral expansion for the magnetic Sachs form factor of the
� baryon (Eq. (7.30)) which are linear in the quark masses

α�q(q ′)

q

mq ′ u

mu
1
4 (18c3 + 9c4 + 2c5 + c6)

md
1
4 (−c12 − c10 + c11 + 18c3 + 9c4 + c9)

ms
1
4 (c11 + 9(2c3 + c4))

d

mu
1
4 (−c12 − c10 + c11 + 18c3 + 9c4 + c9)

md
1
4 (18c3 + 9c4 + 2c5 + c6)

ms
1
4 (c11 + 9(2c3 + c4))

s

mu
1
4 (18c4 + c9)

md
1
4 (18c4 + c9)

ms
1
2 (9c4 + c6)

http://dx.doi.org/10.1007/978-3-319-31438-9_7
http://dx.doi.org/10.1007/978-3-319-31438-9_7
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Table D.29 Coefficients of terms in the chiral expansion for the magnetic Sachs form factor of the
�0 baryon (Eq. (7.30)) which are linear in the quark masses

α�0q(q ′)

q

mq ′ u

mu
1
12 (18c3 + 45c4 + 2c5 + 5c6)

md
1
12 (c10 + c11 + c12 + 18c3 + 45c4 + c9)

ms
1
12 (−2c10 + c11 − 2c12 + 18c3 + 45c4 + 4c9)

d

mu
1
12 (c10 + c11 + c12 + 18c3 + 45c4 + c9)

md
1
12 (18c3 + 45c4 + 2c5 + 5c6)

ms
1
12 (−2c10 + c11 − 2c12 + 18c3 + 45c4 + 4c9)

s

mu
1
12 (−2c10 + 4c11 − 2c12 + 72c3 + 18c4 + c9)

md
1
12 (−2c10 + 4c11 − 2c12 + 72c3 + 18c4 + c9)

ms
1
6 (36c3 + 9c4 + 4c5 + c6)

Table D.30 Coefficients of terms in the chiral expansion for the magnetic Sachs form factor
(Eq. (7.30)) corresponding to loop contributions with octet baryon intermediate states. The labels
‘Doubly’, ‘Singly’, and ‘Other’ indicate whether the quark flavour q is doubly, singly, or not at all
represented in the outer-ring octet baryon B

β
Bq(φ)
O

q

B−1mφ Doubly Singly

mDoubly + mSingly 4
(
D2 + F2

) − 2
3

(
D2 + 6DF − 3F2

)

mSingly + mOther 2(D − F)2

mDoubly + mOther
4
3

(
D2 + 3F2

)

2mDoubly
4
3

(
D2 + 3F2

)

2mSingly 2(D − F)2

Table D.31 Coefficients of terms in the chiral expansion for the magnetic Sachs form factor of the
� baryon (Eq. (7.30)) corresponding to loop contributions with octet baryon intermediate states

β
�q(φ)
O

q

B−1mφ u d

mu + md
2
9

(
7D2 − 12DF + 9F2

) 2
9

(
7D2 − 12DF + 9F2

)

md + ms
2
9

(
D2 − 12DF + 9F2

)

mu + ms
2
9

(
D2 − 12DF + 9F2

)

2mu
2
9

(
7D2 − 12DF + 9F2

)

2md
2
9

(
7D2 − 12DF + 9F2

)

s

md + ms
2
9

(
7D2 + 6DF + 9F2

)

mu + ms
2
9

(
7D2 + 6DF + 9F2

)

2ms
2
9 (D + 3F)2

http://dx.doi.org/10.1007/978-3-319-31438-9_7
http://dx.doi.org/10.1007/978-3-319-31438-9_7
http://dx.doi.org/10.1007/978-3-319-31438-9_7
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Table D.32 Coefficients of terms in the chiral expansion for the magnetic Sachs form factor of the
�0 baryon (Eq. (7.30)) corresponding to loop contributions with octet baryon intermediate states

β
�0q(φ)
O

q

B−1mφ u d s

mu + md
2
3

(
D2 + 3F2

) 2
3

(
D2 + 3F2

)

md + ms 2
(
D2 + F2

) 2
3

(
D2 − 6DF + 3F2

)

mu + ms 2
(
D2 + F2

) 2
3

(
D2 − 6DF + 3F2

)

2mu
2
3

(
D2 + 3F2

)

2md
2
3

(
D2 + 3F2

)

2ms 2(D − F)2

Table D.33 Coefficients of terms in the chiral expansion for the magnetic Sachs form factor
(Eq. (7.30)) corresponding to loop contributions with decuplet baryon intermediate states. The
labels ‘Doubly’, ‘Singly’, and ‘Other’ indicate whether the quark flavour q is doubly, singly, or not
at all represented in the outer-ring octet baryon B

β
Bq(φ)
D × C−2

q

B−1mφ Doubly Singly

mDoubly + mSingly
2
9 − 5

9

mSingly + mOther − 2
9

mDoubly + mOther − 1
9

2mDoubly − 1
9

2mSingly − 2
9

Table D.34 Coefficients of terms in the chiral expansion for the magnetic Sachs form factor of the
� baryon (Eq. (7.30)) corresponding to loop contributions with decuplet baryon intermediate states

β
�q(φ)
D × C−2

q

B−1mφ u d s

mu + md − 1
6 − 1

6

md + ms − 1
3

1
6

mu + ms − 1
3

1
6

2mu − 1
6

2md − 1
6

http://dx.doi.org/10.1007/978-3-319-31438-9_7
http://dx.doi.org/10.1007/978-3-319-31438-9_7
http://dx.doi.org/10.1007/978-3-319-31438-9_7
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Table D.35 Coefficients of terms in the chiral expansion for the magnetic Sachs form factor of
the �0 baryon (Eq. (7.30)) corresponding to loop contributions with decuplet baryon intermediate
states

β
�0q(φ)
D × C−2

q

B−1mφ u d s

mu + md − 1
18 − 1

18

md + ms
1
9 − 7

18

mu + ms
1
9 − 7

18

2mu − 1
18

2md − 1
18

2ms − 2
9

Table D.36 Coefficients of terms in the chiral expansion for the electric Sachs form factor
(Eq. (7.39)) corresponding to tadpole-loop contributions. The labels ‘Doubly’, ‘Singly’, and ‘Other’
indicate whether the quark flavour q is doubly, singly, or not at all represented in the outer-ring
octet baryon B

β
Bq(φ)
T

q

mφ Doubly Singly

mDoubly + mSingly 2 1

mSingly + mOther 1

mDoubly + mOther 2

2mDoubly 2

2mSingly 1

Table D.37 Coefficients of terms in the chiral expansion for the electric Sachs form factor of the
� or �0 baryon (Eq. (7.39)) corresponding to tadpole-loop contributions

β
Bq(φ)
T

q

mφ u d s

mu + md 1 1

md + ms 1 1

mu + ms 1 1

2mu 1

2md 1

2ms 1

http://dx.doi.org/10.1007/978-3-319-31438-9_7
http://dx.doi.org/10.1007/978-3-319-31438-9_7
http://dx.doi.org/10.1007/978-3-319-31438-9_7


Appendix E
Deep Inelastic Scattering and the Operator
Product Expansion

Here we sketch the connection between inclusive deep inelastic scattering (DIS),
hadron structure functions, and parton distribution functions (PDFs). We focus in
particular on the use of the operator product expansion to separate the hard (per-
turbative) and soft (nonperturbative) physics, and the relation of PDFs to matrix
elements of local operators which is the result used in Chap. 6. Further details can
be found in Ref. [1].

E.1 DIS and the Compton Forward Scattering Amplitude

At lowest order in perturbation theory, the double-differential cross section for DIS of
polarised leptons on polarised nucleons can be factorised into leptonic and hadronic
components:

d2σ

dx dy
= 2πyα2

Q4

∑
j

η j L
μν
j W j

μν . (E.1)

Here x = Q2/2Mν, where q is the four-momentum transferred to the nucleon
through the virtual gauge boson with Q2 = −q2 > 0, ν is the lepton’s energy
loss in the nucleon’s rest frame, and y = ν/E . The summation in j is over the
exchanged bosons (γ and Z for neutral-current processes, W for charged-current
processes), and the factors η j denote ratios of the corresponding propagators and
couplings to the photon propagator and coupling (squared). The lepton tensor Lμν

encodes the couplingof the exchangedboson to the leptons and is explicitly calculable
in electroweak theory. The hadronic tensor, on the other hand, encodes all of the
internal structure of the nucleon that is probed by the electroweak currents. It may
be expressed as

Wμν(q, p, S) = 1

4π

∫
d4z eiq·z 〈p, S ∣∣[J †

μ (z), Jν(0)
]∣∣ p, S〉 , (E.2)
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where p and S denote the momentum and polarisation vector of the nucleon, re-
spectively, and p · S = 0. The hadronic currents, Jμ(z), are electromagnetic or
weak quark currents which couple to the exchanged gauge boson. For example, the
electromagnetic hadronic current is

J (γ)
μ (z) =

∑
q

eqψq(z) γμ ψq(z), (E.3)

where the sum runs over all quark flavours q .
The hadronic tensor can be decomposed into a sum of distinct Lorentz tensor

structures multiplied by dimensionless quantities, known as structure functions, ac-
companied only by kinematic variables. This decomposition is given explicitly in
Ref. [1]. Of interest to us here is the relationship between moments of these structure
functions and a series of nucleon matrix elements of local operators composed of
quark and gluon fields. To derive this relationship using the operator product ex-
pansion it is useful to consider the virtual Compton forward scattering amplitude,
defined by the time-ordered product of hadronic currents:

Tμν(q, p, S) = i
∫

d4z eiq·z 〈p, S ∣∣T J †
μ (z)Jν(0)

∣∣ p, S〉 . (E.4)

By the optical theorem, this quantity is related to the hadronic tensor by

Wμν(q, p, S) = 1

2π
�Tμν(q, p, S), (E.5)

i.e., considered as a function of q2 and ω = 1/x , Wμν is given by the discontinuity
of Tμν across the branch cuts in the complex plane for ω (which lie on the real axis
where −∞ < ω ≤ −1 and 1 ≤ ω < ∞). The operator product expansion described
in the next section uses the result that the leading Q2-behaviour ofWμν is determined
by the light-cone singularities of the time ordered product of currents in Tμν .

E.2 The Operator Product Expansion

Wilson’s operator product expansion gives a factorisation of the hadronic tensor into
hard and soft components by a formal expansion of the product of hadronic currents
in coordinate space and a systematic analysis of its light-cone behaviour. Explicitly,
the time-ordered product of hadronic currents can be expanded near the light-cone as

iT J †(z)J (0)
z2→0≈

∑
i

C (i)
(
z2
) O(i)(z, 0), (E.6)
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where Lorentz indices have been suppressed for clarity. The Wilson coefficients
C (i)

(
z2
)
are complex-valued functions which are, in general, singular for z2 → 0.

The sum runs over all bilocal operators O(z, 0) with the same quantum numbers
and transformation properties as the product of currents on the left hand side. The
expansion can be further re-written in terms of local operators by a Taylor expansion
about z2 = 0:

iT J †(z)J (0)
z2→0≈

∑
i

C (i)
n

(
z2
)
zμ1 · · · zμnO(i)

μ1···μn
(0). (E.7)

Because components of z might be large even where z2 → 0, all higher-order terms
in this expansion are important. The set of local operators chosen here is generally
taken to be totally symmetric and traceless in the Lorentz indices, in order to project
onto definite spin n. The singular behaviour of the coefficient functions C (i)

(
z2
)
for

z2 → 0 can be derived by naive dimensional counting to be

C (i)
(
z2
) z2→0∼

(
1

|z|
)2dJ−

(
d(i)
n −n

)

. (E.8)

Here d(i)
n denotes the mass-dimension of the local operators O, and dJ that of the

currents. Clearly, for a given product of currents, the singular behaviour of the co-
efficient functions C (i)

(
z2
)
scales with the difference of the mass dimension and

spin of the associated operators. This dimension is named twist: τ (i)
n = d(i)

n − n,
and the operators with the lowest twist are dominant in the Bjorken limit (where Q2

and ν → ∞ with x fixed). As operators are at least bilinear in the parton fields, the
smallest possible twist is two. Higher-twist contributions are suppressed by powers
of Q2.

Re-writing the Compton amplitude T (Eq. (E.4)) using the operator product ex-
pansion, the dominant contributions are thus

T ≈
∑
i,n

∫
d4x qiq·z C (i)

n

(
z2
)
zμ1 · · · zμn

〈
p
∣∣O(i)

μ1···μn
(0)

∣∣ p〉 (E.9)

≈
∑
i,n

(
2

Q2

)n

C (i)
n

(
Q2

)
qμ1 · · · qμn

〈
p
∣∣O(i)

μ1···μn
(0)

∣∣ p〉 − Tr. (E.10)

Here we have simplified the notation by dropping Lorentz indices on the currents and
suppressing any spin-dependence. The symbol Tr denotes trace terms proportional
to gμiμ j . The coefficient functions C

(i)
n

(
Q2

)
are essentially Fourier transforms of the

C (i)
n

(
z2
)
. Parameterising the matrix elements of the local operators as

〈
p
∣∣O(i)

μ1···μn
(0)

∣∣ p〉 = 2O(i)
n

(
pμ1 · · · pμn − Tr

)
, (E.11)
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the Compton forward scattering amplitude thus becomes a Laurent series in (1/x):

T = 2
∑
i,n

C (i)
n (Q2) O(i)

n

(
1

x

)n

+ . . . , (E.12)

where the ellipsis denotes the contributions from higher-twist terms. The reduced
matrix elements O(i)

n generally depend on the renormalisation scale μ2 of the corre-
sponding operators.

Using the optical theorem (see discussion surrounding Eq. (E.5)), we thus reveal a
relationship between the nth moments of the hadronic tensor, or equivalently the nth
moments of the structure functions, and the nucleon matrix elements of the spin-n
operators in the operator product expansion1:

∫ 1

0
dx xn−1W (x, Q2) =

∑
i

C (i)
n (Q2) O(i)

n + · · · . (E.13)

Factorisation appears clearly here; the hadronic tensor has been separated into hard
and soft parts. The Wilson coefficients C (i)

n (Q2) encode the hard physics, are inde-
pendent of the target state, and their dependence on Q2 is perturbatively calculable.
The reduced matrix elements O(i)

n (μ2) contain all of the information about the soft
physics of the process and the internal structure of the target. These quantities are
inherently nonperturbative, and, as we describe in the next section, may be identified
with the PDFs of the QCD-improved parton model.

E.3 The QCD-Improved Parton Model

As outlined in the introduction to Chap.6, a proton is described in the parton model
as being composed of a number of point-like quark and gluon constituents named
partons. Approaching the infinite-momentum frame of the proton, these partons
behave as quasi-free, non-interacting particles with collinear momenta. The DIS
structure functions can then be described as the incoherent sum of all virtual-photon–
parton cross-sections, weighted by the probability of finding each parton in the proton
with a given longitudinal momentum fraction x . The (nonperturbative) momentum
distribution number-density functions are the PDFs. In general, a structure function
F may thus be decomposed as

F(x) =
∑
q

Cq(x) q(x), (E.14)

1In fact, because of some details of the Cauchy integration in ω = 1/x in the derivation, this holds
only for certain values of n (even or odd) depending on amplitude under consideration. Details are
given in Ref. [1] or in standard textbooks.

http://dx.doi.org/10.1007/978-3-319-31438-9_6
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where q(x) generically denotes a combination of PDFs. In general one writes q(x)
for quarks, q(x) for antiquarks, and �q for the spin-dependent combination (the
difference of the distributions with the quark spin parallel and antiparallel to the
proton spin) of flavour q .

This intuitive picture is modified by our understanding of QCD. In particular, the
radiation of hard gluons from the quarks violates the assumption that the transverse
momentum of the partons in the infinite-momentum frame of the proton is small.
This leads to logarithmic scaling violations (particularly at small x). That is, the
structure functions in fact evolve with the probing scale and are not functions of x
alone. In this ‘QCD-improved’ parton picture, the structure functions still factorise,
but are now described in terms of scale-dependent PDFs f (x,μ2), where f denotes
the gluons g or some flavour of quark q , and μ is the scale of the probe.2

From Eq. (E.13) applied to the structure functions it is clear that moments of
the QCD-improved parton model PDFs may be directly identified with the scale-
dependent reduced matrix elements of local operators. As an explicit example we
consider the current Jμ = qγμq for a single quark flavour q. At twist-two, the Lorentz
structure of the operators that can contribute to the operator product expansion can
be either qγμq or qγμγ5q (in the limit that light quark masses can be neglected),
because the operator product Jμ J ν does not change chirality. The conventional basis
of twist-two spin-n operators is

Oμ1···μn
q = i n−1qγμ1

←→
D μ2 · · · ←→D μn q, (E.15a)

Oμ0···μm
�q = imqγ5γ

μ0
←→
D μ1 · · · ←→D μmq. (E.15b)

These operators basically assess the one-particle properties of the quarks in some
state, e.g., in a baryon B. At n = 1 they reduce to the usual vector and axial-vector
currents which measure the coresponding baryon charges. Matrix elements of these
operators:

〈
B( �p) ∣∣[O{μ1···μn}

q − Tr]∣∣ B( �p)〉 = 2〈xn−1〉Bq
[
p{μ1 · · · pμn} − Tr

]
, (E.16a)

〈
B( �p)∣∣[O{μ0···μm }

�q − Tr]∣∣B( �p)〉 = 2〈xm〉B�qMB
[
S{μ0 pμ1 · · · pμm } − Tr

]
, (E.16b)

are matched to moments of the spin-independent (qB) and spin-dependent (�qB)
quark distribution functions in B (where we have suppressed the dependence on the
scale μ2):

〈xn−1〉Bq =
∫ 1

0
dx xn−1(qB(x) + (−1)nq B(x)), (E.17a)

〈xm〉B�q =
∫ 1

0
dx xm(�qB(x) + (−1)m�qB(x)). (E.17b)

2The generalisation of Eq. (E.14) in fact involves the convolution of the perturbatively-calculable
hard scattering cross-section term and the PDFs.
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Higher-twist effects have no single-particle interpretationwithin the partonmodel.
For example, twist-four (next-to-leading order) contributions are understood to orig-
inate from two sources: the influence of nonperturbative background gluon fields on
the quark propagators, i.e., the correlation of a quark and gluon with total momentum
fraction x , and four-quark operators.
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Appendix F
Chiral Extrapolation Formulae for Moments
of PDFs

In this appendix we give explicit expressions for the chiral extrapolation of several
PDF-moment observables which were discussed in Chap. 6.

F.1 gA and 〈x〉 pu−d

To facilitate direct comparison with, and use of, the master expressions given in
Eqs. (6.38) and (6.39),wewrite out the chiral expansions for the isovector observables
〈1〉p�u−�d = gA and 〈x〉pu−d explicitly. These expressions match earlier work [1, 2]
in the limit ε → 0. As outlined in Chap.6, the integrals J̃ correspond directly to
logarithmic contributions of the form m2log(m2) in DR. In matching with familiar
notation, we identify �γ(0) = 2H and impose the SU(6) relation H = −3D.

gA = a + bM + 1

16π2 f 2π

(
d + d ′C2

)
, (F.1)

a =D + F, (F.2a)

bM = 1

2

[(
−�b(0)

1 + �b(0)
2 − �b(0)

3 + �b(0)
4 + �b(0)

5 + �b(0)
7

)
Bmu

+
(
−�b(0)

5 + �b(0)
7

)
Bmd

+
(
�b(0)

1 + �b(0)
2 + �b(0)

3 + �b(0)
4 + �b(0)

7

)
Bms

]
, (F.2b)

d = − 1

9
(D + F)

[
−3(D + F) cos ε + √

3(D − 3F) sin ε
]2

J̃
(
m2

π0

)

− (D + F)
[
(D + F)2 J̃

(
m2

π±
)

+ J̃T
(
m2

π±
)]

− 1

2
(D − F)

{
[2F + 3(D + F)] (D − F) J̃

(
m2
K 0

)
+ J̃T

(
m2
K 0

)}

− 1

3

[
2D3 + D2F + 12DF2 + 9F3

]
J̃
(
m2
K±

)
− F J̃T

(
m2
K±

)
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− 1

9
(D + F)

[
3(D + F) sin ε + √

3(D − 3F) cos ε
]2

J̃
(
m2

η

)
, (F.2c)

d ′ = 30

81
D
[
(cos2 ε) J̃2

(
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)
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〈x〉pu−d = a + bM + 1
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F.2 Charge Symmetry Violation

This section gives formulae for the spin-dependent and spin-independent charge
symmetry violating quark distributions as functions of quark and meson mass. The
expression for δ�um was presented as Eq. (6.50) in Chap.6. All integrals and con-
stants are defined in that chapter.

F.2.1 Spin-Dependent CSV PDFs

δ�dm = 〈xm〉p�d − 〈xm〉n�u = a(m)
� + 1

16π2 f 2π
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b
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, (F.5)
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F.2.2 Spin-Independent CSV PDFs

δum =〈xm〉pu − 〈xm〉nd = a(m) + 1

16π2 f 2π

(
b(m) + d(m)

)
, (F.7a)

δdm =〈xm〉pd − 〈xm〉nu = a(m) + 1

16π2 f 2π

(
b

(m) + d
(m)

)
, (F.7b)
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Appendix G
Lattice Simulation Results for the
Electromagnetic Form Factors

This section presents tables of raw lattice simulation results, and basic derived quan-
tities, for the electromagnetic form factors F1 and F2 for the simulation parameters
tabulated in Sect. 7.2.1. The Dirac and Pauli mean-squared charge radii 〈r2〉B,q

1,2 , and
anomalous magnetic moments κB,q , extracted using naive dipole-like fits to the raw
lattice data as discussed in Sect. 7.2.3, are shown in TablesG.1, G.2, G.3, G.4, G.5,
G.6 and G.7. The raw data for simulation set I is given in TablesG.8, G.9 and G.10,
that for simulation set II is presented in TablesG.11, G.12 and G.13, and raw lattice
results on the orphan ‘ensemble 10’ are given in TablesG.14, G.15 and G.16.

TableG.1 Dirac and Paulimean-squared charge radii and anomalousmagneticmoments, extracted
from dipole-like fits (Eqs. (7.10a) and (7.10b)) to ensemble 10 at (mπ,mK ) = (220, 540) MeV.
Details are given in Sect. 7.2.3

B, q 〈r2〉B,q
1 (fm2) 〈r2〉B,q

2 (fm2) κB,q (μN )

p, u 0.467(16) 0.391(91) 0.0414(53)

p, d 0.558(19) 0.502(39) –0.0616(27)

�, u 0.441 (10) 0.374(40) 0.0615(37)

�, s 0.4008(69) 0.319 (14) –0.0598(11)

�, s 0.3732(35) 0.283(16) 0.0482(11)

�, u 0.5208(69) 0.450(13) –0.0679(11)
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Table G.2 Dirac mean-squared charge radii, extracted from generalised dipole fits to data set
I—see Sect. 7.2.3

(mπ,mK )

(MeV)
〈r2〉p,u1 (fm2) 〈r2〉p,d1 〈r2〉�,u

1 〈r2〉�,s
1 〈r2〉�,s

1 〈r2〉�,u
1

(465,465) 0.334(16) 0.387(22) 0.334(16) 0.387(22) 0.334(16) 0.387(22)

(360,505) 0.368(11) 0.420(12) 0.3639(87) 0.3630(60) 0.3218(58) 0.4260(84)

(310,520) 0.376(20) 0.437(24) 0.399(13) 0.382(10) 0.3329(65) 0.459(11)

(440,440) 0.3601(96) 0.405(12) 0.3601(96) 0.405(12) 0.3601(96) 0.405(12)

(400,400) 0.378(10) 0.438(15) 0.378(10) 0.438(15) 0.378(10) 0.438(15)

(330,435) 0.396(13) 0.445(25) 0.400(10) 0.412(14) 0.3650(74) 0.465(13)

TableG.3 Pauli mean-squared charge radii, extracted from generalised dipole fits to data set I—see
Sect. 7.2.3

(mπ,mK )

(MeV)
〈r2〉p,u2 (fm2) 〈r2〉p,d2 〈r2〉�,u

2 〈r2〉�,s
2 〈r2〉�,s

2 〈r2〉�,u
2

(465,465) 0.337(18) 0.3434(79) 0.337(18) 0.3434(79) 0.337(18) 0.3434(79)

(360,505) 0.335(29) 0.405(18) 0.340(20) 0.3358(99) 0.292(15) 0.389(10)

(310,520) 0.364(59) 0.379(32) 0.331(29) 0.286(14) 0.282(15) 0.367(14)

(440,440) 0.491(51) 0.415(22) 0.491(51) 0.415(22) 0.491(51) 0.415(22)

(400,400) 0.377(48) 0.362(26) 0.377(48) 0.362(26) 0.377(48) 0.362(26)

(330,435) 0.429(51) 0.416(28) 0.413(37) 0.361(17) 0.369(26) 0.387(14)

TableG.4 Anomalousmagneticmoments in nuclearmagnetons, extracted from generalised dipole
fits to data set I—see Sect. 7.2.3
(mπ ,mK )

(MeV)
κp,u (μN ) κp,d κ�,u κ�,s κ�,s κ�,u

(465,465) 0.0518(17) –0.06113(95) 0.0518(17) –0.06113(95) 0.0518(17) –0.06113(95)

(360,505) 0.0456(24) –0.0632(18) 0.0553(21) –0.0619(10) 0.0500(14) –0.0652(11)

(310,520) 0.0482(51) –0.0594(31) 0.0576(32) –0.0572(13) 0.0508(15) –0.0629(14)

(440,440) 0.0526(42) –0.0643(24) 0.0526(42) –0.0643(24) 0.0526(42) –0.0643(24)

(400,400) 0.0503(46) –0.0570(26) 0.0503(46) –0.0570(26) 0.0503(46) –0.0570(26)

(330,435) 0.0513(44) –0.0616(27) 0.0560(36) –0.0606(16) 0.0514(24) –0.0622(14)
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Table G.5 Dirac mean-squared charge radii, extracted from generalised dipole fits to data set
II—see Sect. 7.2.3

(mπ,mK )

(MeV)
〈r2〉p,u1 (fm2) 〈r2〉p,d1 〈r2〉�,u

1 〈r2〉�,s
1 〈r2〉�,s

1 〈r2〉�,u
1

(405,405) 0.3994(52) 0.4692(75) 0.3994(52) 0.4692(75) 0.3994(52) 0.4692(75)

(340,430) 0.441(11) 0.514(12) 0.4389(95) 0.4552(91) 0.3960(59) 0.5140(93)

(265,450) 0.432(16) 0.528(20) 0.433(10) 0.4231(86) 0.3715(53) 0.5262(86)

Table G.6 Pauli mean-squared charge radii, extracted from generalised dipole fits to data
set II—see Sect. 7.2.3

(mπ,mK )

(MeV)
〈r2〉p,u2 (fm2) 〈r2〉p,d2 〈r2〉�,u

2 〈r2〉�,s
2 〈r2〉�,s

2 〈r2〉�,u
2

(405,405) 0.401(22) 0.437(11) 0.401(22) 0.437(11) 0.401(22) 0.437(11)

(340,430) 0.546(44) 0.486(24) 0.532(38) 0.412(15) 0.478(27) 0.455(15)

(265,450) 0.623(93) 0.517(40) 0.543(46) 0.389(20) 0.416(23) 0.487(16)

TableG.7 Anomalousmagneticmoments in nuclearmagnetons, extracted from generalised dipole
fits to data set II—see Sect. 7.2.3

(mπ,mK )

(MeV)
κp,u (μN ) κp,d κ�,u κ�,s κ�,s κ�,u

(405,405) 0.0540(18) –0.06240(98) 0.0540(18) –0.06240(98) 0.0540(18) –0.06240(98)

(340,430) 0.0558(31) –0.0614(20) 0.0619(30) –0.0618(12) 0.0556(19) –0.0627(13)

(265,450) 0.0531(59) –0.0629(31) 0.0643(39) –0.0597(17) 0.0503(16) –0.0660(14)

http://dx.doi.org/10.1007/978-3-319-31438-9_7
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Table G.8 Raw lattice simulation results for the nucleon: data set I

(mπ,mK ) (MeV) Q2 (GeV2) F p,u
1 F p,d

1 F p,u
2 F p,d

2

(465,465) 0.26 1.434(24) 0.666(11) 0.932(20) –1.113(11)

0.51 1.134(19) 0.4873(94) 0.722(18) –0.8298(94)

0.73 0.936(17) 0.3744(88) 0.589(19) –0.6525(88)

0.95 0.804(16) 0.3014(75) 0.474(21) –0.5547(75)

1.15 0.697(15) 0.2491(72) 0.392(16) –0.4621(72)

1.35 0.616(15) 0.2058(73) 0.328(15) –0.3956(73)

(360,505) 0.26 1.3982(91) 0.6425(40) 0.822(28) –1.081(18)

0.51 1.089(12) 0.4588(51) 0.651(23) –0.792(12)

0.72 0.884(17) 0.3412(66) 0.535(26) –0.622(13)

0.92 0.781(32) 0.284(11) 0.396(36) –0.527(24)

1.12 0.656(26) 0.2219(81) 0.341(22) –0.426(17)

1.3 0.551(26) 0.1719(81) 0.324(23) –0.339(15)

(310,520) 0.26 1.382(18) 0.6253(75) 0.885(58) –1.034(33)

0.49 1.075(20) 0.4433(82) 0.620(39) –0.792(24)

0.71 0.883(29) 0.316(13) 0.528(41) –0.586(34)

0.91 0.754(41) 0.268(15) 0.409(59) –0.519(38)

1.1 0.633(29) 0.194(11) 0.346(34) –0.435(25)

1.29 0.535(36) 0.158(17) 0.343(43) –0.342(30)

(440,440) 0.26 1.3994(79) 0.6540(40) 0.823(38) –1.080(24)

0.5 1.078(11) 0.4689(56) 0.590(31) –0.804(20)

0.73 0.871(15) 0.3548(79) 0.451(31) –0.623(21)

0.94 0.733(21) 0.2827(92) 0.336(32) –0.479(20)

1.14 0.616(19) 0.2264(89) 0.270(24) –0.403(17)

1.33 0.545(25) 0.189(11) 0.236(23) –0.349(20)

(400,400) 0.26 1.3974(91) 0.6411(53) 0.854(56) –1.027(29)

0.5 1.084(12) 0.4564(62) 0.692(38) –0.744(24)

0.72 0.888(20) 0.3377(89) 0.506(33) –0.596(25)

0.93 0.787(28) 0.286(12) 0.412(47) –0.533(28)

1.13 0.668(20) 0.2299(85) 0.361(32) –0.411(21)

1.32 0.585(27) 0.184(10) 0.296(26) –0.356(26)

(330,435) 0.26 1.367(11) 0.6303(80) 0.819(46) –1.029(28)

0.5 1.057(14) 0.437(10) 0.651(30) –0.773(16)

0.72 0.875(17) 0.324(13) 0.511(31) –0.593(20)

0.92 0.726(33) 0.267(16) 0.340(45) –0.473(31)

1.12 0.614(26) 0.207(13) 0.296(27) –0.395(21)

1.3 0.544(29) 0.170(13) 0.271(30) –0.319(24)
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Table G.9 Raw lattice simulation results for the sigma baryon: data set I

(mπ,mK ) (MeV) Q2 (GeV2) F�,u
1 F�,s

1 F�,u
2 F�,s

2

(465,465) 0.26 1.434(24) 0.666(11) 0.932(20) –1.113(11)

0.51 1.134(19) 0.4873(94) 0.722(18) –0.8298(94)

0.73 0.936(17) 0.3744(88) 0.589(19) –0.6525(88)

0.95 0.804(16) 0.3014(75) 0.474(21) –0.5547(75)

1.15 0.697(15) 0.2491(72) 0.392(16) –0.4621(72)

1.35 0.616(15) 0.2058(73) 0.328(15) –0.3956(73)

(360,505) 0.26 1.4008(72) 0.6829(21) 0.996(24) –1.126(10)

0.5 1.0839(97) 0.5058(31) 0.770(21) –0.8620(89)

0.73 0.871(13) 0.3882(43) 0.615(20) –0.680(10)

0.95 0.774(23) 0.3301(73) 0.479(27) –0.587(15)

1.15 0.646(20) 0.2611(60) 0.414(19) –0.479(13)

1.34 0.545(21) 0.2092(68) 0.367(18) –0.393(13)

(310,520) 0.26 1.372(12) 0.6776(36) 1.062(38) –1.095(14)

0.51 1.055(14) 0.5074(56) 0.796(25) –0.855(17)

0.73 0.855(20) 0.3937(82) 0.657(29) –0.681(24)

0.95 0.731(24) 0.327(10) 0.507(35) –0.592(21)

1.15 0.641(22) 0.2667(94) 0.439(25) –0.515(20)

1.35 0.563(30) 0.222(14) 0.419(33) –0.442(27)

(440,440) 0.26 1.3994(79) 0.6540(40) 0.823(38) –1.080(24)

0.5 1.078(11) 0.4689(56) 0.590(31) –0.804(20)

0.73 0.871(15) 0.3548(79) 0.451(31) –0.623(21)

0.94 0.733(21) 0.2827(92) 0.336(32) –0.479(20)

1.14 0.616(19) 0.2264(89) 0.270(24) –0.403(17)

1.33 0.545(25) 0.189(11) 0.236(23) –0.349(20)

(400,400) 0.26 1.3974(91) 0.6411(53) 0.854(56) –1.027(29)

0.5 1.084(12) 0.4564(62) 0.692(38) –0.744(24)

0.72 0.888(20) 0.3377(89) 0.506(33) –0.596(25)

0.93 0.787(28) 0.286(12) 0.412(47) –0.533(28)

1.13 0.668(20) 0.2299(85) 0.361(32) –0.411(21)

1.32 0.585(27) 0.184(10) 0.296(26) –0.356(26)

(330,435) 0.26 1.3678(86) 0.6557(48) 0.915(41) –1.076(16)

0.5 1.053(11) 0.4731(66) 0.714(24) –0.815(13)

0.73 0.864(13) 0.3598(81) 0.555(27) –0.633(17)

0.94 0.734(24) 0.297(11) 0.414(34) –0.529(20)

1.14 0.624(22) 0.238(10) 0.343(23) –0.442(17)

1.33 0.554(27) 0.198(11) 0.296(24) –0.368(21)
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Table G.10 Raw lattice simulation results for the cascade baryon: data set I

(mπ,mK ) (MeV) Q2 (GeV2) F�,s
1 F�,u

1 F�,s
2 F�,u

2

(465,465) 0.26 1.434(24) 0.666(11) 0.932(20) –1.113(11)

0.51 1.134(19) 0.4873(94) 0.722(18) –0.8298(94)

0.73 0.936(17) 0.3744(88) 0.589(19) –0.6525(88)

0.95 0.804(16) 0.3014(75) 0.474(21) –0.5547(75)

1.15 0.697(15) 0.2491(72) 0.392(16) –0.4621(72)

1.35 0.616(15) 0.2058(73) 0.328(15) –0.3956(73)

(360, 505) 0.26 1.4537(51) 0.6457(27) 0.940(18) –1.129(10)

0.51 1.1536(76) 0.4607(35) 0.747(15) –0.8270(78)

0.74 0.948(10) 0.3437(45) 0.616(14) –0.6411(82)

0.96 0.841(20) 0.2909(69) 0.481(18) –0.531(13)

1.17 0.712(19) 0.2278(58) 0.422(16) –0.436(11)

1.36 0.608(20) 0.1789(65) 0.376(16) –0.354(11)

(310,520) 0.26 1.4475(58) 0.6317(38) 0.974(18) –1.114(13)

0.51 1.1557(86) 0.4468(51) 0.762(16) –0.825(11)

0.74 0.960(13) 0.3347(78) 0.630(18) –0.640(14)

0.96 0.834(17) 0.2742(66) 0.513(18) –0.524(16)

1.17 0.728(18) 0.2169(61) 0.442(17) –0.449(17)

1.37 0.647(26) 0.179(10) 0.403(21) –0.376(20)

(440,440) 0.26 1.3994(79) 0.6540(40) 0.823(38) –1.080(24)

0.5 1.078(11) 0.4689(56) 0.590(31) –0.804(20)

0.73 0.871(15) 0.3548(79) 0.451(31) –0.623(21)

0.94 0.733(21) 0.2827(92) 0.336(32) –0.479(20)

1.14 0.616(19) 0.2264(89) 0.270(24) –0.403(17)

1.33 0.545(25) 0.189(11) 0.236(23) –0.349(20)

(400,400) 0.26 1.3974(91) 0.6411(53) 0.854(56) –1.027(29)

0.5 1.084(12) 0.4564(62) 0.692(38) –0.744(24)

0.72 0.888(20) 0.3377(89) 0.506(33) –0.596(25)

0.93 0.787(28) 0.286(12) 0.412(47) –0.533(28)

1.13 0.668(20) 0.2299(85) 0.361(32) –0.411(21)

1.32 0.585(27) 0.184(10) 0.296(26) –0.356(26)

(330,435) 0.26 1.4094(62) 0.6283(41) 0.892(28) –1.082(14)

0.5 1.1030(87) 0.4418(56) 0.684(18) –0.795(11)

0.73 0.911(11) 0.3313(63) 0.546(19) –0.623(13)

0.95 0.792(19) 0.273(10) 0.430(25) –0.501(16)

1.15 0.677(19) 0.2178(86) 0.352(18) –0.424(13)

1.34 0.594(23) 0.1794(86) 0.306(20) –0.354(17)
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Table G.11 Raw lattice simulation results for the nucleon: data set II

(mπ,mK ) (MeV) Q2 (GeV2) F p,u
1 F p,d

1 F p,u
2 F p,d

2

(405,405) 0.17 1.5427(36) 0.7270(22) 1.038(28) –1.193(14)

0.33 1.2593(63) 0.5578(35) 0.856(23) –0.9420(90)

0.48 1.0658(90) 0.4448(46) 0.714(22) –0.7663(99)

0.62 0.940(12) 0.3724(57) 0.606(24) –0.655(12)

0.76 0.822(12) 0.3100(56) 0.513(19) –0.555(11)

0.89 0.730(15) 0.2620(64) 0.440(18) –0.480(11)

1.14 0.568(19) 0.1888(70) 0.331(22) –0.358(12)

(340,430) 0.17 1.5070(88) 0.7110(35) 0.988(39) –1.150(27)

0.32 1.2138(99) 0.5420(51) 0.759(29) –0.875(19)

0.47 1.018(12) 0.4302(64) 0.613(28) –0.711(18)

0.61 0.878(18) 0.3522(90) 0.493(34) –0.590(19)

0.75 0.767(19) 0.2971(90) 0.405(25) –0.495(16)

0.87 0.694(25) 0.256(10) 0.354(27) –0.440(19)

1.12 0.547(32) 0.190(12) 0.244(30) –0.339(25)

(265,450) 0.17 1.507(11) 0.7002(58) 0.872(75) –1.155(41)

0.32 1.224(15) 0.5298(72) 0.709(43) –0.869(30)

0.47 1.036(22) 0.4239(99) 0.504(47) –0.696(31)

0.61 0.870(24) 0.329(12) 0.380(59) –0.603(31)

0.74 0.778(26) 0.288(11) 0.337(34) –0.499(28)

0.86 0.686(32) 0.238(13) 0.315(36) –0.425(30)

1.1 0.518(40) 0.170(15) 0.217(49) –0.301(32)

Table G.12 Raw lattice simulation results for the sigma baryon: data set II

(mπ,mK ) (MeV) Q2 (GeV2) F�,u
1 F�,s

1 F�,u
2 F�,s

2

(405,405) 0.17 1.5427(36) 0.7270(22) 1.038(28) –1.193(14)

0.33 1.2593(63) 0.5578(35) 0.856(23) –0.9420(90)

0.48 1.0658(90) 0.4448(46) 0.714(22) –0.7663(99)

0.62 0.940(12) 0.3724(57) 0.606(24) –0.655(12)

0.76 0.822(12) 0.3100(56) 0.513(19) –0.555(11)

0.89 0.730(15) 0.2620(64) 0.440(18) –0.480(11)

1.14 0.568(19) 0.1888(70) 0.331(22) –0.358(12)

(340,430) 0.17 1.5105(72) 0.7381(28) 1.107(39) –1.207(17)

0.33 1.2179(85) 0.5780(44) 0.849(28) –0.952(15)

0.48 1.021(10) 0.4690(57) 0.682(27) –0.788(14)

0.62 0.887(16) 0.3929(78) 0.553(31) –0.668(16)

0.76 0.775(17) 0.3333(80) 0.458(24) –0.567(14)

0.89 0.699(21) 0.2892(96) 0.397(26) –0.504(17)

1.14 0.558(27) 0.219(11) 0.275(27) –0.389(21)

(continued)
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Table G.12 (continued)

(265,450) 0.17 1.5108(79) 0.7485(27) 1.132(53) –1.172(26)

0.33 1.212(10) 0.5920(42) 0.894(37) –0.950(21)

0.48 1.019(13) 0.4846(60) 0.682(34) –0.791(21)

0.62 0.881(14) 0.4033(82) 0.543(37) –0.668(23)

0.76 0.761(16) 0.3411(82) 0.459(26) –0.576(20)

0.89 0.680(20) 0.2927(96) 0.409(26) –0.507(22)

1.14 0.525(28) 0.213(10) 0.296(33) –0.385(26)

Table G.13 Raw lattice simulation results for the cascade baryon: data set II

(mπ,mK ) (MeV) Q2 (GeV2) F�,s
1 F�,u

1 F�,s
2 F�,u

2

(405,405) 0.17 1.5427(36) 0.7270(22) 1.038(28) –1.193(14)

0.33 1.2593(63) 0.5578(35) 0.856(23) –0.9420(90)

0.48 1.0658(90) 0.4448(46) 0.714(22) –0.7663(99)

0.62 0.940(12) 0.3724(57) 0.606(24) –0.655(12)

0.76 0.822(12) 0.3100(56) 0.513(19) –0.555(11)

0.89 0.730(15) 0.2620(64) 0.440(18) –0.480(11)

1.14 0.568(19) 0.1888(70) 0.331(22) –0.358(12)

(340,430) 0.17 1.5483(42) 0.7144(27) 1.027(26) –1.197(18)

0.33 1.2730(67) 0.5471(39) 0.808(22) –0.920(13)

0.48 1.0816(95) 0.4364(51) 0.655(21) –0.746(13)

0.62 0.947(13) 0.3622(66) 0.529(23) –0.625(14)

0.76 0.833(15) 0.3066(69) 0.449(19) –0.528(12)

0.9 0.752(19) 0.2654(84) 0.393(20) –0.466(14)

1.15 0.613(26) 0.2021(99) 0.283(21) –0.367(18)

(265,450) 0.17 1.5672(39) 0.7074(25) 0.970(24) –1.232(18)

0.33 1.2997(65) 0.5384(35) 0.779(19) –0.933(14)

0.48 1.1059(94) 0.4278(44) 0.642(18) –0.742(13)

0.63 0.976(12) 0.3525(55) 0.523(21) –0.633(15)

0.77 0.856(14) 0.2954(59) 0.454(18) –0.529(12)

0.9 0.758(18) 0.2515(64) 0.396(16) –0.450(15)

1.16 0.616(26) 0.1905(88) 0.313(25) –0.338(16)
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Table G.14 Raw lattice simulation results for the nucleon calculated on ensemble 10
(Table7.1), at (mπ,mK ) = (220, 540)MeV

(mπ,mK ) (MeV) Q2 (GeV2) F p,u
1 F p,d

1 F p,u
2 F p,d

2

(220,540) 0.12 1.612(12) 0.7631(50) 0.93(12) –1.251(46)

0.23 1.342(12) 0.6122(75) 0.717(76) –1.006(36)

0.34 1.165(16) 0.5103(93) 0.606(74) –0.877(32)

0.44 1.016(21) 0.424(12) 0.604(85) –0.709(38)

0.54 0.906(18) 0.359(10) 0.534(53) –0.635(29)

0.63 0.822(20) 0.311(11) 0.465(45) –0.563(26)

0.81 0.678(36) 0.244(15) 0.345(54) –0.452(36)

Table G.15 Raw lattice simulation results for the sigma baryon calculated on ensemble 10
(Table7.1), at (mπ,mK ) = (220, 540)MeV

(mπ,mK ) (MeV) Q2 (GeV2) F�,u
1 F�,s

1 F�,u
2 F�,s

2

(220,540) 0.12 1.6270(77) 0.8219(21) 1.294(88) –1.314(21)

0.23 1.3616(92) 0.7040(38) 1.120(60) –1.147(18)

0.35 1.178(10) 0.6109(52) 0.952(49) –1.010(17)

0.45 1.037(15) 0.5335(74) 0.896(49) –0.898(19)

0.56 0.924(16) 0.4723(80) 0.772(35) –0.810(18)

0.66 0.829(16) 0.4202(87) 0.681(30) –0.731(19)

0.85 0.687(25) 0.338(11) 0.530(34) –0.610(21)

Table G.16 Raw lattice simulation results for the cascade baryon calculated on ensemble 10
(Table7.1), at (mπ,mK ) = (220, 540)MeV

(mπ,mK ) (MeV) Q2 (GeV2) F�,s
1 F�,u

1 F�,s
2 F�,u

2

(220,540) 0.12 1.6759(21) 0.7779(20) 1.062(26) –1.410(19)

0.24 1.4772(47) 0.6288(27) 0.955(21) –1.155(16)

0.35 1.3183(71) 0.5251(33) 0.862(19) –0.982(16)

0.46 1.1835(94) 0.4400(47) 0.756(19) –0.848(14)

0.56 1.079 (11) 0.3800(46) 0.691(17) –0.734(13)

0.67 0.987 (13) 0.3310(48) 0.636(17) –0.648(13)

0.87 0.840 (18) 0.2594(61) 0.518(17) –0.512(14)

http://dx.doi.org/10.1007/978-3-319-31438-9_7
http://dx.doi.org/10.1007/978-3-319-31438-9_7
http://dx.doi.org/10.1007/978-3-319-31438-9_7


Appendix H
Additional Results for Chapter 7

This appendix gives further details of the study of the electromagnetic form factors
which was presented in Chap.7.

H.1 Fit Parameters

FiguresH.1 and H.2 show the values of the chiral parameters determined by our fits
to the magnetic and electric Sachs form factors. The parameters μD and μF (bD and
bF ) are defined in Eq. (7.28) (Eq. (7.35)), while the ci appear in Eqs. (7.29) and
(7.36). The di are relevant linear combinations of the ci :

d1 = c5 − 1

4
c11, d2 = c6 + c11, (H.1a)

d3 = c6 + c11, d4 = c10 − 5

2
c4 + c12. (H.1b)

We note that the numerical values of the parameters shown here are unrenormalised.
They are included merely to illustrate their approximately linear form in Q2. Recall
that the fits at different values of Q2 are independent.

H.2 Octet Baryon Form Factors: Figures

FiguresH.3, H.4 andH.5 show the connected part of the octet baryon electromagnetic
form factors, extrapolated to infinite volume and the physical pseudoscalar masses.
Thefits shownare those used inSects. 7.5.2 and7.5.3 to extract themagneticmoments
and magnetic and electric mean-square radii.
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Fig. H.1 Q2-dependence of the unrenormalised fit parameters for the chiral extrapolation of the
magnetic Sachs form factors—see Eqs. (7.28) and (7.29)

http://dx.doi.org/10.1007/978-3-319-31438-9_7
http://dx.doi.org/10.1007/978-3-319-31438-9_7


Appendix H: Additional Results for Chapter 7 209

Fig. H.2 Q2-dependence of the unrenormalised fit parameters for the chiral extrapolation of the
electric Sachs form factors—see Eqs. (7.35) and (7.36)

http://dx.doi.org/10.1007/978-3-319-31438-9_7
http://dx.doi.org/10.1007/978-3-319-31438-9_7
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Fig. H.3 Connected part of the octet baryon magnetic form factors. The blue circles (left-hand
column) and green crosses (right-hand column) denote the results of simulation sets I and II,
respectively, extrapolated to infinite volume and the physical pseudoscalar masses. The red stars
indicate the experimental magnetic moments. The lines show dipole-like fits in Q2 using Eq. (7.40)
(dashed red) and Eq. (7.41) (solid blue or green)

H.3 Details of the Calculation of �Rs
d

In this section we give further details of our model for the ratio of disconnected loop
contributions to the electromagnetic form factors of the proton, �Rs

d = �Gs/�Gd .
This quantity is needed for the calculation of the strange form factors performed in
Sect. 7.7.

The loop diagram shown in Fig. 7.6(a) gives contributions to the magnetic and
electric form factors of the proton which depend on the integrals IM and IE , respec-
tively:

http://dx.doi.org/10.1007/978-3-319-31438-9_7
http://dx.doi.org/10.1007/978-3-319-31438-9_7
http://dx.doi.org/10.1007/978-3-319-31438-9_7
http://dx.doi.org/10.1007/978-3-319-31438-9_7
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Fig. H.4 As in Fig.H.3

IM(m, Q2) =
∫

d�k k
2
y u(�k + �q/2) u(�k − �q/2)

2ω2+ω2−
, (H.2)

IE (m, Q2) =
∫

d�k (�k2 − �q 2/4) u(�k + �q/2) u(�k − �q/2)

ω+ω−(ω+ + ω−)
, (H.3)

where

ω± =
√

(�k ± �q/2)2 + m2, (H.4)

�q is defined to lie along the z-axis, Q2 = −q2 and u(�k) is the ultraviolet regulator
used in the FRR scheme. Aswas done for the chiral extrapolation of the lattice results

used in this calculation [1, 2], we choose a dipole regulator, u(k) =
(

�2

�2+k2

)2
, with
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Fig. H.5 Connected part of the octet baryon electric form factors. The blue circles and green
crosses denote the results of simulation sets I and II, extrapolated to infinite volume and the physical
pseudoscalar masses. The lines shown for the charged baryons correspond to dipole-like fits in Q2

using Eq. (7.42)

a regulator mass � = 0.8± 0.2GeV. The dipole form is suggested by a comparison
of the nucleon’s axial and induced pseudoscalar form factors [3] and the choice of
� is informed by a lattice analysis of nucleon magnetic moments [4].

For the electric form factor we also consider Fig. 7.30(b), as discussed in Sect. 7.7.
In the formalism used here, this diagram contributes a constant to the electric form
factor which is equal in magnitude and opposite in sign to the contribution from
Fig. 7.6(a) at Q2 = 0, ensuring that the electric charge remains unrenormalised. We
model the Q2-dependence of Fig. 7.30(b) by scaling that constant by an appropriate
form factor. This results in a contribution toGE which is identical to that of Fig. 7.6(a)
under the replacement

http://dx.doi.org/10.1007/978-3-319-31438-9_7
http://dx.doi.org/10.1007/978-3-319-31438-9_7
http://dx.doi.org/10.1007/978-3-319-31438-9_7
http://dx.doi.org/10.1007/978-3-319-31438-9_7
http://dx.doi.org/10.1007/978-3-319-31438-9_7
http://dx.doi.org/10.1007/978-3-319-31438-9_7


Appendix H: Additional Results for Chapter 7 213

IE
(
mφ, Q

2
) → −IE (mφ, 0)G

q
E

(
Q2

)
. (H.5)

HereGq
E (forq = {d, s}) is theq quark contribution to the ‘intermediate’ baryon form

factor; it is the average contribution of q quarks to the form factors of the intermediate
baryons in the loopwith a proton external state, weighted by the appropriate Clebsch-
Gordon coefficients. We approximate this for the s quark by the form factor G�0,s

E ,
taken from our lattice simulations. Similarly, we set Gd

E to the same quantity, but
where the strange quark mass is set equal to the light quark mass in the chiral
extrapolation of Sect. 7.4.

The contributions of the loop diagrams of Fig. 7.30 to the proton electric and
magnetic form factors are given by the loop integrals defined above, weighted by the
appropriate chiral coefficients. As the disconnected chiral coefficients for the d and
s quarks are the same (and cancel in the ratio), the central values of �Rs

d at each Q2

are given simply by the ratio of the integrals I
(
mφ, Q2

)
with pion and kaon masses

in the loops:

�Rs
d,M (Q2) = IM

(
mπ, Q2

)

IM
(
mK , Q2

) , (H.6)

�Rs
d,E (Q2) = IE

(
mπ, Q2

) − IE (mπ, 0)Gd
E

(
Q2

)

IE
(
mK , Q2

) − IE (mK , 0)Gs
E

(
Q2

) . (H.7)

The dominant uncertainty in �Rs
d comes from allowing the regulator mass �

to vary in the range 0.6–1.0 GeV. This is combined in quadrature with half of
the shift that results from additionally allowing decuplet intermediate states in the
loops. The calculation including the decuplet loops proceeds as described above,
with additional terms—the relevant decuplet-intermediate-state loop integrals (given
in Sect. 7.3.2)—in both the numerator and denominator of Eqs. (H.6) and (H.7),
weighted by the appropriate relative disconnected chiral coefficients which may be
found in Ref. [5].

References

[1] P.E. Shanahan et al., Phys. Rev. D90, 034502 (2014)
[2] P.E. Shanahan et al., Phys. Rev. D89, 074511 (2014)
[3] P.A.M. Guichon, G.A. Miller, A.W. Thomas, Phys. Lett. B124, 109 (1983)
[4] J.M.M. Hall, D.B. Leinweber, R.D. Young, Phys. Rev. D85, 094502 (2012)
[5] P. Wang, D.B. Leinweber, A.W. Thomas, R.D. Young, Phys. Rev. C79, 065202 (2009)

http://dx.doi.org/10.1007/978-3-319-31438-9_7
http://dx.doi.org/10.1007/978-3-319-31438-9_7
http://dx.doi.org/10.1007/978-3-319-31438-9_7

	List of Publications
	Journal Articles
	Conference Proceedings

	Supervisor’s Foreword
	Abstract
	Acknowledgments
	Contents
	1 Introduction
	2 Quantum Chromodynamics
	2.1 Mathematical Formulation
	2.2 Lattice Quantum Field Theory
	2.2.1 The Discretised Action
	2.2.2 Lattice Expectation Values
	2.2.3 Scale Setting

	2.3 Strangeness and Charge Symmetry Violation  in the Nucleon
	2.3.1 Nucleon Strangeness
	2.3.2 Charge Symmetry Violation

	References

	3 Chiral Perturbation Theory
	3.1 Effective Field Theory
	3.2 Chiral Symmetry
	3.3 The Chiral Effective Lagrangian
	3.3.1 Pseudo-Goldstone Bosons
	3.3.2 Octet Baryons
	3.3.3 Decuplet Baryons and Resonances
	3.3.4 Feynman Rules

	3.4 Chiral Power Counting
	3.5 Finite-Range Regularisation
	3.6 The Nucleon Mass
	3.7 Finite-Volume Corrections
	References

	4 Octet Baryon Mass Splittings
	4.1 SU(3) Chiral Extrapolation
	4.2 Fits to Isospin-Averaged Lattice QCD Simulation Results
	4.3 Mass Splittings
	4.4 Summary and Discussion
	References

	5 Sigma Commutators
	5.1 The Feynman-Hellmann Theorem
	5.2 Light and Strange Sigma Terms
	5.3 Charge Symmetry Violation
	5.4 Summary and Discussion
	References

	6 Parton Distribution Moments
	6.1 Moments of Quark Distribution Functions
	6.2 Chiral Perturbation Theory
	6.2.1 Feynman Rules
	6.2.2 Feynman Diagrams
	6.2.3 Loop Integrals
	6.2.4 Loop Contributions
	6.2.5 Fit Functions

	6.3 Fits to Lattice QCD Simulation Results
	6.4 Hyperon Spin Fractions and the Proton Spin Puzzle
	6.5 Charge Symmetry Violation
	6.5.1 Linear Flavour Expansion
	6.5.2 Chiral Expansion

	6.6 Summary and Discussion
	References

	7 Electromagnetic Form Factors
	7.1 Dirac, Pauli and Sachs Form Factors
	7.2 Lattice QCD Simulation
	7.2.1 Simulation Parameters
	7.2.2 Lattice Method
	7.2.3 Lattice Results for F1 and F2

	7.3 Connected Chiral Perturbation Theory
	7.3.1 Partially-Quenched Chiral Perturbation Theory
	7.3.2 Electromagnetic Form Factors of the Octet Baryons

	7.4 Fits to Lattice Simulation Results
	7.4.1 Finite-Volume Corrections
	7.4.2 Binning in Q2
	7.4.3 Fits
	7.4.4 Test of Finite-Volume Effects

	7.5 Electromagnetic Form Factors at the Physical Point
	7.5.1 Isovector Quantities
	7.5.2 Connected Baryon Form Factors
	7.5.3 Magnetic and Electric Radii
	7.5.4 Quark Form Factors
	7.5.5 Ratio of Electric and Magnetic Form Factors

	7.6 Charge Symmetry Violation
	7.6.1 CSV Form Factor Formalism
	7.6.2 Disconnected Contributions to the CSV
	7.6.3 CSV Relevant to the Strange Electromagnetic Form Factors

	7.7 Strange Nucleon Form Factors
	7.7.1 Indirect Determination of the Strange Form Factors
	7.7.2 Strange Form Factors at Q2>0
	7.7.3 Strange Magnetic Moment

	7.8 Summary and Discussion
	References

	8 Summary and Outlook
	Appendix A Formal Details of Heavy Mass Techniques
	Appendix B Definitions and Identities
	Appendix C Derivations for Chapter 3
	Appendix D Tables of Chiral Coefficients
	Appendix E Deep Inelastic Scattering and the OperatorProduct Expansion
	Appendix F Chiral Extrapolation Formulae for Momentsof PDFs
	Appendix G Lattice Simulation Results for theElectromagnetic Form Factors
	Appendix H Additional Results for Chapter 7



